0ff5a4e6ec09194b0f330fd849f983ddd17484e8
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "gdbthread.h"
36 #include "target.h"
37 #include "language.h"
38 #include "gdb_string.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "solib.h"
53 #include "solist.h"
54 #include "observer.h"
55 #include "exceptions.h"
56 #include "memattr.h"
57 #include "ada-lang.h"
58 #include "top.h"
59 #include "valprint.h"
60 #include "jit.h"
61 #include "xml-syscall.h"
62 #include "parser-defs.h"
63 #include "gdb_regex.h"
64 #include "probe.h"
65 #include "cli/cli-utils.h"
66 #include "continuations.h"
67 #include "stack.h"
68 #include "skip.h"
69 #include "gdb_regex.h"
70 #include "ax-gdb.h"
71 #include "dummy-frame.h"
72
73 #include "format.h"
74
75 /* readline include files */
76 #include "readline/readline.h"
77 #include "readline/history.h"
78
79 /* readline defines this. */
80 #undef savestring
81
82 #include "mi/mi-common.h"
83 #include "python/python.h"
84
85 /* Enums for exception-handling support. */
86 enum exception_event_kind
87 {
88 EX_EVENT_THROW,
89 EX_EVENT_RETHROW,
90 EX_EVENT_CATCH
91 };
92
93 /* Prototypes for local functions. */
94
95 static void enable_delete_command (char *, int);
96
97 static void enable_once_command (char *, int);
98
99 static void enable_count_command (char *, int);
100
101 static void disable_command (char *, int);
102
103 static void enable_command (char *, int);
104
105 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
106 void *),
107 void *);
108
109 static void ignore_command (char *, int);
110
111 static int breakpoint_re_set_one (void *);
112
113 static void breakpoint_re_set_default (struct breakpoint *);
114
115 static void create_sals_from_address_default (char **,
116 struct linespec_result *,
117 enum bptype, char *,
118 char **);
119
120 static void create_breakpoints_sal_default (struct gdbarch *,
121 struct linespec_result *,
122 char *, char *, enum bptype,
123 enum bpdisp, int, int,
124 int,
125 const struct breakpoint_ops *,
126 int, int, int, unsigned);
127
128 static void decode_linespec_default (struct breakpoint *, char **,
129 struct symtabs_and_lines *);
130
131 static void clear_command (char *, int);
132
133 static void catch_command (char *, int);
134
135 static int can_use_hardware_watchpoint (struct value *);
136
137 static void break_command_1 (char *, int, int);
138
139 static void mention (struct breakpoint *);
140
141 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
142 enum bptype,
143 const struct breakpoint_ops *);
144 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
145 const struct symtab_and_line *);
146
147 /* This function is used in gdbtk sources and thus can not be made
148 static. */
149 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
150 struct symtab_and_line,
151 enum bptype,
152 const struct breakpoint_ops *);
153
154 static struct breakpoint *
155 momentary_breakpoint_from_master (struct breakpoint *orig,
156 enum bptype type,
157 const struct breakpoint_ops *ops);
158
159 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
160
161 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
162 CORE_ADDR bpaddr,
163 enum bptype bptype);
164
165 static void describe_other_breakpoints (struct gdbarch *,
166 struct program_space *, CORE_ADDR,
167 struct obj_section *, int);
168
169 static int breakpoint_address_match (struct address_space *aspace1,
170 CORE_ADDR addr1,
171 struct address_space *aspace2,
172 CORE_ADDR addr2);
173
174 static int watchpoint_locations_match (struct bp_location *loc1,
175 struct bp_location *loc2);
176
177 static int breakpoint_location_address_match (struct bp_location *bl,
178 struct address_space *aspace,
179 CORE_ADDR addr);
180
181 static void breakpoints_info (char *, int);
182
183 static void watchpoints_info (char *, int);
184
185 static int breakpoint_1 (char *, int,
186 int (*) (const struct breakpoint *));
187
188 static int breakpoint_cond_eval (void *);
189
190 static void cleanup_executing_breakpoints (void *);
191
192 static void commands_command (char *, int);
193
194 static void condition_command (char *, int);
195
196 typedef enum
197 {
198 mark_inserted,
199 mark_uninserted
200 }
201 insertion_state_t;
202
203 static int remove_breakpoint (struct bp_location *, insertion_state_t);
204 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
205
206 static enum print_stop_action print_bp_stop_message (bpstat bs);
207
208 static int watchpoint_check (void *);
209
210 static void maintenance_info_breakpoints (char *, int);
211
212 static int hw_breakpoint_used_count (void);
213
214 static int hw_watchpoint_use_count (struct breakpoint *);
215
216 static int hw_watchpoint_used_count_others (struct breakpoint *except,
217 enum bptype type,
218 int *other_type_used);
219
220 static void hbreak_command (char *, int);
221
222 static void thbreak_command (char *, int);
223
224 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
225 int count);
226
227 static void stop_command (char *arg, int from_tty);
228
229 static void stopin_command (char *arg, int from_tty);
230
231 static void stopat_command (char *arg, int from_tty);
232
233 static void tcatch_command (char *arg, int from_tty);
234
235 static void detach_single_step_breakpoints (void);
236
237 static int single_step_breakpoint_inserted_here_p (struct address_space *,
238 CORE_ADDR pc);
239
240 static void free_bp_location (struct bp_location *loc);
241 static void incref_bp_location (struct bp_location *loc);
242 static void decref_bp_location (struct bp_location **loc);
243
244 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
245
246 static void update_global_location_list (int);
247
248 static void update_global_location_list_nothrow (int);
249
250 static int is_hardware_watchpoint (const struct breakpoint *bpt);
251
252 static void insert_breakpoint_locations (void);
253
254 static int syscall_catchpoint_p (struct breakpoint *b);
255
256 static void tracepoints_info (char *, int);
257
258 static void delete_trace_command (char *, int);
259
260 static void enable_trace_command (char *, int);
261
262 static void disable_trace_command (char *, int);
263
264 static void trace_pass_command (char *, int);
265
266 static void set_tracepoint_count (int num);
267
268 static int is_masked_watchpoint (const struct breakpoint *b);
269
270 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
271
272 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
273 otherwise. */
274
275 static int strace_marker_p (struct breakpoint *b);
276
277 /* The abstract base class all breakpoint_ops structures inherit
278 from. */
279 struct breakpoint_ops base_breakpoint_ops;
280
281 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
282 that are implemented on top of software or hardware breakpoints
283 (user breakpoints, internal and momentary breakpoints, etc.). */
284 static struct breakpoint_ops bkpt_base_breakpoint_ops;
285
286 /* Internal breakpoints class type. */
287 static struct breakpoint_ops internal_breakpoint_ops;
288
289 /* Momentary breakpoints class type. */
290 static struct breakpoint_ops momentary_breakpoint_ops;
291
292 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
293 static struct breakpoint_ops longjmp_breakpoint_ops;
294
295 /* The breakpoint_ops structure to be used in regular user created
296 breakpoints. */
297 struct breakpoint_ops bkpt_breakpoint_ops;
298
299 /* Breakpoints set on probes. */
300 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
301
302 /* Dynamic printf class type. */
303 struct breakpoint_ops dprintf_breakpoint_ops;
304
305 /* The style in which to perform a dynamic printf. This is a user
306 option because different output options have different tradeoffs;
307 if GDB does the printing, there is better error handling if there
308 is a problem with any of the arguments, but using an inferior
309 function lets you have special-purpose printers and sending of
310 output to the same place as compiled-in print functions. */
311
312 static const char dprintf_style_gdb[] = "gdb";
313 static const char dprintf_style_call[] = "call";
314 static const char dprintf_style_agent[] = "agent";
315 static const char *const dprintf_style_enums[] = {
316 dprintf_style_gdb,
317 dprintf_style_call,
318 dprintf_style_agent,
319 NULL
320 };
321 static const char *dprintf_style = dprintf_style_gdb;
322
323 /* The function to use for dynamic printf if the preferred style is to
324 call into the inferior. The value is simply a string that is
325 copied into the command, so it can be anything that GDB can
326 evaluate to a callable address, not necessarily a function name. */
327
328 static char *dprintf_function = "";
329
330 /* The channel to use for dynamic printf if the preferred style is to
331 call into the inferior; if a nonempty string, it will be passed to
332 the call as the first argument, with the format string as the
333 second. As with the dprintf function, this can be anything that
334 GDB knows how to evaluate, so in addition to common choices like
335 "stderr", this could be an app-specific expression like
336 "mystreams[curlogger]". */
337
338 static char *dprintf_channel = "";
339
340 /* True if dprintf commands should continue to operate even if GDB
341 has disconnected. */
342 static int disconnected_dprintf = 1;
343
344 /* A reference-counted struct command_line. This lets multiple
345 breakpoints share a single command list. */
346 struct counted_command_line
347 {
348 /* The reference count. */
349 int refc;
350
351 /* The command list. */
352 struct command_line *commands;
353 };
354
355 struct command_line *
356 breakpoint_commands (struct breakpoint *b)
357 {
358 return b->commands ? b->commands->commands : NULL;
359 }
360
361 /* Flag indicating that a command has proceeded the inferior past the
362 current breakpoint. */
363
364 static int breakpoint_proceeded;
365
366 const char *
367 bpdisp_text (enum bpdisp disp)
368 {
369 /* NOTE: the following values are a part of MI protocol and
370 represent values of 'disp' field returned when inferior stops at
371 a breakpoint. */
372 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
373
374 return bpdisps[(int) disp];
375 }
376
377 /* Prototypes for exported functions. */
378 /* If FALSE, gdb will not use hardware support for watchpoints, even
379 if such is available. */
380 static int can_use_hw_watchpoints;
381
382 static void
383 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c,
385 const char *value)
386 {
387 fprintf_filtered (file,
388 _("Debugger's willingness to use "
389 "watchpoint hardware is %s.\n"),
390 value);
391 }
392
393 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
394 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
395 for unrecognized breakpoint locations.
396 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
397 static enum auto_boolean pending_break_support;
398 static void
399 show_pending_break_support (struct ui_file *file, int from_tty,
400 struct cmd_list_element *c,
401 const char *value)
402 {
403 fprintf_filtered (file,
404 _("Debugger's behavior regarding "
405 "pending breakpoints is %s.\n"),
406 value);
407 }
408
409 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
410 set with "break" but falling in read-only memory.
411 If 0, gdb will warn about such breakpoints, but won't automatically
412 use hardware breakpoints. */
413 static int automatic_hardware_breakpoints;
414 static void
415 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
416 struct cmd_list_element *c,
417 const char *value)
418 {
419 fprintf_filtered (file,
420 _("Automatic usage of hardware breakpoints is %s.\n"),
421 value);
422 }
423
424 /* If on, gdb will keep breakpoints inserted even as inferior is
425 stopped, and immediately insert any new breakpoints. If off, gdb
426 will insert breakpoints into inferior only when resuming it, and
427 will remove breakpoints upon stop. If auto, GDB will behave as ON
428 if in non-stop mode, and as OFF if all-stop mode.*/
429
430 static enum auto_boolean always_inserted_mode = AUTO_BOOLEAN_AUTO;
431
432 static void
433 show_always_inserted_mode (struct ui_file *file, int from_tty,
434 struct cmd_list_element *c, const char *value)
435 {
436 if (always_inserted_mode == AUTO_BOOLEAN_AUTO)
437 fprintf_filtered (file,
438 _("Always inserted breakpoint "
439 "mode is %s (currently %s).\n"),
440 value,
441 breakpoints_always_inserted_mode () ? "on" : "off");
442 else
443 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
444 value);
445 }
446
447 int
448 breakpoints_always_inserted_mode (void)
449 {
450 return (always_inserted_mode == AUTO_BOOLEAN_TRUE
451 || (always_inserted_mode == AUTO_BOOLEAN_AUTO && non_stop));
452 }
453
454 static const char condition_evaluation_both[] = "host or target";
455
456 /* Modes for breakpoint condition evaluation. */
457 static const char condition_evaluation_auto[] = "auto";
458 static const char condition_evaluation_host[] = "host";
459 static const char condition_evaluation_target[] = "target";
460 static const char *const condition_evaluation_enums[] = {
461 condition_evaluation_auto,
462 condition_evaluation_host,
463 condition_evaluation_target,
464 NULL
465 };
466
467 /* Global that holds the current mode for breakpoint condition evaluation. */
468 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
469
470 /* Global that we use to display information to the user (gets its value from
471 condition_evaluation_mode_1. */
472 static const char *condition_evaluation_mode = condition_evaluation_auto;
473
474 /* Translate a condition evaluation mode MODE into either "host"
475 or "target". This is used mostly to translate from "auto" to the
476 real setting that is being used. It returns the translated
477 evaluation mode. */
478
479 static const char *
480 translate_condition_evaluation_mode (const char *mode)
481 {
482 if (mode == condition_evaluation_auto)
483 {
484 if (target_supports_evaluation_of_breakpoint_conditions ())
485 return condition_evaluation_target;
486 else
487 return condition_evaluation_host;
488 }
489 else
490 return mode;
491 }
492
493 /* Discovers what condition_evaluation_auto translates to. */
494
495 static const char *
496 breakpoint_condition_evaluation_mode (void)
497 {
498 return translate_condition_evaluation_mode (condition_evaluation_mode);
499 }
500
501 /* Return true if GDB should evaluate breakpoint conditions or false
502 otherwise. */
503
504 static int
505 gdb_evaluates_breakpoint_condition_p (void)
506 {
507 const char *mode = breakpoint_condition_evaluation_mode ();
508
509 return (mode == condition_evaluation_host);
510 }
511
512 void _initialize_breakpoint (void);
513
514 /* Are we executing breakpoint commands? */
515 static int executing_breakpoint_commands;
516
517 /* Are overlay event breakpoints enabled? */
518 static int overlay_events_enabled;
519
520 /* See description in breakpoint.h. */
521 int target_exact_watchpoints = 0;
522
523 /* Walk the following statement or block through all breakpoints.
524 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
525 current breakpoint. */
526
527 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
528
529 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
530 for (B = breakpoint_chain; \
531 B ? (TMP=B->next, 1): 0; \
532 B = TMP)
533
534 /* Similar iterator for the low-level breakpoints. SAFE variant is
535 not provided so update_global_location_list must not be called
536 while executing the block of ALL_BP_LOCATIONS. */
537
538 #define ALL_BP_LOCATIONS(B,BP_TMP) \
539 for (BP_TMP = bp_location; \
540 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
541 BP_TMP++)
542
543 /* Iterates through locations with address ADDRESS for the currently selected
544 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
545 to where the loop should start from.
546 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
547 appropriate location to start with. */
548
549 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
550 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
551 BP_LOCP_TMP = BP_LOCP_START; \
552 BP_LOCP_START \
553 && (BP_LOCP_TMP < bp_location + bp_location_count \
554 && (*BP_LOCP_TMP)->address == ADDRESS); \
555 BP_LOCP_TMP++)
556
557 /* Iterator for tracepoints only. */
558
559 #define ALL_TRACEPOINTS(B) \
560 for (B = breakpoint_chain; B; B = B->next) \
561 if (is_tracepoint (B))
562
563 /* Chains of all breakpoints defined. */
564
565 struct breakpoint *breakpoint_chain;
566
567 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
568
569 static struct bp_location **bp_location;
570
571 /* Number of elements of BP_LOCATION. */
572
573 static unsigned bp_location_count;
574
575 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
576 ADDRESS for the current elements of BP_LOCATION which get a valid
577 result from bp_location_has_shadow. You can use it for roughly
578 limiting the subrange of BP_LOCATION to scan for shadow bytes for
579 an address you need to read. */
580
581 static CORE_ADDR bp_location_placed_address_before_address_max;
582
583 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
584 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
585 BP_LOCATION which get a valid result from bp_location_has_shadow.
586 You can use it for roughly limiting the subrange of BP_LOCATION to
587 scan for shadow bytes for an address you need to read. */
588
589 static CORE_ADDR bp_location_shadow_len_after_address_max;
590
591 /* The locations that no longer correspond to any breakpoint, unlinked
592 from bp_location array, but for which a hit may still be reported
593 by a target. */
594 VEC(bp_location_p) *moribund_locations = NULL;
595
596 /* Number of last breakpoint made. */
597
598 static int breakpoint_count;
599
600 /* The value of `breakpoint_count' before the last command that
601 created breakpoints. If the last (break-like) command created more
602 than one breakpoint, then the difference between BREAKPOINT_COUNT
603 and PREV_BREAKPOINT_COUNT is more than one. */
604 static int prev_breakpoint_count;
605
606 /* Number of last tracepoint made. */
607
608 static int tracepoint_count;
609
610 static struct cmd_list_element *breakpoint_set_cmdlist;
611 static struct cmd_list_element *breakpoint_show_cmdlist;
612 struct cmd_list_element *save_cmdlist;
613
614 /* Return whether a breakpoint is an active enabled breakpoint. */
615 static int
616 breakpoint_enabled (struct breakpoint *b)
617 {
618 return (b->enable_state == bp_enabled);
619 }
620
621 /* Set breakpoint count to NUM. */
622
623 static void
624 set_breakpoint_count (int num)
625 {
626 prev_breakpoint_count = breakpoint_count;
627 breakpoint_count = num;
628 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
629 }
630
631 /* Used by `start_rbreak_breakpoints' below, to record the current
632 breakpoint count before "rbreak" creates any breakpoint. */
633 static int rbreak_start_breakpoint_count;
634
635 /* Called at the start an "rbreak" command to record the first
636 breakpoint made. */
637
638 void
639 start_rbreak_breakpoints (void)
640 {
641 rbreak_start_breakpoint_count = breakpoint_count;
642 }
643
644 /* Called at the end of an "rbreak" command to record the last
645 breakpoint made. */
646
647 void
648 end_rbreak_breakpoints (void)
649 {
650 prev_breakpoint_count = rbreak_start_breakpoint_count;
651 }
652
653 /* Used in run_command to zero the hit count when a new run starts. */
654
655 void
656 clear_breakpoint_hit_counts (void)
657 {
658 struct breakpoint *b;
659
660 ALL_BREAKPOINTS (b)
661 b->hit_count = 0;
662 }
663
664 /* Allocate a new counted_command_line with reference count of 1.
665 The new structure owns COMMANDS. */
666
667 static struct counted_command_line *
668 alloc_counted_command_line (struct command_line *commands)
669 {
670 struct counted_command_line *result
671 = xmalloc (sizeof (struct counted_command_line));
672
673 result->refc = 1;
674 result->commands = commands;
675 return result;
676 }
677
678 /* Increment reference count. This does nothing if CMD is NULL. */
679
680 static void
681 incref_counted_command_line (struct counted_command_line *cmd)
682 {
683 if (cmd)
684 ++cmd->refc;
685 }
686
687 /* Decrement reference count. If the reference count reaches 0,
688 destroy the counted_command_line. Sets *CMDP to NULL. This does
689 nothing if *CMDP is NULL. */
690
691 static void
692 decref_counted_command_line (struct counted_command_line **cmdp)
693 {
694 if (*cmdp)
695 {
696 if (--(*cmdp)->refc == 0)
697 {
698 free_command_lines (&(*cmdp)->commands);
699 xfree (*cmdp);
700 }
701 *cmdp = NULL;
702 }
703 }
704
705 /* A cleanup function that calls decref_counted_command_line. */
706
707 static void
708 do_cleanup_counted_command_line (void *arg)
709 {
710 decref_counted_command_line (arg);
711 }
712
713 /* Create a cleanup that calls decref_counted_command_line on the
714 argument. */
715
716 static struct cleanup *
717 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
718 {
719 return make_cleanup (do_cleanup_counted_command_line, cmdp);
720 }
721
722 \f
723 /* Return the breakpoint with the specified number, or NULL
724 if the number does not refer to an existing breakpoint. */
725
726 struct breakpoint *
727 get_breakpoint (int num)
728 {
729 struct breakpoint *b;
730
731 ALL_BREAKPOINTS (b)
732 if (b->number == num)
733 return b;
734
735 return NULL;
736 }
737
738 \f
739
740 /* Mark locations as "conditions have changed" in case the target supports
741 evaluating conditions on its side. */
742
743 static void
744 mark_breakpoint_modified (struct breakpoint *b)
745 {
746 struct bp_location *loc;
747
748 /* This is only meaningful if the target is
749 evaluating conditions and if the user has
750 opted for condition evaluation on the target's
751 side. */
752 if (gdb_evaluates_breakpoint_condition_p ()
753 || !target_supports_evaluation_of_breakpoint_conditions ())
754 return;
755
756 if (!is_breakpoint (b))
757 return;
758
759 for (loc = b->loc; loc; loc = loc->next)
760 loc->condition_changed = condition_modified;
761 }
762
763 /* Mark location as "conditions have changed" in case the target supports
764 evaluating conditions on its side. */
765
766 static void
767 mark_breakpoint_location_modified (struct bp_location *loc)
768 {
769 /* This is only meaningful if the target is
770 evaluating conditions and if the user has
771 opted for condition evaluation on the target's
772 side. */
773 if (gdb_evaluates_breakpoint_condition_p ()
774 || !target_supports_evaluation_of_breakpoint_conditions ())
775
776 return;
777
778 if (!is_breakpoint (loc->owner))
779 return;
780
781 loc->condition_changed = condition_modified;
782 }
783
784 /* Sets the condition-evaluation mode using the static global
785 condition_evaluation_mode. */
786
787 static void
788 set_condition_evaluation_mode (char *args, int from_tty,
789 struct cmd_list_element *c)
790 {
791 const char *old_mode, *new_mode;
792
793 if ((condition_evaluation_mode_1 == condition_evaluation_target)
794 && !target_supports_evaluation_of_breakpoint_conditions ())
795 {
796 condition_evaluation_mode_1 = condition_evaluation_mode;
797 warning (_("Target does not support breakpoint condition evaluation.\n"
798 "Using host evaluation mode instead."));
799 return;
800 }
801
802 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
803 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
804
805 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
806 settings was "auto". */
807 condition_evaluation_mode = condition_evaluation_mode_1;
808
809 /* Only update the mode if the user picked a different one. */
810 if (new_mode != old_mode)
811 {
812 struct bp_location *loc, **loc_tmp;
813 /* If the user switched to a different evaluation mode, we
814 need to synch the changes with the target as follows:
815
816 "host" -> "target": Send all (valid) conditions to the target.
817 "target" -> "host": Remove all the conditions from the target.
818 */
819
820 if (new_mode == condition_evaluation_target)
821 {
822 /* Mark everything modified and synch conditions with the
823 target. */
824 ALL_BP_LOCATIONS (loc, loc_tmp)
825 mark_breakpoint_location_modified (loc);
826 }
827 else
828 {
829 /* Manually mark non-duplicate locations to synch conditions
830 with the target. We do this to remove all the conditions the
831 target knows about. */
832 ALL_BP_LOCATIONS (loc, loc_tmp)
833 if (is_breakpoint (loc->owner) && loc->inserted)
834 loc->needs_update = 1;
835 }
836
837 /* Do the update. */
838 update_global_location_list (1);
839 }
840
841 return;
842 }
843
844 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
845 what "auto" is translating to. */
846
847 static void
848 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
849 struct cmd_list_element *c, const char *value)
850 {
851 if (condition_evaluation_mode == condition_evaluation_auto)
852 fprintf_filtered (file,
853 _("Breakpoint condition evaluation "
854 "mode is %s (currently %s).\n"),
855 value,
856 breakpoint_condition_evaluation_mode ());
857 else
858 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
859 value);
860 }
861
862 /* A comparison function for bp_location AP and BP that is used by
863 bsearch. This comparison function only cares about addresses, unlike
864 the more general bp_location_compare function. */
865
866 static int
867 bp_location_compare_addrs (const void *ap, const void *bp)
868 {
869 struct bp_location *a = *(void **) ap;
870 struct bp_location *b = *(void **) bp;
871
872 if (a->address == b->address)
873 return 0;
874 else
875 return ((a->address > b->address) - (a->address < b->address));
876 }
877
878 /* Helper function to skip all bp_locations with addresses
879 less than ADDRESS. It returns the first bp_location that
880 is greater than or equal to ADDRESS. If none is found, just
881 return NULL. */
882
883 static struct bp_location **
884 get_first_locp_gte_addr (CORE_ADDR address)
885 {
886 struct bp_location dummy_loc;
887 struct bp_location *dummy_locp = &dummy_loc;
888 struct bp_location **locp_found = NULL;
889
890 /* Initialize the dummy location's address field. */
891 memset (&dummy_loc, 0, sizeof (struct bp_location));
892 dummy_loc.address = address;
893
894 /* Find a close match to the first location at ADDRESS. */
895 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
896 sizeof (struct bp_location **),
897 bp_location_compare_addrs);
898
899 /* Nothing was found, nothing left to do. */
900 if (locp_found == NULL)
901 return NULL;
902
903 /* We may have found a location that is at ADDRESS but is not the first in the
904 location's list. Go backwards (if possible) and locate the first one. */
905 while ((locp_found - 1) >= bp_location
906 && (*(locp_found - 1))->address == address)
907 locp_found--;
908
909 return locp_found;
910 }
911
912 void
913 set_breakpoint_condition (struct breakpoint *b, char *exp,
914 int from_tty)
915 {
916 xfree (b->cond_string);
917 b->cond_string = NULL;
918
919 if (is_watchpoint (b))
920 {
921 struct watchpoint *w = (struct watchpoint *) b;
922
923 xfree (w->cond_exp);
924 w->cond_exp = NULL;
925 }
926 else
927 {
928 struct bp_location *loc;
929
930 for (loc = b->loc; loc; loc = loc->next)
931 {
932 xfree (loc->cond);
933 loc->cond = NULL;
934
935 /* No need to free the condition agent expression
936 bytecode (if we have one). We will handle this
937 when we go through update_global_location_list. */
938 }
939 }
940
941 if (*exp == 0)
942 {
943 if (from_tty)
944 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
945 }
946 else
947 {
948 const char *arg = exp;
949
950 /* I don't know if it matters whether this is the string the user
951 typed in or the decompiled expression. */
952 b->cond_string = xstrdup (arg);
953 b->condition_not_parsed = 0;
954
955 if (is_watchpoint (b))
956 {
957 struct watchpoint *w = (struct watchpoint *) b;
958
959 innermost_block = NULL;
960 arg = exp;
961 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
962 if (*arg)
963 error (_("Junk at end of expression"));
964 w->cond_exp_valid_block = innermost_block;
965 }
966 else
967 {
968 struct bp_location *loc;
969
970 for (loc = b->loc; loc; loc = loc->next)
971 {
972 arg = exp;
973 loc->cond =
974 parse_exp_1 (&arg, loc->address,
975 block_for_pc (loc->address), 0);
976 if (*arg)
977 error (_("Junk at end of expression"));
978 }
979 }
980 }
981 mark_breakpoint_modified (b);
982
983 observer_notify_breakpoint_modified (b);
984 }
985
986 /* Completion for the "condition" command. */
987
988 static VEC (char_ptr) *
989 condition_completer (struct cmd_list_element *cmd,
990 const char *text, const char *word)
991 {
992 const char *space;
993
994 text = skip_spaces_const (text);
995 space = skip_to_space_const (text);
996 if (*space == '\0')
997 {
998 int len;
999 struct breakpoint *b;
1000 VEC (char_ptr) *result = NULL;
1001
1002 if (text[0] == '$')
1003 {
1004 /* We don't support completion of history indices. */
1005 if (isdigit (text[1]))
1006 return NULL;
1007 return complete_internalvar (&text[1]);
1008 }
1009
1010 /* We're completing the breakpoint number. */
1011 len = strlen (text);
1012
1013 ALL_BREAKPOINTS (b)
1014 {
1015 char number[50];
1016
1017 xsnprintf (number, sizeof (number), "%d", b->number);
1018
1019 if (strncmp (number, text, len) == 0)
1020 VEC_safe_push (char_ptr, result, xstrdup (number));
1021 }
1022
1023 return result;
1024 }
1025
1026 /* We're completing the expression part. */
1027 text = skip_spaces_const (space);
1028 return expression_completer (cmd, text, word);
1029 }
1030
1031 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1032
1033 static void
1034 condition_command (char *arg, int from_tty)
1035 {
1036 struct breakpoint *b;
1037 char *p;
1038 int bnum;
1039
1040 if (arg == 0)
1041 error_no_arg (_("breakpoint number"));
1042
1043 p = arg;
1044 bnum = get_number (&p);
1045 if (bnum == 0)
1046 error (_("Bad breakpoint argument: '%s'"), arg);
1047
1048 ALL_BREAKPOINTS (b)
1049 if (b->number == bnum)
1050 {
1051 /* Check if this breakpoint has a Python object assigned to
1052 it, and if it has a definition of the "stop"
1053 method. This method and conditions entered into GDB from
1054 the CLI are mutually exclusive. */
1055 if (b->py_bp_object
1056 && gdbpy_breakpoint_has_py_cond (b->py_bp_object))
1057 error (_("Cannot set a condition where a Python 'stop' "
1058 "method has been defined in the breakpoint."));
1059 set_breakpoint_condition (b, p, from_tty);
1060
1061 if (is_breakpoint (b))
1062 update_global_location_list (1);
1063
1064 return;
1065 }
1066
1067 error (_("No breakpoint number %d."), bnum);
1068 }
1069
1070 /* Check that COMMAND do not contain commands that are suitable
1071 only for tracepoints and not suitable for ordinary breakpoints.
1072 Throw if any such commands is found. */
1073
1074 static void
1075 check_no_tracepoint_commands (struct command_line *commands)
1076 {
1077 struct command_line *c;
1078
1079 for (c = commands; c; c = c->next)
1080 {
1081 int i;
1082
1083 if (c->control_type == while_stepping_control)
1084 error (_("The 'while-stepping' command can "
1085 "only be used for tracepoints"));
1086
1087 for (i = 0; i < c->body_count; ++i)
1088 check_no_tracepoint_commands ((c->body_list)[i]);
1089
1090 /* Not that command parsing removes leading whitespace and comment
1091 lines and also empty lines. So, we only need to check for
1092 command directly. */
1093 if (strstr (c->line, "collect ") == c->line)
1094 error (_("The 'collect' command can only be used for tracepoints"));
1095
1096 if (strstr (c->line, "teval ") == c->line)
1097 error (_("The 'teval' command can only be used for tracepoints"));
1098 }
1099 }
1100
1101 /* Encapsulate tests for different types of tracepoints. */
1102
1103 static int
1104 is_tracepoint_type (enum bptype type)
1105 {
1106 return (type == bp_tracepoint
1107 || type == bp_fast_tracepoint
1108 || type == bp_static_tracepoint);
1109 }
1110
1111 int
1112 is_tracepoint (const struct breakpoint *b)
1113 {
1114 return is_tracepoint_type (b->type);
1115 }
1116
1117 /* A helper function that validates that COMMANDS are valid for a
1118 breakpoint. This function will throw an exception if a problem is
1119 found. */
1120
1121 static void
1122 validate_commands_for_breakpoint (struct breakpoint *b,
1123 struct command_line *commands)
1124 {
1125 if (is_tracepoint (b))
1126 {
1127 struct tracepoint *t = (struct tracepoint *) b;
1128 struct command_line *c;
1129 struct command_line *while_stepping = 0;
1130
1131 /* Reset the while-stepping step count. The previous commands
1132 might have included a while-stepping action, while the new
1133 ones might not. */
1134 t->step_count = 0;
1135
1136 /* We need to verify that each top-level element of commands is
1137 valid for tracepoints, that there's at most one
1138 while-stepping element, and that the while-stepping's body
1139 has valid tracing commands excluding nested while-stepping.
1140 We also need to validate the tracepoint action line in the
1141 context of the tracepoint --- validate_actionline actually
1142 has side effects, like setting the tracepoint's
1143 while-stepping STEP_COUNT, in addition to checking if the
1144 collect/teval actions parse and make sense in the
1145 tracepoint's context. */
1146 for (c = commands; c; c = c->next)
1147 {
1148 if (c->control_type == while_stepping_control)
1149 {
1150 if (b->type == bp_fast_tracepoint)
1151 error (_("The 'while-stepping' command "
1152 "cannot be used for fast tracepoint"));
1153 else if (b->type == bp_static_tracepoint)
1154 error (_("The 'while-stepping' command "
1155 "cannot be used for static tracepoint"));
1156
1157 if (while_stepping)
1158 error (_("The 'while-stepping' command "
1159 "can be used only once"));
1160 else
1161 while_stepping = c;
1162 }
1163
1164 validate_actionline (c->line, b);
1165 }
1166 if (while_stepping)
1167 {
1168 struct command_line *c2;
1169
1170 gdb_assert (while_stepping->body_count == 1);
1171 c2 = while_stepping->body_list[0];
1172 for (; c2; c2 = c2->next)
1173 {
1174 if (c2->control_type == while_stepping_control)
1175 error (_("The 'while-stepping' command cannot be nested"));
1176 }
1177 }
1178 }
1179 else
1180 {
1181 check_no_tracepoint_commands (commands);
1182 }
1183 }
1184
1185 /* Return a vector of all the static tracepoints set at ADDR. The
1186 caller is responsible for releasing the vector. */
1187
1188 VEC(breakpoint_p) *
1189 static_tracepoints_here (CORE_ADDR addr)
1190 {
1191 struct breakpoint *b;
1192 VEC(breakpoint_p) *found = 0;
1193 struct bp_location *loc;
1194
1195 ALL_BREAKPOINTS (b)
1196 if (b->type == bp_static_tracepoint)
1197 {
1198 for (loc = b->loc; loc; loc = loc->next)
1199 if (loc->address == addr)
1200 VEC_safe_push(breakpoint_p, found, b);
1201 }
1202
1203 return found;
1204 }
1205
1206 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1207 validate that only allowed commands are included. */
1208
1209 void
1210 breakpoint_set_commands (struct breakpoint *b,
1211 struct command_line *commands)
1212 {
1213 validate_commands_for_breakpoint (b, commands);
1214
1215 decref_counted_command_line (&b->commands);
1216 b->commands = alloc_counted_command_line (commands);
1217 observer_notify_breakpoint_modified (b);
1218 }
1219
1220 /* Set the internal `silent' flag on the breakpoint. Note that this
1221 is not the same as the "silent" that may appear in the breakpoint's
1222 commands. */
1223
1224 void
1225 breakpoint_set_silent (struct breakpoint *b, int silent)
1226 {
1227 int old_silent = b->silent;
1228
1229 b->silent = silent;
1230 if (old_silent != silent)
1231 observer_notify_breakpoint_modified (b);
1232 }
1233
1234 /* Set the thread for this breakpoint. If THREAD is -1, make the
1235 breakpoint work for any thread. */
1236
1237 void
1238 breakpoint_set_thread (struct breakpoint *b, int thread)
1239 {
1240 int old_thread = b->thread;
1241
1242 b->thread = thread;
1243 if (old_thread != thread)
1244 observer_notify_breakpoint_modified (b);
1245 }
1246
1247 /* Set the task for this breakpoint. If TASK is 0, make the
1248 breakpoint work for any task. */
1249
1250 void
1251 breakpoint_set_task (struct breakpoint *b, int task)
1252 {
1253 int old_task = b->task;
1254
1255 b->task = task;
1256 if (old_task != task)
1257 observer_notify_breakpoint_modified (b);
1258 }
1259
1260 void
1261 check_tracepoint_command (char *line, void *closure)
1262 {
1263 struct breakpoint *b = closure;
1264
1265 validate_actionline (line, b);
1266 }
1267
1268 /* A structure used to pass information through
1269 map_breakpoint_numbers. */
1270
1271 struct commands_info
1272 {
1273 /* True if the command was typed at a tty. */
1274 int from_tty;
1275
1276 /* The breakpoint range spec. */
1277 char *arg;
1278
1279 /* Non-NULL if the body of the commands are being read from this
1280 already-parsed command. */
1281 struct command_line *control;
1282
1283 /* The command lines read from the user, or NULL if they have not
1284 yet been read. */
1285 struct counted_command_line *cmd;
1286 };
1287
1288 /* A callback for map_breakpoint_numbers that sets the commands for
1289 commands_command. */
1290
1291 static void
1292 do_map_commands_command (struct breakpoint *b, void *data)
1293 {
1294 struct commands_info *info = data;
1295
1296 if (info->cmd == NULL)
1297 {
1298 struct command_line *l;
1299
1300 if (info->control != NULL)
1301 l = copy_command_lines (info->control->body_list[0]);
1302 else
1303 {
1304 struct cleanup *old_chain;
1305 char *str;
1306
1307 str = xstrprintf (_("Type commands for breakpoint(s) "
1308 "%s, one per line."),
1309 info->arg);
1310
1311 old_chain = make_cleanup (xfree, str);
1312
1313 l = read_command_lines (str,
1314 info->from_tty, 1,
1315 (is_tracepoint (b)
1316 ? check_tracepoint_command : 0),
1317 b);
1318
1319 do_cleanups (old_chain);
1320 }
1321
1322 info->cmd = alloc_counted_command_line (l);
1323 }
1324
1325 /* If a breakpoint was on the list more than once, we don't need to
1326 do anything. */
1327 if (b->commands != info->cmd)
1328 {
1329 validate_commands_for_breakpoint (b, info->cmd->commands);
1330 incref_counted_command_line (info->cmd);
1331 decref_counted_command_line (&b->commands);
1332 b->commands = info->cmd;
1333 observer_notify_breakpoint_modified (b);
1334 }
1335 }
1336
1337 static void
1338 commands_command_1 (char *arg, int from_tty,
1339 struct command_line *control)
1340 {
1341 struct cleanup *cleanups;
1342 struct commands_info info;
1343
1344 info.from_tty = from_tty;
1345 info.control = control;
1346 info.cmd = NULL;
1347 /* If we read command lines from the user, then `info' will hold an
1348 extra reference to the commands that we must clean up. */
1349 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1350
1351 if (arg == NULL || !*arg)
1352 {
1353 if (breakpoint_count - prev_breakpoint_count > 1)
1354 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1355 breakpoint_count);
1356 else if (breakpoint_count > 0)
1357 arg = xstrprintf ("%d", breakpoint_count);
1358 else
1359 {
1360 /* So that we don't try to free the incoming non-NULL
1361 argument in the cleanup below. Mapping breakpoint
1362 numbers will fail in this case. */
1363 arg = NULL;
1364 }
1365 }
1366 else
1367 /* The command loop has some static state, so we need to preserve
1368 our argument. */
1369 arg = xstrdup (arg);
1370
1371 if (arg != NULL)
1372 make_cleanup (xfree, arg);
1373
1374 info.arg = arg;
1375
1376 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1377
1378 if (info.cmd == NULL)
1379 error (_("No breakpoints specified."));
1380
1381 do_cleanups (cleanups);
1382 }
1383
1384 static void
1385 commands_command (char *arg, int from_tty)
1386 {
1387 commands_command_1 (arg, from_tty, NULL);
1388 }
1389
1390 /* Like commands_command, but instead of reading the commands from
1391 input stream, takes them from an already parsed command structure.
1392
1393 This is used by cli-script.c to DTRT with breakpoint commands
1394 that are part of if and while bodies. */
1395 enum command_control_type
1396 commands_from_control_command (char *arg, struct command_line *cmd)
1397 {
1398 commands_command_1 (arg, 0, cmd);
1399 return simple_control;
1400 }
1401
1402 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1403
1404 static int
1405 bp_location_has_shadow (struct bp_location *bl)
1406 {
1407 if (bl->loc_type != bp_loc_software_breakpoint)
1408 return 0;
1409 if (!bl->inserted)
1410 return 0;
1411 if (bl->target_info.shadow_len == 0)
1412 /* BL isn't valid, or doesn't shadow memory. */
1413 return 0;
1414 return 1;
1415 }
1416
1417 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1418 by replacing any memory breakpoints with their shadowed contents.
1419
1420 If READBUF is not NULL, this buffer must not overlap with any of
1421 the breakpoint location's shadow_contents buffers. Otherwise,
1422 a failed assertion internal error will be raised.
1423
1424 The range of shadowed area by each bp_location is:
1425 bl->address - bp_location_placed_address_before_address_max
1426 up to bl->address + bp_location_shadow_len_after_address_max
1427 The range we were requested to resolve shadows for is:
1428 memaddr ... memaddr + len
1429 Thus the safe cutoff boundaries for performance optimization are
1430 memaddr + len <= (bl->address
1431 - bp_location_placed_address_before_address_max)
1432 and:
1433 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1434
1435 void
1436 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1437 const gdb_byte *writebuf_org,
1438 ULONGEST memaddr, LONGEST len)
1439 {
1440 /* Left boundary, right boundary and median element of our binary
1441 search. */
1442 unsigned bc_l, bc_r, bc;
1443
1444 /* Find BC_L which is a leftmost element which may affect BUF
1445 content. It is safe to report lower value but a failure to
1446 report higher one. */
1447
1448 bc_l = 0;
1449 bc_r = bp_location_count;
1450 while (bc_l + 1 < bc_r)
1451 {
1452 struct bp_location *bl;
1453
1454 bc = (bc_l + bc_r) / 2;
1455 bl = bp_location[bc];
1456
1457 /* Check first BL->ADDRESS will not overflow due to the added
1458 constant. Then advance the left boundary only if we are sure
1459 the BC element can in no way affect the BUF content (MEMADDR
1460 to MEMADDR + LEN range).
1461
1462 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1463 offset so that we cannot miss a breakpoint with its shadow
1464 range tail still reaching MEMADDR. */
1465
1466 if ((bl->address + bp_location_shadow_len_after_address_max
1467 >= bl->address)
1468 && (bl->address + bp_location_shadow_len_after_address_max
1469 <= memaddr))
1470 bc_l = bc;
1471 else
1472 bc_r = bc;
1473 }
1474
1475 /* Due to the binary search above, we need to make sure we pick the
1476 first location that's at BC_L's address. E.g., if there are
1477 multiple locations at the same address, BC_L may end up pointing
1478 at a duplicate location, and miss the "master"/"inserted"
1479 location. Say, given locations L1, L2 and L3 at addresses A and
1480 B:
1481
1482 L1@A, L2@A, L3@B, ...
1483
1484 BC_L could end up pointing at location L2, while the "master"
1485 location could be L1. Since the `loc->inserted' flag is only set
1486 on "master" locations, we'd forget to restore the shadow of L1
1487 and L2. */
1488 while (bc_l > 0
1489 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1490 bc_l--;
1491
1492 /* Now do full processing of the found relevant range of elements. */
1493
1494 for (bc = bc_l; bc < bp_location_count; bc++)
1495 {
1496 struct bp_location *bl = bp_location[bc];
1497 CORE_ADDR bp_addr = 0;
1498 int bp_size = 0;
1499 int bptoffset = 0;
1500
1501 /* bp_location array has BL->OWNER always non-NULL. */
1502 if (bl->owner->type == bp_none)
1503 warning (_("reading through apparently deleted breakpoint #%d?"),
1504 bl->owner->number);
1505
1506 /* Performance optimization: any further element can no longer affect BUF
1507 content. */
1508
1509 if (bl->address >= bp_location_placed_address_before_address_max
1510 && memaddr + len <= (bl->address
1511 - bp_location_placed_address_before_address_max))
1512 break;
1513
1514 if (!bp_location_has_shadow (bl))
1515 continue;
1516 if (!breakpoint_address_match (bl->target_info.placed_address_space, 0,
1517 current_program_space->aspace, 0))
1518 continue;
1519
1520 /* Addresses and length of the part of the breakpoint that
1521 we need to copy. */
1522 bp_addr = bl->target_info.placed_address;
1523 bp_size = bl->target_info.shadow_len;
1524
1525 if (bp_addr + bp_size <= memaddr)
1526 /* The breakpoint is entirely before the chunk of memory we
1527 are reading. */
1528 continue;
1529
1530 if (bp_addr >= memaddr + len)
1531 /* The breakpoint is entirely after the chunk of memory we are
1532 reading. */
1533 continue;
1534
1535 /* Offset within shadow_contents. */
1536 if (bp_addr < memaddr)
1537 {
1538 /* Only copy the second part of the breakpoint. */
1539 bp_size -= memaddr - bp_addr;
1540 bptoffset = memaddr - bp_addr;
1541 bp_addr = memaddr;
1542 }
1543
1544 if (bp_addr + bp_size > memaddr + len)
1545 {
1546 /* Only copy the first part of the breakpoint. */
1547 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1548 }
1549
1550 if (readbuf != NULL)
1551 {
1552 /* Verify that the readbuf buffer does not overlap with
1553 the shadow_contents buffer. */
1554 gdb_assert (bl->target_info.shadow_contents >= readbuf + len
1555 || readbuf >= (bl->target_info.shadow_contents
1556 + bl->target_info.shadow_len));
1557
1558 /* Update the read buffer with this inserted breakpoint's
1559 shadow. */
1560 memcpy (readbuf + bp_addr - memaddr,
1561 bl->target_info.shadow_contents + bptoffset, bp_size);
1562 }
1563 else
1564 {
1565 struct gdbarch *gdbarch = bl->gdbarch;
1566 const unsigned char *bp;
1567 CORE_ADDR placed_address = bl->target_info.placed_address;
1568 int placed_size = bl->target_info.placed_size;
1569
1570 /* Update the shadow with what we want to write to memory. */
1571 memcpy (bl->target_info.shadow_contents + bptoffset,
1572 writebuf_org + bp_addr - memaddr, bp_size);
1573
1574 /* Determine appropriate breakpoint contents and size for this
1575 address. */
1576 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1577
1578 /* Update the final write buffer with this inserted
1579 breakpoint's INSN. */
1580 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1581 }
1582 }
1583 }
1584 \f
1585
1586 /* Return true if BPT is either a software breakpoint or a hardware
1587 breakpoint. */
1588
1589 int
1590 is_breakpoint (const struct breakpoint *bpt)
1591 {
1592 return (bpt->type == bp_breakpoint
1593 || bpt->type == bp_hardware_breakpoint
1594 || bpt->type == bp_dprintf);
1595 }
1596
1597 /* Return true if BPT is of any hardware watchpoint kind. */
1598
1599 static int
1600 is_hardware_watchpoint (const struct breakpoint *bpt)
1601 {
1602 return (bpt->type == bp_hardware_watchpoint
1603 || bpt->type == bp_read_watchpoint
1604 || bpt->type == bp_access_watchpoint);
1605 }
1606
1607 /* Return true if BPT is of any watchpoint kind, hardware or
1608 software. */
1609
1610 int
1611 is_watchpoint (const struct breakpoint *bpt)
1612 {
1613 return (is_hardware_watchpoint (bpt)
1614 || bpt->type == bp_watchpoint);
1615 }
1616
1617 /* Returns true if the current thread and its running state are safe
1618 to evaluate or update watchpoint B. Watchpoints on local
1619 expressions need to be evaluated in the context of the thread that
1620 was current when the watchpoint was created, and, that thread needs
1621 to be stopped to be able to select the correct frame context.
1622 Watchpoints on global expressions can be evaluated on any thread,
1623 and in any state. It is presently left to the target allowing
1624 memory accesses when threads are running. */
1625
1626 static int
1627 watchpoint_in_thread_scope (struct watchpoint *b)
1628 {
1629 return (b->base.pspace == current_program_space
1630 && (ptid_equal (b->watchpoint_thread, null_ptid)
1631 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1632 && !is_executing (inferior_ptid))));
1633 }
1634
1635 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1636 associated bp_watchpoint_scope breakpoint. */
1637
1638 static void
1639 watchpoint_del_at_next_stop (struct watchpoint *w)
1640 {
1641 struct breakpoint *b = &w->base;
1642
1643 if (b->related_breakpoint != b)
1644 {
1645 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1646 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1647 b->related_breakpoint->disposition = disp_del_at_next_stop;
1648 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1649 b->related_breakpoint = b;
1650 }
1651 b->disposition = disp_del_at_next_stop;
1652 }
1653
1654 /* Assuming that B is a watchpoint:
1655 - Reparse watchpoint expression, if REPARSE is non-zero
1656 - Evaluate expression and store the result in B->val
1657 - Evaluate the condition if there is one, and store the result
1658 in b->loc->cond.
1659 - Update the list of values that must be watched in B->loc.
1660
1661 If the watchpoint disposition is disp_del_at_next_stop, then do
1662 nothing. If this is local watchpoint that is out of scope, delete
1663 it.
1664
1665 Even with `set breakpoint always-inserted on' the watchpoints are
1666 removed + inserted on each stop here. Normal breakpoints must
1667 never be removed because they might be missed by a running thread
1668 when debugging in non-stop mode. On the other hand, hardware
1669 watchpoints (is_hardware_watchpoint; processed here) are specific
1670 to each LWP since they are stored in each LWP's hardware debug
1671 registers. Therefore, such LWP must be stopped first in order to
1672 be able to modify its hardware watchpoints.
1673
1674 Hardware watchpoints must be reset exactly once after being
1675 presented to the user. It cannot be done sooner, because it would
1676 reset the data used to present the watchpoint hit to the user. And
1677 it must not be done later because it could display the same single
1678 watchpoint hit during multiple GDB stops. Note that the latter is
1679 relevant only to the hardware watchpoint types bp_read_watchpoint
1680 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1681 not user-visible - its hit is suppressed if the memory content has
1682 not changed.
1683
1684 The following constraints influence the location where we can reset
1685 hardware watchpoints:
1686
1687 * target_stopped_by_watchpoint and target_stopped_data_address are
1688 called several times when GDB stops.
1689
1690 [linux]
1691 * Multiple hardware watchpoints can be hit at the same time,
1692 causing GDB to stop. GDB only presents one hardware watchpoint
1693 hit at a time as the reason for stopping, and all the other hits
1694 are presented later, one after the other, each time the user
1695 requests the execution to be resumed. Execution is not resumed
1696 for the threads still having pending hit event stored in
1697 LWP_INFO->STATUS. While the watchpoint is already removed from
1698 the inferior on the first stop the thread hit event is kept being
1699 reported from its cached value by linux_nat_stopped_data_address
1700 until the real thread resume happens after the watchpoint gets
1701 presented and thus its LWP_INFO->STATUS gets reset.
1702
1703 Therefore the hardware watchpoint hit can get safely reset on the
1704 watchpoint removal from inferior. */
1705
1706 static void
1707 update_watchpoint (struct watchpoint *b, int reparse)
1708 {
1709 int within_current_scope;
1710 struct frame_id saved_frame_id;
1711 int frame_saved;
1712
1713 /* If this is a local watchpoint, we only want to check if the
1714 watchpoint frame is in scope if the current thread is the thread
1715 that was used to create the watchpoint. */
1716 if (!watchpoint_in_thread_scope (b))
1717 return;
1718
1719 if (b->base.disposition == disp_del_at_next_stop)
1720 return;
1721
1722 frame_saved = 0;
1723
1724 /* Determine if the watchpoint is within scope. */
1725 if (b->exp_valid_block == NULL)
1726 within_current_scope = 1;
1727 else
1728 {
1729 struct frame_info *fi = get_current_frame ();
1730 struct gdbarch *frame_arch = get_frame_arch (fi);
1731 CORE_ADDR frame_pc = get_frame_pc (fi);
1732
1733 /* If we're in a function epilogue, unwinding may not work
1734 properly, so do not attempt to recreate locations at this
1735 point. See similar comments in watchpoint_check. */
1736 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1737 return;
1738
1739 /* Save the current frame's ID so we can restore it after
1740 evaluating the watchpoint expression on its own frame. */
1741 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1742 took a frame parameter, so that we didn't have to change the
1743 selected frame. */
1744 frame_saved = 1;
1745 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1746
1747 fi = frame_find_by_id (b->watchpoint_frame);
1748 within_current_scope = (fi != NULL);
1749 if (within_current_scope)
1750 select_frame (fi);
1751 }
1752
1753 /* We don't free locations. They are stored in the bp_location array
1754 and update_global_location_list will eventually delete them and
1755 remove breakpoints if needed. */
1756 b->base.loc = NULL;
1757
1758 if (within_current_scope && reparse)
1759 {
1760 const char *s;
1761
1762 if (b->exp)
1763 {
1764 xfree (b->exp);
1765 b->exp = NULL;
1766 }
1767 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1768 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1769 /* If the meaning of expression itself changed, the old value is
1770 no longer relevant. We don't want to report a watchpoint hit
1771 to the user when the old value and the new value may actually
1772 be completely different objects. */
1773 value_free (b->val);
1774 b->val = NULL;
1775 b->val_valid = 0;
1776
1777 /* Note that unlike with breakpoints, the watchpoint's condition
1778 expression is stored in the breakpoint object, not in the
1779 locations (re)created below. */
1780 if (b->base.cond_string != NULL)
1781 {
1782 if (b->cond_exp != NULL)
1783 {
1784 xfree (b->cond_exp);
1785 b->cond_exp = NULL;
1786 }
1787
1788 s = b->base.cond_string;
1789 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1790 }
1791 }
1792
1793 /* If we failed to parse the expression, for example because
1794 it refers to a global variable in a not-yet-loaded shared library,
1795 don't try to insert watchpoint. We don't automatically delete
1796 such watchpoint, though, since failure to parse expression
1797 is different from out-of-scope watchpoint. */
1798 if ( !target_has_execution)
1799 {
1800 /* Without execution, memory can't change. No use to try and
1801 set watchpoint locations. The watchpoint will be reset when
1802 the target gains execution, through breakpoint_re_set. */
1803 }
1804 else if (within_current_scope && b->exp)
1805 {
1806 int pc = 0;
1807 struct value *val_chain, *v, *result, *next;
1808 struct program_space *frame_pspace;
1809
1810 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain);
1811
1812 /* Avoid setting b->val if it's already set. The meaning of
1813 b->val is 'the last value' user saw, and we should update
1814 it only if we reported that last value to user. As it
1815 happens, the code that reports it updates b->val directly.
1816 We don't keep track of the memory value for masked
1817 watchpoints. */
1818 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1819 {
1820 b->val = v;
1821 b->val_valid = 1;
1822 }
1823
1824 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1825
1826 /* Look at each value on the value chain. */
1827 for (v = val_chain; v; v = value_next (v))
1828 {
1829 /* If it's a memory location, and GDB actually needed
1830 its contents to evaluate the expression, then we
1831 must watch it. If the first value returned is
1832 still lazy, that means an error occurred reading it;
1833 watch it anyway in case it becomes readable. */
1834 if (VALUE_LVAL (v) == lval_memory
1835 && (v == val_chain || ! value_lazy (v)))
1836 {
1837 struct type *vtype = check_typedef (value_type (v));
1838
1839 /* We only watch structs and arrays if user asked
1840 for it explicitly, never if they just happen to
1841 appear in the middle of some value chain. */
1842 if (v == result
1843 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1844 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1845 {
1846 CORE_ADDR addr;
1847 int type;
1848 struct bp_location *loc, **tmp;
1849
1850 addr = value_address (v);
1851 type = hw_write;
1852 if (b->base.type == bp_read_watchpoint)
1853 type = hw_read;
1854 else if (b->base.type == bp_access_watchpoint)
1855 type = hw_access;
1856
1857 loc = allocate_bp_location (&b->base);
1858 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1859 ;
1860 *tmp = loc;
1861 loc->gdbarch = get_type_arch (value_type (v));
1862
1863 loc->pspace = frame_pspace;
1864 loc->address = addr;
1865 loc->length = TYPE_LENGTH (value_type (v));
1866 loc->watchpoint_type = type;
1867 }
1868 }
1869 }
1870
1871 /* Change the type of breakpoint between hardware assisted or
1872 an ordinary watchpoint depending on the hardware support
1873 and free hardware slots. REPARSE is set when the inferior
1874 is started. */
1875 if (reparse)
1876 {
1877 int reg_cnt;
1878 enum bp_loc_type loc_type;
1879 struct bp_location *bl;
1880
1881 reg_cnt = can_use_hardware_watchpoint (val_chain);
1882
1883 if (reg_cnt)
1884 {
1885 int i, target_resources_ok, other_type_used;
1886 enum bptype type;
1887
1888 /* Use an exact watchpoint when there's only one memory region to be
1889 watched, and only one debug register is needed to watch it. */
1890 b->exact = target_exact_watchpoints && reg_cnt == 1;
1891
1892 /* We need to determine how many resources are already
1893 used for all other hardware watchpoints plus this one
1894 to see if we still have enough resources to also fit
1895 this watchpoint in as well. */
1896
1897 /* If this is a software watchpoint, we try to turn it
1898 to a hardware one -- count resources as if B was of
1899 hardware watchpoint type. */
1900 type = b->base.type;
1901 if (type == bp_watchpoint)
1902 type = bp_hardware_watchpoint;
1903
1904 /* This watchpoint may or may not have been placed on
1905 the list yet at this point (it won't be in the list
1906 if we're trying to create it for the first time,
1907 through watch_command), so always account for it
1908 manually. */
1909
1910 /* Count resources used by all watchpoints except B. */
1911 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
1912
1913 /* Add in the resources needed for B. */
1914 i += hw_watchpoint_use_count (&b->base);
1915
1916 target_resources_ok
1917 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1918 if (target_resources_ok <= 0)
1919 {
1920 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
1921
1922 if (target_resources_ok == 0 && !sw_mode)
1923 error (_("Target does not support this type of "
1924 "hardware watchpoint."));
1925 else if (target_resources_ok < 0 && !sw_mode)
1926 error (_("There are not enough available hardware "
1927 "resources for this watchpoint."));
1928
1929 /* Downgrade to software watchpoint. */
1930 b->base.type = bp_watchpoint;
1931 }
1932 else
1933 {
1934 /* If this was a software watchpoint, we've just
1935 found we have enough resources to turn it to a
1936 hardware watchpoint. Otherwise, this is a
1937 nop. */
1938 b->base.type = type;
1939 }
1940 }
1941 else if (!b->base.ops->works_in_software_mode (&b->base))
1942 error (_("Expression cannot be implemented with "
1943 "read/access watchpoint."));
1944 else
1945 b->base.type = bp_watchpoint;
1946
1947 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
1948 : bp_loc_hardware_watchpoint);
1949 for (bl = b->base.loc; bl; bl = bl->next)
1950 bl->loc_type = loc_type;
1951 }
1952
1953 for (v = val_chain; v; v = next)
1954 {
1955 next = value_next (v);
1956 if (v != b->val)
1957 value_free (v);
1958 }
1959
1960 /* If a software watchpoint is not watching any memory, then the
1961 above left it without any location set up. But,
1962 bpstat_stop_status requires a location to be able to report
1963 stops, so make sure there's at least a dummy one. */
1964 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
1965 {
1966 struct breakpoint *base = &b->base;
1967 base->loc = allocate_bp_location (base);
1968 base->loc->pspace = frame_pspace;
1969 base->loc->address = -1;
1970 base->loc->length = -1;
1971 base->loc->watchpoint_type = -1;
1972 }
1973 }
1974 else if (!within_current_scope)
1975 {
1976 printf_filtered (_("\
1977 Watchpoint %d deleted because the program has left the block\n\
1978 in which its expression is valid.\n"),
1979 b->base.number);
1980 watchpoint_del_at_next_stop (b);
1981 }
1982
1983 /* Restore the selected frame. */
1984 if (frame_saved)
1985 select_frame (frame_find_by_id (saved_frame_id));
1986 }
1987
1988
1989 /* Returns 1 iff breakpoint location should be
1990 inserted in the inferior. We don't differentiate the type of BL's owner
1991 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1992 breakpoint_ops is not defined, because in insert_bp_location,
1993 tracepoint's insert_location will not be called. */
1994 static int
1995 should_be_inserted (struct bp_location *bl)
1996 {
1997 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
1998 return 0;
1999
2000 if (bl->owner->disposition == disp_del_at_next_stop)
2001 return 0;
2002
2003 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2004 return 0;
2005
2006 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2007 return 0;
2008
2009 /* This is set for example, when we're attached to the parent of a
2010 vfork, and have detached from the child. The child is running
2011 free, and we expect it to do an exec or exit, at which point the
2012 OS makes the parent schedulable again (and the target reports
2013 that the vfork is done). Until the child is done with the shared
2014 memory region, do not insert breakpoints in the parent, otherwise
2015 the child could still trip on the parent's breakpoints. Since
2016 the parent is blocked anyway, it won't miss any breakpoint. */
2017 if (bl->pspace->breakpoints_not_allowed)
2018 return 0;
2019
2020 return 1;
2021 }
2022
2023 /* Same as should_be_inserted but does the check assuming
2024 that the location is not duplicated. */
2025
2026 static int
2027 unduplicated_should_be_inserted (struct bp_location *bl)
2028 {
2029 int result;
2030 const int save_duplicate = bl->duplicate;
2031
2032 bl->duplicate = 0;
2033 result = should_be_inserted (bl);
2034 bl->duplicate = save_duplicate;
2035 return result;
2036 }
2037
2038 /* Parses a conditional described by an expression COND into an
2039 agent expression bytecode suitable for evaluation
2040 by the bytecode interpreter. Return NULL if there was
2041 any error during parsing. */
2042
2043 static struct agent_expr *
2044 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2045 {
2046 struct agent_expr *aexpr = NULL;
2047 volatile struct gdb_exception ex;
2048
2049 if (!cond)
2050 return NULL;
2051
2052 /* We don't want to stop processing, so catch any errors
2053 that may show up. */
2054 TRY_CATCH (ex, RETURN_MASK_ERROR)
2055 {
2056 aexpr = gen_eval_for_expr (scope, cond);
2057 }
2058
2059 if (ex.reason < 0)
2060 {
2061 /* If we got here, it means the condition could not be parsed to a valid
2062 bytecode expression and thus can't be evaluated on the target's side.
2063 It's no use iterating through the conditions. */
2064 return NULL;
2065 }
2066
2067 /* We have a valid agent expression. */
2068 return aexpr;
2069 }
2070
2071 /* Based on location BL, create a list of breakpoint conditions to be
2072 passed on to the target. If we have duplicated locations with different
2073 conditions, we will add such conditions to the list. The idea is that the
2074 target will evaluate the list of conditions and will only notify GDB when
2075 one of them is true. */
2076
2077 static void
2078 build_target_condition_list (struct bp_location *bl)
2079 {
2080 struct bp_location **locp = NULL, **loc2p;
2081 int null_condition_or_parse_error = 0;
2082 int modified = bl->needs_update;
2083 struct bp_location *loc;
2084
2085 /* This is only meaningful if the target is
2086 evaluating conditions and if the user has
2087 opted for condition evaluation on the target's
2088 side. */
2089 if (gdb_evaluates_breakpoint_condition_p ()
2090 || !target_supports_evaluation_of_breakpoint_conditions ())
2091 return;
2092
2093 /* Do a first pass to check for locations with no assigned
2094 conditions or conditions that fail to parse to a valid agent expression
2095 bytecode. If any of these happen, then it's no use to send conditions
2096 to the target since this location will always trigger and generate a
2097 response back to GDB. */
2098 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2099 {
2100 loc = (*loc2p);
2101 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2102 {
2103 if (modified)
2104 {
2105 struct agent_expr *aexpr;
2106
2107 /* Re-parse the conditions since something changed. In that
2108 case we already freed the condition bytecodes (see
2109 force_breakpoint_reinsertion). We just
2110 need to parse the condition to bytecodes again. */
2111 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2112 loc->cond_bytecode = aexpr;
2113
2114 /* Check if we managed to parse the conditional expression
2115 correctly. If not, we will not send this condition
2116 to the target. */
2117 if (aexpr)
2118 continue;
2119 }
2120
2121 /* If we have a NULL bytecode expression, it means something
2122 went wrong or we have a null condition expression. */
2123 if (!loc->cond_bytecode)
2124 {
2125 null_condition_or_parse_error = 1;
2126 break;
2127 }
2128 }
2129 }
2130
2131 /* If any of these happened, it means we will have to evaluate the conditions
2132 for the location's address on gdb's side. It is no use keeping bytecodes
2133 for all the other duplicate locations, thus we free all of them here.
