Add native target for FreeBSD/arm.
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observer.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71
72 /* readline include files */
73 #include "readline/readline.h"
74 #include "readline/history.h"
75
76 /* readline defines this. */
77 #undef savestring
78
79 #include "mi/mi-common.h"
80 #include "extension.h"
81 #include <algorithm>
82 #include "progspace-and-thread.h"
83 #include "common/array-view.h"
84 #include "common/gdb_optional.h"
85
86 /* Enums for exception-handling support. */
87 enum exception_event_kind
88 {
89 EX_EVENT_THROW,
90 EX_EVENT_RETHROW,
91 EX_EVENT_CATCH
92 };
93
94 /* Prototypes for local functions. */
95
96 static void disable_command (char *, int);
97
98 static void enable_command (char *, int);
99
100 static void map_breakpoint_numbers (const char *,
101 gdb::function_view<void (breakpoint *)>);
102
103 static void ignore_command (char *, int);
104
105 static void breakpoint_re_set_default (struct breakpoint *);
106
107 static void
108 create_sals_from_location_default (const struct event_location *location,
109 struct linespec_result *canonical,
110 enum bptype type_wanted);
111
112 static void create_breakpoints_sal_default (struct gdbarch *,
113 struct linespec_result *,
114 gdb::unique_xmalloc_ptr<char>,
115 gdb::unique_xmalloc_ptr<char>,
116 enum bptype,
117 enum bpdisp, int, int,
118 int,
119 const struct breakpoint_ops *,
120 int, int, int, unsigned);
121
122 static std::vector<symtab_and_line> decode_location_default
123 (struct breakpoint *b, const struct event_location *location,
124 struct program_space *search_pspace);
125
126 static void clear_command (char *, int);
127
128 static void catch_command (char *, int);
129
130 static int can_use_hardware_watchpoint (struct value *);
131
132 static void mention (struct breakpoint *);
133
134 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
135 enum bptype,
136 const struct breakpoint_ops *);
137 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
138 const struct symtab_and_line *);
139
140 /* This function is used in gdbtk sources and thus can not be made
141 static. */
142 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
143 struct symtab_and_line,
144 enum bptype,
145 const struct breakpoint_ops *);
146
147 static struct breakpoint *
148 momentary_breakpoint_from_master (struct breakpoint *orig,
149 enum bptype type,
150 const struct breakpoint_ops *ops,
151 int loc_enabled);
152
153 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
154
155 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
156 CORE_ADDR bpaddr,
157 enum bptype bptype);
158
159 static void describe_other_breakpoints (struct gdbarch *,
160 struct program_space *, CORE_ADDR,
161 struct obj_section *, int);
162
163 static int watchpoint_locations_match (struct bp_location *loc1,
164 struct bp_location *loc2);
165
166 static int breakpoint_location_address_match (struct bp_location *bl,
167 struct address_space *aspace,
168 CORE_ADDR addr);
169
170 static int breakpoint_location_address_range_overlap (struct bp_location *,
171 struct address_space *,
172 CORE_ADDR, int);
173
174 static void info_breakpoints_command (char *, int);
175
176 static void info_watchpoints_command (char *, int);
177
178 static void cleanup_executing_breakpoints (void *);
179
180 static void commands_command (char *, int);
181
182 static void condition_command (char *, int);
183
184 static int remove_breakpoint (struct bp_location *);
185 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
186
187 static enum print_stop_action print_bp_stop_message (bpstat bs);
188
189 static int hw_breakpoint_used_count (void);
190
191 static int hw_watchpoint_use_count (struct breakpoint *);
192
193 static int hw_watchpoint_used_count_others (struct breakpoint *except,
194 enum bptype type,
195 int *other_type_used);
196
197 static void hbreak_command (char *, int);
198
199 static void thbreak_command (char *, int);
200
201 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
202 int count);
203
204 static void stop_command (char *arg, int from_tty);
205
206 static void tcatch_command (char *arg, int from_tty);
207
208 static void free_bp_location (struct bp_location *loc);
209 static void incref_bp_location (struct bp_location *loc);
210 static void decref_bp_location (struct bp_location **loc);
211
212 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
213
214 /* update_global_location_list's modes of operation wrt to whether to
215 insert locations now. */
216 enum ugll_insert_mode
217 {
218 /* Don't insert any breakpoint locations into the inferior, only
219 remove already-inserted locations that no longer should be
220 inserted. Functions that delete a breakpoint or breakpoints
221 should specify this mode, so that deleting a breakpoint doesn't
222 have the side effect of inserting the locations of other
223 breakpoints that are marked not-inserted, but should_be_inserted
224 returns true on them.
225
226 This behavior is useful is situations close to tear-down -- e.g.,
227 after an exec, while the target still has execution, but
228 breakpoint shadows of the previous executable image should *NOT*
229 be restored to the new image; or before detaching, where the
230 target still has execution and wants to delete breakpoints from
231 GDB's lists, and all breakpoints had already been removed from
232 the inferior. */
233 UGLL_DONT_INSERT,
234
235 /* May insert breakpoints iff breakpoints_should_be_inserted_now
236 claims breakpoints should be inserted now. */
237 UGLL_MAY_INSERT,
238
239 /* Insert locations now, irrespective of
240 breakpoints_should_be_inserted_now. E.g., say all threads are
241 stopped right now, and the user did "continue". We need to
242 insert breakpoints _before_ resuming the target, but
243 UGLL_MAY_INSERT wouldn't insert them, because
244 breakpoints_should_be_inserted_now returns false at that point,
245 as no thread is running yet. */
246 UGLL_INSERT
247 };
248
249 static void update_global_location_list (enum ugll_insert_mode);
250
251 static void update_global_location_list_nothrow (enum ugll_insert_mode);
252
253 static int is_hardware_watchpoint (const struct breakpoint *bpt);
254
255 static void insert_breakpoint_locations (void);
256
257 static void info_tracepoints_command (char *, int);
258
259 static void enable_trace_command (char *, int);
260
261 static void disable_trace_command (char *, int);
262
263 static void trace_pass_command (char *, int);
264
265 static void set_tracepoint_count (int num);
266
267 static int is_masked_watchpoint (const struct breakpoint *b);
268
269 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
270
271 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
272 otherwise. */
273
274 static int strace_marker_p (struct breakpoint *b);
275
276 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
277 that are implemented on top of software or hardware breakpoints
278 (user breakpoints, internal and momentary breakpoints, etc.). */
279 static struct breakpoint_ops bkpt_base_breakpoint_ops;
280
281 /* Internal breakpoints class type. */
282 static struct breakpoint_ops internal_breakpoint_ops;
283
284 /* Momentary breakpoints class type. */
285 static struct breakpoint_ops momentary_breakpoint_ops;
286
287 /* The breakpoint_ops structure to be used in regular user created
288 breakpoints. */
289 struct breakpoint_ops bkpt_breakpoint_ops;
290
291 /* Breakpoints set on probes. */
292 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
293
294 /* Dynamic printf class type. */
295 struct breakpoint_ops dprintf_breakpoint_ops;
296
297 /* The style in which to perform a dynamic printf. This is a user
298 option because different output options have different tradeoffs;
299 if GDB does the printing, there is better error handling if there
300 is a problem with any of the arguments, but using an inferior
301 function lets you have special-purpose printers and sending of
302 output to the same place as compiled-in print functions. */
303
304 static const char dprintf_style_gdb[] = "gdb";
305 static const char dprintf_style_call[] = "call";
306 static const char dprintf_style_agent[] = "agent";
307 static const char *const dprintf_style_enums[] = {
308 dprintf_style_gdb,
309 dprintf_style_call,
310 dprintf_style_agent,
311 NULL
312 };
313 static const char *dprintf_style = dprintf_style_gdb;
314
315 /* The function to use for dynamic printf if the preferred style is to
316 call into the inferior. The value is simply a string that is
317 copied into the command, so it can be anything that GDB can
318 evaluate to a callable address, not necessarily a function name. */
319
320 static char *dprintf_function;
321
322 /* The channel to use for dynamic printf if the preferred style is to
323 call into the inferior; if a nonempty string, it will be passed to
324 the call as the first argument, with the format string as the
325 second. As with the dprintf function, this can be anything that
326 GDB knows how to evaluate, so in addition to common choices like
327 "stderr", this could be an app-specific expression like
328 "mystreams[curlogger]". */
329
330 static char *dprintf_channel;
331
332 /* True if dprintf commands should continue to operate even if GDB
333 has disconnected. */
334 static int disconnected_dprintf = 1;
335
336 struct command_line *
337 breakpoint_commands (struct breakpoint *b)
338 {
339 return b->commands ? b->commands.get () : NULL;
340 }
341
342 /* Flag indicating that a command has proceeded the inferior past the
343 current breakpoint. */
344
345 static int breakpoint_proceeded;
346
347 const char *
348 bpdisp_text (enum bpdisp disp)
349 {
350 /* NOTE: the following values are a part of MI protocol and
351 represent values of 'disp' field returned when inferior stops at
352 a breakpoint. */
353 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
354
355 return bpdisps[(int) disp];
356 }
357
358 /* Prototypes for exported functions. */
359 /* If FALSE, gdb will not use hardware support for watchpoints, even
360 if such is available. */
361 static int can_use_hw_watchpoints;
362
363 static void
364 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
365 struct cmd_list_element *c,
366 const char *value)
367 {
368 fprintf_filtered (file,
369 _("Debugger's willingness to use "
370 "watchpoint hardware is %s.\n"),
371 value);
372 }
373
374 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
375 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
376 for unrecognized breakpoint locations.
377 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
378 static enum auto_boolean pending_break_support;
379 static void
380 show_pending_break_support (struct ui_file *file, int from_tty,
381 struct cmd_list_element *c,
382 const char *value)
383 {
384 fprintf_filtered (file,
385 _("Debugger's behavior regarding "
386 "pending breakpoints is %s.\n"),
387 value);
388 }
389
390 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
391 set with "break" but falling in read-only memory.
392 If 0, gdb will warn about such breakpoints, but won't automatically
393 use hardware breakpoints. */
394 static int automatic_hardware_breakpoints;
395 static void
396 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
397 struct cmd_list_element *c,
398 const char *value)
399 {
400 fprintf_filtered (file,
401 _("Automatic usage of hardware breakpoints is %s.\n"),
402 value);
403 }
404
405 /* If on, GDB keeps breakpoints inserted even if the inferior is
406 stopped, and immediately inserts any new breakpoints as soon as
407 they're created. If off (default), GDB keeps breakpoints off of
408 the target as long as possible. That is, it delays inserting
409 breakpoints until the next resume, and removes them again when the
410 target fully stops. This is a bit safer in case GDB crashes while
411 processing user input. */
412 static int always_inserted_mode = 0;
413
414 static void
415 show_always_inserted_mode (struct ui_file *file, int from_tty,
416 struct cmd_list_element *c, const char *value)
417 {
418 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
419 value);
420 }
421
422 /* See breakpoint.h. */
423
424 int
425 breakpoints_should_be_inserted_now (void)
426 {
427 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
428 {
429 /* If breakpoints are global, they should be inserted even if no
430 thread under gdb's control is running, or even if there are
431 no threads under GDB's control yet. */
432 return 1;
433 }
434 else if (target_has_execution)
435 {
436 struct thread_info *tp;
437
438 if (always_inserted_mode)
439 {
440 /* The user wants breakpoints inserted even if all threads
441 are stopped. */
442 return 1;
443 }
444
445 if (threads_are_executing ())
446 return 1;
447
448 /* Don't remove breakpoints yet if, even though all threads are
449 stopped, we still have events to process. */
450 ALL_NON_EXITED_THREADS (tp)
451 if (tp->resumed
452 && tp->suspend.waitstatus_pending_p)
453 return 1;
454 }
455 return 0;
456 }
457
458 static const char condition_evaluation_both[] = "host or target";
459
460 /* Modes for breakpoint condition evaluation. */
461 static const char condition_evaluation_auto[] = "auto";
462 static const char condition_evaluation_host[] = "host";
463 static const char condition_evaluation_target[] = "target";
464 static const char *const condition_evaluation_enums[] = {
465 condition_evaluation_auto,
466 condition_evaluation_host,
467 condition_evaluation_target,
468 NULL
469 };
470
471 /* Global that holds the current mode for breakpoint condition evaluation. */
472 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
473
474 /* Global that we use to display information to the user (gets its value from
475 condition_evaluation_mode_1. */
476 static const char *condition_evaluation_mode = condition_evaluation_auto;
477
478 /* Translate a condition evaluation mode MODE into either "host"
479 or "target". This is used mostly to translate from "auto" to the
480 real setting that is being used. It returns the translated
481 evaluation mode. */
482
483 static const char *
484 translate_condition_evaluation_mode (const char *mode)
485 {
486 if (mode == condition_evaluation_auto)
487 {
488 if (target_supports_evaluation_of_breakpoint_conditions ())
489 return condition_evaluation_target;
490 else
491 return condition_evaluation_host;
492 }
493 else
494 return mode;
495 }
496
497 /* Discovers what condition_evaluation_auto translates to. */
498
499 static const char *
500 breakpoint_condition_evaluation_mode (void)
501 {
502 return translate_condition_evaluation_mode (condition_evaluation_mode);
503 }
504
505 /* Return true if GDB should evaluate breakpoint conditions or false
506 otherwise. */
507
508 static int
509 gdb_evaluates_breakpoint_condition_p (void)
510 {
511 const char *mode = breakpoint_condition_evaluation_mode ();
512
513 return (mode == condition_evaluation_host);
514 }
515
516 /* Are we executing breakpoint commands? */
517 static int executing_breakpoint_commands;
518
519 /* Are overlay event breakpoints enabled? */
520 static int overlay_events_enabled;
521
522 /* See description in breakpoint.h. */
523 int target_exact_watchpoints = 0;
524
525 /* Walk the following statement or block through all breakpoints.
526 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
527 current breakpoint. */
528
529 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
530
531 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
532 for (B = breakpoint_chain; \
533 B ? (TMP=B->next, 1): 0; \
534 B = TMP)
535
536 /* Similar iterator for the low-level breakpoints. SAFE variant is
537 not provided so update_global_location_list must not be called
538 while executing the block of ALL_BP_LOCATIONS. */
539
540 #define ALL_BP_LOCATIONS(B,BP_TMP) \
541 for (BP_TMP = bp_locations; \
542 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
543 BP_TMP++)
544
545 /* Iterates through locations with address ADDRESS for the currently selected
546 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
547 to where the loop should start from.
548 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
549 appropriate location to start with. */
550
551 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
552 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
553 BP_LOCP_TMP = BP_LOCP_START; \
554 BP_LOCP_START \
555 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
556 && (*BP_LOCP_TMP)->address == ADDRESS); \
557 BP_LOCP_TMP++)
558
559 /* Iterator for tracepoints only. */
560
561 #define ALL_TRACEPOINTS(B) \
562 for (B = breakpoint_chain; B; B = B->next) \
563 if (is_tracepoint (B))
564
565 /* Chains of all breakpoints defined. */
566
567 struct breakpoint *breakpoint_chain;
568
569 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
570
571 static struct bp_location **bp_locations;
572
573 /* Number of elements of BP_LOCATIONS. */
574
575 static unsigned bp_locations_count;
576
577 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
578 ADDRESS for the current elements of BP_LOCATIONS which get a valid
579 result from bp_location_has_shadow. You can use it for roughly
580 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
581 an address you need to read. */
582
583 static CORE_ADDR bp_locations_placed_address_before_address_max;
584
585 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
586 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
587 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
588 You can use it for roughly limiting the subrange of BP_LOCATIONS to
589 scan for shadow bytes for an address you need to read. */
590
591 static CORE_ADDR bp_locations_shadow_len_after_address_max;
592
593 /* The locations that no longer correspond to any breakpoint, unlinked
594 from the bp_locations array, but for which a hit may still be
595 reported by a target. */
596 VEC(bp_location_p) *moribund_locations = NULL;
597
598 /* Number of last breakpoint made. */
599
600 static int breakpoint_count;
601
602 /* The value of `breakpoint_count' before the last command that
603 created breakpoints. If the last (break-like) command created more
604 than one breakpoint, then the difference between BREAKPOINT_COUNT
605 and PREV_BREAKPOINT_COUNT is more than one. */
606 static int prev_breakpoint_count;
607
608 /* Number of last tracepoint made. */
609
610 static int tracepoint_count;
611
612 static struct cmd_list_element *breakpoint_set_cmdlist;
613 static struct cmd_list_element *breakpoint_show_cmdlist;
614 struct cmd_list_element *save_cmdlist;
615
616 /* See declaration at breakpoint.h. */
617
618 struct breakpoint *
619 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
620 void *user_data)
621 {
622 struct breakpoint *b = NULL;
623
624 ALL_BREAKPOINTS (b)
625 {
626 if (func (b, user_data) != 0)
627 break;
628 }
629
630 return b;
631 }
632
633 /* Return whether a breakpoint is an active enabled breakpoint. */
634 static int
635 breakpoint_enabled (struct breakpoint *b)
636 {
637 return (b->enable_state == bp_enabled);
638 }
639
640 /* Set breakpoint count to NUM. */
641
642 static void
643 set_breakpoint_count (int num)
644 {
645 prev_breakpoint_count = breakpoint_count;
646 breakpoint_count = num;
647 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
648 }
649
650 /* Used by `start_rbreak_breakpoints' below, to record the current
651 breakpoint count before "rbreak" creates any breakpoint. */
652 static int rbreak_start_breakpoint_count;
653
654 /* Called at the start an "rbreak" command to record the first
655 breakpoint made. */
656
657 void
658 start_rbreak_breakpoints (void)
659 {
660 rbreak_start_breakpoint_count = breakpoint_count;
661 }
662
663 /* Called at the end of an "rbreak" command to record the last
664 breakpoint made. */
665
666 void
667 end_rbreak_breakpoints (void)
668 {
669 prev_breakpoint_count = rbreak_start_breakpoint_count;
670 }
671
672 /* Used in run_command to zero the hit count when a new run starts. */
673
674 void
675 clear_breakpoint_hit_counts (void)
676 {
677 struct breakpoint *b;
678
679 ALL_BREAKPOINTS (b)
680 b->hit_count = 0;
681 }
682
683 \f
684 /* Return the breakpoint with the specified number, or NULL
685 if the number does not refer to an existing breakpoint. */
686
687 struct breakpoint *
688 get_breakpoint (int num)
689 {
690 struct breakpoint *b;
691
692 ALL_BREAKPOINTS (b)
693 if (b->number == num)
694 return b;
695
696 return NULL;
697 }
698
699 \f
700
701 /* Mark locations as "conditions have changed" in case the target supports
702 evaluating conditions on its side. */
703
704 static void
705 mark_breakpoint_modified (struct breakpoint *b)
706 {
707 struct bp_location *loc;
708
709 /* This is only meaningful if the target is
710 evaluating conditions and if the user has
711 opted for condition evaluation on the target's
712 side. */
713 if (gdb_evaluates_breakpoint_condition_p ()
714 || !target_supports_evaluation_of_breakpoint_conditions ())
715 return;
716
717 if (!is_breakpoint (b))
718 return;
719
720 for (loc = b->loc; loc; loc = loc->next)
721 loc->condition_changed = condition_modified;
722 }
723
724 /* Mark location as "conditions have changed" in case the target supports
725 evaluating conditions on its side. */
726
727 static void
728 mark_breakpoint_location_modified (struct bp_location *loc)
729 {
730 /* This is only meaningful if the target is
731 evaluating conditions and if the user has
732 opted for condition evaluation on the target's
733 side. */
734 if (gdb_evaluates_breakpoint_condition_p ()
735 || !target_supports_evaluation_of_breakpoint_conditions ())
736
737 return;
738
739 if (!is_breakpoint (loc->owner))
740 return;
741
742 loc->condition_changed = condition_modified;
743 }
744
745 /* Sets the condition-evaluation mode using the static global
746 condition_evaluation_mode. */
747
748 static void
749 set_condition_evaluation_mode (char *args, int from_tty,
750 struct cmd_list_element *c)
751 {
752 const char *old_mode, *new_mode;
753
754 if ((condition_evaluation_mode_1 == condition_evaluation_target)
755 && !target_supports_evaluation_of_breakpoint_conditions ())
756 {
757 condition_evaluation_mode_1 = condition_evaluation_mode;
758 warning (_("Target does not support breakpoint condition evaluation.\n"
759 "Using host evaluation mode instead."));
760 return;
761 }
762
763 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
764 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
765
766 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
767 settings was "auto". */
768 condition_evaluation_mode = condition_evaluation_mode_1;
769
770 /* Only update the mode if the user picked a different one. */
771 if (new_mode != old_mode)
772 {
773 struct bp_location *loc, **loc_tmp;
774 /* If the user switched to a different evaluation mode, we
775 need to synch the changes with the target as follows:
776
777 "host" -> "target": Send all (valid) conditions to the target.
778 "target" -> "host": Remove all the conditions from the target.
779 */
780
781 if (new_mode == condition_evaluation_target)
782 {
783 /* Mark everything modified and synch conditions with the
784 target. */
785 ALL_BP_LOCATIONS (loc, loc_tmp)
786 mark_breakpoint_location_modified (loc);
787 }
788 else
789 {
790 /* Manually mark non-duplicate locations to synch conditions
791 with the target. We do this to remove all the conditions the
792 target knows about. */
793 ALL_BP_LOCATIONS (loc, loc_tmp)
794 if (is_breakpoint (loc->owner) && loc->inserted)
795 loc->needs_update = 1;
796 }
797
798 /* Do the update. */
799 update_global_location_list (UGLL_MAY_INSERT);
800 }
801
802 return;
803 }
804
805 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
806 what "auto" is translating to. */
807
808 static void
809 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
810 struct cmd_list_element *c, const char *value)
811 {
812 if (condition_evaluation_mode == condition_evaluation_auto)
813 fprintf_filtered (file,
814 _("Breakpoint condition evaluation "
815 "mode is %s (currently %s).\n"),
816 value,
817 breakpoint_condition_evaluation_mode ());
818 else
819 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
820 value);
821 }
822
823 /* A comparison function for bp_location AP and BP that is used by
824 bsearch. This comparison function only cares about addresses, unlike
825 the more general bp_locations_compare function. */
826
827 static int
828 bp_locations_compare_addrs (const void *ap, const void *bp)
829 {
830 const struct bp_location *a = *(const struct bp_location **) ap;
831 const struct bp_location *b = *(const struct bp_location **) bp;
832
833 if (a->address == b->address)
834 return 0;
835 else
836 return ((a->address > b->address) - (a->address < b->address));
837 }
838
839 /* Helper function to skip all bp_locations with addresses
840 less than ADDRESS. It returns the first bp_location that
841 is greater than or equal to ADDRESS. If none is found, just
842 return NULL. */
843
844 static struct bp_location **
845 get_first_locp_gte_addr (CORE_ADDR address)
846 {
847 struct bp_location dummy_loc;
848 struct bp_location *dummy_locp = &dummy_loc;
849 struct bp_location **locp_found = NULL;
850
851 /* Initialize the dummy location's address field. */
852 dummy_loc.address = address;
853
854 /* Find a close match to the first location at ADDRESS. */
855 locp_found = ((struct bp_location **)
856 bsearch (&dummy_locp, bp_locations, bp_locations_count,
857 sizeof (struct bp_location **),
858 bp_locations_compare_addrs));
859
860 /* Nothing was found, nothing left to do. */
861 if (locp_found == NULL)
862 return NULL;
863
864 /* We may have found a location that is at ADDRESS but is not the first in the
865 location's list. Go backwards (if possible) and locate the first one. */
866 while ((locp_found - 1) >= bp_locations
867 && (*(locp_found - 1))->address == address)
868 locp_found--;
869
870 return locp_found;
871 }
872
873 void
874 set_breakpoint_condition (struct breakpoint *b, const char *exp,
875 int from_tty)
876 {
877 xfree (b->cond_string);
878 b->cond_string = NULL;
879
880 if (is_watchpoint (b))
881 {
882 struct watchpoint *w = (struct watchpoint *) b;
883
884 w->cond_exp.reset ();
885 }
886 else
887 {
888 struct bp_location *loc;
889
890 for (loc = b->loc; loc; loc = loc->next)
891 {
892 loc->cond.reset ();
893
894 /* No need to free the condition agent expression
895 bytecode (if we have one). We will handle this
896 when we go through update_global_location_list. */
897 }
898 }
899
900 if (*exp == 0)
901 {
902 if (from_tty)
903 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
904 }
905 else
906 {
907 const char *arg = exp;
908
909 /* I don't know if it matters whether this is the string the user
910 typed in or the decompiled expression. */
911 b->cond_string = xstrdup (arg);
912 b->condition_not_parsed = 0;
913
914 if (is_watchpoint (b))
915 {
916 struct watchpoint *w = (struct watchpoint *) b;
917
918 innermost_block = NULL;
919 arg = exp;
920 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
921 if (*arg)
922 error (_("Junk at end of expression"));
923 w->cond_exp_valid_block = innermost_block;
924 }
925 else
926 {
927 struct bp_location *loc;
928
929 for (loc = b->loc; loc; loc = loc->next)
930 {
931 arg = exp;
932 loc->cond =
933 parse_exp_1 (&arg, loc->address,
934 block_for_pc (loc->address), 0);
935 if (*arg)
936 error (_("Junk at end of expression"));
937 }
938 }
939 }
940 mark_breakpoint_modified (b);
941
942 observer_notify_breakpoint_modified (b);
943 }
944
945 /* Completion for the "condition" command. */
946
947 static void
948 condition_completer (struct cmd_list_element *cmd,
949 completion_tracker &tracker,
950 const char *text, const char *word)
951 {
952 const char *space;
953
954 text = skip_spaces (text);
955 space = skip_to_space (text);
956 if (*space == '\0')
957 {
958 int len;
959 struct breakpoint *b;
960 VEC (char_ptr) *result = NULL;
961
962 if (text[0] == '$')
963 {
964 /* We don't support completion of history indices. */
965 if (!isdigit (text[1]))
966 complete_internalvar (tracker, &text[1]);
967 return;
968 }
969
970 /* We're completing the breakpoint number. */
971 len = strlen (text);
972
973 ALL_BREAKPOINTS (b)
974 {
975 char number[50];
976
977 xsnprintf (number, sizeof (number), "%d", b->number);
978
979 if (strncmp (number, text, len) == 0)
980 {
981 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
982 tracker.add_completion (std::move (copy));
983 }
984 }
985
986 return;
987 }
988
989 /* We're completing the expression part. */
990 text = skip_spaces (space);
991 expression_completer (cmd, tracker, text, word);
992 }
993
994 /* condition N EXP -- set break condition of breakpoint N to EXP. */
995
996 static void
997 condition_command (char *arg, int from_tty)
998 {
999 struct breakpoint *b;
1000 char *p;
1001 int bnum;
1002
1003 if (arg == 0)
1004 error_no_arg (_("breakpoint number"));
1005
1006 p = arg;
1007 bnum = get_number (&p);
1008 if (bnum == 0)
1009 error (_("Bad breakpoint argument: '%s'"), arg);
1010
1011 ALL_BREAKPOINTS (b)
1012 if (b->number == bnum)
1013 {
1014 /* Check if this breakpoint has a "stop" method implemented in an
1015 extension language. This method and conditions entered into GDB
1016 from the CLI are mutually exclusive. */
1017 const struct extension_language_defn *extlang
1018 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1019
1020 if (extlang != NULL)
1021 {
1022 error (_("Only one stop condition allowed. There is currently"
1023 " a %s stop condition defined for this breakpoint."),
1024 ext_lang_capitalized_name (extlang));
1025 }
1026 set_breakpoint_condition (b, p, from_tty);
1027
1028 if (is_breakpoint (b))
1029 update_global_location_list (UGLL_MAY_INSERT);
1030
1031 return;
1032 }
1033
1034 error (_("No breakpoint number %d."), bnum);
1035 }
1036
1037 /* Check that COMMAND do not contain commands that are suitable
1038 only for tracepoints and not suitable for ordinary breakpoints.
1039 Throw if any such commands is found. */
1040
1041 static void
1042 check_no_tracepoint_commands (struct command_line *commands)
1043 {
1044 struct command_line *c;
1045
1046 for (c = commands; c; c = c->next)
1047 {
1048 int i;
1049
1050 if (c->control_type == while_stepping_control)
1051 error (_("The 'while-stepping' command can "
1052 "only be used for tracepoints"));
1053
1054 for (i = 0; i < c->body_count; ++i)
1055 check_no_tracepoint_commands ((c->body_list)[i]);
1056
1057 /* Not that command parsing removes leading whitespace and comment
1058 lines and also empty lines. So, we only need to check for
1059 command directly. */
1060 if (strstr (c->line, "collect ") == c->line)
1061 error (_("The 'collect' command can only be used for tracepoints"));
1062
1063 if (strstr (c->line, "teval ") == c->line)
1064 error (_("The 'teval' command can only be used for tracepoints"));
1065 }
1066 }
1067
1068 struct longjmp_breakpoint : public breakpoint
1069 {
1070 ~longjmp_breakpoint () override;
1071 };
1072
1073 /* Encapsulate tests for different types of tracepoints. */
1074
1075 static bool
1076 is_tracepoint_type (bptype type)
1077 {
1078 return (type == bp_tracepoint
1079 || type == bp_fast_tracepoint
1080 || type == bp_static_tracepoint);
1081 }
1082
1083 static bool
1084 is_longjmp_type (bptype type)
1085 {
1086 return type == bp_longjmp || type == bp_exception;
1087 }
1088
1089 int
1090 is_tracepoint (const struct breakpoint *b)
1091 {
1092 return is_tracepoint_type (b->type);
1093 }
1094
1095 /* Factory function to create an appropriate instance of breakpoint given
1096 TYPE. */
1097
1098 static std::unique_ptr<breakpoint>
1099 new_breakpoint_from_type (bptype type)
1100 {
1101 breakpoint *b;
1102
1103 if (is_tracepoint_type (type))
1104 b = new tracepoint ();
1105 else if (is_longjmp_type (type))
1106 b = new longjmp_breakpoint ();
1107 else
1108 b = new breakpoint ();
1109
1110 return std::unique_ptr<breakpoint> (b);
1111 }
1112
1113 /* A helper function that validates that COMMANDS are valid for a
1114 breakpoint. This function will throw an exception if a problem is
1115 found. */
1116
1117 static void
1118 validate_commands_for_breakpoint (struct breakpoint *b,
1119 struct command_line *commands)
1120 {
1121 if (is_tracepoint (b))
1122 {
1123 struct tracepoint *t = (struct tracepoint *) b;
1124 struct command_line *c;
1125 struct command_line *while_stepping = 0;
1126
1127 /* Reset the while-stepping step count. The previous commands
1128 might have included a while-stepping action, while the new
1129 ones might not. */
1130 t->step_count = 0;
1131
1132 /* We need to verify that each top-level element of commands is
1133 valid for tracepoints, that there's at most one
1134 while-stepping element, and that the while-stepping's body
1135 has valid tracing commands excluding nested while-stepping.
1136 We also need to validate the tracepoint action line in the
1137 context of the tracepoint --- validate_actionline actually
1138 has side effects, like setting the tracepoint's
1139 while-stepping STEP_COUNT, in addition to checking if the
1140 collect/teval actions parse and make sense in the
1141 tracepoint's context. */
1142 for (c = commands; c; c = c->next)
1143 {
1144 if (c->control_type == while_stepping_control)
1145 {
1146 if (b->type == bp_fast_tracepoint)
1147 error (_("The 'while-stepping' command "
1148 "cannot be used for fast tracepoint"));
1149 else if (b->type == bp_static_tracepoint)
1150 error (_("The 'while-stepping' command "
1151 "cannot be used for static tracepoint"));
1152
1153 if (while_stepping)
1154 error (_("The 'while-stepping' command "
1155 "can be used only once"));
1156 else
1157 while_stepping = c;
1158 }
1159
1160 validate_actionline (c->line, b);
1161 }
1162 if (while_stepping)
1163 {
1164 struct command_line *c2;
1165
1166 gdb_assert (while_stepping->body_count == 1);
1167 c2 = while_stepping->body_list[0];
1168 for (; c2; c2 = c2->next)
1169 {
1170 if (c2->control_type == while_stepping_control)
1171 error (_("The 'while-stepping' command cannot be nested"));
1172 }
1173 }
1174 }
1175 else
1176 {
1177 check_no_tracepoint_commands (commands);
1178 }
1179 }
1180
1181 /* Return a vector of all the static tracepoints set at ADDR. The
1182 caller is responsible for releasing the vector. */
1183
1184 VEC(breakpoint_p) *
1185 static_tracepoints_here (CORE_ADDR addr)
1186 {
1187 struct breakpoint *b;
1188 VEC(breakpoint_p) *found = 0;
1189 struct bp_location *loc;
1190
1191 ALL_BREAKPOINTS (b)
1192 if (b->type == bp_static_tracepoint)
1193 {
1194 for (loc = b->loc; loc; loc = loc->next)
1195 if (loc->address == addr)
1196 VEC_safe_push(breakpoint_p, found, b);
1197 }
1198
1199 return found;
1200 }
1201
1202 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1203 validate that only allowed commands are included. */
1204
1205 void
1206 breakpoint_set_commands (struct breakpoint *b,
1207 command_line_up &&commands)
1208 {
1209 validate_commands_for_breakpoint (b, commands.get ());
1210
1211 b->commands = std::move (commands);
1212 observer_notify_breakpoint_modified (b);
1213 }
1214
1215 /* Set the internal `silent' flag on the breakpoint. Note that this
1216 is not the same as the "silent" that may appear in the breakpoint's
1217 commands. */
1218
1219 void
1220 breakpoint_set_silent (struct breakpoint *b, int silent)
1221 {
1222 int old_silent = b->silent;
1223
1224 b->silent = silent;
1225 if (old_silent != silent)
1226 observer_notify_breakpoint_modified (b);
1227 }
1228
1229 /* Set the thread for this breakpoint. If THREAD is -1, make the
1230 breakpoint work for any thread. */
1231
1232 void
1233 breakpoint_set_thread (struct breakpoint *b, int thread)
1234 {
1235 int old_thread = b->thread;
1236
1237 b->thread = thread;
1238 if (old_thread != thread)
1239 observer_notify_breakpoint_modified (b);
1240 }
1241
1242 /* Set the task for this breakpoint. If TASK is 0, make the
1243 breakpoint work for any task. */
1244
1245 void
1246 breakpoint_set_task (struct breakpoint *b, int task)
1247 {
1248 int old_task = b->task;
1249
1250 b->task = task;
1251 if (old_task != task)
1252 observer_notify_breakpoint_modified (b);
1253 }
1254
1255 void
1256 check_tracepoint_command (char *line, void *closure)
1257 {
1258 struct breakpoint *b = (struct breakpoint *) closure;
1259
1260 validate_actionline (line, b);
1261 }
1262
1263 static void
1264 commands_command_1 (const char *arg, int from_tty,
1265 struct command_line *control)
1266 {
1267 counted_command_line cmd;
1268
1269 std::string new_arg;
1270
1271 if (arg == NULL || !*arg)
1272 {
1273 if (breakpoint_count - prev_breakpoint_count > 1)
1274 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1275 breakpoint_count);
1276 else if (breakpoint_count > 0)
1277 new_arg = string_printf ("%d", breakpoint_count);
1278 arg = new_arg.c_str ();
1279 }
1280
1281 map_breakpoint_numbers
1282 (arg, [&] (breakpoint *b)
1283 {
1284 if (cmd == NULL)
1285 {
1286 if (control != NULL)
1287 cmd = copy_command_lines (control->body_list[0]);
1288 else
1289 {
1290 struct cleanup *old_chain;
1291 char *str;
1292
1293 str = xstrprintf (_("Type commands for breakpoint(s) "
1294 "%s, one per line."),
1295 arg);
1296
1297 old_chain = make_cleanup (xfree, str);
1298
1299 cmd = read_command_lines (str,
1300 from_tty, 1,
1301 (is_tracepoint (b)
1302 ? check_tracepoint_command : 0),
1303 b);
1304
1305 do_cleanups (old_chain);
1306 }
1307 }
1308
1309 /* If a breakpoint was on the list more than once, we don't need to
1310 do anything. */
1311 if (b->commands != cmd)
1312 {
1313 validate_commands_for_breakpoint (b, cmd.get ());
1314 b->commands = cmd;
1315 observer_notify_breakpoint_modified (b);
1316 }
1317 });
1318
1319 if (cmd == NULL)
1320 error (_("No breakpoints specified."));
1321 }
1322
1323 static void
1324 commands_command (char *arg, int from_tty)
1325 {
1326 commands_command_1 (arg, from_tty, NULL);
1327 }
1328
1329 /* Like commands_command, but instead of reading the commands from
1330 input stream, takes them from an already parsed command structure.
1331
1332 This is used by cli-script.c to DTRT with breakpoint commands
1333 that are part of if and while bodies. */
1334 enum command_control_type
1335 commands_from_control_command (const char *arg, struct command_line *cmd)
1336 {
1337 commands_command_1 (arg, 0, cmd);
1338 return simple_control;
1339 }
1340
1341 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1342
1343 static int
1344 bp_location_has_shadow (struct bp_location *bl)
1345 {
1346 if (bl->loc_type != bp_loc_software_breakpoint)
1347 return 0;
1348 if (!bl->inserted)
1349 return 0;
1350 if (bl->target_info.shadow_len == 0)
1351 /* BL isn't valid, or doesn't shadow memory. */
1352 return 0;
1353 return 1;
1354 }
1355
1356 /* Update BUF, which is LEN bytes read from the target address
1357 MEMADDR, by replacing a memory breakpoint with its shadowed
1358 contents.
1359
1360 If READBUF is not NULL, this buffer must not overlap with the of
1361 the breakpoint location's shadow_contents buffer. Otherwise, a
1362 failed assertion internal error will be raised. */
1363
1364 static void
1365 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1366 const gdb_byte *writebuf_org,
1367 ULONGEST memaddr, LONGEST len,
1368 struct bp_target_info *target_info,
1369 struct gdbarch *gdbarch)
1370 {
1371 /* Now do full processing of the found relevant range of elements. */
1372 CORE_ADDR bp_addr = 0;
1373 int bp_size = 0;
1374 int bptoffset = 0;
1375
1376 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1377 current_program_space->aspace, 0))
1378 {
1379 /* The breakpoint is inserted in a different address space. */
1380 return;
1381 }
1382
1383 /* Addresses and length of the part of the breakpoint that
1384 we need to copy. */
1385 bp_addr = target_info->placed_address;
1386 bp_size = target_info->shadow_len;
1387
1388 if (bp_addr + bp_size <= memaddr)
1389 {
1390 /* The breakpoint is entirely before the chunk of memory we are
1391 reading. */
1392 return;
1393 }
1394
1395 if (bp_addr >= memaddr + len)
1396 {
1397 /* The breakpoint is entirely after the chunk of memory we are
1398 reading. */
1399 return;
1400 }
1401
1402 /* Offset within shadow_contents. */
1403 if (bp_addr < memaddr)
1404 {
1405 /* Only copy the second part of the breakpoint. */
1406 bp_size -= memaddr - bp_addr;
1407 bptoffset = memaddr - bp_addr;
1408 bp_addr = memaddr;
1409 }
1410
1411 if (bp_addr + bp_size > memaddr + len)
1412 {
1413 /* Only copy the first part of the breakpoint. */
1414 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1415 }
1416
1417 if (readbuf != NULL)
1418 {
1419 /* Verify that the readbuf buffer does not overlap with the
1420 shadow_contents buffer. */
1421 gdb_assert (target_info->shadow_contents >= readbuf + len
1422 || readbuf >= (target_info->shadow_contents
1423 + target_info->shadow_len));
1424
1425 /* Update the read buffer with this inserted breakpoint's
1426 shadow. */
1427 memcpy (readbuf + bp_addr - memaddr,
1428 target_info->shadow_contents + bptoffset, bp_size);
1429 }
1430 else
1431 {
1432 const unsigned char *bp;
1433 CORE_ADDR addr = target_info->reqstd_address;
1434 int placed_size;
1435
1436 /* Update the shadow with what we want to write to memory. */
1437 memcpy (target_info->shadow_contents + bptoffset,
1438 writebuf_org + bp_addr - memaddr, bp_size);
1439
1440 /* Determine appropriate breakpoint contents and size for this
1441 address. */
1442 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1443
1444 /* Update the final write buffer with this inserted
1445 breakpoint's INSN. */
1446 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1447 }
1448 }
1449
1450 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1451 by replacing any memory breakpoints with their shadowed contents.
1452
1453 If READBUF is not NULL, this buffer must not overlap with any of
1454 the breakpoint location's shadow_contents buffers. Otherwise,
1455 a failed assertion internal error will be raised.
1456
1457 The range of shadowed area by each bp_location is:
1458 bl->address - bp_locations_placed_address_before_address_max
1459 up to bl->address + bp_locations_shadow_len_after_address_max
1460 The range we were requested to resolve shadows for is:
1461 memaddr ... memaddr + len
1462 Thus the safe cutoff boundaries for performance optimization are
1463 memaddr + len <= (bl->address
1464 - bp_locations_placed_address_before_address_max)
1465 and:
1466 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1467
1468 void
1469 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1470 const gdb_byte *writebuf_org,
1471 ULONGEST memaddr, LONGEST len)
1472 {
1473 /* Left boundary, right boundary and median element of our binary
1474 search. */
1475 unsigned bc_l, bc_r, bc;
1476
1477 /* Find BC_L which is a leftmost element which may affect BUF
1478 content. It is safe to report lower value but a failure to
1479 report higher one. */
1480
1481 bc_l = 0;
1482 bc_r = bp_locations_count;
1483 while (bc_l + 1 < bc_r)
1484 {
1485 struct bp_location *bl;
1486
1487 bc = (bc_l + bc_r) / 2;
1488 bl = bp_locations[bc];
1489
1490 /* Check first BL->ADDRESS will not overflow due to the added
1491 constant. Then advance the left boundary only if we are sure
1492 the BC element can in no way affect the BUF content (MEMADDR
1493 to MEMADDR + LEN range).
1494
1495 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1496 offset so that we cannot miss a breakpoint with its shadow
1497 range tail still reaching MEMADDR. */
1498
1499 if ((bl->address + bp_locations_shadow_len_after_address_max
1500 >= bl->address)
1501 && (bl->address + bp_locations_shadow_len_after_address_max
1502 <= memaddr))
1503 bc_l = bc;
1504 else
1505 bc_r = bc;
1506 }
1507
1508 /* Due to the binary search above, we need to make sure we pick the
1509 first location that's at BC_L's address. E.g., if there are
1510 multiple locations at the same address, BC_L may end up pointing
1511 at a duplicate location, and miss the "master"/"inserted"
1512 location. Say, given locations L1, L2 and L3 at addresses A and
1513 B:
1514
1515 L1@A, L2@A, L3@B, ...
1516
1517 BC_L could end up pointing at location L2, while the "master"
1518 location could be L1. Since the `loc->inserted' flag is only set
1519 on "master" locations, we'd forget to restore the shadow of L1
1520 and L2. */
1521 while (bc_l > 0
1522 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1523 bc_l--;
1524
1525 /* Now do full processing of the found relevant range of elements. */
1526
1527 for (bc = bc_l; bc < bp_locations_count; bc++)
1528 {
1529 struct bp_location *bl = bp_locations[bc];
1530
1531 /* bp_location array has BL->OWNER always non-NULL. */
1532 if (bl->owner->type == bp_none)
1533 warning (_("reading through apparently deleted breakpoint #%d?"),
1534 bl->owner->number);
1535
1536 /* Performance optimization: any further element can no longer affect BUF
1537 content. */
1538
1539 if (bl->address >= bp_locations_placed_address_before_address_max
1540 && memaddr + len <= (bl->address
1541 - bp_locations_placed_address_before_address_max))
1542 break;
1543
1544 if (!bp_location_has_shadow (bl))
1545 continue;
1546
1547 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1548 memaddr, len, &bl->target_info, bl->gdbarch);
1549 }
1550 }
1551
1552 \f
1553
1554 /* Return true if BPT is either a software breakpoint or a hardware
1555 breakpoint. */
1556
1557 int
1558 is_breakpoint (const struct breakpoint *bpt)
1559 {
1560 return (bpt->type == bp_breakpoint
1561 || bpt->type == bp_hardware_breakpoint
1562 || bpt->type == bp_dprintf);
1563 }
1564
1565 /* Return true if BPT is of any hardware watchpoint kind. */
1566
1567 static int
1568 is_hardware_watchpoint (const struct breakpoint *bpt)
1569 {
1570 return (bpt->type == bp_hardware_watchpoint
1571 || bpt->type == bp_read_watchpoint
1572 || bpt->type == bp_access_watchpoint);
1573 }
1574
1575 /* Return true if BPT is of any watchpoint kind, hardware or
1576 software. */
1577
1578 int
1579 is_watchpoint (const struct breakpoint *bpt)
1580 {
1581 return (is_hardware_watchpoint (bpt)
1582 || bpt->type == bp_watchpoint);
1583 }
1584
1585 /* Returns true if the current thread and its running state are safe
1586 to evaluate or update watchpoint B. Watchpoints on local
1587 expressions need to be evaluated in the context of the thread that
1588 was current when the watchpoint was created, and, that thread needs
1589 to be stopped to be able to select the correct frame context.
1590 Watchpoints on global expressions can be evaluated on any thread,
1591 and in any state. It is presently left to the target allowing
1592 memory accesses when threads are running. */
1593
1594 static int
1595 watchpoint_in_thread_scope (struct watchpoint *b)
1596 {
1597 return (b->pspace == current_program_space
1598 && (ptid_equal (b->watchpoint_thread, null_ptid)
1599 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1600 && !is_executing (inferior_ptid))));
1601 }
1602
1603 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1604 associated bp_watchpoint_scope breakpoint. */
1605
1606 static void
1607 watchpoint_del_at_next_stop (struct watchpoint *w)
1608 {
1609 if (w->related_breakpoint != w)
1610 {
1611 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1612 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1613 w->related_breakpoint->disposition = disp_del_at_next_stop;
1614 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1615 w->related_breakpoint = w;
1616 }
1617 w->disposition = disp_del_at_next_stop;
1618 }
1619
1620 /* Extract a bitfield value from value VAL using the bit parameters contained in
1621 watchpoint W. */
1622
1623 static struct value *
1624 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1625 {
1626 struct value *bit_val;
1627
1628 if (val == NULL)
1629 return NULL;
1630
1631 bit_val = allocate_value (value_type (val));
1632
1633 unpack_value_bitfield (bit_val,
1634 w->val_bitpos,
1635 w->val_bitsize,
1636 value_contents_for_printing (val),
1637 value_offset (val),
1638 val);
1639
1640 return bit_val;
1641 }
1642
1643 /* Allocate a dummy location and add it to B, which must be a software
1644 watchpoint. This is required because even if a software watchpoint
1645 is not watching any memory, bpstat_stop_status requires a location
1646 to be able to report stops. */
1647
1648 static void
1649 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1650 struct program_space *pspace)
1651 {
1652 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1653
1654 b->loc = allocate_bp_location (b);
1655 b->loc->pspace = pspace;
1656 b->loc->address = -1;
1657 b->loc->length = -1;
1658 }
1659
1660 /* Returns true if B is a software watchpoint that is not watching any
1661 memory (e.g., "watch $pc"). */
1662
1663 static int
1664 is_no_memory_software_watchpoint (struct breakpoint *b)
1665 {
1666 return (b->type == bp_watchpoint
1667 && b->loc != NULL
1668 && b->loc->next == NULL
1669 && b->loc->address == -1
1670 && b->loc->length == -1);
1671 }
1672
1673 /* Assuming that B is a watchpoint:
1674 - Reparse watchpoint expression, if REPARSE is non-zero
1675 - Evaluate expression and store the result in B->val
1676 - Evaluate the condition if there is one, and store the result
1677 in b->loc->cond.
1678 - Update the list of values that must be watched in B->loc.
1679
1680 If the watchpoint disposition is disp_del_at_next_stop, then do
1681 nothing. If this is local watchpoint that is out of scope, delete
1682 it.
1683
1684 Even with `set breakpoint always-inserted on' the watchpoints are
1685 removed + inserted on each stop here. Normal breakpoints must
1686 never be removed because they might be missed by a running thread
1687 when debugging in non-stop mode. On the other hand, hardware
1688 watchpoints (is_hardware_watchpoint; processed here) are specific
1689 to each LWP since they are stored in each LWP's hardware debug
1690 registers. Therefore, such LWP must be stopped first in order to
1691 be able to modify its hardware watchpoints.
1692
1693 Hardware watchpoints must be reset exactly once after being
1694 presented to the user. It cannot be done sooner, because it would
1695 reset the data used to present the watchpoint hit to the user. And
1696 it must not be done later because it could display the same single
1697 watchpoint hit during multiple GDB stops. Note that the latter is
1698 relevant only to the hardware watchpoint types bp_read_watchpoint
1699 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1700 not user-visible - its hit is suppressed if the memory content has
1701 not changed.
1702
1703 The following constraints influence the location where we can reset
1704 hardware watchpoints:
1705
1706 * target_stopped_by_watchpoint and target_stopped_data_address are
1707 called several times when GDB stops.
1708
1709 [linux]
1710 * Multiple hardware watchpoints can be hit at the same time,
1711 causing GDB to stop. GDB only presents one hardware watchpoint
1712 hit at a time as the reason for stopping, and all the other hits
1713 are presented later, one after the other, each time the user
1714 requests the execution to be resumed. Execution is not resumed
1715 for the threads still having pending hit event stored in
1716 LWP_INFO->STATUS. While the watchpoint is already removed from
1717 the inferior on the first stop the thread hit event is kept being
1718 reported from its cached value by linux_nat_stopped_data_address
1719 until the real thread resume happens after the watchpoint gets
1720 presented and thus its LWP_INFO->STATUS gets reset.
1721
1722 Therefore the hardware watchpoint hit can get safely reset on the
1723 watchpoint removal from inferior. */
1724
1725 static void
1726 update_watchpoint (struct watchpoint *b, int reparse)
1727 {
1728 int within_current_scope;
1729 struct frame_id saved_frame_id;
1730 int frame_saved;
1731
1732 /* If this is a local watchpoint, we only want to check if the
1733 watchpoint frame is in scope if the current thread is the thread
1734 that was used to create the watchpoint. */
1735 if (!watchpoint_in_thread_scope (b))
1736 return;
1737
1738 if (b->disposition == disp_del_at_next_stop)
1739 return;
1740
1741 frame_saved = 0;
1742
1743 /* Determine if the watchpoint is within scope. */
1744 if (b->exp_valid_block == NULL)
1745 within_current_scope = 1;
1746 else
1747 {
1748 struct frame_info *fi = get_current_frame ();
1749 struct gdbarch *frame_arch = get_frame_arch (fi);
1750 CORE_ADDR frame_pc = get_frame_pc (fi);
1751
1752 /* If we're at a point where the stack has been destroyed
1753 (e.g. in a function epilogue), unwinding may not work
1754 properly. Do not attempt to recreate locations at this
1755 point. See similar comments in watchpoint_check. */
1756 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1757 return;
1758
1759 /* Save the current frame's ID so we can restore it after
1760 evaluating the watchpoint expression on its own frame. */
1761 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1762 took a frame parameter, so that we didn't have to change the
1763 selected frame. */
1764 frame_saved = 1;
1765 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1766
1767 fi = frame_find_by_id (b->watchpoint_frame);
1768 within_current_scope = (fi != NULL);
1769 if (within_current_scope)
1770 select_frame (fi);
1771 }
1772
1773 /* We don't free locations. They are stored in the bp_location array
1774 and update_global_location_list will eventually delete them and
1775 remove breakpoints if needed. */
1776 b->loc = NULL;
1777
1778 if (within_current_scope && reparse)
1779 {
1780 const char *s;
1781
1782 b->exp.reset ();
1783 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1784 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1785 /* If the meaning of expression itself changed, the old value is
1786 no longer relevant. We don't want to report a watchpoint hit
1787 to the user when the old value and the new value may actually
1788 be completely different objects. */
1789 value_free (b->val);
1790 b->val = NULL;
1791 b->val_valid = 0;
1792
1793 /* Note that unlike with breakpoints, the watchpoint's condition
1794 expression is stored in the breakpoint object, not in the
1795 locations (re)created below. */
1796 if (b->cond_string != NULL)
1797 {
1798 b->cond_exp.reset ();
1799
1800 s = b->cond_string;
1801 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1802 }
1803 }
1804
1805 /* If we failed to parse the expression, for example because
1806 it refers to a global variable in a not-yet-loaded shared library,
1807 don't try to insert watchpoint. We don't automatically delete
1808 such watchpoint, though, since failure to parse expression
1809 is different from out-of-scope watchpoint. */
1810 if (!target_has_execution)
1811 {
1812 /* Without execution, memory can't change. No use to try and
1813 set watchpoint locations. The watchpoint will be reset when
1814 the target gains execution, through breakpoint_re_set. */
1815 if (!can_use_hw_watchpoints)
1816 {
1817 if (b->ops->works_in_software_mode (b))
1818 b->type = bp_watchpoint;
1819 else
1820 error (_("Can't set read/access watchpoint when "
1821 "hardware watchpoints are disabled."));
1822 }
1823 }
1824 else if (within_current_scope && b->exp)
1825 {
1826 int pc = 0;
1827 struct value *val_chain, *v, *result, *next;
1828 struct program_space *frame_pspace;
1829
1830 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1831
1832 /* Avoid setting b->val if it's already set. The meaning of
1833 b->val is 'the last value' user saw, and we should update
1834 it only if we reported that last value to user. As it
1835 happens, the code that reports it updates b->val directly.
1836 We don't keep track of the memory value for masked
1837 watchpoints. */
1838 if (!b->val_valid && !is_masked_watchpoint (b))
1839 {
1840 if (b->val_bitsize != 0)
1841 {
1842 v = extract_bitfield_from_watchpoint_value (b, v);
1843 if (v != NULL)
1844 release_value (v);
1845 }
1846 b->val = v;
1847 b->val_valid = 1;
1848 }
1849
1850 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1851
1852 /* Look at each value on the value chain. */
1853 for (v = val_chain; v; v = value_next (v))
1854 {
1855 /* If it's a memory location, and GDB actually needed
1856 its contents to evaluate the expression, then we
1857 must watch it. If the first value returned is
1858 still lazy, that means an error occurred reading it;
1859 watch it anyway in case it becomes readable. */
1860 if (VALUE_LVAL (v) == lval_memory
1861 && (v == val_chain || ! value_lazy (v)))
1862 {
1863 struct type *vtype = check_typedef (value_type (v));
1864
1865 /* We only watch structs and arrays if user asked
1866 for it explicitly, never if they just happen to
1867 appear in the middle of some value chain. */
1868 if (v == result
1869 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1870 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1871 {
1872 CORE_ADDR addr;
1873 enum target_hw_bp_type type;
1874 struct bp_location *loc, **tmp;
1875 int bitpos = 0, bitsize = 0;
1876
1877 if (value_bitsize (v) != 0)
1878 {
1879 /* Extract the bit parameters out from the bitfield
1880 sub-expression. */
1881 bitpos = value_bitpos (v);
1882 bitsize = value_bitsize (v);
1883 }
1884 else if (v == result && b->val_bitsize != 0)
1885 {
1886 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1887 lvalue whose bit parameters are saved in the fields
1888 VAL_BITPOS and VAL_BITSIZE. */
1889 bitpos = b->val_bitpos;
1890 bitsize = b->val_bitsize;
1891 }
1892
1893 addr = value_address (v);
1894 if (bitsize != 0)
1895 {
1896 /* Skip the bytes that don't contain the bitfield. */
1897 addr += bitpos / 8;
1898 }
1899
1900 type = hw_write;
1901 if (b->type == bp_read_watchpoint)
1902 type = hw_read;
1903 else if (b->type == bp_access_watchpoint)
1904 type = hw_access;
1905
1906 loc = allocate_bp_location (b);
1907 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1908 ;
1909 *tmp = loc;
1910 loc->gdbarch = get_type_arch (value_type (v));
1911
1912 loc->pspace = frame_pspace;
1913 loc->address = addr;
1914
1915 if (bitsize != 0)
1916 {
1917 /* Just cover the bytes that make up the bitfield. */
1918 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1919 }
1920 else
1921 loc->length = TYPE_LENGTH (value_type (v));
1922
1923 loc->watchpoint_type = type;
1924 }
1925 }
1926 }
1927
1928 /* Change the type of breakpoint between hardware assisted or
1929 an ordinary watchpoint depending on the hardware support
1930 and free hardware slots. REPARSE is set when the inferior
1931 is started. */
1932 if (reparse)
1933 {
1934 int reg_cnt;
1935 enum bp_loc_type loc_type;
1936 struct bp_location *bl;
1937
1938 reg_cnt = can_use_hardware_watchpoint (val_chain);
1939
1940 if (reg_cnt)
1941 {
1942 int i, target_resources_ok, other_type_used;
1943 enum bptype type;
1944
1945 /* Use an exact watchpoint when there's only one memory region to be
1946 watched, and only one debug register is needed to watch it. */
1947 b->exact = target_exact_watchpoints && reg_cnt == 1;
1948
1949 /* We need to determine how many resources are already
1950 used for all other hardware watchpoints plus this one
1951 to see if we still have enough resources to also fit
1952 this watchpoint in as well. */
1953
1954 /* If this is a software watchpoint, we try to turn it
1955 to a hardware one -- count resources as if B was of
1956 hardware watchpoint type. */
1957 type = b->type;
1958 if (type == bp_watchpoint)
1959 type = bp_hardware_watchpoint;
1960
1961 /* This watchpoint may or may not have been placed on
1962 the list yet at this point (it won't be in the list
1963 if we're trying to create it for the first time,
1964 through watch_command), so always account for it
1965 manually. */
1966
1967 /* Count resources used by all watchpoints except B. */
1968 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1969
1970 /* Add in the resources needed for B. */
1971 i += hw_watchpoint_use_count (b);
1972
1973 target_resources_ok
1974 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1975 if (target_resources_ok <= 0)
1976 {
1977 int sw_mode = b->ops->works_in_software_mode (b);
1978
1979 if (target_resources_ok == 0 && !sw_mode)
1980 error (_("Target does not support this type of "
1981 "hardware watchpoint."));
1982 else if (target_resources_ok < 0 && !sw_mode)
1983 error (_("There are not enough available hardware "
1984 "resources for this watchpoint."));
1985
1986 /* Downgrade to software watchpoint. */
1987 b->type = bp_watchpoint;
1988 }
1989 else
1990 {
1991 /* If this was a software watchpoint, we've just
1992 found we have enough resources to turn it to a
1993 hardware watchpoint. Otherwise, this is a
1994 nop. */
1995 b->type = type;
1996 }
1997 }
1998 else if (!b->ops->works_in_software_mode (b))
1999 {
2000 if (!can_use_hw_watchpoints)
2001 error (_("Can't set read/access watchpoint when "
2002 "hardware watchpoints are disabled."));
2003 else
2004 error (_("Expression cannot be implemented with "
2005 "read/access watchpoint."));
2006 }
2007 else
2008 b->type = bp_watchpoint;
2009
2010 loc_type = (b->type == bp_watchpoint? bp_loc_other
2011 : bp_loc_hardware_watchpoint);
2012 for (bl = b->loc; bl; bl = bl->next)
2013 bl->loc_type = loc_type;
2014 }
2015
2016 for (v = val_chain; v; v = next)
2017 {
2018 next = value_next (v);
2019 if (v != b->val)
2020 value_free (v);
2021 }
2022
2023 /* If a software watchpoint is not watching any memory, then the
2024 above left it without any location set up. But,
2025 bpstat_stop_status requires a location to be able to report
2026 stops, so make sure there's at least a dummy one. */
2027 if (b->type == bp_watchpoint && b->loc == NULL)
2028 software_watchpoint_add_no_memory_location (b, frame_pspace);
2029 }
2030 else if (!within_current_scope)
2031 {
2032 printf_filtered (_("\
2033 Watchpoint %d deleted because the program has left the block\n\
2034 in which its expression is valid.\n"),
2035 b->number);
2036 watchpoint_del_at_next_stop (b);
2037 }
2038
2039 /* Restore the selected frame. */
2040 if (frame_saved)
2041 select_frame (frame_find_by_id (saved_frame_id));
2042 }
2043
2044
2045 /* Returns 1 iff breakpoint location should be
2046 inserted in the inferior. We don't differentiate the type of BL's owner
2047 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2048 breakpoint_ops is not defined, because in insert_bp_location,
2049 tracepoint's insert_location will not be called. */
2050 static int
2051 should_be_inserted (struct bp_location *bl)
2052 {
2053 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2054 return 0;
2055
2056 if (bl->owner->disposition == disp_del_at_next_stop)
2057 return 0;
2058
2059 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2060 return 0;
2061
2062 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2063 return 0;
2064
2065 /* This is set for example, when we're attached to the parent of a
2066 vfork, and have detached from the child. The child is running
2067 free, and we expect it to do an exec or exit, at which point the
2068 OS makes the parent schedulable again (and the target reports
2069 that the vfork is done). Until the child is done with the shared
2070 memory region, do not insert breakpoints in the parent, otherwise
2071 the child could still trip on the parent's breakpoints. Since
2072 the parent is blocked anyway, it won't miss any breakpoint. */
2073 if (bl->pspace->breakpoints_not_allowed)
2074 return 0;
2075
2076 /* Don't insert a breakpoint if we're trying to step past its
2077 location, except if the breakpoint is a single-step breakpoint,
2078 and the breakpoint's thread is the thread which is stepping past
2079 a breakpoint. */
2080 if ((bl->loc_type == bp_loc_software_breakpoint
2081 || bl->loc_type == bp_loc_hardware_breakpoint)
2082 && stepping_past_instruction_at (bl->pspace->aspace,
2083 bl->address)
2084 /* The single-step breakpoint may be inserted at the location
2085 we're trying to step if the instruction branches to itself.
2086 However, the instruction won't be executed at all and it may
2087 break the semantics of the instruction, for example, the
2088 instruction is a conditional branch or updates some flags.
