gdb/jit: pass the jiter objfile as an argument to jit_event_handler
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "stack.h"
63 #include "ax-gdb.h"
64 #include "dummy-frame.h"
65 #include "interps.h"
66 #include "gdbsupport/format.h"
67 #include "thread-fsm.h"
68 #include "tid-parse.h"
69 #include "cli/cli-style.h"
70
71 /* readline include files */
72 #include "readline/tilde.h"
73
74 /* readline defines this. */
75 #undef savestring
76
77 #include "mi/mi-common.h"
78 #include "extension.h"
79 #include <algorithm>
80 #include "progspace-and-thread.h"
81 #include "gdbsupport/array-view.h"
82 #include "gdbsupport/gdb_optional.h"
83
84 /* Prototypes for local functions. */
85
86 static void map_breakpoint_numbers (const char *,
87 gdb::function_view<void (breakpoint *)>);
88
89 static void breakpoint_re_set_default (struct breakpoint *);
90
91 static void
92 create_sals_from_location_default (const struct event_location *location,
93 struct linespec_result *canonical,
94 enum bptype type_wanted);
95
96 static void create_breakpoints_sal_default (struct gdbarch *,
97 struct linespec_result *,
98 gdb::unique_xmalloc_ptr<char>,
99 gdb::unique_xmalloc_ptr<char>,
100 enum bptype,
101 enum bpdisp, int, int,
102 int,
103 const struct breakpoint_ops *,
104 int, int, int, unsigned);
105
106 static std::vector<symtab_and_line> decode_location_default
107 (struct breakpoint *b, const struct event_location *location,
108 struct program_space *search_pspace);
109
110 static int can_use_hardware_watchpoint
111 (const std::vector<value_ref_ptr> &vals);
112
113 static void mention (struct breakpoint *);
114
115 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
116 enum bptype,
117 const struct breakpoint_ops *);
118 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
119 const struct symtab_and_line *);
120
121 /* This function is used in gdbtk sources and thus can not be made
122 static. */
123 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
124 struct symtab_and_line,
125 enum bptype,
126 const struct breakpoint_ops *);
127
128 static struct breakpoint *
129 momentary_breakpoint_from_master (struct breakpoint *orig,
130 enum bptype type,
131 const struct breakpoint_ops *ops,
132 int loc_enabled);
133
134 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
135
136 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
137 CORE_ADDR bpaddr,
138 enum bptype bptype);
139
140 static void describe_other_breakpoints (struct gdbarch *,
141 struct program_space *, CORE_ADDR,
142 struct obj_section *, int);
143
144 static int watchpoint_locations_match (struct bp_location *loc1,
145 struct bp_location *loc2);
146
147 static int breakpoint_locations_match (struct bp_location *loc1,
148 struct bp_location *loc2,
149 bool sw_hw_bps_match = false);
150
151 static int breakpoint_location_address_match (struct bp_location *bl,
152 const struct address_space *aspace,
153 CORE_ADDR addr);
154
155 static int breakpoint_location_address_range_overlap (struct bp_location *,
156 const address_space *,
157 CORE_ADDR, int);
158
159 static int remove_breakpoint (struct bp_location *);
160 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
161
162 static enum print_stop_action print_bp_stop_message (bpstat bs);
163
164 static int hw_breakpoint_used_count (void);
165
166 static int hw_watchpoint_use_count (struct breakpoint *);
167
168 static int hw_watchpoint_used_count_others (struct breakpoint *except,
169 enum bptype type,
170 int *other_type_used);
171
172 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
173 int count);
174
175 static void free_bp_location (struct bp_location *loc);
176 static void incref_bp_location (struct bp_location *loc);
177 static void decref_bp_location (struct bp_location **loc);
178
179 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
180
181 /* update_global_location_list's modes of operation wrt to whether to
182 insert locations now. */
183 enum ugll_insert_mode
184 {
185 /* Don't insert any breakpoint locations into the inferior, only
186 remove already-inserted locations that no longer should be
187 inserted. Functions that delete a breakpoint or breakpoints
188 should specify this mode, so that deleting a breakpoint doesn't
189 have the side effect of inserting the locations of other
190 breakpoints that are marked not-inserted, but should_be_inserted
191 returns true on them.
192
193 This behavior is useful is situations close to tear-down -- e.g.,
194 after an exec, while the target still has execution, but
195 breakpoint shadows of the previous executable image should *NOT*
196 be restored to the new image; or before detaching, where the
197 target still has execution and wants to delete breakpoints from
198 GDB's lists, and all breakpoints had already been removed from
199 the inferior. */
200 UGLL_DONT_INSERT,
201
202 /* May insert breakpoints iff breakpoints_should_be_inserted_now
203 claims breakpoints should be inserted now. */
204 UGLL_MAY_INSERT,
205
206 /* Insert locations now, irrespective of
207 breakpoints_should_be_inserted_now. E.g., say all threads are
208 stopped right now, and the user did "continue". We need to
209 insert breakpoints _before_ resuming the target, but
210 UGLL_MAY_INSERT wouldn't insert them, because
211 breakpoints_should_be_inserted_now returns false at that point,
212 as no thread is running yet. */
213 UGLL_INSERT
214 };
215
216 static void update_global_location_list (enum ugll_insert_mode);
217
218 static void update_global_location_list_nothrow (enum ugll_insert_mode);
219
220 static void insert_breakpoint_locations (void);
221
222 static void trace_pass_command (const char *, int);
223
224 static void set_tracepoint_count (int num);
225
226 static bool is_masked_watchpoint (const struct breakpoint *b);
227
228 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
229
230 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
231 otherwise. */
232
233 static int strace_marker_p (struct breakpoint *b);
234
235 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
236 that are implemented on top of software or hardware breakpoints
237 (user breakpoints, internal and momentary breakpoints, etc.). */
238 static struct breakpoint_ops bkpt_base_breakpoint_ops;
239
240 /* Internal breakpoints class type. */
241 static struct breakpoint_ops internal_breakpoint_ops;
242
243 /* Momentary breakpoints class type. */
244 static struct breakpoint_ops momentary_breakpoint_ops;
245
246 /* The breakpoint_ops structure to be used in regular user created
247 breakpoints. */
248 struct breakpoint_ops bkpt_breakpoint_ops;
249
250 /* Breakpoints set on probes. */
251 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
252
253 /* Tracepoints set on probes. */
254 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
255
256 /* Dynamic printf class type. */
257 struct breakpoint_ops dprintf_breakpoint_ops;
258
259 /* The style in which to perform a dynamic printf. This is a user
260 option because different output options have different tradeoffs;
261 if GDB does the printing, there is better error handling if there
262 is a problem with any of the arguments, but using an inferior
263 function lets you have special-purpose printers and sending of
264 output to the same place as compiled-in print functions. */
265
266 static const char dprintf_style_gdb[] = "gdb";
267 static const char dprintf_style_call[] = "call";
268 static const char dprintf_style_agent[] = "agent";
269 static const char *const dprintf_style_enums[] = {
270 dprintf_style_gdb,
271 dprintf_style_call,
272 dprintf_style_agent,
273 NULL
274 };
275 static const char *dprintf_style = dprintf_style_gdb;
276
277 /* The function to use for dynamic printf if the preferred style is to
278 call into the inferior. The value is simply a string that is
279 copied into the command, so it can be anything that GDB can
280 evaluate to a callable address, not necessarily a function name. */
281
282 static char *dprintf_function;
283
284 /* The channel to use for dynamic printf if the preferred style is to
285 call into the inferior; if a nonempty string, it will be passed to
286 the call as the first argument, with the format string as the
287 second. As with the dprintf function, this can be anything that
288 GDB knows how to evaluate, so in addition to common choices like
289 "stderr", this could be an app-specific expression like
290 "mystreams[curlogger]". */
291
292 static char *dprintf_channel;
293
294 /* True if dprintf commands should continue to operate even if GDB
295 has disconnected. */
296 static bool disconnected_dprintf = true;
297
298 struct command_line *
299 breakpoint_commands (struct breakpoint *b)
300 {
301 return b->commands ? b->commands.get () : NULL;
302 }
303
304 /* Flag indicating that a command has proceeded the inferior past the
305 current breakpoint. */
306
307 static bool breakpoint_proceeded;
308
309 const char *
310 bpdisp_text (enum bpdisp disp)
311 {
312 /* NOTE: the following values are a part of MI protocol and
313 represent values of 'disp' field returned when inferior stops at
314 a breakpoint. */
315 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
316
317 return bpdisps[(int) disp];
318 }
319
320 /* Prototypes for exported functions. */
321 /* If FALSE, gdb will not use hardware support for watchpoints, even
322 if such is available. */
323 static int can_use_hw_watchpoints;
324
325 static void
326 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
327 struct cmd_list_element *c,
328 const char *value)
329 {
330 fprintf_filtered (file,
331 _("Debugger's willingness to use "
332 "watchpoint hardware is %s.\n"),
333 value);
334 }
335
336 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
337 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
338 for unrecognized breakpoint locations.