2134
2135 This is so we have a finer control over which locations' conditions are
2136 being evaluated by GDB or the remote stub. */
2137 if (null_condition_or_parse_error)
2138 {
2139 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2140 {
2141 loc = (*loc2p);
2142 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2143 {
2144 /* Only go as far as the first NULL bytecode is
2145 located. */
2146 if (!loc->cond_bytecode)
2147 return;
2148
2149 free_agent_expr (loc->cond_bytecode);
2150 loc->cond_bytecode = NULL;
2151 }
2152 }
2153 }
2154
2155 /* No NULL conditions or failed bytecode generation. Build a condition list
2156 for this location's address. */
2157 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2158 {
2159 loc = (*loc2p);
2160 if (loc->cond
2161 && is_breakpoint (loc->owner)
2162 && loc->pspace->num == bl->pspace->num
2163 && loc->owner->enable_state == bp_enabled
2164 && loc->enabled)
2165 /* Add the condition to the vector. This will be used later to send the
2166 conditions to the target. */
2167 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2168 loc->cond_bytecode);
2169 }
2170
2171 return;
2172 }
2173
2174 /* Parses a command described by string CMD into an agent expression
2175 bytecode suitable for evaluation by the bytecode interpreter.
2176 Return NULL if there was any error during parsing. */
2177
2178 static struct agent_expr *
2179 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2180 {
2181 struct cleanup *old_cleanups = 0;
2182 struct expression *expr, **argvec;
2183 struct agent_expr *aexpr = NULL;
2184 volatile struct gdb_exception ex;
2185 const char *cmdrest;
2186 const char *format_start, *format_end;
2187 struct format_piece *fpieces;
2188 int nargs;
2189 struct gdbarch *gdbarch = get_current_arch ();
2190
2191 if (!cmd)
2192 return NULL;
2193
2194 cmdrest = cmd;
2195
2196 if (*cmdrest == ',')
2197 ++cmdrest;
2198 cmdrest = skip_spaces_const (cmdrest);
2199
2200 if (*cmdrest++ != '"')
2201 error (_("No format string following the location"));
2202
2203 format_start = cmdrest;
2204
2205 fpieces = parse_format_string (&cmdrest);
2206
2207 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2208
2209 format_end = cmdrest;
2210
2211 if (*cmdrest++ != '"')
2212 error (_("Bad format string, non-terminated '\"'."));
2213
2214 cmdrest = skip_spaces_const (cmdrest);
2215
2216 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2217 error (_("Invalid argument syntax"));
2218
2219 if (*cmdrest == ',')
2220 cmdrest++;
2221 cmdrest = skip_spaces_const (cmdrest);
2222
2223 /* For each argument, make an expression. */
2224
2225 argvec = (struct expression **) alloca (strlen (cmd)
2226 * sizeof (struct expression *));
2227
2228 nargs = 0;
2229 while (*cmdrest != '\0')
2230 {
2231 const char *cmd1;
2232
2233 cmd1 = cmdrest;
2234 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2235 argvec[nargs++] = expr;
2236 cmdrest = cmd1;
2237 if (*cmdrest == ',')
2238 ++cmdrest;
2239 }
2240
2241 /* We don't want to stop processing, so catch any errors
2242 that may show up. */
2243 TRY_CATCH (ex, RETURN_MASK_ERROR)
2244 {
2245 aexpr = gen_printf (scope, gdbarch, 0, 0,
2246 format_start, format_end - format_start,
2247 fpieces, nargs, argvec);
2248 }
2249
2250 do_cleanups (old_cleanups);
2251
2252 if (ex.reason < 0)
2253 {
2254 /* If we got here, it means the command could not be parsed to a valid
2255 bytecode expression and thus can't be evaluated on the target's side.
2256 It's no use iterating through the other commands. */
2257 return NULL;
2258 }
2259
2260 /* We have a valid agent expression, return it. */
2261 return aexpr;
2262 }
2263
2264 /* Based on location BL, create a list of breakpoint commands to be
2265 passed on to the target. If we have duplicated locations with
2266 different commands, we will add any such to the list. */
2267
2268 static void
2269 build_target_command_list (struct bp_location *bl)
2270 {
2271 struct bp_location **locp = NULL, **loc2p;
2272 int null_command_or_parse_error = 0;
2273 int modified = bl->needs_update;
2274 struct bp_location *loc;
2275
2276 /* For now, limit to agent-style dprintf breakpoints. */
2277 if (bl->owner->type != bp_dprintf
2278 || strcmp (dprintf_style, dprintf_style_agent) != 0)
2279 return;
2280
2281 if (!target_can_run_breakpoint_commands ())
2282 return;
2283
2284 /* Do a first pass to check for locations with no assigned
2285 conditions or conditions that fail to parse to a valid agent expression
2286 bytecode. If any of these happen, then it's no use to send conditions
2287 to the target since this location will always trigger and generate a
2288 response back to GDB. */
2289 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2290 {
2291 loc = (*loc2p);
2292 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2293 {
2294 if (modified)
2295 {
2296 struct agent_expr *aexpr;
2297
2298 /* Re-parse the commands since something changed. In that
2299 case we already freed the command bytecodes (see
2300 force_breakpoint_reinsertion). We just
2301 need to parse the command to bytecodes again. */
2302 aexpr = parse_cmd_to_aexpr (bl->address,
2303 loc->owner->extra_string);
2304 loc->cmd_bytecode = aexpr;
2305
2306 if (!aexpr)
2307 continue;
2308 }
2309
2310 /* If we have a NULL bytecode expression, it means something
2311 went wrong or we have a null command expression. */
2312 if (!loc->cmd_bytecode)
2313 {
2314 null_command_or_parse_error = 1;
2315 break;
2316 }
2317 }
2318 }
2319
2320 /* If anything failed, then we're not doing target-side commands,
2321 and so clean up. */
2322 if (null_command_or_parse_error)
2323 {
2324 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2325 {
2326 loc = (*loc2p);
2327 if (is_breakpoint (loc->owner)
2328 && loc->pspace->num == bl->pspace->num)
2329 {
2330 /* Only go as far as the first NULL bytecode is
2331 located. */
2332 if (loc->cmd_bytecode == NULL)
2333 return;
2334
2335 free_agent_expr (loc->cmd_bytecode);
2336 loc->cmd_bytecode = NULL;
2337 }
2338 }
2339 }
2340
2341 /* No NULL commands or failed bytecode generation. Build a command list
2342 for this location's address. */
2343 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2344 {
2345 loc = (*loc2p);
2346 if (loc->owner->extra_string
2347 && is_breakpoint (loc->owner)
2348 && loc->pspace->num == bl->pspace->num
2349 && loc->owner->enable_state == bp_enabled
2350 && loc->enabled)
2351 /* Add the command to the vector. This will be used later
2352 to send the commands to the target. */
2353 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2354 loc->cmd_bytecode);
2355 }
2356
2357 bl->target_info.persist = 0;
2358 /* Maybe flag this location as persistent. */
2359 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2360 bl->target_info.persist = 1;
2361 }
2362
2363 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2364 location. Any error messages are printed to TMP_ERROR_STREAM; and
2365 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2366 Returns 0 for success, 1 if the bp_location type is not supported or
2367 -1 for failure.
2368
2369 NOTE drow/2003-09-09: This routine could be broken down to an
2370 object-style method for each breakpoint or catchpoint type. */
2371 static int
2372 insert_bp_location (struct bp_location *bl,
2373 struct ui_file *tmp_error_stream,
2374 int *disabled_breaks,
2375 int *hw_breakpoint_error,
2376 int *hw_bp_error_explained_already)
2377 {
2378 int val = 0;
2379 char *hw_bp_err_string = NULL;
2380 struct gdb_exception e;
2381
2382 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2383 return 0;
2384
2385 /* Note we don't initialize bl->target_info, as that wipes out
2386 the breakpoint location's shadow_contents if the breakpoint
2387 is still inserted at that location. This in turn breaks
2388 target_read_memory which depends on these buffers when
2389 a memory read is requested at the breakpoint location:
2390 Once the target_info has been wiped, we fail to see that
2391 we have a breakpoint inserted at that address and thus
2392 read the breakpoint instead of returning the data saved in
2393 the breakpoint location's shadow contents. */
2394 bl->target_info.placed_address = bl->address;
2395 bl->target_info.placed_address_space = bl->pspace->aspace;
2396 bl->target_info.length = bl->length;
2397
2398 /* When working with target-side conditions, we must pass all the conditions
2399 for the same breakpoint address down to the target since GDB will not
2400 insert those locations. With a list of breakpoint conditions, the target
2401 can decide when to stop and notify GDB. */
2402
2403 if (is_breakpoint (bl->owner))
2404 {
2405 build_target_condition_list (bl);
2406 build_target_command_list (bl);
2407 /* Reset the modification marker. */
2408 bl->needs_update = 0;
2409 }
2410
2411 if (bl->loc_type == bp_loc_software_breakpoint
2412 || bl->loc_type == bp_loc_hardware_breakpoint)
2413 {
2414 if (bl->owner->type != bp_hardware_breakpoint)
2415 {
2416 /* If the explicitly specified breakpoint type
2417 is not hardware breakpoint, check the memory map to see
2418 if the breakpoint address is in read only memory or not.
2419
2420 Two important cases are:
2421 - location type is not hardware breakpoint, memory
2422 is readonly. We change the type of the location to
2423 hardware breakpoint.
2424 - location type is hardware breakpoint, memory is
2425 read-write. This means we've previously made the
2426 location hardware one, but then the memory map changed,
2427 so we undo.
2428
2429 When breakpoints are removed, remove_breakpoints will use
2430 location types we've just set here, the only possible
2431 problem is that memory map has changed during running
2432 program, but it's not going to work anyway with current
2433 gdb. */
2434 struct mem_region *mr
2435 = lookup_mem_region (bl->target_info.placed_address);
2436
2437 if (mr)
2438 {
2439 if (automatic_hardware_breakpoints)
2440 {
2441 enum bp_loc_type new_type;
2442
2443 if (mr->attrib.mode != MEM_RW)
2444 new_type = bp_loc_hardware_breakpoint;
2445 else
2446 new_type = bp_loc_software_breakpoint;
2447
2448 if (new_type != bl->loc_type)
2449 {
2450 static int said = 0;
2451
2452 bl->loc_type = new_type;
2453 if (!said)
2454 {
2455 fprintf_filtered (gdb_stdout,
2456 _("Note: automatically using "
2457 "hardware breakpoints for "
2458 "read-only addresses.\n"));
2459 said = 1;
2460 }
2461 }
2462 }
2463 else if (bl->loc_type == bp_loc_software_breakpoint
2464 && mr->attrib.mode != MEM_RW)
2465 warning (_("cannot set software breakpoint "
2466 "at readonly address %s"),
2467 paddress (bl->gdbarch, bl->address));
2468 }
2469 }
2470
2471 /* First check to see if we have to handle an overlay. */
2472 if (overlay_debugging == ovly_off
2473 || bl->section == NULL
2474 || !(section_is_overlay (bl->section)))
2475 {
2476 /* No overlay handling: just set the breakpoint. */
2477 TRY_CATCH (e, RETURN_MASK_ALL)
2478 {
2479 val = bl->owner->ops->insert_location (bl);
2480 }
2481 if (e.reason < 0)
2482 {
2483 val = 1;
2484 hw_bp_err_string = (char *) e.message;
2485 }
2486 }
2487 else
2488 {
2489 /* This breakpoint is in an overlay section.
2490 Shall we set a breakpoint at the LMA? */
2491 if (!overlay_events_enabled)
2492 {
2493 /* Yes -- overlay event support is not active,
2494 so we must try to set a breakpoint at the LMA.
2495 This will not work for a hardware breakpoint. */
2496 if (bl->loc_type == bp_loc_hardware_breakpoint)
2497 warning (_("hardware breakpoint %d not supported in overlay!"),
2498 bl->owner->number);
2499 else
2500 {
2501 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2502 bl->section);
2503 /* Set a software (trap) breakpoint at the LMA. */
2504 bl->overlay_target_info = bl->target_info;
2505 bl->overlay_target_info.placed_address = addr;
2506 val = target_insert_breakpoint (bl->gdbarch,
2507 &bl->overlay_target_info);
2508 if (val != 0)
2509 fprintf_unfiltered (tmp_error_stream,
2510 "Overlay breakpoint %d "
2511 "failed: in ROM?\n",
2512 bl->owner->number);
2513 }
2514 }
2515 /* Shall we set a breakpoint at the VMA? */
2516 if (section_is_mapped (bl->section))
2517 {
2518 /* Yes. This overlay section is mapped into memory. */
2519 TRY_CATCH (e, RETURN_MASK_ALL)
2520 {
2521 val = bl->owner->ops->insert_location (bl);
2522 }
2523 if (e.reason < 0)
2524 {
2525 val = 1;
2526 hw_bp_err_string = (char *) e.message;
2527 }
2528 }
2529 else
2530 {
2531 /* No. This breakpoint will not be inserted.
2532 No error, but do not mark the bp as 'inserted'. */
2533 return 0;
2534 }
2535 }
2536
2537 if (val)
2538 {
2539 /* Can't set the breakpoint. */
2540 if (solib_name_from_address (bl->pspace, bl->address))
2541 {
2542 /* See also: disable_breakpoints_in_shlibs. */
2543 val = 0;
2544 bl->shlib_disabled = 1;
2545 observer_notify_breakpoint_modified (bl->owner);
2546 if (!*disabled_breaks)
2547 {
2548 fprintf_unfiltered (tmp_error_stream,
2549 "Cannot insert breakpoint %d.\n",
2550 bl->owner->number);
2551 fprintf_unfiltered (tmp_error_stream,
2552 "Temporarily disabling shared "
2553 "library breakpoints:\n");
2554 }
2555 *disabled_breaks = 1;
2556 fprintf_unfiltered (tmp_error_stream,
2557 "breakpoint #%d\n", bl->owner->number);
2558 }
2559 else
2560 {
2561 if (bl->loc_type == bp_loc_hardware_breakpoint)
2562 {
2563 *hw_breakpoint_error = 1;
2564 *hw_bp_error_explained_already = hw_bp_err_string != NULL;
2565 fprintf_unfiltered (tmp_error_stream,
2566 "Cannot insert hardware breakpoint %d%s",
2567 bl->owner->number, hw_bp_err_string ? ":" : ".\n");
2568 if (hw_bp_err_string)
2569 fprintf_unfiltered (tmp_error_stream, "%s.\n", hw_bp_err_string);
2570 }
2571 else
2572 {
2573 fprintf_unfiltered (tmp_error_stream,
2574 "Cannot insert breakpoint %d.\n",
2575 bl->owner->number);
2576 fprintf_filtered (tmp_error_stream,
2577 "Error accessing memory address ");
2578 fputs_filtered (paddress (bl->gdbarch, bl->address),
2579 tmp_error_stream);
2580 fprintf_filtered (tmp_error_stream, ": %s.\n",
2581 safe_strerror (val));
2582 }
2583
2584 }
2585 }
2586 else
2587 bl->inserted = 1;
2588
2589 return val;
2590 }
2591
2592 else if (bl->loc_type == bp_loc_hardware_watchpoint
2593 /* NOTE drow/2003-09-08: This state only exists for removing
2594 watchpoints. It's not clear that it's necessary... */
2595 && bl->owner->disposition != disp_del_at_next_stop)
2596 {
2597 gdb_assert (bl->owner->ops != NULL
2598 && bl->owner->ops->insert_location != NULL);
2599
2600 val = bl->owner->ops->insert_location (bl);
2601
2602 /* If trying to set a read-watchpoint, and it turns out it's not
2603 supported, try emulating one with an access watchpoint. */
2604 if (val == 1 && bl->watchpoint_type == hw_read)
2605 {
2606 struct bp_location *loc, **loc_temp;
2607
2608 /* But don't try to insert it, if there's already another
2609 hw_access location that would be considered a duplicate
2610 of this one. */
2611 ALL_BP_LOCATIONS (loc, loc_temp)
2612 if (loc != bl
2613 && loc->watchpoint_type == hw_access
2614 && watchpoint_locations_match (bl, loc))
2615 {
2616 bl->duplicate = 1;
2617 bl->inserted = 1;
2618 bl->target_info = loc->target_info;
2619 bl->watchpoint_type = hw_access;
2620 val = 0;
2621 break;
2622 }
2623
2624 if (val == 1)
2625 {
2626 bl->watchpoint_type = hw_access;
2627 val = bl->owner->ops->insert_location (bl);
2628
2629 if (val)
2630 /* Back to the original value. */
2631 bl->watchpoint_type = hw_read;
2632 }
2633 }
2634
2635 bl->inserted = (val == 0);
2636 }
2637
2638 else if (bl->owner->type == bp_catchpoint)
2639 {
2640 gdb_assert (bl->owner->ops != NULL
2641 && bl->owner->ops->insert_location != NULL);
2642
2643 val = bl->owner->ops->insert_location (bl);
2644 if (val)
2645 {
2646 bl->owner->enable_state = bp_disabled;
2647
2648 if (val == 1)
2649 warning (_("\
2650 Error inserting catchpoint %d: Your system does not support this type\n\
2651 of catchpoint."), bl->owner->number);
2652 else
2653 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2654 }
2655
2656 bl->inserted = (val == 0);
2657
2658 /* We've already printed an error message if there was a problem
2659 inserting this catchpoint, and we've disabled the catchpoint,
2660 so just return success. */
2661 return 0;
2662 }
2663
2664 return 0;
2665 }
2666
2667 /* This function is called when program space PSPACE is about to be
2668 deleted. It takes care of updating breakpoints to not reference
2669 PSPACE anymore. */
2670
2671 void
2672 breakpoint_program_space_exit (struct program_space *pspace)
2673 {
2674 struct breakpoint *b, *b_temp;
2675 struct bp_location *loc, **loc_temp;
2676
2677 /* Remove any breakpoint that was set through this program space. */
2678 ALL_BREAKPOINTS_SAFE (b, b_temp)
2679 {
2680 if (b->pspace == pspace)
2681 delete_breakpoint (b);
2682 }
2683
2684 /* Breakpoints set through other program spaces could have locations
2685 bound to PSPACE as well. Remove those. */
2686 ALL_BP_LOCATIONS (loc, loc_temp)
2687 {
2688 struct bp_location *tmp;
2689
2690 if (loc->pspace == pspace)
2691 {
2692 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2693 if (loc->owner->loc == loc)
2694 loc->owner->loc = loc->next;
2695 else
2696 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2697 if (tmp->next == loc)
2698 {
2699 tmp->next = loc->next;
2700 break;
2701 }
2702 }
2703 }
2704
2705 /* Now update the global location list to permanently delete the
2706 removed locations above. */
2707 update_global_location_list (0);
2708 }
2709
2710 /* Make sure all breakpoints are inserted in inferior.
2711 Throws exception on any error.
2712 A breakpoint that is already inserted won't be inserted
2713 again, so calling this function twice is safe. */
2714 void
2715 insert_breakpoints (void)
2716 {
2717 struct breakpoint *bpt;
2718
2719 ALL_BREAKPOINTS (bpt)
2720 if (is_hardware_watchpoint (bpt))
2721 {
2722 struct watchpoint *w = (struct watchpoint *) bpt;
2723
2724 update_watchpoint (w, 0 /* don't reparse. */);
2725 }
2726
2727 update_global_location_list (1);
2728
2729 /* update_global_location_list does not insert breakpoints when
2730 always_inserted_mode is not enabled. Explicitly insert them
2731 now. */
2732 if (!breakpoints_always_inserted_mode ())
2733 insert_breakpoint_locations ();
2734 }
2735
2736 /* Invoke CALLBACK for each of bp_location. */
2737
2738 void
2739 iterate_over_bp_locations (walk_bp_location_callback callback)
2740 {
2741 struct bp_location *loc, **loc_tmp;
2742
2743 ALL_BP_LOCATIONS (loc, loc_tmp)
2744 {
2745 callback (loc, NULL);
2746 }
2747 }
2748
2749 /* This is used when we need to synch breakpoint conditions between GDB and the
2750 target. It is the case with deleting and disabling of breakpoints when using
2751 always-inserted mode. */
2752
2753 static void
2754 update_inserted_breakpoint_locations (void)
2755 {
2756 struct bp_location *bl, **blp_tmp;
2757 int error_flag = 0;
2758 int val = 0;
2759 int disabled_breaks = 0;
2760 int hw_breakpoint_error = 0;
2761 int hw_bp_details_reported = 0;
2762
2763 struct ui_file *tmp_error_stream = mem_fileopen ();
2764 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2765
2766 /* Explicitly mark the warning -- this will only be printed if
2767 there was an error. */
2768 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2769
2770 save_current_space_and_thread ();
2771
2772 ALL_BP_LOCATIONS (bl, blp_tmp)
2773 {
2774 /* We only want to update software breakpoints and hardware
2775 breakpoints. */
2776 if (!is_breakpoint (bl->owner))
2777 continue;
2778
2779 /* We only want to update locations that are already inserted
2780 and need updating. This is to avoid unwanted insertion during
2781 deletion of breakpoints. */
2782 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2783 continue;
2784
2785 switch_to_program_space_and_thread (bl->pspace);
2786
2787 /* For targets that support global breakpoints, there's no need
2788 to select an inferior to insert breakpoint to. In fact, even
2789 if we aren't attached to any process yet, we should still
2790 insert breakpoints. */
2791 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2792 && ptid_equal (inferior_ptid, null_ptid))
2793 continue;
2794
2795 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2796 &hw_breakpoint_error, &hw_bp_details_reported);
2797 if (val)
2798 error_flag = val;
2799 }
2800
2801 if (error_flag)
2802 {
2803 target_terminal_ours_for_output ();
2804 error_stream (tmp_error_stream);
2805 }
2806
2807 do_cleanups (cleanups);
2808 }
2809
2810 /* Used when starting or continuing the program. */
2811
2812 static void
2813 insert_breakpoint_locations (void)
2814 {
2815 struct breakpoint *bpt;
2816 struct bp_location *bl, **blp_tmp;
2817 int error_flag = 0;
2818 int val = 0;
2819 int disabled_breaks = 0;
2820 int hw_breakpoint_error = 0;
2821 int hw_bp_error_explained_already = 0;
2822
2823 struct ui_file *tmp_error_stream = mem_fileopen ();
2824 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2825
2826 /* Explicitly mark the warning -- this will only be printed if
2827 there was an error. */
2828 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2829
2830 save_current_space_and_thread ();
2831
2832 ALL_BP_LOCATIONS (bl, blp_tmp)
2833 {
2834 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2835 continue;
2836
2837 /* There is no point inserting thread-specific breakpoints if
2838 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2839 has BL->OWNER always non-NULL. */
2840 if (bl->owner->thread != -1
2841 && !valid_thread_id (bl->owner->thread))
2842 continue;
2843
2844 switch_to_program_space_and_thread (bl->pspace);
2845
2846 /* For targets that support global breakpoints, there's no need
2847 to select an inferior to insert breakpoint to. In fact, even
2848 if we aren't attached to any process yet, we should still
2849 insert breakpoints. */
2850 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2851 && ptid_equal (inferior_ptid, null_ptid))
2852 continue;
2853
2854 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2855 &hw_breakpoint_error, &hw_bp_error_explained_already);
2856 if (val)
2857 error_flag = val;
2858 }
2859
2860 /* If we failed to insert all locations of a watchpoint, remove
2861 them, as half-inserted watchpoint is of limited use. */
2862 ALL_BREAKPOINTS (bpt)
2863 {
2864 int some_failed = 0;
2865 struct bp_location *loc;
2866
2867 if (!is_hardware_watchpoint (bpt))
2868 continue;
2869
2870 if (!breakpoint_enabled (bpt))
2871 continue;
2872
2873 if (bpt->disposition == disp_del_at_next_stop)
2874 continue;
2875
2876 for (loc = bpt->loc; loc; loc = loc->next)
2877 if (!loc->inserted && should_be_inserted (loc))
2878 {
2879 some_failed = 1;
2880 break;
2881 }
2882 if (some_failed)
2883 {
2884 for (loc = bpt->loc; loc; loc = loc->next)
2885 if (loc->inserted)
2886 remove_breakpoint (loc, mark_uninserted);
2887
2888 hw_breakpoint_error = 1;
2889 fprintf_unfiltered (tmp_error_stream,
2890 "Could not insert hardware watchpoint %d.\n",
2891 bpt->number);
2892 error_flag = -1;
2893 }
2894 }
2895
2896 if (error_flag)
2897 {
2898 /* If a hardware breakpoint or watchpoint was inserted, add a
2899 message about possibly exhausted resources. */
2900 if (hw_breakpoint_error && !hw_bp_error_explained_already)
2901 {
2902 fprintf_unfiltered (tmp_error_stream,
2903 "Could not insert hardware breakpoints:\n\
2904 You may have requested too many hardware breakpoints/watchpoints.\n");
2905 }
2906 target_terminal_ours_for_output ();
2907 error_stream (tmp_error_stream);
2908 }
2909
2910 do_cleanups (cleanups);
2911 }
2912
2913 /* Used when the program stops.
2914 Returns zero if successful, or non-zero if there was a problem
2915 removing a breakpoint location. */
2916
2917 int
2918 remove_breakpoints (void)
2919 {
2920 struct bp_location *bl, **blp_tmp;
2921 int val = 0;
2922
2923 ALL_BP_LOCATIONS (bl, blp_tmp)
2924 {
2925 if (bl->inserted && !is_tracepoint (bl->owner))
2926 val |= remove_breakpoint (bl, mark_uninserted);
2927 }
2928 return val;
2929 }
2930
2931 /* Remove breakpoints of process PID. */
2932
2933 int
2934 remove_breakpoints_pid (int pid)
2935 {
2936 struct bp_location *bl, **blp_tmp;
2937 int val;
2938 struct inferior *inf = find_inferior_pid (pid);
2939
2940 ALL_BP_LOCATIONS (bl, blp_tmp)
2941 {
2942 if (bl->pspace != inf->pspace)
2943 continue;
2944
2945 if (bl->owner->type == bp_dprintf)
2946 continue;
2947
2948 if (bl->inserted)
2949 {
2950 val = remove_breakpoint (bl, mark_uninserted);
2951 if (val != 0)
2952 return val;
2953 }
2954 }
2955 return 0;
2956 }
2957
2958 int
2959 reattach_breakpoints (int pid)
2960 {
2961 struct cleanup *old_chain;
2962 struct bp_location *bl, **blp_tmp;
2963 int val;
2964 struct ui_file *tmp_error_stream;
2965 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
2966 struct inferior *inf;
2967 struct thread_info *tp;
2968
2969 tp = any_live_thread_of_process (pid);
2970 if (tp == NULL)
2971 return 1;
2972
2973 inf = find_inferior_pid (pid);
2974 old_chain = save_inferior_ptid ();
2975
2976 inferior_ptid = tp->ptid;
2977
2978 tmp_error_stream = mem_fileopen ();
2979 make_cleanup_ui_file_delete (tmp_error_stream);
2980
2981 ALL_BP_LOCATIONS (bl, blp_tmp)
2982 {
2983 if (bl->pspace != inf->pspace)
2984 continue;
2985
2986 if (bl->inserted)
2987 {
2988 bl->inserted = 0;
2989 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
2990 if (val != 0)
2991 {
2992 do_cleanups (old_chain);
2993 return val;
2994 }
2995 }
2996 }
2997 do_cleanups (old_chain);
2998 return 0;
2999 }
3000
3001 static int internal_breakpoint_number = -1;
3002
3003 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3004 If INTERNAL is non-zero, the breakpoint number will be populated
3005 from internal_breakpoint_number and that variable decremented.
3006 Otherwise the breakpoint number will be populated from
3007 breakpoint_count and that value incremented. Internal breakpoints
3008 do not set the internal var bpnum. */
3009 static void
3010 set_breakpoint_number (int internal, struct breakpoint *b)
3011 {
3012 if (internal)
3013 b->number = internal_breakpoint_number--;
3014 else
3015 {
3016 set_breakpoint_count (breakpoint_count + 1);
3017 b->number = breakpoint_count;
3018 }
3019 }
3020
3021 static struct breakpoint *
3022 create_internal_breakpoint (struct gdbarch *gdbarch,
3023 CORE_ADDR address, enum bptype type,
3024 const struct breakpoint_ops *ops)
3025 {
3026 struct symtab_and_line sal;
3027 struct breakpoint *b;
3028
3029 init_sal (&sal); /* Initialize to zeroes. */
3030
3031 sal.pc = address;
3032 sal.section = find_pc_overlay (sal.pc);
3033 sal.pspace = current_program_space;
3034
3035 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3036 b->number = internal_breakpoint_number--;
3037 b->disposition = disp_donttouch;
3038
3039 return b;
3040 }
3041
3042 static const char *const longjmp_names[] =
3043 {
3044 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3045 };
3046 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3047
3048 /* Per-objfile data private to breakpoint.c. */
3049 struct breakpoint_objfile_data
3050 {
3051 /* Minimal symbol for "_ovly_debug_event" (if any). */
3052 struct minimal_symbol *overlay_msym;
3053
3054 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3055 struct minimal_symbol *longjmp_msym[NUM_LONGJMP_NAMES];
3056
3057 /* True if we have looked for longjmp probes. */
3058 int longjmp_searched;
3059
3060 /* SystemTap probe points for longjmp (if any). */
3061 VEC (probe_p) *longjmp_probes;
3062
3063 /* Minimal symbol for "std::terminate()" (if any). */
3064 struct minimal_symbol *terminate_msym;
3065
3066 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3067 struct minimal_symbol *exception_msym;
3068
3069 /* True if we have looked for exception probes. */
3070 int exception_searched;
3071
3072 /* SystemTap probe points for unwinding (if any). */
3073 VEC (probe_p) *exception_probes;
3074 };
3075
3076 static const struct objfile_data *breakpoint_objfile_key;
3077
3078 /* Minimal symbol not found sentinel. */
3079 static struct minimal_symbol msym_not_found;
3080
3081 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3082
3083 static int
3084 msym_not_found_p (const struct minimal_symbol *msym)
3085 {
3086 return msym == &msym_not_found;
3087 }
3088
3089 /* Return per-objfile data needed by breakpoint.c.
3090 Allocate the data if necessary. */
3091
3092 static struct breakpoint_objfile_data *
3093 get_breakpoint_objfile_data (struct objfile *objfile)
3094 {
3095 struct breakpoint_objfile_data *bp_objfile_data;
3096
3097 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3098 if (bp_objfile_data == NULL)
3099 {
3100 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3101 sizeof (*bp_objfile_data));
3102
3103 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3104 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3105 }
3106 return bp_objfile_data;
3107 }
3108
3109 static void
3110 free_breakpoint_probes (struct objfile *obj, void *data)
3111 {
3112 struct breakpoint_objfile_data *bp_objfile_data = data;
3113
3114 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3115 VEC_free (probe_p, bp_objfile_data->exception_probes);
3116 }
3117
3118 static void
3119 create_overlay_event_breakpoint (void)
3120 {
3121 struct objfile *objfile;
3122 const char *const func_name = "_ovly_debug_event";
3123
3124 ALL_OBJFILES (objfile)
3125 {
3126 struct breakpoint *b;
3127 struct breakpoint_objfile_data *bp_objfile_data;
3128 CORE_ADDR addr;
3129
3130 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3131
3132 if (msym_not_found_p (bp_objfile_data->overlay_msym))
3133 continue;
3134
3135 if (bp_objfile_data->overlay_msym == NULL)
3136 {
3137 struct minimal_symbol *m;
3138
3139 m = lookup_minimal_symbol_text (func_name, objfile);
3140 if (m == NULL)
3141 {
3142 /* Avoid future lookups in this objfile. */
3143 bp_objfile_data->overlay_msym = &msym_not_found;
3144 continue;
3145 }
3146 bp_objfile_data->overlay_msym = m;
3147 }
3148
3149 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3150 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3151 bp_overlay_event,
3152 &internal_breakpoint_ops);
3153 b->addr_string = xstrdup (func_name);
3154
3155 if (overlay_debugging == ovly_auto)
3156 {
3157 b->enable_state = bp_enabled;
3158 overlay_events_enabled = 1;
3159 }
3160 else
3161 {
3162 b->enable_state = bp_disabled;
3163 overlay_events_enabled = 0;
3164 }
3165 }
3166 update_global_location_list (1);
3167 }
3168
3169 static void
3170 create_longjmp_master_breakpoint (void)
3171 {
3172 struct program_space *pspace;
3173 struct cleanup *old_chain;
3174
3175 old_chain = save_current_program_space ();
3176
3177 ALL_PSPACES (pspace)
3178 {
3179 struct objfile *objfile;
3180
3181 set_current_program_space (pspace);
3182
3183 ALL_OBJFILES (objfile)
3184 {
3185 int i;
3186 struct gdbarch *gdbarch;
3187 struct breakpoint_objfile_data *bp_objfile_data;
3188
3189 gdbarch = get_objfile_arch (objfile);
3190 if (!gdbarch_get_longjmp_target_p (gdbarch))
3191 continue;
3192
3193 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3194
3195 if (!bp_objfile_data->longjmp_searched)
3196 {
3197 bp_objfile_data->longjmp_probes
3198 = find_probes_in_objfile (objfile, "libc", "longjmp");
3199 bp_objfile_data->longjmp_searched = 1;
3200 }
3201
3202 if (bp_objfile_data->longjmp_probes != NULL)
3203 {
3204 int i;
3205 struct probe *probe;
3206 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3207
3208 for (i = 0;
3209 VEC_iterate (probe_p,
3210 bp_objfile_data->longjmp_probes,
3211 i, probe);
3212 ++i)
3213 {
3214 struct breakpoint *b;
3215
3216 b = create_internal_breakpoint (gdbarch, probe->address,
3217 bp_longjmp_master,
3218 &internal_breakpoint_ops);
3219 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3220 b->enable_state = bp_disabled;
3221 }
3222
3223 continue;
3224 }
3225
3226 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3227 {
3228 struct breakpoint *b;
3229 const char *func_name;
3230 CORE_ADDR addr;
3231
3232 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i]))
3233 continue;
3234
3235 func_name = longjmp_names[i];
3236 if (bp_objfile_data->longjmp_msym[i] == NULL)
3237 {
3238 struct minimal_symbol *m;
3239
3240 m = lookup_minimal_symbol_text (func_name, objfile);
3241 if (m == NULL)
3242 {
3243 /* Prevent future lookups in this objfile. */
3244 bp_objfile_data->longjmp_msym[i] = &msym_not_found;
3245 continue;
3246 }
3247 bp_objfile_data->longjmp_msym[i] = m;
3248 }
3249
3250 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3251 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3252 &internal_breakpoint_ops);
3253 b->addr_string = xstrdup (func_name);
3254 b->enable_state = bp_disabled;
3255 }
3256 }
3257 }
3258 update_global_location_list (1);
3259
3260 do_cleanups (old_chain);
3261 }
3262
3263 /* Create a master std::terminate breakpoint. */
3264 static void
3265 create_std_terminate_master_breakpoint (void)
3266 {
3267 struct program_space *pspace;
3268 struct cleanup *old_chain;
3269 const char *const func_name = "std::terminate()";
3270
3271 old_chain = save_current_program_space ();
3272
3273 ALL_PSPACES (pspace)
3274 {
3275 struct objfile *objfile;
3276 CORE_ADDR addr;
3277
3278 set_current_program_space (pspace);
3279
3280 ALL_OBJFILES (objfile)
3281 {
3282 struct breakpoint *b;
3283 struct breakpoint_objfile_data *bp_objfile_data;
3284
3285 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3286
3287 if (msym_not_found_p (bp_objfile_data->terminate_msym))
3288 continue;
3289
3290 if (bp_objfile_data->terminate_msym == NULL)
3291 {
3292 struct minimal_symbol *m;
3293
3294 m = lookup_minimal_symbol (func_name, NULL, objfile);
3295 if (m == NULL || (MSYMBOL_TYPE (m) != mst_text
3296 && MSYMBOL_TYPE (m) != mst_file_text))
3297 {
3298 /* Prevent future lookups in this objfile. */
3299 bp_objfile_data->terminate_msym = &msym_not_found;
3300 continue;
3301 }
3302 bp_objfile_data->terminate_msym = m;
3303 }
3304
3305 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3306 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3307 bp_std_terminate_master,
3308 &internal_breakpoint_ops);
3309 b->addr_string = xstrdup (func_name);
3310 b->enable_state = bp_disabled;
3311 }
3312 }
3313
3314 update_global_location_list (1);
3315
3316 do_cleanups (old_chain);
3317 }
3318
3319 /* Install a master breakpoint on the unwinder's debug hook. */
3320
3321 static void
3322 create_exception_master_breakpoint (void)
3323 {
3324 struct objfile *objfile;
3325 const char *const func_name = "_Unwind_DebugHook";
3326
3327 ALL_OBJFILES (objfile)
3328 {
3329 struct breakpoint *b;
3330 struct gdbarch *gdbarch;
3331 struct breakpoint_objfile_data *bp_objfile_data;
3332 CORE_ADDR addr;
3333
3334 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3335
3336 /* We prefer the SystemTap probe point if it exists. */
3337 if (!bp_objfile_data->exception_searched)
3338 {
3339 bp_objfile_data->exception_probes
3340 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3341 bp_objfile_data->exception_searched = 1;
3342 }
3343
3344 if (bp_objfile_data->exception_probes != NULL)
3345 {
3346 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3347 int i;
3348 struct probe *probe;
3349
3350 for (i = 0;
3351 VEC_iterate (probe_p,
3352 bp_objfile_data->exception_probes,
3353 i, probe);
3354 ++i)
3355 {
3356 struct breakpoint *b;
3357
3358 b = create_internal_breakpoint (gdbarch, probe->address,
3359 bp_exception_master,
3360 &internal_breakpoint_ops);
3361 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3362 b->enable_state = bp_disabled;
3363 }
3364
3365 continue;
3366 }
3367
3368 /* Otherwise, try the hook function. */
3369
3370 if (msym_not_found_p (bp_objfile_data->exception_msym))
3371 continue;
3372
3373 gdbarch = get_objfile_arch (objfile);
3374
3375 if (bp_objfile_data->exception_msym == NULL)
3376 {
3377 struct minimal_symbol *debug_hook;
3378
3379 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3380 if (debug_hook == NULL)
3381 {
3382 bp_objfile_data->exception_msym = &msym_not_found;
3383 continue;
3384 }
3385
3386 bp_objfile_data->exception_msym = debug_hook;
3387 }
3388
3389 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3390 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3391 &current_target);
3392 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3393 &internal_breakpoint_ops);
3394 b->addr_string = xstrdup (func_name);
3395 b->enable_state = bp_disabled;
3396 }
3397
3398 update_global_location_list (1);
3399 }
3400
3401 void
3402 update_breakpoints_after_exec (void)
3403 {
3404 struct breakpoint *b, *b_tmp;
3405 struct bp_location *bploc, **bplocp_tmp;
3406
3407 /* We're about to delete breakpoints from GDB's lists. If the
3408 INSERTED flag is true, GDB will try to lift the breakpoints by
3409 writing the breakpoints' "shadow contents" back into memory. The
3410 "shadow contents" are NOT valid after an exec, so GDB should not
3411 do that. Instead, the target is responsible from marking
3412 breakpoints out as soon as it detects an exec. We don't do that
3413 here instead, because there may be other attempts to delete
3414 breakpoints after detecting an exec and before reaching here. */
3415 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3416 if (bploc->pspace == current_program_space)
3417 gdb_assert (!bploc->inserted);
3418
3419 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3420 {
3421 if (b->pspace != current_program_space)
3422 continue;
3423
3424 /* Solib breakpoints must be explicitly reset after an exec(). */
3425 if (b->type == bp_shlib_event)
3426 {
3427 delete_breakpoint (b);
3428 continue;
3429 }
3430
3431 /* JIT breakpoints must be explicitly reset after an exec(). */
3432 if (b->type == bp_jit_event)
3433 {
3434 delete_breakpoint (b);
3435 continue;
3436 }
3437
3438 /* Thread event breakpoints must be set anew after an exec(),
3439 as must overlay event and longjmp master breakpoints. */
3440 if (b->type == bp_thread_event || b->type == bp_overlay_event
3441 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3442 || b->type == bp_exception_master)
3443 {
3444 delete_breakpoint (b);
3445 continue;
3446 }
3447
3448 /* Step-resume breakpoints are meaningless after an exec(). */
3449 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3450 {
3451 delete_breakpoint (b);
3452 continue;
3453 }
3454
3455 /* Longjmp and longjmp-resume breakpoints are also meaningless
3456 after an exec. */
3457 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3458 || b->type == bp_longjmp_call_dummy
3459 || b->type == bp_exception || b->type == bp_exception_resume)
3460 {
3461 delete_breakpoint (b);
3462 continue;
3463 }
3464
3465 if (b->type == bp_catchpoint)
3466 {
3467 /* For now, none of the bp_catchpoint breakpoints need to
3468 do anything at this point. In the future, if some of
3469 the catchpoints need to something, we will need to add
3470 a new method, and call this method from here. */
3471 continue;
3472 }
3473
3474 /* bp_finish is a special case. The only way we ought to be able
3475 to see one of these when an exec() has happened, is if the user
3476 caught a vfork, and then said "finish". Ordinarily a finish just
3477 carries them to the call-site of the current callee, by setting
3478 a temporary bp there and resuming. But in this case, the finish
3479 will carry them entirely through the vfork & exec.
3480
3481 We don't want to allow a bp_finish to remain inserted now. But
3482 we can't safely delete it, 'cause finish_command has a handle to
3483 the bp on a bpstat, and will later want to delete it. There's a
3484 chance (and I've seen it happen) that if we delete the bp_finish
3485 here, that its storage will get reused by the time finish_command
3486 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3487 We really must allow finish_command to delete a bp_finish.
3488
3489 In the absence of a general solution for the "how do we know
3490 it's safe to delete something others may have handles to?"
3491 problem, what we'll do here is just uninsert the bp_finish, and
3492 let finish_command delete it.
3493
3494 (We know the bp_finish is "doomed" in the sense that it's
3495 momentary, and will be deleted as soon as finish_command sees
3496 the inferior stopped. So it doesn't matter that the bp's
3497 address is probably bogus in the new a.out, unlike e.g., the
3498 solib breakpoints.) */
3499
3500 if (b->type == bp_finish)
3501 {
3502 continue;
3503 }
3504
3505 /* Without a symbolic address, we have little hope of the
3506 pre-exec() address meaning the same thing in the post-exec()
3507 a.out. */
3508 if (b->addr_string == NULL)
3509 {
3510 delete_breakpoint (b);
3511 continue;
3512 }
3513 }
3514 /* FIXME what about longjmp breakpoints? Re-create them here? */
3515 create_overlay_event_breakpoint ();
3516 create_longjmp_master_breakpoint ();
3517 create_std_terminate_master_breakpoint ();
3518 create_exception_master_breakpoint ();
3519 }
3520
3521 int
3522 detach_breakpoints (ptid_t ptid)
3523 {
3524 struct bp_location *bl, **blp_tmp;
3525 int val = 0;
3526 struct cleanup *old_chain = save_inferior_ptid ();
3527 struct inferior *inf = current_inferior ();
3528
3529 if (PIDGET (ptid) == PIDGET (inferior_ptid))
3530 error (_("Cannot detach breakpoints of inferior_ptid"));
3531
3532 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3533 inferior_ptid = ptid;
3534 ALL_BP_LOCATIONS (bl, blp_tmp)
3535 {
3536 if (bl->pspace != inf->pspace)
3537 continue;
3538
3539 /* This function must physically remove breakpoints locations
3540 from the specified ptid, without modifying the breakpoint
3541 package's state. Locations of type bp_loc_other are only
3542 maintained at GDB side. So, there is no need to remove
3543 these bp_loc_other locations. Moreover, removing these
3544 would modify the breakpoint package's state. */
3545 if (bl->loc_type == bp_loc_other)
3546 continue;
3547
3548 if (bl->inserted)
3549 val |= remove_breakpoint_1 (bl, mark_inserted);
3550 }
3551
3552 /* Detach single-step breakpoints as well. */
3553 detach_single_step_breakpoints ();
3554
3555 do_cleanups (old_chain);
3556 return val;
3557 }
3558
3559 /* Remove the breakpoint location BL from the current address space.
3560 Note that this is used to detach breakpoints from a child fork.
3561 When we get here, the child isn't in the inferior list, and neither
3562 do we have objects to represent its address space --- we should
3563 *not* look at bl->pspace->aspace here. */
3564
3565 static int
3566 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3567 {
3568 int val;
3569
3570 /* BL is never in moribund_locations by our callers. */
3571 gdb_assert (bl->owner != NULL);
3572
3573 if (bl->owner->enable_state == bp_permanent)
3574 /* Permanent breakpoints cannot be inserted or removed. */
3575 return 0;
3576
3577 /* The type of none suggests that owner is actually deleted.
3578 This should not ever happen. */
3579 gdb_assert (bl->owner->type != bp_none);
3580
3581 if (bl->loc_type == bp_loc_software_breakpoint
3582 || bl->loc_type == bp_loc_hardware_breakpoint)
3583 {
3584 /* "Normal" instruction breakpoint: either the standard
3585 trap-instruction bp (bp_breakpoint), or a
3586 bp_hardware_breakpoint. */
3587
3588 /* First check to see if we have to handle an overlay. */
3589 if (overlay_debugging == ovly_off
3590 || bl->section == NULL
3591 || !(section_is_overlay (bl->section)))
3592 {
3593 /* No overlay handling: just remove the breakpoint. */
3594 val = bl->owner->ops->remove_location (bl);
3595 }
3596 else
3597 {
3598 /* This breakpoint is in an overlay section.
3599 Did we set a breakpoint at the LMA? */
3600 if (!overlay_events_enabled)
3601 {
3602 /* Yes -- overlay event support is not active, so we
3603 should have set a breakpoint at the LMA. Remove it.
3604 */
3605 /* Ignore any failures: if the LMA is in ROM, we will
3606 have already warned when we failed to insert it. */
3607 if (bl->loc_type == bp_loc_hardware_breakpoint)
3608 target_remove_hw_breakpoint (bl->gdbarch,
3609 &bl->overlay_target_info);
3610 else
3611 target_remove_breakpoint (bl->gdbarch,
3612 &bl->overlay_target_info);
3613 }
3614 /* Did we set a breakpoint at the VMA?
3615 If so, we will have marked the breakpoint 'inserted'. */
3616 if (bl->inserted)
3617 {
3618 /* Yes -- remove it. Previously we did not bother to
3619 remove the breakpoint if the section had been
3620 unmapped, but let's not rely on that being safe. We
3621 don't know what the overlay manager might do. */
3622
3623 /* However, we should remove *software* breakpoints only
3624 if the section is still mapped, or else we overwrite
3625 wrong code with the saved shadow contents. */
3626 if (bl->loc_type == bp_loc_hardware_breakpoint
3627 || section_is_mapped (bl->section))
3628 val = bl->owner->ops->remove_location (bl);
3629 else
3630 val = 0;
3631 }
3632 else
3633 {
3634 /* No -- not inserted, so no need to remove. No error. */
3635 val = 0;
3636 }
3637 }
3638
3639 /* In some cases, we might not be able to remove a breakpoint
3640 in a shared library that has already been removed, but we
3641 have not yet processed the shlib unload event. */
3642 if (val && solib_name_from_address (bl->pspace, bl->address))
3643 val = 0;
3644
3645 if (val)
3646 return val;
3647 bl->inserted = (is == mark_inserted);
3648 }
3649 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3650 {
3651 gdb_assert (bl->owner->ops != NULL
3652 && bl->owner->ops->remove_location != NULL);
3653
3654 bl->inserted = (is == mark_inserted);
3655 bl->owner->ops->remove_location (bl);
3656
3657 /* Failure to remove any of the hardware watchpoints comes here. */
3658 if ((is == mark_uninserted) && (bl->inserted))
3659 warning (_("Could not remove hardware watchpoint %d."),
3660 bl->owner->number);
3661 }
3662 else if (bl->owner->type == bp_catchpoint
3663 && breakpoint_enabled (bl->owner)
3664 && !bl->duplicate)
3665 {
3666 gdb_assert (bl->owner->ops != NULL
3667 && bl->owner->ops->remove_location != NULL);
3668
3669 val = bl->owner->ops->remove_location (bl);
3670 if (val)
3671 return val;
3672
3673 bl->inserted = (is == mark_inserted);
3674 }
3675
3676 return 0;
3677 }
3678
3679 static int
3680 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
3681 {
3682 int ret;
3683 struct cleanup *old_chain;
3684
3685 /* BL is never in moribund_locations by our callers. */
3686 gdb_assert (bl->owner != NULL);
3687
3688 if (bl->owner->enable_state == bp_permanent)
3689 /* Permanent breakpoints cannot be inserted or removed. */
3690 return 0;
3691
3692 /* The type of none suggests that owner is actually deleted.
3693 This should not ever happen. */
3694 gdb_assert (bl->owner->type != bp_none);
3695
3696 old_chain = save_current_space_and_thread ();
3697
3698 switch_to_program_space_and_thread (bl->pspace);
3699
3700 ret = remove_breakpoint_1 (bl, is);
3701
3702 do_cleanups (old_chain);
3703 return ret;
3704 }
3705
3706 /* Clear the "inserted" flag in all breakpoints. */
3707
3708 void
3709 mark_breakpoints_out (void)
3710 {
3711 struct bp_location *bl, **blp_tmp;
3712
3713 ALL_BP_LOCATIONS (bl, blp_tmp)
3714 if (bl->pspace == current_program_space)
3715 bl->inserted = 0;
3716 }
3717
3718 /* Clear the "inserted" flag in all breakpoints and delete any
3719 breakpoints which should go away between runs of the program.
3720
3721 Plus other such housekeeping that has to be done for breakpoints
3722 between runs.
3723
3724 Note: this function gets called at the end of a run (by
3725 generic_mourn_inferior) and when a run begins (by
3726 init_wait_for_inferior). */
3727
3728
3729
3730 void
3731 breakpoint_init_inferior (enum inf_context context)
3732 {
3733 struct breakpoint *b, *b_tmp;
3734 struct bp_location *bl, **blp_tmp;
3735 int ix;
3736 struct program_space *pspace = current_program_space;
3737
3738 /* If breakpoint locations are shared across processes, then there's
3739 nothing to do. */
3740 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3741 return;
3742
3743 ALL_BP_LOCATIONS (bl, blp_tmp)
3744 {
3745 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3746 if (bl->pspace == pspace
3747 && bl->owner->enable_state != bp_permanent)
3748 bl->inserted = 0;
3749 }
3750
3751 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3752 {
3753 if (b->loc && b->loc->pspace != pspace)
3754 continue;
3755
3756 switch (b->type)
3757 {
3758 case bp_call_dummy:
3759 case bp_longjmp_call_dummy:
3760
3761 /* If the call dummy breakpoint is at the entry point it will
3762 cause problems when the inferior is rerun, so we better get
3763 rid of it. */
3764
3765 case bp_watchpoint_scope:
3766
3767 /* Also get rid of scope breakpoints. */
3768
3769 case bp_shlib_event:
3770
3771 /* Also remove solib event breakpoints. Their addresses may
3772 have changed since the last time we ran the program.
3773 Actually we may now be debugging against different target;
3774 and so the solib backend that installed this breakpoint may
3775 not be used in by the target. E.g.,
3776
3777 (gdb) file prog-linux
3778 (gdb) run # native linux target
3779 ...
3780 (gdb) kill
3781 (gdb) file prog-win.exe
3782 (gdb) tar rem :9999 # remote Windows gdbserver.
3783 */
3784
3785 case bp_step_resume:
3786
3787 /* Also remove step-resume breakpoints. */
3788
3789 delete_breakpoint (b);
3790 break;
3791
3792 case bp_watchpoint:
3793 case bp_hardware_watchpoint:
3794 case bp_read_watchpoint:
3795 case bp_access_watchpoint:
3796 {
3797 struct watchpoint *w = (struct watchpoint *) b;
3798
3799 /* Likewise for watchpoints on local expressions. */
3800 if (w->exp_valid_block != NULL)
3801 delete_breakpoint (b);
3802 else if (context == inf_starting)
3803 {
3804 /* Reset val field to force reread of starting value in
3805 insert_breakpoints. */
3806 if (w->val)
3807 value_free (w->val);
3808 w->val = NULL;
3809 w->val_valid = 0;
3810 }
3811 }
3812 break;
3813 default:
3814 break;
3815 }
3816 }
3817
3818 /* Get rid of the moribund locations. */
3819 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3820 decref_bp_location (&bl);
3821 VEC_free (bp_location_p, moribund_locations);
3822 }
3823
3824 /* These functions concern about actual breakpoints inserted in the
3825 target --- to e.g. check if we need to do decr_pc adjustment or if
3826 we need to hop over the bkpt --- so we check for address space
3827 match, not program space. */
3828
3829 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3830 exists at PC. It returns ordinary_breakpoint_here if it's an
3831 ordinary breakpoint, or permanent_breakpoint_here if it's a
3832 permanent breakpoint.
3833 - When continuing from a location with an ordinary breakpoint, we
3834 actually single step once before calling insert_breakpoints.
3835 - When continuing from a location with a permanent breakpoint, we
3836 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3837 the target, to advance the PC past the breakpoint. */
3838
3839 enum breakpoint_here
3840 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3841 {
3842 struct bp_location *bl, **blp_tmp;
3843 int any_breakpoint_here = 0;
3844
3845 ALL_BP_LOCATIONS (bl, blp_tmp)
3846 {
3847 if (bl->loc_type != bp_loc_software_breakpoint
3848 && bl->loc_type != bp_loc_hardware_breakpoint)
3849 continue;
3850
3851 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3852 if ((breakpoint_enabled (bl->owner)
3853 || bl->owner->enable_state == bp_permanent)
3854 && breakpoint_location_address_match (bl, aspace, pc))
3855 {
3856 if (overlay_debugging
3857 && section_is_overlay (bl->section)
3858 && !section_is_mapped (bl->section))
3859 continue; /* unmapped overlay -- can't be a match */
3860 else if (bl->owner->enable_state == bp_permanent)
3861 return permanent_breakpoint_here;
3862 else
3863 any_breakpoint_here = 1;
3864 }
3865 }
3866
3867 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
3868 }
3869
3870 /* Return true if there's a moribund breakpoint at PC. */
3871
3872 int
3873 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3874 {
3875 struct bp_location *loc;
3876 int ix;
3877
3878 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
3879 if (breakpoint_location_address_match (loc, aspace, pc))
3880 return 1;
3881
3882 return 0;
3883 }
3884
3885 /* Returns non-zero if there's a breakpoint inserted at PC, which is
3886 inserted using regular breakpoint_chain / bp_location array
3887 mechanism. This does not check for single-step breakpoints, which
3888 are inserted and removed using direct target manipulation. */
3889
3890 int
3891 regular_breakpoint_inserted_here_p (struct address_space *aspace,
3892 CORE_ADDR pc)
3893 {
3894 struct bp_location *bl, **blp_tmp;
3895
3896 ALL_BP_LOCATIONS (bl, blp_tmp)
3897 {
3898 if (bl->loc_type != bp_loc_software_breakpoint
3899 && bl->loc_type != bp_loc_hardware_breakpoint)
3900 continue;
3901
3902 if (bl->inserted
3903 && breakpoint_location_address_match (bl, aspace, pc))
3904 {
3905 if (overlay_debugging
3906 && section_is_overlay (bl->section)
3907 && !section_is_mapped (bl->section))
3908 continue; /* unmapped overlay -- can't be a match */
3909 else
3910 return 1;
3911 }
3912 }
3913 return 0;
3914 }
3915
3916 /* Returns non-zero iff there's either regular breakpoint
3917 or a single step breakpoint inserted at PC. */
3918
3919 int
3920 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
3921 {
3922 if (regular_breakpoint_inserted_here_p (aspace, pc))
3923 return 1;
3924
3925 if (single_step_breakpoint_inserted_here_p (aspace, pc))
3926 return 1;
3927
3928 return 0;
3929 }
3930
3931 /* This function returns non-zero iff there is a software breakpoint
3932 inserted at PC. */
3933
3934 int
3935 software_breakpoint_inserted_here_p (struct address_space *aspace,
3936 CORE_ADDR pc)
3937 {
3938 struct bp_location *bl, **blp_tmp;
3939
3940 ALL_BP_LOCATIONS (bl, blp_tmp)
3941 {
3942 if (bl->loc_type != bp_loc_software_breakpoint)
3943 continue;
3944
3945 if (bl->inserted
3946 && breakpoint_address_match (bl->pspace->aspace, bl->address,
3947 aspace, pc))
3948 {
3949 if (overlay_debugging
3950 && section_is_overlay (bl->section)
3951 && !section_is_mapped (bl->section))
3952 continue; /* unmapped overlay -- can't be a match */
3953 else
3954 return 1;
3955 }
3956 }
3957
3958 /* Also check for software single-step breakpoints. */
3959 if (single_step_breakpoint_inserted_here_p (aspace, pc))
3960 return 1;
3961
3962 return 0;
3963 }
3964
3965 int
3966 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
3967 CORE_ADDR addr, ULONGEST len)
3968 {
3969 struct breakpoint *bpt;
3970
3971 ALL_BREAKPOINTS (bpt)
3972 {
3973 struct bp_location *loc;
3974
3975 if (bpt->type != bp_hardware_watchpoint
3976 && bpt->type != bp_access_watchpoint)
3977 continue;
3978
3979 if (!breakpoint_enabled (bpt))
3980 continue;
3981
3982 for (loc = bpt->loc; loc; loc = loc->next)
3983 if (loc->pspace->aspace == aspace && loc->inserted)
3984 {
3985 CORE_ADDR l, h;
3986
3987 /* Check for intersection. */
3988 l = max (loc->address, addr);
3989 h = min (loc->address + loc->length, addr + len);
3990 if (l < h)
3991 return 1;
3992 }
3993 }
3994 return 0;
3995 }
3996
3997 /* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
3998 PC is valid for process/thread PTID. */
3999
4000 int
4001 breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
4002 ptid_t ptid)
4003 {
4004 struct bp_location *bl, **blp_tmp;
4005 /* The thread and task IDs associated to PTID, computed lazily. */
4006 int thread = -1;
4007 int task = 0;
4008
4009 ALL_BP_LOCATIONS (bl, blp_tmp)
4010 {
4011 if (bl->loc_type != bp_loc_software_breakpoint
4012 && bl->loc_type != bp_loc_hardware_breakpoint)
4013 continue;
4014
4015 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4016 if (!breakpoint_enabled (bl->owner)
4017 && bl->owner->enable_state != bp_permanent)
4018 continue;
4019
4020 if (!breakpoint_location_address_match (bl, aspace, pc))
4021 continue;
4022
4023 if (bl->owner->thread != -1)
4024 {
4025 /* This is a thread-specific breakpoint. Check that ptid
4026 matches that thread. If thread hasn't been computed yet,
4027 it is now time to do so. */
4028 if (thread == -1)
4029 thread = pid_to_thread_id (ptid);
4030 if (bl->owner->thread != thread)
4031 continue;
4032 }
4033
4034 if (bl->owner->task != 0)
4035 {
4036 /* This is a task-specific breakpoint. Check that ptid
4037 matches that task. If task hasn't been computed yet,
4038 it is now time to do so. */
4039 if (task == 0)
4040 task = ada_get_task_number (ptid);
4041 if (bl->owner->task != task)
4042 continue;
4043 }
4044
4045 if (overlay_debugging
4046 && section_is_overlay (bl->section)
4047 && !section_is_mapped (bl->section))
4048 continue; /* unmapped overlay -- can't be a match */
4049
4050 return 1;
4051 }
4052
4053 return 0;
4054 }
4055 \f
4056
4057 /* bpstat stuff. External routines' interfaces are documented
4058 in breakpoint.h. */
4059
4060 int
4061 is_catchpoint (struct breakpoint *ep)
4062 {
4063 return (ep->type == bp_catchpoint);
4064 }
4065
4066 /* Frees any storage that is part of a bpstat. Does not walk the
4067 'next' chain. */
4068
4069 static void
4070 bpstat_free (bpstat bs)
4071 {
4072 if (bs->old_val != NULL)
4073 value_free (bs->old_val);
4074 decref_counted_command_line (&bs->commands);
4075 decref_bp_location (&bs->bp_location_at);
4076 xfree (bs);
4077 }
4078
4079 /* Clear a bpstat so that it says we are not at any breakpoint.
4080 Also free any storage that is part of a bpstat. */
4081
4082 void
4083 bpstat_clear (bpstat *bsp)
4084 {
4085 bpstat p;
4086 bpstat q;
4087
4088 if (bsp == 0)
4089 return;
4090 p = *bsp;
4091 while (p != NULL)
4092 {
4093 q = p->next;
4094 bpstat_free (p);
4095 p = q;
4096 }
4097 *bsp = NULL;
4098 }
4099
4100 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4101 is part of the bpstat is copied as well. */
4102
4103 bpstat
4104 bpstat_copy (bpstat bs)
4105 {
4106 bpstat p = NULL;
4107 bpstat tmp;
4108 bpstat retval = NULL;
4109
4110 if (bs == NULL)
4111 return bs;
4112
4113 for (; bs != NULL; bs = bs->next)
4114 {
4115 tmp = (bpstat) xmalloc (sizeof (*tmp));
4116 memcpy (tmp, bs, sizeof (*tmp));
4117 incref_counted_command_line (tmp->commands);
4118 incref_bp_location (tmp->bp_location_at);
4119 if (bs->old_val != NULL)
4120 {
4121 tmp->old_val = value_copy (bs->old_val);
4122 release_value (tmp->old_val);
4123 }
4124
4125 if (p == NULL)
4126 /* This is the first thing in the chain. */
4127 retval = tmp;
4128 else
4129 p->next = tmp;
4130 p = tmp;
4131 }
4132 p->next = NULL;
4133 return retval;
4134 }
4135
4136 /* Find the bpstat associated with this breakpoint. */
4137
4138 bpstat
4139 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4140 {
4141 if (bsp == NULL)
4142 return NULL;
4143
4144 for (; bsp != NULL; bsp = bsp->next)
4145 {
4146 if (bsp->breakpoint_at == breakpoint)
4147 return bsp;
4148 }
4149 return NULL;
4150 }
4151
4152 /* See breakpoint.h. */
4153
4154 enum bpstat_signal_value
4155 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4156 {
4157 enum bpstat_signal_value result = BPSTAT_SIGNAL_NO;
4158
4159 for (; bsp != NULL; bsp = bsp->next)
4160 {
4161 /* Ensure that, if we ever entered this loop, then we at least
4162 return BPSTAT_SIGNAL_HIDE. */
4163 enum bpstat_signal_value newval;
4164
4165 if (bsp->breakpoint_at == NULL)
4166 {
4167 /* A moribund location can never explain a signal other than
4168 GDB_SIGNAL_TRAP. */
4169 if (sig == GDB_SIGNAL_TRAP)
4170 newval = BPSTAT_SIGNAL_HIDE;
4171 else
4172 newval = BPSTAT_SIGNAL_NO;
4173 }
4174 else
4175 newval = bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4176 sig);
4177
4178 if (newval > result)
4179 result = newval;
4180 }
4181
4182 return result;
4183 }
4184
4185 /* Put in *NUM the breakpoint number of the first breakpoint we are
4186 stopped at. *BSP upon return is a bpstat which points to the
4187 remaining breakpoints stopped at (but which is not guaranteed to be
4188 good for anything but further calls to bpstat_num).
4189
4190 Return 0 if passed a bpstat which does not indicate any breakpoints.
4191 Return -1 if stopped at a breakpoint that has been deleted since
4192 we set it.