2089 We can't fix it unless GDB is able to emulate the instruction
2090 or switch to displaced stepping. */
2091 && !(bl->owner->type == bp_single_step
2092 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2093 {
2094 if (debug_infrun)
2095 {
2096 fprintf_unfiltered (gdb_stdlog,
2097 "infrun: skipping breakpoint: "
2098 "stepping past insn at: %s\n",
2099 paddress (bl->gdbarch, bl->address));
2100 }
2101 return 0;
2102 }
2103
2104 /* Don't insert watchpoints if we're trying to step past the
2105 instruction that triggered one. */
2106 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2107 && stepping_past_nonsteppable_watchpoint ())
2108 {
2109 if (debug_infrun)
2110 {
2111 fprintf_unfiltered (gdb_stdlog,
2112 "infrun: stepping past non-steppable watchpoint. "
2113 "skipping watchpoint at %s:%d\n",
2114 paddress (bl->gdbarch, bl->address),
2115 bl->length);
2116 }
2117 return 0;
2118 }
2119
2120 return 1;
2121 }
2122
2123 /* Same as should_be_inserted but does the check assuming
2124 that the location is not duplicated. */
2125
2126 static int
2127 unduplicated_should_be_inserted (struct bp_location *bl)
2128 {
2129 int result;
2130 const int save_duplicate = bl->duplicate;
2131
2132 bl->duplicate = 0;
2133 result = should_be_inserted (bl);
2134 bl->duplicate = save_duplicate;
2135 return result;
2136 }
2137
2138 /* Parses a conditional described by an expression COND into an
2139 agent expression bytecode suitable for evaluation
2140 by the bytecode interpreter. Return NULL if there was
2141 any error during parsing. */
2142
2143 static agent_expr_up
2144 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2145 {
2146 if (cond == NULL)
2147 return NULL;
2148
2149 agent_expr_up aexpr;
2150
2151 /* We don't want to stop processing, so catch any errors
2152 that may show up. */
2153 TRY
2154 {
2155 aexpr = gen_eval_for_expr (scope, cond);
2156 }
2157
2158 CATCH (ex, RETURN_MASK_ERROR)
2159 {
2160 /* If we got here, it means the condition could not be parsed to a valid
2161 bytecode expression and thus can't be evaluated on the target's side.
2162 It's no use iterating through the conditions. */
2163 }
2164 END_CATCH
2165
2166 /* We have a valid agent expression. */
2167 return aexpr;
2168 }
2169
2170 /* Based on location BL, create a list of breakpoint conditions to be
2171 passed on to the target. If we have duplicated locations with different
2172 conditions, we will add such conditions to the list. The idea is that the
2173 target will evaluate the list of conditions and will only notify GDB when
2174 one of them is true. */
2175
2176 static void
2177 build_target_condition_list (struct bp_location *bl)
2178 {
2179 struct bp_location **locp = NULL, **loc2p;
2180 int null_condition_or_parse_error = 0;
2181 int modified = bl->needs_update;
2182 struct bp_location *loc;
2183
2184 /* Release conditions left over from a previous insert. */
2185 bl->target_info.conditions.clear ();
2186
2187 /* This is only meaningful if the target is
2188 evaluating conditions and if the user has
2189 opted for condition evaluation on the target's
2190 side. */
2191 if (gdb_evaluates_breakpoint_condition_p ()
2192 || !target_supports_evaluation_of_breakpoint_conditions ())
2193 return;
2194
2195 /* Do a first pass to check for locations with no assigned
2196 conditions or conditions that fail to parse to a valid agent expression
2197 bytecode. If any of these happen, then it's no use to send conditions
2198 to the target since this location will always trigger and generate a
2199 response back to GDB. */
2200 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2201 {
2202 loc = (*loc2p);
2203 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2204 {
2205 if (modified)
2206 {
2207 /* Re-parse the conditions since something changed. In that
2208 case we already freed the condition bytecodes (see
2209 force_breakpoint_reinsertion). We just
2210 need to parse the condition to bytecodes again. */
2211 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2212 loc->cond.get ());
2213 }
2214
2215 /* If we have a NULL bytecode expression, it means something
2216 went wrong or we have a null condition expression. */
2217 if (!loc->cond_bytecode)
2218 {
2219 null_condition_or_parse_error = 1;
2220 break;
2221 }
2222 }
2223 }
2224
2225 /* If any of these happened, it means we will have to evaluate the conditions
2226 for the location's address on gdb's side. It is no use keeping bytecodes
2227 for all the other duplicate locations, thus we free all of them here.
2228
2229 This is so we have a finer control over which locations' conditions are
2230 being evaluated by GDB or the remote stub. */
2231 if (null_condition_or_parse_error)
2232 {
2233 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2234 {
2235 loc = (*loc2p);
2236 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2237 {
2238 /* Only go as far as the first NULL bytecode is
2239 located. */
2240 if (!loc->cond_bytecode)
2241 return;
2242
2243 loc->cond_bytecode.reset ();
2244 }
2245 }
2246 }
2247
2248 /* No NULL conditions or failed bytecode generation. Build a condition list
2249 for this location's address. */
2250 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2251 {
2252 loc = (*loc2p);
2253 if (loc->cond
2254 && is_breakpoint (loc->owner)
2255 && loc->pspace->num == bl->pspace->num
2256 && loc->owner->enable_state == bp_enabled
2257 && loc->enabled)
2258 {
2259 /* Add the condition to the vector. This will be used later
2260 to send the conditions to the target. */
2261 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2262 }
2263 }
2264
2265 return;
2266 }
2267
2268 /* Parses a command described by string CMD into an agent expression
2269 bytecode suitable for evaluation by the bytecode interpreter.
2270 Return NULL if there was any error during parsing. */
2271
2272 static agent_expr_up
2273 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2274 {
2275 struct cleanup *old_cleanups = 0;
2276 struct expression **argvec;
2277 const char *cmdrest;
2278 const char *format_start, *format_end;
2279 struct format_piece *fpieces;
2280 int nargs;
2281 struct gdbarch *gdbarch = get_current_arch ();
2282
2283 if (cmd == NULL)
2284 return NULL;
2285
2286 cmdrest = cmd;
2287
2288 if (*cmdrest == ',')
2289 ++cmdrest;
2290 cmdrest = skip_spaces (cmdrest);
2291
2292 if (*cmdrest++ != '"')
2293 error (_("No format string following the location"));
2294
2295 format_start = cmdrest;
2296
2297 fpieces = parse_format_string (&cmdrest);
2298
2299 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2300
2301 format_end = cmdrest;
2302
2303 if (*cmdrest++ != '"')
2304 error (_("Bad format string, non-terminated '\"'."));
2305
2306 cmdrest = skip_spaces (cmdrest);
2307
2308 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2309 error (_("Invalid argument syntax"));
2310
2311 if (*cmdrest == ',')
2312 cmdrest++;
2313 cmdrest = skip_spaces (cmdrest);
2314
2315 /* For each argument, make an expression. */
2316
2317 argvec = (struct expression **) alloca (strlen (cmd)
2318 * sizeof (struct expression *));
2319
2320 nargs = 0;
2321 while (*cmdrest != '\0')
2322 {
2323 const char *cmd1;
2324
2325 cmd1 = cmdrest;
2326 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2327 argvec[nargs++] = expr.release ();
2328 cmdrest = cmd1;
2329 if (*cmdrest == ',')
2330 ++cmdrest;
2331 }
2332
2333 agent_expr_up aexpr;
2334
2335 /* We don't want to stop processing, so catch any errors
2336 that may show up. */
2337 TRY
2338 {
2339 aexpr = gen_printf (scope, gdbarch, 0, 0,
2340 format_start, format_end - format_start,
2341 fpieces, nargs, argvec);
2342 }
2343 CATCH (ex, RETURN_MASK_ERROR)
2344 {
2345 /* If we got here, it means the command could not be parsed to a valid
2346 bytecode expression and thus can't be evaluated on the target's side.
2347 It's no use iterating through the other commands. */
2348 }
2349 END_CATCH
2350
2351 do_cleanups (old_cleanups);
2352
2353 /* We have a valid agent expression, return it. */
2354 return aexpr;
2355 }
2356
2357 /* Based on location BL, create a list of breakpoint commands to be
2358 passed on to the target. If we have duplicated locations with
2359 different commands, we will add any such to the list. */
2360
2361 static void
2362 build_target_command_list (struct bp_location *bl)
2363 {
2364 struct bp_location **locp = NULL, **loc2p;
2365 int null_command_or_parse_error = 0;
2366 int modified = bl->needs_update;
2367 struct bp_location *loc;
2368
2369 /* Clear commands left over from a previous insert. */
2370 bl->target_info.tcommands.clear ();
2371
2372 if (!target_can_run_breakpoint_commands ())
2373 return;
2374
2375 /* For now, limit to agent-style dprintf breakpoints. */
2376 if (dprintf_style != dprintf_style_agent)
2377 return;
2378
2379 /* For now, if we have any duplicate location that isn't a dprintf,
2380 don't install the target-side commands, as that would make the
2381 breakpoint not be reported to the core, and we'd lose
2382 control. */
2383 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2384 {
2385 loc = (*loc2p);
2386 if (is_breakpoint (loc->owner)
2387 && loc->pspace->num == bl->pspace->num
2388 && loc->owner->type != bp_dprintf)
2389 return;
2390 }
2391
2392 /* Do a first pass to check for locations with no assigned
2393 conditions or conditions that fail to parse to a valid agent expression
2394 bytecode. If any of these happen, then it's no use to send conditions
2395 to the target since this location will always trigger and generate a
2396 response back to GDB. */
2397 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2398 {
2399 loc = (*loc2p);
2400 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2401 {
2402 if (modified)
2403 {
2404 /* Re-parse the commands since something changed. In that
2405 case we already freed the command bytecodes (see
2406 force_breakpoint_reinsertion). We just
2407 need to parse the command to bytecodes again. */
2408 loc->cmd_bytecode
2409 = parse_cmd_to_aexpr (bl->address,
2410 loc->owner->extra_string);
2411 }
2412
2413 /* If we have a NULL bytecode expression, it means something
2414 went wrong or we have a null command expression. */
2415 if (!loc->cmd_bytecode)
2416 {
2417 null_command_or_parse_error = 1;
2418 break;
2419 }
2420 }
2421 }
2422
2423 /* If anything failed, then we're not doing target-side commands,
2424 and so clean up. */
2425 if (null_command_or_parse_error)
2426 {
2427 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2428 {
2429 loc = (*loc2p);
2430 if (is_breakpoint (loc->owner)
2431 && loc->pspace->num == bl->pspace->num)
2432 {
2433 /* Only go as far as the first NULL bytecode is
2434 located. */
2435 if (loc->cmd_bytecode == NULL)
2436 return;
2437
2438 loc->cmd_bytecode.reset ();
2439 }
2440 }
2441 }
2442
2443 /* No NULL commands or failed bytecode generation. Build a command list
2444 for this location's address. */
2445 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2446 {
2447 loc = (*loc2p);
2448 if (loc->owner->extra_string
2449 && is_breakpoint (loc->owner)
2450 && loc->pspace->num == bl->pspace->num
2451 && loc->owner->enable_state == bp_enabled
2452 && loc->enabled)
2453 {
2454 /* Add the command to the vector. This will be used later
2455 to send the commands to the target. */
2456 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2457 }
2458 }
2459
2460 bl->target_info.persist = 0;
2461 /* Maybe flag this location as persistent. */
2462 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2463 bl->target_info.persist = 1;
2464 }
2465
2466 /* Return the kind of breakpoint on address *ADDR. Get the kind
2467 of breakpoint according to ADDR except single-step breakpoint.
2468 Get the kind of single-step breakpoint according to the current
2469 registers state. */
2470
2471 static int
2472 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2473 {
2474 if (bl->owner->type == bp_single_step)
2475 {
2476 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2477 struct regcache *regcache;
2478
2479 regcache = get_thread_regcache (thr->ptid);
2480
2481 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2482 regcache, addr);
2483 }
2484 else
2485 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2486 }
2487
2488 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2489 location. Any error messages are printed to TMP_ERROR_STREAM; and
2490 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2491 Returns 0 for success, 1 if the bp_location type is not supported or
2492 -1 for failure.
2493
2494 NOTE drow/2003-09-09: This routine could be broken down to an
2495 object-style method for each breakpoint or catchpoint type. */
2496 static int
2497 insert_bp_location (struct bp_location *bl,
2498 struct ui_file *tmp_error_stream,
2499 int *disabled_breaks,
2500 int *hw_breakpoint_error,
2501 int *hw_bp_error_explained_already)
2502 {
2503 enum errors bp_err = GDB_NO_ERROR;
2504 const char *bp_err_message = NULL;
2505
2506 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2507 return 0;
2508
2509 /* Note we don't initialize bl->target_info, as that wipes out
2510 the breakpoint location's shadow_contents if the breakpoint
2511 is still inserted at that location. This in turn breaks
2512 target_read_memory which depends on these buffers when
2513 a memory read is requested at the breakpoint location:
2514 Once the target_info has been wiped, we fail to see that
2515 we have a breakpoint inserted at that address and thus
2516 read the breakpoint instead of returning the data saved in
2517 the breakpoint location's shadow contents. */
2518 bl->target_info.reqstd_address = bl->address;
2519 bl->target_info.placed_address_space = bl->pspace->aspace;
2520 bl->target_info.length = bl->length;
2521
2522 /* When working with target-side conditions, we must pass all the conditions
2523 for the same breakpoint address down to the target since GDB will not
2524 insert those locations. With a list of breakpoint conditions, the target
2525 can decide when to stop and notify GDB. */
2526
2527 if (is_breakpoint (bl->owner))
2528 {
2529 build_target_condition_list (bl);
2530 build_target_command_list (bl);
2531 /* Reset the modification marker. */
2532 bl->needs_update = 0;
2533 }
2534
2535 if (bl->loc_type == bp_loc_software_breakpoint
2536 || bl->loc_type == bp_loc_hardware_breakpoint)
2537 {
2538 if (bl->owner->type != bp_hardware_breakpoint)
2539 {
2540 /* If the explicitly specified breakpoint type
2541 is not hardware breakpoint, check the memory map to see
2542 if the breakpoint address is in read only memory or not.
2543
2544 Two important cases are:
2545 - location type is not hardware breakpoint, memory
2546 is readonly. We change the type of the location to
2547 hardware breakpoint.
2548 - location type is hardware breakpoint, memory is
2549 read-write. This means we've previously made the
2550 location hardware one, but then the memory map changed,
2551 so we undo.
2552
2553 When breakpoints are removed, remove_breakpoints will use
2554 location types we've just set here, the only possible
2555 problem is that memory map has changed during running
2556 program, but it's not going to work anyway with current
2557 gdb. */
2558 struct mem_region *mr
2559 = lookup_mem_region (bl->target_info.reqstd_address);
2560
2561 if (mr)
2562 {
2563 if (automatic_hardware_breakpoints)
2564 {
2565 enum bp_loc_type new_type;
2566
2567 if (mr->attrib.mode != MEM_RW)
2568 new_type = bp_loc_hardware_breakpoint;
2569 else
2570 new_type = bp_loc_software_breakpoint;
2571
2572 if (new_type != bl->loc_type)
2573 {
2574 static int said = 0;
2575
2576 bl->loc_type = new_type;
2577 if (!said)
2578 {
2579 fprintf_filtered (gdb_stdout,
2580 _("Note: automatically using "
2581 "hardware breakpoints for "
2582 "read-only addresses.\n"));
2583 said = 1;
2584 }
2585 }
2586 }
2587 else if (bl->loc_type == bp_loc_software_breakpoint
2588 && mr->attrib.mode != MEM_RW)
2589 {
2590 fprintf_unfiltered (tmp_error_stream,
2591 _("Cannot insert breakpoint %d.\n"
2592 "Cannot set software breakpoint "
2593 "at read-only address %s\n"),
2594 bl->owner->number,
2595 paddress (bl->gdbarch, bl->address));
2596 return 1;
2597 }
2598 }
2599 }
2600
2601 /* First check to see if we have to handle an overlay. */
2602 if (overlay_debugging == ovly_off
2603 || bl->section == NULL
2604 || !(section_is_overlay (bl->section)))
2605 {
2606 /* No overlay handling: just set the breakpoint. */
2607 TRY
2608 {
2609 int val;
2610
2611 val = bl->owner->ops->insert_location (bl);
2612 if (val)
2613 bp_err = GENERIC_ERROR;
2614 }
2615 CATCH (e, RETURN_MASK_ALL)
2616 {
2617 bp_err = e.error;
2618 bp_err_message = e.message;
2619 }
2620 END_CATCH
2621 }
2622 else
2623 {
2624 /* This breakpoint is in an overlay section.
2625 Shall we set a breakpoint at the LMA? */
2626 if (!overlay_events_enabled)
2627 {
2628 /* Yes -- overlay event support is not active,
2629 so we must try to set a breakpoint at the LMA.
2630 This will not work for a hardware breakpoint. */
2631 if (bl->loc_type == bp_loc_hardware_breakpoint)
2632 warning (_("hardware breakpoint %d not supported in overlay!"),
2633 bl->owner->number);
2634 else
2635 {
2636 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2637 bl->section);
2638 /* Set a software (trap) breakpoint at the LMA. */
2639 bl->overlay_target_info = bl->target_info;
2640 bl->overlay_target_info.reqstd_address = addr;
2641
2642 /* No overlay handling: just set the breakpoint. */
2643 TRY
2644 {
2645 int val;
2646
2647 bl->overlay_target_info.kind
2648 = breakpoint_kind (bl, &addr);
2649 bl->overlay_target_info.placed_address = addr;
2650 val = target_insert_breakpoint (bl->gdbarch,
2651 &bl->overlay_target_info);
2652 if (val)
2653 bp_err = GENERIC_ERROR;
2654 }
2655 CATCH (e, RETURN_MASK_ALL)
2656 {
2657 bp_err = e.error;
2658 bp_err_message = e.message;
2659 }
2660 END_CATCH
2661
2662 if (bp_err != GDB_NO_ERROR)
2663 fprintf_unfiltered (tmp_error_stream,
2664 "Overlay breakpoint %d "
2665 "failed: in ROM?\n",
2666 bl->owner->number);
2667 }
2668 }
2669 /* Shall we set a breakpoint at the VMA? */
2670 if (section_is_mapped (bl->section))
2671 {
2672 /* Yes. This overlay section is mapped into memory. */
2673 TRY
2674 {
2675 int val;
2676
2677 val = bl->owner->ops->insert_location (bl);
2678 if (val)
2679 bp_err = GENERIC_ERROR;
2680 }
2681 CATCH (e, RETURN_MASK_ALL)
2682 {
2683 bp_err = e.error;
2684 bp_err_message = e.message;
2685 }
2686 END_CATCH
2687 }
2688 else
2689 {
2690 /* No. This breakpoint will not be inserted.
2691 No error, but do not mark the bp as 'inserted'. */
2692 return 0;
2693 }
2694 }
2695
2696 if (bp_err != GDB_NO_ERROR)
2697 {
2698 /* Can't set the breakpoint. */
2699
2700 /* In some cases, we might not be able to insert a
2701 breakpoint in a shared library that has already been
2702 removed, but we have not yet processed the shlib unload
2703 event. Unfortunately, some targets that implement
2704 breakpoint insertion themselves can't tell why the
2705 breakpoint insertion failed (e.g., the remote target
2706 doesn't define error codes), so we must treat generic
2707 errors as memory errors. */
2708 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2709 && bl->loc_type == bp_loc_software_breakpoint
2710 && (solib_name_from_address (bl->pspace, bl->address)
2711 || shared_objfile_contains_address_p (bl->pspace,
2712 bl->address)))
2713 {
2714 /* See also: disable_breakpoints_in_shlibs. */
2715 bl->shlib_disabled = 1;
2716 observer_notify_breakpoint_modified (bl->owner);
2717 if (!*disabled_breaks)
2718 {
2719 fprintf_unfiltered (tmp_error_stream,
2720 "Cannot insert breakpoint %d.\n",
2721 bl->owner->number);
2722 fprintf_unfiltered (tmp_error_stream,
2723 "Temporarily disabling shared "
2724 "library breakpoints:\n");
2725 }
2726 *disabled_breaks = 1;
2727 fprintf_unfiltered (tmp_error_stream,
2728 "breakpoint #%d\n", bl->owner->number);
2729 return 0;
2730 }
2731 else
2732 {
2733 if (bl->loc_type == bp_loc_hardware_breakpoint)
2734 {
2735 *hw_breakpoint_error = 1;
2736 *hw_bp_error_explained_already = bp_err_message != NULL;
2737 fprintf_unfiltered (tmp_error_stream,
2738 "Cannot insert hardware breakpoint %d%s",
2739 bl->owner->number, bp_err_message ? ":" : ".\n");
2740 if (bp_err_message != NULL)
2741 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2742 }
2743 else
2744 {
2745 if (bp_err_message == NULL)
2746 {
2747 std::string message
2748 = memory_error_message (TARGET_XFER_E_IO,
2749 bl->gdbarch, bl->address);
2750
2751 fprintf_unfiltered (tmp_error_stream,
2752 "Cannot insert breakpoint %d.\n"
2753 "%s\n",
2754 bl->owner->number, message.c_str ());
2755 }
2756 else
2757 {
2758 fprintf_unfiltered (tmp_error_stream,
2759 "Cannot insert breakpoint %d: %s\n",
2760 bl->owner->number,
2761 bp_err_message);
2762 }
2763 }
2764 return 1;
2765
2766 }
2767 }
2768 else
2769 bl->inserted = 1;
2770
2771 return 0;
2772 }
2773
2774 else if (bl->loc_type == bp_loc_hardware_watchpoint
2775 /* NOTE drow/2003-09-08: This state only exists for removing
2776 watchpoints. It's not clear that it's necessary... */
2777 && bl->owner->disposition != disp_del_at_next_stop)
2778 {
2779 int val;
2780
2781 gdb_assert (bl->owner->ops != NULL
2782 && bl->owner->ops->insert_location != NULL);
2783
2784 val = bl->owner->ops->insert_location (bl);
2785
2786 /* If trying to set a read-watchpoint, and it turns out it's not
2787 supported, try emulating one with an access watchpoint. */
2788 if (val == 1 && bl->watchpoint_type == hw_read)
2789 {
2790 struct bp_location *loc, **loc_temp;
2791
2792 /* But don't try to insert it, if there's already another
2793 hw_access location that would be considered a duplicate
2794 of this one. */
2795 ALL_BP_LOCATIONS (loc, loc_temp)
2796 if (loc != bl
2797 && loc->watchpoint_type == hw_access
2798 && watchpoint_locations_match (bl, loc))
2799 {
2800 bl->duplicate = 1;
2801 bl->inserted = 1;
2802 bl->target_info = loc->target_info;
2803 bl->watchpoint_type = hw_access;
2804 val = 0;
2805 break;
2806 }
2807
2808 if (val == 1)
2809 {
2810 bl->watchpoint_type = hw_access;
2811 val = bl->owner->ops->insert_location (bl);
2812
2813 if (val)
2814 /* Back to the original value. */
2815 bl->watchpoint_type = hw_read;
2816 }
2817 }
2818
2819 bl->inserted = (val == 0);
2820 }
2821
2822 else if (bl->owner->type == bp_catchpoint)
2823 {
2824 int val;
2825
2826 gdb_assert (bl->owner->ops != NULL
2827 && bl->owner->ops->insert_location != NULL);
2828
2829 val = bl->owner->ops->insert_location (bl);
2830 if (val)
2831 {
2832 bl->owner->enable_state = bp_disabled;
2833
2834 if (val == 1)
2835 warning (_("\
2836 Error inserting catchpoint %d: Your system does not support this type\n\
2837 of catchpoint."), bl->owner->number);
2838 else
2839 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2840 }
2841
2842 bl->inserted = (val == 0);
2843
2844 /* We've already printed an error message if there was a problem
2845 inserting this catchpoint, and we've disabled the catchpoint,
2846 so just return success. */
2847 return 0;
2848 }
2849
2850 return 0;
2851 }
2852
2853 /* This function is called when program space PSPACE is about to be
2854 deleted. It takes care of updating breakpoints to not reference
2855 PSPACE anymore. */
2856
2857 void
2858 breakpoint_program_space_exit (struct program_space *pspace)
2859 {
2860 struct breakpoint *b, *b_temp;
2861 struct bp_location *loc, **loc_temp;
2862
2863 /* Remove any breakpoint that was set through this program space. */
2864 ALL_BREAKPOINTS_SAFE (b, b_temp)
2865 {
2866 if (b->pspace == pspace)
2867 delete_breakpoint (b);
2868 }
2869
2870 /* Breakpoints set through other program spaces could have locations
2871 bound to PSPACE as well. Remove those. */
2872 ALL_BP_LOCATIONS (loc, loc_temp)
2873 {
2874 struct bp_location *tmp;
2875
2876 if (loc->pspace == pspace)
2877 {
2878 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2879 if (loc->owner->loc == loc)
2880 loc->owner->loc = loc->next;
2881 else
2882 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2883 if (tmp->next == loc)
2884 {
2885 tmp->next = loc->next;
2886 break;
2887 }
2888 }
2889 }
2890
2891 /* Now update the global location list to permanently delete the
2892 removed locations above. */
2893 update_global_location_list (UGLL_DONT_INSERT);
2894 }
2895
2896 /* Make sure all breakpoints are inserted in inferior.
2897 Throws exception on any error.
2898 A breakpoint that is already inserted won't be inserted
2899 again, so calling this function twice is safe. */
2900 void
2901 insert_breakpoints (void)
2902 {
2903 struct breakpoint *bpt;
2904
2905 ALL_BREAKPOINTS (bpt)
2906 if (is_hardware_watchpoint (bpt))
2907 {
2908 struct watchpoint *w = (struct watchpoint *) bpt;
2909
2910 update_watchpoint (w, 0 /* don't reparse. */);
2911 }
2912
2913 /* Updating watchpoints creates new locations, so update the global
2914 location list. Explicitly tell ugll to insert locations and
2915 ignore breakpoints_always_inserted_mode. */
2916 update_global_location_list (UGLL_INSERT);
2917 }
2918
2919 /* Invoke CALLBACK for each of bp_location. */
2920
2921 void
2922 iterate_over_bp_locations (walk_bp_location_callback callback)
2923 {
2924 struct bp_location *loc, **loc_tmp;
2925
2926 ALL_BP_LOCATIONS (loc, loc_tmp)
2927 {
2928 callback (loc, NULL);
2929 }
2930 }
2931
2932 /* This is used when we need to synch breakpoint conditions between GDB and the
2933 target. It is the case with deleting and disabling of breakpoints when using
2934 always-inserted mode. */
2935
2936 static void
2937 update_inserted_breakpoint_locations (void)
2938 {
2939 struct bp_location *bl, **blp_tmp;
2940 int error_flag = 0;
2941 int val = 0;
2942 int disabled_breaks = 0;
2943 int hw_breakpoint_error = 0;
2944 int hw_bp_details_reported = 0;
2945
2946 string_file tmp_error_stream;
2947
2948 /* Explicitly mark the warning -- this will only be printed if
2949 there was an error. */
2950 tmp_error_stream.puts ("Warning:\n");
2951
2952 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2953
2954 ALL_BP_LOCATIONS (bl, blp_tmp)
2955 {
2956 /* We only want to update software breakpoints and hardware
2957 breakpoints. */
2958 if (!is_breakpoint (bl->owner))
2959 continue;
2960
2961 /* We only want to update locations that are already inserted
2962 and need updating. This is to avoid unwanted insertion during
2963 deletion of breakpoints. */
2964 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2965 continue;
2966
2967 switch_to_program_space_and_thread (bl->pspace);
2968
2969 /* For targets that support global breakpoints, there's no need
2970 to select an inferior to insert breakpoint to. In fact, even
2971 if we aren't attached to any process yet, we should still
2972 insert breakpoints. */
2973 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2974 && ptid_equal (inferior_ptid, null_ptid))
2975 continue;
2976
2977 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2978 &hw_breakpoint_error, &hw_bp_details_reported);
2979 if (val)
2980 error_flag = val;
2981 }
2982
2983 if (error_flag)
2984 {
2985 target_terminal::ours_for_output ();
2986 error_stream (tmp_error_stream);
2987 }
2988 }
2989
2990 /* Used when starting or continuing the program. */
2991
2992 static void
2993 insert_breakpoint_locations (void)
2994 {
2995 struct breakpoint *bpt;
2996 struct bp_location *bl, **blp_tmp;
2997 int error_flag = 0;
2998 int val = 0;
2999 int disabled_breaks = 0;
3000 int hw_breakpoint_error = 0;
3001 int hw_bp_error_explained_already = 0;
3002
3003 string_file tmp_error_stream;
3004
3005 /* Explicitly mark the warning -- this will only be printed if
3006 there was an error. */
3007 tmp_error_stream.puts ("Warning:\n");
3008
3009 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3010
3011 ALL_BP_LOCATIONS (bl, blp_tmp)
3012 {
3013 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
3014 continue;
3015
3016 /* There is no point inserting thread-specific breakpoints if
3017 the thread no longer exists. ALL_BP_LOCATIONS bp_location
3018 has BL->OWNER always non-NULL. */
3019 if (bl->owner->thread != -1
3020 && !valid_global_thread_id (bl->owner->thread))
3021 continue;
3022
3023 switch_to_program_space_and_thread (bl->pspace);
3024
3025 /* For targets that support global breakpoints, there's no need
3026 to select an inferior to insert breakpoint to. In fact, even
3027 if we aren't attached to any process yet, we should still
3028 insert breakpoints. */
3029 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3030 && ptid_equal (inferior_ptid, null_ptid))
3031 continue;
3032
3033 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
3034 &hw_breakpoint_error, &hw_bp_error_explained_already);
3035 if (val)
3036 error_flag = val;
3037 }
3038
3039 /* If we failed to insert all locations of a watchpoint, remove
3040 them, as half-inserted watchpoint is of limited use. */
3041 ALL_BREAKPOINTS (bpt)
3042 {
3043 int some_failed = 0;
3044 struct bp_location *loc;
3045
3046 if (!is_hardware_watchpoint (bpt))
3047 continue;
3048
3049 if (!breakpoint_enabled (bpt))
3050 continue;
3051
3052 if (bpt->disposition == disp_del_at_next_stop)
3053 continue;
3054
3055 for (loc = bpt->loc; loc; loc = loc->next)
3056 if (!loc->inserted && should_be_inserted (loc))
3057 {
3058 some_failed = 1;
3059 break;
3060 }
3061 if (some_failed)
3062 {
3063 for (loc = bpt->loc; loc; loc = loc->next)
3064 if (loc->inserted)
3065 remove_breakpoint (loc);
3066
3067 hw_breakpoint_error = 1;
3068 tmp_error_stream.printf ("Could not insert "
3069 "hardware watchpoint %d.\n",
3070 bpt->number);
3071 error_flag = -1;
3072 }
3073 }
3074
3075 if (error_flag)
3076 {
3077 /* If a hardware breakpoint or watchpoint was inserted, add a
3078 message about possibly exhausted resources. */
3079 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3080 {
3081 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3082 You may have requested too many hardware breakpoints/watchpoints.\n");
3083 }
3084 target_terminal::ours_for_output ();
3085 error_stream (tmp_error_stream);
3086 }
3087 }
3088
3089 /* Used when the program stops.
3090 Returns zero if successful, or non-zero if there was a problem
3091 removing a breakpoint location. */
3092
3093 int
3094 remove_breakpoints (void)
3095 {
3096 struct bp_location *bl, **blp_tmp;
3097 int val = 0;
3098
3099 ALL_BP_LOCATIONS (bl, blp_tmp)
3100 {
3101 if (bl->inserted && !is_tracepoint (bl->owner))
3102 val |= remove_breakpoint (bl);
3103 }
3104 return val;
3105 }
3106
3107 /* When a thread exits, remove breakpoints that are related to
3108 that thread. */
3109
3110 static void
3111 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3112 {
3113 struct breakpoint *b, *b_tmp;
3114
3115 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3116 {
3117 if (b->thread == tp->global_num && user_breakpoint_p (b))
3118 {
3119 b->disposition = disp_del_at_next_stop;
3120
3121 printf_filtered (_("\
3122 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3123 b->number, print_thread_id (tp));
3124
3125 /* Hide it from the user. */
3126 b->number = 0;
3127 }
3128 }
3129 }
3130
3131 /* Remove breakpoints of process PID. */
3132
3133 int
3134 remove_breakpoints_pid (int pid)
3135 {
3136 struct bp_location *bl, **blp_tmp;
3137 int val;
3138 struct inferior *inf = find_inferior_pid (pid);
3139
3140 ALL_BP_LOCATIONS (bl, blp_tmp)
3141 {
3142 if (bl->pspace != inf->pspace)
3143 continue;
3144
3145 if (bl->inserted && !bl->target_info.persist)
3146 {
3147 val = remove_breakpoint (bl);
3148 if (val != 0)
3149 return val;
3150 }
3151 }
3152 return 0;
3153 }
3154
3155 static int internal_breakpoint_number = -1;
3156
3157 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3158 If INTERNAL is non-zero, the breakpoint number will be populated
3159 from internal_breakpoint_number and that variable decremented.
3160 Otherwise the breakpoint number will be populated from
3161 breakpoint_count and that value incremented. Internal breakpoints
3162 do not set the internal var bpnum. */
3163 static void
3164 set_breakpoint_number (int internal, struct breakpoint *b)
3165 {
3166 if (internal)
3167 b->number = internal_breakpoint_number--;
3168 else
3169 {
3170 set_breakpoint_count (breakpoint_count + 1);
3171 b->number = breakpoint_count;
3172 }
3173 }
3174
3175 static struct breakpoint *
3176 create_internal_breakpoint (struct gdbarch *gdbarch,
3177 CORE_ADDR address, enum bptype type,
3178 const struct breakpoint_ops *ops)
3179 {
3180 symtab_and_line sal;
3181 sal.pc = address;
3182 sal.section = find_pc_overlay (sal.pc);
3183 sal.pspace = current_program_space;
3184
3185 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3186 b->number = internal_breakpoint_number--;
3187 b->disposition = disp_donttouch;
3188
3189 return b;
3190 }
3191
3192 static const char *const longjmp_names[] =
3193 {
3194 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3195 };
3196 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3197
3198 /* Per-objfile data private to breakpoint.c. */
3199 struct breakpoint_objfile_data
3200 {
3201 /* Minimal symbol for "_ovly_debug_event" (if any). */
3202 struct bound_minimal_symbol overlay_msym;
3203
3204 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3205 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3206
3207 /* True if we have looked for longjmp probes. */
3208 int longjmp_searched;
3209
3210 /* SystemTap probe points for longjmp (if any). */
3211 VEC (probe_p) *longjmp_probes;
3212
3213 /* Minimal symbol for "std::terminate()" (if any). */
3214 struct bound_minimal_symbol terminate_msym;
3215
3216 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3217 struct bound_minimal_symbol exception_msym;
3218
3219 /* True if we have looked for exception probes. */
3220 int exception_searched;
3221
3222 /* SystemTap probe points for unwinding (if any). */
3223 VEC (probe_p) *exception_probes;
3224 };
3225
3226 static const struct objfile_data *breakpoint_objfile_key;
3227
3228 /* Minimal symbol not found sentinel. */
3229 static struct minimal_symbol msym_not_found;
3230
3231 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3232
3233 static int
3234 msym_not_found_p (const struct minimal_symbol *msym)
3235 {
3236 return msym == &msym_not_found;
3237 }
3238
3239 /* Return per-objfile data needed by breakpoint.c.
3240 Allocate the data if necessary. */
3241
3242 static struct breakpoint_objfile_data *
3243 get_breakpoint_objfile_data (struct objfile *objfile)
3244 {
3245 struct breakpoint_objfile_data *bp_objfile_data;
3246
3247 bp_objfile_data = ((struct breakpoint_objfile_data *)
3248 objfile_data (objfile, breakpoint_objfile_key));
3249 if (bp_objfile_data == NULL)
3250 {
3251 bp_objfile_data =
3252 XOBNEW (&objfile->objfile_obstack, struct breakpoint_objfile_data);
3253
3254 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3255 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3256 }
3257 return bp_objfile_data;
3258 }
3259
3260 static void
3261 free_breakpoint_probes (struct objfile *obj, void *data)
3262 {
3263 struct breakpoint_objfile_data *bp_objfile_data
3264 = (struct breakpoint_objfile_data *) data;
3265
3266 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3267 VEC_free (probe_p, bp_objfile_data->exception_probes);
3268 }
3269
3270 static void
3271 create_overlay_event_breakpoint (void)
3272 {
3273 struct objfile *objfile;
3274 const char *const func_name = "_ovly_debug_event";
3275
3276 ALL_OBJFILES (objfile)
3277 {
3278 struct breakpoint *b;
3279 struct breakpoint_objfile_data *bp_objfile_data;
3280 CORE_ADDR addr;
3281 struct explicit_location explicit_loc;
3282
3283 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3284
3285 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3286 continue;
3287
3288 if (bp_objfile_data->overlay_msym.minsym == NULL)
3289 {
3290 struct bound_minimal_symbol m;
3291
3292 m = lookup_minimal_symbol_text (func_name, objfile);
3293 if (m.minsym == NULL)
3294 {
3295 /* Avoid future lookups in this objfile. */
3296 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3297 continue;
3298 }
3299 bp_objfile_data->overlay_msym = m;
3300 }
3301
3302 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3303 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3304 bp_overlay_event,
3305 &internal_breakpoint_ops);
3306 initialize_explicit_location (&explicit_loc);
3307 explicit_loc.function_name = ASTRDUP (func_name);
3308 b->location = new_explicit_location (&explicit_loc);
3309
3310 if (overlay_debugging == ovly_auto)
3311 {
3312 b->enable_state = bp_enabled;
3313 overlay_events_enabled = 1;
3314 }
3315 else
3316 {
3317 b->enable_state = bp_disabled;
3318 overlay_events_enabled = 0;
3319 }
3320 }
3321 }
3322
3323 static void
3324 create_longjmp_master_breakpoint (void)
3325 {
3326 struct program_space *pspace;
3327
3328 scoped_restore_current_program_space restore_pspace;
3329
3330 ALL_PSPACES (pspace)
3331 {
3332 struct objfile *objfile;
3333
3334 set_current_program_space (pspace);
3335
3336 ALL_OBJFILES (objfile)
3337 {
3338 int i;
3339 struct gdbarch *gdbarch;
3340 struct breakpoint_objfile_data *bp_objfile_data;
3341
3342 gdbarch = get_objfile_arch (objfile);
3343
3344 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3345
3346 if (!bp_objfile_data->longjmp_searched)
3347 {
3348 VEC (probe_p) *ret;
3349
3350 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3351 if (ret != NULL)
3352 {
3353 /* We are only interested in checking one element. */
3354 struct probe *p = VEC_index (probe_p, ret, 0);
3355
3356 if (!can_evaluate_probe_arguments (p))
3357 {
3358 /* We cannot use the probe interface here, because it does
3359 not know how to evaluate arguments. */
3360 VEC_free (probe_p, ret);
3361 ret = NULL;
3362 }
3363 }
3364 bp_objfile_data->longjmp_probes = ret;
3365 bp_objfile_data->longjmp_searched = 1;
3366 }
3367
3368 if (bp_objfile_data->longjmp_probes != NULL)
3369 {
3370 int i;
3371 struct probe *probe;
3372 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3373
3374 for (i = 0;
3375 VEC_iterate (probe_p,
3376 bp_objfile_data->longjmp_probes,
3377 i, probe);
3378 ++i)
3379 {
3380 struct breakpoint *b;
3381
3382 b = create_internal_breakpoint (gdbarch,
3383 get_probe_address (probe,
3384 objfile),
3385 bp_longjmp_master,
3386 &internal_breakpoint_ops);
3387 b->location = new_probe_location ("-probe-stap libc:longjmp");
3388 b->enable_state = bp_disabled;
3389 }
3390
3391 continue;
3392 }
3393
3394 if (!gdbarch_get_longjmp_target_p (gdbarch))
3395 continue;
3396
3397 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3398 {
3399 struct breakpoint *b;
3400 const char *func_name;
3401 CORE_ADDR addr;
3402 struct explicit_location explicit_loc;
3403
3404 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3405 continue;
3406
3407 func_name = longjmp_names[i];
3408 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3409 {
3410 struct bound_minimal_symbol m;
3411
3412 m = lookup_minimal_symbol_text (func_name, objfile);
3413 if (m.minsym == NULL)
3414 {
3415 /* Prevent future lookups in this objfile. */
3416 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3417 continue;
3418 }
3419 bp_objfile_data->longjmp_msym[i] = m;
3420 }
3421
3422 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3423 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3424 &internal_breakpoint_ops);
3425 initialize_explicit_location (&explicit_loc);
3426 explicit_loc.function_name = ASTRDUP (func_name);
3427 b->location = new_explicit_location (&explicit_loc);
3428 b->enable_state = bp_disabled;
3429 }
3430 }
3431 }
3432 }
3433
3434 /* Create a master std::terminate breakpoint. */
3435 static void
3436 create_std_terminate_master_breakpoint (void)
3437 {
3438 struct program_space *pspace;
3439 const char *const func_name = "std::terminate()";
3440
3441 scoped_restore_current_program_space restore_pspace;
3442
3443 ALL_PSPACES (pspace)
3444 {
3445 struct objfile *objfile;
3446 CORE_ADDR addr;
3447
3448 set_current_program_space (pspace);
3449
3450 ALL_OBJFILES (objfile)
3451 {
3452 struct breakpoint *b;
3453 struct breakpoint_objfile_data *bp_objfile_data;
3454 struct explicit_location explicit_loc;
3455
3456 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3457
3458 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3459 continue;
3460
3461 if (bp_objfile_data->terminate_msym.minsym == NULL)
3462 {
3463 struct bound_minimal_symbol m;
3464
3465 m = lookup_minimal_symbol (func_name, NULL, objfile);
3466 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3467 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3468 {
3469 /* Prevent future lookups in this objfile. */
3470 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3471 continue;
3472 }
3473 bp_objfile_data->terminate_msym = m;
3474 }
3475
3476 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3477 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3478 bp_std_terminate_master,
3479 &internal_breakpoint_ops);
3480 initialize_explicit_location (&explicit_loc);
3481 explicit_loc.function_name = ASTRDUP (func_name);
3482 b->location = new_explicit_location (&explicit_loc);
3483 b->enable_state = bp_disabled;
3484 }
3485 }
3486 }
3487
3488 /* Install a master breakpoint on the unwinder's debug hook. */
3489
3490 static void
3491 create_exception_master_breakpoint (void)
3492 {
3493 struct objfile *objfile;
3494 const char *const func_name = "_Unwind_DebugHook";
3495
3496 ALL_OBJFILES (objfile)
3497 {
3498 struct breakpoint *b;
3499 struct gdbarch *gdbarch;
3500 struct breakpoint_objfile_data *bp_objfile_data;
3501 CORE_ADDR addr;
3502 struct explicit_location explicit_loc;
3503
3504 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3505
3506 /* We prefer the SystemTap probe point if it exists. */
3507 if (!bp_objfile_data->exception_searched)
3508 {
3509 VEC (probe_p) *ret;
3510
3511 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3512
3513 if (ret != NULL)
3514 {
3515 /* We are only interested in checking one element. */
3516 struct probe *p = VEC_index (probe_p, ret, 0);
3517
3518 if (!can_evaluate_probe_arguments (p))
3519 {
3520 /* We cannot use the probe interface here, because it does
3521 not know how to evaluate arguments. */
3522 VEC_free (probe_p, ret);
3523 ret = NULL;
3524 }
3525 }
3526 bp_objfile_data->exception_probes = ret;
3527 bp_objfile_data->exception_searched = 1;
3528 }
3529
3530 if (bp_objfile_data->exception_probes != NULL)
3531 {
3532 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3533 int i;
3534 struct probe *probe;
3535
3536 for (i = 0;
3537 VEC_iterate (probe_p,
3538 bp_objfile_data->exception_probes,
3539 i, probe);
3540 ++i)
3541 {
3542 struct breakpoint *b;
3543
3544 b = create_internal_breakpoint (gdbarch,
3545 get_probe_address (probe,
3546 objfile),
3547 bp_exception_master,
3548 &internal_breakpoint_ops);
3549 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3550 b->enable_state = bp_disabled;
3551 }
3552
3553 continue;
3554 }
3555
3556 /* Otherwise, try the hook function. */
3557
3558 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3559 continue;
3560
3561 gdbarch = get_objfile_arch (objfile);
3562
3563 if (bp_objfile_data->exception_msym.minsym == NULL)
3564 {
3565 struct bound_minimal_symbol debug_hook;
3566
3567 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3568 if (debug_hook.minsym == NULL)
3569 {
3570 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3571 continue;
3572 }
3573
3574 bp_objfile_data->exception_msym = debug_hook;
3575 }
3576
3577 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3578 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3579 &current_target);
3580 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3581 &internal_breakpoint_ops);
3582 initialize_explicit_location (&explicit_loc);
3583 explicit_loc.function_name = ASTRDUP (func_name);
3584 b->location = new_explicit_location (&explicit_loc);
3585 b->enable_state = bp_disabled;
3586 }
3587 }
3588
3589 /* Does B have a location spec? */
3590
3591 static int
3592 breakpoint_event_location_empty_p (const struct breakpoint *b)
3593 {
3594 return b->location != NULL && event_location_empty_p (b->location.get ());
3595 }
3596
3597 void
3598 update_breakpoints_after_exec (void)
3599 {
3600 struct breakpoint *b, *b_tmp;
3601 struct bp_location *bploc, **bplocp_tmp;
3602
3603 /* We're about to delete breakpoints from GDB's lists. If the
3604 INSERTED flag is true, GDB will try to lift the breakpoints by
3605 writing the breakpoints' "shadow contents" back into memory. The
3606 "shadow contents" are NOT valid after an exec, so GDB should not
3607 do that. Instead, the target is responsible from marking
3608 breakpoints out as soon as it detects an exec. We don't do that
3609 here instead, because there may be other attempts to delete
3610 breakpoints after detecting an exec and before reaching here. */
3611 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3612 if (bploc->pspace == current_program_space)
3613 gdb_assert (!bploc->inserted);
3614
3615 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3616 {
3617 if (b->pspace != current_program_space)
3618 continue;
3619
3620 /* Solib breakpoints must be explicitly reset after an exec(). */
3621 if (b->type == bp_shlib_event)
3622 {
3623 delete_breakpoint (b);
3624 continue;
3625 }
3626
3627 /* JIT breakpoints must be explicitly reset after an exec(). */
3628 if (b->type == bp_jit_event)
3629 {
3630 delete_breakpoint (b);
3631 continue;
3632 }
3633
3634 /* Thread event breakpoints must be set anew after an exec(),
3635 as must overlay event and longjmp master breakpoints. */
3636 if (b->type == bp_thread_event || b->type == bp_overlay_event
3637 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3638 || b->type == bp_exception_master)
3639 {
3640 delete_breakpoint (b);
3641 continue;
3642 }
3643
3644 /* Step-resume breakpoints are meaningless after an exec(). */
3645 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3646 {
3647 delete_breakpoint (b);
3648 continue;
3649 }
3650
3651 /* Just like single-step breakpoints. */
3652 if (b->type == bp_single_step)
3653 {
3654 delete_breakpoint (b);
3655 continue;
3656 }
3657
3658 /* Longjmp and longjmp-resume breakpoints are also meaningless
3659 after an exec. */
3660 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3661 || b->type == bp_longjmp_call_dummy
3662 || b->type == bp_exception || b->type == bp_exception_resume)
3663 {
3664 delete_breakpoint (b);
3665 continue;
3666 }
3667
3668 if (b->type == bp_catchpoint)
3669 {
3670 /* For now, none of the bp_catchpoint breakpoints need to
3671 do anything at this point. In the future, if some of
3672 the catchpoints need to something, we will need to add
3673 a new method, and call this method from here. */
3674 continue;
3675 }
3676
3677 /* bp_finish is a special case. The only way we ought to be able
3678 to see one of these when an exec() has happened, is if the user
3679 caught a vfork, and then said "finish". Ordinarily a finish just
3680 carries them to the call-site of the current callee, by setting
3681 a temporary bp there and resuming. But in this case, the finish
3682 will carry them entirely through the vfork & exec.
3683
3684 We don't want to allow a bp_finish to remain inserted now. But
3685 we can't safely delete it, 'cause finish_command has a handle to
3686 the bp on a bpstat, and will later want to delete it. There's a
3687 chance (and I've seen it happen) that if we delete the bp_finish
3688 here, that its storage will get reused by the time finish_command
3689 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3690 We really must allow finish_command to delete a bp_finish.
3691
3692 In the absence of a general solution for the "how do we know
3693 it's safe to delete something others may have handles to?"
3694 problem, what we'll do here is just uninsert the bp_finish, and
3695 let finish_command delete it.
3696
3697 (We know the bp_finish is "doomed" in the sense that it's
3698 momentary, and will be deleted as soon as finish_command sees
3699 the inferior stopped. So it doesn't matter that the bp's
3700 address is probably bogus in the new a.out, unlike e.g., the
3701 solib breakpoints.) */
3702
3703 if (b->type == bp_finish)
3704 {
3705 continue;
3706 }
3707
3708 /* Without a symbolic address, we have little hope of the
3709 pre-exec() address meaning the same thing in the post-exec()
3710 a.out. */
3711 if (breakpoint_event_location_empty_p (b))
3712 {
3713 delete_breakpoint (b);
3714 continue;
3715 }
3716 }
3717 }
3718
3719 int
3720 detach_breakpoints (ptid_t ptid)
3721 {
3722 struct bp_location *bl, **blp_tmp;
3723 int val = 0;
3724 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3725 struct inferior *inf = current_inferior ();
3726
3727 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3728 error (_("Cannot detach breakpoints of inferior_ptid"));
3729
3730 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3731 inferior_ptid = ptid;
3732 ALL_BP_LOCATIONS (bl, blp_tmp)
3733 {
3734 if (bl->pspace != inf->pspace)
3735 continue;
3736
3737 /* This function must physically remove breakpoints locations
3738 from the specified ptid, without modifying the breakpoint
3739 package's state. Locations of type bp_loc_other are only
3740 maintained at GDB side. So, there is no need to remove
3741 these bp_loc_other locations. Moreover, removing these
3742 would modify the breakpoint package's state. */
3743 if (bl->loc_type == bp_loc_other)
3744 continue;
3745
3746 if (bl->inserted)
3747 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3748 }
3749
3750 return val;
3751 }
3752
3753 /* Remove the breakpoint location BL from the current address space.
3754 Note that this is used to detach breakpoints from a child fork.
3755 When we get here, the child isn't in the inferior list, and neither
3756 do we have objects to represent its address space --- we should
3757 *not* look at bl->pspace->aspace here. */
3758
3759 static int
3760 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3761 {
3762 int val;
3763
3764 /* BL is never in moribund_locations by our callers. */
3765 gdb_assert (bl->owner != NULL);
3766
3767 /* The type of none suggests that owner is actually deleted.
3768 This should not ever happen. */
3769 gdb_assert (bl->owner->type != bp_none);
3770
3771 if (bl->loc_type == bp_loc_software_breakpoint
3772 || bl->loc_type == bp_loc_hardware_breakpoint)
3773 {
3774 /* "Normal" instruction breakpoint: either the standard
3775 trap-instruction bp (bp_breakpoint), or a
3776 bp_hardware_breakpoint. */
3777
3778 /* First check to see if we have to handle an overlay. */
3779 if (overlay_debugging == ovly_off
3780 || bl->section == NULL
3781 || !(section_is_overlay (bl->section)))
3782 {
3783 /* No overlay handling: just remove the breakpoint. */
3784
3785 /* If we're trying to uninsert a memory breakpoint that we
3786 know is set in a dynamic object that is marked
3787 shlib_disabled, then either the dynamic object was
3788 removed with "remove-symbol-file" or with
3789 "nosharedlibrary". In the former case, we don't know
3790 whether another dynamic object might have loaded over the
3791 breakpoint's address -- the user might well let us know
3792 about it next with add-symbol-file (the whole point of
3793 add-symbol-file is letting the user manually maintain a
3794 list of dynamically loaded objects). If we have the
3795 breakpoint's shadow memory, that is, this is a software
3796 breakpoint managed by GDB, check whether the breakpoint
3797 is still inserted in memory, to avoid overwriting wrong
3798 code with stale saved shadow contents. Note that HW
3799 breakpoints don't have shadow memory, as they're
3800 implemented using a mechanism that is not dependent on
3801 being able to modify the target's memory, and as such
3802 they should always be removed. */
3803 if (bl->shlib_disabled
3804 && bl->target_info.shadow_len != 0
3805 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3806 val = 0;
3807 else
3808 val = bl->owner->ops->remove_location (bl, reason);
3809 }
3810 else
3811 {
3812 /* This breakpoint is in an overlay section.
3813 Did we set a breakpoint at the LMA? */
3814 if (!overlay_events_enabled)
3815 {
3816 /* Yes -- overlay event support is not active, so we
3817 should have set a breakpoint at the LMA. Remove it.
3818 */
3819 /* Ignore any failures: if the LMA is in ROM, we will
3820 have already warned when we failed to insert it. */
3821 if (bl->loc_type == bp_loc_hardware_breakpoint)
3822 target_remove_hw_breakpoint (bl->gdbarch,
3823 &bl->overlay_target_info);
3824 else
3825 target_remove_breakpoint (bl->gdbarch,
3826 &bl->overlay_target_info,
3827 reason);
3828 }
3829 /* Did we set a breakpoint at the VMA?
3830 If so, we will have marked the breakpoint 'inserted'. */
3831 if (bl->inserted)
3832 {
3833 /* Yes -- remove it. Previously we did not bother to
3834 remove the breakpoint if the section had been
3835 unmapped, but let's not rely on that being safe. We
3836 don't know what the overlay manager might do. */
3837
3838 /* However, we should remove *software* breakpoints only
3839 if the section is still mapped, or else we overwrite
3840 wrong code with the saved shadow contents. */
3841 if (bl->loc_type == bp_loc_hardware_breakpoint
3842 || section_is_mapped (bl->section))
3843 val = bl->owner->ops->remove_location (bl, reason);
3844 else
3845 val = 0;
3846 }
3847 else
3848 {
3849 /* No -- not inserted, so no need to remove. No error. */
3850 val = 0;
3851 }
3852 }
3853
3854 /* In some cases, we might not be able to remove a breakpoint in
3855 a shared library that has already been removed, but we have
3856 not yet processed the shlib unload event. Similarly for an
3857 unloaded add-symbol-file object - the user might not yet have
3858 had the chance to remove-symbol-file it. shlib_disabled will
3859 be set if the library/object has already been removed, but
3860 the breakpoint hasn't been uninserted yet, e.g., after
3861 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3862 always-inserted mode. */
3863 if (val
3864 && (bl->loc_type == bp_loc_software_breakpoint
3865 && (bl->shlib_disabled
3866 || solib_name_from_address (bl->pspace, bl->address)
3867 || shared_objfile_contains_address_p (bl->pspace,
3868 bl->address))))
3869 val = 0;
3870
3871 if (val)
3872 return val;
3873 bl->inserted = (reason == DETACH_BREAKPOINT);
3874 }
3875 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3876 {
3877 gdb_assert (bl->owner->ops != NULL
3878 && bl->owner->ops->remove_location != NULL);
3879
3880 bl->inserted = (reason == DETACH_BREAKPOINT);
3881 bl->owner->ops->remove_location (bl, reason);
3882
3883 /* Failure to remove any of the hardware watchpoints comes here. */
3884 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3885 warning (_("Could not remove hardware watchpoint %d."),
3886 bl->owner->number);
3887 }
3888 else if (bl->owner->type == bp_catchpoint
3889 && breakpoint_enabled (bl->owner)
3890 && !bl->duplicate)
3891 {
3892 gdb_assert (bl->owner->ops != NULL
3893 && bl->owner->ops->remove_location != NULL);
3894
3895 val = bl->owner->ops->remove_location (bl, reason);
3896 if (val)
3897 return val;
3898
3899 bl->inserted = (reason == DETACH_BREAKPOINT);
3900 }
3901
3902 return 0;
3903 }
3904
3905 static int
3906 remove_breakpoint (struct bp_location *bl)
3907 {
3908 /* BL is never in moribund_locations by our callers. */
3909 gdb_assert (bl->owner != NULL);
3910
3911 /* The type of none suggests that owner is actually deleted.
3912 This should not ever happen. */
3913 gdb_assert (bl->owner->type != bp_none);
3914
3915 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3916
3917 switch_to_program_space_and_thread (bl->pspace);
3918
3919 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3920 }
3921
3922 /* Clear the "inserted" flag in all breakpoints. */
3923
3924 void
3925 mark_breakpoints_out (void)
3926 {
3927 struct bp_location *bl, **blp_tmp;
3928
3929 ALL_BP_LOCATIONS (bl, blp_tmp)
3930 if (bl->pspace == current_program_space)
3931 bl->inserted = 0;
3932 }
3933
3934 /* Clear the "inserted" flag in all breakpoints and delete any
3935 breakpoints which should go away between runs of the program.
3936
3937 Plus other such housekeeping that has to be done for breakpoints
3938 between runs.
3939
3940 Note: this function gets called at the end of a run (by
3941 generic_mourn_inferior) and when a run begins (by
3942 init_wait_for_inferior). */
3943
3944
3945
3946 void
3947 breakpoint_init_inferior (enum inf_context context)
3948 {
3949 struct breakpoint *b, *b_tmp;
3950 struct bp_location *bl;
3951 int ix;
3952 struct program_space *pspace = current_program_space;
3953
3954 /* If breakpoint locations are shared across processes, then there's
3955 nothing to do. */
3956 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3957 return;
3958
3959 mark_breakpoints_out ();
3960
3961 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3962 {
3963 if (b->loc && b->loc->pspace != pspace)
3964 continue;
3965
3966 switch (b->type)
3967 {
3968 case bp_call_dummy:
3969 case bp_longjmp_call_dummy:
3970
3971 /* If the call dummy breakpoint is at the entry point it will
3972 cause problems when the inferior is rerun, so we better get
3973 rid of it. */
3974
3975 case bp_watchpoint_scope:
3976
3977 /* Also get rid of scope breakpoints. */
3978
3979 case bp_shlib_event:
3980
3981 /* Also remove solib event breakpoints. Their addresses may
3982 have changed since the last time we ran the program.
3983 Actually we may now be debugging against different target;
3984 and so the solib backend that installed this breakpoint may
3985 not be used in by the target. E.g.,
3986
3987 (gdb) file prog-linux
3988 (gdb) run # native linux target
3989 ...
3990 (gdb) kill
3991 (gdb) file prog-win.exe
3992 (gdb) tar rem :9999 # remote Windows gdbserver.
3993 */
3994
3995 case bp_step_resume:
3996
3997 /* Also remove step-resume breakpoints. */
3998
3999 case bp_single_step:
4000
4001 /* Also remove single-step breakpoints. */
4002
4003 delete_breakpoint (b);
4004 break;
4005
4006 case bp_watchpoint:
4007 case bp_hardware_watchpoint:
4008 case bp_read_watchpoint:
4009 case bp_access_watchpoint:
4010 {
4011 struct watchpoint *w = (struct watchpoint *) b;
4012
4013 /* Likewise for watchpoints on local expressions. */
4014 if (w->exp_valid_block != NULL)
4015 delete_breakpoint (b);
4016 else
4017 {
4018 /* Get rid of existing locations, which are no longer
4019 valid. New ones will be created in
4020 update_watchpoint, when the inferior is restarted.
4021 The next update_global_location_list call will
4022 garbage collect them. */
4023 b->loc = NULL;
4024
4025 if (context == inf_starting)
4026 {
4027 /* Reset val field to force reread of starting value in
4028 insert_breakpoints. */
4029 if (w->val)
4030 value_free (w->val);
4031 w->val = NULL;
4032 w->val_valid = 0;
4033 }
4034 }
4035 }
4036 break;
4037 default:
4038 break;
4039 }
4040 }
4041
4042 /* Get rid of the moribund locations. */
4043 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
4044 decref_bp_location (&bl);
4045 VEC_free (bp_location_p, moribund_locations);
4046 }
4047
4048 /* These functions concern about actual breakpoints inserted in the
4049 target --- to e.g. check if we need to do decr_pc adjustment or if
4050 we need to hop over the bkpt --- so we check for address space
4051 match, not program space. */
4052
4053 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4054 exists at PC. It returns ordinary_breakpoint_here if it's an
4055 ordinary breakpoint, or permanent_breakpoint_here if it's a
4056 permanent breakpoint.
4057 - When continuing from a location with an ordinary breakpoint, we
4058 actually single step once before calling insert_breakpoints.