339 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
340 static enum auto_boolean pending_break_support;
341 static void
342 show_pending_break_support (struct ui_file *file, int from_tty,
343 struct cmd_list_element *c,
344 const char *value)
345 {
346 fprintf_filtered (file,
347 _("Debugger's behavior regarding "
348 "pending breakpoints is %s.\n"),
349 value);
350 }
351
352 /* If true, gdb will automatically use hardware breakpoints for breakpoints
353 set with "break" but falling in read-only memory.
354 If false, gdb will warn about such breakpoints, but won't automatically
355 use hardware breakpoints. */
356 static bool automatic_hardware_breakpoints;
357 static void
358 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
359 struct cmd_list_element *c,
360 const char *value)
361 {
362 fprintf_filtered (file,
363 _("Automatic usage of hardware breakpoints is %s.\n"),
364 value);
365 }
366
367 /* If on, GDB keeps breakpoints inserted even if the inferior is
368 stopped, and immediately inserts any new breakpoints as soon as
369 they're created. If off (default), GDB keeps breakpoints off of
370 the target as long as possible. That is, it delays inserting
371 breakpoints until the next resume, and removes them again when the
372 target fully stops. This is a bit safer in case GDB crashes while
373 processing user input. */
374 static bool always_inserted_mode = false;
375
376 static void
377 show_always_inserted_mode (struct ui_file *file, int from_tty,
378 struct cmd_list_element *c, const char *value)
379 {
380 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
381 value);
382 }
383
384 /* See breakpoint.h. */
385
386 int
387 breakpoints_should_be_inserted_now (void)
388 {
389 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
390 {
391 /* If breakpoints are global, they should be inserted even if no
392 thread under gdb's control is running, or even if there are
393 no threads under GDB's control yet. */
394 return 1;
395 }
396 else
397 {
398 if (always_inserted_mode)
399 {
400 /* The user wants breakpoints inserted even if all threads
401 are stopped. */
402 return 1;
403 }
404
405 for (inferior *inf : all_inferiors ())
406 if (inf->has_execution ()
407 && threads_are_executing (inf->process_target ()))
408 return 1;
409
410 /* Don't remove breakpoints yet if, even though all threads are
411 stopped, we still have events to process. */
412 for (thread_info *tp : all_non_exited_threads ())
413 if (tp->resumed
414 && tp->suspend.waitstatus_pending_p)
415 return 1;
416 }
417 return 0;
418 }
419
420 static const char condition_evaluation_both[] = "host or target";
421
422 /* Modes for breakpoint condition evaluation. */
423 static const char condition_evaluation_auto[] = "auto";
424 static const char condition_evaluation_host[] = "host";
425 static const char condition_evaluation_target[] = "target";
426 static const char *const condition_evaluation_enums[] = {
427 condition_evaluation_auto,
428 condition_evaluation_host,
429 condition_evaluation_target,
430 NULL
431 };
432
433 /* Global that holds the current mode for breakpoint condition evaluation. */
434 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
435
436 /* Global that we use to display information to the user (gets its value from
437 condition_evaluation_mode_1. */
438 static const char *condition_evaluation_mode = condition_evaluation_auto;
439
440 /* Translate a condition evaluation mode MODE into either "host"
441 or "target". This is used mostly to translate from "auto" to the
442 real setting that is being used. It returns the translated
443 evaluation mode. */
444
445 static const char *
446 translate_condition_evaluation_mode (const char *mode)
447 {
448 if (mode == condition_evaluation_auto)
449 {
450 if (target_supports_evaluation_of_breakpoint_conditions ())
451 return condition_evaluation_target;
452 else
453 return condition_evaluation_host;
454 }
455 else
456 return mode;
457 }
458
459 /* Discovers what condition_evaluation_auto translates to. */
460
461 static const char *
462 breakpoint_condition_evaluation_mode (void)
463 {
464 return translate_condition_evaluation_mode (condition_evaluation_mode);
465 }
466
467 /* Return true if GDB should evaluate breakpoint conditions or false
468 otherwise. */
469
470 static int
471 gdb_evaluates_breakpoint_condition_p (void)
472 {
473 const char *mode = breakpoint_condition_evaluation_mode ();
474
475 return (mode == condition_evaluation_host);
476 }
477
478 /* Are we executing breakpoint commands? */
479 static int executing_breakpoint_commands;
480
481 /* Are overlay event breakpoints enabled? */
482 static int overlay_events_enabled;
483
484 /* See description in breakpoint.h. */
485 bool target_exact_watchpoints = false;
486
487 /* Walk the following statement or block through all breakpoints.
488 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
489 current breakpoint. */
490
491 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
492
493 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
494 for (B = breakpoint_chain; \
495 B ? (TMP=B->next, 1): 0; \
496 B = TMP)
497
498 /* Similar iterator for the low-level breakpoints. SAFE variant is
499 not provided so update_global_location_list must not be called
500 while executing the block of ALL_BP_LOCATIONS. */
501
502 #define ALL_BP_LOCATIONS(B,BP_TMP) \
503 for (BP_TMP = bp_locations; \
504 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
505 BP_TMP++)
506
507 /* Iterates through locations with address ADDRESS for the currently selected
508 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
509 to where the loop should start from.
510 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
511 appropriate location to start with. */
512
513 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
514 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
515 BP_LOCP_TMP = BP_LOCP_START; \
516 BP_LOCP_START \
517 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
518 && (*BP_LOCP_TMP)->address == ADDRESS); \
519 BP_LOCP_TMP++)
520
521 /* Iterator for tracepoints only. */
522
523 #define ALL_TRACEPOINTS(B) \
524 for (B = breakpoint_chain; B; B = B->next) \
525 if (is_tracepoint (B))
526
527 /* Chains of all breakpoints defined. */
528
529 static struct breakpoint *breakpoint_chain;
530
531 /* Array is sorted by bp_location_is_less_than - primarily by the ADDRESS. */
532
533 static struct bp_location **bp_locations;
534
535 /* Number of elements of BP_LOCATIONS. */
536
537 static unsigned bp_locations_count;
538
539 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
540 ADDRESS for the current elements of BP_LOCATIONS which get a valid
541 result from bp_location_has_shadow. You can use it for roughly
542 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
543 an address you need to read. */
544
545 static CORE_ADDR bp_locations_placed_address_before_address_max;
546
547 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
548 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
549 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
550 You can use it for roughly limiting the subrange of BP_LOCATIONS to
551 scan for shadow bytes for an address you need to read. */
552
553 static CORE_ADDR bp_locations_shadow_len_after_address_max;
554
555 /* The locations that no longer correspond to any breakpoint, unlinked
556 from the bp_locations array, but for which a hit may still be
557 reported by a target. */
558 static std::vector<bp_location *> moribund_locations;
559
560 /* Number of last breakpoint made. */
561
562 static int breakpoint_count;
563
564 /* The value of `breakpoint_count' before the last command that
565 created breakpoints. If the last (break-like) command created more
566 than one breakpoint, then the difference between BREAKPOINT_COUNT
567 and PREV_BREAKPOINT_COUNT is more than one. */
568 static int prev_breakpoint_count;
569
570 /* Number of last tracepoint made. */
571
572 static int tracepoint_count;
573
574 static struct cmd_list_element *breakpoint_set_cmdlist;
575 static struct cmd_list_element *breakpoint_show_cmdlist;
576 struct cmd_list_element *save_cmdlist;
577
578 /* See declaration at breakpoint.h. */
579
580 struct breakpoint *
581 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
582 void *user_data)
583 {
584 struct breakpoint *b = NULL;
585
586 ALL_BREAKPOINTS (b)
587 {
588 if (func (b, user_data) != 0)
589 break;
590 }
591
592 return b;
593 }
594
595 /* Return whether a breakpoint is an active enabled breakpoint. */
596 static int
597 breakpoint_enabled (struct breakpoint *b)
598 {
599 return (b->enable_state == bp_enabled);
600 }
601
602 /* Set breakpoint count to NUM. */
603
604 static void
605 set_breakpoint_count (int num)
606 {
607 prev_breakpoint_count = breakpoint_count;
608 breakpoint_count = num;
609 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
610 }
611
612 /* Used by `start_rbreak_breakpoints' below, to record the current
613 breakpoint count before "rbreak" creates any breakpoint. */
614 static int rbreak_start_breakpoint_count;
615
616 /* Called at the start an "rbreak" command to record the first
617 breakpoint made. */
618
619 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
620 {
621 rbreak_start_breakpoint_count = breakpoint_count;
622 }
623
624 /* Called at the end of an "rbreak" command to record the last
625 breakpoint made. */
626
627 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
628 {
629 prev_breakpoint_count = rbreak_start_breakpoint_count;
630 }
631
632 /* Used in run_command to zero the hit count when a new run starts. */
633
634 void
635 clear_breakpoint_hit_counts (void)
636 {
637 struct breakpoint *b;
638
639 ALL_BREAKPOINTS (b)
640 b->hit_count = 0;
641 }
642
643 \f