4193 Return 1 otherwise. */
4194
4195 int
4196 bpstat_num (bpstat *bsp, int *num)
4197 {
4198 struct breakpoint *b;
4199
4200 if ((*bsp) == NULL)
4201 return 0; /* No more breakpoint values */
4202
4203 /* We assume we'll never have several bpstats that correspond to a
4204 single breakpoint -- otherwise, this function might return the
4205 same number more than once and this will look ugly. */
4206 b = (*bsp)->breakpoint_at;
4207 *bsp = (*bsp)->next;
4208 if (b == NULL)
4209 return -1; /* breakpoint that's been deleted since */
4210
4211 *num = b->number; /* We have its number */
4212 return 1;
4213 }
4214
4215 /* See breakpoint.h. */
4216
4217 void
4218 bpstat_clear_actions (void)
4219 {
4220 struct thread_info *tp;
4221 bpstat bs;
4222
4223 if (ptid_equal (inferior_ptid, null_ptid))
4224 return;
4225
4226 tp = find_thread_ptid (inferior_ptid);
4227 if (tp == NULL)
4228 return;
4229
4230 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4231 {
4232 decref_counted_command_line (&bs->commands);
4233
4234 if (bs->old_val != NULL)
4235 {
4236 value_free (bs->old_val);
4237 bs->old_val = NULL;
4238 }
4239 }
4240 }
4241
4242 /* Called when a command is about to proceed the inferior. */
4243
4244 static void
4245 breakpoint_about_to_proceed (void)
4246 {
4247 if (!ptid_equal (inferior_ptid, null_ptid))
4248 {
4249 struct thread_info *tp = inferior_thread ();
4250
4251 /* Allow inferior function calls in breakpoint commands to not
4252 interrupt the command list. When the call finishes
4253 successfully, the inferior will be standing at the same
4254 breakpoint as if nothing happened. */
4255 if (tp->control.in_infcall)
4256 return;
4257 }
4258
4259 breakpoint_proceeded = 1;
4260 }
4261
4262 /* Stub for cleaning up our state if we error-out of a breakpoint
4263 command. */
4264 static void
4265 cleanup_executing_breakpoints (void *ignore)
4266 {
4267 executing_breakpoint_commands = 0;
4268 }
4269
4270 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4271 or its equivalent. */
4272
4273 static int
4274 command_line_is_silent (struct command_line *cmd)
4275 {
4276 return cmd && (strcmp ("silent", cmd->line) == 0
4277 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4278 }
4279
4280 /* Execute all the commands associated with all the breakpoints at
4281 this location. Any of these commands could cause the process to
4282 proceed beyond this point, etc. We look out for such changes by
4283 checking the global "breakpoint_proceeded" after each command.
4284
4285 Returns true if a breakpoint command resumed the inferior. In that
4286 case, it is the caller's responsibility to recall it again with the
4287 bpstat of the current thread. */
4288
4289 static int
4290 bpstat_do_actions_1 (bpstat *bsp)
4291 {
4292 bpstat bs;
4293 struct cleanup *old_chain;
4294 int again = 0;
4295
4296 /* Avoid endless recursion if a `source' command is contained
4297 in bs->commands. */
4298 if (executing_breakpoint_commands)
4299 return 0;
4300
4301 executing_breakpoint_commands = 1;
4302 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4303
4304 prevent_dont_repeat ();
4305
4306 /* This pointer will iterate over the list of bpstat's. */
4307 bs = *bsp;
4308
4309 breakpoint_proceeded = 0;
4310 for (; bs != NULL; bs = bs->next)
4311 {
4312 struct counted_command_line *ccmd;
4313 struct command_line *cmd;
4314 struct cleanup *this_cmd_tree_chain;
4315
4316 /* Take ownership of the BSP's command tree, if it has one.
4317
4318 The command tree could legitimately contain commands like
4319 'step' and 'next', which call clear_proceed_status, which
4320 frees stop_bpstat's command tree. To make sure this doesn't
4321 free the tree we're executing out from under us, we need to
4322 take ownership of the tree ourselves. Since a given bpstat's
4323 commands are only executed once, we don't need to copy it; we
4324 can clear the pointer in the bpstat, and make sure we free
4325 the tree when we're done. */
4326 ccmd = bs->commands;
4327 bs->commands = NULL;
4328 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4329 cmd = ccmd ? ccmd->commands : NULL;
4330 if (command_line_is_silent (cmd))
4331 {
4332 /* The action has been already done by bpstat_stop_status. */
4333 cmd = cmd->next;
4334 }
4335
4336 while (cmd != NULL)
4337 {
4338 execute_control_command (cmd);
4339
4340 if (breakpoint_proceeded)
4341 break;
4342 else
4343 cmd = cmd->next;
4344 }
4345
4346 /* We can free this command tree now. */
4347 do_cleanups (this_cmd_tree_chain);
4348
4349 if (breakpoint_proceeded)
4350 {
4351 if (target_can_async_p ())
4352 /* If we are in async mode, then the target might be still
4353 running, not stopped at any breakpoint, so nothing for
4354 us to do here -- just return to the event loop. */
4355 ;
4356 else
4357 /* In sync mode, when execute_control_command returns
4358 we're already standing on the next breakpoint.
4359 Breakpoint commands for that stop were not run, since
4360 execute_command does not run breakpoint commands --
4361 only command_line_handler does, but that one is not
4362 involved in execution of breakpoint commands. So, we
4363 can now execute breakpoint commands. It should be
4364 noted that making execute_command do bpstat actions is
4365 not an option -- in this case we'll have recursive
4366 invocation of bpstat for each breakpoint with a
4367 command, and can easily blow up GDB stack. Instead, we
4368 return true, which will trigger the caller to recall us
4369 with the new stop_bpstat. */
4370 again = 1;
4371 break;
4372 }
4373 }
4374 do_cleanups (old_chain);
4375 return again;
4376 }
4377
4378 void
4379 bpstat_do_actions (void)
4380 {
4381 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4382
4383 /* Do any commands attached to breakpoint we are stopped at. */
4384 while (!ptid_equal (inferior_ptid, null_ptid)
4385 && target_has_execution
4386 && !is_exited (inferior_ptid)
4387 && !is_executing (inferior_ptid))
4388 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4389 and only return when it is stopped at the next breakpoint, we
4390 keep doing breakpoint actions until it returns false to
4391 indicate the inferior was not resumed. */
4392 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4393 break;
4394
4395 discard_cleanups (cleanup_if_error);
4396 }
4397
4398 /* Print out the (old or new) value associated with a watchpoint. */
4399
4400 static void
4401 watchpoint_value_print (struct value *val, struct ui_file *stream)
4402 {
4403 if (val == NULL)
4404 fprintf_unfiltered (stream, _("<unreadable>"));
4405 else
4406 {
4407 struct value_print_options opts;
4408 get_user_print_options (&opts);
4409 value_print (val, stream, &opts);
4410 }
4411 }
4412
4413 /* Generic routine for printing messages indicating why we
4414 stopped. The behavior of this function depends on the value
4415 'print_it' in the bpstat structure. Under some circumstances we
4416 may decide not to print anything here and delegate the task to
4417 normal_stop(). */
4418
4419 static enum print_stop_action
4420 print_bp_stop_message (bpstat bs)
4421 {
4422 switch (bs->print_it)
4423 {
4424 case print_it_noop:
4425 /* Nothing should be printed for this bpstat entry. */
4426 return PRINT_UNKNOWN;
4427 break;
4428
4429 case print_it_done:
4430 /* We still want to print the frame, but we already printed the
4431 relevant messages. */
4432 return PRINT_SRC_AND_LOC;
4433 break;
4434
4435 case print_it_normal:
4436 {
4437 struct breakpoint *b = bs->breakpoint_at;
4438
4439 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4440 which has since been deleted. */
4441 if (b == NULL)
4442 return PRINT_UNKNOWN;
4443
4444 /* Normal case. Call the breakpoint's print_it method. */
4445 return b->ops->print_it (bs);
4446 }
4447 break;
4448
4449 default:
4450 internal_error (__FILE__, __LINE__,
4451 _("print_bp_stop_message: unrecognized enum value"));
4452 break;
4453 }
4454 }
4455
4456 /* A helper function that prints a shared library stopped event. */
4457
4458 static void
4459 print_solib_event (int is_catchpoint)
4460 {
4461 int any_deleted
4462 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4463 int any_added
4464 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4465
4466 if (!is_catchpoint)
4467 {
4468 if (any_added || any_deleted)
4469 ui_out_text (current_uiout,
4470 _("Stopped due to shared library event:\n"));
4471 else
4472 ui_out_text (current_uiout,
4473 _("Stopped due to shared library event (no "
4474 "libraries added or removed)\n"));
4475 }
4476
4477 if (ui_out_is_mi_like_p (current_uiout))
4478 ui_out_field_string (current_uiout, "reason",
4479 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4480
4481 if (any_deleted)
4482 {
4483 struct cleanup *cleanup;
4484 char *name;
4485 int ix;
4486
4487 ui_out_text (current_uiout, _(" Inferior unloaded "));
4488 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4489 "removed");
4490 for (ix = 0;
4491 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4492 ix, name);
4493 ++ix)
4494 {
4495 if (ix > 0)
4496 ui_out_text (current_uiout, " ");
4497 ui_out_field_string (current_uiout, "library", name);
4498 ui_out_text (current_uiout, "\n");
4499 }
4500
4501 do_cleanups (cleanup);
4502 }
4503
4504 if (any_added)
4505 {
4506 struct so_list *iter;
4507 int ix;
4508 struct cleanup *cleanup;
4509
4510 ui_out_text (current_uiout, _(" Inferior loaded "));
4511 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4512 "added");
4513 for (ix = 0;
4514 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4515 ix, iter);
4516 ++ix)
4517 {
4518 if (ix > 0)
4519 ui_out_text (current_uiout, " ");
4520 ui_out_field_string (current_uiout, "library", iter->so_name);
4521 ui_out_text (current_uiout, "\n");
4522 }
4523
4524 do_cleanups (cleanup);
4525 }
4526 }
4527
4528 /* Print a message indicating what happened. This is called from
4529 normal_stop(). The input to this routine is the head of the bpstat
4530 list - a list of the eventpoints that caused this stop. KIND is
4531 the target_waitkind for the stopping event. This
4532 routine calls the generic print routine for printing a message
4533 about reasons for stopping. This will print (for example) the
4534 "Breakpoint n," part of the output. The return value of this
4535 routine is one of:
4536
4537 PRINT_UNKNOWN: Means we printed nothing.
4538 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4539 code to print the location. An example is
4540 "Breakpoint 1, " which should be followed by
4541 the location.
4542 PRINT_SRC_ONLY: Means we printed something, but there is no need
4543 to also print the location part of the message.
4544 An example is the catch/throw messages, which
4545 don't require a location appended to the end.
4546 PRINT_NOTHING: We have done some printing and we don't need any
4547 further info to be printed. */
4548
4549 enum print_stop_action
4550 bpstat_print (bpstat bs, int kind)
4551 {
4552 int val;
4553
4554 /* Maybe another breakpoint in the chain caused us to stop.
4555 (Currently all watchpoints go on the bpstat whether hit or not.
4556 That probably could (should) be changed, provided care is taken
4557 with respect to bpstat_explains_signal). */
4558 for (; bs; bs = bs->next)
4559 {
4560 val = print_bp_stop_message (bs);
4561 if (val == PRINT_SRC_ONLY
4562 || val == PRINT_SRC_AND_LOC
4563 || val == PRINT_NOTHING)
4564 return val;
4565 }
4566
4567 /* If we had hit a shared library event breakpoint,
4568 print_bp_stop_message would print out this message. If we hit an
4569 OS-level shared library event, do the same thing. */
4570 if (kind == TARGET_WAITKIND_LOADED)
4571 {
4572 print_solib_event (0);
4573 return PRINT_NOTHING;
4574 }
4575
4576 /* We reached the end of the chain, or we got a null BS to start
4577 with and nothing was printed. */
4578 return PRINT_UNKNOWN;
4579 }
4580
4581 /* Evaluate the expression EXP and return 1 if value is zero. This is
4582 used inside a catch_errors to evaluate the breakpoint condition.
4583 The argument is a "struct expression *" that has been cast to a
4584 "char *" to make it pass through catch_errors. */
4585
4586 static int
4587 breakpoint_cond_eval (void *exp)
4588 {
4589 struct value *mark = value_mark ();
4590 int i = !value_true (evaluate_expression ((struct expression *) exp));
4591
4592 value_free_to_mark (mark);
4593 return i;
4594 }
4595
4596 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4597
4598 static bpstat
4599 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4600 {
4601 bpstat bs;
4602
4603 bs = (bpstat) xmalloc (sizeof (*bs));
4604 bs->next = NULL;
4605 **bs_link_pointer = bs;
4606 *bs_link_pointer = &bs->next;
4607 bs->breakpoint_at = bl->owner;
4608 bs->bp_location_at = bl;
4609 incref_bp_location (bl);
4610 /* If the condition is false, etc., don't do the commands. */
4611 bs->commands = NULL;
4612 bs->old_val = NULL;
4613 bs->print_it = print_it_normal;
4614 return bs;
4615 }
4616 \f
4617 /* The target has stopped with waitstatus WS. Check if any hardware
4618 watchpoints have triggered, according to the target. */
4619
4620 int
4621 watchpoints_triggered (struct target_waitstatus *ws)
4622 {
4623 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4624 CORE_ADDR addr;
4625 struct breakpoint *b;
4626
4627 if (!stopped_by_watchpoint)
4628 {
4629 /* We were not stopped by a watchpoint. Mark all watchpoints
4630 as not triggered. */
4631 ALL_BREAKPOINTS (b)
4632 if (is_hardware_watchpoint (b))
4633 {
4634 struct watchpoint *w = (struct watchpoint *) b;
4635
4636 w->watchpoint_triggered = watch_triggered_no;
4637 }
4638
4639 return 0;
4640 }
4641
4642 if (!target_stopped_data_address (&current_target, &addr))
4643 {
4644 /* We were stopped by a watchpoint, but we don't know where.
4645 Mark all watchpoints as unknown. */
4646 ALL_BREAKPOINTS (b)
4647 if (is_hardware_watchpoint (b))
4648 {
4649 struct watchpoint *w = (struct watchpoint *) b;
4650
4651 w->watchpoint_triggered = watch_triggered_unknown;
4652 }
4653
4654 return stopped_by_watchpoint;
4655 }
4656
4657 /* The target could report the data address. Mark watchpoints
4658 affected by this data address as triggered, and all others as not
4659 triggered. */
4660
4661 ALL_BREAKPOINTS (b)
4662 if (is_hardware_watchpoint (b))
4663 {
4664 struct watchpoint *w = (struct watchpoint *) b;
4665 struct bp_location *loc;
4666
4667 w->watchpoint_triggered = watch_triggered_no;
4668 for (loc = b->loc; loc; loc = loc->next)
4669 {
4670 if (is_masked_watchpoint (b))
4671 {
4672 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4673 CORE_ADDR start = loc->address & w->hw_wp_mask;
4674
4675 if (newaddr == start)
4676 {
4677 w->watchpoint_triggered = watch_triggered_yes;
4678 break;
4679 }
4680 }
4681 /* Exact match not required. Within range is sufficient. */
4682 else if (target_watchpoint_addr_within_range (&current_target,
4683 addr, loc->address,
4684 loc->length))
4685 {
4686 w->watchpoint_triggered = watch_triggered_yes;
4687 break;
4688 }
4689 }
4690 }
4691
4692 return 1;
4693 }
4694
4695 /* Possible return values for watchpoint_check (this can't be an enum
4696 because of check_errors). */
4697 /* The watchpoint has been deleted. */
4698 #define WP_DELETED 1
4699 /* The value has changed. */
4700 #define WP_VALUE_CHANGED 2
4701 /* The value has not changed. */
4702 #define WP_VALUE_NOT_CHANGED 3
4703 /* Ignore this watchpoint, no matter if the value changed or not. */
4704 #define WP_IGNORE 4
4705
4706 #define BP_TEMPFLAG 1
4707 #define BP_HARDWAREFLAG 2
4708
4709 /* Evaluate watchpoint condition expression and check if its value
4710 changed.
4711
4712 P should be a pointer to struct bpstat, but is defined as a void *
4713 in order for this function to be usable with catch_errors. */
4714
4715 static int
4716 watchpoint_check (void *p)
4717 {
4718 bpstat bs = (bpstat) p;
4719 struct watchpoint *b;
4720 struct frame_info *fr;
4721 int within_current_scope;
4722
4723 /* BS is built from an existing struct breakpoint. */
4724 gdb_assert (bs->breakpoint_at != NULL);
4725 b = (struct watchpoint *) bs->breakpoint_at;
4726
4727 /* If this is a local watchpoint, we only want to check if the
4728 watchpoint frame is in scope if the current thread is the thread
4729 that was used to create the watchpoint. */
4730 if (!watchpoint_in_thread_scope (b))
4731 return WP_IGNORE;
4732
4733 if (b->exp_valid_block == NULL)
4734 within_current_scope = 1;
4735 else
4736 {
4737 struct frame_info *frame = get_current_frame ();
4738 struct gdbarch *frame_arch = get_frame_arch (frame);
4739 CORE_ADDR frame_pc = get_frame_pc (frame);
4740
4741 /* in_function_epilogue_p() returns a non-zero value if we're
4742 still in the function but the stack frame has already been
4743 invalidated. Since we can't rely on the values of local
4744 variables after the stack has been destroyed, we are treating
4745 the watchpoint in that state as `not changed' without further
4746 checking. Don't mark watchpoints as changed if the current
4747 frame is in an epilogue - even if they are in some other
4748 frame, our view of the stack is likely to be wrong and
4749 frame_find_by_id could error out. */
4750 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
4751 return WP_IGNORE;
4752
4753 fr = frame_find_by_id (b->watchpoint_frame);
4754 within_current_scope = (fr != NULL);
4755
4756 /* If we've gotten confused in the unwinder, we might have
4757 returned a frame that can't describe this variable. */
4758 if (within_current_scope)
4759 {
4760 struct symbol *function;
4761
4762 function = get_frame_function (fr);
4763 if (function == NULL
4764 || !contained_in (b->exp_valid_block,
4765 SYMBOL_BLOCK_VALUE (function)))
4766 within_current_scope = 0;
4767 }
4768
4769 if (within_current_scope)
4770 /* If we end up stopping, the current frame will get selected
4771 in normal_stop. So this call to select_frame won't affect
4772 the user. */
4773 select_frame (fr);
4774 }
4775
4776 if (within_current_scope)
4777 {
4778 /* We use value_{,free_to_}mark because it could be a *long*
4779 time before we return to the command level and call
4780 free_all_values. We can't call free_all_values because we
4781 might be in the middle of evaluating a function call. */
4782
4783 int pc = 0;
4784 struct value *mark;
4785 struct value *new_val;
4786
4787 if (is_masked_watchpoint (&b->base))
4788 /* Since we don't know the exact trigger address (from
4789 stopped_data_address), just tell the user we've triggered
4790 a mask watchpoint. */
4791 return WP_VALUE_CHANGED;
4792
4793 mark = value_mark ();
4794 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL);
4795
4796 /* We use value_equal_contents instead of value_equal because
4797 the latter coerces an array to a pointer, thus comparing just
4798 the address of the array instead of its contents. This is
4799 not what we want. */
4800 if ((b->val != NULL) != (new_val != NULL)
4801 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4802 {
4803 if (new_val != NULL)
4804 {
4805 release_value (new_val);
4806 value_free_to_mark (mark);
4807 }
4808 bs->old_val = b->val;
4809 b->val = new_val;
4810 b->val_valid = 1;
4811 return WP_VALUE_CHANGED;
4812 }
4813 else
4814 {
4815 /* Nothing changed. */
4816 value_free_to_mark (mark);
4817 return WP_VALUE_NOT_CHANGED;
4818 }
4819 }
4820 else
4821 {
4822 struct ui_out *uiout = current_uiout;
4823
4824 /* This seems like the only logical thing to do because
4825 if we temporarily ignored the watchpoint, then when
4826 we reenter the block in which it is valid it contains
4827 garbage (in the case of a function, it may have two
4828 garbage values, one before and one after the prologue).
4829 So we can't even detect the first assignment to it and
4830 watch after that (since the garbage may or may not equal
4831 the first value assigned). */
4832 /* We print all the stop information in
4833 breakpoint_ops->print_it, but in this case, by the time we
4834 call breakpoint_ops->print_it this bp will be deleted
4835 already. So we have no choice but print the information
4836 here. */
4837 if (ui_out_is_mi_like_p (uiout))
4838 ui_out_field_string
4839 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4840 ui_out_text (uiout, "\nWatchpoint ");
4841 ui_out_field_int (uiout, "wpnum", b->base.number);
4842 ui_out_text (uiout,
4843 " deleted because the program has left the block in\n\
4844 which its expression is valid.\n");
4845
4846 /* Make sure the watchpoint's commands aren't executed. */
4847 decref_counted_command_line (&b->base.commands);
4848 watchpoint_del_at_next_stop (b);
4849
4850 return WP_DELETED;
4851 }
4852 }
4853
4854 /* Return true if it looks like target has stopped due to hitting
4855 breakpoint location BL. This function does not check if we should
4856 stop, only if BL explains the stop. */
4857
4858 static int
4859 bpstat_check_location (const struct bp_location *bl,
4860 struct address_space *aspace, CORE_ADDR bp_addr,
4861 const struct target_waitstatus *ws)
4862 {
4863 struct breakpoint *b = bl->owner;
4864
4865 /* BL is from an existing breakpoint. */
4866 gdb_assert (b != NULL);
4867
4868 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4869 }
4870
4871 /* Determine if the watched values have actually changed, and we
4872 should stop. If not, set BS->stop to 0. */
4873
4874 static void
4875 bpstat_check_watchpoint (bpstat bs)
4876 {
4877 const struct bp_location *bl;
4878 struct watchpoint *b;
4879
4880 /* BS is built for existing struct breakpoint. */
4881 bl = bs->bp_location_at;
4882 gdb_assert (bl != NULL);
4883 b = (struct watchpoint *) bs->breakpoint_at;
4884 gdb_assert (b != NULL);
4885
4886 {
4887 int must_check_value = 0;
4888
4889 if (b->base.type == bp_watchpoint)
4890 /* For a software watchpoint, we must always check the
4891 watched value. */
4892 must_check_value = 1;
4893 else if (b->watchpoint_triggered == watch_triggered_yes)
4894 /* We have a hardware watchpoint (read, write, or access)
4895 and the target earlier reported an address watched by
4896 this watchpoint. */
4897 must_check_value = 1;
4898 else if (b->watchpoint_triggered == watch_triggered_unknown
4899 && b->base.type == bp_hardware_watchpoint)
4900 /* We were stopped by a hardware watchpoint, but the target could
4901 not report the data address. We must check the watchpoint's
4902 value. Access and read watchpoints are out of luck; without
4903 a data address, we can't figure it out. */
4904 must_check_value = 1;
4905
4906 if (must_check_value)
4907 {
4908 char *message
4909 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
4910 b->base.number);
4911 struct cleanup *cleanups = make_cleanup (xfree, message);
4912 int e = catch_errors (watchpoint_check, bs, message,
4913 RETURN_MASK_ALL);
4914 do_cleanups (cleanups);
4915 switch (e)
4916 {
4917 case WP_DELETED:
4918 /* We've already printed what needs to be printed. */
4919 bs->print_it = print_it_done;
4920 /* Stop. */
4921 break;
4922 case WP_IGNORE:
4923 bs->print_it = print_it_noop;
4924 bs->stop = 0;
4925 break;
4926 case WP_VALUE_CHANGED:
4927 if (b->base.type == bp_read_watchpoint)
4928 {
4929 /* There are two cases to consider here:
4930
4931 1. We're watching the triggered memory for reads.
4932 In that case, trust the target, and always report
4933 the watchpoint hit to the user. Even though
4934 reads don't cause value changes, the value may
4935 have changed since the last time it was read, and
4936 since we're not trapping writes, we will not see
4937 those, and as such we should ignore our notion of
4938 old value.
4939
4940 2. We're watching the triggered memory for both
4941 reads and writes. There are two ways this may
4942 happen:
4943
4944 2.1. This is a target that can't break on data
4945 reads only, but can break on accesses (reads or
4946 writes), such as e.g., x86. We detect this case
4947 at the time we try to insert read watchpoints.
4948
4949 2.2. Otherwise, the target supports read
4950 watchpoints, but, the user set an access or write
4951 watchpoint watching the same memory as this read
4952 watchpoint.
4953
4954 If we're watching memory writes as well as reads,
4955 ignore watchpoint hits when we find that the
4956 value hasn't changed, as reads don't cause
4957 changes. This still gives false positives when
4958 the program writes the same value to memory as
4959 what there was already in memory (we will confuse
4960 it for a read), but it's much better than
4961 nothing. */
4962
4963 int other_write_watchpoint = 0;
4964
4965 if (bl->watchpoint_type == hw_read)
4966 {
4967 struct breakpoint *other_b;
4968
4969 ALL_BREAKPOINTS (other_b)
4970 if (other_b->type == bp_hardware_watchpoint
4971 || other_b->type == bp_access_watchpoint)
4972 {
4973 struct watchpoint *other_w =
4974 (struct watchpoint *) other_b;
4975
4976 if (other_w->watchpoint_triggered
4977 == watch_triggered_yes)
4978 {
4979 other_write_watchpoint = 1;
4980 break;
4981 }
4982 }
4983 }
4984
4985 if (other_write_watchpoint
4986 || bl->watchpoint_type == hw_access)
4987 {
4988 /* We're watching the same memory for writes,
4989 and the value changed since the last time we
4990 updated it, so this trap must be for a write.
4991 Ignore it. */
4992 bs->print_it = print_it_noop;
4993 bs->stop = 0;
4994 }
4995 }
4996 break;
4997 case WP_VALUE_NOT_CHANGED:
4998 if (b->base.type == bp_hardware_watchpoint
4999 || b->base.type == bp_watchpoint)
5000 {
5001 /* Don't stop: write watchpoints shouldn't fire if
5002 the value hasn't changed. */
5003 bs->print_it = print_it_noop;
5004 bs->stop = 0;
5005 }
5006 /* Stop. */
5007 break;
5008 default:
5009 /* Can't happen. */
5010 case 0:
5011 /* Error from catch_errors. */
5012 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5013 watchpoint_del_at_next_stop (b);
5014 /* We've already printed what needs to be printed. */
5015 bs->print_it = print_it_done;
5016 break;
5017 }
5018 }
5019 else /* must_check_value == 0 */
5020 {
5021 /* This is a case where some watchpoint(s) triggered, but
5022 not at the address of this watchpoint, or else no
5023 watchpoint triggered after all. So don't print
5024 anything for this watchpoint. */
5025 bs->print_it = print_it_noop;
5026 bs->stop = 0;
5027 }
5028 }
5029 }
5030
5031
5032 /* Check conditions (condition proper, frame, thread and ignore count)
5033 of breakpoint referred to by BS. If we should not stop for this
5034 breakpoint, set BS->stop to 0. */
5035
5036 static void
5037 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5038 {
5039 int thread_id = pid_to_thread_id (ptid);
5040 const struct bp_location *bl;
5041 struct breakpoint *b;
5042
5043 /* BS is built for existing struct breakpoint. */
5044 bl = bs->bp_location_at;
5045 gdb_assert (bl != NULL);
5046 b = bs->breakpoint_at;
5047 gdb_assert (b != NULL);
5048
5049 /* Even if the target evaluated the condition on its end and notified GDB, we
5050 need to do so again since GDB does not know if we stopped due to a
5051 breakpoint or a single step breakpoint. */
5052
5053 if (frame_id_p (b->frame_id)
5054 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5055 bs->stop = 0;
5056 else if (bs->stop)
5057 {
5058 int value_is_zero = 0;
5059 struct expression *cond;
5060
5061 /* Evaluate Python breakpoints that have a "stop"
5062 method implemented. */
5063 if (b->py_bp_object)
5064 bs->stop = gdbpy_should_stop (b->py_bp_object);
5065
5066 if (is_watchpoint (b))
5067 {
5068 struct watchpoint *w = (struct watchpoint *) b;
5069
5070 cond = w->cond_exp;
5071 }
5072 else
5073 cond = bl->cond;
5074
5075 if (cond && b->disposition != disp_del_at_next_stop)
5076 {
5077 int within_current_scope = 1;
5078 struct watchpoint * w;
5079
5080 /* We use value_mark and value_free_to_mark because it could
5081 be a long time before we return to the command level and
5082 call free_all_values. We can't call free_all_values
5083 because we might be in the middle of evaluating a
5084 function call. */
5085 struct value *mark = value_mark ();
5086
5087 if (is_watchpoint (b))
5088 w = (struct watchpoint *) b;
5089 else
5090 w = NULL;
5091
5092 /* Need to select the frame, with all that implies so that
5093 the conditions will have the right context. Because we
5094 use the frame, we will not see an inlined function's
5095 variables when we arrive at a breakpoint at the start
5096 of the inlined function; the current frame will be the
5097 call site. */
5098 if (w == NULL || w->cond_exp_valid_block == NULL)
5099 select_frame (get_current_frame ());
5100 else
5101 {
5102 struct frame_info *frame;
5103
5104 /* For local watchpoint expressions, which particular
5105 instance of a local is being watched matters, so we
5106 keep track of the frame to evaluate the expression
5107 in. To evaluate the condition however, it doesn't
5108 really matter which instantiation of the function
5109 where the condition makes sense triggers the
5110 watchpoint. This allows an expression like "watch
5111 global if q > 10" set in `func', catch writes to
5112 global on all threads that call `func', or catch
5113 writes on all recursive calls of `func' by a single
5114 thread. We simply always evaluate the condition in
5115 the innermost frame that's executing where it makes
5116 sense to evaluate the condition. It seems
5117 intuitive. */
5118 frame = block_innermost_frame (w->cond_exp_valid_block);
5119 if (frame != NULL)
5120 select_frame (frame);
5121 else
5122 within_current_scope = 0;
5123 }
5124 if (within_current_scope)
5125 value_is_zero
5126 = catch_errors (breakpoint_cond_eval, cond,
5127 "Error in testing breakpoint condition:\n",
5128 RETURN_MASK_ALL);
5129 else
5130 {
5131 warning (_("Watchpoint condition cannot be tested "
5132 "in the current scope"));
5133 /* If we failed to set the right context for this
5134 watchpoint, unconditionally report it. */
5135 value_is_zero = 0;
5136 }
5137 /* FIXME-someday, should give breakpoint #. */
5138 value_free_to_mark (mark);
5139 }
5140
5141 if (cond && value_is_zero)
5142 {
5143 bs->stop = 0;
5144 }
5145 else if (b->thread != -1 && b->thread != thread_id)
5146 {
5147 bs->stop = 0;
5148 }
5149 else if (b->ignore_count > 0)
5150 {
5151 b->ignore_count--;
5152 bs->stop = 0;
5153 /* Increase the hit count even though we don't stop. */
5154 ++(b->hit_count);
5155 observer_notify_breakpoint_modified (b);
5156 }
5157 }
5158 }
5159
5160
5161 /* Get a bpstat associated with having just stopped at address
5162 BP_ADDR in thread PTID.
5163
5164 Determine whether we stopped at a breakpoint, etc, or whether we
5165 don't understand this stop. Result is a chain of bpstat's such
5166 that:
5167
5168 if we don't understand the stop, the result is a null pointer.
5169
5170 if we understand why we stopped, the result is not null.
5171
5172 Each element of the chain refers to a particular breakpoint or
5173 watchpoint at which we have stopped. (We may have stopped for
5174 several reasons concurrently.)
5175
5176 Each element of the chain has valid next, breakpoint_at,
5177 commands, FIXME??? fields. */
5178
5179 bpstat
5180 bpstat_stop_status (struct address_space *aspace,
5181 CORE_ADDR bp_addr, ptid_t ptid,
5182 const struct target_waitstatus *ws)
5183 {
5184 struct breakpoint *b = NULL;
5185 struct bp_location *bl;
5186 struct bp_location *loc;
5187 /* First item of allocated bpstat's. */
5188 bpstat bs_head = NULL, *bs_link = &bs_head;
5189 /* Pointer to the last thing in the chain currently. */
5190 bpstat bs;
5191 int ix;
5192 int need_remove_insert;
5193 int removed_any;
5194
5195 /* First, build the bpstat chain with locations that explain a
5196 target stop, while being careful to not set the target running,
5197 as that may invalidate locations (in particular watchpoint
5198 locations are recreated). Resuming will happen here with
5199 breakpoint conditions or watchpoint expressions that include
5200 inferior function calls. */
5201
5202 ALL_BREAKPOINTS (b)
5203 {
5204 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5205 continue;
5206
5207 for (bl = b->loc; bl != NULL; bl = bl->next)
5208 {
5209 /* For hardware watchpoints, we look only at the first
5210 location. The watchpoint_check function will work on the
5211 entire expression, not the individual locations. For
5212 read watchpoints, the watchpoints_triggered function has
5213 checked all locations already. */
5214 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5215 break;
5216
5217 if (!bl->enabled || bl->shlib_disabled)
5218 continue;
5219
5220 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5221 continue;
5222
5223 /* Come here if it's a watchpoint, or if the break address
5224 matches. */
5225
5226 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5227 explain stop. */
5228
5229 /* Assume we stop. Should we find a watchpoint that is not
5230 actually triggered, or if the condition of the breakpoint
5231 evaluates as false, we'll reset 'stop' to 0. */
5232 bs->stop = 1;
5233 bs->print = 1;
5234
5235 /* If this is a scope breakpoint, mark the associated
5236 watchpoint as triggered so that we will handle the
5237 out-of-scope event. We'll get to the watchpoint next
5238 iteration. */
5239 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5240 {
5241 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5242
5243 w->watchpoint_triggered = watch_triggered_yes;
5244 }
5245 }
5246 }
5247
5248 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5249 {
5250 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5251 {
5252 bs = bpstat_alloc (loc, &bs_link);
5253 /* For hits of moribund locations, we should just proceed. */
5254 bs->stop = 0;
5255 bs->print = 0;
5256 bs->print_it = print_it_noop;
5257 }
5258 }
5259
5260 /* A bit of special processing for shlib breakpoints. We need to
5261 process solib loading here, so that the lists of loaded and
5262 unloaded libraries are correct before we handle "catch load" and
5263 "catch unload". */
5264 for (bs = bs_head; bs != NULL; bs = bs->next)
5265 {
5266 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5267 {
5268 handle_solib_event ();
5269 break;
5270 }
5271 }
5272
5273 /* Now go through the locations that caused the target to stop, and
5274 check whether we're interested in reporting this stop to higher
5275 layers, or whether we should resume the target transparently. */
5276
5277 removed_any = 0;
5278
5279 for (bs = bs_head; bs != NULL; bs = bs->next)
5280 {
5281 if (!bs->stop)
5282 continue;
5283
5284 b = bs->breakpoint_at;
5285 b->ops->check_status (bs);
5286 if (bs->stop)
5287 {
5288 bpstat_check_breakpoint_conditions (bs, ptid);
5289
5290 if (bs->stop)
5291 {
5292 ++(b->hit_count);
5293 observer_notify_breakpoint_modified (b);
5294
5295 /* We will stop here. */
5296 if (b->disposition == disp_disable)
5297 {
5298 --(b->enable_count);
5299 if (b->enable_count <= 0
5300 && b->enable_state != bp_permanent)
5301 b->enable_state = bp_disabled;
5302 removed_any = 1;
5303 }
5304 if (b->silent)
5305 bs->print = 0;
5306 bs->commands = b->commands;
5307 incref_counted_command_line (bs->commands);
5308 if (command_line_is_silent (bs->commands
5309 ? bs->commands->commands : NULL))
5310 bs->print = 0;
5311 }
5312
5313 }
5314
5315 /* Print nothing for this entry if we don't stop or don't
5316 print. */
5317 if (!bs->stop || !bs->print)
5318 bs->print_it = print_it_noop;
5319 }
5320
5321 /* If we aren't stopping, the value of some hardware watchpoint may
5322 not have changed, but the intermediate memory locations we are
5323 watching may have. Don't bother if we're stopping; this will get
5324 done later. */
5325 need_remove_insert = 0;
5326 if (! bpstat_causes_stop (bs_head))
5327 for (bs = bs_head; bs != NULL; bs = bs->next)
5328 if (!bs->stop
5329 && bs->breakpoint_at
5330 && is_hardware_watchpoint (bs->breakpoint_at))
5331 {
5332 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5333
5334 update_watchpoint (w, 0 /* don't reparse. */);
5335 need_remove_insert = 1;
5336 }
5337
5338 if (need_remove_insert)
5339 update_global_location_list (1);
5340 else if (removed_any)
5341 update_global_location_list (0);
5342
5343 return bs_head;
5344 }
5345
5346 static void
5347 handle_jit_event (void)
5348 {
5349 struct frame_info *frame;
5350 struct gdbarch *gdbarch;
5351
5352 /* Switch terminal for any messages produced by
5353 breakpoint_re_set. */
5354 target_terminal_ours_for_output ();
5355
5356 frame = get_current_frame ();
5357 gdbarch = get_frame_arch (frame);
5358
5359 jit_event_handler (gdbarch);
5360
5361 target_terminal_inferior ();
5362 }
5363
5364 /* Prepare WHAT final decision for infrun. */
5365
5366 /* Decide what infrun needs to do with this bpstat. */
5367
5368 struct bpstat_what
5369 bpstat_what (bpstat bs_head)
5370 {
5371 struct bpstat_what retval;
5372 int jit_event = 0;
5373 bpstat bs;
5374
5375 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5376 retval.call_dummy = STOP_NONE;
5377 retval.is_longjmp = 0;
5378
5379 for (bs = bs_head; bs != NULL; bs = bs->next)
5380 {
5381 /* Extract this BS's action. After processing each BS, we check
5382 if its action overrides all we've seem so far. */
5383 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5384 enum bptype bptype;
5385
5386 if (bs->breakpoint_at == NULL)
5387 {
5388 /* I suspect this can happen if it was a momentary
5389 breakpoint which has since been deleted. */
5390 bptype = bp_none;
5391 }
5392 else
5393 bptype = bs->breakpoint_at->type;
5394
5395 switch (bptype)
5396 {
5397 case bp_none:
5398 break;
5399 case bp_breakpoint:
5400 case bp_hardware_breakpoint:
5401 case bp_until:
5402 case bp_finish:
5403 case bp_shlib_event:
5404 if (bs->stop)
5405 {
5406 if (bs->print)
5407 this_action = BPSTAT_WHAT_STOP_NOISY;
5408 else
5409 this_action = BPSTAT_WHAT_STOP_SILENT;
5410 }
5411 else
5412 this_action = BPSTAT_WHAT_SINGLE;
5413 break;
5414 case bp_watchpoint:
5415 case bp_hardware_watchpoint:
5416 case bp_read_watchpoint:
5417 case bp_access_watchpoint:
5418 if (bs->stop)
5419 {
5420 if (bs->print)
5421 this_action = BPSTAT_WHAT_STOP_NOISY;
5422 else
5423 this_action = BPSTAT_WHAT_STOP_SILENT;
5424 }
5425 else
5426 {
5427 /* There was a watchpoint, but we're not stopping.
5428 This requires no further action. */
5429 }
5430 break;
5431 case bp_longjmp:
5432 case bp_longjmp_call_dummy:
5433 case bp_exception:
5434 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5435 retval.is_longjmp = bptype != bp_exception;
5436 break;
5437 case bp_longjmp_resume:
5438 case bp_exception_resume:
5439 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5440 retval.is_longjmp = bptype == bp_longjmp_resume;
5441 break;
5442 case bp_step_resume:
5443 if (bs->stop)
5444 this_action = BPSTAT_WHAT_STEP_RESUME;
5445 else
5446 {
5447 /* It is for the wrong frame. */
5448 this_action = BPSTAT_WHAT_SINGLE;
5449 }
5450 break;
5451 case bp_hp_step_resume:
5452 if (bs->stop)
5453 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5454 else
5455 {
5456 /* It is for the wrong frame. */
5457 this_action = BPSTAT_WHAT_SINGLE;
5458 }
5459 break;
5460 case bp_watchpoint_scope:
5461 case bp_thread_event:
5462 case bp_overlay_event:
5463 case bp_longjmp_master:
5464 case bp_std_terminate_master:
5465 case bp_exception_master:
5466 this_action = BPSTAT_WHAT_SINGLE;
5467 break;
5468 case bp_catchpoint:
5469 if (bs->stop)
5470 {
5471 if (bs->print)
5472 this_action = BPSTAT_WHAT_STOP_NOISY;
5473 else
5474 this_action = BPSTAT_WHAT_STOP_SILENT;
5475 }
5476 else
5477 {
5478 /* There was a catchpoint, but we're not stopping.
5479 This requires no further action. */
5480 }
5481 break;
5482 case bp_jit_event:
5483 jit_event = 1;
5484 this_action = BPSTAT_WHAT_SINGLE;
5485 break;
5486 case bp_call_dummy:
5487 /* Make sure the action is stop (silent or noisy),
5488 so infrun.c pops the dummy frame. */
5489 retval.call_dummy = STOP_STACK_DUMMY;
5490 this_action = BPSTAT_WHAT_STOP_SILENT;
5491 break;
5492 case bp_std_terminate:
5493 /* Make sure the action is stop (silent or noisy),
5494 so infrun.c pops the dummy frame. */
5495 retval.call_dummy = STOP_STD_TERMINATE;
5496 this_action = BPSTAT_WHAT_STOP_SILENT;
5497 break;
5498 case bp_tracepoint:
5499 case bp_fast_tracepoint:
5500 case bp_static_tracepoint:
5501 /* Tracepoint hits should not be reported back to GDB, and
5502 if one got through somehow, it should have been filtered
5503 out already. */
5504 internal_error (__FILE__, __LINE__,
5505 _("bpstat_what: tracepoint encountered"));
5506 break;
5507 case bp_gnu_ifunc_resolver:
5508 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5509 this_action = BPSTAT_WHAT_SINGLE;
5510 break;
5511 case bp_gnu_ifunc_resolver_return:
5512 /* The breakpoint will be removed, execution will restart from the
5513 PC of the former breakpoint. */
5514 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5515 break;
5516
5517 case bp_dprintf:
5518 if (bs->stop)
5519 this_action = BPSTAT_WHAT_STOP_SILENT;
5520 else
5521 this_action = BPSTAT_WHAT_SINGLE;
5522 break;
5523
5524 default:
5525 internal_error (__FILE__, __LINE__,
5526 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5527 }
5528
5529 retval.main_action = max (retval.main_action, this_action);
5530 }
5531
5532 /* These operations may affect the bs->breakpoint_at state so they are
5533 delayed after MAIN_ACTION is decided above. */
5534
5535 if (jit_event)
5536 {
5537 if (debug_infrun)
5538 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5539
5540 handle_jit_event ();
5541 }
5542
5543 for (bs = bs_head; bs != NULL; bs = bs->next)
5544 {
5545 struct breakpoint *b = bs->breakpoint_at;
5546
5547 if (b == NULL)
5548 continue;
5549 switch (b->type)
5550 {
5551 case bp_gnu_ifunc_resolver:
5552 gnu_ifunc_resolver_stop (b);
5553 break;
5554 case bp_gnu_ifunc_resolver_return:
5555 gnu_ifunc_resolver_return_stop (b);
5556 break;
5557 }
5558 }
5559
5560 return retval;
5561 }
5562
5563 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5564 without hardware support). This isn't related to a specific bpstat,
5565 just to things like whether watchpoints are set. */
5566
5567 int
5568 bpstat_should_step (void)
5569 {
5570 struct breakpoint *b;
5571
5572 ALL_BREAKPOINTS (b)
5573 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5574 return 1;
5575 return 0;
5576 }
5577
5578 int
5579 bpstat_causes_stop (bpstat bs)
5580 {
5581 for (; bs != NULL; bs = bs->next)
5582 if (bs->stop)
5583 return 1;
5584
5585 return 0;
5586 }
5587
5588 \f
5589
5590 /* Compute a string of spaces suitable to indent the next line
5591 so it starts at the position corresponding to the table column
5592 named COL_NAME in the currently active table of UIOUT. */
5593
5594 static char *
5595 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5596 {
5597 static char wrap_indent[80];
5598 int i, total_width, width, align;
5599 char *text;
5600
5601 total_width = 0;
5602 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5603 {
5604 if (strcmp (text, col_name) == 0)
5605 {
5606 gdb_assert (total_width < sizeof wrap_indent);
5607 memset (wrap_indent, ' ', total_width);
5608 wrap_indent[total_width] = 0;
5609
5610 return wrap_indent;
5611 }
5612
5613 total_width += width + 1;
5614 }
5615
5616 return NULL;
5617 }
5618
5619 /* Determine if the locations of this breakpoint will have their conditions
5620 evaluated by the target, host or a mix of both. Returns the following:
5621
5622 "host": Host evals condition.
5623 "host or target": Host or Target evals condition.
5624 "target": Target evals condition.
5625 */
5626
5627 static const char *
5628 bp_condition_evaluator (struct breakpoint *b)
5629 {
5630 struct bp_location *bl;
5631 char host_evals = 0;
5632 char target_evals = 0;
5633
5634 if (!b)
5635 return NULL;
5636
5637 if (!is_breakpoint (b))
5638 return NULL;
5639
5640 if (gdb_evaluates_breakpoint_condition_p ()
5641 || !target_supports_evaluation_of_breakpoint_conditions ())
5642 return condition_evaluation_host;
5643
5644 for (bl = b->loc; bl; bl = bl->next)
5645 {
5646 if (bl->cond_bytecode)
5647 target_evals++;
5648 else
5649 host_evals++;
5650 }
5651
5652 if (host_evals && target_evals)
5653 return condition_evaluation_both;
5654 else if (target_evals)
5655 return condition_evaluation_target;
5656 else
5657 return condition_evaluation_host;
5658 }
5659
5660 /* Determine the breakpoint location's condition evaluator. This is
5661 similar to bp_condition_evaluator, but for locations. */
5662
5663 static const char *
5664 bp_location_condition_evaluator (struct bp_location *bl)
5665 {
5666 if (bl && !is_breakpoint (bl->owner))
5667 return NULL;
5668
5669 if (gdb_evaluates_breakpoint_condition_p ()
5670 || !target_supports_evaluation_of_breakpoint_conditions ())
5671 return condition_evaluation_host;
5672
5673 if (bl && bl->cond_bytecode)
5674 return condition_evaluation_target;
5675 else
5676 return condition_evaluation_host;
5677 }
5678
5679 /* Print the LOC location out of the list of B->LOC locations. */
5680
5681 static void
5682 print_breakpoint_location (struct breakpoint *b,
5683 struct bp_location *loc)
5684 {
5685 struct ui_out *uiout = current_uiout;
5686 struct cleanup *old_chain = save_current_program_space ();
5687
5688 if (loc != NULL && loc->shlib_disabled)
5689 loc = NULL;
5690
5691 if (loc != NULL)
5692 set_current_program_space (loc->pspace);
5693
5694 if (b->display_canonical)
5695 ui_out_field_string (uiout, "what", b->addr_string);
5696 else if (loc && loc->symtab)
5697 {
5698 struct symbol *sym
5699 = find_pc_sect_function (loc->address, loc->section);
5700 if (sym)
5701 {
5702 ui_out_text (uiout, "in ");
5703 ui_out_field_string (uiout, "func",
5704 SYMBOL_PRINT_NAME (sym));
5705 ui_out_text (uiout, " ");
5706 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
5707 ui_out_text (uiout, "at ");
5708 }
5709 ui_out_field_string (uiout, "file",
5710 symtab_to_filename_for_display (loc->symtab));
5711 ui_out_text (uiout, ":");
5712
5713 if (ui_out_is_mi_like_p (uiout))
5714 ui_out_field_string (uiout, "fullname",
5715 symtab_to_fullname (loc->symtab));
5716
5717 ui_out_field_int (uiout, "line", loc->line_number);
5718 }
5719 else if (loc)
5720 {
5721 struct ui_file *stb = mem_fileopen ();
5722 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
5723
5724 print_address_symbolic (loc->gdbarch, loc->address, stb,
5725 demangle, "");
5726 ui_out_field_stream (uiout, "at", stb);
5727
5728 do_cleanups (stb_chain);
5729 }
5730 else
5731 ui_out_field_string (uiout, "pending", b->addr_string);
5732
5733 if (loc && is_breakpoint (b)
5734 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5735 && bp_condition_evaluator (b) == condition_evaluation_both)
5736 {
5737 ui_out_text (uiout, " (");
5738 ui_out_field_string (uiout, "evaluated-by",
5739 bp_location_condition_evaluator (loc));
5740 ui_out_text (uiout, ")");
5741 }
5742
5743 do_cleanups (old_chain);
5744 }
5745
5746 static const char *
5747 bptype_string (enum bptype type)
5748 {
5749 struct ep_type_description
5750 {
5751 enum bptype type;
5752 char *description;
5753 };
5754 static struct ep_type_description bptypes[] =
5755 {
5756 {bp_none, "?deleted?"},
5757 {bp_breakpoint, "breakpoint"},
5758 {bp_hardware_breakpoint, "hw breakpoint"},
5759 {bp_until, "until"},
5760 {bp_finish, "finish"},
5761 {bp_watchpoint, "watchpoint"},
5762 {bp_hardware_watchpoint, "hw watchpoint"},
5763 {bp_read_watchpoint, "read watchpoint"},
5764 {bp_access_watchpoint, "acc watchpoint"},
5765 {bp_longjmp, "longjmp"},
5766 {bp_longjmp_resume, "longjmp resume"},
5767 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5768 {bp_exception, "exception"},
5769 {bp_exception_resume, "exception resume"},
5770 {bp_step_resume, "step resume"},
5771 {bp_hp_step_resume, "high-priority step resume"},
5772 {bp_watchpoint_scope, "watchpoint scope"},
5773 {bp_call_dummy, "call dummy"},
5774 {bp_std_terminate, "std::terminate"},
5775 {bp_shlib_event, "shlib events"},
5776 {bp_thread_event, "thread events"},
5777 {bp_overlay_event, "overlay events"},
5778 {bp_longjmp_master, "longjmp master"},
5779 {bp_std_terminate_master, "std::terminate master"},
5780 {bp_exception_master, "exception master"},
5781 {bp_catchpoint, "catchpoint"},
5782 {bp_tracepoint, "tracepoint"},
5783 {bp_fast_tracepoint, "fast tracepoint"},
5784 {bp_static_tracepoint, "static tracepoint"},
5785 {bp_dprintf, "dprintf"},
5786 {bp_jit_event, "jit events"},
5787 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5788 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5789 };
5790
5791 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5792 || ((int) type != bptypes[(int) type].type))
5793 internal_error (__FILE__, __LINE__,
5794 _("bptypes table does not describe type #%d."),
5795 (int) type);
5796
5797 return bptypes[(int) type].description;
5798 }
5799
5800 DEF_VEC_I(int);
5801
5802 /* For MI, output a field named 'thread-groups' with a list as the value.
5803 For CLI, prefix the list with the string 'inf'. */
5804
5805 static void
5806 output_thread_groups (struct ui_out *uiout,
5807 const char *field_name,
5808 VEC(int) *inf_num,
5809 int mi_only)
5810 {
5811 struct cleanup *back_to;
5812 int is_mi = ui_out_is_mi_like_p (uiout);
5813 int inf;
5814 int i;
5815
5816 /* For backward compatibility, don't display inferiors in CLI unless
5817 there are several. Always display them for MI. */
5818 if (!is_mi && mi_only)
5819 return;
5820
5821 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
5822
5823 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
5824 {
5825 if (is_mi)
5826 {
5827 char mi_group[10];
5828
5829 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
5830 ui_out_field_string (uiout, NULL, mi_group);
5831 }
5832 else
5833 {
5834 if (i == 0)
5835 ui_out_text (uiout, " inf ");
5836 else
5837 ui_out_text (uiout, ", ");
5838
5839 ui_out_text (uiout, plongest (inf));
5840 }
5841 }
5842
5843 do_cleanups (back_to);
5844 }
5845
5846 /* Print B to gdb_stdout. */
5847
5848 static void
5849 print_one_breakpoint_location (struct breakpoint *b,
5850 struct bp_location *loc,
5851 int loc_number,
5852 struct bp_location **last_loc,
5853 int allflag)
5854 {
5855 struct command_line *l;
5856 static char bpenables[] = "nynny";
5857
5858 struct ui_out *uiout = current_uiout;
5859 int header_of_multiple = 0;
5860 int part_of_multiple = (loc != NULL);
5861 struct value_print_options opts;
5862
5863 get_user_print_options (&opts);
5864
5865 gdb_assert (!loc || loc_number != 0);
5866 /* See comment in print_one_breakpoint concerning treatment of
5867 breakpoints with single disabled location. */
5868 if (loc == NULL
5869 && (b->loc != NULL
5870 && (b->loc->next != NULL || !b->loc->enabled)))
5871 header_of_multiple = 1;
5872 if (loc == NULL)
5873 loc = b->loc;
5874
5875 annotate_record ();
5876
5877 /* 1 */
5878 annotate_field (0);
5879 if (part_of_multiple)
5880 {
5881 char *formatted;
5882 formatted = xstrprintf ("%d.%d", b->number, loc_number);
5883 ui_out_field_string (uiout, "number", formatted);
5884 xfree (formatted);
5885 }
5886 else
5887 {
5888 ui_out_field_int (uiout, "number", b->number);
5889 }
5890
5891 /* 2 */
5892 annotate_field (1);
5893 if (part_of_multiple)
5894 ui_out_field_skip (uiout, "type");
5895 else
5896 ui_out_field_string (uiout, "type", bptype_string (b->type));
5897
5898 /* 3 */
5899 annotate_field (2);
5900 if (part_of_multiple)
5901 ui_out_field_skip (uiout, "disp");
5902 else
5903 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
5904
5905
5906 /* 4 */
5907 annotate_field (3);
5908 if (part_of_multiple)
5909 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
5910 else
5911 ui_out_field_fmt (uiout, "enabled", "%c",
5912 bpenables[(int) b->enable_state]);
5913 ui_out_spaces (uiout, 2);
5914
5915
5916 /* 5 and 6 */
5917 if (b->ops != NULL && b->ops->print_one != NULL)
5918 {
5919 /* Although the print_one can possibly print all locations,
5920 calling it here is not likely to get any nice result. So,
5921 make sure there's just one location. */
5922 gdb_assert (b->loc == NULL || b->loc->next == NULL);
5923 b->ops->print_one (b, last_loc);
5924 }
5925 else
5926 switch (b->type)
5927 {
5928 case bp_none:
5929 internal_error (__FILE__, __LINE__,
5930 _("print_one_breakpoint: bp_none encountered\n"));
5931 break;
5932
5933 case bp_watchpoint:
5934 case bp_hardware_watchpoint:
5935 case bp_read_watchpoint:
5936 case bp_access_watchpoint:
5937 {
5938 struct watchpoint *w = (struct watchpoint *) b;
5939
5940 /* Field 4, the address, is omitted (which makes the columns
5941 not line up too nicely with the headers, but the effect
5942 is relatively readable). */
5943 if (opts.addressprint)
5944 ui_out_field_skip (uiout, "addr");
5945 annotate_field (5);
5946 ui_out_field_string (uiout, "what", w->exp_string);
5947 }
5948 break;
5949
5950 case bp_breakpoint:
5951 case bp_hardware_breakpoint:
5952 case bp_until:
5953 case bp_finish:
5954 case bp_longjmp:
5955 case bp_longjmp_resume:
5956 case bp_longjmp_call_dummy:
5957 case bp_exception:
5958 case bp_exception_resume:
5959 case bp_step_resume:
5960 case bp_hp_step_resume:
5961 case bp_watchpoint_scope:
5962 case bp_call_dummy:
5963 case bp_std_terminate:
5964 case bp_shlib_event:
5965 case bp_thread_event:
5966 case bp_overlay_event:
5967 case bp_longjmp_master:
5968 case bp_std_terminate_master:
5969 case bp_exception_master:
5970 case bp_tracepoint:
5971 case bp_fast_tracepoint:
5972 case bp_static_tracepoint:
5973 case bp_dprintf:
5974 case bp_jit_event:
5975 case bp_gnu_ifunc_resolver:
5976 case bp_gnu_ifunc_resolver_return:
5977 if (opts.addressprint)
5978 {
5979 annotate_field (4);
5980 if (header_of_multiple)
5981 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
5982 else if (b->loc == NULL || loc->shlib_disabled)
5983 ui_out_field_string (uiout, "addr", "<PENDING>");
5984 else
5985 ui_out_field_core_addr (uiout, "addr",
5986 loc->gdbarch, loc->address);
5987 }
5988 annotate_field (5);
5989 if (!header_of_multiple)
5990 print_breakpoint_location (b, loc);
5991 if (b->loc)
5992 *last_loc = b->loc;
5993 break;
5994 }
5995
5996
5997 if (loc != NULL && !header_of_multiple)
5998 {
5999 struct inferior *inf;
6000 VEC(int) *inf_num = NULL;
6001 int mi_only = 1;
6002
6003 ALL_INFERIORS (inf)
6004 {
6005 if (inf->pspace == loc->pspace)
6006 VEC_safe_push (int, inf_num, inf->num);
6007 }
6008
6009 /* For backward compatibility, don't display inferiors in CLI unless
6010 there are several. Always display for MI. */
6011 if (allflag
6012 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6013 && (number_of_program_spaces () > 1
6014 || number_of_inferiors () > 1)
6015 /* LOC is for existing B, it cannot be in
6016 moribund_locations and thus having NULL OWNER. */
6017 && loc->owner->type != bp_catchpoint))
6018 mi_only = 0;
6019 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6020 VEC_free (int, inf_num);
6021 }
6022
6023 if (!part_of_multiple)
6024 {
6025 if (b->thread != -1)
6026 {
6027 /* FIXME: This seems to be redundant and lost here; see the
6028 "stop only in" line a little further down. */
6029 ui_out_text (uiout, " thread ");
6030 ui_out_field_int (uiout, "thread", b->thread);
6031 }
6032 else if (b->task != 0)
6033 {
6034 ui_out_text (uiout, " task ");
6035 ui_out_field_int (uiout, "task", b->task);
6036 }
6037 }
6038
6039 ui_out_text (uiout, "\n");
6040
6041 if (!part_of_multiple)
6042 b->ops->print_one_detail (b, uiout);
6043
6044 if (part_of_multiple && frame_id_p (b->frame_id))
6045 {
6046 annotate_field (6);
6047 ui_out_text (uiout, "\tstop only in stack frame at ");
6048 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6049 the frame ID. */
6050 ui_out_field_core_addr (uiout, "frame",
6051 b->gdbarch, b->frame_id.stack_addr);
6052 ui_out_text (uiout, "\n");
6053 }
6054
6055 if (!part_of_multiple && b->cond_string)
6056 {
6057 annotate_field (7);
6058 if (is_tracepoint (b))
6059 ui_out_text (uiout, "\ttrace only if ");
6060 else
6061 ui_out_text (uiout, "\tstop only if ");
6062 ui_out_field_string (uiout, "cond", b->cond_string);
6063
6064 /* Print whether the target is doing the breakpoint's condition
6065 evaluation. If GDB is doing the evaluation, don't print anything. */
6066 if (is_breakpoint (b)
6067 && breakpoint_condition_evaluation_mode ()
6068 == condition_evaluation_target)
6069 {
6070 ui_out_text (uiout, " (");
6071 ui_out_field_string (uiout, "evaluated-by",
6072 bp_condition_evaluator (b));
6073 ui_out_text (uiout, " evals)");
6074 }
6075 ui_out_text (uiout, "\n");
6076 }
6077
6078 if (!part_of_multiple && b->thread != -1)
6079 {
6080 /* FIXME should make an annotation for this. */
6081 ui_out_text (uiout, "\tstop only in thread ");
6082 ui_out_field_int (uiout, "thread", b->thread);
6083 ui_out_text (uiout, "\n");
6084 }
6085
6086 if (!part_of_multiple)
6087 {
6088 if (b->hit_count)
6089 {
6090 /* FIXME should make an annotation for this. */
6091 if (is_catchpoint (b))
6092 ui_out_text (uiout, "\tcatchpoint");
6093 else if (is_tracepoint (b))
6094 ui_out_text (uiout, "\ttracepoint");
6095 else
6096 ui_out_text (uiout, "\tbreakpoint");
6097 ui_out_text (uiout, " already hit ");
6098 ui_out_field_int (uiout, "times", b->hit_count);
6099 if (b->hit_count == 1)
6100 ui_out_text (uiout, " time\n");
6101 else
6102 ui_out_text (uiout, " times\n");
6103 }
6104 else
6105 {
6106 /* Output the count also if it is zero, but only if this is mi. */
6107 if (ui_out_is_mi_like_p (uiout))
6108 ui_out_field_int (uiout, "times", b->hit_count);
6109 }
6110 }
6111
6112 if (!part_of_multiple && b->ignore_count)
6113 {
6114 annotate_field (8);
6115 ui_out_text (uiout, "\tignore next ");
6116 ui_out_field_int (uiout, "ignore", b->ignore_count);
6117 ui_out_text (uiout, " hits\n");
6118 }
6119
6120 /* Note that an enable count of 1 corresponds to "enable once"
6121 behavior, which is reported by the combination of enablement and
6122 disposition, so we don't need to mention it here. */
6123 if (!part_of_multiple && b->enable_count > 1)
6124 {
6125 annotate_field (8);
6126 ui_out_text (uiout, "\tdisable after ");
6127 /* Tweak the wording to clarify that ignore and enable counts
6128 are distinct, and have additive effect. */
6129 if (b->ignore_count)
6130 ui_out_text (uiout, "additional ");
6131 else
6132 ui_out_text (uiout, "next ");
6133 ui_out_field_int (uiout, "enable", b->enable_count);
6134 ui_out_text (uiout, " hits\n");
6135 }
6136
6137 if (!part_of_multiple && is_tracepoint (b))
6138 {
6139 struct tracepoint *tp = (struct tracepoint *) b;
6140
6141 if (tp->traceframe_usage)
6142 {
6143 ui_out_text (uiout, "\ttrace buffer usage ");
6144 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6145 ui_out_text (uiout, " bytes\n");
6146 }
6147 }
6148
6149 l = b->commands ? b->commands->commands : NULL;
6150 if (!part_of_multiple && l)
6151 {
6152 struct cleanup *script_chain;
6153
6154 annotate_field (9);
6155 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6156 print_command_lines (uiout, l, 4);
6157 do_cleanups (script_chain);
6158 }
6159
6160 if (is_tracepoint (b))
6161 {
6162 struct tracepoint *t = (struct tracepoint *) b;
6163
6164 if (!part_of_multiple && t->pass_count)
6165 {
6166 annotate_field (10);
6167 ui_out_text (uiout, "\tpass count ");
6168 ui_out_field_int (uiout, "pass", t->pass_count);
6169 ui_out_text (uiout, " \n");
6170 }
6171
6172 /* Don't display it when tracepoint or tracepoint location is
6173 pending. */
6174 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6175 {
6176 annotate_field (11);
6177
6178 if (ui_out_is_mi_like_p (uiout))
6179 ui_out_field_string (uiout, "installed",
6180 loc->inserted ? "y" : "n");
6181 else
6182 {
6183 if (loc->inserted)
6184 ui_out_text (uiout, "\t");
6185 else
6186 ui_out_text (uiout, "\tnot ");
6187 ui_out_text (uiout, "installed on target\n");
6188 }
6189 }
6190 }
6191
6192 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6193 {
6194 if (is_watchpoint (b))
6195 {
6196 struct watchpoint *w = (struct watchpoint *) b;
6197
6198 ui_out_field_string (uiout, "original-location", w->exp_string);
6199 }
6200 else if (b->addr_string)
6201 ui_out_field_string (uiout, "original-location", b->addr_string);
6202 }
6203 }
6204
6205 static void
6206 print_one_breakpoint (struct breakpoint *b,
6207 struct bp_location **last_loc,
6208 int allflag)
6209 {
6210 struct cleanup *bkpt_chain;
6211 struct ui_out *uiout = current_uiout;
6212
6213 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6214
6215 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6216 do_cleanups (bkpt_chain);
6217
6218 /* If this breakpoint has custom print function,
6219 it's already printed. Otherwise, print individual
6220 locations, if any. */
6221 if (b->ops == NULL || b->ops->print_one == NULL)
6222 {
6223 /* If breakpoint has a single location that is disabled, we
6224 print it as if it had several locations, since otherwise it's
6225 hard to represent "breakpoint enabled, location disabled"
6226 situation.
