btrace: Remove struct btrace_thread_info::{begin,end}.
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "block.h"
51 #include "solib.h"
52 #include "solist.h"
53 #include "observer.h"
54 #include "memattr.h"
55 #include "ada-lang.h"
56 #include "top.h"
57 #include "valprint.h"
58 #include "jit.h"
59 #include "parser-defs.h"
60 #include "gdb_regex.h"
61 #include "probe.h"
62 #include "cli/cli-utils.h"
63 #include "continuations.h"
64 #include "stack.h"
65 #include "skip.h"
66 #include "ax-gdb.h"
67 #include "dummy-frame.h"
68 #include "interps.h"
69 #include "format.h"
70 #include "thread-fsm.h"
71 #include "tid-parse.h"
72
73 /* readline include files */
74 #include "readline/readline.h"
75 #include "readline/history.h"
76
77 /* readline defines this. */
78 #undef savestring
79
80 #include "mi/mi-common.h"
81 #include "extension.h"
82 #include <algorithm>
83 #include "progspace-and-thread.h"
84
85 /* Enums for exception-handling support. */
86 enum exception_event_kind
87 {
88 EX_EVENT_THROW,
89 EX_EVENT_RETHROW,
90 EX_EVENT_CATCH
91 };
92
93 /* Prototypes for local functions. */
94
95 static void enable_delete_command (char *, int);
96
97 static void enable_once_command (char *, int);
98
99 static void enable_count_command (char *, int);
100
101 static void disable_command (char *, int);
102
103 static void enable_command (char *, int);
104
105 static void map_breakpoint_numbers (const char *,
106 void (*) (struct breakpoint *,
107 void *),
108 void *);
109
110 static void ignore_command (char *, int);
111
112 static int breakpoint_re_set_one (void *);
113
114 static void breakpoint_re_set_default (struct breakpoint *);
115
116 static void
117 create_sals_from_location_default (const struct event_location *location,
118 struct linespec_result *canonical,
119 enum bptype type_wanted);
120
121 static void create_breakpoints_sal_default (struct gdbarch *,
122 struct linespec_result *,
123 char *, char *, enum bptype,
124 enum bpdisp, int, int,
125 int,
126 const struct breakpoint_ops *,
127 int, int, int, unsigned);
128
129 static void decode_location_default (struct breakpoint *b,
130 const struct event_location *location,
131 struct program_space *search_pspace,
132 struct symtabs_and_lines *sals);
133
134 static void clear_command (char *, int);
135
136 static void catch_command (char *, int);
137
138 static int can_use_hardware_watchpoint (struct value *);
139
140 static void break_command_1 (char *, int, int);
141
142 static void mention (struct breakpoint *);
143
144 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
145 enum bptype,
146 const struct breakpoint_ops *);
147 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
148 const struct symtab_and_line *);
149
150 /* This function is used in gdbtk sources and thus can not be made
151 static. */
152 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
153 struct symtab_and_line,
154 enum bptype,
155 const struct breakpoint_ops *);
156
157 static struct breakpoint *
158 momentary_breakpoint_from_master (struct breakpoint *orig,
159 enum bptype type,
160 const struct breakpoint_ops *ops,
161 int loc_enabled);
162
163 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
164
165 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
166 CORE_ADDR bpaddr,
167 enum bptype bptype);
168
169 static void describe_other_breakpoints (struct gdbarch *,
170 struct program_space *, CORE_ADDR,
171 struct obj_section *, int);
172
173 static int watchpoint_locations_match (struct bp_location *loc1,
174 struct bp_location *loc2);
175
176 static int breakpoint_location_address_match (struct bp_location *bl,
177 struct address_space *aspace,
178 CORE_ADDR addr);
179
180 static int breakpoint_location_address_range_overlap (struct bp_location *,
181 struct address_space *,
182 CORE_ADDR, int);
183
184 static void breakpoints_info (char *, int);
185
186 static void watchpoints_info (char *, int);
187
188 static int breakpoint_1 (char *, int,
189 int (*) (const struct breakpoint *));
190
191 static int breakpoint_cond_eval (void *);
192
193 static void cleanup_executing_breakpoints (void *);
194
195 static void commands_command (char *, int);
196
197 static void condition_command (char *, int);
198
199 static int remove_breakpoint (struct bp_location *);
200 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
201
202 static enum print_stop_action print_bp_stop_message (bpstat bs);
203
204 static int watchpoint_check (void *);
205
206 static void maintenance_info_breakpoints (char *, int);
207
208 static int hw_breakpoint_used_count (void);
209
210 static int hw_watchpoint_use_count (struct breakpoint *);
211
212 static int hw_watchpoint_used_count_others (struct breakpoint *except,
213 enum bptype type,
214 int *other_type_used);
215
216 static void hbreak_command (char *, int);
217
218 static void thbreak_command (char *, int);
219
220 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
221 int count);
222
223 static void stop_command (char *arg, int from_tty);
224
225 static void stopin_command (char *arg, int from_tty);
226
227 static void stopat_command (char *arg, int from_tty);
228
229 static void tcatch_command (char *arg, int from_tty);
230
231 static void free_bp_location (struct bp_location *loc);
232 static void incref_bp_location (struct bp_location *loc);
233 static void decref_bp_location (struct bp_location **loc);
234
235 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
236
237 /* update_global_location_list's modes of operation wrt to whether to
238 insert locations now. */
239 enum ugll_insert_mode
240 {
241 /* Don't insert any breakpoint locations into the inferior, only
242 remove already-inserted locations that no longer should be
243 inserted. Functions that delete a breakpoint or breakpoints
244 should specify this mode, so that deleting a breakpoint doesn't
245 have the side effect of inserting the locations of other
246 breakpoints that are marked not-inserted, but should_be_inserted
247 returns true on them.
248
249 This behavior is useful is situations close to tear-down -- e.g.,
250 after an exec, while the target still has execution, but
251 breakpoint shadows of the previous executable image should *NOT*
252 be restored to the new image; or before detaching, where the
253 target still has execution and wants to delete breakpoints from
254 GDB's lists, and all breakpoints had already been removed from
255 the inferior. */
256 UGLL_DONT_INSERT,
257
258 /* May insert breakpoints iff breakpoints_should_be_inserted_now
259 claims breakpoints should be inserted now. */
260 UGLL_MAY_INSERT,
261
262 /* Insert locations now, irrespective of
263 breakpoints_should_be_inserted_now. E.g., say all threads are
264 stopped right now, and the user did "continue". We need to
265 insert breakpoints _before_ resuming the target, but
266 UGLL_MAY_INSERT wouldn't insert them, because
267 breakpoints_should_be_inserted_now returns false at that point,
268 as no thread is running yet. */
269 UGLL_INSERT
270 };
271
272 static void update_global_location_list (enum ugll_insert_mode);
273
274 static void update_global_location_list_nothrow (enum ugll_insert_mode);
275
276 static int is_hardware_watchpoint (const struct breakpoint *bpt);
277
278 static void insert_breakpoint_locations (void);
279
280 static void tracepoints_info (char *, int);
281
282 static void delete_trace_command (char *, int);
283
284 static void enable_trace_command (char *, int);
285
286 static void disable_trace_command (char *, int);
287
288 static void trace_pass_command (char *, int);
289
290 static void set_tracepoint_count (int num);
291
292 static int is_masked_watchpoint (const struct breakpoint *b);
293
294 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
295
296 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
297 otherwise. */
298
299 static int strace_marker_p (struct breakpoint *b);
300
301 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
302 that are implemented on top of software or hardware breakpoints
303 (user breakpoints, internal and momentary breakpoints, etc.). */
304 static struct breakpoint_ops bkpt_base_breakpoint_ops;
305
306 /* Internal breakpoints class type. */
307 static struct breakpoint_ops internal_breakpoint_ops;
308
309 /* Momentary breakpoints class type. */
310 static struct breakpoint_ops momentary_breakpoint_ops;
311
312 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
313 static struct breakpoint_ops longjmp_breakpoint_ops;
314
315 /* The breakpoint_ops structure to be used in regular user created
316 breakpoints. */
317 struct breakpoint_ops bkpt_breakpoint_ops;
318
319 /* Breakpoints set on probes. */
320 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
321
322 /* Dynamic printf class type. */
323 struct breakpoint_ops dprintf_breakpoint_ops;
324
325 /* The style in which to perform a dynamic printf. This is a user
326 option because different output options have different tradeoffs;
327 if GDB does the printing, there is better error handling if there
328 is a problem with any of the arguments, but using an inferior
329 function lets you have special-purpose printers and sending of
330 output to the same place as compiled-in print functions. */
331
332 static const char dprintf_style_gdb[] = "gdb";
333 static const char dprintf_style_call[] = "call";
334 static const char dprintf_style_agent[] = "agent";
335 static const char *const dprintf_style_enums[] = {
336 dprintf_style_gdb,
337 dprintf_style_call,
338 dprintf_style_agent,
339 NULL
340 };
341 static const char *dprintf_style = dprintf_style_gdb;
342
343 /* The function to use for dynamic printf if the preferred style is to
344 call into the inferior. The value is simply a string that is
345 copied into the command, so it can be anything that GDB can
346 evaluate to a callable address, not necessarily a function name. */
347
348 static char *dprintf_function;
349
350 /* The channel to use for dynamic printf if the preferred style is to
351 call into the inferior; if a nonempty string, it will be passed to
352 the call as the first argument, with the format string as the
353 second. As with the dprintf function, this can be anything that
354 GDB knows how to evaluate, so in addition to common choices like
355 "stderr", this could be an app-specific expression like
356 "mystreams[curlogger]". */
357
358 static char *dprintf_channel;
359
360 /* True if dprintf commands should continue to operate even if GDB
361 has disconnected. */
362 static int disconnected_dprintf = 1;
363
364 /* A reference-counted struct command_line. This lets multiple
365 breakpoints share a single command list. */
366 struct counted_command_line
367 {
368 /* The reference count. */
369 int refc;
370
371 /* The command list. */
372 struct command_line *commands;
373 };
374
375 struct command_line *
376 breakpoint_commands (struct breakpoint *b)
377 {
378 return b->commands ? b->commands->commands : NULL;
379 }
380
381 /* Flag indicating that a command has proceeded the inferior past the
382 current breakpoint. */
383
384 static int breakpoint_proceeded;
385
386 const char *
387 bpdisp_text (enum bpdisp disp)
388 {
389 /* NOTE: the following values are a part of MI protocol and
390 represent values of 'disp' field returned when inferior stops at
391 a breakpoint. */
392 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
393
394 return bpdisps[(int) disp];
395 }
396
397 /* Prototypes for exported functions. */
398 /* If FALSE, gdb will not use hardware support for watchpoints, even
399 if such is available. */
400 static int can_use_hw_watchpoints;
401
402 static void
403 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
404 struct cmd_list_element *c,
405 const char *value)
406 {
407 fprintf_filtered (file,
408 _("Debugger's willingness to use "
409 "watchpoint hardware is %s.\n"),
410 value);
411 }
412
413 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
414 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
415 for unrecognized breakpoint locations.
416 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
417 static enum auto_boolean pending_break_support;
418 static void
419 show_pending_break_support (struct ui_file *file, int from_tty,
420 struct cmd_list_element *c,
421 const char *value)
422 {
423 fprintf_filtered (file,
424 _("Debugger's behavior regarding "
425 "pending breakpoints is %s.\n"),
426 value);
427 }
428
429 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
430 set with "break" but falling in read-only memory.
431 If 0, gdb will warn about such breakpoints, but won't automatically
432 use hardware breakpoints. */
433 static int automatic_hardware_breakpoints;
434 static void
435 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
436 struct cmd_list_element *c,
437 const char *value)
438 {
439 fprintf_filtered (file,
440 _("Automatic usage of hardware breakpoints is %s.\n"),
441 value);
442 }
443
444 /* If on, GDB keeps breakpoints inserted even if the inferior is
445 stopped, and immediately inserts any new breakpoints as soon as
446 they're created. If off (default), GDB keeps breakpoints off of
447 the target as long as possible. That is, it delays inserting
448 breakpoints until the next resume, and removes them again when the
449 target fully stops. This is a bit safer in case GDB crashes while
450 processing user input. */
451 static int always_inserted_mode = 0;
452
453 static void
454 show_always_inserted_mode (struct ui_file *file, int from_tty,
455 struct cmd_list_element *c, const char *value)
456 {
457 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
458 value);
459 }
460
461 /* See breakpoint.h. */
462
463 int
464 breakpoints_should_be_inserted_now (void)
465 {
466 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
467 {
468 /* If breakpoints are global, they should be inserted even if no
469 thread under gdb's control is running, or even if there are
470 no threads under GDB's control yet. */
471 return 1;
472 }
473 else if (target_has_execution)
474 {
475 struct thread_info *tp;
476
477 if (always_inserted_mode)
478 {
479 /* The user wants breakpoints inserted even if all threads
480 are stopped. */
481 return 1;
482 }
483
484 if (threads_are_executing ())
485 return 1;
486
487 /* Don't remove breakpoints yet if, even though all threads are
488 stopped, we still have events to process. */
489 ALL_NON_EXITED_THREADS (tp)
490 if (tp->resumed
491 && tp->suspend.waitstatus_pending_p)
492 return 1;
493 }
494 return 0;
495 }
496
497 static const char condition_evaluation_both[] = "host or target";
498
499 /* Modes for breakpoint condition evaluation. */
500 static const char condition_evaluation_auto[] = "auto";
501 static const char condition_evaluation_host[] = "host";
502 static const char condition_evaluation_target[] = "target";
503 static const char *const condition_evaluation_enums[] = {
504 condition_evaluation_auto,
505 condition_evaluation_host,
506 condition_evaluation_target,
507 NULL
508 };
509
510 /* Global that holds the current mode for breakpoint condition evaluation. */
511 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
512
513 /* Global that we use to display information to the user (gets its value from
514 condition_evaluation_mode_1. */
515 static const char *condition_evaluation_mode = condition_evaluation_auto;
516
517 /* Translate a condition evaluation mode MODE into either "host"
518 or "target". This is used mostly to translate from "auto" to the
519 real setting that is being used. It returns the translated
520 evaluation mode. */
521
522 static const char *
523 translate_condition_evaluation_mode (const char *mode)
524 {
525 if (mode == condition_evaluation_auto)
526 {
527 if (target_supports_evaluation_of_breakpoint_conditions ())
528 return condition_evaluation_target;
529 else
530 return condition_evaluation_host;
531 }
532 else
533 return mode;
534 }
535
536 /* Discovers what condition_evaluation_auto translates to. */
537
538 static const char *
539 breakpoint_condition_evaluation_mode (void)
540 {
541 return translate_condition_evaluation_mode (condition_evaluation_mode);
542 }
543
544 /* Return true if GDB should evaluate breakpoint conditions or false
545 otherwise. */
546
547 static int
548 gdb_evaluates_breakpoint_condition_p (void)
549 {
550 const char *mode = breakpoint_condition_evaluation_mode ();
551
552 return (mode == condition_evaluation_host);
553 }
554
555 void _initialize_breakpoint (void);
556
557 /* Are we executing breakpoint commands? */
558 static int executing_breakpoint_commands;
559
560 /* Are overlay event breakpoints enabled? */
561 static int overlay_events_enabled;
562
563 /* See description in breakpoint.h. */
564 int target_exact_watchpoints = 0;
565
566 /* Walk the following statement or block through all breakpoints.
567 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
568 current breakpoint. */
569
570 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
571
572 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
573 for (B = breakpoint_chain; \
574 B ? (TMP=B->next, 1): 0; \
575 B = TMP)
576
577 /* Similar iterator for the low-level breakpoints. SAFE variant is
578 not provided so update_global_location_list must not be called
579 while executing the block of ALL_BP_LOCATIONS. */
580
581 #define ALL_BP_LOCATIONS(B,BP_TMP) \
582 for (BP_TMP = bp_locations; \
583 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
584 BP_TMP++)
585
586 /* Iterates through locations with address ADDRESS for the currently selected
587 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
588 to where the loop should start from.
589 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
590 appropriate location to start with. */
591
592 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
593 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
594 BP_LOCP_TMP = BP_LOCP_START; \
595 BP_LOCP_START \
596 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
597 && (*BP_LOCP_TMP)->address == ADDRESS); \
598 BP_LOCP_TMP++)
599
600 /* Iterator for tracepoints only. */
601
602 #define ALL_TRACEPOINTS(B) \
603 for (B = breakpoint_chain; B; B = B->next) \
604 if (is_tracepoint (B))
605
606 /* Chains of all breakpoints defined. */
607
608 struct breakpoint *breakpoint_chain;
609
610 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
611
612 static struct bp_location **bp_locations;
613
614 /* Number of elements of BP_LOCATIONS. */
615
616 static unsigned bp_locations_count;
617
618 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
619 ADDRESS for the current elements of BP_LOCATIONS which get a valid
620 result from bp_location_has_shadow. You can use it for roughly
621 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
622 an address you need to read. */
623
624 static CORE_ADDR bp_locations_placed_address_before_address_max;
625
626 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
627 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
628 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
629 You can use it for roughly limiting the subrange of BP_LOCATIONS to
630 scan for shadow bytes for an address you need to read. */
631
632 static CORE_ADDR bp_locations_shadow_len_after_address_max;
633
634 /* The locations that no longer correspond to any breakpoint, unlinked
635 from the bp_locations array, but for which a hit may still be
636 reported by a target. */
637 VEC(bp_location_p) *moribund_locations = NULL;
638
639 /* Number of last breakpoint made. */
640
641 static int breakpoint_count;
642
643 /* The value of `breakpoint_count' before the last command that
644 created breakpoints. If the last (break-like) command created more
645 than one breakpoint, then the difference between BREAKPOINT_COUNT
646 and PREV_BREAKPOINT_COUNT is more than one. */
647 static int prev_breakpoint_count;
648
649 /* Number of last tracepoint made. */
650
651 static int tracepoint_count;
652
653 static struct cmd_list_element *breakpoint_set_cmdlist;
654 static struct cmd_list_element *breakpoint_show_cmdlist;
655 struct cmd_list_element *save_cmdlist;
656
657 /* See declaration at breakpoint.h. */
658
659 struct breakpoint *
660 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
661 void *user_data)
662 {
663 struct breakpoint *b = NULL;
664
665 ALL_BREAKPOINTS (b)
666 {
667 if (func (b, user_data) != 0)
668 break;
669 }
670
671 return b;
672 }
673
674 /* Return whether a breakpoint is an active enabled breakpoint. */
675 static int
676 breakpoint_enabled (struct breakpoint *b)
677 {
678 return (b->enable_state == bp_enabled);
679 }
680
681 /* Set breakpoint count to NUM. */
682
683 static void
684 set_breakpoint_count (int num)
685 {
686 prev_breakpoint_count = breakpoint_count;
687 breakpoint_count = num;
688 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
689 }
690
691 /* Used by `start_rbreak_breakpoints' below, to record the current
692 breakpoint count before "rbreak" creates any breakpoint. */
693 static int rbreak_start_breakpoint_count;
694
695 /* Called at the start an "rbreak" command to record the first
696 breakpoint made. */
697
698 void
699 start_rbreak_breakpoints (void)
700 {
701 rbreak_start_breakpoint_count = breakpoint_count;
702 }
703
704 /* Called at the end of an "rbreak" command to record the last
705 breakpoint made. */
706
707 void
708 end_rbreak_breakpoints (void)
709 {
710 prev_breakpoint_count = rbreak_start_breakpoint_count;
711 }
712
713 /* Used in run_command to zero the hit count when a new run starts. */
714
715 void
716 clear_breakpoint_hit_counts (void)
717 {
718 struct breakpoint *b;
719
720 ALL_BREAKPOINTS (b)
721 b->hit_count = 0;
722 }
723
724 /* Allocate a new counted_command_line with reference count of 1.
725 The new structure owns COMMANDS. */
726
727 static struct counted_command_line *
728 alloc_counted_command_line (struct command_line *commands)
729 {
730 struct counted_command_line *result = XNEW (struct counted_command_line);
731
732 result->refc = 1;
733 result->commands = commands;
734
735 return result;
736 }
737
738 /* Increment reference count. This does nothing if CMD is NULL. */
739
740 static void
741 incref_counted_command_line (struct counted_command_line *cmd)
742 {
743 if (cmd)
744 ++cmd->refc;
745 }
746
747 /* Decrement reference count. If the reference count reaches 0,
748 destroy the counted_command_line. Sets *CMDP to NULL. This does
749 nothing if *CMDP is NULL. */
750
751 static void
752 decref_counted_command_line (struct counted_command_line **cmdp)
753 {
754 if (*cmdp)
755 {
756 if (--(*cmdp)->refc == 0)
757 {
758 free_command_lines (&(*cmdp)->commands);
759 xfree (*cmdp);
760 }
761 *cmdp = NULL;
762 }
763 }
764
765 /* A cleanup function that calls decref_counted_command_line. */
766
767 static void
768 do_cleanup_counted_command_line (void *arg)
769 {
770 decref_counted_command_line ((struct counted_command_line **) arg);
771 }
772
773 /* Create a cleanup that calls decref_counted_command_line on the
774 argument. */
775
776 static struct cleanup *
777 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
778 {
779 return make_cleanup (do_cleanup_counted_command_line, cmdp);
780 }
781
782 \f
783 /* Return the breakpoint with the specified number, or NULL
784 if the number does not refer to an existing breakpoint. */
785
786 struct breakpoint *
787 get_breakpoint (int num)
788 {
789 struct breakpoint *b;
790
791 ALL_BREAKPOINTS (b)
792 if (b->number == num)
793 return b;
794
795 return NULL;
796 }
797
798 \f
799
800 /* Mark locations as "conditions have changed" in case the target supports
801 evaluating conditions on its side. */
802
803 static void
804 mark_breakpoint_modified (struct breakpoint *b)
805 {
806 struct bp_location *loc;
807
808 /* This is only meaningful if the target is
809 evaluating conditions and if the user has
810 opted for condition evaluation on the target's
811 side. */
812 if (gdb_evaluates_breakpoint_condition_p ()
813 || !target_supports_evaluation_of_breakpoint_conditions ())
814 return;
815
816 if (!is_breakpoint (b))
817 return;
818
819 for (loc = b->loc; loc; loc = loc->next)
820 loc->condition_changed = condition_modified;
821 }
822
823 /* Mark location as "conditions have changed" in case the target supports
824 evaluating conditions on its side. */
825
826 static void
827 mark_breakpoint_location_modified (struct bp_location *loc)
828 {
829 /* This is only meaningful if the target is
830 evaluating conditions and if the user has
831 opted for condition evaluation on the target's
832 side. */
833 if (gdb_evaluates_breakpoint_condition_p ()
834 || !target_supports_evaluation_of_breakpoint_conditions ())
835
836 return;
837
838 if (!is_breakpoint (loc->owner))
839 return;
840
841 loc->condition_changed = condition_modified;
842 }
843
844 /* Sets the condition-evaluation mode using the static global
845 condition_evaluation_mode. */
846
847 static void
848 set_condition_evaluation_mode (char *args, int from_tty,
849 struct cmd_list_element *c)
850 {
851 const char *old_mode, *new_mode;
852
853 if ((condition_evaluation_mode_1 == condition_evaluation_target)
854 && !target_supports_evaluation_of_breakpoint_conditions ())
855 {
856 condition_evaluation_mode_1 = condition_evaluation_mode;
857 warning (_("Target does not support breakpoint condition evaluation.\n"
858 "Using host evaluation mode instead."));
859 return;
860 }
861
862 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
863 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
864
865 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
866 settings was "auto". */
867 condition_evaluation_mode = condition_evaluation_mode_1;
868
869 /* Only update the mode if the user picked a different one. */
870 if (new_mode != old_mode)
871 {
872 struct bp_location *loc, **loc_tmp;
873 /* If the user switched to a different evaluation mode, we
874 need to synch the changes with the target as follows:
875
876 "host" -> "target": Send all (valid) conditions to the target.
877 "target" -> "host": Remove all the conditions from the target.
878 */
879
880 if (new_mode == condition_evaluation_target)
881 {
882 /* Mark everything modified and synch conditions with the
883 target. */
884 ALL_BP_LOCATIONS (loc, loc_tmp)
885 mark_breakpoint_location_modified (loc);
886 }
887 else
888 {
889 /* Manually mark non-duplicate locations to synch conditions
890 with the target. We do this to remove all the conditions the
891 target knows about. */
892 ALL_BP_LOCATIONS (loc, loc_tmp)
893 if (is_breakpoint (loc->owner) && loc->inserted)
894 loc->needs_update = 1;
895 }
896
897 /* Do the update. */
898 update_global_location_list (UGLL_MAY_INSERT);
899 }
900
901 return;
902 }
903
904 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
905 what "auto" is translating to. */
906
907 static void
908 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
909 struct cmd_list_element *c, const char *value)
910 {
911 if (condition_evaluation_mode == condition_evaluation_auto)
912 fprintf_filtered (file,
913 _("Breakpoint condition evaluation "
914 "mode is %s (currently %s).\n"),
915 value,
916 breakpoint_condition_evaluation_mode ());
917 else
918 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
919 value);
920 }
921
922 /* A comparison function for bp_location AP and BP that is used by
923 bsearch. This comparison function only cares about addresses, unlike
924 the more general bp_locations_compare function. */
925
926 static int
927 bp_locations_compare_addrs (const void *ap, const void *bp)
928 {
929 const struct bp_location *a = *(const struct bp_location **) ap;
930 const struct bp_location *b = *(const struct bp_location **) bp;
931
932 if (a->address == b->address)
933 return 0;
934 else
935 return ((a->address > b->address) - (a->address < b->address));
936 }
937
938 /* Helper function to skip all bp_locations with addresses
939 less than ADDRESS. It returns the first bp_location that
940 is greater than or equal to ADDRESS. If none is found, just
941 return NULL. */
942
943 static struct bp_location **
944 get_first_locp_gte_addr (CORE_ADDR address)
945 {
946 struct bp_location dummy_loc;
947 struct bp_location *dummy_locp = &dummy_loc;
948 struct bp_location **locp_found = NULL;
949
950 /* Initialize the dummy location's address field. */
951 dummy_loc.address = address;
952
953 /* Find a close match to the first location at ADDRESS. */
954 locp_found = ((struct bp_location **)
955 bsearch (&dummy_locp, bp_locations, bp_locations_count,
956 sizeof (struct bp_location **),
957 bp_locations_compare_addrs));
958
959 /* Nothing was found, nothing left to do. */
960 if (locp_found == NULL)
961 return NULL;
962
963 /* We may have found a location that is at ADDRESS but is not the first in the
964 location's list. Go backwards (if possible) and locate the first one. */
965 while ((locp_found - 1) >= bp_locations
966 && (*(locp_found - 1))->address == address)
967 locp_found--;
968
969 return locp_found;
970 }
971
972 void
973 set_breakpoint_condition (struct breakpoint *b, const char *exp,
974 int from_tty)
975 {
976 xfree (b->cond_string);
977 b->cond_string = NULL;
978
979 if (is_watchpoint (b))
980 {
981 struct watchpoint *w = (struct watchpoint *) b;
982
983 w->cond_exp.reset ();
984 }
985 else
986 {
987 struct bp_location *loc;
988
989 for (loc = b->loc; loc; loc = loc->next)
990 {
991 loc->cond.reset ();
992
993 /* No need to free the condition agent expression
994 bytecode (if we have one). We will handle this
995 when we go through update_global_location_list. */
996 }
997 }
998
999 if (*exp == 0)
1000 {
1001 if (from_tty)
1002 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
1003 }
1004 else
1005 {
1006 const char *arg = exp;
1007
1008 /* I don't know if it matters whether this is the string the user
1009 typed in or the decompiled expression. */
1010 b->cond_string = xstrdup (arg);
1011 b->condition_not_parsed = 0;
1012
1013 if (is_watchpoint (b))
1014 {
1015 struct watchpoint *w = (struct watchpoint *) b;
1016
1017 innermost_block = NULL;
1018 arg = exp;
1019 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
1020 if (*arg)
1021 error (_("Junk at end of expression"));
1022 w->cond_exp_valid_block = innermost_block;
1023 }
1024 else
1025 {
1026 struct bp_location *loc;
1027
1028 for (loc = b->loc; loc; loc = loc->next)
1029 {
1030 arg = exp;
1031 loc->cond =
1032 parse_exp_1 (&arg, loc->address,
1033 block_for_pc (loc->address), 0);
1034 if (*arg)
1035 error (_("Junk at end of expression"));
1036 }
1037 }
1038 }
1039 mark_breakpoint_modified (b);
1040
1041 observer_notify_breakpoint_modified (b);
1042 }
1043
1044 /* Completion for the "condition" command. */
1045
1046 static VEC (char_ptr) *
1047 condition_completer (struct cmd_list_element *cmd,
1048 const char *text, const char *word)
1049 {
1050 const char *space;
1051
1052 text = skip_spaces_const (text);
1053 space = skip_to_space_const (text);
1054 if (*space == '\0')
1055 {
1056 int len;
1057 struct breakpoint *b;
1058 VEC (char_ptr) *result = NULL;
1059
1060 if (text[0] == '$')
1061 {
1062 /* We don't support completion of history indices. */
1063 if (isdigit (text[1]))
1064 return NULL;
1065 return complete_internalvar (&text[1]);
1066 }
1067
1068 /* We're completing the breakpoint number. */
1069 len = strlen (text);
1070
1071 ALL_BREAKPOINTS (b)
1072 {
1073 char number[50];
1074
1075 xsnprintf (number, sizeof (number), "%d", b->number);
1076
1077 if (strncmp (number, text, len) == 0)
1078 VEC_safe_push (char_ptr, result, xstrdup (number));
1079 }
1080
1081 return result;
1082 }
1083
1084 /* We're completing the expression part. */
1085 text = skip_spaces_const (space);
1086 return expression_completer (cmd, text, word);
1087 }
1088
1089 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1090
1091 static void
1092 condition_command (char *arg, int from_tty)
1093 {
1094 struct breakpoint *b;
1095 char *p;
1096 int bnum;
1097
1098 if (arg == 0)
1099 error_no_arg (_("breakpoint number"));
1100
1101 p = arg;
1102 bnum = get_number (&p);
1103 if (bnum == 0)
1104 error (_("Bad breakpoint argument: '%s'"), arg);
1105
1106 ALL_BREAKPOINTS (b)
1107 if (b->number == bnum)
1108 {
1109 /* Check if this breakpoint has a "stop" method implemented in an
1110 extension language. This method and conditions entered into GDB
1111 from the CLI are mutually exclusive. */
1112 const struct extension_language_defn *extlang
1113 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1114
1115 if (extlang != NULL)
1116 {
1117 error (_("Only one stop condition allowed. There is currently"
1118 " a %s stop condition defined for this breakpoint."),
1119 ext_lang_capitalized_name (extlang));
1120 }
1121 set_breakpoint_condition (b, p, from_tty);
1122
1123 if (is_breakpoint (b))
1124 update_global_location_list (UGLL_MAY_INSERT);
1125
1126 return;
1127 }
1128
1129 error (_("No breakpoint number %d."), bnum);
1130 }
1131
1132 /* Check that COMMAND do not contain commands that are suitable
1133 only for tracepoints and not suitable for ordinary breakpoints.
1134 Throw if any such commands is found. */
1135
1136 static void
1137 check_no_tracepoint_commands (struct command_line *commands)
1138 {
1139 struct command_line *c;
1140
1141 for (c = commands; c; c = c->next)
1142 {
1143 int i;
1144
1145 if (c->control_type == while_stepping_control)
1146 error (_("The 'while-stepping' command can "
1147 "only be used for tracepoints"));
1148
1149 for (i = 0; i < c->body_count; ++i)
1150 check_no_tracepoint_commands ((c->body_list)[i]);
1151
1152 /* Not that command parsing removes leading whitespace and comment
1153 lines and also empty lines. So, we only need to check for
1154 command directly. */
1155 if (strstr (c->line, "collect ") == c->line)
1156 error (_("The 'collect' command can only be used for tracepoints"));
1157
1158 if (strstr (c->line, "teval ") == c->line)
1159 error (_("The 'teval' command can only be used for tracepoints"));
1160 }
1161 }
1162
1163 /* Encapsulate tests for different types of tracepoints. */
1164
1165 static int
1166 is_tracepoint_type (enum bptype type)
1167 {
1168 return (type == bp_tracepoint
1169 || type == bp_fast_tracepoint
1170 || type == bp_static_tracepoint);
1171 }
1172
1173 int
1174 is_tracepoint (const struct breakpoint *b)
1175 {
1176 return is_tracepoint_type (b->type);
1177 }
1178
1179 /* A helper function that validates that COMMANDS are valid for a
1180 breakpoint. This function will throw an exception if a problem is
1181 found. */
1182
1183 static void
1184 validate_commands_for_breakpoint (struct breakpoint *b,
1185 struct command_line *commands)
1186 {
1187 if (is_tracepoint (b))
1188 {
1189 struct tracepoint *t = (struct tracepoint *) b;
1190 struct command_line *c;
1191 struct command_line *while_stepping = 0;
1192
1193 /* Reset the while-stepping step count. The previous commands
1194 might have included a while-stepping action, while the new
1195 ones might not. */
1196 t->step_count = 0;
1197
1198 /* We need to verify that each top-level element of commands is
1199 valid for tracepoints, that there's at most one
1200 while-stepping element, and that the while-stepping's body
1201 has valid tracing commands excluding nested while-stepping.
1202 We also need to validate the tracepoint action line in the
1203 context of the tracepoint --- validate_actionline actually
1204 has side effects, like setting the tracepoint's
1205 while-stepping STEP_COUNT, in addition to checking if the
1206 collect/teval actions parse and make sense in the
1207 tracepoint's context. */
1208 for (c = commands; c; c = c->next)
1209 {
1210 if (c->control_type == while_stepping_control)
1211 {
1212 if (b->type == bp_fast_tracepoint)
1213 error (_("The 'while-stepping' command "
1214 "cannot be used for fast tracepoint"));
1215 else if (b->type == bp_static_tracepoint)
1216 error (_("The 'while-stepping' command "
1217 "cannot be used for static tracepoint"));
1218
1219 if (while_stepping)
1220 error (_("The 'while-stepping' command "
1221 "can be used only once"));
1222 else
1223 while_stepping = c;
1224 }
1225
1226 validate_actionline (c->line, b);
1227 }
1228 if (while_stepping)
1229 {
1230 struct command_line *c2;
1231
1232 gdb_assert (while_stepping->body_count == 1);
1233 c2 = while_stepping->body_list[0];
1234 for (; c2; c2 = c2->next)
1235 {
1236 if (c2->control_type == while_stepping_control)
1237 error (_("The 'while-stepping' command cannot be nested"));
1238 }
1239 }
1240 }
1241 else
1242 {
1243 check_no_tracepoint_commands (commands);
1244 }
1245 }
1246
1247 /* Return a vector of all the static tracepoints set at ADDR. The
1248 caller is responsible for releasing the vector. */
1249
1250 VEC(breakpoint_p) *
1251 static_tracepoints_here (CORE_ADDR addr)
1252 {
1253 struct breakpoint *b;
1254 VEC(breakpoint_p) *found = 0;
1255 struct bp_location *loc;
1256
1257 ALL_BREAKPOINTS (b)
1258 if (b->type == bp_static_tracepoint)
1259 {
1260 for (loc = b->loc; loc; loc = loc->next)
1261 if (loc->address == addr)
1262 VEC_safe_push(breakpoint_p, found, b);
1263 }
1264
1265 return found;
1266 }
1267
1268 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1269 validate that only allowed commands are included. */
1270
1271 void
1272 breakpoint_set_commands (struct breakpoint *b,
1273 command_line_up &&commands)
1274 {
1275 validate_commands_for_breakpoint (b, commands.get ());
1276
1277 decref_counted_command_line (&b->commands);
1278 b->commands = alloc_counted_command_line (commands.release ());
1279 observer_notify_breakpoint_modified (b);
1280 }
1281
1282 /* Set the internal `silent' flag on the breakpoint. Note that this
1283 is not the same as the "silent" that may appear in the breakpoint's
1284 commands. */
1285
1286 void
1287 breakpoint_set_silent (struct breakpoint *b, int silent)
1288 {
1289 int old_silent = b->silent;
1290
1291 b->silent = silent;
1292 if (old_silent != silent)
1293 observer_notify_breakpoint_modified (b);
1294 }
1295
1296 /* Set the thread for this breakpoint. If THREAD is -1, make the
1297 breakpoint work for any thread. */
1298
1299 void
1300 breakpoint_set_thread (struct breakpoint *b, int thread)
1301 {
1302 int old_thread = b->thread;
1303
1304 b->thread = thread;
1305 if (old_thread != thread)
1306 observer_notify_breakpoint_modified (b);
1307 }
1308
1309 /* Set the task for this breakpoint. If TASK is 0, make the
1310 breakpoint work for any task. */
1311
1312 void
1313 breakpoint_set_task (struct breakpoint *b, int task)
1314 {
1315 int old_task = b->task;
1316
1317 b->task = task;
1318 if (old_task != task)
1319 observer_notify_breakpoint_modified (b);
1320 }
1321
1322 void
1323 check_tracepoint_command (char *line, void *closure)
1324 {
1325 struct breakpoint *b = (struct breakpoint *) closure;
1326
1327 validate_actionline (line, b);
1328 }
1329
1330 /* A structure used to pass information through
1331 map_breakpoint_numbers. */
1332
1333 struct commands_info
1334 {
1335 /* True if the command was typed at a tty. */
1336 int from_tty;
1337
1338 /* The breakpoint range spec. */
1339 const char *arg;
1340
1341 /* Non-NULL if the body of the commands are being read from this
1342 already-parsed command. */
1343 struct command_line *control;
1344
1345 /* The command lines read from the user, or NULL if they have not
1346 yet been read. */
1347 struct counted_command_line *cmd;
1348 };
1349
1350 /* A callback for map_breakpoint_numbers that sets the commands for
1351 commands_command. */
1352
1353 static void
1354 do_map_commands_command (struct breakpoint *b, void *data)
1355 {
1356 struct commands_info *info = (struct commands_info *) data;
1357
1358 if (info->cmd == NULL)
1359 {
1360 command_line_up l;
1361
1362 if (info->control != NULL)
1363 l = copy_command_lines (info->control->body_list[0]);
1364 else
1365 {
1366 struct cleanup *old_chain;
1367 char *str;
1368
1369 str = xstrprintf (_("Type commands for breakpoint(s) "
1370 "%s, one per line."),
1371 info->arg);
1372
1373 old_chain = make_cleanup (xfree, str);
1374
1375 l = read_command_lines (str,
1376 info->from_tty, 1,
1377 (is_tracepoint (b)
1378 ? check_tracepoint_command : 0),
1379 b);
1380
1381 do_cleanups (old_chain);
1382 }
1383
1384 info->cmd = alloc_counted_command_line (l.release ());
1385 }
1386
1387 /* If a breakpoint was on the list more than once, we don't need to
1388 do anything. */
1389 if (b->commands != info->cmd)
1390 {
1391 validate_commands_for_breakpoint (b, info->cmd->commands);
1392 incref_counted_command_line (info->cmd);
1393 decref_counted_command_line (&b->commands);
1394 b->commands = info->cmd;
1395 observer_notify_breakpoint_modified (b);
1396 }
1397 }
1398
1399 static void
1400 commands_command_1 (const char *arg, int from_tty,
1401 struct command_line *control)
1402 {
1403 struct cleanup *cleanups;
1404 struct commands_info info;
1405
1406 info.from_tty = from_tty;
1407 info.control = control;
1408 info.cmd = NULL;
1409 /* If we read command lines from the user, then `info' will hold an
1410 extra reference to the commands that we must clean up. */
1411 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1412
1413 std::string new_arg;
1414
1415 if (arg == NULL || !*arg)
1416 {
1417 if (breakpoint_count - prev_breakpoint_count > 1)
1418 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1419 breakpoint_count);
1420 else if (breakpoint_count > 0)
1421 new_arg = string_printf ("%d", breakpoint_count);
1422 }
1423 else
1424 new_arg = arg;
1425
1426 info.arg = new_arg.c_str ();
1427
1428 map_breakpoint_numbers (info.arg, do_map_commands_command, &info);
1429
1430 if (info.cmd == NULL)
1431 error (_("No breakpoints specified."));
1432
1433 do_cleanups (cleanups);
1434 }
1435
1436 static void
1437 commands_command (char *arg, int from_tty)
1438 {
1439 commands_command_1 (arg, from_tty, NULL);
1440 }
1441
1442 /* Like commands_command, but instead of reading the commands from
1443 input stream, takes them from an already parsed command structure.
1444
1445 This is used by cli-script.c to DTRT with breakpoint commands
1446 that are part of if and while bodies. */
1447 enum command_control_type
1448 commands_from_control_command (const char *arg, struct command_line *cmd)
1449 {
1450 commands_command_1 (arg, 0, cmd);
1451 return simple_control;
1452 }
1453
1454 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1455
1456 static int
1457 bp_location_has_shadow (struct bp_location *bl)
1458 {
1459 if (bl->loc_type != bp_loc_software_breakpoint)
1460 return 0;
1461 if (!bl->inserted)
1462 return 0;
1463 if (bl->target_info.shadow_len == 0)
1464 /* BL isn't valid, or doesn't shadow memory. */
1465 return 0;
1466 return 1;
1467 }
1468
1469 /* Update BUF, which is LEN bytes read from the target address
1470 MEMADDR, by replacing a memory breakpoint with its shadowed
1471 contents.
1472
1473 If READBUF is not NULL, this buffer must not overlap with the of
1474 the breakpoint location's shadow_contents buffer. Otherwise, a
1475 failed assertion internal error will be raised. */
1476
1477 static void
1478 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1479 const gdb_byte *writebuf_org,
1480 ULONGEST memaddr, LONGEST len,
1481 struct bp_target_info *target_info,
1482 struct gdbarch *gdbarch)
1483 {
1484 /* Now do full processing of the found relevant range of elements. */
1485 CORE_ADDR bp_addr = 0;
1486 int bp_size = 0;
1487 int bptoffset = 0;
1488
1489 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1490 current_program_space->aspace, 0))
1491 {
1492 /* The breakpoint is inserted in a different address space. */
1493 return;
1494 }
1495
1496 /* Addresses and length of the part of the breakpoint that
1497 we need to copy. */
1498 bp_addr = target_info->placed_address;
1499 bp_size = target_info->shadow_len;
1500
1501 if (bp_addr + bp_size <= memaddr)
1502 {
1503 /* The breakpoint is entirely before the chunk of memory we are
1504 reading. */
1505 return;
1506 }
1507
1508 if (bp_addr >= memaddr + len)
1509 {
1510 /* The breakpoint is entirely after the chunk of memory we are
1511 reading. */
1512 return;
1513 }
1514
1515 /* Offset within shadow_contents. */
1516 if (bp_addr < memaddr)
1517 {
1518 /* Only copy the second part of the breakpoint. */
1519 bp_size -= memaddr - bp_addr;
1520 bptoffset = memaddr - bp_addr;
1521 bp_addr = memaddr;
1522 }
1523
1524 if (bp_addr + bp_size > memaddr + len)
1525 {
1526 /* Only copy the first part of the breakpoint. */
1527 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1528 }
1529
1530 if (readbuf != NULL)
1531 {
1532 /* Verify that the readbuf buffer does not overlap with the
1533 shadow_contents buffer. */
1534 gdb_assert (target_info->shadow_contents >= readbuf + len
1535 || readbuf >= (target_info->shadow_contents
1536 + target_info->shadow_len));
1537
1538 /* Update the read buffer with this inserted breakpoint's
1539 shadow. */
1540 memcpy (readbuf + bp_addr - memaddr,
1541 target_info->shadow_contents + bptoffset, bp_size);
1542 }
1543 else
1544 {
1545 const unsigned char *bp;
1546 CORE_ADDR addr = target_info->reqstd_address;
1547 int placed_size;
1548
1549 /* Update the shadow with what we want to write to memory. */
1550 memcpy (target_info->shadow_contents + bptoffset,
1551 writebuf_org + bp_addr - memaddr, bp_size);
1552
1553 /* Determine appropriate breakpoint contents and size for this
1554 address. */
1555 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1556
1557 /* Update the final write buffer with this inserted
1558 breakpoint's INSN. */
1559 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1560 }
1561 }
1562
1563 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1564 by replacing any memory breakpoints with their shadowed contents.
1565
1566 If READBUF is not NULL, this buffer must not overlap with any of
1567 the breakpoint location's shadow_contents buffers. Otherwise,
1568 a failed assertion internal error will be raised.
1569
1570 The range of shadowed area by each bp_location is:
1571 bl->address - bp_locations_placed_address_before_address_max
1572 up to bl->address + bp_locations_shadow_len_after_address_max
1573 The range we were requested to resolve shadows for is:
1574 memaddr ... memaddr + len
1575 Thus the safe cutoff boundaries for performance optimization are
1576 memaddr + len <= (bl->address
1577 - bp_locations_placed_address_before_address_max)
1578 and:
1579 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1580
1581 void
1582 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1583 const gdb_byte *writebuf_org,
1584 ULONGEST memaddr, LONGEST len)
1585 {
1586 /* Left boundary, right boundary and median element of our binary
1587 search. */
1588 unsigned bc_l, bc_r, bc;
1589
1590 /* Find BC_L which is a leftmost element which may affect BUF
1591 content. It is safe to report lower value but a failure to
1592 report higher one. */
1593
1594 bc_l = 0;
1595 bc_r = bp_locations_count;
1596 while (bc_l + 1 < bc_r)
1597 {
1598 struct bp_location *bl;
1599
1600 bc = (bc_l + bc_r) / 2;
1601 bl = bp_locations[bc];
1602
1603 /* Check first BL->ADDRESS will not overflow due to the added
1604 constant. Then advance the left boundary only if we are sure
1605 the BC element can in no way affect the BUF content (MEMADDR
1606 to MEMADDR + LEN range).
1607
1608 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1609 offset so that we cannot miss a breakpoint with its shadow
1610 range tail still reaching MEMADDR. */
1611
1612 if ((bl->address + bp_locations_shadow_len_after_address_max
1613 >= bl->address)
1614 && (bl->address + bp_locations_shadow_len_after_address_max
1615 <= memaddr))
1616 bc_l = bc;
1617 else
1618 bc_r = bc;
1619 }
1620
1621 /* Due to the binary search above, we need to make sure we pick the
1622 first location that's at BC_L's address. E.g., if there are
1623 multiple locations at the same address, BC_L may end up pointing
1624 at a duplicate location, and miss the "master"/"inserted"
1625 location. Say, given locations L1, L2 and L3 at addresses A and
1626 B:
1627
1628 L1@A, L2@A, L3@B, ...
1629
1630 BC_L could end up pointing at location L2, while the "master"
1631 location could be L1. Since the `loc->inserted' flag is only set
1632 on "master" locations, we'd forget to restore the shadow of L1
1633 and L2. */
1634 while (bc_l > 0
1635 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1636 bc_l--;
1637
1638 /* Now do full processing of the found relevant range of elements. */
1639
1640 for (bc = bc_l; bc < bp_locations_count; bc++)
1641 {
1642 struct bp_location *bl = bp_locations[bc];
1643
1644 /* bp_location array has BL->OWNER always non-NULL. */
1645 if (bl->owner->type == bp_none)
1646 warning (_("reading through apparently deleted breakpoint #%d?"),
1647 bl->owner->number);
1648
1649 /* Performance optimization: any further element can no longer affect BUF
1650 content. */
1651
1652 if (bl->address >= bp_locations_placed_address_before_address_max
1653 && memaddr + len <= (bl->address
1654 - bp_locations_placed_address_before_address_max))
1655 break;
1656
1657 if (!bp_location_has_shadow (bl))
1658 continue;
1659
1660 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1661 memaddr, len, &bl->target_info, bl->gdbarch);
1662 }
1663 }
1664
1665 \f
1666
1667 /* Return true if BPT is either a software breakpoint or a hardware
1668 breakpoint. */
1669
1670 int
1671 is_breakpoint (const struct breakpoint *bpt)
1672 {
1673 return (bpt->type == bp_breakpoint
1674 || bpt->type == bp_hardware_breakpoint
1675 || bpt->type == bp_dprintf);
1676 }
1677
1678 /* Return true if BPT is of any hardware watchpoint kind. */
1679
1680 static int
1681 is_hardware_watchpoint (const struct breakpoint *bpt)
1682 {
1683 return (bpt->type == bp_hardware_watchpoint
1684 || bpt->type == bp_read_watchpoint
1685 || bpt->type == bp_access_watchpoint);
1686 }
1687
1688 /* Return true if BPT is of any watchpoint kind, hardware or
1689 software. */
1690
1691 int
1692 is_watchpoint (const struct breakpoint *bpt)
1693 {
1694 return (is_hardware_watchpoint (bpt)
1695 || bpt->type == bp_watchpoint);
1696 }
1697
1698 /* Returns true if the current thread and its running state are safe
1699 to evaluate or update watchpoint B. Watchpoints on local
1700 expressions need to be evaluated in the context of the thread that
1701 was current when the watchpoint was created, and, that thread needs
1702 to be stopped to be able to select the correct frame context.
1703 Watchpoints on global expressions can be evaluated on any thread,
1704 and in any state. It is presently left to the target allowing
1705 memory accesses when threads are running. */
1706
1707 static int
1708 watchpoint_in_thread_scope (struct watchpoint *b)
1709 {
1710 return (b->base.pspace == current_program_space
1711 && (ptid_equal (b->watchpoint_thread, null_ptid)
1712 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1713 && !is_executing (inferior_ptid))));
1714 }
1715
1716 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1717 associated bp_watchpoint_scope breakpoint. */
1718
1719 static void
1720 watchpoint_del_at_next_stop (struct watchpoint *w)
1721 {
1722 struct breakpoint *b = &w->base;
1723
1724 if (b->related_breakpoint != b)
1725 {
1726 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1727 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1728 b->related_breakpoint->disposition = disp_del_at_next_stop;
1729 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1730 b->related_breakpoint = b;
1731 }
1732 b->disposition = disp_del_at_next_stop;
1733 }
1734
1735 /* Extract a bitfield value from value VAL using the bit parameters contained in
1736 watchpoint W. */
1737
1738 static struct value *
1739 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1740 {
1741 struct value *bit_val;
1742
1743 if (val == NULL)
1744 return NULL;
1745
1746 bit_val = allocate_value (value_type (val));
1747
1748 unpack_value_bitfield (bit_val,
1749 w->val_bitpos,
1750 w->val_bitsize,
1751 value_contents_for_printing (val),
1752 value_offset (val),
1753 val);
1754
1755 return bit_val;
1756 }
1757
1758 /* Allocate a dummy location and add it to B, which must be a software
1759 watchpoint. This is required because even if a software watchpoint
1760 is not watching any memory, bpstat_stop_status requires a location
1761 to be able to report stops. */
1762
1763 static void
1764 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1765 struct program_space *pspace)
1766 {
1767 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1768
1769 b->loc = allocate_bp_location (b);
1770 b->loc->pspace = pspace;
1771 b->loc->address = -1;
1772 b->loc->length = -1;
1773 }
1774
1775 /* Returns true if B is a software watchpoint that is not watching any
1776 memory (e.g., "watch $pc"). */
1777
1778 static int
1779 is_no_memory_software_watchpoint (struct breakpoint *b)
1780 {
1781 return (b->type == bp_watchpoint
1782 && b->loc != NULL
1783 && b->loc->next == NULL
1784 && b->loc->address == -1
1785 && b->loc->length == -1);
1786 }
1787
1788 /* Assuming that B is a watchpoint:
1789 - Reparse watchpoint expression, if REPARSE is non-zero
1790 - Evaluate expression and store the result in B->val
1791 - Evaluate the condition if there is one, and store the result
1792 in b->loc->cond.
1793 - Update the list of values that must be watched in B->loc.
1794
1795 If the watchpoint disposition is disp_del_at_next_stop, then do
1796 nothing. If this is local watchpoint that is out of scope, delete
1797 it.
1798
1799 Even with `set breakpoint always-inserted on' the watchpoints are
1800 removed + inserted on each stop here. Normal breakpoints must
1801 never be removed because they might be missed by a running thread
1802 when debugging in non-stop mode. On the other hand, hardware
1803 watchpoints (is_hardware_watchpoint; processed here) are specific
1804 to each LWP since they are stored in each LWP's hardware debug
1805 registers. Therefore, such LWP must be stopped first in order to
1806 be able to modify its hardware watchpoints.
1807
1808 Hardware watchpoints must be reset exactly once after being
1809 presented to the user. It cannot be done sooner, because it would
1810 reset the data used to present the watchpoint hit to the user. And
1811 it must not be done later because it could display the same single
1812 watchpoint hit during multiple GDB stops. Note that the latter is
1813 relevant only to the hardware watchpoint types bp_read_watchpoint
1814 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1815 not user-visible - its hit is suppressed if the memory content has
1816 not changed.
1817
1818 The following constraints influence the location where we can reset
1819 hardware watchpoints:
1820
1821 * target_stopped_by_watchpoint and target_stopped_data_address are
1822 called several times when GDB stops.
1823
1824 [linux]
1825 * Multiple hardware watchpoints can be hit at the same time,
1826 causing GDB to stop. GDB only presents one hardware watchpoint
1827 hit at a time as the reason for stopping, and all the other hits
1828 are presented later, one after the other, each time the user
1829 requests the execution to be resumed. Execution is not resumed
1830 for the threads still having pending hit event stored in
1831 LWP_INFO->STATUS. While the watchpoint is already removed from
1832 the inferior on the first stop the thread hit event is kept being
1833 reported from its cached value by linux_nat_stopped_data_address
1834 until the real thread resume happens after the watchpoint gets
1835 presented and thus its LWP_INFO->STATUS gets reset.
1836
1837 Therefore the hardware watchpoint hit can get safely reset on the
1838 watchpoint removal from inferior. */
1839
1840 static void
1841 update_watchpoint (struct watchpoint *b, int reparse)
1842 {
1843 int within_current_scope;
1844 struct frame_id saved_frame_id;
1845 int frame_saved;
1846
1847 /* If this is a local watchpoint, we only want to check if the
1848 watchpoint frame is in scope if the current thread is the thread
1849 that was used to create the watchpoint. */
1850 if (!watchpoint_in_thread_scope (b))
1851 return;
1852
1853 if (b->base.disposition == disp_del_at_next_stop)
1854 return;
1855
1856 frame_saved = 0;
1857
1858 /* Determine if the watchpoint is within scope. */
1859 if (b->exp_valid_block == NULL)
1860 within_current_scope = 1;
1861 else
1862 {
1863 struct frame_info *fi = get_current_frame ();
1864 struct gdbarch *frame_arch = get_frame_arch (fi);
1865 CORE_ADDR frame_pc = get_frame_pc (fi);
1866
1867 /* If we're at a point where the stack has been destroyed
1868 (e.g. in a function epilogue), unwinding may not work
1869 properly. Do not attempt to recreate locations at this
1870 point. See similar comments in watchpoint_check. */
1871 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1872 return;
1873
1874 /* Save the current frame's ID so we can restore it after
1875 evaluating the watchpoint expression on its own frame. */
1876 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1877 took a frame parameter, so that we didn't have to change the
1878 selected frame. */
1879 frame_saved = 1;
1880 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1881
1882 fi = frame_find_by_id (b->watchpoint_frame);
1883 within_current_scope = (fi != NULL);
1884 if (within_current_scope)
1885 select_frame (fi);
1886 }
1887
1888 /* We don't free locations. They are stored in the bp_location array
1889 and update_global_location_list will eventually delete them and
1890 remove breakpoints if needed. */
1891 b->base.loc = NULL;
1892
1893 if (within_current_scope && reparse)
1894 {
1895 const char *s;
1896
1897 b->exp.reset ();
1898 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1899 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1900 /* If the meaning of expression itself changed, the old value is
1901 no longer relevant. We don't want to report a watchpoint hit
1902 to the user when the old value and the new value may actually
1903 be completely different objects. */
1904 value_free (b->val);
1905 b->val = NULL;
1906 b->val_valid = 0;
1907
1908 /* Note that unlike with breakpoints, the watchpoint's condition
1909 expression is stored in the breakpoint object, not in the
1910 locations (re)created below. */
1911 if (b->base.cond_string != NULL)
1912 {
1913 b->cond_exp.reset ();
1914
1915 s = b->base.cond_string;
1916 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1917 }
1918 }
1919
1920 /* If we failed to parse the expression, for example because
1921 it refers to a global variable in a not-yet-loaded shared library,
1922 don't try to insert watchpoint. We don't automatically delete
1923 such watchpoint, though, since failure to parse expression
1924 is different from out-of-scope watchpoint. */
1925 if (!target_has_execution)
1926 {
1927 /* Without execution, memory can't change. No use to try and
1928 set watchpoint locations. The watchpoint will be reset when
1929 the target gains execution, through breakpoint_re_set. */
1930 if (!can_use_hw_watchpoints)
1931 {
1932 if (b->base.ops->works_in_software_mode (&b->base))
1933 b->base.type = bp_watchpoint;
1934 else
1935 error (_("Can't set read/access watchpoint when "
1936 "hardware watchpoints are disabled."));
1937 }
1938 }
1939 else if (within_current_scope && b->exp)
1940 {
1941 int pc = 0;
1942 struct value *val_chain, *v, *result, *next;
1943 struct program_space *frame_pspace;
1944
1945 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1946
1947 /* Avoid setting b->val if it's already set. The meaning of
1948 b->val is 'the last value' user saw, and we should update
1949 it only if we reported that last value to user. As it
1950 happens, the code that reports it updates b->val directly.
1951 We don't keep track of the memory value for masked
1952 watchpoints. */
1953 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1954 {
1955 if (b->val_bitsize != 0)
1956 {
1957 v = extract_bitfield_from_watchpoint_value (b, v);
1958 if (v != NULL)
1959 release_value (v);
1960 }
1961 b->val = v;
1962 b->val_valid = 1;
1963 }
1964
1965 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1966
1967 /* Look at each value on the value chain. */
1968 for (v = val_chain; v; v = value_next (v))
1969 {
1970 /* If it's a memory location, and GDB actually needed
1971 its contents to evaluate the expression, then we
1972 must watch it. If the first value returned is
1973 still lazy, that means an error occurred reading it;
1974 watch it anyway in case it becomes readable. */
1975 if (VALUE_LVAL (v) == lval_memory
1976 && (v == val_chain || ! value_lazy (v)))
1977 {
1978 struct type *vtype = check_typedef (value_type (v));
1979
1980 /* We only watch structs and arrays if user asked
1981 for it explicitly, never if they just happen to
1982 appear in the middle of some value chain. */
1983 if (v == result
1984 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1985 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1986 {
1987 CORE_ADDR addr;
1988 enum target_hw_bp_type type;
1989 struct bp_location *loc, **tmp;
1990 int bitpos = 0, bitsize = 0;
1991
1992 if (value_bitsize (v) != 0)
1993 {
1994 /* Extract the bit parameters out from the bitfield
1995 sub-expression. */
1996 bitpos = value_bitpos (v);
1997 bitsize = value_bitsize (v);
1998 }
1999 else if (v == result && b->val_bitsize != 0)
2000 {
2001 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
2002 lvalue whose bit parameters are saved in the fields
2003 VAL_BITPOS and VAL_BITSIZE. */
2004 bitpos = b->val_bitpos;
2005 bitsize = b->val_bitsize;
2006 }
2007
2008 addr = value_address (v);
2009 if (bitsize != 0)
2010 {
2011 /* Skip the bytes that don't contain the bitfield. */
2012 addr += bitpos / 8;
2013 }
2014
2015 type = hw_write;
2016 if (b->base.type == bp_read_watchpoint)
2017 type = hw_read;
2018 else if (b->base.type == bp_access_watchpoint)
2019 type = hw_access;
2020
2021 loc = allocate_bp_location (&b->base);
2022 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
2023 ;
2024 *tmp = loc;
2025 loc->gdbarch = get_type_arch (value_type (v));
2026
2027 loc->pspace = frame_pspace;
2028 loc->address = addr;
2029
2030 if (bitsize != 0)
2031 {
2032 /* Just cover the bytes that make up the bitfield. */
2033 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
2034 }
2035 else
2036 loc->length = TYPE_LENGTH (value_type (v));
2037
2038 loc->watchpoint_type = type;
2039 }
2040 }
2041 }
2042
2043 /* Change the type of breakpoint between hardware assisted or
2044 an ordinary watchpoint depending on the hardware support
2045 and free hardware slots. REPARSE is set when the inferior
2046 is started. */
2047 if (reparse)
2048 {
2049 int reg_cnt;
2050 enum bp_loc_type loc_type;
2051 struct bp_location *bl;
2052
2053 reg_cnt = can_use_hardware_watchpoint (val_chain);
2054
2055 if (reg_cnt)
2056 {
2057 int i, target_resources_ok, other_type_used;
2058 enum bptype type;
2059
2060 /* Use an exact watchpoint when there's only one memory region to be
2061 watched, and only one debug register is needed to watch it. */
2062 b->exact = target_exact_watchpoints && reg_cnt == 1;
2063
2064 /* We need to determine how many resources are already
2065 used for all other hardware watchpoints plus this one
2066 to see if we still have enough resources to also fit
2067 this watchpoint in as well. */
2068
2069 /* If this is a software watchpoint, we try to turn it
2070 to a hardware one -- count resources as if B was of
2071 hardware watchpoint type. */
2072 type = b->base.type;
2073 if (type == bp_watchpoint)
2074 type = bp_hardware_watchpoint;
2075
2076 /* This watchpoint may or may not have been placed on
2077 the list yet at this point (it won't be in the list
2078 if we're trying to create it for the first time,
2079 through watch_command), so always account for it
2080 manually. */
2081
2082 /* Count resources used by all watchpoints except B. */
2083 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
2084
2085 /* Add in the resources needed for B. */
2086 i += hw_watchpoint_use_count (&b->base);
2087
2088 target_resources_ok
2089 = target_can_use_hardware_watchpoint (type, i, other_type_used);
2090 if (target_resources_ok <= 0)
2091 {
2092 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
2093
2094 if (target_resources_ok == 0 && !sw_mode)
2095 error (_("Target does not support this type of "
2096 "hardware watchpoint."));
2097 else if (target_resources_ok < 0 && !sw_mode)
2098 error (_("There are not enough available hardware "
2099 "resources for this watchpoint."));
2100
2101 /* Downgrade to software watchpoint. */
2102 b->base.type = bp_watchpoint;
2103 }
2104 else
2105 {
2106 /* If this was a software watchpoint, we've just
2107 found we have enough resources to turn it to a
2108 hardware watchpoint. Otherwise, this is a
2109 nop. */
2110 b->base.type = type;
2111 }
2112 }
2113 else if (!b->base.ops->works_in_software_mode (&b->base))
2114 {
2115 if (!can_use_hw_watchpoints)
2116 error (_("Can't set read/access watchpoint when "
2117 "hardware watchpoints are disabled."));
2118 else
2119 error (_("Expression cannot be implemented with "
2120 "read/access watchpoint."));
2121 }
2122 else
2123 b->base.type = bp_watchpoint;
2124
2125 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
2126 : bp_loc_hardware_watchpoint);
2127 for (bl = b->base.loc; bl; bl = bl->next)
2128 bl->loc_type = loc_type;
2129 }
2130
2131 for (v = val_chain; v; v = next)
2132 {
2133 next = value_next (v);
2134 if (v != b->val)
2135 value_free (v);
2136 }
2137
2138 /* If a software watchpoint is not watching any memory, then the
2139 above left it without any location set up. But,
2140 bpstat_stop_status requires a location to be able to report
2141 stops, so make sure there's at least a dummy one. */
2142 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
2143 software_watchpoint_add_no_memory_location (&b->base, frame_pspace);
2144 }
2145 else if (!within_current_scope)
2146 {
2147 printf_filtered (_("\
2148 Watchpoint %d deleted because the program has left the block\n\
2149 in which its expression is valid.\n"),
2150 b->base.number);
2151 watchpoint_del_at_next_stop (b);
2152 }
2153
2154 /* Restore the selected frame. */
2155 if (frame_saved)
2156 select_frame (frame_find_by_id (saved_frame_id));
2157 }
2158
2159
2160 /* Returns 1 iff breakpoint location should be
2161 inserted in the inferior. We don't differentiate the type of BL's owner
2162 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2163 breakpoint_ops is not defined, because in insert_bp_location,
2164 tracepoint's insert_location will not be called. */
2165 static int
2166 should_be_inserted (struct bp_location *bl)
2167 {
2168 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2169 return 0;
2170
2171 if (bl->owner->disposition == disp_del_at_next_stop)
2172 return 0;
2173
2174 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2175 return 0;
2176
2177 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2178 return 0;
2179
2180 /* This is set for example, when we're attached to the parent of a
2181 vfork, and have detached from the child. The child is running
2182 free, and we expect it to do an exec or exit, at which point the
2183 OS makes the parent schedulable again (and the target reports
2184 that the vfork is done). Until the child is done with the shared
2185 memory region, do not insert breakpoints in the parent, otherwise
2186 the child could still trip on the parent's breakpoints. Since
2187 the parent is blocked anyway, it won't miss any breakpoint. */
2188 if (bl->pspace->breakpoints_not_allowed)
2189 return 0;
2190
2191 /* Don't insert a breakpoint if we're trying to step past its
2192 location, except if the breakpoint is a single-step breakpoint,
2193 and the breakpoint's thread is the thread which is stepping past
2194 a breakpoint. */
2195 if ((bl->loc_type == bp_loc_software_breakpoint
2196 || bl->loc_type == bp_loc_hardware_breakpoint)
2197 && stepping_past_instruction_at (bl->pspace->aspace,
2198 bl->address)
2199 /* The single-step breakpoint may be inserted at the location
2200 we're trying to step if the instruction branches to itself.