644 /* Return the breakpoint with the specified number, or NULL
645 if the number does not refer to an existing breakpoint. */
646
647 struct breakpoint *
648 get_breakpoint (int num)
649 {
650 struct breakpoint *b;
651
652 ALL_BREAKPOINTS (b)
653 if (b->number == num)
654 return b;
655
656 return NULL;
657 }
658
659 \f
660
661 /* Mark locations as "conditions have changed" in case the target supports
662 evaluating conditions on its side. */
663
664 static void
665 mark_breakpoint_modified (struct breakpoint *b)
666 {
667 struct bp_location *loc;
668
669 /* This is only meaningful if the target is
670 evaluating conditions and if the user has
671 opted for condition evaluation on the target's
672 side. */
673 if (gdb_evaluates_breakpoint_condition_p ()
674 || !target_supports_evaluation_of_breakpoint_conditions ())
675 return;
676
677 if (!is_breakpoint (b))
678 return;
679
680 for (loc = b->loc; loc; loc = loc->next)
681 loc->condition_changed = condition_modified;
682 }
683
684 /* Mark location as "conditions have changed" in case the target supports
685 evaluating conditions on its side. */
686
687 static void
688 mark_breakpoint_location_modified (struct bp_location *loc)
689 {
690 /* This is only meaningful if the target is
691 evaluating conditions and if the user has
692 opted for condition evaluation on the target's
693 side. */
694 if (gdb_evaluates_breakpoint_condition_p ()
695 || !target_supports_evaluation_of_breakpoint_conditions ())
696
697 return;
698
699 if (!is_breakpoint (loc->owner))
700 return;
701
702 loc->condition_changed = condition_modified;
703 }
704
705 /* Sets the condition-evaluation mode using the static global
706 condition_evaluation_mode. */
707
708 static void
709 set_condition_evaluation_mode (const char *args, int from_tty,
710 struct cmd_list_element *c)
711 {
712 const char *old_mode, *new_mode;
713
714 if ((condition_evaluation_mode_1 == condition_evaluation_target)
715 && !target_supports_evaluation_of_breakpoint_conditions ())
716 {
717 condition_evaluation_mode_1 = condition_evaluation_mode;
718 warning (_("Target does not support breakpoint condition evaluation.\n"
719 "Using host evaluation mode instead."));
720 return;
721 }
722
723 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
724 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
725
726 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
727 settings was "auto". */
728 condition_evaluation_mode = condition_evaluation_mode_1;
729
730 /* Only update the mode if the user picked a different one. */
731 if (new_mode != old_mode)
732 {
733 struct bp_location *loc, **loc_tmp;
734 /* If the user switched to a different evaluation mode, we
735 need to synch the changes with the target as follows:
736
737 "host" -> "target": Send all (valid) conditions to the target.
738 "target" -> "host": Remove all the conditions from the target.
739 */
740
741 if (new_mode == condition_evaluation_target)
742 {
743 /* Mark everything modified and synch conditions with the
744 target. */
745 ALL_BP_LOCATIONS (loc, loc_tmp)
746 mark_breakpoint_location_modified (loc);
747 }
748 else
749 {
750 /* Manually mark non-duplicate locations to synch conditions
751 with the target. We do this to remove all the conditions the
752 target knows about. */
753 ALL_BP_LOCATIONS (loc, loc_tmp)
754 if (is_breakpoint (loc->owner) && loc->inserted)
755 loc->needs_update = 1;
756 }
757
758 /* Do the update. */
759 update_global_location_list (UGLL_MAY_INSERT);
760 }
761
762 return;
763 }
764
765 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
766 what "auto" is translating to. */
767
768 static void
769 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
770 struct cmd_list_element *c, const char *value)
771 {
772 if (condition_evaluation_mode == condition_evaluation_auto)
773 fprintf_filtered (file,
774 _("Breakpoint condition evaluation "
775 "mode is %s (currently %s).\n"),
776 value,
777 breakpoint_condition_evaluation_mode ());
778 else
779 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
780 value);
781 }
782
783 /* A comparison function for bp_location AP and BP that is used by
784 bsearch. This comparison function only cares about addresses, unlike
785 the more general bp_location_is_less_than function. */
786
787 static int
788 bp_locations_compare_addrs (const void *ap, const void *bp)
789 {
790 const struct bp_location *a = *(const struct bp_location **) ap;
791 const struct bp_location *b = *(const struct bp_location **) bp;
792
793 if (a->address == b->address)
794 return 0;
795 else
796 return ((a->address > b->address) - (a->address < b->address));
797 }
798
799 /* Helper function to skip all bp_locations with addresses
800 less than ADDRESS. It returns the first bp_location that
801 is greater than or equal to ADDRESS. If none is found, just
802 return NULL. */
803
804 static struct bp_location **
805 get_first_locp_gte_addr (CORE_ADDR address)
806 {
807 struct bp_location dummy_loc;
808 struct bp_location *dummy_locp = &dummy_loc;
809 struct bp_location **locp_found = NULL;
810
811 /* Initialize the dummy location's address field. */
812 dummy_loc.address = address;
813
814 /* Find a close match to the first location at ADDRESS. */
815 locp_found = ((struct bp_location **)
816 bsearch (&dummy_locp, bp_locations, bp_locations_count,
817 sizeof (struct bp_location **),
818 bp_locations_compare_addrs));
819
820 /* Nothing was found, nothing left to do. */
821 if (locp_found == NULL)
822 return NULL;
823
824 /* We may have found a location that is at ADDRESS but is not the first in the
825 location's list. Go backwards (if possible) and locate the first one. */
826 while ((locp_found - 1) >= bp_locations
827 && (*(locp_found - 1))->address == address)
828 locp_found--;
829
830 return locp_found;
831 }
832
833 void
834 set_breakpoint_condition (struct breakpoint *b, const char *exp,
835 int from_tty)
836 {
837 xfree (b->cond_string);
838 b->cond_string = NULL;
839
840 if (is_watchpoint (b))
841 {
842 struct watchpoint *w = (struct watchpoint *) b;
843
844 w->cond_exp.reset ();
845 }
846 else
847 {
848 struct bp_location *loc;
849
850 for (loc = b->loc; loc; loc = loc->next)
851 {
852 loc->cond.reset ();
853
854 /* No need to free the condition agent expression
855 bytecode (if we have one). We will handle this
856 when we go through update_global_location_list. */
857 }
858 }
859
860 if (*exp == 0)
861 {
862 if (from_tty)
863 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
864 }
865 else
866 {
867 const char *arg = exp;
868
869 /* I don't know if it matters whether this is the string the user
870 typed in or the decompiled expression. */
871 b->cond_string = xstrdup (arg);
872 b->condition_not_parsed = 0;
873
874 if (is_watchpoint (b))
875 {
876 struct watchpoint *w = (struct watchpoint *) b;
877
878 innermost_block_tracker tracker;
879 arg = exp;
880 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
881 if (*arg)
882 error (_("Junk at end of expression"));
883 w->cond_exp_valid_block = tracker.block ();
884 }
885 else
886 {
887 struct bp_location *loc;
888
889 for (loc = b->loc; loc; loc = loc->next)
890 {
891 arg = exp;
892 loc->cond =
893 parse_exp_1 (&arg, loc->address,
894 block_for_pc (loc->address), 0);
895 if (*arg)
896 error (_("Junk at end of expression"));
897 }
898 }
899 }
900 mark_breakpoint_modified (b);
901
902 gdb::observers::breakpoint_modified.notify (b);
903 }
904
905 /* Completion for the "condition" command. */
906
907 static void
908 condition_completer (struct cmd_list_element *cmd,
909 completion_tracker &tracker,
910 const char *text, const char *word)
911 {
912 const char *space;
913
914 text = skip_spaces (text);
915 space = skip_to_space (text);
916 if (*space == '\0')
917 {
918 int len;
919 struct breakpoint *b;
920
921 if (text[0] == '$')
922 {
923 /* We don't support completion of history indices. */
924 if (!isdigit (text[1]))
925 complete_internalvar (tracker, &text[1]);
926 return;
927 }
928
929 /* We're completing the breakpoint number. */
930 len = strlen (text);
931
932 ALL_BREAKPOINTS (b)
933 {
934 char number[50];
935
936 xsnprintf (number, sizeof (number), "%d", b->number);
937
938 if (strncmp (number, text, len) == 0)
939 tracker.add_completion (make_unique_xstrdup (number));
940 }
941
942 return;
943 }
944
945 /* We're completing the expression part. */
946 text = skip_spaces (space);
947 expression_completer (cmd, tracker, text, word);
948 }
949
950 /* condition N EXP -- set break condition of breakpoint N to EXP. */
951
952 static void
953 condition_command (const char *arg, int from_tty)
954 {
955 struct breakpoint *b;
956 const char *p;
957 int bnum;
958
959 if (arg == 0)
960 error_no_arg (_("breakpoint number"));
961
962 p = arg;
963 bnum = get_number (&p);
964 if (bnum == 0)
965 error (_("Bad breakpoint argument: '%s'"), arg);
966
967 ALL_BREAKPOINTS (b)
968 if (b->number == bnum)
969 {
970 /* Check if this breakpoint has a "stop" method implemented in an
971 extension language. This method and conditions entered into GDB
972 from the CLI are mutually exclusive. */
973 const struct extension_language_defn *extlang
974 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
975
976 if (extlang != NULL)
977 {
978 error (_("Only one stop condition allowed. There is currently"
979 " a %s stop condition defined for this breakpoint."),
980 ext_lang_capitalized_name (extlang));
981 }
982 set_breakpoint_condition (b, p, from_tty);
983
984 if (is_breakpoint (b))
985 update_global_location_list (UGLL_MAY_INSERT);
986
987 return;
988 }
989
990 error (_("No breakpoint number %d."), bnum);
991 }
992
993 /* Check that COMMAND do not contain commands that are suitable
994 only for tracepoints and not suitable for ordinary breakpoints.
