36252ee542302e66f7459acbeece981f8ad07922
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "gdbthread.h"
36 #include "target.h"
37 #include "language.h"
38 #include "gdb_string.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "solib.h"
53 #include "solist.h"
54 #include "observer.h"
55 #include "exceptions.h"
56 #include "memattr.h"
57 #include "ada-lang.h"
58 #include "top.h"
59 #include "valprint.h"
60 #include "jit.h"
61 #include "xml-syscall.h"
62 #include "parser-defs.h"
63 #include "gdb_regex.h"
64 #include "probe.h"
65 #include "cli/cli-utils.h"
66 #include "continuations.h"
67 #include "stack.h"
68 #include "skip.h"
69 #include "gdb_regex.h"
70 #include "ax-gdb.h"
71 #include "dummy-frame.h"
72
73 #include "format.h"
74
75 /* readline include files */
76 #include "readline/readline.h"
77 #include "readline/history.h"
78
79 /* readline defines this. */
80 #undef savestring
81
82 #include "mi/mi-common.h"
83 #include "python/python.h"
84
85 /* Enums for exception-handling support. */
86 enum exception_event_kind
87 {
88 EX_EVENT_THROW,
89 EX_EVENT_RETHROW,
90 EX_EVENT_CATCH
91 };
92
93 /* Prototypes for local functions. */
94
95 static void enable_delete_command (char *, int);
96
97 static void enable_once_command (char *, int);
98
99 static void enable_count_command (char *, int);
100
101 static void disable_command (char *, int);
102
103 static void enable_command (char *, int);
104
105 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
106 void *),
107 void *);
108
109 static void ignore_command (char *, int);
110
111 static int breakpoint_re_set_one (void *);
112
113 static void breakpoint_re_set_default (struct breakpoint *);
114
115 static void create_sals_from_address_default (char **,
116 struct linespec_result *,
117 enum bptype, char *,
118 char **);
119
120 static void create_breakpoints_sal_default (struct gdbarch *,
121 struct linespec_result *,
122 char *, char *, enum bptype,
123 enum bpdisp, int, int,
124 int,
125 const struct breakpoint_ops *,
126 int, int, int, unsigned);
127
128 static void decode_linespec_default (struct breakpoint *, char **,
129 struct symtabs_and_lines *);
130
131 static void clear_command (char *, int);
132
133 static void catch_command (char *, int);
134
135 static int can_use_hardware_watchpoint (struct value *);
136
137 static void break_command_1 (char *, int, int);
138
139 static void mention (struct breakpoint *);
140
141 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
142 enum bptype,
143 const struct breakpoint_ops *);
144 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
145 const struct symtab_and_line *);
146
147 /* This function is used in gdbtk sources and thus can not be made
148 static. */
149 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
150 struct symtab_and_line,
151 enum bptype,
152 const struct breakpoint_ops *);
153
154 static struct breakpoint *
155 momentary_breakpoint_from_master (struct breakpoint *orig,
156 enum bptype type,
157 const struct breakpoint_ops *ops);
158
159 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
160
161 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
162 CORE_ADDR bpaddr,
163 enum bptype bptype);
164
165 static void describe_other_breakpoints (struct gdbarch *,
166 struct program_space *, CORE_ADDR,
167 struct obj_section *, int);
168
169 static int breakpoint_address_match (struct address_space *aspace1,
170 CORE_ADDR addr1,
171 struct address_space *aspace2,
172 CORE_ADDR addr2);
173
174 static int watchpoint_locations_match (struct bp_location *loc1,
175 struct bp_location *loc2);
176
177 static int breakpoint_location_address_match (struct bp_location *bl,
178 struct address_space *aspace,
179 CORE_ADDR addr);
180
181 static void breakpoints_info (char *, int);
182
183 static void watchpoints_info (char *, int);
184
185 static int breakpoint_1 (char *, int,
186 int (*) (const struct breakpoint *));
187
188 static int breakpoint_cond_eval (void *);
189
190 static void cleanup_executing_breakpoints (void *);
191
192 static void commands_command (char *, int);
193
194 static void condition_command (char *, int);
195
196 typedef enum
197 {
198 mark_inserted,
199 mark_uninserted
200 }
201 insertion_state_t;
202
203 static int remove_breakpoint (struct bp_location *, insertion_state_t);
204 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
205
206 static enum print_stop_action print_bp_stop_message (bpstat bs);
207
208 static int watchpoint_check (void *);
209
210 static void maintenance_info_breakpoints (char *, int);
211
212 static int hw_breakpoint_used_count (void);
213
214 static int hw_watchpoint_use_count (struct breakpoint *);
215
216 static int hw_watchpoint_used_count_others (struct breakpoint *except,
217 enum bptype type,
218 int *other_type_used);
219
220 static void hbreak_command (char *, int);
221
222 static void thbreak_command (char *, int);
223
224 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
225 int count);
226
227 static void stop_command (char *arg, int from_tty);
228
229 static void stopin_command (char *arg, int from_tty);
230
231 static void stopat_command (char *arg, int from_tty);
232
233 static void tcatch_command (char *arg, int from_tty);
234
235 static void detach_single_step_breakpoints (void);
236
237 static int single_step_breakpoint_inserted_here_p (struct address_space *,
238 CORE_ADDR pc);
239
240 static void free_bp_location (struct bp_location *loc);
241 static void incref_bp_location (struct bp_location *loc);
242 static void decref_bp_location (struct bp_location **loc);
243
244 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
245
246 static void update_global_location_list (int);
247
248 static void update_global_location_list_nothrow (int);
249
250 static int is_hardware_watchpoint (const struct breakpoint *bpt);
251
252 static void insert_breakpoint_locations (void);
253
254 static int syscall_catchpoint_p (struct breakpoint *b);
255
256 static void tracepoints_info (char *, int);
257
258 static void delete_trace_command (char *, int);
259
260 static void enable_trace_command (char *, int);
261
262 static void disable_trace_command (char *, int);
263
264 static void trace_pass_command (char *, int);
265
266 static void set_tracepoint_count (int num);
267
268 static int is_masked_watchpoint (const struct breakpoint *b);
269
270 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
271
272 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
273 otherwise. */
274
275 static int strace_marker_p (struct breakpoint *b);
276
277 /* The abstract base class all breakpoint_ops structures inherit
278 from. */
279 struct breakpoint_ops base_breakpoint_ops;
280
281 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
282 that are implemented on top of software or hardware breakpoints
283 (user breakpoints, internal and momentary breakpoints, etc.). */
284 static struct breakpoint_ops bkpt_base_breakpoint_ops;
285
286 /* Internal breakpoints class type. */
287 static struct breakpoint_ops internal_breakpoint_ops;
288
289 /* Momentary breakpoints class type. */
290 static struct breakpoint_ops momentary_breakpoint_ops;
291
292 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
293 static struct breakpoint_ops longjmp_breakpoint_ops;
294
295 /* The breakpoint_ops structure to be used in regular user created
296 breakpoints. */
297 struct breakpoint_ops bkpt_breakpoint_ops;
298
299 /* Breakpoints set on probes. */
300 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
301
302 /* Dynamic printf class type. */
303 struct breakpoint_ops dprintf_breakpoint_ops;
304
305 /* The style in which to perform a dynamic printf. This is a user
306 option because different output options have different tradeoffs;
307 if GDB does the printing, there is better error handling if there
308 is a problem with any of the arguments, but using an inferior
309 function lets you have special-purpose printers and sending of
310 output to the same place as compiled-in print functions. */
311
312 static const char dprintf_style_gdb[] = "gdb";
313 static const char dprintf_style_call[] = "call";
314 static const char dprintf_style_agent[] = "agent";
315 static const char *const dprintf_style_enums[] = {
316 dprintf_style_gdb,
317 dprintf_style_call,
318 dprintf_style_agent,
319 NULL
320 };
321 static const char *dprintf_style = dprintf_style_gdb;
322
323 /* The function to use for dynamic printf if the preferred style is to
324 call into the inferior. The value is simply a string that is
325 copied into the command, so it can be anything that GDB can
326 evaluate to a callable address, not necessarily a function name. */
327
328 static char *dprintf_function = "";
329
330 /* The channel to use for dynamic printf if the preferred style is to
331 call into the inferior; if a nonempty string, it will be passed to
332 the call as the first argument, with the format string as the
333 second. As with the dprintf function, this can be anything that
334 GDB knows how to evaluate, so in addition to common choices like
335 "stderr", this could be an app-specific expression like
336 "mystreams[curlogger]". */
337
338 static char *dprintf_channel = "";
339
340 /* True if dprintf commands should continue to operate even if GDB
341 has disconnected. */
342 static int disconnected_dprintf = 1;
343
344 /* A reference-counted struct command_line. This lets multiple
345 breakpoints share a single command list. */
346 struct counted_command_line
347 {
348 /* The reference count. */
349 int refc;
350
351 /* The command list. */
352 struct command_line *commands;
353 };
354
355 struct command_line *
356 breakpoint_commands (struct breakpoint *b)
357 {
358 return b->commands ? b->commands->commands : NULL;
359 }
360
361 /* Flag indicating that a command has proceeded the inferior past the
362 current breakpoint. */
363
364 static int breakpoint_proceeded;
365
366 const char *
367 bpdisp_text (enum bpdisp disp)
368 {
369 /* NOTE: the following values are a part of MI protocol and
370 represent values of 'disp' field returned when inferior stops at
371 a breakpoint. */
372 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
373
374 return bpdisps[(int) disp];
375 }
376
377 /* Prototypes for exported functions. */
378 /* If FALSE, gdb will not use hardware support for watchpoints, even
379 if such is available. */
380 static int can_use_hw_watchpoints;
381
382 static void
383 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c,
385 const char *value)
386 {
387 fprintf_filtered (file,
388 _("Debugger's willingness to use "
389 "watchpoint hardware is %s.\n"),
390 value);
391 }
392
393 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
394 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
395 for unrecognized breakpoint locations.
396 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
397 static enum auto_boolean pending_break_support;
398 static void
399 show_pending_break_support (struct ui_file *file, int from_tty,
400 struct cmd_list_element *c,
401 const char *value)
402 {
403 fprintf_filtered (file,
404 _("Debugger's behavior regarding "
405 "pending breakpoints is %s.\n"),
406 value);
407 }
408
409 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
410 set with "break" but falling in read-only memory.
411 If 0, gdb will warn about such breakpoints, but won't automatically
412 use hardware breakpoints. */
413 static int automatic_hardware_breakpoints;
414 static void
415 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
416 struct cmd_list_element *c,
417 const char *value)
418 {
419 fprintf_filtered (file,
420 _("Automatic usage of hardware breakpoints is %s.\n"),
421 value);
422 }
423
424 /* If on, gdb will keep breakpoints inserted even as inferior is
425 stopped, and immediately insert any new breakpoints. If off, gdb
426 will insert breakpoints into inferior only when resuming it, and
427 will remove breakpoints upon stop. If auto, GDB will behave as ON
428 if in non-stop mode, and as OFF if all-stop mode.*/
429
430 static enum auto_boolean always_inserted_mode = AUTO_BOOLEAN_AUTO;
431
432 static void
433 show_always_inserted_mode (struct ui_file *file, int from_tty,
434 struct cmd_list_element *c, const char *value)
435 {
436 if (always_inserted_mode == AUTO_BOOLEAN_AUTO)
437 fprintf_filtered (file,
438 _("Always inserted breakpoint "
439 "mode is %s (currently %s).\n"),
440 value,
441 breakpoints_always_inserted_mode () ? "on" : "off");
442 else
443 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
444 value);
445 }
446
447 int
448 breakpoints_always_inserted_mode (void)
449 {
450 return (always_inserted_mode == AUTO_BOOLEAN_TRUE
451 || (always_inserted_mode == AUTO_BOOLEAN_AUTO && non_stop));
452 }
453
454 static const char condition_evaluation_both[] = "host or target";
455
456 /* Modes for breakpoint condition evaluation. */
457 static const char condition_evaluation_auto[] = "auto";
458 static const char condition_evaluation_host[] = "host";
459 static const char condition_evaluation_target[] = "target";
460 static const char *const condition_evaluation_enums[] = {
461 condition_evaluation_auto,
462 condition_evaluation_host,
463 condition_evaluation_target,
464 NULL
465 };
466
467 /* Global that holds the current mode for breakpoint condition evaluation. */
468 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
469
470 /* Global that we use to display information to the user (gets its value from
471 condition_evaluation_mode_1. */
472 static const char *condition_evaluation_mode = condition_evaluation_auto;
473
474 /* Translate a condition evaluation mode MODE into either "host"
475 or "target". This is used mostly to translate from "auto" to the
476 real setting that is being used. It returns the translated
477 evaluation mode. */
478
479 static const char *
480 translate_condition_evaluation_mode (const char *mode)
481 {
482 if (mode == condition_evaluation_auto)
483 {
484 if (target_supports_evaluation_of_breakpoint_conditions ())
485 return condition_evaluation_target;
486 else
487 return condition_evaluation_host;
488 }
489 else
490 return mode;
491 }
492
493 /* Discovers what condition_evaluation_auto translates to. */
494
495 static const char *
496 breakpoint_condition_evaluation_mode (void)
497 {
498 return translate_condition_evaluation_mode (condition_evaluation_mode);
499 }
500
501 /* Return true if GDB should evaluate breakpoint conditions or false
502 otherwise. */
503
504 static int
505 gdb_evaluates_breakpoint_condition_p (void)
506 {
507 const char *mode = breakpoint_condition_evaluation_mode ();
508
509 return (mode == condition_evaluation_host);
510 }
511
512 void _initialize_breakpoint (void);
513
514 /* Are we executing breakpoint commands? */
515 static int executing_breakpoint_commands;
516
517 /* Are overlay event breakpoints enabled? */
518 static int overlay_events_enabled;
519
520 /* See description in breakpoint.h. */
521 int target_exact_watchpoints = 0;
522
523 /* Walk the following statement or block through all breakpoints.
524 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
525 current breakpoint. */
526
527 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
528
529 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
530 for (B = breakpoint_chain; \
531 B ? (TMP=B->next, 1): 0; \
532 B = TMP)
533
534 /* Similar iterator for the low-level breakpoints. SAFE variant is
535 not provided so update_global_location_list must not be called
536 while executing the block of ALL_BP_LOCATIONS. */
537
538 #define ALL_BP_LOCATIONS(B,BP_TMP) \
539 for (BP_TMP = bp_location; \
540 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
541 BP_TMP++)
542
543 /* Iterates through locations with address ADDRESS for the currently selected
544 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
545 to where the loop should start from.
546 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
547 appropriate location to start with. */
548
549 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
550 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
551 BP_LOCP_TMP = BP_LOCP_START; \
552 BP_LOCP_START \
553 && (BP_LOCP_TMP < bp_location + bp_location_count \
554 && (*BP_LOCP_TMP)->address == ADDRESS); \
555 BP_LOCP_TMP++)
556
557 /* Iterator for tracepoints only. */
558
559 #define ALL_TRACEPOINTS(B) \
560 for (B = breakpoint_chain; B; B = B->next) \
561 if (is_tracepoint (B))
562
563 /* Chains of all breakpoints defined. */
564
565 struct breakpoint *breakpoint_chain;
566
567 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
568
569 static struct bp_location **bp_location;
570
571 /* Number of elements of BP_LOCATION. */
572
573 static unsigned bp_location_count;
574
575 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
576 ADDRESS for the current elements of BP_LOCATION which get a valid
577 result from bp_location_has_shadow. You can use it for roughly
578 limiting the subrange of BP_LOCATION to scan for shadow bytes for
579 an address you need to read. */
580
581 static CORE_ADDR bp_location_placed_address_before_address_max;
582
583 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
584 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
585 BP_LOCATION which get a valid result from bp_location_has_shadow.
586 You can use it for roughly limiting the subrange of BP_LOCATION to
587 scan for shadow bytes for an address you need to read. */
588
589 static CORE_ADDR bp_location_shadow_len_after_address_max;
590
591 /* The locations that no longer correspond to any breakpoint, unlinked
592 from bp_location array, but for which a hit may still be reported
593 by a target. */
594 VEC(bp_location_p) *moribund_locations = NULL;
595
596 /* Number of last breakpoint made. */
597
598 static int breakpoint_count;
599
600 /* The value of `breakpoint_count' before the last command that
601 created breakpoints. If the last (break-like) command created more
602 than one breakpoint, then the difference between BREAKPOINT_COUNT
603 and PREV_BREAKPOINT_COUNT is more than one. */
604 static int prev_breakpoint_count;
605
606 /* Number of last tracepoint made. */
607
608 static int tracepoint_count;
609
610 static struct cmd_list_element *breakpoint_set_cmdlist;
611 static struct cmd_list_element *breakpoint_show_cmdlist;
612 struct cmd_list_element *save_cmdlist;
613
614 /* Return whether a breakpoint is an active enabled breakpoint. */
615 static int
616 breakpoint_enabled (struct breakpoint *b)
617 {
618 return (b->enable_state == bp_enabled);
619 }
620
621 /* Set breakpoint count to NUM. */
622
623 static void
624 set_breakpoint_count (int num)
625 {
626 prev_breakpoint_count = breakpoint_count;
627 breakpoint_count = num;
628 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
629 }
630
631 /* Used by `start_rbreak_breakpoints' below, to record the current
632 breakpoint count before "rbreak" creates any breakpoint. */
633 static int rbreak_start_breakpoint_count;
634
635 /* Called at the start an "rbreak" command to record the first
636 breakpoint made. */
637
638 void
639 start_rbreak_breakpoints (void)
640 {
641 rbreak_start_breakpoint_count = breakpoint_count;
642 }
643
644 /* Called at the end of an "rbreak" command to record the last
645 breakpoint made. */
646
647 void
648 end_rbreak_breakpoints (void)
649 {
650 prev_breakpoint_count = rbreak_start_breakpoint_count;
651 }
652
653 /* Used in run_command to zero the hit count when a new run starts. */
654
655 void
656 clear_breakpoint_hit_counts (void)
657 {
658 struct breakpoint *b;
659
660 ALL_BREAKPOINTS (b)
661 b->hit_count = 0;
662 }
663
664 /* Allocate a new counted_command_line with reference count of 1.
665 The new structure owns COMMANDS. */
666
667 static struct counted_command_line *
668 alloc_counted_command_line (struct command_line *commands)
669 {
670 struct counted_command_line *result
671 = xmalloc (sizeof (struct counted_command_line));
672
673 result->refc = 1;
674 result->commands = commands;
675 return result;
676 }
677
678 /* Increment reference count. This does nothing if CMD is NULL. */
679
680 static void
681 incref_counted_command_line (struct counted_command_line *cmd)
682 {
683 if (cmd)
684 ++cmd->refc;
685 }
686
687 /* Decrement reference count. If the reference count reaches 0,
688 destroy the counted_command_line. Sets *CMDP to NULL. This does
689 nothing if *CMDP is NULL. */
690
691 static void
692 decref_counted_command_line (struct counted_command_line **cmdp)
693 {
694 if (*cmdp)
695 {
696 if (--(*cmdp)->refc == 0)
697 {
698 free_command_lines (&(*cmdp)->commands);
699 xfree (*cmdp);
700 }
701 *cmdp = NULL;
702 }
703 }
704
705 /* A cleanup function that calls decref_counted_command_line. */
706
707 static void
708 do_cleanup_counted_command_line (void *arg)
709 {
710 decref_counted_command_line (arg);
711 }
712
713 /* Create a cleanup that calls decref_counted_command_line on the
714 argument. */
715
716 static struct cleanup *
717 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
718 {
719 return make_cleanup (do_cleanup_counted_command_line, cmdp);
720 }
721
722 \f
723 /* Return the breakpoint with the specified number, or NULL
724 if the number does not refer to an existing breakpoint. */
725
726 struct breakpoint *
727 get_breakpoint (int num)
728 {
729 struct breakpoint *b;
730
731 ALL_BREAKPOINTS (b)
732 if (b->number == num)
733 return b;
734
735 return NULL;
736 }
737
738 \f
739
740 /* Mark locations as "conditions have changed" in case the target supports
741 evaluating conditions on its side. */
742
743 static void
744 mark_breakpoint_modified (struct breakpoint *b)
745 {
746 struct bp_location *loc;
747
748 /* This is only meaningful if the target is
749 evaluating conditions and if the user has
750 opted for condition evaluation on the target's
751 side. */
752 if (gdb_evaluates_breakpoint_condition_p ()
753 || !target_supports_evaluation_of_breakpoint_conditions ())
754 return;
755
756 if (!is_breakpoint (b))
757 return;
758
759 for (loc = b->loc; loc; loc = loc->next)
760 loc->condition_changed = condition_modified;
761 }
762
763 /* Mark location as "conditions have changed" in case the target supports
764 evaluating conditions on its side. */
765
766 static void
767 mark_breakpoint_location_modified (struct bp_location *loc)
768 {
769 /* This is only meaningful if the target is
770 evaluating conditions and if the user has
771 opted for condition evaluation on the target's
772 side. */
773 if (gdb_evaluates_breakpoint_condition_p ()
774 || !target_supports_evaluation_of_breakpoint_conditions ())
775
776 return;
777
778 if (!is_breakpoint (loc->owner))
779 return;
780
781 loc->condition_changed = condition_modified;
782 }
783
784 /* Sets the condition-evaluation mode using the static global
785 condition_evaluation_mode. */
786
787 static void
788 set_condition_evaluation_mode (char *args, int from_tty,
789 struct cmd_list_element *c)
790 {
791 const char *old_mode, *new_mode;
792
793 if ((condition_evaluation_mode_1 == condition_evaluation_target)
794 && !target_supports_evaluation_of_breakpoint_conditions ())
795 {
796 condition_evaluation_mode_1 = condition_evaluation_mode;
797 warning (_("Target does not support breakpoint condition evaluation.\n"
798 "Using host evaluation mode instead."));
799 return;
800 }
801
802 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
803 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
804
805 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
806 settings was "auto". */
807 condition_evaluation_mode = condition_evaluation_mode_1;
808
809 /* Only update the mode if the user picked a different one. */
810 if (new_mode != old_mode)
811 {
812 struct bp_location *loc, **loc_tmp;
813 /* If the user switched to a different evaluation mode, we
814 need to synch the changes with the target as follows:
815
816 "host" -> "target": Send all (valid) conditions to the target.
817 "target" -> "host": Remove all the conditions from the target.
818 */
819
820 if (new_mode == condition_evaluation_target)
821 {
822 /* Mark everything modified and synch conditions with the
823 target. */
824 ALL_BP_LOCATIONS (loc, loc_tmp)
825 mark_breakpoint_location_modified (loc);
826 }
827 else
828 {
829 /* Manually mark non-duplicate locations to synch conditions
830 with the target. We do this to remove all the conditions the
831 target knows about. */
832 ALL_BP_LOCATIONS (loc, loc_tmp)
833 if (is_breakpoint (loc->owner) && loc->inserted)
834 loc->needs_update = 1;
835 }
836
837 /* Do the update. */
838 update_global_location_list (1);
839 }
840
841 return;
842 }
843
844 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
845 what "auto" is translating to. */
846
847 static void
848 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
849 struct cmd_list_element *c, const char *value)
850 {
851 if (condition_evaluation_mode == condition_evaluation_auto)
852 fprintf_filtered (file,
853 _("Breakpoint condition evaluation "
854 "mode is %s (currently %s).\n"),
855 value,
856 breakpoint_condition_evaluation_mode ());
857 else
858 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
859 value);
860 }
861
862 /* A comparison function for bp_location AP and BP that is used by
863 bsearch. This comparison function only cares about addresses, unlike
864 the more general bp_location_compare function. */
865
866 static int
867 bp_location_compare_addrs (const void *ap, const void *bp)
868 {
869 struct bp_location *a = *(void **) ap;
870 struct bp_location *b = *(void **) bp;
871
872 if (a->address == b->address)
873 return 0;
874 else
875 return ((a->address > b->address) - (a->address < b->address));
876 }
877
878 /* Helper function to skip all bp_locations with addresses
879 less than ADDRESS. It returns the first bp_location that
880 is greater than or equal to ADDRESS. If none is found, just
881 return NULL. */
882
883 static struct bp_location **
884 get_first_locp_gte_addr (CORE_ADDR address)
885 {
886 struct bp_location dummy_loc;
887 struct bp_location *dummy_locp = &dummy_loc;
888 struct bp_location **locp_found = NULL;
889
890 /* Initialize the dummy location's address field. */
891 memset (&dummy_loc, 0, sizeof (struct bp_location));
892 dummy_loc.address = address;
893
894 /* Find a close match to the first location at ADDRESS. */
895 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
896 sizeof (struct bp_location **),
897 bp_location_compare_addrs);
898
899 /* Nothing was found, nothing left to do. */
900 if (locp_found == NULL)
901 return NULL;
902
903 /* We may have found a location that is at ADDRESS but is not the first in the
904 location's list. Go backwards (if possible) and locate the first one. */
905 while ((locp_found - 1) >= bp_location
906 && (*(locp_found - 1))->address == address)
907 locp_found--;
908
909 return locp_found;
910 }
911
912 void
913 set_breakpoint_condition (struct breakpoint *b, char *exp,
914 int from_tty)
915 {
916 xfree (b->cond_string);
917 b->cond_string = NULL;
918
919 if (is_watchpoint (b))
920 {
921 struct watchpoint *w = (struct watchpoint *) b;
922
923 xfree (w->cond_exp);
924 w->cond_exp = NULL;
925 }
926 else
927 {
928 struct bp_location *loc;
929
930 for (loc = b->loc; loc; loc = loc->next)
931 {
932 xfree (loc->cond);
933 loc->cond = NULL;
934
935 /* No need to free the condition agent expression
936 bytecode (if we have one). We will handle this
937 when we go through update_global_location_list. */
938 }
939 }
940
941 if (*exp == 0)
942 {
943 if (from_tty)
944 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
945 }
946 else
947 {
948 const char *arg = exp;
949
950 /* I don't know if it matters whether this is the string the user
951 typed in or the decompiled expression. */
952 b->cond_string = xstrdup (arg);
953 b->condition_not_parsed = 0;
954
955 if (is_watchpoint (b))
956 {
957 struct watchpoint *w = (struct watchpoint *) b;
958
959 innermost_block = NULL;
960 arg = exp;
961 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
962 if (*arg)
963 error (_("Junk at end of expression"));
964 w->cond_exp_valid_block = innermost_block;
965 }
966 else
967 {
968 struct bp_location *loc;
969
970 for (loc = b->loc; loc; loc = loc->next)
971 {
972 arg = exp;
973 loc->cond =
974 parse_exp_1 (&arg, loc->address,
975 block_for_pc (loc->address), 0);
976 if (*arg)
977 error (_("Junk at end of expression"));
978 }
979 }
980 }
981 mark_breakpoint_modified (b);
982
983 observer_notify_breakpoint_modified (b);
984 }
985
986 /* Completion for the "condition" command. */
987
988 static VEC (char_ptr) *
989 condition_completer (struct cmd_list_element *cmd,
990 const char *text, const char *word)
991 {
992 const char *space;
993
994 text = skip_spaces_const (text);
995 space = skip_to_space_const (text);
996 if (*space == '\0')
997 {
998 int len;
999 struct breakpoint *b;
1000 VEC (char_ptr) *result = NULL;
1001
1002 if (text[0] == '$')
1003 {
1004 /* We don't support completion of history indices. */
1005 if (isdigit (text[1]))
1006 return NULL;
1007 return complete_internalvar (&text[1]);
1008 }
1009
1010 /* We're completing the breakpoint number. */
1011 len = strlen (text);
1012
1013 ALL_BREAKPOINTS (b)
1014 {
1015 char number[50];
1016
1017 xsnprintf (number, sizeof (number), "%d", b->number);
1018
1019 if (strncmp (number, text, len) == 0)
1020 VEC_safe_push (char_ptr, result, xstrdup (number));
1021 }
1022
1023 return result;
1024 }
1025
1026 /* We're completing the expression part. */
1027 text = skip_spaces_const (space);
1028 return expression_completer (cmd, text, word);
1029 }
1030
1031 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1032
1033 static void
1034 condition_command (char *arg, int from_tty)
1035 {
1036 struct breakpoint *b;
1037 char *p;
1038 int bnum;
1039
1040 if (arg == 0)
1041 error_no_arg (_("breakpoint number"));
1042
1043 p = arg;
1044 bnum = get_number (&p);
1045 if (bnum == 0)
1046 error (_("Bad breakpoint argument: '%s'"), arg);
1047
1048 ALL_BREAKPOINTS (b)
1049 if (b->number == bnum)
1050 {
1051 /* Check if this breakpoint has a Python object assigned to
1052 it, and if it has a definition of the "stop"
1053 method. This method and conditions entered into GDB from
1054 the CLI are mutually exclusive. */
1055 if (b->py_bp_object
1056 && gdbpy_breakpoint_has_py_cond (b->py_bp_object))
1057 error (_("Cannot set a condition where a Python 'stop' "
1058 "method has been defined in the breakpoint."));
1059 set_breakpoint_condition (b, p, from_tty);
1060
1061 if (is_breakpoint (b))
1062 update_global_location_list (1);
1063
1064 return;
1065 }
1066
1067 error (_("No breakpoint number %d."), bnum);
1068 }
1069
1070 /* Check that COMMAND do not contain commands that are suitable
1071 only for tracepoints and not suitable for ordinary breakpoints.
1072 Throw if any such commands is found. */
1073
1074 static void
1075 check_no_tracepoint_commands (struct command_line *commands)
1076 {
1077 struct command_line *c;
1078
1079 for (c = commands; c; c = c->next)
1080 {
1081 int i;
1082
1083 if (c->control_type == while_stepping_control)
1084 error (_("The 'while-stepping' command can "
1085 "only be used for tracepoints"));
1086
1087 for (i = 0; i < c->body_count; ++i)
1088 check_no_tracepoint_commands ((c->body_list)[i]);
1089
1090 /* Not that command parsing removes leading whitespace and comment
1091 lines and also empty lines. So, we only need to check for
1092 command directly. */
1093 if (strstr (c->line, "collect ") == c->line)
1094 error (_("The 'collect' command can only be used for tracepoints"));
1095
1096 if (strstr (c->line, "teval ") == c->line)
1097 error (_("The 'teval' command can only be used for tracepoints"));
1098 }
1099 }
1100
1101 /* Encapsulate tests for different types of tracepoints. */
1102
1103 static int
1104 is_tracepoint_type (enum bptype type)
1105 {
1106 return (type == bp_tracepoint
1107 || type == bp_fast_tracepoint
1108 || type == bp_static_tracepoint);
1109 }
1110
1111 int
1112 is_tracepoint (const struct breakpoint *b)
1113 {
1114 return is_tracepoint_type (b->type);
1115 }
1116
1117 /* A helper function that validates that COMMANDS are valid for a
1118 breakpoint. This function will throw an exception if a problem is
1119 found. */
1120
1121 static void
1122 validate_commands_for_breakpoint (struct breakpoint *b,
1123 struct command_line *commands)
1124 {
1125 if (is_tracepoint (b))
1126 {
1127 struct tracepoint *t = (struct tracepoint *) b;
1128 struct command_line *c;
1129 struct command_line *while_stepping = 0;
1130
1131 /* Reset the while-stepping step count. The previous commands
1132 might have included a while-stepping action, while the new
1133 ones might not. */
1134 t->step_count = 0;
1135
1136 /* We need to verify that each top-level element of commands is
1137 valid for tracepoints, that there's at most one
1138 while-stepping element, and that the while-stepping's body
1139 has valid tracing commands excluding nested while-stepping.
1140 We also need to validate the tracepoint action line in the
1141 context of the tracepoint --- validate_actionline actually
1142 has side effects, like setting the tracepoint's
1143 while-stepping STEP_COUNT, in addition to checking if the
1144 collect/teval actions parse and make sense in the
1145 tracepoint's context. */
1146 for (c = commands; c; c = c->next)
1147 {
1148 if (c->control_type == while_stepping_control)
1149 {
1150 if (b->type == bp_fast_tracepoint)
1151 error (_("The 'while-stepping' command "
1152 "cannot be used for fast tracepoint"));
1153 else if (b->type == bp_static_tracepoint)
1154 error (_("The 'while-stepping' command "
1155 "cannot be used for static tracepoint"));
1156
1157 if (while_stepping)
1158 error (_("The 'while-stepping' command "
1159 "can be used only once"));
1160 else
1161 while_stepping = c;
1162 }
1163
1164 validate_actionline (c->line, b);
1165 }
1166 if (while_stepping)
1167 {
1168 struct command_line *c2;
1169
1170 gdb_assert (while_stepping->body_count == 1);
1171 c2 = while_stepping->body_list[0];
1172 for (; c2; c2 = c2->next)
1173 {
1174 if (c2->control_type == while_stepping_control)
1175 error (_("The 'while-stepping' command cannot be nested"));
1176 }
1177 }
1178 }
1179 else
1180 {
1181 check_no_tracepoint_commands (commands);
1182 }
1183 }
1184
1185 /* Return a vector of all the static tracepoints set at ADDR. The
1186 caller is responsible for releasing the vector. */
1187
1188 VEC(breakpoint_p) *
1189 static_tracepoints_here (CORE_ADDR addr)
1190 {
1191 struct breakpoint *b;
1192 VEC(breakpoint_p) *found = 0;
1193 struct bp_location *loc;
1194
1195 ALL_BREAKPOINTS (b)
1196 if (b->type == bp_static_tracepoint)
1197 {
1198 for (loc = b->loc; loc; loc = loc->next)
1199 if (loc->address == addr)
1200 VEC_safe_push(breakpoint_p, found, b);
1201 }
1202
1203 return found;
1204 }
1205
1206 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1207 validate that only allowed commands are included. */
1208
1209 void
1210 breakpoint_set_commands (struct breakpoint *b,
1211 struct command_line *commands)
1212 {
1213 validate_commands_for_breakpoint (b, commands);
1214
1215 decref_counted_command_line (&b->commands);
1216 b->commands = alloc_counted_command_line (commands);
1217 observer_notify_breakpoint_modified (b);
1218 }
1219
1220 /* Set the internal `silent' flag on the breakpoint. Note that this
1221 is not the same as the "silent" that may appear in the breakpoint's
1222 commands. */
1223
1224 void
1225 breakpoint_set_silent (struct breakpoint *b, int silent)
1226 {
1227 int old_silent = b->silent;
1228
1229 b->silent = silent;
1230 if (old_silent != silent)
1231 observer_notify_breakpoint_modified (b);
1232 }
1233
1234 /* Set the thread for this breakpoint. If THREAD is -1, make the
1235 breakpoint work for any thread. */
1236
1237 void
1238 breakpoint_set_thread (struct breakpoint *b, int thread)
1239 {
1240 int old_thread = b->thread;
1241
1242 b->thread = thread;
1243 if (old_thread != thread)
1244 observer_notify_breakpoint_modified (b);
1245 }
1246
1247 /* Set the task for this breakpoint. If TASK is 0, make the
1248 breakpoint work for any task. */
1249
1250 void
1251 breakpoint_set_task (struct breakpoint *b, int task)
1252 {
1253 int old_task = b->task;
1254
1255 b->task = task;
1256 if (old_task != task)
1257 observer_notify_breakpoint_modified (b);
1258 }
1259
1260 void
1261 check_tracepoint_command (char *line, void *closure)
1262 {
1263 struct breakpoint *b = closure;
1264
1265 validate_actionline (line, b);
1266 }
1267
1268 /* A structure used to pass information through
1269 map_breakpoint_numbers. */
1270
1271 struct commands_info
1272 {
1273 /* True if the command was typed at a tty. */
1274 int from_tty;
1275
1276 /* The breakpoint range spec. */
1277 char *arg;
1278
1279 /* Non-NULL if the body of the commands are being read from this
1280 already-parsed command. */
1281 struct command_line *control;
1282
1283 /* The command lines read from the user, or NULL if they have not
1284 yet been read. */
1285 struct counted_command_line *cmd;
1286 };
1287
1288 /* A callback for map_breakpoint_numbers that sets the commands for
1289 commands_command. */
1290
1291 static void
1292 do_map_commands_command (struct breakpoint *b, void *data)
1293 {
1294 struct commands_info *info = data;
1295
1296 if (info->cmd == NULL)
1297 {
1298 struct command_line *l;
1299
1300 if (info->control != NULL)
1301 l = copy_command_lines (info->control->body_list[0]);
1302 else
1303 {
1304 struct cleanup *old_chain;
1305 char *str;
1306
1307 str = xstrprintf (_("Type commands for breakpoint(s) "
1308 "%s, one per line."),
1309 info->arg);
1310
1311 old_chain = make_cleanup (xfree, str);
1312
1313 l = read_command_lines (str,
1314 info->from_tty, 1,
1315 (is_tracepoint (b)
1316 ? check_tracepoint_command : 0),
1317 b);
1318
1319 do_cleanups (old_chain);
1320 }
1321
1322 info->cmd = alloc_counted_command_line (l);
1323 }
1324
1325 /* If a breakpoint was on the list more than once, we don't need to
1326 do anything. */
1327 if (b->commands != info->cmd)
1328 {
1329 validate_commands_for_breakpoint (b, info->cmd->commands);
1330 incref_counted_command_line (info->cmd);
1331 decref_counted_command_line (&b->commands);
1332 b->commands = info->cmd;
1333 observer_notify_breakpoint_modified (b);
1334 }
1335 }
1336
1337 static void
1338 commands_command_1 (char *arg, int from_tty,
1339 struct command_line *control)
1340 {
1341 struct cleanup *cleanups;
1342 struct commands_info info;
1343
1344 info.from_tty = from_tty;
1345 info.control = control;
1346 info.cmd = NULL;
1347 /* If we read command lines from the user, then `info' will hold an
1348 extra reference to the commands that we must clean up. */
1349 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1350
1351 if (arg == NULL || !*arg)
1352 {
1353 if (breakpoint_count - prev_breakpoint_count > 1)
1354 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1355 breakpoint_count);
1356 else if (breakpoint_count > 0)
1357 arg = xstrprintf ("%d", breakpoint_count);
1358 else
1359 {
1360 /* So that we don't try to free the incoming non-NULL
1361 argument in the cleanup below. Mapping breakpoint
1362 numbers will fail in this case. */
1363 arg = NULL;
1364 }
1365 }
1366 else
1367 /* The command loop has some static state, so we need to preserve
1368 our argument. */
1369 arg = xstrdup (arg);
1370
1371 if (arg != NULL)
1372 make_cleanup (xfree, arg);
1373
1374 info.arg = arg;
1375
1376 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1377
1378 if (info.cmd == NULL)
1379 error (_("No breakpoints specified."));
1380
1381 do_cleanups (cleanups);
1382 }
1383
1384 static void
1385 commands_command (char *arg, int from_tty)
1386 {
1387 commands_command_1 (arg, from_tty, NULL);
1388 }
1389
1390 /* Like commands_command, but instead of reading the commands from
1391 input stream, takes them from an already parsed command structure.
1392
1393 This is used by cli-script.c to DTRT with breakpoint commands
1394 that are part of if and while bodies. */
1395 enum command_control_type
1396 commands_from_control_command (char *arg, struct command_line *cmd)
1397 {
1398 commands_command_1 (arg, 0, cmd);
1399 return simple_control;
1400 }
1401
1402 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1403
1404 static int
1405 bp_location_has_shadow (struct bp_location *bl)
1406 {
1407 if (bl->loc_type != bp_loc_software_breakpoint)
1408 return 0;
1409 if (!bl->inserted)
1410 return 0;
1411 if (bl->target_info.shadow_len == 0)
1412 /* BL isn't valid, or doesn't shadow memory. */
1413 return 0;
1414 return 1;
1415 }
1416
1417 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1418 by replacing any memory breakpoints with their shadowed contents.
1419
1420 If READBUF is not NULL, this buffer must not overlap with any of
1421 the breakpoint location's shadow_contents buffers. Otherwise,
1422 a failed assertion internal error will be raised.
1423
1424 The range of shadowed area by each bp_location is:
1425 bl->address - bp_location_placed_address_before_address_max
1426 up to bl->address + bp_location_shadow_len_after_address_max
1427 The range we were requested to resolve shadows for is:
1428 memaddr ... memaddr + len
1429 Thus the safe cutoff boundaries for performance optimization are
1430 memaddr + len <= (bl->address
1431 - bp_location_placed_address_before_address_max)
1432 and:
1433 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1434
1435 void
1436 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1437 const gdb_byte *writebuf_org,
1438 ULONGEST memaddr, LONGEST len)
1439 {
1440 /* Left boundary, right boundary and median element of our binary
1441 search. */
1442 unsigned bc_l, bc_r, bc;
1443
1444 /* Find BC_L which is a leftmost element which may affect BUF
1445 content. It is safe to report lower value but a failure to
1446 report higher one. */
1447
1448 bc_l = 0;
1449 bc_r = bp_location_count;
1450 while (bc_l + 1 < bc_r)
1451 {
1452 struct bp_location *bl;
1453
1454 bc = (bc_l + bc_r) / 2;
1455 bl = bp_location[bc];
1456
1457 /* Check first BL->ADDRESS will not overflow due to the added
1458 constant. Then advance the left boundary only if we are sure
1459 the BC element can in no way affect the BUF content (MEMADDR
1460 to MEMADDR + LEN range).
1461
1462 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1463 offset so that we cannot miss a breakpoint with its shadow
1464 range tail still reaching MEMADDR. */
1465
1466 if ((bl->address + bp_location_shadow_len_after_address_max
1467 >= bl->address)
1468 && (bl->address + bp_location_shadow_len_after_address_max
1469 <= memaddr))
1470 bc_l = bc;
1471 else
1472 bc_r = bc;
1473 }
1474
1475 /* Due to the binary search above, we need to make sure we pick the
1476 first location that's at BC_L's address. E.g., if there are
1477 multiple locations at the same address, BC_L may end up pointing
1478 at a duplicate location, and miss the "master"/"inserted"
1479 location. Say, given locations L1, L2 and L3 at addresses A and
1480 B:
1481
1482 L1@A, L2@A, L3@B, ...
1483
1484 BC_L could end up pointing at location L2, while the "master"
1485 location could be L1. Since the `loc->inserted' flag is only set
1486 on "master" locations, we'd forget to restore the shadow of L1
1487 and L2. */
1488 while (bc_l > 0
1489 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1490 bc_l--;
1491
1492 /* Now do full processing of the found relevant range of elements. */
1493
1494 for (bc = bc_l; bc < bp_location_count; bc++)
1495 {
1496 struct bp_location *bl = bp_location[bc];
1497 CORE_ADDR bp_addr = 0;
1498 int bp_size = 0;
1499 int bptoffset = 0;
1500
1501 /* bp_location array has BL->OWNER always non-NULL. */
1502 if (bl->owner->type == bp_none)
1503 warning (_("reading through apparently deleted breakpoint #%d?"),
1504 bl->owner->number);
1505
1506 /* Performance optimization: any further element can no longer affect BUF
1507 content. */
1508
1509 if (bl->address >= bp_location_placed_address_before_address_max
1510 && memaddr + len <= (bl->address
1511 - bp_location_placed_address_before_address_max))
1512 break;
1513
1514 if (!bp_location_has_shadow (bl))
1515 continue;
1516 if (!breakpoint_address_match (bl->target_info.placed_address_space, 0,
1517 current_program_space->aspace, 0))
1518 continue;
1519
1520 /* Addresses and length of the part of the breakpoint that
1521 we need to copy. */
1522 bp_addr = bl->target_info.placed_address;
1523 bp_size = bl->target_info.shadow_len;
1524
1525 if (bp_addr + bp_size <= memaddr)
1526 /* The breakpoint is entirely before the chunk of memory we
1527 are reading. */
1528 continue;
1529
1530 if (bp_addr >= memaddr + len)
1531 /* The breakpoint is entirely after the chunk of memory we are
1532 reading. */
1533 continue;
1534
1535 /* Offset within shadow_contents. */
1536 if (bp_addr < memaddr)
1537 {
1538 /* Only copy the second part of the breakpoint. */
1539 bp_size -= memaddr - bp_addr;
1540 bptoffset = memaddr - bp_addr;
1541 bp_addr = memaddr;
1542 }
1543
1544 if (bp_addr + bp_size > memaddr + len)
1545 {
1546 /* Only copy the first part of the breakpoint. */
1547 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1548 }
1549
1550 if (readbuf != NULL)
1551 {
1552 /* Verify that the readbuf buffer does not overlap with
1553 the shadow_contents buffer. */
1554 gdb_assert (bl->target_info.shadow_contents >= readbuf + len
1555 || readbuf >= (bl->target_info.shadow_contents
1556 + bl->target_info.shadow_len));
1557
1558 /* Update the read buffer with this inserted breakpoint's
1559 shadow. */
1560 memcpy (readbuf + bp_addr - memaddr,
1561 bl->target_info.shadow_contents + bptoffset, bp_size);
1562 }
1563 else
1564 {
1565 struct gdbarch *gdbarch = bl->gdbarch;
1566 const unsigned char *bp;
1567 CORE_ADDR placed_address = bl->target_info.placed_address;
1568 int placed_size = bl->target_info.placed_size;
1569
1570 /* Update the shadow with what we want to write to memory. */
1571 memcpy (bl->target_info.shadow_contents + bptoffset,
1572 writebuf_org + bp_addr - memaddr, bp_size);
1573
1574 /* Determine appropriate breakpoint contents and size for this
1575 address. */
1576 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1577
1578 /* Update the final write buffer with this inserted
1579 breakpoint's INSN. */
1580 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1581 }
1582 }
1583 }
1584 \f
1585
1586 /* Return true if BPT is either a software breakpoint or a hardware
1587 breakpoint. */
1588
1589 int
1590 is_breakpoint (const struct breakpoint *bpt)
1591 {
1592 return (bpt->type == bp_breakpoint
1593 || bpt->type == bp_hardware_breakpoint
1594 || bpt->type == bp_dprintf);
1595 }
1596
1597 /* Return true if BPT is of any hardware watchpoint kind. */
1598
1599 static int
1600 is_hardware_watchpoint (const struct breakpoint *bpt)
1601 {
1602 return (bpt->type == bp_hardware_watchpoint
1603 || bpt->type == bp_read_watchpoint
1604 || bpt->type == bp_access_watchpoint);
1605 }
1606
1607 /* Return true if BPT is of any watchpoint kind, hardware or
1608 software. */
1609
1610 int
1611 is_watchpoint (const struct breakpoint *bpt)
1612 {
1613 return (is_hardware_watchpoint (bpt)
1614 || bpt->type == bp_watchpoint);
1615 }
1616
1617 /* Returns true if the current thread and its running state are safe
1618 to evaluate or update watchpoint B. Watchpoints on local
1619 expressions need to be evaluated in the context of the thread that
1620 was current when the watchpoint was created, and, that thread needs
1621 to be stopped to be able to select the correct frame context.
1622 Watchpoints on global expressions can be evaluated on any thread,
1623 and in any state. It is presently left to the target allowing
1624 memory accesses when threads are running. */
1625
1626 static int
1627 watchpoint_in_thread_scope (struct watchpoint *b)
1628 {
1629 return (b->base.pspace == current_program_space
1630 && (ptid_equal (b->watchpoint_thread, null_ptid)
1631 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1632 && !is_executing (inferior_ptid))));
1633 }
1634
1635 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1636 associated bp_watchpoint_scope breakpoint. */
1637
1638 static void
1639 watchpoint_del_at_next_stop (struct watchpoint *w)
1640 {
1641 struct breakpoint *b = &w->base;
1642
1643 if (b->related_breakpoint != b)
1644 {
1645 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1646 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1647 b->related_breakpoint->disposition = disp_del_at_next_stop;
1648 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1649 b->related_breakpoint = b;
1650 }
1651 b->disposition = disp_del_at_next_stop;
1652 }
1653
1654 /* Assuming that B is a watchpoint:
1655 - Reparse watchpoint expression, if REPARSE is non-zero
1656 - Evaluate expression and store the result in B->val
1657 - Evaluate the condition if there is one, and store the result
1658 in b->loc->cond.
1659 - Update the list of values that must be watched in B->loc.
1660
1661 If the watchpoint disposition is disp_del_at_next_stop, then do
1662 nothing. If this is local watchpoint that is out of scope, delete
1663 it.
1664
1665 Even with `set breakpoint always-inserted on' the watchpoints are
1666 removed + inserted on each stop here. Normal breakpoints must
1667 never be removed because they might be missed by a running thread
1668 when debugging in non-stop mode. On the other hand, hardware
1669 watchpoints (is_hardware_watchpoint; processed here) are specific
1670 to each LWP since they are stored in each LWP's hardware debug
1671 registers. Therefore, such LWP must be stopped first in order to
1672 be able to modify its hardware watchpoints.
1673
1674 Hardware watchpoints must be reset exactly once after being
1675 presented to the user. It cannot be done sooner, because it would
1676 reset the data used to present the watchpoint hit to the user. And
1677 it must not be done later because it could display the same single
1678 watchpoint hit during multiple GDB stops. Note that the latter is
1679 relevant only to the hardware watchpoint types bp_read_watchpoint
1680 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1681 not user-visible - its hit is suppressed if the memory content has
1682 not changed.
1683
1684 The following constraints influence the location where we can reset
1685 hardware watchpoints:
1686
1687 * target_stopped_by_watchpoint and target_stopped_data_address are
1688 called several times when GDB stops.
1689
1690 [linux]
1691 * Multiple hardware watchpoints can be hit at the same time,
1692 causing GDB to stop. GDB only presents one hardware watchpoint
1693 hit at a time as the reason for stopping, and all the other hits
1694 are presented later, one after the other, each time the user
1695 requests the execution to be resumed. Execution is not resumed
1696 for the threads still having pending hit event stored in
1697 LWP_INFO->STATUS. While the watchpoint is already removed from
1698 the inferior on the first stop the thread hit event is kept being
1699 reported from its cached value by linux_nat_stopped_data_address
1700 until the real thread resume happens after the watchpoint gets
1701 presented and thus its LWP_INFO->STATUS gets reset.
1702
1703 Therefore the hardware watchpoint hit can get safely reset on the
1704 watchpoint removal from inferior. */
1705
1706 static void
1707 update_watchpoint (struct watchpoint *b, int reparse)
1708 {
1709 int within_current_scope;
1710 struct frame_id saved_frame_id;
1711 int frame_saved;
1712
1713 /* If this is a local watchpoint, we only want to check if the
1714 watchpoint frame is in scope if the current thread is the thread
1715 that was used to create the watchpoint. */
1716 if (!watchpoint_in_thread_scope (b))
1717 return;
1718
1719 if (b->base.disposition == disp_del_at_next_stop)
1720 return;
1721
1722 frame_saved = 0;
1723
1724 /* Determine if the watchpoint is within scope. */
1725 if (b->exp_valid_block == NULL)
1726 within_current_scope = 1;
1727 else
1728 {
1729 struct frame_info *fi = get_current_frame ();
1730 struct gdbarch *frame_arch = get_frame_arch (fi);
1731 CORE_ADDR frame_pc = get_frame_pc (fi);
1732
1733 /* If we're in a function epilogue, unwinding may not work
1734 properly, so do not attempt to recreate locations at this
1735 point. See similar comments in watchpoint_check. */
1736 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1737 return;
1738
1739 /* Save the current frame's ID so we can restore it after
1740 evaluating the watchpoint expression on its own frame. */
1741 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1742 took a frame parameter, so that we didn't have to change the
1743 selected frame. */
1744 frame_saved = 1;
1745 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1746
1747 fi = frame_find_by_id (b->watchpoint_frame);
1748 within_current_scope = (fi != NULL);
1749 if (within_current_scope)
1750 select_frame (fi);
1751 }
1752
1753 /* We don't free locations. They are stored in the bp_location array
1754 and update_global_location_list will eventually delete them and
1755 remove breakpoints if needed. */
1756 b->base.loc = NULL;
1757
1758 if (within_current_scope && reparse)
1759 {
1760 const char *s;
1761
1762 if (b->exp)
1763 {
1764 xfree (b->exp);
1765 b->exp = NULL;
1766 }
1767 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1768 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1769 /* If the meaning of expression itself changed, the old value is
1770 no longer relevant. We don't want to report a watchpoint hit
1771 to the user when the old value and the new value may actually
1772 be completely different objects. */
1773 value_free (b->val);
1774 b->val = NULL;
1775 b->val_valid = 0;
1776
1777 /* Note that unlike with breakpoints, the watchpoint's condition
1778 expression is stored in the breakpoint object, not in the
1779 locations (re)created below. */
1780 if (b->base.cond_string != NULL)
1781 {
1782 if (b->cond_exp != NULL)
1783 {
1784 xfree (b->cond_exp);
1785 b->cond_exp = NULL;
1786 }
1787
1788 s = b->base.cond_string;
1789 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1790 }
1791 }
1792
1793 /* If we failed to parse the expression, for example because
1794 it refers to a global variable in a not-yet-loaded shared library,
1795 don't try to insert watchpoint. We don't automatically delete
1796 such watchpoint, though, since failure to parse expression
1797 is different from out-of-scope watchpoint. */
1798 if (!target_has_execution)
1799 {
1800 /* Without execution, memory can't change. No use to try and
1801 set watchpoint locations. The watchpoint will be reset when
1802 the target gains execution, through breakpoint_re_set. */
1803 if (!can_use_hw_watchpoints)
1804 {
1805 if (b->base.ops->works_in_software_mode (&b->base))
1806 b->base.type = bp_watchpoint;
1807 else
1808 error (_("Can't set read/access watchpoint when "
1809 "hardware watchpoints are disabled."));
1810 }
1811 }
1812 else if (within_current_scope && b->exp)
1813 {
1814 int pc = 0;
1815 struct value *val_chain, *v, *result, *next;
1816 struct program_space *frame_pspace;
1817
1818 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain, 0);
1819
1820 /* Avoid setting b->val if it's already set. The meaning of
1821 b->val is 'the last value' user saw, and we should update
1822 it only if we reported that last value to user. As it
1823 happens, the code that reports it updates b->val directly.
1824 We don't keep track of the memory value for masked
1825 watchpoints. */
1826 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1827 {
1828 b->val = v;
1829 b->val_valid = 1;
1830 }
1831
1832 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1833
1834 /* Look at each value on the value chain. */
1835 for (v = val_chain; v; v = value_next (v))
1836 {
1837 /* If it's a memory location, and GDB actually needed
1838 its contents to evaluate the expression, then we
1839 must watch it. If the first value returned is
1840 still lazy, that means an error occurred reading it;
1841 watch it anyway in case it becomes readable. */
1842 if (VALUE_LVAL (v) == lval_memory
1843 && (v == val_chain || ! value_lazy (v)))
1844 {
1845 struct type *vtype = check_typedef (value_type (v));
1846
1847 /* We only watch structs and arrays if user asked
1848 for it explicitly, never if they just happen to
1849 appear in the middle of some value chain. */
1850 if (v == result
1851 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1852 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1853 {
1854 CORE_ADDR addr;
1855 int type;
1856 struct bp_location *loc, **tmp;
1857
1858 addr = value_address (v);
1859 type = hw_write;
1860 if (b->base.type == bp_read_watchpoint)
1861 type = hw_read;
1862 else if (b->base.type == bp_access_watchpoint)
1863 type = hw_access;
1864
1865 loc = allocate_bp_location (&b->base);
1866 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1867 ;
1868 *tmp = loc;
1869 loc->gdbarch = get_type_arch (value_type (v));
1870
1871 loc->pspace = frame_pspace;
1872 loc->address = addr;
1873 loc->length = TYPE_LENGTH (value_type (v));
1874 loc->watchpoint_type = type;
1875 }
1876 }
1877 }
1878
1879 /* Change the type of breakpoint between hardware assisted or
1880 an ordinary watchpoint depending on the hardware support
1881 and free hardware slots. REPARSE is set when the inferior
1882 is started. */
1883 if (reparse)
1884 {
1885 int reg_cnt;
1886 enum bp_loc_type loc_type;
1887 struct bp_location *bl;
1888
1889 reg_cnt = can_use_hardware_watchpoint (val_chain);
1890
1891 if (reg_cnt)
1892 {
1893 int i, target_resources_ok, other_type_used;
1894 enum bptype type;
1895
1896 /* Use an exact watchpoint when there's only one memory region to be
1897 watched, and only one debug register is needed to watch it. */
1898 b->exact = target_exact_watchpoints && reg_cnt == 1;
1899
1900 /* We need to determine how many resources are already
1901 used for all other hardware watchpoints plus this one
1902 to see if we still have enough resources to also fit
1903 this watchpoint in as well. */
1904
1905 /* If this is a software watchpoint, we try to turn it
1906 to a hardware one -- count resources as if B was of
1907 hardware watchpoint type. */
1908 type = b->base.type;
1909 if (type == bp_watchpoint)
1910 type = bp_hardware_watchpoint;
1911
1912 /* This watchpoint may or may not have been placed on
1913 the list yet at this point (it won't be in the list
1914 if we're trying to create it for the first time,
1915 through watch_command), so always account for it
1916 manually. */
1917
1918 /* Count resources used by all watchpoints except B. */
1919 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
1920
1921 /* Add in the resources needed for B. */
1922 i += hw_watchpoint_use_count (&b->base);
1923
1924 target_resources_ok
1925 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1926 if (target_resources_ok <= 0)
1927 {
1928 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
1929
1930 if (target_resources_ok == 0 && !sw_mode)
1931 error (_("Target does not support this type of "
1932 "hardware watchpoint."));
1933 else if (target_resources_ok < 0 && !sw_mode)
1934 error (_("There are not enough available hardware "
1935 "resources for this watchpoint."));
1936
1937 /* Downgrade to software watchpoint. */
1938 b->base.type = bp_watchpoint;
1939 }
1940 else
1941 {
1942 /* If this was a software watchpoint, we've just
1943 found we have enough resources to turn it to a
1944 hardware watchpoint. Otherwise, this is a
1945 nop. */
1946 b->base.type = type;
1947 }
1948 }
1949 else if (!b->base.ops->works_in_software_mode (&b->base))
1950 {
1951 if (!can_use_hw_watchpoints)
1952 error (_("Can't set read/access watchpoint when "
1953 "hardware watchpoints are disabled."));
1954 else
1955 error (_("Expression cannot be implemented with "
1956 "read/access watchpoint."));
1957 }
1958 else
1959 b->base.type = bp_watchpoint;
1960
1961 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
1962 : bp_loc_hardware_watchpoint);
1963 for (bl = b->base.loc; bl; bl = bl->next)
1964 bl->loc_type = loc_type;
1965 }
1966
1967 for (v = val_chain; v; v = next)
1968 {
1969 next = value_next (v);
1970 if (v != b->val)
1971 value_free (v);
1972 }
1973
1974 /* If a software watchpoint is not watching any memory, then the
1975 above left it without any location set up. But,
1976 bpstat_stop_status requires a location to be able to report
1977 stops, so make sure there's at least a dummy one. */
1978 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
1979 {
1980 struct breakpoint *base = &b->base;
1981 base->loc = allocate_bp_location (base);
1982 base->loc->pspace = frame_pspace;
1983 base->loc->address = -1;
1984 base->loc->length = -1;
1985 base->loc->watchpoint_type = -1;
1986 }
1987 }
1988 else if (!within_current_scope)
1989 {
1990 printf_filtered (_("\
1991 Watchpoint %d deleted because the program has left the block\n\
1992 in which its expression is valid.\n"),
1993 b->base.number);
1994 watchpoint_del_at_next_stop (b);
1995 }
1996
1997 /* Restore the selected frame. */
1998 if (frame_saved)
1999 select_frame (frame_find_by_id (saved_frame_id));
2000 }
2001
2002
2003 /* Returns 1 iff breakpoint location should be
2004 inserted in the inferior. We don't differentiate the type of BL's owner
2005 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2006 breakpoint_ops is not defined, because in insert_bp_location,
2007 tracepoint's insert_location will not be called. */
2008 static int
2009 should_be_inserted (struct bp_location *bl)
2010 {
2011 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2012 return 0;
2013
2014 if (bl->owner->disposition == disp_del_at_next_stop)
2015 return 0;
2016
2017 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2018 return 0;
2019
2020 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2021 return 0;
2022
2023 /* This is set for example, when we're attached to the parent of a
2024 vfork, and have detached from the child. The child is running
2025 free, and we expect it to do an exec or exit, at which point the
2026 OS makes the parent schedulable again (and the target reports
2027 that the vfork is done). Until the child is done with the shared
2028 memory region, do not insert breakpoints in the parent, otherwise
2029 the child could still trip on the parent's breakpoints. Since
2030 the parent is blocked anyway, it won't miss any breakpoint. */
2031 if (bl->pspace->breakpoints_not_allowed)
2032 return 0;
2033
2034 return 1;
2035 }
2036
2037 /* Same as should_be_inserted but does the check assuming
2038 that the location is not duplicated. */
2039
2040 static int
2041 unduplicated_should_be_inserted (struct bp_location *bl)
2042 {
2043 int result;
2044 const int save_duplicate = bl->duplicate;
2045
2046 bl->duplicate = 0;
2047 result = should_be_inserted (bl);
2048 bl->duplicate = save_duplicate;
2049 return result;
2050 }
2051
2052 /* Parses a conditional described by an expression COND into an
2053 agent expression bytecode suitable for evaluation
2054 by the bytecode interpreter. Return NULL if there was
2055 any error during parsing. */
2056
2057 static struct agent_expr *
2058 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2059 {
2060 struct agent_expr *aexpr = NULL;
2061 volatile struct gdb_exception ex;
2062
2063 if (!cond)
2064 return NULL;
2065
2066 /* We don't want to stop processing, so catch any errors
2067 that may show up. */
2068 TRY_CATCH (ex, RETURN_MASK_ERROR)
2069 {
2070 aexpr = gen_eval_for_expr (scope, cond);
2071 }
2072
2073 if (ex.reason < 0)
2074 {
2075 /* If we got here, it means the condition could not be parsed to a valid
2076 bytecode expression and thus can't be evaluated on the target's side.
2077 It's no use iterating through the conditions. */
2078 return NULL;
2079 }
2080
2081 /* We have a valid agent expression. */
2082 return aexpr;
2083 }
2084
2085 /* Based on location BL, create a list of breakpoint conditions to be
2086 passed on to the target. If we have duplicated locations with different
2087 conditions, we will add such conditions to the list. The idea is that the
2088 target will evaluate the list of conditions and will only notify GDB when
2089 one of them is true. */
2090
2091 static void
2092 build_target_condition_list (struct bp_location *bl)
2093 {
2094 struct bp_location **locp = NULL, **loc2p;
2095 int null_condition_or_parse_error = 0;
2096 int modified = bl->needs_update;
2097 struct bp_location *loc;
2098
2099 /* This is only meaningful if the target is
2100 evaluating conditions and if the user has
2101 opted for condition evaluation on the target's
2102 side. */
2103 if (gdb_evaluates_breakpoint_condition_p ()
2104 || !target_supports_evaluation_of_breakpoint_conditions ())
2105 return;
2106
2107 /* Do a first pass to check for locations with no assigned
2108 conditions or conditions that fail to parse to a valid agent expression
2109 bytecode. If any of these happen, then it's no use to send conditions
2110 to the target since this location will always trigger and generate a
2111 response back to GDB. */
2112 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2113 {
2114 loc = (*loc2p);
2115 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2116 {
2117 if (modified)
2118 {
2119 struct agent_expr *aexpr;
2120
2121 /* Re-parse the conditions since something changed. In that
2122 case we already freed the condition bytecodes (see
2123 force_breakpoint_reinsertion). We just
2124 need to parse the condition to bytecodes again. */
2125 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2126 loc->cond_bytecode = aexpr;
2127
2128 /* Check if we managed to parse the conditional expression
2129 correctly. If not, we will not send this condition
2130 to the target. */
2131 if (aexpr)
2132 continue;
2133 }
2134
2135 /* If we have a NULL bytecode expression, it means something
2136 went wrong or we have a null condition expression. */
2137 if (!loc->cond_bytecode)
2138 {
2139 null_condition_or_parse_error = 1;
2140 break;
2141 }
2142 }
2143 }
2144
2145 /* If any of these happened, it means we will have to evaluate the conditions
2146 for the location's address on gdb's side. It is no use keeping bytecodes
2147 for all the other duplicate locations, thus we free all of them here.