2201 However, the instruction won't be executed at all and it may
2202 break the semantics of the instruction, for example, the
2203 instruction is a conditional branch or updates some flags.
2204 We can't fix it unless GDB is able to emulate the instruction
2205 or switch to displaced stepping. */
2206 && !(bl->owner->type == bp_single_step
2207 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2208 {
2209 if (debug_infrun)
2210 {
2211 fprintf_unfiltered (gdb_stdlog,
2212 "infrun: skipping breakpoint: "
2213 "stepping past insn at: %s\n",
2214 paddress (bl->gdbarch, bl->address));
2215 }
2216 return 0;
2217 }
2218
2219 /* Don't insert watchpoints if we're trying to step past the
2220 instruction that triggered one. */
2221 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2222 && stepping_past_nonsteppable_watchpoint ())
2223 {
2224 if (debug_infrun)
2225 {
2226 fprintf_unfiltered (gdb_stdlog,
2227 "infrun: stepping past non-steppable watchpoint. "
2228 "skipping watchpoint at %s:%d\n",
2229 paddress (bl->gdbarch, bl->address),
2230 bl->length);
2231 }
2232 return 0;
2233 }
2234
2235 return 1;
2236 }
2237
2238 /* Same as should_be_inserted but does the check assuming
2239 that the location is not duplicated. */
2240
2241 static int
2242 unduplicated_should_be_inserted (struct bp_location *bl)
2243 {
2244 int result;
2245 const int save_duplicate = bl->duplicate;
2246
2247 bl->duplicate = 0;
2248 result = should_be_inserted (bl);
2249 bl->duplicate = save_duplicate;
2250 return result;
2251 }
2252
2253 /* Parses a conditional described by an expression COND into an
2254 agent expression bytecode suitable for evaluation
2255 by the bytecode interpreter. Return NULL if there was
2256 any error during parsing. */
2257
2258 static agent_expr_up
2259 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2260 {
2261 if (cond == NULL)
2262 return NULL;
2263
2264 agent_expr_up aexpr;
2265
2266 /* We don't want to stop processing, so catch any errors
2267 that may show up. */
2268 TRY
2269 {
2270 aexpr = gen_eval_for_expr (scope, cond);
2271 }
2272
2273 CATCH (ex, RETURN_MASK_ERROR)
2274 {
2275 /* If we got here, it means the condition could not be parsed to a valid
2276 bytecode expression and thus can't be evaluated on the target's side.
2277 It's no use iterating through the conditions. */
2278 }
2279 END_CATCH
2280
2281 /* We have a valid agent expression. */
2282 return aexpr;
2283 }
2284
2285 /* Based on location BL, create a list of breakpoint conditions to be
2286 passed on to the target. If we have duplicated locations with different
2287 conditions, we will add such conditions to the list. The idea is that the
2288 target will evaluate the list of conditions and will only notify GDB when
2289 one of them is true. */
2290
2291 static void
2292 build_target_condition_list (struct bp_location *bl)
2293 {
2294 struct bp_location **locp = NULL, **loc2p;
2295 int null_condition_or_parse_error = 0;
2296 int modified = bl->needs_update;
2297 struct bp_location *loc;
2298
2299 /* Release conditions left over from a previous insert. */
2300 bl->target_info.conditions.clear ();
2301
2302 /* This is only meaningful if the target is
2303 evaluating conditions and if the user has
2304 opted for condition evaluation on the target's
2305 side. */
2306 if (gdb_evaluates_breakpoint_condition_p ()
2307 || !target_supports_evaluation_of_breakpoint_conditions ())
2308 return;
2309
2310 /* Do a first pass to check for locations with no assigned
2311 conditions or conditions that fail to parse to a valid agent expression
2312 bytecode. If any of these happen, then it's no use to send conditions
2313 to the target since this location will always trigger and generate a
2314 response back to GDB. */
2315 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2316 {
2317 loc = (*loc2p);
2318 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2319 {
2320 if (modified)
2321 {
2322 /* Re-parse the conditions since something changed. In that
2323 case we already freed the condition bytecodes (see
2324 force_breakpoint_reinsertion). We just
2325 need to parse the condition to bytecodes again. */
2326 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2327 loc->cond.get ());
2328 }
2329
2330 /* If we have a NULL bytecode expression, it means something
2331 went wrong or we have a null condition expression. */
2332 if (!loc->cond_bytecode)
2333 {
2334 null_condition_or_parse_error = 1;
2335 break;
2336 }
2337 }
2338 }
2339
2340 /* If any of these happened, it means we will have to evaluate the conditions
2341 for the location's address on gdb's side. It is no use keeping bytecodes
2342 for all the other duplicate locations, thus we free all of them here.
2343
2344 This is so we have a finer control over which locations' conditions are
2345 being evaluated by GDB or the remote stub. */
2346 if (null_condition_or_parse_error)
2347 {
2348 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2349 {
2350 loc = (*loc2p);
2351 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2352 {
2353 /* Only go as far as the first NULL bytecode is
2354 located. */
2355 if (!loc->cond_bytecode)
2356 return;
2357
2358 loc->cond_bytecode.reset ();
2359 }
2360 }
2361 }
2362
2363 /* No NULL conditions or failed bytecode generation. Build a condition list
2364 for this location's address. */
2365 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2366 {
2367 loc = (*loc2p);
2368 if (loc->cond
2369 && is_breakpoint (loc->owner)
2370 && loc->pspace->num == bl->pspace->num
2371 && loc->owner->enable_state == bp_enabled
2372 && loc->enabled)
2373 {
2374 /* Add the condition to the vector. This will be used later
2375 to send the conditions to the target. */
2376 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2377 }
2378 }
2379
2380 return;
2381 }
2382
2383 /* Parses a command described by string CMD into an agent expression
2384 bytecode suitable for evaluation by the bytecode interpreter.
2385 Return NULL if there was any error during parsing. */
2386
2387 static agent_expr_up
2388 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2389 {
2390 struct cleanup *old_cleanups = 0;
2391 struct expression **argvec;
2392 const char *cmdrest;
2393 const char *format_start, *format_end;
2394 struct format_piece *fpieces;
2395 int nargs;
2396 struct gdbarch *gdbarch = get_current_arch ();
2397
2398 if (cmd == NULL)
2399 return NULL;
2400
2401 cmdrest = cmd;
2402
2403 if (*cmdrest == ',')
2404 ++cmdrest;
2405 cmdrest = skip_spaces_const (cmdrest);
2406
2407 if (*cmdrest++ != '"')
2408 error (_("No format string following the location"));
2409
2410 format_start = cmdrest;
2411
2412 fpieces = parse_format_string (&cmdrest);
2413
2414 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2415
2416 format_end = cmdrest;
2417
2418 if (*cmdrest++ != '"')
2419 error (_("Bad format string, non-terminated '\"'."));
2420
2421 cmdrest = skip_spaces_const (cmdrest);
2422
2423 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2424 error (_("Invalid argument syntax"));
2425
2426 if (*cmdrest == ',')
2427 cmdrest++;
2428 cmdrest = skip_spaces_const (cmdrest);
2429
2430 /* For each argument, make an expression. */
2431
2432 argvec = (struct expression **) alloca (strlen (cmd)
2433 * sizeof (struct expression *));
2434
2435 nargs = 0;
2436 while (*cmdrest != '\0')
2437 {
2438 const char *cmd1;
2439
2440 cmd1 = cmdrest;
2441 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2442 argvec[nargs++] = expr.release ();
2443 cmdrest = cmd1;
2444 if (*cmdrest == ',')
2445 ++cmdrest;
2446 }
2447
2448 agent_expr_up aexpr;
2449
2450 /* We don't want to stop processing, so catch any errors
2451 that may show up. */
2452 TRY
2453 {
2454 aexpr = gen_printf (scope, gdbarch, 0, 0,
2455 format_start, format_end - format_start,
2456 fpieces, nargs, argvec);
2457 }
2458 CATCH (ex, RETURN_MASK_ERROR)
2459 {
2460 /* If we got here, it means the command could not be parsed to a valid
2461 bytecode expression and thus can't be evaluated on the target's side.
2462 It's no use iterating through the other commands. */
2463 }
2464 END_CATCH
2465
2466 do_cleanups (old_cleanups);
2467
2468 /* We have a valid agent expression, return it. */
2469 return aexpr;
2470 }
2471
2472 /* Based on location BL, create a list of breakpoint commands to be
2473 passed on to the target. If we have duplicated locations with
2474 different commands, we will add any such to the list. */
2475
2476 static void
2477 build_target_command_list (struct bp_location *bl)
2478 {
2479 struct bp_location **locp = NULL, **loc2p;
2480 int null_command_or_parse_error = 0;
2481 int modified = bl->needs_update;
2482 struct bp_location *loc;
2483
2484 /* Clear commands left over from a previous insert. */
2485 bl->target_info.tcommands.clear ();
2486
2487 if (!target_can_run_breakpoint_commands ())
2488 return;
2489
2490 /* For now, limit to agent-style dprintf breakpoints. */
2491 if (dprintf_style != dprintf_style_agent)
2492 return;
2493
2494 /* For now, if we have any duplicate location that isn't a dprintf,
2495 don't install the target-side commands, as that would make the
2496 breakpoint not be reported to the core, and we'd lose
2497 control. */
2498 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2499 {
2500 loc = (*loc2p);
2501 if (is_breakpoint (loc->owner)
2502 && loc->pspace->num == bl->pspace->num
2503 && loc->owner->type != bp_dprintf)
2504 return;
2505 }
2506
2507 /* Do a first pass to check for locations with no assigned
2508 conditions or conditions that fail to parse to a valid agent expression
2509 bytecode. If any of these happen, then it's no use to send conditions
2510 to the target since this location will always trigger and generate a
2511 response back to GDB. */
2512 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2513 {
2514 loc = (*loc2p);
2515 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2516 {
2517 if (modified)
2518 {
2519 /* Re-parse the commands since something changed. In that
2520 case we already freed the command bytecodes (see
2521 force_breakpoint_reinsertion). We just
2522 need to parse the command to bytecodes again. */
2523 loc->cmd_bytecode
2524 = parse_cmd_to_aexpr (bl->address,
2525 loc->owner->extra_string);
2526 }
2527
2528 /* If we have a NULL bytecode expression, it means something
2529 went wrong or we have a null command expression. */
2530 if (!loc->cmd_bytecode)
2531 {
2532 null_command_or_parse_error = 1;
2533 break;
2534 }
2535 }
2536 }
2537
2538 /* If anything failed, then we're not doing target-side commands,
2539 and so clean up. */
2540 if (null_command_or_parse_error)
2541 {
2542 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2543 {
2544 loc = (*loc2p);
2545 if (is_breakpoint (loc->owner)
2546 && loc->pspace->num == bl->pspace->num)
2547 {
2548 /* Only go as far as the first NULL bytecode is
2549 located. */
2550 if (loc->cmd_bytecode == NULL)
2551 return;
2552
2553 loc->cmd_bytecode.reset ();
2554 }
2555 }
2556 }
2557
2558 /* No NULL commands or failed bytecode generation. Build a command list
2559 for this location's address. */
2560 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2561 {
2562 loc = (*loc2p);
2563 if (loc->owner->extra_string
2564 && is_breakpoint (loc->owner)
2565 && loc->pspace->num == bl->pspace->num
2566 && loc->owner->enable_state == bp_enabled
2567 && loc->enabled)
2568 {
2569 /* Add the command to the vector. This will be used later
2570 to send the commands to the target. */
2571 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2572 }
2573 }
2574
2575 bl->target_info.persist = 0;
2576 /* Maybe flag this location as persistent. */
2577 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2578 bl->target_info.persist = 1;
2579 }
2580
2581 /* Return the kind of breakpoint on address *ADDR. Get the kind
2582 of breakpoint according to ADDR except single-step breakpoint.
2583 Get the kind of single-step breakpoint according to the current
2584 registers state. */
2585
2586 static int
2587 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2588 {
2589 if (bl->owner->type == bp_single_step)
2590 {
2591 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2592 struct regcache *regcache;
2593
2594 regcache = get_thread_regcache (thr->ptid);
2595
2596 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2597 regcache, addr);
2598 }
2599 else
2600 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2601 }
2602
2603 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2604 location. Any error messages are printed to TMP_ERROR_STREAM; and
2605 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2606 Returns 0 for success, 1 if the bp_location type is not supported or
2607 -1 for failure.
2608
2609 NOTE drow/2003-09-09: This routine could be broken down to an
2610 object-style method for each breakpoint or catchpoint type. */
2611 static int
2612 insert_bp_location (struct bp_location *bl,
2613 struct ui_file *tmp_error_stream,
2614 int *disabled_breaks,
2615 int *hw_breakpoint_error,
2616 int *hw_bp_error_explained_already)
2617 {
2618 enum errors bp_err = GDB_NO_ERROR;
2619 const char *bp_err_message = NULL;
2620
2621 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2622 return 0;
2623
2624 /* Note we don't initialize bl->target_info, as that wipes out
2625 the breakpoint location's shadow_contents if the breakpoint
2626 is still inserted at that location. This in turn breaks
2627 target_read_memory which depends on these buffers when
2628 a memory read is requested at the breakpoint location:
2629 Once the target_info has been wiped, we fail to see that
2630 we have a breakpoint inserted at that address and thus
2631 read the breakpoint instead of returning the data saved in
2632 the breakpoint location's shadow contents. */
2633 bl->target_info.reqstd_address = bl->address;
2634 bl->target_info.placed_address_space = bl->pspace->aspace;
2635 bl->target_info.length = bl->length;
2636
2637 /* When working with target-side conditions, we must pass all the conditions
2638 for the same breakpoint address down to the target since GDB will not
2639 insert those locations. With a list of breakpoint conditions, the target
2640 can decide when to stop and notify GDB. */
2641
2642 if (is_breakpoint (bl->owner))
2643 {
2644 build_target_condition_list (bl);
2645 build_target_command_list (bl);
2646 /* Reset the modification marker. */
2647 bl->needs_update = 0;
2648 }
2649
2650 if (bl->loc_type == bp_loc_software_breakpoint
2651 || bl->loc_type == bp_loc_hardware_breakpoint)
2652 {
2653 if (bl->owner->type != bp_hardware_breakpoint)
2654 {
2655 /* If the explicitly specified breakpoint type
2656 is not hardware breakpoint, check the memory map to see
2657 if the breakpoint address is in read only memory or not.
2658
2659 Two important cases are:
2660 - location type is not hardware breakpoint, memory
2661 is readonly. We change the type of the location to
2662 hardware breakpoint.
2663 - location type is hardware breakpoint, memory is
2664 read-write. This means we've previously made the
2665 location hardware one, but then the memory map changed,
2666 so we undo.
2667
2668 When breakpoints are removed, remove_breakpoints will use
2669 location types we've just set here, the only possible
2670 problem is that memory map has changed during running
2671 program, but it's not going to work anyway with current
2672 gdb. */
2673 struct mem_region *mr
2674 = lookup_mem_region (bl->target_info.reqstd_address);
2675
2676 if (mr)
2677 {
2678 if (automatic_hardware_breakpoints)
2679 {
2680 enum bp_loc_type new_type;
2681
2682 if (mr->attrib.mode != MEM_RW)
2683 new_type = bp_loc_hardware_breakpoint;
2684 else
2685 new_type = bp_loc_software_breakpoint;
2686
2687 if (new_type != bl->loc_type)
2688 {
2689 static int said = 0;
2690
2691 bl->loc_type = new_type;
2692 if (!said)
2693 {
2694 fprintf_filtered (gdb_stdout,
2695 _("Note: automatically using "
2696 "hardware breakpoints for "
2697 "read-only addresses.\n"));
2698 said = 1;
2699 }
2700 }
2701 }
2702 else if (bl->loc_type == bp_loc_software_breakpoint
2703 && mr->attrib.mode != MEM_RW)
2704 {
2705 fprintf_unfiltered (tmp_error_stream,
2706 _("Cannot insert breakpoint %d.\n"
2707 "Cannot set software breakpoint "
2708 "at read-only address %s\n"),
2709 bl->owner->number,
2710 paddress (bl->gdbarch, bl->address));
2711 return 1;
2712 }
2713 }
2714 }
2715
2716 /* First check to see if we have to handle an overlay. */
2717 if (overlay_debugging == ovly_off
2718 || bl->section == NULL
2719 || !(section_is_overlay (bl->section)))
2720 {
2721 /* No overlay handling: just set the breakpoint. */
2722 TRY
2723 {
2724 int val;
2725
2726 val = bl->owner->ops->insert_location (bl);
2727 if (val)
2728 bp_err = GENERIC_ERROR;
2729 }
2730 CATCH (e, RETURN_MASK_ALL)
2731 {
2732 bp_err = e.error;
2733 bp_err_message = e.message;
2734 }
2735 END_CATCH
2736 }
2737 else
2738 {
2739 /* This breakpoint is in an overlay section.
2740 Shall we set a breakpoint at the LMA? */
2741 if (!overlay_events_enabled)
2742 {
2743 /* Yes -- overlay event support is not active,
2744 so we must try to set a breakpoint at the LMA.
2745 This will not work for a hardware breakpoint. */
2746 if (bl->loc_type == bp_loc_hardware_breakpoint)
2747 warning (_("hardware breakpoint %d not supported in overlay!"),
2748 bl->owner->number);
2749 else
2750 {
2751 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2752 bl->section);
2753 /* Set a software (trap) breakpoint at the LMA. */
2754 bl->overlay_target_info = bl->target_info;
2755 bl->overlay_target_info.reqstd_address = addr;
2756
2757 /* No overlay handling: just set the breakpoint. */
2758 TRY
2759 {
2760 int val;
2761
2762 bl->overlay_target_info.kind
2763 = breakpoint_kind (bl, &addr);
2764 bl->overlay_target_info.placed_address = addr;
2765 val = target_insert_breakpoint (bl->gdbarch,
2766 &bl->overlay_target_info);
2767 if (val)
2768 bp_err = GENERIC_ERROR;
2769 }
2770 CATCH (e, RETURN_MASK_ALL)
2771 {
2772 bp_err = e.error;
2773 bp_err_message = e.message;
2774 }
2775 END_CATCH
2776
2777 if (bp_err != GDB_NO_ERROR)
2778 fprintf_unfiltered (tmp_error_stream,
2779 "Overlay breakpoint %d "
2780 "failed: in ROM?\n",
2781 bl->owner->number);
2782 }
2783 }
2784 /* Shall we set a breakpoint at the VMA? */
2785 if (section_is_mapped (bl->section))
2786 {
2787 /* Yes. This overlay section is mapped into memory. */
2788 TRY
2789 {
2790 int val;
2791
2792 val = bl->owner->ops->insert_location (bl);
2793 if (val)
2794 bp_err = GENERIC_ERROR;
2795 }
2796 CATCH (e, RETURN_MASK_ALL)
2797 {
2798 bp_err = e.error;
2799 bp_err_message = e.message;
2800 }
2801 END_CATCH
2802 }
2803 else
2804 {
2805 /* No. This breakpoint will not be inserted.
2806 No error, but do not mark the bp as 'inserted'. */
2807 return 0;
2808 }
2809 }
2810
2811 if (bp_err != GDB_NO_ERROR)
2812 {
2813 /* Can't set the breakpoint. */
2814
2815 /* In some cases, we might not be able to insert a
2816 breakpoint in a shared library that has already been
2817 removed, but we have not yet processed the shlib unload
2818 event. Unfortunately, some targets that implement
2819 breakpoint insertion themselves can't tell why the
2820 breakpoint insertion failed (e.g., the remote target
2821 doesn't define error codes), so we must treat generic
2822 errors as memory errors. */
2823 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2824 && bl->loc_type == bp_loc_software_breakpoint
2825 && (solib_name_from_address (bl->pspace, bl->address)
2826 || shared_objfile_contains_address_p (bl->pspace,
2827 bl->address)))
2828 {
2829 /* See also: disable_breakpoints_in_shlibs. */
2830 bl->shlib_disabled = 1;
2831 observer_notify_breakpoint_modified (bl->owner);
2832 if (!*disabled_breaks)
2833 {
2834 fprintf_unfiltered (tmp_error_stream,
2835 "Cannot insert breakpoint %d.\n",
2836 bl->owner->number);
2837 fprintf_unfiltered (tmp_error_stream,
2838 "Temporarily disabling shared "
2839 "library breakpoints:\n");
2840 }
2841 *disabled_breaks = 1;
2842 fprintf_unfiltered (tmp_error_stream,
2843 "breakpoint #%d\n", bl->owner->number);
2844 return 0;
2845 }
2846 else
2847 {
2848 if (bl->loc_type == bp_loc_hardware_breakpoint)
2849 {
2850 *hw_breakpoint_error = 1;
2851 *hw_bp_error_explained_already = bp_err_message != NULL;
2852 fprintf_unfiltered (tmp_error_stream,
2853 "Cannot insert hardware breakpoint %d%s",
2854 bl->owner->number, bp_err_message ? ":" : ".\n");
2855 if (bp_err_message != NULL)
2856 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2857 }
2858 else
2859 {
2860 if (bp_err_message == NULL)
2861 {
2862 char *message
2863 = memory_error_message (TARGET_XFER_E_IO,
2864 bl->gdbarch, bl->address);
2865 struct cleanup *old_chain = make_cleanup (xfree, message);
2866
2867 fprintf_unfiltered (tmp_error_stream,
2868 "Cannot insert breakpoint %d.\n"
2869 "%s\n",
2870 bl->owner->number, message);
2871 do_cleanups (old_chain);
2872 }
2873 else
2874 {
2875 fprintf_unfiltered (tmp_error_stream,
2876 "Cannot insert breakpoint %d: %s\n",
2877 bl->owner->number,
2878 bp_err_message);
2879 }
2880 }
2881 return 1;
2882
2883 }
2884 }
2885 else
2886 bl->inserted = 1;
2887
2888 return 0;
2889 }
2890
2891 else if (bl->loc_type == bp_loc_hardware_watchpoint
2892 /* NOTE drow/2003-09-08: This state only exists for removing
2893 watchpoints. It's not clear that it's necessary... */
2894 && bl->owner->disposition != disp_del_at_next_stop)
2895 {
2896 int val;
2897
2898 gdb_assert (bl->owner->ops != NULL
2899 && bl->owner->ops->insert_location != NULL);
2900
2901 val = bl->owner->ops->insert_location (bl);
2902
2903 /* If trying to set a read-watchpoint, and it turns out it's not
2904 supported, try emulating one with an access watchpoint. */
2905 if (val == 1 && bl->watchpoint_type == hw_read)
2906 {
2907 struct bp_location *loc, **loc_temp;
2908
2909 /* But don't try to insert it, if there's already another
2910 hw_access location that would be considered a duplicate
2911 of this one. */
2912 ALL_BP_LOCATIONS (loc, loc_temp)
2913 if (loc != bl
2914 && loc->watchpoint_type == hw_access
2915 && watchpoint_locations_match (bl, loc))
2916 {
2917 bl->duplicate = 1;
2918 bl->inserted = 1;
2919 bl->target_info = loc->target_info;
2920 bl->watchpoint_type = hw_access;
2921 val = 0;
2922 break;
2923 }
2924
2925 if (val == 1)
2926 {
2927 bl->watchpoint_type = hw_access;
2928 val = bl->owner->ops->insert_location (bl);
2929
2930 if (val)
2931 /* Back to the original value. */
2932 bl->watchpoint_type = hw_read;
2933 }
2934 }
2935
2936 bl->inserted = (val == 0);
2937 }
2938
2939 else if (bl->owner->type == bp_catchpoint)
2940 {
2941 int val;
2942
2943 gdb_assert (bl->owner->ops != NULL
2944 && bl->owner->ops->insert_location != NULL);
2945
2946 val = bl->owner->ops->insert_location (bl);
2947 if (val)
2948 {
2949 bl->owner->enable_state = bp_disabled;
2950
2951 if (val == 1)
2952 warning (_("\
2953 Error inserting catchpoint %d: Your system does not support this type\n\
2954 of catchpoint."), bl->owner->number);
2955 else
2956 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2957 }
2958
2959 bl->inserted = (val == 0);
2960
2961 /* We've already printed an error message if there was a problem
2962 inserting this catchpoint, and we've disabled the catchpoint,
2963 so just return success. */
2964 return 0;
2965 }
2966
2967 return 0;
2968 }
2969
2970 /* This function is called when program space PSPACE is about to be
2971 deleted. It takes care of updating breakpoints to not reference
2972 PSPACE anymore. */
2973
2974 void
2975 breakpoint_program_space_exit (struct program_space *pspace)
2976 {
2977 struct breakpoint *b, *b_temp;
2978 struct bp_location *loc, **loc_temp;
2979
2980 /* Remove any breakpoint that was set through this program space. */
2981 ALL_BREAKPOINTS_SAFE (b, b_temp)
2982 {
2983 if (b->pspace == pspace)
2984 delete_breakpoint (b);
2985 }
2986
2987 /* Breakpoints set through other program spaces could have locations
2988 bound to PSPACE as well. Remove those. */
2989 ALL_BP_LOCATIONS (loc, loc_temp)
2990 {
2991 struct bp_location *tmp;
2992
2993 if (loc->pspace == pspace)
2994 {
2995 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2996 if (loc->owner->loc == loc)
2997 loc->owner->loc = loc->next;
2998 else
2999 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
3000 if (tmp->next == loc)
3001 {
3002 tmp->next = loc->next;
3003 break;
3004 }
3005 }
3006 }
3007
3008 /* Now update the global location list to permanently delete the
3009 removed locations above. */
3010 update_global_location_list (UGLL_DONT_INSERT);
3011 }
3012
3013 /* Make sure all breakpoints are inserted in inferior.
3014 Throws exception on any error.
3015 A breakpoint that is already inserted won't be inserted
3016 again, so calling this function twice is safe. */
3017 void
3018 insert_breakpoints (void)
3019 {
3020 struct breakpoint *bpt;
3021
3022 ALL_BREAKPOINTS (bpt)
3023 if (is_hardware_watchpoint (bpt))
3024 {
3025 struct watchpoint *w = (struct watchpoint *) bpt;
3026
3027 update_watchpoint (w, 0 /* don't reparse. */);
3028 }
3029
3030 /* Updating watchpoints creates new locations, so update the global
3031 location list. Explicitly tell ugll to insert locations and
3032 ignore breakpoints_always_inserted_mode. */
3033 update_global_location_list (UGLL_INSERT);
3034 }
3035
3036 /* Invoke CALLBACK for each of bp_location. */
3037
3038 void
3039 iterate_over_bp_locations (walk_bp_location_callback callback)
3040 {
3041 struct bp_location *loc, **loc_tmp;
3042
3043 ALL_BP_LOCATIONS (loc, loc_tmp)
3044 {
3045 callback (loc, NULL);
3046 }
3047 }
3048
3049 /* This is used when we need to synch breakpoint conditions between GDB and the
3050 target. It is the case with deleting and disabling of breakpoints when using
3051 always-inserted mode. */
3052
3053 static void
3054 update_inserted_breakpoint_locations (void)
3055 {
3056 struct bp_location *bl, **blp_tmp;
3057 int error_flag = 0;
3058 int val = 0;
3059 int disabled_breaks = 0;
3060 int hw_breakpoint_error = 0;
3061 int hw_bp_details_reported = 0;
3062
3063 string_file tmp_error_stream;
3064
3065 /* Explicitly mark the warning -- this will only be printed if
3066 there was an error. */
3067 tmp_error_stream.puts ("Warning:\n");
3068
3069 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3070
3071 ALL_BP_LOCATIONS (bl, blp_tmp)
3072 {
3073 /* We only want to update software breakpoints and hardware
3074 breakpoints. */
3075 if (!is_breakpoint (bl->owner))
3076 continue;
3077
3078 /* We only want to update locations that are already inserted
3079 and need updating. This is to avoid unwanted insertion during
3080 deletion of breakpoints. */
3081 if (!bl->inserted || (bl->inserted && !bl->needs_update))
3082 continue;
3083
3084 switch_to_program_space_and_thread (bl->pspace);
3085
3086 /* For targets that support global breakpoints, there's no need
3087 to select an inferior to insert breakpoint to. In fact, even
3088 if we aren't attached to any process yet, we should still
3089 insert breakpoints. */
3090 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3091 && ptid_equal (inferior_ptid, null_ptid))
3092 continue;
3093
3094 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
3095 &hw_breakpoint_error, &hw_bp_details_reported);
3096 if (val)
3097 error_flag = val;
3098 }
3099
3100 if (error_flag)
3101 {
3102 target_terminal_ours_for_output ();
3103 error_stream (tmp_error_stream);
3104 }
3105 }
3106
3107 /* Used when starting or continuing the program. */
3108
3109 static void
3110 insert_breakpoint_locations (void)
3111 {
3112 struct breakpoint *bpt;
3113 struct bp_location *bl, **blp_tmp;
3114 int error_flag = 0;
3115 int val = 0;
3116 int disabled_breaks = 0;
3117 int hw_breakpoint_error = 0;
3118 int hw_bp_error_explained_already = 0;
3119
3120 string_file tmp_error_stream;
3121
3122 /* Explicitly mark the warning -- this will only be printed if
3123 there was an error. */
3124 tmp_error_stream.puts ("Warning:\n");
3125
3126 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3127
3128 ALL_BP_LOCATIONS (bl, blp_tmp)
3129 {
3130 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
3131 continue;
3132
3133 /* There is no point inserting thread-specific breakpoints if
3134 the thread no longer exists. ALL_BP_LOCATIONS bp_location
3135 has BL->OWNER always non-NULL. */
3136 if (bl->owner->thread != -1
3137 && !valid_global_thread_id (bl->owner->thread))
3138 continue;
3139
3140 switch_to_program_space_and_thread (bl->pspace);
3141
3142 /* For targets that support global breakpoints, there's no need
3143 to select an inferior to insert breakpoint to. In fact, even
3144 if we aren't attached to any process yet, we should still
3145 insert breakpoints. */
3146 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3147 && ptid_equal (inferior_ptid, null_ptid))
3148 continue;
3149
3150 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
3151 &hw_breakpoint_error, &hw_bp_error_explained_already);
3152 if (val)
3153 error_flag = val;
3154 }
3155
3156 /* If we failed to insert all locations of a watchpoint, remove
3157 them, as half-inserted watchpoint is of limited use. */
3158 ALL_BREAKPOINTS (bpt)
3159 {
3160 int some_failed = 0;
3161 struct bp_location *loc;
3162
3163 if (!is_hardware_watchpoint (bpt))
3164 continue;
3165
3166 if (!breakpoint_enabled (bpt))
3167 continue;
3168
3169 if (bpt->disposition == disp_del_at_next_stop)
3170 continue;
3171
3172 for (loc = bpt->loc; loc; loc = loc->next)
3173 if (!loc->inserted && should_be_inserted (loc))
3174 {
3175 some_failed = 1;
3176 break;
3177 }
3178 if (some_failed)
3179 {
3180 for (loc = bpt->loc; loc; loc = loc->next)
3181 if (loc->inserted)
3182 remove_breakpoint (loc);
3183
3184 hw_breakpoint_error = 1;
3185 tmp_error_stream.printf ("Could not insert "
3186 "hardware watchpoint %d.\n",
3187 bpt->number);
3188 error_flag = -1;
3189 }
3190 }
3191
3192 if (error_flag)
3193 {
3194 /* If a hardware breakpoint or watchpoint was inserted, add a
3195 message about possibly exhausted resources. */
3196 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3197 {
3198 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3199 You may have requested too many hardware breakpoints/watchpoints.\n");
3200 }
3201 target_terminal_ours_for_output ();
3202 error_stream (tmp_error_stream);
3203 }
3204 }
3205
3206 /* Used when the program stops.
3207 Returns zero if successful, or non-zero if there was a problem
3208 removing a breakpoint location. */
3209
3210 int
3211 remove_breakpoints (void)
3212 {
3213 struct bp_location *bl, **blp_tmp;
3214 int val = 0;
3215
3216 ALL_BP_LOCATIONS (bl, blp_tmp)
3217 {
3218 if (bl->inserted && !is_tracepoint (bl->owner))
3219 val |= remove_breakpoint (bl);
3220 }
3221 return val;
3222 }
3223
3224 /* When a thread exits, remove breakpoints that are related to
3225 that thread. */
3226
3227 static void
3228 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3229 {
3230 struct breakpoint *b, *b_tmp;
3231
3232 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3233 {
3234 if (b->thread == tp->global_num && user_breakpoint_p (b))
3235 {
3236 b->disposition = disp_del_at_next_stop;
3237
3238 printf_filtered (_("\
3239 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3240 b->number, print_thread_id (tp));
3241
3242 /* Hide it from the user. */
3243 b->number = 0;
3244 }
3245 }
3246 }
3247
3248 /* Remove breakpoints of process PID. */
3249
3250 int
3251 remove_breakpoints_pid (int pid)
3252 {
3253 struct bp_location *bl, **blp_tmp;
3254 int val;
3255 struct inferior *inf = find_inferior_pid (pid);
3256
3257 ALL_BP_LOCATIONS (bl, blp_tmp)
3258 {
3259 if (bl->pspace != inf->pspace)
3260 continue;
3261
3262 if (bl->inserted && !bl->target_info.persist)
3263 {
3264 val = remove_breakpoint (bl);
3265 if (val != 0)
3266 return val;
3267 }
3268 }
3269 return 0;
3270 }
3271
3272 int
3273 reattach_breakpoints (int pid)
3274 {
3275 struct cleanup *old_chain;
3276 struct bp_location *bl, **blp_tmp;
3277 int val;
3278 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3279 struct inferior *inf;
3280 struct thread_info *tp;
3281
3282 tp = any_live_thread_of_process (pid);
3283 if (tp == NULL)
3284 return 1;
3285
3286 inf = find_inferior_pid (pid);
3287 old_chain = save_inferior_ptid ();
3288
3289 inferior_ptid = tp->ptid;
3290
3291 string_file tmp_error_stream;
3292
3293 ALL_BP_LOCATIONS (bl, blp_tmp)
3294 {
3295 if (bl->pspace != inf->pspace)
3296 continue;
3297
3298 if (bl->inserted)
3299 {
3300 bl->inserted = 0;
3301 val = insert_bp_location (bl, &tmp_error_stream, &dummy1, &dummy2, &dummy3);
3302 if (val != 0)
3303 {
3304 do_cleanups (old_chain);
3305 return val;
3306 }
3307 }
3308 }
3309 do_cleanups (old_chain);
3310 return 0;
3311 }
3312
3313 static int internal_breakpoint_number = -1;
3314
3315 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3316 If INTERNAL is non-zero, the breakpoint number will be populated
3317 from internal_breakpoint_number and that variable decremented.
3318 Otherwise the breakpoint number will be populated from
3319 breakpoint_count and that value incremented. Internal breakpoints
3320 do not set the internal var bpnum. */
3321 static void
3322 set_breakpoint_number (int internal, struct breakpoint *b)
3323 {
3324 if (internal)
3325 b->number = internal_breakpoint_number--;
3326 else
3327 {
3328 set_breakpoint_count (breakpoint_count + 1);
3329 b->number = breakpoint_count;
3330 }
3331 }
3332
3333 static struct breakpoint *
3334 create_internal_breakpoint (struct gdbarch *gdbarch,
3335 CORE_ADDR address, enum bptype type,
3336 const struct breakpoint_ops *ops)
3337 {
3338 struct symtab_and_line sal;
3339 struct breakpoint *b;
3340
3341 init_sal (&sal); /* Initialize to zeroes. */
3342
3343 sal.pc = address;
3344 sal.section = find_pc_overlay (sal.pc);
3345 sal.pspace = current_program_space;
3346
3347 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3348 b->number = internal_breakpoint_number--;
3349 b->disposition = disp_donttouch;
3350
3351 return b;
3352 }
3353
3354 static const char *const longjmp_names[] =
3355 {
3356 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3357 };
3358 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3359
3360 /* Per-objfile data private to breakpoint.c. */
3361 struct breakpoint_objfile_data
3362 {
3363 /* Minimal symbol for "_ovly_debug_event" (if any). */
3364 struct bound_minimal_symbol overlay_msym;
3365
3366 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3367 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3368
3369 /* True if we have looked for longjmp probes. */
3370 int longjmp_searched;
3371
3372 /* SystemTap probe points for longjmp (if any). */
3373 VEC (probe_p) *longjmp_probes;
3374
3375 /* Minimal symbol for "std::terminate()" (if any). */
3376 struct bound_minimal_symbol terminate_msym;
3377
3378 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3379 struct bound_minimal_symbol exception_msym;
3380
3381 /* True if we have looked for exception probes. */
3382 int exception_searched;
3383
3384 /* SystemTap probe points for unwinding (if any). */
3385 VEC (probe_p) *exception_probes;
3386 };
3387
3388 static const struct objfile_data *breakpoint_objfile_key;
3389
3390 /* Minimal symbol not found sentinel. */
3391 static struct minimal_symbol msym_not_found;
3392
3393 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3394
3395 static int
3396 msym_not_found_p (const struct minimal_symbol *msym)
3397 {
3398 return msym == &msym_not_found;
3399 }
3400
3401 /* Return per-objfile data needed by breakpoint.c.
3402 Allocate the data if necessary. */
3403
3404 static struct breakpoint_objfile_data *
3405 get_breakpoint_objfile_data (struct objfile *objfile)
3406 {
3407 struct breakpoint_objfile_data *bp_objfile_data;
3408
3409 bp_objfile_data = ((struct breakpoint_objfile_data *)
3410 objfile_data (objfile, breakpoint_objfile_key));
3411 if (bp_objfile_data == NULL)
3412 {
3413 bp_objfile_data =
3414 XOBNEW (&objfile->objfile_obstack, struct breakpoint_objfile_data);
3415
3416 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3417 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3418 }
3419 return bp_objfile_data;
3420 }
3421
3422 static void
3423 free_breakpoint_probes (struct objfile *obj, void *data)
3424 {
3425 struct breakpoint_objfile_data *bp_objfile_data
3426 = (struct breakpoint_objfile_data *) data;
3427
3428 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3429 VEC_free (probe_p, bp_objfile_data->exception_probes);
3430 }
3431
3432 static void
3433 create_overlay_event_breakpoint (void)
3434 {
3435 struct objfile *objfile;
3436 const char *const func_name = "_ovly_debug_event";
3437
3438 ALL_OBJFILES (objfile)
3439 {
3440 struct breakpoint *b;
3441 struct breakpoint_objfile_data *bp_objfile_data;
3442 CORE_ADDR addr;
3443 struct explicit_location explicit_loc;
3444
3445 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3446
3447 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3448 continue;
3449
3450 if (bp_objfile_data->overlay_msym.minsym == NULL)
3451 {
3452 struct bound_minimal_symbol m;
3453
3454 m = lookup_minimal_symbol_text (func_name, objfile);
3455 if (m.minsym == NULL)
3456 {
3457 /* Avoid future lookups in this objfile. */
3458 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3459 continue;
3460 }
3461 bp_objfile_data->overlay_msym = m;
3462 }
3463
3464 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3465 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3466 bp_overlay_event,
3467 &internal_breakpoint_ops);
3468 initialize_explicit_location (&explicit_loc);
3469 explicit_loc.function_name = ASTRDUP (func_name);
3470 b->location = new_explicit_location (&explicit_loc);
3471
3472 if (overlay_debugging == ovly_auto)
3473 {
3474 b->enable_state = bp_enabled;
3475 overlay_events_enabled = 1;
3476 }
3477 else
3478 {
3479 b->enable_state = bp_disabled;
3480 overlay_events_enabled = 0;
3481 }
3482 }
3483 }
3484
3485 static void
3486 create_longjmp_master_breakpoint (void)
3487 {
3488 struct program_space *pspace;
3489
3490 scoped_restore_current_program_space restore_pspace;
3491
3492 ALL_PSPACES (pspace)
3493 {
3494 struct objfile *objfile;
3495
3496 set_current_program_space (pspace);
3497
3498 ALL_OBJFILES (objfile)
3499 {
3500 int i;
3501 struct gdbarch *gdbarch;
3502 struct breakpoint_objfile_data *bp_objfile_data;
3503
3504 gdbarch = get_objfile_arch (objfile);
3505
3506 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3507
3508 if (!bp_objfile_data->longjmp_searched)
3509 {
3510 VEC (probe_p) *ret;
3511
3512 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3513 if (ret != NULL)
3514 {
3515 /* We are only interested in checking one element. */
3516 struct probe *p = VEC_index (probe_p, ret, 0);
3517
3518 if (!can_evaluate_probe_arguments (p))
3519 {
3520 /* We cannot use the probe interface here, because it does
3521 not know how to evaluate arguments. */
3522 VEC_free (probe_p, ret);
3523 ret = NULL;
3524 }
3525 }
3526 bp_objfile_data->longjmp_probes = ret;
3527 bp_objfile_data->longjmp_searched = 1;
3528 }
3529
3530 if (bp_objfile_data->longjmp_probes != NULL)
3531 {
3532 int i;
3533 struct probe *probe;
3534 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3535
3536 for (i = 0;
3537 VEC_iterate (probe_p,
3538 bp_objfile_data->longjmp_probes,
3539 i, probe);
3540 ++i)
3541 {
3542 struct breakpoint *b;
3543
3544 b = create_internal_breakpoint (gdbarch,
3545 get_probe_address (probe,
3546 objfile),
3547 bp_longjmp_master,
3548 &internal_breakpoint_ops);
3549 b->location = new_probe_location ("-probe-stap libc:longjmp");
3550 b->enable_state = bp_disabled;
3551 }
3552
3553 continue;
3554 }
3555
3556 if (!gdbarch_get_longjmp_target_p (gdbarch))
3557 continue;
3558
3559 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3560 {
3561 struct breakpoint *b;
3562 const char *func_name;
3563 CORE_ADDR addr;
3564 struct explicit_location explicit_loc;
3565
3566 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3567 continue;
3568
3569 func_name = longjmp_names[i];
3570 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3571 {
3572 struct bound_minimal_symbol m;
3573
3574 m = lookup_minimal_symbol_text (func_name, objfile);
3575 if (m.minsym == NULL)
3576 {
3577 /* Prevent future lookups in this objfile. */
3578 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3579 continue;
3580 }
3581 bp_objfile_data->longjmp_msym[i] = m;
3582 }
3583
3584 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3585 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3586 &internal_breakpoint_ops);
3587 initialize_explicit_location (&explicit_loc);
3588 explicit_loc.function_name = ASTRDUP (func_name);
3589 b->location = new_explicit_location (&explicit_loc);
3590 b->enable_state = bp_disabled;
3591 }
3592 }
3593 }
3594 }
3595
3596 /* Create a master std::terminate breakpoint. */
3597 static void
3598 create_std_terminate_master_breakpoint (void)
3599 {
3600 struct program_space *pspace;
3601 const char *const func_name = "std::terminate()";
3602
3603 scoped_restore_current_program_space restore_pspace;
3604
3605 ALL_PSPACES (pspace)
3606 {
3607 struct objfile *objfile;
3608 CORE_ADDR addr;
3609
3610 set_current_program_space (pspace);
3611
3612 ALL_OBJFILES (objfile)
3613 {
3614 struct breakpoint *b;
3615 struct breakpoint_objfile_data *bp_objfile_data;
3616 struct explicit_location explicit_loc;
3617
3618 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3619
3620 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3621 continue;
3622
3623 if (bp_objfile_data->terminate_msym.minsym == NULL)
3624 {
3625 struct bound_minimal_symbol m;
3626
3627 m = lookup_minimal_symbol (func_name, NULL, objfile);
3628 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3629 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3630 {
3631 /* Prevent future lookups in this objfile. */
3632 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3633 continue;
3634 }
3635 bp_objfile_data->terminate_msym = m;
3636 }
3637
3638 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3639 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3640 bp_std_terminate_master,
3641 &internal_breakpoint_ops);
3642 initialize_explicit_location (&explicit_loc);
3643 explicit_loc.function_name = ASTRDUP (func_name);
3644 b->location = new_explicit_location (&explicit_loc);
3645 b->enable_state = bp_disabled;
3646 }
3647 }
3648 }
3649
3650 /* Install a master breakpoint on the unwinder's debug hook. */
3651
3652 static void
3653 create_exception_master_breakpoint (void)
3654 {
3655 struct objfile *objfile;
3656 const char *const func_name = "_Unwind_DebugHook";
3657
3658 ALL_OBJFILES (objfile)
3659 {
3660 struct breakpoint *b;
3661 struct gdbarch *gdbarch;
3662 struct breakpoint_objfile_data *bp_objfile_data;
3663 CORE_ADDR addr;
3664 struct explicit_location explicit_loc;
3665
3666 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3667
3668 /* We prefer the SystemTap probe point if it exists. */
3669 if (!bp_objfile_data->exception_searched)
3670 {
3671 VEC (probe_p) *ret;
3672
3673 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3674
3675 if (ret != NULL)
3676 {
3677 /* We are only interested in checking one element. */
3678 struct probe *p = VEC_index (probe_p, ret, 0);
3679
3680 if (!can_evaluate_probe_arguments (p))
3681 {
3682 /* We cannot use the probe interface here, because it does
3683 not know how to evaluate arguments. */
3684 VEC_free (probe_p, ret);
3685 ret = NULL;
3686 }
3687 }
3688 bp_objfile_data->exception_probes = ret;
3689 bp_objfile_data->exception_searched = 1;
3690 }
3691
3692 if (bp_objfile_data->exception_probes != NULL)
3693 {
3694 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3695 int i;
3696 struct probe *probe;
3697
3698 for (i = 0;
3699 VEC_iterate (probe_p,
3700 bp_objfile_data->exception_probes,
3701 i, probe);
3702 ++i)
3703 {
3704 struct breakpoint *b;
3705
3706 b = create_internal_breakpoint (gdbarch,
3707 get_probe_address (probe,
3708 objfile),
3709 bp_exception_master,
3710 &internal_breakpoint_ops);
3711 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3712 b->enable_state = bp_disabled;
3713 }
3714
3715 continue;
3716 }
3717
3718 /* Otherwise, try the hook function. */
3719
3720 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3721 continue;
3722
3723 gdbarch = get_objfile_arch (objfile);
3724
3725 if (bp_objfile_data->exception_msym.minsym == NULL)
3726 {
3727 struct bound_minimal_symbol debug_hook;
3728
3729 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3730 if (debug_hook.minsym == NULL)
3731 {
3732 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3733 continue;
3734 }
3735
3736 bp_objfile_data->exception_msym = debug_hook;
3737 }
3738
3739 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3740 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3741 &current_target);
3742 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3743 &internal_breakpoint_ops);
3744 initialize_explicit_location (&explicit_loc);
3745 explicit_loc.function_name = ASTRDUP (func_name);
3746 b->location = new_explicit_location (&explicit_loc);
3747 b->enable_state = bp_disabled;
3748 }
3749 }
3750
3751 /* Does B have a location spec? */
3752
3753 static int
3754 breakpoint_event_location_empty_p (const struct breakpoint *b)
3755 {
3756 return b->location != NULL && event_location_empty_p (b->location.get ());
3757 }
3758
3759 void
3760 update_breakpoints_after_exec (void)
3761 {
3762 struct breakpoint *b, *b_tmp;
3763 struct bp_location *bploc, **bplocp_tmp;
3764
3765 /* We're about to delete breakpoints from GDB's lists. If the
3766 INSERTED flag is true, GDB will try to lift the breakpoints by
3767 writing the breakpoints' "shadow contents" back into memory. The
3768 "shadow contents" are NOT valid after an exec, so GDB should not
3769 do that. Instead, the target is responsible from marking
3770 breakpoints out as soon as it detects an exec. We don't do that
3771 here instead, because there may be other attempts to delete
3772 breakpoints after detecting an exec and before reaching here. */
3773 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3774 if (bploc->pspace == current_program_space)
3775 gdb_assert (!bploc->inserted);
3776
3777 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3778 {
3779 if (b->pspace != current_program_space)
3780 continue;
3781
3782 /* Solib breakpoints must be explicitly reset after an exec(). */
3783 if (b->type == bp_shlib_event)
3784 {
3785 delete_breakpoint (b);
3786 continue;
3787 }
3788
3789 /* JIT breakpoints must be explicitly reset after an exec(). */
3790 if (b->type == bp_jit_event)
3791 {
3792 delete_breakpoint (b);
3793 continue;
3794 }
3795
3796 /* Thread event breakpoints must be set anew after an exec(),
3797 as must overlay event and longjmp master breakpoints. */
3798 if (b->type == bp_thread_event || b->type == bp_overlay_event
3799 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3800 || b->type == bp_exception_master)
3801 {
3802 delete_breakpoint (b);
3803 continue;
3804 }
3805
3806 /* Step-resume breakpoints are meaningless after an exec(). */
3807 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3808 {
3809 delete_breakpoint (b);
3810 continue;
3811 }
3812
3813 /* Just like single-step breakpoints. */
3814 if (b->type == bp_single_step)
3815 {
3816 delete_breakpoint (b);
3817 continue;
3818 }
3819
3820 /* Longjmp and longjmp-resume breakpoints are also meaningless
3821 after an exec. */
3822 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3823 || b->type == bp_longjmp_call_dummy
3824 || b->type == bp_exception || b->type == bp_exception_resume)
3825 {
3826 delete_breakpoint (b);
3827 continue;
3828 }
3829
3830 if (b->type == bp_catchpoint)
3831 {
3832 /* For now, none of the bp_catchpoint breakpoints need to
3833 do anything at this point. In the future, if some of
3834 the catchpoints need to something, we will need to add
3835 a new method, and call this method from here. */
3836 continue;
3837 }
3838
3839 /* bp_finish is a special case. The only way we ought to be able
3840 to see one of these when an exec() has happened, is if the user
3841 caught a vfork, and then said "finish". Ordinarily a finish just
3842 carries them to the call-site of the current callee, by setting
3843 a temporary bp there and resuming. But in this case, the finish
3844 will carry them entirely through the vfork & exec.
3845
3846 We don't want to allow a bp_finish to remain inserted now. But
3847 we can't safely delete it, 'cause finish_command has a handle to
3848 the bp on a bpstat, and will later want to delete it. There's a
3849 chance (and I've seen it happen) that if we delete the bp_finish
3850 here, that its storage will get reused by the time finish_command
3851 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3852 We really must allow finish_command to delete a bp_finish.
3853
3854 In the absence of a general solution for the "how do we know
3855 it's safe to delete something others may have handles to?"
3856 problem, what we'll do here is just uninsert the bp_finish, and
3857 let finish_command delete it.
3858
3859 (We know the bp_finish is "doomed" in the sense that it's
3860 momentary, and will be deleted as soon as finish_command sees
3861 the inferior stopped. So it doesn't matter that the bp's
3862 address is probably bogus in the new a.out, unlike e.g., the
3863 solib breakpoints.) */
3864
3865 if (b->type == bp_finish)
3866 {
3867 continue;
3868 }
3869
3870 /* Without a symbolic address, we have little hope of the
3871 pre-exec() address meaning the same thing in the post-exec()
3872 a.out. */
3873 if (breakpoint_event_location_empty_p (b))
3874 {
3875 delete_breakpoint (b);
3876 continue;
3877 }
3878 }
3879 }
3880
3881 int
3882 detach_breakpoints (ptid_t ptid)
3883 {
3884 struct bp_location *bl, **blp_tmp;
3885 int val = 0;
3886 struct cleanup *old_chain = save_inferior_ptid ();
3887 struct inferior *inf = current_inferior ();
3888
3889 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3890 error (_("Cannot detach breakpoints of inferior_ptid"));
3891
3892 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3893 inferior_ptid = ptid;
3894 ALL_BP_LOCATIONS (bl, blp_tmp)
3895 {
3896 if (bl->pspace != inf->pspace)
3897 continue;
3898
3899 /* This function must physically remove breakpoints locations
3900 from the specified ptid, without modifying the breakpoint
3901 package's state. Locations of type bp_loc_other are only
3902 maintained at GDB side. So, there is no need to remove
3903 these bp_loc_other locations. Moreover, removing these
3904 would modify the breakpoint package's state. */
3905 if (bl->loc_type == bp_loc_other)
3906 continue;
3907
3908 if (bl->inserted)
3909 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3910 }
3911
3912 do_cleanups (old_chain);
3913 return val;
3914 }
3915
3916 /* Remove the breakpoint location BL from the current address space.
3917 Note that this is used to detach breakpoints from a child fork.
3918 When we get here, the child isn't in the inferior list, and neither
3919 do we have objects to represent its address space --- we should
3920 *not* look at bl->pspace->aspace here. */
3921
3922 static int
3923 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3924 {
3925 int val;
3926
3927 /* BL is never in moribund_locations by our callers. */
3928 gdb_assert (bl->owner != NULL);
3929
3930 /* The type of none suggests that owner is actually deleted.
3931 This should not ever happen. */
3932 gdb_assert (bl->owner->type != bp_none);
3933
3934 if (bl->loc_type == bp_loc_software_breakpoint
3935 || bl->loc_type == bp_loc_hardware_breakpoint)
3936 {
3937 /* "Normal" instruction breakpoint: either the standard
3938 trap-instruction bp (bp_breakpoint), or a
3939 bp_hardware_breakpoint. */
3940
3941 /* First check to see if we have to handle an overlay. */
3942 if (overlay_debugging == ovly_off
3943 || bl->section == NULL
3944 || !(section_is_overlay (bl->section)))
3945 {
3946 /* No overlay handling: just remove the breakpoint. */
3947
3948 /* If we're trying to uninsert a memory breakpoint that we
3949 know is set in a dynamic object that is marked
3950 shlib_disabled, then either the dynamic object was
3951 removed with "remove-symbol-file" or with
3952 "nosharedlibrary". In the former case, we don't know
3953 whether another dynamic object might have loaded over the
3954 breakpoint's address -- the user might well let us know
3955 about it next with add-symbol-file (the whole point of
3956 add-symbol-file is letting the user manually maintain a
3957 list of dynamically loaded objects). If we have the
3958 breakpoint's shadow memory, that is, this is a software
3959 breakpoint managed by GDB, check whether the breakpoint
3960 is still inserted in memory, to avoid overwriting wrong
3961 code with stale saved shadow contents. Note that HW
3962 breakpoints don't have shadow memory, as they're
3963 implemented using a mechanism that is not dependent on
3964 being able to modify the target's memory, and as such
3965 they should always be removed. */
3966 if (bl->shlib_disabled
3967 && bl->target_info.shadow_len != 0
3968 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3969 val = 0;
3970 else
3971 val = bl->owner->ops->remove_location (bl, reason);
3972 }
3973 else
3974 {
3975 /* This breakpoint is in an overlay section.
3976 Did we set a breakpoint at the LMA? */
3977 if (!overlay_events_enabled)
3978 {
3979 /* Yes -- overlay event support is not active, so we
3980 should have set a breakpoint at the LMA. Remove it.
3981 */
3982 /* Ignore any failures: if the LMA is in ROM, we will
3983 have already warned when we failed to insert it. */
3984 if (bl->loc_type == bp_loc_hardware_breakpoint)
3985 target_remove_hw_breakpoint (bl->gdbarch,
3986 &bl->overlay_target_info);
3987 else
3988 target_remove_breakpoint (bl->gdbarch,
3989 &bl->overlay_target_info,
3990 reason);
3991 }
3992 /* Did we set a breakpoint at the VMA?
3993 If so, we will have marked the breakpoint 'inserted'. */
3994 if (bl->inserted)
3995 {
3996 /* Yes -- remove it. Previously we did not bother to
3997 remove the breakpoint if the section had been
3998 unmapped, but let's not rely on that being safe. We
3999 don't know what the overlay manager might do. */
4000
4001 /* However, we should remove *software* breakpoints only
4002 if the section is still mapped, or else we overwrite
4003 wrong code with the saved shadow contents. */
4004 if (bl->loc_type == bp_loc_hardware_breakpoint
4005 || section_is_mapped (bl->section))
4006 val = bl->owner->ops->remove_location (bl, reason);
4007 else
4008 val = 0;
4009 }
4010 else
4011 {
4012 /* No -- not inserted, so no need to remove. No error. */
4013 val = 0;
4014 }
4015 }
4016
4017 /* In some cases, we might not be able to remove a breakpoint in
4018 a shared library that has already been removed, but we have
4019 not yet processed the shlib unload event. Similarly for an
4020 unloaded add-symbol-file object - the user might not yet have
4021 had the chance to remove-symbol-file it. shlib_disabled will
4022 be set if the library/object has already been removed, but
4023 the breakpoint hasn't been uninserted yet, e.g., after
4024 "nosharedlibrary" or "remove-symbol-file" with breakpoints
4025 always-inserted mode. */
4026 if (val
4027 && (bl->loc_type == bp_loc_software_breakpoint
4028 && (bl->shlib_disabled
4029 || solib_name_from_address (bl->pspace, bl->address)
4030 || shared_objfile_contains_address_p (bl->pspace,
4031 bl->address))))
4032 val = 0;
4033
4034 if (val)
4035 return val;
4036 bl->inserted = (reason == DETACH_BREAKPOINT);
4037 }
4038 else if (bl->loc_type == bp_loc_hardware_watchpoint)
4039 {
4040 gdb_assert (bl->owner->ops != NULL
4041 && bl->owner->ops->remove_location != NULL);
4042
4043 bl->inserted = (reason == DETACH_BREAKPOINT);
4044 bl->owner->ops->remove_location (bl, reason);
4045
4046 /* Failure to remove any of the hardware watchpoints comes here. */
4047 if (reason == REMOVE_BREAKPOINT && bl->inserted)
4048 warning (_("Could not remove hardware watchpoint %d."),
4049 bl->owner->number);
4050 }
4051 else if (bl->owner->type == bp_catchpoint
4052 && breakpoint_enabled (bl->owner)
4053 && !bl->duplicate)
4054 {
4055 gdb_assert (bl->owner->ops != NULL
4056 && bl->owner->ops->remove_location != NULL);
4057
4058 val = bl->owner->ops->remove_location (bl, reason);
4059 if (val)
4060 return val;
4061
4062 bl->inserted = (reason == DETACH_BREAKPOINT);
4063 }
4064
4065 return 0;
4066 }
4067
4068 static int
4069 remove_breakpoint (struct bp_location *bl)
4070 {
4071 /* BL is never in moribund_locations by our callers. */
4072 gdb_assert (bl->owner != NULL);
4073
4074 /* The type of none suggests that owner is actually deleted.
4075 This should not ever happen. */
4076 gdb_assert (bl->owner->type != bp_none);
4077
4078 scoped_restore_current_pspace_and_thread restore_pspace_thread;
4079
4080 switch_to_program_space_and_thread (bl->pspace);
4081
4082 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
4083 }
4084
4085 /* Clear the "inserted" flag in all breakpoints. */
4086
4087 void
4088 mark_breakpoints_out (void)
4089 {
4090 struct bp_location *bl, **blp_tmp;
4091
4092 ALL_BP_LOCATIONS (bl, blp_tmp)
4093 if (bl->pspace == current_program_space)
4094 bl->inserted = 0;
4095 }
4096
4097 /* Clear the "inserted" flag in all breakpoints and delete any
4098 breakpoints which should go away between runs of the program.
4099
4100 Plus other such housekeeping that has to be done for breakpoints
4101 between runs.
4102
4103 Note: this function gets called at the end of a run (by
4104 generic_mourn_inferior) and when a run begins (by
4105 init_wait_for_inferior). */
4106
4107
4108
4109 void
4110 breakpoint_init_inferior (enum inf_context context)
4111 {
4112 struct breakpoint *b, *b_tmp;
4113 struct bp_location *bl;
4114 int ix;
4115 struct program_space *pspace = current_program_space;
4116
4117 /* If breakpoint locations are shared across processes, then there's
4118 nothing to do. */
4119 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
4120 return;
4121
4122 mark_breakpoints_out ();
4123
4124 ALL_BREAKPOINTS_SAFE (b, b_tmp)
4125 {
4126 if (b->loc && b->loc->pspace != pspace)
4127 continue;
4128
4129 switch (b->type)
4130 {
4131 case bp_call_dummy:
4132 case bp_longjmp_call_dummy:
4133
4134 /* If the call dummy breakpoint is at the entry point it will
4135 cause problems when the inferior is rerun, so we better get
4136 rid of it. */
4137
4138 case bp_watchpoint_scope:
4139
4140 /* Also get rid of scope breakpoints. */
4141
4142 case bp_shlib_event:
4143
4144 /* Also remove solib event breakpoints. Their addresses may
4145 have changed since the last time we ran the program.
4146 Actually we may now be debugging against different target;
4147 and so the solib backend that installed this breakpoint may
4148 not be used in by the target. E.g.,
4149
4150 (gdb) file prog-linux
4151 (gdb) run # native linux target
4152 ...
4153 (gdb) kill
4154 (gdb) file prog-win.exe
4155 (gdb) tar rem :9999 # remote Windows gdbserver.
4156 */
4157
4158 case bp_step_resume:
4159
4160 /* Also remove step-resume breakpoints. */
4161
4162 case bp_single_step:
4163
4164 /* Also remove single-step breakpoints. */
4165
4166 delete_breakpoint (b);
4167 break;
4168
4169 case bp_watchpoint:
4170 case bp_hardware_watchpoint:
4171 case bp_read_watchpoint:
4172 case bp_access_watchpoint:
4173 {
4174 struct watchpoint *w = (struct watchpoint *) b;
4175
4176 /* Likewise for watchpoints on local expressions. */
4177 if (w->exp_valid_block != NULL)
4178 delete_breakpoint (b);
4179 else
4180 {
4181 /* Get rid of existing locations, which are no longer
4182 valid. New ones will be created in
4183 update_watchpoint, when the inferior is restarted.