995 Throw if any such commands is found. */
996
997 static void
998 check_no_tracepoint_commands (struct command_line *commands)
999 {
1000 struct command_line *c;
1001
1002 for (c = commands; c; c = c->next)
1003 {
1004 if (c->control_type == while_stepping_control)
1005 error (_("The 'while-stepping' command can "
1006 "only be used for tracepoints"));
1007
1008 check_no_tracepoint_commands (c->body_list_0.get ());
1009 check_no_tracepoint_commands (c->body_list_1.get ());
1010
1011 /* Not that command parsing removes leading whitespace and comment
1012 lines and also empty lines. So, we only need to check for
1013 command directly. */
1014 if (strstr (c->line, "collect ") == c->line)
1015 error (_("The 'collect' command can only be used for tracepoints"));
1016
1017 if (strstr (c->line, "teval ") == c->line)
1018 error (_("The 'teval' command can only be used for tracepoints"));
1019 }
1020 }
1021
1022 struct longjmp_breakpoint : public breakpoint
1023 {
1024 ~longjmp_breakpoint () override;
1025 };
1026
1027 /* Encapsulate tests for different types of tracepoints. */
1028
1029 static bool
1030 is_tracepoint_type (bptype type)
1031 {
1032 return (type == bp_tracepoint
1033 || type == bp_fast_tracepoint
1034 || type == bp_static_tracepoint);
1035 }
1036
1037 static bool
1038 is_longjmp_type (bptype type)
1039 {
1040 return type == bp_longjmp || type == bp_exception;
1041 }
1042
1043 /* See breakpoint.h. */
1044
1045 bool
1046 is_tracepoint (const struct breakpoint *b)
1047 {
1048 return is_tracepoint_type (b->type);
1049 }
1050
1051 /* Factory function to create an appropriate instance of breakpoint given
1052 TYPE. */
1053
1054 static std::unique_ptr<breakpoint>
1055 new_breakpoint_from_type (bptype type)
1056 {
1057 breakpoint *b;
1058
1059 if (is_tracepoint_type (type))
1060 b = new tracepoint ();
1061 else if (is_longjmp_type (type))
1062 b = new longjmp_breakpoint ();
1063 else
1064 b = new breakpoint ();
1065
1066 return std::unique_ptr<breakpoint> (b);
1067 }
1068
1069 /* A helper function that validates that COMMANDS are valid for a
1070 breakpoint. This function will throw an exception if a problem is
1071 found. */
1072
1073 static void
1074 validate_commands_for_breakpoint (struct breakpoint *b,
1075 struct command_line *commands)
1076 {
1077 if (is_tracepoint (b))
1078 {
1079 struct tracepoint *t = (struct tracepoint *) b;
1080 struct command_line *c;
1081 struct command_line *while_stepping = 0;
1082
1083 /* Reset the while-stepping step count. The previous commands
1084 might have included a while-stepping action, while the new
1085 ones might not. */
1086 t->step_count = 0;
1087
1088 /* We need to verify that each top-level element of commands is
1089 valid for tracepoints, that there's at most one
1090 while-stepping element, and that the while-stepping's body
1091 has valid tracing commands excluding nested while-stepping.
1092 We also need to validate the tracepoint action line in the
1093 context of the tracepoint --- validate_actionline actually
1094 has side effects, like setting the tracepoint's
1095 while-stepping STEP_COUNT, in addition to checking if the
1096 collect/teval actions parse and make sense in the
1097 tracepoint's context. */
1098 for (c = commands; c; c = c->next)
1099 {
1100 if (c->control_type == while_stepping_control)
1101 {
1102 if (b->type == bp_fast_tracepoint)
1103 error (_("The 'while-stepping' command "
1104 "cannot be used for fast tracepoint"));
1105 else if (b->type == bp_static_tracepoint)
1106 error (_("The 'while-stepping' command "
1107 "cannot be used for static tracepoint"));
1108
1109 if (while_stepping)
1110 error (_("The 'while-stepping' command "
1111 "can be used only once"));
1112 else
1113 while_stepping = c;
1114 }
1115
1116 validate_actionline (c->line, b);
1117 }
1118 if (while_stepping)
1119 {
1120 struct command_line *c2;
1121
1122 gdb_assert (while_stepping->body_list_1 == nullptr);
1123 c2 = while_stepping->body_list_0.get ();
1124 for (; c2; c2 = c2->next)
1125 {
1126 if (c2->control_type == while_stepping_control)
1127 error (_("The 'while-stepping' command cannot be nested"));
1128 }
1129 }
1130 }
1131 else
1132 {
1133 check_no_tracepoint_commands (commands);
1134 }
1135 }
1136
1137 /* Return a vector of all the static tracepoints set at ADDR. The
1138 caller is responsible for releasing the vector. */
1139
1140 std::vector<breakpoint *>
1141 static_tracepoints_here (CORE_ADDR addr)
1142 {
1143 struct breakpoint *b;
1144 std::vector<breakpoint *> found;
1145 struct bp_location *loc;
1146
1147 ALL_BREAKPOINTS (b)
1148 if (b->type == bp_static_tracepoint)
1149 {
1150 for (loc = b->loc; loc; loc = loc->next)
1151 if (loc->address == addr)
1152 found.push_back (b);
1153 }
1154
1155 return found;
1156 }
1157
1158 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1159 validate that only allowed commands are included. */
1160
1161 void
1162 breakpoint_set_commands (struct breakpoint *b,
1163 counted_command_line &&commands)
1164 {
1165 validate_commands_for_breakpoint (b, commands.get ());
1166
1167 b->commands = std::move (commands);
1168 gdb::observers::breakpoint_modified.notify (b);
1169 }
1170
1171 /* Set the internal `silent' flag on the breakpoint. Note that this
1172 is not the same as the "silent" that may appear in the breakpoint's
1173 commands. */
1174
1175 void
1176 breakpoint_set_silent (struct breakpoint *b, int silent)
1177 {
1178 int old_silent = b->silent;
1179
1180 b->silent = silent;
1181 if (old_silent != silent)
1182 gdb::observers::breakpoint_modified.notify (b);
1183 }
1184
1185 /* Set the thread for this breakpoint. If THREAD is -1, make the
1186 breakpoint work for any thread. */
1187
1188 void
1189 breakpoint_set_thread (struct breakpoint *b, int thread)
1190 {
1191 int old_thread = b->thread;
1192
1193 b->thread = thread;
1194 if (old_thread != thread)
1195 gdb::observers::breakpoint_modified.notify (b);
1196 }
1197
1198 /* Set the task for this breakpoint. If TASK is 0, make the
1199 breakpoint work for any task. */
1200
1201 void
1202 breakpoint_set_task (struct breakpoint *b, int task)
1203 {
1204 int old_task = b->task;
1205
1206 b->task = task;
1207 if (old_task != task)
1208 gdb::observers::breakpoint_modified.notify (b);
1209 }
1210
1211 static void
1212 commands_command_1 (const char *arg, int from_tty,
1213 struct command_line *control)
1214 {
1215 counted_command_line cmd;
1216 /* cmd_read will be true once we have read cmd. Note that cmd might still be
1217 NULL after the call to read_command_lines if the user provides an empty
1218 list of command by just typing "end". */
1219 bool cmd_read = false;
1220
1221 std::string new_arg;
1222
1223 if (arg == NULL || !*arg)
1224 {
1225 if (breakpoint_count - prev_breakpoint_count > 1)
1226 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1227 breakpoint_count);
1228 else if (breakpoint_count > 0)
1229 new_arg = string_printf ("%d", breakpoint_count);
1230 arg = new_arg.c_str ();
1231 }
1232
1233 map_breakpoint_numbers
1234 (arg, [&] (breakpoint *b)
1235 {
1236 if (!cmd_read)
1237 {
1238 gdb_assert (cmd == NULL);
1239 if (control != NULL)
1240 cmd = control->body_list_0;
1241 else
1242 {
1243 std::string str
1244 = string_printf (_("Type commands for breakpoint(s) "
1245 "%s, one per line."),
1246 arg);
1247
1248 auto do_validate = [=] (const char *line)
1249 {
1250 validate_actionline (line, b);
1251 };
1252 gdb::function_view<void (const char *)> validator;
1253 if (is_tracepoint (b))
1254 validator = do_validate;
1255
1256 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1257 }
1258 cmd_read = true;
1259 }
1260
1261 /* If a breakpoint was on the list more than once, we don't need to
1262 do anything. */
1263 if (b->commands != cmd)
1264 {
1265 validate_commands_for_breakpoint (b, cmd.get ());
1266 b->commands = cmd;
1267 gdb::observers::breakpoint_modified.notify (b);
1268 }
1269 });
1270 }
1271
1272 static void
1273 commands_command (const char *arg, int from_tty)
1274 {
1275 commands_command_1 (arg, from_tty, NULL);
1276 }
1277
1278 /* Like commands_command, but instead of reading the commands from
1279 input stream, takes them from an already parsed command structure.