2148
2149 This is so we have a finer control over which locations' conditions are
2150 being evaluated by GDB or the remote stub. */
2151 if (null_condition_or_parse_error)
2152 {
2153 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2154 {
2155 loc = (*loc2p);
2156 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2157 {
2158 /* Only go as far as the first NULL bytecode is
2159 located. */
2160 if (!loc->cond_bytecode)
2161 return;
2162
2163 free_agent_expr (loc->cond_bytecode);
2164 loc->cond_bytecode = NULL;
2165 }
2166 }
2167 }
2168
2169 /* No NULL conditions or failed bytecode generation. Build a condition list
2170 for this location's address. */
2171 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2172 {
2173 loc = (*loc2p);
2174 if (loc->cond
2175 && is_breakpoint (loc->owner)
2176 && loc->pspace->num == bl->pspace->num
2177 && loc->owner->enable_state == bp_enabled
2178 && loc->enabled)
2179 /* Add the condition to the vector. This will be used later to send the
2180 conditions to the target. */
2181 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2182 loc->cond_bytecode);
2183 }
2184
2185 return;
2186 }
2187
2188 /* Parses a command described by string CMD into an agent expression
2189 bytecode suitable for evaluation by the bytecode interpreter.
2190 Return NULL if there was any error during parsing. */
2191
2192 static struct agent_expr *
2193 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2194 {
2195 struct cleanup *old_cleanups = 0;
2196 struct expression *expr, **argvec;
2197 struct agent_expr *aexpr = NULL;
2198 volatile struct gdb_exception ex;
2199 const char *cmdrest;
2200 const char *format_start, *format_end;
2201 struct format_piece *fpieces;
2202 int nargs;
2203 struct gdbarch *gdbarch = get_current_arch ();
2204
2205 if (!cmd)
2206 return NULL;
2207
2208 cmdrest = cmd;
2209
2210 if (*cmdrest == ',')
2211 ++cmdrest;
2212 cmdrest = skip_spaces_const (cmdrest);
2213
2214 if (*cmdrest++ != '"')
2215 error (_("No format string following the location"));
2216
2217 format_start = cmdrest;
2218
2219 fpieces = parse_format_string (&cmdrest);
2220
2221 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2222
2223 format_end = cmdrest;
2224
2225 if (*cmdrest++ != '"')
2226 error (_("Bad format string, non-terminated '\"'."));
2227
2228 cmdrest = skip_spaces_const (cmdrest);
2229
2230 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2231 error (_("Invalid argument syntax"));
2232
2233 if (*cmdrest == ',')
2234 cmdrest++;
2235 cmdrest = skip_spaces_const (cmdrest);
2236
2237 /* For each argument, make an expression. */
2238
2239 argvec = (struct expression **) alloca (strlen (cmd)
2240 * sizeof (struct expression *));
2241
2242 nargs = 0;
2243 while (*cmdrest != '\0')
2244 {
2245 const char *cmd1;
2246
2247 cmd1 = cmdrest;
2248 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2249 argvec[nargs++] = expr;
2250 cmdrest = cmd1;
2251 if (*cmdrest == ',')
2252 ++cmdrest;
2253 }
2254
2255 /* We don't want to stop processing, so catch any errors
2256 that may show up. */
2257 TRY_CATCH (ex, RETURN_MASK_ERROR)
2258 {
2259 aexpr = gen_printf (scope, gdbarch, 0, 0,
2260 format_start, format_end - format_start,
2261 fpieces, nargs, argvec);
2262 }
2263
2264 do_cleanups (old_cleanups);
2265
2266 if (ex.reason < 0)
2267 {
2268 /* If we got here, it means the command could not be parsed to a valid
2269 bytecode expression and thus can't be evaluated on the target's side.
2270 It's no use iterating through the other commands. */
2271 return NULL;
2272 }
2273
2274 /* We have a valid agent expression, return it. */
2275 return aexpr;
2276 }
2277
2278 /* Based on location BL, create a list of breakpoint commands to be
2279 passed on to the target. If we have duplicated locations with
2280 different commands, we will add any such to the list. */
2281
2282 static void
2283 build_target_command_list (struct bp_location *bl)
2284 {
2285 struct bp_location **locp = NULL, **loc2p;
2286 int null_command_or_parse_error = 0;
2287 int modified = bl->needs_update;
2288 struct bp_location *loc;
2289
2290 /* For now, limit to agent-style dprintf breakpoints. */
2291 if (bl->owner->type != bp_dprintf
2292 || strcmp (dprintf_style, dprintf_style_agent) != 0)
2293 return;
2294
2295 if (!target_can_run_breakpoint_commands ())
2296 return;
2297
2298 /* Do a first pass to check for locations with no assigned
2299 conditions or conditions that fail to parse to a valid agent expression
2300 bytecode. If any of these happen, then it's no use to send conditions
2301 to the target since this location will always trigger and generate a
2302 response back to GDB. */
2303 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2304 {
2305 loc = (*loc2p);
2306 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2307 {
2308 if (modified)
2309 {
2310 struct agent_expr *aexpr;
2311
2312 /* Re-parse the commands since something changed. In that
2313 case we already freed the command bytecodes (see
2314 force_breakpoint_reinsertion). We just
2315 need to parse the command to bytecodes again. */
2316 aexpr = parse_cmd_to_aexpr (bl->address,
2317 loc->owner->extra_string);
2318 loc->cmd_bytecode = aexpr;
2319
2320 if (!aexpr)
2321 continue;
2322 }
2323
2324 /* If we have a NULL bytecode expression, it means something
2325 went wrong or we have a null command expression. */
2326 if (!loc->cmd_bytecode)
2327 {
2328 null_command_or_parse_error = 1;
2329 break;
2330 }
2331 }
2332 }
2333
2334 /* If anything failed, then we're not doing target-side commands,
2335 and so clean up. */
2336 if (null_command_or_parse_error)
2337 {
2338 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2339 {
2340 loc = (*loc2p);
2341 if (is_breakpoint (loc->owner)
2342 && loc->pspace->num == bl->pspace->num)
2343 {
2344 /* Only go as far as the first NULL bytecode is
2345 located. */
2346 if (loc->cmd_bytecode == NULL)
2347 return;
2348
2349 free_agent_expr (loc->cmd_bytecode);
2350 loc->cmd_bytecode = NULL;
2351 }
2352 }
2353 }
2354
2355 /* No NULL commands or failed bytecode generation. Build a command list
2356 for this location's address. */
2357 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2358 {
2359 loc = (*loc2p);
2360 if (loc->owner->extra_string
2361 && is_breakpoint (loc->owner)
2362 && loc->pspace->num == bl->pspace->num
2363 && loc->owner->enable_state == bp_enabled
2364 && loc->enabled)
2365 /* Add the command to the vector. This will be used later
2366 to send the commands to the target. */
2367 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2368 loc->cmd_bytecode);
2369 }
2370
2371 bl->target_info.persist = 0;
2372 /* Maybe flag this location as persistent. */
2373 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2374 bl->target_info.persist = 1;
2375 }
2376
2377 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2378 location. Any error messages are printed to TMP_ERROR_STREAM; and
2379 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2380 Returns 0 for success, 1 if the bp_location type is not supported or
2381 -1 for failure.
2382
2383 NOTE drow/2003-09-09: This routine could be broken down to an
2384 object-style method for each breakpoint or catchpoint type. */
2385 static int
2386 insert_bp_location (struct bp_location *bl,
2387 struct ui_file *tmp_error_stream,
2388 int *disabled_breaks,
2389 int *hw_breakpoint_error,
2390 int *hw_bp_error_explained_already)
2391 {
2392 int val = 0;
2393 char *hw_bp_err_string = NULL;
2394 struct gdb_exception e;
2395
2396 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2397 return 0;
2398
2399 /* Note we don't initialize bl->target_info, as that wipes out
2400 the breakpoint location's shadow_contents if the breakpoint
2401 is still inserted at that location. This in turn breaks
2402 target_read_memory which depends on these buffers when
2403 a memory read is requested at the breakpoint location:
2404 Once the target_info has been wiped, we fail to see that
2405 we have a breakpoint inserted at that address and thus
2406 read the breakpoint instead of returning the data saved in
2407 the breakpoint location's shadow contents. */
2408 bl->target_info.placed_address = bl->address;
2409 bl->target_info.placed_address_space = bl->pspace->aspace;
2410 bl->target_info.length = bl->length;
2411
2412 /* When working with target-side conditions, we must pass all the conditions
2413 for the same breakpoint address down to the target since GDB will not
2414 insert those locations. With a list of breakpoint conditions, the target
2415 can decide when to stop and notify GDB. */
2416
2417 if (is_breakpoint (bl->owner))
2418 {
2419 build_target_condition_list (bl);
2420 build_target_command_list (bl);
2421 /* Reset the modification marker. */
2422 bl->needs_update = 0;
2423 }
2424
2425 if (bl->loc_type == bp_loc_software_breakpoint
2426 || bl->loc_type == bp_loc_hardware_breakpoint)
2427 {
2428 if (bl->owner->type != bp_hardware_breakpoint)
2429 {
2430 /* If the explicitly specified breakpoint type
2431 is not hardware breakpoint, check the memory map to see
2432 if the breakpoint address is in read only memory or not.
2433
2434 Two important cases are:
2435 - location type is not hardware breakpoint, memory
2436 is readonly. We change the type of the location to
2437 hardware breakpoint.
2438 - location type is hardware breakpoint, memory is
2439 read-write. This means we've previously made the
2440 location hardware one, but then the memory map changed,
2441 so we undo.
2442
2443 When breakpoints are removed, remove_breakpoints will use
2444 location types we've just set here, the only possible
2445 problem is that memory map has changed during running
2446 program, but it's not going to work anyway with current
2447 gdb. */
2448 struct mem_region *mr
2449 = lookup_mem_region (bl->target_info.placed_address);
2450
2451 if (mr)
2452 {
2453 if (automatic_hardware_breakpoints)
2454 {
2455 enum bp_loc_type new_type;
2456
2457 if (mr->attrib.mode != MEM_RW)
2458 new_type = bp_loc_hardware_breakpoint;
2459 else
2460 new_type = bp_loc_software_breakpoint;
2461
2462 if (new_type != bl->loc_type)
2463 {
2464 static int said = 0;
2465
2466 bl->loc_type = new_type;
2467 if (!said)
2468 {
2469 fprintf_filtered (gdb_stdout,
2470 _("Note: automatically using "
2471 "hardware breakpoints for "
2472 "read-only addresses.\n"));
2473 said = 1;
2474 }
2475 }
2476 }
2477 else if (bl->loc_type == bp_loc_software_breakpoint
2478 && mr->attrib.mode != MEM_RW)
2479 warning (_("cannot set software breakpoint "
2480 "at readonly address %s"),
2481 paddress (bl->gdbarch, bl->address));
2482 }
2483 }
2484
2485 /* First check to see if we have to handle an overlay. */
2486 if (overlay_debugging == ovly_off
2487 || bl->section == NULL
2488 || !(section_is_overlay (bl->section)))
2489 {
2490 /* No overlay handling: just set the breakpoint. */
2491 TRY_CATCH (e, RETURN_MASK_ALL)
2492 {
2493 val = bl->owner->ops->insert_location (bl);
2494 }
2495 if (e.reason < 0)
2496 {
2497 val = 1;
2498 hw_bp_err_string = (char *) e.message;
2499 }
2500 }
2501 else
2502 {
2503 /* This breakpoint is in an overlay section.
2504 Shall we set a breakpoint at the LMA? */
2505 if (!overlay_events_enabled)
2506 {
2507 /* Yes -- overlay event support is not active,
2508 so we must try to set a breakpoint at the LMA.
2509 This will not work for a hardware breakpoint. */
2510 if (bl->loc_type == bp_loc_hardware_breakpoint)
2511 warning (_("hardware breakpoint %d not supported in overlay!"),
2512 bl->owner->number);
2513 else
2514 {
2515 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2516 bl->section);
2517 /* Set a software (trap) breakpoint at the LMA. */
2518 bl->overlay_target_info = bl->target_info;
2519 bl->overlay_target_info.placed_address = addr;
2520 val = target_insert_breakpoint (bl->gdbarch,
2521 &bl->overlay_target_info);
2522 if (val != 0)
2523 fprintf_unfiltered (tmp_error_stream,
2524 "Overlay breakpoint %d "
2525 "failed: in ROM?\n",
2526 bl->owner->number);
2527 }
2528 }
2529 /* Shall we set a breakpoint at the VMA? */
2530 if (section_is_mapped (bl->section))
2531 {
2532 /* Yes. This overlay section is mapped into memory. */
2533 TRY_CATCH (e, RETURN_MASK_ALL)
2534 {
2535 val = bl->owner->ops->insert_location (bl);
2536 }
2537 if (e.reason < 0)
2538 {
2539 val = 1;
2540 hw_bp_err_string = (char *) e.message;
2541 }
2542 }
2543 else
2544 {
2545 /* No. This breakpoint will not be inserted.
2546 No error, but do not mark the bp as 'inserted'. */
2547 return 0;
2548 }
2549 }
2550
2551 if (val)
2552 {
2553 /* Can't set the breakpoint. */
2554 if (solib_name_from_address (bl->pspace, bl->address))
2555 {
2556 /* See also: disable_breakpoints_in_shlibs. */
2557 val = 0;
2558 bl->shlib_disabled = 1;
2559 observer_notify_breakpoint_modified (bl->owner);
2560 if (!*disabled_breaks)
2561 {
2562 fprintf_unfiltered (tmp_error_stream,
2563 "Cannot insert breakpoint %d.\n",
2564 bl->owner->number);
2565 fprintf_unfiltered (tmp_error_stream,
2566 "Temporarily disabling shared "
2567 "library breakpoints:\n");
2568 }
2569 *disabled_breaks = 1;
2570 fprintf_unfiltered (tmp_error_stream,
2571 "breakpoint #%d\n", bl->owner->number);
2572 }
2573 else
2574 {
2575 if (bl->loc_type == bp_loc_hardware_breakpoint)
2576 {
2577 *hw_breakpoint_error = 1;
2578 *hw_bp_error_explained_already = hw_bp_err_string != NULL;
2579 fprintf_unfiltered (tmp_error_stream,
2580 "Cannot insert hardware breakpoint %d%s",
2581 bl->owner->number, hw_bp_err_string ? ":" : ".\n");
2582 if (hw_bp_err_string)
2583 fprintf_unfiltered (tmp_error_stream, "%s.\n", hw_bp_err_string);
2584 }
2585 else
2586 {
2587 char *message = memory_error_message (TARGET_XFER_E_IO,
2588 bl->gdbarch, bl->address);
2589 struct cleanup *old_chain = make_cleanup (xfree, message);
2590
2591 fprintf_unfiltered (tmp_error_stream,
2592 "Cannot insert breakpoint %d.\n"
2593 "%s\n",
2594 bl->owner->number, message);
2595
2596 do_cleanups (old_chain);
2597 }
2598
2599 }
2600 }
2601 else
2602 bl->inserted = 1;
2603
2604 return val;
2605 }
2606
2607 else if (bl->loc_type == bp_loc_hardware_watchpoint
2608 /* NOTE drow/2003-09-08: This state only exists for removing
2609 watchpoints. It's not clear that it's necessary... */
2610 && bl->owner->disposition != disp_del_at_next_stop)
2611 {
2612 gdb_assert (bl->owner->ops != NULL
2613 && bl->owner->ops->insert_location != NULL);
2614
2615 val = bl->owner->ops->insert_location (bl);
2616
2617 /* If trying to set a read-watchpoint, and it turns out it's not
2618 supported, try emulating one with an access watchpoint. */
2619 if (val == 1 && bl->watchpoint_type == hw_read)
2620 {
2621 struct bp_location *loc, **loc_temp;
2622
2623 /* But don't try to insert it, if there's already another
2624 hw_access location that would be considered a duplicate
2625 of this one. */
2626 ALL_BP_LOCATIONS (loc, loc_temp)
2627 if (loc != bl
2628 && loc->watchpoint_type == hw_access
2629 && watchpoint_locations_match (bl, loc))
2630 {
2631 bl->duplicate = 1;
2632 bl->inserted = 1;
2633 bl->target_info = loc->target_info;
2634 bl->watchpoint_type = hw_access;
2635 val = 0;
2636 break;
2637 }
2638
2639 if (val == 1)
2640 {
2641 bl->watchpoint_type = hw_access;
2642 val = bl->owner->ops->insert_location (bl);
2643
2644 if (val)
2645 /* Back to the original value. */
2646 bl->watchpoint_type = hw_read;
2647 }
2648 }
2649
2650 bl->inserted = (val == 0);
2651 }
2652
2653 else if (bl->owner->type == bp_catchpoint)
2654 {
2655 gdb_assert (bl->owner->ops != NULL
2656 && bl->owner->ops->insert_location != NULL);
2657
2658 val = bl->owner->ops->insert_location (bl);
2659 if (val)
2660 {
2661 bl->owner->enable_state = bp_disabled;
2662
2663 if (val == 1)
2664 warning (_("\
2665 Error inserting catchpoint %d: Your system does not support this type\n\
2666 of catchpoint."), bl->owner->number);
2667 else
2668 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2669 }
2670
2671 bl->inserted = (val == 0);
2672
2673 /* We've already printed an error message if there was a problem
2674 inserting this catchpoint, and we've disabled the catchpoint,
2675 so just return success. */
2676 return 0;
2677 }
2678
2679 return 0;
2680 }
2681
2682 /* This function is called when program space PSPACE is about to be
2683 deleted. It takes care of updating breakpoints to not reference
2684 PSPACE anymore. */
2685
2686 void
2687 breakpoint_program_space_exit (struct program_space *pspace)
2688 {
2689 struct breakpoint *b, *b_temp;
2690 struct bp_location *loc, **loc_temp;
2691
2692 /* Remove any breakpoint that was set through this program space. */
2693 ALL_BREAKPOINTS_SAFE (b, b_temp)
2694 {
2695 if (b->pspace == pspace)
2696 delete_breakpoint (b);
2697 }
2698
2699 /* Breakpoints set through other program spaces could have locations
2700 bound to PSPACE as well. Remove those. */
2701 ALL_BP_LOCATIONS (loc, loc_temp)
2702 {
2703 struct bp_location *tmp;
2704
2705 if (loc->pspace == pspace)
2706 {
2707 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2708 if (loc->owner->loc == loc)
2709 loc->owner->loc = loc->next;
2710 else
2711 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2712 if (tmp->next == loc)
2713 {
2714 tmp->next = loc->next;
2715 break;
2716 }
2717 }
2718 }
2719
2720 /* Now update the global location list to permanently delete the
2721 removed locations above. */
2722 update_global_location_list (0);
2723 }
2724
2725 /* Make sure all breakpoints are inserted in inferior.
2726 Throws exception on any error.
2727 A breakpoint that is already inserted won't be inserted
2728 again, so calling this function twice is safe. */
2729 void
2730 insert_breakpoints (void)
2731 {
2732 struct breakpoint *bpt;
2733
2734 ALL_BREAKPOINTS (bpt)
2735 if (is_hardware_watchpoint (bpt))
2736 {
2737 struct watchpoint *w = (struct watchpoint *) bpt;
2738
2739 update_watchpoint (w, 0 /* don't reparse. */);
2740 }
2741
2742 update_global_location_list (1);
2743
2744 /* update_global_location_list does not insert breakpoints when
2745 always_inserted_mode is not enabled. Explicitly insert them
2746 now. */
2747 if (!breakpoints_always_inserted_mode ())
2748 insert_breakpoint_locations ();
2749 }
2750
2751 /* Invoke CALLBACK for each of bp_location. */
2752
2753 void
2754 iterate_over_bp_locations (walk_bp_location_callback callback)
2755 {
2756 struct bp_location *loc, **loc_tmp;
2757
2758 ALL_BP_LOCATIONS (loc, loc_tmp)
2759 {
2760 callback (loc, NULL);
2761 }
2762 }
2763
2764 /* This is used when we need to synch breakpoint conditions between GDB and the
2765 target. It is the case with deleting and disabling of breakpoints when using
2766 always-inserted mode. */
2767
2768 static void
2769 update_inserted_breakpoint_locations (void)
2770 {
2771 struct bp_location *bl, **blp_tmp;
2772 int error_flag = 0;
2773 int val = 0;
2774 int disabled_breaks = 0;
2775 int hw_breakpoint_error = 0;
2776 int hw_bp_details_reported = 0;
2777
2778 struct ui_file *tmp_error_stream = mem_fileopen ();
2779 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2780
2781 /* Explicitly mark the warning -- this will only be printed if
2782 there was an error. */
2783 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2784
2785 save_current_space_and_thread ();
2786
2787 ALL_BP_LOCATIONS (bl, blp_tmp)
2788 {
2789 /* We only want to update software breakpoints and hardware
2790 breakpoints. */
2791 if (!is_breakpoint (bl->owner))
2792 continue;
2793
2794 /* We only want to update locations that are already inserted
2795 and need updating. This is to avoid unwanted insertion during
2796 deletion of breakpoints. */
2797 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2798 continue;
2799
2800 switch_to_program_space_and_thread (bl->pspace);
2801
2802 /* For targets that support global breakpoints, there's no need
2803 to select an inferior to insert breakpoint to. In fact, even
2804 if we aren't attached to any process yet, we should still
2805 insert breakpoints. */
2806 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2807 && ptid_equal (inferior_ptid, null_ptid))
2808 continue;
2809
2810 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2811 &hw_breakpoint_error, &hw_bp_details_reported);
2812 if (val)
2813 error_flag = val;
2814 }
2815
2816 if (error_flag)
2817 {
2818 target_terminal_ours_for_output ();
2819 error_stream (tmp_error_stream);
2820 }
2821
2822 do_cleanups (cleanups);
2823 }
2824
2825 /* Used when starting or continuing the program. */
2826
2827 static void
2828 insert_breakpoint_locations (void)
2829 {
2830 struct breakpoint *bpt;
2831 struct bp_location *bl, **blp_tmp;
2832 int error_flag = 0;
2833 int val = 0;
2834 int disabled_breaks = 0;
2835 int hw_breakpoint_error = 0;
2836 int hw_bp_error_explained_already = 0;
2837
2838 struct ui_file *tmp_error_stream = mem_fileopen ();
2839 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2840
2841 /* Explicitly mark the warning -- this will only be printed if
2842 there was an error. */
2843 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2844
2845 save_current_space_and_thread ();
2846
2847 ALL_BP_LOCATIONS (bl, blp_tmp)
2848 {
2849 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2850 continue;
2851
2852 /* There is no point inserting thread-specific breakpoints if
2853 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2854 has BL->OWNER always non-NULL. */
2855 if (bl->owner->thread != -1
2856 && !valid_thread_id (bl->owner->thread))
2857 continue;
2858
2859 switch_to_program_space_and_thread (bl->pspace);
2860
2861 /* For targets that support global breakpoints, there's no need
2862 to select an inferior to insert breakpoint to. In fact, even
2863 if we aren't attached to any process yet, we should still
2864 insert breakpoints. */
2865 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2866 && ptid_equal (inferior_ptid, null_ptid))
2867 continue;
2868
2869 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2870 &hw_breakpoint_error, &hw_bp_error_explained_already);
2871 if (val)
2872 error_flag = val;
2873 }
2874
2875 /* If we failed to insert all locations of a watchpoint, remove
2876 them, as half-inserted watchpoint is of limited use. */
2877 ALL_BREAKPOINTS (bpt)
2878 {
2879 int some_failed = 0;
2880 struct bp_location *loc;
2881
2882 if (!is_hardware_watchpoint (bpt))
2883 continue;
2884
2885 if (!breakpoint_enabled (bpt))
2886 continue;
2887
2888 if (bpt->disposition == disp_del_at_next_stop)
2889 continue;
2890
2891 for (loc = bpt->loc; loc; loc = loc->next)
2892 if (!loc->inserted && should_be_inserted (loc))
2893 {
2894 some_failed = 1;
2895 break;
2896 }
2897 if (some_failed)
2898 {
2899 for (loc = bpt->loc; loc; loc = loc->next)
2900 if (loc->inserted)
2901 remove_breakpoint (loc, mark_uninserted);
2902
2903 hw_breakpoint_error = 1;
2904 fprintf_unfiltered (tmp_error_stream,
2905 "Could not insert hardware watchpoint %d.\n",
2906 bpt->number);
2907 error_flag = -1;
2908 }
2909 }
2910
2911 if (error_flag)
2912 {
2913 /* If a hardware breakpoint or watchpoint was inserted, add a
2914 message about possibly exhausted resources. */
2915 if (hw_breakpoint_error && !hw_bp_error_explained_already)
2916 {
2917 fprintf_unfiltered (tmp_error_stream,
2918 "Could not insert hardware breakpoints:\n\
2919 You may have requested too many hardware breakpoints/watchpoints.\n");
2920 }
2921 target_terminal_ours_for_output ();
2922 error_stream (tmp_error_stream);
2923 }
2924
2925 do_cleanups (cleanups);
2926 }
2927
2928 /* Used when the program stops.
2929 Returns zero if successful, or non-zero if there was a problem
2930 removing a breakpoint location. */
2931
2932 int
2933 remove_breakpoints (void)
2934 {
2935 struct bp_location *bl, **blp_tmp;
2936 int val = 0;
2937
2938 ALL_BP_LOCATIONS (bl, blp_tmp)
2939 {
2940 if (bl->inserted && !is_tracepoint (bl->owner))
2941 val |= remove_breakpoint (bl, mark_uninserted);
2942 }
2943 return val;
2944 }
2945
2946 /* When a thread exits, remove breakpoints that are related to
2947 that thread. */
2948
2949 static void
2950 remove_threaded_breakpoints (struct thread_info *tp, int silent)
2951 {
2952 struct breakpoint *b, *b_tmp;
2953
2954 ALL_BREAKPOINTS_SAFE (b, b_tmp)
2955 {
2956 if (b->thread == tp->num && user_breakpoint_p (b))
2957 {
2958 b->disposition = disp_del_at_next_stop;
2959
2960 printf_filtered (_("\
2961 Thread-specific breakpoint %d deleted - thread %d no longer in the thread list.\n"),
2962 b->number, tp->num);
2963
2964 /* Hide it from the user. */
2965 b->number = 0;
2966 }
2967 }
2968 }
2969
2970 /* Remove breakpoints of process PID. */
2971
2972 int
2973 remove_breakpoints_pid (int pid)
2974 {
2975 struct bp_location *bl, **blp_tmp;
2976 int val;
2977 struct inferior *inf = find_inferior_pid (pid);
2978
2979 ALL_BP_LOCATIONS (bl, blp_tmp)
2980 {
2981 if (bl->pspace != inf->pspace)
2982 continue;
2983
2984 if (bl->owner->type == bp_dprintf)
2985 continue;
2986
2987 if (bl->inserted)
2988 {
2989 val = remove_breakpoint (bl, mark_uninserted);
2990 if (val != 0)
2991 return val;
2992 }
2993 }
2994 return 0;
2995 }
2996
2997 int
2998 reattach_breakpoints (int pid)
2999 {
3000 struct cleanup *old_chain;
3001 struct bp_location *bl, **blp_tmp;
3002 int val;
3003 struct ui_file *tmp_error_stream;
3004 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3005 struct inferior *inf;
3006 struct thread_info *tp;
3007
3008 tp = any_live_thread_of_process (pid);
3009 if (tp == NULL)
3010 return 1;
3011
3012 inf = find_inferior_pid (pid);
3013 old_chain = save_inferior_ptid ();
3014
3015 inferior_ptid = tp->ptid;
3016
3017 tmp_error_stream = mem_fileopen ();
3018 make_cleanup_ui_file_delete (tmp_error_stream);
3019
3020 ALL_BP_LOCATIONS (bl, blp_tmp)
3021 {
3022 if (bl->pspace != inf->pspace)
3023 continue;
3024
3025 if (bl->inserted)
3026 {
3027 bl->inserted = 0;
3028 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3029 if (val != 0)
3030 {
3031 do_cleanups (old_chain);
3032 return val;
3033 }
3034 }
3035 }
3036 do_cleanups (old_chain);
3037 return 0;
3038 }
3039
3040 static int internal_breakpoint_number = -1;
3041
3042 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3043 If INTERNAL is non-zero, the breakpoint number will be populated
3044 from internal_breakpoint_number and that variable decremented.
3045 Otherwise the breakpoint number will be populated from
3046 breakpoint_count and that value incremented. Internal breakpoints
3047 do not set the internal var bpnum. */
3048 static void
3049 set_breakpoint_number (int internal, struct breakpoint *b)
3050 {
3051 if (internal)
3052 b->number = internal_breakpoint_number--;
3053 else
3054 {
3055 set_breakpoint_count (breakpoint_count + 1);
3056 b->number = breakpoint_count;
3057 }
3058 }
3059
3060 static struct breakpoint *
3061 create_internal_breakpoint (struct gdbarch *gdbarch,
3062 CORE_ADDR address, enum bptype type,
3063 const struct breakpoint_ops *ops)
3064 {
3065 struct symtab_and_line sal;
3066 struct breakpoint *b;
3067
3068 init_sal (&sal); /* Initialize to zeroes. */
3069
3070 sal.pc = address;
3071 sal.section = find_pc_overlay (sal.pc);
3072 sal.pspace = current_program_space;
3073
3074 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3075 b->number = internal_breakpoint_number--;
3076 b->disposition = disp_donttouch;
3077
3078 return b;
3079 }
3080
3081 static const char *const longjmp_names[] =
3082 {
3083 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3084 };
3085 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3086
3087 /* Per-objfile data private to breakpoint.c. */
3088 struct breakpoint_objfile_data
3089 {
3090 /* Minimal symbol for "_ovly_debug_event" (if any). */
3091 struct minimal_symbol *overlay_msym;
3092
3093 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3094 struct minimal_symbol *longjmp_msym[NUM_LONGJMP_NAMES];
3095
3096 /* True if we have looked for longjmp probes. */
3097 int longjmp_searched;
3098
3099 /* SystemTap probe points for longjmp (if any). */
3100 VEC (probe_p) *longjmp_probes;
3101
3102 /* Minimal symbol for "std::terminate()" (if any). */
3103 struct minimal_symbol *terminate_msym;
3104
3105 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3106 struct minimal_symbol *exception_msym;
3107
3108 /* True if we have looked for exception probes. */
3109 int exception_searched;
3110
3111 /* SystemTap probe points for unwinding (if any). */
3112 VEC (probe_p) *exception_probes;
3113 };
3114
3115 static const struct objfile_data *breakpoint_objfile_key;
3116
3117 /* Minimal symbol not found sentinel. */
3118 static struct minimal_symbol msym_not_found;
3119
3120 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3121
3122 static int
3123 msym_not_found_p (const struct minimal_symbol *msym)
3124 {
3125 return msym == &msym_not_found;
3126 }
3127
3128 /* Return per-objfile data needed by breakpoint.c.
3129 Allocate the data if necessary. */
3130
3131 static struct breakpoint_objfile_data *
3132 get_breakpoint_objfile_data (struct objfile *objfile)
3133 {
3134 struct breakpoint_objfile_data *bp_objfile_data;
3135
3136 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3137 if (bp_objfile_data == NULL)
3138 {
3139 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3140 sizeof (*bp_objfile_data));
3141
3142 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3143 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3144 }
3145 return bp_objfile_data;
3146 }
3147
3148 static void
3149 free_breakpoint_probes (struct objfile *obj, void *data)
3150 {
3151 struct breakpoint_objfile_data *bp_objfile_data = data;
3152
3153 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3154 VEC_free (probe_p, bp_objfile_data->exception_probes);
3155 }
3156
3157 static void
3158 create_overlay_event_breakpoint (void)
3159 {
3160 struct objfile *objfile;
3161 const char *const func_name = "_ovly_debug_event";
3162
3163 ALL_OBJFILES (objfile)
3164 {
3165 struct breakpoint *b;
3166 struct breakpoint_objfile_data *bp_objfile_data;
3167 CORE_ADDR addr;
3168
3169 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3170
3171 if (msym_not_found_p (bp_objfile_data->overlay_msym))
3172 continue;
3173
3174 if (bp_objfile_data->overlay_msym == NULL)
3175 {
3176 struct minimal_symbol *m;
3177
3178 m = lookup_minimal_symbol_text (func_name, objfile);
3179 if (m == NULL)
3180 {
3181 /* Avoid future lookups in this objfile. */
3182 bp_objfile_data->overlay_msym = &msym_not_found;
3183 continue;
3184 }
3185 bp_objfile_data->overlay_msym = m;
3186 }
3187
3188 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3189 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3190 bp_overlay_event,
3191 &internal_breakpoint_ops);
3192 b->addr_string = xstrdup (func_name);
3193
3194 if (overlay_debugging == ovly_auto)
3195 {
3196 b->enable_state = bp_enabled;
3197 overlay_events_enabled = 1;
3198 }
3199 else
3200 {
3201 b->enable_state = bp_disabled;
3202 overlay_events_enabled = 0;
3203 }
3204 }
3205 update_global_location_list (1);
3206 }
3207
3208 static void
3209 create_longjmp_master_breakpoint (void)
3210 {
3211 struct program_space *pspace;
3212 struct cleanup *old_chain;
3213
3214 old_chain = save_current_program_space ();
3215
3216 ALL_PSPACES (pspace)
3217 {
3218 struct objfile *objfile;
3219
3220 set_current_program_space (pspace);
3221
3222 ALL_OBJFILES (objfile)
3223 {
3224 int i;
3225 struct gdbarch *gdbarch;
3226 struct breakpoint_objfile_data *bp_objfile_data;
3227
3228 gdbarch = get_objfile_arch (objfile);
3229
3230 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3231
3232 if (!bp_objfile_data->longjmp_searched)
3233 {
3234 VEC (probe_p) *ret;
3235
3236 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3237 if (ret != NULL)
3238 {
3239 /* We are only interested in checking one element. */
3240 struct probe *p = VEC_index (probe_p, ret, 0);
3241
3242 if (!can_evaluate_probe_arguments (p))
3243 {
3244 /* We cannot use the probe interface here, because it does
3245 not know how to evaluate arguments. */
3246 VEC_free (probe_p, ret);
3247 ret = NULL;
3248 }
3249 }
3250 bp_objfile_data->longjmp_probes = ret;
3251 bp_objfile_data->longjmp_searched = 1;
3252 }
3253
3254 if (bp_objfile_data->longjmp_probes != NULL)
3255 {
3256 int i;
3257 struct probe *probe;
3258 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3259
3260 for (i = 0;
3261 VEC_iterate (probe_p,
3262 bp_objfile_data->longjmp_probes,
3263 i, probe);
3264 ++i)
3265 {
3266 struct breakpoint *b;
3267
3268 b = create_internal_breakpoint (gdbarch, probe->address,
3269 bp_longjmp_master,
3270 &internal_breakpoint_ops);
3271 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3272 b->enable_state = bp_disabled;
3273 }
3274
3275 continue;
3276 }
3277
3278 if (!gdbarch_get_longjmp_target_p (gdbarch))
3279 continue;
3280
3281 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3282 {
3283 struct breakpoint *b;
3284 const char *func_name;
3285 CORE_ADDR addr;
3286
3287 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i]))
3288 continue;
3289
3290 func_name = longjmp_names[i];
3291 if (bp_objfile_data->longjmp_msym[i] == NULL)
3292 {
3293 struct minimal_symbol *m;
3294
3295 m = lookup_minimal_symbol_text (func_name, objfile);
3296 if (m == NULL)
3297 {
3298 /* Prevent future lookups in this objfile. */
3299 bp_objfile_data->longjmp_msym[i] = &msym_not_found;
3300 continue;
3301 }
3302 bp_objfile_data->longjmp_msym[i] = m;
3303 }
3304
3305 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3306 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3307 &internal_breakpoint_ops);
3308 b->addr_string = xstrdup (func_name);
3309 b->enable_state = bp_disabled;
3310 }
3311 }
3312 }
3313 update_global_location_list (1);
3314
3315 do_cleanups (old_chain);
3316 }
3317
3318 /* Create a master std::terminate breakpoint. */
3319 static void
3320 create_std_terminate_master_breakpoint (void)
3321 {
3322 struct program_space *pspace;
3323 struct cleanup *old_chain;
3324 const char *const func_name = "std::terminate()";
3325
3326 old_chain = save_current_program_space ();
3327
3328 ALL_PSPACES (pspace)
3329 {
3330 struct objfile *objfile;
3331 CORE_ADDR addr;
3332
3333 set_current_program_space (pspace);
3334
3335 ALL_OBJFILES (objfile)
3336 {
3337 struct breakpoint *b;
3338 struct breakpoint_objfile_data *bp_objfile_data;
3339
3340 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3341
3342 if (msym_not_found_p (bp_objfile_data->terminate_msym))
3343 continue;
3344
3345 if (bp_objfile_data->terminate_msym == NULL)
3346 {
3347 struct minimal_symbol *m;
3348
3349 m = lookup_minimal_symbol (func_name, NULL, objfile);
3350 if (m == NULL || (MSYMBOL_TYPE (m) != mst_text
3351 && MSYMBOL_TYPE (m) != mst_file_text))
3352 {
3353 /* Prevent future lookups in this objfile. */
3354 bp_objfile_data->terminate_msym = &msym_not_found;
3355 continue;
3356 }
3357 bp_objfile_data->terminate_msym = m;
3358 }
3359
3360 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3361 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3362 bp_std_terminate_master,
3363 &internal_breakpoint_ops);
3364 b->addr_string = xstrdup (func_name);
3365 b->enable_state = bp_disabled;
3366 }
3367 }
3368
3369 update_global_location_list (1);
3370
3371 do_cleanups (old_chain);
3372 }
3373
3374 /* Install a master breakpoint on the unwinder's debug hook. */
3375
3376 static void
3377 create_exception_master_breakpoint (void)
3378 {
3379 struct objfile *objfile;
3380 const char *const func_name = "_Unwind_DebugHook";
3381
3382 ALL_OBJFILES (objfile)
3383 {
3384 struct breakpoint *b;
3385 struct gdbarch *gdbarch;
3386 struct breakpoint_objfile_data *bp_objfile_data;
3387 CORE_ADDR addr;
3388
3389 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3390
3391 /* We prefer the SystemTap probe point if it exists. */
3392 if (!bp_objfile_data->exception_searched)
3393 {
3394 VEC (probe_p) *ret;
3395
3396 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3397
3398 if (ret != NULL)
3399 {
3400 /* We are only interested in checking one element. */
3401 struct probe *p = VEC_index (probe_p, ret, 0);
3402
3403 if (!can_evaluate_probe_arguments (p))
3404 {
3405 /* We cannot use the probe interface here, because it does
3406 not know how to evaluate arguments. */
3407 VEC_free (probe_p, ret);
3408 ret = NULL;
3409 }
3410 }
3411 bp_objfile_data->exception_probes = ret;
3412 bp_objfile_data->exception_searched = 1;
3413 }
3414
3415 if (bp_objfile_data->exception_probes != NULL)
3416 {
3417 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3418 int i;
3419 struct probe *probe;
3420
3421 for (i = 0;
3422 VEC_iterate (probe_p,
3423 bp_objfile_data->exception_probes,
3424 i, probe);
3425 ++i)
3426 {
3427 struct breakpoint *b;
3428
3429 b = create_internal_breakpoint (gdbarch, probe->address,
3430 bp_exception_master,
3431 &internal_breakpoint_ops);
3432 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3433 b->enable_state = bp_disabled;
3434 }
3435
3436 continue;
3437 }
3438
3439 /* Otherwise, try the hook function. */
3440
3441 if (msym_not_found_p (bp_objfile_data->exception_msym))
3442 continue;
3443
3444 gdbarch = get_objfile_arch (objfile);
3445
3446 if (bp_objfile_data->exception_msym == NULL)
3447 {
3448 struct minimal_symbol *debug_hook;
3449
3450 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3451 if (debug_hook == NULL)
3452 {
3453 bp_objfile_data->exception_msym = &msym_not_found;
3454 continue;
3455 }
3456
3457 bp_objfile_data->exception_msym = debug_hook;
3458 }
3459
3460 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3461 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3462 &current_target);
3463 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3464 &internal_breakpoint_ops);
3465 b->addr_string = xstrdup (func_name);
3466 b->enable_state = bp_disabled;
3467 }
3468
3469 update_global_location_list (1);
3470 }
3471
3472 void
3473 update_breakpoints_after_exec (void)
3474 {
3475 struct breakpoint *b, *b_tmp;
3476 struct bp_location *bploc, **bplocp_tmp;
3477
3478 /* We're about to delete breakpoints from GDB's lists. If the
3479 INSERTED flag is true, GDB will try to lift the breakpoints by
3480 writing the breakpoints' "shadow contents" back into memory. The
3481 "shadow contents" are NOT valid after an exec, so GDB should not
3482 do that. Instead, the target is responsible from marking
3483 breakpoints out as soon as it detects an exec. We don't do that
3484 here instead, because there may be other attempts to delete
3485 breakpoints after detecting an exec and before reaching here. */
3486 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3487 if (bploc->pspace == current_program_space)
3488 gdb_assert (!bploc->inserted);
3489
3490 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3491 {
3492 if (b->pspace != current_program_space)
3493 continue;
3494
3495 /* Solib breakpoints must be explicitly reset after an exec(). */
3496 if (b->type == bp_shlib_event)
3497 {
3498 delete_breakpoint (b);
3499 continue;
3500 }
3501
3502 /* JIT breakpoints must be explicitly reset after an exec(). */
3503 if (b->type == bp_jit_event)
3504 {
3505 delete_breakpoint (b);
3506 continue;
3507 }
3508
3509 /* Thread event breakpoints must be set anew after an exec(),
3510 as must overlay event and longjmp master breakpoints. */
3511 if (b->type == bp_thread_event || b->type == bp_overlay_event
3512 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3513 || b->type == bp_exception_master)
3514 {
3515 delete_breakpoint (b);
3516 continue;
3517 }
3518
3519 /* Step-resume breakpoints are meaningless after an exec(). */
3520 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3521 {
3522 delete_breakpoint (b);
3523 continue;
3524 }
3525
3526 /* Longjmp and longjmp-resume breakpoints are also meaningless
3527 after an exec. */
3528 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3529 || b->type == bp_longjmp_call_dummy
3530 || b->type == bp_exception || b->type == bp_exception_resume)
3531 {
3532 delete_breakpoint (b);
3533 continue;
3534 }
3535
3536 if (b->type == bp_catchpoint)
3537 {
3538 /* For now, none of the bp_catchpoint breakpoints need to
3539 do anything at this point. In the future, if some of
3540 the catchpoints need to something, we will need to add
3541 a new method, and call this method from here. */
3542 continue;
3543 }
3544
3545 /* bp_finish is a special case. The only way we ought to be able
3546 to see one of these when an exec() has happened, is if the user
3547 caught a vfork, and then said "finish". Ordinarily a finish just
3548 carries them to the call-site of the current callee, by setting
3549 a temporary bp there and resuming. But in this case, the finish
3550 will carry them entirely through the vfork & exec.
3551
3552 We don't want to allow a bp_finish to remain inserted now. But
3553 we can't safely delete it, 'cause finish_command has a handle to
3554 the bp on a bpstat, and will later want to delete it. There's a
3555 chance (and I've seen it happen) that if we delete the bp_finish
3556 here, that its storage will get reused by the time finish_command
3557 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3558 We really must allow finish_command to delete a bp_finish.
3559
3560 In the absence of a general solution for the "how do we know
3561 it's safe to delete something others may have handles to?"
3562 problem, what we'll do here is just uninsert the bp_finish, and
3563 let finish_command delete it.
3564
3565 (We know the bp_finish is "doomed" in the sense that it's
3566 momentary, and will be deleted as soon as finish_command sees
3567 the inferior stopped. So it doesn't matter that the bp's
3568 address is probably bogus in the new a.out, unlike e.g., the
3569 solib breakpoints.) */
3570
3571 if (b->type == bp_finish)
3572 {
3573 continue;
3574 }
3575
3576 /* Without a symbolic address, we have little hope of the
3577 pre-exec() address meaning the same thing in the post-exec()
3578 a.out. */
3579 if (b->addr_string == NULL)
3580 {
3581 delete_breakpoint (b);
3582 continue;
3583 }
3584 }
3585 /* FIXME what about longjmp breakpoints? Re-create them here? */
3586 create_overlay_event_breakpoint ();
3587 create_longjmp_master_breakpoint ();
3588 create_std_terminate_master_breakpoint ();
3589 create_exception_master_breakpoint ();
3590 }
3591
3592 int
3593 detach_breakpoints (ptid_t ptid)
3594 {
3595 struct bp_location *bl, **blp_tmp;
3596 int val = 0;
3597 struct cleanup *old_chain = save_inferior_ptid ();
3598 struct inferior *inf = current_inferior ();
3599
3600 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3601 error (_("Cannot detach breakpoints of inferior_ptid"));
3602
3603 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3604 inferior_ptid = ptid;
3605 ALL_BP_LOCATIONS (bl, blp_tmp)
3606 {
3607 if (bl->pspace != inf->pspace)
3608 continue;
3609
3610 /* This function must physically remove breakpoints locations
3611 from the specified ptid, without modifying the breakpoint
3612 package's state. Locations of type bp_loc_other are only
3613 maintained at GDB side. So, there is no need to remove
3614 these bp_loc_other locations. Moreover, removing these
3615 would modify the breakpoint package's state. */
3616 if (bl->loc_type == bp_loc_other)
3617 continue;
3618
3619 if (bl->inserted)
3620 val |= remove_breakpoint_1 (bl, mark_inserted);
3621 }
3622
3623 /* Detach single-step breakpoints as well. */
3624 detach_single_step_breakpoints ();
3625
3626 do_cleanups (old_chain);
3627 return val;
3628 }
3629
3630 /* Remove the breakpoint location BL from the current address space.
3631 Note that this is used to detach breakpoints from a child fork.
3632 When we get here, the child isn't in the inferior list, and neither
3633 do we have objects to represent its address space --- we should
3634 *not* look at bl->pspace->aspace here. */
3635
3636 static int
3637 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3638 {
3639 int val;
3640
3641 /* BL is never in moribund_locations by our callers. */
3642 gdb_assert (bl->owner != NULL);
3643
3644 if (bl->owner->enable_state == bp_permanent)
3645 /* Permanent breakpoints cannot be inserted or removed. */
3646 return 0;
3647
3648 /* The type of none suggests that owner is actually deleted.
3649 This should not ever happen. */
3650 gdb_assert (bl->owner->type != bp_none);
3651
3652 if (bl->loc_type == bp_loc_software_breakpoint
3653 || bl->loc_type == bp_loc_hardware_breakpoint)
3654 {
3655 /* "Normal" instruction breakpoint: either the standard
3656 trap-instruction bp (bp_breakpoint), or a
3657 bp_hardware_breakpoint. */
3658
3659 /* First check to see if we have to handle an overlay. */
3660 if (overlay_debugging == ovly_off
3661 || bl->section == NULL
3662 || !(section_is_overlay (bl->section)))
3663 {
3664 /* No overlay handling: just remove the breakpoint. */
3665 val = bl->owner->ops->remove_location (bl);
3666 }
3667 else
3668 {
3669 /* This breakpoint is in an overlay section.
3670 Did we set a breakpoint at the LMA? */
3671 if (!overlay_events_enabled)
3672 {
3673 /* Yes -- overlay event support is not active, so we
3674 should have set a breakpoint at the LMA. Remove it.
3675 */
3676 /* Ignore any failures: if the LMA is in ROM, we will
3677 have already warned when we failed to insert it. */
3678 if (bl->loc_type == bp_loc_hardware_breakpoint)
3679 target_remove_hw_breakpoint (bl->gdbarch,
3680 &bl->overlay_target_info);
3681 else
3682 target_remove_breakpoint (bl->gdbarch,
3683 &bl->overlay_target_info);
3684 }
3685 /* Did we set a breakpoint at the VMA?
3686 If so, we will have marked the breakpoint 'inserted'. */
3687 if (bl->inserted)
3688 {
3689 /* Yes -- remove it. Previously we did not bother to
3690 remove the breakpoint if the section had been
3691 unmapped, but let's not rely on that being safe. We
3692 don't know what the overlay manager might do. */
3693
3694 /* However, we should remove *software* breakpoints only
3695 if the section is still mapped, or else we overwrite
3696 wrong code with the saved shadow contents. */
3697 if (bl->loc_type == bp_loc_hardware_breakpoint
3698 || section_is_mapped (bl->section))
3699 val = bl->owner->ops->remove_location (bl);
3700 else
3701 val = 0;
3702 }
3703 else
3704 {
3705 /* No -- not inserted, so no need to remove. No error. */
3706 val = 0;
3707 }
3708 }
3709
3710 /* In some cases, we might not be able to remove a breakpoint
3711 in a shared library that has already been removed, but we
3712 have not yet processed the shlib unload event. */
3713 if (val && solib_name_from_address (bl->pspace, bl->address))
3714 val = 0;
3715
3716 if (val)
3717 return val;
3718 bl->inserted = (is == mark_inserted);
3719 }
3720 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3721 {
3722 gdb_assert (bl->owner->ops != NULL
3723 && bl->owner->ops->remove_location != NULL);
3724
3725 bl->inserted = (is == mark_inserted);
3726 bl->owner->ops->remove_location (bl);
3727
3728 /* Failure to remove any of the hardware watchpoints comes here. */
3729 if ((is == mark_uninserted) && (bl->inserted))
3730 warning (_("Could not remove hardware watchpoint %d."),
3731 bl->owner->number);
3732 }
3733 else if (bl->owner->type == bp_catchpoint
3734 && breakpoint_enabled (bl->owner)
3735 && !bl->duplicate)
3736 {
3737 gdb_assert (bl->owner->ops != NULL
3738 && bl->owner->ops->remove_location != NULL);
3739
3740 val = bl->owner->ops->remove_location (bl);
3741 if (val)
3742 return val;
3743
3744 bl->inserted = (is == mark_inserted);
3745 }
3746
3747 return 0;
3748 }
3749
3750 static int
3751 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
3752 {
3753 int ret;
3754 struct cleanup *old_chain;
3755
3756 /* BL is never in moribund_locations by our callers. */
3757 gdb_assert (bl->owner != NULL);
3758
3759 if (bl->owner->enable_state == bp_permanent)
3760 /* Permanent breakpoints cannot be inserted or removed. */
3761 return 0;
3762
3763 /* The type of none suggests that owner is actually deleted.
3764 This should not ever happen. */
3765 gdb_assert (bl->owner->type != bp_none);
3766
3767 old_chain = save_current_space_and_thread ();
3768
3769 switch_to_program_space_and_thread (bl->pspace);
3770
3771 ret = remove_breakpoint_1 (bl, is);
3772
3773 do_cleanups (old_chain);
3774 return ret;
3775 }
3776
3777 /* Clear the "inserted" flag in all breakpoints. */
3778
3779 void
3780 mark_breakpoints_out (void)
3781 {
3782 struct bp_location *bl, **blp_tmp;
3783
3784 ALL_BP_LOCATIONS (bl, blp_tmp)
3785 if (bl->pspace == current_program_space)
3786 bl->inserted = 0;
3787 }
3788
3789 /* Clear the "inserted" flag in all breakpoints and delete any
3790 breakpoints which should go away between runs of the program.
3791
3792 Plus other such housekeeping that has to be done for breakpoints
3793 between runs.
3794
3795 Note: this function gets called at the end of a run (by
3796 generic_mourn_inferior) and when a run begins (by
3797 init_wait_for_inferior). */
3798
3799
3800
3801 void
3802 breakpoint_init_inferior (enum inf_context context)
3803 {
3804 struct breakpoint *b, *b_tmp;
3805 struct bp_location *bl, **blp_tmp;
3806 int ix;
3807 struct program_space *pspace = current_program_space;
3808
3809 /* If breakpoint locations are shared across processes, then there's
3810 nothing to do. */
3811 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3812 return;
3813
3814 ALL_BP_LOCATIONS (bl, blp_tmp)
3815 {
3816 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3817 if (bl->pspace == pspace
3818 && bl->owner->enable_state != bp_permanent)
3819 bl->inserted = 0;
3820 }
3821
3822 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3823 {
3824 if (b->loc && b->loc->pspace != pspace)
3825 continue;
3826
3827 switch (b->type)
3828 {
3829 case bp_call_dummy:
3830 case bp_longjmp_call_dummy:
3831
3832 /* If the call dummy breakpoint is at the entry point it will
3833 cause problems when the inferior is rerun, so we better get
3834 rid of it. */
3835
3836 case bp_watchpoint_scope:
3837
3838 /* Also get rid of scope breakpoints. */
3839
3840 case bp_shlib_event:
3841
3842 /* Also remove solib event breakpoints. Their addresses may
3843 have changed since the last time we ran the program.
3844 Actually we may now be debugging against different target;
3845 and so the solib backend that installed this breakpoint may
3846 not be used in by the target. E.g.,
3847
3848 (gdb) file prog-linux
3849 (gdb) run # native linux target
3850 ...
3851 (gdb) kill
3852 (gdb) file prog-win.exe
3853 (gdb) tar rem :9999 # remote Windows gdbserver.
3854 */
3855
3856 case bp_step_resume:
3857
3858 /* Also remove step-resume breakpoints. */
3859
3860 delete_breakpoint (b);
3861 break;
3862
3863 case bp_watchpoint:
3864 case bp_hardware_watchpoint:
3865 case bp_read_watchpoint:
3866 case bp_access_watchpoint:
3867 {
3868 struct watchpoint *w = (struct watchpoint *) b;
3869
3870 /* Likewise for watchpoints on local expressions. */
3871 if (w->exp_valid_block != NULL)
3872 delete_breakpoint (b);
3873 else if (context == inf_starting)
3874 {
3875 /* Reset val field to force reread of starting value in
3876 insert_breakpoints. */
3877 if (w->val)
3878 value_free (w->val);
3879 w->val = NULL;
3880 w->val_valid = 0;
3881 }
3882 }
3883 break;
3884 default:
3885 break;
3886 }
3887 }
3888
3889 /* Get rid of the moribund locations. */
3890 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3891 decref_bp_location (&bl);
3892 VEC_free (bp_location_p, moribund_locations);
3893 }
3894
3895 /* These functions concern about actual breakpoints inserted in the
3896 target --- to e.g. check if we need to do decr_pc adjustment or if
3897 we need to hop over the bkpt --- so we check for address space
3898 match, not program space. */
3899
3900 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3901 exists at PC. It returns ordinary_breakpoint_here if it's an
3902 ordinary breakpoint, or permanent_breakpoint_here if it's a
3903 permanent breakpoint.
3904 - When continuing from a location with an ordinary breakpoint, we
3905 actually single step once before calling insert_breakpoints.
3906 - When continuing from a location with a permanent breakpoint, we
3907 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3908 the target, to advance the PC past the breakpoint. */
3909
3910 enum breakpoint_here
3911 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3912 {
3913 struct bp_location *bl, **blp_tmp;
3914 int any_breakpoint_here = 0;
3915
3916 ALL_BP_LOCATIONS (bl, blp_tmp)
3917 {
3918 if (bl->loc_type != bp_loc_software_breakpoint
3919 && bl->loc_type != bp_loc_hardware_breakpoint)
3920 continue;
3921
3922 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3923 if ((breakpoint_enabled (bl->owner)
3924 || bl->owner->enable_state == bp_permanent)
3925 && breakpoint_location_address_match (bl, aspace, pc))
3926 {
3927 if (overlay_debugging
3928 && section_is_overlay (bl->section)
3929 && !section_is_mapped (bl->section))
3930 continue; /* unmapped overlay -- can't be a match */
3931 else if (bl->owner->enable_state == bp_permanent)
3932 return permanent_breakpoint_here;
3933 else
3934 any_breakpoint_here = 1;
3935 }
3936 }
3937
3938 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
3939 }
3940
3941 /* Return true if there's a moribund breakpoint at PC. */
3942
3943 int
3944 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3945 {
3946 struct bp_location *loc;
3947 int ix;
3948
3949 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
3950 if (breakpoint_location_address_match (loc, aspace, pc))
3951 return 1;
3952
3953 return 0;
3954 }
3955
3956 /* Returns non-zero if there's a breakpoint inserted at PC, which is
3957 inserted using regular breakpoint_chain / bp_location array
3958 mechanism. This does not check for single-step breakpoints, which
3959 are inserted and removed using direct target manipulation. */
3960
3961 int
3962 regular_breakpoint_inserted_here_p (struct address_space *aspace,
3963 CORE_ADDR pc)
3964 {
3965 struct bp_location *bl, **blp_tmp;
3966
3967 ALL_BP_LOCATIONS (bl, blp_tmp)
3968 {
3969 if (bl->loc_type != bp_loc_software_breakpoint
3970 && bl->loc_type != bp_loc_hardware_breakpoint)
3971 continue;
3972
3973 if (bl->inserted
3974 && breakpoint_location_address_match (bl, aspace, pc))
3975 {
3976 if (overlay_debugging
3977 && section_is_overlay (bl->section)
3978 && !section_is_mapped (bl->section))
3979 continue; /* unmapped overlay -- can't be a match */
3980 else
3981 return 1;
3982 }
3983 }
3984 return 0;
3985 }
3986
3987 /* Returns non-zero iff there's either regular breakpoint
3988 or a single step breakpoint inserted at PC. */
3989
3990 int
3991 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
3992 {
3993 if (regular_breakpoint_inserted_here_p (aspace, pc))
3994 return 1;
3995
3996 if (single_step_breakpoint_inserted_here_p (aspace, pc))
3997 return 1;
3998
3999 return 0;
4000 }
4001
4002 /* This function returns non-zero iff there is a software breakpoint
4003 inserted at PC. */
4004
4005 int
4006 software_breakpoint_inserted_here_p (struct address_space *aspace,
4007 CORE_ADDR pc)
4008 {
4009 struct bp_location *bl, **blp_tmp;
4010
4011 ALL_BP_LOCATIONS (bl, blp_tmp)
4012 {
4013 if (bl->loc_type != bp_loc_software_breakpoint)
4014 continue;
4015
4016 if (bl->inserted
4017 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4018 aspace, pc))
4019 {
4020 if (overlay_debugging
4021 && section_is_overlay (bl->section)
4022 && !section_is_mapped (bl->section))
4023 continue; /* unmapped overlay -- can't be a match */
4024 else
4025 return 1;
4026 }
4027 }
4028
4029 /* Also check for software single-step breakpoints. */
4030 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4031 return 1;
4032
4033 return 0;
4034 }
4035
4036 int
4037 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4038 CORE_ADDR addr, ULONGEST len)
4039 {
4040 struct breakpoint *bpt;
4041
4042 ALL_BREAKPOINTS (bpt)
4043 {
4044 struct bp_location *loc;
4045
4046 if (bpt->type != bp_hardware_watchpoint
4047 && bpt->type != bp_access_watchpoint)
4048 continue;
4049
4050 if (!breakpoint_enabled (bpt))
4051 continue;
4052
4053 for (loc = bpt->loc; loc; loc = loc->next)
4054 if (loc->pspace->aspace == aspace && loc->inserted)
4055 {
4056 CORE_ADDR l, h;
4057
4058 /* Check for intersection. */
4059 l = max (loc->address, addr);
4060 h = min (loc->address + loc->length, addr + len);
4061 if (l < h)
4062 return 1;
4063 }
4064 }
4065 return 0;
4066 }
4067
4068 /* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
4069 PC is valid for process/thread PTID. */
4070
4071 int
4072 breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
4073 ptid_t ptid)
4074 {
4075 struct bp_location *bl, **blp_tmp;
4076 /* The thread and task IDs associated to PTID, computed lazily. */
4077 int thread = -1;
4078 int task = 0;
4079
4080 ALL_BP_LOCATIONS (bl, blp_tmp)
4081 {
4082 if (bl->loc_type != bp_loc_software_breakpoint
4083 && bl->loc_type != bp_loc_hardware_breakpoint)
4084 continue;
4085
4086 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4087 if (!breakpoint_enabled (bl->owner)
4088 && bl->owner->enable_state != bp_permanent)
4089 continue;
4090
4091 if (!breakpoint_location_address_match (bl, aspace, pc))
4092 continue;
4093
4094 if (bl->owner->thread != -1)
4095 {
4096 /* This is a thread-specific breakpoint. Check that ptid
4097 matches that thread. If thread hasn't been computed yet,
4098 it is now time to do so. */
4099 if (thread == -1)
4100 thread = pid_to_thread_id (ptid);
4101 if (bl->owner->thread != thread)
4102 continue;
4103 }
4104
4105 if (bl->owner->task != 0)
4106 {
4107 /* This is a task-specific breakpoint. Check that ptid
4108 matches that task. If task hasn't been computed yet,
4109 it is now time to do so. */
4110 if (task == 0)
4111 task = ada_get_task_number (ptid);
4112 if (bl->owner->task != task)
4113 continue;
4114 }
4115
4116 if (overlay_debugging
4117 && section_is_overlay (bl->section)
4118 && !section_is_mapped (bl->section))
4119 continue; /* unmapped overlay -- can't be a match */
4120
4121 return 1;
4122 }
4123
4124 return 0;
4125 }
4126 \f
4127
4128 /* bpstat stuff. External routines' interfaces are documented
4129 in breakpoint.h. */
4130
4131 int
4132 is_catchpoint (struct breakpoint *ep)
4133 {
4134 return (ep->type == bp_catchpoint);
4135 }
4136
4137 /* Frees any storage that is part of a bpstat. Does not walk the
4138 'next' chain. */
4139
4140 static void
4141 bpstat_free (bpstat bs)
4142 {
4143 if (bs->old_val != NULL)
4144 value_free (bs->old_val);
4145 decref_counted_command_line (&bs->commands);
4146 decref_bp_location (&bs->bp_location_at);
4147 xfree (bs);
4148 }
4149
4150 /* Clear a bpstat so that it says we are not at any breakpoint.
4151 Also free any storage that is part of a bpstat. */
4152
4153 void
4154 bpstat_clear (bpstat *bsp)
4155 {
4156 bpstat p;
4157 bpstat q;
4158
4159 if (bsp == 0)
4160 return;
4161 p = *bsp;
4162 while (p != NULL)
4163 {
4164 q = p->next;
4165 bpstat_free (p);
4166 p = q;
4167 }
4168 *bsp = NULL;
4169 }
4170
4171 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4172 is part of the bpstat is copied as well. */
4173
4174 bpstat
4175 bpstat_copy (bpstat bs)
4176 {
4177 bpstat p = NULL;
4178 bpstat tmp;
4179 bpstat retval = NULL;
4180
4181 if (bs == NULL)
4182 return bs;
4183
4184 for (; bs != NULL; bs = bs->next)
4185 {
4186 tmp = (bpstat) xmalloc (sizeof (*tmp));
4187 memcpy (tmp, bs, sizeof (*tmp));
4188 incref_counted_command_line (tmp->commands);
4189 incref_bp_location (tmp->bp_location_at);
4190 if (bs->old_val != NULL)
4191 {
4192 tmp->old_val = value_copy (bs->old_val);
4193 release_value (tmp->old_val);
4194 }
4195
4196 if (p == NULL)
4197 /* This is the first thing in the chain. */
4198 retval = tmp;
4199 else
4200 p->next = tmp;
4201 p = tmp;
4202 }
4203 p->next = NULL;
4204 return retval;
4205 }
4206
4207 /* Find the bpstat associated with this breakpoint. */
4208
4209 bpstat
4210 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4211 {
4212 if (bsp == NULL)
4213 return NULL;
4214
4215 for (; bsp != NULL; bsp = bsp->next)
4216 {
4217 if (bsp->breakpoint_at == breakpoint)
4218 return bsp;
4219 }
4220 return NULL;
4221 }
4222
4223 /* See breakpoint.h. */
4224
4225 enum bpstat_signal_value
4226 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4227 {
4228 enum bpstat_signal_value result = BPSTAT_SIGNAL_NO;
4229
4230 for (; bsp != NULL; bsp = bsp->next)
4231 {
4232 /* Ensure that, if we ever entered this loop, then we at least
4233 return BPSTAT_SIGNAL_HIDE. */
4234 enum bpstat_signal_value newval;
4235
4236 if (bsp->breakpoint_at == NULL)
4237 {
4238 /* A moribund location can never explain a signal other than
4239 GDB_SIGNAL_TRAP. */
4240 if (sig == GDB_SIGNAL_TRAP)
4241 newval = BPSTAT_SIGNAL_HIDE;
4242 else
4243 newval = BPSTAT_SIGNAL_NO;
4244 }
4245 else
4246 newval = bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4247 sig);
4248
4249 if (newval > result)
4250 result = newval;
4251 }
4252
4253 return result;
4254 }
4255
4256 /* Put in *NUM the breakpoint number of the first breakpoint we are
4257 stopped at. *BSP upon return is a bpstat which points to the
4258 remaining breakpoints stopped at (but which is not guaranteed to be
4259 good for anything but further calls to bpstat_num).
4260
4261 Return 0 if passed a bpstat which does not indicate any breakpoints.
4262 Return -1 if stopped at a breakpoint that has been deleted since
4263 we set it.