4184 The next update_global_location_list call will
4185 garbage collect them. */
4186 b->loc = NULL;
4187
4188 if (context == inf_starting)
4189 {
4190 /* Reset val field to force reread of starting value in
4191 insert_breakpoints. */
4192 if (w->val)
4193 value_free (w->val);
4194 w->val = NULL;
4195 w->val_valid = 0;
4196 }
4197 }
4198 }
4199 break;
4200 default:
4201 break;
4202 }
4203 }
4204
4205 /* Get rid of the moribund locations. */
4206 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
4207 decref_bp_location (&bl);
4208 VEC_free (bp_location_p, moribund_locations);
4209 }
4210
4211 /* These functions concern about actual breakpoints inserted in the
4212 target --- to e.g. check if we need to do decr_pc adjustment or if
4213 we need to hop over the bkpt --- so we check for address space
4214 match, not program space. */
4215
4216 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4217 exists at PC. It returns ordinary_breakpoint_here if it's an
4218 ordinary breakpoint, or permanent_breakpoint_here if it's a
4219 permanent breakpoint.
4220 - When continuing from a location with an ordinary breakpoint, we
4221 actually single step once before calling insert_breakpoints.
4222 - When continuing from a location with a permanent breakpoint, we
4223 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4224 the target, to advance the PC past the breakpoint. */
4225
4226 enum breakpoint_here
4227 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4228 {
4229 struct bp_location *bl, **blp_tmp;
4230 int any_breakpoint_here = 0;
4231
4232 ALL_BP_LOCATIONS (bl, blp_tmp)
4233 {
4234 if (bl->loc_type != bp_loc_software_breakpoint
4235 && bl->loc_type != bp_loc_hardware_breakpoint)
4236 continue;
4237
4238 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4239 if ((breakpoint_enabled (bl->owner)
4240 || bl->permanent)
4241 && breakpoint_location_address_match (bl, aspace, pc))
4242 {
4243 if (overlay_debugging
4244 && section_is_overlay (bl->section)
4245 && !section_is_mapped (bl->section))
4246 continue; /* unmapped overlay -- can't be a match */
4247 else if (bl->permanent)
4248 return permanent_breakpoint_here;
4249 else
4250 any_breakpoint_here = 1;
4251 }
4252 }
4253
4254 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4255 }
4256
4257 /* See breakpoint.h. */
4258
4259 int
4260 breakpoint_in_range_p (struct address_space *aspace,
4261 CORE_ADDR addr, ULONGEST len)
4262 {
4263 struct bp_location *bl, **blp_tmp;
4264
4265 ALL_BP_LOCATIONS (bl, blp_tmp)
4266 {
4267 if (bl->loc_type != bp_loc_software_breakpoint
4268 && bl->loc_type != bp_loc_hardware_breakpoint)
4269 continue;
4270
4271 if ((breakpoint_enabled (bl->owner)
4272 || bl->permanent)
4273 && breakpoint_location_address_range_overlap (bl, aspace,
4274 addr, len))
4275 {
4276 if (overlay_debugging
4277 && section_is_overlay (bl->section)
4278 && !section_is_mapped (bl->section))
4279 {
4280 /* Unmapped overlay -- can't be a match. */
4281 continue;
4282 }
4283
4284 return 1;
4285 }
4286 }
4287
4288 return 0;
4289 }
4290
4291 /* Return true if there's a moribund breakpoint at PC. */
4292
4293 int
4294 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4295 {
4296 struct bp_location *loc;
4297 int ix;
4298
4299 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4300 if (breakpoint_location_address_match (loc, aspace, pc))
4301 return 1;
4302
4303 return 0;
4304 }
4305
4306 /* Returns non-zero iff BL is inserted at PC, in address space
4307 ASPACE. */
4308
4309 static int
4310 bp_location_inserted_here_p (struct bp_location *bl,
4311 struct address_space *aspace, CORE_ADDR pc)
4312 {
4313 if (bl->inserted
4314 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4315 aspace, pc))
4316 {
4317 if (overlay_debugging
4318 && section_is_overlay (bl->section)
4319 && !section_is_mapped (bl->section))
4320 return 0; /* unmapped overlay -- can't be a match */
4321 else
4322 return 1;
4323 }
4324 return 0;
4325 }
4326
4327 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4328
4329 int
4330 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4331 {
4332 struct bp_location **blp, **blp_tmp = NULL;
4333
4334 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4335 {
4336 struct bp_location *bl = *blp;
4337
4338 if (bl->loc_type != bp_loc_software_breakpoint
4339 && bl->loc_type != bp_loc_hardware_breakpoint)
4340 continue;
4341
4342 if (bp_location_inserted_here_p (bl, aspace, pc))
4343 return 1;
4344 }
4345 return 0;
4346 }
4347
4348 /* This function returns non-zero iff there is a software breakpoint
4349 inserted at PC. */
4350
4351 int
4352 software_breakpoint_inserted_here_p (struct address_space *aspace,
4353 CORE_ADDR pc)
4354 {
4355 struct bp_location **blp, **blp_tmp = NULL;
4356
4357 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4358 {
4359 struct bp_location *bl = *blp;
4360
4361 if (bl->loc_type != bp_loc_software_breakpoint)
4362 continue;
4363
4364 if (bp_location_inserted_here_p (bl, aspace, pc))
4365 return 1;
4366 }
4367
4368 return 0;
4369 }
4370
4371 /* See breakpoint.h. */
4372
4373 int
4374 hardware_breakpoint_inserted_here_p (struct address_space *aspace,
4375 CORE_ADDR pc)
4376 {
4377 struct bp_location **blp, **blp_tmp = NULL;
4378
4379 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4380 {
4381 struct bp_location *bl = *blp;
4382
4383 if (bl->loc_type != bp_loc_hardware_breakpoint)
4384 continue;
4385
4386 if (bp_location_inserted_here_p (bl, aspace, pc))
4387 return 1;
4388 }
4389
4390 return 0;
4391 }
4392
4393 int
4394 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4395 CORE_ADDR addr, ULONGEST len)
4396 {
4397 struct breakpoint *bpt;
4398
4399 ALL_BREAKPOINTS (bpt)
4400 {
4401 struct bp_location *loc;
4402
4403 if (bpt->type != bp_hardware_watchpoint
4404 && bpt->type != bp_access_watchpoint)
4405 continue;
4406
4407 if (!breakpoint_enabled (bpt))
4408 continue;
4409
4410 for (loc = bpt->loc; loc; loc = loc->next)
4411 if (loc->pspace->aspace == aspace && loc->inserted)
4412 {
4413 CORE_ADDR l, h;
4414
4415 /* Check for intersection. */
4416 l = std::max<CORE_ADDR> (loc->address, addr);
4417 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4418 if (l < h)
4419 return 1;
4420 }
4421 }
4422 return 0;
4423 }
4424 \f
4425
4426 /* bpstat stuff. External routines' interfaces are documented
4427 in breakpoint.h. */
4428
4429 int
4430 is_catchpoint (struct breakpoint *ep)
4431 {
4432 return (ep->type == bp_catchpoint);
4433 }
4434
4435 /* Frees any storage that is part of a bpstat. Does not walk the
4436 'next' chain. */
4437
4438 static void
4439 bpstat_free (bpstat bs)
4440 {
4441 if (bs->old_val != NULL)
4442 value_free (bs->old_val);
4443 decref_counted_command_line (&bs->commands);
4444 decref_bp_location (&bs->bp_location_at);
4445 xfree (bs);
4446 }
4447
4448 /* Clear a bpstat so that it says we are not at any breakpoint.
4449 Also free any storage that is part of a bpstat. */
4450
4451 void
4452 bpstat_clear (bpstat *bsp)
4453 {
4454 bpstat p;
4455 bpstat q;
4456
4457 if (bsp == 0)
4458 return;
4459 p = *bsp;
4460 while (p != NULL)
4461 {
4462 q = p->next;
4463 bpstat_free (p);
4464 p = q;
4465 }
4466 *bsp = NULL;
4467 }
4468
4469 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4470 is part of the bpstat is copied as well. */
4471
4472 bpstat
4473 bpstat_copy (bpstat bs)
4474 {
4475 bpstat p = NULL;
4476 bpstat tmp;
4477 bpstat retval = NULL;
4478
4479 if (bs == NULL)
4480 return bs;
4481
4482 for (; bs != NULL; bs = bs->next)
4483 {
4484 tmp = (bpstat) xmalloc (sizeof (*tmp));
4485 memcpy (tmp, bs, sizeof (*tmp));
4486 incref_counted_command_line (tmp->commands);
4487 incref_bp_location (tmp->bp_location_at);
4488 if (bs->old_val != NULL)
4489 {
4490 tmp->old_val = value_copy (bs->old_val);
4491 release_value (tmp->old_val);
4492 }
4493
4494 if (p == NULL)
4495 /* This is the first thing in the chain. */
4496 retval = tmp;
4497 else
4498 p->next = tmp;
4499 p = tmp;
4500 }
4501 p->next = NULL;
4502 return retval;
4503 }
4504
4505 /* Find the bpstat associated with this breakpoint. */
4506
4507 bpstat
4508 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4509 {
4510 if (bsp == NULL)
4511 return NULL;
4512
4513 for (; bsp != NULL; bsp = bsp->next)
4514 {
4515 if (bsp->breakpoint_at == breakpoint)
4516 return bsp;
4517 }
4518 return NULL;
4519 }
4520
4521 /* See breakpoint.h. */
4522
4523 int
4524 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4525 {
4526 for (; bsp != NULL; bsp = bsp->next)
4527 {
4528 if (bsp->breakpoint_at == NULL)
4529 {
4530 /* A moribund location can never explain a signal other than
4531 GDB_SIGNAL_TRAP. */
4532 if (sig == GDB_SIGNAL_TRAP)
4533 return 1;
4534 }
4535 else
4536 {
4537 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4538 sig))
4539 return 1;
4540 }
4541 }
4542
4543 return 0;
4544 }
4545
4546 /* Put in *NUM the breakpoint number of the first breakpoint we are
4547 stopped at. *BSP upon return is a bpstat which points to the
4548 remaining breakpoints stopped at (but which is not guaranteed to be
4549 good for anything but further calls to bpstat_num).
4550
4551 Return 0 if passed a bpstat which does not indicate any breakpoints.
4552 Return -1 if stopped at a breakpoint that has been deleted since
4553 we set it.
4554 Return 1 otherwise. */
4555
4556 int
4557 bpstat_num (bpstat *bsp, int *num)
4558 {
4559 struct breakpoint *b;
4560
4561 if ((*bsp) == NULL)
4562 return 0; /* No more breakpoint values */
4563
4564 /* We assume we'll never have several bpstats that correspond to a
4565 single breakpoint -- otherwise, this function might return the
4566 same number more than once and this will look ugly. */
4567 b = (*bsp)->breakpoint_at;
4568 *bsp = (*bsp)->next;
4569 if (b == NULL)
4570 return -1; /* breakpoint that's been deleted since */
4571
4572 *num = b->number; /* We have its number */
4573 return 1;
4574 }
4575
4576 /* See breakpoint.h. */
4577
4578 void
4579 bpstat_clear_actions (void)
4580 {
4581 struct thread_info *tp;
4582 bpstat bs;
4583
4584 if (ptid_equal (inferior_ptid, null_ptid))
4585 return;
4586
4587 tp = find_thread_ptid (inferior_ptid);
4588 if (tp == NULL)
4589 return;
4590
4591 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4592 {
4593 decref_counted_command_line (&bs->commands);
4594
4595 if (bs->old_val != NULL)
4596 {
4597 value_free (bs->old_val);
4598 bs->old_val = NULL;
4599 }
4600 }
4601 }
4602
4603 /* Called when a command is about to proceed the inferior. */
4604
4605 static void
4606 breakpoint_about_to_proceed (void)
4607 {
4608 if (!ptid_equal (inferior_ptid, null_ptid))
4609 {
4610 struct thread_info *tp = inferior_thread ();
4611
4612 /* Allow inferior function calls in breakpoint commands to not
4613 interrupt the command list. When the call finishes
4614 successfully, the inferior will be standing at the same
4615 breakpoint as if nothing happened. */
4616 if (tp->control.in_infcall)
4617 return;
4618 }
4619
4620 breakpoint_proceeded = 1;
4621 }
4622
4623 /* Stub for cleaning up our state if we error-out of a breakpoint
4624 command. */
4625 static void
4626 cleanup_executing_breakpoints (void *ignore)
4627 {
4628 executing_breakpoint_commands = 0;
4629 }
4630
4631 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4632 or its equivalent. */
4633
4634 static int
4635 command_line_is_silent (struct command_line *cmd)
4636 {
4637 return cmd && (strcmp ("silent", cmd->line) == 0);
4638 }
4639
4640 /* Execute all the commands associated with all the breakpoints at
4641 this location. Any of these commands could cause the process to
4642 proceed beyond this point, etc. We look out for such changes by
4643 checking the global "breakpoint_proceeded" after each command.
4644
4645 Returns true if a breakpoint command resumed the inferior. In that
4646 case, it is the caller's responsibility to recall it again with the
4647 bpstat of the current thread. */
4648
4649 static int
4650 bpstat_do_actions_1 (bpstat *bsp)
4651 {
4652 bpstat bs;
4653 struct cleanup *old_chain;
4654 int again = 0;
4655
4656 /* Avoid endless recursion if a `source' command is contained
4657 in bs->commands. */
4658 if (executing_breakpoint_commands)
4659 return 0;
4660
4661 executing_breakpoint_commands = 1;
4662 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4663
4664 scoped_restore preventer = prevent_dont_repeat ();
4665
4666 /* This pointer will iterate over the list of bpstat's. */
4667 bs = *bsp;
4668
4669 breakpoint_proceeded = 0;
4670 for (; bs != NULL; bs = bs->next)
4671 {
4672 struct counted_command_line *ccmd;
4673 struct command_line *cmd;
4674 struct cleanup *this_cmd_tree_chain;
4675
4676 /* Take ownership of the BSP's command tree, if it has one.
4677
4678 The command tree could legitimately contain commands like
4679 'step' and 'next', which call clear_proceed_status, which
4680 frees stop_bpstat's command tree. To make sure this doesn't
4681 free the tree we're executing out from under us, we need to
4682 take ownership of the tree ourselves. Since a given bpstat's
4683 commands are only executed once, we don't need to copy it; we
4684 can clear the pointer in the bpstat, and make sure we free
4685 the tree when we're done. */
4686 ccmd = bs->commands;
4687 bs->commands = NULL;
4688 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4689 cmd = ccmd ? ccmd->commands : NULL;
4690 if (command_line_is_silent (cmd))
4691 {
4692 /* The action has been already done by bpstat_stop_status. */
4693 cmd = cmd->next;
4694 }
4695
4696 while (cmd != NULL)
4697 {
4698 execute_control_command (cmd);
4699
4700 if (breakpoint_proceeded)
4701 break;
4702 else
4703 cmd = cmd->next;
4704 }
4705
4706 /* We can free this command tree now. */
4707 do_cleanups (this_cmd_tree_chain);
4708
4709 if (breakpoint_proceeded)
4710 {
4711 if (current_ui->async)
4712 /* If we are in async mode, then the target might be still
4713 running, not stopped at any breakpoint, so nothing for
4714 us to do here -- just return to the event loop. */
4715 ;
4716 else
4717 /* In sync mode, when execute_control_command returns
4718 we're already standing on the next breakpoint.
4719 Breakpoint commands for that stop were not run, since
4720 execute_command does not run breakpoint commands --
4721 only command_line_handler does, but that one is not
4722 involved in execution of breakpoint commands. So, we
4723 can now execute breakpoint commands. It should be
4724 noted that making execute_command do bpstat actions is
4725 not an option -- in this case we'll have recursive
4726 invocation of bpstat for each breakpoint with a
4727 command, and can easily blow up GDB stack. Instead, we
4728 return true, which will trigger the caller to recall us
4729 with the new stop_bpstat. */
4730 again = 1;
4731 break;
4732 }
4733 }
4734 do_cleanups (old_chain);
4735 return again;
4736 }
4737
4738 void
4739 bpstat_do_actions (void)
4740 {
4741 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4742
4743 /* Do any commands attached to breakpoint we are stopped at. */
4744 while (!ptid_equal (inferior_ptid, null_ptid)
4745 && target_has_execution
4746 && !is_exited (inferior_ptid)
4747 && !is_executing (inferior_ptid))
4748 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4749 and only return when it is stopped at the next breakpoint, we
4750 keep doing breakpoint actions until it returns false to
4751 indicate the inferior was not resumed. */
4752 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4753 break;
4754
4755 discard_cleanups (cleanup_if_error);
4756 }
4757
4758 /* Print out the (old or new) value associated with a watchpoint. */
4759
4760 static void
4761 watchpoint_value_print (struct value *val, struct ui_file *stream)
4762 {
4763 if (val == NULL)
4764 fprintf_unfiltered (stream, _("<unreadable>"));
4765 else
4766 {
4767 struct value_print_options opts;
4768 get_user_print_options (&opts);
4769 value_print (val, stream, &opts);
4770 }
4771 }
4772
4773 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4774 debugging multiple threads. */
4775
4776 void
4777 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4778 {
4779 if (uiout->is_mi_like_p ())
4780 return;
4781
4782 uiout->text ("\n");
4783
4784 if (show_thread_that_caused_stop ())
4785 {
4786 const char *name;
4787 struct thread_info *thr = inferior_thread ();
4788
4789 uiout->text ("Thread ");
4790 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4791
4792 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4793 if (name != NULL)
4794 {
4795 uiout->text (" \"");
4796 uiout->field_fmt ("name", "%s", name);
4797 uiout->text ("\"");
4798 }
4799
4800 uiout->text (" hit ");
4801 }
4802 }
4803
4804 /* Generic routine for printing messages indicating why we
4805 stopped. The behavior of this function depends on the value
4806 'print_it' in the bpstat structure. Under some circumstances we
4807 may decide not to print anything here and delegate the task to
4808 normal_stop(). */
4809
4810 static enum print_stop_action
4811 print_bp_stop_message (bpstat bs)
4812 {
4813 switch (bs->print_it)
4814 {
4815 case print_it_noop:
4816 /* Nothing should be printed for this bpstat entry. */
4817 return PRINT_UNKNOWN;
4818 break;
4819
4820 case print_it_done:
4821 /* We still want to print the frame, but we already printed the
4822 relevant messages. */
4823 return PRINT_SRC_AND_LOC;
4824 break;
4825
4826 case print_it_normal:
4827 {
4828 struct breakpoint *b = bs->breakpoint_at;
4829
4830 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4831 which has since been deleted. */
4832 if (b == NULL)
4833 return PRINT_UNKNOWN;
4834
4835 /* Normal case. Call the breakpoint's print_it method. */
4836 return b->ops->print_it (bs);
4837 }
4838 break;
4839
4840 default:
4841 internal_error (__FILE__, __LINE__,
4842 _("print_bp_stop_message: unrecognized enum value"));
4843 break;
4844 }
4845 }
4846
4847 /* A helper function that prints a shared library stopped event. */
4848
4849 static void
4850 print_solib_event (int is_catchpoint)
4851 {
4852 int any_deleted
4853 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4854 int any_added
4855 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4856
4857 if (!is_catchpoint)
4858 {
4859 if (any_added || any_deleted)
4860 current_uiout->text (_("Stopped due to shared library event:\n"));
4861 else
4862 current_uiout->text (_("Stopped due to shared library event (no "
4863 "libraries added or removed)\n"));
4864 }
4865
4866 if (current_uiout->is_mi_like_p ())
4867 current_uiout->field_string ("reason",
4868 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4869
4870 if (any_deleted)
4871 {
4872 char *name;
4873 int ix;
4874
4875 current_uiout->text (_(" Inferior unloaded "));
4876 ui_out_emit_list list_emitter (current_uiout, "removed");
4877 for (ix = 0;
4878 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4879 ix, name);
4880 ++ix)
4881 {
4882 if (ix > 0)
4883 current_uiout->text (" ");
4884 current_uiout->field_string ("library", name);
4885 current_uiout->text ("\n");
4886 }
4887 }
4888
4889 if (any_added)
4890 {
4891 struct so_list *iter;
4892 int ix;
4893
4894 current_uiout->text (_(" Inferior loaded "));
4895 ui_out_emit_list list_emitter (current_uiout, "added");
4896 for (ix = 0;
4897 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4898 ix, iter);
4899 ++ix)
4900 {
4901 if (ix > 0)
4902 current_uiout->text (" ");
4903 current_uiout->field_string ("library", iter->so_name);
4904 current_uiout->text ("\n");
4905 }
4906 }
4907 }
4908
4909 /* Print a message indicating what happened. This is called from
4910 normal_stop(). The input to this routine is the head of the bpstat
4911 list - a list of the eventpoints that caused this stop. KIND is
4912 the target_waitkind for the stopping event. This
4913 routine calls the generic print routine for printing a message
4914 about reasons for stopping. This will print (for example) the
4915 "Breakpoint n," part of the output. The return value of this
4916 routine is one of:
4917
4918 PRINT_UNKNOWN: Means we printed nothing.
4919 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4920 code to print the location. An example is
4921 "Breakpoint 1, " which should be followed by
4922 the location.
4923 PRINT_SRC_ONLY: Means we printed something, but there is no need
4924 to also print the location part of the message.
4925 An example is the catch/throw messages, which
4926 don't require a location appended to the end.
4927 PRINT_NOTHING: We have done some printing and we don't need any
4928 further info to be printed. */
4929
4930 enum print_stop_action
4931 bpstat_print (bpstat bs, int kind)
4932 {
4933 enum print_stop_action val;
4934
4935 /* Maybe another breakpoint in the chain caused us to stop.
4936 (Currently all watchpoints go on the bpstat whether hit or not.
4937 That probably could (should) be changed, provided care is taken
4938 with respect to bpstat_explains_signal). */
4939 for (; bs; bs = bs->next)
4940 {
4941 val = print_bp_stop_message (bs);
4942 if (val == PRINT_SRC_ONLY
4943 || val == PRINT_SRC_AND_LOC
4944 || val == PRINT_NOTHING)
4945 return val;
4946 }
4947
4948 /* If we had hit a shared library event breakpoint,
4949 print_bp_stop_message would print out this message. If we hit an
4950 OS-level shared library event, do the same thing. */
4951 if (kind == TARGET_WAITKIND_LOADED)
4952 {
4953 print_solib_event (0);
4954 return PRINT_NOTHING;
4955 }
4956
4957 /* We reached the end of the chain, or we got a null BS to start
4958 with and nothing was printed. */
4959 return PRINT_UNKNOWN;
4960 }
4961
4962 /* Evaluate the expression EXP and return 1 if value is zero.
4963 This returns the inverse of the condition because it is called
4964 from catch_errors which returns 0 if an exception happened, and if an
4965 exception happens we want execution to stop.
4966 The argument is a "struct expression *" that has been cast to a
4967 "void *" to make it pass through catch_errors. */
4968
4969 static int
4970 breakpoint_cond_eval (void *exp)
4971 {
4972 struct value *mark = value_mark ();
4973 int i = !value_true (evaluate_expression ((struct expression *) exp));
4974
4975 value_free_to_mark (mark);
4976 return i;
4977 }
4978
4979 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4980
4981 static bpstat
4982 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4983 {
4984 bpstat bs;
4985
4986 bs = (bpstat) xmalloc (sizeof (*bs));
4987 bs->next = NULL;
4988 **bs_link_pointer = bs;
4989 *bs_link_pointer = &bs->next;
4990 bs->breakpoint_at = bl->owner;
4991 bs->bp_location_at = bl;
4992 incref_bp_location (bl);
4993 /* If the condition is false, etc., don't do the commands. */
4994 bs->commands = NULL;
4995 bs->old_val = NULL;
4996 bs->print_it = print_it_normal;
4997 return bs;
4998 }
4999 \f
5000 /* The target has stopped with waitstatus WS. Check if any hardware
5001 watchpoints have triggered, according to the target. */
5002
5003 int
5004 watchpoints_triggered (struct target_waitstatus *ws)
5005 {
5006 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
5007 CORE_ADDR addr;
5008 struct breakpoint *b;
5009
5010 if (!stopped_by_watchpoint)
5011 {
5012 /* We were not stopped by a watchpoint. Mark all watchpoints
5013 as not triggered. */
5014 ALL_BREAKPOINTS (b)
5015 if (is_hardware_watchpoint (b))
5016 {
5017 struct watchpoint *w = (struct watchpoint *) b;
5018
5019 w->watchpoint_triggered = watch_triggered_no;
5020 }
5021
5022 return 0;
5023 }
5024
5025 if (!target_stopped_data_address (&current_target, &addr))
5026 {
5027 /* We were stopped by a watchpoint, but we don't know where.
5028 Mark all watchpoints as unknown. */
5029 ALL_BREAKPOINTS (b)
5030 if (is_hardware_watchpoint (b))
5031 {
5032 struct watchpoint *w = (struct watchpoint *) b;
5033
5034 w->watchpoint_triggered = watch_triggered_unknown;
5035 }
5036
5037 return 1;
5038 }
5039
5040 /* The target could report the data address. Mark watchpoints
5041 affected by this data address as triggered, and all others as not
5042 triggered. */
5043
5044 ALL_BREAKPOINTS (b)
5045 if (is_hardware_watchpoint (b))
5046 {
5047 struct watchpoint *w = (struct watchpoint *) b;
5048 struct bp_location *loc;
5049
5050 w->watchpoint_triggered = watch_triggered_no;
5051 for (loc = b->loc; loc; loc = loc->next)
5052 {
5053 if (is_masked_watchpoint (b))
5054 {
5055 CORE_ADDR newaddr = addr & w->hw_wp_mask;
5056 CORE_ADDR start = loc->address & w->hw_wp_mask;
5057
5058 if (newaddr == start)
5059 {
5060 w->watchpoint_triggered = watch_triggered_yes;
5061 break;
5062 }
5063 }
5064 /* Exact match not required. Within range is sufficient. */
5065 else if (target_watchpoint_addr_within_range (&current_target,
5066 addr, loc->address,
5067 loc->length))
5068 {
5069 w->watchpoint_triggered = watch_triggered_yes;
5070 break;
5071 }
5072 }
5073 }
5074
5075 return 1;
5076 }
5077
5078 /* Possible return values for watchpoint_check (this can't be an enum
5079 because of check_errors). */
5080 /* The watchpoint has been deleted. */
5081 #define WP_DELETED 1
5082 /* The value has changed. */
5083 #define WP_VALUE_CHANGED 2
5084 /* The value has not changed. */
5085 #define WP_VALUE_NOT_CHANGED 3
5086 /* Ignore this watchpoint, no matter if the value changed or not. */
5087 #define WP_IGNORE 4
5088
5089 #define BP_TEMPFLAG 1
5090 #define BP_HARDWAREFLAG 2
5091
5092 /* Evaluate watchpoint condition expression and check if its value
5093 changed.
5094
5095 P should be a pointer to struct bpstat, but is defined as a void *
5096 in order for this function to be usable with catch_errors. */
5097
5098 static int
5099 watchpoint_check (void *p)
5100 {
5101 bpstat bs = (bpstat) p;
5102 struct watchpoint *b;
5103 struct frame_info *fr;
5104 int within_current_scope;
5105
5106 /* BS is built from an existing struct breakpoint. */
5107 gdb_assert (bs->breakpoint_at != NULL);
5108 b = (struct watchpoint *) bs->breakpoint_at;
5109
5110 /* If this is a local watchpoint, we only want to check if the
5111 watchpoint frame is in scope if the current thread is the thread
5112 that was used to create the watchpoint. */
5113 if (!watchpoint_in_thread_scope (b))
5114 return WP_IGNORE;
5115
5116 if (b->exp_valid_block == NULL)
5117 within_current_scope = 1;
5118 else
5119 {
5120 struct frame_info *frame = get_current_frame ();
5121 struct gdbarch *frame_arch = get_frame_arch (frame);
5122 CORE_ADDR frame_pc = get_frame_pc (frame);
5123
5124 /* stack_frame_destroyed_p() returns a non-zero value if we're
5125 still in the function but the stack frame has already been
5126 invalidated. Since we can't rely on the values of local
5127 variables after the stack has been destroyed, we are treating
5128 the watchpoint in that state as `not changed' without further
5129 checking. Don't mark watchpoints as changed if the current
5130 frame is in an epilogue - even if they are in some other
5131 frame, our view of the stack is likely to be wrong and
5132 frame_find_by_id could error out. */
5133 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
5134 return WP_IGNORE;
5135
5136 fr = frame_find_by_id (b->watchpoint_frame);
5137 within_current_scope = (fr != NULL);
5138
5139 /* If we've gotten confused in the unwinder, we might have
5140 returned a frame that can't describe this variable. */
5141 if (within_current_scope)
5142 {
5143 struct symbol *function;
5144
5145 function = get_frame_function (fr);
5146 if (function == NULL
5147 || !contained_in (b->exp_valid_block,
5148 SYMBOL_BLOCK_VALUE (function)))
5149 within_current_scope = 0;
5150 }
5151
5152 if (within_current_scope)
5153 /* If we end up stopping, the current frame will get selected
5154 in normal_stop. So this call to select_frame won't affect
5155 the user. */
5156 select_frame (fr);
5157 }
5158
5159 if (within_current_scope)
5160 {
5161 /* We use value_{,free_to_}mark because it could be a *long*
5162 time before we return to the command level and call
5163 free_all_values. We can't call free_all_values because we
5164 might be in the middle of evaluating a function call. */
5165
5166 int pc = 0;
5167 struct value *mark;
5168 struct value *new_val;
5169
5170 if (is_masked_watchpoint (&b->base))
5171 /* Since we don't know the exact trigger address (from
5172 stopped_data_address), just tell the user we've triggered
5173 a mask watchpoint. */
5174 return WP_VALUE_CHANGED;
5175
5176 mark = value_mark ();
5177 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
5178
5179 if (b->val_bitsize != 0)
5180 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
5181
5182 /* We use value_equal_contents instead of value_equal because
5183 the latter coerces an array to a pointer, thus comparing just
5184 the address of the array instead of its contents. This is
5185 not what we want. */
5186 if ((b->val != NULL) != (new_val != NULL)
5187 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
5188 {
5189 if (new_val != NULL)
5190 {
5191 release_value (new_val);
5192 value_free_to_mark (mark);
5193 }
5194 bs->old_val = b->val;
5195 b->val = new_val;
5196 b->val_valid = 1;
5197 return WP_VALUE_CHANGED;
5198 }
5199 else
5200 {
5201 /* Nothing changed. */
5202 value_free_to_mark (mark);
5203 return WP_VALUE_NOT_CHANGED;
5204 }
5205 }
5206 else
5207 {
5208 /* This seems like the only logical thing to do because
5209 if we temporarily ignored the watchpoint, then when
5210 we reenter the block in which it is valid it contains
5211 garbage (in the case of a function, it may have two
5212 garbage values, one before and one after the prologue).
5213 So we can't even detect the first assignment to it and
5214 watch after that (since the garbage may or may not equal
5215 the first value assigned). */
5216 /* We print all the stop information in
5217 breakpoint_ops->print_it, but in this case, by the time we
5218 call breakpoint_ops->print_it this bp will be deleted
5219 already. So we have no choice but print the information
5220 here. */
5221
5222 SWITCH_THRU_ALL_UIS ()
5223 {
5224 struct ui_out *uiout = current_uiout;
5225
5226 if (uiout->is_mi_like_p ())
5227 uiout->field_string
5228 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5229 uiout->text ("\nWatchpoint ");
5230 uiout->field_int ("wpnum", b->base.number);
5231 uiout->text (" deleted because the program has left the block in\n"
5232 "which its expression is valid.\n");
5233 }
5234
5235 /* Make sure the watchpoint's commands aren't executed. */
5236 decref_counted_command_line (&b->base.commands);
5237 watchpoint_del_at_next_stop (b);
5238
5239 return WP_DELETED;
5240 }
5241 }
5242
5243 /* Return true if it looks like target has stopped due to hitting
5244 breakpoint location BL. This function does not check if we should
5245 stop, only if BL explains the stop. */
5246
5247 static int
5248 bpstat_check_location (const struct bp_location *bl,
5249 struct address_space *aspace, CORE_ADDR bp_addr,
5250 const struct target_waitstatus *ws)
5251 {
5252 struct breakpoint *b = bl->owner;
5253
5254 /* BL is from an existing breakpoint. */
5255 gdb_assert (b != NULL);
5256
5257 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5258 }
5259
5260 /* Determine if the watched values have actually changed, and we
5261 should stop. If not, set BS->stop to 0. */
5262
5263 static void
5264 bpstat_check_watchpoint (bpstat bs)
5265 {
5266 const struct bp_location *bl;
5267 struct watchpoint *b;
5268
5269 /* BS is built for existing struct breakpoint. */
5270 bl = bs->bp_location_at;
5271 gdb_assert (bl != NULL);
5272 b = (struct watchpoint *) bs->breakpoint_at;
5273 gdb_assert (b != NULL);
5274
5275 {
5276 int must_check_value = 0;
5277
5278 if (b->base.type == bp_watchpoint)
5279 /* For a software watchpoint, we must always check the
5280 watched value. */
5281 must_check_value = 1;
5282 else if (b->watchpoint_triggered == watch_triggered_yes)
5283 /* We have a hardware watchpoint (read, write, or access)
5284 and the target earlier reported an address watched by
5285 this watchpoint. */
5286 must_check_value = 1;
5287 else if (b->watchpoint_triggered == watch_triggered_unknown
5288 && b->base.type == bp_hardware_watchpoint)
5289 /* We were stopped by a hardware watchpoint, but the target could
5290 not report the data address. We must check the watchpoint's
5291 value. Access and read watchpoints are out of luck; without
5292 a data address, we can't figure it out. */
5293 must_check_value = 1;
5294
5295 if (must_check_value)
5296 {
5297 char *message
5298 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5299 b->base.number);
5300 struct cleanup *cleanups = make_cleanup (xfree, message);
5301 int e = catch_errors (watchpoint_check, bs, message,
5302 RETURN_MASK_ALL);
5303 do_cleanups (cleanups);
5304 switch (e)
5305 {
5306 case WP_DELETED:
5307 /* We've already printed what needs to be printed. */
5308 bs->print_it = print_it_done;
5309 /* Stop. */
5310 break;
5311 case WP_IGNORE:
5312 bs->print_it = print_it_noop;
5313 bs->stop = 0;
5314 break;
5315 case WP_VALUE_CHANGED:
5316 if (b->base.type == bp_read_watchpoint)
5317 {
5318 /* There are two cases to consider here:
5319
5320 1. We're watching the triggered memory for reads.
5321 In that case, trust the target, and always report
5322 the watchpoint hit to the user. Even though
5323 reads don't cause value changes, the value may
5324 have changed since the last time it was read, and
5325 since we're not trapping writes, we will not see
5326 those, and as such we should ignore our notion of
5327 old value.
5328
5329 2. We're watching the triggered memory for both
5330 reads and writes. There are two ways this may
5331 happen:
5332
5333 2.1. This is a target that can't break on data
5334 reads only, but can break on accesses (reads or
5335 writes), such as e.g., x86. We detect this case
5336 at the time we try to insert read watchpoints.
5337
5338 2.2. Otherwise, the target supports read
5339 watchpoints, but, the user set an access or write
5340 watchpoint watching the same memory as this read
5341 watchpoint.
5342
5343 If we're watching memory writes as well as reads,
5344 ignore watchpoint hits when we find that the
5345 value hasn't changed, as reads don't cause
5346 changes. This still gives false positives when
5347 the program writes the same value to memory as
5348 what there was already in memory (we will confuse
5349 it for a read), but it's much better than
5350 nothing. */
5351
5352 int other_write_watchpoint = 0;
5353
5354 if (bl->watchpoint_type == hw_read)
5355 {
5356 struct breakpoint *other_b;
5357
5358 ALL_BREAKPOINTS (other_b)
5359 if (other_b->type == bp_hardware_watchpoint
5360 || other_b->type == bp_access_watchpoint)
5361 {
5362 struct watchpoint *other_w =
5363 (struct watchpoint *) other_b;
5364
5365 if (other_w->watchpoint_triggered
5366 == watch_triggered_yes)
5367 {
5368 other_write_watchpoint = 1;
5369 break;
5370 }
5371 }
5372 }
5373
5374 if (other_write_watchpoint
5375 || bl->watchpoint_type == hw_access)
5376 {
5377 /* We're watching the same memory for writes,
5378 and the value changed since the last time we
5379 updated it, so this trap must be for a write.
5380 Ignore it. */
5381 bs->print_it = print_it_noop;
5382 bs->stop = 0;
5383 }
5384 }
5385 break;
5386 case WP_VALUE_NOT_CHANGED:
5387 if (b->base.type == bp_hardware_watchpoint
5388 || b->base.type == bp_watchpoint)
5389 {
5390 /* Don't stop: write watchpoints shouldn't fire if
5391 the value hasn't changed. */
5392 bs->print_it = print_it_noop;
5393 bs->stop = 0;
5394 }
5395 /* Stop. */
5396 break;
5397 default:
5398 /* Can't happen. */
5399 case 0:
5400 /* Error from catch_errors. */
5401 {
5402 SWITCH_THRU_ALL_UIS ()
5403 {
5404 printf_filtered (_("Watchpoint %d deleted.\n"),
5405 b->base.number);
5406 }
5407 watchpoint_del_at_next_stop (b);
5408 /* We've already printed what needs to be printed. */
5409 bs->print_it = print_it_done;
5410 }
5411 break;
5412 }
5413 }
5414 else /* must_check_value == 0 */
5415 {
5416 /* This is a case where some watchpoint(s) triggered, but
5417 not at the address of this watchpoint, or else no
5418 watchpoint triggered after all. So don't print
5419 anything for this watchpoint. */
5420 bs->print_it = print_it_noop;
5421 bs->stop = 0;
5422 }
5423 }
5424 }
5425
5426 /* For breakpoints that are currently marked as telling gdb to stop,
5427 check conditions (condition proper, frame, thread and ignore count)
5428 of breakpoint referred to by BS. If we should not stop for this
5429 breakpoint, set BS->stop to 0. */
5430
5431 static void
5432 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5433 {
5434 const struct bp_location *bl;
5435 struct breakpoint *b;
5436 int value_is_zero = 0;
5437 struct expression *cond;
5438
5439 gdb_assert (bs->stop);
5440
5441 /* BS is built for existing struct breakpoint. */
5442 bl = bs->bp_location_at;
5443 gdb_assert (bl != NULL);
5444 b = bs->breakpoint_at;
5445 gdb_assert (b != NULL);
5446
5447 /* Even if the target evaluated the condition on its end and notified GDB, we
5448 need to do so again since GDB does not know if we stopped due to a
5449 breakpoint or a single step breakpoint. */
5450
5451 if (frame_id_p (b->frame_id)
5452 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5453 {
5454 bs->stop = 0;
5455 return;
5456 }
5457
5458 /* If this is a thread/task-specific breakpoint, don't waste cpu
5459 evaluating the condition if this isn't the specified
5460 thread/task. */
5461 if ((b->thread != -1 && b->thread != ptid_to_global_thread_id (ptid))
5462 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5463
5464 {
5465 bs->stop = 0;
5466 return;
5467 }
5468
5469 /* Evaluate extension language breakpoints that have a "stop" method
5470 implemented. */
5471 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5472
5473 if (is_watchpoint (b))
5474 {
5475 struct watchpoint *w = (struct watchpoint *) b;
5476
5477 cond = w->cond_exp.get ();
5478 }
5479 else
5480 cond = bl->cond.get ();
5481
5482 if (cond && b->disposition != disp_del_at_next_stop)
5483 {
5484 int within_current_scope = 1;
5485 struct watchpoint * w;
5486
5487 /* We use value_mark and value_free_to_mark because it could
5488 be a long time before we return to the command level and
5489 call free_all_values. We can't call free_all_values
5490 because we might be in the middle of evaluating a
5491 function call. */
5492 struct value *mark = value_mark ();
5493
5494 if (is_watchpoint (b))
5495 w = (struct watchpoint *) b;
5496 else
5497 w = NULL;
5498
5499 /* Need to select the frame, with all that implies so that
5500 the conditions will have the right context. Because we
5501 use the frame, we will not see an inlined function's
5502 variables when we arrive at a breakpoint at the start
5503 of the inlined function; the current frame will be the
5504 call site. */
5505 if (w == NULL || w->cond_exp_valid_block == NULL)
5506 select_frame (get_current_frame ());
5507 else
5508 {
5509 struct frame_info *frame;
5510
5511 /* For local watchpoint expressions, which particular
5512 instance of a local is being watched matters, so we
5513 keep track of the frame to evaluate the expression
5514 in. To evaluate the condition however, it doesn't
5515 really matter which instantiation of the function
5516 where the condition makes sense triggers the
5517 watchpoint. This allows an expression like "watch
5518 global if q > 10" set in `func', catch writes to
5519 global on all threads that call `func', or catch
5520 writes on all recursive calls of `func' by a single
5521 thread. We simply always evaluate the condition in
5522 the innermost frame that's executing where it makes
5523 sense to evaluate the condition. It seems
5524 intuitive. */
5525 frame = block_innermost_frame (w->cond_exp_valid_block);
5526 if (frame != NULL)
5527 select_frame (frame);
5528 else
5529 within_current_scope = 0;
5530 }
5531 if (within_current_scope)
5532 value_is_zero
5533 = catch_errors (breakpoint_cond_eval, cond,
5534 "Error in testing breakpoint condition:\n",
5535 RETURN_MASK_ALL);
5536 else
5537 {
5538 warning (_("Watchpoint condition cannot be tested "
5539 "in the current scope"));
5540 /* If we failed to set the right context for this
5541 watchpoint, unconditionally report it. */
5542 value_is_zero = 0;
5543 }
5544 /* FIXME-someday, should give breakpoint #. */
5545 value_free_to_mark (mark);
5546 }
5547
5548 if (cond && value_is_zero)
5549 {
5550 bs->stop = 0;
5551 }
5552 else if (b->ignore_count > 0)
5553 {
5554 b->ignore_count--;
5555 bs->stop = 0;
5556 /* Increase the hit count even though we don't stop. */
5557 ++(b->hit_count);
5558 observer_notify_breakpoint_modified (b);
5559 }
5560 }
5561
5562 /* Returns true if we need to track moribund locations of LOC's type
5563 on the current target. */
5564
5565 static int
5566 need_moribund_for_location_type (struct bp_location *loc)
5567 {
5568 return ((loc->loc_type == bp_loc_software_breakpoint
5569 && !target_supports_stopped_by_sw_breakpoint ())
5570 || (loc->loc_type == bp_loc_hardware_breakpoint
5571 && !target_supports_stopped_by_hw_breakpoint ()));
5572 }
5573
5574
5575 /* Get a bpstat associated with having just stopped at address
5576 BP_ADDR in thread PTID.
5577
5578 Determine whether we stopped at a breakpoint, etc, or whether we
5579 don't understand this stop. Result is a chain of bpstat's such
5580 that:
5581
5582 if we don't understand the stop, the result is a null pointer.
5583
5584 if we understand why we stopped, the result is not null.
5585
5586 Each element of the chain refers to a particular breakpoint or
5587 watchpoint at which we have stopped. (We may have stopped for
5588 several reasons concurrently.)
5589
5590 Each element of the chain has valid next, breakpoint_at,
5591 commands, FIXME??? fields. */
5592
5593 bpstat
5594 bpstat_stop_status (struct address_space *aspace,
5595 CORE_ADDR bp_addr, ptid_t ptid,
5596 const struct target_waitstatus *ws)
5597 {
5598 struct breakpoint *b = NULL;
5599 struct bp_location *bl;
5600 struct bp_location *loc;
5601 /* First item of allocated bpstat's. */
5602 bpstat bs_head = NULL, *bs_link = &bs_head;
5603 /* Pointer to the last thing in the chain currently. */
5604 bpstat bs;
5605 int ix;
5606 int need_remove_insert;
5607 int removed_any;
5608
5609 /* First, build the bpstat chain with locations that explain a
5610 target stop, while being careful to not set the target running,
5611 as that may invalidate locations (in particular watchpoint
5612 locations are recreated). Resuming will happen here with
5613 breakpoint conditions or watchpoint expressions that include
5614 inferior function calls. */
5615
5616 ALL_BREAKPOINTS (b)
5617 {
5618 if (!breakpoint_enabled (b))
5619 continue;
5620
5621 for (bl = b->loc; bl != NULL; bl = bl->next)
5622 {
5623 /* For hardware watchpoints, we look only at the first
5624 location. The watchpoint_check function will work on the
5625 entire expression, not the individual locations. For
5626 read watchpoints, the watchpoints_triggered function has
5627 checked all locations already. */
5628 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5629 break;
5630
5631 if (!bl->enabled || bl->shlib_disabled)
5632 continue;
5633
5634 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5635 continue;
5636
5637 /* Come here if it's a watchpoint, or if the break address
5638 matches. */
5639
5640 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5641 explain stop. */
5642
5643 /* Assume we stop. Should we find a watchpoint that is not
5644 actually triggered, or if the condition of the breakpoint
5645 evaluates as false, we'll reset 'stop' to 0. */
5646 bs->stop = 1;
5647 bs->print = 1;
5648
5649 /* If this is a scope breakpoint, mark the associated
5650 watchpoint as triggered so that we will handle the
5651 out-of-scope event. We'll get to the watchpoint next
5652 iteration. */
5653 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5654 {
5655 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5656
5657 w->watchpoint_triggered = watch_triggered_yes;
5658 }
5659 }
5660 }
5661
5662 /* Check if a moribund breakpoint explains the stop. */
5663 if (!target_supports_stopped_by_sw_breakpoint ()
5664 || !target_supports_stopped_by_hw_breakpoint ())
5665 {
5666 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5667 {
5668 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5669 && need_moribund_for_location_type (loc))
5670 {
5671 bs = bpstat_alloc (loc, &bs_link);
5672 /* For hits of moribund locations, we should just proceed. */
5673 bs->stop = 0;
5674 bs->print = 0;
5675 bs->print_it = print_it_noop;
5676 }
5677 }
5678 }
5679
5680 /* A bit of special processing for shlib breakpoints. We need to
5681 process solib loading here, so that the lists of loaded and
5682 unloaded libraries are correct before we handle "catch load" and
5683 "catch unload". */
5684 for (bs = bs_head; bs != NULL; bs = bs->next)
5685 {
5686 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5687 {
5688 handle_solib_event ();
5689 break;
5690 }
5691 }
5692
5693 /* Now go through the locations that caused the target to stop, and
5694 check whether we're interested in reporting this stop to higher
5695 layers, or whether we should resume the target transparently. */
5696
5697 removed_any = 0;
5698
5699 for (bs = bs_head; bs != NULL; bs = bs->next)
5700 {
5701 if (!bs->stop)
5702 continue;
5703
5704 b = bs->breakpoint_at;
5705 b->ops->check_status (bs);
5706 if (bs->stop)
5707 {
5708 bpstat_check_breakpoint_conditions (bs, ptid);
5709
5710 if (bs->stop)
5711 {
5712 ++(b->hit_count);
5713 observer_notify_breakpoint_modified (b);
5714
5715 /* We will stop here. */
5716 if (b->disposition == disp_disable)
5717 {
5718 --(b->enable_count);
5719 if (b->enable_count <= 0)
5720 b->enable_state = bp_disabled;
5721 removed_any = 1;
5722 }
5723 if (b->silent)
5724 bs->print = 0;
5725 bs->commands = b->commands;
5726 incref_counted_command_line (bs->commands);
5727 if (command_line_is_silent (bs->commands
5728 ? bs->commands->commands : NULL))
5729 bs->print = 0;
5730
5731 b->ops->after_condition_true (bs);
5732 }
5733
5734 }
5735
5736 /* Print nothing for this entry if we don't stop or don't
5737 print. */
5738 if (!bs->stop || !bs->print)
5739 bs->print_it = print_it_noop;
5740 }
5741
5742 /* If we aren't stopping, the value of some hardware watchpoint may
5743 not have changed, but the intermediate memory locations we are
5744 watching may have. Don't bother if we're stopping; this will get
5745 done later. */
5746 need_remove_insert = 0;
5747 if (! bpstat_causes_stop (bs_head))
5748 for (bs = bs_head; bs != NULL; bs = bs->next)
5749 if (!bs->stop
5750 && bs->breakpoint_at
5751 && is_hardware_watchpoint (bs->breakpoint_at))
5752 {
5753 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5754
5755 update_watchpoint (w, 0 /* don't reparse. */);
5756 need_remove_insert = 1;
5757 }
5758
5759 if (need_remove_insert)
5760 update_global_location_list (UGLL_MAY_INSERT);
5761 else if (removed_any)
5762 update_global_location_list (UGLL_DONT_INSERT);
5763
5764 return bs_head;
5765 }
5766
5767 static void
5768 handle_jit_event (void)
5769 {
5770 struct frame_info *frame;
5771 struct gdbarch *gdbarch;
5772
5773 if (debug_infrun)
5774 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5775
5776 /* Switch terminal for any messages produced by
5777 breakpoint_re_set. */
5778 target_terminal_ours_for_output ();
5779
5780 frame = get_current_frame ();
5781 gdbarch = get_frame_arch (frame);
5782
5783 jit_event_handler (gdbarch);
5784
5785 target_terminal_inferior ();
5786 }
5787
5788 /* Prepare WHAT final decision for infrun. */
5789
5790 /* Decide what infrun needs to do with this bpstat. */
5791
5792 struct bpstat_what
5793 bpstat_what (bpstat bs_head)
5794 {
5795 struct bpstat_what retval;
5796 bpstat bs;
5797
5798 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5799 retval.call_dummy = STOP_NONE;
5800 retval.is_longjmp = 0;
5801
5802 for (bs = bs_head; bs != NULL; bs = bs->next)
5803 {
5804 /* Extract this BS's action. After processing each BS, we check
5805 if its action overrides all we've seem so far. */
5806 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5807 enum bptype bptype;
5808
5809 if (bs->breakpoint_at == NULL)
5810 {
5811 /* I suspect this can happen if it was a momentary
5812 breakpoint which has since been deleted. */
5813 bptype = bp_none;
5814 }
5815 else
5816 bptype = bs->breakpoint_at->type;
5817
5818 switch (bptype)
5819 {
5820 case bp_none:
5821 break;
5822 case bp_breakpoint:
5823 case bp_hardware_breakpoint:
5824 case bp_single_step:
5825 case bp_until:
5826 case bp_finish:
5827 case bp_shlib_event:
5828 if (bs->stop)
5829 {
5830 if (bs->print)
5831 this_action = BPSTAT_WHAT_STOP_NOISY;
5832 else
5833 this_action = BPSTAT_WHAT_STOP_SILENT;
5834 }
5835 else
5836 this_action = BPSTAT_WHAT_SINGLE;
5837 break;
5838 case bp_watchpoint:
5839 case bp_hardware_watchpoint:
5840 case bp_read_watchpoint:
5841 case bp_access_watchpoint:
5842 if (bs->stop)
5843 {
5844 if (bs->print)
5845 this_action = BPSTAT_WHAT_STOP_NOISY;
5846 else
5847 this_action = BPSTAT_WHAT_STOP_SILENT;
5848 }
5849 else
5850 {
5851 /* There was a watchpoint, but we're not stopping.
5852 This requires no further action. */
5853 }
5854 break;
5855 case bp_longjmp:
5856 case bp_longjmp_call_dummy:
5857 case bp_exception:
5858 if (bs->stop)
5859 {
5860 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5861 retval.is_longjmp = bptype != bp_exception;
5862 }
5863 else
5864 this_action = BPSTAT_WHAT_SINGLE;
5865 break;
5866 case bp_longjmp_resume:
5867 case bp_exception_resume:
5868 if (bs->stop)
5869 {
5870 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5871 retval.is_longjmp = bptype == bp_longjmp_resume;
5872 }
5873 else
5874 this_action = BPSTAT_WHAT_SINGLE;
5875 break;
5876 case bp_step_resume:
5877 if (bs->stop)
5878 this_action = BPSTAT_WHAT_STEP_RESUME;
5879 else
5880 {
5881 /* It is for the wrong frame. */
5882 this_action = BPSTAT_WHAT_SINGLE;
5883 }
5884 break;
5885 case bp_hp_step_resume:
5886 if (bs->stop)
5887 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5888 else
5889 {
5890 /* It is for the wrong frame. */
5891 this_action = BPSTAT_WHAT_SINGLE;
5892 }
5893 break;
5894 case bp_watchpoint_scope:
5895 case bp_thread_event:
5896 case bp_overlay_event:
5897 case bp_longjmp_master:
5898 case bp_std_terminate_master:
5899 case bp_exception_master:
5900 this_action = BPSTAT_WHAT_SINGLE;
5901 break;
5902 case bp_catchpoint:
5903 if (bs->stop)
5904 {
5905 if (bs->print)
5906 this_action = BPSTAT_WHAT_STOP_NOISY;
5907 else
5908 this_action = BPSTAT_WHAT_STOP_SILENT;
5909 }
5910 else
5911 {
5912 /* There was a catchpoint, but we're not stopping.
5913 This requires no further action. */
5914 }
5915 break;
5916 case bp_jit_event:
5917 this_action = BPSTAT_WHAT_SINGLE;
5918 break;
5919 case bp_call_dummy:
5920 /* Make sure the action is stop (silent or noisy),
5921 so infrun.c pops the dummy frame. */
5922 retval.call_dummy = STOP_STACK_DUMMY;
5923 this_action = BPSTAT_WHAT_STOP_SILENT;
5924 break;
5925 case bp_std_terminate:
5926 /* Make sure the action is stop (silent or noisy),
5927 so infrun.c pops the dummy frame. */
5928 retval.call_dummy = STOP_STD_TERMINATE;
5929 this_action = BPSTAT_WHAT_STOP_SILENT;
5930 break;
5931 case bp_tracepoint:
5932 case bp_fast_tracepoint:
5933 case bp_static_tracepoint:
5934 /* Tracepoint hits should not be reported back to GDB, and
5935 if one got through somehow, it should have been filtered
5936 out already. */
5937 internal_error (__FILE__, __LINE__,
5938 _("bpstat_what: tracepoint encountered"));
5939 break;
5940 case bp_gnu_ifunc_resolver:
5941 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5942 this_action = BPSTAT_WHAT_SINGLE;
5943 break;
5944 case bp_gnu_ifunc_resolver_return:
5945 /* The breakpoint will be removed, execution will restart from the
5946 PC of the former breakpoint. */
5947 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5948 break;
5949
5950 case bp_dprintf:
5951 if (bs->stop)
5952 this_action = BPSTAT_WHAT_STOP_SILENT;
5953 else
5954 this_action = BPSTAT_WHAT_SINGLE;
5955 break;
5956
5957 default:
5958 internal_error (__FILE__, __LINE__,
5959 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5960 }
5961
5962 retval.main_action = std::max (retval.main_action, this_action);
5963 }
5964
5965 return retval;
5966 }
5967
5968 void
5969 bpstat_run_callbacks (bpstat bs_head)
5970 {
5971 bpstat bs;
5972
5973 for (bs = bs_head; bs != NULL; bs = bs->next)
5974 {
5975 struct breakpoint *b = bs->breakpoint_at;
5976
5977 if (b == NULL)
5978 continue;
5979 switch (b->type)
5980 {
5981 case bp_jit_event:
5982 handle_jit_event ();
5983 break;
5984 case bp_gnu_ifunc_resolver:
5985 gnu_ifunc_resolver_stop (b);
5986 break;
5987 case bp_gnu_ifunc_resolver_return:
5988 gnu_ifunc_resolver_return_stop (b);
5989 break;
5990 }
5991 }
5992 }
5993
5994 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5995 without hardware support). This isn't related to a specific bpstat,
5996 just to things like whether watchpoints are set. */
5997
5998 int
5999 bpstat_should_step (void)
6000 {
6001 struct breakpoint *b;
6002
6003 ALL_BREAKPOINTS (b)
6004 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
6005 return 1;
6006 return 0;
6007 }
6008
6009 int
6010 bpstat_causes_stop (bpstat bs)
6011 {
6012 for (; bs != NULL; bs = bs->next)
6013 if (bs->stop)
6014 return 1;
6015
6016 return 0;
6017 }
6018
6019 \f
6020
6021 /* Compute a string of spaces suitable to indent the next line
6022 so it starts at the position corresponding to the table column
6023 named COL_NAME in the currently active table of UIOUT. */
6024
6025 static char *
6026 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
6027 {
6028 static char wrap_indent[80];
6029 int i, total_width, width, align;
6030 const char *text;
6031
6032 total_width = 0;
6033 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
6034 {
6035 if (strcmp (text, col_name) == 0)
6036 {
6037 gdb_assert (total_width < sizeof wrap_indent);
6038 memset (wrap_indent, ' ', total_width);
6039 wrap_indent[total_width] = 0;
6040
6041 return wrap_indent;
6042 }
6043
6044 total_width += width + 1;
6045 }
6046
6047 return NULL;
6048 }
6049
6050 /* Determine if the locations of this breakpoint will have their conditions
6051 evaluated by the target, host or a mix of both. Returns the following:
6052
6053 "host": Host evals condition.
6054 "host or target": Host or Target evals condition.
6055 "target": Target evals condition.
6056 */
6057
6058 static const char *
6059 bp_condition_evaluator (struct breakpoint *b)
6060 {
6061 struct bp_location *bl;
6062 char host_evals = 0;
6063 char target_evals = 0;
6064
6065 if (!b)
6066 return NULL;
6067
6068 if (!is_breakpoint (b))
6069 return NULL;
6070
6071 if (gdb_evaluates_breakpoint_condition_p ()
6072 || !target_supports_evaluation_of_breakpoint_conditions ())
6073 return condition_evaluation_host;
6074
6075 for (bl = b->loc; bl; bl = bl->next)
6076 {
6077 if (bl->cond_bytecode)
6078 target_evals++;
6079 else
6080 host_evals++;
6081 }
6082
6083 if (host_evals && target_evals)
6084 return condition_evaluation_both;
6085 else if (target_evals)
6086 return condition_evaluation_target;
6087 else
6088 return condition_evaluation_host;
6089 }
6090
6091 /* Determine the breakpoint location's condition evaluator. This is
6092 similar to bp_condition_evaluator, but for locations. */
6093
6094 static const char *
6095 bp_location_condition_evaluator (struct bp_location *bl)
6096 {
6097 if (bl && !is_breakpoint (bl->owner))
6098 return NULL;
6099
6100 if (gdb_evaluates_breakpoint_condition_p ()
6101 || !target_supports_evaluation_of_breakpoint_conditions ())
6102 return condition_evaluation_host;
6103
6104 if (bl && bl->cond_bytecode)
6105 return condition_evaluation_target;
6106 else
6107 return condition_evaluation_host;
6108 }
6109
6110 /* Print the LOC location out of the list of B->LOC locations. */
6111
6112 static void
6113 print_breakpoint_location (struct breakpoint *b,
6114 struct bp_location *loc)
6115 {
6116 struct ui_out *uiout = current_uiout;
6117
6118 scoped_restore_current_program_space restore_pspace;
6119
6120 if (loc != NULL && loc->shlib_disabled)
6121 loc = NULL;
6122
6123 if (loc != NULL)
6124 set_current_program_space (loc->pspace);
6125
6126 if (b->display_canonical)
6127 uiout->field_string ("what", event_location_to_string (b->location.get ()));
6128 else if (loc && loc->symtab)
6129 {
6130 struct symbol *sym
6131 = find_pc_sect_function (loc->address, loc->section);
6132 if (sym)
6133 {
6134 uiout->text ("in ");
6135 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
6136 uiout->text (" ");
6137 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
6138 uiout->text ("at ");
6139 }
6140 uiout->field_string ("file",
6141 symtab_to_filename_for_display (loc->symtab));
6142 uiout->text (":");
6143
6144 if (uiout->is_mi_like_p ())
6145 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
6146
6147 uiout->field_int ("line", loc->line_number);
6148 }
6149 else if (loc)
6150 {
6151 string_file stb;
6152
6153 print_address_symbolic (loc->gdbarch, loc->address, &stb,
6154 demangle, "");
6155 uiout->field_stream ("at", stb);
6156 }
6157 else
6158 {
6159 uiout->field_string ("pending",
6160 event_location_to_string (b->location.get ()));
6161 /* If extra_string is available, it could be holding a condition
6162 or dprintf arguments. In either case, make sure it is printed,
6163 too, but only for non-MI streams. */
6164 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
6165 {
6166 if (b->type == bp_dprintf)
6167 uiout->text (",");
6168 else
6169 uiout->text (" ");
6170 uiout->text (b->extra_string);
6171 }
6172 }
6173
6174 if (loc && is_breakpoint (b)
6175 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
6176 && bp_condition_evaluator (b) == condition_evaluation_both)
6177 {
6178 uiout->text (" (");
6179 uiout->field_string ("evaluated-by",
6180 bp_location_condition_evaluator (loc));
6181 uiout->text (")");
6182 }
6183 }
6184
6185 static const char *
6186 bptype_string (enum bptype type)
6187 {
6188 struct ep_type_description
6189 {
6190 enum bptype type;
6191 const char *description;
6192 };
6193 static struct ep_type_description bptypes[] =
6194 {
6195 {bp_none, "?deleted?"},
6196 {bp_breakpoint, "breakpoint"},
6197 {bp_hardware_breakpoint, "hw breakpoint"},
6198 {bp_single_step, "sw single-step"},
6199 {bp_until, "until"},
6200 {bp_finish, "finish"},
6201 {bp_watchpoint, "watchpoint"},
6202 {bp_hardware_watchpoint, "hw watchpoint"},
6203 {bp_read_watchpoint, "read watchpoint"},
6204 {bp_access_watchpoint, "acc watchpoint"},
6205 {bp_longjmp, "longjmp"},
6206 {bp_longjmp_resume, "longjmp resume"},
6207 {bp_longjmp_call_dummy, "longjmp for call dummy"},
6208 {bp_exception, "exception"},
6209 {bp_exception_resume, "exception resume"},
6210 {bp_step_resume, "step resume"},
6211 {bp_hp_step_resume, "high-priority step resume"},
6212 {bp_watchpoint_scope, "watchpoint scope"},
6213 {bp_call_dummy, "call dummy"},
6214 {bp_std_terminate, "std::terminate"},
6215 {bp_shlib_event, "shlib events"},
6216 {bp_thread_event, "thread events"},
6217 {bp_overlay_event, "overlay events"},
6218 {bp_longjmp_master, "longjmp master"},
6219 {bp_std_terminate_master, "std::terminate master"},
6220 {bp_exception_master, "exception master"},
6221 {bp_catchpoint, "catchpoint"},
6222 {bp_tracepoint, "tracepoint"},
6223 {bp_fast_tracepoint, "fast tracepoint"},
6224 {bp_static_tracepoint, "static tracepoint"},
6225 {bp_dprintf, "dprintf"},
6226 {bp_jit_event, "jit events"},
6227 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6228 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6229 };
6230
6231 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6232 || ((int) type != bptypes[(int) type].type))
6233 internal_error (__FILE__, __LINE__,
6234 _("bptypes table does not describe type #%d."),
6235 (int) type);
6236
6237 return bptypes[(int) type].description;
6238 }
6239
6240 /* For MI, output a field named 'thread-groups' with a list as the value.