4059 - When continuing from a location with a permanent breakpoint, we
4060 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4061 the target, to advance the PC past the breakpoint. */
4062
4063 enum breakpoint_here
4064 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4065 {
4066 struct bp_location *bl, **blp_tmp;
4067 int any_breakpoint_here = 0;
4068
4069 ALL_BP_LOCATIONS (bl, blp_tmp)
4070 {
4071 if (bl->loc_type != bp_loc_software_breakpoint
4072 && bl->loc_type != bp_loc_hardware_breakpoint)
4073 continue;
4074
4075 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4076 if ((breakpoint_enabled (bl->owner)
4077 || bl->permanent)
4078 && breakpoint_location_address_match (bl, aspace, pc))
4079 {
4080 if (overlay_debugging
4081 && section_is_overlay (bl->section)
4082 && !section_is_mapped (bl->section))
4083 continue; /* unmapped overlay -- can't be a match */
4084 else if (bl->permanent)
4085 return permanent_breakpoint_here;
4086 else
4087 any_breakpoint_here = 1;
4088 }
4089 }
4090
4091 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4092 }
4093
4094 /* See breakpoint.h. */
4095
4096 int
4097 breakpoint_in_range_p (struct address_space *aspace,
4098 CORE_ADDR addr, ULONGEST len)
4099 {
4100 struct bp_location *bl, **blp_tmp;
4101
4102 ALL_BP_LOCATIONS (bl, blp_tmp)
4103 {
4104 if (bl->loc_type != bp_loc_software_breakpoint
4105 && bl->loc_type != bp_loc_hardware_breakpoint)
4106 continue;
4107
4108 if ((breakpoint_enabled (bl->owner)
4109 || bl->permanent)
4110 && breakpoint_location_address_range_overlap (bl, aspace,
4111 addr, len))
4112 {
4113 if (overlay_debugging
4114 && section_is_overlay (bl->section)
4115 && !section_is_mapped (bl->section))
4116 {
4117 /* Unmapped overlay -- can't be a match. */
4118 continue;
4119 }
4120
4121 return 1;
4122 }
4123 }
4124
4125 return 0;
4126 }
4127
4128 /* Return true if there's a moribund breakpoint at PC. */
4129
4130 int
4131 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4132 {
4133 struct bp_location *loc;
4134 int ix;
4135
4136 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4137 if (breakpoint_location_address_match (loc, aspace, pc))
4138 return 1;
4139
4140 return 0;
4141 }
4142
4143 /* Returns non-zero iff BL is inserted at PC, in address space
4144 ASPACE. */
4145
4146 static int
4147 bp_location_inserted_here_p (struct bp_location *bl,
4148 struct address_space *aspace, CORE_ADDR pc)
4149 {
4150 if (bl->inserted
4151 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4152 aspace, pc))
4153 {
4154 if (overlay_debugging
4155 && section_is_overlay (bl->section)
4156 && !section_is_mapped (bl->section))
4157 return 0; /* unmapped overlay -- can't be a match */
4158 else
4159 return 1;
4160 }
4161 return 0;
4162 }
4163
4164 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4165
4166 int
4167 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4168 {
4169 struct bp_location **blp, **blp_tmp = NULL;
4170
4171 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4172 {
4173 struct bp_location *bl = *blp;
4174
4175 if (bl->loc_type != bp_loc_software_breakpoint
4176 && bl->loc_type != bp_loc_hardware_breakpoint)
4177 continue;
4178
4179 if (bp_location_inserted_here_p (bl, aspace, pc))
4180 return 1;
4181 }
4182 return 0;
4183 }
4184
4185 /* This function returns non-zero iff there is a software breakpoint
4186 inserted at PC. */
4187
4188 int
4189 software_breakpoint_inserted_here_p (struct address_space *aspace,
4190 CORE_ADDR pc)
4191 {
4192 struct bp_location **blp, **blp_tmp = NULL;
4193
4194 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4195 {
4196 struct bp_location *bl = *blp;
4197
4198 if (bl->loc_type != bp_loc_software_breakpoint)
4199 continue;
4200
4201 if (bp_location_inserted_here_p (bl, aspace, pc))
4202 return 1;
4203 }
4204
4205 return 0;
4206 }
4207
4208 /* See breakpoint.h. */
4209
4210 int
4211 hardware_breakpoint_inserted_here_p (struct address_space *aspace,
4212 CORE_ADDR pc)
4213 {
4214 struct bp_location **blp, **blp_tmp = NULL;
4215
4216 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4217 {
4218 struct bp_location *bl = *blp;
4219
4220 if (bl->loc_type != bp_loc_hardware_breakpoint)
4221 continue;
4222
4223 if (bp_location_inserted_here_p (bl, aspace, pc))
4224 return 1;
4225 }
4226
4227 return 0;
4228 }
4229
4230 int
4231 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4232 CORE_ADDR addr, ULONGEST len)
4233 {
4234 struct breakpoint *bpt;
4235
4236 ALL_BREAKPOINTS (bpt)
4237 {
4238 struct bp_location *loc;
4239
4240 if (bpt->type != bp_hardware_watchpoint
4241 && bpt->type != bp_access_watchpoint)
4242 continue;
4243
4244 if (!breakpoint_enabled (bpt))
4245 continue;
4246
4247 for (loc = bpt->loc; loc; loc = loc->next)
4248 if (loc->pspace->aspace == aspace && loc->inserted)
4249 {
4250 CORE_ADDR l, h;
4251
4252 /* Check for intersection. */
4253 l = std::max<CORE_ADDR> (loc->address, addr);
4254 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4255 if (l < h)
4256 return 1;
4257 }
4258 }
4259 return 0;
4260 }
4261 \f
4262
4263 /* bpstat stuff. External routines' interfaces are documented
4264 in breakpoint.h. */
4265
4266 int
4267 is_catchpoint (struct breakpoint *ep)
4268 {
4269 return (ep->type == bp_catchpoint);
4270 }
4271
4272 /* Frees any storage that is part of a bpstat. Does not walk the
4273 'next' chain. */
4274
4275 bpstats::~bpstats ()
4276 {
4277 if (old_val != NULL)
4278 value_free (old_val);
4279 if (bp_location_at != NULL)
4280 decref_bp_location (&bp_location_at);
4281 }
4282
4283 /* Clear a bpstat so that it says we are not at any breakpoint.
4284 Also free any storage that is part of a bpstat. */
4285
4286 void
4287 bpstat_clear (bpstat *bsp)
4288 {
4289 bpstat p;
4290 bpstat q;
4291
4292 if (bsp == 0)
4293 return;
4294 p = *bsp;
4295 while (p != NULL)
4296 {
4297 q = p->next;
4298 delete p;
4299 p = q;
4300 }
4301 *bsp = NULL;
4302 }
4303
4304 bpstats::bpstats (const bpstats &other)
4305 : next (NULL),
4306 bp_location_at (other.bp_location_at),
4307 breakpoint_at (other.breakpoint_at),
4308 commands (other.commands),
4309 old_val (other.old_val),
4310 print (other.print),
4311 stop (other.stop),
4312 print_it (other.print_it)
4313 {
4314 if (old_val != NULL)
4315 {
4316 old_val = value_copy (old_val);
4317 release_value (old_val);
4318 }
4319 incref_bp_location (bp_location_at);
4320 }
4321
4322 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4323 is part of the bpstat is copied as well. */
4324
4325 bpstat
4326 bpstat_copy (bpstat bs)
4327 {
4328 bpstat p = NULL;
4329 bpstat tmp;
4330 bpstat retval = NULL;
4331
4332 if (bs == NULL)
4333 return bs;
4334
4335 for (; bs != NULL; bs = bs->next)
4336 {
4337 tmp = new bpstats (*bs);
4338
4339 if (p == NULL)
4340 /* This is the first thing in the chain. */
4341 retval = tmp;
4342 else
4343 p->next = tmp;
4344 p = tmp;
4345 }
4346 p->next = NULL;
4347 return retval;
4348 }
4349
4350 /* Find the bpstat associated with this breakpoint. */
4351
4352 bpstat
4353 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4354 {
4355 if (bsp == NULL)
4356 return NULL;
4357
4358 for (; bsp != NULL; bsp = bsp->next)
4359 {
4360 if (bsp->breakpoint_at == breakpoint)
4361 return bsp;
4362 }
4363 return NULL;
4364 }
4365
4366 /* See breakpoint.h. */
4367
4368 int
4369 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4370 {
4371 for (; bsp != NULL; bsp = bsp->next)
4372 {
4373 if (bsp->breakpoint_at == NULL)
4374 {
4375 /* A moribund location can never explain a signal other than
4376 GDB_SIGNAL_TRAP. */
4377 if (sig == GDB_SIGNAL_TRAP)
4378 return 1;
4379 }
4380 else
4381 {
4382 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4383 sig))
4384 return 1;
4385 }
4386 }
4387
4388 return 0;
4389 }
4390
4391 /* Put in *NUM the breakpoint number of the first breakpoint we are
4392 stopped at. *BSP upon return is a bpstat which points to the
4393 remaining breakpoints stopped at (but which is not guaranteed to be
4394 good for anything but further calls to bpstat_num).
4395
4396 Return 0 if passed a bpstat which does not indicate any breakpoints.
4397 Return -1 if stopped at a breakpoint that has been deleted since
4398 we set it.
4399 Return 1 otherwise. */
4400
4401 int
4402 bpstat_num (bpstat *bsp, int *num)
4403 {
4404 struct breakpoint *b;
4405
4406 if ((*bsp) == NULL)
4407 return 0; /* No more breakpoint values */
4408
4409 /* We assume we'll never have several bpstats that correspond to a
4410 single breakpoint -- otherwise, this function might return the
4411 same number more than once and this will look ugly. */
4412 b = (*bsp)->breakpoint_at;
4413 *bsp = (*bsp)->next;
4414 if (b == NULL)
4415 return -1; /* breakpoint that's been deleted since */
4416
4417 *num = b->number; /* We have its number */
4418 return 1;
4419 }
4420
4421 /* See breakpoint.h. */
4422
4423 void
4424 bpstat_clear_actions (void)
4425 {
4426 struct thread_info *tp;
4427 bpstat bs;
4428
4429 if (ptid_equal (inferior_ptid, null_ptid))
4430 return;
4431
4432 tp = find_thread_ptid (inferior_ptid);
4433 if (tp == NULL)
4434 return;
4435
4436 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4437 {
4438 bs->commands = NULL;
4439
4440 if (bs->old_val != NULL)
4441 {
4442 value_free (bs->old_val);
4443 bs->old_val = NULL;
4444 }
4445 }
4446 }
4447
4448 /* Called when a command is about to proceed the inferior. */
4449
4450 static void
4451 breakpoint_about_to_proceed (void)
4452 {
4453 if (!ptid_equal (inferior_ptid, null_ptid))
4454 {
4455 struct thread_info *tp = inferior_thread ();
4456
4457 /* Allow inferior function calls in breakpoint commands to not
4458 interrupt the command list. When the call finishes
4459 successfully, the inferior will be standing at the same
4460 breakpoint as if nothing happened. */
4461 if (tp->control.in_infcall)
4462 return;
4463 }
4464
4465 breakpoint_proceeded = 1;
4466 }
4467
4468 /* Stub for cleaning up our state if we error-out of a breakpoint
4469 command. */
4470 static void
4471 cleanup_executing_breakpoints (void *ignore)
4472 {
4473 executing_breakpoint_commands = 0;
4474 }
4475
4476 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4477 or its equivalent. */
4478
4479 static int
4480 command_line_is_silent (struct command_line *cmd)
4481 {
4482 return cmd && (strcmp ("silent", cmd->line) == 0);
4483 }
4484
4485 /* Execute all the commands associated with all the breakpoints at
4486 this location. Any of these commands could cause the process to
4487 proceed beyond this point, etc. We look out for such changes by
4488 checking the global "breakpoint_proceeded" after each command.
4489
4490 Returns true if a breakpoint command resumed the inferior. In that
4491 case, it is the caller's responsibility to recall it again with the
4492 bpstat of the current thread. */
4493
4494 static int
4495 bpstat_do_actions_1 (bpstat *bsp)
4496 {
4497 bpstat bs;
4498 struct cleanup *old_chain;
4499 int again = 0;
4500
4501 /* Avoid endless recursion if a `source' command is contained
4502 in bs->commands. */
4503 if (executing_breakpoint_commands)
4504 return 0;
4505
4506 executing_breakpoint_commands = 1;
4507 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4508
4509 scoped_restore preventer = prevent_dont_repeat ();
4510
4511 /* This pointer will iterate over the list of bpstat's. */
4512 bs = *bsp;
4513
4514 breakpoint_proceeded = 0;
4515 for (; bs != NULL; bs = bs->next)
4516 {
4517 struct command_line *cmd = NULL;
4518
4519 /* Take ownership of the BSP's command tree, if it has one.
4520
4521 The command tree could legitimately contain commands like
4522 'step' and 'next', which call clear_proceed_status, which
4523 frees stop_bpstat's command tree. To make sure this doesn't
4524 free the tree we're executing out from under us, we need to
4525 take ownership of the tree ourselves. Since a given bpstat's
4526 commands are only executed once, we don't need to copy it; we
4527 can clear the pointer in the bpstat, and make sure we free
4528 the tree when we're done. */
4529 counted_command_line ccmd = bs->commands;
4530 bs->commands = NULL;
4531 if (ccmd != NULL)
4532 cmd = ccmd.get ();
4533 if (command_line_is_silent (cmd))
4534 {
4535 /* The action has been already done by bpstat_stop_status. */
4536 cmd = cmd->next;
4537 }
4538
4539 while (cmd != NULL)
4540 {
4541 execute_control_command (cmd);
4542
4543 if (breakpoint_proceeded)
4544 break;
4545 else
4546 cmd = cmd->next;
4547 }
4548
4549 if (breakpoint_proceeded)
4550 {
4551 if (current_ui->async)
4552 /* If we are in async mode, then the target might be still
4553 running, not stopped at any breakpoint, so nothing for
4554 us to do here -- just return to the event loop. */
4555 ;
4556 else
4557 /* In sync mode, when execute_control_command returns
4558 we're already standing on the next breakpoint.
4559 Breakpoint commands for that stop were not run, since
4560 execute_command does not run breakpoint commands --
4561 only command_line_handler does, but that one is not
4562 involved in execution of breakpoint commands. So, we
4563 can now execute breakpoint commands. It should be
4564 noted that making execute_command do bpstat actions is
4565 not an option -- in this case we'll have recursive
4566 invocation of bpstat for each breakpoint with a
4567 command, and can easily blow up GDB stack. Instead, we
4568 return true, which will trigger the caller to recall us
4569 with the new stop_bpstat. */
4570 again = 1;
4571 break;
4572 }
4573 }
4574 do_cleanups (old_chain);
4575 return again;
4576 }
4577
4578 void
4579 bpstat_do_actions (void)
4580 {
4581 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4582
4583 /* Do any commands attached to breakpoint we are stopped at. */
4584 while (!ptid_equal (inferior_ptid, null_ptid)
4585 && target_has_execution
4586 && !is_exited (inferior_ptid)
4587 && !is_executing (inferior_ptid))
4588 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4589 and only return when it is stopped at the next breakpoint, we
4590 keep doing breakpoint actions until it returns false to
4591 indicate the inferior was not resumed. */
4592 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4593 break;
4594
4595 discard_cleanups (cleanup_if_error);
4596 }
4597
4598 /* Print out the (old or new) value associated with a watchpoint. */
4599
4600 static void
4601 watchpoint_value_print (struct value *val, struct ui_file *stream)
4602 {
4603 if (val == NULL)
4604 fprintf_unfiltered (stream, _("<unreadable>"));
4605 else
4606 {
4607 struct value_print_options opts;
4608 get_user_print_options (&opts);
4609 value_print (val, stream, &opts);
4610 }
4611 }
4612
4613 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4614 debugging multiple threads. */
4615
4616 void
4617 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4618 {
4619 if (uiout->is_mi_like_p ())
4620 return;
4621
4622 uiout->text ("\n");
4623
4624 if (show_thread_that_caused_stop ())
4625 {
4626 const char *name;
4627 struct thread_info *thr = inferior_thread ();
4628
4629 uiout->text ("Thread ");
4630 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4631
4632 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4633 if (name != NULL)
4634 {
4635 uiout->text (" \"");
4636 uiout->field_fmt ("name", "%s", name);
4637 uiout->text ("\"");
4638 }
4639
4640 uiout->text (" hit ");
4641 }
4642 }
4643
4644 /* Generic routine for printing messages indicating why we
4645 stopped. The behavior of this function depends on the value
4646 'print_it' in the bpstat structure. Under some circumstances we
4647 may decide not to print anything here and delegate the task to
4648 normal_stop(). */
4649
4650 static enum print_stop_action
4651 print_bp_stop_message (bpstat bs)
4652 {
4653 switch (bs->print_it)
4654 {
4655 case print_it_noop:
4656 /* Nothing should be printed for this bpstat entry. */
4657 return PRINT_UNKNOWN;
4658 break;
4659
4660 case print_it_done:
4661 /* We still want to print the frame, but we already printed the
4662 relevant messages. */
4663 return PRINT_SRC_AND_LOC;
4664 break;
4665
4666 case print_it_normal:
4667 {
4668 struct breakpoint *b = bs->breakpoint_at;
4669
4670 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4671 which has since been deleted. */
4672 if (b == NULL)
4673 return PRINT_UNKNOWN;
4674
4675 /* Normal case. Call the breakpoint's print_it method. */
4676 return b->ops->print_it (bs);
4677 }
4678 break;
4679
4680 default:
4681 internal_error (__FILE__, __LINE__,
4682 _("print_bp_stop_message: unrecognized enum value"));
4683 break;
4684 }
4685 }
4686
4687 /* A helper function that prints a shared library stopped event. */
4688
4689 static void
4690 print_solib_event (int is_catchpoint)
4691 {
4692 int any_deleted
4693 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4694 int any_added
4695 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4696
4697 if (!is_catchpoint)
4698 {
4699 if (any_added || any_deleted)
4700 current_uiout->text (_("Stopped due to shared library event:\n"));
4701 else
4702 current_uiout->text (_("Stopped due to shared library event (no "
4703 "libraries added or removed)\n"));
4704 }
4705
4706 if (current_uiout->is_mi_like_p ())
4707 current_uiout->field_string ("reason",
4708 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4709
4710 if (any_deleted)
4711 {
4712 char *name;
4713 int ix;
4714
4715 current_uiout->text (_(" Inferior unloaded "));
4716 ui_out_emit_list list_emitter (current_uiout, "removed");
4717 for (ix = 0;
4718 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4719 ix, name);
4720 ++ix)
4721 {
4722 if (ix > 0)
4723 current_uiout->text (" ");
4724 current_uiout->field_string ("library", name);
4725 current_uiout->text ("\n");
4726 }
4727 }
4728
4729 if (any_added)
4730 {
4731 struct so_list *iter;
4732 int ix;
4733
4734 current_uiout->text (_(" Inferior loaded "));
4735 ui_out_emit_list list_emitter (current_uiout, "added");
4736 for (ix = 0;
4737 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4738 ix, iter);
4739 ++ix)
4740 {
4741 if (ix > 0)
4742 current_uiout->text (" ");
4743 current_uiout->field_string ("library", iter->so_name);
4744 current_uiout->text ("\n");
4745 }
4746 }
4747 }
4748
4749 /* Print a message indicating what happened. This is called from
4750 normal_stop(). The input to this routine is the head of the bpstat
4751 list - a list of the eventpoints that caused this stop. KIND is
4752 the target_waitkind for the stopping event. This
4753 routine calls the generic print routine for printing a message
4754 about reasons for stopping. This will print (for example) the
4755 "Breakpoint n," part of the output. The return value of this
4756 routine is one of:
4757
4758 PRINT_UNKNOWN: Means we printed nothing.
4759 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4760 code to print the location. An example is
4761 "Breakpoint 1, " which should be followed by
4762 the location.
4763 PRINT_SRC_ONLY: Means we printed something, but there is no need
4764 to also print the location part of the message.
4765 An example is the catch/throw messages, which
4766 don't require a location appended to the end.
4767 PRINT_NOTHING: We have done some printing and we don't need any
4768 further info to be printed. */
4769
4770 enum print_stop_action
4771 bpstat_print (bpstat bs, int kind)
4772 {
4773 enum print_stop_action val;
4774
4775 /* Maybe another breakpoint in the chain caused us to stop.
4776 (Currently all watchpoints go on the bpstat whether hit or not.
4777 That probably could (should) be changed, provided care is taken
4778 with respect to bpstat_explains_signal). */
4779 for (; bs; bs = bs->next)
4780 {
4781 val = print_bp_stop_message (bs);
4782 if (val == PRINT_SRC_ONLY
4783 || val == PRINT_SRC_AND_LOC
4784 || val == PRINT_NOTHING)
4785 return val;
4786 }
4787
4788 /* If we had hit a shared library event breakpoint,
4789 print_bp_stop_message would print out this message. If we hit an
4790 OS-level shared library event, do the same thing. */
4791 if (kind == TARGET_WAITKIND_LOADED)
4792 {
4793 print_solib_event (0);
4794 return PRINT_NOTHING;
4795 }
4796
4797 /* We reached the end of the chain, or we got a null BS to start
4798 with and nothing was printed. */
4799 return PRINT_UNKNOWN;
4800 }
4801
4802 /* Evaluate the boolean expression EXP and return the result. */
4803
4804 static bool
4805 breakpoint_cond_eval (expression *exp)
4806 {
4807 struct value *mark = value_mark ();
4808 bool res = value_true (evaluate_expression (exp));
4809
4810 value_free_to_mark (mark);
4811 return res;
4812 }
4813
4814 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4815
4816 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4817 : next (NULL),
4818 bp_location_at (bl),
4819 breakpoint_at (bl->owner),
4820 commands (NULL),
4821 old_val (NULL),
4822 print (0),
4823 stop (0),
4824 print_it (print_it_normal)
4825 {
4826 incref_bp_location (bl);
4827 **bs_link_pointer = this;
4828 *bs_link_pointer = &next;
4829 }
4830
4831 bpstats::bpstats ()
4832 : next (NULL),
4833 bp_location_at (NULL),
4834 breakpoint_at (NULL),
4835 commands (NULL),
4836 old_val (NULL),
4837 print (0),
4838 stop (0),
4839 print_it (print_it_normal)
4840 {
4841 }
4842 \f
4843 /* The target has stopped with waitstatus WS. Check if any hardware
4844 watchpoints have triggered, according to the target. */
4845
4846 int
4847 watchpoints_triggered (struct target_waitstatus *ws)
4848 {
4849 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4850 CORE_ADDR addr;
4851 struct breakpoint *b;
4852
4853 if (!stopped_by_watchpoint)
4854 {
4855 /* We were not stopped by a watchpoint. Mark all watchpoints
4856 as not triggered. */
4857 ALL_BREAKPOINTS (b)
4858 if (is_hardware_watchpoint (b))
4859 {
4860 struct watchpoint *w = (struct watchpoint *) b;
4861
4862 w->watchpoint_triggered = watch_triggered_no;
4863 }
4864
4865 return 0;
4866 }
4867
4868 if (!target_stopped_data_address (&current_target, &addr))
4869 {
4870 /* We were stopped by a watchpoint, but we don't know where.
4871 Mark all watchpoints as unknown. */
4872 ALL_BREAKPOINTS (b)
4873 if (is_hardware_watchpoint (b))
4874 {
4875 struct watchpoint *w = (struct watchpoint *) b;
4876
4877 w->watchpoint_triggered = watch_triggered_unknown;
4878 }
4879
4880 return 1;
4881 }
4882
4883 /* The target could report the data address. Mark watchpoints
4884 affected by this data address as triggered, and all others as not
4885 triggered. */
4886
4887 ALL_BREAKPOINTS (b)
4888 if (is_hardware_watchpoint (b))
4889 {
4890 struct watchpoint *w = (struct watchpoint *) b;
4891 struct bp_location *loc;
4892
4893 w->watchpoint_triggered = watch_triggered_no;
4894 for (loc = b->loc; loc; loc = loc->next)
4895 {
4896 if (is_masked_watchpoint (b))
4897 {
4898 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4899 CORE_ADDR start = loc->address & w->hw_wp_mask;
4900
4901 if (newaddr == start)
4902 {
4903 w->watchpoint_triggered = watch_triggered_yes;
4904 break;
4905 }
4906 }
4907 /* Exact match not required. Within range is sufficient. */
4908 else if (target_watchpoint_addr_within_range (&current_target,
4909 addr, loc->address,
4910 loc->length))
4911 {
4912 w->watchpoint_triggered = watch_triggered_yes;
4913 break;
4914 }
4915 }
4916 }
4917
4918 return 1;
4919 }
4920
4921 /* Possible return values for watchpoint_check. */
4922 enum wp_check_result
4923 {
4924 /* The watchpoint has been deleted. */
4925 WP_DELETED = 1,
4926
4927 /* The value has changed. */
4928 WP_VALUE_CHANGED = 2,
4929
4930 /* The value has not changed. */
4931 WP_VALUE_NOT_CHANGED = 3,
4932
4933 /* Ignore this watchpoint, no matter if the value changed or not. */
4934 WP_IGNORE = 4,
4935 };
4936
4937 #define BP_TEMPFLAG 1
4938 #define BP_HARDWAREFLAG 2
4939
4940 /* Evaluate watchpoint condition expression and check if its value
4941 changed. */
4942
4943 static wp_check_result
4944 watchpoint_check (bpstat bs)
4945 {
4946 struct watchpoint *b;
4947 struct frame_info *fr;
4948 int within_current_scope;
4949
4950 /* BS is built from an existing struct breakpoint. */
4951 gdb_assert (bs->breakpoint_at != NULL);
4952 b = (struct watchpoint *) bs->breakpoint_at;
4953
4954 /* If this is a local watchpoint, we only want to check if the
4955 watchpoint frame is in scope if the current thread is the thread
4956 that was used to create the watchpoint. */
4957 if (!watchpoint_in_thread_scope (b))
4958 return WP_IGNORE;
4959
4960 if (b->exp_valid_block == NULL)
4961 within_current_scope = 1;
4962 else
4963 {
4964 struct frame_info *frame = get_current_frame ();
4965 struct gdbarch *frame_arch = get_frame_arch (frame);
4966 CORE_ADDR frame_pc = get_frame_pc (frame);
4967
4968 /* stack_frame_destroyed_p() returns a non-zero value if we're
4969 still in the function but the stack frame has already been
4970 invalidated. Since we can't rely on the values of local
4971 variables after the stack has been destroyed, we are treating
4972 the watchpoint in that state as `not changed' without further
4973 checking. Don't mark watchpoints as changed if the current
4974 frame is in an epilogue - even if they are in some other
4975 frame, our view of the stack is likely to be wrong and
4976 frame_find_by_id could error out. */
4977 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4978 return WP_IGNORE;
4979
4980 fr = frame_find_by_id (b->watchpoint_frame);
4981 within_current_scope = (fr != NULL);
4982
4983 /* If we've gotten confused in the unwinder, we might have
4984 returned a frame that can't describe this variable. */
4985 if (within_current_scope)
4986 {
4987 struct symbol *function;
4988
4989 function = get_frame_function (fr);
4990 if (function == NULL
4991 || !contained_in (b->exp_valid_block,
4992 SYMBOL_BLOCK_VALUE (function)))
4993 within_current_scope = 0;
4994 }
4995
4996 if (within_current_scope)
4997 /* If we end up stopping, the current frame will get selected
4998 in normal_stop. So this call to select_frame won't affect
4999 the user. */
5000 select_frame (fr);
5001 }
5002
5003 if (within_current_scope)
5004 {
5005 /* We use value_{,free_to_}mark because it could be a *long*
5006 time before we return to the command level and call
5007 free_all_values. We can't call free_all_values because we
5008 might be in the middle of evaluating a function call. */
5009
5010 int pc = 0;
5011 struct value *mark;
5012 struct value *new_val;
5013
5014 if (is_masked_watchpoint (b))
5015 /* Since we don't know the exact trigger address (from
5016 stopped_data_address), just tell the user we've triggered
5017 a mask watchpoint. */
5018 return WP_VALUE_CHANGED;
5019
5020 mark = value_mark ();
5021 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
5022
5023 if (b->val_bitsize != 0)
5024 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
5025
5026 /* We use value_equal_contents instead of value_equal because
5027 the latter coerces an array to a pointer, thus comparing just
5028 the address of the array instead of its contents. This is
5029 not what we want. */
5030 if ((b->val != NULL) != (new_val != NULL)
5031 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
5032 {
5033 if (new_val != NULL)
5034 {
5035 release_value (new_val);
5036 value_free_to_mark (mark);
5037 }
5038 bs->old_val = b->val;
5039 b->val = new_val;
5040 b->val_valid = 1;
5041 return WP_VALUE_CHANGED;
5042 }
5043 else
5044 {
5045 /* Nothing changed. */
5046 value_free_to_mark (mark);
5047 return WP_VALUE_NOT_CHANGED;
5048 }
5049 }
5050 else
5051 {
5052 /* This seems like the only logical thing to do because
5053 if we temporarily ignored the watchpoint, then when
5054 we reenter the block in which it is valid it contains
5055 garbage (in the case of a function, it may have two
5056 garbage values, one before and one after the prologue).
5057 So we can't even detect the first assignment to it and
5058 watch after that (since the garbage may or may not equal
5059 the first value assigned). */
5060 /* We print all the stop information in
5061 breakpoint_ops->print_it, but in this case, by the time we
5062 call breakpoint_ops->print_it this bp will be deleted
5063 already. So we have no choice but print the information
5064 here. */
5065
5066 SWITCH_THRU_ALL_UIS ()
5067 {
5068 struct ui_out *uiout = current_uiout;
5069
5070 if (uiout->is_mi_like_p ())
5071 uiout->field_string
5072 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5073 uiout->text ("\nWatchpoint ");
5074 uiout->field_int ("wpnum", b->number);
5075 uiout->text (" deleted because the program has left the block in\n"
5076 "which its expression is valid.\n");
5077 }
5078
5079 /* Make sure the watchpoint's commands aren't executed. */
5080 b->commands = NULL;
5081 watchpoint_del_at_next_stop (b);
5082
5083 return WP_DELETED;
5084 }
5085 }
5086
5087 /* Return true if it looks like target has stopped due to hitting
5088 breakpoint location BL. This function does not check if we should
5089 stop, only if BL explains the stop. */
5090
5091 static int
5092 bpstat_check_location (const struct bp_location *bl,
5093 struct address_space *aspace, CORE_ADDR bp_addr,
5094 const struct target_waitstatus *ws)
5095 {
5096 struct breakpoint *b = bl->owner;
5097
5098 /* BL is from an existing breakpoint. */
5099 gdb_assert (b != NULL);
5100
5101 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5102 }
5103
5104 /* Determine if the watched values have actually changed, and we
5105 should stop. If not, set BS->stop to 0. */
5106
5107 static void
5108 bpstat_check_watchpoint (bpstat bs)
5109 {
5110 const struct bp_location *bl;
5111 struct watchpoint *b;
5112
5113 /* BS is built for existing struct breakpoint. */
5114 bl = bs->bp_location_at;
5115 gdb_assert (bl != NULL);
5116 b = (struct watchpoint *) bs->breakpoint_at;
5117 gdb_assert (b != NULL);
5118
5119 {
5120 int must_check_value = 0;
5121
5122 if (b->type == bp_watchpoint)
5123 /* For a software watchpoint, we must always check the
5124 watched value. */
5125 must_check_value = 1;
5126 else if (b->watchpoint_triggered == watch_triggered_yes)
5127 /* We have a hardware watchpoint (read, write, or access)
5128 and the target earlier reported an address watched by
5129 this watchpoint. */
5130 must_check_value = 1;
5131 else if (b->watchpoint_triggered == watch_triggered_unknown
5132 && b->type == bp_hardware_watchpoint)
5133 /* We were stopped by a hardware watchpoint, but the target could
5134 not report the data address. We must check the watchpoint's
5135 value. Access and read watchpoints are out of luck; without
5136 a data address, we can't figure it out. */
5137 must_check_value = 1;
5138
5139 if (must_check_value)
5140 {
5141 wp_check_result e;
5142
5143 TRY
5144 {
5145 e = watchpoint_check (bs);
5146 }
5147 CATCH (ex, RETURN_MASK_ALL)
5148 {
5149 exception_fprintf (gdb_stderr, ex,
5150 "Error evaluating expression "
5151 "for watchpoint %d\n",
5152 b->number);
5153
5154 SWITCH_THRU_ALL_UIS ()
5155 {
5156 printf_filtered (_("Watchpoint %d deleted.\n"),
5157 b->number);
5158 }
5159 watchpoint_del_at_next_stop (b);
5160 e = WP_DELETED;
5161 }
5162 END_CATCH
5163
5164 switch (e)
5165 {
5166 case WP_DELETED:
5167 /* We've already printed what needs to be printed. */
5168 bs->print_it = print_it_done;
5169 /* Stop. */
5170 break;
5171 case WP_IGNORE:
5172 bs->print_it = print_it_noop;
5173 bs->stop = 0;
5174 break;
5175 case WP_VALUE_CHANGED:
5176 if (b->type == bp_read_watchpoint)
5177 {
5178 /* There are two cases to consider here:
5179
5180 1. We're watching the triggered memory for reads.
5181 In that case, trust the target, and always report
5182 the watchpoint hit to the user. Even though
5183 reads don't cause value changes, the value may
5184 have changed since the last time it was read, and
5185 since we're not trapping writes, we will not see
5186 those, and as such we should ignore our notion of
5187 old value.
5188
5189 2. We're watching the triggered memory for both
5190 reads and writes. There are two ways this may
5191 happen:
5192
5193 2.1. This is a target that can't break on data
5194 reads only, but can break on accesses (reads or
5195 writes), such as e.g., x86. We detect this case
5196 at the time we try to insert read watchpoints.
5197
5198 2.2. Otherwise, the target supports read
5199 watchpoints, but, the user set an access or write
5200 watchpoint watching the same memory as this read
5201 watchpoint.
5202
5203 If we're watching memory writes as well as reads,
5204 ignore watchpoint hits when we find that the
5205 value hasn't changed, as reads don't cause
5206 changes. This still gives false positives when
5207 the program writes the same value to memory as
5208 what there was already in memory (we will confuse
5209 it for a read), but it's much better than
5210 nothing. */
5211
5212 int other_write_watchpoint = 0;
5213
5214 if (bl->watchpoint_type == hw_read)
5215 {
5216 struct breakpoint *other_b;
5217
5218 ALL_BREAKPOINTS (other_b)
5219 if (other_b->type == bp_hardware_watchpoint
5220 || other_b->type == bp_access_watchpoint)
5221 {
5222 struct watchpoint *other_w =
5223 (struct watchpoint *) other_b;
5224
5225 if (other_w->watchpoint_triggered
5226 == watch_triggered_yes)
5227 {
5228 other_write_watchpoint = 1;
5229 break;
5230 }
5231 }
5232 }
5233
5234 if (other_write_watchpoint
5235 || bl->watchpoint_type == hw_access)
5236 {
5237 /* We're watching the same memory for writes,
5238 and the value changed since the last time we
5239 updated it, so this trap must be for a write.
5240 Ignore it. */
5241 bs->print_it = print_it_noop;
5242 bs->stop = 0;
5243 }
5244 }
5245 break;
5246 case WP_VALUE_NOT_CHANGED:
5247 if (b->type == bp_hardware_watchpoint
5248 || b->type == bp_watchpoint)
5249 {
5250 /* Don't stop: write watchpoints shouldn't fire if
5251 the value hasn't changed. */
5252 bs->print_it = print_it_noop;
5253 bs->stop = 0;
5254 }
5255 /* Stop. */
5256 break;
5257 default:
5258 /* Can't happen. */
5259 break;
5260 }
5261 }
5262 else /* must_check_value == 0 */
5263 {
5264 /* This is a case where some watchpoint(s) triggered, but
5265 not at the address of this watchpoint, or else no
5266 watchpoint triggered after all. So don't print
5267 anything for this watchpoint. */
5268 bs->print_it = print_it_noop;
5269 bs->stop = 0;
5270 }
5271 }
5272 }
5273
5274 /* For breakpoints that are currently marked as telling gdb to stop,
5275 check conditions (condition proper, frame, thread and ignore count)
5276 of breakpoint referred to by BS. If we should not stop for this
5277 breakpoint, set BS->stop to 0. */
5278
5279 static void
5280 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5281 {
5282 const struct bp_location *bl;
5283 struct breakpoint *b;
5284 /* Assume stop. */
5285 bool condition_result = true;
5286 struct expression *cond;
5287
5288 gdb_assert (bs->stop);
5289
5290 /* BS is built for existing struct breakpoint. */
5291 bl = bs->bp_location_at;
5292 gdb_assert (bl != NULL);
5293 b = bs->breakpoint_at;
5294 gdb_assert (b != NULL);
5295
5296 /* Even if the target evaluated the condition on its end and notified GDB, we
5297 need to do so again since GDB does not know if we stopped due to a
5298 breakpoint or a single step breakpoint. */
5299
5300 if (frame_id_p (b->frame_id)
5301 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5302 {
5303 bs->stop = 0;
5304 return;
5305 }
5306
5307 /* If this is a thread/task-specific breakpoint, don't waste cpu
5308 evaluating the condition if this isn't the specified
5309 thread/task. */
5310 if ((b->thread != -1 && b->thread != ptid_to_global_thread_id (ptid))
5311 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5312
5313 {
5314 bs->stop = 0;
5315 return;
5316 }
5317
5318 /* Evaluate extension language breakpoints that have a "stop" method
5319 implemented. */
5320 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5321
5322 if (is_watchpoint (b))
5323 {
5324 struct watchpoint *w = (struct watchpoint *) b;
5325
5326 cond = w->cond_exp.get ();
5327 }
5328 else
5329 cond = bl->cond.get ();
5330
5331 if (cond && b->disposition != disp_del_at_next_stop)
5332 {
5333 int within_current_scope = 1;
5334 struct watchpoint * w;
5335
5336 /* We use value_mark and value_free_to_mark because it could
5337 be a long time before we return to the command level and
5338 call free_all_values. We can't call free_all_values
5339 because we might be in the middle of evaluating a
5340 function call. */
5341 struct value *mark = value_mark ();
5342
5343 if (is_watchpoint (b))
5344 w = (struct watchpoint *) b;
5345 else
5346 w = NULL;
5347
5348 /* Need to select the frame, with all that implies so that
5349 the conditions will have the right context. Because we
5350 use the frame, we will not see an inlined function's
5351 variables when we arrive at a breakpoint at the start
5352 of the inlined function; the current frame will be the
5353 call site. */
5354 if (w == NULL || w->cond_exp_valid_block == NULL)
5355 select_frame (get_current_frame ());
5356 else
5357 {
5358 struct frame_info *frame;
5359
5360 /* For local watchpoint expressions, which particular
5361 instance of a local is being watched matters, so we
5362 keep track of the frame to evaluate the expression
5363 in. To evaluate the condition however, it doesn't
5364 really matter which instantiation of the function
5365 where the condition makes sense triggers the
5366 watchpoint. This allows an expression like "watch
5367 global if q > 10" set in `func', catch writes to
5368 global on all threads that call `func', or catch
5369 writes on all recursive calls of `func' by a single
5370 thread. We simply always evaluate the condition in
5371 the innermost frame that's executing where it makes
5372 sense to evaluate the condition. It seems
5373 intuitive. */
5374 frame = block_innermost_frame (w->cond_exp_valid_block);
5375 if (frame != NULL)
5376 select_frame (frame);
5377 else
5378 within_current_scope = 0;
5379 }
5380 if (within_current_scope)
5381 {
5382 TRY
5383 {
5384 condition_result = breakpoint_cond_eval (cond);
5385 }
5386 CATCH (ex, RETURN_MASK_ALL)
5387 {
5388 exception_fprintf (gdb_stderr, ex,
5389 "Error in testing breakpoint condition:\n");
5390 }
5391 END_CATCH
5392 }
5393 else
5394 {
5395 warning (_("Watchpoint condition cannot be tested "
5396 "in the current scope"));
5397 /* If we failed to set the right context for this
5398 watchpoint, unconditionally report it. */
5399 }
5400 /* FIXME-someday, should give breakpoint #. */
5401 value_free_to_mark (mark);
5402 }
5403
5404 if (cond && !condition_result)
5405 {
5406 bs->stop = 0;
5407 }
5408 else if (b->ignore_count > 0)
5409 {
5410 b->ignore_count--;
5411 bs->stop = 0;
5412 /* Increase the hit count even though we don't stop. */
5413 ++(b->hit_count);
5414 observer_notify_breakpoint_modified (b);
5415 }
5416 }
5417
5418 /* Returns true if we need to track moribund locations of LOC's type
5419 on the current target. */
5420
5421 static int
5422 need_moribund_for_location_type (struct bp_location *loc)
5423 {
5424 return ((loc->loc_type == bp_loc_software_breakpoint
5425 && !target_supports_stopped_by_sw_breakpoint ())
5426 || (loc->loc_type == bp_loc_hardware_breakpoint
5427 && !target_supports_stopped_by_hw_breakpoint ()));
5428 }
5429
5430
5431 /* Get a bpstat associated with having just stopped at address
5432 BP_ADDR in thread PTID.
5433
5434 Determine whether we stopped at a breakpoint, etc, or whether we
5435 don't understand this stop. Result is a chain of bpstat's such
5436 that:
5437
5438 if we don't understand the stop, the result is a null pointer.
5439
5440 if we understand why we stopped, the result is not null.
5441
5442 Each element of the chain refers to a particular breakpoint or
5443 watchpoint at which we have stopped. (We may have stopped for
5444 several reasons concurrently.)
5445
5446 Each element of the chain has valid next, breakpoint_at,
5447 commands, FIXME??? fields. */
5448
5449 bpstat
5450 bpstat_stop_status (struct address_space *aspace,
5451 CORE_ADDR bp_addr, ptid_t ptid,
5452 const struct target_waitstatus *ws)
5453 {
5454 struct breakpoint *b = NULL;
5455 struct bp_location *bl;
5456 struct bp_location *loc;
5457 /* First item of allocated bpstat's. */
5458 bpstat bs_head = NULL, *bs_link = &bs_head;
5459 /* Pointer to the last thing in the chain currently. */
5460 bpstat bs;
5461 int ix;
5462 int need_remove_insert;
5463 int removed_any;
5464
5465 /* First, build the bpstat chain with locations that explain a
5466 target stop, while being careful to not set the target running,
5467 as that may invalidate locations (in particular watchpoint
5468 locations are recreated). Resuming will happen here with
5469 breakpoint conditions or watchpoint expressions that include
5470 inferior function calls. */
5471
5472 ALL_BREAKPOINTS (b)
5473 {
5474 if (!breakpoint_enabled (b))
5475 continue;
5476
5477 for (bl = b->loc; bl != NULL; bl = bl->next)
5478 {
5479 /* For hardware watchpoints, we look only at the first
5480 location. The watchpoint_check function will work on the
5481 entire expression, not the individual locations. For
5482 read watchpoints, the watchpoints_triggered function has
5483 checked all locations already. */
5484 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5485 break;
5486
5487 if (!bl->enabled || bl->shlib_disabled)
5488 continue;
5489
5490 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5491 continue;
5492
5493 /* Come here if it's a watchpoint, or if the break address
5494 matches. */
5495
5496 bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5497 explain stop. */
5498
5499 /* Assume we stop. Should we find a watchpoint that is not
5500 actually triggered, or if the condition of the breakpoint
5501 evaluates as false, we'll reset 'stop' to 0. */
5502 bs->stop = 1;
5503 bs->print = 1;
5504
5505 /* If this is a scope breakpoint, mark the associated
5506 watchpoint as triggered so that we will handle the
5507 out-of-scope event. We'll get to the watchpoint next
5508 iteration. */
5509 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5510 {
5511 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5512
5513 w->watchpoint_triggered = watch_triggered_yes;
5514 }
5515 }
5516 }
5517
5518 /* Check if a moribund breakpoint explains the stop. */
5519 if (!target_supports_stopped_by_sw_breakpoint ()
5520 || !target_supports_stopped_by_hw_breakpoint ())
5521 {
5522 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5523 {
5524 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5525 && need_moribund_for_location_type (loc))
5526 {
5527 bs = new bpstats (loc, &bs_link);
5528 /* For hits of moribund locations, we should just proceed. */
5529 bs->stop = 0;
5530 bs->print = 0;
5531 bs->print_it = print_it_noop;
5532 }
5533 }
5534 }
5535
5536 /* A bit of special processing for shlib breakpoints. We need to
5537 process solib loading here, so that the lists of loaded and
5538 unloaded libraries are correct before we handle "catch load" and
5539 "catch unload". */
5540 for (bs = bs_head; bs != NULL; bs = bs->next)
5541 {
5542 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5543 {
5544 handle_solib_event ();
5545 break;
5546 }
5547 }
5548
5549 /* Now go through the locations that caused the target to stop, and
5550 check whether we're interested in reporting this stop to higher
5551 layers, or whether we should resume the target transparently. */
5552
5553 removed_any = 0;
5554
5555 for (bs = bs_head; bs != NULL; bs = bs->next)
5556 {
5557 if (!bs->stop)
5558 continue;
5559
5560 b = bs->breakpoint_at;
5561 b->ops->check_status (bs);
5562 if (bs->stop)
5563 {
5564 bpstat_check_breakpoint_conditions (bs, ptid);
5565
5566 if (bs->stop)
5567 {
5568 ++(b->hit_count);
5569 observer_notify_breakpoint_modified (b);
5570
5571 /* We will stop here. */
5572 if (b->disposition == disp_disable)
5573 {
5574 --(b->enable_count);
5575 if (b->enable_count <= 0)
5576 b->enable_state = bp_disabled;
5577 removed_any = 1;
5578 }
5579 if (b->silent)
5580 bs->print = 0;
5581 bs->commands = b->commands;
5582 if (command_line_is_silent (bs->commands
5583 ? bs->commands.get () : NULL))
5584 bs->print = 0;
5585
5586 b->ops->after_condition_true (bs);
5587 }
5588
5589 }
5590
5591 /* Print nothing for this entry if we don't stop or don't
5592 print. */
5593 if (!bs->stop || !bs->print)
5594 bs->print_it = print_it_noop;
5595 }
5596
5597 /* If we aren't stopping, the value of some hardware watchpoint may
5598 not have changed, but the intermediate memory locations we are
5599 watching may have. Don't bother if we're stopping; this will get
5600 done later. */
5601 need_remove_insert = 0;
5602 if (! bpstat_causes_stop (bs_head))
5603 for (bs = bs_head; bs != NULL; bs = bs->next)
5604 if (!bs->stop
5605 && bs->breakpoint_at
5606 && is_hardware_watchpoint (bs->breakpoint_at))
5607 {
5608 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5609
5610 update_watchpoint (w, 0 /* don't reparse. */);
5611 need_remove_insert = 1;
5612 }
5613
5614 if (need_remove_insert)
5615 update_global_location_list (UGLL_MAY_INSERT);
5616 else if (removed_any)
5617 update_global_location_list (UGLL_DONT_INSERT);
5618
5619 return bs_head;
5620 }
5621
5622 static void
5623 handle_jit_event (void)
5624 {
5625 struct frame_info *frame;
5626 struct gdbarch *gdbarch;
5627
5628 if (debug_infrun)
5629 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5630
5631 /* Switch terminal for any messages produced by
5632 breakpoint_re_set. */
5633 target_terminal::ours_for_output ();
5634
5635 frame = get_current_frame ();
5636 gdbarch = get_frame_arch (frame);
5637
5638 jit_event_handler (gdbarch);
5639
5640 target_terminal::inferior ();
5641 }
5642
5643 /* Prepare WHAT final decision for infrun. */
5644
5645 /* Decide what infrun needs to do with this bpstat. */
5646
5647 struct bpstat_what
5648 bpstat_what (bpstat bs_head)
5649 {
5650 struct bpstat_what retval;
5651 bpstat bs;
5652
5653 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5654 retval.call_dummy = STOP_NONE;
5655 retval.is_longjmp = 0;
5656
5657 for (bs = bs_head; bs != NULL; bs = bs->next)
5658 {
5659 /* Extract this BS's action. After processing each BS, we check
5660 if its action overrides all we've seem so far. */
5661 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5662 enum bptype bptype;
5663
5664 if (bs->breakpoint_at == NULL)
5665 {
5666 /* I suspect this can happen if it was a momentary
5667 breakpoint which has since been deleted. */
5668 bptype = bp_none;
5669 }
5670 else
5671 bptype = bs->breakpoint_at->type;
5672
5673 switch (bptype)
5674 {
5675 case bp_none:
5676 break;
5677 case bp_breakpoint:
5678 case bp_hardware_breakpoint:
5679 case bp_single_step:
5680 case bp_until:
5681 case bp_finish:
5682 case bp_shlib_event:
5683 if (bs->stop)
5684 {
5685 if (bs->print)
5686 this_action = BPSTAT_WHAT_STOP_NOISY;
5687 else
5688 this_action = BPSTAT_WHAT_STOP_SILENT;
5689 }
5690 else
5691 this_action = BPSTAT_WHAT_SINGLE;
5692 break;
5693 case bp_watchpoint:
5694 case bp_hardware_watchpoint:
5695 case bp_read_watchpoint:
5696 case bp_access_watchpoint:
5697 if (bs->stop)
5698 {
5699 if (bs->print)
5700 this_action = BPSTAT_WHAT_STOP_NOISY;
5701 else
5702 this_action = BPSTAT_WHAT_STOP_SILENT;
5703 }
5704 else
5705 {
5706 /* There was a watchpoint, but we're not stopping.
5707 This requires no further action. */
5708 }
5709 break;
5710 case bp_longjmp:
5711 case bp_longjmp_call_dummy:
5712 case bp_exception:
5713 if (bs->stop)
5714 {
5715 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5716 retval.is_longjmp = bptype != bp_exception;
5717 }
5718 else
5719 this_action = BPSTAT_WHAT_SINGLE;
5720 break;
5721 case bp_longjmp_resume:
5722 case bp_exception_resume:
5723 if (bs->stop)
5724 {
5725 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5726 retval.is_longjmp = bptype == bp_longjmp_resume;
5727 }
5728 else
5729 this_action = BPSTAT_WHAT_SINGLE;
5730 break;
5731 case bp_step_resume:
5732 if (bs->stop)
5733 this_action = BPSTAT_WHAT_STEP_RESUME;
5734 else
5735 {
5736 /* It is for the wrong frame. */
5737 this_action = BPSTAT_WHAT_SINGLE;
5738 }
5739 break;
5740 case bp_hp_step_resume:
5741 if (bs->stop)
5742 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5743 else
5744 {
5745 /* It is for the wrong frame. */
5746 this_action = BPSTAT_WHAT_SINGLE;
5747 }
5748 break;
5749 case bp_watchpoint_scope:
5750 case bp_thread_event:
5751 case bp_overlay_event:
5752 case bp_longjmp_master:
5753 case bp_std_terminate_master:
5754 case bp_exception_master:
5755 this_action = BPSTAT_WHAT_SINGLE;
5756 break;
5757 case bp_catchpoint:
5758 if (bs->stop)
5759 {
5760 if (bs->print)
5761 this_action = BPSTAT_WHAT_STOP_NOISY;
5762 else
5763 this_action = BPSTAT_WHAT_STOP_SILENT;
5764 }
5765 else
5766 {
5767 /* There was a catchpoint, but we're not stopping.
5768 This requires no further action. */
5769 }
5770 break;
5771 case bp_jit_event:
5772 this_action = BPSTAT_WHAT_SINGLE;
5773 break;
5774 case bp_call_dummy:
5775 /* Make sure the action is stop (silent or noisy),
5776 so infrun.c pops the dummy frame. */
5777 retval.call_dummy = STOP_STACK_DUMMY;
5778 this_action = BPSTAT_WHAT_STOP_SILENT;
5779 break;
5780 case bp_std_terminate:
5781 /* Make sure the action is stop (silent or noisy),
5782 so infrun.c pops the dummy frame. */
5783 retval.call_dummy = STOP_STD_TERMINATE;
5784 this_action = BPSTAT_WHAT_STOP_SILENT;
5785 break;
5786 case bp_tracepoint:
5787 case bp_fast_tracepoint:
5788 case bp_static_tracepoint:
5789 /* Tracepoint hits should not be reported back to GDB, and
5790 if one got through somehow, it should have been filtered
5791 out already. */
5792 internal_error (__FILE__, __LINE__,
5793 _("bpstat_what: tracepoint encountered"));
5794 break;
5795 case bp_gnu_ifunc_resolver:
5796 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5797 this_action = BPSTAT_WHAT_SINGLE;
5798 break;
5799 case bp_gnu_ifunc_resolver_return:
5800 /* The breakpoint will be removed, execution will restart from the
5801 PC of the former breakpoint. */
5802 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5803 break;
5804
5805 case bp_dprintf:
5806 if (bs->stop)
5807 this_action = BPSTAT_WHAT_STOP_SILENT;
5808 else
5809 this_action = BPSTAT_WHAT_SINGLE;
5810 break;
5811
5812 default:
5813 internal_error (__FILE__, __LINE__,
5814 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5815 }
5816
5817 retval.main_action = std::max (retval.main_action, this_action);
5818 }
5819
5820 return retval;
5821 }
5822
5823 void
5824 bpstat_run_callbacks (bpstat bs_head)
5825 {
5826 bpstat bs;
5827
5828 for (bs = bs_head; bs != NULL; bs = bs->next)
5829 {
5830 struct breakpoint *b = bs->breakpoint_at;
5831
5832 if (b == NULL)
5833 continue;
5834 switch (b->type)
5835 {
5836 case bp_jit_event:
5837 handle_jit_event ();
5838 break;
5839 case bp_gnu_ifunc_resolver:
5840 gnu_ifunc_resolver_stop (b);
5841 break;
5842 case bp_gnu_ifunc_resolver_return:
5843 gnu_ifunc_resolver_return_stop (b);
5844 break;
5845 }
5846 }
5847 }
5848
5849 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5850 without hardware support). This isn't related to a specific bpstat,
5851 just to things like whether watchpoints are set. */
5852
5853 int
5854 bpstat_should_step (void)
5855 {
5856 struct breakpoint *b;
5857
5858 ALL_BREAKPOINTS (b)
5859 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5860 return 1;
5861 return 0;
5862 }
5863
5864 int
5865 bpstat_causes_stop (bpstat bs)
5866 {
5867 for (; bs != NULL; bs = bs->next)
5868 if (bs->stop)
5869 return 1;
5870
5871 return 0;
5872 }
5873
5874 \f
5875
5876 /* Compute a string of spaces suitable to indent the next line
5877 so it starts at the position corresponding to the table column
5878 named COL_NAME in the currently active table of UIOUT. */
5879
5880 static char *
5881 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5882 {
5883 static char wrap_indent[80];
5884 int i, total_width, width, align;
5885 const char *text;
5886
5887 total_width = 0;
5888 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5889 {
5890 if (strcmp (text, col_name) == 0)
5891 {
5892 gdb_assert (total_width < sizeof wrap_indent);
5893 memset (wrap_indent, ' ', total_width);
5894 wrap_indent[total_width] = 0;
5895
5896 return wrap_indent;
5897 }
5898
5899 total_width += width + 1;
5900 }
5901
5902 return NULL;
5903 }
5904
5905 /* Determine if the locations of this breakpoint will have their conditions
5906 evaluated by the target, host or a mix of both. Returns the following:
5907
5908 "host": Host evals condition.
5909 "host or target": Host or Target evals condition.
5910 "target": Target evals condition.
5911 */
5912
5913 static const char *
5914 bp_condition_evaluator (struct breakpoint *b)
5915 {
5916 struct bp_location *bl;
5917 char host_evals = 0;
5918 char target_evals = 0;
5919
5920 if (!b)
5921 return NULL;
5922
5923 if (!is_breakpoint (b))
5924 return NULL;
5925
5926 if (gdb_evaluates_breakpoint_condition_p ()
5927 || !target_supports_evaluation_of_breakpoint_conditions ())
5928 return condition_evaluation_host;
5929
5930 for (bl = b->loc; bl; bl = bl->next)
5931 {
5932 if (bl->cond_bytecode)
5933 target_evals++;
5934 else
5935 host_evals++;
5936 }
5937
5938 if (host_evals && target_evals)
5939 return condition_evaluation_both;
5940 else if (target_evals)
5941 return condition_evaluation_target;
5942 else
5943 return condition_evaluation_host;
5944 }
5945
5946 /* Determine the breakpoint location's condition evaluator. This is
5947 similar to bp_condition_evaluator, but for locations. */
5948
5949 static const char *
5950 bp_location_condition_evaluator (struct bp_location *bl)
5951 {
5952 if (bl && !is_breakpoint (bl->owner))
5953 return NULL;
5954
5955 if (gdb_evaluates_breakpoint_condition_p ()
5956 || !target_supports_evaluation_of_breakpoint_conditions ())
5957 return condition_evaluation_host;
5958
5959 if (bl && bl->cond_bytecode)
5960 return condition_evaluation_target;
5961 else
5962 return condition_evaluation_host;
5963 }
5964
5965 /* Print the LOC location out of the list of B->LOC locations. */
5966
5967 static void
5968 print_breakpoint_location (struct breakpoint *b,
5969 struct bp_location *loc)
5970 {
5971 struct ui_out *uiout = current_uiout;
5972
5973 scoped_restore_current_program_space restore_pspace;
5974
5975 if (loc != NULL && loc->shlib_disabled)
5976 loc = NULL;
5977
5978 if (loc != NULL)
5979 set_current_program_space (loc->pspace);
5980
5981 if (b->display_canonical)
5982 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5983 else if (loc && loc->symtab)
5984 {
5985 struct symbol *sym
5986 = find_pc_sect_function (loc->address, loc->section);
5987 if (sym)
5988 {
5989 uiout->text ("in ");
5990 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
5991 uiout->text (" ");
5992 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5993 uiout->text ("at ");
5994 }
5995 uiout->field_string ("file",
5996 symtab_to_filename_for_display (loc->symtab));
5997 uiout->text (":");
5998
5999 if (uiout->is_mi_like_p ())
6000 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
6001
6002 uiout->field_int ("line", loc->line_number);
6003 }
6004 else if (loc)
6005 {
6006 string_file stb;
6007
6008 print_address_symbolic (loc->gdbarch, loc->address, &stb,
6009 demangle, "");
6010 uiout->field_stream ("at", stb);
6011 }
6012 else
6013 {
6014 uiout->field_string ("pending",
6015 event_location_to_string (b->location.get ()));
6016 /* If extra_string is available, it could be holding a condition
6017 or dprintf arguments. In either case, make sure it is printed,
6018 too, but only for non-MI streams. */
6019 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
6020 {
6021 if (b->type == bp_dprintf)
6022 uiout->text (",");
6023 else
6024 uiout->text (" ");
6025 uiout->text (b->extra_string);
6026 }
6027 }
6028
6029 if (loc && is_breakpoint (b)
6030 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
6031 && bp_condition_evaluator (b) == condition_evaluation_both)
6032 {
6033 uiout->text (" (");
6034 uiout->field_string ("evaluated-by",
6035 bp_location_condition_evaluator (loc));
6036 uiout->text (")");
6037 }
6038 }
6039
6040 static const char *
6041 bptype_string (enum bptype type)
6042 {
6043 struct ep_type_description
6044 {
6045 enum bptype type;
6046 const char *description;
6047 };
6048 static struct ep_type_description bptypes[] =
6049 {
6050 {bp_none, "?deleted?"},
6051 {bp_breakpoint, "breakpoint"},
6052 {bp_hardware_breakpoint, "hw breakpoint"},
6053 {bp_single_step, "sw single-step"},
6054 {bp_until, "until"},
6055 {bp_finish, "finish"},
6056 {bp_watchpoint, "watchpoint"},
6057 {bp_hardware_watchpoint, "hw watchpoint"},
6058 {bp_read_watchpoint, "read watchpoint"},
6059 {bp_access_watchpoint, "acc watchpoint"},
6060 {bp_longjmp, "longjmp"},
6061 {bp_longjmp_resume, "longjmp resume"},
6062 {bp_longjmp_call_dummy, "longjmp for call dummy"},
6063 {bp_exception, "exception"},
6064 {bp_exception_resume, "exception resume"},
6065 {bp_step_resume, "step resume"},
6066 {bp_hp_step_resume, "high-priority step resume"},
6067 {bp_watchpoint_scope, "watchpoint scope"},
6068 {bp_call_dummy, "call dummy"},
6069 {bp_std_terminate, "std::terminate"},
6070 {bp_shlib_event, "shlib events"},
6071 {bp_thread_event, "thread events"},
6072 {bp_overlay_event, "overlay events"},
6073 {bp_longjmp_master, "longjmp master"},
6074 {bp_std_terminate_master, "std::terminate master"},
6075 {bp_exception_master, "exception master"},
6076 {bp_catchpoint, "catchpoint"},
6077 {bp_tracepoint, "tracepoint"},
6078 {bp_fast_tracepoint, "fast tracepoint"},
6079 {bp_static_tracepoint, "static tracepoint"},
6080 {bp_dprintf, "dprintf"},
6081 {bp_jit_event, "jit events"},
6082 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6083 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6084 };
6085
6086 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6087 || ((int) type != bptypes[(int) type].type))
6088 internal_error (__FILE__, __LINE__,
6089 _("bptypes table does not describe type #%d."),
6090 (int) type);
6091
6092 return bptypes[(int) type].description;
6093 }
6094
6095 /* For MI, output a field named 'thread-groups' with a list as the value.