4264 Return 1 otherwise. */
4265
4266 int
4267 bpstat_num (bpstat *bsp, int *num)
4268 {
4269 struct breakpoint *b;
4270
4271 if ((*bsp) == NULL)
4272 return 0; /* No more breakpoint values */
4273
4274 /* We assume we'll never have several bpstats that correspond to a
4275 single breakpoint -- otherwise, this function might return the
4276 same number more than once and this will look ugly. */
4277 b = (*bsp)->breakpoint_at;
4278 *bsp = (*bsp)->next;
4279 if (b == NULL)
4280 return -1; /* breakpoint that's been deleted since */
4281
4282 *num = b->number; /* We have its number */
4283 return 1;
4284 }
4285
4286 /* See breakpoint.h. */
4287
4288 void
4289 bpstat_clear_actions (void)
4290 {
4291 struct thread_info *tp;
4292 bpstat bs;
4293
4294 if (ptid_equal (inferior_ptid, null_ptid))
4295 return;
4296
4297 tp = find_thread_ptid (inferior_ptid);
4298 if (tp == NULL)
4299 return;
4300
4301 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4302 {
4303 decref_counted_command_line (&bs->commands);
4304
4305 if (bs->old_val != NULL)
4306 {
4307 value_free (bs->old_val);
4308 bs->old_val = NULL;
4309 }
4310 }
4311 }
4312
4313 /* Called when a command is about to proceed the inferior. */
4314
4315 static void
4316 breakpoint_about_to_proceed (void)
4317 {
4318 if (!ptid_equal (inferior_ptid, null_ptid))
4319 {
4320 struct thread_info *tp = inferior_thread ();
4321
4322 /* Allow inferior function calls in breakpoint commands to not
4323 interrupt the command list. When the call finishes
4324 successfully, the inferior will be standing at the same
4325 breakpoint as if nothing happened. */
4326 if (tp->control.in_infcall)
4327 return;
4328 }
4329
4330 breakpoint_proceeded = 1;
4331 }
4332
4333 /* Stub for cleaning up our state if we error-out of a breakpoint
4334 command. */
4335 static void
4336 cleanup_executing_breakpoints (void *ignore)
4337 {
4338 executing_breakpoint_commands = 0;
4339 }
4340
4341 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4342 or its equivalent. */
4343
4344 static int
4345 command_line_is_silent (struct command_line *cmd)
4346 {
4347 return cmd && (strcmp ("silent", cmd->line) == 0
4348 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4349 }
4350
4351 /* Execute all the commands associated with all the breakpoints at
4352 this location. Any of these commands could cause the process to
4353 proceed beyond this point, etc. We look out for such changes by
4354 checking the global "breakpoint_proceeded" after each command.
4355
4356 Returns true if a breakpoint command resumed the inferior. In that
4357 case, it is the caller's responsibility to recall it again with the
4358 bpstat of the current thread. */
4359
4360 static int
4361 bpstat_do_actions_1 (bpstat *bsp)
4362 {
4363 bpstat bs;
4364 struct cleanup *old_chain;
4365 int again = 0;
4366
4367 /* Avoid endless recursion if a `source' command is contained
4368 in bs->commands. */
4369 if (executing_breakpoint_commands)
4370 return 0;
4371
4372 executing_breakpoint_commands = 1;
4373 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4374
4375 prevent_dont_repeat ();
4376
4377 /* This pointer will iterate over the list of bpstat's. */
4378 bs = *bsp;
4379
4380 breakpoint_proceeded = 0;
4381 for (; bs != NULL; bs = bs->next)
4382 {
4383 struct counted_command_line *ccmd;
4384 struct command_line *cmd;
4385 struct cleanup *this_cmd_tree_chain;
4386
4387 /* Take ownership of the BSP's command tree, if it has one.
4388
4389 The command tree could legitimately contain commands like
4390 'step' and 'next', which call clear_proceed_status, which
4391 frees stop_bpstat's command tree. To make sure this doesn't
4392 free the tree we're executing out from under us, we need to
4393 take ownership of the tree ourselves. Since a given bpstat's
4394 commands are only executed once, we don't need to copy it; we
4395 can clear the pointer in the bpstat, and make sure we free
4396 the tree when we're done. */
4397 ccmd = bs->commands;
4398 bs->commands = NULL;
4399 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4400 cmd = ccmd ? ccmd->commands : NULL;
4401 if (command_line_is_silent (cmd))
4402 {
4403 /* The action has been already done by bpstat_stop_status. */
4404 cmd = cmd->next;
4405 }
4406
4407 while (cmd != NULL)
4408 {
4409 execute_control_command (cmd);
4410
4411 if (breakpoint_proceeded)
4412 break;
4413 else
4414 cmd = cmd->next;
4415 }
4416
4417 /* We can free this command tree now. */
4418 do_cleanups (this_cmd_tree_chain);
4419
4420 if (breakpoint_proceeded)
4421 {
4422 if (target_can_async_p ())
4423 /* If we are in async mode, then the target might be still
4424 running, not stopped at any breakpoint, so nothing for
4425 us to do here -- just return to the event loop. */
4426 ;
4427 else
4428 /* In sync mode, when execute_control_command returns
4429 we're already standing on the next breakpoint.
4430 Breakpoint commands for that stop were not run, since
4431 execute_command does not run breakpoint commands --
4432 only command_line_handler does, but that one is not
4433 involved in execution of breakpoint commands. So, we
4434 can now execute breakpoint commands. It should be
4435 noted that making execute_command do bpstat actions is
4436 not an option -- in this case we'll have recursive
4437 invocation of bpstat for each breakpoint with a
4438 command, and can easily blow up GDB stack. Instead, we
4439 return true, which will trigger the caller to recall us
4440 with the new stop_bpstat. */
4441 again = 1;
4442 break;
4443 }
4444 }
4445 do_cleanups (old_chain);
4446 return again;
4447 }
4448
4449 void
4450 bpstat_do_actions (void)
4451 {
4452 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4453
4454 /* Do any commands attached to breakpoint we are stopped at. */
4455 while (!ptid_equal (inferior_ptid, null_ptid)
4456 && target_has_execution
4457 && !is_exited (inferior_ptid)
4458 && !is_executing (inferior_ptid))
4459 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4460 and only return when it is stopped at the next breakpoint, we
4461 keep doing breakpoint actions until it returns false to
4462 indicate the inferior was not resumed. */
4463 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4464 break;
4465
4466 discard_cleanups (cleanup_if_error);
4467 }
4468
4469 /* Print out the (old or new) value associated with a watchpoint. */
4470
4471 static void
4472 watchpoint_value_print (struct value *val, struct ui_file *stream)
4473 {
4474 if (val == NULL)
4475 fprintf_unfiltered (stream, _("<unreadable>"));
4476 else
4477 {
4478 struct value_print_options opts;
4479 get_user_print_options (&opts);
4480 value_print (val, stream, &opts);
4481 }
4482 }
4483
4484 /* Generic routine for printing messages indicating why we
4485 stopped. The behavior of this function depends on the value
4486 'print_it' in the bpstat structure. Under some circumstances we
4487 may decide not to print anything here and delegate the task to
4488 normal_stop(). */
4489
4490 static enum print_stop_action
4491 print_bp_stop_message (bpstat bs)
4492 {
4493 switch (bs->print_it)
4494 {
4495 case print_it_noop:
4496 /* Nothing should be printed for this bpstat entry. */
4497 return PRINT_UNKNOWN;
4498 break;
4499
4500 case print_it_done:
4501 /* We still want to print the frame, but we already printed the
4502 relevant messages. */
4503 return PRINT_SRC_AND_LOC;
4504 break;
4505
4506 case print_it_normal:
4507 {
4508 struct breakpoint *b = bs->breakpoint_at;
4509
4510 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4511 which has since been deleted. */
4512 if (b == NULL)
4513 return PRINT_UNKNOWN;
4514
4515 /* Normal case. Call the breakpoint's print_it method. */
4516 return b->ops->print_it (bs);
4517 }
4518 break;
4519
4520 default:
4521 internal_error (__FILE__, __LINE__,
4522 _("print_bp_stop_message: unrecognized enum value"));
4523 break;
4524 }
4525 }
4526
4527 /* A helper function that prints a shared library stopped event. */
4528
4529 static void
4530 print_solib_event (int is_catchpoint)
4531 {
4532 int any_deleted
4533 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4534 int any_added
4535 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4536
4537 if (!is_catchpoint)
4538 {
4539 if (any_added || any_deleted)
4540 ui_out_text (current_uiout,
4541 _("Stopped due to shared library event:\n"));
4542 else
4543 ui_out_text (current_uiout,
4544 _("Stopped due to shared library event (no "
4545 "libraries added or removed)\n"));
4546 }
4547
4548 if (ui_out_is_mi_like_p (current_uiout))
4549 ui_out_field_string (current_uiout, "reason",
4550 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4551
4552 if (any_deleted)
4553 {
4554 struct cleanup *cleanup;
4555 char *name;
4556 int ix;
4557
4558 ui_out_text (current_uiout, _(" Inferior unloaded "));
4559 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4560 "removed");
4561 for (ix = 0;
4562 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4563 ix, name);
4564 ++ix)
4565 {
4566 if (ix > 0)
4567 ui_out_text (current_uiout, " ");
4568 ui_out_field_string (current_uiout, "library", name);
4569 ui_out_text (current_uiout, "\n");
4570 }
4571
4572 do_cleanups (cleanup);
4573 }
4574
4575 if (any_added)
4576 {
4577 struct so_list *iter;
4578 int ix;
4579 struct cleanup *cleanup;
4580
4581 ui_out_text (current_uiout, _(" Inferior loaded "));
4582 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4583 "added");
4584 for (ix = 0;
4585 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4586 ix, iter);
4587 ++ix)
4588 {
4589 if (ix > 0)
4590 ui_out_text (current_uiout, " ");
4591 ui_out_field_string (current_uiout, "library", iter->so_name);
4592 ui_out_text (current_uiout, "\n");
4593 }
4594
4595 do_cleanups (cleanup);
4596 }
4597 }
4598
4599 /* Print a message indicating what happened. This is called from
4600 normal_stop(). The input to this routine is the head of the bpstat
4601 list - a list of the eventpoints that caused this stop. KIND is
4602 the target_waitkind for the stopping event. This
4603 routine calls the generic print routine for printing a message
4604 about reasons for stopping. This will print (for example) the
4605 "Breakpoint n," part of the output. The return value of this
4606 routine is one of:
4607
4608 PRINT_UNKNOWN: Means we printed nothing.
4609 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4610 code to print the location. An example is
4611 "Breakpoint 1, " which should be followed by
4612 the location.
4613 PRINT_SRC_ONLY: Means we printed something, but there is no need
4614 to also print the location part of the message.
4615 An example is the catch/throw messages, which
4616 don't require a location appended to the end.
4617 PRINT_NOTHING: We have done some printing and we don't need any
4618 further info to be printed. */
4619
4620 enum print_stop_action
4621 bpstat_print (bpstat bs, int kind)
4622 {
4623 int val;
4624
4625 /* Maybe another breakpoint in the chain caused us to stop.
4626 (Currently all watchpoints go on the bpstat whether hit or not.
4627 That probably could (should) be changed, provided care is taken
4628 with respect to bpstat_explains_signal). */
4629 for (; bs; bs = bs->next)
4630 {
4631 val = print_bp_stop_message (bs);
4632 if (val == PRINT_SRC_ONLY
4633 || val == PRINT_SRC_AND_LOC
4634 || val == PRINT_NOTHING)
4635 return val;
4636 }
4637
4638 /* If we had hit a shared library event breakpoint,
4639 print_bp_stop_message would print out this message. If we hit an
4640 OS-level shared library event, do the same thing. */
4641 if (kind == TARGET_WAITKIND_LOADED)
4642 {
4643 print_solib_event (0);
4644 return PRINT_NOTHING;
4645 }
4646
4647 /* We reached the end of the chain, or we got a null BS to start
4648 with and nothing was printed. */
4649 return PRINT_UNKNOWN;
4650 }
4651
4652 /* Evaluate the expression EXP and return 1 if value is zero. This is
4653 used inside a catch_errors to evaluate the breakpoint condition.
4654 The argument is a "struct expression *" that has been cast to a
4655 "char *" to make it pass through catch_errors. */
4656
4657 static int
4658 breakpoint_cond_eval (void *exp)
4659 {
4660 struct value *mark = value_mark ();
4661 int i = !value_true (evaluate_expression ((struct expression *) exp));
4662
4663 value_free_to_mark (mark);
4664 return i;
4665 }
4666
4667 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4668
4669 static bpstat
4670 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4671 {
4672 bpstat bs;
4673
4674 bs = (bpstat) xmalloc (sizeof (*bs));
4675 bs->next = NULL;
4676 **bs_link_pointer = bs;
4677 *bs_link_pointer = &bs->next;
4678 bs->breakpoint_at = bl->owner;
4679 bs->bp_location_at = bl;
4680 incref_bp_location (bl);
4681 /* If the condition is false, etc., don't do the commands. */
4682 bs->commands = NULL;
4683 bs->old_val = NULL;
4684 bs->print_it = print_it_normal;
4685 return bs;
4686 }
4687 \f
4688 /* The target has stopped with waitstatus WS. Check if any hardware
4689 watchpoints have triggered, according to the target. */
4690
4691 int
4692 watchpoints_triggered (struct target_waitstatus *ws)
4693 {
4694 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4695 CORE_ADDR addr;
4696 struct breakpoint *b;
4697
4698 if (!stopped_by_watchpoint)
4699 {
4700 /* We were not stopped by a watchpoint. Mark all watchpoints
4701 as not triggered. */
4702 ALL_BREAKPOINTS (b)
4703 if (is_hardware_watchpoint (b))
4704 {
4705 struct watchpoint *w = (struct watchpoint *) b;
4706
4707 w->watchpoint_triggered = watch_triggered_no;
4708 }
4709
4710 return 0;
4711 }
4712
4713 if (!target_stopped_data_address (&current_target, &addr))
4714 {
4715 /* We were stopped by a watchpoint, but we don't know where.
4716 Mark all watchpoints as unknown. */
4717 ALL_BREAKPOINTS (b)
4718 if (is_hardware_watchpoint (b))
4719 {
4720 struct watchpoint *w = (struct watchpoint *) b;
4721
4722 w->watchpoint_triggered = watch_triggered_unknown;
4723 }
4724
4725 return 1;
4726 }
4727
4728 /* The target could report the data address. Mark watchpoints
4729 affected by this data address as triggered, and all others as not
4730 triggered. */
4731
4732 ALL_BREAKPOINTS (b)
4733 if (is_hardware_watchpoint (b))
4734 {
4735 struct watchpoint *w = (struct watchpoint *) b;
4736 struct bp_location *loc;
4737
4738 w->watchpoint_triggered = watch_triggered_no;
4739 for (loc = b->loc; loc; loc = loc->next)
4740 {
4741 if (is_masked_watchpoint (b))
4742 {
4743 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4744 CORE_ADDR start = loc->address & w->hw_wp_mask;
4745
4746 if (newaddr == start)
4747 {
4748 w->watchpoint_triggered = watch_triggered_yes;
4749 break;
4750 }
4751 }
4752 /* Exact match not required. Within range is sufficient. */
4753 else if (target_watchpoint_addr_within_range (&current_target,
4754 addr, loc->address,
4755 loc->length))
4756 {
4757 w->watchpoint_triggered = watch_triggered_yes;
4758 break;
4759 }
4760 }
4761 }
4762
4763 return 1;
4764 }
4765
4766 /* Possible return values for watchpoint_check (this can't be an enum
4767 because of check_errors). */
4768 /* The watchpoint has been deleted. */
4769 #define WP_DELETED 1
4770 /* The value has changed. */
4771 #define WP_VALUE_CHANGED 2
4772 /* The value has not changed. */
4773 #define WP_VALUE_NOT_CHANGED 3
4774 /* Ignore this watchpoint, no matter if the value changed or not. */
4775 #define WP_IGNORE 4
4776
4777 #define BP_TEMPFLAG 1
4778 #define BP_HARDWAREFLAG 2
4779
4780 /* Evaluate watchpoint condition expression and check if its value
4781 changed.
4782
4783 P should be a pointer to struct bpstat, but is defined as a void *
4784 in order for this function to be usable with catch_errors. */
4785
4786 static int
4787 watchpoint_check (void *p)
4788 {
4789 bpstat bs = (bpstat) p;
4790 struct watchpoint *b;
4791 struct frame_info *fr;
4792 int within_current_scope;
4793
4794 /* BS is built from an existing struct breakpoint. */
4795 gdb_assert (bs->breakpoint_at != NULL);
4796 b = (struct watchpoint *) bs->breakpoint_at;
4797
4798 /* If this is a local watchpoint, we only want to check if the
4799 watchpoint frame is in scope if the current thread is the thread
4800 that was used to create the watchpoint. */
4801 if (!watchpoint_in_thread_scope (b))
4802 return WP_IGNORE;
4803
4804 if (b->exp_valid_block == NULL)
4805 within_current_scope = 1;
4806 else
4807 {
4808 struct frame_info *frame = get_current_frame ();
4809 struct gdbarch *frame_arch = get_frame_arch (frame);
4810 CORE_ADDR frame_pc = get_frame_pc (frame);
4811
4812 /* in_function_epilogue_p() returns a non-zero value if we're
4813 still in the function but the stack frame has already been
4814 invalidated. Since we can't rely on the values of local
4815 variables after the stack has been destroyed, we are treating
4816 the watchpoint in that state as `not changed' without further
4817 checking. Don't mark watchpoints as changed if the current
4818 frame is in an epilogue - even if they are in some other
4819 frame, our view of the stack is likely to be wrong and
4820 frame_find_by_id could error out. */
4821 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
4822 return WP_IGNORE;
4823
4824 fr = frame_find_by_id (b->watchpoint_frame);
4825 within_current_scope = (fr != NULL);
4826
4827 /* If we've gotten confused in the unwinder, we might have
4828 returned a frame that can't describe this variable. */
4829 if (within_current_scope)
4830 {
4831 struct symbol *function;
4832
4833 function = get_frame_function (fr);
4834 if (function == NULL
4835 || !contained_in (b->exp_valid_block,
4836 SYMBOL_BLOCK_VALUE (function)))
4837 within_current_scope = 0;
4838 }
4839
4840 if (within_current_scope)
4841 /* If we end up stopping, the current frame will get selected
4842 in normal_stop. So this call to select_frame won't affect
4843 the user. */
4844 select_frame (fr);
4845 }
4846
4847 if (within_current_scope)
4848 {
4849 /* We use value_{,free_to_}mark because it could be a *long*
4850 time before we return to the command level and call
4851 free_all_values. We can't call free_all_values because we
4852 might be in the middle of evaluating a function call. */
4853
4854 int pc = 0;
4855 struct value *mark;
4856 struct value *new_val;
4857
4858 if (is_masked_watchpoint (&b->base))
4859 /* Since we don't know the exact trigger address (from
4860 stopped_data_address), just tell the user we've triggered
4861 a mask watchpoint. */
4862 return WP_VALUE_CHANGED;
4863
4864 mark = value_mark ();
4865 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL, 0);
4866
4867 /* We use value_equal_contents instead of value_equal because
4868 the latter coerces an array to a pointer, thus comparing just
4869 the address of the array instead of its contents. This is
4870 not what we want. */
4871 if ((b->val != NULL) != (new_val != NULL)
4872 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4873 {
4874 if (new_val != NULL)
4875 {
4876 release_value (new_val);
4877 value_free_to_mark (mark);
4878 }
4879 bs->old_val = b->val;
4880 b->val = new_val;
4881 b->val_valid = 1;
4882 return WP_VALUE_CHANGED;
4883 }
4884 else
4885 {
4886 /* Nothing changed. */
4887 value_free_to_mark (mark);
4888 return WP_VALUE_NOT_CHANGED;
4889 }
4890 }
4891 else
4892 {
4893 struct ui_out *uiout = current_uiout;
4894
4895 /* This seems like the only logical thing to do because
4896 if we temporarily ignored the watchpoint, then when
4897 we reenter the block in which it is valid it contains
4898 garbage (in the case of a function, it may have two
4899 garbage values, one before and one after the prologue).
4900 So we can't even detect the first assignment to it and
4901 watch after that (since the garbage may or may not equal
4902 the first value assigned). */
4903 /* We print all the stop information in
4904 breakpoint_ops->print_it, but in this case, by the time we
4905 call breakpoint_ops->print_it this bp will be deleted
4906 already. So we have no choice but print the information
4907 here. */
4908 if (ui_out_is_mi_like_p (uiout))
4909 ui_out_field_string
4910 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4911 ui_out_text (uiout, "\nWatchpoint ");
4912 ui_out_field_int (uiout, "wpnum", b->base.number);
4913 ui_out_text (uiout,
4914 " deleted because the program has left the block in\n\
4915 which its expression is valid.\n");
4916
4917 /* Make sure the watchpoint's commands aren't executed. */
4918 decref_counted_command_line (&b->base.commands);
4919 watchpoint_del_at_next_stop (b);
4920
4921 return WP_DELETED;
4922 }
4923 }
4924
4925 /* Return true if it looks like target has stopped due to hitting
4926 breakpoint location BL. This function does not check if we should
4927 stop, only if BL explains the stop. */
4928
4929 static int
4930 bpstat_check_location (const struct bp_location *bl,
4931 struct address_space *aspace, CORE_ADDR bp_addr,
4932 const struct target_waitstatus *ws)
4933 {
4934 struct breakpoint *b = bl->owner;
4935
4936 /* BL is from an existing breakpoint. */
4937 gdb_assert (b != NULL);
4938
4939 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4940 }
4941
4942 /* Determine if the watched values have actually changed, and we
4943 should stop. If not, set BS->stop to 0. */
4944
4945 static void
4946 bpstat_check_watchpoint (bpstat bs)
4947 {
4948 const struct bp_location *bl;
4949 struct watchpoint *b;
4950
4951 /* BS is built for existing struct breakpoint. */
4952 bl = bs->bp_location_at;
4953 gdb_assert (bl != NULL);
4954 b = (struct watchpoint *) bs->breakpoint_at;
4955 gdb_assert (b != NULL);
4956
4957 {
4958 int must_check_value = 0;
4959
4960 if (b->base.type == bp_watchpoint)
4961 /* For a software watchpoint, we must always check the
4962 watched value. */
4963 must_check_value = 1;
4964 else if (b->watchpoint_triggered == watch_triggered_yes)
4965 /* We have a hardware watchpoint (read, write, or access)
4966 and the target earlier reported an address watched by
4967 this watchpoint. */
4968 must_check_value = 1;
4969 else if (b->watchpoint_triggered == watch_triggered_unknown
4970 && b->base.type == bp_hardware_watchpoint)
4971 /* We were stopped by a hardware watchpoint, but the target could
4972 not report the data address. We must check the watchpoint's
4973 value. Access and read watchpoints are out of luck; without
4974 a data address, we can't figure it out. */
4975 must_check_value = 1;
4976
4977 if (must_check_value)
4978 {
4979 char *message
4980 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
4981 b->base.number);
4982 struct cleanup *cleanups = make_cleanup (xfree, message);
4983 int e = catch_errors (watchpoint_check, bs, message,
4984 RETURN_MASK_ALL);
4985 do_cleanups (cleanups);
4986 switch (e)
4987 {
4988 case WP_DELETED:
4989 /* We've already printed what needs to be printed. */
4990 bs->print_it = print_it_done;
4991 /* Stop. */
4992 break;
4993 case WP_IGNORE:
4994 bs->print_it = print_it_noop;
4995 bs->stop = 0;
4996 break;
4997 case WP_VALUE_CHANGED:
4998 if (b->base.type == bp_read_watchpoint)
4999 {
5000 /* There are two cases to consider here:
5001
5002 1. We're watching the triggered memory for reads.
5003 In that case, trust the target, and always report
5004 the watchpoint hit to the user. Even though
5005 reads don't cause value changes, the value may
5006 have changed since the last time it was read, and
5007 since we're not trapping writes, we will not see
5008 those, and as such we should ignore our notion of
5009 old value.
5010
5011 2. We're watching the triggered memory for both
5012 reads and writes. There are two ways this may
5013 happen:
5014
5015 2.1. This is a target that can't break on data
5016 reads only, but can break on accesses (reads or
5017 writes), such as e.g., x86. We detect this case
5018 at the time we try to insert read watchpoints.
5019
5020 2.2. Otherwise, the target supports read
5021 watchpoints, but, the user set an access or write
5022 watchpoint watching the same memory as this read
5023 watchpoint.
5024
5025 If we're watching memory writes as well as reads,
5026 ignore watchpoint hits when we find that the
5027 value hasn't changed, as reads don't cause
5028 changes. This still gives false positives when
5029 the program writes the same value to memory as
5030 what there was already in memory (we will confuse
5031 it for a read), but it's much better than
5032 nothing. */
5033
5034 int other_write_watchpoint = 0;
5035
5036 if (bl->watchpoint_type == hw_read)
5037 {
5038 struct breakpoint *other_b;
5039
5040 ALL_BREAKPOINTS (other_b)
5041 if (other_b->type == bp_hardware_watchpoint
5042 || other_b->type == bp_access_watchpoint)
5043 {
5044 struct watchpoint *other_w =
5045 (struct watchpoint *) other_b;
5046
5047 if (other_w->watchpoint_triggered
5048 == watch_triggered_yes)
5049 {
5050 other_write_watchpoint = 1;
5051 break;
5052 }
5053 }
5054 }
5055
5056 if (other_write_watchpoint
5057 || bl->watchpoint_type == hw_access)
5058 {
5059 /* We're watching the same memory for writes,
5060 and the value changed since the last time we
5061 updated it, so this trap must be for a write.
5062 Ignore it. */
5063 bs->print_it = print_it_noop;
5064 bs->stop = 0;
5065 }
5066 }
5067 break;
5068 case WP_VALUE_NOT_CHANGED:
5069 if (b->base.type == bp_hardware_watchpoint
5070 || b->base.type == bp_watchpoint)
5071 {
5072 /* Don't stop: write watchpoints shouldn't fire if
5073 the value hasn't changed. */
5074 bs->print_it = print_it_noop;
5075 bs->stop = 0;
5076 }
5077 /* Stop. */
5078 break;
5079 default:
5080 /* Can't happen. */
5081 case 0:
5082 /* Error from catch_errors. */
5083 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5084 watchpoint_del_at_next_stop (b);
5085 /* We've already printed what needs to be printed. */
5086 bs->print_it = print_it_done;
5087 break;
5088 }
5089 }
5090 else /* must_check_value == 0 */
5091 {
5092 /* This is a case where some watchpoint(s) triggered, but
5093 not at the address of this watchpoint, or else no
5094 watchpoint triggered after all. So don't print
5095 anything for this watchpoint. */
5096 bs->print_it = print_it_noop;
5097 bs->stop = 0;
5098 }
5099 }
5100 }
5101
5102 /* For breakpoints that are currently marked as telling gdb to stop,
5103 check conditions (condition proper, frame, thread and ignore count)
5104 of breakpoint referred to by BS. If we should not stop for this
5105 breakpoint, set BS->stop to 0. */
5106
5107 static void
5108 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5109 {
5110 int thread_id = pid_to_thread_id (ptid);
5111 const struct bp_location *bl;
5112 struct breakpoint *b;
5113 int value_is_zero = 0;
5114 struct expression *cond;
5115
5116 gdb_assert (bs->stop);
5117
5118 /* BS is built for existing struct breakpoint. */
5119 bl = bs->bp_location_at;
5120 gdb_assert (bl != NULL);
5121 b = bs->breakpoint_at;
5122 gdb_assert (b != NULL);
5123
5124 /* Even if the target evaluated the condition on its end and notified GDB, we
5125 need to do so again since GDB does not know if we stopped due to a
5126 breakpoint or a single step breakpoint. */
5127
5128 if (frame_id_p (b->frame_id)
5129 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5130 {
5131 bs->stop = 0;
5132 return;
5133 }
5134
5135 /* Evaluate Python breakpoints that have a "stop" method implemented. */
5136 if (b->py_bp_object)
5137 bs->stop = gdbpy_should_stop (b->py_bp_object);
5138
5139 if (is_watchpoint (b))
5140 {
5141 struct watchpoint *w = (struct watchpoint *) b;
5142
5143 cond = w->cond_exp;
5144 }
5145 else
5146 cond = bl->cond;
5147
5148 if (cond && b->disposition != disp_del_at_next_stop)
5149 {
5150 int within_current_scope = 1;
5151 struct watchpoint * w;
5152
5153 /* We use value_mark and value_free_to_mark because it could
5154 be a long time before we return to the command level and
5155 call free_all_values. We can't call free_all_values
5156 because we might be in the middle of evaluating a
5157 function call. */
5158 struct value *mark = value_mark ();
5159
5160 if (is_watchpoint (b))
5161 w = (struct watchpoint *) b;
5162 else
5163 w = NULL;
5164
5165 /* Need to select the frame, with all that implies so that
5166 the conditions will have the right context. Because we
5167 use the frame, we will not see an inlined function's
5168 variables when we arrive at a breakpoint at the start
5169 of the inlined function; the current frame will be the
5170 call site. */
5171 if (w == NULL || w->cond_exp_valid_block == NULL)
5172 select_frame (get_current_frame ());
5173 else
5174 {
5175 struct frame_info *frame;
5176
5177 /* For local watchpoint expressions, which particular
5178 instance of a local is being watched matters, so we
5179 keep track of the frame to evaluate the expression
5180 in. To evaluate the condition however, it doesn't
5181 really matter which instantiation of the function
5182 where the condition makes sense triggers the
5183 watchpoint. This allows an expression like "watch
5184 global if q > 10" set in `func', catch writes to
5185 global on all threads that call `func', or catch
5186 writes on all recursive calls of `func' by a single
5187 thread. We simply always evaluate the condition in
5188 the innermost frame that's executing where it makes
5189 sense to evaluate the condition. It seems
5190 intuitive. */
5191 frame = block_innermost_frame (w->cond_exp_valid_block);
5192 if (frame != NULL)
5193 select_frame (frame);
5194 else
5195 within_current_scope = 0;
5196 }
5197 if (within_current_scope)
5198 value_is_zero
5199 = catch_errors (breakpoint_cond_eval, cond,
5200 "Error in testing breakpoint condition:\n",
5201 RETURN_MASK_ALL);
5202 else
5203 {
5204 warning (_("Watchpoint condition cannot be tested "
5205 "in the current scope"));
5206 /* If we failed to set the right context for this
5207 watchpoint, unconditionally report it. */
5208 value_is_zero = 0;
5209 }
5210 /* FIXME-someday, should give breakpoint #. */
5211 value_free_to_mark (mark);
5212 }
5213
5214 if (cond && value_is_zero)
5215 {
5216 bs->stop = 0;
5217 }
5218 else if (b->thread != -1 && b->thread != thread_id)
5219 {
5220 bs->stop = 0;
5221 }
5222 else if (b->ignore_count > 0)
5223 {
5224 b->ignore_count--;
5225 bs->stop = 0;
5226 /* Increase the hit count even though we don't stop. */
5227 ++(b->hit_count);
5228 observer_notify_breakpoint_modified (b);
5229 }
5230 }
5231
5232
5233 /* Get a bpstat associated with having just stopped at address
5234 BP_ADDR in thread PTID.
5235
5236 Determine whether we stopped at a breakpoint, etc, or whether we
5237 don't understand this stop. Result is a chain of bpstat's such
5238 that:
5239
5240 if we don't understand the stop, the result is a null pointer.
5241
5242 if we understand why we stopped, the result is not null.
5243
5244 Each element of the chain refers to a particular breakpoint or
5245 watchpoint at which we have stopped. (We may have stopped for
5246 several reasons concurrently.)
5247
5248 Each element of the chain has valid next, breakpoint_at,
5249 commands, FIXME??? fields. */
5250
5251 bpstat
5252 bpstat_stop_status (struct address_space *aspace,
5253 CORE_ADDR bp_addr, ptid_t ptid,
5254 const struct target_waitstatus *ws)
5255 {
5256 struct breakpoint *b = NULL;
5257 struct bp_location *bl;
5258 struct bp_location *loc;
5259 /* First item of allocated bpstat's. */
5260 bpstat bs_head = NULL, *bs_link = &bs_head;
5261 /* Pointer to the last thing in the chain currently. */
5262 bpstat bs;
5263 int ix;
5264 int need_remove_insert;
5265 int removed_any;
5266
5267 /* First, build the bpstat chain with locations that explain a
5268 target stop, while being careful to not set the target running,
5269 as that may invalidate locations (in particular watchpoint
5270 locations are recreated). Resuming will happen here with
5271 breakpoint conditions or watchpoint expressions that include
5272 inferior function calls. */
5273
5274 ALL_BREAKPOINTS (b)
5275 {
5276 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5277 continue;
5278
5279 for (bl = b->loc; bl != NULL; bl = bl->next)
5280 {
5281 /* For hardware watchpoints, we look only at the first
5282 location. The watchpoint_check function will work on the
5283 entire expression, not the individual locations. For
5284 read watchpoints, the watchpoints_triggered function has
5285 checked all locations already. */
5286 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5287 break;
5288
5289 if (!bl->enabled || bl->shlib_disabled)
5290 continue;
5291
5292 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5293 continue;
5294
5295 /* Come here if it's a watchpoint, or if the break address
5296 matches. */
5297
5298 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5299 explain stop. */
5300
5301 /* Assume we stop. Should we find a watchpoint that is not
5302 actually triggered, or if the condition of the breakpoint
5303 evaluates as false, we'll reset 'stop' to 0. */
5304 bs->stop = 1;
5305 bs->print = 1;
5306
5307 /* If this is a scope breakpoint, mark the associated
5308 watchpoint as triggered so that we will handle the
5309 out-of-scope event. We'll get to the watchpoint next
5310 iteration. */
5311 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5312 {
5313 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5314
5315 w->watchpoint_triggered = watch_triggered_yes;
5316 }
5317 }
5318 }
5319
5320 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5321 {
5322 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5323 {
5324 bs = bpstat_alloc (loc, &bs_link);
5325 /* For hits of moribund locations, we should just proceed. */
5326 bs->stop = 0;
5327 bs->print = 0;
5328 bs->print_it = print_it_noop;
5329 }
5330 }
5331
5332 /* A bit of special processing for shlib breakpoints. We need to
5333 process solib loading here, so that the lists of loaded and
5334 unloaded libraries are correct before we handle "catch load" and
5335 "catch unload". */
5336 for (bs = bs_head; bs != NULL; bs = bs->next)
5337 {
5338 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5339 {
5340 handle_solib_event ();
5341 break;
5342 }
5343 }
5344
5345 /* Now go through the locations that caused the target to stop, and
5346 check whether we're interested in reporting this stop to higher
5347 layers, or whether we should resume the target transparently. */
5348
5349 removed_any = 0;
5350
5351 for (bs = bs_head; bs != NULL; bs = bs->next)
5352 {
5353 if (!bs->stop)
5354 continue;
5355
5356 b = bs->breakpoint_at;
5357 b->ops->check_status (bs);
5358 if (bs->stop)
5359 {
5360 bpstat_check_breakpoint_conditions (bs, ptid);
5361
5362 if (bs->stop)
5363 {
5364 ++(b->hit_count);
5365 observer_notify_breakpoint_modified (b);
5366
5367 /* We will stop here. */
5368 if (b->disposition == disp_disable)
5369 {
5370 --(b->enable_count);
5371 if (b->enable_count <= 0
5372 && b->enable_state != bp_permanent)
5373 b->enable_state = bp_disabled;
5374 removed_any = 1;
5375 }
5376 if (b->silent)
5377 bs->print = 0;
5378 bs->commands = b->commands;
5379 incref_counted_command_line (bs->commands);
5380 if (command_line_is_silent (bs->commands
5381 ? bs->commands->commands : NULL))
5382 bs->print = 0;
5383
5384 b->ops->after_condition_true (bs);
5385 }
5386
5387 }
5388
5389 /* Print nothing for this entry if we don't stop or don't
5390 print. */
5391 if (!bs->stop || !bs->print)
5392 bs->print_it = print_it_noop;
5393 }
5394
5395 /* If we aren't stopping, the value of some hardware watchpoint may
5396 not have changed, but the intermediate memory locations we are
5397 watching may have. Don't bother if we're stopping; this will get
5398 done later. */
5399 need_remove_insert = 0;
5400 if (! bpstat_causes_stop (bs_head))
5401 for (bs = bs_head; bs != NULL; bs = bs->next)
5402 if (!bs->stop
5403 && bs->breakpoint_at
5404 && is_hardware_watchpoint (bs->breakpoint_at))
5405 {
5406 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5407
5408 update_watchpoint (w, 0 /* don't reparse. */);
5409 need_remove_insert = 1;
5410 }
5411
5412 if (need_remove_insert)
5413 update_global_location_list (1);
5414 else if (removed_any)
5415 update_global_location_list (0);
5416
5417 return bs_head;
5418 }
5419
5420 static void
5421 handle_jit_event (void)
5422 {
5423 struct frame_info *frame;
5424 struct gdbarch *gdbarch;
5425
5426 /* Switch terminal for any messages produced by
5427 breakpoint_re_set. */
5428 target_terminal_ours_for_output ();
5429
5430 frame = get_current_frame ();
5431 gdbarch = get_frame_arch (frame);
5432
5433 jit_event_handler (gdbarch);
5434
5435 target_terminal_inferior ();
5436 }
5437
5438 /* Prepare WHAT final decision for infrun. */
5439
5440 /* Decide what infrun needs to do with this bpstat. */
5441
5442 struct bpstat_what
5443 bpstat_what (bpstat bs_head)
5444 {
5445 struct bpstat_what retval;
5446 int jit_event = 0;
5447 bpstat bs;
5448
5449 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5450 retval.call_dummy = STOP_NONE;
5451 retval.is_longjmp = 0;
5452
5453 for (bs = bs_head; bs != NULL; bs = bs->next)
5454 {
5455 /* Extract this BS's action. After processing each BS, we check
5456 if its action overrides all we've seem so far. */
5457 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5458 enum bptype bptype;
5459
5460 if (bs->breakpoint_at == NULL)
5461 {
5462 /* I suspect this can happen if it was a momentary
5463 breakpoint which has since been deleted. */
5464 bptype = bp_none;
5465 }
5466 else
5467 bptype = bs->breakpoint_at->type;
5468
5469 switch (bptype)
5470 {
5471 case bp_none:
5472 break;
5473 case bp_breakpoint:
5474 case bp_hardware_breakpoint:
5475 case bp_until:
5476 case bp_finish:
5477 case bp_shlib_event:
5478 if (bs->stop)
5479 {
5480 if (bs->print)
5481 this_action = BPSTAT_WHAT_STOP_NOISY;
5482 else
5483 this_action = BPSTAT_WHAT_STOP_SILENT;
5484 }
5485 else
5486 this_action = BPSTAT_WHAT_SINGLE;
5487 break;
5488 case bp_watchpoint:
5489 case bp_hardware_watchpoint:
5490 case bp_read_watchpoint:
5491 case bp_access_watchpoint:
5492 if (bs->stop)
5493 {
5494 if (bs->print)
5495 this_action = BPSTAT_WHAT_STOP_NOISY;
5496 else
5497 this_action = BPSTAT_WHAT_STOP_SILENT;
5498 }
5499 else
5500 {
5501 /* There was a watchpoint, but we're not stopping.
5502 This requires no further action. */
5503 }
5504 break;
5505 case bp_longjmp:
5506 case bp_longjmp_call_dummy:
5507 case bp_exception:
5508 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5509 retval.is_longjmp = bptype != bp_exception;
5510 break;
5511 case bp_longjmp_resume:
5512 case bp_exception_resume:
5513 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5514 retval.is_longjmp = bptype == bp_longjmp_resume;
5515 break;
5516 case bp_step_resume:
5517 if (bs->stop)
5518 this_action = BPSTAT_WHAT_STEP_RESUME;
5519 else
5520 {
5521 /* It is for the wrong frame. */
5522 this_action = BPSTAT_WHAT_SINGLE;
5523 }
5524 break;
5525 case bp_hp_step_resume:
5526 if (bs->stop)
5527 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5528 else
5529 {
5530 /* It is for the wrong frame. */
5531 this_action = BPSTAT_WHAT_SINGLE;
5532 }
5533 break;
5534 case bp_watchpoint_scope:
5535 case bp_thread_event:
5536 case bp_overlay_event:
5537 case bp_longjmp_master:
5538 case bp_std_terminate_master:
5539 case bp_exception_master:
5540 this_action = BPSTAT_WHAT_SINGLE;
5541 break;
5542 case bp_catchpoint:
5543 if (bs->stop)
5544 {
5545 if (bs->print)
5546 this_action = BPSTAT_WHAT_STOP_NOISY;
5547 else
5548 this_action = BPSTAT_WHAT_STOP_SILENT;
5549 }
5550 else
5551 {
5552 /* There was a catchpoint, but we're not stopping.
5553 This requires no further action. */
5554 }
5555 break;
5556 case bp_jit_event:
5557 jit_event = 1;
5558 this_action = BPSTAT_WHAT_SINGLE;
5559 break;
5560 case bp_call_dummy:
5561 /* Make sure the action is stop (silent or noisy),
5562 so infrun.c pops the dummy frame. */
5563 retval.call_dummy = STOP_STACK_DUMMY;
5564 this_action = BPSTAT_WHAT_STOP_SILENT;
5565 break;
5566 case bp_std_terminate:
5567 /* Make sure the action is stop (silent or noisy),
5568 so infrun.c pops the dummy frame. */
5569 retval.call_dummy = STOP_STD_TERMINATE;
5570 this_action = BPSTAT_WHAT_STOP_SILENT;
5571 break;
5572 case bp_tracepoint:
5573 case bp_fast_tracepoint:
5574 case bp_static_tracepoint:
5575 /* Tracepoint hits should not be reported back to GDB, and
5576 if one got through somehow, it should have been filtered
5577 out already. */
5578 internal_error (__FILE__, __LINE__,
5579 _("bpstat_what: tracepoint encountered"));
5580 break;
5581 case bp_gnu_ifunc_resolver:
5582 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5583 this_action = BPSTAT_WHAT_SINGLE;
5584 break;
5585 case bp_gnu_ifunc_resolver_return:
5586 /* The breakpoint will be removed, execution will restart from the
5587 PC of the former breakpoint. */
5588 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5589 break;
5590
5591 case bp_dprintf:
5592 if (bs->stop)
5593 this_action = BPSTAT_WHAT_STOP_SILENT;
5594 else
5595 this_action = BPSTAT_WHAT_SINGLE;
5596 break;
5597
5598 default:
5599 internal_error (__FILE__, __LINE__,
5600 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5601 }
5602
5603 retval.main_action = max (retval.main_action, this_action);
5604 }
5605
5606 /* These operations may affect the bs->breakpoint_at state so they are
5607 delayed after MAIN_ACTION is decided above. */
5608
5609 if (jit_event)
5610 {
5611 if (debug_infrun)
5612 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5613
5614 handle_jit_event ();
5615 }
5616
5617 for (bs = bs_head; bs != NULL; bs = bs->next)
5618 {
5619 struct breakpoint *b = bs->breakpoint_at;
5620
5621 if (b == NULL)
5622 continue;
5623 switch (b->type)
5624 {
5625 case bp_gnu_ifunc_resolver:
5626 gnu_ifunc_resolver_stop (b);
5627 break;
5628 case bp_gnu_ifunc_resolver_return:
5629 gnu_ifunc_resolver_return_stop (b);
5630 break;
5631 }
5632 }
5633
5634 return retval;
5635 }
5636
5637 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5638 without hardware support). This isn't related to a specific bpstat,
5639 just to things like whether watchpoints are set. */
5640
5641 int
5642 bpstat_should_step (void)
5643 {
5644 struct breakpoint *b;
5645
5646 ALL_BREAKPOINTS (b)
5647 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5648 return 1;
5649 return 0;
5650 }
5651
5652 int
5653 bpstat_causes_stop (bpstat bs)
5654 {
5655 for (; bs != NULL; bs = bs->next)
5656 if (bs->stop)
5657 return 1;
5658
5659 return 0;
5660 }
5661
5662 \f
5663
5664 /* Compute a string of spaces suitable to indent the next line
5665 so it starts at the position corresponding to the table column
5666 named COL_NAME in the currently active table of UIOUT. */
5667
5668 static char *
5669 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5670 {
5671 static char wrap_indent[80];
5672 int i, total_width, width, align;
5673 char *text;
5674
5675 total_width = 0;
5676 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5677 {
5678 if (strcmp (text, col_name) == 0)
5679 {
5680 gdb_assert (total_width < sizeof wrap_indent);
5681 memset (wrap_indent, ' ', total_width);
5682 wrap_indent[total_width] = 0;
5683
5684 return wrap_indent;
5685 }
5686
5687 total_width += width + 1;
5688 }
5689
5690 return NULL;
5691 }
5692
5693 /* Determine if the locations of this breakpoint will have their conditions
5694 evaluated by the target, host or a mix of both. Returns the following:
5695
5696 "host": Host evals condition.
5697 "host or target": Host or Target evals condition.
5698 "target": Target evals condition.
5699 */
5700
5701 static const char *
5702 bp_condition_evaluator (struct breakpoint *b)
5703 {
5704 struct bp_location *bl;
5705 char host_evals = 0;
5706 char target_evals = 0;
5707
5708 if (!b)
5709 return NULL;
5710
5711 if (!is_breakpoint (b))
5712 return NULL;
5713
5714 if (gdb_evaluates_breakpoint_condition_p ()
5715 || !target_supports_evaluation_of_breakpoint_conditions ())
5716 return condition_evaluation_host;
5717
5718 for (bl = b->loc; bl; bl = bl->next)
5719 {
5720 if (bl->cond_bytecode)
5721 target_evals++;
5722 else
5723 host_evals++;
5724 }
5725
5726 if (host_evals && target_evals)
5727 return condition_evaluation_both;
5728 else if (target_evals)
5729 return condition_evaluation_target;
5730 else
5731 return condition_evaluation_host;
5732 }
5733
5734 /* Determine the breakpoint location's condition evaluator. This is
5735 similar to bp_condition_evaluator, but for locations. */
5736
5737 static const char *
5738 bp_location_condition_evaluator (struct bp_location *bl)
5739 {
5740 if (bl && !is_breakpoint (bl->owner))
5741 return NULL;
5742
5743 if (gdb_evaluates_breakpoint_condition_p ()
5744 || !target_supports_evaluation_of_breakpoint_conditions ())
5745 return condition_evaluation_host;
5746
5747 if (bl && bl->cond_bytecode)
5748 return condition_evaluation_target;
5749 else
5750 return condition_evaluation_host;
5751 }
5752
5753 /* Print the LOC location out of the list of B->LOC locations. */
5754
5755 static void
5756 print_breakpoint_location (struct breakpoint *b,
5757 struct bp_location *loc)
5758 {
5759 struct ui_out *uiout = current_uiout;
5760 struct cleanup *old_chain = save_current_program_space ();
5761
5762 if (loc != NULL && loc->shlib_disabled)
5763 loc = NULL;
5764
5765 if (loc != NULL)
5766 set_current_program_space (loc->pspace);
5767
5768 if (b->display_canonical)
5769 ui_out_field_string (uiout, "what", b->addr_string);
5770 else if (loc && loc->symtab)
5771 {
5772 struct symbol *sym
5773 = find_pc_sect_function (loc->address, loc->section);
5774 if (sym)
5775 {
5776 ui_out_text (uiout, "in ");
5777 ui_out_field_string (uiout, "func",
5778 SYMBOL_PRINT_NAME (sym));
5779 ui_out_text (uiout, " ");
5780 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
5781 ui_out_text (uiout, "at ");
5782 }
5783 ui_out_field_string (uiout, "file",
5784 symtab_to_filename_for_display (loc->symtab));
5785 ui_out_text (uiout, ":");
5786
5787 if (ui_out_is_mi_like_p (uiout))
5788 ui_out_field_string (uiout, "fullname",
5789 symtab_to_fullname (loc->symtab));
5790
5791 ui_out_field_int (uiout, "line", loc->line_number);
5792 }
5793 else if (loc)
5794 {
5795 struct ui_file *stb = mem_fileopen ();
5796 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
5797
5798 print_address_symbolic (loc->gdbarch, loc->address, stb,
5799 demangle, "");
5800 ui_out_field_stream (uiout, "at", stb);
5801
5802 do_cleanups (stb_chain);
5803 }
5804 else
5805 ui_out_field_string (uiout, "pending", b->addr_string);
5806
5807 if (loc && is_breakpoint (b)
5808 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5809 && bp_condition_evaluator (b) == condition_evaluation_both)
5810 {
5811 ui_out_text (uiout, " (");
5812 ui_out_field_string (uiout, "evaluated-by",
5813 bp_location_condition_evaluator (loc));
5814 ui_out_text (uiout, ")");
5815 }
5816
5817 do_cleanups (old_chain);
5818 }
5819
5820 static const char *
5821 bptype_string (enum bptype type)
5822 {
5823 struct ep_type_description
5824 {
5825 enum bptype type;
5826 char *description;
5827 };
5828 static struct ep_type_description bptypes[] =
5829 {
5830 {bp_none, "?deleted?"},
5831 {bp_breakpoint, "breakpoint"},
5832 {bp_hardware_breakpoint, "hw breakpoint"},
5833 {bp_until, "until"},
5834 {bp_finish, "finish"},
5835 {bp_watchpoint, "watchpoint"},
5836 {bp_hardware_watchpoint, "hw watchpoint"},
5837 {bp_read_watchpoint, "read watchpoint"},
5838 {bp_access_watchpoint, "acc watchpoint"},
5839 {bp_longjmp, "longjmp"},
5840 {bp_longjmp_resume, "longjmp resume"},
5841 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5842 {bp_exception, "exception"},
5843 {bp_exception_resume, "exception resume"},
5844 {bp_step_resume, "step resume"},
5845 {bp_hp_step_resume, "high-priority step resume"},
5846 {bp_watchpoint_scope, "watchpoint scope"},
5847 {bp_call_dummy, "call dummy"},
5848 {bp_std_terminate, "std::terminate"},
5849 {bp_shlib_event, "shlib events"},
5850 {bp_thread_event, "thread events"},
5851 {bp_overlay_event, "overlay events"},
5852 {bp_longjmp_master, "longjmp master"},
5853 {bp_std_terminate_master, "std::terminate master"},
5854 {bp_exception_master, "exception master"},
5855 {bp_catchpoint, "catchpoint"},
5856 {bp_tracepoint, "tracepoint"},
5857 {bp_fast_tracepoint, "fast tracepoint"},
5858 {bp_static_tracepoint, "static tracepoint"},
5859 {bp_dprintf, "dprintf"},
5860 {bp_jit_event, "jit events"},
5861 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5862 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5863 };
5864
5865 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5866 || ((int) type != bptypes[(int) type].type))
5867 internal_error (__FILE__, __LINE__,
5868 _("bptypes table does not describe type #%d."),
5869 (int) type);
5870
5871 return bptypes[(int) type].description;
5872 }
5873
5874 /* For MI, output a field named 'thread-groups' with a list as the value.
5875 For CLI, prefix the list with the string 'inf'. */
5876
5877 static void
5878 output_thread_groups (struct ui_out *uiout,
5879 const char *field_name,
5880 VEC(int) *inf_num,
5881 int mi_only)
5882 {
5883 struct cleanup *back_to;
5884 int is_mi = ui_out_is_mi_like_p (uiout);
5885 int inf;
5886 int i;
5887
5888 /* For backward compatibility, don't display inferiors in CLI unless
5889 there are several. Always display them for MI. */
5890 if (!is_mi && mi_only)
5891 return;
5892
5893 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
5894
5895 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
5896 {
5897 if (is_mi)
5898 {
5899 char mi_group[10];
5900
5901 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
5902 ui_out_field_string (uiout, NULL, mi_group);
5903 }
5904 else
5905 {
5906 if (i == 0)
5907 ui_out_text (uiout, " inf ");
5908 else
5909 ui_out_text (uiout, ", ");
5910
5911 ui_out_text (uiout, plongest (inf));
5912 }
5913 }
5914
5915 do_cleanups (back_to);
5916 }
5917
5918 /* Print B to gdb_stdout. */
5919
5920 static void
5921 print_one_breakpoint_location (struct breakpoint *b,
5922 struct bp_location *loc,
5923 int loc_number,
5924 struct bp_location **last_loc,
5925 int allflag)
5926 {
5927 struct command_line *l;
5928 static char bpenables[] = "nynny";
5929
5930 struct ui_out *uiout = current_uiout;
5931 int header_of_multiple = 0;
5932 int part_of_multiple = (loc != NULL);
5933 struct value_print_options opts;
5934
5935 get_user_print_options (&opts);
5936
5937 gdb_assert (!loc || loc_number != 0);
5938 /* See comment in print_one_breakpoint concerning treatment of
5939 breakpoints with single disabled location. */
5940 if (loc == NULL
5941 && (b->loc != NULL
5942 && (b->loc->next != NULL || !b->loc->enabled)))
5943 header_of_multiple = 1;
5944 if (loc == NULL)
5945 loc = b->loc;
5946
5947 annotate_record ();
5948
5949 /* 1 */
5950 annotate_field (0);
5951 if (part_of_multiple)
5952 {
5953 char *formatted;
5954 formatted = xstrprintf ("%d.%d", b->number, loc_number);
5955 ui_out_field_string (uiout, "number", formatted);
5956 xfree (formatted);
5957 }
5958 else
5959 {
5960 ui_out_field_int (uiout, "number", b->number);
5961 }
5962
5963 /* 2 */
5964 annotate_field (1);
5965 if (part_of_multiple)
5966 ui_out_field_skip (uiout, "type");
5967 else
5968 ui_out_field_string (uiout, "type", bptype_string (b->type));
5969
5970 /* 3 */
5971 annotate_field (2);
5972 if (part_of_multiple)
5973 ui_out_field_skip (uiout, "disp");
5974 else
5975 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
5976
5977
5978 /* 4 */
5979 annotate_field (3);
5980 if (part_of_multiple)
5981 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
5982 else
5983 ui_out_field_fmt (uiout, "enabled", "%c",
5984 bpenables[(int) b->enable_state]);
5985 ui_out_spaces (uiout, 2);
5986
5987
5988 /* 5 and 6 */
5989 if (b->ops != NULL && b->ops->print_one != NULL)
5990 {
5991 /* Although the print_one can possibly print all locations,
5992 calling it here is not likely to get any nice result. So,
5993 make sure there's just one location. */
5994 gdb_assert (b->loc == NULL || b->loc->next == NULL);
5995 b->ops->print_one (b, last_loc);
5996 }
5997 else
5998 switch (b->type)
5999 {
6000 case bp_none:
6001 internal_error (__FILE__, __LINE__,
6002 _("print_one_breakpoint: bp_none encountered\n"));
6003 break;
6004
6005 case bp_watchpoint:
6006 case bp_hardware_watchpoint:
6007 case bp_read_watchpoint:
6008 case bp_access_watchpoint:
6009 {
6010 struct watchpoint *w = (struct watchpoint *) b;
6011
6012 /* Field 4, the address, is omitted (which makes the columns
6013 not line up too nicely with the headers, but the effect
6014 is relatively readable). */
6015 if (opts.addressprint)
6016 ui_out_field_skip (uiout, "addr");
6017 annotate_field (5);
6018 ui_out_field_string (uiout, "what", w->exp_string);
6019 }
6020 break;
6021
6022 case bp_breakpoint:
6023 case bp_hardware_breakpoint:
6024 case bp_until:
6025 case bp_finish:
6026 case bp_longjmp:
6027 case bp_longjmp_resume:
6028 case bp_longjmp_call_dummy:
6029 case bp_exception:
6030 case bp_exception_resume:
6031 case bp_step_resume:
6032 case bp_hp_step_resume:
6033 case bp_watchpoint_scope:
6034 case bp_call_dummy:
6035 case bp_std_terminate:
6036 case bp_shlib_event:
6037 case bp_thread_event:
6038 case bp_overlay_event:
6039 case bp_longjmp_master:
6040 case bp_std_terminate_master:
6041 case bp_exception_master:
6042 case bp_tracepoint:
6043 case bp_fast_tracepoint:
6044 case bp_static_tracepoint:
6045 case bp_dprintf:
6046 case bp_jit_event:
6047 case bp_gnu_ifunc_resolver:
6048 case bp_gnu_ifunc_resolver_return:
6049 if (opts.addressprint)
6050 {
6051 annotate_field (4);
6052 if (header_of_multiple)
6053 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
6054 else if (b->loc == NULL || loc->shlib_disabled)
6055 ui_out_field_string (uiout, "addr", "<PENDING>");
6056 else
6057 ui_out_field_core_addr (uiout, "addr",
6058 loc->gdbarch, loc->address);
6059 }
6060 annotate_field (5);
6061 if (!header_of_multiple)
6062 print_breakpoint_location (b, loc);
6063 if (b->loc)
6064 *last_loc = b->loc;
6065 break;
6066 }
6067
6068
6069 if (loc != NULL && !header_of_multiple)
6070 {
6071 struct inferior *inf;
6072 VEC(int) *inf_num = NULL;
6073 int mi_only = 1;
6074
6075 ALL_INFERIORS (inf)
6076 {
6077 if (inf->pspace == loc->pspace)
6078 VEC_safe_push (int, inf_num, inf->num);
6079 }
6080
6081 /* For backward compatibility, don't display inferiors in CLI unless
6082 there are several. Always display for MI. */
6083 if (allflag
6084 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6085 && (number_of_program_spaces () > 1
6086 || number_of_inferiors () > 1)
6087 /* LOC is for existing B, it cannot be in
6088 moribund_locations and thus having NULL OWNER. */
6089 && loc->owner->type != bp_catchpoint))
6090 mi_only = 0;
6091 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6092 VEC_free (int, inf_num);
6093 }
6094
6095 if (!part_of_multiple)
6096 {
6097 if (b->thread != -1)
6098 {
6099 /* FIXME: This seems to be redundant and lost here; see the
6100 "stop only in" line a little further down. */
6101 ui_out_text (uiout, " thread ");
6102 ui_out_field_int (uiout, "thread", b->thread);
6103 }
6104 else if (b->task != 0)
6105 {
6106 ui_out_text (uiout, " task ");
6107 ui_out_field_int (uiout, "task", b->task);
6108 }
6109 }
6110
6111 ui_out_text (uiout, "\n");
6112
6113 if (!part_of_multiple)
6114 b->ops->print_one_detail (b, uiout);
6115
6116 if (part_of_multiple && frame_id_p (b->frame_id))
6117 {
6118 annotate_field (6);
6119 ui_out_text (uiout, "\tstop only in stack frame at ");
6120 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6121 the frame ID. */
6122 ui_out_field_core_addr (uiout, "frame",
6123 b->gdbarch, b->frame_id.stack_addr);
6124 ui_out_text (uiout, "\n");
6125 }
6126
6127 if (!part_of_multiple && b->cond_string)
6128 {
6129 annotate_field (7);
6130 if (is_tracepoint (b))
6131 ui_out_text (uiout, "\ttrace only if ");
6132 else
6133 ui_out_text (uiout, "\tstop only if ");
6134 ui_out_field_string (uiout, "cond", b->cond_string);
6135
6136 /* Print whether the target is doing the breakpoint's condition
6137 evaluation. If GDB is doing the evaluation, don't print anything. */
6138 if (is_breakpoint (b)
6139 && breakpoint_condition_evaluation_mode ()
6140 == condition_evaluation_target)
6141 {
6142 ui_out_text (uiout, " (");
6143 ui_out_field_string (uiout, "evaluated-by",
6144 bp_condition_evaluator (b));
6145 ui_out_text (uiout, " evals)");
6146 }
6147 ui_out_text (uiout, "\n");
6148 }
6149
6150 if (!part_of_multiple && b->thread != -1)
6151 {
6152 /* FIXME should make an annotation for this. */
6153 ui_out_text (uiout, "\tstop only in thread ");
6154 ui_out_field_int (uiout, "thread", b->thread);
6155 ui_out_text (uiout, "\n");
6156 }
6157
6158 if (!part_of_multiple)
6159 {
6160 if (b->hit_count)
6161 {
6162 /* FIXME should make an annotation for this. */
6163 if (is_catchpoint (b))
6164 ui_out_text (uiout, "\tcatchpoint");
6165 else if (is_tracepoint (b))
6166 ui_out_text (uiout, "\ttracepoint");
6167 else
6168 ui_out_text (uiout, "\tbreakpoint");
6169 ui_out_text (uiout, " already hit ");
6170 ui_out_field_int (uiout, "times", b->hit_count);
6171 if (b->hit_count == 1)
6172 ui_out_text (uiout, " time\n");
6173 else
6174 ui_out_text (uiout, " times\n");
6175 }
6176 else
6177 {
6178 /* Output the count also if it is zero, but only if this is mi. */
6179 if (ui_out_is_mi_like_p (uiout))
6180 ui_out_field_int (uiout, "times", b->hit_count);
6181 }
6182 }
6183
6184 if (!part_of_multiple && b->ignore_count)
6185 {
6186 annotate_field (8);
6187 ui_out_text (uiout, "\tignore next ");
6188 ui_out_field_int (uiout, "ignore", b->ignore_count);
6189 ui_out_text (uiout, " hits\n");
6190 }
6191
6192 /* Note that an enable count of 1 corresponds to "enable once"
6193 behavior, which is reported by the combination of enablement and
6194 disposition, so we don't need to mention it here. */
6195 if (!part_of_multiple && b->enable_count > 1)
6196 {
6197 annotate_field (8);
6198 ui_out_text (uiout, "\tdisable after ");
6199 /* Tweak the wording to clarify that ignore and enable counts
6200 are distinct, and have additive effect. */
6201 if (b->ignore_count)
6202 ui_out_text (uiout, "additional ");
6203 else
6204 ui_out_text (uiout, "next ");
6205 ui_out_field_int (uiout, "enable", b->enable_count);
6206 ui_out_text (uiout, " hits\n");
6207 }
6208
6209 if (!part_of_multiple && is_tracepoint (b))
6210 {
6211 struct tracepoint *tp = (struct tracepoint *) b;
6212
6213 if (tp->traceframe_usage)
6214 {
6215 ui_out_text (uiout, "\ttrace buffer usage ");
6216 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6217 ui_out_text (uiout, " bytes\n");
6218 }
6219 }
6220
6221 l = b->commands ? b->commands->commands : NULL;
6222 if (!part_of_multiple && l)
6223 {
6224 struct cleanup *script_chain;
6225
6226 annotate_field (9);
6227 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6228 print_command_lines (uiout, l, 4);
6229 do_cleanups (script_chain);
6230 }
6231
6232 if (is_tracepoint (b))
6233 {
6234 struct tracepoint *t = (struct tracepoint *) b;
6235
6236 if (!part_of_multiple && t->pass_count)
6237 {
6238 annotate_field (10);
6239 ui_out_text (uiout, "\tpass count ");
6240 ui_out_field_int (uiout, "pass", t->pass_count);
6241 ui_out_text (uiout, " \n");
6242 }
6243
6244 /* Don't display it when tracepoint or tracepoint location is
6245 pending. */
6246 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6247 {
6248 annotate_field (11);
6249
6250 if (ui_out_is_mi_like_p (uiout))
6251 ui_out_field_string (uiout, "installed",
6252 loc->inserted ? "y" : "n");
6253 else
6254 {
6255 if (loc->inserted)
6256 ui_out_text (uiout, "\t");
6257 else
6258 ui_out_text (uiout, "\tnot ");
6259 ui_out_text (uiout, "installed on target\n");
6260 }
6261 }
6262 }
6263
6264 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6265 {
6266 if (is_watchpoint (b))
6267 {
6268 struct watchpoint *w = (struct watchpoint *) b;
6269
6270 ui_out_field_string (uiout, "original-location", w->exp_string);
6271 }
6272 else if (b->addr_string)
6273 ui_out_field_string (uiout, "original-location", b->addr_string);
6274 }
6275 }
6276
6277 static void
6278 print_one_breakpoint (struct breakpoint *b,
6279 struct bp_location **last_loc,
6280 int allflag)
6281 {
6282 struct cleanup *bkpt_chain;
6283 struct ui_out *uiout = current_uiout;
6284
6285 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6286
6287 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6288 do_cleanups (bkpt_chain);
6289
6290 /* If this breakpoint has custom print function,
6291 it's already printed. Otherwise, print individual
6292 locations, if any. */
6293 if (b->ops == NULL || b->ops->print_one == NULL)
6294 {
6295 /* If breakpoint has a single location that is disabled, we
6296 print it as if it had several locations, since otherwise it's
6297 hard to represent "breakpoint enabled, location disabled"
6298 situation.