6227
6228 Note that while hardware watchpoints have several locations
6229 internally, that's not a property exposed to user. */
6230 if (b->loc
6231 && !is_hardware_watchpoint (b)
6232 && (b->loc->next || !b->loc->enabled))
6233 {
6234 struct bp_location *loc;
6235 int n = 1;
6236
6237 for (loc = b->loc; loc; loc = loc->next, ++n)
6238 {
6239 struct cleanup *inner2 =
6240 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6241 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6242 do_cleanups (inner2);
6243 }
6244 }
6245 }
6246 }
6247
6248 static int
6249 breakpoint_address_bits (struct breakpoint *b)
6250 {
6251 int print_address_bits = 0;
6252 struct bp_location *loc;
6253
6254 for (loc = b->loc; loc; loc = loc->next)
6255 {
6256 int addr_bit;
6257
6258 /* Software watchpoints that aren't watching memory don't have
6259 an address to print. */
6260 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6261 continue;
6262
6263 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6264 if (addr_bit > print_address_bits)
6265 print_address_bits = addr_bit;
6266 }
6267
6268 return print_address_bits;
6269 }
6270
6271 struct captured_breakpoint_query_args
6272 {
6273 int bnum;
6274 };
6275
6276 static int
6277 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6278 {
6279 struct captured_breakpoint_query_args *args = data;
6280 struct breakpoint *b;
6281 struct bp_location *dummy_loc = NULL;
6282
6283 ALL_BREAKPOINTS (b)
6284 {
6285 if (args->bnum == b->number)
6286 {
6287 print_one_breakpoint (b, &dummy_loc, 0);
6288 return GDB_RC_OK;
6289 }
6290 }
6291 return GDB_RC_NONE;
6292 }
6293
6294 enum gdb_rc
6295 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6296 char **error_message)
6297 {
6298 struct captured_breakpoint_query_args args;
6299
6300 args.bnum = bnum;
6301 /* For the moment we don't trust print_one_breakpoint() to not throw
6302 an error. */
6303 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6304 error_message, RETURN_MASK_ALL) < 0)
6305 return GDB_RC_FAIL;
6306 else
6307 return GDB_RC_OK;
6308 }
6309
6310 /* Return true if this breakpoint was set by the user, false if it is
6311 internal or momentary. */
6312
6313 int
6314 user_breakpoint_p (struct breakpoint *b)
6315 {
6316 return b->number > 0;
6317 }
6318
6319 /* Print information on user settable breakpoint (watchpoint, etc)
6320 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6321 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6322 FILTER is non-NULL, call it on each breakpoint and only include the
6323 ones for which it returns non-zero. Return the total number of
6324 breakpoints listed. */
6325
6326 static int
6327 breakpoint_1 (char *args, int allflag,
6328 int (*filter) (const struct breakpoint *))
6329 {
6330 struct breakpoint *b;
6331 struct bp_location *last_loc = NULL;
6332 int nr_printable_breakpoints;
6333 struct cleanup *bkpttbl_chain;
6334 struct value_print_options opts;
6335 int print_address_bits = 0;
6336 int print_type_col_width = 14;
6337 struct ui_out *uiout = current_uiout;
6338
6339 get_user_print_options (&opts);
6340
6341 /* Compute the number of rows in the table, as well as the size
6342 required for address fields. */
6343 nr_printable_breakpoints = 0;
6344 ALL_BREAKPOINTS (b)
6345 {
6346 /* If we have a filter, only list the breakpoints it accepts. */
6347 if (filter && !filter (b))
6348 continue;
6349
6350 /* If we have an "args" string, it is a list of breakpoints to
6351 accept. Skip the others. */
6352 if (args != NULL && *args != '\0')
6353 {
6354 if (allflag && parse_and_eval_long (args) != b->number)
6355 continue;
6356 if (!allflag && !number_is_in_list (args, b->number))
6357 continue;
6358 }
6359
6360 if (allflag || user_breakpoint_p (b))
6361 {
6362 int addr_bit, type_len;
6363
6364 addr_bit = breakpoint_address_bits (b);
6365 if (addr_bit > print_address_bits)
6366 print_address_bits = addr_bit;
6367
6368 type_len = strlen (bptype_string (b->type));
6369 if (type_len > print_type_col_width)
6370 print_type_col_width = type_len;
6371
6372 nr_printable_breakpoints++;
6373 }
6374 }
6375
6376 if (opts.addressprint)
6377 bkpttbl_chain
6378 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6379 nr_printable_breakpoints,
6380 "BreakpointTable");
6381 else
6382 bkpttbl_chain
6383 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6384 nr_printable_breakpoints,
6385 "BreakpointTable");
6386
6387 if (nr_printable_breakpoints > 0)
6388 annotate_breakpoints_headers ();
6389 if (nr_printable_breakpoints > 0)
6390 annotate_field (0);
6391 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6392 if (nr_printable_breakpoints > 0)
6393 annotate_field (1);
6394 ui_out_table_header (uiout, print_type_col_width, ui_left,
6395 "type", "Type"); /* 2 */
6396 if (nr_printable_breakpoints > 0)
6397 annotate_field (2);
6398 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6399 if (nr_printable_breakpoints > 0)
6400 annotate_field (3);
6401 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6402 if (opts.addressprint)
6403 {
6404 if (nr_printable_breakpoints > 0)
6405 annotate_field (4);
6406 if (print_address_bits <= 32)
6407 ui_out_table_header (uiout, 10, ui_left,
6408 "addr", "Address"); /* 5 */
6409 else
6410 ui_out_table_header (uiout, 18, ui_left,
6411 "addr", "Address"); /* 5 */
6412 }
6413 if (nr_printable_breakpoints > 0)
6414 annotate_field (5);
6415 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6416 ui_out_table_body (uiout);
6417 if (nr_printable_breakpoints > 0)
6418 annotate_breakpoints_table ();
6419
6420 ALL_BREAKPOINTS (b)
6421 {
6422 QUIT;
6423 /* If we have a filter, only list the breakpoints it accepts. */
6424 if (filter && !filter (b))
6425 continue;
6426
6427 /* If we have an "args" string, it is a list of breakpoints to
6428 accept. Skip the others. */
6429
6430 if (args != NULL && *args != '\0')
6431 {
6432 if (allflag) /* maintenance info breakpoint */
6433 {
6434 if (parse_and_eval_long (args) != b->number)
6435 continue;
6436 }
6437 else /* all others */
6438 {
6439 if (!number_is_in_list (args, b->number))
6440 continue;
6441 }
6442 }
6443 /* We only print out user settable breakpoints unless the
6444 allflag is set. */
6445 if (allflag || user_breakpoint_p (b))
6446 print_one_breakpoint (b, &last_loc, allflag);
6447 }
6448
6449 do_cleanups (bkpttbl_chain);
6450
6451 if (nr_printable_breakpoints == 0)
6452 {
6453 /* If there's a filter, let the caller decide how to report
6454 empty list. */
6455 if (!filter)
6456 {
6457 if (args == NULL || *args == '\0')
6458 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6459 else
6460 ui_out_message (uiout, 0,
6461 "No breakpoint or watchpoint matching '%s'.\n",
6462 args);
6463 }
6464 }
6465 else
6466 {
6467 if (last_loc && !server_command)
6468 set_next_address (last_loc->gdbarch, last_loc->address);
6469 }
6470
6471 /* FIXME? Should this be moved up so that it is only called when
6472 there have been breakpoints? */
6473 annotate_breakpoints_table_end ();
6474
6475 return nr_printable_breakpoints;
6476 }
6477
6478 /* Display the value of default-collect in a way that is generally
6479 compatible with the breakpoint list. */
6480
6481 static void
6482 default_collect_info (void)
6483 {
6484 struct ui_out *uiout = current_uiout;
6485
6486 /* If it has no value (which is frequently the case), say nothing; a
6487 message like "No default-collect." gets in user's face when it's
6488 not wanted. */
6489 if (!*default_collect)
6490 return;
6491
6492 /* The following phrase lines up nicely with per-tracepoint collect
6493 actions. */
6494 ui_out_text (uiout, "default collect ");
6495 ui_out_field_string (uiout, "default-collect", default_collect);
6496 ui_out_text (uiout, " \n");
6497 }
6498
6499 static void
6500 breakpoints_info (char *args, int from_tty)
6501 {
6502 breakpoint_1 (args, 0, NULL);
6503
6504 default_collect_info ();
6505 }
6506
6507 static void
6508 watchpoints_info (char *args, int from_tty)
6509 {
6510 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6511 struct ui_out *uiout = current_uiout;
6512
6513 if (num_printed == 0)
6514 {
6515 if (args == NULL || *args == '\0')
6516 ui_out_message (uiout, 0, "No watchpoints.\n");
6517 else
6518 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6519 }
6520 }
6521
6522 static void
6523 maintenance_info_breakpoints (char *args, int from_tty)
6524 {
6525 breakpoint_1 (args, 1, NULL);
6526
6527 default_collect_info ();
6528 }
6529
6530 static int
6531 breakpoint_has_pc (struct breakpoint *b,
6532 struct program_space *pspace,
6533 CORE_ADDR pc, struct obj_section *section)
6534 {
6535 struct bp_location *bl = b->loc;
6536
6537 for (; bl; bl = bl->next)
6538 {
6539 if (bl->pspace == pspace
6540 && bl->address == pc
6541 && (!overlay_debugging || bl->section == section))
6542 return 1;
6543 }
6544 return 0;
6545 }
6546
6547 /* Print a message describing any user-breakpoints set at PC. This
6548 concerns with logical breakpoints, so we match program spaces, not
6549 address spaces. */
6550
6551 static void
6552 describe_other_breakpoints (struct gdbarch *gdbarch,
6553 struct program_space *pspace, CORE_ADDR pc,
6554 struct obj_section *section, int thread)
6555 {
6556 int others = 0;
6557 struct breakpoint *b;
6558
6559 ALL_BREAKPOINTS (b)
6560 others += (user_breakpoint_p (b)
6561 && breakpoint_has_pc (b, pspace, pc, section));
6562 if (others > 0)
6563 {
6564 if (others == 1)
6565 printf_filtered (_("Note: breakpoint "));
6566 else /* if (others == ???) */
6567 printf_filtered (_("Note: breakpoints "));
6568 ALL_BREAKPOINTS (b)
6569 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6570 {
6571 others--;
6572 printf_filtered ("%d", b->number);
6573 if (b->thread == -1 && thread != -1)
6574 printf_filtered (" (all threads)");
6575 else if (b->thread != -1)
6576 printf_filtered (" (thread %d)", b->thread);
6577 printf_filtered ("%s%s ",
6578 ((b->enable_state == bp_disabled
6579 || b->enable_state == bp_call_disabled)
6580 ? " (disabled)"
6581 : b->enable_state == bp_permanent
6582 ? " (permanent)"
6583 : ""),
6584 (others > 1) ? ","
6585 : ((others == 1) ? " and" : ""));
6586 }
6587 printf_filtered (_("also set at pc "));
6588 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6589 printf_filtered (".\n");
6590 }
6591 }
6592 \f
6593
6594 /* Return true iff it is meaningful to use the address member of
6595 BPT. For some breakpoint types, the address member is irrelevant
6596 and it makes no sense to attempt to compare it to other addresses
6597 (or use it for any other purpose either).
6598
6599 More specifically, each of the following breakpoint types will
6600 always have a zero valued address and we don't want to mark
6601 breakpoints of any of these types to be a duplicate of an actual
6602 breakpoint at address zero:
6603
6604 bp_watchpoint
6605 bp_catchpoint
6606
6607 */
6608
6609 static int
6610 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6611 {
6612 enum bptype type = bpt->type;
6613
6614 return (type != bp_watchpoint && type != bp_catchpoint);
6615 }
6616
6617 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6618 true if LOC1 and LOC2 represent the same watchpoint location. */
6619
6620 static int
6621 watchpoint_locations_match (struct bp_location *loc1,
6622 struct bp_location *loc2)
6623 {
6624 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6625 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6626
6627 /* Both of them must exist. */
6628 gdb_assert (w1 != NULL);
6629 gdb_assert (w2 != NULL);
6630
6631 /* If the target can evaluate the condition expression in hardware,
6632 then we we need to insert both watchpoints even if they are at
6633 the same place. Otherwise the watchpoint will only trigger when
6634 the condition of whichever watchpoint was inserted evaluates to
6635 true, not giving a chance for GDB to check the condition of the
6636 other watchpoint. */
6637 if ((w1->cond_exp
6638 && target_can_accel_watchpoint_condition (loc1->address,
6639 loc1->length,
6640 loc1->watchpoint_type,
6641 w1->cond_exp))
6642 || (w2->cond_exp
6643 && target_can_accel_watchpoint_condition (loc2->address,
6644 loc2->length,
6645 loc2->watchpoint_type,
6646 w2->cond_exp)))
6647 return 0;
6648
6649 /* Note that this checks the owner's type, not the location's. In
6650 case the target does not support read watchpoints, but does
6651 support access watchpoints, we'll have bp_read_watchpoint
6652 watchpoints with hw_access locations. Those should be considered
6653 duplicates of hw_read locations. The hw_read locations will
6654 become hw_access locations later. */
6655 return (loc1->owner->type == loc2->owner->type
6656 && loc1->pspace->aspace == loc2->pspace->aspace
6657 && loc1->address == loc2->address
6658 && loc1->length == loc2->length);
6659 }
6660
6661 /* Returns true if {ASPACE1,ADDR1} and {ASPACE2,ADDR2} represent the
6662 same breakpoint location. In most targets, this can only be true
6663 if ASPACE1 matches ASPACE2. On targets that have global
6664 breakpoints, the address space doesn't really matter. */
6665
6666 static int
6667 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6668 struct address_space *aspace2, CORE_ADDR addr2)
6669 {
6670 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6671 || aspace1 == aspace2)
6672 && addr1 == addr2);
6673 }
6674
6675 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6676 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6677 matches ASPACE2. On targets that have global breakpoints, the address
6678 space doesn't really matter. */
6679
6680 static int
6681 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6682 int len1, struct address_space *aspace2,
6683 CORE_ADDR addr2)
6684 {
6685 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6686 || aspace1 == aspace2)
6687 && addr2 >= addr1 && addr2 < addr1 + len1);
6688 }
6689
6690 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6691 a ranged breakpoint. In most targets, a match happens only if ASPACE
6692 matches the breakpoint's address space. On targets that have global
6693 breakpoints, the address space doesn't really matter. */
6694
6695 static int
6696 breakpoint_location_address_match (struct bp_location *bl,
6697 struct address_space *aspace,
6698 CORE_ADDR addr)
6699 {
6700 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6701 aspace, addr)
6702 || (bl->length
6703 && breakpoint_address_match_range (bl->pspace->aspace,
6704 bl->address, bl->length,
6705 aspace, addr)));
6706 }
6707
6708 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6709 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6710 true, otherwise returns false. */
6711
6712 static int
6713 tracepoint_locations_match (struct bp_location *loc1,
6714 struct bp_location *loc2)
6715 {
6716 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6717 /* Since tracepoint locations are never duplicated with others', tracepoint
6718 locations at the same address of different tracepoints are regarded as
6719 different locations. */
6720 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6721 else
6722 return 0;
6723 }
6724
6725 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6726 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6727 represent the same location. */
6728
6729 static int
6730 breakpoint_locations_match (struct bp_location *loc1,
6731 struct bp_location *loc2)
6732 {
6733 int hw_point1, hw_point2;
6734
6735 /* Both of them must not be in moribund_locations. */
6736 gdb_assert (loc1->owner != NULL);
6737 gdb_assert (loc2->owner != NULL);
6738
6739 hw_point1 = is_hardware_watchpoint (loc1->owner);
6740 hw_point2 = is_hardware_watchpoint (loc2->owner);
6741
6742 if (hw_point1 != hw_point2)
6743 return 0;
6744 else if (hw_point1)
6745 return watchpoint_locations_match (loc1, loc2);
6746 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6747 return tracepoint_locations_match (loc1, loc2);
6748 else
6749 /* We compare bp_location.length in order to cover ranged breakpoints. */
6750 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6751 loc2->pspace->aspace, loc2->address)
6752 && loc1->length == loc2->length);
6753 }
6754
6755 static void
6756 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6757 int bnum, int have_bnum)
6758 {
6759 /* The longest string possibly returned by hex_string_custom
6760 is 50 chars. These must be at least that big for safety. */
6761 char astr1[64];
6762 char astr2[64];
6763
6764 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6765 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6766 if (have_bnum)
6767 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6768 bnum, astr1, astr2);
6769 else
6770 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6771 }
6772
6773 /* Adjust a breakpoint's address to account for architectural
6774 constraints on breakpoint placement. Return the adjusted address.
6775 Note: Very few targets require this kind of adjustment. For most
6776 targets, this function is simply the identity function. */
6777
6778 static CORE_ADDR
6779 adjust_breakpoint_address (struct gdbarch *gdbarch,
6780 CORE_ADDR bpaddr, enum bptype bptype)
6781 {
6782 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
6783 {
6784 /* Very few targets need any kind of breakpoint adjustment. */
6785 return bpaddr;
6786 }
6787 else if (bptype == bp_watchpoint
6788 || bptype == bp_hardware_watchpoint
6789 || bptype == bp_read_watchpoint
6790 || bptype == bp_access_watchpoint
6791 || bptype == bp_catchpoint)
6792 {
6793 /* Watchpoints and the various bp_catch_* eventpoints should not
6794 have their addresses modified. */
6795 return bpaddr;
6796 }
6797 else
6798 {
6799 CORE_ADDR adjusted_bpaddr;
6800
6801 /* Some targets have architectural constraints on the placement
6802 of breakpoint instructions. Obtain the adjusted address. */
6803 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6804
6805 /* An adjusted breakpoint address can significantly alter
6806 a user's expectations. Print a warning if an adjustment
6807 is required. */
6808 if (adjusted_bpaddr != bpaddr)
6809 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6810
6811 return adjusted_bpaddr;
6812 }
6813 }
6814
6815 void
6816 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
6817 struct breakpoint *owner)
6818 {
6819 memset (loc, 0, sizeof (*loc));
6820
6821 gdb_assert (ops != NULL);
6822
6823 loc->ops = ops;
6824 loc->owner = owner;
6825 loc->cond = NULL;
6826 loc->cond_bytecode = NULL;
6827 loc->shlib_disabled = 0;
6828 loc->enabled = 1;
6829
6830 switch (owner->type)
6831 {
6832 case bp_breakpoint:
6833 case bp_until:
6834 case bp_finish:
6835 case bp_longjmp:
6836 case bp_longjmp_resume:
6837 case bp_longjmp_call_dummy:
6838 case bp_exception:
6839 case bp_exception_resume:
6840 case bp_step_resume:
6841 case bp_hp_step_resume:
6842 case bp_watchpoint_scope:
6843 case bp_call_dummy:
6844 case bp_std_terminate:
6845 case bp_shlib_event:
6846 case bp_thread_event:
6847 case bp_overlay_event:
6848 case bp_jit_event:
6849 case bp_longjmp_master:
6850 case bp_std_terminate_master:
6851 case bp_exception_master:
6852 case bp_gnu_ifunc_resolver:
6853 case bp_gnu_ifunc_resolver_return:
6854 case bp_dprintf:
6855 loc->loc_type = bp_loc_software_breakpoint;
6856 mark_breakpoint_location_modified (loc);
6857 break;
6858 case bp_hardware_breakpoint:
6859 loc->loc_type = bp_loc_hardware_breakpoint;
6860 mark_breakpoint_location_modified (loc);
6861 break;
6862 case bp_hardware_watchpoint:
6863 case bp_read_watchpoint:
6864 case bp_access_watchpoint:
6865 loc->loc_type = bp_loc_hardware_watchpoint;
6866 break;
6867 case bp_watchpoint:
6868 case bp_catchpoint:
6869 case bp_tracepoint:
6870 case bp_fast_tracepoint:
6871 case bp_static_tracepoint:
6872 loc->loc_type = bp_loc_other;
6873 break;
6874 default:
6875 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
6876 }
6877
6878 loc->refc = 1;
6879 }
6880
6881 /* Allocate a struct bp_location. */
6882
6883 static struct bp_location *
6884 allocate_bp_location (struct breakpoint *bpt)
6885 {
6886 return bpt->ops->allocate_location (bpt);
6887 }
6888
6889 static void
6890 free_bp_location (struct bp_location *loc)
6891 {
6892 loc->ops->dtor (loc);
6893 xfree (loc);
6894 }
6895
6896 /* Increment reference count. */
6897
6898 static void
6899 incref_bp_location (struct bp_location *bl)
6900 {
6901 ++bl->refc;
6902 }
6903
6904 /* Decrement reference count. If the reference count reaches 0,
6905 destroy the bp_location. Sets *BLP to NULL. */
6906
6907 static void
6908 decref_bp_location (struct bp_location **blp)
6909 {
6910 gdb_assert ((*blp)->refc > 0);
6911
6912 if (--(*blp)->refc == 0)
6913 free_bp_location (*blp);
6914 *blp = NULL;
6915 }
6916
6917 /* Add breakpoint B at the end of the global breakpoint chain. */
6918
6919 static void
6920 add_to_breakpoint_chain (struct breakpoint *b)
6921 {
6922 struct breakpoint *b1;
6923
6924 /* Add this breakpoint to the end of the chain so that a list of
6925 breakpoints will come out in order of increasing numbers. */
6926
6927 b1 = breakpoint_chain;
6928 if (b1 == 0)
6929 breakpoint_chain = b;
6930 else
6931 {
6932 while (b1->next)
6933 b1 = b1->next;
6934 b1->next = b;
6935 }
6936 }
6937
6938 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
6939
6940 static void
6941 init_raw_breakpoint_without_location (struct breakpoint *b,
6942 struct gdbarch *gdbarch,
6943 enum bptype bptype,
6944 const struct breakpoint_ops *ops)
6945 {
6946 memset (b, 0, sizeof (*b));
6947
6948 gdb_assert (ops != NULL);
6949
6950 b->ops = ops;
6951 b->type = bptype;
6952 b->gdbarch = gdbarch;
6953 b->language = current_language->la_language;
6954 b->input_radix = input_radix;
6955 b->thread = -1;
6956 b->enable_state = bp_enabled;
6957 b->next = 0;
6958 b->silent = 0;
6959 b->ignore_count = 0;
6960 b->commands = NULL;
6961 b->frame_id = null_frame_id;
6962 b->condition_not_parsed = 0;
6963 b->py_bp_object = NULL;
6964 b->related_breakpoint = b;
6965 }
6966
6967 /* Helper to set_raw_breakpoint below. Creates a breakpoint
6968 that has type BPTYPE and has no locations as yet. */
6969
6970 static struct breakpoint *
6971 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
6972 enum bptype bptype,
6973 const struct breakpoint_ops *ops)
6974 {
6975 struct breakpoint *b = XNEW (struct breakpoint);
6976
6977 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
6978 add_to_breakpoint_chain (b);
6979 return b;
6980 }
6981
6982 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
6983 resolutions should be made as the user specified the location explicitly
6984 enough. */
6985
6986 static void
6987 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
6988 {
6989 gdb_assert (loc->owner != NULL);
6990
6991 if (loc->owner->type == bp_breakpoint
6992 || loc->owner->type == bp_hardware_breakpoint
6993 || is_tracepoint (loc->owner))
6994 {
6995 int is_gnu_ifunc;
6996 const char *function_name;
6997 CORE_ADDR func_addr;
6998
6999 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7000 &func_addr, NULL, &is_gnu_ifunc);
7001
7002 if (is_gnu_ifunc && !explicit_loc)
7003 {
7004 struct breakpoint *b = loc->owner;
7005
7006 gdb_assert (loc->pspace == current_program_space);
7007 if (gnu_ifunc_resolve_name (function_name,
7008 &loc->requested_address))
7009 {
7010 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7011 loc->address = adjust_breakpoint_address (loc->gdbarch,
7012 loc->requested_address,
7013 b->type);
7014 }
7015 else if (b->type == bp_breakpoint && b->loc == loc
7016 && loc->next == NULL && b->related_breakpoint == b)
7017 {
7018 /* Create only the whole new breakpoint of this type but do not
7019 mess more complicated breakpoints with multiple locations. */
7020 b->type = bp_gnu_ifunc_resolver;
7021 /* Remember the resolver's address for use by the return
7022 breakpoint. */
7023 loc->related_address = func_addr;
7024 }
7025 }
7026
7027 if (function_name)
7028 loc->function_name = xstrdup (function_name);
7029 }
7030 }
7031
7032 /* Attempt to determine architecture of location identified by SAL. */
7033 struct gdbarch *
7034 get_sal_arch (struct symtab_and_line sal)
7035 {
7036 if (sal.section)
7037 return get_objfile_arch (sal.section->objfile);
7038 if (sal.symtab)
7039 return get_objfile_arch (sal.symtab->objfile);
7040
7041 return NULL;
7042 }
7043
7044 /* Low level routine for partially initializing a breakpoint of type
7045 BPTYPE. The newly created breakpoint's address, section, source
7046 file name, and line number are provided by SAL.
7047
7048 It is expected that the caller will complete the initialization of
7049 the newly created breakpoint struct as well as output any status
7050 information regarding the creation of a new breakpoint. */
7051
7052 static void
7053 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7054 struct symtab_and_line sal, enum bptype bptype,
7055 const struct breakpoint_ops *ops)
7056 {
7057 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7058
7059 add_location_to_breakpoint (b, &sal);
7060
7061 if (bptype != bp_catchpoint)
7062 gdb_assert (sal.pspace != NULL);
7063
7064 /* Store the program space that was used to set the breakpoint,
7065 except for ordinary breakpoints, which are independent of the
7066 program space. */
7067 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7068 b->pspace = sal.pspace;
7069 }
7070
7071 /* set_raw_breakpoint is a low level routine for allocating and
7072 partially initializing a breakpoint of type BPTYPE. The newly
7073 created breakpoint's address, section, source file name, and line
7074 number are provided by SAL. The newly created and partially
7075 initialized breakpoint is added to the breakpoint chain and
7076 is also returned as the value of this function.
7077
7078 It is expected that the caller will complete the initialization of
7079 the newly created breakpoint struct as well as output any status
7080 information regarding the creation of a new breakpoint. In
7081 particular, set_raw_breakpoint does NOT set the breakpoint
7082 number! Care should be taken to not allow an error to occur
7083 prior to completing the initialization of the breakpoint. If this
7084 should happen, a bogus breakpoint will be left on the chain. */
7085
7086 struct breakpoint *
7087 set_raw_breakpoint (struct gdbarch *gdbarch,
7088 struct symtab_and_line sal, enum bptype bptype,
7089 const struct breakpoint_ops *ops)
7090 {
7091 struct breakpoint *b = XNEW (struct breakpoint);
7092
7093 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7094 add_to_breakpoint_chain (b);
7095 return b;
7096 }
7097
7098
7099 /* Note that the breakpoint object B describes a permanent breakpoint
7100 instruction, hard-wired into the inferior's code. */
7101 void
7102 make_breakpoint_permanent (struct breakpoint *b)
7103 {
7104 struct bp_location *bl;
7105
7106 b->enable_state = bp_permanent;
7107
7108 /* By definition, permanent breakpoints are already present in the
7109 code. Mark all locations as inserted. For now,
7110 make_breakpoint_permanent is called in just one place, so it's
7111 hard to say if it's reasonable to have permanent breakpoint with
7112 multiple locations or not, but it's easy to implement. */
7113 for (bl = b->loc; bl; bl = bl->next)
7114 bl->inserted = 1;
7115 }
7116
7117 /* Call this routine when stepping and nexting to enable a breakpoint
7118 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7119 initiated the operation. */
7120
7121 void
7122 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7123 {
7124 struct breakpoint *b, *b_tmp;
7125 int thread = tp->num;
7126
7127 /* To avoid having to rescan all objfile symbols at every step,
7128 we maintain a list of continually-inserted but always disabled
7129 longjmp "master" breakpoints. Here, we simply create momentary
7130 clones of those and enable them for the requested thread. */
7131 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7132 if (b->pspace == current_program_space
7133 && (b->type == bp_longjmp_master
7134 || b->type == bp_exception_master))
7135 {
7136 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7137 struct breakpoint *clone;
7138
7139 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7140 after their removal. */
7141 clone = momentary_breakpoint_from_master (b, type,
7142 &longjmp_breakpoint_ops);
7143 clone->thread = thread;
7144 }
7145
7146 tp->initiating_frame = frame;
7147 }
7148
7149 /* Delete all longjmp breakpoints from THREAD. */
7150 void
7151 delete_longjmp_breakpoint (int thread)
7152 {
7153 struct breakpoint *b, *b_tmp;
7154
7155 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7156 if (b->type == bp_longjmp || b->type == bp_exception)
7157 {
7158 if (b->thread == thread)
7159 delete_breakpoint (b);
7160 }
7161 }
7162
7163 void
7164 delete_longjmp_breakpoint_at_next_stop (int thread)
7165 {
7166 struct breakpoint *b, *b_tmp;
7167
7168 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7169 if (b->type == bp_longjmp || b->type == bp_exception)
7170 {
7171 if (b->thread == thread)
7172 b->disposition = disp_del_at_next_stop;
7173 }
7174 }
7175
7176 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7177 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7178 pointer to any of them. Return NULL if this system cannot place longjmp
7179 breakpoints. */
7180
7181 struct breakpoint *
7182 set_longjmp_breakpoint_for_call_dummy (void)
7183 {
7184 struct breakpoint *b, *retval = NULL;
7185
7186 ALL_BREAKPOINTS (b)
7187 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7188 {
7189 struct breakpoint *new_b;
7190
7191 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7192 &momentary_breakpoint_ops);
7193 new_b->thread = pid_to_thread_id (inferior_ptid);
7194
7195 /* Link NEW_B into the chain of RETVAL breakpoints. */
7196
7197 gdb_assert (new_b->related_breakpoint == new_b);
7198 if (retval == NULL)
7199 retval = new_b;
7200 new_b->related_breakpoint = retval;
7201 while (retval->related_breakpoint != new_b->related_breakpoint)
7202 retval = retval->related_breakpoint;
7203 retval->related_breakpoint = new_b;
7204 }
7205
7206 return retval;
7207 }
7208
7209 /* Verify all existing dummy frames and their associated breakpoints for
7210 THREAD. Remove those which can no longer be found in the current frame
7211 stack.
7212
7213 You should call this function only at places where it is safe to currently
7214 unwind the whole stack. Failed stack unwind would discard live dummy
7215 frames. */
7216
7217 void
7218 check_longjmp_breakpoint_for_call_dummy (int thread)
7219 {
7220 struct breakpoint *b, *b_tmp;
7221
7222 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7223 if (b->type == bp_longjmp_call_dummy && b->thread == thread)
7224 {
7225 struct breakpoint *dummy_b = b->related_breakpoint;
7226
7227 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7228 dummy_b = dummy_b->related_breakpoint;
7229 if (dummy_b->type != bp_call_dummy
7230 || frame_find_by_id (dummy_b->frame_id) != NULL)
7231 continue;
7232
7233 dummy_frame_discard (dummy_b->frame_id);
7234
7235 while (b->related_breakpoint != b)
7236 {
7237 if (b_tmp == b->related_breakpoint)
7238 b_tmp = b->related_breakpoint->next;
7239 delete_breakpoint (b->related_breakpoint);
7240 }
7241 delete_breakpoint (b);
7242 }
7243 }
7244
7245 void
7246 enable_overlay_breakpoints (void)
7247 {
7248 struct breakpoint *b;
7249
7250 ALL_BREAKPOINTS (b)
7251 if (b->type == bp_overlay_event)
7252 {
7253 b->enable_state = bp_enabled;
7254 update_global_location_list (1);
7255 overlay_events_enabled = 1;
7256 }
7257 }
7258
7259 void
7260 disable_overlay_breakpoints (void)
7261 {
7262 struct breakpoint *b;
7263
7264 ALL_BREAKPOINTS (b)
7265 if (b->type == bp_overlay_event)
7266 {
7267 b->enable_state = bp_disabled;
7268 update_global_location_list (0);
7269 overlay_events_enabled = 0;
7270 }
7271 }
7272
7273 /* Set an active std::terminate breakpoint for each std::terminate
7274 master breakpoint. */
7275 void
7276 set_std_terminate_breakpoint (void)
7277 {
7278 struct breakpoint *b, *b_tmp;
7279
7280 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7281 if (b->pspace == current_program_space
7282 && b->type == bp_std_terminate_master)
7283 {
7284 momentary_breakpoint_from_master (b, bp_std_terminate,
7285 &momentary_breakpoint_ops);
7286 }
7287 }
7288
7289 /* Delete all the std::terminate breakpoints. */
7290 void
7291 delete_std_terminate_breakpoint (void)
7292 {
7293 struct breakpoint *b, *b_tmp;
7294
7295 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7296 if (b->type == bp_std_terminate)
7297 delete_breakpoint (b);
7298 }
7299
7300 struct breakpoint *
7301 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7302 {
7303 struct breakpoint *b;
7304
7305 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7306 &internal_breakpoint_ops);
7307
7308 b->enable_state = bp_enabled;
7309 /* addr_string has to be used or breakpoint_re_set will delete me. */
7310 b->addr_string
7311 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7312
7313 update_global_location_list_nothrow (1);
7314
7315 return b;
7316 }
7317
7318 void
7319 remove_thread_event_breakpoints (void)
7320 {
7321 struct breakpoint *b, *b_tmp;
7322
7323 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7324 if (b->type == bp_thread_event
7325 && b->loc->pspace == current_program_space)
7326 delete_breakpoint (b);
7327 }
7328
7329 struct lang_and_radix
7330 {
7331 enum language lang;
7332 int radix;
7333 };
7334
7335 /* Create a breakpoint for JIT code registration and unregistration. */
7336
7337 struct breakpoint *
7338 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7339 {
7340 struct breakpoint *b;
7341
7342 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7343 &internal_breakpoint_ops);
7344 update_global_location_list_nothrow (1);
7345 return b;
7346 }
7347
7348 /* Remove JIT code registration and unregistration breakpoint(s). */
7349
7350 void
7351 remove_jit_event_breakpoints (void)
7352 {
7353 struct breakpoint *b, *b_tmp;
7354
7355 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7356 if (b->type == bp_jit_event
7357 && b->loc->pspace == current_program_space)
7358 delete_breakpoint (b);
7359 }
7360
7361 void
7362 remove_solib_event_breakpoints (void)
7363 {
7364 struct breakpoint *b, *b_tmp;
7365
7366 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7367 if (b->type == bp_shlib_event
7368 && b->loc->pspace == current_program_space)
7369 delete_breakpoint (b);
7370 }
7371
7372 struct breakpoint *
7373 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7374 {
7375 struct breakpoint *b;
7376
7377 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7378 &internal_breakpoint_ops);
7379 update_global_location_list_nothrow (1);
7380 return b;
7381 }
7382
7383 /* Disable any breakpoints that are on code in shared libraries. Only
7384 apply to enabled breakpoints, disabled ones can just stay disabled. */
7385
7386 void
7387 disable_breakpoints_in_shlibs (void)
7388 {
7389 struct bp_location *loc, **locp_tmp;
7390
7391 ALL_BP_LOCATIONS (loc, locp_tmp)
7392 {
7393 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7394 struct breakpoint *b = loc->owner;
7395
7396 /* We apply the check to all breakpoints, including disabled for
7397 those with loc->duplicate set. This is so that when breakpoint
7398 becomes enabled, or the duplicate is removed, gdb will try to
7399 insert all breakpoints. If we don't set shlib_disabled here,
7400 we'll try to insert those breakpoints and fail. */
7401 if (((b->type == bp_breakpoint)
7402 || (b->type == bp_jit_event)
7403 || (b->type == bp_hardware_breakpoint)
7404 || (is_tracepoint (b)))
7405 && loc->pspace == current_program_space
7406 && !loc->shlib_disabled
7407 && solib_name_from_address (loc->pspace, loc->address)
7408 )
7409 {
7410 loc->shlib_disabled = 1;
7411 }
7412 }
7413 }
7414
7415 /* Disable any breakpoints and tracepoints that are in an unloaded shared
7416 library. Only apply to enabled breakpoints, disabled ones can just stay
7417 disabled. */
7418
7419 static void
7420 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7421 {
7422 struct bp_location *loc, **locp_tmp;
7423 int disabled_shlib_breaks = 0;
7424
7425 /* SunOS a.out shared libraries are always mapped, so do not
7426 disable breakpoints; they will only be reported as unloaded
7427 through clear_solib when GDB discards its shared library
7428 list. See clear_solib for more information. */
7429 if (exec_bfd != NULL
7430 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7431 return;
7432
7433 ALL_BP_LOCATIONS (loc, locp_tmp)
7434 {
7435 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7436 struct breakpoint *b = loc->owner;
7437
7438 if (solib->pspace == loc->pspace
7439 && !loc->shlib_disabled
7440 && (((b->type == bp_breakpoint
7441 || b->type == bp_jit_event
7442 || b->type == bp_hardware_breakpoint)
7443 && (loc->loc_type == bp_loc_hardware_breakpoint
7444 || loc->loc_type == bp_loc_software_breakpoint))
7445 || is_tracepoint (b))
7446 && solib_contains_address_p (solib, loc->address))
7447 {
7448 loc->shlib_disabled = 1;
7449 /* At this point, we cannot rely on remove_breakpoint
7450 succeeding so we must mark the breakpoint as not inserted
7451 to prevent future errors occurring in remove_breakpoints. */
7452 loc->inserted = 0;
7453
7454 /* This may cause duplicate notifications for the same breakpoint. */
7455 observer_notify_breakpoint_modified (b);
7456
7457 if (!disabled_shlib_breaks)
7458 {
7459 target_terminal_ours_for_output ();
7460 warning (_("Temporarily disabling breakpoints "
7461 "for unloaded shared library \"%s\""),
7462 solib->so_name);
7463 }
7464 disabled_shlib_breaks = 1;
7465 }
7466 }
7467 }
7468
7469 /* FORK & VFORK catchpoints. */
7470
7471 /* An instance of this type is used to represent a fork or vfork
7472 catchpoint. It includes a "struct breakpoint" as a kind of base
7473 class; users downcast to "struct breakpoint *" when needed. A
7474 breakpoint is really of this type iff its ops pointer points to
7475 CATCH_FORK_BREAKPOINT_OPS. */
7476
7477 struct fork_catchpoint
7478 {
7479 /* The base class. */
7480 struct breakpoint base;
7481
7482 /* Process id of a child process whose forking triggered this
7483 catchpoint. This field is only valid immediately after this
7484 catchpoint has triggered. */
7485 ptid_t forked_inferior_pid;
7486 };
7487
7488 /* Implement the "insert" breakpoint_ops method for fork
7489 catchpoints. */
7490
7491 static int
7492 insert_catch_fork (struct bp_location *bl)
7493 {
7494 return target_insert_fork_catchpoint (PIDGET (inferior_ptid));
7495 }
7496
7497 /* Implement the "remove" breakpoint_ops method for fork
7498 catchpoints. */
7499
7500 static int
7501 remove_catch_fork (struct bp_location *bl)
7502 {
7503 return target_remove_fork_catchpoint (PIDGET (inferior_ptid));
7504 }
7505
7506 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7507 catchpoints. */
7508
7509 static int
7510 breakpoint_hit_catch_fork (const struct bp_location *bl,
7511 struct address_space *aspace, CORE_ADDR bp_addr,
7512 const struct target_waitstatus *ws)
7513 {
7514 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7515
7516 if (ws->kind != TARGET_WAITKIND_FORKED)
7517 return 0;
7518
7519 c->forked_inferior_pid = ws->value.related_pid;
7520 return 1;
7521 }
7522
7523 /* Implement the "print_it" breakpoint_ops method for fork
7524 catchpoints. */
7525
7526 static enum print_stop_action
7527 print_it_catch_fork (bpstat bs)
7528 {
7529 struct ui_out *uiout = current_uiout;
7530 struct breakpoint *b = bs->breakpoint_at;
7531 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7532
7533 annotate_catchpoint (b->number);
7534 if (b->disposition == disp_del)
7535 ui_out_text (uiout, "\nTemporary catchpoint ");
7536 else
7537 ui_out_text (uiout, "\nCatchpoint ");
7538 if (ui_out_is_mi_like_p (uiout))
7539 {
7540 ui_out_field_string (uiout, "reason",
7541 async_reason_lookup (EXEC_ASYNC_FORK));
7542 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7543 }
7544 ui_out_field_int (uiout, "bkptno", b->number);
7545 ui_out_text (uiout, " (forked process ");
7546 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7547 ui_out_text (uiout, "), ");
7548 return PRINT_SRC_AND_LOC;
7549 }
7550
7551 /* Implement the "print_one" breakpoint_ops method for fork
7552 catchpoints. */
7553
7554 static void
7555 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7556 {
7557 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7558 struct value_print_options opts;
7559 struct ui_out *uiout = current_uiout;
7560
7561 get_user_print_options (&opts);
7562
7563 /* Field 4, the address, is omitted (which makes the columns not
7564 line up too nicely with the headers, but the effect is relatively
7565 readable). */
7566 if (opts.addressprint)
7567 ui_out_field_skip (uiout, "addr");
7568 annotate_field (5);
7569 ui_out_text (uiout, "fork");
7570 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7571 {
7572 ui_out_text (uiout, ", process ");
7573 ui_out_field_int (uiout, "what",
7574 ptid_get_pid (c->forked_inferior_pid));
7575 ui_out_spaces (uiout, 1);
7576 }
7577
7578 if (ui_out_is_mi_like_p (uiout))
7579 ui_out_field_string (uiout, "catch-type", "fork");
7580 }
7581
7582 /* Implement the "print_mention" breakpoint_ops method for fork
7583 catchpoints. */
7584
7585 static void
7586 print_mention_catch_fork (struct breakpoint *b)
7587 {
7588 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7589 }
7590
7591 /* Implement the "print_recreate" breakpoint_ops method for fork
7592 catchpoints. */
7593
7594 static void
7595 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7596 {
7597 fprintf_unfiltered (fp, "catch fork");
7598 print_recreate_thread (b, fp);
7599 }
7600
7601 /* The breakpoint_ops structure to be used in fork catchpoints. */
7602
7603 static struct breakpoint_ops catch_fork_breakpoint_ops;
7604
7605 /* Implement the "insert" breakpoint_ops method for vfork
7606 catchpoints. */
7607
7608 static int
7609 insert_catch_vfork (struct bp_location *bl)
7610 {
7611 return target_insert_vfork_catchpoint (PIDGET (inferior_ptid));
7612 }
7613
7614 /* Implement the "remove" breakpoint_ops method for vfork
7615 catchpoints. */
7616
7617 static int
7618 remove_catch_vfork (struct bp_location *bl)
7619 {
7620 return target_remove_vfork_catchpoint (PIDGET (inferior_ptid));
7621 }
7622
7623 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7624 catchpoints. */
7625
7626 static int
7627 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7628 struct address_space *aspace, CORE_ADDR bp_addr,
7629 const struct target_waitstatus *ws)
7630 {
7631 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7632
7633 if (ws->kind != TARGET_WAITKIND_VFORKED)
7634 return 0;
7635
7636 c->forked_inferior_pid = ws->value.related_pid;
7637 return 1;
7638 }
7639
7640 /* Implement the "print_it" breakpoint_ops method for vfork
7641 catchpoints. */
7642
7643 static enum print_stop_action
7644 print_it_catch_vfork (bpstat bs)
7645 {
7646 struct ui_out *uiout = current_uiout;
7647 struct breakpoint *b = bs->breakpoint_at;
7648 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7649
7650 annotate_catchpoint (b->number);
7651 if (b->disposition == disp_del)
7652 ui_out_text (uiout, "\nTemporary catchpoint ");
7653 else
7654 ui_out_text (uiout, "\nCatchpoint ");
7655 if (ui_out_is_mi_like_p (uiout))
7656 {
7657 ui_out_field_string (uiout, "reason",
7658 async_reason_lookup (EXEC_ASYNC_VFORK));
7659 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7660 }
7661 ui_out_field_int (uiout, "bkptno", b->number);
7662 ui_out_text (uiout, " (vforked process ");
7663 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7664 ui_out_text (uiout, "), ");
7665 return PRINT_SRC_AND_LOC;
7666 }
7667
7668 /* Implement the "print_one" breakpoint_ops method for vfork
7669 catchpoints. */
7670
7671 static void
7672 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7673 {
7674 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7675 struct value_print_options opts;
7676 struct ui_out *uiout = current_uiout;
7677
7678 get_user_print_options (&opts);
7679 /* Field 4, the address, is omitted (which makes the columns not
7680 line up too nicely with the headers, but the effect is relatively
7681 readable). */
7682 if (opts.addressprint)
7683 ui_out_field_skip (uiout, "addr");
7684 annotate_field (5);
7685 ui_out_text (uiout, "vfork");
7686 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7687 {
7688 ui_out_text (uiout, ", process ");
7689 ui_out_field_int (uiout, "what",
7690 ptid_get_pid (c->forked_inferior_pid));
7691 ui_out_spaces (uiout, 1);
7692 }
7693
7694 if (ui_out_is_mi_like_p (uiout))
7695 ui_out_field_string (uiout, "catch-type", "vfork");
7696 }
7697
7698 /* Implement the "print_mention" breakpoint_ops method for vfork
7699 catchpoints. */
7700
7701 static void
7702 print_mention_catch_vfork (struct breakpoint *b)
7703 {
7704 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7705 }
7706
7707 /* Implement the "print_recreate" breakpoint_ops method for vfork
7708 catchpoints. */
7709
7710 static void
7711 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7712 {
7713 fprintf_unfiltered (fp, "catch vfork");
7714 print_recreate_thread (b, fp);
7715 }
7716
7717 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7718
7719 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7720
7721 /* An instance of this type is used to represent an solib catchpoint.
7722 It includes a "struct breakpoint" as a kind of base class; users
7723 downcast to "struct breakpoint *" when needed. A breakpoint is
7724 really of this type iff its ops pointer points to
7725 CATCH_SOLIB_BREAKPOINT_OPS. */
7726
7727 struct solib_catchpoint
7728 {
7729 /* The base class. */
7730 struct breakpoint base;
7731
7732 /* True for "catch load", false for "catch unload". */
7733 unsigned char is_load;
7734
7735 /* Regular expression to match, if any. COMPILED is only valid when
7736 REGEX is non-NULL. */
7737 char *regex;
7738 regex_t compiled;
7739 };
7740
7741 static void
7742 dtor_catch_solib (struct breakpoint *b)
7743 {
7744 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7745
7746 if (self->regex)
7747 regfree (&self->compiled);
7748 xfree (self->regex);
7749
7750 base_breakpoint_ops.dtor (b);
7751 }
7752
7753 static int
7754 insert_catch_solib (struct bp_location *ignore)
7755 {
7756 return 0;
7757 }
7758
7759 static int
7760 remove_catch_solib (struct bp_location *ignore)
7761 {
7762 return 0;
7763 }
7764
7765 static int
7766 breakpoint_hit_catch_solib (const struct bp_location *bl,
7767 struct address_space *aspace,
7768 CORE_ADDR bp_addr,
7769 const struct target_waitstatus *ws)
7770 {
7771 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7772 struct breakpoint *other;
7773
7774 if (ws->kind == TARGET_WAITKIND_LOADED)
7775 return 1;
7776
7777 ALL_BREAKPOINTS (other)
7778 {
7779 struct bp_location *other_bl;
7780
7781 if (other == bl->owner)
7782 continue;
7783
7784 if (other->type != bp_shlib_event)
7785 continue;
7786
7787 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
7788 continue;
7789
7790 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7791 {
7792 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7793 return 1;
7794 }
7795 }
7796
7797 return 0;
7798 }
7799
7800 static void
7801 check_status_catch_solib (struct bpstats *bs)
7802 {
7803 struct solib_catchpoint *self
7804 = (struct solib_catchpoint *) bs->breakpoint_at;
7805 int ix;
7806
7807 if (self->is_load)
7808 {
7809 struct so_list *iter;
7810
7811 for (ix = 0;
7812 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
7813 ix, iter);
7814 ++ix)
7815 {
7816 if (!self->regex
7817 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
7818 return;
7819 }
7820 }
7821 else
7822 {
7823 char *iter;
7824
7825 for (ix = 0;
7826 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
7827 ix, iter);
7828 ++ix)
7829 {
7830 if (!self->regex
7831 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
7832 return;
7833 }
7834 }
7835
7836 bs->stop = 0;
7837 bs->print_it = print_it_noop;
7838 }
7839
7840 static enum print_stop_action
7841 print_it_catch_solib (bpstat bs)
7842 {
7843 struct breakpoint *b = bs->breakpoint_at;
7844 struct ui_out *uiout = current_uiout;
7845
7846 annotate_catchpoint (b->number);
7847 if (b->disposition == disp_del)
7848 ui_out_text (uiout, "\nTemporary catchpoint ");
7849 else
7850 ui_out_text (uiout, "\nCatchpoint ");
7851 ui_out_field_int (uiout, "bkptno", b->number);
7852 ui_out_text (uiout, "\n");
7853 if (ui_out_is_mi_like_p (uiout))
7854 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7855 print_solib_event (1);
7856 return PRINT_SRC_AND_LOC;
7857 }
7858
7859 static void
7860 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
7861 {
7862 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7863 struct value_print_options opts;
7864 struct ui_out *uiout = current_uiout;
7865 char *msg;
7866
7867 get_user_print_options (&opts);
7868 /* Field 4, the address, is omitted (which makes the columns not
7869 line up too nicely with the headers, but the effect is relatively
7870 readable). */
7871 if (opts.addressprint)
7872 {
7873 annotate_field (4);
7874 ui_out_field_skip (uiout, "addr");
7875 }
7876
7877 annotate_field (5);
7878 if (self->is_load)
7879 {
7880 if (self->regex)
7881 msg = xstrprintf (_("load of library matching %s"), self->regex);
7882 else
7883 msg = xstrdup (_("load of library"));
7884 }
7885 else
7886 {
7887 if (self->regex)
7888 msg = xstrprintf (_("unload of library matching %s"), self->regex);
7889 else
7890 msg = xstrdup (_("unload of library"));
7891 }
7892 ui_out_field_string (uiout, "what", msg);
7893 xfree (msg);
7894
7895 if (ui_out_is_mi_like_p (uiout))
7896 ui_out_field_string (uiout, "catch-type",
7897 self->is_load ? "load" : "unload");
7898 }
7899
7900 static void
7901 print_mention_catch_solib (struct breakpoint *b)
7902 {
7903 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7904
7905 printf_filtered (_("Catchpoint %d (%s)"), b->number,
7906 self->is_load ? "load" : "unload");
7907 }
7908
7909 static void
7910 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
7911 {
7912 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7913
7914 fprintf_unfiltered (fp, "%s %s",
7915 b->disposition == disp_del ? "tcatch" : "catch",
7916 self->is_load ? "load" : "unload");
7917 if (self->regex)
7918 fprintf_unfiltered (fp, " %s", self->regex);
7919 fprintf_unfiltered (fp, "\n");
7920 }
7921
7922 static struct breakpoint_ops catch_solib_breakpoint_ops;
7923
7924 /* Shared helper function (MI and CLI) for creating and installing
7925 a shared object event catchpoint. If IS_LOAD is non-zero then
7926 the events to be caught are load events, otherwise they are
7927 unload events. If IS_TEMP is non-zero the catchpoint is a
7928 temporary one. If ENABLED is non-zero the catchpoint is
7929 created in an enabled state. */
7930
7931 void
7932 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
7933 {
7934 struct solib_catchpoint *c;
7935 struct gdbarch *gdbarch = get_current_arch ();
7936 struct cleanup *cleanup;
7937
7938 if (!arg)
7939 arg = "";
7940 arg = skip_spaces (arg);
7941
7942 c = XCNEW (struct solib_catchpoint);
7943 cleanup = make_cleanup (xfree, c);
7944
7945 if (*arg != '\0')
7946 {
7947 int errcode;
7948
7949 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
7950 if (errcode != 0)
7951 {
7952 char *err = get_regcomp_error (errcode, &c->compiled);
7953
7954 make_cleanup (xfree, err);
7955 error (_("Invalid regexp (%s): %s"), err, arg);
7956 }
7957 c->regex = xstrdup (arg);
7958 }
7959
7960 c->is_load = is_load;
7961 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
7962 &catch_solib_breakpoint_ops);
7963
7964 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
7965
7966 discard_cleanups (cleanup);
7967 install_breakpoint (0, &c->base, 1);
7968 }
7969
7970 /* A helper function that does all the work for "catch load" and
7971 "catch unload". */
7972
7973 static void
7974 catch_load_or_unload (char *arg, int from_tty, int is_load,
7975 struct cmd_list_element *command)
7976 {
7977 int tempflag;
7978 const int enabled = 1;
7979
7980 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
7981
7982 add_solib_catchpoint (arg, is_load, tempflag, enabled);
7983 }
7984
7985 static void
7986 catch_load_command_1 (char *arg, int from_tty,
7987 struct cmd_list_element *command)
7988 {
7989 catch_load_or_unload (arg, from_tty, 1, command);
7990 }
7991
7992 static void
7993 catch_unload_command_1 (char *arg, int from_tty,
7994 struct cmd_list_element *command)
7995 {
7996 catch_load_or_unload (arg, from_tty, 0, command);
7997 }
7998
7999 /* An instance of this type is used to represent a syscall catchpoint.
8000 It includes a "struct breakpoint" as a kind of base class; users
8001 downcast to "struct breakpoint *" when needed. A breakpoint is
8002 really of this type iff its ops pointer points to
8003 CATCH_SYSCALL_BREAKPOINT_OPS. */
8004
8005 struct syscall_catchpoint
8006 {
8007 /* The base class. */
8008 struct breakpoint base;
8009
8010 /* Syscall numbers used for the 'catch syscall' feature. If no
8011 syscall has been specified for filtering, its value is NULL.
8012 Otherwise, it holds a list of all syscalls to be caught. The
8013 list elements are allocated with xmalloc. */
8014 VEC(int) *syscalls_to_be_caught;
8015 };
8016
8017 /* Implement the "dtor" breakpoint_ops method for syscall
8018 catchpoints. */
8019
8020 static void
8021 dtor_catch_syscall (struct breakpoint *b)
8022 {
8023 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8024
8025 VEC_free (int, c->syscalls_to_be_caught);
8026
8027 base_breakpoint_ops.dtor (b);
8028 }
8029
8030 static const struct inferior_data *catch_syscall_inferior_data = NULL;
8031
8032 struct catch_syscall_inferior_data
8033 {
8034 /* We keep a count of the number of times the user has requested a
8035 particular syscall to be tracked, and pass this information to the
8036 target. This lets capable targets implement filtering directly. */
8037
8038 /* Number of times that "any" syscall is requested. */
8039 int any_syscall_count;
8040
8041 /* Count of each system call. */
8042 VEC(int) *syscalls_counts;
8043
8044 /* This counts all syscall catch requests, so we can readily determine
8045 if any catching is necessary. */
8046 int total_syscalls_count;
8047 };
8048
8049 static struct catch_syscall_inferior_data*
8050 get_catch_syscall_inferior_data (struct inferior *inf)
8051 {
8052 struct catch_syscall_inferior_data *inf_data;
8053
8054 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8055 if (inf_data == NULL)
8056 {
8057 inf_data = XZALLOC (struct catch_syscall_inferior_data);
8058 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8059 }
8060
8061 return inf_data;
8062 }
8063
8064 static void
8065 catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8066 {
8067 xfree (arg);
8068 }
8069
8070
8071 /* Implement the "insert" breakpoint_ops method for syscall
8072 catchpoints. */
8073
8074 static int
8075 insert_catch_syscall (struct bp_location *bl)
8076 {
8077 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8078 struct inferior *inf = current_inferior ();
8079 struct catch_syscall_inferior_data *inf_data
8080 = get_catch_syscall_inferior_data (inf);
8081
8082 ++inf_data->total_syscalls_count;
8083 if (!c->syscalls_to_be_caught)
8084 ++inf_data->any_syscall_count;
8085 else
8086 {
8087 int i, iter;
8088
8089 for (i = 0;
8090 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8091 i++)
8092 {
8093 int elem;
8094
8095 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8096 {
8097 int old_size = VEC_length (int, inf_data->syscalls_counts);
8098 uintptr_t vec_addr_offset
8099 = old_size * ((uintptr_t) sizeof (int));
8100 uintptr_t vec_addr;
8101 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8102 vec_addr = ((uintptr_t) VEC_address (int,
8103 inf_data->syscalls_counts)
8104 + vec_addr_offset);
8105 memset ((void *) vec_addr, 0,
8106 (iter + 1 - old_size) * sizeof (int));
8107 }
8108 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8109 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8110 }
8111 }
8112
8113 return target_set_syscall_catchpoint (PIDGET (inferior_ptid),
8114 inf_data->total_syscalls_count != 0,
8115 inf_data->any_syscall_count,
8116 VEC_length (int,
8117 inf_data->syscalls_counts),
8118 VEC_address (int,
8119 inf_data->syscalls_counts));
8120 }
8121
8122 /* Implement the "remove" breakpoint_ops method for syscall
8123 catchpoints. */
8124
8125 static int
8126 remove_catch_syscall (struct bp_location *bl)
8127 {
8128 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8129 struct inferior *inf = current_inferior ();
8130 struct catch_syscall_inferior_data *inf_data
8131 = get_catch_syscall_inferior_data (inf);
8132
8133 --inf_data->total_syscalls_count;
8134 if (!c->syscalls_to_be_caught)
8135 --inf_data->any_syscall_count;
8136 else
8137 {
8138 int i, iter;
8139
8140 for (i = 0;
8141 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8142 i++)
8143 {
8144 int elem;
8145 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8146 /* Shouldn't happen. */
8147 continue;
8148 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8149 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8150 }
8151 }
8152
8153 return target_set_syscall_catchpoint (PIDGET (inferior_ptid),
8154 inf_data->total_syscalls_count != 0,
8155 inf_data->any_syscall_count,
8156 VEC_length (int,
8157 inf_data->syscalls_counts),
8158 VEC_address (int,
8159 inf_data->syscalls_counts));
8160 }
8161
8162 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8163 catchpoints. */
8164
8165 static int
8166 breakpoint_hit_catch_syscall (const struct bp_location *bl,
8167 struct address_space *aspace, CORE_ADDR bp_addr,
8168 const struct target_waitstatus *ws)
8169 {
8170 /* We must check if we are catching specific syscalls in this
8171 breakpoint. If we are, then we must guarantee that the called
8172 syscall is the same syscall we are catching. */
8173 int syscall_number = 0;
8174 const struct syscall_catchpoint *c
8175 = (const struct syscall_catchpoint *) bl->owner;
8176
8177 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8178 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8179 return 0;
8180
8181 syscall_number = ws->value.syscall_number;
8182
8183 /* Now, checking if the syscall is the same. */
8184 if (c->syscalls_to_be_caught)
8185 {
8186 int i, iter;
8187
8188 for (i = 0;
8189 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8190 i++)
8191 if (syscall_number == iter)
8192 break;
8193 /* Not the same. */
8194 if (!iter)
8195 return 0;
8196 }
8197
8198 return 1;
8199 }
8200
8201 /* Implement the "print_it" breakpoint_ops method for syscall
8202 catchpoints. */
8203
8204 static enum print_stop_action
8205 print_it_catch_syscall (bpstat bs)
8206 {
8207 struct ui_out *uiout = current_uiout;
8208 struct breakpoint *b = bs->breakpoint_at;
8209 /* These are needed because we want to know in which state a
8210 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8211 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8212 must print "called syscall" or "returned from syscall". */
8213 ptid_t ptid;
8214 struct target_waitstatus last;
8215 struct syscall s;
8216
8217 get_last_target_status (&ptid, &last);
8218
8219 get_syscall_by_number (last.value.syscall_number, &s);
8220
8221 annotate_catchpoint (b->number);
8222
8223 if (b->disposition == disp_del)
8224 ui_out_text (uiout, "\nTemporary catchpoint ");
8225 else
8226 ui_out_text (uiout, "\nCatchpoint ");
8227 if (ui_out_is_mi_like_p (uiout))
8228 {
8229 ui_out_field_string (uiout, "reason",
8230 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8231 ? EXEC_ASYNC_SYSCALL_ENTRY
8232 : EXEC_ASYNC_SYSCALL_RETURN));
8233 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8234 }
8235 ui_out_field_int (uiout, "bkptno", b->number);
8236
8237 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8238 ui_out_text (uiout, " (call to syscall ");
8239 else
8240 ui_out_text (uiout, " (returned from syscall ");
8241
8242 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8243 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8244 if (s.name != NULL)
8245 ui_out_field_string (uiout, "syscall-name", s.name);
8246
8247 ui_out_text (uiout, "), ");
8248
8249 return PRINT_SRC_AND_LOC;
8250 }
8251
8252 /* Implement the "print_one" breakpoint_ops method for syscall
8253 catchpoints. */
8254
8255 static void
8256 print_one_catch_syscall (struct breakpoint *b,
8257 struct bp_location **last_loc)
8258 {
8259 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8260 struct value_print_options opts;
8261 struct ui_out *uiout = current_uiout;
8262
8263 get_user_print_options (&opts);
8264 /* Field 4, the address, is omitted (which makes the columns not
8265 line up too nicely with the headers, but the effect is relatively
8266 readable). */
8267 if (opts.addressprint)
8268 ui_out_field_skip (uiout, "addr");
8269 annotate_field (5);
8270
8271 if (c->syscalls_to_be_caught
8272 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8273 ui_out_text (uiout, "syscalls \"");
8274 else
8275 ui_out_text (uiout, "syscall \"");
8276
8277 if (c->syscalls_to_be_caught)
8278 {
8279 int i, iter;
8280 char *text = xstrprintf ("%s", "");
8281
8282 for (i = 0;
8283 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8284 i++)
8285 {
8286 char *x = text;
8287 struct syscall s;
8288 get_syscall_by_number (iter, &s);
8289
8290 if (s.name != NULL)
8291 text = xstrprintf ("%s%s, ", text, s.name);
8292 else
8293 text = xstrprintf ("%s%d, ", text, iter);
8294
8295 /* We have to xfree the last 'text' (now stored at 'x')
8296 because xstrprintf dynamically allocates new space for it
8297 on every call. */
8298 xfree (x);
8299 }
8300 /* Remove the last comma. */
8301 text[strlen (text) - 2] = '\0';
8302 ui_out_field_string (uiout, "what", text);
8303 }
8304 else
8305 ui_out_field_string (uiout, "what", "<any syscall>");
8306 ui_out_text (uiout, "\" ");
8307
8308 if (ui_out_is_mi_like_p (uiout))
8309 ui_out_field_string (uiout, "catch-type", "syscall");
8310 }
8311
8312 /* Implement the "print_mention" breakpoint_ops method for syscall
8313 catchpoints. */
8314
8315 static void
8316 print_mention_catch_syscall (struct breakpoint *b)
8317 {
8318 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8319
8320 if (c->syscalls_to_be_caught)
8321 {
8322 int i, iter;
8323
8324 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8325 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8326 else
8327 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8328
8329 for (i = 0;
8330 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8331 i++)
8332 {
8333 struct syscall s;
8334 get_syscall_by_number (iter, &s);
8335
8336 if (s.name)
8337 printf_filtered (" '%s' [%d]", s.name, s.number);
8338 else
8339 printf_filtered (" %d", s.number);
8340 }
8341 printf_filtered (")");
8342 }
8343 else
8344 printf_filtered (_("Catchpoint %d (any syscall)"),
8345 b->number);
8346 }
8347
8348 /* Implement the "print_recreate" breakpoint_ops method for syscall
8349 catchpoints. */
8350
8351 static void
8352 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8353 {
8354 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8355
8356 fprintf_unfiltered (fp, "catch syscall");
8357
8358 if (c->syscalls_to_be_caught)
8359 {
8360 int i, iter;
8361
8362 for (i = 0;
8363 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8364 i++)
8365 {
8366 struct syscall s;
8367
8368 get_syscall_by_number (iter, &s);
8369 if (s.name)
8370 fprintf_unfiltered (fp, " %s", s.name);
8371 else
8372 fprintf_unfiltered (fp, " %d", s.number);
8373 }
8374 }
8375 print_recreate_thread (b, fp);
8376 }
8377
8378 /* The breakpoint_ops structure to be used in syscall catchpoints. */
8379
8380 static struct breakpoint_ops catch_syscall_breakpoint_ops;
8381
8382 /* Returns non-zero if 'b' is a syscall catchpoint. */
8383
8384 static int
8385 syscall_catchpoint_p (struct breakpoint *b)
8386 {
8387 return (b->ops == &catch_syscall_breakpoint_ops);
8388 }
8389
8390 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8391 is non-zero, then make the breakpoint temporary. If COND_STRING is
8392 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8393 the breakpoint_ops structure associated to the catchpoint. */
8394
8395 void
8396 init_catchpoint (struct breakpoint *b,
8397 struct gdbarch *gdbarch, int tempflag,
8398 char *cond_string,
8399 const struct breakpoint_ops *ops)
8400 {
8401 struct symtab_and_line sal;
8402
8403 init_sal (&sal);
8404 sal.pspace = current_program_space;
8405
8406 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8407
8408 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8409 b->disposition = tempflag ? disp_del : disp_donttouch;
8410 }
8411
8412 void
8413 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8414 {
8415 add_to_breakpoint_chain (b);
8416 set_breakpoint_number (internal, b);
8417 if (is_tracepoint (b))
8418 set_tracepoint_count (breakpoint_count);
8419 if (!internal)
8420 mention (b);
8421 observer_notify_breakpoint_created (b);
8422
8423 if (update_gll)
8424 update_global_location_list (1);
8425 }
8426
8427 static void
8428 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8429 int tempflag, char *cond_string,
8430 const struct breakpoint_ops *ops)
8431 {
8432 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8433
8434 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8435
8436 c->forked_inferior_pid = null_ptid;
8437
8438 install_breakpoint (0, &c->base, 1);
8439 }
8440
8441 /* Exec catchpoints. */
8442
8443 /* An instance of this type is used to represent an exec catchpoint.
