2fe8f14665021f2f69cb1952491e49dc8d6f45e8
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "gdbthread.h"
36 #include "target.h"
37 #include "language.h"
38 #include "gdb_string.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "solib.h"
53 #include "solist.h"
54 #include "observer.h"
55 #include "exceptions.h"
56 #include "memattr.h"
57 #include "ada-lang.h"
58 #include "top.h"
59 #include "valprint.h"
60 #include "jit.h"
61 #include "xml-syscall.h"
62 #include "parser-defs.h"
63 #include "gdb_regex.h"
64 #include "probe.h"
65 #include "cli/cli-utils.h"
66 #include "continuations.h"
67 #include "stack.h"
68 #include "skip.h"
69 #include "gdb_regex.h"
70 #include "ax-gdb.h"
71 #include "dummy-frame.h"
72
73 #include "format.h"
74
75 /* readline include files */
76 #include "readline/readline.h"
77 #include "readline/history.h"
78
79 /* readline defines this. */
80 #undef savestring
81
82 #include "mi/mi-common.h"
83 #include "python/python.h"
84
85 /* Prototypes for local functions. */
86
87 static void enable_delete_command (char *, int);
88
89 static void enable_once_command (char *, int);
90
91 static void enable_count_command (char *, int);
92
93 static void disable_command (char *, int);
94
95 static void enable_command (char *, int);
96
97 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
98 void *),
99 void *);
100
101 static void ignore_command (char *, int);
102
103 static int breakpoint_re_set_one (void *);
104
105 static void breakpoint_re_set_default (struct breakpoint *);
106
107 static void create_sals_from_address_default (char **,
108 struct linespec_result *,
109 enum bptype, char *,
110 char **);
111
112 static void create_breakpoints_sal_default (struct gdbarch *,
113 struct linespec_result *,
114 struct linespec_sals *,
115 char *, char *, enum bptype,
116 enum bpdisp, int, int,
117 int,
118 const struct breakpoint_ops *,
119 int, int, int, unsigned);
120
121 static void decode_linespec_default (struct breakpoint *, char **,
122 struct symtabs_and_lines *);
123
124 static void clear_command (char *, int);
125
126 static void catch_command (char *, int);
127
128 static int can_use_hardware_watchpoint (struct value *);
129
130 static void break_command_1 (char *, int, int);
131
132 static void mention (struct breakpoint *);
133
134 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
135 enum bptype,
136 const struct breakpoint_ops *);
137 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
138 const struct symtab_and_line *);
139
140 /* This function is used in gdbtk sources and thus can not be made
141 static. */
142 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
143 struct symtab_and_line,
144 enum bptype,
145 const struct breakpoint_ops *);
146
147 static struct breakpoint *
148 momentary_breakpoint_from_master (struct breakpoint *orig,
149 enum bptype type,
150 const struct breakpoint_ops *ops);
151
152 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
153
154 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
155 CORE_ADDR bpaddr,
156 enum bptype bptype);
157
158 static void describe_other_breakpoints (struct gdbarch *,
159 struct program_space *, CORE_ADDR,
160 struct obj_section *, int);
161
162 static int breakpoint_address_match (struct address_space *aspace1,
163 CORE_ADDR addr1,
164 struct address_space *aspace2,
165 CORE_ADDR addr2);
166
167 static int watchpoint_locations_match (struct bp_location *loc1,
168 struct bp_location *loc2);
169
170 static int breakpoint_location_address_match (struct bp_location *bl,
171 struct address_space *aspace,
172 CORE_ADDR addr);
173
174 static void breakpoints_info (char *, int);
175
176 static void watchpoints_info (char *, int);
177
178 static int breakpoint_1 (char *, int,
179 int (*) (const struct breakpoint *));
180
181 static int breakpoint_cond_eval (void *);
182
183 static void cleanup_executing_breakpoints (void *);
184
185 static void commands_command (char *, int);
186
187 static void condition_command (char *, int);
188
189 typedef enum
190 {
191 mark_inserted,
192 mark_uninserted
193 }
194 insertion_state_t;
195
196 static int remove_breakpoint (struct bp_location *, insertion_state_t);
197 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
198
199 static enum print_stop_action print_bp_stop_message (bpstat bs);
200
201 static int watchpoint_check (void *);
202
203 static void maintenance_info_breakpoints (char *, int);
204
205 static int hw_breakpoint_used_count (void);
206
207 static int hw_watchpoint_use_count (struct breakpoint *);
208
209 static int hw_watchpoint_used_count_others (struct breakpoint *except,
210 enum bptype type,
211 int *other_type_used);
212
213 static void hbreak_command (char *, int);
214
215 static void thbreak_command (char *, int);
216
217 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
218 int count);
219
220 static void stop_command (char *arg, int from_tty);
221
222 static void stopin_command (char *arg, int from_tty);
223
224 static void stopat_command (char *arg, int from_tty);
225
226 static char *ep_parse_optional_if_clause (char **arg);
227
228 static void catch_exception_command_1 (enum exception_event_kind ex_event,
229 char *arg, int tempflag, int from_tty);
230
231 static void tcatch_command (char *arg, int from_tty);
232
233 static void detach_single_step_breakpoints (void);
234
235 static int single_step_breakpoint_inserted_here_p (struct address_space *,
236 CORE_ADDR pc);
237
238 static void free_bp_location (struct bp_location *loc);
239 static void incref_bp_location (struct bp_location *loc);
240 static void decref_bp_location (struct bp_location **loc);
241
242 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
243
244 static void update_global_location_list (int);
245
246 static void update_global_location_list_nothrow (int);
247
248 static int is_hardware_watchpoint (const struct breakpoint *bpt);
249
250 static void insert_breakpoint_locations (void);
251
252 static int syscall_catchpoint_p (struct breakpoint *b);
253
254 static void tracepoints_info (char *, int);
255
256 static void delete_trace_command (char *, int);
257
258 static void enable_trace_command (char *, int);
259
260 static void disable_trace_command (char *, int);
261
262 static void trace_pass_command (char *, int);
263
264 static void set_tracepoint_count (int num);
265
266 static int is_masked_watchpoint (const struct breakpoint *b);
267
268 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
269
270 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
271 otherwise. */
272
273 static int strace_marker_p (struct breakpoint *b);
274
275 static void init_catchpoint (struct breakpoint *b,
276 struct gdbarch *gdbarch, int tempflag,
277 char *cond_string,
278 const struct breakpoint_ops *ops);
279
280 /* The abstract base class all breakpoint_ops structures inherit
281 from. */
282 static struct breakpoint_ops base_breakpoint_ops;
283
284 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
285 that are implemented on top of software or hardware breakpoints
286 (user breakpoints, internal and momentary breakpoints, etc.). */
287 static struct breakpoint_ops bkpt_base_breakpoint_ops;
288
289 /* Internal breakpoints class type. */
290 static struct breakpoint_ops internal_breakpoint_ops;
291
292 /* Momentary breakpoints class type. */
293 static struct breakpoint_ops momentary_breakpoint_ops;
294
295 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
296 static struct breakpoint_ops longjmp_breakpoint_ops;
297
298 /* The breakpoint_ops structure to be used in regular user created
299 breakpoints. */
300 struct breakpoint_ops bkpt_breakpoint_ops;
301
302 /* Breakpoints set on probes. */
303 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
304
305 /* Dynamic printf class type. */
306 static struct breakpoint_ops dprintf_breakpoint_ops;
307
308 /* The style in which to perform a dynamic printf. This is a user
309 option because different output options have different tradeoffs;
310 if GDB does the printing, there is better error handling if there
311 is a problem with any of the arguments, but using an inferior
312 function lets you have special-purpose printers and sending of
313 output to the same place as compiled-in print functions. */
314
315 static const char dprintf_style_gdb[] = "gdb";
316 static const char dprintf_style_call[] = "call";
317 static const char dprintf_style_agent[] = "agent";
318 static const char *const dprintf_style_enums[] = {
319 dprintf_style_gdb,
320 dprintf_style_call,
321 dprintf_style_agent,
322 NULL
323 };
324 static const char *dprintf_style = dprintf_style_gdb;
325
326 /* The function to use for dynamic printf if the preferred style is to
327 call into the inferior. The value is simply a string that is
328 copied into the command, so it can be anything that GDB can
329 evaluate to a callable address, not necessarily a function name. */
330
331 static char *dprintf_function = "";
332
333 /* The channel to use for dynamic printf if the preferred style is to
334 call into the inferior; if a nonempty string, it will be passed to
335 the call as the first argument, with the format string as the
336 second. As with the dprintf function, this can be anything that
337 GDB knows how to evaluate, so in addition to common choices like
338 "stderr", this could be an app-specific expression like
339 "mystreams[curlogger]". */
340
341 static char *dprintf_channel = "";
342
343 /* True if dprintf commands should continue to operate even if GDB
344 has disconnected. */
345 static int disconnected_dprintf = 1;
346
347 /* A reference-counted struct command_line. This lets multiple
348 breakpoints share a single command list. */
349 struct counted_command_line
350 {
351 /* The reference count. */
352 int refc;
353
354 /* The command list. */
355 struct command_line *commands;
356 };
357
358 struct command_line *
359 breakpoint_commands (struct breakpoint *b)
360 {
361 return b->commands ? b->commands->commands : NULL;
362 }
363
364 /* Flag indicating that a command has proceeded the inferior past the
365 current breakpoint. */
366
367 static int breakpoint_proceeded;
368
369 const char *
370 bpdisp_text (enum bpdisp disp)
371 {
372 /* NOTE: the following values are a part of MI protocol and
373 represent values of 'disp' field returned when inferior stops at
374 a breakpoint. */
375 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
376
377 return bpdisps[(int) disp];
378 }
379
380 /* Prototypes for exported functions. */
381 /* If FALSE, gdb will not use hardware support for watchpoints, even
382 if such is available. */
383 static int can_use_hw_watchpoints;
384
385 static void
386 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
387 struct cmd_list_element *c,
388 const char *value)
389 {
390 fprintf_filtered (file,
391 _("Debugger's willingness to use "
392 "watchpoint hardware is %s.\n"),
393 value);
394 }
395
396 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
397 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
398 for unrecognized breakpoint locations.
399 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
400 static enum auto_boolean pending_break_support;
401 static void
402 show_pending_break_support (struct ui_file *file, int from_tty,
403 struct cmd_list_element *c,
404 const char *value)
405 {
406 fprintf_filtered (file,
407 _("Debugger's behavior regarding "
408 "pending breakpoints is %s.\n"),
409 value);
410 }
411
412 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
413 set with "break" but falling in read-only memory.
414 If 0, gdb will warn about such breakpoints, but won't automatically
415 use hardware breakpoints. */
416 static int automatic_hardware_breakpoints;
417 static void
418 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
419 struct cmd_list_element *c,
420 const char *value)
421 {
422 fprintf_filtered (file,
423 _("Automatic usage of hardware breakpoints is %s.\n"),
424 value);
425 }
426
427 /* If on, gdb will keep breakpoints inserted even as inferior is
428 stopped, and immediately insert any new breakpoints. If off, gdb
429 will insert breakpoints into inferior only when resuming it, and
430 will remove breakpoints upon stop. If auto, GDB will behave as ON
431 if in non-stop mode, and as OFF if all-stop mode.*/
432
433 static enum auto_boolean always_inserted_mode = AUTO_BOOLEAN_AUTO;
434
435 static void
436 show_always_inserted_mode (struct ui_file *file, int from_tty,
437 struct cmd_list_element *c, const char *value)
438 {
439 if (always_inserted_mode == AUTO_BOOLEAN_AUTO)
440 fprintf_filtered (file,
441 _("Always inserted breakpoint "
442 "mode is %s (currently %s).\n"),
443 value,
444 breakpoints_always_inserted_mode () ? "on" : "off");
445 else
446 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
447 value);
448 }
449
450 int
451 breakpoints_always_inserted_mode (void)
452 {
453 return (always_inserted_mode == AUTO_BOOLEAN_TRUE
454 || (always_inserted_mode == AUTO_BOOLEAN_AUTO && non_stop));
455 }
456
457 static const char condition_evaluation_both[] = "host or target";
458
459 /* Modes for breakpoint condition evaluation. */
460 static const char condition_evaluation_auto[] = "auto";
461 static const char condition_evaluation_host[] = "host";
462 static const char condition_evaluation_target[] = "target";
463 static const char *const condition_evaluation_enums[] = {
464 condition_evaluation_auto,
465 condition_evaluation_host,
466 condition_evaluation_target,
467 NULL
468 };
469
470 /* Global that holds the current mode for breakpoint condition evaluation. */
471 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
472
473 /* Global that we use to display information to the user (gets its value from
474 condition_evaluation_mode_1. */
475 static const char *condition_evaluation_mode = condition_evaluation_auto;
476
477 /* Translate a condition evaluation mode MODE into either "host"
478 or "target". This is used mostly to translate from "auto" to the
479 real setting that is being used. It returns the translated
480 evaluation mode. */
481
482 static const char *
483 translate_condition_evaluation_mode (const char *mode)
484 {
485 if (mode == condition_evaluation_auto)
486 {
487 if (target_supports_evaluation_of_breakpoint_conditions ())
488 return condition_evaluation_target;
489 else
490 return condition_evaluation_host;
491 }
492 else
493 return mode;
494 }
495
496 /* Discovers what condition_evaluation_auto translates to. */
497
498 static const char *
499 breakpoint_condition_evaluation_mode (void)
500 {
501 return translate_condition_evaluation_mode (condition_evaluation_mode);
502 }
503
504 /* Return true if GDB should evaluate breakpoint conditions or false
505 otherwise. */
506
507 static int
508 gdb_evaluates_breakpoint_condition_p (void)
509 {
510 const char *mode = breakpoint_condition_evaluation_mode ();
511
512 return (mode == condition_evaluation_host);
513 }
514
515 void _initialize_breakpoint (void);
516
517 /* Are we executing breakpoint commands? */
518 static int executing_breakpoint_commands;
519
520 /* Are overlay event breakpoints enabled? */
521 static int overlay_events_enabled;
522
523 /* See description in breakpoint.h. */
524 int target_exact_watchpoints = 0;
525
526 /* Walk the following statement or block through all breakpoints.
527 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
528 current breakpoint. */
529
530 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
531
532 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
533 for (B = breakpoint_chain; \
534 B ? (TMP=B->next, 1): 0; \
535 B = TMP)
536
537 /* Similar iterator for the low-level breakpoints. SAFE variant is
538 not provided so update_global_location_list must not be called
539 while executing the block of ALL_BP_LOCATIONS. */
540
541 #define ALL_BP_LOCATIONS(B,BP_TMP) \
542 for (BP_TMP = bp_location; \
543 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
544 BP_TMP++)
545
546 /* Iterates through locations with address ADDRESS for the currently selected
547 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
548 to where the loop should start from.
549 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
550 appropriate location to start with. */
551
552 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
553 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
554 BP_LOCP_TMP = BP_LOCP_START; \
555 BP_LOCP_START \
556 && (BP_LOCP_TMP < bp_location + bp_location_count \
557 && (*BP_LOCP_TMP)->address == ADDRESS); \
558 BP_LOCP_TMP++)
559
560 /* Iterator for tracepoints only. */
561
562 #define ALL_TRACEPOINTS(B) \
563 for (B = breakpoint_chain; B; B = B->next) \
564 if (is_tracepoint (B))
565
566 /* Chains of all breakpoints defined. */
567
568 struct breakpoint *breakpoint_chain;
569
570 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
571
572 static struct bp_location **bp_location;
573
574 /* Number of elements of BP_LOCATION. */
575
576 static unsigned bp_location_count;
577
578 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
579 ADDRESS for the current elements of BP_LOCATION which get a valid
580 result from bp_location_has_shadow. You can use it for roughly
581 limiting the subrange of BP_LOCATION to scan for shadow bytes for
582 an address you need to read. */
583
584 static CORE_ADDR bp_location_placed_address_before_address_max;
585
586 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
587 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
588 BP_LOCATION which get a valid result from bp_location_has_shadow.
589 You can use it for roughly limiting the subrange of BP_LOCATION to
590 scan for shadow bytes for an address you need to read. */
591
592 static CORE_ADDR bp_location_shadow_len_after_address_max;
593
594 /* The locations that no longer correspond to any breakpoint, unlinked
595 from bp_location array, but for which a hit may still be reported
596 by a target. */
597 VEC(bp_location_p) *moribund_locations = NULL;
598
599 /* Number of last breakpoint made. */
600
601 static int breakpoint_count;
602
603 /* The value of `breakpoint_count' before the last command that
604 created breakpoints. If the last (break-like) command created more
605 than one breakpoint, then the difference between BREAKPOINT_COUNT
606 and PREV_BREAKPOINT_COUNT is more than one. */
607 static int prev_breakpoint_count;
608
609 /* Number of last tracepoint made. */
610
611 static int tracepoint_count;
612
613 static struct cmd_list_element *breakpoint_set_cmdlist;
614 static struct cmd_list_element *breakpoint_show_cmdlist;
615 struct cmd_list_element *save_cmdlist;
616
617 /* Return whether a breakpoint is an active enabled breakpoint. */
618 static int
619 breakpoint_enabled (struct breakpoint *b)
620 {
621 return (b->enable_state == bp_enabled);
622 }
623
624 /* Set breakpoint count to NUM. */
625
626 static void
627 set_breakpoint_count (int num)
628 {
629 prev_breakpoint_count = breakpoint_count;
630 breakpoint_count = num;
631 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
632 }
633
634 /* Used by `start_rbreak_breakpoints' below, to record the current
635 breakpoint count before "rbreak" creates any breakpoint. */
636 static int rbreak_start_breakpoint_count;
637
638 /* Called at the start an "rbreak" command to record the first
639 breakpoint made. */
640
641 void
642 start_rbreak_breakpoints (void)
643 {
644 rbreak_start_breakpoint_count = breakpoint_count;
645 }
646
647 /* Called at the end of an "rbreak" command to record the last
648 breakpoint made. */
649
650 void
651 end_rbreak_breakpoints (void)
652 {
653 prev_breakpoint_count = rbreak_start_breakpoint_count;
654 }
655
656 /* Used in run_command to zero the hit count when a new run starts. */
657
658 void
659 clear_breakpoint_hit_counts (void)
660 {
661 struct breakpoint *b;
662
663 ALL_BREAKPOINTS (b)
664 b->hit_count = 0;
665 }
666
667 /* Allocate a new counted_command_line with reference count of 1.
668 The new structure owns COMMANDS. */
669
670 static struct counted_command_line *
671 alloc_counted_command_line (struct command_line *commands)
672 {
673 struct counted_command_line *result
674 = xmalloc (sizeof (struct counted_command_line));
675
676 result->refc = 1;
677 result->commands = commands;
678 return result;
679 }
680
681 /* Increment reference count. This does nothing if CMD is NULL. */
682
683 static void
684 incref_counted_command_line (struct counted_command_line *cmd)
685 {
686 if (cmd)
687 ++cmd->refc;
688 }
689
690 /* Decrement reference count. If the reference count reaches 0,
691 destroy the counted_command_line. Sets *CMDP to NULL. This does
692 nothing if *CMDP is NULL. */
693
694 static void
695 decref_counted_command_line (struct counted_command_line **cmdp)
696 {
697 if (*cmdp)
698 {
699 if (--(*cmdp)->refc == 0)
700 {
701 free_command_lines (&(*cmdp)->commands);
702 xfree (*cmdp);
703 }
704 *cmdp = NULL;
705 }
706 }
707
708 /* A cleanup function that calls decref_counted_command_line. */
709
710 static void
711 do_cleanup_counted_command_line (void *arg)
712 {
713 decref_counted_command_line (arg);
714 }
715
716 /* Create a cleanup that calls decref_counted_command_line on the
717 argument. */
718
719 static struct cleanup *
720 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
721 {
722 return make_cleanup (do_cleanup_counted_command_line, cmdp);
723 }
724
725 \f
726 /* Return the breakpoint with the specified number, or NULL
727 if the number does not refer to an existing breakpoint. */
728
729 struct breakpoint *
730 get_breakpoint (int num)
731 {
732 struct breakpoint *b;
733
734 ALL_BREAKPOINTS (b)
735 if (b->number == num)
736 return b;
737
738 return NULL;
739 }
740
741 \f
742
743 /* Mark locations as "conditions have changed" in case the target supports
744 evaluating conditions on its side. */
745
746 static void
747 mark_breakpoint_modified (struct breakpoint *b)
748 {
749 struct bp_location *loc;
750
751 /* This is only meaningful if the target is
752 evaluating conditions and if the user has
753 opted for condition evaluation on the target's
754 side. */
755 if (gdb_evaluates_breakpoint_condition_p ()
756 || !target_supports_evaluation_of_breakpoint_conditions ())
757 return;
758
759 if (!is_breakpoint (b))
760 return;
761
762 for (loc = b->loc; loc; loc = loc->next)
763 loc->condition_changed = condition_modified;
764 }
765
766 /* Mark location as "conditions have changed" in case the target supports
767 evaluating conditions on its side. */
768
769 static void
770 mark_breakpoint_location_modified (struct bp_location *loc)
771 {
772 /* This is only meaningful if the target is
773 evaluating conditions and if the user has
774 opted for condition evaluation on the target's
775 side. */
776 if (gdb_evaluates_breakpoint_condition_p ()
777 || !target_supports_evaluation_of_breakpoint_conditions ())
778
779 return;
780
781 if (!is_breakpoint (loc->owner))
782 return;
783
784 loc->condition_changed = condition_modified;
785 }
786
787 /* Sets the condition-evaluation mode using the static global
788 condition_evaluation_mode. */
789
790 static void
791 set_condition_evaluation_mode (char *args, int from_tty,
792 struct cmd_list_element *c)
793 {
794 const char *old_mode, *new_mode;
795
796 if ((condition_evaluation_mode_1 == condition_evaluation_target)
797 && !target_supports_evaluation_of_breakpoint_conditions ())
798 {
799 condition_evaluation_mode_1 = condition_evaluation_mode;
800 warning (_("Target does not support breakpoint condition evaluation.\n"
801 "Using host evaluation mode instead."));
802 return;
803 }
804
805 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
806 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
807
808 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
809 settings was "auto". */
810 condition_evaluation_mode = condition_evaluation_mode_1;
811
812 /* Only update the mode if the user picked a different one. */
813 if (new_mode != old_mode)
814 {
815 struct bp_location *loc, **loc_tmp;
816 /* If the user switched to a different evaluation mode, we
817 need to synch the changes with the target as follows:
818
819 "host" -> "target": Send all (valid) conditions to the target.
820 "target" -> "host": Remove all the conditions from the target.
821 */
822
823 if (new_mode == condition_evaluation_target)
824 {
825 /* Mark everything modified and synch conditions with the
826 target. */
827 ALL_BP_LOCATIONS (loc, loc_tmp)
828 mark_breakpoint_location_modified (loc);
829 }
830 else
831 {
832 /* Manually mark non-duplicate locations to synch conditions
833 with the target. We do this to remove all the conditions the
834 target knows about. */
835 ALL_BP_LOCATIONS (loc, loc_tmp)
836 if (is_breakpoint (loc->owner) && loc->inserted)
837 loc->needs_update = 1;
838 }
839
840 /* Do the update. */
841 update_global_location_list (1);
842 }
843
844 return;
845 }
846
847 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
848 what "auto" is translating to. */
849
850 static void
851 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
852 struct cmd_list_element *c, const char *value)
853 {
854 if (condition_evaluation_mode == condition_evaluation_auto)
855 fprintf_filtered (file,
856 _("Breakpoint condition evaluation "
857 "mode is %s (currently %s).\n"),
858 value,
859 breakpoint_condition_evaluation_mode ());
860 else
861 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
862 value);
863 }
864
865 /* A comparison function for bp_location AP and BP that is used by
866 bsearch. This comparison function only cares about addresses, unlike
867 the more general bp_location_compare function. */
868
869 static int
870 bp_location_compare_addrs (const void *ap, const void *bp)
871 {
872 struct bp_location *a = *(void **) ap;
873 struct bp_location *b = *(void **) bp;
874
875 if (a->address == b->address)
876 return 0;
877 else
878 return ((a->address > b->address) - (a->address < b->address));
879 }
880
881 /* Helper function to skip all bp_locations with addresses
882 less than ADDRESS. It returns the first bp_location that
883 is greater than or equal to ADDRESS. If none is found, just
884 return NULL. */
885
886 static struct bp_location **
887 get_first_locp_gte_addr (CORE_ADDR address)
888 {
889 struct bp_location dummy_loc;
890 struct bp_location *dummy_locp = &dummy_loc;
891 struct bp_location **locp_found = NULL;
892
893 /* Initialize the dummy location's address field. */
894 memset (&dummy_loc, 0, sizeof (struct bp_location));
895 dummy_loc.address = address;
896
897 /* Find a close match to the first location at ADDRESS. */
898 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
899 sizeof (struct bp_location **),
900 bp_location_compare_addrs);
901
902 /* Nothing was found, nothing left to do. */
903 if (locp_found == NULL)
904 return NULL;
905
906 /* We may have found a location that is at ADDRESS but is not the first in the
907 location's list. Go backwards (if possible) and locate the first one. */
908 while ((locp_found - 1) >= bp_location
909 && (*(locp_found - 1))->address == address)
910 locp_found--;
911
912 return locp_found;
913 }
914
915 void
916 set_breakpoint_condition (struct breakpoint *b, char *exp,
917 int from_tty)
918 {
919 xfree (b->cond_string);
920 b->cond_string = NULL;
921
922 if (is_watchpoint (b))
923 {
924 struct watchpoint *w = (struct watchpoint *) b;
925
926 xfree (w->cond_exp);
927 w->cond_exp = NULL;
928 }
929 else
930 {
931 struct bp_location *loc;
932
933 for (loc = b->loc; loc; loc = loc->next)
934 {
935 xfree (loc->cond);
936 loc->cond = NULL;
937
938 /* No need to free the condition agent expression
939 bytecode (if we have one). We will handle this
940 when we go through update_global_location_list. */
941 }
942 }
943
944 if (*exp == 0)
945 {
946 if (from_tty)
947 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
948 }
949 else
950 {
951 char *arg = exp;
952
953 /* I don't know if it matters whether this is the string the user
954 typed in or the decompiled expression. */
955 b->cond_string = xstrdup (arg);
956 b->condition_not_parsed = 0;
957
958 if (is_watchpoint (b))
959 {
960 struct watchpoint *w = (struct watchpoint *) b;
961
962 innermost_block = NULL;
963 arg = exp;
964 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
965 if (*arg)
966 error (_("Junk at end of expression"));
967 w->cond_exp_valid_block = innermost_block;
968 }
969 else
970 {
971 struct bp_location *loc;
972
973 for (loc = b->loc; loc; loc = loc->next)
974 {
975 arg = exp;
976 loc->cond =
977 parse_exp_1 (&arg, loc->address,
978 block_for_pc (loc->address), 0);
979 if (*arg)
980 error (_("Junk at end of expression"));
981 }
982 }
983 }
984 mark_breakpoint_modified (b);
985
986 annotate_breakpoints_changed ();
987 observer_notify_breakpoint_modified (b);
988 }
989
990 /* Completion for the "condition" command. */
991
992 static VEC (char_ptr) *
993 condition_completer (struct cmd_list_element *cmd, char *text, char *word)
994 {
995 char *space;
996
997 text = skip_spaces (text);
998 space = skip_to_space (text);
999 if (*space == '\0')
1000 {
1001 int len;
1002 struct breakpoint *b;
1003 VEC (char_ptr) *result = NULL;
1004
1005 if (text[0] == '$')
1006 {
1007 /* We don't support completion of history indices. */
1008 if (isdigit (text[1]))
1009 return NULL;
1010 return complete_internalvar (&text[1]);
1011 }
1012
1013 /* We're completing the breakpoint number. */
1014 len = strlen (text);
1015
1016 ALL_BREAKPOINTS (b)
1017 {
1018 int single = b->loc->next == NULL;
1019 struct bp_location *loc;
1020 int count = 1;
1021
1022 for (loc = b->loc; loc; loc = loc->next)
1023 {
1024 char location[50];
1025
1026 if (single)
1027 xsnprintf (location, sizeof (location), "%d", b->number);
1028 else
1029 xsnprintf (location, sizeof (location), "%d.%d", b->number,
1030 count);
1031
1032 if (strncmp (location, text, len) == 0)
1033 VEC_safe_push (char_ptr, result, xstrdup (location));
1034
1035 ++count;
1036 }
1037 }
1038
1039 return result;
1040 }
1041
1042 /* We're completing the expression part. */
1043 text = skip_spaces (space);
1044 return expression_completer (cmd, text, word);
1045 }
1046
1047 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1048
1049 static void
1050 condition_command (char *arg, int from_tty)
1051 {
1052 struct breakpoint *b;
1053 char *p;
1054 int bnum;
1055
1056 if (arg == 0)
1057 error_no_arg (_("breakpoint number"));
1058
1059 p = arg;
1060 bnum = get_number (&p);
1061 if (bnum == 0)
1062 error (_("Bad breakpoint argument: '%s'"), arg);
1063
1064 ALL_BREAKPOINTS (b)
1065 if (b->number == bnum)
1066 {
1067 /* Check if this breakpoint has a Python object assigned to
1068 it, and if it has a definition of the "stop"
1069 method. This method and conditions entered into GDB from
1070 the CLI are mutually exclusive. */
1071 if (b->py_bp_object
1072 && gdbpy_breakpoint_has_py_cond (b->py_bp_object))
1073 error (_("Cannot set a condition where a Python 'stop' "
1074 "method has been defined in the breakpoint."));
1075 set_breakpoint_condition (b, p, from_tty);
1076
1077 if (is_breakpoint (b))
1078 update_global_location_list (1);
1079
1080 return;
1081 }
1082
1083 error (_("No breakpoint number %d."), bnum);
1084 }
1085
1086 /* Check that COMMAND do not contain commands that are suitable
1087 only for tracepoints and not suitable for ordinary breakpoints.
1088 Throw if any such commands is found. */
1089
1090 static void
1091 check_no_tracepoint_commands (struct command_line *commands)
1092 {
1093 struct command_line *c;
1094
1095 for (c = commands; c; c = c->next)
1096 {
1097 int i;
1098
1099 if (c->control_type == while_stepping_control)
1100 error (_("The 'while-stepping' command can "
1101 "only be used for tracepoints"));
1102
1103 for (i = 0; i < c->body_count; ++i)
1104 check_no_tracepoint_commands ((c->body_list)[i]);
1105
1106 /* Not that command parsing removes leading whitespace and comment
1107 lines and also empty lines. So, we only need to check for
1108 command directly. */
1109 if (strstr (c->line, "collect ") == c->line)
1110 error (_("The 'collect' command can only be used for tracepoints"));
1111
1112 if (strstr (c->line, "teval ") == c->line)
1113 error (_("The 'teval' command can only be used for tracepoints"));
1114 }
1115 }
1116
1117 /* Encapsulate tests for different types of tracepoints. */
1118
1119 static int
1120 is_tracepoint_type (enum bptype type)
1121 {
1122 return (type == bp_tracepoint
1123 || type == bp_fast_tracepoint
1124 || type == bp_static_tracepoint);
1125 }
1126
1127 int
1128 is_tracepoint (const struct breakpoint *b)
1129 {
1130 return is_tracepoint_type (b->type);
1131 }
1132
1133 /* A helper function that validates that COMMANDS are valid for a
1134 breakpoint. This function will throw an exception if a problem is
1135 found. */
1136
1137 static void
1138 validate_commands_for_breakpoint (struct breakpoint *b,
1139 struct command_line *commands)
1140 {
1141 if (is_tracepoint (b))
1142 {
1143 /* We need to verify that each top-level element of commands is
1144 valid for tracepoints, that there's at most one
1145 while-stepping element, and that while-stepping's body has
1146 valid tracing commands excluding nested while-stepping. */
1147 struct command_line *c;
1148 struct command_line *while_stepping = 0;
1149 for (c = commands; c; c = c->next)
1150 {
1151 if (c->control_type == while_stepping_control)
1152 {
1153 if (b->type == bp_fast_tracepoint)
1154 error (_("The 'while-stepping' command "
1155 "cannot be used for fast tracepoint"));
1156 else if (b->type == bp_static_tracepoint)
1157 error (_("The 'while-stepping' command "
1158 "cannot be used for static tracepoint"));
1159
1160 if (while_stepping)
1161 error (_("The 'while-stepping' command "
1162 "can be used only once"));
1163 else
1164 while_stepping = c;
1165 }
1166 }
1167 if (while_stepping)
1168 {
1169 struct command_line *c2;
1170
1171 gdb_assert (while_stepping->body_count == 1);
1172 c2 = while_stepping->body_list[0];
1173 for (; c2; c2 = c2->next)
1174 {
1175 if (c2->control_type == while_stepping_control)
1176 error (_("The 'while-stepping' command cannot be nested"));
1177 }
1178 }
1179 }
1180 else
1181 {
1182 check_no_tracepoint_commands (commands);
1183 }
1184 }
1185
1186 /* Return a vector of all the static tracepoints set at ADDR. The
1187 caller is responsible for releasing the vector. */
1188
1189 VEC(breakpoint_p) *
1190 static_tracepoints_here (CORE_ADDR addr)
1191 {
1192 struct breakpoint *b;
1193 VEC(breakpoint_p) *found = 0;
1194 struct bp_location *loc;
1195
1196 ALL_BREAKPOINTS (b)
1197 if (b->type == bp_static_tracepoint)
1198 {
1199 for (loc = b->loc; loc; loc = loc->next)
1200 if (loc->address == addr)
1201 VEC_safe_push(breakpoint_p, found, b);
1202 }
1203
1204 return found;
1205 }
1206
1207 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1208 validate that only allowed commands are included. */
1209
1210 void
1211 breakpoint_set_commands (struct breakpoint *b,
1212 struct command_line *commands)
1213 {
1214 validate_commands_for_breakpoint (b, commands);
1215
1216 decref_counted_command_line (&b->commands);
1217 b->commands = alloc_counted_command_line (commands);
1218 annotate_breakpoints_changed ();
1219 observer_notify_breakpoint_modified (b);
1220 }
1221
1222 /* Set the internal `silent' flag on the breakpoint. Note that this
1223 is not the same as the "silent" that may appear in the breakpoint's
1224 commands. */
1225
1226 void
1227 breakpoint_set_silent (struct breakpoint *b, int silent)
1228 {
1229 int old_silent = b->silent;
1230
1231 b->silent = silent;
1232 if (old_silent != silent)
1233 observer_notify_breakpoint_modified (b);
1234 }
1235
1236 /* Set the thread for this breakpoint. If THREAD is -1, make the
1237 breakpoint work for any thread. */
1238
1239 void
1240 breakpoint_set_thread (struct breakpoint *b, int thread)
1241 {
1242 int old_thread = b->thread;
1243
1244 b->thread = thread;
1245 if (old_thread != thread)
1246 observer_notify_breakpoint_modified (b);
1247 }
1248
1249 /* Set the task for this breakpoint. If TASK is 0, make the
1250 breakpoint work for any task. */
1251
1252 void
1253 breakpoint_set_task (struct breakpoint *b, int task)
1254 {
1255 int old_task = b->task;
1256
1257 b->task = task;
1258 if (old_task != task)
1259 observer_notify_breakpoint_modified (b);
1260 }
1261
1262 void
1263 check_tracepoint_command (char *line, void *closure)
1264 {
1265 struct breakpoint *b = closure;
1266
1267 validate_actionline (&line, b);
1268 }
1269
1270 /* A structure used to pass information through
1271 map_breakpoint_numbers. */
1272
1273 struct commands_info
1274 {
1275 /* True if the command was typed at a tty. */
1276 int from_tty;
1277
1278 /* The breakpoint range spec. */
1279 char *arg;
1280
1281 /* Non-NULL if the body of the commands are being read from this
1282 already-parsed command. */
1283 struct command_line *control;
1284
1285 /* The command lines read from the user, or NULL if they have not
1286 yet been read. */
1287 struct counted_command_line *cmd;
1288 };
1289
1290 /* A callback for map_breakpoint_numbers that sets the commands for
1291 commands_command. */
1292
1293 static void
1294 do_map_commands_command (struct breakpoint *b, void *data)
1295 {
1296 struct commands_info *info = data;
1297
1298 if (info->cmd == NULL)
1299 {
1300 struct command_line *l;
1301
1302 if (info->control != NULL)
1303 l = copy_command_lines (info->control->body_list[0]);
1304 else
1305 {
1306 struct cleanup *old_chain;
1307 char *str;
1308
1309 str = xstrprintf (_("Type commands for breakpoint(s) "
1310 "%s, one per line."),
1311 info->arg);
1312
1313 old_chain = make_cleanup (xfree, str);
1314
1315 l = read_command_lines (str,
1316 info->from_tty, 1,
1317 (is_tracepoint (b)
1318 ? check_tracepoint_command : 0),
1319 b);
1320
1321 do_cleanups (old_chain);
1322 }
1323
1324 info->cmd = alloc_counted_command_line (l);
1325 }
1326
1327 /* If a breakpoint was on the list more than once, we don't need to
1328 do anything. */
1329 if (b->commands != info->cmd)
1330 {
1331 validate_commands_for_breakpoint (b, info->cmd->commands);
1332 incref_counted_command_line (info->cmd);
1333 decref_counted_command_line (&b->commands);
1334 b->commands = info->cmd;
1335 annotate_breakpoints_changed ();
1336 observer_notify_breakpoint_modified (b);
1337 }
1338 }
1339
1340 static void
1341 commands_command_1 (char *arg, int from_tty,
1342 struct command_line *control)
1343 {
1344 struct cleanup *cleanups;
1345 struct commands_info info;
1346
1347 info.from_tty = from_tty;
1348 info.control = control;
1349 info.cmd = NULL;
1350 /* If we read command lines from the user, then `info' will hold an
1351 extra reference to the commands that we must clean up. */
1352 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1353
1354 if (arg == NULL || !*arg)
1355 {
1356 if (breakpoint_count - prev_breakpoint_count > 1)
1357 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1358 breakpoint_count);
1359 else if (breakpoint_count > 0)
1360 arg = xstrprintf ("%d", breakpoint_count);
1361 else
1362 {
1363 /* So that we don't try to free the incoming non-NULL
1364 argument in the cleanup below. Mapping breakpoint
1365 numbers will fail in this case. */
1366 arg = NULL;
1367 }
1368 }
1369 else
1370 /* The command loop has some static state, so we need to preserve
1371 our argument. */
1372 arg = xstrdup (arg);
1373
1374 if (arg != NULL)
1375 make_cleanup (xfree, arg);
1376
1377 info.arg = arg;
1378
1379 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1380
1381 if (info.cmd == NULL)
1382 error (_("No breakpoints specified."));
1383
1384 do_cleanups (cleanups);
1385 }
1386
1387 static void
1388 commands_command (char *arg, int from_tty)
1389 {
1390 commands_command_1 (arg, from_tty, NULL);
1391 }
1392
1393 /* Like commands_command, but instead of reading the commands from
1394 input stream, takes them from an already parsed command structure.
1395
1396 This is used by cli-script.c to DTRT with breakpoint commands
1397 that are part of if and while bodies. */
1398 enum command_control_type
1399 commands_from_control_command (char *arg, struct command_line *cmd)
1400 {
1401 commands_command_1 (arg, 0, cmd);
1402 return simple_control;
1403 }
1404
1405 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1406
1407 static int
1408 bp_location_has_shadow (struct bp_location *bl)
1409 {
1410 if (bl->loc_type != bp_loc_software_breakpoint)
1411 return 0;
1412 if (!bl->inserted)
1413 return 0;
1414 if (bl->target_info.shadow_len == 0)
1415 /* BL isn't valid, or doesn't shadow memory. */
1416 return 0;
1417 return 1;
1418 }
1419
1420 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1421 by replacing any memory breakpoints with their shadowed contents.
1422
1423 If READBUF is not NULL, this buffer must not overlap with any of
1424 the breakpoint location's shadow_contents buffers. Otherwise,
1425 a failed assertion internal error will be raised.
1426
1427 The range of shadowed area by each bp_location is:
1428 bl->address - bp_location_placed_address_before_address_max
1429 up to bl->address + bp_location_shadow_len_after_address_max
1430 The range we were requested to resolve shadows for is:
1431 memaddr ... memaddr + len
1432 Thus the safe cutoff boundaries for performance optimization are
1433 memaddr + len <= (bl->address
1434 - bp_location_placed_address_before_address_max)
1435 and:
1436 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1437
1438 void
1439 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1440 const gdb_byte *writebuf_org,
1441 ULONGEST memaddr, LONGEST len)
1442 {
1443 /* Left boundary, right boundary and median element of our binary
1444 search. */
1445 unsigned bc_l, bc_r, bc;
1446
1447 /* Find BC_L which is a leftmost element which may affect BUF
1448 content. It is safe to report lower value but a failure to
1449 report higher one. */
1450
1451 bc_l = 0;
1452 bc_r = bp_location_count;
1453 while (bc_l + 1 < bc_r)
1454 {
1455 struct bp_location *bl;
1456
1457 bc = (bc_l + bc_r) / 2;
1458 bl = bp_location[bc];
1459
1460 /* Check first BL->ADDRESS will not overflow due to the added
1461 constant. Then advance the left boundary only if we are sure
1462 the BC element can in no way affect the BUF content (MEMADDR
1463 to MEMADDR + LEN range).
1464
1465 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1466 offset so that we cannot miss a breakpoint with its shadow
1467 range tail still reaching MEMADDR. */
1468
1469 if ((bl->address + bp_location_shadow_len_after_address_max
1470 >= bl->address)
1471 && (bl->address + bp_location_shadow_len_after_address_max
1472 <= memaddr))
1473 bc_l = bc;
1474 else
1475 bc_r = bc;
1476 }
1477
1478 /* Due to the binary search above, we need to make sure we pick the
1479 first location that's at BC_L's address. E.g., if there are
1480 multiple locations at the same address, BC_L may end up pointing
1481 at a duplicate location, and miss the "master"/"inserted"
1482 location. Say, given locations L1, L2 and L3 at addresses A and
1483 B:
1484
1485 L1@A, L2@A, L3@B, ...
1486
1487 BC_L could end up pointing at location L2, while the "master"
1488 location could be L1. Since the `loc->inserted' flag is only set
1489 on "master" locations, we'd forget to restore the shadow of L1
1490 and L2. */
1491 while (bc_l > 0
1492 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1493 bc_l--;
1494
1495 /* Now do full processing of the found relevant range of elements. */
1496
1497 for (bc = bc_l; bc < bp_location_count; bc++)
1498 {
1499 struct bp_location *bl = bp_location[bc];
1500 CORE_ADDR bp_addr = 0;
1501 int bp_size = 0;
1502 int bptoffset = 0;
1503
1504 /* bp_location array has BL->OWNER always non-NULL. */
1505 if (bl->owner->type == bp_none)
1506 warning (_("reading through apparently deleted breakpoint #%d?"),
1507 bl->owner->number);
1508
1509 /* Performance optimization: any further element can no longer affect BUF
1510 content. */
1511
1512 if (bl->address >= bp_location_placed_address_before_address_max
1513 && memaddr + len <= (bl->address
1514 - bp_location_placed_address_before_address_max))
1515 break;
1516
1517 if (!bp_location_has_shadow (bl))
1518 continue;
1519 if (!breakpoint_address_match (bl->target_info.placed_address_space, 0,
1520 current_program_space->aspace, 0))
1521 continue;
1522
1523 /* Addresses and length of the part of the breakpoint that
1524 we need to copy. */
1525 bp_addr = bl->target_info.placed_address;
1526 bp_size = bl->target_info.shadow_len;
1527
1528 if (bp_addr + bp_size <= memaddr)
1529 /* The breakpoint is entirely before the chunk of memory we
1530 are reading. */
1531 continue;
1532
1533 if (bp_addr >= memaddr + len)
1534 /* The breakpoint is entirely after the chunk of memory we are
1535 reading. */
1536 continue;
1537
1538 /* Offset within shadow_contents. */
1539 if (bp_addr < memaddr)
1540 {
1541 /* Only copy the second part of the breakpoint. */
1542 bp_size -= memaddr - bp_addr;
1543 bptoffset = memaddr - bp_addr;
1544 bp_addr = memaddr;
1545 }
1546
1547 if (bp_addr + bp_size > memaddr + len)
1548 {
1549 /* Only copy the first part of the breakpoint. */
1550 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1551 }
1552
1553 if (readbuf != NULL)
1554 {
1555 /* Verify that the readbuf buffer does not overlap with
1556 the shadow_contents buffer. */
1557 gdb_assert (bl->target_info.shadow_contents >= readbuf + len
1558 || readbuf >= (bl->target_info.shadow_contents
1559 + bl->target_info.shadow_len));
1560
1561 /* Update the read buffer with this inserted breakpoint's
1562 shadow. */
1563 memcpy (readbuf + bp_addr - memaddr,
1564 bl->target_info.shadow_contents + bptoffset, bp_size);
1565 }
1566 else
1567 {
1568 struct gdbarch *gdbarch = bl->gdbarch;
1569 const unsigned char *bp;
1570 CORE_ADDR placed_address = bl->target_info.placed_address;
1571 unsigned placed_size = bl->target_info.placed_size;
1572
1573 /* Update the shadow with what we want to write to memory. */
1574 memcpy (bl->target_info.shadow_contents + bptoffset,
1575 writebuf_org + bp_addr - memaddr, bp_size);
1576
1577 /* Determine appropriate breakpoint contents and size for this
1578 address. */
1579 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1580
1581 /* Update the final write buffer with this inserted
1582 breakpoint's INSN. */
1583 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1584 }
1585 }
1586 }
1587 \f
1588
1589 /* Return true if BPT is either a software breakpoint or a hardware
1590 breakpoint. */
1591
1592 int
1593 is_breakpoint (const struct breakpoint *bpt)
1594 {
1595 return (bpt->type == bp_breakpoint
1596 || bpt->type == bp_hardware_breakpoint
1597 || bpt->type == bp_dprintf);
1598 }
1599
1600 /* Return true if BPT is of any hardware watchpoint kind. */
1601
1602 static int
1603 is_hardware_watchpoint (const struct breakpoint *bpt)
1604 {
1605 return (bpt->type == bp_hardware_watchpoint
1606 || bpt->type == bp_read_watchpoint
1607 || bpt->type == bp_access_watchpoint);
1608 }
1609
1610 /* Return true if BPT is of any watchpoint kind, hardware or
1611 software. */
1612
1613 int
1614 is_watchpoint (const struct breakpoint *bpt)
1615 {
1616 return (is_hardware_watchpoint (bpt)
1617 || bpt->type == bp_watchpoint);
1618 }
1619
1620 /* Returns true if the current thread and its running state are safe
1621 to evaluate or update watchpoint B. Watchpoints on local
1622 expressions need to be evaluated in the context of the thread that
1623 was current when the watchpoint was created, and, that thread needs
1624 to be stopped to be able to select the correct frame context.
1625 Watchpoints on global expressions can be evaluated on any thread,
1626 and in any state. It is presently left to the target allowing
1627 memory accesses when threads are running. */
1628
1629 static int
1630 watchpoint_in_thread_scope (struct watchpoint *b)
1631 {
1632 return (b->base.pspace == current_program_space
1633 && (ptid_equal (b->watchpoint_thread, null_ptid)
1634 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1635 && !is_executing (inferior_ptid))));
1636 }
1637
1638 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1639 associated bp_watchpoint_scope breakpoint. */
1640
1641 static void
1642 watchpoint_del_at_next_stop (struct watchpoint *w)
1643 {
1644 struct breakpoint *b = &w->base;
1645
1646 if (b->related_breakpoint != b)
1647 {
1648 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1649 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1650 b->related_breakpoint->disposition = disp_del_at_next_stop;
1651 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1652 b->related_breakpoint = b;
1653 }
1654 b->disposition = disp_del_at_next_stop;
1655 }
1656
1657 /* Assuming that B is a watchpoint:
1658 - Reparse watchpoint expression, if REPARSE is non-zero
1659 - Evaluate expression and store the result in B->val
1660 - Evaluate the condition if there is one, and store the result
1661 in b->loc->cond.
1662 - Update the list of values that must be watched in B->loc.
1663
1664 If the watchpoint disposition is disp_del_at_next_stop, then do
1665 nothing. If this is local watchpoint that is out of scope, delete
1666 it.
1667
1668 Even with `set breakpoint always-inserted on' the watchpoints are
1669 removed + inserted on each stop here. Normal breakpoints must
1670 never be removed because they might be missed by a running thread
1671 when debugging in non-stop mode. On the other hand, hardware
1672 watchpoints (is_hardware_watchpoint; processed here) are specific
1673 to each LWP since they are stored in each LWP's hardware debug
1674 registers. Therefore, such LWP must be stopped first in order to
1675 be able to modify its hardware watchpoints.
1676
1677 Hardware watchpoints must be reset exactly once after being
1678 presented to the user. It cannot be done sooner, because it would
1679 reset the data used to present the watchpoint hit to the user. And
1680 it must not be done later because it could display the same single
1681 watchpoint hit during multiple GDB stops. Note that the latter is
1682 relevant only to the hardware watchpoint types bp_read_watchpoint
1683 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1684 not user-visible - its hit is suppressed if the memory content has
1685 not changed.
1686
1687 The following constraints influence the location where we can reset
1688 hardware watchpoints:
1689
1690 * target_stopped_by_watchpoint and target_stopped_data_address are
1691 called several times when GDB stops.
1692
1693 [linux]
1694 * Multiple hardware watchpoints can be hit at the same time,
1695 causing GDB to stop. GDB only presents one hardware watchpoint
1696 hit at a time as the reason for stopping, and all the other hits
1697 are presented later, one after the other, each time the user
1698 requests the execution to be resumed. Execution is not resumed
1699 for the threads still having pending hit event stored in
1700 LWP_INFO->STATUS. While the watchpoint is already removed from
1701 the inferior on the first stop the thread hit event is kept being
1702 reported from its cached value by linux_nat_stopped_data_address
1703 until the real thread resume happens after the watchpoint gets
1704 presented and thus its LWP_INFO->STATUS gets reset.
1705
1706 Therefore the hardware watchpoint hit can get safely reset on the
1707 watchpoint removal from inferior. */
1708
1709 static void
1710 update_watchpoint (struct watchpoint *b, int reparse)
1711 {
1712 int within_current_scope;
1713 struct frame_id saved_frame_id;
1714 int frame_saved;
1715
1716 /* If this is a local watchpoint, we only want to check if the
1717 watchpoint frame is in scope if the current thread is the thread
1718 that was used to create the watchpoint. */
1719 if (!watchpoint_in_thread_scope (b))
1720 return;
1721
1722 if (b->base.disposition == disp_del_at_next_stop)
1723 return;
1724
1725 frame_saved = 0;
1726
1727 /* Determine if the watchpoint is within scope. */
1728 if (b->exp_valid_block == NULL)
1729 within_current_scope = 1;
1730 else
1731 {
1732 struct frame_info *fi = get_current_frame ();
1733 struct gdbarch *frame_arch = get_frame_arch (fi);
1734 CORE_ADDR frame_pc = get_frame_pc (fi);
1735
1736 /* If we're in a function epilogue, unwinding may not work
1737 properly, so do not attempt to recreate locations at this
1738 point. See similar comments in watchpoint_check. */
1739 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1740 return;
1741
1742 /* Save the current frame's ID so we can restore it after
1743 evaluating the watchpoint expression on its own frame. */
1744 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1745 took a frame parameter, so that we didn't have to change the
1746 selected frame. */
1747 frame_saved = 1;
1748 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1749
1750 fi = frame_find_by_id (b->watchpoint_frame);
1751 within_current_scope = (fi != NULL);
1752 if (within_current_scope)
1753 select_frame (fi);
1754 }
1755
1756 /* We don't free locations. They are stored in the bp_location array
1757 and update_global_location_list will eventually delete them and
1758 remove breakpoints if needed. */
1759 b->base.loc = NULL;
1760
1761 if (within_current_scope && reparse)
1762 {
1763 char *s;
1764
1765 if (b->exp)
1766 {
1767 xfree (b->exp);
1768 b->exp = NULL;
1769 }
1770 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1771 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1772 /* If the meaning of expression itself changed, the old value is
1773 no longer relevant. We don't want to report a watchpoint hit
1774 to the user when the old value and the new value may actually
1775 be completely different objects. */
1776 value_free (b->val);
1777 b->val = NULL;
1778 b->val_valid = 0;
1779
1780 /* Note that unlike with breakpoints, the watchpoint's condition
1781 expression is stored in the breakpoint object, not in the
1782 locations (re)created below. */
1783 if (b->base.cond_string != NULL)
1784 {
1785 if (b->cond_exp != NULL)
1786 {
1787 xfree (b->cond_exp);
1788 b->cond_exp = NULL;
1789 }
1790
1791 s = b->base.cond_string;
1792 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1793 }
1794 }
1795
1796 /* If we failed to parse the expression, for example because
1797 it refers to a global variable in a not-yet-loaded shared library,
1798 don't try to insert watchpoint. We don't automatically delete
1799 such watchpoint, though, since failure to parse expression
1800 is different from out-of-scope watchpoint. */
1801 if ( !target_has_execution)
1802 {
1803 /* Without execution, memory can't change. No use to try and
1804 set watchpoint locations. The watchpoint will be reset when
1805 the target gains execution, through breakpoint_re_set. */
1806 }
1807 else if (within_current_scope && b->exp)
1808 {
1809 int pc = 0;
1810 struct value *val_chain, *v, *result, *next;
1811 struct program_space *frame_pspace;
1812
1813 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain);
1814
1815 /* Avoid setting b->val if it's already set. The meaning of
1816 b->val is 'the last value' user saw, and we should update
1817 it only if we reported that last value to user. As it
1818 happens, the code that reports it updates b->val directly.
1819 We don't keep track of the memory value for masked
1820 watchpoints. */
1821 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1822 {
1823 b->val = v;
1824 b->val_valid = 1;
1825 }
1826
1827 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1828
1829 /* Look at each value on the value chain. */
1830 for (v = val_chain; v; v = value_next (v))
1831 {
1832 /* If it's a memory location, and GDB actually needed
1833 its contents to evaluate the expression, then we
1834 must watch it. If the first value returned is
1835 still lazy, that means an error occurred reading it;
1836 watch it anyway in case it becomes readable. */
1837 if (VALUE_LVAL (v) == lval_memory
1838 && (v == val_chain || ! value_lazy (v)))
1839 {
1840 struct type *vtype = check_typedef (value_type (v));
1841
1842 /* We only watch structs and arrays if user asked
1843 for it explicitly, never if they just happen to
1844 appear in the middle of some value chain. */
1845 if (v == result
1846 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1847 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1848 {
1849 CORE_ADDR addr;
1850 int type;
1851 struct bp_location *loc, **tmp;
1852
1853 addr = value_address (v);
1854 type = hw_write;
1855 if (b->base.type == bp_read_watchpoint)
1856 type = hw_read;
1857 else if (b->base.type == bp_access_watchpoint)
1858 type = hw_access;
1859
1860 loc = allocate_bp_location (&b->base);
1861 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1862 ;
1863 *tmp = loc;
1864 loc->gdbarch = get_type_arch (value_type (v));
1865
1866 loc->pspace = frame_pspace;
1867 loc->address = addr;
1868 loc->length = TYPE_LENGTH (value_type (v));
1869 loc->watchpoint_type = type;
1870 }
1871 }
1872 }
1873
1874 /* Change the type of breakpoint between hardware assisted or
1875 an ordinary watchpoint depending on the hardware support
1876 and free hardware slots. REPARSE is set when the inferior
1877 is started. */
1878 if (reparse)
1879 {
1880 int reg_cnt;
1881 enum bp_loc_type loc_type;
1882 struct bp_location *bl;
1883
1884 reg_cnt = can_use_hardware_watchpoint (val_chain);
1885
1886 if (reg_cnt)
1887 {
1888 int i, target_resources_ok, other_type_used;
1889 enum bptype type;
1890
1891 /* Use an exact watchpoint when there's only one memory region to be
1892 watched, and only one debug register is needed to watch it. */
1893 b->exact = target_exact_watchpoints && reg_cnt == 1;
1894
1895 /* We need to determine how many resources are already
1896 used for all other hardware watchpoints plus this one
1897 to see if we still have enough resources to also fit
1898 this watchpoint in as well. */
1899
1900 /* If this is a software watchpoint, we try to turn it
1901 to a hardware one -- count resources as if B was of
1902 hardware watchpoint type. */
1903 type = b->base.type;
1904 if (type == bp_watchpoint)
1905 type = bp_hardware_watchpoint;
1906
1907 /* This watchpoint may or may not have been placed on
1908 the list yet at this point (it won't be in the list
1909 if we're trying to create it for the first time,
1910 through watch_command), so always account for it
1911 manually. */
1912
1913 /* Count resources used by all watchpoints except B. */
1914 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
1915
1916 /* Add in the resources needed for B. */
1917 i += hw_watchpoint_use_count (&b->base);
1918
1919 target_resources_ok
1920 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1921 if (target_resources_ok <= 0)
1922 {
1923 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
1924
1925 if (target_resources_ok == 0 && !sw_mode)
1926 error (_("Target does not support this type of "
1927 "hardware watchpoint."));
1928 else if (target_resources_ok < 0 && !sw_mode)
1929 error (_("There are not enough available hardware "
1930 "resources for this watchpoint."));
1931
1932 /* Downgrade to software watchpoint. */
1933 b->base.type = bp_watchpoint;
1934 }
1935 else
1936 {
1937 /* If this was a software watchpoint, we've just
1938 found we have enough resources to turn it to a
1939 hardware watchpoint. Otherwise, this is a
1940 nop. */
1941 b->base.type = type;
1942 }
1943 }
1944 else if (!b->base.ops->works_in_software_mode (&b->base))
1945 error (_("Expression cannot be implemented with "
1946 "read/access watchpoint."));
1947 else
1948 b->base.type = bp_watchpoint;
1949
1950 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
1951 : bp_loc_hardware_watchpoint);
1952 for (bl = b->base.loc; bl; bl = bl->next)
1953 bl->loc_type = loc_type;
1954 }
1955
1956 for (v = val_chain; v; v = next)
1957 {
1958 next = value_next (v);
1959 if (v != b->val)
1960 value_free (v);
1961 }
1962
1963 /* If a software watchpoint is not watching any memory, then the
1964 above left it without any location set up. But,
1965 bpstat_stop_status requires a location to be able to report
1966 stops, so make sure there's at least a dummy one. */
1967 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
1968 {
1969 struct breakpoint *base = &b->base;
1970 base->loc = allocate_bp_location (base);
1971 base->loc->pspace = frame_pspace;
1972 base->loc->address = -1;
1973 base->loc->length = -1;
1974 base->loc->watchpoint_type = -1;
1975 }
1976 }
1977 else if (!within_current_scope)
1978 {
1979 printf_filtered (_("\
1980 Watchpoint %d deleted because the program has left the block\n\
1981 in which its expression is valid.\n"),
1982 b->base.number);
1983 watchpoint_del_at_next_stop (b);
1984 }
1985
1986 /* Restore the selected frame. */
1987 if (frame_saved)
1988 select_frame (frame_find_by_id (saved_frame_id));
1989 }
1990
1991
1992 /* Returns 1 iff breakpoint location should be
1993 inserted in the inferior. We don't differentiate the type of BL's owner
1994 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1995 breakpoint_ops is not defined, because in insert_bp_location,
1996 tracepoint's insert_location will not be called. */
1997 static int
1998 should_be_inserted (struct bp_location *bl)
1999 {
2000 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2001 return 0;
2002
2003 if (bl->owner->disposition == disp_del_at_next_stop)
2004 return 0;
2005
2006 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2007 return 0;
2008
2009 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2010 return 0;
2011
2012 /* This is set for example, when we're attached to the parent of a
2013 vfork, and have detached from the child. The child is running
2014 free, and we expect it to do an exec or exit, at which point the
2015 OS makes the parent schedulable again (and the target reports
2016 that the vfork is done). Until the child is done with the shared
2017 memory region, do not insert breakpoints in the parent, otherwise
2018 the child could still trip on the parent's breakpoints. Since
2019 the parent is blocked anyway, it won't miss any breakpoint. */
2020 if (bl->pspace->breakpoints_not_allowed)
2021 return 0;
2022
2023 return 1;
2024 }
2025
2026 /* Same as should_be_inserted but does the check assuming
2027 that the location is not duplicated. */
2028
2029 static int
2030 unduplicated_should_be_inserted (struct bp_location *bl)
2031 {
2032 int result;
2033 const int save_duplicate = bl->duplicate;
2034
2035 bl->duplicate = 0;
2036 result = should_be_inserted (bl);
2037 bl->duplicate = save_duplicate;
2038 return result;
2039 }
2040
2041 /* Parses a conditional described by an expression COND into an
2042 agent expression bytecode suitable for evaluation
2043 by the bytecode interpreter. Return NULL if there was
2044 any error during parsing. */
2045
2046 static struct agent_expr *
2047 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2048 {
2049 struct agent_expr *aexpr = NULL;
2050 struct cleanup *old_chain = NULL;
2051 volatile struct gdb_exception ex;
2052
2053 if (!cond)
2054 return NULL;
2055
2056 /* We don't want to stop processing, so catch any errors
2057 that may show up. */
2058 TRY_CATCH (ex, RETURN_MASK_ERROR)
2059 {
2060 aexpr = gen_eval_for_expr (scope, cond);
2061 }
2062
2063 if (ex.reason < 0)
2064 {
2065 /* If we got here, it means the condition could not be parsed to a valid
2066 bytecode expression and thus can't be evaluated on the target's side.
2067 It's no use iterating through the conditions. */
2068 return NULL;
2069 }
2070
2071 /* We have a valid agent expression. */
2072 return aexpr;
2073 }
2074
2075 /* Based on location BL, create a list of breakpoint conditions to be
2076 passed on to the target. If we have duplicated locations with different
2077 conditions, we will add such conditions to the list. The idea is that the
2078 target will evaluate the list of conditions and will only notify GDB when
2079 one of them is true. */
2080
2081 static void
2082 build_target_condition_list (struct bp_location *bl)
2083 {
2084 struct bp_location **locp = NULL, **loc2p;
2085 int null_condition_or_parse_error = 0;
2086 int modified = bl->needs_update;
2087 struct bp_location *loc;
2088
2089 /* This is only meaningful if the target is
2090 evaluating conditions and if the user has
2091 opted for condition evaluation on the target's
2092 side. */
2093 if (gdb_evaluates_breakpoint_condition_p ()
2094 || !target_supports_evaluation_of_breakpoint_conditions ())
2095 return;
2096
2097 /* Do a first pass to check for locations with no assigned
2098 conditions or conditions that fail to parse to a valid agent expression
2099 bytecode. If any of these happen, then it's no use to send conditions
2100 to the target since this location will always trigger and generate a
2101 response back to GDB. */
2102 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2103 {
2104 loc = (*loc2p);
2105 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2106 {
2107 if (modified)
2108 {
2109 struct agent_expr *aexpr;
2110
2111 /* Re-parse the conditions since something changed. In that
2112 case we already freed the condition bytecodes (see
2113 force_breakpoint_reinsertion). We just
2114 need to parse the condition to bytecodes again. */
2115 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2116 loc->cond_bytecode = aexpr;
2117
2118 /* Check if we managed to parse the conditional expression
2119 correctly. If not, we will not send this condition
2120 to the target. */
2121 if (aexpr)
2122 continue;
2123 }
2124
2125 /* If we have a NULL bytecode expression, it means something
2126 went wrong or we have a null condition expression. */
2127 if (!loc->cond_bytecode)
2128 {
2129 null_condition_or_parse_error = 1;
2130 break;
2131 }
2132 }
2133 }
2134
2135 /* If any of these happened, it means we will have to evaluate the conditions
2136 for the location's address on gdb's side. It is no use keeping bytecodes
2137 for all the other duplicate locations, thus we free all of them here.