6299
6300 Note that while hardware watchpoints have several locations
6301 internally, that's not a property exposed to user. */
6302 if (b->loc
6303 && !is_hardware_watchpoint (b)
6304 && (b->loc->next || !b->loc->enabled))
6305 {
6306 struct bp_location *loc;
6307 int n = 1;
6308
6309 for (loc = b->loc; loc; loc = loc->next, ++n)
6310 {
6311 struct cleanup *inner2 =
6312 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6313 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6314 do_cleanups (inner2);
6315 }
6316 }
6317 }
6318 }
6319
6320 static int
6321 breakpoint_address_bits (struct breakpoint *b)
6322 {
6323 int print_address_bits = 0;
6324 struct bp_location *loc;
6325
6326 for (loc = b->loc; loc; loc = loc->next)
6327 {
6328 int addr_bit;
6329
6330 /* Software watchpoints that aren't watching memory don't have
6331 an address to print. */
6332 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6333 continue;
6334
6335 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6336 if (addr_bit > print_address_bits)
6337 print_address_bits = addr_bit;
6338 }
6339
6340 return print_address_bits;
6341 }
6342
6343 struct captured_breakpoint_query_args
6344 {
6345 int bnum;
6346 };
6347
6348 static int
6349 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6350 {
6351 struct captured_breakpoint_query_args *args = data;
6352 struct breakpoint *b;
6353 struct bp_location *dummy_loc = NULL;
6354
6355 ALL_BREAKPOINTS (b)
6356 {
6357 if (args->bnum == b->number)
6358 {
6359 print_one_breakpoint (b, &dummy_loc, 0);
6360 return GDB_RC_OK;
6361 }
6362 }
6363 return GDB_RC_NONE;
6364 }
6365
6366 enum gdb_rc
6367 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6368 char **error_message)
6369 {
6370 struct captured_breakpoint_query_args args;
6371
6372 args.bnum = bnum;
6373 /* For the moment we don't trust print_one_breakpoint() to not throw
6374 an error. */
6375 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6376 error_message, RETURN_MASK_ALL) < 0)
6377 return GDB_RC_FAIL;
6378 else
6379 return GDB_RC_OK;
6380 }
6381
6382 /* Return true if this breakpoint was set by the user, false if it is
6383 internal or momentary. */
6384
6385 int
6386 user_breakpoint_p (struct breakpoint *b)
6387 {
6388 return b->number > 0;
6389 }
6390
6391 /* Print information on user settable breakpoint (watchpoint, etc)
6392 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6393 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6394 FILTER is non-NULL, call it on each breakpoint and only include the
6395 ones for which it returns non-zero. Return the total number of
6396 breakpoints listed. */
6397
6398 static int
6399 breakpoint_1 (char *args, int allflag,
6400 int (*filter) (const struct breakpoint *))
6401 {
6402 struct breakpoint *b;
6403 struct bp_location *last_loc = NULL;
6404 int nr_printable_breakpoints;
6405 struct cleanup *bkpttbl_chain;
6406 struct value_print_options opts;
6407 int print_address_bits = 0;
6408 int print_type_col_width = 14;
6409 struct ui_out *uiout = current_uiout;
6410
6411 get_user_print_options (&opts);
6412
6413 /* Compute the number of rows in the table, as well as the size
6414 required for address fields. */
6415 nr_printable_breakpoints = 0;
6416 ALL_BREAKPOINTS (b)
6417 {
6418 /* If we have a filter, only list the breakpoints it accepts. */
6419 if (filter && !filter (b))
6420 continue;
6421
6422 /* If we have an "args" string, it is a list of breakpoints to
6423 accept. Skip the others. */
6424 if (args != NULL && *args != '\0')
6425 {
6426 if (allflag && parse_and_eval_long (args) != b->number)
6427 continue;
6428 if (!allflag && !number_is_in_list (args, b->number))
6429 continue;
6430 }
6431
6432 if (allflag || user_breakpoint_p (b))
6433 {
6434 int addr_bit, type_len;
6435
6436 addr_bit = breakpoint_address_bits (b);
6437 if (addr_bit > print_address_bits)
6438 print_address_bits = addr_bit;
6439
6440 type_len = strlen (bptype_string (b->type));
6441 if (type_len > print_type_col_width)
6442 print_type_col_width = type_len;
6443
6444 nr_printable_breakpoints++;
6445 }
6446 }
6447
6448 if (opts.addressprint)
6449 bkpttbl_chain
6450 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6451 nr_printable_breakpoints,
6452 "BreakpointTable");
6453 else
6454 bkpttbl_chain
6455 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6456 nr_printable_breakpoints,
6457 "BreakpointTable");
6458
6459 if (nr_printable_breakpoints > 0)
6460 annotate_breakpoints_headers ();
6461 if (nr_printable_breakpoints > 0)
6462 annotate_field (0);
6463 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6464 if (nr_printable_breakpoints > 0)
6465 annotate_field (1);
6466 ui_out_table_header (uiout, print_type_col_width, ui_left,
6467 "type", "Type"); /* 2 */
6468 if (nr_printable_breakpoints > 0)
6469 annotate_field (2);
6470 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6471 if (nr_printable_breakpoints > 0)
6472 annotate_field (3);
6473 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6474 if (opts.addressprint)
6475 {
6476 if (nr_printable_breakpoints > 0)
6477 annotate_field (4);
6478 if (print_address_bits <= 32)
6479 ui_out_table_header (uiout, 10, ui_left,
6480 "addr", "Address"); /* 5 */
6481 else
6482 ui_out_table_header (uiout, 18, ui_left,
6483 "addr", "Address"); /* 5 */
6484 }
6485 if (nr_printable_breakpoints > 0)
6486 annotate_field (5);
6487 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6488 ui_out_table_body (uiout);
6489 if (nr_printable_breakpoints > 0)
6490 annotate_breakpoints_table ();
6491
6492 ALL_BREAKPOINTS (b)
6493 {
6494 QUIT;
6495 /* If we have a filter, only list the breakpoints it accepts. */
6496 if (filter && !filter (b))
6497 continue;
6498
6499 /* If we have an "args" string, it is a list of breakpoints to
6500 accept. Skip the others. */
6501
6502 if (args != NULL && *args != '\0')
6503 {
6504 if (allflag) /* maintenance info breakpoint */
6505 {
6506 if (parse_and_eval_long (args) != b->number)
6507 continue;
6508 }
6509 else /* all others */
6510 {
6511 if (!number_is_in_list (args, b->number))
6512 continue;
6513 }
6514 }
6515 /* We only print out user settable breakpoints unless the
6516 allflag is set. */
6517 if (allflag || user_breakpoint_p (b))
6518 print_one_breakpoint (b, &last_loc, allflag);
6519 }
6520
6521 do_cleanups (bkpttbl_chain);
6522
6523 if (nr_printable_breakpoints == 0)
6524 {
6525 /* If there's a filter, let the caller decide how to report
6526 empty list. */
6527 if (!filter)
6528 {
6529 if (args == NULL || *args == '\0')
6530 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6531 else
6532 ui_out_message (uiout, 0,
6533 "No breakpoint or watchpoint matching '%s'.\n",
6534 args);
6535 }
6536 }
6537 else
6538 {
6539 if (last_loc && !server_command)
6540 set_next_address (last_loc->gdbarch, last_loc->address);
6541 }
6542
6543 /* FIXME? Should this be moved up so that it is only called when
6544 there have been breakpoints? */
6545 annotate_breakpoints_table_end ();
6546
6547 return nr_printable_breakpoints;
6548 }
6549
6550 /* Display the value of default-collect in a way that is generally
6551 compatible with the breakpoint list. */
6552
6553 static void
6554 default_collect_info (void)
6555 {
6556 struct ui_out *uiout = current_uiout;
6557
6558 /* If it has no value (which is frequently the case), say nothing; a
6559 message like "No default-collect." gets in user's face when it's
6560 not wanted. */
6561 if (!*default_collect)
6562 return;
6563
6564 /* The following phrase lines up nicely with per-tracepoint collect
6565 actions. */
6566 ui_out_text (uiout, "default collect ");
6567 ui_out_field_string (uiout, "default-collect", default_collect);
6568 ui_out_text (uiout, " \n");
6569 }
6570
6571 static void
6572 breakpoints_info (char *args, int from_tty)
6573 {
6574 breakpoint_1 (args, 0, NULL);
6575
6576 default_collect_info ();
6577 }
6578
6579 static void
6580 watchpoints_info (char *args, int from_tty)
6581 {
6582 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6583 struct ui_out *uiout = current_uiout;
6584
6585 if (num_printed == 0)
6586 {
6587 if (args == NULL || *args == '\0')
6588 ui_out_message (uiout, 0, "No watchpoints.\n");
6589 else
6590 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6591 }
6592 }
6593
6594 static void
6595 maintenance_info_breakpoints (char *args, int from_tty)
6596 {
6597 breakpoint_1 (args, 1, NULL);
6598
6599 default_collect_info ();
6600 }
6601
6602 static int
6603 breakpoint_has_pc (struct breakpoint *b,
6604 struct program_space *pspace,
6605 CORE_ADDR pc, struct obj_section *section)
6606 {
6607 struct bp_location *bl = b->loc;
6608
6609 for (; bl; bl = bl->next)
6610 {
6611 if (bl->pspace == pspace
6612 && bl->address == pc
6613 && (!overlay_debugging || bl->section == section))
6614 return 1;
6615 }
6616 return 0;
6617 }
6618
6619 /* Print a message describing any user-breakpoints set at PC. This
6620 concerns with logical breakpoints, so we match program spaces, not
6621 address spaces. */
6622
6623 static void
6624 describe_other_breakpoints (struct gdbarch *gdbarch,
6625 struct program_space *pspace, CORE_ADDR pc,
6626 struct obj_section *section, int thread)
6627 {
6628 int others = 0;
6629 struct breakpoint *b;
6630
6631 ALL_BREAKPOINTS (b)
6632 others += (user_breakpoint_p (b)
6633 && breakpoint_has_pc (b, pspace, pc, section));
6634 if (others > 0)
6635 {
6636 if (others == 1)
6637 printf_filtered (_("Note: breakpoint "));
6638 else /* if (others == ???) */
6639 printf_filtered (_("Note: breakpoints "));
6640 ALL_BREAKPOINTS (b)
6641 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6642 {
6643 others--;
6644 printf_filtered ("%d", b->number);
6645 if (b->thread == -1 && thread != -1)
6646 printf_filtered (" (all threads)");
6647 else if (b->thread != -1)
6648 printf_filtered (" (thread %d)", b->thread);
6649 printf_filtered ("%s%s ",
6650 ((b->enable_state == bp_disabled
6651 || b->enable_state == bp_call_disabled)
6652 ? " (disabled)"
6653 : b->enable_state == bp_permanent
6654 ? " (permanent)"
6655 : ""),
6656 (others > 1) ? ","
6657 : ((others == 1) ? " and" : ""));
6658 }
6659 printf_filtered (_("also set at pc "));
6660 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6661 printf_filtered (".\n");
6662 }
6663 }
6664 \f
6665
6666 /* Return true iff it is meaningful to use the address member of
6667 BPT. For some breakpoint types, the address member is irrelevant
6668 and it makes no sense to attempt to compare it to other addresses
6669 (or use it for any other purpose either).
6670
6671 More specifically, each of the following breakpoint types will
6672 always have a zero valued address and we don't want to mark
6673 breakpoints of any of these types to be a duplicate of an actual
6674 breakpoint at address zero:
6675
6676 bp_watchpoint
6677 bp_catchpoint
6678
6679 */
6680
6681 static int
6682 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6683 {
6684 enum bptype type = bpt->type;
6685
6686 return (type != bp_watchpoint && type != bp_catchpoint);
6687 }
6688
6689 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6690 true if LOC1 and LOC2 represent the same watchpoint location. */
6691
6692 static int
6693 watchpoint_locations_match (struct bp_location *loc1,
6694 struct bp_location *loc2)
6695 {
6696 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6697 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6698
6699 /* Both of them must exist. */
6700 gdb_assert (w1 != NULL);
6701 gdb_assert (w2 != NULL);
6702
6703 /* If the target can evaluate the condition expression in hardware,
6704 then we we need to insert both watchpoints even if they are at
6705 the same place. Otherwise the watchpoint will only trigger when
6706 the condition of whichever watchpoint was inserted evaluates to
6707 true, not giving a chance for GDB to check the condition of the
6708 other watchpoint. */
6709 if ((w1->cond_exp
6710 && target_can_accel_watchpoint_condition (loc1->address,
6711 loc1->length,
6712 loc1->watchpoint_type,
6713 w1->cond_exp))
6714 || (w2->cond_exp
6715 && target_can_accel_watchpoint_condition (loc2->address,
6716 loc2->length,
6717 loc2->watchpoint_type,
6718 w2->cond_exp)))
6719 return 0;
6720
6721 /* Note that this checks the owner's type, not the location's. In
6722 case the target does not support read watchpoints, but does
6723 support access watchpoints, we'll have bp_read_watchpoint
6724 watchpoints with hw_access locations. Those should be considered
6725 duplicates of hw_read locations. The hw_read locations will
6726 become hw_access locations later. */
6727 return (loc1->owner->type == loc2->owner->type
6728 && loc1->pspace->aspace == loc2->pspace->aspace
6729 && loc1->address == loc2->address
6730 && loc1->length == loc2->length);
6731 }
6732
6733 /* Returns true if {ASPACE1,ADDR1} and {ASPACE2,ADDR2} represent the
6734 same breakpoint location. In most targets, this can only be true
6735 if ASPACE1 matches ASPACE2. On targets that have global
6736 breakpoints, the address space doesn't really matter. */
6737
6738 static int
6739 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6740 struct address_space *aspace2, CORE_ADDR addr2)
6741 {
6742 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6743 || aspace1 == aspace2)
6744 && addr1 == addr2);
6745 }
6746
6747 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6748 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6749 matches ASPACE2. On targets that have global breakpoints, the address
6750 space doesn't really matter. */
6751
6752 static int
6753 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6754 int len1, struct address_space *aspace2,
6755 CORE_ADDR addr2)
6756 {
6757 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6758 || aspace1 == aspace2)
6759 && addr2 >= addr1 && addr2 < addr1 + len1);
6760 }
6761
6762 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6763 a ranged breakpoint. In most targets, a match happens only if ASPACE
6764 matches the breakpoint's address space. On targets that have global
6765 breakpoints, the address space doesn't really matter. */
6766
6767 static int
6768 breakpoint_location_address_match (struct bp_location *bl,
6769 struct address_space *aspace,
6770 CORE_ADDR addr)
6771 {
6772 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6773 aspace, addr)
6774 || (bl->length
6775 && breakpoint_address_match_range (bl->pspace->aspace,
6776 bl->address, bl->length,
6777 aspace, addr)));
6778 }
6779
6780 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6781 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6782 true, otherwise returns false. */
6783
6784 static int
6785 tracepoint_locations_match (struct bp_location *loc1,
6786 struct bp_location *loc2)
6787 {
6788 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6789 /* Since tracepoint locations are never duplicated with others', tracepoint
6790 locations at the same address of different tracepoints are regarded as
6791 different locations. */
6792 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6793 else
6794 return 0;
6795 }
6796
6797 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6798 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6799 represent the same location. */
6800
6801 static int
6802 breakpoint_locations_match (struct bp_location *loc1,
6803 struct bp_location *loc2)
6804 {
6805 int hw_point1, hw_point2;
6806
6807 /* Both of them must not be in moribund_locations. */
6808 gdb_assert (loc1->owner != NULL);
6809 gdb_assert (loc2->owner != NULL);
6810
6811 hw_point1 = is_hardware_watchpoint (loc1->owner);
6812 hw_point2 = is_hardware_watchpoint (loc2->owner);
6813
6814 if (hw_point1 != hw_point2)
6815 return 0;
6816 else if (hw_point1)
6817 return watchpoint_locations_match (loc1, loc2);
6818 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6819 return tracepoint_locations_match (loc1, loc2);
6820 else
6821 /* We compare bp_location.length in order to cover ranged breakpoints. */
6822 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6823 loc2->pspace->aspace, loc2->address)
6824 && loc1->length == loc2->length);
6825 }
6826
6827 static void
6828 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6829 int bnum, int have_bnum)
6830 {
6831 /* The longest string possibly returned by hex_string_custom
6832 is 50 chars. These must be at least that big for safety. */
6833 char astr1[64];
6834 char astr2[64];
6835
6836 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6837 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6838 if (have_bnum)
6839 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6840 bnum, astr1, astr2);
6841 else
6842 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6843 }
6844
6845 /* Adjust a breakpoint's address to account for architectural
6846 constraints on breakpoint placement. Return the adjusted address.
6847 Note: Very few targets require this kind of adjustment. For most
6848 targets, this function is simply the identity function. */
6849
6850 static CORE_ADDR
6851 adjust_breakpoint_address (struct gdbarch *gdbarch,
6852 CORE_ADDR bpaddr, enum bptype bptype)
6853 {
6854 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
6855 {
6856 /* Very few targets need any kind of breakpoint adjustment. */
6857 return bpaddr;
6858 }
6859 else if (bptype == bp_watchpoint
6860 || bptype == bp_hardware_watchpoint
6861 || bptype == bp_read_watchpoint
6862 || bptype == bp_access_watchpoint
6863 || bptype == bp_catchpoint)
6864 {
6865 /* Watchpoints and the various bp_catch_* eventpoints should not
6866 have their addresses modified. */
6867 return bpaddr;
6868 }
6869 else
6870 {
6871 CORE_ADDR adjusted_bpaddr;
6872
6873 /* Some targets have architectural constraints on the placement
6874 of breakpoint instructions. Obtain the adjusted address. */
6875 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6876
6877 /* An adjusted breakpoint address can significantly alter
6878 a user's expectations. Print a warning if an adjustment
6879 is required. */
6880 if (adjusted_bpaddr != bpaddr)
6881 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6882
6883 return adjusted_bpaddr;
6884 }
6885 }
6886
6887 void
6888 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
6889 struct breakpoint *owner)
6890 {
6891 memset (loc, 0, sizeof (*loc));
6892
6893 gdb_assert (ops != NULL);
6894
6895 loc->ops = ops;
6896 loc->owner = owner;
6897 loc->cond = NULL;
6898 loc->cond_bytecode = NULL;
6899 loc->shlib_disabled = 0;
6900 loc->enabled = 1;
6901
6902 switch (owner->type)
6903 {
6904 case bp_breakpoint:
6905 case bp_until:
6906 case bp_finish:
6907 case bp_longjmp:
6908 case bp_longjmp_resume:
6909 case bp_longjmp_call_dummy:
6910 case bp_exception:
6911 case bp_exception_resume:
6912 case bp_step_resume:
6913 case bp_hp_step_resume:
6914 case bp_watchpoint_scope:
6915 case bp_call_dummy:
6916 case bp_std_terminate:
6917 case bp_shlib_event:
6918 case bp_thread_event:
6919 case bp_overlay_event:
6920 case bp_jit_event:
6921 case bp_longjmp_master:
6922 case bp_std_terminate_master:
6923 case bp_exception_master:
6924 case bp_gnu_ifunc_resolver:
6925 case bp_gnu_ifunc_resolver_return:
6926 case bp_dprintf:
6927 loc->loc_type = bp_loc_software_breakpoint;
6928 mark_breakpoint_location_modified (loc);
6929 break;
6930 case bp_hardware_breakpoint:
6931 loc->loc_type = bp_loc_hardware_breakpoint;
6932 mark_breakpoint_location_modified (loc);
6933 break;
6934 case bp_hardware_watchpoint:
6935 case bp_read_watchpoint:
6936 case bp_access_watchpoint:
6937 loc->loc_type = bp_loc_hardware_watchpoint;
6938 break;
6939 case bp_watchpoint:
6940 case bp_catchpoint:
6941 case bp_tracepoint:
6942 case bp_fast_tracepoint:
6943 case bp_static_tracepoint:
6944 loc->loc_type = bp_loc_other;
6945 break;
6946 default:
6947 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
6948 }
6949
6950 loc->refc = 1;
6951 }
6952
6953 /* Allocate a struct bp_location. */
6954
6955 static struct bp_location *
6956 allocate_bp_location (struct breakpoint *bpt)
6957 {
6958 return bpt->ops->allocate_location (bpt);
6959 }
6960
6961 static void
6962 free_bp_location (struct bp_location *loc)
6963 {
6964 loc->ops->dtor (loc);
6965 xfree (loc);
6966 }
6967
6968 /* Increment reference count. */
6969
6970 static void
6971 incref_bp_location (struct bp_location *bl)
6972 {
6973 ++bl->refc;
6974 }
6975
6976 /* Decrement reference count. If the reference count reaches 0,
6977 destroy the bp_location. Sets *BLP to NULL. */
6978
6979 static void
6980 decref_bp_location (struct bp_location **blp)
6981 {
6982 gdb_assert ((*blp)->refc > 0);
6983
6984 if (--(*blp)->refc == 0)
6985 free_bp_location (*blp);
6986 *blp = NULL;
6987 }
6988
6989 /* Add breakpoint B at the end of the global breakpoint chain. */
6990
6991 static void
6992 add_to_breakpoint_chain (struct breakpoint *b)
6993 {
6994 struct breakpoint *b1;
6995
6996 /* Add this breakpoint to the end of the chain so that a list of
6997 breakpoints will come out in order of increasing numbers. */
6998
6999 b1 = breakpoint_chain;
7000 if (b1 == 0)
7001 breakpoint_chain = b;
7002 else
7003 {
7004 while (b1->next)
7005 b1 = b1->next;
7006 b1->next = b;
7007 }
7008 }
7009
7010 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7011
7012 static void
7013 init_raw_breakpoint_without_location (struct breakpoint *b,
7014 struct gdbarch *gdbarch,
7015 enum bptype bptype,
7016 const struct breakpoint_ops *ops)
7017 {
7018 memset (b, 0, sizeof (*b));
7019
7020 gdb_assert (ops != NULL);
7021
7022 b->ops = ops;
7023 b->type = bptype;
7024 b->gdbarch = gdbarch;
7025 b->language = current_language->la_language;
7026 b->input_radix = input_radix;
7027 b->thread = -1;
7028 b->enable_state = bp_enabled;
7029 b->next = 0;
7030 b->silent = 0;
7031 b->ignore_count = 0;
7032 b->commands = NULL;
7033 b->frame_id = null_frame_id;
7034 b->condition_not_parsed = 0;
7035 b->py_bp_object = NULL;
7036 b->related_breakpoint = b;
7037 }
7038
7039 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7040 that has type BPTYPE and has no locations as yet. */
7041
7042 static struct breakpoint *
7043 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7044 enum bptype bptype,
7045 const struct breakpoint_ops *ops)
7046 {
7047 struct breakpoint *b = XNEW (struct breakpoint);
7048
7049 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7050 add_to_breakpoint_chain (b);
7051 return b;
7052 }
7053
7054 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7055 resolutions should be made as the user specified the location explicitly
7056 enough. */
7057
7058 static void
7059 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7060 {
7061 gdb_assert (loc->owner != NULL);
7062
7063 if (loc->owner->type == bp_breakpoint
7064 || loc->owner->type == bp_hardware_breakpoint
7065 || is_tracepoint (loc->owner))
7066 {
7067 int is_gnu_ifunc;
7068 const char *function_name;
7069 CORE_ADDR func_addr;
7070
7071 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7072 &func_addr, NULL, &is_gnu_ifunc);
7073
7074 if (is_gnu_ifunc && !explicit_loc)
7075 {
7076 struct breakpoint *b = loc->owner;
7077
7078 gdb_assert (loc->pspace == current_program_space);
7079 if (gnu_ifunc_resolve_name (function_name,
7080 &loc->requested_address))
7081 {
7082 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7083 loc->address = adjust_breakpoint_address (loc->gdbarch,
7084 loc->requested_address,
7085 b->type);
7086 }
7087 else if (b->type == bp_breakpoint && b->loc == loc
7088 && loc->next == NULL && b->related_breakpoint == b)
7089 {
7090 /* Create only the whole new breakpoint of this type but do not
7091 mess more complicated breakpoints with multiple locations. */
7092 b->type = bp_gnu_ifunc_resolver;
7093 /* Remember the resolver's address for use by the return
7094 breakpoint. */
7095 loc->related_address = func_addr;
7096 }
7097 }
7098
7099 if (function_name)
7100 loc->function_name = xstrdup (function_name);
7101 }
7102 }
7103
7104 /* Attempt to determine architecture of location identified by SAL. */
7105 struct gdbarch *
7106 get_sal_arch (struct symtab_and_line sal)
7107 {
7108 if (sal.section)
7109 return get_objfile_arch (sal.section->objfile);
7110 if (sal.symtab)
7111 return get_objfile_arch (sal.symtab->objfile);
7112
7113 return NULL;
7114 }
7115
7116 /* Low level routine for partially initializing a breakpoint of type
7117 BPTYPE. The newly created breakpoint's address, section, source
7118 file name, and line number are provided by SAL.
7119
7120 It is expected that the caller will complete the initialization of
7121 the newly created breakpoint struct as well as output any status
7122 information regarding the creation of a new breakpoint. */
7123
7124 static void
7125 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7126 struct symtab_and_line sal, enum bptype bptype,
7127 const struct breakpoint_ops *ops)
7128 {
7129 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7130
7131 add_location_to_breakpoint (b, &sal);
7132
7133 if (bptype != bp_catchpoint)
7134 gdb_assert (sal.pspace != NULL);
7135
7136 /* Store the program space that was used to set the breakpoint,
7137 except for ordinary breakpoints, which are independent of the
7138 program space. */
7139 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7140 b->pspace = sal.pspace;
7141 }
7142
7143 /* set_raw_breakpoint is a low level routine for allocating and
7144 partially initializing a breakpoint of type BPTYPE. The newly
7145 created breakpoint's address, section, source file name, and line
7146 number are provided by SAL. The newly created and partially
7147 initialized breakpoint is added to the breakpoint chain and
7148 is also returned as the value of this function.
7149
7150 It is expected that the caller will complete the initialization of
7151 the newly created breakpoint struct as well as output any status
7152 information regarding the creation of a new breakpoint. In
7153 particular, set_raw_breakpoint does NOT set the breakpoint
7154 number! Care should be taken to not allow an error to occur
7155 prior to completing the initialization of the breakpoint. If this
7156 should happen, a bogus breakpoint will be left on the chain. */
7157
7158 struct breakpoint *
7159 set_raw_breakpoint (struct gdbarch *gdbarch,
7160 struct symtab_and_line sal, enum bptype bptype,
7161 const struct breakpoint_ops *ops)
7162 {
7163 struct breakpoint *b = XNEW (struct breakpoint);
7164
7165 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7166 add_to_breakpoint_chain (b);
7167 return b;
7168 }
7169
7170
7171 /* Note that the breakpoint object B describes a permanent breakpoint
7172 instruction, hard-wired into the inferior's code. */
7173 void
7174 make_breakpoint_permanent (struct breakpoint *b)
7175 {
7176 struct bp_location *bl;
7177
7178 b->enable_state = bp_permanent;
7179
7180 /* By definition, permanent breakpoints are already present in the
7181 code. Mark all locations as inserted. For now,
7182 make_breakpoint_permanent is called in just one place, so it's
7183 hard to say if it's reasonable to have permanent breakpoint with
7184 multiple locations or not, but it's easy to implement. */
7185 for (bl = b->loc; bl; bl = bl->next)
7186 bl->inserted = 1;
7187 }
7188
7189 /* Call this routine when stepping and nexting to enable a breakpoint
7190 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7191 initiated the operation. */
7192
7193 void
7194 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7195 {
7196 struct breakpoint *b, *b_tmp;
7197 int thread = tp->num;
7198
7199 /* To avoid having to rescan all objfile symbols at every step,
7200 we maintain a list of continually-inserted but always disabled
7201 longjmp "master" breakpoints. Here, we simply create momentary
7202 clones of those and enable them for the requested thread. */
7203 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7204 if (b->pspace == current_program_space
7205 && (b->type == bp_longjmp_master
7206 || b->type == bp_exception_master))
7207 {
7208 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7209 struct breakpoint *clone;
7210
7211 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7212 after their removal. */
7213 clone = momentary_breakpoint_from_master (b, type,
7214 &longjmp_breakpoint_ops);
7215 clone->thread = thread;
7216 }
7217
7218 tp->initiating_frame = frame;
7219 }
7220
7221 /* Delete all longjmp breakpoints from THREAD. */
7222 void
7223 delete_longjmp_breakpoint (int thread)
7224 {
7225 struct breakpoint *b, *b_tmp;
7226
7227 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7228 if (b->type == bp_longjmp || b->type == bp_exception)
7229 {
7230 if (b->thread == thread)
7231 delete_breakpoint (b);
7232 }
7233 }
7234
7235 void
7236 delete_longjmp_breakpoint_at_next_stop (int thread)
7237 {
7238 struct breakpoint *b, *b_tmp;
7239
7240 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7241 if (b->type == bp_longjmp || b->type == bp_exception)
7242 {
7243 if (b->thread == thread)
7244 b->disposition = disp_del_at_next_stop;
7245 }
7246 }
7247
7248 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7249 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7250 pointer to any of them. Return NULL if this system cannot place longjmp
7251 breakpoints. */
7252
7253 struct breakpoint *
7254 set_longjmp_breakpoint_for_call_dummy (void)
7255 {
7256 struct breakpoint *b, *retval = NULL;
7257
7258 ALL_BREAKPOINTS (b)
7259 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7260 {
7261 struct breakpoint *new_b;
7262
7263 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7264 &momentary_breakpoint_ops);
7265 new_b->thread = pid_to_thread_id (inferior_ptid);
7266
7267 /* Link NEW_B into the chain of RETVAL breakpoints. */
7268
7269 gdb_assert (new_b->related_breakpoint == new_b);
7270 if (retval == NULL)
7271 retval = new_b;
7272 new_b->related_breakpoint = retval;
7273 while (retval->related_breakpoint != new_b->related_breakpoint)
7274 retval = retval->related_breakpoint;
7275 retval->related_breakpoint = new_b;
7276 }
7277
7278 return retval;
7279 }
7280
7281 /* Verify all existing dummy frames and their associated breakpoints for
7282 THREAD. Remove those which can no longer be found in the current frame
7283 stack.
7284
7285 You should call this function only at places where it is safe to currently
7286 unwind the whole stack. Failed stack unwind would discard live dummy
7287 frames. */
7288
7289 void
7290 check_longjmp_breakpoint_for_call_dummy (int thread)
7291 {
7292 struct breakpoint *b, *b_tmp;
7293
7294 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7295 if (b->type == bp_longjmp_call_dummy && b->thread == thread)
7296 {
7297 struct breakpoint *dummy_b = b->related_breakpoint;
7298
7299 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7300 dummy_b = dummy_b->related_breakpoint;
7301 if (dummy_b->type != bp_call_dummy
7302 || frame_find_by_id (dummy_b->frame_id) != NULL)
7303 continue;
7304
7305 dummy_frame_discard (dummy_b->frame_id);
7306
7307 while (b->related_breakpoint != b)
7308 {
7309 if (b_tmp == b->related_breakpoint)
7310 b_tmp = b->related_breakpoint->next;
7311 delete_breakpoint (b->related_breakpoint);
7312 }
7313 delete_breakpoint (b);
7314 }
7315 }
7316
7317 void
7318 enable_overlay_breakpoints (void)
7319 {
7320 struct breakpoint *b;
7321
7322 ALL_BREAKPOINTS (b)
7323 if (b->type == bp_overlay_event)
7324 {
7325 b->enable_state = bp_enabled;
7326 update_global_location_list (1);
7327 overlay_events_enabled = 1;
7328 }
7329 }
7330
7331 void
7332 disable_overlay_breakpoints (void)
7333 {
7334 struct breakpoint *b;
7335
7336 ALL_BREAKPOINTS (b)
7337 if (b->type == bp_overlay_event)
7338 {
7339 b->enable_state = bp_disabled;
7340 update_global_location_list (0);
7341 overlay_events_enabled = 0;
7342 }
7343 }
7344
7345 /* Set an active std::terminate breakpoint for each std::terminate
7346 master breakpoint. */
7347 void
7348 set_std_terminate_breakpoint (void)
7349 {
7350 struct breakpoint *b, *b_tmp;
7351
7352 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7353 if (b->pspace == current_program_space
7354 && b->type == bp_std_terminate_master)
7355 {
7356 momentary_breakpoint_from_master (b, bp_std_terminate,
7357 &momentary_breakpoint_ops);
7358 }
7359 }
7360
7361 /* Delete all the std::terminate breakpoints. */
7362 void
7363 delete_std_terminate_breakpoint (void)
7364 {
7365 struct breakpoint *b, *b_tmp;
7366
7367 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7368 if (b->type == bp_std_terminate)
7369 delete_breakpoint (b);
7370 }
7371
7372 struct breakpoint *
7373 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7374 {
7375 struct breakpoint *b;
7376
7377 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7378 &internal_breakpoint_ops);
7379
7380 b->enable_state = bp_enabled;
7381 /* addr_string has to be used or breakpoint_re_set will delete me. */
7382 b->addr_string
7383 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7384
7385 update_global_location_list_nothrow (1);
7386
7387 return b;
7388 }
7389
7390 void
7391 remove_thread_event_breakpoints (void)
7392 {
7393 struct breakpoint *b, *b_tmp;
7394
7395 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7396 if (b->type == bp_thread_event
7397 && b->loc->pspace == current_program_space)
7398 delete_breakpoint (b);
7399 }
7400
7401 struct lang_and_radix
7402 {
7403 enum language lang;
7404 int radix;
7405 };
7406
7407 /* Create a breakpoint for JIT code registration and unregistration. */
7408
7409 struct breakpoint *
7410 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7411 {
7412 struct breakpoint *b;
7413
7414 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7415 &internal_breakpoint_ops);
7416 update_global_location_list_nothrow (1);
7417 return b;
7418 }
7419
7420 /* Remove JIT code registration and unregistration breakpoint(s). */
7421
7422 void
7423 remove_jit_event_breakpoints (void)
7424 {
7425 struct breakpoint *b, *b_tmp;
7426
7427 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7428 if (b->type == bp_jit_event
7429 && b->loc->pspace == current_program_space)
7430 delete_breakpoint (b);
7431 }
7432
7433 void
7434 remove_solib_event_breakpoints (void)
7435 {
7436 struct breakpoint *b, *b_tmp;
7437
7438 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7439 if (b->type == bp_shlib_event
7440 && b->loc->pspace == current_program_space)
7441 delete_breakpoint (b);
7442 }
7443
7444 struct breakpoint *
7445 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7446 {
7447 struct breakpoint *b;
7448
7449 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7450 &internal_breakpoint_ops);
7451 update_global_location_list_nothrow (1);
7452 return b;
7453 }
7454
7455 /* Disable any breakpoints that are on code in shared libraries. Only
7456 apply to enabled breakpoints, disabled ones can just stay disabled. */
7457
7458 void
7459 disable_breakpoints_in_shlibs (void)
7460 {
7461 struct bp_location *loc, **locp_tmp;
7462
7463 ALL_BP_LOCATIONS (loc, locp_tmp)
7464 {
7465 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7466 struct breakpoint *b = loc->owner;
7467
7468 /* We apply the check to all breakpoints, including disabled for
7469 those with loc->duplicate set. This is so that when breakpoint
7470 becomes enabled, or the duplicate is removed, gdb will try to
7471 insert all breakpoints. If we don't set shlib_disabled here,
7472 we'll try to insert those breakpoints and fail. */
7473 if (((b->type == bp_breakpoint)
7474 || (b->type == bp_jit_event)
7475 || (b->type == bp_hardware_breakpoint)
7476 || (is_tracepoint (b)))
7477 && loc->pspace == current_program_space
7478 && !loc->shlib_disabled
7479 && solib_name_from_address (loc->pspace, loc->address)
7480 )
7481 {
7482 loc->shlib_disabled = 1;
7483 }
7484 }
7485 }
7486
7487 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7488 notification of unloaded_shlib. Only apply to enabled breakpoints,
7489 disabled ones can just stay disabled. */
7490
7491 static void
7492 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7493 {
7494 struct bp_location *loc, **locp_tmp;
7495 int disabled_shlib_breaks = 0;
7496
7497 /* SunOS a.out shared libraries are always mapped, so do not
7498 disable breakpoints; they will only be reported as unloaded
7499 through clear_solib when GDB discards its shared library
7500 list. See clear_solib for more information. */
7501 if (exec_bfd != NULL
7502 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7503 return;
7504
7505 ALL_BP_LOCATIONS (loc, locp_tmp)
7506 {
7507 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7508 struct breakpoint *b = loc->owner;
7509
7510 if (solib->pspace == loc->pspace
7511 && !loc->shlib_disabled
7512 && (((b->type == bp_breakpoint
7513 || b->type == bp_jit_event
7514 || b->type == bp_hardware_breakpoint)
7515 && (loc->loc_type == bp_loc_hardware_breakpoint
7516 || loc->loc_type == bp_loc_software_breakpoint))
7517 || is_tracepoint (b))
7518 && solib_contains_address_p (solib, loc->address))
7519 {
7520 loc->shlib_disabled = 1;
7521 /* At this point, we cannot rely on remove_breakpoint
7522 succeeding so we must mark the breakpoint as not inserted
7523 to prevent future errors occurring in remove_breakpoints. */
7524 loc->inserted = 0;
7525
7526 /* This may cause duplicate notifications for the same breakpoint. */
7527 observer_notify_breakpoint_modified (b);
7528
7529 if (!disabled_shlib_breaks)
7530 {
7531 target_terminal_ours_for_output ();
7532 warning (_("Temporarily disabling breakpoints "
7533 "for unloaded shared library \"%s\""),
7534 solib->so_name);
7535 }
7536 disabled_shlib_breaks = 1;
7537 }
7538 }
7539 }
7540
7541 /* Disable any breakpoints and tracepoints in OBJFILE upon
7542 notification of free_objfile. Only apply to enabled breakpoints,
7543 disabled ones can just stay disabled. */
7544
7545 static void
7546 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7547 {
7548 struct breakpoint *b;
7549
7550 if (objfile == NULL)
7551 return;
7552
7553 /* If the file is a shared library not loaded by the user then
7554 solib_unloaded was notified and disable_breakpoints_in_unloaded_shlib
7555 was called. In that case there is no need to take action again. */
7556 if ((objfile->flags & OBJF_SHARED) && !(objfile->flags & OBJF_USERLOADED))
7557 return;
7558
7559 ALL_BREAKPOINTS (b)
7560 {
7561 struct bp_location *loc;
7562 int bp_modified = 0;
7563
7564 if (!is_breakpoint (b) && !is_tracepoint (b))
7565 continue;
7566
7567 for (loc = b->loc; loc != NULL; loc = loc->next)
7568 {
7569 CORE_ADDR loc_addr = loc->address;
7570
7571 if (loc->loc_type != bp_loc_hardware_breakpoint
7572 && loc->loc_type != bp_loc_software_breakpoint)
7573 continue;
7574
7575 if (loc->shlib_disabled != 0)
7576 continue;
7577
7578 if (objfile->pspace != loc->pspace)
7579 continue;
7580
7581 if (loc->loc_type != bp_loc_hardware_breakpoint
7582 && loc->loc_type != bp_loc_software_breakpoint)
7583 continue;
7584
7585 if (is_addr_in_objfile (loc_addr, objfile))
7586 {
7587 loc->shlib_disabled = 1;
7588 loc->inserted = 0;
7589
7590 mark_breakpoint_location_modified (loc);
7591
7592 bp_modified = 1;
7593 }
7594 }
7595
7596 if (bp_modified)
7597 observer_notify_breakpoint_modified (b);
7598 }
7599 }
7600
7601 /* FORK & VFORK catchpoints. */
7602
7603 /* An instance of this type is used to represent a fork or vfork
7604 catchpoint. It includes a "struct breakpoint" as a kind of base
7605 class; users downcast to "struct breakpoint *" when needed. A
7606 breakpoint is really of this type iff its ops pointer points to
7607 CATCH_FORK_BREAKPOINT_OPS. */
7608
7609 struct fork_catchpoint
7610 {
7611 /* The base class. */
7612 struct breakpoint base;
7613
7614 /* Process id of a child process whose forking triggered this
7615 catchpoint. This field is only valid immediately after this
7616 catchpoint has triggered. */
7617 ptid_t forked_inferior_pid;
7618 };
7619
7620 /* Implement the "insert" breakpoint_ops method for fork
7621 catchpoints. */
7622
7623 static int
7624 insert_catch_fork (struct bp_location *bl)
7625 {
7626 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7627 }
7628
7629 /* Implement the "remove" breakpoint_ops method for fork
7630 catchpoints. */
7631
7632 static int
7633 remove_catch_fork (struct bp_location *bl)
7634 {
7635 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7636 }
7637
7638 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7639 catchpoints. */
7640
7641 static int
7642 breakpoint_hit_catch_fork (const struct bp_location *bl,
7643 struct address_space *aspace, CORE_ADDR bp_addr,
7644 const struct target_waitstatus *ws)
7645 {
7646 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7647
7648 if (ws->kind != TARGET_WAITKIND_FORKED)
7649 return 0;
7650
7651 c->forked_inferior_pid = ws->value.related_pid;
7652 return 1;
7653 }
7654
7655 /* Implement the "print_it" breakpoint_ops method for fork
7656 catchpoints. */
7657
7658 static enum print_stop_action
7659 print_it_catch_fork (bpstat bs)
7660 {
7661 struct ui_out *uiout = current_uiout;
7662 struct breakpoint *b = bs->breakpoint_at;
7663 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7664
7665 annotate_catchpoint (b->number);
7666 if (b->disposition == disp_del)
7667 ui_out_text (uiout, "\nTemporary catchpoint ");
7668 else
7669 ui_out_text (uiout, "\nCatchpoint ");
7670 if (ui_out_is_mi_like_p (uiout))
7671 {
7672 ui_out_field_string (uiout, "reason",
7673 async_reason_lookup (EXEC_ASYNC_FORK));
7674 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7675 }
7676 ui_out_field_int (uiout, "bkptno", b->number);
7677 ui_out_text (uiout, " (forked process ");
7678 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7679 ui_out_text (uiout, "), ");
7680 return PRINT_SRC_AND_LOC;
7681 }
7682
7683 /* Implement the "print_one" breakpoint_ops method for fork
7684 catchpoints. */
7685
7686 static void
7687 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7688 {
7689 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7690 struct value_print_options opts;
7691 struct ui_out *uiout = current_uiout;
7692
7693 get_user_print_options (&opts);
7694
7695 /* Field 4, the address, is omitted (which makes the columns not
7696 line up too nicely with the headers, but the effect is relatively
7697 readable). */
7698 if (opts.addressprint)
7699 ui_out_field_skip (uiout, "addr");
7700 annotate_field (5);
7701 ui_out_text (uiout, "fork");
7702 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7703 {
7704 ui_out_text (uiout, ", process ");
7705 ui_out_field_int (uiout, "what",
7706 ptid_get_pid (c->forked_inferior_pid));
7707 ui_out_spaces (uiout, 1);
7708 }
7709
7710 if (ui_out_is_mi_like_p (uiout))
7711 ui_out_field_string (uiout, "catch-type", "fork");
7712 }
7713
7714 /* Implement the "print_mention" breakpoint_ops method for fork
7715 catchpoints. */
7716
7717 static void
7718 print_mention_catch_fork (struct breakpoint *b)
7719 {
7720 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7721 }
7722
7723 /* Implement the "print_recreate" breakpoint_ops method for fork
7724 catchpoints. */
7725
7726 static void
7727 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7728 {
7729 fprintf_unfiltered (fp, "catch fork");
7730 print_recreate_thread (b, fp);
7731 }
7732
7733 /* The breakpoint_ops structure to be used in fork catchpoints. */
7734
7735 static struct breakpoint_ops catch_fork_breakpoint_ops;
7736
7737 /* Implement the "insert" breakpoint_ops method for vfork
7738 catchpoints. */
7739
7740 static int
7741 insert_catch_vfork (struct bp_location *bl)
7742 {
7743 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7744 }
7745
7746 /* Implement the "remove" breakpoint_ops method for vfork
7747 catchpoints. */
7748
7749 static int
7750 remove_catch_vfork (struct bp_location *bl)
7751 {
7752 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7753 }
7754
7755 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7756 catchpoints. */
7757
7758 static int
7759 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7760 struct address_space *aspace, CORE_ADDR bp_addr,
7761 const struct target_waitstatus *ws)
7762 {
7763 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7764
7765 if (ws->kind != TARGET_WAITKIND_VFORKED)
7766 return 0;
7767
7768 c->forked_inferior_pid = ws->value.related_pid;
7769 return 1;
7770 }
7771
7772 /* Implement the "print_it" breakpoint_ops method for vfork
7773 catchpoints. */
7774
7775 static enum print_stop_action
7776 print_it_catch_vfork (bpstat bs)
7777 {
7778 struct ui_out *uiout = current_uiout;
7779 struct breakpoint *b = bs->breakpoint_at;
7780 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7781
7782 annotate_catchpoint (b->number);
7783 if (b->disposition == disp_del)
7784 ui_out_text (uiout, "\nTemporary catchpoint ");
7785 else
7786 ui_out_text (uiout, "\nCatchpoint ");
7787 if (ui_out_is_mi_like_p (uiout))
7788 {
7789 ui_out_field_string (uiout, "reason",
7790 async_reason_lookup (EXEC_ASYNC_VFORK));
7791 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7792 }
7793 ui_out_field_int (uiout, "bkptno", b->number);
7794 ui_out_text (uiout, " (vforked process ");
7795 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7796 ui_out_text (uiout, "), ");
7797 return PRINT_SRC_AND_LOC;
7798 }
7799
7800 /* Implement the "print_one" breakpoint_ops method for vfork
7801 catchpoints. */
7802
7803 static void
7804 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7805 {
7806 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7807 struct value_print_options opts;
7808 struct ui_out *uiout = current_uiout;
7809
7810 get_user_print_options (&opts);
7811 /* Field 4, the address, is omitted (which makes the columns not
7812 line up too nicely with the headers, but the effect is relatively
7813 readable). */
7814 if (opts.addressprint)
7815 ui_out_field_skip (uiout, "addr");
7816 annotate_field (5);
7817 ui_out_text (uiout, "vfork");
7818 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7819 {
7820 ui_out_text (uiout, ", process ");
7821 ui_out_field_int (uiout, "what",
7822 ptid_get_pid (c->forked_inferior_pid));
7823 ui_out_spaces (uiout, 1);
7824 }
7825
7826 if (ui_out_is_mi_like_p (uiout))
7827 ui_out_field_string (uiout, "catch-type", "vfork");
7828 }
7829
7830 /* Implement the "print_mention" breakpoint_ops method for vfork
7831 catchpoints. */
7832
7833 static void
7834 print_mention_catch_vfork (struct breakpoint *b)
7835 {
7836 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7837 }
7838
7839 /* Implement the "print_recreate" breakpoint_ops method for vfork
7840 catchpoints. */
7841
7842 static void
7843 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7844 {
7845 fprintf_unfiltered (fp, "catch vfork");
7846 print_recreate_thread (b, fp);
7847 }
7848
7849 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7850
7851 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7852
7853 /* An instance of this type is used to represent an solib catchpoint.
7854 It includes a "struct breakpoint" as a kind of base class; users
7855 downcast to "struct breakpoint *" when needed. A breakpoint is
7856 really of this type iff its ops pointer points to
7857 CATCH_SOLIB_BREAKPOINT_OPS. */
7858
7859 struct solib_catchpoint
7860 {
7861 /* The base class. */
7862 struct breakpoint base;
7863
7864 /* True for "catch load", false for "catch unload". */
7865 unsigned char is_load;
7866
7867 /* Regular expression to match, if any. COMPILED is only valid when
7868 REGEX is non-NULL. */
7869 char *regex;
7870 regex_t compiled;
7871 };
7872
7873 static void
7874 dtor_catch_solib (struct breakpoint *b)
7875 {
7876 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7877
7878 if (self->regex)
7879 regfree (&self->compiled);
7880 xfree (self->regex);
7881
7882 base_breakpoint_ops.dtor (b);
7883 }
7884
7885 static int
7886 insert_catch_solib (struct bp_location *ignore)
7887 {
7888 return 0;
7889 }
7890
7891 static int
7892 remove_catch_solib (struct bp_location *ignore)
7893 {
7894 return 0;
7895 }
7896
7897 static int
7898 breakpoint_hit_catch_solib (const struct bp_location *bl,
7899 struct address_space *aspace,
7900 CORE_ADDR bp_addr,
7901 const struct target_waitstatus *ws)
7902 {
7903 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7904 struct breakpoint *other;
7905
7906 if (ws->kind == TARGET_WAITKIND_LOADED)
7907 return 1;
7908
7909 ALL_BREAKPOINTS (other)
7910 {
7911 struct bp_location *other_bl;
7912
7913 if (other == bl->owner)
7914 continue;
7915
7916 if (other->type != bp_shlib_event)
7917 continue;
7918
7919 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
7920 continue;
7921
7922 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7923 {
7924 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7925 return 1;
7926 }
7927 }
7928
7929 return 0;
7930 }
7931
7932 static void
7933 check_status_catch_solib (struct bpstats *bs)
7934 {
7935 struct solib_catchpoint *self
7936 = (struct solib_catchpoint *) bs->breakpoint_at;
7937 int ix;
7938
7939 if (self->is_load)
7940 {
7941 struct so_list *iter;
7942
7943 for (ix = 0;
7944 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
7945 ix, iter);
7946 ++ix)
7947 {
7948 if (!self->regex
7949 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
7950 return;
7951 }
7952 }
7953 else
7954 {
7955 char *iter;
7956
7957 for (ix = 0;
7958 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
7959 ix, iter);
7960 ++ix)
7961 {
7962 if (!self->regex
7963 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
7964 return;
7965 }
7966 }
7967
7968 bs->stop = 0;
7969 bs->print_it = print_it_noop;
7970 }
7971
7972 static enum print_stop_action
7973 print_it_catch_solib (bpstat bs)
7974 {
7975 struct breakpoint *b = bs->breakpoint_at;
7976 struct ui_out *uiout = current_uiout;
7977
7978 annotate_catchpoint (b->number);
7979 if (b->disposition == disp_del)
7980 ui_out_text (uiout, "\nTemporary catchpoint ");
7981 else
7982 ui_out_text (uiout, "\nCatchpoint ");
7983 ui_out_field_int (uiout, "bkptno", b->number);
7984 ui_out_text (uiout, "\n");
7985 if (ui_out_is_mi_like_p (uiout))
7986 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7987 print_solib_event (1);
7988 return PRINT_SRC_AND_LOC;
7989 }
7990
7991 static void
7992 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
7993 {
7994 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7995 struct value_print_options opts;
7996 struct ui_out *uiout = current_uiout;
7997 char *msg;
7998
7999 get_user_print_options (&opts);
8000 /* Field 4, the address, is omitted (which makes the columns not
8001 line up too nicely with the headers, but the effect is relatively
8002 readable). */
8003 if (opts.addressprint)
8004 {
8005 annotate_field (4);
8006 ui_out_field_skip (uiout, "addr");
8007 }
8008
8009 annotate_field (5);
8010 if (self->is_load)
8011 {
8012 if (self->regex)
8013 msg = xstrprintf (_("load of library matching %s"), self->regex);
8014 else
8015 msg = xstrdup (_("load of library"));
8016 }
8017 else
8018 {
8019 if (self->regex)
8020 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8021 else
8022 msg = xstrdup (_("unload of library"));
8023 }
8024 ui_out_field_string (uiout, "what", msg);
8025 xfree (msg);
8026
8027 if (ui_out_is_mi_like_p (uiout))
8028 ui_out_field_string (uiout, "catch-type",
8029 self->is_load ? "load" : "unload");
8030 }
8031
8032 static void
8033 print_mention_catch_solib (struct breakpoint *b)
8034 {
8035 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8036
8037 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8038 self->is_load ? "load" : "unload");
8039 }
8040
8041 static void
8042 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8043 {
8044 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8045
8046 fprintf_unfiltered (fp, "%s %s",
8047 b->disposition == disp_del ? "tcatch" : "catch",
8048 self->is_load ? "load" : "unload");
8049 if (self->regex)
8050 fprintf_unfiltered (fp, " %s", self->regex);
8051 fprintf_unfiltered (fp, "\n");
8052 }
8053
8054 static struct breakpoint_ops catch_solib_breakpoint_ops;
8055
8056 /* Shared helper function (MI and CLI) for creating and installing
8057 a shared object event catchpoint. If IS_LOAD is non-zero then
8058 the events to be caught are load events, otherwise they are
8059 unload events. If IS_TEMP is non-zero the catchpoint is a
8060 temporary one. If ENABLED is non-zero the catchpoint is
8061 created in an enabled state. */
8062
8063 void
8064 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
8065 {
8066 struct solib_catchpoint *c;
8067 struct gdbarch *gdbarch = get_current_arch ();
8068 struct cleanup *cleanup;
8069
8070 if (!arg)
8071 arg = "";
8072 arg = skip_spaces (arg);
8073
8074 c = XCNEW (struct solib_catchpoint);
8075 cleanup = make_cleanup (xfree, c);
8076
8077 if (*arg != '\0')
8078 {
8079 int errcode;
8080
8081 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8082 if (errcode != 0)
8083 {
8084 char *err = get_regcomp_error (errcode, &c->compiled);
8085
8086 make_cleanup (xfree, err);
8087 error (_("Invalid regexp (%s): %s"), err, arg);
8088 }
8089 c->regex = xstrdup (arg);
8090 }
8091
8092 c->is_load = is_load;
8093 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8094 &catch_solib_breakpoint_ops);
8095
8096 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8097
8098 discard_cleanups (cleanup);
8099 install_breakpoint (0, &c->base, 1);
8100 }
8101
8102 /* A helper function that does all the work for "catch load" and
8103 "catch unload". */
8104
8105 static void
8106 catch_load_or_unload (char *arg, int from_tty, int is_load,
8107 struct cmd_list_element *command)
8108 {
8109 int tempflag;
8110 const int enabled = 1;
8111
8112 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8113
8114 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8115 }
8116
8117 static void
8118 catch_load_command_1 (char *arg, int from_tty,
8119 struct cmd_list_element *command)
8120 {
8121 catch_load_or_unload (arg, from_tty, 1, command);
8122 }
8123
8124 static void
8125 catch_unload_command_1 (char *arg, int from_tty,
8126 struct cmd_list_element *command)
8127 {
8128 catch_load_or_unload (arg, from_tty, 0, command);
8129 }
8130
8131 /* An instance of this type is used to represent a syscall catchpoint.
8132 It includes a "struct breakpoint" as a kind of base class; users
8133 downcast to "struct breakpoint *" when needed. A breakpoint is
8134 really of this type iff its ops pointer points to
8135 CATCH_SYSCALL_BREAKPOINT_OPS. */
8136
8137 struct syscall_catchpoint
8138 {
8139 /* The base class. */
8140 struct breakpoint base;
8141
8142 /* Syscall numbers used for the 'catch syscall' feature. If no
8143 syscall has been specified for filtering, its value is NULL.
8144 Otherwise, it holds a list of all syscalls to be caught. The
8145 list elements are allocated with xmalloc. */
8146 VEC(int) *syscalls_to_be_caught;
8147 };
8148
8149 /* Implement the "dtor" breakpoint_ops method for syscall
8150 catchpoints. */
8151
8152 static void
8153 dtor_catch_syscall (struct breakpoint *b)
8154 {
8155 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8156
8157 VEC_free (int, c->syscalls_to_be_caught);
8158
8159 base_breakpoint_ops.dtor (b);
8160 }
8161
8162 static const struct inferior_data *catch_syscall_inferior_data = NULL;
8163
8164 struct catch_syscall_inferior_data
8165 {
8166 /* We keep a count of the number of times the user has requested a
8167 particular syscall to be tracked, and pass this information to the
8168 target. This lets capable targets implement filtering directly. */
8169
8170 /* Number of times that "any" syscall is requested. */
8171 int any_syscall_count;
8172
8173 /* Count of each system call. */
8174 VEC(int) *syscalls_counts;
8175
8176 /* This counts all syscall catch requests, so we can readily determine
8177 if any catching is necessary. */
8178 int total_syscalls_count;
8179 };
8180
8181 static struct catch_syscall_inferior_data*
8182 get_catch_syscall_inferior_data (struct inferior *inf)
8183 {
8184 struct catch_syscall_inferior_data *inf_data;
8185
8186 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8187 if (inf_data == NULL)
8188 {
8189 inf_data = XZALLOC (struct catch_syscall_inferior_data);
8190 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8191 }
8192
8193 return inf_data;
8194 }
8195
8196 static void
8197 catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8198 {
8199 xfree (arg);
8200 }
8201
8202
8203 /* Implement the "insert" breakpoint_ops method for syscall
8204 catchpoints. */
8205
8206 static int
8207 insert_catch_syscall (struct bp_location *bl)
8208 {
8209 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8210 struct inferior *inf = current_inferior ();
8211 struct catch_syscall_inferior_data *inf_data
8212 = get_catch_syscall_inferior_data (inf);
8213
8214 ++inf_data->total_syscalls_count;
8215 if (!c->syscalls_to_be_caught)
8216 ++inf_data->any_syscall_count;
8217 else
8218 {
8219 int i, iter;
8220
8221 for (i = 0;
8222 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8223 i++)
8224 {
8225 int elem;
8226
8227 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8228 {
8229 int old_size = VEC_length (int, inf_data->syscalls_counts);
8230 uintptr_t vec_addr_offset
8231 = old_size * ((uintptr_t) sizeof (int));
8232 uintptr_t vec_addr;
8233 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8234 vec_addr = ((uintptr_t) VEC_address (int,
8235 inf_data->syscalls_counts)
8236 + vec_addr_offset);
8237 memset ((void *) vec_addr, 0,
8238 (iter + 1 - old_size) * sizeof (int));
8239 }
8240 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8241 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8242 }
8243 }
8244
8245 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8246 inf_data->total_syscalls_count != 0,
8247 inf_data->any_syscall_count,
8248 VEC_length (int,
8249 inf_data->syscalls_counts),
8250 VEC_address (int,
8251 inf_data->syscalls_counts));
8252 }
8253
8254 /* Implement the "remove" breakpoint_ops method for syscall
8255 catchpoints. */
8256
8257 static int
8258 remove_catch_syscall (struct bp_location *bl)
8259 {
8260 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8261 struct inferior *inf = current_inferior ();
8262 struct catch_syscall_inferior_data *inf_data
8263 = get_catch_syscall_inferior_data (inf);
8264
8265 --inf_data->total_syscalls_count;
8266 if (!c->syscalls_to_be_caught)
8267 --inf_data->any_syscall_count;
8268 else
8269 {
8270 int i, iter;
8271
8272 for (i = 0;
8273 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8274 i++)
8275 {
8276 int elem;
8277 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8278 /* Shouldn't happen. */
8279 continue;
8280 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8281 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8282 }
8283 }
8284
8285 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8286 inf_data->total_syscalls_count != 0,
8287 inf_data->any_syscall_count,
8288 VEC_length (int,
8289 inf_data->syscalls_counts),
8290 VEC_address (int,
8291 inf_data->syscalls_counts));
8292 }
8293
8294 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8295 catchpoints. */
8296
8297 static int
8298 breakpoint_hit_catch_syscall (const struct bp_location *bl,
8299 struct address_space *aspace, CORE_ADDR bp_addr,
8300 const struct target_waitstatus *ws)
8301 {
8302 /* We must check if we are catching specific syscalls in this
8303 breakpoint. If we are, then we must guarantee that the called
8304 syscall is the same syscall we are catching. */
8305 int syscall_number = 0;
8306 const struct syscall_catchpoint *c
8307 = (const struct syscall_catchpoint *) bl->owner;
8308
8309 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8310 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8311 return 0;
8312
8313 syscall_number = ws->value.syscall_number;
8314
8315 /* Now, checking if the syscall is the same. */
8316 if (c->syscalls_to_be_caught)
8317 {
8318 int i, iter;
8319
8320 for (i = 0;
8321 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8322 i++)
8323 if (syscall_number == iter)
8324 break;
8325 /* Not the same. */
8326 if (!iter)
8327 return 0;
8328 }
8329
8330 return 1;
8331 }
8332
8333 /* Implement the "print_it" breakpoint_ops method for syscall
8334 catchpoints. */
8335
8336 static enum print_stop_action
8337 print_it_catch_syscall (bpstat bs)
8338 {
8339 struct ui_out *uiout = current_uiout;
8340 struct breakpoint *b = bs->breakpoint_at;
8341 /* These are needed because we want to know in which state a
8342 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8343 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8344 must print "called syscall" or "returned from syscall". */
8345 ptid_t ptid;
8346 struct target_waitstatus last;
8347 struct syscall s;
8348
8349 get_last_target_status (&ptid, &last);
8350
8351 get_syscall_by_number (last.value.syscall_number, &s);
8352
8353 annotate_catchpoint (b->number);
8354
8355 if (b->disposition == disp_del)
8356 ui_out_text (uiout, "\nTemporary catchpoint ");
8357 else
8358 ui_out_text (uiout, "\nCatchpoint ");
8359 if (ui_out_is_mi_like_p (uiout))
8360 {
8361 ui_out_field_string (uiout, "reason",
8362 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8363 ? EXEC_ASYNC_SYSCALL_ENTRY
8364 : EXEC_ASYNC_SYSCALL_RETURN));
8365 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8366 }
8367 ui_out_field_int (uiout, "bkptno", b->number);
8368
8369 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8370 ui_out_text (uiout, " (call to syscall ");
8371 else
8372 ui_out_text (uiout, " (returned from syscall ");
8373
8374 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8375 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8376 if (s.name != NULL)
8377 ui_out_field_string (uiout, "syscall-name", s.name);
8378
8379 ui_out_text (uiout, "), ");
8380
8381 return PRINT_SRC_AND_LOC;
8382 }
8383
8384 /* Implement the "print_one" breakpoint_ops method for syscall
8385 catchpoints. */
8386
8387 static void
8388 print_one_catch_syscall (struct breakpoint *b,
8389 struct bp_location **last_loc)
8390 {
8391 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8392 struct value_print_options opts;
8393 struct ui_out *uiout = current_uiout;
8394
8395 get_user_print_options (&opts);
8396 /* Field 4, the address, is omitted (which makes the columns not
8397 line up too nicely with the headers, but the effect is relatively
8398 readable). */
8399 if (opts.addressprint)
8400 ui_out_field_skip (uiout, "addr");
8401 annotate_field (5);
8402
8403 if (c->syscalls_to_be_caught
8404 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8405 ui_out_text (uiout, "syscalls \"");
8406 else
8407 ui_out_text (uiout, "syscall \"");
8408
8409 if (c->syscalls_to_be_caught)
8410 {
8411 int i, iter;
8412 char *text = xstrprintf ("%s", "");
8413
8414 for (i = 0;
8415 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8416 i++)
8417 {
8418 char *x = text;
8419 struct syscall s;
8420 get_syscall_by_number (iter, &s);
8421
8422 if (s.name != NULL)
8423 text = xstrprintf ("%s%s, ", text, s.name);
8424 else
8425 text = xstrprintf ("%s%d, ", text, iter);
8426
8427 /* We have to xfree the last 'text' (now stored at 'x')
8428 because xstrprintf dynamically allocates new space for it
8429 on every call. */
8430 xfree (x);
8431 }
8432 /* Remove the last comma. */
8433 text[strlen (text) - 2] = '\0';
8434 ui_out_field_string (uiout, "what", text);
8435 }
8436 else
8437 ui_out_field_string (uiout, "what", "<any syscall>");
8438 ui_out_text (uiout, "\" ");
8439
8440 if (ui_out_is_mi_like_p (uiout))
8441 ui_out_field_string (uiout, "catch-type", "syscall");
8442 }
8443
8444 /* Implement the "print_mention" breakpoint_ops method for syscall
8445 catchpoints. */
8446
8447 static void
8448 print_mention_catch_syscall (struct breakpoint *b)
8449 {
8450 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8451
8452 if (c->syscalls_to_be_caught)
8453 {
8454 int i, iter;
8455
8456 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8457 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8458 else
8459 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8460
8461 for (i = 0;
8462 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8463 i++)
8464 {
8465 struct syscall s;
8466 get_syscall_by_number (iter, &s);
8467
8468 if (s.name)
8469 printf_filtered (" '%s' [%d]", s.name, s.number);
8470 else
8471 printf_filtered (" %d", s.number);
8472 }
8473 printf_filtered (")");
8474 }
8475 else
8476 printf_filtered (_("Catchpoint %d (any syscall)"),
8477 b->number);
8478 }
8479
8480 /* Implement the "print_recreate" breakpoint_ops method for syscall
8481 catchpoints. */
8482
8483 static void
8484 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8485 {
8486 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8487
8488 fprintf_unfiltered (fp, "catch syscall");
8489
8490 if (c->syscalls_to_be_caught)
8491 {
8492 int i, iter;
8493
8494 for (i = 0;
8495 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8496 i++)
8497 {
8498 struct syscall s;
8499
8500 get_syscall_by_number (iter, &s);
8501 if (s.name)
8502 fprintf_unfiltered (fp, " %s", s.name);
8503 else
8504 fprintf_unfiltered (fp, " %d", s.number);
8505 }
8506 }
8507 print_recreate_thread (b, fp);
8508 }
8509
8510 /* The breakpoint_ops structure to be used in syscall catchpoints. */
8511
8512 static struct breakpoint_ops catch_syscall_breakpoint_ops;
8513
8514 /* Returns non-zero if 'b' is a syscall catchpoint. */
8515
8516 static int
8517 syscall_catchpoint_p (struct breakpoint *b)
8518 {
8519 return (b->ops == &catch_syscall_breakpoint_ops);
8520 }
8521
8522 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8523 is non-zero, then make the breakpoint temporary. If COND_STRING is
8524 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8525 the breakpoint_ops structure associated to the catchpoint. */
8526
8527 void
8528 init_catchpoint (struct breakpoint *b,
8529 struct gdbarch *gdbarch, int tempflag,
8530 char *cond_string,
8531 const struct breakpoint_ops *ops)
8532 {
8533 struct symtab_and_line sal;
8534
8535 init_sal (&sal);
8536 sal.pspace = current_program_space;
8537
8538 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8539
8540 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8541 b->disposition = tempflag ? disp_del : disp_donttouch;
8542 }
8543
8544 void
8545 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8546 {
8547 add_to_breakpoint_chain (b);
8548 set_breakpoint_number (internal, b);
8549 if (is_tracepoint (b))
8550 set_tracepoint_count (breakpoint_count);
8551 if (!internal)
8552 mention (b);
8553 observer_notify_breakpoint_created (b);
8554
8555 if (update_gll)
8556 update_global_location_list (1);
8557 }
8558
8559 static void
8560 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8561 int tempflag, char *cond_string,
8562 const struct breakpoint_ops *ops)
8563 {
8564 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8565
8566 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8567
8568 c->forked_inferior_pid = null_ptid;
8569
8570 install_breakpoint (0, &c->base, 1);
8571 }
8572
8573 /* Exec catchpoints. */
8574
8575 /* An instance of this type is used to represent an exec catchpoint.