6096 For CLI, prefix the list with the string 'inf'. */
6097
6098 static void
6099 output_thread_groups (struct ui_out *uiout,
6100 const char *field_name,
6101 VEC(int) *inf_num,
6102 int mi_only)
6103 {
6104 int is_mi = uiout->is_mi_like_p ();
6105 int inf;
6106 int i;
6107
6108 /* For backward compatibility, don't display inferiors in CLI unless
6109 there are several. Always display them for MI. */
6110 if (!is_mi && mi_only)
6111 return;
6112
6113 ui_out_emit_list list_emitter (uiout, field_name);
6114
6115 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
6116 {
6117 if (is_mi)
6118 {
6119 char mi_group[10];
6120
6121 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
6122 uiout->field_string (NULL, mi_group);
6123 }
6124 else
6125 {
6126 if (i == 0)
6127 uiout->text (" inf ");
6128 else
6129 uiout->text (", ");
6130
6131 uiout->text (plongest (inf));
6132 }
6133 }
6134 }
6135
6136 /* Print B to gdb_stdout. */
6137
6138 static void
6139 print_one_breakpoint_location (struct breakpoint *b,
6140 struct bp_location *loc,
6141 int loc_number,
6142 struct bp_location **last_loc,
6143 int allflag)
6144 {
6145 struct command_line *l;
6146 static char bpenables[] = "nynny";
6147
6148 struct ui_out *uiout = current_uiout;
6149 int header_of_multiple = 0;
6150 int part_of_multiple = (loc != NULL);
6151 struct value_print_options opts;
6152
6153 get_user_print_options (&opts);
6154
6155 gdb_assert (!loc || loc_number != 0);
6156 /* See comment in print_one_breakpoint concerning treatment of
6157 breakpoints with single disabled location. */
6158 if (loc == NULL
6159 && (b->loc != NULL
6160 && (b->loc->next != NULL || !b->loc->enabled)))
6161 header_of_multiple = 1;
6162 if (loc == NULL)
6163 loc = b->loc;
6164
6165 annotate_record ();
6166
6167 /* 1 */
6168 annotate_field (0);
6169 if (part_of_multiple)
6170 {
6171 char *formatted;
6172 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6173 uiout->field_string ("number", formatted);
6174 xfree (formatted);
6175 }
6176 else
6177 {
6178 uiout->field_int ("number", b->number);
6179 }
6180
6181 /* 2 */
6182 annotate_field (1);
6183 if (part_of_multiple)
6184 uiout->field_skip ("type");
6185 else
6186 uiout->field_string ("type", bptype_string (b->type));
6187
6188 /* 3 */
6189 annotate_field (2);
6190 if (part_of_multiple)
6191 uiout->field_skip ("disp");
6192 else
6193 uiout->field_string ("disp", bpdisp_text (b->disposition));
6194
6195
6196 /* 4 */
6197 annotate_field (3);
6198 if (part_of_multiple)
6199 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6200 else
6201 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6202 uiout->spaces (2);
6203
6204
6205 /* 5 and 6 */
6206 if (b->ops != NULL && b->ops->print_one != NULL)
6207 {
6208 /* Although the print_one can possibly print all locations,
6209 calling it here is not likely to get any nice result. So,
6210 make sure there's just one location. */
6211 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6212 b->ops->print_one (b, last_loc);
6213 }
6214 else
6215 switch (b->type)
6216 {
6217 case bp_none:
6218 internal_error (__FILE__, __LINE__,
6219 _("print_one_breakpoint: bp_none encountered\n"));
6220 break;
6221
6222 case bp_watchpoint:
6223 case bp_hardware_watchpoint:
6224 case bp_read_watchpoint:
6225 case bp_access_watchpoint:
6226 {
6227 struct watchpoint *w = (struct watchpoint *) b;
6228
6229 /* Field 4, the address, is omitted (which makes the columns
6230 not line up too nicely with the headers, but the effect
6231 is relatively readable). */
6232 if (opts.addressprint)
6233 uiout->field_skip ("addr");
6234 annotate_field (5);
6235 uiout->field_string ("what", w->exp_string);
6236 }
6237 break;
6238
6239 case bp_breakpoint:
6240 case bp_hardware_breakpoint:
6241 case bp_single_step:
6242 case bp_until:
6243 case bp_finish:
6244 case bp_longjmp:
6245 case bp_longjmp_resume:
6246 case bp_longjmp_call_dummy:
6247 case bp_exception:
6248 case bp_exception_resume:
6249 case bp_step_resume:
6250 case bp_hp_step_resume:
6251 case bp_watchpoint_scope:
6252 case bp_call_dummy:
6253 case bp_std_terminate:
6254 case bp_shlib_event:
6255 case bp_thread_event:
6256 case bp_overlay_event:
6257 case bp_longjmp_master:
6258 case bp_std_terminate_master:
6259 case bp_exception_master:
6260 case bp_tracepoint:
6261 case bp_fast_tracepoint:
6262 case bp_static_tracepoint:
6263 case bp_dprintf:
6264 case bp_jit_event:
6265 case bp_gnu_ifunc_resolver:
6266 case bp_gnu_ifunc_resolver_return:
6267 if (opts.addressprint)
6268 {
6269 annotate_field (4);
6270 if (header_of_multiple)
6271 uiout->field_string ("addr", "<MULTIPLE>");
6272 else if (b->loc == NULL || loc->shlib_disabled)
6273 uiout->field_string ("addr", "<PENDING>");
6274 else
6275 uiout->field_core_addr ("addr",
6276 loc->gdbarch, loc->address);
6277 }
6278 annotate_field (5);
6279 if (!header_of_multiple)
6280 print_breakpoint_location (b, loc);
6281 if (b->loc)
6282 *last_loc = b->loc;
6283 break;
6284 }
6285
6286
6287 if (loc != NULL && !header_of_multiple)
6288 {
6289 struct inferior *inf;
6290 VEC(int) *inf_num = NULL;
6291 int mi_only = 1;
6292
6293 ALL_INFERIORS (inf)
6294 {
6295 if (inf->pspace == loc->pspace)
6296 VEC_safe_push (int, inf_num, inf->num);
6297 }
6298
6299 /* For backward compatibility, don't display inferiors in CLI unless
6300 there are several. Always display for MI. */
6301 if (allflag
6302 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6303 && (number_of_program_spaces () > 1
6304 || number_of_inferiors () > 1)
6305 /* LOC is for existing B, it cannot be in
6306 moribund_locations and thus having NULL OWNER. */
6307 && loc->owner->type != bp_catchpoint))
6308 mi_only = 0;
6309 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6310 VEC_free (int, inf_num);
6311 }
6312
6313 if (!part_of_multiple)
6314 {
6315 if (b->thread != -1)
6316 {
6317 /* FIXME: This seems to be redundant and lost here; see the
6318 "stop only in" line a little further down. */
6319 uiout->text (" thread ");
6320 uiout->field_int ("thread", b->thread);
6321 }
6322 else if (b->task != 0)
6323 {
6324 uiout->text (" task ");
6325 uiout->field_int ("task", b->task);
6326 }
6327 }
6328
6329 uiout->text ("\n");
6330
6331 if (!part_of_multiple)
6332 b->ops->print_one_detail (b, uiout);
6333
6334 if (part_of_multiple && frame_id_p (b->frame_id))
6335 {
6336 annotate_field (6);
6337 uiout->text ("\tstop only in stack frame at ");
6338 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6339 the frame ID. */
6340 uiout->field_core_addr ("frame",
6341 b->gdbarch, b->frame_id.stack_addr);
6342 uiout->text ("\n");
6343 }
6344
6345 if (!part_of_multiple && b->cond_string)
6346 {
6347 annotate_field (7);
6348 if (is_tracepoint (b))
6349 uiout->text ("\ttrace only if ");
6350 else
6351 uiout->text ("\tstop only if ");
6352 uiout->field_string ("cond", b->cond_string);
6353
6354 /* Print whether the target is doing the breakpoint's condition
6355 evaluation. If GDB is doing the evaluation, don't print anything. */
6356 if (is_breakpoint (b)
6357 && breakpoint_condition_evaluation_mode ()
6358 == condition_evaluation_target)
6359 {
6360 uiout->text (" (");
6361 uiout->field_string ("evaluated-by",
6362 bp_condition_evaluator (b));
6363 uiout->text (" evals)");
6364 }
6365 uiout->text ("\n");
6366 }
6367
6368 if (!part_of_multiple && b->thread != -1)
6369 {
6370 /* FIXME should make an annotation for this. */
6371 uiout->text ("\tstop only in thread ");
6372 if (uiout->is_mi_like_p ())
6373 uiout->field_int ("thread", b->thread);
6374 else
6375 {
6376 struct thread_info *thr = find_thread_global_id (b->thread);
6377
6378 uiout->field_string ("thread", print_thread_id (thr));
6379 }
6380 uiout->text ("\n");
6381 }
6382
6383 if (!part_of_multiple)
6384 {
6385 if (b->hit_count)
6386 {
6387 /* FIXME should make an annotation for this. */
6388 if (is_catchpoint (b))
6389 uiout->text ("\tcatchpoint");
6390 else if (is_tracepoint (b))
6391 uiout->text ("\ttracepoint");
6392 else
6393 uiout->text ("\tbreakpoint");
6394 uiout->text (" already hit ");
6395 uiout->field_int ("times", b->hit_count);
6396 if (b->hit_count == 1)
6397 uiout->text (" time\n");
6398 else
6399 uiout->text (" times\n");
6400 }
6401 else
6402 {
6403 /* Output the count also if it is zero, but only if this is mi. */
6404 if (uiout->is_mi_like_p ())
6405 uiout->field_int ("times", b->hit_count);
6406 }
6407 }
6408
6409 if (!part_of_multiple && b->ignore_count)
6410 {
6411 annotate_field (8);
6412 uiout->text ("\tignore next ");
6413 uiout->field_int ("ignore", b->ignore_count);
6414 uiout->text (" hits\n");
6415 }
6416
6417 /* Note that an enable count of 1 corresponds to "enable once"
6418 behavior, which is reported by the combination of enablement and
6419 disposition, so we don't need to mention it here. */
6420 if (!part_of_multiple && b->enable_count > 1)
6421 {
6422 annotate_field (8);
6423 uiout->text ("\tdisable after ");
6424 /* Tweak the wording to clarify that ignore and enable counts
6425 are distinct, and have additive effect. */
6426 if (b->ignore_count)
6427 uiout->text ("additional ");
6428 else
6429 uiout->text ("next ");
6430 uiout->field_int ("enable", b->enable_count);
6431 uiout->text (" hits\n");
6432 }
6433
6434 if (!part_of_multiple && is_tracepoint (b))
6435 {
6436 struct tracepoint *tp = (struct tracepoint *) b;
6437
6438 if (tp->traceframe_usage)
6439 {
6440 uiout->text ("\ttrace buffer usage ");
6441 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6442 uiout->text (" bytes\n");
6443 }
6444 }
6445
6446 l = b->commands ? b->commands.get () : NULL;
6447 if (!part_of_multiple && l)
6448 {
6449 annotate_field (9);
6450 ui_out_emit_tuple tuple_emitter (uiout, "script");
6451 print_command_lines (uiout, l, 4);
6452 }
6453
6454 if (is_tracepoint (b))
6455 {
6456 struct tracepoint *t = (struct tracepoint *) b;
6457
6458 if (!part_of_multiple && t->pass_count)
6459 {
6460 annotate_field (10);
6461 uiout->text ("\tpass count ");
6462 uiout->field_int ("pass", t->pass_count);
6463 uiout->text (" \n");
6464 }
6465
6466 /* Don't display it when tracepoint or tracepoint location is
6467 pending. */
6468 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6469 {
6470 annotate_field (11);
6471
6472 if (uiout->is_mi_like_p ())
6473 uiout->field_string ("installed",
6474 loc->inserted ? "y" : "n");
6475 else
6476 {
6477 if (loc->inserted)
6478 uiout->text ("\t");
6479 else
6480 uiout->text ("\tnot ");
6481 uiout->text ("installed on target\n");
6482 }
6483 }
6484 }
6485
6486 if (uiout->is_mi_like_p () && !part_of_multiple)
6487 {
6488 if (is_watchpoint (b))
6489 {
6490 struct watchpoint *w = (struct watchpoint *) b;
6491
6492 uiout->field_string ("original-location", w->exp_string);
6493 }
6494 else if (b->location != NULL
6495 && event_location_to_string (b->location.get ()) != NULL)
6496 uiout->field_string ("original-location",
6497 event_location_to_string (b->location.get ()));
6498 }
6499 }
6500
6501 static void
6502 print_one_breakpoint (struct breakpoint *b,
6503 struct bp_location **last_loc,
6504 int allflag)
6505 {
6506 struct ui_out *uiout = current_uiout;
6507
6508 {
6509 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6510
6511 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6512 }
6513
6514 /* If this breakpoint has custom print function,
6515 it's already printed. Otherwise, print individual
6516 locations, if any. */
6517 if (b->ops == NULL || b->ops->print_one == NULL)
6518 {
6519 /* If breakpoint has a single location that is disabled, we
6520 print it as if it had several locations, since otherwise it's
6521 hard to represent "breakpoint enabled, location disabled"
6522 situation.
6523
6524 Note that while hardware watchpoints have several locations
6525 internally, that's not a property exposed to user. */
6526 if (b->loc
6527 && !is_hardware_watchpoint (b)
6528 && (b->loc->next || !b->loc->enabled))
6529 {
6530 struct bp_location *loc;
6531 int n = 1;
6532
6533 for (loc = b->loc; loc; loc = loc->next, ++n)
6534 {
6535 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6536 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6537 }
6538 }
6539 }
6540 }
6541
6542 static int
6543 breakpoint_address_bits (struct breakpoint *b)
6544 {
6545 int print_address_bits = 0;
6546 struct bp_location *loc;
6547
6548 /* Software watchpoints that aren't watching memory don't have an
6549 address to print. */
6550 if (is_no_memory_software_watchpoint (b))
6551 return 0;
6552
6553 for (loc = b->loc; loc; loc = loc->next)
6554 {
6555 int addr_bit;
6556
6557 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6558 if (addr_bit > print_address_bits)
6559 print_address_bits = addr_bit;
6560 }
6561
6562 return print_address_bits;
6563 }
6564
6565 /* See breakpoint.h. */
6566
6567 void
6568 print_breakpoint (breakpoint *b)
6569 {
6570 struct bp_location *dummy_loc = NULL;
6571 print_one_breakpoint (b, &dummy_loc, 0);
6572 }
6573
6574 /* Return true if this breakpoint was set by the user, false if it is
6575 internal or momentary. */
6576
6577 int
6578 user_breakpoint_p (struct breakpoint *b)
6579 {
6580 return b->number > 0;
6581 }
6582
6583 /* See breakpoint.h. */
6584
6585 int
6586 pending_breakpoint_p (struct breakpoint *b)
6587 {
6588 return b->loc == NULL;
6589 }
6590
6591 /* Print information on user settable breakpoint (watchpoint, etc)
6592 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6593 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6594 FILTER is non-NULL, call it on each breakpoint and only include the
6595 ones for which it returns non-zero. Return the total number of
6596 breakpoints listed. */
6597
6598 static int
6599 breakpoint_1 (const char *args, int allflag,
6600 int (*filter) (const struct breakpoint *))
6601 {
6602 struct breakpoint *b;
6603 struct bp_location *last_loc = NULL;
6604 int nr_printable_breakpoints;
6605 struct value_print_options opts;
6606 int print_address_bits = 0;
6607 int print_type_col_width = 14;
6608 struct ui_out *uiout = current_uiout;
6609
6610 get_user_print_options (&opts);
6611
6612 /* Compute the number of rows in the table, as well as the size
6613 required for address fields. */
6614 nr_printable_breakpoints = 0;
6615 ALL_BREAKPOINTS (b)
6616 {
6617 /* If we have a filter, only list the breakpoints it accepts. */
6618 if (filter && !filter (b))
6619 continue;
6620
6621 /* If we have an "args" string, it is a list of breakpoints to
6622 accept. Skip the others. */
6623 if (args != NULL && *args != '\0')
6624 {
6625 if (allflag && parse_and_eval_long (args) != b->number)
6626 continue;
6627 if (!allflag && !number_is_in_list (args, b->number))
6628 continue;
6629 }
6630
6631 if (allflag || user_breakpoint_p (b))
6632 {
6633 int addr_bit, type_len;
6634
6635 addr_bit = breakpoint_address_bits (b);
6636 if (addr_bit > print_address_bits)
6637 print_address_bits = addr_bit;
6638
6639 type_len = strlen (bptype_string (b->type));
6640 if (type_len > print_type_col_width)
6641 print_type_col_width = type_len;
6642
6643 nr_printable_breakpoints++;
6644 }
6645 }
6646
6647 {
6648 ui_out_emit_table table_emitter (uiout,
6649 opts.addressprint ? 6 : 5,
6650 nr_printable_breakpoints,
6651 "BreakpointTable");
6652
6653 if (nr_printable_breakpoints > 0)
6654 annotate_breakpoints_headers ();
6655 if (nr_printable_breakpoints > 0)
6656 annotate_field (0);
6657 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6658 if (nr_printable_breakpoints > 0)
6659 annotate_field (1);
6660 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6661 if (nr_printable_breakpoints > 0)
6662 annotate_field (2);
6663 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6664 if (nr_printable_breakpoints > 0)
6665 annotate_field (3);
6666 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6667 if (opts.addressprint)
6668 {
6669 if (nr_printable_breakpoints > 0)
6670 annotate_field (4);
6671 if (print_address_bits <= 32)
6672 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6673 else
6674 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6675 }
6676 if (nr_printable_breakpoints > 0)
6677 annotate_field (5);
6678 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6679 uiout->table_body ();
6680 if (nr_printable_breakpoints > 0)
6681 annotate_breakpoints_table ();
6682
6683 ALL_BREAKPOINTS (b)
6684 {
6685 QUIT;
6686 /* If we have a filter, only list the breakpoints it accepts. */
6687 if (filter && !filter (b))
6688 continue;
6689
6690 /* If we have an "args" string, it is a list of breakpoints to
6691 accept. Skip the others. */
6692
6693 if (args != NULL && *args != '\0')
6694 {
6695 if (allflag) /* maintenance info breakpoint */
6696 {
6697 if (parse_and_eval_long (args) != b->number)
6698 continue;
6699 }
6700 else /* all others */
6701 {
6702 if (!number_is_in_list (args, b->number))
6703 continue;
6704 }
6705 }
6706 /* We only print out user settable breakpoints unless the
6707 allflag is set. */
6708 if (allflag || user_breakpoint_p (b))
6709 print_one_breakpoint (b, &last_loc, allflag);
6710 }
6711 }
6712
6713 if (nr_printable_breakpoints == 0)
6714 {
6715 /* If there's a filter, let the caller decide how to report
6716 empty list. */
6717 if (!filter)
6718 {
6719 if (args == NULL || *args == '\0')
6720 uiout->message ("No breakpoints or watchpoints.\n");
6721 else
6722 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6723 args);
6724 }
6725 }
6726 else
6727 {
6728 if (last_loc && !server_command)
6729 set_next_address (last_loc->gdbarch, last_loc->address);
6730 }
6731
6732 /* FIXME? Should this be moved up so that it is only called when
6733 there have been breakpoints? */
6734 annotate_breakpoints_table_end ();
6735
6736 return nr_printable_breakpoints;
6737 }
6738
6739 /* Display the value of default-collect in a way that is generally
6740 compatible with the breakpoint list. */
6741
6742 static void
6743 default_collect_info (void)
6744 {
6745 struct ui_out *uiout = current_uiout;
6746
6747 /* If it has no value (which is frequently the case), say nothing; a
6748 message like "No default-collect." gets in user's face when it's
6749 not wanted. */
6750 if (!*default_collect)
6751 return;
6752
6753 /* The following phrase lines up nicely with per-tracepoint collect
6754 actions. */
6755 uiout->text ("default collect ");
6756 uiout->field_string ("default-collect", default_collect);
6757 uiout->text (" \n");
6758 }
6759
6760 static void
6761 info_breakpoints_command (char *args, int from_tty)
6762 {
6763 breakpoint_1 (args, 0, NULL);
6764
6765 default_collect_info ();
6766 }
6767
6768 static void
6769 info_watchpoints_command (char *args, int from_tty)
6770 {
6771 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6772 struct ui_out *uiout = current_uiout;
6773
6774 if (num_printed == 0)
6775 {
6776 if (args == NULL || *args == '\0')
6777 uiout->message ("No watchpoints.\n");
6778 else
6779 uiout->message ("No watchpoint matching '%s'.\n", args);
6780 }
6781 }
6782
6783 static void
6784 maintenance_info_breakpoints (const char *args, int from_tty)
6785 {
6786 breakpoint_1 (args, 1, NULL);
6787
6788 default_collect_info ();
6789 }
6790
6791 static int
6792 breakpoint_has_pc (struct breakpoint *b,
6793 struct program_space *pspace,
6794 CORE_ADDR pc, struct obj_section *section)
6795 {
6796 struct bp_location *bl = b->loc;
6797
6798 for (; bl; bl = bl->next)
6799 {
6800 if (bl->pspace == pspace
6801 && bl->address == pc
6802 && (!overlay_debugging || bl->section == section))
6803 return 1;
6804 }
6805 return 0;
6806 }
6807
6808 /* Print a message describing any user-breakpoints set at PC. This
6809 concerns with logical breakpoints, so we match program spaces, not
6810 address spaces. */
6811
6812 static void
6813 describe_other_breakpoints (struct gdbarch *gdbarch,
6814 struct program_space *pspace, CORE_ADDR pc,
6815 struct obj_section *section, int thread)
6816 {
6817 int others = 0;
6818 struct breakpoint *b;
6819
6820 ALL_BREAKPOINTS (b)
6821 others += (user_breakpoint_p (b)
6822 && breakpoint_has_pc (b, pspace, pc, section));
6823 if (others > 0)
6824 {
6825 if (others == 1)
6826 printf_filtered (_("Note: breakpoint "));
6827 else /* if (others == ???) */
6828 printf_filtered (_("Note: breakpoints "));
6829 ALL_BREAKPOINTS (b)
6830 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6831 {
6832 others--;
6833 printf_filtered ("%d", b->number);
6834 if (b->thread == -1 && thread != -1)
6835 printf_filtered (" (all threads)");
6836 else if (b->thread != -1)
6837 printf_filtered (" (thread %d)", b->thread);
6838 printf_filtered ("%s%s ",
6839 ((b->enable_state == bp_disabled
6840 || b->enable_state == bp_call_disabled)
6841 ? " (disabled)"
6842 : ""),
6843 (others > 1) ? ","
6844 : ((others == 1) ? " and" : ""));
6845 }
6846 printf_filtered (_("also set at pc "));
6847 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6848 printf_filtered (".\n");
6849 }
6850 }
6851 \f
6852
6853 /* Return true iff it is meaningful to use the address member of
6854 BPT locations. For some breakpoint types, the locations' address members
6855 are irrelevant and it makes no sense to attempt to compare them to other
6856 addresses (or use them for any other purpose either).
6857
6858 More specifically, each of the following breakpoint types will
6859 always have a zero valued location address and we don't want to mark
6860 breakpoints of any of these types to be a duplicate of an actual
6861 breakpoint location at address zero:
6862
6863 bp_watchpoint
6864 bp_catchpoint
6865
6866 */
6867
6868 static int
6869 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6870 {
6871 enum bptype type = bpt->type;
6872
6873 return (type != bp_watchpoint && type != bp_catchpoint);
6874 }
6875
6876 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6877 true if LOC1 and LOC2 represent the same watchpoint location. */
6878
6879 static int
6880 watchpoint_locations_match (struct bp_location *loc1,
6881 struct bp_location *loc2)
6882 {
6883 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6884 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6885
6886 /* Both of them must exist. */
6887 gdb_assert (w1 != NULL);
6888 gdb_assert (w2 != NULL);
6889
6890 /* If the target can evaluate the condition expression in hardware,
6891 then we we need to insert both watchpoints even if they are at
6892 the same place. Otherwise the watchpoint will only trigger when
6893 the condition of whichever watchpoint was inserted evaluates to
6894 true, not giving a chance for GDB to check the condition of the
6895 other watchpoint. */
6896 if ((w1->cond_exp
6897 && target_can_accel_watchpoint_condition (loc1->address,
6898 loc1->length,
6899 loc1->watchpoint_type,
6900 w1->cond_exp.get ()))
6901 || (w2->cond_exp
6902 && target_can_accel_watchpoint_condition (loc2->address,
6903 loc2->length,
6904 loc2->watchpoint_type,
6905 w2->cond_exp.get ())))
6906 return 0;
6907
6908 /* Note that this checks the owner's type, not the location's. In
6909 case the target does not support read watchpoints, but does
6910 support access watchpoints, we'll have bp_read_watchpoint
6911 watchpoints with hw_access locations. Those should be considered
6912 duplicates of hw_read locations. The hw_read locations will
6913 become hw_access locations later. */
6914 return (loc1->owner->type == loc2->owner->type
6915 && loc1->pspace->aspace == loc2->pspace->aspace
6916 && loc1->address == loc2->address
6917 && loc1->length == loc2->length);
6918 }
6919
6920 /* See breakpoint.h. */
6921
6922 int
6923 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6924 struct address_space *aspace2, CORE_ADDR addr2)
6925 {
6926 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6927 || aspace1 == aspace2)
6928 && addr1 == addr2);
6929 }
6930
6931 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6932 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6933 matches ASPACE2. On targets that have global breakpoints, the address
6934 space doesn't really matter. */
6935
6936 static int
6937 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6938 int len1, struct address_space *aspace2,
6939 CORE_ADDR addr2)
6940 {
6941 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6942 || aspace1 == aspace2)
6943 && addr2 >= addr1 && addr2 < addr1 + len1);
6944 }
6945
6946 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6947 a ranged breakpoint. In most targets, a match happens only if ASPACE
6948 matches the breakpoint's address space. On targets that have global
6949 breakpoints, the address space doesn't really matter. */
6950
6951 static int
6952 breakpoint_location_address_match (struct bp_location *bl,
6953 struct address_space *aspace,
6954 CORE_ADDR addr)
6955 {
6956 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6957 aspace, addr)
6958 || (bl->length
6959 && breakpoint_address_match_range (bl->pspace->aspace,
6960 bl->address, bl->length,
6961 aspace, addr)));
6962 }
6963
6964 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6965 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6966 match happens only if ASPACE matches the breakpoint's address
6967 space. On targets that have global breakpoints, the address space
6968 doesn't really matter. */
6969
6970 static int
6971 breakpoint_location_address_range_overlap (struct bp_location *bl,
6972 struct address_space *aspace,
6973 CORE_ADDR addr, int len)
6974 {
6975 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6976 || bl->pspace->aspace == aspace)
6977 {
6978 int bl_len = bl->length != 0 ? bl->length : 1;
6979
6980 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6981 return 1;
6982 }
6983 return 0;
6984 }
6985
6986 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6987 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6988 true, otherwise returns false. */
6989
6990 static int
6991 tracepoint_locations_match (struct bp_location *loc1,
6992 struct bp_location *loc2)
6993 {
6994 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6995 /* Since tracepoint locations are never duplicated with others', tracepoint
6996 locations at the same address of different tracepoints are regarded as
6997 different locations. */
6998 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6999 else
7000 return 0;
7001 }
7002
7003 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
7004 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
7005 represent the same location. */
7006
7007 static int
7008 breakpoint_locations_match (struct bp_location *loc1,
7009 struct bp_location *loc2)
7010 {
7011 int hw_point1, hw_point2;
7012
7013 /* Both of them must not be in moribund_locations. */
7014 gdb_assert (loc1->owner != NULL);
7015 gdb_assert (loc2->owner != NULL);
7016
7017 hw_point1 = is_hardware_watchpoint (loc1->owner);
7018 hw_point2 = is_hardware_watchpoint (loc2->owner);
7019
7020 if (hw_point1 != hw_point2)
7021 return 0;
7022 else if (hw_point1)
7023 return watchpoint_locations_match (loc1, loc2);
7024 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
7025 return tracepoint_locations_match (loc1, loc2);
7026 else
7027 /* We compare bp_location.length in order to cover ranged breakpoints. */
7028 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
7029 loc2->pspace->aspace, loc2->address)
7030 && loc1->length == loc2->length);
7031 }
7032
7033 static void
7034 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
7035 int bnum, int have_bnum)
7036 {
7037 /* The longest string possibly returned by hex_string_custom
7038 is 50 chars. These must be at least that big for safety. */
7039 char astr1[64];
7040 char astr2[64];
7041
7042 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
7043 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
7044 if (have_bnum)
7045 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
7046 bnum, astr1, astr2);
7047 else
7048 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
7049 }
7050
7051 /* Adjust a breakpoint's address to account for architectural
7052 constraints on breakpoint placement. Return the adjusted address.
7053 Note: Very few targets require this kind of adjustment. For most
7054 targets, this function is simply the identity function. */
7055
7056 static CORE_ADDR
7057 adjust_breakpoint_address (struct gdbarch *gdbarch,
7058 CORE_ADDR bpaddr, enum bptype bptype)
7059 {
7060 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
7061 {
7062 /* Very few targets need any kind of breakpoint adjustment. */
7063 return bpaddr;
7064 }
7065 else if (bptype == bp_watchpoint
7066 || bptype == bp_hardware_watchpoint
7067 || bptype == bp_read_watchpoint
7068 || bptype == bp_access_watchpoint
7069 || bptype == bp_catchpoint)
7070 {
7071 /* Watchpoints and the various bp_catch_* eventpoints should not
7072 have their addresses modified. */
7073 return bpaddr;
7074 }
7075 else if (bptype == bp_single_step)
7076 {
7077 /* Single-step breakpoints should not have their addresses
7078 modified. If there's any architectural constrain that
7079 applies to this address, then it should have already been
7080 taken into account when the breakpoint was created in the
7081 first place. If we didn't do this, stepping through e.g.,
7082 Thumb-2 IT blocks would break. */
7083 return bpaddr;
7084 }
7085 else
7086 {
7087 CORE_ADDR adjusted_bpaddr;
7088
7089 /* Some targets have architectural constraints on the placement
7090 of breakpoint instructions. Obtain the adjusted address. */
7091 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7092
7093 /* An adjusted breakpoint address can significantly alter
7094 a user's expectations. Print a warning if an adjustment
7095 is required. */
7096 if (adjusted_bpaddr != bpaddr)
7097 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7098
7099 return adjusted_bpaddr;
7100 }
7101 }
7102
7103 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
7104 {
7105 bp_location *loc = this;
7106
7107 gdb_assert (ops != NULL);
7108
7109 loc->ops = ops;
7110 loc->owner = owner;
7111 loc->cond_bytecode = NULL;
7112 loc->shlib_disabled = 0;
7113 loc->enabled = 1;
7114
7115 switch (owner->type)
7116 {
7117 case bp_breakpoint:
7118 case bp_single_step:
7119 case bp_until:
7120 case bp_finish:
7121 case bp_longjmp:
7122 case bp_longjmp_resume:
7123 case bp_longjmp_call_dummy:
7124 case bp_exception:
7125 case bp_exception_resume:
7126 case bp_step_resume:
7127 case bp_hp_step_resume:
7128 case bp_watchpoint_scope:
7129 case bp_call_dummy:
7130 case bp_std_terminate:
7131 case bp_shlib_event:
7132 case bp_thread_event:
7133 case bp_overlay_event:
7134 case bp_jit_event:
7135 case bp_longjmp_master:
7136 case bp_std_terminate_master:
7137 case bp_exception_master:
7138 case bp_gnu_ifunc_resolver:
7139 case bp_gnu_ifunc_resolver_return:
7140 case bp_dprintf:
7141 loc->loc_type = bp_loc_software_breakpoint;
7142 mark_breakpoint_location_modified (loc);
7143 break;
7144 case bp_hardware_breakpoint:
7145 loc->loc_type = bp_loc_hardware_breakpoint;
7146 mark_breakpoint_location_modified (loc);
7147 break;
7148 case bp_hardware_watchpoint:
7149 case bp_read_watchpoint:
7150 case bp_access_watchpoint:
7151 loc->loc_type = bp_loc_hardware_watchpoint;
7152 break;
7153 case bp_watchpoint:
7154 case bp_catchpoint:
7155 case bp_tracepoint:
7156 case bp_fast_tracepoint:
7157 case bp_static_tracepoint:
7158 loc->loc_type = bp_loc_other;
7159 break;
7160 default:
7161 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7162 }
7163
7164 loc->refc = 1;
7165 }
7166
7167 /* Allocate a struct bp_location. */
7168
7169 static struct bp_location *
7170 allocate_bp_location (struct breakpoint *bpt)
7171 {
7172 return bpt->ops->allocate_location (bpt);
7173 }
7174
7175 static void
7176 free_bp_location (struct bp_location *loc)
7177 {
7178 loc->ops->dtor (loc);
7179 delete loc;
7180 }
7181
7182 /* Increment reference count. */
7183
7184 static void
7185 incref_bp_location (struct bp_location *bl)
7186 {
7187 ++bl->refc;
7188 }
7189
7190 /* Decrement reference count. If the reference count reaches 0,
7191 destroy the bp_location. Sets *BLP to NULL. */
7192
7193 static void
7194 decref_bp_location (struct bp_location **blp)
7195 {
7196 gdb_assert ((*blp)->refc > 0);
7197
7198 if (--(*blp)->refc == 0)
7199 free_bp_location (*blp);
7200 *blp = NULL;
7201 }
7202
7203 /* Add breakpoint B at the end of the global breakpoint chain. */
7204
7205 static breakpoint *
7206 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7207 {
7208 struct breakpoint *b1;
7209 struct breakpoint *result = b.get ();
7210
7211 /* Add this breakpoint to the end of the chain so that a list of
7212 breakpoints will come out in order of increasing numbers. */
7213
7214 b1 = breakpoint_chain;
7215 if (b1 == 0)
7216 breakpoint_chain = b.release ();
7217 else
7218 {
7219 while (b1->next)
7220 b1 = b1->next;
7221 b1->next = b.release ();
7222 }
7223
7224 return result;
7225 }
7226
7227 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7228
7229 static void
7230 init_raw_breakpoint_without_location (struct breakpoint *b,
7231 struct gdbarch *gdbarch,
7232 enum bptype bptype,
7233 const struct breakpoint_ops *ops)
7234 {
7235 gdb_assert (ops != NULL);
7236
7237 b->ops = ops;
7238 b->type = bptype;
7239 b->gdbarch = gdbarch;
7240 b->language = current_language->la_language;
7241 b->input_radix = input_radix;
7242 b->related_breakpoint = b;
7243 }
7244
7245 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7246 that has type BPTYPE and has no locations as yet. */
7247
7248 static struct breakpoint *
7249 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7250 enum bptype bptype,
7251 const struct breakpoint_ops *ops)
7252 {
7253 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7254
7255 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7256 return add_to_breakpoint_chain (std::move (b));
7257 }
7258
7259 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7260 resolutions should be made as the user specified the location explicitly
7261 enough. */
7262
7263 static void
7264 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7265 {
7266 gdb_assert (loc->owner != NULL);
7267
7268 if (loc->owner->type == bp_breakpoint
7269 || loc->owner->type == bp_hardware_breakpoint
7270 || is_tracepoint (loc->owner))
7271 {
7272 int is_gnu_ifunc;
7273 const char *function_name;
7274 CORE_ADDR func_addr;
7275
7276 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7277 &func_addr, NULL, &is_gnu_ifunc);
7278
7279 if (is_gnu_ifunc && !explicit_loc)
7280 {
7281 struct breakpoint *b = loc->owner;
7282
7283 gdb_assert (loc->pspace == current_program_space);
7284 if (gnu_ifunc_resolve_name (function_name,
7285 &loc->requested_address))
7286 {
7287 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7288 loc->address = adjust_breakpoint_address (loc->gdbarch,
7289 loc->requested_address,
7290 b->type);
7291 }
7292 else if (b->type == bp_breakpoint && b->loc == loc
7293 && loc->next == NULL && b->related_breakpoint == b)
7294 {
7295 /* Create only the whole new breakpoint of this type but do not
7296 mess more complicated breakpoints with multiple locations. */
7297 b->type = bp_gnu_ifunc_resolver;
7298 /* Remember the resolver's address for use by the return
7299 breakpoint. */
7300 loc->related_address = func_addr;
7301 }
7302 }
7303
7304 if (function_name)
7305 loc->function_name = xstrdup (function_name);
7306 }
7307 }
7308
7309 /* Attempt to determine architecture of location identified by SAL. */
7310 struct gdbarch *
7311 get_sal_arch (struct symtab_and_line sal)
7312 {
7313 if (sal.section)
7314 return get_objfile_arch (sal.section->objfile);
7315 if (sal.symtab)
7316 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7317
7318 return NULL;
7319 }
7320
7321 /* Low level routine for partially initializing a breakpoint of type
7322 BPTYPE. The newly created breakpoint's address, section, source
7323 file name, and line number are provided by SAL.
7324
7325 It is expected that the caller will complete the initialization of
7326 the newly created breakpoint struct as well as output any status
7327 information regarding the creation of a new breakpoint. */
7328
7329 static void
7330 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7331 struct symtab_and_line sal, enum bptype bptype,
7332 const struct breakpoint_ops *ops)
7333 {
7334 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7335
7336 add_location_to_breakpoint (b, &sal);
7337
7338 if (bptype != bp_catchpoint)
7339 gdb_assert (sal.pspace != NULL);
7340
7341 /* Store the program space that was used to set the breakpoint,
7342 except for ordinary breakpoints, which are independent of the
7343 program space. */
7344 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7345 b->pspace = sal.pspace;
7346 }
7347
7348 /* set_raw_breakpoint is a low level routine for allocating and
7349 partially initializing a breakpoint of type BPTYPE. The newly
7350 created breakpoint's address, section, source file name, and line
7351 number are provided by SAL. The newly created and partially
7352 initialized breakpoint is added to the breakpoint chain and
7353 is also returned as the value of this function.
7354
7355 It is expected that the caller will complete the initialization of
7356 the newly created breakpoint struct as well as output any status
7357 information regarding the creation of a new breakpoint. In
7358 particular, set_raw_breakpoint does NOT set the breakpoint
7359 number! Care should be taken to not allow an error to occur
7360 prior to completing the initialization of the breakpoint. If this
7361 should happen, a bogus breakpoint will be left on the chain. */
7362
7363 struct breakpoint *
7364 set_raw_breakpoint (struct gdbarch *gdbarch,
7365 struct symtab_and_line sal, enum bptype bptype,
7366 const struct breakpoint_ops *ops)
7367 {
7368 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7369
7370 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7371 return add_to_breakpoint_chain (std::move (b));
7372 }
7373
7374 /* Call this routine when stepping and nexting to enable a breakpoint
7375 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7376 initiated the operation. */
7377
7378 void
7379 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7380 {
7381 struct breakpoint *b, *b_tmp;
7382 int thread = tp->global_num;
7383
7384 /* To avoid having to rescan all objfile symbols at every step,
7385 we maintain a list of continually-inserted but always disabled
7386 longjmp "master" breakpoints. Here, we simply create momentary
7387 clones of those and enable them for the requested thread. */
7388 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7389 if (b->pspace == current_program_space
7390 && (b->type == bp_longjmp_master
7391 || b->type == bp_exception_master))
7392 {
7393 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7394 struct breakpoint *clone;
7395
7396 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7397 after their removal. */
7398 clone = momentary_breakpoint_from_master (b, type,
7399 &momentary_breakpoint_ops, 1);
7400 clone->thread = thread;
7401 }
7402
7403 tp->initiating_frame = frame;
7404 }
7405
7406 /* Delete all longjmp breakpoints from THREAD. */
7407 void
7408 delete_longjmp_breakpoint (int thread)
7409 {
7410 struct breakpoint *b, *b_tmp;
7411
7412 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7413 if (b->type == bp_longjmp || b->type == bp_exception)
7414 {
7415 if (b->thread == thread)
7416 delete_breakpoint (b);
7417 }
7418 }
7419
7420 void
7421 delete_longjmp_breakpoint_at_next_stop (int thread)
7422 {
7423 struct breakpoint *b, *b_tmp;
7424
7425 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7426 if (b->type == bp_longjmp || b->type == bp_exception)
7427 {
7428 if (b->thread == thread)
7429 b->disposition = disp_del_at_next_stop;
7430 }
7431 }
7432
7433 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7434 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7435 pointer to any of them. Return NULL if this system cannot place longjmp
7436 breakpoints. */
7437
7438 struct breakpoint *
7439 set_longjmp_breakpoint_for_call_dummy (void)
7440 {
7441 struct breakpoint *b, *retval = NULL;
7442
7443 ALL_BREAKPOINTS (b)
7444 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7445 {
7446 struct breakpoint *new_b;
7447
7448 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7449 &momentary_breakpoint_ops,
7450 1);
7451 new_b->thread = ptid_to_global_thread_id (inferior_ptid);
7452
7453 /* Link NEW_B into the chain of RETVAL breakpoints. */
7454
7455 gdb_assert (new_b->related_breakpoint == new_b);
7456 if (retval == NULL)
7457 retval = new_b;
7458 new_b->related_breakpoint = retval;
7459 while (retval->related_breakpoint != new_b->related_breakpoint)
7460 retval = retval->related_breakpoint;
7461 retval->related_breakpoint = new_b;
7462 }
7463
7464 return retval;
7465 }
7466
7467 /* Verify all existing dummy frames and their associated breakpoints for
7468 TP. Remove those which can no longer be found in the current frame
7469 stack.
7470
7471 You should call this function only at places where it is safe to currently
7472 unwind the whole stack. Failed stack unwind would discard live dummy
7473 frames. */
7474
7475 void
7476 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7477 {
7478 struct breakpoint *b, *b_tmp;
7479
7480 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7481 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7482 {
7483 struct breakpoint *dummy_b = b->related_breakpoint;
7484
7485 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7486 dummy_b = dummy_b->related_breakpoint;
7487 if (dummy_b->type != bp_call_dummy
7488 || frame_find_by_id (dummy_b->frame_id) != NULL)
7489 continue;
7490
7491 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7492
7493 while (b->related_breakpoint != b)
7494 {
7495 if (b_tmp == b->related_breakpoint)
7496 b_tmp = b->related_breakpoint->next;
7497 delete_breakpoint (b->related_breakpoint);
7498 }
7499 delete_breakpoint (b);
7500 }
7501 }
7502
7503 void
7504 enable_overlay_breakpoints (void)
7505 {
7506 struct breakpoint *b;
7507
7508 ALL_BREAKPOINTS (b)
7509 if (b->type == bp_overlay_event)
7510 {
7511 b->enable_state = bp_enabled;
7512 update_global_location_list (UGLL_MAY_INSERT);
7513 overlay_events_enabled = 1;
7514 }
7515 }
7516
7517 void
7518 disable_overlay_breakpoints (void)
7519 {
7520 struct breakpoint *b;
7521
7522 ALL_BREAKPOINTS (b)
7523 if (b->type == bp_overlay_event)
7524 {
7525 b->enable_state = bp_disabled;
7526 update_global_location_list (UGLL_DONT_INSERT);
7527 overlay_events_enabled = 0;
7528 }
7529 }
7530
7531 /* Set an active std::terminate breakpoint for each std::terminate
7532 master breakpoint. */
7533 void
7534 set_std_terminate_breakpoint (void)
7535 {
7536 struct breakpoint *b, *b_tmp;
7537
7538 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7539 if (b->pspace == current_program_space
7540 && b->type == bp_std_terminate_master)
7541 {
7542 momentary_breakpoint_from_master (b, bp_std_terminate,
7543 &momentary_breakpoint_ops, 1);
7544 }
7545 }
7546
7547 /* Delete all the std::terminate breakpoints. */
7548 void
7549 delete_std_terminate_breakpoint (void)
7550 {
7551 struct breakpoint *b, *b_tmp;
7552
7553 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7554 if (b->type == bp_std_terminate)
7555 delete_breakpoint (b);
7556 }
7557
7558 struct breakpoint *
7559 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7560 {
7561 struct breakpoint *b;
7562
7563 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7564 &internal_breakpoint_ops);
7565
7566 b->enable_state = bp_enabled;
7567 /* location has to be used or breakpoint_re_set will delete me. */
7568 b->location = new_address_location (b->loc->address, NULL, 0);
7569
7570 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7571
7572 return b;
7573 }
7574
7575 struct lang_and_radix
7576 {
7577 enum language lang;
7578 int radix;
7579 };
7580
7581 /* Create a breakpoint for JIT code registration and unregistration. */
7582
7583 struct breakpoint *
7584 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7585 {
7586 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7587 &internal_breakpoint_ops);
7588 }
7589
7590 /* Remove JIT code registration and unregistration breakpoint(s). */
7591
7592 void
7593 remove_jit_event_breakpoints (void)
7594 {
7595 struct breakpoint *b, *b_tmp;
7596
7597 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7598 if (b->type == bp_jit_event
7599 && b->loc->pspace == current_program_space)
7600 delete_breakpoint (b);
7601 }
7602
7603 void
7604 remove_solib_event_breakpoints (void)
7605 {
7606 struct breakpoint *b, *b_tmp;
7607
7608 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7609 if (b->type == bp_shlib_event
7610 && b->loc->pspace == current_program_space)
7611 delete_breakpoint (b);
7612 }
7613
7614 /* See breakpoint.h. */
7615
7616 void
7617 remove_solib_event_breakpoints_at_next_stop (void)
7618 {
7619 struct breakpoint *b, *b_tmp;
7620
7621 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7622 if (b->type == bp_shlib_event
7623 && b->loc->pspace == current_program_space)
7624 b->disposition = disp_del_at_next_stop;
7625 }
7626
7627 /* Helper for create_solib_event_breakpoint /
7628 create_and_insert_solib_event_breakpoint. Allows specifying which
7629 INSERT_MODE to pass through to update_global_location_list. */
7630
7631 static struct breakpoint *
7632 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7633 enum ugll_insert_mode insert_mode)
7634 {
7635 struct breakpoint *b;
7636
7637 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7638 &internal_breakpoint_ops);
7639 update_global_location_list_nothrow (insert_mode);
7640 return b;
7641 }
7642
7643 struct breakpoint *
7644 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7645 {
7646 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7647 }
7648
7649 /* See breakpoint.h. */
7650
7651 struct breakpoint *
7652 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7653 {
7654 struct breakpoint *b;
7655
7656 /* Explicitly tell update_global_location_list to insert
7657 locations. */
7658 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7659 if (!b->loc->inserted)
7660 {
7661 delete_breakpoint (b);
7662 return NULL;
7663 }
7664 return b;
7665 }
7666
7667 /* Disable any breakpoints that are on code in shared libraries. Only
7668 apply to enabled breakpoints, disabled ones can just stay disabled. */
7669
7670 void
7671 disable_breakpoints_in_shlibs (void)
7672 {
7673 struct bp_location *loc, **locp_tmp;
7674
7675 ALL_BP_LOCATIONS (loc, locp_tmp)
7676 {
7677 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7678 struct breakpoint *b = loc->owner;
7679
7680 /* We apply the check to all breakpoints, including disabled for
7681 those with loc->duplicate set. This is so that when breakpoint
7682 becomes enabled, or the duplicate is removed, gdb will try to
7683 insert all breakpoints. If we don't set shlib_disabled here,
7684 we'll try to insert those breakpoints and fail. */
7685 if (((b->type == bp_breakpoint)
7686 || (b->type == bp_jit_event)
7687 || (b->type == bp_hardware_breakpoint)
7688 || (is_tracepoint (b)))
7689 && loc->pspace == current_program_space
7690 && !loc->shlib_disabled
7691 && solib_name_from_address (loc->pspace, loc->address)
7692 )
7693 {
7694 loc->shlib_disabled = 1;
7695 }
7696 }
7697 }
7698
7699 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7700 notification of unloaded_shlib. Only apply to enabled breakpoints,
7701 disabled ones can just stay disabled. */
7702
7703 static void
7704 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7705 {
7706 struct bp_location *loc, **locp_tmp;
7707 int disabled_shlib_breaks = 0;
7708
7709 ALL_BP_LOCATIONS (loc, locp_tmp)
7710 {
7711 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7712 struct breakpoint *b = loc->owner;
7713
7714 if (solib->pspace == loc->pspace
7715 && !loc->shlib_disabled
7716 && (((b->type == bp_breakpoint
7717 || b->type == bp_jit_event
7718 || b->type == bp_hardware_breakpoint)
7719 && (loc->loc_type == bp_loc_hardware_breakpoint
7720 || loc->loc_type == bp_loc_software_breakpoint))
7721 || is_tracepoint (b))
7722 && solib_contains_address_p (solib, loc->address))
7723 {
7724 loc->shlib_disabled = 1;
7725 /* At this point, we cannot rely on remove_breakpoint
7726 succeeding so we must mark the breakpoint as not inserted
7727 to prevent future errors occurring in remove_breakpoints. */
7728 loc->inserted = 0;
7729
7730 /* This may cause duplicate notifications for the same breakpoint. */
7731 observer_notify_breakpoint_modified (b);
7732
7733 if (!disabled_shlib_breaks)
7734 {
7735 target_terminal::ours_for_output ();
7736 warning (_("Temporarily disabling breakpoints "
7737 "for unloaded shared library \"%s\""),
7738 solib->so_name);
7739 }
7740 disabled_shlib_breaks = 1;
7741 }
7742 }
7743 }
7744
7745 /* Disable any breakpoints and tracepoints in OBJFILE upon
7746 notification of free_objfile. Only apply to enabled breakpoints,
7747 disabled ones can just stay disabled. */
7748
7749 static void
7750 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7751 {
7752 struct breakpoint *b;
7753
7754 if (objfile == NULL)
7755 return;
7756
7757 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7758 managed by the user with add-symbol-file/remove-symbol-file.
7759 Similarly to how breakpoints in shared libraries are handled in
7760 response to "nosharedlibrary", mark breakpoints in such modules
7761 shlib_disabled so they end up uninserted on the next global
7762 location list update. Shared libraries not loaded by the user
7763 aren't handled here -- they're already handled in
7764 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7765 solib_unloaded observer. We skip objfiles that are not
7766 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7767 main objfile). */
7768 if ((objfile->flags & OBJF_SHARED) == 0
7769 || (objfile->flags & OBJF_USERLOADED) == 0)
7770 return;
7771
7772 ALL_BREAKPOINTS (b)
7773 {
7774 struct bp_location *loc;
7775 int bp_modified = 0;
7776
7777 if (!is_breakpoint (b) && !is_tracepoint (b))
7778 continue;
7779
7780 for (loc = b->loc; loc != NULL; loc = loc->next)
7781 {
7782 CORE_ADDR loc_addr = loc->address;
7783
7784 if (loc->loc_type != bp_loc_hardware_breakpoint
7785 && loc->loc_type != bp_loc_software_breakpoint)
7786 continue;
7787
7788 if (loc->shlib_disabled != 0)
7789 continue;
7790
7791 if (objfile->pspace != loc->pspace)
7792 continue;
7793
7794 if (loc->loc_type != bp_loc_hardware_breakpoint
7795 && loc->loc_type != bp_loc_software_breakpoint)
7796 continue;
7797
7798 if (is_addr_in_objfile (loc_addr, objfile))
7799 {
7800 loc->shlib_disabled = 1;
7801 /* At this point, we don't know whether the object was
7802 unmapped from the inferior or not, so leave the
7803 inserted flag alone. We'll handle failure to
7804 uninsert quietly, in case the object was indeed
7805 unmapped. */
7806
7807 mark_breakpoint_location_modified (loc);
7808
7809 bp_modified = 1;
7810 }
7811 }
7812
7813 if (bp_modified)
7814 observer_notify_breakpoint_modified (b);
7815 }
7816 }
7817
7818 /* FORK & VFORK catchpoints. */
7819
7820 /* An instance of this type is used to represent a fork or vfork
7821 catchpoint. A breakpoint is really of this type iff its ops pointer points
7822 to CATCH_FORK_BREAKPOINT_OPS. */
7823
7824 struct fork_catchpoint : public breakpoint
7825 {
7826 /* Process id of a child process whose forking triggered this
7827 catchpoint. This field is only valid immediately after this
7828 catchpoint has triggered. */
7829 ptid_t forked_inferior_pid;
7830 };
7831
7832 /* Implement the "insert" breakpoint_ops method for fork
7833 catchpoints. */
7834
7835 static int
7836 insert_catch_fork (struct bp_location *bl)
7837 {
7838 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7839 }
7840
7841 /* Implement the "remove" breakpoint_ops method for fork
7842 catchpoints. */
7843
7844 static int
7845 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7846 {
7847 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7848 }
7849
7850 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7851 catchpoints. */
7852
7853 static int
7854 breakpoint_hit_catch_fork (const struct bp_location *bl,
7855 struct address_space *aspace, CORE_ADDR bp_addr,
7856 const struct target_waitstatus *ws)
7857 {
7858 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7859
7860 if (ws->kind != TARGET_WAITKIND_FORKED)
7861 return 0;
7862
7863 c->forked_inferior_pid = ws->value.related_pid;
7864 return 1;
7865 }
7866
7867 /* Implement the "print_it" breakpoint_ops method for fork
7868 catchpoints. */
7869
7870 static enum print_stop_action
7871 print_it_catch_fork (bpstat bs)
7872 {
7873 struct ui_out *uiout = current_uiout;
7874 struct breakpoint *b = bs->breakpoint_at;
7875 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7876
7877 annotate_catchpoint (b->number);
7878 maybe_print_thread_hit_breakpoint (uiout);
7879 if (b->disposition == disp_del)
7880 uiout->text ("Temporary catchpoint ");
7881 else
7882 uiout->text ("Catchpoint ");
7883 if (uiout->is_mi_like_p ())
7884 {
7885 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7886 uiout->field_string ("disp", bpdisp_text (b->disposition));
7887 }
7888 uiout->field_int ("bkptno", b->number);
7889 uiout->text (" (forked process ");
7890 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7891 uiout->text ("), ");
7892 return PRINT_SRC_AND_LOC;
7893 }
7894
7895 /* Implement the "print_one" breakpoint_ops method for fork
7896 catchpoints. */
7897
7898 static void
7899 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7900 {
7901 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7902 struct value_print_options opts;
7903 struct ui_out *uiout = current_uiout;
7904
7905 get_user_print_options (&opts);
7906
7907 /* Field 4, the address, is omitted (which makes the columns not
7908 line up too nicely with the headers, but the effect is relatively
7909 readable). */
7910 if (opts.addressprint)
7911 uiout->field_skip ("addr");
7912 annotate_field (5);
7913 uiout->text ("fork");
7914 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7915 {
7916 uiout->text (", process ");
7917 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7918 uiout->spaces (1);
7919 }
7920
7921 if (uiout->is_mi_like_p ())
7922 uiout->field_string ("catch-type", "fork");
7923 }
7924
7925 /* Implement the "print_mention" breakpoint_ops method for fork
7926 catchpoints. */
7927
7928 static void
7929 print_mention_catch_fork (struct breakpoint *b)
7930 {
7931 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7932 }
7933
7934 /* Implement the "print_recreate" breakpoint_ops method for fork
7935 catchpoints. */
7936
7937 static void
7938 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7939 {
7940 fprintf_unfiltered (fp, "catch fork");
7941 print_recreate_thread (b, fp);
7942 }
7943
7944 /* The breakpoint_ops structure to be used in fork catchpoints. */
7945
7946 static struct breakpoint_ops catch_fork_breakpoint_ops;
7947
7948 /* Implement the "insert" breakpoint_ops method for vfork
7949 catchpoints. */
7950
7951 static int
7952 insert_catch_vfork (struct bp_location *bl)
7953 {
7954 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7955 }
7956
7957 /* Implement the "remove" breakpoint_ops method for vfork
7958 catchpoints. */
7959
7960 static int
7961 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7962 {
7963 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7964 }
7965
7966 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7967 catchpoints. */
7968
7969 static int
7970 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7971 struct address_space *aspace, CORE_ADDR bp_addr,
7972 const struct target_waitstatus *ws)
7973 {
7974 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7975
7976 if (ws->kind != TARGET_WAITKIND_VFORKED)
7977 return 0;
7978
7979 c->forked_inferior_pid = ws->value.related_pid;
7980 return 1;
7981 }
7982
7983 /* Implement the "print_it" breakpoint_ops method for vfork
7984 catchpoints. */
7985
7986 static enum print_stop_action
7987 print_it_catch_vfork (bpstat bs)
7988 {
7989 struct ui_out *uiout = current_uiout;
7990 struct breakpoint *b = bs->breakpoint_at;
7991 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7992
7993 annotate_catchpoint (b->number);
7994 maybe_print_thread_hit_breakpoint (uiout);
7995 if (b->disposition == disp_del)
7996 uiout->text ("Temporary catchpoint ");
7997 else
7998 uiout->text ("Catchpoint ");
7999 if (uiout->is_mi_like_p ())
8000 {
8001 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
8002 uiout->field_string ("disp", bpdisp_text (b->disposition));
8003 }
8004 uiout->field_int ("bkptno", b->number);
8005 uiout->text (" (vforked process ");
8006 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
8007 uiout->text ("), ");
8008 return PRINT_SRC_AND_LOC;
8009 }
8010
8011 /* Implement the "print_one" breakpoint_ops method for vfork
8012 catchpoints. */
8013
8014 static void
8015 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
8016 {
8017 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8018 struct value_print_options opts;
8019 struct ui_out *uiout = current_uiout;
8020
8021 get_user_print_options (&opts);
8022 /* Field 4, the address, is omitted (which makes the columns not
8023 line up too nicely with the headers, but the effect is relatively
8024 readable). */
8025 if (opts.addressprint)
8026 uiout->field_skip ("addr");
8027 annotate_field (5);
8028 uiout->text ("vfork");
8029 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8030 {
8031 uiout->text (", process ");
8032 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
8033 uiout->spaces (1);
8034 }
8035
8036 if (uiout->is_mi_like_p ())
8037 uiout->field_string ("catch-type", "vfork");
8038 }
8039
8040 /* Implement the "print_mention" breakpoint_ops method for vfork
8041 catchpoints. */
8042
8043 static void
8044 print_mention_catch_vfork (struct breakpoint *b)
8045 {
8046 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
8047 }
8048
8049 /* Implement the "print_recreate" breakpoint_ops method for vfork
8050 catchpoints. */
8051
8052 static void
8053 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
8054 {
8055 fprintf_unfiltered (fp, "catch vfork");
8056 print_recreate_thread (b, fp);
8057 }
8058
8059 /* The breakpoint_ops structure to be used in vfork catchpoints. */
8060
8061 static struct breakpoint_ops catch_vfork_breakpoint_ops;
8062
8063 /* An instance of this type is used to represent an solib catchpoint.
8064 A breakpoint is really of this type iff its ops pointer points to
8065 CATCH_SOLIB_BREAKPOINT_OPS. */
8066
8067 struct solib_catchpoint : public breakpoint
8068 {
8069 ~solib_catchpoint () override;
8070
8071 /* True for "catch load", false for "catch unload". */
8072 unsigned char is_load;
8073
8074 /* Regular expression to match, if any. COMPILED is only valid when
8075 REGEX is non-NULL. */
8076 char *regex;
8077 std::unique_ptr<compiled_regex> compiled;
8078 };
8079
8080 solib_catchpoint::~solib_catchpoint ()
8081 {
8082 xfree (this->regex);
8083 }
8084
8085 static int
8086 insert_catch_solib (struct bp_location *ignore)
8087 {
8088 return 0;
8089 }
8090
8091 static int
8092 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
8093 {
8094 return 0;
8095 }
8096
8097 static int
8098 breakpoint_hit_catch_solib (const struct bp_location *bl,
8099 struct address_space *aspace,
8100 CORE_ADDR bp_addr,
8101 const struct target_waitstatus *ws)
8102 {
8103 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8104 struct breakpoint *other;
8105
8106 if (ws->kind == TARGET_WAITKIND_LOADED)
8107 return 1;
8108
8109 ALL_BREAKPOINTS (other)
8110 {
8111 struct bp_location *other_bl;
8112
8113 if (other == bl->owner)
8114 continue;
8115
8116 if (other->type != bp_shlib_event)
8117 continue;
8118
8119 if (self->pspace != NULL && other->pspace != self->pspace)
8120 continue;
8121
8122 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8123 {
8124 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8125 return 1;
8126 }
8127 }
8128
8129 return 0;
8130 }
8131
8132 static void
8133 check_status_catch_solib (struct bpstats *bs)
8134 {
8135 struct solib_catchpoint *self
8136 = (struct solib_catchpoint *) bs->breakpoint_at;
8137 int ix;
8138
8139 if (self->is_load)
8140 {
8141 struct so_list *iter;
8142
8143 for (ix = 0;
8144 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8145 ix, iter);
8146 ++ix)
8147 {
8148 if (!self->regex
8149 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8150 return;
8151 }
8152 }
8153 else
8154 {
8155 char *iter;
8156
8157 for (ix = 0;
8158 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8159 ix, iter);
8160 ++ix)
8161 {
8162 if (!self->regex
8163 || self->compiled->exec (iter, 0, NULL, 0) == 0)
8164 return;
8165 }
8166 }
8167
8168 bs->stop = 0;
8169 bs->print_it = print_it_noop;
8170 }
8171
8172 static enum print_stop_action
8173 print_it_catch_solib (bpstat bs)
8174 {
8175 struct breakpoint *b = bs->breakpoint_at;
8176 struct ui_out *uiout = current_uiout;
8177
8178 annotate_catchpoint (b->number);
8179 maybe_print_thread_hit_breakpoint (uiout);
8180 if (b->disposition == disp_del)
8181 uiout->text ("Temporary catchpoint ");
8182 else
8183 uiout->text ("Catchpoint ");
8184 uiout->field_int ("bkptno", b->number);
8185 uiout->text ("\n");
8186 if (uiout->is_mi_like_p ())
8187 uiout->field_string ("disp", bpdisp_text (b->disposition));
8188 print_solib_event (1);
8189 return PRINT_SRC_AND_LOC;
8190 }
8191
8192 static void
8193 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8194 {
8195 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8196 struct value_print_options opts;
8197 struct ui_out *uiout = current_uiout;
8198 char *msg;
8199
8200 get_user_print_options (&opts);
8201 /* Field 4, the address, is omitted (which makes the columns not
8202 line up too nicely with the headers, but the effect is relatively
8203 readable). */
8204 if (opts.addressprint)
8205 {
8206 annotate_field (4);
8207 uiout->field_skip ("addr");
8208 }
8209
8210 annotate_field (5);
8211 if (self->is_load)
8212 {
8213 if (self->regex)
8214 msg = xstrprintf (_("load of library matching %s"), self->regex);
8215 else
8216 msg = xstrdup (_("load of library"));
8217 }
8218 else
8219 {
8220 if (self->regex)
8221 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8222 else
8223 msg = xstrdup (_("unload of library"));
8224 }
8225 uiout->field_string ("what", msg);
8226 xfree (msg);
8227
8228 if (uiout->is_mi_like_p ())
8229 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8230 }
8231
8232 static void
8233 print_mention_catch_solib (struct breakpoint *b)
8234 {
8235 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8236
8237 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8238 self->is_load ? "load" : "unload");
8239 }
8240
8241 static void
8242 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8243 {
8244 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8245
8246 fprintf_unfiltered (fp, "%s %s",
8247 b->disposition == disp_del ? "tcatch" : "catch",
8248 self->is_load ? "load" : "unload");
8249 if (self->regex)
8250 fprintf_unfiltered (fp, " %s", self->regex);
8251 fprintf_unfiltered (fp, "\n");
8252 }
8253
8254 static struct breakpoint_ops catch_solib_breakpoint_ops;
8255
8256 /* Shared helper function (MI and CLI) for creating and installing
8257 a shared object event catchpoint. If IS_LOAD is non-zero then
8258 the events to be caught are load events, otherwise they are
8259 unload events. If IS_TEMP is non-zero the catchpoint is a
8260 temporary one. If ENABLED is non-zero the catchpoint is
8261 created in an enabled state. */
8262
8263 void
8264 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8265 {
8266 struct gdbarch *gdbarch = get_current_arch ();
8267
8268 if (!arg)
8269 arg = "";
8270 arg = skip_spaces (arg);
8271
8272 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8273
8274 if (*arg != '\0')
8275 {
8276 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8277 _("Invalid regexp")));
8278 c->regex = xstrdup (arg);
8279 }
8280
8281 c->is_load = is_load;
8282 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8283 &catch_solib_breakpoint_ops);
8284
8285 c->enable_state = enabled ? bp_enabled : bp_disabled;
8286
8287 install_breakpoint (0, std::move (c), 1);
8288 }
8289
8290 /* A helper function that does all the work for "catch load" and
8291 "catch unload". */
8292
8293 static void
8294 catch_load_or_unload (char *arg, int from_tty, int is_load,
8295 struct cmd_list_element *command)
8296 {
8297 int tempflag;
8298 const int enabled = 1;
8299
8300 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8301
8302 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8303 }
8304
8305 static void
8306 catch_load_command_1 (char *arg, int from_tty,
8307 struct cmd_list_element *command)
8308 {
8309 catch_load_or_unload (arg, from_tty, 1, command);
8310 }
8311
8312 static void
8313 catch_unload_command_1 (char *arg, int from_tty,
8314 struct cmd_list_element *command)
8315 {
8316 catch_load_or_unload (arg, from_tty, 0, command);
8317 }
8318
8319 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8320 is non-zero, then make the breakpoint temporary. If COND_STRING is
8321 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8322 the breakpoint_ops structure associated to the catchpoint. */
8323
8324 void
8325 init_catchpoint (struct breakpoint *b,
8326 struct gdbarch *gdbarch, int tempflag,
8327 const char *cond_string,
8328 const struct breakpoint_ops *ops)
8329 {
8330 symtab_and_line sal;
8331 sal.pspace = current_program_space;
8332
8333 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8334
8335 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8336 b->disposition = tempflag ? disp_del : disp_donttouch;
8337 }
8338
8339 void
8340 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8341 {
8342 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8343 set_breakpoint_number (internal, b);
8344 if (is_tracepoint (b))
8345 set_tracepoint_count (breakpoint_count);
8346 if (!internal)
8347 mention (b);
8348 observer_notify_breakpoint_created (b);
8349
8350 if (update_gll)
8351 update_global_location_list (UGLL_MAY_INSERT);
8352 }
8353
8354 static void
8355 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8356 int tempflag, const char *cond_string,
8357 const struct breakpoint_ops *ops)
8358 {
8359 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8360
8361 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8362
8363 c->forked_inferior_pid = null_ptid;
8364
8365 install_breakpoint (0, std::move (c), 1);
8366 }
8367
8368 /* Exec catchpoints. */
8369
8370 /* An instance of this type is used to represent an exec catchpoint.