2138
2139 This is so we have a finer control over which locations' conditions are
2140 being evaluated by GDB or the remote stub. */
2141 if (null_condition_or_parse_error)
2142 {
2143 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2144 {
2145 loc = (*loc2p);
2146 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2147 {
2148 /* Only go as far as the first NULL bytecode is
2149 located. */
2150 if (!loc->cond_bytecode)
2151 return;
2152
2153 free_agent_expr (loc->cond_bytecode);
2154 loc->cond_bytecode = NULL;
2155 }
2156 }
2157 }
2158
2159 /* No NULL conditions or failed bytecode generation. Build a condition list
2160 for this location's address. */
2161 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2162 {
2163 loc = (*loc2p);
2164 if (loc->cond
2165 && is_breakpoint (loc->owner)
2166 && loc->pspace->num == bl->pspace->num
2167 && loc->owner->enable_state == bp_enabled
2168 && loc->enabled)
2169 /* Add the condition to the vector. This will be used later to send the
2170 conditions to the target. */
2171 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2172 loc->cond_bytecode);
2173 }
2174
2175 return;
2176 }
2177
2178 /* Parses a command described by string CMD into an agent expression
2179 bytecode suitable for evaluation by the bytecode interpreter.
2180 Return NULL if there was any error during parsing. */
2181
2182 static struct agent_expr *
2183 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2184 {
2185 struct cleanup *old_cleanups = 0;
2186 struct expression *expr, **argvec;
2187 struct agent_expr *aexpr = NULL;
2188 struct cleanup *old_chain = NULL;
2189 volatile struct gdb_exception ex;
2190 char *cmdrest;
2191 char *format_start, *format_end;
2192 struct format_piece *fpieces;
2193 int nargs;
2194 struct gdbarch *gdbarch = get_current_arch ();
2195
2196 if (!cmd)
2197 return NULL;
2198
2199 cmdrest = cmd;
2200
2201 if (*cmdrest == ',')
2202 ++cmdrest;
2203 cmdrest = skip_spaces (cmdrest);
2204
2205 if (*cmdrest++ != '"')
2206 error (_("No format string following the location"));
2207
2208 format_start = cmdrest;
2209
2210 fpieces = parse_format_string (&cmdrest);
2211
2212 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2213
2214 format_end = cmdrest;
2215
2216 if (*cmdrest++ != '"')
2217 error (_("Bad format string, non-terminated '\"'."));
2218
2219 cmdrest = skip_spaces (cmdrest);
2220
2221 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2222 error (_("Invalid argument syntax"));
2223
2224 if (*cmdrest == ',')
2225 cmdrest++;
2226 cmdrest = skip_spaces (cmdrest);
2227
2228 /* For each argument, make an expression. */
2229
2230 argvec = (struct expression **) alloca (strlen (cmd)
2231 * sizeof (struct expression *));
2232
2233 nargs = 0;
2234 while (*cmdrest != '\0')
2235 {
2236 char *cmd1;
2237
2238 cmd1 = cmdrest;
2239 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2240 argvec[nargs++] = expr;
2241 cmdrest = cmd1;
2242 if (*cmdrest == ',')
2243 ++cmdrest;
2244 }
2245
2246 /* We don't want to stop processing, so catch any errors
2247 that may show up. */
2248 TRY_CATCH (ex, RETURN_MASK_ERROR)
2249 {
2250 aexpr = gen_printf (scope, gdbarch, 0, 0,
2251 format_start, format_end - format_start,
2252 fpieces, nargs, argvec);
2253 }
2254
2255 if (ex.reason < 0)
2256 {
2257 /* If we got here, it means the command could not be parsed to a valid
2258 bytecode expression and thus can't be evaluated on the target's side.
2259 It's no use iterating through the other commands. */
2260 return NULL;
2261 }
2262
2263 do_cleanups (old_cleanups);
2264
2265 /* We have a valid agent expression, return it. */
2266 return aexpr;
2267 }
2268
2269 /* Based on location BL, create a list of breakpoint commands to be
2270 passed on to the target. If we have duplicated locations with
2271 different commands, we will add any such to the list. */
2272
2273 static void
2274 build_target_command_list (struct bp_location *bl)
2275 {
2276 struct bp_location **locp = NULL, **loc2p;
2277 int null_command_or_parse_error = 0;
2278 int modified = bl->needs_update;
2279 struct bp_location *loc;
2280
2281 /* For now, limit to agent-style dprintf breakpoints. */
2282 if (bl->owner->type != bp_dprintf
2283 || strcmp (dprintf_style, dprintf_style_agent) != 0)
2284 return;
2285
2286 if (!target_can_run_breakpoint_commands ())
2287 return;
2288
2289 /* Do a first pass to check for locations with no assigned
2290 conditions or conditions that fail to parse to a valid agent expression
2291 bytecode. If any of these happen, then it's no use to send conditions
2292 to the target since this location will always trigger and generate a
2293 response back to GDB. */
2294 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2295 {
2296 loc = (*loc2p);
2297 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2298 {
2299 if (modified)
2300 {
2301 struct agent_expr *aexpr;
2302
2303 /* Re-parse the commands since something changed. In that
2304 case we already freed the command bytecodes (see
2305 force_breakpoint_reinsertion). We just
2306 need to parse the command to bytecodes again. */
2307 aexpr = parse_cmd_to_aexpr (bl->address,
2308 loc->owner->extra_string);
2309 loc->cmd_bytecode = aexpr;
2310
2311 if (!aexpr)
2312 continue;
2313 }
2314
2315 /* If we have a NULL bytecode expression, it means something
2316 went wrong or we have a null command expression. */
2317 if (!loc->cmd_bytecode)
2318 {
2319 null_command_or_parse_error = 1;
2320 break;
2321 }
2322 }
2323 }
2324
2325 /* If anything failed, then we're not doing target-side commands,
2326 and so clean up. */
2327 if (null_command_or_parse_error)
2328 {
2329 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2330 {
2331 loc = (*loc2p);
2332 if (is_breakpoint (loc->owner)
2333 && loc->pspace->num == bl->pspace->num)
2334 {
2335 /* Only go as far as the first NULL bytecode is
2336 located. */
2337 if (!loc->cond_bytecode)
2338 return;
2339
2340 free_agent_expr (loc->cond_bytecode);
2341 loc->cond_bytecode = NULL;
2342 }
2343 }
2344 }
2345
2346 /* No NULL commands or failed bytecode generation. Build a command list
2347 for this location's address. */
2348 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2349 {
2350 loc = (*loc2p);
2351 if (loc->owner->extra_string
2352 && is_breakpoint (loc->owner)
2353 && loc->pspace->num == bl->pspace->num
2354 && loc->owner->enable_state == bp_enabled
2355 && loc->enabled)
2356 /* Add the command to the vector. This will be used later
2357 to send the commands to the target. */
2358 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2359 loc->cmd_bytecode);
2360 }
2361
2362 bl->target_info.persist = 0;
2363 /* Maybe flag this location as persistent. */
2364 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2365 bl->target_info.persist = 1;
2366 }
2367
2368 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2369 location. Any error messages are printed to TMP_ERROR_STREAM; and
2370 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2371 Returns 0 for success, 1 if the bp_location type is not supported or
2372 -1 for failure.
2373
2374 NOTE drow/2003-09-09: This routine could be broken down to an
2375 object-style method for each breakpoint or catchpoint type. */
2376 static int
2377 insert_bp_location (struct bp_location *bl,
2378 struct ui_file *tmp_error_stream,
2379 int *disabled_breaks,
2380 int *hw_breakpoint_error,
2381 int *hw_bp_error_explained_already)
2382 {
2383 int val = 0;
2384 char *hw_bp_err_string = NULL;
2385 struct gdb_exception e;
2386
2387 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2388 return 0;
2389
2390 /* Note we don't initialize bl->target_info, as that wipes out
2391 the breakpoint location's shadow_contents if the breakpoint
2392 is still inserted at that location. This in turn breaks
2393 target_read_memory which depends on these buffers when
2394 a memory read is requested at the breakpoint location:
2395 Once the target_info has been wiped, we fail to see that
2396 we have a breakpoint inserted at that address and thus
2397 read the breakpoint instead of returning the data saved in
2398 the breakpoint location's shadow contents. */
2399 bl->target_info.placed_address = bl->address;
2400 bl->target_info.placed_address_space = bl->pspace->aspace;
2401 bl->target_info.length = bl->length;
2402
2403 /* When working with target-side conditions, we must pass all the conditions
2404 for the same breakpoint address down to the target since GDB will not
2405 insert those locations. With a list of breakpoint conditions, the target
2406 can decide when to stop and notify GDB. */
2407
2408 if (is_breakpoint (bl->owner))
2409 {
2410 build_target_condition_list (bl);
2411 build_target_command_list (bl);
2412 /* Reset the modification marker. */
2413 bl->needs_update = 0;
2414 }
2415
2416 if (bl->loc_type == bp_loc_software_breakpoint
2417 || bl->loc_type == bp_loc_hardware_breakpoint)
2418 {
2419 if (bl->owner->type != bp_hardware_breakpoint)
2420 {
2421 /* If the explicitly specified breakpoint type
2422 is not hardware breakpoint, check the memory map to see
2423 if the breakpoint address is in read only memory or not.
2424
2425 Two important cases are:
2426 - location type is not hardware breakpoint, memory
2427 is readonly. We change the type of the location to
2428 hardware breakpoint.
2429 - location type is hardware breakpoint, memory is
2430 read-write. This means we've previously made the
2431 location hardware one, but then the memory map changed,
2432 so we undo.
2433
2434 When breakpoints are removed, remove_breakpoints will use
2435 location types we've just set here, the only possible
2436 problem is that memory map has changed during running
2437 program, but it's not going to work anyway with current
2438 gdb. */
2439 struct mem_region *mr
2440 = lookup_mem_region (bl->target_info.placed_address);
2441
2442 if (mr)
2443 {
2444 if (automatic_hardware_breakpoints)
2445 {
2446 enum bp_loc_type new_type;
2447
2448 if (mr->attrib.mode != MEM_RW)
2449 new_type = bp_loc_hardware_breakpoint;
2450 else
2451 new_type = bp_loc_software_breakpoint;
2452
2453 if (new_type != bl->loc_type)
2454 {
2455 static int said = 0;
2456
2457 bl->loc_type = new_type;
2458 if (!said)
2459 {
2460 fprintf_filtered (gdb_stdout,
2461 _("Note: automatically using "
2462 "hardware breakpoints for "
2463 "read-only addresses.\n"));
2464 said = 1;
2465 }
2466 }
2467 }
2468 else if (bl->loc_type == bp_loc_software_breakpoint
2469 && mr->attrib.mode != MEM_RW)
2470 warning (_("cannot set software breakpoint "
2471 "at readonly address %s"),
2472 paddress (bl->gdbarch, bl->address));
2473 }
2474 }
2475
2476 /* First check to see if we have to handle an overlay. */
2477 if (overlay_debugging == ovly_off
2478 || bl->section == NULL
2479 || !(section_is_overlay (bl->section)))
2480 {
2481 /* No overlay handling: just set the breakpoint. */
2482 TRY_CATCH (e, RETURN_MASK_ALL)
2483 {
2484 val = bl->owner->ops->insert_location (bl);
2485 }
2486 if (e.reason < 0)
2487 {
2488 val = 1;
2489 hw_bp_err_string = (char *) e.message;
2490 }
2491 }
2492 else
2493 {
2494 /* This breakpoint is in an overlay section.
2495 Shall we set a breakpoint at the LMA? */
2496 if (!overlay_events_enabled)
2497 {
2498 /* Yes -- overlay event support is not active,
2499 so we must try to set a breakpoint at the LMA.
2500 This will not work for a hardware breakpoint. */
2501 if (bl->loc_type == bp_loc_hardware_breakpoint)
2502 warning (_("hardware breakpoint %d not supported in overlay!"),
2503 bl->owner->number);
2504 else
2505 {
2506 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2507 bl->section);
2508 /* Set a software (trap) breakpoint at the LMA. */
2509 bl->overlay_target_info = bl->target_info;
2510 bl->overlay_target_info.placed_address = addr;
2511 val = target_insert_breakpoint (bl->gdbarch,
2512 &bl->overlay_target_info);
2513 if (val != 0)
2514 fprintf_unfiltered (tmp_error_stream,
2515 "Overlay breakpoint %d "
2516 "failed: in ROM?\n",
2517 bl->owner->number);
2518 }
2519 }
2520 /* Shall we set a breakpoint at the VMA? */
2521 if (section_is_mapped (bl->section))
2522 {
2523 /* Yes. This overlay section is mapped into memory. */
2524 TRY_CATCH (e, RETURN_MASK_ALL)
2525 {
2526 val = bl->owner->ops->insert_location (bl);
2527 }
2528 if (e.reason < 0)
2529 {
2530 val = 1;
2531 hw_bp_err_string = (char *) e.message;
2532 }
2533 }
2534 else
2535 {
2536 /* No. This breakpoint will not be inserted.
2537 No error, but do not mark the bp as 'inserted'. */
2538 return 0;
2539 }
2540 }
2541
2542 if (val)
2543 {
2544 /* Can't set the breakpoint. */
2545 if (solib_name_from_address (bl->pspace, bl->address))
2546 {
2547 /* See also: disable_breakpoints_in_shlibs. */
2548 val = 0;
2549 bl->shlib_disabled = 1;
2550 observer_notify_breakpoint_modified (bl->owner);
2551 if (!*disabled_breaks)
2552 {
2553 fprintf_unfiltered (tmp_error_stream,
2554 "Cannot insert breakpoint %d.\n",
2555 bl->owner->number);
2556 fprintf_unfiltered (tmp_error_stream,
2557 "Temporarily disabling shared "
2558 "library breakpoints:\n");
2559 }
2560 *disabled_breaks = 1;
2561 fprintf_unfiltered (tmp_error_stream,
2562 "breakpoint #%d\n", bl->owner->number);
2563 }
2564 else
2565 {
2566 if (bl->loc_type == bp_loc_hardware_breakpoint)
2567 {
2568 *hw_breakpoint_error = 1;
2569 *hw_bp_error_explained_already = hw_bp_err_string != NULL;
2570 fprintf_unfiltered (tmp_error_stream,
2571 "Cannot insert hardware breakpoint %d%s",
2572 bl->owner->number, hw_bp_err_string ? ":" : ".\n");
2573 if (hw_bp_err_string)
2574 fprintf_unfiltered (tmp_error_stream, "%s.\n", hw_bp_err_string);
2575 }
2576 else
2577 {
2578 fprintf_unfiltered (tmp_error_stream,
2579 "Cannot insert breakpoint %d.\n",
2580 bl->owner->number);
2581 fprintf_filtered (tmp_error_stream,
2582 "Error accessing memory address ");
2583 fputs_filtered (paddress (bl->gdbarch, bl->address),
2584 tmp_error_stream);
2585 fprintf_filtered (tmp_error_stream, ": %s.\n",
2586 safe_strerror (val));
2587 }
2588
2589 }
2590 }
2591 else
2592 bl->inserted = 1;
2593
2594 return val;
2595 }
2596
2597 else if (bl->loc_type == bp_loc_hardware_watchpoint
2598 /* NOTE drow/2003-09-08: This state only exists for removing
2599 watchpoints. It's not clear that it's necessary... */
2600 && bl->owner->disposition != disp_del_at_next_stop)
2601 {
2602 gdb_assert (bl->owner->ops != NULL
2603 && bl->owner->ops->insert_location != NULL);
2604
2605 val = bl->owner->ops->insert_location (bl);
2606
2607 /* If trying to set a read-watchpoint, and it turns out it's not
2608 supported, try emulating one with an access watchpoint. */
2609 if (val == 1 && bl->watchpoint_type == hw_read)
2610 {
2611 struct bp_location *loc, **loc_temp;
2612
2613 /* But don't try to insert it, if there's already another
2614 hw_access location that would be considered a duplicate
2615 of this one. */
2616 ALL_BP_LOCATIONS (loc, loc_temp)
2617 if (loc != bl
2618 && loc->watchpoint_type == hw_access
2619 && watchpoint_locations_match (bl, loc))
2620 {
2621 bl->duplicate = 1;
2622 bl->inserted = 1;
2623 bl->target_info = loc->target_info;
2624 bl->watchpoint_type = hw_access;
2625 val = 0;
2626 break;
2627 }
2628
2629 if (val == 1)
2630 {
2631 bl->watchpoint_type = hw_access;
2632 val = bl->owner->ops->insert_location (bl);
2633
2634 if (val)
2635 /* Back to the original value. */
2636 bl->watchpoint_type = hw_read;
2637 }
2638 }
2639
2640 bl->inserted = (val == 0);
2641 }
2642
2643 else if (bl->owner->type == bp_catchpoint)
2644 {
2645 gdb_assert (bl->owner->ops != NULL
2646 && bl->owner->ops->insert_location != NULL);
2647
2648 val = bl->owner->ops->insert_location (bl);
2649 if (val)
2650 {
2651 bl->owner->enable_state = bp_disabled;
2652
2653 if (val == 1)
2654 warning (_("\
2655 Error inserting catchpoint %d: Your system does not support this type\n\
2656 of catchpoint."), bl->owner->number);
2657 else
2658 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2659 }
2660
2661 bl->inserted = (val == 0);
2662
2663 /* We've already printed an error message if there was a problem
2664 inserting this catchpoint, and we've disabled the catchpoint,
2665 so just return success. */
2666 return 0;
2667 }
2668
2669 return 0;
2670 }
2671
2672 /* This function is called when program space PSPACE is about to be
2673 deleted. It takes care of updating breakpoints to not reference
2674 PSPACE anymore. */
2675
2676 void
2677 breakpoint_program_space_exit (struct program_space *pspace)
2678 {
2679 struct breakpoint *b, *b_temp;
2680 struct bp_location *loc, **loc_temp;
2681
2682 /* Remove any breakpoint that was set through this program space. */
2683 ALL_BREAKPOINTS_SAFE (b, b_temp)
2684 {
2685 if (b->pspace == pspace)
2686 delete_breakpoint (b);
2687 }
2688
2689 /* Breakpoints set through other program spaces could have locations
2690 bound to PSPACE as well. Remove those. */
2691 ALL_BP_LOCATIONS (loc, loc_temp)
2692 {
2693 struct bp_location *tmp;
2694
2695 if (loc->pspace == pspace)
2696 {
2697 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2698 if (loc->owner->loc == loc)
2699 loc->owner->loc = loc->next;
2700 else
2701 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2702 if (tmp->next == loc)
2703 {
2704 tmp->next = loc->next;
2705 break;
2706 }
2707 }
2708 }
2709
2710 /* Now update the global location list to permanently delete the
2711 removed locations above. */
2712 update_global_location_list (0);
2713 }
2714
2715 /* Make sure all breakpoints are inserted in inferior.
2716 Throws exception on any error.
2717 A breakpoint that is already inserted won't be inserted
2718 again, so calling this function twice is safe. */
2719 void
2720 insert_breakpoints (void)
2721 {
2722 struct breakpoint *bpt;
2723
2724 ALL_BREAKPOINTS (bpt)
2725 if (is_hardware_watchpoint (bpt))
2726 {
2727 struct watchpoint *w = (struct watchpoint *) bpt;
2728
2729 update_watchpoint (w, 0 /* don't reparse. */);
2730 }
2731
2732 update_global_location_list (1);
2733
2734 /* update_global_location_list does not insert breakpoints when
2735 always_inserted_mode is not enabled. Explicitly insert them
2736 now. */
2737 if (!breakpoints_always_inserted_mode ())
2738 insert_breakpoint_locations ();
2739 }
2740
2741 /* Invoke CALLBACK for each of bp_location. */
2742
2743 void
2744 iterate_over_bp_locations (walk_bp_location_callback callback)
2745 {
2746 struct bp_location *loc, **loc_tmp;
2747
2748 ALL_BP_LOCATIONS (loc, loc_tmp)
2749 {
2750 callback (loc, NULL);
2751 }
2752 }
2753
2754 /* This is used when we need to synch breakpoint conditions between GDB and the
2755 target. It is the case with deleting and disabling of breakpoints when using
2756 always-inserted mode. */
2757
2758 static void
2759 update_inserted_breakpoint_locations (void)
2760 {
2761 struct bp_location *bl, **blp_tmp;
2762 int error_flag = 0;
2763 int val = 0;
2764 int disabled_breaks = 0;
2765 int hw_breakpoint_error = 0;
2766 int hw_bp_details_reported = 0;
2767
2768 struct ui_file *tmp_error_stream = mem_fileopen ();
2769 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2770
2771 /* Explicitly mark the warning -- this will only be printed if
2772 there was an error. */
2773 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2774
2775 save_current_space_and_thread ();
2776
2777 ALL_BP_LOCATIONS (bl, blp_tmp)
2778 {
2779 /* We only want to update software breakpoints and hardware
2780 breakpoints. */
2781 if (!is_breakpoint (bl->owner))
2782 continue;
2783
2784 /* We only want to update locations that are already inserted
2785 and need updating. This is to avoid unwanted insertion during
2786 deletion of breakpoints. */
2787 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2788 continue;
2789
2790 switch_to_program_space_and_thread (bl->pspace);
2791
2792 /* For targets that support global breakpoints, there's no need
2793 to select an inferior to insert breakpoint to. In fact, even
2794 if we aren't attached to any process yet, we should still
2795 insert breakpoints. */
2796 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2797 && ptid_equal (inferior_ptid, null_ptid))
2798 continue;
2799
2800 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2801 &hw_breakpoint_error, &hw_bp_details_reported);
2802 if (val)
2803 error_flag = val;
2804 }
2805
2806 if (error_flag)
2807 {
2808 target_terminal_ours_for_output ();
2809 error_stream (tmp_error_stream);
2810 }
2811
2812 do_cleanups (cleanups);
2813 }
2814
2815 /* Used when starting or continuing the program. */
2816
2817 static void
2818 insert_breakpoint_locations (void)
2819 {
2820 struct breakpoint *bpt;
2821 struct bp_location *bl, **blp_tmp;
2822 int error_flag = 0;
2823 int val = 0;
2824 int disabled_breaks = 0;
2825 int hw_breakpoint_error = 0;
2826 int hw_bp_error_explained_already = 0;
2827
2828 struct ui_file *tmp_error_stream = mem_fileopen ();
2829 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2830
2831 /* Explicitly mark the warning -- this will only be printed if
2832 there was an error. */
2833 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2834
2835 save_current_space_and_thread ();
2836
2837 ALL_BP_LOCATIONS (bl, blp_tmp)
2838 {
2839 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2840 continue;
2841
2842 /* There is no point inserting thread-specific breakpoints if
2843 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2844 has BL->OWNER always non-NULL. */
2845 if (bl->owner->thread != -1
2846 && !valid_thread_id (bl->owner->thread))
2847 continue;
2848
2849 switch_to_program_space_and_thread (bl->pspace);
2850
2851 /* For targets that support global breakpoints, there's no need
2852 to select an inferior to insert breakpoint to. In fact, even
2853 if we aren't attached to any process yet, we should still
2854 insert breakpoints. */
2855 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2856 && ptid_equal (inferior_ptid, null_ptid))
2857 continue;
2858
2859 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2860 &hw_breakpoint_error, &hw_bp_error_explained_already);
2861 if (val)
2862 error_flag = val;
2863 }
2864
2865 /* If we failed to insert all locations of a watchpoint, remove
2866 them, as half-inserted watchpoint is of limited use. */
2867 ALL_BREAKPOINTS (bpt)
2868 {
2869 int some_failed = 0;
2870 struct bp_location *loc;
2871
2872 if (!is_hardware_watchpoint (bpt))
2873 continue;
2874
2875 if (!breakpoint_enabled (bpt))
2876 continue;
2877
2878 if (bpt->disposition == disp_del_at_next_stop)
2879 continue;
2880
2881 for (loc = bpt->loc; loc; loc = loc->next)
2882 if (!loc->inserted && should_be_inserted (loc))
2883 {
2884 some_failed = 1;
2885 break;
2886 }
2887 if (some_failed)
2888 {
2889 for (loc = bpt->loc; loc; loc = loc->next)
2890 if (loc->inserted)
2891 remove_breakpoint (loc, mark_uninserted);
2892
2893 hw_breakpoint_error = 1;
2894 fprintf_unfiltered (tmp_error_stream,
2895 "Could not insert hardware watchpoint %d.\n",
2896 bpt->number);
2897 error_flag = -1;
2898 }
2899 }
2900
2901 if (error_flag)
2902 {
2903 /* If a hardware breakpoint or watchpoint was inserted, add a
2904 message about possibly exhausted resources. */
2905 if (hw_breakpoint_error && !hw_bp_error_explained_already)
2906 {
2907 fprintf_unfiltered (tmp_error_stream,
2908 "Could not insert hardware breakpoints:\n\
2909 You may have requested too many hardware breakpoints/watchpoints.\n");
2910 }
2911 target_terminal_ours_for_output ();
2912 error_stream (tmp_error_stream);
2913 }
2914
2915 do_cleanups (cleanups);
2916 }
2917
2918 /* Used when the program stops.
2919 Returns zero if successful, or non-zero if there was a problem
2920 removing a breakpoint location. */
2921
2922 int
2923 remove_breakpoints (void)
2924 {
2925 struct bp_location *bl, **blp_tmp;
2926 int val = 0;
2927
2928 ALL_BP_LOCATIONS (bl, blp_tmp)
2929 {
2930 if (bl->inserted && !is_tracepoint (bl->owner))
2931 val |= remove_breakpoint (bl, mark_uninserted);
2932 }
2933 return val;
2934 }
2935
2936 /* Remove breakpoints of process PID. */
2937
2938 int
2939 remove_breakpoints_pid (int pid)
2940 {
2941 struct bp_location *bl, **blp_tmp;
2942 int val;
2943 struct inferior *inf = find_inferior_pid (pid);
2944
2945 ALL_BP_LOCATIONS (bl, blp_tmp)
2946 {
2947 if (bl->pspace != inf->pspace)
2948 continue;
2949
2950 if (bl->owner->type == bp_dprintf)
2951 continue;
2952
2953 if (bl->inserted)
2954 {
2955 val = remove_breakpoint (bl, mark_uninserted);
2956 if (val != 0)
2957 return val;
2958 }
2959 }
2960 return 0;
2961 }
2962
2963 int
2964 reattach_breakpoints (int pid)
2965 {
2966 struct cleanup *old_chain;
2967 struct bp_location *bl, **blp_tmp;
2968 int val;
2969 struct ui_file *tmp_error_stream;
2970 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
2971 struct inferior *inf;
2972 struct thread_info *tp;
2973
2974 tp = any_live_thread_of_process (pid);
2975 if (tp == NULL)
2976 return 1;
2977
2978 inf = find_inferior_pid (pid);
2979 old_chain = save_inferior_ptid ();
2980
2981 inferior_ptid = tp->ptid;
2982
2983 tmp_error_stream = mem_fileopen ();
2984 make_cleanup_ui_file_delete (tmp_error_stream);
2985
2986 ALL_BP_LOCATIONS (bl, blp_tmp)
2987 {
2988 if (bl->pspace != inf->pspace)
2989 continue;
2990
2991 if (bl->inserted)
2992 {
2993 bl->inserted = 0;
2994 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
2995 if (val != 0)
2996 {
2997 do_cleanups (old_chain);
2998 return val;
2999 }
3000 }
3001 }
3002 do_cleanups (old_chain);
3003 return 0;
3004 }
3005
3006 static int internal_breakpoint_number = -1;
3007
3008 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3009 If INTERNAL is non-zero, the breakpoint number will be populated
3010 from internal_breakpoint_number and that variable decremented.
3011 Otherwise the breakpoint number will be populated from
3012 breakpoint_count and that value incremented. Internal breakpoints
3013 do not set the internal var bpnum. */
3014 static void
3015 set_breakpoint_number (int internal, struct breakpoint *b)
3016 {
3017 if (internal)
3018 b->number = internal_breakpoint_number--;
3019 else
3020 {
3021 set_breakpoint_count (breakpoint_count + 1);
3022 b->number = breakpoint_count;
3023 }
3024 }
3025
3026 static struct breakpoint *
3027 create_internal_breakpoint (struct gdbarch *gdbarch,
3028 CORE_ADDR address, enum bptype type,
3029 const struct breakpoint_ops *ops)
3030 {
3031 struct symtab_and_line sal;
3032 struct breakpoint *b;
3033
3034 init_sal (&sal); /* Initialize to zeroes. */
3035
3036 sal.pc = address;
3037 sal.section = find_pc_overlay (sal.pc);
3038 sal.pspace = current_program_space;
3039
3040 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3041 b->number = internal_breakpoint_number--;
3042 b->disposition = disp_donttouch;
3043
3044 return b;
3045 }
3046
3047 static const char *const longjmp_names[] =
3048 {
3049 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3050 };
3051 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3052
3053 /* Per-objfile data private to breakpoint.c. */
3054 struct breakpoint_objfile_data
3055 {
3056 /* Minimal symbol for "_ovly_debug_event" (if any). */
3057 struct minimal_symbol *overlay_msym;
3058
3059 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3060 struct minimal_symbol *longjmp_msym[NUM_LONGJMP_NAMES];
3061
3062 /* True if we have looked for longjmp probes. */
3063 int longjmp_searched;
3064
3065 /* SystemTap probe points for longjmp (if any). */
3066 VEC (probe_p) *longjmp_probes;
3067
3068 /* Minimal symbol for "std::terminate()" (if any). */
3069 struct minimal_symbol *terminate_msym;
3070
3071 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3072 struct minimal_symbol *exception_msym;
3073
3074 /* True if we have looked for exception probes. */
3075 int exception_searched;
3076
3077 /* SystemTap probe points for unwinding (if any). */
3078 VEC (probe_p) *exception_probes;
3079 };
3080
3081 static const struct objfile_data *breakpoint_objfile_key;
3082
3083 /* Minimal symbol not found sentinel. */
3084 static struct minimal_symbol msym_not_found;
3085
3086 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3087
3088 static int
3089 msym_not_found_p (const struct minimal_symbol *msym)
3090 {
3091 return msym == &msym_not_found;
3092 }
3093
3094 /* Return per-objfile data needed by breakpoint.c.
3095 Allocate the data if necessary. */
3096
3097 static struct breakpoint_objfile_data *
3098 get_breakpoint_objfile_data (struct objfile *objfile)
3099 {
3100 struct breakpoint_objfile_data *bp_objfile_data;
3101
3102 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3103 if (bp_objfile_data == NULL)
3104 {
3105 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3106 sizeof (*bp_objfile_data));
3107
3108 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3109 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3110 }
3111 return bp_objfile_data;
3112 }
3113
3114 static void
3115 free_breakpoint_probes (struct objfile *obj, void *data)
3116 {
3117 struct breakpoint_objfile_data *bp_objfile_data = data;
3118
3119 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3120 VEC_free (probe_p, bp_objfile_data->exception_probes);
3121 }
3122
3123 static void
3124 create_overlay_event_breakpoint (void)
3125 {
3126 struct objfile *objfile;
3127 const char *const func_name = "_ovly_debug_event";
3128
3129 ALL_OBJFILES (objfile)
3130 {
3131 struct breakpoint *b;
3132 struct breakpoint_objfile_data *bp_objfile_data;
3133 CORE_ADDR addr;
3134
3135 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3136
3137 if (msym_not_found_p (bp_objfile_data->overlay_msym))
3138 continue;
3139
3140 if (bp_objfile_data->overlay_msym == NULL)
3141 {
3142 struct minimal_symbol *m;
3143
3144 m = lookup_minimal_symbol_text (func_name, objfile);
3145 if (m == NULL)
3146 {
3147 /* Avoid future lookups in this objfile. */
3148 bp_objfile_data->overlay_msym = &msym_not_found;
3149 continue;
3150 }
3151 bp_objfile_data->overlay_msym = m;
3152 }
3153
3154 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3155 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3156 bp_overlay_event,
3157 &internal_breakpoint_ops);
3158 b->addr_string = xstrdup (func_name);
3159
3160 if (overlay_debugging == ovly_auto)
3161 {
3162 b->enable_state = bp_enabled;
3163 overlay_events_enabled = 1;
3164 }
3165 else
3166 {
3167 b->enable_state = bp_disabled;
3168 overlay_events_enabled = 0;
3169 }
3170 }
3171 update_global_location_list (1);
3172 }
3173
3174 static void
3175 create_longjmp_master_breakpoint (void)
3176 {
3177 struct program_space *pspace;
3178 struct cleanup *old_chain;
3179
3180 old_chain = save_current_program_space ();
3181
3182 ALL_PSPACES (pspace)
3183 {
3184 struct objfile *objfile;
3185
3186 set_current_program_space (pspace);
3187
3188 ALL_OBJFILES (objfile)
3189 {
3190 int i;
3191 struct gdbarch *gdbarch;
3192 struct breakpoint_objfile_data *bp_objfile_data;
3193
3194 gdbarch = get_objfile_arch (objfile);
3195 if (!gdbarch_get_longjmp_target_p (gdbarch))
3196 continue;
3197
3198 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3199
3200 if (!bp_objfile_data->longjmp_searched)
3201 {
3202 bp_objfile_data->longjmp_probes
3203 = find_probes_in_objfile (objfile, "libc", "longjmp");
3204 bp_objfile_data->longjmp_searched = 1;
3205 }
3206
3207 if (bp_objfile_data->longjmp_probes != NULL)
3208 {
3209 int i;
3210 struct probe *probe;
3211 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3212
3213 for (i = 0;
3214 VEC_iterate (probe_p,
3215 bp_objfile_data->longjmp_probes,
3216 i, probe);
3217 ++i)
3218 {
3219 struct breakpoint *b;
3220
3221 b = create_internal_breakpoint (gdbarch, probe->address,
3222 bp_longjmp_master,
3223 &internal_breakpoint_ops);
3224 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3225 b->enable_state = bp_disabled;
3226 }
3227
3228 continue;
3229 }
3230
3231 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3232 {
3233 struct breakpoint *b;
3234 const char *func_name;
3235 CORE_ADDR addr;
3236
3237 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i]))
3238 continue;
3239
3240 func_name = longjmp_names[i];
3241 if (bp_objfile_data->longjmp_msym[i] == NULL)
3242 {
3243 struct minimal_symbol *m;
3244
3245 m = lookup_minimal_symbol_text (func_name, objfile);
3246 if (m == NULL)
3247 {
3248 /* Prevent future lookups in this objfile. */
3249 bp_objfile_data->longjmp_msym[i] = &msym_not_found;
3250 continue;
3251 }
3252 bp_objfile_data->longjmp_msym[i] = m;
3253 }
3254
3255 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3256 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3257 &internal_breakpoint_ops);
3258 b->addr_string = xstrdup (func_name);
3259 b->enable_state = bp_disabled;
3260 }
3261 }
3262 }
3263 update_global_location_list (1);
3264
3265 do_cleanups (old_chain);
3266 }
3267
3268 /* Create a master std::terminate breakpoint. */
3269 static void
3270 create_std_terminate_master_breakpoint (void)
3271 {
3272 struct program_space *pspace;
3273 struct cleanup *old_chain;
3274 const char *const func_name = "std::terminate()";
3275
3276 old_chain = save_current_program_space ();
3277
3278 ALL_PSPACES (pspace)
3279 {
3280 struct objfile *objfile;
3281 CORE_ADDR addr;
3282
3283 set_current_program_space (pspace);
3284
3285 ALL_OBJFILES (objfile)
3286 {
3287 struct breakpoint *b;
3288 struct breakpoint_objfile_data *bp_objfile_data;
3289
3290 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3291
3292 if (msym_not_found_p (bp_objfile_data->terminate_msym))
3293 continue;
3294
3295 if (bp_objfile_data->terminate_msym == NULL)
3296 {
3297 struct minimal_symbol *m;
3298
3299 m = lookup_minimal_symbol (func_name, NULL, objfile);
3300 if (m == NULL || (MSYMBOL_TYPE (m) != mst_text
3301 && MSYMBOL_TYPE (m) != mst_file_text))
3302 {
3303 /* Prevent future lookups in this objfile. */
3304 bp_objfile_data->terminate_msym = &msym_not_found;
3305 continue;
3306 }
3307 bp_objfile_data->terminate_msym = m;
3308 }
3309
3310 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3311 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3312 bp_std_terminate_master,
3313 &internal_breakpoint_ops);
3314 b->addr_string = xstrdup (func_name);
3315 b->enable_state = bp_disabled;
3316 }
3317 }
3318
3319 update_global_location_list (1);
3320
3321 do_cleanups (old_chain);
3322 }
3323
3324 /* Install a master breakpoint on the unwinder's debug hook. */
3325
3326 static void
3327 create_exception_master_breakpoint (void)
3328 {
3329 struct objfile *objfile;
3330 const char *const func_name = "_Unwind_DebugHook";
3331
3332 ALL_OBJFILES (objfile)
3333 {
3334 struct breakpoint *b;
3335 struct gdbarch *gdbarch;
3336 struct breakpoint_objfile_data *bp_objfile_data;
3337 CORE_ADDR addr;
3338
3339 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3340
3341 /* We prefer the SystemTap probe point if it exists. */
3342 if (!bp_objfile_data->exception_searched)
3343 {
3344 bp_objfile_data->exception_probes
3345 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3346 bp_objfile_data->exception_searched = 1;
3347 }
3348
3349 if (bp_objfile_data->exception_probes != NULL)
3350 {
3351 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3352 int i;
3353 struct probe *probe;
3354
3355 for (i = 0;
3356 VEC_iterate (probe_p,
3357 bp_objfile_data->exception_probes,
3358 i, probe);
3359 ++i)
3360 {
3361 struct breakpoint *b;
3362
3363 b = create_internal_breakpoint (gdbarch, probe->address,
3364 bp_exception_master,
3365 &internal_breakpoint_ops);
3366 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3367 b->enable_state = bp_disabled;
3368 }
3369
3370 continue;
3371 }
3372
3373 /* Otherwise, try the hook function. */
3374
3375 if (msym_not_found_p (bp_objfile_data->exception_msym))
3376 continue;
3377
3378 gdbarch = get_objfile_arch (objfile);
3379
3380 if (bp_objfile_data->exception_msym == NULL)
3381 {
3382 struct minimal_symbol *debug_hook;
3383
3384 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3385 if (debug_hook == NULL)
3386 {
3387 bp_objfile_data->exception_msym = &msym_not_found;
3388 continue;
3389 }
3390
3391 bp_objfile_data->exception_msym = debug_hook;
3392 }
3393
3394 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3395 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3396 &current_target);
3397 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3398 &internal_breakpoint_ops);
3399 b->addr_string = xstrdup (func_name);
3400 b->enable_state = bp_disabled;
3401 }
3402
3403 update_global_location_list (1);
3404 }
3405
3406 void
3407 update_breakpoints_after_exec (void)
3408 {
3409 struct breakpoint *b, *b_tmp;
3410 struct bp_location *bploc, **bplocp_tmp;
3411
3412 /* We're about to delete breakpoints from GDB's lists. If the
3413 INSERTED flag is true, GDB will try to lift the breakpoints by
3414 writing the breakpoints' "shadow contents" back into memory. The
3415 "shadow contents" are NOT valid after an exec, so GDB should not
3416 do that. Instead, the target is responsible from marking
3417 breakpoints out as soon as it detects an exec. We don't do that
3418 here instead, because there may be other attempts to delete
3419 breakpoints after detecting an exec and before reaching here. */
3420 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3421 if (bploc->pspace == current_program_space)
3422 gdb_assert (!bploc->inserted);
3423
3424 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3425 {
3426 if (b->pspace != current_program_space)
3427 continue;
3428
3429 /* Solib breakpoints must be explicitly reset after an exec(). */
3430 if (b->type == bp_shlib_event)
3431 {
3432 delete_breakpoint (b);
3433 continue;
3434 }
3435
3436 /* JIT breakpoints must be explicitly reset after an exec(). */
3437 if (b->type == bp_jit_event)
3438 {
3439 delete_breakpoint (b);
3440 continue;
3441 }
3442
3443 /* Thread event breakpoints must be set anew after an exec(),
3444 as must overlay event and longjmp master breakpoints. */
3445 if (b->type == bp_thread_event || b->type == bp_overlay_event
3446 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3447 || b->type == bp_exception_master)
3448 {
3449 delete_breakpoint (b);
3450 continue;
3451 }
3452
3453 /* Step-resume breakpoints are meaningless after an exec(). */
3454 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3455 {
3456 delete_breakpoint (b);
3457 continue;
3458 }
3459
3460 /* Longjmp and longjmp-resume breakpoints are also meaningless
3461 after an exec. */
3462 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3463 || b->type == bp_longjmp_call_dummy
3464 || b->type == bp_exception || b->type == bp_exception_resume)
3465 {
3466 delete_breakpoint (b);
3467 continue;
3468 }
3469
3470 if (b->type == bp_catchpoint)
3471 {
3472 /* For now, none of the bp_catchpoint breakpoints need to
3473 do anything at this point. In the future, if some of
3474 the catchpoints need to something, we will need to add
3475 a new method, and call this method from here. */
3476 continue;
3477 }
3478
3479 /* bp_finish is a special case. The only way we ought to be able
3480 to see one of these when an exec() has happened, is if the user
3481 caught a vfork, and then said "finish". Ordinarily a finish just
3482 carries them to the call-site of the current callee, by setting
3483 a temporary bp there and resuming. But in this case, the finish
3484 will carry them entirely through the vfork & exec.
3485
3486 We don't want to allow a bp_finish to remain inserted now. But
3487 we can't safely delete it, 'cause finish_command has a handle to
3488 the bp on a bpstat, and will later want to delete it. There's a
3489 chance (and I've seen it happen) that if we delete the bp_finish
3490 here, that its storage will get reused by the time finish_command
3491 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3492 We really must allow finish_command to delete a bp_finish.
3493
3494 In the absence of a general solution for the "how do we know
3495 it's safe to delete something others may have handles to?"
3496 problem, what we'll do here is just uninsert the bp_finish, and
3497 let finish_command delete it.
3498
3499 (We know the bp_finish is "doomed" in the sense that it's
3500 momentary, and will be deleted as soon as finish_command sees
3501 the inferior stopped. So it doesn't matter that the bp's
3502 address is probably bogus in the new a.out, unlike e.g., the
3503 solib breakpoints.) */
3504
3505 if (b->type == bp_finish)
3506 {
3507 continue;
3508 }
3509
3510 /* Without a symbolic address, we have little hope of the
3511 pre-exec() address meaning the same thing in the post-exec()
3512 a.out. */
3513 if (b->addr_string == NULL)
3514 {
3515 delete_breakpoint (b);
3516 continue;
3517 }
3518 }
3519 /* FIXME what about longjmp breakpoints? Re-create them here? */
3520 create_overlay_event_breakpoint ();
3521 create_longjmp_master_breakpoint ();
3522 create_std_terminate_master_breakpoint ();
3523 create_exception_master_breakpoint ();
3524 }
3525
3526 int
3527 detach_breakpoints (ptid_t ptid)
3528 {
3529 struct bp_location *bl, **blp_tmp;
3530 int val = 0;
3531 struct cleanup *old_chain = save_inferior_ptid ();
3532 struct inferior *inf = current_inferior ();
3533
3534 if (PIDGET (ptid) == PIDGET (inferior_ptid))
3535 error (_("Cannot detach breakpoints of inferior_ptid"));
3536
3537 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3538 inferior_ptid = ptid;
3539 ALL_BP_LOCATIONS (bl, blp_tmp)
3540 {
3541 if (bl->pspace != inf->pspace)
3542 continue;
3543
3544 if (bl->inserted)
3545 val |= remove_breakpoint_1 (bl, mark_inserted);
3546 }
3547
3548 /* Detach single-step breakpoints as well. */
3549 detach_single_step_breakpoints ();
3550
3551 do_cleanups (old_chain);
3552 return val;
3553 }
3554
3555 /* Remove the breakpoint location BL from the current address space.
3556 Note that this is used to detach breakpoints from a child fork.
3557 When we get here, the child isn't in the inferior list, and neither
3558 do we have objects to represent its address space --- we should
3559 *not* look at bl->pspace->aspace here. */
3560
3561 static int
3562 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3563 {
3564 int val;
3565
3566 /* BL is never in moribund_locations by our callers. */
3567 gdb_assert (bl->owner != NULL);
3568
3569 if (bl->owner->enable_state == bp_permanent)
3570 /* Permanent breakpoints cannot be inserted or removed. */
3571 return 0;
3572
3573 /* The type of none suggests that owner is actually deleted.
3574 This should not ever happen. */
3575 gdb_assert (bl->owner->type != bp_none);
3576
3577 if (bl->loc_type == bp_loc_software_breakpoint
3578 || bl->loc_type == bp_loc_hardware_breakpoint)
3579 {
3580 /* "Normal" instruction breakpoint: either the standard
3581 trap-instruction bp (bp_breakpoint), or a
3582 bp_hardware_breakpoint. */
3583
3584 /* First check to see if we have to handle an overlay. */
3585 if (overlay_debugging == ovly_off
3586 || bl->section == NULL
3587 || !(section_is_overlay (bl->section)))
3588 {
3589 /* No overlay handling: just remove the breakpoint. */
3590 val = bl->owner->ops->remove_location (bl);
3591 }
3592 else
3593 {
3594 /* This breakpoint is in an overlay section.
3595 Did we set a breakpoint at the LMA? */
3596 if (!overlay_events_enabled)
3597 {
3598 /* Yes -- overlay event support is not active, so we
3599 should have set a breakpoint at the LMA. Remove it.
3600 */
3601 /* Ignore any failures: if the LMA is in ROM, we will
3602 have already warned when we failed to insert it. */
3603 if (bl->loc_type == bp_loc_hardware_breakpoint)
3604 target_remove_hw_breakpoint (bl->gdbarch,
3605 &bl->overlay_target_info);
3606 else
3607 target_remove_breakpoint (bl->gdbarch,
3608 &bl->overlay_target_info);
3609 }
3610 /* Did we set a breakpoint at the VMA?
3611 If so, we will have marked the breakpoint 'inserted'. */
3612 if (bl->inserted)
3613 {
3614 /* Yes -- remove it. Previously we did not bother to
3615 remove the breakpoint if the section had been
3616 unmapped, but let's not rely on that being safe. We
3617 don't know what the overlay manager might do. */
3618
3619 /* However, we should remove *software* breakpoints only
3620 if the section is still mapped, or else we overwrite
3621 wrong code with the saved shadow contents. */
3622 if (bl->loc_type == bp_loc_hardware_breakpoint
3623 || section_is_mapped (bl->section))
3624 val = bl->owner->ops->remove_location (bl);
3625 else
3626 val = 0;
3627 }
3628 else
3629 {
3630 /* No -- not inserted, so no need to remove. No error. */
3631 val = 0;
3632 }
3633 }
3634
3635 /* In some cases, we might not be able to remove a breakpoint
3636 in a shared library that has already been removed, but we
3637 have not yet processed the shlib unload event. */
3638 if (val && solib_name_from_address (bl->pspace, bl->address))
3639 val = 0;
3640
3641 if (val)
3642 return val;
3643 bl->inserted = (is == mark_inserted);
3644 }
3645 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3646 {
3647 gdb_assert (bl->owner->ops != NULL
3648 && bl->owner->ops->remove_location != NULL);
3649
3650 bl->inserted = (is == mark_inserted);
3651 bl->owner->ops->remove_location (bl);
3652
3653 /* Failure to remove any of the hardware watchpoints comes here. */
3654 if ((is == mark_uninserted) && (bl->inserted))
3655 warning (_("Could not remove hardware watchpoint %d."),
3656 bl->owner->number);
3657 }
3658 else if (bl->owner->type == bp_catchpoint
3659 && breakpoint_enabled (bl->owner)
3660 && !bl->duplicate)
3661 {
3662 gdb_assert (bl->owner->ops != NULL
3663 && bl->owner->ops->remove_location != NULL);
3664
3665 val = bl->owner->ops->remove_location (bl);
3666 if (val)
3667 return val;
3668
3669 bl->inserted = (is == mark_inserted);
3670 }
3671
3672 return 0;
3673 }
3674
3675 static int
3676 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
3677 {
3678 int ret;
3679 struct cleanup *old_chain;
3680
3681 /* BL is never in moribund_locations by our callers. */
3682 gdb_assert (bl->owner != NULL);
3683
3684 if (bl->owner->enable_state == bp_permanent)
3685 /* Permanent breakpoints cannot be inserted or removed. */
3686 return 0;
3687
3688 /* The type of none suggests that owner is actually deleted.
3689 This should not ever happen. */
3690 gdb_assert (bl->owner->type != bp_none);
3691
3692 old_chain = save_current_space_and_thread ();
3693
3694 switch_to_program_space_and_thread (bl->pspace);
3695
3696 ret = remove_breakpoint_1 (bl, is);
3697
3698 do_cleanups (old_chain);
3699 return ret;
3700 }
3701
3702 /* Clear the "inserted" flag in all breakpoints. */
3703
3704 void
3705 mark_breakpoints_out (void)
3706 {
3707 struct bp_location *bl, **blp_tmp;
3708
3709 ALL_BP_LOCATIONS (bl, blp_tmp)
3710 if (bl->pspace == current_program_space)
3711 bl->inserted = 0;
3712 }
3713
3714 /* Clear the "inserted" flag in all breakpoints and delete any
3715 breakpoints which should go away between runs of the program.
3716
3717 Plus other such housekeeping that has to be done for breakpoints
3718 between runs.
3719
3720 Note: this function gets called at the end of a run (by
3721 generic_mourn_inferior) and when a run begins (by
3722 init_wait_for_inferior). */
3723
3724
3725
3726 void
3727 breakpoint_init_inferior (enum inf_context context)
3728 {
3729 struct breakpoint *b, *b_tmp;
3730 struct bp_location *bl, **blp_tmp;
3731 int ix;
3732 struct program_space *pspace = current_program_space;
3733
3734 /* If breakpoint locations are shared across processes, then there's
3735 nothing to do. */
3736 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3737 return;
3738
3739 ALL_BP_LOCATIONS (bl, blp_tmp)
3740 {
3741 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3742 if (bl->pspace == pspace
3743 && bl->owner->enable_state != bp_permanent)
3744 bl->inserted = 0;
3745 }
3746
3747 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3748 {
3749 if (b->loc && b->loc->pspace != pspace)
3750 continue;
3751
3752 switch (b->type)
3753 {
3754 case bp_call_dummy:
3755 case bp_longjmp_call_dummy:
3756
3757 /* If the call dummy breakpoint is at the entry point it will
3758 cause problems when the inferior is rerun, so we better get
3759 rid of it. */
3760
3761 case bp_watchpoint_scope:
3762
3763 /* Also get rid of scope breakpoints. */
3764
3765 case bp_shlib_event:
3766
3767 /* Also remove solib event breakpoints. Their addresses may
3768 have changed since the last time we ran the program.
3769 Actually we may now be debugging against different target;
3770 and so the solib backend that installed this breakpoint may
3771 not be used in by the target. E.g.,
3772
3773 (gdb) file prog-linux
3774 (gdb) run # native linux target
3775 ...
3776 (gdb) kill
3777 (gdb) file prog-win.exe
3778 (gdb) tar rem :9999 # remote Windows gdbserver.
3779 */
3780
3781 case bp_step_resume:
3782
3783 /* Also remove step-resume breakpoints. */
3784
3785 delete_breakpoint (b);
3786 break;
3787
3788 case bp_watchpoint:
3789 case bp_hardware_watchpoint:
3790 case bp_read_watchpoint:
3791 case bp_access_watchpoint:
3792 {
3793 struct watchpoint *w = (struct watchpoint *) b;
3794
3795 /* Likewise for watchpoints on local expressions. */
3796 if (w->exp_valid_block != NULL)
3797 delete_breakpoint (b);
3798 else if (context == inf_starting)
3799 {
3800 /* Reset val field to force reread of starting value in
3801 insert_breakpoints. */
3802 if (w->val)
3803 value_free (w->val);
3804 w->val = NULL;
3805 w->val_valid = 0;
3806 }
3807 }
3808 break;
3809 default:
3810 break;
3811 }
3812 }
3813
3814 /* Get rid of the moribund locations. */
3815 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3816 decref_bp_location (&bl);
3817 VEC_free (bp_location_p, moribund_locations);
3818 }
3819
3820 /* These functions concern about actual breakpoints inserted in the
3821 target --- to e.g. check if we need to do decr_pc adjustment or if
3822 we need to hop over the bkpt --- so we check for address space
3823 match, not program space. */
3824
3825 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3826 exists at PC. It returns ordinary_breakpoint_here if it's an
3827 ordinary breakpoint, or permanent_breakpoint_here if it's a
3828 permanent breakpoint.
3829 - When continuing from a location with an ordinary breakpoint, we
3830 actually single step once before calling insert_breakpoints.
3831 - When continuing from a location with a permanent breakpoint, we
3832 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3833 the target, to advance the PC past the breakpoint. */
3834
3835 enum breakpoint_here
3836 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3837 {
3838 struct bp_location *bl, **blp_tmp;
3839 int any_breakpoint_here = 0;
3840
3841 ALL_BP_LOCATIONS (bl, blp_tmp)
3842 {
3843 if (bl->loc_type != bp_loc_software_breakpoint
3844 && bl->loc_type != bp_loc_hardware_breakpoint)
3845 continue;
3846
3847 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3848 if ((breakpoint_enabled (bl->owner)
3849 || bl->owner->enable_state == bp_permanent)
3850 && breakpoint_location_address_match (bl, aspace, pc))
3851 {
3852 if (overlay_debugging
3853 && section_is_overlay (bl->section)
3854 && !section_is_mapped (bl->section))
3855 continue; /* unmapped overlay -- can't be a match */
3856 else if (bl->owner->enable_state == bp_permanent)
3857 return permanent_breakpoint_here;
3858 else
3859 any_breakpoint_here = 1;
3860 }
3861 }
3862
3863 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
3864 }
3865
3866 /* Return true if there's a moribund breakpoint at PC. */
3867
3868 int
3869 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3870 {
3871 struct bp_location *loc;
3872 int ix;
3873
3874 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
3875 if (breakpoint_location_address_match (loc, aspace, pc))
3876 return 1;
3877
3878 return 0;
3879 }
3880
3881 /* Returns non-zero if there's a breakpoint inserted at PC, which is
3882 inserted using regular breakpoint_chain / bp_location array
3883 mechanism. This does not check for single-step breakpoints, which
3884 are inserted and removed using direct target manipulation. */
3885
3886 int
3887 regular_breakpoint_inserted_here_p (struct address_space *aspace,
3888 CORE_ADDR pc)
3889 {
3890 struct bp_location *bl, **blp_tmp;
3891
3892 ALL_BP_LOCATIONS (bl, blp_tmp)
3893 {
3894 if (bl->loc_type != bp_loc_software_breakpoint
3895 && bl->loc_type != bp_loc_hardware_breakpoint)
3896 continue;
3897
3898 if (bl->inserted
3899 && breakpoint_location_address_match (bl, aspace, pc))
3900 {
3901 if (overlay_debugging
3902 && section_is_overlay (bl->section)
3903 && !section_is_mapped (bl->section))
3904 continue; /* unmapped overlay -- can't be a match */
3905 else
3906 return 1;
3907 }
3908 }
3909 return 0;
3910 }
3911
3912 /* Returns non-zero iff there's either regular breakpoint
3913 or a single step breakpoint inserted at PC. */
3914
3915 int
3916 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
3917 {
3918 if (regular_breakpoint_inserted_here_p (aspace, pc))
3919 return 1;
3920
3921 if (single_step_breakpoint_inserted_here_p (aspace, pc))
3922 return 1;
3923
3924 return 0;
3925 }
3926
3927 /* This function returns non-zero iff there is a software breakpoint
3928 inserted at PC. */
3929
3930 int
3931 software_breakpoint_inserted_here_p (struct address_space *aspace,
3932 CORE_ADDR pc)
3933 {
3934 struct bp_location *bl, **blp_tmp;
3935
3936 ALL_BP_LOCATIONS (bl, blp_tmp)
3937 {
3938 if (bl->loc_type != bp_loc_software_breakpoint)
3939 continue;
3940
3941 if (bl->inserted
3942 && breakpoint_address_match (bl->pspace->aspace, bl->address,
3943 aspace, pc))
3944 {
3945 if (overlay_debugging
3946 && section_is_overlay (bl->section)
3947 && !section_is_mapped (bl->section))
3948 continue; /* unmapped overlay -- can't be a match */
3949 else
3950 return 1;
3951 }
3952 }
3953
3954 /* Also check for software single-step breakpoints. */
3955 if (single_step_breakpoint_inserted_here_p (aspace, pc))
3956 return 1;
3957
3958 return 0;
3959 }
3960
3961 int
3962 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
3963 CORE_ADDR addr, ULONGEST len)
3964 {
3965 struct breakpoint *bpt;
3966
3967 ALL_BREAKPOINTS (bpt)
3968 {
3969 struct bp_location *loc;
3970
3971 if (bpt->type != bp_hardware_watchpoint
3972 && bpt->type != bp_access_watchpoint)
3973 continue;
3974
3975 if (!breakpoint_enabled (bpt))
3976 continue;
3977
3978 for (loc = bpt->loc; loc; loc = loc->next)
3979 if (loc->pspace->aspace == aspace && loc->inserted)
3980 {
3981 CORE_ADDR l, h;
3982
3983 /* Check for intersection. */
3984 l = max (loc->address, addr);
3985 h = min (loc->address + loc->length, addr + len);
3986 if (l < h)
3987 return 1;
3988 }
3989 }
3990 return 0;
3991 }
3992
3993 /* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
3994 PC is valid for process/thread PTID. */
3995
3996 int
3997 breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
3998 ptid_t ptid)
3999 {
4000 struct bp_location *bl, **blp_tmp;
4001 /* The thread and task IDs associated to PTID, computed lazily. */
4002 int thread = -1;
4003 int task = 0;
4004
4005 ALL_BP_LOCATIONS (bl, blp_tmp)
4006 {
4007 if (bl->loc_type != bp_loc_software_breakpoint
4008 && bl->loc_type != bp_loc_hardware_breakpoint)
4009 continue;
4010
4011 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4012 if (!breakpoint_enabled (bl->owner)
4013 && bl->owner->enable_state != bp_permanent)
4014 continue;
4015
4016 if (!breakpoint_location_address_match (bl, aspace, pc))
4017 continue;
4018
4019 if (bl->owner->thread != -1)
4020 {
4021 /* This is a thread-specific breakpoint. Check that ptid
4022 matches that thread. If thread hasn't been computed yet,
4023 it is now time to do so. */
4024 if (thread == -1)
4025 thread = pid_to_thread_id (ptid);
4026 if (bl->owner->thread != thread)
4027 continue;
4028 }
4029
4030 if (bl->owner->task != 0)
4031 {
4032 /* This is a task-specific breakpoint. Check that ptid
4033 matches that task. If task hasn't been computed yet,
4034 it is now time to do so. */
4035 if (task == 0)
4036 task = ada_get_task_number (ptid);
4037 if (bl->owner->task != task)
4038 continue;
4039 }
4040
4041 if (overlay_debugging
4042 && section_is_overlay (bl->section)
4043 && !section_is_mapped (bl->section))
4044 continue; /* unmapped overlay -- can't be a match */
4045
4046 return 1;
4047 }
4048
4049 return 0;
4050 }
4051 \f
4052
4053 /* bpstat stuff. External routines' interfaces are documented
4054 in breakpoint.h. */
4055
4056 int
4057 is_catchpoint (struct breakpoint *ep)
4058 {
4059 return (ep->type == bp_catchpoint);
4060 }
4061
4062 /* Frees any storage that is part of a bpstat. Does not walk the
4063 'next' chain. */
4064
4065 static void
4066 bpstat_free (bpstat bs)
4067 {
4068 if (bs->old_val != NULL)
4069 value_free (bs->old_val);
4070 decref_counted_command_line (&bs->commands);
4071 decref_bp_location (&bs->bp_location_at);
4072 xfree (bs);
4073 }
4074
4075 /* Clear a bpstat so that it says we are not at any breakpoint.
4076 Also free any storage that is part of a bpstat. */
4077
4078 void
4079 bpstat_clear (bpstat *bsp)
4080 {
4081 bpstat p;
4082 bpstat q;
4083
4084 if (bsp == 0)
4085 return;
4086 p = *bsp;
4087 while (p != NULL)
4088 {
4089 q = p->next;
4090 bpstat_free (p);
4091 p = q;
4092 }
4093 *bsp = NULL;
4094 }
4095
4096 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4097 is part of the bpstat is copied as well. */
4098
4099 bpstat
4100 bpstat_copy (bpstat bs)
4101 {
4102 bpstat p = NULL;
4103 bpstat tmp;
4104 bpstat retval = NULL;
4105
4106 if (bs == NULL)
4107 return bs;
4108
4109 for (; bs != NULL; bs = bs->next)
4110 {
4111 tmp = (bpstat) xmalloc (sizeof (*tmp));
4112 memcpy (tmp, bs, sizeof (*tmp));
4113 incref_counted_command_line (tmp->commands);
4114 incref_bp_location (tmp->bp_location_at);
4115 if (bs->old_val != NULL)
4116 {
4117 tmp->old_val = value_copy (bs->old_val);
4118 release_value (tmp->old_val);
4119 }
4120
4121 if (p == NULL)
4122 /* This is the first thing in the chain. */
4123 retval = tmp;
4124 else
4125 p->next = tmp;
4126 p = tmp;
4127 }
4128 p->next = NULL;
4129 return retval;
4130 }
4131
4132 /* Find the bpstat associated with this breakpoint. */
4133
4134 bpstat
4135 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4136 {
4137 if (bsp == NULL)
4138 return NULL;
4139
4140 for (; bsp != NULL; bsp = bsp->next)
4141 {
4142 if (bsp->breakpoint_at == breakpoint)
4143 return bsp;
4144 }
4145 return NULL;
4146 }
4147
4148 /* Put in *NUM the breakpoint number of the first breakpoint we are
4149 stopped at. *BSP upon return is a bpstat which points to the
4150 remaining breakpoints stopped at (but which is not guaranteed to be
4151 good for anything but further calls to bpstat_num).
4152
4153 Return 0 if passed a bpstat which does not indicate any breakpoints.
4154 Return -1 if stopped at a breakpoint that has been deleted since
4155 we set it.
4156 Return 1 otherwise. */
4157
4158 int
4159 bpstat_num (bpstat *bsp, int *num)
4160 {
4161 struct breakpoint *b;
4162
4163 if ((*bsp) == NULL)
4164 return 0; /* No more breakpoint values */
4165
4166 /* We assume we'll never have several bpstats that correspond to a
4167 single breakpoint -- otherwise, this function might return the
4168 same number more than once and this will look ugly. */
4169 b = (*bsp)->breakpoint_at;
4170 *bsp = (*bsp)->next;
4171 if (b == NULL)
4172 return -1; /* breakpoint that's been deleted since */
4173
4174 *num = b->number; /* We have its number */
4175 return 1;
4176 }
4177
4178 /* See breakpoint.h. */
4179
4180 void
4181 bpstat_clear_actions (void)
4182 {
4183 struct thread_info *tp;
4184 bpstat bs;
4185
4186 if (ptid_equal (inferior_ptid, null_ptid))
4187 return;
4188
4189 tp = find_thread_ptid (inferior_ptid);
4190 if (tp == NULL)
4191 return;
4192
4193 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4194 {
4195 decref_counted_command_line (&bs->commands);
4196
4197 if (bs->old_val != NULL)
4198 {
4199 value_free (bs->old_val);
4200 bs->old_val = NULL;
4201 }
4202 }
4203 }
4204
4205 /* Called when a command is about to proceed the inferior. */
4206
4207 static void
4208 breakpoint_about_to_proceed (void)
4209 {
4210 if (!ptid_equal (inferior_ptid, null_ptid))
4211 {
4212 struct thread_info *tp = inferior_thread ();
4213
4214 /* Allow inferior function calls in breakpoint commands to not
4215 interrupt the command list. When the call finishes
4216 successfully, the inferior will be standing at the same
4217 breakpoint as if nothing happened. */
4218 if (tp->control.in_infcall)
4219 return;
4220 }
4221
4222 breakpoint_proceeded = 1;
4223 }
4224
4225 /* Stub for cleaning up our state if we error-out of a breakpoint
4226 command. */
4227 static void
4228 cleanup_executing_breakpoints (void *ignore)
4229 {
4230 executing_breakpoint_commands = 0;
4231 }
4232
4233 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4234 or its equivalent. */
4235
4236 static int
4237 command_line_is_silent (struct command_line *cmd)
4238 {
4239 return cmd && (strcmp ("silent", cmd->line) == 0
4240 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4241 }
4242
4243 /* Execute all the commands associated with all the breakpoints at
4244 this location. Any of these commands could cause the process to
4245 proceed beyond this point, etc. We look out for such changes by
4246 checking the global "breakpoint_proceeded" after each command.