8576 It includes a "struct breakpoint" as a kind of base class; users
8577 downcast to "struct breakpoint *" when needed. A breakpoint is
8578 really of this type iff its ops pointer points to
8579 CATCH_EXEC_BREAKPOINT_OPS. */
8580
8581 struct exec_catchpoint
8582 {
8583 /* The base class. */
8584 struct breakpoint base;
8585
8586 /* Filename of a program whose exec triggered this catchpoint.
8587 This field is only valid immediately after this catchpoint has
8588 triggered. */
8589 char *exec_pathname;
8590 };
8591
8592 /* Implement the "dtor" breakpoint_ops method for exec
8593 catchpoints. */
8594
8595 static void
8596 dtor_catch_exec (struct breakpoint *b)
8597 {
8598 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8599
8600 xfree (c->exec_pathname);
8601
8602 base_breakpoint_ops.dtor (b);
8603 }
8604
8605 static int
8606 insert_catch_exec (struct bp_location *bl)
8607 {
8608 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8609 }
8610
8611 static int
8612 remove_catch_exec (struct bp_location *bl)
8613 {
8614 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8615 }
8616
8617 static int
8618 breakpoint_hit_catch_exec (const struct bp_location *bl,
8619 struct address_space *aspace, CORE_ADDR bp_addr,
8620 const struct target_waitstatus *ws)
8621 {
8622 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8623
8624 if (ws->kind != TARGET_WAITKIND_EXECD)
8625 return 0;
8626
8627 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8628 return 1;
8629 }
8630
8631 static enum print_stop_action
8632 print_it_catch_exec (bpstat bs)
8633 {
8634 struct ui_out *uiout = current_uiout;
8635 struct breakpoint *b = bs->breakpoint_at;
8636 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8637
8638 annotate_catchpoint (b->number);
8639 if (b->disposition == disp_del)
8640 ui_out_text (uiout, "\nTemporary catchpoint ");
8641 else
8642 ui_out_text (uiout, "\nCatchpoint ");
8643 if (ui_out_is_mi_like_p (uiout))
8644 {
8645 ui_out_field_string (uiout, "reason",
8646 async_reason_lookup (EXEC_ASYNC_EXEC));
8647 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8648 }
8649 ui_out_field_int (uiout, "bkptno", b->number);
8650 ui_out_text (uiout, " (exec'd ");
8651 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8652 ui_out_text (uiout, "), ");
8653
8654 return PRINT_SRC_AND_LOC;
8655 }
8656
8657 static void
8658 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8659 {
8660 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8661 struct value_print_options opts;
8662 struct ui_out *uiout = current_uiout;
8663
8664 get_user_print_options (&opts);
8665
8666 /* Field 4, the address, is omitted (which makes the columns
8667 not line up too nicely with the headers, but the effect
8668 is relatively readable). */
8669 if (opts.addressprint)
8670 ui_out_field_skip (uiout, "addr");
8671 annotate_field (5);
8672 ui_out_text (uiout, "exec");
8673 if (c->exec_pathname != NULL)
8674 {
8675 ui_out_text (uiout, ", program \"");
8676 ui_out_field_string (uiout, "what", c->exec_pathname);
8677 ui_out_text (uiout, "\" ");
8678 }
8679
8680 if (ui_out_is_mi_like_p (uiout))
8681 ui_out_field_string (uiout, "catch-type", "exec");
8682 }
8683
8684 static void
8685 print_mention_catch_exec (struct breakpoint *b)
8686 {
8687 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8688 }
8689
8690 /* Implement the "print_recreate" breakpoint_ops method for exec
8691 catchpoints. */
8692
8693 static void
8694 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8695 {
8696 fprintf_unfiltered (fp, "catch exec");
8697 print_recreate_thread (b, fp);
8698 }
8699
8700 static struct breakpoint_ops catch_exec_breakpoint_ops;
8701
8702 static void
8703 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
8704 const struct breakpoint_ops *ops)
8705 {
8706 struct syscall_catchpoint *c;
8707 struct gdbarch *gdbarch = get_current_arch ();
8708
8709 c = XNEW (struct syscall_catchpoint);
8710 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
8711 c->syscalls_to_be_caught = filter;
8712
8713 install_breakpoint (0, &c->base, 1);
8714 }
8715
8716 static int
8717 hw_breakpoint_used_count (void)
8718 {
8719 int i = 0;
8720 struct breakpoint *b;
8721 struct bp_location *bl;
8722
8723 ALL_BREAKPOINTS (b)
8724 {
8725 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8726 for (bl = b->loc; bl; bl = bl->next)
8727 {
8728 /* Special types of hardware breakpoints may use more than
8729 one register. */
8730 i += b->ops->resources_needed (bl);
8731 }
8732 }
8733
8734 return i;
8735 }
8736
8737 /* Returns the resources B would use if it were a hardware
8738 watchpoint. */
8739
8740 static int
8741 hw_watchpoint_use_count (struct breakpoint *b)
8742 {
8743 int i = 0;
8744 struct bp_location *bl;
8745
8746 if (!breakpoint_enabled (b))
8747 return 0;
8748
8749 for (bl = b->loc; bl; bl = bl->next)
8750 {
8751 /* Special types of hardware watchpoints may use more than
8752 one register. */
8753 i += b->ops->resources_needed (bl);
8754 }
8755
8756 return i;
8757 }
8758
8759 /* Returns the sum the used resources of all hardware watchpoints of
8760 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8761 the sum of the used resources of all hardware watchpoints of other
8762 types _not_ TYPE. */
8763
8764 static int
8765 hw_watchpoint_used_count_others (struct breakpoint *except,
8766 enum bptype type, int *other_type_used)
8767 {
8768 int i = 0;
8769 struct breakpoint *b;
8770
8771 *other_type_used = 0;
8772 ALL_BREAKPOINTS (b)
8773 {
8774 if (b == except)
8775 continue;
8776 if (!breakpoint_enabled (b))
8777 continue;
8778
8779 if (b->type == type)
8780 i += hw_watchpoint_use_count (b);
8781 else if (is_hardware_watchpoint (b))
8782 *other_type_used = 1;
8783 }
8784
8785 return i;
8786 }
8787
8788 void
8789 disable_watchpoints_before_interactive_call_start (void)
8790 {
8791 struct breakpoint *b;
8792
8793 ALL_BREAKPOINTS (b)
8794 {
8795 if (is_watchpoint (b) && breakpoint_enabled (b))
8796 {
8797 b->enable_state = bp_call_disabled;
8798 update_global_location_list (0);
8799 }
8800 }
8801 }
8802
8803 void
8804 enable_watchpoints_after_interactive_call_stop (void)
8805 {
8806 struct breakpoint *b;
8807
8808 ALL_BREAKPOINTS (b)
8809 {
8810 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8811 {
8812 b->enable_state = bp_enabled;
8813 update_global_location_list (1);
8814 }
8815 }
8816 }
8817
8818 void
8819 disable_breakpoints_before_startup (void)
8820 {
8821 current_program_space->executing_startup = 1;
8822 update_global_location_list (0);
8823 }
8824
8825 void
8826 enable_breakpoints_after_startup (void)
8827 {
8828 current_program_space->executing_startup = 0;
8829 breakpoint_re_set ();
8830 }
8831
8832
8833 /* Set a breakpoint that will evaporate an end of command
8834 at address specified by SAL.
8835 Restrict it to frame FRAME if FRAME is nonzero. */
8836
8837 struct breakpoint *
8838 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8839 struct frame_id frame_id, enum bptype type)
8840 {
8841 struct breakpoint *b;
8842
8843 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8844 tail-called one. */
8845 gdb_assert (!frame_id_artificial_p (frame_id));
8846
8847 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8848 b->enable_state = bp_enabled;
8849 b->disposition = disp_donttouch;
8850 b->frame_id = frame_id;
8851
8852 /* If we're debugging a multi-threaded program, then we want
8853 momentary breakpoints to be active in only a single thread of
8854 control. */
8855 if (in_thread_list (inferior_ptid))
8856 b->thread = pid_to_thread_id (inferior_ptid);
8857
8858 update_global_location_list_nothrow (1);
8859
8860 return b;
8861 }
8862
8863 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8864 The new breakpoint will have type TYPE, and use OPS as it
8865 breakpoint_ops. */
8866
8867 static struct breakpoint *
8868 momentary_breakpoint_from_master (struct breakpoint *orig,
8869 enum bptype type,
8870 const struct breakpoint_ops *ops)
8871 {
8872 struct breakpoint *copy;
8873
8874 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8875 copy->loc = allocate_bp_location (copy);
8876 set_breakpoint_location_function (copy->loc, 1);
8877
8878 copy->loc->gdbarch = orig->loc->gdbarch;
8879 copy->loc->requested_address = orig->loc->requested_address;
8880 copy->loc->address = orig->loc->address;
8881 copy->loc->section = orig->loc->section;
8882 copy->loc->pspace = orig->loc->pspace;
8883 copy->loc->probe = orig->loc->probe;
8884 copy->loc->line_number = orig->loc->line_number;
8885 copy->loc->symtab = orig->loc->symtab;
8886 copy->frame_id = orig->frame_id;
8887 copy->thread = orig->thread;
8888 copy->pspace = orig->pspace;
8889
8890 copy->enable_state = bp_enabled;
8891 copy->disposition = disp_donttouch;
8892 copy->number = internal_breakpoint_number--;
8893
8894 update_global_location_list_nothrow (0);
8895 return copy;
8896 }
8897
8898 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8899 ORIG is NULL. */
8900
8901 struct breakpoint *
8902 clone_momentary_breakpoint (struct breakpoint *orig)
8903 {
8904 /* If there's nothing to clone, then return nothing. */
8905 if (orig == NULL)
8906 return NULL;
8907
8908 return momentary_breakpoint_from_master (orig, orig->type, orig->ops);
8909 }
8910
8911 struct breakpoint *
8912 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8913 enum bptype type)
8914 {
8915 struct symtab_and_line sal;
8916
8917 sal = find_pc_line (pc, 0);
8918 sal.pc = pc;
8919 sal.section = find_pc_overlay (pc);
8920 sal.explicit_pc = 1;
8921
8922 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8923 }
8924 \f
8925
8926 /* Tell the user we have just set a breakpoint B. */
8927
8928 static void
8929 mention (struct breakpoint *b)
8930 {
8931 b->ops->print_mention (b);
8932 if (ui_out_is_mi_like_p (current_uiout))
8933 return;
8934 printf_filtered ("\n");
8935 }
8936 \f
8937
8938 static struct bp_location *
8939 add_location_to_breakpoint (struct breakpoint *b,
8940 const struct symtab_and_line *sal)
8941 {
8942 struct bp_location *loc, **tmp;
8943 CORE_ADDR adjusted_address;
8944 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8945
8946 if (loc_gdbarch == NULL)
8947 loc_gdbarch = b->gdbarch;
8948
8949 /* Adjust the breakpoint's address prior to allocating a location.
8950 Once we call allocate_bp_location(), that mostly uninitialized
8951 location will be placed on the location chain. Adjustment of the
8952 breakpoint may cause target_read_memory() to be called and we do
8953 not want its scan of the location chain to find a breakpoint and
8954 location that's only been partially initialized. */
8955 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8956 sal->pc, b->type);
8957
8958 /* Sort the locations by their ADDRESS. */
8959 loc = allocate_bp_location (b);
8960 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8961 tmp = &((*tmp)->next))
8962 ;
8963 loc->next = *tmp;
8964 *tmp = loc;
8965
8966 loc->requested_address = sal->pc;
8967 loc->address = adjusted_address;
8968 loc->pspace = sal->pspace;
8969 loc->probe = sal->probe;
8970 gdb_assert (loc->pspace != NULL);
8971 loc->section = sal->section;
8972 loc->gdbarch = loc_gdbarch;
8973 loc->line_number = sal->line;
8974 loc->symtab = sal->symtab;
8975
8976 set_breakpoint_location_function (loc,
8977 sal->explicit_pc || sal->explicit_line);
8978 return loc;
8979 }
8980 \f
8981
8982 /* Return 1 if LOC is pointing to a permanent breakpoint,
8983 return 0 otherwise. */
8984
8985 static int
8986 bp_loc_is_permanent (struct bp_location *loc)
8987 {
8988 int len;
8989 CORE_ADDR addr;
8990 const gdb_byte *bpoint;
8991 gdb_byte *target_mem;
8992 struct cleanup *cleanup;
8993 int retval = 0;
8994
8995 gdb_assert (loc != NULL);
8996
8997 addr = loc->address;
8998 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
8999
9000 /* Software breakpoints unsupported? */
9001 if (bpoint == NULL)
9002 return 0;
9003
9004 target_mem = alloca (len);
9005
9006 /* Enable the automatic memory restoration from breakpoints while
9007 we read the memory. Otherwise we could say about our temporary
9008 breakpoints they are permanent. */
9009 cleanup = save_current_space_and_thread ();
9010
9011 switch_to_program_space_and_thread (loc->pspace);
9012 make_show_memory_breakpoints_cleanup (0);
9013
9014 if (target_read_memory (loc->address, target_mem, len) == 0
9015 && memcmp (target_mem, bpoint, len) == 0)
9016 retval = 1;
9017
9018 do_cleanups (cleanup);
9019
9020 return retval;
9021 }
9022
9023 /* Build a command list for the dprintf corresponding to the current
9024 settings of the dprintf style options. */
9025
9026 static void
9027 update_dprintf_command_list (struct breakpoint *b)
9028 {
9029 char *dprintf_args = b->extra_string;
9030 char *printf_line = NULL;
9031
9032 if (!dprintf_args)
9033 return;
9034
9035 dprintf_args = skip_spaces (dprintf_args);
9036
9037 /* Allow a comma, as it may have terminated a location, but don't
9038 insist on it. */
9039 if (*dprintf_args == ',')
9040 ++dprintf_args;
9041 dprintf_args = skip_spaces (dprintf_args);
9042
9043 if (*dprintf_args != '"')
9044 error (_("Bad format string, missing '\"'."));
9045
9046 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9047 printf_line = xstrprintf ("printf %s", dprintf_args);
9048 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9049 {
9050 if (!dprintf_function)
9051 error (_("No function supplied for dprintf call"));
9052
9053 if (dprintf_channel && strlen (dprintf_channel) > 0)
9054 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9055 dprintf_function,
9056 dprintf_channel,
9057 dprintf_args);
9058 else
9059 printf_line = xstrprintf ("call (void) %s (%s)",
9060 dprintf_function,
9061 dprintf_args);
9062 }
9063 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9064 {
9065 if (target_can_run_breakpoint_commands ())
9066 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9067 else
9068 {
9069 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9070 printf_line = xstrprintf ("printf %s", dprintf_args);
9071 }
9072 }
9073 else
9074 internal_error (__FILE__, __LINE__,
9075 _("Invalid dprintf style."));
9076
9077 gdb_assert (printf_line != NULL);
9078 /* Manufacture a printf sequence. */
9079 {
9080 struct command_line *printf_cmd_line
9081 = xmalloc (sizeof (struct command_line));
9082
9083 printf_cmd_line = xmalloc (sizeof (struct command_line));
9084 printf_cmd_line->control_type = simple_control;
9085 printf_cmd_line->body_count = 0;
9086 printf_cmd_line->body_list = NULL;
9087 printf_cmd_line->next = NULL;
9088 printf_cmd_line->line = printf_line;
9089
9090 breakpoint_set_commands (b, printf_cmd_line);
9091 }
9092 }
9093
9094 /* Update all dprintf commands, making their command lists reflect
9095 current style settings. */
9096
9097 static void
9098 update_dprintf_commands (char *args, int from_tty,
9099 struct cmd_list_element *c)
9100 {
9101 struct breakpoint *b;
9102
9103 ALL_BREAKPOINTS (b)
9104 {
9105 if (b->type == bp_dprintf)
9106 update_dprintf_command_list (b);
9107 }
9108 }
9109
9110 /* Create a breakpoint with SAL as location. Use ADDR_STRING
9111 as textual description of the location, and COND_STRING
9112 as condition expression. */
9113
9114 static void
9115 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9116 struct symtabs_and_lines sals, char *addr_string,
9117 char *filter, char *cond_string,
9118 char *extra_string,
9119 enum bptype type, enum bpdisp disposition,
9120 int thread, int task, int ignore_count,
9121 const struct breakpoint_ops *ops, int from_tty,
9122 int enabled, int internal, unsigned flags,
9123 int display_canonical)
9124 {
9125 int i;
9126
9127 if (type == bp_hardware_breakpoint)
9128 {
9129 int target_resources_ok;
9130
9131 i = hw_breakpoint_used_count ();
9132 target_resources_ok =
9133 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9134 i + 1, 0);
9135 if (target_resources_ok == 0)
9136 error (_("No hardware breakpoint support in the target."));
9137 else if (target_resources_ok < 0)
9138 error (_("Hardware breakpoints used exceeds limit."));
9139 }
9140
9141 gdb_assert (sals.nelts > 0);
9142
9143 for (i = 0; i < sals.nelts; ++i)
9144 {
9145 struct symtab_and_line sal = sals.sals[i];
9146 struct bp_location *loc;
9147
9148 if (from_tty)
9149 {
9150 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9151 if (!loc_gdbarch)
9152 loc_gdbarch = gdbarch;
9153
9154 describe_other_breakpoints (loc_gdbarch,
9155 sal.pspace, sal.pc, sal.section, thread);
9156 }
9157
9158 if (i == 0)
9159 {
9160 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9161 b->thread = thread;
9162 b->task = task;
9163
9164 b->cond_string = cond_string;
9165 b->extra_string = extra_string;
9166 b->ignore_count = ignore_count;
9167 b->enable_state = enabled ? bp_enabled : bp_disabled;
9168 b->disposition = disposition;
9169
9170 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9171 b->loc->inserted = 1;
9172
9173 if (type == bp_static_tracepoint)
9174 {
9175 struct tracepoint *t = (struct tracepoint *) b;
9176 struct static_tracepoint_marker marker;
9177
9178 if (strace_marker_p (b))
9179 {
9180 /* We already know the marker exists, otherwise, we
9181 wouldn't see a sal for it. */
9182 char *p = &addr_string[3];
9183 char *endp;
9184 char *marker_str;
9185
9186 p = skip_spaces (p);
9187
9188 endp = skip_to_space (p);
9189
9190 marker_str = savestring (p, endp - p);
9191 t->static_trace_marker_id = marker_str;
9192
9193 printf_filtered (_("Probed static tracepoint "
9194 "marker \"%s\"\n"),
9195 t->static_trace_marker_id);
9196 }
9197 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9198 {
9199 t->static_trace_marker_id = xstrdup (marker.str_id);
9200 release_static_tracepoint_marker (&marker);
9201
9202 printf_filtered (_("Probed static tracepoint "
9203 "marker \"%s\"\n"),
9204 t->static_trace_marker_id);
9205 }
9206 else
9207 warning (_("Couldn't determine the static "
9208 "tracepoint marker to probe"));
9209 }
9210
9211 loc = b->loc;
9212 }
9213 else
9214 {
9215 loc = add_location_to_breakpoint (b, &sal);
9216 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9217 loc->inserted = 1;
9218 }
9219
9220 if (bp_loc_is_permanent (loc))
9221 make_breakpoint_permanent (b);
9222
9223 if (b->cond_string)
9224 {
9225 const char *arg = b->cond_string;
9226
9227 loc->cond = parse_exp_1 (&arg, loc->address,
9228 block_for_pc (loc->address), 0);
9229 if (*arg)
9230 error (_("Garbage '%s' follows condition"), arg);
9231 }
9232
9233 /* Dynamic printf requires and uses additional arguments on the
9234 command line, otherwise it's an error. */
9235 if (type == bp_dprintf)
9236 {
9237 if (b->extra_string)
9238 update_dprintf_command_list (b);
9239 else
9240 error (_("Format string required"));
9241 }
9242 else if (b->extra_string)
9243 error (_("Garbage '%s' at end of command"), b->extra_string);
9244 }
9245
9246 b->display_canonical = display_canonical;
9247 if (addr_string)
9248 b->addr_string = addr_string;
9249 else
9250 /* addr_string has to be used or breakpoint_re_set will delete
9251 me. */
9252 b->addr_string
9253 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9254 b->filter = filter;
9255 }
9256
9257 static void
9258 create_breakpoint_sal (struct gdbarch *gdbarch,
9259 struct symtabs_and_lines sals, char *addr_string,
9260 char *filter, char *cond_string,
9261 char *extra_string,
9262 enum bptype type, enum bpdisp disposition,
9263 int thread, int task, int ignore_count,
9264 const struct breakpoint_ops *ops, int from_tty,
9265 int enabled, int internal, unsigned flags,
9266 int display_canonical)
9267 {
9268 struct breakpoint *b;
9269 struct cleanup *old_chain;
9270
9271 if (is_tracepoint_type (type))
9272 {
9273 struct tracepoint *t;
9274
9275 t = XCNEW (struct tracepoint);
9276 b = &t->base;
9277 }
9278 else
9279 b = XNEW (struct breakpoint);
9280
9281 old_chain = make_cleanup (xfree, b);
9282
9283 init_breakpoint_sal (b, gdbarch,
9284 sals, addr_string,
9285 filter, cond_string, extra_string,
9286 type, disposition,
9287 thread, task, ignore_count,
9288 ops, from_tty,
9289 enabled, internal, flags,
9290 display_canonical);
9291 discard_cleanups (old_chain);
9292
9293 install_breakpoint (internal, b, 0);
9294 }
9295
9296 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9297 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9298 value. COND_STRING, if not NULL, specified the condition to be
9299 used for all breakpoints. Essentially the only case where
9300 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9301 function. In that case, it's still not possible to specify
9302 separate conditions for different overloaded functions, so
9303 we take just a single condition string.
9304
9305 NOTE: If the function succeeds, the caller is expected to cleanup
9306 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9307 array contents). If the function fails (error() is called), the
9308 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9309 COND and SALS arrays and each of those arrays contents. */
9310
9311 static void
9312 create_breakpoints_sal (struct gdbarch *gdbarch,
9313 struct linespec_result *canonical,
9314 char *cond_string, char *extra_string,
9315 enum bptype type, enum bpdisp disposition,
9316 int thread, int task, int ignore_count,
9317 const struct breakpoint_ops *ops, int from_tty,
9318 int enabled, int internal, unsigned flags)
9319 {
9320 int i;
9321 struct linespec_sals *lsal;
9322
9323 if (canonical->pre_expanded)
9324 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9325
9326 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9327 {
9328 /* Note that 'addr_string' can be NULL in the case of a plain
9329 'break', without arguments. */
9330 char *addr_string = (canonical->addr_string
9331 ? xstrdup (canonical->addr_string)
9332 : NULL);
9333 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9334 struct cleanup *inner = make_cleanup (xfree, addr_string);
9335
9336 make_cleanup (xfree, filter_string);
9337 create_breakpoint_sal (gdbarch, lsal->sals,
9338 addr_string,
9339 filter_string,
9340 cond_string, extra_string,
9341 type, disposition,
9342 thread, task, ignore_count, ops,
9343 from_tty, enabled, internal, flags,
9344 canonical->special_display);
9345 discard_cleanups (inner);
9346 }
9347 }
9348
9349 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9350 followed by conditionals. On return, SALS contains an array of SAL
9351 addresses found. ADDR_STRING contains a vector of (canonical)
9352 address strings. ADDRESS points to the end of the SAL.
9353
9354 The array and the line spec strings are allocated on the heap, it is
9355 the caller's responsibility to free them. */
9356
9357 static void
9358 parse_breakpoint_sals (char **address,
9359 struct linespec_result *canonical)
9360 {
9361 /* If no arg given, or if first arg is 'if ', use the default
9362 breakpoint. */
9363 if ((*address) == NULL
9364 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9365 {
9366 /* The last displayed codepoint, if it's valid, is our default breakpoint
9367 address. */
9368 if (last_displayed_sal_is_valid ())
9369 {
9370 struct linespec_sals lsal;
9371 struct symtab_and_line sal;
9372 CORE_ADDR pc;
9373
9374 init_sal (&sal); /* Initialize to zeroes. */
9375 lsal.sals.sals = (struct symtab_and_line *)
9376 xmalloc (sizeof (struct symtab_and_line));
9377
9378 /* Set sal's pspace, pc, symtab, and line to the values
9379 corresponding to the last call to print_frame_info.
9380 Be sure to reinitialize LINE with NOTCURRENT == 0
9381 as the breakpoint line number is inappropriate otherwise.
9382 find_pc_line would adjust PC, re-set it back. */
9383 get_last_displayed_sal (&sal);
9384 pc = sal.pc;
9385 sal = find_pc_line (pc, 0);
9386
9387 /* "break" without arguments is equivalent to "break *PC"
9388 where PC is the last displayed codepoint's address. So
9389 make sure to set sal.explicit_pc to prevent GDB from
9390 trying to expand the list of sals to include all other
9391 instances with the same symtab and line. */
9392 sal.pc = pc;
9393 sal.explicit_pc = 1;
9394
9395 lsal.sals.sals[0] = sal;
9396 lsal.sals.nelts = 1;
9397 lsal.canonical = NULL;
9398
9399 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9400 }
9401 else
9402 error (_("No default breakpoint address now."));
9403 }
9404 else
9405 {
9406 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9407
9408 /* Force almost all breakpoints to be in terms of the
9409 current_source_symtab (which is decode_line_1's default).
9410 This should produce the results we want almost all of the
9411 time while leaving default_breakpoint_* alone.
9412
9413 ObjC: However, don't match an Objective-C method name which
9414 may have a '+' or '-' succeeded by a '['. */
9415 if (last_displayed_sal_is_valid ()
9416 && (!cursal.symtab
9417 || ((strchr ("+-", (*address)[0]) != NULL)
9418 && ((*address)[1] != '['))))
9419 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9420 get_last_displayed_symtab (),
9421 get_last_displayed_line (),
9422 canonical, NULL, NULL);
9423 else
9424 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9425 cursal.symtab, cursal.line, canonical, NULL, NULL);
9426 }
9427 }
9428
9429
9430 /* Convert each SAL into a real PC. Verify that the PC can be
9431 inserted as a breakpoint. If it can't throw an error. */
9432
9433 static void
9434 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9435 {
9436 int i;
9437
9438 for (i = 0; i < sals->nelts; i++)
9439 resolve_sal_pc (&sals->sals[i]);
9440 }
9441
9442 /* Fast tracepoints may have restrictions on valid locations. For
9443 instance, a fast tracepoint using a jump instead of a trap will
9444 likely have to overwrite more bytes than a trap would, and so can
9445 only be placed where the instruction is longer than the jump, or a
9446 multi-instruction sequence does not have a jump into the middle of
9447 it, etc. */
9448
9449 static void
9450 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9451 struct symtabs_and_lines *sals)
9452 {
9453 int i, rslt;
9454 struct symtab_and_line *sal;
9455 char *msg;
9456 struct cleanup *old_chain;
9457
9458 for (i = 0; i < sals->nelts; i++)
9459 {
9460 struct gdbarch *sarch;
9461
9462 sal = &sals->sals[i];
9463
9464 sarch = get_sal_arch (*sal);
9465 /* We fall back to GDBARCH if there is no architecture
9466 associated with SAL. */
9467 if (sarch == NULL)
9468 sarch = gdbarch;
9469 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9470 NULL, &msg);
9471 old_chain = make_cleanup (xfree, msg);
9472
9473 if (!rslt)
9474 error (_("May not have a fast tracepoint at 0x%s%s"),
9475 paddress (sarch, sal->pc), (msg ? msg : ""));
9476
9477 do_cleanups (old_chain);
9478 }
9479 }
9480
9481 /* Issue an invalid thread ID error. */
9482
9483 static void ATTRIBUTE_NORETURN
9484 invalid_thread_id_error (int id)
9485 {
9486 error (_("Unknown thread %d."), id);
9487 }
9488
9489 /* Given TOK, a string specification of condition and thread, as
9490 accepted by the 'break' command, extract the condition
9491 string and thread number and set *COND_STRING and *THREAD.
9492 PC identifies the context at which the condition should be parsed.
9493 If no condition is found, *COND_STRING is set to NULL.
9494 If no thread is found, *THREAD is set to -1. */
9495
9496 static void
9497 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9498 char **cond_string, int *thread, int *task,
9499 char **rest)
9500 {
9501 *cond_string = NULL;
9502 *thread = -1;
9503 *task = 0;
9504 *rest = NULL;
9505
9506 while (tok && *tok)
9507 {
9508 const char *end_tok;
9509 int toklen;
9510 const char *cond_start = NULL;
9511 const char *cond_end = NULL;
9512
9513 tok = skip_spaces_const (tok);
9514
9515 if ((*tok == '"' || *tok == ',') && rest)
9516 {
9517 *rest = savestring (tok, strlen (tok));
9518 return;
9519 }
9520
9521 end_tok = skip_to_space_const (tok);
9522
9523 toklen = end_tok - tok;
9524
9525 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9526 {
9527 struct expression *expr;
9528
9529 tok = cond_start = end_tok + 1;
9530 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9531 xfree (expr);
9532 cond_end = tok;
9533 *cond_string = savestring (cond_start, cond_end - cond_start);
9534 }
9535 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9536 {
9537 char *tmptok;
9538
9539 tok = end_tok + 1;
9540 *thread = strtol (tok, &tmptok, 0);
9541 if (tok == tmptok)
9542 error (_("Junk after thread keyword."));
9543 if (!valid_thread_id (*thread))
9544 invalid_thread_id_error (*thread);
9545 tok = tmptok;
9546 }
9547 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9548 {
9549 char *tmptok;
9550
9551 tok = end_tok + 1;
9552 *task = strtol (tok, &tmptok, 0);
9553 if (tok == tmptok)
9554 error (_("Junk after task keyword."));
9555 if (!valid_task_id (*task))
9556 error (_("Unknown task %d."), *task);
9557 tok = tmptok;
9558 }
9559 else if (rest)
9560 {
9561 *rest = savestring (tok, strlen (tok));
9562 return;
9563 }
9564 else
9565 error (_("Junk at end of arguments."));
9566 }
9567 }
9568
9569 /* Decode a static tracepoint marker spec. */
9570
9571 static struct symtabs_and_lines
9572 decode_static_tracepoint_spec (char **arg_p)
9573 {
9574 VEC(static_tracepoint_marker_p) *markers = NULL;
9575 struct symtabs_and_lines sals;
9576 struct cleanup *old_chain;
9577 char *p = &(*arg_p)[3];
9578 char *endp;
9579 char *marker_str;
9580 int i;
9581
9582 p = skip_spaces (p);
9583
9584 endp = skip_to_space (p);
9585
9586 marker_str = savestring (p, endp - p);
9587 old_chain = make_cleanup (xfree, marker_str);
9588
9589 markers = target_static_tracepoint_markers_by_strid (marker_str);
9590 if (VEC_empty(static_tracepoint_marker_p, markers))
9591 error (_("No known static tracepoint marker named %s"), marker_str);
9592
9593 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9594 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9595
9596 for (i = 0; i < sals.nelts; i++)
9597 {
9598 struct static_tracepoint_marker *marker;
9599
9600 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9601
9602 init_sal (&sals.sals[i]);
9603
9604 sals.sals[i] = find_pc_line (marker->address, 0);
9605 sals.sals[i].pc = marker->address;
9606
9607 release_static_tracepoint_marker (marker);
9608 }
9609
9610 do_cleanups (old_chain);
9611
9612 *arg_p = endp;
9613 return sals;
9614 }
9615
9616 /* Set a breakpoint. This function is shared between CLI and MI
9617 functions for setting a breakpoint. This function has two major
9618 modes of operations, selected by the PARSE_ARG parameter. If
9619 non-zero, the function will parse ARG, extracting location,
9620 condition, thread and extra string. Otherwise, ARG is just the
9621 breakpoint's location, with condition, thread, and extra string
9622 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9623 If INTERNAL is non-zero, the breakpoint number will be allocated
9624 from the internal breakpoint count. Returns true if any breakpoint
9625 was created; false otherwise. */
9626
9627 int
9628 create_breakpoint (struct gdbarch *gdbarch,
9629 char *arg, char *cond_string,
9630 int thread, char *extra_string,
9631 int parse_arg,
9632 int tempflag, enum bptype type_wanted,
9633 int ignore_count,
9634 enum auto_boolean pending_break_support,
9635 const struct breakpoint_ops *ops,
9636 int from_tty, int enabled, int internal,
9637 unsigned flags)
9638 {
9639 volatile struct gdb_exception e;
9640 char *copy_arg = NULL;
9641 char *addr_start = arg;
9642 struct linespec_result canonical;
9643 struct cleanup *old_chain;
9644 struct cleanup *bkpt_chain = NULL;
9645 int pending = 0;
9646 int task = 0;
9647 int prev_bkpt_count = breakpoint_count;
9648
9649 gdb_assert (ops != NULL);
9650
9651 init_linespec_result (&canonical);
9652
9653 TRY_CATCH (e, RETURN_MASK_ALL)
9654 {
9655 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9656 addr_start, &copy_arg);
9657 }
9658
9659 /* If caller is interested in rc value from parse, set value. */
9660 switch (e.reason)
9661 {
9662 case GDB_NO_ERROR:
9663 if (VEC_empty (linespec_sals, canonical.sals))
9664 return 0;
9665 break;
9666 case RETURN_ERROR:
9667 switch (e.error)
9668 {
9669 case NOT_FOUND_ERROR:
9670
9671 /* If pending breakpoint support is turned off, throw
9672 error. */
9673
9674 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9675 throw_exception (e);
9676
9677 exception_print (gdb_stderr, e);
9678
9679 /* If pending breakpoint support is auto query and the user
9680 selects no, then simply return the error code. */
9681 if (pending_break_support == AUTO_BOOLEAN_AUTO
9682 && !nquery (_("Make %s pending on future shared library load? "),
9683 bptype_string (type_wanted)))
9684 return 0;
9685
9686 /* At this point, either the user was queried about setting
9687 a pending breakpoint and selected yes, or pending
9688 breakpoint behavior is on and thus a pending breakpoint
9689 is defaulted on behalf of the user. */
9690 {
9691 struct linespec_sals lsal;
9692
9693 copy_arg = xstrdup (addr_start);
9694 lsal.canonical = xstrdup (copy_arg);
9695 lsal.sals.nelts = 1;
9696 lsal.sals.sals = XNEW (struct symtab_and_line);
9697 init_sal (&lsal.sals.sals[0]);
9698 pending = 1;
9699 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9700 }
9701 break;
9702 default:
9703 throw_exception (e);
9704 }
9705 break;
9706 default:
9707 throw_exception (e);
9708 }
9709
9710 /* Create a chain of things that always need to be cleaned up. */
9711 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9712
9713 /* ----------------------------- SNIP -----------------------------
9714 Anything added to the cleanup chain beyond this point is assumed
9715 to be part of a breakpoint. If the breakpoint create succeeds
9716 then the memory is not reclaimed. */
9717 bkpt_chain = make_cleanup (null_cleanup, 0);
9718
9719 /* Resolve all line numbers to PC's and verify that the addresses
9720 are ok for the target. */
9721 if (!pending)
9722 {
9723 int ix;
9724 struct linespec_sals *iter;
9725
9726 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9727 breakpoint_sals_to_pc (&iter->sals);
9728 }
9729
9730 /* Fast tracepoints may have additional restrictions on location. */
9731 if (!pending && type_wanted == bp_fast_tracepoint)
9732 {
9733 int ix;
9734 struct linespec_sals *iter;
9735
9736 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9737 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9738 }
9739
9740 /* Verify that condition can be parsed, before setting any
9741 breakpoints. Allocate a separate condition expression for each
9742 breakpoint. */
9743 if (!pending)
9744 {
9745 if (parse_arg)
9746 {
9747 char *rest;
9748 struct linespec_sals *lsal;
9749
9750 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9751
9752 /* Here we only parse 'arg' to separate condition
9753 from thread number, so parsing in context of first
9754 sal is OK. When setting the breakpoint we'll
9755 re-parse it in context of each sal. */
9756
9757 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9758 &thread, &task, &rest);
9759 if (cond_string)
9760 make_cleanup (xfree, cond_string);
9761 if (rest)
9762 make_cleanup (xfree, rest);
9763 if (rest)
9764 extra_string = rest;
9765 }
9766 else
9767 {
9768 if (*arg != '\0')
9769 error (_("Garbage '%s' at end of location"), arg);
9770
9771 /* Create a private copy of condition string. */
9772 if (cond_string)
9773 {
9774 cond_string = xstrdup (cond_string);
9775 make_cleanup (xfree, cond_string);
9776 }
9777 /* Create a private copy of any extra string. */
9778 if (extra_string)
9779 {
9780 extra_string = xstrdup (extra_string);
9781 make_cleanup (xfree, extra_string);
9782 }
9783 }
9784
9785 ops->create_breakpoints_sal (gdbarch, &canonical,
9786 cond_string, extra_string, type_wanted,
9787 tempflag ? disp_del : disp_donttouch,
9788 thread, task, ignore_count, ops,
9789 from_tty, enabled, internal, flags);
9790 }
9791 else
9792 {
9793 struct breakpoint *b;
9794
9795 make_cleanup (xfree, copy_arg);
9796
9797 if (is_tracepoint_type (type_wanted))
9798 {
9799 struct tracepoint *t;
9800
9801 t = XCNEW (struct tracepoint);
9802 b = &t->base;
9803 }
9804 else
9805 b = XNEW (struct breakpoint);
9806
9807 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9808
9809 b->addr_string = copy_arg;
9810 if (parse_arg)
9811 b->cond_string = NULL;
9812 else
9813 {
9814 /* Create a private copy of condition string. */
9815 if (cond_string)
9816 {
9817 cond_string = xstrdup (cond_string);
9818 make_cleanup (xfree, cond_string);
9819 }
9820 b->cond_string = cond_string;
9821 }
9822 b->extra_string = NULL;
9823 b->ignore_count = ignore_count;
9824 b->disposition = tempflag ? disp_del : disp_donttouch;
9825 b->condition_not_parsed = 1;
9826 b->enable_state = enabled ? bp_enabled : bp_disabled;
9827 if ((type_wanted != bp_breakpoint
9828 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9829 b->pspace = current_program_space;
9830
9831 install_breakpoint (internal, b, 0);
9832 }
9833
9834 if (VEC_length (linespec_sals, canonical.sals) > 1)
9835 {
9836 warning (_("Multiple breakpoints were set.\nUse the "
9837 "\"delete\" command to delete unwanted breakpoints."));
9838 prev_breakpoint_count = prev_bkpt_count;
9839 }
9840
9841 /* That's it. Discard the cleanups for data inserted into the
9842 breakpoint. */
9843 discard_cleanups (bkpt_chain);
9844 /* But cleanup everything else. */
9845 do_cleanups (old_chain);
9846
9847 /* error call may happen here - have BKPT_CHAIN already discarded. */
9848 update_global_location_list (1);
9849
9850 return 1;
9851 }
9852
9853 /* Set a breakpoint.
9854 ARG is a string describing breakpoint address,
9855 condition, and thread.
9856 FLAG specifies if a breakpoint is hardware on,
9857 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9858 and BP_TEMPFLAG. */
9859
9860 static void
9861 break_command_1 (char *arg, int flag, int from_tty)
9862 {
9863 int tempflag = flag & BP_TEMPFLAG;
9864 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9865 ? bp_hardware_breakpoint
9866 : bp_breakpoint);
9867 struct breakpoint_ops *ops;
9868 const char *arg_cp = arg;
9869
9870 /* Matching breakpoints on probes. */
9871 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
9872 ops = &bkpt_probe_breakpoint_ops;
9873 else
9874 ops = &bkpt_breakpoint_ops;
9875
9876 create_breakpoint (get_current_arch (),
9877 arg,
9878 NULL, 0, NULL, 1 /* parse arg */,
9879 tempflag, type_wanted,
9880 0 /* Ignore count */,
9881 pending_break_support,
9882 ops,
9883 from_tty,
9884 1 /* enabled */,
9885 0 /* internal */,
9886 0);
9887 }
9888
9889 /* Helper function for break_command_1 and disassemble_command. */
9890
9891 void
9892 resolve_sal_pc (struct symtab_and_line *sal)
9893 {
9894 CORE_ADDR pc;
9895
9896 if (sal->pc == 0 && sal->symtab != NULL)
9897 {
9898 if (!find_line_pc (sal->symtab, sal->line, &pc))
9899 error (_("No line %d in file \"%s\"."),
9900 sal->line, symtab_to_filename_for_display (sal->symtab));
9901 sal->pc = pc;
9902
9903 /* If this SAL corresponds to a breakpoint inserted using a line
9904 number, then skip the function prologue if necessary. */
9905 if (sal->explicit_line)
9906 skip_prologue_sal (sal);
9907 }
9908
9909 if (sal->section == 0 && sal->symtab != NULL)
9910 {
9911 struct blockvector *bv;
9912 struct block *b;
9913 struct symbol *sym;
9914
9915 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
9916 if (bv != NULL)
9917 {
9918 sym = block_linkage_function (b);
9919 if (sym != NULL)
9920 {
9921 fixup_symbol_section (sym, sal->symtab->objfile);
9922 sal->section = SYMBOL_OBJ_SECTION (sal->symtab->objfile, sym);
9923 }
9924 else
9925 {
9926 /* It really is worthwhile to have the section, so we'll
9927 just have to look harder. This case can be executed
9928 if we have line numbers but no functions (as can
9929 happen in assembly source). */
9930
9931 struct bound_minimal_symbol msym;
9932 struct cleanup *old_chain = save_current_space_and_thread ();
9933
9934 switch_to_program_space_and_thread (sal->pspace);
9935
9936 msym = lookup_minimal_symbol_by_pc (sal->pc);
9937 if (msym.minsym)
9938 sal->section = SYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9939
9940 do_cleanups (old_chain);
9941 }
9942 }
9943 }
9944 }
9945
9946 void
9947 break_command (char *arg, int from_tty)
9948 {
9949 break_command_1 (arg, 0, from_tty);
9950 }
9951
9952 void
9953 tbreak_command (char *arg, int from_tty)
9954 {
9955 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9956 }
9957
9958 static void
9959 hbreak_command (char *arg, int from_tty)
9960 {
9961 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9962 }
9963
9964 static void
9965 thbreak_command (char *arg, int from_tty)
9966 {
9967 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9968 }
9969
9970 static void
9971 stop_command (char *arg, int from_tty)
9972 {
9973 printf_filtered (_("Specify the type of breakpoint to set.\n\
9974 Usage: stop in <function | address>\n\
9975 stop at <line>\n"));
9976 }
9977
9978 static void
9979 stopin_command (char *arg, int from_tty)
9980 {
9981 int badInput = 0;
9982
9983 if (arg == (char *) NULL)
9984 badInput = 1;
9985 else if (*arg != '*')
9986 {
9987 char *argptr = arg;
9988 int hasColon = 0;
9989
9990 /* Look for a ':'. If this is a line number specification, then
9991 say it is bad, otherwise, it should be an address or
9992 function/method name. */
9993 while (*argptr && !hasColon)
9994 {
9995 hasColon = (*argptr == ':');
9996 argptr++;
9997 }
9998
9999 if (hasColon)
10000 badInput = (*argptr != ':'); /* Not a class::method */
10001 else
10002 badInput = isdigit (*arg); /* a simple line number */
10003 }
10004
10005 if (badInput)
10006 printf_filtered (_("Usage: stop in <function | address>\n"));
10007 else
10008 break_command_1 (arg, 0, from_tty);
10009 }
10010
10011 static void
10012 stopat_command (char *arg, int from_tty)
10013 {
10014 int badInput = 0;
10015
10016 if (arg == (char *) NULL || *arg == '*') /* no line number */
10017 badInput = 1;
10018 else
10019 {
10020 char *argptr = arg;
10021 int hasColon = 0;
10022
10023 /* Look for a ':'. If there is a '::' then get out, otherwise
10024 it is probably a line number. */
10025 while (*argptr && !hasColon)
10026 {
10027 hasColon = (*argptr == ':');
10028 argptr++;
10029 }
10030
10031 if (hasColon)
10032 badInput = (*argptr == ':'); /* we have class::method */
10033 else
10034 badInput = !isdigit (*arg); /* not a line number */
10035 }
10036
10037 if (badInput)
10038 printf_filtered (_("Usage: stop at <line>\n"));
10039 else
10040 break_command_1 (arg, 0, from_tty);
10041 }
10042
10043 /* The dynamic printf command is mostly like a regular breakpoint, but
10044 with a prewired command list consisting of a single output command,
10045 built from extra arguments supplied on the dprintf command
10046 line. */
10047
10048 static void
10049 dprintf_command (char *arg, int from_tty)
10050 {
10051 create_breakpoint (get_current_arch (),
10052 arg,
10053 NULL, 0, NULL, 1 /* parse arg */,
10054 0, bp_dprintf,
10055 0 /* Ignore count */,
10056 pending_break_support,
10057 &dprintf_breakpoint_ops,
10058 from_tty,
10059 1 /* enabled */,
10060 0 /* internal */,
10061 0);
10062 }
10063
10064 static void
10065 agent_printf_command (char *arg, int from_tty)
10066 {
10067 error (_("May only run agent-printf on the target"));
10068 }
10069
10070 /* Implement the "breakpoint_hit" breakpoint_ops method for
10071 ranged breakpoints. */
10072
10073 static int
10074 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10075 struct address_space *aspace,
10076 CORE_ADDR bp_addr,
10077 const struct target_waitstatus *ws)
10078 {
10079 if (ws->kind != TARGET_WAITKIND_STOPPED
10080 || ws->value.sig != GDB_SIGNAL_TRAP)
10081 return 0;
10082
10083 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10084 bl->length, aspace, bp_addr);
10085 }
10086
10087 /* Implement the "resources_needed" breakpoint_ops method for
10088 ranged breakpoints. */
10089
10090 static int
10091 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10092 {
10093 return target_ranged_break_num_registers ();
10094 }
10095
10096 /* Implement the "print_it" breakpoint_ops method for
10097 ranged breakpoints. */
10098
10099 static enum print_stop_action
10100 print_it_ranged_breakpoint (bpstat bs)
10101 {
10102 struct breakpoint *b = bs->breakpoint_at;
10103 struct bp_location *bl = b->loc;
10104 struct ui_out *uiout = current_uiout;
10105
10106 gdb_assert (b->type == bp_hardware_breakpoint);
10107
10108 /* Ranged breakpoints have only one location. */
10109 gdb_assert (bl && bl->next == NULL);
10110
10111 annotate_breakpoint (b->number);
10112 if (b->disposition == disp_del)
10113 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
10114 else
10115 ui_out_text (uiout, "\nRanged breakpoint ");
10116 if (ui_out_is_mi_like_p (uiout))
10117 {
10118 ui_out_field_string (uiout, "reason",
10119 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10120 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10121 }
10122 ui_out_field_int (uiout, "bkptno", b->number);
10123 ui_out_text (uiout, ", ");
10124
10125 return PRINT_SRC_AND_LOC;
10126 }
10127
10128 /* Implement the "print_one" breakpoint_ops method for
10129 ranged breakpoints. */
10130
10131 static void
10132 print_one_ranged_breakpoint (struct breakpoint *b,
10133 struct bp_location **last_loc)
10134 {
10135 struct bp_location *bl = b->loc;
10136 struct value_print_options opts;
10137 struct ui_out *uiout = current_uiout;
10138
10139 /* Ranged breakpoints have only one location. */
10140 gdb_assert (bl && bl->next == NULL);
10141
10142 get_user_print_options (&opts);
10143
10144 if (opts.addressprint)
10145 /* We don't print the address range here, it will be printed later
10146 by print_one_detail_ranged_breakpoint. */
10147 ui_out_field_skip (uiout, "addr");
10148 annotate_field (5);
10149 print_breakpoint_location (b, bl);
10150 *last_loc = bl;
10151 }
10152
10153 /* Implement the "print_one_detail" breakpoint_ops method for
10154 ranged breakpoints. */
10155
10156 static void
10157 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10158 struct ui_out *uiout)
10159 {
10160 CORE_ADDR address_start, address_end;
10161 struct bp_location *bl = b->loc;
10162 struct ui_file *stb = mem_fileopen ();
10163 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10164
10165 gdb_assert (bl);
10166
10167 address_start = bl->address;
10168 address_end = address_start + bl->length - 1;
10169
10170 ui_out_text (uiout, "\taddress range: ");
10171 fprintf_unfiltered (stb, "[%s, %s]",
10172 print_core_address (bl->gdbarch, address_start),
10173 print_core_address (bl->gdbarch, address_end));
10174 ui_out_field_stream (uiout, "addr", stb);
10175 ui_out_text (uiout, "\n");
10176
10177 do_cleanups (cleanup);
10178 }
10179
10180 /* Implement the "print_mention" breakpoint_ops method for
10181 ranged breakpoints. */
10182
10183 static void
10184 print_mention_ranged_breakpoint (struct breakpoint *b)
10185 {
10186 struct bp_location *bl = b->loc;
10187 struct ui_out *uiout = current_uiout;
10188
10189 gdb_assert (bl);
10190 gdb_assert (b->type == bp_hardware_breakpoint);
10191
10192 if (ui_out_is_mi_like_p (uiout))
10193 return;
10194
10195 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10196 b->number, paddress (bl->gdbarch, bl->address),
10197 paddress (bl->gdbarch, bl->address + bl->length - 1));
10198 }
10199
10200 /* Implement the "print_recreate" breakpoint_ops method for
10201 ranged breakpoints. */
10202
10203 static void
10204 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10205 {
10206 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10207 b->addr_string_range_end);
10208 print_recreate_thread (b, fp);
10209 }
10210
10211 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10212
10213 static struct breakpoint_ops ranged_breakpoint_ops;
10214
10215 /* Find the address where the end of the breakpoint range should be
10216 placed, given the SAL of the end of the range. This is so that if
10217 the user provides a line number, the end of the range is set to the
10218 last instruction of the given line. */
10219
10220 static CORE_ADDR
10221 find_breakpoint_range_end (struct symtab_and_line sal)
10222 {
10223 CORE_ADDR end;
10224
10225 /* If the user provided a PC value, use it. Otherwise,
10226 find the address of the end of the given location. */
10227 if (sal.explicit_pc)
10228 end = sal.pc;
10229 else
10230 {
10231 int ret;
10232 CORE_ADDR start;
10233
10234 ret = find_line_pc_range (sal, &start, &end);
10235 if (!ret)
10236 error (_("Could not find location of the end of the range."));
10237
10238 /* find_line_pc_range returns the start of the next line. */
10239 end--;
10240 }
10241
10242 return end;
10243 }
10244
10245 /* Implement the "break-range" CLI command. */
10246
10247 static void
10248 break_range_command (char *arg, int from_tty)
10249 {
10250 char *arg_start, *addr_string_start, *addr_string_end;
10251 struct linespec_result canonical_start, canonical_end;
10252 int bp_count, can_use_bp, length;
10253 CORE_ADDR end;
10254 struct breakpoint *b;
10255 struct symtab_and_line sal_start, sal_end;
10256 struct cleanup *cleanup_bkpt;
10257 struct linespec_sals *lsal_start, *lsal_end;
10258
10259 /* We don't support software ranged breakpoints. */
10260 if (target_ranged_break_num_registers () < 0)
10261 error (_("This target does not support hardware ranged breakpoints."));
10262
10263 bp_count = hw_breakpoint_used_count ();
10264 bp_count += target_ranged_break_num_registers ();
10265 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10266 bp_count, 0);
10267 if (can_use_bp < 0)
10268 error (_("Hardware breakpoints used exceeds limit."));
10269
10270 arg = skip_spaces (arg);
10271 if (arg == NULL || arg[0] == '\0')
10272 error(_("No address range specified."));
10273
10274 init_linespec_result (&canonical_start);
10275
10276 arg_start = arg;
10277 parse_breakpoint_sals (&arg, &canonical_start);
10278
10279 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10280
10281 if (arg[0] != ',')
10282 error (_("Too few arguments."));
10283 else if (VEC_empty (linespec_sals, canonical_start.sals))
10284 error (_("Could not find location of the beginning of the range."));
10285
10286 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10287
10288 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10289 || lsal_start->sals.nelts != 1)
10290 error (_("Cannot create a ranged breakpoint with multiple locations."));
10291
10292 sal_start = lsal_start->sals.sals[0];
10293 addr_string_start = savestring (arg_start, arg - arg_start);
10294 make_cleanup (xfree, addr_string_start);
10295
10296 arg++; /* Skip the comma. */
10297 arg = skip_spaces (arg);
10298
10299 /* Parse the end location. */
10300
10301 init_linespec_result (&canonical_end);
10302 arg_start = arg;
10303
10304 /* We call decode_line_full directly here instead of using
10305 parse_breakpoint_sals because we need to specify the start location's
10306 symtab and line as the default symtab and line for the end of the
10307 range. This makes it possible to have ranges like "foo.c:27, +14",
10308 where +14 means 14 lines from the start location. */
10309 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10310 sal_start.symtab, sal_start.line,
10311 &canonical_end, NULL, NULL);
10312
10313 make_cleanup_destroy_linespec_result (&canonical_end);
10314
10315 if (VEC_empty (linespec_sals, canonical_end.sals))
10316 error (_("Could not find location of the end of the range."));
10317
10318 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10319 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10320 || lsal_end->sals.nelts != 1)
10321 error (_("Cannot create a ranged breakpoint with multiple locations."));
10322
10323 sal_end = lsal_end->sals.sals[0];
10324 addr_string_end = savestring (arg_start, arg - arg_start);
10325 make_cleanup (xfree, addr_string_end);
10326
10327 end = find_breakpoint_range_end (sal_end);
10328 if (sal_start.pc > end)
10329 error (_("Invalid address range, end precedes start."));
10330
10331 length = end - sal_start.pc + 1;
10332 if (length < 0)
10333 /* Length overflowed. */
10334 error (_("Address range too large."));
10335 else if (length == 1)
10336 {
10337 /* This range is simple enough to be handled by
10338 the `hbreak' command. */
10339 hbreak_command (addr_string_start, 1);
10340
10341 do_cleanups (cleanup_bkpt);
10342
10343 return;
10344 }
10345
10346 /* Now set up the breakpoint. */
10347 b = set_raw_breakpoint (get_current_arch (), sal_start,
10348 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10349 set_breakpoint_count (breakpoint_count + 1);
10350 b->number = breakpoint_count;
10351 b->disposition = disp_donttouch;
10352 b->addr_string = xstrdup (addr_string_start);
10353 b->addr_string_range_end = xstrdup (addr_string_end);
10354 b->loc->length = length;
10355
10356 do_cleanups (cleanup_bkpt);
10357
10358 mention (b);
10359 observer_notify_breakpoint_created (b);
10360 update_global_location_list (1);
10361 }
10362
10363 /* Return non-zero if EXP is verified as constant. Returned zero
10364 means EXP is variable. Also the constant detection may fail for
10365 some constant expressions and in such case still falsely return
10366 zero. */
10367
10368 static int
10369 watchpoint_exp_is_const (const struct expression *exp)
10370 {
10371 int i = exp->nelts;
10372
10373 while (i > 0)
10374 {
10375 int oplenp, argsp;
10376
10377 /* We are only interested in the descriptor of each element. */
10378 operator_length (exp, i, &oplenp, &argsp);
10379 i -= oplenp;
10380
10381 switch (exp->elts[i].opcode)
10382 {
10383 case BINOP_ADD:
10384 case BINOP_SUB:
10385 case BINOP_MUL:
10386 case BINOP_DIV:
10387 case BINOP_REM:
10388 case BINOP_MOD:
10389 case BINOP_LSH:
10390 case BINOP_RSH:
10391 case BINOP_LOGICAL_AND:
10392 case BINOP_LOGICAL_OR:
10393 case BINOP_BITWISE_AND:
10394 case BINOP_BITWISE_IOR:
10395 case BINOP_BITWISE_XOR:
10396 case BINOP_EQUAL:
10397 case BINOP_NOTEQUAL:
10398 case BINOP_LESS:
10399 case BINOP_GTR:
10400 case BINOP_LEQ:
10401 case BINOP_GEQ:
10402 case BINOP_REPEAT:
10403 case BINOP_COMMA:
10404 case BINOP_EXP:
10405 case BINOP_MIN:
10406 case BINOP_MAX:
10407 case BINOP_INTDIV:
10408 case BINOP_CONCAT:
10409 case BINOP_IN:
10410 case BINOP_RANGE:
10411 case TERNOP_COND:
10412 case TERNOP_SLICE:
10413
10414 case OP_LONG:
10415 case OP_DOUBLE:
10416 case OP_DECFLOAT:
10417 case OP_LAST:
10418 case OP_COMPLEX:
10419 case OP_STRING:
10420 case OP_ARRAY:
10421 case OP_TYPE:
10422 case OP_TYPEOF:
10423 case OP_DECLTYPE:
10424 case OP_TYPEID:
10425 case OP_NAME:
10426 case OP_OBJC_NSSTRING:
10427
10428 case UNOP_NEG:
10429 case UNOP_LOGICAL_NOT:
10430 case UNOP_COMPLEMENT:
10431 case UNOP_ADDR:
10432 case UNOP_HIGH:
10433 case UNOP_CAST:
10434
10435 case UNOP_CAST_TYPE:
10436 case UNOP_REINTERPRET_CAST:
10437 case UNOP_DYNAMIC_CAST:
10438 /* Unary, binary and ternary operators: We have to check
10439 their operands. If they are constant, then so is the
10440 result of that operation. For instance, if A and B are
10441 determined to be constants, then so is "A + B".
10442
10443 UNOP_IND is one exception to the rule above, because the
10444 value of *ADDR is not necessarily a constant, even when
10445 ADDR is. */
10446 break;
10447
10448 case OP_VAR_VALUE:
10449 /* Check whether the associated symbol is a constant.
10450
10451 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10452 possible that a buggy compiler could mark a variable as
10453 constant even when it is not, and TYPE_CONST would return
10454 true in this case, while SYMBOL_CLASS wouldn't.
10455
10456 We also have to check for function symbols because they
10457 are always constant. */
10458 {
10459 struct symbol *s = exp->elts[i + 2].symbol;
10460
10461 if (SYMBOL_CLASS (s) != LOC_BLOCK
10462 && SYMBOL_CLASS (s) != LOC_CONST
10463 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10464 return 0;
10465 break;
10466 }
10467
10468 /* The default action is to return 0 because we are using
10469 the optimistic approach here: If we don't know something,
10470 then it is not a constant. */
10471 default:
10472 return 0;
10473 }
10474 }
10475
10476 return 1;
10477 }
10478
10479 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10480
10481 static void
10482 dtor_watchpoint (struct breakpoint *self)
10483 {
10484 struct watchpoint *w = (struct watchpoint *) self;
10485
10486 xfree (w->cond_exp);
10487 xfree (w->exp);
10488 xfree (w->exp_string);
10489 xfree (w->exp_string_reparse);
10490 value_free (w->val);
10491
10492 base_breakpoint_ops.dtor (self);
10493 }
10494
10495 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10496
10497 static void
10498 re_set_watchpoint (struct breakpoint *b)
10499 {
10500 struct watchpoint *w = (struct watchpoint *) b;
10501
10502 /* Watchpoint can be either on expression using entirely global
10503 variables, or it can be on local variables.
10504
10505 Watchpoints of the first kind are never auto-deleted, and even
10506 persist across program restarts. Since they can use variables
10507 from shared libraries, we need to reparse expression as libraries
10508 are loaded and unloaded.
10509
10510 Watchpoints on local variables can also change meaning as result
10511 of solib event. For example, if a watchpoint uses both a local
10512 and a global variables in expression, it's a local watchpoint,
10513 but unloading of a shared library will make the expression
10514 invalid. This is not a very common use case, but we still
10515 re-evaluate expression, to avoid surprises to the user.
10516
10517 Note that for local watchpoints, we re-evaluate it only if
10518 watchpoints frame id is still valid. If it's not, it means the
10519 watchpoint is out of scope and will be deleted soon. In fact,
10520 I'm not sure we'll ever be called in this case.
10521
10522 If a local watchpoint's frame id is still valid, then
10523 w->exp_valid_block is likewise valid, and we can safely use it.