6241 For CLI, prefix the list with the string 'inf'. */
6242
6243 static void
6244 output_thread_groups (struct ui_out *uiout,
6245 const char *field_name,
6246 VEC(int) *inf_num,
6247 int mi_only)
6248 {
6249 int is_mi = uiout->is_mi_like_p ();
6250 int inf;
6251 int i;
6252
6253 /* For backward compatibility, don't display inferiors in CLI unless
6254 there are several. Always display them for MI. */
6255 if (!is_mi && mi_only)
6256 return;
6257
6258 ui_out_emit_list list_emitter (uiout, field_name);
6259
6260 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
6261 {
6262 if (is_mi)
6263 {
6264 char mi_group[10];
6265
6266 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
6267 uiout->field_string (NULL, mi_group);
6268 }
6269 else
6270 {
6271 if (i == 0)
6272 uiout->text (" inf ");
6273 else
6274 uiout->text (", ");
6275
6276 uiout->text (plongest (inf));
6277 }
6278 }
6279 }
6280
6281 /* Print B to gdb_stdout. */
6282
6283 static void
6284 print_one_breakpoint_location (struct breakpoint *b,
6285 struct bp_location *loc,
6286 int loc_number,
6287 struct bp_location **last_loc,
6288 int allflag)
6289 {
6290 struct command_line *l;
6291 static char bpenables[] = "nynny";
6292
6293 struct ui_out *uiout = current_uiout;
6294 int header_of_multiple = 0;
6295 int part_of_multiple = (loc != NULL);
6296 struct value_print_options opts;
6297
6298 get_user_print_options (&opts);
6299
6300 gdb_assert (!loc || loc_number != 0);
6301 /* See comment in print_one_breakpoint concerning treatment of
6302 breakpoints with single disabled location. */
6303 if (loc == NULL
6304 && (b->loc != NULL
6305 && (b->loc->next != NULL || !b->loc->enabled)))
6306 header_of_multiple = 1;
6307 if (loc == NULL)
6308 loc = b->loc;
6309
6310 annotate_record ();
6311
6312 /* 1 */
6313 annotate_field (0);
6314 if (part_of_multiple)
6315 {
6316 char *formatted;
6317 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6318 uiout->field_string ("number", formatted);
6319 xfree (formatted);
6320 }
6321 else
6322 {
6323 uiout->field_int ("number", b->number);
6324 }
6325
6326 /* 2 */
6327 annotate_field (1);
6328 if (part_of_multiple)
6329 uiout->field_skip ("type");
6330 else
6331 uiout->field_string ("type", bptype_string (b->type));
6332
6333 /* 3 */
6334 annotate_field (2);
6335 if (part_of_multiple)
6336 uiout->field_skip ("disp");
6337 else
6338 uiout->field_string ("disp", bpdisp_text (b->disposition));
6339
6340
6341 /* 4 */
6342 annotate_field (3);
6343 if (part_of_multiple)
6344 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6345 else
6346 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6347 uiout->spaces (2);
6348
6349
6350 /* 5 and 6 */
6351 if (b->ops != NULL && b->ops->print_one != NULL)
6352 {
6353 /* Although the print_one can possibly print all locations,
6354 calling it here is not likely to get any nice result. So,
6355 make sure there's just one location. */
6356 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6357 b->ops->print_one (b, last_loc);
6358 }
6359 else
6360 switch (b->type)
6361 {
6362 case bp_none:
6363 internal_error (__FILE__, __LINE__,
6364 _("print_one_breakpoint: bp_none encountered\n"));
6365 break;
6366
6367 case bp_watchpoint:
6368 case bp_hardware_watchpoint:
6369 case bp_read_watchpoint:
6370 case bp_access_watchpoint:
6371 {
6372 struct watchpoint *w = (struct watchpoint *) b;
6373
6374 /* Field 4, the address, is omitted (which makes the columns
6375 not line up too nicely with the headers, but the effect
6376 is relatively readable). */
6377 if (opts.addressprint)
6378 uiout->field_skip ("addr");
6379 annotate_field (5);
6380 uiout->field_string ("what", w->exp_string);
6381 }
6382 break;
6383
6384 case bp_breakpoint:
6385 case bp_hardware_breakpoint:
6386 case bp_single_step:
6387 case bp_until:
6388 case bp_finish:
6389 case bp_longjmp:
6390 case bp_longjmp_resume:
6391 case bp_longjmp_call_dummy:
6392 case bp_exception:
6393 case bp_exception_resume:
6394 case bp_step_resume:
6395 case bp_hp_step_resume:
6396 case bp_watchpoint_scope:
6397 case bp_call_dummy:
6398 case bp_std_terminate:
6399 case bp_shlib_event:
6400 case bp_thread_event:
6401 case bp_overlay_event:
6402 case bp_longjmp_master:
6403 case bp_std_terminate_master:
6404 case bp_exception_master:
6405 case bp_tracepoint:
6406 case bp_fast_tracepoint:
6407 case bp_static_tracepoint:
6408 case bp_dprintf:
6409 case bp_jit_event:
6410 case bp_gnu_ifunc_resolver:
6411 case bp_gnu_ifunc_resolver_return:
6412 if (opts.addressprint)
6413 {
6414 annotate_field (4);
6415 if (header_of_multiple)
6416 uiout->field_string ("addr", "<MULTIPLE>");
6417 else if (b->loc == NULL || loc->shlib_disabled)
6418 uiout->field_string ("addr", "<PENDING>");
6419 else
6420 uiout->field_core_addr ("addr",
6421 loc->gdbarch, loc->address);
6422 }
6423 annotate_field (5);
6424 if (!header_of_multiple)
6425 print_breakpoint_location (b, loc);
6426 if (b->loc)
6427 *last_loc = b->loc;
6428 break;
6429 }
6430
6431
6432 if (loc != NULL && !header_of_multiple)
6433 {
6434 struct inferior *inf;
6435 VEC(int) *inf_num = NULL;
6436 int mi_only = 1;
6437
6438 ALL_INFERIORS (inf)
6439 {
6440 if (inf->pspace == loc->pspace)
6441 VEC_safe_push (int, inf_num, inf->num);
6442 }
6443
6444 /* For backward compatibility, don't display inferiors in CLI unless
6445 there are several. Always display for MI. */
6446 if (allflag
6447 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6448 && (number_of_program_spaces () > 1
6449 || number_of_inferiors () > 1)
6450 /* LOC is for existing B, it cannot be in
6451 moribund_locations and thus having NULL OWNER. */
6452 && loc->owner->type != bp_catchpoint))
6453 mi_only = 0;
6454 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6455 VEC_free (int, inf_num);
6456 }
6457
6458 if (!part_of_multiple)
6459 {
6460 if (b->thread != -1)
6461 {
6462 /* FIXME: This seems to be redundant and lost here; see the
6463 "stop only in" line a little further down. */
6464 uiout->text (" thread ");
6465 uiout->field_int ("thread", b->thread);
6466 }
6467 else if (b->task != 0)
6468 {
6469 uiout->text (" task ");
6470 uiout->field_int ("task", b->task);
6471 }
6472 }
6473
6474 uiout->text ("\n");
6475
6476 if (!part_of_multiple)
6477 b->ops->print_one_detail (b, uiout);
6478
6479 if (part_of_multiple && frame_id_p (b->frame_id))
6480 {
6481 annotate_field (6);
6482 uiout->text ("\tstop only in stack frame at ");
6483 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6484 the frame ID. */
6485 uiout->field_core_addr ("frame",
6486 b->gdbarch, b->frame_id.stack_addr);
6487 uiout->text ("\n");
6488 }
6489
6490 if (!part_of_multiple && b->cond_string)
6491 {
6492 annotate_field (7);
6493 if (is_tracepoint (b))
6494 uiout->text ("\ttrace only if ");
6495 else
6496 uiout->text ("\tstop only if ");
6497 uiout->field_string ("cond", b->cond_string);
6498
6499 /* Print whether the target is doing the breakpoint's condition
6500 evaluation. If GDB is doing the evaluation, don't print anything. */
6501 if (is_breakpoint (b)
6502 && breakpoint_condition_evaluation_mode ()
6503 == condition_evaluation_target)
6504 {
6505 uiout->text (" (");
6506 uiout->field_string ("evaluated-by",
6507 bp_condition_evaluator (b));
6508 uiout->text (" evals)");
6509 }
6510 uiout->text ("\n");
6511 }
6512
6513 if (!part_of_multiple && b->thread != -1)
6514 {
6515 /* FIXME should make an annotation for this. */
6516 uiout->text ("\tstop only in thread ");
6517 if (uiout->is_mi_like_p ())
6518 uiout->field_int ("thread", b->thread);
6519 else
6520 {
6521 struct thread_info *thr = find_thread_global_id (b->thread);
6522
6523 uiout->field_string ("thread", print_thread_id (thr));
6524 }
6525 uiout->text ("\n");
6526 }
6527
6528 if (!part_of_multiple)
6529 {
6530 if (b->hit_count)
6531 {
6532 /* FIXME should make an annotation for this. */
6533 if (is_catchpoint (b))
6534 uiout->text ("\tcatchpoint");
6535 else if (is_tracepoint (b))
6536 uiout->text ("\ttracepoint");
6537 else
6538 uiout->text ("\tbreakpoint");
6539 uiout->text (" already hit ");
6540 uiout->field_int ("times", b->hit_count);
6541 if (b->hit_count == 1)
6542 uiout->text (" time\n");
6543 else
6544 uiout->text (" times\n");
6545 }
6546 else
6547 {
6548 /* Output the count also if it is zero, but only if this is mi. */
6549 if (uiout->is_mi_like_p ())
6550 uiout->field_int ("times", b->hit_count);
6551 }
6552 }
6553
6554 if (!part_of_multiple && b->ignore_count)
6555 {
6556 annotate_field (8);
6557 uiout->text ("\tignore next ");
6558 uiout->field_int ("ignore", b->ignore_count);
6559 uiout->text (" hits\n");
6560 }
6561
6562 /* Note that an enable count of 1 corresponds to "enable once"
6563 behavior, which is reported by the combination of enablement and
6564 disposition, so we don't need to mention it here. */
6565 if (!part_of_multiple && b->enable_count > 1)
6566 {
6567 annotate_field (8);
6568 uiout->text ("\tdisable after ");
6569 /* Tweak the wording to clarify that ignore and enable counts
6570 are distinct, and have additive effect. */
6571 if (b->ignore_count)
6572 uiout->text ("additional ");
6573 else
6574 uiout->text ("next ");
6575 uiout->field_int ("enable", b->enable_count);
6576 uiout->text (" hits\n");
6577 }
6578
6579 if (!part_of_multiple && is_tracepoint (b))
6580 {
6581 struct tracepoint *tp = (struct tracepoint *) b;
6582
6583 if (tp->traceframe_usage)
6584 {
6585 uiout->text ("\ttrace buffer usage ");
6586 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6587 uiout->text (" bytes\n");
6588 }
6589 }
6590
6591 l = b->commands ? b->commands->commands : NULL;
6592 if (!part_of_multiple && l)
6593 {
6594 annotate_field (9);
6595 ui_out_emit_tuple tuple_emitter (uiout, "script");
6596 print_command_lines (uiout, l, 4);
6597 }
6598
6599 if (is_tracepoint (b))
6600 {
6601 struct tracepoint *t = (struct tracepoint *) b;
6602
6603 if (!part_of_multiple && t->pass_count)
6604 {
6605 annotate_field (10);
6606 uiout->text ("\tpass count ");
6607 uiout->field_int ("pass", t->pass_count);
6608 uiout->text (" \n");
6609 }
6610
6611 /* Don't display it when tracepoint or tracepoint location is
6612 pending. */
6613 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6614 {
6615 annotate_field (11);
6616
6617 if (uiout->is_mi_like_p ())
6618 uiout->field_string ("installed",
6619 loc->inserted ? "y" : "n");
6620 else
6621 {
6622 if (loc->inserted)
6623 uiout->text ("\t");
6624 else
6625 uiout->text ("\tnot ");
6626 uiout->text ("installed on target\n");
6627 }
6628 }
6629 }
6630
6631 if (uiout->is_mi_like_p () && !part_of_multiple)
6632 {
6633 if (is_watchpoint (b))
6634 {
6635 struct watchpoint *w = (struct watchpoint *) b;
6636
6637 uiout->field_string ("original-location", w->exp_string);
6638 }
6639 else if (b->location != NULL
6640 && event_location_to_string (b->location.get ()) != NULL)
6641 uiout->field_string ("original-location",
6642 event_location_to_string (b->location.get ()));
6643 }
6644 }
6645
6646 static void
6647 print_one_breakpoint (struct breakpoint *b,
6648 struct bp_location **last_loc,
6649 int allflag)
6650 {
6651 struct ui_out *uiout = current_uiout;
6652
6653 {
6654 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6655
6656 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6657 }
6658
6659 /* If this breakpoint has custom print function,
6660 it's already printed. Otherwise, print individual
6661 locations, if any. */
6662 if (b->ops == NULL || b->ops->print_one == NULL)
6663 {
6664 /* If breakpoint has a single location that is disabled, we
6665 print it as if it had several locations, since otherwise it's
6666 hard to represent "breakpoint enabled, location disabled"
6667 situation.
6668
6669 Note that while hardware watchpoints have several locations
6670 internally, that's not a property exposed to user. */
6671 if (b->loc
6672 && !is_hardware_watchpoint (b)
6673 && (b->loc->next || !b->loc->enabled))
6674 {
6675 struct bp_location *loc;
6676 int n = 1;
6677
6678 for (loc = b->loc; loc; loc = loc->next, ++n)
6679 {
6680 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6681 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6682 }
6683 }
6684 }
6685 }
6686
6687 static int
6688 breakpoint_address_bits (struct breakpoint *b)
6689 {
6690 int print_address_bits = 0;
6691 struct bp_location *loc;
6692
6693 /* Software watchpoints that aren't watching memory don't have an
6694 address to print. */
6695 if (is_no_memory_software_watchpoint (b))
6696 return 0;
6697
6698 for (loc = b->loc; loc; loc = loc->next)
6699 {
6700 int addr_bit;
6701
6702 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6703 if (addr_bit > print_address_bits)
6704 print_address_bits = addr_bit;
6705 }
6706
6707 return print_address_bits;
6708 }
6709
6710 struct captured_breakpoint_query_args
6711 {
6712 int bnum;
6713 };
6714
6715 static int
6716 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6717 {
6718 struct captured_breakpoint_query_args *args
6719 = (struct captured_breakpoint_query_args *) data;
6720 struct breakpoint *b;
6721 struct bp_location *dummy_loc = NULL;
6722
6723 ALL_BREAKPOINTS (b)
6724 {
6725 if (args->bnum == b->number)
6726 {
6727 print_one_breakpoint (b, &dummy_loc, 0);
6728 return GDB_RC_OK;
6729 }
6730 }
6731 return GDB_RC_NONE;
6732 }
6733
6734 enum gdb_rc
6735 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6736 char **error_message)
6737 {
6738 struct captured_breakpoint_query_args args;
6739
6740 args.bnum = bnum;
6741 /* For the moment we don't trust print_one_breakpoint() to not throw
6742 an error. */
6743 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6744 error_message, RETURN_MASK_ALL) < 0)
6745 return GDB_RC_FAIL;
6746 else
6747 return GDB_RC_OK;
6748 }
6749
6750 /* Return true if this breakpoint was set by the user, false if it is
6751 internal or momentary. */
6752
6753 int
6754 user_breakpoint_p (struct breakpoint *b)
6755 {
6756 return b->number > 0;
6757 }
6758
6759 /* See breakpoint.h. */
6760
6761 int
6762 pending_breakpoint_p (struct breakpoint *b)
6763 {
6764 return b->loc == NULL;
6765 }
6766
6767 /* Print information on user settable breakpoint (watchpoint, etc)
6768 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6769 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6770 FILTER is non-NULL, call it on each breakpoint and only include the
6771 ones for which it returns non-zero. Return the total number of
6772 breakpoints listed. */
6773
6774 static int
6775 breakpoint_1 (char *args, int allflag,
6776 int (*filter) (const struct breakpoint *))
6777 {
6778 struct breakpoint *b;
6779 struct bp_location *last_loc = NULL;
6780 int nr_printable_breakpoints;
6781 struct cleanup *bkpttbl_chain;
6782 struct value_print_options opts;
6783 int print_address_bits = 0;
6784 int print_type_col_width = 14;
6785 struct ui_out *uiout = current_uiout;
6786
6787 get_user_print_options (&opts);
6788
6789 /* Compute the number of rows in the table, as well as the size
6790 required for address fields. */
6791 nr_printable_breakpoints = 0;
6792 ALL_BREAKPOINTS (b)
6793 {
6794 /* If we have a filter, only list the breakpoints it accepts. */
6795 if (filter && !filter (b))
6796 continue;
6797
6798 /* If we have an "args" string, it is a list of breakpoints to
6799 accept. Skip the others. */
6800 if (args != NULL && *args != '\0')
6801 {
6802 if (allflag && parse_and_eval_long (args) != b->number)
6803 continue;
6804 if (!allflag && !number_is_in_list (args, b->number))
6805 continue;
6806 }
6807
6808 if (allflag || user_breakpoint_p (b))
6809 {
6810 int addr_bit, type_len;
6811
6812 addr_bit = breakpoint_address_bits (b);
6813 if (addr_bit > print_address_bits)
6814 print_address_bits = addr_bit;
6815
6816 type_len = strlen (bptype_string (b->type));
6817 if (type_len > print_type_col_width)
6818 print_type_col_width = type_len;
6819
6820 nr_printable_breakpoints++;
6821 }
6822 }
6823
6824 if (opts.addressprint)
6825 bkpttbl_chain
6826 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6827 nr_printable_breakpoints,
6828 "BreakpointTable");
6829 else
6830 bkpttbl_chain
6831 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6832 nr_printable_breakpoints,
6833 "BreakpointTable");
6834
6835 if (nr_printable_breakpoints > 0)
6836 annotate_breakpoints_headers ();
6837 if (nr_printable_breakpoints > 0)
6838 annotate_field (0);
6839 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6840 if (nr_printable_breakpoints > 0)
6841 annotate_field (1);
6842 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6843 if (nr_printable_breakpoints > 0)
6844 annotate_field (2);
6845 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6846 if (nr_printable_breakpoints > 0)
6847 annotate_field (3);
6848 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6849 if (opts.addressprint)
6850 {
6851 if (nr_printable_breakpoints > 0)
6852 annotate_field (4);
6853 if (print_address_bits <= 32)
6854 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6855 else
6856 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6857 }
6858 if (nr_printable_breakpoints > 0)
6859 annotate_field (5);
6860 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6861 uiout->table_body ();
6862 if (nr_printable_breakpoints > 0)
6863 annotate_breakpoints_table ();
6864
6865 ALL_BREAKPOINTS (b)
6866 {
6867 QUIT;
6868 /* If we have a filter, only list the breakpoints it accepts. */
6869 if (filter && !filter (b))
6870 continue;
6871
6872 /* If we have an "args" string, it is a list of breakpoints to
6873 accept. Skip the others. */
6874
6875 if (args != NULL && *args != '\0')
6876 {
6877 if (allflag) /* maintenance info breakpoint */
6878 {
6879 if (parse_and_eval_long (args) != b->number)
6880 continue;
6881 }
6882 else /* all others */
6883 {
6884 if (!number_is_in_list (args, b->number))
6885 continue;
6886 }
6887 }
6888 /* We only print out user settable breakpoints unless the
6889 allflag is set. */
6890 if (allflag || user_breakpoint_p (b))
6891 print_one_breakpoint (b, &last_loc, allflag);
6892 }
6893
6894 do_cleanups (bkpttbl_chain);
6895
6896 if (nr_printable_breakpoints == 0)
6897 {
6898 /* If there's a filter, let the caller decide how to report
6899 empty list. */
6900 if (!filter)
6901 {
6902 if (args == NULL || *args == '\0')
6903 uiout->message ("No breakpoints or watchpoints.\n");
6904 else
6905 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6906 args);
6907 }
6908 }
6909 else
6910 {
6911 if (last_loc && !server_command)
6912 set_next_address (last_loc->gdbarch, last_loc->address);
6913 }
6914
6915 /* FIXME? Should this be moved up so that it is only called when
6916 there have been breakpoints? */
6917 annotate_breakpoints_table_end ();
6918
6919 return nr_printable_breakpoints;
6920 }
6921
6922 /* Display the value of default-collect in a way that is generally
6923 compatible with the breakpoint list. */
6924
6925 static void
6926 default_collect_info (void)
6927 {
6928 struct ui_out *uiout = current_uiout;
6929
6930 /* If it has no value (which is frequently the case), say nothing; a
6931 message like "No default-collect." gets in user's face when it's
6932 not wanted. */
6933 if (!*default_collect)
6934 return;
6935
6936 /* The following phrase lines up nicely with per-tracepoint collect
6937 actions. */
6938 uiout->text ("default collect ");
6939 uiout->field_string ("default-collect", default_collect);
6940 uiout->text (" \n");
6941 }
6942
6943 static void
6944 breakpoints_info (char *args, int from_tty)
6945 {
6946 breakpoint_1 (args, 0, NULL);
6947
6948 default_collect_info ();
6949 }
6950
6951 static void
6952 watchpoints_info (char *args, int from_tty)
6953 {
6954 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6955 struct ui_out *uiout = current_uiout;
6956
6957 if (num_printed == 0)
6958 {
6959 if (args == NULL || *args == '\0')
6960 uiout->message ("No watchpoints.\n");
6961 else
6962 uiout->message ("No watchpoint matching '%s'.\n", args);
6963 }
6964 }
6965
6966 static void
6967 maintenance_info_breakpoints (char *args, int from_tty)
6968 {
6969 breakpoint_1 (args, 1, NULL);
6970
6971 default_collect_info ();
6972 }
6973
6974 static int
6975 breakpoint_has_pc (struct breakpoint *b,
6976 struct program_space *pspace,
6977 CORE_ADDR pc, struct obj_section *section)
6978 {
6979 struct bp_location *bl = b->loc;
6980
6981 for (; bl; bl = bl->next)
6982 {
6983 if (bl->pspace == pspace
6984 && bl->address == pc
6985 && (!overlay_debugging || bl->section == section))
6986 return 1;
6987 }
6988 return 0;
6989 }
6990
6991 /* Print a message describing any user-breakpoints set at PC. This
6992 concerns with logical breakpoints, so we match program spaces, not
6993 address spaces. */
6994
6995 static void
6996 describe_other_breakpoints (struct gdbarch *gdbarch,
6997 struct program_space *pspace, CORE_ADDR pc,
6998 struct obj_section *section, int thread)
6999 {
7000 int others = 0;
7001 struct breakpoint *b;
7002
7003 ALL_BREAKPOINTS (b)
7004 others += (user_breakpoint_p (b)
7005 && breakpoint_has_pc (b, pspace, pc, section));
7006 if (others > 0)
7007 {
7008 if (others == 1)
7009 printf_filtered (_("Note: breakpoint "));
7010 else /* if (others == ???) */
7011 printf_filtered (_("Note: breakpoints "));
7012 ALL_BREAKPOINTS (b)
7013 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
7014 {
7015 others--;
7016 printf_filtered ("%d", b->number);
7017 if (b->thread == -1 && thread != -1)
7018 printf_filtered (" (all threads)");
7019 else if (b->thread != -1)
7020 printf_filtered (" (thread %d)", b->thread);
7021 printf_filtered ("%s%s ",
7022 ((b->enable_state == bp_disabled
7023 || b->enable_state == bp_call_disabled)
7024 ? " (disabled)"
7025 : ""),
7026 (others > 1) ? ","
7027 : ((others == 1) ? " and" : ""));
7028 }
7029 printf_filtered (_("also set at pc "));
7030 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
7031 printf_filtered (".\n");
7032 }
7033 }
7034 \f
7035
7036 /* Return true iff it is meaningful to use the address member of
7037 BPT locations. For some breakpoint types, the locations' address members
7038 are irrelevant and it makes no sense to attempt to compare them to other
7039 addresses (or use them for any other purpose either).
7040
7041 More specifically, each of the following breakpoint types will
7042 always have a zero valued location address and we don't want to mark
7043 breakpoints of any of these types to be a duplicate of an actual
7044 breakpoint location at address zero:
7045
7046 bp_watchpoint
7047 bp_catchpoint
7048
7049 */
7050
7051 static int
7052 breakpoint_address_is_meaningful (struct breakpoint *bpt)
7053 {
7054 enum bptype type = bpt->type;
7055
7056 return (type != bp_watchpoint && type != bp_catchpoint);
7057 }
7058
7059 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
7060 true if LOC1 and LOC2 represent the same watchpoint location. */
7061
7062 static int
7063 watchpoint_locations_match (struct bp_location *loc1,
7064 struct bp_location *loc2)
7065 {
7066 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
7067 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
7068
7069 /* Both of them must exist. */
7070 gdb_assert (w1 != NULL);
7071 gdb_assert (w2 != NULL);
7072
7073 /* If the target can evaluate the condition expression in hardware,
7074 then we we need to insert both watchpoints even if they are at
7075 the same place. Otherwise the watchpoint will only trigger when
7076 the condition of whichever watchpoint was inserted evaluates to
7077 true, not giving a chance for GDB to check the condition of the
7078 other watchpoint. */
7079 if ((w1->cond_exp
7080 && target_can_accel_watchpoint_condition (loc1->address,
7081 loc1->length,
7082 loc1->watchpoint_type,
7083 w1->cond_exp.get ()))
7084 || (w2->cond_exp
7085 && target_can_accel_watchpoint_condition (loc2->address,
7086 loc2->length,
7087 loc2->watchpoint_type,
7088 w2->cond_exp.get ())))
7089 return 0;
7090
7091 /* Note that this checks the owner's type, not the location's. In
7092 case the target does not support read watchpoints, but does
7093 support access watchpoints, we'll have bp_read_watchpoint
7094 watchpoints with hw_access locations. Those should be considered
7095 duplicates of hw_read locations. The hw_read locations will
7096 become hw_access locations later. */
7097 return (loc1->owner->type == loc2->owner->type
7098 && loc1->pspace->aspace == loc2->pspace->aspace
7099 && loc1->address == loc2->address
7100 && loc1->length == loc2->length);
7101 }
7102
7103 /* See breakpoint.h. */
7104
7105 int
7106 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
7107 struct address_space *aspace2, CORE_ADDR addr2)
7108 {
7109 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7110 || aspace1 == aspace2)
7111 && addr1 == addr2);
7112 }
7113
7114 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
7115 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
7116 matches ASPACE2. On targets that have global breakpoints, the address
7117 space doesn't really matter. */
7118
7119 static int
7120 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
7121 int len1, struct address_space *aspace2,
7122 CORE_ADDR addr2)
7123 {
7124 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7125 || aspace1 == aspace2)
7126 && addr2 >= addr1 && addr2 < addr1 + len1);
7127 }
7128
7129 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
7130 a ranged breakpoint. In most targets, a match happens only if ASPACE
7131 matches the breakpoint's address space. On targets that have global
7132 breakpoints, the address space doesn't really matter. */
7133
7134 static int
7135 breakpoint_location_address_match (struct bp_location *bl,
7136 struct address_space *aspace,
7137 CORE_ADDR addr)
7138 {
7139 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
7140 aspace, addr)
7141 || (bl->length
7142 && breakpoint_address_match_range (bl->pspace->aspace,
7143 bl->address, bl->length,
7144 aspace, addr)));
7145 }
7146
7147 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
7148 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
7149 match happens only if ASPACE matches the breakpoint's address
7150 space. On targets that have global breakpoints, the address space
7151 doesn't really matter. */
7152
7153 static int
7154 breakpoint_location_address_range_overlap (struct bp_location *bl,
7155 struct address_space *aspace,
7156 CORE_ADDR addr, int len)
7157 {
7158 if (gdbarch_has_global_breakpoints (target_gdbarch ())
7159 || bl->pspace->aspace == aspace)
7160 {
7161 int bl_len = bl->length != 0 ? bl->length : 1;
7162
7163 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
7164 return 1;
7165 }
7166 return 0;
7167 }
7168
7169 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
7170 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
7171 true, otherwise returns false. */
7172
7173 static int
7174 tracepoint_locations_match (struct bp_location *loc1,
7175 struct bp_location *loc2)
7176 {
7177 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
7178 /* Since tracepoint locations are never duplicated with others', tracepoint
7179 locations at the same address of different tracepoints are regarded as
7180 different locations. */
7181 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
7182 else
7183 return 0;
7184 }
7185
7186 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
7187 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
7188 represent the same location. */
7189
7190 static int
7191 breakpoint_locations_match (struct bp_location *loc1,
7192 struct bp_location *loc2)
7193 {
7194 int hw_point1, hw_point2;
7195
7196 /* Both of them must not be in moribund_locations. */
7197 gdb_assert (loc1->owner != NULL);
7198 gdb_assert (loc2->owner != NULL);
7199
7200 hw_point1 = is_hardware_watchpoint (loc1->owner);
7201 hw_point2 = is_hardware_watchpoint (loc2->owner);
7202
7203 if (hw_point1 != hw_point2)
7204 return 0;
7205 else if (hw_point1)
7206 return watchpoint_locations_match (loc1, loc2);
7207 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
7208 return tracepoint_locations_match (loc1, loc2);
7209 else
7210 /* We compare bp_location.length in order to cover ranged breakpoints. */
7211 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
7212 loc2->pspace->aspace, loc2->address)
7213 && loc1->length == loc2->length);
7214 }
7215
7216 static void
7217 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
7218 int bnum, int have_bnum)
7219 {
7220 /* The longest string possibly returned by hex_string_custom
7221 is 50 chars. These must be at least that big for safety. */
7222 char astr1[64];
7223 char astr2[64];
7224
7225 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
7226 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
7227 if (have_bnum)
7228 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
7229 bnum, astr1, astr2);
7230 else
7231 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
7232 }
7233
7234 /* Adjust a breakpoint's address to account for architectural
7235 constraints on breakpoint placement. Return the adjusted address.
7236 Note: Very few targets require this kind of adjustment. For most
7237 targets, this function is simply the identity function. */
7238
7239 static CORE_ADDR
7240 adjust_breakpoint_address (struct gdbarch *gdbarch,
7241 CORE_ADDR bpaddr, enum bptype bptype)
7242 {
7243 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
7244 {
7245 /* Very few targets need any kind of breakpoint adjustment. */
7246 return bpaddr;
7247 }
7248 else if (bptype == bp_watchpoint
7249 || bptype == bp_hardware_watchpoint
7250 || bptype == bp_read_watchpoint
7251 || bptype == bp_access_watchpoint
7252 || bptype == bp_catchpoint)
7253 {
7254 /* Watchpoints and the various bp_catch_* eventpoints should not
7255 have their addresses modified. */
7256 return bpaddr;
7257 }
7258 else if (bptype == bp_single_step)
7259 {
7260 /* Single-step breakpoints should not have their addresses
7261 modified. If there's any architectural constrain that
7262 applies to this address, then it should have already been
7263 taken into account when the breakpoint was created in the
7264 first place. If we didn't do this, stepping through e.g.,
7265 Thumb-2 IT blocks would break. */
7266 return bpaddr;
7267 }
7268 else
7269 {
7270 CORE_ADDR adjusted_bpaddr;
7271
7272 /* Some targets have architectural constraints on the placement
7273 of breakpoint instructions. Obtain the adjusted address. */
7274 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7275
7276 /* An adjusted breakpoint address can significantly alter
7277 a user's expectations. Print a warning if an adjustment
7278 is required. */
7279 if (adjusted_bpaddr != bpaddr)
7280 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7281
7282 return adjusted_bpaddr;
7283 }
7284 }
7285
7286 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
7287 {
7288 bp_location *loc = this;
7289
7290 gdb_assert (ops != NULL);
7291
7292 loc->ops = ops;
7293 loc->owner = owner;
7294 loc->cond_bytecode = NULL;
7295 loc->shlib_disabled = 0;
7296 loc->enabled = 1;
7297
7298 switch (owner->type)
7299 {
7300 case bp_breakpoint:
7301 case bp_single_step:
7302 case bp_until:
7303 case bp_finish:
7304 case bp_longjmp:
7305 case bp_longjmp_resume:
7306 case bp_longjmp_call_dummy:
7307 case bp_exception:
7308 case bp_exception_resume:
7309 case bp_step_resume:
7310 case bp_hp_step_resume:
7311 case bp_watchpoint_scope:
7312 case bp_call_dummy:
7313 case bp_std_terminate:
7314 case bp_shlib_event:
7315 case bp_thread_event:
7316 case bp_overlay_event:
7317 case bp_jit_event:
7318 case bp_longjmp_master:
7319 case bp_std_terminate_master:
7320 case bp_exception_master:
7321 case bp_gnu_ifunc_resolver:
7322 case bp_gnu_ifunc_resolver_return:
7323 case bp_dprintf:
7324 loc->loc_type = bp_loc_software_breakpoint;
7325 mark_breakpoint_location_modified (loc);
7326 break;
7327 case bp_hardware_breakpoint:
7328 loc->loc_type = bp_loc_hardware_breakpoint;
7329 mark_breakpoint_location_modified (loc);
7330 break;
7331 case bp_hardware_watchpoint:
7332 case bp_read_watchpoint:
7333 case bp_access_watchpoint:
7334 loc->loc_type = bp_loc_hardware_watchpoint;
7335 break;
7336 case bp_watchpoint:
7337 case bp_catchpoint:
7338 case bp_tracepoint:
7339 case bp_fast_tracepoint:
7340 case bp_static_tracepoint:
7341 loc->loc_type = bp_loc_other;
7342 break;
7343 default:
7344 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7345 }
7346
7347 loc->refc = 1;
7348 }
7349
7350 /* Allocate a struct bp_location. */
7351
7352 static struct bp_location *
7353 allocate_bp_location (struct breakpoint *bpt)
7354 {
7355 return bpt->ops->allocate_location (bpt);
7356 }
7357
7358 static void
7359 free_bp_location (struct bp_location *loc)
7360 {
7361 loc->ops->dtor (loc);
7362 delete loc;
7363 }
7364
7365 /* Increment reference count. */
7366
7367 static void
7368 incref_bp_location (struct bp_location *bl)
7369 {
7370 ++bl->refc;
7371 }
7372
7373 /* Decrement reference count. If the reference count reaches 0,
7374 destroy the bp_location. Sets *BLP to NULL. */
7375
7376 static void
7377 decref_bp_location (struct bp_location **blp)
7378 {
7379 gdb_assert ((*blp)->refc > 0);
7380
7381 if (--(*blp)->refc == 0)
7382 free_bp_location (*blp);
7383 *blp = NULL;
7384 }
7385
7386 /* Add breakpoint B at the end of the global breakpoint chain. */
7387
7388 static void
7389 add_to_breakpoint_chain (struct breakpoint *b)
7390 {
7391 struct breakpoint *b1;
7392
7393 /* Add this breakpoint to the end of the chain so that a list of
7394 breakpoints will come out in order of increasing numbers. */
7395
7396 b1 = breakpoint_chain;
7397 if (b1 == 0)
7398 breakpoint_chain = b;
7399 else
7400 {
7401 while (b1->next)
7402 b1 = b1->next;
7403 b1->next = b;
7404 }
7405 }
7406
7407 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7408
7409 static void
7410 init_raw_breakpoint_without_location (struct breakpoint *b,
7411 struct gdbarch *gdbarch,
7412 enum bptype bptype,
7413 const struct breakpoint_ops *ops)
7414 {
7415 gdb_assert (ops != NULL);
7416
7417 b->ops = ops;
7418 b->type = bptype;
7419 b->gdbarch = gdbarch;
7420 b->language = current_language->la_language;
7421 b->input_radix = input_radix;
7422 b->related_breakpoint = b;
7423 }
7424
7425 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7426 that has type BPTYPE and has no locations as yet. */
7427
7428 static struct breakpoint *
7429 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7430 enum bptype bptype,
7431 const struct breakpoint_ops *ops)
7432 {
7433 struct breakpoint *b = new breakpoint ();
7434
7435 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7436 add_to_breakpoint_chain (b);
7437 return b;
7438 }
7439
7440 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7441 resolutions should be made as the user specified the location explicitly
7442 enough. */
7443
7444 static void
7445 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7446 {
7447 gdb_assert (loc->owner != NULL);
7448
7449 if (loc->owner->type == bp_breakpoint
7450 || loc->owner->type == bp_hardware_breakpoint
7451 || is_tracepoint (loc->owner))
7452 {
7453 int is_gnu_ifunc;
7454 const char *function_name;
7455 CORE_ADDR func_addr;
7456
7457 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7458 &func_addr, NULL, &is_gnu_ifunc);
7459
7460 if (is_gnu_ifunc && !explicit_loc)
7461 {
7462 struct breakpoint *b = loc->owner;
7463
7464 gdb_assert (loc->pspace == current_program_space);
7465 if (gnu_ifunc_resolve_name (function_name,
7466 &loc->requested_address))
7467 {
7468 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7469 loc->address = adjust_breakpoint_address (loc->gdbarch,
7470 loc->requested_address,
7471 b->type);
7472 }
7473 else if (b->type == bp_breakpoint && b->loc == loc
7474 && loc->next == NULL && b->related_breakpoint == b)
7475 {
7476 /* Create only the whole new breakpoint of this type but do not
7477 mess more complicated breakpoints with multiple locations. */
7478 b->type = bp_gnu_ifunc_resolver;
7479 /* Remember the resolver's address for use by the return
7480 breakpoint. */
7481 loc->related_address = func_addr;
7482 }
7483 }
7484
7485 if (function_name)
7486 loc->function_name = xstrdup (function_name);
7487 }
7488 }
7489
7490 /* Attempt to determine architecture of location identified by SAL. */
7491 struct gdbarch *
7492 get_sal_arch (struct symtab_and_line sal)
7493 {
7494 if (sal.section)
7495 return get_objfile_arch (sal.section->objfile);
7496 if (sal.symtab)
7497 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7498
7499 return NULL;
7500 }
7501
7502 /* Low level routine for partially initializing a breakpoint of type
7503 BPTYPE. The newly created breakpoint's address, section, source
7504 file name, and line number are provided by SAL.
7505
7506 It is expected that the caller will complete the initialization of
7507 the newly created breakpoint struct as well as output any status
7508 information regarding the creation of a new breakpoint. */
7509
7510 static void
7511 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7512 struct symtab_and_line sal, enum bptype bptype,
7513 const struct breakpoint_ops *ops)
7514 {
7515 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7516
7517 add_location_to_breakpoint (b, &sal);
7518
7519 if (bptype != bp_catchpoint)
7520 gdb_assert (sal.pspace != NULL);
7521
7522 /* Store the program space that was used to set the breakpoint,
7523 except for ordinary breakpoints, which are independent of the
7524 program space. */
7525 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7526 b->pspace = sal.pspace;
7527 }
7528
7529 /* set_raw_breakpoint is a low level routine for allocating and
7530 partially initializing a breakpoint of type BPTYPE. The newly
7531 created breakpoint's address, section, source file name, and line
7532 number are provided by SAL. The newly created and partially
7533 initialized breakpoint is added to the breakpoint chain and
7534 is also returned as the value of this function.
7535
7536 It is expected that the caller will complete the initialization of
7537 the newly created breakpoint struct as well as output any status
7538 information regarding the creation of a new breakpoint. In
7539 particular, set_raw_breakpoint does NOT set the breakpoint
7540 number! Care should be taken to not allow an error to occur
7541 prior to completing the initialization of the breakpoint. If this
7542 should happen, a bogus breakpoint will be left on the chain. */
7543
7544 struct breakpoint *
7545 set_raw_breakpoint (struct gdbarch *gdbarch,
7546 struct symtab_and_line sal, enum bptype bptype,
7547 const struct breakpoint_ops *ops)
7548 {
7549 struct breakpoint *b = new breakpoint ();
7550
7551 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7552 add_to_breakpoint_chain (b);
7553 return b;
7554 }
7555
7556 /* Call this routine when stepping and nexting to enable a breakpoint
7557 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7558 initiated the operation. */
7559
7560 void
7561 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7562 {
7563 struct breakpoint *b, *b_tmp;
7564 int thread = tp->global_num;
7565
7566 /* To avoid having to rescan all objfile symbols at every step,
7567 we maintain a list of continually-inserted but always disabled
7568 longjmp "master" breakpoints. Here, we simply create momentary
7569 clones of those and enable them for the requested thread. */
7570 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7571 if (b->pspace == current_program_space
7572 && (b->type == bp_longjmp_master
7573 || b->type == bp_exception_master))
7574 {
7575 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7576 struct breakpoint *clone;
7577
7578 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7579 after their removal. */
7580 clone = momentary_breakpoint_from_master (b, type,
7581 &longjmp_breakpoint_ops, 1);
7582 clone->thread = thread;
7583 }
7584
7585 tp->initiating_frame = frame;
7586 }
7587
7588 /* Delete all longjmp breakpoints from THREAD. */
7589 void
7590 delete_longjmp_breakpoint (int thread)
7591 {
7592 struct breakpoint *b, *b_tmp;
7593
7594 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7595 if (b->type == bp_longjmp || b->type == bp_exception)
7596 {
7597 if (b->thread == thread)
7598 delete_breakpoint (b);
7599 }
7600 }
7601
7602 void
7603 delete_longjmp_breakpoint_at_next_stop (int thread)
7604 {
7605 struct breakpoint *b, *b_tmp;
7606
7607 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7608 if (b->type == bp_longjmp || b->type == bp_exception)
7609 {
7610 if (b->thread == thread)
7611 b->disposition = disp_del_at_next_stop;
7612 }
7613 }
7614
7615 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7616 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7617 pointer to any of them. Return NULL if this system cannot place longjmp
7618 breakpoints. */
7619
7620 struct breakpoint *
7621 set_longjmp_breakpoint_for_call_dummy (void)
7622 {
7623 struct breakpoint *b, *retval = NULL;
7624
7625 ALL_BREAKPOINTS (b)
7626 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7627 {
7628 struct breakpoint *new_b;
7629
7630 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7631 &momentary_breakpoint_ops,
7632 1);
7633 new_b->thread = ptid_to_global_thread_id (inferior_ptid);
7634
7635 /* Link NEW_B into the chain of RETVAL breakpoints. */
7636
7637 gdb_assert (new_b->related_breakpoint == new_b);
7638 if (retval == NULL)
7639 retval = new_b;
7640 new_b->related_breakpoint = retval;
7641 while (retval->related_breakpoint != new_b->related_breakpoint)
7642 retval = retval->related_breakpoint;
7643 retval->related_breakpoint = new_b;
7644 }
7645
7646 return retval;
7647 }
7648
7649 /* Verify all existing dummy frames and their associated breakpoints for
7650 TP. Remove those which can no longer be found in the current frame
7651 stack.
7652
7653 You should call this function only at places where it is safe to currently
7654 unwind the whole stack. Failed stack unwind would discard live dummy
7655 frames. */
7656
7657 void
7658 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7659 {
7660 struct breakpoint *b, *b_tmp;
7661
7662 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7663 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7664 {
7665 struct breakpoint *dummy_b = b->related_breakpoint;
7666
7667 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7668 dummy_b = dummy_b->related_breakpoint;
7669 if (dummy_b->type != bp_call_dummy
7670 || frame_find_by_id (dummy_b->frame_id) != NULL)
7671 continue;
7672
7673 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7674
7675 while (b->related_breakpoint != b)
7676 {
7677 if (b_tmp == b->related_breakpoint)
7678 b_tmp = b->related_breakpoint->next;
7679 delete_breakpoint (b->related_breakpoint);
7680 }
7681 delete_breakpoint (b);
7682 }
7683 }
7684
7685 void
7686 enable_overlay_breakpoints (void)
7687 {
7688 struct breakpoint *b;
7689
7690 ALL_BREAKPOINTS (b)
7691 if (b->type == bp_overlay_event)
7692 {
7693 b->enable_state = bp_enabled;
7694 update_global_location_list (UGLL_MAY_INSERT);
7695 overlay_events_enabled = 1;
7696 }
7697 }
7698
7699 void
7700 disable_overlay_breakpoints (void)
7701 {
7702 struct breakpoint *b;
7703
7704 ALL_BREAKPOINTS (b)
7705 if (b->type == bp_overlay_event)
7706 {
7707 b->enable_state = bp_disabled;
7708 update_global_location_list (UGLL_DONT_INSERT);
7709 overlay_events_enabled = 0;
7710 }
7711 }
7712
7713 /* Set an active std::terminate breakpoint for each std::terminate
7714 master breakpoint. */
7715 void
7716 set_std_terminate_breakpoint (void)
7717 {
7718 struct breakpoint *b, *b_tmp;
7719
7720 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7721 if (b->pspace == current_program_space
7722 && b->type == bp_std_terminate_master)
7723 {
7724 momentary_breakpoint_from_master (b, bp_std_terminate,
7725 &momentary_breakpoint_ops, 1);
7726 }
7727 }
7728
7729 /* Delete all the std::terminate breakpoints. */
7730 void
7731 delete_std_terminate_breakpoint (void)
7732 {
7733 struct breakpoint *b, *b_tmp;
7734
7735 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7736 if (b->type == bp_std_terminate)
7737 delete_breakpoint (b);
7738 }
7739
7740 struct breakpoint *
7741 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7742 {
7743 struct breakpoint *b;
7744
7745 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7746 &internal_breakpoint_ops);
7747
7748 b->enable_state = bp_enabled;
7749 /* location has to be used or breakpoint_re_set will delete me. */
7750 b->location = new_address_location (b->loc->address, NULL, 0);
7751
7752 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7753
7754 return b;
7755 }
7756
7757 struct lang_and_radix
7758 {
7759 enum language lang;
7760 int radix;
7761 };
7762
7763 /* Create a breakpoint for JIT code registration and unregistration. */
7764
7765 struct breakpoint *
7766 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7767 {
7768 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7769 &internal_breakpoint_ops);
7770 }
7771
7772 /* Remove JIT code registration and unregistration breakpoint(s). */
7773
7774 void
7775 remove_jit_event_breakpoints (void)
7776 {
7777 struct breakpoint *b, *b_tmp;
7778
7779 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7780 if (b->type == bp_jit_event
7781 && b->loc->pspace == current_program_space)
7782 delete_breakpoint (b);
7783 }
7784
7785 void
7786 remove_solib_event_breakpoints (void)
7787 {
7788 struct breakpoint *b, *b_tmp;
7789
7790 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7791 if (b->type == bp_shlib_event
7792 && b->loc->pspace == current_program_space)
7793 delete_breakpoint (b);
7794 }
7795
7796 /* See breakpoint.h. */
7797
7798 void
7799 remove_solib_event_breakpoints_at_next_stop (void)
7800 {
7801 struct breakpoint *b, *b_tmp;
7802
7803 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7804 if (b->type == bp_shlib_event
7805 && b->loc->pspace == current_program_space)
7806 b->disposition = disp_del_at_next_stop;
7807 }
7808
7809 /* Helper for create_solib_event_breakpoint /
7810 create_and_insert_solib_event_breakpoint. Allows specifying which
7811 INSERT_MODE to pass through to update_global_location_list. */
7812
7813 static struct breakpoint *
7814 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7815 enum ugll_insert_mode insert_mode)
7816 {
7817 struct breakpoint *b;
7818
7819 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7820 &internal_breakpoint_ops);
7821 update_global_location_list_nothrow (insert_mode);
7822 return b;
7823 }
7824
7825 struct breakpoint *
7826 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7827 {
7828 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7829 }
7830
7831 /* See breakpoint.h. */
7832
7833 struct breakpoint *
7834 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7835 {
7836 struct breakpoint *b;
7837
7838 /* Explicitly tell update_global_location_list to insert
7839 locations. */
7840 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7841 if (!b->loc->inserted)
7842 {
7843 delete_breakpoint (b);
7844 return NULL;
7845 }
7846 return b;
7847 }
7848
7849 /* Disable any breakpoints that are on code in shared libraries. Only
7850 apply to enabled breakpoints, disabled ones can just stay disabled. */
7851
7852 void
7853 disable_breakpoints_in_shlibs (void)
7854 {
7855 struct bp_location *loc, **locp_tmp;
7856
7857 ALL_BP_LOCATIONS (loc, locp_tmp)
7858 {
7859 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7860 struct breakpoint *b = loc->owner;
7861
7862 /* We apply the check to all breakpoints, including disabled for
7863 those with loc->duplicate set. This is so that when breakpoint
7864 becomes enabled, or the duplicate is removed, gdb will try to
7865 insert all breakpoints. If we don't set shlib_disabled here,
7866 we'll try to insert those breakpoints and fail. */
7867 if (((b->type == bp_breakpoint)
7868 || (b->type == bp_jit_event)
7869 || (b->type == bp_hardware_breakpoint)
7870 || (is_tracepoint (b)))
7871 && loc->pspace == current_program_space
7872 && !loc->shlib_disabled
7873 && solib_name_from_address (loc->pspace, loc->address)
7874 )
7875 {
7876 loc->shlib_disabled = 1;
7877 }
7878 }
7879 }
7880
7881 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7882 notification of unloaded_shlib. Only apply to enabled breakpoints,
7883 disabled ones can just stay disabled. */
7884
7885 static void
7886 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7887 {
7888 struct bp_location *loc, **locp_tmp;
7889 int disabled_shlib_breaks = 0;
7890
7891 ALL_BP_LOCATIONS (loc, locp_tmp)
7892 {
7893 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7894 struct breakpoint *b = loc->owner;
7895
7896 if (solib->pspace == loc->pspace
7897 && !loc->shlib_disabled
7898 && (((b->type == bp_breakpoint
7899 || b->type == bp_jit_event
7900 || b->type == bp_hardware_breakpoint)
7901 && (loc->loc_type == bp_loc_hardware_breakpoint
7902 || loc->loc_type == bp_loc_software_breakpoint))
7903 || is_tracepoint (b))
7904 && solib_contains_address_p (solib, loc->address))
7905 {
7906 loc->shlib_disabled = 1;
7907 /* At this point, we cannot rely on remove_breakpoint
7908 succeeding so we must mark the breakpoint as not inserted
7909 to prevent future errors occurring in remove_breakpoints. */
7910 loc->inserted = 0;
7911
7912 /* This may cause duplicate notifications for the same breakpoint. */
7913 observer_notify_breakpoint_modified (b);
7914
7915 if (!disabled_shlib_breaks)
7916 {
7917 target_terminal_ours_for_output ();
7918 warning (_("Temporarily disabling breakpoints "
7919 "for unloaded shared library \"%s\""),
7920 solib->so_name);
7921 }
7922 disabled_shlib_breaks = 1;
7923 }
7924 }
7925 }
7926
7927 /* Disable any breakpoints and tracepoints in OBJFILE upon
7928 notification of free_objfile. Only apply to enabled breakpoints,
7929 disabled ones can just stay disabled. */
7930
7931 static void
7932 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7933 {
7934 struct breakpoint *b;
7935
7936 if (objfile == NULL)
7937 return;
7938
7939 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7940 managed by the user with add-symbol-file/remove-symbol-file.
7941 Similarly to how breakpoints in shared libraries are handled in
7942 response to "nosharedlibrary", mark breakpoints in such modules
7943 shlib_disabled so they end up uninserted on the next global
7944 location list update. Shared libraries not loaded by the user
7945 aren't handled here -- they're already handled in
7946 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7947 solib_unloaded observer. We skip objfiles that are not
7948 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7949 main objfile). */
7950 if ((objfile->flags & OBJF_SHARED) == 0
7951 || (objfile->flags & OBJF_USERLOADED) == 0)
7952 return;
7953
7954 ALL_BREAKPOINTS (b)
7955 {
7956 struct bp_location *loc;
7957 int bp_modified = 0;
7958
7959 if (!is_breakpoint (b) && !is_tracepoint (b))
7960 continue;
7961
7962 for (loc = b->loc; loc != NULL; loc = loc->next)
7963 {
7964 CORE_ADDR loc_addr = loc->address;
7965
7966 if (loc->loc_type != bp_loc_hardware_breakpoint
7967 && loc->loc_type != bp_loc_software_breakpoint)
7968 continue;
7969
7970 if (loc->shlib_disabled != 0)
7971 continue;
7972
7973 if (objfile->pspace != loc->pspace)
7974 continue;
7975
7976 if (loc->loc_type != bp_loc_hardware_breakpoint
7977 && loc->loc_type != bp_loc_software_breakpoint)
7978 continue;
7979
7980 if (is_addr_in_objfile (loc_addr, objfile))
7981 {
7982 loc->shlib_disabled = 1;
7983 /* At this point, we don't know whether the object was
7984 unmapped from the inferior or not, so leave the
7985 inserted flag alone. We'll handle failure to
7986 uninsert quietly, in case the object was indeed
7987 unmapped. */
7988
7989 mark_breakpoint_location_modified (loc);
7990
7991 bp_modified = 1;
7992 }
7993 }
7994
7995 if (bp_modified)
7996 observer_notify_breakpoint_modified (b);
7997 }
7998 }
7999
8000 /* FORK & VFORK catchpoints. */
8001
8002 /* An instance of this type is used to represent a fork or vfork
8003 catchpoint. It includes a "struct breakpoint" as a kind of base
8004 class; users downcast to "struct breakpoint *" when needed. A
8005 breakpoint is really of this type iff its ops pointer points to
8006 CATCH_FORK_BREAKPOINT_OPS. */
8007
8008 struct fork_catchpoint
8009 {
8010 /* The base class. */
8011 struct breakpoint base;
8012
8013 /* Process id of a child process whose forking triggered this
8014 catchpoint. This field is only valid immediately after this
8015 catchpoint has triggered. */
8016 ptid_t forked_inferior_pid;
8017 };
8018
8019 /* Implement the "insert" breakpoint_ops method for fork
8020 catchpoints. */
8021
8022 static int
8023 insert_catch_fork (struct bp_location *bl)
8024 {
8025 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
8026 }
8027
8028 /* Implement the "remove" breakpoint_ops method for fork
8029 catchpoints. */
8030
8031 static int
8032 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
8033 {
8034 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
8035 }
8036
8037 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
8038 catchpoints. */
8039
8040 static int
8041 breakpoint_hit_catch_fork (const struct bp_location *bl,
8042 struct address_space *aspace, CORE_ADDR bp_addr,
8043 const struct target_waitstatus *ws)
8044 {
8045 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8046
8047 if (ws->kind != TARGET_WAITKIND_FORKED)
8048 return 0;
8049
8050 c->forked_inferior_pid = ws->value.related_pid;
8051 return 1;
8052 }
8053
8054 /* Implement the "print_it" breakpoint_ops method for fork
8055 catchpoints. */
8056
8057 static enum print_stop_action
8058 print_it_catch_fork (bpstat bs)
8059 {
8060 struct ui_out *uiout = current_uiout;
8061 struct breakpoint *b = bs->breakpoint_at;
8062 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
8063
8064 annotate_catchpoint (b->number);
8065 maybe_print_thread_hit_breakpoint (uiout);
8066 if (b->disposition == disp_del)
8067 uiout->text ("Temporary catchpoint ");
8068 else
8069 uiout->text ("Catchpoint ");
8070 if (uiout->is_mi_like_p ())
8071 {
8072 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
8073 uiout->field_string ("disp", bpdisp_text (b->disposition));
8074 }
8075 uiout->field_int ("bkptno", b->number);
8076 uiout->text (" (forked process ");
8077 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
8078 uiout->text ("), ");
8079 return PRINT_SRC_AND_LOC;
8080 }
8081
8082 /* Implement the "print_one" breakpoint_ops method for fork
8083 catchpoints. */
8084
8085 static void
8086 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
8087 {
8088 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8089 struct value_print_options opts;
8090 struct ui_out *uiout = current_uiout;
8091
8092 get_user_print_options (&opts);
8093
8094 /* Field 4, the address, is omitted (which makes the columns not
8095 line up too nicely with the headers, but the effect is relatively
8096 readable). */
8097 if (opts.addressprint)
8098 uiout->field_skip ("addr");
8099 annotate_field (5);
8100 uiout->text ("fork");
8101 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8102 {
8103 uiout->text (", process ");
8104 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
8105 uiout->spaces (1);
8106 }
8107
8108 if (uiout->is_mi_like_p ())
8109 uiout->field_string ("catch-type", "fork");
8110 }
8111
8112 /* Implement the "print_mention" breakpoint_ops method for fork
8113 catchpoints. */
8114
8115 static void
8116 print_mention_catch_fork (struct breakpoint *b)
8117 {
8118 printf_filtered (_("Catchpoint %d (fork)"), b->number);
8119 }
8120
8121 /* Implement the "print_recreate" breakpoint_ops method for fork
8122 catchpoints. */
8123
8124 static void
8125 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
8126 {
8127 fprintf_unfiltered (fp, "catch fork");
8128 print_recreate_thread (b, fp);
8129 }
8130
8131 /* The breakpoint_ops structure to be used in fork catchpoints. */
8132
8133 static struct breakpoint_ops catch_fork_breakpoint_ops;
8134
8135 /* Implement the "insert" breakpoint_ops method for vfork
8136 catchpoints. */
8137
8138 static int
8139 insert_catch_vfork (struct bp_location *bl)
8140 {
8141 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8142 }
8143
8144 /* Implement the "remove" breakpoint_ops method for vfork
8145 catchpoints. */
8146
8147 static int
8148 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
8149 {
8150 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8151 }
8152
8153 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
8154 catchpoints. */
8155
8156 static int
8157 breakpoint_hit_catch_vfork (const struct bp_location *bl,
8158 struct address_space *aspace, CORE_ADDR bp_addr,
8159 const struct target_waitstatus *ws)
8160 {
8161 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8162
8163 if (ws->kind != TARGET_WAITKIND_VFORKED)
8164 return 0;
8165
8166 c->forked_inferior_pid = ws->value.related_pid;
8167 return 1;
8168 }
8169
8170 /* Implement the "print_it" breakpoint_ops method for vfork
8171 catchpoints. */
8172
8173 static enum print_stop_action
8174 print_it_catch_vfork (bpstat bs)
8175 {
8176 struct ui_out *uiout = current_uiout;
8177 struct breakpoint *b = bs->breakpoint_at;
8178 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8179
8180 annotate_catchpoint (b->number);
8181 maybe_print_thread_hit_breakpoint (uiout);
8182 if (b->disposition == disp_del)
8183 uiout->text ("Temporary catchpoint ");
8184 else
8185 uiout->text ("Catchpoint ");
8186 if (uiout->is_mi_like_p ())
8187 {
8188 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
8189 uiout->field_string ("disp", bpdisp_text (b->disposition));
8190 }
8191 uiout->field_int ("bkptno", b->number);
8192 uiout->text (" (vforked process ");
8193 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
8194 uiout->text ("), ");
8195 return PRINT_SRC_AND_LOC;
8196 }
8197
8198 /* Implement the "print_one" breakpoint_ops method for vfork
8199 catchpoints. */
8200
8201 static void
8202 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
8203 {
8204 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8205 struct value_print_options opts;
8206 struct ui_out *uiout = current_uiout;
8207
8208 get_user_print_options (&opts);
8209 /* Field 4, the address, is omitted (which makes the columns not
8210 line up too nicely with the headers, but the effect is relatively
8211 readable). */
8212 if (opts.addressprint)
8213 uiout->field_skip ("addr");
8214 annotate_field (5);
8215 uiout->text ("vfork");
8216 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8217 {
8218 uiout->text (", process ");
8219 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
8220 uiout->spaces (1);
8221 }
8222
8223 if (uiout->is_mi_like_p ())
8224 uiout->field_string ("catch-type", "vfork");
8225 }
8226
8227 /* Implement the "print_mention" breakpoint_ops method for vfork
8228 catchpoints. */
8229
8230 static void
8231 print_mention_catch_vfork (struct breakpoint *b)
8232 {
8233 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
8234 }
8235
8236 /* Implement the "print_recreate" breakpoint_ops method for vfork
8237 catchpoints. */
8238
8239 static void
8240 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
8241 {
8242 fprintf_unfiltered (fp, "catch vfork");
8243 print_recreate_thread (b, fp);
8244 }
8245
8246 /* The breakpoint_ops structure to be used in vfork catchpoints. */
8247
8248 static struct breakpoint_ops catch_vfork_breakpoint_ops;
8249
8250 /* An instance of this type is used to represent an solib catchpoint.
8251 It includes a "struct breakpoint" as a kind of base class; users
8252 downcast to "struct breakpoint *" when needed. A breakpoint is
8253 really of this type iff its ops pointer points to
8254 CATCH_SOLIB_BREAKPOINT_OPS. */
8255
8256 struct solib_catchpoint
8257 {
8258 /* The base class. */
8259 struct breakpoint base;
8260
8261 /* True for "catch load", false for "catch unload". */
8262 unsigned char is_load;
8263
8264 /* Regular expression to match, if any. COMPILED is only valid when
8265 REGEX is non-NULL. */
8266 char *regex;
8267 regex_t compiled;
8268 };
8269
8270 static void
8271 dtor_catch_solib (struct breakpoint *b)
8272 {
8273 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8274
8275 if (self->regex)
8276 regfree (&self->compiled);
8277 xfree (self->regex);
8278
8279 base_breakpoint_ops.dtor (b);
8280 }
8281
8282 static int
8283 insert_catch_solib (struct bp_location *ignore)
8284 {
8285 return 0;
8286 }
8287
8288 static int
8289 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
8290 {
8291 return 0;
8292 }
8293
8294 static int
8295 breakpoint_hit_catch_solib (const struct bp_location *bl,
8296 struct address_space *aspace,
8297 CORE_ADDR bp_addr,
8298 const struct target_waitstatus *ws)
8299 {
8300 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8301 struct breakpoint *other;
8302
8303 if (ws->kind == TARGET_WAITKIND_LOADED)
8304 return 1;
8305
8306 ALL_BREAKPOINTS (other)
8307 {
8308 struct bp_location *other_bl;
8309
8310 if (other == bl->owner)
8311 continue;
8312
8313 if (other->type != bp_shlib_event)
8314 continue;
8315
8316 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
8317 continue;
8318
8319 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8320 {
8321 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8322 return 1;
8323 }
8324 }
8325
8326 return 0;
8327 }
8328
8329 static void
8330 check_status_catch_solib (struct bpstats *bs)
8331 {
8332 struct solib_catchpoint *self
8333 = (struct solib_catchpoint *) bs->breakpoint_at;
8334 int ix;
8335
8336 if (self->is_load)
8337 {
8338 struct so_list *iter;
8339
8340 for (ix = 0;
8341 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8342 ix, iter);
8343 ++ix)
8344 {
8345 if (!self->regex
8346 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
8347 return;
8348 }
8349 }
8350 else
8351 {
8352 char *iter;
8353
8354 for (ix = 0;
8355 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8356 ix, iter);
8357 ++ix)
8358 {
8359 if (!self->regex
8360 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
8361 return;
8362 }
8363 }
8364
8365 bs->stop = 0;
8366 bs->print_it = print_it_noop;
8367 }
8368
8369 static enum print_stop_action
8370 print_it_catch_solib (bpstat bs)
8371 {
8372 struct breakpoint *b = bs->breakpoint_at;
8373 struct ui_out *uiout = current_uiout;
8374
8375 annotate_catchpoint (b->number);
8376 maybe_print_thread_hit_breakpoint (uiout);
8377 if (b->disposition == disp_del)
8378 uiout->text ("Temporary catchpoint ");
8379 else
8380 uiout->text ("Catchpoint ");
8381 uiout->field_int ("bkptno", b->number);
8382 uiout->text ("\n");
8383 if (uiout->is_mi_like_p ())
8384 uiout->field_string ("disp", bpdisp_text (b->disposition));
8385 print_solib_event (1);
8386 return PRINT_SRC_AND_LOC;
8387 }
8388
8389 static void
8390 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8391 {
8392 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8393 struct value_print_options opts;
8394 struct ui_out *uiout = current_uiout;
8395 char *msg;
8396
8397 get_user_print_options (&opts);
8398 /* Field 4, the address, is omitted (which makes the columns not
8399 line up too nicely with the headers, but the effect is relatively
8400 readable). */
8401 if (opts.addressprint)
8402 {
8403 annotate_field (4);
8404 uiout->field_skip ("addr");
8405 }
8406
8407 annotate_field (5);
8408 if (self->is_load)
8409 {
8410 if (self->regex)
8411 msg = xstrprintf (_("load of library matching %s"), self->regex);
8412 else
8413 msg = xstrdup (_("load of library"));
8414 }
8415 else
8416 {
8417 if (self->regex)
8418 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8419 else
8420 msg = xstrdup (_("unload of library"));
8421 }
8422 uiout->field_string ("what", msg);
8423 xfree (msg);
8424
8425 if (uiout->is_mi_like_p ())
8426 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8427 }
8428
8429 static void
8430 print_mention_catch_solib (struct breakpoint *b)
8431 {
8432 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8433
8434 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8435 self->is_load ? "load" : "unload");
8436 }
8437
8438 static void
8439 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8440 {
8441 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8442
8443 fprintf_unfiltered (fp, "%s %s",
8444 b->disposition == disp_del ? "tcatch" : "catch",
8445 self->is_load ? "load" : "unload");
8446 if (self->regex)
8447 fprintf_unfiltered (fp, " %s", self->regex);
8448 fprintf_unfiltered (fp, "\n");
8449 }
8450
8451 static struct breakpoint_ops catch_solib_breakpoint_ops;
8452
8453 /* Shared helper function (MI and CLI) for creating and installing
8454 a shared object event catchpoint. If IS_LOAD is non-zero then
8455 the events to be caught are load events, otherwise they are
8456 unload events. If IS_TEMP is non-zero the catchpoint is a
8457 temporary one. If ENABLED is non-zero the catchpoint is
8458 created in an enabled state. */
8459
8460 void
8461 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8462 {
8463 struct solib_catchpoint *c;
8464 struct gdbarch *gdbarch = get_current_arch ();
8465 struct cleanup *cleanup;
8466
8467 if (!arg)
8468 arg = "";
8469 arg = skip_spaces_const (arg);
8470
8471 c = new solib_catchpoint ();
8472 cleanup = make_cleanup (xfree, c);
8473
8474 if (*arg != '\0')
8475 {
8476 int errcode;
8477
8478 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8479 if (errcode != 0)
8480 {
8481 char *err = get_regcomp_error (errcode, &c->compiled);
8482
8483 make_cleanup (xfree, err);
8484 error (_("Invalid regexp (%s): %s"), err, arg);
8485 }
8486 c->regex = xstrdup (arg);
8487 }
8488
8489 c->is_load = is_load;
8490 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8491 &catch_solib_breakpoint_ops);
8492
8493 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8494
8495 discard_cleanups (cleanup);
8496 install_breakpoint (0, &c->base, 1);
8497 }
8498
8499 /* A helper function that does all the work for "catch load" and
8500 "catch unload". */
8501
8502 static void
8503 catch_load_or_unload (char *arg, int from_tty, int is_load,
8504 struct cmd_list_element *command)
8505 {
8506 int tempflag;
8507 const int enabled = 1;
8508
8509 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8510
8511 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8512 }
8513
8514 static void
8515 catch_load_command_1 (char *arg, int from_tty,
8516 struct cmd_list_element *command)
8517 {
8518 catch_load_or_unload (arg, from_tty, 1, command);
8519 }
8520
8521 static void
8522 catch_unload_command_1 (char *arg, int from_tty,
8523 struct cmd_list_element *command)
8524 {
8525 catch_load_or_unload (arg, from_tty, 0, command);
8526 }
8527
8528 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8529 is non-zero, then make the breakpoint temporary. If COND_STRING is
8530 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8531 the breakpoint_ops structure associated to the catchpoint. */
8532
8533 void
8534 init_catchpoint (struct breakpoint *b,
8535 struct gdbarch *gdbarch, int tempflag,
8536 const char *cond_string,
8537 const struct breakpoint_ops *ops)
8538 {
8539 struct symtab_and_line sal;
8540
8541 init_sal (&sal);
8542 sal.pspace = current_program_space;
8543
8544 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8545
8546 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8547 b->disposition = tempflag ? disp_del : disp_donttouch;
8548 }
8549
8550 void
8551 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8552 {
8553 add_to_breakpoint_chain (b);
8554 set_breakpoint_number (internal, b);
8555 if (is_tracepoint (b))
8556 set_tracepoint_count (breakpoint_count);
8557 if (!internal)
8558 mention (b);
8559 observer_notify_breakpoint_created (b);
8560
8561 if (update_gll)
8562 update_global_location_list (UGLL_MAY_INSERT);
8563 }
8564
8565 static void
8566 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8567 int tempflag, const char *cond_string,
8568 const struct breakpoint_ops *ops)
8569 {
8570 struct fork_catchpoint *c = new fork_catchpoint ();
8571
8572 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8573
8574 c->forked_inferior_pid = null_ptid;
8575
8576 install_breakpoint (0, &c->base, 1);
8577 }
8578
8579 /* Exec catchpoints. */
8580
8581 /* An instance of this type is used to represent an exec catchpoint.