4247
4248 Returns true if a breakpoint command resumed the inferior. In that
4249 case, it is the caller's responsibility to recall it again with the
4250 bpstat of the current thread. */
4251
4252 static int
4253 bpstat_do_actions_1 (bpstat *bsp)
4254 {
4255 bpstat bs;
4256 struct cleanup *old_chain;
4257 int again = 0;
4258
4259 /* Avoid endless recursion if a `source' command is contained
4260 in bs->commands. */
4261 if (executing_breakpoint_commands)
4262 return 0;
4263
4264 executing_breakpoint_commands = 1;
4265 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4266
4267 prevent_dont_repeat ();
4268
4269 /* This pointer will iterate over the list of bpstat's. */
4270 bs = *bsp;
4271
4272 breakpoint_proceeded = 0;
4273 for (; bs != NULL; bs = bs->next)
4274 {
4275 struct counted_command_line *ccmd;
4276 struct command_line *cmd;
4277 struct cleanup *this_cmd_tree_chain;
4278
4279 /* Take ownership of the BSP's command tree, if it has one.
4280
4281 The command tree could legitimately contain commands like
4282 'step' and 'next', which call clear_proceed_status, which
4283 frees stop_bpstat's command tree. To make sure this doesn't
4284 free the tree we're executing out from under us, we need to
4285 take ownership of the tree ourselves. Since a given bpstat's
4286 commands are only executed once, we don't need to copy it; we
4287 can clear the pointer in the bpstat, and make sure we free
4288 the tree when we're done. */
4289 ccmd = bs->commands;
4290 bs->commands = NULL;
4291 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4292 cmd = ccmd ? ccmd->commands : NULL;
4293 if (command_line_is_silent (cmd))
4294 {
4295 /* The action has been already done by bpstat_stop_status. */
4296 cmd = cmd->next;
4297 }
4298
4299 while (cmd != NULL)
4300 {
4301 execute_control_command (cmd);
4302
4303 if (breakpoint_proceeded)
4304 break;
4305 else
4306 cmd = cmd->next;
4307 }
4308
4309 /* We can free this command tree now. */
4310 do_cleanups (this_cmd_tree_chain);
4311
4312 if (breakpoint_proceeded)
4313 {
4314 if (target_can_async_p ())
4315 /* If we are in async mode, then the target might be still
4316 running, not stopped at any breakpoint, so nothing for
4317 us to do here -- just return to the event loop. */
4318 ;
4319 else
4320 /* In sync mode, when execute_control_command returns
4321 we're already standing on the next breakpoint.
4322 Breakpoint commands for that stop were not run, since
4323 execute_command does not run breakpoint commands --
4324 only command_line_handler does, but that one is not
4325 involved in execution of breakpoint commands. So, we
4326 can now execute breakpoint commands. It should be
4327 noted that making execute_command do bpstat actions is
4328 not an option -- in this case we'll have recursive
4329 invocation of bpstat for each breakpoint with a
4330 command, and can easily blow up GDB stack. Instead, we
4331 return true, which will trigger the caller to recall us
4332 with the new stop_bpstat. */
4333 again = 1;
4334 break;
4335 }
4336 }
4337 do_cleanups (old_chain);
4338 return again;
4339 }
4340
4341 void
4342 bpstat_do_actions (void)
4343 {
4344 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4345
4346 /* Do any commands attached to breakpoint we are stopped at. */
4347 while (!ptid_equal (inferior_ptid, null_ptid)
4348 && target_has_execution
4349 && !is_exited (inferior_ptid)
4350 && !is_executing (inferior_ptid))
4351 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4352 and only return when it is stopped at the next breakpoint, we
4353 keep doing breakpoint actions until it returns false to
4354 indicate the inferior was not resumed. */
4355 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4356 break;
4357
4358 discard_cleanups (cleanup_if_error);
4359 }
4360
4361 /* Print out the (old or new) value associated with a watchpoint. */
4362
4363 static void
4364 watchpoint_value_print (struct value *val, struct ui_file *stream)
4365 {
4366 if (val == NULL)
4367 fprintf_unfiltered (stream, _("<unreadable>"));
4368 else
4369 {
4370 struct value_print_options opts;
4371 get_user_print_options (&opts);
4372 value_print (val, stream, &opts);
4373 }
4374 }
4375
4376 /* Generic routine for printing messages indicating why we
4377 stopped. The behavior of this function depends on the value
4378 'print_it' in the bpstat structure. Under some circumstances we
4379 may decide not to print anything here and delegate the task to
4380 normal_stop(). */
4381
4382 static enum print_stop_action
4383 print_bp_stop_message (bpstat bs)
4384 {
4385 switch (bs->print_it)
4386 {
4387 case print_it_noop:
4388 /* Nothing should be printed for this bpstat entry. */
4389 return PRINT_UNKNOWN;
4390 break;
4391
4392 case print_it_done:
4393 /* We still want to print the frame, but we already printed the
4394 relevant messages. */
4395 return PRINT_SRC_AND_LOC;
4396 break;
4397
4398 case print_it_normal:
4399 {
4400 struct breakpoint *b = bs->breakpoint_at;
4401
4402 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4403 which has since been deleted. */
4404 if (b == NULL)
4405 return PRINT_UNKNOWN;
4406
4407 /* Normal case. Call the breakpoint's print_it method. */
4408 return b->ops->print_it (bs);
4409 }
4410 break;
4411
4412 default:
4413 internal_error (__FILE__, __LINE__,
4414 _("print_bp_stop_message: unrecognized enum value"));
4415 break;
4416 }
4417 }
4418
4419 /* A helper function that prints a shared library stopped event. */
4420
4421 static void
4422 print_solib_event (int is_catchpoint)
4423 {
4424 int any_deleted
4425 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4426 int any_added
4427 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4428
4429 if (!is_catchpoint)
4430 {
4431 if (any_added || any_deleted)
4432 ui_out_text (current_uiout,
4433 _("Stopped due to shared library event:\n"));
4434 else
4435 ui_out_text (current_uiout,
4436 _("Stopped due to shared library event (no "
4437 "libraries added or removed)\n"));
4438 }
4439
4440 if (ui_out_is_mi_like_p (current_uiout))
4441 ui_out_field_string (current_uiout, "reason",
4442 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4443
4444 if (any_deleted)
4445 {
4446 struct cleanup *cleanup;
4447 char *name;
4448 int ix;
4449
4450 ui_out_text (current_uiout, _(" Inferior unloaded "));
4451 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4452 "removed");
4453 for (ix = 0;
4454 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4455 ix, name);
4456 ++ix)
4457 {
4458 if (ix > 0)
4459 ui_out_text (current_uiout, " ");
4460 ui_out_field_string (current_uiout, "library", name);
4461 ui_out_text (current_uiout, "\n");
4462 }
4463
4464 do_cleanups (cleanup);
4465 }
4466
4467 if (any_added)
4468 {
4469 struct so_list *iter;
4470 int ix;
4471 struct cleanup *cleanup;
4472
4473 ui_out_text (current_uiout, _(" Inferior loaded "));
4474 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4475 "added");
4476 for (ix = 0;
4477 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4478 ix, iter);
4479 ++ix)
4480 {
4481 if (ix > 0)
4482 ui_out_text (current_uiout, " ");
4483 ui_out_field_string (current_uiout, "library", iter->so_name);
4484 ui_out_text (current_uiout, "\n");
4485 }
4486
4487 do_cleanups (cleanup);
4488 }
4489 }
4490
4491 /* Print a message indicating what happened. This is called from
4492 normal_stop(). The input to this routine is the head of the bpstat
4493 list - a list of the eventpoints that caused this stop. KIND is
4494 the target_waitkind for the stopping event. This
4495 routine calls the generic print routine for printing a message
4496 about reasons for stopping. This will print (for example) the
4497 "Breakpoint n," part of the output. The return value of this
4498 routine is one of:
4499
4500 PRINT_UNKNOWN: Means we printed nothing.
4501 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4502 code to print the location. An example is
4503 "Breakpoint 1, " which should be followed by
4504 the location.
4505 PRINT_SRC_ONLY: Means we printed something, but there is no need
4506 to also print the location part of the message.
4507 An example is the catch/throw messages, which
4508 don't require a location appended to the end.
4509 PRINT_NOTHING: We have done some printing and we don't need any
4510 further info to be printed. */
4511
4512 enum print_stop_action
4513 bpstat_print (bpstat bs, int kind)
4514 {
4515 int val;
4516
4517 /* Maybe another breakpoint in the chain caused us to stop.
4518 (Currently all watchpoints go on the bpstat whether hit or not.
4519 That probably could (should) be changed, provided care is taken
4520 with respect to bpstat_explains_signal). */
4521 for (; bs; bs = bs->next)
4522 {
4523 val = print_bp_stop_message (bs);
4524 if (val == PRINT_SRC_ONLY
4525 || val == PRINT_SRC_AND_LOC
4526 || val == PRINT_NOTHING)
4527 return val;
4528 }
4529
4530 /* If we had hit a shared library event breakpoint,
4531 print_bp_stop_message would print out this message. If we hit an
4532 OS-level shared library event, do the same thing. */
4533 if (kind == TARGET_WAITKIND_LOADED)
4534 {
4535 print_solib_event (0);
4536 return PRINT_NOTHING;
4537 }
4538
4539 /* We reached the end of the chain, or we got a null BS to start
4540 with and nothing was printed. */
4541 return PRINT_UNKNOWN;
4542 }
4543
4544 /* Evaluate the expression EXP and return 1 if value is zero. This is
4545 used inside a catch_errors to evaluate the breakpoint condition.
4546 The argument is a "struct expression *" that has been cast to a
4547 "char *" to make it pass through catch_errors. */
4548
4549 static int
4550 breakpoint_cond_eval (void *exp)
4551 {
4552 struct value *mark = value_mark ();
4553 int i = !value_true (evaluate_expression ((struct expression *) exp));
4554
4555 value_free_to_mark (mark);
4556 return i;
4557 }
4558
4559 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4560
4561 static bpstat
4562 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4563 {
4564 bpstat bs;
4565
4566 bs = (bpstat) xmalloc (sizeof (*bs));
4567 bs->next = NULL;
4568 **bs_link_pointer = bs;
4569 *bs_link_pointer = &bs->next;
4570 bs->breakpoint_at = bl->owner;
4571 bs->bp_location_at = bl;
4572 incref_bp_location (bl);
4573 /* If the condition is false, etc., don't do the commands. */
4574 bs->commands = NULL;
4575 bs->old_val = NULL;
4576 bs->print_it = print_it_normal;
4577 return bs;
4578 }
4579 \f
4580 /* The target has stopped with waitstatus WS. Check if any hardware
4581 watchpoints have triggered, according to the target. */
4582
4583 int
4584 watchpoints_triggered (struct target_waitstatus *ws)
4585 {
4586 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4587 CORE_ADDR addr;
4588 struct breakpoint *b;
4589
4590 if (!stopped_by_watchpoint)
4591 {
4592 /* We were not stopped by a watchpoint. Mark all watchpoints
4593 as not triggered. */
4594 ALL_BREAKPOINTS (b)
4595 if (is_hardware_watchpoint (b))
4596 {
4597 struct watchpoint *w = (struct watchpoint *) b;
4598
4599 w->watchpoint_triggered = watch_triggered_no;
4600 }
4601
4602 return 0;
4603 }
4604
4605 if (!target_stopped_data_address (&current_target, &addr))
4606 {
4607 /* We were stopped by a watchpoint, but we don't know where.
4608 Mark all watchpoints as unknown. */
4609 ALL_BREAKPOINTS (b)
4610 if (is_hardware_watchpoint (b))
4611 {
4612 struct watchpoint *w = (struct watchpoint *) b;
4613
4614 w->watchpoint_triggered = watch_triggered_unknown;
4615 }
4616
4617 return stopped_by_watchpoint;
4618 }
4619
4620 /* The target could report the data address. Mark watchpoints
4621 affected by this data address as triggered, and all others as not
4622 triggered. */
4623
4624 ALL_BREAKPOINTS (b)
4625 if (is_hardware_watchpoint (b))
4626 {
4627 struct watchpoint *w = (struct watchpoint *) b;
4628 struct bp_location *loc;
4629
4630 w->watchpoint_triggered = watch_triggered_no;
4631 for (loc = b->loc; loc; loc = loc->next)
4632 {
4633 if (is_masked_watchpoint (b))
4634 {
4635 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4636 CORE_ADDR start = loc->address & w->hw_wp_mask;
4637
4638 if (newaddr == start)
4639 {
4640 w->watchpoint_triggered = watch_triggered_yes;
4641 break;
4642 }
4643 }
4644 /* Exact match not required. Within range is sufficient. */
4645 else if (target_watchpoint_addr_within_range (&current_target,
4646 addr, loc->address,
4647 loc->length))
4648 {
4649 w->watchpoint_triggered = watch_triggered_yes;
4650 break;
4651 }
4652 }
4653 }
4654
4655 return 1;
4656 }
4657
4658 /* Possible return values for watchpoint_check (this can't be an enum
4659 because of check_errors). */
4660 /* The watchpoint has been deleted. */
4661 #define WP_DELETED 1
4662 /* The value has changed. */
4663 #define WP_VALUE_CHANGED 2
4664 /* The value has not changed. */
4665 #define WP_VALUE_NOT_CHANGED 3
4666 /* Ignore this watchpoint, no matter if the value changed or not. */
4667 #define WP_IGNORE 4
4668
4669 #define BP_TEMPFLAG 1
4670 #define BP_HARDWAREFLAG 2
4671
4672 /* Evaluate watchpoint condition expression and check if its value
4673 changed.
4674
4675 P should be a pointer to struct bpstat, but is defined as a void *
4676 in order for this function to be usable with catch_errors. */
4677
4678 static int
4679 watchpoint_check (void *p)
4680 {
4681 bpstat bs = (bpstat) p;
4682 struct watchpoint *b;
4683 struct frame_info *fr;
4684 int within_current_scope;
4685
4686 /* BS is built from an existing struct breakpoint. */
4687 gdb_assert (bs->breakpoint_at != NULL);
4688 b = (struct watchpoint *) bs->breakpoint_at;
4689
4690 /* If this is a local watchpoint, we only want to check if the
4691 watchpoint frame is in scope if the current thread is the thread
4692 that was used to create the watchpoint. */
4693 if (!watchpoint_in_thread_scope (b))
4694 return WP_IGNORE;
4695
4696 if (b->exp_valid_block == NULL)
4697 within_current_scope = 1;
4698 else
4699 {
4700 struct frame_info *frame = get_current_frame ();
4701 struct gdbarch *frame_arch = get_frame_arch (frame);
4702 CORE_ADDR frame_pc = get_frame_pc (frame);
4703
4704 /* in_function_epilogue_p() returns a non-zero value if we're
4705 still in the function but the stack frame has already been
4706 invalidated. Since we can't rely on the values of local
4707 variables after the stack has been destroyed, we are treating
4708 the watchpoint in that state as `not changed' without further
4709 checking. Don't mark watchpoints as changed if the current
4710 frame is in an epilogue - even if they are in some other
4711 frame, our view of the stack is likely to be wrong and
4712 frame_find_by_id could error out. */
4713 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
4714 return WP_IGNORE;
4715
4716 fr = frame_find_by_id (b->watchpoint_frame);
4717 within_current_scope = (fr != NULL);
4718
4719 /* If we've gotten confused in the unwinder, we might have
4720 returned a frame that can't describe this variable. */
4721 if (within_current_scope)
4722 {
4723 struct symbol *function;
4724
4725 function = get_frame_function (fr);
4726 if (function == NULL
4727 || !contained_in (b->exp_valid_block,
4728 SYMBOL_BLOCK_VALUE (function)))
4729 within_current_scope = 0;
4730 }
4731
4732 if (within_current_scope)
4733 /* If we end up stopping, the current frame will get selected
4734 in normal_stop. So this call to select_frame won't affect
4735 the user. */
4736 select_frame (fr);
4737 }
4738
4739 if (within_current_scope)
4740 {
4741 /* We use value_{,free_to_}mark because it could be a *long*
4742 time before we return to the command level and call
4743 free_all_values. We can't call free_all_values because we
4744 might be in the middle of evaluating a function call. */
4745
4746 int pc = 0;
4747 struct value *mark;
4748 struct value *new_val;
4749
4750 if (is_masked_watchpoint (&b->base))
4751 /* Since we don't know the exact trigger address (from
4752 stopped_data_address), just tell the user we've triggered
4753 a mask watchpoint. */
4754 return WP_VALUE_CHANGED;
4755
4756 mark = value_mark ();
4757 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL);
4758
4759 /* We use value_equal_contents instead of value_equal because
4760 the latter coerces an array to a pointer, thus comparing just
4761 the address of the array instead of its contents. This is
4762 not what we want. */
4763 if ((b->val != NULL) != (new_val != NULL)
4764 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4765 {
4766 if (new_val != NULL)
4767 {
4768 release_value (new_val);
4769 value_free_to_mark (mark);
4770 }
4771 bs->old_val = b->val;
4772 b->val = new_val;
4773 b->val_valid = 1;
4774 return WP_VALUE_CHANGED;
4775 }
4776 else
4777 {
4778 /* Nothing changed. */
4779 value_free_to_mark (mark);
4780 return WP_VALUE_NOT_CHANGED;
4781 }
4782 }
4783 else
4784 {
4785 struct ui_out *uiout = current_uiout;
4786
4787 /* This seems like the only logical thing to do because
4788 if we temporarily ignored the watchpoint, then when
4789 we reenter the block in which it is valid it contains
4790 garbage (in the case of a function, it may have two
4791 garbage values, one before and one after the prologue).
4792 So we can't even detect the first assignment to it and
4793 watch after that (since the garbage may or may not equal
4794 the first value assigned). */
4795 /* We print all the stop information in
4796 breakpoint_ops->print_it, but in this case, by the time we
4797 call breakpoint_ops->print_it this bp will be deleted
4798 already. So we have no choice but print the information
4799 here. */
4800 if (ui_out_is_mi_like_p (uiout))
4801 ui_out_field_string
4802 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4803 ui_out_text (uiout, "\nWatchpoint ");
4804 ui_out_field_int (uiout, "wpnum", b->base.number);
4805 ui_out_text (uiout,
4806 " deleted because the program has left the block in\n\
4807 which its expression is valid.\n");
4808
4809 /* Make sure the watchpoint's commands aren't executed. */
4810 decref_counted_command_line (&b->base.commands);
4811 watchpoint_del_at_next_stop (b);
4812
4813 return WP_DELETED;
4814 }
4815 }
4816
4817 /* Return true if it looks like target has stopped due to hitting
4818 breakpoint location BL. This function does not check if we should
4819 stop, only if BL explains the stop. */
4820
4821 static int
4822 bpstat_check_location (const struct bp_location *bl,
4823 struct address_space *aspace, CORE_ADDR bp_addr,
4824 const struct target_waitstatus *ws)
4825 {
4826 struct breakpoint *b = bl->owner;
4827
4828 /* BL is from an existing breakpoint. */
4829 gdb_assert (b != NULL);
4830
4831 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4832 }
4833
4834 /* Determine if the watched values have actually changed, and we
4835 should stop. If not, set BS->stop to 0. */
4836
4837 static void
4838 bpstat_check_watchpoint (bpstat bs)
4839 {
4840 const struct bp_location *bl;
4841 struct watchpoint *b;
4842
4843 /* BS is built for existing struct breakpoint. */
4844 bl = bs->bp_location_at;
4845 gdb_assert (bl != NULL);
4846 b = (struct watchpoint *) bs->breakpoint_at;
4847 gdb_assert (b != NULL);
4848
4849 {
4850 int must_check_value = 0;
4851
4852 if (b->base.type == bp_watchpoint)
4853 /* For a software watchpoint, we must always check the
4854 watched value. */
4855 must_check_value = 1;
4856 else if (b->watchpoint_triggered == watch_triggered_yes)
4857 /* We have a hardware watchpoint (read, write, or access)
4858 and the target earlier reported an address watched by
4859 this watchpoint. */
4860 must_check_value = 1;
4861 else if (b->watchpoint_triggered == watch_triggered_unknown
4862 && b->base.type == bp_hardware_watchpoint)
4863 /* We were stopped by a hardware watchpoint, but the target could
4864 not report the data address. We must check the watchpoint's
4865 value. Access and read watchpoints are out of luck; without
4866 a data address, we can't figure it out. */
4867 must_check_value = 1;
4868
4869 if (must_check_value)
4870 {
4871 char *message
4872 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
4873 b->base.number);
4874 struct cleanup *cleanups = make_cleanup (xfree, message);
4875 int e = catch_errors (watchpoint_check, bs, message,
4876 RETURN_MASK_ALL);
4877 do_cleanups (cleanups);
4878 switch (e)
4879 {
4880 case WP_DELETED:
4881 /* We've already printed what needs to be printed. */
4882 bs->print_it = print_it_done;
4883 /* Stop. */
4884 break;
4885 case WP_IGNORE:
4886 bs->print_it = print_it_noop;
4887 bs->stop = 0;
4888 break;
4889 case WP_VALUE_CHANGED:
4890 if (b->base.type == bp_read_watchpoint)
4891 {
4892 /* There are two cases to consider here:
4893
4894 1. We're watching the triggered memory for reads.
4895 In that case, trust the target, and always report
4896 the watchpoint hit to the user. Even though
4897 reads don't cause value changes, the value may
4898 have changed since the last time it was read, and
4899 since we're not trapping writes, we will not see
4900 those, and as such we should ignore our notion of
4901 old value.
4902
4903 2. We're watching the triggered memory for both
4904 reads and writes. There are two ways this may
4905 happen:
4906
4907 2.1. This is a target that can't break on data
4908 reads only, but can break on accesses (reads or
4909 writes), such as e.g., x86. We detect this case
4910 at the time we try to insert read watchpoints.
4911
4912 2.2. Otherwise, the target supports read
4913 watchpoints, but, the user set an access or write
4914 watchpoint watching the same memory as this read
4915 watchpoint.
4916
4917 If we're watching memory writes as well as reads,
4918 ignore watchpoint hits when we find that the
4919 value hasn't changed, as reads don't cause
4920 changes. This still gives false positives when
4921 the program writes the same value to memory as
4922 what there was already in memory (we will confuse
4923 it for a read), but it's much better than
4924 nothing. */
4925
4926 int other_write_watchpoint = 0;
4927
4928 if (bl->watchpoint_type == hw_read)
4929 {
4930 struct breakpoint *other_b;
4931
4932 ALL_BREAKPOINTS (other_b)
4933 if (other_b->type == bp_hardware_watchpoint
4934 || other_b->type == bp_access_watchpoint)
4935 {
4936 struct watchpoint *other_w =
4937 (struct watchpoint *) other_b;
4938
4939 if (other_w->watchpoint_triggered
4940 == watch_triggered_yes)
4941 {
4942 other_write_watchpoint = 1;
4943 break;
4944 }
4945 }
4946 }
4947
4948 if (other_write_watchpoint
4949 || bl->watchpoint_type == hw_access)
4950 {
4951 /* We're watching the same memory for writes,
4952 and the value changed since the last time we
4953 updated it, so this trap must be for a write.
4954 Ignore it. */
4955 bs->print_it = print_it_noop;
4956 bs->stop = 0;
4957 }
4958 }
4959 break;
4960 case WP_VALUE_NOT_CHANGED:
4961 if (b->base.type == bp_hardware_watchpoint
4962 || b->base.type == bp_watchpoint)
4963 {
4964 /* Don't stop: write watchpoints shouldn't fire if
4965 the value hasn't changed. */
4966 bs->print_it = print_it_noop;
4967 bs->stop = 0;
4968 }
4969 /* Stop. */
4970 break;
4971 default:
4972 /* Can't happen. */
4973 case 0:
4974 /* Error from catch_errors. */
4975 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
4976 watchpoint_del_at_next_stop (b);
4977 /* We've already printed what needs to be printed. */
4978 bs->print_it = print_it_done;
4979 break;
4980 }
4981 }
4982 else /* must_check_value == 0 */
4983 {
4984 /* This is a case where some watchpoint(s) triggered, but
4985 not at the address of this watchpoint, or else no
4986 watchpoint triggered after all. So don't print
4987 anything for this watchpoint. */
4988 bs->print_it = print_it_noop;
4989 bs->stop = 0;
4990 }
4991 }
4992 }
4993
4994
4995 /* Check conditions (condition proper, frame, thread and ignore count)
4996 of breakpoint referred to by BS. If we should not stop for this
4997 breakpoint, set BS->stop to 0. */
4998
4999 static void
5000 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5001 {
5002 int thread_id = pid_to_thread_id (ptid);
5003 const struct bp_location *bl;
5004 struct breakpoint *b;
5005
5006 /* BS is built for existing struct breakpoint. */
5007 bl = bs->bp_location_at;
5008 gdb_assert (bl != NULL);
5009 b = bs->breakpoint_at;
5010 gdb_assert (b != NULL);
5011
5012 /* Even if the target evaluated the condition on its end and notified GDB, we
5013 need to do so again since GDB does not know if we stopped due to a
5014 breakpoint or a single step breakpoint. */
5015
5016 if (frame_id_p (b->frame_id)
5017 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5018 bs->stop = 0;
5019 else if (bs->stop)
5020 {
5021 int value_is_zero = 0;
5022 struct expression *cond;
5023
5024 /* Evaluate Python breakpoints that have a "stop"
5025 method implemented. */
5026 if (b->py_bp_object)
5027 bs->stop = gdbpy_should_stop (b->py_bp_object);
5028
5029 if (is_watchpoint (b))
5030 {
5031 struct watchpoint *w = (struct watchpoint *) b;
5032
5033 cond = w->cond_exp;
5034 }
5035 else
5036 cond = bl->cond;
5037
5038 if (cond && b->disposition != disp_del_at_next_stop)
5039 {
5040 int within_current_scope = 1;
5041 struct watchpoint * w;
5042
5043 /* We use value_mark and value_free_to_mark because it could
5044 be a long time before we return to the command level and
5045 call free_all_values. We can't call free_all_values
5046 because we might be in the middle of evaluating a
5047 function call. */
5048 struct value *mark = value_mark ();
5049
5050 if (is_watchpoint (b))
5051 w = (struct watchpoint *) b;
5052 else
5053 w = NULL;
5054
5055 /* Need to select the frame, with all that implies so that
5056 the conditions will have the right context. Because we
5057 use the frame, we will not see an inlined function's
5058 variables when we arrive at a breakpoint at the start
5059 of the inlined function; the current frame will be the
5060 call site. */
5061 if (w == NULL || w->cond_exp_valid_block == NULL)
5062 select_frame (get_current_frame ());
5063 else
5064 {
5065 struct frame_info *frame;
5066
5067 /* For local watchpoint expressions, which particular
5068 instance of a local is being watched matters, so we
5069 keep track of the frame to evaluate the expression
5070 in. To evaluate the condition however, it doesn't
5071 really matter which instantiation of the function
5072 where the condition makes sense triggers the
5073 watchpoint. This allows an expression like "watch
5074 global if q > 10" set in `func', catch writes to
5075 global on all threads that call `func', or catch
5076 writes on all recursive calls of `func' by a single
5077 thread. We simply always evaluate the condition in
5078 the innermost frame that's executing where it makes
5079 sense to evaluate the condition. It seems
5080 intuitive. */
5081 frame = block_innermost_frame (w->cond_exp_valid_block);
5082 if (frame != NULL)
5083 select_frame (frame);
5084 else
5085 within_current_scope = 0;
5086 }
5087 if (within_current_scope)
5088 value_is_zero
5089 = catch_errors (breakpoint_cond_eval, cond,
5090 "Error in testing breakpoint condition:\n",
5091 RETURN_MASK_ALL);
5092 else
5093 {
5094 warning (_("Watchpoint condition cannot be tested "
5095 "in the current scope"));
5096 /* If we failed to set the right context for this
5097 watchpoint, unconditionally report it. */
5098 value_is_zero = 0;
5099 }
5100 /* FIXME-someday, should give breakpoint #. */
5101 value_free_to_mark (mark);
5102 }
5103
5104 if (cond && value_is_zero)
5105 {
5106 bs->stop = 0;
5107 }
5108 else if (b->thread != -1 && b->thread != thread_id)
5109 {
5110 bs->stop = 0;
5111 }
5112 else if (b->ignore_count > 0)
5113 {
5114 b->ignore_count--;
5115 annotate_ignore_count_change ();
5116 bs->stop = 0;
5117 /* Increase the hit count even though we don't stop. */
5118 ++(b->hit_count);
5119 observer_notify_breakpoint_modified (b);
5120 }
5121 }
5122 }
5123
5124
5125 /* Get a bpstat associated with having just stopped at address
5126 BP_ADDR in thread PTID.
5127
5128 Determine whether we stopped at a breakpoint, etc, or whether we
5129 don't understand this stop. Result is a chain of bpstat's such
5130 that:
5131
5132 if we don't understand the stop, the result is a null pointer.
5133
5134 if we understand why we stopped, the result is not null.
5135
5136 Each element of the chain refers to a particular breakpoint or
5137 watchpoint at which we have stopped. (We may have stopped for
5138 several reasons concurrently.)
5139
5140 Each element of the chain has valid next, breakpoint_at,
5141 commands, FIXME??? fields. */
5142
5143 bpstat
5144 bpstat_stop_status (struct address_space *aspace,
5145 CORE_ADDR bp_addr, ptid_t ptid,
5146 const struct target_waitstatus *ws)
5147 {
5148 struct breakpoint *b = NULL;
5149 struct bp_location *bl;
5150 struct bp_location *loc;
5151 /* First item of allocated bpstat's. */
5152 bpstat bs_head = NULL, *bs_link = &bs_head;
5153 /* Pointer to the last thing in the chain currently. */
5154 bpstat bs;
5155 int ix;
5156 int need_remove_insert;
5157 int removed_any;
5158
5159 /* First, build the bpstat chain with locations that explain a
5160 target stop, while being careful to not set the target running,
5161 as that may invalidate locations (in particular watchpoint
5162 locations are recreated). Resuming will happen here with
5163 breakpoint conditions or watchpoint expressions that include
5164 inferior function calls. */
5165
5166 ALL_BREAKPOINTS (b)
5167 {
5168 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5169 continue;
5170
5171 for (bl = b->loc; bl != NULL; bl = bl->next)
5172 {
5173 /* For hardware watchpoints, we look only at the first
5174 location. The watchpoint_check function will work on the
5175 entire expression, not the individual locations. For
5176 read watchpoints, the watchpoints_triggered function has
5177 checked all locations already. */
5178 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5179 break;
5180
5181 if (!bl->enabled || bl->shlib_disabled)
5182 continue;
5183
5184 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5185 continue;
5186
5187 /* Come here if it's a watchpoint, or if the break address
5188 matches. */
5189
5190 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5191 explain stop. */
5192
5193 /* Assume we stop. Should we find a watchpoint that is not
5194 actually triggered, or if the condition of the breakpoint
5195 evaluates as false, we'll reset 'stop' to 0. */
5196 bs->stop = 1;
5197 bs->print = 1;
5198
5199 /* If this is a scope breakpoint, mark the associated
5200 watchpoint as triggered so that we will handle the
5201 out-of-scope event. We'll get to the watchpoint next
5202 iteration. */
5203 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5204 {
5205 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5206
5207 w->watchpoint_triggered = watch_triggered_yes;
5208 }
5209 }
5210 }
5211
5212 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5213 {
5214 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5215 {
5216 bs = bpstat_alloc (loc, &bs_link);
5217 /* For hits of moribund locations, we should just proceed. */
5218 bs->stop = 0;
5219 bs->print = 0;
5220 bs->print_it = print_it_noop;
5221 }
5222 }
5223
5224 /* A bit of special processing for shlib breakpoints. We need to
5225 process solib loading here, so that the lists of loaded and
5226 unloaded libraries are correct before we handle "catch load" and
5227 "catch unload". */
5228 for (bs = bs_head; bs != NULL; bs = bs->next)
5229 {
5230 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5231 {
5232 handle_solib_event ();
5233 break;
5234 }
5235 }
5236
5237 /* Now go through the locations that caused the target to stop, and
5238 check whether we're interested in reporting this stop to higher
5239 layers, or whether we should resume the target transparently. */
5240
5241 removed_any = 0;
5242
5243 for (bs = bs_head; bs != NULL; bs = bs->next)
5244 {
5245 if (!bs->stop)
5246 continue;
5247
5248 b = bs->breakpoint_at;
5249 b->ops->check_status (bs);
5250 if (bs->stop)
5251 {
5252 bpstat_check_breakpoint_conditions (bs, ptid);
5253
5254 if (bs->stop)
5255 {
5256 ++(b->hit_count);
5257 observer_notify_breakpoint_modified (b);
5258
5259 /* We will stop here. */
5260 if (b->disposition == disp_disable)
5261 {
5262 --(b->enable_count);
5263 if (b->enable_count <= 0
5264 && b->enable_state != bp_permanent)
5265 b->enable_state = bp_disabled;
5266 removed_any = 1;
5267 }
5268 if (b->silent)
5269 bs->print = 0;
5270 bs->commands = b->commands;
5271 incref_counted_command_line (bs->commands);
5272 if (command_line_is_silent (bs->commands
5273 ? bs->commands->commands : NULL))
5274 bs->print = 0;
5275 }
5276
5277 }
5278
5279 /* Print nothing for this entry if we don't stop or don't
5280 print. */
5281 if (!bs->stop || !bs->print)
5282 bs->print_it = print_it_noop;
5283 }
5284
5285 /* If we aren't stopping, the value of some hardware watchpoint may
5286 not have changed, but the intermediate memory locations we are
5287 watching may have. Don't bother if we're stopping; this will get
5288 done later. */
5289 need_remove_insert = 0;
5290 if (! bpstat_causes_stop (bs_head))
5291 for (bs = bs_head; bs != NULL; bs = bs->next)
5292 if (!bs->stop
5293 && bs->breakpoint_at
5294 && is_hardware_watchpoint (bs->breakpoint_at))
5295 {
5296 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5297
5298 update_watchpoint (w, 0 /* don't reparse. */);
5299 need_remove_insert = 1;
5300 }
5301
5302 if (need_remove_insert)
5303 update_global_location_list (1);
5304 else if (removed_any)
5305 update_global_location_list (0);
5306
5307 return bs_head;
5308 }
5309
5310 static void
5311 handle_jit_event (void)
5312 {
5313 struct frame_info *frame;
5314 struct gdbarch *gdbarch;
5315
5316 /* Switch terminal for any messages produced by
5317 breakpoint_re_set. */
5318 target_terminal_ours_for_output ();
5319
5320 frame = get_current_frame ();
5321 gdbarch = get_frame_arch (frame);
5322
5323 jit_event_handler (gdbarch);
5324
5325 target_terminal_inferior ();
5326 }
5327
5328 /* Handle an solib event by calling solib_add. */
5329
5330 void
5331 handle_solib_event (void)
5332 {
5333 clear_program_space_solib_cache (current_inferior ()->pspace);
5334
5335 /* Check for any newly added shared libraries if we're supposed to
5336 be adding them automatically. Switch terminal for any messages
5337 produced by breakpoint_re_set. */
5338 target_terminal_ours_for_output ();
5339 #ifdef SOLIB_ADD
5340 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
5341 #else
5342 solib_add (NULL, 0, &current_target, auto_solib_add);
5343 #endif
5344 target_terminal_inferior ();
5345 }
5346
5347 /* Prepare WHAT final decision for infrun. */
5348
5349 /* Decide what infrun needs to do with this bpstat. */
5350
5351 struct bpstat_what
5352 bpstat_what (bpstat bs_head)
5353 {
5354 struct bpstat_what retval;
5355 int jit_event = 0;
5356 bpstat bs;
5357
5358 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5359 retval.call_dummy = STOP_NONE;
5360 retval.is_longjmp = 0;
5361
5362 for (bs = bs_head; bs != NULL; bs = bs->next)
5363 {
5364 /* Extract this BS's action. After processing each BS, we check
5365 if its action overrides all we've seem so far. */
5366 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5367 enum bptype bptype;
5368
5369 if (bs->breakpoint_at == NULL)
5370 {
5371 /* I suspect this can happen if it was a momentary
5372 breakpoint which has since been deleted. */
5373 bptype = bp_none;
5374 }
5375 else
5376 bptype = bs->breakpoint_at->type;
5377
5378 switch (bptype)
5379 {
5380 case bp_none:
5381 break;
5382 case bp_breakpoint:
5383 case bp_hardware_breakpoint:
5384 case bp_until:
5385 case bp_finish:
5386 case bp_shlib_event:
5387 if (bs->stop)
5388 {
5389 if (bs->print)
5390 this_action = BPSTAT_WHAT_STOP_NOISY;
5391 else
5392 this_action = BPSTAT_WHAT_STOP_SILENT;
5393 }
5394 else
5395 this_action = BPSTAT_WHAT_SINGLE;
5396 break;
5397 case bp_watchpoint:
5398 case bp_hardware_watchpoint:
5399 case bp_read_watchpoint:
5400 case bp_access_watchpoint:
5401 if (bs->stop)
5402 {
5403 if (bs->print)
5404 this_action = BPSTAT_WHAT_STOP_NOISY;
5405 else
5406 this_action = BPSTAT_WHAT_STOP_SILENT;
5407 }
5408 else
5409 {
5410 /* There was a watchpoint, but we're not stopping.
5411 This requires no further action. */
5412 }
5413 break;
5414 case bp_longjmp:
5415 case bp_longjmp_call_dummy:
5416 case bp_exception:
5417 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5418 retval.is_longjmp = bptype != bp_exception;
5419 break;
5420 case bp_longjmp_resume:
5421 case bp_exception_resume:
5422 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5423 retval.is_longjmp = bptype == bp_longjmp_resume;
5424 break;
5425 case bp_step_resume:
5426 if (bs->stop)
5427 this_action = BPSTAT_WHAT_STEP_RESUME;
5428 else
5429 {
5430 /* It is for the wrong frame. */
5431 this_action = BPSTAT_WHAT_SINGLE;
5432 }
5433 break;
5434 case bp_hp_step_resume:
5435 if (bs->stop)
5436 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5437 else
5438 {
5439 /* It is for the wrong frame. */
5440 this_action = BPSTAT_WHAT_SINGLE;
5441 }
5442 break;
5443 case bp_watchpoint_scope:
5444 case bp_thread_event:
5445 case bp_overlay_event:
5446 case bp_longjmp_master:
5447 case bp_std_terminate_master:
5448 case bp_exception_master:
5449 this_action = BPSTAT_WHAT_SINGLE;
5450 break;
5451 case bp_catchpoint:
5452 if (bs->stop)
5453 {
5454 if (bs->print)
5455 this_action = BPSTAT_WHAT_STOP_NOISY;
5456 else
5457 this_action = BPSTAT_WHAT_STOP_SILENT;
5458 }
5459 else
5460 {
5461 /* There was a catchpoint, but we're not stopping.
5462 This requires no further action. */
5463 }
5464 break;
5465 case bp_jit_event:
5466 jit_event = 1;
5467 this_action = BPSTAT_WHAT_SINGLE;
5468 break;
5469 case bp_call_dummy:
5470 /* Make sure the action is stop (silent or noisy),
5471 so infrun.c pops the dummy frame. */
5472 retval.call_dummy = STOP_STACK_DUMMY;
5473 this_action = BPSTAT_WHAT_STOP_SILENT;
5474 break;
5475 case bp_std_terminate:
5476 /* Make sure the action is stop (silent or noisy),
5477 so infrun.c pops the dummy frame. */
5478 retval.call_dummy = STOP_STD_TERMINATE;
5479 this_action = BPSTAT_WHAT_STOP_SILENT;
5480 break;
5481 case bp_tracepoint:
5482 case bp_fast_tracepoint:
5483 case bp_static_tracepoint:
5484 /* Tracepoint hits should not be reported back to GDB, and
5485 if one got through somehow, it should have been filtered
5486 out already. */
5487 internal_error (__FILE__, __LINE__,
5488 _("bpstat_what: tracepoint encountered"));
5489 break;
5490 case bp_gnu_ifunc_resolver:
5491 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5492 this_action = BPSTAT_WHAT_SINGLE;
5493 break;
5494 case bp_gnu_ifunc_resolver_return:
5495 /* The breakpoint will be removed, execution will restart from the
5496 PC of the former breakpoint. */
5497 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5498 break;
5499
5500 case bp_dprintf:
5501 this_action = BPSTAT_WHAT_STOP_SILENT;
5502 break;
5503
5504 default:
5505 internal_error (__FILE__, __LINE__,
5506 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5507 }
5508
5509 retval.main_action = max (retval.main_action, this_action);
5510 }
5511
5512 /* These operations may affect the bs->breakpoint_at state so they are
5513 delayed after MAIN_ACTION is decided above. */
5514
5515 if (jit_event)
5516 {
5517 if (debug_infrun)
5518 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5519
5520 handle_jit_event ();
5521 }
5522
5523 for (bs = bs_head; bs != NULL; bs = bs->next)
5524 {
5525 struct breakpoint *b = bs->breakpoint_at;
5526
5527 if (b == NULL)
5528 continue;
5529 switch (b->type)
5530 {
5531 case bp_gnu_ifunc_resolver:
5532 gnu_ifunc_resolver_stop (b);
5533 break;
5534 case bp_gnu_ifunc_resolver_return:
5535 gnu_ifunc_resolver_return_stop (b);
5536 break;
5537 }
5538 }
5539
5540 return retval;
5541 }
5542
5543 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5544 without hardware support). This isn't related to a specific bpstat,
5545 just to things like whether watchpoints are set. */
5546
5547 int
5548 bpstat_should_step (void)
5549 {
5550 struct breakpoint *b;
5551
5552 ALL_BREAKPOINTS (b)
5553 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5554 return 1;
5555 return 0;
5556 }
5557
5558 int
5559 bpstat_causes_stop (bpstat bs)
5560 {
5561 for (; bs != NULL; bs = bs->next)
5562 if (bs->stop)
5563 return 1;
5564
5565 return 0;
5566 }
5567
5568 \f
5569
5570 /* Compute a string of spaces suitable to indent the next line
5571 so it starts at the position corresponding to the table column
5572 named COL_NAME in the currently active table of UIOUT. */
5573
5574 static char *
5575 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5576 {
5577 static char wrap_indent[80];
5578 int i, total_width, width, align;
5579 char *text;
5580
5581 total_width = 0;
5582 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5583 {
5584 if (strcmp (text, col_name) == 0)
5585 {
5586 gdb_assert (total_width < sizeof wrap_indent);
5587 memset (wrap_indent, ' ', total_width);
5588 wrap_indent[total_width] = 0;
5589
5590 return wrap_indent;
5591 }
5592
5593 total_width += width + 1;
5594 }
5595
5596 return NULL;
5597 }
5598
5599 /* Determine if the locations of this breakpoint will have their conditions
5600 evaluated by the target, host or a mix of both. Returns the following:
5601
5602 "host": Host evals condition.
5603 "host or target": Host or Target evals condition.
5604 "target": Target evals condition.
5605 */
5606
5607 static const char *
5608 bp_condition_evaluator (struct breakpoint *b)
5609 {
5610 struct bp_location *bl;
5611 char host_evals = 0;
5612 char target_evals = 0;
5613
5614 if (!b)
5615 return NULL;
5616
5617 if (!is_breakpoint (b))
5618 return NULL;
5619
5620 if (gdb_evaluates_breakpoint_condition_p ()
5621 || !target_supports_evaluation_of_breakpoint_conditions ())
5622 return condition_evaluation_host;
5623
5624 for (bl = b->loc; bl; bl = bl->next)
5625 {
5626 if (bl->cond_bytecode)
5627 target_evals++;
5628 else
5629 host_evals++;
5630 }
5631
5632 if (host_evals && target_evals)
5633 return condition_evaluation_both;
5634 else if (target_evals)
5635 return condition_evaluation_target;
5636 else
5637 return condition_evaluation_host;
5638 }
5639
5640 /* Determine the breakpoint location's condition evaluator. This is
5641 similar to bp_condition_evaluator, but for locations. */
5642
5643 static const char *
5644 bp_location_condition_evaluator (struct bp_location *bl)
5645 {
5646 if (bl && !is_breakpoint (bl->owner))
5647 return NULL;
5648
5649 if (gdb_evaluates_breakpoint_condition_p ()
5650 || !target_supports_evaluation_of_breakpoint_conditions ())
5651 return condition_evaluation_host;
5652
5653 if (bl && bl->cond_bytecode)
5654 return condition_evaluation_target;
5655 else
5656 return condition_evaluation_host;
5657 }
5658
5659 /* Print the LOC location out of the list of B->LOC locations. */
5660
5661 static void
5662 print_breakpoint_location (struct breakpoint *b,
5663 struct bp_location *loc)
5664 {
5665 struct ui_out *uiout = current_uiout;
5666 struct cleanup *old_chain = save_current_program_space ();
5667
5668 if (loc != NULL && loc->shlib_disabled)
5669 loc = NULL;
5670
5671 if (loc != NULL)
5672 set_current_program_space (loc->pspace);
5673
5674 if (b->display_canonical)
5675 ui_out_field_string (uiout, "what", b->addr_string);
5676 else if (loc && loc->source_file)
5677 {
5678 struct symbol *sym
5679 = find_pc_sect_function (loc->address, loc->section);
5680 if (sym)
5681 {
5682 ui_out_text (uiout, "in ");
5683 ui_out_field_string (uiout, "func",
5684 SYMBOL_PRINT_NAME (sym));
5685 ui_out_text (uiout, " ");
5686 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
5687 ui_out_text (uiout, "at ");
5688 }
5689 ui_out_field_string (uiout, "file", loc->source_file);
5690 ui_out_text (uiout, ":");
5691
5692 if (ui_out_is_mi_like_p (uiout))
5693 {
5694 struct symtab_and_line sal = find_pc_line (loc->address, 0);
5695 const char *fullname = symtab_to_fullname (sal.symtab);
5696
5697 if (fullname)
5698 ui_out_field_string (uiout, "fullname", fullname);
5699 }
5700
5701 ui_out_field_int (uiout, "line", loc->line_number);
5702 }
5703 else if (loc)
5704 {
5705 struct ui_file *stb = mem_fileopen ();
5706 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
5707
5708 print_address_symbolic (loc->gdbarch, loc->address, stb,
5709 demangle, "");
5710 ui_out_field_stream (uiout, "at", stb);
5711
5712 do_cleanups (stb_chain);
5713 }
5714 else
5715 ui_out_field_string (uiout, "pending", b->addr_string);
5716
5717 if (loc && is_breakpoint (b)
5718 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5719 && bp_condition_evaluator (b) == condition_evaluation_both)
5720 {
5721 ui_out_text (uiout, " (");
5722 ui_out_field_string (uiout, "evaluated-by",
5723 bp_location_condition_evaluator (loc));
5724 ui_out_text (uiout, ")");
5725 }
5726
5727 do_cleanups (old_chain);
5728 }
5729
5730 static const char *
5731 bptype_string (enum bptype type)
5732 {
5733 struct ep_type_description
5734 {
5735 enum bptype type;
5736 char *description;
5737 };
5738 static struct ep_type_description bptypes[] =
5739 {
5740 {bp_none, "?deleted?"},
5741 {bp_breakpoint, "breakpoint"},
5742 {bp_hardware_breakpoint, "hw breakpoint"},
5743 {bp_until, "until"},
5744 {bp_finish, "finish"},
5745 {bp_watchpoint, "watchpoint"},
5746 {bp_hardware_watchpoint, "hw watchpoint"},
5747 {bp_read_watchpoint, "read watchpoint"},
5748 {bp_access_watchpoint, "acc watchpoint"},
5749 {bp_longjmp, "longjmp"},
5750 {bp_longjmp_resume, "longjmp resume"},
5751 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5752 {bp_exception, "exception"},
5753 {bp_exception_resume, "exception resume"},
5754 {bp_step_resume, "step resume"},
5755 {bp_hp_step_resume, "high-priority step resume"},
5756 {bp_watchpoint_scope, "watchpoint scope"},
5757 {bp_call_dummy, "call dummy"},
5758 {bp_std_terminate, "std::terminate"},
5759 {bp_shlib_event, "shlib events"},
5760 {bp_thread_event, "thread events"},
5761 {bp_overlay_event, "overlay events"},
5762 {bp_longjmp_master, "longjmp master"},
5763 {bp_std_terminate_master, "std::terminate master"},
5764 {bp_exception_master, "exception master"},
5765 {bp_catchpoint, "catchpoint"},
5766 {bp_tracepoint, "tracepoint"},
5767 {bp_fast_tracepoint, "fast tracepoint"},
5768 {bp_static_tracepoint, "static tracepoint"},
5769 {bp_dprintf, "dprintf"},
5770 {bp_jit_event, "jit events"},
5771 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5772 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5773 };
5774
5775 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5776 || ((int) type != bptypes[(int) type].type))
5777 internal_error (__FILE__, __LINE__,
5778 _("bptypes table does not describe type #%d."),
5779 (int) type);
5780
5781 return bptypes[(int) type].description;
5782 }
5783
5784 /* Print B to gdb_stdout. */
5785
5786 static void
5787 print_one_breakpoint_location (struct breakpoint *b,
5788 struct bp_location *loc,
5789 int loc_number,
5790 struct bp_location **last_loc,
5791 int allflag)
5792 {
5793 struct command_line *l;
5794 static char bpenables[] = "nynny";
5795
5796 struct ui_out *uiout = current_uiout;
5797 int header_of_multiple = 0;
5798 int part_of_multiple = (loc != NULL);
5799 struct value_print_options opts;
5800
5801 get_user_print_options (&opts);
5802
5803 gdb_assert (!loc || loc_number != 0);
5804 /* See comment in print_one_breakpoint concerning treatment of
5805 breakpoints with single disabled location. */
5806 if (loc == NULL
5807 && (b->loc != NULL
5808 && (b->loc->next != NULL || !b->loc->enabled)))
5809 header_of_multiple = 1;
5810 if (loc == NULL)
5811 loc = b->loc;
5812
5813 annotate_record ();
5814
5815 /* 1 */
5816 annotate_field (0);
5817 if (part_of_multiple)
5818 {
5819 char *formatted;
5820 formatted = xstrprintf ("%d.%d", b->number, loc_number);
5821 ui_out_field_string (uiout, "number", formatted);
5822 xfree (formatted);
5823 }
5824 else
5825 {
5826 ui_out_field_int (uiout, "number", b->number);
5827 }
5828
5829 /* 2 */
5830 annotate_field (1);
5831 if (part_of_multiple)
5832 ui_out_field_skip (uiout, "type");
5833 else
5834 ui_out_field_string (uiout, "type", bptype_string (b->type));
5835
5836 /* 3 */
5837 annotate_field (2);
5838 if (part_of_multiple)
5839 ui_out_field_skip (uiout, "disp");
5840 else
5841 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
5842
5843
5844 /* 4 */
5845 annotate_field (3);
5846 if (part_of_multiple)
5847 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
5848 else
5849 ui_out_field_fmt (uiout, "enabled", "%c",
5850 bpenables[(int) b->enable_state]);
5851 ui_out_spaces (uiout, 2);
5852
5853
5854 /* 5 and 6 */
5855 if (b->ops != NULL && b->ops->print_one != NULL)
5856 {
5857 /* Although the print_one can possibly print all locations,
5858 calling it here is not likely to get any nice result. So,
5859 make sure there's just one location. */
5860 gdb_assert (b->loc == NULL || b->loc->next == NULL);
5861 b->ops->print_one (b, last_loc);
5862 }
5863 else
5864 switch (b->type)
5865 {
5866 case bp_none:
5867 internal_error (__FILE__, __LINE__,
5868 _("print_one_breakpoint: bp_none encountered\n"));
5869 break;
5870
5871 case bp_watchpoint:
5872 case bp_hardware_watchpoint:
5873 case bp_read_watchpoint:
5874 case bp_access_watchpoint:
5875 {
5876 struct watchpoint *w = (struct watchpoint *) b;
5877
5878 /* Field 4, the address, is omitted (which makes the columns
5879 not line up too nicely with the headers, but the effect
5880 is relatively readable). */
5881 if (opts.addressprint)
5882 ui_out_field_skip (uiout, "addr");
5883 annotate_field (5);
5884 ui_out_field_string (uiout, "what", w->exp_string);
5885 }
5886 break;
5887
5888 case bp_breakpoint:
5889 case bp_hardware_breakpoint:
5890 case bp_until:
5891 case bp_finish:
5892 case bp_longjmp:
5893 case bp_longjmp_resume:
5894 case bp_longjmp_call_dummy:
5895 case bp_exception:
5896 case bp_exception_resume:
5897 case bp_step_resume:
5898 case bp_hp_step_resume:
5899 case bp_watchpoint_scope:
5900 case bp_call_dummy:
5901 case bp_std_terminate:
5902 case bp_shlib_event:
5903 case bp_thread_event:
5904 case bp_overlay_event:
5905 case bp_longjmp_master:
5906 case bp_std_terminate_master:
5907 case bp_exception_master:
5908 case bp_tracepoint:
5909 case bp_fast_tracepoint:
5910 case bp_static_tracepoint:
5911 case bp_dprintf:
5912 case bp_jit_event:
5913 case bp_gnu_ifunc_resolver:
5914 case bp_gnu_ifunc_resolver_return:
5915 if (opts.addressprint)
5916 {
5917 annotate_field (4);
5918 if (header_of_multiple)
5919 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
5920 else if (b->loc == NULL || loc->shlib_disabled)
5921 ui_out_field_string (uiout, "addr", "<PENDING>");
5922 else
5923 ui_out_field_core_addr (uiout, "addr",
5924 loc->gdbarch, loc->address);
5925 }
5926 annotate_field (5);
5927 if (!header_of_multiple)
5928 print_breakpoint_location (b, loc);
5929 if (b->loc)
5930 *last_loc = b->loc;
5931 break;
5932 }
5933
5934
5935 /* For backward compatibility, don't display inferiors unless there
5936 are several. */
5937 if (loc != NULL
5938 && !header_of_multiple
5939 && (allflag
5940 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
5941 && (number_of_program_spaces () > 1
5942 || number_of_inferiors () > 1)
5943 /* LOC is for existing B, it cannot be in
5944 moribund_locations and thus having NULL OWNER. */
5945 && loc->owner->type != bp_catchpoint)))
5946 {
5947 struct inferior *inf;
5948 int first = 1;
5949
5950 for (inf = inferior_list; inf != NULL; inf = inf->next)
5951 {
5952 if (inf->pspace == loc->pspace)
5953 {
5954 if (first)
5955 {
5956 first = 0;
5957 ui_out_text (uiout, " inf ");
5958 }
5959 else
5960 ui_out_text (uiout, ", ");
5961 ui_out_text (uiout, plongest (inf->num));
5962 }
5963 }
5964 }
5965
5966 if (!part_of_multiple)
5967 {
5968 if (b->thread != -1)
5969 {
5970 /* FIXME: This seems to be redundant and lost here; see the
5971 "stop only in" line a little further down. */
5972 ui_out_text (uiout, " thread ");
5973 ui_out_field_int (uiout, "thread", b->thread);
5974 }
5975 else if (b->task != 0)
5976 {
5977 ui_out_text (uiout, " task ");
5978 ui_out_field_int (uiout, "task", b->task);
5979 }
5980 }
5981
5982 ui_out_text (uiout, "\n");
5983
5984 if (!part_of_multiple)
5985 b->ops->print_one_detail (b, uiout);
5986
5987 if (part_of_multiple && frame_id_p (b->frame_id))
5988 {
5989 annotate_field (6);
5990 ui_out_text (uiout, "\tstop only in stack frame at ");
5991 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
5992 the frame ID. */
5993 ui_out_field_core_addr (uiout, "frame",
5994 b->gdbarch, b->frame_id.stack_addr);
5995 ui_out_text (uiout, "\n");
5996 }
5997
5998 if (!part_of_multiple && b->cond_string)
5999 {
6000 annotate_field (7);
6001 if (is_tracepoint (b))
6002 ui_out_text (uiout, "\ttrace only if ");
6003 else
6004 ui_out_text (uiout, "\tstop only if ");
6005 ui_out_field_string (uiout, "cond", b->cond_string);
6006
6007 /* Print whether the target is doing the breakpoint's condition
6008 evaluation. If GDB is doing the evaluation, don't print anything. */
6009 if (is_breakpoint (b)
6010 && breakpoint_condition_evaluation_mode ()
6011 == condition_evaluation_target)
6012 {
6013 ui_out_text (uiout, " (");
6014 ui_out_field_string (uiout, "evaluated-by",
6015 bp_condition_evaluator (b));
6016 ui_out_text (uiout, " evals)");
6017 }
6018 ui_out_text (uiout, "\n");
6019 }
6020
6021 if (!part_of_multiple && b->thread != -1)
6022 {
6023 /* FIXME should make an annotation for this. */
6024 ui_out_text (uiout, "\tstop only in thread ");
6025 ui_out_field_int (uiout, "thread", b->thread);
6026 ui_out_text (uiout, "\n");
6027 }
6028
6029 if (!part_of_multiple)
6030 {
6031 if (b->hit_count)
6032 {
6033 /* FIXME should make an annotation for this. */
6034 if (is_catchpoint (b))
6035 ui_out_text (uiout, "\tcatchpoint");
6036 else if (is_tracepoint (b))
6037 ui_out_text (uiout, "\ttracepoint");
6038 else
6039 ui_out_text (uiout, "\tbreakpoint");
6040 ui_out_text (uiout, " already hit ");
6041 ui_out_field_int (uiout, "times", b->hit_count);
6042 if (b->hit_count == 1)
6043 ui_out_text (uiout, " time\n");
6044 else
6045 ui_out_text (uiout, " times\n");
6046 }
6047 else
6048 {
6049 /* Output the count also if it is zero, but only if this is mi. */
6050 if (ui_out_is_mi_like_p (uiout))
6051 ui_out_field_int (uiout, "times", b->hit_count);
6052 }
6053 }
6054
6055 if (!part_of_multiple && b->ignore_count)
6056 {
6057 annotate_field (8);
6058 ui_out_text (uiout, "\tignore next ");
6059 ui_out_field_int (uiout, "ignore", b->ignore_count);
6060 ui_out_text (uiout, " hits\n");
6061 }
6062
6063 /* Note that an enable count of 1 corresponds to "enable once"
6064 behavior, which is reported by the combination of enablement and
6065 disposition, so we don't need to mention it here. */
6066 if (!part_of_multiple && b->enable_count > 1)
6067 {
6068 annotate_field (8);
6069 ui_out_text (uiout, "\tdisable after ");
6070 /* Tweak the wording to clarify that ignore and enable counts
6071 are distinct, and have additive effect. */
6072 if (b->ignore_count)
6073 ui_out_text (uiout, "additional ");
6074 else
6075 ui_out_text (uiout, "next ");
6076 ui_out_field_int (uiout, "enable", b->enable_count);
6077 ui_out_text (uiout, " hits\n");
6078 }
6079
6080 if (!part_of_multiple && is_tracepoint (b))
6081 {
6082 struct tracepoint *tp = (struct tracepoint *) b;
6083
6084 if (tp->traceframe_usage)
6085 {
6086 ui_out_text (uiout, "\ttrace buffer usage ");
6087 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6088 ui_out_text (uiout, " bytes\n");
6089 }
6090 }
6091
6092 if (!part_of_multiple && b->extra_string
6093 && b->type == bp_dprintf && !b->commands)
6094 {
6095 annotate_field (7);
6096 ui_out_text (uiout, "\t(agent printf) ");
6097 ui_out_field_string (uiout, "printf", b->extra_string);
6098 ui_out_text (uiout, "\n");
6099 }
6100
6101 l = b->commands ? b->commands->commands : NULL;
6102 if (!part_of_multiple && l)
6103 {
6104 struct cleanup *script_chain;
6105
6106 annotate_field (9);
6107 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6108 print_command_lines (uiout, l, 4);
6109 do_cleanups (script_chain);
6110 }
6111
6112 if (is_tracepoint (b))
6113 {
6114 struct tracepoint *t = (struct tracepoint *) b;
6115
6116 if (!part_of_multiple && t->pass_count)
6117 {
6118 annotate_field (10);
6119 ui_out_text (uiout, "\tpass count ");
6120 ui_out_field_int (uiout, "pass", t->pass_count);
6121 ui_out_text (uiout, " \n");
6122 }
6123 }
6124
6125 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6126 {
6127 if (is_watchpoint (b))
6128 {
6129 struct watchpoint *w = (struct watchpoint *) b;
6130
6131 ui_out_field_string (uiout, "original-location", w->exp_string);
6132 }
6133 else if (b->addr_string)
6134 ui_out_field_string (uiout, "original-location", b->addr_string);
6135 }
6136 }
6137
6138 static void
6139 print_one_breakpoint (struct breakpoint *b,
6140 struct bp_location **last_loc,
6141 int allflag)
6142 {
6143 struct cleanup *bkpt_chain;
6144 struct ui_out *uiout = current_uiout;
6145
6146 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6147
6148 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6149 do_cleanups (bkpt_chain);
6150
6151 /* If this breakpoint has custom print function,
6152 it's already printed. Otherwise, print individual
6153 locations, if any. */
6154 if (b->ops == NULL || b->ops->print_one == NULL)
6155 {
6156 /* If breakpoint has a single location that is disabled, we
6157 print it as if it had several locations, since otherwise it's
6158 hard to represent "breakpoint enabled, location disabled"
6159 situation.