8371 A breakpoint is really of this type iff its ops pointer points to
8372 CATCH_EXEC_BREAKPOINT_OPS. */
8373
8374 struct exec_catchpoint : public breakpoint
8375 {
8376 ~exec_catchpoint () override;
8377
8378 /* Filename of a program whose exec triggered this catchpoint.
8379 This field is only valid immediately after this catchpoint has
8380 triggered. */
8381 char *exec_pathname;
8382 };
8383
8384 /* Exec catchpoint destructor. */
8385
8386 exec_catchpoint::~exec_catchpoint ()
8387 {
8388 xfree (this->exec_pathname);
8389 }
8390
8391 static int
8392 insert_catch_exec (struct bp_location *bl)
8393 {
8394 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8395 }
8396
8397 static int
8398 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8399 {
8400 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8401 }
8402
8403 static int
8404 breakpoint_hit_catch_exec (const struct bp_location *bl,
8405 struct address_space *aspace, CORE_ADDR bp_addr,
8406 const struct target_waitstatus *ws)
8407 {
8408 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8409
8410 if (ws->kind != TARGET_WAITKIND_EXECD)
8411 return 0;
8412
8413 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8414 return 1;
8415 }
8416
8417 static enum print_stop_action
8418 print_it_catch_exec (bpstat bs)
8419 {
8420 struct ui_out *uiout = current_uiout;
8421 struct breakpoint *b = bs->breakpoint_at;
8422 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8423
8424 annotate_catchpoint (b->number);
8425 maybe_print_thread_hit_breakpoint (uiout);
8426 if (b->disposition == disp_del)
8427 uiout->text ("Temporary catchpoint ");
8428 else
8429 uiout->text ("Catchpoint ");
8430 if (uiout->is_mi_like_p ())
8431 {
8432 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8433 uiout->field_string ("disp", bpdisp_text (b->disposition));
8434 }
8435 uiout->field_int ("bkptno", b->number);
8436 uiout->text (" (exec'd ");
8437 uiout->field_string ("new-exec", c->exec_pathname);
8438 uiout->text ("), ");
8439
8440 return PRINT_SRC_AND_LOC;
8441 }
8442
8443 static void
8444 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8445 {
8446 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8447 struct value_print_options opts;
8448 struct ui_out *uiout = current_uiout;
8449
8450 get_user_print_options (&opts);
8451
8452 /* Field 4, the address, is omitted (which makes the columns
8453 not line up too nicely with the headers, but the effect
8454 is relatively readable). */
8455 if (opts.addressprint)
8456 uiout->field_skip ("addr");
8457 annotate_field (5);
8458 uiout->text ("exec");
8459 if (c->exec_pathname != NULL)
8460 {
8461 uiout->text (", program \"");
8462 uiout->field_string ("what", c->exec_pathname);
8463 uiout->text ("\" ");
8464 }
8465
8466 if (uiout->is_mi_like_p ())
8467 uiout->field_string ("catch-type", "exec");
8468 }
8469
8470 static void
8471 print_mention_catch_exec (struct breakpoint *b)
8472 {
8473 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8474 }
8475
8476 /* Implement the "print_recreate" breakpoint_ops method for exec
8477 catchpoints. */
8478
8479 static void
8480 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8481 {
8482 fprintf_unfiltered (fp, "catch exec");
8483 print_recreate_thread (b, fp);
8484 }
8485
8486 static struct breakpoint_ops catch_exec_breakpoint_ops;
8487
8488 static int
8489 hw_breakpoint_used_count (void)
8490 {
8491 int i = 0;
8492 struct breakpoint *b;
8493 struct bp_location *bl;
8494
8495 ALL_BREAKPOINTS (b)
8496 {
8497 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8498 for (bl = b->loc; bl; bl = bl->next)
8499 {
8500 /* Special types of hardware breakpoints may use more than
8501 one register. */
8502 i += b->ops->resources_needed (bl);
8503 }
8504 }
8505
8506 return i;
8507 }
8508
8509 /* Returns the resources B would use if it were a hardware
8510 watchpoint. */
8511
8512 static int
8513 hw_watchpoint_use_count (struct breakpoint *b)
8514 {
8515 int i = 0;
8516 struct bp_location *bl;
8517
8518 if (!breakpoint_enabled (b))
8519 return 0;
8520
8521 for (bl = b->loc; bl; bl = bl->next)
8522 {
8523 /* Special types of hardware watchpoints may use more than
8524 one register. */
8525 i += b->ops->resources_needed (bl);
8526 }
8527
8528 return i;
8529 }
8530
8531 /* Returns the sum the used resources of all hardware watchpoints of
8532 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8533 the sum of the used resources of all hardware watchpoints of other
8534 types _not_ TYPE. */
8535
8536 static int
8537 hw_watchpoint_used_count_others (struct breakpoint *except,
8538 enum bptype type, int *other_type_used)
8539 {
8540 int i = 0;
8541 struct breakpoint *b;
8542
8543 *other_type_used = 0;
8544 ALL_BREAKPOINTS (b)
8545 {
8546 if (b == except)
8547 continue;
8548 if (!breakpoint_enabled (b))
8549 continue;
8550
8551 if (b->type == type)
8552 i += hw_watchpoint_use_count (b);
8553 else if (is_hardware_watchpoint (b))
8554 *other_type_used = 1;
8555 }
8556
8557 return i;
8558 }
8559
8560 void
8561 disable_watchpoints_before_interactive_call_start (void)
8562 {
8563 struct breakpoint *b;
8564
8565 ALL_BREAKPOINTS (b)
8566 {
8567 if (is_watchpoint (b) && breakpoint_enabled (b))
8568 {
8569 b->enable_state = bp_call_disabled;
8570 update_global_location_list (UGLL_DONT_INSERT);
8571 }
8572 }
8573 }
8574
8575 void
8576 enable_watchpoints_after_interactive_call_stop (void)
8577 {
8578 struct breakpoint *b;
8579
8580 ALL_BREAKPOINTS (b)
8581 {
8582 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8583 {
8584 b->enable_state = bp_enabled;
8585 update_global_location_list (UGLL_MAY_INSERT);
8586 }
8587 }
8588 }
8589
8590 void
8591 disable_breakpoints_before_startup (void)
8592 {
8593 current_program_space->executing_startup = 1;
8594 update_global_location_list (UGLL_DONT_INSERT);
8595 }
8596
8597 void
8598 enable_breakpoints_after_startup (void)
8599 {
8600 current_program_space->executing_startup = 0;
8601 breakpoint_re_set ();
8602 }
8603
8604 /* Create a new single-step breakpoint for thread THREAD, with no
8605 locations. */
8606
8607 static struct breakpoint *
8608 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8609 {
8610 std::unique_ptr<breakpoint> b (new breakpoint ());
8611
8612 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8613 &momentary_breakpoint_ops);
8614
8615 b->disposition = disp_donttouch;
8616 b->frame_id = null_frame_id;
8617
8618 b->thread = thread;
8619 gdb_assert (b->thread != 0);
8620
8621 return add_to_breakpoint_chain (std::move (b));
8622 }
8623
8624 /* Set a momentary breakpoint of type TYPE at address specified by
8625 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8626 frame. */
8627
8628 struct breakpoint *
8629 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8630 struct frame_id frame_id, enum bptype type)
8631 {
8632 struct breakpoint *b;
8633
8634 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8635 tail-called one. */
8636 gdb_assert (!frame_id_artificial_p (frame_id));
8637
8638 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8639 b->enable_state = bp_enabled;
8640 b->disposition = disp_donttouch;
8641 b->frame_id = frame_id;
8642
8643 /* If we're debugging a multi-threaded program, then we want
8644 momentary breakpoints to be active in only a single thread of
8645 control. */
8646 if (in_thread_list (inferior_ptid))
8647 b->thread = ptid_to_global_thread_id (inferior_ptid);
8648
8649 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8650
8651 return b;
8652 }
8653
8654 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8655 The new breakpoint will have type TYPE, use OPS as its
8656 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8657
8658 static struct breakpoint *
8659 momentary_breakpoint_from_master (struct breakpoint *orig,
8660 enum bptype type,
8661 const struct breakpoint_ops *ops,
8662 int loc_enabled)
8663 {
8664 struct breakpoint *copy;
8665
8666 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8667 copy->loc = allocate_bp_location (copy);
8668 set_breakpoint_location_function (copy->loc, 1);
8669
8670 copy->loc->gdbarch = orig->loc->gdbarch;
8671 copy->loc->requested_address = orig->loc->requested_address;
8672 copy->loc->address = orig->loc->address;
8673 copy->loc->section = orig->loc->section;
8674 copy->loc->pspace = orig->loc->pspace;
8675 copy->loc->probe = orig->loc->probe;
8676 copy->loc->line_number = orig->loc->line_number;
8677 copy->loc->symtab = orig->loc->symtab;
8678 copy->loc->enabled = loc_enabled;
8679 copy->frame_id = orig->frame_id;
8680 copy->thread = orig->thread;
8681 copy->pspace = orig->pspace;
8682
8683 copy->enable_state = bp_enabled;
8684 copy->disposition = disp_donttouch;
8685 copy->number = internal_breakpoint_number--;
8686
8687 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8688 return copy;
8689 }
8690
8691 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8692 ORIG is NULL. */
8693
8694 struct breakpoint *
8695 clone_momentary_breakpoint (struct breakpoint *orig)
8696 {
8697 /* If there's nothing to clone, then return nothing. */
8698 if (orig == NULL)
8699 return NULL;
8700
8701 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8702 }
8703
8704 struct breakpoint *
8705 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8706 enum bptype type)
8707 {
8708 struct symtab_and_line sal;
8709
8710 sal = find_pc_line (pc, 0);
8711 sal.pc = pc;
8712 sal.section = find_pc_overlay (pc);
8713 sal.explicit_pc = 1;
8714
8715 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8716 }
8717 \f
8718
8719 /* Tell the user we have just set a breakpoint B. */
8720
8721 static void
8722 mention (struct breakpoint *b)
8723 {
8724 b->ops->print_mention (b);
8725 if (current_uiout->is_mi_like_p ())
8726 return;
8727 printf_filtered ("\n");
8728 }
8729 \f
8730
8731 static int bp_loc_is_permanent (struct bp_location *loc);
8732
8733 static struct bp_location *
8734 add_location_to_breakpoint (struct breakpoint *b,
8735 const struct symtab_and_line *sal)
8736 {
8737 struct bp_location *loc, **tmp;
8738 CORE_ADDR adjusted_address;
8739 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8740
8741 if (loc_gdbarch == NULL)
8742 loc_gdbarch = b->gdbarch;
8743
8744 /* Adjust the breakpoint's address prior to allocating a location.
8745 Once we call allocate_bp_location(), that mostly uninitialized
8746 location will be placed on the location chain. Adjustment of the
8747 breakpoint may cause target_read_memory() to be called and we do
8748 not want its scan of the location chain to find a breakpoint and
8749 location that's only been partially initialized. */
8750 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8751 sal->pc, b->type);
8752
8753 /* Sort the locations by their ADDRESS. */
8754 loc = allocate_bp_location (b);
8755 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8756 tmp = &((*tmp)->next))
8757 ;
8758 loc->next = *tmp;
8759 *tmp = loc;
8760
8761 loc->requested_address = sal->pc;
8762 loc->address = adjusted_address;
8763 loc->pspace = sal->pspace;
8764 loc->probe.probe = sal->probe;
8765 loc->probe.objfile = sal->objfile;
8766 gdb_assert (loc->pspace != NULL);
8767 loc->section = sal->section;
8768 loc->gdbarch = loc_gdbarch;
8769 loc->line_number = sal->line;
8770 loc->symtab = sal->symtab;
8771
8772 set_breakpoint_location_function (loc,
8773 sal->explicit_pc || sal->explicit_line);
8774
8775 /* While by definition, permanent breakpoints are already present in the
8776 code, we don't mark the location as inserted. Normally one would expect
8777 that GDB could rely on that breakpoint instruction to stop the program,
8778 thus removing the need to insert its own breakpoint, except that executing
8779 the breakpoint instruction can kill the target instead of reporting a
8780 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8781 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8782 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8783 breakpoint be inserted normally results in QEMU knowing about the GDB
8784 breakpoint, and thus trap before the breakpoint instruction is executed.
8785 (If GDB later needs to continue execution past the permanent breakpoint,
8786 it manually increments the PC, thus avoiding executing the breakpoint
8787 instruction.) */
8788 if (bp_loc_is_permanent (loc))
8789 loc->permanent = 1;
8790
8791 return loc;
8792 }
8793 \f
8794
8795 /* See breakpoint.h. */
8796
8797 int
8798 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8799 {
8800 int len;
8801 CORE_ADDR addr;
8802 const gdb_byte *bpoint;
8803 gdb_byte *target_mem;
8804
8805 addr = address;
8806 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8807
8808 /* Software breakpoints unsupported? */
8809 if (bpoint == NULL)
8810 return 0;
8811
8812 target_mem = (gdb_byte *) alloca (len);
8813
8814 /* Enable the automatic memory restoration from breakpoints while
8815 we read the memory. Otherwise we could say about our temporary
8816 breakpoints they are permanent. */
8817 scoped_restore restore_memory
8818 = make_scoped_restore_show_memory_breakpoints (0);
8819
8820 if (target_read_memory (address, target_mem, len) == 0
8821 && memcmp (target_mem, bpoint, len) == 0)
8822 return 1;
8823
8824 return 0;
8825 }
8826
8827 /* Return 1 if LOC is pointing to a permanent breakpoint,
8828 return 0 otherwise. */
8829
8830 static int
8831 bp_loc_is_permanent (struct bp_location *loc)
8832 {
8833 gdb_assert (loc != NULL);
8834
8835 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8836 attempt to read from the addresses the locations of these breakpoint types
8837 point to. program_breakpoint_here_p, below, will attempt to read
8838 memory. */
8839 if (!breakpoint_address_is_meaningful (loc->owner))
8840 return 0;
8841
8842 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8843 switch_to_program_space_and_thread (loc->pspace);
8844 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8845 }
8846
8847 /* Build a command list for the dprintf corresponding to the current
8848 settings of the dprintf style options. */
8849
8850 static void
8851 update_dprintf_command_list (struct breakpoint *b)
8852 {
8853 char *dprintf_args = b->extra_string;
8854 char *printf_line = NULL;
8855
8856 if (!dprintf_args)
8857 return;
8858
8859 dprintf_args = skip_spaces (dprintf_args);
8860
8861 /* Allow a comma, as it may have terminated a location, but don't
8862 insist on it. */
8863 if (*dprintf_args == ',')
8864 ++dprintf_args;
8865 dprintf_args = skip_spaces (dprintf_args);
8866
8867 if (*dprintf_args != '"')
8868 error (_("Bad format string, missing '\"'."));
8869
8870 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8871 printf_line = xstrprintf ("printf %s", dprintf_args);
8872 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8873 {
8874 if (!dprintf_function)
8875 error (_("No function supplied for dprintf call"));
8876
8877 if (dprintf_channel && strlen (dprintf_channel) > 0)
8878 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8879 dprintf_function,
8880 dprintf_channel,
8881 dprintf_args);
8882 else
8883 printf_line = xstrprintf ("call (void) %s (%s)",
8884 dprintf_function,
8885 dprintf_args);
8886 }
8887 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8888 {
8889 if (target_can_run_breakpoint_commands ())
8890 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8891 else
8892 {
8893 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8894 printf_line = xstrprintf ("printf %s", dprintf_args);
8895 }
8896 }
8897 else
8898 internal_error (__FILE__, __LINE__,
8899 _("Invalid dprintf style."));
8900
8901 gdb_assert (printf_line != NULL);
8902 /* Manufacture a printf sequence. */
8903 {
8904 struct command_line *printf_cmd_line = XNEW (struct command_line);
8905
8906 printf_cmd_line->control_type = simple_control;
8907 printf_cmd_line->body_count = 0;
8908 printf_cmd_line->body_list = NULL;
8909 printf_cmd_line->next = NULL;
8910 printf_cmd_line->line = printf_line;
8911
8912 breakpoint_set_commands (b, command_line_up (printf_cmd_line));
8913 }
8914 }
8915
8916 /* Update all dprintf commands, making their command lists reflect
8917 current style settings. */
8918
8919 static void
8920 update_dprintf_commands (char *args, int from_tty,
8921 struct cmd_list_element *c)
8922 {
8923 struct breakpoint *b;
8924
8925 ALL_BREAKPOINTS (b)
8926 {
8927 if (b->type == bp_dprintf)
8928 update_dprintf_command_list (b);
8929 }
8930 }
8931
8932 /* Create a breakpoint with SAL as location. Use LOCATION
8933 as a description of the location, and COND_STRING
8934 as condition expression. If LOCATION is NULL then create an
8935 "address location" from the address in the SAL. */
8936
8937 static void
8938 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8939 gdb::array_view<const symtab_and_line> sals,
8940 event_location_up &&location,
8941 gdb::unique_xmalloc_ptr<char> filter,
8942 gdb::unique_xmalloc_ptr<char> cond_string,
8943 gdb::unique_xmalloc_ptr<char> extra_string,
8944 enum bptype type, enum bpdisp disposition,
8945 int thread, int task, int ignore_count,
8946 const struct breakpoint_ops *ops, int from_tty,
8947 int enabled, int internal, unsigned flags,
8948 int display_canonical)
8949 {
8950 int i;
8951
8952 if (type == bp_hardware_breakpoint)
8953 {
8954 int target_resources_ok;
8955
8956 i = hw_breakpoint_used_count ();
8957 target_resources_ok =
8958 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8959 i + 1, 0);
8960 if (target_resources_ok == 0)
8961 error (_("No hardware breakpoint support in the target."));
8962 else if (target_resources_ok < 0)
8963 error (_("Hardware breakpoints used exceeds limit."));
8964 }
8965
8966 gdb_assert (!sals.empty ());
8967
8968 for (const auto &sal : sals)
8969 {
8970 struct bp_location *loc;
8971
8972 if (from_tty)
8973 {
8974 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8975 if (!loc_gdbarch)
8976 loc_gdbarch = gdbarch;
8977
8978 describe_other_breakpoints (loc_gdbarch,
8979 sal.pspace, sal.pc, sal.section, thread);
8980 }
8981
8982 if (&sal == &sals[0])
8983 {
8984 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8985 b->thread = thread;
8986 b->task = task;
8987
8988 b->cond_string = cond_string.release ();
8989 b->extra_string = extra_string.release ();
8990 b->ignore_count = ignore_count;
8991 b->enable_state = enabled ? bp_enabled : bp_disabled;
8992 b->disposition = disposition;
8993
8994 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8995 b->loc->inserted = 1;
8996
8997 if (type == bp_static_tracepoint)
8998 {
8999 struct tracepoint *t = (struct tracepoint *) b;
9000 struct static_tracepoint_marker marker;
9001
9002 if (strace_marker_p (b))
9003 {
9004 /* We already know the marker exists, otherwise, we
9005 wouldn't see a sal for it. */
9006 const char *p
9007 = &event_location_to_string (b->location.get ())[3];
9008 const char *endp;
9009 char *marker_str;
9010
9011 p = skip_spaces (p);
9012
9013 endp = skip_to_space (p);
9014
9015 marker_str = savestring (p, endp - p);
9016 t->static_trace_marker_id = marker_str;
9017
9018 printf_filtered (_("Probed static tracepoint "
9019 "marker \"%s\"\n"),
9020 t->static_trace_marker_id);
9021 }
9022 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9023 {
9024 t->static_trace_marker_id = xstrdup (marker.str_id);
9025 release_static_tracepoint_marker (&marker);
9026
9027 printf_filtered (_("Probed static tracepoint "
9028 "marker \"%s\"\n"),
9029 t->static_trace_marker_id);
9030 }
9031 else
9032 warning (_("Couldn't determine the static "
9033 "tracepoint marker to probe"));
9034 }
9035
9036 loc = b->loc;
9037 }
9038 else
9039 {
9040 loc = add_location_to_breakpoint (b, &sal);
9041 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9042 loc->inserted = 1;
9043 }
9044
9045 if (b->cond_string)
9046 {
9047 const char *arg = b->cond_string;
9048
9049 loc->cond = parse_exp_1 (&arg, loc->address,
9050 block_for_pc (loc->address), 0);
9051 if (*arg)
9052 error (_("Garbage '%s' follows condition"), arg);
9053 }
9054
9055 /* Dynamic printf requires and uses additional arguments on the
9056 command line, otherwise it's an error. */
9057 if (type == bp_dprintf)
9058 {
9059 if (b->extra_string)
9060 update_dprintf_command_list (b);
9061 else
9062 error (_("Format string required"));
9063 }
9064 else if (b->extra_string)
9065 error (_("Garbage '%s' at end of command"), b->extra_string);
9066 }
9067
9068 b->display_canonical = display_canonical;
9069 if (location != NULL)
9070 b->location = std::move (location);
9071 else
9072 b->location = new_address_location (b->loc->address, NULL, 0);
9073 b->filter = filter.release ();
9074 }
9075
9076 static void
9077 create_breakpoint_sal (struct gdbarch *gdbarch,
9078 gdb::array_view<const symtab_and_line> sals,
9079 event_location_up &&location,
9080 gdb::unique_xmalloc_ptr<char> filter,
9081 gdb::unique_xmalloc_ptr<char> cond_string,
9082 gdb::unique_xmalloc_ptr<char> extra_string,
9083 enum bptype type, enum bpdisp disposition,
9084 int thread, int task, int ignore_count,
9085 const struct breakpoint_ops *ops, int from_tty,
9086 int enabled, int internal, unsigned flags,
9087 int display_canonical)
9088 {
9089 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
9090
9091 init_breakpoint_sal (b.get (), gdbarch,
9092 sals, std::move (location),
9093 std::move (filter),
9094 std::move (cond_string),
9095 std::move (extra_string),
9096 type, disposition,
9097 thread, task, ignore_count,
9098 ops, from_tty,
9099 enabled, internal, flags,
9100 display_canonical);
9101
9102 install_breakpoint (internal, std::move (b), 0);
9103 }
9104
9105 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9106 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9107 value. COND_STRING, if not NULL, specified the condition to be
9108 used for all breakpoints. Essentially the only case where
9109 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9110 function. In that case, it's still not possible to specify
9111 separate conditions for different overloaded functions, so
9112 we take just a single condition string.
9113
9114 NOTE: If the function succeeds, the caller is expected to cleanup
9115 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9116 array contents). If the function fails (error() is called), the
9117 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9118 COND and SALS arrays and each of those arrays contents. */
9119
9120 static void
9121 create_breakpoints_sal (struct gdbarch *gdbarch,
9122 struct linespec_result *canonical,
9123 gdb::unique_xmalloc_ptr<char> cond_string,
9124 gdb::unique_xmalloc_ptr<char> extra_string,
9125 enum bptype type, enum bpdisp disposition,
9126 int thread, int task, int ignore_count,
9127 const struct breakpoint_ops *ops, int from_tty,
9128 int enabled, int internal, unsigned flags)
9129 {
9130 if (canonical->pre_expanded)
9131 gdb_assert (canonical->lsals.size () == 1);
9132
9133 for (const auto &lsal : canonical->lsals)
9134 {
9135 /* Note that 'location' can be NULL in the case of a plain
9136 'break', without arguments. */
9137 event_location_up location
9138 = (canonical->location != NULL
9139 ? copy_event_location (canonical->location.get ()) : NULL);
9140 gdb::unique_xmalloc_ptr<char> filter_string
9141 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
9142
9143 create_breakpoint_sal (gdbarch, lsal.sals,
9144 std::move (location),
9145 std::move (filter_string),
9146 std::move (cond_string),
9147 std::move (extra_string),
9148 type, disposition,
9149 thread, task, ignore_count, ops,
9150 from_tty, enabled, internal, flags,
9151 canonical->special_display);
9152 }
9153 }
9154
9155 /* Parse LOCATION which is assumed to be a SAL specification possibly
9156 followed by conditionals. On return, SALS contains an array of SAL
9157 addresses found. LOCATION points to the end of the SAL (for
9158 linespec locations).
9159
9160 The array and the line spec strings are allocated on the heap, it is
9161 the caller's responsibility to free them. */
9162
9163 static void
9164 parse_breakpoint_sals (const struct event_location *location,
9165 struct linespec_result *canonical)
9166 {
9167 struct symtab_and_line cursal;
9168
9169 if (event_location_type (location) == LINESPEC_LOCATION)
9170 {
9171 const char *address = get_linespec_location (location);
9172
9173 if (address == NULL)
9174 {
9175 /* The last displayed codepoint, if it's valid, is our default
9176 breakpoint address. */
9177 if (last_displayed_sal_is_valid ())
9178 {
9179 /* Set sal's pspace, pc, symtab, and line to the values
9180 corresponding to the last call to print_frame_info.
9181 Be sure to reinitialize LINE with NOTCURRENT == 0
9182 as the breakpoint line number is inappropriate otherwise.
9183 find_pc_line would adjust PC, re-set it back. */
9184 symtab_and_line sal = get_last_displayed_sal ();
9185 CORE_ADDR pc = sal.pc;
9186
9187 sal = find_pc_line (pc, 0);
9188
9189 /* "break" without arguments is equivalent to "break *PC"
9190 where PC is the last displayed codepoint's address. So
9191 make sure to set sal.explicit_pc to prevent GDB from
9192 trying to expand the list of sals to include all other
9193 instances with the same symtab and line. */
9194 sal.pc = pc;
9195 sal.explicit_pc = 1;
9196
9197 struct linespec_sals lsal;
9198 lsal.sals = {sal};
9199 lsal.canonical = NULL;
9200
9201 canonical->lsals.push_back (std::move (lsal));
9202 return;
9203 }
9204 else
9205 error (_("No default breakpoint address now."));
9206 }
9207 }
9208
9209 /* Force almost all breakpoints to be in terms of the
9210 current_source_symtab (which is decode_line_1's default).
9211 This should produce the results we want almost all of the
9212 time while leaving default_breakpoint_* alone.
9213
9214 ObjC: However, don't match an Objective-C method name which
9215 may have a '+' or '-' succeeded by a '['. */
9216 cursal = get_current_source_symtab_and_line ();
9217 if (last_displayed_sal_is_valid ())
9218 {
9219 const char *address = NULL;
9220
9221 if (event_location_type (location) == LINESPEC_LOCATION)
9222 address = get_linespec_location (location);
9223
9224 if (!cursal.symtab
9225 || (address != NULL
9226 && strchr ("+-", address[0]) != NULL
9227 && address[1] != '['))
9228 {
9229 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9230 get_last_displayed_symtab (),
9231 get_last_displayed_line (),
9232 canonical, NULL, NULL);
9233 return;
9234 }
9235 }
9236
9237 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9238 cursal.symtab, cursal.line, canonical, NULL, NULL);
9239 }
9240
9241
9242 /* Convert each SAL into a real PC. Verify that the PC can be
9243 inserted as a breakpoint. If it can't throw an error. */
9244
9245 static void
9246 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9247 {
9248 for (auto &sal : sals)
9249 resolve_sal_pc (&sal);
9250 }
9251
9252 /* Fast tracepoints may have restrictions on valid locations. For
9253 instance, a fast tracepoint using a jump instead of a trap will
9254 likely have to overwrite more bytes than a trap would, and so can
9255 only be placed where the instruction is longer than the jump, or a
9256 multi-instruction sequence does not have a jump into the middle of
9257 it, etc. */
9258
9259 static void
9260 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9261 gdb::array_view<const symtab_and_line> sals)
9262 {
9263 int rslt;
9264 char *msg;
9265 struct cleanup *old_chain;
9266
9267 for (const auto &sal : sals)
9268 {
9269 struct gdbarch *sarch;
9270
9271 sarch = get_sal_arch (sal);
9272 /* We fall back to GDBARCH if there is no architecture
9273 associated with SAL. */
9274 if (sarch == NULL)
9275 sarch = gdbarch;
9276 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg);
9277 old_chain = make_cleanup (xfree, msg);
9278
9279 if (!rslt)
9280 error (_("May not have a fast tracepoint at %s%s"),
9281 paddress (sarch, sal.pc), (msg ? msg : ""));
9282
9283 do_cleanups (old_chain);
9284 }
9285 }
9286
9287 /* Given TOK, a string specification of condition and thread, as
9288 accepted by the 'break' command, extract the condition
9289 string and thread number and set *COND_STRING and *THREAD.
9290 PC identifies the context at which the condition should be parsed.
9291 If no condition is found, *COND_STRING is set to NULL.
9292 If no thread is found, *THREAD is set to -1. */
9293
9294 static void
9295 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9296 char **cond_string, int *thread, int *task,
9297 char **rest)
9298 {
9299 *cond_string = NULL;
9300 *thread = -1;
9301 *task = 0;
9302 *rest = NULL;
9303
9304 while (tok && *tok)
9305 {
9306 const char *end_tok;
9307 int toklen;
9308 const char *cond_start = NULL;
9309 const char *cond_end = NULL;
9310
9311 tok = skip_spaces (tok);
9312
9313 if ((*tok == '"' || *tok == ',') && rest)
9314 {
9315 *rest = savestring (tok, strlen (tok));
9316 return;
9317 }
9318
9319 end_tok = skip_to_space (tok);
9320
9321 toklen = end_tok - tok;
9322
9323 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9324 {
9325 tok = cond_start = end_tok + 1;
9326 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9327 cond_end = tok;
9328 *cond_string = savestring (cond_start, cond_end - cond_start);
9329 }
9330 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9331 {
9332 const char *tmptok;
9333 struct thread_info *thr;
9334
9335 tok = end_tok + 1;
9336 thr = parse_thread_id (tok, &tmptok);
9337 if (tok == tmptok)
9338 error (_("Junk after thread keyword."));
9339 *thread = thr->global_num;
9340 tok = tmptok;
9341 }
9342 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9343 {
9344 char *tmptok;
9345
9346 tok = end_tok + 1;
9347 *task = strtol (tok, &tmptok, 0);
9348 if (tok == tmptok)
9349 error (_("Junk after task keyword."));
9350 if (!valid_task_id (*task))
9351 error (_("Unknown task %d."), *task);
9352 tok = tmptok;
9353 }
9354 else if (rest)
9355 {
9356 *rest = savestring (tok, strlen (tok));
9357 return;
9358 }
9359 else
9360 error (_("Junk at end of arguments."));
9361 }
9362 }
9363
9364 /* Decode a static tracepoint marker spec. */
9365
9366 static std::vector<symtab_and_line>
9367 decode_static_tracepoint_spec (const char **arg_p)
9368 {
9369 VEC(static_tracepoint_marker_p) *markers = NULL;
9370 struct cleanup *old_chain;
9371 const char *p = &(*arg_p)[3];
9372 const char *endp;
9373 char *marker_str;
9374 int i;
9375
9376 p = skip_spaces (p);
9377
9378 endp = skip_to_space (p);
9379
9380 marker_str = savestring (p, endp - p);
9381 old_chain = make_cleanup (xfree, marker_str);
9382
9383 markers = target_static_tracepoint_markers_by_strid (marker_str);
9384 if (VEC_empty(static_tracepoint_marker_p, markers))
9385 error (_("No known static tracepoint marker named %s"), marker_str);
9386
9387 std::vector<symtab_and_line> sals;
9388 sals.reserve (VEC_length(static_tracepoint_marker_p, markers));
9389
9390 for (i = 0; i < VEC_length(static_tracepoint_marker_p, markers); i++)
9391 {
9392 struct static_tracepoint_marker *marker;
9393
9394 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9395
9396 symtab_and_line sal = find_pc_line (marker->address, 0);
9397 sal.pc = marker->address;
9398 sals.push_back (sal);
9399
9400 release_static_tracepoint_marker (marker);
9401 }
9402
9403 do_cleanups (old_chain);
9404
9405 *arg_p = endp;
9406 return sals;
9407 }
9408
9409 /* See breakpoint.h. */
9410
9411 int
9412 create_breakpoint (struct gdbarch *gdbarch,
9413 const struct event_location *location,
9414 const char *cond_string,
9415 int thread, const char *extra_string,
9416 int parse_extra,
9417 int tempflag, enum bptype type_wanted,
9418 int ignore_count,
9419 enum auto_boolean pending_break_support,
9420 const struct breakpoint_ops *ops,
9421 int from_tty, int enabled, int internal,
9422 unsigned flags)
9423 {
9424 struct linespec_result canonical;
9425 struct cleanup *bkpt_chain = NULL;
9426 int pending = 0;
9427 int task = 0;
9428 int prev_bkpt_count = breakpoint_count;
9429
9430 gdb_assert (ops != NULL);
9431
9432 /* If extra_string isn't useful, set it to NULL. */
9433 if (extra_string != NULL && *extra_string == '\0')
9434 extra_string = NULL;
9435
9436 TRY
9437 {
9438 ops->create_sals_from_location (location, &canonical, type_wanted);
9439 }
9440 CATCH (e, RETURN_MASK_ERROR)
9441 {
9442 /* If caller is interested in rc value from parse, set
9443 value. */
9444 if (e.error == NOT_FOUND_ERROR)
9445 {
9446 /* If pending breakpoint support is turned off, throw
9447 error. */
9448
9449 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9450 throw_exception (e);
9451
9452 exception_print (gdb_stderr, e);
9453
9454 /* If pending breakpoint support is auto query and the user
9455 selects no, then simply return the error code. */
9456 if (pending_break_support == AUTO_BOOLEAN_AUTO
9457 && !nquery (_("Make %s pending on future shared library load? "),
9458 bptype_string (type_wanted)))
9459 return 0;
9460
9461 /* At this point, either the user was queried about setting
9462 a pending breakpoint and selected yes, or pending
9463 breakpoint behavior is on and thus a pending breakpoint
9464 is defaulted on behalf of the user. */
9465 pending = 1;
9466 }
9467 else
9468 throw_exception (e);
9469 }
9470 END_CATCH
9471
9472 if (!pending && canonical.lsals.empty ())
9473 return 0;
9474
9475 /* ----------------------------- SNIP -----------------------------
9476 Anything added to the cleanup chain beyond this point is assumed
9477 to be part of a breakpoint. If the breakpoint create succeeds
9478 then the memory is not reclaimed. */
9479 bkpt_chain = make_cleanup (null_cleanup, 0);
9480
9481 /* Resolve all line numbers to PC's and verify that the addresses
9482 are ok for the target. */
9483 if (!pending)
9484 {
9485 for (auto &lsal : canonical.lsals)
9486 breakpoint_sals_to_pc (lsal.sals);
9487 }
9488
9489 /* Fast tracepoints may have additional restrictions on location. */
9490 if (!pending && type_wanted == bp_fast_tracepoint)
9491 {
9492 for (const auto &lsal : canonical.lsals)
9493 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9494 }
9495
9496 /* Verify that condition can be parsed, before setting any
9497 breakpoints. Allocate a separate condition expression for each
9498 breakpoint. */
9499 if (!pending)
9500 {
9501 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9502 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9503
9504 if (parse_extra)
9505 {
9506 char *rest;
9507 char *cond;
9508
9509 const linespec_sals &lsal = canonical.lsals[0];
9510
9511 /* Here we only parse 'arg' to separate condition
9512 from thread number, so parsing in context of first
9513 sal is OK. When setting the breakpoint we'll
9514 re-parse it in context of each sal. */
9515
9516 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9517 &cond, &thread, &task, &rest);
9518 cond_string_copy.reset (cond);
9519 extra_string_copy.reset (rest);
9520 }
9521 else
9522 {
9523 if (type_wanted != bp_dprintf
9524 && extra_string != NULL && *extra_string != '\0')
9525 error (_("Garbage '%s' at end of location"), extra_string);
9526
9527 /* Create a private copy of condition string. */
9528 if (cond_string)
9529 cond_string_copy.reset (xstrdup (cond_string));
9530 /* Create a private copy of any extra string. */
9531 if (extra_string)
9532 extra_string_copy.reset (xstrdup (extra_string));
9533 }
9534
9535 ops->create_breakpoints_sal (gdbarch, &canonical,
9536 std::move (cond_string_copy),
9537 std::move (extra_string_copy),
9538 type_wanted,
9539 tempflag ? disp_del : disp_donttouch,
9540 thread, task, ignore_count, ops,
9541 from_tty, enabled, internal, flags);
9542 }
9543 else
9544 {
9545 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9546
9547 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9548 b->location = copy_event_location (location);
9549
9550 if (parse_extra)
9551 b->cond_string = NULL;
9552 else
9553 {
9554 /* Create a private copy of condition string. */
9555 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9556 b->thread = thread;
9557 }
9558
9559 /* Create a private copy of any extra string. */
9560 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9561 b->ignore_count = ignore_count;
9562 b->disposition = tempflag ? disp_del : disp_donttouch;
9563 b->condition_not_parsed = 1;
9564 b->enable_state = enabled ? bp_enabled : bp_disabled;
9565 if ((type_wanted != bp_breakpoint
9566 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9567 b->pspace = current_program_space;
9568
9569 install_breakpoint (internal, std::move (b), 0);
9570 }
9571
9572 if (canonical.lsals.size () > 1)
9573 {
9574 warning (_("Multiple breakpoints were set.\nUse the "
9575 "\"delete\" command to delete unwanted breakpoints."));
9576 prev_breakpoint_count = prev_bkpt_count;
9577 }
9578
9579 /* That's it. Discard the cleanups for data inserted into the
9580 breakpoint. */
9581 discard_cleanups (bkpt_chain);
9582
9583 /* error call may happen here - have BKPT_CHAIN already discarded. */
9584 update_global_location_list (UGLL_MAY_INSERT);
9585
9586 return 1;
9587 }
9588
9589 /* Set a breakpoint.
9590 ARG is a string describing breakpoint address,
9591 condition, and thread.
9592 FLAG specifies if a breakpoint is hardware on,
9593 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9594 and BP_TEMPFLAG. */
9595
9596 static void
9597 break_command_1 (const char *arg, int flag, int from_tty)
9598 {
9599 int tempflag = flag & BP_TEMPFLAG;
9600 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9601 ? bp_hardware_breakpoint
9602 : bp_breakpoint);
9603 struct breakpoint_ops *ops;
9604
9605 event_location_up location = string_to_event_location (&arg, current_language);
9606
9607 /* Matching breakpoints on probes. */
9608 if (location != NULL
9609 && event_location_type (location.get ()) == PROBE_LOCATION)
9610 ops = &bkpt_probe_breakpoint_ops;
9611 else
9612 ops = &bkpt_breakpoint_ops;
9613
9614 create_breakpoint (get_current_arch (),
9615 location.get (),
9616 NULL, 0, arg, 1 /* parse arg */,
9617 tempflag, type_wanted,
9618 0 /* Ignore count */,
9619 pending_break_support,
9620 ops,
9621 from_tty,
9622 1 /* enabled */,
9623 0 /* internal */,
9624 0);
9625 }
9626
9627 /* Helper function for break_command_1 and disassemble_command. */
9628
9629 void
9630 resolve_sal_pc (struct symtab_and_line *sal)
9631 {
9632 CORE_ADDR pc;
9633
9634 if (sal->pc == 0 && sal->symtab != NULL)
9635 {
9636 if (!find_line_pc (sal->symtab, sal->line, &pc))
9637 error (_("No line %d in file \"%s\"."),
9638 sal->line, symtab_to_filename_for_display (sal->symtab));
9639 sal->pc = pc;
9640
9641 /* If this SAL corresponds to a breakpoint inserted using a line
9642 number, then skip the function prologue if necessary. */
9643 if (sal->explicit_line)
9644 skip_prologue_sal (sal);
9645 }
9646
9647 if (sal->section == 0 && sal->symtab != NULL)
9648 {
9649 const struct blockvector *bv;
9650 const struct block *b;
9651 struct symbol *sym;
9652
9653 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9654 SYMTAB_COMPUNIT (sal->symtab));
9655 if (bv != NULL)
9656 {
9657 sym = block_linkage_function (b);
9658 if (sym != NULL)
9659 {
9660 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9661 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9662 sym);
9663 }
9664 else
9665 {
9666 /* It really is worthwhile to have the section, so we'll
9667 just have to look harder. This case can be executed
9668 if we have line numbers but no functions (as can
9669 happen in assembly source). */
9670
9671 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9672 switch_to_program_space_and_thread (sal->pspace);
9673
9674 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9675 if (msym.minsym)
9676 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9677 }
9678 }
9679 }
9680 }
9681
9682 void
9683 break_command (char *arg, int from_tty)
9684 {
9685 break_command_1 (arg, 0, from_tty);
9686 }
9687
9688 void
9689 tbreak_command (char *arg, int from_tty)
9690 {
9691 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9692 }
9693
9694 static void
9695 hbreak_command (char *arg, int from_tty)
9696 {
9697 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9698 }
9699
9700 static void
9701 thbreak_command (char *arg, int from_tty)
9702 {
9703 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9704 }
9705
9706 static void
9707 stop_command (char *arg, int from_tty)
9708 {
9709 printf_filtered (_("Specify the type of breakpoint to set.\n\
9710 Usage: stop in <function | address>\n\
9711 stop at <line>\n"));
9712 }
9713
9714 static void
9715 stopin_command (const char *arg, int from_tty)
9716 {
9717 int badInput = 0;
9718
9719 if (arg == (char *) NULL)
9720 badInput = 1;
9721 else if (*arg != '*')
9722 {
9723 const char *argptr = arg;
9724 int hasColon = 0;
9725
9726 /* Look for a ':'. If this is a line number specification, then
9727 say it is bad, otherwise, it should be an address or
9728 function/method name. */
9729 while (*argptr && !hasColon)
9730 {
9731 hasColon = (*argptr == ':');
9732 argptr++;
9733 }
9734
9735 if (hasColon)
9736 badInput = (*argptr != ':'); /* Not a class::method */
9737 else
9738 badInput = isdigit (*arg); /* a simple line number */
9739 }
9740
9741 if (badInput)
9742 printf_filtered (_("Usage: stop in <function | address>\n"));
9743 else
9744 break_command_1 (arg, 0, from_tty);
9745 }
9746
9747 static void
9748 stopat_command (const char *arg, int from_tty)
9749 {
9750 int badInput = 0;
9751
9752 if (arg == (char *) NULL || *arg == '*') /* no line number */
9753 badInput = 1;
9754 else
9755 {
9756 const char *argptr = arg;
9757 int hasColon = 0;
9758
9759 /* Look for a ':'. If there is a '::' then get out, otherwise
9760 it is probably a line number. */
9761 while (*argptr && !hasColon)
9762 {
9763 hasColon = (*argptr == ':');
9764 argptr++;
9765 }
9766
9767 if (hasColon)
9768 badInput = (*argptr == ':'); /* we have class::method */
9769 else
9770 badInput = !isdigit (*arg); /* not a line number */
9771 }
9772
9773 if (badInput)
9774 printf_filtered (_("Usage: stop at <line>\n"));
9775 else
9776 break_command_1 (arg, 0, from_tty);
9777 }
9778
9779 /* The dynamic printf command is mostly like a regular breakpoint, but
9780 with a prewired command list consisting of a single output command,
9781 built from extra arguments supplied on the dprintf command
9782 line. */
9783
9784 static void
9785 dprintf_command (char *arg_in, int from_tty)
9786 {
9787 const char *arg = arg_in;
9788 event_location_up location = string_to_event_location (&arg, current_language);
9789
9790 /* If non-NULL, ARG should have been advanced past the location;
9791 the next character must be ','. */
9792 if (arg != NULL)
9793 {
9794 if (arg[0] != ',' || arg[1] == '\0')
9795 error (_("Format string required"));
9796 else
9797 {
9798 /* Skip the comma. */
9799 ++arg;
9800 }
9801 }
9802
9803 create_breakpoint (get_current_arch (),
9804 location.get (),
9805 NULL, 0, arg, 1 /* parse arg */,
9806 0, bp_dprintf,
9807 0 /* Ignore count */,
9808 pending_break_support,
9809 &dprintf_breakpoint_ops,
9810 from_tty,
9811 1 /* enabled */,
9812 0 /* internal */,
9813 0);
9814 }
9815
9816 static void
9817 agent_printf_command (char *arg, int from_tty)
9818 {
9819 error (_("May only run agent-printf on the target"));
9820 }
9821
9822 /* Implement the "breakpoint_hit" breakpoint_ops method for
9823 ranged breakpoints. */
9824
9825 static int
9826 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9827 struct address_space *aspace,
9828 CORE_ADDR bp_addr,
9829 const struct target_waitstatus *ws)
9830 {
9831 if (ws->kind != TARGET_WAITKIND_STOPPED
9832 || ws->value.sig != GDB_SIGNAL_TRAP)
9833 return 0;
9834
9835 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9836 bl->length, aspace, bp_addr);
9837 }
9838
9839 /* Implement the "resources_needed" breakpoint_ops method for
9840 ranged breakpoints. */
9841
9842 static int
9843 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9844 {
9845 return target_ranged_break_num_registers ();
9846 }
9847
9848 /* Implement the "print_it" breakpoint_ops method for
9849 ranged breakpoints. */
9850
9851 static enum print_stop_action
9852 print_it_ranged_breakpoint (bpstat bs)
9853 {
9854 struct breakpoint *b = bs->breakpoint_at;
9855 struct bp_location *bl = b->loc;
9856 struct ui_out *uiout = current_uiout;
9857
9858 gdb_assert (b->type == bp_hardware_breakpoint);
9859
9860 /* Ranged breakpoints have only one location. */
9861 gdb_assert (bl && bl->next == NULL);
9862
9863 annotate_breakpoint (b->number);
9864
9865 maybe_print_thread_hit_breakpoint (uiout);
9866
9867 if (b->disposition == disp_del)
9868 uiout->text ("Temporary ranged breakpoint ");
9869 else
9870 uiout->text ("Ranged breakpoint ");
9871 if (uiout->is_mi_like_p ())
9872 {
9873 uiout->field_string ("reason",
9874 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9875 uiout->field_string ("disp", bpdisp_text (b->disposition));
9876 }
9877 uiout->field_int ("bkptno", b->number);
9878 uiout->text (", ");
9879
9880 return PRINT_SRC_AND_LOC;
9881 }
9882
9883 /* Implement the "print_one" breakpoint_ops method for
9884 ranged breakpoints. */
9885
9886 static void
9887 print_one_ranged_breakpoint (struct breakpoint *b,
9888 struct bp_location **last_loc)
9889 {
9890 struct bp_location *bl = b->loc;
9891 struct value_print_options opts;
9892 struct ui_out *uiout = current_uiout;
9893
9894 /* Ranged breakpoints have only one location. */
9895 gdb_assert (bl && bl->next == NULL);
9896
9897 get_user_print_options (&opts);
9898
9899 if (opts.addressprint)
9900 /* We don't print the address range here, it will be printed later
9901 by print_one_detail_ranged_breakpoint. */
9902 uiout->field_skip ("addr");
9903 annotate_field (5);
9904 print_breakpoint_location (b, bl);
9905 *last_loc = bl;
9906 }
9907
9908 /* Implement the "print_one_detail" breakpoint_ops method for
9909 ranged breakpoints. */
9910
9911 static void
9912 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9913 struct ui_out *uiout)
9914 {
9915 CORE_ADDR address_start, address_end;
9916 struct bp_location *bl = b->loc;
9917 string_file stb;
9918
9919 gdb_assert (bl);
9920
9921 address_start = bl->address;
9922 address_end = address_start + bl->length - 1;
9923
9924 uiout->text ("\taddress range: ");
9925 stb.printf ("[%s, %s]",
9926 print_core_address (bl->gdbarch, address_start),
9927 print_core_address (bl->gdbarch, address_end));
9928 uiout->field_stream ("addr", stb);
9929 uiout->text ("\n");
9930 }
9931
9932 /* Implement the "print_mention" breakpoint_ops method for
9933 ranged breakpoints. */
9934
9935 static void
9936 print_mention_ranged_breakpoint (struct breakpoint *b)
9937 {
9938 struct bp_location *bl = b->loc;
9939 struct ui_out *uiout = current_uiout;
9940
9941 gdb_assert (bl);
9942 gdb_assert (b->type == bp_hardware_breakpoint);
9943
9944 if (uiout->is_mi_like_p ())
9945 return;
9946
9947 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9948 b->number, paddress (bl->gdbarch, bl->address),
9949 paddress (bl->gdbarch, bl->address + bl->length - 1));
9950 }
9951
9952 /* Implement the "print_recreate" breakpoint_ops method for
9953 ranged breakpoints. */
9954
9955 static void
9956 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9957 {
9958 fprintf_unfiltered (fp, "break-range %s, %s",
9959 event_location_to_string (b->location.get ()),
9960 event_location_to_string (b->location_range_end.get ()));
9961 print_recreate_thread (b, fp);
9962 }
9963
9964 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9965
9966 static struct breakpoint_ops ranged_breakpoint_ops;
9967
9968 /* Find the address where the end of the breakpoint range should be
9969 placed, given the SAL of the end of the range. This is so that if
9970 the user provides a line number, the end of the range is set to the
9971 last instruction of the given line. */
9972
9973 static CORE_ADDR
9974 find_breakpoint_range_end (struct symtab_and_line sal)
9975 {
9976 CORE_ADDR end;
9977
9978 /* If the user provided a PC value, use it. Otherwise,
9979 find the address of the end of the given location. */
9980 if (sal.explicit_pc)
9981 end = sal.pc;
9982 else
9983 {
9984 int ret;
9985 CORE_ADDR start;
9986
9987 ret = find_line_pc_range (sal, &start, &end);
9988 if (!ret)
9989 error (_("Could not find location of the end of the range."));
9990
9991 /* find_line_pc_range returns the start of the next line. */
9992 end--;
9993 }
9994
9995 return end;
9996 }
9997
9998 /* Implement the "break-range" CLI command. */
9999
10000 static void
10001 break_range_command (char *arg_in, int from_tty)
10002 {
10003 const char *arg = arg_in;
10004 const char *arg_start;
10005 char *addr_string_start;
10006 struct linespec_result canonical_start, canonical_end;
10007 int bp_count, can_use_bp, length;
10008 CORE_ADDR end;
10009 struct breakpoint *b;
10010 struct cleanup *cleanup_bkpt;
10011
10012 /* We don't support software ranged breakpoints. */
10013 if (target_ranged_break_num_registers () < 0)
10014 error (_("This target does not support hardware ranged breakpoints."));
10015
10016 bp_count = hw_breakpoint_used_count ();
10017 bp_count += target_ranged_break_num_registers ();
10018 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10019 bp_count, 0);
10020 if (can_use_bp < 0)
10021 error (_("Hardware breakpoints used exceeds limit."));
10022
10023 arg = skip_spaces (arg);
10024 if (arg == NULL || arg[0] == '\0')
10025 error(_("No address range specified."));
10026
10027 arg_start = arg;
10028 event_location_up start_location = string_to_event_location (&arg,
10029 current_language);
10030 parse_breakpoint_sals (start_location.get (), &canonical_start);
10031
10032 if (arg[0] != ',')
10033 error (_("Too few arguments."));
10034 else if (canonical_start.lsals.empty ())
10035 error (_("Could not find location of the beginning of the range."));
10036
10037 const linespec_sals &lsal_start = canonical_start.lsals[0];
10038
10039 if (canonical_start.lsals.size () > 1
10040 || lsal_start.sals.size () != 1)
10041 error (_("Cannot create a ranged breakpoint with multiple locations."));
10042
10043 const symtab_and_line &sal_start = lsal_start.sals[0];
10044 addr_string_start = savestring (arg_start, arg - arg_start);
10045 cleanup_bkpt = make_cleanup (xfree, addr_string_start);
10046
10047 arg++; /* Skip the comma. */
10048 arg = skip_spaces (arg);
10049
10050 /* Parse the end location. */
10051
10052 arg_start = arg;
10053
10054 /* We call decode_line_full directly here instead of using
10055 parse_breakpoint_sals because we need to specify the start location's
10056 symtab and line as the default symtab and line for the end of the
10057 range. This makes it possible to have ranges like "foo.c:27, +14",
10058 where +14 means 14 lines from the start location. */
10059 event_location_up end_location = string_to_event_location (&arg,
10060 current_language);
10061 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
10062 sal_start.symtab, sal_start.line,
10063 &canonical_end, NULL, NULL);
10064
10065 if (canonical_end.lsals.empty ())
10066 error (_("Could not find location of the end of the range."));
10067
10068 const linespec_sals &lsal_end = canonical_end.lsals[0];
10069 if (canonical_end.lsals.size () > 1
10070 || lsal_end.sals.size () != 1)
10071 error (_("Cannot create a ranged breakpoint with multiple locations."));
10072
10073 const symtab_and_line &sal_end = lsal_end.sals[0];
10074
10075 end = find_breakpoint_range_end (sal_end);
10076 if (sal_start.pc > end)
10077 error (_("Invalid address range, end precedes start."));
10078
10079 length = end - sal_start.pc + 1;
10080 if (length < 0)
10081 /* Length overflowed. */
10082 error (_("Address range too large."));
10083 else if (length == 1)
10084 {
10085 /* This range is simple enough to be handled by
10086 the `hbreak' command. */
10087 hbreak_command (addr_string_start, 1);
10088
10089 do_cleanups (cleanup_bkpt);
10090
10091 return;
10092 }
10093
10094 /* Now set up the breakpoint. */
10095 b = set_raw_breakpoint (get_current_arch (), sal_start,
10096 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10097 set_breakpoint_count (breakpoint_count + 1);
10098 b->number = breakpoint_count;
10099 b->disposition = disp_donttouch;
10100 b->location = std::move (start_location);
10101 b->location_range_end = std::move (end_location);
10102 b->loc->length = length;
10103
10104 do_cleanups (cleanup_bkpt);
10105
10106 mention (b);
10107 observer_notify_breakpoint_created (b);
10108 update_global_location_list (UGLL_MAY_INSERT);
10109 }
10110
10111 /* Return non-zero if EXP is verified as constant. Returned zero
10112 means EXP is variable. Also the constant detection may fail for
10113 some constant expressions and in such case still falsely return
10114 zero. */
10115
10116 static int
10117 watchpoint_exp_is_const (const struct expression *exp)
10118 {
10119 int i = exp->nelts;
10120
10121 while (i > 0)
10122 {
10123 int oplenp, argsp;
10124
10125 /* We are only interested in the descriptor of each element. */
10126 operator_length (exp, i, &oplenp, &argsp);
10127 i -= oplenp;
10128
10129 switch (exp->elts[i].opcode)
10130 {
10131 case BINOP_ADD:
10132 case BINOP_SUB:
10133 case BINOP_MUL:
10134 case BINOP_DIV:
10135 case BINOP_REM:
10136 case BINOP_MOD:
10137 case BINOP_LSH:
10138 case BINOP_RSH:
10139 case BINOP_LOGICAL_AND:
10140 case BINOP_LOGICAL_OR:
10141 case BINOP_BITWISE_AND:
10142 case BINOP_BITWISE_IOR:
10143 case BINOP_BITWISE_XOR:
10144 case BINOP_EQUAL:
10145 case BINOP_NOTEQUAL:
10146 case BINOP_LESS:
10147 case BINOP_GTR:
10148 case BINOP_LEQ:
10149 case BINOP_GEQ:
10150 case BINOP_REPEAT:
10151 case BINOP_COMMA:
10152 case BINOP_EXP:
10153 case BINOP_MIN:
10154 case BINOP_MAX:
10155 case BINOP_INTDIV:
10156 case BINOP_CONCAT:
10157 case TERNOP_COND:
10158 case TERNOP_SLICE:
10159
10160 case OP_LONG:
10161 case OP_DOUBLE:
10162 case OP_DECFLOAT:
10163 case OP_LAST:
10164 case OP_COMPLEX:
10165 case OP_STRING:
10166 case OP_ARRAY:
10167 case OP_TYPE:
10168 case OP_TYPEOF:
10169 case OP_DECLTYPE:
10170 case OP_TYPEID:
10171 case OP_NAME:
10172 case OP_OBJC_NSSTRING:
10173
10174 case UNOP_NEG:
10175 case UNOP_LOGICAL_NOT:
10176 case UNOP_COMPLEMENT:
10177 case UNOP_ADDR:
10178 case UNOP_HIGH:
10179 case UNOP_CAST:
10180
10181 case UNOP_CAST_TYPE:
10182 case UNOP_REINTERPRET_CAST:
10183 case UNOP_DYNAMIC_CAST:
10184 /* Unary, binary and ternary operators: We have to check
10185 their operands. If they are constant, then so is the
10186 result of that operation. For instance, if A and B are
10187 determined to be constants, then so is "A + B".
10188
10189 UNOP_IND is one exception to the rule above, because the
10190 value of *ADDR is not necessarily a constant, even when
10191 ADDR is. */
10192 break;
10193
10194 case OP_VAR_VALUE:
10195 /* Check whether the associated symbol is a constant.
10196
10197 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10198 possible that a buggy compiler could mark a variable as
10199 constant even when it is not, and TYPE_CONST would return
10200 true in this case, while SYMBOL_CLASS wouldn't.
10201
10202 We also have to check for function symbols because they
10203 are always constant. */
10204 {
10205 struct symbol *s = exp->elts[i + 2].symbol;
10206
10207 if (SYMBOL_CLASS (s) != LOC_BLOCK
10208 && SYMBOL_CLASS (s) != LOC_CONST
10209 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10210 return 0;
10211 break;
10212 }
10213
10214 /* The default action is to return 0 because we are using
10215 the optimistic approach here: If we don't know something,
10216 then it is not a constant. */
10217 default:
10218 return 0;
10219 }
10220 }
10221
10222 return 1;
10223 }
10224
10225 /* Watchpoint destructor. */
10226
10227 watchpoint::~watchpoint ()
10228 {
10229 xfree (this->exp_string);
10230 xfree (this->exp_string_reparse);
10231 value_free (this->val);
10232 }
10233
10234 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10235
10236 static void
10237 re_set_watchpoint (struct breakpoint *b)
10238 {
10239 struct watchpoint *w = (struct watchpoint *) b;
10240
10241 /* Watchpoint can be either on expression using entirely global
10242 variables, or it can be on local variables.
10243
10244 Watchpoints of the first kind are never auto-deleted, and even
10245 persist across program restarts. Since they can use variables
10246 from shared libraries, we need to reparse expression as libraries
10247 are loaded and unloaded.
10248
10249 Watchpoints on local variables can also change meaning as result
10250 of solib event. For example, if a watchpoint uses both a local
10251 and a global variables in expression, it's a local watchpoint,
10252 but unloading of a shared library will make the expression
10253 invalid. This is not a very common use case, but we still
10254 re-evaluate expression, to avoid surprises to the user.
10255
10256 Note that for local watchpoints, we re-evaluate it only if
10257 watchpoints frame id is still valid. If it's not, it means the
10258 watchpoint is out of scope and will be deleted soon. In fact,
10259 I'm not sure we'll ever be called in this case.
10260
10261 If a local watchpoint's frame id is still valid, then
10262 w->exp_valid_block is likewise valid, and we can safely use it.