1280
1281 This is used by cli-script.c to DTRT with breakpoint commands
1282 that are part of if and while bodies. */
1283 enum command_control_type
1284 commands_from_control_command (const char *arg, struct command_line *cmd)
1285 {
1286 commands_command_1 (arg, 0, cmd);
1287 return simple_control;
1288 }
1289
1290 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1291
1292 static int
1293 bp_location_has_shadow (struct bp_location *bl)
1294 {
1295 if (bl->loc_type != bp_loc_software_breakpoint)
1296 return 0;
1297 if (!bl->inserted)
1298 return 0;
1299 if (bl->target_info.shadow_len == 0)
1300 /* BL isn't valid, or doesn't shadow memory. */
1301 return 0;
1302 return 1;
1303 }
1304
1305 /* Update BUF, which is LEN bytes read from the target address
1306 MEMADDR, by replacing a memory breakpoint with its shadowed
1307 contents.
1308
1309 If READBUF is not NULL, this buffer must not overlap with the of
1310 the breakpoint location's shadow_contents buffer. Otherwise, a
1311 failed assertion internal error will be raised. */
1312
1313 static void
1314 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1315 const gdb_byte *writebuf_org,
1316 ULONGEST memaddr, LONGEST len,
1317 struct bp_target_info *target_info,
1318 struct gdbarch *gdbarch)
1319 {
1320 /* Now do full processing of the found relevant range of elements. */
1321 CORE_ADDR bp_addr = 0;
1322 int bp_size = 0;
1323 int bptoffset = 0;
1324
1325 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1326 current_program_space->aspace, 0))
1327 {
1328 /* The breakpoint is inserted in a different address space. */
1329 return;
1330 }
1331
1332 /* Addresses and length of the part of the breakpoint that
1333 we need to copy. */
1334 bp_addr = target_info->placed_address;
1335 bp_size = target_info->shadow_len;
1336
1337 if (bp_addr + bp_size <= memaddr)
1338 {
1339 /* The breakpoint is entirely before the chunk of memory we are
1340 reading. */
1341 return;
1342 }
1343
1344 if (bp_addr >= memaddr + len)
1345 {
1346 /* The breakpoint is entirely after the chunk of memory we are
1347 reading. */
1348 return;
1349 }
1350
1351 /* Offset within shadow_contents. */
1352 if (bp_addr < memaddr)
1353 {
1354 /* Only copy the second part of the breakpoint. */
1355 bp_size -= memaddr - bp_addr;
1356 bptoffset = memaddr - bp_addr;
1357 bp_addr = memaddr;
1358 }
1359
1360 if (bp_addr + bp_size > memaddr + len)
1361 {
1362 /* Only copy the first part of the breakpoint. */
1363 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1364 }
1365
1366 if (readbuf != NULL)
1367 {
1368 /* Verify that the readbuf buffer does not overlap with the
1369 shadow_contents buffer. */
1370 gdb_assert (target_info->shadow_contents >= readbuf + len
1371 || readbuf >= (target_info->shadow_contents
1372 + target_info->shadow_len));
1373
1374 /* Update the read buffer with this inserted breakpoint's
1375 shadow. */
1376 memcpy (readbuf + bp_addr - memaddr,
1377 target_info->shadow_contents + bptoffset, bp_size);
1378 }
1379 else
1380 {
1381 const unsigned char *bp;
1382 CORE_ADDR addr = target_info->reqstd_address;
1383 int placed_size;
1384
1385 /* Update the shadow with what we want to write to memory. */
1386 memcpy (target_info->shadow_contents + bptoffset,
1387 writebuf_org + bp_addr - memaddr, bp_size);
1388
1389 /* Determine appropriate breakpoint contents and size for this
1390 address. */
1391 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1392
1393 /* Update the final write buffer with this inserted
1394 breakpoint's INSN. */
1395 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1396 }
1397 }
1398
1399 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1400 by replacing any memory breakpoints with their shadowed contents.
1401
1402 If READBUF is not NULL, this buffer must not overlap with any of
1403 the breakpoint location's shadow_contents buffers. Otherwise,
1404 a failed assertion internal error will be raised.
1405
1406 The range of shadowed area by each bp_location is:
1407 bl->address - bp_locations_placed_address_before_address_max
1408 up to bl->address + bp_locations_shadow_len_after_address_max
1409 The range we were requested to resolve shadows for is:
1410 memaddr ... memaddr + len
1411 Thus the safe cutoff boundaries for performance optimization are
1412 memaddr + len <= (bl->address
1413 - bp_locations_placed_address_before_address_max)
1414 and:
1415 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1416
1417 void
1418 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1419 const gdb_byte *writebuf_org,
1420 ULONGEST memaddr, LONGEST len)
1421 {
1422 /* Left boundary, right boundary and median element of our binary
1423 search. */
1424 unsigned bc_l, bc_r, bc;
1425
1426 /* Find BC_L which is a leftmost element which may affect BUF
1427 content. It is safe to report lower value but a failure to
1428 report higher one. */
1429
1430 bc_l = 0;
1431 bc_r = bp_locations_count;
1432 while (bc_l + 1 < bc_r)
1433 {
1434 struct bp_location *bl;
1435
1436 bc = (bc_l + bc_r) / 2;
1437 bl = bp_locations[bc];
1438
1439 /* Check first BL->ADDRESS will not overflow due to the added
1440 constant. Then advance the left boundary only if we are sure
1441 the BC element can in no way affect the BUF content (MEMADDR
1442 to MEMADDR + LEN range).