10524
10525 Don't do anything about disabled watchpoints, since they will be
10526 reevaluated again when enabled. */
10527 update_watchpoint (w, 1 /* reparse */);
10528 }
10529
10530 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10531
10532 static int
10533 insert_watchpoint (struct bp_location *bl)
10534 {
10535 struct watchpoint *w = (struct watchpoint *) bl->owner;
10536 int length = w->exact ? 1 : bl->length;
10537
10538 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10539 w->cond_exp);
10540 }
10541
10542 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10543
10544 static int
10545 remove_watchpoint (struct bp_location *bl)
10546 {
10547 struct watchpoint *w = (struct watchpoint *) bl->owner;
10548 int length = w->exact ? 1 : bl->length;
10549
10550 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10551 w->cond_exp);
10552 }
10553
10554 static int
10555 breakpoint_hit_watchpoint (const struct bp_location *bl,
10556 struct address_space *aspace, CORE_ADDR bp_addr,
10557 const struct target_waitstatus *ws)
10558 {
10559 struct breakpoint *b = bl->owner;
10560 struct watchpoint *w = (struct watchpoint *) b;
10561
10562 /* Continuable hardware watchpoints are treated as non-existent if the
10563 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10564 some data address). Otherwise gdb won't stop on a break instruction
10565 in the code (not from a breakpoint) when a hardware watchpoint has
10566 been defined. Also skip watchpoints which we know did not trigger
10567 (did not match the data address). */
10568 if (is_hardware_watchpoint (b)
10569 && w->watchpoint_triggered == watch_triggered_no)
10570 return 0;
10571
10572 return 1;
10573 }
10574
10575 static void
10576 check_status_watchpoint (bpstat bs)
10577 {
10578 gdb_assert (is_watchpoint (bs->breakpoint_at));
10579
10580 bpstat_check_watchpoint (bs);
10581 }
10582
10583 /* Implement the "resources_needed" breakpoint_ops method for
10584 hardware watchpoints. */
10585
10586 static int
10587 resources_needed_watchpoint (const struct bp_location *bl)
10588 {
10589 struct watchpoint *w = (struct watchpoint *) bl->owner;
10590 int length = w->exact? 1 : bl->length;
10591
10592 return target_region_ok_for_hw_watchpoint (bl->address, length);
10593 }
10594
10595 /* Implement the "works_in_software_mode" breakpoint_ops method for
10596 hardware watchpoints. */
10597
10598 static int
10599 works_in_software_mode_watchpoint (const struct breakpoint *b)
10600 {
10601 /* Read and access watchpoints only work with hardware support. */
10602 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10603 }
10604
10605 static enum print_stop_action
10606 print_it_watchpoint (bpstat bs)
10607 {
10608 struct cleanup *old_chain;
10609 struct breakpoint *b;
10610 struct ui_file *stb;
10611 enum print_stop_action result;
10612 struct watchpoint *w;
10613 struct ui_out *uiout = current_uiout;
10614
10615 gdb_assert (bs->bp_location_at != NULL);
10616
10617 b = bs->breakpoint_at;
10618 w = (struct watchpoint *) b;
10619
10620 stb = mem_fileopen ();
10621 old_chain = make_cleanup_ui_file_delete (stb);
10622
10623 switch (b->type)
10624 {
10625 case bp_watchpoint:
10626 case bp_hardware_watchpoint:
10627 annotate_watchpoint (b->number);
10628 if (ui_out_is_mi_like_p (uiout))
10629 ui_out_field_string
10630 (uiout, "reason",
10631 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10632 mention (b);
10633 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10634 ui_out_text (uiout, "\nOld value = ");
10635 watchpoint_value_print (bs->old_val, stb);
10636 ui_out_field_stream (uiout, "old", stb);
10637 ui_out_text (uiout, "\nNew value = ");
10638 watchpoint_value_print (w->val, stb);
10639 ui_out_field_stream (uiout, "new", stb);
10640 ui_out_text (uiout, "\n");
10641 /* More than one watchpoint may have been triggered. */
10642 result = PRINT_UNKNOWN;
10643 break;
10644
10645 case bp_read_watchpoint:
10646 if (ui_out_is_mi_like_p (uiout))
10647 ui_out_field_string
10648 (uiout, "reason",
10649 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10650 mention (b);
10651 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10652 ui_out_text (uiout, "\nValue = ");
10653 watchpoint_value_print (w->val, stb);
10654 ui_out_field_stream (uiout, "value", stb);
10655 ui_out_text (uiout, "\n");
10656 result = PRINT_UNKNOWN;
10657 break;
10658
10659 case bp_access_watchpoint:
10660 if (bs->old_val != NULL)
10661 {
10662 annotate_watchpoint (b->number);
10663 if (ui_out_is_mi_like_p (uiout))
10664 ui_out_field_string
10665 (uiout, "reason",
10666 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10667 mention (b);
10668 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10669 ui_out_text (uiout, "\nOld value = ");
10670 watchpoint_value_print (bs->old_val, stb);
10671 ui_out_field_stream (uiout, "old", stb);
10672 ui_out_text (uiout, "\nNew value = ");
10673 }
10674 else
10675 {
10676 mention (b);
10677 if (ui_out_is_mi_like_p (uiout))
10678 ui_out_field_string
10679 (uiout, "reason",
10680 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10681 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10682 ui_out_text (uiout, "\nValue = ");
10683 }
10684 watchpoint_value_print (w->val, stb);
10685 ui_out_field_stream (uiout, "new", stb);
10686 ui_out_text (uiout, "\n");
10687 result = PRINT_UNKNOWN;
10688 break;
10689 default:
10690 result = PRINT_UNKNOWN;
10691 }
10692
10693 do_cleanups (old_chain);
10694 return result;
10695 }
10696
10697 /* Implement the "print_mention" breakpoint_ops method for hardware
10698 watchpoints. */
10699
10700 static void
10701 print_mention_watchpoint (struct breakpoint *b)
10702 {
10703 struct cleanup *ui_out_chain;
10704 struct watchpoint *w = (struct watchpoint *) b;
10705 struct ui_out *uiout = current_uiout;
10706
10707 switch (b->type)
10708 {
10709 case bp_watchpoint:
10710 ui_out_text (uiout, "Watchpoint ");
10711 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10712 break;
10713 case bp_hardware_watchpoint:
10714 ui_out_text (uiout, "Hardware watchpoint ");
10715 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10716 break;
10717 case bp_read_watchpoint:
10718 ui_out_text (uiout, "Hardware read watchpoint ");
10719 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10720 break;
10721 case bp_access_watchpoint:
10722 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10723 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10724 break;
10725 default:
10726 internal_error (__FILE__, __LINE__,
10727 _("Invalid hardware watchpoint type."));
10728 }
10729
10730 ui_out_field_int (uiout, "number", b->number);
10731 ui_out_text (uiout, ": ");
10732 ui_out_field_string (uiout, "exp", w->exp_string);
10733 do_cleanups (ui_out_chain);
10734 }
10735
10736 /* Implement the "print_recreate" breakpoint_ops method for
10737 watchpoints. */
10738
10739 static void
10740 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10741 {
10742 struct watchpoint *w = (struct watchpoint *) b;
10743
10744 switch (b->type)
10745 {
10746 case bp_watchpoint:
10747 case bp_hardware_watchpoint:
10748 fprintf_unfiltered (fp, "watch");
10749 break;
10750 case bp_read_watchpoint:
10751 fprintf_unfiltered (fp, "rwatch");
10752 break;
10753 case bp_access_watchpoint:
10754 fprintf_unfiltered (fp, "awatch");
10755 break;
10756 default:
10757 internal_error (__FILE__, __LINE__,
10758 _("Invalid watchpoint type."));
10759 }
10760
10761 fprintf_unfiltered (fp, " %s", w->exp_string);
10762 print_recreate_thread (b, fp);
10763 }
10764
10765 /* Implement the "explains_signal" breakpoint_ops method for
10766 watchpoints. */
10767
10768 static enum bpstat_signal_value
10769 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10770 {
10771 /* A software watchpoint cannot cause a signal other than
10772 GDB_SIGNAL_TRAP. */
10773 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10774 return BPSTAT_SIGNAL_NO;
10775
10776 return BPSTAT_SIGNAL_HIDE;
10777 }
10778
10779 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10780
10781 static struct breakpoint_ops watchpoint_breakpoint_ops;
10782
10783 /* Implement the "insert" breakpoint_ops method for
10784 masked hardware watchpoints. */
10785
10786 static int
10787 insert_masked_watchpoint (struct bp_location *bl)
10788 {
10789 struct watchpoint *w = (struct watchpoint *) bl->owner;
10790
10791 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10792 bl->watchpoint_type);
10793 }
10794
10795 /* Implement the "remove" breakpoint_ops method for
10796 masked hardware watchpoints. */
10797
10798 static int
10799 remove_masked_watchpoint (struct bp_location *bl)
10800 {
10801 struct watchpoint *w = (struct watchpoint *) bl->owner;
10802
10803 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10804 bl->watchpoint_type);
10805 }
10806
10807 /* Implement the "resources_needed" breakpoint_ops method for
10808 masked hardware watchpoints. */
10809
10810 static int
10811 resources_needed_masked_watchpoint (const struct bp_location *bl)
10812 {
10813 struct watchpoint *w = (struct watchpoint *) bl->owner;
10814
10815 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10816 }
10817
10818 /* Implement the "works_in_software_mode" breakpoint_ops method for
10819 masked hardware watchpoints. */
10820
10821 static int
10822 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10823 {
10824 return 0;
10825 }
10826
10827 /* Implement the "print_it" breakpoint_ops method for
10828 masked hardware watchpoints. */
10829
10830 static enum print_stop_action
10831 print_it_masked_watchpoint (bpstat bs)
10832 {
10833 struct breakpoint *b = bs->breakpoint_at;
10834 struct ui_out *uiout = current_uiout;
10835
10836 /* Masked watchpoints have only one location. */
10837 gdb_assert (b->loc && b->loc->next == NULL);
10838
10839 switch (b->type)
10840 {
10841 case bp_hardware_watchpoint:
10842 annotate_watchpoint (b->number);
10843 if (ui_out_is_mi_like_p (uiout))
10844 ui_out_field_string
10845 (uiout, "reason",
10846 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10847 break;
10848
10849 case bp_read_watchpoint:
10850 if (ui_out_is_mi_like_p (uiout))
10851 ui_out_field_string
10852 (uiout, "reason",
10853 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10854 break;
10855
10856 case bp_access_watchpoint:
10857 if (ui_out_is_mi_like_p (uiout))
10858 ui_out_field_string
10859 (uiout, "reason",
10860 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10861 break;
10862 default:
10863 internal_error (__FILE__, __LINE__,
10864 _("Invalid hardware watchpoint type."));
10865 }
10866
10867 mention (b);
10868 ui_out_text (uiout, _("\n\
10869 Check the underlying instruction at PC for the memory\n\
10870 address and value which triggered this watchpoint.\n"));
10871 ui_out_text (uiout, "\n");
10872
10873 /* More than one watchpoint may have been triggered. */
10874 return PRINT_UNKNOWN;
10875 }
10876
10877 /* Implement the "print_one_detail" breakpoint_ops method for
10878 masked hardware watchpoints. */
10879
10880 static void
10881 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10882 struct ui_out *uiout)
10883 {
10884 struct watchpoint *w = (struct watchpoint *) b;
10885
10886 /* Masked watchpoints have only one location. */
10887 gdb_assert (b->loc && b->loc->next == NULL);
10888
10889 ui_out_text (uiout, "\tmask ");
10890 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
10891 ui_out_text (uiout, "\n");
10892 }
10893
10894 /* Implement the "print_mention" breakpoint_ops method for
10895 masked hardware watchpoints. */
10896
10897 static void
10898 print_mention_masked_watchpoint (struct breakpoint *b)
10899 {
10900 struct watchpoint *w = (struct watchpoint *) b;
10901 struct ui_out *uiout = current_uiout;
10902 struct cleanup *ui_out_chain;
10903
10904 switch (b->type)
10905 {
10906 case bp_hardware_watchpoint:
10907 ui_out_text (uiout, "Masked hardware watchpoint ");
10908 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10909 break;
10910 case bp_read_watchpoint:
10911 ui_out_text (uiout, "Masked hardware read watchpoint ");
10912 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10913 break;
10914 case bp_access_watchpoint:
10915 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
10916 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10917 break;
10918 default:
10919 internal_error (__FILE__, __LINE__,
10920 _("Invalid hardware watchpoint type."));
10921 }
10922
10923 ui_out_field_int (uiout, "number", b->number);
10924 ui_out_text (uiout, ": ");
10925 ui_out_field_string (uiout, "exp", w->exp_string);
10926 do_cleanups (ui_out_chain);
10927 }
10928
10929 /* Implement the "print_recreate" breakpoint_ops method for
10930 masked hardware watchpoints. */
10931
10932 static void
10933 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10934 {
10935 struct watchpoint *w = (struct watchpoint *) b;
10936 char tmp[40];
10937
10938 switch (b->type)
10939 {
10940 case bp_hardware_watchpoint:
10941 fprintf_unfiltered (fp, "watch");
10942 break;
10943 case bp_read_watchpoint:
10944 fprintf_unfiltered (fp, "rwatch");
10945 break;
10946 case bp_access_watchpoint:
10947 fprintf_unfiltered (fp, "awatch");
10948 break;
10949 default:
10950 internal_error (__FILE__, __LINE__,
10951 _("Invalid hardware watchpoint type."));
10952 }
10953
10954 sprintf_vma (tmp, w->hw_wp_mask);
10955 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10956 print_recreate_thread (b, fp);
10957 }
10958
10959 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10960
10961 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10962
10963 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10964
10965 static int
10966 is_masked_watchpoint (const struct breakpoint *b)
10967 {
10968 return b->ops == &masked_watchpoint_breakpoint_ops;
10969 }
10970
10971 /* accessflag: hw_write: watch write,
10972 hw_read: watch read,
10973 hw_access: watch access (read or write) */
10974 static void
10975 watch_command_1 (const char *arg, int accessflag, int from_tty,
10976 int just_location, int internal)
10977 {
10978 volatile struct gdb_exception e;
10979 struct breakpoint *b, *scope_breakpoint = NULL;
10980 struct expression *exp;
10981 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10982 struct value *val, *mark, *result;
10983 struct frame_info *frame;
10984 const char *exp_start = NULL;
10985 const char *exp_end = NULL;
10986 const char *tok, *end_tok;
10987 int toklen = -1;
10988 const char *cond_start = NULL;
10989 const char *cond_end = NULL;
10990 enum bptype bp_type;
10991 int thread = -1;
10992 int pc = 0;
10993 /* Flag to indicate whether we are going to use masks for
10994 the hardware watchpoint. */
10995 int use_mask = 0;
10996 CORE_ADDR mask = 0;
10997 struct watchpoint *w;
10998 char *expression;
10999 struct cleanup *back_to;
11000
11001 /* Make sure that we actually have parameters to parse. */
11002 if (arg != NULL && arg[0] != '\0')
11003 {
11004 const char *value_start;
11005
11006 exp_end = arg + strlen (arg);
11007
11008 /* Look for "parameter value" pairs at the end
11009 of the arguments string. */
11010 for (tok = exp_end - 1; tok > arg; tok--)
11011 {
11012 /* Skip whitespace at the end of the argument list. */
11013 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11014 tok--;
11015
11016 /* Find the beginning of the last token.
11017 This is the value of the parameter. */
11018 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11019 tok--;
11020 value_start = tok + 1;
11021
11022 /* Skip whitespace. */
11023 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11024 tok--;
11025
11026 end_tok = tok;
11027
11028 /* Find the beginning of the second to last token.
11029 This is the parameter itself. */
11030 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11031 tok--;
11032 tok++;
11033 toklen = end_tok - tok + 1;
11034
11035 if (toklen == 6 && !strncmp (tok, "thread", 6))
11036 {
11037 /* At this point we've found a "thread" token, which means
11038 the user is trying to set a watchpoint that triggers
11039 only in a specific thread. */
11040 char *endp;
11041
11042 if (thread != -1)
11043 error(_("You can specify only one thread."));
11044
11045 /* Extract the thread ID from the next token. */
11046 thread = strtol (value_start, &endp, 0);
11047
11048 /* Check if the user provided a valid numeric value for the
11049 thread ID. */
11050 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11051 error (_("Invalid thread ID specification %s."), value_start);
11052
11053 /* Check if the thread actually exists. */
11054 if (!valid_thread_id (thread))
11055 invalid_thread_id_error (thread);
11056 }
11057 else if (toklen == 4 && !strncmp (tok, "mask", 4))
11058 {
11059 /* We've found a "mask" token, which means the user wants to
11060 create a hardware watchpoint that is going to have the mask
11061 facility. */
11062 struct value *mask_value, *mark;
11063
11064 if (use_mask)
11065 error(_("You can specify only one mask."));
11066
11067 use_mask = just_location = 1;
11068
11069 mark = value_mark ();
11070 mask_value = parse_to_comma_and_eval (&value_start);
11071 mask = value_as_address (mask_value);
11072 value_free_to_mark (mark);
11073 }
11074 else
11075 /* We didn't recognize what we found. We should stop here. */
11076 break;
11077
11078 /* Truncate the string and get rid of the "parameter value" pair before
11079 the arguments string is parsed by the parse_exp_1 function. */
11080 exp_end = tok;
11081 }
11082 }
11083 else
11084 exp_end = arg;
11085
11086 /* Parse the rest of the arguments. From here on out, everything
11087 is in terms of a newly allocated string instead of the original
11088 ARG. */
11089 innermost_block = NULL;
11090 expression = savestring (arg, exp_end - arg);
11091 back_to = make_cleanup (xfree, expression);
11092 exp_start = arg = expression;
11093 exp = parse_exp_1 (&arg, 0, 0, 0);
11094 exp_end = arg;
11095 /* Remove trailing whitespace from the expression before saving it.
11096 This makes the eventual display of the expression string a bit
11097 prettier. */
11098 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11099 --exp_end;
11100
11101 /* Checking if the expression is not constant. */
11102 if (watchpoint_exp_is_const (exp))
11103 {
11104 int len;
11105
11106 len = exp_end - exp_start;
11107 while (len > 0 && isspace (exp_start[len - 1]))
11108 len--;
11109 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11110 }
11111
11112 exp_valid_block = innermost_block;
11113 mark = value_mark ();
11114 fetch_subexp_value (exp, &pc, &val, &result, NULL, just_location);
11115
11116 if (just_location)
11117 {
11118 int ret;
11119
11120 exp_valid_block = NULL;
11121 val = value_addr (result);
11122 release_value (val);
11123 value_free_to_mark (mark);
11124
11125 if (use_mask)
11126 {
11127 ret = target_masked_watch_num_registers (value_as_address (val),
11128 mask);
11129 if (ret == -1)
11130 error (_("This target does not support masked watchpoints."));
11131 else if (ret == -2)
11132 error (_("Invalid mask or memory region."));
11133 }
11134 }
11135 else if (val != NULL)
11136 release_value (val);
11137
11138 tok = skip_spaces_const (arg);
11139 end_tok = skip_to_space_const (tok);
11140
11141 toklen = end_tok - tok;
11142 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11143 {
11144 struct expression *cond;
11145
11146 innermost_block = NULL;
11147 tok = cond_start = end_tok + 1;
11148 cond = parse_exp_1 (&tok, 0, 0, 0);
11149
11150 /* The watchpoint expression may not be local, but the condition
11151 may still be. E.g.: `watch global if local > 0'. */
11152 cond_exp_valid_block = innermost_block;
11153
11154 xfree (cond);
11155 cond_end = tok;
11156 }
11157 if (*tok)
11158 error (_("Junk at end of command."));
11159
11160 frame = block_innermost_frame (exp_valid_block);
11161
11162 /* If the expression is "local", then set up a "watchpoint scope"
11163 breakpoint at the point where we've left the scope of the watchpoint
11164 expression. Create the scope breakpoint before the watchpoint, so
11165 that we will encounter it first in bpstat_stop_status. */
11166 if (exp_valid_block && frame)
11167 {
11168 if (frame_id_p (frame_unwind_caller_id (frame)))
11169 {
11170 scope_breakpoint
11171 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11172 frame_unwind_caller_pc (frame),
11173 bp_watchpoint_scope,
11174 &momentary_breakpoint_ops);
11175
11176 scope_breakpoint->enable_state = bp_enabled;
11177
11178 /* Automatically delete the breakpoint when it hits. */
11179 scope_breakpoint->disposition = disp_del;
11180
11181 /* Only break in the proper frame (help with recursion). */
11182 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11183
11184 /* Set the address at which we will stop. */
11185 scope_breakpoint->loc->gdbarch
11186 = frame_unwind_caller_arch (frame);
11187 scope_breakpoint->loc->requested_address
11188 = frame_unwind_caller_pc (frame);
11189 scope_breakpoint->loc->address
11190 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11191 scope_breakpoint->loc->requested_address,
11192 scope_breakpoint->type);
11193 }
11194 }
11195
11196 /* Now set up the breakpoint. We create all watchpoints as hardware
11197 watchpoints here even if hardware watchpoints are turned off, a call
11198 to update_watchpoint later in this function will cause the type to
11199 drop back to bp_watchpoint (software watchpoint) if required. */
11200
11201 if (accessflag == hw_read)
11202 bp_type = bp_read_watchpoint;
11203 else if (accessflag == hw_access)
11204 bp_type = bp_access_watchpoint;
11205 else
11206 bp_type = bp_hardware_watchpoint;
11207
11208 w = XCNEW (struct watchpoint);
11209 b = &w->base;
11210 if (use_mask)
11211 init_raw_breakpoint_without_location (b, NULL, bp_type,
11212 &masked_watchpoint_breakpoint_ops);
11213 else
11214 init_raw_breakpoint_without_location (b, NULL, bp_type,
11215 &watchpoint_breakpoint_ops);
11216 b->thread = thread;
11217 b->disposition = disp_donttouch;
11218 b->pspace = current_program_space;
11219 w->exp = exp;
11220 w->exp_valid_block = exp_valid_block;
11221 w->cond_exp_valid_block = cond_exp_valid_block;
11222 if (just_location)
11223 {
11224 struct type *t = value_type (val);
11225 CORE_ADDR addr = value_as_address (val);
11226 char *name;
11227
11228 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11229 name = type_to_string (t);
11230
11231 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11232 core_addr_to_string (addr));
11233 xfree (name);
11234
11235 w->exp_string = xstrprintf ("-location %.*s",
11236 (int) (exp_end - exp_start), exp_start);
11237
11238 /* The above expression is in C. */
11239 b->language = language_c;
11240 }
11241 else
11242 w->exp_string = savestring (exp_start, exp_end - exp_start);
11243
11244 if (use_mask)
11245 {
11246 w->hw_wp_mask = mask;
11247 }
11248 else
11249 {
11250 w->val = val;
11251 w->val_valid = 1;
11252 }
11253
11254 if (cond_start)
11255 b->cond_string = savestring (cond_start, cond_end - cond_start);
11256 else
11257 b->cond_string = 0;
11258
11259 if (frame)
11260 {
11261 w->watchpoint_frame = get_frame_id (frame);
11262 w->watchpoint_thread = inferior_ptid;
11263 }
11264 else
11265 {
11266 w->watchpoint_frame = null_frame_id;
11267 w->watchpoint_thread = null_ptid;
11268 }
11269
11270 if (scope_breakpoint != NULL)
11271 {
11272 /* The scope breakpoint is related to the watchpoint. We will
11273 need to act on them together. */
11274 b->related_breakpoint = scope_breakpoint;
11275 scope_breakpoint->related_breakpoint = b;
11276 }
11277
11278 if (!just_location)
11279 value_free_to_mark (mark);
11280
11281 TRY_CATCH (e, RETURN_MASK_ALL)
11282 {
11283 /* Finally update the new watchpoint. This creates the locations
11284 that should be inserted. */
11285 update_watchpoint (w, 1);
11286 }
11287 if (e.reason < 0)
11288 {
11289 delete_breakpoint (b);
11290 throw_exception (e);
11291 }
11292
11293 install_breakpoint (internal, b, 1);
11294 do_cleanups (back_to);
11295 }
11296
11297 /* Return count of debug registers needed to watch the given expression.
11298 If the watchpoint cannot be handled in hardware return zero. */
11299
11300 static int
11301 can_use_hardware_watchpoint (struct value *v)
11302 {
11303 int found_memory_cnt = 0;
11304 struct value *head = v;
11305
11306 /* Did the user specifically forbid us to use hardware watchpoints? */
11307 if (!can_use_hw_watchpoints)
11308 return 0;
11309
11310 /* Make sure that the value of the expression depends only upon
11311 memory contents, and values computed from them within GDB. If we
11312 find any register references or function calls, we can't use a
11313 hardware watchpoint.
11314
11315 The idea here is that evaluating an expression generates a series
11316 of values, one holding the value of every subexpression. (The
11317 expression a*b+c has five subexpressions: a, b, a*b, c, and
11318 a*b+c.) GDB's values hold almost enough information to establish
11319 the criteria given above --- they identify memory lvalues,
11320 register lvalues, computed values, etcetera. So we can evaluate
11321 the expression, and then scan the chain of values that leaves
11322 behind to decide whether we can detect any possible change to the
11323 expression's final value using only hardware watchpoints.
11324
11325 However, I don't think that the values returned by inferior
11326 function calls are special in any way. So this function may not
11327 notice that an expression involving an inferior function call
11328 can't be watched with hardware watchpoints. FIXME. */
11329 for (; v; v = value_next (v))
11330 {
11331 if (VALUE_LVAL (v) == lval_memory)
11332 {
11333 if (v != head && value_lazy (v))
11334 /* A lazy memory lvalue in the chain is one that GDB never
11335 needed to fetch; we either just used its address (e.g.,
11336 `a' in `a.b') or we never needed it at all (e.g., `a'
11337 in `a,b'). This doesn't apply to HEAD; if that is
11338 lazy then it was not readable, but watch it anyway. */
11339 ;
11340 else
11341 {
11342 /* Ahh, memory we actually used! Check if we can cover
11343 it with hardware watchpoints. */
11344 struct type *vtype = check_typedef (value_type (v));
11345
11346 /* We only watch structs and arrays if user asked for it
11347 explicitly, never if they just happen to appear in a
11348 middle of some value chain. */
11349 if (v == head
11350 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11351 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11352 {
11353 CORE_ADDR vaddr = value_address (v);
11354 int len;
11355 int num_regs;
11356
11357 len = (target_exact_watchpoints
11358 && is_scalar_type_recursive (vtype))?
11359 1 : TYPE_LENGTH (value_type (v));
11360
11361 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11362 if (!num_regs)
11363 return 0;
11364 else
11365 found_memory_cnt += num_regs;
11366 }
11367 }
11368 }
11369 else if (VALUE_LVAL (v) != not_lval
11370 && deprecated_value_modifiable (v) == 0)
11371 return 0; /* These are values from the history (e.g., $1). */
11372 else if (VALUE_LVAL (v) == lval_register)
11373 return 0; /* Cannot watch a register with a HW watchpoint. */
11374 }
11375
11376 /* The expression itself looks suitable for using a hardware
11377 watchpoint, but give the target machine a chance to reject it. */
11378 return found_memory_cnt;
11379 }
11380
11381 void
11382 watch_command_wrapper (char *arg, int from_tty, int internal)
11383 {
11384 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11385 }
11386
11387 /* A helper function that looks for the "-location" argument and then
11388 calls watch_command_1. */
11389
11390 static void
11391 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11392 {
11393 int just_location = 0;
11394
11395 if (arg
11396 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11397 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11398 {
11399 arg = skip_spaces (arg);
11400 just_location = 1;
11401 }
11402
11403 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11404 }
11405
11406 static void
11407 watch_command (char *arg, int from_tty)
11408 {
11409 watch_maybe_just_location (arg, hw_write, from_tty);
11410 }
11411
11412 void
11413 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11414 {
11415 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11416 }
11417
11418 static void
11419 rwatch_command (char *arg, int from_tty)
11420 {
11421 watch_maybe_just_location (arg, hw_read, from_tty);
11422 }
11423
11424 void
11425 awatch_command_wrapper (char *arg, int from_tty, int internal)
11426 {
11427 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11428 }
11429
11430 static void
11431 awatch_command (char *arg, int from_tty)
11432 {
11433 watch_maybe_just_location (arg, hw_access, from_tty);
11434 }
11435 \f
11436
11437 /* Helper routines for the until_command routine in infcmd.c. Here
11438 because it uses the mechanisms of breakpoints. */
11439
11440 struct until_break_command_continuation_args
11441 {
11442 struct breakpoint *breakpoint;
11443 struct breakpoint *breakpoint2;
11444 int thread_num;
11445 };
11446
11447 /* This function is called by fetch_inferior_event via the
11448 cmd_continuation pointer, to complete the until command. It takes
11449 care of cleaning up the temporary breakpoints set up by the until
11450 command. */
11451 static void
11452 until_break_command_continuation (void *arg, int err)
11453 {
11454 struct until_break_command_continuation_args *a = arg;
11455
11456 delete_breakpoint (a->breakpoint);
11457 if (a->breakpoint2)
11458 delete_breakpoint (a->breakpoint2);
11459 delete_longjmp_breakpoint (a->thread_num);
11460 }
11461
11462 void
11463 until_break_command (char *arg, int from_tty, int anywhere)
11464 {
11465 struct symtabs_and_lines sals;
11466 struct symtab_and_line sal;
11467 struct frame_info *frame;
11468 struct gdbarch *frame_gdbarch;
11469 struct frame_id stack_frame_id;
11470 struct frame_id caller_frame_id;
11471 struct breakpoint *breakpoint;
11472 struct breakpoint *breakpoint2 = NULL;
11473 struct cleanup *old_chain;
11474 int thread;
11475 struct thread_info *tp;
11476
11477 clear_proceed_status ();
11478
11479 /* Set a breakpoint where the user wants it and at return from
11480 this function. */
11481
11482 if (last_displayed_sal_is_valid ())
11483 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11484 get_last_displayed_symtab (),
11485 get_last_displayed_line ());
11486 else
11487 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11488 (struct symtab *) NULL, 0);
11489
11490 if (sals.nelts != 1)
11491 error (_("Couldn't get information on specified line."));
11492
11493 sal = sals.sals[0];
11494 xfree (sals.sals); /* malloc'd, so freed. */
11495
11496 if (*arg)
11497 error (_("Junk at end of arguments."));
11498
11499 resolve_sal_pc (&sal);
11500
11501 tp = inferior_thread ();
11502 thread = tp->num;
11503
11504 old_chain = make_cleanup (null_cleanup, NULL);
11505
11506 /* Note linespec handling above invalidates the frame chain.
11507 Installing a breakpoint also invalidates the frame chain (as it
11508 may need to switch threads), so do any frame handling before
11509 that. */
11510
11511 frame = get_selected_frame (NULL);
11512 frame_gdbarch = get_frame_arch (frame);
11513 stack_frame_id = get_stack_frame_id (frame);
11514 caller_frame_id = frame_unwind_caller_id (frame);
11515
11516 /* Keep within the current frame, or in frames called by the current
11517 one. */
11518
11519 if (frame_id_p (caller_frame_id))
11520 {
11521 struct symtab_and_line sal2;
11522
11523 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11524 sal2.pc = frame_unwind_caller_pc (frame);
11525 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11526 sal2,
11527 caller_frame_id,
11528 bp_until);
11529 make_cleanup_delete_breakpoint (breakpoint2);
11530
11531 set_longjmp_breakpoint (tp, caller_frame_id);
11532 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11533 }
11534
11535 /* set_momentary_breakpoint could invalidate FRAME. */
11536 frame = NULL;
11537
11538 if (anywhere)
11539 /* If the user told us to continue until a specified location,
11540 we don't specify a frame at which we need to stop. */
11541 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11542 null_frame_id, bp_until);
11543 else
11544 /* Otherwise, specify the selected frame, because we want to stop
11545 only at the very same frame. */
11546 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11547 stack_frame_id, bp_until);
11548 make_cleanup_delete_breakpoint (breakpoint);
11549
11550 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11551
11552 /* If we are running asynchronously, and proceed call above has
11553 actually managed to start the target, arrange for breakpoints to
11554 be deleted when the target stops. Otherwise, we're already
11555 stopped and delete breakpoints via cleanup chain. */
11556
11557 if (target_can_async_p () && is_running (inferior_ptid))
11558 {
11559 struct until_break_command_continuation_args *args;
11560 args = xmalloc (sizeof (*args));
11561
11562 args->breakpoint = breakpoint;
11563 args->breakpoint2 = breakpoint2;
11564 args->thread_num = thread;
11565
11566 discard_cleanups (old_chain);
11567 add_continuation (inferior_thread (),
11568 until_break_command_continuation, args,
11569 xfree);
11570 }
11571 else
11572 do_cleanups (old_chain);
11573 }
11574
11575 /* This function attempts to parse an optional "if <cond>" clause
11576 from the arg string. If one is not found, it returns NULL.
11577
11578 Else, it returns a pointer to the condition string. (It does not
11579 attempt to evaluate the string against a particular block.) And,
11580 it updates arg to point to the first character following the parsed
11581 if clause in the arg string. */
11582
11583 char *
11584 ep_parse_optional_if_clause (char **arg)
11585 {
11586 char *cond_string;
11587
11588 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11589 return NULL;
11590
11591 /* Skip the "if" keyword. */
11592 (*arg) += 2;
11593
11594 /* Skip any extra leading whitespace, and record the start of the
11595 condition string. */
11596 *arg = skip_spaces (*arg);
11597 cond_string = *arg;
11598
11599 /* Assume that the condition occupies the remainder of the arg
11600 string. */
11601 (*arg) += strlen (cond_string);
11602
11603 return cond_string;
11604 }
11605
11606 /* Commands to deal with catching events, such as signals, exceptions,
11607 process start/exit, etc. */
11608
11609 typedef enum
11610 {
11611 catch_fork_temporary, catch_vfork_temporary,
11612 catch_fork_permanent, catch_vfork_permanent
11613 }
11614 catch_fork_kind;
11615
11616 static void
11617 catch_fork_command_1 (char *arg, int from_tty,
11618 struct cmd_list_element *command)
11619 {
11620 struct gdbarch *gdbarch = get_current_arch ();
11621 char *cond_string = NULL;
11622 catch_fork_kind fork_kind;
11623 int tempflag;
11624
11625 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11626 tempflag = (fork_kind == catch_fork_temporary
11627 || fork_kind == catch_vfork_temporary);
11628
11629 if (!arg)
11630 arg = "";
11631 arg = skip_spaces (arg);
11632
11633 /* The allowed syntax is:
11634 catch [v]fork
11635 catch [v]fork if <cond>
11636
11637 First, check if there's an if clause. */
11638 cond_string = ep_parse_optional_if_clause (&arg);
11639
11640 if ((*arg != '\0') && !isspace (*arg))
11641 error (_("Junk at end of arguments."));
11642
11643 /* If this target supports it, create a fork or vfork catchpoint
11644 and enable reporting of such events. */
11645 switch (fork_kind)
11646 {
11647 case catch_fork_temporary:
11648 case catch_fork_permanent:
11649 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11650 &catch_fork_breakpoint_ops);
11651 break;
11652 case catch_vfork_temporary:
11653 case catch_vfork_permanent:
11654 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11655 &catch_vfork_breakpoint_ops);
11656 break;
11657 default:
11658 error (_("unsupported or unknown fork kind; cannot catch it"));
11659 break;
11660 }
11661 }
11662
11663 static void
11664 catch_exec_command_1 (char *arg, int from_tty,
11665 struct cmd_list_element *command)
11666 {
11667 struct exec_catchpoint *c;
11668 struct gdbarch *gdbarch = get_current_arch ();
11669 int tempflag;
11670 char *cond_string = NULL;
11671
11672 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11673
11674 if (!arg)
11675 arg = "";
11676 arg = skip_spaces (arg);
11677
11678 /* The allowed syntax is:
11679 catch exec
11680 catch exec if <cond>
11681
11682 First, check if there's an if clause. */
11683 cond_string = ep_parse_optional_if_clause (&arg);
11684
11685 if ((*arg != '\0') && !isspace (*arg))
11686 error (_("Junk at end of arguments."));
11687
11688 c = XNEW (struct exec_catchpoint);
11689 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11690 &catch_exec_breakpoint_ops);
11691 c->exec_pathname = NULL;
11692
11693 install_breakpoint (0, &c->base, 1);
11694 }
11695
11696 void
11697 init_ada_exception_breakpoint (struct breakpoint *b,
11698 struct gdbarch *gdbarch,
11699 struct symtab_and_line sal,
11700 char *addr_string,
11701 const struct breakpoint_ops *ops,
11702 int tempflag,
11703 int enabled,
11704 int from_tty)
11705 {
11706 if (from_tty)
11707 {
11708 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11709 if (!loc_gdbarch)
11710 loc_gdbarch = gdbarch;
11711
11712 describe_other_breakpoints (loc_gdbarch,
11713 sal.pspace, sal.pc, sal.section, -1);
11714 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11715 version for exception catchpoints, because two catchpoints
11716 used for different exception names will use the same address.
11717 In this case, a "breakpoint ... also set at..." warning is
11718 unproductive. Besides, the warning phrasing is also a bit
11719 inappropriate, we should use the word catchpoint, and tell
11720 the user what type of catchpoint it is. The above is good
11721 enough for now, though. */
11722 }
11723
11724 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11725
11726 b->enable_state = enabled ? bp_enabled : bp_disabled;
11727 b->disposition = tempflag ? disp_del : disp_donttouch;
11728 b->addr_string = addr_string;
11729 b->language = language_ada;
11730 }
11731
11732 /* Splits the argument using space as delimiter. Returns an xmalloc'd
11733 filter list, or NULL if no filtering is required. */
11734 static VEC(int) *
11735 catch_syscall_split_args (char *arg)
11736 {
11737 VEC(int) *result = NULL;
11738 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
11739
11740 while (*arg != '\0')
11741 {
11742 int i, syscall_number;
11743 char *endptr;
11744 char cur_name[128];
11745 struct syscall s;
11746
11747 /* Skip whitespace. */
11748 arg = skip_spaces (arg);
11749
11750 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
11751 cur_name[i] = arg[i];
11752 cur_name[i] = '\0';
11753 arg += i;
11754
11755 /* Check if the user provided a syscall name or a number. */
11756 syscall_number = (int) strtol (cur_name, &endptr, 0);
11757 if (*endptr == '\0')
11758 get_syscall_by_number (syscall_number, &s);
11759 else
11760 {
11761 /* We have a name. Let's check if it's valid and convert it
11762 to a number. */
11763 get_syscall_by_name (cur_name, &s);
11764
11765 if (s.number == UNKNOWN_SYSCALL)
11766 /* Here we have to issue an error instead of a warning,
11767 because GDB cannot do anything useful if there's no
11768 syscall number to be caught. */
11769 error (_("Unknown syscall name '%s'."), cur_name);
11770 }
11771
11772 /* Ok, it's valid. */
11773 VEC_safe_push (int, result, s.number);
11774 }
11775
11776 discard_cleanups (cleanup);
11777 return result;
11778 }
11779
11780 /* Implement the "catch syscall" command. */
11781
11782 static void
11783 catch_syscall_command_1 (char *arg, int from_tty,
11784 struct cmd_list_element *command)
11785 {
11786 int tempflag;
11787 VEC(int) *filter;
11788 struct syscall s;
11789 struct gdbarch *gdbarch = get_current_arch ();
11790
11791 /* Checking if the feature if supported. */
11792 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
11793 error (_("The feature 'catch syscall' is not supported on \
11794 this architecture yet."));
11795
11796 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11797
11798 arg = skip_spaces (arg);
11799
11800 /* We need to do this first "dummy" translation in order
11801 to get the syscall XML file loaded or, most important,
11802 to display a warning to the user if there's no XML file
11803 for his/her architecture. */
11804 get_syscall_by_number (0, &s);
11805
11806 /* The allowed syntax is:
11807 catch syscall
11808 catch syscall <name | number> [<name | number> ... <name | number>]
11809
11810 Let's check if there's a syscall name. */
11811
11812 if (arg != NULL)
11813 filter = catch_syscall_split_args (arg);
11814 else
11815 filter = NULL;
11816
11817 create_syscall_event_catchpoint (tempflag, filter,
11818 &catch_syscall_breakpoint_ops);
11819 }
11820
11821 static void
11822 catch_command (char *arg, int from_tty)
11823 {
11824 error (_("Catch requires an event name."));
11825 }
11826 \f
11827
11828 static void
11829 tcatch_command (char *arg, int from_tty)
11830 {
11831 error (_("Catch requires an event name."));
11832 }
11833
11834 /* A qsort comparison function that sorts breakpoints in order. */
11835
11836 static int
11837 compare_breakpoints (const void *a, const void *b)
11838 {
11839 const breakpoint_p *ba = a;
11840 uintptr_t ua = (uintptr_t) *ba;
11841 const breakpoint_p *bb = b;
11842 uintptr_t ub = (uintptr_t) *bb;
11843
11844 if ((*ba)->number < (*bb)->number)
11845 return -1;
11846 else if ((*ba)->number > (*bb)->number)
11847 return 1;
11848
11849 /* Now sort by address, in case we see, e..g, two breakpoints with
11850 the number 0. */
11851 if (ua < ub)
11852 return -1;
11853 return ua > ub ? 1 : 0;
11854 }
11855
11856 /* Delete breakpoints by address or line. */
11857
11858 static void
11859 clear_command (char *arg, int from_tty)
11860 {
11861 struct breakpoint *b, *prev;
11862 VEC(breakpoint_p) *found = 0;
11863 int ix;
11864 int default_match;
11865 struct symtabs_and_lines sals;
11866 struct symtab_and_line sal;
11867 int i;
11868 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11869
11870 if (arg)
11871 {
11872 sals = decode_line_with_current_source (arg,
11873 (DECODE_LINE_FUNFIRSTLINE
11874 | DECODE_LINE_LIST_MODE));
11875 make_cleanup (xfree, sals.sals);
11876 default_match = 0;
11877 }
11878 else
11879 {
11880 sals.sals = (struct symtab_and_line *)
11881 xmalloc (sizeof (struct symtab_and_line));
11882 make_cleanup (xfree, sals.sals);
11883 init_sal (&sal); /* Initialize to zeroes. */
11884
11885 /* Set sal's line, symtab, pc, and pspace to the values
11886 corresponding to the last call to print_frame_info. If the
11887 codepoint is not valid, this will set all the fields to 0. */
11888 get_last_displayed_sal (&sal);
11889 if (sal.symtab == 0)
11890 error (_("No source file specified."));
11891
11892 sals.sals[0] = sal;
11893 sals.nelts = 1;
11894
11895 default_match = 1;
11896 }
11897
11898 /* We don't call resolve_sal_pc here. That's not as bad as it
11899 seems, because all existing breakpoints typically have both
11900 file/line and pc set. So, if clear is given file/line, we can
11901 match this to existing breakpoint without obtaining pc at all.
11902
11903 We only support clearing given the address explicitly
11904 present in breakpoint table. Say, we've set breakpoint
11905 at file:line. There were several PC values for that file:line,
11906 due to optimization, all in one block.
11907
11908 We've picked one PC value. If "clear" is issued with another
11909 PC corresponding to the same file:line, the breakpoint won't
11910 be cleared. We probably can still clear the breakpoint, but
11911 since the other PC value is never presented to user, user
11912 can only find it by guessing, and it does not seem important
11913 to support that. */
11914
11915 /* For each line spec given, delete bps which correspond to it. Do
11916 it in two passes, solely to preserve the current behavior that
11917 from_tty is forced true if we delete more than one
11918 breakpoint. */
11919
11920 found = NULL;
11921 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11922 for (i = 0; i < sals.nelts; i++)
11923 {
11924 const char *sal_fullname;
11925
11926 /* If exact pc given, clear bpts at that pc.
11927 If line given (pc == 0), clear all bpts on specified line.
11928 If defaulting, clear all bpts on default line
11929 or at default pc.
11930
11931 defaulting sal.pc != 0 tests to do
11932
11933 0 1 pc
11934 1 1 pc _and_ line
11935 0 0 line
11936 1 0 <can't happen> */
11937
11938 sal = sals.sals[i];
11939 sal_fullname = (sal.symtab == NULL
11940 ? NULL : symtab_to_fullname (sal.symtab));
11941
11942 /* Find all matching breakpoints and add them to 'found'. */
11943 ALL_BREAKPOINTS (b)
11944 {
11945 int match = 0;
11946 /* Are we going to delete b? */
11947 if (b->type != bp_none && !is_watchpoint (b))
11948 {
11949 struct bp_location *loc = b->loc;
11950 for (; loc; loc = loc->next)
11951 {
11952 /* If the user specified file:line, don't allow a PC
11953 match. This matches historical gdb behavior. */
11954 int pc_match = (!sal.explicit_line
11955 && sal.pc
11956 && (loc->pspace == sal.pspace)
11957 && (loc->address == sal.pc)
11958 && (!section_is_overlay (loc->section)
11959 || loc->section == sal.section));
11960 int line_match = 0;
11961
11962 if ((default_match || sal.explicit_line)
11963 && loc->symtab != NULL
11964 && sal_fullname != NULL
11965 && sal.pspace == loc->pspace
11966 && loc->line_number == sal.line
11967 && filename_cmp (symtab_to_fullname (loc->symtab),
11968 sal_fullname) == 0)
11969 line_match = 1;
11970
11971 if (pc_match || line_match)
11972 {
11973 match = 1;
11974 break;
11975 }
11976 }
11977 }
11978
11979 if (match)
11980 VEC_safe_push(breakpoint_p, found, b);
11981 }
11982 }
11983
11984 /* Now go thru the 'found' chain and delete them. */
11985 if (VEC_empty(breakpoint_p, found))
11986 {
11987 if (arg)
11988 error (_("No breakpoint at %s."), arg);
11989 else
11990 error (_("No breakpoint at this line."));
11991 }
11992
11993 /* Remove duplicates from the vec. */
11994 qsort (VEC_address (breakpoint_p, found),
11995 VEC_length (breakpoint_p, found),
11996 sizeof (breakpoint_p),
11997 compare_breakpoints);
11998 prev = VEC_index (breakpoint_p, found, 0);
11999 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
12000 {
12001 if (b == prev)
12002 {
12003 VEC_ordered_remove (breakpoint_p, found, ix);
12004 --ix;
12005 }
12006 }
12007
12008 if (VEC_length(breakpoint_p, found) > 1)
12009 from_tty = 1; /* Always report if deleted more than one. */
12010 if (from_tty)
12011 {
12012 if (VEC_length(breakpoint_p, found) == 1)
12013 printf_unfiltered (_("Deleted breakpoint "));
12014 else
12015 printf_unfiltered (_("Deleted breakpoints "));
12016 }
12017
12018 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
12019 {
12020 if (from_tty)
12021 printf_unfiltered ("%d ", b->number);
12022 delete_breakpoint (b);
12023 }
12024 if (from_tty)
12025 putchar_unfiltered ('\n');
12026
12027 do_cleanups (cleanups);
12028 }
12029 \f
12030 /* Delete breakpoint in BS if they are `delete' breakpoints and
12031 all breakpoints that are marked for deletion, whether hit or not.
12032 This is called after any breakpoint is hit, or after errors. */
12033
12034 void
12035 breakpoint_auto_delete (bpstat bs)
12036 {
12037 struct breakpoint *b, *b_tmp;
12038
12039 for (; bs; bs = bs->next)
12040 if (bs->breakpoint_at
12041 && bs->breakpoint_at->disposition == disp_del
12042 && bs->stop)
12043 delete_breakpoint (bs->breakpoint_at);
12044
12045 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12046 {
12047 if (b->disposition == disp_del_at_next_stop)
12048 delete_breakpoint (b);
12049 }
12050 }
12051
12052 /* A comparison function for bp_location AP and BP being interfaced to
12053 qsort. Sort elements primarily by their ADDRESS (no matter what
12054 does breakpoint_address_is_meaningful say for its OWNER),
12055 secondarily by ordering first bp_permanent OWNERed elements and
12056 terciarily just ensuring the array is sorted stable way despite
12057 qsort being an unstable algorithm. */
12058
12059 static int
12060 bp_location_compare (const void *ap, const void *bp)
12061 {
12062 struct bp_location *a = *(void **) ap;
12063 struct bp_location *b = *(void **) bp;
12064 /* A and B come from existing breakpoints having non-NULL OWNER. */
12065 int a_perm = a->owner->enable_state == bp_permanent;
12066 int b_perm = b->owner->enable_state == bp_permanent;
12067
12068 if (a->address != b->address)
12069 return (a->address > b->address) - (a->address < b->address);
12070
12071 /* Sort locations at the same address by their pspace number, keeping
12072 locations of the same inferior (in a multi-inferior environment)
12073 grouped. */
12074
12075 if (a->pspace->num != b->pspace->num)
12076 return ((a->pspace->num > b->pspace->num)
12077 - (a->pspace->num < b->pspace->num));
12078
12079 /* Sort permanent breakpoints first. */
12080 if (a_perm != b_perm)
12081 return (a_perm < b_perm) - (a_perm > b_perm);
12082
12083 /* Make the internal GDB representation stable across GDB runs
12084 where A and B memory inside GDB can differ. Breakpoint locations of
12085 the same type at the same address can be sorted in arbitrary order. */
12086
12087 if (a->owner->number != b->owner->number)
12088 return ((a->owner->number > b->owner->number)
12089 - (a->owner->number < b->owner->number));
12090
12091 return (a > b) - (a < b);
12092 }
12093
12094 /* Set bp_location_placed_address_before_address_max and
12095 bp_location_shadow_len_after_address_max according to the current
12096 content of the bp_location array. */
12097
12098 static void
12099 bp_location_target_extensions_update (void)
12100 {
12101 struct bp_location *bl, **blp_tmp;
12102
12103 bp_location_placed_address_before_address_max = 0;
12104 bp_location_shadow_len_after_address_max = 0;
12105
12106 ALL_BP_LOCATIONS (bl, blp_tmp)
12107 {
12108 CORE_ADDR start, end, addr;
12109
12110 if (!bp_location_has_shadow (bl))
12111 continue;
12112
12113 start = bl->target_info.placed_address;
12114 end = start + bl->target_info.shadow_len;
12115
12116 gdb_assert (bl->address >= start);
12117 addr = bl->address - start;
12118 if (addr > bp_location_placed_address_before_address_max)
12119 bp_location_placed_address_before_address_max = addr;
12120
12121 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12122
12123 gdb_assert (bl->address < end);
12124 addr = end - bl->address;
12125 if (addr > bp_location_shadow_len_after_address_max)
12126 bp_location_shadow_len_after_address_max = addr;
12127 }
12128 }
12129
12130 /* Download tracepoint locations if they haven't been. */
12131
12132 static void
12133 download_tracepoint_locations (void)
12134 {
12135 struct breakpoint *b;
12136 struct cleanup *old_chain;
12137
12138 if (!target_can_download_tracepoint ())
12139 return;
12140
12141 old_chain = save_current_space_and_thread ();
12142
12143 ALL_TRACEPOINTS (b)
12144 {
12145 struct bp_location *bl;
12146 struct tracepoint *t;
12147 int bp_location_downloaded = 0;
12148
12149 if ((b->type == bp_fast_tracepoint
12150 ? !may_insert_fast_tracepoints
12151 : !may_insert_tracepoints))
12152 continue;
12153
12154 for (bl = b->loc; bl; bl = bl->next)
12155 {
12156 /* In tracepoint, locations are _never_ duplicated, so
12157 should_be_inserted is equivalent to
12158 unduplicated_should_be_inserted. */
12159 if (!should_be_inserted (bl) || bl->inserted)
12160 continue;
12161
12162 switch_to_program_space_and_thread (bl->pspace);
12163
12164 target_download_tracepoint (bl);
12165
12166 bl->inserted = 1;
12167 bp_location_downloaded = 1;
12168 }
12169 t = (struct tracepoint *) b;
12170 t->number_on_target = b->number;
12171 if (bp_location_downloaded)
12172 observer_notify_breakpoint_modified (b);
12173 }
12174
12175 do_cleanups (old_chain);
12176 }
12177
12178 /* Swap the insertion/duplication state between two locations. */
12179
12180 static void
12181 swap_insertion (struct bp_location *left, struct bp_location *right)
12182 {
12183 const int left_inserted = left->inserted;
12184 const int left_duplicate = left->duplicate;
12185 const int left_needs_update = left->needs_update;
12186 const struct bp_target_info left_target_info = left->target_info;
12187
12188 /* Locations of tracepoints can never be duplicated. */
12189 if (is_tracepoint (left->owner))
12190 gdb_assert (!left->duplicate);
12191 if (is_tracepoint (right->owner))
12192 gdb_assert (!right->duplicate);
12193
12194 left->inserted = right->inserted;
12195 left->duplicate = right->duplicate;
12196 left->needs_update = right->needs_update;
12197 left->target_info = right->target_info;
12198 right->inserted = left_inserted;
12199 right->duplicate = left_duplicate;
12200 right->needs_update = left_needs_update;
12201 right->target_info = left_target_info;
12202 }
12203
12204 /* Force the re-insertion of the locations at ADDRESS. This is called
12205 once a new/deleted/modified duplicate location is found and we are evaluating
12206 conditions on the target's side. Such conditions need to be updated on
12207 the target. */
12208
12209 static void
12210 force_breakpoint_reinsertion (struct bp_location *bl)
12211 {
12212 struct bp_location **locp = NULL, **loc2p;
12213 struct bp_location *loc;
12214 CORE_ADDR address = 0;
12215 int pspace_num;
12216
12217 address = bl->address;
12218 pspace_num = bl->pspace->num;
12219
12220 /* This is only meaningful if the target is
12221 evaluating conditions and if the user has
12222 opted for condition evaluation on the target's
12223 side. */
12224 if (gdb_evaluates_breakpoint_condition_p ()
12225 || !target_supports_evaluation_of_breakpoint_conditions ())
12226 return;
12227
12228 /* Flag all breakpoint locations with this address and
12229 the same program space as the location
12230 as "its condition has changed". We need to
12231 update the conditions on the target's side. */
12232 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12233 {
12234 loc = *loc2p;
12235
12236 if (!is_breakpoint (loc->owner)
12237 || pspace_num != loc->pspace->num)
12238 continue;
12239
12240 /* Flag the location appropriately. We use a different state to
12241 let everyone know that we already updated the set of locations
12242 with addr bl->address and program space bl->pspace. This is so
12243 we don't have to keep calling these functions just to mark locations
12244 that have already been marked. */
12245 loc->condition_changed = condition_updated;
12246
12247 /* Free the agent expression bytecode as well. We will compute
12248 it later on. */
12249 if (loc->cond_bytecode)
12250 {
12251 free_agent_expr (loc->cond_bytecode);
12252 loc->cond_bytecode = NULL;
12253 }
12254 }
12255 }
12256
12257 /* If SHOULD_INSERT is false, do not insert any breakpoint locations
12258 into the inferior, only remove already-inserted locations that no
12259 longer should be inserted. Functions that delete a breakpoint or
12260 breakpoints should pass false, so that deleting a breakpoint
12261 doesn't have the side effect of inserting the locations of other
12262 breakpoints that are marked not-inserted, but should_be_inserted
12263 returns true on them.
12264
12265 This behaviour is useful is situations close to tear-down -- e.g.,
12266 after an exec, while the target still has execution, but breakpoint
12267 shadows of the previous executable image should *NOT* be restored
12268 to the new image; or before detaching, where the target still has
12269 execution and wants to delete breakpoints from GDB's lists, and all
12270 breakpoints had already been removed from the inferior. */
12271
12272 static void
12273 update_global_location_list (int should_insert)
12274 {
12275 struct breakpoint *b;
12276 struct bp_location **locp, *loc;
12277 struct cleanup *cleanups;
12278 /* Last breakpoint location address that was marked for update. */
12279 CORE_ADDR last_addr = 0;
12280 /* Last breakpoint location program space that was marked for update. */
12281 int last_pspace_num = -1;
12282
12283 /* Used in the duplicates detection below. When iterating over all
12284 bp_locations, points to the first bp_location of a given address.
12285 Breakpoints and watchpoints of different types are never
12286 duplicates of each other. Keep one pointer for each type of
12287 breakpoint/watchpoint, so we only need to loop over all locations
12288 once. */
12289 struct bp_location *bp_loc_first; /* breakpoint */
12290 struct bp_location *wp_loc_first; /* hardware watchpoint */
12291 struct bp_location *awp_loc_first; /* access watchpoint */
12292 struct bp_location *rwp_loc_first; /* read watchpoint */
12293
12294 /* Saved former bp_location array which we compare against the newly
12295 built bp_location from the current state of ALL_BREAKPOINTS. */
12296 struct bp_location **old_location, **old_locp;
12297 unsigned old_location_count;
12298
12299 old_location = bp_location;
12300 old_location_count = bp_location_count;
12301 bp_location = NULL;
12302 bp_location_count = 0;
12303 cleanups = make_cleanup (xfree, old_location);
12304
12305 ALL_BREAKPOINTS (b)
12306 for (loc = b->loc; loc; loc = loc->next)
12307 bp_location_count++;
12308
12309 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12310 locp = bp_location;
12311 ALL_BREAKPOINTS (b)
12312 for (loc = b->loc; loc; loc = loc->next)
12313 *locp++ = loc;
12314 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12315 bp_location_compare);
12316
12317 bp_location_target_extensions_update ();
12318
12319 /* Identify bp_location instances that are no longer present in the
12320 new list, and therefore should be freed. Note that it's not
12321 necessary that those locations should be removed from inferior --
12322 if there's another location at the same address (previously
12323 marked as duplicate), we don't need to remove/insert the
12324 location.
12325
12326 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12327 and former bp_location array state respectively. */
12328
12329 locp = bp_location;
12330 for (old_locp = old_location; old_locp < old_location + old_location_count;
12331 old_locp++)
12332 {
12333 struct bp_location *old_loc = *old_locp;
12334 struct bp_location **loc2p;
12335
12336 /* Tells if 'old_loc' is found among the new locations. If
12337 not, we have to free it. */
12338 int found_object = 0;
12339 /* Tells if the location should remain inserted in the target. */
12340 int keep_in_target = 0;
12341 int removed = 0;
12342
12343 /* Skip LOCP entries which will definitely never be needed.
12344 Stop either at or being the one matching OLD_LOC. */
12345 while (locp < bp_location + bp_location_count
12346 && (*locp)->address < old_loc->address)
12347 locp++;
12348
12349 for (loc2p = locp;
12350 (loc2p < bp_location + bp_location_count
12351 && (*loc2p)->address == old_loc->address);
12352 loc2p++)
12353 {
12354 /* Check if this is a new/duplicated location or a duplicated
12355 location that had its condition modified. If so, we want to send
12356 its condition to the target if evaluation of conditions is taking
12357 place there. */
12358 if ((*loc2p)->condition_changed == condition_modified
12359 && (last_addr != old_loc->address
12360 || last_pspace_num != old_loc->pspace->num))
12361 {
12362 force_breakpoint_reinsertion (*loc2p);
12363 last_pspace_num = old_loc->pspace->num;
12364 }
12365
12366 if (*loc2p == old_loc)
12367 found_object = 1;
12368 }
12369
12370 /* We have already handled this address, update it so that we don't
12371 have to go through updates again. */
12372 last_addr = old_loc->address;
12373
12374 /* Target-side condition evaluation: Handle deleted locations. */
12375 if (!found_object)
12376 force_breakpoint_reinsertion (old_loc);
12377
12378 /* If this location is no longer present, and inserted, look if
12379 there's maybe a new location at the same address. If so,
12380 mark that one inserted, and don't remove this one. This is
12381 needed so that we don't have a time window where a breakpoint
12382 at certain location is not inserted. */
12383
12384 if (old_loc->inserted)
12385 {
12386 /* If the location is inserted now, we might have to remove
12387 it. */
12388
12389 if (found_object && should_be_inserted (old_loc))
12390 {
12391 /* The location is still present in the location list,
12392 and still should be inserted. Don't do anything. */
12393 keep_in_target = 1;
12394 }
12395 else
12396 {
12397 /* This location still exists, but it won't be kept in the
12398 target since it may have been disabled. We proceed to
12399 remove its target-side condition. */
12400
12401 /* The location is either no longer present, or got
12402 disabled. See if there's another location at the
12403 same address, in which case we don't need to remove
12404 this one from the target. */
12405
12406 /* OLD_LOC comes from existing struct breakpoint. */
12407 if (breakpoint_address_is_meaningful (old_loc->owner))
12408 {
12409 for (loc2p = locp;
12410 (loc2p < bp_location + bp_location_count
12411 && (*loc2p)->address == old_loc->address);
12412 loc2p++)
12413 {
12414 struct bp_location *loc2 = *loc2p;
12415
12416 if (breakpoint_locations_match (loc2, old_loc))
12417 {
12418 /* Read watchpoint locations are switched to
12419 access watchpoints, if the former are not
12420 supported, but the latter are. */
12421 if (is_hardware_watchpoint (old_loc->owner))
12422 {
12423 gdb_assert (is_hardware_watchpoint (loc2->owner));
12424 loc2->watchpoint_type = old_loc->watchpoint_type;
12425 }
12426
12427 /* loc2 is a duplicated location. We need to check
12428 if it should be inserted in case it will be
12429 unduplicated. */
12430 if (loc2 != old_loc
12431 && unduplicated_should_be_inserted (loc2))
12432 {
12433 swap_insertion (old_loc, loc2);
12434 keep_in_target = 1;
12435 break;
12436 }
12437 }
12438 }
12439 }
12440 }
12441
12442 if (!keep_in_target)
12443 {
12444 if (remove_breakpoint (old_loc, mark_uninserted))
12445 {
12446 /* This is just about all we can do. We could keep
12447 this location on the global list, and try to
12448 remove it next time, but there's no particular
12449 reason why we will succeed next time.
12450
12451 Note that at this point, old_loc->owner is still
12452 valid, as delete_breakpoint frees the breakpoint
12453 only after calling us. */
12454 printf_filtered (_("warning: Error removing "
12455 "breakpoint %d\n"),
12456 old_loc->owner->number);
12457 }
12458 removed = 1;
12459 }
12460 }
12461
12462 if (!found_object)
12463 {
12464 if (removed && non_stop
12465 && breakpoint_address_is_meaningful (old_loc->owner)
12466 && !is_hardware_watchpoint (old_loc->owner))
12467 {
12468 /* This location was removed from the target. In
12469 non-stop mode, a race condition is possible where
12470 we've removed a breakpoint, but stop events for that
12471 breakpoint are already queued and will arrive later.
12472 We apply an heuristic to be able to distinguish such
12473 SIGTRAPs from other random SIGTRAPs: we keep this
12474 breakpoint location for a bit, and will retire it
12475 after we see some number of events. The theory here
12476 is that reporting of events should, "on the average",
12477 be fair, so after a while we'll see events from all
12478 threads that have anything of interest, and no longer
12479 need to keep this breakpoint location around. We
12480 don't hold locations forever so to reduce chances of
12481 mistaking a non-breakpoint SIGTRAP for a breakpoint
12482 SIGTRAP.
12483
12484 The heuristic failing can be disastrous on
12485 decr_pc_after_break targets.
12486
12487 On decr_pc_after_break targets, like e.g., x86-linux,
12488 if we fail to recognize a late breakpoint SIGTRAP,
12489 because events_till_retirement has reached 0 too
12490 soon, we'll fail to do the PC adjustment, and report
12491 a random SIGTRAP to the user. When the user resumes
12492 the inferior, it will most likely immediately crash
12493 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12494 corrupted, because of being resumed e.g., in the
12495 middle of a multi-byte instruction, or skipped a
12496 one-byte instruction. This was actually seen happen
12497 on native x86-linux, and should be less rare on
12498 targets that do not support new thread events, like
12499 remote, due to the heuristic depending on
12500 thread_count.
12501
12502 Mistaking a random SIGTRAP for a breakpoint trap
12503 causes similar symptoms (PC adjustment applied when
12504 it shouldn't), but then again, playing with SIGTRAPs
12505 behind the debugger's back is asking for trouble.
12506
12507 Since hardware watchpoint traps are always
12508 distinguishable from other traps, so we don't need to
12509 apply keep hardware watchpoint moribund locations
12510 around. We simply always ignore hardware watchpoint
12511 traps we can no longer explain. */
12512
12513 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12514 old_loc->owner = NULL;
12515
12516 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12517 }
12518 else
12519 {
12520 old_loc->owner = NULL;
12521 decref_bp_location (&old_loc);
12522 }
12523 }
12524 }
12525
12526 /* Rescan breakpoints at the same address and section, marking the
12527 first one as "first" and any others as "duplicates". This is so
12528 that the bpt instruction is only inserted once. If we have a
12529 permanent breakpoint at the same place as BPT, make that one the
12530 official one, and the rest as duplicates. Permanent breakpoints
12531 are sorted first for the same address.
12532
12533 Do the same for hardware watchpoints, but also considering the
12534 watchpoint's type (regular/access/read) and length. */
12535
12536 bp_loc_first = NULL;
12537 wp_loc_first = NULL;
12538 awp_loc_first = NULL;
12539 rwp_loc_first = NULL;
12540 ALL_BP_LOCATIONS (loc, locp)
12541 {
12542 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12543 non-NULL. */
12544 struct bp_location **loc_first_p;
12545 b = loc->owner;
12546
12547 if (!unduplicated_should_be_inserted (loc)
12548 || !breakpoint_address_is_meaningful (b)
12549 /* Don't detect duplicate for tracepoint locations because they are
12550 never duplicated. See the comments in field `duplicate' of
12551 `struct bp_location'. */
12552 || is_tracepoint (b))
12553 {
12554 /* Clear the condition modification flag. */
12555 loc->condition_changed = condition_unchanged;
12556 continue;
12557 }
12558
12559 /* Permanent breakpoint should always be inserted. */
12560 if (b->enable_state == bp_permanent && ! loc->inserted)
12561 internal_error (__FILE__, __LINE__,
12562 _("allegedly permanent breakpoint is not "
12563 "actually inserted"));
12564
12565 if (b->type == bp_hardware_watchpoint)
12566 loc_first_p = &wp_loc_first;
12567 else if (b->type == bp_read_watchpoint)
12568 loc_first_p = &rwp_loc_first;
12569 else if (b->type == bp_access_watchpoint)
12570 loc_first_p = &awp_loc_first;
12571 else
12572 loc_first_p = &bp_loc_first;
12573
12574 if (*loc_first_p == NULL
12575 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12576 || !breakpoint_locations_match (loc, *loc_first_p))
12577 {
12578 *loc_first_p = loc;
12579 loc->duplicate = 0;
12580
12581 if (is_breakpoint (loc->owner) && loc->condition_changed)
12582 {
12583 loc->needs_update = 1;
12584 /* Clear the condition modification flag. */
12585 loc->condition_changed = condition_unchanged;
12586 }
12587 continue;
12588 }
12589
12590
12591 /* This and the above ensure the invariant that the first location
12592 is not duplicated, and is the inserted one.
