Remove target_has_execution macro
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "stack.h"
63 #include "ax-gdb.h"
64 #include "dummy-frame.h"
65 #include "interps.h"
66 #include "gdbsupport/format.h"
67 #include "thread-fsm.h"
68 #include "tid-parse.h"
69 #include "cli/cli-style.h"
70
71 /* readline include files */
72 #include "readline/tilde.h"
73
74 /* readline defines this. */
75 #undef savestring
76
77 #include "mi/mi-common.h"
78 #include "extension.h"
79 #include <algorithm>
80 #include "progspace-and-thread.h"
81 #include "gdbsupport/array-view.h"
82 #include "gdbsupport/gdb_optional.h"
83
84 /* Prototypes for local functions. */
85
86 static void map_breakpoint_numbers (const char *,
87 gdb::function_view<void (breakpoint *)>);
88
89 static void breakpoint_re_set_default (struct breakpoint *);
90
91 static void
92 create_sals_from_location_default (struct event_location *location,
93 struct linespec_result *canonical,
94 enum bptype type_wanted);
95
96 static void create_breakpoints_sal_default (struct gdbarch *,
97 struct linespec_result *,
98 gdb::unique_xmalloc_ptr<char>,
99 gdb::unique_xmalloc_ptr<char>,
100 enum bptype,
101 enum bpdisp, int, int,
102 int,
103 const struct breakpoint_ops *,
104 int, int, int, unsigned);
105
106 static std::vector<symtab_and_line> decode_location_default
107 (struct breakpoint *b, struct event_location *location,
108 struct program_space *search_pspace);
109
110 static int can_use_hardware_watchpoint
111 (const std::vector<value_ref_ptr> &vals);
112
113 static void mention (struct breakpoint *);
114
115 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
116 enum bptype,
117 const struct breakpoint_ops *);
118 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
119 const struct symtab_and_line *);
120
121 /* This function is used in gdbtk sources and thus can not be made
122 static. */
123 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
124 struct symtab_and_line,
125 enum bptype,
126 const struct breakpoint_ops *);
127
128 static struct breakpoint *
129 momentary_breakpoint_from_master (struct breakpoint *orig,
130 enum bptype type,
131 const struct breakpoint_ops *ops,
132 int loc_enabled);
133
134 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
135
136 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
137 CORE_ADDR bpaddr,
138 enum bptype bptype);
139
140 static void describe_other_breakpoints (struct gdbarch *,
141 struct program_space *, CORE_ADDR,
142 struct obj_section *, int);
143
144 static int watchpoint_locations_match (struct bp_location *loc1,
145 struct bp_location *loc2);
146
147 static int breakpoint_locations_match (struct bp_location *loc1,
148 struct bp_location *loc2,
149 bool sw_hw_bps_match = false);
150
151 static int breakpoint_location_address_match (struct bp_location *bl,
152 const struct address_space *aspace,
153 CORE_ADDR addr);
154
155 static int breakpoint_location_address_range_overlap (struct bp_location *,
156 const address_space *,
157 CORE_ADDR, int);
158
159 static int remove_breakpoint (struct bp_location *);
160 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
161
162 static enum print_stop_action print_bp_stop_message (bpstat bs);
163
164 static int hw_breakpoint_used_count (void);
165
166 static int hw_watchpoint_use_count (struct breakpoint *);
167
168 static int hw_watchpoint_used_count_others (struct breakpoint *except,
169 enum bptype type,
170 int *other_type_used);
171
172 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
173 int count);
174
175 static void free_bp_location (struct bp_location *loc);
176 static void incref_bp_location (struct bp_location *loc);
177 static void decref_bp_location (struct bp_location **loc);
178
179 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
180
181 /* update_global_location_list's modes of operation wrt to whether to
182 insert locations now. */
183 enum ugll_insert_mode
184 {
185 /* Don't insert any breakpoint locations into the inferior, only
186 remove already-inserted locations that no longer should be
187 inserted. Functions that delete a breakpoint or breakpoints
188 should specify this mode, so that deleting a breakpoint doesn't
189 have the side effect of inserting the locations of other
190 breakpoints that are marked not-inserted, but should_be_inserted
191 returns true on them.
192
193 This behavior is useful is situations close to tear-down -- e.g.,
194 after an exec, while the target still has execution, but
195 breakpoint shadows of the previous executable image should *NOT*
196 be restored to the new image; or before detaching, where the
197 target still has execution and wants to delete breakpoints from
198 GDB's lists, and all breakpoints had already been removed from
199 the inferior. */
200 UGLL_DONT_INSERT,
201
202 /* May insert breakpoints iff breakpoints_should_be_inserted_now
203 claims breakpoints should be inserted now. */
204 UGLL_MAY_INSERT,
205
206 /* Insert locations now, irrespective of
207 breakpoints_should_be_inserted_now. E.g., say all threads are
208 stopped right now, and the user did "continue". We need to
209 insert breakpoints _before_ resuming the target, but
210 UGLL_MAY_INSERT wouldn't insert them, because
211 breakpoints_should_be_inserted_now returns false at that point,
212 as no thread is running yet. */
213 UGLL_INSERT
214 };
215
216 static void update_global_location_list (enum ugll_insert_mode);
217
218 static void update_global_location_list_nothrow (enum ugll_insert_mode);
219
220 static void insert_breakpoint_locations (void);
221
222 static void trace_pass_command (const char *, int);
223
224 static void set_tracepoint_count (int num);
225
226 static bool is_masked_watchpoint (const struct breakpoint *b);
227
228 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
229
230 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
231 otherwise. */
232
233 static int strace_marker_p (struct breakpoint *b);
234
235 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
236 that are implemented on top of software or hardware breakpoints
237 (user breakpoints, internal and momentary breakpoints, etc.). */
238 static struct breakpoint_ops bkpt_base_breakpoint_ops;
239
240 /* Internal breakpoints class type. */
241 static struct breakpoint_ops internal_breakpoint_ops;
242
243 /* Momentary breakpoints class type. */
244 static struct breakpoint_ops momentary_breakpoint_ops;
245
246 /* The breakpoint_ops structure to be used in regular user created
247 breakpoints. */
248 struct breakpoint_ops bkpt_breakpoint_ops;
249
250 /* Breakpoints set on probes. */
251 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
252
253 /* Tracepoints set on probes. */
254 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
255
256 /* Dynamic printf class type. */
257 struct breakpoint_ops dprintf_breakpoint_ops;
258
259 /* The style in which to perform a dynamic printf. This is a user
260 option because different output options have different tradeoffs;
261 if GDB does the printing, there is better error handling if there
262 is a problem with any of the arguments, but using an inferior
263 function lets you have special-purpose printers and sending of
264 output to the same place as compiled-in print functions. */
265
266 static const char dprintf_style_gdb[] = "gdb";
267 static const char dprintf_style_call[] = "call";
268 static const char dprintf_style_agent[] = "agent";
269 static const char *const dprintf_style_enums[] = {
270 dprintf_style_gdb,
271 dprintf_style_call,
272 dprintf_style_agent,
273 NULL
274 };
275 static const char *dprintf_style = dprintf_style_gdb;
276
277 /* The function to use for dynamic printf if the preferred style is to
278 call into the inferior. The value is simply a string that is
279 copied into the command, so it can be anything that GDB can
280 evaluate to a callable address, not necessarily a function name. */
281
282 static char *dprintf_function;
283
284 /* The channel to use for dynamic printf if the preferred style is to
285 call into the inferior; if a nonempty string, it will be passed to
286 the call as the first argument, with the format string as the
287 second. As with the dprintf function, this can be anything that
288 GDB knows how to evaluate, so in addition to common choices like
289 "stderr", this could be an app-specific expression like
290 "mystreams[curlogger]". */
291
292 static char *dprintf_channel;
293
294 /* True if dprintf commands should continue to operate even if GDB
295 has disconnected. */
296 static bool disconnected_dprintf = true;
297
298 struct command_line *
299 breakpoint_commands (struct breakpoint *b)
300 {
301 return b->commands ? b->commands.get () : NULL;
302 }
303
304 /* Flag indicating that a command has proceeded the inferior past the
305 current breakpoint. */
306
307 static bool breakpoint_proceeded;
308
309 const char *
310 bpdisp_text (enum bpdisp disp)
311 {
312 /* NOTE: the following values are a part of MI protocol and
313 represent values of 'disp' field returned when inferior stops at
314 a breakpoint. */
315 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
316
317 return bpdisps[(int) disp];
318 }
319
320 /* Prototypes for exported functions. */
321 /* If FALSE, gdb will not use hardware support for watchpoints, even
322 if such is available. */
323 static int can_use_hw_watchpoints;
324
325 static void
326 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
327 struct cmd_list_element *c,
328 const char *value)
329 {
330 fprintf_filtered (file,
331 _("Debugger's willingness to use "
332 "watchpoint hardware is %s.\n"),
333 value);
334 }
335
336 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
337 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
338 for unrecognized breakpoint locations.
339 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
340 static enum auto_boolean pending_break_support;
341 static void
342 show_pending_break_support (struct ui_file *file, int from_tty,
343 struct cmd_list_element *c,
344 const char *value)
345 {
346 fprintf_filtered (file,
347 _("Debugger's behavior regarding "
348 "pending breakpoints is %s.\n"),
349 value);
350 }
351
352 /* If true, gdb will automatically use hardware breakpoints for breakpoints
353 set with "break" but falling in read-only memory.
354 If false, gdb will warn about such breakpoints, but won't automatically
355 use hardware breakpoints. */
356 static bool automatic_hardware_breakpoints;
357 static void
358 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
359 struct cmd_list_element *c,
360 const char *value)
361 {
362 fprintf_filtered (file,
363 _("Automatic usage of hardware breakpoints is %s.\n"),
364 value);
365 }
366
367 /* If on, GDB keeps breakpoints inserted even if the inferior is
368 stopped, and immediately inserts any new breakpoints as soon as
369 they're created. If off (default), GDB keeps breakpoints off of
370 the target as long as possible. That is, it delays inserting
371 breakpoints until the next resume, and removes them again when the
372 target fully stops. This is a bit safer in case GDB crashes while
373 processing user input. */
374 static bool always_inserted_mode = false;
375
376 static void
377 show_always_inserted_mode (struct ui_file *file, int from_tty,
378 struct cmd_list_element *c, const char *value)
379 {
380 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
381 value);
382 }
383
384 /* See breakpoint.h. */
385
386 int
387 breakpoints_should_be_inserted_now (void)
388 {
389 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
390 {
391 /* If breakpoints are global, they should be inserted even if no
392 thread under gdb's control is running, or even if there are
393 no threads under GDB's control yet. */
394 return 1;
395 }
396 else
397 {
398 if (always_inserted_mode)
399 {
400 /* The user wants breakpoints inserted even if all threads
401 are stopped. */
402 return 1;
403 }
404
405 for (inferior *inf : all_inferiors ())
406 if (inf->has_execution ()
407 && threads_are_executing (inf->process_target ()))
408 return 1;
409
410 /* Don't remove breakpoints yet if, even though all threads are
411 stopped, we still have events to process. */
412 for (thread_info *tp : all_non_exited_threads ())
413 if (tp->resumed
414 && tp->suspend.waitstatus_pending_p)
415 return 1;
416 }
417 return 0;
418 }
419
420 static const char condition_evaluation_both[] = "host or target";
421
422 /* Modes for breakpoint condition evaluation. */
423 static const char condition_evaluation_auto[] = "auto";
424 static const char condition_evaluation_host[] = "host";
425 static const char condition_evaluation_target[] = "target";
426 static const char *const condition_evaluation_enums[] = {
427 condition_evaluation_auto,
428 condition_evaluation_host,
429 condition_evaluation_target,
430 NULL
431 };
432
433 /* Global that holds the current mode for breakpoint condition evaluation. */
434 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
435
436 /* Global that we use to display information to the user (gets its value from
437 condition_evaluation_mode_1. */
438 static const char *condition_evaluation_mode = condition_evaluation_auto;
439
440 /* Translate a condition evaluation mode MODE into either "host"
441 or "target". This is used mostly to translate from "auto" to the
442 real setting that is being used. It returns the translated
443 evaluation mode. */
444
445 static const char *
446 translate_condition_evaluation_mode (const char *mode)
447 {
448 if (mode == condition_evaluation_auto)
449 {
450 if (target_supports_evaluation_of_breakpoint_conditions ())
451 return condition_evaluation_target;
452 else
453 return condition_evaluation_host;
454 }
455 else
456 return mode;
457 }
458
459 /* Discovers what condition_evaluation_auto translates to. */
460
461 static const char *
462 breakpoint_condition_evaluation_mode (void)
463 {
464 return translate_condition_evaluation_mode (condition_evaluation_mode);
465 }
466
467 /* Return true if GDB should evaluate breakpoint conditions or false
468 otherwise. */
469
470 static int
471 gdb_evaluates_breakpoint_condition_p (void)
472 {
473 const char *mode = breakpoint_condition_evaluation_mode ();
474
475 return (mode == condition_evaluation_host);
476 }
477
478 /* Are we executing breakpoint commands? */
479 static int executing_breakpoint_commands;
480
481 /* Are overlay event breakpoints enabled? */
482 static int overlay_events_enabled;
483
484 /* See description in breakpoint.h. */
485 bool target_exact_watchpoints = false;
486
487 /* Walk the following statement or block through all breakpoints.
488 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
489 current breakpoint. */
490
491 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
492
493 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
494 for (B = breakpoint_chain; \
495 B ? (TMP=B->next, 1): 0; \
496 B = TMP)
497
498 /* Similar iterator for the low-level breakpoints. SAFE variant is
499 not provided so update_global_location_list must not be called
500 while executing the block of ALL_BP_LOCATIONS. */
501
502 #define ALL_BP_LOCATIONS(B,BP_TMP) \
503 for (BP_TMP = bp_locations; \
504 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
505 BP_TMP++)
506
507 /* Iterates through locations with address ADDRESS for the currently selected
508 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
509 to where the loop should start from.
510 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
511 appropriate location to start with. */
512
513 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
514 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
515 BP_LOCP_TMP = BP_LOCP_START; \
516 BP_LOCP_START \
517 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
518 && (*BP_LOCP_TMP)->address == ADDRESS); \
519 BP_LOCP_TMP++)
520
521 /* Iterator for tracepoints only. */
522
523 #define ALL_TRACEPOINTS(B) \
524 for (B = breakpoint_chain; B; B = B->next) \
525 if (is_tracepoint (B))
526
527 /* Chains of all breakpoints defined. */
528
529 static struct breakpoint *breakpoint_chain;
530
531 /* Array is sorted by bp_location_is_less_than - primarily by the ADDRESS. */
532
533 static struct bp_location **bp_locations;
534
535 /* Number of elements of BP_LOCATIONS. */
536
537 static unsigned bp_locations_count;
538
539 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
540 ADDRESS for the current elements of BP_LOCATIONS which get a valid
541 result from bp_location_has_shadow. You can use it for roughly
542 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
543 an address you need to read. */
544
545 static CORE_ADDR bp_locations_placed_address_before_address_max;
546
547 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
548 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
549 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
550 You can use it for roughly limiting the subrange of BP_LOCATIONS to
551 scan for shadow bytes for an address you need to read. */
552
553 static CORE_ADDR bp_locations_shadow_len_after_address_max;
554
555 /* The locations that no longer correspond to any breakpoint, unlinked
556 from the bp_locations array, but for which a hit may still be
557 reported by a target. */
558 static std::vector<bp_location *> moribund_locations;
559
560 /* Number of last breakpoint made. */
561
562 static int breakpoint_count;
563
564 /* The value of `breakpoint_count' before the last command that
565 created breakpoints. If the last (break-like) command created more
566 than one breakpoint, then the difference between BREAKPOINT_COUNT
567 and PREV_BREAKPOINT_COUNT is more than one. */
568 static int prev_breakpoint_count;
569
570 /* Number of last tracepoint made. */
571
572 static int tracepoint_count;
573
574 static struct cmd_list_element *breakpoint_set_cmdlist;
575 static struct cmd_list_element *breakpoint_show_cmdlist;
576 struct cmd_list_element *save_cmdlist;
577
578 /* See declaration at breakpoint.h. */
579
580 struct breakpoint *
581 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
582 void *user_data)
583 {
584 struct breakpoint *b = NULL;
585
586 ALL_BREAKPOINTS (b)
587 {
588 if (func (b, user_data) != 0)
589 break;
590 }
591
592 return b;
593 }
594
595 /* Return whether a breakpoint is an active enabled breakpoint. */
596 static int
597 breakpoint_enabled (struct breakpoint *b)
598 {
599 return (b->enable_state == bp_enabled);
600 }
601
602 /* Set breakpoint count to NUM. */
603
604 static void
605 set_breakpoint_count (int num)
606 {
607 prev_breakpoint_count = breakpoint_count;
608 breakpoint_count = num;
609 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
610 }
611
612 /* Used by `start_rbreak_breakpoints' below, to record the current
613 breakpoint count before "rbreak" creates any breakpoint. */
614 static int rbreak_start_breakpoint_count;
615
616 /* Called at the start an "rbreak" command to record the first
617 breakpoint made. */
618
619 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
620 {
621 rbreak_start_breakpoint_count = breakpoint_count;
622 }
623
624 /* Called at the end of an "rbreak" command to record the last
625 breakpoint made. */
626
627 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
628 {
629 prev_breakpoint_count = rbreak_start_breakpoint_count;
630 }
631
632 /* Used in run_command to zero the hit count when a new run starts. */
633
634 void
635 clear_breakpoint_hit_counts (void)
636 {
637 struct breakpoint *b;
638
639 ALL_BREAKPOINTS (b)
640 b->hit_count = 0;
641 }
642
643 \f
644 /* Return the breakpoint with the specified number, or NULL
645 if the number does not refer to an existing breakpoint. */
646
647 struct breakpoint *
648 get_breakpoint (int num)
649 {
650 struct breakpoint *b;
651
652 ALL_BREAKPOINTS (b)
653 if (b->number == num)
654 return b;
655
656 return NULL;
657 }
658
659 \f
660
661 /* Mark locations as "conditions have changed" in case the target supports
662 evaluating conditions on its side. */
663
664 static void
665 mark_breakpoint_modified (struct breakpoint *b)
666 {
667 struct bp_location *loc;
668
669 /* This is only meaningful if the target is
670 evaluating conditions and if the user has
671 opted for condition evaluation on the target's
672 side. */
673 if (gdb_evaluates_breakpoint_condition_p ()
674 || !target_supports_evaluation_of_breakpoint_conditions ())
675 return;
676
677 if (!is_breakpoint (b))
678 return;
679
680 for (loc = b->loc; loc; loc = loc->next)
681 loc->condition_changed = condition_modified;
682 }
683
684 /* Mark location as "conditions have changed" in case the target supports
685 evaluating conditions on its side. */
686
687 static void
688 mark_breakpoint_location_modified (struct bp_location *loc)
689 {
690 /* This is only meaningful if the target is
691 evaluating conditions and if the user has
692 opted for condition evaluation on the target's
693 side. */
694 if (gdb_evaluates_breakpoint_condition_p ()
695 || !target_supports_evaluation_of_breakpoint_conditions ())
696
697 return;
698
699 if (!is_breakpoint (loc->owner))
700 return;
701
702 loc->condition_changed = condition_modified;
703 }
704
705 /* Sets the condition-evaluation mode using the static global
706 condition_evaluation_mode. */
707
708 static void
709 set_condition_evaluation_mode (const char *args, int from_tty,
710 struct cmd_list_element *c)
711 {
712 const char *old_mode, *new_mode;
713
714 if ((condition_evaluation_mode_1 == condition_evaluation_target)
715 && !target_supports_evaluation_of_breakpoint_conditions ())
716 {
717 condition_evaluation_mode_1 = condition_evaluation_mode;
718 warning (_("Target does not support breakpoint condition evaluation.\n"
719 "Using host evaluation mode instead."));
720 return;
721 }
722
723 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
724 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
725
726 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
727 settings was "auto". */
728 condition_evaluation_mode = condition_evaluation_mode_1;
729
730 /* Only update the mode if the user picked a different one. */
731 if (new_mode != old_mode)
732 {
733 struct bp_location *loc, **loc_tmp;
734 /* If the user switched to a different evaluation mode, we
735 need to synch the changes with the target as follows:
736
737 "host" -> "target": Send all (valid) conditions to the target.
738 "target" -> "host": Remove all the conditions from the target.
739 */
740
741 if (new_mode == condition_evaluation_target)
742 {
743 /* Mark everything modified and synch conditions with the
744 target. */
745 ALL_BP_LOCATIONS (loc, loc_tmp)
746 mark_breakpoint_location_modified (loc);
747 }
748 else
749 {
750 /* Manually mark non-duplicate locations to synch conditions
751 with the target. We do this to remove all the conditions the
752 target knows about. */
753 ALL_BP_LOCATIONS (loc, loc_tmp)
754 if (is_breakpoint (loc->owner) && loc->inserted)
755 loc->needs_update = 1;
756 }
757
758 /* Do the update. */
759 update_global_location_list (UGLL_MAY_INSERT);
760 }
761
762 return;
763 }
764
765 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
766 what "auto" is translating to. */
767
768 static void
769 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
770 struct cmd_list_element *c, const char *value)
771 {
772 if (condition_evaluation_mode == condition_evaluation_auto)
773 fprintf_filtered (file,
774 _("Breakpoint condition evaluation "
775 "mode is %s (currently %s).\n"),
776 value,
777 breakpoint_condition_evaluation_mode ());
778 else
779 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
780 value);
781 }
782
783 /* A comparison function for bp_location AP and BP that is used by
784 bsearch. This comparison function only cares about addresses, unlike
785 the more general bp_location_is_less_than function. */
786
787 static int
788 bp_locations_compare_addrs (const void *ap, const void *bp)
789 {
790 const struct bp_location *a = *(const struct bp_location **) ap;
791 const struct bp_location *b = *(const struct bp_location **) bp;
792
793 if (a->address == b->address)
794 return 0;
795 else
796 return ((a->address > b->address) - (a->address < b->address));
797 }
798
799 /* Helper function to skip all bp_locations with addresses
800 less than ADDRESS. It returns the first bp_location that
801 is greater than or equal to ADDRESS. If none is found, just
802 return NULL. */
803
804 static struct bp_location **
805 get_first_locp_gte_addr (CORE_ADDR address)
806 {
807 struct bp_location dummy_loc;
808 struct bp_location *dummy_locp = &dummy_loc;
809 struct bp_location **locp_found = NULL;
810
811 /* Initialize the dummy location's address field. */
812 dummy_loc.address = address;
813
814 /* Find a close match to the first location at ADDRESS. */
815 locp_found = ((struct bp_location **)
816 bsearch (&dummy_locp, bp_locations, bp_locations_count,
817 sizeof (struct bp_location **),
818 bp_locations_compare_addrs));
819
820 /* Nothing was found, nothing left to do. */
821 if (locp_found == NULL)
822 return NULL;
823
824 /* We may have found a location that is at ADDRESS but is not the first in the
825 location's list. Go backwards (if possible) and locate the first one. */
826 while ((locp_found - 1) >= bp_locations
827 && (*(locp_found - 1))->address == address)
828 locp_found--;
829
830 return locp_found;
831 }
832
833 void
834 set_breakpoint_condition (struct breakpoint *b, const char *exp,
835 int from_tty)
836 {
837 if (*exp == 0)
838 {
839 xfree (b->cond_string);
840 b->cond_string = nullptr;
841
842 if (is_watchpoint (b))
843 static_cast<watchpoint *> (b)->cond_exp.reset ();
844 else
845 {
846 for (bp_location *loc = b->loc; loc != nullptr; loc = loc->next)
847 {
848 loc->cond.reset ();
849
850 /* No need to free the condition agent expression
851 bytecode (if we have one). We will handle this
852 when we go through update_global_location_list. */
853 }
854 }
855
856 if (from_tty)
857 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
858 }
859 else
860 {
861 if (is_watchpoint (b))
862 {
863 innermost_block_tracker tracker;
864 const char *arg = exp;
865 expression_up new_exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
866 if (*arg != 0)
867 error (_("Junk at end of expression"));
868 watchpoint *w = static_cast<watchpoint *> (b);
869 w->cond_exp = std::move (new_exp);
870 w->cond_exp_valid_block = tracker.block ();
871 }
872 else
873 {
874 /* Parse and set condition expressions. We make two passes.
875 In the first, we parse the condition string to see if it
876 is valid in all locations. If so, the condition would be
877 accepted. So we go ahead and set the locations'
878 conditions. In case a failing case is found, we throw
879 the error and the condition string will be rejected.
880 This two-pass approach is taken to avoid setting the
881 state of locations in case of a reject. */
882 for (bp_location *loc = b->loc; loc != nullptr; loc = loc->next)
883 {
884 const char *arg = exp;
885 parse_exp_1 (&arg, loc->address,
886 block_for_pc (loc->address), 0);
887 if (*arg != 0)
888 error (_("Junk at end of expression"));
889 }
890
891 /* If we reach here, the condition is valid at all locations. */
892 for (bp_location *loc = b->loc; loc != nullptr; loc = loc->next)
893 {
894 const char *arg = exp;
895 loc->cond =
896 parse_exp_1 (&arg, loc->address,
897 block_for_pc (loc->address), 0);
898 }
899 }
900
901 /* We know that the new condition parsed successfully. The
902 condition string of the breakpoint can be safely updated. */
903 xfree (b->cond_string);
904 b->cond_string = xstrdup (exp);
905 b->condition_not_parsed = 0;
906 }
907 mark_breakpoint_modified (b);
908
909 gdb::observers::breakpoint_modified.notify (b);
910 }
911
912 /* Completion for the "condition" command. */
913
914 static void
915 condition_completer (struct cmd_list_element *cmd,
916 completion_tracker &tracker,
917 const char *text, const char *word)
918 {
919 const char *space;
920
921 text = skip_spaces (text);
922 space = skip_to_space (text);
923 if (*space == '\0')
924 {
925 int len;
926 struct breakpoint *b;
927
928 if (text[0] == '$')
929 {
930 /* We don't support completion of history indices. */
931 if (!isdigit (text[1]))
932 complete_internalvar (tracker, &text[1]);
933 return;
934 }
935
936 /* We're completing the breakpoint number. */
937 len = strlen (text);
938
939 ALL_BREAKPOINTS (b)
940 {
941 char number[50];
942
943 xsnprintf (number, sizeof (number), "%d", b->number);
944
945 if (strncmp (number, text, len) == 0)
946 tracker.add_completion (make_unique_xstrdup (number));
947 }
948
949 return;
950 }
951
952 /* We're completing the expression part. */
953 text = skip_spaces (space);
954 expression_completer (cmd, tracker, text, word);
955 }
956
957 /* condition N EXP -- set break condition of breakpoint N to EXP. */
958
959 static void
960 condition_command (const char *arg, int from_tty)
961 {
962 struct breakpoint *b;
963 const char *p;
964 int bnum;
965
966 if (arg == 0)
967 error_no_arg (_("breakpoint number"));
968
969 p = arg;
970 bnum = get_number (&p);
971 if (bnum == 0)
972 error (_("Bad breakpoint argument: '%s'"), arg);
973
974 ALL_BREAKPOINTS (b)
975 if (b->number == bnum)
976 {
977 /* Check if this breakpoint has a "stop" method implemented in an
978 extension language. This method and conditions entered into GDB
979 from the CLI are mutually exclusive. */
980 const struct extension_language_defn *extlang
981 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
982
983 if (extlang != NULL)
984 {
985 error (_("Only one stop condition allowed. There is currently"
986 " a %s stop condition defined for this breakpoint."),
987 ext_lang_capitalized_name (extlang));
988 }
989 set_breakpoint_condition (b, p, from_tty);
990
991 if (is_breakpoint (b))
992 update_global_location_list (UGLL_MAY_INSERT);
993
994 return;
995 }
996
997 error (_("No breakpoint number %d."), bnum);
998 }
999
1000 /* Check that COMMAND do not contain commands that are suitable
1001 only for tracepoints and not suitable for ordinary breakpoints.
1002 Throw if any such commands is found. */
1003
1004 static void
1005 check_no_tracepoint_commands (struct command_line *commands)
1006 {
1007 struct command_line *c;
1008
1009 for (c = commands; c; c = c->next)
1010 {
1011 if (c->control_type == while_stepping_control)
1012 error (_("The 'while-stepping' command can "
1013 "only be used for tracepoints"));
1014
1015 check_no_tracepoint_commands (c->body_list_0.get ());
1016 check_no_tracepoint_commands (c->body_list_1.get ());
1017
1018 /* Not that command parsing removes leading whitespace and comment
1019 lines and also empty lines. So, we only need to check for
1020 command directly. */
1021 if (strstr (c->line, "collect ") == c->line)
1022 error (_("The 'collect' command can only be used for tracepoints"));
1023
1024 if (strstr (c->line, "teval ") == c->line)
1025 error (_("The 'teval' command can only be used for tracepoints"));
1026 }
1027 }
1028
1029 struct longjmp_breakpoint : public breakpoint
1030 {
1031 ~longjmp_breakpoint () override;
1032 };
1033
1034 /* Encapsulate tests for different types of tracepoints. */
1035
1036 static bool
1037 is_tracepoint_type (bptype type)
1038 {
1039 return (type == bp_tracepoint
1040 || type == bp_fast_tracepoint
1041 || type == bp_static_tracepoint);
1042 }
1043
1044 static bool
1045 is_longjmp_type (bptype type)
1046 {
1047 return type == bp_longjmp || type == bp_exception;
1048 }
1049
1050 /* See breakpoint.h. */
1051
1052 bool
1053 is_tracepoint (const struct breakpoint *b)
1054 {
1055 return is_tracepoint_type (b->type);
1056 }
1057
1058 /* Factory function to create an appropriate instance of breakpoint given
1059 TYPE. */
1060
1061 static std::unique_ptr<breakpoint>
1062 new_breakpoint_from_type (bptype type)
1063 {
1064 breakpoint *b;
1065
1066 if (is_tracepoint_type (type))
1067 b = new tracepoint ();
1068 else if (is_longjmp_type (type))
1069 b = new longjmp_breakpoint ();
1070 else
1071 b = new breakpoint ();
1072
1073 return std::unique_ptr<breakpoint> (b);
1074 }
1075
1076 /* A helper function that validates that COMMANDS are valid for a
1077 breakpoint. This function will throw an exception if a problem is
1078 found. */
1079
1080 static void
1081 validate_commands_for_breakpoint (struct breakpoint *b,
1082 struct command_line *commands)
1083 {
1084 if (is_tracepoint (b))
1085 {
1086 struct tracepoint *t = (struct tracepoint *) b;
1087 struct command_line *c;
1088 struct command_line *while_stepping = 0;
1089
1090 /* Reset the while-stepping step count. The previous commands
1091 might have included a while-stepping action, while the new
1092 ones might not. */
1093 t->step_count = 0;
1094
1095 /* We need to verify that each top-level element of commands is
1096 valid for tracepoints, that there's at most one
1097 while-stepping element, and that the while-stepping's body
1098 has valid tracing commands excluding nested while-stepping.
1099 We also need to validate the tracepoint action line in the
1100 context of the tracepoint --- validate_actionline actually
1101 has side effects, like setting the tracepoint's
1102 while-stepping STEP_COUNT, in addition to checking if the
1103 collect/teval actions parse and make sense in the
1104 tracepoint's context. */
1105 for (c = commands; c; c = c->next)
1106 {
1107 if (c->control_type == while_stepping_control)
1108 {
1109 if (b->type == bp_fast_tracepoint)
1110 error (_("The 'while-stepping' command "
1111 "cannot be used for fast tracepoint"));
1112 else if (b->type == bp_static_tracepoint)
1113 error (_("The 'while-stepping' command "
1114 "cannot be used for static tracepoint"));
1115
1116 if (while_stepping)
1117 error (_("The 'while-stepping' command "
1118 "can be used only once"));
1119 else
1120 while_stepping = c;
1121 }
1122
1123 validate_actionline (c->line, b);
1124 }
1125 if (while_stepping)
1126 {
1127 struct command_line *c2;
1128
1129 gdb_assert (while_stepping->body_list_1 == nullptr);
1130 c2 = while_stepping->body_list_0.get ();
1131 for (; c2; c2 = c2->next)
1132 {
1133 if (c2->control_type == while_stepping_control)
1134 error (_("The 'while-stepping' command cannot be nested"));
1135 }
1136 }
1137 }
1138 else
1139 {
1140 check_no_tracepoint_commands (commands);
1141 }
1142 }
1143
1144 /* Return a vector of all the static tracepoints set at ADDR. The
1145 caller is responsible for releasing the vector. */
1146
1147 std::vector<breakpoint *>
1148 static_tracepoints_here (CORE_ADDR addr)
1149 {
1150 struct breakpoint *b;
1151 std::vector<breakpoint *> found;
1152 struct bp_location *loc;
1153
1154 ALL_BREAKPOINTS (b)
1155 if (b->type == bp_static_tracepoint)
1156 {
1157 for (loc = b->loc; loc; loc = loc->next)
1158 if (loc->address == addr)
1159 found.push_back (b);
1160 }
1161
1162 return found;
1163 }
1164
1165 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1166 validate that only allowed commands are included. */
1167
1168 void
1169 breakpoint_set_commands (struct breakpoint *b,
1170 counted_command_line &&commands)
1171 {
1172 validate_commands_for_breakpoint (b, commands.get ());
1173
1174 b->commands = std::move (commands);
1175 gdb::observers::breakpoint_modified.notify (b);
1176 }
1177
1178 /* Set the internal `silent' flag on the breakpoint. Note that this
1179 is not the same as the "silent" that may appear in the breakpoint's
1180 commands. */
1181
1182 void
1183 breakpoint_set_silent (struct breakpoint *b, int silent)
1184 {
1185 int old_silent = b->silent;
1186
1187 b->silent = silent;
1188 if (old_silent != silent)
1189 gdb::observers::breakpoint_modified.notify (b);
1190 }
1191
1192 /* Set the thread for this breakpoint. If THREAD is -1, make the
1193 breakpoint work for any thread. */
1194
1195 void
1196 breakpoint_set_thread (struct breakpoint *b, int thread)
1197 {
1198 int old_thread = b->thread;
1199
1200 b->thread = thread;
1201 if (old_thread != thread)
1202 gdb::observers::breakpoint_modified.notify (b);
1203 }
1204
1205 /* Set the task for this breakpoint. If TASK is 0, make the
1206 breakpoint work for any task. */
1207
1208 void
1209 breakpoint_set_task (struct breakpoint *b, int task)
1210 {
1211 int old_task = b->task;
1212
1213 b->task = task;
1214 if (old_task != task)
1215 gdb::observers::breakpoint_modified.notify (b);
1216 }
1217
1218 static void
1219 commands_command_1 (const char *arg, int from_tty,
1220 struct command_line *control)
1221 {
1222 counted_command_line cmd;
1223 /* cmd_read will be true once we have read cmd. Note that cmd might still be
1224 NULL after the call to read_command_lines if the user provides an empty
1225 list of command by just typing "end". */
1226 bool cmd_read = false;
1227
1228 std::string new_arg;
1229
1230 if (arg == NULL || !*arg)
1231 {
1232 /* Argument not explicitly given. Synthesize it. */
1233 if (breakpoint_count - prev_breakpoint_count > 1)
1234 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1235 breakpoint_count);
1236 else if (breakpoint_count > 0)
1237 new_arg = string_printf ("%d", breakpoint_count);
1238 }
1239 else
1240 {
1241 /* Create a copy of ARG. This is needed because the "commands"
1242 command may be coming from a script. In that case, the read
1243 line buffer is going to be overwritten in the lambda of
1244 'map_breakpoint_numbers' below when reading the next line
1245 before we are are done parsing the breakpoint numbers. */
1246 new_arg = arg;
1247 }
1248 arg = new_arg.c_str ();
1249
1250 map_breakpoint_numbers
1251 (arg, [&] (breakpoint *b)
1252 {
1253 if (!cmd_read)
1254 {
1255 gdb_assert (cmd == NULL);
1256 if (control != NULL)
1257 cmd = control->body_list_0;
1258 else
1259 {
1260 std::string str
1261 = string_printf (_("Type commands for breakpoint(s) "
1262 "%s, one per line."),
1263 arg);
1264
1265 auto do_validate = [=] (const char *line)
1266 {
1267 validate_actionline (line, b);
1268 };
1269 gdb::function_view<void (const char *)> validator;
1270 if (is_tracepoint (b))
1271 validator = do_validate;
1272
1273 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1274 }
1275 cmd_read = true;
1276 }
1277
1278 /* If a breakpoint was on the list more than once, we don't need to
1279 do anything. */
1280 if (b->commands != cmd)
1281 {
1282 validate_commands_for_breakpoint (b, cmd.get ());
1283 b->commands = cmd;
1284 gdb::observers::breakpoint_modified.notify (b);
1285 }
1286 });
1287 }
1288
1289 static void
1290 commands_command (const char *arg, int from_tty)
1291 {
1292 commands_command_1 (arg, from_tty, NULL);
1293 }
1294
1295 /* Like commands_command, but instead of reading the commands from
1296 input stream, takes them from an already parsed command structure.
1297
1298 This is used by cli-script.c to DTRT with breakpoint commands
1299 that are part of if and while bodies. */
1300 enum command_control_type
1301 commands_from_control_command (const char *arg, struct command_line *cmd)
1302 {
1303 commands_command_1 (arg, 0, cmd);
1304 return simple_control;
1305 }
1306
1307 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1308
1309 static int
1310 bp_location_has_shadow (struct bp_location *bl)
1311 {
1312 if (bl->loc_type != bp_loc_software_breakpoint)
1313 return 0;
1314 if (!bl->inserted)
1315 return 0;
1316 if (bl->target_info.shadow_len == 0)
1317 /* BL isn't valid, or doesn't shadow memory. */
1318 return 0;
1319 return 1;
1320 }
1321
1322 /* Update BUF, which is LEN bytes read from the target address
1323 MEMADDR, by replacing a memory breakpoint with its shadowed
1324 contents.
1325
1326 If READBUF is not NULL, this buffer must not overlap with the of
1327 the breakpoint location's shadow_contents buffer. Otherwise, a
1328 failed assertion internal error will be raised. */
1329
1330 static void
1331 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1332 const gdb_byte *writebuf_org,
1333 ULONGEST memaddr, LONGEST len,
1334 struct bp_target_info *target_info,
1335 struct gdbarch *gdbarch)
1336 {
1337 /* Now do full processing of the found relevant range of elements. */
1338 CORE_ADDR bp_addr = 0;
1339 int bp_size = 0;
1340 int bptoffset = 0;
1341
1342 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1343 current_program_space->aspace, 0))
1344 {
1345 /* The breakpoint is inserted in a different address space. */
1346 return;
1347 }
1348
1349 /* Addresses and length of the part of the breakpoint that
1350 we need to copy. */
1351 bp_addr = target_info->placed_address;
1352 bp_size = target_info->shadow_len;
1353
1354 if (bp_addr + bp_size <= memaddr)
1355 {
1356 /* The breakpoint is entirely before the chunk of memory we are
1357 reading. */
1358 return;
1359 }
1360
1361 if (bp_addr >= memaddr + len)
1362 {
1363 /* The breakpoint is entirely after the chunk of memory we are
1364 reading. */
1365 return;
1366 }
1367
1368 /* Offset within shadow_contents. */
1369 if (bp_addr < memaddr)
1370 {
1371 /* Only copy the second part of the breakpoint. */
1372 bp_size -= memaddr - bp_addr;
1373 bptoffset = memaddr - bp_addr;
1374 bp_addr = memaddr;
1375 }
1376
1377 if (bp_addr + bp_size > memaddr + len)
1378 {
1379 /* Only copy the first part of the breakpoint. */
1380 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1381 }
1382
1383 if (readbuf != NULL)
1384 {
1385 /* Verify that the readbuf buffer does not overlap with the
1386 shadow_contents buffer. */
1387 gdb_assert (target_info->shadow_contents >= readbuf + len
1388 || readbuf >= (target_info->shadow_contents
1389 + target_info->shadow_len));
1390
1391 /* Update the read buffer with this inserted breakpoint's
1392 shadow. */
1393 memcpy (readbuf + bp_addr - memaddr,
1394 target_info->shadow_contents + bptoffset, bp_size);
1395 }
1396 else
1397 {
1398 const unsigned char *bp;
1399 CORE_ADDR addr = target_info->reqstd_address;
1400 int placed_size;
1401
1402 /* Update the shadow with what we want to write to memory. */
1403 memcpy (target_info->shadow_contents + bptoffset,
1404 writebuf_org + bp_addr - memaddr, bp_size);
1405
1406 /* Determine appropriate breakpoint contents and size for this
1407 address. */
1408 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1409
1410 /* Update the final write buffer with this inserted
1411 breakpoint's INSN. */
1412 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1413 }
1414 }
1415
1416 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1417 by replacing any memory breakpoints with their shadowed contents.
1418
1419 If READBUF is not NULL, this buffer must not overlap with any of
1420 the breakpoint location's shadow_contents buffers. Otherwise,
1421 a failed assertion internal error will be raised.
1422
1423 The range of shadowed area by each bp_location is:
1424 bl->address - bp_locations_placed_address_before_address_max
1425 up to bl->address + bp_locations_shadow_len_after_address_max
1426 The range we were requested to resolve shadows for is:
1427 memaddr ... memaddr + len
1428 Thus the safe cutoff boundaries for performance optimization are
1429 memaddr + len <= (bl->address
1430 - bp_locations_placed_address_before_address_max)
1431 and:
1432 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1433
1434 void
1435 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1436 const gdb_byte *writebuf_org,
1437 ULONGEST memaddr, LONGEST len)
1438 {
1439 /* Left boundary, right boundary and median element of our binary
1440 search. */
1441 unsigned bc_l, bc_r, bc;
1442
1443 /* Find BC_L which is a leftmost element which may affect BUF
1444 content. It is safe to report lower value but a failure to
1445 report higher one. */
1446
1447 bc_l = 0;
1448 bc_r = bp_locations_count;
1449 while (bc_l + 1 < bc_r)
1450 {
1451 struct bp_location *bl;
1452
1453 bc = (bc_l + bc_r) / 2;
1454 bl = bp_locations[bc];
1455
1456 /* Check first BL->ADDRESS will not overflow due to the added
1457 constant. Then advance the left boundary only if we are sure
1458 the BC element can in no way affect the BUF content (MEMADDR
1459 to MEMADDR + LEN range).
1460
1461 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1462 offset so that we cannot miss a breakpoint with its shadow
1463 range tail still reaching MEMADDR. */
1464
1465 if ((bl->address + bp_locations_shadow_len_after_address_max
1466 >= bl->address)
1467 && (bl->address + bp_locations_shadow_len_after_address_max
1468 <= memaddr))
1469 bc_l = bc;
1470 else
1471 bc_r = bc;
1472 }
1473
1474 /* Due to the binary search above, we need to make sure we pick the
1475 first location that's at BC_L's address. E.g., if there are
1476 multiple locations at the same address, BC_L may end up pointing
1477 at a duplicate location, and miss the "master"/"inserted"
1478 location. Say, given locations L1, L2 and L3 at addresses A and
1479 B:
1480
1481 L1@A, L2@A, L3@B, ...
1482
1483 BC_L could end up pointing at location L2, while the "master"
1484 location could be L1. Since the `loc->inserted' flag is only set
1485 on "master" locations, we'd forget to restore the shadow of L1
1486 and L2. */
1487 while (bc_l > 0
1488 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1489 bc_l--;
1490
1491 /* Now do full processing of the found relevant range of elements. */
1492
1493 for (bc = bc_l; bc < bp_locations_count; bc++)
1494 {
1495 struct bp_location *bl = bp_locations[bc];
1496
1497 /* bp_location array has BL->OWNER always non-NULL. */
1498 if (bl->owner->type == bp_none)
1499 warning (_("reading through apparently deleted breakpoint #%d?"),
1500 bl->owner->number);
1501
1502 /* Performance optimization: any further element can no longer affect BUF
1503 content. */
1504
1505 if (bl->address >= bp_locations_placed_address_before_address_max
1506 && memaddr + len <= (bl->address
1507 - bp_locations_placed_address_before_address_max))
1508 break;
1509
1510 if (!bp_location_has_shadow (bl))
1511 continue;
1512
1513 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1514 memaddr, len, &bl->target_info, bl->gdbarch);
1515 }
1516 }
1517
1518 /* See breakpoint.h. */
1519
1520 bool
1521 is_breakpoint (const struct breakpoint *bpt)
1522 {
1523 return (bpt->type == bp_breakpoint
1524 || bpt->type == bp_hardware_breakpoint
1525 || bpt->type == bp_dprintf);
1526 }
1527
1528 /* Return true if BPT is of any hardware watchpoint kind. */
1529
1530 static bool
1531 is_hardware_watchpoint (const struct breakpoint *bpt)
1532 {
1533 return (bpt->type == bp_hardware_watchpoint
1534 || bpt->type == bp_read_watchpoint
1535 || bpt->type == bp_access_watchpoint);
1536 }
1537
1538 /* See breakpoint.h. */
1539
1540 bool
1541 is_watchpoint (const struct breakpoint *bpt)
1542 {
1543 return (is_hardware_watchpoint (bpt)
1544 || bpt->type == bp_watchpoint);
1545 }
1546
1547 /* Returns true if the current thread and its running state are safe
1548 to evaluate or update watchpoint B. Watchpoints on local
1549 expressions need to be evaluated in the context of the thread that
1550 was current when the watchpoint was created, and, that thread needs
1551 to be stopped to be able to select the correct frame context.
1552 Watchpoints on global expressions can be evaluated on any thread,
1553 and in any state. It is presently left to the target allowing
1554 memory accesses when threads are running. */
1555
1556 static int
1557 watchpoint_in_thread_scope (struct watchpoint *b)
1558 {
1559 return (b->pspace == current_program_space
1560 && (b->watchpoint_thread == null_ptid
1561 || (inferior_ptid == b->watchpoint_thread
1562 && !inferior_thread ()->executing)));
1563 }
1564
1565 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1566 associated bp_watchpoint_scope breakpoint. */
1567
1568 static void
1569 watchpoint_del_at_next_stop (struct watchpoint *w)
1570 {
1571 if (w->related_breakpoint != w)
1572 {
1573 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1574 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1575 w->related_breakpoint->disposition = disp_del_at_next_stop;
1576 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1577 w->related_breakpoint = w;
1578 }
1579 w->disposition = disp_del_at_next_stop;
1580 }
1581
1582 /* Extract a bitfield value from value VAL using the bit parameters contained in
1583 watchpoint W. */
1584
1585 static struct value *
1586 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1587 {
1588 struct value *bit_val;
1589
1590 if (val == NULL)
1591 return NULL;
1592
1593 bit_val = allocate_value (value_type (val));
1594
1595 unpack_value_bitfield (bit_val,
1596 w->val_bitpos,
1597 w->val_bitsize,
1598 value_contents_for_printing (val),
1599 value_offset (val),
1600 val);
1601
1602 return bit_val;
1603 }
1604
1605 /* Allocate a dummy location and add it to B, which must be a software
1606 watchpoint. This is required because even if a software watchpoint
1607 is not watching any memory, bpstat_stop_status requires a location
1608 to be able to report stops. */
1609
1610 static void
1611 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1612 struct program_space *pspace)
1613 {
1614 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1615
1616 b->loc = allocate_bp_location (b);
1617 b->loc->pspace = pspace;
1618 b->loc->address = -1;
1619 b->loc->length = -1;
1620 }
1621
1622 /* Returns true if B is a software watchpoint that is not watching any
1623 memory (e.g., "watch $pc"). */
1624
1625 static bool
1626 is_no_memory_software_watchpoint (struct breakpoint *b)
1627 {
1628 return (b->type == bp_watchpoint
1629 && b->loc != NULL
1630 && b->loc->next == NULL
1631 && b->loc->address == -1
1632 && b->loc->length == -1);
1633 }
1634
1635 /* Assuming that B is a watchpoint:
1636 - Reparse watchpoint expression, if REPARSE is non-zero
1637 - Evaluate expression and store the result in B->val
1638 - Evaluate the condition if there is one, and store the result
1639 in b->loc->cond.
1640 - Update the list of values that must be watched in B->loc.
1641
1642 If the watchpoint disposition is disp_del_at_next_stop, then do
1643 nothing. If this is local watchpoint that is out of scope, delete
1644 it.
1645
1646 Even with `set breakpoint always-inserted on' the watchpoints are
1647 removed + inserted on each stop here. Normal breakpoints must
1648 never be removed because they might be missed by a running thread
1649 when debugging in non-stop mode. On the other hand, hardware
1650 watchpoints (is_hardware_watchpoint; processed here) are specific
1651 to each LWP since they are stored in each LWP's hardware debug
1652 registers. Therefore, such LWP must be stopped first in order to
1653 be able to modify its hardware watchpoints.
1654
1655 Hardware watchpoints must be reset exactly once after being
1656 presented to the user. It cannot be done sooner, because it would
1657 reset the data used to present the watchpoint hit to the user. And
1658 it must not be done later because it could display the same single
1659 watchpoint hit during multiple GDB stops. Note that the latter is
1660 relevant only to the hardware watchpoint types bp_read_watchpoint
1661 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1662 not user-visible - its hit is suppressed if the memory content has
1663 not changed.
1664
1665 The following constraints influence the location where we can reset
1666 hardware watchpoints:
1667
1668 * target_stopped_by_watchpoint and target_stopped_data_address are
1669 called several times when GDB stops.
1670
1671 [linux]
1672 * Multiple hardware watchpoints can be hit at the same time,
1673 causing GDB to stop. GDB only presents one hardware watchpoint
1674 hit at a time as the reason for stopping, and all the other hits
1675 are presented later, one after the other, each time the user
1676 requests the execution to be resumed. Execution is not resumed
1677 for the threads still having pending hit event stored in
1678 LWP_INFO->STATUS. While the watchpoint is already removed from
1679 the inferior on the first stop the thread hit event is kept being
1680 reported from its cached value by linux_nat_stopped_data_address
1681 until the real thread resume happens after the watchpoint gets
1682 presented and thus its LWP_INFO->STATUS gets reset.
1683
1684 Therefore the hardware watchpoint hit can get safely reset on the
1685 watchpoint removal from inferior. */
1686
1687 static void
1688 update_watchpoint (struct watchpoint *b, int reparse)
1689 {
1690 int within_current_scope;
1691 struct frame_id saved_frame_id;
1692 int frame_saved;
1693
1694 /* If this is a local watchpoint, we only want to check if the
1695 watchpoint frame is in scope if the current thread is the thread
1696 that was used to create the watchpoint. */
1697 if (!watchpoint_in_thread_scope (b))
1698 return;
1699
1700 if (b->disposition == disp_del_at_next_stop)
1701 return;
1702
1703 frame_saved = 0;
1704
1705 /* Determine if the watchpoint is within scope. */
1706 if (b->exp_valid_block == NULL)
1707 within_current_scope = 1;
1708 else
1709 {
1710 struct frame_info *fi = get_current_frame ();
1711 struct gdbarch *frame_arch = get_frame_arch (fi);
1712 CORE_ADDR frame_pc = get_frame_pc (fi);
1713
1714 /* If we're at a point where the stack has been destroyed
1715 (e.g. in a function epilogue), unwinding may not work
1716 properly. Do not attempt to recreate locations at this
1717 point. See similar comments in watchpoint_check. */
1718 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1719 return;
1720
1721 /* Save the current frame's ID so we can restore it after
1722 evaluating the watchpoint expression on its own frame. */
1723 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1724 took a frame parameter, so that we didn't have to change the
1725 selected frame. */
1726 frame_saved = 1;
1727 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1728
1729 fi = frame_find_by_id (b->watchpoint_frame);
1730 within_current_scope = (fi != NULL);
1731 if (within_current_scope)
1732 select_frame (fi);
1733 }
1734
1735 /* We don't free locations. They are stored in the bp_location array
1736 and update_global_location_list will eventually delete them and
1737 remove breakpoints if needed. */
1738 b->loc = NULL;
1739
1740 if (within_current_scope && reparse)
1741 {
1742 const char *s;
1743
1744 b->exp.reset ();
1745 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1746 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1747 /* If the meaning of expression itself changed, the old value is
1748 no longer relevant. We don't want to report a watchpoint hit
1749 to the user when the old value and the new value may actually
1750 be completely different objects. */
1751 b->val = NULL;
1752 b->val_valid = false;
1753
1754 /* Note that unlike with breakpoints, the watchpoint's condition
1755 expression is stored in the breakpoint object, not in the
1756 locations (re)created below. */
1757 if (b->cond_string != NULL)
1758 {
1759 b->cond_exp.reset ();
1760
1761 s = b->cond_string;
1762 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1763 }
1764 }
1765
1766 /* If we failed to parse the expression, for example because
1767 it refers to a global variable in a not-yet-loaded shared library,
1768 don't try to insert watchpoint. We don't automatically delete
1769 such watchpoint, though, since failure to parse expression
1770 is different from out-of-scope watchpoint. */
1771 if (!target_has_execution ())
1772 {
1773 /* Without execution, memory can't change. No use to try and
1774 set watchpoint locations. The watchpoint will be reset when
1775 the target gains execution, through breakpoint_re_set. */
1776 if (!can_use_hw_watchpoints)
1777 {
1778 if (b->ops->works_in_software_mode (b))
1779 b->type = bp_watchpoint;
1780 else
1781 error (_("Can't set read/access watchpoint when "
1782 "hardware watchpoints are disabled."));
1783 }
1784 }
1785 else if (within_current_scope && b->exp)
1786 {
1787 int pc = 0;
1788 std::vector<value_ref_ptr> val_chain;
1789 struct value *v, *result;
1790 struct program_space *frame_pspace;
1791
1792 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1793
1794 /* Avoid setting b->val if it's already set. The meaning of
1795 b->val is 'the last value' user saw, and we should update
1796 it only if we reported that last value to user. As it
1797 happens, the code that reports it updates b->val directly.
1798 We don't keep track of the memory value for masked
1799 watchpoints. */
1800 if (!b->val_valid && !is_masked_watchpoint (b))
1801 {
1802 if (b->val_bitsize != 0)
1803 v = extract_bitfield_from_watchpoint_value (b, v);
1804 b->val = release_value (v);
1805 b->val_valid = true;
1806 }
1807
1808 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1809
1810 /* Look at each value on the value chain. */
1811 gdb_assert (!val_chain.empty ());
1812 for (const value_ref_ptr &iter : val_chain)
1813 {
1814 v = iter.get ();
1815
1816 /* If it's a memory location, and GDB actually needed
1817 its contents to evaluate the expression, then we
1818 must watch it. If the first value returned is
1819 still lazy, that means an error occurred reading it;
1820 watch it anyway in case it becomes readable. */
1821 if (VALUE_LVAL (v) == lval_memory
1822 && (v == val_chain[0] || ! value_lazy (v)))
1823 {
1824 struct type *vtype = check_typedef (value_type (v));
1825
1826 /* We only watch structs and arrays if user asked
1827 for it explicitly, never if they just happen to
1828 appear in the middle of some value chain. */
1829 if (v == result
1830 || (vtype->code () != TYPE_CODE_STRUCT
1831 && vtype->code () != TYPE_CODE_ARRAY))
1832 {
1833 CORE_ADDR addr;
1834 enum target_hw_bp_type type;
1835 struct bp_location *loc, **tmp;
1836 int bitpos = 0, bitsize = 0;
1837
1838 if (value_bitsize (v) != 0)
1839 {
1840 /* Extract the bit parameters out from the bitfield
1841 sub-expression. */
1842 bitpos = value_bitpos (v);
1843 bitsize = value_bitsize (v);
1844 }
1845 else if (v == result && b->val_bitsize != 0)
1846 {
1847 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1848 lvalue whose bit parameters are saved in the fields
1849 VAL_BITPOS and VAL_BITSIZE. */
1850 bitpos = b->val_bitpos;
1851 bitsize = b->val_bitsize;
1852 }
1853
1854 addr = value_address (v);
1855 if (bitsize != 0)
1856 {
1857 /* Skip the bytes that don't contain the bitfield. */
1858 addr += bitpos / 8;
1859 }
1860
1861 type = hw_write;
1862 if (b->type == bp_read_watchpoint)
1863 type = hw_read;
1864 else if (b->type == bp_access_watchpoint)
1865 type = hw_access;
1866
1867 loc = allocate_bp_location (b);
1868 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1869 ;
1870 *tmp = loc;
1871 loc->gdbarch = get_type_arch (value_type (v));
1872
1873 loc->pspace = frame_pspace;
1874 loc->address = address_significant (loc->gdbarch, addr);
1875
1876 if (bitsize != 0)
1877 {
1878 /* Just cover the bytes that make up the bitfield. */
1879 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1880 }
1881 else
1882 loc->length = TYPE_LENGTH (value_type (v));
1883
1884 loc->watchpoint_type = type;
1885 }
1886 }
1887 }
1888
1889 /* Change the type of breakpoint between hardware assisted or
1890 an ordinary watchpoint depending on the hardware support
1891 and free hardware slots. REPARSE is set when the inferior
1892 is started. */
1893 if (reparse)
1894 {
1895 int reg_cnt;
1896 enum bp_loc_type loc_type;
1897 struct bp_location *bl;
1898
1899 reg_cnt = can_use_hardware_watchpoint (val_chain);
1900
1901 if (reg_cnt)
1902 {
1903 int i, target_resources_ok, other_type_used;
1904 enum bptype type;
1905
1906 /* Use an exact watchpoint when there's only one memory region to be
1907 watched, and only one debug register is needed to watch it. */
1908 b->exact = target_exact_watchpoints && reg_cnt == 1;
1909
1910 /* We need to determine how many resources are already
1911 used for all other hardware watchpoints plus this one
1912 to see if we still have enough resources to also fit
1913 this watchpoint in as well. */
1914
1915 /* If this is a software watchpoint, we try to turn it
1916 to a hardware one -- count resources as if B was of
1917 hardware watchpoint type. */
1918 type = b->type;
1919 if (type == bp_watchpoint)
1920 type = bp_hardware_watchpoint;
1921
1922 /* This watchpoint may or may not have been placed on
1923 the list yet at this point (it won't be in the list
1924 if we're trying to create it for the first time,
1925 through watch_command), so always account for it
1926 manually. */
1927
1928 /* Count resources used by all watchpoints except B. */
1929 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1930
1931 /* Add in the resources needed for B. */
1932 i += hw_watchpoint_use_count (b);
1933
1934 target_resources_ok
1935 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1936 if (target_resources_ok <= 0)
1937 {
1938 int sw_mode = b->ops->works_in_software_mode (b);
1939
1940 if (target_resources_ok == 0 && !sw_mode)
1941 error (_("Target does not support this type of "
1942 "hardware watchpoint."));
1943 else if (target_resources_ok < 0 && !sw_mode)
1944 error (_("There are not enough available hardware "
1945 "resources for this watchpoint."));
1946
1947 /* Downgrade to software watchpoint. */
1948 b->type = bp_watchpoint;
1949 }
1950 else
1951 {
1952 /* If this was a software watchpoint, we've just
1953 found we have enough resources to turn it to a
1954 hardware watchpoint. Otherwise, this is a
1955 nop. */
1956 b->type = type;
1957 }
1958 }
1959 else if (!b->ops->works_in_software_mode (b))
1960 {
1961 if (!can_use_hw_watchpoints)
1962 error (_("Can't set read/access watchpoint when "
1963 "hardware watchpoints are disabled."));
1964 else
1965 error (_("Expression cannot be implemented with "
1966 "read/access watchpoint."));
1967 }
1968 else
1969 b->type = bp_watchpoint;
1970
1971 loc_type = (b->type == bp_watchpoint? bp_loc_other
1972 : bp_loc_hardware_watchpoint);
1973 for (bl = b->loc; bl; bl = bl->next)
1974 bl->loc_type = loc_type;
1975 }
1976
1977 /* If a software watchpoint is not watching any memory, then the
1978 above left it without any location set up. But,
1979 bpstat_stop_status requires a location to be able to report
1980 stops, so make sure there's at least a dummy one. */
1981 if (b->type == bp_watchpoint && b->loc == NULL)
1982 software_watchpoint_add_no_memory_location (b, frame_pspace);
1983 }
1984 else if (!within_current_scope)
1985 {
1986 printf_filtered (_("\
1987 Watchpoint %d deleted because the program has left the block\n\
1988 in which its expression is valid.\n"),
1989 b->number);
1990 watchpoint_del_at_next_stop (b);
1991 }
1992
1993 /* Restore the selected frame. */
1994 if (frame_saved)
1995 select_frame (frame_find_by_id (saved_frame_id));
1996 }
1997
1998
1999 /* Returns 1 iff breakpoint location should be
2000 inserted in the inferior. We don't differentiate the type of BL's owner
2001 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2002 breakpoint_ops is not defined, because in insert_bp_location,
2003 tracepoint's insert_location will not be called. */
2004 static int
2005 should_be_inserted (struct bp_location *bl)
2006 {
2007 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2008 return 0;
2009
2010 if (bl->owner->disposition == disp_del_at_next_stop)
2011 return 0;
2012
2013 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2014 return 0;
2015
2016 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2017 return 0;
2018
2019 /* This is set for example, when we're attached to the parent of a
2020 vfork, and have detached from the child. The child is running
2021 free, and we expect it to do an exec or exit, at which point the
2022 OS makes the parent schedulable again (and the target reports
2023 that the vfork is done). Until the child is done with the shared
2024 memory region, do not insert breakpoints in the parent, otherwise
2025 the child could still trip on the parent's breakpoints. Since
2026 the parent is blocked anyway, it won't miss any breakpoint. */
2027 if (bl->pspace->breakpoints_not_allowed)
2028 return 0;
2029
2030 /* Don't insert a breakpoint if we're trying to step past its
2031 location, except if the breakpoint is a single-step breakpoint,
2032 and the breakpoint's thread is the thread which is stepping past
2033 a breakpoint. */
2034 if ((bl->loc_type == bp_loc_software_breakpoint
2035 || bl->loc_type == bp_loc_hardware_breakpoint)
2036 && stepping_past_instruction_at (bl->pspace->aspace,
2037 bl->address)
2038 /* The single-step breakpoint may be inserted at the location
2039 we're trying to step if the instruction branches to itself.
2040 However, the instruction won't be executed at all and it may
2041 break the semantics of the instruction, for example, the
2042 instruction is a conditional branch or updates some flags.