1443
1444 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1445 offset so that we cannot miss a breakpoint with its shadow
1446 range tail still reaching MEMADDR. */
1447
1448 if ((bl->address + bp_locations_shadow_len_after_address_max
1449 >= bl->address)
1450 && (bl->address + bp_locations_shadow_len_after_address_max
1451 <= memaddr))
1452 bc_l = bc;
1453 else
1454 bc_r = bc;
1455 }
1456
1457 /* Due to the binary search above, we need to make sure we pick the
1458 first location that's at BC_L's address. E.g., if there are
1459 multiple locations at the same address, BC_L may end up pointing
1460 at a duplicate location, and miss the "master"/"inserted"
1461 location. Say, given locations L1, L2 and L3 at addresses A and
1462 B:
1463
1464 L1@A, L2@A, L3@B, ...
1465
1466 BC_L could end up pointing at location L2, while the "master"
1467 location could be L1. Since the `loc->inserted' flag is only set
1468 on "master" locations, we'd forget to restore the shadow of L1
1469 and L2. */
1470 while (bc_l > 0
1471 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1472 bc_l--;
1473
1474 /* Now do full processing of the found relevant range of elements. */
1475
1476 for (bc = bc_l; bc < bp_locations_count; bc++)
1477 {
1478 struct bp_location *bl = bp_locations[bc];
1479
1480 /* bp_location array has BL->OWNER always non-NULL. */
1481 if (bl->owner->type == bp_none)
1482 warning (_("reading through apparently deleted breakpoint #%d?"),
1483 bl->owner->number);
1484
1485 /* Performance optimization: any further element can no longer affect BUF
1486 content. */
1487
1488 if (bl->address >= bp_locations_placed_address_before_address_max
1489 && memaddr + len <= (bl->address
1490 - bp_locations_placed_address_before_address_max))
1491 break;
1492
1493 if (!bp_location_has_shadow (bl))
1494 continue;
1495
1496 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1497 memaddr, len, &bl->target_info, bl->gdbarch);
1498 }
1499 }
1500
1501 /* See breakpoint.h. */
1502
1503 bool
1504 is_breakpoint (const struct breakpoint *bpt)
1505 {
1506 return (bpt->type == bp_breakpoint
1507 || bpt->type == bp_hardware_breakpoint
1508 || bpt->type == bp_dprintf);
1509 }
1510
1511 /* Return true if BPT is of any hardware watchpoint kind. */
1512
1513 static bool
1514 is_hardware_watchpoint (const struct breakpoint *bpt)
1515 {
1516 return (bpt->type == bp_hardware_watchpoint
1517 || bpt->type == bp_read_watchpoint
1518 || bpt->type == bp_access_watchpoint);
1519 }
1520
1521 /* See breakpoint.h. */
1522
1523 bool
1524 is_watchpoint (const struct breakpoint *bpt)
1525 {
1526 return (is_hardware_watchpoint (bpt)
1527 || bpt->type == bp_watchpoint);
1528 }
1529
1530 /* Returns true if the current thread and its running state are safe
1531 to evaluate or update watchpoint B. Watchpoints on local
1532 expressions need to be evaluated in the context of the thread that
1533 was current when the watchpoint was created, and, that thread needs
1534 to be stopped to be able to select the correct frame context.
1535 Watchpoints on global expressions can be evaluated on any thread,
1536 and in any state. It is presently left to the target allowing
1537 memory accesses when threads are running. */
1538
1539 static int
1540 watchpoint_in_thread_scope (struct watchpoint *b)
1541 {
1542 return (b->pspace == current_program_space
1543 && (b->watchpoint_thread == null_ptid
1544 || (inferior_ptid == b->watchpoint_thread
1545 && !inferior_thread ()->executing)));
1546 }
1547
1548 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1549 associated bp_watchpoint_scope breakpoint. */
1550
1551 static void
1552 watchpoint_del_at_next_stop (struct watchpoint *w)
1553 {
1554 if (w->related_breakpoint != w)
1555 {
1556 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1557 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1558 w->related_breakpoint->disposition = disp_del_at_next_stop;
1559 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1560 w->related_breakpoint = w;
1561 }
1562 w->disposition = disp_del_at_next_stop;
1563 }
1564
1565 /* Extract a bitfield value from value VAL using the bit parameters contained in
1566 watchpoint W. */
1567
1568 static struct value *
1569 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1570 {
1571 struct value *bit_val;
1572
1573 if (val == NULL)
1574 return NULL;
1575
1576 bit_val = allocate_value (value_type (val));
1577
1578 unpack_value_bitfield (bit_val,
1579 w->val_bitpos,
1580 w->val_bitsize,
1581 value_contents_for_printing (val),
1582 value_offset (val),
1583 val);
1584
1585 return bit_val;
1586 }
1587
1588 /* Allocate a dummy location and add it to B, which must be a software
1589 watchpoint. This is required because even if a software watchpoint
1590 is not watching any memory, bpstat_stop_status requires a location
1591 to be able to report stops. */
1592
1593 static void
1594 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1595 struct program_space *pspace)
1596 {
1597 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1598
1599 b->loc = allocate_bp_location (b);
1600 b->loc->pspace = pspace;
1601 b->loc->address = -1;
1602 b->loc->length = -1;
1603 }
1604
1605 /* Returns true if B is a software watchpoint that is not watching any
1606 memory (e.g., "watch $pc"). */
1607
1608 static bool
1609 is_no_memory_software_watchpoint (struct breakpoint *b)
1610 {
1611 return (b->type == bp_watchpoint
1612 && b->loc != NULL
1613 && b->loc->next == NULL
1614 && b->loc->address == -1
1615 && b->loc->length == -1);
1616 }
1617
1618 /* Assuming that B is a watchpoint:
1619 - Reparse watchpoint expression, if REPARSE is non-zero
1620 - Evaluate expression and store the result in B->val
1621 - Evaluate the condition if there is one, and store the result
1622 in b->loc->cond.
1623 - Update the list of values that must be watched in B->loc.
1624
1625 If the watchpoint disposition is disp_del_at_next_stop, then do
1626 nothing. If this is local watchpoint that is out of scope, delete
1627 it.
1628
1629 Even with `set breakpoint always-inserted on' the watchpoints are
1630 removed + inserted on each stop here. Normal breakpoints must
1631 never be removed because they might be missed by a running thread
1632 when debugging in non-stop mode. On the other hand, hardware
1633 watchpoints (is_hardware_watchpoint; processed here) are specific
1634 to each LWP since they are stored in each LWP's hardware debug
1635 registers. Therefore, such LWP must be stopped first in order to
1636 be able to modify its hardware watchpoints.
1637
1638 Hardware watchpoints must be reset exactly once after being
1639 presented to the user. It cannot be done sooner, because it would
1640 reset the data used to present the watchpoint hit to the user. And
1641 it must not be done later because it could display the same single
1642 watchpoint hit during multiple GDB stops. Note that the latter is
1643 relevant only to the hardware watchpoint types bp_read_watchpoint
1644 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1645 not user-visible - its hit is suppressed if the memory content has
1646 not changed.
1647
1648 The following constraints influence the location where we can reset
1649 hardware watchpoints:
1650
1651 * target_stopped_by_watchpoint and target_stopped_data_address are
1652 called several times when GDB stops.
1653
1654 [linux]
1655 * Multiple hardware watchpoints can be hit at the same time,
1656 causing GDB to stop. GDB only presents one hardware watchpoint
1657 hit at a time as the reason for stopping, and all the other hits
1658 are presented later, one after the other, each time the user
1659 requests the execution to be resumed. Execution is not resumed
1660 for the threads still having pending hit event stored in
1661 LWP_INFO->STATUS. While the watchpoint is already removed from
1662 the inferior on the first stop the thread hit event is kept being
1663 reported from its cached value by linux_nat_stopped_data_address
1664 until the real thread resume happens after the watchpoint gets
1665 presented and thus its LWP_INFO->STATUS gets reset.