12593 All following are marked as duplicated, and are not inserted. */
12594 if (loc->inserted)
12595 swap_insertion (loc, *loc_first_p);
12596 loc->duplicate = 1;
12597
12598 /* Clear the condition modification flag. */
12599 loc->condition_changed = condition_unchanged;
12600
12601 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12602 && b->enable_state != bp_permanent)
12603 internal_error (__FILE__, __LINE__,
12604 _("another breakpoint was inserted on top of "
12605 "a permanent breakpoint"));
12606 }
12607
12608 if (breakpoints_always_inserted_mode ()
12609 && (have_live_inferiors ()
12610 || (gdbarch_has_global_breakpoints (target_gdbarch ()))))
12611 {
12612 if (should_insert)
12613 insert_breakpoint_locations ();
12614 else
12615 {
12616 /* Though should_insert is false, we may need to update conditions
12617 on the target's side if it is evaluating such conditions. We
12618 only update conditions for locations that are marked
12619 "needs_update". */
12620 update_inserted_breakpoint_locations ();
12621 }
12622 }
12623
12624 if (should_insert)
12625 download_tracepoint_locations ();
12626
12627 do_cleanups (cleanups);
12628 }
12629
12630 void
12631 breakpoint_retire_moribund (void)
12632 {
12633 struct bp_location *loc;
12634 int ix;
12635
12636 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12637 if (--(loc->events_till_retirement) == 0)
12638 {
12639 decref_bp_location (&loc);
12640 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12641 --ix;
12642 }
12643 }
12644
12645 static void
12646 update_global_location_list_nothrow (int inserting)
12647 {
12648 volatile struct gdb_exception e;
12649
12650 TRY_CATCH (e, RETURN_MASK_ERROR)
12651 update_global_location_list (inserting);
12652 }
12653
12654 /* Clear BKP from a BPS. */
12655
12656 static void
12657 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12658 {
12659 bpstat bs;
12660
12661 for (bs = bps; bs; bs = bs->next)
12662 if (bs->breakpoint_at == bpt)
12663 {
12664 bs->breakpoint_at = NULL;
12665 bs->old_val = NULL;
12666 /* bs->commands will be freed later. */
12667 }
12668 }
12669
12670 /* Callback for iterate_over_threads. */
12671 static int
12672 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12673 {
12674 struct breakpoint *bpt = data;
12675
12676 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12677 return 0;
12678 }
12679
12680 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12681 callbacks. */
12682
12683 static void
12684 say_where (struct breakpoint *b)
12685 {
12686 struct value_print_options opts;
12687
12688 get_user_print_options (&opts);
12689
12690 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12691 single string. */
12692 if (b->loc == NULL)
12693 {
12694 printf_filtered (_(" (%s) pending."), b->addr_string);
12695 }
12696 else
12697 {
12698 if (opts.addressprint || b->loc->symtab == NULL)
12699 {
12700 printf_filtered (" at ");
12701 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12702 gdb_stdout);
12703 }
12704 if (b->loc->symtab != NULL)
12705 {
12706 /* If there is a single location, we can print the location
12707 more nicely. */
12708 if (b->loc->next == NULL)
12709 printf_filtered (": file %s, line %d.",
12710 symtab_to_filename_for_display (b->loc->symtab),
12711 b->loc->line_number);
12712 else
12713 /* This is not ideal, but each location may have a
12714 different file name, and this at least reflects the
12715 real situation somewhat. */
12716 printf_filtered (": %s.", b->addr_string);
12717 }
12718
12719 if (b->loc->next)
12720 {
12721 struct bp_location *loc = b->loc;
12722 int n = 0;
12723 for (; loc; loc = loc->next)
12724 ++n;
12725 printf_filtered (" (%d locations)", n);
12726 }
12727 }
12728 }
12729
12730 /* Default bp_location_ops methods. */
12731
12732 static void
12733 bp_location_dtor (struct bp_location *self)
12734 {
12735 xfree (self->cond);
12736 if (self->cond_bytecode)
12737 free_agent_expr (self->cond_bytecode);
12738 xfree (self->function_name);
12739 }
12740
12741 static const struct bp_location_ops bp_location_ops =
12742 {
12743 bp_location_dtor
12744 };
12745
12746 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12747 inherit from. */
12748
12749 static void
12750 base_breakpoint_dtor (struct breakpoint *self)
12751 {
12752 decref_counted_command_line (&self->commands);
12753 xfree (self->cond_string);
12754 xfree (self->extra_string);
12755 xfree (self->addr_string);
12756 xfree (self->filter);
12757 xfree (self->addr_string_range_end);
12758 }
12759
12760 static struct bp_location *
12761 base_breakpoint_allocate_location (struct breakpoint *self)
12762 {
12763 struct bp_location *loc;
12764
12765 loc = XNEW (struct bp_location);
12766 init_bp_location (loc, &bp_location_ops, self);
12767 return loc;
12768 }
12769
12770 static void
12771 base_breakpoint_re_set (struct breakpoint *b)
12772 {
12773 /* Nothing to re-set. */
12774 }
12775
12776 #define internal_error_pure_virtual_called() \
12777 gdb_assert_not_reached ("pure virtual function called")
12778
12779 static int
12780 base_breakpoint_insert_location (struct bp_location *bl)
12781 {
12782 internal_error_pure_virtual_called ();
12783 }
12784
12785 static int
12786 base_breakpoint_remove_location (struct bp_location *bl)
12787 {
12788 internal_error_pure_virtual_called ();
12789 }
12790
12791 static int
12792 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12793 struct address_space *aspace,
12794 CORE_ADDR bp_addr,
12795 const struct target_waitstatus *ws)
12796 {
12797 internal_error_pure_virtual_called ();
12798 }
12799
12800 static void
12801 base_breakpoint_check_status (bpstat bs)
12802 {
12803 /* Always stop. */
12804 }
12805
12806 /* A "works_in_software_mode" breakpoint_ops method that just internal
12807 errors. */
12808
12809 static int
12810 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12811 {
12812 internal_error_pure_virtual_called ();
12813 }
12814
12815 /* A "resources_needed" breakpoint_ops method that just internal
12816 errors. */
12817
12818 static int
12819 base_breakpoint_resources_needed (const struct bp_location *bl)
12820 {
12821 internal_error_pure_virtual_called ();
12822 }
12823
12824 static enum print_stop_action
12825 base_breakpoint_print_it (bpstat bs)
12826 {
12827 internal_error_pure_virtual_called ();
12828 }
12829
12830 static void
12831 base_breakpoint_print_one_detail (const struct breakpoint *self,
12832 struct ui_out *uiout)
12833 {
12834 /* nothing */
12835 }
12836
12837 static void
12838 base_breakpoint_print_mention (struct breakpoint *b)
12839 {
12840 internal_error_pure_virtual_called ();
12841 }
12842
12843 static void
12844 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12845 {
12846 internal_error_pure_virtual_called ();
12847 }
12848
12849 static void
12850 base_breakpoint_create_sals_from_address (char **arg,
12851 struct linespec_result *canonical,
12852 enum bptype type_wanted,
12853 char *addr_start,
12854 char **copy_arg)
12855 {
12856 internal_error_pure_virtual_called ();
12857 }
12858
12859 static void
12860 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12861 struct linespec_result *c,
12862 char *cond_string,
12863 char *extra_string,
12864 enum bptype type_wanted,
12865 enum bpdisp disposition,
12866 int thread,
12867 int task, int ignore_count,
12868 const struct breakpoint_ops *o,
12869 int from_tty, int enabled,
12870 int internal, unsigned flags)
12871 {
12872 internal_error_pure_virtual_called ();
12873 }
12874
12875 static void
12876 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
12877 struct symtabs_and_lines *sals)
12878 {
12879 internal_error_pure_virtual_called ();
12880 }
12881
12882 /* The default 'explains_signal' method. */
12883
12884 static enum bpstat_signal_value
12885 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12886 {
12887 return BPSTAT_SIGNAL_HIDE;
12888 }
12889
12890 /* The default "after_condition_true" method. */
12891
12892 static void
12893 base_breakpoint_after_condition_true (struct bpstats *bs)
12894 {
12895 /* Nothing to do. */
12896 }
12897
12898 struct breakpoint_ops base_breakpoint_ops =
12899 {
12900 base_breakpoint_dtor,
12901 base_breakpoint_allocate_location,
12902 base_breakpoint_re_set,
12903 base_breakpoint_insert_location,
12904 base_breakpoint_remove_location,
12905 base_breakpoint_breakpoint_hit,
12906 base_breakpoint_check_status,
12907 base_breakpoint_resources_needed,
12908 base_breakpoint_works_in_software_mode,
12909 base_breakpoint_print_it,
12910 NULL,
12911 base_breakpoint_print_one_detail,
12912 base_breakpoint_print_mention,
12913 base_breakpoint_print_recreate,
12914 base_breakpoint_create_sals_from_address,
12915 base_breakpoint_create_breakpoints_sal,
12916 base_breakpoint_decode_linespec,
12917 base_breakpoint_explains_signal,
12918 base_breakpoint_after_condition_true,
12919 };
12920
12921 /* Default breakpoint_ops methods. */
12922
12923 static void
12924 bkpt_re_set (struct breakpoint *b)
12925 {
12926 /* FIXME: is this still reachable? */
12927 if (b->addr_string == NULL)
12928 {
12929 /* Anything without a string can't be re-set. */
12930 delete_breakpoint (b);
12931 return;
12932 }
12933
12934 breakpoint_re_set_default (b);
12935 }
12936
12937 static int
12938 bkpt_insert_location (struct bp_location *bl)
12939 {
12940 if (bl->loc_type == bp_loc_hardware_breakpoint)
12941 return target_insert_hw_breakpoint (bl->gdbarch,
12942 &bl->target_info);
12943 else
12944 return target_insert_breakpoint (bl->gdbarch,
12945 &bl->target_info);
12946 }
12947
12948 static int
12949 bkpt_remove_location (struct bp_location *bl)
12950 {
12951 if (bl->loc_type == bp_loc_hardware_breakpoint)
12952 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12953 else
12954 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
12955 }
12956
12957 static int
12958 bkpt_breakpoint_hit (const struct bp_location *bl,
12959 struct address_space *aspace, CORE_ADDR bp_addr,
12960 const struct target_waitstatus *ws)
12961 {
12962 if (ws->kind != TARGET_WAITKIND_STOPPED
12963 || ws->value.sig != GDB_SIGNAL_TRAP)
12964 return 0;
12965
12966 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12967 aspace, bp_addr))
12968 return 0;
12969
12970 if (overlay_debugging /* unmapped overlay section */
12971 && section_is_overlay (bl->section)
12972 && !section_is_mapped (bl->section))
12973 return 0;
12974
12975 return 1;
12976 }
12977
12978 static int
12979 bkpt_resources_needed (const struct bp_location *bl)
12980 {
12981 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12982
12983 return 1;
12984 }
12985
12986 static enum print_stop_action
12987 bkpt_print_it (bpstat bs)
12988 {
12989 struct breakpoint *b;
12990 const struct bp_location *bl;
12991 int bp_temp;
12992 struct ui_out *uiout = current_uiout;
12993
12994 gdb_assert (bs->bp_location_at != NULL);
12995
12996 bl = bs->bp_location_at;
12997 b = bs->breakpoint_at;
12998
12999 bp_temp = b->disposition == disp_del;
13000 if (bl->address != bl->requested_address)
13001 breakpoint_adjustment_warning (bl->requested_address,
13002 bl->address,
13003 b->number, 1);
13004 annotate_breakpoint (b->number);
13005 if (bp_temp)
13006 ui_out_text (uiout, "\nTemporary breakpoint ");
13007 else
13008 ui_out_text (uiout, "\nBreakpoint ");
13009 if (ui_out_is_mi_like_p (uiout))
13010 {
13011 ui_out_field_string (uiout, "reason",
13012 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
13013 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
13014 }
13015 ui_out_field_int (uiout, "bkptno", b->number);
13016 ui_out_text (uiout, ", ");
13017
13018 return PRINT_SRC_AND_LOC;
13019 }
13020
13021 static void
13022 bkpt_print_mention (struct breakpoint *b)
13023 {
13024 if (ui_out_is_mi_like_p (current_uiout))
13025 return;
13026
13027 switch (b->type)
13028 {
13029 case bp_breakpoint:
13030 case bp_gnu_ifunc_resolver:
13031 if (b->disposition == disp_del)
13032 printf_filtered (_("Temporary breakpoint"));
13033 else
13034 printf_filtered (_("Breakpoint"));
13035 printf_filtered (_(" %d"), b->number);
13036 if (b->type == bp_gnu_ifunc_resolver)
13037 printf_filtered (_(" at gnu-indirect-function resolver"));
13038 break;
13039 case bp_hardware_breakpoint:
13040 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13041 break;
13042 case bp_dprintf:
13043 printf_filtered (_("Dprintf %d"), b->number);
13044 break;
13045 }
13046
13047 say_where (b);
13048 }
13049
13050 static void
13051 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13052 {
13053 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13054 fprintf_unfiltered (fp, "tbreak");
13055 else if (tp->type == bp_breakpoint)
13056 fprintf_unfiltered (fp, "break");
13057 else if (tp->type == bp_hardware_breakpoint
13058 && tp->disposition == disp_del)
13059 fprintf_unfiltered (fp, "thbreak");
13060 else if (tp->type == bp_hardware_breakpoint)
13061 fprintf_unfiltered (fp, "hbreak");
13062 else
13063 internal_error (__FILE__, __LINE__,
13064 _("unhandled breakpoint type %d"), (int) tp->type);
13065
13066 fprintf_unfiltered (fp, " %s", tp->addr_string);
13067 print_recreate_thread (tp, fp);
13068 }
13069
13070 static void
13071 bkpt_create_sals_from_address (char **arg,
13072 struct linespec_result *canonical,
13073 enum bptype type_wanted,
13074 char *addr_start, char **copy_arg)
13075 {
13076 create_sals_from_address_default (arg, canonical, type_wanted,
13077 addr_start, copy_arg);
13078 }
13079
13080 static void
13081 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13082 struct linespec_result *canonical,
13083 char *cond_string,
13084 char *extra_string,
13085 enum bptype type_wanted,
13086 enum bpdisp disposition,
13087 int thread,
13088 int task, int ignore_count,
13089 const struct breakpoint_ops *ops,
13090 int from_tty, int enabled,
13091 int internal, unsigned flags)
13092 {
13093 create_breakpoints_sal_default (gdbarch, canonical,
13094 cond_string, extra_string,
13095 type_wanted,
13096 disposition, thread, task,
13097 ignore_count, ops, from_tty,
13098 enabled, internal, flags);
13099 }
13100
13101 static void
13102 bkpt_decode_linespec (struct breakpoint *b, char **s,
13103 struct symtabs_and_lines *sals)
13104 {
13105 decode_linespec_default (b, s, sals);
13106 }
13107
13108 /* Virtual table for internal breakpoints. */
13109
13110 static void
13111 internal_bkpt_re_set (struct breakpoint *b)
13112 {
13113 switch (b->type)
13114 {
13115 /* Delete overlay event and longjmp master breakpoints; they
13116 will be reset later by breakpoint_re_set. */
13117 case bp_overlay_event:
13118 case bp_longjmp_master:
13119 case bp_std_terminate_master:
13120 case bp_exception_master:
13121 delete_breakpoint (b);
13122 break;
13123
13124 /* This breakpoint is special, it's set up when the inferior
13125 starts and we really don't want to touch it. */
13126 case bp_shlib_event:
13127
13128 /* Like bp_shlib_event, this breakpoint type is special. Once
13129 it is set up, we do not want to touch it. */
13130 case bp_thread_event:
13131 break;
13132 }
13133 }
13134
13135 static void
13136 internal_bkpt_check_status (bpstat bs)
13137 {
13138 if (bs->breakpoint_at->type == bp_shlib_event)
13139 {
13140 /* If requested, stop when the dynamic linker notifies GDB of
13141 events. This allows the user to get control and place
13142 breakpoints in initializer routines for dynamically loaded
13143 objects (among other things). */
13144 bs->stop = stop_on_solib_events;
13145 bs->print = stop_on_solib_events;
13146 }
13147 else
13148 bs->stop = 0;
13149 }
13150
13151 static enum print_stop_action
13152 internal_bkpt_print_it (bpstat bs)
13153 {
13154 struct breakpoint *b;
13155
13156 b = bs->breakpoint_at;
13157
13158 switch (b->type)
13159 {
13160 case bp_shlib_event:
13161 /* Did we stop because the user set the stop_on_solib_events
13162 variable? (If so, we report this as a generic, "Stopped due
13163 to shlib event" message.) */
13164 print_solib_event (0);
13165 break;
13166
13167 case bp_thread_event:
13168 /* Not sure how we will get here.
13169 GDB should not stop for these breakpoints. */
13170 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13171 break;
13172
13173 case bp_overlay_event:
13174 /* By analogy with the thread event, GDB should not stop for these. */
13175 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13176 break;
13177
13178 case bp_longjmp_master:
13179 /* These should never be enabled. */
13180 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13181 break;
13182
13183 case bp_std_terminate_master:
13184 /* These should never be enabled. */
13185 printf_filtered (_("std::terminate Master Breakpoint: "
13186 "gdb should not stop!\n"));
13187 break;
13188
13189 case bp_exception_master:
13190 /* These should never be enabled. */
13191 printf_filtered (_("Exception Master Breakpoint: "
13192 "gdb should not stop!\n"));
13193 break;
13194 }
13195
13196 return PRINT_NOTHING;
13197 }
13198
13199 static void
13200 internal_bkpt_print_mention (struct breakpoint *b)
13201 {
13202 /* Nothing to mention. These breakpoints are internal. */
13203 }
13204
13205 /* Virtual table for momentary breakpoints */
13206
13207 static void
13208 momentary_bkpt_re_set (struct breakpoint *b)
13209 {
13210 /* Keep temporary breakpoints, which can be encountered when we step
13211 over a dlopen call and solib_add is resetting the breakpoints.
13212 Otherwise these should have been blown away via the cleanup chain
13213 or by breakpoint_init_inferior when we rerun the executable. */
13214 }
13215
13216 static void
13217 momentary_bkpt_check_status (bpstat bs)
13218 {
13219 /* Nothing. The point of these breakpoints is causing a stop. */
13220 }
13221
13222 static enum print_stop_action
13223 momentary_bkpt_print_it (bpstat bs)
13224 {
13225 struct ui_out *uiout = current_uiout;
13226
13227 if (ui_out_is_mi_like_p (uiout))
13228 {
13229 struct breakpoint *b = bs->breakpoint_at;
13230
13231 switch (b->type)
13232 {
13233 case bp_finish:
13234 ui_out_field_string
13235 (uiout, "reason",
13236 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13237 break;
13238
13239 case bp_until:
13240 ui_out_field_string
13241 (uiout, "reason",
13242 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13243 break;
13244 }
13245 }
13246
13247 return PRINT_UNKNOWN;
13248 }
13249
13250 static void
13251 momentary_bkpt_print_mention (struct breakpoint *b)
13252 {
13253 /* Nothing to mention. These breakpoints are internal. */
13254 }
13255
13256 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13257
13258 It gets cleared already on the removal of the first one of such placed
13259 breakpoints. This is OK as they get all removed altogether. */
13260
13261 static void
13262 longjmp_bkpt_dtor (struct breakpoint *self)
13263 {
13264 struct thread_info *tp = find_thread_id (self->thread);
13265
13266 if (tp)
13267 tp->initiating_frame = null_frame_id;
13268
13269 momentary_breakpoint_ops.dtor (self);
13270 }
13271
13272 /* Specific methods for probe breakpoints. */
13273
13274 static int
13275 bkpt_probe_insert_location (struct bp_location *bl)
13276 {
13277 int v = bkpt_insert_location (bl);
13278
13279 if (v == 0)
13280 {
13281 /* The insertion was successful, now let's set the probe's semaphore
13282 if needed. */
13283 bl->probe->pops->set_semaphore (bl->probe, bl->gdbarch);
13284 }
13285
13286 return v;
13287 }
13288
13289 static int
13290 bkpt_probe_remove_location (struct bp_location *bl)
13291 {
13292 /* Let's clear the semaphore before removing the location. */
13293 bl->probe->pops->clear_semaphore (bl->probe, bl->gdbarch);
13294
13295 return bkpt_remove_location (bl);
13296 }
13297
13298 static void
13299 bkpt_probe_create_sals_from_address (char **arg,
13300 struct linespec_result *canonical,
13301 enum bptype type_wanted,
13302 char *addr_start, char **copy_arg)
13303 {
13304 struct linespec_sals lsal;
13305
13306 lsal.sals = parse_probes (arg, canonical);
13307
13308 *copy_arg = xstrdup (canonical->addr_string);
13309 lsal.canonical = xstrdup (*copy_arg);
13310
13311 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13312 }
13313
13314 static void
13315 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13316 struct symtabs_and_lines *sals)
13317 {
13318 *sals = parse_probes (s, NULL);
13319 if (!sals->sals)
13320 error (_("probe not found"));
13321 }
13322
13323 /* The breakpoint_ops structure to be used in tracepoints. */
13324
13325 static void
13326 tracepoint_re_set (struct breakpoint *b)
13327 {
13328 breakpoint_re_set_default (b);
13329 }
13330
13331 static int
13332 tracepoint_breakpoint_hit (const struct bp_location *bl,
13333 struct address_space *aspace, CORE_ADDR bp_addr,
13334 const struct target_waitstatus *ws)
13335 {
13336 /* By definition, the inferior does not report stops at
13337 tracepoints. */
13338 return 0;
13339 }
13340
13341 static void
13342 tracepoint_print_one_detail (const struct breakpoint *self,
13343 struct ui_out *uiout)
13344 {
13345 struct tracepoint *tp = (struct tracepoint *) self;
13346 if (tp->static_trace_marker_id)
13347 {
13348 gdb_assert (self->type == bp_static_tracepoint);
13349
13350 ui_out_text (uiout, "\tmarker id is ");
13351 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13352 tp->static_trace_marker_id);
13353 ui_out_text (uiout, "\n");
13354 }
13355 }
13356
13357 static void
13358 tracepoint_print_mention (struct breakpoint *b)
13359 {
13360 if (ui_out_is_mi_like_p (current_uiout))
13361 return;
13362
13363 switch (b->type)
13364 {
13365 case bp_tracepoint:
13366 printf_filtered (_("Tracepoint"));
13367 printf_filtered (_(" %d"), b->number);
13368 break;
13369 case bp_fast_tracepoint:
13370 printf_filtered (_("Fast tracepoint"));
13371 printf_filtered (_(" %d"), b->number);
13372 break;
13373 case bp_static_tracepoint:
13374 printf_filtered (_("Static tracepoint"));
13375 printf_filtered (_(" %d"), b->number);
13376 break;
13377 default:
13378 internal_error (__FILE__, __LINE__,
13379 _("unhandled tracepoint type %d"), (int) b->type);
13380 }
13381
13382 say_where (b);
13383 }
13384
13385 static void
13386 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13387 {
13388 struct tracepoint *tp = (struct tracepoint *) self;
13389
13390 if (self->type == bp_fast_tracepoint)
13391 fprintf_unfiltered (fp, "ftrace");
13392 if (self->type == bp_static_tracepoint)
13393 fprintf_unfiltered (fp, "strace");
13394 else if (self->type == bp_tracepoint)
13395 fprintf_unfiltered (fp, "trace");
13396 else
13397 internal_error (__FILE__, __LINE__,
13398 _("unhandled tracepoint type %d"), (int) self->type);
13399
13400 fprintf_unfiltered (fp, " %s", self->addr_string);
13401 print_recreate_thread (self, fp);
13402
13403 if (tp->pass_count)
13404 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13405 }
13406
13407 static void
13408 tracepoint_create_sals_from_address (char **arg,
13409 struct linespec_result *canonical,
13410 enum bptype type_wanted,
13411 char *addr_start, char **copy_arg)
13412 {
13413 create_sals_from_address_default (arg, canonical, type_wanted,
13414 addr_start, copy_arg);
13415 }
13416
13417 static void
13418 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13419 struct linespec_result *canonical,
13420 char *cond_string,
13421 char *extra_string,
13422 enum bptype type_wanted,
13423 enum bpdisp disposition,
13424 int thread,
13425 int task, int ignore_count,
13426 const struct breakpoint_ops *ops,
13427 int from_tty, int enabled,
13428 int internal, unsigned flags)
13429 {
13430 create_breakpoints_sal_default (gdbarch, canonical,
13431 cond_string, extra_string,
13432 type_wanted,
13433 disposition, thread, task,
13434 ignore_count, ops, from_tty,
13435 enabled, internal, flags);
13436 }
13437
13438 static void
13439 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13440 struct symtabs_and_lines *sals)
13441 {
13442 decode_linespec_default (b, s, sals);
13443 }
13444
13445 struct breakpoint_ops tracepoint_breakpoint_ops;
13446
13447 /* The breakpoint_ops structure to be use on tracepoints placed in a
13448 static probe. */
13449
13450 static void
13451 tracepoint_probe_create_sals_from_address (char **arg,
13452 struct linespec_result *canonical,
13453 enum bptype type_wanted,
13454 char *addr_start, char **copy_arg)
13455 {
13456 /* We use the same method for breakpoint on probes. */
13457 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13458 addr_start, copy_arg);
13459 }
13460
13461 static void
13462 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13463 struct symtabs_and_lines *sals)
13464 {
13465 /* We use the same method for breakpoint on probes. */
13466 bkpt_probe_decode_linespec (b, s, sals);
13467 }
13468
13469 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13470
13471 /* Dprintf breakpoint_ops methods. */
13472
13473 static void
13474 dprintf_re_set (struct breakpoint *b)
13475 {
13476 breakpoint_re_set_default (b);
13477
13478 /* This breakpoint could have been pending, and be resolved now, and
13479 if so, we should now have the extra string. If we don't, the
13480 dprintf was malformed when created, but we couldn't tell because
13481 we can't extract the extra string until the location is
13482 resolved. */
13483 if (b->loc != NULL && b->extra_string == NULL)
13484 error (_("Format string required"));
13485
13486 /* 1 - connect to target 1, that can run breakpoint commands.
13487 2 - create a dprintf, which resolves fine.
13488 3 - disconnect from target 1
13489 4 - connect to target 2, that can NOT run breakpoint commands.
13490
13491 After steps #3/#4, you'll want the dprintf command list to
13492 be updated, because target 1 and 2 may well return different
13493 answers for target_can_run_breakpoint_commands().
13494 Given absence of finer grained resetting, we get to do
13495 it all the time. */
13496 if (b->extra_string != NULL)
13497 update_dprintf_command_list (b);
13498 }
13499
13500 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13501
13502 static void
13503 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13504 {
13505 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13506 tp->extra_string);
13507 print_recreate_thread (tp, fp);
13508 }
13509
13510 /* Implement the "after_condition_true" breakpoint_ops method for
13511 dprintf.
13512
13513 dprintf's are implemented with regular commands in their command
13514 list, but we run the commands here instead of before presenting the
13515 stop to the user, as dprintf's don't actually cause a stop. This
13516 also makes it so that the commands of multiple dprintfs at the same
13517 address are all handled. */
13518
13519 static void
13520 dprintf_after_condition_true (struct bpstats *bs)
13521 {
13522 struct cleanup *old_chain;
13523 struct bpstats tmp_bs = { NULL };
13524 struct bpstats *tmp_bs_p = &tmp_bs;
13525
13526 /* dprintf's never cause a stop. This wasn't set in the
13527 check_status hook instead because that would make the dprintf's
13528 condition not be evaluated. */
13529 bs->stop = 0;
13530
13531 /* Run the command list here. Take ownership of it instead of
13532 copying. We never want these commands to run later in
13533 bpstat_do_actions, if a breakpoint that causes a stop happens to
13534 be set at same address as this dprintf, or even if running the
13535 commands here throws. */
13536 tmp_bs.commands = bs->commands;
13537 bs->commands = NULL;
13538 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13539
13540 bpstat_do_actions_1 (&tmp_bs_p);
13541
13542 /* 'tmp_bs.commands' will usually be NULL by now, but
13543 bpstat_do_actions_1 may return early without processing the whole
13544 list. */
13545 do_cleanups (old_chain);
13546 }
13547
13548 /* The breakpoint_ops structure to be used on static tracepoints with
13549 markers (`-m'). */
13550
13551 static void
13552 strace_marker_create_sals_from_address (char **arg,
13553 struct linespec_result *canonical,
13554 enum bptype type_wanted,
13555 char *addr_start, char **copy_arg)
13556 {
13557 struct linespec_sals lsal;
13558
13559 lsal.sals = decode_static_tracepoint_spec (arg);
13560
13561 *copy_arg = savestring (addr_start, *arg - addr_start);
13562
13563 canonical->addr_string = xstrdup (*copy_arg);
13564 lsal.canonical = xstrdup (*copy_arg);
13565 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13566 }
13567
13568 static void
13569 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13570 struct linespec_result *canonical,
13571 char *cond_string,
13572 char *extra_string,
13573 enum bptype type_wanted,
13574 enum bpdisp disposition,
13575 int thread,
13576 int task, int ignore_count,
13577 const struct breakpoint_ops *ops,
13578 int from_tty, int enabled,
13579 int internal, unsigned flags)
13580 {
13581 int i;
13582 struct linespec_sals *lsal = VEC_index (linespec_sals,
13583 canonical->sals, 0);
13584
13585 /* If the user is creating a static tracepoint by marker id
13586 (strace -m MARKER_ID), then store the sals index, so that
13587 breakpoint_re_set can try to match up which of the newly
13588 found markers corresponds to this one, and, don't try to
13589 expand multiple locations for each sal, given than SALS
13590 already should contain all sals for MARKER_ID. */
13591
13592 for (i = 0; i < lsal->sals.nelts; ++i)
13593 {
13594 struct symtabs_and_lines expanded;
13595 struct tracepoint *tp;
13596 struct cleanup *old_chain;
13597 char *addr_string;
13598
13599 expanded.nelts = 1;
13600 expanded.sals = &lsal->sals.sals[i];
13601
13602 addr_string = xstrdup (canonical->addr_string);
13603 old_chain = make_cleanup (xfree, addr_string);
13604
13605 tp = XCNEW (struct tracepoint);
13606 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13607 addr_string, NULL,
13608 cond_string, extra_string,
13609 type_wanted, disposition,
13610 thread, task, ignore_count, ops,
13611 from_tty, enabled, internal, flags,
13612 canonical->special_display);
13613 /* Given that its possible to have multiple markers with
13614 the same string id, if the user is creating a static
13615 tracepoint by marker id ("strace -m MARKER_ID"), then
13616 store the sals index, so that breakpoint_re_set can
13617 try to match up which of the newly found markers
13618 corresponds to this one */
13619 tp->static_trace_marker_id_idx = i;
13620
13621 install_breakpoint (internal, &tp->base, 0);
13622
13623 discard_cleanups (old_chain);
13624 }
13625 }
13626
13627 static void
13628 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13629 struct symtabs_and_lines *sals)
13630 {
13631 struct tracepoint *tp = (struct tracepoint *) b;
13632
13633 *sals = decode_static_tracepoint_spec (s);
13634 if (sals->nelts > tp->static_trace_marker_id_idx)
13635 {
13636 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13637 sals->nelts = 1;
13638 }
13639 else
13640 error (_("marker %s not found"), tp->static_trace_marker_id);
13641 }
13642
13643 static struct breakpoint_ops strace_marker_breakpoint_ops;
13644
13645 static int
13646 strace_marker_p (struct breakpoint *b)
13647 {
13648 return b->ops == &strace_marker_breakpoint_ops;
13649 }
13650
13651 /* Delete a breakpoint and clean up all traces of it in the data
13652 structures. */
13653
13654 void
13655 delete_breakpoint (struct breakpoint *bpt)
13656 {
13657 struct breakpoint *b;
13658
13659 gdb_assert (bpt != NULL);
13660
13661 /* Has this bp already been deleted? This can happen because
13662 multiple lists can hold pointers to bp's. bpstat lists are
13663 especial culprits.
13664
13665 One example of this happening is a watchpoint's scope bp. When
13666 the scope bp triggers, we notice that the watchpoint is out of
13667 scope, and delete it. We also delete its scope bp. But the
13668 scope bp is marked "auto-deleting", and is already on a bpstat.
13669 That bpstat is then checked for auto-deleting bp's, which are
13670 deleted.
13671
13672 A real solution to this problem might involve reference counts in
13673 bp's, and/or giving them pointers back to their referencing
13674 bpstat's, and teaching delete_breakpoint to only free a bp's
13675 storage when no more references were extent. A cheaper bandaid
13676 was chosen. */
13677 if (bpt->type == bp_none)
13678 return;
13679
13680 /* At least avoid this stale reference until the reference counting
13681 of breakpoints gets resolved. */
13682 if (bpt->related_breakpoint != bpt)
13683 {
13684 struct breakpoint *related;
13685 struct watchpoint *w;
13686
13687 if (bpt->type == bp_watchpoint_scope)
13688 w = (struct watchpoint *) bpt->related_breakpoint;
13689 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13690 w = (struct watchpoint *) bpt;
13691 else
13692 w = NULL;
13693 if (w != NULL)
13694 watchpoint_del_at_next_stop (w);
13695
13696 /* Unlink bpt from the bpt->related_breakpoint ring. */
13697 for (related = bpt; related->related_breakpoint != bpt;
13698 related = related->related_breakpoint);
13699 related->related_breakpoint = bpt->related_breakpoint;
13700 bpt->related_breakpoint = bpt;
13701 }
13702
13703 /* watch_command_1 creates a watchpoint but only sets its number if
13704 update_watchpoint succeeds in creating its bp_locations. If there's
13705 a problem in that process, we'll be asked to delete the half-created
13706 watchpoint. In that case, don't announce the deletion. */
13707 if (bpt->number)
13708 observer_notify_breakpoint_deleted (bpt);
13709
13710 if (breakpoint_chain == bpt)
13711 breakpoint_chain = bpt->next;
13712
13713 ALL_BREAKPOINTS (b)
13714 if (b->next == bpt)
13715 {
13716 b->next = bpt->next;
13717 break;
13718 }
13719
13720 /* Be sure no bpstat's are pointing at the breakpoint after it's
13721 been freed. */
13722 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13723 in all threads for now. Note that we cannot just remove bpstats
13724 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13725 commands are associated with the bpstat; if we remove it here,
13726 then the later call to bpstat_do_actions (&stop_bpstat); in
13727 event-top.c won't do anything, and temporary breakpoints with
13728 commands won't work. */
13729
13730 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13731
13732 /* Now that breakpoint is removed from breakpoint list, update the
13733 global location list. This will remove locations that used to
13734 belong to this breakpoint. Do this before freeing the breakpoint
13735 itself, since remove_breakpoint looks at location's owner. It
13736 might be better design to have location completely
13737 self-contained, but it's not the case now. */
13738 update_global_location_list (0);
13739
13740 bpt->ops->dtor (bpt);
13741 /* On the chance that someone will soon try again to delete this
13742 same bp, we mark it as deleted before freeing its storage. */
13743 bpt->type = bp_none;
13744 xfree (bpt);
13745 }
13746
13747 static void
13748 do_delete_breakpoint_cleanup (void *b)
13749 {
13750 delete_breakpoint (b);
13751 }
13752
13753 struct cleanup *
13754 make_cleanup_delete_breakpoint (struct breakpoint *b)
13755 {
13756 return make_cleanup (do_delete_breakpoint_cleanup, b);
13757 }
13758
13759 /* Iterator function to call a user-provided callback function once
13760 for each of B and its related breakpoints. */
13761
13762 static void
13763 iterate_over_related_breakpoints (struct breakpoint *b,
13764 void (*function) (struct breakpoint *,
13765 void *),
13766 void *data)
13767 {
13768 struct breakpoint *related;
13769
13770 related = b;
13771 do
13772 {
13773 struct breakpoint *next;
13774
13775 /* FUNCTION may delete RELATED. */
13776 next = related->related_breakpoint;
13777
13778 if (next == related)
13779 {
13780 /* RELATED is the last ring entry. */
13781 function (related, data);
13782
13783 /* FUNCTION may have deleted it, so we'd never reach back to
13784 B. There's nothing left to do anyway, so just break
13785 out. */
13786 break;
13787 }
13788 else
13789 function (related, data);
13790
13791 related = next;
13792 }
13793 while (related != b);
13794 }
13795
13796 static void
13797 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13798 {
13799 delete_breakpoint (b);
13800 }
13801
13802 /* A callback for map_breakpoint_numbers that calls
13803 delete_breakpoint. */
13804
13805 static void
13806 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13807 {
13808 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13809 }
13810
13811 void
13812 delete_command (char *arg, int from_tty)
13813 {
13814 struct breakpoint *b, *b_tmp;
13815
13816 dont_repeat ();
13817
13818 if (arg == 0)
13819 {
13820 int breaks_to_delete = 0;
13821
13822 /* Delete all breakpoints if no argument. Do not delete
13823 internal breakpoints, these have to be deleted with an
13824 explicit breakpoint number argument. */
13825 ALL_BREAKPOINTS (b)
13826 if (user_breakpoint_p (b))
13827 {
13828 breaks_to_delete = 1;
13829 break;
13830 }
13831
13832 /* Ask user only if there are some breakpoints to delete. */
13833 if (!from_tty
13834 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13835 {
13836 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13837 if (user_breakpoint_p (b))
13838 delete_breakpoint (b);
13839 }
13840 }
13841 else
13842 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13843 }
13844
13845 static int
13846 all_locations_are_pending (struct bp_location *loc)
13847 {
13848 for (; loc; loc = loc->next)
13849 if (!loc->shlib_disabled
13850 && !loc->pspace->executing_startup)
13851 return 0;
13852 return 1;
13853 }
13854
13855 /* Subroutine of update_breakpoint_locations to simplify it.
13856 Return non-zero if multiple fns in list LOC have the same name.
13857 Null names are ignored. */
13858
13859 static int
13860 ambiguous_names_p (struct bp_location *loc)
13861 {
13862 struct bp_location *l;
13863 htab_t htab = htab_create_alloc (13, htab_hash_string,
13864 (int (*) (const void *,
13865 const void *)) streq,
13866 NULL, xcalloc, xfree);
13867
13868 for (l = loc; l != NULL; l = l->next)
13869 {
13870 const char **slot;
13871 const char *name = l->function_name;
13872
13873 /* Allow for some names to be NULL, ignore them. */
13874 if (name == NULL)
13875 continue;
13876
13877 slot = (const char **) htab_find_slot (htab, (const void *) name,
13878 INSERT);
13879 /* NOTE: We can assume slot != NULL here because xcalloc never
13880 returns NULL. */
13881 if (*slot != NULL)
13882 {
13883 htab_delete (htab);
13884 return 1;
13885 }
13886 *slot = name;
13887 }
13888
13889 htab_delete (htab);
13890 return 0;
13891 }
13892
13893 /* When symbols change, it probably means the sources changed as well,
13894 and it might mean the static tracepoint markers are no longer at
13895 the same address or line numbers they used to be at last we
13896 checked. Losing your static tracepoints whenever you rebuild is
13897 undesirable. This function tries to resync/rematch gdb static
13898 tracepoints with the markers on the target, for static tracepoints
13899 that have not been set by marker id. Static tracepoint that have
13900 been set by marker id are reset by marker id in breakpoint_re_set.
13901 The heuristic is:
13902
13903 1) For a tracepoint set at a specific address, look for a marker at
13904 the old PC. If one is found there, assume to be the same marker.
13905 If the name / string id of the marker found is different from the
13906 previous known name, assume that means the user renamed the marker
13907 in the sources, and output a warning.
13908
13909 2) For a tracepoint set at a given line number, look for a marker
13910 at the new address of the old line number. If one is found there,
13911 assume to be the same marker. If the name / string id of the
13912 marker found is different from the previous known name, assume that
13913 means the user renamed the marker in the sources, and output a
13914 warning.
13915
13916 3) If a marker is no longer found at the same address or line, it
13917 may mean the marker no longer exists. But it may also just mean
13918 the code changed a bit. Maybe the user added a few lines of code
13919 that made the marker move up or down (in line number terms). Ask
13920 the target for info about the marker with the string id as we knew
13921 it. If found, update line number and address in the matching
13922 static tracepoint. This will get confused if there's more than one
13923 marker with the same ID (possible in UST, although unadvised
13924 precisely because it confuses tools). */
13925
13926 static struct symtab_and_line
13927 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13928 {
13929 struct tracepoint *tp = (struct tracepoint *) b;
13930 struct static_tracepoint_marker marker;
13931 CORE_ADDR pc;
13932
13933 pc = sal.pc;
13934 if (sal.line)
13935 find_line_pc (sal.symtab, sal.line, &pc);
13936
13937 if (target_static_tracepoint_marker_at (pc, &marker))
13938 {
13939 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13940 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13941 b->number,
13942 tp->static_trace_marker_id, marker.str_id);
13943
13944 xfree (tp->static_trace_marker_id);
13945 tp->static_trace_marker_id = xstrdup (marker.str_id);
13946 release_static_tracepoint_marker (&marker);
13947
13948 return sal;
13949 }
13950
13951 /* Old marker wasn't found on target at lineno. Try looking it up
13952 by string ID. */
13953 if (!sal.explicit_pc
13954 && sal.line != 0
13955 && sal.symtab != NULL
13956 && tp->static_trace_marker_id != NULL)
13957 {
13958 VEC(static_tracepoint_marker_p) *markers;
13959
13960 markers
13961 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13962
13963 if (!VEC_empty(static_tracepoint_marker_p, markers))
13964 {
13965 struct symtab_and_line sal2;
13966 struct symbol *sym;
13967 struct static_tracepoint_marker *tpmarker;
13968 struct ui_out *uiout = current_uiout;
13969
13970 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13971
13972 xfree (tp->static_trace_marker_id);
13973 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13974
13975 warning (_("marker for static tracepoint %d (%s) not "
13976 "found at previous line number"),
13977 b->number, tp->static_trace_marker_id);
13978
13979 init_sal (&sal2);
13980
13981 sal2.pc = tpmarker->address;
13982
13983 sal2 = find_pc_line (tpmarker->address, 0);
13984 sym = find_pc_sect_function (tpmarker->address, NULL);
13985 ui_out_text (uiout, "Now in ");
13986 if (sym)
13987 {
13988 ui_out_field_string (uiout, "func",
13989 SYMBOL_PRINT_NAME (sym));
13990 ui_out_text (uiout, " at ");
13991 }
13992 ui_out_field_string (uiout, "file",
13993 symtab_to_filename_for_display (sal2.symtab));
13994 ui_out_text (uiout, ":");
13995
13996 if (ui_out_is_mi_like_p (uiout))
13997 {
13998 const char *fullname = symtab_to_fullname (sal2.symtab);
13999
14000 ui_out_field_string (uiout, "fullname", fullname);
14001 }
14002
14003 ui_out_field_int (uiout, "line", sal2.line);
14004 ui_out_text (uiout, "\n");
14005
14006 b->loc->line_number = sal2.line;
14007 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
14008
14009 xfree (b->addr_string);
14010 b->addr_string = xstrprintf ("%s:%d",
14011 symtab_to_filename_for_display (sal2.symtab),
14012 b->loc->line_number);
14013
14014 /* Might be nice to check if function changed, and warn if
14015 so. */
14016
14017 release_static_tracepoint_marker (tpmarker);
14018 }
14019 }
14020 return sal;
14021 }
14022
14023 /* Returns 1 iff locations A and B are sufficiently same that
14024 we don't need to report breakpoint as changed. */
14025
14026 static int
14027 locations_are_equal (struct bp_location *a, struct bp_location *b)
14028 {
14029 while (a && b)
14030 {
14031 if (a->address != b->address)
14032 return 0;
14033
14034 if (a->shlib_disabled != b->shlib_disabled)
14035 return 0;
14036
14037 if (a->enabled != b->enabled)
14038 return 0;
14039
14040 a = a->next;
14041 b = b->next;
14042 }
14043
14044 if ((a == NULL) != (b == NULL))
14045 return 0;
14046
14047 return 1;
14048 }
14049
14050 /* Create new breakpoint locations for B (a hardware or software breakpoint)
14051 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
14052 a ranged breakpoint. */
14053
14054 void
14055 update_breakpoint_locations (struct breakpoint *b,
14056 struct symtabs_and_lines sals,
14057 struct symtabs_and_lines sals_end)
14058 {
14059 int i;
14060 struct bp_location *existing_locations = b->loc;
14061
14062 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14063 {
14064 /* Ranged breakpoints have only one start location and one end
14065 location. */
14066 b->enable_state = bp_disabled;
14067 update_global_location_list (1);
14068 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14069 "multiple locations found\n"),
14070 b->number);
14071 return;
14072 }
14073
14074 /* If there's no new locations, and all existing locations are
14075 pending, don't do anything. This optimizes the common case where
14076 all locations are in the same shared library, that was unloaded.
14077 We'd like to retain the location, so that when the library is
14078 loaded again, we don't loose the enabled/disabled status of the
14079 individual locations. */
14080 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
14081 return;
14082
14083 b->loc = NULL;
14084
14085 for (i = 0; i < sals.nelts; ++i)
14086 {
14087 struct bp_location *new_loc;
14088
14089 switch_to_program_space_and_thread (sals.sals[i].pspace);
14090
14091 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14092
14093 /* Reparse conditions, they might contain references to the
14094 old symtab. */
14095 if (b->cond_string != NULL)
14096 {
14097 const char *s;
14098 volatile struct gdb_exception e;
14099
14100 s = b->cond_string;
14101 TRY_CATCH (e, RETURN_MASK_ERROR)
14102 {
14103 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14104 block_for_pc (sals.sals[i].pc),
14105 0);
14106 }
14107 if (e.reason < 0)
14108 {
14109 warning (_("failed to reevaluate condition "
14110 "for breakpoint %d: %s"),
14111 b->number, e.message);
14112 new_loc->enabled = 0;
14113 }
14114 }
14115
14116 if (sals_end.nelts)
14117 {
14118 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14119
14120 new_loc->length = end - sals.sals[0].pc + 1;
14121 }
14122 }
14123
14124 /* Update locations of permanent breakpoints. */
14125 if (b->enable_state == bp_permanent)
14126 make_breakpoint_permanent (b);
14127
14128 /* If possible, carry over 'disable' status from existing
14129 breakpoints. */
14130 {
14131 struct bp_location *e = existing_locations;
14132 /* If there are multiple breakpoints with the same function name,
14133 e.g. for inline functions, comparing function names won't work.
14134 Instead compare pc addresses; this is just a heuristic as things
14135 may have moved, but in practice it gives the correct answer
14136 often enough until a better solution is found. */
14137 int have_ambiguous_names = ambiguous_names_p (b->loc);
14138
14139 for (; e; e = e->next)
14140 {
14141 if (!e->enabled && e->function_name)
14142 {
14143 struct bp_location *l = b->loc;
14144 if (have_ambiguous_names)
14145 {
14146 for (; l; l = l->next)
14147 if (breakpoint_locations_match (e, l))
14148 {
14149 l->enabled = 0;
14150 break;
14151 }
14152 }
14153 else
14154 {
14155 for (; l; l = l->next)
14156 if (l->function_name
14157 && strcmp (e->function_name, l->function_name) == 0)
14158 {
14159 l->enabled = 0;
14160 break;
14161 }
14162 }
14163 }
14164 }
14165 }
14166
14167 if (!locations_are_equal (existing_locations, b->loc))
14168 observer_notify_breakpoint_modified (b);
14169
14170 update_global_location_list (1);
14171 }
14172
14173 /* Find the SaL locations corresponding to the given ADDR_STRING.
14174 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14175
14176 static struct symtabs_and_lines
14177 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14178 {
14179 char *s;
14180 struct symtabs_and_lines sals = {0};
14181 volatile struct gdb_exception e;
14182
14183 gdb_assert (b->ops != NULL);
14184 s = addr_string;
14185
14186 TRY_CATCH (e, RETURN_MASK_ERROR)
14187 {
14188 b->ops->decode_linespec (b, &s, &sals);
14189 }
14190 if (e.reason < 0)
14191 {
14192 int not_found_and_ok = 0;
14193 /* For pending breakpoints, it's expected that parsing will
14194 fail until the right shared library is loaded. User has
14195 already told to create pending breakpoints and don't need
14196 extra messages. If breakpoint is in bp_shlib_disabled
14197 state, then user already saw the message about that
14198 breakpoint being disabled, and don't want to see more
14199 errors. */
14200 if (e.error == NOT_FOUND_ERROR
14201 && (b->condition_not_parsed
14202 || (b->loc && b->loc->shlib_disabled)
14203 || (b->loc && b->loc->pspace->executing_startup)
14204 || b->enable_state == bp_disabled))
14205 not_found_and_ok = 1;
14206
14207 if (!not_found_and_ok)
14208 {
14209 /* We surely don't want to warn about the same breakpoint
14210 10 times. One solution, implemented here, is disable
14211 the breakpoint on error. Another solution would be to
14212 have separate 'warning emitted' flag. Since this
14213 happens only when a binary has changed, I don't know
14214 which approach is better. */
14215 b->enable_state = bp_disabled;
14216 throw_exception (e);
14217 }
14218 }
14219
14220 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14221 {
14222 int i;
14223
14224 for (i = 0; i < sals.nelts; ++i)
14225 resolve_sal_pc (&sals.sals[i]);
14226 if (b->condition_not_parsed && s && s[0])
14227 {
14228 char *cond_string, *extra_string;
14229 int thread, task;
14230
14231 find_condition_and_thread (s, sals.sals[0].pc,
14232 &cond_string, &thread, &task,
14233 &extra_string);
14234 if (cond_string)
14235 b->cond_string = cond_string;
14236 b->thread = thread;
14237 b->task = task;
14238 if (extra_string)
14239 b->extra_string = extra_string;
14240 b->condition_not_parsed = 0;
14241 }
14242
14243 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14244 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14245
14246 *found = 1;
14247 }
14248 else
14249 *found = 0;
14250
14251 return sals;
14252 }
14253
14254 /* The default re_set method, for typical hardware or software
14255 breakpoints. Reevaluate the breakpoint and recreate its
14256 locations. */
14257
14258 static void
14259 breakpoint_re_set_default (struct breakpoint *b)
14260 {
14261 int found;
14262 struct symtabs_and_lines sals, sals_end;
14263 struct symtabs_and_lines expanded = {0};
14264 struct symtabs_and_lines expanded_end = {0};
14265
14266 sals = addr_string_to_sals (b, b->addr_string, &found);
14267 if (found)
14268 {
14269 make_cleanup (xfree, sals.sals);
14270 expanded = sals;
14271 }
14272
14273 if (b->addr_string_range_end)
14274 {
14275 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14276 if (found)
14277 {
14278 make_cleanup (xfree, sals_end.sals);
14279 expanded_end = sals_end;
14280 }
14281 }
14282
14283 update_breakpoint_locations (b, expanded, expanded_end);
14284 }
14285
14286 /* Default method for creating SALs from an address string. It basically
14287 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14288
14289 static void
14290 create_sals_from_address_default (char **arg,
14291 struct linespec_result *canonical,
14292 enum bptype type_wanted,
14293 char *addr_start, char **copy_arg)
14294 {
14295 parse_breakpoint_sals (arg, canonical);
14296 }
14297
14298 /* Call create_breakpoints_sal for the given arguments. This is the default
14299 function for the `create_breakpoints_sal' method of
14300 breakpoint_ops. */
14301
14302 static void
14303 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14304 struct linespec_result *canonical,
14305 char *cond_string,
14306 char *extra_string,
14307 enum bptype type_wanted,
14308 enum bpdisp disposition,
14309 int thread,
14310 int task, int ignore_count,
14311 const struct breakpoint_ops *ops,
14312 int from_tty, int enabled,
14313 int internal, unsigned flags)
14314 {
14315 create_breakpoints_sal (gdbarch, canonical, cond_string,
14316 extra_string,
14317 type_wanted, disposition,
14318 thread, task, ignore_count, ops, from_tty,
14319 enabled, internal, flags);
14320 }
14321
14322 /* Decode the line represented by S by calling decode_line_full. This is the
14323 default function for the `decode_linespec' method of breakpoint_ops. */
14324
14325 static void
14326 decode_linespec_default (struct breakpoint *b, char **s,
14327 struct symtabs_and_lines *sals)
14328 {
14329 struct linespec_result canonical;
14330
14331 init_linespec_result (&canonical);
14332 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14333 (struct symtab *) NULL, 0,
14334 &canonical, multiple_symbols_all,
14335 b->filter);
14336
14337 /* We should get 0 or 1 resulting SALs. */
14338 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14339
14340 if (VEC_length (linespec_sals, canonical.sals) > 0)
14341 {
14342 struct linespec_sals *lsal;
14343
14344 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14345 *sals = lsal->sals;
14346 /* Arrange it so the destructor does not free the
14347 contents. */
14348 lsal->sals.sals = NULL;
14349 }
14350
14351 destroy_linespec_result (&canonical);
14352 }
14353
14354 /* Prepare the global context for a re-set of breakpoint B. */
14355
14356 static struct cleanup *
14357 prepare_re_set_context (struct breakpoint *b)
14358 {
14359 struct cleanup *cleanups;
14360
14361 input_radix = b->input_radix;
14362 cleanups = save_current_space_and_thread ();
14363 if (b->pspace != NULL)
14364 switch_to_program_space_and_thread (b->pspace);
14365 set_language (b->language);
14366
14367 return cleanups;
14368 }
14369
14370 /* Reset a breakpoint given it's struct breakpoint * BINT.
14371 The value we return ends up being the return value from catch_errors.
14372 Unused in this case. */
14373
14374 static int
14375 breakpoint_re_set_one (void *bint)
14376 {
14377 /* Get past catch_errs. */
14378 struct breakpoint *b = (struct breakpoint *) bint;
14379 struct cleanup *cleanups;
14380
14381 cleanups = prepare_re_set_context (b);
14382 b->ops->re_set (b);
14383 do_cleanups (cleanups);
14384 return 0;
14385 }
14386
14387 /* Re-set all breakpoints after symbols have been re-loaded. */
14388 void
14389 breakpoint_re_set (void)
14390 {
14391 struct breakpoint *b, *b_tmp;
14392 enum language save_language;
14393 int save_input_radix;
14394 struct cleanup *old_chain;
14395
14396 save_language = current_language->la_language;
14397 save_input_radix = input_radix;
14398 old_chain = save_current_program_space ();
14399
14400 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14401 {
14402 /* Format possible error msg. */
14403 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14404 b->number);
14405 struct cleanup *cleanups = make_cleanup (xfree, message);
14406 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14407 do_cleanups (cleanups);
14408 }
14409 set_language (save_language);
14410 input_radix = save_input_radix;
14411
14412 jit_breakpoint_re_set ();
14413
14414 do_cleanups (old_chain);
14415
14416 create_overlay_event_breakpoint ();
14417 create_longjmp_master_breakpoint ();
14418 create_std_terminate_master_breakpoint ();
14419 create_exception_master_breakpoint ();
14420 }
14421 \f
14422 /* Reset the thread number of this breakpoint:
14423
14424 - If the breakpoint is for all threads, leave it as-is.
14425 - Else, reset it to the current thread for inferior_ptid. */
14426 void
14427 breakpoint_re_set_thread (struct breakpoint *b)
14428 {
14429 if (b->thread != -1)
14430 {
14431 if (in_thread_list (inferior_ptid))
14432 b->thread = pid_to_thread_id (inferior_ptid);
14433
14434 /* We're being called after following a fork. The new fork is
14435 selected as current, and unless this was a vfork will have a
14436 different program space from the original thread. Reset that
14437 as well. */
14438 b->loc->pspace = current_program_space;
14439 }
14440 }
14441
14442 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14443 If from_tty is nonzero, it prints a message to that effect,
14444 which ends with a period (no newline). */
14445
14446 void
14447 set_ignore_count (int bptnum, int count, int from_tty)
14448 {
14449 struct breakpoint *b;
14450
14451 if (count < 0)
14452 count = 0;
14453
14454 ALL_BREAKPOINTS (b)
14455 if (b->number == bptnum)
14456 {
14457 if (is_tracepoint (b))
14458 {
14459 if (from_tty && count != 0)
14460 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14461 bptnum);
14462 return;
14463 }
14464
14465 b->ignore_count = count;
14466 if (from_tty)
14467 {
14468 if (count == 0)
14469 printf_filtered (_("Will stop next time "
14470 "breakpoint %d is reached."),
14471 bptnum);
14472 else if (count == 1)
14473 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14474 bptnum);
14475 else
14476 printf_filtered (_("Will ignore next %d "
14477 "crossings of breakpoint %d."),
14478 count, bptnum);
14479 }
14480 observer_notify_breakpoint_modified (b);
14481 return;
14482 }
14483
14484 error (_("No breakpoint number %d."), bptnum);
14485 }
14486
14487 /* Command to set ignore-count of breakpoint N to COUNT. */
14488
14489 static void
14490 ignore_command (char *args, int from_tty)
14491 {
14492 char *p = args;
14493 int num;
14494
14495 if (p == 0)
14496 error_no_arg (_("a breakpoint number"));
14497
14498 num = get_number (&p);
14499 if (num == 0)
14500 error (_("bad breakpoint number: '%s'"), args);
14501 if (*p == 0)
14502 error (_("Second argument (specified ignore-count) is missing."));
14503
14504 set_ignore_count (num,
14505 longest_to_int (value_as_long (parse_and_eval (p))),
14506 from_tty);
14507 if (from_tty)
14508 printf_filtered ("\n");
14509 }
14510 \f
14511 /* Call FUNCTION on each of the breakpoints
14512 whose numbers are given in ARGS. */
14513
14514 static void
14515 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14516 void *),
14517 void *data)
14518 {
14519 int num;
14520 struct breakpoint *b, *tmp;
14521 int match;
14522 struct get_number_or_range_state state;
14523
14524 if (args == 0)
14525 error_no_arg (_("one or more breakpoint numbers"));
14526
14527 init_number_or_range (&state, args);
14528
14529 while (!state.finished)
14530 {
14531 char *p = state.string;
14532
14533 match = 0;
14534
14535 num = get_number_or_range (&state);
14536 if (num == 0)
14537 {
14538 warning (_("bad breakpoint number at or near '%s'"), p);
14539 }
14540 else
14541 {
14542 ALL_BREAKPOINTS_SAFE (b, tmp)
14543 if (b->number == num)
14544 {
14545 match = 1;
14546 function (b, data);
14547 break;
14548 }
14549 if (match == 0)
14550 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14551 }
14552 }
14553 }
14554
14555 static struct bp_location *
14556 find_location_by_number (char *number)
14557 {
14558 char *dot = strchr (number, '.');
14559 char *p1;
14560 int bp_num;
14561 int loc_num;
14562 struct breakpoint *b;
14563 struct bp_location *loc;
14564
14565 *dot = '\0';
14566
14567 p1 = number;
14568 bp_num = get_number (&p1);
14569 if (bp_num == 0)
14570 error (_("Bad breakpoint number '%s'"), number);
14571
14572 ALL_BREAKPOINTS (b)
14573 if (b->number == bp_num)
14574 {
14575 break;
14576 }
14577
14578 if (!b || b->number != bp_num)
14579 error (_("Bad breakpoint number '%s'"), number);
14580
14581 p1 = dot+1;
14582 loc_num = get_number (&p1);
14583 if (loc_num == 0)
14584 error (_("Bad breakpoint location number '%s'"), number);
14585
14586 --loc_num;
14587 loc = b->loc;
14588 for (;loc_num && loc; --loc_num, loc = loc->next)
14589 ;
14590 if (!loc)
14591 error (_("Bad breakpoint location number '%s'"), dot+1);
14592
14593 return loc;
14594 }
14595
14596
14597 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14598 If from_tty is nonzero, it prints a message to that effect,
14599 which ends with a period (no newline). */
14600
14601 void
14602 disable_breakpoint (struct breakpoint *bpt)
14603 {
14604 /* Never disable a watchpoint scope breakpoint; we want to
14605 hit them when we leave scope so we can delete both the
14606 watchpoint and its scope breakpoint at that time. */
14607 if (bpt->type == bp_watchpoint_scope)
14608 return;
14609
14610 /* You can't disable permanent breakpoints. */
14611 if (bpt->enable_state == bp_permanent)
14612 return;
14613
14614 bpt->enable_state = bp_disabled;
14615
14616 /* Mark breakpoint locations modified. */
14617 mark_breakpoint_modified (bpt);
14618
14619 if (target_supports_enable_disable_tracepoint ()
14620 && current_trace_status ()->running && is_tracepoint (bpt))
14621 {
14622 struct bp_location *location;
14623
14624 for (location = bpt->loc; location; location = location->next)
14625 target_disable_tracepoint (location);
14626 }
14627
14628 update_global_location_list (0);
14629
14630 observer_notify_breakpoint_modified (bpt);
14631 }
14632
14633 /* A callback for iterate_over_related_breakpoints. */
14634
14635 static void
14636 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14637 {
14638 disable_breakpoint (b);
14639 }
14640
14641 /* A callback for map_breakpoint_numbers that calls
14642 disable_breakpoint. */
14643
14644 static void
14645 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14646 {
14647 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14648 }
14649
14650 static void
14651 disable_command (char *args, int from_tty)
14652 {
14653 if (args == 0)
14654 {
14655 struct breakpoint *bpt;
14656
14657 ALL_BREAKPOINTS (bpt)
14658 if (user_breakpoint_p (bpt))
14659 disable_breakpoint (bpt);
14660 }
14661 else
14662 {
14663 char *num = extract_arg (&args);
14664
14665 while (num)
14666 {
14667 if (strchr (num, '.'))
14668 {
14669 struct bp_location *loc = find_location_by_number (num);
14670
14671 if (loc)
14672 {
14673 if (loc->enabled)
14674 {
14675 loc->enabled = 0;
14676 mark_breakpoint_location_modified (loc);
14677 }
14678 if (target_supports_enable_disable_tracepoint ()
14679 && current_trace_status ()->running && loc->owner
14680 && is_tracepoint (loc->owner))
14681 target_disable_tracepoint (loc);
14682 }
14683 update_global_location_list (0);
14684 }
14685 else
14686 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14687 num = extract_arg (&args);
14688 }
14689 }
14690 }
14691
14692 static void
14693 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14694 int count)
14695 {
14696 int target_resources_ok;
14697
14698 if (bpt->type == bp_hardware_breakpoint)
14699 {
14700 int i;
14701 i = hw_breakpoint_used_count ();
14702 target_resources_ok =
14703 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14704 i + 1, 0);
14705 if (target_resources_ok == 0)
14706 error (_("No hardware breakpoint support in the target."));
14707 else if (target_resources_ok < 0)
14708 error (_("Hardware breakpoints used exceeds limit."));
14709 }
14710
14711 if (is_watchpoint (bpt))
14712 {
14713 /* Initialize it just to avoid a GCC false warning. */
14714 enum enable_state orig_enable_state = 0;
14715 volatile struct gdb_exception e;
14716
14717 TRY_CATCH (e, RETURN_MASK_ALL)
14718 {
14719 struct watchpoint *w = (struct watchpoint *) bpt;
14720
14721 orig_enable_state = bpt->enable_state;
14722 bpt->enable_state = bp_enabled;
14723 update_watchpoint (w, 1 /* reparse */);
14724 }
14725 if (e.reason < 0)
14726 {
14727 bpt->enable_state = orig_enable_state;
14728 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14729 bpt->number);
14730 return;
14731 }
14732 }
14733
14734 if (bpt->enable_state != bp_permanent)
14735 bpt->enable_state = bp_enabled;
14736
14737 bpt->enable_state = bp_enabled;
14738
14739 /* Mark breakpoint locations modified. */
14740 mark_breakpoint_modified (bpt);
14741
14742 if (target_supports_enable_disable_tracepoint ()
14743 && current_trace_status ()->running && is_tracepoint (bpt))
14744 {
14745 struct bp_location *location;
14746
14747 for (location = bpt->loc; location; location = location->next)
14748 target_enable_tracepoint (location);
14749 }
14750
14751 bpt->disposition = disposition;
14752 bpt->enable_count = count;
14753 update_global_location_list (1);
14754
14755 observer_notify_breakpoint_modified (bpt);
14756 }
14757
14758
14759 void
14760 enable_breakpoint (struct breakpoint *bpt)
14761 {
14762 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14763 }
14764
14765 static void
14766 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14767 {
14768 enable_breakpoint (bpt);
14769 }
14770
14771 /* A callback for map_breakpoint_numbers that calls
14772 enable_breakpoint. */
14773
14774 static void
14775 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14776 {
14777 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14778 }
14779
14780 /* The enable command enables the specified breakpoints (or all defined
14781 breakpoints) so they once again become (or continue to be) effective
14782 in stopping the inferior. */
14783
14784 static void
14785 enable_command (char *args, int from_tty)
14786 {
14787 if (args == 0)
14788 {
14789 struct breakpoint *bpt;
14790
14791 ALL_BREAKPOINTS (bpt)
14792 if (user_breakpoint_p (bpt))
14793 enable_breakpoint (bpt);
14794 }
14795 else
14796 {
14797 char *num = extract_arg (&args);
14798
14799 while (num)
14800 {
14801 if (strchr (num, '.'))