2043 We can't fix it unless GDB is able to emulate the instruction
2044 or switch to displaced stepping. */
2045 && !(bl->owner->type == bp_single_step
2046 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2047 {
2048 infrun_debug_printf ("skipping breakpoint: stepping past insn at: %s",
2049 paddress (bl->gdbarch, bl->address));
2050 return 0;
2051 }
2052
2053 /* Don't insert watchpoints if we're trying to step past the
2054 instruction that triggered one. */
2055 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2056 && stepping_past_nonsteppable_watchpoint ())
2057 {
2058 infrun_debug_printf ("stepping past non-steppable watchpoint. "
2059 "skipping watchpoint at %s:%d\n",
2060 paddress (bl->gdbarch, bl->address), bl->length);
2061 return 0;
2062 }
2063
2064 return 1;
2065 }
2066
2067 /* Same as should_be_inserted but does the check assuming
2068 that the location is not duplicated. */
2069
2070 static int
2071 unduplicated_should_be_inserted (struct bp_location *bl)
2072 {
2073 int result;
2074 const int save_duplicate = bl->duplicate;
2075
2076 bl->duplicate = 0;
2077 result = should_be_inserted (bl);
2078 bl->duplicate = save_duplicate;
2079 return result;
2080 }
2081
2082 /* Parses a conditional described by an expression COND into an
2083 agent expression bytecode suitable for evaluation
2084 by the bytecode interpreter. Return NULL if there was
2085 any error during parsing. */
2086
2087 static agent_expr_up
2088 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2089 {
2090 if (cond == NULL)
2091 return NULL;
2092
2093 agent_expr_up aexpr;
2094
2095 /* We don't want to stop processing, so catch any errors
2096 that may show up. */
2097 try
2098 {
2099 aexpr = gen_eval_for_expr (scope, cond);
2100 }
2101
2102 catch (const gdb_exception_error &ex)
2103 {
2104 /* If we got here, it means the condition could not be parsed to a valid
2105 bytecode expression and thus can't be evaluated on the target's side.
2106 It's no use iterating through the conditions. */
2107 }
2108
2109 /* We have a valid agent expression. */
2110 return aexpr;
2111 }
2112
2113 /* Based on location BL, create a list of breakpoint conditions to be
2114 passed on to the target. If we have duplicated locations with different
2115 conditions, we will add such conditions to the list. The idea is that the
2116 target will evaluate the list of conditions and will only notify GDB when
2117 one of them is true. */
2118
2119 static void
2120 build_target_condition_list (struct bp_location *bl)
2121 {
2122 struct bp_location **locp = NULL, **loc2p;
2123 int null_condition_or_parse_error = 0;
2124 int modified = bl->needs_update;
2125 struct bp_location *loc;
2126
2127 /* Release conditions left over from a previous insert. */
2128 bl->target_info.conditions.clear ();
2129
2130 /* This is only meaningful if the target is
2131 evaluating conditions and if the user has
2132 opted for condition evaluation on the target's
2133 side. */
2134 if (gdb_evaluates_breakpoint_condition_p ()
2135 || !target_supports_evaluation_of_breakpoint_conditions ())
2136 return;
2137
2138 /* Do a first pass to check for locations with no assigned
2139 conditions or conditions that fail to parse to a valid agent
2140 expression bytecode. If any of these happen, then it's no use to
2141 send conditions to the target since this location will always
2142 trigger and generate a response back to GDB. Note we consider
2143 all locations at the same address irrespective of type, i.e.,
2144 even if the locations aren't considered duplicates (e.g.,
2145 software breakpoint and hardware breakpoint at the same
2146 address). */
2147 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2148 {
2149 loc = (*loc2p);
2150 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2151 {
2152 if (modified)
2153 {
2154 /* Re-parse the conditions since something changed. In that
2155 case we already freed the condition bytecodes (see
2156 force_breakpoint_reinsertion). We just
2157 need to parse the condition to bytecodes again. */
2158 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2159 loc->cond.get ());
2160 }
2161
2162 /* If we have a NULL bytecode expression, it means something
2163 went wrong or we have a null condition expression. */
2164 if (!loc->cond_bytecode)
2165 {
2166 null_condition_or_parse_error = 1;
2167 break;
2168 }
2169 }
2170 }
2171
2172 /* If any of these happened, it means we will have to evaluate the conditions
2173 for the location's address on gdb's side. It is no use keeping bytecodes
2174 for all the other duplicate locations, thus we free all of them here.
2175
2176 This is so we have a finer control over which locations' conditions are
2177 being evaluated by GDB or the remote stub. */
2178 if (null_condition_or_parse_error)
2179 {
2180 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2181 {
2182 loc = (*loc2p);
2183 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2184 {
2185 /* Only go as far as the first NULL bytecode is
2186 located. */
2187 if (!loc->cond_bytecode)
2188 return;
2189
2190 loc->cond_bytecode.reset ();
2191 }
2192 }
2193 }
2194
2195 /* No NULL conditions or failed bytecode generation. Build a
2196 condition list for this location's address. If we have software
2197 and hardware locations at the same address, they aren't
2198 considered duplicates, but we still marge all the conditions
2199 anyway, as it's simpler, and doesn't really make a practical
2200 difference. */
2201 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2202 {
2203 loc = (*loc2p);
2204 if (loc->cond
2205 && is_breakpoint (loc->owner)
2206 && loc->pspace->num == bl->pspace->num
2207 && loc->owner->enable_state == bp_enabled
2208 && loc->enabled)
2209 {
2210 /* Add the condition to the vector. This will be used later
2211 to send the conditions to the target. */
2212 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2213 }
2214 }
2215
2216 return;
2217 }
2218
2219 /* Parses a command described by string CMD into an agent expression
2220 bytecode suitable for evaluation by the bytecode interpreter.
2221 Return NULL if there was any error during parsing. */
2222
2223 static agent_expr_up
2224 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2225 {
2226 const char *cmdrest;
2227 const char *format_start, *format_end;
2228 struct gdbarch *gdbarch = get_current_arch ();
2229
2230 if (cmd == NULL)
2231 return NULL;
2232
2233 cmdrest = cmd;
2234
2235 if (*cmdrest == ',')
2236 ++cmdrest;
2237 cmdrest = skip_spaces (cmdrest);
2238
2239 if (*cmdrest++ != '"')
2240 error (_("No format string following the location"));
2241
2242 format_start = cmdrest;
2243
2244 format_pieces fpieces (&cmdrest);
2245
2246 format_end = cmdrest;
2247
2248 if (*cmdrest++ != '"')
2249 error (_("Bad format string, non-terminated '\"'."));
2250
2251 cmdrest = skip_spaces (cmdrest);
2252
2253 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2254 error (_("Invalid argument syntax"));
2255
2256 if (*cmdrest == ',')
2257 cmdrest++;
2258 cmdrest = skip_spaces (cmdrest);
2259
2260 /* For each argument, make an expression. */
2261
2262 std::vector<struct expression *> argvec;
2263 while (*cmdrest != '\0')
2264 {
2265 const char *cmd1;
2266
2267 cmd1 = cmdrest;
2268 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2269 argvec.push_back (expr.release ());
2270 cmdrest = cmd1;
2271 if (*cmdrest == ',')
2272 ++cmdrest;
2273 }
2274
2275 agent_expr_up aexpr;
2276
2277 /* We don't want to stop processing, so catch any errors
2278 that may show up. */
2279 try
2280 {
2281 aexpr = gen_printf (scope, gdbarch, 0, 0,
2282 format_start, format_end - format_start,
2283 argvec.size (), argvec.data ());
2284 }
2285 catch (const gdb_exception_error &ex)
2286 {
2287 /* If we got here, it means the command could not be parsed to a valid
2288 bytecode expression and thus can't be evaluated on the target's side.
2289 It's no use iterating through the other commands. */
2290 }
2291
2292 /* We have a valid agent expression, return it. */
2293 return aexpr;
2294 }
2295
2296 /* Based on location BL, create a list of breakpoint commands to be
2297 passed on to the target. If we have duplicated locations with
2298 different commands, we will add any such to the list. */
2299
2300 static void
2301 build_target_command_list (struct bp_location *bl)
2302 {
2303 struct bp_location **locp = NULL, **loc2p;
2304 int null_command_or_parse_error = 0;
2305 int modified = bl->needs_update;
2306 struct bp_location *loc;
2307
2308 /* Clear commands left over from a previous insert. */
2309 bl->target_info.tcommands.clear ();
2310
2311 if (!target_can_run_breakpoint_commands ())
2312 return;
2313
2314 /* For now, limit to agent-style dprintf breakpoints. */
2315 if (dprintf_style != dprintf_style_agent)
2316 return;
2317
2318 /* For now, if we have any location at the same address that isn't a
2319 dprintf, don't install the target-side commands, as that would
2320 make the breakpoint not be reported to the core, and we'd lose
2321 control. */
2322 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2323 {
2324 loc = (*loc2p);
2325 if (is_breakpoint (loc->owner)
2326 && loc->pspace->num == bl->pspace->num
2327 && loc->owner->type != bp_dprintf)
2328 return;
2329 }
2330
2331 /* Do a first pass to check for locations with no assigned
2332 conditions or conditions that fail to parse to a valid agent expression
2333 bytecode. If any of these happen, then it's no use to send conditions
2334 to the target since this location will always trigger and generate a
2335 response back to GDB. */
2336 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2337 {
2338 loc = (*loc2p);
2339 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2340 {
2341 if (modified)
2342 {
2343 /* Re-parse the commands since something changed. In that
2344 case we already freed the command bytecodes (see
2345 force_breakpoint_reinsertion). We just
2346 need to parse the command to bytecodes again. */
2347 loc->cmd_bytecode
2348 = parse_cmd_to_aexpr (bl->address,
2349 loc->owner->extra_string);
2350 }
2351
2352 /* If we have a NULL bytecode expression, it means something
2353 went wrong or we have a null command expression. */
2354 if (!loc->cmd_bytecode)
2355 {
2356 null_command_or_parse_error = 1;
2357 break;
2358 }
2359 }
2360 }
2361
2362 /* If anything failed, then we're not doing target-side commands,
2363 and so clean up. */
2364 if (null_command_or_parse_error)
2365 {
2366 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2367 {
2368 loc = (*loc2p);
2369 if (is_breakpoint (loc->owner)
2370 && loc->pspace->num == bl->pspace->num)
2371 {
2372 /* Only go as far as the first NULL bytecode is
2373 located. */
2374 if (loc->cmd_bytecode == NULL)
2375 return;
2376
2377 loc->cmd_bytecode.reset ();
2378 }
2379 }
2380 }
2381
2382 /* No NULL commands or failed bytecode generation. Build a command
2383 list for all duplicate locations at this location's address.
2384 Note that here we must care for whether the breakpoint location
2385 types are considered duplicates, otherwise, say, if we have a
2386 software and hardware location at the same address, the target
2387 could end up running the commands twice. For the moment, we only
2388 support targets-side commands with dprintf, but it doesn't hurt
2389 to be pedantically correct in case that changes. */
2390 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2391 {
2392 loc = (*loc2p);
2393 if (breakpoint_locations_match (bl, loc)
2394 && loc->owner->extra_string
2395 && is_breakpoint (loc->owner)
2396 && loc->pspace->num == bl->pspace->num
2397 && loc->owner->enable_state == bp_enabled
2398 && loc->enabled)
2399 {
2400 /* Add the command to the vector. This will be used later
2401 to send the commands to the target. */
2402 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2403 }
2404 }
2405
2406 bl->target_info.persist = 0;
2407 /* Maybe flag this location as persistent. */
2408 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2409 bl->target_info.persist = 1;
2410 }
2411
2412 /* Return the kind of breakpoint on address *ADDR. Get the kind
2413 of breakpoint according to ADDR except single-step breakpoint.
2414 Get the kind of single-step breakpoint according to the current
2415 registers state. */
2416
2417 static int
2418 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2419 {
2420 if (bl->owner->type == bp_single_step)
2421 {
2422 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2423 struct regcache *regcache;
2424
2425 regcache = get_thread_regcache (thr);
2426
2427 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2428 regcache, addr);
2429 }
2430 else
2431 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2432 }
2433
2434 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2435 location. Any error messages are printed to TMP_ERROR_STREAM; and
2436 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2437 Returns 0 for success, 1 if the bp_location type is not supported or
2438 -1 for failure.
2439
2440 NOTE drow/2003-09-09: This routine could be broken down to an
2441 object-style method for each breakpoint or catchpoint type. */
2442 static int
2443 insert_bp_location (struct bp_location *bl,
2444 struct ui_file *tmp_error_stream,
2445 int *disabled_breaks,
2446 int *hw_breakpoint_error,
2447 int *hw_bp_error_explained_already)
2448 {
2449 gdb_exception bp_excpt;
2450
2451 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2452 return 0;
2453
2454 /* Note we don't initialize bl->target_info, as that wipes out
2455 the breakpoint location's shadow_contents if the breakpoint
2456 is still inserted at that location. This in turn breaks
2457 target_read_memory which depends on these buffers when
2458 a memory read is requested at the breakpoint location:
2459 Once the target_info has been wiped, we fail to see that
2460 we have a breakpoint inserted at that address and thus
2461 read the breakpoint instead of returning the data saved in
2462 the breakpoint location's shadow contents. */
2463 bl->target_info.reqstd_address = bl->address;
2464 bl->target_info.placed_address_space = bl->pspace->aspace;
2465 bl->target_info.length = bl->length;
2466
2467 /* When working with target-side conditions, we must pass all the conditions
2468 for the same breakpoint address down to the target since GDB will not
2469 insert those locations. With a list of breakpoint conditions, the target
2470 can decide when to stop and notify GDB. */
2471
2472 if (is_breakpoint (bl->owner))
2473 {
2474 build_target_condition_list (bl);
2475 build_target_command_list (bl);
2476 /* Reset the modification marker. */
2477 bl->needs_update = 0;
2478 }
2479
2480 /* If "set breakpoint auto-hw" is "on" and a software breakpoint was
2481 set at a read-only address, then a breakpoint location will have
2482 been changed to hardware breakpoint before we get here. If it is
2483 "off" however, error out before actually trying to insert the
2484 breakpoint, with a nicer error message. */
2485 if (bl->loc_type == bp_loc_software_breakpoint
2486 && !automatic_hardware_breakpoints)
2487 {
2488 mem_region *mr = lookup_mem_region (bl->address);
2489
2490 if (mr != nullptr && mr->attrib.mode != MEM_RW)
2491 {
2492 fprintf_unfiltered (tmp_error_stream,
2493 _("Cannot insert breakpoint %d.\n"
2494 "Cannot set software breakpoint "
2495 "at read-only address %s\n"),
2496 bl->owner->number,
2497 paddress (bl->gdbarch, bl->address));
2498 return 1;
2499 }
2500 }
2501
2502 if (bl->loc_type == bp_loc_software_breakpoint
2503 || bl->loc_type == bp_loc_hardware_breakpoint)
2504 {
2505 /* First check to see if we have to handle an overlay. */
2506 if (overlay_debugging == ovly_off
2507 || bl->section == NULL
2508 || !(section_is_overlay (bl->section)))
2509 {
2510 /* No overlay handling: just set the breakpoint. */
2511 try
2512 {
2513 int val;
2514
2515 val = bl->owner->ops->insert_location (bl);
2516 if (val)
2517 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2518 }
2519 catch (gdb_exception &e)
2520 {
2521 bp_excpt = std::move (e);
2522 }
2523 }
2524 else
2525 {
2526 /* This breakpoint is in an overlay section.
2527 Shall we set a breakpoint at the LMA? */
2528 if (!overlay_events_enabled)
2529 {
2530 /* Yes -- overlay event support is not active,
2531 so we must try to set a breakpoint at the LMA.
2532 This will not work for a hardware breakpoint. */
2533 if (bl->loc_type == bp_loc_hardware_breakpoint)
2534 warning (_("hardware breakpoint %d not supported in overlay!"),
2535 bl->owner->number);
2536 else
2537 {
2538 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2539 bl->section);
2540 /* Set a software (trap) breakpoint at the LMA. */
2541 bl->overlay_target_info = bl->target_info;
2542 bl->overlay_target_info.reqstd_address = addr;
2543
2544 /* No overlay handling: just set the breakpoint. */
2545 try
2546 {
2547 int val;
2548
2549 bl->overlay_target_info.kind
2550 = breakpoint_kind (bl, &addr);
2551 bl->overlay_target_info.placed_address = addr;
2552 val = target_insert_breakpoint (bl->gdbarch,
2553 &bl->overlay_target_info);
2554 if (val)
2555 bp_excpt
2556 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2557 }
2558 catch (gdb_exception &e)
2559 {
2560 bp_excpt = std::move (e);
2561 }
2562
2563 if (bp_excpt.reason != 0)
2564 fprintf_unfiltered (tmp_error_stream,
2565 "Overlay breakpoint %d "
2566 "failed: in ROM?\n",
2567 bl->owner->number);
2568 }
2569 }
2570 /* Shall we set a breakpoint at the VMA? */
2571 if (section_is_mapped (bl->section))
2572 {
2573 /* Yes. This overlay section is mapped into memory. */
2574 try
2575 {
2576 int val;
2577
2578 val = bl->owner->ops->insert_location (bl);
2579 if (val)
2580 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2581 }
2582 catch (gdb_exception &e)
2583 {
2584 bp_excpt = std::move (e);
2585 }
2586 }
2587 else
2588 {
2589 /* No. This breakpoint will not be inserted.
2590 No error, but do not mark the bp as 'inserted'. */
2591 return 0;
2592 }
2593 }
2594
2595 if (bp_excpt.reason != 0)
2596 {
2597 /* Can't set the breakpoint. */
2598
2599 /* In some cases, we might not be able to insert a
2600 breakpoint in a shared library that has already been
2601 removed, but we have not yet processed the shlib unload
2602 event. Unfortunately, some targets that implement
2603 breakpoint insertion themselves can't tell why the
2604 breakpoint insertion failed (e.g., the remote target
2605 doesn't define error codes), so we must treat generic
2606 errors as memory errors. */
2607 if (bp_excpt.reason == RETURN_ERROR
2608 && (bp_excpt.error == GENERIC_ERROR
2609 || bp_excpt.error == MEMORY_ERROR)
2610 && bl->loc_type == bp_loc_software_breakpoint
2611 && (solib_name_from_address (bl->pspace, bl->address)
2612 || shared_objfile_contains_address_p (bl->pspace,
2613 bl->address)))
2614 {
2615 /* See also: disable_breakpoints_in_shlibs. */
2616 bl->shlib_disabled = 1;
2617 gdb::observers::breakpoint_modified.notify (bl->owner);
2618 if (!*disabled_breaks)
2619 {
2620 fprintf_unfiltered (tmp_error_stream,
2621 "Cannot insert breakpoint %d.\n",
2622 bl->owner->number);
2623 fprintf_unfiltered (tmp_error_stream,
2624 "Temporarily disabling shared "
2625 "library breakpoints:\n");
2626 }
2627 *disabled_breaks = 1;
2628 fprintf_unfiltered (tmp_error_stream,
2629 "breakpoint #%d\n", bl->owner->number);
2630 return 0;
2631 }
2632 else
2633 {
2634 if (bl->loc_type == bp_loc_hardware_breakpoint)
2635 {
2636 *hw_breakpoint_error = 1;
2637 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2638 fprintf_unfiltered (tmp_error_stream,
2639 "Cannot insert hardware breakpoint %d%s",
2640 bl->owner->number,
2641 bp_excpt.message ? ":" : ".\n");
2642 if (bp_excpt.message != NULL)
2643 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2644 bp_excpt.what ());
2645 }
2646 else
2647 {
2648 if (bp_excpt.message == NULL)
2649 {
2650 std::string message
2651 = memory_error_message (TARGET_XFER_E_IO,
2652 bl->gdbarch, bl->address);
2653
2654 fprintf_unfiltered (tmp_error_stream,
2655 "Cannot insert breakpoint %d.\n"
2656 "%s\n",
2657 bl->owner->number, message.c_str ());
2658 }
2659 else
2660 {
2661 fprintf_unfiltered (tmp_error_stream,
2662 "Cannot insert breakpoint %d: %s\n",
2663 bl->owner->number,
2664 bp_excpt.what ());
2665 }
2666 }
2667 return 1;
2668
2669 }
2670 }
2671 else
2672 bl->inserted = 1;
2673
2674 return 0;
2675 }
2676
2677 else if (bl->loc_type == bp_loc_hardware_watchpoint
2678 /* NOTE drow/2003-09-08: This state only exists for removing
2679 watchpoints. It's not clear that it's necessary... */
2680 && bl->owner->disposition != disp_del_at_next_stop)
2681 {
2682 int val;
2683
2684 gdb_assert (bl->owner->ops != NULL
2685 && bl->owner->ops->insert_location != NULL);
2686
2687 val = bl->owner->ops->insert_location (bl);
2688
2689 /* If trying to set a read-watchpoint, and it turns out it's not
2690 supported, try emulating one with an access watchpoint. */
2691 if (val == 1 && bl->watchpoint_type == hw_read)
2692 {
2693 struct bp_location *loc, **loc_temp;
2694
2695 /* But don't try to insert it, if there's already another
2696 hw_access location that would be considered a duplicate
2697 of this one. */
2698 ALL_BP_LOCATIONS (loc, loc_temp)
2699 if (loc != bl
2700 && loc->watchpoint_type == hw_access
2701 && watchpoint_locations_match (bl, loc))
2702 {
2703 bl->duplicate = 1;
2704 bl->inserted = 1;
2705 bl->target_info = loc->target_info;
2706 bl->watchpoint_type = hw_access;
2707 val = 0;
2708 break;
2709 }
2710
2711 if (val == 1)
2712 {
2713 bl->watchpoint_type = hw_access;
2714 val = bl->owner->ops->insert_location (bl);
2715
2716 if (val)
2717 /* Back to the original value. */
2718 bl->watchpoint_type = hw_read;
2719 }
2720 }
2721
2722 bl->inserted = (val == 0);
2723 }
2724
2725 else if (bl->owner->type == bp_catchpoint)
2726 {
2727 int val;
2728
2729 gdb_assert (bl->owner->ops != NULL
2730 && bl->owner->ops->insert_location != NULL);
2731
2732 val = bl->owner->ops->insert_location (bl);
2733 if (val)
2734 {
2735 bl->owner->enable_state = bp_disabled;
2736
2737 if (val == 1)
2738 warning (_("\
2739 Error inserting catchpoint %d: Your system does not support this type\n\
2740 of catchpoint."), bl->owner->number);
2741 else
2742 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2743 }
2744
2745 bl->inserted = (val == 0);
2746
2747 /* We've already printed an error message if there was a problem
2748 inserting this catchpoint, and we've disabled the catchpoint,
2749 so just return success. */
2750 return 0;
2751 }
2752
2753 return 0;
2754 }
2755
2756 /* This function is called when program space PSPACE is about to be
2757 deleted. It takes care of updating breakpoints to not reference
2758 PSPACE anymore. */
2759
2760 void
2761 breakpoint_program_space_exit (struct program_space *pspace)
2762 {
2763 struct breakpoint *b, *b_temp;
2764 struct bp_location *loc, **loc_temp;
2765
2766 /* Remove any breakpoint that was set through this program space. */
2767 ALL_BREAKPOINTS_SAFE (b, b_temp)
2768 {
2769 if (b->pspace == pspace)
2770 delete_breakpoint (b);
2771 }
2772
2773 /* Breakpoints set through other program spaces could have locations
2774 bound to PSPACE as well. Remove those. */
2775 ALL_BP_LOCATIONS (loc, loc_temp)
2776 {
2777 struct bp_location *tmp;
2778
2779 if (loc->pspace == pspace)
2780 {
2781 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2782 if (loc->owner->loc == loc)
2783 loc->owner->loc = loc->next;
2784 else
2785 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2786 if (tmp->next == loc)
2787 {
2788 tmp->next = loc->next;
2789 break;
2790 }
2791 }
2792 }
2793
2794 /* Now update the global location list to permanently delete the
2795 removed locations above. */
2796 update_global_location_list (UGLL_DONT_INSERT);
2797 }
2798
2799 /* Make sure all breakpoints are inserted in inferior.
2800 Throws exception on any error.
2801 A breakpoint that is already inserted won't be inserted
2802 again, so calling this function twice is safe. */
2803 void
2804 insert_breakpoints (void)
2805 {
2806 struct breakpoint *bpt;
2807
2808 ALL_BREAKPOINTS (bpt)
2809 if (is_hardware_watchpoint (bpt))
2810 {
2811 struct watchpoint *w = (struct watchpoint *) bpt;
2812
2813 update_watchpoint (w, 0 /* don't reparse. */);
2814 }
2815
2816 /* Updating watchpoints creates new locations, so update the global
2817 location list. Explicitly tell ugll to insert locations and
2818 ignore breakpoints_always_inserted_mode. Also,
2819 update_global_location_list tries to "upgrade" software
2820 breakpoints to hardware breakpoints to handle "set breakpoint
2821 auto-hw", so we need to call it even if we don't have new
2822 locations. */
2823 update_global_location_list (UGLL_INSERT);
2824 }
2825
2826 /* Invoke CALLBACK for each of bp_location. */
2827
2828 void
2829 iterate_over_bp_locations (walk_bp_location_callback callback)
2830 {
2831 struct bp_location *loc, **loc_tmp;
2832
2833 ALL_BP_LOCATIONS (loc, loc_tmp)
2834 {
2835 callback (loc, NULL);
2836 }
2837 }
2838
2839 /* This is used when we need to synch breakpoint conditions between GDB and the
2840 target. It is the case with deleting and disabling of breakpoints when using
2841 always-inserted mode. */
2842
2843 static void
2844 update_inserted_breakpoint_locations (void)
2845 {
2846 struct bp_location *bl, **blp_tmp;
2847 int error_flag = 0;
2848 int val = 0;
2849 int disabled_breaks = 0;
2850 int hw_breakpoint_error = 0;
2851 int hw_bp_details_reported = 0;
2852
2853 string_file tmp_error_stream;
2854
2855 /* Explicitly mark the warning -- this will only be printed if
2856 there was an error. */
2857 tmp_error_stream.puts ("Warning:\n");
2858
2859 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2860
2861 ALL_BP_LOCATIONS (bl, blp_tmp)
2862 {
2863 /* We only want to update software breakpoints and hardware
2864 breakpoints. */
2865 if (!is_breakpoint (bl->owner))
2866 continue;
2867
2868 /* We only want to update locations that are already inserted
2869 and need updating. This is to avoid unwanted insertion during
2870 deletion of breakpoints. */
2871 if (!bl->inserted || !bl->needs_update)
2872 continue;
2873
2874 switch_to_program_space_and_thread (bl->pspace);
2875
2876 /* For targets that support global breakpoints, there's no need
2877 to select an inferior to insert breakpoint to. In fact, even
2878 if we aren't attached to any process yet, we should still
2879 insert breakpoints. */
2880 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2881 && (inferior_ptid == null_ptid || !target_has_execution ()))
2882 continue;
2883
2884 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2885 &hw_breakpoint_error, &hw_bp_details_reported);
2886 if (val)
2887 error_flag = val;
2888 }
2889
2890 if (error_flag)
2891 {
2892 target_terminal::ours_for_output ();
2893 error_stream (tmp_error_stream);
2894 }
2895 }
2896
2897 /* Used when starting or continuing the program. */
2898
2899 static void
2900 insert_breakpoint_locations (void)
2901 {
2902 struct breakpoint *bpt;
2903 struct bp_location *bl, **blp_tmp;
2904 int error_flag = 0;
2905 int val = 0;
2906 int disabled_breaks = 0;
2907 int hw_breakpoint_error = 0;
2908 int hw_bp_error_explained_already = 0;
2909
2910 string_file tmp_error_stream;
2911
2912 /* Explicitly mark the warning -- this will only be printed if
2913 there was an error. */
2914 tmp_error_stream.puts ("Warning:\n");
2915
2916 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2917
2918 ALL_BP_LOCATIONS (bl, blp_tmp)
2919 {
2920 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2921 continue;
2922
2923 /* There is no point inserting thread-specific breakpoints if
2924 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2925 has BL->OWNER always non-NULL. */
2926 if (bl->owner->thread != -1
2927 && !valid_global_thread_id (bl->owner->thread))
2928 continue;
2929
2930 switch_to_program_space_and_thread (bl->pspace);
2931
2932 /* For targets that support global breakpoints, there's no need
2933 to select an inferior to insert breakpoint to. In fact, even
2934 if we aren't attached to any process yet, we should still
2935 insert breakpoints. */
2936 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2937 && (inferior_ptid == null_ptid || !target_has_execution ()))
2938 continue;
2939
2940 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2941 &hw_breakpoint_error, &hw_bp_error_explained_already);
2942 if (val)
2943 error_flag = val;
2944 }
2945
2946 /* If we failed to insert all locations of a watchpoint, remove
2947 them, as half-inserted watchpoint is of limited use. */
2948 ALL_BREAKPOINTS (bpt)
2949 {
2950 int some_failed = 0;
2951 struct bp_location *loc;
2952
2953 if (!is_hardware_watchpoint (bpt))
2954 continue;
2955
2956 if (!breakpoint_enabled (bpt))
2957 continue;
2958
2959 if (bpt->disposition == disp_del_at_next_stop)
2960 continue;
2961
2962 for (loc = bpt->loc; loc; loc = loc->next)
2963 if (!loc->inserted && should_be_inserted (loc))
2964 {
2965 some_failed = 1;
2966 break;
2967 }
2968 if (some_failed)
2969 {
2970 for (loc = bpt->loc; loc; loc = loc->next)
2971 if (loc->inserted)
2972 remove_breakpoint (loc);
2973
2974 hw_breakpoint_error = 1;
2975 tmp_error_stream.printf ("Could not insert "
2976 "hardware watchpoint %d.\n",
2977 bpt->number);
2978 error_flag = -1;
2979 }
2980 }
2981
2982 if (error_flag)
2983 {
2984 /* If a hardware breakpoint or watchpoint was inserted, add a
2985 message about possibly exhausted resources. */
2986 if (hw_breakpoint_error && !hw_bp_error_explained_already)
2987 {
2988 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
2989 You may have requested too many hardware breakpoints/watchpoints.\n");
2990 }
2991 target_terminal::ours_for_output ();
2992 error_stream (tmp_error_stream);
2993 }
2994 }
2995
2996 /* Used when the program stops.
2997 Returns zero if successful, or non-zero if there was a problem
2998 removing a breakpoint location. */
2999
3000 int
3001 remove_breakpoints (void)
3002 {
3003 struct bp_location *bl, **blp_tmp;
3004 int val = 0;
3005
3006 ALL_BP_LOCATIONS (bl, blp_tmp)
3007 {
3008 if (bl->inserted && !is_tracepoint (bl->owner))
3009 val |= remove_breakpoint (bl);
3010 }
3011 return val;
3012 }
3013
3014 /* When a thread exits, remove breakpoints that are related to
3015 that thread. */
3016
3017 static void
3018 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3019 {
3020 struct breakpoint *b, *b_tmp;
3021
3022 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3023 {
3024 if (b->thread == tp->global_num && user_breakpoint_p (b))
3025 {
3026 b->disposition = disp_del_at_next_stop;
3027
3028 printf_filtered (_("\
3029 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3030 b->number, print_thread_id (tp));
3031
3032 /* Hide it from the user. */
3033 b->number = 0;
3034 }
3035 }
3036 }
3037
3038 /* See breakpoint.h. */
3039
3040 void
3041 remove_breakpoints_inf (inferior *inf)
3042 {
3043 struct bp_location *bl, **blp_tmp;
3044 int val;
3045
3046 ALL_BP_LOCATIONS (bl, blp_tmp)
3047 {
3048 if (bl->pspace != inf->pspace)
3049 continue;
3050
3051 if (bl->inserted && !bl->target_info.persist)
3052 {
3053 val = remove_breakpoint (bl);
3054 if (val != 0)
3055 return;
3056 }
3057 }
3058 }
3059
3060 static int internal_breakpoint_number = -1;
3061
3062 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3063 If INTERNAL is non-zero, the breakpoint number will be populated
3064 from internal_breakpoint_number and that variable decremented.
3065 Otherwise the breakpoint number will be populated from
3066 breakpoint_count and that value incremented. Internal breakpoints
3067 do not set the internal var bpnum. */
3068 static void
3069 set_breakpoint_number (int internal, struct breakpoint *b)
3070 {
3071 if (internal)
3072 b->number = internal_breakpoint_number--;
3073 else
3074 {
3075 set_breakpoint_count (breakpoint_count + 1);
3076 b->number = breakpoint_count;
3077 }
3078 }
3079
3080 static struct breakpoint *
3081 create_internal_breakpoint (struct gdbarch *gdbarch,
3082 CORE_ADDR address, enum bptype type,
3083 const struct breakpoint_ops *ops)
3084 {
3085 symtab_and_line sal;
3086 sal.pc = address;
3087 sal.section = find_pc_overlay (sal.pc);
3088 sal.pspace = current_program_space;
3089
3090 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3091 b->number = internal_breakpoint_number--;
3092 b->disposition = disp_donttouch;
3093
3094 return b;
3095 }
3096
3097 static const char *const longjmp_names[] =
3098 {
3099 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3100 };
3101 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3102
3103 /* Per-objfile data private to breakpoint.c. */
3104 struct breakpoint_objfile_data
3105 {
3106 /* Minimal symbol for "_ovly_debug_event" (if any). */
3107 struct bound_minimal_symbol overlay_msym {};
3108
3109 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3110 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3111
3112 /* True if we have looked for longjmp probes. */
3113 int longjmp_searched = 0;
3114
3115 /* SystemTap probe points for longjmp (if any). These are non-owning
3116 references. */
3117 std::vector<probe *> longjmp_probes;
3118
3119 /* Minimal symbol for "std::terminate()" (if any). */
3120 struct bound_minimal_symbol terminate_msym {};
3121
3122 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3123 struct bound_minimal_symbol exception_msym {};
3124
3125 /* True if we have looked for exception probes. */
3126 int exception_searched = 0;
3127
3128 /* SystemTap probe points for unwinding (if any). These are non-owning
3129 references. */
3130 std::vector<probe *> exception_probes;
3131 };
3132
3133 static const struct objfile_key<breakpoint_objfile_data>
3134 breakpoint_objfile_key;
3135
3136 /* Minimal symbol not found sentinel. */
3137 static struct minimal_symbol msym_not_found;
3138
3139 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3140
3141 static int
3142 msym_not_found_p (const struct minimal_symbol *msym)
3143 {
3144 return msym == &msym_not_found;
3145 }
3146
3147 /* Return per-objfile data needed by breakpoint.c.
3148 Allocate the data if necessary. */
3149
3150 static struct breakpoint_objfile_data *
3151 get_breakpoint_objfile_data (struct objfile *objfile)
3152 {
3153 struct breakpoint_objfile_data *bp_objfile_data;
3154
3155 bp_objfile_data = breakpoint_objfile_key.get (objfile);
3156 if (bp_objfile_data == NULL)
3157 bp_objfile_data = breakpoint_objfile_key.emplace (objfile);
3158 return bp_objfile_data;
3159 }
3160
3161 static void
3162 create_overlay_event_breakpoint (void)
3163 {
3164 const char *const func_name = "_ovly_debug_event";
3165
3166 for (objfile *objfile : current_program_space->objfiles ())
3167 {
3168 struct breakpoint *b;
3169 struct breakpoint_objfile_data *bp_objfile_data;
3170 CORE_ADDR addr;
3171 struct explicit_location explicit_loc;
3172
3173 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3174
3175 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3176 continue;
3177
3178 if (bp_objfile_data->overlay_msym.minsym == NULL)
3179 {
3180 struct bound_minimal_symbol m;
3181
3182 m = lookup_minimal_symbol_text (func_name, objfile);
3183 if (m.minsym == NULL)
3184 {
3185 /* Avoid future lookups in this objfile. */
3186 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3187 continue;
3188 }
3189 bp_objfile_data->overlay_msym = m;
3190 }
3191
3192 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3193 b = create_internal_breakpoint (objfile->arch (), addr,
3194 bp_overlay_event,
3195 &internal_breakpoint_ops);
3196 initialize_explicit_location (&explicit_loc);
3197 explicit_loc.function_name = ASTRDUP (func_name);
3198 b->location = new_explicit_location (&explicit_loc);
3199
3200 if (overlay_debugging == ovly_auto)
3201 {
3202 b->enable_state = bp_enabled;
3203 overlay_events_enabled = 1;
3204 }
3205 else
3206 {
3207 b->enable_state = bp_disabled;
3208 overlay_events_enabled = 0;
3209 }
3210 }
3211 }
3212
3213 static void
3214 create_longjmp_master_breakpoint (void)
3215 {
3216 scoped_restore_current_program_space restore_pspace;
3217
3218 for (struct program_space *pspace : program_spaces)
3219 {
3220 set_current_program_space (pspace);
3221
3222 for (objfile *objfile : current_program_space->objfiles ())
3223 {
3224 int i;
3225 struct gdbarch *gdbarch;
3226 struct breakpoint_objfile_data *bp_objfile_data;
3227
3228 gdbarch = objfile->arch ();
3229
3230 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3231
3232 if (!bp_objfile_data->longjmp_searched)
3233 {
3234 std::vector<probe *> ret
3235 = find_probes_in_objfile (objfile, "libc", "longjmp");
3236
3237 if (!ret.empty ())
3238 {
3239 /* We are only interested in checking one element. */
3240 probe *p = ret[0];
3241
3242 if (!p->can_evaluate_arguments ())
3243 {
3244 /* We cannot use the probe interface here,
3245 because it does not know how to evaluate
3246 arguments. */
3247 ret.clear ();
3248 }
3249 }
3250 bp_objfile_data->longjmp_probes = ret;
3251 bp_objfile_data->longjmp_searched = 1;
3252 }
3253
3254 if (!bp_objfile_data->longjmp_probes.empty ())
3255 {
3256 for (probe *p : bp_objfile_data->longjmp_probes)
3257 {
3258 struct breakpoint *b;
3259
3260 b = create_internal_breakpoint (gdbarch,
3261 p->get_relocated_address (objfile),
3262 bp_longjmp_master,
3263 &internal_breakpoint_ops);
3264 b->location = new_probe_location ("-probe-stap libc:longjmp");
3265 b->enable_state = bp_disabled;
3266 }
3267
3268 continue;
3269 }
3270
3271 if (!gdbarch_get_longjmp_target_p (gdbarch))
3272 continue;
3273
3274 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3275 {
3276 struct breakpoint *b;
3277 const char *func_name;
3278 CORE_ADDR addr;
3279 struct explicit_location explicit_loc;
3280
3281 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3282 continue;
3283
3284 func_name = longjmp_names[i];
3285 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3286 {
3287 struct bound_minimal_symbol m;
3288
3289 m = lookup_minimal_symbol_text (func_name, objfile);
3290 if (m.minsym == NULL)
3291 {
3292 /* Prevent future lookups in this objfile. */
3293 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3294 continue;
3295 }
3296 bp_objfile_data->longjmp_msym[i] = m;
3297 }
3298
3299 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3300 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3301 &internal_breakpoint_ops);
3302 initialize_explicit_location (&explicit_loc);
3303 explicit_loc.function_name = ASTRDUP (func_name);
3304 b->location = new_explicit_location (&explicit_loc);
3305 b->enable_state = bp_disabled;
3306 }
3307 }
3308 }
3309 }
3310
3311 /* Create a master std::terminate breakpoint. */
3312 static void
3313 create_std_terminate_master_breakpoint (void)
3314 {
3315 const char *const func_name = "std::terminate()";
3316
3317 scoped_restore_current_program_space restore_pspace;
3318
3319 for (struct program_space *pspace : program_spaces)
3320 {
3321 CORE_ADDR addr;
3322
3323 set_current_program_space (pspace);
3324
3325 for (objfile *objfile : current_program_space->objfiles ())
3326 {
3327 struct breakpoint *b;
3328 struct breakpoint_objfile_data *bp_objfile_data;
3329 struct explicit_location explicit_loc;
3330
3331 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3332
3333 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3334 continue;
3335
3336 if (bp_objfile_data->terminate_msym.minsym == NULL)
3337 {
3338 struct bound_minimal_symbol m;
3339
3340 m = lookup_minimal_symbol (func_name, NULL, objfile);
3341 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3342 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3343 {
3344 /* Prevent future lookups in this objfile. */
3345 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3346 continue;
3347 }
3348 bp_objfile_data->terminate_msym = m;
3349 }
3350
3351 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3352 b = create_internal_breakpoint (objfile->arch (), addr,
3353 bp_std_terminate_master,
3354 &internal_breakpoint_ops);
3355 initialize_explicit_location (&explicit_loc);
3356 explicit_loc.function_name = ASTRDUP (func_name);
3357 b->location = new_explicit_location (&explicit_loc);
3358 b->enable_state = bp_disabled;
3359 }
3360 }
3361 }
3362
3363 /* Install a master breakpoint on the unwinder's debug hook. */
3364
3365 static void
3366 create_exception_master_breakpoint (void)
3367 {
3368 const char *const func_name = "_Unwind_DebugHook";
3369
3370 for (objfile *objfile : current_program_space->objfiles ())
3371 {
3372 struct breakpoint *b;
3373 struct gdbarch *gdbarch;
3374 struct breakpoint_objfile_data *bp_objfile_data;
3375 CORE_ADDR addr;
3376 struct explicit_location explicit_loc;
3377
3378 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3379
3380 /* We prefer the SystemTap probe point if it exists. */
3381 if (!bp_objfile_data->exception_searched)
3382 {
3383 std::vector<probe *> ret
3384 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3385
3386 if (!ret.empty ())
3387 {
3388 /* We are only interested in checking one element. */
3389 probe *p = ret[0];
3390
3391 if (!p->can_evaluate_arguments ())
3392 {
3393 /* We cannot use the probe interface here, because it does
3394 not know how to evaluate arguments. */
3395 ret.clear ();
3396 }
3397 }
3398 bp_objfile_data->exception_probes = ret;
3399 bp_objfile_data->exception_searched = 1;
3400 }
3401
3402 if (!bp_objfile_data->exception_probes.empty ())
3403 {
3404 gdbarch = objfile->arch ();
3405
3406 for (probe *p : bp_objfile_data->exception_probes)
3407 {
3408 b = create_internal_breakpoint (gdbarch,
3409 p->get_relocated_address (objfile),
3410 bp_exception_master,
3411 &internal_breakpoint_ops);
3412 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3413 b->enable_state = bp_disabled;
3414 }
3415
3416 continue;
3417 }
3418
3419 /* Otherwise, try the hook function. */
3420
3421 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3422 continue;
3423
3424 gdbarch = objfile->arch ();
3425
3426 if (bp_objfile_data->exception_msym.minsym == NULL)
3427 {
3428 struct bound_minimal_symbol debug_hook;
3429
3430 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3431 if (debug_hook.minsym == NULL)
3432 {
3433 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3434 continue;
3435 }
3436
3437 bp_objfile_data->exception_msym = debug_hook;
3438 }
3439
3440 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3441 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3442 current_top_target ());
3443 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3444 &internal_breakpoint_ops);
3445 initialize_explicit_location (&explicit_loc);
3446 explicit_loc.function_name = ASTRDUP (func_name);
3447 b->location = new_explicit_location (&explicit_loc);
3448 b->enable_state = bp_disabled;
3449 }
3450 }
3451
3452 /* Does B have a location spec? */
3453
3454 static int
3455 breakpoint_event_location_empty_p (const struct breakpoint *b)
3456 {
3457 return b->location != NULL && event_location_empty_p (b->location.get ());
3458 }
3459
3460 void
3461 update_breakpoints_after_exec (void)
3462 {
3463 struct breakpoint *b, *b_tmp;
3464 struct bp_location *bploc, **bplocp_tmp;
3465
3466 /* We're about to delete breakpoints from GDB's lists. If the
3467 INSERTED flag is true, GDB will try to lift the breakpoints by
3468 writing the breakpoints' "shadow contents" back into memory. The
3469 "shadow contents" are NOT valid after an exec, so GDB should not
3470 do that. Instead, the target is responsible from marking
3471 breakpoints out as soon as it detects an exec. We don't do that
3472 here instead, because there may be other attempts to delete
3473 breakpoints after detecting an exec and before reaching here. */
3474 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3475 if (bploc->pspace == current_program_space)
3476 gdb_assert (!bploc->inserted);
3477
3478 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3479 {
3480 if (b->pspace != current_program_space)
3481 continue;
3482
3483 /* Solib breakpoints must be explicitly reset after an exec(). */
3484 if (b->type == bp_shlib_event)
3485 {
3486 delete_breakpoint (b);
3487 continue;
3488 }
3489
3490 /* JIT breakpoints must be explicitly reset after an exec(). */
3491 if (b->type == bp_jit_event)
3492 {
3493 delete_breakpoint (b);
3494 continue;
3495 }
3496
3497 /* Thread event breakpoints must be set anew after an exec(),
3498 as must overlay event and longjmp master breakpoints. */
3499 if (b->type == bp_thread_event || b->type == bp_overlay_event
3500 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3501 || b->type == bp_exception_master)
3502 {
3503 delete_breakpoint (b);
3504 continue;
3505 }
3506
3507 /* Step-resume breakpoints are meaningless after an exec(). */
3508 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3509 {
3510 delete_breakpoint (b);
3511 continue;
3512 }
3513
3514 /* Just like single-step breakpoints. */
3515 if (b->type == bp_single_step)
3516 {
3517 delete_breakpoint (b);
3518 continue;
3519 }
3520
3521 /* Longjmp and longjmp-resume breakpoints are also meaningless
3522 after an exec. */
3523 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3524 || b->type == bp_longjmp_call_dummy
3525 || b->type == bp_exception || b->type == bp_exception_resume)
3526 {
3527 delete_breakpoint (b);
3528 continue;
3529 }
3530
3531 if (b->type == bp_catchpoint)
3532 {
3533 /* For now, none of the bp_catchpoint breakpoints need to
3534 do anything at this point. In the future, if some of
3535 the catchpoints need to something, we will need to add
3536 a new method, and call this method from here. */
3537 continue;
3538 }
3539
3540 /* bp_finish is a special case. The only way we ought to be able
3541 to see one of these when an exec() has happened, is if the user
3542 caught a vfork, and then said "finish". Ordinarily a finish just
3543 carries them to the call-site of the current callee, by setting
3544 a temporary bp there and resuming. But in this case, the finish
3545 will carry them entirely through the vfork & exec.
3546
3547 We don't want to allow a bp_finish to remain inserted now. But
3548 we can't safely delete it, 'cause finish_command has a handle to
3549 the bp on a bpstat, and will later want to delete it. There's a
3550 chance (and I've seen it happen) that if we delete the bp_finish
3551 here, that its storage will get reused by the time finish_command
3552 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3553 We really must allow finish_command to delete a bp_finish.
3554
3555 In the absence of a general solution for the "how do we know
3556 it's safe to delete something others may have handles to?"
3557 problem, what we'll do here is just uninsert the bp_finish, and
3558 let finish_command delete it.
3559
3560 (We know the bp_finish is "doomed" in the sense that it's
3561 momentary, and will be deleted as soon as finish_command sees
3562 the inferior stopped. So it doesn't matter that the bp's
3563 address is probably bogus in the new a.out, unlike e.g., the
3564 solib breakpoints.) */
3565
3566 if (b->type == bp_finish)
3567 {
3568 continue;
3569 }
3570
3571 /* Without a symbolic address, we have little hope of the
3572 pre-exec() address meaning the same thing in the post-exec()
3573 a.out. */
3574 if (breakpoint_event_location_empty_p (b))
3575 {
3576 delete_breakpoint (b);
3577 continue;
3578 }
3579 }
3580 }
3581
3582 int
3583 detach_breakpoints (ptid_t ptid)
3584 {
3585 struct bp_location *bl, **blp_tmp;
3586 int val = 0;
3587 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3588 struct inferior *inf = current_inferior ();
3589
3590 if (ptid.pid () == inferior_ptid.pid ())
3591 error (_("Cannot detach breakpoints of inferior_ptid"));
3592
3593 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3594 inferior_ptid = ptid;
3595 ALL_BP_LOCATIONS (bl, blp_tmp)
3596 {
3597 if (bl->pspace != inf->pspace)
3598 continue;
3599
3600 /* This function must physically remove breakpoints locations
3601 from the specified ptid, without modifying the breakpoint
3602 package's state. Locations of type bp_loc_other are only
3603 maintained at GDB side. So, there is no need to remove
3604 these bp_loc_other locations. Moreover, removing these
3605 would modify the breakpoint package's state. */
3606 if (bl->loc_type == bp_loc_other)
3607 continue;
3608
3609 if (bl->inserted)
3610 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3611 }
3612
3613 return val;
3614 }
3615
3616 /* Remove the breakpoint location BL from the current address space.
3617 Note that this is used to detach breakpoints from a child fork.
3618 When we get here, the child isn't in the inferior list, and neither
3619 do we have objects to represent its address space --- we should
3620 *not* look at bl->pspace->aspace here. */
3621
3622 static int
3623 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3624 {
3625 int val;
3626
3627 /* BL is never in moribund_locations by our callers. */
3628 gdb_assert (bl->owner != NULL);
3629
3630 /* The type of none suggests that owner is actually deleted.
3631 This should not ever happen. */
3632 gdb_assert (bl->owner->type != bp_none);
3633
3634 if (bl->loc_type == bp_loc_software_breakpoint
3635 || bl->loc_type == bp_loc_hardware_breakpoint)
3636 {
3637 /* "Normal" instruction breakpoint: either the standard
3638 trap-instruction bp (bp_breakpoint), or a
3639 bp_hardware_breakpoint. */
3640
3641 /* First check to see if we have to handle an overlay. */
3642 if (overlay_debugging == ovly_off
3643 || bl->section == NULL
3644 || !(section_is_overlay (bl->section)))
3645 {
3646 /* No overlay handling: just remove the breakpoint. */
3647
3648 /* If we're trying to uninsert a memory breakpoint that we
3649 know is set in a dynamic object that is marked
3650 shlib_disabled, then either the dynamic object was
3651 removed with "remove-symbol-file" or with
3652 "nosharedlibrary". In the former case, we don't know
3653 whether another dynamic object might have loaded over the
3654 breakpoint's address -- the user might well let us know
3655 about it next with add-symbol-file (the whole point of
3656 add-symbol-file is letting the user manually maintain a
3657 list of dynamically loaded objects). If we have the
3658 breakpoint's shadow memory, that is, this is a software
3659 breakpoint managed by GDB, check whether the breakpoint
3660 is still inserted in memory, to avoid overwriting wrong
3661 code with stale saved shadow contents. Note that HW
3662 breakpoints don't have shadow memory, as they're
3663 implemented using a mechanism that is not dependent on
3664 being able to modify the target's memory, and as such
3665 they should always be removed. */
3666 if (bl->shlib_disabled
3667 && bl->target_info.shadow_len != 0
3668 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3669 val = 0;
3670 else
3671 val = bl->owner->ops->remove_location (bl, reason);
3672 }
3673 else
3674 {
3675 /* This breakpoint is in an overlay section.
3676 Did we set a breakpoint at the LMA? */
3677 if (!overlay_events_enabled)
3678 {
3679 /* Yes -- overlay event support is not active, so we
3680 should have set a breakpoint at the LMA. Remove it.
3681 */
3682 /* Ignore any failures: if the LMA is in ROM, we will
3683 have already warned when we failed to insert it. */
3684 if (bl->loc_type == bp_loc_hardware_breakpoint)
3685 target_remove_hw_breakpoint (bl->gdbarch,
3686 &bl->overlay_target_info);
3687 else
3688 target_remove_breakpoint (bl->gdbarch,
3689 &bl->overlay_target_info,
3690 reason);
3691 }
3692 /* Did we set a breakpoint at the VMA?
3693 If so, we will have marked the breakpoint 'inserted'. */
3694 if (bl->inserted)
3695 {
3696 /* Yes -- remove it. Previously we did not bother to
3697 remove the breakpoint if the section had been
3698 unmapped, but let's not rely on that being safe. We
3699 don't know what the overlay manager might do. */
3700
3701 /* However, we should remove *software* breakpoints only
3702 if the section is still mapped, or else we overwrite
3703 wrong code with the saved shadow contents. */
3704 if (bl->loc_type == bp_loc_hardware_breakpoint
3705 || section_is_mapped (bl->section))
3706 val = bl->owner->ops->remove_location (bl, reason);
3707 else
3708 val = 0;
3709 }
3710 else
3711 {
3712 /* No -- not inserted, so no need to remove. No error. */
3713 val = 0;
3714 }
3715 }
3716
3717 /* In some cases, we might not be able to remove a breakpoint in
3718 a shared library that has already been removed, but we have
3719 not yet processed the shlib unload event. Similarly for an
3720 unloaded add-symbol-file object - the user might not yet have
3721 had the chance to remove-symbol-file it. shlib_disabled will
3722 be set if the library/object has already been removed, but
3723 the breakpoint hasn't been uninserted yet, e.g., after
3724 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3725 always-inserted mode. */
3726 if (val
3727 && (bl->loc_type == bp_loc_software_breakpoint
3728 && (bl->shlib_disabled
3729 || solib_name_from_address (bl->pspace, bl->address)
3730 || shared_objfile_contains_address_p (bl->pspace,
3731 bl->address))))
3732 val = 0;
3733
3734 if (val)
3735 return val;
3736 bl->inserted = (reason == DETACH_BREAKPOINT);
3737 }
3738 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3739 {
3740 gdb_assert (bl->owner->ops != NULL
3741 && bl->owner->ops->remove_location != NULL);
3742
3743 bl->inserted = (reason == DETACH_BREAKPOINT);
3744 bl->owner->ops->remove_location (bl, reason);
3745
3746 /* Failure to remove any of the hardware watchpoints comes here. */
3747 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3748 warning (_("Could not remove hardware watchpoint %d."),
3749 bl->owner->number);
3750 }
3751 else if (bl->owner->type == bp_catchpoint
3752 && breakpoint_enabled (bl->owner)
3753 && !bl->duplicate)
3754 {
3755 gdb_assert (bl->owner->ops != NULL
3756 && bl->owner->ops->remove_location != NULL);
3757
3758 val = bl->owner->ops->remove_location (bl, reason);
3759 if (val)
3760 return val;
3761
3762 bl->inserted = (reason == DETACH_BREAKPOINT);
3763 }
3764
3765 return 0;
3766 }
3767
3768 static int
3769 remove_breakpoint (struct bp_location *bl)
3770 {
3771 /* BL is never in moribund_locations by our callers. */
3772 gdb_assert (bl->owner != NULL);
3773
3774 /* The type of none suggests that owner is actually deleted.
3775 This should not ever happen. */
3776 gdb_assert (bl->owner->type != bp_none);
3777
3778 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3779
3780 switch_to_program_space_and_thread (bl->pspace);
3781
3782 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3783 }
3784
3785 /* Clear the "inserted" flag in all breakpoints. */
3786
3787 void
3788 mark_breakpoints_out (void)
3789 {
3790 struct bp_location *bl, **blp_tmp;
3791
3792 ALL_BP_LOCATIONS (bl, blp_tmp)
3793 if (bl->pspace == current_program_space)
3794 bl->inserted = 0;
3795 }
3796
3797 /* Clear the "inserted" flag in all breakpoints and delete any
3798 breakpoints which should go away between runs of the program.
3799
3800 Plus other such housekeeping that has to be done for breakpoints
3801 between runs.
3802
3803 Note: this function gets called at the end of a run (by
3804 generic_mourn_inferior) and when a run begins (by
3805 init_wait_for_inferior). */
3806
3807
3808
3809 void
3810 breakpoint_init_inferior (enum inf_context context)
3811 {
3812 struct breakpoint *b, *b_tmp;
3813 struct program_space *pspace = current_program_space;
3814
3815 /* If breakpoint locations are shared across processes, then there's
3816 nothing to do. */
3817 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3818 return;
3819
3820 mark_breakpoints_out ();
3821
3822 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3823 {
3824 if (b->loc && b->loc->pspace != pspace)
3825 continue;
3826
3827 switch (b->type)
3828 {
3829 case bp_call_dummy:
3830 case bp_longjmp_call_dummy:
3831
3832 /* If the call dummy breakpoint is at the entry point it will
3833 cause problems when the inferior is rerun, so we better get
3834 rid of it. */
3835
3836 case bp_watchpoint_scope:
3837
3838 /* Also get rid of scope breakpoints. */
3839
3840 case bp_shlib_event:
3841
3842 /* Also remove solib event breakpoints. Their addresses may
3843 have changed since the last time we ran the program.
3844 Actually we may now be debugging against different target;
3845 and so the solib backend that installed this breakpoint may
3846 not be used in by the target. E.g.,
3847
3848 (gdb) file prog-linux
3849 (gdb) run # native linux target
3850 ...
3851 (gdb) kill
3852 (gdb) file prog-win.exe
3853 (gdb) tar rem :9999 # remote Windows gdbserver.
3854 */
3855
3856 case bp_step_resume:
3857
3858 /* Also remove step-resume breakpoints. */
3859
3860 case bp_single_step:
3861
3862 /* Also remove single-step breakpoints. */
3863
3864 delete_breakpoint (b);
3865 break;
3866
3867 case bp_watchpoint:
3868 case bp_hardware_watchpoint:
3869 case bp_read_watchpoint:
3870 case bp_access_watchpoint:
3871 {
3872 struct watchpoint *w = (struct watchpoint *) b;
3873
3874 /* Likewise for watchpoints on local expressions. */
3875 if (w->exp_valid_block != NULL)
3876 delete_breakpoint (b);
3877 else
3878 {
3879 /* Get rid of existing locations, which are no longer
3880 valid. New ones will be created in
3881 update_watchpoint, when the inferior is restarted.
3882 The next update_global_location_list call will
3883 garbage collect them. */
3884 b->loc = NULL;
3885
3886 if (context == inf_starting)
3887 {
3888 /* Reset val field to force reread of starting value in
3889 insert_breakpoints. */
3890 w->val.reset (nullptr);
3891 w->val_valid = false;
3892 }
3893 }
3894 }
3895 break;
3896 default:
3897 break;
3898 }
3899 }
3900
3901 /* Get rid of the moribund locations. */
3902 for (bp_location *bl : moribund_locations)
3903 decref_bp_location (&bl);
3904 moribund_locations.clear ();
3905 }
3906
3907 /* These functions concern about actual breakpoints inserted in the
3908 target --- to e.g. check if we need to do decr_pc adjustment or if
3909 we need to hop over the bkpt --- so we check for address space
3910 match, not program space. */
3911
3912 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3913 exists at PC. It returns ordinary_breakpoint_here if it's an
3914 ordinary breakpoint, or permanent_breakpoint_here if it's a
3915 permanent breakpoint.
3916 - When continuing from a location with an ordinary breakpoint, we
3917 actually single step once before calling insert_breakpoints.
3918 - When continuing from a location with a permanent breakpoint, we
3919 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3920 the target, to advance the PC past the breakpoint. */
3921
3922 enum breakpoint_here
3923 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3924 {
3925 struct bp_location *bl, **blp_tmp;
3926 int any_breakpoint_here = 0;
3927
3928 ALL_BP_LOCATIONS (bl, blp_tmp)
3929 {
3930 if (bl->loc_type != bp_loc_software_breakpoint
3931 && bl->loc_type != bp_loc_hardware_breakpoint)
3932 continue;
3933
3934 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3935 if ((breakpoint_enabled (bl->owner)
3936 || bl->permanent)
3937 && breakpoint_location_address_match (bl, aspace, pc))
3938 {
3939 if (overlay_debugging
3940 && section_is_overlay (bl->section)
3941 && !section_is_mapped (bl->section))
3942 continue; /* unmapped overlay -- can't be a match */
3943 else if (bl->permanent)
3944 return permanent_breakpoint_here;
3945 else
3946 any_breakpoint_here = 1;
3947 }
3948 }
3949
3950 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
3951 }
3952
3953 /* See breakpoint.h. */
3954
3955 int
3956 breakpoint_in_range_p (const address_space *aspace,
3957 CORE_ADDR addr, ULONGEST len)
3958 {
3959 struct bp_location *bl, **blp_tmp;
3960
3961 ALL_BP_LOCATIONS (bl, blp_tmp)
3962 {
3963 if (bl->loc_type != bp_loc_software_breakpoint
3964 && bl->loc_type != bp_loc_hardware_breakpoint)
3965 continue;
3966
3967 if ((breakpoint_enabled (bl->owner)
3968 || bl->permanent)
3969 && breakpoint_location_address_range_overlap (bl, aspace,
3970 addr, len))
3971 {
3972 if (overlay_debugging
3973 && section_is_overlay (bl->section)
3974 && !section_is_mapped (bl->section))
3975 {
3976 /* Unmapped overlay -- can't be a match. */
3977 continue;
3978 }
3979
3980 return 1;
3981 }
3982 }
3983
3984 return 0;
3985 }
3986
3987 /* Return true if there's a moribund breakpoint at PC. */
3988
3989 int
3990 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3991 {
3992 for (bp_location *loc : moribund_locations)
3993 if (breakpoint_location_address_match (loc, aspace, pc))
3994 return 1;
3995
3996 return 0;
3997 }
3998
3999 /* Returns non-zero iff BL is inserted at PC, in address space
4000 ASPACE. */
4001
4002 static int
4003 bp_location_inserted_here_p (struct bp_location *bl,
4004 const address_space *aspace, CORE_ADDR pc)
4005 {
4006 if (bl->inserted
4007 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4008 aspace, pc))
4009 {
4010 if (overlay_debugging
4011 && section_is_overlay (bl->section)
4012 && !section_is_mapped (bl->section))
4013 return 0; /* unmapped overlay -- can't be a match */
4014 else
4015 return 1;
4016 }
4017 return 0;
4018 }
4019
4020 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4021
4022 int
4023 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4024 {
4025 struct bp_location **blp, **blp_tmp = NULL;
4026
4027 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4028 {
4029 struct bp_location *bl = *blp;
4030
4031 if (bl->loc_type != bp_loc_software_breakpoint
4032 && bl->loc_type != bp_loc_hardware_breakpoint)
4033 continue;
4034
4035 if (bp_location_inserted_here_p (bl, aspace, pc))
4036 return 1;
4037 }
4038 return 0;
4039 }
4040
4041 /* This function returns non-zero iff there is a software breakpoint
4042 inserted at PC. */
4043
4044 int
4045 software_breakpoint_inserted_here_p (const address_space *aspace,
4046 CORE_ADDR pc)
4047 {
4048 struct bp_location **blp, **blp_tmp = NULL;
4049
4050 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4051 {
4052 struct bp_location *bl = *blp;
4053
4054 if (bl->loc_type != bp_loc_software_breakpoint)
4055 continue;
4056
4057 if (bp_location_inserted_here_p (bl, aspace, pc))
4058 return 1;
4059 }
4060
4061 return 0;
4062 }
4063
4064 /* See breakpoint.h. */
4065
4066 int
4067 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4068 CORE_ADDR pc)
4069 {
4070 struct bp_location **blp, **blp_tmp = NULL;
4071
4072 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4073 {
4074 struct bp_location *bl = *blp;
4075
4076 if (bl->loc_type != bp_loc_hardware_breakpoint)
4077 continue;
4078
4079 if (bp_location_inserted_here_p (bl, aspace, pc))
4080 return 1;
4081 }
4082
4083 return 0;
4084 }
4085
4086 int
4087 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4088 CORE_ADDR addr, ULONGEST len)
4089 {
4090 struct breakpoint *bpt;
4091
4092 ALL_BREAKPOINTS (bpt)
4093 {
4094 struct bp_location *loc;
4095
4096 if (bpt->type != bp_hardware_watchpoint
4097 && bpt->type != bp_access_watchpoint)
4098 continue;
4099
4100 if (!breakpoint_enabled (bpt))
4101 continue;
4102
4103 for (loc = bpt->loc; loc; loc = loc->next)
4104 if (loc->pspace->aspace == aspace && loc->inserted)
4105 {
4106 CORE_ADDR l, h;
4107
4108 /* Check for intersection. */
4109 l = std::max<CORE_ADDR> (loc->address, addr);
4110 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4111 if (l < h)
4112 return 1;
4113 }
4114 }
4115 return 0;
4116 }
4117
4118 /* See breakpoint.h. */
4119
4120 bool
4121 is_catchpoint (struct breakpoint *b)
4122 {
4123 return (b->type == bp_catchpoint);
4124 }
4125
4126 /* Frees any storage that is part of a bpstat. Does not walk the
4127 'next' chain. */
4128
4129 bpstats::~bpstats ()
4130 {
4131 if (bp_location_at != NULL)
4132 decref_bp_location (&bp_location_at);
4133 }
4134
4135 /* Clear a bpstat so that it says we are not at any breakpoint.