8582 It includes a "struct breakpoint" as a kind of base class; users
8583 downcast to "struct breakpoint *" when needed. A breakpoint is
8584 really of this type iff its ops pointer points to
8585 CATCH_EXEC_BREAKPOINT_OPS. */
8586
8587 struct exec_catchpoint
8588 {
8589 /* The base class. */
8590 struct breakpoint base;
8591
8592 /* Filename of a program whose exec triggered this catchpoint.
8593 This field is only valid immediately after this catchpoint has
8594 triggered. */
8595 char *exec_pathname;
8596 };
8597
8598 /* Implement the "dtor" breakpoint_ops method for exec
8599 catchpoints. */
8600
8601 static void
8602 dtor_catch_exec (struct breakpoint *b)
8603 {
8604 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8605
8606 xfree (c->exec_pathname);
8607
8608 base_breakpoint_ops.dtor (b);
8609 }
8610
8611 static int
8612 insert_catch_exec (struct bp_location *bl)
8613 {
8614 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8615 }
8616
8617 static int
8618 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8619 {
8620 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8621 }
8622
8623 static int
8624 breakpoint_hit_catch_exec (const struct bp_location *bl,
8625 struct address_space *aspace, CORE_ADDR bp_addr,
8626 const struct target_waitstatus *ws)
8627 {
8628 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8629
8630 if (ws->kind != TARGET_WAITKIND_EXECD)
8631 return 0;
8632
8633 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8634 return 1;
8635 }
8636
8637 static enum print_stop_action
8638 print_it_catch_exec (bpstat bs)
8639 {
8640 struct ui_out *uiout = current_uiout;
8641 struct breakpoint *b = bs->breakpoint_at;
8642 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8643
8644 annotate_catchpoint (b->number);
8645 maybe_print_thread_hit_breakpoint (uiout);
8646 if (b->disposition == disp_del)
8647 uiout->text ("Temporary catchpoint ");
8648 else
8649 uiout->text ("Catchpoint ");
8650 if (uiout->is_mi_like_p ())
8651 {
8652 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8653 uiout->field_string ("disp", bpdisp_text (b->disposition));
8654 }
8655 uiout->field_int ("bkptno", b->number);
8656 uiout->text (" (exec'd ");
8657 uiout->field_string ("new-exec", c->exec_pathname);
8658 uiout->text ("), ");
8659
8660 return PRINT_SRC_AND_LOC;
8661 }
8662
8663 static void
8664 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8665 {
8666 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8667 struct value_print_options opts;
8668 struct ui_out *uiout = current_uiout;
8669
8670 get_user_print_options (&opts);
8671
8672 /* Field 4, the address, is omitted (which makes the columns
8673 not line up too nicely with the headers, but the effect
8674 is relatively readable). */
8675 if (opts.addressprint)
8676 uiout->field_skip ("addr");
8677 annotate_field (5);
8678 uiout->text ("exec");
8679 if (c->exec_pathname != NULL)
8680 {
8681 uiout->text (", program \"");
8682 uiout->field_string ("what", c->exec_pathname);
8683 uiout->text ("\" ");
8684 }
8685
8686 if (uiout->is_mi_like_p ())
8687 uiout->field_string ("catch-type", "exec");
8688 }
8689
8690 static void
8691 print_mention_catch_exec (struct breakpoint *b)
8692 {
8693 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8694 }
8695
8696 /* Implement the "print_recreate" breakpoint_ops method for exec
8697 catchpoints. */
8698
8699 static void
8700 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8701 {
8702 fprintf_unfiltered (fp, "catch exec");
8703 print_recreate_thread (b, fp);
8704 }
8705
8706 static struct breakpoint_ops catch_exec_breakpoint_ops;
8707
8708 static int
8709 hw_breakpoint_used_count (void)
8710 {
8711 int i = 0;
8712 struct breakpoint *b;
8713 struct bp_location *bl;
8714
8715 ALL_BREAKPOINTS (b)
8716 {
8717 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8718 for (bl = b->loc; bl; bl = bl->next)
8719 {
8720 /* Special types of hardware breakpoints may use more than
8721 one register. */
8722 i += b->ops->resources_needed (bl);
8723 }
8724 }
8725
8726 return i;
8727 }
8728
8729 /* Returns the resources B would use if it were a hardware
8730 watchpoint. */
8731
8732 static int
8733 hw_watchpoint_use_count (struct breakpoint *b)
8734 {
8735 int i = 0;
8736 struct bp_location *bl;
8737
8738 if (!breakpoint_enabled (b))
8739 return 0;
8740
8741 for (bl = b->loc; bl; bl = bl->next)
8742 {
8743 /* Special types of hardware watchpoints may use more than
8744 one register. */
8745 i += b->ops->resources_needed (bl);
8746 }
8747
8748 return i;
8749 }
8750
8751 /* Returns the sum the used resources of all hardware watchpoints of
8752 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8753 the sum of the used resources of all hardware watchpoints of other
8754 types _not_ TYPE. */
8755
8756 static int
8757 hw_watchpoint_used_count_others (struct breakpoint *except,
8758 enum bptype type, int *other_type_used)
8759 {
8760 int i = 0;
8761 struct breakpoint *b;
8762
8763 *other_type_used = 0;
8764 ALL_BREAKPOINTS (b)
8765 {
8766 if (b == except)
8767 continue;
8768 if (!breakpoint_enabled (b))
8769 continue;
8770
8771 if (b->type == type)
8772 i += hw_watchpoint_use_count (b);
8773 else if (is_hardware_watchpoint (b))
8774 *other_type_used = 1;
8775 }
8776
8777 return i;
8778 }
8779
8780 void
8781 disable_watchpoints_before_interactive_call_start (void)
8782 {
8783 struct breakpoint *b;
8784
8785 ALL_BREAKPOINTS (b)
8786 {
8787 if (is_watchpoint (b) && breakpoint_enabled (b))
8788 {
8789 b->enable_state = bp_call_disabled;
8790 update_global_location_list (UGLL_DONT_INSERT);
8791 }
8792 }
8793 }
8794
8795 void
8796 enable_watchpoints_after_interactive_call_stop (void)
8797 {
8798 struct breakpoint *b;
8799
8800 ALL_BREAKPOINTS (b)
8801 {
8802 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8803 {
8804 b->enable_state = bp_enabled;
8805 update_global_location_list (UGLL_MAY_INSERT);
8806 }
8807 }
8808 }
8809
8810 void
8811 disable_breakpoints_before_startup (void)
8812 {
8813 current_program_space->executing_startup = 1;
8814 update_global_location_list (UGLL_DONT_INSERT);
8815 }
8816
8817 void
8818 enable_breakpoints_after_startup (void)
8819 {
8820 current_program_space->executing_startup = 0;
8821 breakpoint_re_set ();
8822 }
8823
8824 /* Create a new single-step breakpoint for thread THREAD, with no
8825 locations. */
8826
8827 static struct breakpoint *
8828 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8829 {
8830 struct breakpoint *b = new breakpoint ();
8831
8832 init_raw_breakpoint_without_location (b, gdbarch, bp_single_step,
8833 &momentary_breakpoint_ops);
8834
8835 b->disposition = disp_donttouch;
8836 b->frame_id = null_frame_id;
8837
8838 b->thread = thread;
8839 gdb_assert (b->thread != 0);
8840
8841 add_to_breakpoint_chain (b);
8842
8843 return b;
8844 }
8845
8846 /* Set a momentary breakpoint of type TYPE at address specified by
8847 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8848 frame. */
8849
8850 struct breakpoint *
8851 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8852 struct frame_id frame_id, enum bptype type)
8853 {
8854 struct breakpoint *b;
8855
8856 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8857 tail-called one. */
8858 gdb_assert (!frame_id_artificial_p (frame_id));
8859
8860 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8861 b->enable_state = bp_enabled;
8862 b->disposition = disp_donttouch;
8863 b->frame_id = frame_id;
8864
8865 /* If we're debugging a multi-threaded program, then we want
8866 momentary breakpoints to be active in only a single thread of
8867 control. */
8868 if (in_thread_list (inferior_ptid))
8869 b->thread = ptid_to_global_thread_id (inferior_ptid);
8870
8871 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8872
8873 return b;
8874 }
8875
8876 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8877 The new breakpoint will have type TYPE, use OPS as its
8878 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8879
8880 static struct breakpoint *
8881 momentary_breakpoint_from_master (struct breakpoint *orig,
8882 enum bptype type,
8883 const struct breakpoint_ops *ops,
8884 int loc_enabled)
8885 {
8886 struct breakpoint *copy;
8887
8888 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8889 copy->loc = allocate_bp_location (copy);
8890 set_breakpoint_location_function (copy->loc, 1);
8891
8892 copy->loc->gdbarch = orig->loc->gdbarch;
8893 copy->loc->requested_address = orig->loc->requested_address;
8894 copy->loc->address = orig->loc->address;
8895 copy->loc->section = orig->loc->section;
8896 copy->loc->pspace = orig->loc->pspace;
8897 copy->loc->probe = orig->loc->probe;
8898 copy->loc->line_number = orig->loc->line_number;
8899 copy->loc->symtab = orig->loc->symtab;
8900 copy->loc->enabled = loc_enabled;
8901 copy->frame_id = orig->frame_id;
8902 copy->thread = orig->thread;
8903 copy->pspace = orig->pspace;
8904
8905 copy->enable_state = bp_enabled;
8906 copy->disposition = disp_donttouch;
8907 copy->number = internal_breakpoint_number--;
8908
8909 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8910 return copy;
8911 }
8912
8913 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8914 ORIG is NULL. */
8915
8916 struct breakpoint *
8917 clone_momentary_breakpoint (struct breakpoint *orig)
8918 {
8919 /* If there's nothing to clone, then return nothing. */
8920 if (orig == NULL)
8921 return NULL;
8922
8923 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8924 }
8925
8926 struct breakpoint *
8927 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8928 enum bptype type)
8929 {
8930 struct symtab_and_line sal;
8931
8932 sal = find_pc_line (pc, 0);
8933 sal.pc = pc;
8934 sal.section = find_pc_overlay (pc);
8935 sal.explicit_pc = 1;
8936
8937 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8938 }
8939 \f
8940
8941 /* Tell the user we have just set a breakpoint B. */
8942
8943 static void
8944 mention (struct breakpoint *b)
8945 {
8946 b->ops->print_mention (b);
8947 if (current_uiout->is_mi_like_p ())
8948 return;
8949 printf_filtered ("\n");
8950 }
8951 \f
8952
8953 static int bp_loc_is_permanent (struct bp_location *loc);
8954
8955 static struct bp_location *
8956 add_location_to_breakpoint (struct breakpoint *b,
8957 const struct symtab_and_line *sal)
8958 {
8959 struct bp_location *loc, **tmp;
8960 CORE_ADDR adjusted_address;
8961 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8962
8963 if (loc_gdbarch == NULL)
8964 loc_gdbarch = b->gdbarch;
8965
8966 /* Adjust the breakpoint's address prior to allocating a location.
8967 Once we call allocate_bp_location(), that mostly uninitialized
8968 location will be placed on the location chain. Adjustment of the
8969 breakpoint may cause target_read_memory() to be called and we do
8970 not want its scan of the location chain to find a breakpoint and
8971 location that's only been partially initialized. */
8972 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8973 sal->pc, b->type);
8974
8975 /* Sort the locations by their ADDRESS. */
8976 loc = allocate_bp_location (b);
8977 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8978 tmp = &((*tmp)->next))
8979 ;
8980 loc->next = *tmp;
8981 *tmp = loc;
8982
8983 loc->requested_address = sal->pc;
8984 loc->address = adjusted_address;
8985 loc->pspace = sal->pspace;
8986 loc->probe.probe = sal->probe;
8987 loc->probe.objfile = sal->objfile;
8988 gdb_assert (loc->pspace != NULL);
8989 loc->section = sal->section;
8990 loc->gdbarch = loc_gdbarch;
8991 loc->line_number = sal->line;
8992 loc->symtab = sal->symtab;
8993
8994 set_breakpoint_location_function (loc,
8995 sal->explicit_pc || sal->explicit_line);
8996
8997 /* While by definition, permanent breakpoints are already present in the
8998 code, we don't mark the location as inserted. Normally one would expect
8999 that GDB could rely on that breakpoint instruction to stop the program,
9000 thus removing the need to insert its own breakpoint, except that executing
9001 the breakpoint instruction can kill the target instead of reporting a
9002 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
9003 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
9004 with "Trap 0x02 while interrupts disabled, Error state". Letting the
9005 breakpoint be inserted normally results in QEMU knowing about the GDB
9006 breakpoint, and thus trap before the breakpoint instruction is executed.
9007 (If GDB later needs to continue execution past the permanent breakpoint,
9008 it manually increments the PC, thus avoiding executing the breakpoint
9009 instruction.) */
9010 if (bp_loc_is_permanent (loc))
9011 loc->permanent = 1;
9012
9013 return loc;
9014 }
9015 \f
9016
9017 /* See breakpoint.h. */
9018
9019 int
9020 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
9021 {
9022 int len;
9023 CORE_ADDR addr;
9024 const gdb_byte *bpoint;
9025 gdb_byte *target_mem;
9026 struct cleanup *cleanup;
9027 int retval = 0;
9028
9029 addr = address;
9030 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
9031
9032 /* Software breakpoints unsupported? */
9033 if (bpoint == NULL)
9034 return 0;
9035
9036 target_mem = (gdb_byte *) alloca (len);
9037
9038 /* Enable the automatic memory restoration from breakpoints while
9039 we read the memory. Otherwise we could say about our temporary
9040 breakpoints they are permanent. */
9041 cleanup = make_show_memory_breakpoints_cleanup (0);
9042
9043 if (target_read_memory (address, target_mem, len) == 0
9044 && memcmp (target_mem, bpoint, len) == 0)
9045 retval = 1;
9046
9047 do_cleanups (cleanup);
9048
9049 return retval;
9050 }
9051
9052 /* Return 1 if LOC is pointing to a permanent breakpoint,
9053 return 0 otherwise. */
9054
9055 static int
9056 bp_loc_is_permanent (struct bp_location *loc)
9057 {
9058 gdb_assert (loc != NULL);
9059
9060 /* If we have a catchpoint or a watchpoint, just return 0. We should not
9061 attempt to read from the addresses the locations of these breakpoint types
9062 point to. program_breakpoint_here_p, below, will attempt to read
9063 memory. */
9064 if (!breakpoint_address_is_meaningful (loc->owner))
9065 return 0;
9066
9067 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9068 switch_to_program_space_and_thread (loc->pspace);
9069 return program_breakpoint_here_p (loc->gdbarch, loc->address);
9070 }
9071
9072 /* Build a command list for the dprintf corresponding to the current
9073 settings of the dprintf style options. */
9074
9075 static void
9076 update_dprintf_command_list (struct breakpoint *b)
9077 {
9078 char *dprintf_args = b->extra_string;
9079 char *printf_line = NULL;
9080
9081 if (!dprintf_args)
9082 return;
9083
9084 dprintf_args = skip_spaces (dprintf_args);
9085
9086 /* Allow a comma, as it may have terminated a location, but don't
9087 insist on it. */
9088 if (*dprintf_args == ',')
9089 ++dprintf_args;
9090 dprintf_args = skip_spaces (dprintf_args);
9091
9092 if (*dprintf_args != '"')
9093 error (_("Bad format string, missing '\"'."));
9094
9095 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9096 printf_line = xstrprintf ("printf %s", dprintf_args);
9097 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9098 {
9099 if (!dprintf_function)
9100 error (_("No function supplied for dprintf call"));
9101
9102 if (dprintf_channel && strlen (dprintf_channel) > 0)
9103 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9104 dprintf_function,
9105 dprintf_channel,
9106 dprintf_args);
9107 else
9108 printf_line = xstrprintf ("call (void) %s (%s)",
9109 dprintf_function,
9110 dprintf_args);
9111 }
9112 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9113 {
9114 if (target_can_run_breakpoint_commands ())
9115 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9116 else
9117 {
9118 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9119 printf_line = xstrprintf ("printf %s", dprintf_args);
9120 }
9121 }
9122 else
9123 internal_error (__FILE__, __LINE__,
9124 _("Invalid dprintf style."));
9125
9126 gdb_assert (printf_line != NULL);
9127 /* Manufacture a printf sequence. */
9128 {
9129 struct command_line *printf_cmd_line = XNEW (struct command_line);
9130
9131 printf_cmd_line->control_type = simple_control;
9132 printf_cmd_line->body_count = 0;
9133 printf_cmd_line->body_list = NULL;
9134 printf_cmd_line->next = NULL;
9135 printf_cmd_line->line = printf_line;
9136
9137 breakpoint_set_commands (b, command_line_up (printf_cmd_line));
9138 }
9139 }
9140
9141 /* Update all dprintf commands, making their command lists reflect
9142 current style settings. */
9143
9144 static void
9145 update_dprintf_commands (char *args, int from_tty,
9146 struct cmd_list_element *c)
9147 {
9148 struct breakpoint *b;
9149
9150 ALL_BREAKPOINTS (b)
9151 {
9152 if (b->type == bp_dprintf)
9153 update_dprintf_command_list (b);
9154 }
9155 }
9156
9157 /* Create a breakpoint with SAL as location. Use LOCATION
9158 as a description of the location, and COND_STRING
9159 as condition expression. If LOCATION is NULL then create an
9160 "address location" from the address in the SAL. */
9161
9162 static void
9163 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9164 struct symtabs_and_lines sals,
9165 event_location_up &&location,
9166 char *filter, char *cond_string,
9167 char *extra_string,
9168 enum bptype type, enum bpdisp disposition,
9169 int thread, int task, int ignore_count,
9170 const struct breakpoint_ops *ops, int from_tty,
9171 int enabled, int internal, unsigned flags,
9172 int display_canonical)
9173 {
9174 int i;
9175
9176 if (type == bp_hardware_breakpoint)
9177 {
9178 int target_resources_ok;
9179
9180 i = hw_breakpoint_used_count ();
9181 target_resources_ok =
9182 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9183 i + 1, 0);
9184 if (target_resources_ok == 0)
9185 error (_("No hardware breakpoint support in the target."));
9186 else if (target_resources_ok < 0)
9187 error (_("Hardware breakpoints used exceeds limit."));
9188 }
9189
9190 gdb_assert (sals.nelts > 0);
9191
9192 for (i = 0; i < sals.nelts; ++i)
9193 {
9194 struct symtab_and_line sal = sals.sals[i];
9195 struct bp_location *loc;
9196
9197 if (from_tty)
9198 {
9199 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9200 if (!loc_gdbarch)
9201 loc_gdbarch = gdbarch;
9202
9203 describe_other_breakpoints (loc_gdbarch,
9204 sal.pspace, sal.pc, sal.section, thread);
9205 }
9206
9207 if (i == 0)
9208 {
9209 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9210 b->thread = thread;
9211 b->task = task;
9212
9213 b->cond_string = cond_string;
9214 b->extra_string = extra_string;
9215 b->ignore_count = ignore_count;
9216 b->enable_state = enabled ? bp_enabled : bp_disabled;
9217 b->disposition = disposition;
9218
9219 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9220 b->loc->inserted = 1;
9221
9222 if (type == bp_static_tracepoint)
9223 {
9224 struct tracepoint *t = (struct tracepoint *) b;
9225 struct static_tracepoint_marker marker;
9226
9227 if (strace_marker_p (b))
9228 {
9229 /* We already know the marker exists, otherwise, we
9230 wouldn't see a sal for it. */
9231 const char *p
9232 = &event_location_to_string (b->location.get ())[3];
9233 const char *endp;
9234 char *marker_str;
9235
9236 p = skip_spaces_const (p);
9237
9238 endp = skip_to_space_const (p);
9239
9240 marker_str = savestring (p, endp - p);
9241 t->static_trace_marker_id = marker_str;
9242
9243 printf_filtered (_("Probed static tracepoint "
9244 "marker \"%s\"\n"),
9245 t->static_trace_marker_id);
9246 }
9247 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9248 {
9249 t->static_trace_marker_id = xstrdup (marker.str_id);
9250 release_static_tracepoint_marker (&marker);
9251
9252 printf_filtered (_("Probed static tracepoint "
9253 "marker \"%s\"\n"),
9254 t->static_trace_marker_id);
9255 }
9256 else
9257 warning (_("Couldn't determine the static "
9258 "tracepoint marker to probe"));
9259 }
9260
9261 loc = b->loc;
9262 }
9263 else
9264 {
9265 loc = add_location_to_breakpoint (b, &sal);
9266 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9267 loc->inserted = 1;
9268 }
9269
9270 if (b->cond_string)
9271 {
9272 const char *arg = b->cond_string;
9273
9274 loc->cond = parse_exp_1 (&arg, loc->address,
9275 block_for_pc (loc->address), 0);
9276 if (*arg)
9277 error (_("Garbage '%s' follows condition"), arg);
9278 }
9279
9280 /* Dynamic printf requires and uses additional arguments on the
9281 command line, otherwise it's an error. */
9282 if (type == bp_dprintf)
9283 {
9284 if (b->extra_string)
9285 update_dprintf_command_list (b);
9286 else
9287 error (_("Format string required"));
9288 }
9289 else if (b->extra_string)
9290 error (_("Garbage '%s' at end of command"), b->extra_string);
9291 }
9292
9293 b->display_canonical = display_canonical;
9294 if (location != NULL)
9295 b->location = std::move (location);
9296 else
9297 b->location = new_address_location (b->loc->address, NULL, 0);
9298 b->filter = filter;
9299 }
9300
9301 static void
9302 create_breakpoint_sal (struct gdbarch *gdbarch,
9303 struct symtabs_and_lines sals,
9304 event_location_up &&location,
9305 char *filter, char *cond_string,
9306 char *extra_string,
9307 enum bptype type, enum bpdisp disposition,
9308 int thread, int task, int ignore_count,
9309 const struct breakpoint_ops *ops, int from_tty,
9310 int enabled, int internal, unsigned flags,
9311 int display_canonical)
9312 {
9313 struct breakpoint *b;
9314 struct cleanup *old_chain;
9315
9316 if (is_tracepoint_type (type))
9317 {
9318 struct tracepoint *t;
9319
9320 t = new tracepoint ();
9321 b = &t->base;
9322 }
9323 else
9324 b = new breakpoint ();
9325
9326 old_chain = make_cleanup (xfree, b);
9327
9328 init_breakpoint_sal (b, gdbarch,
9329 sals, std::move (location),
9330 filter, cond_string, extra_string,
9331 type, disposition,
9332 thread, task, ignore_count,
9333 ops, from_tty,
9334 enabled, internal, flags,
9335 display_canonical);
9336 discard_cleanups (old_chain);
9337
9338 install_breakpoint (internal, b, 0);
9339 }
9340
9341 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9342 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9343 value. COND_STRING, if not NULL, specified the condition to be
9344 used for all breakpoints. Essentially the only case where
9345 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9346 function. In that case, it's still not possible to specify
9347 separate conditions for different overloaded functions, so
9348 we take just a single condition string.
9349
9350 NOTE: If the function succeeds, the caller is expected to cleanup
9351 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9352 array contents). If the function fails (error() is called), the
9353 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9354 COND and SALS arrays and each of those arrays contents. */
9355
9356 static void
9357 create_breakpoints_sal (struct gdbarch *gdbarch,
9358 struct linespec_result *canonical,
9359 char *cond_string, char *extra_string,
9360 enum bptype type, enum bpdisp disposition,
9361 int thread, int task, int ignore_count,
9362 const struct breakpoint_ops *ops, int from_tty,
9363 int enabled, int internal, unsigned flags)
9364 {
9365 int i;
9366 struct linespec_sals *lsal;
9367
9368 if (canonical->pre_expanded)
9369 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9370
9371 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9372 {
9373 /* Note that 'location' can be NULL in the case of a plain
9374 'break', without arguments. */
9375 event_location_up location
9376 = (canonical->location != NULL
9377 ? copy_event_location (canonical->location.get ()) : NULL);
9378 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9379
9380 make_cleanup (xfree, filter_string);
9381 create_breakpoint_sal (gdbarch, lsal->sals,
9382 std::move (location),
9383 filter_string,
9384 cond_string, extra_string,
9385 type, disposition,
9386 thread, task, ignore_count, ops,
9387 from_tty, enabled, internal, flags,
9388 canonical->special_display);
9389 }
9390 }
9391
9392 /* Parse LOCATION which is assumed to be a SAL specification possibly
9393 followed by conditionals. On return, SALS contains an array of SAL
9394 addresses found. LOCATION points to the end of the SAL (for
9395 linespec locations).
9396
9397 The array and the line spec strings are allocated on the heap, it is
9398 the caller's responsibility to free them. */
9399
9400 static void
9401 parse_breakpoint_sals (const struct event_location *location,
9402 struct linespec_result *canonical)
9403 {
9404 struct symtab_and_line cursal;
9405
9406 if (event_location_type (location) == LINESPEC_LOCATION)
9407 {
9408 const char *address = get_linespec_location (location);
9409
9410 if (address == NULL)
9411 {
9412 /* The last displayed codepoint, if it's valid, is our default
9413 breakpoint address. */
9414 if (last_displayed_sal_is_valid ())
9415 {
9416 struct linespec_sals lsal;
9417 struct symtab_and_line sal;
9418 CORE_ADDR pc;
9419
9420 init_sal (&sal); /* Initialize to zeroes. */
9421 lsal.sals.sals = XNEW (struct symtab_and_line);
9422
9423 /* Set sal's pspace, pc, symtab, and line to the values
9424 corresponding to the last call to print_frame_info.
9425 Be sure to reinitialize LINE with NOTCURRENT == 0
9426 as the breakpoint line number is inappropriate otherwise.
9427 find_pc_line would adjust PC, re-set it back. */
9428 get_last_displayed_sal (&sal);
9429 pc = sal.pc;
9430 sal = find_pc_line (pc, 0);
9431
9432 /* "break" without arguments is equivalent to "break *PC"
9433 where PC is the last displayed codepoint's address. So
9434 make sure to set sal.explicit_pc to prevent GDB from
9435 trying to expand the list of sals to include all other
9436 instances with the same symtab and line. */
9437 sal.pc = pc;
9438 sal.explicit_pc = 1;
9439
9440 lsal.sals.sals[0] = sal;
9441 lsal.sals.nelts = 1;
9442 lsal.canonical = NULL;
9443
9444 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9445 return;
9446 }
9447 else
9448 error (_("No default breakpoint address now."));
9449 }
9450 }
9451
9452 /* Force almost all breakpoints to be in terms of the
9453 current_source_symtab (which is decode_line_1's default).
9454 This should produce the results we want almost all of the
9455 time while leaving default_breakpoint_* alone.
9456
9457 ObjC: However, don't match an Objective-C method name which
9458 may have a '+' or '-' succeeded by a '['. */
9459 cursal = get_current_source_symtab_and_line ();
9460 if (last_displayed_sal_is_valid ())
9461 {
9462 const char *address = NULL;
9463
9464 if (event_location_type (location) == LINESPEC_LOCATION)
9465 address = get_linespec_location (location);
9466
9467 if (!cursal.symtab
9468 || (address != NULL
9469 && strchr ("+-", address[0]) != NULL
9470 && address[1] != '['))
9471 {
9472 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9473 get_last_displayed_symtab (),
9474 get_last_displayed_line (),
9475 canonical, NULL, NULL);
9476 return;
9477 }
9478 }
9479
9480 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9481 cursal.symtab, cursal.line, canonical, NULL, NULL);
9482 }
9483
9484
9485 /* Convert each SAL into a real PC. Verify that the PC can be
9486 inserted as a breakpoint. If it can't throw an error. */
9487
9488 static void
9489 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9490 {
9491 int i;
9492
9493 for (i = 0; i < sals->nelts; i++)
9494 resolve_sal_pc (&sals->sals[i]);
9495 }
9496
9497 /* Fast tracepoints may have restrictions on valid locations. For
9498 instance, a fast tracepoint using a jump instead of a trap will
9499 likely have to overwrite more bytes than a trap would, and so can
9500 only be placed where the instruction is longer than the jump, or a
9501 multi-instruction sequence does not have a jump into the middle of
9502 it, etc. */
9503
9504 static void
9505 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9506 struct symtabs_and_lines *sals)
9507 {
9508 int i, rslt;
9509 struct symtab_and_line *sal;
9510 char *msg;
9511 struct cleanup *old_chain;
9512
9513 for (i = 0; i < sals->nelts; i++)
9514 {
9515 struct gdbarch *sarch;
9516
9517 sal = &sals->sals[i];
9518
9519 sarch = get_sal_arch (*sal);
9520 /* We fall back to GDBARCH if there is no architecture
9521 associated with SAL. */
9522 if (sarch == NULL)
9523 sarch = gdbarch;
9524 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc, &msg);
9525 old_chain = make_cleanup (xfree, msg);
9526
9527 if (!rslt)
9528 error (_("May not have a fast tracepoint at %s%s"),
9529 paddress (sarch, sal->pc), (msg ? msg : ""));
9530
9531 do_cleanups (old_chain);
9532 }
9533 }
9534
9535 /* Given TOK, a string specification of condition and thread, as
9536 accepted by the 'break' command, extract the condition
9537 string and thread number and set *COND_STRING and *THREAD.
9538 PC identifies the context at which the condition should be parsed.
9539 If no condition is found, *COND_STRING is set to NULL.
9540 If no thread is found, *THREAD is set to -1. */
9541
9542 static void
9543 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9544 char **cond_string, int *thread, int *task,
9545 char **rest)
9546 {
9547 *cond_string = NULL;
9548 *thread = -1;
9549 *task = 0;
9550 *rest = NULL;
9551
9552 while (tok && *tok)
9553 {
9554 const char *end_tok;
9555 int toklen;
9556 const char *cond_start = NULL;
9557 const char *cond_end = NULL;
9558
9559 tok = skip_spaces_const (tok);
9560
9561 if ((*tok == '"' || *tok == ',') && rest)
9562 {
9563 *rest = savestring (tok, strlen (tok));
9564 return;
9565 }
9566
9567 end_tok = skip_to_space_const (tok);
9568
9569 toklen = end_tok - tok;
9570
9571 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9572 {
9573 tok = cond_start = end_tok + 1;
9574 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9575 cond_end = tok;
9576 *cond_string = savestring (cond_start, cond_end - cond_start);
9577 }
9578 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9579 {
9580 const char *tmptok;
9581 struct thread_info *thr;
9582
9583 tok = end_tok + 1;
9584 thr = parse_thread_id (tok, &tmptok);
9585 if (tok == tmptok)
9586 error (_("Junk after thread keyword."));
9587 *thread = thr->global_num;
9588 tok = tmptok;
9589 }
9590 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9591 {
9592 char *tmptok;
9593
9594 tok = end_tok + 1;
9595 *task = strtol (tok, &tmptok, 0);
9596 if (tok == tmptok)
9597 error (_("Junk after task keyword."));
9598 if (!valid_task_id (*task))
9599 error (_("Unknown task %d."), *task);
9600 tok = tmptok;
9601 }
9602 else if (rest)
9603 {
9604 *rest = savestring (tok, strlen (tok));
9605 return;
9606 }
9607 else
9608 error (_("Junk at end of arguments."));
9609 }
9610 }
9611
9612 /* Decode a static tracepoint marker spec. */
9613
9614 static struct symtabs_and_lines
9615 decode_static_tracepoint_spec (const char **arg_p)
9616 {
9617 VEC(static_tracepoint_marker_p) *markers = NULL;
9618 struct symtabs_and_lines sals;
9619 struct cleanup *old_chain;
9620 const char *p = &(*arg_p)[3];
9621 const char *endp;
9622 char *marker_str;
9623 int i;
9624
9625 p = skip_spaces_const (p);
9626
9627 endp = skip_to_space_const (p);
9628
9629 marker_str = savestring (p, endp - p);
9630 old_chain = make_cleanup (xfree, marker_str);
9631
9632 markers = target_static_tracepoint_markers_by_strid (marker_str);
9633 if (VEC_empty(static_tracepoint_marker_p, markers))
9634 error (_("No known static tracepoint marker named %s"), marker_str);
9635
9636 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9637 sals.sals = XNEWVEC (struct symtab_and_line, sals.nelts);
9638
9639 for (i = 0; i < sals.nelts; i++)
9640 {
9641 struct static_tracepoint_marker *marker;
9642
9643 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9644
9645 init_sal (&sals.sals[i]);
9646
9647 sals.sals[i] = find_pc_line (marker->address, 0);
9648 sals.sals[i].pc = marker->address;
9649
9650 release_static_tracepoint_marker (marker);
9651 }
9652
9653 do_cleanups (old_chain);
9654
9655 *arg_p = endp;
9656 return sals;
9657 }
9658
9659 /* See breakpoint.h. */
9660
9661 int
9662 create_breakpoint (struct gdbarch *gdbarch,
9663 const struct event_location *location, char *cond_string,
9664 int thread, char *extra_string,
9665 int parse_extra,
9666 int tempflag, enum bptype type_wanted,
9667 int ignore_count,
9668 enum auto_boolean pending_break_support,
9669 const struct breakpoint_ops *ops,
9670 int from_tty, int enabled, int internal,
9671 unsigned flags)
9672 {
9673 struct linespec_result canonical;
9674 struct cleanup *bkpt_chain = NULL;
9675 int pending = 0;
9676 int task = 0;
9677 int prev_bkpt_count = breakpoint_count;
9678
9679 gdb_assert (ops != NULL);
9680
9681 /* If extra_string isn't useful, set it to NULL. */
9682 if (extra_string != NULL && *extra_string == '\0')
9683 extra_string = NULL;
9684
9685 TRY
9686 {
9687 ops->create_sals_from_location (location, &canonical, type_wanted);
9688 }
9689 CATCH (e, RETURN_MASK_ERROR)
9690 {
9691 /* If caller is interested in rc value from parse, set
9692 value. */
9693 if (e.error == NOT_FOUND_ERROR)
9694 {
9695 /* If pending breakpoint support is turned off, throw
9696 error. */
9697
9698 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9699 throw_exception (e);
9700
9701 exception_print (gdb_stderr, e);
9702
9703 /* If pending breakpoint support is auto query and the user
9704 selects no, then simply return the error code. */
9705 if (pending_break_support == AUTO_BOOLEAN_AUTO
9706 && !nquery (_("Make %s pending on future shared library load? "),
9707 bptype_string (type_wanted)))
9708 return 0;
9709
9710 /* At this point, either the user was queried about setting
9711 a pending breakpoint and selected yes, or pending
9712 breakpoint behavior is on and thus a pending breakpoint
9713 is defaulted on behalf of the user. */
9714 pending = 1;
9715 }
9716 else
9717 throw_exception (e);
9718 }
9719 END_CATCH
9720
9721 if (!pending && VEC_empty (linespec_sals, canonical.sals))
9722 return 0;
9723
9724 /* ----------------------------- SNIP -----------------------------
9725 Anything added to the cleanup chain beyond this point is assumed
9726 to be part of a breakpoint. If the breakpoint create succeeds
9727 then the memory is not reclaimed. */
9728 bkpt_chain = make_cleanup (null_cleanup, 0);
9729
9730 /* Resolve all line numbers to PC's and verify that the addresses
9731 are ok for the target. */
9732 if (!pending)
9733 {
9734 int ix;
9735 struct linespec_sals *iter;
9736
9737 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9738 breakpoint_sals_to_pc (&iter->sals);
9739 }
9740
9741 /* Fast tracepoints may have additional restrictions on location. */
9742 if (!pending && type_wanted == bp_fast_tracepoint)
9743 {
9744 int ix;
9745 struct linespec_sals *iter;
9746
9747 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9748 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9749 }
9750
9751 /* Verify that condition can be parsed, before setting any
9752 breakpoints. Allocate a separate condition expression for each
9753 breakpoint. */
9754 if (!pending)
9755 {
9756 if (parse_extra)
9757 {
9758 char *rest;
9759 struct linespec_sals *lsal;
9760
9761 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9762
9763 /* Here we only parse 'arg' to separate condition
9764 from thread number, so parsing in context of first
9765 sal is OK. When setting the breakpoint we'll
9766 re-parse it in context of each sal. */
9767
9768 find_condition_and_thread (extra_string, lsal->sals.sals[0].pc,
9769 &cond_string, &thread, &task, &rest);
9770 if (cond_string)
9771 make_cleanup (xfree, cond_string);
9772 if (rest)
9773 make_cleanup (xfree, rest);
9774 if (rest)
9775 extra_string = rest;
9776 else
9777 extra_string = NULL;
9778 }
9779 else
9780 {
9781 if (type_wanted != bp_dprintf
9782 && extra_string != NULL && *extra_string != '\0')
9783 error (_("Garbage '%s' at end of location"), extra_string);
9784
9785 /* Create a private copy of condition string. */
9786 if (cond_string)
9787 {
9788 cond_string = xstrdup (cond_string);
9789 make_cleanup (xfree, cond_string);
9790 }
9791 /* Create a private copy of any extra string. */
9792 if (extra_string)
9793 {
9794 extra_string = xstrdup (extra_string);
9795 make_cleanup (xfree, extra_string);
9796 }
9797 }
9798
9799 ops->create_breakpoints_sal (gdbarch, &canonical,
9800 cond_string, extra_string, type_wanted,
9801 tempflag ? disp_del : disp_donttouch,
9802 thread, task, ignore_count, ops,
9803 from_tty, enabled, internal, flags);
9804 }
9805 else
9806 {
9807 struct breakpoint *b;
9808
9809 if (is_tracepoint_type (type_wanted))
9810 {
9811 struct tracepoint *t;
9812
9813 t = new tracepoint ();
9814 b = &t->base;
9815 }
9816 else
9817 b = new breakpoint ();
9818
9819 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9820 b->location = copy_event_location (location);
9821
9822 if (parse_extra)
9823 b->cond_string = NULL;
9824 else
9825 {
9826 /* Create a private copy of condition string. */
9827 if (cond_string)
9828 {
9829 cond_string = xstrdup (cond_string);
9830 make_cleanup (xfree, cond_string);
9831 }
9832 b->cond_string = cond_string;
9833 b->thread = thread;
9834 }
9835
9836 /* Create a private copy of any extra string. */
9837 if (extra_string != NULL)
9838 {
9839 extra_string = xstrdup (extra_string);
9840 make_cleanup (xfree, extra_string);
9841 }
9842 b->extra_string = extra_string;
9843 b->ignore_count = ignore_count;
9844 b->disposition = tempflag ? disp_del : disp_donttouch;
9845 b->condition_not_parsed = 1;
9846 b->enable_state = enabled ? bp_enabled : bp_disabled;
9847 if ((type_wanted != bp_breakpoint
9848 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9849 b->pspace = current_program_space;
9850
9851 install_breakpoint (internal, b, 0);
9852 }
9853
9854 if (VEC_length (linespec_sals, canonical.sals) > 1)
9855 {
9856 warning (_("Multiple breakpoints were set.\nUse the "
9857 "\"delete\" command to delete unwanted breakpoints."));
9858 prev_breakpoint_count = prev_bkpt_count;
9859 }
9860
9861 /* That's it. Discard the cleanups for data inserted into the
9862 breakpoint. */
9863 discard_cleanups (bkpt_chain);
9864
9865 /* error call may happen here - have BKPT_CHAIN already discarded. */
9866 update_global_location_list (UGLL_MAY_INSERT);
9867
9868 return 1;
9869 }
9870
9871 /* Set a breakpoint.
9872 ARG is a string describing breakpoint address,
9873 condition, and thread.
9874 FLAG specifies if a breakpoint is hardware on,
9875 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9876 and BP_TEMPFLAG. */
9877
9878 static void
9879 break_command_1 (char *arg, int flag, int from_tty)
9880 {
9881 int tempflag = flag & BP_TEMPFLAG;
9882 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9883 ? bp_hardware_breakpoint
9884 : bp_breakpoint);
9885 struct breakpoint_ops *ops;
9886
9887 event_location_up location = string_to_event_location (&arg, current_language);
9888
9889 /* Matching breakpoints on probes. */
9890 if (location != NULL
9891 && event_location_type (location.get ()) == PROBE_LOCATION)
9892 ops = &bkpt_probe_breakpoint_ops;
9893 else
9894 ops = &bkpt_breakpoint_ops;
9895
9896 create_breakpoint (get_current_arch (),
9897 location.get (),
9898 NULL, 0, arg, 1 /* parse arg */,
9899 tempflag, type_wanted,
9900 0 /* Ignore count */,
9901 pending_break_support,
9902 ops,
9903 from_tty,
9904 1 /* enabled */,
9905 0 /* internal */,
9906 0);
9907 }
9908
9909 /* Helper function for break_command_1 and disassemble_command. */
9910
9911 void
9912 resolve_sal_pc (struct symtab_and_line *sal)
9913 {
9914 CORE_ADDR pc;
9915
9916 if (sal->pc == 0 && sal->symtab != NULL)
9917 {
9918 if (!find_line_pc (sal->symtab, sal->line, &pc))
9919 error (_("No line %d in file \"%s\"."),
9920 sal->line, symtab_to_filename_for_display (sal->symtab));
9921 sal->pc = pc;
9922
9923 /* If this SAL corresponds to a breakpoint inserted using a line
9924 number, then skip the function prologue if necessary. */
9925 if (sal->explicit_line)
9926 skip_prologue_sal (sal);
9927 }
9928
9929 if (sal->section == 0 && sal->symtab != NULL)
9930 {
9931 const struct blockvector *bv;
9932 const struct block *b;
9933 struct symbol *sym;
9934
9935 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9936 SYMTAB_COMPUNIT (sal->symtab));
9937 if (bv != NULL)
9938 {
9939 sym = block_linkage_function (b);
9940 if (sym != NULL)
9941 {
9942 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9943 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9944 sym);
9945 }
9946 else
9947 {
9948 /* It really is worthwhile to have the section, so we'll
9949 just have to look harder. This case can be executed
9950 if we have line numbers but no functions (as can
9951 happen in assembly source). */
9952
9953 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9954 switch_to_program_space_and_thread (sal->pspace);
9955
9956 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9957 if (msym.minsym)
9958 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9959 }
9960 }
9961 }
9962 }
9963
9964 void
9965 break_command (char *arg, int from_tty)
9966 {
9967 break_command_1 (arg, 0, from_tty);
9968 }
9969
9970 void
9971 tbreak_command (char *arg, int from_tty)
9972 {
9973 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9974 }
9975
9976 static void
9977 hbreak_command (char *arg, int from_tty)
9978 {
9979 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9980 }
9981
9982 static void
9983 thbreak_command (char *arg, int from_tty)
9984 {
9985 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9986 }
9987
9988 static void
9989 stop_command (char *arg, int from_tty)
9990 {
9991 printf_filtered (_("Specify the type of breakpoint to set.\n\
9992 Usage: stop in <function | address>\n\
9993 stop at <line>\n"));
9994 }
9995
9996 static void
9997 stopin_command (char *arg, int from_tty)
9998 {
9999 int badInput = 0;
10000
10001 if (arg == (char *) NULL)
10002 badInput = 1;
10003 else if (*arg != '*')
10004 {
10005 char *argptr = arg;
10006 int hasColon = 0;
10007
10008 /* Look for a ':'. If this is a line number specification, then
10009 say it is bad, otherwise, it should be an address or
10010 function/method name. */
10011 while (*argptr && !hasColon)
10012 {
10013 hasColon = (*argptr == ':');
10014 argptr++;
10015 }
10016
10017 if (hasColon)
10018 badInput = (*argptr != ':'); /* Not a class::method */
10019 else
10020 badInput = isdigit (*arg); /* a simple line number */
10021 }
10022
10023 if (badInput)
10024 printf_filtered (_("Usage: stop in <function | address>\n"));
10025 else
10026 break_command_1 (arg, 0, from_tty);
10027 }
10028
10029 static void
10030 stopat_command (char *arg, int from_tty)
10031 {
10032 int badInput = 0;
10033
10034 if (arg == (char *) NULL || *arg == '*') /* no line number */
10035 badInput = 1;
10036 else
10037 {
10038 char *argptr = arg;
10039 int hasColon = 0;
10040
10041 /* Look for a ':'. If there is a '::' then get out, otherwise
10042 it is probably a line number. */
10043 while (*argptr && !hasColon)
10044 {
10045 hasColon = (*argptr == ':');
10046 argptr++;
10047 }
10048
10049 if (hasColon)
10050 badInput = (*argptr == ':'); /* we have class::method */
10051 else
10052 badInput = !isdigit (*arg); /* not a line number */
10053 }
10054
10055 if (badInput)
10056 printf_filtered (_("Usage: stop at <line>\n"));
10057 else
10058 break_command_1 (arg, 0, from_tty);
10059 }
10060
10061 /* The dynamic printf command is mostly like a regular breakpoint, but
10062 with a prewired command list consisting of a single output command,
10063 built from extra arguments supplied on the dprintf command
10064 line. */
10065
10066 static void
10067 dprintf_command (char *arg, int from_tty)
10068 {
10069 event_location_up location = string_to_event_location (&arg, current_language);
10070
10071 /* If non-NULL, ARG should have been advanced past the location;
10072 the next character must be ','. */
10073 if (arg != NULL)
10074 {
10075 if (arg[0] != ',' || arg[1] == '\0')
10076 error (_("Format string required"));
10077 else
10078 {
10079 /* Skip the comma. */
10080 ++arg;
10081 }
10082 }
10083
10084 create_breakpoint (get_current_arch (),
10085 location.get (),
10086 NULL, 0, arg, 1 /* parse arg */,
10087 0, bp_dprintf,
10088 0 /* Ignore count */,
10089 pending_break_support,
10090 &dprintf_breakpoint_ops,
10091 from_tty,
10092 1 /* enabled */,
10093 0 /* internal */,
10094 0);
10095 }
10096
10097 static void
10098 agent_printf_command (char *arg, int from_tty)
10099 {
10100 error (_("May only run agent-printf on the target"));
10101 }
10102
10103 /* Implement the "breakpoint_hit" breakpoint_ops method for
10104 ranged breakpoints. */
10105
10106 static int
10107 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10108 struct address_space *aspace,
10109 CORE_ADDR bp_addr,
10110 const struct target_waitstatus *ws)
10111 {
10112 if (ws->kind != TARGET_WAITKIND_STOPPED
10113 || ws->value.sig != GDB_SIGNAL_TRAP)
10114 return 0;
10115
10116 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10117 bl->length, aspace, bp_addr);
10118 }
10119
10120 /* Implement the "resources_needed" breakpoint_ops method for
10121 ranged breakpoints. */
10122
10123 static int
10124 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10125 {
10126 return target_ranged_break_num_registers ();
10127 }
10128
10129 /* Implement the "print_it" breakpoint_ops method for
10130 ranged breakpoints. */
10131
10132 static enum print_stop_action
10133 print_it_ranged_breakpoint (bpstat bs)
10134 {
10135 struct breakpoint *b = bs->breakpoint_at;
10136 struct bp_location *bl = b->loc;
10137 struct ui_out *uiout = current_uiout;
10138
10139 gdb_assert (b->type == bp_hardware_breakpoint);
10140
10141 /* Ranged breakpoints have only one location. */
10142 gdb_assert (bl && bl->next == NULL);
10143
10144 annotate_breakpoint (b->number);
10145
10146 maybe_print_thread_hit_breakpoint (uiout);
10147
10148 if (b->disposition == disp_del)
10149 uiout->text ("Temporary ranged breakpoint ");
10150 else
10151 uiout->text ("Ranged breakpoint ");
10152 if (uiout->is_mi_like_p ())
10153 {
10154 uiout->field_string ("reason",
10155 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10156 uiout->field_string ("disp", bpdisp_text (b->disposition));
10157 }
10158 uiout->field_int ("bkptno", b->number);
10159 uiout->text (", ");
10160
10161 return PRINT_SRC_AND_LOC;
10162 }
10163
10164 /* Implement the "print_one" breakpoint_ops method for
10165 ranged breakpoints. */
10166
10167 static void
10168 print_one_ranged_breakpoint (struct breakpoint *b,
10169 struct bp_location **last_loc)
10170 {
10171 struct bp_location *bl = b->loc;
10172 struct value_print_options opts;
10173 struct ui_out *uiout = current_uiout;
10174
10175 /* Ranged breakpoints have only one location. */
10176 gdb_assert (bl && bl->next == NULL);
10177
10178 get_user_print_options (&opts);
10179
10180 if (opts.addressprint)
10181 /* We don't print the address range here, it will be printed later
10182 by print_one_detail_ranged_breakpoint. */
10183 uiout->field_skip ("addr");
10184 annotate_field (5);
10185 print_breakpoint_location (b, bl);
10186 *last_loc = bl;
10187 }
10188
10189 /* Implement the "print_one_detail" breakpoint_ops method for
10190 ranged breakpoints. */
10191
10192 static void
10193 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10194 struct ui_out *uiout)
10195 {
10196 CORE_ADDR address_start, address_end;
10197 struct bp_location *bl = b->loc;
10198 string_file stb;
10199
10200 gdb_assert (bl);
10201
10202 address_start = bl->address;
10203 address_end = address_start + bl->length - 1;
10204
10205 uiout->text ("\taddress range: ");
10206 stb.printf ("[%s, %s]",
10207 print_core_address (bl->gdbarch, address_start),
10208 print_core_address (bl->gdbarch, address_end));
10209 uiout->field_stream ("addr", stb);
10210 uiout->text ("\n");
10211 }
10212
10213 /* Implement the "print_mention" breakpoint_ops method for
10214 ranged breakpoints. */
10215
10216 static void
10217 print_mention_ranged_breakpoint (struct breakpoint *b)
10218 {
10219 struct bp_location *bl = b->loc;
10220 struct ui_out *uiout = current_uiout;
10221
10222 gdb_assert (bl);
10223 gdb_assert (b->type == bp_hardware_breakpoint);
10224
10225 if (uiout->is_mi_like_p ())
10226 return;
10227
10228 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10229 b->number, paddress (bl->gdbarch, bl->address),
10230 paddress (bl->gdbarch, bl->address + bl->length - 1));
10231 }
10232
10233 /* Implement the "print_recreate" breakpoint_ops method for
10234 ranged breakpoints. */
10235
10236 static void
10237 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10238 {
10239 fprintf_unfiltered (fp, "break-range %s, %s",
10240 event_location_to_string (b->location.get ()),
10241 event_location_to_string (b->location_range_end.get ()));
10242 print_recreate_thread (b, fp);
10243 }
10244
10245 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10246
10247 static struct breakpoint_ops ranged_breakpoint_ops;
10248
10249 /* Find the address where the end of the breakpoint range should be
10250 placed, given the SAL of the end of the range. This is so that if
10251 the user provides a line number, the end of the range is set to the
10252 last instruction of the given line. */
10253
10254 static CORE_ADDR
10255 find_breakpoint_range_end (struct symtab_and_line sal)
10256 {
10257 CORE_ADDR end;
10258
10259 /* If the user provided a PC value, use it. Otherwise,
10260 find the address of the end of the given location. */
10261 if (sal.explicit_pc)
10262 end = sal.pc;
10263 else
10264 {
10265 int ret;
10266 CORE_ADDR start;
10267
10268 ret = find_line_pc_range (sal, &start, &end);
10269 if (!ret)
10270 error (_("Could not find location of the end of the range."));
10271
10272 /* find_line_pc_range returns the start of the next line. */
10273 end--;
10274 }
10275
10276 return end;
10277 }
10278
10279 /* Implement the "break-range" CLI command. */
10280
10281 static void
10282 break_range_command (char *arg, int from_tty)
10283 {
10284 char *arg_start, *addr_string_start;
10285 struct linespec_result canonical_start, canonical_end;
10286 int bp_count, can_use_bp, length;
10287 CORE_ADDR end;
10288 struct breakpoint *b;
10289 struct symtab_and_line sal_start, sal_end;
10290 struct cleanup *cleanup_bkpt;
10291 struct linespec_sals *lsal_start, *lsal_end;
10292
10293 /* We don't support software ranged breakpoints. */
10294 if (target_ranged_break_num_registers () < 0)
10295 error (_("This target does not support hardware ranged breakpoints."));
10296
10297 bp_count = hw_breakpoint_used_count ();
10298 bp_count += target_ranged_break_num_registers ();
10299 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10300 bp_count, 0);
10301 if (can_use_bp < 0)
10302 error (_("Hardware breakpoints used exceeds limit."));
10303
10304 arg = skip_spaces (arg);
10305 if (arg == NULL || arg[0] == '\0')
10306 error(_("No address range specified."));
10307
10308 arg_start = arg;
10309 event_location_up start_location = string_to_event_location (&arg,
10310 current_language);
10311 parse_breakpoint_sals (start_location.get (), &canonical_start);
10312
10313 if (arg[0] != ',')
10314 error (_("Too few arguments."));
10315 else if (VEC_empty (linespec_sals, canonical_start.sals))
10316 error (_("Could not find location of the beginning of the range."));
10317
10318 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10319
10320 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10321 || lsal_start->sals.nelts != 1)
10322 error (_("Cannot create a ranged breakpoint with multiple locations."));
10323
10324 sal_start = lsal_start->sals.sals[0];
10325 addr_string_start = savestring (arg_start, arg - arg_start);
10326 cleanup_bkpt = make_cleanup (xfree, addr_string_start);
10327
10328 arg++; /* Skip the comma. */
10329 arg = skip_spaces (arg);
10330
10331 /* Parse the end location. */
10332
10333 arg_start = arg;
10334
10335 /* We call decode_line_full directly here instead of using
10336 parse_breakpoint_sals because we need to specify the start location's
10337 symtab and line as the default symtab and line for the end of the
10338 range. This makes it possible to have ranges like "foo.c:27, +14",
10339 where +14 means 14 lines from the start location. */
10340 event_location_up end_location = string_to_event_location (&arg,
10341 current_language);
10342 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
10343 sal_start.symtab, sal_start.line,
10344 &canonical_end, NULL, NULL);
10345
10346 if (VEC_empty (linespec_sals, canonical_end.sals))
10347 error (_("Could not find location of the end of the range."));
10348
10349 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10350 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10351 || lsal_end->sals.nelts != 1)
10352 error (_("Cannot create a ranged breakpoint with multiple locations."));
10353
10354 sal_end = lsal_end->sals.sals[0];
10355
10356 end = find_breakpoint_range_end (sal_end);
10357 if (sal_start.pc > end)
10358 error (_("Invalid address range, end precedes start."));
10359
10360 length = end - sal_start.pc + 1;
10361 if (length < 0)
10362 /* Length overflowed. */
10363 error (_("Address range too large."));
10364 else if (length == 1)
10365 {
10366 /* This range is simple enough to be handled by
10367 the `hbreak' command. */
10368 hbreak_command (addr_string_start, 1);
10369
10370 do_cleanups (cleanup_bkpt);
10371
10372 return;
10373 }
10374
10375 /* Now set up the breakpoint. */
10376 b = set_raw_breakpoint (get_current_arch (), sal_start,
10377 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10378 set_breakpoint_count (breakpoint_count + 1);
10379 b->number = breakpoint_count;
10380 b->disposition = disp_donttouch;
10381 b->location = std::move (start_location);
10382 b->location_range_end = std::move (end_location);
10383 b->loc->length = length;
10384
10385 do_cleanups (cleanup_bkpt);
10386
10387 mention (b);
10388 observer_notify_breakpoint_created (b);
10389 update_global_location_list (UGLL_MAY_INSERT);
10390 }
10391
10392 /* Return non-zero if EXP is verified as constant. Returned zero
10393 means EXP is variable. Also the constant detection may fail for
10394 some constant expressions and in such case still falsely return
10395 zero. */
10396
10397 static int
10398 watchpoint_exp_is_const (const struct expression *exp)
10399 {
10400 int i = exp->nelts;
10401
10402 while (i > 0)
10403 {
10404 int oplenp, argsp;
10405
10406 /* We are only interested in the descriptor of each element. */
10407 operator_length (exp, i, &oplenp, &argsp);
10408 i -= oplenp;
10409
10410 switch (exp->elts[i].opcode)
10411 {
10412 case BINOP_ADD:
10413 case BINOP_SUB:
10414 case BINOP_MUL:
10415 case BINOP_DIV:
10416 case BINOP_REM:
10417 case BINOP_MOD:
10418 case BINOP_LSH:
10419 case BINOP_RSH:
10420 case BINOP_LOGICAL_AND:
10421 case BINOP_LOGICAL_OR:
10422 case BINOP_BITWISE_AND:
10423 case BINOP_BITWISE_IOR:
10424 case BINOP_BITWISE_XOR:
10425 case BINOP_EQUAL:
10426 case BINOP_NOTEQUAL:
10427 case BINOP_LESS:
10428 case BINOP_GTR:
10429 case BINOP_LEQ:
10430 case BINOP_GEQ:
10431 case BINOP_REPEAT:
10432 case BINOP_COMMA:
10433 case BINOP_EXP:
10434 case BINOP_MIN:
10435 case BINOP_MAX:
10436 case BINOP_INTDIV:
10437 case BINOP_CONCAT:
10438 case TERNOP_COND:
10439 case TERNOP_SLICE:
10440
10441 case OP_LONG:
10442 case OP_DOUBLE:
10443 case OP_DECFLOAT:
10444 case OP_LAST:
10445 case OP_COMPLEX:
10446 case OP_STRING:
10447 case OP_ARRAY:
10448 case OP_TYPE:
10449 case OP_TYPEOF:
10450 case OP_DECLTYPE:
10451 case OP_TYPEID:
10452 case OP_NAME:
10453 case OP_OBJC_NSSTRING:
10454
10455 case UNOP_NEG:
10456 case UNOP_LOGICAL_NOT:
10457 case UNOP_COMPLEMENT:
10458 case UNOP_ADDR:
10459 case UNOP_HIGH:
10460 case UNOP_CAST:
10461
10462 case UNOP_CAST_TYPE:
10463 case UNOP_REINTERPRET_CAST:
10464 case UNOP_DYNAMIC_CAST:
10465 /* Unary, binary and ternary operators: We have to check
10466 their operands. If they are constant, then so is the
10467 result of that operation. For instance, if A and B are
10468 determined to be constants, then so is "A + B".
10469
10470 UNOP_IND is one exception to the rule above, because the
10471 value of *ADDR is not necessarily a constant, even when
10472 ADDR is. */
10473 break;
10474
10475 case OP_VAR_VALUE:
10476 /* Check whether the associated symbol is a constant.
10477
10478 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10479 possible that a buggy compiler could mark a variable as
10480 constant even when it is not, and TYPE_CONST would return
10481 true in this case, while SYMBOL_CLASS wouldn't.
10482
10483 We also have to check for function symbols because they
10484 are always constant. */
10485 {
10486 struct symbol *s = exp->elts[i + 2].symbol;
10487
10488 if (SYMBOL_CLASS (s) != LOC_BLOCK
10489 && SYMBOL_CLASS (s) != LOC_CONST
10490 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10491 return 0;
10492 break;
10493 }
10494
10495 /* The default action is to return 0 because we are using
10496 the optimistic approach here: If we don't know something,
10497 then it is not a constant. */
10498 default:
10499 return 0;
10500 }
10501 }
10502
10503 return 1;
10504 }
10505
10506 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10507
10508 static void
10509 dtor_watchpoint (struct breakpoint *self)
10510 {
10511 struct watchpoint *w = (struct watchpoint *) self;
10512
10513 xfree (w->exp_string);
10514 xfree (w->exp_string_reparse);
10515 value_free (w->val);
10516
10517 base_breakpoint_ops.dtor (self);
10518 }
10519
10520 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10521
10522 static void
10523 re_set_watchpoint (struct breakpoint *b)
10524 {
10525 struct watchpoint *w = (struct watchpoint *) b;
10526
10527 /* Watchpoint can be either on expression using entirely global
10528 variables, or it can be on local variables.
10529
10530 Watchpoints of the first kind are never auto-deleted, and even
10531 persist across program restarts. Since they can use variables
10532 from shared libraries, we need to reparse expression as libraries
10533 are loaded and unloaded.
10534
10535 Watchpoints on local variables can also change meaning as result
10536 of solib event. For example, if a watchpoint uses both a local
10537 and a global variables in expression, it's a local watchpoint,
10538 but unloading of a shared library will make the expression
10539 invalid. This is not a very common use case, but we still
10540 re-evaluate expression, to avoid surprises to the user.