1666
1667 Therefore the hardware watchpoint hit can get safely reset on the
1668 watchpoint removal from inferior. */
1669
1670 static void
1671 update_watchpoint (struct watchpoint *b, int reparse)
1672 {
1673 int within_current_scope;
1674 struct frame_id saved_frame_id;
1675 int frame_saved;
1676
1677 /* If this is a local watchpoint, we only want to check if the
1678 watchpoint frame is in scope if the current thread is the thread
1679 that was used to create the watchpoint. */
1680 if (!watchpoint_in_thread_scope (b))
1681 return;
1682
1683 if (b->disposition == disp_del_at_next_stop)
1684 return;
1685
1686 frame_saved = 0;
1687
1688 /* Determine if the watchpoint is within scope. */
1689 if (b->exp_valid_block == NULL)
1690 within_current_scope = 1;
1691 else
1692 {
1693 struct frame_info *fi = get_current_frame ();
1694 struct gdbarch *frame_arch = get_frame_arch (fi);
1695 CORE_ADDR frame_pc = get_frame_pc (fi);
1696
1697 /* If we're at a point where the stack has been destroyed
1698 (e.g. in a function epilogue), unwinding may not work
1699 properly. Do not attempt to recreate locations at this
1700 point. See similar comments in watchpoint_check. */
1701 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1702 return;
1703
1704 /* Save the current frame's ID so we can restore it after
1705 evaluating the watchpoint expression on its own frame. */
1706 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1707 took a frame parameter, so that we didn't have to change the
1708 selected frame. */
1709 frame_saved = 1;
1710 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1711
1712 fi = frame_find_by_id (b->watchpoint_frame);
1713 within_current_scope = (fi != NULL);
1714 if (within_current_scope)
1715 select_frame (fi);
1716 }
1717
1718 /* We don't free locations. They are stored in the bp_location array
1719 and update_global_location_list will eventually delete them and
1720 remove breakpoints if needed. */
1721 b->loc = NULL;
1722
1723 if (within_current_scope && reparse)
1724 {
1725 const char *s;
1726
1727 b->exp.reset ();
1728 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1729 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1730 /* If the meaning of expression itself changed, the old value is
1731 no longer relevant. We don't want to report a watchpoint hit
1732 to the user when the old value and the new value may actually
1733 be completely different objects. */
1734 b->val = NULL;
1735 b->val_valid = false;
1736
1737 /* Note that unlike with breakpoints, the watchpoint's condition
1738 expression is stored in the breakpoint object, not in the
1739 locations (re)created below. */
1740 if (b->cond_string != NULL)
1741 {
1742 b->cond_exp.reset ();
1743
1744 s = b->cond_string;
1745 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1746 }
1747 }
1748
1749 /* If we failed to parse the expression, for example because
1750 it refers to a global variable in a not-yet-loaded shared library,
1751 don't try to insert watchpoint. We don't automatically delete
1752 such watchpoint, though, since failure to parse expression
1753 is different from out-of-scope watchpoint. */
1754 if (!target_has_execution)
1755 {
1756 /* Without execution, memory can't change. No use to try and
1757 set watchpoint locations. The watchpoint will be reset when
1758 the target gains execution, through breakpoint_re_set. */
1759 if (!can_use_hw_watchpoints)
1760 {
1761 if (b->ops->works_in_software_mode (b))
1762 b->type = bp_watchpoint;
1763 else
1764 error (_("Can't set read/access watchpoint when "
1765 "hardware watchpoints are disabled."));
1766 }
1767 }
1768 else if (within_current_scope && b->exp)
1769 {
1770 int pc = 0;
1771 std::vector<value_ref_ptr> val_chain;
1772 struct value *v, *result;
1773 struct program_space *frame_pspace;
1774
1775 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1776
1777 /* Avoid setting b->val if it's already set. The meaning of
1778 b->val is 'the last value' user saw, and we should update
1779 it only if we reported that last value to user. As it
1780 happens, the code that reports it updates b->val directly.
1781 We don't keep track of the memory value for masked
1782 watchpoints. */
1783 if (!b->val_valid && !is_masked_watchpoint (b))
1784 {
1785 if (b->val_bitsize != 0)
1786 v = extract_bitfield_from_watchpoint_value (b, v);
1787 b->val = release_value (v);
1788 b->val_valid = true;
1789 }
1790
1791 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1792
1793 /* Look at each value on the value chain. */
1794 gdb_assert (!val_chain.empty ());
1795 for (const value_ref_ptr &iter : val_chain)
1796 {
1797 v = iter.get ();
1798
1799 /* If it's a memory location, and GDB actually needed
1800 its contents to evaluate the expression, then we
1801 must watch it. If the first value returned is
1802 still lazy, that means an error occurred reading it;
1803 watch it anyway in case it becomes readable. */
1804 if (VALUE_LVAL (v) == lval_memory
1805 && (v == val_chain[0] || ! value_lazy (v)))
1806 {
1807 struct type *vtype = check_typedef (value_type (v));
1808
1809 /* We only watch structs and arrays if user asked
1810 for it explicitly, never if they just happen to
1811 appear in the middle of some value chain. */
1812 if (v == result
1813 || (vtype->code () != TYPE_CODE_STRUCT
1814 && vtype->code () != TYPE_CODE_ARRAY))
1815 {
1816 CORE_ADDR addr;
1817 enum target_hw_bp_type type;
1818 struct bp_location *loc, **tmp;
1819 int bitpos = 0, bitsize = 0;
1820
1821 if (value_bitsize (v) != 0)
1822 {
1823 /* Extract the bit parameters out from the bitfield
1824 sub-expression. */
1825 bitpos = value_bitpos (v);
1826 bitsize = value_bitsize (v);
1827 }
1828 else if (v == result && b->val_bitsize != 0)
1829 {
1830 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1831 lvalue whose bit parameters are saved in the fields
1832 VAL_BITPOS and VAL_BITSIZE. */
1833 bitpos = b->val_bitpos;
1834 bitsize = b->val_bitsize;
1835 }
1836
1837 addr = value_address (v);
1838 if (bitsize != 0)
1839 {
1840 /* Skip the bytes that don't contain the bitfield. */
1841 addr += bitpos / 8;
1842 }
1843
1844 type = hw_write;
1845 if (b->type == bp_read_watchpoint)
1846 type = hw_read;
1847 else if (b->type == bp_access_watchpoint)
1848 type = hw_access;
1849
1850 loc = allocate_bp_location (b);
1851 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1852 ;
1853 *tmp = loc;
1854 loc->gdbarch = get_type_arch (value_type (v));
1855
1856 loc->pspace = frame_pspace;
1857 loc->address = address_significant (loc->gdbarch, addr);
1858
1859 if (bitsize != 0)
1860 {
1861 /* Just cover the bytes that make up the bitfield. */
1862 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1863 }
1864 else
1865 loc->length = TYPE_LENGTH (value_type (v));
1866
1867 loc->watchpoint_type = type;
1868 }
1869 }
1870 }
1871
1872 /* Change the type of breakpoint between hardware assisted or
1873 an ordinary watchpoint depending on the hardware support
1874 and free hardware slots. REPARSE is set when the inferior
1875 is started. */
1876 if (reparse)
1877 {
1878 int reg_cnt;
1879 enum bp_loc_type loc_type;
1880 struct bp_location *bl;
1881
1882 reg_cnt = can_use_hardware_watchpoint (val_chain);
1883
1884 if (reg_cnt)
1885 {
1886 int i, target_resources_ok, other_type_used;
1887 enum bptype type;
1888
1889 /* Use an exact watchpoint when there's only one memory region to be
1890 watched, and only one debug register is needed to watch it. */
1891 b->exact = target_exact_watchpoints && reg_cnt == 1;
1892
1893 /* We need to determine how many resources are already
1894 used for all other hardware watchpoints plus this one
1895 to see if we still have enough resources to also fit
1896 this watchpoint in as well. */
1897
1898 /* If this is a software watchpoint, we try to turn it
1899 to a hardware one -- count resources as if B was of
1900 hardware watchpoint type. */
1901 type = b->type;
1902 if (type == bp_watchpoint)
1903 type = bp_hardware_watchpoint;
1904
1905 /* This watchpoint may or may not have been placed on
1906 the list yet at this point (it won't be in the list
1907 if we're trying to create it for the first time,
1908 through watch_command), so always account for it
1909 manually. */
1910
1911 /* Count resources used by all watchpoints except B. */
1912 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1913
1914 /* Add in the resources needed for B. */
1915 i += hw_watchpoint_use_count (b);
1916
1917 target_resources_ok
1918 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1919 if (target_resources_ok <= 0)
1920 {
1921 int sw_mode = b->ops->works_in_software_mode (b);
1922
1923 if (target_resources_ok == 0 && !sw_mode)
1924 error (_("Target does not support this type of "
1925 "hardware watchpoint."));
1926 else if (target_resources_ok < 0 && !sw_mode)
1927 error (_("There are not enough available hardware "
1928 "resources for this watchpoint."));
1929
1930 /* Downgrade to software watchpoint. */
1931 b->type = bp_watchpoint;
1932 }
1933 else
1934 {
1935 /* If this was a software watchpoint, we've just
1936 found we have enough resources to turn it to a
1937 hardware watchpoint. Otherwise, this is a
1938 nop. */
1939 b->type = type;
1940 }
1941 }
1942 else if (!b->ops->works_in_software_mode (b))
1943 {
1944 if (!can_use_hw_watchpoints)
1945 error (_("Can't set read/access watchpoint when "
1946 "hardware watchpoints are disabled."));
1947 else
1948 error (_("Expression cannot be implemented with "
1949 "read/access watchpoint."));
1950 }
1951 else
1952 b->type = bp_watchpoint;
1953
1954 loc_type = (b->type == bp_watchpoint? bp_loc_other
1955 : bp_loc_hardware_watchpoint);
1956 for (bl = b->loc; bl; bl = bl->next)
1957 bl->loc_type = loc_type;
1958 }
1959
1960 /* If a software watchpoint is not watching any memory, then the
1961 above left it without any location set up. But,
1962 bpstat_stop_status requires a location to be able to report
1963 stops, so make sure there's at least a dummy one. */
1964 if (b->type == bp_watchpoint && b->loc == NULL)
1965 software_watchpoint_add_no_memory_location (b, frame_pspace);
1966 }
1967 else if (!within_current_scope)
1968 {
1969 printf_filtered (_("\
1970 Watchpoint %d deleted because the program has left the block\n\
1971 in which its expression is valid.\n"),
1972 b->number);
1973 watchpoint_del_at_next_stop (b);
1974 }
1975
1976 /* Restore the selected frame. */
1977 if (frame_saved)
1978 select_frame (frame_find_by_id (saved_frame_id));
1979 }
1980
1981
1982 /* Returns 1 iff breakpoint location should be
1983 inserted in the inferior. We don't differentiate the type of BL's owner
1984 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1985 breakpoint_ops is not defined, because in insert_bp_location,
1986 tracepoint's insert_location will not be called. */
1987 static int
1988 should_be_inserted (struct bp_location *bl)
1989 {
1990 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
1991 return 0;
1992
1993 if (bl->owner->disposition == disp_del_at_next_stop)
1994 return 0;
1995
1996 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
1997 return 0;
1998
1999 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2000 return 0;
2001
2002 /* This is set for example, when we're attached to the parent of a
2003 vfork, and have detached from the child. The child is running
2004 free, and we expect it to do an exec or exit, at which point the
2005 OS makes the parent schedulable again (and the target reports
2006 that the vfork is done). Until the child is done with the shared
2007 memory region, do not insert breakpoints in the parent, otherwise
2008 the child could still trip on the parent's breakpoints. Since
2009 the parent is blocked anyway, it won't miss any breakpoint. */
2010 if (bl->pspace->breakpoints_not_allowed)
2011 return 0;
2012
2013 /* Don't insert a breakpoint if we're trying to step past its
2014 location, except if the breakpoint is a single-step breakpoint,
2015 and the breakpoint's thread is the thread which is stepping past
2016 a breakpoint. */
2017 if ((bl->loc_type == bp_loc_software_breakpoint
2018 || bl->loc_type == bp_loc_hardware_breakpoint)
2019 && stepping_past_instruction_at (bl->pspace->aspace,
2020 bl->address)
2021 /* The single-step breakpoint may be inserted at the location
2022 we're trying to step if the instruction branches to itself.