4136 Also free any storage that is part of a bpstat. */
4137
4138 void
4139 bpstat_clear (bpstat *bsp)
4140 {
4141 bpstat p;
4142 bpstat q;
4143
4144 if (bsp == 0)
4145 return;
4146 p = *bsp;
4147 while (p != NULL)
4148 {
4149 q = p->next;
4150 delete p;
4151 p = q;
4152 }
4153 *bsp = NULL;
4154 }
4155
4156 bpstats::bpstats (const bpstats &other)
4157 : next (NULL),
4158 bp_location_at (other.bp_location_at),
4159 breakpoint_at (other.breakpoint_at),
4160 commands (other.commands),
4161 print (other.print),
4162 stop (other.stop),
4163 print_it (other.print_it)
4164 {
4165 if (other.old_val != NULL)
4166 old_val = release_value (value_copy (other.old_val.get ()));
4167 incref_bp_location (bp_location_at);
4168 }
4169
4170 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4171 is part of the bpstat is copied as well. */
4172
4173 bpstat
4174 bpstat_copy (bpstat bs)
4175 {
4176 bpstat p = NULL;
4177 bpstat tmp;
4178 bpstat retval = NULL;
4179
4180 if (bs == NULL)
4181 return bs;
4182
4183 for (; bs != NULL; bs = bs->next)
4184 {
4185 tmp = new bpstats (*bs);
4186
4187 if (p == NULL)
4188 /* This is the first thing in the chain. */
4189 retval = tmp;
4190 else
4191 p->next = tmp;
4192 p = tmp;
4193 }
4194 p->next = NULL;
4195 return retval;
4196 }
4197
4198 /* Find the bpstat associated with this breakpoint. */
4199
4200 bpstat
4201 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4202 {
4203 if (bsp == NULL)
4204 return NULL;
4205
4206 for (; bsp != NULL; bsp = bsp->next)
4207 {
4208 if (bsp->breakpoint_at == breakpoint)
4209 return bsp;
4210 }
4211 return NULL;
4212 }
4213
4214 /* See breakpoint.h. */
4215
4216 bool
4217 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4218 {
4219 for (; bsp != NULL; bsp = bsp->next)
4220 {
4221 if (bsp->breakpoint_at == NULL)
4222 {
4223 /* A moribund location can never explain a signal other than
4224 GDB_SIGNAL_TRAP. */
4225 if (sig == GDB_SIGNAL_TRAP)
4226 return true;
4227 }
4228 else
4229 {
4230 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4231 sig))
4232 return true;
4233 }
4234 }
4235
4236 return false;
4237 }
4238
4239 /* Put in *NUM the breakpoint number of the first breakpoint we are
4240 stopped at. *BSP upon return is a bpstat which points to the
4241 remaining breakpoints stopped at (but which is not guaranteed to be
4242 good for anything but further calls to bpstat_num).
4243
4244 Return 0 if passed a bpstat which does not indicate any breakpoints.
4245 Return -1 if stopped at a breakpoint that has been deleted since
4246 we set it.
4247 Return 1 otherwise. */
4248
4249 int
4250 bpstat_num (bpstat *bsp, int *num)
4251 {
4252 struct breakpoint *b;
4253
4254 if ((*bsp) == NULL)
4255 return 0; /* No more breakpoint values */
4256
4257 /* We assume we'll never have several bpstats that correspond to a
4258 single breakpoint -- otherwise, this function might return the
4259 same number more than once and this will look ugly. */
4260 b = (*bsp)->breakpoint_at;
4261 *bsp = (*bsp)->next;
4262 if (b == NULL)
4263 return -1; /* breakpoint that's been deleted since */
4264
4265 *num = b->number; /* We have its number */
4266 return 1;
4267 }
4268
4269 /* See breakpoint.h. */
4270
4271 void
4272 bpstat_clear_actions (void)
4273 {
4274 bpstat bs;
4275
4276 if (inferior_ptid == null_ptid)
4277 return;
4278
4279 thread_info *tp = inferior_thread ();
4280 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4281 {
4282 bs->commands = NULL;
4283 bs->old_val.reset (nullptr);
4284 }
4285 }
4286
4287 /* Called when a command is about to proceed the inferior. */
4288
4289 static void
4290 breakpoint_about_to_proceed (void)
4291 {
4292 if (inferior_ptid != null_ptid)
4293 {
4294 struct thread_info *tp = inferior_thread ();
4295
4296 /* Allow inferior function calls in breakpoint commands to not
4297 interrupt the command list. When the call finishes
4298 successfully, the inferior will be standing at the same
4299 breakpoint as if nothing happened. */
4300 if (tp->control.in_infcall)
4301 return;
4302 }
4303
4304 breakpoint_proceeded = 1;
4305 }
4306
4307 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4308 or its equivalent. */
4309
4310 static int
4311 command_line_is_silent (struct command_line *cmd)
4312 {
4313 return cmd && (strcmp ("silent", cmd->line) == 0);
4314 }
4315
4316 /* Execute all the commands associated with all the breakpoints at
4317 this location. Any of these commands could cause the process to
4318 proceed beyond this point, etc. We look out for such changes by
4319 checking the global "breakpoint_proceeded" after each command.
4320
4321 Returns true if a breakpoint command resumed the inferior. In that
4322 case, it is the caller's responsibility to recall it again with the
4323 bpstat of the current thread. */
4324
4325 static int
4326 bpstat_do_actions_1 (bpstat *bsp)
4327 {
4328 bpstat bs;
4329 int again = 0;
4330
4331 /* Avoid endless recursion if a `source' command is contained
4332 in bs->commands. */
4333 if (executing_breakpoint_commands)
4334 return 0;
4335
4336 scoped_restore save_executing
4337 = make_scoped_restore (&executing_breakpoint_commands, 1);
4338
4339 scoped_restore preventer = prevent_dont_repeat ();
4340
4341 /* This pointer will iterate over the list of bpstat's. */
4342 bs = *bsp;
4343
4344 breakpoint_proceeded = 0;
4345 for (; bs != NULL; bs = bs->next)
4346 {
4347 struct command_line *cmd = NULL;
4348
4349 /* Take ownership of the BSP's command tree, if it has one.
4350
4351 The command tree could legitimately contain commands like
4352 'step' and 'next', which call clear_proceed_status, which
4353 frees stop_bpstat's command tree. To make sure this doesn't
4354 free the tree we're executing out from under us, we need to
4355 take ownership of the tree ourselves. Since a given bpstat's
4356 commands are only executed once, we don't need to copy it; we
4357 can clear the pointer in the bpstat, and make sure we free
4358 the tree when we're done. */
4359 counted_command_line ccmd = bs->commands;
4360 bs->commands = NULL;
4361 if (ccmd != NULL)
4362 cmd = ccmd.get ();
4363 if (command_line_is_silent (cmd))
4364 {
4365 /* The action has been already done by bpstat_stop_status. */
4366 cmd = cmd->next;
4367 }
4368
4369 while (cmd != NULL)
4370 {
4371 execute_control_command (cmd);
4372
4373 if (breakpoint_proceeded)
4374 break;
4375 else
4376 cmd = cmd->next;
4377 }
4378
4379 if (breakpoint_proceeded)
4380 {
4381 if (current_ui->async)
4382 /* If we are in async mode, then the target might be still
4383 running, not stopped at any breakpoint, so nothing for
4384 us to do here -- just return to the event loop. */
4385 ;
4386 else
4387 /* In sync mode, when execute_control_command returns
4388 we're already standing on the next breakpoint.
4389 Breakpoint commands for that stop were not run, since
4390 execute_command does not run breakpoint commands --
4391 only command_line_handler does, but that one is not
4392 involved in execution of breakpoint commands. So, we
4393 can now execute breakpoint commands. It should be
4394 noted that making execute_command do bpstat actions is
4395 not an option -- in this case we'll have recursive
4396 invocation of bpstat for each breakpoint with a
4397 command, and can easily blow up GDB stack. Instead, we
4398 return true, which will trigger the caller to recall us
4399 with the new stop_bpstat. */
4400 again = 1;
4401 break;
4402 }
4403 }
4404 return again;
4405 }
4406
4407 /* Helper for bpstat_do_actions. Get the current thread, if there's
4408 one, is alive and has execution. Return NULL otherwise. */
4409
4410 static thread_info *
4411 get_bpstat_thread ()
4412 {
4413 if (inferior_ptid == null_ptid || !target_has_execution ())
4414 return NULL;
4415
4416 thread_info *tp = inferior_thread ();
4417 if (tp->state == THREAD_EXITED || tp->executing)
4418 return NULL;
4419 return tp;
4420 }
4421
4422 void
4423 bpstat_do_actions (void)
4424 {
4425 auto cleanup_if_error = make_scope_exit (bpstat_clear_actions);
4426 thread_info *tp;
4427
4428 /* Do any commands attached to breakpoint we are stopped at. */
4429 while ((tp = get_bpstat_thread ()) != NULL)
4430 {
4431 /* Since in sync mode, bpstat_do_actions may resume the
4432 inferior, and only return when it is stopped at the next
4433 breakpoint, we keep doing breakpoint actions until it returns
4434 false to indicate the inferior was not resumed. */
4435 if (!bpstat_do_actions_1 (&tp->control.stop_bpstat))
4436 break;
4437 }
4438
4439 cleanup_if_error.release ();
4440 }
4441
4442 /* Print out the (old or new) value associated with a watchpoint. */
4443
4444 static void
4445 watchpoint_value_print (struct value *val, struct ui_file *stream)
4446 {
4447 if (val == NULL)
4448 fprintf_styled (stream, metadata_style.style (), _("<unreadable>"));
4449 else
4450 {
4451 struct value_print_options opts;
4452 get_user_print_options (&opts);
4453 value_print (val, stream, &opts);
4454 }
4455 }
4456
4457 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4458 debugging multiple threads. */
4459
4460 void
4461 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4462 {
4463 if (uiout->is_mi_like_p ())
4464 return;
4465
4466 uiout->text ("\n");
4467
4468 if (show_thread_that_caused_stop ())
4469 {
4470 const char *name;
4471 struct thread_info *thr = inferior_thread ();
4472
4473 uiout->text ("Thread ");
4474 uiout->field_string ("thread-id", print_thread_id (thr));
4475
4476 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4477 if (name != NULL)
4478 {
4479 uiout->text (" \"");
4480 uiout->field_string ("name", name);
4481 uiout->text ("\"");
4482 }
4483
4484 uiout->text (" hit ");
4485 }
4486 }
4487
4488 /* Generic routine for printing messages indicating why we
4489 stopped. The behavior of this function depends on the value
4490 'print_it' in the bpstat structure. Under some circumstances we
4491 may decide not to print anything here and delegate the task to
4492 normal_stop(). */
4493
4494 static enum print_stop_action
4495 print_bp_stop_message (bpstat bs)
4496 {
4497 switch (bs->print_it)
4498 {
4499 case print_it_noop:
4500 /* Nothing should be printed for this bpstat entry. */
4501 return PRINT_UNKNOWN;
4502 break;
4503
4504 case print_it_done:
4505 /* We still want to print the frame, but we already printed the
4506 relevant messages. */
4507 return PRINT_SRC_AND_LOC;
4508 break;
4509
4510 case print_it_normal:
4511 {
4512 struct breakpoint *b = bs->breakpoint_at;
4513
4514 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4515 which has since been deleted. */
4516 if (b == NULL)
4517 return PRINT_UNKNOWN;
4518
4519 /* Normal case. Call the breakpoint's print_it method. */
4520 return b->ops->print_it (bs);
4521 }
4522 break;
4523
4524 default:
4525 internal_error (__FILE__, __LINE__,
4526 _("print_bp_stop_message: unrecognized enum value"));
4527 break;
4528 }
4529 }
4530
4531 /* A helper function that prints a shared library stopped event. */
4532
4533 static void
4534 print_solib_event (int is_catchpoint)
4535 {
4536 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4537 bool any_added = !current_program_space->added_solibs.empty ();
4538
4539 if (!is_catchpoint)
4540 {
4541 if (any_added || any_deleted)
4542 current_uiout->text (_("Stopped due to shared library event:\n"));
4543 else
4544 current_uiout->text (_("Stopped due to shared library event (no "
4545 "libraries added or removed)\n"));
4546 }
4547
4548 if (current_uiout->is_mi_like_p ())
4549 current_uiout->field_string ("reason",
4550 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4551
4552 if (any_deleted)
4553 {
4554 current_uiout->text (_(" Inferior unloaded "));
4555 ui_out_emit_list list_emitter (current_uiout, "removed");
4556 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4557 {
4558 const std::string &name = current_program_space->deleted_solibs[ix];
4559
4560 if (ix > 0)
4561 current_uiout->text (" ");
4562 current_uiout->field_string ("library", name);
4563 current_uiout->text ("\n");
4564 }
4565 }
4566
4567 if (any_added)
4568 {
4569 current_uiout->text (_(" Inferior loaded "));
4570 ui_out_emit_list list_emitter (current_uiout, "added");
4571 bool first = true;
4572 for (so_list *iter : current_program_space->added_solibs)
4573 {
4574 if (!first)
4575 current_uiout->text (" ");
4576 first = false;
4577 current_uiout->field_string ("library", iter->so_name);
4578 current_uiout->text ("\n");
4579 }
4580 }
4581 }
4582
4583 /* Print a message indicating what happened. This is called from
4584 normal_stop(). The input to this routine is the head of the bpstat
4585 list - a list of the eventpoints that caused this stop. KIND is
4586 the target_waitkind for the stopping event. This
4587 routine calls the generic print routine for printing a message
4588 about reasons for stopping. This will print (for example) the
4589 "Breakpoint n," part of the output. The return value of this
4590 routine is one of:
4591
4592 PRINT_UNKNOWN: Means we printed nothing.
4593 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4594 code to print the location. An example is
4595 "Breakpoint 1, " which should be followed by
4596 the location.
4597 PRINT_SRC_ONLY: Means we printed something, but there is no need
4598 to also print the location part of the message.
4599 An example is the catch/throw messages, which
4600 don't require a location appended to the end.
4601 PRINT_NOTHING: We have done some printing and we don't need any
4602 further info to be printed. */
4603
4604 enum print_stop_action
4605 bpstat_print (bpstat bs, int kind)
4606 {
4607 enum print_stop_action val;
4608
4609 /* Maybe another breakpoint in the chain caused us to stop.
4610 (Currently all watchpoints go on the bpstat whether hit or not.
4611 That probably could (should) be changed, provided care is taken
4612 with respect to bpstat_explains_signal). */
4613 for (; bs; bs = bs->next)
4614 {
4615 val = print_bp_stop_message (bs);
4616 if (val == PRINT_SRC_ONLY
4617 || val == PRINT_SRC_AND_LOC
4618 || val == PRINT_NOTHING)
4619 return val;
4620 }
4621
4622 /* If we had hit a shared library event breakpoint,
4623 print_bp_stop_message would print out this message. If we hit an
4624 OS-level shared library event, do the same thing. */
4625 if (kind == TARGET_WAITKIND_LOADED)
4626 {
4627 print_solib_event (0);
4628 return PRINT_NOTHING;
4629 }
4630
4631 /* We reached the end of the chain, or we got a null BS to start
4632 with and nothing was printed. */
4633 return PRINT_UNKNOWN;
4634 }
4635
4636 /* Evaluate the boolean expression EXP and return the result. */
4637
4638 static bool
4639 breakpoint_cond_eval (expression *exp)
4640 {
4641 struct value *mark = value_mark ();
4642 bool res = value_true (evaluate_expression (exp));
4643
4644 value_free_to_mark (mark);
4645 return res;
4646 }
4647
4648 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4649
4650 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4651 : next (NULL),
4652 bp_location_at (bl),
4653 breakpoint_at (bl->owner),
4654 commands (NULL),
4655 print (0),
4656 stop (0),
4657 print_it (print_it_normal)
4658 {
4659 incref_bp_location (bl);
4660 **bs_link_pointer = this;
4661 *bs_link_pointer = &next;
4662 }
4663
4664 bpstats::bpstats ()
4665 : next (NULL),
4666 bp_location_at (NULL),
4667 breakpoint_at (NULL),
4668 commands (NULL),
4669 print (0),
4670 stop (0),
4671 print_it (print_it_normal)
4672 {
4673 }
4674 \f
4675 /* The target has stopped with waitstatus WS. Check if any hardware
4676 watchpoints have triggered, according to the target. */
4677
4678 int
4679 watchpoints_triggered (struct target_waitstatus *ws)
4680 {
4681 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4682 CORE_ADDR addr;
4683 struct breakpoint *b;
4684
4685 if (!stopped_by_watchpoint)
4686 {
4687 /* We were not stopped by a watchpoint. Mark all watchpoints
4688 as not triggered. */
4689 ALL_BREAKPOINTS (b)
4690 if (is_hardware_watchpoint (b))
4691 {
4692 struct watchpoint *w = (struct watchpoint *) b;
4693
4694 w->watchpoint_triggered = watch_triggered_no;
4695 }
4696
4697 return 0;
4698 }
4699
4700 if (!target_stopped_data_address (current_top_target (), &addr))
4701 {
4702 /* We were stopped by a watchpoint, but we don't know where.
4703 Mark all watchpoints as unknown. */
4704 ALL_BREAKPOINTS (b)
4705 if (is_hardware_watchpoint (b))
4706 {
4707 struct watchpoint *w = (struct watchpoint *) b;
4708
4709 w->watchpoint_triggered = watch_triggered_unknown;
4710 }
4711
4712 return 1;
4713 }
4714
4715 /* The target could report the data address. Mark watchpoints
4716 affected by this data address as triggered, and all others as not
4717 triggered. */
4718
4719 ALL_BREAKPOINTS (b)
4720 if (is_hardware_watchpoint (b))
4721 {
4722 struct watchpoint *w = (struct watchpoint *) b;
4723 struct bp_location *loc;
4724
4725 w->watchpoint_triggered = watch_triggered_no;
4726 for (loc = b->loc; loc; loc = loc->next)
4727 {
4728 if (is_masked_watchpoint (b))
4729 {
4730 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4731 CORE_ADDR start = loc->address & w->hw_wp_mask;
4732
4733 if (newaddr == start)
4734 {
4735 w->watchpoint_triggered = watch_triggered_yes;
4736 break;
4737 }
4738 }
4739 /* Exact match not required. Within range is sufficient. */
4740 else if (target_watchpoint_addr_within_range (current_top_target (),
4741 addr, loc->address,
4742 loc->length))
4743 {
4744 w->watchpoint_triggered = watch_triggered_yes;
4745 break;
4746 }
4747 }
4748 }
4749
4750 return 1;
4751 }
4752
4753 /* Possible return values for watchpoint_check. */
4754 enum wp_check_result
4755 {
4756 /* The watchpoint has been deleted. */
4757 WP_DELETED = 1,
4758
4759 /* The value has changed. */
4760 WP_VALUE_CHANGED = 2,
4761
4762 /* The value has not changed. */
4763 WP_VALUE_NOT_CHANGED = 3,
4764
4765 /* Ignore this watchpoint, no matter if the value changed or not. */
4766 WP_IGNORE = 4,
4767 };
4768
4769 #define BP_TEMPFLAG 1
4770 #define BP_HARDWAREFLAG 2
4771
4772 /* Evaluate watchpoint condition expression and check if its value
4773 changed. */
4774
4775 static wp_check_result
4776 watchpoint_check (bpstat bs)
4777 {
4778 struct watchpoint *b;
4779 struct frame_info *fr;
4780 int within_current_scope;
4781
4782 /* BS is built from an existing struct breakpoint. */
4783 gdb_assert (bs->breakpoint_at != NULL);
4784 b = (struct watchpoint *) bs->breakpoint_at;
4785
4786 /* If this is a local watchpoint, we only want to check if the
4787 watchpoint frame is in scope if the current thread is the thread
4788 that was used to create the watchpoint. */
4789 if (!watchpoint_in_thread_scope (b))
4790 return WP_IGNORE;
4791
4792 if (b->exp_valid_block == NULL)
4793 within_current_scope = 1;
4794 else
4795 {
4796 struct frame_info *frame = get_current_frame ();
4797 struct gdbarch *frame_arch = get_frame_arch (frame);
4798 CORE_ADDR frame_pc = get_frame_pc (frame);
4799
4800 /* stack_frame_destroyed_p() returns a non-zero value if we're
4801 still in the function but the stack frame has already been
4802 invalidated. Since we can't rely on the values of local
4803 variables after the stack has been destroyed, we are treating
4804 the watchpoint in that state as `not changed' without further
4805 checking. Don't mark watchpoints as changed if the current
4806 frame is in an epilogue - even if they are in some other
4807 frame, our view of the stack is likely to be wrong and
4808 frame_find_by_id could error out. */
4809 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4810 return WP_IGNORE;
4811
4812 fr = frame_find_by_id (b->watchpoint_frame);
4813 within_current_scope = (fr != NULL);
4814
4815 /* If we've gotten confused in the unwinder, we might have
4816 returned a frame that can't describe this variable. */
4817 if (within_current_scope)
4818 {
4819 struct symbol *function;
4820
4821 function = get_frame_function (fr);
4822 if (function == NULL
4823 || !contained_in (b->exp_valid_block,
4824 SYMBOL_BLOCK_VALUE (function)))
4825 within_current_scope = 0;
4826 }
4827
4828 if (within_current_scope)
4829 /* If we end up stopping, the current frame will get selected
4830 in normal_stop. So this call to select_frame won't affect
4831 the user. */
4832 select_frame (fr);
4833 }
4834
4835 if (within_current_scope)
4836 {
4837 /* We use value_{,free_to_}mark because it could be a *long*
4838 time before we return to the command level and call
4839 free_all_values. We can't call free_all_values because we
4840 might be in the middle of evaluating a function call. */
4841
4842 int pc = 0;
4843 struct value *mark;
4844 struct value *new_val;
4845
4846 if (is_masked_watchpoint (b))
4847 /* Since we don't know the exact trigger address (from
4848 stopped_data_address), just tell the user we've triggered
4849 a mask watchpoint. */
4850 return WP_VALUE_CHANGED;
4851
4852 mark = value_mark ();
4853 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4854
4855 if (b->val_bitsize != 0)
4856 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4857
4858 /* We use value_equal_contents instead of value_equal because
4859 the latter coerces an array to a pointer, thus comparing just
4860 the address of the array instead of its contents. This is
4861 not what we want. */
4862 if ((b->val != NULL) != (new_val != NULL)
4863 || (b->val != NULL && !value_equal_contents (b->val.get (),
4864 new_val)))
4865 {
4866 bs->old_val = b->val;
4867 b->val = release_value (new_val);
4868 b->val_valid = true;
4869 if (new_val != NULL)
4870 value_free_to_mark (mark);
4871 return WP_VALUE_CHANGED;
4872 }
4873 else
4874 {
4875 /* Nothing changed. */
4876 value_free_to_mark (mark);
4877 return WP_VALUE_NOT_CHANGED;
4878 }
4879 }
4880 else
4881 {
4882 /* This seems like the only logical thing to do because
4883 if we temporarily ignored the watchpoint, then when
4884 we reenter the block in which it is valid it contains
4885 garbage (in the case of a function, it may have two
4886 garbage values, one before and one after the prologue).
4887 So we can't even detect the first assignment to it and
4888 watch after that (since the garbage may or may not equal
4889 the first value assigned). */
4890 /* We print all the stop information in
4891 breakpoint_ops->print_it, but in this case, by the time we
4892 call breakpoint_ops->print_it this bp will be deleted
4893 already. So we have no choice but print the information
4894 here. */
4895
4896 SWITCH_THRU_ALL_UIS ()
4897 {
4898 struct ui_out *uiout = current_uiout;
4899
4900 if (uiout->is_mi_like_p ())
4901 uiout->field_string
4902 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4903 uiout->message ("\nWatchpoint %pF deleted because the program has "
4904 "left the block in\n"
4905 "which its expression is valid.\n",
4906 signed_field ("wpnum", b->number));
4907 }
4908
4909 /* Make sure the watchpoint's commands aren't executed. */
4910 b->commands = NULL;
4911 watchpoint_del_at_next_stop (b);
4912
4913 return WP_DELETED;
4914 }
4915 }
4916
4917 /* Return true if it looks like target has stopped due to hitting
4918 breakpoint location BL. This function does not check if we should
4919 stop, only if BL explains the stop. */
4920
4921 static int
4922 bpstat_check_location (const struct bp_location *bl,
4923 const address_space *aspace, CORE_ADDR bp_addr,
4924 const struct target_waitstatus *ws)
4925 {
4926 struct breakpoint *b = bl->owner;
4927
4928 /* BL is from an existing breakpoint. */
4929 gdb_assert (b != NULL);
4930
4931 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4932 }
4933
4934 /* Determine if the watched values have actually changed, and we
4935 should stop. If not, set BS->stop to 0. */
4936
4937 static void
4938 bpstat_check_watchpoint (bpstat bs)
4939 {
4940 const struct bp_location *bl;
4941 struct watchpoint *b;
4942
4943 /* BS is built for existing struct breakpoint. */
4944 bl = bs->bp_location_at;
4945 gdb_assert (bl != NULL);
4946 b = (struct watchpoint *) bs->breakpoint_at;
4947 gdb_assert (b != NULL);
4948
4949 {
4950 int must_check_value = 0;
4951
4952 if (b->type == bp_watchpoint)
4953 /* For a software watchpoint, we must always check the
4954 watched value. */
4955 must_check_value = 1;
4956 else if (b->watchpoint_triggered == watch_triggered_yes)
4957 /* We have a hardware watchpoint (read, write, or access)
4958 and the target earlier reported an address watched by
4959 this watchpoint. */
4960 must_check_value = 1;
4961 else if (b->watchpoint_triggered == watch_triggered_unknown
4962 && b->type == bp_hardware_watchpoint)
4963 /* We were stopped by a hardware watchpoint, but the target could
4964 not report the data address. We must check the watchpoint's
4965 value. Access and read watchpoints are out of luck; without
4966 a data address, we can't figure it out. */
4967 must_check_value = 1;
4968
4969 if (must_check_value)
4970 {
4971 wp_check_result e;
4972
4973 try
4974 {
4975 e = watchpoint_check (bs);
4976 }
4977 catch (const gdb_exception &ex)
4978 {
4979 exception_fprintf (gdb_stderr, ex,
4980 "Error evaluating expression "
4981 "for watchpoint %d\n",
4982 b->number);
4983
4984 SWITCH_THRU_ALL_UIS ()
4985 {
4986 printf_filtered (_("Watchpoint %d deleted.\n"),
4987 b->number);
4988 }
4989 watchpoint_del_at_next_stop (b);
4990 e = WP_DELETED;
4991 }
4992
4993 switch (e)
4994 {
4995 case WP_DELETED:
4996 /* We've already printed what needs to be printed. */
4997 bs->print_it = print_it_done;
4998 /* Stop. */
4999 break;
5000 case WP_IGNORE:
5001 bs->print_it = print_it_noop;
5002 bs->stop = 0;
5003 break;
5004 case WP_VALUE_CHANGED:
5005 if (b->type == bp_read_watchpoint)
5006 {
5007 /* There are two cases to consider here:
5008
5009 1. We're watching the triggered memory for reads.
5010 In that case, trust the target, and always report
5011 the watchpoint hit to the user. Even though
5012 reads don't cause value changes, the value may
5013 have changed since the last time it was read, and
5014 since we're not trapping writes, we will not see
5015 those, and as such we should ignore our notion of
5016 old value.
5017
5018 2. We're watching the triggered memory for both
5019 reads and writes. There are two ways this may
5020 happen:
5021
5022 2.1. This is a target that can't break on data
5023 reads only, but can break on accesses (reads or
5024 writes), such as e.g., x86. We detect this case
5025 at the time we try to insert read watchpoints.
5026
5027 2.2. Otherwise, the target supports read
5028 watchpoints, but, the user set an access or write
5029 watchpoint watching the same memory as this read
5030 watchpoint.
5031
5032 If we're watching memory writes as well as reads,
5033 ignore watchpoint hits when we find that the
5034 value hasn't changed, as reads don't cause
5035 changes. This still gives false positives when
5036 the program writes the same value to memory as
5037 what there was already in memory (we will confuse
5038 it for a read), but it's much better than
5039 nothing. */
5040
5041 int other_write_watchpoint = 0;
5042
5043 if (bl->watchpoint_type == hw_read)
5044 {
5045 struct breakpoint *other_b;
5046
5047 ALL_BREAKPOINTS (other_b)
5048 if (other_b->type == bp_hardware_watchpoint
5049 || other_b->type == bp_access_watchpoint)
5050 {
5051 struct watchpoint *other_w =
5052 (struct watchpoint *) other_b;
5053
5054 if (other_w->watchpoint_triggered
5055 == watch_triggered_yes)
5056 {
5057 other_write_watchpoint = 1;
5058 break;
5059 }
5060 }
5061 }
5062
5063 if (other_write_watchpoint
5064 || bl->watchpoint_type == hw_access)
5065 {
5066 /* We're watching the same memory for writes,
5067 and the value changed since the last time we
5068 updated it, so this trap must be for a write.
5069 Ignore it. */
5070 bs->print_it = print_it_noop;
5071 bs->stop = 0;
5072 }
5073 }
5074 break;
5075 case WP_VALUE_NOT_CHANGED:
5076 if (b->type == bp_hardware_watchpoint
5077 || b->type == bp_watchpoint)
5078 {
5079 /* Don't stop: write watchpoints shouldn't fire if
5080 the value hasn't changed. */
5081 bs->print_it = print_it_noop;
5082 bs->stop = 0;
5083 }
5084 /* Stop. */
5085 break;
5086 default:
5087 /* Can't happen. */
5088 break;
5089 }
5090 }
5091 else /* must_check_value == 0 */
5092 {
5093 /* This is a case where some watchpoint(s) triggered, but
5094 not at the address of this watchpoint, or else no
5095 watchpoint triggered after all. So don't print
5096 anything for this watchpoint. */
5097 bs->print_it = print_it_noop;
5098 bs->stop = 0;
5099 }
5100 }
5101 }
5102
5103 /* For breakpoints that are currently marked as telling gdb to stop,
5104 check conditions (condition proper, frame, thread and ignore count)
5105 of breakpoint referred to by BS. If we should not stop for this
5106 breakpoint, set BS->stop to 0. */
5107
5108 static void
5109 bpstat_check_breakpoint_conditions (bpstat bs, thread_info *thread)
5110 {
5111 const struct bp_location *bl;
5112 struct breakpoint *b;
5113 /* Assume stop. */
5114 bool condition_result = true;
5115 struct expression *cond;
5116
5117 gdb_assert (bs->stop);
5118
5119 /* BS is built for existing struct breakpoint. */
5120 bl = bs->bp_location_at;
5121 gdb_assert (bl != NULL);
5122 b = bs->breakpoint_at;
5123 gdb_assert (b != NULL);
5124
5125 /* Even if the target evaluated the condition on its end and notified GDB, we
5126 need to do so again since GDB does not know if we stopped due to a
5127 breakpoint or a single step breakpoint. */
5128
5129 if (frame_id_p (b->frame_id)
5130 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5131 {
5132 bs->stop = 0;
5133 return;
5134 }
5135
5136 /* If this is a thread/task-specific breakpoint, don't waste cpu
5137 evaluating the condition if this isn't the specified
5138 thread/task. */
5139 if ((b->thread != -1 && b->thread != thread->global_num)
5140 || (b->task != 0 && b->task != ada_get_task_number (thread)))
5141 {
5142 bs->stop = 0;
5143 return;
5144 }
5145
5146 /* Evaluate extension language breakpoints that have a "stop" method
5147 implemented. */
5148 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5149
5150 if (is_watchpoint (b))
5151 {
5152 struct watchpoint *w = (struct watchpoint *) b;
5153
5154 cond = w->cond_exp.get ();
5155 }
5156 else
5157 cond = bl->cond.get ();
5158
5159 if (cond && b->disposition != disp_del_at_next_stop)
5160 {
5161 int within_current_scope = 1;
5162 struct watchpoint * w;
5163
5164 /* We use value_mark and value_free_to_mark because it could
5165 be a long time before we return to the command level and
5166 call free_all_values. We can't call free_all_values
5167 because we might be in the middle of evaluating a
5168 function call. */
5169 struct value *mark = value_mark ();
5170
5171 if (is_watchpoint (b))
5172 w = (struct watchpoint *) b;
5173 else
5174 w = NULL;
5175
5176 /* Need to select the frame, with all that implies so that
5177 the conditions will have the right context. Because we
5178 use the frame, we will not see an inlined function's
5179 variables when we arrive at a breakpoint at the start
5180 of the inlined function; the current frame will be the
5181 call site. */
5182 if (w == NULL || w->cond_exp_valid_block == NULL)
5183 select_frame (get_current_frame ());
5184 else
5185 {
5186 struct frame_info *frame;
5187
5188 /* For local watchpoint expressions, which particular
5189 instance of a local is being watched matters, so we
5190 keep track of the frame to evaluate the expression
5191 in. To evaluate the condition however, it doesn't
5192 really matter which instantiation of the function
5193 where the condition makes sense triggers the
5194 watchpoint. This allows an expression like "watch
5195 global if q > 10" set in `func', catch writes to
5196 global on all threads that call `func', or catch
5197 writes on all recursive calls of `func' by a single
5198 thread. We simply always evaluate the condition in
5199 the innermost frame that's executing where it makes
5200 sense to evaluate the condition. It seems
5201 intuitive. */
5202 frame = block_innermost_frame (w->cond_exp_valid_block);
5203 if (frame != NULL)
5204 select_frame (frame);
5205 else
5206 within_current_scope = 0;
5207 }
5208 if (within_current_scope)
5209 {
5210 try
5211 {
5212 condition_result = breakpoint_cond_eval (cond);
5213 }
5214 catch (const gdb_exception &ex)
5215 {
5216 exception_fprintf (gdb_stderr, ex,
5217 "Error in testing breakpoint condition:\n");
5218 }
5219 }
5220 else
5221 {
5222 warning (_("Watchpoint condition cannot be tested "
5223 "in the current scope"));
5224 /* If we failed to set the right context for this
5225 watchpoint, unconditionally report it. */
5226 }
5227 /* FIXME-someday, should give breakpoint #. */
5228 value_free_to_mark (mark);
5229 }
5230
5231 if (cond && !condition_result)
5232 {
5233 bs->stop = 0;
5234 }
5235 else if (b->ignore_count > 0)
5236 {
5237 b->ignore_count--;
5238 bs->stop = 0;
5239 /* Increase the hit count even though we don't stop. */
5240 ++(b->hit_count);
5241 gdb::observers::breakpoint_modified.notify (b);
5242 }
5243 }
5244
5245 /* Returns true if we need to track moribund locations of LOC's type
5246 on the current target. */
5247
5248 static int
5249 need_moribund_for_location_type (struct bp_location *loc)
5250 {
5251 return ((loc->loc_type == bp_loc_software_breakpoint
5252 && !target_supports_stopped_by_sw_breakpoint ())
5253 || (loc->loc_type == bp_loc_hardware_breakpoint
5254 && !target_supports_stopped_by_hw_breakpoint ()));
5255 }
5256
5257 /* See breakpoint.h. */
5258
5259 bpstat
5260 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5261 const struct target_waitstatus *ws)
5262 {
5263 struct breakpoint *b;
5264 bpstat bs_head = NULL, *bs_link = &bs_head;
5265
5266 ALL_BREAKPOINTS (b)
5267 {
5268 if (!breakpoint_enabled (b))
5269 continue;
5270
5271 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next)
5272 {
5273 /* For hardware watchpoints, we look only at the first
5274 location. The watchpoint_check function will work on the
5275 entire expression, not the individual locations. For
5276 read watchpoints, the watchpoints_triggered function has
5277 checked all locations already. */
5278 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5279 break;
5280
5281 if (!bl->enabled || bl->shlib_disabled)
5282 continue;
5283
5284 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5285 continue;
5286
5287 /* Come here if it's a watchpoint, or if the break address
5288 matches. */
5289
5290 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5291 explain stop. */
5292
5293 /* Assume we stop. Should we find a watchpoint that is not
5294 actually triggered, or if the condition of the breakpoint
5295 evaluates as false, we'll reset 'stop' to 0. */
5296 bs->stop = 1;
5297 bs->print = 1;
5298
5299 /* If this is a scope breakpoint, mark the associated
5300 watchpoint as triggered so that we will handle the
5301 out-of-scope event. We'll get to the watchpoint next
5302 iteration. */
5303 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5304 {
5305 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5306
5307 w->watchpoint_triggered = watch_triggered_yes;
5308 }
5309 }
5310 }
5311
5312 /* Check if a moribund breakpoint explains the stop. */
5313 if (!target_supports_stopped_by_sw_breakpoint ()
5314 || !target_supports_stopped_by_hw_breakpoint ())
5315 {
5316 for (bp_location *loc : moribund_locations)
5317 {
5318 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5319 && need_moribund_for_location_type (loc))
5320 {
5321 bpstat bs = new bpstats (loc, &bs_link);
5322 /* For hits of moribund locations, we should just proceed. */
5323 bs->stop = 0;
5324 bs->print = 0;
5325 bs->print_it = print_it_noop;
5326 }
5327 }
5328 }
5329
5330 return bs_head;
5331 }
5332
5333 /* See breakpoint.h. */
5334
5335 bpstat
5336 bpstat_stop_status (const address_space *aspace,
5337 CORE_ADDR bp_addr, thread_info *thread,
5338 const struct target_waitstatus *ws,
5339 bpstat stop_chain)
5340 {
5341 struct breakpoint *b = NULL;
5342 /* First item of allocated bpstat's. */
5343 bpstat bs_head = stop_chain;
5344 bpstat bs;
5345 int need_remove_insert;
5346 int removed_any;
5347
5348 /* First, build the bpstat chain with locations that explain a
5349 target stop, while being careful to not set the target running,
5350 as that may invalidate locations (in particular watchpoint
5351 locations are recreated). Resuming will happen here with
5352 breakpoint conditions or watchpoint expressions that include
5353 inferior function calls. */
5354 if (bs_head == NULL)
5355 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5356
5357 /* A bit of special processing for shlib breakpoints. We need to
5358 process solib loading here, so that the lists of loaded and
5359 unloaded libraries are correct before we handle "catch load" and
5360 "catch unload". */
5361 for (bs = bs_head; bs != NULL; bs = bs->next)
5362 {
5363 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5364 {
5365 handle_solib_event ();
5366 break;
5367 }
5368 }
5369
5370 /* Now go through the locations that caused the target to stop, and
5371 check whether we're interested in reporting this stop to higher
5372 layers, or whether we should resume the target transparently. */
5373
5374 removed_any = 0;
5375
5376 for (bs = bs_head; bs != NULL; bs = bs->next)
5377 {
5378 if (!bs->stop)
5379 continue;
5380
5381 b = bs->breakpoint_at;
5382 b->ops->check_status (bs);
5383 if (bs->stop)
5384 {
5385 bpstat_check_breakpoint_conditions (bs, thread);
5386
5387 if (bs->stop)
5388 {
5389 ++(b->hit_count);
5390 gdb::observers::breakpoint_modified.notify (b);
5391
5392 /* We will stop here. */
5393 if (b->disposition == disp_disable)
5394 {
5395 --(b->enable_count);
5396 if (b->enable_count <= 0)
5397 b->enable_state = bp_disabled;
5398 removed_any = 1;
5399 }
5400 if (b->silent)
5401 bs->print = 0;
5402 bs->commands = b->commands;
5403 if (command_line_is_silent (bs->commands
5404 ? bs->commands.get () : NULL))
5405 bs->print = 0;
5406
5407 b->ops->after_condition_true (bs);
5408 }
5409
5410 }
5411
5412 /* Print nothing for this entry if we don't stop or don't
5413 print. */
5414 if (!bs->stop || !bs->print)
5415 bs->print_it = print_it_noop;
5416 }
5417
5418 /* If we aren't stopping, the value of some hardware watchpoint may
5419 not have changed, but the intermediate memory locations we are
5420 watching may have. Don't bother if we're stopping; this will get
5421 done later. */
5422 need_remove_insert = 0;
5423 if (! bpstat_causes_stop (bs_head))
5424 for (bs = bs_head; bs != NULL; bs = bs->next)
5425 if (!bs->stop
5426 && bs->breakpoint_at
5427 && is_hardware_watchpoint (bs->breakpoint_at))
5428 {
5429 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5430
5431 update_watchpoint (w, 0 /* don't reparse. */);
5432 need_remove_insert = 1;
5433 }
5434
5435 if (need_remove_insert)
5436 update_global_location_list (UGLL_MAY_INSERT);
5437 else if (removed_any)
5438 update_global_location_list (UGLL_DONT_INSERT);
5439
5440 return bs_head;
5441 }
5442
5443 static void
5444 handle_jit_event (void)
5445 {
5446 struct frame_info *frame;
5447 struct gdbarch *gdbarch;
5448
5449 infrun_debug_printf ("handling bp_jit_event");
5450
5451 /* Switch terminal for any messages produced by
5452 breakpoint_re_set. */
5453 target_terminal::ours_for_output ();
5454
5455 frame = get_current_frame ();
5456 gdbarch = get_frame_arch (frame);
5457 objfile *jiter = symbol_objfile (get_frame_function (frame));
5458
5459 jit_event_handler (gdbarch, jiter);
5460
5461 target_terminal::inferior ();
5462 }
5463
5464 /* Prepare WHAT final decision for infrun. */
5465
5466 /* Decide what infrun needs to do with this bpstat. */
5467
5468 struct bpstat_what
5469 bpstat_what (bpstat bs_head)
5470 {
5471 struct bpstat_what retval;
5472 bpstat bs;
5473
5474 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5475 retval.call_dummy = STOP_NONE;
5476 retval.is_longjmp = false;
5477
5478 for (bs = bs_head; bs != NULL; bs = bs->next)
5479 {
5480 /* Extract this BS's action. After processing each BS, we check
5481 if its action overrides all we've seem so far. */
5482 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5483 enum bptype bptype;
5484
5485 if (bs->breakpoint_at == NULL)
5486 {
5487 /* I suspect this can happen if it was a momentary
5488 breakpoint which has since been deleted. */
5489 bptype = bp_none;
5490 }
5491 else
5492 bptype = bs->breakpoint_at->type;
5493
5494 switch (bptype)
5495 {
5496 case bp_none:
5497 break;
5498 case bp_breakpoint:
5499 case bp_hardware_breakpoint:
5500 case bp_single_step:
5501 case bp_until:
5502 case bp_finish:
5503 case bp_shlib_event:
5504 if (bs->stop)
5505 {
5506 if (bs->print)
5507 this_action = BPSTAT_WHAT_STOP_NOISY;
5508 else
5509 this_action = BPSTAT_WHAT_STOP_SILENT;
5510 }
5511 else
5512 this_action = BPSTAT_WHAT_SINGLE;
5513 break;
5514 case bp_watchpoint:
5515 case bp_hardware_watchpoint:
5516 case bp_read_watchpoint:
5517 case bp_access_watchpoint:
5518 if (bs->stop)
5519 {
5520 if (bs->print)
5521 this_action = BPSTAT_WHAT_STOP_NOISY;
5522 else
5523 this_action = BPSTAT_WHAT_STOP_SILENT;
5524 }
5525 else
5526 {
5527 /* There was a watchpoint, but we're not stopping.
5528 This requires no further action. */
5529 }
5530 break;
5531 case bp_longjmp:
5532 case bp_longjmp_call_dummy:
5533 case bp_exception:
5534 if (bs->stop)
5535 {
5536 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5537 retval.is_longjmp = bptype != bp_exception;
5538 }
5539 else
5540 this_action = BPSTAT_WHAT_SINGLE;
5541 break;
5542 case bp_longjmp_resume:
5543 case bp_exception_resume:
5544 if (bs->stop)
5545 {
5546 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5547 retval.is_longjmp = bptype == bp_longjmp_resume;
5548 }
5549 else
5550 this_action = BPSTAT_WHAT_SINGLE;
5551 break;
5552 case bp_step_resume:
5553 if (bs->stop)
5554 this_action = BPSTAT_WHAT_STEP_RESUME;
5555 else
5556 {
5557 /* It is for the wrong frame. */
5558 this_action = BPSTAT_WHAT_SINGLE;
5559 }
5560 break;
5561 case bp_hp_step_resume:
5562 if (bs->stop)
5563 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5564 else
5565 {
5566 /* It is for the wrong frame. */
5567 this_action = BPSTAT_WHAT_SINGLE;
5568 }
5569 break;
5570 case bp_watchpoint_scope:
5571 case bp_thread_event:
5572 case bp_overlay_event:
5573 case bp_longjmp_master:
5574 case bp_std_terminate_master:
5575 case bp_exception_master:
5576 this_action = BPSTAT_WHAT_SINGLE;
5577 break;
5578 case bp_catchpoint:
5579 if (bs->stop)
5580 {
5581 if (bs->print)
5582 this_action = BPSTAT_WHAT_STOP_NOISY;
5583 else
5584 this_action = BPSTAT_WHAT_STOP_SILENT;
5585 }
5586 else
5587 {
5588 /* Some catchpoints are implemented with breakpoints.
5589 For those, we need to step over the breakpoint. */
5590 if (bs->bp_location_at->loc_type != bp_loc_other)
5591 this_action = BPSTAT_WHAT_SINGLE;
5592 }
5593 break;
5594 case bp_jit_event:
5595 this_action = BPSTAT_WHAT_SINGLE;
5596 break;
5597 case bp_call_dummy:
5598 /* Make sure the action is stop (silent or noisy),
5599 so infrun.c pops the dummy frame. */
5600 retval.call_dummy = STOP_STACK_DUMMY;
5601 this_action = BPSTAT_WHAT_STOP_SILENT;
5602 break;
5603 case bp_std_terminate:
5604 /* Make sure the action is stop (silent or noisy),
5605 so infrun.c pops the dummy frame. */
5606 retval.call_dummy = STOP_STD_TERMINATE;
5607 this_action = BPSTAT_WHAT_STOP_SILENT;
5608 break;
5609 case bp_tracepoint:
5610 case bp_fast_tracepoint:
5611 case bp_static_tracepoint:
5612 /* Tracepoint hits should not be reported back to GDB, and
5613 if one got through somehow, it should have been filtered
5614 out already. */
5615 internal_error (__FILE__, __LINE__,
5616 _("bpstat_what: tracepoint encountered"));
5617 break;
5618 case bp_gnu_ifunc_resolver:
5619 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5620 this_action = BPSTAT_WHAT_SINGLE;
5621 break;
5622 case bp_gnu_ifunc_resolver_return:
5623 /* The breakpoint will be removed, execution will restart from the
5624 PC of the former breakpoint. */
5625 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5626 break;
5627
5628 case bp_dprintf:
5629 if (bs->stop)
5630 this_action = BPSTAT_WHAT_STOP_SILENT;
5631 else
5632 this_action = BPSTAT_WHAT_SINGLE;
5633 break;
5634
5635 default:
5636 internal_error (__FILE__, __LINE__,
5637 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5638 }
5639
5640 retval.main_action = std::max (retval.main_action, this_action);
5641 }
5642
5643 return retval;
5644 }
5645
5646 void
5647 bpstat_run_callbacks (bpstat bs_head)
5648 {
5649 bpstat bs;
5650
5651 for (bs = bs_head; bs != NULL; bs = bs->next)
5652 {
5653 struct breakpoint *b = bs->breakpoint_at;
5654
5655 if (b == NULL)
5656 continue;
5657 switch (b->type)
5658 {
5659 case bp_jit_event:
5660 handle_jit_event ();
5661 break;
5662 case bp_gnu_ifunc_resolver:
5663 gnu_ifunc_resolver_stop (b);
5664 break;
5665 case bp_gnu_ifunc_resolver_return:
5666 gnu_ifunc_resolver_return_stop (b);
5667 break;
5668 }
5669 }
5670 }
5671
5672 /* See breakpoint.h. */
5673
5674 bool
5675 bpstat_should_step ()
5676 {
5677 struct breakpoint *b;
5678
5679 ALL_BREAKPOINTS (b)
5680 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5681 return true;
5682 return false;
5683 }
5684
5685 /* See breakpoint.h. */
5686
5687 bool
5688 bpstat_causes_stop (bpstat bs)
5689 {
5690 for (; bs != NULL; bs = bs->next)
5691 if (bs->stop)
5692 return true;
5693
5694 return false;
5695 }
5696
5697 \f
5698
5699 /* Compute a string of spaces suitable to indent the next line
5700 so it starts at the position corresponding to the table column
5701 named COL_NAME in the currently active table of UIOUT. */
5702
5703 static char *
5704 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5705 {
5706 static char wrap_indent[80];
5707 int i, total_width, width, align;
5708 const char *text;
5709
5710 total_width = 0;
5711 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5712 {
5713 if (strcmp (text, col_name) == 0)
5714 {
5715 gdb_assert (total_width < sizeof wrap_indent);
5716 memset (wrap_indent, ' ', total_width);
5717 wrap_indent[total_width] = 0;
5718
5719 return wrap_indent;
5720 }
5721
5722 total_width += width + 1;
5723 }
5724
5725 return NULL;
5726 }
5727
5728 /* Determine if the locations of this breakpoint will have their conditions
5729 evaluated by the target, host or a mix of both. Returns the following:
5730
5731 "host": Host evals condition.
5732 "host or target": Host or Target evals condition.
5733 "target": Target evals condition.
5734 */
5735
5736 static const char *
5737 bp_condition_evaluator (struct breakpoint *b)
5738 {
5739 struct bp_location *bl;
5740 char host_evals = 0;
5741 char target_evals = 0;
5742
5743 if (!b)
5744 return NULL;
5745
5746 if (!is_breakpoint (b))
5747 return NULL;
5748
5749 if (gdb_evaluates_breakpoint_condition_p ()
5750 || !target_supports_evaluation_of_breakpoint_conditions ())
5751 return condition_evaluation_host;
5752
5753 for (bl = b->loc; bl; bl = bl->next)
5754 {
5755 if (bl->cond_bytecode)
5756 target_evals++;
5757 else
5758 host_evals++;
5759 }
5760
5761 if (host_evals && target_evals)
5762 return condition_evaluation_both;
5763 else if (target_evals)
5764 return condition_evaluation_target;
5765 else
5766 return condition_evaluation_host;
5767 }
5768
5769 /* Determine the breakpoint location's condition evaluator. This is
5770 similar to bp_condition_evaluator, but for locations. */
5771
5772 static const char *
5773 bp_location_condition_evaluator (struct bp_location *bl)
5774 {
5775 if (bl && !is_breakpoint (bl->owner))
5776 return NULL;
5777
5778 if (gdb_evaluates_breakpoint_condition_p ()
5779 || !target_supports_evaluation_of_breakpoint_conditions ())
5780 return condition_evaluation_host;
5781
5782 if (bl && bl->cond_bytecode)
5783 return condition_evaluation_target;
5784 else
5785 return condition_evaluation_host;
5786 }
5787
5788 /* Print the LOC location out of the list of B->LOC locations. */
5789
5790 static void
5791 print_breakpoint_location (struct breakpoint *b,
5792 struct bp_location *loc)
5793 {
5794 struct ui_out *uiout = current_uiout;
5795
5796 scoped_restore_current_program_space restore_pspace;
5797
5798 if (loc != NULL && loc->shlib_disabled)
5799 loc = NULL;
5800
5801 if (loc != NULL)
5802 set_current_program_space (loc->pspace);
5803
5804 if (b->display_canonical)
5805 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5806 else if (loc && loc->symtab)
5807 {
5808 const struct symbol *sym = loc->symbol;
5809
5810 if (sym)
5811 {
5812 uiout->text ("in ");
5813 uiout->field_string ("func", sym->print_name (),
5814 function_name_style.style ());
5815 uiout->text (" ");
5816 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5817 uiout->text ("at ");
5818 }
5819 uiout->field_string ("file",
5820 symtab_to_filename_for_display (loc->symtab),
5821 file_name_style.style ());
5822 uiout->text (":");
5823
5824 if (uiout->is_mi_like_p ())
5825 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5826
5827 uiout->field_signed ("line", loc->line_number);
5828 }
5829 else if (loc)
5830 {
5831 string_file stb;
5832
5833 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5834 demangle, "");
5835 uiout->field_stream ("at", stb);
5836 }
5837 else
5838 {
5839 uiout->field_string ("pending",
5840 event_location_to_string (b->location.get ()));
5841 /* If extra_string is available, it could be holding a condition
5842 or dprintf arguments. In either case, make sure it is printed,
5843 too, but only for non-MI streams. */
5844 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5845 {
5846 if (b->type == bp_dprintf)
5847 uiout->text (",");
5848 else
5849 uiout->text (" ");
5850 uiout->text (b->extra_string);
5851 }
5852 }
5853
5854 if (loc && is_breakpoint (b)
5855 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5856 && bp_condition_evaluator (b) == condition_evaluation_both)
5857 {
5858 uiout->text (" (");
5859 uiout->field_string ("evaluated-by",
5860 bp_location_condition_evaluator (loc));
5861 uiout->text (")");
5862 }
5863 }
5864
5865 static const char *
5866 bptype_string (enum bptype type)
5867 {
5868 struct ep_type_description
5869 {
5870 enum bptype type;
5871 const char *description;
5872 };
5873 static struct ep_type_description bptypes[] =
5874 {
5875 {bp_none, "?deleted?"},
5876 {bp_breakpoint, "breakpoint"},
5877 {bp_hardware_breakpoint, "hw breakpoint"},
5878 {bp_single_step, "sw single-step"},
5879 {bp_until, "until"},
5880 {bp_finish, "finish"},
5881 {bp_watchpoint, "watchpoint"},
5882 {bp_hardware_watchpoint, "hw watchpoint"},
5883 {bp_read_watchpoint, "read watchpoint"},
5884 {bp_access_watchpoint, "acc watchpoint"},
5885 {bp_longjmp, "longjmp"},
5886 {bp_longjmp_resume, "longjmp resume"},
5887 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5888 {bp_exception, "exception"},
5889 {bp_exception_resume, "exception resume"},
5890 {bp_step_resume, "step resume"},
5891 {bp_hp_step_resume, "high-priority step resume"},
5892 {bp_watchpoint_scope, "watchpoint scope"},
5893 {bp_call_dummy, "call dummy"},
5894 {bp_std_terminate, "std::terminate"},
5895 {bp_shlib_event, "shlib events"},
5896 {bp_thread_event, "thread events"},
5897 {bp_overlay_event, "overlay events"},
5898 {bp_longjmp_master, "longjmp master"},
5899 {bp_std_terminate_master, "std::terminate master"},
5900 {bp_exception_master, "exception master"},
5901 {bp_catchpoint, "catchpoint"},
5902 {bp_tracepoint, "tracepoint"},
5903 {bp_fast_tracepoint, "fast tracepoint"},
5904 {bp_static_tracepoint, "static tracepoint"},
5905 {bp_dprintf, "dprintf"},
5906 {bp_jit_event, "jit events"},
5907 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5908 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5909 };
5910
5911 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5912 || ((int) type != bptypes[(int) type].type))
5913 internal_error (__FILE__, __LINE__,
5914 _("bptypes table does not describe type #%d."),
5915 (int) type);
5916
5917 return bptypes[(int) type].description;
5918 }
5919
5920 /* For MI, output a field named 'thread-groups' with a list as the value.