10263
10264 Don't do anything about disabled watchpoints, since they will be
10265 reevaluated again when enabled. */
10266 update_watchpoint (w, 1 /* reparse */);
10267 }
10268
10269 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10270
10271 static int
10272 insert_watchpoint (struct bp_location *bl)
10273 {
10274 struct watchpoint *w = (struct watchpoint *) bl->owner;
10275 int length = w->exact ? 1 : bl->length;
10276
10277 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10278 w->cond_exp.get ());
10279 }
10280
10281 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10282
10283 static int
10284 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10285 {
10286 struct watchpoint *w = (struct watchpoint *) bl->owner;
10287 int length = w->exact ? 1 : bl->length;
10288
10289 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10290 w->cond_exp.get ());
10291 }
10292
10293 static int
10294 breakpoint_hit_watchpoint (const struct bp_location *bl,
10295 struct address_space *aspace, CORE_ADDR bp_addr,
10296 const struct target_waitstatus *ws)
10297 {
10298 struct breakpoint *b = bl->owner;
10299 struct watchpoint *w = (struct watchpoint *) b;
10300
10301 /* Continuable hardware watchpoints are treated as non-existent if the
10302 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10303 some data address). Otherwise gdb won't stop on a break instruction
10304 in the code (not from a breakpoint) when a hardware watchpoint has
10305 been defined. Also skip watchpoints which we know did not trigger
10306 (did not match the data address). */
10307 if (is_hardware_watchpoint (b)
10308 && w->watchpoint_triggered == watch_triggered_no)
10309 return 0;
10310
10311 return 1;
10312 }
10313
10314 static void
10315 check_status_watchpoint (bpstat bs)
10316 {
10317 gdb_assert (is_watchpoint (bs->breakpoint_at));
10318
10319 bpstat_check_watchpoint (bs);
10320 }
10321
10322 /* Implement the "resources_needed" breakpoint_ops method for
10323 hardware watchpoints. */
10324
10325 static int
10326 resources_needed_watchpoint (const struct bp_location *bl)
10327 {
10328 struct watchpoint *w = (struct watchpoint *) bl->owner;
10329 int length = w->exact? 1 : bl->length;
10330
10331 return target_region_ok_for_hw_watchpoint (bl->address, length);
10332 }
10333
10334 /* Implement the "works_in_software_mode" breakpoint_ops method for
10335 hardware watchpoints. */
10336
10337 static int
10338 works_in_software_mode_watchpoint (const struct breakpoint *b)
10339 {
10340 /* Read and access watchpoints only work with hardware support. */
10341 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10342 }
10343
10344 static enum print_stop_action
10345 print_it_watchpoint (bpstat bs)
10346 {
10347 struct breakpoint *b;
10348 enum print_stop_action result;
10349 struct watchpoint *w;
10350 struct ui_out *uiout = current_uiout;
10351
10352 gdb_assert (bs->bp_location_at != NULL);
10353
10354 b = bs->breakpoint_at;
10355 w = (struct watchpoint *) b;
10356
10357 annotate_watchpoint (b->number);
10358 maybe_print_thread_hit_breakpoint (uiout);
10359
10360 string_file stb;
10361
10362 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10363 switch (b->type)
10364 {
10365 case bp_watchpoint:
10366 case bp_hardware_watchpoint:
10367 if (uiout->is_mi_like_p ())
10368 uiout->field_string
10369 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10370 mention (b);
10371 tuple_emitter.emplace (uiout, "value");
10372 uiout->text ("\nOld value = ");
10373 watchpoint_value_print (bs->old_val, &stb);
10374 uiout->field_stream ("old", stb);
10375 uiout->text ("\nNew value = ");
10376 watchpoint_value_print (w->val, &stb);
10377 uiout->field_stream ("new", stb);
10378 uiout->text ("\n");
10379 /* More than one watchpoint may have been triggered. */
10380 result = PRINT_UNKNOWN;
10381 break;
10382
10383 case bp_read_watchpoint:
10384 if (uiout->is_mi_like_p ())
10385 uiout->field_string
10386 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10387 mention (b);
10388 tuple_emitter.emplace (uiout, "value");
10389 uiout->text ("\nValue = ");
10390 watchpoint_value_print (w->val, &stb);
10391 uiout->field_stream ("value", stb);
10392 uiout->text ("\n");
10393 result = PRINT_UNKNOWN;
10394 break;
10395
10396 case bp_access_watchpoint:
10397 if (bs->old_val != NULL)
10398 {
10399 if (uiout->is_mi_like_p ())
10400 uiout->field_string
10401 ("reason",
10402 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10403 mention (b);
10404 tuple_emitter.emplace (uiout, "value");
10405 uiout->text ("\nOld value = ");
10406 watchpoint_value_print (bs->old_val, &stb);
10407 uiout->field_stream ("old", stb);
10408 uiout->text ("\nNew value = ");
10409 }
10410 else
10411 {
10412 mention (b);
10413 if (uiout->is_mi_like_p ())
10414 uiout->field_string
10415 ("reason",
10416 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10417 tuple_emitter.emplace (uiout, "value");
10418 uiout->text ("\nValue = ");
10419 }
10420 watchpoint_value_print (w->val, &stb);
10421 uiout->field_stream ("new", stb);
10422 uiout->text ("\n");
10423 result = PRINT_UNKNOWN;
10424 break;
10425 default:
10426 result = PRINT_UNKNOWN;
10427 }
10428
10429 return result;
10430 }
10431
10432 /* Implement the "print_mention" breakpoint_ops method for hardware
10433 watchpoints. */
10434
10435 static void
10436 print_mention_watchpoint (struct breakpoint *b)
10437 {
10438 struct watchpoint *w = (struct watchpoint *) b;
10439 struct ui_out *uiout = current_uiout;
10440 const char *tuple_name;
10441
10442 switch (b->type)
10443 {
10444 case bp_watchpoint:
10445 uiout->text ("Watchpoint ");
10446 tuple_name = "wpt";
10447 break;
10448 case bp_hardware_watchpoint:
10449 uiout->text ("Hardware watchpoint ");
10450 tuple_name = "wpt";
10451 break;
10452 case bp_read_watchpoint:
10453 uiout->text ("Hardware read watchpoint ");
10454 tuple_name = "hw-rwpt";
10455 break;
10456 case bp_access_watchpoint:
10457 uiout->text ("Hardware access (read/write) watchpoint ");
10458 tuple_name = "hw-awpt";
10459 break;
10460 default:
10461 internal_error (__FILE__, __LINE__,
10462 _("Invalid hardware watchpoint type."));
10463 }
10464
10465 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10466 uiout->field_int ("number", b->number);
10467 uiout->text (": ");
10468 uiout->field_string ("exp", w->exp_string);
10469 }
10470
10471 /* Implement the "print_recreate" breakpoint_ops method for
10472 watchpoints. */
10473
10474 static void
10475 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10476 {
10477 struct watchpoint *w = (struct watchpoint *) b;
10478
10479 switch (b->type)
10480 {
10481 case bp_watchpoint:
10482 case bp_hardware_watchpoint:
10483 fprintf_unfiltered (fp, "watch");
10484 break;
10485 case bp_read_watchpoint:
10486 fprintf_unfiltered (fp, "rwatch");
10487 break;
10488 case bp_access_watchpoint:
10489 fprintf_unfiltered (fp, "awatch");
10490 break;
10491 default:
10492 internal_error (__FILE__, __LINE__,
10493 _("Invalid watchpoint type."));
10494 }
10495
10496 fprintf_unfiltered (fp, " %s", w->exp_string);
10497 print_recreate_thread (b, fp);
10498 }
10499
10500 /* Implement the "explains_signal" breakpoint_ops method for
10501 watchpoints. */
10502
10503 static int
10504 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10505 {
10506 /* A software watchpoint cannot cause a signal other than
10507 GDB_SIGNAL_TRAP. */
10508 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10509 return 0;
10510
10511 return 1;
10512 }
10513
10514 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10515
10516 static struct breakpoint_ops watchpoint_breakpoint_ops;
10517
10518 /* Implement the "insert" breakpoint_ops method for
10519 masked hardware watchpoints. */
10520
10521 static int
10522 insert_masked_watchpoint (struct bp_location *bl)
10523 {
10524 struct watchpoint *w = (struct watchpoint *) bl->owner;
10525
10526 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10527 bl->watchpoint_type);
10528 }
10529
10530 /* Implement the "remove" breakpoint_ops method for
10531 masked hardware watchpoints. */
10532
10533 static int
10534 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10535 {
10536 struct watchpoint *w = (struct watchpoint *) bl->owner;
10537
10538 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10539 bl->watchpoint_type);
10540 }
10541
10542 /* Implement the "resources_needed" breakpoint_ops method for
10543 masked hardware watchpoints. */
10544
10545 static int
10546 resources_needed_masked_watchpoint (const struct bp_location *bl)
10547 {
10548 struct watchpoint *w = (struct watchpoint *) bl->owner;
10549
10550 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10551 }
10552
10553 /* Implement the "works_in_software_mode" breakpoint_ops method for
10554 masked hardware watchpoints. */
10555
10556 static int
10557 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10558 {
10559 return 0;
10560 }
10561
10562 /* Implement the "print_it" breakpoint_ops method for
10563 masked hardware watchpoints. */
10564
10565 static enum print_stop_action
10566 print_it_masked_watchpoint (bpstat bs)
10567 {
10568 struct breakpoint *b = bs->breakpoint_at;
10569 struct ui_out *uiout = current_uiout;
10570
10571 /* Masked watchpoints have only one location. */
10572 gdb_assert (b->loc && b->loc->next == NULL);
10573
10574 annotate_watchpoint (b->number);
10575 maybe_print_thread_hit_breakpoint (uiout);
10576
10577 switch (b->type)
10578 {
10579 case bp_hardware_watchpoint:
10580 if (uiout->is_mi_like_p ())
10581 uiout->field_string
10582 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10583 break;
10584
10585 case bp_read_watchpoint:
10586 if (uiout->is_mi_like_p ())
10587 uiout->field_string
10588 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10589 break;
10590
10591 case bp_access_watchpoint:
10592 if (uiout->is_mi_like_p ())
10593 uiout->field_string
10594 ("reason",
10595 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10596 break;
10597 default:
10598 internal_error (__FILE__, __LINE__,
10599 _("Invalid hardware watchpoint type."));
10600 }
10601
10602 mention (b);
10603 uiout->text (_("\n\
10604 Check the underlying instruction at PC for the memory\n\
10605 address and value which triggered this watchpoint.\n"));
10606 uiout->text ("\n");
10607
10608 /* More than one watchpoint may have been triggered. */
10609 return PRINT_UNKNOWN;
10610 }
10611
10612 /* Implement the "print_one_detail" breakpoint_ops method for
10613 masked hardware watchpoints. */
10614
10615 static void
10616 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10617 struct ui_out *uiout)
10618 {
10619 struct watchpoint *w = (struct watchpoint *) b;
10620
10621 /* Masked watchpoints have only one location. */
10622 gdb_assert (b->loc && b->loc->next == NULL);
10623
10624 uiout->text ("\tmask ");
10625 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10626 uiout->text ("\n");
10627 }
10628
10629 /* Implement the "print_mention" breakpoint_ops method for
10630 masked hardware watchpoints. */
10631
10632 static void
10633 print_mention_masked_watchpoint (struct breakpoint *b)
10634 {
10635 struct watchpoint *w = (struct watchpoint *) b;
10636 struct ui_out *uiout = current_uiout;
10637 const char *tuple_name;
10638
10639 switch (b->type)
10640 {
10641 case bp_hardware_watchpoint:
10642 uiout->text ("Masked hardware watchpoint ");
10643 tuple_name = "wpt";
10644 break;
10645 case bp_read_watchpoint:
10646 uiout->text ("Masked hardware read watchpoint ");
10647 tuple_name = "hw-rwpt";
10648 break;
10649 case bp_access_watchpoint:
10650 uiout->text ("Masked hardware access (read/write) watchpoint ");
10651 tuple_name = "hw-awpt";
10652 break;
10653 default:
10654 internal_error (__FILE__, __LINE__,
10655 _("Invalid hardware watchpoint type."));
10656 }
10657
10658 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10659 uiout->field_int ("number", b->number);
10660 uiout->text (": ");
10661 uiout->field_string ("exp", w->exp_string);
10662 }
10663
10664 /* Implement the "print_recreate" breakpoint_ops method for
10665 masked hardware watchpoints. */
10666
10667 static void
10668 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10669 {
10670 struct watchpoint *w = (struct watchpoint *) b;
10671 char tmp[40];
10672
10673 switch (b->type)
10674 {
10675 case bp_hardware_watchpoint:
10676 fprintf_unfiltered (fp, "watch");
10677 break;
10678 case bp_read_watchpoint:
10679 fprintf_unfiltered (fp, "rwatch");
10680 break;
10681 case bp_access_watchpoint:
10682 fprintf_unfiltered (fp, "awatch");
10683 break;
10684 default:
10685 internal_error (__FILE__, __LINE__,
10686 _("Invalid hardware watchpoint type."));
10687 }
10688
10689 sprintf_vma (tmp, w->hw_wp_mask);
10690 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10691 print_recreate_thread (b, fp);
10692 }
10693
10694 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10695
10696 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10697
10698 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10699
10700 static int
10701 is_masked_watchpoint (const struct breakpoint *b)
10702 {
10703 return b->ops == &masked_watchpoint_breakpoint_ops;
10704 }
10705
10706 /* accessflag: hw_write: watch write,
10707 hw_read: watch read,
10708 hw_access: watch access (read or write) */
10709 static void
10710 watch_command_1 (const char *arg, int accessflag, int from_tty,
10711 int just_location, int internal)
10712 {
10713 struct breakpoint *scope_breakpoint = NULL;
10714 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10715 struct value *val, *mark, *result;
10716 int saved_bitpos = 0, saved_bitsize = 0;
10717 const char *exp_start = NULL;
10718 const char *exp_end = NULL;
10719 const char *tok, *end_tok;
10720 int toklen = -1;
10721 const char *cond_start = NULL;
10722 const char *cond_end = NULL;
10723 enum bptype bp_type;
10724 int thread = -1;
10725 int pc = 0;
10726 /* Flag to indicate whether we are going to use masks for
10727 the hardware watchpoint. */
10728 int use_mask = 0;
10729 CORE_ADDR mask = 0;
10730 char *expression;
10731 struct cleanup *back_to;
10732
10733 /* Make sure that we actually have parameters to parse. */
10734 if (arg != NULL && arg[0] != '\0')
10735 {
10736 const char *value_start;
10737
10738 exp_end = arg + strlen (arg);
10739
10740 /* Look for "parameter value" pairs at the end
10741 of the arguments string. */
10742 for (tok = exp_end - 1; tok > arg; tok--)
10743 {
10744 /* Skip whitespace at the end of the argument list. */
10745 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10746 tok--;
10747
10748 /* Find the beginning of the last token.
10749 This is the value of the parameter. */
10750 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10751 tok--;
10752 value_start = tok + 1;
10753
10754 /* Skip whitespace. */
10755 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10756 tok--;
10757
10758 end_tok = tok;
10759
10760 /* Find the beginning of the second to last token.
10761 This is the parameter itself. */
10762 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10763 tok--;
10764 tok++;
10765 toklen = end_tok - tok + 1;
10766
10767 if (toklen == 6 && startswith (tok, "thread"))
10768 {
10769 struct thread_info *thr;
10770 /* At this point we've found a "thread" token, which means
10771 the user is trying to set a watchpoint that triggers
10772 only in a specific thread. */
10773 const char *endp;
10774
10775 if (thread != -1)
10776 error(_("You can specify only one thread."));
10777
10778 /* Extract the thread ID from the next token. */
10779 thr = parse_thread_id (value_start, &endp);
10780
10781 /* Check if the user provided a valid thread ID. */
10782 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10783 invalid_thread_id_error (value_start);
10784
10785 thread = thr->global_num;
10786 }
10787 else if (toklen == 4 && startswith (tok, "mask"))
10788 {
10789 /* We've found a "mask" token, which means the user wants to
10790 create a hardware watchpoint that is going to have the mask
10791 facility. */
10792 struct value *mask_value, *mark;
10793
10794 if (use_mask)
10795 error(_("You can specify only one mask."));
10796
10797 use_mask = just_location = 1;
10798
10799 mark = value_mark ();
10800 mask_value = parse_to_comma_and_eval (&value_start);
10801 mask = value_as_address (mask_value);
10802 value_free_to_mark (mark);
10803 }
10804 else
10805 /* We didn't recognize what we found. We should stop here. */
10806 break;
10807
10808 /* Truncate the string and get rid of the "parameter value" pair before
10809 the arguments string is parsed by the parse_exp_1 function. */
10810 exp_end = tok;
10811 }
10812 }
10813 else
10814 exp_end = arg;
10815
10816 /* Parse the rest of the arguments. From here on out, everything
10817 is in terms of a newly allocated string instead of the original
10818 ARG. */
10819 innermost_block = NULL;
10820 expression = savestring (arg, exp_end - arg);
10821 back_to = make_cleanup (xfree, expression);
10822 exp_start = arg = expression;
10823 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
10824 exp_end = arg;
10825 /* Remove trailing whitespace from the expression before saving it.
10826 This makes the eventual display of the expression string a bit
10827 prettier. */
10828 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10829 --exp_end;
10830
10831 /* Checking if the expression is not constant. */
10832 if (watchpoint_exp_is_const (exp.get ()))
10833 {
10834 int len;
10835
10836 len = exp_end - exp_start;
10837 while (len > 0 && isspace (exp_start[len - 1]))
10838 len--;
10839 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10840 }
10841
10842 exp_valid_block = innermost_block;
10843 mark = value_mark ();
10844 fetch_subexp_value (exp.get (), &pc, &val, &result, NULL, just_location);
10845
10846 if (val != NULL && just_location)
10847 {
10848 saved_bitpos = value_bitpos (val);
10849 saved_bitsize = value_bitsize (val);
10850 }
10851
10852 if (just_location)
10853 {
10854 int ret;
10855
10856 exp_valid_block = NULL;
10857 val = value_addr (result);
10858 release_value (val);
10859 value_free_to_mark (mark);
10860
10861 if (use_mask)
10862 {
10863 ret = target_masked_watch_num_registers (value_as_address (val),
10864 mask);
10865 if (ret == -1)
10866 error (_("This target does not support masked watchpoints."));
10867 else if (ret == -2)
10868 error (_("Invalid mask or memory region."));
10869 }
10870 }
10871 else if (val != NULL)
10872 release_value (val);
10873
10874 tok = skip_spaces (arg);
10875 end_tok = skip_to_space (tok);
10876
10877 toklen = end_tok - tok;
10878 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10879 {
10880 innermost_block = NULL;
10881 tok = cond_start = end_tok + 1;
10882 parse_exp_1 (&tok, 0, 0, 0);
10883
10884 /* The watchpoint expression may not be local, but the condition
10885 may still be. E.g.: `watch global if local > 0'. */
10886 cond_exp_valid_block = innermost_block;
10887
10888 cond_end = tok;
10889 }
10890 if (*tok)
10891 error (_("Junk at end of command."));
10892
10893 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10894
10895 /* Save this because create_internal_breakpoint below invalidates
10896 'wp_frame'. */
10897 frame_id watchpoint_frame = get_frame_id (wp_frame);
10898
10899 /* If the expression is "local", then set up a "watchpoint scope"
10900 breakpoint at the point where we've left the scope of the watchpoint
10901 expression. Create the scope breakpoint before the watchpoint, so
10902 that we will encounter it first in bpstat_stop_status. */
10903 if (exp_valid_block != NULL && wp_frame != NULL)
10904 {
10905 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10906
10907 if (frame_id_p (caller_frame_id))
10908 {
10909 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10910 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10911
10912 scope_breakpoint
10913 = create_internal_breakpoint (caller_arch, caller_pc,
10914 bp_watchpoint_scope,
10915 &momentary_breakpoint_ops);
10916
10917 /* create_internal_breakpoint could invalidate WP_FRAME. */
10918 wp_frame = NULL;
10919
10920 scope_breakpoint->enable_state = bp_enabled;
10921
10922 /* Automatically delete the breakpoint when it hits. */
10923 scope_breakpoint->disposition = disp_del;
10924
10925 /* Only break in the proper frame (help with recursion). */
10926 scope_breakpoint->frame_id = caller_frame_id;
10927
10928 /* Set the address at which we will stop. */
10929 scope_breakpoint->loc->gdbarch = caller_arch;
10930 scope_breakpoint->loc->requested_address = caller_pc;
10931 scope_breakpoint->loc->address
10932 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10933 scope_breakpoint->loc->requested_address,
10934 scope_breakpoint->type);
10935 }
10936 }
10937
10938 /* Now set up the breakpoint. We create all watchpoints as hardware
10939 watchpoints here even if hardware watchpoints are turned off, a call
10940 to update_watchpoint later in this function will cause the type to
10941 drop back to bp_watchpoint (software watchpoint) if required. */
10942
10943 if (accessflag == hw_read)
10944 bp_type = bp_read_watchpoint;
10945 else if (accessflag == hw_access)
10946 bp_type = bp_access_watchpoint;
10947 else
10948 bp_type = bp_hardware_watchpoint;
10949
10950 std::unique_ptr<watchpoint> w (new watchpoint ());
10951
10952 if (use_mask)
10953 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10954 &masked_watchpoint_breakpoint_ops);
10955 else
10956 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10957 &watchpoint_breakpoint_ops);
10958 w->thread = thread;
10959 w->disposition = disp_donttouch;
10960 w->pspace = current_program_space;
10961 w->exp = std::move (exp);
10962 w->exp_valid_block = exp_valid_block;
10963 w->cond_exp_valid_block = cond_exp_valid_block;
10964 if (just_location)
10965 {
10966 struct type *t = value_type (val);
10967 CORE_ADDR addr = value_as_address (val);
10968
10969 w->exp_string_reparse
10970 = current_language->la_watch_location_expression (t, addr).release ();
10971
10972 w->exp_string = xstrprintf ("-location %.*s",
10973 (int) (exp_end - exp_start), exp_start);
10974 }
10975 else
10976 w->exp_string = savestring (exp_start, exp_end - exp_start);
10977
10978 if (use_mask)
10979 {
10980 w->hw_wp_mask = mask;
10981 }
10982 else
10983 {
10984 w->val = val;
10985 w->val_bitpos = saved_bitpos;
10986 w->val_bitsize = saved_bitsize;
10987 w->val_valid = 1;
10988 }
10989
10990 if (cond_start)
10991 w->cond_string = savestring (cond_start, cond_end - cond_start);
10992 else
10993 w->cond_string = 0;
10994
10995 if (frame_id_p (watchpoint_frame))
10996 {
10997 w->watchpoint_frame = watchpoint_frame;
10998 w->watchpoint_thread = inferior_ptid;
10999 }
11000 else
11001 {
11002 w->watchpoint_frame = null_frame_id;
11003 w->watchpoint_thread = null_ptid;
11004 }
11005
11006 if (scope_breakpoint != NULL)
11007 {
11008 /* The scope breakpoint is related to the watchpoint. We will
11009 need to act on them together. */
11010 w->related_breakpoint = scope_breakpoint;
11011 scope_breakpoint->related_breakpoint = w.get ();
11012 }
11013
11014 if (!just_location)
11015 value_free_to_mark (mark);
11016
11017 /* Finally update the new watchpoint. This creates the locations
11018 that should be inserted. */
11019 update_watchpoint (w.get (), 1);
11020
11021 install_breakpoint (internal, std::move (w), 1);
11022 do_cleanups (back_to);
11023 }
11024
11025 /* Return count of debug registers needed to watch the given expression.
11026 If the watchpoint cannot be handled in hardware return zero. */
11027
11028 static int
11029 can_use_hardware_watchpoint (struct value *v)
11030 {
11031 int found_memory_cnt = 0;
11032 struct value *head = v;
11033
11034 /* Did the user specifically forbid us to use hardware watchpoints? */
11035 if (!can_use_hw_watchpoints)
11036 return 0;
11037
11038 /* Make sure that the value of the expression depends only upon
11039 memory contents, and values computed from them within GDB. If we
11040 find any register references or function calls, we can't use a
11041 hardware watchpoint.
11042
11043 The idea here is that evaluating an expression generates a series
11044 of values, one holding the value of every subexpression. (The
11045 expression a*b+c has five subexpressions: a, b, a*b, c, and
11046 a*b+c.) GDB's values hold almost enough information to establish
11047 the criteria given above --- they identify memory lvalues,
11048 register lvalues, computed values, etcetera. So we can evaluate
11049 the expression, and then scan the chain of values that leaves
11050 behind to decide whether we can detect any possible change to the
11051 expression's final value using only hardware watchpoints.
11052
11053 However, I don't think that the values returned by inferior
11054 function calls are special in any way. So this function may not
11055 notice that an expression involving an inferior function call
11056 can't be watched with hardware watchpoints. FIXME. */
11057 for (; v; v = value_next (v))
11058 {
11059 if (VALUE_LVAL (v) == lval_memory)
11060 {
11061 if (v != head && value_lazy (v))
11062 /* A lazy memory lvalue in the chain is one that GDB never
11063 needed to fetch; we either just used its address (e.g.,
11064 `a' in `a.b') or we never needed it at all (e.g., `a'
11065 in `a,b'). This doesn't apply to HEAD; if that is
11066 lazy then it was not readable, but watch it anyway. */
11067 ;
11068 else
11069 {
11070 /* Ahh, memory we actually used! Check if we can cover
11071 it with hardware watchpoints. */
11072 struct type *vtype = check_typedef (value_type (v));
11073
11074 /* We only watch structs and arrays if user asked for it
11075 explicitly, never if they just happen to appear in a
11076 middle of some value chain. */
11077 if (v == head
11078 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11079 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11080 {
11081 CORE_ADDR vaddr = value_address (v);
11082 int len;
11083 int num_regs;
11084
11085 len = (target_exact_watchpoints
11086 && is_scalar_type_recursive (vtype))?
11087 1 : TYPE_LENGTH (value_type (v));
11088
11089 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11090 if (!num_regs)
11091 return 0;
11092 else
11093 found_memory_cnt += num_regs;
11094 }
11095 }
11096 }
11097 else if (VALUE_LVAL (v) != not_lval
11098 && deprecated_value_modifiable (v) == 0)
11099 return 0; /* These are values from the history (e.g., $1). */
11100 else if (VALUE_LVAL (v) == lval_register)
11101 return 0; /* Cannot watch a register with a HW watchpoint. */
11102 }
11103
11104 /* The expression itself looks suitable for using a hardware
11105 watchpoint, but give the target machine a chance to reject it. */
11106 return found_memory_cnt;
11107 }
11108
11109 void
11110 watch_command_wrapper (const char *arg, int from_tty, int internal)
11111 {
11112 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11113 }
11114
11115 /* A helper function that looks for the "-location" argument and then
11116 calls watch_command_1. */
11117
11118 static void
11119 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11120 {
11121 int just_location = 0;
11122
11123 if (arg
11124 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11125 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11126 {
11127 arg = skip_spaces (arg);
11128 just_location = 1;
11129 }
11130
11131 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11132 }
11133
11134 static void
11135 watch_command (char *arg, int from_tty)
11136 {
11137 watch_maybe_just_location (arg, hw_write, from_tty);
11138 }
11139
11140 void
11141 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
11142 {
11143 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11144 }
11145
11146 static void
11147 rwatch_command (char *arg, int from_tty)
11148 {
11149 watch_maybe_just_location (arg, hw_read, from_tty);
11150 }
11151
11152 void
11153 awatch_command_wrapper (const char *arg, int from_tty, int internal)
11154 {
11155 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11156 }
11157
11158 static void
11159 awatch_command (char *arg, int from_tty)
11160 {
11161 watch_maybe_just_location (arg, hw_access, from_tty);
11162 }
11163 \f
11164
11165 /* Data for the FSM that manages the until(location)/advance commands
11166 in infcmd.c. Here because it uses the mechanisms of
11167 breakpoints. */
11168
11169 struct until_break_fsm
11170 {
11171 /* The base class. */
11172 struct thread_fsm thread_fsm;
11173
11174 /* The thread that as current when the command was executed. */
11175 int thread;
11176
11177 /* The breakpoint set at the destination location. */
11178 struct breakpoint *location_breakpoint;
11179
11180 /* Breakpoint set at the return address in the caller frame. May be
11181 NULL. */
11182 struct breakpoint *caller_breakpoint;
11183 };
11184
11185 static void until_break_fsm_clean_up (struct thread_fsm *self,
11186 struct thread_info *thread);
11187 static int until_break_fsm_should_stop (struct thread_fsm *self,
11188 struct thread_info *thread);
11189 static enum async_reply_reason
11190 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11191
11192 /* until_break_fsm's vtable. */
11193
11194 static struct thread_fsm_ops until_break_fsm_ops =
11195 {
11196 NULL, /* dtor */
11197 until_break_fsm_clean_up,
11198 until_break_fsm_should_stop,
11199 NULL, /* return_value */
11200 until_break_fsm_async_reply_reason,
11201 };
11202
11203 /* Allocate a new until_break_command_fsm. */
11204
11205 static struct until_break_fsm *
11206 new_until_break_fsm (struct interp *cmd_interp, int thread,
11207 struct breakpoint *location_breakpoint,
11208 struct breakpoint *caller_breakpoint)
11209 {
11210 struct until_break_fsm *sm;
11211
11212 sm = XCNEW (struct until_break_fsm);
11213 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11214
11215 sm->thread = thread;
11216 sm->location_breakpoint = location_breakpoint;
11217 sm->caller_breakpoint = caller_breakpoint;
11218
11219 return sm;
11220 }
11221
11222 /* Implementation of the 'should_stop' FSM method for the
11223 until(location)/advance commands. */
11224
11225 static int
11226 until_break_fsm_should_stop (struct thread_fsm *self,
11227 struct thread_info *tp)
11228 {
11229 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11230
11231 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11232 sm->location_breakpoint) != NULL
11233 || (sm->caller_breakpoint != NULL
11234 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11235 sm->caller_breakpoint) != NULL))
11236 thread_fsm_set_finished (self);
11237
11238 return 1;
11239 }
11240
11241 /* Implementation of the 'clean_up' FSM method for the
11242 until(location)/advance commands. */
11243
11244 static void
11245 until_break_fsm_clean_up (struct thread_fsm *self,
11246 struct thread_info *thread)
11247 {
11248 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11249
11250 /* Clean up our temporary breakpoints. */
11251 if (sm->location_breakpoint != NULL)
11252 {
11253 delete_breakpoint (sm->location_breakpoint);
11254 sm->location_breakpoint = NULL;
11255 }
11256 if (sm->caller_breakpoint != NULL)
11257 {
11258 delete_breakpoint (sm->caller_breakpoint);
11259 sm->caller_breakpoint = NULL;
11260 }
11261 delete_longjmp_breakpoint (sm->thread);
11262 }
11263
11264 /* Implementation of the 'async_reply_reason' FSM method for the
11265 until(location)/advance commands. */
11266
11267 static enum async_reply_reason
11268 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11269 {
11270 return EXEC_ASYNC_LOCATION_REACHED;
11271 }
11272
11273 void
11274 until_break_command (const char *arg, int from_tty, int anywhere)
11275 {
11276 struct frame_info *frame;
11277 struct gdbarch *frame_gdbarch;
11278 struct frame_id stack_frame_id;
11279 struct frame_id caller_frame_id;
11280 struct breakpoint *location_breakpoint;
11281 struct breakpoint *caller_breakpoint = NULL;
11282 struct cleanup *old_chain;
11283 int thread;
11284 struct thread_info *tp;
11285 struct until_break_fsm *sm;
11286
11287 clear_proceed_status (0);
11288
11289 /* Set a breakpoint where the user wants it and at return from
11290 this function. */
11291
11292 event_location_up location = string_to_event_location (&arg, current_language);
11293
11294 std::vector<symtab_and_line> sals
11295 = (last_displayed_sal_is_valid ()
11296 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11297 get_last_displayed_symtab (),
11298 get_last_displayed_line ())
11299 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11300 NULL, (struct symtab *) NULL, 0));
11301
11302 if (sals.size () != 1)
11303 error (_("Couldn't get information on specified line."));
11304
11305 symtab_and_line &sal = sals[0];
11306
11307 if (*arg)
11308 error (_("Junk at end of arguments."));
11309
11310 resolve_sal_pc (&sal);
11311
11312 tp = inferior_thread ();
11313 thread = tp->global_num;
11314
11315 old_chain = make_cleanup (null_cleanup, NULL);
11316
11317 /* Note linespec handling above invalidates the frame chain.
11318 Installing a breakpoint also invalidates the frame chain (as it
11319 may need to switch threads), so do any frame handling before
11320 that. */
11321
11322 frame = get_selected_frame (NULL);
11323 frame_gdbarch = get_frame_arch (frame);
11324 stack_frame_id = get_stack_frame_id (frame);
11325 caller_frame_id = frame_unwind_caller_id (frame);
11326
11327 /* Keep within the current frame, or in frames called by the current
11328 one. */
11329
11330 if (frame_id_p (caller_frame_id))
11331 {
11332 struct symtab_and_line sal2;
11333 struct gdbarch *caller_gdbarch;
11334
11335 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11336 sal2.pc = frame_unwind_caller_pc (frame);
11337 caller_gdbarch = frame_unwind_caller_arch (frame);
11338 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11339 sal2,
11340 caller_frame_id,
11341 bp_until);
11342 make_cleanup_delete_breakpoint (caller_breakpoint);
11343
11344 set_longjmp_breakpoint (tp, caller_frame_id);
11345 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11346 }
11347
11348 /* set_momentary_breakpoint could invalidate FRAME. */
11349 frame = NULL;
11350
11351 if (anywhere)
11352 /* If the user told us to continue until a specified location,
11353 we don't specify a frame at which we need to stop. */
11354 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11355 null_frame_id, bp_until);
11356 else
11357 /* Otherwise, specify the selected frame, because we want to stop
11358 only at the very same frame. */
11359 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11360 stack_frame_id, bp_until);
11361 make_cleanup_delete_breakpoint (location_breakpoint);
11362
11363 sm = new_until_break_fsm (command_interp (), tp->global_num,
11364 location_breakpoint, caller_breakpoint);
11365 tp->thread_fsm = &sm->thread_fsm;
11366
11367 discard_cleanups (old_chain);
11368
11369 proceed (-1, GDB_SIGNAL_DEFAULT);
11370 }
11371
11372 /* This function attempts to parse an optional "if <cond>" clause
11373 from the arg string. If one is not found, it returns NULL.
11374
11375 Else, it returns a pointer to the condition string. (It does not
11376 attempt to evaluate the string against a particular block.) And,
11377 it updates arg to point to the first character following the parsed
11378 if clause in the arg string. */
11379
11380 const char *
11381 ep_parse_optional_if_clause (const char **arg)
11382 {
11383 const char *cond_string;
11384
11385 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11386 return NULL;
11387
11388 /* Skip the "if" keyword. */
11389 (*arg) += 2;
11390
11391 /* Skip any extra leading whitespace, and record the start of the
11392 condition string. */
11393 *arg = skip_spaces (*arg);
11394 cond_string = *arg;
11395
11396 /* Assume that the condition occupies the remainder of the arg
11397 string. */
11398 (*arg) += strlen (cond_string);
11399
11400 return cond_string;
11401 }
11402
11403 /* Commands to deal with catching events, such as signals, exceptions,
11404 process start/exit, etc. */
11405
11406 typedef enum
11407 {
11408 catch_fork_temporary, catch_vfork_temporary,
11409 catch_fork_permanent, catch_vfork_permanent
11410 }
11411 catch_fork_kind;
11412
11413 static void
11414 catch_fork_command_1 (char *arg_entry, int from_tty,
11415 struct cmd_list_element *command)
11416 {
11417 const char *arg = arg_entry;
11418 struct gdbarch *gdbarch = get_current_arch ();
11419 const char *cond_string = NULL;
11420 catch_fork_kind fork_kind;
11421 int tempflag;
11422
11423 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11424 tempflag = (fork_kind == catch_fork_temporary
11425 || fork_kind == catch_vfork_temporary);
11426
11427 if (!arg)
11428 arg = "";
11429 arg = skip_spaces (arg);
11430
11431 /* The allowed syntax is:
11432 catch [v]fork
11433 catch [v]fork if <cond>
11434
11435 First, check if there's an if clause. */
11436 cond_string = ep_parse_optional_if_clause (&arg);
11437
11438 if ((*arg != '\0') && !isspace (*arg))
11439 error (_("Junk at end of arguments."));
11440
11441 /* If this target supports it, create a fork or vfork catchpoint
11442 and enable reporting of such events. */
11443 switch (fork_kind)
11444 {
11445 case catch_fork_temporary:
11446 case catch_fork_permanent:
11447 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11448 &catch_fork_breakpoint_ops);
11449 break;
11450 case catch_vfork_temporary:
11451 case catch_vfork_permanent:
11452 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11453 &catch_vfork_breakpoint_ops);
11454 break;
11455 default:
11456 error (_("unsupported or unknown fork kind; cannot catch it"));
11457 break;
11458 }
11459 }
11460
11461 static void
11462 catch_exec_command_1 (char *arg_entry, int from_tty,
11463 struct cmd_list_element *command)
11464 {
11465 const char *arg = arg_entry;
11466 struct gdbarch *gdbarch = get_current_arch ();
11467 int tempflag;
11468 const char *cond_string = NULL;
11469
11470 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11471
11472 if (!arg)
11473 arg = "";
11474 arg = skip_spaces (arg);
11475
11476 /* The allowed syntax is:
11477 catch exec
11478 catch exec if <cond>
11479
11480 First, check if there's an if clause. */
11481 cond_string = ep_parse_optional_if_clause (&arg);
11482
11483 if ((*arg != '\0') && !isspace (*arg))
11484 error (_("Junk at end of arguments."));
11485
11486 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11487 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11488 &catch_exec_breakpoint_ops);
11489 c->exec_pathname = NULL;
11490
11491 install_breakpoint (0, std::move (c), 1);
11492 }
11493
11494 void
11495 init_ada_exception_breakpoint (struct breakpoint *b,
11496 struct gdbarch *gdbarch,
11497 struct symtab_and_line sal,
11498 const char *addr_string,
11499 const struct breakpoint_ops *ops,
11500 int tempflag,
11501 int enabled,
11502 int from_tty)
11503 {
11504 if (from_tty)
11505 {
11506 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11507 if (!loc_gdbarch)
11508 loc_gdbarch = gdbarch;
11509
11510 describe_other_breakpoints (loc_gdbarch,
11511 sal.pspace, sal.pc, sal.section, -1);
11512 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11513 version for exception catchpoints, because two catchpoints
11514 used for different exception names will use the same address.
11515 In this case, a "breakpoint ... also set at..." warning is
11516 unproductive. Besides, the warning phrasing is also a bit
11517 inappropriate, we should use the word catchpoint, and tell
11518 the user what type of catchpoint it is. The above is good
11519 enough for now, though. */
11520 }
11521
11522 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11523
11524 b->enable_state = enabled ? bp_enabled : bp_disabled;
11525 b->disposition = tempflag ? disp_del : disp_donttouch;
11526 b->location = string_to_event_location (&addr_string,
11527 language_def (language_ada));
11528 b->language = language_ada;
11529 }
11530
11531 static void
11532 catch_command (char *arg, int from_tty)
11533 {
11534 error (_("Catch requires an event name."));
11535 }
11536 \f
11537
11538 static void
11539 tcatch_command (char *arg, int from_tty)
11540 {
11541 error (_("Catch requires an event name."));
11542 }
11543
11544 /* A qsort comparison function that sorts breakpoints in order. */
11545
11546 static int
11547 compare_breakpoints (const void *a, const void *b)
11548 {
11549 const breakpoint_p *ba = (const breakpoint_p *) a;
11550 uintptr_t ua = (uintptr_t) *ba;
11551 const breakpoint_p *bb = (const breakpoint_p *) b;
11552 uintptr_t ub = (uintptr_t) *bb;
11553
11554 if ((*ba)->number < (*bb)->number)
11555 return -1;
11556 else if ((*ba)->number > (*bb)->number)
11557 return 1;
11558
11559 /* Now sort by address, in case we see, e..g, two breakpoints with
11560 the number 0. */
11561 if (ua < ub)
11562 return -1;
11563 return ua > ub ? 1 : 0;
11564 }
11565
11566 /* Delete breakpoints by address or line. */
11567
11568 static void
11569 clear_command (char *arg, int from_tty)
11570 {
11571 struct breakpoint *b, *prev;
11572 VEC(breakpoint_p) *found = 0;
11573 int ix;
11574 int default_match;
11575 int i;
11576 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11577
11578 std::vector<symtab_and_line> decoded_sals;
11579 symtab_and_line last_sal;
11580 gdb::array_view<symtab_and_line> sals;
11581 if (arg)
11582 {
11583 decoded_sals
11584 = decode_line_with_current_source (arg,
11585 (DECODE_LINE_FUNFIRSTLINE
11586 | DECODE_LINE_LIST_MODE));
11587 default_match = 0;
11588 sals = decoded_sals;
11589 }
11590 else
11591 {
11592 /* Set sal's line, symtab, pc, and pspace to the values
11593 corresponding to the last call to print_frame_info. If the
11594 codepoint is not valid, this will set all the fields to 0. */
11595 last_sal = get_last_displayed_sal ();
11596 if (last_sal.symtab == 0)
11597 error (_("No source file specified."));
11598
11599 default_match = 1;
11600 sals = last_sal;
11601 }
11602
11603 /* We don't call resolve_sal_pc here. That's not as bad as it
11604 seems, because all existing breakpoints typically have both
11605 file/line and pc set. So, if clear is given file/line, we can
11606 match this to existing breakpoint without obtaining pc at all.
11607
11608 We only support clearing given the address explicitly
11609 present in breakpoint table. Say, we've set breakpoint
11610 at file:line. There were several PC values for that file:line,
11611 due to optimization, all in one block.
11612
11613 We've picked one PC value. If "clear" is issued with another
11614 PC corresponding to the same file:line, the breakpoint won't
11615 be cleared. We probably can still clear the breakpoint, but
11616 since the other PC value is never presented to user, user
11617 can only find it by guessing, and it does not seem important
11618 to support that. */
11619
11620 /* For each line spec given, delete bps which correspond to it. Do
11621 it in two passes, solely to preserve the current behavior that
11622 from_tty is forced true if we delete more than one
11623 breakpoint. */
11624
11625 found = NULL;
11626 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11627 for (const auto &sal : sals)
11628 {
11629 const char *sal_fullname;
11630
11631 /* If exact pc given, clear bpts at that pc.
11632 If line given (pc == 0), clear all bpts on specified line.
11633 If defaulting, clear all bpts on default line
11634 or at default pc.
11635
11636 defaulting sal.pc != 0 tests to do
11637
11638 0 1 pc
11639 1 1 pc _and_ line
11640 0 0 line
11641 1 0 <can't happen> */
11642
11643 sal_fullname = (sal.symtab == NULL
11644 ? NULL : symtab_to_fullname (sal.symtab));
11645
11646 /* Find all matching breakpoints and add them to 'found'. */
11647 ALL_BREAKPOINTS (b)
11648 {
11649 int match = 0;
11650 /* Are we going to delete b? */
11651 if (b->type != bp_none && !is_watchpoint (b))
11652 {
11653 struct bp_location *loc = b->loc;
11654 for (; loc; loc = loc->next)
11655 {
11656 /* If the user specified file:line, don't allow a PC
11657 match. This matches historical gdb behavior. */
11658 int pc_match = (!sal.explicit_line
11659 && sal.pc
11660 && (loc->pspace == sal.pspace)
11661 && (loc->address == sal.pc)
11662 && (!section_is_overlay (loc->section)
11663 || loc->section == sal.section));
11664 int line_match = 0;
11665
11666 if ((default_match || sal.explicit_line)
11667 && loc->symtab != NULL
11668 && sal_fullname != NULL
11669 && sal.pspace == loc->pspace
11670 && loc->line_number == sal.line
11671 && filename_cmp (symtab_to_fullname (loc->symtab),
11672 sal_fullname) == 0)
11673 line_match = 1;
11674
11675 if (pc_match || line_match)
11676 {
11677 match = 1;
11678 break;
11679 }
11680 }
11681 }
11682
11683 if (match)
11684 VEC_safe_push(breakpoint_p, found, b);
11685 }
11686 }
11687
11688 /* Now go thru the 'found' chain and delete them. */
11689 if (VEC_empty(breakpoint_p, found))
11690 {
11691 if (arg)
11692 error (_("No breakpoint at %s."), arg);
11693 else
11694 error (_("No breakpoint at this line."));
11695 }
11696
11697 /* Remove duplicates from the vec. */
11698 qsort (VEC_address (breakpoint_p, found),
11699 VEC_length (breakpoint_p, found),
11700 sizeof (breakpoint_p),
11701 compare_breakpoints);
11702 prev = VEC_index (breakpoint_p, found, 0);
11703 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
11704 {
11705 if (b == prev)
11706 {
11707 VEC_ordered_remove (breakpoint_p, found, ix);
11708 --ix;
11709 }
11710 }
11711
11712 if (VEC_length(breakpoint_p, found) > 1)
11713 from_tty = 1; /* Always report if deleted more than one. */
11714 if (from_tty)
11715 {
11716 if (VEC_length(breakpoint_p, found) == 1)
11717 printf_unfiltered (_("Deleted breakpoint "));
11718 else
11719 printf_unfiltered (_("Deleted breakpoints "));
11720 }
11721
11722 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
11723 {
11724 if (from_tty)
11725 printf_unfiltered ("%d ", b->number);
11726 delete_breakpoint (b);
11727 }
11728 if (from_tty)
11729 putchar_unfiltered ('\n');
11730
11731 do_cleanups (cleanups);
11732 }
11733 \f
11734 /* Delete breakpoint in BS if they are `delete' breakpoints and
11735 all breakpoints that are marked for deletion, whether hit or not.
11736 This is called after any breakpoint is hit, or after errors. */
11737
11738 void
11739 breakpoint_auto_delete (bpstat bs)
11740 {
11741 struct breakpoint *b, *b_tmp;
11742
11743 for (; bs; bs = bs->next)
11744 if (bs->breakpoint_at
11745 && bs->breakpoint_at->disposition == disp_del
11746 && bs->stop)
11747 delete_breakpoint (bs->breakpoint_at);
11748
11749 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11750 {
11751 if (b->disposition == disp_del_at_next_stop)
11752 delete_breakpoint (b);
11753 }
11754 }
11755
11756 /* A comparison function for bp_location AP and BP being interfaced to
11757 qsort. Sort elements primarily by their ADDRESS (no matter what
11758 does breakpoint_address_is_meaningful say for its OWNER),
11759 secondarily by ordering first permanent elements and
11760 terciarily just ensuring the array is sorted stable way despite
11761 qsort being an unstable algorithm. */
11762
11763 static int
11764 bp_locations_compare (const void *ap, const void *bp)
11765 {
11766 const struct bp_location *a = *(const struct bp_location **) ap;
11767 const struct bp_location *b = *(const struct bp_location **) bp;
11768
11769 if (a->address != b->address)
11770 return (a->address > b->address) - (a->address < b->address);
11771
11772 /* Sort locations at the same address by their pspace number, keeping
11773 locations of the same inferior (in a multi-inferior environment)
11774 grouped. */
11775
11776 if (a->pspace->num != b->pspace->num)
11777 return ((a->pspace->num > b->pspace->num)
11778 - (a->pspace->num < b->pspace->num));
11779
11780 /* Sort permanent breakpoints first. */
11781 if (a->permanent != b->permanent)
11782 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11783
11784 /* Make the internal GDB representation stable across GDB runs
11785 where A and B memory inside GDB can differ. Breakpoint locations of
11786 the same type at the same address can be sorted in arbitrary order. */
11787
11788 if (a->owner->number != b->owner->number)
11789 return ((a->owner->number > b->owner->number)
11790 - (a->owner->number < b->owner->number));
11791
11792 return (a > b) - (a < b);
11793 }
11794
11795 /* Set bp_locations_placed_address_before_address_max and
11796 bp_locations_shadow_len_after_address_max according to the current
11797 content of the bp_locations array. */
11798
11799 static void
11800 bp_locations_target_extensions_update (void)
11801 {
11802 struct bp_location *bl, **blp_tmp;
11803
11804 bp_locations_placed_address_before_address_max = 0;
11805 bp_locations_shadow_len_after_address_max = 0;
11806
11807 ALL_BP_LOCATIONS (bl, blp_tmp)
11808 {
11809 CORE_ADDR start, end, addr;
11810
11811 if (!bp_location_has_shadow (bl))
11812 continue;
11813
11814 start = bl->target_info.placed_address;
11815 end = start + bl->target_info.shadow_len;
11816
11817 gdb_assert (bl->address >= start);
11818 addr = bl->address - start;
11819 if (addr > bp_locations_placed_address_before_address_max)
11820 bp_locations_placed_address_before_address_max = addr;
11821
11822 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11823
11824 gdb_assert (bl->address < end);
11825 addr = end - bl->address;
11826 if (addr > bp_locations_shadow_len_after_address_max)
11827 bp_locations_shadow_len_after_address_max = addr;
11828 }
11829 }
11830
11831 /* Download tracepoint locations if they haven't been. */
11832
11833 static void
11834 download_tracepoint_locations (void)
11835 {
11836 struct breakpoint *b;
11837 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11838
11839 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11840
11841 ALL_TRACEPOINTS (b)
11842 {
11843 struct bp_location *bl;
11844 struct tracepoint *t;
11845 int bp_location_downloaded = 0;
11846
11847 if ((b->type == bp_fast_tracepoint
11848 ? !may_insert_fast_tracepoints
11849 : !may_insert_tracepoints))
11850 continue;
11851
11852 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11853 {
11854 if (target_can_download_tracepoint ())
11855 can_download_tracepoint = TRIBOOL_TRUE;
11856 else
11857 can_download_tracepoint = TRIBOOL_FALSE;
11858 }
11859
11860 if (can_download_tracepoint == TRIBOOL_FALSE)
11861 break;
11862
11863 for (bl = b->loc; bl; bl = bl->next)
11864 {
11865 /* In tracepoint, locations are _never_ duplicated, so
11866 should_be_inserted is equivalent to
11867 unduplicated_should_be_inserted. */
11868 if (!should_be_inserted (bl) || bl->inserted)
11869 continue;
11870
11871 switch_to_program_space_and_thread (bl->pspace);
11872
11873 target_download_tracepoint (bl);
11874
11875 bl->inserted = 1;
11876 bp_location_downloaded = 1;
11877 }
11878 t = (struct tracepoint *) b;
11879 t->number_on_target = b->number;
11880 if (bp_location_downloaded)
11881 observer_notify_breakpoint_modified (b);
11882 }
11883 }
11884
11885 /* Swap the insertion/duplication state between two locations. */
11886
11887 static void
11888 swap_insertion (struct bp_location *left, struct bp_location *right)
11889 {
11890 const int left_inserted = left->inserted;
11891 const int left_duplicate = left->duplicate;
11892 const int left_needs_update = left->needs_update;
11893 const struct bp_target_info left_target_info = left->target_info;
11894
11895 /* Locations of tracepoints can never be duplicated. */
11896 if (is_tracepoint (left->owner))
11897 gdb_assert (!left->duplicate);
11898 if (is_tracepoint (right->owner))
11899 gdb_assert (!right->duplicate);
11900
11901 left->inserted = right->inserted;
11902 left->duplicate = right->duplicate;
11903 left->needs_update = right->needs_update;
11904 left->target_info = right->target_info;
11905 right->inserted = left_inserted;
11906 right->duplicate = left_duplicate;
11907 right->needs_update = left_needs_update;
11908 right->target_info = left_target_info;
11909 }
11910
11911 /* Force the re-insertion of the locations at ADDRESS. This is called
11912 once a new/deleted/modified duplicate location is found and we are evaluating
11913 conditions on the target's side. Such conditions need to be updated on
11914 the target. */
11915
11916 static void
11917 force_breakpoint_reinsertion (struct bp_location *bl)
11918 {
11919 struct bp_location **locp = NULL, **loc2p;
11920 struct bp_location *loc;
11921 CORE_ADDR address = 0;
11922 int pspace_num;
11923
11924 address = bl->address;
11925 pspace_num = bl->pspace->num;
11926
11927 /* This is only meaningful if the target is
11928 evaluating conditions and if the user has
11929 opted for condition evaluation on the target's
11930 side. */
11931 if (gdb_evaluates_breakpoint_condition_p ()
11932 || !target_supports_evaluation_of_breakpoint_conditions ())
11933 return;
11934
11935 /* Flag all breakpoint locations with this address and
11936 the same program space as the location
11937 as "its condition has changed". We need to
11938 update the conditions on the target's side. */
11939 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11940 {
11941 loc = *loc2p;
11942
11943 if (!is_breakpoint (loc->owner)
11944 || pspace_num != loc->pspace->num)
11945 continue;
11946
11947 /* Flag the location appropriately. We use a different state to
11948 let everyone know that we already updated the set of locations
11949 with addr bl->address and program space bl->pspace. This is so
11950 we don't have to keep calling these functions just to mark locations
11951 that have already been marked. */
11952 loc->condition_changed = condition_updated;
11953
11954 /* Free the agent expression bytecode as well. We will compute
11955 it later on. */
11956 loc->cond_bytecode.reset ();
11957 }
11958 }
11959 /* Called whether new breakpoints are created, or existing breakpoints
11960 deleted, to update the global location list and recompute which
11961 locations are duplicate of which.
11962
11963 The INSERT_MODE flag determines whether locations may not, may, or
11964 shall be inserted now. See 'enum ugll_insert_mode' for more
11965 info. */
11966
11967 static void
11968 update_global_location_list (enum ugll_insert_mode insert_mode)
11969 {
11970 struct breakpoint *b;
11971 struct bp_location **locp, *loc;
11972 struct cleanup *cleanups;
11973 /* Last breakpoint location address that was marked for update. */
11974 CORE_ADDR last_addr = 0;
11975 /* Last breakpoint location program space that was marked for update. */
11976 int last_pspace_num = -1;
11977
11978 /* Used in the duplicates detection below. When iterating over all
11979 bp_locations, points to the first bp_location of a given address.
11980 Breakpoints and watchpoints of different types are never
11981 duplicates of each other. Keep one pointer for each type of
11982 breakpoint/watchpoint, so we only need to loop over all locations
11983 once. */
11984 struct bp_location *bp_loc_first; /* breakpoint */
11985 struct bp_location *wp_loc_first; /* hardware watchpoint */
11986 struct bp_location *awp_loc_first; /* access watchpoint */
11987 struct bp_location *rwp_loc_first; /* read watchpoint */
11988
11989 /* Saved former bp_locations array which we compare against the newly
11990 built bp_locations from the current state of ALL_BREAKPOINTS. */
11991 struct bp_location **old_locations, **old_locp;
11992 unsigned old_locations_count;
11993
11994 old_locations = bp_locations;
11995 old_locations_count = bp_locations_count;
11996 bp_locations = NULL;
11997 bp_locations_count = 0;
11998 cleanups = make_cleanup (xfree, old_locations);
11999
12000 ALL_BREAKPOINTS (b)
12001 for (loc = b->loc; loc; loc = loc->next)
12002 bp_locations_count++;
12003
12004 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
12005 locp = bp_locations;
12006 ALL_BREAKPOINTS (b)
12007 for (loc = b->loc; loc; loc = loc->next)
12008 *locp++ = loc;
12009 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
12010 bp_locations_compare);
12011
12012 bp_locations_target_extensions_update ();
12013
12014 /* Identify bp_location instances that are no longer present in the
12015 new list, and therefore should be freed. Note that it's not
12016 necessary that those locations should be removed from inferior --
12017 if there's another location at the same address (previously
12018 marked as duplicate), we don't need to remove/insert the
12019 location.
12020
12021 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12022 and former bp_location array state respectively. */
12023
12024 locp = bp_locations;
12025 for (old_locp = old_locations;
12026 old_locp < old_locations + old_locations_count;
12027 old_locp++)
12028 {
12029 struct bp_location *old_loc = *old_locp;
12030 struct bp_location **loc2p;
12031
12032 /* Tells if 'old_loc' is found among the new locations. If
12033 not, we have to free it. */
12034 int found_object = 0;
12035 /* Tells if the location should remain inserted in the target. */
12036 int keep_in_target = 0;
12037 int removed = 0;
12038
12039 /* Skip LOCP entries which will definitely never be needed.
12040 Stop either at or being the one matching OLD_LOC. */
12041 while (locp < bp_locations + bp_locations_count
12042 && (*locp)->address < old_loc->address)
12043 locp++;
12044
12045 for (loc2p = locp;
12046 (loc2p < bp_locations + bp_locations_count
12047 && (*loc2p)->address == old_loc->address);
12048 loc2p++)
12049 {
12050 /* Check if this is a new/duplicated location or a duplicated
12051 location that had its condition modified. If so, we want to send
12052 its condition to the target if evaluation of conditions is taking
12053 place there. */
12054 if ((*loc2p)->condition_changed == condition_modified
12055 && (last_addr != old_loc->address
12056 || last_pspace_num != old_loc->pspace->num))
12057 {
12058 force_breakpoint_reinsertion (*loc2p);
12059 last_pspace_num = old_loc->pspace->num;
12060 }
12061
12062 if (*loc2p == old_loc)
12063 found_object = 1;
12064 }
12065
12066 /* We have already handled this address, update it so that we don't
12067 have to go through updates again. */
12068 last_addr = old_loc->address;
12069
12070 /* Target-side condition evaluation: Handle deleted locations. */
12071 if (!found_object)
12072 force_breakpoint_reinsertion (old_loc);
12073
12074 /* If this location is no longer present, and inserted, look if
12075 there's maybe a new location at the same address. If so,
12076 mark that one inserted, and don't remove this one. This is
12077 needed so that we don't have a time window where a breakpoint
12078 at certain location is not inserted. */
12079
12080 if (old_loc->inserted)
12081 {
12082 /* If the location is inserted now, we might have to remove
12083 it. */
12084
12085 if (found_object && should_be_inserted (old_loc))
12086 {
12087 /* The location is still present in the location list,
12088 and still should be inserted. Don't do anything. */
12089 keep_in_target = 1;
12090 }
12091 else
12092 {
12093 /* This location still exists, but it won't be kept in the
12094 target since it may have been disabled. We proceed to
12095 remove its target-side condition. */
12096
12097 /* The location is either no longer present, or got
12098 disabled. See if there's another location at the
12099 same address, in which case we don't need to remove
12100 this one from the target. */
12101
12102 /* OLD_LOC comes from existing struct breakpoint. */
12103 if (breakpoint_address_is_meaningful (old_loc->owner))
12104 {
12105 for (loc2p = locp;
12106 (loc2p < bp_locations + bp_locations_count
12107 && (*loc2p)->address == old_loc->address);
12108 loc2p++)
12109 {
12110 struct bp_location *loc2 = *loc2p;
12111
12112 if (breakpoint_locations_match (loc2, old_loc))
12113 {
12114 /* Read watchpoint locations are switched to
12115 access watchpoints, if the former are not
12116 supported, but the latter are. */
12117 if (is_hardware_watchpoint (old_loc->owner))
12118 {
12119 gdb_assert (is_hardware_watchpoint (loc2->owner));
12120 loc2->watchpoint_type = old_loc->watchpoint_type;
12121 }
12122
12123 /* loc2 is a duplicated location. We need to check
12124 if it should be inserted in case it will be
12125 unduplicated. */
12126 if (loc2 != old_loc
12127 && unduplicated_should_be_inserted (loc2))
12128 {
12129 swap_insertion (old_loc, loc2);
12130 keep_in_target = 1;
12131 break;
12132 }
12133 }
12134 }
12135 }
12136 }
12137
12138 if (!keep_in_target)
12139 {
12140 if (remove_breakpoint (old_loc))
12141 {
12142 /* This is just about all we can do. We could keep
12143 this location on the global list, and try to
12144 remove it next time, but there's no particular
12145 reason why we will succeed next time.
12146
12147 Note that at this point, old_loc->owner is still
12148 valid, as delete_breakpoint frees the breakpoint
12149 only after calling us. */
12150 printf_filtered (_("warning: Error removing "
12151 "breakpoint %d\n"),
12152 old_loc->owner->number);
12153 }
12154 removed = 1;
12155 }
12156 }
12157
12158 if (!found_object)
12159 {
12160 if (removed && target_is_non_stop_p ()
12161 && need_moribund_for_location_type (old_loc))
12162 {
12163 /* This location was removed from the target. In
12164 non-stop mode, a race condition is possible where
12165 we've removed a breakpoint, but stop events for that
12166 breakpoint are already queued and will arrive later.
12167 We apply an heuristic to be able to distinguish such
12168 SIGTRAPs from other random SIGTRAPs: we keep this
12169 breakpoint location for a bit, and will retire it
12170 after we see some number of events. The theory here
12171 is that reporting of events should, "on the average",
12172 be fair, so after a while we'll see events from all
12173 threads that have anything of interest, and no longer
12174 need to keep this breakpoint location around. We
12175 don't hold locations forever so to reduce chances of
12176 mistaking a non-breakpoint SIGTRAP for a breakpoint
12177 SIGTRAP.
12178
12179 The heuristic failing can be disastrous on
12180 decr_pc_after_break targets.
12181
12182 On decr_pc_after_break targets, like e.g., x86-linux,
12183 if we fail to recognize a late breakpoint SIGTRAP,
12184 because events_till_retirement has reached 0 too
12185 soon, we'll fail to do the PC adjustment, and report
12186 a random SIGTRAP to the user. When the user resumes
12187 the inferior, it will most likely immediately crash
12188 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12189 corrupted, because of being resumed e.g., in the
12190 middle of a multi-byte instruction, or skipped a
12191 one-byte instruction. This was actually seen happen
12192 on native x86-linux, and should be less rare on
12193 targets that do not support new thread events, like
12194 remote, due to the heuristic depending on
12195 thread_count.
12196
12197 Mistaking a random SIGTRAP for a breakpoint trap
12198 causes similar symptoms (PC adjustment applied when
12199 it shouldn't), but then again, playing with SIGTRAPs
12200 behind the debugger's back is asking for trouble.
12201
12202 Since hardware watchpoint traps are always
12203 distinguishable from other traps, so we don't need to
12204 apply keep hardware watchpoint moribund locations
12205 around. We simply always ignore hardware watchpoint
12206 traps we can no longer explain. */
12207
12208 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12209 old_loc->owner = NULL;
12210
12211 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12212 }
12213 else
12214 {
12215 old_loc->owner = NULL;
12216 decref_bp_location (&old_loc);
12217 }
12218 }
12219 }
12220
12221 /* Rescan breakpoints at the same address and section, marking the
12222 first one as "first" and any others as "duplicates". This is so
12223 that the bpt instruction is only inserted once. If we have a
12224 permanent breakpoint at the same place as BPT, make that one the
12225 official one, and the rest as duplicates. Permanent breakpoints
12226 are sorted first for the same address.
12227
12228 Do the same for hardware watchpoints, but also considering the
12229 watchpoint's type (regular/access/read) and length. */
12230
12231 bp_loc_first = NULL;
12232 wp_loc_first = NULL;
12233 awp_loc_first = NULL;
12234 rwp_loc_first = NULL;
12235 ALL_BP_LOCATIONS (loc, locp)
12236 {
12237 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12238 non-NULL. */
12239 struct bp_location **loc_first_p;
12240 b = loc->owner;
12241
12242 if (!unduplicated_should_be_inserted (loc)
12243 || !breakpoint_address_is_meaningful (b)
12244 /* Don't detect duplicate for tracepoint locations because they are
12245 never duplicated. See the comments in field `duplicate' of
12246 `struct bp_location'. */
12247 || is_tracepoint (b))
12248 {
12249 /* Clear the condition modification flag. */
12250 loc->condition_changed = condition_unchanged;
12251 continue;
12252 }
12253
12254 if (b->type == bp_hardware_watchpoint)
12255 loc_first_p = &wp_loc_first;
12256 else if (b->type == bp_read_watchpoint)
12257 loc_first_p = &rwp_loc_first;
12258 else if (b->type == bp_access_watchpoint)
12259 loc_first_p = &awp_loc_first;
12260 else
12261 loc_first_p = &bp_loc_first;
12262
12263 if (*loc_first_p == NULL
12264 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12265 || !breakpoint_locations_match (loc, *loc_first_p))
12266 {
12267 *loc_first_p = loc;
12268 loc->duplicate = 0;
12269
12270 if (is_breakpoint (loc->owner) && loc->condition_changed)
12271 {
12272 loc->needs_update = 1;
12273 /* Clear the condition modification flag. */
12274 loc->condition_changed = condition_unchanged;
12275 }
12276 continue;
12277 }
12278
12279
12280 /* This and the above ensure the invariant that the first location
12281 is not duplicated, and is the inserted one.