8444 It includes a "struct breakpoint" as a kind of base class; users
8445 downcast to "struct breakpoint *" when needed. A breakpoint is
8446 really of this type iff its ops pointer points to
8447 CATCH_EXEC_BREAKPOINT_OPS. */
8448
8449 struct exec_catchpoint
8450 {
8451 /* The base class. */
8452 struct breakpoint base;
8453
8454 /* Filename of a program whose exec triggered this catchpoint.
8455 This field is only valid immediately after this catchpoint has
8456 triggered. */
8457 char *exec_pathname;
8458 };
8459
8460 /* Implement the "dtor" breakpoint_ops method for exec
8461 catchpoints. */
8462
8463 static void
8464 dtor_catch_exec (struct breakpoint *b)
8465 {
8466 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8467
8468 xfree (c->exec_pathname);
8469
8470 base_breakpoint_ops.dtor (b);
8471 }
8472
8473 static int
8474 insert_catch_exec (struct bp_location *bl)
8475 {
8476 return target_insert_exec_catchpoint (PIDGET (inferior_ptid));
8477 }
8478
8479 static int
8480 remove_catch_exec (struct bp_location *bl)
8481 {
8482 return target_remove_exec_catchpoint (PIDGET (inferior_ptid));
8483 }
8484
8485 static int
8486 breakpoint_hit_catch_exec (const struct bp_location *bl,
8487 struct address_space *aspace, CORE_ADDR bp_addr,
8488 const struct target_waitstatus *ws)
8489 {
8490 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8491
8492 if (ws->kind != TARGET_WAITKIND_EXECD)
8493 return 0;
8494
8495 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8496 return 1;
8497 }
8498
8499 static enum print_stop_action
8500 print_it_catch_exec (bpstat bs)
8501 {
8502 struct ui_out *uiout = current_uiout;
8503 struct breakpoint *b = bs->breakpoint_at;
8504 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8505
8506 annotate_catchpoint (b->number);
8507 if (b->disposition == disp_del)
8508 ui_out_text (uiout, "\nTemporary catchpoint ");
8509 else
8510 ui_out_text (uiout, "\nCatchpoint ");
8511 if (ui_out_is_mi_like_p (uiout))
8512 {
8513 ui_out_field_string (uiout, "reason",
8514 async_reason_lookup (EXEC_ASYNC_EXEC));
8515 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8516 }
8517 ui_out_field_int (uiout, "bkptno", b->number);
8518 ui_out_text (uiout, " (exec'd ");
8519 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8520 ui_out_text (uiout, "), ");
8521
8522 return PRINT_SRC_AND_LOC;
8523 }
8524
8525 static void
8526 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8527 {
8528 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8529 struct value_print_options opts;
8530 struct ui_out *uiout = current_uiout;
8531
8532 get_user_print_options (&opts);
8533
8534 /* Field 4, the address, is omitted (which makes the columns
8535 not line up too nicely with the headers, but the effect
8536 is relatively readable). */
8537 if (opts.addressprint)
8538 ui_out_field_skip (uiout, "addr");
8539 annotate_field (5);
8540 ui_out_text (uiout, "exec");
8541 if (c->exec_pathname != NULL)
8542 {
8543 ui_out_text (uiout, ", program \"");
8544 ui_out_field_string (uiout, "what", c->exec_pathname);
8545 ui_out_text (uiout, "\" ");
8546 }
8547
8548 if (ui_out_is_mi_like_p (uiout))
8549 ui_out_field_string (uiout, "catch-type", "exec");
8550 }
8551
8552 static void
8553 print_mention_catch_exec (struct breakpoint *b)
8554 {
8555 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8556 }
8557
8558 /* Implement the "print_recreate" breakpoint_ops method for exec
8559 catchpoints. */
8560
8561 static void
8562 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8563 {
8564 fprintf_unfiltered (fp, "catch exec");
8565 print_recreate_thread (b, fp);
8566 }
8567
8568 static struct breakpoint_ops catch_exec_breakpoint_ops;
8569
8570 static void
8571 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
8572 const struct breakpoint_ops *ops)
8573 {
8574 struct syscall_catchpoint *c;
8575 struct gdbarch *gdbarch = get_current_arch ();
8576
8577 c = XNEW (struct syscall_catchpoint);
8578 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
8579 c->syscalls_to_be_caught = filter;
8580
8581 install_breakpoint (0, &c->base, 1);
8582 }
8583
8584 static int
8585 hw_breakpoint_used_count (void)
8586 {
8587 int i = 0;
8588 struct breakpoint *b;
8589 struct bp_location *bl;
8590
8591 ALL_BREAKPOINTS (b)
8592 {
8593 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8594 for (bl = b->loc; bl; bl = bl->next)
8595 {
8596 /* Special types of hardware breakpoints may use more than
8597 one register. */
8598 i += b->ops->resources_needed (bl);
8599 }
8600 }
8601
8602 return i;
8603 }
8604
8605 /* Returns the resources B would use if it were a hardware
8606 watchpoint. */
8607
8608 static int
8609 hw_watchpoint_use_count (struct breakpoint *b)
8610 {
8611 int i = 0;
8612 struct bp_location *bl;
8613
8614 if (!breakpoint_enabled (b))
8615 return 0;
8616
8617 for (bl = b->loc; bl; bl = bl->next)
8618 {
8619 /* Special types of hardware watchpoints may use more than
8620 one register. */
8621 i += b->ops->resources_needed (bl);
8622 }
8623
8624 return i;
8625 }
8626
8627 /* Returns the sum the used resources of all hardware watchpoints of
8628 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8629 the sum of the used resources of all hardware watchpoints of other
8630 types _not_ TYPE. */
8631
8632 static int
8633 hw_watchpoint_used_count_others (struct breakpoint *except,
8634 enum bptype type, int *other_type_used)
8635 {
8636 int i = 0;
8637 struct breakpoint *b;
8638
8639 *other_type_used = 0;
8640 ALL_BREAKPOINTS (b)
8641 {
8642 if (b == except)
8643 continue;
8644 if (!breakpoint_enabled (b))
8645 continue;
8646
8647 if (b->type == type)
8648 i += hw_watchpoint_use_count (b);
8649 else if (is_hardware_watchpoint (b))
8650 *other_type_used = 1;
8651 }
8652
8653 return i;
8654 }
8655
8656 void
8657 disable_watchpoints_before_interactive_call_start (void)
8658 {
8659 struct breakpoint *b;
8660
8661 ALL_BREAKPOINTS (b)
8662 {
8663 if (is_watchpoint (b) && breakpoint_enabled (b))
8664 {
8665 b->enable_state = bp_call_disabled;
8666 update_global_location_list (0);
8667 }
8668 }
8669 }
8670
8671 void
8672 enable_watchpoints_after_interactive_call_stop (void)
8673 {
8674 struct breakpoint *b;
8675
8676 ALL_BREAKPOINTS (b)
8677 {
8678 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8679 {
8680 b->enable_state = bp_enabled;
8681 update_global_location_list (1);
8682 }
8683 }
8684 }
8685
8686 void
8687 disable_breakpoints_before_startup (void)
8688 {
8689 current_program_space->executing_startup = 1;
8690 update_global_location_list (0);
8691 }
8692
8693 void
8694 enable_breakpoints_after_startup (void)
8695 {
8696 current_program_space->executing_startup = 0;
8697 breakpoint_re_set ();
8698 }
8699
8700
8701 /* Set a breakpoint that will evaporate an end of command
8702 at address specified by SAL.
8703 Restrict it to frame FRAME if FRAME is nonzero. */
8704
8705 struct breakpoint *
8706 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8707 struct frame_id frame_id, enum bptype type)
8708 {
8709 struct breakpoint *b;
8710
8711 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8712 tail-called one. */
8713 gdb_assert (!frame_id_artificial_p (frame_id));
8714
8715 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8716 b->enable_state = bp_enabled;
8717 b->disposition = disp_donttouch;
8718 b->frame_id = frame_id;
8719
8720 /* If we're debugging a multi-threaded program, then we want
8721 momentary breakpoints to be active in only a single thread of
8722 control. */
8723 if (in_thread_list (inferior_ptid))
8724 b->thread = pid_to_thread_id (inferior_ptid);
8725
8726 update_global_location_list_nothrow (1);
8727
8728 return b;
8729 }
8730
8731 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8732 The new breakpoint will have type TYPE, and use OPS as it
8733 breakpoint_ops. */
8734
8735 static struct breakpoint *
8736 momentary_breakpoint_from_master (struct breakpoint *orig,
8737 enum bptype type,
8738 const struct breakpoint_ops *ops)
8739 {
8740 struct breakpoint *copy;
8741
8742 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8743 copy->loc = allocate_bp_location (copy);
8744 set_breakpoint_location_function (copy->loc, 1);
8745
8746 copy->loc->gdbarch = orig->loc->gdbarch;
8747 copy->loc->requested_address = orig->loc->requested_address;
8748 copy->loc->address = orig->loc->address;
8749 copy->loc->section = orig->loc->section;
8750 copy->loc->pspace = orig->loc->pspace;
8751 copy->loc->probe = orig->loc->probe;
8752 copy->loc->line_number = orig->loc->line_number;
8753 copy->loc->symtab = orig->loc->symtab;
8754 copy->frame_id = orig->frame_id;
8755 copy->thread = orig->thread;
8756 copy->pspace = orig->pspace;
8757
8758 copy->enable_state = bp_enabled;
8759 copy->disposition = disp_donttouch;
8760 copy->number = internal_breakpoint_number--;
8761
8762 update_global_location_list_nothrow (0);
8763 return copy;
8764 }
8765
8766 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8767 ORIG is NULL. */
8768
8769 struct breakpoint *
8770 clone_momentary_breakpoint (struct breakpoint *orig)
8771 {
8772 /* If there's nothing to clone, then return nothing. */
8773 if (orig == NULL)
8774 return NULL;
8775
8776 return momentary_breakpoint_from_master (orig, orig->type, orig->ops);
8777 }
8778
8779 struct breakpoint *
8780 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8781 enum bptype type)
8782 {
8783 struct symtab_and_line sal;
8784
8785 sal = find_pc_line (pc, 0);
8786 sal.pc = pc;
8787 sal.section = find_pc_overlay (pc);
8788 sal.explicit_pc = 1;
8789
8790 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8791 }
8792 \f
8793
8794 /* Tell the user we have just set a breakpoint B. */
8795
8796 static void
8797 mention (struct breakpoint *b)
8798 {
8799 b->ops->print_mention (b);
8800 if (ui_out_is_mi_like_p (current_uiout))
8801 return;
8802 printf_filtered ("\n");
8803 }
8804 \f
8805
8806 static struct bp_location *
8807 add_location_to_breakpoint (struct breakpoint *b,
8808 const struct symtab_and_line *sal)
8809 {
8810 struct bp_location *loc, **tmp;
8811 CORE_ADDR adjusted_address;
8812 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8813
8814 if (loc_gdbarch == NULL)
8815 loc_gdbarch = b->gdbarch;
8816
8817 /* Adjust the breakpoint's address prior to allocating a location.
8818 Once we call allocate_bp_location(), that mostly uninitialized
8819 location will be placed on the location chain. Adjustment of the
8820 breakpoint may cause target_read_memory() to be called and we do
8821 not want its scan of the location chain to find a breakpoint and
8822 location that's only been partially initialized. */
8823 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8824 sal->pc, b->type);
8825
8826 /* Sort the locations by their ADDRESS. */
8827 loc = allocate_bp_location (b);
8828 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8829 tmp = &((*tmp)->next))
8830 ;
8831 loc->next = *tmp;
8832 *tmp = loc;
8833
8834 loc->requested_address = sal->pc;
8835 loc->address = adjusted_address;
8836 loc->pspace = sal->pspace;
8837 loc->probe = sal->probe;
8838 gdb_assert (loc->pspace != NULL);
8839 loc->section = sal->section;
8840 loc->gdbarch = loc_gdbarch;
8841 loc->line_number = sal->line;
8842 loc->symtab = sal->symtab;
8843
8844 set_breakpoint_location_function (loc,
8845 sal->explicit_pc || sal->explicit_line);
8846 return loc;
8847 }
8848 \f
8849
8850 /* Return 1 if LOC is pointing to a permanent breakpoint,
8851 return 0 otherwise. */
8852
8853 static int
8854 bp_loc_is_permanent (struct bp_location *loc)
8855 {
8856 int len;
8857 CORE_ADDR addr;
8858 const gdb_byte *bpoint;
8859 gdb_byte *target_mem;
8860 struct cleanup *cleanup;
8861 int retval = 0;
8862
8863 gdb_assert (loc != NULL);
8864
8865 addr = loc->address;
8866 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
8867
8868 /* Software breakpoints unsupported? */
8869 if (bpoint == NULL)
8870 return 0;
8871
8872 target_mem = alloca (len);
8873
8874 /* Enable the automatic memory restoration from breakpoints while
8875 we read the memory. Otherwise we could say about our temporary
8876 breakpoints they are permanent. */
8877 cleanup = save_current_space_and_thread ();
8878
8879 switch_to_program_space_and_thread (loc->pspace);
8880 make_show_memory_breakpoints_cleanup (0);
8881
8882 if (target_read_memory (loc->address, target_mem, len) == 0
8883 && memcmp (target_mem, bpoint, len) == 0)
8884 retval = 1;
8885
8886 do_cleanups (cleanup);
8887
8888 return retval;
8889 }
8890
8891 /* Build a command list for the dprintf corresponding to the current
8892 settings of the dprintf style options. */
8893
8894 static void
8895 update_dprintf_command_list (struct breakpoint *b)
8896 {
8897 char *dprintf_args = b->extra_string;
8898 char *printf_line = NULL;
8899
8900 if (!dprintf_args)
8901 return;
8902
8903 dprintf_args = skip_spaces (dprintf_args);
8904
8905 /* Allow a comma, as it may have terminated a location, but don't
8906 insist on it. */
8907 if (*dprintf_args == ',')
8908 ++dprintf_args;
8909 dprintf_args = skip_spaces (dprintf_args);
8910
8911 if (*dprintf_args != '"')
8912 error (_("Bad format string, missing '\"'."));
8913
8914 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8915 printf_line = xstrprintf ("printf %s", dprintf_args);
8916 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8917 {
8918 if (!dprintf_function)
8919 error (_("No function supplied for dprintf call"));
8920
8921 if (dprintf_channel && strlen (dprintf_channel) > 0)
8922 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8923 dprintf_function,
8924 dprintf_channel,
8925 dprintf_args);
8926 else
8927 printf_line = xstrprintf ("call (void) %s (%s)",
8928 dprintf_function,
8929 dprintf_args);
8930 }
8931 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8932 {
8933 if (target_can_run_breakpoint_commands ())
8934 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8935 else
8936 {
8937 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8938 printf_line = xstrprintf ("printf %s", dprintf_args);
8939 }
8940 }
8941 else
8942 internal_error (__FILE__, __LINE__,
8943 _("Invalid dprintf style."));
8944
8945 gdb_assert (printf_line != NULL);
8946 /* Manufacture a printf/continue sequence. */
8947 {
8948 struct command_line *printf_cmd_line, *cont_cmd_line = NULL;
8949
8950 if (strcmp (dprintf_style, dprintf_style_agent) != 0)
8951 {
8952 cont_cmd_line = xmalloc (sizeof (struct command_line));
8953 cont_cmd_line->control_type = simple_control;
8954 cont_cmd_line->body_count = 0;
8955 cont_cmd_line->body_list = NULL;
8956 cont_cmd_line->next = NULL;
8957 cont_cmd_line->line = xstrdup ("continue");
8958 }
8959
8960 printf_cmd_line = xmalloc (sizeof (struct command_line));
8961 printf_cmd_line->control_type = simple_control;
8962 printf_cmd_line->body_count = 0;
8963 printf_cmd_line->body_list = NULL;
8964 printf_cmd_line->next = cont_cmd_line;
8965 printf_cmd_line->line = printf_line;
8966
8967 breakpoint_set_commands (b, printf_cmd_line);
8968 }
8969 }
8970
8971 /* Update all dprintf commands, making their command lists reflect
8972 current style settings. */
8973
8974 static void
8975 update_dprintf_commands (char *args, int from_tty,
8976 struct cmd_list_element *c)
8977 {
8978 struct breakpoint *b;
8979
8980 ALL_BREAKPOINTS (b)
8981 {
8982 if (b->type == bp_dprintf)
8983 update_dprintf_command_list (b);
8984 }
8985 }
8986
8987 /* Create a breakpoint with SAL as location. Use ADDR_STRING
8988 as textual description of the location, and COND_STRING
8989 as condition expression. */
8990
8991 static void
8992 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8993 struct symtabs_and_lines sals, char *addr_string,
8994 char *filter, char *cond_string,
8995 char *extra_string,
8996 enum bptype type, enum bpdisp disposition,
8997 int thread, int task, int ignore_count,
8998 const struct breakpoint_ops *ops, int from_tty,
8999 int enabled, int internal, unsigned flags,
9000 int display_canonical)
9001 {
9002 int i;
9003
9004 if (type == bp_hardware_breakpoint)
9005 {
9006 int target_resources_ok;
9007
9008 i = hw_breakpoint_used_count ();
9009 target_resources_ok =
9010 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9011 i + 1, 0);
9012 if (target_resources_ok == 0)
9013 error (_("No hardware breakpoint support in the target."));
9014 else if (target_resources_ok < 0)
9015 error (_("Hardware breakpoints used exceeds limit."));
9016 }
9017
9018 gdb_assert (sals.nelts > 0);
9019
9020 for (i = 0; i < sals.nelts; ++i)
9021 {
9022 struct symtab_and_line sal = sals.sals[i];
9023 struct bp_location *loc;
9024
9025 if (from_tty)
9026 {
9027 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9028 if (!loc_gdbarch)
9029 loc_gdbarch = gdbarch;
9030
9031 describe_other_breakpoints (loc_gdbarch,
9032 sal.pspace, sal.pc, sal.section, thread);
9033 }
9034
9035 if (i == 0)
9036 {
9037 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9038 b->thread = thread;
9039 b->task = task;
9040
9041 b->cond_string = cond_string;
9042 b->extra_string = extra_string;
9043 b->ignore_count = ignore_count;
9044 b->enable_state = enabled ? bp_enabled : bp_disabled;
9045 b->disposition = disposition;
9046
9047 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9048 b->loc->inserted = 1;
9049
9050 if (type == bp_static_tracepoint)
9051 {
9052 struct tracepoint *t = (struct tracepoint *) b;
9053 struct static_tracepoint_marker marker;
9054
9055 if (strace_marker_p (b))
9056 {
9057 /* We already know the marker exists, otherwise, we
9058 wouldn't see a sal for it. */
9059 char *p = &addr_string[3];
9060 char *endp;
9061 char *marker_str;
9062
9063 p = skip_spaces (p);
9064
9065 endp = skip_to_space (p);
9066
9067 marker_str = savestring (p, endp - p);
9068 t->static_trace_marker_id = marker_str;
9069
9070 printf_filtered (_("Probed static tracepoint "
9071 "marker \"%s\"\n"),
9072 t->static_trace_marker_id);
9073 }
9074 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9075 {
9076 t->static_trace_marker_id = xstrdup (marker.str_id);
9077 release_static_tracepoint_marker (&marker);
9078
9079 printf_filtered (_("Probed static tracepoint "
9080 "marker \"%s\"\n"),
9081 t->static_trace_marker_id);
9082 }
9083 else
9084 warning (_("Couldn't determine the static "
9085 "tracepoint marker to probe"));
9086 }
9087
9088 loc = b->loc;
9089 }
9090 else
9091 {
9092 loc = add_location_to_breakpoint (b, &sal);
9093 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9094 loc->inserted = 1;
9095 }
9096
9097 if (bp_loc_is_permanent (loc))
9098 make_breakpoint_permanent (b);
9099
9100 if (b->cond_string)
9101 {
9102 const char *arg = b->cond_string;
9103
9104 loc->cond = parse_exp_1 (&arg, loc->address,
9105 block_for_pc (loc->address), 0);
9106 if (*arg)
9107 error (_("Garbage '%s' follows condition"), arg);
9108 }
9109
9110 /* Dynamic printf requires and uses additional arguments on the
9111 command line, otherwise it's an error. */
9112 if (type == bp_dprintf)
9113 {
9114 if (b->extra_string)
9115 update_dprintf_command_list (b);
9116 else
9117 error (_("Format string required"));
9118 }
9119 else if (b->extra_string)
9120 error (_("Garbage '%s' at end of command"), b->extra_string);
9121 }
9122
9123 b->display_canonical = display_canonical;
9124 if (addr_string)
9125 b->addr_string = addr_string;
9126 else
9127 /* addr_string has to be used or breakpoint_re_set will delete
9128 me. */
9129 b->addr_string
9130 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9131 b->filter = filter;
9132 }
9133
9134 static void
9135 create_breakpoint_sal (struct gdbarch *gdbarch,
9136 struct symtabs_and_lines sals, char *addr_string,
9137 char *filter, char *cond_string,
9138 char *extra_string,
9139 enum bptype type, enum bpdisp disposition,
9140 int thread, int task, int ignore_count,
9141 const struct breakpoint_ops *ops, int from_tty,
9142 int enabled, int internal, unsigned flags,
9143 int display_canonical)
9144 {
9145 struct breakpoint *b;
9146 struct cleanup *old_chain;
9147
9148 if (is_tracepoint_type (type))
9149 {
9150 struct tracepoint *t;
9151
9152 t = XCNEW (struct tracepoint);
9153 b = &t->base;
9154 }
9155 else
9156 b = XNEW (struct breakpoint);
9157
9158 old_chain = make_cleanup (xfree, b);
9159
9160 init_breakpoint_sal (b, gdbarch,
9161 sals, addr_string,
9162 filter, cond_string, extra_string,
9163 type, disposition,
9164 thread, task, ignore_count,
9165 ops, from_tty,
9166 enabled, internal, flags,
9167 display_canonical);
9168 discard_cleanups (old_chain);
9169
9170 install_breakpoint (internal, b, 0);
9171 }
9172
9173 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9174 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9175 value. COND_STRING, if not NULL, specified the condition to be
9176 used for all breakpoints. Essentially the only case where
9177 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9178 function. In that case, it's still not possible to specify
9179 separate conditions for different overloaded functions, so
9180 we take just a single condition string.
9181
9182 NOTE: If the function succeeds, the caller is expected to cleanup
9183 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9184 array contents). If the function fails (error() is called), the
9185 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9186 COND and SALS arrays and each of those arrays contents. */
9187
9188 static void
9189 create_breakpoints_sal (struct gdbarch *gdbarch,
9190 struct linespec_result *canonical,
9191 char *cond_string, char *extra_string,
9192 enum bptype type, enum bpdisp disposition,
9193 int thread, int task, int ignore_count,
9194 const struct breakpoint_ops *ops, int from_tty,
9195 int enabled, int internal, unsigned flags)
9196 {
9197 int i;
9198 struct linespec_sals *lsal;
9199
9200 if (canonical->pre_expanded)
9201 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9202
9203 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9204 {
9205 /* Note that 'addr_string' can be NULL in the case of a plain
9206 'break', without arguments. */
9207 char *addr_string = (canonical->addr_string
9208 ? xstrdup (canonical->addr_string)
9209 : NULL);
9210 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9211 struct cleanup *inner = make_cleanup (xfree, addr_string);
9212
9213 make_cleanup (xfree, filter_string);
9214 create_breakpoint_sal (gdbarch, lsal->sals,
9215 addr_string,
9216 filter_string,
9217 cond_string, extra_string,
9218 type, disposition,
9219 thread, task, ignore_count, ops,
9220 from_tty, enabled, internal, flags,
9221 canonical->special_display);
9222 discard_cleanups (inner);
9223 }
9224 }
9225
9226 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9227 followed by conditionals. On return, SALS contains an array of SAL
9228 addresses found. ADDR_STRING contains a vector of (canonical)
9229 address strings. ADDRESS points to the end of the SAL.
9230
9231 The array and the line spec strings are allocated on the heap, it is
9232 the caller's responsibility to free them. */
9233
9234 static void
9235 parse_breakpoint_sals (char **address,
9236 struct linespec_result *canonical)
9237 {
9238 /* If no arg given, or if first arg is 'if ', use the default
9239 breakpoint. */
9240 if ((*address) == NULL
9241 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9242 {
9243 /* The last displayed codepoint, if it's valid, is our default breakpoint
9244 address. */
9245 if (last_displayed_sal_is_valid ())
9246 {
9247 struct linespec_sals lsal;
9248 struct symtab_and_line sal;
9249 CORE_ADDR pc;
9250
9251 init_sal (&sal); /* Initialize to zeroes. */
9252 lsal.sals.sals = (struct symtab_and_line *)
9253 xmalloc (sizeof (struct symtab_and_line));
9254
9255 /* Set sal's pspace, pc, symtab, and line to the values
9256 corresponding to the last call to print_frame_info.
9257 Be sure to reinitialize LINE with NOTCURRENT == 0
9258 as the breakpoint line number is inappropriate otherwise.
9259 find_pc_line would adjust PC, re-set it back. */
9260 get_last_displayed_sal (&sal);
9261 pc = sal.pc;
9262 sal = find_pc_line (pc, 0);
9263
9264 /* "break" without arguments is equivalent to "break *PC"
9265 where PC is the last displayed codepoint's address. So
9266 make sure to set sal.explicit_pc to prevent GDB from
9267 trying to expand the list of sals to include all other
9268 instances with the same symtab and line. */
9269 sal.pc = pc;
9270 sal.explicit_pc = 1;
9271
9272 lsal.sals.sals[0] = sal;
9273 lsal.sals.nelts = 1;
9274 lsal.canonical = NULL;
9275
9276 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9277 }
9278 else
9279 error (_("No default breakpoint address now."));
9280 }
9281 else
9282 {
9283 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9284
9285 /* Force almost all breakpoints to be in terms of the
9286 current_source_symtab (which is decode_line_1's default).
9287 This should produce the results we want almost all of the
9288 time while leaving default_breakpoint_* alone.
9289
9290 ObjC: However, don't match an Objective-C method name which
9291 may have a '+' or '-' succeeded by a '['. */
9292 if (last_displayed_sal_is_valid ()
9293 && (!cursal.symtab
9294 || ((strchr ("+-", (*address)[0]) != NULL)
9295 && ((*address)[1] != '['))))
9296 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9297 get_last_displayed_symtab (),
9298 get_last_displayed_line (),
9299 canonical, NULL, NULL);
9300 else
9301 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9302 cursal.symtab, cursal.line, canonical, NULL, NULL);
9303 }
9304 }
9305
9306
9307 /* Convert each SAL into a real PC. Verify that the PC can be
9308 inserted as a breakpoint. If it can't throw an error. */
9309
9310 static void
9311 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9312 {
9313 int i;
9314
9315 for (i = 0; i < sals->nelts; i++)
9316 resolve_sal_pc (&sals->sals[i]);
9317 }
9318
9319 /* Fast tracepoints may have restrictions on valid locations. For
9320 instance, a fast tracepoint using a jump instead of a trap will
9321 likely have to overwrite more bytes than a trap would, and so can
9322 only be placed where the instruction is longer than the jump, or a
9323 multi-instruction sequence does not have a jump into the middle of
9324 it, etc. */
9325
9326 static void
9327 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9328 struct symtabs_and_lines *sals)
9329 {
9330 int i, rslt;
9331 struct symtab_and_line *sal;
9332 char *msg;
9333 struct cleanup *old_chain;
9334
9335 for (i = 0; i < sals->nelts; i++)
9336 {
9337 struct gdbarch *sarch;
9338
9339 sal = &sals->sals[i];
9340
9341 sarch = get_sal_arch (*sal);
9342 /* We fall back to GDBARCH if there is no architecture
9343 associated with SAL. */
9344 if (sarch == NULL)
9345 sarch = gdbarch;
9346 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9347 NULL, &msg);
9348 old_chain = make_cleanup (xfree, msg);
9349
9350 if (!rslt)
9351 error (_("May not have a fast tracepoint at 0x%s%s"),
9352 paddress (sarch, sal->pc), (msg ? msg : ""));
9353
9354 do_cleanups (old_chain);
9355 }
9356 }
9357
9358 /* Issue an invalid thread ID error. */
9359
9360 static void ATTRIBUTE_NORETURN
9361 invalid_thread_id_error (int id)
9362 {
9363 error (_("Unknown thread %d."), id);
9364 }
9365
9366 /* Given TOK, a string specification of condition and thread, as
9367 accepted by the 'break' command, extract the condition
9368 string and thread number and set *COND_STRING and *THREAD.
9369 PC identifies the context at which the condition should be parsed.
9370 If no condition is found, *COND_STRING is set to NULL.
9371 If no thread is found, *THREAD is set to -1. */
9372
9373 static void
9374 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9375 char **cond_string, int *thread, int *task,
9376 char **rest)
9377 {
9378 *cond_string = NULL;
9379 *thread = -1;
9380 *task = 0;
9381 *rest = NULL;
9382
9383 while (tok && *tok)
9384 {
9385 const char *end_tok;
9386 int toklen;
9387 const char *cond_start = NULL;
9388 const char *cond_end = NULL;
9389
9390 tok = skip_spaces_const (tok);
9391
9392 if ((*tok == '"' || *tok == ',') && rest)
9393 {
9394 *rest = savestring (tok, strlen (tok));
9395 return;
9396 }
9397
9398 end_tok = skip_to_space_const (tok);
9399
9400 toklen = end_tok - tok;
9401
9402 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9403 {
9404 struct expression *expr;
9405
9406 tok = cond_start = end_tok + 1;
9407 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9408 xfree (expr);
9409 cond_end = tok;
9410 *cond_string = savestring (cond_start, cond_end - cond_start);
9411 }
9412 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9413 {
9414 char *tmptok;
9415
9416 tok = end_tok + 1;
9417 *thread = strtol (tok, &tmptok, 0);
9418 if (tok == tmptok)
9419 error (_("Junk after thread keyword."));
9420 if (!valid_thread_id (*thread))
9421 invalid_thread_id_error (*thread);
9422 tok = tmptok;
9423 }
9424 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9425 {
9426 char *tmptok;
9427
9428 tok = end_tok + 1;
9429 *task = strtol (tok, &tmptok, 0);
9430 if (tok == tmptok)
9431 error (_("Junk after task keyword."));
9432 if (!valid_task_id (*task))
9433 error (_("Unknown task %d."), *task);
9434 tok = tmptok;
9435 }
9436 else if (rest)
9437 {
9438 *rest = savestring (tok, strlen (tok));
9439 return;
9440 }
9441 else
9442 error (_("Junk at end of arguments."));
9443 }
9444 }
9445
9446 /* Decode a static tracepoint marker spec. */
9447
9448 static struct symtabs_and_lines
9449 decode_static_tracepoint_spec (char **arg_p)
9450 {
9451 VEC(static_tracepoint_marker_p) *markers = NULL;
9452 struct symtabs_and_lines sals;
9453 struct cleanup *old_chain;
9454 char *p = &(*arg_p)[3];
9455 char *endp;
9456 char *marker_str;
9457 int i;
9458
9459 p = skip_spaces (p);
9460
9461 endp = skip_to_space (p);
9462
9463 marker_str = savestring (p, endp - p);
9464 old_chain = make_cleanup (xfree, marker_str);
9465
9466 markers = target_static_tracepoint_markers_by_strid (marker_str);
9467 if (VEC_empty(static_tracepoint_marker_p, markers))
9468 error (_("No known static tracepoint marker named %s"), marker_str);
9469
9470 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9471 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9472
9473 for (i = 0; i < sals.nelts; i++)
9474 {
9475 struct static_tracepoint_marker *marker;
9476
9477 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9478
9479 init_sal (&sals.sals[i]);
9480
9481 sals.sals[i] = find_pc_line (marker->address, 0);
9482 sals.sals[i].pc = marker->address;
9483
9484 release_static_tracepoint_marker (marker);
9485 }
9486
9487 do_cleanups (old_chain);
9488
9489 *arg_p = endp;
9490 return sals;
9491 }
9492
9493 /* Set a breakpoint. This function is shared between CLI and MI
9494 functions for setting a breakpoint. This function has two major
9495 modes of operations, selected by the PARSE_ARG parameter. If
9496 non-zero, the function will parse ARG, extracting location,
9497 condition, thread and extra string. Otherwise, ARG is just the
9498 breakpoint's location, with condition, thread, and extra string
9499 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9500 If INTERNAL is non-zero, the breakpoint number will be allocated
9501 from the internal breakpoint count. Returns true if any breakpoint
9502 was created; false otherwise. */
9503
9504 int
9505 create_breakpoint (struct gdbarch *gdbarch,
9506 char *arg, char *cond_string,
9507 int thread, char *extra_string,
9508 int parse_arg,
9509 int tempflag, enum bptype type_wanted,
9510 int ignore_count,
9511 enum auto_boolean pending_break_support,
9512 const struct breakpoint_ops *ops,
9513 int from_tty, int enabled, int internal,
9514 unsigned flags)
9515 {
9516 volatile struct gdb_exception e;
9517 char *copy_arg = NULL;
9518 char *addr_start = arg;
9519 struct linespec_result canonical;
9520 struct cleanup *old_chain;
9521 struct cleanup *bkpt_chain = NULL;
9522 int pending = 0;
9523 int task = 0;
9524 int prev_bkpt_count = breakpoint_count;
9525
9526 gdb_assert (ops != NULL);
9527
9528 init_linespec_result (&canonical);
9529
9530 TRY_CATCH (e, RETURN_MASK_ALL)
9531 {
9532 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9533 addr_start, &copy_arg);
9534 }
9535
9536 /* If caller is interested in rc value from parse, set value. */
9537 switch (e.reason)
9538 {
9539 case GDB_NO_ERROR:
9540 if (VEC_empty (linespec_sals, canonical.sals))
9541 return 0;
9542 break;
9543 case RETURN_ERROR:
9544 switch (e.error)
9545 {
9546 case NOT_FOUND_ERROR:
9547
9548 /* If pending breakpoint support is turned off, throw
9549 error. */
9550
9551 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9552 throw_exception (e);
9553
9554 exception_print (gdb_stderr, e);
9555
9556 /* If pending breakpoint support is auto query and the user
9557 selects no, then simply return the error code. */
9558 if (pending_break_support == AUTO_BOOLEAN_AUTO
9559 && !nquery (_("Make %s pending on future shared library load? "),
9560 bptype_string (type_wanted)))
9561 return 0;
9562
9563 /* At this point, either the user was queried about setting
9564 a pending breakpoint and selected yes, or pending
9565 breakpoint behavior is on and thus a pending breakpoint
9566 is defaulted on behalf of the user. */
9567 {
9568 struct linespec_sals lsal;
9569
9570 copy_arg = xstrdup (addr_start);
9571 lsal.canonical = xstrdup (copy_arg);
9572 lsal.sals.nelts = 1;
9573 lsal.sals.sals = XNEW (struct symtab_and_line);
9574 init_sal (&lsal.sals.sals[0]);
9575 pending = 1;
9576 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9577 }
9578 break;
9579 default:
9580 throw_exception (e);
9581 }
9582 break;
9583 default:
9584 throw_exception (e);
9585 }
9586
9587 /* Create a chain of things that always need to be cleaned up. */
9588 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9589
9590 /* ----------------------------- SNIP -----------------------------
9591 Anything added to the cleanup chain beyond this point is assumed
9592 to be part of a breakpoint. If the breakpoint create succeeds
9593 then the memory is not reclaimed. */
9594 bkpt_chain = make_cleanup (null_cleanup, 0);
9595
9596 /* Resolve all line numbers to PC's and verify that the addresses
9597 are ok for the target. */
9598 if (!pending)
9599 {
9600 int ix;
9601 struct linespec_sals *iter;
9602
9603 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9604 breakpoint_sals_to_pc (&iter->sals);
9605 }
9606
9607 /* Fast tracepoints may have additional restrictions on location. */
9608 if (!pending && type_wanted == bp_fast_tracepoint)
9609 {
9610 int ix;
9611 struct linespec_sals *iter;
9612
9613 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9614 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9615 }
9616
9617 /* Verify that condition can be parsed, before setting any
9618 breakpoints. Allocate a separate condition expression for each
9619 breakpoint. */
9620 if (!pending)
9621 {
9622 struct linespec_sals *lsal;
9623
9624 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9625
9626 if (parse_arg)
9627 {
9628 char *rest;
9629 /* Here we only parse 'arg' to separate condition
9630 from thread number, so parsing in context of first
9631 sal is OK. When setting the breakpoint we'll
9632 re-parse it in context of each sal. */
9633
9634 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9635 &thread, &task, &rest);
9636 if (cond_string)
9637 make_cleanup (xfree, cond_string);
9638 if (rest)
9639 make_cleanup (xfree, rest);
9640 if (rest)
9641 extra_string = rest;
9642 }
9643 else
9644 {
9645 if (*arg != '\0')
9646 error (_("Garbage '%s' at end of location"), arg);
9647
9648 /* Create a private copy of condition string. */
9649 if (cond_string)
9650 {
9651 cond_string = xstrdup (cond_string);
9652 make_cleanup (xfree, cond_string);
9653 }
9654 /* Create a private copy of any extra string. */
9655 if (extra_string)
9656 {
9657 extra_string = xstrdup (extra_string);
9658 make_cleanup (xfree, extra_string);
9659 }
9660 }
9661
9662 ops->create_breakpoints_sal (gdbarch, &canonical, lsal,
9663 cond_string, extra_string, type_wanted,
9664 tempflag ? disp_del : disp_donttouch,
9665 thread, task, ignore_count, ops,
9666 from_tty, enabled, internal, flags);
9667 }
9668 else
9669 {
9670 struct breakpoint *b;
9671
9672 make_cleanup (xfree, copy_arg);
9673
9674 if (is_tracepoint_type (type_wanted))
9675 {
9676 struct tracepoint *t;
9677
9678 t = XCNEW (struct tracepoint);
9679 b = &t->base;
9680 }
9681 else
9682 b = XNEW (struct breakpoint);
9683
9684 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9685
9686 b->addr_string = copy_arg;
9687 if (parse_arg)
9688 b->cond_string = NULL;
9689 else
9690 {
9691 /* Create a private copy of condition string. */
9692 if (cond_string)
9693 {
9694 cond_string = xstrdup (cond_string);
9695 make_cleanup (xfree, cond_string);
9696 }
9697 b->cond_string = cond_string;
9698 }
9699 b->extra_string = NULL;
9700 b->ignore_count = ignore_count;
9701 b->disposition = tempflag ? disp_del : disp_donttouch;
9702 b->condition_not_parsed = 1;
9703 b->enable_state = enabled ? bp_enabled : bp_disabled;
9704 if ((type_wanted != bp_breakpoint
9705 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9706 b->pspace = current_program_space;
9707
9708 install_breakpoint (internal, b, 0);
9709 }
9710
9711 if (VEC_length (linespec_sals, canonical.sals) > 1)
9712 {
9713 warning (_("Multiple breakpoints were set.\nUse the "
9714 "\"delete\" command to delete unwanted breakpoints."));
9715 prev_breakpoint_count = prev_bkpt_count;
9716 }
9717
9718 /* That's it. Discard the cleanups for data inserted into the
9719 breakpoint. */
9720 discard_cleanups (bkpt_chain);
9721 /* But cleanup everything else. */
9722 do_cleanups (old_chain);
9723
9724 /* error call may happen here - have BKPT_CHAIN already discarded. */
9725 update_global_location_list (1);
9726
9727 return 1;
9728 }
9729
9730 /* Set a breakpoint.
9731 ARG is a string describing breakpoint address,
9732 condition, and thread.
9733 FLAG specifies if a breakpoint is hardware on,
9734 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9735 and BP_TEMPFLAG. */
9736
9737 static void
9738 break_command_1 (char *arg, int flag, int from_tty)
9739 {
9740 int tempflag = flag & BP_TEMPFLAG;
9741 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9742 ? bp_hardware_breakpoint
9743 : bp_breakpoint);
9744 struct breakpoint_ops *ops;
9745 const char *arg_cp = arg;
9746
9747 /* Matching breakpoints on probes. */
9748 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
9749 ops = &bkpt_probe_breakpoint_ops;
9750 else
9751 ops = &bkpt_breakpoint_ops;
9752
9753 create_breakpoint (get_current_arch (),
9754 arg,
9755 NULL, 0, NULL, 1 /* parse arg */,
9756 tempflag, type_wanted,
9757 0 /* Ignore count */,
9758 pending_break_support,
9759 ops,
9760 from_tty,
9761 1 /* enabled */,
9762 0 /* internal */,
9763 0);
9764 }
9765
9766 /* Helper function for break_command_1 and disassemble_command. */
9767
9768 void
9769 resolve_sal_pc (struct symtab_and_line *sal)
9770 {
9771 CORE_ADDR pc;
9772
9773 if (sal->pc == 0 && sal->symtab != NULL)
9774 {
9775 if (!find_line_pc (sal->symtab, sal->line, &pc))
9776 error (_("No line %d in file \"%s\"."),
9777 sal->line, symtab_to_filename_for_display (sal->symtab));
9778 sal->pc = pc;
9779
9780 /* If this SAL corresponds to a breakpoint inserted using a line
9781 number, then skip the function prologue if necessary. */
9782 if (sal->explicit_line)
9783 skip_prologue_sal (sal);
9784 }
9785
9786 if (sal->section == 0 && sal->symtab != NULL)
9787 {
9788 struct blockvector *bv;
9789 struct block *b;
9790 struct symbol *sym;
9791
9792 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
9793 if (bv != NULL)
9794 {
9795 sym = block_linkage_function (b);
9796 if (sym != NULL)
9797 {
9798 fixup_symbol_section (sym, sal->symtab->objfile);
9799 sal->section = SYMBOL_OBJ_SECTION (sal->symtab->objfile, sym);
9800 }
9801 else
9802 {
9803 /* It really is worthwhile to have the section, so we'll
9804 just have to look harder. This case can be executed
9805 if we have line numbers but no functions (as can
9806 happen in assembly source). */
9807
9808 struct bound_minimal_symbol msym;
9809 struct cleanup *old_chain = save_current_space_and_thread ();
9810
9811 switch_to_program_space_and_thread (sal->pspace);
9812
9813 msym = lookup_minimal_symbol_by_pc (sal->pc);
9814 if (msym.minsym)
9815 sal->section = SYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9816
9817 do_cleanups (old_chain);
9818 }
9819 }
9820 }
9821 }
9822
9823 void
9824 break_command (char *arg, int from_tty)
9825 {
9826 break_command_1 (arg, 0, from_tty);
9827 }
9828
9829 void
9830 tbreak_command (char *arg, int from_tty)
9831 {
9832 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9833 }
9834
9835 static void
9836 hbreak_command (char *arg, int from_tty)
9837 {
9838 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9839 }
9840
9841 static void
9842 thbreak_command (char *arg, int from_tty)
9843 {
9844 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9845 }
9846
9847 static void
9848 stop_command (char *arg, int from_tty)
9849 {
9850 printf_filtered (_("Specify the type of breakpoint to set.\n\
9851 Usage: stop in <function | address>\n\
9852 stop at <line>\n"));
9853 }
9854
9855 static void
9856 stopin_command (char *arg, int from_tty)
9857 {
9858 int badInput = 0;
9859
9860 if (arg == (char *) NULL)
9861 badInput = 1;
9862 else if (*arg != '*')
9863 {
9864 char *argptr = arg;
9865 int hasColon = 0;
9866
9867 /* Look for a ':'. If this is a line number specification, then
9868 say it is bad, otherwise, it should be an address or
9869 function/method name. */
9870 while (*argptr && !hasColon)
9871 {
9872 hasColon = (*argptr == ':');
9873 argptr++;
9874 }
9875
9876 if (hasColon)
9877 badInput = (*argptr != ':'); /* Not a class::method */
9878 else
9879 badInput = isdigit (*arg); /* a simple line number */
9880 }
9881
9882 if (badInput)
9883 printf_filtered (_("Usage: stop in <function | address>\n"));
9884 else
9885 break_command_1 (arg, 0, from_tty);
9886 }
9887
9888 static void
9889 stopat_command (char *arg, int from_tty)
9890 {
9891 int badInput = 0;
9892
9893 if (arg == (char *) NULL || *arg == '*') /* no line number */
9894 badInput = 1;
9895 else
9896 {
9897 char *argptr = arg;
9898 int hasColon = 0;
9899
9900 /* Look for a ':'. If there is a '::' then get out, otherwise
9901 it is probably a line number. */
9902 while (*argptr && !hasColon)
9903 {
9904 hasColon = (*argptr == ':');
9905 argptr++;
9906 }
9907
9908 if (hasColon)
9909 badInput = (*argptr == ':'); /* we have class::method */
9910 else
9911 badInput = !isdigit (*arg); /* not a line number */
9912 }
9913
9914 if (badInput)
9915 printf_filtered (_("Usage: stop at <line>\n"));
9916 else
9917 break_command_1 (arg, 0, from_tty);
9918 }
9919
9920 /* The dynamic printf command is mostly like a regular breakpoint, but
9921 with a prewired command list consisting of a single output command,
9922 built from extra arguments supplied on the dprintf command
9923 line. */
9924
9925 static void
9926 dprintf_command (char *arg, int from_tty)
9927 {
9928 create_breakpoint (get_current_arch (),
9929 arg,
9930 NULL, 0, NULL, 1 /* parse arg */,
9931 0, bp_dprintf,
9932 0 /* Ignore count */,
9933 pending_break_support,
9934 &dprintf_breakpoint_ops,
9935 from_tty,
9936 1 /* enabled */,
9937 0 /* internal */,
9938 0);
9939 }
9940
9941 static void
9942 agent_printf_command (char *arg, int from_tty)
9943 {
9944 error (_("May only run agent-printf on the target"));
9945 }
9946
9947 /* Implement the "breakpoint_hit" breakpoint_ops method for
9948 ranged breakpoints. */
9949
9950 static int
9951 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9952 struct address_space *aspace,
9953 CORE_ADDR bp_addr,
9954 const struct target_waitstatus *ws)
9955 {
9956 if (ws->kind != TARGET_WAITKIND_STOPPED
9957 || ws->value.sig != GDB_SIGNAL_TRAP)
9958 return 0;
9959
9960 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9961 bl->length, aspace, bp_addr);
9962 }
9963
9964 /* Implement the "resources_needed" breakpoint_ops method for
9965 ranged breakpoints. */
9966
9967 static int
9968 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9969 {
9970 return target_ranged_break_num_registers ();
9971 }
9972
9973 /* Implement the "print_it" breakpoint_ops method for
9974 ranged breakpoints. */
9975
9976 static enum print_stop_action
9977 print_it_ranged_breakpoint (bpstat bs)
9978 {
9979 struct breakpoint *b = bs->breakpoint_at;
9980 struct bp_location *bl = b->loc;
9981 struct ui_out *uiout = current_uiout;
9982
9983 gdb_assert (b->type == bp_hardware_breakpoint);
9984
9985 /* Ranged breakpoints have only one location. */
9986 gdb_assert (bl && bl->next == NULL);
9987
9988 annotate_breakpoint (b->number);
9989 if (b->disposition == disp_del)
9990 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
9991 else
9992 ui_out_text (uiout, "\nRanged breakpoint ");
9993 if (ui_out_is_mi_like_p (uiout))
9994 {
9995 ui_out_field_string (uiout, "reason",
9996 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9997 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
9998 }
9999 ui_out_field_int (uiout, "bkptno", b->number);
10000 ui_out_text (uiout, ", ");
10001
10002 return PRINT_SRC_AND_LOC;
10003 }
10004
10005 /* Implement the "print_one" breakpoint_ops method for
10006 ranged breakpoints. */
10007
10008 static void
10009 print_one_ranged_breakpoint (struct breakpoint *b,
10010 struct bp_location **last_loc)
10011 {
10012 struct bp_location *bl = b->loc;
10013 struct value_print_options opts;
10014 struct ui_out *uiout = current_uiout;
10015
10016 /* Ranged breakpoints have only one location. */
10017 gdb_assert (bl && bl->next == NULL);
10018
10019 get_user_print_options (&opts);
10020
10021 if (opts.addressprint)
10022 /* We don't print the address range here, it will be printed later
10023 by print_one_detail_ranged_breakpoint. */
10024 ui_out_field_skip (uiout, "addr");
10025 annotate_field (5);
10026 print_breakpoint_location (b, bl);
10027 *last_loc = bl;
10028 }
10029
10030 /* Implement the "print_one_detail" breakpoint_ops method for
10031 ranged breakpoints. */
10032
10033 static void
10034 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10035 struct ui_out *uiout)
10036 {
10037 CORE_ADDR address_start, address_end;
10038 struct bp_location *bl = b->loc;
10039 struct ui_file *stb = mem_fileopen ();
10040 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10041
10042 gdb_assert (bl);
10043
10044 address_start = bl->address;
10045 address_end = address_start + bl->length - 1;
10046
10047 ui_out_text (uiout, "\taddress range: ");
10048 fprintf_unfiltered (stb, "[%s, %s]",
10049 print_core_address (bl->gdbarch, address_start),
10050 print_core_address (bl->gdbarch, address_end));
10051 ui_out_field_stream (uiout, "addr", stb);
10052 ui_out_text (uiout, "\n");
10053
10054 do_cleanups (cleanup);
10055 }
10056
10057 /* Implement the "print_mention" breakpoint_ops method for
10058 ranged breakpoints. */
10059
10060 static void
10061 print_mention_ranged_breakpoint (struct breakpoint *b)
10062 {
10063 struct bp_location *bl = b->loc;
10064 struct ui_out *uiout = current_uiout;
10065
10066 gdb_assert (bl);
10067 gdb_assert (b->type == bp_hardware_breakpoint);
10068
10069 if (ui_out_is_mi_like_p (uiout))
10070 return;
10071
10072 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10073 b->number, paddress (bl->gdbarch, bl->address),
10074 paddress (bl->gdbarch, bl->address + bl->length - 1));
10075 }
10076
10077 /* Implement the "print_recreate" breakpoint_ops method for
10078 ranged breakpoints. */
10079
10080 static void
10081 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10082 {
10083 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10084 b->addr_string_range_end);
10085 print_recreate_thread (b, fp);
10086 }
10087
10088 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10089
10090 static struct breakpoint_ops ranged_breakpoint_ops;
10091
10092 /* Find the address where the end of the breakpoint range should be
10093 placed, given the SAL of the end of the range. This is so that if
10094 the user provides a line number, the end of the range is set to the
10095 last instruction of the given line. */
10096
10097 static CORE_ADDR
10098 find_breakpoint_range_end (struct symtab_and_line sal)
10099 {
10100 CORE_ADDR end;
10101
10102 /* If the user provided a PC value, use it. Otherwise,
10103 find the address of the end of the given location. */
10104 if (sal.explicit_pc)
10105 end = sal.pc;
10106 else
10107 {
10108 int ret;
10109 CORE_ADDR start;
10110
10111 ret = find_line_pc_range (sal, &start, &end);
10112 if (!ret)
10113 error (_("Could not find location of the end of the range."));
10114
10115 /* find_line_pc_range returns the start of the next line. */
10116 end--;
10117 }
10118
10119 return end;
10120 }
10121
10122 /* Implement the "break-range" CLI command. */
10123
10124 static void
10125 break_range_command (char *arg, int from_tty)
10126 {
10127 char *arg_start, *addr_string_start, *addr_string_end;
10128 struct linespec_result canonical_start, canonical_end;
10129 int bp_count, can_use_bp, length;
10130 CORE_ADDR end;
10131 struct breakpoint *b;
10132 struct symtab_and_line sal_start, sal_end;
10133 struct cleanup *cleanup_bkpt;
10134 struct linespec_sals *lsal_start, *lsal_end;
10135
10136 /* We don't support software ranged breakpoints. */
10137 if (target_ranged_break_num_registers () < 0)
10138 error (_("This target does not support hardware ranged breakpoints."));
10139
10140 bp_count = hw_breakpoint_used_count ();
10141 bp_count += target_ranged_break_num_registers ();
10142 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10143 bp_count, 0);
10144 if (can_use_bp < 0)
10145 error (_("Hardware breakpoints used exceeds limit."));
10146
10147 arg = skip_spaces (arg);
10148 if (arg == NULL || arg[0] == '\0')
10149 error(_("No address range specified."));
10150
10151 init_linespec_result (&canonical_start);
10152
10153 arg_start = arg;
10154 parse_breakpoint_sals (&arg, &canonical_start);
10155
10156 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10157
10158 if (arg[0] != ',')
10159 error (_("Too few arguments."));
10160 else if (VEC_empty (linespec_sals, canonical_start.sals))
10161 error (_("Could not find location of the beginning of the range."));
10162
10163 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10164
10165 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10166 || lsal_start->sals.nelts != 1)
10167 error (_("Cannot create a ranged breakpoint with multiple locations."));
10168
10169 sal_start = lsal_start->sals.sals[0];
10170 addr_string_start = savestring (arg_start, arg - arg_start);
10171 make_cleanup (xfree, addr_string_start);
10172
10173 arg++; /* Skip the comma. */
10174 arg = skip_spaces (arg);
10175
10176 /* Parse the end location. */
10177
10178 init_linespec_result (&canonical_end);
10179 arg_start = arg;
10180
10181 /* We call decode_line_full directly here instead of using
10182 parse_breakpoint_sals because we need to specify the start location's
10183 symtab and line as the default symtab and line for the end of the
10184 range. This makes it possible to have ranges like "foo.c:27, +14",
10185 where +14 means 14 lines from the start location. */
10186 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10187 sal_start.symtab, sal_start.line,
10188 &canonical_end, NULL, NULL);
10189
10190 make_cleanup_destroy_linespec_result (&canonical_end);
10191
10192 if (VEC_empty (linespec_sals, canonical_end.sals))
10193 error (_("Could not find location of the end of the range."));
10194
10195 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10196 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10197 || lsal_end->sals.nelts != 1)
10198 error (_("Cannot create a ranged breakpoint with multiple locations."));
10199
10200 sal_end = lsal_end->sals.sals[0];
10201 addr_string_end = savestring (arg_start, arg - arg_start);
10202 make_cleanup (xfree, addr_string_end);
10203
10204 end = find_breakpoint_range_end (sal_end);
10205 if (sal_start.pc > end)
10206 error (_("Invalid address range, end precedes start."));
10207
10208 length = end - sal_start.pc + 1;
10209 if (length < 0)
10210 /* Length overflowed. */
10211 error (_("Address range too large."));
10212 else if (length == 1)
10213 {
10214 /* This range is simple enough to be handled by
10215 the `hbreak' command. */
10216 hbreak_command (addr_string_start, 1);
10217
10218 do_cleanups (cleanup_bkpt);
10219
10220 return;
10221 }
10222
10223 /* Now set up the breakpoint. */
10224 b = set_raw_breakpoint (get_current_arch (), sal_start,
10225 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10226 set_breakpoint_count (breakpoint_count + 1);
10227 b->number = breakpoint_count;
10228 b->disposition = disp_donttouch;
10229 b->addr_string = xstrdup (addr_string_start);
10230 b->addr_string_range_end = xstrdup (addr_string_end);
10231 b->loc->length = length;
10232
10233 do_cleanups (cleanup_bkpt);
10234
10235 mention (b);
10236 observer_notify_breakpoint_created (b);
10237 update_global_location_list (1);
10238 }
10239
10240 /* Return non-zero if EXP is verified as constant. Returned zero
10241 means EXP is variable. Also the constant detection may fail for
10242 some constant expressions and in such case still falsely return
10243 zero. */
10244
10245 static int
10246 watchpoint_exp_is_const (const struct expression *exp)
10247 {
10248 int i = exp->nelts;
10249
10250 while (i > 0)
10251 {
10252 int oplenp, argsp;
10253
10254 /* We are only interested in the descriptor of each element. */
10255 operator_length (exp, i, &oplenp, &argsp);
10256 i -= oplenp;
10257
10258 switch (exp->elts[i].opcode)
10259 {
10260 case BINOP_ADD:
10261 case BINOP_SUB:
10262 case BINOP_MUL:
10263 case BINOP_DIV:
10264 case BINOP_REM:
10265 case BINOP_MOD:
10266 case BINOP_LSH:
10267 case BINOP_RSH:
10268 case BINOP_LOGICAL_AND:
10269 case BINOP_LOGICAL_OR:
10270 case BINOP_BITWISE_AND:
10271 case BINOP_BITWISE_IOR:
10272 case BINOP_BITWISE_XOR:
10273 case BINOP_EQUAL:
10274 case BINOP_NOTEQUAL:
10275 case BINOP_LESS:
10276 case BINOP_GTR:
10277 case BINOP_LEQ:
10278 case BINOP_GEQ:
10279 case BINOP_REPEAT:
10280 case BINOP_COMMA:
10281 case BINOP_EXP:
10282 case BINOP_MIN:
10283 case BINOP_MAX:
10284 case BINOP_INTDIV:
10285 case BINOP_CONCAT:
10286 case BINOP_IN:
10287 case BINOP_RANGE:
10288 case TERNOP_COND:
10289 case TERNOP_SLICE:
10290
10291 case OP_LONG:
10292 case OP_DOUBLE:
10293 case OP_DECFLOAT:
10294 case OP_LAST:
10295 case OP_COMPLEX:
10296 case OP_STRING:
10297 case OP_ARRAY:
10298 case OP_TYPE:
10299 case OP_TYPEOF:
10300 case OP_DECLTYPE:
10301 case OP_TYPEID:
10302 case OP_NAME:
10303 case OP_OBJC_NSSTRING:
10304
10305 case UNOP_NEG:
10306 case UNOP_LOGICAL_NOT:
10307 case UNOP_COMPLEMENT:
10308 case UNOP_ADDR:
10309 case UNOP_HIGH:
10310 case UNOP_CAST:
10311
10312 case UNOP_CAST_TYPE:
10313 case UNOP_REINTERPRET_CAST:
10314 case UNOP_DYNAMIC_CAST:
10315 /* Unary, binary and ternary operators: We have to check
10316 their operands. If they are constant, then so is the
10317 result of that operation. For instance, if A and B are
10318 determined to be constants, then so is "A + B".
10319
10320 UNOP_IND is one exception to the rule above, because the
10321 value of *ADDR is not necessarily a constant, even when
10322 ADDR is. */
10323 break;
10324
10325 case OP_VAR_VALUE:
10326 /* Check whether the associated symbol is a constant.
10327
10328 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10329 possible that a buggy compiler could mark a variable as
10330 constant even when it is not, and TYPE_CONST would return
10331 true in this case, while SYMBOL_CLASS wouldn't.
10332
10333 We also have to check for function symbols because they
10334 are always constant. */
10335 {
10336 struct symbol *s = exp->elts[i + 2].symbol;
10337
10338 if (SYMBOL_CLASS (s) != LOC_BLOCK
10339 && SYMBOL_CLASS (s) != LOC_CONST
10340 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10341 return 0;
10342 break;
10343 }
10344
10345 /* The default action is to return 0 because we are using
10346 the optimistic approach here: If we don't know something,
10347 then it is not a constant. */
10348 default:
10349 return 0;
10350 }
10351 }
10352
10353 return 1;
10354 }
10355
10356 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10357
10358 static void
10359 dtor_watchpoint (struct breakpoint *self)
10360 {
10361 struct watchpoint *w = (struct watchpoint *) self;
10362
10363 xfree (w->cond_exp);
10364 xfree (w->exp);
10365 xfree (w->exp_string);
10366 xfree (w->exp_string_reparse);
10367 value_free (w->val);
10368
10369 base_breakpoint_ops.dtor (self);
10370 }
10371
10372 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10373
10374 static void
10375 re_set_watchpoint (struct breakpoint *b)
10376 {
10377 struct watchpoint *w = (struct watchpoint *) b;
10378
10379 /* Watchpoint can be either on expression using entirely global
10380 variables, or it can be on local variables.
10381
10382 Watchpoints of the first kind are never auto-deleted, and even
10383 persist across program restarts. Since they can use variables
10384 from shared libraries, we need to reparse expression as libraries
10385 are loaded and unloaded.
10386
10387 Watchpoints on local variables can also change meaning as result
10388 of solib event. For example, if a watchpoint uses both a local
10389 and a global variables in expression, it's a local watchpoint,
10390 but unloading of a shared library will make the expression
10391 invalid. This is not a very common use case, but we still
10392 re-evaluate expression, to avoid surprises to the user.
10393
10394 Note that for local watchpoints, we re-evaluate it only if
10395 watchpoints frame id is still valid. If it's not, it means the
10396 watchpoint is out of scope and will be deleted soon. In fact,
10397 I'm not sure we'll ever be called in this case.
10398
10399 If a local watchpoint's frame id is still valid, then
10400 w->exp_valid_block is likewise valid, and we can safely use it.