5921 For CLI, prefix the list with the string 'inf'. */
5922
5923 static void
5924 output_thread_groups (struct ui_out *uiout,
5925 const char *field_name,
5926 const std::vector<int> &inf_nums,
5927 int mi_only)
5928 {
5929 int is_mi = uiout->is_mi_like_p ();
5930
5931 /* For backward compatibility, don't display inferiors in CLI unless
5932 there are several. Always display them for MI. */
5933 if (!is_mi && mi_only)
5934 return;
5935
5936 ui_out_emit_list list_emitter (uiout, field_name);
5937
5938 for (size_t i = 0; i < inf_nums.size (); i++)
5939 {
5940 if (is_mi)
5941 {
5942 char mi_group[10];
5943
5944 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
5945 uiout->field_string (NULL, mi_group);
5946 }
5947 else
5948 {
5949 if (i == 0)
5950 uiout->text (" inf ");
5951 else
5952 uiout->text (", ");
5953
5954 uiout->text (plongest (inf_nums[i]));
5955 }
5956 }
5957 }
5958
5959 /* Print B to gdb_stdout. If RAW_LOC, print raw breakpoint locations
5960 instead of going via breakpoint_ops::print_one. This makes "maint
5961 info breakpoints" show the software breakpoint locations of
5962 catchpoints, which are considered internal implementation
5963 detail. */
5964
5965 static void
5966 print_one_breakpoint_location (struct breakpoint *b,
5967 struct bp_location *loc,
5968 int loc_number,
5969 struct bp_location **last_loc,
5970 int allflag, bool raw_loc)
5971 {
5972 struct command_line *l;
5973 static char bpenables[] = "nynny";
5974
5975 struct ui_out *uiout = current_uiout;
5976 int header_of_multiple = 0;
5977 int part_of_multiple = (loc != NULL);
5978 struct value_print_options opts;
5979
5980 get_user_print_options (&opts);
5981
5982 gdb_assert (!loc || loc_number != 0);
5983 /* See comment in print_one_breakpoint concerning treatment of
5984 breakpoints with single disabled location. */
5985 if (loc == NULL
5986 && (b->loc != NULL
5987 && (b->loc->next != NULL || !b->loc->enabled)))
5988 header_of_multiple = 1;
5989 if (loc == NULL)
5990 loc = b->loc;
5991
5992 annotate_record ();
5993
5994 /* 1 */
5995 annotate_field (0);
5996 if (part_of_multiple)
5997 uiout->field_fmt ("number", "%d.%d", b->number, loc_number);
5998 else
5999 uiout->field_signed ("number", b->number);
6000
6001 /* 2 */
6002 annotate_field (1);
6003 if (part_of_multiple)
6004 uiout->field_skip ("type");
6005 else
6006 uiout->field_string ("type", bptype_string (b->type));
6007
6008 /* 3 */
6009 annotate_field (2);
6010 if (part_of_multiple)
6011 uiout->field_skip ("disp");
6012 else
6013 uiout->field_string ("disp", bpdisp_text (b->disposition));
6014
6015 /* 4 */
6016 annotate_field (3);
6017 if (part_of_multiple)
6018 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6019 else
6020 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6021
6022 /* 5 and 6 */
6023 if (!raw_loc && b->ops != NULL && b->ops->print_one != NULL)
6024 b->ops->print_one (b, last_loc);
6025 else
6026 {
6027 if (is_watchpoint (b))
6028 {
6029 struct watchpoint *w = (struct watchpoint *) b;
6030
6031 /* Field 4, the address, is omitted (which makes the columns
6032 not line up too nicely with the headers, but the effect
6033 is relatively readable). */
6034 if (opts.addressprint)
6035 uiout->field_skip ("addr");
6036 annotate_field (5);
6037 uiout->field_string ("what", w->exp_string);
6038 }
6039 else if (!is_catchpoint (b) || is_exception_catchpoint (b)
6040 || is_ada_exception_catchpoint (b))
6041 {
6042 if (opts.addressprint)
6043 {
6044 annotate_field (4);
6045 if (header_of_multiple)
6046 uiout->field_string ("addr", "<MULTIPLE>",
6047 metadata_style.style ());
6048 else if (b->loc == NULL || loc->shlib_disabled)
6049 uiout->field_string ("addr", "<PENDING>",
6050 metadata_style.style ());
6051 else
6052 uiout->field_core_addr ("addr",
6053 loc->gdbarch, loc->address);
6054 }
6055 annotate_field (5);
6056 if (!header_of_multiple)
6057 print_breakpoint_location (b, loc);
6058 if (b->loc)
6059 *last_loc = b->loc;
6060 }
6061 }
6062
6063 if (loc != NULL && !header_of_multiple)
6064 {
6065 std::vector<int> inf_nums;
6066 int mi_only = 1;
6067
6068 for (inferior *inf : all_inferiors ())
6069 {
6070 if (inf->pspace == loc->pspace)
6071 inf_nums.push_back (inf->num);
6072 }
6073
6074 /* For backward compatibility, don't display inferiors in CLI unless
6075 there are several. Always display for MI. */
6076 if (allflag
6077 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6078 && (program_spaces.size () > 1
6079 || number_of_inferiors () > 1)
6080 /* LOC is for existing B, it cannot be in
6081 moribund_locations and thus having NULL OWNER. */
6082 && loc->owner->type != bp_catchpoint))
6083 mi_only = 0;
6084 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6085 }
6086
6087 if (!part_of_multiple)
6088 {
6089 if (b->thread != -1)
6090 {
6091 /* FIXME: This seems to be redundant and lost here; see the
6092 "stop only in" line a little further down. */
6093 uiout->text (" thread ");
6094 uiout->field_signed ("thread", b->thread);
6095 }
6096 else if (b->task != 0)
6097 {
6098 uiout->text (" task ");
6099 uiout->field_signed ("task", b->task);
6100 }
6101 }
6102
6103 uiout->text ("\n");
6104
6105 if (!part_of_multiple)
6106 b->ops->print_one_detail (b, uiout);
6107
6108 if (part_of_multiple && frame_id_p (b->frame_id))
6109 {
6110 annotate_field (6);
6111 uiout->text ("\tstop only in stack frame at ");
6112 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6113 the frame ID. */
6114 uiout->field_core_addr ("frame",
6115 b->gdbarch, b->frame_id.stack_addr);
6116 uiout->text ("\n");
6117 }
6118
6119 if (!part_of_multiple && b->cond_string)
6120 {
6121 annotate_field (7);
6122 if (is_tracepoint (b))
6123 uiout->text ("\ttrace only if ");
6124 else
6125 uiout->text ("\tstop only if ");
6126 uiout->field_string ("cond", b->cond_string);
6127
6128 /* Print whether the target is doing the breakpoint's condition
6129 evaluation. If GDB is doing the evaluation, don't print anything. */
6130 if (is_breakpoint (b)
6131 && breakpoint_condition_evaluation_mode ()
6132 == condition_evaluation_target)
6133 {
6134 uiout->message (" (%pF evals)",
6135 string_field ("evaluated-by",
6136 bp_condition_evaluator (b)));
6137 }
6138 uiout->text ("\n");
6139 }
6140
6141 if (!part_of_multiple && b->thread != -1)
6142 {
6143 /* FIXME should make an annotation for this. */
6144 uiout->text ("\tstop only in thread ");
6145 if (uiout->is_mi_like_p ())
6146 uiout->field_signed ("thread", b->thread);
6147 else
6148 {
6149 struct thread_info *thr = find_thread_global_id (b->thread);
6150
6151 uiout->field_string ("thread", print_thread_id (thr));
6152 }
6153 uiout->text ("\n");
6154 }
6155
6156 if (!part_of_multiple)
6157 {
6158 if (b->hit_count)
6159 {
6160 /* FIXME should make an annotation for this. */
6161 if (is_catchpoint (b))
6162 uiout->text ("\tcatchpoint");
6163 else if (is_tracepoint (b))
6164 uiout->text ("\ttracepoint");
6165 else
6166 uiout->text ("\tbreakpoint");
6167 uiout->text (" already hit ");
6168 uiout->field_signed ("times", b->hit_count);
6169 if (b->hit_count == 1)
6170 uiout->text (" time\n");
6171 else
6172 uiout->text (" times\n");
6173 }
6174 else
6175 {
6176 /* Output the count also if it is zero, but only if this is mi. */
6177 if (uiout->is_mi_like_p ())
6178 uiout->field_signed ("times", b->hit_count);
6179 }
6180 }
6181
6182 if (!part_of_multiple && b->ignore_count)
6183 {
6184 annotate_field (8);
6185 uiout->message ("\tignore next %pF hits\n",
6186 signed_field ("ignore", b->ignore_count));
6187 }
6188
6189 /* Note that an enable count of 1 corresponds to "enable once"
6190 behavior, which is reported by the combination of enablement and
6191 disposition, so we don't need to mention it here. */
6192 if (!part_of_multiple && b->enable_count > 1)
6193 {
6194 annotate_field (8);
6195 uiout->text ("\tdisable after ");
6196 /* Tweak the wording to clarify that ignore and enable counts
6197 are distinct, and have additive effect. */
6198 if (b->ignore_count)
6199 uiout->text ("additional ");
6200 else
6201 uiout->text ("next ");
6202 uiout->field_signed ("enable", b->enable_count);
6203 uiout->text (" hits\n");
6204 }
6205
6206 if (!part_of_multiple && is_tracepoint (b))
6207 {
6208 struct tracepoint *tp = (struct tracepoint *) b;
6209
6210 if (tp->traceframe_usage)
6211 {
6212 uiout->text ("\ttrace buffer usage ");
6213 uiout->field_signed ("traceframe-usage", tp->traceframe_usage);
6214 uiout->text (" bytes\n");
6215 }
6216 }
6217
6218 l = b->commands ? b->commands.get () : NULL;
6219 if (!part_of_multiple && l)
6220 {
6221 annotate_field (9);
6222 ui_out_emit_tuple tuple_emitter (uiout, "script");
6223 print_command_lines (uiout, l, 4);
6224 }
6225
6226 if (is_tracepoint (b))
6227 {
6228 struct tracepoint *t = (struct tracepoint *) b;
6229
6230 if (!part_of_multiple && t->pass_count)
6231 {
6232 annotate_field (10);
6233 uiout->text ("\tpass count ");
6234 uiout->field_signed ("pass", t->pass_count);
6235 uiout->text (" \n");
6236 }
6237
6238 /* Don't display it when tracepoint or tracepoint location is
6239 pending. */
6240 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6241 {
6242 annotate_field (11);
6243
6244 if (uiout->is_mi_like_p ())
6245 uiout->field_string ("installed",
6246 loc->inserted ? "y" : "n");
6247 else
6248 {
6249 if (loc->inserted)
6250 uiout->text ("\t");
6251 else
6252 uiout->text ("\tnot ");
6253 uiout->text ("installed on target\n");
6254 }
6255 }
6256 }
6257
6258 if (uiout->is_mi_like_p () && !part_of_multiple)
6259 {
6260 if (is_watchpoint (b))
6261 {
6262 struct watchpoint *w = (struct watchpoint *) b;
6263
6264 uiout->field_string ("original-location", w->exp_string);
6265 }
6266 else if (b->location != NULL
6267 && event_location_to_string (b->location.get ()) != NULL)
6268 uiout->field_string ("original-location",
6269 event_location_to_string (b->location.get ()));
6270 }
6271 }
6272
6273 /* See breakpoint.h. */
6274
6275 bool fix_multi_location_breakpoint_output_globally = false;
6276
6277 static void
6278 print_one_breakpoint (struct breakpoint *b,
6279 struct bp_location **last_loc,
6280 int allflag)
6281 {
6282 struct ui_out *uiout = current_uiout;
6283 bool use_fixed_output
6284 = (uiout->test_flags (fix_multi_location_breakpoint_output)
6285 || fix_multi_location_breakpoint_output_globally);
6286
6287 gdb::optional<ui_out_emit_tuple> bkpt_tuple_emitter (gdb::in_place, uiout, "bkpt");
6288 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag, false);
6289
6290 /* The mi2 broken format: the main breakpoint tuple ends here, the locations
6291 are outside. */
6292 if (!use_fixed_output)
6293 bkpt_tuple_emitter.reset ();
6294
6295 /* If this breakpoint has custom print function,
6296 it's already printed. Otherwise, print individual
6297 locations, if any. */
6298 if (b->ops == NULL
6299 || b->ops->print_one == NULL
6300 || allflag)
6301 {
6302 /* If breakpoint has a single location that is disabled, we
6303 print it as if it had several locations, since otherwise it's
6304 hard to represent "breakpoint enabled, location disabled"
6305 situation.
6306
6307 Note that while hardware watchpoints have several locations
6308 internally, that's not a property exposed to users.
6309
6310 Likewise, while catchpoints may be implemented with
6311 breakpoints (e.g., catch throw), that's not a property
6312 exposed to users. We do however display the internal
6313 breakpoint locations with "maint info breakpoints". */
6314 if (!is_hardware_watchpoint (b)
6315 && (!is_catchpoint (b) || is_exception_catchpoint (b)
6316 || is_ada_exception_catchpoint (b))
6317 && (allflag
6318 || (b->loc && (b->loc->next || !b->loc->enabled))))
6319 {
6320 gdb::optional<ui_out_emit_list> locations_list;
6321
6322 /* For MI version <= 2, keep the behavior where GDB outputs an invalid
6323 MI record. For later versions, place breakpoint locations in a
6324 list. */
6325 if (uiout->is_mi_like_p () && use_fixed_output)
6326 locations_list.emplace (uiout, "locations");
6327
6328 int n = 1;
6329 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next, ++n)
6330 {
6331 ui_out_emit_tuple loc_tuple_emitter (uiout, NULL);
6332 print_one_breakpoint_location (b, loc, n, last_loc,
6333 allflag, allflag);
6334 }
6335 }
6336 }
6337 }
6338
6339 static int
6340 breakpoint_address_bits (struct breakpoint *b)
6341 {
6342 int print_address_bits = 0;
6343 struct bp_location *loc;
6344
6345 /* Software watchpoints that aren't watching memory don't have an
6346 address to print. */
6347 if (is_no_memory_software_watchpoint (b))
6348 return 0;
6349
6350 for (loc = b->loc; loc; loc = loc->next)
6351 {
6352 int addr_bit;
6353
6354 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6355 if (addr_bit > print_address_bits)
6356 print_address_bits = addr_bit;
6357 }
6358
6359 return print_address_bits;
6360 }
6361
6362 /* See breakpoint.h. */
6363
6364 void
6365 print_breakpoint (breakpoint *b)
6366 {
6367 struct bp_location *dummy_loc = NULL;
6368 print_one_breakpoint (b, &dummy_loc, 0);
6369 }
6370
6371 /* Return true if this breakpoint was set by the user, false if it is
6372 internal or momentary. */
6373
6374 int
6375 user_breakpoint_p (struct breakpoint *b)
6376 {
6377 return b->number > 0;
6378 }
6379
6380 /* See breakpoint.h. */
6381
6382 int
6383 pending_breakpoint_p (struct breakpoint *b)
6384 {
6385 return b->loc == NULL;
6386 }
6387
6388 /* Print information on breakpoints (including watchpoints and tracepoints).
6389
6390 If non-NULL, BP_NUM_LIST is a list of numbers and number ranges as
6391 understood by number_or_range_parser. Only breakpoints included in this
6392 list are then printed.
6393
6394 If SHOW_INTERNAL is true, print internal breakpoints.
6395
6396 If FILTER is non-NULL, call it on each breakpoint and only include the
6397 ones for which it returns true.
6398
6399 Return the total number of breakpoints listed. */
6400
6401 static int
6402 breakpoint_1 (const char *bp_num_list, bool show_internal,
6403 bool (*filter) (const struct breakpoint *))
6404 {
6405 struct breakpoint *b;
6406 struct bp_location *last_loc = NULL;
6407 int nr_printable_breakpoints;
6408 struct value_print_options opts;
6409 int print_address_bits = 0;
6410 int print_type_col_width = 14;
6411 struct ui_out *uiout = current_uiout;
6412
6413 get_user_print_options (&opts);
6414
6415 /* Compute the number of rows in the table, as well as the size
6416 required for address fields. */
6417 nr_printable_breakpoints = 0;
6418 ALL_BREAKPOINTS (b)
6419 {
6420 /* If we have a filter, only list the breakpoints it accepts. */
6421 if (filter && !filter (b))
6422 continue;
6423
6424 /* If we have a BP_NUM_LIST string, it is a list of breakpoints to
6425 accept. Skip the others. */
6426 if (bp_num_list != NULL && *bp_num_list != '\0')
6427 {
6428 if (show_internal && parse_and_eval_long (bp_num_list) != b->number)
6429 continue;
6430 if (!show_internal && !number_is_in_list (bp_num_list, b->number))
6431 continue;
6432 }
6433
6434 if (show_internal || user_breakpoint_p (b))
6435 {
6436 int addr_bit, type_len;
6437
6438 addr_bit = breakpoint_address_bits (b);
6439 if (addr_bit > print_address_bits)
6440 print_address_bits = addr_bit;
6441
6442 type_len = strlen (bptype_string (b->type));
6443 if (type_len > print_type_col_width)
6444 print_type_col_width = type_len;
6445
6446 nr_printable_breakpoints++;
6447 }
6448 }
6449
6450 {
6451 ui_out_emit_table table_emitter (uiout,
6452 opts.addressprint ? 6 : 5,
6453 nr_printable_breakpoints,
6454 "BreakpointTable");
6455
6456 if (nr_printable_breakpoints > 0)
6457 annotate_breakpoints_headers ();
6458 if (nr_printable_breakpoints > 0)
6459 annotate_field (0);
6460 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6461 if (nr_printable_breakpoints > 0)
6462 annotate_field (1);
6463 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6464 if (nr_printable_breakpoints > 0)
6465 annotate_field (2);
6466 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6467 if (nr_printable_breakpoints > 0)
6468 annotate_field (3);
6469 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6470 if (opts.addressprint)
6471 {
6472 if (nr_printable_breakpoints > 0)
6473 annotate_field (4);
6474 if (print_address_bits <= 32)
6475 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6476 else
6477 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6478 }
6479 if (nr_printable_breakpoints > 0)
6480 annotate_field (5);
6481 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6482 uiout->table_body ();
6483 if (nr_printable_breakpoints > 0)
6484 annotate_breakpoints_table ();
6485
6486 ALL_BREAKPOINTS (b)
6487 {
6488 QUIT;
6489 /* If we have a filter, only list the breakpoints it accepts. */
6490 if (filter && !filter (b))
6491 continue;
6492
6493 /* If we have a BP_NUM_LIST string, it is a list of breakpoints to
6494 accept. Skip the others. */
6495
6496 if (bp_num_list != NULL && *bp_num_list != '\0')
6497 {
6498 if (show_internal) /* maintenance info breakpoint */
6499 {
6500 if (parse_and_eval_long (bp_num_list) != b->number)
6501 continue;
6502 }
6503 else /* all others */
6504 {
6505 if (!number_is_in_list (bp_num_list, b->number))
6506 continue;
6507 }
6508 }
6509 /* We only print out user settable breakpoints unless the
6510 show_internal is set. */
6511 if (show_internal || user_breakpoint_p (b))
6512 print_one_breakpoint (b, &last_loc, show_internal);
6513 }
6514 }
6515
6516 if (nr_printable_breakpoints == 0)
6517 {
6518 /* If there's a filter, let the caller decide how to report
6519 empty list. */
6520 if (!filter)
6521 {
6522 if (bp_num_list == NULL || *bp_num_list == '\0')
6523 uiout->message ("No breakpoints or watchpoints.\n");
6524 else
6525 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6526 bp_num_list);
6527 }
6528 }
6529 else
6530 {
6531 if (last_loc && !server_command)
6532 set_next_address (last_loc->gdbarch, last_loc->address);
6533 }
6534
6535 /* FIXME? Should this be moved up so that it is only called when
6536 there have been breakpoints? */
6537 annotate_breakpoints_table_end ();
6538
6539 return nr_printable_breakpoints;
6540 }
6541
6542 /* Display the value of default-collect in a way that is generally
6543 compatible with the breakpoint list. */
6544
6545 static void
6546 default_collect_info (void)
6547 {
6548 struct ui_out *uiout = current_uiout;
6549
6550 /* If it has no value (which is frequently the case), say nothing; a
6551 message like "No default-collect." gets in user's face when it's
6552 not wanted. */
6553 if (!*default_collect)
6554 return;
6555
6556 /* The following phrase lines up nicely with per-tracepoint collect
6557 actions. */
6558 uiout->text ("default collect ");
6559 uiout->field_string ("default-collect", default_collect);
6560 uiout->text (" \n");
6561 }
6562
6563 static void
6564 info_breakpoints_command (const char *args, int from_tty)
6565 {
6566 breakpoint_1 (args, false, NULL);
6567
6568 default_collect_info ();
6569 }
6570
6571 static void
6572 info_watchpoints_command (const char *args, int from_tty)
6573 {
6574 int num_printed = breakpoint_1 (args, false, is_watchpoint);
6575 struct ui_out *uiout = current_uiout;
6576
6577 if (num_printed == 0)
6578 {
6579 if (args == NULL || *args == '\0')
6580 uiout->message ("No watchpoints.\n");
6581 else
6582 uiout->message ("No watchpoint matching '%s'.\n", args);
6583 }
6584 }
6585
6586 static void
6587 maintenance_info_breakpoints (const char *args, int from_tty)
6588 {
6589 breakpoint_1 (args, true, NULL);
6590
6591 default_collect_info ();
6592 }
6593
6594 static int
6595 breakpoint_has_pc (struct breakpoint *b,
6596 struct program_space *pspace,
6597 CORE_ADDR pc, struct obj_section *section)
6598 {
6599 struct bp_location *bl = b->loc;
6600
6601 for (; bl; bl = bl->next)
6602 {
6603 if (bl->pspace == pspace
6604 && bl->address == pc
6605 && (!overlay_debugging || bl->section == section))
6606 return 1;
6607 }
6608 return 0;
6609 }
6610
6611 /* Print a message describing any user-breakpoints set at PC. This
6612 concerns with logical breakpoints, so we match program spaces, not
6613 address spaces. */
6614
6615 static void
6616 describe_other_breakpoints (struct gdbarch *gdbarch,
6617 struct program_space *pspace, CORE_ADDR pc,
6618 struct obj_section *section, int thread)
6619 {
6620 int others = 0;
6621 struct breakpoint *b;
6622
6623 ALL_BREAKPOINTS (b)
6624 others += (user_breakpoint_p (b)
6625 && breakpoint_has_pc (b, pspace, pc, section));
6626 if (others > 0)
6627 {
6628 if (others == 1)
6629 printf_filtered (_("Note: breakpoint "));
6630 else /* if (others == ???) */
6631 printf_filtered (_("Note: breakpoints "));
6632 ALL_BREAKPOINTS (b)
6633 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6634 {
6635 others--;
6636 printf_filtered ("%d", b->number);
6637 if (b->thread == -1 && thread != -1)
6638 printf_filtered (" (all threads)");
6639 else if (b->thread != -1)
6640 printf_filtered (" (thread %d)", b->thread);
6641 printf_filtered ("%s%s ",
6642 ((b->enable_state == bp_disabled
6643 || b->enable_state == bp_call_disabled)
6644 ? " (disabled)"
6645 : ""),
6646 (others > 1) ? ","
6647 : ((others == 1) ? " and" : ""));
6648 }
6649 current_uiout->message (_("also set at pc %ps.\n"),
6650 styled_string (address_style.style (),
6651 paddress (gdbarch, pc)));
6652 }
6653 }
6654 \f
6655
6656 /* Return true iff it is meaningful to use the address member of LOC.
6657 For some breakpoint types, the locations' address members are
6658 irrelevant and it makes no sense to attempt to compare them to
6659 other addresses (or use them for any other purpose either).
6660
6661 More specifically, software watchpoints and catchpoints that are
6662 not backed by breakpoints always have a zero valued location
6663 address and we don't want to mark breakpoints of any of these types
6664 to be a duplicate of an actual breakpoint location at address
6665 zero. */
6666
6667 static bool
6668 bl_address_is_meaningful (bp_location *loc)
6669 {
6670 return loc->loc_type != bp_loc_other;
6671 }
6672
6673 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6674 true if LOC1 and LOC2 represent the same watchpoint location. */
6675
6676 static int
6677 watchpoint_locations_match (struct bp_location *loc1,
6678 struct bp_location *loc2)
6679 {
6680 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6681 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6682
6683 /* Both of them must exist. */
6684 gdb_assert (w1 != NULL);
6685 gdb_assert (w2 != NULL);
6686
6687 /* If the target can evaluate the condition expression in hardware,
6688 then we we need to insert both watchpoints even if they are at
6689 the same place. Otherwise the watchpoint will only trigger when
6690 the condition of whichever watchpoint was inserted evaluates to
6691 true, not giving a chance for GDB to check the condition of the
6692 other watchpoint. */
6693 if ((w1->cond_exp
6694 && target_can_accel_watchpoint_condition (loc1->address,
6695 loc1->length,
6696 loc1->watchpoint_type,
6697 w1->cond_exp.get ()))
6698 || (w2->cond_exp
6699 && target_can_accel_watchpoint_condition (loc2->address,
6700 loc2->length,
6701 loc2->watchpoint_type,
6702 w2->cond_exp.get ())))
6703 return 0;
6704
6705 /* Note that this checks the owner's type, not the location's. In
6706 case the target does not support read watchpoints, but does
6707 support access watchpoints, we'll have bp_read_watchpoint
6708 watchpoints with hw_access locations. Those should be considered
6709 duplicates of hw_read locations. The hw_read locations will
6710 become hw_access locations later. */
6711 return (loc1->owner->type == loc2->owner->type
6712 && loc1->pspace->aspace == loc2->pspace->aspace
6713 && loc1->address == loc2->address
6714 && loc1->length == loc2->length);
6715 }
6716
6717 /* See breakpoint.h. */
6718
6719 int
6720 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6721 const address_space *aspace2, CORE_ADDR addr2)
6722 {
6723 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6724 || aspace1 == aspace2)
6725 && addr1 == addr2);
6726 }
6727
6728 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6729 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6730 matches ASPACE2. On targets that have global breakpoints, the address
6731 space doesn't really matter. */
6732
6733 static int
6734 breakpoint_address_match_range (const address_space *aspace1,
6735 CORE_ADDR addr1,
6736 int len1, const address_space *aspace2,
6737 CORE_ADDR addr2)
6738 {
6739 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6740 || aspace1 == aspace2)
6741 && addr2 >= addr1 && addr2 < addr1 + len1);
6742 }
6743
6744 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6745 a ranged breakpoint. In most targets, a match happens only if ASPACE
6746 matches the breakpoint's address space. On targets that have global
6747 breakpoints, the address space doesn't really matter. */
6748
6749 static int
6750 breakpoint_location_address_match (struct bp_location *bl,
6751 const address_space *aspace,
6752 CORE_ADDR addr)
6753 {
6754 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6755 aspace, addr)
6756 || (bl->length
6757 && breakpoint_address_match_range (bl->pspace->aspace,
6758 bl->address, bl->length,
6759 aspace, addr)));
6760 }
6761
6762 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6763 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6764 match happens only if ASPACE matches the breakpoint's address
6765 space. On targets that have global breakpoints, the address space
6766 doesn't really matter. */
6767
6768 static int
6769 breakpoint_location_address_range_overlap (struct bp_location *bl,
6770 const address_space *aspace,
6771 CORE_ADDR addr, int len)
6772 {
6773 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6774 || bl->pspace->aspace == aspace)
6775 {
6776 int bl_len = bl->length != 0 ? bl->length : 1;
6777
6778 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6779 return 1;
6780 }
6781 return 0;
6782 }
6783
6784 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6785 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6786 true, otherwise returns false. */
6787
6788 static int
6789 tracepoint_locations_match (struct bp_location *loc1,
6790 struct bp_location *loc2)
6791 {
6792 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6793 /* Since tracepoint locations are never duplicated with others', tracepoint
6794 locations at the same address of different tracepoints are regarded as
6795 different locations. */
6796 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6797 else
6798 return 0;
6799 }
6800
6801 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6802 (bl_address_is_meaningful), returns true if LOC1 and LOC2 represent
6803 the same location. If SW_HW_BPS_MATCH is true, then software
6804 breakpoint locations and hardware breakpoint locations match,
6805 otherwise they don't. */
6806
6807 static int
6808 breakpoint_locations_match (struct bp_location *loc1,
6809 struct bp_location *loc2,
6810 bool sw_hw_bps_match)
6811 {
6812 int hw_point1, hw_point2;
6813
6814 /* Both of them must not be in moribund_locations. */
6815 gdb_assert (loc1->owner != NULL);
6816 gdb_assert (loc2->owner != NULL);
6817
6818 hw_point1 = is_hardware_watchpoint (loc1->owner);
6819 hw_point2 = is_hardware_watchpoint (loc2->owner);
6820
6821 if (hw_point1 != hw_point2)
6822 return 0;
6823 else if (hw_point1)
6824 return watchpoint_locations_match (loc1, loc2);
6825 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6826 return tracepoint_locations_match (loc1, loc2);
6827 else
6828 /* We compare bp_location.length in order to cover ranged
6829 breakpoints. Keep this in sync with
6830 bp_location_is_less_than. */
6831 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6832 loc2->pspace->aspace, loc2->address)
6833 && (loc1->loc_type == loc2->loc_type || sw_hw_bps_match)
6834 && loc1->length == loc2->length);
6835 }
6836
6837 static void
6838 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6839 int bnum, int have_bnum)
6840 {
6841 /* The longest string possibly returned by hex_string_custom
6842 is 50 chars. These must be at least that big for safety. */
6843 char astr1[64];
6844 char astr2[64];
6845
6846 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6847 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6848 if (have_bnum)
6849 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6850 bnum, astr1, astr2);
6851 else
6852 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6853 }
6854
6855 /* Adjust a breakpoint's address to account for architectural
6856 constraints on breakpoint placement. Return the adjusted address.
6857 Note: Very few targets require this kind of adjustment. For most
6858 targets, this function is simply the identity function. */
6859
6860 static CORE_ADDR
6861 adjust_breakpoint_address (struct gdbarch *gdbarch,
6862 CORE_ADDR bpaddr, enum bptype bptype)
6863 {
6864 if (bptype == bp_watchpoint
6865 || bptype == bp_hardware_watchpoint
6866 || bptype == bp_read_watchpoint
6867 || bptype == bp_access_watchpoint
6868 || bptype == bp_catchpoint)
6869 {
6870 /* Watchpoints and the various bp_catch_* eventpoints should not
6871 have their addresses modified. */
6872 return bpaddr;
6873 }
6874 else if (bptype == bp_single_step)
6875 {
6876 /* Single-step breakpoints should not have their addresses
6877 modified. If there's any architectural constrain that
6878 applies to this address, then it should have already been
6879 taken into account when the breakpoint was created in the
6880 first place. If we didn't do this, stepping through e.g.,
6881 Thumb-2 IT blocks would break. */
6882 return bpaddr;
6883 }
6884 else
6885 {
6886 CORE_ADDR adjusted_bpaddr = bpaddr;
6887
6888 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6889 {
6890 /* Some targets have architectural constraints on the placement
6891 of breakpoint instructions. Obtain the adjusted address. */
6892 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6893 }
6894
6895 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6896
6897 /* An adjusted breakpoint address can significantly alter
6898 a user's expectations. Print a warning if an adjustment
6899 is required. */
6900 if (adjusted_bpaddr != bpaddr)
6901 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6902
6903 return adjusted_bpaddr;
6904 }
6905 }
6906
6907 static bp_loc_type
6908 bp_location_from_bp_type (bptype type)
6909 {
6910 switch (type)
6911 {
6912 case bp_breakpoint:
6913 case bp_single_step:
6914 case bp_until:
6915 case bp_finish:
6916 case bp_longjmp:
6917 case bp_longjmp_resume:
6918 case bp_longjmp_call_dummy:
6919 case bp_exception:
6920 case bp_exception_resume:
6921 case bp_step_resume:
6922 case bp_hp_step_resume:
6923 case bp_watchpoint_scope:
6924 case bp_call_dummy:
6925 case bp_std_terminate:
6926 case bp_shlib_event:
6927 case bp_thread_event:
6928 case bp_overlay_event:
6929 case bp_jit_event:
6930 case bp_longjmp_master:
6931 case bp_std_terminate_master:
6932 case bp_exception_master:
6933 case bp_gnu_ifunc_resolver:
6934 case bp_gnu_ifunc_resolver_return:
6935 case bp_dprintf:
6936 return bp_loc_software_breakpoint;
6937 case bp_hardware_breakpoint:
6938 return bp_loc_hardware_breakpoint;
6939 case bp_hardware_watchpoint:
6940 case bp_read_watchpoint:
6941 case bp_access_watchpoint:
6942 return bp_loc_hardware_watchpoint;
6943 case bp_watchpoint:
6944 case bp_catchpoint:
6945 case bp_tracepoint:
6946 case bp_fast_tracepoint:
6947 case bp_static_tracepoint:
6948 return bp_loc_other;
6949 default:
6950 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
6951 }
6952 }
6953
6954 bp_location::bp_location (breakpoint *owner, bp_loc_type type)
6955 {
6956 this->owner = owner;
6957 this->cond_bytecode = NULL;
6958 this->shlib_disabled = 0;
6959 this->enabled = 1;
6960
6961 this->loc_type = type;
6962
6963 if (this->loc_type == bp_loc_software_breakpoint
6964 || this->loc_type == bp_loc_hardware_breakpoint)
6965 mark_breakpoint_location_modified (this);
6966
6967 this->refc = 1;
6968 }
6969
6970 bp_location::bp_location (breakpoint *owner)
6971 : bp_location::bp_location (owner,
6972 bp_location_from_bp_type (owner->type))
6973 {
6974 }
6975
6976 /* Allocate a struct bp_location. */
6977
6978 static struct bp_location *
6979 allocate_bp_location (struct breakpoint *bpt)
6980 {
6981 return bpt->ops->allocate_location (bpt);
6982 }
6983
6984 static void
6985 free_bp_location (struct bp_location *loc)
6986 {
6987 delete loc;
6988 }
6989
6990 /* Increment reference count. */
6991
6992 static void
6993 incref_bp_location (struct bp_location *bl)
6994 {
6995 ++bl->refc;
6996 }
6997
6998 /* Decrement reference count. If the reference count reaches 0,
6999 destroy the bp_location. Sets *BLP to NULL. */
7000
7001 static void
7002 decref_bp_location (struct bp_location **blp)
7003 {
7004 gdb_assert ((*blp)->refc > 0);
7005
7006 if (--(*blp)->refc == 0)
7007 free_bp_location (*blp);
7008 *blp = NULL;
7009 }
7010
7011 /* Add breakpoint B at the end of the global breakpoint chain. */
7012
7013 static breakpoint *
7014 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7015 {
7016 struct breakpoint *b1;
7017 struct breakpoint *result = b.get ();
7018
7019 /* Add this breakpoint to the end of the chain so that a list of
7020 breakpoints will come out in order of increasing numbers. */
7021
7022 b1 = breakpoint_chain;
7023 if (b1 == 0)
7024 breakpoint_chain = b.release ();
7025 else
7026 {
7027 while (b1->next)
7028 b1 = b1->next;
7029 b1->next = b.release ();
7030 }
7031
7032 return result;
7033 }
7034
7035 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7036
7037 static void
7038 init_raw_breakpoint_without_location (struct breakpoint *b,
7039 struct gdbarch *gdbarch,
7040 enum bptype bptype,
7041 const struct breakpoint_ops *ops)
7042 {
7043 gdb_assert (ops != NULL);
7044
7045 b->ops = ops;
7046 b->type = bptype;
7047 b->gdbarch = gdbarch;
7048 b->language = current_language->la_language;
7049 b->input_radix = input_radix;
7050 b->related_breakpoint = b;
7051 }
7052
7053 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7054 that has type BPTYPE and has no locations as yet. */
7055
7056 static struct breakpoint *
7057 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7058 enum bptype bptype,
7059 const struct breakpoint_ops *ops)
7060 {
7061 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7062
7063 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7064 return add_to_breakpoint_chain (std::move (b));
7065 }
7066
7067 /* Initialize loc->function_name. */
7068
7069 static void
7070 set_breakpoint_location_function (struct bp_location *loc)
7071 {
7072 gdb_assert (loc->owner != NULL);
7073
7074 if (loc->owner->type == bp_breakpoint
7075 || loc->owner->type == bp_hardware_breakpoint
7076 || is_tracepoint (loc->owner))
7077 {
7078 const char *function_name;
7079
7080 if (loc->msymbol != NULL
7081 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7082 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc))
7083 {
7084 struct breakpoint *b = loc->owner;
7085
7086 function_name = loc->msymbol->linkage_name ();
7087
7088 if (b->type == bp_breakpoint && b->loc == loc
7089 && loc->next == NULL && b->related_breakpoint == b)
7090 {
7091 /* Create only the whole new breakpoint of this type but do not
7092 mess more complicated breakpoints with multiple locations. */
7093 b->type = bp_gnu_ifunc_resolver;
7094 /* Remember the resolver's address for use by the return
7095 breakpoint. */
7096 loc->related_address = loc->address;
7097 }
7098 }
7099 else
7100 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7101
7102 if (function_name)
7103 loc->function_name = xstrdup (function_name);
7104 }
7105 }
7106
7107 /* Attempt to determine architecture of location identified by SAL. */
7108 struct gdbarch *
7109 get_sal_arch (struct symtab_and_line sal)
7110 {
7111 if (sal.section)
7112 return sal.section->objfile->arch ();
7113 if (sal.symtab)
7114 return SYMTAB_OBJFILE (sal.symtab)->arch ();
7115
7116 return NULL;
7117 }
7118
7119 /* Low level routine for partially initializing a breakpoint of type
7120 BPTYPE. The newly created breakpoint's address, section, source
7121 file name, and line number are provided by SAL.
7122
7123 It is expected that the caller will complete the initialization of
7124 the newly created breakpoint struct as well as output any status
7125 information regarding the creation of a new breakpoint. */
7126
7127 static void
7128 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7129 struct symtab_and_line sal, enum bptype bptype,
7130 const struct breakpoint_ops *ops)
7131 {
7132 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7133
7134 add_location_to_breakpoint (b, &sal);
7135
7136 if (bptype != bp_catchpoint)
7137 gdb_assert (sal.pspace != NULL);
7138
7139 /* Store the program space that was used to set the breakpoint,
7140 except for ordinary breakpoints, which are independent of the
7141 program space. */
7142 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7143 b->pspace = sal.pspace;
7144 }
7145
7146 /* set_raw_breakpoint is a low level routine for allocating and
7147 partially initializing a breakpoint of type BPTYPE. The newly
7148 created breakpoint's address, section, source file name, and line
7149 number are provided by SAL. The newly created and partially
7150 initialized breakpoint is added to the breakpoint chain and
7151 is also returned as the value of this function.
7152
7153 It is expected that the caller will complete the initialization of
7154 the newly created breakpoint struct as well as output any status
7155 information regarding the creation of a new breakpoint. In
7156 particular, set_raw_breakpoint does NOT set the breakpoint
7157 number! Care should be taken to not allow an error to occur
7158 prior to completing the initialization of the breakpoint. If this
7159 should happen, a bogus breakpoint will be left on the chain. */
7160
7161 struct breakpoint *
7162 set_raw_breakpoint (struct gdbarch *gdbarch,
7163 struct symtab_and_line sal, enum bptype bptype,
7164 const struct breakpoint_ops *ops)
7165 {
7166 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7167
7168 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7169 return add_to_breakpoint_chain (std::move (b));
7170 }
7171
7172 /* Call this routine when stepping and nexting to enable a breakpoint
7173 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7174 initiated the operation. */
7175
7176 void
7177 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7178 {
7179 struct breakpoint *b, *b_tmp;
7180 int thread = tp->global_num;
7181
7182 /* To avoid having to rescan all objfile symbols at every step,
7183 we maintain a list of continually-inserted but always disabled
7184 longjmp "master" breakpoints. Here, we simply create momentary
7185 clones of those and enable them for the requested thread. */
7186 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7187 if (b->pspace == current_program_space
7188 && (b->type == bp_longjmp_master
7189 || b->type == bp_exception_master))
7190 {
7191 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7192 struct breakpoint *clone;
7193
7194 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7195 after their removal. */
7196 clone = momentary_breakpoint_from_master (b, type,
7197 &momentary_breakpoint_ops, 1);
7198 clone->thread = thread;
7199 }
7200
7201 tp->initiating_frame = frame;
7202 }
7203
7204 /* Delete all longjmp breakpoints from THREAD. */
7205 void
7206 delete_longjmp_breakpoint (int thread)
7207 {
7208 struct breakpoint *b, *b_tmp;
7209
7210 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7211 if (b->type == bp_longjmp || b->type == bp_exception)
7212 {
7213 if (b->thread == thread)
7214 delete_breakpoint (b);
7215 }
7216 }
7217
7218 void
7219 delete_longjmp_breakpoint_at_next_stop (int thread)
7220 {
7221 struct breakpoint *b, *b_tmp;
7222
7223 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7224 if (b->type == bp_longjmp || b->type == bp_exception)
7225 {
7226 if (b->thread == thread)
7227 b->disposition = disp_del_at_next_stop;
7228 }
7229 }
7230
7231 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7232 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7233 pointer to any of them. Return NULL if this system cannot place longjmp
7234 breakpoints. */
7235
7236 struct breakpoint *
7237 set_longjmp_breakpoint_for_call_dummy (void)
7238 {
7239 struct breakpoint *b, *retval = NULL;
7240
7241 ALL_BREAKPOINTS (b)
7242 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7243 {
7244 struct breakpoint *new_b;
7245
7246 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7247 &momentary_breakpoint_ops,
7248 1);
7249 new_b->thread = inferior_thread ()->global_num;
7250
7251 /* Link NEW_B into the chain of RETVAL breakpoints. */
7252
7253 gdb_assert (new_b->related_breakpoint == new_b);
7254 if (retval == NULL)
7255 retval = new_b;
7256 new_b->related_breakpoint = retval;
7257 while (retval->related_breakpoint != new_b->related_breakpoint)
7258 retval = retval->related_breakpoint;
7259 retval->related_breakpoint = new_b;
7260 }
7261
7262 return retval;
7263 }
7264
7265 /* Verify all existing dummy frames and their associated breakpoints for
7266 TP. Remove those which can no longer be found in the current frame
7267 stack.
7268
7269 You should call this function only at places where it is safe to currently
7270 unwind the whole stack. Failed stack unwind would discard live dummy
7271 frames. */
7272
7273 void
7274 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7275 {
7276 struct breakpoint *b, *b_tmp;
7277
7278 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7279 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7280 {
7281 struct breakpoint *dummy_b = b->related_breakpoint;
7282
7283 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7284 dummy_b = dummy_b->related_breakpoint;
7285 if (dummy_b->type != bp_call_dummy
7286 || frame_find_by_id (dummy_b->frame_id) != NULL)
7287 continue;
7288
7289 dummy_frame_discard (dummy_b->frame_id, tp);
7290
7291 while (b->related_breakpoint != b)
7292 {
7293 if (b_tmp == b->related_breakpoint)
7294 b_tmp = b->related_breakpoint->next;
7295 delete_breakpoint (b->related_breakpoint);
7296 }
7297 delete_breakpoint (b);
7298 }
7299 }
7300
7301 void
7302 enable_overlay_breakpoints (void)
7303 {
7304 struct breakpoint *b;
7305
7306 ALL_BREAKPOINTS (b)
7307 if (b->type == bp_overlay_event)
7308 {
7309 b->enable_state = bp_enabled;
7310 update_global_location_list (UGLL_MAY_INSERT);
7311 overlay_events_enabled = 1;
7312 }
7313 }
7314
7315 void
7316 disable_overlay_breakpoints (void)
7317 {
7318 struct breakpoint *b;
7319
7320 ALL_BREAKPOINTS (b)
7321 if (b->type == bp_overlay_event)
7322 {
7323 b->enable_state = bp_disabled;
7324 update_global_location_list (UGLL_DONT_INSERT);
7325 overlay_events_enabled = 0;
7326 }
7327 }
7328
7329 /* Set an active std::terminate breakpoint for each std::terminate
7330 master breakpoint. */
7331 void
7332 set_std_terminate_breakpoint (void)
7333 {
7334 struct breakpoint *b, *b_tmp;
7335
7336 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7337 if (b->pspace == current_program_space
7338 && b->type == bp_std_terminate_master)
7339 {
7340 momentary_breakpoint_from_master (b, bp_std_terminate,
7341 &momentary_breakpoint_ops, 1);
7342 }
7343 }
7344
7345 /* Delete all the std::terminate breakpoints. */
7346 void
7347 delete_std_terminate_breakpoint (void)
7348 {
7349 struct breakpoint *b, *b_tmp;
7350
7351 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7352 if (b->type == bp_std_terminate)
7353 delete_breakpoint (b);
7354 }
7355
7356 struct breakpoint *
7357 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7358 {
7359 struct breakpoint *b;
7360
7361 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7362 &internal_breakpoint_ops);
7363
7364 b->enable_state = bp_enabled;
7365 /* location has to be used or breakpoint_re_set will delete me. */
7366 b->location = new_address_location (b->loc->address, NULL, 0);
7367
7368 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7369
7370 return b;
7371 }
7372
7373 struct lang_and_radix
7374 {
7375 enum language lang;
7376 int radix;
7377 };
7378
7379 /* Create a breakpoint for JIT code registration and unregistration. */
7380
7381 struct breakpoint *
7382 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7383 {
7384 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7385 &internal_breakpoint_ops);
7386 }
7387
7388 /* Remove JIT code registration and unregistration breakpoint(s). */
7389
7390 void
7391 remove_jit_event_breakpoints (void)
7392 {
7393 struct breakpoint *b, *b_tmp;
7394
7395 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7396 if (b->type == bp_jit_event
7397 && b->loc->pspace == current_program_space)
7398 delete_breakpoint (b);
7399 }
7400
7401 void
7402 remove_solib_event_breakpoints (void)
7403 {
7404 struct breakpoint *b, *b_tmp;
7405
7406 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7407 if (b->type == bp_shlib_event
7408 && b->loc->pspace == current_program_space)
7409 delete_breakpoint (b);
7410 }
7411
7412 /* See breakpoint.h. */
7413
7414 void
7415 remove_solib_event_breakpoints_at_next_stop (void)
7416 {
7417 struct breakpoint *b, *b_tmp;
7418
7419 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7420 if (b->type == bp_shlib_event
7421 && b->loc->pspace == current_program_space)
7422 b->disposition = disp_del_at_next_stop;
7423 }
7424
7425 /* Helper for create_solib_event_breakpoint /
7426 create_and_insert_solib_event_breakpoint. Allows specifying which
7427 INSERT_MODE to pass through to update_global_location_list. */
7428
7429 static struct breakpoint *
7430 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7431 enum ugll_insert_mode insert_mode)
7432 {
7433 struct breakpoint *b;
7434
7435 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7436 &internal_breakpoint_ops);
7437 update_global_location_list_nothrow (insert_mode);
7438 return b;
7439 }
7440
7441 struct breakpoint *
7442 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7443 {
7444 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7445 }
7446
7447 /* See breakpoint.h. */
7448
7449 struct breakpoint *
7450 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7451 {
7452 struct breakpoint *b;
7453
7454 /* Explicitly tell update_global_location_list to insert
7455 locations. */
7456 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7457 if (!b->loc->inserted)
7458 {
7459 delete_breakpoint (b);
7460 return NULL;
7461 }
7462 return b;
7463 }
7464
7465 /* Disable any breakpoints that are on code in shared libraries. Only
7466 apply to enabled breakpoints, disabled ones can just stay disabled. */
7467
7468 void
7469 disable_breakpoints_in_shlibs (void)
7470 {
7471 struct bp_location *loc, **locp_tmp;
7472
7473 ALL_BP_LOCATIONS (loc, locp_tmp)
7474 {
7475 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7476 struct breakpoint *b = loc->owner;
7477
7478 /* We apply the check to all breakpoints, including disabled for
7479 those with loc->duplicate set. This is so that when breakpoint
7480 becomes enabled, or the duplicate is removed, gdb will try to
7481 insert all breakpoints. If we don't set shlib_disabled here,
7482 we'll try to insert those breakpoints and fail. */
7483 if (((b->type == bp_breakpoint)
7484 || (b->type == bp_jit_event)
7485 || (b->type == bp_hardware_breakpoint)
7486 || (is_tracepoint (b)))
7487 && loc->pspace == current_program_space
7488 && !loc->shlib_disabled
7489 && solib_name_from_address (loc->pspace, loc->address)
7490 )
7491 {
7492 loc->shlib_disabled = 1;
7493 }
7494 }
7495 }
7496
7497 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7498 notification of unloaded_shlib. Only apply to enabled breakpoints,
7499 disabled ones can just stay disabled. */
7500
7501 static void
7502 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7503 {
7504 struct bp_location *loc, **locp_tmp;
7505 int disabled_shlib_breaks = 0;
7506
7507 ALL_BP_LOCATIONS (loc, locp_tmp)
7508 {
7509 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7510 struct breakpoint *b = loc->owner;
7511
7512 if (solib->pspace == loc->pspace
7513 && !loc->shlib_disabled
7514 && (((b->type == bp_breakpoint
7515 || b->type == bp_jit_event
7516 || b->type == bp_hardware_breakpoint)
7517 && (loc->loc_type == bp_loc_hardware_breakpoint
7518 || loc->loc_type == bp_loc_software_breakpoint))
7519 || is_tracepoint (b))
7520 && solib_contains_address_p (solib, loc->address))
7521 {
7522 loc->shlib_disabled = 1;
7523 /* At this point, we cannot rely on remove_breakpoint
7524 succeeding so we must mark the breakpoint as not inserted
7525 to prevent future errors occurring in remove_breakpoints. */
7526 loc->inserted = 0;
7527
7528 /* This may cause duplicate notifications for the same breakpoint. */
7529 gdb::observers::breakpoint_modified.notify (b);
7530
7531 if (!disabled_shlib_breaks)
7532 {
7533 target_terminal::ours_for_output ();
7534 warning (_("Temporarily disabling breakpoints "
7535 "for unloaded shared library \"%s\""),
7536 solib->so_name);
7537 }
7538 disabled_shlib_breaks = 1;
7539 }
7540 }
7541 }
7542
7543 /* Disable any breakpoints and tracepoints in OBJFILE upon
7544 notification of free_objfile. Only apply to enabled breakpoints,
7545 disabled ones can just stay disabled. */
7546
7547 static void
7548 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7549 {
7550 struct breakpoint *b;
7551
7552 if (objfile == NULL)
7553 return;
7554
7555 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7556 managed by the user with add-symbol-file/remove-symbol-file.
7557 Similarly to how breakpoints in shared libraries are handled in
7558 response to "nosharedlibrary", mark breakpoints in such modules
7559 shlib_disabled so they end up uninserted on the next global
7560 location list update. Shared libraries not loaded by the user
7561 aren't handled here -- they're already handled in
7562 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7563 solib_unloaded observer. We skip objfiles that are not
7564 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7565 main objfile). */
7566 if ((objfile->flags & OBJF_SHARED) == 0
7567 || (objfile->flags & OBJF_USERLOADED) == 0)
7568 return;
7569
7570 ALL_BREAKPOINTS (b)
7571 {
7572 struct bp_location *loc;
7573 int bp_modified = 0;
7574
7575 if (!is_breakpoint (b) && !is_tracepoint (b))
7576 continue;
7577
7578 for (loc = b->loc; loc != NULL; loc = loc->next)
7579 {
7580 CORE_ADDR loc_addr = loc->address;
7581
7582 if (loc->loc_type != bp_loc_hardware_breakpoint
7583 && loc->loc_type != bp_loc_software_breakpoint)
7584 continue;
7585
7586 if (loc->shlib_disabled != 0)
7587 continue;
7588
7589 if (objfile->pspace != loc->pspace)
7590 continue;
7591
7592 if (loc->loc_type != bp_loc_hardware_breakpoint
7593 && loc->loc_type != bp_loc_software_breakpoint)
7594 continue;
7595
7596 if (is_addr_in_objfile (loc_addr, objfile))
7597 {
7598 loc->shlib_disabled = 1;
7599 /* At this point, we don't know whether the object was
7600 unmapped from the inferior or not, so leave the
7601 inserted flag alone. We'll handle failure to
7602 uninsert quietly, in case the object was indeed
7603 unmapped. */
7604
7605 mark_breakpoint_location_modified (loc);
7606
7607 bp_modified = 1;
7608 }
7609 }
7610
7611 if (bp_modified)
7612 gdb::observers::breakpoint_modified.notify (b);
7613 }
7614 }
7615
7616 /* FORK & VFORK catchpoints. */
7617
7618 /* An instance of this type is used to represent a fork or vfork
7619 catchpoint. A breakpoint is really of this type iff its ops pointer points
7620 to CATCH_FORK_BREAKPOINT_OPS. */
7621
7622 struct fork_catchpoint : public breakpoint
7623 {
7624 /* Process id of a child process whose forking triggered this
7625 catchpoint. This field is only valid immediately after this
7626 catchpoint has triggered. */
7627 ptid_t forked_inferior_pid;
7628 };
7629
7630 /* Implement the "insert" breakpoint_ops method for fork
7631 catchpoints. */
7632
7633 static int
7634 insert_catch_fork (struct bp_location *bl)
7635 {
7636 return target_insert_fork_catchpoint (inferior_ptid.pid ());
7637 }
7638
7639 /* Implement the "remove" breakpoint_ops method for fork
7640 catchpoints. */
7641
7642 static int
7643 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7644 {
7645 return target_remove_fork_catchpoint (inferior_ptid.pid ());
7646 }
7647
7648 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7649 catchpoints. */
7650
7651 static int
7652 breakpoint_hit_catch_fork (const struct bp_location *bl,
7653 const address_space *aspace, CORE_ADDR bp_addr,
7654 const struct target_waitstatus *ws)
7655 {
7656 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7657
7658 if (ws->kind != TARGET_WAITKIND_FORKED)
7659 return 0;
7660
7661 c->forked_inferior_pid = ws->value.related_pid;
7662 return 1;
7663 }
7664
7665 /* Implement the "print_it" breakpoint_ops method for fork
7666 catchpoints. */
7667
7668 static enum print_stop_action
7669 print_it_catch_fork (bpstat bs)
7670 {
7671 struct ui_out *uiout = current_uiout;
7672 struct breakpoint *b = bs->breakpoint_at;
7673 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7674
7675 annotate_catchpoint (b->number);
7676 maybe_print_thread_hit_breakpoint (uiout);
7677 if (b->disposition == disp_del)
7678 uiout->text ("Temporary catchpoint ");
7679 else
7680 uiout->text ("Catchpoint ");
7681 if (uiout->is_mi_like_p ())
7682 {
7683 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7684 uiout->field_string ("disp", bpdisp_text (b->disposition));
7685 }
7686 uiout->field_signed ("bkptno", b->number);
7687 uiout->text (" (forked process ");
7688 uiout->field_signed ("newpid", c->forked_inferior_pid.pid ());
7689 uiout->text ("), ");
7690 return PRINT_SRC_AND_LOC;
7691 }
7692
7693 /* Implement the "print_one" breakpoint_ops method for fork
7694 catchpoints. */
7695
7696 static void
7697 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7698 {
7699 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7700 struct value_print_options opts;
7701 struct ui_out *uiout = current_uiout;
7702
7703 get_user_print_options (&opts);
7704
7705 /* Field 4, the address, is omitted (which makes the columns not
7706 line up too nicely with the headers, but the effect is relatively
7707 readable). */
7708 if (opts.addressprint)
7709 uiout->field_skip ("addr");
7710 annotate_field (5);
7711 uiout->text ("fork");
7712 if (c->forked_inferior_pid != null_ptid)
7713 {
7714 uiout->text (", process ");
7715 uiout->field_signed ("what", c->forked_inferior_pid.pid ());
7716 uiout->spaces (1);
7717 }
7718
7719 if (uiout->is_mi_like_p ())
7720 uiout->field_string ("catch-type", "fork");
7721 }
7722
7723 /* Implement the "print_mention" breakpoint_ops method for fork
7724 catchpoints. */
7725
7726 static void
7727 print_mention_catch_fork (struct breakpoint *b)
7728 {
7729 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7730 }
7731
7732 /* Implement the "print_recreate" breakpoint_ops method for fork
7733 catchpoints. */
7734
7735 static void
7736 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7737 {
7738 fprintf_unfiltered (fp, "catch fork");
7739 print_recreate_thread (b, fp);
7740 }
7741
7742 /* The breakpoint_ops structure to be used in fork catchpoints. */
7743
7744 static struct breakpoint_ops catch_fork_breakpoint_ops;
7745
7746 /* Implement the "insert" breakpoint_ops method for vfork
7747 catchpoints. */
7748
7749 static int
7750 insert_catch_vfork (struct bp_location *bl)
7751 {
7752 return target_insert_vfork_catchpoint (inferior_ptid.pid ());
7753 }
7754
7755 /* Implement the "remove" breakpoint_ops method for vfork
7756 catchpoints. */
7757
7758 static int
7759 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7760 {
7761 return target_remove_vfork_catchpoint (inferior_ptid.pid ());
7762 }
7763
7764 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7765 catchpoints. */
7766
7767 static int
7768 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7769 const address_space *aspace, CORE_ADDR bp_addr,
7770 const struct target_waitstatus *ws)
7771 {
7772 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7773
7774 if (ws->kind != TARGET_WAITKIND_VFORKED)
7775 return 0;
7776
7777 c->forked_inferior_pid = ws->value.related_pid;
7778 return 1;
7779 }
7780
7781 /* Implement the "print_it" breakpoint_ops method for vfork
7782 catchpoints. */
7783
7784 static enum print_stop_action
7785 print_it_catch_vfork (bpstat bs)
7786 {
7787 struct ui_out *uiout = current_uiout;
7788 struct breakpoint *b = bs->breakpoint_at;
7789 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7790
7791 annotate_catchpoint (b->number);
7792 maybe_print_thread_hit_breakpoint (uiout);
7793 if (b->disposition == disp_del)
7794 uiout->text ("Temporary catchpoint ");
7795 else
7796 uiout->text ("Catchpoint ");
7797 if (uiout->is_mi_like_p ())
7798 {
7799 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7800 uiout->field_string ("disp", bpdisp_text (b->disposition));
7801 }
7802 uiout->field_signed ("bkptno", b->number);
7803 uiout->text (" (vforked process ");
7804 uiout->field_signed ("newpid", c->forked_inferior_pid.pid ());
7805 uiout->text ("), ");
7806 return PRINT_SRC_AND_LOC;
7807 }
7808
7809 /* Implement the "print_one" breakpoint_ops method for vfork
7810 catchpoints. */
7811
7812 static void
7813 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7814 {
7815 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7816 struct value_print_options opts;
7817 struct ui_out *uiout = current_uiout;
7818
7819 get_user_print_options (&opts);
7820 /* Field 4, the address, is omitted (which makes the columns not
7821 line up too nicely with the headers, but the effect is relatively
7822 readable). */
7823 if (opts.addressprint)
7824 uiout->field_skip ("addr");
7825 annotate_field (5);
7826 uiout->text ("vfork");
7827 if (c->forked_inferior_pid != null_ptid)
7828 {
7829 uiout->text (", process ");
7830 uiout->field_signed ("what", c->forked_inferior_pid.pid ());
7831 uiout->spaces (1);
7832 }
7833
7834 if (uiout->is_mi_like_p ())
7835 uiout->field_string ("catch-type", "vfork");
7836 }
7837
7838 /* Implement the "print_mention" breakpoint_ops method for vfork
7839 catchpoints. */
7840
7841 static void
7842 print_mention_catch_vfork (struct breakpoint *b)
7843 {
7844 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7845 }
7846
7847 /* Implement the "print_recreate" breakpoint_ops method for vfork
7848 catchpoints. */
7849
7850 static void
7851 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7852 {
7853 fprintf_unfiltered (fp, "catch vfork");
7854 print_recreate_thread (b, fp);
7855 }
7856
7857 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7858
7859 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7860
7861 /* An instance of this type is used to represent an solib catchpoint.
7862 A breakpoint is really of this type iff its ops pointer points to
7863 CATCH_SOLIB_BREAKPOINT_OPS. */
7864
7865 struct solib_catchpoint : public breakpoint
7866 {
7867 ~solib_catchpoint () override;
7868
7869 /* True for "catch load", false for "catch unload". */
7870 bool is_load;
7871
7872 /* Regular expression to match, if any. COMPILED is only valid when
7873 REGEX is non-NULL. */
7874 char *regex;
7875 std::unique_ptr<compiled_regex> compiled;
7876 };
7877
7878 solib_catchpoint::~solib_catchpoint ()
7879 {
7880 xfree (this->regex);
7881 }
7882
7883 static int
7884 insert_catch_solib (struct bp_location *ignore)
7885 {
7886 return 0;
7887 }
7888
7889 static int
7890 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7891 {
7892 return 0;
7893 }
7894
7895 static int
7896 breakpoint_hit_catch_solib (const struct bp_location *bl,
7897 const address_space *aspace,
7898 CORE_ADDR bp_addr,
7899 const struct target_waitstatus *ws)
7900 {
7901 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7902 struct breakpoint *other;
7903
7904 if (ws->kind == TARGET_WAITKIND_LOADED)
7905 return 1;
7906
7907 ALL_BREAKPOINTS (other)
7908 {
7909 struct bp_location *other_bl;
7910
7911 if (other == bl->owner)
7912 continue;
7913
7914 if (other->type != bp_shlib_event)
7915 continue;
7916
7917 if (self->pspace != NULL && other->pspace != self->pspace)
7918 continue;
7919
7920 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7921 {
7922 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7923 return 1;
7924 }
7925 }
7926
7927 return 0;
7928 }
7929
7930 static void
7931 check_status_catch_solib (struct bpstats *bs)
7932 {
7933 struct solib_catchpoint *self
7934 = (struct solib_catchpoint *) bs->breakpoint_at;
7935
7936 if (self->is_load)
7937 {
7938 for (so_list *iter : current_program_space->added_solibs)
7939 {
7940 if (!self->regex
7941 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
7942 return;
7943 }
7944 }
7945 else
7946 {
7947 for (const std::string &iter : current_program_space->deleted_solibs)
7948 {
7949 if (!self->regex
7950 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
7951 return;
7952 }
7953 }
7954
7955 bs->stop = 0;
7956 bs->print_it = print_it_noop;
7957 }
7958
7959 static enum print_stop_action
7960 print_it_catch_solib (bpstat bs)
7961 {
7962 struct breakpoint *b = bs->breakpoint_at;
7963 struct ui_out *uiout = current_uiout;
7964
7965 annotate_catchpoint (b->number);
7966 maybe_print_thread_hit_breakpoint (uiout);
7967 if (b->disposition == disp_del)
7968 uiout->text ("Temporary catchpoint ");
7969 else
7970 uiout->text ("Catchpoint ");
7971 uiout->field_signed ("bkptno", b->number);
7972 uiout->text ("\n");
7973 if (uiout->is_mi_like_p ())
7974 uiout->field_string ("disp", bpdisp_text (b->disposition));
7975 print_solib_event (1);
7976 return PRINT_SRC_AND_LOC;
7977 }
7978
7979 static void
7980 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
7981 {
7982 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7983 struct value_print_options opts;
7984 struct ui_out *uiout = current_uiout;
7985
7986 get_user_print_options (&opts);
7987 /* Field 4, the address, is omitted (which makes the columns not
7988 line up too nicely with the headers, but the effect is relatively
7989 readable). */
7990 if (opts.addressprint)
7991 {
7992 annotate_field (4);
7993 uiout->field_skip ("addr");
7994 }
7995
7996 std::string msg;
7997 annotate_field (5);
7998 if (self->is_load)
7999 {
8000 if (self->regex)
8001 msg = string_printf (_("load of library matching %s"), self->regex);
8002 else
8003 msg = _("load of library");
8004 }
8005 else
8006 {
8007 if (self->regex)
8008 msg = string_printf (_("unload of library matching %s"), self->regex);
8009 else
8010 msg = _("unload of library");
8011 }
8012 uiout->field_string ("what", msg);
8013
8014 if (uiout->is_mi_like_p ())
8015 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8016 }
8017
8018 static void
8019 print_mention_catch_solib (struct breakpoint *b)
8020 {
8021 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8022
8023 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8024 self->is_load ? "load" : "unload");
8025 }
8026
8027 static void
8028 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8029 {
8030 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8031
8032 fprintf_unfiltered (fp, "%s %s",
8033 b->disposition == disp_del ? "tcatch" : "catch",
8034 self->is_load ? "load" : "unload");
8035 if (self->regex)
8036 fprintf_unfiltered (fp, " %s", self->regex);
8037 fprintf_unfiltered (fp, "\n");
8038 }
8039
8040 static struct breakpoint_ops catch_solib_breakpoint_ops;
8041
8042 /* See breakpoint.h. */
8043
8044 void
8045 add_solib_catchpoint (const char *arg, bool is_load, bool is_temp, bool enabled)
8046 {
8047 struct gdbarch *gdbarch = get_current_arch ();
8048
8049 if (!arg)
8050 arg = "";
8051 arg = skip_spaces (arg);
8052
8053 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8054
8055 if (*arg != '\0')
8056 {
8057 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8058 _("Invalid regexp")));
8059 c->regex = xstrdup (arg);
8060 }
8061
8062 c->is_load = is_load;
8063 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8064 &catch_solib_breakpoint_ops);
8065
8066 c->enable_state = enabled ? bp_enabled : bp_disabled;
8067
8068 install_breakpoint (0, std::move (c), 1);
8069 }
8070
8071 /* A helper function that does all the work for "catch load" and
8072 "catch unload". */
8073
8074 static void
8075 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8076 struct cmd_list_element *command)
8077 {
8078 const int enabled = 1;
8079 bool temp = get_cmd_context (command) == CATCH_TEMPORARY;
8080
8081 add_solib_catchpoint (arg, is_load, temp, enabled);
8082 }
8083
8084 static void
8085 catch_load_command_1 (const char *arg, int from_tty,
8086 struct cmd_list_element *command)
8087 {
8088 catch_load_or_unload (arg, from_tty, 1, command);
8089 }
8090
8091 static void
8092 catch_unload_command_1 (const char *arg, int from_tty,
8093 struct cmd_list_element *command)
8094 {
8095 catch_load_or_unload (arg, from_tty, 0, command);
8096 }
8097
8098 /* See breakpoint.h. */
8099
8100 void
8101 init_catchpoint (struct breakpoint *b,
8102 struct gdbarch *gdbarch, bool temp,
8103 const char *cond_string,
8104 const struct breakpoint_ops *ops)
8105 {
8106 symtab_and_line sal;
8107 sal.pspace = current_program_space;
8108
8109 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8110
8111 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8112 b->disposition = temp ? disp_del : disp_donttouch;
8113 }
8114
8115 void
8116 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8117 {
8118 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8119 set_breakpoint_number (internal, b);
8120 if (is_tracepoint (b))
8121 set_tracepoint_count (breakpoint_count);
8122 if (!internal)
8123 mention (b);
8124 gdb::observers::breakpoint_created.notify (b);
8125
8126 if (update_gll)
8127 update_global_location_list (UGLL_MAY_INSERT);
8128 }
8129
8130 static void
8131 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8132 bool temp, const char *cond_string,
8133 const struct breakpoint_ops *ops)
8134 {
8135 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8136
8137 init_catchpoint (c.get (), gdbarch, temp, cond_string, ops);
8138
8139 c->forked_inferior_pid = null_ptid;
8140
8141 install_breakpoint (0, std::move (c), 1);
8142 }
8143
8144 /* Exec catchpoints. */
8145
8146 /* An instance of this type is used to represent an exec catchpoint.
8147 A breakpoint is really of this type iff its ops pointer points to
8148 CATCH_EXEC_BREAKPOINT_OPS. */
8149
8150 struct exec_catchpoint : public breakpoint
8151 {
8152 ~exec_catchpoint () override;
8153
8154 /* Filename of a program whose exec triggered this catchpoint.