10541
10542 Note that for local watchpoints, we re-evaluate it only if
10543 watchpoints frame id is still valid. If it's not, it means the
10544 watchpoint is out of scope and will be deleted soon. In fact,
10545 I'm not sure we'll ever be called in this case.
10546
10547 If a local watchpoint's frame id is still valid, then
10548 w->exp_valid_block is likewise valid, and we can safely use it.
10549
10550 Don't do anything about disabled watchpoints, since they will be
10551 reevaluated again when enabled. */
10552 update_watchpoint (w, 1 /* reparse */);
10553 }
10554
10555 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10556
10557 static int
10558 insert_watchpoint (struct bp_location *bl)
10559 {
10560 struct watchpoint *w = (struct watchpoint *) bl->owner;
10561 int length = w->exact ? 1 : bl->length;
10562
10563 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10564 w->cond_exp.get ());
10565 }
10566
10567 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10568
10569 static int
10570 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10571 {
10572 struct watchpoint *w = (struct watchpoint *) bl->owner;
10573 int length = w->exact ? 1 : bl->length;
10574
10575 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10576 w->cond_exp.get ());
10577 }
10578
10579 static int
10580 breakpoint_hit_watchpoint (const struct bp_location *bl,
10581 struct address_space *aspace, CORE_ADDR bp_addr,
10582 const struct target_waitstatus *ws)
10583 {
10584 struct breakpoint *b = bl->owner;
10585 struct watchpoint *w = (struct watchpoint *) b;
10586
10587 /* Continuable hardware watchpoints are treated as non-existent if the
10588 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10589 some data address). Otherwise gdb won't stop on a break instruction
10590 in the code (not from a breakpoint) when a hardware watchpoint has
10591 been defined. Also skip watchpoints which we know did not trigger
10592 (did not match the data address). */
10593 if (is_hardware_watchpoint (b)
10594 && w->watchpoint_triggered == watch_triggered_no)
10595 return 0;
10596
10597 return 1;
10598 }
10599
10600 static void
10601 check_status_watchpoint (bpstat bs)
10602 {
10603 gdb_assert (is_watchpoint (bs->breakpoint_at));
10604
10605 bpstat_check_watchpoint (bs);
10606 }
10607
10608 /* Implement the "resources_needed" breakpoint_ops method for
10609 hardware watchpoints. */
10610
10611 static int
10612 resources_needed_watchpoint (const struct bp_location *bl)
10613 {
10614 struct watchpoint *w = (struct watchpoint *) bl->owner;
10615 int length = w->exact? 1 : bl->length;
10616
10617 return target_region_ok_for_hw_watchpoint (bl->address, length);
10618 }
10619
10620 /* Implement the "works_in_software_mode" breakpoint_ops method for
10621 hardware watchpoints. */
10622
10623 static int
10624 works_in_software_mode_watchpoint (const struct breakpoint *b)
10625 {
10626 /* Read and access watchpoints only work with hardware support. */
10627 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10628 }
10629
10630 static enum print_stop_action
10631 print_it_watchpoint (bpstat bs)
10632 {
10633 struct cleanup *old_chain;
10634 struct breakpoint *b;
10635 enum print_stop_action result;
10636 struct watchpoint *w;
10637 struct ui_out *uiout = current_uiout;
10638
10639 gdb_assert (bs->bp_location_at != NULL);
10640
10641 b = bs->breakpoint_at;
10642 w = (struct watchpoint *) b;
10643
10644 old_chain = make_cleanup (null_cleanup, NULL);
10645
10646 annotate_watchpoint (b->number);
10647 maybe_print_thread_hit_breakpoint (uiout);
10648
10649 string_file stb;
10650
10651 switch (b->type)
10652 {
10653 case bp_watchpoint:
10654 case bp_hardware_watchpoint:
10655 if (uiout->is_mi_like_p ())
10656 uiout->field_string
10657 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10658 mention (b);
10659 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10660 uiout->text ("\nOld value = ");
10661 watchpoint_value_print (bs->old_val, &stb);
10662 uiout->field_stream ("old", stb);
10663 uiout->text ("\nNew value = ");
10664 watchpoint_value_print (w->val, &stb);
10665 uiout->field_stream ("new", stb);
10666 uiout->text ("\n");
10667 /* More than one watchpoint may have been triggered. */
10668 result = PRINT_UNKNOWN;
10669 break;
10670
10671 case bp_read_watchpoint:
10672 if (uiout->is_mi_like_p ())
10673 uiout->field_string
10674 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10675 mention (b);
10676 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10677 uiout->text ("\nValue = ");
10678 watchpoint_value_print (w->val, &stb);
10679 uiout->field_stream ("value", stb);
10680 uiout->text ("\n");
10681 result = PRINT_UNKNOWN;
10682 break;
10683
10684 case bp_access_watchpoint:
10685 if (bs->old_val != NULL)
10686 {
10687 if (uiout->is_mi_like_p ())
10688 uiout->field_string
10689 ("reason",
10690 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10691 mention (b);
10692 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10693 uiout->text ("\nOld value = ");
10694 watchpoint_value_print (bs->old_val, &stb);
10695 uiout->field_stream ("old", stb);
10696 uiout->text ("\nNew value = ");
10697 }
10698 else
10699 {
10700 mention (b);
10701 if (uiout->is_mi_like_p ())
10702 uiout->field_string
10703 ("reason",
10704 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10705 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10706 uiout->text ("\nValue = ");
10707 }
10708 watchpoint_value_print (w->val, &stb);
10709 uiout->field_stream ("new", stb);
10710 uiout->text ("\n");
10711 result = PRINT_UNKNOWN;
10712 break;
10713 default:
10714 result = PRINT_UNKNOWN;
10715 }
10716
10717 do_cleanups (old_chain);
10718 return result;
10719 }
10720
10721 /* Implement the "print_mention" breakpoint_ops method for hardware
10722 watchpoints. */
10723
10724 static void
10725 print_mention_watchpoint (struct breakpoint *b)
10726 {
10727 struct watchpoint *w = (struct watchpoint *) b;
10728 struct ui_out *uiout = current_uiout;
10729 const char *tuple_name;
10730
10731 switch (b->type)
10732 {
10733 case bp_watchpoint:
10734 uiout->text ("Watchpoint ");
10735 tuple_name = "wpt";
10736 break;
10737 case bp_hardware_watchpoint:
10738 uiout->text ("Hardware watchpoint ");
10739 tuple_name = "wpt";
10740 break;
10741 case bp_read_watchpoint:
10742 uiout->text ("Hardware read watchpoint ");
10743 tuple_name = "hw-rwpt";
10744 break;
10745 case bp_access_watchpoint:
10746 uiout->text ("Hardware access (read/write) watchpoint ");
10747 tuple_name = "hw-awpt";
10748 break;
10749 default:
10750 internal_error (__FILE__, __LINE__,
10751 _("Invalid hardware watchpoint type."));
10752 }
10753
10754 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10755 uiout->field_int ("number", b->number);
10756 uiout->text (": ");
10757 uiout->field_string ("exp", w->exp_string);
10758 }
10759
10760 /* Implement the "print_recreate" breakpoint_ops method for
10761 watchpoints. */
10762
10763 static void
10764 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10765 {
10766 struct watchpoint *w = (struct watchpoint *) b;
10767
10768 switch (b->type)
10769 {
10770 case bp_watchpoint:
10771 case bp_hardware_watchpoint:
10772 fprintf_unfiltered (fp, "watch");
10773 break;
10774 case bp_read_watchpoint:
10775 fprintf_unfiltered (fp, "rwatch");
10776 break;
10777 case bp_access_watchpoint:
10778 fprintf_unfiltered (fp, "awatch");
10779 break;
10780 default:
10781 internal_error (__FILE__, __LINE__,
10782 _("Invalid watchpoint type."));
10783 }
10784
10785 fprintf_unfiltered (fp, " %s", w->exp_string);
10786 print_recreate_thread (b, fp);
10787 }
10788
10789 /* Implement the "explains_signal" breakpoint_ops method for
10790 watchpoints. */
10791
10792 static int
10793 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10794 {
10795 /* A software watchpoint cannot cause a signal other than
10796 GDB_SIGNAL_TRAP. */
10797 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10798 return 0;
10799
10800 return 1;
10801 }
10802
10803 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10804
10805 static struct breakpoint_ops watchpoint_breakpoint_ops;
10806
10807 /* Implement the "insert" breakpoint_ops method for
10808 masked hardware watchpoints. */
10809
10810 static int
10811 insert_masked_watchpoint (struct bp_location *bl)
10812 {
10813 struct watchpoint *w = (struct watchpoint *) bl->owner;
10814
10815 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10816 bl->watchpoint_type);
10817 }
10818
10819 /* Implement the "remove" breakpoint_ops method for
10820 masked hardware watchpoints. */
10821
10822 static int
10823 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10824 {
10825 struct watchpoint *w = (struct watchpoint *) bl->owner;
10826
10827 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10828 bl->watchpoint_type);
10829 }
10830
10831 /* Implement the "resources_needed" breakpoint_ops method for
10832 masked hardware watchpoints. */
10833
10834 static int
10835 resources_needed_masked_watchpoint (const struct bp_location *bl)
10836 {
10837 struct watchpoint *w = (struct watchpoint *) bl->owner;
10838
10839 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10840 }
10841
10842 /* Implement the "works_in_software_mode" breakpoint_ops method for
10843 masked hardware watchpoints. */
10844
10845 static int
10846 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10847 {
10848 return 0;
10849 }
10850
10851 /* Implement the "print_it" breakpoint_ops method for
10852 masked hardware watchpoints. */
10853
10854 static enum print_stop_action
10855 print_it_masked_watchpoint (bpstat bs)
10856 {
10857 struct breakpoint *b = bs->breakpoint_at;
10858 struct ui_out *uiout = current_uiout;
10859
10860 /* Masked watchpoints have only one location. */
10861 gdb_assert (b->loc && b->loc->next == NULL);
10862
10863 annotate_watchpoint (b->number);
10864 maybe_print_thread_hit_breakpoint (uiout);
10865
10866 switch (b->type)
10867 {
10868 case bp_hardware_watchpoint:
10869 if (uiout->is_mi_like_p ())
10870 uiout->field_string
10871 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10872 break;
10873
10874 case bp_read_watchpoint:
10875 if (uiout->is_mi_like_p ())
10876 uiout->field_string
10877 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10878 break;
10879
10880 case bp_access_watchpoint:
10881 if (uiout->is_mi_like_p ())
10882 uiout->field_string
10883 ("reason",
10884 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10885 break;
10886 default:
10887 internal_error (__FILE__, __LINE__,
10888 _("Invalid hardware watchpoint type."));
10889 }
10890
10891 mention (b);
10892 uiout->text (_("\n\
10893 Check the underlying instruction at PC for the memory\n\
10894 address and value which triggered this watchpoint.\n"));
10895 uiout->text ("\n");
10896
10897 /* More than one watchpoint may have been triggered. */
10898 return PRINT_UNKNOWN;
10899 }
10900
10901 /* Implement the "print_one_detail" breakpoint_ops method for
10902 masked hardware watchpoints. */
10903
10904 static void
10905 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10906 struct ui_out *uiout)
10907 {
10908 struct watchpoint *w = (struct watchpoint *) b;
10909
10910 /* Masked watchpoints have only one location. */
10911 gdb_assert (b->loc && b->loc->next == NULL);
10912
10913 uiout->text ("\tmask ");
10914 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10915 uiout->text ("\n");
10916 }
10917
10918 /* Implement the "print_mention" breakpoint_ops method for
10919 masked hardware watchpoints. */
10920
10921 static void
10922 print_mention_masked_watchpoint (struct breakpoint *b)
10923 {
10924 struct watchpoint *w = (struct watchpoint *) b;
10925 struct ui_out *uiout = current_uiout;
10926 const char *tuple_name;
10927
10928 switch (b->type)
10929 {
10930 case bp_hardware_watchpoint:
10931 uiout->text ("Masked hardware watchpoint ");
10932 tuple_name = "wpt";
10933 break;
10934 case bp_read_watchpoint:
10935 uiout->text ("Masked hardware read watchpoint ");
10936 tuple_name = "hw-rwpt";
10937 break;
10938 case bp_access_watchpoint:
10939 uiout->text ("Masked hardware access (read/write) watchpoint ");
10940 tuple_name = "hw-awpt";
10941 break;
10942 default:
10943 internal_error (__FILE__, __LINE__,
10944 _("Invalid hardware watchpoint type."));
10945 }
10946
10947 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10948 uiout->field_int ("number", b->number);
10949 uiout->text (": ");
10950 uiout->field_string ("exp", w->exp_string);
10951 }
10952
10953 /* Implement the "print_recreate" breakpoint_ops method for
10954 masked hardware watchpoints. */
10955
10956 static void
10957 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10958 {
10959 struct watchpoint *w = (struct watchpoint *) b;
10960 char tmp[40];
10961
10962 switch (b->type)
10963 {
10964 case bp_hardware_watchpoint:
10965 fprintf_unfiltered (fp, "watch");
10966 break;
10967 case bp_read_watchpoint:
10968 fprintf_unfiltered (fp, "rwatch");
10969 break;
10970 case bp_access_watchpoint:
10971 fprintf_unfiltered (fp, "awatch");
10972 break;
10973 default:
10974 internal_error (__FILE__, __LINE__,
10975 _("Invalid hardware watchpoint type."));
10976 }
10977
10978 sprintf_vma (tmp, w->hw_wp_mask);
10979 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10980 print_recreate_thread (b, fp);
10981 }
10982
10983 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10984
10985 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10986
10987 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10988
10989 static int
10990 is_masked_watchpoint (const struct breakpoint *b)
10991 {
10992 return b->ops == &masked_watchpoint_breakpoint_ops;
10993 }
10994
10995 /* accessflag: hw_write: watch write,
10996 hw_read: watch read,
10997 hw_access: watch access (read or write) */
10998 static void
10999 watch_command_1 (const char *arg, int accessflag, int from_tty,
11000 int just_location, int internal)
11001 {
11002 struct breakpoint *b, *scope_breakpoint = NULL;
11003 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
11004 struct value *val, *mark, *result;
11005 int saved_bitpos = 0, saved_bitsize = 0;
11006 const char *exp_start = NULL;
11007 const char *exp_end = NULL;
11008 const char *tok, *end_tok;
11009 int toklen = -1;
11010 const char *cond_start = NULL;
11011 const char *cond_end = NULL;
11012 enum bptype bp_type;
11013 int thread = -1;
11014 int pc = 0;
11015 /* Flag to indicate whether we are going to use masks for
11016 the hardware watchpoint. */
11017 int use_mask = 0;
11018 CORE_ADDR mask = 0;
11019 struct watchpoint *w;
11020 char *expression;
11021 struct cleanup *back_to;
11022
11023 /* Make sure that we actually have parameters to parse. */
11024 if (arg != NULL && arg[0] != '\0')
11025 {
11026 const char *value_start;
11027
11028 exp_end = arg + strlen (arg);
11029
11030 /* Look for "parameter value" pairs at the end
11031 of the arguments string. */
11032 for (tok = exp_end - 1; tok > arg; tok--)
11033 {
11034 /* Skip whitespace at the end of the argument list. */
11035 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11036 tok--;
11037
11038 /* Find the beginning of the last token.
11039 This is the value of the parameter. */
11040 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11041 tok--;
11042 value_start = tok + 1;
11043
11044 /* Skip whitespace. */
11045 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11046 tok--;
11047
11048 end_tok = tok;
11049
11050 /* Find the beginning of the second to last token.
11051 This is the parameter itself. */
11052 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11053 tok--;
11054 tok++;
11055 toklen = end_tok - tok + 1;
11056
11057 if (toklen == 6 && startswith (tok, "thread"))
11058 {
11059 struct thread_info *thr;
11060 /* At this point we've found a "thread" token, which means
11061 the user is trying to set a watchpoint that triggers
11062 only in a specific thread. */
11063 const char *endp;
11064
11065 if (thread != -1)
11066 error(_("You can specify only one thread."));
11067
11068 /* Extract the thread ID from the next token. */
11069 thr = parse_thread_id (value_start, &endp);
11070
11071 /* Check if the user provided a valid thread ID. */
11072 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11073 invalid_thread_id_error (value_start);
11074
11075 thread = thr->global_num;
11076 }
11077 else if (toklen == 4 && startswith (tok, "mask"))
11078 {
11079 /* We've found a "mask" token, which means the user wants to
11080 create a hardware watchpoint that is going to have the mask
11081 facility. */
11082 struct value *mask_value, *mark;
11083
11084 if (use_mask)
11085 error(_("You can specify only one mask."));
11086
11087 use_mask = just_location = 1;
11088
11089 mark = value_mark ();
11090 mask_value = parse_to_comma_and_eval (&value_start);
11091 mask = value_as_address (mask_value);
11092 value_free_to_mark (mark);
11093 }
11094 else
11095 /* We didn't recognize what we found. We should stop here. */
11096 break;
11097
11098 /* Truncate the string and get rid of the "parameter value" pair before
11099 the arguments string is parsed by the parse_exp_1 function. */
11100 exp_end = tok;
11101 }
11102 }
11103 else
11104 exp_end = arg;
11105
11106 /* Parse the rest of the arguments. From here on out, everything
11107 is in terms of a newly allocated string instead of the original
11108 ARG. */
11109 innermost_block = NULL;
11110 expression = savestring (arg, exp_end - arg);
11111 back_to = make_cleanup (xfree, expression);
11112 exp_start = arg = expression;
11113 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
11114 exp_end = arg;
11115 /* Remove trailing whitespace from the expression before saving it.
11116 This makes the eventual display of the expression string a bit
11117 prettier. */
11118 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11119 --exp_end;
11120
11121 /* Checking if the expression is not constant. */
11122 if (watchpoint_exp_is_const (exp.get ()))
11123 {
11124 int len;
11125
11126 len = exp_end - exp_start;
11127 while (len > 0 && isspace (exp_start[len - 1]))
11128 len--;
11129 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11130 }
11131
11132 exp_valid_block = innermost_block;
11133 mark = value_mark ();
11134 fetch_subexp_value (exp.get (), &pc, &val, &result, NULL, just_location);
11135
11136 if (val != NULL && just_location)
11137 {
11138 saved_bitpos = value_bitpos (val);
11139 saved_bitsize = value_bitsize (val);
11140 }
11141
11142 if (just_location)
11143 {
11144 int ret;
11145
11146 exp_valid_block = NULL;
11147 val = value_addr (result);
11148 release_value (val);
11149 value_free_to_mark (mark);
11150
11151 if (use_mask)
11152 {
11153 ret = target_masked_watch_num_registers (value_as_address (val),
11154 mask);
11155 if (ret == -1)
11156 error (_("This target does not support masked watchpoints."));
11157 else if (ret == -2)
11158 error (_("Invalid mask or memory region."));
11159 }
11160 }
11161 else if (val != NULL)
11162 release_value (val);
11163
11164 tok = skip_spaces_const (arg);
11165 end_tok = skip_to_space_const (tok);
11166
11167 toklen = end_tok - tok;
11168 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11169 {
11170 innermost_block = NULL;
11171 tok = cond_start = end_tok + 1;
11172 parse_exp_1 (&tok, 0, 0, 0);
11173
11174 /* The watchpoint expression may not be local, but the condition
11175 may still be. E.g.: `watch global if local > 0'. */
11176 cond_exp_valid_block = innermost_block;
11177
11178 cond_end = tok;
11179 }
11180 if (*tok)
11181 error (_("Junk at end of command."));
11182
11183 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
11184
11185 /* Save this because create_internal_breakpoint below invalidates
11186 'wp_frame'. */
11187 frame_id watchpoint_frame = get_frame_id (wp_frame);
11188
11189 /* If the expression is "local", then set up a "watchpoint scope"
11190 breakpoint at the point where we've left the scope of the watchpoint
11191 expression. Create the scope breakpoint before the watchpoint, so
11192 that we will encounter it first in bpstat_stop_status. */
11193 if (exp_valid_block != NULL && wp_frame != NULL)
11194 {
11195 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
11196
11197 if (frame_id_p (caller_frame_id))
11198 {
11199 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
11200 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
11201
11202 scope_breakpoint
11203 = create_internal_breakpoint (caller_arch, caller_pc,
11204 bp_watchpoint_scope,
11205 &momentary_breakpoint_ops);
11206
11207 /* create_internal_breakpoint could invalidate WP_FRAME. */
11208 wp_frame = NULL;
11209
11210 scope_breakpoint->enable_state = bp_enabled;
11211
11212 /* Automatically delete the breakpoint when it hits. */
11213 scope_breakpoint->disposition = disp_del;
11214
11215 /* Only break in the proper frame (help with recursion). */
11216 scope_breakpoint->frame_id = caller_frame_id;
11217
11218 /* Set the address at which we will stop. */
11219 scope_breakpoint->loc->gdbarch = caller_arch;
11220 scope_breakpoint->loc->requested_address = caller_pc;
11221 scope_breakpoint->loc->address
11222 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11223 scope_breakpoint->loc->requested_address,
11224 scope_breakpoint->type);
11225 }
11226 }
11227
11228 /* Now set up the breakpoint. We create all watchpoints as hardware
11229 watchpoints here even if hardware watchpoints are turned off, a call
11230 to update_watchpoint later in this function will cause the type to
11231 drop back to bp_watchpoint (software watchpoint) if required. */
11232
11233 if (accessflag == hw_read)
11234 bp_type = bp_read_watchpoint;
11235 else if (accessflag == hw_access)
11236 bp_type = bp_access_watchpoint;
11237 else
11238 bp_type = bp_hardware_watchpoint;
11239
11240 w = new watchpoint ();
11241 b = &w->base;
11242 if (use_mask)
11243 init_raw_breakpoint_without_location (b, NULL, bp_type,
11244 &masked_watchpoint_breakpoint_ops);
11245 else
11246 init_raw_breakpoint_without_location (b, NULL, bp_type,
11247 &watchpoint_breakpoint_ops);
11248 b->thread = thread;
11249 b->disposition = disp_donttouch;
11250 b->pspace = current_program_space;
11251 w->exp = std::move (exp);
11252 w->exp_valid_block = exp_valid_block;
11253 w->cond_exp_valid_block = cond_exp_valid_block;
11254 if (just_location)
11255 {
11256 struct type *t = value_type (val);
11257 CORE_ADDR addr = value_as_address (val);
11258
11259 w->exp_string_reparse
11260 = current_language->la_watch_location_expression (t, addr).release ();
11261
11262 w->exp_string = xstrprintf ("-location %.*s",
11263 (int) (exp_end - exp_start), exp_start);
11264 }
11265 else
11266 w->exp_string = savestring (exp_start, exp_end - exp_start);
11267
11268 if (use_mask)
11269 {
11270 w->hw_wp_mask = mask;
11271 }
11272 else
11273 {
11274 w->val = val;
11275 w->val_bitpos = saved_bitpos;
11276 w->val_bitsize = saved_bitsize;
11277 w->val_valid = 1;
11278 }
11279
11280 if (cond_start)
11281 b->cond_string = savestring (cond_start, cond_end - cond_start);
11282 else
11283 b->cond_string = 0;
11284
11285 if (frame_id_p (watchpoint_frame))
11286 {
11287 w->watchpoint_frame = watchpoint_frame;
11288 w->watchpoint_thread = inferior_ptid;
11289 }
11290 else
11291 {
11292 w->watchpoint_frame = null_frame_id;
11293 w->watchpoint_thread = null_ptid;
11294 }
11295
11296 if (scope_breakpoint != NULL)
11297 {
11298 /* The scope breakpoint is related to the watchpoint. We will
11299 need to act on them together. */
11300 b->related_breakpoint = scope_breakpoint;
11301 scope_breakpoint->related_breakpoint = b;
11302 }
11303
11304 if (!just_location)
11305 value_free_to_mark (mark);
11306
11307 TRY
11308 {
11309 /* Finally update the new watchpoint. This creates the locations
11310 that should be inserted. */
11311 update_watchpoint (w, 1);
11312 }
11313 CATCH (e, RETURN_MASK_ALL)
11314 {
11315 delete_breakpoint (b);
11316 throw_exception (e);
11317 }
11318 END_CATCH
11319
11320 install_breakpoint (internal, b, 1);
11321 do_cleanups (back_to);
11322 }
11323
11324 /* Return count of debug registers needed to watch the given expression.
11325 If the watchpoint cannot be handled in hardware return zero. */
11326
11327 static int
11328 can_use_hardware_watchpoint (struct value *v)
11329 {
11330 int found_memory_cnt = 0;
11331 struct value *head = v;
11332
11333 /* Did the user specifically forbid us to use hardware watchpoints? */
11334 if (!can_use_hw_watchpoints)
11335 return 0;
11336
11337 /* Make sure that the value of the expression depends only upon
11338 memory contents, and values computed from them within GDB. If we
11339 find any register references or function calls, we can't use a
11340 hardware watchpoint.
11341
11342 The idea here is that evaluating an expression generates a series
11343 of values, one holding the value of every subexpression. (The
11344 expression a*b+c has five subexpressions: a, b, a*b, c, and
11345 a*b+c.) GDB's values hold almost enough information to establish
11346 the criteria given above --- they identify memory lvalues,
11347 register lvalues, computed values, etcetera. So we can evaluate
11348 the expression, and then scan the chain of values that leaves
11349 behind to decide whether we can detect any possible change to the
11350 expression's final value using only hardware watchpoints.
11351
11352 However, I don't think that the values returned by inferior
11353 function calls are special in any way. So this function may not
11354 notice that an expression involving an inferior function call
11355 can't be watched with hardware watchpoints. FIXME. */
11356 for (; v; v = value_next (v))
11357 {
11358 if (VALUE_LVAL (v) == lval_memory)
11359 {
11360 if (v != head && value_lazy (v))
11361 /* A lazy memory lvalue in the chain is one that GDB never
11362 needed to fetch; we either just used its address (e.g.,
11363 `a' in `a.b') or we never needed it at all (e.g., `a'
11364 in `a,b'). This doesn't apply to HEAD; if that is
11365 lazy then it was not readable, but watch it anyway. */
11366 ;
11367 else
11368 {
11369 /* Ahh, memory we actually used! Check if we can cover
11370 it with hardware watchpoints. */
11371 struct type *vtype = check_typedef (value_type (v));
11372
11373 /* We only watch structs and arrays if user asked for it
11374 explicitly, never if they just happen to appear in a
11375 middle of some value chain. */
11376 if (v == head
11377 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11378 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11379 {
11380 CORE_ADDR vaddr = value_address (v);
11381 int len;
11382 int num_regs;
11383
11384 len = (target_exact_watchpoints
11385 && is_scalar_type_recursive (vtype))?
11386 1 : TYPE_LENGTH (value_type (v));
11387
11388 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11389 if (!num_regs)
11390 return 0;
11391 else
11392 found_memory_cnt += num_regs;
11393 }
11394 }
11395 }
11396 else if (VALUE_LVAL (v) != not_lval
11397 && deprecated_value_modifiable (v) == 0)
11398 return 0; /* These are values from the history (e.g., $1). */
11399 else if (VALUE_LVAL (v) == lval_register)
11400 return 0; /* Cannot watch a register with a HW watchpoint. */
11401 }
11402
11403 /* The expression itself looks suitable for using a hardware
11404 watchpoint, but give the target machine a chance to reject it. */
11405 return found_memory_cnt;
11406 }
11407
11408 void
11409 watch_command_wrapper (char *arg, int from_tty, int internal)
11410 {
11411 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11412 }
11413
11414 /* A helper function that looks for the "-location" argument and then
11415 calls watch_command_1. */
11416
11417 static void
11418 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11419 {
11420 int just_location = 0;
11421
11422 if (arg
11423 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11424 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11425 {
11426 arg = skip_spaces (arg);
11427 just_location = 1;
11428 }
11429
11430 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11431 }
11432
11433 static void
11434 watch_command (char *arg, int from_tty)
11435 {
11436 watch_maybe_just_location (arg, hw_write, from_tty);
11437 }
11438
11439 void
11440 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11441 {
11442 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11443 }
11444
11445 static void
11446 rwatch_command (char *arg, int from_tty)
11447 {
11448 watch_maybe_just_location (arg, hw_read, from_tty);
11449 }
11450
11451 void
11452 awatch_command_wrapper (char *arg, int from_tty, int internal)
11453 {
11454 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11455 }
11456
11457 static void
11458 awatch_command (char *arg, int from_tty)
11459 {
11460 watch_maybe_just_location (arg, hw_access, from_tty);
11461 }
11462 \f
11463
11464 /* Data for the FSM that manages the until(location)/advance commands
11465 in infcmd.c. Here because it uses the mechanisms of
11466 breakpoints. */
11467
11468 struct until_break_fsm
11469 {
11470 /* The base class. */
11471 struct thread_fsm thread_fsm;
11472
11473 /* The thread that as current when the command was executed. */
11474 int thread;
11475
11476 /* The breakpoint set at the destination location. */
11477 struct breakpoint *location_breakpoint;
11478
11479 /* Breakpoint set at the return address in the caller frame. May be
11480 NULL. */
11481 struct breakpoint *caller_breakpoint;
11482 };
11483
11484 static void until_break_fsm_clean_up (struct thread_fsm *self,
11485 struct thread_info *thread);
11486 static int until_break_fsm_should_stop (struct thread_fsm *self,
11487 struct thread_info *thread);
11488 static enum async_reply_reason
11489 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11490
11491 /* until_break_fsm's vtable. */
11492
11493 static struct thread_fsm_ops until_break_fsm_ops =
11494 {
11495 NULL, /* dtor */
11496 until_break_fsm_clean_up,
11497 until_break_fsm_should_stop,
11498 NULL, /* return_value */
11499 until_break_fsm_async_reply_reason,
11500 };
11501
11502 /* Allocate a new until_break_command_fsm. */
11503
11504 static struct until_break_fsm *
11505 new_until_break_fsm (struct interp *cmd_interp, int thread,
11506 struct breakpoint *location_breakpoint,
11507 struct breakpoint *caller_breakpoint)
11508 {
11509 struct until_break_fsm *sm;
11510
11511 sm = XCNEW (struct until_break_fsm);
11512 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11513
11514 sm->thread = thread;
11515 sm->location_breakpoint = location_breakpoint;
11516 sm->caller_breakpoint = caller_breakpoint;
11517
11518 return sm;
11519 }
11520
11521 /* Implementation of the 'should_stop' FSM method for the
11522 until(location)/advance commands. */
11523
11524 static int
11525 until_break_fsm_should_stop (struct thread_fsm *self,
11526 struct thread_info *tp)
11527 {
11528 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11529
11530 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11531 sm->location_breakpoint) != NULL
11532 || (sm->caller_breakpoint != NULL
11533 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11534 sm->caller_breakpoint) != NULL))
11535 thread_fsm_set_finished (self);
11536
11537 return 1;
11538 }
11539
11540 /* Implementation of the 'clean_up' FSM method for the
11541 until(location)/advance commands. */
11542
11543 static void
11544 until_break_fsm_clean_up (struct thread_fsm *self,
11545 struct thread_info *thread)
11546 {
11547 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11548
11549 /* Clean up our temporary breakpoints. */
11550 if (sm->location_breakpoint != NULL)
11551 {
11552 delete_breakpoint (sm->location_breakpoint);
11553 sm->location_breakpoint = NULL;
11554 }
11555 if (sm->caller_breakpoint != NULL)
11556 {
11557 delete_breakpoint (sm->caller_breakpoint);
11558 sm->caller_breakpoint = NULL;
11559 }
11560 delete_longjmp_breakpoint (sm->thread);
11561 }
11562
11563 /* Implementation of the 'async_reply_reason' FSM method for the
11564 until(location)/advance commands. */
11565
11566 static enum async_reply_reason
11567 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11568 {
11569 return EXEC_ASYNC_LOCATION_REACHED;
11570 }
11571
11572 void
11573 until_break_command (char *arg, int from_tty, int anywhere)
11574 {
11575 struct symtabs_and_lines sals;
11576 struct symtab_and_line sal;
11577 struct frame_info *frame;
11578 struct gdbarch *frame_gdbarch;
11579 struct frame_id stack_frame_id;
11580 struct frame_id caller_frame_id;
11581 struct breakpoint *location_breakpoint;
11582 struct breakpoint *caller_breakpoint = NULL;
11583 struct cleanup *old_chain;
11584 int thread;
11585 struct thread_info *tp;
11586 struct until_break_fsm *sm;
11587
11588 clear_proceed_status (0);
11589
11590 /* Set a breakpoint where the user wants it and at return from
11591 this function. */
11592
11593 event_location_up location = string_to_event_location (&arg, current_language);
11594
11595 if (last_displayed_sal_is_valid ())
11596 sals = decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11597 get_last_displayed_symtab (),
11598 get_last_displayed_line ());
11599 else
11600 sals = decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11601 NULL, (struct symtab *) NULL, 0);
11602
11603 if (sals.nelts != 1)
11604 error (_("Couldn't get information on specified line."));
11605
11606 sal = sals.sals[0];
11607 xfree (sals.sals); /* malloc'd, so freed. */
11608
11609 if (*arg)
11610 error (_("Junk at end of arguments."));
11611
11612 resolve_sal_pc (&sal);
11613
11614 tp = inferior_thread ();
11615 thread = tp->global_num;
11616
11617 old_chain = make_cleanup (null_cleanup, NULL);
11618
11619 /* Note linespec handling above invalidates the frame chain.
11620 Installing a breakpoint also invalidates the frame chain (as it
11621 may need to switch threads), so do any frame handling before
11622 that. */
11623
11624 frame = get_selected_frame (NULL);
11625 frame_gdbarch = get_frame_arch (frame);
11626 stack_frame_id = get_stack_frame_id (frame);
11627 caller_frame_id = frame_unwind_caller_id (frame);
11628
11629 /* Keep within the current frame, or in frames called by the current
11630 one. */
11631
11632 if (frame_id_p (caller_frame_id))
11633 {
11634 struct symtab_and_line sal2;
11635 struct gdbarch *caller_gdbarch;
11636
11637 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11638 sal2.pc = frame_unwind_caller_pc (frame);
11639 caller_gdbarch = frame_unwind_caller_arch (frame);
11640 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11641 sal2,
11642 caller_frame_id,
11643 bp_until);
11644 make_cleanup_delete_breakpoint (caller_breakpoint);
11645
11646 set_longjmp_breakpoint (tp, caller_frame_id);
11647 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11648 }
11649
11650 /* set_momentary_breakpoint could invalidate FRAME. */
11651 frame = NULL;
11652
11653 if (anywhere)
11654 /* If the user told us to continue until a specified location,
11655 we don't specify a frame at which we need to stop. */
11656 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11657 null_frame_id, bp_until);
11658 else
11659 /* Otherwise, specify the selected frame, because we want to stop
11660 only at the very same frame. */
11661 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11662 stack_frame_id, bp_until);
11663 make_cleanup_delete_breakpoint (location_breakpoint);
11664
11665 sm = new_until_break_fsm (command_interp (), tp->global_num,
11666 location_breakpoint, caller_breakpoint);
11667 tp->thread_fsm = &sm->thread_fsm;
11668
11669 discard_cleanups (old_chain);
11670
11671 proceed (-1, GDB_SIGNAL_DEFAULT);
11672 }
11673
11674 /* This function attempts to parse an optional "if <cond>" clause
11675 from the arg string. If one is not found, it returns NULL.
11676
11677 Else, it returns a pointer to the condition string. (It does not
11678 attempt to evaluate the string against a particular block.) And,
11679 it updates arg to point to the first character following the parsed
11680 if clause in the arg string. */
11681
11682 const char *
11683 ep_parse_optional_if_clause (const char **arg)
11684 {
11685 const char *cond_string;
11686
11687 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11688 return NULL;
11689
11690 /* Skip the "if" keyword. */
11691 (*arg) += 2;
11692
11693 /* Skip any extra leading whitespace, and record the start of the
11694 condition string. */
11695 *arg = skip_spaces_const (*arg);
11696 cond_string = *arg;
11697
11698 /* Assume that the condition occupies the remainder of the arg
11699 string. */
11700 (*arg) += strlen (cond_string);
11701
11702 return cond_string;
11703 }
11704
11705 /* Commands to deal with catching events, such as signals, exceptions,
11706 process start/exit, etc. */
11707
11708 typedef enum
11709 {
11710 catch_fork_temporary, catch_vfork_temporary,
11711 catch_fork_permanent, catch_vfork_permanent
11712 }
11713 catch_fork_kind;
11714
11715 static void
11716 catch_fork_command_1 (char *arg_entry, int from_tty,
11717 struct cmd_list_element *command)
11718 {
11719 const char *arg = arg_entry;
11720 struct gdbarch *gdbarch = get_current_arch ();
11721 const char *cond_string = NULL;
11722 catch_fork_kind fork_kind;
11723 int tempflag;
11724
11725 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11726 tempflag = (fork_kind == catch_fork_temporary
11727 || fork_kind == catch_vfork_temporary);
11728
11729 if (!arg)
11730 arg = "";
11731 arg = skip_spaces_const (arg);
11732
11733 /* The allowed syntax is:
11734 catch [v]fork
11735 catch [v]fork if <cond>
11736
11737 First, check if there's an if clause. */
11738 cond_string = ep_parse_optional_if_clause (&arg);
11739
11740 if ((*arg != '\0') && !isspace (*arg))
11741 error (_("Junk at end of arguments."));
11742
11743 /* If this target supports it, create a fork or vfork catchpoint
11744 and enable reporting of such events. */
11745 switch (fork_kind)
11746 {
11747 case catch_fork_temporary:
11748 case catch_fork_permanent:
11749 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11750 &catch_fork_breakpoint_ops);
11751 break;
11752 case catch_vfork_temporary:
11753 case catch_vfork_permanent:
11754 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11755 &catch_vfork_breakpoint_ops);
11756 break;
11757 default:
11758 error (_("unsupported or unknown fork kind; cannot catch it"));
11759 break;
11760 }
11761 }
11762
11763 static void
11764 catch_exec_command_1 (char *arg_entry, int from_tty,
11765 struct cmd_list_element *command)
11766 {
11767 const char *arg = arg_entry;
11768 struct exec_catchpoint *c;
11769 struct gdbarch *gdbarch = get_current_arch ();
11770 int tempflag;
11771 const char *cond_string = NULL;
11772
11773 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11774
11775 if (!arg)
11776 arg = "";
11777 arg = skip_spaces_const (arg);
11778
11779 /* The allowed syntax is:
11780 catch exec
11781 catch exec if <cond>
11782
11783 First, check if there's an if clause. */
11784 cond_string = ep_parse_optional_if_clause (&arg);
11785
11786 if ((*arg != '\0') && !isspace (*arg))
11787 error (_("Junk at end of arguments."));
11788
11789 c = new exec_catchpoint ();
11790 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11791 &catch_exec_breakpoint_ops);
11792 c->exec_pathname = NULL;
11793
11794 install_breakpoint (0, &c->base, 1);
11795 }
11796
11797 void
11798 init_ada_exception_breakpoint (struct breakpoint *b,
11799 struct gdbarch *gdbarch,
11800 struct symtab_and_line sal,
11801 char *addr_string,
11802 const struct breakpoint_ops *ops,
11803 int tempflag,
11804 int enabled,
11805 int from_tty)
11806 {
11807 if (from_tty)
11808 {
11809 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11810 if (!loc_gdbarch)
11811 loc_gdbarch = gdbarch;
11812
11813 describe_other_breakpoints (loc_gdbarch,
11814 sal.pspace, sal.pc, sal.section, -1);
11815 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11816 version for exception catchpoints, because two catchpoints
11817 used for different exception names will use the same address.
11818 In this case, a "breakpoint ... also set at..." warning is
11819 unproductive. Besides, the warning phrasing is also a bit
11820 inappropriate, we should use the word catchpoint, and tell
11821 the user what type of catchpoint it is. The above is good
11822 enough for now, though. */
11823 }
11824
11825 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11826
11827 b->enable_state = enabled ? bp_enabled : bp_disabled;
11828 b->disposition = tempflag ? disp_del : disp_donttouch;
11829 b->location = string_to_event_location (&addr_string,
11830 language_def (language_ada));
11831 b->language = language_ada;
11832 }
11833
11834 static void
11835 catch_command (char *arg, int from_tty)
11836 {
11837 error (_("Catch requires an event name."));
11838 }
11839 \f
11840
11841 static void
11842 tcatch_command (char *arg, int from_tty)
11843 {
11844 error (_("Catch requires an event name."));
11845 }
11846
11847 /* A qsort comparison function that sorts breakpoints in order. */
11848
11849 static int
11850 compare_breakpoints (const void *a, const void *b)
11851 {
11852 const breakpoint_p *ba = (const breakpoint_p *) a;
11853 uintptr_t ua = (uintptr_t) *ba;
11854 const breakpoint_p *bb = (const breakpoint_p *) b;
11855 uintptr_t ub = (uintptr_t) *bb;
11856
11857 if ((*ba)->number < (*bb)->number)
11858 return -1;
11859 else if ((*ba)->number > (*bb)->number)
11860 return 1;
11861
11862 /* Now sort by address, in case we see, e..g, two breakpoints with
11863 the number 0. */
11864 if (ua < ub)
11865 return -1;
11866 return ua > ub ? 1 : 0;
11867 }
11868
11869 /* Delete breakpoints by address or line. */
11870
11871 static void
11872 clear_command (char *arg, int from_tty)
11873 {
11874 struct breakpoint *b, *prev;
11875 VEC(breakpoint_p) *found = 0;
11876 int ix;
11877 int default_match;
11878 struct symtabs_and_lines sals;
11879 struct symtab_and_line sal;
11880 int i;
11881 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11882
11883 if (arg)
11884 {
11885 sals = decode_line_with_current_source (arg,
11886 (DECODE_LINE_FUNFIRSTLINE
11887 | DECODE_LINE_LIST_MODE));
11888 make_cleanup (xfree, sals.sals);
11889 default_match = 0;
11890 }
11891 else
11892 {
11893 sals.sals = XNEW (struct symtab_and_line);
11894 make_cleanup (xfree, sals.sals);
11895 init_sal (&sal); /* Initialize to zeroes. */
11896
11897 /* Set sal's line, symtab, pc, and pspace to the values
11898 corresponding to the last call to print_frame_info. If the
11899 codepoint is not valid, this will set all the fields to 0. */
11900 get_last_displayed_sal (&sal);
11901 if (sal.symtab == 0)
11902 error (_("No source file specified."));
11903
11904 sals.sals[0] = sal;
11905 sals.nelts = 1;
11906
11907 default_match = 1;
11908 }
11909
11910 /* We don't call resolve_sal_pc here. That's not as bad as it
11911 seems, because all existing breakpoints typically have both
11912 file/line and pc set. So, if clear is given file/line, we can
11913 match this to existing breakpoint without obtaining pc at all.
11914
11915 We only support clearing given the address explicitly
11916 present in breakpoint table. Say, we've set breakpoint
11917 at file:line. There were several PC values for that file:line,
11918 due to optimization, all in one block.
11919
11920 We've picked one PC value. If "clear" is issued with another
11921 PC corresponding to the same file:line, the breakpoint won't
11922 be cleared. We probably can still clear the breakpoint, but
11923 since the other PC value is never presented to user, user
11924 can only find it by guessing, and it does not seem important
11925 to support that. */
11926
11927 /* For each line spec given, delete bps which correspond to it. Do
11928 it in two passes, solely to preserve the current behavior that
11929 from_tty is forced true if we delete more than one
11930 breakpoint. */
11931
11932 found = NULL;
11933 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11934 for (i = 0; i < sals.nelts; i++)
11935 {
11936 const char *sal_fullname;
11937
11938 /* If exact pc given, clear bpts at that pc.
11939 If line given (pc == 0), clear all bpts on specified line.
11940 If defaulting, clear all bpts on default line
11941 or at default pc.
11942
11943 defaulting sal.pc != 0 tests to do
11944
11945 0 1 pc
11946 1 1 pc _and_ line
11947 0 0 line
11948 1 0 <can't happen> */
11949
11950 sal = sals.sals[i];
11951 sal_fullname = (sal.symtab == NULL
11952 ? NULL : symtab_to_fullname (sal.symtab));
11953
11954 /* Find all matching breakpoints and add them to 'found'. */
11955 ALL_BREAKPOINTS (b)
11956 {
11957 int match = 0;
11958 /* Are we going to delete b? */
11959 if (b->type != bp_none && !is_watchpoint (b))
11960 {
11961 struct bp_location *loc = b->loc;
11962 for (; loc; loc = loc->next)
11963 {
11964 /* If the user specified file:line, don't allow a PC
11965 match. This matches historical gdb behavior. */
11966 int pc_match = (!sal.explicit_line
11967 && sal.pc
11968 && (loc->pspace == sal.pspace)
11969 && (loc->address == sal.pc)
11970 && (!section_is_overlay (loc->section)
11971 || loc->section == sal.section));
11972 int line_match = 0;
11973
11974 if ((default_match || sal.explicit_line)
11975 && loc->symtab != NULL
11976 && sal_fullname != NULL
11977 && sal.pspace == loc->pspace
11978 && loc->line_number == sal.line
11979 && filename_cmp (symtab_to_fullname (loc->symtab),
11980 sal_fullname) == 0)
11981 line_match = 1;
11982
11983 if (pc_match || line_match)
11984 {
11985 match = 1;
11986 break;
11987 }
11988 }
11989 }
11990
11991 if (match)
11992 VEC_safe_push(breakpoint_p, found, b);
11993 }
11994 }
11995
11996 /* Now go thru the 'found' chain and delete them. */
11997 if (VEC_empty(breakpoint_p, found))
11998 {
11999 if (arg)
12000 error (_("No breakpoint at %s."), arg);
12001 else
12002 error (_("No breakpoint at this line."));
12003 }
12004
12005 /* Remove duplicates from the vec. */
12006 qsort (VEC_address (breakpoint_p, found),
12007 VEC_length (breakpoint_p, found),
12008 sizeof (breakpoint_p),
12009 compare_breakpoints);
12010 prev = VEC_index (breakpoint_p, found, 0);
12011 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
12012 {
12013 if (b == prev)
12014 {
12015 VEC_ordered_remove (breakpoint_p, found, ix);
12016 --ix;
12017 }
12018 }
12019
12020 if (VEC_length(breakpoint_p, found) > 1)
12021 from_tty = 1; /* Always report if deleted more than one. */
12022 if (from_tty)
12023 {
12024 if (VEC_length(breakpoint_p, found) == 1)
12025 printf_unfiltered (_("Deleted breakpoint "));
12026 else
12027 printf_unfiltered (_("Deleted breakpoints "));
12028 }
12029
12030 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
12031 {
12032 if (from_tty)
12033 printf_unfiltered ("%d ", b->number);
12034 delete_breakpoint (b);
12035 }
12036 if (from_tty)
12037 putchar_unfiltered ('\n');
12038
12039 do_cleanups (cleanups);
12040 }
12041 \f
12042 /* Delete breakpoint in BS if they are `delete' breakpoints and
12043 all breakpoints that are marked for deletion, whether hit or not.
12044 This is called after any breakpoint is hit, or after errors. */
12045
12046 void
12047 breakpoint_auto_delete (bpstat bs)
12048 {
12049 struct breakpoint *b, *b_tmp;
12050
12051 for (; bs; bs = bs->next)
12052 if (bs->breakpoint_at
12053 && bs->breakpoint_at->disposition == disp_del
12054 && bs->stop)
12055 delete_breakpoint (bs->breakpoint_at);
12056
12057 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12058 {
12059 if (b->disposition == disp_del_at_next_stop)
12060 delete_breakpoint (b);
12061 }
12062 }
12063
12064 /* A comparison function for bp_location AP and BP being interfaced to
12065 qsort. Sort elements primarily by their ADDRESS (no matter what
12066 does breakpoint_address_is_meaningful say for its OWNER),
12067 secondarily by ordering first permanent elements and
12068 terciarily just ensuring the array is sorted stable way despite
12069 qsort being an unstable algorithm. */
12070
12071 static int
12072 bp_locations_compare (const void *ap, const void *bp)
12073 {
12074 const struct bp_location *a = *(const struct bp_location **) ap;
12075 const struct bp_location *b = *(const struct bp_location **) bp;
12076
12077 if (a->address != b->address)
12078 return (a->address > b->address) - (a->address < b->address);
12079
12080 /* Sort locations at the same address by their pspace number, keeping
12081 locations of the same inferior (in a multi-inferior environment)
12082 grouped. */
12083
12084 if (a->pspace->num != b->pspace->num)
12085 return ((a->pspace->num > b->pspace->num)
12086 - (a->pspace->num < b->pspace->num));
12087
12088 /* Sort permanent breakpoints first. */
12089 if (a->permanent != b->permanent)
12090 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
12091
12092 /* Make the internal GDB representation stable across GDB runs
12093 where A and B memory inside GDB can differ. Breakpoint locations of
12094 the same type at the same address can be sorted in arbitrary order. */
12095
12096 if (a->owner->number != b->owner->number)
12097 return ((a->owner->number > b->owner->number)
12098 - (a->owner->number < b->owner->number));
12099
12100 return (a > b) - (a < b);
12101 }
12102
12103 /* Set bp_locations_placed_address_before_address_max and
12104 bp_locations_shadow_len_after_address_max according to the current
12105 content of the bp_locations array. */
12106
12107 static void
12108 bp_locations_target_extensions_update (void)
12109 {
12110 struct bp_location *bl, **blp_tmp;
12111
12112 bp_locations_placed_address_before_address_max = 0;
12113 bp_locations_shadow_len_after_address_max = 0;
12114
12115 ALL_BP_LOCATIONS (bl, blp_tmp)
12116 {
12117 CORE_ADDR start, end, addr;
12118
12119 if (!bp_location_has_shadow (bl))
12120 continue;
12121
12122 start = bl->target_info.placed_address;
12123 end = start + bl->target_info.shadow_len;
12124
12125 gdb_assert (bl->address >= start);
12126 addr = bl->address - start;
12127 if (addr > bp_locations_placed_address_before_address_max)
12128 bp_locations_placed_address_before_address_max = addr;
12129
12130 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12131
12132 gdb_assert (bl->address < end);
12133 addr = end - bl->address;
12134 if (addr > bp_locations_shadow_len_after_address_max)
12135 bp_locations_shadow_len_after_address_max = addr;
12136 }
12137 }
12138
12139 /* Download tracepoint locations if they haven't been. */
12140
12141 static void
12142 download_tracepoint_locations (void)
12143 {
12144 struct breakpoint *b;
12145 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
12146
12147 scoped_restore_current_pspace_and_thread restore_pspace_thread;
12148
12149 ALL_TRACEPOINTS (b)
12150 {
12151 struct bp_location *bl;
12152 struct tracepoint *t;
12153 int bp_location_downloaded = 0;
12154
12155 if ((b->type == bp_fast_tracepoint
12156 ? !may_insert_fast_tracepoints
12157 : !may_insert_tracepoints))
12158 continue;
12159
12160 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
12161 {
12162 if (target_can_download_tracepoint ())
12163 can_download_tracepoint = TRIBOOL_TRUE;
12164 else
12165 can_download_tracepoint = TRIBOOL_FALSE;
12166 }
12167
12168 if (can_download_tracepoint == TRIBOOL_FALSE)
12169 break;
12170
12171 for (bl = b->loc; bl; bl = bl->next)
12172 {
12173 /* In tracepoint, locations are _never_ duplicated, so
12174 should_be_inserted is equivalent to
12175 unduplicated_should_be_inserted. */
12176 if (!should_be_inserted (bl) || bl->inserted)
12177 continue;
12178
12179 switch_to_program_space_and_thread (bl->pspace);
12180
12181 target_download_tracepoint (bl);
12182
12183 bl->inserted = 1;
12184 bp_location_downloaded = 1;
12185 }
12186 t = (struct tracepoint *) b;
12187 t->number_on_target = b->number;
12188 if (bp_location_downloaded)
12189 observer_notify_breakpoint_modified (b);
12190 }
12191 }
12192
12193 /* Swap the insertion/duplication state between two locations. */
12194
12195 static void
12196 swap_insertion (struct bp_location *left, struct bp_location *right)
12197 {
12198 const int left_inserted = left->inserted;
12199 const int left_duplicate = left->duplicate;
12200 const int left_needs_update = left->needs_update;
12201 const struct bp_target_info left_target_info = left->target_info;
12202
12203 /* Locations of tracepoints can never be duplicated. */
12204 if (is_tracepoint (left->owner))
12205 gdb_assert (!left->duplicate);
12206 if (is_tracepoint (right->owner))
12207 gdb_assert (!right->duplicate);
12208
12209 left->inserted = right->inserted;
12210 left->duplicate = right->duplicate;
12211 left->needs_update = right->needs_update;
12212 left->target_info = right->target_info;
12213 right->inserted = left_inserted;
12214 right->duplicate = left_duplicate;
12215 right->needs_update = left_needs_update;
12216 right->target_info = left_target_info;
12217 }
12218
12219 /* Force the re-insertion of the locations at ADDRESS. This is called
12220 once a new/deleted/modified duplicate location is found and we are evaluating
12221 conditions on the target's side. Such conditions need to be updated on
12222 the target. */
12223
12224 static void
12225 force_breakpoint_reinsertion (struct bp_location *bl)
12226 {
12227 struct bp_location **locp = NULL, **loc2p;
12228 struct bp_location *loc;
12229 CORE_ADDR address = 0;
12230 int pspace_num;
12231
12232 address = bl->address;
12233 pspace_num = bl->pspace->num;
12234
12235 /* This is only meaningful if the target is
12236 evaluating conditions and if the user has
12237 opted for condition evaluation on the target's
12238 side. */
12239 if (gdb_evaluates_breakpoint_condition_p ()
12240 || !target_supports_evaluation_of_breakpoint_conditions ())
12241 return;
12242
12243 /* Flag all breakpoint locations with this address and
12244 the same program space as the location
12245 as "its condition has changed". We need to
12246 update the conditions on the target's side. */
12247 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12248 {
12249 loc = *loc2p;
12250
12251 if (!is_breakpoint (loc->owner)
12252 || pspace_num != loc->pspace->num)
12253 continue;
12254
12255 /* Flag the location appropriately. We use a different state to
12256 let everyone know that we already updated the set of locations
12257 with addr bl->address and program space bl->pspace. This is so
12258 we don't have to keep calling these functions just to mark locations
12259 that have already been marked. */
12260 loc->condition_changed = condition_updated;
12261
12262 /* Free the agent expression bytecode as well. We will compute
12263 it later on. */
12264 loc->cond_bytecode.reset ();
12265 }
12266 }
12267 /* Called whether new breakpoints are created, or existing breakpoints
12268 deleted, to update the global location list and recompute which
12269 locations are duplicate of which.
12270
12271 The INSERT_MODE flag determines whether locations may not, may, or
12272 shall be inserted now. See 'enum ugll_insert_mode' for more
12273 info. */
12274
12275 static void
12276 update_global_location_list (enum ugll_insert_mode insert_mode)
12277 {
12278 struct breakpoint *b;
12279 struct bp_location **locp, *loc;
12280 struct cleanup *cleanups;
12281 /* Last breakpoint location address that was marked for update. */
12282 CORE_ADDR last_addr = 0;
12283 /* Last breakpoint location program space that was marked for update. */
12284 int last_pspace_num = -1;
12285
12286 /* Used in the duplicates detection below. When iterating over all
12287 bp_locations, points to the first bp_location of a given address.
12288 Breakpoints and watchpoints of different types are never
12289 duplicates of each other. Keep one pointer for each type of
12290 breakpoint/watchpoint, so we only need to loop over all locations
12291 once. */
12292 struct bp_location *bp_loc_first; /* breakpoint */
12293 struct bp_location *wp_loc_first; /* hardware watchpoint */
12294 struct bp_location *awp_loc_first; /* access watchpoint */
12295 struct bp_location *rwp_loc_first; /* read watchpoint */
12296
12297 /* Saved former bp_locations array which we compare against the newly
12298 built bp_locations from the current state of ALL_BREAKPOINTS. */
12299 struct bp_location **old_locations, **old_locp;
12300 unsigned old_locations_count;
12301
12302 old_locations = bp_locations;
12303 old_locations_count = bp_locations_count;
12304 bp_locations = NULL;
12305 bp_locations_count = 0;
12306 cleanups = make_cleanup (xfree, old_locations);
12307
12308 ALL_BREAKPOINTS (b)
12309 for (loc = b->loc; loc; loc = loc->next)
12310 bp_locations_count++;
12311
12312 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
12313 locp = bp_locations;
12314 ALL_BREAKPOINTS (b)
12315 for (loc = b->loc; loc; loc = loc->next)
12316 *locp++ = loc;
12317 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
12318 bp_locations_compare);
12319
12320 bp_locations_target_extensions_update ();
12321
12322 /* Identify bp_location instances that are no longer present in the
12323 new list, and therefore should be freed. Note that it's not
12324 necessary that those locations should be removed from inferior --
12325 if there's another location at the same address (previously
12326 marked as duplicate), we don't need to remove/insert the
12327 location.
12328
12329 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12330 and former bp_location array state respectively. */
12331
12332 locp = bp_locations;
12333 for (old_locp = old_locations;
12334 old_locp < old_locations + old_locations_count;
12335 old_locp++)
12336 {
12337 struct bp_location *old_loc = *old_locp;
12338 struct bp_location **loc2p;
12339
12340 /* Tells if 'old_loc' is found among the new locations. If
12341 not, we have to free it. */
12342 int found_object = 0;
12343 /* Tells if the location should remain inserted in the target. */
12344 int keep_in_target = 0;
12345 int removed = 0;
12346
12347 /* Skip LOCP entries which will definitely never be needed.
12348 Stop either at or being the one matching OLD_LOC. */
12349 while (locp < bp_locations + bp_locations_count
12350 && (*locp)->address < old_loc->address)
12351 locp++;
12352
12353 for (loc2p = locp;
12354 (loc2p < bp_locations + bp_locations_count
12355 && (*loc2p)->address == old_loc->address);
12356 loc2p++)
12357 {
12358 /* Check if this is a new/duplicated location or a duplicated
12359 location that had its condition modified. If so, we want to send
12360 its condition to the target if evaluation of conditions is taking
12361 place there. */
12362 if ((*loc2p)->condition_changed == condition_modified
12363 && (last_addr != old_loc->address
12364 || last_pspace_num != old_loc->pspace->num))
12365 {
12366 force_breakpoint_reinsertion (*loc2p);
12367 last_pspace_num = old_loc->pspace->num;
12368 }
12369
12370 if (*loc2p == old_loc)
12371 found_object = 1;
12372 }
12373
12374 /* We have already handled this address, update it so that we don't
12375 have to go through updates again. */
12376 last_addr = old_loc->address;
12377
12378 /* Target-side condition evaluation: Handle deleted locations. */
12379 if (!found_object)
12380 force_breakpoint_reinsertion (old_loc);
12381
12382 /* If this location is no longer present, and inserted, look if
12383 there's maybe a new location at the same address. If so,
12384 mark that one inserted, and don't remove this one. This is
12385 needed so that we don't have a time window where a breakpoint
12386 at certain location is not inserted. */
12387
12388 if (old_loc->inserted)
12389 {
12390 /* If the location is inserted now, we might have to remove
12391 it. */
12392
12393 if (found_object && should_be_inserted (old_loc))
12394 {
12395 /* The location is still present in the location list,
12396 and still should be inserted. Don't do anything. */
12397 keep_in_target = 1;
12398 }
12399 else
12400 {
12401 /* This location still exists, but it won't be kept in the
12402 target since it may have been disabled. We proceed to
12403 remove its target-side condition. */
12404
12405 /* The location is either no longer present, or got
12406 disabled. See if there's another location at the
12407 same address, in which case we don't need to remove
12408 this one from the target. */
12409
12410 /* OLD_LOC comes from existing struct breakpoint. */
12411 if (breakpoint_address_is_meaningful (old_loc->owner))
12412 {
12413 for (loc2p = locp;
12414 (loc2p < bp_locations + bp_locations_count
12415 && (*loc2p)->address == old_loc->address);
12416 loc2p++)
12417 {
12418 struct bp_location *loc2 = *loc2p;
12419
12420 if (breakpoint_locations_match (loc2, old_loc))
12421 {
12422 /* Read watchpoint locations are switched to
12423 access watchpoints, if the former are not
12424 supported, but the latter are. */
12425 if (is_hardware_watchpoint (old_loc->owner))
12426 {
12427 gdb_assert (is_hardware_watchpoint (loc2->owner));
12428 loc2->watchpoint_type = old_loc->watchpoint_type;
12429 }
12430
12431 /* loc2 is a duplicated location. We need to check
12432 if it should be inserted in case it will be
12433 unduplicated. */
12434 if (loc2 != old_loc
12435 && unduplicated_should_be_inserted (loc2))
12436 {
12437 swap_insertion (old_loc, loc2);
12438 keep_in_target = 1;
12439 break;
12440 }
12441 }
12442 }
12443 }
12444 }
12445
12446 if (!keep_in_target)
12447 {
12448 if (remove_breakpoint (old_loc))
12449 {
12450 /* This is just about all we can do. We could keep
12451 this location on the global list, and try to
12452 remove it next time, but there's no particular
12453 reason why we will succeed next time.
12454
12455 Note that at this point, old_loc->owner is still
12456 valid, as delete_breakpoint frees the breakpoint
12457 only after calling us. */
12458 printf_filtered (_("warning: Error removing "
12459 "breakpoint %d\n"),
12460 old_loc->owner->number);
12461 }
12462 removed = 1;
12463 }
12464 }
12465
12466 if (!found_object)
12467 {
12468 if (removed && target_is_non_stop_p ()
12469 && need_moribund_for_location_type (old_loc))
12470 {
12471 /* This location was removed from the target. In
12472 non-stop mode, a race condition is possible where
12473 we've removed a breakpoint, but stop events for that
12474 breakpoint are already queued and will arrive later.
12475 We apply an heuristic to be able to distinguish such
12476 SIGTRAPs from other random SIGTRAPs: we keep this
12477 breakpoint location for a bit, and will retire it
12478 after we see some number of events. The theory here
12479 is that reporting of events should, "on the average",
12480 be fair, so after a while we'll see events from all
12481 threads that have anything of interest, and no longer
12482 need to keep this breakpoint location around. We
12483 don't hold locations forever so to reduce chances of
12484 mistaking a non-breakpoint SIGTRAP for a breakpoint
12485 SIGTRAP.
12486
12487 The heuristic failing can be disastrous on
12488 decr_pc_after_break targets.
12489
12490 On decr_pc_after_break targets, like e.g., x86-linux,
12491 if we fail to recognize a late breakpoint SIGTRAP,
12492 because events_till_retirement has reached 0 too
12493 soon, we'll fail to do the PC adjustment, and report
12494 a random SIGTRAP to the user. When the user resumes
12495 the inferior, it will most likely immediately crash
12496 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12497 corrupted, because of being resumed e.g., in the
12498 middle of a multi-byte instruction, or skipped a
12499 one-byte instruction. This was actually seen happen
12500 on native x86-linux, and should be less rare on
12501 targets that do not support new thread events, like
12502 remote, due to the heuristic depending on
12503 thread_count.
12504
12505 Mistaking a random SIGTRAP for a breakpoint trap
12506 causes similar symptoms (PC adjustment applied when
12507 it shouldn't), but then again, playing with SIGTRAPs
12508 behind the debugger's back is asking for trouble.
12509
12510 Since hardware watchpoint traps are always
12511 distinguishable from other traps, so we don't need to
12512 apply keep hardware watchpoint moribund locations
12513 around. We simply always ignore hardware watchpoint
12514 traps we can no longer explain. */
12515
12516 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12517 old_loc->owner = NULL;
12518
12519 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12520 }
12521 else
12522 {
12523 old_loc->owner = NULL;
12524 decref_bp_location (&old_loc);
12525 }
12526 }
12527 }
12528
12529 /* Rescan breakpoints at the same address and section, marking the
12530 first one as "first" and any others as "duplicates". This is so
12531 that the bpt instruction is only inserted once. If we have a
12532 permanent breakpoint at the same place as BPT, make that one the
12533 official one, and the rest as duplicates. Permanent breakpoints
12534 are sorted first for the same address.