6160
6161 Note that while hardware watchpoints have several locations
6162 internally, that's not a property exposed to user. */
6163 if (b->loc
6164 && !is_hardware_watchpoint (b)
6165 && (b->loc->next || !b->loc->enabled))
6166 {
6167 struct bp_location *loc;
6168 int n = 1;
6169
6170 for (loc = b->loc; loc; loc = loc->next, ++n)
6171 {
6172 struct cleanup *inner2 =
6173 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6174 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6175 do_cleanups (inner2);
6176 }
6177 }
6178 }
6179 }
6180
6181 static int
6182 breakpoint_address_bits (struct breakpoint *b)
6183 {
6184 int print_address_bits = 0;
6185 struct bp_location *loc;
6186
6187 for (loc = b->loc; loc; loc = loc->next)
6188 {
6189 int addr_bit;
6190
6191 /* Software watchpoints that aren't watching memory don't have
6192 an address to print. */
6193 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6194 continue;
6195
6196 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6197 if (addr_bit > print_address_bits)
6198 print_address_bits = addr_bit;
6199 }
6200
6201 return print_address_bits;
6202 }
6203
6204 struct captured_breakpoint_query_args
6205 {
6206 int bnum;
6207 };
6208
6209 static int
6210 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6211 {
6212 struct captured_breakpoint_query_args *args = data;
6213 struct breakpoint *b;
6214 struct bp_location *dummy_loc = NULL;
6215
6216 ALL_BREAKPOINTS (b)
6217 {
6218 if (args->bnum == b->number)
6219 {
6220 print_one_breakpoint (b, &dummy_loc, 0);
6221 return GDB_RC_OK;
6222 }
6223 }
6224 return GDB_RC_NONE;
6225 }
6226
6227 enum gdb_rc
6228 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6229 char **error_message)
6230 {
6231 struct captured_breakpoint_query_args args;
6232
6233 args.bnum = bnum;
6234 /* For the moment we don't trust print_one_breakpoint() to not throw
6235 an error. */
6236 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6237 error_message, RETURN_MASK_ALL) < 0)
6238 return GDB_RC_FAIL;
6239 else
6240 return GDB_RC_OK;
6241 }
6242
6243 /* Return true if this breakpoint was set by the user, false if it is
6244 internal or momentary. */
6245
6246 int
6247 user_breakpoint_p (struct breakpoint *b)
6248 {
6249 return b->number > 0;
6250 }
6251
6252 /* Print information on user settable breakpoint (watchpoint, etc)
6253 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6254 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6255 FILTER is non-NULL, call it on each breakpoint and only include the
6256 ones for which it returns non-zero. Return the total number of
6257 breakpoints listed. */
6258
6259 static int
6260 breakpoint_1 (char *args, int allflag,
6261 int (*filter) (const struct breakpoint *))
6262 {
6263 struct breakpoint *b;
6264 struct bp_location *last_loc = NULL;
6265 int nr_printable_breakpoints;
6266 struct cleanup *bkpttbl_chain;
6267 struct value_print_options opts;
6268 int print_address_bits = 0;
6269 int print_type_col_width = 14;
6270 struct ui_out *uiout = current_uiout;
6271
6272 get_user_print_options (&opts);
6273
6274 /* Compute the number of rows in the table, as well as the size
6275 required for address fields. */
6276 nr_printable_breakpoints = 0;
6277 ALL_BREAKPOINTS (b)
6278 {
6279 /* If we have a filter, only list the breakpoints it accepts. */
6280 if (filter && !filter (b))
6281 continue;
6282
6283 /* If we have an "args" string, it is a list of breakpoints to
6284 accept. Skip the others. */
6285 if (args != NULL && *args != '\0')
6286 {
6287 if (allflag && parse_and_eval_long (args) != b->number)
6288 continue;
6289 if (!allflag && !number_is_in_list (args, b->number))
6290 continue;
6291 }
6292
6293 if (allflag || user_breakpoint_p (b))
6294 {
6295 int addr_bit, type_len;
6296
6297 addr_bit = breakpoint_address_bits (b);
6298 if (addr_bit > print_address_bits)
6299 print_address_bits = addr_bit;
6300
6301 type_len = strlen (bptype_string (b->type));
6302 if (type_len > print_type_col_width)
6303 print_type_col_width = type_len;
6304
6305 nr_printable_breakpoints++;
6306 }
6307 }
6308
6309 if (opts.addressprint)
6310 bkpttbl_chain
6311 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6312 nr_printable_breakpoints,
6313 "BreakpointTable");
6314 else
6315 bkpttbl_chain
6316 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6317 nr_printable_breakpoints,
6318 "BreakpointTable");
6319
6320 if (nr_printable_breakpoints > 0)
6321 annotate_breakpoints_headers ();
6322 if (nr_printable_breakpoints > 0)
6323 annotate_field (0);
6324 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6325 if (nr_printable_breakpoints > 0)
6326 annotate_field (1);
6327 ui_out_table_header (uiout, print_type_col_width, ui_left,
6328 "type", "Type"); /* 2 */
6329 if (nr_printable_breakpoints > 0)
6330 annotate_field (2);
6331 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6332 if (nr_printable_breakpoints > 0)
6333 annotate_field (3);
6334 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6335 if (opts.addressprint)
6336 {
6337 if (nr_printable_breakpoints > 0)
6338 annotate_field (4);
6339 if (print_address_bits <= 32)
6340 ui_out_table_header (uiout, 10, ui_left,
6341 "addr", "Address"); /* 5 */
6342 else
6343 ui_out_table_header (uiout, 18, ui_left,
6344 "addr", "Address"); /* 5 */
6345 }
6346 if (nr_printable_breakpoints > 0)
6347 annotate_field (5);
6348 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6349 ui_out_table_body (uiout);
6350 if (nr_printable_breakpoints > 0)
6351 annotate_breakpoints_table ();
6352
6353 ALL_BREAKPOINTS (b)
6354 {
6355 QUIT;
6356 /* If we have a filter, only list the breakpoints it accepts. */
6357 if (filter && !filter (b))
6358 continue;
6359
6360 /* If we have an "args" string, it is a list of breakpoints to
6361 accept. Skip the others. */
6362
6363 if (args != NULL && *args != '\0')
6364 {
6365 if (allflag) /* maintenance info breakpoint */
6366 {
6367 if (parse_and_eval_long (args) != b->number)
6368 continue;
6369 }
6370 else /* all others */
6371 {
6372 if (!number_is_in_list (args, b->number))
6373 continue;
6374 }
6375 }
6376 /* We only print out user settable breakpoints unless the
6377 allflag is set. */
6378 if (allflag || user_breakpoint_p (b))
6379 print_one_breakpoint (b, &last_loc, allflag);
6380 }
6381
6382 do_cleanups (bkpttbl_chain);
6383
6384 if (nr_printable_breakpoints == 0)
6385 {
6386 /* If there's a filter, let the caller decide how to report
6387 empty list. */
6388 if (!filter)
6389 {
6390 if (args == NULL || *args == '\0')
6391 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6392 else
6393 ui_out_message (uiout, 0,
6394 "No breakpoint or watchpoint matching '%s'.\n",
6395 args);
6396 }
6397 }
6398 else
6399 {
6400 if (last_loc && !server_command)
6401 set_next_address (last_loc->gdbarch, last_loc->address);
6402 }
6403
6404 /* FIXME? Should this be moved up so that it is only called when
6405 there have been breakpoints? */
6406 annotate_breakpoints_table_end ();
6407
6408 return nr_printable_breakpoints;
6409 }
6410
6411 /* Display the value of default-collect in a way that is generally
6412 compatible with the breakpoint list. */
6413
6414 static void
6415 default_collect_info (void)
6416 {
6417 struct ui_out *uiout = current_uiout;
6418
6419 /* If it has no value (which is frequently the case), say nothing; a
6420 message like "No default-collect." gets in user's face when it's
6421 not wanted. */
6422 if (!*default_collect)
6423 return;
6424
6425 /* The following phrase lines up nicely with per-tracepoint collect
6426 actions. */
6427 ui_out_text (uiout, "default collect ");
6428 ui_out_field_string (uiout, "default-collect", default_collect);
6429 ui_out_text (uiout, " \n");
6430 }
6431
6432 static void
6433 breakpoints_info (char *args, int from_tty)
6434 {
6435 breakpoint_1 (args, 0, NULL);
6436
6437 default_collect_info ();
6438 }
6439
6440 static void
6441 watchpoints_info (char *args, int from_tty)
6442 {
6443 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6444 struct ui_out *uiout = current_uiout;
6445
6446 if (num_printed == 0)
6447 {
6448 if (args == NULL || *args == '\0')
6449 ui_out_message (uiout, 0, "No watchpoints.\n");
6450 else
6451 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6452 }
6453 }
6454
6455 static void
6456 maintenance_info_breakpoints (char *args, int from_tty)
6457 {
6458 breakpoint_1 (args, 1, NULL);
6459
6460 default_collect_info ();
6461 }
6462
6463 static int
6464 breakpoint_has_pc (struct breakpoint *b,
6465 struct program_space *pspace,
6466 CORE_ADDR pc, struct obj_section *section)
6467 {
6468 struct bp_location *bl = b->loc;
6469
6470 for (; bl; bl = bl->next)
6471 {
6472 if (bl->pspace == pspace
6473 && bl->address == pc
6474 && (!overlay_debugging || bl->section == section))
6475 return 1;
6476 }
6477 return 0;
6478 }
6479
6480 /* Print a message describing any user-breakpoints set at PC. This
6481 concerns with logical breakpoints, so we match program spaces, not
6482 address spaces. */
6483
6484 static void
6485 describe_other_breakpoints (struct gdbarch *gdbarch,
6486 struct program_space *pspace, CORE_ADDR pc,
6487 struct obj_section *section, int thread)
6488 {
6489 int others = 0;
6490 struct breakpoint *b;
6491
6492 ALL_BREAKPOINTS (b)
6493 others += (user_breakpoint_p (b)
6494 && breakpoint_has_pc (b, pspace, pc, section));
6495 if (others > 0)
6496 {
6497 if (others == 1)
6498 printf_filtered (_("Note: breakpoint "));
6499 else /* if (others == ???) */
6500 printf_filtered (_("Note: breakpoints "));
6501 ALL_BREAKPOINTS (b)
6502 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6503 {
6504 others--;
6505 printf_filtered ("%d", b->number);
6506 if (b->thread == -1 && thread != -1)
6507 printf_filtered (" (all threads)");
6508 else if (b->thread != -1)
6509 printf_filtered (" (thread %d)", b->thread);
6510 printf_filtered ("%s%s ",
6511 ((b->enable_state == bp_disabled
6512 || b->enable_state == bp_call_disabled)
6513 ? " (disabled)"
6514 : b->enable_state == bp_permanent
6515 ? " (permanent)"
6516 : ""),
6517 (others > 1) ? ","
6518 : ((others == 1) ? " and" : ""));
6519 }
6520 printf_filtered (_("also set at pc "));
6521 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6522 printf_filtered (".\n");
6523 }
6524 }
6525 \f
6526
6527 /* Return true iff it is meaningful to use the address member of
6528 BPT. For some breakpoint types, the address member is irrelevant
6529 and it makes no sense to attempt to compare it to other addresses
6530 (or use it for any other purpose either).
6531
6532 More specifically, each of the following breakpoint types will
6533 always have a zero valued address and we don't want to mark
6534 breakpoints of any of these types to be a duplicate of an actual
6535 breakpoint at address zero:
6536
6537 bp_watchpoint
6538 bp_catchpoint
6539
6540 */
6541
6542 static int
6543 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6544 {
6545 enum bptype type = bpt->type;
6546
6547 return (type != bp_watchpoint && type != bp_catchpoint);
6548 }
6549
6550 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6551 true if LOC1 and LOC2 represent the same watchpoint location. */
6552
6553 static int
6554 watchpoint_locations_match (struct bp_location *loc1,
6555 struct bp_location *loc2)
6556 {
6557 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6558 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6559
6560 /* Both of them must exist. */
6561 gdb_assert (w1 != NULL);
6562 gdb_assert (w2 != NULL);
6563
6564 /* If the target can evaluate the condition expression in hardware,
6565 then we we need to insert both watchpoints even if they are at
6566 the same place. Otherwise the watchpoint will only trigger when
6567 the condition of whichever watchpoint was inserted evaluates to
6568 true, not giving a chance for GDB to check the condition of the
6569 other watchpoint. */
6570 if ((w1->cond_exp
6571 && target_can_accel_watchpoint_condition (loc1->address,
6572 loc1->length,
6573 loc1->watchpoint_type,
6574 w1->cond_exp))
6575 || (w2->cond_exp
6576 && target_can_accel_watchpoint_condition (loc2->address,
6577 loc2->length,
6578 loc2->watchpoint_type,
6579 w2->cond_exp)))
6580 return 0;
6581
6582 /* Note that this checks the owner's type, not the location's. In
6583 case the target does not support read watchpoints, but does
6584 support access watchpoints, we'll have bp_read_watchpoint
6585 watchpoints with hw_access locations. Those should be considered
6586 duplicates of hw_read locations. The hw_read locations will
6587 become hw_access locations later. */
6588 return (loc1->owner->type == loc2->owner->type
6589 && loc1->pspace->aspace == loc2->pspace->aspace
6590 && loc1->address == loc2->address
6591 && loc1->length == loc2->length);
6592 }
6593
6594 /* Returns true if {ASPACE1,ADDR1} and {ASPACE2,ADDR2} represent the
6595 same breakpoint location. In most targets, this can only be true
6596 if ASPACE1 matches ASPACE2. On targets that have global
6597 breakpoints, the address space doesn't really matter. */
6598
6599 static int
6600 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6601 struct address_space *aspace2, CORE_ADDR addr2)
6602 {
6603 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6604 || aspace1 == aspace2)
6605 && addr1 == addr2);
6606 }
6607
6608 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6609 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6610 matches ASPACE2. On targets that have global breakpoints, the address
6611 space doesn't really matter. */
6612
6613 static int
6614 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6615 int len1, struct address_space *aspace2,
6616 CORE_ADDR addr2)
6617 {
6618 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6619 || aspace1 == aspace2)
6620 && addr2 >= addr1 && addr2 < addr1 + len1);
6621 }
6622
6623 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6624 a ranged breakpoint. In most targets, a match happens only if ASPACE
6625 matches the breakpoint's address space. On targets that have global
6626 breakpoints, the address space doesn't really matter. */
6627
6628 static int
6629 breakpoint_location_address_match (struct bp_location *bl,
6630 struct address_space *aspace,
6631 CORE_ADDR addr)
6632 {
6633 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6634 aspace, addr)
6635 || (bl->length
6636 && breakpoint_address_match_range (bl->pspace->aspace,
6637 bl->address, bl->length,
6638 aspace, addr)));
6639 }
6640
6641 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6642 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6643 true, otherwise returns false. */
6644
6645 static int
6646 tracepoint_locations_match (struct bp_location *loc1,
6647 struct bp_location *loc2)
6648 {
6649 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6650 /* Since tracepoint locations are never duplicated with others', tracepoint
6651 locations at the same address of different tracepoints are regarded as
6652 different locations. */
6653 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6654 else
6655 return 0;
6656 }
6657
6658 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6659 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6660 represent the same location. */
6661
6662 static int
6663 breakpoint_locations_match (struct bp_location *loc1,
6664 struct bp_location *loc2)
6665 {
6666 int hw_point1, hw_point2;
6667
6668 /* Both of them must not be in moribund_locations. */
6669 gdb_assert (loc1->owner != NULL);
6670 gdb_assert (loc2->owner != NULL);
6671
6672 hw_point1 = is_hardware_watchpoint (loc1->owner);
6673 hw_point2 = is_hardware_watchpoint (loc2->owner);
6674
6675 if (hw_point1 != hw_point2)
6676 return 0;
6677 else if (hw_point1)
6678 return watchpoint_locations_match (loc1, loc2);
6679 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6680 return tracepoint_locations_match (loc1, loc2);
6681 else
6682 /* We compare bp_location.length in order to cover ranged breakpoints. */
6683 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6684 loc2->pspace->aspace, loc2->address)
6685 && loc1->length == loc2->length);
6686 }
6687
6688 static void
6689 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6690 int bnum, int have_bnum)
6691 {
6692 /* The longest string possibly returned by hex_string_custom
6693 is 50 chars. These must be at least that big for safety. */
6694 char astr1[64];
6695 char astr2[64];
6696
6697 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6698 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6699 if (have_bnum)
6700 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6701 bnum, astr1, astr2);
6702 else
6703 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6704 }
6705
6706 /* Adjust a breakpoint's address to account for architectural
6707 constraints on breakpoint placement. Return the adjusted address.
6708 Note: Very few targets require this kind of adjustment. For most
6709 targets, this function is simply the identity function. */
6710
6711 static CORE_ADDR
6712 adjust_breakpoint_address (struct gdbarch *gdbarch,
6713 CORE_ADDR bpaddr, enum bptype bptype)
6714 {
6715 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
6716 {
6717 /* Very few targets need any kind of breakpoint adjustment. */
6718 return bpaddr;
6719 }
6720 else if (bptype == bp_watchpoint
6721 || bptype == bp_hardware_watchpoint
6722 || bptype == bp_read_watchpoint
6723 || bptype == bp_access_watchpoint
6724 || bptype == bp_catchpoint)
6725 {
6726 /* Watchpoints and the various bp_catch_* eventpoints should not
6727 have their addresses modified. */
6728 return bpaddr;
6729 }
6730 else
6731 {
6732 CORE_ADDR adjusted_bpaddr;
6733
6734 /* Some targets have architectural constraints on the placement
6735 of breakpoint instructions. Obtain the adjusted address. */
6736 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6737
6738 /* An adjusted breakpoint address can significantly alter
6739 a user's expectations. Print a warning if an adjustment
6740 is required. */
6741 if (adjusted_bpaddr != bpaddr)
6742 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6743
6744 return adjusted_bpaddr;
6745 }
6746 }
6747
6748 void
6749 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
6750 struct breakpoint *owner)
6751 {
6752 memset (loc, 0, sizeof (*loc));
6753
6754 gdb_assert (ops != NULL);
6755
6756 loc->ops = ops;
6757 loc->owner = owner;
6758 loc->cond = NULL;
6759 loc->cond_bytecode = NULL;
6760 loc->shlib_disabled = 0;
6761 loc->enabled = 1;
6762
6763 switch (owner->type)
6764 {
6765 case bp_breakpoint:
6766 case bp_until:
6767 case bp_finish:
6768 case bp_longjmp:
6769 case bp_longjmp_resume:
6770 case bp_longjmp_call_dummy:
6771 case bp_exception:
6772 case bp_exception_resume:
6773 case bp_step_resume:
6774 case bp_hp_step_resume:
6775 case bp_watchpoint_scope:
6776 case bp_call_dummy:
6777 case bp_std_terminate:
6778 case bp_shlib_event:
6779 case bp_thread_event:
6780 case bp_overlay_event:
6781 case bp_jit_event:
6782 case bp_longjmp_master:
6783 case bp_std_terminate_master:
6784 case bp_exception_master:
6785 case bp_gnu_ifunc_resolver:
6786 case bp_gnu_ifunc_resolver_return:
6787 case bp_dprintf:
6788 loc->loc_type = bp_loc_software_breakpoint;
6789 mark_breakpoint_location_modified (loc);
6790 break;
6791 case bp_hardware_breakpoint:
6792 loc->loc_type = bp_loc_hardware_breakpoint;
6793 mark_breakpoint_location_modified (loc);
6794 break;
6795 case bp_hardware_watchpoint:
6796 case bp_read_watchpoint:
6797 case bp_access_watchpoint:
6798 loc->loc_type = bp_loc_hardware_watchpoint;
6799 break;
6800 case bp_watchpoint:
6801 case bp_catchpoint:
6802 case bp_tracepoint:
6803 case bp_fast_tracepoint:
6804 case bp_static_tracepoint:
6805 loc->loc_type = bp_loc_other;
6806 break;
6807 default:
6808 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
6809 }
6810
6811 loc->refc = 1;
6812 }
6813
6814 /* Allocate a struct bp_location. */
6815
6816 static struct bp_location *
6817 allocate_bp_location (struct breakpoint *bpt)
6818 {
6819 return bpt->ops->allocate_location (bpt);
6820 }
6821
6822 static void
6823 free_bp_location (struct bp_location *loc)
6824 {
6825 loc->ops->dtor (loc);
6826 xfree (loc);
6827 }
6828
6829 /* Increment reference count. */
6830
6831 static void
6832 incref_bp_location (struct bp_location *bl)
6833 {
6834 ++bl->refc;
6835 }
6836
6837 /* Decrement reference count. If the reference count reaches 0,
6838 destroy the bp_location. Sets *BLP to NULL. */
6839
6840 static void
6841 decref_bp_location (struct bp_location **blp)
6842 {
6843 gdb_assert ((*blp)->refc > 0);
6844
6845 if (--(*blp)->refc == 0)
6846 free_bp_location (*blp);
6847 *blp = NULL;
6848 }
6849
6850 /* Add breakpoint B at the end of the global breakpoint chain. */
6851
6852 static void
6853 add_to_breakpoint_chain (struct breakpoint *b)
6854 {
6855 struct breakpoint *b1;
6856
6857 /* Add this breakpoint to the end of the chain so that a list of
6858 breakpoints will come out in order of increasing numbers. */
6859
6860 b1 = breakpoint_chain;
6861 if (b1 == 0)
6862 breakpoint_chain = b;
6863 else
6864 {
6865 while (b1->next)
6866 b1 = b1->next;
6867 b1->next = b;
6868 }
6869 }
6870
6871 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
6872
6873 static void
6874 init_raw_breakpoint_without_location (struct breakpoint *b,
6875 struct gdbarch *gdbarch,
6876 enum bptype bptype,
6877 const struct breakpoint_ops *ops)
6878 {
6879 memset (b, 0, sizeof (*b));
6880
6881 gdb_assert (ops != NULL);
6882
6883 b->ops = ops;
6884 b->type = bptype;
6885 b->gdbarch = gdbarch;
6886 b->language = current_language->la_language;
6887 b->input_radix = input_radix;
6888 b->thread = -1;
6889 b->enable_state = bp_enabled;
6890 b->next = 0;
6891 b->silent = 0;
6892 b->ignore_count = 0;
6893 b->commands = NULL;
6894 b->frame_id = null_frame_id;
6895 b->condition_not_parsed = 0;
6896 b->py_bp_object = NULL;
6897 b->related_breakpoint = b;
6898 }
6899
6900 /* Helper to set_raw_breakpoint below. Creates a breakpoint
6901 that has type BPTYPE and has no locations as yet. */
6902
6903 static struct breakpoint *
6904 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
6905 enum bptype bptype,
6906 const struct breakpoint_ops *ops)
6907 {
6908 struct breakpoint *b = XNEW (struct breakpoint);
6909
6910 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
6911 add_to_breakpoint_chain (b);
6912 return b;
6913 }
6914
6915 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
6916 resolutions should be made as the user specified the location explicitly
6917 enough. */
6918
6919 static void
6920 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
6921 {
6922 gdb_assert (loc->owner != NULL);
6923
6924 if (loc->owner->type == bp_breakpoint
6925 || loc->owner->type == bp_hardware_breakpoint
6926 || is_tracepoint (loc->owner))
6927 {
6928 int is_gnu_ifunc;
6929 const char *function_name;
6930 CORE_ADDR func_addr;
6931
6932 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
6933 &func_addr, NULL, &is_gnu_ifunc);
6934
6935 if (is_gnu_ifunc && !explicit_loc)
6936 {
6937 struct breakpoint *b = loc->owner;
6938
6939 gdb_assert (loc->pspace == current_program_space);
6940 if (gnu_ifunc_resolve_name (function_name,
6941 &loc->requested_address))
6942 {
6943 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
6944 loc->address = adjust_breakpoint_address (loc->gdbarch,
6945 loc->requested_address,
6946 b->type);
6947 }
6948 else if (b->type == bp_breakpoint && b->loc == loc
6949 && loc->next == NULL && b->related_breakpoint == b)
6950 {
6951 /* Create only the whole new breakpoint of this type but do not
6952 mess more complicated breakpoints with multiple locations. */
6953 b->type = bp_gnu_ifunc_resolver;
6954 /* Remember the resolver's address for use by the return
6955 breakpoint. */
6956 loc->related_address = func_addr;
6957 }
6958 }
6959
6960 if (function_name)
6961 loc->function_name = xstrdup (function_name);
6962 }
6963 }
6964
6965 /* Attempt to determine architecture of location identified by SAL. */
6966 struct gdbarch *
6967 get_sal_arch (struct symtab_and_line sal)
6968 {
6969 if (sal.section)
6970 return get_objfile_arch (sal.section->objfile);
6971 if (sal.symtab)
6972 return get_objfile_arch (sal.symtab->objfile);
6973
6974 return NULL;
6975 }
6976
6977 /* Low level routine for partially initializing a breakpoint of type
6978 BPTYPE. The newly created breakpoint's address, section, source
6979 file name, and line number are provided by SAL.
6980
6981 It is expected that the caller will complete the initialization of
6982 the newly created breakpoint struct as well as output any status
6983 information regarding the creation of a new breakpoint. */
6984
6985 static void
6986 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
6987 struct symtab_and_line sal, enum bptype bptype,
6988 const struct breakpoint_ops *ops)
6989 {
6990 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
6991
6992 add_location_to_breakpoint (b, &sal);
6993
6994 if (bptype != bp_catchpoint)
6995 gdb_assert (sal.pspace != NULL);
6996
6997 /* Store the program space that was used to set the breakpoint,
6998 except for ordinary breakpoints, which are independent of the
6999 program space. */
7000 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7001 b->pspace = sal.pspace;
7002
7003 annotate_breakpoints_changed ();
7004 }
7005
7006 /* set_raw_breakpoint is a low level routine for allocating and
7007 partially initializing a breakpoint of type BPTYPE. The newly
7008 created breakpoint's address, section, source file name, and line
7009 number are provided by SAL. The newly created and partially
7010 initialized breakpoint is added to the breakpoint chain and
7011 is also returned as the value of this function.
7012
7013 It is expected that the caller will complete the initialization of
7014 the newly created breakpoint struct as well as output any status
7015 information regarding the creation of a new breakpoint. In
7016 particular, set_raw_breakpoint does NOT set the breakpoint
7017 number! Care should be taken to not allow an error to occur
7018 prior to completing the initialization of the breakpoint. If this
7019 should happen, a bogus breakpoint will be left on the chain. */
7020
7021 struct breakpoint *
7022 set_raw_breakpoint (struct gdbarch *gdbarch,
7023 struct symtab_and_line sal, enum bptype bptype,
7024 const struct breakpoint_ops *ops)
7025 {
7026 struct breakpoint *b = XNEW (struct breakpoint);
7027
7028 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7029 add_to_breakpoint_chain (b);
7030 return b;
7031 }
7032
7033
7034 /* Note that the breakpoint object B describes a permanent breakpoint
7035 instruction, hard-wired into the inferior's code. */
7036 void
7037 make_breakpoint_permanent (struct breakpoint *b)
7038 {
7039 struct bp_location *bl;
7040
7041 b->enable_state = bp_permanent;
7042
7043 /* By definition, permanent breakpoints are already present in the
7044 code. Mark all locations as inserted. For now,
7045 make_breakpoint_permanent is called in just one place, so it's
7046 hard to say if it's reasonable to have permanent breakpoint with
7047 multiple locations or not, but it's easy to implement. */
7048 for (bl = b->loc; bl; bl = bl->next)
7049 bl->inserted = 1;
7050 }
7051
7052 /* Call this routine when stepping and nexting to enable a breakpoint
7053 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7054 initiated the operation. */
7055
7056 void
7057 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7058 {
7059 struct breakpoint *b, *b_tmp;
7060 int thread = tp->num;
7061
7062 /* To avoid having to rescan all objfile symbols at every step,
7063 we maintain a list of continually-inserted but always disabled
7064 longjmp "master" breakpoints. Here, we simply create momentary
7065 clones of those and enable them for the requested thread. */
7066 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7067 if (b->pspace == current_program_space
7068 && (b->type == bp_longjmp_master
7069 || b->type == bp_exception_master))
7070 {
7071 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7072 struct breakpoint *clone;
7073
7074 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7075 after their removal. */
7076 clone = momentary_breakpoint_from_master (b, type,
7077 &longjmp_breakpoint_ops);
7078 clone->thread = thread;
7079 }
7080
7081 tp->initiating_frame = frame;
7082 }
7083
7084 /* Delete all longjmp breakpoints from THREAD. */
7085 void
7086 delete_longjmp_breakpoint (int thread)
7087 {
7088 struct breakpoint *b, *b_tmp;
7089
7090 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7091 if (b->type == bp_longjmp || b->type == bp_exception)
7092 {
7093 if (b->thread == thread)
7094 delete_breakpoint (b);
7095 }
7096 }
7097
7098 void
7099 delete_longjmp_breakpoint_at_next_stop (int thread)
7100 {
7101 struct breakpoint *b, *b_tmp;
7102
7103 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7104 if (b->type == bp_longjmp || b->type == bp_exception)
7105 {
7106 if (b->thread == thread)
7107 b->disposition = disp_del_at_next_stop;
7108 }
7109 }
7110
7111 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7112 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7113 pointer to any of them. Return NULL if this system cannot place longjmp
7114 breakpoints. */
7115
7116 struct breakpoint *
7117 set_longjmp_breakpoint_for_call_dummy (void)
7118 {
7119 struct breakpoint *b, *retval = NULL;
7120
7121 ALL_BREAKPOINTS (b)
7122 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7123 {
7124 struct breakpoint *new_b;
7125
7126 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7127 &momentary_breakpoint_ops);
7128 new_b->thread = pid_to_thread_id (inferior_ptid);
7129
7130 /* Link NEW_B into the chain of RETVAL breakpoints. */
7131
7132 gdb_assert (new_b->related_breakpoint == new_b);
7133 if (retval == NULL)
7134 retval = new_b;
7135 new_b->related_breakpoint = retval;
7136 while (retval->related_breakpoint != new_b->related_breakpoint)
7137 retval = retval->related_breakpoint;
7138 retval->related_breakpoint = new_b;
7139 }
7140
7141 return retval;
7142 }
7143
7144 /* Verify all existing dummy frames and their associated breakpoints for
7145 THREAD. Remove those which can no longer be found in the current frame
7146 stack.
7147
7148 You should call this function only at places where it is safe to currently
7149 unwind the whole stack. Failed stack unwind would discard live dummy
7150 frames. */
7151
7152 void
7153 check_longjmp_breakpoint_for_call_dummy (int thread)
7154 {
7155 struct breakpoint *b, *b_tmp;
7156
7157 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7158 if (b->type == bp_longjmp_call_dummy && b->thread == thread)
7159 {
7160 struct breakpoint *dummy_b = b->related_breakpoint;
7161
7162 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7163 dummy_b = dummy_b->related_breakpoint;
7164 if (dummy_b->type != bp_call_dummy
7165 || frame_find_by_id (dummy_b->frame_id) != NULL)
7166 continue;
7167
7168 dummy_frame_discard (dummy_b->frame_id);
7169
7170 while (b->related_breakpoint != b)
7171 {
7172 if (b_tmp == b->related_breakpoint)
7173 b_tmp = b->related_breakpoint->next;
7174 delete_breakpoint (b->related_breakpoint);
7175 }
7176 delete_breakpoint (b);
7177 }
7178 }
7179
7180 void
7181 enable_overlay_breakpoints (void)
7182 {
7183 struct breakpoint *b;
7184
7185 ALL_BREAKPOINTS (b)
7186 if (b->type == bp_overlay_event)
7187 {
7188 b->enable_state = bp_enabled;
7189 update_global_location_list (1);
7190 overlay_events_enabled = 1;
7191 }
7192 }
7193
7194 void
7195 disable_overlay_breakpoints (void)
7196 {
7197 struct breakpoint *b;
7198
7199 ALL_BREAKPOINTS (b)
7200 if (b->type == bp_overlay_event)
7201 {
7202 b->enable_state = bp_disabled;
7203 update_global_location_list (0);
7204 overlay_events_enabled = 0;
7205 }
7206 }
7207
7208 /* Set an active std::terminate breakpoint for each std::terminate
7209 master breakpoint. */
7210 void
7211 set_std_terminate_breakpoint (void)
7212 {
7213 struct breakpoint *b, *b_tmp;
7214
7215 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7216 if (b->pspace == current_program_space
7217 && b->type == bp_std_terminate_master)
7218 {
7219 momentary_breakpoint_from_master (b, bp_std_terminate,
7220 &momentary_breakpoint_ops);
7221 }
7222 }
7223
7224 /* Delete all the std::terminate breakpoints. */
7225 void
7226 delete_std_terminate_breakpoint (void)
7227 {
7228 struct breakpoint *b, *b_tmp;
7229
7230 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7231 if (b->type == bp_std_terminate)
7232 delete_breakpoint (b);
7233 }
7234
7235 struct breakpoint *
7236 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7237 {
7238 struct breakpoint *b;
7239
7240 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7241 &internal_breakpoint_ops);
7242
7243 b->enable_state = bp_enabled;
7244 /* addr_string has to be used or breakpoint_re_set will delete me. */
7245 b->addr_string
7246 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7247
7248 update_global_location_list_nothrow (1);
7249
7250 return b;
7251 }
7252
7253 void
7254 remove_thread_event_breakpoints (void)
7255 {
7256 struct breakpoint *b, *b_tmp;
7257
7258 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7259 if (b->type == bp_thread_event
7260 && b->loc->pspace == current_program_space)
7261 delete_breakpoint (b);
7262 }
7263
7264 struct lang_and_radix
7265 {
7266 enum language lang;
7267 int radix;
7268 };
7269
7270 /* Create a breakpoint for JIT code registration and unregistration. */
7271
7272 struct breakpoint *
7273 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7274 {
7275 struct breakpoint *b;
7276
7277 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7278 &internal_breakpoint_ops);
7279 update_global_location_list_nothrow (1);
7280 return b;
7281 }
7282
7283 /* Remove JIT code registration and unregistration breakpoint(s). */
7284
7285 void
7286 remove_jit_event_breakpoints (void)
7287 {
7288 struct breakpoint *b, *b_tmp;
7289
7290 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7291 if (b->type == bp_jit_event
7292 && b->loc->pspace == current_program_space)
7293 delete_breakpoint (b);
7294 }
7295
7296 void
7297 remove_solib_event_breakpoints (void)
7298 {
7299 struct breakpoint *b, *b_tmp;
7300
7301 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7302 if (b->type == bp_shlib_event
7303 && b->loc->pspace == current_program_space)
7304 delete_breakpoint (b);
7305 }
7306
7307 struct breakpoint *
7308 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7309 {
7310 struct breakpoint *b;
7311
7312 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7313 &internal_breakpoint_ops);
7314 update_global_location_list_nothrow (1);
7315 return b;
7316 }
7317
7318 /* Disable any breakpoints that are on code in shared libraries. Only
7319 apply to enabled breakpoints, disabled ones can just stay disabled. */
7320
7321 void
7322 disable_breakpoints_in_shlibs (void)
7323 {
7324 struct bp_location *loc, **locp_tmp;
7325
7326 ALL_BP_LOCATIONS (loc, locp_tmp)
7327 {
7328 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7329 struct breakpoint *b = loc->owner;
7330
7331 /* We apply the check to all breakpoints, including disabled for
7332 those with loc->duplicate set. This is so that when breakpoint
7333 becomes enabled, or the duplicate is removed, gdb will try to
7334 insert all breakpoints. If we don't set shlib_disabled here,
7335 we'll try to insert those breakpoints and fail. */
7336 if (((b->type == bp_breakpoint)
7337 || (b->type == bp_jit_event)
7338 || (b->type == bp_hardware_breakpoint)
7339 || (is_tracepoint (b)))
7340 && loc->pspace == current_program_space
7341 && !loc->shlib_disabled
7342 #ifdef PC_SOLIB
7343 && PC_SOLIB (loc->address)
7344 #else
7345 && solib_name_from_address (loc->pspace, loc->address)
7346 #endif
7347 )
7348 {
7349 loc->shlib_disabled = 1;
7350 }
7351 }
7352 }
7353
7354 /* Disable any breakpoints and tracepoints that are in an unloaded shared
7355 library. Only apply to enabled breakpoints, disabled ones can just stay
7356 disabled. */
7357
7358 static void
7359 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7360 {
7361 struct bp_location *loc, **locp_tmp;
7362 int disabled_shlib_breaks = 0;
7363
7364 /* SunOS a.out shared libraries are always mapped, so do not
7365 disable breakpoints; they will only be reported as unloaded
7366 through clear_solib when GDB discards its shared library
7367 list. See clear_solib for more information. */
7368 if (exec_bfd != NULL
7369 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7370 return;
7371
7372 ALL_BP_LOCATIONS (loc, locp_tmp)
7373 {
7374 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7375 struct breakpoint *b = loc->owner;
7376
7377 if (solib->pspace == loc->pspace
7378 && !loc->shlib_disabled
7379 && (((b->type == bp_breakpoint
7380 || b->type == bp_jit_event
7381 || b->type == bp_hardware_breakpoint)
7382 && (loc->loc_type == bp_loc_hardware_breakpoint
7383 || loc->loc_type == bp_loc_software_breakpoint))
7384 || is_tracepoint (b))
7385 && solib_contains_address_p (solib, loc->address))
7386 {
7387 loc->shlib_disabled = 1;
7388 /* At this point, we cannot rely on remove_breakpoint
7389 succeeding so we must mark the breakpoint as not inserted
7390 to prevent future errors occurring in remove_breakpoints. */
7391 loc->inserted = 0;
7392
7393 /* This may cause duplicate notifications for the same breakpoint. */
7394 observer_notify_breakpoint_modified (b);
7395
7396 if (!disabled_shlib_breaks)
7397 {
7398 target_terminal_ours_for_output ();
7399 warning (_("Temporarily disabling breakpoints "
7400 "for unloaded shared library \"%s\""),
7401 solib->so_name);
7402 }
7403 disabled_shlib_breaks = 1;
7404 }
7405 }
7406 }
7407
7408 /* FORK & VFORK catchpoints. */
7409
7410 /* An instance of this type is used to represent a fork or vfork
7411 catchpoint. It includes a "struct breakpoint" as a kind of base
7412 class; users downcast to "struct breakpoint *" when needed. A
7413 breakpoint is really of this type iff its ops pointer points to
7414 CATCH_FORK_BREAKPOINT_OPS. */
7415
7416 struct fork_catchpoint
7417 {
7418 /* The base class. */
7419 struct breakpoint base;
7420
7421 /* Process id of a child process whose forking triggered this
7422 catchpoint. This field is only valid immediately after this
7423 catchpoint has triggered. */
7424 ptid_t forked_inferior_pid;
7425 };
7426
7427 /* Implement the "insert" breakpoint_ops method for fork
7428 catchpoints. */
7429
7430 static int
7431 insert_catch_fork (struct bp_location *bl)
7432 {
7433 return target_insert_fork_catchpoint (PIDGET (inferior_ptid));
7434 }
7435
7436 /* Implement the "remove" breakpoint_ops method for fork
7437 catchpoints. */
7438
7439 static int
7440 remove_catch_fork (struct bp_location *bl)
7441 {
7442 return target_remove_fork_catchpoint (PIDGET (inferior_ptid));
7443 }
7444
7445 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7446 catchpoints. */
7447
7448 static int
7449 breakpoint_hit_catch_fork (const struct bp_location *bl,
7450 struct address_space *aspace, CORE_ADDR bp_addr,
7451 const struct target_waitstatus *ws)
7452 {
7453 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7454
7455 if (ws->kind != TARGET_WAITKIND_FORKED)
7456 return 0;
7457
7458 c->forked_inferior_pid = ws->value.related_pid;
7459 return 1;
7460 }
7461
7462 /* Implement the "print_it" breakpoint_ops method for fork
7463 catchpoints. */
7464
7465 static enum print_stop_action
7466 print_it_catch_fork (bpstat bs)
7467 {
7468 struct ui_out *uiout = current_uiout;
7469 struct breakpoint *b = bs->breakpoint_at;
7470 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7471
7472 annotate_catchpoint (b->number);
7473 if (b->disposition == disp_del)
7474 ui_out_text (uiout, "\nTemporary catchpoint ");
7475 else
7476 ui_out_text (uiout, "\nCatchpoint ");
7477 if (ui_out_is_mi_like_p (uiout))
7478 {
7479 ui_out_field_string (uiout, "reason",
7480 async_reason_lookup (EXEC_ASYNC_FORK));
7481 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7482 }
7483 ui_out_field_int (uiout, "bkptno", b->number);
7484 ui_out_text (uiout, " (forked process ");
7485 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7486 ui_out_text (uiout, "), ");
7487 return PRINT_SRC_AND_LOC;
7488 }
7489
7490 /* Implement the "print_one" breakpoint_ops method for fork
7491 catchpoints. */
7492
7493 static void
7494 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7495 {
7496 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7497 struct value_print_options opts;
7498 struct ui_out *uiout = current_uiout;
7499
7500 get_user_print_options (&opts);
7501
7502 /* Field 4, the address, is omitted (which makes the columns not
7503 line up too nicely with the headers, but the effect is relatively
7504 readable). */
7505 if (opts.addressprint)
7506 ui_out_field_skip (uiout, "addr");
7507 annotate_field (5);
7508 ui_out_text (uiout, "fork");
7509 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7510 {
7511 ui_out_text (uiout, ", process ");
7512 ui_out_field_int (uiout, "what",
7513 ptid_get_pid (c->forked_inferior_pid));
7514 ui_out_spaces (uiout, 1);
7515 }
7516 }
7517
7518 /* Implement the "print_mention" breakpoint_ops method for fork
7519 catchpoints. */
7520
7521 static void
7522 print_mention_catch_fork (struct breakpoint *b)
7523 {
7524 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7525 }
7526
7527 /* Implement the "print_recreate" breakpoint_ops method for fork
7528 catchpoints. */
7529
7530 static void
7531 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7532 {
7533 fprintf_unfiltered (fp, "catch fork");
7534 print_recreate_thread (b, fp);
7535 }
7536
7537 /* The breakpoint_ops structure to be used in fork catchpoints. */
7538
7539 static struct breakpoint_ops catch_fork_breakpoint_ops;
7540
7541 /* Implement the "insert" breakpoint_ops method for vfork
7542 catchpoints. */
7543
7544 static int
7545 insert_catch_vfork (struct bp_location *bl)
7546 {
7547 return target_insert_vfork_catchpoint (PIDGET (inferior_ptid));
7548 }
7549
7550 /* Implement the "remove" breakpoint_ops method for vfork
7551 catchpoints. */
7552
7553 static int
7554 remove_catch_vfork (struct bp_location *bl)
7555 {
7556 return target_remove_vfork_catchpoint (PIDGET (inferior_ptid));
7557 }
7558
7559 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7560 catchpoints. */
7561
7562 static int
7563 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7564 struct address_space *aspace, CORE_ADDR bp_addr,
7565 const struct target_waitstatus *ws)
7566 {
7567 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7568
7569 if (ws->kind != TARGET_WAITKIND_VFORKED)
7570 return 0;
7571
7572 c->forked_inferior_pid = ws->value.related_pid;
7573 return 1;
7574 }
7575
7576 /* Implement the "print_it" breakpoint_ops method for vfork
7577 catchpoints. */
7578
7579 static enum print_stop_action
7580 print_it_catch_vfork (bpstat bs)
7581 {
7582 struct ui_out *uiout = current_uiout;
7583 struct breakpoint *b = bs->breakpoint_at;
7584 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7585
7586 annotate_catchpoint (b->number);
7587 if (b->disposition == disp_del)
7588 ui_out_text (uiout, "\nTemporary catchpoint ");
7589 else
7590 ui_out_text (uiout, "\nCatchpoint ");
7591 if (ui_out_is_mi_like_p (uiout))
7592 {
7593 ui_out_field_string (uiout, "reason",
7594 async_reason_lookup (EXEC_ASYNC_VFORK));
7595 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7596 }
7597 ui_out_field_int (uiout, "bkptno", b->number);
7598 ui_out_text (uiout, " (vforked process ");
7599 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7600 ui_out_text (uiout, "), ");
7601 return PRINT_SRC_AND_LOC;
7602 }
7603
7604 /* Implement the "print_one" breakpoint_ops method for vfork
7605 catchpoints. */
7606
7607 static void
7608 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7609 {
7610 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7611 struct value_print_options opts;
7612 struct ui_out *uiout = current_uiout;
7613
7614 get_user_print_options (&opts);
7615 /* Field 4, the address, is omitted (which makes the columns not
7616 line up too nicely with the headers, but the effect is relatively
7617 readable). */
7618 if (opts.addressprint)
7619 ui_out_field_skip (uiout, "addr");
7620 annotate_field (5);
7621 ui_out_text (uiout, "vfork");
7622 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7623 {
7624 ui_out_text (uiout, ", process ");
7625 ui_out_field_int (uiout, "what",
7626 ptid_get_pid (c->forked_inferior_pid));
7627 ui_out_spaces (uiout, 1);
7628 }
7629 }
7630
7631 /* Implement the "print_mention" breakpoint_ops method for vfork
7632 catchpoints. */
7633
7634 static void
7635 print_mention_catch_vfork (struct breakpoint *b)
7636 {
7637 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7638 }
7639
7640 /* Implement the "print_recreate" breakpoint_ops method for vfork
7641 catchpoints. */
7642
7643 static void
7644 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7645 {
7646 fprintf_unfiltered (fp, "catch vfork");
7647 print_recreate_thread (b, fp);
7648 }
7649
7650 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7651
7652 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7653
7654 /* An instance of this type is used to represent an solib catchpoint.
7655 It includes a "struct breakpoint" as a kind of base class; users
7656 downcast to "struct breakpoint *" when needed. A breakpoint is
7657 really of this type iff its ops pointer points to
7658 CATCH_SOLIB_BREAKPOINT_OPS. */
7659
7660 struct solib_catchpoint
7661 {
7662 /* The base class. */
7663 struct breakpoint base;
7664
7665 /* True for "catch load", false for "catch unload". */
7666 unsigned char is_load;
7667
7668 /* Regular expression to match, if any. COMPILED is only valid when
7669 REGEX is non-NULL. */
7670 char *regex;
7671 regex_t compiled;
7672 };
7673
7674 static void
7675 dtor_catch_solib (struct breakpoint *b)
7676 {
7677 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7678
7679 if (self->regex)
7680 regfree (&self->compiled);
7681 xfree (self->regex);
7682
7683 base_breakpoint_ops.dtor (b);
7684 }
7685
7686 static int
7687 insert_catch_solib (struct bp_location *ignore)
7688 {
7689 return 0;
7690 }
7691
7692 static int
7693 remove_catch_solib (struct bp_location *ignore)
7694 {
7695 return 0;
7696 }
7697
7698 static int
7699 breakpoint_hit_catch_solib (const struct bp_location *bl,
7700 struct address_space *aspace,
7701 CORE_ADDR bp_addr,
7702 const struct target_waitstatus *ws)
7703 {
7704 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7705 struct breakpoint *other;
7706
7707 if (ws->kind == TARGET_WAITKIND_LOADED)
7708 return 1;
7709
7710 ALL_BREAKPOINTS (other)
7711 {
7712 struct bp_location *other_bl;
7713
7714 if (other == bl->owner)
7715 continue;
7716
7717 if (other->type != bp_shlib_event)
7718 continue;
7719
7720 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
7721 continue;
7722
7723 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7724 {
7725 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7726 return 1;
7727 }
7728 }
7729
7730 return 0;
7731 }
7732
7733 static void
7734 check_status_catch_solib (struct bpstats *bs)
7735 {
7736 struct solib_catchpoint *self
7737 = (struct solib_catchpoint *) bs->breakpoint_at;
7738 int ix;
7739
7740 if (self->is_load)
7741 {
7742 struct so_list *iter;
7743
7744 for (ix = 0;
7745 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
7746 ix, iter);
7747 ++ix)
7748 {
7749 if (!self->regex
7750 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
7751 return;
7752 }
7753 }
7754 else
7755 {
7756 char *iter;
7757
7758 for (ix = 0;
7759 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
7760 ix, iter);
7761 ++ix)
7762 {
7763 if (!self->regex
7764 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
7765 return;
7766 }
7767 }
7768
7769 bs->stop = 0;
7770 bs->print_it = print_it_noop;
7771 }
7772
7773 static enum print_stop_action
7774 print_it_catch_solib (bpstat bs)
7775 {
7776 struct breakpoint *b = bs->breakpoint_at;
7777 struct ui_out *uiout = current_uiout;
7778
7779 annotate_catchpoint (b->number);
7780 if (b->disposition == disp_del)
7781 ui_out_text (uiout, "\nTemporary catchpoint ");
7782 else
7783 ui_out_text (uiout, "\nCatchpoint ");
7784 ui_out_field_int (uiout, "bkptno", b->number);
7785 ui_out_text (uiout, "\n");
7786 if (ui_out_is_mi_like_p (uiout))
7787 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7788 print_solib_event (1);
7789 return PRINT_SRC_AND_LOC;
7790 }
7791
7792 static void
7793 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
7794 {
7795 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7796 struct value_print_options opts;
7797 struct ui_out *uiout = current_uiout;
7798 char *msg;
7799
7800 get_user_print_options (&opts);
7801 /* Field 4, the address, is omitted (which makes the columns not
7802 line up too nicely with the headers, but the effect is relatively
7803 readable). */
7804 if (opts.addressprint)
7805 {
7806 annotate_field (4);
7807 ui_out_field_skip (uiout, "addr");
7808 }
7809
7810 annotate_field (5);
7811 if (self->is_load)
7812 {
7813 if (self->regex)
7814 msg = xstrprintf (_("load of library matching %s"), self->regex);
7815 else
7816 msg = xstrdup (_("load of library"));
7817 }
7818 else
7819 {
7820 if (self->regex)
7821 msg = xstrprintf (_("unload of library matching %s"), self->regex);
7822 else
7823 msg = xstrdup (_("unload of library"));
7824 }
7825 ui_out_field_string (uiout, "what", msg);
7826 xfree (msg);
7827 }
7828
7829 static void
7830 print_mention_catch_solib (struct breakpoint *b)
7831 {
7832 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7833
7834 printf_filtered (_("Catchpoint %d (%s)"), b->number,
7835 self->is_load ? "load" : "unload");
7836 }
7837
7838 static void
7839 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
7840 {
7841 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7842
7843 fprintf_unfiltered (fp, "%s %s",
7844 b->disposition == disp_del ? "tcatch" : "catch",
7845 self->is_load ? "load" : "unload");
7846 if (self->regex)
7847 fprintf_unfiltered (fp, " %s", self->regex);
7848 fprintf_unfiltered (fp, "\n");
7849 }
7850
7851 static struct breakpoint_ops catch_solib_breakpoint_ops;
7852
7853 /* Shared helper function (MI and CLI) for creating and installing
7854 a shared object event catchpoint. If IS_LOAD is non-zero then
7855 the events to be caught are load events, otherwise they are
7856 unload events. If IS_TEMP is non-zero the catchpoint is a
7857 temporary one. If ENABLED is non-zero the catchpoint is
7858 created in an enabled state. */
7859
7860 void
7861 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
7862 {
7863 struct solib_catchpoint *c;
7864 struct gdbarch *gdbarch = get_current_arch ();
7865 struct cleanup *cleanup;
7866
7867 if (!arg)
7868 arg = "";
7869 arg = skip_spaces (arg);
7870
7871 c = XCNEW (struct solib_catchpoint);
7872 cleanup = make_cleanup (xfree, c);
7873
7874 if (*arg != '\0')
7875 {
7876 int errcode;
7877
7878 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
7879 if (errcode != 0)
7880 {
7881 char *err = get_regcomp_error (errcode, &c->compiled);
7882
7883 make_cleanup (xfree, err);
7884 error (_("Invalid regexp (%s): %s"), err, arg);
7885 }
7886 c->regex = xstrdup (arg);
7887 }
7888
7889 c->is_load = is_load;
7890 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
7891 &catch_solib_breakpoint_ops);
7892
7893 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
7894
7895 discard_cleanups (cleanup);
7896 install_breakpoint (0, &c->base, 1);
7897 }
7898
7899 /* A helper function that does all the work for "catch load" and
7900 "catch unload". */
7901
7902 static void
7903 catch_load_or_unload (char *arg, int from_tty, int is_load,
7904 struct cmd_list_element *command)
7905 {
7906 int tempflag;
7907 const int enabled = 1;
7908
7909 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
7910
7911 add_solib_catchpoint (arg, is_load, tempflag, enabled);
7912 }
7913
7914 static void
7915 catch_load_command_1 (char *arg, int from_tty,
7916 struct cmd_list_element *command)
7917 {
7918 catch_load_or_unload (arg, from_tty, 1, command);
7919 }
7920
7921 static void
7922 catch_unload_command_1 (char *arg, int from_tty,
7923 struct cmd_list_element *command)
7924 {
7925 catch_load_or_unload (arg, from_tty, 0, command);
7926 }
7927
7928 DEF_VEC_I(int);
7929
7930 /* An instance of this type is used to represent a syscall catchpoint.
7931 It includes a "struct breakpoint" as a kind of base class; users
7932 downcast to "struct breakpoint *" when needed. A breakpoint is
7933 really of this type iff its ops pointer points to
7934 CATCH_SYSCALL_BREAKPOINT_OPS. */
7935
7936 struct syscall_catchpoint
7937 {
7938 /* The base class. */
7939 struct breakpoint base;
7940
7941 /* Syscall numbers used for the 'catch syscall' feature. If no
7942 syscall has been specified for filtering, its value is NULL.
7943 Otherwise, it holds a list of all syscalls to be caught. The
7944 list elements are allocated with xmalloc. */
7945 VEC(int) *syscalls_to_be_caught;
7946 };
7947
7948 /* Implement the "dtor" breakpoint_ops method for syscall
7949 catchpoints. */
7950
7951 static void
7952 dtor_catch_syscall (struct breakpoint *b)
7953 {
7954 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
7955
7956 VEC_free (int, c->syscalls_to_be_caught);
7957
7958 base_breakpoint_ops.dtor (b);
7959 }
7960
7961 static const struct inferior_data *catch_syscall_inferior_data = NULL;
7962
7963 struct catch_syscall_inferior_data
7964 {
7965 /* We keep a count of the number of times the user has requested a
7966 particular syscall to be tracked, and pass this information to the
7967 target. This lets capable targets implement filtering directly. */
7968
7969 /* Number of times that "any" syscall is requested. */
7970 int any_syscall_count;
7971
7972 /* Count of each system call. */
7973 VEC(int) *syscalls_counts;
7974
7975 /* This counts all syscall catch requests, so we can readily determine
7976 if any catching is necessary. */
7977 int total_syscalls_count;
7978 };
7979
7980 static struct catch_syscall_inferior_data*
7981 get_catch_syscall_inferior_data (struct inferior *inf)
7982 {
7983 struct catch_syscall_inferior_data *inf_data;
7984
7985 inf_data = inferior_data (inf, catch_syscall_inferior_data);
7986 if (inf_data == NULL)
7987 {
7988 inf_data = XZALLOC (struct catch_syscall_inferior_data);
7989 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
7990 }
7991
7992 return inf_data;
7993 }
7994
7995 static void
7996 catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
7997 {
7998 xfree (arg);
7999 }
8000
8001
8002 /* Implement the "insert" breakpoint_ops method for syscall
8003 catchpoints. */
8004
8005 static int
8006 insert_catch_syscall (struct bp_location *bl)
8007 {
8008 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8009 struct inferior *inf = current_inferior ();
8010 struct catch_syscall_inferior_data *inf_data
8011 = get_catch_syscall_inferior_data (inf);
8012
8013 ++inf_data->total_syscalls_count;
8014 if (!c->syscalls_to_be_caught)
8015 ++inf_data->any_syscall_count;
8016 else
8017 {
8018 int i, iter;
8019
8020 for (i = 0;
8021 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8022 i++)
8023 {
8024 int elem;
8025
8026 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8027 {
8028 int old_size = VEC_length (int, inf_data->syscalls_counts);
8029 uintptr_t vec_addr_offset
8030 = old_size * ((uintptr_t) sizeof (int));
8031 uintptr_t vec_addr;
8032 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8033 vec_addr = ((uintptr_t) VEC_address (int,
8034 inf_data->syscalls_counts)
8035 + vec_addr_offset);
8036 memset ((void *) vec_addr, 0,
8037 (iter + 1 - old_size) * sizeof (int));
8038 }
8039 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8040 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8041 }
8042 }
8043
8044 return target_set_syscall_catchpoint (PIDGET (inferior_ptid),
8045 inf_data->total_syscalls_count != 0,
8046 inf_data->any_syscall_count,
8047 VEC_length (int,
8048 inf_data->syscalls_counts),
8049 VEC_address (int,
8050 inf_data->syscalls_counts));
8051 }
8052
8053 /* Implement the "remove" breakpoint_ops method for syscall
8054 catchpoints. */
8055
8056 static int
8057 remove_catch_syscall (struct bp_location *bl)
8058 {
8059 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8060 struct inferior *inf = current_inferior ();
8061 struct catch_syscall_inferior_data *inf_data
8062 = get_catch_syscall_inferior_data (inf);
8063
8064 --inf_data->total_syscalls_count;
8065 if (!c->syscalls_to_be_caught)
8066 --inf_data->any_syscall_count;
8067 else
8068 {
8069 int i, iter;
8070
8071 for (i = 0;
8072 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8073 i++)
8074 {
8075 int elem;
8076 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8077 /* Shouldn't happen. */
8078 continue;
8079 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8080 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8081 }
8082 }
8083
8084 return target_set_syscall_catchpoint (PIDGET (inferior_ptid),
8085 inf_data->total_syscalls_count != 0,
8086 inf_data->any_syscall_count,
8087 VEC_length (int,
8088 inf_data->syscalls_counts),
8089 VEC_address (int,
8090 inf_data->syscalls_counts));
8091 }
8092
8093 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8094 catchpoints. */
8095
8096 static int
8097 breakpoint_hit_catch_syscall (const struct bp_location *bl,
8098 struct address_space *aspace, CORE_ADDR bp_addr,
8099 const struct target_waitstatus *ws)
8100 {
8101 /* We must check if we are catching specific syscalls in this
8102 breakpoint. If we are, then we must guarantee that the called
8103 syscall is the same syscall we are catching. */
8104 int syscall_number = 0;
8105 const struct syscall_catchpoint *c
8106 = (const struct syscall_catchpoint *) bl->owner;
8107
8108 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8109 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8110 return 0;
8111
8112 syscall_number = ws->value.syscall_number;
8113
8114 /* Now, checking if the syscall is the same. */
8115 if (c->syscalls_to_be_caught)
8116 {
8117 int i, iter;
8118
8119 for (i = 0;
8120 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8121 i++)
8122 if (syscall_number == iter)
8123 break;
8124 /* Not the same. */
8125 if (!iter)
8126 return 0;
8127 }
8128
8129 return 1;
8130 }
8131
8132 /* Implement the "print_it" breakpoint_ops method for syscall
8133 catchpoints. */
8134
8135 static enum print_stop_action
8136 print_it_catch_syscall (bpstat bs)
8137 {
8138 struct ui_out *uiout = current_uiout;
8139 struct breakpoint *b = bs->breakpoint_at;
8140 /* These are needed because we want to know in which state a
8141 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8142 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8143 must print "called syscall" or "returned from syscall". */
8144 ptid_t ptid;
8145 struct target_waitstatus last;
8146 struct syscall s;
8147
8148 get_last_target_status (&ptid, &last);
8149
8150 get_syscall_by_number (last.value.syscall_number, &s);
8151
8152 annotate_catchpoint (b->number);
8153
8154 if (b->disposition == disp_del)
8155 ui_out_text (uiout, "\nTemporary catchpoint ");
8156 else
8157 ui_out_text (uiout, "\nCatchpoint ");
8158 if (ui_out_is_mi_like_p (uiout))
8159 {
8160 ui_out_field_string (uiout, "reason",
8161 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8162 ? EXEC_ASYNC_SYSCALL_ENTRY
8163 : EXEC_ASYNC_SYSCALL_RETURN));
8164 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8165 }
8166 ui_out_field_int (uiout, "bkptno", b->number);
8167
8168 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8169 ui_out_text (uiout, " (call to syscall ");
8170 else
8171 ui_out_text (uiout, " (returned from syscall ");
8172
8173 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8174 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8175 if (s.name != NULL)
8176 ui_out_field_string (uiout, "syscall-name", s.name);
8177
8178 ui_out_text (uiout, "), ");
8179
8180 return PRINT_SRC_AND_LOC;
8181 }
8182
8183 /* Implement the "print_one" breakpoint_ops method for syscall
8184 catchpoints. */
8185
8186 static void
8187 print_one_catch_syscall (struct breakpoint *b,
8188 struct bp_location **last_loc)
8189 {
8190 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8191 struct value_print_options opts;
8192 struct ui_out *uiout = current_uiout;
8193
8194 get_user_print_options (&opts);
8195 /* Field 4, the address, is omitted (which makes the columns not
8196 line up too nicely with the headers, but the effect is relatively
8197 readable). */
8198 if (opts.addressprint)
8199 ui_out_field_skip (uiout, "addr");
8200 annotate_field (5);
8201
8202 if (c->syscalls_to_be_caught
8203 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8204 ui_out_text (uiout, "syscalls \"");
8205 else
8206 ui_out_text (uiout, "syscall \"");
8207
8208 if (c->syscalls_to_be_caught)
8209 {
8210 int i, iter;
8211 char *text = xstrprintf ("%s", "");
8212
8213 for (i = 0;
8214 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8215 i++)
8216 {
8217 char *x = text;
8218 struct syscall s;
8219 get_syscall_by_number (iter, &s);
8220
8221 if (s.name != NULL)
8222 text = xstrprintf ("%s%s, ", text, s.name);
8223 else
8224 text = xstrprintf ("%s%d, ", text, iter);
8225
8226 /* We have to xfree the last 'text' (now stored at 'x')
8227 because xstrprintf dynamically allocates new space for it
8228 on every call. */
8229 xfree (x);
8230 }
8231 /* Remove the last comma. */
8232 text[strlen (text) - 2] = '\0';
8233 ui_out_field_string (uiout, "what", text);
8234 }
8235 else
8236 ui_out_field_string (uiout, "what", "<any syscall>");
8237 ui_out_text (uiout, "\" ");
8238 }
8239
8240 /* Implement the "print_mention" breakpoint_ops method for syscall
8241 catchpoints. */
8242
8243 static void
8244 print_mention_catch_syscall (struct breakpoint *b)
8245 {
8246 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8247
8248 if (c->syscalls_to_be_caught)
8249 {
8250 int i, iter;
8251
8252 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8253 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8254 else
8255 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8256
8257 for (i = 0;
8258 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8259 i++)
8260 {
8261 struct syscall s;
8262 get_syscall_by_number (iter, &s);
8263
8264 if (s.name)
8265 printf_filtered (" '%s' [%d]", s.name, s.number);
8266 else
8267 printf_filtered (" %d", s.number);
8268 }
8269 printf_filtered (")");
8270 }
8271 else
8272 printf_filtered (_("Catchpoint %d (any syscall)"),
8273 b->number);
8274 }
8275
8276 /* Implement the "print_recreate" breakpoint_ops method for syscall
8277 catchpoints. */
8278
8279 static void
8280 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8281 {
8282 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8283
8284 fprintf_unfiltered (fp, "catch syscall");
8285
8286 if (c->syscalls_to_be_caught)
8287 {
8288 int i, iter;
8289
8290 for (i = 0;
8291 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8292 i++)
8293 {
8294 struct syscall s;
8295
8296 get_syscall_by_number (iter, &s);
8297 if (s.name)
8298 fprintf_unfiltered (fp, " %s", s.name);
8299 else
8300 fprintf_unfiltered (fp, " %d", s.number);
8301 }
8302 }
8303 print_recreate_thread (b, fp);
8304 }
8305
8306 /* The breakpoint_ops structure to be used in syscall catchpoints. */
8307
8308 static struct breakpoint_ops catch_syscall_breakpoint_ops;
8309
8310 /* Returns non-zero if 'b' is a syscall catchpoint. */
8311
8312 static int
8313 syscall_catchpoint_p (struct breakpoint *b)
8314 {
8315 return (b->ops == &catch_syscall_breakpoint_ops);
8316 }
8317
8318 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8319 is non-zero, then make the breakpoint temporary. If COND_STRING is
8320 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8321 the breakpoint_ops structure associated to the catchpoint. */
8322
8323 static void
8324 init_catchpoint (struct breakpoint *b,
8325 struct gdbarch *gdbarch, int tempflag,
8326 char *cond_string,
8327 const struct breakpoint_ops *ops)
8328 {
8329 struct symtab_and_line sal;
8330
8331 init_sal (&sal);
8332 sal.pspace = current_program_space;
8333
8334 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8335
8336 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8337 b->disposition = tempflag ? disp_del : disp_donttouch;
8338 }
8339
8340 void
8341 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8342 {
8343 add_to_breakpoint_chain (b);
8344 set_breakpoint_number (internal, b);
8345 if (is_tracepoint (b))
8346 set_tracepoint_count (breakpoint_count);
8347 if (!internal)
8348 mention (b);
8349 observer_notify_breakpoint_created (b);
8350
8351 if (update_gll)
8352 update_global_location_list (1);
8353 }
8354
8355 static void
8356 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8357 int tempflag, char *cond_string,
8358 const struct breakpoint_ops *ops)
8359 {
8360 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8361
8362 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8363
8364 c->forked_inferior_pid = null_ptid;
8365
8366 install_breakpoint (0, &c->base, 1);
8367 }
8368
8369 /* Exec catchpoints. */
8370
8371 /* An instance of this type is used to represent an exec catchpoint.
8372 It includes a "struct breakpoint" as a kind of base class; users
8373 downcast to "struct breakpoint *" when needed. A breakpoint is
8374 really of this type iff its ops pointer points to
8375 CATCH_EXEC_BREAKPOINT_OPS. */
8376
8377 struct exec_catchpoint
8378 {
8379 /* The base class. */
8380 struct breakpoint base;
8381
8382 /* Filename of a program whose exec triggered this catchpoint.