8155 This field is only valid immediately after this catchpoint has
8156 triggered. */
8157 char *exec_pathname;
8158 };
8159
8160 /* Exec catchpoint destructor. */
8161
8162 exec_catchpoint::~exec_catchpoint ()
8163 {
8164 xfree (this->exec_pathname);
8165 }
8166
8167 static int
8168 insert_catch_exec (struct bp_location *bl)
8169 {
8170 return target_insert_exec_catchpoint (inferior_ptid.pid ());
8171 }
8172
8173 static int
8174 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8175 {
8176 return target_remove_exec_catchpoint (inferior_ptid.pid ());
8177 }
8178
8179 static int
8180 breakpoint_hit_catch_exec (const struct bp_location *bl,
8181 const address_space *aspace, CORE_ADDR bp_addr,
8182 const struct target_waitstatus *ws)
8183 {
8184 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8185
8186 if (ws->kind != TARGET_WAITKIND_EXECD)
8187 return 0;
8188
8189 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8190 return 1;
8191 }
8192
8193 static enum print_stop_action
8194 print_it_catch_exec (bpstat bs)
8195 {
8196 struct ui_out *uiout = current_uiout;
8197 struct breakpoint *b = bs->breakpoint_at;
8198 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8199
8200 annotate_catchpoint (b->number);
8201 maybe_print_thread_hit_breakpoint (uiout);
8202 if (b->disposition == disp_del)
8203 uiout->text ("Temporary catchpoint ");
8204 else
8205 uiout->text ("Catchpoint ");
8206 if (uiout->is_mi_like_p ())
8207 {
8208 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8209 uiout->field_string ("disp", bpdisp_text (b->disposition));
8210 }
8211 uiout->field_signed ("bkptno", b->number);
8212 uiout->text (" (exec'd ");
8213 uiout->field_string ("new-exec", c->exec_pathname);
8214 uiout->text ("), ");
8215
8216 return PRINT_SRC_AND_LOC;
8217 }
8218
8219 static void
8220 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8221 {
8222 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8223 struct value_print_options opts;
8224 struct ui_out *uiout = current_uiout;
8225
8226 get_user_print_options (&opts);
8227
8228 /* Field 4, the address, is omitted (which makes the columns
8229 not line up too nicely with the headers, but the effect
8230 is relatively readable). */
8231 if (opts.addressprint)
8232 uiout->field_skip ("addr");
8233 annotate_field (5);
8234 uiout->text ("exec");
8235 if (c->exec_pathname != NULL)
8236 {
8237 uiout->text (", program \"");
8238 uiout->field_string ("what", c->exec_pathname);
8239 uiout->text ("\" ");
8240 }
8241
8242 if (uiout->is_mi_like_p ())
8243 uiout->field_string ("catch-type", "exec");
8244 }
8245
8246 static void
8247 print_mention_catch_exec (struct breakpoint *b)
8248 {
8249 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8250 }
8251
8252 /* Implement the "print_recreate" breakpoint_ops method for exec
8253 catchpoints. */
8254
8255 static void
8256 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8257 {
8258 fprintf_unfiltered (fp, "catch exec");
8259 print_recreate_thread (b, fp);
8260 }
8261
8262 static struct breakpoint_ops catch_exec_breakpoint_ops;
8263
8264 static int
8265 hw_breakpoint_used_count (void)
8266 {
8267 int i = 0;
8268 struct breakpoint *b;
8269 struct bp_location *bl;
8270
8271 ALL_BREAKPOINTS (b)
8272 {
8273 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8274 for (bl = b->loc; bl; bl = bl->next)
8275 {
8276 /* Special types of hardware breakpoints may use more than
8277 one register. */
8278 i += b->ops->resources_needed (bl);
8279 }
8280 }
8281
8282 return i;
8283 }
8284
8285 /* Returns the resources B would use if it were a hardware
8286 watchpoint. */
8287
8288 static int
8289 hw_watchpoint_use_count (struct breakpoint *b)
8290 {
8291 int i = 0;
8292 struct bp_location *bl;
8293
8294 if (!breakpoint_enabled (b))
8295 return 0;
8296
8297 for (bl = b->loc; bl; bl = bl->next)
8298 {
8299 /* Special types of hardware watchpoints may use more than
8300 one register. */
8301 i += b->ops->resources_needed (bl);
8302 }
8303
8304 return i;
8305 }
8306
8307 /* Returns the sum the used resources of all hardware watchpoints of
8308 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8309 the sum of the used resources of all hardware watchpoints of other
8310 types _not_ TYPE. */
8311
8312 static int
8313 hw_watchpoint_used_count_others (struct breakpoint *except,
8314 enum bptype type, int *other_type_used)
8315 {
8316 int i = 0;
8317 struct breakpoint *b;
8318
8319 *other_type_used = 0;
8320 ALL_BREAKPOINTS (b)
8321 {
8322 if (b == except)
8323 continue;
8324 if (!breakpoint_enabled (b))
8325 continue;
8326
8327 if (b->type == type)
8328 i += hw_watchpoint_use_count (b);
8329 else if (is_hardware_watchpoint (b))
8330 *other_type_used = 1;
8331 }
8332
8333 return i;
8334 }
8335
8336 void
8337 disable_watchpoints_before_interactive_call_start (void)
8338 {
8339 struct breakpoint *b;
8340
8341 ALL_BREAKPOINTS (b)
8342 {
8343 if (is_watchpoint (b) && breakpoint_enabled (b))
8344 {
8345 b->enable_state = bp_call_disabled;
8346 update_global_location_list (UGLL_DONT_INSERT);
8347 }
8348 }
8349 }
8350
8351 void
8352 enable_watchpoints_after_interactive_call_stop (void)
8353 {
8354 struct breakpoint *b;
8355
8356 ALL_BREAKPOINTS (b)
8357 {
8358 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8359 {
8360 b->enable_state = bp_enabled;
8361 update_global_location_list (UGLL_MAY_INSERT);
8362 }
8363 }
8364 }
8365
8366 void
8367 disable_breakpoints_before_startup (void)
8368 {
8369 current_program_space->executing_startup = 1;
8370 update_global_location_list (UGLL_DONT_INSERT);
8371 }
8372
8373 void
8374 enable_breakpoints_after_startup (void)
8375 {
8376 current_program_space->executing_startup = 0;
8377 breakpoint_re_set ();
8378 }
8379
8380 /* Create a new single-step breakpoint for thread THREAD, with no
8381 locations. */
8382
8383 static struct breakpoint *
8384 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8385 {
8386 std::unique_ptr<breakpoint> b (new breakpoint ());
8387
8388 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8389 &momentary_breakpoint_ops);
8390
8391 b->disposition = disp_donttouch;
8392 b->frame_id = null_frame_id;
8393
8394 b->thread = thread;
8395 gdb_assert (b->thread != 0);
8396
8397 return add_to_breakpoint_chain (std::move (b));
8398 }
8399
8400 /* Set a momentary breakpoint of type TYPE at address specified by
8401 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8402 frame. */
8403
8404 breakpoint_up
8405 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8406 struct frame_id frame_id, enum bptype type)
8407 {
8408 struct breakpoint *b;
8409
8410 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8411 tail-called one. */
8412 gdb_assert (!frame_id_artificial_p (frame_id));
8413
8414 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8415 b->enable_state = bp_enabled;
8416 b->disposition = disp_donttouch;
8417 b->frame_id = frame_id;
8418
8419 b->thread = inferior_thread ()->global_num;
8420
8421 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8422
8423 return breakpoint_up (b);
8424 }
8425
8426 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8427 The new breakpoint will have type TYPE, use OPS as its
8428 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8429
8430 static struct breakpoint *
8431 momentary_breakpoint_from_master (struct breakpoint *orig,
8432 enum bptype type,
8433 const struct breakpoint_ops *ops,
8434 int loc_enabled)
8435 {
8436 struct breakpoint *copy;
8437
8438 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8439 copy->loc = allocate_bp_location (copy);
8440 set_breakpoint_location_function (copy->loc);
8441
8442 copy->loc->gdbarch = orig->loc->gdbarch;
8443 copy->loc->requested_address = orig->loc->requested_address;
8444 copy->loc->address = orig->loc->address;
8445 copy->loc->section = orig->loc->section;
8446 copy->loc->pspace = orig->loc->pspace;
8447 copy->loc->probe = orig->loc->probe;
8448 copy->loc->line_number = orig->loc->line_number;
8449 copy->loc->symtab = orig->loc->symtab;
8450 copy->loc->enabled = loc_enabled;
8451 copy->frame_id = orig->frame_id;
8452 copy->thread = orig->thread;
8453 copy->pspace = orig->pspace;
8454
8455 copy->enable_state = bp_enabled;
8456 copy->disposition = disp_donttouch;
8457 copy->number = internal_breakpoint_number--;
8458
8459 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8460 return copy;
8461 }
8462
8463 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8464 ORIG is NULL. */
8465
8466 struct breakpoint *
8467 clone_momentary_breakpoint (struct breakpoint *orig)
8468 {
8469 /* If there's nothing to clone, then return nothing. */
8470 if (orig == NULL)
8471 return NULL;
8472
8473 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8474 }
8475
8476 breakpoint_up
8477 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8478 enum bptype type)
8479 {
8480 struct symtab_and_line sal;
8481
8482 sal = find_pc_line (pc, 0);
8483 sal.pc = pc;
8484 sal.section = find_pc_overlay (pc);
8485 sal.explicit_pc = 1;
8486
8487 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8488 }
8489 \f
8490
8491 /* Tell the user we have just set a breakpoint B. */
8492
8493 static void
8494 mention (struct breakpoint *b)
8495 {
8496 b->ops->print_mention (b);
8497 current_uiout->text ("\n");
8498 }
8499 \f
8500
8501 static bool bp_loc_is_permanent (struct bp_location *loc);
8502
8503 /* Handle "set breakpoint auto-hw on".
8504
8505 If the explicitly specified breakpoint type is not hardware
8506 breakpoint, check the memory map to see whether the breakpoint
8507 address is in read-only memory.
8508
8509 - location type is not hardware breakpoint, memory is read-only.
8510 We change the type of the location to hardware breakpoint.
8511
8512 - location type is hardware breakpoint, memory is read-write. This
8513 means we've previously made the location hardware one, but then the
8514 memory map changed, so we undo.
8515 */
8516
8517 static void
8518 handle_automatic_hardware_breakpoints (bp_location *bl)
8519 {
8520 if (automatic_hardware_breakpoints
8521 && bl->owner->type != bp_hardware_breakpoint
8522 && (bl->loc_type == bp_loc_software_breakpoint
8523 || bl->loc_type == bp_loc_hardware_breakpoint))
8524 {
8525 /* When breakpoints are removed, remove_breakpoints will use
8526 location types we've just set here, the only possible problem
8527 is that memory map has changed during running program, but
8528 it's not going to work anyway with current gdb. */
8529 mem_region *mr = lookup_mem_region (bl->address);
8530
8531 if (mr != nullptr)
8532 {
8533 enum bp_loc_type new_type;
8534
8535 if (mr->attrib.mode != MEM_RW)
8536 new_type = bp_loc_hardware_breakpoint;
8537 else
8538 new_type = bp_loc_software_breakpoint;
8539
8540 if (new_type != bl->loc_type)
8541 {
8542 static bool said = false;
8543
8544 bl->loc_type = new_type;
8545 if (!said)
8546 {
8547 fprintf_filtered (gdb_stdout,
8548 _("Note: automatically using "
8549 "hardware breakpoints for "
8550 "read-only addresses.\n"));
8551 said = true;
8552 }
8553 }
8554 }
8555 }
8556 }
8557
8558 static struct bp_location *
8559 add_location_to_breakpoint (struct breakpoint *b,
8560 const struct symtab_and_line *sal)
8561 {
8562 struct bp_location *loc, **tmp;
8563 CORE_ADDR adjusted_address;
8564 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8565
8566 if (loc_gdbarch == NULL)
8567 loc_gdbarch = b->gdbarch;
8568
8569 /* Adjust the breakpoint's address prior to allocating a location.
8570 Once we call allocate_bp_location(), that mostly uninitialized
8571 location will be placed on the location chain. Adjustment of the
8572 breakpoint may cause target_read_memory() to be called and we do
8573 not want its scan of the location chain to find a breakpoint and
8574 location that's only been partially initialized. */
8575 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8576 sal->pc, b->type);
8577
8578 /* Sort the locations by their ADDRESS. */
8579 loc = allocate_bp_location (b);
8580 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8581 tmp = &((*tmp)->next))
8582 ;
8583 loc->next = *tmp;
8584 *tmp = loc;
8585
8586 loc->requested_address = sal->pc;
8587 loc->address = adjusted_address;
8588 loc->pspace = sal->pspace;
8589 loc->probe.prob = sal->prob;
8590 loc->probe.objfile = sal->objfile;
8591 gdb_assert (loc->pspace != NULL);
8592 loc->section = sal->section;
8593 loc->gdbarch = loc_gdbarch;
8594 loc->line_number = sal->line;
8595 loc->symtab = sal->symtab;
8596 loc->symbol = sal->symbol;
8597 loc->msymbol = sal->msymbol;
8598 loc->objfile = sal->objfile;
8599
8600 set_breakpoint_location_function (loc);
8601
8602 /* While by definition, permanent breakpoints are already present in the
8603 code, we don't mark the location as inserted. Normally one would expect
8604 that GDB could rely on that breakpoint instruction to stop the program,
8605 thus removing the need to insert its own breakpoint, except that executing
8606 the breakpoint instruction can kill the target instead of reporting a
8607 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8608 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8609 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8610 breakpoint be inserted normally results in QEMU knowing about the GDB
8611 breakpoint, and thus trap before the breakpoint instruction is executed.
8612 (If GDB later needs to continue execution past the permanent breakpoint,
8613 it manually increments the PC, thus avoiding executing the breakpoint
8614 instruction.) */
8615 if (bp_loc_is_permanent (loc))
8616 loc->permanent = 1;
8617
8618 return loc;
8619 }
8620 \f
8621
8622 /* Return true if LOC is pointing to a permanent breakpoint,
8623 return false otherwise. */
8624
8625 static bool
8626 bp_loc_is_permanent (struct bp_location *loc)
8627 {
8628 gdb_assert (loc != NULL);
8629
8630 /* If we have a non-breakpoint-backed catchpoint or a software
8631 watchpoint, just return 0. We should not attempt to read from
8632 the addresses the locations of these breakpoint types point to.
8633 gdbarch_program_breakpoint_here_p, below, will attempt to read
8634 memory. */
8635 if (!bl_address_is_meaningful (loc))
8636 return false;
8637
8638 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8639 switch_to_program_space_and_thread (loc->pspace);
8640 return gdbarch_program_breakpoint_here_p (loc->gdbarch, loc->address);
8641 }
8642
8643 /* Build a command list for the dprintf corresponding to the current
8644 settings of the dprintf style options. */
8645
8646 static void
8647 update_dprintf_command_list (struct breakpoint *b)
8648 {
8649 char *dprintf_args = b->extra_string;
8650 char *printf_line = NULL;
8651
8652 if (!dprintf_args)
8653 return;
8654
8655 dprintf_args = skip_spaces (dprintf_args);
8656
8657 /* Allow a comma, as it may have terminated a location, but don't
8658 insist on it. */
8659 if (*dprintf_args == ',')
8660 ++dprintf_args;
8661 dprintf_args = skip_spaces (dprintf_args);
8662
8663 if (*dprintf_args != '"')
8664 error (_("Bad format string, missing '\"'."));
8665
8666 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8667 printf_line = xstrprintf ("printf %s", dprintf_args);
8668 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8669 {
8670 if (!dprintf_function)
8671 error (_("No function supplied for dprintf call"));
8672
8673 if (dprintf_channel && strlen (dprintf_channel) > 0)
8674 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8675 dprintf_function,
8676 dprintf_channel,
8677 dprintf_args);
8678 else
8679 printf_line = xstrprintf ("call (void) %s (%s)",
8680 dprintf_function,
8681 dprintf_args);
8682 }
8683 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8684 {
8685 if (target_can_run_breakpoint_commands ())
8686 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8687 else
8688 {
8689 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8690 printf_line = xstrprintf ("printf %s", dprintf_args);
8691 }
8692 }
8693 else
8694 internal_error (__FILE__, __LINE__,
8695 _("Invalid dprintf style."));
8696
8697 gdb_assert (printf_line != NULL);
8698
8699 /* Manufacture a printf sequence. */
8700 struct command_line *printf_cmd_line
8701 = new struct command_line (simple_control, printf_line);
8702 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8703 command_lines_deleter ()));
8704 }
8705
8706 /* Update all dprintf commands, making their command lists reflect
8707 current style settings. */
8708
8709 static void
8710 update_dprintf_commands (const char *args, int from_tty,
8711 struct cmd_list_element *c)
8712 {
8713 struct breakpoint *b;
8714
8715 ALL_BREAKPOINTS (b)
8716 {
8717 if (b->type == bp_dprintf)
8718 update_dprintf_command_list (b);
8719 }
8720 }
8721
8722 /* Create a breakpoint with SAL as location. Use LOCATION
8723 as a description of the location, and COND_STRING
8724 as condition expression. If LOCATION is NULL then create an
8725 "address location" from the address in the SAL. */
8726
8727 static void
8728 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8729 gdb::array_view<const symtab_and_line> sals,
8730 event_location_up &&location,
8731 gdb::unique_xmalloc_ptr<char> filter,
8732 gdb::unique_xmalloc_ptr<char> cond_string,
8733 gdb::unique_xmalloc_ptr<char> extra_string,
8734 enum bptype type, enum bpdisp disposition,
8735 int thread, int task, int ignore_count,
8736 const struct breakpoint_ops *ops, int from_tty,
8737 int enabled, int internal, unsigned flags,
8738 int display_canonical)
8739 {
8740 int i;
8741
8742 if (type == bp_hardware_breakpoint)
8743 {
8744 int target_resources_ok;
8745
8746 i = hw_breakpoint_used_count ();
8747 target_resources_ok =
8748 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8749 i + 1, 0);
8750 if (target_resources_ok == 0)
8751 error (_("No hardware breakpoint support in the target."));
8752 else if (target_resources_ok < 0)
8753 error (_("Hardware breakpoints used exceeds limit."));
8754 }
8755
8756 gdb_assert (!sals.empty ());
8757
8758 for (const auto &sal : sals)
8759 {
8760 struct bp_location *loc;
8761
8762 if (from_tty)
8763 {
8764 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8765 if (!loc_gdbarch)
8766 loc_gdbarch = gdbarch;
8767
8768 describe_other_breakpoints (loc_gdbarch,
8769 sal.pspace, sal.pc, sal.section, thread);
8770 }
8771
8772 if (&sal == &sals[0])
8773 {
8774 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8775 b->thread = thread;
8776 b->task = task;
8777
8778 b->cond_string = cond_string.release ();
8779 b->extra_string = extra_string.release ();
8780 b->ignore_count = ignore_count;
8781 b->enable_state = enabled ? bp_enabled : bp_disabled;
8782 b->disposition = disposition;
8783
8784 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8785 b->loc->inserted = 1;
8786
8787 if (type == bp_static_tracepoint)
8788 {
8789 struct tracepoint *t = (struct tracepoint *) b;
8790 struct static_tracepoint_marker marker;
8791
8792 if (strace_marker_p (b))
8793 {
8794 /* We already know the marker exists, otherwise, we
8795 wouldn't see a sal for it. */
8796 const char *p
8797 = &event_location_to_string (b->location.get ())[3];
8798 const char *endp;
8799
8800 p = skip_spaces (p);
8801
8802 endp = skip_to_space (p);
8803
8804 t->static_trace_marker_id.assign (p, endp - p);
8805
8806 printf_filtered (_("Probed static tracepoint "
8807 "marker \"%s\"\n"),
8808 t->static_trace_marker_id.c_str ());
8809 }
8810 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8811 {
8812 t->static_trace_marker_id = std::move (marker.str_id);
8813
8814 printf_filtered (_("Probed static tracepoint "
8815 "marker \"%s\"\n"),
8816 t->static_trace_marker_id.c_str ());
8817 }
8818 else
8819 warning (_("Couldn't determine the static "
8820 "tracepoint marker to probe"));
8821 }
8822
8823 loc = b->loc;
8824 }
8825 else
8826 {
8827 loc = add_location_to_breakpoint (b, &sal);
8828 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8829 loc->inserted = 1;
8830 }
8831
8832 if (b->cond_string)
8833 {
8834 const char *arg = b->cond_string;
8835
8836 loc->cond = parse_exp_1 (&arg, loc->address,
8837 block_for_pc (loc->address), 0);
8838 if (*arg)
8839 error (_("Garbage '%s' follows condition"), arg);
8840 }
8841
8842 /* Dynamic printf requires and uses additional arguments on the
8843 command line, otherwise it's an error. */
8844 if (type == bp_dprintf)
8845 {
8846 if (b->extra_string)
8847 update_dprintf_command_list (b);
8848 else
8849 error (_("Format string required"));
8850 }
8851 else if (b->extra_string)
8852 error (_("Garbage '%s' at end of command"), b->extra_string);
8853 }
8854
8855 b->display_canonical = display_canonical;
8856 if (location != NULL)
8857 b->location = std::move (location);
8858 else
8859 b->location = new_address_location (b->loc->address, NULL, 0);
8860 b->filter = std::move (filter);
8861 }
8862
8863 static void
8864 create_breakpoint_sal (struct gdbarch *gdbarch,
8865 gdb::array_view<const symtab_and_line> sals,
8866 event_location_up &&location,
8867 gdb::unique_xmalloc_ptr<char> filter,
8868 gdb::unique_xmalloc_ptr<char> cond_string,
8869 gdb::unique_xmalloc_ptr<char> extra_string,
8870 enum bptype type, enum bpdisp disposition,
8871 int thread, int task, int ignore_count,
8872 const struct breakpoint_ops *ops, int from_tty,
8873 int enabled, int internal, unsigned flags,
8874 int display_canonical)
8875 {
8876 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8877
8878 init_breakpoint_sal (b.get (), gdbarch,
8879 sals, std::move (location),
8880 std::move (filter),
8881 std::move (cond_string),
8882 std::move (extra_string),
8883 type, disposition,
8884 thread, task, ignore_count,
8885 ops, from_tty,
8886 enabled, internal, flags,
8887 display_canonical);
8888
8889 install_breakpoint (internal, std::move (b), 0);
8890 }
8891
8892 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8893 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8894 value. COND_STRING, if not NULL, specified the condition to be
8895 used for all breakpoints. Essentially the only case where
8896 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8897 function. In that case, it's still not possible to specify
8898 separate conditions for different overloaded functions, so
8899 we take just a single condition string.
8900
8901 NOTE: If the function succeeds, the caller is expected to cleanup
8902 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8903 array contents). If the function fails (error() is called), the
8904 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8905 COND and SALS arrays and each of those arrays contents. */
8906
8907 static void
8908 create_breakpoints_sal (struct gdbarch *gdbarch,
8909 struct linespec_result *canonical,
8910 gdb::unique_xmalloc_ptr<char> cond_string,
8911 gdb::unique_xmalloc_ptr<char> extra_string,
8912 enum bptype type, enum bpdisp disposition,
8913 int thread, int task, int ignore_count,
8914 const struct breakpoint_ops *ops, int from_tty,
8915 int enabled, int internal, unsigned flags)
8916 {
8917 if (canonical->pre_expanded)
8918 gdb_assert (canonical->lsals.size () == 1);
8919
8920 for (const auto &lsal : canonical->lsals)
8921 {
8922 /* Note that 'location' can be NULL in the case of a plain
8923 'break', without arguments. */
8924 event_location_up location
8925 = (canonical->location != NULL
8926 ? copy_event_location (canonical->location.get ()) : NULL);
8927 gdb::unique_xmalloc_ptr<char> filter_string
8928 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
8929
8930 create_breakpoint_sal (gdbarch, lsal.sals,
8931 std::move (location),
8932 std::move (filter_string),
8933 std::move (cond_string),
8934 std::move (extra_string),
8935 type, disposition,
8936 thread, task, ignore_count, ops,
8937 from_tty, enabled, internal, flags,
8938 canonical->special_display);
8939 }
8940 }
8941
8942 /* Parse LOCATION which is assumed to be a SAL specification possibly
8943 followed by conditionals. On return, SALS contains an array of SAL
8944 addresses found. LOCATION points to the end of the SAL (for
8945 linespec locations).
8946
8947 The array and the line spec strings are allocated on the heap, it is
8948 the caller's responsibility to free them. */
8949
8950 static void
8951 parse_breakpoint_sals (struct event_location *location,
8952 struct linespec_result *canonical)
8953 {
8954 struct symtab_and_line cursal;
8955
8956 if (event_location_type (location) == LINESPEC_LOCATION)
8957 {
8958 const char *spec = get_linespec_location (location)->spec_string;
8959
8960 if (spec == NULL)
8961 {
8962 /* The last displayed codepoint, if it's valid, is our default
8963 breakpoint address. */
8964 if (last_displayed_sal_is_valid ())
8965 {
8966 /* Set sal's pspace, pc, symtab, and line to the values
8967 corresponding to the last call to print_frame_info.
8968 Be sure to reinitialize LINE with NOTCURRENT == 0
8969 as the breakpoint line number is inappropriate otherwise.
8970 find_pc_line would adjust PC, re-set it back. */
8971 symtab_and_line sal = get_last_displayed_sal ();
8972 CORE_ADDR pc = sal.pc;
8973
8974 sal = find_pc_line (pc, 0);
8975
8976 /* "break" without arguments is equivalent to "break *PC"
8977 where PC is the last displayed codepoint's address. So
8978 make sure to set sal.explicit_pc to prevent GDB from
8979 trying to expand the list of sals to include all other
8980 instances with the same symtab and line. */
8981 sal.pc = pc;
8982 sal.explicit_pc = 1;
8983
8984 struct linespec_sals lsal;
8985 lsal.sals = {sal};
8986 lsal.canonical = NULL;
8987
8988 canonical->lsals.push_back (std::move (lsal));
8989 return;
8990 }
8991 else
8992 error (_("No default breakpoint address now."));
8993 }
8994 }
8995
8996 /* Force almost all breakpoints to be in terms of the
8997 current_source_symtab (which is decode_line_1's default).
8998 This should produce the results we want almost all of the
8999 time while leaving default_breakpoint_* alone.
9000
9001 ObjC: However, don't match an Objective-C method name which
9002 may have a '+' or '-' succeeded by a '['. */
9003 cursal = get_current_source_symtab_and_line ();
9004 if (last_displayed_sal_is_valid ())
9005 {
9006 const char *spec = NULL;
9007
9008 if (event_location_type (location) == LINESPEC_LOCATION)
9009 spec = get_linespec_location (location)->spec_string;
9010
9011 if (!cursal.symtab
9012 || (spec != NULL
9013 && strchr ("+-", spec[0]) != NULL
9014 && spec[1] != '['))
9015 {
9016 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9017 get_last_displayed_symtab (),
9018 get_last_displayed_line (),
9019 canonical, NULL, NULL);
9020 return;
9021 }
9022 }
9023
9024 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9025 cursal.symtab, cursal.line, canonical, NULL, NULL);
9026 }
9027
9028
9029 /* Convert each SAL into a real PC. Verify that the PC can be
9030 inserted as a breakpoint. If it can't throw an error. */
9031
9032 static void
9033 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9034 {
9035 for (auto &sal : sals)
9036 resolve_sal_pc (&sal);
9037 }
9038
9039 /* Fast tracepoints may have restrictions on valid locations. For
9040 instance, a fast tracepoint using a jump instead of a trap will
9041 likely have to overwrite more bytes than a trap would, and so can
9042 only be placed where the instruction is longer than the jump, or a
9043 multi-instruction sequence does not have a jump into the middle of
9044 it, etc. */
9045
9046 static void
9047 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9048 gdb::array_view<const symtab_and_line> sals)
9049 {
9050 for (const auto &sal : sals)
9051 {
9052 struct gdbarch *sarch;
9053
9054 sarch = get_sal_arch (sal);
9055 /* We fall back to GDBARCH if there is no architecture
9056 associated with SAL. */
9057 if (sarch == NULL)
9058 sarch = gdbarch;
9059 std::string msg;
9060 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9061 error (_("May not have a fast tracepoint at %s%s"),
9062 paddress (sarch, sal.pc), msg.c_str ());
9063 }
9064 }
9065
9066 /* Given TOK, a string specification of condition and thread, as
9067 accepted by the 'break' command, extract the condition
9068 string and thread number and set *COND_STRING and *THREAD.
9069 PC identifies the context at which the condition should be parsed.
9070 If no condition is found, *COND_STRING is set to NULL.
9071 If no thread is found, *THREAD is set to -1. */
9072
9073 static void
9074 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9075 char **cond_string, int *thread, int *task,
9076 char **rest)
9077 {
9078 *cond_string = NULL;
9079 *thread = -1;
9080 *task = 0;
9081 *rest = NULL;
9082
9083 while (tok && *tok)
9084 {
9085 const char *end_tok;
9086 int toklen;
9087 const char *cond_start = NULL;
9088 const char *cond_end = NULL;
9089
9090 tok = skip_spaces (tok);
9091
9092 if ((*tok == '"' || *tok == ',') && rest)
9093 {
9094 *rest = savestring (tok, strlen (tok));
9095 return;
9096 }
9097
9098 end_tok = skip_to_space (tok);
9099
9100 toklen = end_tok - tok;
9101
9102 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9103 {
9104 tok = cond_start = end_tok + 1;
9105 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9106 cond_end = tok;
9107 *cond_string = savestring (cond_start, cond_end - cond_start);
9108 }
9109 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9110 {
9111 const char *tmptok;
9112 struct thread_info *thr;
9113
9114 tok = end_tok + 1;
9115 thr = parse_thread_id (tok, &tmptok);
9116 if (tok == tmptok)
9117 error (_("Junk after thread keyword."));
9118 *thread = thr->global_num;
9119 tok = tmptok;
9120 }
9121 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9122 {
9123 char *tmptok;
9124
9125 tok = end_tok + 1;
9126 *task = strtol (tok, &tmptok, 0);
9127 if (tok == tmptok)
9128 error (_("Junk after task keyword."));
9129 if (!valid_task_id (*task))
9130 error (_("Unknown task %d."), *task);
9131 tok = tmptok;
9132 }
9133 else if (rest)
9134 {
9135 *rest = savestring (tok, strlen (tok));
9136 return;
9137 }
9138 else
9139 error (_("Junk at end of arguments."));
9140 }
9141 }
9142
9143 /* Decode a static tracepoint marker spec. */
9144
9145 static std::vector<symtab_and_line>
9146 decode_static_tracepoint_spec (const char **arg_p)
9147 {
9148 const char *p = &(*arg_p)[3];
9149 const char *endp;
9150
9151 p = skip_spaces (p);
9152
9153 endp = skip_to_space (p);
9154
9155 std::string marker_str (p, endp - p);
9156
9157 std::vector<static_tracepoint_marker> markers
9158 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9159 if (markers.empty ())
9160 error (_("No known static tracepoint marker named %s"),
9161 marker_str.c_str ());
9162
9163 std::vector<symtab_and_line> sals;
9164 sals.reserve (markers.size ());
9165
9166 for (const static_tracepoint_marker &marker : markers)
9167 {
9168 symtab_and_line sal = find_pc_line (marker.address, 0);
9169 sal.pc = marker.address;
9170 sals.push_back (sal);
9171 }
9172
9173 *arg_p = endp;
9174 return sals;
9175 }
9176
9177 /* Returns the breakpoint ops appropriate for use with with LOCATION_TYPE and
9178 according to IS_TRACEPOINT. */
9179
9180 static const struct breakpoint_ops *
9181 breakpoint_ops_for_event_location_type (enum event_location_type location_type,
9182 bool is_tracepoint)
9183 {
9184 if (is_tracepoint)
9185 {
9186 if (location_type == PROBE_LOCATION)
9187 return &tracepoint_probe_breakpoint_ops;
9188 else
9189 return &tracepoint_breakpoint_ops;
9190 }
9191 else
9192 {
9193 if (location_type == PROBE_LOCATION)
9194 return &bkpt_probe_breakpoint_ops;
9195 else
9196 return &bkpt_breakpoint_ops;
9197 }
9198 }
9199
9200 /* See breakpoint.h. */
9201
9202 const struct breakpoint_ops *
9203 breakpoint_ops_for_event_location (const struct event_location *location,
9204 bool is_tracepoint)
9205 {
9206 if (location != nullptr)
9207 return breakpoint_ops_for_event_location_type
9208 (event_location_type (location), is_tracepoint);
9209 return is_tracepoint ? &tracepoint_breakpoint_ops : &bkpt_breakpoint_ops;
9210 }
9211
9212 /* See breakpoint.h. */
9213
9214 int
9215 create_breakpoint (struct gdbarch *gdbarch,
9216 struct event_location *location,
9217 const char *cond_string,
9218 int thread, const char *extra_string,
9219 int parse_extra,
9220 int tempflag, enum bptype type_wanted,
9221 int ignore_count,
9222 enum auto_boolean pending_break_support,
9223 const struct breakpoint_ops *ops,
9224 int from_tty, int enabled, int internal,
9225 unsigned flags)
9226 {
9227 struct linespec_result canonical;
9228 int pending = 0;
9229 int task = 0;
9230 int prev_bkpt_count = breakpoint_count;
9231
9232 gdb_assert (ops != NULL);
9233
9234 /* If extra_string isn't useful, set it to NULL. */
9235 if (extra_string != NULL && *extra_string == '\0')
9236 extra_string = NULL;
9237
9238 try
9239 {
9240 ops->create_sals_from_location (location, &canonical, type_wanted);
9241 }
9242 catch (const gdb_exception_error &e)
9243 {
9244 /* If caller is interested in rc value from parse, set
9245 value. */
9246 if (e.error == NOT_FOUND_ERROR)
9247 {
9248 /* If pending breakpoint support is turned off, throw
9249 error. */
9250
9251 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9252 throw;
9253
9254 exception_print (gdb_stderr, e);
9255
9256 /* If pending breakpoint support is auto query and the user
9257 selects no, then simply return the error code. */
9258 if (pending_break_support == AUTO_BOOLEAN_AUTO
9259 && !nquery (_("Make %s pending on future shared library load? "),
9260 bptype_string (type_wanted)))
9261 return 0;
9262
9263 /* At this point, either the user was queried about setting
9264 a pending breakpoint and selected yes, or pending
9265 breakpoint behavior is on and thus a pending breakpoint
9266 is defaulted on behalf of the user. */
9267 pending = 1;
9268 }
9269 else
9270 throw;
9271 }
9272
9273 if (!pending && canonical.lsals.empty ())
9274 return 0;
9275
9276 /* Resolve all line numbers to PC's and verify that the addresses
9277 are ok for the target. */
9278 if (!pending)
9279 {
9280 for (auto &lsal : canonical.lsals)
9281 breakpoint_sals_to_pc (lsal.sals);
9282 }
9283
9284 /* Fast tracepoints may have additional restrictions on location. */
9285 if (!pending && type_wanted == bp_fast_tracepoint)
9286 {
9287 for (const auto &lsal : canonical.lsals)
9288 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9289 }
9290
9291 /* Verify that condition can be parsed, before setting any
9292 breakpoints. Allocate a separate condition expression for each
9293 breakpoint. */
9294 if (!pending)
9295 {
9296 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9297 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9298
9299 if (parse_extra)
9300 {
9301 char *rest;
9302 char *cond;
9303
9304 const linespec_sals &lsal = canonical.lsals[0];
9305
9306 /* Here we only parse 'arg' to separate condition
9307 from thread number, so parsing in context of first
9308 sal is OK. When setting the breakpoint we'll
9309 re-parse it in context of each sal. */
9310
9311 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9312 &cond, &thread, &task, &rest);
9313 cond_string_copy.reset (cond);
9314 extra_string_copy.reset (rest);
9315 }
9316 else
9317 {
9318 if (type_wanted != bp_dprintf
9319 && extra_string != NULL && *extra_string != '\0')
9320 error (_("Garbage '%s' at end of location"), extra_string);
9321
9322 /* Create a private copy of condition string. */
9323 if (cond_string)
9324 cond_string_copy.reset (xstrdup (cond_string));
9325 /* Create a private copy of any extra string. */
9326 if (extra_string)
9327 extra_string_copy.reset (xstrdup (extra_string));
9328 }
9329
9330 ops->create_breakpoints_sal (gdbarch, &canonical,
9331 std::move (cond_string_copy),
9332 std::move (extra_string_copy),
9333 type_wanted,
9334 tempflag ? disp_del : disp_donttouch,
9335 thread, task, ignore_count, ops,
9336 from_tty, enabled, internal, flags);
9337 }
9338 else
9339 {
9340 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9341
9342 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9343 b->location = copy_event_location (location);
9344
9345 if (parse_extra)
9346 b->cond_string = NULL;
9347 else
9348 {
9349 /* Create a private copy of condition string. */
9350 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9351 b->thread = thread;
9352 }
9353
9354 /* Create a private copy of any extra string. */
9355 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9356 b->ignore_count = ignore_count;
9357 b->disposition = tempflag ? disp_del : disp_donttouch;
9358 b->condition_not_parsed = 1;
9359 b->enable_state = enabled ? bp_enabled : bp_disabled;
9360 if ((type_wanted != bp_breakpoint
9361 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9362 b->pspace = current_program_space;
9363
9364 install_breakpoint (internal, std::move (b), 0);
9365 }
9366
9367 if (canonical.lsals.size () > 1)
9368 {
9369 warning (_("Multiple breakpoints were set.\nUse the "
9370 "\"delete\" command to delete unwanted breakpoints."));
9371 prev_breakpoint_count = prev_bkpt_count;
9372 }
9373
9374 update_global_location_list (UGLL_MAY_INSERT);
9375
9376 return 1;
9377 }
9378
9379 /* Set a breakpoint.
9380 ARG is a string describing breakpoint address,
9381 condition, and thread.
9382 FLAG specifies if a breakpoint is hardware on,
9383 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9384 and BP_TEMPFLAG. */
9385
9386 static void
9387 break_command_1 (const char *arg, int flag, int from_tty)
9388 {
9389 int tempflag = flag & BP_TEMPFLAG;
9390 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9391 ? bp_hardware_breakpoint
9392 : bp_breakpoint);
9393
9394 event_location_up location = string_to_event_location (&arg, current_language);
9395 const struct breakpoint_ops *ops = breakpoint_ops_for_event_location
9396 (location.get (), false /* is_tracepoint */);
9397
9398 create_breakpoint (get_current_arch (),
9399 location.get (),
9400 NULL, 0, arg, 1 /* parse arg */,
9401 tempflag, type_wanted,
9402 0 /* Ignore count */,
9403 pending_break_support,
9404 ops,
9405 from_tty,
9406 1 /* enabled */,
9407 0 /* internal */,
9408 0);
9409 }
9410
9411 /* Helper function for break_command_1 and disassemble_command. */
9412
9413 void
9414 resolve_sal_pc (struct symtab_and_line *sal)
9415 {
9416 CORE_ADDR pc;
9417
9418 if (sal->pc == 0 && sal->symtab != NULL)
9419 {
9420 if (!find_line_pc (sal->symtab, sal->line, &pc))
9421 error (_("No line %d in file \"%s\"."),
9422 sal->line, symtab_to_filename_for_display (sal->symtab));
9423 sal->pc = pc;
9424
9425 /* If this SAL corresponds to a breakpoint inserted using a line
9426 number, then skip the function prologue if necessary. */
9427 if (sal->explicit_line)
9428 skip_prologue_sal (sal);
9429 }
9430
9431 if (sal->section == 0 && sal->symtab != NULL)
9432 {
9433 const struct blockvector *bv;
9434 const struct block *b;
9435 struct symbol *sym;
9436
9437 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9438 SYMTAB_COMPUNIT (sal->symtab));
9439 if (bv != NULL)
9440 {
9441 sym = block_linkage_function (b);
9442 if (sym != NULL)
9443 {
9444 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9445 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9446 sym);
9447 }
9448 else
9449 {
9450 /* It really is worthwhile to have the section, so we'll
9451 just have to look harder. This case can be executed
9452 if we have line numbers but no functions (as can
9453 happen in assembly source). */
9454
9455 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9456 switch_to_program_space_and_thread (sal->pspace);
9457
9458 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9459 if (msym.minsym)
9460 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9461 }
9462 }
9463 }
9464 }
9465
9466 void
9467 break_command (const char *arg, int from_tty)
9468 {
9469 break_command_1 (arg, 0, from_tty);
9470 }
9471
9472 void
9473 tbreak_command (const char *arg, int from_tty)
9474 {
9475 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9476 }
9477
9478 static void
9479 hbreak_command (const char *arg, int from_tty)
9480 {
9481 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9482 }
9483
9484 static void
9485 thbreak_command (const char *arg, int from_tty)
9486 {
9487 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9488 }
9489
9490 static void
9491 stop_command (const char *arg, int from_tty)
9492 {
9493 printf_filtered (_("Specify the type of breakpoint to set.\n\
9494 Usage: stop in <function | address>\n\
9495 stop at <line>\n"));
9496 }
9497
9498 static void
9499 stopin_command (const char *arg, int from_tty)
9500 {
9501 int badInput = 0;
9502
9503 if (arg == NULL)
9504 badInput = 1;
9505 else if (*arg != '*')
9506 {
9507 const char *argptr = arg;
9508 int hasColon = 0;
9509
9510 /* Look for a ':'. If this is a line number specification, then
9511 say it is bad, otherwise, it should be an address or
9512 function/method name. */
9513 while (*argptr && !hasColon)
9514 {
9515 hasColon = (*argptr == ':');
9516 argptr++;
9517 }
9518
9519 if (hasColon)
9520 badInput = (*argptr != ':'); /* Not a class::method */
9521 else
9522 badInput = isdigit (*arg); /* a simple line number */
9523 }
9524
9525 if (badInput)
9526 printf_filtered (_("Usage: stop in <function | address>\n"));
9527 else
9528 break_command_1 (arg, 0, from_tty);
9529 }
9530
9531 static void
9532 stopat_command (const char *arg, int from_tty)
9533 {
9534 int badInput = 0;
9535
9536 if (arg == NULL || *arg == '*') /* no line number */
9537 badInput = 1;
9538 else
9539 {
9540 const char *argptr = arg;
9541 int hasColon = 0;
9542
9543 /* Look for a ':'. If there is a '::' then get out, otherwise
9544 it is probably a line number. */
9545 while (*argptr && !hasColon)
9546 {
9547 hasColon = (*argptr == ':');
9548 argptr++;
9549 }
9550
9551 if (hasColon)
9552 badInput = (*argptr == ':'); /* we have class::method */
9553 else
9554 badInput = !isdigit (*arg); /* not a line number */
9555 }
9556
9557 if (badInput)
9558 printf_filtered (_("Usage: stop at LINE\n"));
9559 else
9560 break_command_1 (arg, 0, from_tty);
9561 }
9562
9563 /* The dynamic printf command is mostly like a regular breakpoint, but
9564 with a prewired command list consisting of a single output command,
9565 built from extra arguments supplied on the dprintf command
9566 line. */
9567
9568 static void
9569 dprintf_command (const char *arg, int from_tty)
9570 {
9571 event_location_up location = string_to_event_location (&arg, current_language);
9572
9573 /* If non-NULL, ARG should have been advanced past the location;
9574 the next character must be ','. */
9575 if (arg != NULL)
9576 {
9577 if (arg[0] != ',' || arg[1] == '\0')
9578 error (_("Format string required"));
9579 else
9580 {
9581 /* Skip the comma. */
9582 ++arg;
9583 }
9584 }
9585
9586 create_breakpoint (get_current_arch (),
9587 location.get (),
9588 NULL, 0, arg, 1 /* parse arg */,
9589 0, bp_dprintf,
9590 0 /* Ignore count */,
9591 pending_break_support,
9592 &dprintf_breakpoint_ops,
9593 from_tty,
9594 1 /* enabled */,
9595 0 /* internal */,
9596 0);
9597 }
9598
9599 static void
9600 agent_printf_command (const char *arg, int from_tty)
9601 {
9602 error (_("May only run agent-printf on the target"));
9603 }
9604
9605 /* Implement the "breakpoint_hit" breakpoint_ops method for
9606 ranged breakpoints. */
9607
9608 static int
9609 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9610 const address_space *aspace,
9611 CORE_ADDR bp_addr,
9612 const struct target_waitstatus *ws)
9613 {
9614 if (ws->kind != TARGET_WAITKIND_STOPPED
9615 || ws->value.sig != GDB_SIGNAL_TRAP)
9616 return 0;
9617
9618 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9619 bl->length, aspace, bp_addr);
9620 }
9621
9622 /* Implement the "resources_needed" breakpoint_ops method for
9623 ranged breakpoints. */
9624
9625 static int
9626 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9627 {
9628 return target_ranged_break_num_registers ();
9629 }
9630
9631 /* Implement the "print_it" breakpoint_ops method for
9632 ranged breakpoints. */
9633
9634 static enum print_stop_action
9635 print_it_ranged_breakpoint (bpstat bs)
9636 {
9637 struct breakpoint *b = bs->breakpoint_at;
9638 struct bp_location *bl = b->loc;
9639 struct ui_out *uiout = current_uiout;
9640
9641 gdb_assert (b->type == bp_hardware_breakpoint);
9642
9643 /* Ranged breakpoints have only one location. */
9644 gdb_assert (bl && bl->next == NULL);
9645
9646 annotate_breakpoint (b->number);
9647
9648 maybe_print_thread_hit_breakpoint (uiout);
9649
9650 if (b->disposition == disp_del)
9651 uiout->text ("Temporary ranged breakpoint ");
9652 else
9653 uiout->text ("Ranged breakpoint ");
9654 if (uiout->is_mi_like_p ())
9655 {
9656 uiout->field_string ("reason",
9657 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9658 uiout->field_string ("disp", bpdisp_text (b->disposition));
9659 }
9660 uiout->field_signed ("bkptno", b->number);
9661 uiout->text (", ");
9662
9663 return PRINT_SRC_AND_LOC;
9664 }
9665
9666 /* Implement the "print_one" breakpoint_ops method for
9667 ranged breakpoints. */
9668
9669 static void
9670 print_one_ranged_breakpoint (struct breakpoint *b,
9671 struct bp_location **last_loc)
9672 {
9673 struct bp_location *bl = b->loc;
9674 struct value_print_options opts;
9675 struct ui_out *uiout = current_uiout;
9676
9677 /* Ranged breakpoints have only one location. */
9678 gdb_assert (bl && bl->next == NULL);
9679
9680 get_user_print_options (&opts);
9681
9682 if (opts.addressprint)
9683 /* We don't print the address range here, it will be printed later
9684 by print_one_detail_ranged_breakpoint. */
9685 uiout->field_skip ("addr");
9686 annotate_field (5);
9687 print_breakpoint_location (b, bl);
9688 *last_loc = bl;
9689 }
9690
9691 /* Implement the "print_one_detail" breakpoint_ops method for
9692 ranged breakpoints. */
9693
9694 static void
9695 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9696 struct ui_out *uiout)
9697 {
9698 CORE_ADDR address_start, address_end;
9699 struct bp_location *bl = b->loc;
9700 string_file stb;
9701
9702 gdb_assert (bl);
9703
9704 address_start = bl->address;
9705 address_end = address_start + bl->length - 1;
9706
9707 uiout->text ("\taddress range: ");
9708 stb.printf ("[%s, %s]",
9709 print_core_address (bl->gdbarch, address_start),
9710 print_core_address (bl->gdbarch, address_end));
9711 uiout->field_stream ("addr", stb);
9712 uiout->text ("\n");
9713 }
9714
9715 /* Implement the "print_mention" breakpoint_ops method for
9716 ranged breakpoints. */
9717
9718 static void
9719 print_mention_ranged_breakpoint (struct breakpoint *b)
9720 {
9721 struct bp_location *bl = b->loc;
9722 struct ui_out *uiout = current_uiout;
9723
9724 gdb_assert (bl);
9725 gdb_assert (b->type == bp_hardware_breakpoint);
9726
9727 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9728 b->number, paddress (bl->gdbarch, bl->address),
9729 paddress (bl->gdbarch, bl->address + bl->length - 1));
9730 }
9731
9732 /* Implement the "print_recreate" breakpoint_ops method for
9733 ranged breakpoints. */
9734
9735 static void
9736 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9737 {
9738 fprintf_unfiltered (fp, "break-range %s, %s",
9739 event_location_to_string (b->location.get ()),
9740 event_location_to_string (b->location_range_end.get ()));
9741 print_recreate_thread (b, fp);
9742 }
9743
9744 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9745
9746 static struct breakpoint_ops ranged_breakpoint_ops;
9747
9748 /* Find the address where the end of the breakpoint range should be
9749 placed, given the SAL of the end of the range. This is so that if
9750 the user provides a line number, the end of the range is set to the
9751 last instruction of the given line. */
9752
9753 static CORE_ADDR
9754 find_breakpoint_range_end (struct symtab_and_line sal)
9755 {
9756 CORE_ADDR end;
9757
9758 /* If the user provided a PC value, use it. Otherwise,
9759 find the address of the end of the given location. */
9760 if (sal.explicit_pc)
9761 end = sal.pc;
9762 else
9763 {
9764 int ret;
9765 CORE_ADDR start;
9766
9767 ret = find_line_pc_range (sal, &start, &end);
9768 if (!ret)
9769 error (_("Could not find location of the end of the range."));
9770
9771 /* find_line_pc_range returns the start of the next line. */
9772 end--;
9773 }
9774
9775 return end;
9776 }
9777
9778 /* Implement the "break-range" CLI command. */
9779
9780 static void
9781 break_range_command (const char *arg, int from_tty)
9782 {
9783 const char *arg_start;
9784 struct linespec_result canonical_start, canonical_end;
9785 int bp_count, can_use_bp, length;
9786 CORE_ADDR end;
9787 struct breakpoint *b;
9788
9789 /* We don't support software ranged breakpoints. */
9790 if (target_ranged_break_num_registers () < 0)
9791 error (_("This target does not support hardware ranged breakpoints."));
9792
9793 bp_count = hw_breakpoint_used_count ();
9794 bp_count += target_ranged_break_num_registers ();
9795 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9796 bp_count, 0);
9797 if (can_use_bp < 0)
9798 error (_("Hardware breakpoints used exceeds limit."));
9799
9800 arg = skip_spaces (arg);
9801 if (arg == NULL || arg[0] == '\0')
9802 error(_("No address range specified."));
9803
9804 arg_start = arg;
9805 event_location_up start_location = string_to_event_location (&arg,
9806 current_language);
9807 parse_breakpoint_sals (start_location.get (), &canonical_start);
9808
9809 if (arg[0] != ',')
9810 error (_("Too few arguments."));
9811 else if (canonical_start.lsals.empty ())
9812 error (_("Could not find location of the beginning of the range."));
9813
9814 const linespec_sals &lsal_start = canonical_start.lsals[0];
9815
9816 if (canonical_start.lsals.size () > 1
9817 || lsal_start.sals.size () != 1)
9818 error (_("Cannot create a ranged breakpoint with multiple locations."));
9819
9820 const symtab_and_line &sal_start = lsal_start.sals[0];
9821 std::string addr_string_start (arg_start, arg - arg_start);
9822
9823 arg++; /* Skip the comma. */
9824 arg = skip_spaces (arg);
9825
9826 /* Parse the end location. */
9827
9828 arg_start = arg;
9829
9830 /* We call decode_line_full directly here instead of using
9831 parse_breakpoint_sals because we need to specify the start location's
9832 symtab and line as the default symtab and line for the end of the
9833 range. This makes it possible to have ranges like "foo.c:27, +14",
9834 where +14 means 14 lines from the start location. */
9835 event_location_up end_location = string_to_event_location (&arg,
9836 current_language);
9837 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9838 sal_start.symtab, sal_start.line,
9839 &canonical_end, NULL, NULL);
9840
9841 if (canonical_end.lsals.empty ())
9842 error (_("Could not find location of the end of the range."));
9843
9844 const linespec_sals &lsal_end = canonical_end.lsals[0];
9845 if (canonical_end.lsals.size () > 1
9846 || lsal_end.sals.size () != 1)
9847 error (_("Cannot create a ranged breakpoint with multiple locations."));
9848
9849 const symtab_and_line &sal_end = lsal_end.sals[0];
9850
9851 end = find_breakpoint_range_end (sal_end);
9852 if (sal_start.pc > end)
9853 error (_("Invalid address range, end precedes start."));
9854
9855 length = end - sal_start.pc + 1;
9856 if (length < 0)
9857 /* Length overflowed. */
9858 error (_("Address range too large."));
9859 else if (length == 1)
9860 {
9861 /* This range is simple enough to be handled by
9862 the `hbreak' command. */
9863 hbreak_command (&addr_string_start[0], 1);
9864
9865 return;
9866 }
9867
9868 /* Now set up the breakpoint. */
9869 b = set_raw_breakpoint (get_current_arch (), sal_start,
9870 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9871 set_breakpoint_count (breakpoint_count + 1);
9872 b->number = breakpoint_count;
9873 b->disposition = disp_donttouch;
9874 b->location = std::move (start_location);
9875 b->location_range_end = std::move (end_location);
9876 b->loc->length = length;
9877
9878 mention (b);
9879 gdb::observers::breakpoint_created.notify (b);
9880 update_global_location_list (UGLL_MAY_INSERT);
9881 }
9882
9883 /* Return non-zero if EXP is verified as constant. Returned zero
9884 means EXP is variable. Also the constant detection may fail for
9885 some constant expressions and in such case still falsely return
9886 zero. */
9887
9888 static int
9889 watchpoint_exp_is_const (const struct expression *exp)
9890 {
9891 int i = exp->nelts;
9892
9893 while (i > 0)
9894 {
9895 int oplenp, argsp;
9896
9897 /* We are only interested in the descriptor of each element. */
9898 operator_length (exp, i, &oplenp, &argsp);
9899 i -= oplenp;
9900
9901 switch (exp->elts[i].opcode)
9902 {
9903 case BINOP_ADD:
9904 case BINOP_SUB:
9905 case BINOP_MUL:
9906 case BINOP_DIV:
9907 case BINOP_REM:
9908 case BINOP_MOD:
9909 case BINOP_LSH:
9910 case BINOP_RSH:
9911 case BINOP_LOGICAL_AND:
9912 case BINOP_LOGICAL_OR:
9913 case BINOP_BITWISE_AND:
9914 case BINOP_BITWISE_IOR:
9915 case BINOP_BITWISE_XOR:
9916 case BINOP_EQUAL:
9917 case BINOP_NOTEQUAL:
9918 case BINOP_LESS:
9919 case BINOP_GTR:
9920 case BINOP_LEQ:
9921 case BINOP_GEQ:
9922 case BINOP_REPEAT:
9923 case BINOP_COMMA:
9924 case BINOP_EXP:
9925 case BINOP_MIN:
9926 case BINOP_MAX:
9927 case BINOP_INTDIV:
9928 case BINOP_CONCAT:
9929 case TERNOP_COND:
9930 case TERNOP_SLICE:
9931
9932 case OP_LONG:
9933 case OP_FLOAT:
9934 case OP_LAST:
9935 case OP_COMPLEX:
9936 case OP_STRING:
9937 case OP_ARRAY:
9938 case OP_TYPE:
9939 case OP_TYPEOF:
9940 case OP_DECLTYPE:
9941 case OP_TYPEID:
9942 case OP_NAME:
9943 case OP_OBJC_NSSTRING:
9944
9945 case UNOP_NEG:
9946 case UNOP_LOGICAL_NOT:
9947 case UNOP_COMPLEMENT:
9948 case UNOP_ADDR:
9949 case UNOP_HIGH:
9950 case UNOP_CAST:
9951
9952 case UNOP_CAST_TYPE:
9953 case UNOP_REINTERPRET_CAST:
9954 case UNOP_DYNAMIC_CAST:
9955 /* Unary, binary and ternary operators: We have to check
9956 their operands. If they are constant, then so is the
9957 result of that operation. For instance, if A and B are
9958 determined to be constants, then so is "A + B".
9959
9960 UNOP_IND is one exception to the rule above, because the
9961 value of *ADDR is not necessarily a constant, even when
9962 ADDR is. */
9963 break;
9964
9965 case OP_VAR_VALUE:
9966 /* Check whether the associated symbol is a constant.
9967
9968 We use SYMBOL_CLASS rather than TYPE_CONST because it's
9969 possible that a buggy compiler could mark a variable as
9970 constant even when it is not, and TYPE_CONST would return
9971 true in this case, while SYMBOL_CLASS wouldn't.
9972
9973 We also have to check for function symbols because they
9974 are always constant. */
9975 {
9976 struct symbol *s = exp->elts[i + 2].symbol;
9977
9978 if (SYMBOL_CLASS (s) != LOC_BLOCK
9979 && SYMBOL_CLASS (s) != LOC_CONST
9980 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
9981 return 0;
9982 break;
9983 }
9984
9985 /* The default action is to return 0 because we are using
9986 the optimistic approach here: If we don't know something,
9987 then it is not a constant. */
9988 default:
9989 return 0;
9990 }
9991 }
9992
9993 return 1;
9994 }
9995
9996 /* Watchpoint destructor. */
9997
9998 watchpoint::~watchpoint ()
9999 {
10000 xfree (this->exp_string);
10001 xfree (this->exp_string_reparse);
10002 }
10003
10004 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10005
10006 static void
10007 re_set_watchpoint (struct breakpoint *b)
10008 {
10009 struct watchpoint *w = (struct watchpoint *) b;
10010
10011 /* Watchpoint can be either on expression using entirely global
10012 variables, or it can be on local variables.
10013
10014 Watchpoints of the first kind are never auto-deleted, and even
10015 persist across program restarts. Since they can use variables
10016 from shared libraries, we need to reparse expression as libraries
10017 are loaded and unloaded.
10018
10019 Watchpoints on local variables can also change meaning as result
10020 of solib event. For example, if a watchpoint uses both a local
10021 and a global variables in expression, it's a local watchpoint,
10022 but unloading of a shared library will make the expression
10023 invalid. This is not a very common use case, but we still
10024 re-evaluate expression, to avoid surprises to the user.
10025
10026 Note that for local watchpoints, we re-evaluate it only if
10027 watchpoints frame id is still valid. If it's not, it means the
10028 watchpoint is out of scope and will be deleted soon. In fact,
10029 I'm not sure we'll ever be called in this case.
10030
10031 If a local watchpoint's frame id is still valid, then
10032 w->exp_valid_block is likewise valid, and we can safely use it.