10401
10402 Don't do anything about disabled watchpoints, since they will be
10403 reevaluated again when enabled. */
10404 update_watchpoint (w, 1 /* reparse */);
10405 }
10406
10407 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10408
10409 static int
10410 insert_watchpoint (struct bp_location *bl)
10411 {
10412 struct watchpoint *w = (struct watchpoint *) bl->owner;
10413 int length = w->exact ? 1 : bl->length;
10414
10415 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10416 w->cond_exp);
10417 }
10418
10419 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10420
10421 static int
10422 remove_watchpoint (struct bp_location *bl)
10423 {
10424 struct watchpoint *w = (struct watchpoint *) bl->owner;
10425 int length = w->exact ? 1 : bl->length;
10426
10427 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10428 w->cond_exp);
10429 }
10430
10431 static int
10432 breakpoint_hit_watchpoint (const struct bp_location *bl,
10433 struct address_space *aspace, CORE_ADDR bp_addr,
10434 const struct target_waitstatus *ws)
10435 {
10436 struct breakpoint *b = bl->owner;
10437 struct watchpoint *w = (struct watchpoint *) b;
10438
10439 /* Continuable hardware watchpoints are treated as non-existent if the
10440 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10441 some data address). Otherwise gdb won't stop on a break instruction
10442 in the code (not from a breakpoint) when a hardware watchpoint has
10443 been defined. Also skip watchpoints which we know did not trigger
10444 (did not match the data address). */
10445 if (is_hardware_watchpoint (b)
10446 && w->watchpoint_triggered == watch_triggered_no)
10447 return 0;
10448
10449 return 1;
10450 }
10451
10452 static void
10453 check_status_watchpoint (bpstat bs)
10454 {
10455 gdb_assert (is_watchpoint (bs->breakpoint_at));
10456
10457 bpstat_check_watchpoint (bs);
10458 }
10459
10460 /* Implement the "resources_needed" breakpoint_ops method for
10461 hardware watchpoints. */
10462
10463 static int
10464 resources_needed_watchpoint (const struct bp_location *bl)
10465 {
10466 struct watchpoint *w = (struct watchpoint *) bl->owner;
10467 int length = w->exact? 1 : bl->length;
10468
10469 return target_region_ok_for_hw_watchpoint (bl->address, length);
10470 }
10471
10472 /* Implement the "works_in_software_mode" breakpoint_ops method for
10473 hardware watchpoints. */
10474
10475 static int
10476 works_in_software_mode_watchpoint (const struct breakpoint *b)
10477 {
10478 /* Read and access watchpoints only work with hardware support. */
10479 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10480 }
10481
10482 static enum print_stop_action
10483 print_it_watchpoint (bpstat bs)
10484 {
10485 struct cleanup *old_chain;
10486 struct breakpoint *b;
10487 struct ui_file *stb;
10488 enum print_stop_action result;
10489 struct watchpoint *w;
10490 struct ui_out *uiout = current_uiout;
10491
10492 gdb_assert (bs->bp_location_at != NULL);
10493
10494 b = bs->breakpoint_at;
10495 w = (struct watchpoint *) b;
10496
10497 stb = mem_fileopen ();
10498 old_chain = make_cleanup_ui_file_delete (stb);
10499
10500 switch (b->type)
10501 {
10502 case bp_watchpoint:
10503 case bp_hardware_watchpoint:
10504 annotate_watchpoint (b->number);
10505 if (ui_out_is_mi_like_p (uiout))
10506 ui_out_field_string
10507 (uiout, "reason",
10508 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10509 mention (b);
10510 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10511 ui_out_text (uiout, "\nOld value = ");
10512 watchpoint_value_print (bs->old_val, stb);
10513 ui_out_field_stream (uiout, "old", stb);
10514 ui_out_text (uiout, "\nNew value = ");
10515 watchpoint_value_print (w->val, stb);
10516 ui_out_field_stream (uiout, "new", stb);
10517 ui_out_text (uiout, "\n");
10518 /* More than one watchpoint may have been triggered. */
10519 result = PRINT_UNKNOWN;
10520 break;
10521
10522 case bp_read_watchpoint:
10523 if (ui_out_is_mi_like_p (uiout))
10524 ui_out_field_string
10525 (uiout, "reason",
10526 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10527 mention (b);
10528 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10529 ui_out_text (uiout, "\nValue = ");
10530 watchpoint_value_print (w->val, stb);
10531 ui_out_field_stream (uiout, "value", stb);
10532 ui_out_text (uiout, "\n");
10533 result = PRINT_UNKNOWN;
10534 break;
10535
10536 case bp_access_watchpoint:
10537 if (bs->old_val != NULL)
10538 {
10539 annotate_watchpoint (b->number);
10540 if (ui_out_is_mi_like_p (uiout))
10541 ui_out_field_string
10542 (uiout, "reason",
10543 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10544 mention (b);
10545 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10546 ui_out_text (uiout, "\nOld value = ");
10547 watchpoint_value_print (bs->old_val, stb);
10548 ui_out_field_stream (uiout, "old", stb);
10549 ui_out_text (uiout, "\nNew value = ");
10550 }
10551 else
10552 {
10553 mention (b);
10554 if (ui_out_is_mi_like_p (uiout))
10555 ui_out_field_string
10556 (uiout, "reason",
10557 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10558 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10559 ui_out_text (uiout, "\nValue = ");
10560 }
10561 watchpoint_value_print (w->val, stb);
10562 ui_out_field_stream (uiout, "new", stb);
10563 ui_out_text (uiout, "\n");
10564 result = PRINT_UNKNOWN;
10565 break;
10566 default:
10567 result = PRINT_UNKNOWN;
10568 }
10569
10570 do_cleanups (old_chain);
10571 return result;
10572 }
10573
10574 /* Implement the "print_mention" breakpoint_ops method for hardware
10575 watchpoints. */
10576
10577 static void
10578 print_mention_watchpoint (struct breakpoint *b)
10579 {
10580 struct cleanup *ui_out_chain;
10581 struct watchpoint *w = (struct watchpoint *) b;
10582 struct ui_out *uiout = current_uiout;
10583
10584 switch (b->type)
10585 {
10586 case bp_watchpoint:
10587 ui_out_text (uiout, "Watchpoint ");
10588 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10589 break;
10590 case bp_hardware_watchpoint:
10591 ui_out_text (uiout, "Hardware watchpoint ");
10592 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10593 break;
10594 case bp_read_watchpoint:
10595 ui_out_text (uiout, "Hardware read watchpoint ");
10596 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10597 break;
10598 case bp_access_watchpoint:
10599 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10600 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10601 break;
10602 default:
10603 internal_error (__FILE__, __LINE__,
10604 _("Invalid hardware watchpoint type."));
10605 }
10606
10607 ui_out_field_int (uiout, "number", b->number);
10608 ui_out_text (uiout, ": ");
10609 ui_out_field_string (uiout, "exp", w->exp_string);
10610 do_cleanups (ui_out_chain);
10611 }
10612
10613 /* Implement the "print_recreate" breakpoint_ops method for
10614 watchpoints. */
10615
10616 static void
10617 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10618 {
10619 struct watchpoint *w = (struct watchpoint *) b;
10620
10621 switch (b->type)
10622 {
10623 case bp_watchpoint:
10624 case bp_hardware_watchpoint:
10625 fprintf_unfiltered (fp, "watch");
10626 break;
10627 case bp_read_watchpoint:
10628 fprintf_unfiltered (fp, "rwatch");
10629 break;
10630 case bp_access_watchpoint:
10631 fprintf_unfiltered (fp, "awatch");
10632 break;
10633 default:
10634 internal_error (__FILE__, __LINE__,
10635 _("Invalid watchpoint type."));
10636 }
10637
10638 fprintf_unfiltered (fp, " %s", w->exp_string);
10639 print_recreate_thread (b, fp);
10640 }
10641
10642 /* Implement the "explains_signal" breakpoint_ops method for
10643 watchpoints. */
10644
10645 static enum bpstat_signal_value
10646 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10647 {
10648 /* A software watchpoint cannot cause a signal other than
10649 GDB_SIGNAL_TRAP. */
10650 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10651 return BPSTAT_SIGNAL_NO;
10652
10653 return BPSTAT_SIGNAL_HIDE;
10654 }
10655
10656 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10657
10658 static struct breakpoint_ops watchpoint_breakpoint_ops;
10659
10660 /* Implement the "insert" breakpoint_ops method for
10661 masked hardware watchpoints. */
10662
10663 static int
10664 insert_masked_watchpoint (struct bp_location *bl)
10665 {
10666 struct watchpoint *w = (struct watchpoint *) bl->owner;
10667
10668 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10669 bl->watchpoint_type);
10670 }
10671
10672 /* Implement the "remove" breakpoint_ops method for
10673 masked hardware watchpoints. */
10674
10675 static int
10676 remove_masked_watchpoint (struct bp_location *bl)
10677 {
10678 struct watchpoint *w = (struct watchpoint *) bl->owner;
10679
10680 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10681 bl->watchpoint_type);
10682 }
10683
10684 /* Implement the "resources_needed" breakpoint_ops method for
10685 masked hardware watchpoints. */
10686
10687 static int
10688 resources_needed_masked_watchpoint (const struct bp_location *bl)
10689 {
10690 struct watchpoint *w = (struct watchpoint *) bl->owner;
10691
10692 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10693 }
10694
10695 /* Implement the "works_in_software_mode" breakpoint_ops method for
10696 masked hardware watchpoints. */
10697
10698 static int
10699 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10700 {
10701 return 0;
10702 }
10703
10704 /* Implement the "print_it" breakpoint_ops method for
10705 masked hardware watchpoints. */
10706
10707 static enum print_stop_action
10708 print_it_masked_watchpoint (bpstat bs)
10709 {
10710 struct breakpoint *b = bs->breakpoint_at;
10711 struct ui_out *uiout = current_uiout;
10712
10713 /* Masked watchpoints have only one location. */
10714 gdb_assert (b->loc && b->loc->next == NULL);
10715
10716 switch (b->type)
10717 {
10718 case bp_hardware_watchpoint:
10719 annotate_watchpoint (b->number);
10720 if (ui_out_is_mi_like_p (uiout))
10721 ui_out_field_string
10722 (uiout, "reason",
10723 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10724 break;
10725
10726 case bp_read_watchpoint:
10727 if (ui_out_is_mi_like_p (uiout))
10728 ui_out_field_string
10729 (uiout, "reason",
10730 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10731 break;
10732
10733 case bp_access_watchpoint:
10734 if (ui_out_is_mi_like_p (uiout))
10735 ui_out_field_string
10736 (uiout, "reason",
10737 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10738 break;
10739 default:
10740 internal_error (__FILE__, __LINE__,
10741 _("Invalid hardware watchpoint type."));
10742 }
10743
10744 mention (b);
10745 ui_out_text (uiout, _("\n\
10746 Check the underlying instruction at PC for the memory\n\
10747 address and value which triggered this watchpoint.\n"));
10748 ui_out_text (uiout, "\n");
10749
10750 /* More than one watchpoint may have been triggered. */
10751 return PRINT_UNKNOWN;
10752 }
10753
10754 /* Implement the "print_one_detail" breakpoint_ops method for
10755 masked hardware watchpoints. */
10756
10757 static void
10758 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10759 struct ui_out *uiout)
10760 {
10761 struct watchpoint *w = (struct watchpoint *) b;
10762
10763 /* Masked watchpoints have only one location. */
10764 gdb_assert (b->loc && b->loc->next == NULL);
10765
10766 ui_out_text (uiout, "\tmask ");
10767 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
10768 ui_out_text (uiout, "\n");
10769 }
10770
10771 /* Implement the "print_mention" breakpoint_ops method for
10772 masked hardware watchpoints. */
10773
10774 static void
10775 print_mention_masked_watchpoint (struct breakpoint *b)
10776 {
10777 struct watchpoint *w = (struct watchpoint *) b;
10778 struct ui_out *uiout = current_uiout;
10779 struct cleanup *ui_out_chain;
10780
10781 switch (b->type)
10782 {
10783 case bp_hardware_watchpoint:
10784 ui_out_text (uiout, "Masked hardware watchpoint ");
10785 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10786 break;
10787 case bp_read_watchpoint:
10788 ui_out_text (uiout, "Masked hardware read watchpoint ");
10789 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10790 break;
10791 case bp_access_watchpoint:
10792 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
10793 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10794 break;
10795 default:
10796 internal_error (__FILE__, __LINE__,
10797 _("Invalid hardware watchpoint type."));
10798 }
10799
10800 ui_out_field_int (uiout, "number", b->number);
10801 ui_out_text (uiout, ": ");
10802 ui_out_field_string (uiout, "exp", w->exp_string);
10803 do_cleanups (ui_out_chain);
10804 }
10805
10806 /* Implement the "print_recreate" breakpoint_ops method for
10807 masked hardware watchpoints. */
10808
10809 static void
10810 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10811 {
10812 struct watchpoint *w = (struct watchpoint *) b;
10813 char tmp[40];
10814
10815 switch (b->type)
10816 {
10817 case bp_hardware_watchpoint:
10818 fprintf_unfiltered (fp, "watch");
10819 break;
10820 case bp_read_watchpoint:
10821 fprintf_unfiltered (fp, "rwatch");
10822 break;
10823 case bp_access_watchpoint:
10824 fprintf_unfiltered (fp, "awatch");
10825 break;
10826 default:
10827 internal_error (__FILE__, __LINE__,
10828 _("Invalid hardware watchpoint type."));
10829 }
10830
10831 sprintf_vma (tmp, w->hw_wp_mask);
10832 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10833 print_recreate_thread (b, fp);
10834 }
10835
10836 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10837
10838 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10839
10840 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10841
10842 static int
10843 is_masked_watchpoint (const struct breakpoint *b)
10844 {
10845 return b->ops == &masked_watchpoint_breakpoint_ops;
10846 }
10847
10848 /* accessflag: hw_write: watch write,
10849 hw_read: watch read,
10850 hw_access: watch access (read or write) */
10851 static void
10852 watch_command_1 (const char *arg, int accessflag, int from_tty,
10853 int just_location, int internal)
10854 {
10855 volatile struct gdb_exception e;
10856 struct breakpoint *b, *scope_breakpoint = NULL;
10857 struct expression *exp;
10858 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10859 struct value *val, *mark, *result;
10860 struct frame_info *frame;
10861 const char *exp_start = NULL;
10862 const char *exp_end = NULL;
10863 const char *tok, *end_tok;
10864 int toklen = -1;
10865 const char *cond_start = NULL;
10866 const char *cond_end = NULL;
10867 enum bptype bp_type;
10868 int thread = -1;
10869 int pc = 0;
10870 /* Flag to indicate whether we are going to use masks for
10871 the hardware watchpoint. */
10872 int use_mask = 0;
10873 CORE_ADDR mask = 0;
10874 struct watchpoint *w;
10875 char *expression;
10876 struct cleanup *back_to;
10877
10878 /* Make sure that we actually have parameters to parse. */
10879 if (arg != NULL && arg[0] != '\0')
10880 {
10881 const char *value_start;
10882
10883 exp_end = arg + strlen (arg);
10884
10885 /* Look for "parameter value" pairs at the end
10886 of the arguments string. */
10887 for (tok = exp_end - 1; tok > arg; tok--)
10888 {
10889 /* Skip whitespace at the end of the argument list. */
10890 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10891 tok--;
10892
10893 /* Find the beginning of the last token.
10894 This is the value of the parameter. */
10895 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10896 tok--;
10897 value_start = tok + 1;
10898
10899 /* Skip whitespace. */
10900 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10901 tok--;
10902
10903 end_tok = tok;
10904
10905 /* Find the beginning of the second to last token.
10906 This is the parameter itself. */
10907 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10908 tok--;
10909 tok++;
10910 toklen = end_tok - tok + 1;
10911
10912 if (toklen == 6 && !strncmp (tok, "thread", 6))
10913 {
10914 /* At this point we've found a "thread" token, which means
10915 the user is trying to set a watchpoint that triggers
10916 only in a specific thread. */
10917 char *endp;
10918
10919 if (thread != -1)
10920 error(_("You can specify only one thread."));
10921
10922 /* Extract the thread ID from the next token. */
10923 thread = strtol (value_start, &endp, 0);
10924
10925 /* Check if the user provided a valid numeric value for the
10926 thread ID. */
10927 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10928 error (_("Invalid thread ID specification %s."), value_start);
10929
10930 /* Check if the thread actually exists. */
10931 if (!valid_thread_id (thread))
10932 invalid_thread_id_error (thread);
10933 }
10934 else if (toklen == 4 && !strncmp (tok, "mask", 4))
10935 {
10936 /* We've found a "mask" token, which means the user wants to
10937 create a hardware watchpoint that is going to have the mask
10938 facility. */
10939 struct value *mask_value, *mark;
10940
10941 if (use_mask)
10942 error(_("You can specify only one mask."));
10943
10944 use_mask = just_location = 1;
10945
10946 mark = value_mark ();
10947 mask_value = parse_to_comma_and_eval (&value_start);
10948 mask = value_as_address (mask_value);
10949 value_free_to_mark (mark);
10950 }
10951 else
10952 /* We didn't recognize what we found. We should stop here. */
10953 break;
10954
10955 /* Truncate the string and get rid of the "parameter value" pair before
10956 the arguments string is parsed by the parse_exp_1 function. */
10957 exp_end = tok;
10958 }
10959 }
10960 else
10961 exp_end = arg;
10962
10963 /* Parse the rest of the arguments. From here on out, everything
10964 is in terms of a newly allocated string instead of the original
10965 ARG. */
10966 innermost_block = NULL;
10967 expression = savestring (arg, exp_end - arg);
10968 back_to = make_cleanup (xfree, expression);
10969 exp_start = arg = expression;
10970 exp = parse_exp_1 (&arg, 0, 0, 0);
10971 exp_end = arg;
10972 /* Remove trailing whitespace from the expression before saving it.
10973 This makes the eventual display of the expression string a bit
10974 prettier. */
10975 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10976 --exp_end;
10977
10978 /* Checking if the expression is not constant. */
10979 if (watchpoint_exp_is_const (exp))
10980 {
10981 int len;
10982
10983 len = exp_end - exp_start;
10984 while (len > 0 && isspace (exp_start[len - 1]))
10985 len--;
10986 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10987 }
10988
10989 exp_valid_block = innermost_block;
10990 mark = value_mark ();
10991 fetch_subexp_value (exp, &pc, &val, &result, NULL);
10992
10993 if (just_location)
10994 {
10995 int ret;
10996
10997 exp_valid_block = NULL;
10998 val = value_addr (result);
10999 release_value (val);
11000 value_free_to_mark (mark);
11001
11002 if (use_mask)
11003 {
11004 ret = target_masked_watch_num_registers (value_as_address (val),
11005 mask);
11006 if (ret == -1)
11007 error (_("This target does not support masked watchpoints."));
11008 else if (ret == -2)
11009 error (_("Invalid mask or memory region."));
11010 }
11011 }
11012 else if (val != NULL)
11013 release_value (val);
11014
11015 tok = skip_spaces_const (arg);
11016 end_tok = skip_to_space_const (tok);
11017
11018 toklen = end_tok - tok;
11019 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11020 {
11021 struct expression *cond;
11022
11023 innermost_block = NULL;
11024 tok = cond_start = end_tok + 1;
11025 cond = parse_exp_1 (&tok, 0, 0, 0);
11026
11027 /* The watchpoint expression may not be local, but the condition
11028 may still be. E.g.: `watch global if local > 0'. */
11029 cond_exp_valid_block = innermost_block;
11030
11031 xfree (cond);
11032 cond_end = tok;
11033 }
11034 if (*tok)
11035 error (_("Junk at end of command."));
11036
11037 if (accessflag == hw_read)
11038 bp_type = bp_read_watchpoint;
11039 else if (accessflag == hw_access)
11040 bp_type = bp_access_watchpoint;
11041 else
11042 bp_type = bp_hardware_watchpoint;
11043
11044 frame = block_innermost_frame (exp_valid_block);
11045
11046 /* If the expression is "local", then set up a "watchpoint scope"
11047 breakpoint at the point where we've left the scope of the watchpoint
11048 expression. Create the scope breakpoint before the watchpoint, so
11049 that we will encounter it first in bpstat_stop_status. */
11050 if (exp_valid_block && frame)
11051 {
11052 if (frame_id_p (frame_unwind_caller_id (frame)))
11053 {
11054 scope_breakpoint
11055 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11056 frame_unwind_caller_pc (frame),
11057 bp_watchpoint_scope,
11058 &momentary_breakpoint_ops);
11059
11060 scope_breakpoint->enable_state = bp_enabled;
11061
11062 /* Automatically delete the breakpoint when it hits. */
11063 scope_breakpoint->disposition = disp_del;
11064
11065 /* Only break in the proper frame (help with recursion). */
11066 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11067
11068 /* Set the address at which we will stop. */
11069 scope_breakpoint->loc->gdbarch
11070 = frame_unwind_caller_arch (frame);
11071 scope_breakpoint->loc->requested_address
11072 = frame_unwind_caller_pc (frame);
11073 scope_breakpoint->loc->address
11074 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11075 scope_breakpoint->loc->requested_address,
11076 scope_breakpoint->type);
11077 }
11078 }
11079
11080 /* Now set up the breakpoint. */
11081
11082 w = XCNEW (struct watchpoint);
11083 b = &w->base;
11084 if (use_mask)
11085 init_raw_breakpoint_without_location (b, NULL, bp_type,
11086 &masked_watchpoint_breakpoint_ops);
11087 else
11088 init_raw_breakpoint_without_location (b, NULL, bp_type,
11089 &watchpoint_breakpoint_ops);
11090 b->thread = thread;
11091 b->disposition = disp_donttouch;
11092 b->pspace = current_program_space;
11093 w->exp = exp;
11094 w->exp_valid_block = exp_valid_block;
11095 w->cond_exp_valid_block = cond_exp_valid_block;
11096 if (just_location)
11097 {
11098 struct type *t = value_type (val);
11099 CORE_ADDR addr = value_as_address (val);
11100 char *name;
11101
11102 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11103 name = type_to_string (t);
11104
11105 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11106 core_addr_to_string (addr));
11107 xfree (name);
11108
11109 w->exp_string = xstrprintf ("-location %.*s",
11110 (int) (exp_end - exp_start), exp_start);
11111
11112 /* The above expression is in C. */
11113 b->language = language_c;
11114 }
11115 else
11116 w->exp_string = savestring (exp_start, exp_end - exp_start);
11117
11118 if (use_mask)
11119 {
11120 w->hw_wp_mask = mask;
11121 }
11122 else
11123 {
11124 w->val = val;
11125 w->val_valid = 1;
11126 }
11127
11128 if (cond_start)
11129 b->cond_string = savestring (cond_start, cond_end - cond_start);
11130 else
11131 b->cond_string = 0;
11132
11133 if (frame)
11134 {
11135 w->watchpoint_frame = get_frame_id (frame);
11136 w->watchpoint_thread = inferior_ptid;
11137 }
11138 else
11139 {
11140 w->watchpoint_frame = null_frame_id;
11141 w->watchpoint_thread = null_ptid;
11142 }
11143
11144 if (scope_breakpoint != NULL)
11145 {
11146 /* The scope breakpoint is related to the watchpoint. We will
11147 need to act on them together. */
11148 b->related_breakpoint = scope_breakpoint;
11149 scope_breakpoint->related_breakpoint = b;
11150 }
11151
11152 if (!just_location)
11153 value_free_to_mark (mark);
11154
11155 TRY_CATCH (e, RETURN_MASK_ALL)
11156 {
11157 /* Finally update the new watchpoint. This creates the locations
11158 that should be inserted. */
11159 update_watchpoint (w, 1);
11160 }
11161 if (e.reason < 0)
11162 {
11163 delete_breakpoint (b);
11164 throw_exception (e);
11165 }
11166
11167 install_breakpoint (internal, b, 1);
11168 do_cleanups (back_to);
11169 }
11170
11171 /* Return count of debug registers needed to watch the given expression.
11172 If the watchpoint cannot be handled in hardware return zero. */
11173
11174 static int
11175 can_use_hardware_watchpoint (struct value *v)
11176 {
11177 int found_memory_cnt = 0;
11178 struct value *head = v;
11179
11180 /* Did the user specifically forbid us to use hardware watchpoints? */
11181 if (!can_use_hw_watchpoints)
11182 return 0;
11183
11184 /* Make sure that the value of the expression depends only upon
11185 memory contents, and values computed from them within GDB. If we
11186 find any register references or function calls, we can't use a
11187 hardware watchpoint.
11188
11189 The idea here is that evaluating an expression generates a series
11190 of values, one holding the value of every subexpression. (The
11191 expression a*b+c has five subexpressions: a, b, a*b, c, and
11192 a*b+c.) GDB's values hold almost enough information to establish
11193 the criteria given above --- they identify memory lvalues,
11194 register lvalues, computed values, etcetera. So we can evaluate
11195 the expression, and then scan the chain of values that leaves
11196 behind to decide whether we can detect any possible change to the
11197 expression's final value using only hardware watchpoints.
11198
11199 However, I don't think that the values returned by inferior
11200 function calls are special in any way. So this function may not
11201 notice that an expression involving an inferior function call
11202 can't be watched with hardware watchpoints. FIXME. */
11203 for (; v; v = value_next (v))
11204 {
11205 if (VALUE_LVAL (v) == lval_memory)
11206 {
11207 if (v != head && value_lazy (v))
11208 /* A lazy memory lvalue in the chain is one that GDB never
11209 needed to fetch; we either just used its address (e.g.,
11210 `a' in `a.b') or we never needed it at all (e.g., `a'
11211 in `a,b'). This doesn't apply to HEAD; if that is
11212 lazy then it was not readable, but watch it anyway. */
11213 ;
11214 else
11215 {
11216 /* Ahh, memory we actually used! Check if we can cover
11217 it with hardware watchpoints. */
11218 struct type *vtype = check_typedef (value_type (v));
11219
11220 /* We only watch structs and arrays if user asked for it
11221 explicitly, never if they just happen to appear in a
11222 middle of some value chain. */
11223 if (v == head
11224 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11225 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11226 {
11227 CORE_ADDR vaddr = value_address (v);
11228 int len;
11229 int num_regs;
11230
11231 len = (target_exact_watchpoints
11232 && is_scalar_type_recursive (vtype))?
11233 1 : TYPE_LENGTH (value_type (v));
11234
11235 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11236 if (!num_regs)
11237 return 0;
11238 else
11239 found_memory_cnt += num_regs;
11240 }
11241 }
11242 }
11243 else if (VALUE_LVAL (v) != not_lval
11244 && deprecated_value_modifiable (v) == 0)
11245 return 0; /* These are values from the history (e.g., $1). */
11246 else if (VALUE_LVAL (v) == lval_register)
11247 return 0; /* Cannot watch a register with a HW watchpoint. */
11248 }
11249
11250 /* The expression itself looks suitable for using a hardware
11251 watchpoint, but give the target machine a chance to reject it. */
11252 return found_memory_cnt;
11253 }
11254
11255 void
11256 watch_command_wrapper (char *arg, int from_tty, int internal)
11257 {
11258 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11259 }
11260
11261 /* A helper function that looks for the "-location" argument and then
11262 calls watch_command_1. */
11263
11264 static void
11265 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11266 {
11267 int just_location = 0;
11268
11269 if (arg
11270 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11271 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11272 {
11273 arg = skip_spaces (arg);
11274 just_location = 1;
11275 }
11276
11277 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11278 }
11279
11280 static void
11281 watch_command (char *arg, int from_tty)
11282 {
11283 watch_maybe_just_location (arg, hw_write, from_tty);
11284 }
11285
11286 void
11287 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11288 {
11289 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11290 }
11291
11292 static void
11293 rwatch_command (char *arg, int from_tty)
11294 {
11295 watch_maybe_just_location (arg, hw_read, from_tty);
11296 }
11297
11298 void
11299 awatch_command_wrapper (char *arg, int from_tty, int internal)
11300 {
11301 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11302 }
11303
11304 static void
11305 awatch_command (char *arg, int from_tty)
11306 {
11307 watch_maybe_just_location (arg, hw_access, from_tty);
11308 }
11309 \f
11310
11311 /* Helper routines for the until_command routine in infcmd.c. Here
11312 because it uses the mechanisms of breakpoints. */
11313
11314 struct until_break_command_continuation_args
11315 {
11316 struct breakpoint *breakpoint;
11317 struct breakpoint *breakpoint2;
11318 int thread_num;
11319 };
11320
11321 /* This function is called by fetch_inferior_event via the
11322 cmd_continuation pointer, to complete the until command. It takes
11323 care of cleaning up the temporary breakpoints set up by the until
11324 command. */
11325 static void
11326 until_break_command_continuation (void *arg, int err)
11327 {
11328 struct until_break_command_continuation_args *a = arg;
11329
11330 delete_breakpoint (a->breakpoint);
11331 if (a->breakpoint2)
11332 delete_breakpoint (a->breakpoint2);
11333 delete_longjmp_breakpoint (a->thread_num);
11334 }
11335
11336 void
11337 until_break_command (char *arg, int from_tty, int anywhere)
11338 {
11339 struct symtabs_and_lines sals;
11340 struct symtab_and_line sal;
11341 struct frame_info *frame;
11342 struct gdbarch *frame_gdbarch;
11343 struct frame_id stack_frame_id;
11344 struct frame_id caller_frame_id;
11345 struct breakpoint *breakpoint;
11346 struct breakpoint *breakpoint2 = NULL;
11347 struct cleanup *old_chain;
11348 int thread;
11349 struct thread_info *tp;
11350
11351 clear_proceed_status ();
11352
11353 /* Set a breakpoint where the user wants it and at return from
11354 this function. */
11355
11356 if (last_displayed_sal_is_valid ())
11357 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11358 get_last_displayed_symtab (),
11359 get_last_displayed_line ());
11360 else
11361 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11362 (struct symtab *) NULL, 0);
11363
11364 if (sals.nelts != 1)
11365 error (_("Couldn't get information on specified line."));
11366
11367 sal = sals.sals[0];
11368 xfree (sals.sals); /* malloc'd, so freed. */
11369
11370 if (*arg)
11371 error (_("Junk at end of arguments."));
11372
11373 resolve_sal_pc (&sal);
11374
11375 tp = inferior_thread ();
11376 thread = tp->num;
11377
11378 old_chain = make_cleanup (null_cleanup, NULL);
11379
11380 /* Note linespec handling above invalidates the frame chain.
11381 Installing a breakpoint also invalidates the frame chain (as it
11382 may need to switch threads), so do any frame handling before
11383 that. */
11384
11385 frame = get_selected_frame (NULL);
11386 frame_gdbarch = get_frame_arch (frame);
11387 stack_frame_id = get_stack_frame_id (frame);
11388 caller_frame_id = frame_unwind_caller_id (frame);
11389
11390 /* Keep within the current frame, or in frames called by the current
11391 one. */
11392
11393 if (frame_id_p (caller_frame_id))
11394 {
11395 struct symtab_and_line sal2;
11396
11397 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11398 sal2.pc = frame_unwind_caller_pc (frame);
11399 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11400 sal2,
11401 caller_frame_id,
11402 bp_until);
11403 make_cleanup_delete_breakpoint (breakpoint2);
11404
11405 set_longjmp_breakpoint (tp, caller_frame_id);
11406 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11407 }
11408
11409 /* set_momentary_breakpoint could invalidate FRAME. */
11410 frame = NULL;
11411
11412 if (anywhere)
11413 /* If the user told us to continue until a specified location,
11414 we don't specify a frame at which we need to stop. */
11415 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11416 null_frame_id, bp_until);
11417 else
11418 /* Otherwise, specify the selected frame, because we want to stop
11419 only at the very same frame. */
11420 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11421 stack_frame_id, bp_until);
11422 make_cleanup_delete_breakpoint (breakpoint);
11423
11424 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11425
11426 /* If we are running asynchronously, and proceed call above has
11427 actually managed to start the target, arrange for breakpoints to
11428 be deleted when the target stops. Otherwise, we're already
11429 stopped and delete breakpoints via cleanup chain. */
11430
11431 if (target_can_async_p () && is_running (inferior_ptid))
11432 {
11433 struct until_break_command_continuation_args *args;
11434 args = xmalloc (sizeof (*args));
11435
11436 args->breakpoint = breakpoint;
11437 args->breakpoint2 = breakpoint2;
11438 args->thread_num = thread;
11439
11440 discard_cleanups (old_chain);
11441 add_continuation (inferior_thread (),
11442 until_break_command_continuation, args,
11443 xfree);
11444 }
11445 else
11446 do_cleanups (old_chain);
11447 }
11448
11449 /* This function attempts to parse an optional "if <cond>" clause
11450 from the arg string. If one is not found, it returns NULL.
11451
11452 Else, it returns a pointer to the condition string. (It does not
11453 attempt to evaluate the string against a particular block.) And,
11454 it updates arg to point to the first character following the parsed
11455 if clause in the arg string. */
11456
11457 char *
11458 ep_parse_optional_if_clause (char **arg)
11459 {
11460 char *cond_string;
11461
11462 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11463 return NULL;
11464
11465 /* Skip the "if" keyword. */
11466 (*arg) += 2;
11467
11468 /* Skip any extra leading whitespace, and record the start of the
11469 condition string. */
11470 *arg = skip_spaces (*arg);
11471 cond_string = *arg;
11472
11473 /* Assume that the condition occupies the remainder of the arg
11474 string. */
11475 (*arg) += strlen (cond_string);
11476
11477 return cond_string;
11478 }
11479
11480 /* Commands to deal with catching events, such as signals, exceptions,
11481 process start/exit, etc. */
11482
11483 typedef enum
11484 {
11485 catch_fork_temporary, catch_vfork_temporary,
11486 catch_fork_permanent, catch_vfork_permanent
11487 }
11488 catch_fork_kind;
11489
11490 static void
11491 catch_fork_command_1 (char *arg, int from_tty,
11492 struct cmd_list_element *command)
11493 {
11494 struct gdbarch *gdbarch = get_current_arch ();
11495 char *cond_string = NULL;
11496 catch_fork_kind fork_kind;
11497 int tempflag;
11498
11499 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11500 tempflag = (fork_kind == catch_fork_temporary
11501 || fork_kind == catch_vfork_temporary);
11502
11503 if (!arg)
11504 arg = "";
11505 arg = skip_spaces (arg);
11506
11507 /* The allowed syntax is:
11508 catch [v]fork
11509 catch [v]fork if <cond>
11510
11511 First, check if there's an if clause. */
11512 cond_string = ep_parse_optional_if_clause (&arg);
11513
11514 if ((*arg != '\0') && !isspace (*arg))
11515 error (_("Junk at end of arguments."));
11516
11517 /* If this target supports it, create a fork or vfork catchpoint
11518 and enable reporting of such events. */
11519 switch (fork_kind)
11520 {
11521 case catch_fork_temporary:
11522 case catch_fork_permanent:
11523 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11524 &catch_fork_breakpoint_ops);
11525 break;
11526 case catch_vfork_temporary:
11527 case catch_vfork_permanent:
11528 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11529 &catch_vfork_breakpoint_ops);
11530 break;
11531 default:
11532 error (_("unsupported or unknown fork kind; cannot catch it"));
11533 break;
11534 }
11535 }
11536
11537 static void
11538 catch_exec_command_1 (char *arg, int from_tty,
11539 struct cmd_list_element *command)
11540 {
11541 struct exec_catchpoint *c;
11542 struct gdbarch *gdbarch = get_current_arch ();
11543 int tempflag;
11544 char *cond_string = NULL;
11545
11546 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11547
11548 if (!arg)
11549 arg = "";
11550 arg = skip_spaces (arg);
11551
11552 /* The allowed syntax is:
11553 catch exec
11554 catch exec if <cond>
11555
11556 First, check if there's an if clause. */
11557 cond_string = ep_parse_optional_if_clause (&arg);
11558
11559 if ((*arg != '\0') && !isspace (*arg))
11560 error (_("Junk at end of arguments."));
11561
11562 c = XNEW (struct exec_catchpoint);
11563 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11564 &catch_exec_breakpoint_ops);
11565 c->exec_pathname = NULL;
11566
11567 install_breakpoint (0, &c->base, 1);
11568 }
11569
11570 void
11571 init_ada_exception_breakpoint (struct breakpoint *b,
11572 struct gdbarch *gdbarch,
11573 struct symtab_and_line sal,
11574 char *addr_string,
11575 const struct breakpoint_ops *ops,
11576 int tempflag,
11577 int from_tty)
11578 {
11579 if (from_tty)
11580 {
11581 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11582 if (!loc_gdbarch)
11583 loc_gdbarch = gdbarch;
11584
11585 describe_other_breakpoints (loc_gdbarch,
11586 sal.pspace, sal.pc, sal.section, -1);
11587 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11588 version for exception catchpoints, because two catchpoints
11589 used for different exception names will use the same address.
11590 In this case, a "breakpoint ... also set at..." warning is
11591 unproductive. Besides, the warning phrasing is also a bit
11592 inappropriate, we should use the word catchpoint, and tell
11593 the user what type of catchpoint it is. The above is good
11594 enough for now, though. */
11595 }
11596
11597 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11598
11599 b->enable_state = bp_enabled;
11600 b->disposition = tempflag ? disp_del : disp_donttouch;
11601 b->addr_string = addr_string;
11602 b->language = language_ada;
11603 }
11604
11605 /* Splits the argument using space as delimiter. Returns an xmalloc'd
11606 filter list, or NULL if no filtering is required. */
11607 static VEC(int) *
11608 catch_syscall_split_args (char *arg)
11609 {
11610 VEC(int) *result = NULL;
11611 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
11612
11613 while (*arg != '\0')
11614 {
11615 int i, syscall_number;
11616 char *endptr;
11617 char cur_name[128];
11618 struct syscall s;
11619
11620 /* Skip whitespace. */
11621 arg = skip_spaces (arg);
11622
11623 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
11624 cur_name[i] = arg[i];
11625 cur_name[i] = '\0';
11626 arg += i;
11627
11628 /* Check if the user provided a syscall name or a number. */
11629 syscall_number = (int) strtol (cur_name, &endptr, 0);
11630 if (*endptr == '\0')
11631 get_syscall_by_number (syscall_number, &s);
11632 else
11633 {
11634 /* We have a name. Let's check if it's valid and convert it
11635 to a number. */
11636 get_syscall_by_name (cur_name, &s);
11637
11638 if (s.number == UNKNOWN_SYSCALL)
11639 /* Here we have to issue an error instead of a warning,
11640 because GDB cannot do anything useful if there's no
11641 syscall number to be caught. */
11642 error (_("Unknown syscall name '%s'."), cur_name);
11643 }
11644
11645 /* Ok, it's valid. */
11646 VEC_safe_push (int, result, s.number);
11647 }
11648
11649 discard_cleanups (cleanup);
11650 return result;
11651 }
11652
11653 /* Implement the "catch syscall" command. */
11654
11655 static void
11656 catch_syscall_command_1 (char *arg, int from_tty,
11657 struct cmd_list_element *command)
11658 {
11659 int tempflag;
11660 VEC(int) *filter;
11661 struct syscall s;
11662 struct gdbarch *gdbarch = get_current_arch ();
11663
11664 /* Checking if the feature if supported. */
11665 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
11666 error (_("The feature 'catch syscall' is not supported on \
11667 this architecture yet."));
11668
11669 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11670
11671 arg = skip_spaces (arg);
11672
11673 /* We need to do this first "dummy" translation in order
11674 to get the syscall XML file loaded or, most important,
11675 to display a warning to the user if there's no XML file
11676 for his/her architecture. */
11677 get_syscall_by_number (0, &s);
11678
11679 /* The allowed syntax is:
11680 catch syscall
11681 catch syscall <name | number> [<name | number> ... <name | number>]
11682
11683 Let's check if there's a syscall name. */
11684
11685 if (arg != NULL)
11686 filter = catch_syscall_split_args (arg);
11687 else
11688 filter = NULL;
11689
11690 create_syscall_event_catchpoint (tempflag, filter,
11691 &catch_syscall_breakpoint_ops);
11692 }
11693
11694 static void
11695 catch_command (char *arg, int from_tty)
11696 {
11697 error (_("Catch requires an event name."));
11698 }
11699 \f
11700
11701 static void
11702 tcatch_command (char *arg, int from_tty)
11703 {
11704 error (_("Catch requires an event name."));
11705 }
11706
11707 /* A qsort comparison function that sorts breakpoints in order. */
11708
11709 static int
11710 compare_breakpoints (const void *a, const void *b)
11711 {
11712 const breakpoint_p *ba = a;
11713 uintptr_t ua = (uintptr_t) *ba;
11714 const breakpoint_p *bb = b;
11715 uintptr_t ub = (uintptr_t) *bb;
11716
11717 if ((*ba)->number < (*bb)->number)
11718 return -1;
11719 else if ((*ba)->number > (*bb)->number)
11720 return 1;
11721
11722 /* Now sort by address, in case we see, e..g, two breakpoints with
11723 the number 0. */
11724 if (ua < ub)
11725 return -1;
11726 return ua > ub ? 1 : 0;
11727 }
11728
11729 /* Delete breakpoints by address or line. */
11730
11731 static void
11732 clear_command (char *arg, int from_tty)
11733 {
11734 struct breakpoint *b, *prev;
11735 VEC(breakpoint_p) *found = 0;
11736 int ix;
11737 int default_match;
11738 struct symtabs_and_lines sals;
11739 struct symtab_and_line sal;
11740 int i;
11741 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11742
11743 if (arg)
11744 {
11745 sals = decode_line_with_current_source (arg,
11746 (DECODE_LINE_FUNFIRSTLINE
11747 | DECODE_LINE_LIST_MODE));
11748 make_cleanup (xfree, sals.sals);
11749 default_match = 0;
11750 }
11751 else
11752 {
11753 sals.sals = (struct symtab_and_line *)
11754 xmalloc (sizeof (struct symtab_and_line));
11755 make_cleanup (xfree, sals.sals);
11756 init_sal (&sal); /* Initialize to zeroes. */
11757
11758 /* Set sal's line, symtab, pc, and pspace to the values
11759 corresponding to the last call to print_frame_info. If the
11760 codepoint is not valid, this will set all the fields to 0. */
11761 get_last_displayed_sal (&sal);
11762 if (sal.symtab == 0)
11763 error (_("No source file specified."));
11764
11765 sals.sals[0] = sal;
11766 sals.nelts = 1;
11767
11768 default_match = 1;
11769 }
11770
11771 /* We don't call resolve_sal_pc here. That's not as bad as it
11772 seems, because all existing breakpoints typically have both
11773 file/line and pc set. So, if clear is given file/line, we can
11774 match this to existing breakpoint without obtaining pc at all.
11775
11776 We only support clearing given the address explicitly
11777 present in breakpoint table. Say, we've set breakpoint
11778 at file:line. There were several PC values for that file:line,
11779 due to optimization, all in one block.
11780
11781 We've picked one PC value. If "clear" is issued with another
11782 PC corresponding to the same file:line, the breakpoint won't
11783 be cleared. We probably can still clear the breakpoint, but
11784 since the other PC value is never presented to user, user
11785 can only find it by guessing, and it does not seem important
11786 to support that. */
11787
11788 /* For each line spec given, delete bps which correspond to it. Do
11789 it in two passes, solely to preserve the current behavior that
11790 from_tty is forced true if we delete more than one
11791 breakpoint. */
11792
11793 found = NULL;
11794 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11795 for (i = 0; i < sals.nelts; i++)
11796 {
11797 const char *sal_fullname;
11798
11799 /* If exact pc given, clear bpts at that pc.
11800 If line given (pc == 0), clear all bpts on specified line.
11801 If defaulting, clear all bpts on default line
11802 or at default pc.
11803
11804 defaulting sal.pc != 0 tests to do
11805
11806 0 1 pc
11807 1 1 pc _and_ line
11808 0 0 line
11809 1 0 <can't happen> */
11810
11811 sal = sals.sals[i];
11812 sal_fullname = (sal.symtab == NULL
11813 ? NULL : symtab_to_fullname (sal.symtab));
11814
11815 /* Find all matching breakpoints and add them to 'found'. */
11816 ALL_BREAKPOINTS (b)
11817 {
11818 int match = 0;
11819 /* Are we going to delete b? */
11820 if (b->type != bp_none && !is_watchpoint (b))
11821 {
11822 struct bp_location *loc = b->loc;
11823 for (; loc; loc = loc->next)
11824 {
11825 /* If the user specified file:line, don't allow a PC
11826 match. This matches historical gdb behavior. */
11827 int pc_match = (!sal.explicit_line
11828 && sal.pc
11829 && (loc->pspace == sal.pspace)
11830 && (loc->address == sal.pc)
11831 && (!section_is_overlay (loc->section)
11832 || loc->section == sal.section));
11833 int line_match = 0;
11834
11835 if ((default_match || sal.explicit_line)
11836 && loc->symtab != NULL
11837 && sal_fullname != NULL
11838 && sal.pspace == loc->pspace
11839 && loc->line_number == sal.line
11840 && filename_cmp (symtab_to_fullname (loc->symtab),
11841 sal_fullname) == 0)
11842 line_match = 1;
11843
11844 if (pc_match || line_match)
11845 {
11846 match = 1;
11847 break;
11848 }
11849 }
11850 }
11851
11852 if (match)
11853 VEC_safe_push(breakpoint_p, found, b);
11854 }
11855 }
11856
11857 /* Now go thru the 'found' chain and delete them. */
11858 if (VEC_empty(breakpoint_p, found))
11859 {
11860 if (arg)
11861 error (_("No breakpoint at %s."), arg);
11862 else
11863 error (_("No breakpoint at this line."));
11864 }
11865
11866 /* Remove duplicates from the vec. */
11867 qsort (VEC_address (breakpoint_p, found),
11868 VEC_length (breakpoint_p, found),
11869 sizeof (breakpoint_p),
11870 compare_breakpoints);
11871 prev = VEC_index (breakpoint_p, found, 0);
11872 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
11873 {
11874 if (b == prev)
11875 {
11876 VEC_ordered_remove (breakpoint_p, found, ix);
11877 --ix;
11878 }
11879 }
11880
11881 if (VEC_length(breakpoint_p, found) > 1)
11882 from_tty = 1; /* Always report if deleted more than one. */
11883 if (from_tty)
11884 {
11885 if (VEC_length(breakpoint_p, found) == 1)
11886 printf_unfiltered (_("Deleted breakpoint "));
11887 else
11888 printf_unfiltered (_("Deleted breakpoints "));
11889 }
11890
11891 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
11892 {
11893 if (from_tty)
11894 printf_unfiltered ("%d ", b->number);
11895 delete_breakpoint (b);
11896 }
11897 if (from_tty)
11898 putchar_unfiltered ('\n');
11899
11900 do_cleanups (cleanups);
11901 }
11902 \f
11903 /* Delete breakpoint in BS if they are `delete' breakpoints and
11904 all breakpoints that are marked for deletion, whether hit or not.
11905 This is called after any breakpoint is hit, or after errors. */
11906
11907 void
11908 breakpoint_auto_delete (bpstat bs)
11909 {
11910 struct breakpoint *b, *b_tmp;
11911
11912 for (; bs; bs = bs->next)
11913 if (bs->breakpoint_at
11914 && bs->breakpoint_at->disposition == disp_del
11915 && bs->stop)
11916 delete_breakpoint (bs->breakpoint_at);
11917
11918 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11919 {
11920 if (b->disposition == disp_del_at_next_stop)
11921 delete_breakpoint (b);
11922 }
11923 }
11924
11925 /* A comparison function for bp_location AP and BP being interfaced to
11926 qsort. Sort elements primarily by their ADDRESS (no matter what
11927 does breakpoint_address_is_meaningful say for its OWNER),
11928 secondarily by ordering first bp_permanent OWNERed elements and
11929 terciarily just ensuring the array is sorted stable way despite
11930 qsort being an unstable algorithm. */
11931
11932 static int
11933 bp_location_compare (const void *ap, const void *bp)
11934 {
11935 struct bp_location *a = *(void **) ap;
11936 struct bp_location *b = *(void **) bp;
11937 /* A and B come from existing breakpoints having non-NULL OWNER. */
11938 int a_perm = a->owner->enable_state == bp_permanent;
11939 int b_perm = b->owner->enable_state == bp_permanent;
11940
11941 if (a->address != b->address)
11942 return (a->address > b->address) - (a->address < b->address);
11943
11944 /* Sort locations at the same address by their pspace number, keeping
11945 locations of the same inferior (in a multi-inferior environment)
11946 grouped. */
11947
11948 if (a->pspace->num != b->pspace->num)
11949 return ((a->pspace->num > b->pspace->num)
11950 - (a->pspace->num < b->pspace->num));
11951
11952 /* Sort permanent breakpoints first. */
11953 if (a_perm != b_perm)
11954 return (a_perm < b_perm) - (a_perm > b_perm);
11955
11956 /* Make the internal GDB representation stable across GDB runs
11957 where A and B memory inside GDB can differ. Breakpoint locations of
11958 the same type at the same address can be sorted in arbitrary order. */
11959
11960 if (a->owner->number != b->owner->number)
11961 return ((a->owner->number > b->owner->number)
11962 - (a->owner->number < b->owner->number));
11963
11964 return (a > b) - (a < b);
11965 }
11966
11967 /* Set bp_location_placed_address_before_address_max and
11968 bp_location_shadow_len_after_address_max according to the current
11969 content of the bp_location array. */
11970
11971 static void
11972 bp_location_target_extensions_update (void)
11973 {
11974 struct bp_location *bl, **blp_tmp;
11975
11976 bp_location_placed_address_before_address_max = 0;
11977 bp_location_shadow_len_after_address_max = 0;
11978
11979 ALL_BP_LOCATIONS (bl, blp_tmp)
11980 {
11981 CORE_ADDR start, end, addr;
11982
11983 if (!bp_location_has_shadow (bl))
11984 continue;
11985
11986 start = bl->target_info.placed_address;
11987 end = start + bl->target_info.shadow_len;
11988
11989 gdb_assert (bl->address >= start);
11990 addr = bl->address - start;
11991 if (addr > bp_location_placed_address_before_address_max)
11992 bp_location_placed_address_before_address_max = addr;
11993
11994 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11995
11996 gdb_assert (bl->address < end);
11997 addr = end - bl->address;
11998 if (addr > bp_location_shadow_len_after_address_max)
11999 bp_location_shadow_len_after_address_max = addr;
12000 }
12001 }
12002
12003 /* Download tracepoint locations if they haven't been. */
12004
12005 static void
12006 download_tracepoint_locations (void)
12007 {
12008 struct breakpoint *b;
12009 struct cleanup *old_chain;
12010
12011 if (!target_can_download_tracepoint ())
12012 return;
12013
12014 old_chain = save_current_space_and_thread ();
12015
12016 ALL_TRACEPOINTS (b)
12017 {
12018 struct bp_location *bl;
12019 struct tracepoint *t;
12020 int bp_location_downloaded = 0;
12021
12022 if ((b->type == bp_fast_tracepoint
12023 ? !may_insert_fast_tracepoints
12024 : !may_insert_tracepoints))
12025 continue;
12026
12027 for (bl = b->loc; bl; bl = bl->next)
12028 {
12029 /* In tracepoint, locations are _never_ duplicated, so
12030 should_be_inserted is equivalent to
12031 unduplicated_should_be_inserted. */
12032 if (!should_be_inserted (bl) || bl->inserted)
12033 continue;
12034
12035 switch_to_program_space_and_thread (bl->pspace);
12036
12037 target_download_tracepoint (bl);
12038
12039 bl->inserted = 1;
12040 bp_location_downloaded = 1;
12041 }
12042 t = (struct tracepoint *) b;
12043 t->number_on_target = b->number;
12044 if (bp_location_downloaded)
12045 observer_notify_breakpoint_modified (b);
12046 }
12047
12048 do_cleanups (old_chain);
12049 }
12050
12051 /* Swap the insertion/duplication state between two locations. */
12052
12053 static void
12054 swap_insertion (struct bp_location *left, struct bp_location *right)
12055 {
12056 const int left_inserted = left->inserted;
12057 const int left_duplicate = left->duplicate;
12058 const int left_needs_update = left->needs_update;
12059 const struct bp_target_info left_target_info = left->target_info;
12060
12061 /* Locations of tracepoints can never be duplicated. */
12062 if (is_tracepoint (left->owner))
12063 gdb_assert (!left->duplicate);
12064 if (is_tracepoint (right->owner))
12065 gdb_assert (!right->duplicate);
12066
12067 left->inserted = right->inserted;
12068 left->duplicate = right->duplicate;
12069 left->needs_update = right->needs_update;
12070 left->target_info = right->target_info;
12071 right->inserted = left_inserted;
12072 right->duplicate = left_duplicate;
12073 right->needs_update = left_needs_update;
12074 right->target_info = left_target_info;
12075 }
12076
12077 /* Force the re-insertion of the locations at ADDRESS. This is called
12078 once a new/deleted/modified duplicate location is found and we are evaluating
12079 conditions on the target's side. Such conditions need to be updated on
12080 the target. */
12081
12082 static void
12083 force_breakpoint_reinsertion (struct bp_location *bl)
12084 {
12085 struct bp_location **locp = NULL, **loc2p;
12086 struct bp_location *loc;
12087 CORE_ADDR address = 0;
12088 int pspace_num;
12089
12090 address = bl->address;
12091 pspace_num = bl->pspace->num;
12092
12093 /* This is only meaningful if the target is
12094 evaluating conditions and if the user has
12095 opted for condition evaluation on the target's
12096 side. */
12097 if (gdb_evaluates_breakpoint_condition_p ()
12098 || !target_supports_evaluation_of_breakpoint_conditions ())
12099 return;
12100
12101 /* Flag all breakpoint locations with this address and
12102 the same program space as the location
12103 as "its condition has changed". We need to
12104 update the conditions on the target's side. */
12105 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12106 {
12107 loc = *loc2p;
12108
12109 if (!is_breakpoint (loc->owner)
12110 || pspace_num != loc->pspace->num)
12111 continue;
12112
12113 /* Flag the location appropriately. We use a different state to
12114 let everyone know that we already updated the set of locations
12115 with addr bl->address and program space bl->pspace. This is so
12116 we don't have to keep calling these functions just to mark locations
12117 that have already been marked. */
12118 loc->condition_changed = condition_updated;
12119
12120 /* Free the agent expression bytecode as well. We will compute
12121 it later on. */
12122 if (loc->cond_bytecode)
12123 {
12124 free_agent_expr (loc->cond_bytecode);
12125 loc->cond_bytecode = NULL;
12126 }
12127 }
12128 }
12129
12130 /* If SHOULD_INSERT is false, do not insert any breakpoint locations
12131 into the inferior, only remove already-inserted locations that no
12132 longer should be inserted. Functions that delete a breakpoint or
12133 breakpoints should pass false, so that deleting a breakpoint
12134 doesn't have the side effect of inserting the locations of other
12135 breakpoints that are marked not-inserted, but should_be_inserted
12136 returns true on them.
12137
12138 This behaviour is useful is situations close to tear-down -- e.g.,
12139 after an exec, while the target still has execution, but breakpoint
12140 shadows of the previous executable image should *NOT* be restored
12141 to the new image; or before detaching, where the target still has
12142 execution and wants to delete breakpoints from GDB's lists, and all
12143 breakpoints had already been removed from the inferior. */
12144
12145 static void
12146 update_global_location_list (int should_insert)
12147 {
12148 struct breakpoint *b;
12149 struct bp_location **locp, *loc;
12150 struct cleanup *cleanups;
12151 /* Last breakpoint location address that was marked for update. */
12152 CORE_ADDR last_addr = 0;
12153 /* Last breakpoint location program space that was marked for update. */
12154 int last_pspace_num = -1;
12155
12156 /* Used in the duplicates detection below. When iterating over all
12157 bp_locations, points to the first bp_location of a given address.
12158 Breakpoints and watchpoints of different types are never
12159 duplicates of each other. Keep one pointer for each type of
12160 breakpoint/watchpoint, so we only need to loop over all locations
12161 once. */
12162 struct bp_location *bp_loc_first; /* breakpoint */
12163 struct bp_location *wp_loc_first; /* hardware watchpoint */
12164 struct bp_location *awp_loc_first; /* access watchpoint */
12165 struct bp_location *rwp_loc_first; /* read watchpoint */
12166
12167 /* Saved former bp_location array which we compare against the newly
12168 built bp_location from the current state of ALL_BREAKPOINTS. */
12169 struct bp_location **old_location, **old_locp;
12170 unsigned old_location_count;
12171
12172 old_location = bp_location;
12173 old_location_count = bp_location_count;
12174 bp_location = NULL;
12175 bp_location_count = 0;
12176 cleanups = make_cleanup (xfree, old_location);
12177
12178 ALL_BREAKPOINTS (b)
12179 for (loc = b->loc; loc; loc = loc->next)
12180 bp_location_count++;
12181
12182 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12183 locp = bp_location;
12184 ALL_BREAKPOINTS (b)
12185 for (loc = b->loc; loc; loc = loc->next)
12186 *locp++ = loc;
12187 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12188 bp_location_compare);
12189
12190 bp_location_target_extensions_update ();
12191
12192 /* Identify bp_location instances that are no longer present in the
12193 new list, and therefore should be freed. Note that it's not
12194 necessary that those locations should be removed from inferior --
12195 if there's another location at the same address (previously
12196 marked as duplicate), we don't need to remove/insert the
12197 location.
12198
12199 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12200 and former bp_location array state respectively. */
12201
12202 locp = bp_location;
12203 for (old_locp = old_location; old_locp < old_location + old_location_count;
12204 old_locp++)
12205 {
12206 struct bp_location *old_loc = *old_locp;
12207 struct bp_location **loc2p;
12208
12209 /* Tells if 'old_loc' is found among the new locations. If
12210 not, we have to free it. */
12211 int found_object = 0;
12212 /* Tells if the location should remain inserted in the target. */
12213 int keep_in_target = 0;
12214 int removed = 0;
12215
12216 /* Skip LOCP entries which will definitely never be needed.
12217 Stop either at or being the one matching OLD_LOC. */
12218 while (locp < bp_location + bp_location_count
12219 && (*locp)->address < old_loc->address)
12220 locp++;
12221
12222 for (loc2p = locp;
12223 (loc2p < bp_location + bp_location_count
12224 && (*loc2p)->address == old_loc->address);
12225 loc2p++)
12226 {
12227 /* Check if this is a new/duplicated location or a duplicated
12228 location that had its condition modified. If so, we want to send
12229 its condition to the target if evaluation of conditions is taking
12230 place there. */
12231 if ((*loc2p)->condition_changed == condition_modified
12232 && (last_addr != old_loc->address
12233 || last_pspace_num != old_loc->pspace->num))
12234 {
12235 force_breakpoint_reinsertion (*loc2p);
12236 last_pspace_num = old_loc->pspace->num;
12237 }
12238
12239 if (*loc2p == old_loc)
12240 found_object = 1;
12241 }
12242
12243 /* We have already handled this address, update it so that we don't
12244 have to go through updates again. */
12245 last_addr = old_loc->address;
12246
12247 /* Target-side condition evaluation: Handle deleted locations. */
12248 if (!found_object)
12249 force_breakpoint_reinsertion (old_loc);
12250
12251 /* If this location is no longer present, and inserted, look if
12252 there's maybe a new location at the same address. If so,
12253 mark that one inserted, and don't remove this one. This is
12254 needed so that we don't have a time window where a breakpoint
12255 at certain location is not inserted. */
12256
12257 if (old_loc->inserted)
12258 {
12259 /* If the location is inserted now, we might have to remove
12260 it. */
12261
12262 if (found_object && should_be_inserted (old_loc))
12263 {
12264 /* The location is still present in the location list,
12265 and still should be inserted. Don't do anything. */
12266 keep_in_target = 1;
12267 }
12268 else
12269 {
12270 /* This location still exists, but it won't be kept in the
12271 target since it may have been disabled. We proceed to
12272 remove its target-side condition. */
12273
12274 /* The location is either no longer present, or got
12275 disabled. See if there's another location at the
12276 same address, in which case we don't need to remove
12277 this one from the target. */
12278
12279 /* OLD_LOC comes from existing struct breakpoint. */
12280 if (breakpoint_address_is_meaningful (old_loc->owner))
12281 {
12282 for (loc2p = locp;
12283 (loc2p < bp_location + bp_location_count
12284 && (*loc2p)->address == old_loc->address);
12285 loc2p++)
12286 {
12287 struct bp_location *loc2 = *loc2p;
12288
12289 if (breakpoint_locations_match (loc2, old_loc))
12290 {
12291 /* Read watchpoint locations are switched to
12292 access watchpoints, if the former are not
12293 supported, but the latter are. */
12294 if (is_hardware_watchpoint (old_loc->owner))
12295 {
12296 gdb_assert (is_hardware_watchpoint (loc2->owner));
12297 loc2->watchpoint_type = old_loc->watchpoint_type;
12298 }
12299
12300 /* loc2 is a duplicated location. We need to check
12301 if it should be inserted in case it will be
12302 unduplicated. */
12303 if (loc2 != old_loc
12304 && unduplicated_should_be_inserted (loc2))
12305 {
12306 swap_insertion (old_loc, loc2);
12307 keep_in_target = 1;
12308 break;
12309 }
12310 }
12311 }
12312 }
12313 }
12314
12315 if (!keep_in_target)
12316 {
12317 if (remove_breakpoint (old_loc, mark_uninserted))
12318 {
12319 /* This is just about all we can do. We could keep
12320 this location on the global list, and try to
12321 remove it next time, but there's no particular
12322 reason why we will succeed next time.
12323
12324 Note that at this point, old_loc->owner is still
12325 valid, as delete_breakpoint frees the breakpoint
12326 only after calling us. */
12327 printf_filtered (_("warning: Error removing "
12328 "breakpoint %d\n"),
12329 old_loc->owner->number);
12330 }
12331 removed = 1;
12332 }
12333 }
12334
12335 if (!found_object)
12336 {
12337 if (removed && non_stop
12338 && breakpoint_address_is_meaningful (old_loc->owner)
12339 && !is_hardware_watchpoint (old_loc->owner))
12340 {
12341 /* This location was removed from the target. In
12342 non-stop mode, a race condition is possible where
12343 we've removed a breakpoint, but stop events for that
12344 breakpoint are already queued and will arrive later.
12345 We apply an heuristic to be able to distinguish such
12346 SIGTRAPs from other random SIGTRAPs: we keep this
12347 breakpoint location for a bit, and will retire it
12348 after we see some number of events. The theory here
12349 is that reporting of events should, "on the average",
12350 be fair, so after a while we'll see events from all
12351 threads that have anything of interest, and no longer
12352 need to keep this breakpoint location around. We
12353 don't hold locations forever so to reduce chances of
12354 mistaking a non-breakpoint SIGTRAP for a breakpoint
12355 SIGTRAP.
12356
12357 The heuristic failing can be disastrous on
12358 decr_pc_after_break targets.
12359
12360 On decr_pc_after_break targets, like e.g., x86-linux,
12361 if we fail to recognize a late breakpoint SIGTRAP,
12362 because events_till_retirement has reached 0 too
12363 soon, we'll fail to do the PC adjustment, and report
12364 a random SIGTRAP to the user. When the user resumes
12365 the inferior, it will most likely immediately crash
12366 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12367 corrupted, because of being resumed e.g., in the
12368 middle of a multi-byte instruction, or skipped a
12369 one-byte instruction. This was actually seen happen
12370 on native x86-linux, and should be less rare on
12371 targets that do not support new thread events, like
12372 remote, due to the heuristic depending on
12373 thread_count.
12374
12375 Mistaking a random SIGTRAP for a breakpoint trap
12376 causes similar symptoms (PC adjustment applied when
12377 it shouldn't), but then again, playing with SIGTRAPs
12378 behind the debugger's back is asking for trouble.
12379
12380 Since hardware watchpoint traps are always
12381 distinguishable from other traps, so we don't need to
12382 apply keep hardware watchpoint moribund locations
12383 around. We simply always ignore hardware watchpoint
12384 traps we can no longer explain. */
12385
12386 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12387 old_loc->owner = NULL;
12388
12389 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12390 }
12391 else
12392 {
12393 old_loc->owner = NULL;
12394 decref_bp_location (&old_loc);
12395 }
12396 }
12397 }
12398
12399 /* Rescan breakpoints at the same address and section, marking the
12400 first one as "first" and any others as "duplicates". This is so
12401 that the bpt instruction is only inserted once. If we have a
12402 permanent breakpoint at the same place as BPT, make that one the
12403 official one, and the rest as duplicates. Permanent breakpoints
12404 are sorted first for the same address.
12405
12406 Do the same for hardware watchpoints, but also considering the
12407 watchpoint's type (regular/access/read) and length. */
12408
12409 bp_loc_first = NULL;
12410 wp_loc_first = NULL;
12411 awp_loc_first = NULL;
12412 rwp_loc_first = NULL;
12413 ALL_BP_LOCATIONS (loc, locp)
12414 {
12415 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12416 non-NULL. */
12417 struct bp_location **loc_first_p;
12418 b = loc->owner;
12419
12420 if (!unduplicated_should_be_inserted (loc)
12421 || !breakpoint_address_is_meaningful (b)
12422 /* Don't detect duplicate for tracepoint locations because they are
12423 never duplicated. See the comments in field `duplicate' of
12424 `struct bp_location'. */
12425 || is_tracepoint (b))
12426 {
12427 /* Clear the condition modification flag. */
12428 loc->condition_changed = condition_unchanged;
12429 continue;
12430 }
12431
12432 /* Permanent breakpoint should always be inserted. */
12433 if (b->enable_state == bp_permanent && ! loc->inserted)
12434 internal_error (__FILE__, __LINE__,
12435 _("allegedly permanent breakpoint is not "
12436 "actually inserted"));
12437
12438 if (b->type == bp_hardware_watchpoint)
12439 loc_first_p = &wp_loc_first;
12440 else if (b->type == bp_read_watchpoint)
12441 loc_first_p = &rwp_loc_first;
12442 else if (b->type == bp_access_watchpoint)
12443 loc_first_p = &awp_loc_first;
12444 else
12445 loc_first_p = &bp_loc_first;
12446
12447 if (*loc_first_p == NULL
12448 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12449 || !breakpoint_locations_match (loc, *loc_first_p))
12450 {
12451 *loc_first_p = loc;
12452 loc->duplicate = 0;
12453
12454 if (is_breakpoint (loc->owner) && loc->condition_changed)
12455 {
12456 loc->needs_update = 1;
12457 /* Clear the condition modification flag. */
12458 loc->condition_changed = condition_unchanged;
12459 }
12460 continue;
12461 }
12462
12463
12464 /* This and the above ensure the invariant that the first location
12465 is not duplicated, and is the inserted one.