8383 This field is only valid immediately after this catchpoint has
8384 triggered. */
8385 char *exec_pathname;
8386 };
8387
8388 /* Implement the "dtor" breakpoint_ops method for exec
8389 catchpoints. */
8390
8391 static void
8392 dtor_catch_exec (struct breakpoint *b)
8393 {
8394 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8395
8396 xfree (c->exec_pathname);
8397
8398 base_breakpoint_ops.dtor (b);
8399 }
8400
8401 static int
8402 insert_catch_exec (struct bp_location *bl)
8403 {
8404 return target_insert_exec_catchpoint (PIDGET (inferior_ptid));
8405 }
8406
8407 static int
8408 remove_catch_exec (struct bp_location *bl)
8409 {
8410 return target_remove_exec_catchpoint (PIDGET (inferior_ptid));
8411 }
8412
8413 static int
8414 breakpoint_hit_catch_exec (const struct bp_location *bl,
8415 struct address_space *aspace, CORE_ADDR bp_addr,
8416 const struct target_waitstatus *ws)
8417 {
8418 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8419
8420 if (ws->kind != TARGET_WAITKIND_EXECD)
8421 return 0;
8422
8423 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8424 return 1;
8425 }
8426
8427 static enum print_stop_action
8428 print_it_catch_exec (bpstat bs)
8429 {
8430 struct ui_out *uiout = current_uiout;
8431 struct breakpoint *b = bs->breakpoint_at;
8432 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8433
8434 annotate_catchpoint (b->number);
8435 if (b->disposition == disp_del)
8436 ui_out_text (uiout, "\nTemporary catchpoint ");
8437 else
8438 ui_out_text (uiout, "\nCatchpoint ");
8439 if (ui_out_is_mi_like_p (uiout))
8440 {
8441 ui_out_field_string (uiout, "reason",
8442 async_reason_lookup (EXEC_ASYNC_EXEC));
8443 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8444 }
8445 ui_out_field_int (uiout, "bkptno", b->number);
8446 ui_out_text (uiout, " (exec'd ");
8447 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8448 ui_out_text (uiout, "), ");
8449
8450 return PRINT_SRC_AND_LOC;
8451 }
8452
8453 static void
8454 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8455 {
8456 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8457 struct value_print_options opts;
8458 struct ui_out *uiout = current_uiout;
8459
8460 get_user_print_options (&opts);
8461
8462 /* Field 4, the address, is omitted (which makes the columns
8463 not line up too nicely with the headers, but the effect
8464 is relatively readable). */
8465 if (opts.addressprint)
8466 ui_out_field_skip (uiout, "addr");
8467 annotate_field (5);
8468 ui_out_text (uiout, "exec");
8469 if (c->exec_pathname != NULL)
8470 {
8471 ui_out_text (uiout, ", program \"");
8472 ui_out_field_string (uiout, "what", c->exec_pathname);
8473 ui_out_text (uiout, "\" ");
8474 }
8475 }
8476
8477 static void
8478 print_mention_catch_exec (struct breakpoint *b)
8479 {
8480 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8481 }
8482
8483 /* Implement the "print_recreate" breakpoint_ops method for exec
8484 catchpoints. */
8485
8486 static void
8487 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8488 {
8489 fprintf_unfiltered (fp, "catch exec");
8490 print_recreate_thread (b, fp);
8491 }
8492
8493 static struct breakpoint_ops catch_exec_breakpoint_ops;
8494
8495 static void
8496 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
8497 const struct breakpoint_ops *ops)
8498 {
8499 struct syscall_catchpoint *c;
8500 struct gdbarch *gdbarch = get_current_arch ();
8501
8502 c = XNEW (struct syscall_catchpoint);
8503 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
8504 c->syscalls_to_be_caught = filter;
8505
8506 install_breakpoint (0, &c->base, 1);
8507 }
8508
8509 static int
8510 hw_breakpoint_used_count (void)
8511 {
8512 int i = 0;
8513 struct breakpoint *b;
8514 struct bp_location *bl;
8515
8516 ALL_BREAKPOINTS (b)
8517 {
8518 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8519 for (bl = b->loc; bl; bl = bl->next)
8520 {
8521 /* Special types of hardware breakpoints may use more than
8522 one register. */
8523 i += b->ops->resources_needed (bl);
8524 }
8525 }
8526
8527 return i;
8528 }
8529
8530 /* Returns the resources B would use if it were a hardware
8531 watchpoint. */
8532
8533 static int
8534 hw_watchpoint_use_count (struct breakpoint *b)
8535 {
8536 int i = 0;
8537 struct bp_location *bl;
8538
8539 if (!breakpoint_enabled (b))
8540 return 0;
8541
8542 for (bl = b->loc; bl; bl = bl->next)
8543 {
8544 /* Special types of hardware watchpoints may use more than
8545 one register. */
8546 i += b->ops->resources_needed (bl);
8547 }
8548
8549 return i;
8550 }
8551
8552 /* Returns the sum the used resources of all hardware watchpoints of
8553 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8554 the sum of the used resources of all hardware watchpoints of other
8555 types _not_ TYPE. */
8556
8557 static int
8558 hw_watchpoint_used_count_others (struct breakpoint *except,
8559 enum bptype type, int *other_type_used)
8560 {
8561 int i = 0;
8562 struct breakpoint *b;
8563
8564 *other_type_used = 0;
8565 ALL_BREAKPOINTS (b)
8566 {
8567 if (b == except)
8568 continue;
8569 if (!breakpoint_enabled (b))
8570 continue;
8571
8572 if (b->type == type)
8573 i += hw_watchpoint_use_count (b);
8574 else if (is_hardware_watchpoint (b))
8575 *other_type_used = 1;
8576 }
8577
8578 return i;
8579 }
8580
8581 void
8582 disable_watchpoints_before_interactive_call_start (void)
8583 {
8584 struct breakpoint *b;
8585
8586 ALL_BREAKPOINTS (b)
8587 {
8588 if (is_watchpoint (b) && breakpoint_enabled (b))
8589 {
8590 b->enable_state = bp_call_disabled;
8591 update_global_location_list (0);
8592 }
8593 }
8594 }
8595
8596 void
8597 enable_watchpoints_after_interactive_call_stop (void)
8598 {
8599 struct breakpoint *b;
8600
8601 ALL_BREAKPOINTS (b)
8602 {
8603 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8604 {
8605 b->enable_state = bp_enabled;
8606 update_global_location_list (1);
8607 }
8608 }
8609 }
8610
8611 void
8612 disable_breakpoints_before_startup (void)
8613 {
8614 current_program_space->executing_startup = 1;
8615 update_global_location_list (0);
8616 }
8617
8618 void
8619 enable_breakpoints_after_startup (void)
8620 {
8621 current_program_space->executing_startup = 0;
8622 breakpoint_re_set ();
8623 }
8624
8625
8626 /* Set a breakpoint that will evaporate an end of command
8627 at address specified by SAL.
8628 Restrict it to frame FRAME if FRAME is nonzero. */
8629
8630 struct breakpoint *
8631 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8632 struct frame_id frame_id, enum bptype type)
8633 {
8634 struct breakpoint *b;
8635
8636 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8637 tail-called one. */
8638 gdb_assert (!frame_id_artificial_p (frame_id));
8639
8640 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8641 b->enable_state = bp_enabled;
8642 b->disposition = disp_donttouch;
8643 b->frame_id = frame_id;
8644
8645 /* If we're debugging a multi-threaded program, then we want
8646 momentary breakpoints to be active in only a single thread of
8647 control. */
8648 if (in_thread_list (inferior_ptid))
8649 b->thread = pid_to_thread_id (inferior_ptid);
8650
8651 update_global_location_list_nothrow (1);
8652
8653 return b;
8654 }
8655
8656 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8657 The new breakpoint will have type TYPE, and use OPS as it
8658 breakpoint_ops. */
8659
8660 static struct breakpoint *
8661 momentary_breakpoint_from_master (struct breakpoint *orig,
8662 enum bptype type,
8663 const struct breakpoint_ops *ops)
8664 {
8665 struct breakpoint *copy;
8666
8667 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8668 copy->loc = allocate_bp_location (copy);
8669 set_breakpoint_location_function (copy->loc, 1);
8670
8671 copy->loc->gdbarch = orig->loc->gdbarch;
8672 copy->loc->requested_address = orig->loc->requested_address;
8673 copy->loc->address = orig->loc->address;
8674 copy->loc->section = orig->loc->section;
8675 copy->loc->pspace = orig->loc->pspace;
8676 copy->loc->probe = orig->loc->probe;
8677
8678 if (orig->loc->source_file != NULL)
8679 copy->loc->source_file = xstrdup (orig->loc->source_file);
8680
8681 copy->loc->line_number = orig->loc->line_number;
8682 copy->frame_id = orig->frame_id;
8683 copy->thread = orig->thread;
8684 copy->pspace = orig->pspace;
8685
8686 copy->enable_state = bp_enabled;
8687 copy->disposition = disp_donttouch;
8688 copy->number = internal_breakpoint_number--;
8689
8690 update_global_location_list_nothrow (0);
8691 return copy;
8692 }
8693
8694 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8695 ORIG is NULL. */
8696
8697 struct breakpoint *
8698 clone_momentary_breakpoint (struct breakpoint *orig)
8699 {
8700 /* If there's nothing to clone, then return nothing. */
8701 if (orig == NULL)
8702 return NULL;
8703
8704 return momentary_breakpoint_from_master (orig, orig->type, orig->ops);
8705 }
8706
8707 struct breakpoint *
8708 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8709 enum bptype type)
8710 {
8711 struct symtab_and_line sal;
8712
8713 sal = find_pc_line (pc, 0);
8714 sal.pc = pc;
8715 sal.section = find_pc_overlay (pc);
8716 sal.explicit_pc = 1;
8717
8718 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8719 }
8720 \f
8721
8722 /* Tell the user we have just set a breakpoint B. */
8723
8724 static void
8725 mention (struct breakpoint *b)
8726 {
8727 b->ops->print_mention (b);
8728 if (ui_out_is_mi_like_p (current_uiout))
8729 return;
8730 printf_filtered ("\n");
8731 }
8732 \f
8733
8734 static struct bp_location *
8735 add_location_to_breakpoint (struct breakpoint *b,
8736 const struct symtab_and_line *sal)
8737 {
8738 struct bp_location *loc, **tmp;
8739 CORE_ADDR adjusted_address;
8740 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8741
8742 if (loc_gdbarch == NULL)
8743 loc_gdbarch = b->gdbarch;
8744
8745 /* Adjust the breakpoint's address prior to allocating a location.
8746 Once we call allocate_bp_location(), that mostly uninitialized
8747 location will be placed on the location chain. Adjustment of the
8748 breakpoint may cause target_read_memory() to be called and we do
8749 not want its scan of the location chain to find a breakpoint and
8750 location that's only been partially initialized. */
8751 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8752 sal->pc, b->type);
8753
8754 loc = allocate_bp_location (b);
8755 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
8756 ;
8757 *tmp = loc;
8758
8759 loc->requested_address = sal->pc;
8760 loc->address = adjusted_address;
8761 loc->pspace = sal->pspace;
8762 loc->probe = sal->probe;
8763 gdb_assert (loc->pspace != NULL);
8764 loc->section = sal->section;
8765 loc->gdbarch = loc_gdbarch;
8766
8767 if (sal->symtab != NULL)
8768 loc->source_file = xstrdup (sal->symtab->filename);
8769 loc->line_number = sal->line;
8770
8771 set_breakpoint_location_function (loc,
8772 sal->explicit_pc || sal->explicit_line);
8773 return loc;
8774 }
8775 \f
8776
8777 /* Return 1 if LOC is pointing to a permanent breakpoint,
8778 return 0 otherwise. */
8779
8780 static int
8781 bp_loc_is_permanent (struct bp_location *loc)
8782 {
8783 int len;
8784 CORE_ADDR addr;
8785 const gdb_byte *bpoint;
8786 gdb_byte *target_mem;
8787 struct cleanup *cleanup;
8788 int retval = 0;
8789
8790 gdb_assert (loc != NULL);
8791
8792 addr = loc->address;
8793 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
8794
8795 /* Software breakpoints unsupported? */
8796 if (bpoint == NULL)
8797 return 0;
8798
8799 target_mem = alloca (len);
8800
8801 /* Enable the automatic memory restoration from breakpoints while
8802 we read the memory. Otherwise we could say about our temporary
8803 breakpoints they are permanent. */
8804 cleanup = save_current_space_and_thread ();
8805
8806 switch_to_program_space_and_thread (loc->pspace);
8807 make_show_memory_breakpoints_cleanup (0);
8808
8809 if (target_read_memory (loc->address, target_mem, len) == 0
8810 && memcmp (target_mem, bpoint, len) == 0)
8811 retval = 1;
8812
8813 do_cleanups (cleanup);
8814
8815 return retval;
8816 }
8817
8818 /* Build a command list for the dprintf corresponding to the current
8819 settings of the dprintf style options. */
8820
8821 static void
8822 update_dprintf_command_list (struct breakpoint *b)
8823 {
8824 char *dprintf_args = b->extra_string;
8825 char *printf_line = NULL;
8826
8827 if (!dprintf_args)
8828 return;
8829
8830 dprintf_args = skip_spaces (dprintf_args);
8831
8832 /* Allow a comma, as it may have terminated a location, but don't
8833 insist on it. */
8834 if (*dprintf_args == ',')
8835 ++dprintf_args;
8836 dprintf_args = skip_spaces (dprintf_args);
8837
8838 if (*dprintf_args != '"')
8839 error (_("Bad format string, missing '\"'."));
8840
8841 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8842 printf_line = xstrprintf ("printf %s", dprintf_args);
8843 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8844 {
8845 if (!dprintf_function)
8846 error (_("No function supplied for dprintf call"));
8847
8848 if (dprintf_channel && strlen (dprintf_channel) > 0)
8849 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8850 dprintf_function,
8851 dprintf_channel,
8852 dprintf_args);
8853 else
8854 printf_line = xstrprintf ("call (void) %s (%s)",
8855 dprintf_function,
8856 dprintf_args);
8857 }
8858 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8859 {
8860 if (target_can_run_breakpoint_commands ())
8861 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8862 else
8863 {
8864 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8865 printf_line = xstrprintf ("printf %s", dprintf_args);
8866 }
8867 }
8868 else
8869 internal_error (__FILE__, __LINE__,
8870 _("Invalid dprintf style."));
8871
8872 /* Manufacture a printf/continue sequence. */
8873 if (printf_line)
8874 {
8875 struct command_line *printf_cmd_line, *cont_cmd_line = NULL;
8876
8877 if (strcmp (dprintf_style, dprintf_style_agent) != 0)
8878 {
8879 cont_cmd_line = xmalloc (sizeof (struct command_line));
8880 cont_cmd_line->control_type = simple_control;
8881 cont_cmd_line->body_count = 0;
8882 cont_cmd_line->body_list = NULL;
8883 cont_cmd_line->next = NULL;
8884 cont_cmd_line->line = xstrdup ("continue");
8885 }
8886
8887 printf_cmd_line = xmalloc (sizeof (struct command_line));
8888 printf_cmd_line->control_type = simple_control;
8889 printf_cmd_line->body_count = 0;
8890 printf_cmd_line->body_list = NULL;
8891 printf_cmd_line->next = cont_cmd_line;
8892 printf_cmd_line->line = printf_line;
8893
8894 breakpoint_set_commands (b, printf_cmd_line);
8895 }
8896 }
8897
8898 /* Update all dprintf commands, making their command lists reflect
8899 current style settings. */
8900
8901 static void
8902 update_dprintf_commands (char *args, int from_tty,
8903 struct cmd_list_element *c)
8904 {
8905 struct breakpoint *b;
8906
8907 ALL_BREAKPOINTS (b)
8908 {
8909 if (b->type == bp_dprintf)
8910 update_dprintf_command_list (b);
8911 }
8912 }
8913
8914 /* Create a breakpoint with SAL as location. Use ADDR_STRING
8915 as textual description of the location, and COND_STRING
8916 as condition expression. */
8917
8918 static void
8919 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8920 struct symtabs_and_lines sals, char *addr_string,
8921 char *filter, char *cond_string,
8922 char *extra_string,
8923 enum bptype type, enum bpdisp disposition,
8924 int thread, int task, int ignore_count,
8925 const struct breakpoint_ops *ops, int from_tty,
8926 int enabled, int internal, unsigned flags,
8927 int display_canonical)
8928 {
8929 int i;
8930
8931 if (type == bp_hardware_breakpoint)
8932 {
8933 int target_resources_ok;
8934
8935 i = hw_breakpoint_used_count ();
8936 target_resources_ok =
8937 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8938 i + 1, 0);
8939 if (target_resources_ok == 0)
8940 error (_("No hardware breakpoint support in the target."));
8941 else if (target_resources_ok < 0)
8942 error (_("Hardware breakpoints used exceeds limit."));
8943 }
8944
8945 gdb_assert (sals.nelts > 0);
8946
8947 for (i = 0; i < sals.nelts; ++i)
8948 {
8949 struct symtab_and_line sal = sals.sals[i];
8950 struct bp_location *loc;
8951
8952 if (from_tty)
8953 {
8954 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8955 if (!loc_gdbarch)
8956 loc_gdbarch = gdbarch;
8957
8958 describe_other_breakpoints (loc_gdbarch,
8959 sal.pspace, sal.pc, sal.section, thread);
8960 }
8961
8962 if (i == 0)
8963 {
8964 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8965 b->thread = thread;
8966 b->task = task;
8967
8968 b->cond_string = cond_string;
8969 b->extra_string = extra_string;
8970 b->ignore_count = ignore_count;
8971 b->enable_state = enabled ? bp_enabled : bp_disabled;
8972 b->disposition = disposition;
8973
8974 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8975 b->loc->inserted = 1;
8976
8977 if (type == bp_static_tracepoint)
8978 {
8979 struct tracepoint *t = (struct tracepoint *) b;
8980 struct static_tracepoint_marker marker;
8981
8982 if (strace_marker_p (b))
8983 {
8984 /* We already know the marker exists, otherwise, we
8985 wouldn't see a sal for it. */
8986 char *p = &addr_string[3];
8987 char *endp;
8988 char *marker_str;
8989
8990 p = skip_spaces (p);
8991
8992 endp = skip_to_space (p);
8993
8994 marker_str = savestring (p, endp - p);
8995 t->static_trace_marker_id = marker_str;
8996
8997 printf_filtered (_("Probed static tracepoint "
8998 "marker \"%s\"\n"),
8999 t->static_trace_marker_id);
9000 }
9001 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9002 {
9003 t->static_trace_marker_id = xstrdup (marker.str_id);
9004 release_static_tracepoint_marker (&marker);
9005
9006 printf_filtered (_("Probed static tracepoint "
9007 "marker \"%s\"\n"),
9008 t->static_trace_marker_id);
9009 }
9010 else
9011 warning (_("Couldn't determine the static "
9012 "tracepoint marker to probe"));
9013 }
9014
9015 loc = b->loc;
9016 }
9017 else
9018 {
9019 loc = add_location_to_breakpoint (b, &sal);
9020 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9021 loc->inserted = 1;
9022 }
9023
9024 if (bp_loc_is_permanent (loc))
9025 make_breakpoint_permanent (b);
9026
9027 if (b->cond_string)
9028 {
9029 char *arg = b->cond_string;
9030 loc->cond = parse_exp_1 (&arg, loc->address,
9031 block_for_pc (loc->address), 0);
9032 if (*arg)
9033 error (_("Garbage '%s' follows condition"), arg);
9034 }
9035
9036 /* Dynamic printf requires and uses additional arguments on the
9037 command line, otherwise it's an error. */
9038 if (type == bp_dprintf)
9039 {
9040 if (b->extra_string)
9041 update_dprintf_command_list (b);
9042 else
9043 error (_("Format string required"));
9044 }
9045 else if (b->extra_string)
9046 error (_("Garbage '%s' at end of command"), b->extra_string);
9047 }
9048
9049 b->display_canonical = display_canonical;
9050 if (addr_string)
9051 b->addr_string = addr_string;
9052 else
9053 /* addr_string has to be used or breakpoint_re_set will delete
9054 me. */
9055 b->addr_string
9056 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9057 b->filter = filter;
9058 }
9059
9060 static void
9061 create_breakpoint_sal (struct gdbarch *gdbarch,
9062 struct symtabs_and_lines sals, char *addr_string,
9063 char *filter, char *cond_string,
9064 char *extra_string,
9065 enum bptype type, enum bpdisp disposition,
9066 int thread, int task, int ignore_count,
9067 const struct breakpoint_ops *ops, int from_tty,
9068 int enabled, int internal, unsigned flags,
9069 int display_canonical)
9070 {
9071 struct breakpoint *b;
9072 struct cleanup *old_chain;
9073
9074 if (is_tracepoint_type (type))
9075 {
9076 struct tracepoint *t;
9077
9078 t = XCNEW (struct tracepoint);
9079 b = &t->base;
9080 }
9081 else
9082 b = XNEW (struct breakpoint);
9083
9084 old_chain = make_cleanup (xfree, b);
9085
9086 init_breakpoint_sal (b, gdbarch,
9087 sals, addr_string,
9088 filter, cond_string, extra_string,
9089 type, disposition,
9090 thread, task, ignore_count,
9091 ops, from_tty,
9092 enabled, internal, flags,
9093 display_canonical);
9094 discard_cleanups (old_chain);
9095
9096 install_breakpoint (internal, b, 0);
9097 }
9098
9099 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9100 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9101 value. COND_STRING, if not NULL, specified the condition to be
9102 used for all breakpoints. Essentially the only case where
9103 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9104 function. In that case, it's still not possible to specify
9105 separate conditions for different overloaded functions, so
9106 we take just a single condition string.
9107
9108 NOTE: If the function succeeds, the caller is expected to cleanup
9109 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9110 array contents). If the function fails (error() is called), the
9111 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9112 COND and SALS arrays and each of those arrays contents. */
9113
9114 static void
9115 create_breakpoints_sal (struct gdbarch *gdbarch,
9116 struct linespec_result *canonical,
9117 char *cond_string, char *extra_string,
9118 enum bptype type, enum bpdisp disposition,
9119 int thread, int task, int ignore_count,
9120 const struct breakpoint_ops *ops, int from_tty,
9121 int enabled, int internal, unsigned flags)
9122 {
9123 int i;
9124 struct linespec_sals *lsal;
9125
9126 if (canonical->pre_expanded)
9127 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9128
9129 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9130 {
9131 /* Note that 'addr_string' can be NULL in the case of a plain
9132 'break', without arguments. */
9133 char *addr_string = (canonical->addr_string
9134 ? xstrdup (canonical->addr_string)
9135 : NULL);
9136 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9137 struct cleanup *inner = make_cleanup (xfree, addr_string);
9138
9139 make_cleanup (xfree, filter_string);
9140 create_breakpoint_sal (gdbarch, lsal->sals,
9141 addr_string,
9142 filter_string,
9143 cond_string, extra_string,
9144 type, disposition,
9145 thread, task, ignore_count, ops,
9146 from_tty, enabled, internal, flags,
9147 canonical->special_display);
9148 discard_cleanups (inner);
9149 }
9150 }
9151
9152 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9153 followed by conditionals. On return, SALS contains an array of SAL
9154 addresses found. ADDR_STRING contains a vector of (canonical)
9155 address strings. ADDRESS points to the end of the SAL.
9156
9157 The array and the line spec strings are allocated on the heap, it is
9158 the caller's responsibility to free them. */
9159
9160 static void
9161 parse_breakpoint_sals (char **address,
9162 struct linespec_result *canonical)
9163 {
9164 /* If no arg given, or if first arg is 'if ', use the default
9165 breakpoint. */
9166 if ((*address) == NULL
9167 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9168 {
9169 /* The last displayed codepoint, if it's valid, is our default breakpoint
9170 address. */
9171 if (last_displayed_sal_is_valid ())
9172 {
9173 struct linespec_sals lsal;
9174 struct symtab_and_line sal;
9175 CORE_ADDR pc;
9176
9177 init_sal (&sal); /* Initialize to zeroes. */
9178 lsal.sals.sals = (struct symtab_and_line *)
9179 xmalloc (sizeof (struct symtab_and_line));
9180
9181 /* Set sal's pspace, pc, symtab, and line to the values
9182 corresponding to the last call to print_frame_info.
9183 Be sure to reinitialize LINE with NOTCURRENT == 0
9184 as the breakpoint line number is inappropriate otherwise.
9185 find_pc_line would adjust PC, re-set it back. */
9186 get_last_displayed_sal (&sal);
9187 pc = sal.pc;
9188 sal = find_pc_line (pc, 0);
9189
9190 /* "break" without arguments is equivalent to "break *PC"
9191 where PC is the last displayed codepoint's address. So
9192 make sure to set sal.explicit_pc to prevent GDB from
9193 trying to expand the list of sals to include all other
9194 instances with the same symtab and line. */
9195 sal.pc = pc;
9196 sal.explicit_pc = 1;
9197
9198 lsal.sals.sals[0] = sal;
9199 lsal.sals.nelts = 1;
9200 lsal.canonical = NULL;
9201
9202 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9203 }
9204 else
9205 error (_("No default breakpoint address now."));
9206 }
9207 else
9208 {
9209 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9210
9211 /* Force almost all breakpoints to be in terms of the
9212 current_source_symtab (which is decode_line_1's default).
9213 This should produce the results we want almost all of the
9214 time while leaving default_breakpoint_* alone.
9215
9216 ObjC: However, don't match an Objective-C method name which
9217 may have a '+' or '-' succeeded by a '['. */
9218 if (last_displayed_sal_is_valid ()
9219 && (!cursal.symtab
9220 || ((strchr ("+-", (*address)[0]) != NULL)
9221 && ((*address)[1] != '['))))
9222 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9223 get_last_displayed_symtab (),
9224 get_last_displayed_line (),
9225 canonical, NULL, NULL);
9226 else
9227 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9228 cursal.symtab, cursal.line, canonical, NULL, NULL);
9229 }
9230 }
9231
9232
9233 /* Convert each SAL into a real PC. Verify that the PC can be
9234 inserted as a breakpoint. If it can't throw an error. */
9235
9236 static void
9237 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9238 {
9239 int i;
9240
9241 for (i = 0; i < sals->nelts; i++)
9242 resolve_sal_pc (&sals->sals[i]);
9243 }
9244
9245 /* Fast tracepoints may have restrictions on valid locations. For
9246 instance, a fast tracepoint using a jump instead of a trap will
9247 likely have to overwrite more bytes than a trap would, and so can
9248 only be placed where the instruction is longer than the jump, or a
9249 multi-instruction sequence does not have a jump into the middle of
9250 it, etc. */
9251
9252 static void
9253 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9254 struct symtabs_and_lines *sals)
9255 {
9256 int i, rslt;
9257 struct symtab_and_line *sal;
9258 char *msg;
9259 struct cleanup *old_chain;
9260
9261 for (i = 0; i < sals->nelts; i++)
9262 {
9263 struct gdbarch *sarch;
9264
9265 sal = &sals->sals[i];
9266
9267 sarch = get_sal_arch (*sal);
9268 /* We fall back to GDBARCH if there is no architecture
9269 associated with SAL. */
9270 if (sarch == NULL)
9271 sarch = gdbarch;
9272 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9273 NULL, &msg);
9274 old_chain = make_cleanup (xfree, msg);
9275
9276 if (!rslt)
9277 error (_("May not have a fast tracepoint at 0x%s%s"),
9278 paddress (sarch, sal->pc), (msg ? msg : ""));
9279
9280 do_cleanups (old_chain);
9281 }
9282 }
9283
9284 /* Issue an invalid thread ID error. */
9285
9286 static void ATTRIBUTE_NORETURN
9287 invalid_thread_id_error (int id)
9288 {
9289 error (_("Unknown thread %d."), id);
9290 }
9291
9292 /* Given TOK, a string specification of condition and thread, as
9293 accepted by the 'break' command, extract the condition
9294 string and thread number and set *COND_STRING and *THREAD.
9295 PC identifies the context at which the condition should be parsed.
9296 If no condition is found, *COND_STRING is set to NULL.
9297 If no thread is found, *THREAD is set to -1. */
9298
9299 static void
9300 find_condition_and_thread (char *tok, CORE_ADDR pc,
9301 char **cond_string, int *thread, int *task,
9302 char **rest)
9303 {
9304 *cond_string = NULL;
9305 *thread = -1;
9306 *task = 0;
9307 *rest = NULL;
9308
9309 while (tok && *tok)
9310 {
9311 char *end_tok;
9312 int toklen;
9313 char *cond_start = NULL;
9314 char *cond_end = NULL;
9315
9316 tok = skip_spaces (tok);
9317
9318 if ((*tok == '"' || *tok == ',') && rest)
9319 {
9320 *rest = savestring (tok, strlen (tok));
9321 return;
9322 }
9323
9324 end_tok = skip_to_space (tok);
9325
9326 toklen = end_tok - tok;
9327
9328 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9329 {
9330 struct expression *expr;
9331
9332 tok = cond_start = end_tok + 1;
9333 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9334 xfree (expr);
9335 cond_end = tok;
9336 *cond_string = savestring (cond_start, cond_end - cond_start);
9337 }
9338 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9339 {
9340 char *tmptok;
9341
9342 tok = end_tok + 1;
9343 tmptok = tok;
9344 *thread = strtol (tok, &tok, 0);
9345 if (tok == tmptok)
9346 error (_("Junk after thread keyword."));
9347 if (!valid_thread_id (*thread))
9348 invalid_thread_id_error (*thread);
9349 }
9350 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9351 {
9352 char *tmptok;
9353
9354 tok = end_tok + 1;
9355 tmptok = tok;
9356 *task = strtol (tok, &tok, 0);
9357 if (tok == tmptok)
9358 error (_("Junk after task keyword."));
9359 if (!valid_task_id (*task))
9360 error (_("Unknown task %d."), *task);
9361 }
9362 else if (rest)
9363 {
9364 *rest = savestring (tok, strlen (tok));
9365 return;
9366 }
9367 else
9368 error (_("Junk at end of arguments."));
9369 }
9370 }
9371
9372 /* Decode a static tracepoint marker spec. */
9373
9374 static struct symtabs_and_lines
9375 decode_static_tracepoint_spec (char **arg_p)
9376 {
9377 VEC(static_tracepoint_marker_p) *markers = NULL;
9378 struct symtabs_and_lines sals;
9379 struct cleanup *old_chain;
9380 char *p = &(*arg_p)[3];
9381 char *endp;
9382 char *marker_str;
9383 int i;
9384
9385 p = skip_spaces (p);
9386
9387 endp = skip_to_space (p);
9388
9389 marker_str = savestring (p, endp - p);
9390 old_chain = make_cleanup (xfree, marker_str);
9391
9392 markers = target_static_tracepoint_markers_by_strid (marker_str);
9393 if (VEC_empty(static_tracepoint_marker_p, markers))
9394 error (_("No known static tracepoint marker named %s"), marker_str);
9395
9396 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9397 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9398
9399 for (i = 0; i < sals.nelts; i++)
9400 {
9401 struct static_tracepoint_marker *marker;
9402
9403 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9404
9405 init_sal (&sals.sals[i]);
9406
9407 sals.sals[i] = find_pc_line (marker->address, 0);
9408 sals.sals[i].pc = marker->address;
9409
9410 release_static_tracepoint_marker (marker);
9411 }
9412
9413 do_cleanups (old_chain);
9414
9415 *arg_p = endp;
9416 return sals;
9417 }
9418
9419 /* Set a breakpoint. This function is shared between CLI and MI
9420 functions for setting a breakpoint. This function has two major
9421 modes of operations, selected by the PARSE_CONDITION_AND_THREAD
9422 parameter. If non-zero, the function will parse arg, extracting
9423 breakpoint location, address and thread. Otherwise, ARG is just
9424 the location of breakpoint, with condition and thread specified by
9425 the COND_STRING and THREAD parameters. If INTERNAL is non-zero,
9426 the breakpoint number will be allocated from the internal
9427 breakpoint count. Returns true if any breakpoint was created;
9428 false otherwise. */
9429
9430 int
9431 create_breakpoint (struct gdbarch *gdbarch,
9432 char *arg, char *cond_string,
9433 int thread, char *extra_string,
9434 int parse_condition_and_thread,
9435 int tempflag, enum bptype type_wanted,
9436 int ignore_count,
9437 enum auto_boolean pending_break_support,
9438 const struct breakpoint_ops *ops,
9439 int from_tty, int enabled, int internal,
9440 unsigned flags)
9441 {
9442 volatile struct gdb_exception e;
9443 char *copy_arg = NULL;
9444 char *addr_start = arg;
9445 struct linespec_result canonical;
9446 struct cleanup *old_chain;
9447 struct cleanup *bkpt_chain = NULL;
9448 int pending = 0;
9449 int task = 0;
9450 int prev_bkpt_count = breakpoint_count;
9451
9452 gdb_assert (ops != NULL);
9453
9454 init_linespec_result (&canonical);
9455
9456 TRY_CATCH (e, RETURN_MASK_ALL)
9457 {
9458 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9459 addr_start, &copy_arg);
9460 }
9461
9462 /* If caller is interested in rc value from parse, set value. */
9463 switch (e.reason)
9464 {
9465 case GDB_NO_ERROR:
9466 if (VEC_empty (linespec_sals, canonical.sals))
9467 return 0;
9468 break;
9469 case RETURN_ERROR:
9470 switch (e.error)
9471 {
9472 case NOT_FOUND_ERROR:
9473
9474 /* If pending breakpoint support is turned off, throw
9475 error. */
9476
9477 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9478 throw_exception (e);
9479
9480 exception_print (gdb_stderr, e);
9481
9482 /* If pending breakpoint support is auto query and the user
9483 selects no, then simply return the error code. */
9484 if (pending_break_support == AUTO_BOOLEAN_AUTO
9485 && !nquery (_("Make %s pending on future shared library load? "),
9486 bptype_string (type_wanted)))
9487 return 0;
9488
9489 /* At this point, either the user was queried about setting
9490 a pending breakpoint and selected yes, or pending
9491 breakpoint behavior is on and thus a pending breakpoint
9492 is defaulted on behalf of the user. */
9493 {
9494 struct linespec_sals lsal;
9495
9496 copy_arg = xstrdup (addr_start);
9497 lsal.canonical = xstrdup (copy_arg);
9498 lsal.sals.nelts = 1;
9499 lsal.sals.sals = XNEW (struct symtab_and_line);
9500 init_sal (&lsal.sals.sals[0]);
9501 pending = 1;
9502 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9503 }
9504 break;
9505 default:
9506 throw_exception (e);
9507 }
9508 break;
9509 default:
9510 throw_exception (e);
9511 }
9512
9513 /* Create a chain of things that always need to be cleaned up. */
9514 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9515
9516 /* ----------------------------- SNIP -----------------------------
9517 Anything added to the cleanup chain beyond this point is assumed
9518 to be part of a breakpoint. If the breakpoint create succeeds
9519 then the memory is not reclaimed. */
9520 bkpt_chain = make_cleanup (null_cleanup, 0);
9521
9522 /* Resolve all line numbers to PC's and verify that the addresses
9523 are ok for the target. */
9524 if (!pending)
9525 {
9526 int ix;
9527 struct linespec_sals *iter;
9528
9529 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9530 breakpoint_sals_to_pc (&iter->sals);
9531 }
9532
9533 /* Fast tracepoints may have additional restrictions on location. */
9534 if (!pending && type_wanted == bp_fast_tracepoint)
9535 {
9536 int ix;
9537 struct linespec_sals *iter;
9538
9539 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9540 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9541 }
9542
9543 /* Verify that condition can be parsed, before setting any
9544 breakpoints. Allocate a separate condition expression for each
9545 breakpoint. */
9546 if (!pending)
9547 {
9548 struct linespec_sals *lsal;
9549
9550 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9551
9552 if (parse_condition_and_thread)
9553 {
9554 char *rest;
9555 /* Here we only parse 'arg' to separate condition
9556 from thread number, so parsing in context of first
9557 sal is OK. When setting the breakpoint we'll
9558 re-parse it in context of each sal. */
9559
9560 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9561 &thread, &task, &rest);
9562 if (cond_string)
9563 make_cleanup (xfree, cond_string);
9564 if (rest)
9565 make_cleanup (xfree, rest);
9566 if (rest)
9567 extra_string = rest;
9568 }
9569 else
9570 {
9571 /* Create a private copy of condition string. */
9572 if (cond_string)
9573 {
9574 cond_string = xstrdup (cond_string);
9575 make_cleanup (xfree, cond_string);
9576 }
9577 /* Create a private copy of any extra string. */
9578 if (extra_string)
9579 {
9580 extra_string = xstrdup (extra_string);
9581 make_cleanup (xfree, extra_string);
9582 }
9583 }
9584
9585 ops->create_breakpoints_sal (gdbarch, &canonical, lsal,
9586 cond_string, extra_string, type_wanted,
9587 tempflag ? disp_del : disp_donttouch,
9588 thread, task, ignore_count, ops,
9589 from_tty, enabled, internal, flags);
9590 }
9591 else
9592 {
9593 struct breakpoint *b;
9594
9595 make_cleanup (xfree, copy_arg);
9596
9597 if (is_tracepoint_type (type_wanted))
9598 {
9599 struct tracepoint *t;
9600
9601 t = XCNEW (struct tracepoint);
9602 b = &t->base;
9603 }
9604 else
9605 b = XNEW (struct breakpoint);
9606
9607 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9608
9609 b->addr_string = copy_arg;
9610 if (parse_condition_and_thread)
9611 b->cond_string = NULL;
9612 else
9613 {
9614 /* Create a private copy of condition string. */
9615 if (cond_string)
9616 {
9617 cond_string = xstrdup (cond_string);
9618 make_cleanup (xfree, cond_string);
9619 }
9620 b->cond_string = cond_string;
9621 }
9622 b->extra_string = NULL;
9623 b->ignore_count = ignore_count;
9624 b->disposition = tempflag ? disp_del : disp_donttouch;
9625 b->condition_not_parsed = 1;
9626 b->enable_state = enabled ? bp_enabled : bp_disabled;
9627 if ((type_wanted != bp_breakpoint
9628 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9629 b->pspace = current_program_space;
9630
9631 install_breakpoint (internal, b, 0);
9632 }
9633
9634 if (VEC_length (linespec_sals, canonical.sals) > 1)
9635 {
9636 warning (_("Multiple breakpoints were set.\nUse the "
9637 "\"delete\" command to delete unwanted breakpoints."));
9638 prev_breakpoint_count = prev_bkpt_count;
9639 }
9640
9641 /* That's it. Discard the cleanups for data inserted into the
9642 breakpoint. */
9643 discard_cleanups (bkpt_chain);
9644 /* But cleanup everything else. */
9645 do_cleanups (old_chain);
9646
9647 /* error call may happen here - have BKPT_CHAIN already discarded. */
9648 update_global_location_list (1);
9649
9650 return 1;
9651 }
9652
9653 /* Set a breakpoint.
9654 ARG is a string describing breakpoint address,
9655 condition, and thread.
9656 FLAG specifies if a breakpoint is hardware on,
9657 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9658 and BP_TEMPFLAG. */
9659
9660 static void
9661 break_command_1 (char *arg, int flag, int from_tty)
9662 {
9663 int tempflag = flag & BP_TEMPFLAG;
9664 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9665 ? bp_hardware_breakpoint
9666 : bp_breakpoint);
9667 struct breakpoint_ops *ops;
9668 const char *arg_cp = arg;
9669
9670 /* Matching breakpoints on probes. */
9671 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
9672 ops = &bkpt_probe_breakpoint_ops;
9673 else
9674 ops = &bkpt_breakpoint_ops;
9675
9676 create_breakpoint (get_current_arch (),
9677 arg,
9678 NULL, 0, NULL, 1 /* parse arg */,
9679 tempflag, type_wanted,
9680 0 /* Ignore count */,
9681 pending_break_support,
9682 ops,
9683 from_tty,
9684 1 /* enabled */,
9685 0 /* internal */,
9686 0);
9687 }
9688
9689 /* Helper function for break_command_1 and disassemble_command. */
9690
9691 void
9692 resolve_sal_pc (struct symtab_and_line *sal)
9693 {
9694 CORE_ADDR pc;
9695
9696 if (sal->pc == 0 && sal->symtab != NULL)
9697 {
9698 if (!find_line_pc (sal->symtab, sal->line, &pc))
9699 error (_("No line %d in file \"%s\"."),
9700 sal->line, sal->symtab->filename);
9701 sal->pc = pc;
9702
9703 /* If this SAL corresponds to a breakpoint inserted using a line
9704 number, then skip the function prologue if necessary. */
9705 if (sal->explicit_line)
9706 skip_prologue_sal (sal);
9707 }
9708
9709 if (sal->section == 0 && sal->symtab != NULL)
9710 {
9711 struct blockvector *bv;
9712 struct block *b;
9713 struct symbol *sym;
9714
9715 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
9716 if (bv != NULL)
9717 {
9718 sym = block_linkage_function (b);
9719 if (sym != NULL)
9720 {
9721 fixup_symbol_section (sym, sal->symtab->objfile);
9722 sal->section = SYMBOL_OBJ_SECTION (sym);
9723 }
9724 else
9725 {
9726 /* It really is worthwhile to have the section, so we'll
9727 just have to look harder. This case can be executed
9728 if we have line numbers but no functions (as can
9729 happen in assembly source). */
9730
9731 struct minimal_symbol *msym;
9732 struct cleanup *old_chain = save_current_space_and_thread ();
9733
9734 switch_to_program_space_and_thread (sal->pspace);
9735
9736 msym = lookup_minimal_symbol_by_pc (sal->pc);
9737 if (msym)
9738 sal->section = SYMBOL_OBJ_SECTION (msym);
9739
9740 do_cleanups (old_chain);
9741 }
9742 }
9743 }
9744 }
9745
9746 void
9747 break_command (char *arg, int from_tty)
9748 {
9749 break_command_1 (arg, 0, from_tty);
9750 }
9751
9752 void
9753 tbreak_command (char *arg, int from_tty)
9754 {
9755 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9756 }
9757
9758 static void
9759 hbreak_command (char *arg, int from_tty)
9760 {
9761 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9762 }
9763
9764 static void
9765 thbreak_command (char *arg, int from_tty)
9766 {
9767 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9768 }
9769
9770 static void
9771 stop_command (char *arg, int from_tty)
9772 {
9773 printf_filtered (_("Specify the type of breakpoint to set.\n\
9774 Usage: stop in <function | address>\n\
9775 stop at <line>\n"));
9776 }
9777
9778 static void
9779 stopin_command (char *arg, int from_tty)
9780 {
9781 int badInput = 0;
9782
9783 if (arg == (char *) NULL)
9784 badInput = 1;
9785 else if (*arg != '*')
9786 {
9787 char *argptr = arg;
9788 int hasColon = 0;
9789
9790 /* Look for a ':'. If this is a line number specification, then
9791 say it is bad, otherwise, it should be an address or
9792 function/method name. */
9793 while (*argptr && !hasColon)
9794 {
9795 hasColon = (*argptr == ':');
9796 argptr++;
9797 }
9798
9799 if (hasColon)
9800 badInput = (*argptr != ':'); /* Not a class::method */
9801 else
9802 badInput = isdigit (*arg); /* a simple line number */
9803 }
9804
9805 if (badInput)
9806 printf_filtered (_("Usage: stop in <function | address>\n"));
9807 else
9808 break_command_1 (arg, 0, from_tty);
9809 }
9810
9811 static void
9812 stopat_command (char *arg, int from_tty)
9813 {
9814 int badInput = 0;
9815
9816 if (arg == (char *) NULL || *arg == '*') /* no line number */
9817 badInput = 1;
9818 else
9819 {
9820 char *argptr = arg;
9821 int hasColon = 0;
9822
9823 /* Look for a ':'. If there is a '::' then get out, otherwise
9824 it is probably a line number. */
9825 while (*argptr && !hasColon)
9826 {
9827 hasColon = (*argptr == ':');
9828 argptr++;
9829 }
9830
9831 if (hasColon)
9832 badInput = (*argptr == ':'); /* we have class::method */
9833 else
9834 badInput = !isdigit (*arg); /* not a line number */
9835 }
9836
9837 if (badInput)
9838 printf_filtered (_("Usage: stop at <line>\n"));
9839 else
9840 break_command_1 (arg, 0, from_tty);
9841 }
9842
9843 void dprintf_command (char *arg, int from_tty);
9844
9845 /* The dynamic printf command is mostly like a regular breakpoint, but
9846 with a prewired command list consisting of a single output command,
9847 built from extra arguments supplied on the dprintf command
9848 line. */
9849
9850 void
9851 dprintf_command (char *arg, int from_tty)
9852 {
9853 create_breakpoint (get_current_arch (),
9854 arg,
9855 NULL, 0, NULL, 1 /* parse arg */,
9856 0, bp_dprintf,
9857 0 /* Ignore count */,
9858 pending_break_support,
9859 &dprintf_breakpoint_ops,
9860 from_tty,
9861 1 /* enabled */,
9862 0 /* internal */,
9863 0);
9864 }
9865
9866 static void
9867 agent_printf_command (char *arg, int from_tty)
9868 {
9869 error (_("May only run agent-printf on the target"));
9870 }
9871
9872 /* Implement the "breakpoint_hit" breakpoint_ops method for
9873 ranged breakpoints. */
9874
9875 static int
9876 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9877 struct address_space *aspace,
9878 CORE_ADDR bp_addr,
9879 const struct target_waitstatus *ws)
9880 {
9881 if (ws->kind != TARGET_WAITKIND_STOPPED
9882 || ws->value.sig != GDB_SIGNAL_TRAP)
9883 return 0;
9884
9885 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9886 bl->length, aspace, bp_addr);
9887 }
9888
9889 /* Implement the "resources_needed" breakpoint_ops method for
9890 ranged breakpoints. */
9891
9892 static int
9893 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9894 {
9895 return target_ranged_break_num_registers ();
9896 }
9897
9898 /* Implement the "print_it" breakpoint_ops method for
9899 ranged breakpoints. */
9900
9901 static enum print_stop_action
9902 print_it_ranged_breakpoint (bpstat bs)
9903 {
9904 struct breakpoint *b = bs->breakpoint_at;
9905 struct bp_location *bl = b->loc;
9906 struct ui_out *uiout = current_uiout;
9907
9908 gdb_assert (b->type == bp_hardware_breakpoint);
9909
9910 /* Ranged breakpoints have only one location. */
9911 gdb_assert (bl && bl->next == NULL);
9912
9913 annotate_breakpoint (b->number);
9914 if (b->disposition == disp_del)
9915 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
9916 else
9917 ui_out_text (uiout, "\nRanged breakpoint ");
9918 if (ui_out_is_mi_like_p (uiout))
9919 {
9920 ui_out_field_string (uiout, "reason",
9921 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9922 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
9923 }
9924 ui_out_field_int (uiout, "bkptno", b->number);
9925 ui_out_text (uiout, ", ");
9926
9927 return PRINT_SRC_AND_LOC;
9928 }
9929
9930 /* Implement the "print_one" breakpoint_ops method for
9931 ranged breakpoints. */
9932
9933 static void
9934 print_one_ranged_breakpoint (struct breakpoint *b,
9935 struct bp_location **last_loc)
9936 {
9937 struct bp_location *bl = b->loc;
9938 struct value_print_options opts;
9939 struct ui_out *uiout = current_uiout;
9940
9941 /* Ranged breakpoints have only one location. */
9942 gdb_assert (bl && bl->next == NULL);
9943
9944 get_user_print_options (&opts);
9945
9946 if (opts.addressprint)
9947 /* We don't print the address range here, it will be printed later
9948 by print_one_detail_ranged_breakpoint. */
9949 ui_out_field_skip (uiout, "addr");
9950 annotate_field (5);
9951 print_breakpoint_location (b, bl);
9952 *last_loc = bl;
9953 }
9954
9955 /* Implement the "print_one_detail" breakpoint_ops method for
9956 ranged breakpoints. */
9957
9958 static void
9959 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9960 struct ui_out *uiout)
9961 {
9962 CORE_ADDR address_start, address_end;
9963 struct bp_location *bl = b->loc;
9964 struct ui_file *stb = mem_fileopen ();
9965 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
9966
9967 gdb_assert (bl);
9968
9969 address_start = bl->address;
9970 address_end = address_start + bl->length - 1;
9971
9972 ui_out_text (uiout, "\taddress range: ");
9973 fprintf_unfiltered (stb, "[%s, %s]",
9974 print_core_address (bl->gdbarch, address_start),
9975 print_core_address (bl->gdbarch, address_end));
9976 ui_out_field_stream (uiout, "addr", stb);
9977 ui_out_text (uiout, "\n");
9978
9979 do_cleanups (cleanup);
9980 }
9981
9982 /* Implement the "print_mention" breakpoint_ops method for
9983 ranged breakpoints. */
9984
9985 static void
9986 print_mention_ranged_breakpoint (struct breakpoint *b)
9987 {
9988 struct bp_location *bl = b->loc;
9989 struct ui_out *uiout = current_uiout;
9990
9991 gdb_assert (bl);
9992 gdb_assert (b->type == bp_hardware_breakpoint);
9993
9994 if (ui_out_is_mi_like_p (uiout))
9995 return;
9996
9997 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9998 b->number, paddress (bl->gdbarch, bl->address),
9999 paddress (bl->gdbarch, bl->address + bl->length - 1));
10000 }
10001
10002 /* Implement the "print_recreate" breakpoint_ops method for
10003 ranged breakpoints. */
10004
10005 static void
10006 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10007 {
10008 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10009 b->addr_string_range_end);
10010 print_recreate_thread (b, fp);
10011 }
10012
10013 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10014
10015 static struct breakpoint_ops ranged_breakpoint_ops;
10016
10017 /* Find the address where the end of the breakpoint range should be
10018 placed, given the SAL of the end of the range. This is so that if
10019 the user provides a line number, the end of the range is set to the
10020 last instruction of the given line. */
10021
10022 static CORE_ADDR
10023 find_breakpoint_range_end (struct symtab_and_line sal)
10024 {
10025 CORE_ADDR end;
10026
10027 /* If the user provided a PC value, use it. Otherwise,
10028 find the address of the end of the given location. */
10029 if (sal.explicit_pc)
10030 end = sal.pc;
10031 else
10032 {
10033 int ret;
10034 CORE_ADDR start;
10035
10036 ret = find_line_pc_range (sal, &start, &end);
10037 if (!ret)
10038 error (_("Could not find location of the end of the range."));
10039
10040 /* find_line_pc_range returns the start of the next line. */
10041 end--;
10042 }
10043
10044 return end;
10045 }
10046
10047 /* Implement the "break-range" CLI command. */
10048
10049 static void
10050 break_range_command (char *arg, int from_tty)
10051 {
10052 char *arg_start, *addr_string_start, *addr_string_end;
10053 struct linespec_result canonical_start, canonical_end;
10054 int bp_count, can_use_bp, length;
10055 CORE_ADDR end;
10056 struct breakpoint *b;
10057 struct symtab_and_line sal_start, sal_end;
10058 struct cleanup *cleanup_bkpt;
10059 struct linespec_sals *lsal_start, *lsal_end;
10060
10061 /* We don't support software ranged breakpoints. */
10062 if (target_ranged_break_num_registers () < 0)
10063 error (_("This target does not support hardware ranged breakpoints."));
10064
10065 bp_count = hw_breakpoint_used_count ();
10066 bp_count += target_ranged_break_num_registers ();
10067 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10068 bp_count, 0);
10069 if (can_use_bp < 0)
10070 error (_("Hardware breakpoints used exceeds limit."));
10071
10072 arg = skip_spaces (arg);
10073 if (arg == NULL || arg[0] == '\0')
10074 error(_("No address range specified."));
10075
10076 init_linespec_result (&canonical_start);
10077
10078 arg_start = arg;
10079 parse_breakpoint_sals (&arg, &canonical_start);
10080
10081 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10082
10083 if (arg[0] != ',')
10084 error (_("Too few arguments."));
10085 else if (VEC_empty (linespec_sals, canonical_start.sals))
10086 error (_("Could not find location of the beginning of the range."));
10087
10088 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10089
10090 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10091 || lsal_start->sals.nelts != 1)
10092 error (_("Cannot create a ranged breakpoint with multiple locations."));
10093
10094 sal_start = lsal_start->sals.sals[0];
10095 addr_string_start = savestring (arg_start, arg - arg_start);
10096 make_cleanup (xfree, addr_string_start);
10097
10098 arg++; /* Skip the comma. */
10099 arg = skip_spaces (arg);
10100
10101 /* Parse the end location. */
10102
10103 init_linespec_result (&canonical_end);
10104 arg_start = arg;
10105
10106 /* We call decode_line_full directly here instead of using
10107 parse_breakpoint_sals because we need to specify the start location's
10108 symtab and line as the default symtab and line for the end of the
10109 range. This makes it possible to have ranges like "foo.c:27, +14",
10110 where +14 means 14 lines from the start location. */
10111 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10112 sal_start.symtab, sal_start.line,
10113 &canonical_end, NULL, NULL);
10114
10115 make_cleanup_destroy_linespec_result (&canonical_end);
10116
10117 if (VEC_empty (linespec_sals, canonical_end.sals))
10118 error (_("Could not find location of the end of the range."));
10119
10120 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10121 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10122 || lsal_end->sals.nelts != 1)
10123 error (_("Cannot create a ranged breakpoint with multiple locations."));
10124
10125 sal_end = lsal_end->sals.sals[0];
10126 addr_string_end = savestring (arg_start, arg - arg_start);
10127 make_cleanup (xfree, addr_string_end);
10128
10129 end = find_breakpoint_range_end (sal_end);
10130 if (sal_start.pc > end)
10131 error (_("Invalid address range, end precedes start."));
10132
10133 length = end - sal_start.pc + 1;
10134 if (length < 0)
10135 /* Length overflowed. */
10136 error (_("Address range too large."));
10137 else if (length == 1)
10138 {
10139 /* This range is simple enough to be handled by
10140 the `hbreak' command. */
10141 hbreak_command (addr_string_start, 1);
10142
10143 do_cleanups (cleanup_bkpt);
10144
10145 return;
10146 }
10147
10148 /* Now set up the breakpoint. */
10149 b = set_raw_breakpoint (get_current_arch (), sal_start,
10150 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10151 set_breakpoint_count (breakpoint_count + 1);
10152 b->number = breakpoint_count;
10153 b->disposition = disp_donttouch;
10154 b->addr_string = xstrdup (addr_string_start);
10155 b->addr_string_range_end = xstrdup (addr_string_end);
10156 b->loc->length = length;
10157
10158 do_cleanups (cleanup_bkpt);
10159
10160 mention (b);
10161 observer_notify_breakpoint_created (b);
10162 update_global_location_list (1);
10163 }
10164
10165 /* Return non-zero if EXP is verified as constant. Returned zero
10166 means EXP is variable. Also the constant detection may fail for
10167 some constant expressions and in such case still falsely return
10168 zero. */
10169
10170 static int
10171 watchpoint_exp_is_const (const struct expression *exp)
10172 {
10173 int i = exp->nelts;
10174
10175 while (i > 0)
10176 {
10177 int oplenp, argsp;
10178
10179 /* We are only interested in the descriptor of each element. */
10180 operator_length (exp, i, &oplenp, &argsp);
10181 i -= oplenp;
10182
10183 switch (exp->elts[i].opcode)
10184 {
10185 case BINOP_ADD:
10186 case BINOP_SUB:
10187 case BINOP_MUL:
10188 case BINOP_DIV:
10189 case BINOP_REM:
10190 case BINOP_MOD:
10191 case BINOP_LSH:
10192 case BINOP_RSH:
10193 case BINOP_LOGICAL_AND:
10194 case BINOP_LOGICAL_OR:
10195 case BINOP_BITWISE_AND:
10196 case BINOP_BITWISE_IOR:
10197 case BINOP_BITWISE_XOR:
10198 case BINOP_EQUAL:
10199 case BINOP_NOTEQUAL:
10200 case BINOP_LESS:
10201 case BINOP_GTR:
10202 case BINOP_LEQ:
10203 case BINOP_GEQ:
10204 case BINOP_REPEAT:
10205 case BINOP_COMMA:
10206 case BINOP_EXP:
10207 case BINOP_MIN:
10208 case BINOP_MAX:
10209 case BINOP_INTDIV:
10210 case BINOP_CONCAT:
10211 case BINOP_IN:
10212 case BINOP_RANGE:
10213 case TERNOP_COND:
10214 case TERNOP_SLICE:
10215
10216 case OP_LONG:
10217 case OP_DOUBLE:
10218 case OP_DECFLOAT:
10219 case OP_LAST:
10220 case OP_COMPLEX:
10221 case OP_STRING:
10222 case OP_ARRAY:
10223 case OP_TYPE:
10224 case OP_TYPEOF:
10225 case OP_DECLTYPE:
10226 case OP_NAME:
10227 case OP_OBJC_NSSTRING:
10228
10229 case UNOP_NEG:
10230 case UNOP_LOGICAL_NOT:
10231 case UNOP_COMPLEMENT:
10232 case UNOP_ADDR:
10233 case UNOP_HIGH:
10234 case UNOP_CAST:
10235
10236 case UNOP_CAST_TYPE:
10237 case UNOP_REINTERPRET_CAST:
10238 case UNOP_DYNAMIC_CAST:
10239 /* Unary, binary and ternary operators: We have to check
10240 their operands. If they are constant, then so is the
10241 result of that operation. For instance, if A and B are
10242 determined to be constants, then so is "A + B".
10243
10244 UNOP_IND is one exception to the rule above, because the
10245 value of *ADDR is not necessarily a constant, even when
10246 ADDR is. */
10247 break;
10248
10249 case OP_VAR_VALUE:
10250 /* Check whether the associated symbol is a constant.
10251
10252 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10253 possible that a buggy compiler could mark a variable as
10254 constant even when it is not, and TYPE_CONST would return
10255 true in this case, while SYMBOL_CLASS wouldn't.
10256
10257 We also have to check for function symbols because they
10258 are always constant. */
10259 {
10260 struct symbol *s = exp->elts[i + 2].symbol;
10261
10262 if (SYMBOL_CLASS (s) != LOC_BLOCK
10263 && SYMBOL_CLASS (s) != LOC_CONST
10264 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10265 return 0;
10266 break;
10267 }
10268
10269 /* The default action is to return 0 because we are using
10270 the optimistic approach here: If we don't know something,
10271 then it is not a constant. */
10272 default:
10273 return 0;
10274 }
10275 }
10276
10277 return 1;
10278 }
10279
10280 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10281
10282 static void
10283 dtor_watchpoint (struct breakpoint *self)
10284 {
10285 struct watchpoint *w = (struct watchpoint *) self;
10286
10287 xfree (w->cond_exp);
10288 xfree (w->exp);
10289 xfree (w->exp_string);
10290 xfree (w->exp_string_reparse);
10291 value_free (w->val);
10292
10293 base_breakpoint_ops.dtor (self);
10294 }
10295
10296 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10297
10298 static void
10299 re_set_watchpoint (struct breakpoint *b)
10300 {
10301 struct watchpoint *w = (struct watchpoint *) b;
10302
10303 /* Watchpoint can be either on expression using entirely global
10304 variables, or it can be on local variables.
10305
10306 Watchpoints of the first kind are never auto-deleted, and even
10307 persist across program restarts. Since they can use variables
10308 from shared libraries, we need to reparse expression as libraries
10309 are loaded and unloaded.
10310
10311 Watchpoints on local variables can also change meaning as result
10312 of solib event. For example, if a watchpoint uses both a local
10313 and a global variables in expression, it's a local watchpoint,
10314 but unloading of a shared library will make the expression
10315 invalid. This is not a very common use case, but we still
10316 re-evaluate expression, to avoid surprises to the user.
10317
10318 Note that for local watchpoints, we re-evaluate it only if
10319 watchpoints frame id is still valid. If it's not, it means the
10320 watchpoint is out of scope and will be deleted soon. In fact,
10321 I'm not sure we'll ever be called in this case.
10322
10323 If a local watchpoint's frame id is still valid, then
10324 w->exp_valid_block is likewise valid, and we can safely use it.