12535
12536 Do the same for hardware watchpoints, but also considering the
12537 watchpoint's type (regular/access/read) and length. */
12538
12539 bp_loc_first = NULL;
12540 wp_loc_first = NULL;
12541 awp_loc_first = NULL;
12542 rwp_loc_first = NULL;
12543 ALL_BP_LOCATIONS (loc, locp)
12544 {
12545 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12546 non-NULL. */
12547 struct bp_location **loc_first_p;
12548 b = loc->owner;
12549
12550 if (!unduplicated_should_be_inserted (loc)
12551 || !breakpoint_address_is_meaningful (b)
12552 /* Don't detect duplicate for tracepoint locations because they are
12553 never duplicated. See the comments in field `duplicate' of
12554 `struct bp_location'. */
12555 || is_tracepoint (b))
12556 {
12557 /* Clear the condition modification flag. */
12558 loc->condition_changed = condition_unchanged;
12559 continue;
12560 }
12561
12562 if (b->type == bp_hardware_watchpoint)
12563 loc_first_p = &wp_loc_first;
12564 else if (b->type == bp_read_watchpoint)
12565 loc_first_p = &rwp_loc_first;
12566 else if (b->type == bp_access_watchpoint)
12567 loc_first_p = &awp_loc_first;
12568 else
12569 loc_first_p = &bp_loc_first;
12570
12571 if (*loc_first_p == NULL
12572 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12573 || !breakpoint_locations_match (loc, *loc_first_p))
12574 {
12575 *loc_first_p = loc;
12576 loc->duplicate = 0;
12577
12578 if (is_breakpoint (loc->owner) && loc->condition_changed)
12579 {
12580 loc->needs_update = 1;
12581 /* Clear the condition modification flag. */
12582 loc->condition_changed = condition_unchanged;
12583 }
12584 continue;
12585 }
12586
12587
12588 /* This and the above ensure the invariant that the first location
12589 is not duplicated, and is the inserted one.
12590 All following are marked as duplicated, and are not inserted. */
12591 if (loc->inserted)
12592 swap_insertion (loc, *loc_first_p);
12593 loc->duplicate = 1;
12594
12595 /* Clear the condition modification flag. */
12596 loc->condition_changed = condition_unchanged;
12597 }
12598
12599 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12600 {
12601 if (insert_mode != UGLL_DONT_INSERT)
12602 insert_breakpoint_locations ();
12603 else
12604 {
12605 /* Even though the caller told us to not insert new
12606 locations, we may still need to update conditions on the
12607 target's side of breakpoints that were already inserted
12608 if the target is evaluating breakpoint conditions. We
12609 only update conditions for locations that are marked
12610 "needs_update". */
12611 update_inserted_breakpoint_locations ();
12612 }
12613 }
12614
12615 if (insert_mode != UGLL_DONT_INSERT)
12616 download_tracepoint_locations ();
12617
12618 do_cleanups (cleanups);
12619 }
12620
12621 void
12622 breakpoint_retire_moribund (void)
12623 {
12624 struct bp_location *loc;
12625 int ix;
12626
12627 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12628 if (--(loc->events_till_retirement) == 0)
12629 {
12630 decref_bp_location (&loc);
12631 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12632 --ix;
12633 }
12634 }
12635
12636 static void
12637 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12638 {
12639
12640 TRY
12641 {
12642 update_global_location_list (insert_mode);
12643 }
12644 CATCH (e, RETURN_MASK_ERROR)
12645 {
12646 }
12647 END_CATCH
12648 }
12649
12650 /* Clear BKP from a BPS. */
12651
12652 static void
12653 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12654 {
12655 bpstat bs;
12656
12657 for (bs = bps; bs; bs = bs->next)
12658 if (bs->breakpoint_at == bpt)
12659 {
12660 bs->breakpoint_at = NULL;
12661 bs->old_val = NULL;
12662 /* bs->commands will be freed later. */
12663 }
12664 }
12665
12666 /* Callback for iterate_over_threads. */
12667 static int
12668 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12669 {
12670 struct breakpoint *bpt = (struct breakpoint *) data;
12671
12672 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12673 return 0;
12674 }
12675
12676 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12677 callbacks. */
12678
12679 static void
12680 say_where (struct breakpoint *b)
12681 {
12682 struct value_print_options opts;
12683
12684 get_user_print_options (&opts);
12685
12686 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12687 single string. */
12688 if (b->loc == NULL)
12689 {
12690 /* For pending locations, the output differs slightly based
12691 on b->extra_string. If this is non-NULL, it contains either
12692 a condition or dprintf arguments. */
12693 if (b->extra_string == NULL)
12694 {
12695 printf_filtered (_(" (%s) pending."),
12696 event_location_to_string (b->location.get ()));
12697 }
12698 else if (b->type == bp_dprintf)
12699 {
12700 printf_filtered (_(" (%s,%s) pending."),
12701 event_location_to_string (b->location.get ()),
12702 b->extra_string);
12703 }
12704 else
12705 {
12706 printf_filtered (_(" (%s %s) pending."),
12707 event_location_to_string (b->location.get ()),
12708 b->extra_string);
12709 }
12710 }
12711 else
12712 {
12713 if (opts.addressprint || b->loc->symtab == NULL)
12714 {
12715 printf_filtered (" at ");
12716 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12717 gdb_stdout);
12718 }
12719 if (b->loc->symtab != NULL)
12720 {
12721 /* If there is a single location, we can print the location
12722 more nicely. */
12723 if (b->loc->next == NULL)
12724 printf_filtered (": file %s, line %d.",
12725 symtab_to_filename_for_display (b->loc->symtab),
12726 b->loc->line_number);
12727 else
12728 /* This is not ideal, but each location may have a
12729 different file name, and this at least reflects the
12730 real situation somewhat. */
12731 printf_filtered (": %s.",
12732 event_location_to_string (b->location.get ()));
12733 }
12734
12735 if (b->loc->next)
12736 {
12737 struct bp_location *loc = b->loc;
12738 int n = 0;
12739 for (; loc; loc = loc->next)
12740 ++n;
12741 printf_filtered (" (%d locations)", n);
12742 }
12743 }
12744 }
12745
12746 /* Default bp_location_ops methods. */
12747
12748 static void
12749 bp_location_dtor (struct bp_location *self)
12750 {
12751 xfree (self->function_name);
12752 }
12753
12754 static const struct bp_location_ops bp_location_ops =
12755 {
12756 bp_location_dtor
12757 };
12758
12759 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12760 inherit from. */
12761
12762 static void
12763 base_breakpoint_dtor (struct breakpoint *self)
12764 {
12765 decref_counted_command_line (&self->commands);
12766 xfree (self->cond_string);
12767 xfree (self->extra_string);
12768 xfree (self->filter);
12769 }
12770
12771 static struct bp_location *
12772 base_breakpoint_allocate_location (struct breakpoint *self)
12773 {
12774 return new bp_location (&bp_location_ops, self);
12775 }
12776
12777 static void
12778 base_breakpoint_re_set (struct breakpoint *b)
12779 {
12780 /* Nothing to re-set. */
12781 }
12782
12783 #define internal_error_pure_virtual_called() \
12784 gdb_assert_not_reached ("pure virtual function called")
12785
12786 static int
12787 base_breakpoint_insert_location (struct bp_location *bl)
12788 {
12789 internal_error_pure_virtual_called ();
12790 }
12791
12792 static int
12793 base_breakpoint_remove_location (struct bp_location *bl,
12794 enum remove_bp_reason reason)
12795 {
12796 internal_error_pure_virtual_called ();
12797 }
12798
12799 static int
12800 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12801 struct address_space *aspace,
12802 CORE_ADDR bp_addr,
12803 const struct target_waitstatus *ws)
12804 {
12805 internal_error_pure_virtual_called ();
12806 }
12807
12808 static void
12809 base_breakpoint_check_status (bpstat bs)
12810 {
12811 /* Always stop. */
12812 }
12813
12814 /* A "works_in_software_mode" breakpoint_ops method that just internal
12815 errors. */
12816
12817 static int
12818 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12819 {
12820 internal_error_pure_virtual_called ();
12821 }
12822
12823 /* A "resources_needed" breakpoint_ops method that just internal
12824 errors. */
12825
12826 static int
12827 base_breakpoint_resources_needed (const struct bp_location *bl)
12828 {
12829 internal_error_pure_virtual_called ();
12830 }
12831
12832 static enum print_stop_action
12833 base_breakpoint_print_it (bpstat bs)
12834 {
12835 internal_error_pure_virtual_called ();
12836 }
12837
12838 static void
12839 base_breakpoint_print_one_detail (const struct breakpoint *self,
12840 struct ui_out *uiout)
12841 {
12842 /* nothing */
12843 }
12844
12845 static void
12846 base_breakpoint_print_mention (struct breakpoint *b)
12847 {
12848 internal_error_pure_virtual_called ();
12849 }
12850
12851 static void
12852 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12853 {
12854 internal_error_pure_virtual_called ();
12855 }
12856
12857 static void
12858 base_breakpoint_create_sals_from_location
12859 (const struct event_location *location,
12860 struct linespec_result *canonical,
12861 enum bptype type_wanted)
12862 {
12863 internal_error_pure_virtual_called ();
12864 }
12865
12866 static void
12867 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12868 struct linespec_result *c,
12869 char *cond_string,
12870 char *extra_string,
12871 enum bptype type_wanted,
12872 enum bpdisp disposition,
12873 int thread,
12874 int task, int ignore_count,
12875 const struct breakpoint_ops *o,
12876 int from_tty, int enabled,
12877 int internal, unsigned flags)
12878 {
12879 internal_error_pure_virtual_called ();
12880 }
12881
12882 static void
12883 base_breakpoint_decode_location (struct breakpoint *b,
12884 const struct event_location *location,
12885 struct program_space *search_pspace,
12886 struct symtabs_and_lines *sals)
12887 {
12888 internal_error_pure_virtual_called ();
12889 }
12890
12891 /* The default 'explains_signal' method. */
12892
12893 static int
12894 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12895 {
12896 return 1;
12897 }
12898
12899 /* The default "after_condition_true" method. */
12900
12901 static void
12902 base_breakpoint_after_condition_true (struct bpstats *bs)
12903 {
12904 /* Nothing to do. */
12905 }
12906
12907 struct breakpoint_ops base_breakpoint_ops =
12908 {
12909 base_breakpoint_dtor,
12910 base_breakpoint_allocate_location,
12911 base_breakpoint_re_set,
12912 base_breakpoint_insert_location,
12913 base_breakpoint_remove_location,
12914 base_breakpoint_breakpoint_hit,
12915 base_breakpoint_check_status,
12916 base_breakpoint_resources_needed,
12917 base_breakpoint_works_in_software_mode,
12918 base_breakpoint_print_it,
12919 NULL,
12920 base_breakpoint_print_one_detail,
12921 base_breakpoint_print_mention,
12922 base_breakpoint_print_recreate,
12923 base_breakpoint_create_sals_from_location,
12924 base_breakpoint_create_breakpoints_sal,
12925 base_breakpoint_decode_location,
12926 base_breakpoint_explains_signal,
12927 base_breakpoint_after_condition_true,
12928 };
12929
12930 /* Default breakpoint_ops methods. */
12931
12932 static void
12933 bkpt_re_set (struct breakpoint *b)
12934 {
12935 /* FIXME: is this still reachable? */
12936 if (breakpoint_event_location_empty_p (b))
12937 {
12938 /* Anything without a location can't be re-set. */
12939 delete_breakpoint (b);
12940 return;
12941 }
12942
12943 breakpoint_re_set_default (b);
12944 }
12945
12946 static int
12947 bkpt_insert_location (struct bp_location *bl)
12948 {
12949 CORE_ADDR addr = bl->target_info.reqstd_address;
12950
12951 bl->target_info.kind = breakpoint_kind (bl, &addr);
12952 bl->target_info.placed_address = addr;
12953
12954 if (bl->loc_type == bp_loc_hardware_breakpoint)
12955 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12956 else
12957 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12958 }
12959
12960 static int
12961 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12962 {
12963 if (bl->loc_type == bp_loc_hardware_breakpoint)
12964 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12965 else
12966 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12967 }
12968
12969 static int
12970 bkpt_breakpoint_hit (const struct bp_location *bl,
12971 struct address_space *aspace, CORE_ADDR bp_addr,
12972 const struct target_waitstatus *ws)
12973 {
12974 if (ws->kind != TARGET_WAITKIND_STOPPED
12975 || ws->value.sig != GDB_SIGNAL_TRAP)
12976 return 0;
12977
12978 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12979 aspace, bp_addr))
12980 return 0;
12981
12982 if (overlay_debugging /* unmapped overlay section */
12983 && section_is_overlay (bl->section)
12984 && !section_is_mapped (bl->section))
12985 return 0;
12986
12987 return 1;
12988 }
12989
12990 static int
12991 dprintf_breakpoint_hit (const struct bp_location *bl,
12992 struct address_space *aspace, CORE_ADDR bp_addr,
12993 const struct target_waitstatus *ws)
12994 {
12995 if (dprintf_style == dprintf_style_agent
12996 && target_can_run_breakpoint_commands ())
12997 {
12998 /* An agent-style dprintf never causes a stop. If we see a trap
12999 for this address it must be for a breakpoint that happens to
13000 be set at the same address. */
13001 return 0;
13002 }
13003
13004 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
13005 }
13006
13007 static int
13008 bkpt_resources_needed (const struct bp_location *bl)
13009 {
13010 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
13011
13012 return 1;
13013 }
13014
13015 static enum print_stop_action
13016 bkpt_print_it (bpstat bs)
13017 {
13018 struct breakpoint *b;
13019 const struct bp_location *bl;
13020 int bp_temp;
13021 struct ui_out *uiout = current_uiout;
13022
13023 gdb_assert (bs->bp_location_at != NULL);
13024
13025 bl = bs->bp_location_at;
13026 b = bs->breakpoint_at;
13027
13028 bp_temp = b->disposition == disp_del;
13029 if (bl->address != bl->requested_address)
13030 breakpoint_adjustment_warning (bl->requested_address,
13031 bl->address,
13032 b->number, 1);
13033 annotate_breakpoint (b->number);
13034 maybe_print_thread_hit_breakpoint (uiout);
13035
13036 if (bp_temp)
13037 uiout->text ("Temporary breakpoint ");
13038 else
13039 uiout->text ("Breakpoint ");
13040 if (uiout->is_mi_like_p ())
13041 {
13042 uiout->field_string ("reason",
13043 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
13044 uiout->field_string ("disp", bpdisp_text (b->disposition));
13045 }
13046 uiout->field_int ("bkptno", b->number);
13047 uiout->text (", ");
13048
13049 return PRINT_SRC_AND_LOC;
13050 }
13051
13052 static void
13053 bkpt_print_mention (struct breakpoint *b)
13054 {
13055 if (current_uiout->is_mi_like_p ())
13056 return;
13057
13058 switch (b->type)
13059 {
13060 case bp_breakpoint:
13061 case bp_gnu_ifunc_resolver:
13062 if (b->disposition == disp_del)
13063 printf_filtered (_("Temporary breakpoint"));
13064 else
13065 printf_filtered (_("Breakpoint"));
13066 printf_filtered (_(" %d"), b->number);
13067 if (b->type == bp_gnu_ifunc_resolver)
13068 printf_filtered (_(" at gnu-indirect-function resolver"));
13069 break;
13070 case bp_hardware_breakpoint:
13071 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13072 break;
13073 case bp_dprintf:
13074 printf_filtered (_("Dprintf %d"), b->number);
13075 break;
13076 }
13077
13078 say_where (b);
13079 }
13080
13081 static void
13082 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13083 {
13084 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13085 fprintf_unfiltered (fp, "tbreak");
13086 else if (tp->type == bp_breakpoint)
13087 fprintf_unfiltered (fp, "break");
13088 else if (tp->type == bp_hardware_breakpoint
13089 && tp->disposition == disp_del)
13090 fprintf_unfiltered (fp, "thbreak");
13091 else if (tp->type == bp_hardware_breakpoint)
13092 fprintf_unfiltered (fp, "hbreak");
13093 else
13094 internal_error (__FILE__, __LINE__,
13095 _("unhandled breakpoint type %d"), (int) tp->type);
13096
13097 fprintf_unfiltered (fp, " %s",
13098 event_location_to_string (tp->location.get ()));
13099
13100 /* Print out extra_string if this breakpoint is pending. It might
13101 contain, for example, conditions that were set by the user. */
13102 if (tp->loc == NULL && tp->extra_string != NULL)
13103 fprintf_unfiltered (fp, " %s", tp->extra_string);
13104
13105 print_recreate_thread (tp, fp);
13106 }
13107
13108 static void
13109 bkpt_create_sals_from_location (const struct event_location *location,
13110 struct linespec_result *canonical,
13111 enum bptype type_wanted)
13112 {
13113 create_sals_from_location_default (location, canonical, type_wanted);
13114 }
13115
13116 static void
13117 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13118 struct linespec_result *canonical,
13119 char *cond_string,
13120 char *extra_string,
13121 enum bptype type_wanted,
13122 enum bpdisp disposition,
13123 int thread,
13124 int task, int ignore_count,
13125 const struct breakpoint_ops *ops,
13126 int from_tty, int enabled,
13127 int internal, unsigned flags)
13128 {
13129 create_breakpoints_sal_default (gdbarch, canonical,
13130 cond_string, extra_string,
13131 type_wanted,
13132 disposition, thread, task,
13133 ignore_count, ops, from_tty,
13134 enabled, internal, flags);
13135 }
13136
13137 static void
13138 bkpt_decode_location (struct breakpoint *b,
13139 const struct event_location *location,
13140 struct program_space *search_pspace,
13141 struct symtabs_and_lines *sals)
13142 {
13143 decode_location_default (b, location, search_pspace, sals);
13144 }
13145
13146 /* Virtual table for internal breakpoints. */
13147
13148 static void
13149 internal_bkpt_re_set (struct breakpoint *b)
13150 {
13151 switch (b->type)
13152 {
13153 /* Delete overlay event and longjmp master breakpoints; they
13154 will be reset later by breakpoint_re_set. */
13155 case bp_overlay_event:
13156 case bp_longjmp_master:
13157 case bp_std_terminate_master:
13158 case bp_exception_master:
13159 delete_breakpoint (b);
13160 break;
13161
13162 /* This breakpoint is special, it's set up when the inferior
13163 starts and we really don't want to touch it. */
13164 case bp_shlib_event:
13165
13166 /* Like bp_shlib_event, this breakpoint type is special. Once
13167 it is set up, we do not want to touch it. */
13168 case bp_thread_event:
13169 break;
13170 }
13171 }
13172
13173 static void
13174 internal_bkpt_check_status (bpstat bs)
13175 {
13176 if (bs->breakpoint_at->type == bp_shlib_event)
13177 {
13178 /* If requested, stop when the dynamic linker notifies GDB of
13179 events. This allows the user to get control and place
13180 breakpoints in initializer routines for dynamically loaded
13181 objects (among other things). */
13182 bs->stop = stop_on_solib_events;
13183 bs->print = stop_on_solib_events;
13184 }
13185 else
13186 bs->stop = 0;
13187 }
13188
13189 static enum print_stop_action
13190 internal_bkpt_print_it (bpstat bs)
13191 {
13192 struct breakpoint *b;
13193
13194 b = bs->breakpoint_at;
13195
13196 switch (b->type)
13197 {
13198 case bp_shlib_event:
13199 /* Did we stop because the user set the stop_on_solib_events
13200 variable? (If so, we report this as a generic, "Stopped due
13201 to shlib event" message.) */
13202 print_solib_event (0);
13203 break;
13204
13205 case bp_thread_event:
13206 /* Not sure how we will get here.
13207 GDB should not stop for these breakpoints. */
13208 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13209 break;
13210
13211 case bp_overlay_event:
13212 /* By analogy with the thread event, GDB should not stop for these. */
13213 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13214 break;
13215
13216 case bp_longjmp_master:
13217 /* These should never be enabled. */
13218 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13219 break;
13220
13221 case bp_std_terminate_master:
13222 /* These should never be enabled. */
13223 printf_filtered (_("std::terminate Master Breakpoint: "
13224 "gdb should not stop!\n"));
13225 break;
13226
13227 case bp_exception_master:
13228 /* These should never be enabled. */
13229 printf_filtered (_("Exception Master Breakpoint: "
13230 "gdb should not stop!\n"));
13231 break;
13232 }
13233
13234 return PRINT_NOTHING;
13235 }
13236
13237 static void
13238 internal_bkpt_print_mention (struct breakpoint *b)
13239 {
13240 /* Nothing to mention. These breakpoints are internal. */
13241 }
13242
13243 /* Virtual table for momentary breakpoints */
13244
13245 static void
13246 momentary_bkpt_re_set (struct breakpoint *b)
13247 {
13248 /* Keep temporary breakpoints, which can be encountered when we step
13249 over a dlopen call and solib_add is resetting the breakpoints.
13250 Otherwise these should have been blown away via the cleanup chain
13251 or by breakpoint_init_inferior when we rerun the executable. */
13252 }
13253
13254 static void
13255 momentary_bkpt_check_status (bpstat bs)
13256 {
13257 /* Nothing. The point of these breakpoints is causing a stop. */
13258 }
13259
13260 static enum print_stop_action
13261 momentary_bkpt_print_it (bpstat bs)
13262 {
13263 return PRINT_UNKNOWN;
13264 }
13265
13266 static void
13267 momentary_bkpt_print_mention (struct breakpoint *b)
13268 {
13269 /* Nothing to mention. These breakpoints are internal. */
13270 }
13271
13272 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13273
13274 It gets cleared already on the removal of the first one of such placed
13275 breakpoints. This is OK as they get all removed altogether. */
13276
13277 static void
13278 longjmp_bkpt_dtor (struct breakpoint *self)
13279 {
13280 struct thread_info *tp = find_thread_global_id (self->thread);
13281
13282 if (tp)
13283 tp->initiating_frame = null_frame_id;
13284
13285 momentary_breakpoint_ops.dtor (self);
13286 }
13287
13288 /* Specific methods for probe breakpoints. */
13289
13290 static int
13291 bkpt_probe_insert_location (struct bp_location *bl)
13292 {
13293 int v = bkpt_insert_location (bl);
13294
13295 if (v == 0)
13296 {
13297 /* The insertion was successful, now let's set the probe's semaphore
13298 if needed. */
13299 if (bl->probe.probe->pops->set_semaphore != NULL)
13300 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
13301 bl->probe.objfile,
13302 bl->gdbarch);
13303 }
13304
13305 return v;
13306 }
13307
13308 static int
13309 bkpt_probe_remove_location (struct bp_location *bl,
13310 enum remove_bp_reason reason)
13311 {
13312 /* Let's clear the semaphore before removing the location. */
13313 if (bl->probe.probe->pops->clear_semaphore != NULL)
13314 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
13315 bl->probe.objfile,
13316 bl->gdbarch);
13317
13318 return bkpt_remove_location (bl, reason);
13319 }
13320
13321 static void
13322 bkpt_probe_create_sals_from_location (const struct event_location *location,
13323 struct linespec_result *canonical,
13324 enum bptype type_wanted)
13325 {
13326 struct linespec_sals lsal;
13327
13328 lsal.sals = parse_probes (location, NULL, canonical);
13329 lsal.canonical
13330 = xstrdup (event_location_to_string (canonical->location.get ()));
13331 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13332 }
13333
13334 static void
13335 bkpt_probe_decode_location (struct breakpoint *b,
13336 const struct event_location *location,
13337 struct program_space *search_pspace,
13338 struct symtabs_and_lines *sals)
13339 {
13340 *sals = parse_probes (location, search_pspace, NULL);
13341 if (!sals->sals)
13342 error (_("probe not found"));
13343 }
13344
13345 /* The breakpoint_ops structure to be used in tracepoints. */
13346
13347 static void
13348 tracepoint_re_set (struct breakpoint *b)
13349 {
13350 breakpoint_re_set_default (b);
13351 }
13352
13353 static int
13354 tracepoint_breakpoint_hit (const struct bp_location *bl,
13355 struct address_space *aspace, CORE_ADDR bp_addr,
13356 const struct target_waitstatus *ws)
13357 {
13358 /* By definition, the inferior does not report stops at
13359 tracepoints. */
13360 return 0;
13361 }
13362
13363 static void
13364 tracepoint_print_one_detail (const struct breakpoint *self,
13365 struct ui_out *uiout)
13366 {
13367 struct tracepoint *tp = (struct tracepoint *) self;
13368 if (tp->static_trace_marker_id)
13369 {
13370 gdb_assert (self->type == bp_static_tracepoint);
13371
13372 uiout->text ("\tmarker id is ");
13373 uiout->field_string ("static-tracepoint-marker-string-id",
13374 tp->static_trace_marker_id);
13375 uiout->text ("\n");
13376 }
13377 }
13378
13379 static void
13380 tracepoint_print_mention (struct breakpoint *b)
13381 {
13382 if (current_uiout->is_mi_like_p ())
13383 return;
13384
13385 switch (b->type)
13386 {
13387 case bp_tracepoint:
13388 printf_filtered (_("Tracepoint"));
13389 printf_filtered (_(" %d"), b->number);
13390 break;
13391 case bp_fast_tracepoint:
13392 printf_filtered (_("Fast tracepoint"));
13393 printf_filtered (_(" %d"), b->number);
13394 break;
13395 case bp_static_tracepoint:
13396 printf_filtered (_("Static tracepoint"));
13397 printf_filtered (_(" %d"), b->number);
13398 break;
13399 default:
13400 internal_error (__FILE__, __LINE__,
13401 _("unhandled tracepoint type %d"), (int) b->type);
13402 }
13403
13404 say_where (b);
13405 }
13406
13407 static void
13408 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13409 {
13410 struct tracepoint *tp = (struct tracepoint *) self;
13411
13412 if (self->type == bp_fast_tracepoint)
13413 fprintf_unfiltered (fp, "ftrace");
13414 else if (self->type == bp_static_tracepoint)
13415 fprintf_unfiltered (fp, "strace");
13416 else if (self->type == bp_tracepoint)
13417 fprintf_unfiltered (fp, "trace");
13418 else
13419 internal_error (__FILE__, __LINE__,
13420 _("unhandled tracepoint type %d"), (int) self->type);
13421
13422 fprintf_unfiltered (fp, " %s",
13423 event_location_to_string (self->location.get ()));
13424 print_recreate_thread (self, fp);
13425
13426 if (tp->pass_count)
13427 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13428 }
13429
13430 static void
13431 tracepoint_create_sals_from_location (const struct event_location *location,
13432 struct linespec_result *canonical,
13433 enum bptype type_wanted)
13434 {
13435 create_sals_from_location_default (location, canonical, type_wanted);
13436 }
13437
13438 static void
13439 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13440 struct linespec_result *canonical,
13441 char *cond_string,
13442 char *extra_string,
13443 enum bptype type_wanted,
13444 enum bpdisp disposition,
13445 int thread,
13446 int task, int ignore_count,
13447 const struct breakpoint_ops *ops,
13448 int from_tty, int enabled,
13449 int internal, unsigned flags)
13450 {
13451 create_breakpoints_sal_default (gdbarch, canonical,
13452 cond_string, extra_string,
13453 type_wanted,
13454 disposition, thread, task,
13455 ignore_count, ops, from_tty,
13456 enabled, internal, flags);
13457 }
13458
13459 static void
13460 tracepoint_decode_location (struct breakpoint *b,
13461 const struct event_location *location,
13462 struct program_space *search_pspace,
13463 struct symtabs_and_lines *sals)
13464 {
13465 decode_location_default (b, location, search_pspace, sals);
13466 }
13467
13468 struct breakpoint_ops tracepoint_breakpoint_ops;
13469
13470 /* The breakpoint_ops structure to be use on tracepoints placed in a
13471 static probe. */
13472
13473 static void
13474 tracepoint_probe_create_sals_from_location
13475 (const struct event_location *location,
13476 struct linespec_result *canonical,
13477 enum bptype type_wanted)
13478 {
13479 /* We use the same method for breakpoint on probes. */
13480 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
13481 }
13482
13483 static void
13484 tracepoint_probe_decode_location (struct breakpoint *b,
13485 const struct event_location *location,
13486 struct program_space *search_pspace,
13487 struct symtabs_and_lines *sals)
13488 {
13489 /* We use the same method for breakpoint on probes. */
13490 bkpt_probe_decode_location (b, location, search_pspace, sals);
13491 }
13492
13493 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13494
13495 /* Dprintf breakpoint_ops methods. */
13496
13497 static void
13498 dprintf_re_set (struct breakpoint *b)
13499 {
13500 breakpoint_re_set_default (b);
13501
13502 /* extra_string should never be non-NULL for dprintf. */
13503 gdb_assert (b->extra_string != NULL);
13504
13505 /* 1 - connect to target 1, that can run breakpoint commands.
13506 2 - create a dprintf, which resolves fine.
13507 3 - disconnect from target 1
13508 4 - connect to target 2, that can NOT run breakpoint commands.
13509
13510 After steps #3/#4, you'll want the dprintf command list to
13511 be updated, because target 1 and 2 may well return different
13512 answers for target_can_run_breakpoint_commands().
13513 Given absence of finer grained resetting, we get to do
13514 it all the time. */
13515 if (b->extra_string != NULL)
13516 update_dprintf_command_list (b);
13517 }
13518
13519 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13520
13521 static void
13522 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13523 {
13524 fprintf_unfiltered (fp, "dprintf %s,%s",
13525 event_location_to_string (tp->location.get ()),
13526 tp->extra_string);
13527 print_recreate_thread (tp, fp);
13528 }
13529
13530 /* Implement the "after_condition_true" breakpoint_ops method for
13531 dprintf.
13532
13533 dprintf's are implemented with regular commands in their command
13534 list, but we run the commands here instead of before presenting the
13535 stop to the user, as dprintf's don't actually cause a stop. This
13536 also makes it so that the commands of multiple dprintfs at the same
13537 address are all handled. */
13538
13539 static void
13540 dprintf_after_condition_true (struct bpstats *bs)
13541 {
13542 struct cleanup *old_chain;
13543 struct bpstats tmp_bs = { NULL };
13544 struct bpstats *tmp_bs_p = &tmp_bs;
13545
13546 /* dprintf's never cause a stop. This wasn't set in the
13547 check_status hook instead because that would make the dprintf's
13548 condition not be evaluated. */
13549 bs->stop = 0;
13550
13551 /* Run the command list here. Take ownership of it instead of
13552 copying. We never want these commands to run later in
13553 bpstat_do_actions, if a breakpoint that causes a stop happens to
13554 be set at same address as this dprintf, or even if running the
13555 commands here throws. */
13556 tmp_bs.commands = bs->commands;
13557 bs->commands = NULL;
13558 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13559
13560 bpstat_do_actions_1 (&tmp_bs_p);
13561
13562 /* 'tmp_bs.commands' will usually be NULL by now, but
13563 bpstat_do_actions_1 may return early without processing the whole
13564 list. */
13565 do_cleanups (old_chain);
13566 }
13567
13568 /* The breakpoint_ops structure to be used on static tracepoints with
13569 markers (`-m'). */
13570
13571 static void
13572 strace_marker_create_sals_from_location (const struct event_location *location,
13573 struct linespec_result *canonical,
13574 enum bptype type_wanted)
13575 {
13576 struct linespec_sals lsal;
13577 const char *arg_start, *arg;
13578 char *str;
13579 struct cleanup *cleanup;
13580
13581 arg = arg_start = get_linespec_location (location);
13582 lsal.sals = decode_static_tracepoint_spec (&arg);
13583
13584 str = savestring (arg_start, arg - arg_start);
13585 cleanup = make_cleanup (xfree, str);
13586 canonical->location = new_linespec_location (&str);
13587 do_cleanups (cleanup);
13588
13589 lsal.canonical
13590 = xstrdup (event_location_to_string (canonical->location.get ()));
13591 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13592 }
13593
13594 static void
13595 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13596 struct linespec_result *canonical,
13597 char *cond_string,
13598 char *extra_string,
13599 enum bptype type_wanted,
13600 enum bpdisp disposition,
13601 int thread,
13602 int task, int ignore_count,
13603 const struct breakpoint_ops *ops,
13604 int from_tty, int enabled,
13605 int internal, unsigned flags)
13606 {
13607 int i;
13608 struct linespec_sals *lsal = VEC_index (linespec_sals,
13609 canonical->sals, 0);
13610
13611 /* If the user is creating a static tracepoint by marker id
13612 (strace -m MARKER_ID), then store the sals index, so that
13613 breakpoint_re_set can try to match up which of the newly
13614 found markers corresponds to this one, and, don't try to
13615 expand multiple locations for each sal, given than SALS
13616 already should contain all sals for MARKER_ID. */
13617
13618 for (i = 0; i < lsal->sals.nelts; ++i)
13619 {
13620 struct symtabs_and_lines expanded;
13621 struct tracepoint *tp;
13622 event_location_up location;
13623
13624 expanded.nelts = 1;
13625 expanded.sals = &lsal->sals.sals[i];
13626
13627 location = copy_event_location (canonical->location.get ());
13628
13629 tp = new tracepoint ();
13630 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13631 std::move (location), NULL,
13632 cond_string, extra_string,
13633 type_wanted, disposition,
13634 thread, task, ignore_count, ops,
13635 from_tty, enabled, internal, flags,
13636 canonical->special_display);
13637 /* Given that its possible to have multiple markers with
13638 the same string id, if the user is creating a static
13639 tracepoint by marker id ("strace -m MARKER_ID"), then
13640 store the sals index, so that breakpoint_re_set can
13641 try to match up which of the newly found markers
13642 corresponds to this one */
13643 tp->static_trace_marker_id_idx = i;
13644
13645 install_breakpoint (internal, &tp->base, 0);
13646 }
13647 }
13648
13649 static void
13650 strace_marker_decode_location (struct breakpoint *b,
13651 const struct event_location *location,
13652 struct program_space *search_pspace,
13653 struct symtabs_and_lines *sals)
13654 {
13655 struct tracepoint *tp = (struct tracepoint *) b;
13656 const char *s = get_linespec_location (location);
13657
13658 *sals = decode_static_tracepoint_spec (&s);
13659 if (sals->nelts > tp->static_trace_marker_id_idx)
13660 {
13661 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13662 sals->nelts = 1;
13663 }
13664 else
13665 error (_("marker %s not found"), tp->static_trace_marker_id);
13666 }
13667
13668 static struct breakpoint_ops strace_marker_breakpoint_ops;
13669
13670 static int
13671 strace_marker_p (struct breakpoint *b)
13672 {
13673 return b->ops == &strace_marker_breakpoint_ops;
13674 }
13675
13676 /* Delete a breakpoint and clean up all traces of it in the data
13677 structures. */
13678
13679 void
13680 delete_breakpoint (struct breakpoint *bpt)
13681 {
13682 struct breakpoint *b;
13683
13684 gdb_assert (bpt != NULL);
13685
13686 /* Has this bp already been deleted? This can happen because
13687 multiple lists can hold pointers to bp's. bpstat lists are
13688 especial culprits.
13689
13690 One example of this happening is a watchpoint's scope bp. When
13691 the scope bp triggers, we notice that the watchpoint is out of
13692 scope, and delete it. We also delete its scope bp. But the
13693 scope bp is marked "auto-deleting", and is already on a bpstat.
13694 That bpstat is then checked for auto-deleting bp's, which are
13695 deleted.
13696
13697 A real solution to this problem might involve reference counts in
13698 bp's, and/or giving them pointers back to their referencing
13699 bpstat's, and teaching delete_breakpoint to only free a bp's
13700 storage when no more references were extent. A cheaper bandaid
13701 was chosen. */
13702 if (bpt->type == bp_none)
13703 return;
13704
13705 /* At least avoid this stale reference until the reference counting
13706 of breakpoints gets resolved. */
13707 if (bpt->related_breakpoint != bpt)
13708 {
13709 struct breakpoint *related;
13710 struct watchpoint *w;
13711
13712 if (bpt->type == bp_watchpoint_scope)
13713 w = (struct watchpoint *) bpt->related_breakpoint;
13714 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13715 w = (struct watchpoint *) bpt;
13716 else
13717 w = NULL;
13718 if (w != NULL)
13719 watchpoint_del_at_next_stop (w);
13720
13721 /* Unlink bpt from the bpt->related_breakpoint ring. */
13722 for (related = bpt; related->related_breakpoint != bpt;
13723 related = related->related_breakpoint);
13724 related->related_breakpoint = bpt->related_breakpoint;
13725 bpt->related_breakpoint = bpt;
13726 }
13727
13728 /* watch_command_1 creates a watchpoint but only sets its number if
13729 update_watchpoint succeeds in creating its bp_locations. If there's
13730 a problem in that process, we'll be asked to delete the half-created
13731 watchpoint. In that case, don't announce the deletion. */
13732 if (bpt->number)
13733 observer_notify_breakpoint_deleted (bpt);
13734
13735 if (breakpoint_chain == bpt)
13736 breakpoint_chain = bpt->next;
13737
13738 ALL_BREAKPOINTS (b)
13739 if (b->next == bpt)
13740 {
13741 b->next = bpt->next;
13742 break;
13743 }
13744
13745 /* Be sure no bpstat's are pointing at the breakpoint after it's
13746 been freed. */
13747 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13748 in all threads for now. Note that we cannot just remove bpstats
13749 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13750 commands are associated with the bpstat; if we remove it here,
13751 then the later call to bpstat_do_actions (&stop_bpstat); in
13752 event-top.c won't do anything, and temporary breakpoints with
13753 commands won't work. */
13754
13755 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13756
13757 /* Now that breakpoint is removed from breakpoint list, update the
13758 global location list. This will remove locations that used to
13759 belong to this breakpoint. Do this before freeing the breakpoint
13760 itself, since remove_breakpoint looks at location's owner. It
13761 might be better design to have location completely
13762 self-contained, but it's not the case now. */
13763 update_global_location_list (UGLL_DONT_INSERT);
13764
13765 bpt->ops->dtor (bpt);
13766 /* On the chance that someone will soon try again to delete this
13767 same bp, we mark it as deleted before freeing its storage. */
13768 bpt->type = bp_none;
13769 delete bpt;
13770 }
13771
13772 static void
13773 do_delete_breakpoint_cleanup (void *b)
13774 {
13775 delete_breakpoint ((struct breakpoint *) b);
13776 }
13777
13778 struct cleanup *
13779 make_cleanup_delete_breakpoint (struct breakpoint *b)
13780 {
13781 return make_cleanup (do_delete_breakpoint_cleanup, b);
13782 }
13783
13784 /* Iterator function to call a user-provided callback function once
13785 for each of B and its related breakpoints. */
13786
13787 static void
13788 iterate_over_related_breakpoints (struct breakpoint *b,
13789 void (*function) (struct breakpoint *,
13790 void *),
13791 void *data)
13792 {
13793 struct breakpoint *related;
13794
13795 related = b;
13796 do
13797 {
13798 struct breakpoint *next;
13799
13800 /* FUNCTION may delete RELATED. */
13801 next = related->related_breakpoint;
13802
13803 if (next == related)
13804 {
13805 /* RELATED is the last ring entry. */
13806 function (related, data);
13807
13808 /* FUNCTION may have deleted it, so we'd never reach back to
13809 B. There's nothing left to do anyway, so just break
13810 out. */
13811 break;
13812 }
13813 else
13814 function (related, data);
13815
13816 related = next;
13817 }
13818 while (related != b);
13819 }
13820
13821 static void
13822 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13823 {
13824 delete_breakpoint (b);
13825 }
13826
13827 /* A callback for map_breakpoint_numbers that calls
13828 delete_breakpoint. */
13829
13830 static void
13831 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13832 {
13833 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13834 }
13835
13836 void
13837 delete_command (char *arg, int from_tty)
13838 {
13839 struct breakpoint *b, *b_tmp;
13840
13841 dont_repeat ();
13842
13843 if (arg == 0)
13844 {
13845 int breaks_to_delete = 0;
13846
13847 /* Delete all breakpoints if no argument. Do not delete
13848 internal breakpoints, these have to be deleted with an
13849 explicit breakpoint number argument. */
13850 ALL_BREAKPOINTS (b)
13851 if (user_breakpoint_p (b))
13852 {
13853 breaks_to_delete = 1;
13854 break;
13855 }
13856
13857 /* Ask user only if there are some breakpoints to delete. */
13858 if (!from_tty
13859 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13860 {
13861 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13862 if (user_breakpoint_p (b))
13863 delete_breakpoint (b);
13864 }
13865 }
13866 else
13867 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13868 }
13869
13870 /* Return true if all locations of B bound to PSPACE are pending. If
13871 PSPACE is NULL, all locations of all program spaces are
13872 considered. */
13873
13874 static int
13875 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13876 {
13877 struct bp_location *loc;
13878
13879 for (loc = b->loc; loc != NULL; loc = loc->next)
13880 if ((pspace == NULL
13881 || loc->pspace == pspace)
13882 && !loc->shlib_disabled
13883 && !loc->pspace->executing_startup)
13884 return 0;
13885 return 1;
13886 }
13887
13888 /* Subroutine of update_breakpoint_locations to simplify it.
13889 Return non-zero if multiple fns in list LOC have the same name.
13890 Null names are ignored. */
13891
13892 static int
13893 ambiguous_names_p (struct bp_location *loc)
13894 {
13895 struct bp_location *l;
13896 htab_t htab = htab_create_alloc (13, htab_hash_string,
13897 (int (*) (const void *,
13898 const void *)) streq,
13899 NULL, xcalloc, xfree);
13900
13901 for (l = loc; l != NULL; l = l->next)
13902 {
13903 const char **slot;
13904 const char *name = l->function_name;
13905
13906 /* Allow for some names to be NULL, ignore them. */
13907 if (name == NULL)
13908 continue;
13909
13910 slot = (const char **) htab_find_slot (htab, (const void *) name,
13911 INSERT);
13912 /* NOTE: We can assume slot != NULL here because xcalloc never
13913 returns NULL. */
13914 if (*slot != NULL)
13915 {
13916 htab_delete (htab);
13917 return 1;
13918 }
13919 *slot = name;
13920 }
13921
13922 htab_delete (htab);
13923 return 0;
13924 }
13925
13926 /* When symbols change, it probably means the sources changed as well,
13927 and it might mean the static tracepoint markers are no longer at
13928 the same address or line numbers they used to be at last we
13929 checked. Losing your static tracepoints whenever you rebuild is
13930 undesirable. This function tries to resync/rematch gdb static
13931 tracepoints with the markers on the target, for static tracepoints
13932 that have not been set by marker id. Static tracepoint that have
13933 been set by marker id are reset by marker id in breakpoint_re_set.
13934 The heuristic is:
13935
13936 1) For a tracepoint set at a specific address, look for a marker at
13937 the old PC. If one is found there, assume to be the same marker.
13938 If the name / string id of the marker found is different from the
13939 previous known name, assume that means the user renamed the marker
13940 in the sources, and output a warning.
13941
13942 2) For a tracepoint set at a given line number, look for a marker
13943 at the new address of the old line number. If one is found there,
13944 assume to be the same marker. If the name / string id of the
13945 marker found is different from the previous known name, assume that
13946 means the user renamed the marker in the sources, and output a
13947 warning.
13948
13949 3) If a marker is no longer found at the same address or line, it
13950 may mean the marker no longer exists. But it may also just mean
13951 the code changed a bit. Maybe the user added a few lines of code
13952 that made the marker move up or down (in line number terms). Ask
13953 the target for info about the marker with the string id as we knew
13954 it. If found, update line number and address in the matching
13955 static tracepoint. This will get confused if there's more than one
13956 marker with the same ID (possible in UST, although unadvised
13957 precisely because it confuses tools). */
13958
13959 static struct symtab_and_line
13960 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13961 {
13962 struct tracepoint *tp = (struct tracepoint *) b;
13963 struct static_tracepoint_marker marker;
13964 CORE_ADDR pc;
13965
13966 pc = sal.pc;
13967 if (sal.line)
13968 find_line_pc (sal.symtab, sal.line, &pc);
13969
13970 if (target_static_tracepoint_marker_at (pc, &marker))
13971 {
13972 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13973 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13974 b->number,
13975 tp->static_trace_marker_id, marker.str_id);
13976
13977 xfree (tp->static_trace_marker_id);
13978 tp->static_trace_marker_id = xstrdup (marker.str_id);
13979 release_static_tracepoint_marker (&marker);
13980
13981 return sal;
13982 }
13983
13984 /* Old marker wasn't found on target at lineno. Try looking it up
13985 by string ID. */
13986 if (!sal.explicit_pc
13987 && sal.line != 0
13988 && sal.symtab != NULL
13989 && tp->static_trace_marker_id != NULL)
13990 {
13991 VEC(static_tracepoint_marker_p) *markers;
13992
13993 markers
13994 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13995
13996 if (!VEC_empty(static_tracepoint_marker_p, markers))
13997 {
13998 struct symtab_and_line sal2;
13999 struct symbol *sym;
14000 struct static_tracepoint_marker *tpmarker;
14001 struct ui_out *uiout = current_uiout;
14002 struct explicit_location explicit_loc;
14003
14004 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
14005
14006 xfree (tp->static_trace_marker_id);
14007 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
14008
14009 warning (_("marker for static tracepoint %d (%s) not "
14010 "found at previous line number"),
14011 b->number, tp->static_trace_marker_id);
14012
14013 init_sal (&sal2);
14014
14015 sal2.pc = tpmarker->address;
14016
14017 sal2 = find_pc_line (tpmarker->address, 0);
14018 sym = find_pc_sect_function (tpmarker->address, NULL);
14019 uiout->text ("Now in ");
14020 if (sym)
14021 {
14022 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
14023 uiout->text (" at ");
14024 }
14025 uiout->field_string ("file",
14026 symtab_to_filename_for_display (sal2.symtab));
14027 uiout->text (":");
14028
14029 if (uiout->is_mi_like_p ())
14030 {
14031 const char *fullname = symtab_to_fullname (sal2.symtab);
14032
14033 uiout->field_string ("fullname", fullname);
14034 }
14035
14036 uiout->field_int ("line", sal2.line);
14037 uiout->text ("\n");
14038
14039 b->loc->line_number = sal2.line;
14040 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
14041
14042 b->location.reset (NULL);
14043 initialize_explicit_location (&explicit_loc);
14044 explicit_loc.source_filename
14045 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
14046 explicit_loc.line_offset.offset = b->loc->line_number;
14047 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
14048 b->location = new_explicit_location (&explicit_loc);
14049
14050 /* Might be nice to check if function changed, and warn if
14051 so. */
14052
14053 release_static_tracepoint_marker (tpmarker);
14054 }
14055 }
14056 return sal;
14057 }
14058
14059 /* Returns 1 iff locations A and B are sufficiently same that
14060 we don't need to report breakpoint as changed. */
14061
14062 static int
14063 locations_are_equal (struct bp_location *a, struct bp_location *b)
14064 {
14065 while (a && b)
14066 {
14067 if (a->address != b->address)
14068 return 0;
14069
14070 if (a->shlib_disabled != b->shlib_disabled)
14071 return 0;
14072
14073 if (a->enabled != b->enabled)
14074 return 0;
14075
14076 a = a->next;
14077 b = b->next;
14078 }
14079
14080 if ((a == NULL) != (b == NULL))
14081 return 0;
14082
14083 return 1;
14084 }
14085
14086 /* Split all locations of B that are bound to PSPACE out of B's
14087 location list to a separate list and return that list's head. If
14088 PSPACE is NULL, hoist out all locations of B. */
14089
14090 static struct bp_location *
14091 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
14092 {
14093 struct bp_location head;
14094 struct bp_location *i = b->loc;
14095 struct bp_location **i_link = &b->loc;
14096 struct bp_location *hoisted = &head;
14097
14098 if (pspace == NULL)
14099 {
14100 i = b->loc;
14101 b->loc = NULL;
14102 return i;
14103 }
14104
14105 head.next = NULL;
14106
14107 while (i != NULL)
14108 {
14109 if (i->pspace == pspace)
14110 {
14111 *i_link = i->next;
14112 i->next = NULL;
14113 hoisted->next = i;
14114 hoisted = i;
14115 }
14116 else
14117 i_link = &i->next;
14118 i = *i_link;
14119 }
14120
14121 return head.next;
14122 }
14123
14124 /* Create new breakpoint locations for B (a hardware or software
14125 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
14126 zero, then B is a ranged breakpoint. Only recreates locations for
14127 FILTER_PSPACE. Locations of other program spaces are left
14128 untouched. */
14129
14130 void
14131 update_breakpoint_locations (struct breakpoint *b,
14132 struct program_space *filter_pspace,
14133 struct symtabs_and_lines sals,
14134 struct symtabs_and_lines sals_end)
14135 {
14136 int i;
14137 struct bp_location *existing_locations;
14138
14139 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14140 {
14141 /* Ranged breakpoints have only one start location and one end
14142 location. */
14143 b->enable_state = bp_disabled;
14144 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14145 "multiple locations found\n"),
14146 b->number);
14147 return;
14148 }
14149
14150 /* If there's no new locations, and all existing locations are
14151 pending, don't do anything. This optimizes the common case where
14152 all locations are in the same shared library, that was unloaded.
14153 We'd like to retain the location, so that when the library is
14154 loaded again, we don't loose the enabled/disabled status of the
14155 individual locations. */
14156 if (all_locations_are_pending (b, filter_pspace) && sals.nelts == 0)
14157 return;
14158
14159 existing_locations = hoist_existing_locations (b, filter_pspace);
14160
14161 for (i = 0; i < sals.nelts; ++i)
14162 {
14163 struct bp_location *new_loc;
14164
14165 switch_to_program_space_and_thread (sals.sals[i].pspace);
14166
14167 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14168
14169 /* Reparse conditions, they might contain references to the
14170 old symtab. */
14171 if (b->cond_string != NULL)
14172 {
14173 const char *s;
14174
14175 s = b->cond_string;
14176 TRY
14177 {
14178 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14179 block_for_pc (sals.sals[i].pc),
14180 0);
14181 }
14182 CATCH (e, RETURN_MASK_ERROR)
14183 {
14184 warning (_("failed to reevaluate condition "
14185 "for breakpoint %d: %s"),
14186 b->number, e.message);
14187 new_loc->enabled = 0;
14188 }
14189 END_CATCH
14190 }
14191
14192 if (sals_end.nelts)
14193 {
14194 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14195
14196 new_loc->length = end - sals.sals[0].pc + 1;
14197 }
14198 }
14199
14200 /* If possible, carry over 'disable' status from existing
14201 breakpoints. */
14202 {
14203 struct bp_location *e = existing_locations;
14204 /* If there are multiple breakpoints with the same function name,
14205 e.g. for inline functions, comparing function names won't work.
14206 Instead compare pc addresses; this is just a heuristic as things
14207 may have moved, but in practice it gives the correct answer
14208 often enough until a better solution is found. */
14209 int have_ambiguous_names = ambiguous_names_p (b->loc);
14210
14211 for (; e; e = e->next)
14212 {
14213 if (!e->enabled && e->function_name)
14214 {
14215 struct bp_location *l = b->loc;
14216 if (have_ambiguous_names)
14217 {
14218 for (; l; l = l->next)
14219 if (breakpoint_locations_match (e, l))
14220 {
14221 l->enabled = 0;
14222 break;
14223 }
14224 }
14225 else
14226 {
14227 for (; l; l = l->next)
14228 if (l->function_name
14229 && strcmp (e->function_name, l->function_name) == 0)
14230 {
14231 l->enabled = 0;
14232 break;
14233 }
14234 }
14235 }
14236 }
14237 }
14238
14239 if (!locations_are_equal (existing_locations, b->loc))
14240 observer_notify_breakpoint_modified (b);
14241 }
14242
14243 /* Find the SaL locations corresponding to the given LOCATION.
14244 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14245
14246 static struct symtabs_and_lines
14247 location_to_sals (struct breakpoint *b, struct event_location *location,
14248 struct program_space *search_pspace, int *found)
14249 {
14250 struct symtabs_and_lines sals = {0};
14251 struct gdb_exception exception = exception_none;
14252
14253 gdb_assert (b->ops != NULL);
14254
14255 TRY
14256 {
14257 b->ops->decode_location (b, location, search_pspace, &sals);
14258 }
14259 CATCH (e, RETURN_MASK_ERROR)
14260 {
14261 int not_found_and_ok = 0;
14262
14263 exception = e;
14264
14265 /* For pending breakpoints, it's expected that parsing will
14266 fail until the right shared library is loaded. User has
14267 already told to create pending breakpoints and don't need
14268 extra messages. If breakpoint is in bp_shlib_disabled
14269 state, then user already saw the message about that
14270 breakpoint being disabled, and don't want to see more
14271 errors. */
14272 if (e.error == NOT_FOUND_ERROR
14273 && (b->condition_not_parsed
14274 || (b->loc != NULL
14275 && search_pspace != NULL
14276 && b->loc->pspace != search_pspace)
14277 || (b->loc && b->loc->shlib_disabled)
14278 || (b->loc && b->loc->pspace->executing_startup)
14279 || b->enable_state == bp_disabled))
14280 not_found_and_ok = 1;
14281
14282 if (!not_found_and_ok)
14283 {
14284 /* We surely don't want to warn about the same breakpoint
14285 10 times. One solution, implemented here, is disable
14286 the breakpoint on error. Another solution would be to
14287 have separate 'warning emitted' flag. Since this
14288 happens only when a binary has changed, I don't know
14289 which approach is better. */
14290 b->enable_state = bp_disabled;
14291 throw_exception (e);
14292 }
14293 }
14294 END_CATCH
14295
14296 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
14297 {
14298 int i;
14299
14300 for (i = 0; i < sals.nelts; ++i)
14301 resolve_sal_pc (&sals.sals[i]);
14302 if (b->condition_not_parsed && b->extra_string != NULL)
14303 {
14304 char *cond_string, *extra_string;
14305 int thread, task;
14306
14307 find_condition_and_thread (b->extra_string, sals.sals[0].pc,
14308 &cond_string, &thread, &task,
14309 &extra_string);
14310 gdb_assert (b->cond_string == NULL);
14311 if (cond_string)
14312 b->cond_string = cond_string;
14313 b->thread = thread;
14314 b->task = task;
14315 if (extra_string)
14316 {
14317 xfree (b->extra_string);
14318 b->extra_string = extra_string;
14319 }
14320 b->condition_not_parsed = 0;
14321 }
14322
14323 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14324 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14325
14326 *found = 1;
14327 }
14328 else
14329 *found = 0;
14330
14331 return sals;
14332 }
14333
14334 /* The default re_set method, for typical hardware or software
14335 breakpoints. Reevaluate the breakpoint and recreate its
14336 locations. */
14337
14338 static void
14339 breakpoint_re_set_default (struct breakpoint *b)
14340 {
14341 int found;
14342 struct symtabs_and_lines sals, sals_end;
14343 struct symtabs_and_lines expanded = {0};
14344 struct symtabs_and_lines expanded_end = {0};
14345 struct program_space *filter_pspace = current_program_space;
14346
14347 sals = location_to_sals (b, b->location.get (), filter_pspace, &found);
14348 if (found)
14349 {
14350 make_cleanup (xfree, sals.sals);
14351 expanded = sals;
14352 }
14353
14354 if (b->location_range_end != NULL)
14355 {
14356 sals_end = location_to_sals (b, b->location_range_end.get (),
14357 filter_pspace, &found);
14358 if (found)
14359 {
14360 make_cleanup (xfree, sals_end.sals);
14361 expanded_end = sals_end;
14362 }
14363 }
14364
14365 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
14366 }
14367
14368 /* Default method for creating SALs from an address string. It basically
14369 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14370
14371 static void
14372 create_sals_from_location_default (const struct event_location *location,
14373 struct linespec_result *canonical,
14374 enum bptype type_wanted)
14375 {
14376 parse_breakpoint_sals (location, canonical);
14377 }
14378
14379 /* Call create_breakpoints_sal for the given arguments. This is the default
14380 function for the `create_breakpoints_sal' method of
14381 breakpoint_ops. */
14382
14383 static void
14384 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14385 struct linespec_result *canonical,
14386 char *cond_string,
14387 char *extra_string,
14388 enum bptype type_wanted,
14389 enum bpdisp disposition,
14390 int thread,
14391 int task, int ignore_count,
14392 const struct breakpoint_ops *ops,
14393 int from_tty, int enabled,
14394 int internal, unsigned flags)
14395 {
14396 create_breakpoints_sal (gdbarch, canonical, cond_string,
14397 extra_string,
14398 type_wanted, disposition,
14399 thread, task, ignore_count, ops, from_tty,
14400 enabled, internal, flags);
14401 }
14402
14403 /* Decode the line represented by S by calling decode_line_full. This is the
14404 default function for the `decode_location' method of breakpoint_ops. */
14405
14406 static void
14407 decode_location_default (struct breakpoint *b,
14408 const struct event_location *location,
14409 struct program_space *search_pspace,
14410 struct symtabs_and_lines *sals)
14411 {
14412 struct linespec_result canonical;
14413
14414 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
14415 (struct symtab *) NULL, 0,
14416 &canonical, multiple_symbols_all,
14417 b->filter);
14418
14419 /* We should get 0 or 1 resulting SALs. */
14420 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14421
14422 if (VEC_length (linespec_sals, canonical.sals) > 0)
14423 {
14424 struct linespec_sals *lsal;
14425
14426 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14427 *sals = lsal->sals;
14428 /* Arrange it so the destructor does not free the
14429 contents. */
14430 lsal->sals.sals = NULL;
14431 }
14432 }
14433
14434 /* Prepare the global context for a re-set of breakpoint B. */
14435
14436 static struct cleanup *
14437 prepare_re_set_context (struct breakpoint *b)
14438 {
14439 input_radix = b->input_radix;
14440 set_language (b->language);
14441
14442 return make_cleanup (null_cleanup, NULL);
14443 }
14444
14445 /* Reset a breakpoint given it's struct breakpoint * BINT.
14446 The value we return ends up being the return value from catch_errors.
14447 Unused in this case. */
14448
14449 static int
14450 breakpoint_re_set_one (void *bint)
14451 {
14452 /* Get past catch_errs. */
14453 struct breakpoint *b = (struct breakpoint *) bint;
14454 struct cleanup *cleanups;
14455
14456 cleanups = prepare_re_set_context (b);
14457 b->ops->re_set (b);
14458 do_cleanups (cleanups);
14459 return 0;
14460 }
14461
14462 /* Re-set breakpoint locations for the current program space.
14463 Locations bound to other program spaces are left untouched. */
14464
14465 void
14466 breakpoint_re_set (void)
14467 {
14468 struct breakpoint *b, *b_tmp;
14469 enum language save_language;
14470 int save_input_radix;
14471
14472 save_language = current_language->la_language;
14473 save_input_radix = input_radix;
14474
14475 {
14476 scoped_restore_current_pspace_and_thread restore_pspace_thread;
14477
14478 /* Note: we must not try to insert locations until after all
14479 breakpoints have been re-set. Otherwise, e.g., when re-setting
14480 breakpoint 1, we'd insert the locations of breakpoint 2, which
14481 hadn't been re-set yet, and thus may have stale locations. */
14482
14483 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14484 {
14485 /* Format possible error msg. */
14486 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14487 b->number);
14488 struct cleanup *cleanups = make_cleanup (xfree, message);
14489 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14490 do_cleanups (cleanups);
14491 }
14492 set_language (save_language);
14493 input_radix = save_input_radix;
14494
14495 jit_breakpoint_re_set ();
14496 }
14497
14498 create_overlay_event_breakpoint ();
14499 create_longjmp_master_breakpoint ();
14500 create_std_terminate_master_breakpoint ();
14501 create_exception_master_breakpoint ();
14502
14503 /* Now we can insert. */
14504 update_global_location_list (UGLL_MAY_INSERT);
14505 }
14506 \f
14507 /* Reset the thread number of this breakpoint:
14508
14509 - If the breakpoint is for all threads, leave it as-is.
14510 - Else, reset it to the current thread for inferior_ptid. */
14511 void
14512 breakpoint_re_set_thread (struct breakpoint *b)
14513 {
14514 if (b->thread != -1)
14515 {
14516 if (in_thread_list (inferior_ptid))
14517 b->thread = ptid_to_global_thread_id (inferior_ptid);
14518
14519 /* We're being called after following a fork. The new fork is
14520 selected as current, and unless this was a vfork will have a
14521 different program space from the original thread. Reset that
14522 as well. */
14523 b->loc->pspace = current_program_space;
14524 }
14525 }
14526
14527 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14528 If from_tty is nonzero, it prints a message to that effect,
14529 which ends with a period (no newline). */
14530
14531 void
14532 set_ignore_count (int bptnum, int count, int from_tty)
14533 {
14534 struct breakpoint *b;
14535
14536 if (count < 0)
14537 count = 0;
14538
14539 ALL_BREAKPOINTS (b)
14540 if (b->number == bptnum)
14541 {
14542 if (is_tracepoint (b))
14543 {
14544 if (from_tty && count != 0)
14545 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14546 bptnum);
14547 return;
14548 }
14549
14550 b->ignore_count = count;
14551 if (from_tty)
14552 {
14553 if (count == 0)
14554 printf_filtered (_("Will stop next time "
14555 "breakpoint %d is reached."),
14556 bptnum);
14557 else if (count == 1)
14558 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14559 bptnum);
14560 else
14561 printf_filtered (_("Will ignore next %d "
14562 "crossings of breakpoint %d."),
14563 count, bptnum);
14564 }
14565 observer_notify_breakpoint_modified (b);
14566 return;
14567 }
14568
14569 error (_("No breakpoint number %d."), bptnum);
14570 }
14571
14572 /* Command to set ignore-count of breakpoint N to COUNT. */
14573
14574 static void
14575 ignore_command (char *args, int from_tty)
14576 {
14577 char *p = args;
14578 int num;
14579
14580 if (p == 0)
14581 error_no_arg (_("a breakpoint number"));
14582
14583 num = get_number (&p);
14584 if (num == 0)
14585 error (_("bad breakpoint number: '%s'"), args);
14586 if (*p == 0)
14587 error (_("Second argument (specified ignore-count) is missing."));
14588
14589 set_ignore_count (num,
14590 longest_to_int (value_as_long (parse_and_eval (p))),
14591 from_tty);
14592 if (from_tty)
14593 printf_filtered ("\n");
14594 }
14595 \f
14596 /* Call FUNCTION on each of the breakpoints
14597 whose numbers are given in ARGS. */
14598
14599 static void
14600 map_breakpoint_numbers (const char *args,
14601 void (*function) (struct breakpoint *,
14602 void *),
14603 void *data)
14604 {
14605 int num;
14606 struct breakpoint *b, *tmp;
14607
14608 if (args == 0 || *args == '\0')
14609 error_no_arg (_("one or more breakpoint numbers"));
14610
14611 number_or_range_parser parser (args);
14612
14613 while (!parser.finished ())
14614 {
14615 const char *p = parser.cur_tok ();
14616 bool match = false;
14617
14618 num = parser.get_number ();
14619 if (num == 0)
14620 {
14621 warning (_("bad breakpoint number at or near '%s'"), p);
14622 }
14623 else
14624 {
14625 ALL_BREAKPOINTS_SAFE (b, tmp)
14626 if (b->number == num)
14627 {
14628 match = true;
14629 function (b, data);
14630 break;
14631 }
14632 if (!match)
14633 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14634 }
14635 }
14636 }
14637
14638 static struct bp_location *
14639 find_location_by_number (char *number)
14640 {
14641 char *dot = strchr (number, '.');
14642 char *p1;
14643 int bp_num;
14644 int loc_num;
14645 struct breakpoint *b;
14646 struct bp_location *loc;
14647
14648 *dot = '\0';
14649
14650 p1 = number;
14651 bp_num = get_number (&p1);
14652 if (bp_num == 0)
14653 error (_("Bad breakpoint number '%s'"), number);
14654
14655 ALL_BREAKPOINTS (b)
14656 if (b->number == bp_num)
14657 {
14658 break;
14659 }
14660
14661 if (!b || b->number != bp_num)
14662 error (_("Bad breakpoint number '%s'"), number);
14663
14664 p1 = dot+1;
14665 loc_num = get_number (&p1);
14666 if (loc_num == 0)
14667 error (_("Bad breakpoint location number '%s'"), number);
14668
14669 --loc_num;
14670 loc = b->loc;
14671 for (;loc_num && loc; --loc_num, loc = loc->next)
14672 ;
14673 if (!loc)
14674 error (_("Bad breakpoint location number '%s'"), dot+1);
14675
14676 return loc;
14677 }
14678
14679
14680 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14681 If from_tty is nonzero, it prints a message to that effect,
14682 which ends with a period (no newline). */
14683
14684 void
14685 disable_breakpoint (struct breakpoint *bpt)
14686 {
14687 /* Never disable a watchpoint scope breakpoint; we want to
14688 hit them when we leave scope so we can delete both the
14689 watchpoint and its scope breakpoint at that time. */
14690 if (bpt->type == bp_watchpoint_scope)
14691 return;
14692
14693 bpt->enable_state = bp_disabled;
14694
14695 /* Mark breakpoint locations modified. */
14696 mark_breakpoint_modified (bpt);
14697
14698 if (target_supports_enable_disable_tracepoint ()
14699 && current_trace_status ()->running && is_tracepoint (bpt))
14700 {
14701 struct bp_location *location;
14702
14703 for (location = bpt->loc; location; location = location->next)
14704 target_disable_tracepoint (location);
14705 }
14706
14707 update_global_location_list (UGLL_DONT_INSERT);
14708
14709 observer_notify_breakpoint_modified (bpt);
14710 }
14711
14712 /* A callback for iterate_over_related_breakpoints. */
14713
14714 static void
14715 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14716 {
14717 disable_breakpoint (b);
14718 }
14719
14720 /* A callback for map_breakpoint_numbers that calls
14721 disable_breakpoint. */
14722
14723 static void
14724 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14725 {
14726 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14727 }
14728
14729 static void
14730 disable_command (char *args, int from_tty)
14731 {
14732 if (args == 0)
14733 {
14734 struct breakpoint *bpt;
14735
14736 ALL_BREAKPOINTS (bpt)
14737 if (user_breakpoint_p (bpt))
14738 disable_breakpoint (bpt);
14739 }
14740 else
14741 {
14742 char *num = extract_arg (&args);
14743
14744 while (num)
14745 {
14746 if (strchr (num, '.'))