12282 All following are marked as duplicated, and are not inserted. */
12283 if (loc->inserted)
12284 swap_insertion (loc, *loc_first_p);
12285 loc->duplicate = 1;
12286
12287 /* Clear the condition modification flag. */
12288 loc->condition_changed = condition_unchanged;
12289 }
12290
12291 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12292 {
12293 if (insert_mode != UGLL_DONT_INSERT)
12294 insert_breakpoint_locations ();
12295 else
12296 {
12297 /* Even though the caller told us to not insert new
12298 locations, we may still need to update conditions on the
12299 target's side of breakpoints that were already inserted
12300 if the target is evaluating breakpoint conditions. We
12301 only update conditions for locations that are marked
12302 "needs_update". */
12303 update_inserted_breakpoint_locations ();
12304 }
12305 }
12306
12307 if (insert_mode != UGLL_DONT_INSERT)
12308 download_tracepoint_locations ();
12309
12310 do_cleanups (cleanups);
12311 }
12312
12313 void
12314 breakpoint_retire_moribund (void)
12315 {
12316 struct bp_location *loc;
12317 int ix;
12318
12319 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12320 if (--(loc->events_till_retirement) == 0)
12321 {
12322 decref_bp_location (&loc);
12323 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12324 --ix;
12325 }
12326 }
12327
12328 static void
12329 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12330 {
12331
12332 TRY
12333 {
12334 update_global_location_list (insert_mode);
12335 }
12336 CATCH (e, RETURN_MASK_ERROR)
12337 {
12338 }
12339 END_CATCH
12340 }
12341
12342 /* Clear BKP from a BPS. */
12343
12344 static void
12345 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12346 {
12347 bpstat bs;
12348
12349 for (bs = bps; bs; bs = bs->next)
12350 if (bs->breakpoint_at == bpt)
12351 {
12352 bs->breakpoint_at = NULL;
12353 bs->old_val = NULL;
12354 /* bs->commands will be freed later. */
12355 }
12356 }
12357
12358 /* Callback for iterate_over_threads. */
12359 static int
12360 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12361 {
12362 struct breakpoint *bpt = (struct breakpoint *) data;
12363
12364 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12365 return 0;
12366 }
12367
12368 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12369 callbacks. */
12370
12371 static void
12372 say_where (struct breakpoint *b)
12373 {
12374 struct value_print_options opts;
12375
12376 get_user_print_options (&opts);
12377
12378 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12379 single string. */
12380 if (b->loc == NULL)
12381 {
12382 /* For pending locations, the output differs slightly based
12383 on b->extra_string. If this is non-NULL, it contains either
12384 a condition or dprintf arguments. */
12385 if (b->extra_string == NULL)
12386 {
12387 printf_filtered (_(" (%s) pending."),
12388 event_location_to_string (b->location.get ()));
12389 }
12390 else if (b->type == bp_dprintf)
12391 {
12392 printf_filtered (_(" (%s,%s) pending."),
12393 event_location_to_string (b->location.get ()),
12394 b->extra_string);
12395 }
12396 else
12397 {
12398 printf_filtered (_(" (%s %s) pending."),
12399 event_location_to_string (b->location.get ()),
12400 b->extra_string);
12401 }
12402 }
12403 else
12404 {
12405 if (opts.addressprint || b->loc->symtab == NULL)
12406 {
12407 printf_filtered (" at ");
12408 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12409 gdb_stdout);
12410 }
12411 if (b->loc->symtab != NULL)
12412 {
12413 /* If there is a single location, we can print the location
12414 more nicely. */
12415 if (b->loc->next == NULL)
12416 printf_filtered (": file %s, line %d.",
12417 symtab_to_filename_for_display (b->loc->symtab),
12418 b->loc->line_number);
12419 else
12420 /* This is not ideal, but each location may have a
12421 different file name, and this at least reflects the
12422 real situation somewhat. */
12423 printf_filtered (": %s.",
12424 event_location_to_string (b->location.get ()));
12425 }
12426
12427 if (b->loc->next)
12428 {
12429 struct bp_location *loc = b->loc;
12430 int n = 0;
12431 for (; loc; loc = loc->next)
12432 ++n;
12433 printf_filtered (" (%d locations)", n);
12434 }
12435 }
12436 }
12437
12438 /* Default bp_location_ops methods. */
12439
12440 static void
12441 bp_location_dtor (struct bp_location *self)
12442 {
12443 xfree (self->function_name);
12444 }
12445
12446 static const struct bp_location_ops bp_location_ops =
12447 {
12448 bp_location_dtor
12449 };
12450
12451 /* Destructor for the breakpoint base class. */
12452
12453 breakpoint::~breakpoint ()
12454 {
12455 xfree (this->cond_string);
12456 xfree (this->extra_string);
12457 xfree (this->filter);
12458 }
12459
12460 static struct bp_location *
12461 base_breakpoint_allocate_location (struct breakpoint *self)
12462 {
12463 return new bp_location (&bp_location_ops, self);
12464 }
12465
12466 static void
12467 base_breakpoint_re_set (struct breakpoint *b)
12468 {
12469 /* Nothing to re-set. */
12470 }
12471
12472 #define internal_error_pure_virtual_called() \
12473 gdb_assert_not_reached ("pure virtual function called")
12474
12475 static int
12476 base_breakpoint_insert_location (struct bp_location *bl)
12477 {
12478 internal_error_pure_virtual_called ();
12479 }
12480
12481 static int
12482 base_breakpoint_remove_location (struct bp_location *bl,
12483 enum remove_bp_reason reason)
12484 {
12485 internal_error_pure_virtual_called ();
12486 }
12487
12488 static int
12489 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12490 struct address_space *aspace,
12491 CORE_ADDR bp_addr,
12492 const struct target_waitstatus *ws)
12493 {
12494 internal_error_pure_virtual_called ();
12495 }
12496
12497 static void
12498 base_breakpoint_check_status (bpstat bs)
12499 {
12500 /* Always stop. */
12501 }
12502
12503 /* A "works_in_software_mode" breakpoint_ops method that just internal
12504 errors. */
12505
12506 static int
12507 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12508 {
12509 internal_error_pure_virtual_called ();
12510 }
12511
12512 /* A "resources_needed" breakpoint_ops method that just internal
12513 errors. */
12514
12515 static int
12516 base_breakpoint_resources_needed (const struct bp_location *bl)
12517 {
12518 internal_error_pure_virtual_called ();
12519 }
12520
12521 static enum print_stop_action
12522 base_breakpoint_print_it (bpstat bs)
12523 {
12524 internal_error_pure_virtual_called ();
12525 }
12526
12527 static void
12528 base_breakpoint_print_one_detail (const struct breakpoint *self,
12529 struct ui_out *uiout)
12530 {
12531 /* nothing */
12532 }
12533
12534 static void
12535 base_breakpoint_print_mention (struct breakpoint *b)
12536 {
12537 internal_error_pure_virtual_called ();
12538 }
12539
12540 static void
12541 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12542 {
12543 internal_error_pure_virtual_called ();
12544 }
12545
12546 static void
12547 base_breakpoint_create_sals_from_location
12548 (const struct event_location *location,
12549 struct linespec_result *canonical,
12550 enum bptype type_wanted)
12551 {
12552 internal_error_pure_virtual_called ();
12553 }
12554
12555 static void
12556 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12557 struct linespec_result *c,
12558 gdb::unique_xmalloc_ptr<char> cond_string,
12559 gdb::unique_xmalloc_ptr<char> extra_string,
12560 enum bptype type_wanted,
12561 enum bpdisp disposition,
12562 int thread,
12563 int task, int ignore_count,
12564 const struct breakpoint_ops *o,
12565 int from_tty, int enabled,
12566 int internal, unsigned flags)
12567 {
12568 internal_error_pure_virtual_called ();
12569 }
12570
12571 static std::vector<symtab_and_line>
12572 base_breakpoint_decode_location (struct breakpoint *b,
12573 const struct event_location *location,
12574 struct program_space *search_pspace)
12575 {
12576 internal_error_pure_virtual_called ();
12577 }
12578
12579 /* The default 'explains_signal' method. */
12580
12581 static int
12582 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12583 {
12584 return 1;
12585 }
12586
12587 /* The default "after_condition_true" method. */
12588
12589 static void
12590 base_breakpoint_after_condition_true (struct bpstats *bs)
12591 {
12592 /* Nothing to do. */
12593 }
12594
12595 struct breakpoint_ops base_breakpoint_ops =
12596 {
12597 base_breakpoint_allocate_location,
12598 base_breakpoint_re_set,
12599 base_breakpoint_insert_location,
12600 base_breakpoint_remove_location,
12601 base_breakpoint_breakpoint_hit,
12602 base_breakpoint_check_status,
12603 base_breakpoint_resources_needed,
12604 base_breakpoint_works_in_software_mode,
12605 base_breakpoint_print_it,
12606 NULL,
12607 base_breakpoint_print_one_detail,
12608 base_breakpoint_print_mention,
12609 base_breakpoint_print_recreate,
12610 base_breakpoint_create_sals_from_location,
12611 base_breakpoint_create_breakpoints_sal,
12612 base_breakpoint_decode_location,
12613 base_breakpoint_explains_signal,
12614 base_breakpoint_after_condition_true,
12615 };
12616
12617 /* Default breakpoint_ops methods. */
12618
12619 static void
12620 bkpt_re_set (struct breakpoint *b)
12621 {
12622 /* FIXME: is this still reachable? */
12623 if (breakpoint_event_location_empty_p (b))
12624 {
12625 /* Anything without a location can't be re-set. */
12626 delete_breakpoint (b);
12627 return;
12628 }
12629
12630 breakpoint_re_set_default (b);
12631 }
12632
12633 static int
12634 bkpt_insert_location (struct bp_location *bl)
12635 {
12636 CORE_ADDR addr = bl->target_info.reqstd_address;
12637
12638 bl->target_info.kind = breakpoint_kind (bl, &addr);
12639 bl->target_info.placed_address = addr;
12640
12641 if (bl->loc_type == bp_loc_hardware_breakpoint)
12642 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12643 else
12644 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12645 }
12646
12647 static int
12648 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12649 {
12650 if (bl->loc_type == bp_loc_hardware_breakpoint)
12651 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12652 else
12653 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12654 }
12655
12656 static int
12657 bkpt_breakpoint_hit (const struct bp_location *bl,
12658 struct address_space *aspace, CORE_ADDR bp_addr,
12659 const struct target_waitstatus *ws)
12660 {
12661 if (ws->kind != TARGET_WAITKIND_STOPPED
12662 || ws->value.sig != GDB_SIGNAL_TRAP)
12663 return 0;
12664
12665 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12666 aspace, bp_addr))
12667 return 0;
12668
12669 if (overlay_debugging /* unmapped overlay section */
12670 && section_is_overlay (bl->section)
12671 && !section_is_mapped (bl->section))
12672 return 0;
12673
12674 return 1;
12675 }
12676
12677 static int
12678 dprintf_breakpoint_hit (const struct bp_location *bl,
12679 struct address_space *aspace, CORE_ADDR bp_addr,
12680 const struct target_waitstatus *ws)
12681 {
12682 if (dprintf_style == dprintf_style_agent
12683 && target_can_run_breakpoint_commands ())
12684 {
12685 /* An agent-style dprintf never causes a stop. If we see a trap
12686 for this address it must be for a breakpoint that happens to
12687 be set at the same address. */
12688 return 0;
12689 }
12690
12691 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12692 }
12693
12694 static int
12695 bkpt_resources_needed (const struct bp_location *bl)
12696 {
12697 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12698
12699 return 1;
12700 }
12701
12702 static enum print_stop_action
12703 bkpt_print_it (bpstat bs)
12704 {
12705 struct breakpoint *b;
12706 const struct bp_location *bl;
12707 int bp_temp;
12708 struct ui_out *uiout = current_uiout;
12709
12710 gdb_assert (bs->bp_location_at != NULL);
12711
12712 bl = bs->bp_location_at;
12713 b = bs->breakpoint_at;
12714
12715 bp_temp = b->disposition == disp_del;
12716 if (bl->address != bl->requested_address)
12717 breakpoint_adjustment_warning (bl->requested_address,
12718 bl->address,
12719 b->number, 1);
12720 annotate_breakpoint (b->number);
12721 maybe_print_thread_hit_breakpoint (uiout);
12722
12723 if (bp_temp)
12724 uiout->text ("Temporary breakpoint ");
12725 else
12726 uiout->text ("Breakpoint ");
12727 if (uiout->is_mi_like_p ())
12728 {
12729 uiout->field_string ("reason",
12730 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12731 uiout->field_string ("disp", bpdisp_text (b->disposition));
12732 }
12733 uiout->field_int ("bkptno", b->number);
12734 uiout->text (", ");
12735
12736 return PRINT_SRC_AND_LOC;
12737 }
12738
12739 static void
12740 bkpt_print_mention (struct breakpoint *b)
12741 {
12742 if (current_uiout->is_mi_like_p ())
12743 return;
12744
12745 switch (b->type)
12746 {
12747 case bp_breakpoint:
12748 case bp_gnu_ifunc_resolver:
12749 if (b->disposition == disp_del)
12750 printf_filtered (_("Temporary breakpoint"));
12751 else
12752 printf_filtered (_("Breakpoint"));
12753 printf_filtered (_(" %d"), b->number);
12754 if (b->type == bp_gnu_ifunc_resolver)
12755 printf_filtered (_(" at gnu-indirect-function resolver"));
12756 break;
12757 case bp_hardware_breakpoint:
12758 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12759 break;
12760 case bp_dprintf:
12761 printf_filtered (_("Dprintf %d"), b->number);
12762 break;
12763 }
12764
12765 say_where (b);
12766 }
12767
12768 static void
12769 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12770 {
12771 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12772 fprintf_unfiltered (fp, "tbreak");
12773 else if (tp->type == bp_breakpoint)
12774 fprintf_unfiltered (fp, "break");
12775 else if (tp->type == bp_hardware_breakpoint
12776 && tp->disposition == disp_del)
12777 fprintf_unfiltered (fp, "thbreak");
12778 else if (tp->type == bp_hardware_breakpoint)
12779 fprintf_unfiltered (fp, "hbreak");
12780 else
12781 internal_error (__FILE__, __LINE__,
12782 _("unhandled breakpoint type %d"), (int) tp->type);
12783
12784 fprintf_unfiltered (fp, " %s",
12785 event_location_to_string (tp->location.get ()));
12786
12787 /* Print out extra_string if this breakpoint is pending. It might
12788 contain, for example, conditions that were set by the user. */
12789 if (tp->loc == NULL && tp->extra_string != NULL)
12790 fprintf_unfiltered (fp, " %s", tp->extra_string);
12791
12792 print_recreate_thread (tp, fp);
12793 }
12794
12795 static void
12796 bkpt_create_sals_from_location (const struct event_location *location,
12797 struct linespec_result *canonical,
12798 enum bptype type_wanted)
12799 {
12800 create_sals_from_location_default (location, canonical, type_wanted);
12801 }
12802
12803 static void
12804 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12805 struct linespec_result *canonical,
12806 gdb::unique_xmalloc_ptr<char> cond_string,
12807 gdb::unique_xmalloc_ptr<char> extra_string,
12808 enum bptype type_wanted,
12809 enum bpdisp disposition,
12810 int thread,
12811 int task, int ignore_count,
12812 const struct breakpoint_ops *ops,
12813 int from_tty, int enabled,
12814 int internal, unsigned flags)
12815 {
12816 create_breakpoints_sal_default (gdbarch, canonical,
12817 std::move (cond_string),
12818 std::move (extra_string),
12819 type_wanted,
12820 disposition, thread, task,
12821 ignore_count, ops, from_tty,
12822 enabled, internal, flags);
12823 }
12824
12825 static std::vector<symtab_and_line>
12826 bkpt_decode_location (struct breakpoint *b,
12827 const struct event_location *location,
12828 struct program_space *search_pspace)
12829 {
12830 return decode_location_default (b, location, search_pspace);
12831 }
12832
12833 /* Virtual table for internal breakpoints. */
12834
12835 static void
12836 internal_bkpt_re_set (struct breakpoint *b)
12837 {
12838 switch (b->type)
12839 {
12840 /* Delete overlay event and longjmp master breakpoints; they
12841 will be reset later by breakpoint_re_set. */
12842 case bp_overlay_event:
12843 case bp_longjmp_master:
12844 case bp_std_terminate_master:
12845 case bp_exception_master:
12846 delete_breakpoint (b);
12847 break;
12848
12849 /* This breakpoint is special, it's set up when the inferior
12850 starts and we really don't want to touch it. */
12851 case bp_shlib_event:
12852
12853 /* Like bp_shlib_event, this breakpoint type is special. Once
12854 it is set up, we do not want to touch it. */
12855 case bp_thread_event:
12856 break;
12857 }
12858 }
12859
12860 static void
12861 internal_bkpt_check_status (bpstat bs)
12862 {
12863 if (bs->breakpoint_at->type == bp_shlib_event)
12864 {
12865 /* If requested, stop when the dynamic linker notifies GDB of
12866 events. This allows the user to get control and place
12867 breakpoints in initializer routines for dynamically loaded
12868 objects (among other things). */
12869 bs->stop = stop_on_solib_events;
12870 bs->print = stop_on_solib_events;
12871 }
12872 else
12873 bs->stop = 0;
12874 }
12875
12876 static enum print_stop_action
12877 internal_bkpt_print_it (bpstat bs)
12878 {
12879 struct breakpoint *b;
12880
12881 b = bs->breakpoint_at;
12882
12883 switch (b->type)
12884 {
12885 case bp_shlib_event:
12886 /* Did we stop because the user set the stop_on_solib_events
12887 variable? (If so, we report this as a generic, "Stopped due
12888 to shlib event" message.) */
12889 print_solib_event (0);
12890 break;
12891
12892 case bp_thread_event:
12893 /* Not sure how we will get here.
12894 GDB should not stop for these breakpoints. */
12895 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12896 break;
12897
12898 case bp_overlay_event:
12899 /* By analogy with the thread event, GDB should not stop for these. */
12900 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12901 break;
12902
12903 case bp_longjmp_master:
12904 /* These should never be enabled. */
12905 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12906 break;
12907
12908 case bp_std_terminate_master:
12909 /* These should never be enabled. */
12910 printf_filtered (_("std::terminate Master Breakpoint: "
12911 "gdb should not stop!\n"));
12912 break;
12913
12914 case bp_exception_master:
12915 /* These should never be enabled. */
12916 printf_filtered (_("Exception Master Breakpoint: "
12917 "gdb should not stop!\n"));
12918 break;
12919 }
12920
12921 return PRINT_NOTHING;
12922 }
12923
12924 static void
12925 internal_bkpt_print_mention (struct breakpoint *b)
12926 {
12927 /* Nothing to mention. These breakpoints are internal. */
12928 }
12929
12930 /* Virtual table for momentary breakpoints */
12931
12932 static void
12933 momentary_bkpt_re_set (struct breakpoint *b)
12934 {
12935 /* Keep temporary breakpoints, which can be encountered when we step
12936 over a dlopen call and solib_add is resetting the breakpoints.
12937 Otherwise these should have been blown away via the cleanup chain
12938 or by breakpoint_init_inferior when we rerun the executable. */
12939 }
12940
12941 static void
12942 momentary_bkpt_check_status (bpstat bs)
12943 {
12944 /* Nothing. The point of these breakpoints is causing a stop. */
12945 }
12946
12947 static enum print_stop_action
12948 momentary_bkpt_print_it (bpstat bs)
12949 {
12950 return PRINT_UNKNOWN;
12951 }
12952
12953 static void
12954 momentary_bkpt_print_mention (struct breakpoint *b)
12955 {
12956 /* Nothing to mention. These breakpoints are internal. */
12957 }
12958
12959 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12960
12961 It gets cleared already on the removal of the first one of such placed
12962 breakpoints. This is OK as they get all removed altogether. */
12963
12964 longjmp_breakpoint::~longjmp_breakpoint ()
12965 {
12966 thread_info *tp = find_thread_global_id (this->thread);
12967
12968 if (tp != NULL)
12969 tp->initiating_frame = null_frame_id;
12970 }
12971
12972 /* Specific methods for probe breakpoints. */
12973
12974 static int
12975 bkpt_probe_insert_location (struct bp_location *bl)
12976 {
12977 int v = bkpt_insert_location (bl);
12978
12979 if (v == 0)
12980 {
12981 /* The insertion was successful, now let's set the probe's semaphore
12982 if needed. */
12983 if (bl->probe.probe->pops->set_semaphore != NULL)
12984 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
12985 bl->probe.objfile,
12986 bl->gdbarch);
12987 }
12988
12989 return v;
12990 }
12991
12992 static int
12993 bkpt_probe_remove_location (struct bp_location *bl,
12994 enum remove_bp_reason reason)
12995 {
12996 /* Let's clear the semaphore before removing the location. */
12997 if (bl->probe.probe->pops->clear_semaphore != NULL)
12998 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
12999 bl->probe.objfile,
13000 bl->gdbarch);
13001
13002 return bkpt_remove_location (bl, reason);
13003 }
13004
13005 static void
13006 bkpt_probe_create_sals_from_location (const struct event_location *location,
13007 struct linespec_result *canonical,
13008 enum bptype type_wanted)
13009 {
13010 struct linespec_sals lsal;
13011
13012 lsal.sals = parse_probes (location, NULL, canonical);
13013 lsal.canonical
13014 = xstrdup (event_location_to_string (canonical->location.get ()));
13015 canonical->lsals.push_back (std::move (lsal));
13016 }
13017
13018 static std::vector<symtab_and_line>
13019 bkpt_probe_decode_location (struct breakpoint *b,
13020 const struct event_location *location,
13021 struct program_space *search_pspace)
13022 {
13023 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
13024 if (sals.empty ())
13025 error (_("probe not found"));
13026 return sals;
13027 }
13028
13029 /* The breakpoint_ops structure to be used in tracepoints. */
13030
13031 static void
13032 tracepoint_re_set (struct breakpoint *b)
13033 {
13034 breakpoint_re_set_default (b);
13035 }
13036
13037 static int
13038 tracepoint_breakpoint_hit (const struct bp_location *bl,
13039 struct address_space *aspace, CORE_ADDR bp_addr,
13040 const struct target_waitstatus *ws)
13041 {
13042 /* By definition, the inferior does not report stops at
13043 tracepoints. */
13044 return 0;
13045 }
13046
13047 static void
13048 tracepoint_print_one_detail (const struct breakpoint *self,
13049 struct ui_out *uiout)
13050 {
13051 struct tracepoint *tp = (struct tracepoint *) self;
13052 if (tp->static_trace_marker_id)
13053 {
13054 gdb_assert (self->type == bp_static_tracepoint);
13055
13056 uiout->text ("\tmarker id is ");
13057 uiout->field_string ("static-tracepoint-marker-string-id",
13058 tp->static_trace_marker_id);
13059 uiout->text ("\n");
13060 }
13061 }
13062
13063 static void
13064 tracepoint_print_mention (struct breakpoint *b)
13065 {
13066 if (current_uiout->is_mi_like_p ())
13067 return;
13068
13069 switch (b->type)
13070 {
13071 case bp_tracepoint:
13072 printf_filtered (_("Tracepoint"));
13073 printf_filtered (_(" %d"), b->number);
13074 break;
13075 case bp_fast_tracepoint:
13076 printf_filtered (_("Fast tracepoint"));
13077 printf_filtered (_(" %d"), b->number);
13078 break;
13079 case bp_static_tracepoint:
13080 printf_filtered (_("Static tracepoint"));
13081 printf_filtered (_(" %d"), b->number);
13082 break;
13083 default:
13084 internal_error (__FILE__, __LINE__,
13085 _("unhandled tracepoint type %d"), (int) b->type);
13086 }
13087
13088 say_where (b);
13089 }
13090
13091 static void
13092 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13093 {
13094 struct tracepoint *tp = (struct tracepoint *) self;
13095
13096 if (self->type == bp_fast_tracepoint)
13097 fprintf_unfiltered (fp, "ftrace");
13098 else if (self->type == bp_static_tracepoint)
13099 fprintf_unfiltered (fp, "strace");
13100 else if (self->type == bp_tracepoint)
13101 fprintf_unfiltered (fp, "trace");
13102 else
13103 internal_error (__FILE__, __LINE__,
13104 _("unhandled tracepoint type %d"), (int) self->type);
13105
13106 fprintf_unfiltered (fp, " %s",
13107 event_location_to_string (self->location.get ()));
13108 print_recreate_thread (self, fp);
13109
13110 if (tp->pass_count)
13111 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13112 }
13113
13114 static void
13115 tracepoint_create_sals_from_location (const struct event_location *location,
13116 struct linespec_result *canonical,
13117 enum bptype type_wanted)
13118 {
13119 create_sals_from_location_default (location, canonical, type_wanted);
13120 }
13121
13122 static void
13123 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13124 struct linespec_result *canonical,
13125 gdb::unique_xmalloc_ptr<char> cond_string,
13126 gdb::unique_xmalloc_ptr<char> extra_string,
13127 enum bptype type_wanted,
13128 enum bpdisp disposition,
13129 int thread,
13130 int task, int ignore_count,
13131 const struct breakpoint_ops *ops,
13132 int from_tty, int enabled,
13133 int internal, unsigned flags)
13134 {
13135 create_breakpoints_sal_default (gdbarch, canonical,
13136 std::move (cond_string),
13137 std::move (extra_string),
13138 type_wanted,
13139 disposition, thread, task,
13140 ignore_count, ops, from_tty,
13141 enabled, internal, flags);
13142 }
13143
13144 static std::vector<symtab_and_line>
13145 tracepoint_decode_location (struct breakpoint *b,
13146 const struct event_location *location,
13147 struct program_space *search_pspace)
13148 {
13149 return decode_location_default (b, location, search_pspace);
13150 }
13151
13152 struct breakpoint_ops tracepoint_breakpoint_ops;
13153
13154 /* The breakpoint_ops structure to be use on tracepoints placed in a
13155 static probe. */
13156
13157 static void
13158 tracepoint_probe_create_sals_from_location
13159 (const struct event_location *location,
13160 struct linespec_result *canonical,
13161 enum bptype type_wanted)
13162 {
13163 /* We use the same method for breakpoint on probes. */
13164 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
13165 }
13166
13167 static std::vector<symtab_and_line>
13168 tracepoint_probe_decode_location (struct breakpoint *b,
13169 const struct event_location *location,
13170 struct program_space *search_pspace)
13171 {
13172 /* We use the same method for breakpoint on probes. */
13173 return bkpt_probe_decode_location (b, location, search_pspace);
13174 }
13175
13176 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13177
13178 /* Dprintf breakpoint_ops methods. */
13179
13180 static void
13181 dprintf_re_set (struct breakpoint *b)
13182 {
13183 breakpoint_re_set_default (b);
13184
13185 /* extra_string should never be non-NULL for dprintf. */
13186 gdb_assert (b->extra_string != NULL);
13187
13188 /* 1 - connect to target 1, that can run breakpoint commands.
13189 2 - create a dprintf, which resolves fine.
13190 3 - disconnect from target 1
13191 4 - connect to target 2, that can NOT run breakpoint commands.
13192
13193 After steps #3/#4, you'll want the dprintf command list to
13194 be updated, because target 1 and 2 may well return different
13195 answers for target_can_run_breakpoint_commands().
13196 Given absence of finer grained resetting, we get to do
13197 it all the time. */
13198 if (b->extra_string != NULL)
13199 update_dprintf_command_list (b);
13200 }
13201
13202 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13203
13204 static void
13205 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13206 {
13207 fprintf_unfiltered (fp, "dprintf %s,%s",
13208 event_location_to_string (tp->location.get ()),
13209 tp->extra_string);
13210 print_recreate_thread (tp, fp);
13211 }
13212
13213 /* Implement the "after_condition_true" breakpoint_ops method for
13214 dprintf.
13215
13216 dprintf's are implemented with regular commands in their command
13217 list, but we run the commands here instead of before presenting the
13218 stop to the user, as dprintf's don't actually cause a stop. This
13219 also makes it so that the commands of multiple dprintfs at the same
13220 address are all handled. */
13221
13222 static void
13223 dprintf_after_condition_true (struct bpstats *bs)
13224 {
13225 struct bpstats tmp_bs;
13226 struct bpstats *tmp_bs_p = &tmp_bs;
13227
13228 /* dprintf's never cause a stop. This wasn't set in the
13229 check_status hook instead because that would make the dprintf's
13230 condition not be evaluated. */
13231 bs->stop = 0;
13232
13233 /* Run the command list here. Take ownership of it instead of
13234 copying. We never want these commands to run later in
13235 bpstat_do_actions, if a breakpoint that causes a stop happens to
13236 be set at same address as this dprintf, or even if running the
13237 commands here throws. */
13238 tmp_bs.commands = bs->commands;
13239 bs->commands = NULL;
13240
13241 bpstat_do_actions_1 (&tmp_bs_p);
13242
13243 /* 'tmp_bs.commands' will usually be NULL by now, but
13244 bpstat_do_actions_1 may return early without processing the whole
13245 list. */
13246 }
13247
13248 /* The breakpoint_ops structure to be used on static tracepoints with
13249 markers (`-m'). */
13250
13251 static void
13252 strace_marker_create_sals_from_location (const struct event_location *location,
13253 struct linespec_result *canonical,
13254 enum bptype type_wanted)
13255 {
13256 struct linespec_sals lsal;
13257 const char *arg_start, *arg;
13258
13259 arg = arg_start = get_linespec_location (location);
13260 lsal.sals = decode_static_tracepoint_spec (&arg);
13261
13262 std::string str (arg_start, arg - arg_start);
13263 const char *ptr = str.c_str ();
13264 canonical->location = new_linespec_location (&ptr);
13265
13266 lsal.canonical
13267 = xstrdup (event_location_to_string (canonical->location.get ()));
13268 canonical->lsals.push_back (std::move (lsal));
13269 }
13270
13271 static void
13272 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13273 struct linespec_result *canonical,
13274 gdb::unique_xmalloc_ptr<char> cond_string,
13275 gdb::unique_xmalloc_ptr<char> extra_string,
13276 enum bptype type_wanted,
13277 enum bpdisp disposition,
13278 int thread,
13279 int task, int ignore_count,
13280 const struct breakpoint_ops *ops,
13281 int from_tty, int enabled,
13282 int internal, unsigned flags)
13283 {
13284 const linespec_sals &lsal = canonical->lsals[0];
13285
13286 /* If the user is creating a static tracepoint by marker id
13287 (strace -m MARKER_ID), then store the sals index, so that
13288 breakpoint_re_set can try to match up which of the newly
13289 found markers corresponds to this one, and, don't try to
13290 expand multiple locations for each sal, given than SALS
13291 already should contain all sals for MARKER_ID. */
13292
13293 for (size_t i = 0; i < lsal.sals.size (); i++)
13294 {
13295 event_location_up location
13296 = copy_event_location (canonical->location.get ());
13297
13298 std::unique_ptr<tracepoint> tp (new tracepoint ());
13299 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13300 std::move (location), NULL,
13301 std::move (cond_string),
13302 std::move (extra_string),
13303 type_wanted, disposition,
13304 thread, task, ignore_count, ops,
13305 from_tty, enabled, internal, flags,
13306 canonical->special_display);
13307 /* Given that its possible to have multiple markers with
13308 the same string id, if the user is creating a static
13309 tracepoint by marker id ("strace -m MARKER_ID"), then
13310 store the sals index, so that breakpoint_re_set can
13311 try to match up which of the newly found markers
13312 corresponds to this one */
13313 tp->static_trace_marker_id_idx = i;
13314
13315 install_breakpoint (internal, std::move (tp), 0);
13316 }
13317 }
13318
13319 static std::vector<symtab_and_line>
13320 strace_marker_decode_location (struct breakpoint *b,
13321 const struct event_location *location,
13322 struct program_space *search_pspace)
13323 {
13324 struct tracepoint *tp = (struct tracepoint *) b;
13325 const char *s = get_linespec_location (location);
13326
13327 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13328 if (sals.size () > tp->static_trace_marker_id_idx)
13329 {
13330 sals[0] = sals[tp->static_trace_marker_id_idx];
13331 sals.resize (1);
13332 return sals;
13333 }
13334 else
13335 error (_("marker %s not found"), tp->static_trace_marker_id);
13336 }
13337
13338 static struct breakpoint_ops strace_marker_breakpoint_ops;
13339
13340 static int
13341 strace_marker_p (struct breakpoint *b)
13342 {
13343 return b->ops == &strace_marker_breakpoint_ops;
13344 }
13345
13346 /* Delete a breakpoint and clean up all traces of it in the data
13347 structures. */
13348
13349 void
13350 delete_breakpoint (struct breakpoint *bpt)
13351 {
13352 struct breakpoint *b;
13353
13354 gdb_assert (bpt != NULL);
13355
13356 /* Has this bp already been deleted? This can happen because
13357 multiple lists can hold pointers to bp's. bpstat lists are
13358 especial culprits.
13359
13360 One example of this happening is a watchpoint's scope bp. When
13361 the scope bp triggers, we notice that the watchpoint is out of
13362 scope, and delete it. We also delete its scope bp. But the
13363 scope bp is marked "auto-deleting", and is already on a bpstat.
13364 That bpstat is then checked for auto-deleting bp's, which are
13365 deleted.
13366
13367 A real solution to this problem might involve reference counts in
13368 bp's, and/or giving them pointers back to their referencing
13369 bpstat's, and teaching delete_breakpoint to only free a bp's
13370 storage when no more references were extent. A cheaper bandaid
13371 was chosen. */
13372 if (bpt->type == bp_none)
13373 return;
13374
13375 /* At least avoid this stale reference until the reference counting
13376 of breakpoints gets resolved. */
13377 if (bpt->related_breakpoint != bpt)
13378 {
13379 struct breakpoint *related;
13380 struct watchpoint *w;
13381
13382 if (bpt->type == bp_watchpoint_scope)
13383 w = (struct watchpoint *) bpt->related_breakpoint;
13384 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13385 w = (struct watchpoint *) bpt;
13386 else
13387 w = NULL;
13388 if (w != NULL)
13389 watchpoint_del_at_next_stop (w);
13390
13391 /* Unlink bpt from the bpt->related_breakpoint ring. */
13392 for (related = bpt; related->related_breakpoint != bpt;
13393 related = related->related_breakpoint);
13394 related->related_breakpoint = bpt->related_breakpoint;
13395 bpt->related_breakpoint = bpt;
13396 }
13397
13398 /* watch_command_1 creates a watchpoint but only sets its number if
13399 update_watchpoint succeeds in creating its bp_locations. If there's
13400 a problem in that process, we'll be asked to delete the half-created
13401 watchpoint. In that case, don't announce the deletion. */
13402 if (bpt->number)
13403 observer_notify_breakpoint_deleted (bpt);
13404
13405 if (breakpoint_chain == bpt)
13406 breakpoint_chain = bpt->next;
13407
13408 ALL_BREAKPOINTS (b)
13409 if (b->next == bpt)
13410 {
13411 b->next = bpt->next;
13412 break;
13413 }
13414
13415 /* Be sure no bpstat's are pointing at the breakpoint after it's
13416 been freed. */
13417 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13418 in all threads for now. Note that we cannot just remove bpstats
13419 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13420 commands are associated with the bpstat; if we remove it here,
13421 then the later call to bpstat_do_actions (&stop_bpstat); in
13422 event-top.c won't do anything, and temporary breakpoints with
13423 commands won't work. */
13424
13425 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13426
13427 /* Now that breakpoint is removed from breakpoint list, update the
13428 global location list. This will remove locations that used to
13429 belong to this breakpoint. Do this before freeing the breakpoint
13430 itself, since remove_breakpoint looks at location's owner. It
13431 might be better design to have location completely
13432 self-contained, but it's not the case now. */
13433 update_global_location_list (UGLL_DONT_INSERT);
13434
13435 /* On the chance that someone will soon try again to delete this
13436 same bp, we mark it as deleted before freeing its storage. */
13437 bpt->type = bp_none;
13438 delete bpt;
13439 }
13440
13441 static void
13442 do_delete_breakpoint_cleanup (void *b)
13443 {
13444 delete_breakpoint ((struct breakpoint *) b);
13445 }
13446
13447 struct cleanup *
13448 make_cleanup_delete_breakpoint (struct breakpoint *b)
13449 {
13450 return make_cleanup (do_delete_breakpoint_cleanup, b);
13451 }
13452
13453 /* Iterator function to call a user-provided callback function once
13454 for each of B and its related breakpoints. */
13455
13456 static void
13457 iterate_over_related_breakpoints (struct breakpoint *b,
13458 gdb::function_view<void (breakpoint *)> function)
13459 {
13460 struct breakpoint *related;
13461
13462 related = b;
13463 do
13464 {
13465 struct breakpoint *next;
13466
13467 /* FUNCTION may delete RELATED. */
13468 next = related->related_breakpoint;
13469
13470 if (next == related)
13471 {
13472 /* RELATED is the last ring entry. */
13473 function (related);
13474
13475 /* FUNCTION may have deleted it, so we'd never reach back to
13476 B. There's nothing left to do anyway, so just break
13477 out. */
13478 break;
13479 }
13480 else
13481 function (related);
13482
13483 related = next;
13484 }
13485 while (related != b);
13486 }
13487
13488 static void
13489 delete_command (char *arg, int from_tty)
13490 {
13491 struct breakpoint *b, *b_tmp;
13492
13493 dont_repeat ();
13494
13495 if (arg == 0)
13496 {
13497 int breaks_to_delete = 0;
13498
13499 /* Delete all breakpoints if no argument. Do not delete
13500 internal breakpoints, these have to be deleted with an
13501 explicit breakpoint number argument. */
13502 ALL_BREAKPOINTS (b)
13503 if (user_breakpoint_p (b))
13504 {
13505 breaks_to_delete = 1;
13506 break;
13507 }
13508
13509 /* Ask user only if there are some breakpoints to delete. */
13510 if (!from_tty
13511 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13512 {
13513 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13514 if (user_breakpoint_p (b))
13515 delete_breakpoint (b);
13516 }
13517 }
13518 else
13519 map_breakpoint_numbers
13520 (arg, [&] (breakpoint *b)
13521 {
13522 iterate_over_related_breakpoints (b, delete_breakpoint);
13523 });
13524 }
13525
13526 /* Return true if all locations of B bound to PSPACE are pending. If
13527 PSPACE is NULL, all locations of all program spaces are
13528 considered. */
13529
13530 static int
13531 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13532 {
13533 struct bp_location *loc;
13534
13535 for (loc = b->loc; loc != NULL; loc = loc->next)
13536 if ((pspace == NULL
13537 || loc->pspace == pspace)
13538 && !loc->shlib_disabled
13539 && !loc->pspace->executing_startup)
13540 return 0;
13541 return 1;
13542 }
13543
13544 /* Subroutine of update_breakpoint_locations to simplify it.
13545 Return non-zero if multiple fns in list LOC have the same name.
13546 Null names are ignored. */
13547
13548 static int
13549 ambiguous_names_p (struct bp_location *loc)
13550 {
13551 struct bp_location *l;
13552 htab_t htab = htab_create_alloc (13, htab_hash_string,
13553 (int (*) (const void *,
13554 const void *)) streq,
13555 NULL, xcalloc, xfree);
13556
13557 for (l = loc; l != NULL; l = l->next)
13558 {
13559 const char **slot;
13560 const char *name = l->function_name;
13561
13562 /* Allow for some names to be NULL, ignore them. */
13563 if (name == NULL)
13564 continue;
13565
13566 slot = (const char **) htab_find_slot (htab, (const void *) name,
13567 INSERT);
13568 /* NOTE: We can assume slot != NULL here because xcalloc never
13569 returns NULL. */
13570 if (*slot != NULL)
13571 {
13572 htab_delete (htab);
13573 return 1;
13574 }
13575 *slot = name;
13576 }
13577
13578 htab_delete (htab);
13579 return 0;
13580 }
13581
13582 /* When symbols change, it probably means the sources changed as well,
13583 and it might mean the static tracepoint markers are no longer at
13584 the same address or line numbers they used to be at last we
13585 checked. Losing your static tracepoints whenever you rebuild is
13586 undesirable. This function tries to resync/rematch gdb static
13587 tracepoints with the markers on the target, for static tracepoints
13588 that have not been set by marker id. Static tracepoint that have
13589 been set by marker id are reset by marker id in breakpoint_re_set.
13590 The heuristic is:
13591
13592 1) For a tracepoint set at a specific address, look for a marker at
13593 the old PC. If one is found there, assume to be the same marker.
13594 If the name / string id of the marker found is different from the
13595 previous known name, assume that means the user renamed the marker
13596 in the sources, and output a warning.
13597
13598 2) For a tracepoint set at a given line number, look for a marker
13599 at the new address of the old line number. If one is found there,
13600 assume to be the same marker. If the name / string id of the
13601 marker found is different from the previous known name, assume that
13602 means the user renamed the marker in the sources, and output a
13603 warning.
13604
13605 3) If a marker is no longer found at the same address or line, it
13606 may mean the marker no longer exists. But it may also just mean
13607 the code changed a bit. Maybe the user added a few lines of code
13608 that made the marker move up or down (in line number terms). Ask
13609 the target for info about the marker with the string id as we knew
13610 it. If found, update line number and address in the matching
13611 static tracepoint. This will get confused if there's more than one
13612 marker with the same ID (possible in UST, although unadvised
13613 precisely because it confuses tools). */
13614
13615 static struct symtab_and_line
13616 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13617 {
13618 struct tracepoint *tp = (struct tracepoint *) b;
13619 struct static_tracepoint_marker marker;
13620 CORE_ADDR pc;
13621
13622 pc = sal.pc;
13623 if (sal.line)
13624 find_line_pc (sal.symtab, sal.line, &pc);
13625
13626 if (target_static_tracepoint_marker_at (pc, &marker))
13627 {
13628 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13629 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13630 b->number,
13631 tp->static_trace_marker_id, marker.str_id);
13632
13633 xfree (tp->static_trace_marker_id);
13634 tp->static_trace_marker_id = xstrdup (marker.str_id);
13635 release_static_tracepoint_marker (&marker);
13636
13637 return sal;
13638 }
13639
13640 /* Old marker wasn't found on target at lineno. Try looking it up
13641 by string ID. */
13642 if (!sal.explicit_pc
13643 && sal.line != 0
13644 && sal.symtab != NULL
13645 && tp->static_trace_marker_id != NULL)
13646 {
13647 VEC(static_tracepoint_marker_p) *markers;
13648
13649 markers
13650 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13651
13652 if (!VEC_empty(static_tracepoint_marker_p, markers))
13653 {
13654 struct symbol *sym;
13655 struct static_tracepoint_marker *tpmarker;
13656 struct ui_out *uiout = current_uiout;
13657 struct explicit_location explicit_loc;
13658
13659 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13660
13661 xfree (tp->static_trace_marker_id);
13662 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13663
13664 warning (_("marker for static tracepoint %d (%s) not "
13665 "found at previous line number"),
13666 b->number, tp->static_trace_marker_id);
13667
13668 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13669 sym = find_pc_sect_function (tpmarker->address, NULL);
13670 uiout->text ("Now in ");
13671 if (sym)
13672 {
13673 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
13674 uiout->text (" at ");
13675 }
13676 uiout->field_string ("file",
13677 symtab_to_filename_for_display (sal2.symtab));
13678 uiout->text (":");
13679
13680 if (uiout->is_mi_like_p ())
13681 {
13682 const char *fullname = symtab_to_fullname (sal2.symtab);
13683
13684 uiout->field_string ("fullname", fullname);
13685 }
13686
13687 uiout->field_int ("line", sal2.line);
13688 uiout->text ("\n");
13689
13690 b->loc->line_number = sal2.line;
13691 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13692
13693 b->location.reset (NULL);
13694 initialize_explicit_location (&explicit_loc);
13695 explicit_loc.source_filename
13696 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13697 explicit_loc.line_offset.offset = b->loc->line_number;
13698 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13699 b->location = new_explicit_location (&explicit_loc);
13700
13701 /* Might be nice to check if function changed, and warn if
13702 so. */
13703
13704 release_static_tracepoint_marker (tpmarker);
13705 }
13706 }
13707 return sal;
13708 }
13709
13710 /* Returns 1 iff locations A and B are sufficiently same that
13711 we don't need to report breakpoint as changed. */
13712
13713 static int
13714 locations_are_equal (struct bp_location *a, struct bp_location *b)
13715 {
13716 while (a && b)
13717 {
13718 if (a->address != b->address)
13719 return 0;
13720
13721 if (a->shlib_disabled != b->shlib_disabled)
13722 return 0;
13723
13724 if (a->enabled != b->enabled)
13725 return 0;
13726
13727 a = a->next;
13728 b = b->next;
13729 }
13730
13731 if ((a == NULL) != (b == NULL))
13732 return 0;
13733
13734 return 1;
13735 }
13736
13737 /* Split all locations of B that are bound to PSPACE out of B's
13738 location list to a separate list and return that list's head. If
13739 PSPACE is NULL, hoist out all locations of B. */
13740
13741 static struct bp_location *
13742 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13743 {
13744 struct bp_location head;
13745 struct bp_location *i = b->loc;
13746 struct bp_location **i_link = &b->loc;
13747 struct bp_location *hoisted = &head;
13748
13749 if (pspace == NULL)
13750 {
13751 i = b->loc;
13752 b->loc = NULL;
13753 return i;
13754 }
13755
13756 head.next = NULL;
13757
13758 while (i != NULL)
13759 {
13760 if (i->pspace == pspace)
13761 {
13762 *i_link = i->next;
13763 i->next = NULL;
13764 hoisted->next = i;
13765 hoisted = i;
13766 }
13767 else
13768 i_link = &i->next;
13769 i = *i_link;
13770 }
13771
13772 return head.next;
13773 }
13774
13775 /* Create new breakpoint locations for B (a hardware or software
13776 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13777 zero, then B is a ranged breakpoint. Only recreates locations for
13778 FILTER_PSPACE. Locations of other program spaces are left
13779 untouched. */
13780
13781 void
13782 update_breakpoint_locations (struct breakpoint *b,
13783 struct program_space *filter_pspace,
13784 gdb::array_view<const symtab_and_line> sals,
13785 gdb::array_view<const symtab_and_line> sals_end)
13786 {
13787 int i;
13788 struct bp_location *existing_locations;
13789
13790 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13791 {
13792 /* Ranged breakpoints have only one start location and one end
13793 location. */
13794 b->enable_state = bp_disabled;
13795 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13796 "multiple locations found\n"),
13797 b->number);
13798 return;
13799 }
13800
13801 /* If there's no new locations, and all existing locations are
13802 pending, don't do anything. This optimizes the common case where
13803 all locations are in the same shared library, that was unloaded.
13804 We'd like to retain the location, so that when the library is
13805 loaded again, we don't loose the enabled/disabled status of the
13806 individual locations. */
13807 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13808 return;
13809
13810 existing_locations = hoist_existing_locations (b, filter_pspace);
13811
13812 for (const auto &sal : sals)
13813 {
13814 struct bp_location *new_loc;
13815
13816 switch_to_program_space_and_thread (sal.pspace);
13817
13818 new_loc = add_location_to_breakpoint (b, &sal);
13819
13820 /* Reparse conditions, they might contain references to the
13821 old symtab. */
13822 if (b->cond_string != NULL)
13823 {
13824 const char *s;
13825
13826 s = b->cond_string;
13827 TRY
13828 {
13829 new_loc->cond = parse_exp_1 (&s, sal.pc,
13830 block_for_pc (sal.pc),
13831 0);
13832 }
13833 CATCH (e, RETURN_MASK_ERROR)
13834 {
13835 warning (_("failed to reevaluate condition "
13836 "for breakpoint %d: %s"),
13837 b->number, e.message);
13838 new_loc->enabled = 0;
13839 }
13840 END_CATCH
13841 }
13842
13843 if (!sals_end.empty ())
13844 {
13845 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13846
13847 new_loc->length = end - sals[0].pc + 1;
13848 }
13849 }
13850
13851 /* If possible, carry over 'disable' status from existing
13852 breakpoints. */
13853 {
13854 struct bp_location *e = existing_locations;
13855 /* If there are multiple breakpoints with the same function name,
13856 e.g. for inline functions, comparing function names won't work.
13857 Instead compare pc addresses; this is just a heuristic as things
13858 may have moved, but in practice it gives the correct answer
13859 often enough until a better solution is found. */
13860 int have_ambiguous_names = ambiguous_names_p (b->loc);
13861
13862 for (; e; e = e->next)
13863 {
13864 if (!e->enabled && e->function_name)
13865 {
13866 struct bp_location *l = b->loc;
13867 if (have_ambiguous_names)
13868 {
13869 for (; l; l = l->next)
13870 if (breakpoint_locations_match (e, l))
13871 {
13872 l->enabled = 0;
13873 break;
13874 }
13875 }
13876 else
13877 {
13878 for (; l; l = l->next)
13879 if (l->function_name
13880 && strcmp (e->function_name, l->function_name) == 0)
13881 {
13882 l->enabled = 0;
13883 break;
13884 }
13885 }
13886 }
13887 }
13888 }
13889
13890 if (!locations_are_equal (existing_locations, b->loc))
13891 observer_notify_breakpoint_modified (b);
13892 }
13893
13894 /* Find the SaL locations corresponding to the given LOCATION.
13895 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13896
13897 static std::vector<symtab_and_line>
13898 location_to_sals (struct breakpoint *b, struct event_location *location,
13899 struct program_space *search_pspace, int *found)
13900 {
13901 struct gdb_exception exception = exception_none;
13902
13903 gdb_assert (b->ops != NULL);
13904
13905 std::vector<symtab_and_line> sals;
13906
13907 TRY
13908 {
13909 sals = b->ops->decode_location (b, location, search_pspace);
13910 }
13911 CATCH (e, RETURN_MASK_ERROR)
13912 {
13913 int not_found_and_ok = 0;
13914
13915 exception = e;
13916
13917 /* For pending breakpoints, it's expected that parsing will
13918 fail until the right shared library is loaded. User has
13919 already told to create pending breakpoints and don't need
13920 extra messages. If breakpoint is in bp_shlib_disabled
13921 state, then user already saw the message about that
13922 breakpoint being disabled, and don't want to see more
13923 errors. */
13924 if (e.error == NOT_FOUND_ERROR
13925 && (b->condition_not_parsed
13926 || (b->loc != NULL
13927 && search_pspace != NULL
13928 && b->loc->pspace != search_pspace)
13929 || (b->loc && b->loc->shlib_disabled)
13930 || (b->loc && b->loc->pspace->executing_startup)
13931 || b->enable_state == bp_disabled))
13932 not_found_and_ok = 1;
13933
13934 if (!not_found_and_ok)
13935 {
13936 /* We surely don't want to warn about the same breakpoint
13937 10 times. One solution, implemented here, is disable
13938 the breakpoint on error. Another solution would be to
13939 have separate 'warning emitted' flag. Since this
13940 happens only when a binary has changed, I don't know
13941 which approach is better. */
13942 b->enable_state = bp_disabled;
13943 throw_exception (e);
13944 }
13945 }
13946 END_CATCH
13947
13948 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13949 {
13950 for (auto &sal : sals)
13951 resolve_sal_pc (&sal);
13952 if (b->condition_not_parsed && b->extra_string != NULL)
13953 {
13954 char *cond_string, *extra_string;
13955 int thread, task;
13956
13957 find_condition_and_thread (b->extra_string, sals[0].pc,
13958 &cond_string, &thread, &task,
13959 &extra_string);
13960 gdb_assert (b->cond_string == NULL);
13961 if (cond_string)
13962 b->cond_string = cond_string;
13963 b->thread = thread;
13964 b->task = task;
13965 if (extra_string)
13966 {
13967 xfree (b->extra_string);
13968 b->extra_string = extra_string;
13969 }
13970 b->condition_not_parsed = 0;
13971 }
13972
13973 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13974 sals[0] = update_static_tracepoint (b, sals[0]);
13975
13976 *found = 1;
13977 }
13978 else
13979 *found = 0;
13980
13981 return sals;
13982 }
13983
13984 /* The default re_set method, for typical hardware or software
13985 breakpoints. Reevaluate the breakpoint and recreate its
13986 locations. */
13987
13988 static void
13989 breakpoint_re_set_default (struct breakpoint *b)
13990 {
13991 struct program_space *filter_pspace = current_program_space;
13992 std::vector<symtab_and_line> expanded, expanded_end;
13993
13994 int found;
13995 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13996 filter_pspace, &found);
13997 if (found)
13998 expanded = std::move (sals);
13999
14000 if (b->location_range_end != NULL)
14001 {
14002 std::vector<symtab_and_line> sals_end
14003 = location_to_sals (b, b->location_range_end.get (),
14004 filter_pspace, &found);
14005 if (found)
14006 expanded_end = std::move (sals_end);
14007 }
14008
14009 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
14010 }
14011
14012 /* Default method for creating SALs from an address string. It basically
14013 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14014
14015 static void
14016 create_sals_from_location_default (const struct event_location *location,
14017 struct linespec_result *canonical,
14018 enum bptype type_wanted)
14019 {
14020 parse_breakpoint_sals (location, canonical);
14021 }
14022
14023 /* Call create_breakpoints_sal for the given arguments. This is the default
14024 function for the `create_breakpoints_sal' method of
14025 breakpoint_ops. */
14026
14027 static void
14028 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14029 struct linespec_result *canonical,
14030 gdb::unique_xmalloc_ptr<char> cond_string,
14031 gdb::unique_xmalloc_ptr<char> extra_string,
14032 enum bptype type_wanted,
14033 enum bpdisp disposition,
14034 int thread,
14035 int task, int ignore_count,
14036 const struct breakpoint_ops *ops,
14037 int from_tty, int enabled,
14038 int internal, unsigned flags)
14039 {
14040 create_breakpoints_sal (gdbarch, canonical,
14041 std::move (cond_string),
14042 std::move (extra_string),
14043 type_wanted, disposition,
14044 thread, task, ignore_count, ops, from_tty,
14045 enabled, internal, flags);
14046 }
14047
14048 /* Decode the line represented by S by calling decode_line_full. This is the
14049 default function for the `decode_location' method of breakpoint_ops. */
14050
14051 static std::vector<symtab_and_line>
14052 decode_location_default (struct breakpoint *b,
14053 const struct event_location *location,
14054 struct program_space *search_pspace)
14055 {
14056 struct linespec_result canonical;
14057
14058 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
14059 (struct symtab *) NULL, 0,
14060 &canonical, multiple_symbols_all,
14061 b->filter);
14062
14063 /* We should get 0 or 1 resulting SALs. */
14064 gdb_assert (canonical.lsals.size () < 2);
14065
14066 if (!canonical.lsals.empty ())
14067 {
14068 const linespec_sals &lsal = canonical.lsals[0];
14069 return std::move (lsal.sals);
14070 }
14071 return {};
14072 }
14073
14074 /* Prepare the global context for a re-set of breakpoint B. */
14075
14076 static struct cleanup *
14077 prepare_re_set_context (struct breakpoint *b)
14078 {
14079 input_radix = b->input_radix;
14080 set_language (b->language);
14081
14082 return make_cleanup (null_cleanup, NULL);
14083 }
14084
14085 /* Reset a breakpoint. */
14086
14087 static void
14088 breakpoint_re_set_one (breakpoint *b)
14089 {
14090 struct cleanup *cleanups;
14091
14092 cleanups = prepare_re_set_context (b);
14093 b->ops->re_set (b);
14094 do_cleanups (cleanups);
14095 }
14096
14097 /* Re-set breakpoint locations for the current program space.
14098 Locations bound to other program spaces are left untouched. */
14099
14100 void
14101 breakpoint_re_set (void)
14102 {
14103 struct breakpoint *b, *b_tmp;
14104 enum language save_language;
14105 int save_input_radix;
14106
14107 save_language = current_language->la_language;
14108 save_input_radix = input_radix;
14109
14110 {
14111 scoped_restore_current_pspace_and_thread restore_pspace_thread;
14112
14113 /* Note: we must not try to insert locations until after all
14114 breakpoints have been re-set. Otherwise, e.g., when re-setting
14115 breakpoint 1, we'd insert the locations of breakpoint 2, which
14116 hadn't been re-set yet, and thus may have stale locations. */
14117
14118 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14119 {
14120 TRY
14121 {
14122 breakpoint_re_set_one (b);
14123 }
14124 CATCH (ex, RETURN_MASK_ALL)
14125 {
14126 exception_fprintf (gdb_stderr, ex,
14127 "Error in re-setting breakpoint %d: ",
14128 b->number);
14129 }
14130 END_CATCH
14131 }
14132 set_language (save_language);
14133 input_radix = save_input_radix;
14134
14135 jit_breakpoint_re_set ();
14136 }
14137
14138 create_overlay_event_breakpoint ();
14139 create_longjmp_master_breakpoint ();
14140 create_std_terminate_master_breakpoint ();
14141 create_exception_master_breakpoint ();
14142
14143 /* Now we can insert. */
14144 update_global_location_list (UGLL_MAY_INSERT);
14145 }
14146 \f
14147 /* Reset the thread number of this breakpoint:
14148
14149 - If the breakpoint is for all threads, leave it as-is.
14150 - Else, reset it to the current thread for inferior_ptid. */
14151 void
14152 breakpoint_re_set_thread (struct breakpoint *b)
14153 {
14154 if (b->thread != -1)
14155 {
14156 if (in_thread_list (inferior_ptid))
14157 b->thread = ptid_to_global_thread_id (inferior_ptid);
14158
14159 /* We're being called after following a fork. The new fork is
14160 selected as current, and unless this was a vfork will have a
14161 different program space from the original thread. Reset that
14162 as well. */
14163 b->loc->pspace = current_program_space;
14164 }
14165 }
14166
14167 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14168 If from_tty is nonzero, it prints a message to that effect,
14169 which ends with a period (no newline). */
14170
14171 void
14172 set_ignore_count (int bptnum, int count, int from_tty)
14173 {
14174 struct breakpoint *b;
14175
14176 if (count < 0)
14177 count = 0;
14178
14179 ALL_BREAKPOINTS (b)
14180 if (b->number == bptnum)
14181 {
14182 if (is_tracepoint (b))
14183 {
14184 if (from_tty && count != 0)
14185 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14186 bptnum);
14187 return;
14188 }
14189
14190 b->ignore_count = count;
14191 if (from_tty)
14192 {
14193 if (count == 0)
14194 printf_filtered (_("Will stop next time "
14195 "breakpoint %d is reached."),
14196 bptnum);
14197 else if (count == 1)
14198 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14199 bptnum);
14200 else
14201 printf_filtered (_("Will ignore next %d "
14202 "crossings of breakpoint %d."),
14203 count, bptnum);
14204 }
14205 observer_notify_breakpoint_modified (b);
14206 return;
14207 }
14208
14209 error (_("No breakpoint number %d."), bptnum);
14210 }
14211
14212 /* Command to set ignore-count of breakpoint N to COUNT. */
14213
14214 static void
14215 ignore_command (char *args, int from_tty)
14216 {
14217 char *p = args;
14218 int num;
14219
14220 if (p == 0)
14221 error_no_arg (_("a breakpoint number"));
14222
14223 num = get_number (&p);
14224 if (num == 0)
14225 error (_("bad breakpoint number: '%s'"), args);
14226 if (*p == 0)
14227 error (_("Second argument (specified ignore-count) is missing."));
14228
14229 set_ignore_count (num,
14230 longest_to_int (value_as_long (parse_and_eval (p))),
14231 from_tty);
14232 if (from_tty)
14233 printf_filtered ("\n");
14234 }
14235 \f
14236 /* Call FUNCTION on each of the breakpoints
14237 whose numbers are given in ARGS. */
14238
14239 static void
14240 map_breakpoint_numbers (const char *args,
14241 gdb::function_view<void (breakpoint *)> function)
14242 {
14243 int num;
14244 struct breakpoint *b, *tmp;
14245
14246 if (args == 0 || *args == '\0')
14247 error_no_arg (_("one or more breakpoint numbers"));
14248
14249 number_or_range_parser parser (args);
14250
14251 while (!parser.finished ())
14252 {
14253 const char *p = parser.cur_tok ();
14254 bool match = false;
14255
14256 num = parser.get_number ();
14257 if (num == 0)
14258 {
14259 warning (_("bad breakpoint number at or near '%s'"), p);
14260 }
14261 else
14262 {
14263 ALL_BREAKPOINTS_SAFE (b, tmp)
14264 if (b->number == num)
14265 {
14266 match = true;
14267 function (b);
14268 break;
14269 }
14270 if (!match)
14271 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14272 }
14273 }
14274 }
14275
14276 static struct bp_location *
14277 find_location_by_number (const char *number)
14278 {
14279 const char *p1;
14280 int bp_num;
14281 int loc_num;
14282 struct breakpoint *b;
14283 struct bp_location *loc;
14284
14285 p1 = number;
14286 bp_num = get_number_trailer (&p1, '.');
14287 if (bp_num == 0 || p1[0] != '.')