10325
10326 Don't do anything about disabled watchpoints, since they will be
10327 reevaluated again when enabled. */
10328 update_watchpoint (w, 1 /* reparse */);
10329 }
10330
10331 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10332
10333 static int
10334 insert_watchpoint (struct bp_location *bl)
10335 {
10336 struct watchpoint *w = (struct watchpoint *) bl->owner;
10337 int length = w->exact ? 1 : bl->length;
10338
10339 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10340 w->cond_exp);
10341 }
10342
10343 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10344
10345 static int
10346 remove_watchpoint (struct bp_location *bl)
10347 {
10348 struct watchpoint *w = (struct watchpoint *) bl->owner;
10349 int length = w->exact ? 1 : bl->length;
10350
10351 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10352 w->cond_exp);
10353 }
10354
10355 static int
10356 breakpoint_hit_watchpoint (const struct bp_location *bl,
10357 struct address_space *aspace, CORE_ADDR bp_addr,
10358 const struct target_waitstatus *ws)
10359 {
10360 struct breakpoint *b = bl->owner;
10361 struct watchpoint *w = (struct watchpoint *) b;
10362
10363 /* Continuable hardware watchpoints are treated as non-existent if the
10364 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10365 some data address). Otherwise gdb won't stop on a break instruction
10366 in the code (not from a breakpoint) when a hardware watchpoint has
10367 been defined. Also skip watchpoints which we know did not trigger
10368 (did not match the data address). */
10369 if (is_hardware_watchpoint (b)
10370 && w->watchpoint_triggered == watch_triggered_no)
10371 return 0;
10372
10373 return 1;
10374 }
10375
10376 static void
10377 check_status_watchpoint (bpstat bs)
10378 {
10379 gdb_assert (is_watchpoint (bs->breakpoint_at));
10380
10381 bpstat_check_watchpoint (bs);
10382 }
10383
10384 /* Implement the "resources_needed" breakpoint_ops method for
10385 hardware watchpoints. */
10386
10387 static int
10388 resources_needed_watchpoint (const struct bp_location *bl)
10389 {
10390 struct watchpoint *w = (struct watchpoint *) bl->owner;
10391 int length = w->exact? 1 : bl->length;
10392
10393 return target_region_ok_for_hw_watchpoint (bl->address, length);
10394 }
10395
10396 /* Implement the "works_in_software_mode" breakpoint_ops method for
10397 hardware watchpoints. */
10398
10399 static int
10400 works_in_software_mode_watchpoint (const struct breakpoint *b)
10401 {
10402 /* Read and access watchpoints only work with hardware support. */
10403 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10404 }
10405
10406 static enum print_stop_action
10407 print_it_watchpoint (bpstat bs)
10408 {
10409 struct cleanup *old_chain;
10410 struct breakpoint *b;
10411 const struct bp_location *bl;
10412 struct ui_file *stb;
10413 enum print_stop_action result;
10414 struct watchpoint *w;
10415 struct ui_out *uiout = current_uiout;
10416
10417 gdb_assert (bs->bp_location_at != NULL);
10418
10419 bl = bs->bp_location_at;
10420 b = bs->breakpoint_at;
10421 w = (struct watchpoint *) b;
10422
10423 stb = mem_fileopen ();
10424 old_chain = make_cleanup_ui_file_delete (stb);
10425
10426 switch (b->type)
10427 {
10428 case bp_watchpoint:
10429 case bp_hardware_watchpoint:
10430 annotate_watchpoint (b->number);
10431 if (ui_out_is_mi_like_p (uiout))
10432 ui_out_field_string
10433 (uiout, "reason",
10434 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10435 mention (b);
10436 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10437 ui_out_text (uiout, "\nOld value = ");
10438 watchpoint_value_print (bs->old_val, stb);
10439 ui_out_field_stream (uiout, "old", stb);
10440 ui_out_text (uiout, "\nNew value = ");
10441 watchpoint_value_print (w->val, stb);
10442 ui_out_field_stream (uiout, "new", stb);
10443 ui_out_text (uiout, "\n");
10444 /* More than one watchpoint may have been triggered. */
10445 result = PRINT_UNKNOWN;
10446 break;
10447
10448 case bp_read_watchpoint:
10449 if (ui_out_is_mi_like_p (uiout))
10450 ui_out_field_string
10451 (uiout, "reason",
10452 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10453 mention (b);
10454 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10455 ui_out_text (uiout, "\nValue = ");
10456 watchpoint_value_print (w->val, stb);
10457 ui_out_field_stream (uiout, "value", stb);
10458 ui_out_text (uiout, "\n");
10459 result = PRINT_UNKNOWN;
10460 break;
10461
10462 case bp_access_watchpoint:
10463 if (bs->old_val != NULL)
10464 {
10465 annotate_watchpoint (b->number);
10466 if (ui_out_is_mi_like_p (uiout))
10467 ui_out_field_string
10468 (uiout, "reason",
10469 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10470 mention (b);
10471 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10472 ui_out_text (uiout, "\nOld value = ");
10473 watchpoint_value_print (bs->old_val, stb);
10474 ui_out_field_stream (uiout, "old", stb);
10475 ui_out_text (uiout, "\nNew value = ");
10476 }
10477 else
10478 {
10479 mention (b);
10480 if (ui_out_is_mi_like_p (uiout))
10481 ui_out_field_string
10482 (uiout, "reason",
10483 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10484 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10485 ui_out_text (uiout, "\nValue = ");
10486 }
10487 watchpoint_value_print (w->val, stb);
10488 ui_out_field_stream (uiout, "new", stb);
10489 ui_out_text (uiout, "\n");
10490 result = PRINT_UNKNOWN;
10491 break;
10492 default:
10493 result = PRINT_UNKNOWN;
10494 }
10495
10496 do_cleanups (old_chain);
10497 return result;
10498 }
10499
10500 /* Implement the "print_mention" breakpoint_ops method for hardware
10501 watchpoints. */
10502
10503 static void
10504 print_mention_watchpoint (struct breakpoint *b)
10505 {
10506 struct cleanup *ui_out_chain;
10507 struct watchpoint *w = (struct watchpoint *) b;
10508 struct ui_out *uiout = current_uiout;
10509
10510 switch (b->type)
10511 {
10512 case bp_watchpoint:
10513 ui_out_text (uiout, "Watchpoint ");
10514 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10515 break;
10516 case bp_hardware_watchpoint:
10517 ui_out_text (uiout, "Hardware watchpoint ");
10518 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10519 break;
10520 case bp_read_watchpoint:
10521 ui_out_text (uiout, "Hardware read watchpoint ");
10522 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10523 break;
10524 case bp_access_watchpoint:
10525 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10526 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10527 break;
10528 default:
10529 internal_error (__FILE__, __LINE__,
10530 _("Invalid hardware watchpoint type."));
10531 }
10532
10533 ui_out_field_int (uiout, "number", b->number);
10534 ui_out_text (uiout, ": ");
10535 ui_out_field_string (uiout, "exp", w->exp_string);
10536 do_cleanups (ui_out_chain);
10537 }
10538
10539 /* Implement the "print_recreate" breakpoint_ops method for
10540 watchpoints. */
10541
10542 static void
10543 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10544 {
10545 struct watchpoint *w = (struct watchpoint *) b;
10546
10547 switch (b->type)
10548 {
10549 case bp_watchpoint:
10550 case bp_hardware_watchpoint:
10551 fprintf_unfiltered (fp, "watch");
10552 break;
10553 case bp_read_watchpoint:
10554 fprintf_unfiltered (fp, "rwatch");
10555 break;
10556 case bp_access_watchpoint:
10557 fprintf_unfiltered (fp, "awatch");
10558 break;
10559 default:
10560 internal_error (__FILE__, __LINE__,
10561 _("Invalid watchpoint type."));
10562 }
10563
10564 fprintf_unfiltered (fp, " %s", w->exp_string);
10565 print_recreate_thread (b, fp);
10566 }
10567
10568 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10569
10570 static struct breakpoint_ops watchpoint_breakpoint_ops;
10571
10572 /* Implement the "insert" breakpoint_ops method for
10573 masked hardware watchpoints. */
10574
10575 static int
10576 insert_masked_watchpoint (struct bp_location *bl)
10577 {
10578 struct watchpoint *w = (struct watchpoint *) bl->owner;
10579
10580 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10581 bl->watchpoint_type);
10582 }
10583
10584 /* Implement the "remove" breakpoint_ops method for
10585 masked hardware watchpoints. */
10586
10587 static int
10588 remove_masked_watchpoint (struct bp_location *bl)
10589 {
10590 struct watchpoint *w = (struct watchpoint *) bl->owner;
10591
10592 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10593 bl->watchpoint_type);
10594 }
10595
10596 /* Implement the "resources_needed" breakpoint_ops method for
10597 masked hardware watchpoints. */
10598
10599 static int
10600 resources_needed_masked_watchpoint (const struct bp_location *bl)
10601 {
10602 struct watchpoint *w = (struct watchpoint *) bl->owner;
10603
10604 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10605 }
10606
10607 /* Implement the "works_in_software_mode" breakpoint_ops method for
10608 masked hardware watchpoints. */
10609
10610 static int
10611 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10612 {
10613 return 0;
10614 }
10615
10616 /* Implement the "print_it" breakpoint_ops method for
10617 masked hardware watchpoints. */
10618
10619 static enum print_stop_action
10620 print_it_masked_watchpoint (bpstat bs)
10621 {
10622 struct breakpoint *b = bs->breakpoint_at;
10623 struct ui_out *uiout = current_uiout;
10624
10625 /* Masked watchpoints have only one location. */
10626 gdb_assert (b->loc && b->loc->next == NULL);
10627
10628 switch (b->type)
10629 {
10630 case bp_hardware_watchpoint:
10631 annotate_watchpoint (b->number);
10632 if (ui_out_is_mi_like_p (uiout))
10633 ui_out_field_string
10634 (uiout, "reason",
10635 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10636 break;
10637
10638 case bp_read_watchpoint:
10639 if (ui_out_is_mi_like_p (uiout))
10640 ui_out_field_string
10641 (uiout, "reason",
10642 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10643 break;
10644
10645 case bp_access_watchpoint:
10646 if (ui_out_is_mi_like_p (uiout))
10647 ui_out_field_string
10648 (uiout, "reason",
10649 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10650 break;
10651 default:
10652 internal_error (__FILE__, __LINE__,
10653 _("Invalid hardware watchpoint type."));
10654 }
10655
10656 mention (b);
10657 ui_out_text (uiout, _("\n\
10658 Check the underlying instruction at PC for the memory\n\
10659 address and value which triggered this watchpoint.\n"));
10660 ui_out_text (uiout, "\n");
10661
10662 /* More than one watchpoint may have been triggered. */
10663 return PRINT_UNKNOWN;
10664 }
10665
10666 /* Implement the "print_one_detail" breakpoint_ops method for
10667 masked hardware watchpoints. */
10668
10669 static void
10670 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10671 struct ui_out *uiout)
10672 {
10673 struct watchpoint *w = (struct watchpoint *) b;
10674
10675 /* Masked watchpoints have only one location. */
10676 gdb_assert (b->loc && b->loc->next == NULL);
10677
10678 ui_out_text (uiout, "\tmask ");
10679 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
10680 ui_out_text (uiout, "\n");
10681 }
10682
10683 /* Implement the "print_mention" breakpoint_ops method for
10684 masked hardware watchpoints. */
10685
10686 static void
10687 print_mention_masked_watchpoint (struct breakpoint *b)
10688 {
10689 struct watchpoint *w = (struct watchpoint *) b;
10690 struct ui_out *uiout = current_uiout;
10691 struct cleanup *ui_out_chain;
10692
10693 switch (b->type)
10694 {
10695 case bp_hardware_watchpoint:
10696 ui_out_text (uiout, "Masked hardware watchpoint ");
10697 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10698 break;
10699 case bp_read_watchpoint:
10700 ui_out_text (uiout, "Masked hardware read watchpoint ");
10701 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10702 break;
10703 case bp_access_watchpoint:
10704 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
10705 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10706 break;
10707 default:
10708 internal_error (__FILE__, __LINE__,
10709 _("Invalid hardware watchpoint type."));
10710 }
10711
10712 ui_out_field_int (uiout, "number", b->number);
10713 ui_out_text (uiout, ": ");
10714 ui_out_field_string (uiout, "exp", w->exp_string);
10715 do_cleanups (ui_out_chain);
10716 }
10717
10718 /* Implement the "print_recreate" breakpoint_ops method for
10719 masked hardware watchpoints. */
10720
10721 static void
10722 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10723 {
10724 struct watchpoint *w = (struct watchpoint *) b;
10725 char tmp[40];
10726
10727 switch (b->type)
10728 {
10729 case bp_hardware_watchpoint:
10730 fprintf_unfiltered (fp, "watch");
10731 break;
10732 case bp_read_watchpoint:
10733 fprintf_unfiltered (fp, "rwatch");
10734 break;
10735 case bp_access_watchpoint:
10736 fprintf_unfiltered (fp, "awatch");
10737 break;
10738 default:
10739 internal_error (__FILE__, __LINE__,
10740 _("Invalid hardware watchpoint type."));
10741 }
10742
10743 sprintf_vma (tmp, w->hw_wp_mask);
10744 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10745 print_recreate_thread (b, fp);
10746 }
10747
10748 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10749
10750 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10751
10752 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10753
10754 static int
10755 is_masked_watchpoint (const struct breakpoint *b)
10756 {
10757 return b->ops == &masked_watchpoint_breakpoint_ops;
10758 }
10759
10760 /* accessflag: hw_write: watch write,
10761 hw_read: watch read,
10762 hw_access: watch access (read or write) */
10763 static void
10764 watch_command_1 (char *arg, int accessflag, int from_tty,
10765 int just_location, int internal)
10766 {
10767 volatile struct gdb_exception e;
10768 struct breakpoint *b, *scope_breakpoint = NULL;
10769 struct expression *exp;
10770 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10771 struct value *val, *mark, *result;
10772 struct frame_info *frame;
10773 char *exp_start = NULL;
10774 char *exp_end = NULL;
10775 char *tok, *end_tok;
10776 int toklen = -1;
10777 char *cond_start = NULL;
10778 char *cond_end = NULL;
10779 enum bptype bp_type;
10780 int thread = -1;
10781 int pc = 0;
10782 /* Flag to indicate whether we are going to use masks for
10783 the hardware watchpoint. */
10784 int use_mask = 0;
10785 CORE_ADDR mask = 0;
10786 struct watchpoint *w;
10787
10788 /* Make sure that we actually have parameters to parse. */
10789 if (arg != NULL && arg[0] != '\0')
10790 {
10791 char *value_start;
10792
10793 /* Look for "parameter value" pairs at the end
10794 of the arguments string. */
10795 for (tok = arg + strlen (arg) - 1; tok > arg; tok--)
10796 {
10797 /* Skip whitespace at the end of the argument list. */
10798 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10799 tok--;
10800
10801 /* Find the beginning of the last token.
10802 This is the value of the parameter. */
10803 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10804 tok--;
10805 value_start = tok + 1;
10806
10807 /* Skip whitespace. */
10808 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10809 tok--;
10810
10811 end_tok = tok;
10812
10813 /* Find the beginning of the second to last token.
10814 This is the parameter itself. */
10815 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10816 tok--;
10817 tok++;
10818 toklen = end_tok - tok + 1;
10819
10820 if (toklen == 6 && !strncmp (tok, "thread", 6))
10821 {
10822 /* At this point we've found a "thread" token, which means
10823 the user is trying to set a watchpoint that triggers
10824 only in a specific thread. */
10825 char *endp;
10826
10827 if (thread != -1)
10828 error(_("You can specify only one thread."));
10829
10830 /* Extract the thread ID from the next token. */
10831 thread = strtol (value_start, &endp, 0);
10832
10833 /* Check if the user provided a valid numeric value for the
10834 thread ID. */
10835 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10836 error (_("Invalid thread ID specification %s."), value_start);
10837
10838 /* Check if the thread actually exists. */
10839 if (!valid_thread_id (thread))
10840 invalid_thread_id_error (thread);
10841 }
10842 else if (toklen == 4 && !strncmp (tok, "mask", 4))
10843 {
10844 /* We've found a "mask" token, which means the user wants to
10845 create a hardware watchpoint that is going to have the mask
10846 facility. */
10847 struct value *mask_value, *mark;
10848
10849 if (use_mask)
10850 error(_("You can specify only one mask."));
10851
10852 use_mask = just_location = 1;
10853
10854 mark = value_mark ();
10855 mask_value = parse_to_comma_and_eval (&value_start);
10856 mask = value_as_address (mask_value);
10857 value_free_to_mark (mark);
10858 }
10859 else
10860 /* We didn't recognize what we found. We should stop here. */
10861 break;
10862
10863 /* Truncate the string and get rid of the "parameter value" pair before
10864 the arguments string is parsed by the parse_exp_1 function. */
10865 *tok = '\0';
10866 }
10867 }
10868
10869 /* Parse the rest of the arguments. */
10870 innermost_block = NULL;
10871 exp_start = arg;
10872 exp = parse_exp_1 (&arg, 0, 0, 0);
10873 exp_end = arg;
10874 /* Remove trailing whitespace from the expression before saving it.
10875 This makes the eventual display of the expression string a bit
10876 prettier. */
10877 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10878 --exp_end;
10879
10880 /* Checking if the expression is not constant. */
10881 if (watchpoint_exp_is_const (exp))
10882 {
10883 int len;
10884
10885 len = exp_end - exp_start;
10886 while (len > 0 && isspace (exp_start[len - 1]))
10887 len--;
10888 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10889 }
10890
10891 exp_valid_block = innermost_block;
10892 mark = value_mark ();
10893 fetch_subexp_value (exp, &pc, &val, &result, NULL);
10894
10895 if (just_location)
10896 {
10897 int ret;
10898
10899 exp_valid_block = NULL;
10900 val = value_addr (result);
10901 release_value (val);
10902 value_free_to_mark (mark);
10903
10904 if (use_mask)
10905 {
10906 ret = target_masked_watch_num_registers (value_as_address (val),
10907 mask);
10908 if (ret == -1)
10909 error (_("This target does not support masked watchpoints."));
10910 else if (ret == -2)
10911 error (_("Invalid mask or memory region."));
10912 }
10913 }
10914 else if (val != NULL)
10915 release_value (val);
10916
10917 tok = skip_spaces (arg);
10918 end_tok = skip_to_space (tok);
10919
10920 toklen = end_tok - tok;
10921 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10922 {
10923 struct expression *cond;
10924
10925 innermost_block = NULL;
10926 tok = cond_start = end_tok + 1;
10927 cond = parse_exp_1 (&tok, 0, 0, 0);
10928
10929 /* The watchpoint expression may not be local, but the condition
10930 may still be. E.g.: `watch global if local > 0'. */
10931 cond_exp_valid_block = innermost_block;
10932
10933 xfree (cond);
10934 cond_end = tok;
10935 }
10936 if (*tok)
10937 error (_("Junk at end of command."));
10938
10939 if (accessflag == hw_read)
10940 bp_type = bp_read_watchpoint;
10941 else if (accessflag == hw_access)
10942 bp_type = bp_access_watchpoint;
10943 else
10944 bp_type = bp_hardware_watchpoint;
10945
10946 frame = block_innermost_frame (exp_valid_block);
10947
10948 /* If the expression is "local", then set up a "watchpoint scope"
10949 breakpoint at the point where we've left the scope of the watchpoint
10950 expression. Create the scope breakpoint before the watchpoint, so
10951 that we will encounter it first in bpstat_stop_status. */
10952 if (exp_valid_block && frame)
10953 {
10954 if (frame_id_p (frame_unwind_caller_id (frame)))
10955 {
10956 scope_breakpoint
10957 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
10958 frame_unwind_caller_pc (frame),
10959 bp_watchpoint_scope,
10960 &momentary_breakpoint_ops);
10961
10962 scope_breakpoint->enable_state = bp_enabled;
10963
10964 /* Automatically delete the breakpoint when it hits. */
10965 scope_breakpoint->disposition = disp_del;
10966
10967 /* Only break in the proper frame (help with recursion). */
10968 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
10969
10970 /* Set the address at which we will stop. */
10971 scope_breakpoint->loc->gdbarch
10972 = frame_unwind_caller_arch (frame);
10973 scope_breakpoint->loc->requested_address
10974 = frame_unwind_caller_pc (frame);
10975 scope_breakpoint->loc->address
10976 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10977 scope_breakpoint->loc->requested_address,
10978 scope_breakpoint->type);
10979 }
10980 }
10981
10982 /* Now set up the breakpoint. */
10983
10984 w = XCNEW (struct watchpoint);
10985 b = &w->base;
10986 if (use_mask)
10987 init_raw_breakpoint_without_location (b, NULL, bp_type,
10988 &masked_watchpoint_breakpoint_ops);
10989 else
10990 init_raw_breakpoint_without_location (b, NULL, bp_type,
10991 &watchpoint_breakpoint_ops);
10992 b->thread = thread;
10993 b->disposition = disp_donttouch;
10994 b->pspace = current_program_space;
10995 w->exp = exp;
10996 w->exp_valid_block = exp_valid_block;
10997 w->cond_exp_valid_block = cond_exp_valid_block;
10998 if (just_location)
10999 {
11000 struct type *t = value_type (val);
11001 CORE_ADDR addr = value_as_address (val);
11002 char *name;
11003
11004 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11005 name = type_to_string (t);
11006
11007 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11008 core_addr_to_string (addr));
11009 xfree (name);
11010
11011 w->exp_string = xstrprintf ("-location %.*s",
11012 (int) (exp_end - exp_start), exp_start);
11013
11014 /* The above expression is in C. */
11015 b->language = language_c;
11016 }
11017 else
11018 w->exp_string = savestring (exp_start, exp_end - exp_start);
11019
11020 if (use_mask)
11021 {
11022 w->hw_wp_mask = mask;
11023 }
11024 else
11025 {
11026 w->val = val;
11027 w->val_valid = 1;
11028 }
11029
11030 if (cond_start)
11031 b->cond_string = savestring (cond_start, cond_end - cond_start);
11032 else
11033 b->cond_string = 0;
11034
11035 if (frame)
11036 {
11037 w->watchpoint_frame = get_frame_id (frame);
11038 w->watchpoint_thread = inferior_ptid;
11039 }
11040 else
11041 {
11042 w->watchpoint_frame = null_frame_id;
11043 w->watchpoint_thread = null_ptid;
11044 }
11045
11046 if (scope_breakpoint != NULL)
11047 {
11048 /* The scope breakpoint is related to the watchpoint. We will
11049 need to act on them together. */
11050 b->related_breakpoint = scope_breakpoint;
11051 scope_breakpoint->related_breakpoint = b;
11052 }
11053
11054 if (!just_location)
11055 value_free_to_mark (mark);
11056
11057 TRY_CATCH (e, RETURN_MASK_ALL)
11058 {
11059 /* Finally update the new watchpoint. This creates the locations
11060 that should be inserted. */
11061 update_watchpoint (w, 1);
11062 }
11063 if (e.reason < 0)
11064 {
11065 delete_breakpoint (b);
11066 throw_exception (e);
11067 }
11068
11069 install_breakpoint (internal, b, 1);
11070 }
11071
11072 /* Return count of debug registers needed to watch the given expression.
11073 If the watchpoint cannot be handled in hardware return zero. */
11074
11075 static int
11076 can_use_hardware_watchpoint (struct value *v)
11077 {
11078 int found_memory_cnt = 0;
11079 struct value *head = v;
11080
11081 /* Did the user specifically forbid us to use hardware watchpoints? */
11082 if (!can_use_hw_watchpoints)
11083 return 0;
11084
11085 /* Make sure that the value of the expression depends only upon
11086 memory contents, and values computed from them within GDB. If we
11087 find any register references or function calls, we can't use a
11088 hardware watchpoint.
11089
11090 The idea here is that evaluating an expression generates a series
11091 of values, one holding the value of every subexpression. (The
11092 expression a*b+c has five subexpressions: a, b, a*b, c, and
11093 a*b+c.) GDB's values hold almost enough information to establish
11094 the criteria given above --- they identify memory lvalues,
11095 register lvalues, computed values, etcetera. So we can evaluate
11096 the expression, and then scan the chain of values that leaves
11097 behind to decide whether we can detect any possible change to the
11098 expression's final value using only hardware watchpoints.
11099
11100 However, I don't think that the values returned by inferior
11101 function calls are special in any way. So this function may not
11102 notice that an expression involving an inferior function call
11103 can't be watched with hardware watchpoints. FIXME. */
11104 for (; v; v = value_next (v))
11105 {
11106 if (VALUE_LVAL (v) == lval_memory)
11107 {
11108 if (v != head && value_lazy (v))
11109 /* A lazy memory lvalue in the chain is one that GDB never
11110 needed to fetch; we either just used its address (e.g.,
11111 `a' in `a.b') or we never needed it at all (e.g., `a'
11112 in `a,b'). This doesn't apply to HEAD; if that is
11113 lazy then it was not readable, but watch it anyway. */
11114 ;
11115 else
11116 {
11117 /* Ahh, memory we actually used! Check if we can cover
11118 it with hardware watchpoints. */
11119 struct type *vtype = check_typedef (value_type (v));
11120
11121 /* We only watch structs and arrays if user asked for it
11122 explicitly, never if they just happen to appear in a
11123 middle of some value chain. */
11124 if (v == head
11125 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11126 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11127 {
11128 CORE_ADDR vaddr = value_address (v);
11129 int len;
11130 int num_regs;
11131
11132 len = (target_exact_watchpoints
11133 && is_scalar_type_recursive (vtype))?
11134 1 : TYPE_LENGTH (value_type (v));
11135
11136 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11137 if (!num_regs)
11138 return 0;
11139 else
11140 found_memory_cnt += num_regs;
11141 }
11142 }
11143 }
11144 else if (VALUE_LVAL (v) != not_lval
11145 && deprecated_value_modifiable (v) == 0)
11146 return 0; /* These are values from the history (e.g., $1). */
11147 else if (VALUE_LVAL (v) == lval_register)
11148 return 0; /* Cannot watch a register with a HW watchpoint. */
11149 }
11150
11151 /* The expression itself looks suitable for using a hardware
11152 watchpoint, but give the target machine a chance to reject it. */
11153 return found_memory_cnt;
11154 }
11155
11156 void
11157 watch_command_wrapper (char *arg, int from_tty, int internal)
11158 {
11159 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11160 }
11161
11162 /* A helper function that looks for the "-location" argument and then
11163 calls watch_command_1. */
11164
11165 static void
11166 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11167 {
11168 int just_location = 0;
11169
11170 if (arg
11171 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11172 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11173 {
11174 arg = skip_spaces (arg);
11175 just_location = 1;
11176 }
11177
11178 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11179 }
11180
11181 static void
11182 watch_command (char *arg, int from_tty)
11183 {
11184 watch_maybe_just_location (arg, hw_write, from_tty);
11185 }
11186
11187 void
11188 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11189 {
11190 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11191 }
11192
11193 static void
11194 rwatch_command (char *arg, int from_tty)
11195 {
11196 watch_maybe_just_location (arg, hw_read, from_tty);
11197 }
11198
11199 void
11200 awatch_command_wrapper (char *arg, int from_tty, int internal)
11201 {
11202 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11203 }
11204
11205 static void
11206 awatch_command (char *arg, int from_tty)
11207 {
11208 watch_maybe_just_location (arg, hw_access, from_tty);
11209 }
11210 \f
11211
11212 /* Helper routines for the until_command routine in infcmd.c. Here
11213 because it uses the mechanisms of breakpoints. */
11214
11215 struct until_break_command_continuation_args
11216 {
11217 struct breakpoint *breakpoint;
11218 struct breakpoint *breakpoint2;
11219 int thread_num;
11220 };
11221
11222 /* This function is called by fetch_inferior_event via the
11223 cmd_continuation pointer, to complete the until command. It takes
11224 care of cleaning up the temporary breakpoints set up by the until
11225 command. */
11226 static void
11227 until_break_command_continuation (void *arg, int err)
11228 {
11229 struct until_break_command_continuation_args *a = arg;
11230
11231 delete_breakpoint (a->breakpoint);
11232 if (a->breakpoint2)
11233 delete_breakpoint (a->breakpoint2);
11234 delete_longjmp_breakpoint (a->thread_num);
11235 }
11236
11237 void
11238 until_break_command (char *arg, int from_tty, int anywhere)
11239 {
11240 struct symtabs_and_lines sals;
11241 struct symtab_and_line sal;
11242 struct frame_info *frame;
11243 struct gdbarch *frame_gdbarch;
11244 struct frame_id stack_frame_id;
11245 struct frame_id caller_frame_id;
11246 struct breakpoint *breakpoint;
11247 struct breakpoint *breakpoint2 = NULL;
11248 struct cleanup *old_chain;
11249 int thread;
11250 struct thread_info *tp;
11251
11252 clear_proceed_status ();
11253
11254 /* Set a breakpoint where the user wants it and at return from
11255 this function. */
11256
11257 if (last_displayed_sal_is_valid ())
11258 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11259 get_last_displayed_symtab (),
11260 get_last_displayed_line ());
11261 else
11262 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11263 (struct symtab *) NULL, 0);
11264
11265 if (sals.nelts != 1)
11266 error (_("Couldn't get information on specified line."));
11267
11268 sal = sals.sals[0];
11269 xfree (sals.sals); /* malloc'd, so freed. */
11270
11271 if (*arg)
11272 error (_("Junk at end of arguments."));
11273
11274 resolve_sal_pc (&sal);
11275
11276 tp = inferior_thread ();
11277 thread = tp->num;
11278
11279 old_chain = make_cleanup (null_cleanup, NULL);
11280
11281 /* Note linespec handling above invalidates the frame chain.
11282 Installing a breakpoint also invalidates the frame chain (as it
11283 may need to switch threads), so do any frame handling before
11284 that. */
11285
11286 frame = get_selected_frame (NULL);
11287 frame_gdbarch = get_frame_arch (frame);
11288 stack_frame_id = get_stack_frame_id (frame);
11289 caller_frame_id = frame_unwind_caller_id (frame);
11290
11291 /* Keep within the current frame, or in frames called by the current
11292 one. */
11293
11294 if (frame_id_p (caller_frame_id))
11295 {
11296 struct symtab_and_line sal2;
11297
11298 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11299 sal2.pc = frame_unwind_caller_pc (frame);
11300 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11301 sal2,
11302 caller_frame_id,
11303 bp_until);
11304 make_cleanup_delete_breakpoint (breakpoint2);
11305
11306 set_longjmp_breakpoint (tp, caller_frame_id);
11307 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11308 }
11309
11310 /* set_momentary_breakpoint could invalidate FRAME. */
11311 frame = NULL;
11312
11313 if (anywhere)
11314 /* If the user told us to continue until a specified location,
11315 we don't specify a frame at which we need to stop. */
11316 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11317 null_frame_id, bp_until);
11318 else
11319 /* Otherwise, specify the selected frame, because we want to stop
11320 only at the very same frame. */
11321 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11322 stack_frame_id, bp_until);
11323 make_cleanup_delete_breakpoint (breakpoint);
11324
11325 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11326
11327 /* If we are running asynchronously, and proceed call above has
11328 actually managed to start the target, arrange for breakpoints to
11329 be deleted when the target stops. Otherwise, we're already
11330 stopped and delete breakpoints via cleanup chain. */
11331
11332 if (target_can_async_p () && is_running (inferior_ptid))
11333 {
11334 struct until_break_command_continuation_args *args;
11335 args = xmalloc (sizeof (*args));
11336
11337 args->breakpoint = breakpoint;
11338 args->breakpoint2 = breakpoint2;
11339 args->thread_num = thread;
11340
11341 discard_cleanups (old_chain);
11342 add_continuation (inferior_thread (),
11343 until_break_command_continuation, args,
11344 xfree);
11345 }
11346 else
11347 do_cleanups (old_chain);
11348 }
11349
11350 /* This function attempts to parse an optional "if <cond>" clause
11351 from the arg string. If one is not found, it returns NULL.
11352
11353 Else, it returns a pointer to the condition string. (It does not
11354 attempt to evaluate the string against a particular block.) And,
11355 it updates arg to point to the first character following the parsed
11356 if clause in the arg string. */
11357
11358 static char *
11359 ep_parse_optional_if_clause (char **arg)
11360 {
11361 char *cond_string;
11362
11363 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11364 return NULL;
11365
11366 /* Skip the "if" keyword. */
11367 (*arg) += 2;
11368
11369 /* Skip any extra leading whitespace, and record the start of the
11370 condition string. */
11371 *arg = skip_spaces (*arg);
11372 cond_string = *arg;
11373
11374 /* Assume that the condition occupies the remainder of the arg
11375 string. */
11376 (*arg) += strlen (cond_string);
11377
11378 return cond_string;
11379 }
11380
11381 /* Commands to deal with catching events, such as signals, exceptions,
11382 process start/exit, etc. */
11383
11384 typedef enum
11385 {
11386 catch_fork_temporary, catch_vfork_temporary,
11387 catch_fork_permanent, catch_vfork_permanent
11388 }
11389 catch_fork_kind;
11390
11391 static void
11392 catch_fork_command_1 (char *arg, int from_tty,
11393 struct cmd_list_element *command)
11394 {
11395 struct gdbarch *gdbarch = get_current_arch ();
11396 char *cond_string = NULL;
11397 catch_fork_kind fork_kind;
11398 int tempflag;
11399
11400 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11401 tempflag = (fork_kind == catch_fork_temporary
11402 || fork_kind == catch_vfork_temporary);
11403
11404 if (!arg)
11405 arg = "";
11406 arg = skip_spaces (arg);
11407
11408 /* The allowed syntax is:
11409 catch [v]fork
11410 catch [v]fork if <cond>
11411
11412 First, check if there's an if clause. */
11413 cond_string = ep_parse_optional_if_clause (&arg);
11414
11415 if ((*arg != '\0') && !isspace (*arg))
11416 error (_("Junk at end of arguments."));
11417
11418 /* If this target supports it, create a fork or vfork catchpoint
11419 and enable reporting of such events. */
11420 switch (fork_kind)
11421 {
11422 case catch_fork_temporary:
11423 case catch_fork_permanent:
11424 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11425 &catch_fork_breakpoint_ops);
11426 break;
11427 case catch_vfork_temporary:
11428 case catch_vfork_permanent:
11429 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11430 &catch_vfork_breakpoint_ops);
11431 break;
11432 default:
11433 error (_("unsupported or unknown fork kind; cannot catch it"));
11434 break;
11435 }
11436 }
11437
11438 static void
11439 catch_exec_command_1 (char *arg, int from_tty,
11440 struct cmd_list_element *command)
11441 {
11442 struct exec_catchpoint *c;
11443 struct gdbarch *gdbarch = get_current_arch ();
11444 int tempflag;
11445 char *cond_string = NULL;
11446
11447 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11448
11449 if (!arg)
11450 arg = "";
11451 arg = skip_spaces (arg);
11452
11453 /* The allowed syntax is:
11454 catch exec
11455 catch exec if <cond>
11456
11457 First, check if there's an if clause. */
11458 cond_string = ep_parse_optional_if_clause (&arg);
11459
11460 if ((*arg != '\0') && !isspace (*arg))
11461 error (_("Junk at end of arguments."));
11462
11463 c = XNEW (struct exec_catchpoint);
11464 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11465 &catch_exec_breakpoint_ops);
11466 c->exec_pathname = NULL;
11467
11468 install_breakpoint (0, &c->base, 1);
11469 }
11470
11471 static enum print_stop_action
11472 print_it_exception_catchpoint (bpstat bs)
11473 {
11474 struct ui_out *uiout = current_uiout;
11475 struct breakpoint *b = bs->breakpoint_at;
11476 int bp_temp, bp_throw;
11477
11478 annotate_catchpoint (b->number);
11479
11480 bp_throw = strstr (b->addr_string, "throw") != NULL;
11481 if (b->loc->address != b->loc->requested_address)
11482 breakpoint_adjustment_warning (b->loc->requested_address,
11483 b->loc->address,
11484 b->number, 1);
11485 bp_temp = b->disposition == disp_del;
11486 ui_out_text (uiout,
11487 bp_temp ? "Temporary catchpoint "
11488 : "Catchpoint ");
11489 if (!ui_out_is_mi_like_p (uiout))
11490 ui_out_field_int (uiout, "bkptno", b->number);
11491 ui_out_text (uiout,
11492 bp_throw ? " (exception thrown), "
11493 : " (exception caught), ");
11494 if (ui_out_is_mi_like_p (uiout))
11495 {
11496 ui_out_field_string (uiout, "reason",
11497 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11498 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11499 ui_out_field_int (uiout, "bkptno", b->number);
11500 }
11501 return PRINT_SRC_AND_LOC;
11502 }
11503
11504 static void
11505 print_one_exception_catchpoint (struct breakpoint *b,
11506 struct bp_location **last_loc)
11507 {
11508 struct value_print_options opts;
11509 struct ui_out *uiout = current_uiout;
11510
11511 get_user_print_options (&opts);
11512 if (opts.addressprint)
11513 {
11514 annotate_field (4);
11515 if (b->loc == NULL || b->loc->shlib_disabled)
11516 ui_out_field_string (uiout, "addr", "<PENDING>");
11517 else
11518 ui_out_field_core_addr (uiout, "addr",
11519 b->loc->gdbarch, b->loc->address);
11520 }
11521 annotate_field (5);
11522 if (b->loc)
11523 *last_loc = b->loc;
11524 if (strstr (b->addr_string, "throw") != NULL)
11525 ui_out_field_string (uiout, "what", "exception throw");
11526 else
11527 ui_out_field_string (uiout, "what", "exception catch");
11528 }
11529
11530 static void
11531 print_mention_exception_catchpoint (struct breakpoint *b)
11532 {
11533 struct ui_out *uiout = current_uiout;
11534 int bp_temp;
11535 int bp_throw;
11536
11537 bp_temp = b->disposition == disp_del;
11538 bp_throw = strstr (b->addr_string, "throw") != NULL;
11539 ui_out_text (uiout, bp_temp ? _("Temporary catchpoint ")
11540 : _("Catchpoint "));
11541 ui_out_field_int (uiout, "bkptno", b->number);
11542 ui_out_text (uiout, bp_throw ? _(" (throw)")
11543 : _(" (catch)"));
11544 }
11545
11546 /* Implement the "print_recreate" breakpoint_ops method for throw and
11547 catch catchpoints. */
11548
11549 static void
11550 print_recreate_exception_catchpoint (struct breakpoint *b,
11551 struct ui_file *fp)
11552 {
11553 int bp_temp;
11554 int bp_throw;
11555
11556 bp_temp = b->disposition == disp_del;
11557 bp_throw = strstr (b->addr_string, "throw") != NULL;
11558 fprintf_unfiltered (fp, bp_temp ? "tcatch " : "catch ");
11559 fprintf_unfiltered (fp, bp_throw ? "throw" : "catch");
11560 print_recreate_thread (b, fp);
11561 }
11562
11563 static struct breakpoint_ops gnu_v3_exception_catchpoint_ops;
11564
11565 static int
11566 handle_gnu_v3_exceptions (int tempflag, char *cond_string,
11567 enum exception_event_kind ex_event, int from_tty)
11568 {
11569 char *trigger_func_name;
11570
11571 if (ex_event == EX_EVENT_CATCH)
11572 trigger_func_name = "__cxa_begin_catch";
11573 else
11574 trigger_func_name = "__cxa_throw";
11575
11576 create_breakpoint (get_current_arch (),
11577 trigger_func_name, cond_string, -1, NULL,
11578 0 /* condition and thread are valid. */,
11579 tempflag, bp_breakpoint,
11580 0,
11581 AUTO_BOOLEAN_TRUE /* pending */,
11582 &gnu_v3_exception_catchpoint_ops, from_tty,
11583 1 /* enabled */,
11584 0 /* internal */,
11585 0);
11586
11587 return 1;
11588 }
11589
11590 /* Deal with "catch catch" and "catch throw" commands. */
11591
11592 static void
11593 catch_exception_command_1 (enum exception_event_kind ex_event, char *arg,
11594 int tempflag, int from_tty)
11595 {
11596 char *cond_string = NULL;
11597
11598 if (!arg)
11599 arg = "";
11600 arg = skip_spaces (arg);
11601
11602 cond_string = ep_parse_optional_if_clause (&arg);
11603
11604 if ((*arg != '\0') && !isspace (*arg))
11605 error (_("Junk at end of arguments."));
11606
11607 if (ex_event != EX_EVENT_THROW
11608 && ex_event != EX_EVENT_CATCH)
11609 error (_("Unsupported or unknown exception event; cannot catch it"));
11610
11611 if (handle_gnu_v3_exceptions (tempflag, cond_string, ex_event, from_tty))
11612 return;
11613
11614 warning (_("Unsupported with this platform/compiler combination."));
11615 }
11616
11617 /* Implementation of "catch catch" command. */
11618
11619 static void
11620 catch_catch_command (char *arg, int from_tty, struct cmd_list_element *command)
11621 {
11622 int tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11623
11624 catch_exception_command_1 (EX_EVENT_CATCH, arg, tempflag, from_tty);
11625 }
11626
11627 /* Implementation of "catch throw" command. */
11628
11629 static void
11630 catch_throw_command (char *arg, int from_tty, struct cmd_list_element *command)
11631 {
11632 int tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11633
11634 catch_exception_command_1 (EX_EVENT_THROW, arg, tempflag, from_tty);
11635 }
11636
11637 void
11638 init_ada_exception_breakpoint (struct breakpoint *b,
11639 struct gdbarch *gdbarch,
11640 struct symtab_and_line sal,
11641 char *addr_string,
11642 const struct breakpoint_ops *ops,
11643 int tempflag,
11644 int from_tty)
11645 {
11646 if (from_tty)
11647 {
11648 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11649 if (!loc_gdbarch)
11650 loc_gdbarch = gdbarch;
11651
11652 describe_other_breakpoints (loc_gdbarch,
11653 sal.pspace, sal.pc, sal.section, -1);
11654 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11655 version for exception catchpoints, because two catchpoints
11656 used for different exception names will use the same address.
11657 In this case, a "breakpoint ... also set at..." warning is
11658 unproductive. Besides, the warning phrasing is also a bit
11659 inappropriate, we should use the word catchpoint, and tell
11660 the user what type of catchpoint it is. The above is good
11661 enough for now, though. */
11662 }
11663
11664 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11665
11666 b->enable_state = bp_enabled;
11667 b->disposition = tempflag ? disp_del : disp_donttouch;
11668 b->addr_string = addr_string;
11669 b->language = language_ada;
11670 }
11671
11672 /* Splits the argument using space as delimiter. Returns an xmalloc'd
11673 filter list, or NULL if no filtering is required. */
11674 static VEC(int) *
11675 catch_syscall_split_args (char *arg)
11676 {
11677 VEC(int) *result = NULL;
11678 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
11679
11680 while (*arg != '\0')
11681 {
11682 int i, syscall_number;
11683 char *endptr;
11684 char cur_name[128];
11685 struct syscall s;
11686
11687 /* Skip whitespace. */
11688 while (isspace (*arg))
11689 arg++;
11690
11691 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
11692 cur_name[i] = arg[i];
11693 cur_name[i] = '\0';
11694 arg += i;
11695
11696 /* Check if the user provided a syscall name or a number. */
11697 syscall_number = (int) strtol (cur_name, &endptr, 0);
11698 if (*endptr == '\0')
11699 get_syscall_by_number (syscall_number, &s);
11700 else
11701 {
11702 /* We have a name. Let's check if it's valid and convert it
11703 to a number. */
11704 get_syscall_by_name (cur_name, &s);
11705
11706 if (s.number == UNKNOWN_SYSCALL)
11707 /* Here we have to issue an error instead of a warning,
11708 because GDB cannot do anything useful if there's no
11709 syscall number to be caught. */
11710 error (_("Unknown syscall name '%s'."), cur_name);
11711 }
11712
11713 /* Ok, it's valid. */
11714 VEC_safe_push (int, result, s.number);
11715 }
11716
11717 discard_cleanups (cleanup);
11718 return result;
11719 }
11720
11721 /* Implement the "catch syscall" command. */
11722
11723 static void
11724 catch_syscall_command_1 (char *arg, int from_tty,
11725 struct cmd_list_element *command)
11726 {
11727 int tempflag;
11728 VEC(int) *filter;
11729 struct syscall s;
11730 struct gdbarch *gdbarch = get_current_arch ();
11731
11732 /* Checking if the feature if supported. */
11733 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
11734 error (_("The feature 'catch syscall' is not supported on \
11735 this architecture yet."));
11736
11737 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11738
11739 arg = skip_spaces (arg);
11740
11741 /* We need to do this first "dummy" translation in order
11742 to get the syscall XML file loaded or, most important,
11743 to display a warning to the user if there's no XML file
11744 for his/her architecture. */
11745 get_syscall_by_number (0, &s);
11746
11747 /* The allowed syntax is:
11748 catch syscall
11749 catch syscall <name | number> [<name | number> ... <name | number>]
11750
11751 Let's check if there's a syscall name. */
11752
11753 if (arg != NULL)
11754 filter = catch_syscall_split_args (arg);
11755 else
11756 filter = NULL;
11757
11758 create_syscall_event_catchpoint (tempflag, filter,
11759 &catch_syscall_breakpoint_ops);
11760 }
11761
11762 static void
11763 catch_command (char *arg, int from_tty)
11764 {
11765 error (_("Catch requires an event name."));
11766 }
11767 \f
11768
11769 static void
11770 tcatch_command (char *arg, int from_tty)
11771 {
11772 error (_("Catch requires an event name."));
11773 }
11774
11775 /* A qsort comparison function that sorts breakpoints in order. */
11776
11777 static int
11778 compare_breakpoints (const void *a, const void *b)
11779 {
11780 const breakpoint_p *ba = a;
11781 uintptr_t ua = (uintptr_t) *ba;
11782 const breakpoint_p *bb = b;
11783 uintptr_t ub = (uintptr_t) *bb;
11784
11785 if ((*ba)->number < (*bb)->number)
11786 return -1;
11787 else if ((*ba)->number > (*bb)->number)
11788 return 1;
11789
11790 /* Now sort by address, in case we see, e..g, two breakpoints with
11791 the number 0. */
11792 if (ua < ub)
11793 return -1;
11794 return ua > ub ? 1 : 0;
11795 }
11796
11797 /* Delete breakpoints by address or line. */
11798
11799 static void
11800 clear_command (char *arg, int from_tty)
11801 {
11802 struct breakpoint *b, *prev;
11803 VEC(breakpoint_p) *found = 0;
11804 int ix;
11805 int default_match;
11806 struct symtabs_and_lines sals;
11807 struct symtab_and_line sal;
11808 int i;
11809 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11810
11811 if (arg)
11812 {
11813 sals = decode_line_with_current_source (arg,
11814 (DECODE_LINE_FUNFIRSTLINE
11815 | DECODE_LINE_LIST_MODE));
11816 make_cleanup (xfree, sals.sals);
11817 default_match = 0;
11818 }
11819 else
11820 {
11821 sals.sals = (struct symtab_and_line *)
11822 xmalloc (sizeof (struct symtab_and_line));
11823 make_cleanup (xfree, sals.sals);
11824 init_sal (&sal); /* Initialize to zeroes. */
11825
11826 /* Set sal's line, symtab, pc, and pspace to the values
11827 corresponding to the last call to print_frame_info. If the
11828 codepoint is not valid, this will set all the fields to 0. */
11829 get_last_displayed_sal (&sal);
11830 if (sal.symtab == 0)
11831 error (_("No source file specified."));
11832
11833 sals.sals[0] = sal;
11834 sals.nelts = 1;
11835
11836 default_match = 1;
11837 }
11838
11839 /* We don't call resolve_sal_pc here. That's not as bad as it
11840 seems, because all existing breakpoints typically have both
11841 file/line and pc set. So, if clear is given file/line, we can
11842 match this to existing breakpoint without obtaining pc at all.
11843
11844 We only support clearing given the address explicitly
11845 present in breakpoint table. Say, we've set breakpoint
11846 at file:line. There were several PC values for that file:line,
11847 due to optimization, all in one block.
11848
11849 We've picked one PC value. If "clear" is issued with another
11850 PC corresponding to the same file:line, the breakpoint won't
11851 be cleared. We probably can still clear the breakpoint, but
11852 since the other PC value is never presented to user, user
11853 can only find it by guessing, and it does not seem important
11854 to support that. */
11855
11856 /* For each line spec given, delete bps which correspond to it. Do
11857 it in two passes, solely to preserve the current behavior that
11858 from_tty is forced true if we delete more than one
11859 breakpoint. */
11860
11861 found = NULL;
11862 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11863 for (i = 0; i < sals.nelts; i++)
11864 {
11865 int is_abs, sal_name_len;
11866
11867 /* If exact pc given, clear bpts at that pc.
11868 If line given (pc == 0), clear all bpts on specified line.
11869 If defaulting, clear all bpts on default line
11870 or at default pc.
11871
11872 defaulting sal.pc != 0 tests to do
11873
11874 0 1 pc
11875 1 1 pc _and_ line
11876 0 0 line
11877 1 0 <can't happen> */
11878
11879 sal = sals.sals[i];
11880 is_abs = sal.symtab == NULL ? 1 : IS_ABSOLUTE_PATH (sal.symtab->filename);
11881 sal_name_len = is_abs ? 0 : strlen (sal.symtab->filename);
11882
11883 /* Find all matching breakpoints and add them to 'found'. */
11884 ALL_BREAKPOINTS (b)
11885 {
11886 int match = 0;
11887 /* Are we going to delete b? */
11888 if (b->type != bp_none && !is_watchpoint (b))
11889 {
11890 struct bp_location *loc = b->loc;
11891 for (; loc; loc = loc->next)
11892 {
11893 /* If the user specified file:line, don't allow a PC
11894 match. This matches historical gdb behavior. */
11895 int pc_match = (!sal.explicit_line
11896 && sal.pc
11897 && (loc->pspace == sal.pspace)
11898 && (loc->address == sal.pc)
11899 && (!section_is_overlay (loc->section)
11900 || loc->section == sal.section));
11901 int line_match = 0;
11902
11903 if ((default_match || sal.explicit_line)
11904 && loc->source_file != NULL
11905 && sal.symtab != NULL
11906 && sal.pspace == loc->pspace
11907 && loc->line_number == sal.line)
11908 {
11909 if (filename_cmp (loc->source_file,
11910 sal.symtab->filename) == 0)
11911 line_match = 1;
11912 else if (!IS_ABSOLUTE_PATH (sal.symtab->filename)
11913 && compare_filenames_for_search (loc->source_file,
11914 sal.symtab->filename,
11915 sal_name_len))
11916 line_match = 1;
11917 }
11918
11919 if (pc_match || line_match)
11920 {
11921 match = 1;
11922 break;
11923 }
11924 }
11925 }
11926
11927 if (match)
11928 VEC_safe_push(breakpoint_p, found, b);
11929 }
11930 }
11931
11932 /* Now go thru the 'found' chain and delete them. */
11933 if (VEC_empty(breakpoint_p, found))
11934 {
11935 if (arg)
11936 error (_("No breakpoint at %s."), arg);
11937 else
11938 error (_("No breakpoint at this line."));
11939 }
11940
11941 /* Remove duplicates from the vec. */
11942 qsort (VEC_address (breakpoint_p, found),
11943 VEC_length (breakpoint_p, found),
11944 sizeof (breakpoint_p),
11945 compare_breakpoints);
11946 prev = VEC_index (breakpoint_p, found, 0);
11947 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
11948 {
11949 if (b == prev)
11950 {
11951 VEC_ordered_remove (breakpoint_p, found, ix);
11952 --ix;
11953 }
11954 }
11955
11956 if (VEC_length(breakpoint_p, found) > 1)
11957 from_tty = 1; /* Always report if deleted more than one. */
11958 if (from_tty)
11959 {
11960 if (VEC_length(breakpoint_p, found) == 1)
11961 printf_unfiltered (_("Deleted breakpoint "));
11962 else
11963 printf_unfiltered (_("Deleted breakpoints "));
11964 }
11965 annotate_breakpoints_changed ();
11966
11967 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
11968 {
11969 if (from_tty)
11970 printf_unfiltered ("%d ", b->number);
11971 delete_breakpoint (b);
11972 }
11973 if (from_tty)
11974 putchar_unfiltered ('\n');
11975
11976 do_cleanups (cleanups);
11977 }
11978 \f
11979 /* Delete breakpoint in BS if they are `delete' breakpoints and
11980 all breakpoints that are marked for deletion, whether hit or not.
11981 This is called after any breakpoint is hit, or after errors. */
11982
11983 void
11984 breakpoint_auto_delete (bpstat bs)
11985 {
11986 struct breakpoint *b, *b_tmp;
11987
11988 for (; bs; bs = bs->next)
11989 if (bs->breakpoint_at
11990 && bs->breakpoint_at->disposition == disp_del
11991 && bs->stop)
11992 delete_breakpoint (bs->breakpoint_at);
11993
11994 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11995 {
11996 if (b->disposition == disp_del_at_next_stop)
11997 delete_breakpoint (b);
11998 }
11999 }
12000
12001 /* A comparison function for bp_location AP and BP being interfaced to
12002 qsort. Sort elements primarily by their ADDRESS (no matter what
12003 does breakpoint_address_is_meaningful say for its OWNER),
12004 secondarily by ordering first bp_permanent OWNERed elements and
12005 terciarily just ensuring the array is sorted stable way despite
12006 qsort being an unstable algorithm. */
12007
12008 static int
12009 bp_location_compare (const void *ap, const void *bp)
12010 {
12011 struct bp_location *a = *(void **) ap;
12012 struct bp_location *b = *(void **) bp;
12013 /* A and B come from existing breakpoints having non-NULL OWNER. */
12014 int a_perm = a->owner->enable_state == bp_permanent;
12015 int b_perm = b->owner->enable_state == bp_permanent;
12016
12017 if (a->address != b->address)
12018 return (a->address > b->address) - (a->address < b->address);
12019
12020 /* Sort locations at the same address by their pspace number, keeping
12021 locations of the same inferior (in a multi-inferior environment)
12022 grouped. */
12023
12024 if (a->pspace->num != b->pspace->num)
12025 return ((a->pspace->num > b->pspace->num)
12026 - (a->pspace->num < b->pspace->num));
12027
12028 /* Sort permanent breakpoints first. */
12029 if (a_perm != b_perm)
12030 return (a_perm < b_perm) - (a_perm > b_perm);
12031
12032 /* Make the internal GDB representation stable across GDB runs
12033 where A and B memory inside GDB can differ. Breakpoint locations of
12034 the same type at the same address can be sorted in arbitrary order. */
12035
12036 if (a->owner->number != b->owner->number)
12037 return ((a->owner->number > b->owner->number)
12038 - (a->owner->number < b->owner->number));
12039
12040 return (a > b) - (a < b);
12041 }
12042
12043 /* Set bp_location_placed_address_before_address_max and
12044 bp_location_shadow_len_after_address_max according to the current
12045 content of the bp_location array. */
12046
12047 static void
12048 bp_location_target_extensions_update (void)
12049 {
12050 struct bp_location *bl, **blp_tmp;
12051
12052 bp_location_placed_address_before_address_max = 0;
12053 bp_location_shadow_len_after_address_max = 0;
12054
12055 ALL_BP_LOCATIONS (bl, blp_tmp)
12056 {
12057 CORE_ADDR start, end, addr;
12058
12059 if (!bp_location_has_shadow (bl))
12060 continue;
12061
12062 start = bl->target_info.placed_address;
12063 end = start + bl->target_info.shadow_len;
12064
12065 gdb_assert (bl->address >= start);
12066 addr = bl->address - start;
12067 if (addr > bp_location_placed_address_before_address_max)
12068 bp_location_placed_address_before_address_max = addr;
12069
12070 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12071
12072 gdb_assert (bl->address < end);
12073 addr = end - bl->address;
12074 if (addr > bp_location_shadow_len_after_address_max)
12075 bp_location_shadow_len_after_address_max = addr;
12076 }
12077 }
12078
12079 /* Download tracepoint locations if they haven't been. */
12080
12081 static void
12082 download_tracepoint_locations (void)
12083 {
12084 struct bp_location *bl, **blp_tmp;
12085 struct cleanup *old_chain;
12086
12087 if (!target_can_download_tracepoint ())
12088 return;
12089
12090 old_chain = save_current_space_and_thread ();
12091
12092 ALL_BP_LOCATIONS (bl, blp_tmp)
12093 {
12094 struct tracepoint *t;
12095
12096 if (!is_tracepoint (bl->owner))
12097 continue;
12098
12099 if ((bl->owner->type == bp_fast_tracepoint
12100 ? !may_insert_fast_tracepoints
12101 : !may_insert_tracepoints))
12102 continue;
12103
12104 /* In tracepoint, locations are _never_ duplicated, so
12105 should_be_inserted is equivalent to
12106 unduplicated_should_be_inserted. */
12107 if (!should_be_inserted (bl) || bl->inserted)
12108 continue;
12109
12110 switch_to_program_space_and_thread (bl->pspace);
12111
12112 target_download_tracepoint (bl);
12113
12114 bl->inserted = 1;
12115 t = (struct tracepoint *) bl->owner;
12116 t->number_on_target = bl->owner->number;
12117 }
12118
12119 do_cleanups (old_chain);
12120 }
12121
12122 /* Swap the insertion/duplication state between two locations. */
12123
12124 static void
12125 swap_insertion (struct bp_location *left, struct bp_location *right)
12126 {
12127 const int left_inserted = left->inserted;
12128 const int left_duplicate = left->duplicate;
12129 const int left_needs_update = left->needs_update;
12130 const struct bp_target_info left_target_info = left->target_info;
12131
12132 /* Locations of tracepoints can never be duplicated. */
12133 if (is_tracepoint (left->owner))
12134 gdb_assert (!left->duplicate);
12135 if (is_tracepoint (right->owner))
12136 gdb_assert (!right->duplicate);
12137
12138 left->inserted = right->inserted;
12139 left->duplicate = right->duplicate;
12140 left->needs_update = right->needs_update;
12141 left->target_info = right->target_info;
12142 right->inserted = left_inserted;
12143 right->duplicate = left_duplicate;
12144 right->needs_update = left_needs_update;
12145 right->target_info = left_target_info;
12146 }
12147
12148 /* Force the re-insertion of the locations at ADDRESS. This is called
12149 once a new/deleted/modified duplicate location is found and we are evaluating
12150 conditions on the target's side. Such conditions need to be updated on
12151 the target. */
12152
12153 static void
12154 force_breakpoint_reinsertion (struct bp_location *bl)
12155 {
12156 struct bp_location **locp = NULL, **loc2p;
12157 struct bp_location *loc;
12158 CORE_ADDR address = 0;
12159 int pspace_num;
12160
12161 address = bl->address;
12162 pspace_num = bl->pspace->num;
12163
12164 /* This is only meaningful if the target is
12165 evaluating conditions and if the user has
12166 opted for condition evaluation on the target's
12167 side. */
12168 if (gdb_evaluates_breakpoint_condition_p ()
12169 || !target_supports_evaluation_of_breakpoint_conditions ())
12170 return;
12171
12172 /* Flag all breakpoint locations with this address and
12173 the same program space as the location
12174 as "its condition has changed". We need to
12175 update the conditions on the target's side. */
12176 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12177 {
12178 loc = *loc2p;
12179
12180 if (!is_breakpoint (loc->owner)
12181 || pspace_num != loc->pspace->num)
12182 continue;
12183
12184 /* Flag the location appropriately. We use a different state to
12185 let everyone know that we already updated the set of locations
12186 with addr bl->address and program space bl->pspace. This is so
12187 we don't have to keep calling these functions just to mark locations
12188 that have already been marked. */
12189 loc->condition_changed = condition_updated;
12190
12191 /* Free the agent expression bytecode as well. We will compute
12192 it later on. */
12193 if (loc->cond_bytecode)
12194 {
12195 free_agent_expr (loc->cond_bytecode);
12196 loc->cond_bytecode = NULL;
12197 }
12198 }
12199 }
12200
12201 /* If SHOULD_INSERT is false, do not insert any breakpoint locations
12202 into the inferior, only remove already-inserted locations that no
12203 longer should be inserted. Functions that delete a breakpoint or
12204 breakpoints should pass false, so that deleting a breakpoint
12205 doesn't have the side effect of inserting the locations of other
12206 breakpoints that are marked not-inserted, but should_be_inserted
12207 returns true on them.
12208
12209 This behaviour is useful is situations close to tear-down -- e.g.,
12210 after an exec, while the target still has execution, but breakpoint
12211 shadows of the previous executable image should *NOT* be restored
12212 to the new image; or before detaching, where the target still has
12213 execution and wants to delete breakpoints from GDB's lists, and all
12214 breakpoints had already been removed from the inferior. */
12215
12216 static void
12217 update_global_location_list (int should_insert)
12218 {
12219 struct breakpoint *b;
12220 struct bp_location **locp, *loc;
12221 struct cleanup *cleanups;
12222 /* Last breakpoint location address that was marked for update. */
12223 CORE_ADDR last_addr = 0;
12224 /* Last breakpoint location program space that was marked for update. */
12225 int last_pspace_num = -1;
12226
12227 /* Used in the duplicates detection below. When iterating over all
12228 bp_locations, points to the first bp_location of a given address.
12229 Breakpoints and watchpoints of different types are never
12230 duplicates of each other. Keep one pointer for each type of
12231 breakpoint/watchpoint, so we only need to loop over all locations
12232 once. */
12233 struct bp_location *bp_loc_first; /* breakpoint */
12234 struct bp_location *wp_loc_first; /* hardware watchpoint */
12235 struct bp_location *awp_loc_first; /* access watchpoint */
12236 struct bp_location *rwp_loc_first; /* read watchpoint */
12237
12238 /* Saved former bp_location array which we compare against the newly
12239 built bp_location from the current state of ALL_BREAKPOINTS. */
12240 struct bp_location **old_location, **old_locp;
12241 unsigned old_location_count;
12242
12243 old_location = bp_location;
12244 old_location_count = bp_location_count;
12245 bp_location = NULL;
12246 bp_location_count = 0;
12247 cleanups = make_cleanup (xfree, old_location);
12248
12249 ALL_BREAKPOINTS (b)
12250 for (loc = b->loc; loc; loc = loc->next)
12251 bp_location_count++;
12252
12253 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12254 locp = bp_location;
12255 ALL_BREAKPOINTS (b)
12256 for (loc = b->loc; loc; loc = loc->next)
12257 *locp++ = loc;
12258 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12259 bp_location_compare);
12260
12261 bp_location_target_extensions_update ();
12262
12263 /* Identify bp_location instances that are no longer present in the
12264 new list, and therefore should be freed. Note that it's not
12265 necessary that those locations should be removed from inferior --
12266 if there's another location at the same address (previously
12267 marked as duplicate), we don't need to remove/insert the
12268 location.
12269
12270 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12271 and former bp_location array state respectively. */
12272
12273 locp = bp_location;
12274 for (old_locp = old_location; old_locp < old_location + old_location_count;
12275 old_locp++)
12276 {
12277 struct bp_location *old_loc = *old_locp;
12278 struct bp_location **loc2p;
12279
12280 /* Tells if 'old_loc' is found among the new locations. If
12281 not, we have to free it. */
12282 int found_object = 0;
12283 /* Tells if the location should remain inserted in the target. */
12284 int keep_in_target = 0;
12285 int removed = 0;
12286
12287 /* Skip LOCP entries which will definitely never be needed.
12288 Stop either at or being the one matching OLD_LOC. */
12289 while (locp < bp_location + bp_location_count
12290 && (*locp)->address < old_loc->address)
12291 locp++;
12292
12293 for (loc2p = locp;
12294 (loc2p < bp_location + bp_location_count
12295 && (*loc2p)->address == old_loc->address);
12296 loc2p++)
12297 {
12298 /* Check if this is a new/duplicated location or a duplicated
12299 location that had its condition modified. If so, we want to send
12300 its condition to the target if evaluation of conditions is taking
12301 place there. */
12302 if ((*loc2p)->condition_changed == condition_modified
12303 && (last_addr != old_loc->address
12304 || last_pspace_num != old_loc->pspace->num))
12305 {
12306 force_breakpoint_reinsertion (*loc2p);
12307 last_pspace_num = old_loc->pspace->num;
12308 }
12309
12310 if (*loc2p == old_loc)
12311 found_object = 1;
12312 }
12313
12314 /* We have already handled this address, update it so that we don't
12315 have to go through updates again. */
12316 last_addr = old_loc->address;
12317
12318 /* Target-side condition evaluation: Handle deleted locations. */
12319 if (!found_object)
12320 force_breakpoint_reinsertion (old_loc);
12321
12322 /* If this location is no longer present, and inserted, look if
12323 there's maybe a new location at the same address. If so,
12324 mark that one inserted, and don't remove this one. This is
12325 needed so that we don't have a time window where a breakpoint
12326 at certain location is not inserted. */
12327
12328 if (old_loc->inserted)
12329 {
12330 /* If the location is inserted now, we might have to remove
12331 it. */
12332
12333 if (found_object && should_be_inserted (old_loc))
12334 {
12335 /* The location is still present in the location list,
12336 and still should be inserted. Don't do anything. */
12337 keep_in_target = 1;
12338 }
12339 else
12340 {
12341 /* This location still exists, but it won't be kept in the
12342 target since it may have been disabled. We proceed to
12343 remove its target-side condition. */
12344
12345 /* The location is either no longer present, or got
12346 disabled. See if there's another location at the
12347 same address, in which case we don't need to remove
12348 this one from the target. */
12349
12350 /* OLD_LOC comes from existing struct breakpoint. */
12351 if (breakpoint_address_is_meaningful (old_loc->owner))
12352 {
12353 for (loc2p = locp;
12354 (loc2p < bp_location + bp_location_count
12355 && (*loc2p)->address == old_loc->address);
12356 loc2p++)
12357 {
12358 struct bp_location *loc2 = *loc2p;
12359
12360 if (breakpoint_locations_match (loc2, old_loc))
12361 {
12362 /* Read watchpoint locations are switched to
12363 access watchpoints, if the former are not
12364 supported, but the latter are. */
12365 if (is_hardware_watchpoint (old_loc->owner))
12366 {
12367 gdb_assert (is_hardware_watchpoint (loc2->owner));
12368 loc2->watchpoint_type = old_loc->watchpoint_type;
12369 }
12370
12371 /* loc2 is a duplicated location. We need to check
12372 if it should be inserted in case it will be
12373 unduplicated. */
12374 if (loc2 != old_loc
12375 && unduplicated_should_be_inserted (loc2))
12376 {
12377 swap_insertion (old_loc, loc2);
12378 keep_in_target = 1;
12379 break;
12380 }
12381 }
12382 }
12383 }
12384 }
12385
12386 if (!keep_in_target)
12387 {
12388 if (remove_breakpoint (old_loc, mark_uninserted))
12389 {
12390 /* This is just about all we can do. We could keep
12391 this location on the global list, and try to
12392 remove it next time, but there's no particular
12393 reason why we will succeed next time.
12394
12395 Note that at this point, old_loc->owner is still
12396 valid, as delete_breakpoint frees the breakpoint
12397 only after calling us. */
12398 printf_filtered (_("warning: Error removing "
12399 "breakpoint %d\n"),
12400 old_loc->owner->number);
12401 }
12402 removed = 1;
12403 }
12404 }
12405
12406 if (!found_object)
12407 {
12408 if (removed && non_stop
12409 && breakpoint_address_is_meaningful (old_loc->owner)
12410 && !is_hardware_watchpoint (old_loc->owner))
12411 {
12412 /* This location was removed from the target. In
12413 non-stop mode, a race condition is possible where
12414 we've removed a breakpoint, but stop events for that
12415 breakpoint are already queued and will arrive later.
12416 We apply an heuristic to be able to distinguish such
12417 SIGTRAPs from other random SIGTRAPs: we keep this
12418 breakpoint location for a bit, and will retire it
12419 after we see some number of events. The theory here
12420 is that reporting of events should, "on the average",
12421 be fair, so after a while we'll see events from all
12422 threads that have anything of interest, and no longer
12423 need to keep this breakpoint location around. We
12424 don't hold locations forever so to reduce chances of
12425 mistaking a non-breakpoint SIGTRAP for a breakpoint
12426 SIGTRAP.
12427
12428 The heuristic failing can be disastrous on
12429 decr_pc_after_break targets.
12430
12431 On decr_pc_after_break targets, like e.g., x86-linux,
12432 if we fail to recognize a late breakpoint SIGTRAP,
12433 because events_till_retirement has reached 0 too
12434 soon, we'll fail to do the PC adjustment, and report
12435 a random SIGTRAP to the user. When the user resumes
12436 the inferior, it will most likely immediately crash
12437 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12438 corrupted, because of being resumed e.g., in the
12439 middle of a multi-byte instruction, or skipped a
12440 one-byte instruction. This was actually seen happen
12441 on native x86-linux, and should be less rare on
12442 targets that do not support new thread events, like
12443 remote, due to the heuristic depending on
12444 thread_count.
12445
12446 Mistaking a random SIGTRAP for a breakpoint trap
12447 causes similar symptoms (PC adjustment applied when
12448 it shouldn't), but then again, playing with SIGTRAPs
12449 behind the debugger's back is asking for trouble.
12450
12451 Since hardware watchpoint traps are always
12452 distinguishable from other traps, so we don't need to
12453 apply keep hardware watchpoint moribund locations
12454 around. We simply always ignore hardware watchpoint
12455 traps we can no longer explain. */
12456
12457 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12458 old_loc->owner = NULL;
12459
12460 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12461 }
12462 else
12463 {
12464 old_loc->owner = NULL;
12465 decref_bp_location (&old_loc);
12466 }
12467 }
12468 }
12469
12470 /* Rescan breakpoints at the same address and section, marking the
12471 first one as "first" and any others as "duplicates". This is so
12472 that the bpt instruction is only inserted once. If we have a
12473 permanent breakpoint at the same place as BPT, make that one the
12474 official one, and the rest as duplicates. Permanent breakpoints
12475 are sorted first for the same address.