10033
10034 Don't do anything about disabled watchpoints, since they will be
10035 reevaluated again when enabled. */
10036 update_watchpoint (w, 1 /* reparse */);
10037 }
10038
10039 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10040
10041 static int
10042 insert_watchpoint (struct bp_location *bl)
10043 {
10044 struct watchpoint *w = (struct watchpoint *) bl->owner;
10045 int length = w->exact ? 1 : bl->length;
10046
10047 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10048 w->cond_exp.get ());
10049 }
10050
10051 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10052
10053 static int
10054 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10055 {
10056 struct watchpoint *w = (struct watchpoint *) bl->owner;
10057 int length = w->exact ? 1 : bl->length;
10058
10059 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10060 w->cond_exp.get ());
10061 }
10062
10063 static int
10064 breakpoint_hit_watchpoint (const struct bp_location *bl,
10065 const address_space *aspace, CORE_ADDR bp_addr,
10066 const struct target_waitstatus *ws)
10067 {
10068 struct breakpoint *b = bl->owner;
10069 struct watchpoint *w = (struct watchpoint *) b;
10070
10071 /* Continuable hardware watchpoints are treated as non-existent if the
10072 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10073 some data address). Otherwise gdb won't stop on a break instruction
10074 in the code (not from a breakpoint) when a hardware watchpoint has
10075 been defined. Also skip watchpoints which we know did not trigger
10076 (did not match the data address). */
10077 if (is_hardware_watchpoint (b)
10078 && w->watchpoint_triggered == watch_triggered_no)
10079 return 0;
10080
10081 return 1;
10082 }
10083
10084 static void
10085 check_status_watchpoint (bpstat bs)
10086 {
10087 gdb_assert (is_watchpoint (bs->breakpoint_at));
10088
10089 bpstat_check_watchpoint (bs);
10090 }
10091
10092 /* Implement the "resources_needed" breakpoint_ops method for
10093 hardware watchpoints. */
10094
10095 static int
10096 resources_needed_watchpoint (const struct bp_location *bl)
10097 {
10098 struct watchpoint *w = (struct watchpoint *) bl->owner;
10099 int length = w->exact? 1 : bl->length;
10100
10101 return target_region_ok_for_hw_watchpoint (bl->address, length);
10102 }
10103
10104 /* Implement the "works_in_software_mode" breakpoint_ops method for
10105 hardware watchpoints. */
10106
10107 static int
10108 works_in_software_mode_watchpoint (const struct breakpoint *b)
10109 {
10110 /* Read and access watchpoints only work with hardware support. */
10111 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10112 }
10113
10114 static enum print_stop_action
10115 print_it_watchpoint (bpstat bs)
10116 {
10117 struct breakpoint *b;
10118 enum print_stop_action result;
10119 struct watchpoint *w;
10120 struct ui_out *uiout = current_uiout;
10121
10122 gdb_assert (bs->bp_location_at != NULL);
10123
10124 b = bs->breakpoint_at;
10125 w = (struct watchpoint *) b;
10126
10127 annotate_watchpoint (b->number);
10128 maybe_print_thread_hit_breakpoint (uiout);
10129
10130 string_file stb;
10131
10132 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10133 switch (b->type)
10134 {
10135 case bp_watchpoint:
10136 case bp_hardware_watchpoint:
10137 if (uiout->is_mi_like_p ())
10138 uiout->field_string
10139 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10140 mention (b);
10141 tuple_emitter.emplace (uiout, "value");
10142 uiout->text ("\nOld value = ");
10143 watchpoint_value_print (bs->old_val.get (), &stb);
10144 uiout->field_stream ("old", stb);
10145 uiout->text ("\nNew value = ");
10146 watchpoint_value_print (w->val.get (), &stb);
10147 uiout->field_stream ("new", stb);
10148 uiout->text ("\n");
10149 /* More than one watchpoint may have been triggered. */
10150 result = PRINT_UNKNOWN;
10151 break;
10152
10153 case bp_read_watchpoint:
10154 if (uiout->is_mi_like_p ())
10155 uiout->field_string
10156 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10157 mention (b);
10158 tuple_emitter.emplace (uiout, "value");
10159 uiout->text ("\nValue = ");
10160 watchpoint_value_print (w->val.get (), &stb);
10161 uiout->field_stream ("value", stb);
10162 uiout->text ("\n");
10163 result = PRINT_UNKNOWN;
10164 break;
10165
10166 case bp_access_watchpoint:
10167 if (bs->old_val != NULL)
10168 {
10169 if (uiout->is_mi_like_p ())
10170 uiout->field_string
10171 ("reason",
10172 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10173 mention (b);
10174 tuple_emitter.emplace (uiout, "value");
10175 uiout->text ("\nOld value = ");
10176 watchpoint_value_print (bs->old_val.get (), &stb);
10177 uiout->field_stream ("old", stb);
10178 uiout->text ("\nNew value = ");
10179 }
10180 else
10181 {
10182 mention (b);
10183 if (uiout->is_mi_like_p ())
10184 uiout->field_string
10185 ("reason",
10186 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10187 tuple_emitter.emplace (uiout, "value");
10188 uiout->text ("\nValue = ");
10189 }
10190 watchpoint_value_print (w->val.get (), &stb);
10191 uiout->field_stream ("new", stb);
10192 uiout->text ("\n");
10193 result = PRINT_UNKNOWN;
10194 break;
10195 default:
10196 result = PRINT_UNKNOWN;
10197 }
10198
10199 return result;
10200 }
10201
10202 /* Implement the "print_mention" breakpoint_ops method for hardware
10203 watchpoints. */
10204
10205 static void
10206 print_mention_watchpoint (struct breakpoint *b)
10207 {
10208 struct watchpoint *w = (struct watchpoint *) b;
10209 struct ui_out *uiout = current_uiout;
10210 const char *tuple_name;
10211
10212 switch (b->type)
10213 {
10214 case bp_watchpoint:
10215 uiout->text ("Watchpoint ");
10216 tuple_name = "wpt";
10217 break;
10218 case bp_hardware_watchpoint:
10219 uiout->text ("Hardware watchpoint ");
10220 tuple_name = "wpt";
10221 break;
10222 case bp_read_watchpoint:
10223 uiout->text ("Hardware read watchpoint ");
10224 tuple_name = "hw-rwpt";
10225 break;
10226 case bp_access_watchpoint:
10227 uiout->text ("Hardware access (read/write) watchpoint ");
10228 tuple_name = "hw-awpt";
10229 break;
10230 default:
10231 internal_error (__FILE__, __LINE__,
10232 _("Invalid hardware watchpoint type."));
10233 }
10234
10235 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10236 uiout->field_signed ("number", b->number);
10237 uiout->text (": ");
10238 uiout->field_string ("exp", w->exp_string);
10239 }
10240
10241 /* Implement the "print_recreate" breakpoint_ops method for
10242 watchpoints. */
10243
10244 static void
10245 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10246 {
10247 struct watchpoint *w = (struct watchpoint *) b;
10248
10249 switch (b->type)
10250 {
10251 case bp_watchpoint:
10252 case bp_hardware_watchpoint:
10253 fprintf_unfiltered (fp, "watch");
10254 break;
10255 case bp_read_watchpoint:
10256 fprintf_unfiltered (fp, "rwatch");
10257 break;
10258 case bp_access_watchpoint:
10259 fprintf_unfiltered (fp, "awatch");
10260 break;
10261 default:
10262 internal_error (__FILE__, __LINE__,
10263 _("Invalid watchpoint type."));
10264 }
10265
10266 fprintf_unfiltered (fp, " %s", w->exp_string);
10267 print_recreate_thread (b, fp);
10268 }
10269
10270 /* Implement the "explains_signal" breakpoint_ops method for
10271 watchpoints. */
10272
10273 static int
10274 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10275 {
10276 /* A software watchpoint cannot cause a signal other than
10277 GDB_SIGNAL_TRAP. */
10278 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10279 return 0;
10280
10281 return 1;
10282 }
10283
10284 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10285
10286 static struct breakpoint_ops watchpoint_breakpoint_ops;
10287
10288 /* Implement the "insert" breakpoint_ops method for
10289 masked hardware watchpoints. */
10290
10291 static int
10292 insert_masked_watchpoint (struct bp_location *bl)
10293 {
10294 struct watchpoint *w = (struct watchpoint *) bl->owner;
10295
10296 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10297 bl->watchpoint_type);
10298 }
10299
10300 /* Implement the "remove" breakpoint_ops method for
10301 masked hardware watchpoints. */
10302
10303 static int
10304 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10305 {
10306 struct watchpoint *w = (struct watchpoint *) bl->owner;
10307
10308 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10309 bl->watchpoint_type);
10310 }
10311
10312 /* Implement the "resources_needed" breakpoint_ops method for
10313 masked hardware watchpoints. */
10314
10315 static int
10316 resources_needed_masked_watchpoint (const struct bp_location *bl)
10317 {
10318 struct watchpoint *w = (struct watchpoint *) bl->owner;
10319
10320 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10321 }
10322
10323 /* Implement the "works_in_software_mode" breakpoint_ops method for
10324 masked hardware watchpoints. */
10325
10326 static int
10327 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10328 {
10329 return 0;
10330 }
10331
10332 /* Implement the "print_it" breakpoint_ops method for
10333 masked hardware watchpoints. */
10334
10335 static enum print_stop_action
10336 print_it_masked_watchpoint (bpstat bs)
10337 {
10338 struct breakpoint *b = bs->breakpoint_at;
10339 struct ui_out *uiout = current_uiout;
10340
10341 /* Masked watchpoints have only one location. */
10342 gdb_assert (b->loc && b->loc->next == NULL);
10343
10344 annotate_watchpoint (b->number);
10345 maybe_print_thread_hit_breakpoint (uiout);
10346
10347 switch (b->type)
10348 {
10349 case bp_hardware_watchpoint:
10350 if (uiout->is_mi_like_p ())
10351 uiout->field_string
10352 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10353 break;
10354
10355 case bp_read_watchpoint:
10356 if (uiout->is_mi_like_p ())
10357 uiout->field_string
10358 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10359 break;
10360
10361 case bp_access_watchpoint:
10362 if (uiout->is_mi_like_p ())
10363 uiout->field_string
10364 ("reason",
10365 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10366 break;
10367 default:
10368 internal_error (__FILE__, __LINE__,
10369 _("Invalid hardware watchpoint type."));
10370 }
10371
10372 mention (b);
10373 uiout->text (_("\n\
10374 Check the underlying instruction at PC for the memory\n\
10375 address and value which triggered this watchpoint.\n"));
10376 uiout->text ("\n");
10377
10378 /* More than one watchpoint may have been triggered. */
10379 return PRINT_UNKNOWN;
10380 }
10381
10382 /* Implement the "print_one_detail" breakpoint_ops method for
10383 masked hardware watchpoints. */
10384
10385 static void
10386 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10387 struct ui_out *uiout)
10388 {
10389 struct watchpoint *w = (struct watchpoint *) b;
10390
10391 /* Masked watchpoints have only one location. */
10392 gdb_assert (b->loc && b->loc->next == NULL);
10393
10394 uiout->text ("\tmask ");
10395 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10396 uiout->text ("\n");
10397 }
10398
10399 /* Implement the "print_mention" breakpoint_ops method for
10400 masked hardware watchpoints. */
10401
10402 static void
10403 print_mention_masked_watchpoint (struct breakpoint *b)
10404 {
10405 struct watchpoint *w = (struct watchpoint *) b;
10406 struct ui_out *uiout = current_uiout;
10407 const char *tuple_name;
10408
10409 switch (b->type)
10410 {
10411 case bp_hardware_watchpoint:
10412 uiout->text ("Masked hardware watchpoint ");
10413 tuple_name = "wpt";
10414 break;
10415 case bp_read_watchpoint:
10416 uiout->text ("Masked hardware read watchpoint ");
10417 tuple_name = "hw-rwpt";
10418 break;
10419 case bp_access_watchpoint:
10420 uiout->text ("Masked hardware access (read/write) watchpoint ");
10421 tuple_name = "hw-awpt";
10422 break;
10423 default:
10424 internal_error (__FILE__, __LINE__,
10425 _("Invalid hardware watchpoint type."));
10426 }
10427
10428 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10429 uiout->field_signed ("number", b->number);
10430 uiout->text (": ");
10431 uiout->field_string ("exp", w->exp_string);
10432 }
10433
10434 /* Implement the "print_recreate" breakpoint_ops method for
10435 masked hardware watchpoints. */
10436
10437 static void
10438 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10439 {
10440 struct watchpoint *w = (struct watchpoint *) b;
10441
10442 switch (b->type)
10443 {
10444 case bp_hardware_watchpoint:
10445 fprintf_unfiltered (fp, "watch");
10446 break;
10447 case bp_read_watchpoint:
10448 fprintf_unfiltered (fp, "rwatch");
10449 break;
10450 case bp_access_watchpoint:
10451 fprintf_unfiltered (fp, "awatch");
10452 break;
10453 default:
10454 internal_error (__FILE__, __LINE__,
10455 _("Invalid hardware watchpoint type."));
10456 }
10457
10458 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string,
10459 phex (w->hw_wp_mask, sizeof (CORE_ADDR)));
10460 print_recreate_thread (b, fp);
10461 }
10462
10463 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10464
10465 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10466
10467 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10468
10469 static bool
10470 is_masked_watchpoint (const struct breakpoint *b)
10471 {
10472 return b->ops == &masked_watchpoint_breakpoint_ops;
10473 }
10474
10475 /* accessflag: hw_write: watch write,
10476 hw_read: watch read,
10477 hw_access: watch access (read or write) */
10478 static void
10479 watch_command_1 (const char *arg, int accessflag, int from_tty,
10480 int just_location, int internal)
10481 {
10482 struct breakpoint *scope_breakpoint = NULL;
10483 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10484 struct value *result;
10485 int saved_bitpos = 0, saved_bitsize = 0;
10486 const char *exp_start = NULL;
10487 const char *exp_end = NULL;
10488 const char *tok, *end_tok;
10489 int toklen = -1;
10490 const char *cond_start = NULL;
10491 const char *cond_end = NULL;
10492 enum bptype bp_type;
10493 int thread = -1;
10494 int pc = 0;
10495 /* Flag to indicate whether we are going to use masks for
10496 the hardware watchpoint. */
10497 int use_mask = 0;
10498 CORE_ADDR mask = 0;
10499
10500 /* Make sure that we actually have parameters to parse. */
10501 if (arg != NULL && arg[0] != '\0')
10502 {
10503 const char *value_start;
10504
10505 exp_end = arg + strlen (arg);
10506
10507 /* Look for "parameter value" pairs at the end
10508 of the arguments string. */
10509 for (tok = exp_end - 1; tok > arg; tok--)
10510 {
10511 /* Skip whitespace at the end of the argument list. */
10512 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10513 tok--;
10514
10515 /* Find the beginning of the last token.
10516 This is the value of the parameter. */
10517 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10518 tok--;
10519 value_start = tok + 1;
10520
10521 /* Skip whitespace. */
10522 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10523 tok--;
10524
10525 end_tok = tok;
10526
10527 /* Find the beginning of the second to last token.
10528 This is the parameter itself. */
10529 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10530 tok--;
10531 tok++;
10532 toklen = end_tok - tok + 1;
10533
10534 if (toklen == 6 && startswith (tok, "thread"))
10535 {
10536 struct thread_info *thr;
10537 /* At this point we've found a "thread" token, which means
10538 the user is trying to set a watchpoint that triggers
10539 only in a specific thread. */
10540 const char *endp;
10541
10542 if (thread != -1)
10543 error(_("You can specify only one thread."));
10544
10545 /* Extract the thread ID from the next token. */
10546 thr = parse_thread_id (value_start, &endp);
10547
10548 /* Check if the user provided a valid thread ID. */
10549 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10550 invalid_thread_id_error (value_start);
10551
10552 thread = thr->global_num;
10553 }
10554 else if (toklen == 4 && startswith (tok, "mask"))
10555 {
10556 /* We've found a "mask" token, which means the user wants to
10557 create a hardware watchpoint that is going to have the mask
10558 facility. */
10559 struct value *mask_value, *mark;
10560
10561 if (use_mask)
10562 error(_("You can specify only one mask."));
10563
10564 use_mask = just_location = 1;
10565
10566 mark = value_mark ();
10567 mask_value = parse_to_comma_and_eval (&value_start);
10568 mask = value_as_address (mask_value);
10569 value_free_to_mark (mark);
10570 }
10571 else
10572 /* We didn't recognize what we found. We should stop here. */
10573 break;
10574
10575 /* Truncate the string and get rid of the "parameter value" pair before
10576 the arguments string is parsed by the parse_exp_1 function. */
10577 exp_end = tok;
10578 }
10579 }
10580 else
10581 exp_end = arg;
10582
10583 /* Parse the rest of the arguments. From here on out, everything
10584 is in terms of a newly allocated string instead of the original
10585 ARG. */
10586 std::string expression (arg, exp_end - arg);
10587 exp_start = arg = expression.c_str ();
10588 innermost_block_tracker tracker;
10589 expression_up exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
10590 exp_end = arg;
10591 /* Remove trailing whitespace from the expression before saving it.
10592 This makes the eventual display of the expression string a bit
10593 prettier. */
10594 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10595 --exp_end;
10596
10597 /* Checking if the expression is not constant. */
10598 if (watchpoint_exp_is_const (exp.get ()))
10599 {
10600 int len;
10601
10602 len = exp_end - exp_start;
10603 while (len > 0 && isspace (exp_start[len - 1]))
10604 len--;
10605 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10606 }
10607
10608 exp_valid_block = tracker.block ();
10609 struct value *mark = value_mark ();
10610 struct value *val_as_value = nullptr;
10611 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10612 just_location);
10613
10614 if (val_as_value != NULL && just_location)
10615 {
10616 saved_bitpos = value_bitpos (val_as_value);
10617 saved_bitsize = value_bitsize (val_as_value);
10618 }
10619
10620 value_ref_ptr val;
10621 if (just_location)
10622 {
10623 int ret;
10624
10625 exp_valid_block = NULL;
10626 val = release_value (value_addr (result));
10627 value_free_to_mark (mark);
10628
10629 if (use_mask)
10630 {
10631 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10632 mask);
10633 if (ret == -1)
10634 error (_("This target does not support masked watchpoints."));
10635 else if (ret == -2)
10636 error (_("Invalid mask or memory region."));
10637 }
10638 }
10639 else if (val_as_value != NULL)
10640 val = release_value (val_as_value);
10641
10642 tok = skip_spaces (arg);
10643 end_tok = skip_to_space (tok);
10644
10645 toklen = end_tok - tok;
10646 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10647 {
10648 tok = cond_start = end_tok + 1;
10649 innermost_block_tracker if_tracker;
10650 parse_exp_1 (&tok, 0, 0, 0, &if_tracker);
10651
10652 /* The watchpoint expression may not be local, but the condition
10653 may still be. E.g.: `watch global if local > 0'. */
10654 cond_exp_valid_block = if_tracker.block ();
10655
10656 cond_end = tok;
10657 }
10658 if (*tok)
10659 error (_("Junk at end of command."));
10660
10661 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10662
10663 /* Save this because create_internal_breakpoint below invalidates
10664 'wp_frame'. */
10665 frame_id watchpoint_frame = get_frame_id (wp_frame);
10666
10667 /* If the expression is "local", then set up a "watchpoint scope"
10668 breakpoint at the point where we've left the scope of the watchpoint
10669 expression. Create the scope breakpoint before the watchpoint, so
10670 that we will encounter it first in bpstat_stop_status. */
10671 if (exp_valid_block != NULL && wp_frame != NULL)
10672 {
10673 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10674
10675 if (frame_id_p (caller_frame_id))
10676 {
10677 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10678 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10679
10680 scope_breakpoint
10681 = create_internal_breakpoint (caller_arch, caller_pc,
10682 bp_watchpoint_scope,
10683 &momentary_breakpoint_ops);
10684
10685 /* create_internal_breakpoint could invalidate WP_FRAME. */
10686 wp_frame = NULL;
10687
10688 scope_breakpoint->enable_state = bp_enabled;
10689
10690 /* Automatically delete the breakpoint when it hits. */
10691 scope_breakpoint->disposition = disp_del;
10692
10693 /* Only break in the proper frame (help with recursion). */
10694 scope_breakpoint->frame_id = caller_frame_id;
10695
10696 /* Set the address at which we will stop. */
10697 scope_breakpoint->loc->gdbarch = caller_arch;
10698 scope_breakpoint->loc->requested_address = caller_pc;
10699 scope_breakpoint->loc->address
10700 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10701 scope_breakpoint->loc->requested_address,
10702 scope_breakpoint->type);
10703 }
10704 }
10705
10706 /* Now set up the breakpoint. We create all watchpoints as hardware
10707 watchpoints here even if hardware watchpoints are turned off, a call
10708 to update_watchpoint later in this function will cause the type to
10709 drop back to bp_watchpoint (software watchpoint) if required. */
10710
10711 if (accessflag == hw_read)
10712 bp_type = bp_read_watchpoint;
10713 else if (accessflag == hw_access)
10714 bp_type = bp_access_watchpoint;
10715 else
10716 bp_type = bp_hardware_watchpoint;
10717
10718 std::unique_ptr<watchpoint> w (new watchpoint ());
10719
10720 if (use_mask)
10721 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10722 &masked_watchpoint_breakpoint_ops);
10723 else
10724 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10725 &watchpoint_breakpoint_ops);
10726 w->thread = thread;
10727 w->disposition = disp_donttouch;
10728 w->pspace = current_program_space;
10729 w->exp = std::move (exp);
10730 w->exp_valid_block = exp_valid_block;
10731 w->cond_exp_valid_block = cond_exp_valid_block;
10732 if (just_location)
10733 {
10734 struct type *t = value_type (val.get ());
10735 CORE_ADDR addr = value_as_address (val.get ());
10736
10737 w->exp_string_reparse
10738 = current_language->watch_location_expression (t, addr).release ();
10739
10740 w->exp_string = xstrprintf ("-location %.*s",
10741 (int) (exp_end - exp_start), exp_start);
10742 }
10743 else
10744 w->exp_string = savestring (exp_start, exp_end - exp_start);
10745
10746 if (use_mask)
10747 {
10748 w->hw_wp_mask = mask;
10749 }
10750 else
10751 {
10752 w->val = val;
10753 w->val_bitpos = saved_bitpos;
10754 w->val_bitsize = saved_bitsize;
10755 w->val_valid = true;
10756 }
10757
10758 if (cond_start)
10759 w->cond_string = savestring (cond_start, cond_end - cond_start);
10760 else
10761 w->cond_string = 0;
10762
10763 if (frame_id_p (watchpoint_frame))
10764 {
10765 w->watchpoint_frame = watchpoint_frame;
10766 w->watchpoint_thread = inferior_ptid;
10767 }
10768 else
10769 {
10770 w->watchpoint_frame = null_frame_id;
10771 w->watchpoint_thread = null_ptid;
10772 }
10773
10774 if (scope_breakpoint != NULL)
10775 {
10776 /* The scope breakpoint is related to the watchpoint. We will
10777 need to act on them together. */
10778 w->related_breakpoint = scope_breakpoint;
10779 scope_breakpoint->related_breakpoint = w.get ();
10780 }
10781
10782 if (!just_location)
10783 value_free_to_mark (mark);
10784
10785 /* Finally update the new watchpoint. This creates the locations
10786 that should be inserted. */
10787 update_watchpoint (w.get (), 1);
10788
10789 install_breakpoint (internal, std::move (w), 1);
10790 }
10791
10792 /* Return count of debug registers needed to watch the given expression.
10793 If the watchpoint cannot be handled in hardware return zero. */
10794
10795 static int
10796 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10797 {
10798 int found_memory_cnt = 0;
10799
10800 /* Did the user specifically forbid us to use hardware watchpoints? */
10801 if (!can_use_hw_watchpoints)
10802 return 0;
10803
10804 gdb_assert (!vals.empty ());
10805 struct value *head = vals[0].get ();
10806
10807 /* Make sure that the value of the expression depends only upon
10808 memory contents, and values computed from them within GDB. If we
10809 find any register references or function calls, we can't use a
10810 hardware watchpoint.
10811
10812 The idea here is that evaluating an expression generates a series
10813 of values, one holding the value of every subexpression. (The
10814 expression a*b+c has five subexpressions: a, b, a*b, c, and
10815 a*b+c.) GDB's values hold almost enough information to establish
10816 the criteria given above --- they identify memory lvalues,
10817 register lvalues, computed values, etcetera. So we can evaluate
10818 the expression, and then scan the chain of values that leaves
10819 behind to decide whether we can detect any possible change to the
10820 expression's final value using only hardware watchpoints.
10821
10822 However, I don't think that the values returned by inferior
10823 function calls are special in any way. So this function may not
10824 notice that an expression involving an inferior function call
10825 can't be watched with hardware watchpoints. FIXME. */
10826 for (const value_ref_ptr &iter : vals)
10827 {
10828 struct value *v = iter.get ();
10829
10830 if (VALUE_LVAL (v) == lval_memory)
10831 {
10832 if (v != head && value_lazy (v))
10833 /* A lazy memory lvalue in the chain is one that GDB never
10834 needed to fetch; we either just used its address (e.g.,
10835 `a' in `a.b') or we never needed it at all (e.g., `a'
10836 in `a,b'). This doesn't apply to HEAD; if that is
10837 lazy then it was not readable, but watch it anyway. */
10838 ;
10839 else
10840 {
10841 /* Ahh, memory we actually used! Check if we can cover
10842 it with hardware watchpoints. */
10843 struct type *vtype = check_typedef (value_type (v));
10844
10845 /* We only watch structs and arrays if user asked for it
10846 explicitly, never if they just happen to appear in a
10847 middle of some value chain. */
10848 if (v == head
10849 || (vtype->code () != TYPE_CODE_STRUCT
10850 && vtype->code () != TYPE_CODE_ARRAY))
10851 {
10852 CORE_ADDR vaddr = value_address (v);
10853 int len;
10854 int num_regs;
10855
10856 len = (target_exact_watchpoints
10857 && is_scalar_type_recursive (vtype))?
10858 1 : TYPE_LENGTH (value_type (v));
10859
10860 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10861 if (!num_regs)
10862 return 0;
10863 else
10864 found_memory_cnt += num_regs;
10865 }
10866 }
10867 }
10868 else if (VALUE_LVAL (v) != not_lval
10869 && deprecated_value_modifiable (v) == 0)
10870 return 0; /* These are values from the history (e.g., $1). */
10871 else if (VALUE_LVAL (v) == lval_register)
10872 return 0; /* Cannot watch a register with a HW watchpoint. */
10873 }
10874
10875 /* The expression itself looks suitable for using a hardware
10876 watchpoint, but give the target machine a chance to reject it. */
10877 return found_memory_cnt;
10878 }
10879
10880 void
10881 watch_command_wrapper (const char *arg, int from_tty, int internal)
10882 {
10883 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10884 }
10885
10886 /* A helper function that looks for the "-location" argument and then
10887 calls watch_command_1. */
10888
10889 static void
10890 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10891 {
10892 int just_location = 0;
10893
10894 if (arg
10895 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10896 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10897 just_location = 1;
10898
10899 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10900 }
10901
10902 static void
10903 watch_command (const char *arg, int from_tty)
10904 {
10905 watch_maybe_just_location (arg, hw_write, from_tty);
10906 }
10907
10908 void
10909 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10910 {
10911 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10912 }
10913
10914 static void
10915 rwatch_command (const char *arg, int from_tty)
10916 {
10917 watch_maybe_just_location (arg, hw_read, from_tty);
10918 }
10919
10920 void
10921 awatch_command_wrapper (const char *arg, int from_tty, int internal)
10922 {
10923 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10924 }
10925
10926 static void
10927 awatch_command (const char *arg, int from_tty)
10928 {
10929 watch_maybe_just_location (arg, hw_access, from_tty);
10930 }
10931 \f
10932
10933 /* Data for the FSM that manages the until(location)/advance commands
10934 in infcmd.c. Here because it uses the mechanisms of
10935 breakpoints. */
10936
10937 struct until_break_fsm : public thread_fsm
10938 {
10939 /* The thread that was current when the command was executed. */
10940 int thread;
10941
10942 /* The breakpoint set at the return address in the caller frame,
10943 plus breakpoints at all the destination locations. */
10944 std::vector<breakpoint_up> breakpoints;
10945
10946 until_break_fsm (struct interp *cmd_interp, int thread,
10947 std::vector<breakpoint_up> &&breakpoints)
10948 : thread_fsm (cmd_interp),
10949 thread (thread),
10950 breakpoints (std::move (breakpoints))
10951 {
10952 }
10953
10954 void clean_up (struct thread_info *thread) override;
10955 bool should_stop (struct thread_info *thread) override;
10956 enum async_reply_reason do_async_reply_reason () override;
10957 };
10958
10959 /* Implementation of the 'should_stop' FSM method for the
10960 until(location)/advance commands. */
10961
10962 bool
10963 until_break_fsm::should_stop (struct thread_info *tp)
10964 {
10965 for (const breakpoint_up &bp : breakpoints)
10966 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
10967 bp.get ()) != NULL)
10968 {
10969 set_finished ();
10970 break;
10971 }
10972
10973 return true;
10974 }
10975
10976 /* Implementation of the 'clean_up' FSM method for the
10977 until(location)/advance commands. */
10978
10979 void
10980 until_break_fsm::clean_up (struct thread_info *)
10981 {
10982 /* Clean up our temporary breakpoints. */
10983 breakpoints.clear ();
10984 delete_longjmp_breakpoint (thread);
10985 }
10986
10987 /* Implementation of the 'async_reply_reason' FSM method for the
10988 until(location)/advance commands. */
10989
10990 enum async_reply_reason
10991 until_break_fsm::do_async_reply_reason ()
10992 {
10993 return EXEC_ASYNC_LOCATION_REACHED;
10994 }
10995
10996 void
10997 until_break_command (const char *arg, int from_tty, int anywhere)
10998 {
10999 struct frame_info *frame;
11000 struct gdbarch *frame_gdbarch;
11001 struct frame_id stack_frame_id;
11002 struct frame_id caller_frame_id;
11003 int thread;
11004 struct thread_info *tp;
11005
11006 clear_proceed_status (0);
11007
11008 /* Set a breakpoint where the user wants it and at return from
11009 this function. */
11010
11011 event_location_up location = string_to_event_location (&arg, current_language);
11012
11013 std::vector<symtab_and_line> sals
11014 = (last_displayed_sal_is_valid ()
11015 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11016 get_last_displayed_symtab (),
11017 get_last_displayed_line ())
11018 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11019 NULL, NULL, 0));
11020
11021 if (sals.empty ())
11022 error (_("Couldn't get information on specified line."));
11023
11024 if (*arg)
11025 error (_("Junk at end of arguments."));
11026
11027 tp = inferior_thread ();
11028 thread = tp->global_num;
11029
11030 /* Note linespec handling above invalidates the frame chain.
11031 Installing a breakpoint also invalidates the frame chain (as it
11032 may need to switch threads), so do any frame handling before
11033 that. */
11034
11035 frame = get_selected_frame (NULL);
11036 frame_gdbarch = get_frame_arch (frame);
11037 stack_frame_id = get_stack_frame_id (frame);
11038 caller_frame_id = frame_unwind_caller_id (frame);
11039
11040 /* Keep within the current frame, or in frames called by the current
11041 one. */
11042
11043 std::vector<breakpoint_up> breakpoints;
11044
11045 gdb::optional<delete_longjmp_breakpoint_cleanup> lj_deleter;
11046
11047 if (frame_id_p (caller_frame_id))
11048 {
11049 struct symtab_and_line sal2;
11050 struct gdbarch *caller_gdbarch;
11051
11052 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11053 sal2.pc = frame_unwind_caller_pc (frame);
11054 caller_gdbarch = frame_unwind_caller_arch (frame);
11055
11056 breakpoint_up caller_breakpoint
11057 = set_momentary_breakpoint (caller_gdbarch, sal2,
11058 caller_frame_id, bp_until);
11059 breakpoints.emplace_back (std::move (caller_breakpoint));
11060
11061 set_longjmp_breakpoint (tp, caller_frame_id);
11062 lj_deleter.emplace (thread);
11063 }
11064
11065 /* set_momentary_breakpoint could invalidate FRAME. */
11066 frame = NULL;
11067
11068 /* If the user told us to continue until a specified location, we
11069 don't specify a frame at which we need to stop. Otherwise,
11070 specify the selected frame, because we want to stop only at the
11071 very same frame. */
11072 frame_id stop_frame_id = anywhere ? null_frame_id : stack_frame_id;
11073
11074 for (symtab_and_line &sal : sals)
11075 {
11076 resolve_sal_pc (&sal);
11077
11078 breakpoint_up location_breakpoint
11079 = set_momentary_breakpoint (frame_gdbarch, sal,
11080 stop_frame_id, bp_until);
11081 breakpoints.emplace_back (std::move (location_breakpoint));
11082 }
11083
11084 tp->thread_fsm = new until_break_fsm (command_interp (), tp->global_num,
11085 std::move (breakpoints));
11086
11087 if (lj_deleter)
11088 lj_deleter->release ();
11089
11090 proceed (-1, GDB_SIGNAL_DEFAULT);
11091 }
11092
11093 /* This function attempts to parse an optional "if <cond>" clause
11094 from the arg string. If one is not found, it returns NULL.
11095
11096 Else, it returns a pointer to the condition string. (It does not
11097 attempt to evaluate the string against a particular block.) And,
11098 it updates arg to point to the first character following the parsed
11099 if clause in the arg string. */
11100
11101 const char *
11102 ep_parse_optional_if_clause (const char **arg)
11103 {
11104 const char *cond_string;
11105
11106 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11107 return NULL;
11108
11109 /* Skip the "if" keyword. */
11110 (*arg) += 2;
11111
11112 /* Skip any extra leading whitespace, and record the start of the
11113 condition string. */
11114 *arg = skip_spaces (*arg);
11115 cond_string = *arg;
11116
11117 /* Assume that the condition occupies the remainder of the arg
11118 string. */
11119 (*arg) += strlen (cond_string);
11120
11121 return cond_string;
11122 }
11123
11124 /* Commands to deal with catching events, such as signals, exceptions,
11125 process start/exit, etc. */
11126
11127 typedef enum
11128 {
11129 catch_fork_temporary, catch_vfork_temporary,
11130 catch_fork_permanent, catch_vfork_permanent
11131 }
11132 catch_fork_kind;
11133
11134 static void
11135 catch_fork_command_1 (const char *arg, int from_tty,
11136 struct cmd_list_element *command)
11137 {
11138 struct gdbarch *gdbarch = get_current_arch ();
11139 const char *cond_string = NULL;
11140 catch_fork_kind fork_kind;
11141
11142 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11143 bool temp = (fork_kind == catch_fork_temporary
11144 || fork_kind == catch_vfork_temporary);
11145
11146 if (!arg)
11147 arg = "";
11148 arg = skip_spaces (arg);
11149
11150 /* The allowed syntax is:
11151 catch [v]fork
11152 catch [v]fork if <cond>
11153
11154 First, check if there's an if clause. */
11155 cond_string = ep_parse_optional_if_clause (&arg);
11156
11157 if ((*arg != '\0') && !isspace (*arg))
11158 error (_("Junk at end of arguments."));
11159
11160 /* If this target supports it, create a fork or vfork catchpoint
11161 and enable reporting of such events. */
11162 switch (fork_kind)
11163 {
11164 case catch_fork_temporary:
11165 case catch_fork_permanent:
11166 create_fork_vfork_event_catchpoint (gdbarch, temp, cond_string,
11167 &catch_fork_breakpoint_ops);
11168 break;
11169 case catch_vfork_temporary:
11170 case catch_vfork_permanent:
11171 create_fork_vfork_event_catchpoint (gdbarch, temp, cond_string,
11172 &catch_vfork_breakpoint_ops);
11173 break;
11174 default:
11175 error (_("unsupported or unknown fork kind; cannot catch it"));
11176 break;
11177 }
11178 }
11179
11180 static void
11181 catch_exec_command_1 (const char *arg, int from_tty,
11182 struct cmd_list_element *command)
11183 {
11184 struct gdbarch *gdbarch = get_current_arch ();
11185 const char *cond_string = NULL;
11186 bool temp = get_cmd_context (command) == CATCH_TEMPORARY;
11187
11188 if (!arg)
11189 arg = "";
11190 arg = skip_spaces (arg);
11191
11192 /* The allowed syntax is:
11193 catch exec
11194 catch exec if <cond>
11195
11196 First, check if there's an if clause. */
11197 cond_string = ep_parse_optional_if_clause (&arg);
11198
11199 if ((*arg != '\0') && !isspace (*arg))
11200 error (_("Junk at end of arguments."));
11201
11202 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11203 init_catchpoint (c.get (), gdbarch, temp, cond_string,
11204 &catch_exec_breakpoint_ops);
11205 c->exec_pathname = NULL;
11206
11207 install_breakpoint (0, std::move (c), 1);
11208 }
11209
11210 void
11211 init_ada_exception_breakpoint (struct breakpoint *b,
11212 struct gdbarch *gdbarch,
11213 struct symtab_and_line sal,
11214 const char *addr_string,
11215 const struct breakpoint_ops *ops,
11216 int tempflag,
11217 int enabled,
11218 int from_tty)
11219 {
11220 if (from_tty)
11221 {
11222 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11223 if (!loc_gdbarch)
11224 loc_gdbarch = gdbarch;
11225
11226 describe_other_breakpoints (loc_gdbarch,
11227 sal.pspace, sal.pc, sal.section, -1);
11228 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11229 version for exception catchpoints, because two catchpoints
11230 used for different exception names will use the same address.
11231 In this case, a "breakpoint ... also set at..." warning is
11232 unproductive. Besides, the warning phrasing is also a bit
11233 inappropriate, we should use the word catchpoint, and tell
11234 the user what type of catchpoint it is. The above is good
11235 enough for now, though. */
11236 }
11237
11238 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
11239
11240 b->enable_state = enabled ? bp_enabled : bp_disabled;
11241 b->disposition = tempflag ? disp_del : disp_donttouch;
11242 b->location = string_to_event_location (&addr_string,
11243 language_def (language_ada));
11244 b->language = language_ada;
11245 }
11246
11247 \f
11248
11249 /* Compare two breakpoints and return a strcmp-like result. */
11250
11251 static int
11252 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11253 {
11254 uintptr_t ua = (uintptr_t) a;
11255 uintptr_t ub = (uintptr_t) b;
11256
11257 if (a->number < b->number)
11258 return -1;
11259 else if (a->number > b->number)
11260 return 1;
11261
11262 /* Now sort by address, in case we see, e..g, two breakpoints with
11263 the number 0. */
11264 if (ua < ub)
11265 return -1;
11266 return ua > ub ? 1 : 0;
11267 }
11268
11269 /* Delete breakpoints by address or line. */
11270
11271 static void
11272 clear_command (const char *arg, int from_tty)
11273 {
11274 struct breakpoint *b;
11275 int default_match;
11276
11277 std::vector<symtab_and_line> decoded_sals;
11278 symtab_and_line last_sal;
11279 gdb::array_view<symtab_and_line> sals;
11280 if (arg)
11281 {
11282 decoded_sals
11283 = decode_line_with_current_source (arg,
11284 (DECODE_LINE_FUNFIRSTLINE
11285 | DECODE_LINE_LIST_MODE));
11286 default_match = 0;
11287 sals = decoded_sals;
11288 }
11289 else
11290 {
11291 /* Set sal's line, symtab, pc, and pspace to the values
11292 corresponding to the last call to print_frame_info. If the
11293 codepoint is not valid, this will set all the fields to 0. */
11294 last_sal = get_last_displayed_sal ();
11295 if (last_sal.symtab == 0)
11296 error (_("No source file specified."));
11297
11298 default_match = 1;
11299 sals = last_sal;
11300 }
11301
11302 /* We don't call resolve_sal_pc here. That's not as bad as it
11303 seems, because all existing breakpoints typically have both
11304 file/line and pc set. So, if clear is given file/line, we can
11305 match this to existing breakpoint without obtaining pc at all.
11306
11307 We only support clearing given the address explicitly
11308 present in breakpoint table. Say, we've set breakpoint
11309 at file:line. There were several PC values for that file:line,
11310 due to optimization, all in one block.
11311
11312 We've picked one PC value. If "clear" is issued with another
11313 PC corresponding to the same file:line, the breakpoint won't
11314 be cleared. We probably can still clear the breakpoint, but
11315 since the other PC value is never presented to user, user
11316 can only find it by guessing, and it does not seem important
11317 to support that. */
11318
11319 /* For each line spec given, delete bps which correspond to it. Do
11320 it in two passes, solely to preserve the current behavior that
11321 from_tty is forced true if we delete more than one
11322 breakpoint. */
11323
11324 std::vector<struct breakpoint *> found;
11325 for (const auto &sal : sals)
11326 {
11327 const char *sal_fullname;
11328
11329 /* If exact pc given, clear bpts at that pc.
11330 If line given (pc == 0), clear all bpts on specified line.
11331 If defaulting, clear all bpts on default line
11332 or at default pc.
11333
11334 defaulting sal.pc != 0 tests to do
11335
11336 0 1 pc
11337 1 1 pc _and_ line
11338 0 0 line
11339 1 0 <can't happen> */
11340
11341 sal_fullname = (sal.symtab == NULL
11342 ? NULL : symtab_to_fullname (sal.symtab));
11343
11344 /* Find all matching breakpoints and add them to 'found'. */
11345 ALL_BREAKPOINTS (b)
11346 {
11347 int match = 0;
11348 /* Are we going to delete b? */
11349 if (b->type != bp_none && !is_watchpoint (b))
11350 {
11351 struct bp_location *loc = b->loc;
11352 for (; loc; loc = loc->next)
11353 {
11354 /* If the user specified file:line, don't allow a PC
11355 match. This matches historical gdb behavior. */
11356 int pc_match = (!sal.explicit_line
11357 && sal.pc
11358 && (loc->pspace == sal.pspace)
11359 && (loc->address == sal.pc)
11360 && (!section_is_overlay (loc->section)
11361 || loc->section == sal.section));
11362 int line_match = 0;
11363
11364 if ((default_match || sal.explicit_line)
11365 && loc->symtab != NULL
11366 && sal_fullname != NULL
11367 && sal.pspace == loc->pspace
11368 && loc->line_number == sal.line
11369 && filename_cmp (symtab_to_fullname (loc->symtab),
11370 sal_fullname) == 0)
11371 line_match = 1;
11372
11373 if (pc_match || line_match)
11374 {
11375 match = 1;
11376 break;
11377 }
11378 }
11379 }
11380
11381 if (match)
11382 found.push_back (b);
11383 }
11384 }
11385
11386 /* Now go thru the 'found' chain and delete them. */
11387 if (found.empty ())
11388 {
11389 if (arg)
11390 error (_("No breakpoint at %s."), arg);
11391 else
11392 error (_("No breakpoint at this line."));
11393 }
11394
11395 /* Remove duplicates from the vec. */
11396 std::sort (found.begin (), found.end (),
11397 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11398 {
11399 return compare_breakpoints (bp_a, bp_b) < 0;
11400 });
11401 found.erase (std::unique (found.begin (), found.end (),
11402 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11403 {
11404 return compare_breakpoints (bp_a, bp_b) == 0;
11405 }),
11406 found.end ());
11407
11408 if (found.size () > 1)
11409 from_tty = 1; /* Always report if deleted more than one. */
11410 if (from_tty)
11411 {
11412 if (found.size () == 1)
11413 printf_unfiltered (_("Deleted breakpoint "));
11414 else
11415 printf_unfiltered (_("Deleted breakpoints "));
11416 }
11417
11418 for (breakpoint *iter : found)
11419 {
11420 if (from_tty)
11421 printf_unfiltered ("%d ", iter->number);
11422 delete_breakpoint (iter);
11423 }
11424 if (from_tty)
11425 putchar_unfiltered ('\n');
11426 }
11427 \f
11428 /* Delete breakpoint in BS if they are `delete' breakpoints and
11429 all breakpoints that are marked for deletion, whether hit or not.
11430 This is called after any breakpoint is hit, or after errors. */
11431
11432 void
11433 breakpoint_auto_delete (bpstat bs)
11434 {
11435 struct breakpoint *b, *b_tmp;
11436
11437 for (; bs; bs = bs->next)
11438 if (bs->breakpoint_at
11439 && bs->breakpoint_at->disposition == disp_del
11440 && bs->stop)
11441 delete_breakpoint (bs->breakpoint_at);
11442
11443 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11444 {
11445 if (b->disposition == disp_del_at_next_stop)
11446 delete_breakpoint (b);
11447 }
11448 }
11449
11450 /* A comparison function for bp_location AP and BP being interfaced to
11451 std::sort. Sort elements primarily by their ADDRESS (no matter what
11452 bl_address_is_meaningful says), secondarily by ordering first
11453 permanent elements and terciarily just ensuring the array is sorted
11454 stable way despite std::sort being an unstable algorithm. */
11455
11456 static int
11457 bp_location_is_less_than (const bp_location *a, const bp_location *b)
11458 {
11459 if (a->address != b->address)
11460 return a->address < b->address;
11461
11462 /* Sort locations at the same address by their pspace number, keeping
11463 locations of the same inferior (in a multi-inferior environment)
11464 grouped. */
11465
11466 if (a->pspace->num != b->pspace->num)
11467 return a->pspace->num < b->pspace->num;
11468
11469 /* Sort permanent breakpoints first. */
11470 if (a->permanent != b->permanent)
11471 return a->permanent > b->permanent;
11472
11473 /* Sort by type in order to make duplicate determination easier.
11474 See update_global_location_list. This is kept in sync with
11475 breakpoint_locations_match. */
11476 if (a->loc_type < b->loc_type)
11477 return true;
11478
11479 /* Likewise, for range-breakpoints, sort by length. */
11480 if (a->loc_type == bp_loc_hardware_breakpoint
11481 && b->loc_type == bp_loc_hardware_breakpoint
11482 && a->length < b->length)
11483 return true;
11484
11485 /* Make the internal GDB representation stable across GDB runs
11486 where A and B memory inside GDB can differ. Breakpoint locations of
11487 the same type at the same address can be sorted in arbitrary order. */
11488
11489 if (a->owner->number != b->owner->number)
11490 return a->owner->number < b->owner->number;
11491
11492 return a < b;
11493 }
11494
11495 /* Set bp_locations_placed_address_before_address_max and
11496 bp_locations_shadow_len_after_address_max according to the current
11497 content of the bp_locations array. */
11498
11499 static void
11500 bp_locations_target_extensions_update (void)
11501 {
11502 struct bp_location *bl, **blp_tmp;
11503
11504 bp_locations_placed_address_before_address_max = 0;
11505 bp_locations_shadow_len_after_address_max = 0;
11506
11507 ALL_BP_LOCATIONS (bl, blp_tmp)
11508 {
11509 CORE_ADDR start, end, addr;
11510
11511 if (!bp_location_has_shadow (bl))
11512 continue;
11513
11514 start = bl->target_info.placed_address;
11515 end = start + bl->target_info.shadow_len;
11516
11517 gdb_assert (bl->address >= start);
11518 addr = bl->address - start;
11519 if (addr > bp_locations_placed_address_before_address_max)
11520 bp_locations_placed_address_before_address_max = addr;
11521
11522 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11523
11524 gdb_assert (bl->address < end);
11525 addr = end - bl->address;
11526 if (addr > bp_locations_shadow_len_after_address_max)
11527 bp_locations_shadow_len_after_address_max = addr;
11528 }
11529 }
11530
11531 /* Download tracepoint locations if they haven't been. */
11532
11533 static void
11534 download_tracepoint_locations (void)
11535 {
11536 struct breakpoint *b;
11537 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11538
11539 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11540
11541 ALL_TRACEPOINTS (b)
11542 {
11543 struct bp_location *bl;
11544 struct tracepoint *t;
11545 int bp_location_downloaded = 0;
11546
11547 if ((b->type == bp_fast_tracepoint
11548 ? !may_insert_fast_tracepoints
11549 : !may_insert_tracepoints))
11550 continue;
11551
11552 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11553 {
11554 if (target_can_download_tracepoint ())
11555 can_download_tracepoint = TRIBOOL_TRUE;
11556 else
11557 can_download_tracepoint = TRIBOOL_FALSE;
11558 }
11559
11560 if (can_download_tracepoint == TRIBOOL_FALSE)
11561 break;
11562
11563 for (bl = b->loc; bl; bl = bl->next)
11564 {
11565 /* In tracepoint, locations are _never_ duplicated, so
11566 should_be_inserted is equivalent to
11567 unduplicated_should_be_inserted. */
11568 if (!should_be_inserted (bl) || bl->inserted)
11569 continue;
11570
11571 switch_to_program_space_and_thread (bl->pspace);
11572
11573 target_download_tracepoint (bl);
11574
11575 bl->inserted = 1;
11576 bp_location_downloaded = 1;
11577 }
11578 t = (struct tracepoint *) b;
11579 t->number_on_target = b->number;
11580 if (bp_location_downloaded)
11581 gdb::observers::breakpoint_modified.notify (b);
11582 }
11583 }
11584
11585 /* Swap the insertion/duplication state between two locations. */
11586
11587 static void
11588 swap_insertion (struct bp_location *left, struct bp_location *right)
11589 {
11590 const int left_inserted = left->inserted;
11591 const int left_duplicate = left->duplicate;
11592 const int left_needs_update = left->needs_update;
11593 const struct bp_target_info left_target_info = left->target_info;
11594
11595 /* Locations of tracepoints can never be duplicated. */
11596 if (is_tracepoint (left->owner))
11597 gdb_assert (!left->duplicate);
11598 if (is_tracepoint (right->owner))
11599 gdb_assert (!right->duplicate);
11600
11601 left->inserted = right->inserted;
11602 left->duplicate = right->duplicate;
11603 left->needs_update = right->needs_update;
11604 left->target_info = right->target_info;
11605 right->inserted = left_inserted;
11606 right->duplicate = left_duplicate;
11607 right->needs_update = left_needs_update;
11608 right->target_info = left_target_info;
11609 }
11610
11611 /* Force the re-insertion of the locations at ADDRESS. This is called
11612 once a new/deleted/modified duplicate location is found and we are evaluating
11613 conditions on the target's side. Such conditions need to be updated on
11614 the target. */
11615
11616 static void
11617 force_breakpoint_reinsertion (struct bp_location *bl)
11618 {
11619 struct bp_location **locp = NULL, **loc2p;
11620 struct bp_location *loc;
11621 CORE_ADDR address = 0;
11622 int pspace_num;
11623
11624 address = bl->address;
11625 pspace_num = bl->pspace->num;
11626
11627 /* This is only meaningful if the target is
11628 evaluating conditions and if the user has
11629 opted for condition evaluation on the target's
11630 side. */
11631 if (gdb_evaluates_breakpoint_condition_p ()
11632 || !target_supports_evaluation_of_breakpoint_conditions ())
11633 return;
11634
11635 /* Flag all breakpoint locations with this address and
11636 the same program space as the location
11637 as "its condition has changed". We need to
11638 update the conditions on the target's side. */
11639 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11640 {
11641 loc = *loc2p;
11642
11643 if (!is_breakpoint (loc->owner)
11644 || pspace_num != loc->pspace->num)
11645 continue;
11646
11647 /* Flag the location appropriately. We use a different state to
11648 let everyone know that we already updated the set of locations
11649 with addr bl->address and program space bl->pspace. This is so
11650 we don't have to keep calling these functions just to mark locations
11651 that have already been marked. */
11652 loc->condition_changed = condition_updated;
11653
11654 /* Free the agent expression bytecode as well. We will compute
11655 it later on. */
11656 loc->cond_bytecode.reset ();
11657 }
11658 }
11659
11660 /* Called whether new breakpoints are created, or existing breakpoints
11661 deleted, to update the global location list and recompute which
11662 locations are duplicate of which.
11663
11664 The INSERT_MODE flag determines whether locations may not, may, or
11665 shall be inserted now. See 'enum ugll_insert_mode' for more
11666 info. */
11667
11668 static void
11669 update_global_location_list (enum ugll_insert_mode insert_mode)
11670 {
11671 struct breakpoint *b;
11672 struct bp_location **locp, *loc;
11673 /* Last breakpoint location address that was marked for update. */
11674 CORE_ADDR last_addr = 0;
11675 /* Last breakpoint location program space that was marked for update. */
11676 int last_pspace_num = -1;
11677
11678 /* Used in the duplicates detection below. When iterating over all
11679 bp_locations, points to the first bp_location of a given address.
11680 Breakpoints and watchpoints of different types are never
11681 duplicates of each other. Keep one pointer for each type of
11682 breakpoint/watchpoint, so we only need to loop over all locations
11683 once. */
11684 struct bp_location *bp_loc_first; /* breakpoint */
11685 struct bp_location *wp_loc_first; /* hardware watchpoint */
11686 struct bp_location *awp_loc_first; /* access watchpoint */
11687 struct bp_location *rwp_loc_first; /* read watchpoint */
11688
11689 /* Saved former bp_locations array which we compare against the newly
11690 built bp_locations from the current state of ALL_BREAKPOINTS. */
11691 struct bp_location **old_locp;
11692 unsigned old_locations_count;
11693 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11694
11695 old_locations_count = bp_locations_count;
11696 bp_locations = NULL;
11697 bp_locations_count = 0;
11698
11699 ALL_BREAKPOINTS (b)
11700 for (loc = b->loc; loc; loc = loc->next)
11701 bp_locations_count++;
11702
11703 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11704 locp = bp_locations;
11705 ALL_BREAKPOINTS (b)
11706 for (loc = b->loc; loc; loc = loc->next)
11707 *locp++ = loc;
11708
11709 /* See if we need to "upgrade" a software breakpoint to a hardware
11710 breakpoint. Do this before deciding whether locations are
11711 duplicates. Also do this before sorting because sorting order
11712 depends on location type. */
11713 for (locp = bp_locations;
11714 locp < bp_locations + bp_locations_count;
11715 locp++)
11716 {
11717 loc = *locp;
11718 if (!loc->inserted && should_be_inserted (loc))
11719 handle_automatic_hardware_breakpoints (loc);
11720 }
11721
11722 std::sort (bp_locations, bp_locations + bp_locations_count,
11723 bp_location_is_less_than);
11724
11725 bp_locations_target_extensions_update ();
11726
11727 /* Identify bp_location instances that are no longer present in the
11728 new list, and therefore should be freed. Note that it's not
11729 necessary that those locations should be removed from inferior --
11730 if there's another location at the same address (previously
11731 marked as duplicate), we don't need to remove/insert the
11732 location.
11733
11734 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11735 and former bp_location array state respectively. */
11736
11737 locp = bp_locations;
11738 for (old_locp = old_locations.get ();
11739 old_locp < old_locations.get () + old_locations_count;
11740 old_locp++)
11741 {
11742 struct bp_location *old_loc = *old_locp;
11743 struct bp_location **loc2p;
11744
11745 /* Tells if 'old_loc' is found among the new locations. If
11746 not, we have to free it. */
11747 int found_object = 0;
11748 /* Tells if the location should remain inserted in the target. */
11749 int keep_in_target = 0;
11750 int removed = 0;
11751
11752 /* Skip LOCP entries which will definitely never be needed.
11753 Stop either at or being the one matching OLD_LOC. */
11754 while (locp < bp_locations + bp_locations_count
11755 && (*locp)->address < old_loc->address)
11756 locp++;
11757
11758 for (loc2p = locp;
11759 (loc2p < bp_locations + bp_locations_count
11760 && (*loc2p)->address == old_loc->address);
11761 loc2p++)
11762 {
11763 /* Check if this is a new/duplicated location or a duplicated
11764 location that had its condition modified. If so, we want to send
11765 its condition to the target if evaluation of conditions is taking
11766 place there. */
11767 if ((*loc2p)->condition_changed == condition_modified
11768 && (last_addr != old_loc->address
11769 || last_pspace_num != old_loc->pspace->num))
11770 {
11771 force_breakpoint_reinsertion (*loc2p);
11772 last_pspace_num = old_loc->pspace->num;
11773 }
11774
11775 if (*loc2p == old_loc)
11776 found_object = 1;
11777 }
11778
11779 /* We have already handled this address, update it so that we don't
11780 have to go through updates again. */
11781 last_addr = old_loc->address;
11782
11783 /* Target-side condition evaluation: Handle deleted locations. */
11784 if (!found_object)
11785 force_breakpoint_reinsertion (old_loc);
11786
11787 /* If this location is no longer present, and inserted, look if
11788 there's maybe a new location at the same address. If so,
11789 mark that one inserted, and don't remove this one. This is
11790 needed so that we don't have a time window where a breakpoint
11791 at certain location is not inserted. */
11792
11793 if (old_loc->inserted)
11794 {
11795 /* If the location is inserted now, we might have to remove
11796 it. */
11797
11798 if (found_object && should_be_inserted (old_loc))
11799 {
11800 /* The location is still present in the location list,
11801 and still should be inserted. Don't do anything. */
11802 keep_in_target = 1;
11803 }
11804 else
11805 {
11806 /* This location still exists, but it won't be kept in the
11807 target since it may have been disabled. We proceed to
11808 remove its target-side condition. */
11809
11810 /* The location is either no longer present, or got
11811 disabled. See if there's another location at the
11812 same address, in which case we don't need to remove
11813 this one from the target. */
11814
11815 /* OLD_LOC comes from existing struct breakpoint. */
11816 if (bl_address_is_meaningful (old_loc))
11817 {
11818 for (loc2p = locp;
11819 (loc2p < bp_locations + bp_locations_count
11820 && (*loc2p)->address == old_loc->address);
11821 loc2p++)
11822 {
11823 struct bp_location *loc2 = *loc2p;
11824
11825 if (loc2 == old_loc)
11826 continue;
11827
11828 if (breakpoint_locations_match (loc2, old_loc))
11829 {
11830 /* Read watchpoint locations are switched to
11831 access watchpoints, if the former are not
11832 supported, but the latter are. */
11833 if (is_hardware_watchpoint (old_loc->owner))
11834 {
11835 gdb_assert (is_hardware_watchpoint (loc2->owner));
11836 loc2->watchpoint_type = old_loc->watchpoint_type;
11837 }
11838
11839 /* loc2 is a duplicated location. We need to check
11840 if it should be inserted in case it will be
11841 unduplicated. */
11842 if (unduplicated_should_be_inserted (loc2))
11843 {
11844 swap_insertion (old_loc, loc2);
11845 keep_in_target = 1;
11846 break;
11847 }
11848 }
11849 }
11850 }
11851 }
11852
11853 if (!keep_in_target)
11854 {
11855 if (remove_breakpoint (old_loc))
11856 {
11857 /* This is just about all we can do. We could keep
11858 this location on the global list, and try to
11859 remove it next time, but there's no particular
11860 reason why we will succeed next time.
11861
11862 Note that at this point, old_loc->owner is still
11863 valid, as delete_breakpoint frees the breakpoint
11864 only after calling us. */
11865 printf_filtered (_("warning: Error removing "
11866 "breakpoint %d\n"),
11867 old_loc->owner->number);
11868 }
11869 removed = 1;
11870 }
11871 }
11872
11873 if (!found_object)
11874 {
11875 if (removed && target_is_non_stop_p ()
11876 && need_moribund_for_location_type (old_loc))
11877 {
11878 /* This location was removed from the target. In
11879 non-stop mode, a race condition is possible where
11880 we've removed a breakpoint, but stop events for that
11881 breakpoint are already queued and will arrive later.
11882 We apply an heuristic to be able to distinguish such
11883 SIGTRAPs from other random SIGTRAPs: we keep this
11884 breakpoint location for a bit, and will retire it
11885 after we see some number of events. The theory here
11886 is that reporting of events should, "on the average",
11887 be fair, so after a while we'll see events from all
11888 threads that have anything of interest, and no longer
11889 need to keep this breakpoint location around. We
11890 don't hold locations forever so to reduce chances of
11891 mistaking a non-breakpoint SIGTRAP for a breakpoint
11892 SIGTRAP.
11893
11894 The heuristic failing can be disastrous on
11895 decr_pc_after_break targets.
11896
11897 On decr_pc_after_break targets, like e.g., x86-linux,
11898 if we fail to recognize a late breakpoint SIGTRAP,
11899 because events_till_retirement has reached 0 too
11900 soon, we'll fail to do the PC adjustment, and report
11901 a random SIGTRAP to the user. When the user resumes
11902 the inferior, it will most likely immediately crash
11903 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
11904 corrupted, because of being resumed e.g., in the
11905 middle of a multi-byte instruction, or skipped a
11906 one-byte instruction. This was actually seen happen
11907 on native x86-linux, and should be less rare on
11908 targets that do not support new thread events, like
11909 remote, due to the heuristic depending on
11910 thread_count.
11911
11912 Mistaking a random SIGTRAP for a breakpoint trap
11913 causes similar symptoms (PC adjustment applied when
11914 it shouldn't), but then again, playing with SIGTRAPs
11915 behind the debugger's back is asking for trouble.
11916
11917 Since hardware watchpoint traps are always
11918 distinguishable from other traps, so we don't need to
11919 apply keep hardware watchpoint moribund locations
11920 around. We simply always ignore hardware watchpoint
11921 traps we can no longer explain. */
11922
11923 process_stratum_target *proc_target = nullptr;
11924 for (inferior *inf : all_inferiors ())
11925 if (inf->pspace == old_loc->pspace)
11926 {
11927 proc_target = inf->process_target ();
11928 break;
11929 }
11930 if (proc_target != nullptr)
11931 old_loc->events_till_retirement
11932 = 3 * (thread_count (proc_target) + 1);
11933 else
11934 old_loc->events_till_retirement = 1;
11935 old_loc->owner = NULL;
11936
11937 moribund_locations.push_back (old_loc);
11938 }
11939 else
11940 {
11941 old_loc->owner = NULL;
11942 decref_bp_location (&old_loc);
11943 }
11944 }
11945 }
11946
11947 /* Rescan breakpoints at the same address and section, marking the
11948 first one as "first" and any others as "duplicates". This is so
11949 that the bpt instruction is only inserted once. If we have a
11950 permanent breakpoint at the same place as BPT, make that one the
11951 official one, and the rest as duplicates. Permanent breakpoints
11952 are sorted first for the same address.
11953
11954 Do the same for hardware watchpoints, but also considering the
11955 watchpoint's type (regular/access/read) and length. */
11956
11957 bp_loc_first = NULL;
11958 wp_loc_first = NULL;
11959 awp_loc_first = NULL;
11960 rwp_loc_first = NULL;
11961 ALL_BP_LOCATIONS (loc, locp)
11962 {
11963 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
11964 non-NULL. */
11965 struct bp_location **loc_first_p;
11966 b = loc->owner;
11967
11968 if (!unduplicated_should_be_inserted (loc)
11969 || !bl_address_is_meaningful (loc)
11970 /* Don't detect duplicate for tracepoint locations because they are
11971 never duplicated. See the comments in field `duplicate' of
11972 `struct bp_location'. */
11973 || is_tracepoint (b))
11974 {
11975 /* Clear the condition modification flag. */
11976 loc->condition_changed = condition_unchanged;
11977 continue;
11978 }
11979
11980 if (b->type == bp_hardware_watchpoint)
11981 loc_first_p = &wp_loc_first;
11982 else if (b->type == bp_read_watchpoint)
11983 loc_first_p = &rwp_loc_first;
11984 else if (b->type == bp_access_watchpoint)
11985 loc_first_p = &awp_loc_first;
11986 else
11987 loc_first_p = &bp_loc_first;
11988
11989 if (*loc_first_p == NULL
11990 || (overlay_debugging && loc->section != (*loc_first_p)->section)
11991 || !breakpoint_locations_match (loc, *loc_first_p))
11992 {
11993 *loc_first_p = loc;
11994 loc->duplicate = 0;
11995
11996 if (is_breakpoint (loc->owner) && loc->condition_changed)
11997 {
11998 loc->needs_update = 1;
11999 /* Clear the condition modification flag. */
12000 loc->condition_changed = condition_unchanged;
12001 }
12002 continue;
12003 }
12004
12005
12006 /* This and the above ensure the invariant that the first location
12007 is not duplicated, and is the inserted one.