12466 All following are marked as duplicated, and are not inserted. */
12467 if (loc->inserted)
12468 swap_insertion (loc, *loc_first_p);
12469 loc->duplicate = 1;
12470
12471 /* Clear the condition modification flag. */
12472 loc->condition_changed = condition_unchanged;
12473
12474 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12475 && b->enable_state != bp_permanent)
12476 internal_error (__FILE__, __LINE__,
12477 _("another breakpoint was inserted on top of "
12478 "a permanent breakpoint"));
12479 }
12480
12481 if (breakpoints_always_inserted_mode ()
12482 && (have_live_inferiors ()
12483 || (gdbarch_has_global_breakpoints (target_gdbarch ()))))
12484 {
12485 if (should_insert)
12486 insert_breakpoint_locations ();
12487 else
12488 {
12489 /* Though should_insert is false, we may need to update conditions
12490 on the target's side if it is evaluating such conditions. We
12491 only update conditions for locations that are marked
12492 "needs_update". */
12493 update_inserted_breakpoint_locations ();
12494 }
12495 }
12496
12497 if (should_insert)
12498 download_tracepoint_locations ();
12499
12500 do_cleanups (cleanups);
12501 }
12502
12503 void
12504 breakpoint_retire_moribund (void)
12505 {
12506 struct bp_location *loc;
12507 int ix;
12508
12509 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12510 if (--(loc->events_till_retirement) == 0)
12511 {
12512 decref_bp_location (&loc);
12513 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12514 --ix;
12515 }
12516 }
12517
12518 static void
12519 update_global_location_list_nothrow (int inserting)
12520 {
12521 volatile struct gdb_exception e;
12522
12523 TRY_CATCH (e, RETURN_MASK_ERROR)
12524 update_global_location_list (inserting);
12525 }
12526
12527 /* Clear BKP from a BPS. */
12528
12529 static void
12530 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12531 {
12532 bpstat bs;
12533
12534 for (bs = bps; bs; bs = bs->next)
12535 if (bs->breakpoint_at == bpt)
12536 {
12537 bs->breakpoint_at = NULL;
12538 bs->old_val = NULL;
12539 /* bs->commands will be freed later. */
12540 }
12541 }
12542
12543 /* Callback for iterate_over_threads. */
12544 static int
12545 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12546 {
12547 struct breakpoint *bpt = data;
12548
12549 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12550 return 0;
12551 }
12552
12553 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12554 callbacks. */
12555
12556 static void
12557 say_where (struct breakpoint *b)
12558 {
12559 struct value_print_options opts;
12560
12561 get_user_print_options (&opts);
12562
12563 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12564 single string. */
12565 if (b->loc == NULL)
12566 {
12567 printf_filtered (_(" (%s) pending."), b->addr_string);
12568 }
12569 else
12570 {
12571 if (opts.addressprint || b->loc->symtab == NULL)
12572 {
12573 printf_filtered (" at ");
12574 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12575 gdb_stdout);
12576 }
12577 if (b->loc->symtab != NULL)
12578 {
12579 /* If there is a single location, we can print the location
12580 more nicely. */
12581 if (b->loc->next == NULL)
12582 printf_filtered (": file %s, line %d.",
12583 symtab_to_filename_for_display (b->loc->symtab),
12584 b->loc->line_number);
12585 else
12586 /* This is not ideal, but each location may have a
12587 different file name, and this at least reflects the
12588 real situation somewhat. */
12589 printf_filtered (": %s.", b->addr_string);
12590 }
12591
12592 if (b->loc->next)
12593 {
12594 struct bp_location *loc = b->loc;
12595 int n = 0;
12596 for (; loc; loc = loc->next)
12597 ++n;
12598 printf_filtered (" (%d locations)", n);
12599 }
12600 }
12601 }
12602
12603 /* Default bp_location_ops methods. */
12604
12605 static void
12606 bp_location_dtor (struct bp_location *self)
12607 {
12608 xfree (self->cond);
12609 if (self->cond_bytecode)
12610 free_agent_expr (self->cond_bytecode);
12611 xfree (self->function_name);
12612 }
12613
12614 static const struct bp_location_ops bp_location_ops =
12615 {
12616 bp_location_dtor
12617 };
12618
12619 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12620 inherit from. */
12621
12622 static void
12623 base_breakpoint_dtor (struct breakpoint *self)
12624 {
12625 decref_counted_command_line (&self->commands);
12626 xfree (self->cond_string);
12627 xfree (self->extra_string);
12628 xfree (self->addr_string);
12629 xfree (self->filter);
12630 xfree (self->addr_string_range_end);
12631 }
12632
12633 static struct bp_location *
12634 base_breakpoint_allocate_location (struct breakpoint *self)
12635 {
12636 struct bp_location *loc;
12637
12638 loc = XNEW (struct bp_location);
12639 init_bp_location (loc, &bp_location_ops, self);
12640 return loc;
12641 }
12642
12643 static void
12644 base_breakpoint_re_set (struct breakpoint *b)
12645 {
12646 /* Nothing to re-set. */
12647 }
12648
12649 #define internal_error_pure_virtual_called() \
12650 gdb_assert_not_reached ("pure virtual function called")
12651
12652 static int
12653 base_breakpoint_insert_location (struct bp_location *bl)
12654 {
12655 internal_error_pure_virtual_called ();
12656 }
12657
12658 static int
12659 base_breakpoint_remove_location (struct bp_location *bl)
12660 {
12661 internal_error_pure_virtual_called ();
12662 }
12663
12664 static int
12665 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12666 struct address_space *aspace,
12667 CORE_ADDR bp_addr,
12668 const struct target_waitstatus *ws)
12669 {
12670 internal_error_pure_virtual_called ();
12671 }
12672
12673 static void
12674 base_breakpoint_check_status (bpstat bs)
12675 {
12676 /* Always stop. */
12677 }
12678
12679 /* A "works_in_software_mode" breakpoint_ops method that just internal
12680 errors. */
12681
12682 static int
12683 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12684 {
12685 internal_error_pure_virtual_called ();
12686 }
12687
12688 /* A "resources_needed" breakpoint_ops method that just internal
12689 errors. */
12690
12691 static int
12692 base_breakpoint_resources_needed (const struct bp_location *bl)
12693 {
12694 internal_error_pure_virtual_called ();
12695 }
12696
12697 static enum print_stop_action
12698 base_breakpoint_print_it (bpstat bs)
12699 {
12700 internal_error_pure_virtual_called ();
12701 }
12702
12703 static void
12704 base_breakpoint_print_one_detail (const struct breakpoint *self,
12705 struct ui_out *uiout)
12706 {
12707 /* nothing */
12708 }
12709
12710 static void
12711 base_breakpoint_print_mention (struct breakpoint *b)
12712 {
12713 internal_error_pure_virtual_called ();
12714 }
12715
12716 static void
12717 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12718 {
12719 internal_error_pure_virtual_called ();
12720 }
12721
12722 static void
12723 base_breakpoint_create_sals_from_address (char **arg,
12724 struct linespec_result *canonical,
12725 enum bptype type_wanted,
12726 char *addr_start,
12727 char **copy_arg)
12728 {
12729 internal_error_pure_virtual_called ();
12730 }
12731
12732 static void
12733 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12734 struct linespec_result *c,
12735 struct linespec_sals *lsal,
12736 char *cond_string,
12737 char *extra_string,
12738 enum bptype type_wanted,
12739 enum bpdisp disposition,
12740 int thread,
12741 int task, int ignore_count,
12742 const struct breakpoint_ops *o,
12743 int from_tty, int enabled,
12744 int internal, unsigned flags)
12745 {
12746 internal_error_pure_virtual_called ();
12747 }
12748
12749 static void
12750 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
12751 struct symtabs_and_lines *sals)
12752 {
12753 internal_error_pure_virtual_called ();
12754 }
12755
12756 /* The default 'explains_signal' method. */
12757
12758 static enum bpstat_signal_value
12759 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12760 {
12761 return BPSTAT_SIGNAL_HIDE;
12762 }
12763
12764 struct breakpoint_ops base_breakpoint_ops =
12765 {
12766 base_breakpoint_dtor,
12767 base_breakpoint_allocate_location,
12768 base_breakpoint_re_set,
12769 base_breakpoint_insert_location,
12770 base_breakpoint_remove_location,
12771 base_breakpoint_breakpoint_hit,
12772 base_breakpoint_check_status,
12773 base_breakpoint_resources_needed,
12774 base_breakpoint_works_in_software_mode,
12775 base_breakpoint_print_it,
12776 NULL,
12777 base_breakpoint_print_one_detail,
12778 base_breakpoint_print_mention,
12779 base_breakpoint_print_recreate,
12780 base_breakpoint_create_sals_from_address,
12781 base_breakpoint_create_breakpoints_sal,
12782 base_breakpoint_decode_linespec,
12783 base_breakpoint_explains_signal
12784 };
12785
12786 /* Default breakpoint_ops methods. */
12787
12788 static void
12789 bkpt_re_set (struct breakpoint *b)
12790 {
12791 /* FIXME: is this still reachable? */
12792 if (b->addr_string == NULL)
12793 {
12794 /* Anything without a string can't be re-set. */
12795 delete_breakpoint (b);
12796 return;
12797 }
12798
12799 breakpoint_re_set_default (b);
12800 }
12801
12802 static int
12803 bkpt_insert_location (struct bp_location *bl)
12804 {
12805 if (bl->loc_type == bp_loc_hardware_breakpoint)
12806 return target_insert_hw_breakpoint (bl->gdbarch,
12807 &bl->target_info);
12808 else
12809 return target_insert_breakpoint (bl->gdbarch,
12810 &bl->target_info);
12811 }
12812
12813 static int
12814 bkpt_remove_location (struct bp_location *bl)
12815 {
12816 if (bl->loc_type == bp_loc_hardware_breakpoint)
12817 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12818 else
12819 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
12820 }
12821
12822 static int
12823 bkpt_breakpoint_hit (const struct bp_location *bl,
12824 struct address_space *aspace, CORE_ADDR bp_addr,
12825 const struct target_waitstatus *ws)
12826 {
12827 if (ws->kind != TARGET_WAITKIND_STOPPED
12828 || ws->value.sig != GDB_SIGNAL_TRAP)
12829 return 0;
12830
12831 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12832 aspace, bp_addr))
12833 return 0;
12834
12835 if (overlay_debugging /* unmapped overlay section */
12836 && section_is_overlay (bl->section)
12837 && !section_is_mapped (bl->section))
12838 return 0;
12839
12840 return 1;
12841 }
12842
12843 static int
12844 bkpt_resources_needed (const struct bp_location *bl)
12845 {
12846 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12847
12848 return 1;
12849 }
12850
12851 static enum print_stop_action
12852 bkpt_print_it (bpstat bs)
12853 {
12854 struct breakpoint *b;
12855 const struct bp_location *bl;
12856 int bp_temp;
12857 struct ui_out *uiout = current_uiout;
12858
12859 gdb_assert (bs->bp_location_at != NULL);
12860
12861 bl = bs->bp_location_at;
12862 b = bs->breakpoint_at;
12863
12864 bp_temp = b->disposition == disp_del;
12865 if (bl->address != bl->requested_address)
12866 breakpoint_adjustment_warning (bl->requested_address,
12867 bl->address,
12868 b->number, 1);
12869 annotate_breakpoint (b->number);
12870 if (bp_temp)
12871 ui_out_text (uiout, "\nTemporary breakpoint ");
12872 else
12873 ui_out_text (uiout, "\nBreakpoint ");
12874 if (ui_out_is_mi_like_p (uiout))
12875 {
12876 ui_out_field_string (uiout, "reason",
12877 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12878 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12879 }
12880 ui_out_field_int (uiout, "bkptno", b->number);
12881 ui_out_text (uiout, ", ");
12882
12883 return PRINT_SRC_AND_LOC;
12884 }
12885
12886 static void
12887 bkpt_print_mention (struct breakpoint *b)
12888 {
12889 if (ui_out_is_mi_like_p (current_uiout))
12890 return;
12891
12892 switch (b->type)
12893 {
12894 case bp_breakpoint:
12895 case bp_gnu_ifunc_resolver:
12896 if (b->disposition == disp_del)
12897 printf_filtered (_("Temporary breakpoint"));
12898 else
12899 printf_filtered (_("Breakpoint"));
12900 printf_filtered (_(" %d"), b->number);
12901 if (b->type == bp_gnu_ifunc_resolver)
12902 printf_filtered (_(" at gnu-indirect-function resolver"));
12903 break;
12904 case bp_hardware_breakpoint:
12905 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12906 break;
12907 case bp_dprintf:
12908 printf_filtered (_("Dprintf %d"), b->number);
12909 break;
12910 }
12911
12912 say_where (b);
12913 }
12914
12915 static void
12916 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12917 {
12918 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12919 fprintf_unfiltered (fp, "tbreak");
12920 else if (tp->type == bp_breakpoint)
12921 fprintf_unfiltered (fp, "break");
12922 else if (tp->type == bp_hardware_breakpoint
12923 && tp->disposition == disp_del)
12924 fprintf_unfiltered (fp, "thbreak");
12925 else if (tp->type == bp_hardware_breakpoint)
12926 fprintf_unfiltered (fp, "hbreak");
12927 else
12928 internal_error (__FILE__, __LINE__,
12929 _("unhandled breakpoint type %d"), (int) tp->type);
12930
12931 fprintf_unfiltered (fp, " %s", tp->addr_string);
12932 print_recreate_thread (tp, fp);
12933 }
12934
12935 static void
12936 bkpt_create_sals_from_address (char **arg,
12937 struct linespec_result *canonical,
12938 enum bptype type_wanted,
12939 char *addr_start, char **copy_arg)
12940 {
12941 create_sals_from_address_default (arg, canonical, type_wanted,
12942 addr_start, copy_arg);
12943 }
12944
12945 static void
12946 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12947 struct linespec_result *canonical,
12948 struct linespec_sals *lsal,
12949 char *cond_string,
12950 char *extra_string,
12951 enum bptype type_wanted,
12952 enum bpdisp disposition,
12953 int thread,
12954 int task, int ignore_count,
12955 const struct breakpoint_ops *ops,
12956 int from_tty, int enabled,
12957 int internal, unsigned flags)
12958 {
12959 create_breakpoints_sal_default (gdbarch, canonical,
12960 cond_string, extra_string,
12961 type_wanted,
12962 disposition, thread, task,
12963 ignore_count, ops, from_tty,
12964 enabled, internal, flags);
12965 }
12966
12967 static void
12968 bkpt_decode_linespec (struct breakpoint *b, char **s,
12969 struct symtabs_and_lines *sals)
12970 {
12971 decode_linespec_default (b, s, sals);
12972 }
12973
12974 /* Virtual table for internal breakpoints. */
12975
12976 static void
12977 internal_bkpt_re_set (struct breakpoint *b)
12978 {
12979 switch (b->type)
12980 {
12981 /* Delete overlay event and longjmp master breakpoints; they
12982 will be reset later by breakpoint_re_set. */
12983 case bp_overlay_event:
12984 case bp_longjmp_master:
12985 case bp_std_terminate_master:
12986 case bp_exception_master:
12987 delete_breakpoint (b);
12988 break;
12989
12990 /* This breakpoint is special, it's set up when the inferior
12991 starts and we really don't want to touch it. */
12992 case bp_shlib_event:
12993
12994 /* Like bp_shlib_event, this breakpoint type is special. Once
12995 it is set up, we do not want to touch it. */
12996 case bp_thread_event:
12997 break;
12998 }
12999 }
13000
13001 static void
13002 internal_bkpt_check_status (bpstat bs)
13003 {
13004 if (bs->breakpoint_at->type == bp_shlib_event)
13005 {
13006 /* If requested, stop when the dynamic linker notifies GDB of
13007 events. This allows the user to get control and place
13008 breakpoints in initializer routines for dynamically loaded
13009 objects (among other things). */
13010 bs->stop = stop_on_solib_events;
13011 bs->print = stop_on_solib_events;
13012 }
13013 else
13014 bs->stop = 0;
13015 }
13016
13017 static enum print_stop_action
13018 internal_bkpt_print_it (bpstat bs)
13019 {
13020 struct breakpoint *b;
13021
13022 b = bs->breakpoint_at;
13023
13024 switch (b->type)
13025 {
13026 case bp_shlib_event:
13027 /* Did we stop because the user set the stop_on_solib_events
13028 variable? (If so, we report this as a generic, "Stopped due
13029 to shlib event" message.) */
13030 print_solib_event (0);
13031 break;
13032
13033 case bp_thread_event:
13034 /* Not sure how we will get here.
13035 GDB should not stop for these breakpoints. */
13036 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13037 break;
13038
13039 case bp_overlay_event:
13040 /* By analogy with the thread event, GDB should not stop for these. */
13041 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13042 break;
13043
13044 case bp_longjmp_master:
13045 /* These should never be enabled. */
13046 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13047 break;
13048
13049 case bp_std_terminate_master:
13050 /* These should never be enabled. */
13051 printf_filtered (_("std::terminate Master Breakpoint: "
13052 "gdb should not stop!\n"));
13053 break;
13054
13055 case bp_exception_master:
13056 /* These should never be enabled. */
13057 printf_filtered (_("Exception Master Breakpoint: "
13058 "gdb should not stop!\n"));
13059 break;
13060 }
13061
13062 return PRINT_NOTHING;
13063 }
13064
13065 static void
13066 internal_bkpt_print_mention (struct breakpoint *b)
13067 {
13068 /* Nothing to mention. These breakpoints are internal. */
13069 }
13070
13071 /* Virtual table for momentary breakpoints */
13072
13073 static void
13074 momentary_bkpt_re_set (struct breakpoint *b)
13075 {
13076 /* Keep temporary breakpoints, which can be encountered when we step
13077 over a dlopen call and solib_add is resetting the breakpoints.
13078 Otherwise these should have been blown away via the cleanup chain
13079 or by breakpoint_init_inferior when we rerun the executable. */
13080 }
13081
13082 static void
13083 momentary_bkpt_check_status (bpstat bs)
13084 {
13085 /* Nothing. The point of these breakpoints is causing a stop. */
13086 }
13087
13088 static enum print_stop_action
13089 momentary_bkpt_print_it (bpstat bs)
13090 {
13091 struct ui_out *uiout = current_uiout;
13092
13093 if (ui_out_is_mi_like_p (uiout))
13094 {
13095 struct breakpoint *b = bs->breakpoint_at;
13096
13097 switch (b->type)
13098 {
13099 case bp_finish:
13100 ui_out_field_string
13101 (uiout, "reason",
13102 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13103 break;
13104
13105 case bp_until:
13106 ui_out_field_string
13107 (uiout, "reason",
13108 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13109 break;
13110 }
13111 }
13112
13113 return PRINT_UNKNOWN;
13114 }
13115
13116 static void
13117 momentary_bkpt_print_mention (struct breakpoint *b)
13118 {
13119 /* Nothing to mention. These breakpoints are internal. */
13120 }
13121
13122 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13123
13124 It gets cleared already on the removal of the first one of such placed
13125 breakpoints. This is OK as they get all removed altogether. */
13126
13127 static void
13128 longjmp_bkpt_dtor (struct breakpoint *self)
13129 {
13130 struct thread_info *tp = find_thread_id (self->thread);
13131
13132 if (tp)
13133 tp->initiating_frame = null_frame_id;
13134
13135 momentary_breakpoint_ops.dtor (self);
13136 }
13137
13138 /* Specific methods for probe breakpoints. */
13139
13140 static int
13141 bkpt_probe_insert_location (struct bp_location *bl)
13142 {
13143 int v = bkpt_insert_location (bl);
13144
13145 if (v == 0)
13146 {
13147 /* The insertion was successful, now let's set the probe's semaphore
13148 if needed. */
13149 bl->probe->pops->set_semaphore (bl->probe, bl->gdbarch);
13150 }
13151
13152 return v;
13153 }
13154
13155 static int
13156 bkpt_probe_remove_location (struct bp_location *bl)
13157 {
13158 /* Let's clear the semaphore before removing the location. */
13159 bl->probe->pops->clear_semaphore (bl->probe, bl->gdbarch);
13160
13161 return bkpt_remove_location (bl);
13162 }
13163
13164 static void
13165 bkpt_probe_create_sals_from_address (char **arg,
13166 struct linespec_result *canonical,
13167 enum bptype type_wanted,
13168 char *addr_start, char **copy_arg)
13169 {
13170 struct linespec_sals lsal;
13171
13172 lsal.sals = parse_probes (arg, canonical);
13173
13174 *copy_arg = xstrdup (canonical->addr_string);
13175 lsal.canonical = xstrdup (*copy_arg);
13176
13177 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13178 }
13179
13180 static void
13181 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13182 struct symtabs_and_lines *sals)
13183 {
13184 *sals = parse_probes (s, NULL);
13185 if (!sals->sals)
13186 error (_("probe not found"));
13187 }
13188
13189 /* The breakpoint_ops structure to be used in tracepoints. */
13190
13191 static void
13192 tracepoint_re_set (struct breakpoint *b)
13193 {
13194 breakpoint_re_set_default (b);
13195 }
13196
13197 static int
13198 tracepoint_breakpoint_hit (const struct bp_location *bl,
13199 struct address_space *aspace, CORE_ADDR bp_addr,
13200 const struct target_waitstatus *ws)
13201 {
13202 /* By definition, the inferior does not report stops at
13203 tracepoints. */
13204 return 0;
13205 }
13206
13207 static void
13208 tracepoint_print_one_detail (const struct breakpoint *self,
13209 struct ui_out *uiout)
13210 {
13211 struct tracepoint *tp = (struct tracepoint *) self;
13212 if (tp->static_trace_marker_id)
13213 {
13214 gdb_assert (self->type == bp_static_tracepoint);
13215
13216 ui_out_text (uiout, "\tmarker id is ");
13217 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13218 tp->static_trace_marker_id);
13219 ui_out_text (uiout, "\n");
13220 }
13221 }
13222
13223 static void
13224 tracepoint_print_mention (struct breakpoint *b)
13225 {
13226 if (ui_out_is_mi_like_p (current_uiout))
13227 return;
13228
13229 switch (b->type)
13230 {
13231 case bp_tracepoint:
13232 printf_filtered (_("Tracepoint"));
13233 printf_filtered (_(" %d"), b->number);
13234 break;
13235 case bp_fast_tracepoint:
13236 printf_filtered (_("Fast tracepoint"));
13237 printf_filtered (_(" %d"), b->number);
13238 break;
13239 case bp_static_tracepoint:
13240 printf_filtered (_("Static tracepoint"));
13241 printf_filtered (_(" %d"), b->number);
13242 break;
13243 default:
13244 internal_error (__FILE__, __LINE__,
13245 _("unhandled tracepoint type %d"), (int) b->type);
13246 }
13247
13248 say_where (b);
13249 }
13250
13251 static void
13252 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13253 {
13254 struct tracepoint *tp = (struct tracepoint *) self;
13255
13256 if (self->type == bp_fast_tracepoint)
13257 fprintf_unfiltered (fp, "ftrace");
13258 if (self->type == bp_static_tracepoint)
13259 fprintf_unfiltered (fp, "strace");
13260 else if (self->type == bp_tracepoint)
13261 fprintf_unfiltered (fp, "trace");
13262 else
13263 internal_error (__FILE__, __LINE__,
13264 _("unhandled tracepoint type %d"), (int) self->type);
13265
13266 fprintf_unfiltered (fp, " %s", self->addr_string);
13267 print_recreate_thread (self, fp);
13268
13269 if (tp->pass_count)
13270 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13271 }
13272
13273 static void
13274 tracepoint_create_sals_from_address (char **arg,
13275 struct linespec_result *canonical,
13276 enum bptype type_wanted,
13277 char *addr_start, char **copy_arg)
13278 {
13279 create_sals_from_address_default (arg, canonical, type_wanted,
13280 addr_start, copy_arg);
13281 }
13282
13283 static void
13284 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13285 struct linespec_result *canonical,
13286 struct linespec_sals *lsal,
13287 char *cond_string,
13288 char *extra_string,
13289 enum bptype type_wanted,
13290 enum bpdisp disposition,
13291 int thread,
13292 int task, int ignore_count,
13293 const struct breakpoint_ops *ops,
13294 int from_tty, int enabled,
13295 int internal, unsigned flags)
13296 {
13297 create_breakpoints_sal_default (gdbarch, canonical,
13298 cond_string, extra_string,
13299 type_wanted,
13300 disposition, thread, task,
13301 ignore_count, ops, from_tty,
13302 enabled, internal, flags);
13303 }
13304
13305 static void
13306 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13307 struct symtabs_and_lines *sals)
13308 {
13309 decode_linespec_default (b, s, sals);
13310 }
13311
13312 struct breakpoint_ops tracepoint_breakpoint_ops;
13313
13314 /* The breakpoint_ops structure to be use on tracepoints placed in a
13315 static probe. */
13316
13317 static void
13318 tracepoint_probe_create_sals_from_address (char **arg,
13319 struct linespec_result *canonical,
13320 enum bptype type_wanted,
13321 char *addr_start, char **copy_arg)
13322 {
13323 /* We use the same method for breakpoint on probes. */
13324 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13325 addr_start, copy_arg);
13326 }
13327
13328 static void
13329 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13330 struct symtabs_and_lines *sals)
13331 {
13332 /* We use the same method for breakpoint on probes. */
13333 bkpt_probe_decode_linespec (b, s, sals);
13334 }
13335
13336 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13337
13338 /* Dprintf breakpoint_ops methods. */
13339
13340 static void
13341 dprintf_re_set (struct breakpoint *b)
13342 {
13343 breakpoint_re_set_default (b);
13344
13345 /* This breakpoint could have been pending, and be resolved now, and
13346 if so, we should now have the extra string. If we don't, the
13347 dprintf was malformed when created, but we couldn't tell because
13348 we can't extract the extra string until the location is
13349 resolved. */
13350 if (b->loc != NULL && b->extra_string == NULL)
13351 error (_("Format string required"));
13352
13353 /* 1 - connect to target 1, that can run breakpoint commands.
13354 2 - create a dprintf, which resolves fine.
13355 3 - disconnect from target 1
13356 4 - connect to target 2, that can NOT run breakpoint commands.
13357
13358 After steps #3/#4, you'll want the dprintf command list to
13359 be updated, because target 1 and 2 may well return different
13360 answers for target_can_run_breakpoint_commands().
13361 Given absence of finer grained resetting, we get to do
13362 it all the time. */
13363 if (b->extra_string != NULL)
13364 update_dprintf_command_list (b);
13365 }
13366
13367 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13368
13369 static void
13370 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13371 {
13372 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13373 tp->extra_string);
13374 print_recreate_thread (tp, fp);
13375 }
13376
13377 /* The breakpoint_ops structure to be used on static tracepoints with
13378 markers (`-m'). */
13379
13380 static void
13381 strace_marker_create_sals_from_address (char **arg,
13382 struct linespec_result *canonical,
13383 enum bptype type_wanted,
13384 char *addr_start, char **copy_arg)
13385 {
13386 struct linespec_sals lsal;
13387
13388 lsal.sals = decode_static_tracepoint_spec (arg);
13389
13390 *copy_arg = savestring (addr_start, *arg - addr_start);
13391
13392 canonical->addr_string = xstrdup (*copy_arg);
13393 lsal.canonical = xstrdup (*copy_arg);
13394 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13395 }
13396
13397 static void
13398 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13399 struct linespec_result *canonical,
13400 struct linespec_sals *lsal,
13401 char *cond_string,
13402 char *extra_string,
13403 enum bptype type_wanted,
13404 enum bpdisp disposition,
13405 int thread,
13406 int task, int ignore_count,
13407 const struct breakpoint_ops *ops,
13408 int from_tty, int enabled,
13409 int internal, unsigned flags)
13410 {
13411 int i;
13412
13413 /* If the user is creating a static tracepoint by marker id
13414 (strace -m MARKER_ID), then store the sals index, so that
13415 breakpoint_re_set can try to match up which of the newly
13416 found markers corresponds to this one, and, don't try to
13417 expand multiple locations for each sal, given than SALS
13418 already should contain all sals for MARKER_ID. */
13419
13420 for (i = 0; i < lsal->sals.nelts; ++i)
13421 {
13422 struct symtabs_and_lines expanded;
13423 struct tracepoint *tp;
13424 struct cleanup *old_chain;
13425 char *addr_string;
13426
13427 expanded.nelts = 1;
13428 expanded.sals = &lsal->sals.sals[i];
13429
13430 addr_string = xstrdup (canonical->addr_string);
13431 old_chain = make_cleanup (xfree, addr_string);
13432
13433 tp = XCNEW (struct tracepoint);
13434 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13435 addr_string, NULL,
13436 cond_string, extra_string,
13437 type_wanted, disposition,
13438 thread, task, ignore_count, ops,
13439 from_tty, enabled, internal, flags,
13440 canonical->special_display);
13441 /* Given that its possible to have multiple markers with
13442 the same string id, if the user is creating a static
13443 tracepoint by marker id ("strace -m MARKER_ID"), then
13444 store the sals index, so that breakpoint_re_set can
13445 try to match up which of the newly found markers
13446 corresponds to this one */
13447 tp->static_trace_marker_id_idx = i;
13448
13449 install_breakpoint (internal, &tp->base, 0);
13450
13451 discard_cleanups (old_chain);
13452 }
13453 }
13454
13455 static void
13456 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13457 struct symtabs_and_lines *sals)
13458 {
13459 struct tracepoint *tp = (struct tracepoint *) b;
13460
13461 *sals = decode_static_tracepoint_spec (s);
13462 if (sals->nelts > tp->static_trace_marker_id_idx)
13463 {
13464 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13465 sals->nelts = 1;
13466 }
13467 else
13468 error (_("marker %s not found"), tp->static_trace_marker_id);
13469 }
13470
13471 static struct breakpoint_ops strace_marker_breakpoint_ops;
13472
13473 static int
13474 strace_marker_p (struct breakpoint *b)
13475 {
13476 return b->ops == &strace_marker_breakpoint_ops;
13477 }
13478
13479 /* Delete a breakpoint and clean up all traces of it in the data
13480 structures. */
13481
13482 void
13483 delete_breakpoint (struct breakpoint *bpt)
13484 {
13485 struct breakpoint *b;
13486
13487 gdb_assert (bpt != NULL);
13488
13489 /* Has this bp already been deleted? This can happen because
13490 multiple lists can hold pointers to bp's. bpstat lists are
13491 especial culprits.
13492
13493 One example of this happening is a watchpoint's scope bp. When
13494 the scope bp triggers, we notice that the watchpoint is out of
13495 scope, and delete it. We also delete its scope bp. But the
13496 scope bp is marked "auto-deleting", and is already on a bpstat.
13497 That bpstat is then checked for auto-deleting bp's, which are
13498 deleted.
13499
13500 A real solution to this problem might involve reference counts in
13501 bp's, and/or giving them pointers back to their referencing
13502 bpstat's, and teaching delete_breakpoint to only free a bp's
13503 storage when no more references were extent. A cheaper bandaid
13504 was chosen. */
13505 if (bpt->type == bp_none)
13506 return;
13507
13508 /* At least avoid this stale reference until the reference counting
13509 of breakpoints gets resolved. */
13510 if (bpt->related_breakpoint != bpt)
13511 {
13512 struct breakpoint *related;
13513 struct watchpoint *w;
13514
13515 if (bpt->type == bp_watchpoint_scope)
13516 w = (struct watchpoint *) bpt->related_breakpoint;
13517 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13518 w = (struct watchpoint *) bpt;
13519 else
13520 w = NULL;
13521 if (w != NULL)
13522 watchpoint_del_at_next_stop (w);
13523
13524 /* Unlink bpt from the bpt->related_breakpoint ring. */
13525 for (related = bpt; related->related_breakpoint != bpt;
13526 related = related->related_breakpoint);
13527 related->related_breakpoint = bpt->related_breakpoint;
13528 bpt->related_breakpoint = bpt;
13529 }
13530
13531 /* watch_command_1 creates a watchpoint but only sets its number if
13532 update_watchpoint succeeds in creating its bp_locations. If there's
13533 a problem in that process, we'll be asked to delete the half-created
13534 watchpoint. In that case, don't announce the deletion. */
13535 if (bpt->number)
13536 observer_notify_breakpoint_deleted (bpt);
13537
13538 if (breakpoint_chain == bpt)
13539 breakpoint_chain = bpt->next;
13540
13541 ALL_BREAKPOINTS (b)
13542 if (b->next == bpt)
13543 {
13544 b->next = bpt->next;
13545 break;
13546 }
13547
13548 /* Be sure no bpstat's are pointing at the breakpoint after it's
13549 been freed. */
13550 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13551 in all threads for now. Note that we cannot just remove bpstats
13552 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13553 commands are associated with the bpstat; if we remove it here,
13554 then the later call to bpstat_do_actions (&stop_bpstat); in
13555 event-top.c won't do anything, and temporary breakpoints with
13556 commands won't work. */
13557
13558 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13559
13560 /* Now that breakpoint is removed from breakpoint list, update the
13561 global location list. This will remove locations that used to
13562 belong to this breakpoint. Do this before freeing the breakpoint
13563 itself, since remove_breakpoint looks at location's owner. It
13564 might be better design to have location completely
13565 self-contained, but it's not the case now. */
13566 update_global_location_list (0);
13567
13568 bpt->ops->dtor (bpt);
13569 /* On the chance that someone will soon try again to delete this
13570 same bp, we mark it as deleted before freeing its storage. */
13571 bpt->type = bp_none;
13572 xfree (bpt);
13573 }
13574
13575 static void
13576 do_delete_breakpoint_cleanup (void *b)
13577 {
13578 delete_breakpoint (b);
13579 }
13580
13581 struct cleanup *
13582 make_cleanup_delete_breakpoint (struct breakpoint *b)
13583 {
13584 return make_cleanup (do_delete_breakpoint_cleanup, b);
13585 }
13586
13587 /* Iterator function to call a user-provided callback function once
13588 for each of B and its related breakpoints. */
13589
13590 static void
13591 iterate_over_related_breakpoints (struct breakpoint *b,
13592 void (*function) (struct breakpoint *,
13593 void *),
13594 void *data)
13595 {
13596 struct breakpoint *related;
13597
13598 related = b;
13599 do
13600 {
13601 struct breakpoint *next;
13602
13603 /* FUNCTION may delete RELATED. */
13604 next = related->related_breakpoint;
13605
13606 if (next == related)
13607 {
13608 /* RELATED is the last ring entry. */
13609 function (related, data);
13610
13611 /* FUNCTION may have deleted it, so we'd never reach back to
13612 B. There's nothing left to do anyway, so just break
13613 out. */
13614 break;
13615 }
13616 else
13617 function (related, data);
13618
13619 related = next;
13620 }
13621 while (related != b);
13622 }
13623
13624 static void
13625 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13626 {
13627 delete_breakpoint (b);
13628 }
13629
13630 /* A callback for map_breakpoint_numbers that calls
13631 delete_breakpoint. */
13632
13633 static void
13634 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13635 {
13636 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13637 }
13638
13639 void
13640 delete_command (char *arg, int from_tty)
13641 {
13642 struct breakpoint *b, *b_tmp;
13643
13644 dont_repeat ();
13645
13646 if (arg == 0)
13647 {
13648 int breaks_to_delete = 0;
13649
13650 /* Delete all breakpoints if no argument. Do not delete
13651 internal breakpoints, these have to be deleted with an
13652 explicit breakpoint number argument. */
13653 ALL_BREAKPOINTS (b)
13654 if (user_breakpoint_p (b))
13655 {
13656 breaks_to_delete = 1;
13657 break;
13658 }
13659
13660 /* Ask user only if there are some breakpoints to delete. */
13661 if (!from_tty
13662 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13663 {
13664 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13665 if (user_breakpoint_p (b))
13666 delete_breakpoint (b);
13667 }
13668 }
13669 else
13670 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13671 }
13672
13673 static int
13674 all_locations_are_pending (struct bp_location *loc)
13675 {
13676 for (; loc; loc = loc->next)
13677 if (!loc->shlib_disabled
13678 && !loc->pspace->executing_startup)
13679 return 0;
13680 return 1;
13681 }
13682
13683 /* Subroutine of update_breakpoint_locations to simplify it.
13684 Return non-zero if multiple fns in list LOC have the same name.
13685 Null names are ignored. */
13686
13687 static int
13688 ambiguous_names_p (struct bp_location *loc)
13689 {
13690 struct bp_location *l;
13691 htab_t htab = htab_create_alloc (13, htab_hash_string,
13692 (int (*) (const void *,
13693 const void *)) streq,
13694 NULL, xcalloc, xfree);
13695
13696 for (l = loc; l != NULL; l = l->next)
13697 {
13698 const char **slot;
13699 const char *name = l->function_name;
13700
13701 /* Allow for some names to be NULL, ignore them. */
13702 if (name == NULL)
13703 continue;
13704
13705 slot = (const char **) htab_find_slot (htab, (const void *) name,
13706 INSERT);
13707 /* NOTE: We can assume slot != NULL here because xcalloc never
13708 returns NULL. */
13709 if (*slot != NULL)
13710 {
13711 htab_delete (htab);
13712 return 1;
13713 }
13714 *slot = name;
13715 }
13716
13717 htab_delete (htab);
13718 return 0;
13719 }
13720
13721 /* When symbols change, it probably means the sources changed as well,
13722 and it might mean the static tracepoint markers are no longer at
13723 the same address or line numbers they used to be at last we
13724 checked. Losing your static tracepoints whenever you rebuild is
13725 undesirable. This function tries to resync/rematch gdb static
13726 tracepoints with the markers on the target, for static tracepoints
13727 that have not been set by marker id. Static tracepoint that have
13728 been set by marker id are reset by marker id in breakpoint_re_set.
13729 The heuristic is:
13730
13731 1) For a tracepoint set at a specific address, look for a marker at
13732 the old PC. If one is found there, assume to be the same marker.
13733 If the name / string id of the marker found is different from the
13734 previous known name, assume that means the user renamed the marker
13735 in the sources, and output a warning.
13736
13737 2) For a tracepoint set at a given line number, look for a marker
13738 at the new address of the old line number. If one is found there,
13739 assume to be the same marker. If the name / string id of the
13740 marker found is different from the previous known name, assume that
13741 means the user renamed the marker in the sources, and output a
13742 warning.
13743
13744 3) If a marker is no longer found at the same address or line, it
13745 may mean the marker no longer exists. But it may also just mean
13746 the code changed a bit. Maybe the user added a few lines of code
13747 that made the marker move up or down (in line number terms). Ask
13748 the target for info about the marker with the string id as we knew
13749 it. If found, update line number and address in the matching
13750 static tracepoint. This will get confused if there's more than one
13751 marker with the same ID (possible in UST, although unadvised
13752 precisely because it confuses tools). */
13753
13754 static struct symtab_and_line
13755 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13756 {
13757 struct tracepoint *tp = (struct tracepoint *) b;
13758 struct static_tracepoint_marker marker;
13759 CORE_ADDR pc;
13760
13761 pc = sal.pc;
13762 if (sal.line)
13763 find_line_pc (sal.symtab, sal.line, &pc);
13764
13765 if (target_static_tracepoint_marker_at (pc, &marker))
13766 {
13767 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13768 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13769 b->number,
13770 tp->static_trace_marker_id, marker.str_id);
13771
13772 xfree (tp->static_trace_marker_id);
13773 tp->static_trace_marker_id = xstrdup (marker.str_id);
13774 release_static_tracepoint_marker (&marker);
13775
13776 return sal;
13777 }
13778
13779 /* Old marker wasn't found on target at lineno. Try looking it up
13780 by string ID. */
13781 if (!sal.explicit_pc
13782 && sal.line != 0
13783 && sal.symtab != NULL
13784 && tp->static_trace_marker_id != NULL)
13785 {
13786 VEC(static_tracepoint_marker_p) *markers;
13787
13788 markers
13789 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13790
13791 if (!VEC_empty(static_tracepoint_marker_p, markers))
13792 {
13793 struct symtab_and_line sal2;
13794 struct symbol *sym;
13795 struct static_tracepoint_marker *tpmarker;
13796 struct ui_out *uiout = current_uiout;
13797
13798 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13799
13800 xfree (tp->static_trace_marker_id);
13801 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13802
13803 warning (_("marker for static tracepoint %d (%s) not "
13804 "found at previous line number"),
13805 b->number, tp->static_trace_marker_id);
13806
13807 init_sal (&sal2);
13808
13809 sal2.pc = tpmarker->address;
13810
13811 sal2 = find_pc_line (tpmarker->address, 0);
13812 sym = find_pc_sect_function (tpmarker->address, NULL);
13813 ui_out_text (uiout, "Now in ");
13814 if (sym)
13815 {
13816 ui_out_field_string (uiout, "func",
13817 SYMBOL_PRINT_NAME (sym));
13818 ui_out_text (uiout, " at ");
13819 }
13820 ui_out_field_string (uiout, "file",
13821 symtab_to_filename_for_display (sal2.symtab));
13822 ui_out_text (uiout, ":");
13823
13824 if (ui_out_is_mi_like_p (uiout))
13825 {
13826 const char *fullname = symtab_to_fullname (sal2.symtab);
13827
13828 ui_out_field_string (uiout, "fullname", fullname);
13829 }
13830
13831 ui_out_field_int (uiout, "line", sal2.line);
13832 ui_out_text (uiout, "\n");
13833
13834 b->loc->line_number = sal2.line;
13835 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13836
13837 xfree (b->addr_string);
13838 b->addr_string = xstrprintf ("%s:%d",
13839 symtab_to_filename_for_display (sal2.symtab),
13840 b->loc->line_number);
13841
13842 /* Might be nice to check if function changed, and warn if
13843 so. */
13844
13845 release_static_tracepoint_marker (tpmarker);
13846 }
13847 }
13848 return sal;
13849 }
13850
13851 /* Returns 1 iff locations A and B are sufficiently same that
13852 we don't need to report breakpoint as changed. */
13853
13854 static int
13855 locations_are_equal (struct bp_location *a, struct bp_location *b)
13856 {
13857 while (a && b)
13858 {
13859 if (a->address != b->address)
13860 return 0;
13861
13862 if (a->shlib_disabled != b->shlib_disabled)
13863 return 0;
13864
13865 if (a->enabled != b->enabled)
13866 return 0;
13867
13868 a = a->next;
13869 b = b->next;
13870 }
13871
13872 if ((a == NULL) != (b == NULL))
13873 return 0;
13874
13875 return 1;
13876 }
13877
13878 /* Create new breakpoint locations for B (a hardware or software breakpoint)
13879 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
13880 a ranged breakpoint. */
13881
13882 void
13883 update_breakpoint_locations (struct breakpoint *b,
13884 struct symtabs_and_lines sals,
13885 struct symtabs_and_lines sals_end)
13886 {
13887 int i;
13888 struct bp_location *existing_locations = b->loc;
13889
13890 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
13891 {
13892 /* Ranged breakpoints have only one start location and one end
13893 location. */
13894 b->enable_state = bp_disabled;
13895 update_global_location_list (1);
13896 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13897 "multiple locations found\n"),
13898 b->number);
13899 return;
13900 }
13901
13902 /* If there's no new locations, and all existing locations are
13903 pending, don't do anything. This optimizes the common case where
13904 all locations are in the same shared library, that was unloaded.
13905 We'd like to retain the location, so that when the library is
13906 loaded again, we don't loose the enabled/disabled status of the
13907 individual locations. */
13908 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
13909 return;
13910
13911 b->loc = NULL;
13912
13913 for (i = 0; i < sals.nelts; ++i)
13914 {
13915 struct bp_location *new_loc;
13916
13917 switch_to_program_space_and_thread (sals.sals[i].pspace);
13918
13919 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
13920
13921 /* Reparse conditions, they might contain references to the
13922 old symtab. */
13923 if (b->cond_string != NULL)
13924 {
13925 const char *s;
13926 volatile struct gdb_exception e;
13927
13928 s = b->cond_string;
13929 TRY_CATCH (e, RETURN_MASK_ERROR)
13930 {
13931 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
13932 block_for_pc (sals.sals[i].pc),
13933 0);
13934 }
13935 if (e.reason < 0)
13936 {
13937 warning (_("failed to reevaluate condition "
13938 "for breakpoint %d: %s"),
13939 b->number, e.message);
13940 new_loc->enabled = 0;
13941 }
13942 }
13943
13944 if (sals_end.nelts)
13945 {
13946 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
13947
13948 new_loc->length = end - sals.sals[0].pc + 1;
13949 }
13950 }
13951
13952 /* Update locations of permanent breakpoints. */
13953 if (b->enable_state == bp_permanent)
13954 make_breakpoint_permanent (b);
13955
13956 /* If possible, carry over 'disable' status from existing
13957 breakpoints. */
13958 {
13959 struct bp_location *e = existing_locations;
13960 /* If there are multiple breakpoints with the same function name,
13961 e.g. for inline functions, comparing function names won't work.
13962 Instead compare pc addresses; this is just a heuristic as things
13963 may have moved, but in practice it gives the correct answer
13964 often enough until a better solution is found. */
13965 int have_ambiguous_names = ambiguous_names_p (b->loc);
13966
13967 for (; e; e = e->next)
13968 {
13969 if (!e->enabled && e->function_name)
13970 {
13971 struct bp_location *l = b->loc;
13972 if (have_ambiguous_names)
13973 {
13974 for (; l; l = l->next)
13975 if (breakpoint_locations_match (e, l))
13976 {
13977 l->enabled = 0;
13978 break;
13979 }
13980 }
13981 else
13982 {
13983 for (; l; l = l->next)
13984 if (l->function_name
13985 && strcmp (e->function_name, l->function_name) == 0)
13986 {
13987 l->enabled = 0;
13988 break;
13989 }
13990 }
13991 }
13992 }
13993 }
13994
13995 if (!locations_are_equal (existing_locations, b->loc))
13996 observer_notify_breakpoint_modified (b);
13997
13998 update_global_location_list (1);
13999 }
14000
14001 /* Find the SaL locations corresponding to the given ADDR_STRING.
14002 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14003
14004 static struct symtabs_and_lines
14005 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14006 {
14007 char *s;
14008 struct symtabs_and_lines sals = {0};
14009 volatile struct gdb_exception e;
14010
14011 gdb_assert (b->ops != NULL);
14012 s = addr_string;
14013
14014 TRY_CATCH (e, RETURN_MASK_ERROR)
14015 {
14016 b->ops->decode_linespec (b, &s, &sals);
14017 }
14018 if (e.reason < 0)
14019 {
14020 int not_found_and_ok = 0;
14021 /* For pending breakpoints, it's expected that parsing will
14022 fail until the right shared library is loaded. User has
14023 already told to create pending breakpoints and don't need
14024 extra messages. If breakpoint is in bp_shlib_disabled
14025 state, then user already saw the message about that
14026 breakpoint being disabled, and don't want to see more
14027 errors. */
14028 if (e.error == NOT_FOUND_ERROR
14029 && (b->condition_not_parsed
14030 || (b->loc && b->loc->shlib_disabled)
14031 || (b->loc && b->loc->pspace->executing_startup)
14032 || b->enable_state == bp_disabled))
14033 not_found_and_ok = 1;
14034
14035 if (!not_found_and_ok)
14036 {
14037 /* We surely don't want to warn about the same breakpoint
14038 10 times. One solution, implemented here, is disable
14039 the breakpoint on error. Another solution would be to
14040 have separate 'warning emitted' flag. Since this
14041 happens only when a binary has changed, I don't know
14042 which approach is better. */
14043 b->enable_state = bp_disabled;
14044 throw_exception (e);
14045 }
14046 }
14047
14048 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14049 {
14050 int i;
14051
14052 for (i = 0; i < sals.nelts; ++i)
14053 resolve_sal_pc (&sals.sals[i]);
14054 if (b->condition_not_parsed && s && s[0])
14055 {
14056 char *cond_string, *extra_string;
14057 int thread, task;
14058
14059 find_condition_and_thread (s, sals.sals[0].pc,
14060 &cond_string, &thread, &task,
14061 &extra_string);
14062 if (cond_string)
14063 b->cond_string = cond_string;
14064 b->thread = thread;
14065 b->task = task;
14066 if (extra_string)
14067 b->extra_string = extra_string;
14068 b->condition_not_parsed = 0;
14069 }
14070
14071 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14072 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14073
14074 *found = 1;
14075 }
14076 else
14077 *found = 0;
14078
14079 return sals;
14080 }
14081
14082 /* The default re_set method, for typical hardware or software
14083 breakpoints. Reevaluate the breakpoint and recreate its
14084 locations. */
14085
14086 static void
14087 breakpoint_re_set_default (struct breakpoint *b)
14088 {
14089 int found;
14090 struct symtabs_and_lines sals, sals_end;
14091 struct symtabs_and_lines expanded = {0};
14092 struct symtabs_and_lines expanded_end = {0};
14093
14094 sals = addr_string_to_sals (b, b->addr_string, &found);
14095 if (found)
14096 {
14097 make_cleanup (xfree, sals.sals);
14098 expanded = sals;
14099 }
14100
14101 if (b->addr_string_range_end)
14102 {
14103 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14104 if (found)
14105 {
14106 make_cleanup (xfree, sals_end.sals);
14107 expanded_end = sals_end;
14108 }
14109 }
14110
14111 update_breakpoint_locations (b, expanded, expanded_end);
14112 }
14113
14114 /* Default method for creating SALs from an address string. It basically
14115 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14116
14117 static void
14118 create_sals_from_address_default (char **arg,
14119 struct linespec_result *canonical,
14120 enum bptype type_wanted,
14121 char *addr_start, char **copy_arg)
14122 {
14123 parse_breakpoint_sals (arg, canonical);
14124 }
14125
14126 /* Call create_breakpoints_sal for the given arguments. This is the default
14127 function for the `create_breakpoints_sal' method of
14128 breakpoint_ops. */
14129
14130 static void
14131 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14132 struct linespec_result *canonical,
14133 char *cond_string,
14134 char *extra_string,
14135 enum bptype type_wanted,
14136 enum bpdisp disposition,
14137 int thread,
14138 int task, int ignore_count,
14139 const struct breakpoint_ops *ops,
14140 int from_tty, int enabled,
14141 int internal, unsigned flags)
14142 {
14143 create_breakpoints_sal (gdbarch, canonical, cond_string,
14144 extra_string,
14145 type_wanted, disposition,
14146 thread, task, ignore_count, ops, from_tty,
14147 enabled, internal, flags);
14148 }
14149
14150 /* Decode the line represented by S by calling decode_line_full. This is the
14151 default function for the `decode_linespec' method of breakpoint_ops. */
14152
14153 static void
14154 decode_linespec_default (struct breakpoint *b, char **s,
14155 struct symtabs_and_lines *sals)
14156 {
14157 struct linespec_result canonical;
14158
14159 init_linespec_result (&canonical);
14160 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14161 (struct symtab *) NULL, 0,
14162 &canonical, multiple_symbols_all,
14163 b->filter);
14164
14165 /* We should get 0 or 1 resulting SALs. */
14166 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14167
14168 if (VEC_length (linespec_sals, canonical.sals) > 0)
14169 {
14170 struct linespec_sals *lsal;
14171
14172 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14173 *sals = lsal->sals;
14174 /* Arrange it so the destructor does not free the
14175 contents. */
14176 lsal->sals.sals = NULL;
14177 }
14178
14179 destroy_linespec_result (&canonical);
14180 }
14181
14182 /* Prepare the global context for a re-set of breakpoint B. */
14183
14184 static struct cleanup *
14185 prepare_re_set_context (struct breakpoint *b)
14186 {
14187 struct cleanup *cleanups;
14188
14189 input_radix = b->input_radix;
14190 cleanups = save_current_space_and_thread ();
14191 if (b->pspace != NULL)
14192 switch_to_program_space_and_thread (b->pspace);
14193 set_language (b->language);
14194
14195 return cleanups;
14196 }
14197
14198 /* Reset a breakpoint given it's struct breakpoint * BINT.
14199 The value we return ends up being the return value from catch_errors.
14200 Unused in this case. */
14201
14202 static int
14203 breakpoint_re_set_one (void *bint)
14204 {
14205 /* Get past catch_errs. */
14206 struct breakpoint *b = (struct breakpoint *) bint;
14207 struct cleanup *cleanups;
14208
14209 cleanups = prepare_re_set_context (b);
14210 b->ops->re_set (b);
14211 do_cleanups (cleanups);
14212 return 0;
14213 }
14214
14215 /* Re-set all breakpoints after symbols have been re-loaded. */
14216 void
14217 breakpoint_re_set (void)
14218 {
14219 struct breakpoint *b, *b_tmp;
14220 enum language save_language;
14221 int save_input_radix;
14222 struct cleanup *old_chain;
14223
14224 save_language = current_language->la_language;
14225 save_input_radix = input_radix;
14226 old_chain = save_current_program_space ();
14227
14228 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14229 {
14230 /* Format possible error msg. */
14231 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14232 b->number);
14233 struct cleanup *cleanups = make_cleanup (xfree, message);
14234 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14235 do_cleanups (cleanups);
14236 }
14237 set_language (save_language);
14238 input_radix = save_input_radix;
14239
14240 jit_breakpoint_re_set ();
14241
14242 do_cleanups (old_chain);
14243
14244 create_overlay_event_breakpoint ();
14245 create_longjmp_master_breakpoint ();
14246 create_std_terminate_master_breakpoint ();
14247 create_exception_master_breakpoint ();
14248 }
14249 \f
14250 /* Reset the thread number of this breakpoint:
14251
14252 - If the breakpoint is for all threads, leave it as-is.
14253 - Else, reset it to the current thread for inferior_ptid. */
14254 void
14255 breakpoint_re_set_thread (struct breakpoint *b)
14256 {
14257 if (b->thread != -1)
14258 {
14259 if (in_thread_list (inferior_ptid))
14260 b->thread = pid_to_thread_id (inferior_ptid);
14261
14262 /* We're being called after following a fork. The new fork is
14263 selected as current, and unless this was a vfork will have a
14264 different program space from the original thread. Reset that
14265 as well. */
14266 b->loc->pspace = current_program_space;
14267 }
14268 }
14269
14270 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14271 If from_tty is nonzero, it prints a message to that effect,
14272 which ends with a period (no newline). */
14273
14274 void
14275 set_ignore_count (int bptnum, int count, int from_tty)
14276 {
14277 struct breakpoint *b;
14278
14279 if (count < 0)
14280 count = 0;
14281
14282 ALL_BREAKPOINTS (b)
14283 if (b->number == bptnum)
14284 {
14285 if (is_tracepoint (b))
14286 {
14287 if (from_tty && count != 0)
14288 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14289 bptnum);
14290 return;
14291 }
14292
14293 b->ignore_count = count;
14294 if (from_tty)
14295 {
14296 if (count == 0)
14297 printf_filtered (_("Will stop next time "
14298 "breakpoint %d is reached."),
14299 bptnum);
14300 else if (count == 1)
14301 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14302 bptnum);
14303 else
14304 printf_filtered (_("Will ignore next %d "
14305 "crossings of breakpoint %d."),
14306 count, bptnum);
14307 }
14308 observer_notify_breakpoint_modified (b);
14309 return;
14310 }
14311
14312 error (_("No breakpoint number %d."), bptnum);
14313 }
14314
14315 /* Command to set ignore-count of breakpoint N to COUNT. */
14316
14317 static void
14318 ignore_command (char *args, int from_tty)
14319 {
14320 char *p = args;
14321 int num;
14322
14323 if (p == 0)
14324 error_no_arg (_("a breakpoint number"));
14325
14326 num = get_number (&p);
14327 if (num == 0)
14328 error (_("bad breakpoint number: '%s'"), args);
14329 if (*p == 0)
14330 error (_("Second argument (specified ignore-count) is missing."));
14331
14332 set_ignore_count (num,
14333 longest_to_int (value_as_long (parse_and_eval (p))),
14334 from_tty);
14335 if (from_tty)
14336 printf_filtered ("\n");
14337 }
14338 \f
14339 /* Call FUNCTION on each of the breakpoints
14340 whose numbers are given in ARGS. */
14341
14342 static void
14343 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14344 void *),
14345 void *data)
14346 {
14347 int num;
14348 struct breakpoint *b, *tmp;
14349 int match;
14350 struct get_number_or_range_state state;
14351
14352 if (args == 0)
14353 error_no_arg (_("one or more breakpoint numbers"));
14354
14355 init_number_or_range (&state, args);
14356
14357 while (!state.finished)
14358 {
14359 char *p = state.string;
14360
14361 match = 0;
14362
14363 num = get_number_or_range (&state);
14364 if (num == 0)
14365 {
14366 warning (_("bad breakpoint number at or near '%s'"), p);
14367 }
14368 else
14369 {
14370 ALL_BREAKPOINTS_SAFE (b, tmp)
14371 if (b->number == num)
14372 {
14373 match = 1;
14374 function (b, data);
14375 break;
14376 }
14377 if (match == 0)
14378 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14379 }
14380 }
14381 }
14382
14383 static struct bp_location *
14384 find_location_by_number (char *number)
14385 {
14386 char *dot = strchr (number, '.');
14387 char *p1;
14388 int bp_num;
14389 int loc_num;
14390 struct breakpoint *b;
14391 struct bp_location *loc;
14392
14393 *dot = '\0';
14394
14395 p1 = number;
14396 bp_num = get_number (&p1);
14397 if (bp_num == 0)
14398 error (_("Bad breakpoint number '%s'"), number);
14399
14400 ALL_BREAKPOINTS (b)
14401 if (b->number == bp_num)
14402 {
14403 break;
14404 }
14405
14406 if (!b || b->number != bp_num)
14407 error (_("Bad breakpoint number '%s'"), number);
14408
14409 p1 = dot+1;
14410 loc_num = get_number (&p1);
14411 if (loc_num == 0)
14412 error (_("Bad breakpoint location number '%s'"), number);
14413
14414 --loc_num;
14415 loc = b->loc;
14416 for (;loc_num && loc; --loc_num, loc = loc->next)
14417 ;
14418 if (!loc)
14419 error (_("Bad breakpoint location number '%s'"), dot+1);
14420
14421 return loc;
14422 }
14423
14424
14425 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14426 If from_tty is nonzero, it prints a message to that effect,
14427 which ends with a period (no newline). */
14428
14429 void
14430 disable_breakpoint (struct breakpoint *bpt)
14431 {
14432 /* Never disable a watchpoint scope breakpoint; we want to
14433 hit them when we leave scope so we can delete both the
14434 watchpoint and its scope breakpoint at that time. */
14435 if (bpt->type == bp_watchpoint_scope)
14436 return;
14437
14438 /* You can't disable permanent breakpoints. */
14439 if (bpt->enable_state == bp_permanent)
14440 return;
14441
14442 bpt->enable_state = bp_disabled;
14443
14444 /* Mark breakpoint locations modified. */
14445 mark_breakpoint_modified (bpt);
14446
14447 if (target_supports_enable_disable_tracepoint ()
14448 && current_trace_status ()->running && is_tracepoint (bpt))
14449 {
14450 struct bp_location *location;
14451
14452 for (location = bpt->loc; location; location = location->next)
14453 target_disable_tracepoint (location);
14454 }
14455
14456 update_global_location_list (0);
14457
14458 observer_notify_breakpoint_modified (bpt);
14459 }
14460
14461 /* A callback for iterate_over_related_breakpoints. */
14462
14463 static void
14464 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14465 {
14466 disable_breakpoint (b);
14467 }
14468
14469 /* A callback for map_breakpoint_numbers that calls
14470 disable_breakpoint. */
14471
14472 static void
14473 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14474 {
14475 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14476 }
14477
14478 static void
14479 disable_command (char *args, int from_tty)
14480 {
14481 if (args == 0)
14482 {
14483 struct breakpoint *bpt;
14484
14485 ALL_BREAKPOINTS (bpt)
14486 if (user_breakpoint_p (bpt))
14487 disable_breakpoint (bpt);
14488 }
14489 else if (strchr (args, '.'))
14490 {
14491 struct bp_location *loc = find_location_by_number (args);
14492 if (loc)
14493 {
14494 if (loc->enabled)
14495 {
14496 loc->enabled = 0;
14497 mark_breakpoint_location_modified (loc);
14498 }
14499 if (target_supports_enable_disable_tracepoint ()
14500 && current_trace_status ()->running && loc->owner
14501 && is_tracepoint (loc->owner))
14502 target_disable_tracepoint (loc);
14503 }
14504 update_global_location_list (0);
14505 }
14506 else
14507 map_breakpoint_numbers (args, do_map_disable_breakpoint, NULL);
14508 }
14509
14510 static void
14511 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14512 int count)
14513 {
14514 int target_resources_ok;
14515
14516 if (bpt->type == bp_hardware_breakpoint)
14517 {
14518 int i;
14519 i = hw_breakpoint_used_count ();
14520 target_resources_ok =
14521 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14522 i + 1, 0);
14523 if (target_resources_ok == 0)
14524 error (_("No hardware breakpoint support in the target."));
14525 else if (target_resources_ok < 0)
14526 error (_("Hardware breakpoints used exceeds limit."));
14527 }
14528
14529 if (is_watchpoint (bpt))
14530 {
14531 /* Initialize it just to avoid a GCC false warning. */
14532 enum enable_state orig_enable_state = 0;
14533 volatile struct gdb_exception e;
14534
14535 TRY_CATCH (e, RETURN_MASK_ALL)
14536 {
14537 struct watchpoint *w = (struct watchpoint *) bpt;
14538
14539 orig_enable_state = bpt->enable_state;
14540 bpt->enable_state = bp_enabled;
14541 update_watchpoint (w, 1 /* reparse */);
14542 }
14543 if (e.reason < 0)
14544 {
14545 bpt->enable_state = orig_enable_state;
14546 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14547 bpt->number);
14548 return;
14549 }
14550 }
14551
14552 if (bpt->enable_state != bp_permanent)
14553 bpt->enable_state = bp_enabled;
14554
14555 bpt->enable_state = bp_enabled;
14556
14557 /* Mark breakpoint locations modified. */
14558 mark_breakpoint_modified (bpt);
14559
14560 if (target_supports_enable_disable_tracepoint ()
14561 && current_trace_status ()->running && is_tracepoint (bpt))
14562 {
14563 struct bp_location *location;
14564
14565 for (location = bpt->loc; location; location = location->next)
14566 target_enable_tracepoint (location);
14567 }
14568
14569 bpt->disposition = disposition;
14570 bpt->enable_count = count;
14571 update_global_location_list (1);
14572
14573 observer_notify_breakpoint_modified (bpt);
14574 }
14575
14576
14577 void
14578 enable_breakpoint (struct breakpoint *bpt)
14579 {
14580 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14581 }
14582
14583 static void
14584 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14585 {
14586 enable_breakpoint (bpt);
14587 }
14588
14589 /* A callback for map_breakpoint_numbers that calls
14590 enable_breakpoint. */
14591
14592 static void
14593 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14594 {
14595 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14596 }
14597
14598 /* The enable command enables the specified breakpoints (or all defined
14599 breakpoints) so they once again become (or continue to be) effective
14600 in stopping the inferior. */
14601
14602 static void
14603 enable_command (char *args, int from_tty)
14604 {
14605 if (args == 0)
14606 {
14607 struct breakpoint *bpt;
14608
14609 ALL_BREAKPOINTS (bpt)
14610 if (user_breakpoint_p (bpt))
14611 enable_breakpoint (bpt);
14612 }
14613 else if (strchr (args, '.'))