12476
12477 Do the same for hardware watchpoints, but also considering the
12478 watchpoint's type (regular/access/read) and length. */
12479
12480 bp_loc_first = NULL;
12481 wp_loc_first = NULL;
12482 awp_loc_first = NULL;
12483 rwp_loc_first = NULL;
12484 ALL_BP_LOCATIONS (loc, locp)
12485 {
12486 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12487 non-NULL. */
12488 struct bp_location **loc_first_p;
12489 b = loc->owner;
12490
12491 if (!unduplicated_should_be_inserted (loc)
12492 || !breakpoint_address_is_meaningful (b)
12493 /* Don't detect duplicate for tracepoint locations because they are
12494 never duplicated. See the comments in field `duplicate' of
12495 `struct bp_location'. */
12496 || is_tracepoint (b))
12497 {
12498 /* Clear the condition modification flag. */
12499 loc->condition_changed = condition_unchanged;
12500 continue;
12501 }
12502
12503 /* Permanent breakpoint should always be inserted. */
12504 if (b->enable_state == bp_permanent && ! loc->inserted)
12505 internal_error (__FILE__, __LINE__,
12506 _("allegedly permanent breakpoint is not "
12507 "actually inserted"));
12508
12509 if (b->type == bp_hardware_watchpoint)
12510 loc_first_p = &wp_loc_first;
12511 else if (b->type == bp_read_watchpoint)
12512 loc_first_p = &rwp_loc_first;
12513 else if (b->type == bp_access_watchpoint)
12514 loc_first_p = &awp_loc_first;
12515 else
12516 loc_first_p = &bp_loc_first;
12517
12518 if (*loc_first_p == NULL
12519 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12520 || !breakpoint_locations_match (loc, *loc_first_p))
12521 {
12522 *loc_first_p = loc;
12523 loc->duplicate = 0;
12524
12525 if (is_breakpoint (loc->owner) && loc->condition_changed)
12526 {
12527 loc->needs_update = 1;
12528 /* Clear the condition modification flag. */
12529 loc->condition_changed = condition_unchanged;
12530 }
12531 continue;
12532 }
12533
12534
12535 /* This and the above ensure the invariant that the first location
12536 is not duplicated, and is the inserted one.
12537 All following are marked as duplicated, and are not inserted. */
12538 if (loc->inserted)
12539 swap_insertion (loc, *loc_first_p);
12540 loc->duplicate = 1;
12541
12542 /* Clear the condition modification flag. */
12543 loc->condition_changed = condition_unchanged;
12544
12545 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12546 && b->enable_state != bp_permanent)
12547 internal_error (__FILE__, __LINE__,
12548 _("another breakpoint was inserted on top of "
12549 "a permanent breakpoint"));
12550 }
12551
12552 if (breakpoints_always_inserted_mode ()
12553 && (have_live_inferiors ()
12554 || (gdbarch_has_global_breakpoints (target_gdbarch ()))))
12555 {
12556 if (should_insert)
12557 insert_breakpoint_locations ();
12558 else
12559 {
12560 /* Though should_insert is false, we may need to update conditions
12561 on the target's side if it is evaluating such conditions. We
12562 only update conditions for locations that are marked
12563 "needs_update". */
12564 update_inserted_breakpoint_locations ();
12565 }
12566 }
12567
12568 if (should_insert)
12569 download_tracepoint_locations ();
12570
12571 do_cleanups (cleanups);
12572 }
12573
12574 void
12575 breakpoint_retire_moribund (void)
12576 {
12577 struct bp_location *loc;
12578 int ix;
12579
12580 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12581 if (--(loc->events_till_retirement) == 0)
12582 {
12583 decref_bp_location (&loc);
12584 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12585 --ix;
12586 }
12587 }
12588
12589 static void
12590 update_global_location_list_nothrow (int inserting)
12591 {
12592 volatile struct gdb_exception e;
12593
12594 TRY_CATCH (e, RETURN_MASK_ERROR)
12595 update_global_location_list (inserting);
12596 }
12597
12598 /* Clear BKP from a BPS. */
12599
12600 static void
12601 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12602 {
12603 bpstat bs;
12604
12605 for (bs = bps; bs; bs = bs->next)
12606 if (bs->breakpoint_at == bpt)
12607 {
12608 bs->breakpoint_at = NULL;
12609 bs->old_val = NULL;
12610 /* bs->commands will be freed later. */
12611 }
12612 }
12613
12614 /* Callback for iterate_over_threads. */
12615 static int
12616 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12617 {
12618 struct breakpoint *bpt = data;
12619
12620 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12621 return 0;
12622 }
12623
12624 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12625 callbacks. */
12626
12627 static void
12628 say_where (struct breakpoint *b)
12629 {
12630 struct ui_out *uiout = current_uiout;
12631 struct value_print_options opts;
12632
12633 get_user_print_options (&opts);
12634
12635 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12636 single string. */
12637 if (b->loc == NULL)
12638 {
12639 printf_filtered (_(" (%s) pending."), b->addr_string);
12640 }
12641 else
12642 {
12643 if (opts.addressprint || b->loc->source_file == NULL)
12644 {
12645 printf_filtered (" at ");
12646 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12647 gdb_stdout);
12648 }
12649 if (b->loc->source_file)
12650 {
12651 /* If there is a single location, we can print the location
12652 more nicely. */
12653 if (b->loc->next == NULL)
12654 printf_filtered (": file %s, line %d.",
12655 b->loc->source_file, b->loc->line_number);
12656 else
12657 /* This is not ideal, but each location may have a
12658 different file name, and this at least reflects the
12659 real situation somewhat. */
12660 printf_filtered (": %s.", b->addr_string);
12661 }
12662
12663 if (b->loc->next)
12664 {
12665 struct bp_location *loc = b->loc;
12666 int n = 0;
12667 for (; loc; loc = loc->next)
12668 ++n;
12669 printf_filtered (" (%d locations)", n);
12670 }
12671 }
12672 }
12673
12674 /* Default bp_location_ops methods. */
12675
12676 static void
12677 bp_location_dtor (struct bp_location *self)
12678 {
12679 xfree (self->cond);
12680 if (self->cond_bytecode)
12681 free_agent_expr (self->cond_bytecode);
12682 xfree (self->function_name);
12683 xfree (self->source_file);
12684 }
12685
12686 static const struct bp_location_ops bp_location_ops =
12687 {
12688 bp_location_dtor
12689 };
12690
12691 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12692 inherit from. */
12693
12694 static void
12695 base_breakpoint_dtor (struct breakpoint *self)
12696 {
12697 decref_counted_command_line (&self->commands);
12698 xfree (self->cond_string);
12699 xfree (self->addr_string);
12700 xfree (self->filter);
12701 xfree (self->addr_string_range_end);
12702 }
12703
12704 static struct bp_location *
12705 base_breakpoint_allocate_location (struct breakpoint *self)
12706 {
12707 struct bp_location *loc;
12708
12709 loc = XNEW (struct bp_location);
12710 init_bp_location (loc, &bp_location_ops, self);
12711 return loc;
12712 }
12713
12714 static void
12715 base_breakpoint_re_set (struct breakpoint *b)
12716 {
12717 /* Nothing to re-set. */
12718 }
12719
12720 #define internal_error_pure_virtual_called() \
12721 gdb_assert_not_reached ("pure virtual function called")
12722
12723 static int
12724 base_breakpoint_insert_location (struct bp_location *bl)
12725 {
12726 internal_error_pure_virtual_called ();
12727 }
12728
12729 static int
12730 base_breakpoint_remove_location (struct bp_location *bl)
12731 {
12732 internal_error_pure_virtual_called ();
12733 }
12734
12735 static int
12736 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12737 struct address_space *aspace,
12738 CORE_ADDR bp_addr,
12739 const struct target_waitstatus *ws)
12740 {
12741 internal_error_pure_virtual_called ();
12742 }
12743
12744 static void
12745 base_breakpoint_check_status (bpstat bs)
12746 {
12747 /* Always stop. */
12748 }
12749
12750 /* A "works_in_software_mode" breakpoint_ops method that just internal
12751 errors. */
12752
12753 static int
12754 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12755 {
12756 internal_error_pure_virtual_called ();
12757 }
12758
12759 /* A "resources_needed" breakpoint_ops method that just internal
12760 errors. */
12761
12762 static int
12763 base_breakpoint_resources_needed (const struct bp_location *bl)
12764 {
12765 internal_error_pure_virtual_called ();
12766 }
12767
12768 static enum print_stop_action
12769 base_breakpoint_print_it (bpstat bs)
12770 {
12771 internal_error_pure_virtual_called ();
12772 }
12773
12774 static void
12775 base_breakpoint_print_one_detail (const struct breakpoint *self,
12776 struct ui_out *uiout)
12777 {
12778 /* nothing */
12779 }
12780
12781 static void
12782 base_breakpoint_print_mention (struct breakpoint *b)
12783 {
12784 internal_error_pure_virtual_called ();
12785 }
12786
12787 static void
12788 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12789 {
12790 internal_error_pure_virtual_called ();
12791 }
12792
12793 static void
12794 base_breakpoint_create_sals_from_address (char **arg,
12795 struct linespec_result *canonical,
12796 enum bptype type_wanted,
12797 char *addr_start,
12798 char **copy_arg)
12799 {
12800 internal_error_pure_virtual_called ();
12801 }
12802
12803 static void
12804 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12805 struct linespec_result *c,
12806 struct linespec_sals *lsal,
12807 char *cond_string,
12808 char *extra_string,
12809 enum bptype type_wanted,
12810 enum bpdisp disposition,
12811 int thread,
12812 int task, int ignore_count,
12813 const struct breakpoint_ops *o,
12814 int from_tty, int enabled,
12815 int internal, unsigned flags)
12816 {
12817 internal_error_pure_virtual_called ();
12818 }
12819
12820 static void
12821 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
12822 struct symtabs_and_lines *sals)
12823 {
12824 internal_error_pure_virtual_called ();
12825 }
12826
12827 static struct breakpoint_ops base_breakpoint_ops =
12828 {
12829 base_breakpoint_dtor,
12830 base_breakpoint_allocate_location,
12831 base_breakpoint_re_set,
12832 base_breakpoint_insert_location,
12833 base_breakpoint_remove_location,
12834 base_breakpoint_breakpoint_hit,
12835 base_breakpoint_check_status,
12836 base_breakpoint_resources_needed,
12837 base_breakpoint_works_in_software_mode,
12838 base_breakpoint_print_it,
12839 NULL,
12840 base_breakpoint_print_one_detail,
12841 base_breakpoint_print_mention,
12842 base_breakpoint_print_recreate,
12843 base_breakpoint_create_sals_from_address,
12844 base_breakpoint_create_breakpoints_sal,
12845 base_breakpoint_decode_linespec,
12846 };
12847
12848 /* Default breakpoint_ops methods. */
12849
12850 static void
12851 bkpt_re_set (struct breakpoint *b)
12852 {
12853 /* FIXME: is this still reachable? */
12854 if (b->addr_string == NULL)
12855 {
12856 /* Anything without a string can't be re-set. */
12857 delete_breakpoint (b);
12858 return;
12859 }
12860
12861 breakpoint_re_set_default (b);
12862 }
12863
12864 static int
12865 bkpt_insert_location (struct bp_location *bl)
12866 {
12867 if (bl->loc_type == bp_loc_hardware_breakpoint)
12868 return target_insert_hw_breakpoint (bl->gdbarch,
12869 &bl->target_info);
12870 else
12871 return target_insert_breakpoint (bl->gdbarch,
12872 &bl->target_info);
12873 }
12874
12875 static int
12876 bkpt_remove_location (struct bp_location *bl)
12877 {
12878 if (bl->loc_type == bp_loc_hardware_breakpoint)
12879 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12880 else
12881 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
12882 }
12883
12884 static int
12885 bkpt_breakpoint_hit (const struct bp_location *bl,
12886 struct address_space *aspace, CORE_ADDR bp_addr,
12887 const struct target_waitstatus *ws)
12888 {
12889 struct breakpoint *b = bl->owner;
12890
12891 if (ws->kind != TARGET_WAITKIND_STOPPED
12892 || ws->value.sig != GDB_SIGNAL_TRAP)
12893 return 0;
12894
12895 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12896 aspace, bp_addr))
12897 return 0;
12898
12899 if (overlay_debugging /* unmapped overlay section */
12900 && section_is_overlay (bl->section)
12901 && !section_is_mapped (bl->section))
12902 return 0;
12903
12904 return 1;
12905 }
12906
12907 static int
12908 bkpt_resources_needed (const struct bp_location *bl)
12909 {
12910 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12911
12912 return 1;
12913 }
12914
12915 static enum print_stop_action
12916 bkpt_print_it (bpstat bs)
12917 {
12918 struct breakpoint *b;
12919 const struct bp_location *bl;
12920 int bp_temp;
12921 struct ui_out *uiout = current_uiout;
12922
12923 gdb_assert (bs->bp_location_at != NULL);
12924
12925 bl = bs->bp_location_at;
12926 b = bs->breakpoint_at;
12927
12928 bp_temp = b->disposition == disp_del;
12929 if (bl->address != bl->requested_address)
12930 breakpoint_adjustment_warning (bl->requested_address,
12931 bl->address,
12932 b->number, 1);
12933 annotate_breakpoint (b->number);
12934 if (bp_temp)
12935 ui_out_text (uiout, "\nTemporary breakpoint ");
12936 else
12937 ui_out_text (uiout, "\nBreakpoint ");
12938 if (ui_out_is_mi_like_p (uiout))
12939 {
12940 ui_out_field_string (uiout, "reason",
12941 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12942 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12943 }
12944 ui_out_field_int (uiout, "bkptno", b->number);
12945 ui_out_text (uiout, ", ");
12946
12947 return PRINT_SRC_AND_LOC;
12948 }
12949
12950 static void
12951 bkpt_print_mention (struct breakpoint *b)
12952 {
12953 if (ui_out_is_mi_like_p (current_uiout))
12954 return;
12955
12956 switch (b->type)
12957 {
12958 case bp_breakpoint:
12959 case bp_gnu_ifunc_resolver:
12960 if (b->disposition == disp_del)
12961 printf_filtered (_("Temporary breakpoint"));
12962 else
12963 printf_filtered (_("Breakpoint"));
12964 printf_filtered (_(" %d"), b->number);
12965 if (b->type == bp_gnu_ifunc_resolver)
12966 printf_filtered (_(" at gnu-indirect-function resolver"));
12967 break;
12968 case bp_hardware_breakpoint:
12969 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12970 break;
12971 case bp_dprintf:
12972 printf_filtered (_("Dprintf %d"), b->number);
12973 break;
12974 }
12975
12976 say_where (b);
12977 }
12978
12979 static void
12980 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12981 {
12982 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12983 fprintf_unfiltered (fp, "tbreak");
12984 else if (tp->type == bp_breakpoint)
12985 fprintf_unfiltered (fp, "break");
12986 else if (tp->type == bp_hardware_breakpoint
12987 && tp->disposition == disp_del)
12988 fprintf_unfiltered (fp, "thbreak");
12989 else if (tp->type == bp_hardware_breakpoint)
12990 fprintf_unfiltered (fp, "hbreak");
12991 else
12992 internal_error (__FILE__, __LINE__,
12993 _("unhandled breakpoint type %d"), (int) tp->type);
12994
12995 fprintf_unfiltered (fp, " %s", tp->addr_string);
12996 print_recreate_thread (tp, fp);
12997 }
12998
12999 static void
13000 bkpt_create_sals_from_address (char **arg,
13001 struct linespec_result *canonical,
13002 enum bptype type_wanted,
13003 char *addr_start, char **copy_arg)
13004 {
13005 create_sals_from_address_default (arg, canonical, type_wanted,
13006 addr_start, copy_arg);
13007 }
13008
13009 static void
13010 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13011 struct linespec_result *canonical,
13012 struct linespec_sals *lsal,
13013 char *cond_string,
13014 char *extra_string,
13015 enum bptype type_wanted,
13016 enum bpdisp disposition,
13017 int thread,
13018 int task, int ignore_count,
13019 const struct breakpoint_ops *ops,
13020 int from_tty, int enabled,
13021 int internal, unsigned flags)
13022 {
13023 create_breakpoints_sal_default (gdbarch, canonical, lsal,
13024 cond_string, extra_string,
13025 type_wanted,
13026 disposition, thread, task,
13027 ignore_count, ops, from_tty,
13028 enabled, internal, flags);
13029 }
13030
13031 static void
13032 bkpt_decode_linespec (struct breakpoint *b, char **s,
13033 struct symtabs_and_lines *sals)
13034 {
13035 decode_linespec_default (b, s, sals);
13036 }
13037
13038 /* Virtual table for internal breakpoints. */
13039
13040 static void
13041 internal_bkpt_re_set (struct breakpoint *b)
13042 {
13043 switch (b->type)
13044 {
13045 /* Delete overlay event and longjmp master breakpoints; they
13046 will be reset later by breakpoint_re_set. */
13047 case bp_overlay_event:
13048 case bp_longjmp_master:
13049 case bp_std_terminate_master:
13050 case bp_exception_master:
13051 delete_breakpoint (b);
13052 break;
13053
13054 /* This breakpoint is special, it's set up when the inferior
13055 starts and we really don't want to touch it. */
13056 case bp_shlib_event:
13057
13058 /* Like bp_shlib_event, this breakpoint type is special. Once
13059 it is set up, we do not want to touch it. */
13060 case bp_thread_event:
13061 break;
13062 }
13063 }
13064
13065 static void
13066 internal_bkpt_check_status (bpstat bs)
13067 {
13068 if (bs->breakpoint_at->type == bp_shlib_event)
13069 {
13070 /* If requested, stop when the dynamic linker notifies GDB of
13071 events. This allows the user to get control and place
13072 breakpoints in initializer routines for dynamically loaded
13073 objects (among other things). */
13074 bs->stop = stop_on_solib_events;
13075 bs->print = stop_on_solib_events;
13076 }
13077 else
13078 bs->stop = 0;
13079 }
13080
13081 static enum print_stop_action
13082 internal_bkpt_print_it (bpstat bs)
13083 {
13084 struct ui_out *uiout = current_uiout;
13085 struct breakpoint *b;
13086
13087 b = bs->breakpoint_at;
13088
13089 switch (b->type)
13090 {
13091 case bp_shlib_event:
13092 /* Did we stop because the user set the stop_on_solib_events
13093 variable? (If so, we report this as a generic, "Stopped due
13094 to shlib event" message.) */
13095 print_solib_event (0);
13096 break;
13097
13098 case bp_thread_event:
13099 /* Not sure how we will get here.
13100 GDB should not stop for these breakpoints. */
13101 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13102 break;
13103
13104 case bp_overlay_event:
13105 /* By analogy with the thread event, GDB should not stop for these. */
13106 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13107 break;
13108
13109 case bp_longjmp_master:
13110 /* These should never be enabled. */
13111 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13112 break;
13113
13114 case bp_std_terminate_master:
13115 /* These should never be enabled. */
13116 printf_filtered (_("std::terminate Master Breakpoint: "
13117 "gdb should not stop!\n"));
13118 break;
13119
13120 case bp_exception_master:
13121 /* These should never be enabled. */
13122 printf_filtered (_("Exception Master Breakpoint: "
13123 "gdb should not stop!\n"));
13124 break;
13125 }
13126
13127 return PRINT_NOTHING;
13128 }
13129
13130 static void
13131 internal_bkpt_print_mention (struct breakpoint *b)
13132 {
13133 /* Nothing to mention. These breakpoints are internal. */
13134 }
13135
13136 /* Virtual table for momentary breakpoints */
13137
13138 static void
13139 momentary_bkpt_re_set (struct breakpoint *b)
13140 {
13141 /* Keep temporary breakpoints, which can be encountered when we step
13142 over a dlopen call and SOLIB_ADD is resetting the breakpoints.
13143 Otherwise these should have been blown away via the cleanup chain
13144 or by breakpoint_init_inferior when we rerun the executable. */
13145 }
13146
13147 static void
13148 momentary_bkpt_check_status (bpstat bs)
13149 {
13150 /* Nothing. The point of these breakpoints is causing a stop. */
13151 }
13152
13153 static enum print_stop_action
13154 momentary_bkpt_print_it (bpstat bs)
13155 {
13156 struct ui_out *uiout = current_uiout;
13157
13158 if (ui_out_is_mi_like_p (uiout))
13159 {
13160 struct breakpoint *b = bs->breakpoint_at;
13161
13162 switch (b->type)
13163 {
13164 case bp_finish:
13165 ui_out_field_string
13166 (uiout, "reason",
13167 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13168 break;
13169
13170 case bp_until:
13171 ui_out_field_string
13172 (uiout, "reason",
13173 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13174 break;
13175 }
13176 }
13177
13178 return PRINT_UNKNOWN;
13179 }
13180
13181 static void
13182 momentary_bkpt_print_mention (struct breakpoint *b)
13183 {
13184 /* Nothing to mention. These breakpoints are internal. */
13185 }
13186
13187 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13188
13189 It gets cleared already on the removal of the first one of such placed
13190 breakpoints. This is OK as they get all removed altogether. */
13191
13192 static void
13193 longjmp_bkpt_dtor (struct breakpoint *self)
13194 {
13195 struct thread_info *tp = find_thread_id (self->thread);
13196
13197 if (tp)
13198 tp->initiating_frame = null_frame_id;
13199
13200 momentary_breakpoint_ops.dtor (self);
13201 }
13202
13203 /* Specific methods for probe breakpoints. */
13204
13205 static int
13206 bkpt_probe_insert_location (struct bp_location *bl)
13207 {
13208 int v = bkpt_insert_location (bl);
13209
13210 if (v == 0)
13211 {
13212 /* The insertion was successful, now let's set the probe's semaphore
13213 if needed. */
13214 bl->probe->pops->set_semaphore (bl->probe, bl->gdbarch);
13215 }
13216
13217 return v;
13218 }
13219
13220 static int
13221 bkpt_probe_remove_location (struct bp_location *bl)
13222 {
13223 /* Let's clear the semaphore before removing the location. */
13224 bl->probe->pops->clear_semaphore (bl->probe, bl->gdbarch);
13225
13226 return bkpt_remove_location (bl);
13227 }
13228
13229 static void
13230 bkpt_probe_create_sals_from_address (char **arg,
13231 struct linespec_result *canonical,
13232 enum bptype type_wanted,
13233 char *addr_start, char **copy_arg)
13234 {
13235 struct linespec_sals lsal;
13236
13237 lsal.sals = parse_probes (arg, canonical);
13238
13239 *copy_arg = xstrdup (canonical->addr_string);
13240 lsal.canonical = xstrdup (*copy_arg);
13241
13242 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13243 }
13244
13245 static void
13246 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13247 struct symtabs_and_lines *sals)
13248 {
13249 *sals = parse_probes (s, NULL);
13250 if (!sals->sals)
13251 error (_("probe not found"));
13252 }
13253
13254 /* The breakpoint_ops structure to be used in tracepoints. */
13255
13256 static void
13257 tracepoint_re_set (struct breakpoint *b)
13258 {
13259 breakpoint_re_set_default (b);
13260 }
13261
13262 static int
13263 tracepoint_breakpoint_hit (const struct bp_location *bl,
13264 struct address_space *aspace, CORE_ADDR bp_addr,
13265 const struct target_waitstatus *ws)
13266 {
13267 /* By definition, the inferior does not report stops at
13268 tracepoints. */
13269 return 0;
13270 }
13271
13272 static void
13273 tracepoint_print_one_detail (const struct breakpoint *self,
13274 struct ui_out *uiout)
13275 {
13276 struct tracepoint *tp = (struct tracepoint *) self;
13277 if (tp->static_trace_marker_id)
13278 {
13279 gdb_assert (self->type == bp_static_tracepoint);
13280
13281 ui_out_text (uiout, "\tmarker id is ");
13282 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13283 tp->static_trace_marker_id);
13284 ui_out_text (uiout, "\n");
13285 }
13286 }
13287
13288 static void
13289 tracepoint_print_mention (struct breakpoint *b)
13290 {
13291 if (ui_out_is_mi_like_p (current_uiout))
13292 return;
13293
13294 switch (b->type)
13295 {
13296 case bp_tracepoint:
13297 printf_filtered (_("Tracepoint"));
13298 printf_filtered (_(" %d"), b->number);
13299 break;
13300 case bp_fast_tracepoint:
13301 printf_filtered (_("Fast tracepoint"));
13302 printf_filtered (_(" %d"), b->number);
13303 break;
13304 case bp_static_tracepoint:
13305 printf_filtered (_("Static tracepoint"));
13306 printf_filtered (_(" %d"), b->number);
13307 break;
13308 default:
13309 internal_error (__FILE__, __LINE__,
13310 _("unhandled tracepoint type %d"), (int) b->type);
13311 }
13312
13313 say_where (b);
13314 }
13315
13316 static void
13317 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13318 {
13319 struct tracepoint *tp = (struct tracepoint *) self;
13320
13321 if (self->type == bp_fast_tracepoint)
13322 fprintf_unfiltered (fp, "ftrace");
13323 if (self->type == bp_static_tracepoint)
13324 fprintf_unfiltered (fp, "strace");
13325 else if (self->type == bp_tracepoint)
13326 fprintf_unfiltered (fp, "trace");
13327 else
13328 internal_error (__FILE__, __LINE__,
13329 _("unhandled tracepoint type %d"), (int) self->type);
13330
13331 fprintf_unfiltered (fp, " %s", self->addr_string);
13332 print_recreate_thread (self, fp);
13333
13334 if (tp->pass_count)
13335 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13336 }
13337
13338 static void
13339 tracepoint_create_sals_from_address (char **arg,
13340 struct linespec_result *canonical,
13341 enum bptype type_wanted,
13342 char *addr_start, char **copy_arg)
13343 {
13344 create_sals_from_address_default (arg, canonical, type_wanted,
13345 addr_start, copy_arg);
13346 }
13347
13348 static void
13349 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13350 struct linespec_result *canonical,
13351 struct linespec_sals *lsal,
13352 char *cond_string,
13353 char *extra_string,
13354 enum bptype type_wanted,
13355 enum bpdisp disposition,
13356 int thread,
13357 int task, int ignore_count,
13358 const struct breakpoint_ops *ops,
13359 int from_tty, int enabled,
13360 int internal, unsigned flags)
13361 {
13362 create_breakpoints_sal_default (gdbarch, canonical, lsal,
13363 cond_string, extra_string,
13364 type_wanted,
13365 disposition, thread, task,
13366 ignore_count, ops, from_tty,
13367 enabled, internal, flags);
13368 }
13369
13370 static void
13371 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13372 struct symtabs_and_lines *sals)
13373 {
13374 decode_linespec_default (b, s, sals);
13375 }
13376
13377 struct breakpoint_ops tracepoint_breakpoint_ops;
13378
13379 /* The breakpoint_ops structure to be use on tracepoints placed in a
13380 static probe. */
13381
13382 static void
13383 tracepoint_probe_create_sals_from_address (char **arg,
13384 struct linespec_result *canonical,
13385 enum bptype type_wanted,
13386 char *addr_start, char **copy_arg)
13387 {
13388 /* We use the same method for breakpoint on probes. */
13389 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13390 addr_start, copy_arg);
13391 }
13392
13393 static void
13394 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13395 struct symtabs_and_lines *sals)
13396 {
13397 /* We use the same method for breakpoint on probes. */
13398 bkpt_probe_decode_linespec (b, s, sals);
13399 }
13400
13401 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13402
13403 /* The breakpoint_ops structure to be used on static tracepoints with
13404 markers (`-m'). */
13405
13406 static void
13407 strace_marker_create_sals_from_address (char **arg,
13408 struct linespec_result *canonical,
13409 enum bptype type_wanted,
13410 char *addr_start, char **copy_arg)
13411 {
13412 struct linespec_sals lsal;
13413
13414 lsal.sals = decode_static_tracepoint_spec (arg);
13415
13416 *copy_arg = savestring (addr_start, *arg - addr_start);
13417
13418 canonical->addr_string = xstrdup (*copy_arg);
13419 lsal.canonical = xstrdup (*copy_arg);
13420 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13421 }
13422
13423 static void
13424 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13425 struct linespec_result *canonical,
13426 struct linespec_sals *lsal,
13427 char *cond_string,
13428 char *extra_string,
13429 enum bptype type_wanted,
13430 enum bpdisp disposition,
13431 int thread,
13432 int task, int ignore_count,
13433 const struct breakpoint_ops *ops,
13434 int from_tty, int enabled,
13435 int internal, unsigned flags)
13436 {
13437 int i;
13438
13439 /* If the user is creating a static tracepoint by marker id
13440 (strace -m MARKER_ID), then store the sals index, so that
13441 breakpoint_re_set can try to match up which of the newly
13442 found markers corresponds to this one, and, don't try to
13443 expand multiple locations for each sal, given than SALS
13444 already should contain all sals for MARKER_ID. */
13445
13446 for (i = 0; i < lsal->sals.nelts; ++i)
13447 {
13448 struct symtabs_and_lines expanded;
13449 struct tracepoint *tp;
13450 struct cleanup *old_chain;
13451 char *addr_string;
13452
13453 expanded.nelts = 1;
13454 expanded.sals = &lsal->sals.sals[i];
13455
13456 addr_string = xstrdup (canonical->addr_string);
13457 old_chain = make_cleanup (xfree, addr_string);
13458
13459 tp = XCNEW (struct tracepoint);
13460 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13461 addr_string, NULL,
13462 cond_string, extra_string,
13463 type_wanted, disposition,
13464 thread, task, ignore_count, ops,
13465 from_tty, enabled, internal, flags,
13466 canonical->special_display);
13467 /* Given that its possible to have multiple markers with
13468 the same string id, if the user is creating a static
13469 tracepoint by marker id ("strace -m MARKER_ID"), then
13470 store the sals index, so that breakpoint_re_set can
13471 try to match up which of the newly found markers
13472 corresponds to this one */
13473 tp->static_trace_marker_id_idx = i;
13474
13475 install_breakpoint (internal, &tp->base, 0);
13476
13477 discard_cleanups (old_chain);
13478 }
13479 }
13480
13481 static void
13482 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13483 struct symtabs_and_lines *sals)
13484 {
13485 struct tracepoint *tp = (struct tracepoint *) b;
13486
13487 *sals = decode_static_tracepoint_spec (s);
13488 if (sals->nelts > tp->static_trace_marker_id_idx)
13489 {
13490 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13491 sals->nelts = 1;
13492 }
13493 else
13494 error (_("marker %s not found"), tp->static_trace_marker_id);
13495 }
13496
13497 static struct breakpoint_ops strace_marker_breakpoint_ops;
13498
13499 static int
13500 strace_marker_p (struct breakpoint *b)
13501 {
13502 return b->ops == &strace_marker_breakpoint_ops;
13503 }
13504
13505 /* Delete a breakpoint and clean up all traces of it in the data
13506 structures. */
13507
13508 void
13509 delete_breakpoint (struct breakpoint *bpt)
13510 {
13511 struct breakpoint *b;
13512
13513 gdb_assert (bpt != NULL);
13514
13515 /* Has this bp already been deleted? This can happen because
13516 multiple lists can hold pointers to bp's. bpstat lists are
13517 especial culprits.
13518
13519 One example of this happening is a watchpoint's scope bp. When
13520 the scope bp triggers, we notice that the watchpoint is out of
13521 scope, and delete it. We also delete its scope bp. But the
13522 scope bp is marked "auto-deleting", and is already on a bpstat.
13523 That bpstat is then checked for auto-deleting bp's, which are
13524 deleted.
13525
13526 A real solution to this problem might involve reference counts in
13527 bp's, and/or giving them pointers back to their referencing
13528 bpstat's, and teaching delete_breakpoint to only free a bp's
13529 storage when no more references were extent. A cheaper bandaid
13530 was chosen. */
13531 if (bpt->type == bp_none)
13532 return;
13533
13534 /* At least avoid this stale reference until the reference counting
13535 of breakpoints gets resolved. */
13536 if (bpt->related_breakpoint != bpt)
13537 {
13538 struct breakpoint *related;
13539 struct watchpoint *w;
13540
13541 if (bpt->type == bp_watchpoint_scope)
13542 w = (struct watchpoint *) bpt->related_breakpoint;
13543 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13544 w = (struct watchpoint *) bpt;
13545 else
13546 w = NULL;
13547 if (w != NULL)
13548 watchpoint_del_at_next_stop (w);
13549
13550 /* Unlink bpt from the bpt->related_breakpoint ring. */
13551 for (related = bpt; related->related_breakpoint != bpt;
13552 related = related->related_breakpoint);
13553 related->related_breakpoint = bpt->related_breakpoint;
13554 bpt->related_breakpoint = bpt;
13555 }
13556
13557 /* watch_command_1 creates a watchpoint but only sets its number if
13558 update_watchpoint succeeds in creating its bp_locations. If there's
13559 a problem in that process, we'll be asked to delete the half-created
13560 watchpoint. In that case, don't announce the deletion. */
13561 if (bpt->number)
13562 observer_notify_breakpoint_deleted (bpt);
13563
13564 if (breakpoint_chain == bpt)
13565 breakpoint_chain = bpt->next;
13566
13567 ALL_BREAKPOINTS (b)
13568 if (b->next == bpt)
13569 {
13570 b->next = bpt->next;
13571 break;
13572 }
13573
13574 /* Be sure no bpstat's are pointing at the breakpoint after it's
13575 been freed. */
13576 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13577 in all threads for now. Note that we cannot just remove bpstats
13578 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13579 commands are associated with the bpstat; if we remove it here,
13580 then the later call to bpstat_do_actions (&stop_bpstat); in
13581 event-top.c won't do anything, and temporary breakpoints with
13582 commands won't work. */
13583
13584 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13585
13586 /* Now that breakpoint is removed from breakpoint list, update the
13587 global location list. This will remove locations that used to
13588 belong to this breakpoint. Do this before freeing the breakpoint
13589 itself, since remove_breakpoint looks at location's owner. It
13590 might be better design to have location completely
13591 self-contained, but it's not the case now. */
13592 update_global_location_list (0);
13593
13594 bpt->ops->dtor (bpt);
13595 /* On the chance that someone will soon try again to delete this
13596 same bp, we mark it as deleted before freeing its storage. */
13597 bpt->type = bp_none;
13598 xfree (bpt);
13599 }
13600
13601 static void
13602 do_delete_breakpoint_cleanup (void *b)
13603 {
13604 delete_breakpoint (b);
13605 }
13606
13607 struct cleanup *
13608 make_cleanup_delete_breakpoint (struct breakpoint *b)
13609 {
13610 return make_cleanup (do_delete_breakpoint_cleanup, b);
13611 }
13612
13613 /* Iterator function to call a user-provided callback function once
13614 for each of B and its related breakpoints. */
13615
13616 static void
13617 iterate_over_related_breakpoints (struct breakpoint *b,
13618 void (*function) (struct breakpoint *,
13619 void *),
13620 void *data)
13621 {
13622 struct breakpoint *related;
13623
13624 related = b;
13625 do
13626 {
13627 struct breakpoint *next;
13628
13629 /* FUNCTION may delete RELATED. */
13630 next = related->related_breakpoint;
13631
13632 if (next == related)
13633 {
13634 /* RELATED is the last ring entry. */
13635 function (related, data);
13636
13637 /* FUNCTION may have deleted it, so we'd never reach back to
13638 B. There's nothing left to do anyway, so just break
13639 out. */
13640 break;
13641 }
13642 else
13643 function (related, data);
13644
13645 related = next;
13646 }
13647 while (related != b);
13648 }
13649
13650 static void
13651 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13652 {
13653 delete_breakpoint (b);
13654 }
13655
13656 /* A callback for map_breakpoint_numbers that calls
13657 delete_breakpoint. */
13658
13659 static void
13660 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13661 {
13662 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13663 }
13664
13665 void
13666 delete_command (char *arg, int from_tty)
13667 {
13668 struct breakpoint *b, *b_tmp;
13669
13670 dont_repeat ();
13671
13672 if (arg == 0)
13673 {
13674 int breaks_to_delete = 0;
13675
13676 /* Delete all breakpoints if no argument. Do not delete
13677 internal breakpoints, these have to be deleted with an
13678 explicit breakpoint number argument. */
13679 ALL_BREAKPOINTS (b)
13680 if (user_breakpoint_p (b))
13681 {
13682 breaks_to_delete = 1;
13683 break;
13684 }
13685
13686 /* Ask user only if there are some breakpoints to delete. */
13687 if (!from_tty
13688 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13689 {
13690 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13691 if (user_breakpoint_p (b))
13692 delete_breakpoint (b);
13693 }
13694 }
13695 else
13696 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13697 }
13698
13699 static int
13700 all_locations_are_pending (struct bp_location *loc)
13701 {
13702 for (; loc; loc = loc->next)
13703 if (!loc->shlib_disabled
13704 && !loc->pspace->executing_startup)
13705 return 0;
13706 return 1;
13707 }
13708
13709 /* Subroutine of update_breakpoint_locations to simplify it.
13710 Return non-zero if multiple fns in list LOC have the same name.
13711 Null names are ignored. */
13712
13713 static int
13714 ambiguous_names_p (struct bp_location *loc)
13715 {
13716 struct bp_location *l;
13717 htab_t htab = htab_create_alloc (13, htab_hash_string,
13718 (int (*) (const void *,
13719 const void *)) streq,
13720 NULL, xcalloc, xfree);
13721
13722 for (l = loc; l != NULL; l = l->next)
13723 {
13724 const char **slot;
13725 const char *name = l->function_name;
13726
13727 /* Allow for some names to be NULL, ignore them. */
13728 if (name == NULL)
13729 continue;
13730
13731 slot = (const char **) htab_find_slot (htab, (const void *) name,
13732 INSERT);
13733 /* NOTE: We can assume slot != NULL here because xcalloc never
13734 returns NULL. */
13735 if (*slot != NULL)
13736 {
13737 htab_delete (htab);
13738 return 1;
13739 }
13740 *slot = name;
13741 }
13742
13743 htab_delete (htab);
13744 return 0;
13745 }
13746
13747 /* When symbols change, it probably means the sources changed as well,
13748 and it might mean the static tracepoint markers are no longer at
13749 the same address or line numbers they used to be at last we
13750 checked. Losing your static tracepoints whenever you rebuild is
13751 undesirable. This function tries to resync/rematch gdb static
13752 tracepoints with the markers on the target, for static tracepoints
13753 that have not been set by marker id. Static tracepoint that have
13754 been set by marker id are reset by marker id in breakpoint_re_set.
13755 The heuristic is:
13756
13757 1) For a tracepoint set at a specific address, look for a marker at
13758 the old PC. If one is found there, assume to be the same marker.
13759 If the name / string id of the marker found is different from the
13760 previous known name, assume that means the user renamed the marker
13761 in the sources, and output a warning.
13762
13763 2) For a tracepoint set at a given line number, look for a marker
13764 at the new address of the old line number. If one is found there,
13765 assume to be the same marker. If the name / string id of the
13766 marker found is different from the previous known name, assume that
13767 means the user renamed the marker in the sources, and output a
13768 warning.
13769
13770 3) If a marker is no longer found at the same address or line, it
13771 may mean the marker no longer exists. But it may also just mean
13772 the code changed a bit. Maybe the user added a few lines of code
13773 that made the marker move up or down (in line number terms). Ask
13774 the target for info about the marker with the string id as we knew
13775 it. If found, update line number and address in the matching
13776 static tracepoint. This will get confused if there's more than one
13777 marker with the same ID (possible in UST, although unadvised
13778 precisely because it confuses tools). */
13779
13780 static struct symtab_and_line
13781 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13782 {
13783 struct tracepoint *tp = (struct tracepoint *) b;
13784 struct static_tracepoint_marker marker;
13785 CORE_ADDR pc;
13786
13787 pc = sal.pc;
13788 if (sal.line)
13789 find_line_pc (sal.symtab, sal.line, &pc);
13790
13791 if (target_static_tracepoint_marker_at (pc, &marker))
13792 {
13793 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13794 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13795 b->number,
13796 tp->static_trace_marker_id, marker.str_id);
13797
13798 xfree (tp->static_trace_marker_id);
13799 tp->static_trace_marker_id = xstrdup (marker.str_id);
13800 release_static_tracepoint_marker (&marker);
13801
13802 return sal;
13803 }
13804
13805 /* Old marker wasn't found on target at lineno. Try looking it up
13806 by string ID. */
13807 if (!sal.explicit_pc
13808 && sal.line != 0
13809 && sal.symtab != NULL
13810 && tp->static_trace_marker_id != NULL)
13811 {
13812 VEC(static_tracepoint_marker_p) *markers;
13813
13814 markers
13815 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13816
13817 if (!VEC_empty(static_tracepoint_marker_p, markers))
13818 {
13819 struct symtab_and_line sal2;
13820 struct symbol *sym;
13821 struct static_tracepoint_marker *tpmarker;
13822 struct ui_out *uiout = current_uiout;
13823
13824 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13825
13826 xfree (tp->static_trace_marker_id);
13827 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13828
13829 warning (_("marker for static tracepoint %d (%s) not "
13830 "found at previous line number"),
13831 b->number, tp->static_trace_marker_id);
13832
13833 init_sal (&sal2);
13834
13835 sal2.pc = tpmarker->address;
13836
13837 sal2 = find_pc_line (tpmarker->address, 0);
13838 sym = find_pc_sect_function (tpmarker->address, NULL);
13839 ui_out_text (uiout, "Now in ");
13840 if (sym)
13841 {
13842 ui_out_field_string (uiout, "func",
13843 SYMBOL_PRINT_NAME (sym));
13844 ui_out_text (uiout, " at ");
13845 }
13846 ui_out_field_string (uiout, "file", sal2.symtab->filename);
13847 ui_out_text (uiout, ":");
13848
13849 if (ui_out_is_mi_like_p (uiout))
13850 {
13851 const char *fullname = symtab_to_fullname (sal2.symtab);
13852
13853 if (fullname)
13854 ui_out_field_string (uiout, "fullname", fullname);
13855 }
13856
13857 ui_out_field_int (uiout, "line", sal2.line);
13858 ui_out_text (uiout, "\n");
13859
13860 b->loc->line_number = sal2.line;
13861
13862 xfree (b->loc->source_file);
13863 if (sym)
13864 b->loc->source_file = xstrdup (sal2.symtab->filename);
13865 else
13866 b->loc->source_file = NULL;
13867
13868 xfree (b->addr_string);
13869 b->addr_string = xstrprintf ("%s:%d",
13870 sal2.symtab->filename,
13871 b->loc->line_number);
13872
13873 /* Might be nice to check if function changed, and warn if
13874 so. */
13875
13876 release_static_tracepoint_marker (tpmarker);
13877 }
13878 }
13879 return sal;
13880 }
13881
13882 /* Returns 1 iff locations A and B are sufficiently same that
13883 we don't need to report breakpoint as changed. */
13884
13885 static int
13886 locations_are_equal (struct bp_location *a, struct bp_location *b)
13887 {
13888 while (a && b)
13889 {
13890 if (a->address != b->address)
13891 return 0;
13892
13893 if (a->shlib_disabled != b->shlib_disabled)
13894 return 0;
13895
13896 if (a->enabled != b->enabled)
13897 return 0;
13898
13899 a = a->next;
13900 b = b->next;
13901 }
13902
13903 if ((a == NULL) != (b == NULL))
13904 return 0;
13905
13906 return 1;
13907 }
13908
13909 /* Create new breakpoint locations for B (a hardware or software breakpoint)
13910 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
13911 a ranged breakpoint. */
13912
13913 void
13914 update_breakpoint_locations (struct breakpoint *b,
13915 struct symtabs_and_lines sals,
13916 struct symtabs_and_lines sals_end)
13917 {
13918 int i;
13919 struct bp_location *existing_locations = b->loc;
13920
13921 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
13922 {
13923 /* Ranged breakpoints have only one start location and one end
13924 location. */
13925 b->enable_state = bp_disabled;
13926 update_global_location_list (1);
13927 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13928 "multiple locations found\n"),
13929 b->number);
13930 return;
13931 }
13932
13933 /* If there's no new locations, and all existing locations are
13934 pending, don't do anything. This optimizes the common case where
13935 all locations are in the same shared library, that was unloaded.
13936 We'd like to retain the location, so that when the library is
13937 loaded again, we don't loose the enabled/disabled status of the
13938 individual locations. */
13939 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
13940 return;
13941
13942 b->loc = NULL;
13943
13944 for (i = 0; i < sals.nelts; ++i)
13945 {
13946 struct bp_location *new_loc;
13947
13948 switch_to_program_space_and_thread (sals.sals[i].pspace);
13949
13950 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
13951
13952 /* Reparse conditions, they might contain references to the
13953 old symtab. */
13954 if (b->cond_string != NULL)
13955 {
13956 char *s;
13957 volatile struct gdb_exception e;
13958
13959 s = b->cond_string;
13960 TRY_CATCH (e, RETURN_MASK_ERROR)
13961 {
13962 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
13963 block_for_pc (sals.sals[i].pc),
13964 0);
13965 }
13966 if (e.reason < 0)
13967 {
13968 warning (_("failed to reevaluate condition "
13969 "for breakpoint %d: %s"),
13970 b->number, e.message);
13971 new_loc->enabled = 0;
13972 }
13973 }
13974
13975 if (sals_end.nelts)
13976 {
13977 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
13978
13979 new_loc->length = end - sals.sals[0].pc + 1;
13980 }
13981 }
13982
13983 /* Update locations of permanent breakpoints. */
13984 if (b->enable_state == bp_permanent)
13985 make_breakpoint_permanent (b);
13986
13987 /* If possible, carry over 'disable' status from existing
13988 breakpoints. */
13989 {
13990 struct bp_location *e = existing_locations;
13991 /* If there are multiple breakpoints with the same function name,
13992 e.g. for inline functions, comparing function names won't work.
13993 Instead compare pc addresses; this is just a heuristic as things
13994 may have moved, but in practice it gives the correct answer
13995 often enough until a better solution is found. */
13996 int have_ambiguous_names = ambiguous_names_p (b->loc);
13997
13998 for (; e; e = e->next)
13999 {
14000 if (!e->enabled && e->function_name)
14001 {
14002 struct bp_location *l = b->loc;
14003 if (have_ambiguous_names)
14004 {
14005 for (; l; l = l->next)
14006 if (breakpoint_locations_match (e, l))
14007 {
14008 l->enabled = 0;
14009 break;
14010 }
14011 }
14012 else
14013 {
14014 for (; l; l = l->next)
14015 if (l->function_name
14016 && strcmp (e->function_name, l->function_name) == 0)
14017 {
14018 l->enabled = 0;
14019 break;
14020 }
14021 }
14022 }
14023 }
14024 }
14025
14026 if (!locations_are_equal (existing_locations, b->loc))
14027 observer_notify_breakpoint_modified (b);
14028
14029 update_global_location_list (1);
14030 }
14031
14032 /* Find the SaL locations corresponding to the given ADDR_STRING.
14033 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14034
14035 static struct symtabs_and_lines
14036 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14037 {
14038 char *s;
14039 struct symtabs_and_lines sals = {0};
14040 volatile struct gdb_exception e;
14041
14042 gdb_assert (b->ops != NULL);
14043 s = addr_string;
14044
14045 TRY_CATCH (e, RETURN_MASK_ERROR)
14046 {
14047 b->ops->decode_linespec (b, &s, &sals);
14048 }
14049 if (e.reason < 0)
14050 {
14051 int not_found_and_ok = 0;
14052 /* For pending breakpoints, it's expected that parsing will
14053 fail until the right shared library is loaded. User has
14054 already told to create pending breakpoints and don't need
14055 extra messages. If breakpoint is in bp_shlib_disabled
14056 state, then user already saw the message about that
14057 breakpoint being disabled, and don't want to see more
14058 errors. */
14059 if (e.error == NOT_FOUND_ERROR
14060 && (b->condition_not_parsed
14061 || (b->loc && b->loc->shlib_disabled)
14062 || (b->loc && b->loc->pspace->executing_startup)
14063 || b->enable_state == bp_disabled))
14064 not_found_and_ok = 1;
14065
14066 if (!not_found_and_ok)
14067 {
14068 /* We surely don't want to warn about the same breakpoint
14069 10 times. One solution, implemented here, is disable
14070 the breakpoint on error. Another solution would be to
14071 have separate 'warning emitted' flag. Since this
14072 happens only when a binary has changed, I don't know
14073 which approach is better. */
14074 b->enable_state = bp_disabled;
14075 throw_exception (e);
14076 }
14077 }
14078
14079 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14080 {
14081 int i;
14082
14083 for (i = 0; i < sals.nelts; ++i)
14084 resolve_sal_pc (&sals.sals[i]);
14085 if (b->condition_not_parsed && s && s[0])
14086 {
14087 char *cond_string, *extra_string;
14088 int thread, task;
14089
14090 find_condition_and_thread (s, sals.sals[0].pc,
14091 &cond_string, &thread, &task,
14092 &extra_string);
14093 if (cond_string)
14094 b->cond_string = cond_string;
14095 b->thread = thread;
14096 b->task = task;
14097 if (extra_string)
14098 b->extra_string = extra_string;
14099 b->condition_not_parsed = 0;
14100 }
14101
14102 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14103 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14104
14105 *found = 1;
14106 }
14107 else
14108 *found = 0;
14109
14110 return sals;
14111 }
14112
14113 /* The default re_set method, for typical hardware or software
14114 breakpoints. Reevaluate the breakpoint and recreate its
14115 locations. */
14116
14117 static void
14118 breakpoint_re_set_default (struct breakpoint *b)
14119 {
14120 int found;
14121 struct symtabs_and_lines sals, sals_end;
14122 struct symtabs_and_lines expanded = {0};
14123 struct symtabs_and_lines expanded_end = {0};
14124
14125 sals = addr_string_to_sals (b, b->addr_string, &found);
14126 if (found)
14127 {
14128 make_cleanup (xfree, sals.sals);
14129 expanded = sals;
14130 }
14131
14132 if (b->addr_string_range_end)
14133 {
14134 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14135 if (found)
14136 {
14137 make_cleanup (xfree, sals_end.sals);
14138 expanded_end = sals_end;
14139 }
14140 }
14141
14142 update_breakpoint_locations (b, expanded, expanded_end);
14143 }
14144
14145 /* Default method for creating SALs from an address string. It basically
14146 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14147
14148 static void
14149 create_sals_from_address_default (char **arg,
14150 struct linespec_result *canonical,
14151 enum bptype type_wanted,
14152 char *addr_start, char **copy_arg)
14153 {
14154 parse_breakpoint_sals (arg, canonical);
14155 }
14156
14157 /* Call create_breakpoints_sal for the given arguments. This is the default
14158 function for the `create_breakpoints_sal' method of
14159 breakpoint_ops. */
14160
14161 static void
14162 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14163 struct linespec_result *canonical,
14164 struct linespec_sals *lsal,
14165 char *cond_string,
14166 char *extra_string,
14167 enum bptype type_wanted,
14168 enum bpdisp disposition,
14169 int thread,
14170 int task, int ignore_count,
14171 const struct breakpoint_ops *ops,
14172 int from_tty, int enabled,
14173 int internal, unsigned flags)
14174 {
14175 create_breakpoints_sal (gdbarch, canonical, cond_string,
14176 extra_string,
14177 type_wanted, disposition,
14178 thread, task, ignore_count, ops, from_tty,
14179 enabled, internal, flags);
14180 }
14181
14182 /* Decode the line represented by S by calling decode_line_full. This is the
14183 default function for the `decode_linespec' method of breakpoint_ops. */
14184
14185 static void
14186 decode_linespec_default (struct breakpoint *b, char **s,
14187 struct symtabs_and_lines *sals)
14188 {
14189 struct linespec_result canonical;
14190
14191 init_linespec_result (&canonical);
14192 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14193 (struct symtab *) NULL, 0,
14194 &canonical, multiple_symbols_all,
14195 b->filter);
14196
14197 /* We should get 0 or 1 resulting SALs. */
14198 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14199
14200 if (VEC_length (linespec_sals, canonical.sals) > 0)
14201 {
14202 struct linespec_sals *lsal;
14203
14204 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14205 *sals = lsal->sals;
14206 /* Arrange it so the destructor does not free the
14207 contents. */
14208 lsal->sals.sals = NULL;
14209 }
14210
14211 destroy_linespec_result (&canonical);
14212 }
14213
14214 /* Prepare the global context for a re-set of breakpoint B. */
14215
14216 static struct cleanup *
14217 prepare_re_set_context (struct breakpoint *b)
14218 {
14219 struct cleanup *cleanups;
14220
14221 input_radix = b->input_radix;
14222 cleanups = save_current_space_and_thread ();
14223 if (b->pspace != NULL)
14224 switch_to_program_space_and_thread (b->pspace);
14225 set_language (b->language);
14226
14227 return cleanups;
14228 }
14229
14230 /* Reset a breakpoint given it's struct breakpoint * BINT.
14231 The value we return ends up being the return value from catch_errors.
14232 Unused in this case. */
14233
14234 static int
14235 breakpoint_re_set_one (void *bint)
14236 {
14237 /* Get past catch_errs. */
14238 struct breakpoint *b = (struct breakpoint *) bint;
14239 struct cleanup *cleanups;
14240
14241 cleanups = prepare_re_set_context (b);
14242 b->ops->re_set (b);
14243 do_cleanups (cleanups);
14244 return 0;
14245 }
14246
14247 /* Re-set all breakpoints after symbols have been re-loaded. */
14248 void
14249 breakpoint_re_set (void)
14250 {
14251 struct breakpoint *b, *b_tmp;
14252 enum language save_language;
14253 int save_input_radix;
14254 struct cleanup *old_chain;
14255
14256 save_language = current_language->la_language;
14257 save_input_radix = input_radix;
14258 old_chain = save_current_program_space ();
14259
14260 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14261 {
14262 /* Format possible error msg. */
14263 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14264 b->number);
14265 struct cleanup *cleanups = make_cleanup (xfree, message);
14266 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14267 do_cleanups (cleanups);
14268 }
14269 set_language (save_language);
14270 input_radix = save_input_radix;
14271
14272 jit_breakpoint_re_set ();
14273
14274 do_cleanups (old_chain);
14275
14276 create_overlay_event_breakpoint ();
14277 create_longjmp_master_breakpoint ();
14278 create_std_terminate_master_breakpoint ();
14279 create_exception_master_breakpoint ();
14280
14281 /* While we're at it, reset the skip list too. */
14282 skip_re_set ();
14283 }
14284 \f
14285 /* Reset the thread number of this breakpoint:
14286
14287 - If the breakpoint is for all threads, leave it as-is.
14288 - Else, reset it to the current thread for inferior_ptid. */
14289 void
14290 breakpoint_re_set_thread (struct breakpoint *b)
14291 {
14292 if (b->thread != -1)
14293 {
14294 if (in_thread_list (inferior_ptid))
14295 b->thread = pid_to_thread_id (inferior_ptid);
14296
14297 /* We're being called after following a fork. The new fork is
14298 selected as current, and unless this was a vfork will have a
14299 different program space from the original thread. Reset that
14300 as well. */
14301 b->loc->pspace = current_program_space;
14302 }
14303 }
14304
14305 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14306 If from_tty is nonzero, it prints a message to that effect,
14307 which ends with a period (no newline). */
14308
14309 void
14310 set_ignore_count (int bptnum, int count, int from_tty)
14311 {
14312 struct breakpoint *b;
14313
14314 if (count < 0)
14315 count = 0;
14316
14317 ALL_BREAKPOINTS (b)
14318 if (b->number == bptnum)
14319 {
14320 if (is_tracepoint (b))
14321 {
14322 if (from_tty && count != 0)
14323 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14324 bptnum);
14325 return;
14326 }
14327
14328 b->ignore_count = count;
14329 if (from_tty)
14330 {
14331 if (count == 0)
14332 printf_filtered (_("Will stop next time "
14333 "breakpoint %d is reached."),
14334 bptnum);
14335 else if (count == 1)
14336 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14337 bptnum);
14338 else
14339 printf_filtered (_("Will ignore next %d "
14340 "crossings of breakpoint %d."),
14341 count, bptnum);
14342 }
14343 annotate_breakpoints_changed ();
14344 observer_notify_breakpoint_modified (b);
14345 return;
14346 }
14347
14348 error (_("No breakpoint number %d."), bptnum);
14349 }
14350
14351 /* Command to set ignore-count of breakpoint N to COUNT. */
14352
14353 static void
14354 ignore_command (char *args, int from_tty)
14355 {
14356 char *p = args;
14357 int num;
14358
14359 if (p == 0)
14360 error_no_arg (_("a breakpoint number"));
14361
14362 num = get_number (&p);
14363 if (num == 0)
14364 error (_("bad breakpoint number: '%s'"), args);
14365 if (*p == 0)
14366 error (_("Second argument (specified ignore-count) is missing."));
14367
14368 set_ignore_count (num,
14369 longest_to_int (value_as_long (parse_and_eval (p))),
14370 from_tty);
14371 if (from_tty)
14372 printf_filtered ("\n");
14373 }
14374 \f
14375 /* Call FUNCTION on each of the breakpoints
14376 whose numbers are given in ARGS. */
14377
14378 static void
14379 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14380 void *),
14381 void *data)
14382 {
14383 int num;
14384 struct breakpoint *b, *tmp;
14385 int match;
14386 struct get_number_or_range_state state;
14387
14388 if (args == 0)
14389 error_no_arg (_("one or more breakpoint numbers"));
14390
14391 init_number_or_range (&state, args);
14392
14393 while (!state.finished)
14394 {
14395 char *p = state.string;
14396
14397 match = 0;
14398
14399 num = get_number_or_range (&state);
14400 if (num == 0)
14401 {
14402 warning (_("bad breakpoint number at or near '%s'"), p);
14403 }
14404 else
14405 {
14406 ALL_BREAKPOINTS_SAFE (b, tmp)
14407 if (b->number == num)
14408 {
14409 match = 1;
14410 function (b, data);
14411 break;
14412 }
14413 if (match == 0)
14414 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14415 }
14416 }
14417 }
14418
14419 static struct bp_location *
14420 find_location_by_number (char *number)
14421 {
14422 char *dot = strchr (number, '.');
14423 char *p1;
14424 int bp_num;
14425 int loc_num;
14426 struct breakpoint *b;
14427 struct bp_location *loc;
14428
14429 *dot = '\0';
14430
14431 p1 = number;
14432 bp_num = get_number (&p1);
14433 if (bp_num == 0)
14434 error (_("Bad breakpoint number '%s'"), number);
14435
14436 ALL_BREAKPOINTS (b)
14437 if (b->number == bp_num)
14438 {
14439 break;
14440 }
14441
14442 if (!b || b->number != bp_num)
14443 error (_("Bad breakpoint number '%s'"), number);
14444
14445 p1 = dot+1;
14446 loc_num = get_number (&p1);
14447 if (loc_num == 0)
14448 error (_("Bad breakpoint location number '%s'"), number);
14449
14450 --loc_num;
14451 loc = b->loc;
14452 for (;loc_num && loc; --loc_num, loc = loc->next)
14453 ;
14454 if (!loc)
14455 error (_("Bad breakpoint location number '%s'"), dot+1);
14456
14457 return loc;
14458 }
14459
14460
14461 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14462 If from_tty is nonzero, it prints a message to that effect,
14463 which ends with a period (no newline). */
14464
14465 void
14466 disable_breakpoint (struct breakpoint *bpt)
14467 {
14468 /* Never disable a watchpoint scope breakpoint; we want to
14469 hit them when we leave scope so we can delete both the
14470 watchpoint and its scope breakpoint at that time. */
14471 if (bpt->type == bp_watchpoint_scope)
14472 return;
14473
14474 /* You can't disable permanent breakpoints. */
14475 if (bpt->enable_state == bp_permanent)
14476 return;
14477
14478 bpt->enable_state = bp_disabled;
14479
14480 /* Mark breakpoint locations modified. */
14481 mark_breakpoint_modified (bpt);
14482
14483 if (target_supports_enable_disable_tracepoint ()
14484 && current_trace_status ()->running && is_tracepoint (bpt))
14485 {
14486 struct bp_location *location;
14487
14488 for (location = bpt->loc; location; location = location->next)
14489 target_disable_tracepoint (location);
14490 }
14491
14492 update_global_location_list (0);
14493
14494 observer_notify_breakpoint_modified (bpt);
14495 }
14496
14497 /* A callback for iterate_over_related_breakpoints. */
14498
14499 static void
14500 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14501 {
14502 disable_breakpoint (b);
14503 }
14504
14505 /* A callback for map_breakpoint_numbers that calls
14506 disable_breakpoint. */
14507
14508 static void
14509 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14510 {
14511 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14512 }
14513
14514 static void
14515 disable_command (char *args, int from_tty)
14516 {
14517 if (args == 0)
14518 {
14519 struct breakpoint *bpt;
14520
14521 ALL_BREAKPOINTS (bpt)
14522 if (user_breakpoint_p (bpt))
14523 disable_breakpoint (bpt);
14524 }
14525 else if (strchr (args, '.'))
14526 {
14527 struct bp_location *loc = find_location_by_number (args);
14528 if (loc)
14529 {
14530 if (loc->enabled)
14531 {
14532 loc->enabled = 0;
14533 mark_breakpoint_location_modified (loc);
14534 }
14535 if (target_supports_enable_disable_tracepoint ()
14536 && current_trace_status ()->running && loc->owner
14537 && is_tracepoint (loc->owner))
14538 target_disable_tracepoint (loc);
14539 }
14540 update_global_location_list (0);
14541 }
14542 else
14543 map_breakpoint_numbers (args, do_map_disable_breakpoint, NULL);
14544 }
14545
14546 static void
14547 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14548 int count)
14549 {
14550 int target_resources_ok;
14551
14552 if (bpt->type == bp_hardware_breakpoint)
14553 {
14554 int i;
14555 i = hw_breakpoint_used_count ();
14556 target_resources_ok =
14557 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14558 i + 1, 0);
14559 if (target_resources_ok == 0)
14560 error (_("No hardware breakpoint support in the target."));
14561 else if (target_resources_ok < 0)
14562 error (_("Hardware breakpoints used exceeds limit."));
14563 }
14564
14565 if (is_watchpoint (bpt))
14566 {
14567 /* Initialize it just to avoid a GCC false warning. */
14568 enum enable_state orig_enable_state = 0;
14569 volatile struct gdb_exception e;
14570
14571 TRY_CATCH (e, RETURN_MASK_ALL)
14572 {
14573 struct watchpoint *w = (struct watchpoint *) bpt;
14574
14575 orig_enable_state = bpt->enable_state;
14576 bpt->enable_state = bp_enabled;
14577 update_watchpoint (w, 1 /* reparse */);
14578 }
14579 if (e.reason < 0)
14580 {
14581 bpt->enable_state = orig_enable_state;
14582 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14583 bpt->number);
14584 return;
14585 }
14586 }
14587
14588 if (bpt->enable_state != bp_permanent)
14589 bpt->enable_state = bp_enabled;
14590
14591 bpt->enable_state = bp_enabled;
14592
14593 /* Mark breakpoint locations modified. */
14594 mark_breakpoint_modified (bpt);
14595
14596 if (target_supports_enable_disable_tracepoint ()
14597 && current_trace_status ()->running && is_tracepoint (bpt))
14598 {
14599 struct bp_location *location;
14600
14601 for (location = bpt->loc; location; location = location->next)
14602 target_enable_tracepoint (location);
14603 }
14604
14605 bpt->disposition = disposition;
14606 bpt->enable_count = count;
14607 update_global_location_list (1);
14608 annotate_breakpoints_changed ();
14609
14610 observer_notify_breakpoint_modified (bpt);
14611 }
14612
14613
14614 void
14615 enable_breakpoint (struct breakpoint *bpt)
14616 {
14617 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14618 }
14619
14620 static void
14621 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14622 {
14623 enable_breakpoint (bpt);
14624 }
14625
14626 /* A callback for map_breakpoint_numbers that calls
14627 enable_breakpoint. */
14628
14629 static void
14630 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14631 {
14632 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14633 }
14634
14635 /* The enable command enables the specified breakpoints (or all defined
14636 breakpoints) so they once again become (or continue to be) effective
14637 in stopping the inferior. */
14638
14639 static void
14640 enable_command (char *args, int from_tty)
14641 {
14642 if (args == 0)
14643 {
14644 struct breakpoint *bpt;
14645
14646 ALL_BREAKPOINTS (bpt)
14647 if (user_breakpoint_p (bpt))
14648 enable_breakpoint (bpt);
14649 }
14650 else if (strchr (args, '.'))