14747 {
14748 struct bp_location *loc = find_location_by_number (num);
14749
14750 if (loc)
14751 {
14752 if (loc->enabled)
14753 {
14754 loc->enabled = 0;
14755 mark_breakpoint_location_modified (loc);
14756 }
14757 if (target_supports_enable_disable_tracepoint ()
14758 && current_trace_status ()->running && loc->owner
14759 && is_tracepoint (loc->owner))
14760 target_disable_tracepoint (loc);
14761 }
14762 update_global_location_list (UGLL_DONT_INSERT);
14763 }
14764 else
14765 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14766 num = extract_arg (&args);
14767 }
14768 }
14769 }
14770
14771 static void
14772 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14773 int count)
14774 {
14775 int target_resources_ok;
14776
14777 if (bpt->type == bp_hardware_breakpoint)
14778 {
14779 int i;
14780 i = hw_breakpoint_used_count ();
14781 target_resources_ok =
14782 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14783 i + 1, 0);
14784 if (target_resources_ok == 0)
14785 error (_("No hardware breakpoint support in the target."));
14786 else if (target_resources_ok < 0)
14787 error (_("Hardware breakpoints used exceeds limit."));
14788 }
14789
14790 if (is_watchpoint (bpt))
14791 {
14792 /* Initialize it just to avoid a GCC false warning. */
14793 enum enable_state orig_enable_state = bp_disabled;
14794
14795 TRY
14796 {
14797 struct watchpoint *w = (struct watchpoint *) bpt;
14798
14799 orig_enable_state = bpt->enable_state;
14800 bpt->enable_state = bp_enabled;
14801 update_watchpoint (w, 1 /* reparse */);
14802 }
14803 CATCH (e, RETURN_MASK_ALL)
14804 {
14805 bpt->enable_state = orig_enable_state;
14806 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14807 bpt->number);
14808 return;
14809 }
14810 END_CATCH
14811 }
14812
14813 bpt->enable_state = bp_enabled;
14814
14815 /* Mark breakpoint locations modified. */
14816 mark_breakpoint_modified (bpt);
14817
14818 if (target_supports_enable_disable_tracepoint ()
14819 && current_trace_status ()->running && is_tracepoint (bpt))
14820 {
14821 struct bp_location *location;
14822
14823 for (location = bpt->loc; location; location = location->next)
14824 target_enable_tracepoint (location);
14825 }
14826
14827 bpt->disposition = disposition;
14828 bpt->enable_count = count;
14829 update_global_location_list (UGLL_MAY_INSERT);
14830
14831 observer_notify_breakpoint_modified (bpt);
14832 }
14833
14834
14835 void
14836 enable_breakpoint (struct breakpoint *bpt)
14837 {
14838 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14839 }
14840
14841 static void
14842 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14843 {
14844 enable_breakpoint (bpt);
14845 }
14846
14847 /* A callback for map_breakpoint_numbers that calls
14848 enable_breakpoint. */
14849
14850 static void
14851 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14852 {
14853 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14854 }
14855
14856 /* The enable command enables the specified breakpoints (or all defined
14857 breakpoints) so they once again become (or continue to be) effective
14858 in stopping the inferior. */
14859
14860 static void
14861 enable_command (char *args, int from_tty)
14862 {
14863 if (args == 0)
14864 {
14865 struct breakpoint *bpt;
14866
14867 ALL_BREAKPOINTS (bpt)
14868 if (user_breakpoint_p (bpt))
14869 enable_breakpoint (bpt);
14870 }
14871 else
14872 {
14873 char *num = extract_arg (&args);
14874
14875 while (num)
14876 {
14877 if (strchr (num, '.'))
14878 {
14879 struct bp_location *loc = find_location_by_number (num);
14880
14881 if (loc)
14882 {
14883 if (!loc->enabled)
14884 {
14885 loc->enabled = 1;
14886 mark_breakpoint_location_modified (loc);
14887 }
14888 if (target_supports_enable_disable_tracepoint ()
14889 && current_trace_status ()->running && loc->owner
14890 && is_tracepoint (loc->owner))
14891 target_enable_tracepoint (loc);
14892 }
14893 update_global_location_list (UGLL_MAY_INSERT);
14894 }
14895 else
14896 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
14897 num = extract_arg (&args);
14898 }
14899 }
14900 }
14901
14902 /* This struct packages up disposition data for application to multiple
14903 breakpoints. */
14904
14905 struct disp_data
14906 {
14907 enum bpdisp disp;
14908 int count;
14909 };
14910
14911 static void
14912 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14913 {
14914 struct disp_data disp_data = *(struct disp_data *) arg;
14915
14916 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14917 }
14918
14919 static void
14920 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14921 {
14922 struct disp_data disp = { disp_disable, 1 };
14923
14924 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14925 }
14926
14927 static void
14928 enable_once_command (char *args, int from_tty)
14929 {
14930 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14931 }
14932
14933 static void
14934 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14935 {
14936 struct disp_data disp = { disp_disable, *(int *) countptr };
14937
14938 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14939 }
14940
14941 static void
14942 enable_count_command (char *args, int from_tty)
14943 {
14944 int count;
14945
14946 if (args == NULL)
14947 error_no_arg (_("hit count"));
14948
14949 count = get_number (&args);
14950
14951 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14952 }
14953
14954 static void
14955 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14956 {
14957 struct disp_data disp = { disp_del, 1 };
14958
14959 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14960 }
14961
14962 static void
14963 enable_delete_command (char *args, int from_tty)
14964 {
14965 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14966 }
14967 \f
14968 static void
14969 set_breakpoint_cmd (char *args, int from_tty)
14970 {
14971 }
14972
14973 static void
14974 show_breakpoint_cmd (char *args, int from_tty)
14975 {
14976 }
14977
14978 /* Invalidate last known value of any hardware watchpoint if
14979 the memory which that value represents has been written to by
14980 GDB itself. */
14981
14982 static void
14983 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14984 CORE_ADDR addr, ssize_t len,
14985 const bfd_byte *data)
14986 {
14987 struct breakpoint *bp;
14988
14989 ALL_BREAKPOINTS (bp)
14990 if (bp->enable_state == bp_enabled
14991 && bp->type == bp_hardware_watchpoint)
14992 {
14993 struct watchpoint *wp = (struct watchpoint *) bp;
14994
14995 if (wp->val_valid && wp->val)
14996 {
14997 struct bp_location *loc;
14998
14999 for (loc = bp->loc; loc != NULL; loc = loc->next)
15000 if (loc->loc_type == bp_loc_hardware_watchpoint
15001 && loc->address + loc->length > addr
15002 && addr + len > loc->address)
15003 {
15004 value_free (wp->val);
15005 wp->val = NULL;
15006 wp->val_valid = 0;
15007 }
15008 }
15009 }
15010 }
15011
15012 /* Create and insert a breakpoint for software single step. */
15013
15014 void
15015 insert_single_step_breakpoint (struct gdbarch *gdbarch,
15016 struct address_space *aspace,
15017 CORE_ADDR next_pc)
15018 {
15019 struct thread_info *tp = inferior_thread ();
15020 struct symtab_and_line sal;
15021 CORE_ADDR pc = next_pc;
15022
15023 if (tp->control.single_step_breakpoints == NULL)
15024 {
15025 tp->control.single_step_breakpoints
15026 = new_single_step_breakpoint (tp->global_num, gdbarch);
15027 }
15028
15029 sal = find_pc_line (pc, 0);
15030 sal.pc = pc;
15031 sal.section = find_pc_overlay (pc);
15032 sal.explicit_pc = 1;
15033 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
15034
15035 update_global_location_list (UGLL_INSERT);
15036 }
15037
15038 /* Insert single step breakpoints according to the current state. */
15039
15040 int
15041 insert_single_step_breakpoints (struct gdbarch *gdbarch)
15042 {
15043 struct regcache *regcache = get_current_regcache ();
15044 std::vector<CORE_ADDR> next_pcs;
15045
15046 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
15047
15048 if (!next_pcs.empty ())
15049 {
15050 struct frame_info *frame = get_current_frame ();
15051 struct address_space *aspace = get_frame_address_space (frame);
15052
15053 for (CORE_ADDR pc : next_pcs)
15054 insert_single_step_breakpoint (gdbarch, aspace, pc);
15055
15056 return 1;
15057 }
15058 else
15059 return 0;
15060 }
15061
15062 /* See breakpoint.h. */
15063
15064 int
15065 breakpoint_has_location_inserted_here (struct breakpoint *bp,
15066 struct address_space *aspace,
15067 CORE_ADDR pc)
15068 {
15069 struct bp_location *loc;
15070
15071 for (loc = bp->loc; loc != NULL; loc = loc->next)
15072 if (loc->inserted
15073 && breakpoint_location_address_match (loc, aspace, pc))
15074 return 1;
15075
15076 return 0;
15077 }
15078
15079 /* Check whether a software single-step breakpoint is inserted at
15080 PC. */
15081
15082 int
15083 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15084 CORE_ADDR pc)
15085 {
15086 struct breakpoint *bpt;
15087
15088 ALL_BREAKPOINTS (bpt)
15089 {
15090 if (bpt->type == bp_single_step
15091 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
15092 return 1;
15093 }
15094 return 0;
15095 }
15096
15097 /* Tracepoint-specific operations. */
15098
15099 /* Set tracepoint count to NUM. */
15100 static void
15101 set_tracepoint_count (int num)
15102 {
15103 tracepoint_count = num;
15104 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15105 }
15106
15107 static void
15108 trace_command (char *arg, int from_tty)
15109 {
15110 struct breakpoint_ops *ops;
15111
15112 event_location_up location = string_to_event_location (&arg,
15113 current_language);
15114 if (location != NULL
15115 && event_location_type (location.get ()) == PROBE_LOCATION)
15116 ops = &tracepoint_probe_breakpoint_ops;
15117 else
15118 ops = &tracepoint_breakpoint_ops;
15119
15120 create_breakpoint (get_current_arch (),
15121 location.get (),
15122 NULL, 0, arg, 1 /* parse arg */,
15123 0 /* tempflag */,
15124 bp_tracepoint /* type_wanted */,
15125 0 /* Ignore count */,
15126 pending_break_support,
15127 ops,
15128 from_tty,
15129 1 /* enabled */,
15130 0 /* internal */, 0);
15131 }
15132
15133 static void
15134 ftrace_command (char *arg, int from_tty)
15135 {
15136 event_location_up location = string_to_event_location (&arg,
15137 current_language);
15138 create_breakpoint (get_current_arch (),
15139 location.get (),
15140 NULL, 0, arg, 1 /* parse arg */,
15141 0 /* tempflag */,
15142 bp_fast_tracepoint /* type_wanted */,
15143 0 /* Ignore count */,
15144 pending_break_support,
15145 &tracepoint_breakpoint_ops,
15146 from_tty,
15147 1 /* enabled */,
15148 0 /* internal */, 0);
15149 }
15150
15151 /* strace command implementation. Creates a static tracepoint. */
15152
15153 static void
15154 strace_command (char *arg, int from_tty)
15155 {
15156 struct breakpoint_ops *ops;
15157 event_location_up location;
15158 struct cleanup *back_to;
15159
15160 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15161 or with a normal static tracepoint. */
15162 if (arg && startswith (arg, "-m") && isspace (arg[2]))
15163 {
15164 ops = &strace_marker_breakpoint_ops;
15165 location = new_linespec_location (&arg);
15166 }
15167 else
15168 {
15169 ops = &tracepoint_breakpoint_ops;
15170 location = string_to_event_location (&arg, current_language);
15171 }
15172
15173 create_breakpoint (get_current_arch (),
15174 location.get (),
15175 NULL, 0, arg, 1 /* parse arg */,
15176 0 /* tempflag */,
15177 bp_static_tracepoint /* type_wanted */,
15178 0 /* Ignore count */,
15179 pending_break_support,
15180 ops,
15181 from_tty,
15182 1 /* enabled */,
15183 0 /* internal */, 0);
15184 }
15185
15186 /* Set up a fake reader function that gets command lines from a linked
15187 list that was acquired during tracepoint uploading. */
15188
15189 static struct uploaded_tp *this_utp;
15190 static int next_cmd;
15191
15192 static char *
15193 read_uploaded_action (void)
15194 {
15195 char *rslt;
15196
15197 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15198
15199 next_cmd++;
15200
15201 return rslt;
15202 }
15203
15204 /* Given information about a tracepoint as recorded on a target (which
15205 can be either a live system or a trace file), attempt to create an
15206 equivalent GDB tracepoint. This is not a reliable process, since
15207 the target does not necessarily have all the information used when
15208 the tracepoint was originally defined. */
15209
15210 struct tracepoint *
15211 create_tracepoint_from_upload (struct uploaded_tp *utp)
15212 {
15213 char *addr_str, small_buf[100];
15214 struct tracepoint *tp;
15215
15216 if (utp->at_string)
15217 addr_str = utp->at_string;
15218 else
15219 {
15220 /* In the absence of a source location, fall back to raw
15221 address. Since there is no way to confirm that the address
15222 means the same thing as when the trace was started, warn the
15223 user. */
15224 warning (_("Uploaded tracepoint %d has no "
15225 "source location, using raw address"),
15226 utp->number);
15227 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15228 addr_str = small_buf;
15229 }
15230
15231 /* There's not much we can do with a sequence of bytecodes. */
15232 if (utp->cond && !utp->cond_string)
15233 warning (_("Uploaded tracepoint %d condition "
15234 "has no source form, ignoring it"),
15235 utp->number);
15236
15237 event_location_up location = string_to_event_location (&addr_str,
15238 current_language);
15239 if (!create_breakpoint (get_current_arch (),
15240 location.get (),
15241 utp->cond_string, -1, addr_str,
15242 0 /* parse cond/thread */,
15243 0 /* tempflag */,
15244 utp->type /* type_wanted */,
15245 0 /* Ignore count */,
15246 pending_break_support,
15247 &tracepoint_breakpoint_ops,
15248 0 /* from_tty */,
15249 utp->enabled /* enabled */,
15250 0 /* internal */,
15251 CREATE_BREAKPOINT_FLAGS_INSERTED))
15252 return NULL;
15253
15254 /* Get the tracepoint we just created. */
15255 tp = get_tracepoint (tracepoint_count);
15256 gdb_assert (tp != NULL);
15257
15258 if (utp->pass > 0)
15259 {
15260 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15261 tp->base.number);
15262
15263 trace_pass_command (small_buf, 0);
15264 }
15265
15266 /* If we have uploaded versions of the original commands, set up a
15267 special-purpose "reader" function and call the usual command line
15268 reader, then pass the result to the breakpoint command-setting
15269 function. */
15270 if (!VEC_empty (char_ptr, utp->cmd_strings))
15271 {
15272 command_line_up cmd_list;
15273
15274 this_utp = utp;
15275 next_cmd = 0;
15276
15277 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15278
15279 breakpoint_set_commands (&tp->base, std::move (cmd_list));
15280 }
15281 else if (!VEC_empty (char_ptr, utp->actions)
15282 || !VEC_empty (char_ptr, utp->step_actions))
15283 warning (_("Uploaded tracepoint %d actions "
15284 "have no source form, ignoring them"),
15285 utp->number);
15286
15287 /* Copy any status information that might be available. */
15288 tp->base.hit_count = utp->hit_count;
15289 tp->traceframe_usage = utp->traceframe_usage;
15290
15291 return tp;
15292 }
15293
15294 /* Print information on tracepoint number TPNUM_EXP, or all if
15295 omitted. */
15296
15297 static void
15298 tracepoints_info (char *args, int from_tty)
15299 {
15300 struct ui_out *uiout = current_uiout;
15301 int num_printed;
15302
15303 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15304
15305 if (num_printed == 0)
15306 {
15307 if (args == NULL || *args == '\0')
15308 uiout->message ("No tracepoints.\n");
15309 else
15310 uiout->message ("No tracepoint matching '%s'.\n", args);
15311 }
15312
15313 default_collect_info ();
15314 }
15315
15316 /* The 'enable trace' command enables tracepoints.
15317 Not supported by all targets. */
15318 static void
15319 enable_trace_command (char *args, int from_tty)
15320 {
15321 enable_command (args, from_tty);
15322 }
15323
15324 /* The 'disable trace' command disables tracepoints.
15325 Not supported by all targets. */
15326 static void
15327 disable_trace_command (char *args, int from_tty)
15328 {
15329 disable_command (args, from_tty);
15330 }
15331
15332 /* Remove a tracepoint (or all if no argument). */
15333 static void
15334 delete_trace_command (char *arg, int from_tty)
15335 {
15336 struct breakpoint *b, *b_tmp;
15337
15338 dont_repeat ();
15339
15340 if (arg == 0)
15341 {
15342 int breaks_to_delete = 0;
15343
15344 /* Delete all breakpoints if no argument.
15345 Do not delete internal or call-dummy breakpoints, these
15346 have to be deleted with an explicit breakpoint number
15347 argument. */
15348 ALL_TRACEPOINTS (b)
15349 if (is_tracepoint (b) && user_breakpoint_p (b))
15350 {
15351 breaks_to_delete = 1;
15352 break;
15353 }
15354
15355 /* Ask user only if there are some breakpoints to delete. */
15356 if (!from_tty
15357 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15358 {
15359 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15360 if (is_tracepoint (b) && user_breakpoint_p (b))
15361 delete_breakpoint (b);
15362 }
15363 }
15364 else
15365 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15366 }
15367
15368 /* Helper function for trace_pass_command. */
15369
15370 static void
15371 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15372 {
15373 tp->pass_count = count;
15374 observer_notify_breakpoint_modified (&tp->base);
15375 if (from_tty)
15376 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15377 tp->base.number, count);
15378 }
15379
15380 /* Set passcount for tracepoint.
15381
15382 First command argument is passcount, second is tracepoint number.
15383 If tracepoint number omitted, apply to most recently defined.
15384 Also accepts special argument "all". */
15385
15386 static void
15387 trace_pass_command (char *args, int from_tty)
15388 {
15389 struct tracepoint *t1;
15390 unsigned int count;
15391
15392 if (args == 0 || *args == 0)
15393 error (_("passcount command requires an "
15394 "argument (count + optional TP num)"));
15395
15396 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15397
15398 args = skip_spaces (args);
15399 if (*args && strncasecmp (args, "all", 3) == 0)
15400 {
15401 struct breakpoint *b;
15402
15403 args += 3; /* Skip special argument "all". */
15404 if (*args)
15405 error (_("Junk at end of arguments."));
15406
15407 ALL_TRACEPOINTS (b)
15408 {
15409 t1 = (struct tracepoint *) b;
15410 trace_pass_set_count (t1, count, from_tty);
15411 }
15412 }
15413 else if (*args == '\0')
15414 {
15415 t1 = get_tracepoint_by_number (&args, NULL);
15416 if (t1)
15417 trace_pass_set_count (t1, count, from_tty);
15418 }
15419 else
15420 {
15421 number_or_range_parser parser (args);
15422 while (!parser.finished ())
15423 {
15424 t1 = get_tracepoint_by_number (&args, &parser);
15425 if (t1)
15426 trace_pass_set_count (t1, count, from_tty);
15427 }
15428 }
15429 }
15430
15431 struct tracepoint *
15432 get_tracepoint (int num)
15433 {
15434 struct breakpoint *t;
15435
15436 ALL_TRACEPOINTS (t)
15437 if (t->number == num)
15438 return (struct tracepoint *) t;
15439
15440 return NULL;
15441 }
15442
15443 /* Find the tracepoint with the given target-side number (which may be
15444 different from the tracepoint number after disconnecting and
15445 reconnecting). */
15446
15447 struct tracepoint *
15448 get_tracepoint_by_number_on_target (int num)
15449 {
15450 struct breakpoint *b;
15451
15452 ALL_TRACEPOINTS (b)
15453 {
15454 struct tracepoint *t = (struct tracepoint *) b;
15455
15456 if (t->number_on_target == num)
15457 return t;
15458 }
15459
15460 return NULL;
15461 }
15462
15463 /* Utility: parse a tracepoint number and look it up in the list.
15464 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15465 If the argument is missing, the most recent tracepoint
15466 (tracepoint_count) is returned. */
15467
15468 struct tracepoint *
15469 get_tracepoint_by_number (char **arg,
15470 number_or_range_parser *parser)
15471 {
15472 struct breakpoint *t;
15473 int tpnum;
15474 char *instring = arg == NULL ? NULL : *arg;
15475
15476 if (parser != NULL)
15477 {
15478 gdb_assert (!parser->finished ());
15479 tpnum = parser->get_number ();
15480 }
15481 else if (arg == NULL || *arg == NULL || ! **arg)
15482 tpnum = tracepoint_count;
15483 else
15484 tpnum = get_number (arg);
15485
15486 if (tpnum <= 0)
15487 {
15488 if (instring && *instring)
15489 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15490 instring);
15491 else
15492 printf_filtered (_("No previous tracepoint\n"));
15493 return NULL;
15494 }
15495
15496 ALL_TRACEPOINTS (t)
15497 if (t->number == tpnum)
15498 {
15499 return (struct tracepoint *) t;
15500 }
15501
15502 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15503 return NULL;
15504 }
15505
15506 void
15507 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15508 {
15509 if (b->thread != -1)
15510 fprintf_unfiltered (fp, " thread %d", b->thread);
15511
15512 if (b->task != 0)
15513 fprintf_unfiltered (fp, " task %d", b->task);
15514
15515 fprintf_unfiltered (fp, "\n");
15516 }
15517
15518 /* Save information on user settable breakpoints (watchpoints, etc) to
15519 a new script file named FILENAME. If FILTER is non-NULL, call it
15520 on each breakpoint and only include the ones for which it returns
15521 non-zero. */
15522
15523 static void
15524 save_breakpoints (char *filename, int from_tty,
15525 int (*filter) (const struct breakpoint *))
15526 {
15527 struct breakpoint *tp;
15528 int any = 0;
15529 struct cleanup *cleanup;
15530 int extra_trace_bits = 0;
15531
15532 if (filename == 0 || *filename == 0)
15533 error (_("Argument required (file name in which to save)"));
15534
15535 /* See if we have anything to save. */
15536 ALL_BREAKPOINTS (tp)
15537 {
15538 /* Skip internal and momentary breakpoints. */
15539 if (!user_breakpoint_p (tp))
15540 continue;
15541
15542 /* If we have a filter, only save the breakpoints it accepts. */
15543 if (filter && !filter (tp))
15544 continue;
15545
15546 any = 1;
15547
15548 if (is_tracepoint (tp))
15549 {
15550 extra_trace_bits = 1;
15551
15552 /* We can stop searching. */
15553 break;
15554 }
15555 }
15556
15557 if (!any)
15558 {
15559 warning (_("Nothing to save."));
15560 return;
15561 }
15562
15563 filename = tilde_expand (filename);
15564 cleanup = make_cleanup (xfree, filename);
15565
15566 stdio_file fp;
15567
15568 if (!fp.open (filename, "w"))
15569 error (_("Unable to open file '%s' for saving (%s)"),
15570 filename, safe_strerror (errno));
15571
15572 if (extra_trace_bits)
15573 save_trace_state_variables (&fp);
15574
15575 ALL_BREAKPOINTS (tp)
15576 {
15577 /* Skip internal and momentary breakpoints. */
15578 if (!user_breakpoint_p (tp))
15579 continue;
15580
15581 /* If we have a filter, only save the breakpoints it accepts. */
15582 if (filter && !filter (tp))
15583 continue;
15584
15585 tp->ops->print_recreate (tp, &fp);
15586
15587 /* Note, we can't rely on tp->number for anything, as we can't
15588 assume the recreated breakpoint numbers will match. Use $bpnum
15589 instead. */
15590
15591 if (tp->cond_string)
15592 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15593
15594 if (tp->ignore_count)
15595 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15596
15597 if (tp->type != bp_dprintf && tp->commands)
15598 {
15599 fp.puts (" commands\n");
15600
15601 current_uiout->redirect (&fp);
15602 TRY
15603 {
15604 print_command_lines (current_uiout, tp->commands->commands, 2);
15605 }
15606 CATCH (ex, RETURN_MASK_ALL)
15607 {
15608 current_uiout->redirect (NULL);
15609 throw_exception (ex);
15610 }
15611 END_CATCH
15612
15613 current_uiout->redirect (NULL);
15614 fp.puts (" end\n");
15615 }
15616
15617 if (tp->enable_state == bp_disabled)
15618 fp.puts ("disable $bpnum\n");
15619
15620 /* If this is a multi-location breakpoint, check if the locations
15621 should be individually disabled. Watchpoint locations are
15622 special, and not user visible. */
15623 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15624 {
15625 struct bp_location *loc;
15626 int n = 1;
15627
15628 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15629 if (!loc->enabled)
15630 fp.printf ("disable $bpnum.%d\n", n);
15631 }
15632 }
15633
15634 if (extra_trace_bits && *default_collect)
15635 fp.printf ("set default-collect %s\n", default_collect);
15636
15637 if (from_tty)
15638 printf_filtered (_("Saved to file '%s'.\n"), filename);
15639 do_cleanups (cleanup);
15640 }
15641
15642 /* The `save breakpoints' command. */
15643
15644 static void
15645 save_breakpoints_command (char *args, int from_tty)
15646 {
15647 save_breakpoints (args, from_tty, NULL);
15648 }
15649
15650 /* The `save tracepoints' command. */
15651
15652 static void
15653 save_tracepoints_command (char *args, int from_tty)
15654 {
15655 save_breakpoints (args, from_tty, is_tracepoint);
15656 }
15657
15658 /* Create a vector of all tracepoints. */
15659
15660 VEC(breakpoint_p) *
15661 all_tracepoints (void)
15662 {
15663 VEC(breakpoint_p) *tp_vec = 0;
15664 struct breakpoint *tp;
15665
15666 ALL_TRACEPOINTS (tp)
15667 {
15668 VEC_safe_push (breakpoint_p, tp_vec, tp);
15669 }
15670
15671 return tp_vec;
15672 }
15673
15674 \f
15675 /* This help string is used to consolidate all the help string for specifying
15676 locations used by several commands. */
15677
15678 #define LOCATION_HELP_STRING \
15679 "Linespecs are colon-separated lists of location parameters, such as\n\
15680 source filename, function name, label name, and line number.\n\
15681 Example: To specify the start of a label named \"the_top\" in the\n\
15682 function \"fact\" in the file \"factorial.c\", use\n\
15683 \"factorial.c:fact:the_top\".\n\
15684 \n\
15685 Address locations begin with \"*\" and specify an exact address in the\n\
15686 program. Example: To specify the fourth byte past the start function\n\
15687 \"main\", use \"*main + 4\".\n\
15688 \n\
15689 Explicit locations are similar to linespecs but use an option/argument\n\
15690 syntax to specify location parameters.\n\
15691 Example: To specify the start of the label named \"the_top\" in the\n\
15692 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15693 -function fact -label the_top\".\n"
15694
15695 /* This help string is used for the break, hbreak, tbreak and thbreak
15696 commands. It is defined as a macro to prevent duplication.
15697 COMMAND should be a string constant containing the name of the
15698 command. */
15699
15700 #define BREAK_ARGS_HELP(command) \
15701 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15702 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15703 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15704 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15705 `-probe-dtrace' (for a DTrace probe).\n\
15706 LOCATION may be a linespec, address, or explicit location as described\n\
15707 below.\n\
15708 \n\
15709 With no LOCATION, uses current execution address of the selected\n\
15710 stack frame. This is useful for breaking on return to a stack frame.\n\
15711 \n\
15712 THREADNUM is the number from \"info threads\".\n\
15713 CONDITION is a boolean expression.\n\
15714 \n" LOCATION_HELP_STRING "\n\
15715 Multiple breakpoints at one place are permitted, and useful if their\n\
15716 conditions are different.\n\
15717 \n\
15718 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15719
15720 /* List of subcommands for "catch". */
15721 static struct cmd_list_element *catch_cmdlist;
15722
15723 /* List of subcommands for "tcatch". */
15724 static struct cmd_list_element *tcatch_cmdlist;
15725
15726 void
15727 add_catch_command (const char *name, const char *docstring,
15728 cmd_sfunc_ftype *sfunc,
15729 completer_ftype *completer,
15730 void *user_data_catch,
15731 void *user_data_tcatch)
15732 {
15733 struct cmd_list_element *command;
15734
15735 command = add_cmd (name, class_breakpoint, NULL, docstring,
15736 &catch_cmdlist);
15737 set_cmd_sfunc (command, sfunc);
15738 set_cmd_context (command, user_data_catch);
15739 set_cmd_completer (command, completer);
15740
15741 command = add_cmd (name, class_breakpoint, NULL, docstring,
15742 &tcatch_cmdlist);
15743 set_cmd_sfunc (command, sfunc);
15744 set_cmd_context (command, user_data_tcatch);
15745 set_cmd_completer (command, completer);
15746 }
15747
15748 static void
15749 save_command (char *arg, int from_tty)
15750 {
15751 printf_unfiltered (_("\"save\" must be followed by "
15752 "the name of a save subcommand.\n"));
15753 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15754 }
15755
15756 struct breakpoint *
15757 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15758 void *data)
15759 {
15760 struct breakpoint *b, *b_tmp;
15761
15762 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15763 {
15764 if ((*callback) (b, data))
15765 return b;
15766 }
15767
15768 return NULL;
15769 }
15770
15771 /* Zero if any of the breakpoint's locations could be a location where
15772 functions have been inlined, nonzero otherwise. */
15773
15774 static int
15775 is_non_inline_function (struct breakpoint *b)
15776 {
15777 /* The shared library event breakpoint is set on the address of a
15778 non-inline function. */
15779 if (b->type == bp_shlib_event)
15780 return 1;
15781
15782 return 0;
15783 }
15784
15785 /* Nonzero if the specified PC cannot be a location where functions
15786 have been inlined. */
15787
15788 int
15789 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15790 const struct target_waitstatus *ws)
15791 {
15792 struct breakpoint *b;
15793 struct bp_location *bl;
15794
15795 ALL_BREAKPOINTS (b)
15796 {
15797 if (!is_non_inline_function (b))
15798 continue;
15799
15800 for (bl = b->loc; bl != NULL; bl = bl->next)
15801 {
15802 if (!bl->shlib_disabled
15803 && bpstat_check_location (bl, aspace, pc, ws))
15804 return 1;
15805 }
15806 }
15807
15808 return 0;
15809 }
15810
15811 /* Remove any references to OBJFILE which is going to be freed. */
15812
15813 void
15814 breakpoint_free_objfile (struct objfile *objfile)
15815 {
15816 struct bp_location **locp, *loc;
15817
15818 ALL_BP_LOCATIONS (loc, locp)
15819 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15820 loc->symtab = NULL;
15821 }
15822
15823 void
15824 initialize_breakpoint_ops (void)
15825 {
15826 static int initialized = 0;
15827
15828 struct breakpoint_ops *ops;
15829
15830 if (initialized)
15831 return;
15832 initialized = 1;
15833
15834 /* The breakpoint_ops structure to be inherit by all kinds of
15835 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15836 internal and momentary breakpoints, etc.). */
15837 ops = &bkpt_base_breakpoint_ops;
15838 *ops = base_breakpoint_ops;
15839 ops->re_set = bkpt_re_set;
15840 ops->insert_location = bkpt_insert_location;
15841 ops->remove_location = bkpt_remove_location;
15842 ops->breakpoint_hit = bkpt_breakpoint_hit;
15843 ops->create_sals_from_location = bkpt_create_sals_from_location;
15844 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15845 ops->decode_location = bkpt_decode_location;
15846
15847 /* The breakpoint_ops structure to be used in regular breakpoints. */
15848 ops = &bkpt_breakpoint_ops;
15849 *ops = bkpt_base_breakpoint_ops;
15850 ops->re_set = bkpt_re_set;
15851 ops->resources_needed = bkpt_resources_needed;
15852 ops->print_it = bkpt_print_it;
15853 ops->print_mention = bkpt_print_mention;
15854 ops->print_recreate = bkpt_print_recreate;
15855
15856 /* Ranged breakpoints. */
15857 ops = &ranged_breakpoint_ops;
15858 *ops = bkpt_breakpoint_ops;
15859 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15860 ops->resources_needed = resources_needed_ranged_breakpoint;
15861 ops->print_it = print_it_ranged_breakpoint;
15862 ops->print_one = print_one_ranged_breakpoint;
15863 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15864 ops->print_mention = print_mention_ranged_breakpoint;
15865 ops->print_recreate = print_recreate_ranged_breakpoint;
15866
15867 /* Internal breakpoints. */
15868 ops = &internal_breakpoint_ops;
15869 *ops = bkpt_base_breakpoint_ops;
15870 ops->re_set = internal_bkpt_re_set;
15871 ops->check_status = internal_bkpt_check_status;
15872 ops->print_it = internal_bkpt_print_it;
15873 ops->print_mention = internal_bkpt_print_mention;
15874
15875 /* Momentary breakpoints. */
15876 ops = &momentary_breakpoint_ops;
15877 *ops = bkpt_base_breakpoint_ops;
15878 ops->re_set = momentary_bkpt_re_set;
15879 ops->check_status = momentary_bkpt_check_status;
15880 ops->print_it = momentary_bkpt_print_it;
15881 ops->print_mention = momentary_bkpt_print_mention;
15882
15883 /* Momentary breakpoints for bp_longjmp and bp_exception. */
15884 ops = &longjmp_breakpoint_ops;
15885 *ops = momentary_breakpoint_ops;
15886 ops->dtor = longjmp_bkpt_dtor;
15887
15888 /* Probe breakpoints. */
15889 ops = &bkpt_probe_breakpoint_ops;
15890 *ops = bkpt_breakpoint_ops;
15891 ops->insert_location = bkpt_probe_insert_location;
15892 ops->remove_location = bkpt_probe_remove_location;
15893 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15894 ops->decode_location = bkpt_probe_decode_location;
15895
15896 /* Watchpoints. */
15897 ops = &watchpoint_breakpoint_ops;
15898 *ops = base_breakpoint_ops;
15899 ops->dtor = dtor_watchpoint;
15900 ops->re_set = re_set_watchpoint;
15901 ops->insert_location = insert_watchpoint;
15902 ops->remove_location = remove_watchpoint;
15903 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15904 ops->check_status = check_status_watchpoint;
15905 ops->resources_needed = resources_needed_watchpoint;
15906 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15907 ops->print_it = print_it_watchpoint;
15908 ops->print_mention = print_mention_watchpoint;
15909 ops->print_recreate = print_recreate_watchpoint;
15910 ops->explains_signal = explains_signal_watchpoint;
15911
15912 /* Masked watchpoints. */
15913 ops = &masked_watchpoint_breakpoint_ops;
15914 *ops = watchpoint_breakpoint_ops;
15915 ops->insert_location = insert_masked_watchpoint;
15916 ops->remove_location = remove_masked_watchpoint;
15917 ops->resources_needed = resources_needed_masked_watchpoint;
15918 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15919 ops->print_it = print_it_masked_watchpoint;
15920 ops->print_one_detail = print_one_detail_masked_watchpoint;
15921 ops->print_mention = print_mention_masked_watchpoint;
15922 ops->print_recreate = print_recreate_masked_watchpoint;
15923
15924 /* Tracepoints. */
15925 ops = &tracepoint_breakpoint_ops;
15926 *ops = base_breakpoint_ops;
15927 ops->re_set = tracepoint_re_set;
15928 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15929 ops->print_one_detail = tracepoint_print_one_detail;
15930 ops->print_mention = tracepoint_print_mention;
15931 ops->print_recreate = tracepoint_print_recreate;
15932 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15933 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15934 ops->decode_location = tracepoint_decode_location;
15935
15936 /* Probe tracepoints. */
15937 ops = &tracepoint_probe_breakpoint_ops;
15938 *ops = tracepoint_breakpoint_ops;
15939 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15940 ops->decode_location = tracepoint_probe_decode_location;
15941
15942 /* Static tracepoints with marker (`-m'). */
15943 ops = &strace_marker_breakpoint_ops;
15944 *ops = tracepoint_breakpoint_ops;
15945 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15946 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15947 ops->decode_location = strace_marker_decode_location;
15948
15949 /* Fork catchpoints. */
15950 ops = &catch_fork_breakpoint_ops;
15951 *ops = base_breakpoint_ops;
15952 ops->insert_location = insert_catch_fork;
15953 ops->remove_location = remove_catch_fork;
15954 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15955 ops->print_it = print_it_catch_fork;
15956 ops->print_one = print_one_catch_fork;
15957 ops->print_mention = print_mention_catch_fork;
15958 ops->print_recreate = print_recreate_catch_fork;
15959
15960 /* Vfork catchpoints. */
15961 ops = &catch_vfork_breakpoint_ops;
15962 *ops = base_breakpoint_ops;
15963 ops->insert_location = insert_catch_vfork;
15964 ops->remove_location = remove_catch_vfork;
15965 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15966 ops->print_it = print_it_catch_vfork;
15967 ops->print_one = print_one_catch_vfork;
15968 ops->print_mention = print_mention_catch_vfork;
15969 ops->print_recreate = print_recreate_catch_vfork;
15970
15971 /* Exec catchpoints. */
15972 ops = &catch_exec_breakpoint_ops;
15973 *ops = base_breakpoint_ops;
15974 ops->dtor = dtor_catch_exec;
15975 ops->insert_location = insert_catch_exec;
15976 ops->remove_location = remove_catch_exec;
15977 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15978 ops->print_it = print_it_catch_exec;
15979 ops->print_one = print_one_catch_exec;
15980 ops->print_mention = print_mention_catch_exec;
15981 ops->print_recreate = print_recreate_catch_exec;
15982
15983 /* Solib-related catchpoints. */
15984 ops = &catch_solib_breakpoint_ops;
15985 *ops = base_breakpoint_ops;
15986 ops->dtor = dtor_catch_solib;
15987 ops->insert_location = insert_catch_solib;
15988 ops->remove_location = remove_catch_solib;
15989 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15990 ops->check_status = check_status_catch_solib;
15991 ops->print_it = print_it_catch_solib;
15992 ops->print_one = print_one_catch_solib;
15993 ops->print_mention = print_mention_catch_solib;
15994 ops->print_recreate = print_recreate_catch_solib;
15995
15996 ops = &dprintf_breakpoint_ops;
15997 *ops = bkpt_base_breakpoint_ops;
15998 ops->re_set = dprintf_re_set;
15999 ops->resources_needed = bkpt_resources_needed;
16000 ops->print_it = bkpt_print_it;
16001 ops->print_mention = bkpt_print_mention;
16002 ops->print_recreate = dprintf_print_recreate;
16003 ops->after_condition_true = dprintf_after_condition_true;
16004 ops->breakpoint_hit = dprintf_breakpoint_hit;
16005 }
16006
16007 /* Chain containing all defined "enable breakpoint" subcommands. */
16008
16009 static struct cmd_list_element *enablebreaklist = NULL;
16010
16011 void
16012 _initialize_breakpoint (void)
16013 {
16014 struct cmd_list_element *c;
16015
16016 initialize_breakpoint_ops ();
16017
16018 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
16019 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
16020 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
16021
16022 breakpoint_objfile_key
16023 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
16024
16025 breakpoint_chain = 0;
16026 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
16027 before a breakpoint is set. */
16028 breakpoint_count = 0;
16029
16030 tracepoint_count = 0;
16031
16032 add_com ("ignore", class_breakpoint, ignore_command, _("\
16033 Set ignore-count of breakpoint number N to COUNT.\n\
16034 Usage is `ignore N COUNT'."));
16035
16036 add_com ("commands", class_breakpoint, commands_command, _("\
16037 Set commands to be executed when the given breakpoints are hit.\n\
16038 Give a space-separated breakpoint list as argument after \"commands\".\n\
16039 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
16040 (e.g. `5-7').\n\
16041 With no argument, the targeted breakpoint is the last one set.\n\
16042 The commands themselves follow starting on the next line.\n\
16043 Type a line containing \"end\" to indicate the end of them.\n\
16044 Give \"silent\" as the first line to make the breakpoint silent;\n\
16045 then no output is printed when it is hit, except what the commands print."));
16046
16047 c = add_com ("condition", class_breakpoint, condition_command, _("\
16048 Specify breakpoint number N to break only if COND is true.\n\
16049 Usage is `condition N COND', where N is an integer and COND is an\n\
16050 expression to be evaluated whenever breakpoint N is reached."));
16051 set_cmd_completer (c, condition_completer);
16052
16053 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16054 Set a temporary breakpoint.\n\
16055 Like \"break\" except the breakpoint is only temporary,\n\
16056 so it will be deleted when hit. Equivalent to \"break\" followed\n\
16057 by using \"enable delete\" on the breakpoint number.\n\
16058 \n"
16059 BREAK_ARGS_HELP ("tbreak")));
16060 set_cmd_completer (c, location_completer);
16061
16062 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16063 Set a hardware assisted breakpoint.\n\
16064 Like \"break\" except the breakpoint requires hardware support,\n\
16065 some target hardware may not have this support.\n\
16066 \n"
16067 BREAK_ARGS_HELP ("hbreak")));
16068 set_cmd_completer (c, location_completer);
16069
16070 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16071 Set a temporary hardware assisted breakpoint.\n\
16072 Like \"hbreak\" except the breakpoint is only temporary,\n\
16073 so it will be deleted when hit.\n\
16074 \n"
16075 BREAK_ARGS_HELP ("thbreak")));
16076 set_cmd_completer (c, location_completer);
16077
16078 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16079 Enable some breakpoints.\n\
16080 Give breakpoint numbers (separated by spaces) as arguments.\n\
16081 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16082 This is used to cancel the effect of the \"disable\" command.\n\
16083 With a subcommand you can enable temporarily."),
16084 &enablelist, "enable ", 1, &cmdlist);
16085
16086 add_com_alias ("en", "enable", class_breakpoint, 1);
16087
16088 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16089 Enable some breakpoints.\n\
16090 Give breakpoint numbers (separated by spaces) as arguments.\n\
16091 This is used to cancel the effect of the \"disable\" command.\n\
16092 May be abbreviated to simply \"enable\".\n"),
16093 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16094
16095 add_cmd ("once", no_class, enable_once_command, _("\
16096 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16097 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16098 &enablebreaklist);
16099
16100 add_cmd ("delete", no_class, enable_delete_command, _("\
16101 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16102 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16103 &enablebreaklist);
16104
16105 add_cmd ("count", no_class, enable_count_command, _("\
16106 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16107 If a breakpoint is hit while enabled in this fashion,\n\
16108 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16109 &enablebreaklist);
16110
16111 add_cmd ("delete", no_class, enable_delete_command, _("\
16112 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16113 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16114 &enablelist);
16115
16116 add_cmd ("once", no_class, enable_once_command, _("\
16117 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16118 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16119 &enablelist);
16120
16121 add_cmd ("count", no_class, enable_count_command, _("\
16122 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16123 If a breakpoint is hit while enabled in this fashion,\n\
16124 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16125 &enablelist);
16126
16127 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16128 Disable some breakpoints.\n\
16129 Arguments are breakpoint numbers with spaces in between.\n\
16130 To disable all breakpoints, give no argument.\n\
16131 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16132 &disablelist, "disable ", 1, &cmdlist);
16133 add_com_alias ("dis", "disable", class_breakpoint, 1);
16134 add_com_alias ("disa", "disable", class_breakpoint, 1);
16135
16136 add_cmd ("breakpoints", class_alias, disable_command, _("\
16137 Disable some breakpoints.\n\
16138 Arguments are breakpoint numbers with spaces in between.\n\
16139 To disable all breakpoints, give no argument.\n\
16140 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16141 This command may be abbreviated \"disable\"."),
16142 &disablelist);
16143
16144 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16145 Delete some breakpoints or auto-display expressions.\n\
16146 Arguments are breakpoint numbers with spaces in between.\n\
16147 To delete all breakpoints, give no argument.\n\
16148 \n\
16149 Also a prefix command for deletion of other GDB objects.\n\
16150 The \"unset\" command is also an alias for \"delete\"."),
16151 &deletelist, "delete ", 1, &cmdlist);
16152 add_com_alias ("d", "delete", class_breakpoint, 1);
16153 add_com_alias ("del", "delete", class_breakpoint, 1);
16154
16155 add_cmd ("breakpoints", class_alias, delete_command, _("\
16156 Delete some breakpoints or auto-display expressions.\n\
16157 Arguments are breakpoint numbers with spaces in between.\n\
16158 To delete all breakpoints, give no argument.\n\
16159 This command may be abbreviated \"delete\"."),
16160 &deletelist);
16161
16162 add_com ("clear", class_breakpoint, clear_command, _("\
16163 Clear breakpoint at specified location.\n\
16164 Argument may be a linespec, explicit, or address location as described below.\n\
16165 \n\
16166 With no argument, clears all breakpoints in the line that the selected frame\n\
16167 is executing in.\n"
16168 "\n" LOCATION_HELP_STRING "\n\
16169 See also the \"delete\" command which clears breakpoints by number."));
16170 add_com_alias ("cl", "clear", class_breakpoint, 1);
16171
16172 c = add_com ("break", class_breakpoint, break_command, _("\
16173 Set breakpoint at specified location.\n"
16174 BREAK_ARGS_HELP ("break")));
16175 set_cmd_completer (c, location_completer);
16176
16177 add_com_alias ("b", "break", class_run, 1);
16178 add_com_alias ("br", "break", class_run, 1);
16179 add_com_alias ("bre", "break", class_run, 1);
16180 add_com_alias ("brea", "break", class_run, 1);
16181
16182 if (dbx_commands)
16183 {
16184 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16185 Break in function/address or break at a line in the current file."),
16186 &stoplist, "stop ", 1, &cmdlist);
16187 add_cmd ("in", class_breakpoint, stopin_command,
16188 _("Break in function or address."), &stoplist);
16189 add_cmd ("at", class_breakpoint, stopat_command,
16190 _("Break at a line in the current file."), &stoplist);
16191 add_com ("status", class_info, breakpoints_info, _("\
16192 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16193 The \"Type\" column indicates one of:\n\
16194 \tbreakpoint - normal breakpoint\n\
16195 \twatchpoint - watchpoint\n\
16196 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16197 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16198 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16199 address and file/line number respectively.\n\
16200 \n\
16201 Convenience variable \"$_\" and default examine address for \"x\"\n\
16202 are set to the address of the last breakpoint listed unless the command\n\
16203 is prefixed with \"server \".\n\n\
16204 Convenience variable \"$bpnum\" contains the number of the last\n\
16205 breakpoint set."));
16206 }
16207
16208 add_info ("breakpoints", breakpoints_info, _("\
16209 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16210 The \"Type\" column indicates one of:\n\
16211 \tbreakpoint - normal breakpoint\n\
16212 \twatchpoint - watchpoint\n\
16213 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16214 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16215 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16216 address and file/line number respectively.\n\
16217 \n\
16218 Convenience variable \"$_\" and default examine address for \"x\"\n\
16219 are set to the address of the last breakpoint listed unless the command\n\
16220 is prefixed with \"server \".\n\n\
16221 Convenience variable \"$bpnum\" contains the number of the last\n\
16222 breakpoint set."));
16223
16224 add_info_alias ("b", "breakpoints", 1);
16225
16226 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16227 Status of all breakpoints, or breakpoint number NUMBER.\n\
16228 The \"Type\" column indicates one of:\n\
16229 \tbreakpoint - normal breakpoint\n\
16230 \twatchpoint - watchpoint\n\
16231 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16232 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16233 \tuntil - internal breakpoint used by the \"until\" command\n\
16234 \tfinish - internal breakpoint used by the \"finish\" command\n\
16235 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16236 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16237 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16238 address and file/line number respectively.\n\
16239 \n\
16240 Convenience variable \"$_\" and default examine address for \"x\"\n\
16241 are set to the address of the last breakpoint listed unless the command\n\
16242 is prefixed with \"server \".\n\n\
16243 Convenience variable \"$bpnum\" contains the number of the last\n\
16244 breakpoint set."),
16245 &maintenanceinfolist);
16246
16247 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16248 Set catchpoints to catch events."),
16249 &catch_cmdlist, "catch ",
16250 0/*allow-unknown*/, &cmdlist);
16251
16252 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16253 Set temporary catchpoints to catch events."),
16254 &tcatch_cmdlist, "tcatch ",
16255 0/*allow-unknown*/, &cmdlist);
16256
16257 add_catch_command ("fork", _("Catch calls to fork."),
16258 catch_fork_command_1,
16259 NULL,
16260 (void *) (uintptr_t) catch_fork_permanent,
16261 (void *) (uintptr_t) catch_fork_temporary);
16262 add_catch_command ("vfork", _("Catch calls to vfork."),
16263 catch_fork_command_1,
16264 NULL,
16265 (void *) (uintptr_t) catch_vfork_permanent,
16266 (void *) (uintptr_t) catch_vfork_temporary);
16267 add_catch_command ("exec", _("Catch calls to exec."),
16268 catch_exec_command_1,
16269 NULL,
16270 CATCH_PERMANENT,
16271 CATCH_TEMPORARY);
16272 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16273 Usage: catch load [REGEX]\n\
16274 If REGEX is given, only stop for libraries matching the regular expression."),
16275 catch_load_command_1,
16276 NULL,
16277 CATCH_PERMANENT,
16278 CATCH_TEMPORARY);
16279 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16280 Usage: catch unload [REGEX]\n\
16281 If REGEX is given, only stop for libraries matching the regular expression."),
16282 catch_unload_command_1,
16283 NULL,
16284 CATCH_PERMANENT,
16285 CATCH_TEMPORARY);
16286
16287 c = add_com ("watch", class_breakpoint, watch_command, _("\
16288 Set a watchpoint for an expression.\n\
16289 Usage: watch [-l|-location] EXPRESSION\n\
16290 A watchpoint stops execution of your program whenever the value of\n\
16291 an expression changes.\n\
16292 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16293 the memory to which it refers."));
16294 set_cmd_completer (c, expression_completer);
16295
16296 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16297 Set a read watchpoint for an expression.\n\
16298 Usage: rwatch [-l|-location] EXPRESSION\n\
16299 A watchpoint stops execution of your program whenever the value of\n\
16300 an expression is read.\n\
16301 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16302 the memory to which it refers."));
16303 set_cmd_completer (c, expression_completer);
16304
16305 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16306 Set a watchpoint for an expression.\n\
16307 Usage: awatch [-l|-location] EXPRESSION\n\
16308 A watchpoint stops execution of your program whenever the value of\n\
16309 an expression is either read or written.\n\
16310 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16311 the memory to which it refers."));
16312 set_cmd_completer (c, expression_completer);
16313
16314 add_info ("watchpoints", watchpoints_info, _("\
16315 Status of specified watchpoints (all watchpoints if no argument)."));
16316
16317 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16318 respond to changes - contrary to the description. */
16319 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16320 &can_use_hw_watchpoints, _("\
16321 Set debugger's willingness to use watchpoint hardware."), _("\
16322 Show debugger's willingness to use watchpoint hardware."), _("\
16323 If zero, gdb will not use hardware for new watchpoints, even if\n\
16324 such is available. (However, any hardware watchpoints that were\n\
16325 created before setting this to nonzero, will continue to use watchpoint\n\
16326 hardware.)"),
16327 NULL,
16328 show_can_use_hw_watchpoints,
16329 &setlist, &showlist);
16330
16331 can_use_hw_watchpoints = 1;
16332
16333 /* Tracepoint manipulation commands. */
16334
16335 c = add_com ("trace", class_breakpoint, trace_command, _("\
16336 Set a tracepoint at specified location.\n\
16337 \n"
16338 BREAK_ARGS_HELP ("trace") "\n\
16339 Do \"help tracepoints\" for info on other tracepoint commands."));
16340 set_cmd_completer (c, location_completer);
16341
16342 add_com_alias ("tp", "trace", class_alias, 0);
16343 add_com_alias ("tr", "trace", class_alias, 1);
16344 add_com_alias ("tra", "trace", class_alias, 1);
16345 add_com_alias ("trac", "trace", class_alias, 1);
16346
16347 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16348 Set a fast tracepoint at specified location.\n\
16349 \n"
16350 BREAK_ARGS_HELP ("ftrace") "\n\
16351 Do \"help tracepoints\" for info on other tracepoint commands."));
16352 set_cmd_completer (c, location_completer);
16353
16354 c = add_com ("strace", class_breakpoint, strace_command, _("\
16355 Set a static tracepoint at location or marker.\n\
16356 \n\
16357 strace [LOCATION] [if CONDITION]\n\
16358 LOCATION may be a linespec, explicit, or address location (described below) \n\
16359 or -m MARKER_ID.\n\n\
16360 If a marker id is specified, probe the marker with that name. With\n\
16361 no LOCATION, uses current execution address of the selected stack frame.\n\
16362 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16363 This collects arbitrary user data passed in the probe point call to the\n\
16364 tracing library. You can inspect it when analyzing the trace buffer,\n\
16365 by printing the $_sdata variable like any other convenience variable.\n\
16366 \n\
16367 CONDITION is a boolean expression.\n\
16368 \n" LOCATION_HELP_STRING "\n\
16369 Multiple tracepoints at one place are permitted, and useful if their\n\
16370 conditions are different.\n\
16371 \n\
16372 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16373 Do \"help tracepoints\" for info on other tracepoint commands."));
16374 set_cmd_completer (c, location_completer);
16375
16376 add_info ("tracepoints", tracepoints_info, _("\
16377 Status of specified tracepoints (all tracepoints if no argument).\n\
16378 Convenience variable \"$tpnum\" contains the number of the\n\
16379 last tracepoint set."));
16380
16381 add_info_alias ("tp", "tracepoints", 1);
16382
16383 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16384 Delete specified tracepoints.\n\
16385 Arguments are tracepoint numbers, separated by spaces.\n\
16386 No argument means delete all tracepoints."),
16387 &deletelist);
16388 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16389
16390 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16391 Disable specified tracepoints.\n\
16392 Arguments are tracepoint numbers, separated by spaces.\n\
16393 No argument means disable all tracepoints."),
16394 &disablelist);
16395 deprecate_cmd (c, "disable");
16396
16397 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16398 Enable specified tracepoints.\n\
16399 Arguments are tracepoint numbers, separated by spaces.\n\
16400 No argument means enable all tracepoints."),
16401 &enablelist);
16402 deprecate_cmd (c, "enable");
16403
16404 add_com ("passcount", class_trace, trace_pass_command, _("\
16405 Set the passcount for a tracepoint.\n\
16406 The trace will end when the tracepoint has been passed 'count' times.\n\
16407 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16408 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16409
16410 add_prefix_cmd ("save", class_breakpoint, save_command,
16411 _("Save breakpoint definitions as a script."),
16412 &save_cmdlist, "save ",
16413 0/*allow-unknown*/, &cmdlist);
16414
16415 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16416 Save current breakpoint definitions as a script.\n\
16417 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16418 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16419 session to restore them."),
16420 &save_cmdlist);
16421 set_cmd_completer (c, filename_completer);
16422
16423 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16424 Save current tracepoint definitions as a script.\n\
16425 Use the 'source' command in another debug session to restore them."),
16426 &save_cmdlist);
16427 set_cmd_completer (c, filename_completer);
16428
16429 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16430 deprecate_cmd (c, "save tracepoints");
16431
16432 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16433 Breakpoint specific settings\n\
16434 Configure various breakpoint-specific variables such as\n\
16435 pending breakpoint behavior"),
16436 &breakpoint_set_cmdlist, "set breakpoint ",
16437 0/*allow-unknown*/, &setlist);
16438 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16439 Breakpoint specific settings\n\
16440 Configure various breakpoint-specific variables such as\n\
16441 pending breakpoint behavior"),
16442 &breakpoint_show_cmdlist, "show breakpoint ",
16443 0/*allow-unknown*/, &showlist);
16444
16445 add_setshow_auto_boolean_cmd ("pending", no_class,
16446 &pending_break_support, _("\
16447 Set debugger's behavior regarding pending breakpoints."), _("\
16448 Show debugger's behavior regarding pending breakpoints."), _("\
16449 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16450 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16451 an error. If auto, an unrecognized breakpoint location results in a\n\
16452 user-query to see if a pending breakpoint should be created."),
16453 NULL,
16454 show_pending_break_support,
16455 &breakpoint_set_cmdlist,
16456 &breakpoint_show_cmdlist);
16457
16458 pending_break_support = AUTO_BOOLEAN_AUTO;
16459
16460 add_setshow_boolean_cmd ("auto-hw", no_class,
16461 &automatic_hardware_breakpoints, _("\
16462 Set automatic usage of hardware breakpoints."), _("\
16463 Show automatic usage of hardware breakpoints."), _("\
16464 If set, the debugger will automatically use hardware breakpoints for\n\
16465 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16466 a warning will be emitted for such breakpoints."),
16467 NULL,
16468 show_automatic_hardware_breakpoints,
16469 &breakpoint_set_cmdlist,
16470 &breakpoint_show_cmdlist);
16471
16472 add_setshow_boolean_cmd ("always-inserted", class_support,
16473 &always_inserted_mode, _("\
16474 Set mode for inserting breakpoints."), _("\
16475 Show mode for inserting breakpoints."), _("\
16476 When this mode is on, breakpoints are inserted immediately as soon as\n\
16477 they're created, kept inserted even when execution stops, and removed\n\
16478 only when the user deletes them. When this mode is off (the default),\n\
16479 breakpoints are inserted only when execution continues, and removed\n\
16480 when execution stops."),
16481 NULL,
16482 &show_always_inserted_mode,
16483 &breakpoint_set_cmdlist,
16484 &breakpoint_show_cmdlist);
16485
16486 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16487 condition_evaluation_enums,
16488 &condition_evaluation_mode_1, _("\
16489 Set mode of breakpoint condition evaluation."), _("\
16490 Show mode of breakpoint condition evaluation."), _("\
16491 When this is set to \"host\", breakpoint conditions will be\n\
16492 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16493 breakpoint conditions will be downloaded to the target (if the target\n\
16494 supports such feature) and conditions will be evaluated on the target's side.\n\
16495 If this is set to \"auto\" (default), this will be automatically set to\n\
16496 \"target\" if it supports condition evaluation, otherwise it will\n\
16497 be set to \"gdb\""),
16498 &set_condition_evaluation_mode,
16499 &show_condition_evaluation_mode,
16500 &breakpoint_set_cmdlist,
16501 &breakpoint_show_cmdlist);
16502
16503 add_com ("break-range", class_breakpoint, break_range_command, _("\
16504 Set a breakpoint for an address range.\n\
16505 break-range START-LOCATION, END-LOCATION\n\
16506 where START-LOCATION and END-LOCATION can be one of the following:\n\
16507 LINENUM, for that line in the current file,\n\
16508 FILE:LINENUM, for that line in that file,\n\
16509 +OFFSET, for that number of lines after the current line\n\
16510 or the start of the range\n\
16511 FUNCTION, for the first line in that function,\n\
16512 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16513 *ADDRESS, for the instruction at that address.\n\
16514 \n\
16515 The breakpoint will stop execution of the inferior whenever it executes\n\
16516 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16517 range (including START-LOCATION and END-LOCATION)."));
16518
16519 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16520 Set a dynamic printf at specified location.\n\
16521 dprintf location,format string,arg1,arg2,...\n\
16522 location may be a linespec, explicit, or address location.\n"
16523 "\n" LOCATION_HELP_STRING));
16524 set_cmd_completer (c, location_completer);
16525
16526 add_setshow_enum_cmd ("dprintf-style", class_support,
16527 dprintf_style_enums, &dprintf_style, _("\
16528 Set the style of usage for dynamic printf."), _("\
16529 Show the style of usage for dynamic printf."), _("\
16530 This setting chooses how GDB will do a dynamic printf.\n\
16531 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16532 console, as with the \"printf\" command.\n\
16533 If the value is \"call\", the print is done by calling a function in your\n\
16534 program; by default printf(), but you can choose a different function or\n\
16535 output stream by setting dprintf-function and dprintf-channel."),
16536 update_dprintf_commands, NULL,
16537 &setlist, &showlist);
16538
16539 dprintf_function = xstrdup ("printf");
16540 add_setshow_string_cmd ("dprintf-function", class_support,
16541 &dprintf_function, _("\
16542 Set the function to use for dynamic printf"), _("\
16543 Show the function to use for dynamic printf"), NULL,
16544 update_dprintf_commands, NULL,
16545 &setlist, &showlist);
16546
16547 dprintf_channel = xstrdup ("");
16548 add_setshow_string_cmd ("dprintf-channel", class_support,
16549 &dprintf_channel, _("\
16550 Set the channel to use for dynamic printf"), _("\
16551 Show the channel to use for dynamic printf"), NULL,
16552 update_dprintf_commands, NULL,
16553 &setlist, &showlist);
16554
16555 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16556 &disconnected_dprintf, _("\
16557 Set whether dprintf continues after GDB disconnects."), _("\
16558 Show whether dprintf continues after GDB disconnects."), _("\
16559 Use this to let dprintf commands continue to hit and produce output\n\
16560 even if GDB disconnects or detaches from the target."),
16561 NULL,
16562 NULL,
16563 &setlist, &showlist);
16564
16565 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16566 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16567 (target agent only) This is useful for formatted output in user-defined commands."));
16568
16569 automatic_hardware_breakpoints = 1;
16570
16571 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16572 observer_attach_thread_exit (remove_threaded_breakpoints);
16573 }
This page took 0.369255 seconds and 4 git commands to generate.