14614 {
14615 struct bp_location *loc = find_location_by_number (args);
14616 if (loc)
14617 {
14618 if (!loc->enabled)
14619 {
14620 loc->enabled = 1;
14621 mark_breakpoint_location_modified (loc);
14622 }
14623 if (target_supports_enable_disable_tracepoint ()
14624 && current_trace_status ()->running && loc->owner
14625 && is_tracepoint (loc->owner))
14626 target_enable_tracepoint (loc);
14627 }
14628 update_global_location_list (1);
14629 }
14630 else
14631 map_breakpoint_numbers (args, do_map_enable_breakpoint, NULL);
14632 }
14633
14634 /* This struct packages up disposition data for application to multiple
14635 breakpoints. */
14636
14637 struct disp_data
14638 {
14639 enum bpdisp disp;
14640 int count;
14641 };
14642
14643 static void
14644 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14645 {
14646 struct disp_data disp_data = *(struct disp_data *) arg;
14647
14648 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14649 }
14650
14651 static void
14652 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14653 {
14654 struct disp_data disp = { disp_disable, 1 };
14655
14656 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14657 }
14658
14659 static void
14660 enable_once_command (char *args, int from_tty)
14661 {
14662 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14663 }
14664
14665 static void
14666 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14667 {
14668 struct disp_data disp = { disp_disable, *(int *) countptr };
14669
14670 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14671 }
14672
14673 static void
14674 enable_count_command (char *args, int from_tty)
14675 {
14676 int count = get_number (&args);
14677
14678 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14679 }
14680
14681 static void
14682 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14683 {
14684 struct disp_data disp = { disp_del, 1 };
14685
14686 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14687 }
14688
14689 static void
14690 enable_delete_command (char *args, int from_tty)
14691 {
14692 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14693 }
14694 \f
14695 static void
14696 set_breakpoint_cmd (char *args, int from_tty)
14697 {
14698 }
14699
14700 static void
14701 show_breakpoint_cmd (char *args, int from_tty)
14702 {
14703 }
14704
14705 /* Invalidate last known value of any hardware watchpoint if
14706 the memory which that value represents has been written to by
14707 GDB itself. */
14708
14709 static void
14710 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14711 CORE_ADDR addr, ssize_t len,
14712 const bfd_byte *data)
14713 {
14714 struct breakpoint *bp;
14715
14716 ALL_BREAKPOINTS (bp)
14717 if (bp->enable_state == bp_enabled
14718 && bp->type == bp_hardware_watchpoint)
14719 {
14720 struct watchpoint *wp = (struct watchpoint *) bp;
14721
14722 if (wp->val_valid && wp->val)
14723 {
14724 struct bp_location *loc;
14725
14726 for (loc = bp->loc; loc != NULL; loc = loc->next)
14727 if (loc->loc_type == bp_loc_hardware_watchpoint
14728 && loc->address + loc->length > addr
14729 && addr + len > loc->address)
14730 {
14731 value_free (wp->val);
14732 wp->val = NULL;
14733 wp->val_valid = 0;
14734 }
14735 }
14736 }
14737 }
14738
14739 /* Create and insert a raw software breakpoint at PC. Return an
14740 identifier, which should be used to remove the breakpoint later.
14741 In general, places which call this should be using something on the
14742 breakpoint chain instead; this function should be eliminated
14743 someday. */
14744
14745 void *
14746 deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
14747 struct address_space *aspace, CORE_ADDR pc)
14748 {
14749 struct bp_target_info *bp_tgt;
14750
14751 bp_tgt = XZALLOC (struct bp_target_info);
14752
14753 bp_tgt->placed_address_space = aspace;
14754 bp_tgt->placed_address = pc;
14755
14756 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
14757 {
14758 /* Could not insert the breakpoint. */
14759 xfree (bp_tgt);
14760 return NULL;
14761 }
14762
14763 return bp_tgt;
14764 }
14765
14766 /* Remove a breakpoint BP inserted by
14767 deprecated_insert_raw_breakpoint. */
14768
14769 int
14770 deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
14771 {
14772 struct bp_target_info *bp_tgt = bp;
14773 int ret;
14774
14775 ret = target_remove_breakpoint (gdbarch, bp_tgt);
14776 xfree (bp_tgt);
14777
14778 return ret;
14779 }
14780
14781 /* One (or perhaps two) breakpoints used for software single
14782 stepping. */
14783
14784 static void *single_step_breakpoints[2];
14785 static struct gdbarch *single_step_gdbarch[2];
14786
14787 /* Create and insert a breakpoint for software single step. */
14788
14789 void
14790 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14791 struct address_space *aspace,
14792 CORE_ADDR next_pc)
14793 {
14794 void **bpt_p;
14795
14796 if (single_step_breakpoints[0] == NULL)
14797 {
14798 bpt_p = &single_step_breakpoints[0];
14799 single_step_gdbarch[0] = gdbarch;
14800 }
14801 else
14802 {
14803 gdb_assert (single_step_breakpoints[1] == NULL);
14804 bpt_p = &single_step_breakpoints[1];
14805 single_step_gdbarch[1] = gdbarch;
14806 }
14807
14808 /* NOTE drow/2006-04-11: A future improvement to this function would
14809 be to only create the breakpoints once, and actually put them on
14810 the breakpoint chain. That would let us use set_raw_breakpoint.
14811 We could adjust the addresses each time they were needed. Doing
14812 this requires corresponding changes elsewhere where single step
14813 breakpoints are handled, however. So, for now, we use this. */
14814
14815 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
14816 if (*bpt_p == NULL)
14817 error (_("Could not insert single-step breakpoint at %s"),
14818 paddress (gdbarch, next_pc));
14819 }
14820
14821 /* Check if the breakpoints used for software single stepping
14822 were inserted or not. */
14823
14824 int
14825 single_step_breakpoints_inserted (void)
14826 {
14827 return (single_step_breakpoints[0] != NULL
14828 || single_step_breakpoints[1] != NULL);
14829 }
14830
14831 /* Remove and delete any breakpoints used for software single step. */
14832
14833 void
14834 remove_single_step_breakpoints (void)
14835 {
14836 gdb_assert (single_step_breakpoints[0] != NULL);
14837
14838 /* See insert_single_step_breakpoint for more about this deprecated
14839 call. */
14840 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
14841 single_step_breakpoints[0]);
14842 single_step_gdbarch[0] = NULL;
14843 single_step_breakpoints[0] = NULL;
14844
14845 if (single_step_breakpoints[1] != NULL)
14846 {
14847 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
14848 single_step_breakpoints[1]);
14849 single_step_gdbarch[1] = NULL;
14850 single_step_breakpoints[1] = NULL;
14851 }
14852 }
14853
14854 /* Delete software single step breakpoints without removing them from
14855 the inferior. This is intended to be used if the inferior's address
14856 space where they were inserted is already gone, e.g. after exit or
14857 exec. */
14858
14859 void
14860 cancel_single_step_breakpoints (void)
14861 {
14862 int i;
14863
14864 for (i = 0; i < 2; i++)
14865 if (single_step_breakpoints[i])
14866 {
14867 xfree (single_step_breakpoints[i]);
14868 single_step_breakpoints[i] = NULL;
14869 single_step_gdbarch[i] = NULL;
14870 }
14871 }
14872
14873 /* Detach software single-step breakpoints from INFERIOR_PTID without
14874 removing them. */
14875
14876 static void
14877 detach_single_step_breakpoints (void)
14878 {
14879 int i;
14880
14881 for (i = 0; i < 2; i++)
14882 if (single_step_breakpoints[i])
14883 target_remove_breakpoint (single_step_gdbarch[i],
14884 single_step_breakpoints[i]);
14885 }
14886
14887 /* Check whether a software single-step breakpoint is inserted at
14888 PC. */
14889
14890 static int
14891 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
14892 CORE_ADDR pc)
14893 {
14894 int i;
14895
14896 for (i = 0; i < 2; i++)
14897 {
14898 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
14899 if (bp_tgt
14900 && breakpoint_address_match (bp_tgt->placed_address_space,
14901 bp_tgt->placed_address,
14902 aspace, pc))
14903 return 1;
14904 }
14905
14906 return 0;
14907 }
14908
14909 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
14910 non-zero otherwise. */
14911 static int
14912 is_syscall_catchpoint_enabled (struct breakpoint *bp)
14913 {
14914 if (syscall_catchpoint_p (bp)
14915 && bp->enable_state != bp_disabled
14916 && bp->enable_state != bp_call_disabled)
14917 return 1;
14918 else
14919 return 0;
14920 }
14921
14922 int
14923 catch_syscall_enabled (void)
14924 {
14925 struct catch_syscall_inferior_data *inf_data
14926 = get_catch_syscall_inferior_data (current_inferior ());
14927
14928 return inf_data->total_syscalls_count != 0;
14929 }
14930
14931 int
14932 catching_syscall_number (int syscall_number)
14933 {
14934 struct breakpoint *bp;
14935
14936 ALL_BREAKPOINTS (bp)
14937 if (is_syscall_catchpoint_enabled (bp))
14938 {
14939 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
14940
14941 if (c->syscalls_to_be_caught)
14942 {
14943 int i, iter;
14944 for (i = 0;
14945 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
14946 i++)
14947 if (syscall_number == iter)
14948 return 1;
14949 }
14950 else
14951 return 1;
14952 }
14953
14954 return 0;
14955 }
14956
14957 /* Complete syscall names. Used by "catch syscall". */
14958 static VEC (char_ptr) *
14959 catch_syscall_completer (struct cmd_list_element *cmd,
14960 const char *text, const char *word)
14961 {
14962 const char **list = get_syscall_names ();
14963 VEC (char_ptr) *retlist
14964 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
14965
14966 xfree (list);
14967 return retlist;
14968 }
14969
14970 /* Tracepoint-specific operations. */
14971
14972 /* Set tracepoint count to NUM. */
14973 static void
14974 set_tracepoint_count (int num)
14975 {
14976 tracepoint_count = num;
14977 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14978 }
14979
14980 static void
14981 trace_command (char *arg, int from_tty)
14982 {
14983 struct breakpoint_ops *ops;
14984 const char *arg_cp = arg;
14985
14986 if (arg && probe_linespec_to_ops (&arg_cp))
14987 ops = &tracepoint_probe_breakpoint_ops;
14988 else
14989 ops = &tracepoint_breakpoint_ops;
14990
14991 create_breakpoint (get_current_arch (),
14992 arg,
14993 NULL, 0, NULL, 1 /* parse arg */,
14994 0 /* tempflag */,
14995 bp_tracepoint /* type_wanted */,
14996 0 /* Ignore count */,
14997 pending_break_support,
14998 ops,
14999 from_tty,
15000 1 /* enabled */,
15001 0 /* internal */, 0);
15002 }
15003
15004 static void
15005 ftrace_command (char *arg, int from_tty)
15006 {
15007 create_breakpoint (get_current_arch (),
15008 arg,
15009 NULL, 0, NULL, 1 /* parse arg */,
15010 0 /* tempflag */,
15011 bp_fast_tracepoint /* type_wanted */,
15012 0 /* Ignore count */,
15013 pending_break_support,
15014 &tracepoint_breakpoint_ops,
15015 from_tty,
15016 1 /* enabled */,
15017 0 /* internal */, 0);
15018 }
15019
15020 /* strace command implementation. Creates a static tracepoint. */
15021
15022 static void
15023 strace_command (char *arg, int from_tty)
15024 {
15025 struct breakpoint_ops *ops;
15026
15027 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15028 or with a normal static tracepoint. */
15029 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15030 ops = &strace_marker_breakpoint_ops;
15031 else
15032 ops = &tracepoint_breakpoint_ops;
15033
15034 create_breakpoint (get_current_arch (),
15035 arg,
15036 NULL, 0, NULL, 1 /* parse arg */,
15037 0 /* tempflag */,
15038 bp_static_tracepoint /* type_wanted */,
15039 0 /* Ignore count */,
15040 pending_break_support,
15041 ops,
15042 from_tty,
15043 1 /* enabled */,
15044 0 /* internal */, 0);
15045 }
15046
15047 /* Set up a fake reader function that gets command lines from a linked
15048 list that was acquired during tracepoint uploading. */
15049
15050 static struct uploaded_tp *this_utp;
15051 static int next_cmd;
15052
15053 static char *
15054 read_uploaded_action (void)
15055 {
15056 char *rslt;
15057
15058 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15059
15060 next_cmd++;
15061
15062 return rslt;
15063 }
15064
15065 /* Given information about a tracepoint as recorded on a target (which
15066 can be either a live system or a trace file), attempt to create an
15067 equivalent GDB tracepoint. This is not a reliable process, since
15068 the target does not necessarily have all the information used when
15069 the tracepoint was originally defined. */
15070
15071 struct tracepoint *
15072 create_tracepoint_from_upload (struct uploaded_tp *utp)
15073 {
15074 char *addr_str, small_buf[100];
15075 struct tracepoint *tp;
15076
15077 if (utp->at_string)
15078 addr_str = utp->at_string;
15079 else
15080 {
15081 /* In the absence of a source location, fall back to raw
15082 address. Since there is no way to confirm that the address
15083 means the same thing as when the trace was started, warn the
15084 user. */
15085 warning (_("Uploaded tracepoint %d has no "
15086 "source location, using raw address"),
15087 utp->number);
15088 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15089 addr_str = small_buf;
15090 }
15091
15092 /* There's not much we can do with a sequence of bytecodes. */
15093 if (utp->cond && !utp->cond_string)
15094 warning (_("Uploaded tracepoint %d condition "
15095 "has no source form, ignoring it"),
15096 utp->number);
15097
15098 if (!create_breakpoint (get_current_arch (),
15099 addr_str,
15100 utp->cond_string, -1, NULL,
15101 0 /* parse cond/thread */,
15102 0 /* tempflag */,
15103 utp->type /* type_wanted */,
15104 0 /* Ignore count */,
15105 pending_break_support,
15106 &tracepoint_breakpoint_ops,
15107 0 /* from_tty */,
15108 utp->enabled /* enabled */,
15109 0 /* internal */,
15110 CREATE_BREAKPOINT_FLAGS_INSERTED))
15111 return NULL;
15112
15113 /* Get the tracepoint we just created. */
15114 tp = get_tracepoint (tracepoint_count);
15115 gdb_assert (tp != NULL);
15116
15117 if (utp->pass > 0)
15118 {
15119 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15120 tp->base.number);
15121
15122 trace_pass_command (small_buf, 0);
15123 }
15124
15125 /* If we have uploaded versions of the original commands, set up a
15126 special-purpose "reader" function and call the usual command line
15127 reader, then pass the result to the breakpoint command-setting
15128 function. */
15129 if (!VEC_empty (char_ptr, utp->cmd_strings))
15130 {
15131 struct command_line *cmd_list;
15132
15133 this_utp = utp;
15134 next_cmd = 0;
15135
15136 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15137
15138 breakpoint_set_commands (&tp->base, cmd_list);
15139 }
15140 else if (!VEC_empty (char_ptr, utp->actions)
15141 || !VEC_empty (char_ptr, utp->step_actions))
15142 warning (_("Uploaded tracepoint %d actions "
15143 "have no source form, ignoring them"),
15144 utp->number);
15145
15146 /* Copy any status information that might be available. */
15147 tp->base.hit_count = utp->hit_count;
15148 tp->traceframe_usage = utp->traceframe_usage;
15149
15150 return tp;
15151 }
15152
15153 /* Print information on tracepoint number TPNUM_EXP, or all if
15154 omitted. */
15155
15156 static void
15157 tracepoints_info (char *args, int from_tty)
15158 {
15159 struct ui_out *uiout = current_uiout;
15160 int num_printed;
15161
15162 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15163
15164 if (num_printed == 0)
15165 {
15166 if (args == NULL || *args == '\0')
15167 ui_out_message (uiout, 0, "No tracepoints.\n");
15168 else
15169 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15170 }
15171
15172 default_collect_info ();
15173 }
15174
15175 /* The 'enable trace' command enables tracepoints.
15176 Not supported by all targets. */
15177 static void
15178 enable_trace_command (char *args, int from_tty)
15179 {
15180 enable_command (args, from_tty);
15181 }
15182
15183 /* The 'disable trace' command disables tracepoints.
15184 Not supported by all targets. */
15185 static void
15186 disable_trace_command (char *args, int from_tty)
15187 {
15188 disable_command (args, from_tty);
15189 }
15190
15191 /* Remove a tracepoint (or all if no argument). */
15192 static void
15193 delete_trace_command (char *arg, int from_tty)
15194 {
15195 struct breakpoint *b, *b_tmp;
15196
15197 dont_repeat ();
15198
15199 if (arg == 0)
15200 {
15201 int breaks_to_delete = 0;
15202
15203 /* Delete all breakpoints if no argument.
15204 Do not delete internal or call-dummy breakpoints, these
15205 have to be deleted with an explicit breakpoint number
15206 argument. */
15207 ALL_TRACEPOINTS (b)
15208 if (is_tracepoint (b) && user_breakpoint_p (b))
15209 {
15210 breaks_to_delete = 1;
15211 break;
15212 }
15213
15214 /* Ask user only if there are some breakpoints to delete. */
15215 if (!from_tty
15216 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15217 {
15218 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15219 if (is_tracepoint (b) && user_breakpoint_p (b))
15220 delete_breakpoint (b);
15221 }
15222 }
15223 else
15224 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15225 }
15226
15227 /* Helper function for trace_pass_command. */
15228
15229 static void
15230 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15231 {
15232 tp->pass_count = count;
15233 observer_notify_breakpoint_modified (&tp->base);
15234 if (from_tty)
15235 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15236 tp->base.number, count);
15237 }
15238
15239 /* Set passcount for tracepoint.
15240
15241 First command argument is passcount, second is tracepoint number.
15242 If tracepoint number omitted, apply to most recently defined.
15243 Also accepts special argument "all". */
15244
15245 static void
15246 trace_pass_command (char *args, int from_tty)
15247 {
15248 struct tracepoint *t1;
15249 unsigned int count;
15250
15251 if (args == 0 || *args == 0)
15252 error (_("passcount command requires an "
15253 "argument (count + optional TP num)"));
15254
15255 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15256
15257 args = skip_spaces (args);
15258 if (*args && strncasecmp (args, "all", 3) == 0)
15259 {
15260 struct breakpoint *b;
15261
15262 args += 3; /* Skip special argument "all". */
15263 if (*args)
15264 error (_("Junk at end of arguments."));
15265
15266 ALL_TRACEPOINTS (b)
15267 {
15268 t1 = (struct tracepoint *) b;
15269 trace_pass_set_count (t1, count, from_tty);
15270 }
15271 }
15272 else if (*args == '\0')
15273 {
15274 t1 = get_tracepoint_by_number (&args, NULL, 1);
15275 if (t1)
15276 trace_pass_set_count (t1, count, from_tty);
15277 }
15278 else
15279 {
15280 struct get_number_or_range_state state;
15281
15282 init_number_or_range (&state, args);
15283 while (!state.finished)
15284 {
15285 t1 = get_tracepoint_by_number (&args, &state, 1);
15286 if (t1)
15287 trace_pass_set_count (t1, count, from_tty);
15288 }
15289 }
15290 }
15291
15292 struct tracepoint *
15293 get_tracepoint (int num)
15294 {
15295 struct breakpoint *t;
15296
15297 ALL_TRACEPOINTS (t)
15298 if (t->number == num)
15299 return (struct tracepoint *) t;
15300
15301 return NULL;
15302 }
15303
15304 /* Find the tracepoint with the given target-side number (which may be
15305 different from the tracepoint number after disconnecting and
15306 reconnecting). */
15307
15308 struct tracepoint *
15309 get_tracepoint_by_number_on_target (int num)
15310 {
15311 struct breakpoint *b;
15312
15313 ALL_TRACEPOINTS (b)
15314 {
15315 struct tracepoint *t = (struct tracepoint *) b;
15316
15317 if (t->number_on_target == num)
15318 return t;
15319 }
15320
15321 return NULL;
15322 }
15323
15324 /* Utility: parse a tracepoint number and look it up in the list.
15325 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15326 If OPTIONAL_P is true, then if the argument is missing, the most
15327 recent tracepoint (tracepoint_count) is returned. */
15328 struct tracepoint *
15329 get_tracepoint_by_number (char **arg,
15330 struct get_number_or_range_state *state,
15331 int optional_p)
15332 {
15333 struct breakpoint *t;
15334 int tpnum;
15335 char *instring = arg == NULL ? NULL : *arg;
15336
15337 if (state)
15338 {
15339 gdb_assert (!state->finished);
15340 tpnum = get_number_or_range (state);
15341 }
15342 else if (arg == NULL || *arg == NULL || ! **arg)
15343 {
15344 if (optional_p)
15345 tpnum = tracepoint_count;
15346 else
15347 error_no_arg (_("tracepoint number"));
15348 }
15349 else
15350 tpnum = get_number (arg);
15351
15352 if (tpnum <= 0)
15353 {
15354 if (instring && *instring)
15355 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15356 instring);
15357 else
15358 printf_filtered (_("Tracepoint argument missing "
15359 "and no previous tracepoint\n"));
15360 return NULL;
15361 }
15362
15363 ALL_TRACEPOINTS (t)
15364 if (t->number == tpnum)
15365 {
15366 return (struct tracepoint *) t;
15367 }
15368
15369 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15370 return NULL;
15371 }
15372
15373 void
15374 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15375 {
15376 if (b->thread != -1)
15377 fprintf_unfiltered (fp, " thread %d", b->thread);
15378
15379 if (b->task != 0)
15380 fprintf_unfiltered (fp, " task %d", b->task);
15381
15382 fprintf_unfiltered (fp, "\n");
15383 }
15384
15385 /* Save information on user settable breakpoints (watchpoints, etc) to
15386 a new script file named FILENAME. If FILTER is non-NULL, call it
15387 on each breakpoint and only include the ones for which it returns
15388 non-zero. */
15389
15390 static void
15391 save_breakpoints (char *filename, int from_tty,
15392 int (*filter) (const struct breakpoint *))
15393 {
15394 struct breakpoint *tp;
15395 int any = 0;
15396 char *pathname;
15397 struct cleanup *cleanup;
15398 struct ui_file *fp;
15399 int extra_trace_bits = 0;
15400
15401 if (filename == 0 || *filename == 0)
15402 error (_("Argument required (file name in which to save)"));
15403
15404 /* See if we have anything to save. */
15405 ALL_BREAKPOINTS (tp)
15406 {
15407 /* Skip internal and momentary breakpoints. */
15408 if (!user_breakpoint_p (tp))
15409 continue;
15410
15411 /* If we have a filter, only save the breakpoints it accepts. */
15412 if (filter && !filter (tp))
15413 continue;
15414
15415 any = 1;
15416
15417 if (is_tracepoint (tp))
15418 {
15419 extra_trace_bits = 1;
15420
15421 /* We can stop searching. */
15422 break;
15423 }
15424 }
15425
15426 if (!any)
15427 {
15428 warning (_("Nothing to save."));
15429 return;
15430 }
15431
15432 pathname = tilde_expand (filename);
15433 cleanup = make_cleanup (xfree, pathname);
15434 fp = gdb_fopen (pathname, "w");
15435 if (!fp)
15436 error (_("Unable to open file '%s' for saving (%s)"),
15437 filename, safe_strerror (errno));
15438 make_cleanup_ui_file_delete (fp);
15439
15440 if (extra_trace_bits)
15441 save_trace_state_variables (fp);
15442
15443 ALL_BREAKPOINTS (tp)
15444 {
15445 /* Skip internal and momentary breakpoints. */
15446 if (!user_breakpoint_p (tp))
15447 continue;
15448
15449 /* If we have a filter, only save the breakpoints it accepts. */
15450 if (filter && !filter (tp))
15451 continue;
15452
15453 tp->ops->print_recreate (tp, fp);
15454
15455 /* Note, we can't rely on tp->number for anything, as we can't
15456 assume the recreated breakpoint numbers will match. Use $bpnum
15457 instead. */
15458
15459 if (tp->cond_string)
15460 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15461
15462 if (tp->ignore_count)
15463 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15464
15465 if (tp->type != bp_dprintf && tp->commands)
15466 {
15467 volatile struct gdb_exception ex;
15468
15469 fprintf_unfiltered (fp, " commands\n");
15470
15471 ui_out_redirect (current_uiout, fp);
15472 TRY_CATCH (ex, RETURN_MASK_ALL)
15473 {
15474 print_command_lines (current_uiout, tp->commands->commands, 2);
15475 }
15476 ui_out_redirect (current_uiout, NULL);
15477
15478 if (ex.reason < 0)
15479 throw_exception (ex);
15480
15481 fprintf_unfiltered (fp, " end\n");
15482 }
15483
15484 if (tp->enable_state == bp_disabled)
15485 fprintf_unfiltered (fp, "disable\n");
15486
15487 /* If this is a multi-location breakpoint, check if the locations
15488 should be individually disabled. Watchpoint locations are
15489 special, and not user visible. */
15490 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15491 {
15492 struct bp_location *loc;
15493 int n = 1;
15494
15495 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15496 if (!loc->enabled)
15497 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15498 }
15499 }
15500
15501 if (extra_trace_bits && *default_collect)
15502 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15503
15504 do_cleanups (cleanup);
15505 if (from_tty)
15506 printf_filtered (_("Saved to file '%s'.\n"), filename);
15507 }
15508
15509 /* The `save breakpoints' command. */
15510
15511 static void
15512 save_breakpoints_command (char *args, int from_tty)
15513 {
15514 save_breakpoints (args, from_tty, NULL);
15515 }
15516
15517 /* The `save tracepoints' command. */
15518
15519 static void
15520 save_tracepoints_command (char *args, int from_tty)
15521 {
15522 save_breakpoints (args, from_tty, is_tracepoint);
15523 }
15524
15525 /* Create a vector of all tracepoints. */
15526
15527 VEC(breakpoint_p) *
15528 all_tracepoints (void)
15529 {
15530 VEC(breakpoint_p) *tp_vec = 0;
15531 struct breakpoint *tp;
15532
15533 ALL_TRACEPOINTS (tp)
15534 {
15535 VEC_safe_push (breakpoint_p, tp_vec, tp);
15536 }
15537
15538 return tp_vec;
15539 }
15540
15541 \f
15542 /* This help string is used for the break, hbreak, tbreak and thbreak
15543 commands. It is defined as a macro to prevent duplication.
15544 COMMAND should be a string constant containing the name of the
15545 command. */
15546 #define BREAK_ARGS_HELP(command) \
15547 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15548 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15549 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15550 guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
15551 LOCATION may be a line number, function name, or \"*\" and an address.\n\
15552 If a line number is specified, break at start of code for that line.\n\
15553 If a function is specified, break at start of code for that function.\n\
15554 If an address is specified, break at that exact address.\n\
15555 With no LOCATION, uses current execution address of the selected\n\
15556 stack frame. This is useful for breaking on return to a stack frame.\n\
15557 \n\
15558 THREADNUM is the number from \"info threads\".\n\
15559 CONDITION is a boolean expression.\n\
15560 \n\
15561 Multiple breakpoints at one place are permitted, and useful if their\n\
15562 conditions are different.\n\
15563 \n\
15564 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15565
15566 /* List of subcommands for "catch". */
15567 static struct cmd_list_element *catch_cmdlist;
15568
15569 /* List of subcommands for "tcatch". */
15570 static struct cmd_list_element *tcatch_cmdlist;
15571
15572 void
15573 add_catch_command (char *name, char *docstring,
15574 void (*sfunc) (char *args, int from_tty,
15575 struct cmd_list_element *command),
15576 completer_ftype *completer,
15577 void *user_data_catch,
15578 void *user_data_tcatch)
15579 {
15580 struct cmd_list_element *command;
15581
15582 command = add_cmd (name, class_breakpoint, NULL, docstring,
15583 &catch_cmdlist);
15584 set_cmd_sfunc (command, sfunc);
15585 set_cmd_context (command, user_data_catch);
15586 set_cmd_completer (command, completer);
15587
15588 command = add_cmd (name, class_breakpoint, NULL, docstring,
15589 &tcatch_cmdlist);
15590 set_cmd_sfunc (command, sfunc);
15591 set_cmd_context (command, user_data_tcatch);
15592 set_cmd_completer (command, completer);
15593 }
15594
15595 static void
15596 clear_syscall_counts (struct inferior *inf)
15597 {
15598 struct catch_syscall_inferior_data *inf_data
15599 = get_catch_syscall_inferior_data (inf);
15600
15601 inf_data->total_syscalls_count = 0;
15602 inf_data->any_syscall_count = 0;
15603 VEC_free (int, inf_data->syscalls_counts);
15604 }
15605
15606 static void
15607 save_command (char *arg, int from_tty)
15608 {
15609 printf_unfiltered (_("\"save\" must be followed by "
15610 "the name of a save subcommand.\n"));
15611 help_list (save_cmdlist, "save ", -1, gdb_stdout);
15612 }
15613
15614 struct breakpoint *
15615 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15616 void *data)
15617 {
15618 struct breakpoint *b, *b_tmp;
15619
15620 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15621 {
15622 if ((*callback) (b, data))
15623 return b;
15624 }
15625
15626 return NULL;
15627 }
15628
15629 /* Zero if any of the breakpoint's locations could be a location where
15630 functions have been inlined, nonzero otherwise. */
15631
15632 static int
15633 is_non_inline_function (struct breakpoint *b)
15634 {
15635 /* The shared library event breakpoint is set on the address of a
15636 non-inline function. */
15637 if (b->type == bp_shlib_event)
15638 return 1;
15639
15640 return 0;
15641 }
15642
15643 /* Nonzero if the specified PC cannot be a location where functions
15644 have been inlined. */
15645
15646 int
15647 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15648 const struct target_waitstatus *ws)
15649 {
15650 struct breakpoint *b;
15651 struct bp_location *bl;
15652
15653 ALL_BREAKPOINTS (b)
15654 {
15655 if (!is_non_inline_function (b))
15656 continue;
15657
15658 for (bl = b->loc; bl != NULL; bl = bl->next)
15659 {
15660 if (!bl->shlib_disabled
15661 && bpstat_check_location (bl, aspace, pc, ws))
15662 return 1;
15663 }
15664 }
15665
15666 return 0;
15667 }
15668
15669 /* Remove any references to OBJFILE which is going to be freed. */
15670
15671 void
15672 breakpoint_free_objfile (struct objfile *objfile)
15673 {
15674 struct bp_location **locp, *loc;
15675
15676 ALL_BP_LOCATIONS (loc, locp)
15677 if (loc->symtab != NULL && loc->symtab->objfile == objfile)
15678 loc->symtab = NULL;
15679 }
15680
15681 void
15682 initialize_breakpoint_ops (void)
15683 {
15684 static int initialized = 0;
15685
15686 struct breakpoint_ops *ops;
15687
15688 if (initialized)
15689 return;
15690 initialized = 1;
15691
15692 /* The breakpoint_ops structure to be inherit by all kinds of
15693 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15694 internal and momentary breakpoints, etc.). */
15695 ops = &bkpt_base_breakpoint_ops;
15696 *ops = base_breakpoint_ops;
15697 ops->re_set = bkpt_re_set;
15698 ops->insert_location = bkpt_insert_location;
15699 ops->remove_location = bkpt_remove_location;
15700 ops->breakpoint_hit = bkpt_breakpoint_hit;
15701 ops->create_sals_from_address = bkpt_create_sals_from_address;
15702 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15703 ops->decode_linespec = bkpt_decode_linespec;
15704
15705 /* The breakpoint_ops structure to be used in regular breakpoints. */
15706 ops = &bkpt_breakpoint_ops;
15707 *ops = bkpt_base_breakpoint_ops;
15708 ops->re_set = bkpt_re_set;
15709 ops->resources_needed = bkpt_resources_needed;
15710 ops->print_it = bkpt_print_it;
15711 ops->print_mention = bkpt_print_mention;
15712 ops->print_recreate = bkpt_print_recreate;
15713
15714 /* Ranged breakpoints. */
15715 ops = &ranged_breakpoint_ops;
15716 *ops = bkpt_breakpoint_ops;
15717 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15718 ops->resources_needed = resources_needed_ranged_breakpoint;
15719 ops->print_it = print_it_ranged_breakpoint;
15720 ops->print_one = print_one_ranged_breakpoint;
15721 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15722 ops->print_mention = print_mention_ranged_breakpoint;
15723 ops->print_recreate = print_recreate_ranged_breakpoint;
15724
15725 /* Internal breakpoints. */
15726 ops = &internal_breakpoint_ops;
15727 *ops = bkpt_base_breakpoint_ops;
15728 ops->re_set = internal_bkpt_re_set;
15729 ops->check_status = internal_bkpt_check_status;
15730 ops->print_it = internal_bkpt_print_it;
15731 ops->print_mention = internal_bkpt_print_mention;
15732
15733 /* Momentary breakpoints. */
15734 ops = &momentary_breakpoint_ops;
15735 *ops = bkpt_base_breakpoint_ops;
15736 ops->re_set = momentary_bkpt_re_set;
15737 ops->check_status = momentary_bkpt_check_status;
15738 ops->print_it = momentary_bkpt_print_it;
15739 ops->print_mention = momentary_bkpt_print_mention;
15740
15741 /* Momentary breakpoints for bp_longjmp and bp_exception. */
15742 ops = &longjmp_breakpoint_ops;
15743 *ops = momentary_breakpoint_ops;
15744 ops->dtor = longjmp_bkpt_dtor;
15745
15746 /* Probe breakpoints. */
15747 ops = &bkpt_probe_breakpoint_ops;
15748 *ops = bkpt_breakpoint_ops;
15749 ops->insert_location = bkpt_probe_insert_location;
15750 ops->remove_location = bkpt_probe_remove_location;
15751 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
15752 ops->decode_linespec = bkpt_probe_decode_linespec;
15753
15754 /* Watchpoints. */
15755 ops = &watchpoint_breakpoint_ops;
15756 *ops = base_breakpoint_ops;
15757 ops->dtor = dtor_watchpoint;
15758 ops->re_set = re_set_watchpoint;
15759 ops->insert_location = insert_watchpoint;
15760 ops->remove_location = remove_watchpoint;
15761 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15762 ops->check_status = check_status_watchpoint;
15763 ops->resources_needed = resources_needed_watchpoint;
15764 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15765 ops->print_it = print_it_watchpoint;
15766 ops->print_mention = print_mention_watchpoint;
15767 ops->print_recreate = print_recreate_watchpoint;
15768 ops->explains_signal = explains_signal_watchpoint;
15769
15770 /* Masked watchpoints. */
15771 ops = &masked_watchpoint_breakpoint_ops;
15772 *ops = watchpoint_breakpoint_ops;
15773 ops->insert_location = insert_masked_watchpoint;
15774 ops->remove_location = remove_masked_watchpoint;
15775 ops->resources_needed = resources_needed_masked_watchpoint;
15776 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15777 ops->print_it = print_it_masked_watchpoint;
15778 ops->print_one_detail = print_one_detail_masked_watchpoint;
15779 ops->print_mention = print_mention_masked_watchpoint;
15780 ops->print_recreate = print_recreate_masked_watchpoint;
15781
15782 /* Tracepoints. */
15783 ops = &tracepoint_breakpoint_ops;
15784 *ops = base_breakpoint_ops;
15785 ops->re_set = tracepoint_re_set;
15786 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15787 ops->print_one_detail = tracepoint_print_one_detail;
15788 ops->print_mention = tracepoint_print_mention;
15789 ops->print_recreate = tracepoint_print_recreate;
15790 ops->create_sals_from_address = tracepoint_create_sals_from_address;
15791 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15792 ops->decode_linespec = tracepoint_decode_linespec;
15793
15794 /* Probe tracepoints. */
15795 ops = &tracepoint_probe_breakpoint_ops;
15796 *ops = tracepoint_breakpoint_ops;
15797 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
15798 ops->decode_linespec = tracepoint_probe_decode_linespec;
15799
15800 /* Static tracepoints with marker (`-m'). */
15801 ops = &strace_marker_breakpoint_ops;
15802 *ops = tracepoint_breakpoint_ops;
15803 ops->create_sals_from_address = strace_marker_create_sals_from_address;
15804 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15805 ops->decode_linespec = strace_marker_decode_linespec;
15806
15807 /* Fork catchpoints. */
15808 ops = &catch_fork_breakpoint_ops;
15809 *ops = base_breakpoint_ops;
15810 ops->insert_location = insert_catch_fork;
15811 ops->remove_location = remove_catch_fork;
15812 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15813 ops->print_it = print_it_catch_fork;
15814 ops->print_one = print_one_catch_fork;
15815 ops->print_mention = print_mention_catch_fork;
15816 ops->print_recreate = print_recreate_catch_fork;
15817
15818 /* Vfork catchpoints. */
15819 ops = &catch_vfork_breakpoint_ops;
15820 *ops = base_breakpoint_ops;
15821 ops->insert_location = insert_catch_vfork;
15822 ops->remove_location = remove_catch_vfork;
15823 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15824 ops->print_it = print_it_catch_vfork;
15825 ops->print_one = print_one_catch_vfork;
15826 ops->print_mention = print_mention_catch_vfork;
15827 ops->print_recreate = print_recreate_catch_vfork;
15828
15829 /* Exec catchpoints. */
15830 ops = &catch_exec_breakpoint_ops;
15831 *ops = base_breakpoint_ops;
15832 ops->dtor = dtor_catch_exec;
15833 ops->insert_location = insert_catch_exec;
15834 ops->remove_location = remove_catch_exec;
15835 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15836 ops->print_it = print_it_catch_exec;
15837 ops->print_one = print_one_catch_exec;
15838 ops->print_mention = print_mention_catch_exec;
15839 ops->print_recreate = print_recreate_catch_exec;
15840
15841 /* Syscall catchpoints. */
15842 ops = &catch_syscall_breakpoint_ops;
15843 *ops = base_breakpoint_ops;
15844 ops->dtor = dtor_catch_syscall;
15845 ops->insert_location = insert_catch_syscall;
15846 ops->remove_location = remove_catch_syscall;
15847 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
15848 ops->print_it = print_it_catch_syscall;
15849 ops->print_one = print_one_catch_syscall;
15850 ops->print_mention = print_mention_catch_syscall;
15851 ops->print_recreate = print_recreate_catch_syscall;
15852
15853 /* Solib-related catchpoints. */
15854 ops = &catch_solib_breakpoint_ops;
15855 *ops = base_breakpoint_ops;
15856 ops->dtor = dtor_catch_solib;
15857 ops->insert_location = insert_catch_solib;
15858 ops->remove_location = remove_catch_solib;
15859 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15860 ops->check_status = check_status_catch_solib;
15861 ops->print_it = print_it_catch_solib;
15862 ops->print_one = print_one_catch_solib;
15863 ops->print_mention = print_mention_catch_solib;
15864 ops->print_recreate = print_recreate_catch_solib;
15865
15866 ops = &dprintf_breakpoint_ops;
15867 *ops = bkpt_base_breakpoint_ops;
15868 ops->re_set = dprintf_re_set;
15869 ops->resources_needed = bkpt_resources_needed;
15870 ops->print_it = bkpt_print_it;
15871 ops->print_mention = bkpt_print_mention;
15872 ops->print_recreate = dprintf_print_recreate;
15873 }
15874
15875 /* Chain containing all defined "enable breakpoint" subcommands. */
15876
15877 static struct cmd_list_element *enablebreaklist = NULL;
15878
15879 void
15880 _initialize_breakpoint (void)
15881 {
15882 struct cmd_list_element *c;
15883
15884 initialize_breakpoint_ops ();
15885
15886 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
15887 observer_attach_inferior_exit (clear_syscall_counts);
15888 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
15889
15890 breakpoint_objfile_key
15891 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
15892
15893 catch_syscall_inferior_data
15894 = register_inferior_data_with_cleanup (NULL,
15895 catch_syscall_inferior_data_cleanup);
15896
15897 breakpoint_chain = 0;
15898 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15899 before a breakpoint is set. */
15900 breakpoint_count = 0;
15901
15902 tracepoint_count = 0;
15903
15904 add_com ("ignore", class_breakpoint, ignore_command, _("\
15905 Set ignore-count of breakpoint number N to COUNT.\n\
15906 Usage is `ignore N COUNT'."));
15907 if (xdb_commands)
15908 add_com_alias ("bc", "ignore", class_breakpoint, 1);
15909
15910 add_com ("commands", class_breakpoint, commands_command, _("\
15911 Set commands to be executed when a breakpoint is hit.\n\
15912 Give breakpoint number as argument after \"commands\".\n\
15913 With no argument, the targeted breakpoint is the last one set.\n\
15914 The commands themselves follow starting on the next line.\n\
15915 Type a line containing \"end\" to indicate the end of them.\n\
15916 Give \"silent\" as the first line to make the breakpoint silent;\n\
15917 then no output is printed when it is hit, except what the commands print."));
15918
15919 c = add_com ("condition", class_breakpoint, condition_command, _("\
15920 Specify breakpoint number N to break only if COND is true.\n\
15921 Usage is `condition N COND', where N is an integer and COND is an\n\
15922 expression to be evaluated whenever breakpoint N is reached."));
15923 set_cmd_completer (c, condition_completer);
15924
15925 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15926 Set a temporary breakpoint.\n\
15927 Like \"break\" except the breakpoint is only temporary,\n\
15928 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15929 by using \"enable delete\" on the breakpoint number.\n\
15930 \n"
15931 BREAK_ARGS_HELP ("tbreak")));
15932 set_cmd_completer (c, location_completer);
15933
15934 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15935 Set a hardware assisted breakpoint.\n\
15936 Like \"break\" except the breakpoint requires hardware support,\n\
15937 some target hardware may not have this support.\n\
15938 \n"
15939 BREAK_ARGS_HELP ("hbreak")));
15940 set_cmd_completer (c, location_completer);
15941
15942 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15943 Set a temporary hardware assisted breakpoint.\n\
15944 Like \"hbreak\" except the breakpoint is only temporary,\n\
15945 so it will be deleted when hit.\n\
15946 \n"
15947 BREAK_ARGS_HELP ("thbreak")));
15948 set_cmd_completer (c, location_completer);
15949
15950 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15951 Enable some breakpoints.\n\
15952 Give breakpoint numbers (separated by spaces) as arguments.\n\
15953 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15954 This is used to cancel the effect of the \"disable\" command.\n\
15955 With a subcommand you can enable temporarily."),
15956 &enablelist, "enable ", 1, &cmdlist);
15957 if (xdb_commands)
15958 add_com ("ab", class_breakpoint, enable_command, _("\
15959 Enable some breakpoints.\n\
15960 Give breakpoint numbers (separated by spaces) as arguments.\n\
15961 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15962 This is used to cancel the effect of the \"disable\" command.\n\
15963 With a subcommand you can enable temporarily."));
15964
15965 add_com_alias ("en", "enable", class_breakpoint, 1);
15966
15967 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15968 Enable some breakpoints.\n\
15969 Give breakpoint numbers (separated by spaces) as arguments.\n\
15970 This is used to cancel the effect of the \"disable\" command.\n\
15971 May be abbreviated to simply \"enable\".\n"),
15972 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15973
15974 add_cmd ("once", no_class, enable_once_command, _("\
15975 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15976 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15977 &enablebreaklist);
15978
15979 add_cmd ("delete", no_class, enable_delete_command, _("\
15980 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15981 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15982 &enablebreaklist);
15983
15984 add_cmd ("count", no_class, enable_count_command, _("\
15985 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15986 If a breakpoint is hit while enabled in this fashion,\n\
15987 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15988 &enablebreaklist);
15989
15990 add_cmd ("delete", no_class, enable_delete_command, _("\
15991 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15992 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15993 &enablelist);
15994
15995 add_cmd ("once", no_class, enable_once_command, _("\
15996 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15997 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15998 &enablelist);
15999
16000 add_cmd ("count", no_class, enable_count_command, _("\
16001 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16002 If a breakpoint is hit while enabled in this fashion,\n\
16003 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16004 &enablelist);
16005
16006 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16007 Disable some breakpoints.\n\
16008 Arguments are breakpoint numbers with spaces in between.\n\
16009 To disable all breakpoints, give no argument.\n\
16010 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16011 &disablelist, "disable ", 1, &cmdlist);
16012 add_com_alias ("dis", "disable", class_breakpoint, 1);
16013 add_com_alias ("disa", "disable", class_breakpoint, 1);
16014 if (xdb_commands)
16015 add_com ("sb", class_breakpoint, disable_command, _("\
16016 Disable some breakpoints.\n\
16017 Arguments are breakpoint numbers with spaces in between.\n\
16018 To disable all breakpoints, give no argument.\n\
16019 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16020
16021 add_cmd ("breakpoints", class_alias, disable_command, _("\
16022 Disable some breakpoints.\n\
16023 Arguments are breakpoint numbers with spaces in between.\n\
16024 To disable all breakpoints, give no argument.\n\
16025 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16026 This command may be abbreviated \"disable\"."),
16027 &disablelist);
16028
16029 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16030 Delete some breakpoints or auto-display expressions.\n\
16031 Arguments are breakpoint numbers with spaces in between.\n\
16032 To delete all breakpoints, give no argument.\n\
16033 \n\
16034 Also a prefix command for deletion of other GDB objects.\n\
16035 The \"unset\" command is also an alias for \"delete\"."),
16036 &deletelist, "delete ", 1, &cmdlist);
16037 add_com_alias ("d", "delete", class_breakpoint, 1);
16038 add_com_alias ("del", "delete", class_breakpoint, 1);
16039 if (xdb_commands)
16040 add_com ("db", class_breakpoint, delete_command, _("\
16041 Delete some breakpoints.\n\
16042 Arguments are breakpoint numbers with spaces in between.\n\
16043 To delete all breakpoints, give no argument.\n"));
16044
16045 add_cmd ("breakpoints", class_alias, delete_command, _("\
16046 Delete some breakpoints or auto-display expressions.\n\
16047 Arguments are breakpoint numbers with spaces in between.\n\
16048 To delete all breakpoints, give no argument.\n\
16049 This command may be abbreviated \"delete\"."),
16050 &deletelist);
16051
16052 add_com ("clear", class_breakpoint, clear_command, _("\
16053 Clear breakpoint at specified line or function.\n\
16054 Argument may be line number, function name, or \"*\" and an address.\n\
16055 If line number is specified, all breakpoints in that line are cleared.\n\
16056 If function is specified, breakpoints at beginning of function are cleared.\n\
16057 If an address is specified, breakpoints at that address are cleared.\n\
16058 \n\
16059 With no argument, clears all breakpoints in the line that the selected frame\n\
16060 is executing in.\n\
16061 \n\
16062 See also the \"delete\" command which clears breakpoints by number."));
16063 add_com_alias ("cl", "clear", class_breakpoint, 1);
16064
16065 c = add_com ("break", class_breakpoint, break_command, _("\
16066 Set breakpoint at specified line or function.\n"
16067 BREAK_ARGS_HELP ("break")));
16068 set_cmd_completer (c, location_completer);
16069
16070 add_com_alias ("b", "break", class_run, 1);
16071 add_com_alias ("br", "break", class_run, 1);
16072 add_com_alias ("bre", "break", class_run, 1);
16073 add_com_alias ("brea", "break", class_run, 1);
16074
16075 if (xdb_commands)
16076 add_com_alias ("ba", "break", class_breakpoint, 1);
16077
16078 if (dbx_commands)
16079 {
16080 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16081 Break in function/address or break at a line in the current file."),
16082 &stoplist, "stop ", 1, &cmdlist);
16083 add_cmd ("in", class_breakpoint, stopin_command,
16084 _("Break in function or address."), &stoplist);
16085 add_cmd ("at", class_breakpoint, stopat_command,
16086 _("Break at a line in the current file."), &stoplist);
16087 add_com ("status", class_info, breakpoints_info, _("\
16088 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16089 The \"Type\" column indicates one of:\n\
16090 \tbreakpoint - normal breakpoint\n\
16091 \twatchpoint - watchpoint\n\
16092 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16093 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16094 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16095 address and file/line number respectively.\n\
16096 \n\
16097 Convenience variable \"$_\" and default examine address for \"x\"\n\
16098 are set to the address of the last breakpoint listed unless the command\n\
16099 is prefixed with \"server \".\n\n\
16100 Convenience variable \"$bpnum\" contains the number of the last\n\
16101 breakpoint set."));
16102 }
16103
16104 add_info ("breakpoints", breakpoints_info, _("\
16105 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16106 The \"Type\" column indicates one of:\n\
16107 \tbreakpoint - normal breakpoint\n\
16108 \twatchpoint - watchpoint\n\
16109 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16110 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16111 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16112 address and file/line number respectively.\n\
16113 \n\
16114 Convenience variable \"$_\" and default examine address for \"x\"\n\
16115 are set to the address of the last breakpoint listed unless the command\n\
16116 is prefixed with \"server \".\n\n\
16117 Convenience variable \"$bpnum\" contains the number of the last\n\
16118 breakpoint set."));
16119
16120 add_info_alias ("b", "breakpoints", 1);
16121
16122 if (xdb_commands)
16123 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16124 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16125 The \"Type\" column indicates one of:\n\
16126 \tbreakpoint - normal breakpoint\n\
16127 \twatchpoint - watchpoint\n\
16128 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16129 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16130 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16131 address and file/line number respectively.\n\
16132 \n\
16133 Convenience variable \"$_\" and default examine address for \"x\"\n\
16134 are set to the address of the last breakpoint listed unless the command\n\
16135 is prefixed with \"server \".\n\n\
16136 Convenience variable \"$bpnum\" contains the number of the last\n\
16137 breakpoint set."));
16138
16139 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16140 Status of all breakpoints, or breakpoint number NUMBER.\n\
16141 The \"Type\" column indicates one of:\n\
16142 \tbreakpoint - normal breakpoint\n\
16143 \twatchpoint - watchpoint\n\
16144 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16145 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16146 \tuntil - internal breakpoint used by the \"until\" command\n\
16147 \tfinish - internal breakpoint used by the \"finish\" command\n\
16148 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16149 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16150 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16151 address and file/line number respectively.\n\
16152 \n\
16153 Convenience variable \"$_\" and default examine address for \"x\"\n\
16154 are set to the address of the last breakpoint listed unless the command\n\
16155 is prefixed with \"server \".\n\n\
16156 Convenience variable \"$bpnum\" contains the number of the last\n\
16157 breakpoint set."),
16158 &maintenanceinfolist);
16159
16160 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16161 Set catchpoints to catch events."),
16162 &catch_cmdlist, "catch ",
16163 0/*allow-unknown*/, &cmdlist);
16164
16165 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16166 Set temporary catchpoints to catch events."),
16167 &tcatch_cmdlist, "tcatch ",
16168 0/*allow-unknown*/, &cmdlist);
16169
16170 add_catch_command ("fork", _("Catch calls to fork."),
16171 catch_fork_command_1,
16172 NULL,
16173 (void *) (uintptr_t) catch_fork_permanent,
16174 (void *) (uintptr_t) catch_fork_temporary);
16175 add_catch_command ("vfork", _("Catch calls to vfork."),
16176 catch_fork_command_1,
16177 NULL,
16178 (void *) (uintptr_t) catch_vfork_permanent,
16179 (void *) (uintptr_t) catch_vfork_temporary);
16180 add_catch_command ("exec", _("Catch calls to exec."),
16181 catch_exec_command_1,
16182 NULL,
16183 CATCH_PERMANENT,
16184 CATCH_TEMPORARY);
16185 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16186 Usage: catch load [REGEX]\n\
16187 If REGEX is given, only stop for libraries matching the regular expression."),
16188 catch_load_command_1,
16189 NULL,
16190 CATCH_PERMANENT,
16191 CATCH_TEMPORARY);
16192 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16193 Usage: catch unload [REGEX]\n\
16194 If REGEX is given, only stop for libraries matching the regular expression."),
16195 catch_unload_command_1,
16196 NULL,
16197 CATCH_PERMANENT,
16198 CATCH_TEMPORARY);
16199 add_catch_command ("syscall", _("\
16200 Catch system calls by their names and/or numbers.\n\
16201 Arguments say which system calls to catch. If no arguments\n\
16202 are given, every system call will be caught.\n\
16203 Arguments, if given, should be one or more system call names\n\
16204 (if your system supports that), or system call numbers."),
16205 catch_syscall_command_1,
16206 catch_syscall_completer,
16207 CATCH_PERMANENT,
16208 CATCH_TEMPORARY);
16209
16210 c = add_com ("watch", class_breakpoint, watch_command, _("\
16211 Set a watchpoint for an expression.\n\
16212 Usage: watch [-l|-location] EXPRESSION\n\
16213 A watchpoint stops execution of your program whenever the value of\n\
16214 an expression changes.\n\
16215 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16216 the memory to which it refers."));
16217 set_cmd_completer (c, expression_completer);
16218
16219 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16220 Set a read watchpoint for an expression.\n\
16221 Usage: rwatch [-l|-location] EXPRESSION\n\
16222 A watchpoint stops execution of your program whenever the value of\n\
16223 an expression is read.\n\
16224 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16225 the memory to which it refers."));
16226 set_cmd_completer (c, expression_completer);
16227
16228 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16229 Set a watchpoint for an expression.\n\
16230 Usage: awatch [-l|-location] EXPRESSION\n\
16231 A watchpoint stops execution of your program whenever the value of\n\
16232 an expression is either read or written.\n\
16233 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16234 the memory to which it refers."));
16235 set_cmd_completer (c, expression_completer);
16236
16237 add_info ("watchpoints", watchpoints_info, _("\
16238 Status of specified watchpoints (all watchpoints if no argument)."));
16239
16240 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16241 respond to changes - contrary to the description. */
16242 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16243 &can_use_hw_watchpoints, _("\
16244 Set debugger's willingness to use watchpoint hardware."), _("\
16245 Show debugger's willingness to use watchpoint hardware."), _("\
16246 If zero, gdb will not use hardware for new watchpoints, even if\n\
16247 such is available. (However, any hardware watchpoints that were\n\
16248 created before setting this to nonzero, will continue to use watchpoint\n\
16249 hardware.)"),
16250 NULL,
16251 show_can_use_hw_watchpoints,
16252 &setlist, &showlist);
16253
16254 can_use_hw_watchpoints = 1;
16255
16256 /* Tracepoint manipulation commands. */
16257
16258 c = add_com ("trace", class_breakpoint, trace_command, _("\
16259 Set a tracepoint at specified line or function.\n\
16260 \n"
16261 BREAK_ARGS_HELP ("trace") "\n\
16262 Do \"help tracepoints\" for info on other tracepoint commands."));
16263 set_cmd_completer (c, location_completer);
16264
16265 add_com_alias ("tp", "trace", class_alias, 0);
16266 add_com_alias ("tr", "trace", class_alias, 1);
16267 add_com_alias ("tra", "trace", class_alias, 1);
16268 add_com_alias ("trac", "trace", class_alias, 1);
16269
16270 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16271 Set a fast tracepoint at specified line or function.\n\
16272 \n"
16273 BREAK_ARGS_HELP ("ftrace") "\n\
16274 Do \"help tracepoints\" for info on other tracepoint commands."));
16275 set_cmd_completer (c, location_completer);
16276
16277 c = add_com ("strace", class_breakpoint, strace_command, _("\
16278 Set a static tracepoint at specified line, function or marker.\n\
16279 \n\
16280 strace [LOCATION] [if CONDITION]\n\
16281 LOCATION may be a line number, function name, \"*\" and an address,\n\
16282 or -m MARKER_ID.\n\
16283 If a line number is specified, probe the marker at start of code\n\
16284 for that line. If a function is specified, probe the marker at start\n\
16285 of code for that function. If an address is specified, probe the marker\n\
16286 at that exact address. If a marker id is specified, probe the marker\n\
16287 with that name. With no LOCATION, uses current execution address of\n\
16288 the selected stack frame.\n\
16289 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16290 This collects arbitrary user data passed in the probe point call to the\n\
16291 tracing library. You can inspect it when analyzing the trace buffer,\n\
16292 by printing the $_sdata variable like any other convenience variable.\n\
16293 \n\
16294 CONDITION is a boolean expression.\n\
16295 \n\
16296 Multiple tracepoints at one place are permitted, and useful if their\n\
16297 conditions are different.\n\
16298 \n\
16299 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16300 Do \"help tracepoints\" for info on other tracepoint commands."));
16301 set_cmd_completer (c, location_completer);
16302
16303 add_info ("tracepoints", tracepoints_info, _("\
16304 Status of specified tracepoints (all tracepoints if no argument).\n\
16305 Convenience variable \"$tpnum\" contains the number of the\n\
16306 last tracepoint set."));
16307
16308 add_info_alias ("tp", "tracepoints", 1);
16309
16310 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16311 Delete specified tracepoints.\n\
16312 Arguments are tracepoint numbers, separated by spaces.\n\
16313 No argument means delete all tracepoints."),
16314 &deletelist);
16315 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16316
16317 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16318 Disable specified tracepoints.\n\
16319 Arguments are tracepoint numbers, separated by spaces.\n\
16320 No argument means disable all tracepoints."),
16321 &disablelist);
16322 deprecate_cmd (c, "disable");
16323
16324 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16325 Enable specified tracepoints.\n\
16326 Arguments are tracepoint numbers, separated by spaces.\n\
16327 No argument means enable all tracepoints."),
16328 &enablelist);
16329 deprecate_cmd (c, "enable");
16330
16331 add_com ("passcount", class_trace, trace_pass_command, _("\
16332 Set the passcount for a tracepoint.\n\
16333 The trace will end when the tracepoint has been passed 'count' times.\n\
16334 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16335 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16336
16337 add_prefix_cmd ("save", class_breakpoint, save_command,
16338 _("Save breakpoint definitions as a script."),
16339 &save_cmdlist, "save ",
16340 0/*allow-unknown*/, &cmdlist);
16341
16342 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16343 Save current breakpoint definitions as a script.\n\
16344 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16345 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16346 session to restore them."),
16347 &save_cmdlist);
16348 set_cmd_completer (c, filename_completer);
16349
16350 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16351 Save current tracepoint definitions as a script.\n\
16352 Use the 'source' command in another debug session to restore them."),
16353 &save_cmdlist);
16354 set_cmd_completer (c, filename_completer);
16355
16356 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16357 deprecate_cmd (c, "save tracepoints");
16358
16359 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16360 Breakpoint specific settings\n\
16361 Configure various breakpoint-specific variables such as\n\
16362 pending breakpoint behavior"),
16363 &breakpoint_set_cmdlist, "set breakpoint ",
16364 0/*allow-unknown*/, &setlist);
16365 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16366 Breakpoint specific settings\n\
16367 Configure various breakpoint-specific variables such as\n\
16368 pending breakpoint behavior"),
16369 &breakpoint_show_cmdlist, "show breakpoint ",
16370 0/*allow-unknown*/, &showlist);
16371
16372 add_setshow_auto_boolean_cmd ("pending", no_class,
16373 &pending_break_support, _("\
16374 Set debugger's behavior regarding pending breakpoints."), _("\
16375 Show debugger's behavior regarding pending breakpoints."), _("\
16376 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16377 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16378 an error. If auto, an unrecognized breakpoint location results in a\n\
16379 user-query to see if a pending breakpoint should be created."),
16380 NULL,
16381 show_pending_break_support,
16382 &breakpoint_set_cmdlist,
16383 &breakpoint_show_cmdlist);
16384
16385 pending_break_support = AUTO_BOOLEAN_AUTO;
16386
16387 add_setshow_boolean_cmd ("auto-hw", no_class,
16388 &automatic_hardware_breakpoints, _("\
16389 Set automatic usage of hardware breakpoints."), _("\
16390 Show automatic usage of hardware breakpoints."), _("\
16391 If set, the debugger will automatically use hardware breakpoints for\n\
16392 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16393 a warning will be emitted for such breakpoints."),
16394 NULL,
16395 show_automatic_hardware_breakpoints,
16396 &breakpoint_set_cmdlist,
16397 &breakpoint_show_cmdlist);
16398
16399 add_setshow_auto_boolean_cmd ("always-inserted", class_support,
16400 &always_inserted_mode, _("\
16401 Set mode for inserting breakpoints."), _("\
16402 Show mode for inserting breakpoints."), _("\
16403 When this mode is off, breakpoints are inserted in inferior when it is\n\
16404 resumed, and removed when execution stops. When this mode is on,\n\
16405 breakpoints are inserted immediately and removed only when the user\n\
16406 deletes the breakpoint. When this mode is auto (which is the default),\n\
16407 the behaviour depends on the non-stop setting (see help set non-stop).\n\
16408 In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
16409 behaves as if always-inserted mode is on; if gdb is controlling the\n\
16410 inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
16411 NULL,
16412 &show_always_inserted_mode,
16413 &breakpoint_set_cmdlist,
16414 &breakpoint_show_cmdlist);
16415
16416 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16417 condition_evaluation_enums,
16418 &condition_evaluation_mode_1, _("\
16419 Set mode of breakpoint condition evaluation."), _("\
16420 Show mode of breakpoint condition evaluation."), _("\
16421 When this is set to \"host\", breakpoint conditions will be\n\
16422 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16423 breakpoint conditions will be downloaded to the target (if the target\n\
16424 supports such feature) and conditions will be evaluated on the target's side.\n\
16425 If this is set to \"auto\" (default), this will be automatically set to\n\
16426 \"target\" if it supports condition evaluation, otherwise it will\n\
16427 be set to \"gdb\""),
16428 &set_condition_evaluation_mode,
16429 &show_condition_evaluation_mode,
16430 &breakpoint_set_cmdlist,
16431 &breakpoint_show_cmdlist);
16432
16433 add_com ("break-range", class_breakpoint, break_range_command, _("\
16434 Set a breakpoint for an address range.\n\
16435 break-range START-LOCATION, END-LOCATION\n\
16436 where START-LOCATION and END-LOCATION can be one of the following:\n\
16437 LINENUM, for that line in the current file,\n\
16438 FILE:LINENUM, for that line in that file,\n\
16439 +OFFSET, for that number of lines after the current line\n\
16440 or the start of the range\n\
16441 FUNCTION, for the first line in that function,\n\
16442 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16443 *ADDRESS, for the instruction at that address.\n\
16444 \n\
16445 The breakpoint will stop execution of the inferior whenever it executes\n\
16446 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16447 range (including START-LOCATION and END-LOCATION)."));
16448
16449 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16450 Set a dynamic printf at specified line or function.\n\
16451 dprintf location,format string,arg1,arg2,...\n\
16452 location may be a line number, function name, or \"*\" and an address.\n\
16453 If a line number is specified, break at start of code for that line.\n\
16454 If a function is specified, break at start of code for that function."));
16455 set_cmd_completer (c, location_completer);
16456
16457 add_setshow_enum_cmd ("dprintf-style", class_support,
16458 dprintf_style_enums, &dprintf_style, _("\
16459 Set the style of usage for dynamic printf."), _("\
16460 Show the style of usage for dynamic printf."), _("\
16461 This setting chooses how GDB will do a dynamic printf.\n\
16462 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16463 console, as with the \"printf\" command.\n\
16464 If the value is \"call\", the print is done by calling a function in your\n\
16465 program; by default printf(), but you can choose a different function or\n\
16466 output stream by setting dprintf-function and dprintf-channel."),
16467 update_dprintf_commands, NULL,
16468 &setlist, &showlist);
16469
16470 dprintf_function = xstrdup ("printf");
16471 add_setshow_string_cmd ("dprintf-function", class_support,
16472 &dprintf_function, _("\
16473 Set the function to use for dynamic printf"), _("\
16474 Show the function to use for dynamic printf"), NULL,
16475 update_dprintf_commands, NULL,
16476 &setlist, &showlist);
16477
16478 dprintf_channel = xstrdup ("");
16479 add_setshow_string_cmd ("dprintf-channel", class_support,
16480 &dprintf_channel, _("\
16481 Set the channel to use for dynamic printf"), _("\
16482 Show the channel to use for dynamic printf"), NULL,
16483 update_dprintf_commands, NULL,
16484 &setlist, &showlist);
16485
16486 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16487 &disconnected_dprintf, _("\
16488 Set whether dprintf continues after GDB disconnects."), _("\
16489 Show whether dprintf continues after GDB disconnects."), _("\
16490 Use this to let dprintf commands continue to hit and produce output\n\
16491 even if GDB disconnects or detaches from the target."),
16492 NULL,
16493 NULL,
16494 &setlist, &showlist);
16495
16496 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16497 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16498 (target agent only) This is useful for formatted output in user-defined commands."));
16499
16500 automatic_hardware_breakpoints = 1;
16501
16502 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16503 }
This page took 0.537377 seconds and 4 git commands to generate.