14651 {
14652 struct bp_location *loc = find_location_by_number (args);
14653 if (loc)
14654 {
14655 if (!loc->enabled)
14656 {
14657 loc->enabled = 1;
14658 mark_breakpoint_location_modified (loc);
14659 }
14660 if (target_supports_enable_disable_tracepoint ()
14661 && current_trace_status ()->running && loc->owner
14662 && is_tracepoint (loc->owner))
14663 target_enable_tracepoint (loc);
14664 }
14665 update_global_location_list (1);
14666 }
14667 else
14668 map_breakpoint_numbers (args, do_map_enable_breakpoint, NULL);
14669 }
14670
14671 /* This struct packages up disposition data for application to multiple
14672 breakpoints. */
14673
14674 struct disp_data
14675 {
14676 enum bpdisp disp;
14677 int count;
14678 };
14679
14680 static void
14681 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14682 {
14683 struct disp_data disp_data = *(struct disp_data *) arg;
14684
14685 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14686 }
14687
14688 static void
14689 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14690 {
14691 struct disp_data disp = { disp_disable, 1 };
14692
14693 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14694 }
14695
14696 static void
14697 enable_once_command (char *args, int from_tty)
14698 {
14699 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14700 }
14701
14702 static void
14703 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14704 {
14705 struct disp_data disp = { disp_disable, *(int *) countptr };
14706
14707 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14708 }
14709
14710 static void
14711 enable_count_command (char *args, int from_tty)
14712 {
14713 int count = get_number (&args);
14714
14715 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14716 }
14717
14718 static void
14719 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14720 {
14721 struct disp_data disp = { disp_del, 1 };
14722
14723 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14724 }
14725
14726 static void
14727 enable_delete_command (char *args, int from_tty)
14728 {
14729 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14730 }
14731 \f
14732 static void
14733 set_breakpoint_cmd (char *args, int from_tty)
14734 {
14735 }
14736
14737 static void
14738 show_breakpoint_cmd (char *args, int from_tty)
14739 {
14740 }
14741
14742 /* Invalidate last known value of any hardware watchpoint if
14743 the memory which that value represents has been written to by
14744 GDB itself. */
14745
14746 static void
14747 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14748 CORE_ADDR addr, ssize_t len,
14749 const bfd_byte *data)
14750 {
14751 struct breakpoint *bp;
14752
14753 ALL_BREAKPOINTS (bp)
14754 if (bp->enable_state == bp_enabled
14755 && bp->type == bp_hardware_watchpoint)
14756 {
14757 struct watchpoint *wp = (struct watchpoint *) bp;
14758
14759 if (wp->val_valid && wp->val)
14760 {
14761 struct bp_location *loc;
14762
14763 for (loc = bp->loc; loc != NULL; loc = loc->next)
14764 if (loc->loc_type == bp_loc_hardware_watchpoint
14765 && loc->address + loc->length > addr
14766 && addr + len > loc->address)
14767 {
14768 value_free (wp->val);
14769 wp->val = NULL;
14770 wp->val_valid = 0;
14771 }
14772 }
14773 }
14774 }
14775
14776 /* Create and insert a raw software breakpoint at PC. Return an
14777 identifier, which should be used to remove the breakpoint later.
14778 In general, places which call this should be using something on the
14779 breakpoint chain instead; this function should be eliminated
14780 someday. */
14781
14782 void *
14783 deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
14784 struct address_space *aspace, CORE_ADDR pc)
14785 {
14786 struct bp_target_info *bp_tgt;
14787
14788 bp_tgt = XZALLOC (struct bp_target_info);
14789
14790 bp_tgt->placed_address_space = aspace;
14791 bp_tgt->placed_address = pc;
14792
14793 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
14794 {
14795 /* Could not insert the breakpoint. */
14796 xfree (bp_tgt);
14797 return NULL;
14798 }
14799
14800 return bp_tgt;
14801 }
14802
14803 /* Remove a breakpoint BP inserted by
14804 deprecated_insert_raw_breakpoint. */
14805
14806 int
14807 deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
14808 {
14809 struct bp_target_info *bp_tgt = bp;
14810 int ret;
14811
14812 ret = target_remove_breakpoint (gdbarch, bp_tgt);
14813 xfree (bp_tgt);
14814
14815 return ret;
14816 }
14817
14818 /* One (or perhaps two) breakpoints used for software single
14819 stepping. */
14820
14821 static void *single_step_breakpoints[2];
14822 static struct gdbarch *single_step_gdbarch[2];
14823
14824 /* Create and insert a breakpoint for software single step. */
14825
14826 void
14827 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14828 struct address_space *aspace,
14829 CORE_ADDR next_pc)
14830 {
14831 void **bpt_p;
14832
14833 if (single_step_breakpoints[0] == NULL)
14834 {
14835 bpt_p = &single_step_breakpoints[0];
14836 single_step_gdbarch[0] = gdbarch;
14837 }
14838 else
14839 {
14840 gdb_assert (single_step_breakpoints[1] == NULL);
14841 bpt_p = &single_step_breakpoints[1];
14842 single_step_gdbarch[1] = gdbarch;
14843 }
14844
14845 /* NOTE drow/2006-04-11: A future improvement to this function would
14846 be to only create the breakpoints once, and actually put them on
14847 the breakpoint chain. That would let us use set_raw_breakpoint.
14848 We could adjust the addresses each time they were needed. Doing
14849 this requires corresponding changes elsewhere where single step
14850 breakpoints are handled, however. So, for now, we use this. */
14851
14852 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
14853 if (*bpt_p == NULL)
14854 error (_("Could not insert single-step breakpoint at %s"),
14855 paddress (gdbarch, next_pc));
14856 }
14857
14858 /* Check if the breakpoints used for software single stepping
14859 were inserted or not. */
14860
14861 int
14862 single_step_breakpoints_inserted (void)
14863 {
14864 return (single_step_breakpoints[0] != NULL
14865 || single_step_breakpoints[1] != NULL);
14866 }
14867
14868 /* Remove and delete any breakpoints used for software single step. */
14869
14870 void
14871 remove_single_step_breakpoints (void)
14872 {
14873 gdb_assert (single_step_breakpoints[0] != NULL);
14874
14875 /* See insert_single_step_breakpoint for more about this deprecated
14876 call. */
14877 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
14878 single_step_breakpoints[0]);
14879 single_step_gdbarch[0] = NULL;
14880 single_step_breakpoints[0] = NULL;
14881
14882 if (single_step_breakpoints[1] != NULL)
14883 {
14884 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
14885 single_step_breakpoints[1]);
14886 single_step_gdbarch[1] = NULL;
14887 single_step_breakpoints[1] = NULL;
14888 }
14889 }
14890
14891 /* Delete software single step breakpoints without removing them from
14892 the inferior. This is intended to be used if the inferior's address
14893 space where they were inserted is already gone, e.g. after exit or
14894 exec. */
14895
14896 void
14897 cancel_single_step_breakpoints (void)
14898 {
14899 int i;
14900
14901 for (i = 0; i < 2; i++)
14902 if (single_step_breakpoints[i])
14903 {
14904 xfree (single_step_breakpoints[i]);
14905 single_step_breakpoints[i] = NULL;
14906 single_step_gdbarch[i] = NULL;
14907 }
14908 }
14909
14910 /* Detach software single-step breakpoints from INFERIOR_PTID without
14911 removing them. */
14912
14913 static void
14914 detach_single_step_breakpoints (void)
14915 {
14916 int i;
14917
14918 for (i = 0; i < 2; i++)
14919 if (single_step_breakpoints[i])
14920 target_remove_breakpoint (single_step_gdbarch[i],
14921 single_step_breakpoints[i]);
14922 }
14923
14924 /* Check whether a software single-step breakpoint is inserted at
14925 PC. */
14926
14927 static int
14928 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
14929 CORE_ADDR pc)
14930 {
14931 int i;
14932
14933 for (i = 0; i < 2; i++)
14934 {
14935 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
14936 if (bp_tgt
14937 && breakpoint_address_match (bp_tgt->placed_address_space,
14938 bp_tgt->placed_address,
14939 aspace, pc))
14940 return 1;
14941 }
14942
14943 return 0;
14944 }
14945
14946 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
14947 non-zero otherwise. */
14948 static int
14949 is_syscall_catchpoint_enabled (struct breakpoint *bp)
14950 {
14951 if (syscall_catchpoint_p (bp)
14952 && bp->enable_state != bp_disabled
14953 && bp->enable_state != bp_call_disabled)
14954 return 1;
14955 else
14956 return 0;
14957 }
14958
14959 int
14960 catch_syscall_enabled (void)
14961 {
14962 struct catch_syscall_inferior_data *inf_data
14963 = get_catch_syscall_inferior_data (current_inferior ());
14964
14965 return inf_data->total_syscalls_count != 0;
14966 }
14967
14968 int
14969 catching_syscall_number (int syscall_number)
14970 {
14971 struct breakpoint *bp;
14972
14973 ALL_BREAKPOINTS (bp)
14974 if (is_syscall_catchpoint_enabled (bp))
14975 {
14976 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
14977
14978 if (c->syscalls_to_be_caught)
14979 {
14980 int i, iter;
14981 for (i = 0;
14982 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
14983 i++)
14984 if (syscall_number == iter)
14985 return 1;
14986 }
14987 else
14988 return 1;
14989 }
14990
14991 return 0;
14992 }
14993
14994 /* Complete syscall names. Used by "catch syscall". */
14995 static VEC (char_ptr) *
14996 catch_syscall_completer (struct cmd_list_element *cmd,
14997 char *text, char *word)
14998 {
14999 const char **list = get_syscall_names ();
15000 VEC (char_ptr) *retlist
15001 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
15002
15003 xfree (list);
15004 return retlist;
15005 }
15006
15007 /* Tracepoint-specific operations. */
15008
15009 /* Set tracepoint count to NUM. */
15010 static void
15011 set_tracepoint_count (int num)
15012 {
15013 tracepoint_count = num;
15014 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15015 }
15016
15017 static void
15018 trace_command (char *arg, int from_tty)
15019 {
15020 struct breakpoint_ops *ops;
15021 const char *arg_cp = arg;
15022
15023 if (arg && probe_linespec_to_ops (&arg_cp))
15024 ops = &tracepoint_probe_breakpoint_ops;
15025 else
15026 ops = &tracepoint_breakpoint_ops;
15027
15028 create_breakpoint (get_current_arch (),
15029 arg,
15030 NULL, 0, NULL, 1 /* parse arg */,
15031 0 /* tempflag */,
15032 bp_tracepoint /* type_wanted */,
15033 0 /* Ignore count */,
15034 pending_break_support,
15035 ops,
15036 from_tty,
15037 1 /* enabled */,
15038 0 /* internal */, 0);
15039 }
15040
15041 static void
15042 ftrace_command (char *arg, int from_tty)
15043 {
15044 create_breakpoint (get_current_arch (),
15045 arg,
15046 NULL, 0, NULL, 1 /* parse arg */,
15047 0 /* tempflag */,
15048 bp_fast_tracepoint /* type_wanted */,
15049 0 /* Ignore count */,
15050 pending_break_support,
15051 &tracepoint_breakpoint_ops,
15052 from_tty,
15053 1 /* enabled */,
15054 0 /* internal */, 0);
15055 }
15056
15057 /* strace command implementation. Creates a static tracepoint. */
15058
15059 static void
15060 strace_command (char *arg, int from_tty)
15061 {
15062 struct breakpoint_ops *ops;
15063
15064 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15065 or with a normal static tracepoint. */
15066 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15067 ops = &strace_marker_breakpoint_ops;
15068 else
15069 ops = &tracepoint_breakpoint_ops;
15070
15071 create_breakpoint (get_current_arch (),
15072 arg,
15073 NULL, 0, NULL, 1 /* parse arg */,
15074 0 /* tempflag */,
15075 bp_static_tracepoint /* type_wanted */,
15076 0 /* Ignore count */,
15077 pending_break_support,
15078 ops,
15079 from_tty,
15080 1 /* enabled */,
15081 0 /* internal */, 0);
15082 }
15083
15084 /* Set up a fake reader function that gets command lines from a linked
15085 list that was acquired during tracepoint uploading. */
15086
15087 static struct uploaded_tp *this_utp;
15088 static int next_cmd;
15089
15090 static char *
15091 read_uploaded_action (void)
15092 {
15093 char *rslt;
15094
15095 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15096
15097 next_cmd++;
15098
15099 return rslt;
15100 }
15101
15102 /* Given information about a tracepoint as recorded on a target (which
15103 can be either a live system or a trace file), attempt to create an
15104 equivalent GDB tracepoint. This is not a reliable process, since
15105 the target does not necessarily have all the information used when
15106 the tracepoint was originally defined. */
15107
15108 struct tracepoint *
15109 create_tracepoint_from_upload (struct uploaded_tp *utp)
15110 {
15111 char *addr_str, small_buf[100];
15112 struct tracepoint *tp;
15113
15114 if (utp->at_string)
15115 addr_str = utp->at_string;
15116 else
15117 {
15118 /* In the absence of a source location, fall back to raw
15119 address. Since there is no way to confirm that the address
15120 means the same thing as when the trace was started, warn the
15121 user. */
15122 warning (_("Uploaded tracepoint %d has no "
15123 "source location, using raw address"),
15124 utp->number);
15125 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15126 addr_str = small_buf;
15127 }
15128
15129 /* There's not much we can do with a sequence of bytecodes. */
15130 if (utp->cond && !utp->cond_string)
15131 warning (_("Uploaded tracepoint %d condition "
15132 "has no source form, ignoring it"),
15133 utp->number);
15134
15135 if (!create_breakpoint (get_current_arch (),
15136 addr_str,
15137 utp->cond_string, -1, NULL,
15138 0 /* parse cond/thread */,
15139 0 /* tempflag */,
15140 utp->type /* type_wanted */,
15141 0 /* Ignore count */,
15142 pending_break_support,
15143 &tracepoint_breakpoint_ops,
15144 0 /* from_tty */,
15145 utp->enabled /* enabled */,
15146 0 /* internal */,
15147 CREATE_BREAKPOINT_FLAGS_INSERTED))
15148 return NULL;
15149
15150 /* Get the tracepoint we just created. */
15151 tp = get_tracepoint (tracepoint_count);
15152 gdb_assert (tp != NULL);
15153
15154 if (utp->pass > 0)
15155 {
15156 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15157 tp->base.number);
15158
15159 trace_pass_command (small_buf, 0);
15160 }
15161
15162 /* If we have uploaded versions of the original commands, set up a
15163 special-purpose "reader" function and call the usual command line
15164 reader, then pass the result to the breakpoint command-setting
15165 function. */
15166 if (!VEC_empty (char_ptr, utp->cmd_strings))
15167 {
15168 struct command_line *cmd_list;
15169
15170 this_utp = utp;
15171 next_cmd = 0;
15172
15173 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15174
15175 breakpoint_set_commands (&tp->base, cmd_list);
15176 }
15177 else if (!VEC_empty (char_ptr, utp->actions)
15178 || !VEC_empty (char_ptr, utp->step_actions))
15179 warning (_("Uploaded tracepoint %d actions "
15180 "have no source form, ignoring them"),
15181 utp->number);
15182
15183 /* Copy any status information that might be available. */
15184 tp->base.hit_count = utp->hit_count;
15185 tp->traceframe_usage = utp->traceframe_usage;
15186
15187 return tp;
15188 }
15189
15190 /* Print information on tracepoint number TPNUM_EXP, or all if
15191 omitted. */
15192
15193 static void
15194 tracepoints_info (char *args, int from_tty)
15195 {
15196 struct ui_out *uiout = current_uiout;
15197 int num_printed;
15198
15199 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15200
15201 if (num_printed == 0)
15202 {
15203 if (args == NULL || *args == '\0')
15204 ui_out_message (uiout, 0, "No tracepoints.\n");
15205 else
15206 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15207 }
15208
15209 default_collect_info ();
15210 }
15211
15212 /* The 'enable trace' command enables tracepoints.
15213 Not supported by all targets. */
15214 static void
15215 enable_trace_command (char *args, int from_tty)
15216 {
15217 enable_command (args, from_tty);
15218 }
15219
15220 /* The 'disable trace' command disables tracepoints.
15221 Not supported by all targets. */
15222 static void
15223 disable_trace_command (char *args, int from_tty)
15224 {
15225 disable_command (args, from_tty);
15226 }
15227
15228 /* Remove a tracepoint (or all if no argument). */
15229 static void
15230 delete_trace_command (char *arg, int from_tty)
15231 {
15232 struct breakpoint *b, *b_tmp;
15233
15234 dont_repeat ();
15235
15236 if (arg == 0)
15237 {
15238 int breaks_to_delete = 0;
15239
15240 /* Delete all breakpoints if no argument.
15241 Do not delete internal or call-dummy breakpoints, these
15242 have to be deleted with an explicit breakpoint number
15243 argument. */
15244 ALL_TRACEPOINTS (b)
15245 if (is_tracepoint (b) && user_breakpoint_p (b))
15246 {
15247 breaks_to_delete = 1;
15248 break;
15249 }
15250
15251 /* Ask user only if there are some breakpoints to delete. */
15252 if (!from_tty
15253 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15254 {
15255 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15256 if (is_tracepoint (b) && user_breakpoint_p (b))
15257 delete_breakpoint (b);
15258 }
15259 }
15260 else
15261 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15262 }
15263
15264 /* Helper function for trace_pass_command. */
15265
15266 static void
15267 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15268 {
15269 tp->pass_count = count;
15270 observer_notify_breakpoint_modified (&tp->base);
15271 if (from_tty)
15272 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15273 tp->base.number, count);
15274 }
15275
15276 /* Set passcount for tracepoint.
15277
15278 First command argument is passcount, second is tracepoint number.
15279 If tracepoint number omitted, apply to most recently defined.
15280 Also accepts special argument "all". */
15281
15282 static void
15283 trace_pass_command (char *args, int from_tty)
15284 {
15285 struct tracepoint *t1;
15286 unsigned int count;
15287
15288 if (args == 0 || *args == 0)
15289 error (_("passcount command requires an "
15290 "argument (count + optional TP num)"));
15291
15292 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15293
15294 while (*args && isspace ((int) *args))
15295 args++;
15296
15297 if (*args && strncasecmp (args, "all", 3) == 0)
15298 {
15299 struct breakpoint *b;
15300
15301 args += 3; /* Skip special argument "all". */
15302 if (*args)
15303 error (_("Junk at end of arguments."));
15304
15305 ALL_TRACEPOINTS (b)
15306 {
15307 t1 = (struct tracepoint *) b;
15308 trace_pass_set_count (t1, count, from_tty);
15309 }
15310 }
15311 else if (*args == '\0')
15312 {
15313 t1 = get_tracepoint_by_number (&args, NULL, 1);
15314 if (t1)
15315 trace_pass_set_count (t1, count, from_tty);
15316 }
15317 else
15318 {
15319 struct get_number_or_range_state state;
15320
15321 init_number_or_range (&state, args);
15322 while (!state.finished)
15323 {
15324 t1 = get_tracepoint_by_number (&args, &state, 1);
15325 if (t1)
15326 trace_pass_set_count (t1, count, from_tty);
15327 }
15328 }
15329 }
15330
15331 struct tracepoint *
15332 get_tracepoint (int num)
15333 {
15334 struct breakpoint *t;
15335
15336 ALL_TRACEPOINTS (t)
15337 if (t->number == num)
15338 return (struct tracepoint *) t;
15339
15340 return NULL;
15341 }
15342
15343 /* Find the tracepoint with the given target-side number (which may be
15344 different from the tracepoint number after disconnecting and
15345 reconnecting). */
15346
15347 struct tracepoint *
15348 get_tracepoint_by_number_on_target (int num)
15349 {
15350 struct breakpoint *b;
15351
15352 ALL_TRACEPOINTS (b)
15353 {
15354 struct tracepoint *t = (struct tracepoint *) b;
15355
15356 if (t->number_on_target == num)
15357 return t;
15358 }
15359
15360 return NULL;
15361 }
15362
15363 /* Utility: parse a tracepoint number and look it up in the list.
15364 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15365 If OPTIONAL_P is true, then if the argument is missing, the most
15366 recent tracepoint (tracepoint_count) is returned. */
15367 struct tracepoint *
15368 get_tracepoint_by_number (char **arg,
15369 struct get_number_or_range_state *state,
15370 int optional_p)
15371 {
15372 struct breakpoint *t;
15373 int tpnum;
15374 char *instring = arg == NULL ? NULL : *arg;
15375
15376 if (state)
15377 {
15378 gdb_assert (!state->finished);
15379 tpnum = get_number_or_range (state);
15380 }
15381 else if (arg == NULL || *arg == NULL || ! **arg)
15382 {
15383 if (optional_p)
15384 tpnum = tracepoint_count;
15385 else
15386 error_no_arg (_("tracepoint number"));
15387 }
15388 else
15389 tpnum = get_number (arg);
15390
15391 if (tpnum <= 0)
15392 {
15393 if (instring && *instring)
15394 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15395 instring);
15396 else
15397 printf_filtered (_("Tracepoint argument missing "
15398 "and no previous tracepoint\n"));
15399 return NULL;
15400 }
15401
15402 ALL_TRACEPOINTS (t)
15403 if (t->number == tpnum)
15404 {
15405 return (struct tracepoint *) t;
15406 }
15407
15408 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15409 return NULL;
15410 }
15411
15412 void
15413 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15414 {
15415 if (b->thread != -1)
15416 fprintf_unfiltered (fp, " thread %d", b->thread);
15417
15418 if (b->task != 0)
15419 fprintf_unfiltered (fp, " task %d", b->task);
15420
15421 fprintf_unfiltered (fp, "\n");
15422 }
15423
15424 /* Save information on user settable breakpoints (watchpoints, etc) to
15425 a new script file named FILENAME. If FILTER is non-NULL, call it
15426 on each breakpoint and only include the ones for which it returns
15427 non-zero. */
15428
15429 static void
15430 save_breakpoints (char *filename, int from_tty,
15431 int (*filter) (const struct breakpoint *))
15432 {
15433 struct breakpoint *tp;
15434 int any = 0;
15435 char *pathname;
15436 struct cleanup *cleanup;
15437 struct ui_file *fp;
15438 int extra_trace_bits = 0;
15439
15440 if (filename == 0 || *filename == 0)
15441 error (_("Argument required (file name in which to save)"));
15442
15443 /* See if we have anything to save. */
15444 ALL_BREAKPOINTS (tp)
15445 {
15446 /* Skip internal and momentary breakpoints. */
15447 if (!user_breakpoint_p (tp))
15448 continue;
15449
15450 /* If we have a filter, only save the breakpoints it accepts. */
15451 if (filter && !filter (tp))
15452 continue;
15453
15454 any = 1;
15455
15456 if (is_tracepoint (tp))
15457 {
15458 extra_trace_bits = 1;
15459
15460 /* We can stop searching. */
15461 break;
15462 }
15463 }
15464
15465 if (!any)
15466 {
15467 warning (_("Nothing to save."));
15468 return;
15469 }
15470
15471 pathname = tilde_expand (filename);
15472 cleanup = make_cleanup (xfree, pathname);
15473 fp = gdb_fopen (pathname, "w");
15474 if (!fp)
15475 error (_("Unable to open file '%s' for saving (%s)"),
15476 filename, safe_strerror (errno));
15477 make_cleanup_ui_file_delete (fp);
15478
15479 if (extra_trace_bits)
15480 save_trace_state_variables (fp);
15481
15482 ALL_BREAKPOINTS (tp)
15483 {
15484 /* Skip internal and momentary breakpoints. */
15485 if (!user_breakpoint_p (tp))
15486 continue;
15487
15488 /* If we have a filter, only save the breakpoints it accepts. */
15489 if (filter && !filter (tp))
15490 continue;
15491
15492 tp->ops->print_recreate (tp, fp);
15493
15494 /* Note, we can't rely on tp->number for anything, as we can't
15495 assume the recreated breakpoint numbers will match. Use $bpnum
15496 instead. */
15497
15498 if (tp->cond_string)
15499 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15500
15501 if (tp->ignore_count)
15502 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15503
15504 if (tp->commands)
15505 {
15506 volatile struct gdb_exception ex;
15507
15508 fprintf_unfiltered (fp, " commands\n");
15509
15510 ui_out_redirect (current_uiout, fp);
15511 TRY_CATCH (ex, RETURN_MASK_ALL)
15512 {
15513 print_command_lines (current_uiout, tp->commands->commands, 2);
15514 }
15515 ui_out_redirect (current_uiout, NULL);
15516
15517 if (ex.reason < 0)
15518 throw_exception (ex);
15519
15520 fprintf_unfiltered (fp, " end\n");
15521 }
15522
15523 if (tp->enable_state == bp_disabled)
15524 fprintf_unfiltered (fp, "disable\n");
15525
15526 /* If this is a multi-location breakpoint, check if the locations
15527 should be individually disabled. Watchpoint locations are
15528 special, and not user visible. */
15529 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15530 {
15531 struct bp_location *loc;
15532 int n = 1;
15533
15534 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15535 if (!loc->enabled)
15536 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15537 }
15538 }
15539
15540 if (extra_trace_bits && *default_collect)
15541 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15542
15543 do_cleanups (cleanup);
15544 if (from_tty)
15545 printf_filtered (_("Saved to file '%s'.\n"), filename);
15546 }
15547
15548 /* The `save breakpoints' command. */
15549
15550 static void
15551 save_breakpoints_command (char *args, int from_tty)
15552 {
15553 save_breakpoints (args, from_tty, NULL);
15554 }
15555
15556 /* The `save tracepoints' command. */
15557
15558 static void
15559 save_tracepoints_command (char *args, int from_tty)
15560 {
15561 save_breakpoints (args, from_tty, is_tracepoint);
15562 }
15563
15564 /* Create a vector of all tracepoints. */
15565
15566 VEC(breakpoint_p) *
15567 all_tracepoints (void)
15568 {
15569 VEC(breakpoint_p) *tp_vec = 0;
15570 struct breakpoint *tp;
15571
15572 ALL_TRACEPOINTS (tp)
15573 {
15574 VEC_safe_push (breakpoint_p, tp_vec, tp);
15575 }
15576
15577 return tp_vec;
15578 }
15579
15580 \f
15581 /* This help string is used for the break, hbreak, tbreak and thbreak
15582 commands. It is defined as a macro to prevent duplication.
15583 COMMAND should be a string constant containing the name of the
15584 command. */
15585 #define BREAK_ARGS_HELP(command) \
15586 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15587 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15588 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15589 guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
15590 LOCATION may be a line number, function name, or \"*\" and an address.\n\
15591 If a line number is specified, break at start of code for that line.\n\
15592 If a function is specified, break at start of code for that function.\n\
15593 If an address is specified, break at that exact address.\n\
15594 With no LOCATION, uses current execution address of the selected\n\
15595 stack frame. This is useful for breaking on return to a stack frame.\n\
15596 \n\
15597 THREADNUM is the number from \"info threads\".\n\
15598 CONDITION is a boolean expression.\n\
15599 \n\
15600 Multiple breakpoints at one place are permitted, and useful if their\n\
15601 conditions are different.\n\
15602 \n\
15603 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15604
15605 /* List of subcommands for "catch". */
15606 static struct cmd_list_element *catch_cmdlist;
15607
15608 /* List of subcommands for "tcatch". */
15609 static struct cmd_list_element *tcatch_cmdlist;
15610
15611 void
15612 add_catch_command (char *name, char *docstring,
15613 void (*sfunc) (char *args, int from_tty,
15614 struct cmd_list_element *command),
15615 completer_ftype *completer,
15616 void *user_data_catch,
15617 void *user_data_tcatch)
15618 {
15619 struct cmd_list_element *command;
15620
15621 command = add_cmd (name, class_breakpoint, NULL, docstring,
15622 &catch_cmdlist);
15623 set_cmd_sfunc (command, sfunc);
15624 set_cmd_context (command, user_data_catch);
15625 set_cmd_completer (command, completer);
15626
15627 command = add_cmd (name, class_breakpoint, NULL, docstring,
15628 &tcatch_cmdlist);
15629 set_cmd_sfunc (command, sfunc);
15630 set_cmd_context (command, user_data_tcatch);
15631 set_cmd_completer (command, completer);
15632 }
15633
15634 static void
15635 clear_syscall_counts (struct inferior *inf)
15636 {
15637 struct catch_syscall_inferior_data *inf_data
15638 = get_catch_syscall_inferior_data (inf);
15639
15640 inf_data->total_syscalls_count = 0;
15641 inf_data->any_syscall_count = 0;
15642 VEC_free (int, inf_data->syscalls_counts);
15643 }
15644
15645 static void
15646 save_command (char *arg, int from_tty)
15647 {
15648 printf_unfiltered (_("\"save\" must be followed by "
15649 "the name of a save subcommand.\n"));
15650 help_list (save_cmdlist, "save ", -1, gdb_stdout);
15651 }
15652
15653 struct breakpoint *
15654 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15655 void *data)
15656 {
15657 struct breakpoint *b, *b_tmp;
15658
15659 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15660 {
15661 if ((*callback) (b, data))
15662 return b;
15663 }
15664
15665 return NULL;
15666 }
15667
15668 /* Zero if any of the breakpoint's locations could be a location where
15669 functions have been inlined, nonzero otherwise. */
15670
15671 static int
15672 is_non_inline_function (struct breakpoint *b)
15673 {
15674 /* The shared library event breakpoint is set on the address of a
15675 non-inline function. */
15676 if (b->type == bp_shlib_event)
15677 return 1;
15678
15679 return 0;
15680 }
15681
15682 /* Nonzero if the specified PC cannot be a location where functions
15683 have been inlined. */
15684
15685 int
15686 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15687 const struct target_waitstatus *ws)
15688 {
15689 struct breakpoint *b;
15690 struct bp_location *bl;
15691
15692 ALL_BREAKPOINTS (b)
15693 {
15694 if (!is_non_inline_function (b))
15695 continue;
15696
15697 for (bl = b->loc; bl != NULL; bl = bl->next)
15698 {
15699 if (!bl->shlib_disabled
15700 && bpstat_check_location (bl, aspace, pc, ws))
15701 return 1;
15702 }
15703 }
15704
15705 return 0;
15706 }
15707
15708 void
15709 initialize_breakpoint_ops (void)
15710 {
15711 static int initialized = 0;
15712
15713 struct breakpoint_ops *ops;
15714
15715 if (initialized)
15716 return;
15717 initialized = 1;
15718
15719 /* The breakpoint_ops structure to be inherit by all kinds of
15720 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15721 internal and momentary breakpoints, etc.). */
15722 ops = &bkpt_base_breakpoint_ops;
15723 *ops = base_breakpoint_ops;
15724 ops->re_set = bkpt_re_set;
15725 ops->insert_location = bkpt_insert_location;
15726 ops->remove_location = bkpt_remove_location;
15727 ops->breakpoint_hit = bkpt_breakpoint_hit;
15728 ops->create_sals_from_address = bkpt_create_sals_from_address;
15729 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15730 ops->decode_linespec = bkpt_decode_linespec;
15731
15732 /* The breakpoint_ops structure to be used in regular breakpoints. */
15733 ops = &bkpt_breakpoint_ops;
15734 *ops = bkpt_base_breakpoint_ops;
15735 ops->re_set = bkpt_re_set;
15736 ops->resources_needed = bkpt_resources_needed;
15737 ops->print_it = bkpt_print_it;
15738 ops->print_mention = bkpt_print_mention;
15739 ops->print_recreate = bkpt_print_recreate;
15740
15741 /* Ranged breakpoints. */
15742 ops = &ranged_breakpoint_ops;
15743 *ops = bkpt_breakpoint_ops;
15744 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15745 ops->resources_needed = resources_needed_ranged_breakpoint;
15746 ops->print_it = print_it_ranged_breakpoint;
15747 ops->print_one = print_one_ranged_breakpoint;
15748 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15749 ops->print_mention = print_mention_ranged_breakpoint;
15750 ops->print_recreate = print_recreate_ranged_breakpoint;
15751
15752 /* Internal breakpoints. */
15753 ops = &internal_breakpoint_ops;
15754 *ops = bkpt_base_breakpoint_ops;
15755 ops->re_set = internal_bkpt_re_set;
15756 ops->check_status = internal_bkpt_check_status;
15757 ops->print_it = internal_bkpt_print_it;
15758 ops->print_mention = internal_bkpt_print_mention;
15759
15760 /* Momentary breakpoints. */
15761 ops = &momentary_breakpoint_ops;
15762 *ops = bkpt_base_breakpoint_ops;
15763 ops->re_set = momentary_bkpt_re_set;
15764 ops->check_status = momentary_bkpt_check_status;
15765 ops->print_it = momentary_bkpt_print_it;
15766 ops->print_mention = momentary_bkpt_print_mention;
15767
15768 /* Momentary breakpoints for bp_longjmp and bp_exception. */
15769 ops = &longjmp_breakpoint_ops;
15770 *ops = momentary_breakpoint_ops;
15771 ops->dtor = longjmp_bkpt_dtor;
15772
15773 /* Probe breakpoints. */
15774 ops = &bkpt_probe_breakpoint_ops;
15775 *ops = bkpt_breakpoint_ops;
15776 ops->insert_location = bkpt_probe_insert_location;
15777 ops->remove_location = bkpt_probe_remove_location;
15778 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
15779 ops->decode_linespec = bkpt_probe_decode_linespec;
15780
15781 /* GNU v3 exception catchpoints. */
15782 ops = &gnu_v3_exception_catchpoint_ops;
15783 *ops = bkpt_breakpoint_ops;
15784 ops->print_it = print_it_exception_catchpoint;
15785 ops->print_one = print_one_exception_catchpoint;
15786 ops->print_mention = print_mention_exception_catchpoint;
15787 ops->print_recreate = print_recreate_exception_catchpoint;
15788
15789 /* Watchpoints. */
15790 ops = &watchpoint_breakpoint_ops;
15791 *ops = base_breakpoint_ops;
15792 ops->dtor = dtor_watchpoint;
15793 ops->re_set = re_set_watchpoint;
15794 ops->insert_location = insert_watchpoint;
15795 ops->remove_location = remove_watchpoint;
15796 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15797 ops->check_status = check_status_watchpoint;
15798 ops->resources_needed = resources_needed_watchpoint;
15799 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15800 ops->print_it = print_it_watchpoint;
15801 ops->print_mention = print_mention_watchpoint;
15802 ops->print_recreate = print_recreate_watchpoint;
15803
15804 /* Masked watchpoints. */
15805 ops = &masked_watchpoint_breakpoint_ops;
15806 *ops = watchpoint_breakpoint_ops;
15807 ops->insert_location = insert_masked_watchpoint;
15808 ops->remove_location = remove_masked_watchpoint;
15809 ops->resources_needed = resources_needed_masked_watchpoint;
15810 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15811 ops->print_it = print_it_masked_watchpoint;
15812 ops->print_one_detail = print_one_detail_masked_watchpoint;
15813 ops->print_mention = print_mention_masked_watchpoint;
15814 ops->print_recreate = print_recreate_masked_watchpoint;
15815
15816 /* Tracepoints. */
15817 ops = &tracepoint_breakpoint_ops;
15818 *ops = base_breakpoint_ops;
15819 ops->re_set = tracepoint_re_set;
15820 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15821 ops->print_one_detail = tracepoint_print_one_detail;
15822 ops->print_mention = tracepoint_print_mention;
15823 ops->print_recreate = tracepoint_print_recreate;
15824 ops->create_sals_from_address = tracepoint_create_sals_from_address;
15825 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15826 ops->decode_linespec = tracepoint_decode_linespec;
15827
15828 /* Probe tracepoints. */
15829 ops = &tracepoint_probe_breakpoint_ops;
15830 *ops = tracepoint_breakpoint_ops;
15831 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
15832 ops->decode_linespec = tracepoint_probe_decode_linespec;
15833
15834 /* Static tracepoints with marker (`-m'). */
15835 ops = &strace_marker_breakpoint_ops;
15836 *ops = tracepoint_breakpoint_ops;
15837 ops->create_sals_from_address = strace_marker_create_sals_from_address;
15838 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15839 ops->decode_linespec = strace_marker_decode_linespec;
15840
15841 /* Fork catchpoints. */
15842 ops = &catch_fork_breakpoint_ops;
15843 *ops = base_breakpoint_ops;
15844 ops->insert_location = insert_catch_fork;
15845 ops->remove_location = remove_catch_fork;
15846 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15847 ops->print_it = print_it_catch_fork;
15848 ops->print_one = print_one_catch_fork;
15849 ops->print_mention = print_mention_catch_fork;
15850 ops->print_recreate = print_recreate_catch_fork;
15851
15852 /* Vfork catchpoints. */
15853 ops = &catch_vfork_breakpoint_ops;
15854 *ops = base_breakpoint_ops;
15855 ops->insert_location = insert_catch_vfork;
15856 ops->remove_location = remove_catch_vfork;
15857 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15858 ops->print_it = print_it_catch_vfork;
15859 ops->print_one = print_one_catch_vfork;
15860 ops->print_mention = print_mention_catch_vfork;
15861 ops->print_recreate = print_recreate_catch_vfork;
15862
15863 /* Exec catchpoints. */
15864 ops = &catch_exec_breakpoint_ops;
15865 *ops = base_breakpoint_ops;
15866 ops->dtor = dtor_catch_exec;
15867 ops->insert_location = insert_catch_exec;
15868 ops->remove_location = remove_catch_exec;
15869 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15870 ops->print_it = print_it_catch_exec;
15871 ops->print_one = print_one_catch_exec;
15872 ops->print_mention = print_mention_catch_exec;
15873 ops->print_recreate = print_recreate_catch_exec;
15874
15875 /* Syscall catchpoints. */
15876 ops = &catch_syscall_breakpoint_ops;
15877 *ops = base_breakpoint_ops;
15878 ops->dtor = dtor_catch_syscall;
15879 ops->insert_location = insert_catch_syscall;
15880 ops->remove_location = remove_catch_syscall;
15881 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
15882 ops->print_it = print_it_catch_syscall;
15883 ops->print_one = print_one_catch_syscall;
15884 ops->print_mention = print_mention_catch_syscall;
15885 ops->print_recreate = print_recreate_catch_syscall;
15886
15887 /* Solib-related catchpoints. */
15888 ops = &catch_solib_breakpoint_ops;
15889 *ops = base_breakpoint_ops;
15890 ops->dtor = dtor_catch_solib;
15891 ops->insert_location = insert_catch_solib;
15892 ops->remove_location = remove_catch_solib;
15893 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15894 ops->check_status = check_status_catch_solib;
15895 ops->print_it = print_it_catch_solib;
15896 ops->print_one = print_one_catch_solib;
15897 ops->print_mention = print_mention_catch_solib;
15898 ops->print_recreate = print_recreate_catch_solib;
15899
15900 ops = &dprintf_breakpoint_ops;
15901 *ops = bkpt_base_breakpoint_ops;
15902 ops->re_set = bkpt_re_set;
15903 ops->resources_needed = bkpt_resources_needed;
15904 ops->print_it = bkpt_print_it;
15905 ops->print_mention = bkpt_print_mention;
15906 ops->print_recreate = bkpt_print_recreate;
15907 }
15908
15909 /* Chain containing all defined "enable breakpoint" subcommands. */
15910
15911 static struct cmd_list_element *enablebreaklist = NULL;
15912
15913 void
15914 _initialize_breakpoint (void)
15915 {
15916 struct cmd_list_element *c;
15917
15918 initialize_breakpoint_ops ();
15919
15920 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
15921 observer_attach_inferior_exit (clear_syscall_counts);
15922 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
15923
15924 breakpoint_objfile_key
15925 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
15926
15927 catch_syscall_inferior_data
15928 = register_inferior_data_with_cleanup (NULL,
15929 catch_syscall_inferior_data_cleanup);
15930
15931 breakpoint_chain = 0;
15932 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15933 before a breakpoint is set. */
15934 breakpoint_count = 0;
15935
15936 tracepoint_count = 0;
15937
15938 add_com ("ignore", class_breakpoint, ignore_command, _("\
15939 Set ignore-count of breakpoint number N to COUNT.\n\
15940 Usage is `ignore N COUNT'."));
15941 if (xdb_commands)
15942 add_com_alias ("bc", "ignore", class_breakpoint, 1);
15943
15944 add_com ("commands", class_breakpoint, commands_command, _("\
15945 Set commands to be executed when a breakpoint is hit.\n\
15946 Give breakpoint number as argument after \"commands\".\n\
15947 With no argument, the targeted breakpoint is the last one set.\n\
15948 The commands themselves follow starting on the next line.\n\
15949 Type a line containing \"end\" to indicate the end of them.\n\
15950 Give \"silent\" as the first line to make the breakpoint silent;\n\
15951 then no output is printed when it is hit, except what the commands print."));
15952
15953 c = add_com ("condition", class_breakpoint, condition_command, _("\
15954 Specify breakpoint number N to break only if COND is true.\n\
15955 Usage is `condition N COND', where N is an integer and COND is an\n\
15956 expression to be evaluated whenever breakpoint N is reached."));
15957 set_cmd_completer (c, condition_completer);
15958
15959 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15960 Set a temporary breakpoint.\n\
15961 Like \"break\" except the breakpoint is only temporary,\n\
15962 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15963 by using \"enable delete\" on the breakpoint number.\n\
15964 \n"
15965 BREAK_ARGS_HELP ("tbreak")));
15966 set_cmd_completer (c, location_completer);
15967
15968 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15969 Set a hardware assisted breakpoint.\n\
15970 Like \"break\" except the breakpoint requires hardware support,\n\
15971 some target hardware may not have this support.\n\
15972 \n"
15973 BREAK_ARGS_HELP ("hbreak")));
15974 set_cmd_completer (c, location_completer);
15975
15976 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15977 Set a temporary hardware assisted breakpoint.\n\
15978 Like \"hbreak\" except the breakpoint is only temporary,\n\
15979 so it will be deleted when hit.\n\
15980 \n"
15981 BREAK_ARGS_HELP ("thbreak")));
15982 set_cmd_completer (c, location_completer);
15983
15984 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15985 Enable some breakpoints.\n\
15986 Give breakpoint numbers (separated by spaces) as arguments.\n\
15987 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15988 This is used to cancel the effect of the \"disable\" command.\n\
15989 With a subcommand you can enable temporarily."),
15990 &enablelist, "enable ", 1, &cmdlist);
15991 if (xdb_commands)
15992 add_com ("ab", class_breakpoint, enable_command, _("\
15993 Enable some breakpoints.\n\
15994 Give breakpoint numbers (separated by spaces) as arguments.\n\
15995 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15996 This is used to cancel the effect of the \"disable\" command.\n\
15997 With a subcommand you can enable temporarily."));
15998
15999 add_com_alias ("en", "enable", class_breakpoint, 1);
16000
16001 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16002 Enable some breakpoints.\n\
16003 Give breakpoint numbers (separated by spaces) as arguments.\n\
16004 This is used to cancel the effect of the \"disable\" command.\n\
16005 May be abbreviated to simply \"enable\".\n"),
16006 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16007
16008 add_cmd ("once", no_class, enable_once_command, _("\
16009 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16010 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16011 &enablebreaklist);
16012
16013 add_cmd ("delete", no_class, enable_delete_command, _("\
16014 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16015 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16016 &enablebreaklist);
16017
16018 add_cmd ("count", no_class, enable_count_command, _("\
16019 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16020 If a breakpoint is hit while enabled in this fashion,\n\
16021 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16022 &enablebreaklist);
16023
16024 add_cmd ("delete", no_class, enable_delete_command, _("\
16025 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16026 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16027 &enablelist);
16028
16029 add_cmd ("once", no_class, enable_once_command, _("\
16030 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16031 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16032 &enablelist);
16033
16034 add_cmd ("count", no_class, enable_count_command, _("\
16035 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16036 If a breakpoint is hit while enabled in this fashion,\n\
16037 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16038 &enablelist);
16039
16040 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16041 Disable some breakpoints.\n\
16042 Arguments are breakpoint numbers with spaces in between.\n\
16043 To disable all breakpoints, give no argument.\n\
16044 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16045 &disablelist, "disable ", 1, &cmdlist);
16046 add_com_alias ("dis", "disable", class_breakpoint, 1);
16047 add_com_alias ("disa", "disable", class_breakpoint, 1);
16048 if (xdb_commands)
16049 add_com ("sb", class_breakpoint, disable_command, _("\
16050 Disable some breakpoints.\n\
16051 Arguments are breakpoint numbers with spaces in between.\n\
16052 To disable all breakpoints, give no argument.\n\
16053 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16054
16055 add_cmd ("breakpoints", class_alias, disable_command, _("\
16056 Disable some breakpoints.\n\
16057 Arguments are breakpoint numbers with spaces in between.\n\
16058 To disable all breakpoints, give no argument.\n\
16059 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16060 This command may be abbreviated \"disable\"."),
16061 &disablelist);
16062
16063 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16064 Delete some breakpoints or auto-display expressions.\n\
16065 Arguments are breakpoint numbers with spaces in between.\n\
16066 To delete all breakpoints, give no argument.\n\
16067 \n\
16068 Also a prefix command for deletion of other GDB objects.\n\
16069 The \"unset\" command is also an alias for \"delete\"."),
16070 &deletelist, "delete ", 1, &cmdlist);
16071 add_com_alias ("d", "delete", class_breakpoint, 1);
16072 add_com_alias ("del", "delete", class_breakpoint, 1);
16073 if (xdb_commands)
16074 add_com ("db", class_breakpoint, delete_command, _("\
16075 Delete some breakpoints.\n\
16076 Arguments are breakpoint numbers with spaces in between.\n\
16077 To delete all breakpoints, give no argument.\n"));
16078
16079 add_cmd ("breakpoints", class_alias, delete_command, _("\
16080 Delete some breakpoints or auto-display expressions.\n\
16081 Arguments are breakpoint numbers with spaces in between.\n\
16082 To delete all breakpoints, give no argument.\n\
16083 This command may be abbreviated \"delete\"."),
16084 &deletelist);
16085
16086 add_com ("clear", class_breakpoint, clear_command, _("\
16087 Clear breakpoint at specified line or function.\n\
16088 Argument may be line number, function name, or \"*\" and an address.\n\
16089 If line number is specified, all breakpoints in that line are cleared.\n\
16090 If function is specified, breakpoints at beginning of function are cleared.\n\
16091 If an address is specified, breakpoints at that address are cleared.\n\
16092 \n\
16093 With no argument, clears all breakpoints in the line that the selected frame\n\
16094 is executing in.\n\
16095 \n\
16096 See also the \"delete\" command which clears breakpoints by number."));
16097 add_com_alias ("cl", "clear", class_breakpoint, 1);
16098
16099 c = add_com ("break", class_breakpoint, break_command, _("\
16100 Set breakpoint at specified line or function.\n"
16101 BREAK_ARGS_HELP ("break")));
16102 set_cmd_completer (c, location_completer);
16103
16104 add_com_alias ("b", "break", class_run, 1);
16105 add_com_alias ("br", "break", class_run, 1);
16106 add_com_alias ("bre", "break", class_run, 1);
16107 add_com_alias ("brea", "break", class_run, 1);
16108
16109 if (xdb_commands)
16110 add_com_alias ("ba", "break", class_breakpoint, 1);
16111
16112 if (dbx_commands)
16113 {
16114 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16115 Break in function/address or break at a line in the current file."),
16116 &stoplist, "stop ", 1, &cmdlist);
16117 add_cmd ("in", class_breakpoint, stopin_command,
16118 _("Break in function or address."), &stoplist);
16119 add_cmd ("at", class_breakpoint, stopat_command,
16120 _("Break at a line in the current file."), &stoplist);
16121 add_com ("status", class_info, breakpoints_info, _("\
16122 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16123 The \"Type\" column indicates one of:\n\
16124 \tbreakpoint - normal breakpoint\n\
16125 \twatchpoint - watchpoint\n\
16126 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16127 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16128 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16129 address and file/line number respectively.\n\
16130 \n\
16131 Convenience variable \"$_\" and default examine address for \"x\"\n\
16132 are set to the address of the last breakpoint listed unless the command\n\
16133 is prefixed with \"server \".\n\n\
16134 Convenience variable \"$bpnum\" contains the number of the last\n\
16135 breakpoint set."));
16136 }
16137
16138 add_info ("breakpoints", breakpoints_info, _("\
16139 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16140 The \"Type\" column indicates one of:\n\
16141 \tbreakpoint - normal breakpoint\n\
16142 \twatchpoint - watchpoint\n\
16143 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16144 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16145 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16146 address and file/line number respectively.\n\
16147 \n\
16148 Convenience variable \"$_\" and default examine address for \"x\"\n\
16149 are set to the address of the last breakpoint listed unless the command\n\
16150 is prefixed with \"server \".\n\n\
16151 Convenience variable \"$bpnum\" contains the number of the last\n\
16152 breakpoint set."));
16153
16154 add_info_alias ("b", "breakpoints", 1);
16155
16156 if (xdb_commands)
16157 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16158 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16159 The \"Type\" column indicates one of:\n\
16160 \tbreakpoint - normal breakpoint\n\
16161 \twatchpoint - watchpoint\n\
16162 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16163 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16164 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16165 address and file/line number respectively.\n\
16166 \n\
16167 Convenience variable \"$_\" and default examine address for \"x\"\n\
16168 are set to the address of the last breakpoint listed unless the command\n\
16169 is prefixed with \"server \".\n\n\
16170 Convenience variable \"$bpnum\" contains the number of the last\n\
16171 breakpoint set."));
16172
16173 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16174 Status of all breakpoints, or breakpoint number NUMBER.\n\
16175 The \"Type\" column indicates one of:\n\
16176 \tbreakpoint - normal breakpoint\n\
16177 \twatchpoint - watchpoint\n\
16178 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16179 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16180 \tuntil - internal breakpoint used by the \"until\" command\n\
16181 \tfinish - internal breakpoint used by the \"finish\" command\n\
16182 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16183 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16184 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16185 address and file/line number respectively.\n\
16186 \n\
16187 Convenience variable \"$_\" and default examine address for \"x\"\n\
16188 are set to the address of the last breakpoint listed unless the command\n\
16189 is prefixed with \"server \".\n\n\
16190 Convenience variable \"$bpnum\" contains the number of the last\n\
16191 breakpoint set."),
16192 &maintenanceinfolist);
16193
16194 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16195 Set catchpoints to catch events."),
16196 &catch_cmdlist, "catch ",
16197 0/*allow-unknown*/, &cmdlist);
16198
16199 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16200 Set temporary catchpoints to catch events."),
16201 &tcatch_cmdlist, "tcatch ",
16202 0/*allow-unknown*/, &cmdlist);
16203
16204 /* Add catch and tcatch sub-commands. */
16205 add_catch_command ("catch", _("\
16206 Catch an exception, when caught."),
16207 catch_catch_command,
16208 NULL,
16209 CATCH_PERMANENT,
16210 CATCH_TEMPORARY);
16211 add_catch_command ("throw", _("\
16212 Catch an exception, when thrown."),
16213 catch_throw_command,
16214 NULL,
16215 CATCH_PERMANENT,
16216 CATCH_TEMPORARY);
16217 add_catch_command ("fork", _("Catch calls to fork."),
16218 catch_fork_command_1,
16219 NULL,
16220 (void *) (uintptr_t) catch_fork_permanent,
16221 (void *) (uintptr_t) catch_fork_temporary);
16222 add_catch_command ("vfork", _("Catch calls to vfork."),
16223 catch_fork_command_1,
16224 NULL,
16225 (void *) (uintptr_t) catch_vfork_permanent,
16226 (void *) (uintptr_t) catch_vfork_temporary);
16227 add_catch_command ("exec", _("Catch calls to exec."),
16228 catch_exec_command_1,
16229 NULL,
16230 CATCH_PERMANENT,
16231 CATCH_TEMPORARY);
16232 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16233 Usage: catch load [REGEX]\n\
16234 If REGEX is given, only stop for libraries matching the regular expression."),
16235 catch_load_command_1,
16236 NULL,
16237 CATCH_PERMANENT,
16238 CATCH_TEMPORARY);
16239 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16240 Usage: catch unload [REGEX]\n\
16241 If REGEX is given, only stop for libraries matching the regular expression."),
16242 catch_unload_command_1,
16243 NULL,
16244 CATCH_PERMANENT,
16245 CATCH_TEMPORARY);
16246 add_catch_command ("syscall", _("\
16247 Catch system calls by their names and/or numbers.\n\
16248 Arguments say which system calls to catch. If no arguments\n\
16249 are given, every system call will be caught.\n\
16250 Arguments, if given, should be one or more system call names\n\
16251 (if your system supports that), or system call numbers."),
16252 catch_syscall_command_1,
16253 catch_syscall_completer,
16254 CATCH_PERMANENT,
16255 CATCH_TEMPORARY);
16256
16257 c = add_com ("watch", class_breakpoint, watch_command, _("\
16258 Set a watchpoint for an expression.\n\
16259 Usage: watch [-l|-location] EXPRESSION\n\
16260 A watchpoint stops execution of your program whenever the value of\n\
16261 an expression changes.\n\
16262 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16263 the memory to which it refers."));
16264 set_cmd_completer (c, expression_completer);
16265
16266 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16267 Set a read watchpoint for an expression.\n\
16268 Usage: rwatch [-l|-location] EXPRESSION\n\
16269 A watchpoint stops execution of your program whenever the value of\n\
16270 an expression is read.\n\
16271 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16272 the memory to which it refers."));
16273 set_cmd_completer (c, expression_completer);
16274
16275 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16276 Set a watchpoint for an expression.\n\
16277 Usage: awatch [-l|-location] EXPRESSION\n\
16278 A watchpoint stops execution of your program whenever the value of\n\
16279 an expression is either read or written.\n\
16280 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16281 the memory to which it refers."));
16282 set_cmd_completer (c, expression_completer);
16283
16284 add_info ("watchpoints", watchpoints_info, _("\
16285 Status of specified watchpoints (all watchpoints if no argument)."));
16286
16287 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16288 respond to changes - contrary to the description. */
16289 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16290 &can_use_hw_watchpoints, _("\
16291 Set debugger's willingness to use watchpoint hardware."), _("\
16292 Show debugger's willingness to use watchpoint hardware."), _("\
16293 If zero, gdb will not use hardware for new watchpoints, even if\n\
16294 such is available. (However, any hardware watchpoints that were\n\
16295 created before setting this to nonzero, will continue to use watchpoint\n\
16296 hardware.)"),
16297 NULL,
16298 show_can_use_hw_watchpoints,
16299 &setlist, &showlist);
16300
16301 can_use_hw_watchpoints = 1;
16302
16303 /* Tracepoint manipulation commands. */
16304
16305 c = add_com ("trace", class_breakpoint, trace_command, _("\
16306 Set a tracepoint at specified line or function.\n\
16307 \n"
16308 BREAK_ARGS_HELP ("trace") "\n\
16309 Do \"help tracepoints\" for info on other tracepoint commands."));
16310 set_cmd_completer (c, location_completer);
16311
16312 add_com_alias ("tp", "trace", class_alias, 0);
16313 add_com_alias ("tr", "trace", class_alias, 1);
16314 add_com_alias ("tra", "trace", class_alias, 1);
16315 add_com_alias ("trac", "trace", class_alias, 1);
16316
16317 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16318 Set a fast tracepoint at specified line or function.\n\
16319 \n"
16320 BREAK_ARGS_HELP ("ftrace") "\n\
16321 Do \"help tracepoints\" for info on other tracepoint commands."));
16322 set_cmd_completer (c, location_completer);
16323
16324 c = add_com ("strace", class_breakpoint, strace_command, _("\
16325 Set a static tracepoint at specified line, function or marker.\n\
16326 \n\
16327 strace [LOCATION] [if CONDITION]\n\
16328 LOCATION may be a line number, function name, \"*\" and an address,\n\
16329 or -m MARKER_ID.\n\
16330 If a line number is specified, probe the marker at start of code\n\
16331 for that line. If a function is specified, probe the marker at start\n\
16332 of code for that function. If an address is specified, probe the marker\n\
16333 at that exact address. If a marker id is specified, probe the marker\n\
16334 with that name. With no LOCATION, uses current execution address of\n\
16335 the selected stack frame.\n\
16336 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16337 This collects arbitrary user data passed in the probe point call to the\n\
16338 tracing library. You can inspect it when analyzing the trace buffer,\n\
16339 by printing the $_sdata variable like any other convenience variable.\n\
16340 \n\
16341 CONDITION is a boolean expression.\n\
16342 \n\
16343 Multiple tracepoints at one place are permitted, and useful if their\n\
16344 conditions are different.\n\
16345 \n\
16346 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16347 Do \"help tracepoints\" for info on other tracepoint commands."));
16348 set_cmd_completer (c, location_completer);
16349
16350 add_info ("tracepoints", tracepoints_info, _("\
16351 Status of specified tracepoints (all tracepoints if no argument).\n\
16352 Convenience variable \"$tpnum\" contains the number of the\n\
16353 last tracepoint set."));
16354
16355 add_info_alias ("tp", "tracepoints", 1);
16356
16357 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16358 Delete specified tracepoints.\n\
16359 Arguments are tracepoint numbers, separated by spaces.\n\
16360 No argument means delete all tracepoints."),
16361 &deletelist);
16362 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16363
16364 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16365 Disable specified tracepoints.\n\
16366 Arguments are tracepoint numbers, separated by spaces.\n\
16367 No argument means disable all tracepoints."),
16368 &disablelist);
16369 deprecate_cmd (c, "disable");
16370
16371 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16372 Enable specified tracepoints.\n\
16373 Arguments are tracepoint numbers, separated by spaces.\n\
16374 No argument means enable all tracepoints."),
16375 &enablelist);
16376 deprecate_cmd (c, "enable");
16377
16378 add_com ("passcount", class_trace, trace_pass_command, _("\
16379 Set the passcount for a tracepoint.\n\
16380 The trace will end when the tracepoint has been passed 'count' times.\n\
16381 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16382 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16383
16384 add_prefix_cmd ("save", class_breakpoint, save_command,
16385 _("Save breakpoint definitions as a script."),
16386 &save_cmdlist, "save ",
16387 0/*allow-unknown*/, &cmdlist);
16388
16389 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16390 Save current breakpoint definitions as a script.\n\
16391 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16392 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16393 session to restore them."),
16394 &save_cmdlist);
16395 set_cmd_completer (c, filename_completer);
16396
16397 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16398 Save current tracepoint definitions as a script.\n\
16399 Use the 'source' command in another debug session to restore them."),
16400 &save_cmdlist);
16401 set_cmd_completer (c, filename_completer);
16402
16403 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16404 deprecate_cmd (c, "save tracepoints");
16405
16406 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16407 Breakpoint specific settings\n\
16408 Configure various breakpoint-specific variables such as\n\
16409 pending breakpoint behavior"),
16410 &breakpoint_set_cmdlist, "set breakpoint ",
16411 0/*allow-unknown*/, &setlist);
16412 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16413 Breakpoint specific settings\n\
16414 Configure various breakpoint-specific variables such as\n\
16415 pending breakpoint behavior"),
16416 &breakpoint_show_cmdlist, "show breakpoint ",
16417 0/*allow-unknown*/, &showlist);
16418
16419 add_setshow_auto_boolean_cmd ("pending", no_class,
16420 &pending_break_support, _("\
16421 Set debugger's behavior regarding pending breakpoints."), _("\
16422 Show debugger's behavior regarding pending breakpoints."), _("\
16423 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16424 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16425 an error. If auto, an unrecognized breakpoint location results in a\n\
16426 user-query to see if a pending breakpoint should be created."),
16427 NULL,
16428 show_pending_break_support,
16429 &breakpoint_set_cmdlist,
16430 &breakpoint_show_cmdlist);
16431
16432 pending_break_support = AUTO_BOOLEAN_AUTO;
16433
16434 add_setshow_boolean_cmd ("auto-hw", no_class,
16435 &automatic_hardware_breakpoints, _("\
16436 Set automatic usage of hardware breakpoints."), _("\
16437 Show automatic usage of hardware breakpoints."), _("\
16438 If set, the debugger will automatically use hardware breakpoints for\n\
16439 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16440 a warning will be emitted for such breakpoints."),
16441 NULL,
16442 show_automatic_hardware_breakpoints,
16443 &breakpoint_set_cmdlist,
16444 &breakpoint_show_cmdlist);
16445
16446 add_setshow_auto_boolean_cmd ("always-inserted", class_support,
16447 &always_inserted_mode, _("\
16448 Set mode for inserting breakpoints."), _("\
16449 Show mode for inserting breakpoints."), _("\
16450 When this mode is off, breakpoints are inserted in inferior when it is\n\
16451 resumed, and removed when execution stops. When this mode is on,\n\
16452 breakpoints are inserted immediately and removed only when the user\n\
16453 deletes the breakpoint. When this mode is auto (which is the default),\n\
16454 the behaviour depends on the non-stop setting (see help set non-stop).\n\
16455 In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
16456 behaves as if always-inserted mode is on; if gdb is controlling the\n\
16457 inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
16458 NULL,
16459 &show_always_inserted_mode,
16460 &breakpoint_set_cmdlist,
16461 &breakpoint_show_cmdlist);
16462
16463 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16464 condition_evaluation_enums,
16465 &condition_evaluation_mode_1, _("\
16466 Set mode of breakpoint condition evaluation."), _("\
16467 Show mode of breakpoint condition evaluation."), _("\
16468 When this is set to \"host\", breakpoint conditions will be\n\
16469 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16470 breakpoint conditions will be downloaded to the target (if the target\n\
16471 supports such feature) and conditions will be evaluated on the target's side.\n\
16472 If this is set to \"auto\" (default), this will be automatically set to\n\
16473 \"target\" if it supports condition evaluation, otherwise it will\n\
16474 be set to \"gdb\""),
16475 &set_condition_evaluation_mode,
16476 &show_condition_evaluation_mode,
16477 &breakpoint_set_cmdlist,
16478 &breakpoint_show_cmdlist);
16479
16480 add_com ("break-range", class_breakpoint, break_range_command, _("\
16481 Set a breakpoint for an address range.\n\
16482 break-range START-LOCATION, END-LOCATION\n\
16483 where START-LOCATION and END-LOCATION can be one of the following:\n\
16484 LINENUM, for that line in the current file,\n\
16485 FILE:LINENUM, for that line in that file,\n\
16486 +OFFSET, for that number of lines after the current line\n\
16487 or the start of the range\n\
16488 FUNCTION, for the first line in that function,\n\
16489 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16490 *ADDRESS, for the instruction at that address.\n\
16491 \n\
16492 The breakpoint will stop execution of the inferior whenever it executes\n\
16493 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16494 range (including START-LOCATION and END-LOCATION)."));
16495
16496 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16497 Set a dynamic printf at specified line or function.\n\
16498 dprintf location,format string,arg1,arg2,...\n\
16499 location may be a line number, function name, or \"*\" and an address.\n\
16500 If a line number is specified, break at start of code for that line.\n\
16501 If a function is specified, break at start of code for that function.\n\
16502 "));
16503 set_cmd_completer (c, location_completer);
16504
16505 add_setshow_enum_cmd ("dprintf-style", class_support,
16506 dprintf_style_enums, &dprintf_style, _("\
16507 Set the style of usage for dynamic printf."), _("\
16508 Show the style of usage for dynamic printf."), _("\
16509 This setting chooses how GDB will do a dynamic printf.\n\
16510 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16511 console, as with the \"printf\" command.\n\
16512 If the value is \"call\", the print is done by calling a function in your\n\
16513 program; by default printf(), but you can choose a different function or\n\
16514 output stream by setting dprintf-function and dprintf-channel."),
16515 update_dprintf_commands, NULL,
16516 &setlist, &showlist);
16517
16518 dprintf_function = xstrdup ("printf");
16519 add_setshow_string_cmd ("dprintf-function", class_support,
16520 &dprintf_function, _("\
16521 Set the function to use for dynamic printf"), _("\
16522 Show the function to use for dynamic printf"), NULL,
16523 update_dprintf_commands, NULL,
16524 &setlist, &showlist);
16525
16526 dprintf_channel = xstrdup ("");
16527 add_setshow_string_cmd ("dprintf-channel", class_support,
16528 &dprintf_channel, _("\
16529 Set the channel to use for dynamic printf"), _("\
16530 Show the channel to use for dynamic printf"), NULL,
16531 update_dprintf_commands, NULL,
16532 &setlist, &showlist);
16533
16534 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16535 &disconnected_dprintf, _("\
16536 Set whether dprintf continues after GDB disconnects."), _("\
16537 Show whether dprintf continues after GDB disconnects."), _("\
16538 Use this to let dprintf commands continue to hit and produce output\n\
16539 even if GDB disconnects or detaches from the target."),
16540 NULL,
16541 NULL,
16542 &setlist, &showlist);
16543
16544 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16545 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16546 (target agent only) This is useful for formatted output in user-defined commands."));
16547
16548 automatic_hardware_breakpoints = 1;
16549
16550 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16551 }
This page took 0.372235 seconds and 4 git commands to generate.