14288 error (_("Bad breakpoint number '%s'"), number);
14289
14290 ALL_BREAKPOINTS (b)
14291 if (b->number == bp_num)
14292 {
14293 break;
14294 }
14295
14296 if (!b || b->number != bp_num)
14297 error (_("Bad breakpoint number '%s'"), number);
14298
14299 /* Skip the dot. */
14300 ++p1;
14301 const char *save = p1;
14302 loc_num = get_number (&p1);
14303 if (loc_num == 0)
14304 error (_("Bad breakpoint location number '%s'"), number);
14305
14306 --loc_num;
14307 loc = b->loc;
14308 for (;loc_num && loc; --loc_num, loc = loc->next)
14309 ;
14310 if (!loc)
14311 error (_("Bad breakpoint location number '%s'"), save);
14312
14313 return loc;
14314 }
14315
14316
14317 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14318 If from_tty is nonzero, it prints a message to that effect,
14319 which ends with a period (no newline). */
14320
14321 void
14322 disable_breakpoint (struct breakpoint *bpt)
14323 {
14324 /* Never disable a watchpoint scope breakpoint; we want to
14325 hit them when we leave scope so we can delete both the
14326 watchpoint and its scope breakpoint at that time. */
14327 if (bpt->type == bp_watchpoint_scope)
14328 return;
14329
14330 bpt->enable_state = bp_disabled;
14331
14332 /* Mark breakpoint locations modified. */
14333 mark_breakpoint_modified (bpt);
14334
14335 if (target_supports_enable_disable_tracepoint ()
14336 && current_trace_status ()->running && is_tracepoint (bpt))
14337 {
14338 struct bp_location *location;
14339
14340 for (location = bpt->loc; location; location = location->next)
14341 target_disable_tracepoint (location);
14342 }
14343
14344 update_global_location_list (UGLL_DONT_INSERT);
14345
14346 observer_notify_breakpoint_modified (bpt);
14347 }
14348
14349 static void
14350 disable_command (char *args, int from_tty)
14351 {
14352 if (args == 0)
14353 {
14354 struct breakpoint *bpt;
14355
14356 ALL_BREAKPOINTS (bpt)
14357 if (user_breakpoint_p (bpt))
14358 disable_breakpoint (bpt);
14359 }
14360 else
14361 {
14362 std::string num = extract_arg (&args);
14363
14364 while (!num.empty ())
14365 {
14366 if (num.find ('.') != std::string::npos)
14367 {
14368 struct bp_location *loc = find_location_by_number (num.c_str ());
14369
14370 if (loc)
14371 {
14372 if (loc->enabled)
14373 {
14374 loc->enabled = 0;
14375 mark_breakpoint_location_modified (loc);
14376 }
14377 if (target_supports_enable_disable_tracepoint ()
14378 && current_trace_status ()->running && loc->owner
14379 && is_tracepoint (loc->owner))
14380 target_disable_tracepoint (loc);
14381 }
14382 update_global_location_list (UGLL_DONT_INSERT);
14383 }
14384 else
14385 map_breakpoint_numbers
14386 (num.c_str (), [&] (breakpoint *b)
14387 {
14388 iterate_over_related_breakpoints (b, disable_breakpoint);
14389 });
14390 num = extract_arg (&args);
14391 }
14392 }
14393 }
14394
14395 static void
14396 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14397 int count)
14398 {
14399 int target_resources_ok;
14400
14401 if (bpt->type == bp_hardware_breakpoint)
14402 {
14403 int i;
14404 i = hw_breakpoint_used_count ();
14405 target_resources_ok =
14406 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14407 i + 1, 0);
14408 if (target_resources_ok == 0)
14409 error (_("No hardware breakpoint support in the target."));
14410 else if (target_resources_ok < 0)
14411 error (_("Hardware breakpoints used exceeds limit."));
14412 }
14413
14414 if (is_watchpoint (bpt))
14415 {
14416 /* Initialize it just to avoid a GCC false warning. */
14417 enum enable_state orig_enable_state = bp_disabled;
14418
14419 TRY
14420 {
14421 struct watchpoint *w = (struct watchpoint *) bpt;
14422
14423 orig_enable_state = bpt->enable_state;
14424 bpt->enable_state = bp_enabled;
14425 update_watchpoint (w, 1 /* reparse */);
14426 }
14427 CATCH (e, RETURN_MASK_ALL)
14428 {
14429 bpt->enable_state = orig_enable_state;
14430 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14431 bpt->number);
14432 return;
14433 }
14434 END_CATCH
14435 }
14436
14437 bpt->enable_state = bp_enabled;
14438
14439 /* Mark breakpoint locations modified. */
14440 mark_breakpoint_modified (bpt);
14441
14442 if (target_supports_enable_disable_tracepoint ()
14443 && current_trace_status ()->running && is_tracepoint (bpt))
14444 {
14445 struct bp_location *location;
14446
14447 for (location = bpt->loc; location; location = location->next)
14448 target_enable_tracepoint (location);
14449 }
14450
14451 bpt->disposition = disposition;
14452 bpt->enable_count = count;
14453 update_global_location_list (UGLL_MAY_INSERT);
14454
14455 observer_notify_breakpoint_modified (bpt);
14456 }
14457
14458
14459 void
14460 enable_breakpoint (struct breakpoint *bpt)
14461 {
14462 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14463 }
14464
14465 /* The enable command enables the specified breakpoints (or all defined
14466 breakpoints) so they once again become (or continue to be) effective
14467 in stopping the inferior. */
14468
14469 static void
14470 enable_command (char *args, int from_tty)
14471 {
14472 if (args == 0)
14473 {
14474 struct breakpoint *bpt;
14475
14476 ALL_BREAKPOINTS (bpt)
14477 if (user_breakpoint_p (bpt))
14478 enable_breakpoint (bpt);
14479 }
14480 else
14481 {
14482 std::string num = extract_arg (&args);
14483
14484 while (!num.empty ())
14485 {
14486 if (num.find ('.') != std::string::npos)
14487 {
14488 struct bp_location *loc = find_location_by_number (num.c_str ());
14489
14490 if (loc)
14491 {
14492 if (!loc->enabled)
14493 {
14494 loc->enabled = 1;
14495 mark_breakpoint_location_modified (loc);
14496 }
14497 if (target_supports_enable_disable_tracepoint ()
14498 && current_trace_status ()->running && loc->owner
14499 && is_tracepoint (loc->owner))
14500 target_enable_tracepoint (loc);
14501 }
14502 update_global_location_list (UGLL_MAY_INSERT);
14503 }
14504 else
14505 map_breakpoint_numbers
14506 (num.c_str (), [&] (breakpoint *b)
14507 {
14508 iterate_over_related_breakpoints (b, enable_breakpoint);
14509 });
14510 num = extract_arg (&args);
14511 }
14512 }
14513 }
14514
14515 static void
14516 enable_once_command (const char *args, int from_tty)
14517 {
14518 map_breakpoint_numbers
14519 (args, [&] (breakpoint *b)
14520 {
14521 iterate_over_related_breakpoints
14522 (b, [&] (breakpoint *bpt)
14523 {
14524 enable_breakpoint_disp (bpt, disp_disable, 1);
14525 });
14526 });
14527 }
14528
14529 static void
14530 enable_count_command (const char *args, int from_tty)
14531 {
14532 int count;
14533
14534 if (args == NULL)
14535 error_no_arg (_("hit count"));
14536
14537 count = get_number (&args);
14538
14539 map_breakpoint_numbers
14540 (args, [&] (breakpoint *b)
14541 {
14542 iterate_over_related_breakpoints
14543 (b, [&] (breakpoint *bpt)
14544 {
14545 enable_breakpoint_disp (bpt, disp_disable, count);
14546 });
14547 });
14548 }
14549
14550 static void
14551 enable_delete_command (const char *args, int from_tty)
14552 {
14553 map_breakpoint_numbers
14554 (args, [&] (breakpoint *b)
14555 {
14556 iterate_over_related_breakpoints
14557 (b, [&] (breakpoint *bpt)
14558 {
14559 enable_breakpoint_disp (bpt, disp_del, 1);
14560 });
14561 });
14562 }
14563 \f
14564 static void
14565 set_breakpoint_cmd (char *args, int from_tty)
14566 {
14567 }
14568
14569 static void
14570 show_breakpoint_cmd (char *args, int from_tty)
14571 {
14572 }
14573
14574 /* Invalidate last known value of any hardware watchpoint if
14575 the memory which that value represents has been written to by
14576 GDB itself. */
14577
14578 static void
14579 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14580 CORE_ADDR addr, ssize_t len,
14581 const bfd_byte *data)
14582 {
14583 struct breakpoint *bp;
14584
14585 ALL_BREAKPOINTS (bp)
14586 if (bp->enable_state == bp_enabled
14587 && bp->type == bp_hardware_watchpoint)
14588 {
14589 struct watchpoint *wp = (struct watchpoint *) bp;
14590
14591 if (wp->val_valid && wp->val)
14592 {
14593 struct bp_location *loc;
14594
14595 for (loc = bp->loc; loc != NULL; loc = loc->next)
14596 if (loc->loc_type == bp_loc_hardware_watchpoint
14597 && loc->address + loc->length > addr
14598 && addr + len > loc->address)
14599 {
14600 value_free (wp->val);
14601 wp->val = NULL;
14602 wp->val_valid = 0;
14603 }
14604 }
14605 }
14606 }
14607
14608 /* Create and insert a breakpoint for software single step. */
14609
14610 void
14611 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14612 struct address_space *aspace,
14613 CORE_ADDR next_pc)
14614 {
14615 struct thread_info *tp = inferior_thread ();
14616 struct symtab_and_line sal;
14617 CORE_ADDR pc = next_pc;
14618
14619 if (tp->control.single_step_breakpoints == NULL)
14620 {
14621 tp->control.single_step_breakpoints
14622 = new_single_step_breakpoint (tp->global_num, gdbarch);
14623 }
14624
14625 sal = find_pc_line (pc, 0);
14626 sal.pc = pc;
14627 sal.section = find_pc_overlay (pc);
14628 sal.explicit_pc = 1;
14629 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14630
14631 update_global_location_list (UGLL_INSERT);
14632 }
14633
14634 /* Insert single step breakpoints according to the current state. */
14635
14636 int
14637 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14638 {
14639 struct regcache *regcache = get_current_regcache ();
14640 std::vector<CORE_ADDR> next_pcs;
14641
14642 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14643
14644 if (!next_pcs.empty ())
14645 {
14646 struct frame_info *frame = get_current_frame ();
14647 struct address_space *aspace = get_frame_address_space (frame);
14648
14649 for (CORE_ADDR pc : next_pcs)
14650 insert_single_step_breakpoint (gdbarch, aspace, pc);
14651
14652 return 1;
14653 }
14654 else
14655 return 0;
14656 }
14657
14658 /* See breakpoint.h. */
14659
14660 int
14661 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14662 struct address_space *aspace,
14663 CORE_ADDR pc)
14664 {
14665 struct bp_location *loc;
14666
14667 for (loc = bp->loc; loc != NULL; loc = loc->next)
14668 if (loc->inserted
14669 && breakpoint_location_address_match (loc, aspace, pc))
14670 return 1;
14671
14672 return 0;
14673 }
14674
14675 /* Check whether a software single-step breakpoint is inserted at
14676 PC. */
14677
14678 int
14679 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
14680 CORE_ADDR pc)
14681 {
14682 struct breakpoint *bpt;
14683
14684 ALL_BREAKPOINTS (bpt)
14685 {
14686 if (bpt->type == bp_single_step
14687 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14688 return 1;
14689 }
14690 return 0;
14691 }
14692
14693 /* Tracepoint-specific operations. */
14694
14695 /* Set tracepoint count to NUM. */
14696 static void
14697 set_tracepoint_count (int num)
14698 {
14699 tracepoint_count = num;
14700 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14701 }
14702
14703 static void
14704 trace_command (char *arg_in, int from_tty)
14705 {
14706 const char *arg = arg_in;
14707 struct breakpoint_ops *ops;
14708
14709 event_location_up location = string_to_event_location (&arg,
14710 current_language);
14711 if (location != NULL
14712 && event_location_type (location.get ()) == PROBE_LOCATION)
14713 ops = &tracepoint_probe_breakpoint_ops;
14714 else
14715 ops = &tracepoint_breakpoint_ops;
14716
14717 create_breakpoint (get_current_arch (),
14718 location.get (),
14719 NULL, 0, arg, 1 /* parse arg */,
14720 0 /* tempflag */,
14721 bp_tracepoint /* type_wanted */,
14722 0 /* Ignore count */,
14723 pending_break_support,
14724 ops,
14725 from_tty,
14726 1 /* enabled */,
14727 0 /* internal */, 0);
14728 }
14729
14730 static void
14731 ftrace_command (char *arg_in, int from_tty)
14732 {
14733 const char *arg = arg_in;
14734 event_location_up location = string_to_event_location (&arg,
14735 current_language);
14736 create_breakpoint (get_current_arch (),
14737 location.get (),
14738 NULL, 0, arg, 1 /* parse arg */,
14739 0 /* tempflag */,
14740 bp_fast_tracepoint /* type_wanted */,
14741 0 /* Ignore count */,
14742 pending_break_support,
14743 &tracepoint_breakpoint_ops,
14744 from_tty,
14745 1 /* enabled */,
14746 0 /* internal */, 0);
14747 }
14748
14749 /* strace command implementation. Creates a static tracepoint. */
14750
14751 static void
14752 strace_command (char *arg_in, int from_tty)
14753 {
14754 const char *arg = arg_in;
14755 struct breakpoint_ops *ops;
14756 event_location_up location;
14757 struct cleanup *back_to;
14758
14759 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14760 or with a normal static tracepoint. */
14761 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14762 {
14763 ops = &strace_marker_breakpoint_ops;
14764 location = new_linespec_location (&arg);
14765 }
14766 else
14767 {
14768 ops = &tracepoint_breakpoint_ops;
14769 location = string_to_event_location (&arg, current_language);
14770 }
14771
14772 create_breakpoint (get_current_arch (),
14773 location.get (),
14774 NULL, 0, arg, 1 /* parse arg */,
14775 0 /* tempflag */,
14776 bp_static_tracepoint /* type_wanted */,
14777 0 /* Ignore count */,
14778 pending_break_support,
14779 ops,
14780 from_tty,
14781 1 /* enabled */,
14782 0 /* internal */, 0);
14783 }
14784
14785 /* Set up a fake reader function that gets command lines from a linked
14786 list that was acquired during tracepoint uploading. */
14787
14788 static struct uploaded_tp *this_utp;
14789 static int next_cmd;
14790
14791 static char *
14792 read_uploaded_action (void)
14793 {
14794 char *rslt;
14795
14796 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
14797
14798 next_cmd++;
14799
14800 return rslt;
14801 }
14802
14803 /* Given information about a tracepoint as recorded on a target (which
14804 can be either a live system or a trace file), attempt to create an
14805 equivalent GDB tracepoint. This is not a reliable process, since
14806 the target does not necessarily have all the information used when
14807 the tracepoint was originally defined. */
14808
14809 struct tracepoint *
14810 create_tracepoint_from_upload (struct uploaded_tp *utp)
14811 {
14812 const char *addr_str;
14813 char small_buf[100];
14814 struct tracepoint *tp;
14815
14816 if (utp->at_string)
14817 addr_str = utp->at_string;
14818 else
14819 {
14820 /* In the absence of a source location, fall back to raw
14821 address. Since there is no way to confirm that the address
14822 means the same thing as when the trace was started, warn the
14823 user. */
14824 warning (_("Uploaded tracepoint %d has no "
14825 "source location, using raw address"),
14826 utp->number);
14827 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14828 addr_str = small_buf;
14829 }
14830
14831 /* There's not much we can do with a sequence of bytecodes. */
14832 if (utp->cond && !utp->cond_string)
14833 warning (_("Uploaded tracepoint %d condition "
14834 "has no source form, ignoring it"),
14835 utp->number);
14836
14837 event_location_up location = string_to_event_location (&addr_str,
14838 current_language);
14839 if (!create_breakpoint (get_current_arch (),
14840 location.get (),
14841 utp->cond_string, -1, addr_str,
14842 0 /* parse cond/thread */,
14843 0 /* tempflag */,
14844 utp->type /* type_wanted */,
14845 0 /* Ignore count */,
14846 pending_break_support,
14847 &tracepoint_breakpoint_ops,
14848 0 /* from_tty */,
14849 utp->enabled /* enabled */,
14850 0 /* internal */,
14851 CREATE_BREAKPOINT_FLAGS_INSERTED))
14852 return NULL;
14853
14854 /* Get the tracepoint we just created. */
14855 tp = get_tracepoint (tracepoint_count);
14856 gdb_assert (tp != NULL);
14857
14858 if (utp->pass > 0)
14859 {
14860 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14861 tp->number);
14862
14863 trace_pass_command (small_buf, 0);
14864 }
14865
14866 /* If we have uploaded versions of the original commands, set up a
14867 special-purpose "reader" function and call the usual command line
14868 reader, then pass the result to the breakpoint command-setting
14869 function. */
14870 if (!VEC_empty (char_ptr, utp->cmd_strings))
14871 {
14872 command_line_up cmd_list;
14873
14874 this_utp = utp;
14875 next_cmd = 0;
14876
14877 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
14878
14879 breakpoint_set_commands (tp, std::move (cmd_list));
14880 }
14881 else if (!VEC_empty (char_ptr, utp->actions)
14882 || !VEC_empty (char_ptr, utp->step_actions))
14883 warning (_("Uploaded tracepoint %d actions "
14884 "have no source form, ignoring them"),
14885 utp->number);
14886
14887 /* Copy any status information that might be available. */
14888 tp->hit_count = utp->hit_count;
14889 tp->traceframe_usage = utp->traceframe_usage;
14890
14891 return tp;
14892 }
14893
14894 /* Print information on tracepoint number TPNUM_EXP, or all if
14895 omitted. */
14896
14897 static void
14898 info_tracepoints_command (char *args, int from_tty)
14899 {
14900 struct ui_out *uiout = current_uiout;
14901 int num_printed;
14902
14903 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14904
14905 if (num_printed == 0)
14906 {
14907 if (args == NULL || *args == '\0')
14908 uiout->message ("No tracepoints.\n");
14909 else
14910 uiout->message ("No tracepoint matching '%s'.\n", args);
14911 }
14912
14913 default_collect_info ();
14914 }
14915
14916 /* The 'enable trace' command enables tracepoints.
14917 Not supported by all targets. */
14918 static void
14919 enable_trace_command (char *args, int from_tty)
14920 {
14921 enable_command (args, from_tty);
14922 }
14923
14924 /* The 'disable trace' command disables tracepoints.
14925 Not supported by all targets. */
14926 static void
14927 disable_trace_command (char *args, int from_tty)
14928 {
14929 disable_command (args, from_tty);
14930 }
14931
14932 /* Remove a tracepoint (or all if no argument). */
14933 static void
14934 delete_trace_command (const char *arg, int from_tty)
14935 {
14936 struct breakpoint *b, *b_tmp;
14937
14938 dont_repeat ();
14939
14940 if (arg == 0)
14941 {
14942 int breaks_to_delete = 0;
14943
14944 /* Delete all breakpoints if no argument.
14945 Do not delete internal or call-dummy breakpoints, these
14946 have to be deleted with an explicit breakpoint number
14947 argument. */
14948 ALL_TRACEPOINTS (b)
14949 if (is_tracepoint (b) && user_breakpoint_p (b))
14950 {
14951 breaks_to_delete = 1;
14952 break;
14953 }
14954
14955 /* Ask user only if there are some breakpoints to delete. */
14956 if (!from_tty
14957 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14958 {
14959 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14960 if (is_tracepoint (b) && user_breakpoint_p (b))
14961 delete_breakpoint (b);
14962 }
14963 }
14964 else
14965 map_breakpoint_numbers
14966 (arg, [&] (breakpoint *b)
14967 {
14968 iterate_over_related_breakpoints (b, delete_breakpoint);
14969 });
14970 }
14971
14972 /* Helper function for trace_pass_command. */
14973
14974 static void
14975 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14976 {
14977 tp->pass_count = count;
14978 observer_notify_breakpoint_modified (tp);
14979 if (from_tty)
14980 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14981 tp->number, count);
14982 }
14983
14984 /* Set passcount for tracepoint.
14985
14986 First command argument is passcount, second is tracepoint number.
14987 If tracepoint number omitted, apply to most recently defined.
14988 Also accepts special argument "all". */
14989
14990 static void
14991 trace_pass_command (char *args, int from_tty)
14992 {
14993 struct tracepoint *t1;
14994 unsigned int count;
14995
14996 if (args == 0 || *args == 0)
14997 error (_("passcount command requires an "
14998 "argument (count + optional TP num)"));
14999
15000 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15001
15002 args = skip_spaces (args);
15003 if (*args && strncasecmp (args, "all", 3) == 0)
15004 {
15005 struct breakpoint *b;
15006
15007 args += 3; /* Skip special argument "all". */
15008 if (*args)
15009 error (_("Junk at end of arguments."));
15010
15011 ALL_TRACEPOINTS (b)
15012 {
15013 t1 = (struct tracepoint *) b;
15014 trace_pass_set_count (t1, count, from_tty);
15015 }
15016 }
15017 else if (*args == '\0')
15018 {
15019 t1 = get_tracepoint_by_number (&args, NULL);
15020 if (t1)
15021 trace_pass_set_count (t1, count, from_tty);
15022 }
15023 else
15024 {
15025 number_or_range_parser parser (args);
15026 while (!parser.finished ())
15027 {
15028 t1 = get_tracepoint_by_number (&args, &parser);
15029 if (t1)
15030 trace_pass_set_count (t1, count, from_tty);
15031 }
15032 }
15033 }
15034
15035 struct tracepoint *
15036 get_tracepoint (int num)
15037 {
15038 struct breakpoint *t;
15039
15040 ALL_TRACEPOINTS (t)
15041 if (t->number == num)
15042 return (struct tracepoint *) t;
15043
15044 return NULL;
15045 }
15046
15047 /* Find the tracepoint with the given target-side number (which may be
15048 different from the tracepoint number after disconnecting and
15049 reconnecting). */
15050
15051 struct tracepoint *
15052 get_tracepoint_by_number_on_target (int num)
15053 {
15054 struct breakpoint *b;
15055
15056 ALL_TRACEPOINTS (b)
15057 {
15058 struct tracepoint *t = (struct tracepoint *) b;
15059
15060 if (t->number_on_target == num)
15061 return t;
15062 }
15063
15064 return NULL;
15065 }
15066
15067 /* Utility: parse a tracepoint number and look it up in the list.
15068 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15069 If the argument is missing, the most recent tracepoint
15070 (tracepoint_count) is returned. */
15071
15072 struct tracepoint *
15073 get_tracepoint_by_number (char **arg,
15074 number_or_range_parser *parser)
15075 {
15076 struct breakpoint *t;
15077 int tpnum;
15078 char *instring = arg == NULL ? NULL : *arg;
15079
15080 if (parser != NULL)
15081 {
15082 gdb_assert (!parser->finished ());
15083 tpnum = parser->get_number ();
15084 }
15085 else if (arg == NULL || *arg == NULL || ! **arg)
15086 tpnum = tracepoint_count;
15087 else
15088 tpnum = get_number (arg);
15089
15090 if (tpnum <= 0)
15091 {
15092 if (instring && *instring)
15093 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15094 instring);
15095 else
15096 printf_filtered (_("No previous tracepoint\n"));
15097 return NULL;
15098 }
15099
15100 ALL_TRACEPOINTS (t)
15101 if (t->number == tpnum)
15102 {
15103 return (struct tracepoint *) t;
15104 }
15105
15106 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15107 return NULL;
15108 }
15109
15110 void
15111 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15112 {
15113 if (b->thread != -1)
15114 fprintf_unfiltered (fp, " thread %d", b->thread);
15115
15116 if (b->task != 0)
15117 fprintf_unfiltered (fp, " task %d", b->task);
15118
15119 fprintf_unfiltered (fp, "\n");
15120 }
15121
15122 /* Save information on user settable breakpoints (watchpoints, etc) to
15123 a new script file named FILENAME. If FILTER is non-NULL, call it
15124 on each breakpoint and only include the ones for which it returns
15125 non-zero. */
15126
15127 static void
15128 save_breakpoints (const char *filename, int from_tty,
15129 int (*filter) (const struct breakpoint *))
15130 {
15131 struct breakpoint *tp;
15132 int any = 0;
15133 int extra_trace_bits = 0;
15134
15135 if (filename == 0 || *filename == 0)
15136 error (_("Argument required (file name in which to save)"));
15137
15138 /* See if we have anything to save. */
15139 ALL_BREAKPOINTS (tp)
15140 {
15141 /* Skip internal and momentary breakpoints. */
15142 if (!user_breakpoint_p (tp))
15143 continue;
15144
15145 /* If we have a filter, only save the breakpoints it accepts. */
15146 if (filter && !filter (tp))
15147 continue;
15148
15149 any = 1;
15150
15151 if (is_tracepoint (tp))
15152 {
15153 extra_trace_bits = 1;
15154
15155 /* We can stop searching. */
15156 break;
15157 }
15158 }
15159
15160 if (!any)
15161 {
15162 warning (_("Nothing to save."));
15163 return;
15164 }
15165
15166 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15167
15168 stdio_file fp;
15169
15170 if (!fp.open (expanded_filename.get (), "w"))
15171 error (_("Unable to open file '%s' for saving (%s)"),
15172 expanded_filename.get (), safe_strerror (errno));
15173
15174 if (extra_trace_bits)
15175 save_trace_state_variables (&fp);
15176
15177 ALL_BREAKPOINTS (tp)
15178 {
15179 /* Skip internal and momentary breakpoints. */
15180 if (!user_breakpoint_p (tp))
15181 continue;
15182
15183 /* If we have a filter, only save the breakpoints it accepts. */
15184 if (filter && !filter (tp))
15185 continue;
15186
15187 tp->ops->print_recreate (tp, &fp);
15188
15189 /* Note, we can't rely on tp->number for anything, as we can't
15190 assume the recreated breakpoint numbers will match. Use $bpnum
15191 instead. */
15192
15193 if (tp->cond_string)
15194 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15195
15196 if (tp->ignore_count)
15197 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15198
15199 if (tp->type != bp_dprintf && tp->commands)
15200 {
15201 fp.puts (" commands\n");
15202
15203 current_uiout->redirect (&fp);
15204 TRY
15205 {
15206 print_command_lines (current_uiout, tp->commands.get (), 2);
15207 }
15208 CATCH (ex, RETURN_MASK_ALL)
15209 {
15210 current_uiout->redirect (NULL);
15211 throw_exception (ex);
15212 }
15213 END_CATCH
15214
15215 current_uiout->redirect (NULL);
15216 fp.puts (" end\n");
15217 }
15218
15219 if (tp->enable_state == bp_disabled)
15220 fp.puts ("disable $bpnum\n");
15221
15222 /* If this is a multi-location breakpoint, check if the locations
15223 should be individually disabled. Watchpoint locations are
15224 special, and not user visible. */
15225 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15226 {
15227 struct bp_location *loc;
15228 int n = 1;
15229
15230 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15231 if (!loc->enabled)
15232 fp.printf ("disable $bpnum.%d\n", n);
15233 }
15234 }
15235
15236 if (extra_trace_bits && *default_collect)
15237 fp.printf ("set default-collect %s\n", default_collect);
15238
15239 if (from_tty)
15240 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15241 }
15242
15243 /* The `save breakpoints' command. */
15244
15245 static void
15246 save_breakpoints_command (const char *args, int from_tty)
15247 {
15248 save_breakpoints (args, from_tty, NULL);
15249 }
15250
15251 /* The `save tracepoints' command. */
15252
15253 static void
15254 save_tracepoints_command (const char *args, int from_tty)
15255 {
15256 save_breakpoints (args, from_tty, is_tracepoint);
15257 }
15258
15259 /* Create a vector of all tracepoints. */
15260
15261 VEC(breakpoint_p) *
15262 all_tracepoints (void)
15263 {
15264 VEC(breakpoint_p) *tp_vec = 0;
15265 struct breakpoint *tp;
15266
15267 ALL_TRACEPOINTS (tp)
15268 {
15269 VEC_safe_push (breakpoint_p, tp_vec, tp);
15270 }
15271
15272 return tp_vec;
15273 }
15274
15275 \f
15276 /* This help string is used to consolidate all the help string for specifying
15277 locations used by several commands. */
15278
15279 #define LOCATION_HELP_STRING \
15280 "Linespecs are colon-separated lists of location parameters, such as\n\
15281 source filename, function name, label name, and line number.\n\
15282 Example: To specify the start of a label named \"the_top\" in the\n\
15283 function \"fact\" in the file \"factorial.c\", use\n\
15284 \"factorial.c:fact:the_top\".\n\
15285 \n\
15286 Address locations begin with \"*\" and specify an exact address in the\n\
15287 program. Example: To specify the fourth byte past the start function\n\
15288 \"main\", use \"*main + 4\".\n\
15289 \n\
15290 Explicit locations are similar to linespecs but use an option/argument\n\
15291 syntax to specify location parameters.\n\
15292 Example: To specify the start of the label named \"the_top\" in the\n\
15293 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15294 -function fact -label the_top\".\n"
15295
15296 /* This help string is used for the break, hbreak, tbreak and thbreak
15297 commands. It is defined as a macro to prevent duplication.
15298 COMMAND should be a string constant containing the name of the
15299 command. */
15300
15301 #define BREAK_ARGS_HELP(command) \
15302 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15303 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15304 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15305 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15306 `-probe-dtrace' (for a DTrace probe).\n\
15307 LOCATION may be a linespec, address, or explicit location as described\n\
15308 below.\n\
15309 \n\
15310 With no LOCATION, uses current execution address of the selected\n\
15311 stack frame. This is useful for breaking on return to a stack frame.\n\
15312 \n\
15313 THREADNUM is the number from \"info threads\".\n\
15314 CONDITION is a boolean expression.\n\
15315 \n" LOCATION_HELP_STRING "\n\
15316 Multiple breakpoints at one place are permitted, and useful if their\n\
15317 conditions are different.\n\
15318 \n\
15319 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15320
15321 /* List of subcommands for "catch". */
15322 static struct cmd_list_element *catch_cmdlist;
15323
15324 /* List of subcommands for "tcatch". */
15325 static struct cmd_list_element *tcatch_cmdlist;
15326
15327 void
15328 add_catch_command (const char *name, const char *docstring,
15329 cmd_sfunc_ftype *sfunc,
15330 completer_ftype *completer,
15331 void *user_data_catch,
15332 void *user_data_tcatch)
15333 {
15334 struct cmd_list_element *command;
15335
15336 command = add_cmd (name, class_breakpoint, docstring,
15337 &catch_cmdlist);
15338 set_cmd_sfunc (command, sfunc);
15339 set_cmd_context (command, user_data_catch);
15340 set_cmd_completer (command, completer);
15341
15342 command = add_cmd (name, class_breakpoint, docstring,
15343 &tcatch_cmdlist);
15344 set_cmd_sfunc (command, sfunc);
15345 set_cmd_context (command, user_data_tcatch);
15346 set_cmd_completer (command, completer);
15347 }
15348
15349 static void
15350 save_command (char *arg, int from_tty)
15351 {
15352 printf_unfiltered (_("\"save\" must be followed by "
15353 "the name of a save subcommand.\n"));
15354 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15355 }
15356
15357 struct breakpoint *
15358 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15359 void *data)
15360 {
15361 struct breakpoint *b, *b_tmp;
15362
15363 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15364 {
15365 if ((*callback) (b, data))
15366 return b;
15367 }
15368
15369 return NULL;
15370 }
15371
15372 /* Zero if any of the breakpoint's locations could be a location where
15373 functions have been inlined, nonzero otherwise. */
15374
15375 static int
15376 is_non_inline_function (struct breakpoint *b)
15377 {
15378 /* The shared library event breakpoint is set on the address of a
15379 non-inline function. */
15380 if (b->type == bp_shlib_event)
15381 return 1;
15382
15383 return 0;
15384 }
15385
15386 /* Nonzero if the specified PC cannot be a location where functions
15387 have been inlined. */
15388
15389 int
15390 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15391 const struct target_waitstatus *ws)
15392 {
15393 struct breakpoint *b;
15394 struct bp_location *bl;
15395
15396 ALL_BREAKPOINTS (b)
15397 {
15398 if (!is_non_inline_function (b))
15399 continue;
15400
15401 for (bl = b->loc; bl != NULL; bl = bl->next)
15402 {
15403 if (!bl->shlib_disabled
15404 && bpstat_check_location (bl, aspace, pc, ws))
15405 return 1;
15406 }
15407 }
15408
15409 return 0;
15410 }
15411
15412 /* Remove any references to OBJFILE which is going to be freed. */
15413
15414 void
15415 breakpoint_free_objfile (struct objfile *objfile)
15416 {
15417 struct bp_location **locp, *loc;
15418
15419 ALL_BP_LOCATIONS (loc, locp)
15420 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15421 loc->symtab = NULL;
15422 }
15423
15424 void
15425 initialize_breakpoint_ops (void)
15426 {
15427 static int initialized = 0;
15428
15429 struct breakpoint_ops *ops;
15430
15431 if (initialized)
15432 return;
15433 initialized = 1;
15434
15435 /* The breakpoint_ops structure to be inherit by all kinds of
15436 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15437 internal and momentary breakpoints, etc.). */
15438 ops = &bkpt_base_breakpoint_ops;
15439 *ops = base_breakpoint_ops;
15440 ops->re_set = bkpt_re_set;
15441 ops->insert_location = bkpt_insert_location;
15442 ops->remove_location = bkpt_remove_location;
15443 ops->breakpoint_hit = bkpt_breakpoint_hit;
15444 ops->create_sals_from_location = bkpt_create_sals_from_location;
15445 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15446 ops->decode_location = bkpt_decode_location;
15447
15448 /* The breakpoint_ops structure to be used in regular breakpoints. */
15449 ops = &bkpt_breakpoint_ops;
15450 *ops = bkpt_base_breakpoint_ops;
15451 ops->re_set = bkpt_re_set;
15452 ops->resources_needed = bkpt_resources_needed;
15453 ops->print_it = bkpt_print_it;
15454 ops->print_mention = bkpt_print_mention;
15455 ops->print_recreate = bkpt_print_recreate;
15456
15457 /* Ranged breakpoints. */
15458 ops = &ranged_breakpoint_ops;
15459 *ops = bkpt_breakpoint_ops;
15460 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15461 ops->resources_needed = resources_needed_ranged_breakpoint;
15462 ops->print_it = print_it_ranged_breakpoint;
15463 ops->print_one = print_one_ranged_breakpoint;
15464 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15465 ops->print_mention = print_mention_ranged_breakpoint;
15466 ops->print_recreate = print_recreate_ranged_breakpoint;
15467
15468 /* Internal breakpoints. */
15469 ops = &internal_breakpoint_ops;
15470 *ops = bkpt_base_breakpoint_ops;
15471 ops->re_set = internal_bkpt_re_set;
15472 ops->check_status = internal_bkpt_check_status;
15473 ops->print_it = internal_bkpt_print_it;
15474 ops->print_mention = internal_bkpt_print_mention;
15475
15476 /* Momentary breakpoints. */
15477 ops = &momentary_breakpoint_ops;
15478 *ops = bkpt_base_breakpoint_ops;
15479 ops->re_set = momentary_bkpt_re_set;
15480 ops->check_status = momentary_bkpt_check_status;
15481 ops->print_it = momentary_bkpt_print_it;
15482 ops->print_mention = momentary_bkpt_print_mention;
15483
15484 /* Probe breakpoints. */
15485 ops = &bkpt_probe_breakpoint_ops;
15486 *ops = bkpt_breakpoint_ops;
15487 ops->insert_location = bkpt_probe_insert_location;
15488 ops->remove_location = bkpt_probe_remove_location;
15489 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15490 ops->decode_location = bkpt_probe_decode_location;
15491
15492 /* Watchpoints. */
15493 ops = &watchpoint_breakpoint_ops;
15494 *ops = base_breakpoint_ops;
15495 ops->re_set = re_set_watchpoint;
15496 ops->insert_location = insert_watchpoint;
15497 ops->remove_location = remove_watchpoint;
15498 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15499 ops->check_status = check_status_watchpoint;
15500 ops->resources_needed = resources_needed_watchpoint;
15501 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15502 ops->print_it = print_it_watchpoint;
15503 ops->print_mention = print_mention_watchpoint;
15504 ops->print_recreate = print_recreate_watchpoint;
15505 ops->explains_signal = explains_signal_watchpoint;
15506
15507 /* Masked watchpoints. */
15508 ops = &masked_watchpoint_breakpoint_ops;
15509 *ops = watchpoint_breakpoint_ops;
15510 ops->insert_location = insert_masked_watchpoint;
15511 ops->remove_location = remove_masked_watchpoint;
15512 ops->resources_needed = resources_needed_masked_watchpoint;
15513 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15514 ops->print_it = print_it_masked_watchpoint;
15515 ops->print_one_detail = print_one_detail_masked_watchpoint;
15516 ops->print_mention = print_mention_masked_watchpoint;
15517 ops->print_recreate = print_recreate_masked_watchpoint;
15518
15519 /* Tracepoints. */
15520 ops = &tracepoint_breakpoint_ops;
15521 *ops = base_breakpoint_ops;
15522 ops->re_set = tracepoint_re_set;
15523 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15524 ops->print_one_detail = tracepoint_print_one_detail;
15525 ops->print_mention = tracepoint_print_mention;
15526 ops->print_recreate = tracepoint_print_recreate;
15527 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15528 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15529 ops->decode_location = tracepoint_decode_location;
15530
15531 /* Probe tracepoints. */
15532 ops = &tracepoint_probe_breakpoint_ops;
15533 *ops = tracepoint_breakpoint_ops;
15534 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15535 ops->decode_location = tracepoint_probe_decode_location;
15536
15537 /* Static tracepoints with marker (`-m'). */
15538 ops = &strace_marker_breakpoint_ops;
15539 *ops = tracepoint_breakpoint_ops;
15540 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15541 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15542 ops->decode_location = strace_marker_decode_location;
15543
15544 /* Fork catchpoints. */
15545 ops = &catch_fork_breakpoint_ops;
15546 *ops = base_breakpoint_ops;
15547 ops->insert_location = insert_catch_fork;
15548 ops->remove_location = remove_catch_fork;
15549 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15550 ops->print_it = print_it_catch_fork;
15551 ops->print_one = print_one_catch_fork;
15552 ops->print_mention = print_mention_catch_fork;
15553 ops->print_recreate = print_recreate_catch_fork;
15554
15555 /* Vfork catchpoints. */
15556 ops = &catch_vfork_breakpoint_ops;
15557 *ops = base_breakpoint_ops;
15558 ops->insert_location = insert_catch_vfork;
15559 ops->remove_location = remove_catch_vfork;
15560 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15561 ops->print_it = print_it_catch_vfork;
15562 ops->print_one = print_one_catch_vfork;
15563 ops->print_mention = print_mention_catch_vfork;
15564 ops->print_recreate = print_recreate_catch_vfork;
15565
15566 /* Exec catchpoints. */
15567 ops = &catch_exec_breakpoint_ops;
15568 *ops = base_breakpoint_ops;
15569 ops->insert_location = insert_catch_exec;
15570 ops->remove_location = remove_catch_exec;
15571 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15572 ops->print_it = print_it_catch_exec;
15573 ops->print_one = print_one_catch_exec;
15574 ops->print_mention = print_mention_catch_exec;
15575 ops->print_recreate = print_recreate_catch_exec;
15576
15577 /* Solib-related catchpoints. */
15578 ops = &catch_solib_breakpoint_ops;
15579 *ops = base_breakpoint_ops;
15580 ops->insert_location = insert_catch_solib;
15581 ops->remove_location = remove_catch_solib;
15582 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15583 ops->check_status = check_status_catch_solib;
15584 ops->print_it = print_it_catch_solib;
15585 ops->print_one = print_one_catch_solib;
15586 ops->print_mention = print_mention_catch_solib;
15587 ops->print_recreate = print_recreate_catch_solib;
15588
15589 ops = &dprintf_breakpoint_ops;
15590 *ops = bkpt_base_breakpoint_ops;
15591 ops->re_set = dprintf_re_set;
15592 ops->resources_needed = bkpt_resources_needed;
15593 ops->print_it = bkpt_print_it;
15594 ops->print_mention = bkpt_print_mention;
15595 ops->print_recreate = dprintf_print_recreate;
15596 ops->after_condition_true = dprintf_after_condition_true;
15597 ops->breakpoint_hit = dprintf_breakpoint_hit;
15598 }
15599
15600 /* Chain containing all defined "enable breakpoint" subcommands. */
15601
15602 static struct cmd_list_element *enablebreaklist = NULL;
15603
15604 void
15605 _initialize_breakpoint (void)
15606 {
15607 struct cmd_list_element *c;
15608
15609 initialize_breakpoint_ops ();
15610
15611 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
15612 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
15613 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
15614
15615 breakpoint_objfile_key
15616 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
15617
15618 breakpoint_chain = 0;
15619 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15620 before a breakpoint is set. */
15621 breakpoint_count = 0;
15622
15623 tracepoint_count = 0;
15624
15625 add_com ("ignore", class_breakpoint, ignore_command, _("\
15626 Set ignore-count of breakpoint number N to COUNT.\n\
15627 Usage is `ignore N COUNT'."));
15628
15629 add_com ("commands", class_breakpoint, commands_command, _("\
15630 Set commands to be executed when the given breakpoints are hit.\n\
15631 Give a space-separated breakpoint list as argument after \"commands\".\n\
15632 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15633 (e.g. `5-7').\n\
15634 With no argument, the targeted breakpoint is the last one set.\n\
15635 The commands themselves follow starting on the next line.\n\
15636 Type a line containing \"end\" to indicate the end of them.\n\
15637 Give \"silent\" as the first line to make the breakpoint silent;\n\
15638 then no output is printed when it is hit, except what the commands print."));
15639
15640 c = add_com ("condition", class_breakpoint, condition_command, _("\
15641 Specify breakpoint number N to break only if COND is true.\n\
15642 Usage is `condition N COND', where N is an integer and COND is an\n\
15643 expression to be evaluated whenever breakpoint N is reached."));
15644 set_cmd_completer (c, condition_completer);
15645
15646 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15647 Set a temporary breakpoint.\n\
15648 Like \"break\" except the breakpoint is only temporary,\n\
15649 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15650 by using \"enable delete\" on the breakpoint number.\n\
15651 \n"
15652 BREAK_ARGS_HELP ("tbreak")));
15653 set_cmd_completer (c, location_completer);
15654
15655 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15656 Set a hardware assisted breakpoint.\n\
15657 Like \"break\" except the breakpoint requires hardware support,\n\
15658 some target hardware may not have this support.\n\
15659 \n"
15660 BREAK_ARGS_HELP ("hbreak")));
15661 set_cmd_completer (c, location_completer);
15662
15663 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15664 Set a temporary hardware assisted breakpoint.\n\
15665 Like \"hbreak\" except the breakpoint is only temporary,\n\
15666 so it will be deleted when hit.\n\
15667 \n"
15668 BREAK_ARGS_HELP ("thbreak")));
15669 set_cmd_completer (c, location_completer);
15670
15671 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15672 Enable some breakpoints.\n\
15673 Give breakpoint numbers (separated by spaces) as arguments.\n\
15674 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15675 This is used to cancel the effect of the \"disable\" command.\n\
15676 With a subcommand you can enable temporarily."),
15677 &enablelist, "enable ", 1, &cmdlist);
15678
15679 add_com_alias ("en", "enable", class_breakpoint, 1);
15680
15681 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15682 Enable some breakpoints.\n\
15683 Give breakpoint numbers (separated by spaces) as arguments.\n\
15684 This is used to cancel the effect of the \"disable\" command.\n\
15685 May be abbreviated to simply \"enable\".\n"),
15686 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15687
15688 add_cmd ("once", no_class, enable_once_command, _("\
15689 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15690 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15691 &enablebreaklist);
15692
15693 add_cmd ("delete", no_class, enable_delete_command, _("\
15694 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15695 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15696 &enablebreaklist);
15697
15698 add_cmd ("count", no_class, enable_count_command, _("\
15699 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15700 If a breakpoint is hit while enabled in this fashion,\n\
15701 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15702 &enablebreaklist);
15703
15704 add_cmd ("delete", no_class, enable_delete_command, _("\
15705 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15706 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15707 &enablelist);
15708
15709 add_cmd ("once", no_class, enable_once_command, _("\
15710 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15711 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15712 &enablelist);
15713
15714 add_cmd ("count", no_class, enable_count_command, _("\
15715 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15716 If a breakpoint is hit while enabled in this fashion,\n\
15717 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15718 &enablelist);
15719
15720 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15721 Disable some breakpoints.\n\
15722 Arguments are breakpoint numbers with spaces in between.\n\
15723 To disable all breakpoints, give no argument.\n\
15724 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15725 &disablelist, "disable ", 1, &cmdlist);
15726 add_com_alias ("dis", "disable", class_breakpoint, 1);
15727 add_com_alias ("disa", "disable", class_breakpoint, 1);
15728
15729 add_cmd ("breakpoints", class_alias, disable_command, _("\
15730 Disable some breakpoints.\n\
15731 Arguments are breakpoint numbers with spaces in between.\n\
15732 To disable all breakpoints, give no argument.\n\
15733 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15734 This command may be abbreviated \"disable\"."),
15735 &disablelist);
15736
15737 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15738 Delete some breakpoints or auto-display expressions.\n\
15739 Arguments are breakpoint numbers with spaces in between.\n\
15740 To delete all breakpoints, give no argument.\n\
15741 \n\
15742 Also a prefix command for deletion of other GDB objects.\n\
15743 The \"unset\" command is also an alias for \"delete\"."),
15744 &deletelist, "delete ", 1, &cmdlist);
15745 add_com_alias ("d", "delete", class_breakpoint, 1);
15746 add_com_alias ("del", "delete", class_breakpoint, 1);
15747
15748 add_cmd ("breakpoints", class_alias, delete_command, _("\
15749 Delete some breakpoints or auto-display expressions.\n\
15750 Arguments are breakpoint numbers with spaces in between.\n\
15751 To delete all breakpoints, give no argument.\n\
15752 This command may be abbreviated \"delete\"."),
15753 &deletelist);
15754
15755 add_com ("clear", class_breakpoint, clear_command, _("\
15756 Clear breakpoint at specified location.\n\
15757 Argument may be a linespec, explicit, or address location as described below.\n\
15758 \n\
15759 With no argument, clears all breakpoints in the line that the selected frame\n\
15760 is executing in.\n"
15761 "\n" LOCATION_HELP_STRING "\n\
15762 See also the \"delete\" command which clears breakpoints by number."));
15763 add_com_alias ("cl", "clear", class_breakpoint, 1);
15764
15765 c = add_com ("break", class_breakpoint, break_command, _("\
15766 Set breakpoint at specified location.\n"
15767 BREAK_ARGS_HELP ("break")));
15768 set_cmd_completer (c, location_completer);
15769
15770 add_com_alias ("b", "break", class_run, 1);
15771 add_com_alias ("br", "break", class_run, 1);
15772 add_com_alias ("bre", "break", class_run, 1);
15773 add_com_alias ("brea", "break", class_run, 1);
15774
15775 if (dbx_commands)
15776 {
15777 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15778 Break in function/address or break at a line in the current file."),
15779 &stoplist, "stop ", 1, &cmdlist);
15780 add_cmd ("in", class_breakpoint, stopin_command,
15781 _("Break in function or address."), &stoplist);
15782 add_cmd ("at", class_breakpoint, stopat_command,
15783 _("Break at a line in the current file."), &stoplist);
15784 add_com ("status", class_info, info_breakpoints_command, _("\
15785 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15786 The \"Type\" column indicates one of:\n\
15787 \tbreakpoint - normal breakpoint\n\
15788 \twatchpoint - watchpoint\n\
15789 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15790 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15791 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15792 address and file/line number respectively.\n\
15793 \n\
15794 Convenience variable \"$_\" and default examine address for \"x\"\n\
15795 are set to the address of the last breakpoint listed unless the command\n\
15796 is prefixed with \"server \".\n\n\
15797 Convenience variable \"$bpnum\" contains the number of the last\n\
15798 breakpoint set."));
15799 }
15800
15801 add_info ("breakpoints", info_breakpoints_command, _("\
15802 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15803 The \"Type\" column indicates one of:\n\
15804 \tbreakpoint - normal breakpoint\n\
15805 \twatchpoint - watchpoint\n\
15806 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15807 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15808 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15809 address and file/line number respectively.\n\
15810 \n\
15811 Convenience variable \"$_\" and default examine address for \"x\"\n\
15812 are set to the address of the last breakpoint listed unless the command\n\
15813 is prefixed with \"server \".\n\n\
15814 Convenience variable \"$bpnum\" contains the number of the last\n\
15815 breakpoint set."));
15816
15817 add_info_alias ("b", "breakpoints", 1);
15818
15819 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15820 Status of all breakpoints, or breakpoint number NUMBER.\n\
15821 The \"Type\" column indicates one of:\n\
15822 \tbreakpoint - normal breakpoint\n\
15823 \twatchpoint - watchpoint\n\
15824 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15825 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15826 \tuntil - internal breakpoint used by the \"until\" command\n\
15827 \tfinish - internal breakpoint used by the \"finish\" command\n\
15828 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15829 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15830 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15831 address and file/line number respectively.\n\
15832 \n\
15833 Convenience variable \"$_\" and default examine address for \"x\"\n\
15834 are set to the address of the last breakpoint listed unless the command\n\
15835 is prefixed with \"server \".\n\n\
15836 Convenience variable \"$bpnum\" contains the number of the last\n\
15837 breakpoint set."),
15838 &maintenanceinfolist);
15839
15840 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15841 Set catchpoints to catch events."),
15842 &catch_cmdlist, "catch ",
15843 0/*allow-unknown*/, &cmdlist);
15844
15845 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15846 Set temporary catchpoints to catch events."),
15847 &tcatch_cmdlist, "tcatch ",
15848 0/*allow-unknown*/, &cmdlist);
15849
15850 add_catch_command ("fork", _("Catch calls to fork."),
15851 catch_fork_command_1,
15852 NULL,
15853 (void *) (uintptr_t) catch_fork_permanent,
15854 (void *) (uintptr_t) catch_fork_temporary);
15855 add_catch_command ("vfork", _("Catch calls to vfork."),
15856 catch_fork_command_1,
15857 NULL,
15858 (void *) (uintptr_t) catch_vfork_permanent,
15859 (void *) (uintptr_t) catch_vfork_temporary);
15860 add_catch_command ("exec", _("Catch calls to exec."),
15861 catch_exec_command_1,
15862 NULL,
15863 CATCH_PERMANENT,
15864 CATCH_TEMPORARY);
15865 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15866 Usage: catch load [REGEX]\n\
15867 If REGEX is given, only stop for libraries matching the regular expression."),
15868 catch_load_command_1,
15869 NULL,
15870 CATCH_PERMANENT,
15871 CATCH_TEMPORARY);
15872 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15873 Usage: catch unload [REGEX]\n\
15874 If REGEX is given, only stop for libraries matching the regular expression."),
15875 catch_unload_command_1,
15876 NULL,
15877 CATCH_PERMANENT,
15878 CATCH_TEMPORARY);
15879
15880 c = add_com ("watch", class_breakpoint, watch_command, _("\
15881 Set a watchpoint for an expression.\n\
15882 Usage: watch [-l|-location] EXPRESSION\n\
15883 A watchpoint stops execution of your program whenever the value of\n\
15884 an expression changes.\n\
15885 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15886 the memory to which it refers."));
15887 set_cmd_completer (c, expression_completer);
15888
15889 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15890 Set a read watchpoint for an expression.\n\
15891 Usage: rwatch [-l|-location] EXPRESSION\n\
15892 A watchpoint stops execution of your program whenever the value of\n\
15893 an expression is read.\n\
15894 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15895 the memory to which it refers."));
15896 set_cmd_completer (c, expression_completer);
15897
15898 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15899 Set a watchpoint for an expression.\n\
15900 Usage: awatch [-l|-location] EXPRESSION\n\
15901 A watchpoint stops execution of your program whenever the value of\n\
15902 an expression is either read or written.\n\
15903 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15904 the memory to which it refers."));
15905 set_cmd_completer (c, expression_completer);
15906
15907 add_info ("watchpoints", info_watchpoints_command, _("\
15908 Status of specified watchpoints (all watchpoints if no argument)."));
15909
15910 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15911 respond to changes - contrary to the description. */
15912 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15913 &can_use_hw_watchpoints, _("\
15914 Set debugger's willingness to use watchpoint hardware."), _("\
15915 Show debugger's willingness to use watchpoint hardware."), _("\
15916 If zero, gdb will not use hardware for new watchpoints, even if\n\
15917 such is available. (However, any hardware watchpoints that were\n\
15918 created before setting this to nonzero, will continue to use watchpoint\n\
15919 hardware.)"),
15920 NULL,
15921 show_can_use_hw_watchpoints,
15922 &setlist, &showlist);
15923
15924 can_use_hw_watchpoints = 1;
15925
15926 /* Tracepoint manipulation commands. */
15927
15928 c = add_com ("trace", class_breakpoint, trace_command, _("\
15929 Set a tracepoint at specified location.\n\
15930 \n"
15931 BREAK_ARGS_HELP ("trace") "\n\
15932 Do \"help tracepoints\" for info on other tracepoint commands."));
15933 set_cmd_completer (c, location_completer);
15934
15935 add_com_alias ("tp", "trace", class_alias, 0);
15936 add_com_alias ("tr", "trace", class_alias, 1);
15937 add_com_alias ("tra", "trace", class_alias, 1);
15938 add_com_alias ("trac", "trace", class_alias, 1);
15939
15940 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15941 Set a fast tracepoint at specified location.\n\
15942 \n"
15943 BREAK_ARGS_HELP ("ftrace") "\n\
15944 Do \"help tracepoints\" for info on other tracepoint commands."));
15945 set_cmd_completer (c, location_completer);
15946
15947 c = add_com ("strace", class_breakpoint, strace_command, _("\
15948 Set a static tracepoint at location or marker.\n\
15949 \n\
15950 strace [LOCATION] [if CONDITION]\n\
15951 LOCATION may be a linespec, explicit, or address location (described below) \n\
15952 or -m MARKER_ID.\n\n\
15953 If a marker id is specified, probe the marker with that name. With\n\
15954 no LOCATION, uses current execution address of the selected stack frame.\n\
15955 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15956 This collects arbitrary user data passed in the probe point call to the\n\
15957 tracing library. You can inspect it when analyzing the trace buffer,\n\
15958 by printing the $_sdata variable like any other convenience variable.\n\
15959 \n\
15960 CONDITION is a boolean expression.\n\
15961 \n" LOCATION_HELP_STRING "\n\
15962 Multiple tracepoints at one place are permitted, and useful if their\n\
15963 conditions are different.\n\
15964 \n\
15965 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15966 Do \"help tracepoints\" for info on other tracepoint commands."));
15967 set_cmd_completer (c, location_completer);
15968
15969 add_info ("tracepoints", info_tracepoints_command, _("\
15970 Status of specified tracepoints (all tracepoints if no argument).\n\
15971 Convenience variable \"$tpnum\" contains the number of the\n\
15972 last tracepoint set."));
15973
15974 add_info_alias ("tp", "tracepoints", 1);
15975
15976 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15977 Delete specified tracepoints.\n\
15978 Arguments are tracepoint numbers, separated by spaces.\n\
15979 No argument means delete all tracepoints."),
15980 &deletelist);
15981 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15982
15983 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15984 Disable specified tracepoints.\n\
15985 Arguments are tracepoint numbers, separated by spaces.\n\
15986 No argument means disable all tracepoints."),
15987 &disablelist);
15988 deprecate_cmd (c, "disable");
15989
15990 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15991 Enable specified tracepoints.\n\
15992 Arguments are tracepoint numbers, separated by spaces.\n\
15993 No argument means enable all tracepoints."),
15994 &enablelist);
15995 deprecate_cmd (c, "enable");
15996
15997 add_com ("passcount", class_trace, trace_pass_command, _("\
15998 Set the passcount for a tracepoint.\n\
15999 The trace will end when the tracepoint has been passed 'count' times.\n\
16000 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16001 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16002
16003 add_prefix_cmd ("save", class_breakpoint, save_command,
16004 _("Save breakpoint definitions as a script."),
16005 &save_cmdlist, "save ",
16006 0/*allow-unknown*/, &cmdlist);
16007
16008 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16009 Save current breakpoint definitions as a script.\n\
16010 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16011 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16012 session to restore them."),
16013 &save_cmdlist);
16014 set_cmd_completer (c, filename_completer);
16015
16016 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16017 Save current tracepoint definitions as a script.\n\
16018 Use the 'source' command in another debug session to restore them."),
16019 &save_cmdlist);
16020 set_cmd_completer (c, filename_completer);
16021
16022 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16023 deprecate_cmd (c, "save tracepoints");
16024
16025 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16026 Breakpoint specific settings\n\
16027 Configure various breakpoint-specific variables such as\n\
16028 pending breakpoint behavior"),
16029 &breakpoint_set_cmdlist, "set breakpoint ",
16030 0/*allow-unknown*/, &setlist);
16031 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16032 Breakpoint specific settings\n\
16033 Configure various breakpoint-specific variables such as\n\
16034 pending breakpoint behavior"),
16035 &breakpoint_show_cmdlist, "show breakpoint ",
16036 0/*allow-unknown*/, &showlist);
16037
16038 add_setshow_auto_boolean_cmd ("pending", no_class,
16039 &pending_break_support, _("\
16040 Set debugger's behavior regarding pending breakpoints."), _("\
16041 Show debugger's behavior regarding pending breakpoints."), _("\
16042 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16043 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16044 an error. If auto, an unrecognized breakpoint location results in a\n\
16045 user-query to see if a pending breakpoint should be created."),
16046 NULL,
16047 show_pending_break_support,
16048 &breakpoint_set_cmdlist,
16049 &breakpoint_show_cmdlist);
16050
16051 pending_break_support = AUTO_BOOLEAN_AUTO;
16052
16053 add_setshow_boolean_cmd ("auto-hw", no_class,
16054 &automatic_hardware_breakpoints, _("\
16055 Set automatic usage of hardware breakpoints."), _("\
16056 Show automatic usage of hardware breakpoints."), _("\
16057 If set, the debugger will automatically use hardware breakpoints for\n\
16058 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16059 a warning will be emitted for such breakpoints."),
16060 NULL,
16061 show_automatic_hardware_breakpoints,
16062 &breakpoint_set_cmdlist,
16063 &breakpoint_show_cmdlist);
16064
16065 add_setshow_boolean_cmd ("always-inserted", class_support,
16066 &always_inserted_mode, _("\
16067 Set mode for inserting breakpoints."), _("\
16068 Show mode for inserting breakpoints."), _("\
16069 When this mode is on, breakpoints are inserted immediately as soon as\n\
16070 they're created, kept inserted even when execution stops, and removed\n\
16071 only when the user deletes them. When this mode is off (the default),\n\
16072 breakpoints are inserted only when execution continues, and removed\n\
16073 when execution stops."),
16074 NULL,
16075 &show_always_inserted_mode,
16076 &breakpoint_set_cmdlist,
16077 &breakpoint_show_cmdlist);
16078
16079 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16080 condition_evaluation_enums,
16081 &condition_evaluation_mode_1, _("\
16082 Set mode of breakpoint condition evaluation."), _("\
16083 Show mode of breakpoint condition evaluation."), _("\
16084 When this is set to \"host\", breakpoint conditions will be\n\
16085 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16086 breakpoint conditions will be downloaded to the target (if the target\n\
16087 supports such feature) and conditions will be evaluated on the target's side.\n\
16088 If this is set to \"auto\" (default), this will be automatically set to\n\
16089 \"target\" if it supports condition evaluation, otherwise it will\n\
16090 be set to \"gdb\""),
16091 &set_condition_evaluation_mode,
16092 &show_condition_evaluation_mode,
16093 &breakpoint_set_cmdlist,
16094 &breakpoint_show_cmdlist);
16095
16096 add_com ("break-range", class_breakpoint, break_range_command, _("\
16097 Set a breakpoint for an address range.\n\
16098 break-range START-LOCATION, END-LOCATION\n\
16099 where START-LOCATION and END-LOCATION can be one of the following:\n\
16100 LINENUM, for that line in the current file,\n\
16101 FILE:LINENUM, for that line in that file,\n\
16102 +OFFSET, for that number of lines after the current line\n\
16103 or the start of the range\n\
16104 FUNCTION, for the first line in that function,\n\
16105 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16106 *ADDRESS, for the instruction at that address.\n\
16107 \n\
16108 The breakpoint will stop execution of the inferior whenever it executes\n\
16109 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16110 range (including START-LOCATION and END-LOCATION)."));
16111
16112 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16113 Set a dynamic printf at specified location.\n\
16114 dprintf location,format string,arg1,arg2,...\n\
16115 location may be a linespec, explicit, or address location.\n"
16116 "\n" LOCATION_HELP_STRING));
16117 set_cmd_completer (c, location_completer);
16118
16119 add_setshow_enum_cmd ("dprintf-style", class_support,
16120 dprintf_style_enums, &dprintf_style, _("\
16121 Set the style of usage for dynamic printf."), _("\
16122 Show the style of usage for dynamic printf."), _("\
16123 This setting chooses how GDB will do a dynamic printf.\n\
16124 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16125 console, as with the \"printf\" command.\n\
16126 If the value is \"call\", the print is done by calling a function in your\n\
16127 program; by default printf(), but you can choose a different function or\n\
16128 output stream by setting dprintf-function and dprintf-channel."),
16129 update_dprintf_commands, NULL,
16130 &setlist, &showlist);
16131
16132 dprintf_function = xstrdup ("printf");
16133 add_setshow_string_cmd ("dprintf-function", class_support,
16134 &dprintf_function, _("\
16135 Set the function to use for dynamic printf"), _("\
16136 Show the function to use for dynamic printf"), NULL,
16137 update_dprintf_commands, NULL,
16138 &setlist, &showlist);
16139
16140 dprintf_channel = xstrdup ("");
16141 add_setshow_string_cmd ("dprintf-channel", class_support,
16142 &dprintf_channel, _("\
16143 Set the channel to use for dynamic printf"), _("\
16144 Show the channel to use for dynamic printf"), NULL,
16145 update_dprintf_commands, NULL,
16146 &setlist, &showlist);
16147
16148 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16149 &disconnected_dprintf, _("\
16150 Set whether dprintf continues after GDB disconnects."), _("\
16151 Show whether dprintf continues after GDB disconnects."), _("\
16152 Use this to let dprintf commands continue to hit and produce output\n\
16153 even if GDB disconnects or detaches from the target."),
16154 NULL,
16155 NULL,
16156 &setlist, &showlist);
16157
16158 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16159 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16160 (target agent only) This is useful for formatted output in user-defined commands."));
16161
16162 automatic_hardware_breakpoints = 1;
16163
16164 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16165 observer_attach_thread_exit (remove_threaded_breakpoints);
16166 }
This page took 0.3829 seconds and 4 git commands to generate.