12008 All following are marked as duplicated, and are not inserted. */
12009 if (loc->inserted)
12010 swap_insertion (loc, *loc_first_p);
12011 loc->duplicate = 1;
12012
12013 /* Clear the condition modification flag. */
12014 loc->condition_changed = condition_unchanged;
12015 }
12016
12017 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12018 {
12019 if (insert_mode != UGLL_DONT_INSERT)
12020 insert_breakpoint_locations ();
12021 else
12022 {
12023 /* Even though the caller told us to not insert new
12024 locations, we may still need to update conditions on the
12025 target's side of breakpoints that were already inserted
12026 if the target is evaluating breakpoint conditions. We
12027 only update conditions for locations that are marked
12028 "needs_update". */
12029 update_inserted_breakpoint_locations ();
12030 }
12031 }
12032
12033 if (insert_mode != UGLL_DONT_INSERT)
12034 download_tracepoint_locations ();
12035 }
12036
12037 void
12038 breakpoint_retire_moribund (void)
12039 {
12040 for (int ix = 0; ix < moribund_locations.size (); ++ix)
12041 {
12042 struct bp_location *loc = moribund_locations[ix];
12043 if (--(loc->events_till_retirement) == 0)
12044 {
12045 decref_bp_location (&loc);
12046 unordered_remove (moribund_locations, ix);
12047 --ix;
12048 }
12049 }
12050 }
12051
12052 static void
12053 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12054 {
12055
12056 try
12057 {
12058 update_global_location_list (insert_mode);
12059 }
12060 catch (const gdb_exception_error &e)
12061 {
12062 }
12063 }
12064
12065 /* Clear BKP from a BPS. */
12066
12067 static void
12068 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12069 {
12070 bpstat bs;
12071
12072 for (bs = bps; bs; bs = bs->next)
12073 if (bs->breakpoint_at == bpt)
12074 {
12075 bs->breakpoint_at = NULL;
12076 bs->old_val = NULL;
12077 /* bs->commands will be freed later. */
12078 }
12079 }
12080
12081 /* Callback for iterate_over_threads. */
12082 static int
12083 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12084 {
12085 struct breakpoint *bpt = (struct breakpoint *) data;
12086
12087 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12088 return 0;
12089 }
12090
12091 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12092 callbacks. */
12093
12094 static void
12095 say_where (struct breakpoint *b)
12096 {
12097 struct value_print_options opts;
12098
12099 get_user_print_options (&opts);
12100
12101 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12102 single string. */
12103 if (b->loc == NULL)
12104 {
12105 /* For pending locations, the output differs slightly based
12106 on b->extra_string. If this is non-NULL, it contains either
12107 a condition or dprintf arguments. */
12108 if (b->extra_string == NULL)
12109 {
12110 printf_filtered (_(" (%s) pending."),
12111 event_location_to_string (b->location.get ()));
12112 }
12113 else if (b->type == bp_dprintf)
12114 {
12115 printf_filtered (_(" (%s,%s) pending."),
12116 event_location_to_string (b->location.get ()),
12117 b->extra_string);
12118 }
12119 else
12120 {
12121 printf_filtered (_(" (%s %s) pending."),
12122 event_location_to_string (b->location.get ()),
12123 b->extra_string);
12124 }
12125 }
12126 else
12127 {
12128 if (opts.addressprint || b->loc->symtab == NULL)
12129 printf_filtered (" at %ps",
12130 styled_string (address_style.style (),
12131 paddress (b->loc->gdbarch,
12132 b->loc->address)));
12133 if (b->loc->symtab != NULL)
12134 {
12135 /* If there is a single location, we can print the location
12136 more nicely. */
12137 if (b->loc->next == NULL)
12138 {
12139 const char *filename
12140 = symtab_to_filename_for_display (b->loc->symtab);
12141 printf_filtered (": file %ps, line %d.",
12142 styled_string (file_name_style.style (),
12143 filename),
12144 b->loc->line_number);
12145 }
12146 else
12147 /* This is not ideal, but each location may have a
12148 different file name, and this at least reflects the
12149 real situation somewhat. */
12150 printf_filtered (": %s.",
12151 event_location_to_string (b->location.get ()));
12152 }
12153
12154 if (b->loc->next)
12155 {
12156 struct bp_location *loc = b->loc;
12157 int n = 0;
12158 for (; loc; loc = loc->next)
12159 ++n;
12160 printf_filtered (" (%d locations)", n);
12161 }
12162 }
12163 }
12164
12165 bp_location::~bp_location ()
12166 {
12167 xfree (function_name);
12168 }
12169
12170 /* Destructor for the breakpoint base class. */
12171
12172 breakpoint::~breakpoint ()
12173 {
12174 xfree (this->cond_string);
12175 xfree (this->extra_string);
12176 }
12177
12178 static struct bp_location *
12179 base_breakpoint_allocate_location (struct breakpoint *self)
12180 {
12181 return new bp_location (self);
12182 }
12183
12184 static void
12185 base_breakpoint_re_set (struct breakpoint *b)
12186 {
12187 /* Nothing to re-set. */
12188 }
12189
12190 #define internal_error_pure_virtual_called() \
12191 gdb_assert_not_reached ("pure virtual function called")
12192
12193 static int
12194 base_breakpoint_insert_location (struct bp_location *bl)
12195 {
12196 internal_error_pure_virtual_called ();
12197 }
12198
12199 static int
12200 base_breakpoint_remove_location (struct bp_location *bl,
12201 enum remove_bp_reason reason)
12202 {
12203 internal_error_pure_virtual_called ();
12204 }
12205
12206 static int
12207 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12208 const address_space *aspace,
12209 CORE_ADDR bp_addr,
12210 const struct target_waitstatus *ws)
12211 {
12212 internal_error_pure_virtual_called ();
12213 }
12214
12215 static void
12216 base_breakpoint_check_status (bpstat bs)
12217 {
12218 /* Always stop. */
12219 }
12220
12221 /* A "works_in_software_mode" breakpoint_ops method that just internal
12222 errors. */
12223
12224 static int
12225 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12226 {
12227 internal_error_pure_virtual_called ();
12228 }
12229
12230 /* A "resources_needed" breakpoint_ops method that just internal
12231 errors. */
12232
12233 static int
12234 base_breakpoint_resources_needed (const struct bp_location *bl)
12235 {
12236 internal_error_pure_virtual_called ();
12237 }
12238
12239 static enum print_stop_action
12240 base_breakpoint_print_it (bpstat bs)
12241 {
12242 internal_error_pure_virtual_called ();
12243 }
12244
12245 static void
12246 base_breakpoint_print_one_detail (const struct breakpoint *self,
12247 struct ui_out *uiout)
12248 {
12249 /* nothing */
12250 }
12251
12252 static void
12253 base_breakpoint_print_mention (struct breakpoint *b)
12254 {
12255 internal_error_pure_virtual_called ();
12256 }
12257
12258 static void
12259 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12260 {
12261 internal_error_pure_virtual_called ();
12262 }
12263
12264 static void
12265 base_breakpoint_create_sals_from_location
12266 (struct event_location *location,
12267 struct linespec_result *canonical,
12268 enum bptype type_wanted)
12269 {
12270 internal_error_pure_virtual_called ();
12271 }
12272
12273 static void
12274 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12275 struct linespec_result *c,
12276 gdb::unique_xmalloc_ptr<char> cond_string,
12277 gdb::unique_xmalloc_ptr<char> extra_string,
12278 enum bptype type_wanted,
12279 enum bpdisp disposition,
12280 int thread,
12281 int task, int ignore_count,
12282 const struct breakpoint_ops *o,
12283 int from_tty, int enabled,
12284 int internal, unsigned flags)
12285 {
12286 internal_error_pure_virtual_called ();
12287 }
12288
12289 static std::vector<symtab_and_line>
12290 base_breakpoint_decode_location (struct breakpoint *b,
12291 struct event_location *location,
12292 struct program_space *search_pspace)
12293 {
12294 internal_error_pure_virtual_called ();
12295 }
12296
12297 /* The default 'explains_signal' method. */
12298
12299 static int
12300 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12301 {
12302 return 1;
12303 }
12304
12305 /* The default "after_condition_true" method. */
12306
12307 static void
12308 base_breakpoint_after_condition_true (struct bpstats *bs)
12309 {
12310 /* Nothing to do. */
12311 }
12312
12313 struct breakpoint_ops base_breakpoint_ops =
12314 {
12315 base_breakpoint_allocate_location,
12316 base_breakpoint_re_set,
12317 base_breakpoint_insert_location,
12318 base_breakpoint_remove_location,
12319 base_breakpoint_breakpoint_hit,
12320 base_breakpoint_check_status,
12321 base_breakpoint_resources_needed,
12322 base_breakpoint_works_in_software_mode,
12323 base_breakpoint_print_it,
12324 NULL,
12325 base_breakpoint_print_one_detail,
12326 base_breakpoint_print_mention,
12327 base_breakpoint_print_recreate,
12328 base_breakpoint_create_sals_from_location,
12329 base_breakpoint_create_breakpoints_sal,
12330 base_breakpoint_decode_location,
12331 base_breakpoint_explains_signal,
12332 base_breakpoint_after_condition_true,
12333 };
12334
12335 /* Default breakpoint_ops methods. */
12336
12337 static void
12338 bkpt_re_set (struct breakpoint *b)
12339 {
12340 /* FIXME: is this still reachable? */
12341 if (breakpoint_event_location_empty_p (b))
12342 {
12343 /* Anything without a location can't be re-set. */
12344 delete_breakpoint (b);
12345 return;
12346 }
12347
12348 breakpoint_re_set_default (b);
12349 }
12350
12351 static int
12352 bkpt_insert_location (struct bp_location *bl)
12353 {
12354 CORE_ADDR addr = bl->target_info.reqstd_address;
12355
12356 bl->target_info.kind = breakpoint_kind (bl, &addr);
12357 bl->target_info.placed_address = addr;
12358
12359 if (bl->loc_type == bp_loc_hardware_breakpoint)
12360 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12361 else
12362 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12363 }
12364
12365 static int
12366 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12367 {
12368 if (bl->loc_type == bp_loc_hardware_breakpoint)
12369 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12370 else
12371 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12372 }
12373
12374 static int
12375 bkpt_breakpoint_hit (const struct bp_location *bl,
12376 const address_space *aspace, CORE_ADDR bp_addr,
12377 const struct target_waitstatus *ws)
12378 {
12379 if (ws->kind != TARGET_WAITKIND_STOPPED
12380 || ws->value.sig != GDB_SIGNAL_TRAP)
12381 return 0;
12382
12383 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12384 aspace, bp_addr))
12385 return 0;
12386
12387 if (overlay_debugging /* unmapped overlay section */
12388 && section_is_overlay (bl->section)
12389 && !section_is_mapped (bl->section))
12390 return 0;
12391
12392 return 1;
12393 }
12394
12395 static int
12396 dprintf_breakpoint_hit (const struct bp_location *bl,
12397 const address_space *aspace, CORE_ADDR bp_addr,
12398 const struct target_waitstatus *ws)
12399 {
12400 if (dprintf_style == dprintf_style_agent
12401 && target_can_run_breakpoint_commands ())
12402 {
12403 /* An agent-style dprintf never causes a stop. If we see a trap
12404 for this address it must be for a breakpoint that happens to
12405 be set at the same address. */
12406 return 0;
12407 }
12408
12409 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12410 }
12411
12412 static int
12413 bkpt_resources_needed (const struct bp_location *bl)
12414 {
12415 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12416
12417 return 1;
12418 }
12419
12420 static enum print_stop_action
12421 bkpt_print_it (bpstat bs)
12422 {
12423 struct breakpoint *b;
12424 const struct bp_location *bl;
12425 int bp_temp;
12426 struct ui_out *uiout = current_uiout;
12427
12428 gdb_assert (bs->bp_location_at != NULL);
12429
12430 bl = bs->bp_location_at;
12431 b = bs->breakpoint_at;
12432
12433 bp_temp = b->disposition == disp_del;
12434 if (bl->address != bl->requested_address)
12435 breakpoint_adjustment_warning (bl->requested_address,
12436 bl->address,
12437 b->number, 1);
12438 annotate_breakpoint (b->number);
12439 maybe_print_thread_hit_breakpoint (uiout);
12440
12441 if (uiout->is_mi_like_p ())
12442 {
12443 uiout->field_string ("reason",
12444 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12445 uiout->field_string ("disp", bpdisp_text (b->disposition));
12446 }
12447 if (bp_temp)
12448 uiout->message ("Temporary breakpoint %pF, ",
12449 signed_field ("bkptno", b->number));
12450 else
12451 uiout->message ("Breakpoint %pF, ",
12452 signed_field ("bkptno", b->number));
12453
12454 return PRINT_SRC_AND_LOC;
12455 }
12456
12457 static void
12458 bkpt_print_mention (struct breakpoint *b)
12459 {
12460 if (current_uiout->is_mi_like_p ())
12461 return;
12462
12463 switch (b->type)
12464 {
12465 case bp_breakpoint:
12466 case bp_gnu_ifunc_resolver:
12467 if (b->disposition == disp_del)
12468 printf_filtered (_("Temporary breakpoint"));
12469 else
12470 printf_filtered (_("Breakpoint"));
12471 printf_filtered (_(" %d"), b->number);
12472 if (b->type == bp_gnu_ifunc_resolver)
12473 printf_filtered (_(" at gnu-indirect-function resolver"));
12474 break;
12475 case bp_hardware_breakpoint:
12476 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12477 break;
12478 case bp_dprintf:
12479 printf_filtered (_("Dprintf %d"), b->number);
12480 break;
12481 }
12482
12483 say_where (b);
12484 }
12485
12486 static void
12487 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12488 {
12489 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12490 fprintf_unfiltered (fp, "tbreak");
12491 else if (tp->type == bp_breakpoint)
12492 fprintf_unfiltered (fp, "break");
12493 else if (tp->type == bp_hardware_breakpoint
12494 && tp->disposition == disp_del)
12495 fprintf_unfiltered (fp, "thbreak");
12496 else if (tp->type == bp_hardware_breakpoint)
12497 fprintf_unfiltered (fp, "hbreak");
12498 else
12499 internal_error (__FILE__, __LINE__,
12500 _("unhandled breakpoint type %d"), (int) tp->type);
12501
12502 fprintf_unfiltered (fp, " %s",
12503 event_location_to_string (tp->location.get ()));
12504
12505 /* Print out extra_string if this breakpoint is pending. It might
12506 contain, for example, conditions that were set by the user. */
12507 if (tp->loc == NULL && tp->extra_string != NULL)
12508 fprintf_unfiltered (fp, " %s", tp->extra_string);
12509
12510 print_recreate_thread (tp, fp);
12511 }
12512
12513 static void
12514 bkpt_create_sals_from_location (struct event_location *location,
12515 struct linespec_result *canonical,
12516 enum bptype type_wanted)
12517 {
12518 create_sals_from_location_default (location, canonical, type_wanted);
12519 }
12520
12521 static void
12522 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12523 struct linespec_result *canonical,
12524 gdb::unique_xmalloc_ptr<char> cond_string,
12525 gdb::unique_xmalloc_ptr<char> extra_string,
12526 enum bptype type_wanted,
12527 enum bpdisp disposition,
12528 int thread,
12529 int task, int ignore_count,
12530 const struct breakpoint_ops *ops,
12531 int from_tty, int enabled,
12532 int internal, unsigned flags)
12533 {
12534 create_breakpoints_sal_default (gdbarch, canonical,
12535 std::move (cond_string),
12536 std::move (extra_string),
12537 type_wanted,
12538 disposition, thread, task,
12539 ignore_count, ops, from_tty,
12540 enabled, internal, flags);
12541 }
12542
12543 static std::vector<symtab_and_line>
12544 bkpt_decode_location (struct breakpoint *b,
12545 struct event_location *location,
12546 struct program_space *search_pspace)
12547 {
12548 return decode_location_default (b, location, search_pspace);
12549 }
12550
12551 /* Virtual table for internal breakpoints. */
12552
12553 static void
12554 internal_bkpt_re_set (struct breakpoint *b)
12555 {
12556 switch (b->type)
12557 {
12558 /* Delete overlay event and longjmp master breakpoints; they
12559 will be reset later by breakpoint_re_set. */
12560 case bp_overlay_event:
12561 case bp_longjmp_master:
12562 case bp_std_terminate_master:
12563 case bp_exception_master:
12564 delete_breakpoint (b);
12565 break;
12566
12567 /* This breakpoint is special, it's set up when the inferior
12568 starts and we really don't want to touch it. */
12569 case bp_shlib_event:
12570
12571 /* Like bp_shlib_event, this breakpoint type is special. Once
12572 it is set up, we do not want to touch it. */
12573 case bp_thread_event:
12574 break;
12575 }
12576 }
12577
12578 static void
12579 internal_bkpt_check_status (bpstat bs)
12580 {
12581 if (bs->breakpoint_at->type == bp_shlib_event)
12582 {
12583 /* If requested, stop when the dynamic linker notifies GDB of
12584 events. This allows the user to get control and place
12585 breakpoints in initializer routines for dynamically loaded
12586 objects (among other things). */
12587 bs->stop = stop_on_solib_events;
12588 bs->print = stop_on_solib_events;
12589 }
12590 else
12591 bs->stop = 0;
12592 }
12593
12594 static enum print_stop_action
12595 internal_bkpt_print_it (bpstat bs)
12596 {
12597 struct breakpoint *b;
12598
12599 b = bs->breakpoint_at;
12600
12601 switch (b->type)
12602 {
12603 case bp_shlib_event:
12604 /* Did we stop because the user set the stop_on_solib_events
12605 variable? (If so, we report this as a generic, "Stopped due
12606 to shlib event" message.) */
12607 print_solib_event (0);
12608 break;
12609
12610 case bp_thread_event:
12611 /* Not sure how we will get here.
12612 GDB should not stop for these breakpoints. */
12613 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12614 break;
12615
12616 case bp_overlay_event:
12617 /* By analogy with the thread event, GDB should not stop for these. */
12618 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12619 break;
12620
12621 case bp_longjmp_master:
12622 /* These should never be enabled. */
12623 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12624 break;
12625
12626 case bp_std_terminate_master:
12627 /* These should never be enabled. */
12628 printf_filtered (_("std::terminate Master Breakpoint: "
12629 "gdb should not stop!\n"));
12630 break;
12631
12632 case bp_exception_master:
12633 /* These should never be enabled. */
12634 printf_filtered (_("Exception Master Breakpoint: "
12635 "gdb should not stop!\n"));
12636 break;
12637 }
12638
12639 return PRINT_NOTHING;
12640 }
12641
12642 static void
12643 internal_bkpt_print_mention (struct breakpoint *b)
12644 {
12645 /* Nothing to mention. These breakpoints are internal. */
12646 }
12647
12648 /* Virtual table for momentary breakpoints */
12649
12650 static void
12651 momentary_bkpt_re_set (struct breakpoint *b)
12652 {
12653 /* Keep temporary breakpoints, which can be encountered when we step
12654 over a dlopen call and solib_add is resetting the breakpoints.
12655 Otherwise these should have been blown away via the cleanup chain
12656 or by breakpoint_init_inferior when we rerun the executable. */
12657 }
12658
12659 static void
12660 momentary_bkpt_check_status (bpstat bs)
12661 {
12662 /* Nothing. The point of these breakpoints is causing a stop. */
12663 }
12664
12665 static enum print_stop_action
12666 momentary_bkpt_print_it (bpstat bs)
12667 {
12668 return PRINT_UNKNOWN;
12669 }
12670
12671 static void
12672 momentary_bkpt_print_mention (struct breakpoint *b)
12673 {
12674 /* Nothing to mention. These breakpoints are internal. */
12675 }
12676
12677 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12678
12679 It gets cleared already on the removal of the first one of such placed
12680 breakpoints. This is OK as they get all removed altogether. */
12681
12682 longjmp_breakpoint::~longjmp_breakpoint ()
12683 {
12684 thread_info *tp = find_thread_global_id (this->thread);
12685
12686 if (tp != NULL)
12687 tp->initiating_frame = null_frame_id;
12688 }
12689
12690 /* Specific methods for probe breakpoints. */
12691
12692 static int
12693 bkpt_probe_insert_location (struct bp_location *bl)
12694 {
12695 int v = bkpt_insert_location (bl);
12696
12697 if (v == 0)
12698 {
12699 /* The insertion was successful, now let's set the probe's semaphore
12700 if needed. */
12701 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12702 }
12703
12704 return v;
12705 }
12706
12707 static int
12708 bkpt_probe_remove_location (struct bp_location *bl,
12709 enum remove_bp_reason reason)
12710 {
12711 /* Let's clear the semaphore before removing the location. */
12712 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12713
12714 return bkpt_remove_location (bl, reason);
12715 }
12716
12717 static void
12718 bkpt_probe_create_sals_from_location (struct event_location *location,
12719 struct linespec_result *canonical,
12720 enum bptype type_wanted)
12721 {
12722 struct linespec_sals lsal;
12723
12724 lsal.sals = parse_probes (location, NULL, canonical);
12725 lsal.canonical
12726 = xstrdup (event_location_to_string (canonical->location.get ()));
12727 canonical->lsals.push_back (std::move (lsal));
12728 }
12729
12730 static std::vector<symtab_and_line>
12731 bkpt_probe_decode_location (struct breakpoint *b,
12732 struct event_location *location,
12733 struct program_space *search_pspace)
12734 {
12735 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12736 if (sals.empty ())
12737 error (_("probe not found"));
12738 return sals;
12739 }
12740
12741 /* The breakpoint_ops structure to be used in tracepoints. */
12742
12743 static void
12744 tracepoint_re_set (struct breakpoint *b)
12745 {
12746 breakpoint_re_set_default (b);
12747 }
12748
12749 static int
12750 tracepoint_breakpoint_hit (const struct bp_location *bl,
12751 const address_space *aspace, CORE_ADDR bp_addr,
12752 const struct target_waitstatus *ws)
12753 {
12754 /* By definition, the inferior does not report stops at
12755 tracepoints. */
12756 return 0;
12757 }
12758
12759 static void
12760 tracepoint_print_one_detail (const struct breakpoint *self,
12761 struct ui_out *uiout)
12762 {
12763 struct tracepoint *tp = (struct tracepoint *) self;
12764 if (!tp->static_trace_marker_id.empty ())
12765 {
12766 gdb_assert (self->type == bp_static_tracepoint);
12767
12768 uiout->message ("\tmarker id is %pF\n",
12769 string_field ("static-tracepoint-marker-string-id",
12770 tp->static_trace_marker_id.c_str ()));
12771 }
12772 }
12773
12774 static void
12775 tracepoint_print_mention (struct breakpoint *b)
12776 {
12777 if (current_uiout->is_mi_like_p ())
12778 return;
12779
12780 switch (b->type)
12781 {
12782 case bp_tracepoint:
12783 printf_filtered (_("Tracepoint"));
12784 printf_filtered (_(" %d"), b->number);
12785 break;
12786 case bp_fast_tracepoint:
12787 printf_filtered (_("Fast tracepoint"));
12788 printf_filtered (_(" %d"), b->number);
12789 break;
12790 case bp_static_tracepoint:
12791 printf_filtered (_("Static tracepoint"));
12792 printf_filtered (_(" %d"), b->number);
12793 break;
12794 default:
12795 internal_error (__FILE__, __LINE__,
12796 _("unhandled tracepoint type %d"), (int) b->type);
12797 }
12798
12799 say_where (b);
12800 }
12801
12802 static void
12803 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12804 {
12805 struct tracepoint *tp = (struct tracepoint *) self;
12806
12807 if (self->type == bp_fast_tracepoint)
12808 fprintf_unfiltered (fp, "ftrace");
12809 else if (self->type == bp_static_tracepoint)
12810 fprintf_unfiltered (fp, "strace");
12811 else if (self->type == bp_tracepoint)
12812 fprintf_unfiltered (fp, "trace");
12813 else
12814 internal_error (__FILE__, __LINE__,
12815 _("unhandled tracepoint type %d"), (int) self->type);
12816
12817 fprintf_unfiltered (fp, " %s",
12818 event_location_to_string (self->location.get ()));
12819 print_recreate_thread (self, fp);
12820
12821 if (tp->pass_count)
12822 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12823 }
12824
12825 static void
12826 tracepoint_create_sals_from_location (struct event_location *location,
12827 struct linespec_result *canonical,
12828 enum bptype type_wanted)
12829 {
12830 create_sals_from_location_default (location, canonical, type_wanted);
12831 }
12832
12833 static void
12834 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12835 struct linespec_result *canonical,
12836 gdb::unique_xmalloc_ptr<char> cond_string,
12837 gdb::unique_xmalloc_ptr<char> extra_string,
12838 enum bptype type_wanted,
12839 enum bpdisp disposition,
12840 int thread,
12841 int task, int ignore_count,
12842 const struct breakpoint_ops *ops,
12843 int from_tty, int enabled,
12844 int internal, unsigned flags)
12845 {
12846 create_breakpoints_sal_default (gdbarch, canonical,
12847 std::move (cond_string),
12848 std::move (extra_string),
12849 type_wanted,
12850 disposition, thread, task,
12851 ignore_count, ops, from_tty,
12852 enabled, internal, flags);
12853 }
12854
12855 static std::vector<symtab_and_line>
12856 tracepoint_decode_location (struct breakpoint *b,
12857 struct event_location *location,
12858 struct program_space *search_pspace)
12859 {
12860 return decode_location_default (b, location, search_pspace);
12861 }
12862
12863 struct breakpoint_ops tracepoint_breakpoint_ops;
12864
12865 /* Virtual table for tracepoints on static probes. */
12866
12867 static void
12868 tracepoint_probe_create_sals_from_location
12869 (struct event_location *location,
12870 struct linespec_result *canonical,
12871 enum bptype type_wanted)
12872 {
12873 /* We use the same method for breakpoint on probes. */
12874 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12875 }
12876
12877 static std::vector<symtab_and_line>
12878 tracepoint_probe_decode_location (struct breakpoint *b,
12879 struct event_location *location,
12880 struct program_space *search_pspace)
12881 {
12882 /* We use the same method for breakpoint on probes. */
12883 return bkpt_probe_decode_location (b, location, search_pspace);
12884 }
12885
12886 /* Dprintf breakpoint_ops methods. */
12887
12888 static void
12889 dprintf_re_set (struct breakpoint *b)
12890 {
12891 breakpoint_re_set_default (b);
12892
12893 /* extra_string should never be non-NULL for dprintf. */
12894 gdb_assert (b->extra_string != NULL);
12895
12896 /* 1 - connect to target 1, that can run breakpoint commands.
12897 2 - create a dprintf, which resolves fine.
12898 3 - disconnect from target 1
12899 4 - connect to target 2, that can NOT run breakpoint commands.
12900
12901 After steps #3/#4, you'll want the dprintf command list to
12902 be updated, because target 1 and 2 may well return different
12903 answers for target_can_run_breakpoint_commands().
12904 Given absence of finer grained resetting, we get to do
12905 it all the time. */
12906 if (b->extra_string != NULL)
12907 update_dprintf_command_list (b);
12908 }
12909
12910 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
12911
12912 static void
12913 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12914 {
12915 fprintf_unfiltered (fp, "dprintf %s,%s",
12916 event_location_to_string (tp->location.get ()),
12917 tp->extra_string);
12918 print_recreate_thread (tp, fp);
12919 }
12920
12921 /* Implement the "after_condition_true" breakpoint_ops method for
12922 dprintf.
12923
12924 dprintf's are implemented with regular commands in their command
12925 list, but we run the commands here instead of before presenting the
12926 stop to the user, as dprintf's don't actually cause a stop. This
12927 also makes it so that the commands of multiple dprintfs at the same
12928 address are all handled. */
12929
12930 static void
12931 dprintf_after_condition_true (struct bpstats *bs)
12932 {
12933 struct bpstats tmp_bs;
12934 struct bpstats *tmp_bs_p = &tmp_bs;
12935
12936 /* dprintf's never cause a stop. This wasn't set in the
12937 check_status hook instead because that would make the dprintf's
12938 condition not be evaluated. */
12939 bs->stop = 0;
12940
12941 /* Run the command list here. Take ownership of it instead of
12942 copying. We never want these commands to run later in
12943 bpstat_do_actions, if a breakpoint that causes a stop happens to
12944 be set at same address as this dprintf, or even if running the
12945 commands here throws. */
12946 tmp_bs.commands = bs->commands;
12947 bs->commands = NULL;
12948
12949 bpstat_do_actions_1 (&tmp_bs_p);
12950
12951 /* 'tmp_bs.commands' will usually be NULL by now, but
12952 bpstat_do_actions_1 may return early without processing the whole
12953 list. */
12954 }
12955
12956 /* The breakpoint_ops structure to be used on static tracepoints with
12957 markers (`-m'). */
12958
12959 static void
12960 strace_marker_create_sals_from_location (struct event_location *location,
12961 struct linespec_result *canonical,
12962 enum bptype type_wanted)
12963 {
12964 struct linespec_sals lsal;
12965 const char *arg_start, *arg;
12966
12967 arg = arg_start = get_linespec_location (location)->spec_string;
12968 lsal.sals = decode_static_tracepoint_spec (&arg);
12969
12970 std::string str (arg_start, arg - arg_start);
12971 const char *ptr = str.c_str ();
12972 canonical->location
12973 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
12974
12975 lsal.canonical
12976 = xstrdup (event_location_to_string (canonical->location.get ()));
12977 canonical->lsals.push_back (std::move (lsal));
12978 }
12979
12980 static void
12981 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
12982 struct linespec_result *canonical,
12983 gdb::unique_xmalloc_ptr<char> cond_string,
12984 gdb::unique_xmalloc_ptr<char> extra_string,
12985 enum bptype type_wanted,
12986 enum bpdisp disposition,
12987 int thread,
12988 int task, int ignore_count,
12989 const struct breakpoint_ops *ops,
12990 int from_tty, int enabled,
12991 int internal, unsigned flags)
12992 {
12993 const linespec_sals &lsal = canonical->lsals[0];
12994
12995 /* If the user is creating a static tracepoint by marker id
12996 (strace -m MARKER_ID), then store the sals index, so that
12997 breakpoint_re_set can try to match up which of the newly
12998 found markers corresponds to this one, and, don't try to
12999 expand multiple locations for each sal, given than SALS
13000 already should contain all sals for MARKER_ID. */
13001
13002 for (size_t i = 0; i < lsal.sals.size (); i++)
13003 {
13004 event_location_up location
13005 = copy_event_location (canonical->location.get ());
13006
13007 std::unique_ptr<tracepoint> tp (new tracepoint ());
13008 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13009 std::move (location), NULL,
13010 std::move (cond_string),
13011 std::move (extra_string),
13012 type_wanted, disposition,
13013 thread, task, ignore_count, ops,
13014 from_tty, enabled, internal, flags,
13015 canonical->special_display);
13016 /* Given that its possible to have multiple markers with
13017 the same string id, if the user is creating a static
13018 tracepoint by marker id ("strace -m MARKER_ID"), then
13019 store the sals index, so that breakpoint_re_set can
13020 try to match up which of the newly found markers
13021 corresponds to this one */
13022 tp->static_trace_marker_id_idx = i;
13023
13024 install_breakpoint (internal, std::move (tp), 0);
13025 }
13026 }
13027
13028 static std::vector<symtab_and_line>
13029 strace_marker_decode_location (struct breakpoint *b,
13030 struct event_location *location,
13031 struct program_space *search_pspace)
13032 {
13033 struct tracepoint *tp = (struct tracepoint *) b;
13034 const char *s = get_linespec_location (location)->spec_string;
13035
13036 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13037 if (sals.size () > tp->static_trace_marker_id_idx)
13038 {
13039 sals[0] = sals[tp->static_trace_marker_id_idx];
13040 sals.resize (1);
13041 return sals;
13042 }
13043 else
13044 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13045 }
13046
13047 static struct breakpoint_ops strace_marker_breakpoint_ops;
13048
13049 static int
13050 strace_marker_p (struct breakpoint *b)
13051 {
13052 return b->ops == &strace_marker_breakpoint_ops;
13053 }
13054
13055 /* Delete a breakpoint and clean up all traces of it in the data
13056 structures. */
13057
13058 void
13059 delete_breakpoint (struct breakpoint *bpt)
13060 {
13061 struct breakpoint *b;
13062
13063 gdb_assert (bpt != NULL);
13064
13065 /* Has this bp already been deleted? This can happen because
13066 multiple lists can hold pointers to bp's. bpstat lists are
13067 especial culprits.
13068
13069 One example of this happening is a watchpoint's scope bp. When
13070 the scope bp triggers, we notice that the watchpoint is out of
13071 scope, and delete it. We also delete its scope bp. But the
13072 scope bp is marked "auto-deleting", and is already on a bpstat.
13073 That bpstat is then checked for auto-deleting bp's, which are
13074 deleted.
13075
13076 A real solution to this problem might involve reference counts in
13077 bp's, and/or giving them pointers back to their referencing
13078 bpstat's, and teaching delete_breakpoint to only free a bp's
13079 storage when no more references were extent. A cheaper bandaid
13080 was chosen. */
13081 if (bpt->type == bp_none)
13082 return;
13083
13084 /* At least avoid this stale reference until the reference counting
13085 of breakpoints gets resolved. */
13086 if (bpt->related_breakpoint != bpt)
13087 {
13088 struct breakpoint *related;
13089 struct watchpoint *w;
13090
13091 if (bpt->type == bp_watchpoint_scope)
13092 w = (struct watchpoint *) bpt->related_breakpoint;
13093 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13094 w = (struct watchpoint *) bpt;
13095 else
13096 w = NULL;
13097 if (w != NULL)
13098 watchpoint_del_at_next_stop (w);
13099
13100 /* Unlink bpt from the bpt->related_breakpoint ring. */
13101 for (related = bpt; related->related_breakpoint != bpt;
13102 related = related->related_breakpoint);
13103 related->related_breakpoint = bpt->related_breakpoint;
13104 bpt->related_breakpoint = bpt;
13105 }
13106
13107 /* watch_command_1 creates a watchpoint but only sets its number if
13108 update_watchpoint succeeds in creating its bp_locations. If there's
13109 a problem in that process, we'll be asked to delete the half-created
13110 watchpoint. In that case, don't announce the deletion. */
13111 if (bpt->number)
13112 gdb::observers::breakpoint_deleted.notify (bpt);
13113
13114 if (breakpoint_chain == bpt)
13115 breakpoint_chain = bpt->next;
13116
13117 ALL_BREAKPOINTS (b)
13118 if (b->next == bpt)
13119 {
13120 b->next = bpt->next;
13121 break;
13122 }
13123
13124 /* Be sure no bpstat's are pointing at the breakpoint after it's
13125 been freed. */
13126 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13127 in all threads for now. Note that we cannot just remove bpstats
13128 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13129 commands are associated with the bpstat; if we remove it here,
13130 then the later call to bpstat_do_actions (&stop_bpstat); in
13131 event-top.c won't do anything, and temporary breakpoints with
13132 commands won't work. */
13133
13134 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13135
13136 /* Now that breakpoint is removed from breakpoint list, update the
13137 global location list. This will remove locations that used to
13138 belong to this breakpoint. Do this before freeing the breakpoint
13139 itself, since remove_breakpoint looks at location's owner. It
13140 might be better design to have location completely
13141 self-contained, but it's not the case now. */
13142 update_global_location_list (UGLL_DONT_INSERT);
13143
13144 /* On the chance that someone will soon try again to delete this
13145 same bp, we mark it as deleted before freeing its storage. */
13146 bpt->type = bp_none;
13147 delete bpt;
13148 }
13149
13150 /* Iterator function to call a user-provided callback function once
13151 for each of B and its related breakpoints. */
13152
13153 static void
13154 iterate_over_related_breakpoints (struct breakpoint *b,
13155 gdb::function_view<void (breakpoint *)> function)
13156 {
13157 struct breakpoint *related;
13158
13159 related = b;
13160 do
13161 {
13162 struct breakpoint *next;
13163
13164 /* FUNCTION may delete RELATED. */
13165 next = related->related_breakpoint;
13166
13167 if (next == related)
13168 {
13169 /* RELATED is the last ring entry. */
13170 function (related);
13171
13172 /* FUNCTION may have deleted it, so we'd never reach back to
13173 B. There's nothing left to do anyway, so just break
13174 out. */
13175 break;
13176 }
13177 else
13178 function (related);
13179
13180 related = next;
13181 }
13182 while (related != b);
13183 }
13184
13185 static void
13186 delete_command (const char *arg, int from_tty)
13187 {
13188 struct breakpoint *b, *b_tmp;
13189
13190 dont_repeat ();
13191
13192 if (arg == 0)
13193 {
13194 int breaks_to_delete = 0;
13195
13196 /* Delete all breakpoints if no argument. Do not delete
13197 internal breakpoints, these have to be deleted with an
13198 explicit breakpoint number argument. */
13199 ALL_BREAKPOINTS (b)
13200 if (user_breakpoint_p (b))
13201 {
13202 breaks_to_delete = 1;
13203 break;
13204 }
13205
13206 /* Ask user only if there are some breakpoints to delete. */
13207 if (!from_tty
13208 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13209 {
13210 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13211 if (user_breakpoint_p (b))
13212 delete_breakpoint (b);
13213 }
13214 }
13215 else
13216 map_breakpoint_numbers
13217 (arg, [&] (breakpoint *br)
13218 {
13219 iterate_over_related_breakpoints (br, delete_breakpoint);
13220 });
13221 }
13222
13223 /* Return true if all locations of B bound to PSPACE are pending. If
13224 PSPACE is NULL, all locations of all program spaces are
13225 considered. */
13226
13227 static int
13228 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13229 {
13230 struct bp_location *loc;
13231
13232 for (loc = b->loc; loc != NULL; loc = loc->next)
13233 if ((pspace == NULL
13234 || loc->pspace == pspace)
13235 && !loc->shlib_disabled
13236 && !loc->pspace->executing_startup)
13237 return 0;
13238 return 1;
13239 }
13240
13241 /* Subroutine of update_breakpoint_locations to simplify it.
13242 Return non-zero if multiple fns in list LOC have the same name.
13243 Null names are ignored. */
13244
13245 static int
13246 ambiguous_names_p (struct bp_location *loc)
13247 {
13248 struct bp_location *l;
13249 htab_up htab (htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13250 xcalloc, xfree));
13251
13252 for (l = loc; l != NULL; l = l->next)
13253 {
13254 const char **slot;
13255 const char *name = l->function_name;
13256
13257 /* Allow for some names to be NULL, ignore them. */
13258 if (name == NULL)
13259 continue;
13260
13261 slot = (const char **) htab_find_slot (htab.get (), (const void *) name,
13262 INSERT);
13263 /* NOTE: We can assume slot != NULL here because xcalloc never
13264 returns NULL. */
13265 if (*slot != NULL)
13266 return 1;
13267 *slot = name;
13268 }
13269
13270 return 0;
13271 }
13272
13273 /* When symbols change, it probably means the sources changed as well,
13274 and it might mean the static tracepoint markers are no longer at
13275 the same address or line numbers they used to be at last we
13276 checked. Losing your static tracepoints whenever you rebuild is
13277 undesirable. This function tries to resync/rematch gdb static
13278 tracepoints with the markers on the target, for static tracepoints
13279 that have not been set by marker id. Static tracepoint that have
13280 been set by marker id are reset by marker id in breakpoint_re_set.
13281 The heuristic is:
13282
13283 1) For a tracepoint set at a specific address, look for a marker at
13284 the old PC. If one is found there, assume to be the same marker.
13285 If the name / string id of the marker found is different from the
13286 previous known name, assume that means the user renamed the marker
13287 in the sources, and output a warning.
13288
13289 2) For a tracepoint set at a given line number, look for a marker
13290 at the new address of the old line number. If one is found there,
13291 assume to be the same marker. If the name / string id of the
13292 marker found is different from the previous known name, assume that
13293 means the user renamed the marker in the sources, and output a
13294 warning.
13295
13296 3) If a marker is no longer found at the same address or line, it
13297 may mean the marker no longer exists. But it may also just mean
13298 the code changed a bit. Maybe the user added a few lines of code
13299 that made the marker move up or down (in line number terms). Ask
13300 the target for info about the marker with the string id as we knew
13301 it. If found, update line number and address in the matching
13302 static tracepoint. This will get confused if there's more than one
13303 marker with the same ID (possible in UST, although unadvised
13304 precisely because it confuses tools). */
13305
13306 static struct symtab_and_line
13307 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13308 {
13309 struct tracepoint *tp = (struct tracepoint *) b;
13310 struct static_tracepoint_marker marker;
13311 CORE_ADDR pc;
13312
13313 pc = sal.pc;
13314 if (sal.line)
13315 find_line_pc (sal.symtab, sal.line, &pc);
13316
13317 if (target_static_tracepoint_marker_at (pc, &marker))
13318 {
13319 if (tp->static_trace_marker_id != marker.str_id)
13320 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13321 b->number, tp->static_trace_marker_id.c_str (),
13322 marker.str_id.c_str ());
13323
13324 tp->static_trace_marker_id = std::move (marker.str_id);
13325
13326 return sal;
13327 }
13328
13329 /* Old marker wasn't found on target at lineno. Try looking it up
13330 by string ID. */
13331 if (!sal.explicit_pc
13332 && sal.line != 0
13333 && sal.symtab != NULL
13334 && !tp->static_trace_marker_id.empty ())
13335 {
13336 std::vector<static_tracepoint_marker> markers
13337 = target_static_tracepoint_markers_by_strid
13338 (tp->static_trace_marker_id.c_str ());
13339
13340 if (!markers.empty ())
13341 {
13342 struct symbol *sym;
13343 struct static_tracepoint_marker *tpmarker;
13344 struct ui_out *uiout = current_uiout;
13345 struct explicit_location explicit_loc;
13346
13347 tpmarker = &markers[0];
13348
13349 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13350
13351 warning (_("marker for static tracepoint %d (%s) not "
13352 "found at previous line number"),
13353 b->number, tp->static_trace_marker_id.c_str ());
13354
13355 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13356 sym = find_pc_sect_function (tpmarker->address, NULL);
13357 uiout->text ("Now in ");
13358 if (sym)
13359 {
13360 uiout->field_string ("func", sym->print_name (),
13361 function_name_style.style ());
13362 uiout->text (" at ");
13363 }
13364 uiout->field_string ("file",
13365 symtab_to_filename_for_display (sal2.symtab),
13366 file_name_style.style ());
13367 uiout->text (":");
13368
13369 if (uiout->is_mi_like_p ())
13370 {
13371 const char *fullname = symtab_to_fullname (sal2.symtab);
13372
13373 uiout->field_string ("fullname", fullname);
13374 }
13375
13376 uiout->field_signed ("line", sal2.line);
13377 uiout->text ("\n");
13378
13379 b->loc->line_number = sal2.line;
13380 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13381
13382 b->location.reset (NULL);
13383 initialize_explicit_location (&explicit_loc);
13384 explicit_loc.source_filename
13385 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13386 explicit_loc.line_offset.offset = b->loc->line_number;
13387 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13388 b->location = new_explicit_location (&explicit_loc);
13389
13390 /* Might be nice to check if function changed, and warn if
13391 so. */
13392 }
13393 }
13394 return sal;
13395 }
13396
13397 /* Returns 1 iff locations A and B are sufficiently same that
13398 we don't need to report breakpoint as changed. */
13399
13400 static int
13401 locations_are_equal (struct bp_location *a, struct bp_location *b)
13402 {
13403 while (a && b)
13404 {
13405 if (a->address != b->address)
13406 return 0;
13407
13408 if (a->shlib_disabled != b->shlib_disabled)
13409 return 0;
13410
13411 if (a->enabled != b->enabled)
13412 return 0;
13413
13414 a = a->next;
13415 b = b->next;
13416 }
13417
13418 if ((a == NULL) != (b == NULL))
13419 return 0;
13420
13421 return 1;
13422 }
13423
13424 /* Split all locations of B that are bound to PSPACE out of B's
13425 location list to a separate list and return that list's head. If
13426 PSPACE is NULL, hoist out all locations of B. */
13427
13428 static struct bp_location *
13429 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13430 {
13431 struct bp_location head;
13432 struct bp_location *i = b->loc;
13433 struct bp_location **i_link = &b->loc;
13434 struct bp_location *hoisted = &head;
13435
13436 if (pspace == NULL)
13437 {
13438 i = b->loc;
13439 b->loc = NULL;
13440 return i;
13441 }
13442
13443 head.next = NULL;
13444
13445 while (i != NULL)
13446 {
13447 if (i->pspace == pspace)
13448 {
13449 *i_link = i->next;
13450 i->next = NULL;
13451 hoisted->next = i;
13452 hoisted = i;
13453 }
13454 else
13455 i_link = &i->next;
13456 i = *i_link;
13457 }
13458
13459 return head.next;
13460 }
13461
13462 /* Create new breakpoint locations for B (a hardware or software
13463 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13464 zero, then B is a ranged breakpoint. Only recreates locations for
13465 FILTER_PSPACE. Locations of other program spaces are left
13466 untouched. */
13467
13468 void
13469 update_breakpoint_locations (struct breakpoint *b,
13470 struct program_space *filter_pspace,
13471 gdb::array_view<const symtab_and_line> sals,
13472 gdb::array_view<const symtab_and_line> sals_end)
13473 {
13474 struct bp_location *existing_locations;
13475
13476 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13477 {
13478 /* Ranged breakpoints have only one start location and one end
13479 location. */
13480 b->enable_state = bp_disabled;
13481 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13482 "multiple locations found\n"),
13483 b->number);
13484 return;
13485 }
13486
13487 /* If there's no new locations, and all existing locations are
13488 pending, don't do anything. This optimizes the common case where
13489 all locations are in the same shared library, that was unloaded.
13490 We'd like to retain the location, so that when the library is
13491 loaded again, we don't loose the enabled/disabled status of the
13492 individual locations. */
13493 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13494 return;
13495
13496 existing_locations = hoist_existing_locations (b, filter_pspace);
13497
13498 for (const auto &sal : sals)
13499 {
13500 struct bp_location *new_loc;
13501
13502 switch_to_program_space_and_thread (sal.pspace);
13503
13504 new_loc = add_location_to_breakpoint (b, &sal);
13505
13506 /* Reparse conditions, they might contain references to the
13507 old symtab. */
13508 if (b->cond_string != NULL)
13509 {
13510 const char *s;
13511
13512 s = b->cond_string;
13513 try
13514 {
13515 new_loc->cond = parse_exp_1 (&s, sal.pc,
13516 block_for_pc (sal.pc),
13517 0);
13518 }
13519 catch (const gdb_exception_error &e)
13520 {
13521 warning (_("failed to reevaluate condition "
13522 "for breakpoint %d: %s"),
13523 b->number, e.what ());
13524 new_loc->enabled = 0;
13525 }
13526 }
13527
13528 if (!sals_end.empty ())
13529 {
13530 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13531
13532 new_loc->length = end - sals[0].pc + 1;
13533 }
13534 }
13535
13536 /* If possible, carry over 'disable' status from existing
13537 breakpoints. */
13538 {
13539 struct bp_location *e = existing_locations;
13540 /* If there are multiple breakpoints with the same function name,
13541 e.g. for inline functions, comparing function names won't work.
13542 Instead compare pc addresses; this is just a heuristic as things
13543 may have moved, but in practice it gives the correct answer
13544 often enough until a better solution is found. */
13545 int have_ambiguous_names = ambiguous_names_p (b->loc);
13546
13547 for (; e; e = e->next)
13548 {
13549 if (!e->enabled && e->function_name)
13550 {
13551 struct bp_location *l = b->loc;
13552 if (have_ambiguous_names)
13553 {
13554 for (; l; l = l->next)
13555 {
13556 /* Ignore software vs hardware location type at
13557 this point, because with "set breakpoint
13558 auto-hw", after a re-set, locations that were
13559 hardware can end up as software, or vice versa.
13560 As mentioned above, this is an heuristic and in
13561 practice should give the correct answer often
13562 enough. */
13563 if (breakpoint_locations_match (e, l, true))
13564 {
13565 l->enabled = 0;
13566 break;
13567 }
13568 }
13569 }
13570 else
13571 {
13572 for (; l; l = l->next)
13573 if (l->function_name
13574 && strcmp (e->function_name, l->function_name) == 0)
13575 {
13576 l->enabled = 0;
13577 break;
13578 }
13579 }
13580 }
13581 }
13582 }
13583
13584 if (!locations_are_equal (existing_locations, b->loc))
13585 gdb::observers::breakpoint_modified.notify (b);
13586 }
13587
13588 /* Find the SaL locations corresponding to the given LOCATION.
13589 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13590
13591 static std::vector<symtab_and_line>
13592 location_to_sals (struct breakpoint *b, struct event_location *location,
13593 struct program_space *search_pspace, int *found)
13594 {
13595 struct gdb_exception exception;
13596
13597 gdb_assert (b->ops != NULL);
13598
13599 std::vector<symtab_and_line> sals;
13600
13601 try
13602 {
13603 sals = b->ops->decode_location (b, location, search_pspace);
13604 }
13605 catch (gdb_exception_error &e)
13606 {
13607 int not_found_and_ok = 0;
13608
13609 /* For pending breakpoints, it's expected that parsing will
13610 fail until the right shared library is loaded. User has
13611 already told to create pending breakpoints and don't need
13612 extra messages. If breakpoint is in bp_shlib_disabled
13613 state, then user already saw the message about that
13614 breakpoint being disabled, and don't want to see more
13615 errors. */
13616 if (e.error == NOT_FOUND_ERROR
13617 && (b->condition_not_parsed
13618 || (b->loc != NULL
13619 && search_pspace != NULL
13620 && b->loc->pspace != search_pspace)
13621 || (b->loc && b->loc->shlib_disabled)
13622 || (b->loc && b->loc->pspace->executing_startup)
13623 || b->enable_state == bp_disabled))
13624 not_found_and_ok = 1;
13625
13626 if (!not_found_and_ok)
13627 {
13628 /* We surely don't want to warn about the same breakpoint
13629 10 times. One solution, implemented here, is disable
13630 the breakpoint on error. Another solution would be to
13631 have separate 'warning emitted' flag. Since this
13632 happens only when a binary has changed, I don't know
13633 which approach is better. */
13634 b->enable_state = bp_disabled;
13635 throw;
13636 }
13637
13638 exception = std::move (e);
13639 }
13640
13641 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13642 {
13643 for (auto &sal : sals)
13644 resolve_sal_pc (&sal);
13645 if (b->condition_not_parsed && b->extra_string != NULL)
13646 {
13647 char *cond_string, *extra_string;
13648 int thread, task;
13649
13650 find_condition_and_thread (b->extra_string, sals[0].pc,
13651 &cond_string, &thread, &task,
13652 &extra_string);
13653 gdb_assert (b->cond_string == NULL);
13654 if (cond_string)
13655 b->cond_string = cond_string;
13656 b->thread = thread;
13657 b->task = task;
13658 if (extra_string)
13659 {
13660 xfree (b->extra_string);
13661 b->extra_string = extra_string;
13662 }
13663 b->condition_not_parsed = 0;
13664 }
13665
13666 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13667 sals[0] = update_static_tracepoint (b, sals[0]);
13668
13669 *found = 1;
13670 }
13671 else
13672 *found = 0;
13673
13674 return sals;
13675 }
13676
13677 /* The default re_set method, for typical hardware or software
13678 breakpoints. Reevaluate the breakpoint and recreate its
13679 locations. */
13680
13681 static void
13682 breakpoint_re_set_default (struct breakpoint *b)
13683 {
13684 struct program_space *filter_pspace = current_program_space;
13685 std::vector<symtab_and_line> expanded, expanded_end;
13686
13687 int found;
13688 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13689 filter_pspace, &found);
13690 if (found)
13691 expanded = std::move (sals);
13692
13693 if (b->location_range_end != NULL)
13694 {
13695 std::vector<symtab_and_line> sals_end
13696 = location_to_sals (b, b->location_range_end.get (),
13697 filter_pspace, &found);
13698 if (found)
13699 expanded_end = std::move (sals_end);
13700 }
13701
13702 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13703 }
13704
13705 /* Default method for creating SALs from an address string. It basically
13706 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13707
13708 static void
13709 create_sals_from_location_default (struct event_location *location,
13710 struct linespec_result *canonical,
13711 enum bptype type_wanted)
13712 {
13713 parse_breakpoint_sals (location, canonical);
13714 }
13715
13716 /* Call create_breakpoints_sal for the given arguments. This is the default
13717 function for the `create_breakpoints_sal' method of
13718 breakpoint_ops. */
13719
13720 static void
13721 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13722 struct linespec_result *canonical,
13723 gdb::unique_xmalloc_ptr<char> cond_string,
13724 gdb::unique_xmalloc_ptr<char> extra_string,
13725 enum bptype type_wanted,
13726 enum bpdisp disposition,
13727 int thread,
13728 int task, int ignore_count,
13729 const struct breakpoint_ops *ops,
13730 int from_tty, int enabled,
13731 int internal, unsigned flags)
13732 {
13733 create_breakpoints_sal (gdbarch, canonical,
13734 std::move (cond_string),
13735 std::move (extra_string),
13736 type_wanted, disposition,
13737 thread, task, ignore_count, ops, from_tty,
13738 enabled, internal, flags);
13739 }
13740
13741 /* Decode the line represented by S by calling decode_line_full. This is the
13742 default function for the `decode_location' method of breakpoint_ops. */
13743
13744 static std::vector<symtab_and_line>
13745 decode_location_default (struct breakpoint *b,
13746 struct event_location *location,
13747 struct program_space *search_pspace)
13748 {
13749 struct linespec_result canonical;
13750
13751 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13752 NULL, 0, &canonical, multiple_symbols_all,
13753 b->filter.get ());
13754
13755 /* We should get 0 or 1 resulting SALs. */
13756 gdb_assert (canonical.lsals.size () < 2);
13757
13758 if (!canonical.lsals.empty ())
13759 {
13760 const linespec_sals &lsal = canonical.lsals[0];
13761 return std::move (lsal.sals);
13762 }
13763 return {};
13764 }
13765
13766 /* Reset a breakpoint. */
13767
13768 static void
13769 breakpoint_re_set_one (breakpoint *b)
13770 {
13771 input_radix = b->input_radix;
13772 set_language (b->language);
13773
13774 b->ops->re_set (b);
13775 }
13776
13777 /* Re-set breakpoint locations for the current program space.
13778 Locations bound to other program spaces are left untouched. */
13779
13780 void
13781 breakpoint_re_set (void)
13782 {
13783 struct breakpoint *b, *b_tmp;
13784
13785 {
13786 scoped_restore_current_language save_language;
13787 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13788 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13789
13790 /* breakpoint_re_set_one sets the current_language to the language
13791 of the breakpoint it is resetting (see prepare_re_set_context)
13792 before re-evaluating the breakpoint's location. This change can
13793 unfortunately get undone by accident if the language_mode is set
13794 to auto, and we either switch frames, or more likely in this context,
13795 we select the current frame.
13796
13797 We prevent this by temporarily turning the language_mode to
13798 language_mode_manual. We restore it once all breakpoints
13799 have been reset. */
13800 scoped_restore save_language_mode = make_scoped_restore (&language_mode);
13801 language_mode = language_mode_manual;
13802
13803 /* Note: we must not try to insert locations until after all
13804 breakpoints have been re-set. Otherwise, e.g., when re-setting
13805 breakpoint 1, we'd insert the locations of breakpoint 2, which
13806 hadn't been re-set yet, and thus may have stale locations. */
13807
13808 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13809 {
13810 try
13811 {
13812 breakpoint_re_set_one (b);
13813 }
13814 catch (const gdb_exception &ex)
13815 {
13816 exception_fprintf (gdb_stderr, ex,
13817 "Error in re-setting breakpoint %d: ",
13818 b->number);
13819 }
13820 }
13821
13822 jit_breakpoint_re_set ();
13823 }
13824
13825 create_overlay_event_breakpoint ();
13826 create_longjmp_master_breakpoint ();
13827 create_std_terminate_master_breakpoint ();
13828 create_exception_master_breakpoint ();
13829
13830 /* Now we can insert. */
13831 update_global_location_list (UGLL_MAY_INSERT);
13832 }
13833 \f
13834 /* Reset the thread number of this breakpoint:
13835
13836 - If the breakpoint is for all threads, leave it as-is.
13837 - Else, reset it to the current thread for inferior_ptid. */
13838 void
13839 breakpoint_re_set_thread (struct breakpoint *b)
13840 {
13841 if (b->thread != -1)
13842 {
13843 b->thread = inferior_thread ()->global_num;
13844
13845 /* We're being called after following a fork. The new fork is
13846 selected as current, and unless this was a vfork will have a
13847 different program space from the original thread. Reset that
13848 as well. */
13849 b->loc->pspace = current_program_space;
13850 }
13851 }
13852
13853 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13854 If from_tty is nonzero, it prints a message to that effect,
13855 which ends with a period (no newline). */
13856
13857 void
13858 set_ignore_count (int bptnum, int count, int from_tty)
13859 {
13860 struct breakpoint *b;
13861
13862 if (count < 0)
13863 count = 0;
13864
13865 ALL_BREAKPOINTS (b)
13866 if (b->number == bptnum)
13867 {
13868 if (is_tracepoint (b))
13869 {
13870 if (from_tty && count != 0)
13871 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13872 bptnum);
13873 return;
13874 }
13875
13876 b->ignore_count = count;
13877 if (from_tty)
13878 {
13879 if (count == 0)
13880 printf_filtered (_("Will stop next time "
13881 "breakpoint %d is reached."),
13882 bptnum);
13883 else if (count == 1)
13884 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13885 bptnum);
13886 else
13887 printf_filtered (_("Will ignore next %d "
13888 "crossings of breakpoint %d."),
13889 count, bptnum);
13890 }
13891 gdb::observers::breakpoint_modified.notify (b);
13892 return;
13893 }
13894
13895 error (_("No breakpoint number %d."), bptnum);
13896 }
13897
13898 /* Command to set ignore-count of breakpoint N to COUNT. */
13899
13900 static void
13901 ignore_command (const char *args, int from_tty)
13902 {
13903 const char *p = args;
13904 int num;
13905
13906 if (p == 0)
13907 error_no_arg (_("a breakpoint number"));
13908
13909 num = get_number (&p);
13910 if (num == 0)
13911 error (_("bad breakpoint number: '%s'"), args);
13912 if (*p == 0)
13913 error (_("Second argument (specified ignore-count) is missing."));
13914
13915 set_ignore_count (num,
13916 longest_to_int (value_as_long (parse_and_eval (p))),
13917 from_tty);
13918 if (from_tty)
13919 printf_filtered ("\n");
13920 }
13921 \f
13922
13923 /* Call FUNCTION on each of the breakpoints with numbers in the range
13924 defined by BP_NUM_RANGE (an inclusive range). */
13925
13926 static void
13927 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
13928 gdb::function_view<void (breakpoint *)> function)
13929 {
13930 if (bp_num_range.first == 0)
13931 {
13932 warning (_("bad breakpoint number at or near '%d'"),
13933 bp_num_range.first);
13934 }
13935 else
13936 {
13937 struct breakpoint *b, *tmp;
13938
13939 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
13940 {
13941 bool match = false;
13942
13943 ALL_BREAKPOINTS_SAFE (b, tmp)
13944 if (b->number == i)
13945 {
13946 match = true;
13947 function (b);
13948 break;
13949 }
13950 if (!match)
13951 printf_unfiltered (_("No breakpoint number %d.\n"), i);
13952 }
13953 }
13954 }
13955
13956 /* Call FUNCTION on each of the breakpoints whose numbers are given in
13957 ARGS. */
13958
13959 static void
13960 map_breakpoint_numbers (const char *args,
13961 gdb::function_view<void (breakpoint *)> function)
13962 {
13963 if (args == NULL || *args == '\0')
13964 error_no_arg (_("one or more breakpoint numbers"));
13965
13966 number_or_range_parser parser (args);
13967
13968 while (!parser.finished ())
13969 {
13970 int num = parser.get_number ();
13971 map_breakpoint_number_range (std::make_pair (num, num), function);
13972 }
13973 }
13974
13975 /* Return the breakpoint location structure corresponding to the
13976 BP_NUM and LOC_NUM values. */
13977
13978 static struct bp_location *
13979 find_location_by_number (int bp_num, int loc_num)
13980 {
13981 struct breakpoint *b;
13982
13983 ALL_BREAKPOINTS (b)
13984 if (b->number == bp_num)
13985 {
13986 break;
13987 }
13988
13989 if (!b || b->number != bp_num)
13990 error (_("Bad breakpoint number '%d'"), bp_num);
13991
13992 if (loc_num == 0)
13993 error (_("Bad breakpoint location number '%d'"), loc_num);
13994
13995 int n = 0;
13996 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
13997 if (++n == loc_num)
13998 return loc;
13999
14000 error (_("Bad breakpoint location number '%d'"), loc_num);
14001 }
14002
14003 /* Modes of operation for extract_bp_num. */
14004 enum class extract_bp_kind
14005 {
14006 /* Extracting a breakpoint number. */
14007 bp,
14008
14009 /* Extracting a location number. */
14010 loc,
14011 };
14012
14013 /* Extract a breakpoint or location number (as determined by KIND)
14014 from the string starting at START. TRAILER is a character which
14015 can be found after the number. If you don't want a trailer, use
14016 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14017 string. This always returns a positive integer. */
14018
14019 static int
14020 extract_bp_num (extract_bp_kind kind, const char *start,
14021 int trailer, const char **end_out = NULL)
14022 {
14023 const char *end = start;
14024 int num = get_number_trailer (&end, trailer);
14025 if (num < 0)
14026 error (kind == extract_bp_kind::bp
14027 ? _("Negative breakpoint number '%.*s'")
14028 : _("Negative breakpoint location number '%.*s'"),
14029 int (end - start), start);
14030 if (num == 0)
14031 error (kind == extract_bp_kind::bp
14032 ? _("Bad breakpoint number '%.*s'")
14033 : _("Bad breakpoint location number '%.*s'"),
14034 int (end - start), start);
14035
14036 if (end_out != NULL)
14037 *end_out = end;
14038 return num;
14039 }
14040
14041 /* Extract a breakpoint or location range (as determined by KIND) in
14042 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14043 representing the (inclusive) range. The returned pair's elements
14044 are always positive integers. */
14045
14046 static std::pair<int, int>
14047 extract_bp_or_bp_range (extract_bp_kind kind,
14048 const std::string &arg,
14049 std::string::size_type arg_offset)
14050 {
14051 std::pair<int, int> range;
14052 const char *bp_loc = &arg[arg_offset];
14053 std::string::size_type dash = arg.find ('-', arg_offset);
14054 if (dash != std::string::npos)
14055 {
14056 /* bp_loc is a range (x-z). */
14057 if (arg.length () == dash + 1)
14058 error (kind == extract_bp_kind::bp
14059 ? _("Bad breakpoint number at or near: '%s'")
14060 : _("Bad breakpoint location number at or near: '%s'"),
14061 bp_loc);
14062
14063 const char *end;
14064 const char *start_first = bp_loc;
14065 const char *start_second = &arg[dash + 1];
14066 range.first = extract_bp_num (kind, start_first, '-');
14067 range.second = extract_bp_num (kind, start_second, '\0', &end);
14068
14069 if (range.first > range.second)
14070 error (kind == extract_bp_kind::bp
14071 ? _("Inverted breakpoint range at '%.*s'")
14072 : _("Inverted breakpoint location range at '%.*s'"),
14073 int (end - start_first), start_first);
14074 }
14075 else
14076 {
14077 /* bp_loc is a single value. */
14078 range.first = extract_bp_num (kind, bp_loc, '\0');
14079 range.second = range.first;
14080 }
14081 return range;
14082 }
14083
14084 /* Extract the breakpoint/location range specified by ARG. Returns
14085 the breakpoint range in BP_NUM_RANGE, and the location range in
14086 BP_LOC_RANGE.
14087
14088 ARG may be in any of the following forms:
14089
14090 x where 'x' is a breakpoint number.
14091 x-y where 'x' and 'y' specify a breakpoint numbers range.
14092 x.y where 'x' is a breakpoint number and 'y' a location number.
14093 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14094 location number range.