14802 {
14803 struct bp_location *loc = find_location_by_number (num);
14804
14805 if (loc)
14806 {
14807 if (!loc->enabled)
14808 {
14809 loc->enabled = 1;
14810 mark_breakpoint_location_modified (loc);
14811 }
14812 if (target_supports_enable_disable_tracepoint ()
14813 && current_trace_status ()->running && loc->owner
14814 && is_tracepoint (loc->owner))
14815 target_enable_tracepoint (loc);
14816 }
14817 update_global_location_list (1);
14818 }
14819 else
14820 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
14821 num = extract_arg (&args);
14822 }
14823 }
14824 }
14825
14826 /* This struct packages up disposition data for application to multiple
14827 breakpoints. */
14828
14829 struct disp_data
14830 {
14831 enum bpdisp disp;
14832 int count;
14833 };
14834
14835 static void
14836 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14837 {
14838 struct disp_data disp_data = *(struct disp_data *) arg;
14839
14840 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14841 }
14842
14843 static void
14844 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14845 {
14846 struct disp_data disp = { disp_disable, 1 };
14847
14848 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14849 }
14850
14851 static void
14852 enable_once_command (char *args, int from_tty)
14853 {
14854 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14855 }
14856
14857 static void
14858 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14859 {
14860 struct disp_data disp = { disp_disable, *(int *) countptr };
14861
14862 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14863 }
14864
14865 static void
14866 enable_count_command (char *args, int from_tty)
14867 {
14868 int count = get_number (&args);
14869
14870 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14871 }
14872
14873 static void
14874 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14875 {
14876 struct disp_data disp = { disp_del, 1 };
14877
14878 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14879 }
14880
14881 static void
14882 enable_delete_command (char *args, int from_tty)
14883 {
14884 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14885 }
14886 \f
14887 static void
14888 set_breakpoint_cmd (char *args, int from_tty)
14889 {
14890 }
14891
14892 static void
14893 show_breakpoint_cmd (char *args, int from_tty)
14894 {
14895 }
14896
14897 /* Invalidate last known value of any hardware watchpoint if
14898 the memory which that value represents has been written to by
14899 GDB itself. */
14900
14901 static void
14902 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14903 CORE_ADDR addr, ssize_t len,
14904 const bfd_byte *data)
14905 {
14906 struct breakpoint *bp;
14907
14908 ALL_BREAKPOINTS (bp)
14909 if (bp->enable_state == bp_enabled
14910 && bp->type == bp_hardware_watchpoint)
14911 {
14912 struct watchpoint *wp = (struct watchpoint *) bp;
14913
14914 if (wp->val_valid && wp->val)
14915 {
14916 struct bp_location *loc;
14917
14918 for (loc = bp->loc; loc != NULL; loc = loc->next)
14919 if (loc->loc_type == bp_loc_hardware_watchpoint
14920 && loc->address + loc->length > addr
14921 && addr + len > loc->address)
14922 {
14923 value_free (wp->val);
14924 wp->val = NULL;
14925 wp->val_valid = 0;
14926 }
14927 }
14928 }
14929 }
14930
14931 /* Create and insert a raw software breakpoint at PC. Return an
14932 identifier, which should be used to remove the breakpoint later.
14933 In general, places which call this should be using something on the
14934 breakpoint chain instead; this function should be eliminated
14935 someday. */
14936
14937 void *
14938 deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
14939 struct address_space *aspace, CORE_ADDR pc)
14940 {
14941 struct bp_target_info *bp_tgt;
14942
14943 bp_tgt = XZALLOC (struct bp_target_info);
14944
14945 bp_tgt->placed_address_space = aspace;
14946 bp_tgt->placed_address = pc;
14947
14948 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
14949 {
14950 /* Could not insert the breakpoint. */
14951 xfree (bp_tgt);
14952 return NULL;
14953 }
14954
14955 return bp_tgt;
14956 }
14957
14958 /* Remove a breakpoint BP inserted by
14959 deprecated_insert_raw_breakpoint. */
14960
14961 int
14962 deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
14963 {
14964 struct bp_target_info *bp_tgt = bp;
14965 int ret;
14966
14967 ret = target_remove_breakpoint (gdbarch, bp_tgt);
14968 xfree (bp_tgt);
14969
14970 return ret;
14971 }
14972
14973 /* One (or perhaps two) breakpoints used for software single
14974 stepping. */
14975
14976 static void *single_step_breakpoints[2];
14977 static struct gdbarch *single_step_gdbarch[2];
14978
14979 /* Create and insert a breakpoint for software single step. */
14980
14981 void
14982 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14983 struct address_space *aspace,
14984 CORE_ADDR next_pc)
14985 {
14986 void **bpt_p;
14987
14988 if (single_step_breakpoints[0] == NULL)
14989 {
14990 bpt_p = &single_step_breakpoints[0];
14991 single_step_gdbarch[0] = gdbarch;
14992 }
14993 else
14994 {
14995 gdb_assert (single_step_breakpoints[1] == NULL);
14996 bpt_p = &single_step_breakpoints[1];
14997 single_step_gdbarch[1] = gdbarch;
14998 }
14999
15000 /* NOTE drow/2006-04-11: A future improvement to this function would
15001 be to only create the breakpoints once, and actually put them on
15002 the breakpoint chain. That would let us use set_raw_breakpoint.
15003 We could adjust the addresses each time they were needed. Doing
15004 this requires corresponding changes elsewhere where single step
15005 breakpoints are handled, however. So, for now, we use this. */
15006
15007 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
15008 if (*bpt_p == NULL)
15009 error (_("Could not insert single-step breakpoint at %s"),
15010 paddress (gdbarch, next_pc));
15011 }
15012
15013 /* Check if the breakpoints used for software single stepping
15014 were inserted or not. */
15015
15016 int
15017 single_step_breakpoints_inserted (void)
15018 {
15019 return (single_step_breakpoints[0] != NULL
15020 || single_step_breakpoints[1] != NULL);
15021 }
15022
15023 /* Remove and delete any breakpoints used for software single step. */
15024
15025 void
15026 remove_single_step_breakpoints (void)
15027 {
15028 gdb_assert (single_step_breakpoints[0] != NULL);
15029
15030 /* See insert_single_step_breakpoint for more about this deprecated
15031 call. */
15032 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
15033 single_step_breakpoints[0]);
15034 single_step_gdbarch[0] = NULL;
15035 single_step_breakpoints[0] = NULL;
15036
15037 if (single_step_breakpoints[1] != NULL)
15038 {
15039 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
15040 single_step_breakpoints[1]);
15041 single_step_gdbarch[1] = NULL;
15042 single_step_breakpoints[1] = NULL;
15043 }
15044 }
15045
15046 /* Delete software single step breakpoints without removing them from
15047 the inferior. This is intended to be used if the inferior's address
15048 space where they were inserted is already gone, e.g. after exit or
15049 exec. */
15050
15051 void
15052 cancel_single_step_breakpoints (void)
15053 {
15054 int i;
15055
15056 for (i = 0; i < 2; i++)
15057 if (single_step_breakpoints[i])
15058 {
15059 xfree (single_step_breakpoints[i]);
15060 single_step_breakpoints[i] = NULL;
15061 single_step_gdbarch[i] = NULL;
15062 }
15063 }
15064
15065 /* Detach software single-step breakpoints from INFERIOR_PTID without
15066 removing them. */
15067
15068 static void
15069 detach_single_step_breakpoints (void)
15070 {
15071 int i;
15072
15073 for (i = 0; i < 2; i++)
15074 if (single_step_breakpoints[i])
15075 target_remove_breakpoint (single_step_gdbarch[i],
15076 single_step_breakpoints[i]);
15077 }
15078
15079 /* Check whether a software single-step breakpoint is inserted at
15080 PC. */
15081
15082 static int
15083 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15084 CORE_ADDR pc)
15085 {
15086 int i;
15087
15088 for (i = 0; i < 2; i++)
15089 {
15090 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
15091 if (bp_tgt
15092 && breakpoint_address_match (bp_tgt->placed_address_space,
15093 bp_tgt->placed_address,
15094 aspace, pc))
15095 return 1;
15096 }
15097
15098 return 0;
15099 }
15100
15101 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
15102 non-zero otherwise. */
15103 static int
15104 is_syscall_catchpoint_enabled (struct breakpoint *bp)
15105 {
15106 if (syscall_catchpoint_p (bp)
15107 && bp->enable_state != bp_disabled
15108 && bp->enable_state != bp_call_disabled)
15109 return 1;
15110 else
15111 return 0;
15112 }
15113
15114 int
15115 catch_syscall_enabled (void)
15116 {
15117 struct catch_syscall_inferior_data *inf_data
15118 = get_catch_syscall_inferior_data (current_inferior ());
15119
15120 return inf_data->total_syscalls_count != 0;
15121 }
15122
15123 int
15124 catching_syscall_number (int syscall_number)
15125 {
15126 struct breakpoint *bp;
15127
15128 ALL_BREAKPOINTS (bp)
15129 if (is_syscall_catchpoint_enabled (bp))
15130 {
15131 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
15132
15133 if (c->syscalls_to_be_caught)
15134 {
15135 int i, iter;
15136 for (i = 0;
15137 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
15138 i++)
15139 if (syscall_number == iter)
15140 return 1;
15141 }
15142 else
15143 return 1;
15144 }
15145
15146 return 0;
15147 }
15148
15149 /* Complete syscall names. Used by "catch syscall". */
15150 static VEC (char_ptr) *
15151 catch_syscall_completer (struct cmd_list_element *cmd,
15152 const char *text, const char *word)
15153 {
15154 const char **list = get_syscall_names ();
15155 VEC (char_ptr) *retlist
15156 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
15157
15158 xfree (list);
15159 return retlist;
15160 }
15161
15162 /* Tracepoint-specific operations. */
15163
15164 /* Set tracepoint count to NUM. */
15165 static void
15166 set_tracepoint_count (int num)
15167 {
15168 tracepoint_count = num;
15169 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15170 }
15171
15172 static void
15173 trace_command (char *arg, int from_tty)
15174 {
15175 struct breakpoint_ops *ops;
15176 const char *arg_cp = arg;
15177
15178 if (arg && probe_linespec_to_ops (&arg_cp))
15179 ops = &tracepoint_probe_breakpoint_ops;
15180 else
15181 ops = &tracepoint_breakpoint_ops;
15182
15183 create_breakpoint (get_current_arch (),
15184 arg,
15185 NULL, 0, NULL, 1 /* parse arg */,
15186 0 /* tempflag */,
15187 bp_tracepoint /* type_wanted */,
15188 0 /* Ignore count */,
15189 pending_break_support,
15190 ops,
15191 from_tty,
15192 1 /* enabled */,
15193 0 /* internal */, 0);
15194 }
15195
15196 static void
15197 ftrace_command (char *arg, int from_tty)
15198 {
15199 create_breakpoint (get_current_arch (),
15200 arg,
15201 NULL, 0, NULL, 1 /* parse arg */,
15202 0 /* tempflag */,
15203 bp_fast_tracepoint /* type_wanted */,
15204 0 /* Ignore count */,
15205 pending_break_support,
15206 &tracepoint_breakpoint_ops,
15207 from_tty,
15208 1 /* enabled */,
15209 0 /* internal */, 0);
15210 }
15211
15212 /* strace command implementation. Creates a static tracepoint. */
15213
15214 static void
15215 strace_command (char *arg, int from_tty)
15216 {
15217 struct breakpoint_ops *ops;
15218
15219 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15220 or with a normal static tracepoint. */
15221 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15222 ops = &strace_marker_breakpoint_ops;
15223 else
15224 ops = &tracepoint_breakpoint_ops;
15225
15226 create_breakpoint (get_current_arch (),
15227 arg,
15228 NULL, 0, NULL, 1 /* parse arg */,
15229 0 /* tempflag */,
15230 bp_static_tracepoint /* type_wanted */,
15231 0 /* Ignore count */,
15232 pending_break_support,
15233 ops,
15234 from_tty,
15235 1 /* enabled */,
15236 0 /* internal */, 0);
15237 }
15238
15239 /* Set up a fake reader function that gets command lines from a linked
15240 list that was acquired during tracepoint uploading. */
15241
15242 static struct uploaded_tp *this_utp;
15243 static int next_cmd;
15244
15245 static char *
15246 read_uploaded_action (void)
15247 {
15248 char *rslt;
15249
15250 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15251
15252 next_cmd++;
15253
15254 return rslt;
15255 }
15256
15257 /* Given information about a tracepoint as recorded on a target (which
15258 can be either a live system or a trace file), attempt to create an
15259 equivalent GDB tracepoint. This is not a reliable process, since
15260 the target does not necessarily have all the information used when
15261 the tracepoint was originally defined. */
15262
15263 struct tracepoint *
15264 create_tracepoint_from_upload (struct uploaded_tp *utp)
15265 {
15266 char *addr_str, small_buf[100];
15267 struct tracepoint *tp;
15268
15269 if (utp->at_string)
15270 addr_str = utp->at_string;
15271 else
15272 {
15273 /* In the absence of a source location, fall back to raw
15274 address. Since there is no way to confirm that the address
15275 means the same thing as when the trace was started, warn the
15276 user. */
15277 warning (_("Uploaded tracepoint %d has no "
15278 "source location, using raw address"),
15279 utp->number);
15280 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15281 addr_str = small_buf;
15282 }
15283
15284 /* There's not much we can do with a sequence of bytecodes. */
15285 if (utp->cond && !utp->cond_string)
15286 warning (_("Uploaded tracepoint %d condition "
15287 "has no source form, ignoring it"),
15288 utp->number);
15289
15290 if (!create_breakpoint (get_current_arch (),
15291 addr_str,
15292 utp->cond_string, -1, NULL,
15293 0 /* parse cond/thread */,
15294 0 /* tempflag */,
15295 utp->type /* type_wanted */,
15296 0 /* Ignore count */,
15297 pending_break_support,
15298 &tracepoint_breakpoint_ops,
15299 0 /* from_tty */,
15300 utp->enabled /* enabled */,
15301 0 /* internal */,
15302 CREATE_BREAKPOINT_FLAGS_INSERTED))
15303 return NULL;
15304
15305 /* Get the tracepoint we just created. */
15306 tp = get_tracepoint (tracepoint_count);
15307 gdb_assert (tp != NULL);
15308
15309 if (utp->pass > 0)
15310 {
15311 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15312 tp->base.number);
15313
15314 trace_pass_command (small_buf, 0);
15315 }
15316
15317 /* If we have uploaded versions of the original commands, set up a
15318 special-purpose "reader" function and call the usual command line
15319 reader, then pass the result to the breakpoint command-setting
15320 function. */
15321 if (!VEC_empty (char_ptr, utp->cmd_strings))
15322 {
15323 struct command_line *cmd_list;
15324
15325 this_utp = utp;
15326 next_cmd = 0;
15327
15328 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15329
15330 breakpoint_set_commands (&tp->base, cmd_list);
15331 }
15332 else if (!VEC_empty (char_ptr, utp->actions)
15333 || !VEC_empty (char_ptr, utp->step_actions))
15334 warning (_("Uploaded tracepoint %d actions "
15335 "have no source form, ignoring them"),
15336 utp->number);
15337
15338 /* Copy any status information that might be available. */
15339 tp->base.hit_count = utp->hit_count;
15340 tp->traceframe_usage = utp->traceframe_usage;
15341
15342 return tp;
15343 }
15344
15345 /* Print information on tracepoint number TPNUM_EXP, or all if
15346 omitted. */
15347
15348 static void
15349 tracepoints_info (char *args, int from_tty)
15350 {
15351 struct ui_out *uiout = current_uiout;
15352 int num_printed;
15353
15354 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15355
15356 if (num_printed == 0)
15357 {
15358 if (args == NULL || *args == '\0')
15359 ui_out_message (uiout, 0, "No tracepoints.\n");
15360 else
15361 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15362 }
15363
15364 default_collect_info ();
15365 }
15366
15367 /* The 'enable trace' command enables tracepoints.
15368 Not supported by all targets. */
15369 static void
15370 enable_trace_command (char *args, int from_tty)
15371 {
15372 enable_command (args, from_tty);
15373 }
15374
15375 /* The 'disable trace' command disables tracepoints.
15376 Not supported by all targets. */
15377 static void
15378 disable_trace_command (char *args, int from_tty)
15379 {
15380 disable_command (args, from_tty);
15381 }
15382
15383 /* Remove a tracepoint (or all if no argument). */
15384 static void
15385 delete_trace_command (char *arg, int from_tty)
15386 {
15387 struct breakpoint *b, *b_tmp;
15388
15389 dont_repeat ();
15390
15391 if (arg == 0)
15392 {
15393 int breaks_to_delete = 0;
15394
15395 /* Delete all breakpoints if no argument.
15396 Do not delete internal or call-dummy breakpoints, these
15397 have to be deleted with an explicit breakpoint number
15398 argument. */
15399 ALL_TRACEPOINTS (b)
15400 if (is_tracepoint (b) && user_breakpoint_p (b))
15401 {
15402 breaks_to_delete = 1;
15403 break;
15404 }
15405
15406 /* Ask user only if there are some breakpoints to delete. */
15407 if (!from_tty
15408 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15409 {
15410 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15411 if (is_tracepoint (b) && user_breakpoint_p (b))
15412 delete_breakpoint (b);
15413 }
15414 }
15415 else
15416 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15417 }
15418
15419 /* Helper function for trace_pass_command. */
15420
15421 static void
15422 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15423 {
15424 tp->pass_count = count;
15425 observer_notify_breakpoint_modified (&tp->base);
15426 if (from_tty)
15427 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15428 tp->base.number, count);
15429 }
15430
15431 /* Set passcount for tracepoint.
15432
15433 First command argument is passcount, second is tracepoint number.
15434 If tracepoint number omitted, apply to most recently defined.
15435 Also accepts special argument "all". */
15436
15437 static void
15438 trace_pass_command (char *args, int from_tty)
15439 {
15440 struct tracepoint *t1;
15441 unsigned int count;
15442
15443 if (args == 0 || *args == 0)
15444 error (_("passcount command requires an "
15445 "argument (count + optional TP num)"));
15446
15447 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15448
15449 args = skip_spaces (args);
15450 if (*args && strncasecmp (args, "all", 3) == 0)
15451 {
15452 struct breakpoint *b;
15453
15454 args += 3; /* Skip special argument "all". */
15455 if (*args)
15456 error (_("Junk at end of arguments."));
15457
15458 ALL_TRACEPOINTS (b)
15459 {
15460 t1 = (struct tracepoint *) b;
15461 trace_pass_set_count (t1, count, from_tty);
15462 }
15463 }
15464 else if (*args == '\0')
15465 {
15466 t1 = get_tracepoint_by_number (&args, NULL, 1);
15467 if (t1)
15468 trace_pass_set_count (t1, count, from_tty);
15469 }
15470 else
15471 {
15472 struct get_number_or_range_state state;
15473
15474 init_number_or_range (&state, args);
15475 while (!state.finished)
15476 {
15477 t1 = get_tracepoint_by_number (&args, &state, 1);
15478 if (t1)
15479 trace_pass_set_count (t1, count, from_tty);
15480 }
15481 }
15482 }
15483
15484 struct tracepoint *
15485 get_tracepoint (int num)
15486 {
15487 struct breakpoint *t;
15488
15489 ALL_TRACEPOINTS (t)
15490 if (t->number == num)
15491 return (struct tracepoint *) t;
15492
15493 return NULL;
15494 }
15495
15496 /* Find the tracepoint with the given target-side number (which may be
15497 different from the tracepoint number after disconnecting and
15498 reconnecting). */
15499
15500 struct tracepoint *
15501 get_tracepoint_by_number_on_target (int num)
15502 {
15503 struct breakpoint *b;
15504
15505 ALL_TRACEPOINTS (b)
15506 {
15507 struct tracepoint *t = (struct tracepoint *) b;
15508
15509 if (t->number_on_target == num)
15510 return t;
15511 }
15512
15513 return NULL;
15514 }
15515
15516 /* Utility: parse a tracepoint number and look it up in the list.
15517 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15518 If OPTIONAL_P is true, then if the argument is missing, the most
15519 recent tracepoint (tracepoint_count) is returned. */
15520 struct tracepoint *
15521 get_tracepoint_by_number (char **arg,
15522 struct get_number_or_range_state *state,
15523 int optional_p)
15524 {
15525 struct breakpoint *t;
15526 int tpnum;
15527 char *instring = arg == NULL ? NULL : *arg;
15528
15529 if (state)
15530 {
15531 gdb_assert (!state->finished);
15532 tpnum = get_number_or_range (state);
15533 }
15534 else if (arg == NULL || *arg == NULL || ! **arg)
15535 {
15536 if (optional_p)
15537 tpnum = tracepoint_count;
15538 else
15539 error_no_arg (_("tracepoint number"));
15540 }
15541 else
15542 tpnum = get_number (arg);
15543
15544 if (tpnum <= 0)
15545 {
15546 if (instring && *instring)
15547 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15548 instring);
15549 else
15550 printf_filtered (_("Tracepoint argument missing "
15551 "and no previous tracepoint\n"));
15552 return NULL;
15553 }
15554
15555 ALL_TRACEPOINTS (t)
15556 if (t->number == tpnum)
15557 {
15558 return (struct tracepoint *) t;
15559 }
15560
15561 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15562 return NULL;
15563 }
15564
15565 void
15566 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15567 {
15568 if (b->thread != -1)
15569 fprintf_unfiltered (fp, " thread %d", b->thread);
15570
15571 if (b->task != 0)
15572 fprintf_unfiltered (fp, " task %d", b->task);
15573
15574 fprintf_unfiltered (fp, "\n");
15575 }
15576
15577 /* Save information on user settable breakpoints (watchpoints, etc) to
15578 a new script file named FILENAME. If FILTER is non-NULL, call it
15579 on each breakpoint and only include the ones for which it returns
15580 non-zero. */
15581
15582 static void
15583 save_breakpoints (char *filename, int from_tty,
15584 int (*filter) (const struct breakpoint *))
15585 {
15586 struct breakpoint *tp;
15587 int any = 0;
15588 struct cleanup *cleanup;
15589 struct ui_file *fp;
15590 int extra_trace_bits = 0;
15591
15592 if (filename == 0 || *filename == 0)
15593 error (_("Argument required (file name in which to save)"));
15594
15595 /* See if we have anything to save. */
15596 ALL_BREAKPOINTS (tp)
15597 {
15598 /* Skip internal and momentary breakpoints. */
15599 if (!user_breakpoint_p (tp))
15600 continue;
15601
15602 /* If we have a filter, only save the breakpoints it accepts. */
15603 if (filter && !filter (tp))
15604 continue;
15605
15606 any = 1;
15607
15608 if (is_tracepoint (tp))
15609 {
15610 extra_trace_bits = 1;
15611
15612 /* We can stop searching. */
15613 break;
15614 }
15615 }
15616
15617 if (!any)
15618 {
15619 warning (_("Nothing to save."));
15620 return;
15621 }
15622
15623 filename = tilde_expand (filename);
15624 cleanup = make_cleanup (xfree, filename);
15625 fp = gdb_fopen (filename, "w");
15626 if (!fp)
15627 error (_("Unable to open file '%s' for saving (%s)"),
15628 filename, safe_strerror (errno));
15629 make_cleanup_ui_file_delete (fp);
15630
15631 if (extra_trace_bits)
15632 save_trace_state_variables (fp);
15633
15634 ALL_BREAKPOINTS (tp)
15635 {
15636 /* Skip internal and momentary breakpoints. */
15637 if (!user_breakpoint_p (tp))
15638 continue;
15639
15640 /* If we have a filter, only save the breakpoints it accepts. */
15641 if (filter && !filter (tp))
15642 continue;
15643
15644 tp->ops->print_recreate (tp, fp);
15645
15646 /* Note, we can't rely on tp->number for anything, as we can't
15647 assume the recreated breakpoint numbers will match. Use $bpnum
15648 instead. */
15649
15650 if (tp->cond_string)
15651 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15652
15653 if (tp->ignore_count)
15654 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15655
15656 if (tp->type != bp_dprintf && tp->commands)
15657 {
15658 volatile struct gdb_exception ex;
15659
15660 fprintf_unfiltered (fp, " commands\n");
15661
15662 ui_out_redirect (current_uiout, fp);
15663 TRY_CATCH (ex, RETURN_MASK_ALL)
15664 {
15665 print_command_lines (current_uiout, tp->commands->commands, 2);
15666 }
15667 ui_out_redirect (current_uiout, NULL);
15668
15669 if (ex.reason < 0)
15670 throw_exception (ex);
15671
15672 fprintf_unfiltered (fp, " end\n");
15673 }
15674
15675 if (tp->enable_state == bp_disabled)
15676 fprintf_unfiltered (fp, "disable\n");
15677
15678 /* If this is a multi-location breakpoint, check if the locations
15679 should be individually disabled. Watchpoint locations are
15680 special, and not user visible. */
15681 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15682 {
15683 struct bp_location *loc;
15684 int n = 1;
15685
15686 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15687 if (!loc->enabled)
15688 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15689 }
15690 }
15691
15692 if (extra_trace_bits && *default_collect)
15693 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15694
15695 if (from_tty)
15696 printf_filtered (_("Saved to file '%s'.\n"), filename);
15697 do_cleanups (cleanup);
15698 }
15699
15700 /* The `save breakpoints' command. */
15701
15702 static void
15703 save_breakpoints_command (char *args, int from_tty)
15704 {
15705 save_breakpoints (args, from_tty, NULL);
15706 }
15707
15708 /* The `save tracepoints' command. */
15709
15710 static void
15711 save_tracepoints_command (char *args, int from_tty)
15712 {
15713 save_breakpoints (args, from_tty, is_tracepoint);
15714 }
15715
15716 /* Create a vector of all tracepoints. */
15717
15718 VEC(breakpoint_p) *
15719 all_tracepoints (void)
15720 {
15721 VEC(breakpoint_p) *tp_vec = 0;
15722 struct breakpoint *tp;
15723
15724 ALL_TRACEPOINTS (tp)
15725 {
15726 VEC_safe_push (breakpoint_p, tp_vec, tp);
15727 }
15728
15729 return tp_vec;
15730 }
15731
15732 \f
15733 /* This help string is used for the break, hbreak, tbreak and thbreak
15734 commands. It is defined as a macro to prevent duplication.
15735 COMMAND should be a string constant containing the name of the
15736 command. */
15737 #define BREAK_ARGS_HELP(command) \
15738 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15739 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15740 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15741 guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
15742 LOCATION may be a line number, function name, or \"*\" and an address.\n\
15743 If a line number is specified, break at start of code for that line.\n\
15744 If a function is specified, break at start of code for that function.\n\
15745 If an address is specified, break at that exact address.\n\
15746 With no LOCATION, uses current execution address of the selected\n\
15747 stack frame. This is useful for breaking on return to a stack frame.\n\
15748 \n\
15749 THREADNUM is the number from \"info threads\".\n\
15750 CONDITION is a boolean expression.\n\
15751 \n\
15752 Multiple breakpoints at one place are permitted, and useful if their\n\
15753 conditions are different.\n\
15754 \n\
15755 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15756
15757 /* List of subcommands for "catch". */
15758 static struct cmd_list_element *catch_cmdlist;
15759
15760 /* List of subcommands for "tcatch". */
15761 static struct cmd_list_element *tcatch_cmdlist;
15762
15763 void
15764 add_catch_command (char *name, char *docstring,
15765 void (*sfunc) (char *args, int from_tty,
15766 struct cmd_list_element *command),
15767 completer_ftype *completer,
15768 void *user_data_catch,
15769 void *user_data_tcatch)
15770 {
15771 struct cmd_list_element *command;
15772
15773 command = add_cmd (name, class_breakpoint, NULL, docstring,
15774 &catch_cmdlist);
15775 set_cmd_sfunc (command, sfunc);
15776 set_cmd_context (command, user_data_catch);
15777 set_cmd_completer (command, completer);
15778
15779 command = add_cmd (name, class_breakpoint, NULL, docstring,
15780 &tcatch_cmdlist);
15781 set_cmd_sfunc (command, sfunc);
15782 set_cmd_context (command, user_data_tcatch);
15783 set_cmd_completer (command, completer);
15784 }
15785
15786 static void
15787 clear_syscall_counts (struct inferior *inf)
15788 {
15789 struct catch_syscall_inferior_data *inf_data
15790 = get_catch_syscall_inferior_data (inf);
15791
15792 inf_data->total_syscalls_count = 0;
15793 inf_data->any_syscall_count = 0;
15794 VEC_free (int, inf_data->syscalls_counts);
15795 }
15796
15797 static void
15798 save_command (char *arg, int from_tty)
15799 {
15800 printf_unfiltered (_("\"save\" must be followed by "
15801 "the name of a save subcommand.\n"));
15802 help_list (save_cmdlist, "save ", -1, gdb_stdout);
15803 }
15804
15805 struct breakpoint *
15806 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15807 void *data)
15808 {
15809 struct breakpoint *b, *b_tmp;
15810
15811 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15812 {
15813 if ((*callback) (b, data))
15814 return b;
15815 }
15816
15817 return NULL;
15818 }
15819
15820 /* Zero if any of the breakpoint's locations could be a location where
15821 functions have been inlined, nonzero otherwise. */
15822
15823 static int
15824 is_non_inline_function (struct breakpoint *b)
15825 {
15826 /* The shared library event breakpoint is set on the address of a
15827 non-inline function. */
15828 if (b->type == bp_shlib_event)
15829 return 1;
15830
15831 return 0;
15832 }
15833
15834 /* Nonzero if the specified PC cannot be a location where functions
15835 have been inlined. */
15836
15837 int
15838 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15839 const struct target_waitstatus *ws)
15840 {
15841 struct breakpoint *b;
15842 struct bp_location *bl;
15843
15844 ALL_BREAKPOINTS (b)
15845 {
15846 if (!is_non_inline_function (b))
15847 continue;
15848
15849 for (bl = b->loc; bl != NULL; bl = bl->next)
15850 {
15851 if (!bl->shlib_disabled
15852 && bpstat_check_location (bl, aspace, pc, ws))
15853 return 1;
15854 }
15855 }
15856
15857 return 0;
15858 }
15859
15860 /* Remove any references to OBJFILE which is going to be freed. */
15861
15862 void
15863 breakpoint_free_objfile (struct objfile *objfile)
15864 {
15865 struct bp_location **locp, *loc;
15866
15867 ALL_BP_LOCATIONS (loc, locp)
15868 if (loc->symtab != NULL && loc->symtab->objfile == objfile)
15869 loc->symtab = NULL;
15870 }
15871
15872 void
15873 initialize_breakpoint_ops (void)
15874 {
15875 static int initialized = 0;
15876
15877 struct breakpoint_ops *ops;
15878
15879 if (initialized)
15880 return;
15881 initialized = 1;
15882
15883 /* The breakpoint_ops structure to be inherit by all kinds of
15884 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15885 internal and momentary breakpoints, etc.). */
15886 ops = &bkpt_base_breakpoint_ops;
15887 *ops = base_breakpoint_ops;
15888 ops->re_set = bkpt_re_set;
15889 ops->insert_location = bkpt_insert_location;
15890 ops->remove_location = bkpt_remove_location;
15891 ops->breakpoint_hit = bkpt_breakpoint_hit;
15892 ops->create_sals_from_address = bkpt_create_sals_from_address;
15893 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15894 ops->decode_linespec = bkpt_decode_linespec;
15895
15896 /* The breakpoint_ops structure to be used in regular breakpoints. */
15897 ops = &bkpt_breakpoint_ops;
15898 *ops = bkpt_base_breakpoint_ops;
15899 ops->re_set = bkpt_re_set;
15900 ops->resources_needed = bkpt_resources_needed;
15901 ops->print_it = bkpt_print_it;
15902 ops->print_mention = bkpt_print_mention;
15903 ops->print_recreate = bkpt_print_recreate;
15904
15905 /* Ranged breakpoints. */
15906 ops = &ranged_breakpoint_ops;
15907 *ops = bkpt_breakpoint_ops;
15908 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15909 ops->resources_needed = resources_needed_ranged_breakpoint;
15910 ops->print_it = print_it_ranged_breakpoint;
15911 ops->print_one = print_one_ranged_breakpoint;
15912 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15913 ops->print_mention = print_mention_ranged_breakpoint;
15914 ops->print_recreate = print_recreate_ranged_breakpoint;
15915
15916 /* Internal breakpoints. */
15917 ops = &internal_breakpoint_ops;
15918 *ops = bkpt_base_breakpoint_ops;
15919 ops->re_set = internal_bkpt_re_set;
15920 ops->check_status = internal_bkpt_check_status;
15921 ops->print_it = internal_bkpt_print_it;
15922 ops->print_mention = internal_bkpt_print_mention;
15923
15924 /* Momentary breakpoints. */
15925 ops = &momentary_breakpoint_ops;
15926 *ops = bkpt_base_breakpoint_ops;
15927 ops->re_set = momentary_bkpt_re_set;
15928 ops->check_status = momentary_bkpt_check_status;
15929 ops->print_it = momentary_bkpt_print_it;
15930 ops->print_mention = momentary_bkpt_print_mention;
15931
15932 /* Momentary breakpoints for bp_longjmp and bp_exception. */
15933 ops = &longjmp_breakpoint_ops;
15934 *ops = momentary_breakpoint_ops;
15935 ops->dtor = longjmp_bkpt_dtor;
15936
15937 /* Probe breakpoints. */
15938 ops = &bkpt_probe_breakpoint_ops;
15939 *ops = bkpt_breakpoint_ops;
15940 ops->insert_location = bkpt_probe_insert_location;
15941 ops->remove_location = bkpt_probe_remove_location;
15942 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
15943 ops->decode_linespec = bkpt_probe_decode_linespec;
15944
15945 /* Watchpoints. */
15946 ops = &watchpoint_breakpoint_ops;
15947 *ops = base_breakpoint_ops;
15948 ops->dtor = dtor_watchpoint;
15949 ops->re_set = re_set_watchpoint;
15950 ops->insert_location = insert_watchpoint;
15951 ops->remove_location = remove_watchpoint;
15952 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15953 ops->check_status = check_status_watchpoint;
15954 ops->resources_needed = resources_needed_watchpoint;
15955 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15956 ops->print_it = print_it_watchpoint;
15957 ops->print_mention = print_mention_watchpoint;
15958 ops->print_recreate = print_recreate_watchpoint;
15959 ops->explains_signal = explains_signal_watchpoint;
15960
15961 /* Masked watchpoints. */
15962 ops = &masked_watchpoint_breakpoint_ops;
15963 *ops = watchpoint_breakpoint_ops;
15964 ops->insert_location = insert_masked_watchpoint;
15965 ops->remove_location = remove_masked_watchpoint;
15966 ops->resources_needed = resources_needed_masked_watchpoint;
15967 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15968 ops->print_it = print_it_masked_watchpoint;
15969 ops->print_one_detail = print_one_detail_masked_watchpoint;
15970 ops->print_mention = print_mention_masked_watchpoint;
15971 ops->print_recreate = print_recreate_masked_watchpoint;
15972
15973 /* Tracepoints. */
15974 ops = &tracepoint_breakpoint_ops;
15975 *ops = base_breakpoint_ops;
15976 ops->re_set = tracepoint_re_set;
15977 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15978 ops->print_one_detail = tracepoint_print_one_detail;
15979 ops->print_mention = tracepoint_print_mention;
15980 ops->print_recreate = tracepoint_print_recreate;
15981 ops->create_sals_from_address = tracepoint_create_sals_from_address;
15982 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15983 ops->decode_linespec = tracepoint_decode_linespec;
15984
15985 /* Probe tracepoints. */
15986 ops = &tracepoint_probe_breakpoint_ops;
15987 *ops = tracepoint_breakpoint_ops;
15988 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
15989 ops->decode_linespec = tracepoint_probe_decode_linespec;
15990
15991 /* Static tracepoints with marker (`-m'). */
15992 ops = &strace_marker_breakpoint_ops;
15993 *ops = tracepoint_breakpoint_ops;
15994 ops->create_sals_from_address = strace_marker_create_sals_from_address;
15995 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15996 ops->decode_linespec = strace_marker_decode_linespec;
15997
15998 /* Fork catchpoints. */
15999 ops = &catch_fork_breakpoint_ops;
16000 *ops = base_breakpoint_ops;
16001 ops->insert_location = insert_catch_fork;
16002 ops->remove_location = remove_catch_fork;
16003 ops->breakpoint_hit = breakpoint_hit_catch_fork;
16004 ops->print_it = print_it_catch_fork;
16005 ops->print_one = print_one_catch_fork;
16006 ops->print_mention = print_mention_catch_fork;
16007 ops->print_recreate = print_recreate_catch_fork;
16008
16009 /* Vfork catchpoints. */
16010 ops = &catch_vfork_breakpoint_ops;
16011 *ops = base_breakpoint_ops;
16012 ops->insert_location = insert_catch_vfork;
16013 ops->remove_location = remove_catch_vfork;
16014 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
16015 ops->print_it = print_it_catch_vfork;
16016 ops->print_one = print_one_catch_vfork;
16017 ops->print_mention = print_mention_catch_vfork;
16018 ops->print_recreate = print_recreate_catch_vfork;
16019
16020 /* Exec catchpoints. */
16021 ops = &catch_exec_breakpoint_ops;
16022 *ops = base_breakpoint_ops;
16023 ops->dtor = dtor_catch_exec;
16024 ops->insert_location = insert_catch_exec;
16025 ops->remove_location = remove_catch_exec;
16026 ops->breakpoint_hit = breakpoint_hit_catch_exec;
16027 ops->print_it = print_it_catch_exec;
16028 ops->print_one = print_one_catch_exec;
16029 ops->print_mention = print_mention_catch_exec;
16030 ops->print_recreate = print_recreate_catch_exec;
16031
16032 /* Syscall catchpoints. */
16033 ops = &catch_syscall_breakpoint_ops;
16034 *ops = base_breakpoint_ops;
16035 ops->dtor = dtor_catch_syscall;
16036 ops->insert_location = insert_catch_syscall;
16037 ops->remove_location = remove_catch_syscall;
16038 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
16039 ops->print_it = print_it_catch_syscall;
16040 ops->print_one = print_one_catch_syscall;
16041 ops->print_mention = print_mention_catch_syscall;
16042 ops->print_recreate = print_recreate_catch_syscall;
16043
16044 /* Solib-related catchpoints. */
16045 ops = &catch_solib_breakpoint_ops;
16046 *ops = base_breakpoint_ops;
16047 ops->dtor = dtor_catch_solib;
16048 ops->insert_location = insert_catch_solib;
16049 ops->remove_location = remove_catch_solib;
16050 ops->breakpoint_hit = breakpoint_hit_catch_solib;
16051 ops->check_status = check_status_catch_solib;
16052 ops->print_it = print_it_catch_solib;
16053 ops->print_one = print_one_catch_solib;
16054 ops->print_mention = print_mention_catch_solib;
16055 ops->print_recreate = print_recreate_catch_solib;
16056
16057 ops = &dprintf_breakpoint_ops;
16058 *ops = bkpt_base_breakpoint_ops;
16059 ops->re_set = dprintf_re_set;
16060 ops->resources_needed = bkpt_resources_needed;
16061 ops->print_it = bkpt_print_it;
16062 ops->print_mention = bkpt_print_mention;
16063 ops->print_recreate = dprintf_print_recreate;
16064 ops->after_condition_true = dprintf_after_condition_true;
16065 }
16066
16067 /* Chain containing all defined "enable breakpoint" subcommands. */
16068
16069 static struct cmd_list_element *enablebreaklist = NULL;
16070
16071 void
16072 _initialize_breakpoint (void)
16073 {
16074 struct cmd_list_element *c;
16075
16076 initialize_breakpoint_ops ();
16077
16078 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
16079 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
16080 observer_attach_inferior_exit (clear_syscall_counts);
16081 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
16082
16083 breakpoint_objfile_key
16084 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
16085
16086 catch_syscall_inferior_data
16087 = register_inferior_data_with_cleanup (NULL,
16088 catch_syscall_inferior_data_cleanup);
16089
16090 breakpoint_chain = 0;
16091 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
16092 before a breakpoint is set. */
16093 breakpoint_count = 0;
16094
16095 tracepoint_count = 0;
16096
16097 add_com ("ignore", class_breakpoint, ignore_command, _("\
16098 Set ignore-count of breakpoint number N to COUNT.\n\
16099 Usage is `ignore N COUNT'."));
16100 if (xdb_commands)
16101 add_com_alias ("bc", "ignore", class_breakpoint, 1);
16102
16103 add_com ("commands", class_breakpoint, commands_command, _("\
16104 Set commands to be executed when a breakpoint is hit.\n\
16105 Give breakpoint number as argument after \"commands\".\n\
16106 With no argument, the targeted breakpoint is the last one set.\n\
16107 The commands themselves follow starting on the next line.\n\
16108 Type a line containing \"end\" to indicate the end of them.\n\
16109 Give \"silent\" as the first line to make the breakpoint silent;\n\
16110 then no output is printed when it is hit, except what the commands print."));
16111
16112 c = add_com ("condition", class_breakpoint, condition_command, _("\
16113 Specify breakpoint number N to break only if COND is true.\n\
16114 Usage is `condition N COND', where N is an integer and COND is an\n\
16115 expression to be evaluated whenever breakpoint N is reached."));
16116 set_cmd_completer (c, condition_completer);
16117
16118 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16119 Set a temporary breakpoint.\n\
16120 Like \"break\" except the breakpoint is only temporary,\n\
16121 so it will be deleted when hit. Equivalent to \"break\" followed\n\
16122 by using \"enable delete\" on the breakpoint number.\n\
16123 \n"
16124 BREAK_ARGS_HELP ("tbreak")));
16125 set_cmd_completer (c, location_completer);
16126
16127 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16128 Set a hardware assisted breakpoint.\n\
16129 Like \"break\" except the breakpoint requires hardware support,\n\
16130 some target hardware may not have this support.\n\
16131 \n"
16132 BREAK_ARGS_HELP ("hbreak")));
16133 set_cmd_completer (c, location_completer);
16134
16135 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16136 Set a temporary hardware assisted breakpoint.\n\
16137 Like \"hbreak\" except the breakpoint is only temporary,\n\
16138 so it will be deleted when hit.\n\
16139 \n"
16140 BREAK_ARGS_HELP ("thbreak")));
16141 set_cmd_completer (c, location_completer);
16142
16143 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16144 Enable some breakpoints.\n\
16145 Give breakpoint numbers (separated by spaces) as arguments.\n\
16146 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16147 This is used to cancel the effect of the \"disable\" command.\n\
16148 With a subcommand you can enable temporarily."),
16149 &enablelist, "enable ", 1, &cmdlist);
16150 if (xdb_commands)
16151 add_com ("ab", class_breakpoint, enable_command, _("\
16152 Enable some breakpoints.\n\
16153 Give breakpoint numbers (separated by spaces) as arguments.\n\
16154 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16155 This is used to cancel the effect of the \"disable\" command.\n\
16156 With a subcommand you can enable temporarily."));
16157
16158 add_com_alias ("en", "enable", class_breakpoint, 1);
16159
16160 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16161 Enable some breakpoints.\n\
16162 Give breakpoint numbers (separated by spaces) as arguments.\n\
16163 This is used to cancel the effect of the \"disable\" command.\n\
16164 May be abbreviated to simply \"enable\".\n"),
16165 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16166
16167 add_cmd ("once", no_class, enable_once_command, _("\
16168 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16169 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16170 &enablebreaklist);
16171
16172 add_cmd ("delete", no_class, enable_delete_command, _("\
16173 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16174 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16175 &enablebreaklist);
16176
16177 add_cmd ("count", no_class, enable_count_command, _("\
16178 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16179 If a breakpoint is hit while enabled in this fashion,\n\
16180 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16181 &enablebreaklist);
16182
16183 add_cmd ("delete", no_class, enable_delete_command, _("\
16184 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16185 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16186 &enablelist);
16187
16188 add_cmd ("once", no_class, enable_once_command, _("\
16189 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16190 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16191 &enablelist);
16192
16193 add_cmd ("count", no_class, enable_count_command, _("\
16194 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16195 If a breakpoint is hit while enabled in this fashion,\n\
16196 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16197 &enablelist);
16198
16199 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16200 Disable some breakpoints.\n\
16201 Arguments are breakpoint numbers with spaces in between.\n\
16202 To disable all breakpoints, give no argument.\n\
16203 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16204 &disablelist, "disable ", 1, &cmdlist);
16205 add_com_alias ("dis", "disable", class_breakpoint, 1);
16206 add_com_alias ("disa", "disable", class_breakpoint, 1);
16207 if (xdb_commands)
16208 add_com ("sb", class_breakpoint, disable_command, _("\
16209 Disable some breakpoints.\n\
16210 Arguments are breakpoint numbers with spaces in between.\n\
16211 To disable all breakpoints, give no argument.\n\
16212 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16213
16214 add_cmd ("breakpoints", class_alias, disable_command, _("\
16215 Disable some breakpoints.\n\
16216 Arguments are breakpoint numbers with spaces in between.\n\
16217 To disable all breakpoints, give no argument.\n\
16218 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16219 This command may be abbreviated \"disable\"."),
16220 &disablelist);
16221
16222 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16223 Delete some breakpoints or auto-display expressions.\n\
16224 Arguments are breakpoint numbers with spaces in between.\n\
16225 To delete all breakpoints, give no argument.\n\
16226 \n\
16227 Also a prefix command for deletion of other GDB objects.\n\
16228 The \"unset\" command is also an alias for \"delete\"."),
16229 &deletelist, "delete ", 1, &cmdlist);
16230 add_com_alias ("d", "delete", class_breakpoint, 1);
16231 add_com_alias ("del", "delete", class_breakpoint, 1);
16232 if (xdb_commands)
16233 add_com ("db", class_breakpoint, delete_command, _("\
16234 Delete some breakpoints.\n\
16235 Arguments are breakpoint numbers with spaces in between.\n\
16236 To delete all breakpoints, give no argument.\n"));
16237
16238 add_cmd ("breakpoints", class_alias, delete_command, _("\
16239 Delete some breakpoints or auto-display expressions.\n\
16240 Arguments are breakpoint numbers with spaces in between.\n\
16241 To delete all breakpoints, give no argument.\n\
16242 This command may be abbreviated \"delete\"."),
16243 &deletelist);
16244
16245 add_com ("clear", class_breakpoint, clear_command, _("\
16246 Clear breakpoint at specified line or function.\n\
16247 Argument may be line number, function name, or \"*\" and an address.\n\
16248 If line number is specified, all breakpoints in that line are cleared.\n\
16249 If function is specified, breakpoints at beginning of function are cleared.\n\
16250 If an address is specified, breakpoints at that address are cleared.\n\
16251 \n\
16252 With no argument, clears all breakpoints in the line that the selected frame\n\
16253 is executing in.\n\
16254 \n\
16255 See also the \"delete\" command which clears breakpoints by number."));
16256 add_com_alias ("cl", "clear", class_breakpoint, 1);
16257
16258 c = add_com ("break", class_breakpoint, break_command, _("\
16259 Set breakpoint at specified line or function.\n"
16260 BREAK_ARGS_HELP ("break")));
16261 set_cmd_completer (c, location_completer);
16262
16263 add_com_alias ("b", "break", class_run, 1);
16264 add_com_alias ("br", "break", class_run, 1);
16265 add_com_alias ("bre", "break", class_run, 1);
16266 add_com_alias ("brea", "break", class_run, 1);
16267
16268 if (xdb_commands)
16269 add_com_alias ("ba", "break", class_breakpoint, 1);
16270
16271 if (dbx_commands)
16272 {
16273 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16274 Break in function/address or break at a line in the current file."),
16275 &stoplist, "stop ", 1, &cmdlist);
16276 add_cmd ("in", class_breakpoint, stopin_command,
16277 _("Break in function or address."), &stoplist);
16278 add_cmd ("at", class_breakpoint, stopat_command,
16279 _("Break at a line in the current file."), &stoplist);
16280 add_com ("status", class_info, breakpoints_info, _("\
16281 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16282 The \"Type\" column indicates one of:\n\
16283 \tbreakpoint - normal breakpoint\n\
16284 \twatchpoint - watchpoint\n\
16285 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16286 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16287 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16288 address and file/line number respectively.\n\
16289 \n\
16290 Convenience variable \"$_\" and default examine address for \"x\"\n\
16291 are set to the address of the last breakpoint listed unless the command\n\
16292 is prefixed with \"server \".\n\n\
16293 Convenience variable \"$bpnum\" contains the number of the last\n\
16294 breakpoint set."));
16295 }
16296
16297 add_info ("breakpoints", breakpoints_info, _("\
16298 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16299 The \"Type\" column indicates one of:\n\
16300 \tbreakpoint - normal breakpoint\n\
16301 \twatchpoint - watchpoint\n\
16302 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16303 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16304 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16305 address and file/line number respectively.\n\
16306 \n\
16307 Convenience variable \"$_\" and default examine address for \"x\"\n\
16308 are set to the address of the last breakpoint listed unless the command\n\
16309 is prefixed with \"server \".\n\n\
16310 Convenience variable \"$bpnum\" contains the number of the last\n\
16311 breakpoint set."));
16312
16313 add_info_alias ("b", "breakpoints", 1);
16314
16315 if (xdb_commands)
16316 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16317 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16318 The \"Type\" column indicates one of:\n\
16319 \tbreakpoint - normal breakpoint\n\
16320 \twatchpoint - watchpoint\n\
16321 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16322 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16323 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16324 address and file/line number respectively.\n\
16325 \n\
16326 Convenience variable \"$_\" and default examine address for \"x\"\n\
16327 are set to the address of the last breakpoint listed unless the command\n\
16328 is prefixed with \"server \".\n\n\
16329 Convenience variable \"$bpnum\" contains the number of the last\n\
16330 breakpoint set."));
16331
16332 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16333 Status of all breakpoints, or breakpoint number NUMBER.\n\
16334 The \"Type\" column indicates one of:\n\
16335 \tbreakpoint - normal breakpoint\n\
16336 \twatchpoint - watchpoint\n\
16337 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16338 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16339 \tuntil - internal breakpoint used by the \"until\" command\n\
16340 \tfinish - internal breakpoint used by the \"finish\" command\n\
16341 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16342 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16343 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16344 address and file/line number respectively.\n\
16345 \n\
16346 Convenience variable \"$_\" and default examine address for \"x\"\n\
16347 are set to the address of the last breakpoint listed unless the command\n\
16348 is prefixed with \"server \".\n\n\
16349 Convenience variable \"$bpnum\" contains the number of the last\n\
16350 breakpoint set."),
16351 &maintenanceinfolist);
16352
16353 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16354 Set catchpoints to catch events."),
16355 &catch_cmdlist, "catch ",
16356 0/*allow-unknown*/, &cmdlist);
16357
16358 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16359 Set temporary catchpoints to catch events."),
16360 &tcatch_cmdlist, "tcatch ",
16361 0/*allow-unknown*/, &cmdlist);
16362
16363 add_catch_command ("fork", _("Catch calls to fork."),
16364 catch_fork_command_1,
16365 NULL,
16366 (void *) (uintptr_t) catch_fork_permanent,
16367 (void *) (uintptr_t) catch_fork_temporary);
16368 add_catch_command ("vfork", _("Catch calls to vfork."),
16369 catch_fork_command_1,
16370 NULL,
16371 (void *) (uintptr_t) catch_vfork_permanent,
16372 (void *) (uintptr_t) catch_vfork_temporary);
16373 add_catch_command ("exec", _("Catch calls to exec."),
16374 catch_exec_command_1,
16375 NULL,
16376 CATCH_PERMANENT,
16377 CATCH_TEMPORARY);
16378 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16379 Usage: catch load [REGEX]\n\
16380 If REGEX is given, only stop for libraries matching the regular expression."),
16381 catch_load_command_1,
16382 NULL,
16383 CATCH_PERMANENT,
16384 CATCH_TEMPORARY);
16385 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16386 Usage: catch unload [REGEX]\n\
16387 If REGEX is given, only stop for libraries matching the regular expression."),
16388 catch_unload_command_1,
16389 NULL,
16390 CATCH_PERMANENT,
16391 CATCH_TEMPORARY);
16392 add_catch_command ("syscall", _("\
16393 Catch system calls by their names and/or numbers.\n\
16394 Arguments say which system calls to catch. If no arguments\n\
16395 are given, every system call will be caught.\n\
16396 Arguments, if given, should be one or more system call names\n\
16397 (if your system supports that), or system call numbers."),
16398 catch_syscall_command_1,
16399 catch_syscall_completer,
16400 CATCH_PERMANENT,
16401 CATCH_TEMPORARY);
16402
16403 c = add_com ("watch", class_breakpoint, watch_command, _("\
16404 Set a watchpoint for an expression.\n\
16405 Usage: watch [-l|-location] EXPRESSION\n\
16406 A watchpoint stops execution of your program whenever the value of\n\
16407 an expression changes.\n\
16408 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16409 the memory to which it refers."));
16410 set_cmd_completer (c, expression_completer);
16411
16412 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16413 Set a read watchpoint for an expression.\n\
16414 Usage: rwatch [-l|-location] EXPRESSION\n\
16415 A watchpoint stops execution of your program whenever the value of\n\
16416 an expression is read.\n\
16417 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16418 the memory to which it refers."));
16419 set_cmd_completer (c, expression_completer);
16420
16421 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16422 Set a watchpoint for an expression.\n\
16423 Usage: awatch [-l|-location] EXPRESSION\n\
16424 A watchpoint stops execution of your program whenever the value of\n\
16425 an expression is either read or written.\n\
16426 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16427 the memory to which it refers."));
16428 set_cmd_completer (c, expression_completer);
16429
16430 add_info ("watchpoints", watchpoints_info, _("\
16431 Status of specified watchpoints (all watchpoints if no argument)."));
16432
16433 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16434 respond to changes - contrary to the description. */
16435 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16436 &can_use_hw_watchpoints, _("\
16437 Set debugger's willingness to use watchpoint hardware."), _("\
16438 Show debugger's willingness to use watchpoint hardware."), _("\
16439 If zero, gdb will not use hardware for new watchpoints, even if\n\
16440 such is available. (However, any hardware watchpoints that were\n\
16441 created before setting this to nonzero, will continue to use watchpoint\n\
16442 hardware.)"),
16443 NULL,
16444 show_can_use_hw_watchpoints,
16445 &setlist, &showlist);
16446
16447 can_use_hw_watchpoints = 1;
16448
16449 /* Tracepoint manipulation commands. */
16450
16451 c = add_com ("trace", class_breakpoint, trace_command, _("\
16452 Set a tracepoint at specified line or function.\n\
16453 \n"
16454 BREAK_ARGS_HELP ("trace") "\n\
16455 Do \"help tracepoints\" for info on other tracepoint commands."));
16456 set_cmd_completer (c, location_completer);
16457
16458 add_com_alias ("tp", "trace", class_alias, 0);
16459 add_com_alias ("tr", "trace", class_alias, 1);
16460 add_com_alias ("tra", "trace", class_alias, 1);
16461 add_com_alias ("trac", "trace", class_alias, 1);
16462
16463 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16464 Set a fast tracepoint at specified line or function.\n\
16465 \n"
16466 BREAK_ARGS_HELP ("ftrace") "\n\
16467 Do \"help tracepoints\" for info on other tracepoint commands."));
16468 set_cmd_completer (c, location_completer);
16469
16470 c = add_com ("strace", class_breakpoint, strace_command, _("\
16471 Set a static tracepoint at specified line, function or marker.\n\
16472 \n\
16473 strace [LOCATION] [if CONDITION]\n\
16474 LOCATION may be a line number, function name, \"*\" and an address,\n\
16475 or -m MARKER_ID.\n\
16476 If a line number is specified, probe the marker at start of code\n\
16477 for that line. If a function is specified, probe the marker at start\n\
16478 of code for that function. If an address is specified, probe the marker\n\
16479 at that exact address. If a marker id is specified, probe the marker\n\
16480 with that name. With no LOCATION, uses current execution address of\n\
16481 the selected stack frame.\n\
16482 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16483 This collects arbitrary user data passed in the probe point call to the\n\
16484 tracing library. You can inspect it when analyzing the trace buffer,\n\
16485 by printing the $_sdata variable like any other convenience variable.\n\
16486 \n\
16487 CONDITION is a boolean expression.\n\
16488 \n\
16489 Multiple tracepoints at one place are permitted, and useful if their\n\
16490 conditions are different.\n\
16491 \n\
16492 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16493 Do \"help tracepoints\" for info on other tracepoint commands."));
16494 set_cmd_completer (c, location_completer);
16495
16496 add_info ("tracepoints", tracepoints_info, _("\
16497 Status of specified tracepoints (all tracepoints if no argument).\n\
16498 Convenience variable \"$tpnum\" contains the number of the\n\
16499 last tracepoint set."));
16500
16501 add_info_alias ("tp", "tracepoints", 1);
16502
16503 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16504 Delete specified tracepoints.\n\
16505 Arguments are tracepoint numbers, separated by spaces.\n\
16506 No argument means delete all tracepoints."),
16507 &deletelist);
16508 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16509
16510 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16511 Disable specified tracepoints.\n\
16512 Arguments are tracepoint numbers, separated by spaces.\n\
16513 No argument means disable all tracepoints."),
16514 &disablelist);
16515 deprecate_cmd (c, "disable");
16516
16517 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16518 Enable specified tracepoints.\n\
16519 Arguments are tracepoint numbers, separated by spaces.\n\
16520 No argument means enable all tracepoints."),
16521 &enablelist);
16522 deprecate_cmd (c, "enable");
16523
16524 add_com ("passcount", class_trace, trace_pass_command, _("\
16525 Set the passcount for a tracepoint.\n\
16526 The trace will end when the tracepoint has been passed 'count' times.\n\
16527 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16528 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16529
16530 add_prefix_cmd ("save", class_breakpoint, save_command,
16531 _("Save breakpoint definitions as a script."),
16532 &save_cmdlist, "save ",
16533 0/*allow-unknown*/, &cmdlist);
16534
16535 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16536 Save current breakpoint definitions as a script.\n\
16537 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16538 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16539 session to restore them."),
16540 &save_cmdlist);
16541 set_cmd_completer (c, filename_completer);
16542
16543 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16544 Save current tracepoint definitions as a script.\n\
16545 Use the 'source' command in another debug session to restore them."),
16546 &save_cmdlist);
16547 set_cmd_completer (c, filename_completer);
16548
16549 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16550 deprecate_cmd (c, "save tracepoints");
16551
16552 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16553 Breakpoint specific settings\n\
16554 Configure various breakpoint-specific variables such as\n\
16555 pending breakpoint behavior"),
16556 &breakpoint_set_cmdlist, "set breakpoint ",
16557 0/*allow-unknown*/, &setlist);
16558 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16559 Breakpoint specific settings\n\
16560 Configure various breakpoint-specific variables such as\n\
16561 pending breakpoint behavior"),
16562 &breakpoint_show_cmdlist, "show breakpoint ",
16563 0/*allow-unknown*/, &showlist);
16564
16565 add_setshow_auto_boolean_cmd ("pending", no_class,
16566 &pending_break_support, _("\
16567 Set debugger's behavior regarding pending breakpoints."), _("\
16568 Show debugger's behavior regarding pending breakpoints."), _("\
16569 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16570 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16571 an error. If auto, an unrecognized breakpoint location results in a\n\
16572 user-query to see if a pending breakpoint should be created."),
16573 NULL,
16574 show_pending_break_support,
16575 &breakpoint_set_cmdlist,
16576 &breakpoint_show_cmdlist);
16577
16578 pending_break_support = AUTO_BOOLEAN_AUTO;
16579
16580 add_setshow_boolean_cmd ("auto-hw", no_class,
16581 &automatic_hardware_breakpoints, _("\
16582 Set automatic usage of hardware breakpoints."), _("\
16583 Show automatic usage of hardware breakpoints."), _("\
16584 If set, the debugger will automatically use hardware breakpoints for\n\
16585 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16586 a warning will be emitted for such breakpoints."),
16587 NULL,
16588 show_automatic_hardware_breakpoints,
16589 &breakpoint_set_cmdlist,
16590 &breakpoint_show_cmdlist);
16591
16592 add_setshow_auto_boolean_cmd ("always-inserted", class_support,
16593 &always_inserted_mode, _("\
16594 Set mode for inserting breakpoints."), _("\
16595 Show mode for inserting breakpoints."), _("\
16596 When this mode is off, breakpoints are inserted in inferior when it is\n\
16597 resumed, and removed when execution stops. When this mode is on,\n\
16598 breakpoints are inserted immediately and removed only when the user\n\
16599 deletes the breakpoint. When this mode is auto (which is the default),\n\
16600 the behaviour depends on the non-stop setting (see help set non-stop).\n\
16601 In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
16602 behaves as if always-inserted mode is on; if gdb is controlling the\n\
16603 inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
16604 NULL,
16605 &show_always_inserted_mode,
16606 &breakpoint_set_cmdlist,
16607 &breakpoint_show_cmdlist);
16608
16609 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16610 condition_evaluation_enums,
16611 &condition_evaluation_mode_1, _("\
16612 Set mode of breakpoint condition evaluation."), _("\
16613 Show mode of breakpoint condition evaluation."), _("\
16614 When this is set to \"host\", breakpoint conditions will be\n\
16615 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16616 breakpoint conditions will be downloaded to the target (if the target\n\
16617 supports such feature) and conditions will be evaluated on the target's side.\n\
16618 If this is set to \"auto\" (default), this will be automatically set to\n\
16619 \"target\" if it supports condition evaluation, otherwise it will\n\
16620 be set to \"gdb\""),
16621 &set_condition_evaluation_mode,
16622 &show_condition_evaluation_mode,
16623 &breakpoint_set_cmdlist,
16624 &breakpoint_show_cmdlist);
16625
16626 add_com ("break-range", class_breakpoint, break_range_command, _("\
16627 Set a breakpoint for an address range.\n\
16628 break-range START-LOCATION, END-LOCATION\n\
16629 where START-LOCATION and END-LOCATION can be one of the following:\n\
16630 LINENUM, for that line in the current file,\n\
16631 FILE:LINENUM, for that line in that file,\n\
16632 +OFFSET, for that number of lines after the current line\n\
16633 or the start of the range\n\
16634 FUNCTION, for the first line in that function,\n\
16635 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16636 *ADDRESS, for the instruction at that address.\n\
16637 \n\
16638 The breakpoint will stop execution of the inferior whenever it executes\n\
16639 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16640 range (including START-LOCATION and END-LOCATION)."));
16641
16642 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16643 Set a dynamic printf at specified line or function.\n\
16644 dprintf location,format string,arg1,arg2,...\n\
16645 location may be a line number, function name, or \"*\" and an address.\n\
16646 If a line number is specified, break at start of code for that line.\n\
16647 If a function is specified, break at start of code for that function."));
16648 set_cmd_completer (c, location_completer);
16649
16650 add_setshow_enum_cmd ("dprintf-style", class_support,
16651 dprintf_style_enums, &dprintf_style, _("\
16652 Set the style of usage for dynamic printf."), _("\
16653 Show the style of usage for dynamic printf."), _("\
16654 This setting chooses how GDB will do a dynamic printf.\n\
16655 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16656 console, as with the \"printf\" command.\n\
16657 If the value is \"call\", the print is done by calling a function in your\n\
16658 program; by default printf(), but you can choose a different function or\n\
16659 output stream by setting dprintf-function and dprintf-channel."),
16660 update_dprintf_commands, NULL,
16661 &setlist, &showlist);
16662
16663 dprintf_function = xstrdup ("printf");
16664 add_setshow_string_cmd ("dprintf-function", class_support,
16665 &dprintf_function, _("\
16666 Set the function to use for dynamic printf"), _("\
16667 Show the function to use for dynamic printf"), NULL,
16668 update_dprintf_commands, NULL,
16669 &setlist, &showlist);
16670
16671 dprintf_channel = xstrdup ("");
16672 add_setshow_string_cmd ("dprintf-channel", class_support,
16673 &dprintf_channel, _("\
16674 Set the channel to use for dynamic printf"), _("\
16675 Show the channel to use for dynamic printf"), NULL,
16676 update_dprintf_commands, NULL,
16677 &setlist, &showlist);
16678
16679 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16680 &disconnected_dprintf, _("\
16681 Set whether dprintf continues after GDB disconnects."), _("\
16682 Show whether dprintf continues after GDB disconnects."), _("\
16683 Use this to let dprintf commands continue to hit and produce output\n\
16684 even if GDB disconnects or detaches from the target."),
16685 NULL,
16686 NULL,
16687 &setlist, &showlist);
16688
16689 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16690 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16691 (target agent only) This is useful for formatted output in user-defined commands."));
16692
16693 automatic_hardware_breakpoints = 1;
16694
16695 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16696 observer_attach_thread_exit (remove_threaded_breakpoints);
16697 }
This page took 0.386163 seconds and 4 git commands to generate.