14095 */
14096
14097 static void
14098 extract_bp_number_and_location (const std::string &arg,
14099 std::pair<int, int> &bp_num_range,
14100 std::pair<int, int> &bp_loc_range)
14101 {
14102 std::string::size_type dot = arg.find ('.');
14103
14104 if (dot != std::string::npos)
14105 {
14106 /* Handle 'x.y' and 'x.y-z' cases. */
14107
14108 if (arg.length () == dot + 1 || dot == 0)
14109 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14110
14111 bp_num_range.first
14112 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14113 bp_num_range.second = bp_num_range.first;
14114
14115 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14116 arg, dot + 1);
14117 }
14118 else
14119 {
14120 /* Handle x and x-y cases. */
14121
14122 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14123 bp_loc_range.first = 0;
14124 bp_loc_range.second = 0;
14125 }
14126 }
14127
14128 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14129 specifies whether to enable or disable. */
14130
14131 static void
14132 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14133 {
14134 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14135 if (loc != NULL)
14136 {
14137 if (loc->enabled != enable)
14138 {
14139 loc->enabled = enable;
14140 mark_breakpoint_location_modified (loc);
14141 }
14142 if (target_supports_enable_disable_tracepoint ()
14143 && current_trace_status ()->running && loc->owner
14144 && is_tracepoint (loc->owner))
14145 target_disable_tracepoint (loc);
14146 }
14147 update_global_location_list (UGLL_DONT_INSERT);
14148
14149 gdb::observers::breakpoint_modified.notify (loc->owner);
14150 }
14151
14152 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14153 number of the breakpoint, and BP_LOC_RANGE specifies the
14154 (inclusive) range of location numbers of that breakpoint to
14155 enable/disable. ENABLE specifies whether to enable or disable the
14156 location. */
14157
14158 static void
14159 enable_disable_breakpoint_location_range (int bp_num,
14160 std::pair<int, int> &bp_loc_range,
14161 bool enable)
14162 {
14163 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14164 enable_disable_bp_num_loc (bp_num, i, enable);
14165 }
14166
14167 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14168 If from_tty is nonzero, it prints a message to that effect,
14169 which ends with a period (no newline). */
14170
14171 void
14172 disable_breakpoint (struct breakpoint *bpt)
14173 {
14174 /* Never disable a watchpoint scope breakpoint; we want to
14175 hit them when we leave scope so we can delete both the
14176 watchpoint and its scope breakpoint at that time. */
14177 if (bpt->type == bp_watchpoint_scope)
14178 return;
14179
14180 bpt->enable_state = bp_disabled;
14181
14182 /* Mark breakpoint locations modified. */
14183 mark_breakpoint_modified (bpt);
14184
14185 if (target_supports_enable_disable_tracepoint ()
14186 && current_trace_status ()->running && is_tracepoint (bpt))
14187 {
14188 struct bp_location *location;
14189
14190 for (location = bpt->loc; location; location = location->next)
14191 target_disable_tracepoint (location);
14192 }
14193
14194 update_global_location_list (UGLL_DONT_INSERT);
14195
14196 gdb::observers::breakpoint_modified.notify (bpt);
14197 }
14198
14199 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14200 specified in ARGS. ARGS may be in any of the formats handled by
14201 extract_bp_number_and_location. ENABLE specifies whether to enable
14202 or disable the breakpoints/locations. */
14203
14204 static void
14205 enable_disable_command (const char *args, int from_tty, bool enable)
14206 {
14207 if (args == 0)
14208 {
14209 struct breakpoint *bpt;
14210
14211 ALL_BREAKPOINTS (bpt)
14212 if (user_breakpoint_p (bpt))
14213 {
14214 if (enable)
14215 enable_breakpoint (bpt);
14216 else
14217 disable_breakpoint (bpt);
14218 }
14219 }
14220 else
14221 {
14222 std::string num = extract_arg (&args);
14223
14224 while (!num.empty ())
14225 {
14226 std::pair<int, int> bp_num_range, bp_loc_range;
14227
14228 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14229
14230 if (bp_loc_range.first == bp_loc_range.second
14231 && bp_loc_range.first == 0)
14232 {
14233 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14234 map_breakpoint_number_range (bp_num_range,
14235 enable
14236 ? enable_breakpoint
14237 : disable_breakpoint);
14238 }
14239 else
14240 {
14241 /* Handle breakpoint ids with formats 'x.y' or
14242 'x.y-z'. */
14243 enable_disable_breakpoint_location_range
14244 (bp_num_range.first, bp_loc_range, enable);
14245 }
14246 num = extract_arg (&args);
14247 }
14248 }
14249 }
14250
14251 /* The disable command disables the specified breakpoints/locations
14252 (or all defined breakpoints) so they're no longer effective in
14253 stopping the inferior. ARGS may be in any of the forms defined in
14254 extract_bp_number_and_location. */
14255
14256 static void
14257 disable_command (const char *args, int from_tty)
14258 {
14259 enable_disable_command (args, from_tty, false);
14260 }
14261
14262 static void
14263 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14264 int count)
14265 {
14266 int target_resources_ok;
14267
14268 if (bpt->type == bp_hardware_breakpoint)
14269 {
14270 int i;
14271 i = hw_breakpoint_used_count ();
14272 target_resources_ok =
14273 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14274 i + 1, 0);
14275 if (target_resources_ok == 0)
14276 error (_("No hardware breakpoint support in the target."));
14277 else if (target_resources_ok < 0)
14278 error (_("Hardware breakpoints used exceeds limit."));
14279 }
14280
14281 if (is_watchpoint (bpt))
14282 {
14283 /* Initialize it just to avoid a GCC false warning. */
14284 enum enable_state orig_enable_state = bp_disabled;
14285
14286 try
14287 {
14288 struct watchpoint *w = (struct watchpoint *) bpt;
14289
14290 orig_enable_state = bpt->enable_state;
14291 bpt->enable_state = bp_enabled;
14292 update_watchpoint (w, 1 /* reparse */);
14293 }
14294 catch (const gdb_exception &e)
14295 {
14296 bpt->enable_state = orig_enable_state;
14297 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14298 bpt->number);
14299 return;
14300 }
14301 }
14302
14303 bpt->enable_state = bp_enabled;
14304
14305 /* Mark breakpoint locations modified. */
14306 mark_breakpoint_modified (bpt);
14307
14308 if (target_supports_enable_disable_tracepoint ()
14309 && current_trace_status ()->running && is_tracepoint (bpt))
14310 {
14311 struct bp_location *location;
14312
14313 for (location = bpt->loc; location; location = location->next)
14314 target_enable_tracepoint (location);
14315 }
14316
14317 bpt->disposition = disposition;
14318 bpt->enable_count = count;
14319 update_global_location_list (UGLL_MAY_INSERT);
14320
14321 gdb::observers::breakpoint_modified.notify (bpt);
14322 }
14323
14324
14325 void
14326 enable_breakpoint (struct breakpoint *bpt)
14327 {
14328 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14329 }
14330
14331 /* The enable command enables the specified breakpoints/locations (or
14332 all defined breakpoints) so they once again become (or continue to
14333 be) effective in stopping the inferior. ARGS may be in any of the
14334 forms defined in extract_bp_number_and_location. */
14335
14336 static void
14337 enable_command (const char *args, int from_tty)
14338 {
14339 enable_disable_command (args, from_tty, true);
14340 }
14341
14342 static void
14343 enable_once_command (const char *args, int from_tty)
14344 {
14345 map_breakpoint_numbers
14346 (args, [&] (breakpoint *b)
14347 {
14348 iterate_over_related_breakpoints
14349 (b, [&] (breakpoint *bpt)
14350 {
14351 enable_breakpoint_disp (bpt, disp_disable, 1);
14352 });
14353 });
14354 }
14355
14356 static void
14357 enable_count_command (const char *args, int from_tty)
14358 {
14359 int count;
14360
14361 if (args == NULL)
14362 error_no_arg (_("hit count"));
14363
14364 count = get_number (&args);
14365
14366 map_breakpoint_numbers
14367 (args, [&] (breakpoint *b)
14368 {
14369 iterate_over_related_breakpoints
14370 (b, [&] (breakpoint *bpt)
14371 {
14372 enable_breakpoint_disp (bpt, disp_disable, count);
14373 });
14374 });
14375 }
14376
14377 static void
14378 enable_delete_command (const char *args, int from_tty)
14379 {
14380 map_breakpoint_numbers
14381 (args, [&] (breakpoint *b)
14382 {
14383 iterate_over_related_breakpoints
14384 (b, [&] (breakpoint *bpt)
14385 {
14386 enable_breakpoint_disp (bpt, disp_del, 1);
14387 });
14388 });
14389 }
14390 \f
14391 /* Invalidate last known value of any hardware watchpoint if
14392 the memory which that value represents has been written to by
14393 GDB itself. */
14394
14395 static void
14396 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14397 CORE_ADDR addr, ssize_t len,
14398 const bfd_byte *data)
14399 {
14400 struct breakpoint *bp;
14401
14402 ALL_BREAKPOINTS (bp)
14403 if (bp->enable_state == bp_enabled
14404 && bp->type == bp_hardware_watchpoint)
14405 {
14406 struct watchpoint *wp = (struct watchpoint *) bp;
14407
14408 if (wp->val_valid && wp->val != nullptr)
14409 {
14410 struct bp_location *loc;
14411
14412 for (loc = bp->loc; loc != NULL; loc = loc->next)
14413 if (loc->loc_type == bp_loc_hardware_watchpoint
14414 && loc->address + loc->length > addr
14415 && addr + len > loc->address)
14416 {
14417 wp->val = NULL;
14418 wp->val_valid = false;
14419 }
14420 }
14421 }
14422 }
14423
14424 /* Create and insert a breakpoint for software single step. */
14425
14426 void
14427 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14428 const address_space *aspace,
14429 CORE_ADDR next_pc)
14430 {
14431 struct thread_info *tp = inferior_thread ();
14432 struct symtab_and_line sal;
14433 CORE_ADDR pc = next_pc;
14434
14435 if (tp->control.single_step_breakpoints == NULL)
14436 {
14437 tp->control.single_step_breakpoints
14438 = new_single_step_breakpoint (tp->global_num, gdbarch);
14439 }
14440
14441 sal = find_pc_line (pc, 0);
14442 sal.pc = pc;
14443 sal.section = find_pc_overlay (pc);
14444 sal.explicit_pc = 1;
14445 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14446
14447 update_global_location_list (UGLL_INSERT);
14448 }
14449
14450 /* Insert single step breakpoints according to the current state. */
14451
14452 int
14453 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14454 {
14455 struct regcache *regcache = get_current_regcache ();
14456 std::vector<CORE_ADDR> next_pcs;
14457
14458 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14459
14460 if (!next_pcs.empty ())
14461 {
14462 struct frame_info *frame = get_current_frame ();
14463 const address_space *aspace = get_frame_address_space (frame);
14464
14465 for (CORE_ADDR pc : next_pcs)
14466 insert_single_step_breakpoint (gdbarch, aspace, pc);
14467
14468 return 1;
14469 }
14470 else
14471 return 0;
14472 }
14473
14474 /* See breakpoint.h. */
14475
14476 int
14477 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14478 const address_space *aspace,
14479 CORE_ADDR pc)
14480 {
14481 struct bp_location *loc;
14482
14483 for (loc = bp->loc; loc != NULL; loc = loc->next)
14484 if (loc->inserted
14485 && breakpoint_location_address_match (loc, aspace, pc))
14486 return 1;
14487
14488 return 0;
14489 }
14490
14491 /* Check whether a software single-step breakpoint is inserted at
14492 PC. */
14493
14494 int
14495 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14496 CORE_ADDR pc)
14497 {
14498 struct breakpoint *bpt;
14499
14500 ALL_BREAKPOINTS (bpt)
14501 {
14502 if (bpt->type == bp_single_step
14503 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14504 return 1;
14505 }
14506 return 0;
14507 }
14508
14509 /* Tracepoint-specific operations. */
14510
14511 /* Set tracepoint count to NUM. */
14512 static void
14513 set_tracepoint_count (int num)
14514 {
14515 tracepoint_count = num;
14516 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14517 }
14518
14519 static void
14520 trace_command (const char *arg, int from_tty)
14521 {
14522 event_location_up location = string_to_event_location (&arg,
14523 current_language);
14524 const struct breakpoint_ops *ops = breakpoint_ops_for_event_location
14525 (location.get (), true /* is_tracepoint */);
14526
14527 create_breakpoint (get_current_arch (),
14528 location.get (),
14529 NULL, 0, arg, 1 /* parse arg */,
14530 0 /* tempflag */,
14531 bp_tracepoint /* type_wanted */,
14532 0 /* Ignore count */,
14533 pending_break_support,
14534 ops,
14535 from_tty,
14536 1 /* enabled */,
14537 0 /* internal */, 0);
14538 }
14539
14540 static void
14541 ftrace_command (const char *arg, int from_tty)
14542 {
14543 event_location_up location = string_to_event_location (&arg,
14544 current_language);
14545 create_breakpoint (get_current_arch (),
14546 location.get (),
14547 NULL, 0, arg, 1 /* parse arg */,
14548 0 /* tempflag */,
14549 bp_fast_tracepoint /* type_wanted */,
14550 0 /* Ignore count */,
14551 pending_break_support,
14552 &tracepoint_breakpoint_ops,
14553 from_tty,
14554 1 /* enabled */,
14555 0 /* internal */, 0);
14556 }
14557
14558 /* strace command implementation. Creates a static tracepoint. */
14559
14560 static void
14561 strace_command (const char *arg, int from_tty)
14562 {
14563 struct breakpoint_ops *ops;
14564 event_location_up location;
14565
14566 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14567 or with a normal static tracepoint. */
14568 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14569 {
14570 ops = &strace_marker_breakpoint_ops;
14571 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14572 }
14573 else
14574 {
14575 ops = &tracepoint_breakpoint_ops;
14576 location = string_to_event_location (&arg, current_language);
14577 }
14578
14579 create_breakpoint (get_current_arch (),
14580 location.get (),
14581 NULL, 0, arg, 1 /* parse arg */,
14582 0 /* tempflag */,
14583 bp_static_tracepoint /* type_wanted */,
14584 0 /* Ignore count */,
14585 pending_break_support,
14586 ops,
14587 from_tty,
14588 1 /* enabled */,
14589 0 /* internal */, 0);
14590 }
14591
14592 /* Set up a fake reader function that gets command lines from a linked
14593 list that was acquired during tracepoint uploading. */
14594
14595 static struct uploaded_tp *this_utp;
14596 static int next_cmd;
14597
14598 static char *
14599 read_uploaded_action (void)
14600 {
14601 char *rslt = nullptr;
14602
14603 if (next_cmd < this_utp->cmd_strings.size ())
14604 {
14605 rslt = this_utp->cmd_strings[next_cmd].get ();
14606 next_cmd++;
14607 }
14608
14609 return rslt;
14610 }
14611
14612 /* Given information about a tracepoint as recorded on a target (which
14613 can be either a live system or a trace file), attempt to create an
14614 equivalent GDB tracepoint. This is not a reliable process, since
14615 the target does not necessarily have all the information used when
14616 the tracepoint was originally defined. */
14617
14618 struct tracepoint *
14619 create_tracepoint_from_upload (struct uploaded_tp *utp)
14620 {
14621 const char *addr_str;
14622 char small_buf[100];
14623 struct tracepoint *tp;
14624
14625 if (utp->at_string)
14626 addr_str = utp->at_string.get ();
14627 else
14628 {
14629 /* In the absence of a source location, fall back to raw
14630 address. Since there is no way to confirm that the address
14631 means the same thing as when the trace was started, warn the
14632 user. */
14633 warning (_("Uploaded tracepoint %d has no "
14634 "source location, using raw address"),
14635 utp->number);
14636 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14637 addr_str = small_buf;
14638 }
14639
14640 /* There's not much we can do with a sequence of bytecodes. */
14641 if (utp->cond && !utp->cond_string)
14642 warning (_("Uploaded tracepoint %d condition "
14643 "has no source form, ignoring it"),
14644 utp->number);
14645
14646 event_location_up location = string_to_event_location (&addr_str,
14647 current_language);
14648 if (!create_breakpoint (get_current_arch (),
14649 location.get (),
14650 utp->cond_string.get (), -1, addr_str,
14651 0 /* parse cond/thread */,
14652 0 /* tempflag */,
14653 utp->type /* type_wanted */,
14654 0 /* Ignore count */,
14655 pending_break_support,
14656 &tracepoint_breakpoint_ops,
14657 0 /* from_tty */,
14658 utp->enabled /* enabled */,
14659 0 /* internal */,
14660 CREATE_BREAKPOINT_FLAGS_INSERTED))
14661 return NULL;
14662
14663 /* Get the tracepoint we just created. */
14664 tp = get_tracepoint (tracepoint_count);
14665 gdb_assert (tp != NULL);
14666
14667 if (utp->pass > 0)
14668 {
14669 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14670 tp->number);
14671
14672 trace_pass_command (small_buf, 0);
14673 }
14674
14675 /* If we have uploaded versions of the original commands, set up a
14676 special-purpose "reader" function and call the usual command line
14677 reader, then pass the result to the breakpoint command-setting
14678 function. */
14679 if (!utp->cmd_strings.empty ())
14680 {
14681 counted_command_line cmd_list;
14682
14683 this_utp = utp;
14684 next_cmd = 0;
14685
14686 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
14687
14688 breakpoint_set_commands (tp, std::move (cmd_list));
14689 }
14690 else if (!utp->actions.empty ()
14691 || !utp->step_actions.empty ())
14692 warning (_("Uploaded tracepoint %d actions "
14693 "have no source form, ignoring them"),
14694 utp->number);
14695
14696 /* Copy any status information that might be available. */
14697 tp->hit_count = utp->hit_count;
14698 tp->traceframe_usage = utp->traceframe_usage;
14699
14700 return tp;
14701 }
14702
14703 /* Print information on tracepoint number TPNUM_EXP, or all if
14704 omitted. */
14705
14706 static void
14707 info_tracepoints_command (const char *args, int from_tty)
14708 {
14709 struct ui_out *uiout = current_uiout;
14710 int num_printed;
14711
14712 num_printed = breakpoint_1 (args, false, is_tracepoint);
14713
14714 if (num_printed == 0)
14715 {
14716 if (args == NULL || *args == '\0')
14717 uiout->message ("No tracepoints.\n");
14718 else
14719 uiout->message ("No tracepoint matching '%s'.\n", args);
14720 }
14721
14722 default_collect_info ();
14723 }
14724
14725 /* The 'enable trace' command enables tracepoints.
14726 Not supported by all targets. */
14727 static void
14728 enable_trace_command (const char *args, int from_tty)
14729 {
14730 enable_command (args, from_tty);
14731 }
14732
14733 /* The 'disable trace' command disables tracepoints.
14734 Not supported by all targets. */
14735 static void
14736 disable_trace_command (const char *args, int from_tty)
14737 {
14738 disable_command (args, from_tty);
14739 }
14740
14741 /* Remove a tracepoint (or all if no argument). */
14742 static void
14743 delete_trace_command (const char *arg, int from_tty)
14744 {
14745 struct breakpoint *b, *b_tmp;
14746
14747 dont_repeat ();
14748
14749 if (arg == 0)
14750 {
14751 int breaks_to_delete = 0;
14752
14753 /* Delete all breakpoints if no argument.
14754 Do not delete internal or call-dummy breakpoints, these
14755 have to be deleted with an explicit breakpoint number
14756 argument. */
14757 ALL_TRACEPOINTS (b)
14758 if (is_tracepoint (b) && user_breakpoint_p (b))
14759 {
14760 breaks_to_delete = 1;
14761 break;
14762 }
14763
14764 /* Ask user only if there are some breakpoints to delete. */
14765 if (!from_tty
14766 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14767 {
14768 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14769 if (is_tracepoint (b) && user_breakpoint_p (b))
14770 delete_breakpoint (b);
14771 }
14772 }
14773 else
14774 map_breakpoint_numbers
14775 (arg, [&] (breakpoint *br)
14776 {
14777 iterate_over_related_breakpoints (br, delete_breakpoint);
14778 });
14779 }
14780
14781 /* Helper function for trace_pass_command. */
14782
14783 static void
14784 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14785 {
14786 tp->pass_count = count;
14787 gdb::observers::breakpoint_modified.notify (tp);
14788 if (from_tty)
14789 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14790 tp->number, count);
14791 }
14792
14793 /* Set passcount for tracepoint.
14794
14795 First command argument is passcount, second is tracepoint number.
14796 If tracepoint number omitted, apply to most recently defined.
14797 Also accepts special argument "all". */
14798
14799 static void
14800 trace_pass_command (const char *args, int from_tty)
14801 {
14802 struct tracepoint *t1;
14803 ULONGEST count;
14804
14805 if (args == 0 || *args == 0)
14806 error (_("passcount command requires an "
14807 "argument (count + optional TP num)"));
14808
14809 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14810
14811 args = skip_spaces (args);
14812 if (*args && strncasecmp (args, "all", 3) == 0)
14813 {
14814 struct breakpoint *b;
14815
14816 args += 3; /* Skip special argument "all". */
14817 if (*args)
14818 error (_("Junk at end of arguments."));
14819
14820 ALL_TRACEPOINTS (b)
14821 {
14822 t1 = (struct tracepoint *) b;
14823 trace_pass_set_count (t1, count, from_tty);
14824 }
14825 }
14826 else if (*args == '\0')
14827 {
14828 t1 = get_tracepoint_by_number (&args, NULL);
14829 if (t1)
14830 trace_pass_set_count (t1, count, from_tty);
14831 }
14832 else
14833 {
14834 number_or_range_parser parser (args);
14835 while (!parser.finished ())
14836 {
14837 t1 = get_tracepoint_by_number (&args, &parser);
14838 if (t1)
14839 trace_pass_set_count (t1, count, from_tty);
14840 }
14841 }
14842 }
14843
14844 struct tracepoint *
14845 get_tracepoint (int num)
14846 {
14847 struct breakpoint *t;
14848
14849 ALL_TRACEPOINTS (t)
14850 if (t->number == num)
14851 return (struct tracepoint *) t;
14852
14853 return NULL;
14854 }
14855
14856 /* Find the tracepoint with the given target-side number (which may be
14857 different from the tracepoint number after disconnecting and
14858 reconnecting). */
14859
14860 struct tracepoint *
14861 get_tracepoint_by_number_on_target (int num)
14862 {
14863 struct breakpoint *b;
14864
14865 ALL_TRACEPOINTS (b)
14866 {
14867 struct tracepoint *t = (struct tracepoint *) b;
14868
14869 if (t->number_on_target == num)
14870 return t;
14871 }
14872
14873 return NULL;
14874 }
14875
14876 /* Utility: parse a tracepoint number and look it up in the list.
14877 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14878 If the argument is missing, the most recent tracepoint
14879 (tracepoint_count) is returned. */
14880
14881 struct tracepoint *
14882 get_tracepoint_by_number (const char **arg,
14883 number_or_range_parser *parser)
14884 {
14885 struct breakpoint *t;
14886 int tpnum;
14887 const char *instring = arg == NULL ? NULL : *arg;
14888
14889 if (parser != NULL)
14890 {
14891 gdb_assert (!parser->finished ());
14892 tpnum = parser->get_number ();
14893 }
14894 else if (arg == NULL || *arg == NULL || ! **arg)
14895 tpnum = tracepoint_count;
14896 else
14897 tpnum = get_number (arg);
14898
14899 if (tpnum <= 0)
14900 {
14901 if (instring && *instring)
14902 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
14903 instring);
14904 else
14905 printf_filtered (_("No previous tracepoint\n"));
14906 return NULL;
14907 }
14908
14909 ALL_TRACEPOINTS (t)
14910 if (t->number == tpnum)
14911 {
14912 return (struct tracepoint *) t;
14913 }
14914
14915 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
14916 return NULL;
14917 }
14918
14919 void
14920 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
14921 {
14922 if (b->thread != -1)
14923 fprintf_unfiltered (fp, " thread %d", b->thread);
14924
14925 if (b->task != 0)
14926 fprintf_unfiltered (fp, " task %d", b->task);
14927
14928 fprintf_unfiltered (fp, "\n");
14929 }
14930
14931 /* Save information on user settable breakpoints (watchpoints, etc) to
14932 a new script file named FILENAME. If FILTER is non-NULL, call it
14933 on each breakpoint and only include the ones for which it returns
14934 true. */
14935
14936 static void
14937 save_breakpoints (const char *filename, int from_tty,
14938 bool (*filter) (const struct breakpoint *))
14939 {
14940 struct breakpoint *tp;
14941 int any = 0;
14942 int extra_trace_bits = 0;
14943
14944 if (filename == 0 || *filename == 0)
14945 error (_("Argument required (file name in which to save)"));
14946
14947 /* See if we have anything to save. */
14948 ALL_BREAKPOINTS (tp)
14949 {
14950 /* Skip internal and momentary breakpoints. */
14951 if (!user_breakpoint_p (tp))
14952 continue;
14953
14954 /* If we have a filter, only save the breakpoints it accepts. */
14955 if (filter && !filter (tp))
14956 continue;
14957
14958 any = 1;
14959
14960 if (is_tracepoint (tp))
14961 {
14962 extra_trace_bits = 1;
14963
14964 /* We can stop searching. */
14965 break;
14966 }
14967 }
14968
14969 if (!any)
14970 {
14971 warning (_("Nothing to save."));
14972 return;
14973 }
14974
14975 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
14976
14977 stdio_file fp;
14978
14979 if (!fp.open (expanded_filename.get (), "w"))
14980 error (_("Unable to open file '%s' for saving (%s)"),
14981 expanded_filename.get (), safe_strerror (errno));
14982
14983 if (extra_trace_bits)
14984 save_trace_state_variables (&fp);
14985
14986 ALL_BREAKPOINTS (tp)
14987 {
14988 /* Skip internal and momentary breakpoints. */
14989 if (!user_breakpoint_p (tp))
14990 continue;
14991
14992 /* If we have a filter, only save the breakpoints it accepts. */
14993 if (filter && !filter (tp))
14994 continue;
14995
14996 tp->ops->print_recreate (tp, &fp);
14997
14998 /* Note, we can't rely on tp->number for anything, as we can't
14999 assume the recreated breakpoint numbers will match. Use $bpnum
15000 instead. */
15001
15002 if (tp->cond_string)
15003 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15004
15005 if (tp->ignore_count)
15006 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15007
15008 if (tp->type != bp_dprintf && tp->commands)
15009 {
15010 fp.puts (" commands\n");
15011
15012 current_uiout->redirect (&fp);
15013 try
15014 {
15015 print_command_lines (current_uiout, tp->commands.get (), 2);
15016 }
15017 catch (const gdb_exception &ex)
15018 {
15019 current_uiout->redirect (NULL);
15020 throw;
15021 }
15022
15023 current_uiout->redirect (NULL);
15024 fp.puts (" end\n");
15025 }
15026
15027 if (tp->enable_state == bp_disabled)
15028 fp.puts ("disable $bpnum\n");
15029
15030 /* If this is a multi-location breakpoint, check if the locations
15031 should be individually disabled. Watchpoint locations are
15032 special, and not user visible. */
15033 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15034 {
15035 struct bp_location *loc;
15036 int n = 1;
15037
15038 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15039 if (!loc->enabled)
15040 fp.printf ("disable $bpnum.%d\n", n);
15041 }
15042 }
15043
15044 if (extra_trace_bits && *default_collect)
15045 fp.printf ("set default-collect %s\n", default_collect);
15046
15047 if (from_tty)
15048 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15049 }
15050
15051 /* The `save breakpoints' command. */
15052
15053 static void
15054 save_breakpoints_command (const char *args, int from_tty)
15055 {
15056 save_breakpoints (args, from_tty, NULL);
15057 }
15058
15059 /* The `save tracepoints' command. */
15060
15061 static void
15062 save_tracepoints_command (const char *args, int from_tty)
15063 {
15064 save_breakpoints (args, from_tty, is_tracepoint);
15065 }
15066
15067 /* Create a vector of all tracepoints. */
15068
15069 std::vector<breakpoint *>
15070 all_tracepoints (void)
15071 {
15072 std::vector<breakpoint *> tp_vec;
15073 struct breakpoint *tp;
15074
15075 ALL_TRACEPOINTS (tp)
15076 {
15077 tp_vec.push_back (tp);
15078 }
15079
15080 return tp_vec;
15081 }
15082
15083 \f
15084 /* This help string is used to consolidate all the help string for specifying
15085 locations used by several commands. */
15086
15087 #define LOCATION_HELP_STRING \
15088 "Linespecs are colon-separated lists of location parameters, such as\n\
15089 source filename, function name, label name, and line number.\n\
15090 Example: To specify the start of a label named \"the_top\" in the\n\
15091 function \"fact\" in the file \"factorial.c\", use\n\
15092 \"factorial.c:fact:the_top\".\n\
15093 \n\
15094 Address locations begin with \"*\" and specify an exact address in the\n\
15095 program. Example: To specify the fourth byte past the start function\n\
15096 \"main\", use \"*main + 4\".\n\
15097 \n\
15098 Explicit locations are similar to linespecs but use an option/argument\n\
15099 syntax to specify location parameters.\n\
15100 Example: To specify the start of the label named \"the_top\" in the\n\
15101 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15102 -function fact -label the_top\".\n\
15103 \n\
15104 By default, a specified function is matched against the program's\n\
15105 functions in all scopes. For C++, this means in all namespaces and\n\
15106 classes. For Ada, this means in all packages. E.g., in C++,\n\
15107 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15108 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15109 specified name as a complete fully-qualified name instead."
15110
15111 /* This help string is used for the break, hbreak, tbreak and thbreak
15112 commands. It is defined as a macro to prevent duplication.
15113 COMMAND should be a string constant containing the name of the
15114 command. */
15115
15116 #define BREAK_ARGS_HELP(command) \
15117 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15118 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15119 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15120 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15121 `-probe-dtrace' (for a DTrace probe).\n\
15122 LOCATION may be a linespec, address, or explicit location as described\n\
15123 below.\n\
15124 \n\
15125 With no LOCATION, uses current execution address of the selected\n\
15126 stack frame. This is useful for breaking on return to a stack frame.\n\
15127 \n\
15128 THREADNUM is the number from \"info threads\".\n\
15129 CONDITION is a boolean expression.\n\
15130 \n" LOCATION_HELP_STRING "\n\n\
15131 Multiple breakpoints at one place are permitted, and useful if their\n\
15132 conditions are different.\n\
15133 \n\
15134 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15135
15136 /* List of subcommands for "catch". */
15137 static struct cmd_list_element *catch_cmdlist;
15138
15139 /* List of subcommands for "tcatch". */
15140 static struct cmd_list_element *tcatch_cmdlist;
15141
15142 void
15143 add_catch_command (const char *name, const char *docstring,
15144 cmd_const_sfunc_ftype *sfunc,
15145 completer_ftype *completer,
15146 void *user_data_catch,
15147 void *user_data_tcatch)
15148 {
15149 struct cmd_list_element *command;
15150
15151 command = add_cmd (name, class_breakpoint, docstring,
15152 &catch_cmdlist);
15153 set_cmd_sfunc (command, sfunc);
15154 set_cmd_context (command, user_data_catch);
15155 set_cmd_completer (command, completer);
15156
15157 command = add_cmd (name, class_breakpoint, docstring,
15158 &tcatch_cmdlist);
15159 set_cmd_sfunc (command, sfunc);
15160 set_cmd_context (command, user_data_tcatch);
15161 set_cmd_completer (command, completer);
15162 }
15163
15164 struct breakpoint *
15165 iterate_over_breakpoints (gdb::function_view<bool (breakpoint *)> callback)
15166 {
15167 struct breakpoint *b, *b_tmp;
15168
15169 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15170 {
15171 if (callback (b))
15172 return b;
15173 }
15174
15175 return NULL;
15176 }
15177
15178 /* Zero if any of the breakpoint's locations could be a location where
15179 functions have been inlined, nonzero otherwise. */
15180
15181 static int
15182 is_non_inline_function (struct breakpoint *b)
15183 {
15184 /* The shared library event breakpoint is set on the address of a
15185 non-inline function. */
15186 if (b->type == bp_shlib_event)
15187 return 1;
15188
15189 return 0;
15190 }
15191
15192 /* Nonzero if the specified PC cannot be a location where functions
15193 have been inlined. */
15194
15195 int
15196 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15197 const struct target_waitstatus *ws)
15198 {
15199 struct breakpoint *b;
15200 struct bp_location *bl;
15201
15202 ALL_BREAKPOINTS (b)
15203 {
15204 if (!is_non_inline_function (b))
15205 continue;
15206
15207 for (bl = b->loc; bl != NULL; bl = bl->next)
15208 {
15209 if (!bl->shlib_disabled
15210 && bpstat_check_location (bl, aspace, pc, ws))
15211 return 1;
15212 }
15213 }
15214
15215 return 0;
15216 }
15217
15218 /* Remove any references to OBJFILE which is going to be freed. */
15219
15220 void
15221 breakpoint_free_objfile (struct objfile *objfile)
15222 {
15223 struct bp_location **locp, *loc;
15224
15225 ALL_BP_LOCATIONS (loc, locp)
15226 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15227 loc->symtab = NULL;
15228 }
15229
15230 void
15231 initialize_breakpoint_ops (void)
15232 {
15233 static int initialized = 0;
15234
15235 struct breakpoint_ops *ops;
15236
15237 if (initialized)
15238 return;
15239 initialized = 1;
15240
15241 /* The breakpoint_ops structure to be inherit by all kinds of
15242 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15243 internal and momentary breakpoints, etc.). */
15244 ops = &bkpt_base_breakpoint_ops;
15245 *ops = base_breakpoint_ops;
15246 ops->re_set = bkpt_re_set;
15247 ops->insert_location = bkpt_insert_location;
15248 ops->remove_location = bkpt_remove_location;
15249 ops->breakpoint_hit = bkpt_breakpoint_hit;
15250 ops->create_sals_from_location = bkpt_create_sals_from_location;
15251 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15252 ops->decode_location = bkpt_decode_location;
15253
15254 /* The breakpoint_ops structure to be used in regular breakpoints. */
15255 ops = &bkpt_breakpoint_ops;
15256 *ops = bkpt_base_breakpoint_ops;
15257 ops->re_set = bkpt_re_set;
15258 ops->resources_needed = bkpt_resources_needed;
15259 ops->print_it = bkpt_print_it;
15260 ops->print_mention = bkpt_print_mention;
15261 ops->print_recreate = bkpt_print_recreate;
15262
15263 /* Ranged breakpoints. */
15264 ops = &ranged_breakpoint_ops;
15265 *ops = bkpt_breakpoint_ops;
15266 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15267 ops->resources_needed = resources_needed_ranged_breakpoint;
15268 ops->print_it = print_it_ranged_breakpoint;
15269 ops->print_one = print_one_ranged_breakpoint;
15270 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15271 ops->print_mention = print_mention_ranged_breakpoint;
15272 ops->print_recreate = print_recreate_ranged_breakpoint;
15273
15274 /* Internal breakpoints. */
15275 ops = &internal_breakpoint_ops;
15276 *ops = bkpt_base_breakpoint_ops;
15277 ops->re_set = internal_bkpt_re_set;
15278 ops->check_status = internal_bkpt_check_status;
15279 ops->print_it = internal_bkpt_print_it;
15280 ops->print_mention = internal_bkpt_print_mention;
15281
15282 /* Momentary breakpoints. */
15283 ops = &momentary_breakpoint_ops;
15284 *ops = bkpt_base_breakpoint_ops;
15285 ops->re_set = momentary_bkpt_re_set;
15286 ops->check_status = momentary_bkpt_check_status;
15287 ops->print_it = momentary_bkpt_print_it;
15288 ops->print_mention = momentary_bkpt_print_mention;
15289
15290 /* Probe breakpoints. */
15291 ops = &bkpt_probe_breakpoint_ops;
15292 *ops = bkpt_breakpoint_ops;
15293 ops->insert_location = bkpt_probe_insert_location;
15294 ops->remove_location = bkpt_probe_remove_location;
15295 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15296 ops->decode_location = bkpt_probe_decode_location;
15297
15298 /* Watchpoints. */
15299 ops = &watchpoint_breakpoint_ops;
15300 *ops = base_breakpoint_ops;
15301 ops->re_set = re_set_watchpoint;
15302 ops->insert_location = insert_watchpoint;
15303 ops->remove_location = remove_watchpoint;
15304 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15305 ops->check_status = check_status_watchpoint;
15306 ops->resources_needed = resources_needed_watchpoint;
15307 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15308 ops->print_it = print_it_watchpoint;
15309 ops->print_mention = print_mention_watchpoint;
15310 ops->print_recreate = print_recreate_watchpoint;
15311 ops->explains_signal = explains_signal_watchpoint;
15312
15313 /* Masked watchpoints. */
15314 ops = &masked_watchpoint_breakpoint_ops;
15315 *ops = watchpoint_breakpoint_ops;
15316 ops->insert_location = insert_masked_watchpoint;
15317 ops->remove_location = remove_masked_watchpoint;
15318 ops->resources_needed = resources_needed_masked_watchpoint;
15319 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15320 ops->print_it = print_it_masked_watchpoint;
15321 ops->print_one_detail = print_one_detail_masked_watchpoint;
15322 ops->print_mention = print_mention_masked_watchpoint;
15323 ops->print_recreate = print_recreate_masked_watchpoint;
15324
15325 /* Tracepoints. */
15326 ops = &tracepoint_breakpoint_ops;
15327 *ops = base_breakpoint_ops;
15328 ops->re_set = tracepoint_re_set;
15329 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15330 ops->print_one_detail = tracepoint_print_one_detail;
15331 ops->print_mention = tracepoint_print_mention;
15332 ops->print_recreate = tracepoint_print_recreate;
15333 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15334 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15335 ops->decode_location = tracepoint_decode_location;
15336
15337 /* Probe tracepoints. */
15338 ops = &tracepoint_probe_breakpoint_ops;
15339 *ops = tracepoint_breakpoint_ops;
15340 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15341 ops->decode_location = tracepoint_probe_decode_location;
15342
15343 /* Static tracepoints with marker (`-m'). */
15344 ops = &strace_marker_breakpoint_ops;
15345 *ops = tracepoint_breakpoint_ops;
15346 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15347 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15348 ops->decode_location = strace_marker_decode_location;
15349
15350 /* Fork catchpoints. */
15351 ops = &catch_fork_breakpoint_ops;
15352 *ops = base_breakpoint_ops;
15353 ops->insert_location = insert_catch_fork;
15354 ops->remove_location = remove_catch_fork;
15355 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15356 ops->print_it = print_it_catch_fork;
15357 ops->print_one = print_one_catch_fork;
15358 ops->print_mention = print_mention_catch_fork;
15359 ops->print_recreate = print_recreate_catch_fork;
15360
15361 /* Vfork catchpoints. */
15362 ops = &catch_vfork_breakpoint_ops;
15363 *ops = base_breakpoint_ops;
15364 ops->insert_location = insert_catch_vfork;
15365 ops->remove_location = remove_catch_vfork;
15366 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15367 ops->print_it = print_it_catch_vfork;
15368 ops->print_one = print_one_catch_vfork;
15369 ops->print_mention = print_mention_catch_vfork;
15370 ops->print_recreate = print_recreate_catch_vfork;
15371
15372 /* Exec catchpoints. */
15373 ops = &catch_exec_breakpoint_ops;
15374 *ops = base_breakpoint_ops;
15375 ops->insert_location = insert_catch_exec;
15376 ops->remove_location = remove_catch_exec;
15377 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15378 ops->print_it = print_it_catch_exec;
15379 ops->print_one = print_one_catch_exec;
15380 ops->print_mention = print_mention_catch_exec;
15381 ops->print_recreate = print_recreate_catch_exec;
15382
15383 /* Solib-related catchpoints. */
15384 ops = &catch_solib_breakpoint_ops;
15385 *ops = base_breakpoint_ops;
15386 ops->insert_location = insert_catch_solib;
15387 ops->remove_location = remove_catch_solib;
15388 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15389 ops->check_status = check_status_catch_solib;
15390 ops->print_it = print_it_catch_solib;
15391 ops->print_one = print_one_catch_solib;
15392 ops->print_mention = print_mention_catch_solib;
15393 ops->print_recreate = print_recreate_catch_solib;
15394
15395 ops = &dprintf_breakpoint_ops;
15396 *ops = bkpt_base_breakpoint_ops;
15397 ops->re_set = dprintf_re_set;
15398 ops->resources_needed = bkpt_resources_needed;
15399 ops->print_it = bkpt_print_it;
15400 ops->print_mention = bkpt_print_mention;
15401 ops->print_recreate = dprintf_print_recreate;
15402 ops->after_condition_true = dprintf_after_condition_true;
15403 ops->breakpoint_hit = dprintf_breakpoint_hit;
15404 }
15405
15406 /* Chain containing all defined "enable breakpoint" subcommands. */
15407
15408 static struct cmd_list_element *enablebreaklist = NULL;
15409
15410 /* See breakpoint.h. */
15411
15412 cmd_list_element *commands_cmd_element = nullptr;
15413
15414 void _initialize_breakpoint ();
15415 void
15416 _initialize_breakpoint ()
15417 {
15418 struct cmd_list_element *c;
15419
15420 initialize_breakpoint_ops ();
15421
15422 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15423 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15424 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15425
15426 breakpoint_chain = 0;
15427 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15428 before a breakpoint is set. */
15429 breakpoint_count = 0;
15430
15431 tracepoint_count = 0;
15432
15433 add_com ("ignore", class_breakpoint, ignore_command, _("\
15434 Set ignore-count of breakpoint number N to COUNT.\n\
15435 Usage is `ignore N COUNT'."));
15436
15437 commands_cmd_element = add_com ("commands", class_breakpoint,
15438 commands_command, _("\
15439 Set commands to be executed when the given breakpoints are hit.\n\
15440 Give a space-separated breakpoint list as argument after \"commands\".\n\
15441 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15442 (e.g. `5-7').\n\
15443 With no argument, the targeted breakpoint is the last one set.\n\
15444 The commands themselves follow starting on the next line.\n\
15445 Type a line containing \"end\" to indicate the end of them.\n\
15446 Give \"silent\" as the first line to make the breakpoint silent;\n\
15447 then no output is printed when it is hit, except what the commands print."));
15448
15449 c = add_com ("condition", class_breakpoint, condition_command, _("\
15450 Specify breakpoint number N to break only if COND is true.\n\
15451 Usage is `condition N COND', where N is an integer and COND is an\n\
15452 expression to be evaluated whenever breakpoint N is reached."));
15453 set_cmd_completer (c, condition_completer);
15454
15455 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15456 Set a temporary breakpoint.\n\
15457 Like \"break\" except the breakpoint is only temporary,\n\
15458 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15459 by using \"enable delete\" on the breakpoint number.\n\
15460 \n"
15461 BREAK_ARGS_HELP ("tbreak")));
15462 set_cmd_completer (c, location_completer);
15463
15464 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15465 Set a hardware assisted breakpoint.\n\
15466 Like \"break\" except the breakpoint requires hardware support,\n\
15467 some target hardware may not have this support.\n\
15468 \n"
15469 BREAK_ARGS_HELP ("hbreak")));
15470 set_cmd_completer (c, location_completer);
15471
15472 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15473 Set a temporary hardware assisted breakpoint.\n\
15474 Like \"hbreak\" except the breakpoint is only temporary,\n\
15475 so it will be deleted when hit.\n\
15476 \n"
15477 BREAK_ARGS_HELP ("thbreak")));
15478 set_cmd_completer (c, location_completer);
15479
15480 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15481 Enable all or some breakpoints.\n\
15482 Usage: enable [BREAKPOINTNUM]...\n\
15483 Give breakpoint numbers (separated by spaces) as arguments.\n\
15484 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15485 This is used to cancel the effect of the \"disable\" command.\n\
15486 With a subcommand you can enable temporarily."),
15487 &enablelist, "enable ", 1, &cmdlist);
15488
15489 add_com_alias ("en", "enable", class_breakpoint, 1);
15490
15491 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15492 Enable all or some breakpoints.\n\
15493 Usage: enable breakpoints [BREAKPOINTNUM]...\n\
15494 Give breakpoint numbers (separated by spaces) as arguments.\n\
15495 This is used to cancel the effect of the \"disable\" command.\n\
15496 May be abbreviated to simply \"enable\"."),
15497 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15498
15499 add_cmd ("once", no_class, enable_once_command, _("\
15500 Enable some breakpoints for one hit.\n\
15501 Usage: enable breakpoints once BREAKPOINTNUM...\n\
15502 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15503 &enablebreaklist);
15504
15505 add_cmd ("delete", no_class, enable_delete_command, _("\
15506 Enable some breakpoints and delete when hit.\n\
15507 Usage: enable breakpoints delete BREAKPOINTNUM...\n\
15508 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15509 &enablebreaklist);
15510
15511 add_cmd ("count", no_class, enable_count_command, _("\
15512 Enable some breakpoints for COUNT hits.\n\
15513 Usage: enable breakpoints count COUNT BREAKPOINTNUM...\n\
15514 If a breakpoint is hit while enabled in this fashion,\n\
15515 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15516 &enablebreaklist);
15517
15518 add_cmd ("delete", no_class, enable_delete_command, _("\
15519 Enable some breakpoints and delete when hit.\n\
15520 Usage: enable delete BREAKPOINTNUM...\n\
15521 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15522 &enablelist);
15523
15524 add_cmd ("once", no_class, enable_once_command, _("\
15525 Enable some breakpoints for one hit.\n\
15526 Usage: enable once BREAKPOINTNUM...\n\
15527 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15528 &enablelist);
15529
15530 add_cmd ("count", no_class, enable_count_command, _("\
15531 Enable some breakpoints for COUNT hits.\n\
15532 Usage: enable count COUNT BREAKPOINTNUM...\n\
15533 If a breakpoint is hit while enabled in this fashion,\n\
15534 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15535 &enablelist);
15536
15537 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15538 Disable all or some breakpoints.\n\
15539 Usage: disable [BREAKPOINTNUM]...\n\
15540 Arguments are breakpoint numbers with spaces in between.\n\
15541 To disable all breakpoints, give no argument.\n\
15542 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15543 &disablelist, "disable ", 1, &cmdlist);
15544 add_com_alias ("dis", "disable", class_breakpoint, 1);
15545 add_com_alias ("disa", "disable", class_breakpoint, 1);
15546
15547 add_cmd ("breakpoints", class_breakpoint, disable_command, _("\
15548 Disable all or some breakpoints.\n\
15549 Usage: disable breakpoints [BREAKPOINTNUM]...\n\
15550 Arguments are breakpoint numbers with spaces in between.\n\
15551 To disable all breakpoints, give no argument.\n\
15552 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15553 This command may be abbreviated \"disable\"."),
15554 &disablelist);
15555
15556 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15557 Delete all or some breakpoints.\n\
15558 Usage: delete [BREAKPOINTNUM]...\n\
15559 Arguments are breakpoint numbers with spaces in between.\n\
15560 To delete all breakpoints, give no argument.\n\
15561 \n\
15562 Also a prefix command for deletion of other GDB objects."),
15563 &deletelist, "delete ", 1, &cmdlist);
15564 add_com_alias ("d", "delete", class_breakpoint, 1);
15565 add_com_alias ("del", "delete", class_breakpoint, 1);
15566
15567 add_cmd ("breakpoints", class_breakpoint, delete_command, _("\
15568 Delete all or some breakpoints or auto-display expressions.\n\
15569 Usage: delete breakpoints [BREAKPOINTNUM]...\n\
15570 Arguments are breakpoint numbers with spaces in between.\n\
15571 To delete all breakpoints, give no argument.\n\
15572 This command may be abbreviated \"delete\"."),
15573 &deletelist);
15574
15575 add_com ("clear", class_breakpoint, clear_command, _("\
15576 Clear breakpoint at specified location.\n\
15577 Argument may be a linespec, explicit, or address location as described below.\n\
15578 \n\
15579 With no argument, clears all breakpoints in the line that the selected frame\n\
15580 is executing in.\n"
15581 "\n" LOCATION_HELP_STRING "\n\n\
15582 See also the \"delete\" command which clears breakpoints by number."));
15583 add_com_alias ("cl", "clear", class_breakpoint, 1);
15584
15585 c = add_com ("break", class_breakpoint, break_command, _("\
15586 Set breakpoint at specified location.\n"
15587 BREAK_ARGS_HELP ("break")));
15588 set_cmd_completer (c, location_completer);
15589
15590 add_com_alias ("b", "break", class_run, 1);
15591 add_com_alias ("br", "break", class_run, 1);
15592 add_com_alias ("bre", "break", class_run, 1);
15593 add_com_alias ("brea", "break", class_run, 1);
15594
15595 if (dbx_commands)
15596 {
15597 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15598 Break in function/address or break at a line in the current file."),
15599 &stoplist, "stop ", 1, &cmdlist);
15600 add_cmd ("in", class_breakpoint, stopin_command,
15601 _("Break in function or address."), &stoplist);
15602 add_cmd ("at", class_breakpoint, stopat_command,
15603 _("Break at a line in the current file."), &stoplist);
15604 add_com ("status", class_info, info_breakpoints_command, _("\
15605 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15606 The \"Type\" column indicates one of:\n\
15607 \tbreakpoint - normal breakpoint\n\
15608 \twatchpoint - watchpoint\n\
15609 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15610 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15611 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15612 address and file/line number respectively.\n\
15613 \n\
15614 Convenience variable \"$_\" and default examine address for \"x\"\n\
15615 are set to the address of the last breakpoint listed unless the command\n\
15616 is prefixed with \"server \".\n\n\
15617 Convenience variable \"$bpnum\" contains the number of the last\n\
15618 breakpoint set."));
15619 }
15620
15621 add_info ("breakpoints", info_breakpoints_command, _("\
15622 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15623 The \"Type\" column indicates one of:\n\
15624 \tbreakpoint - normal breakpoint\n\
15625 \twatchpoint - watchpoint\n\
15626 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15627 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15628 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15629 address and file/line number respectively.\n\
15630 \n\
15631 Convenience variable \"$_\" and default examine address for \"x\"\n\
15632 are set to the address of the last breakpoint listed unless the command\n\
15633 is prefixed with \"server \".\n\n\
15634 Convenience variable \"$bpnum\" contains the number of the last\n\
15635 breakpoint set."));
15636
15637 add_info_alias ("b", "breakpoints", 1);
15638
15639 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15640 Status of all breakpoints, or breakpoint number NUMBER.\n\
15641 The \"Type\" column indicates one of:\n\
15642 \tbreakpoint - normal breakpoint\n\
15643 \twatchpoint - watchpoint\n\
15644 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15645 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15646 \tuntil - internal breakpoint used by the \"until\" command\n\
15647 \tfinish - internal breakpoint used by the \"finish\" command\n\
15648 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15649 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15650 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15651 address and file/line number respectively.\n\
15652 \n\
15653 Convenience variable \"$_\" and default examine address for \"x\"\n\
15654 are set to the address of the last breakpoint listed unless the command\n\
15655 is prefixed with \"server \".\n\n\
15656 Convenience variable \"$bpnum\" contains the number of the last\n\
15657 breakpoint set."),
15658 &maintenanceinfolist);
15659
15660 add_basic_prefix_cmd ("catch", class_breakpoint, _("\
15661 Set catchpoints to catch events."),
15662 &catch_cmdlist, "catch ",
15663 0/*allow-unknown*/, &cmdlist);
15664
15665 add_basic_prefix_cmd ("tcatch", class_breakpoint, _("\
15666 Set temporary catchpoints to catch events."),
15667 &tcatch_cmdlist, "tcatch ",
15668 0/*allow-unknown*/, &cmdlist);
15669
15670 add_catch_command ("fork", _("Catch calls to fork."),
15671 catch_fork_command_1,
15672 NULL,
15673 (void *) (uintptr_t) catch_fork_permanent,
15674 (void *) (uintptr_t) catch_fork_temporary);
15675 add_catch_command ("vfork", _("Catch calls to vfork."),
15676 catch_fork_command_1,
15677 NULL,
15678 (void *) (uintptr_t) catch_vfork_permanent,
15679 (void *) (uintptr_t) catch_vfork_temporary);
15680 add_catch_command ("exec", _("Catch calls to exec."),
15681 catch_exec_command_1,
15682 NULL,
15683 CATCH_PERMANENT,
15684 CATCH_TEMPORARY);
15685 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15686 Usage: catch load [REGEX]\n\
15687 If REGEX is given, only stop for libraries matching the regular expression."),
15688 catch_load_command_1,
15689 NULL,
15690 CATCH_PERMANENT,
15691 CATCH_TEMPORARY);
15692 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15693 Usage: catch unload [REGEX]\n\
15694 If REGEX is given, only stop for libraries matching the regular expression."),
15695 catch_unload_command_1,
15696 NULL,
15697 CATCH_PERMANENT,
15698 CATCH_TEMPORARY);
15699
15700 c = add_com ("watch", class_breakpoint, watch_command, _("\
15701 Set a watchpoint for an expression.\n\
15702 Usage: watch [-l|-location] EXPRESSION\n\
15703 A watchpoint stops execution of your program whenever the value of\n\
15704 an expression changes.\n\
15705 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15706 the memory to which it refers."));
15707 set_cmd_completer (c, expression_completer);
15708
15709 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15710 Set a read watchpoint for an expression.\n\
15711 Usage: rwatch [-l|-location] EXPRESSION\n\
15712 A watchpoint stops execution of your program whenever the value of\n\
15713 an expression is read.\n\
15714 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15715 the memory to which it refers."));
15716 set_cmd_completer (c, expression_completer);
15717
15718 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15719 Set a watchpoint for an expression.\n\
15720 Usage: awatch [-l|-location] EXPRESSION\n\
15721 A watchpoint stops execution of your program whenever the value of\n\
15722 an expression is either read or written.\n\
15723 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15724 the memory to which it refers."));
15725 set_cmd_completer (c, expression_completer);
15726
15727 add_info ("watchpoints", info_watchpoints_command, _("\
15728 Status of specified watchpoints (all watchpoints if no argument)."));
15729
15730 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15731 respond to changes - contrary to the description. */
15732 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15733 &can_use_hw_watchpoints, _("\
15734 Set debugger's willingness to use watchpoint hardware."), _("\
15735 Show debugger's willingness to use watchpoint hardware."), _("\
15736 If zero, gdb will not use hardware for new watchpoints, even if\n\
15737 such is available. (However, any hardware watchpoints that were\n\
15738 created before setting this to nonzero, will continue to use watchpoint\n\
15739 hardware.)"),
15740 NULL,
15741 show_can_use_hw_watchpoints,
15742 &setlist, &showlist);
15743
15744 can_use_hw_watchpoints = 1;
15745
15746 /* Tracepoint manipulation commands. */
15747
15748 c = add_com ("trace", class_breakpoint, trace_command, _("\
15749 Set a tracepoint at specified location.\n\
15750 \n"
15751 BREAK_ARGS_HELP ("trace") "\n\
15752 Do \"help tracepoints\" for info on other tracepoint commands."));
15753 set_cmd_completer (c, location_completer);
15754
15755 add_com_alias ("tp", "trace", class_breakpoint, 0);
15756 add_com_alias ("tr", "trace", class_breakpoint, 1);
15757 add_com_alias ("tra", "trace", class_breakpoint, 1);
15758 add_com_alias ("trac", "trace", class_breakpoint, 1);
15759
15760 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15761 Set a fast tracepoint at specified location.\n\
15762 \n"
15763 BREAK_ARGS_HELP ("ftrace") "\n\
15764 Do \"help tracepoints\" for info on other tracepoint commands."));
15765 set_cmd_completer (c, location_completer);
15766
15767 c = add_com ("strace", class_breakpoint, strace_command, _("\
15768 Set a static tracepoint at location or marker.\n\
15769 \n\
15770 strace [LOCATION] [if CONDITION]\n\
15771 LOCATION may be a linespec, explicit, or address location (described below) \n\
15772 or -m MARKER_ID.\n\n\
15773 If a marker id is specified, probe the marker with that name. With\n\
15774 no LOCATION, uses current execution address of the selected stack frame.\n\
15775 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15776 This collects arbitrary user data passed in the probe point call to the\n\
15777 tracing library. You can inspect it when analyzing the trace buffer,\n\
15778 by printing the $_sdata variable like any other convenience variable.\n\
15779 \n\
15780 CONDITION is a boolean expression.\n\
15781 \n" LOCATION_HELP_STRING "\n\n\
15782 Multiple tracepoints at one place are permitted, and useful if their\n\
15783 conditions are different.\n\
15784 \n\
15785 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15786 Do \"help tracepoints\" for info on other tracepoint commands."));
15787 set_cmd_completer (c, location_completer);
15788
15789 add_info ("tracepoints", info_tracepoints_command, _("\
15790 Status of specified tracepoints (all tracepoints if no argument).\n\
15791 Convenience variable \"$tpnum\" contains the number of the\n\
15792 last tracepoint set."));
15793
15794 add_info_alias ("tp", "tracepoints", 1);
15795
15796 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15797 Delete specified tracepoints.\n\
15798 Arguments are tracepoint numbers, separated by spaces.\n\
15799 No argument means delete all tracepoints."),
15800 &deletelist);
15801 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15802
15803 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15804 Disable specified tracepoints.\n\
15805 Arguments are tracepoint numbers, separated by spaces.\n\
15806 No argument means disable all tracepoints."),
15807 &disablelist);
15808 deprecate_cmd (c, "disable");
15809
15810 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15811 Enable specified tracepoints.\n\
15812 Arguments are tracepoint numbers, separated by spaces.\n\
15813 No argument means enable all tracepoints."),
15814 &enablelist);
15815 deprecate_cmd (c, "enable");
15816
15817 add_com ("passcount", class_trace, trace_pass_command, _("\
15818 Set the passcount for a tracepoint.\n\
15819 The trace will end when the tracepoint has been passed 'count' times.\n\
15820 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15821 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15822
15823 add_basic_prefix_cmd ("save", class_breakpoint,
15824 _("Save breakpoint definitions as a script."),
15825 &save_cmdlist, "save ",
15826 0/*allow-unknown*/, &cmdlist);
15827
15828 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15829 Save current breakpoint definitions as a script.\n\
15830 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15831 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15832 session to restore them."),
15833 &save_cmdlist);
15834 set_cmd_completer (c, filename_completer);
15835
15836 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15837 Save current tracepoint definitions as a script.\n\
15838 Use the 'source' command in another debug session to restore them."),
15839 &save_cmdlist);
15840 set_cmd_completer (c, filename_completer);
15841
15842 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15843 deprecate_cmd (c, "save tracepoints");
15844
15845 add_basic_prefix_cmd ("breakpoint", class_maintenance, _("\
15846 Breakpoint specific settings.\n\
15847 Configure various breakpoint-specific variables such as\n\
15848 pending breakpoint behavior."),
15849 &breakpoint_set_cmdlist, "set breakpoint ",
15850 0/*allow-unknown*/, &setlist);
15851 add_show_prefix_cmd ("breakpoint", class_maintenance, _("\
15852 Breakpoint specific settings.\n\
15853 Configure various breakpoint-specific variables such as\n\
15854 pending breakpoint behavior."),
15855 &breakpoint_show_cmdlist, "show breakpoint ",
15856 0/*allow-unknown*/, &showlist);
15857
15858 add_setshow_auto_boolean_cmd ("pending", no_class,
15859 &pending_break_support, _("\
15860 Set debugger's behavior regarding pending breakpoints."), _("\
15861 Show debugger's behavior regarding pending breakpoints."), _("\
15862 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15863 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15864 an error. If auto, an unrecognized breakpoint location results in a\n\
15865 user-query to see if a pending breakpoint should be created."),
15866 NULL,
15867 show_pending_break_support,
15868 &breakpoint_set_cmdlist,
15869 &breakpoint_show_cmdlist);
15870
15871 pending_break_support = AUTO_BOOLEAN_AUTO;
15872
15873 add_setshow_boolean_cmd ("auto-hw", no_class,
15874 &automatic_hardware_breakpoints, _("\
15875 Set automatic usage of hardware breakpoints."), _("\
15876 Show automatic usage of hardware breakpoints."), _("\
15877 If set, the debugger will automatically use hardware breakpoints for\n\
15878 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15879 a warning will be emitted for such breakpoints."),
15880 NULL,
15881 show_automatic_hardware_breakpoints,
15882 &breakpoint_set_cmdlist,
15883 &breakpoint_show_cmdlist);
15884
15885 add_setshow_boolean_cmd ("always-inserted", class_support,
15886 &always_inserted_mode, _("\
15887 Set mode for inserting breakpoints."), _("\
15888 Show mode for inserting breakpoints."), _("\
15889 When this mode is on, breakpoints are inserted immediately as soon as\n\
15890 they're created, kept inserted even when execution stops, and removed\n\
15891 only when the user deletes them. When this mode is off (the default),\n\
15892 breakpoints are inserted only when execution continues, and removed\n\
15893 when execution stops."),
15894 NULL,
15895 &show_always_inserted_mode,
15896 &breakpoint_set_cmdlist,
15897 &breakpoint_show_cmdlist);
15898
15899 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
15900 condition_evaluation_enums,
15901 &condition_evaluation_mode_1, _("\
15902 Set mode of breakpoint condition evaluation."), _("\
15903 Show mode of breakpoint condition evaluation."), _("\
15904 When this is set to \"host\", breakpoint conditions will be\n\
15905 evaluated on the host's side by GDB. When it is set to \"target\",\n\
15906 breakpoint conditions will be downloaded to the target (if the target\n\
15907 supports such feature) and conditions will be evaluated on the target's side.\n\
15908 If this is set to \"auto\" (default), this will be automatically set to\n\
15909 \"target\" if it supports condition evaluation, otherwise it will\n\
15910 be set to \"host\"."),
15911 &set_condition_evaluation_mode,
15912 &show_condition_evaluation_mode,
15913 &breakpoint_set_cmdlist,
15914 &breakpoint_show_cmdlist);
15915
15916 add_com ("break-range", class_breakpoint, break_range_command, _("\
15917 Set a breakpoint for an address range.\n\
15918 break-range START-LOCATION, END-LOCATION\n\
15919 where START-LOCATION and END-LOCATION can be one of the following:\n\
15920 LINENUM, for that line in the current file,\n\
15921 FILE:LINENUM, for that line in that file,\n\
15922 +OFFSET, for that number of lines after the current line\n\
15923 or the start of the range\n\
15924 FUNCTION, for the first line in that function,\n\
15925 FILE:FUNCTION, to distinguish among like-named static functions.\n\
15926 *ADDRESS, for the instruction at that address.\n\
15927 \n\
15928 The breakpoint will stop execution of the inferior whenever it executes\n\
15929 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
15930 range (including START-LOCATION and END-LOCATION)."));
15931
15932 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
15933 Set a dynamic printf at specified location.\n\
15934 dprintf location,format string,arg1,arg2,...\n\
15935 location may be a linespec, explicit, or address location.\n"
15936 "\n" LOCATION_HELP_STRING));
15937 set_cmd_completer (c, location_completer);
15938
15939 add_setshow_enum_cmd ("dprintf-style", class_support,
15940 dprintf_style_enums, &dprintf_style, _("\
15941 Set the style of usage for dynamic printf."), _("\
15942 Show the style of usage for dynamic printf."), _("\
15943 This setting chooses how GDB will do a dynamic printf.\n\
15944 If the value is \"gdb\", then the printing is done by GDB to its own\n\
15945 console, as with the \"printf\" command.\n\
15946 If the value is \"call\", the print is done by calling a function in your\n\
15947 program; by default printf(), but you can choose a different function or\n\
15948 output stream by setting dprintf-function and dprintf-channel."),
15949 update_dprintf_commands, NULL,
15950 &setlist, &showlist);
15951
15952 dprintf_function = xstrdup ("printf");
15953 add_setshow_string_cmd ("dprintf-function", class_support,
15954 &dprintf_function, _("\
15955 Set the function to use for dynamic printf."), _("\
15956 Show the function to use for dynamic printf."), NULL,
15957 update_dprintf_commands, NULL,
15958 &setlist, &showlist);
15959
15960 dprintf_channel = xstrdup ("");
15961 add_setshow_string_cmd ("dprintf-channel", class_support,
15962 &dprintf_channel, _("\
15963 Set the channel to use for dynamic printf."), _("\
15964 Show the channel to use for dynamic printf."), NULL,
15965 update_dprintf_commands, NULL,
15966 &setlist, &showlist);
15967
15968 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
15969 &disconnected_dprintf, _("\
15970 Set whether dprintf continues after GDB disconnects."), _("\
15971 Show whether dprintf continues after GDB disconnects."), _("\
15972 Use this to let dprintf commands continue to hit and produce output\n\
15973 even if GDB disconnects or detaches from the target."),
15974 NULL,
15975 NULL,
15976 &setlist, &showlist);
15977
15978 add_com ("agent-printf", class_vars, agent_printf_command, _("\
15979 Target agent only formatted printing, like the C \"printf\" function.\n\
15980 Usage: agent-printf \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
15981 This supports most C printf format specifications, like %s, %d, etc.\n\
15982 This is useful for formatted output in user-defined commands."));
15983
15984 automatic_hardware_breakpoints = true;
15985
15986 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
15987 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
15988 }
This page took 0.368051 seconds and 4 git commands to generate.