2023 However, the instruction won't be executed at all and it may
2024 break the semantics of the instruction, for example, the
2025 instruction is a conditional branch or updates some flags.
2026 We can't fix it unless GDB is able to emulate the instruction
2027 or switch to displaced stepping. */
2028 && !(bl->owner->type == bp_single_step
2029 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2030 {
2031 if (debug_infrun)
2032 {
2033 fprintf_unfiltered (gdb_stdlog,
2034 "infrun: skipping breakpoint: "
2035 "stepping past insn at: %s\n",
2036 paddress (bl->gdbarch, bl->address));
2037 }
2038 return 0;
2039 }
2040
2041 /* Don't insert watchpoints if we're trying to step past the
2042 instruction that triggered one. */
2043 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2044 && stepping_past_nonsteppable_watchpoint ())
2045 {
2046 if (debug_infrun)
2047 {
2048 fprintf_unfiltered (gdb_stdlog,
2049 "infrun: stepping past non-steppable watchpoint. "
2050 "skipping watchpoint at %s:%d\n",
2051 paddress (bl->gdbarch, bl->address),
2052 bl->length);
2053 }
2054 return 0;
2055 }
2056
2057 return 1;
2058 }
2059
2060 /* Same as should_be_inserted but does the check assuming
2061 that the location is not duplicated. */
2062
2063 static int
2064 unduplicated_should_be_inserted (struct bp_location *bl)
2065 {
2066 int result;
2067 const int save_duplicate = bl->duplicate;
2068
2069 bl->duplicate = 0;
2070 result = should_be_inserted (bl);
2071 bl->duplicate = save_duplicate;
2072 return result;
2073 }
2074
2075 /* Parses a conditional described by an expression COND into an
2076 agent expression bytecode suitable for evaluation
2077 by the bytecode interpreter. Return NULL if there was
2078 any error during parsing. */
2079
2080 static agent_expr_up
2081 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2082 {
2083 if (cond == NULL)
2084 return NULL;
2085
2086 agent_expr_up aexpr;
2087
2088 /* We don't want to stop processing, so catch any errors
2089 that may show up. */
2090 try
2091 {
2092 aexpr = gen_eval_for_expr (scope, cond);
2093 }
2094
2095 catch (const gdb_exception_error &ex)
2096 {
2097 /* If we got here, it means the condition could not be parsed to a valid
2098 bytecode expression and thus can't be evaluated on the target's side.
2099 It's no use iterating through the conditions. */
2100 }
2101
2102 /* We have a valid agent expression. */
2103 return aexpr;
2104 }
2105
2106 /* Based on location BL, create a list of breakpoint conditions to be
2107 passed on to the target. If we have duplicated locations with different
2108 conditions, we will add such conditions to the list. The idea is that the
2109 target will evaluate the list of conditions and will only notify GDB when
2110 one of them is true. */
2111
2112 static void
2113 build_target_condition_list (struct bp_location *bl)
2114 {
2115 struct bp_location **locp = NULL, **loc2p;
2116 int null_condition_or_parse_error = 0;
2117 int modified = bl->needs_update;
2118 struct bp_location *loc;
2119
2120 /* Release conditions left over from a previous insert. */
2121 bl->target_info.conditions.clear ();
2122
2123 /* This is only meaningful if the target is
2124 evaluating conditions and if the user has
2125 opted for condition evaluation on the target's
2126 side. */
2127 if (gdb_evaluates_breakpoint_condition_p ()
2128 || !target_supports_evaluation_of_breakpoint_conditions ())
2129 return;
2130
2131 /* Do a first pass to check for locations with no assigned
2132 conditions or conditions that fail to parse to a valid agent
2133 expression bytecode. If any of these happen, then it's no use to
2134 send conditions to the target since this location will always
2135 trigger and generate a response back to GDB. Note we consider
2136 all locations at the same address irrespective of type, i.e.,
2137 even if the locations aren't considered duplicates (e.g.,
2138 software breakpoint and hardware breakpoint at the same
2139 address). */
2140 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2141 {
2142 loc = (*loc2p);
2143 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2144 {
2145 if (modified)
2146 {
2147 /* Re-parse the conditions since something changed. In that
2148 case we already freed the condition bytecodes (see
2149 force_breakpoint_reinsertion). We just
2150 need to parse the condition to bytecodes again. */
2151 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2152 loc->cond.get ());
2153 }
2154
2155 /* If we have a NULL bytecode expression, it means something
2156 went wrong or we have a null condition expression. */
2157 if (!loc->cond_bytecode)
2158 {
2159 null_condition_or_parse_error = 1;
2160 break;
2161 }
2162 }
2163 }
2164
2165 /* If any of these happened, it means we will have to evaluate the conditions
2166 for the location's address on gdb's side. It is no use keeping bytecodes
2167 for all the other duplicate locations, thus we free all of them here.
2168
2169 This is so we have a finer control over which locations' conditions are
2170 being evaluated by GDB or the remote stub. */
2171 if (null_condition_or_parse_error)
2172 {
2173 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2174 {
2175 loc = (*loc2p);
2176 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2177 {
2178 /* Only go as far as the first NULL bytecode is
2179 located. */
2180 if (!loc->cond_bytecode)
2181 return;
2182
2183 loc->cond_bytecode.reset ();
2184 }
2185 }
2186 }
2187
2188 /* No NULL conditions or failed bytecode generation. Build a
2189 condition list for this location's address. If we have software
2190 and hardware locations at the same address, they aren't
2191 considered duplicates, but we still marge all the conditions
2192 anyway, as it's simpler, and doesn't really make a practical
2193 difference. */
2194 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2195 {
2196 loc = (*loc2p);
2197 if (loc->cond
2198 && is_breakpoint (loc->owner)
2199 && loc->pspace->num == bl->pspace->num
2200 && loc->owner->enable_state == bp_enabled
2201 && loc->enabled)
2202 {
2203 /* Add the condition to the vector. This will be used later
2204 to send the conditions to the target. */
2205 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2206 }
2207 }
2208
2209 return;
2210 }
2211
2212 /* Parses a command described by string CMD into an agent expression
2213 bytecode suitable for evaluation by the bytecode interpreter.
2214 Return NULL if there was any error during parsing. */
2215
2216 static agent_expr_up
2217 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2218 {
2219 const char *cmdrest;
2220 const char *format_start, *format_end;
2221 struct gdbarch *gdbarch = get_current_arch ();
2222
2223 if (cmd == NULL)
2224 return NULL;
2225
2226 cmdrest = cmd;
2227
2228 if (*cmdrest == ',')
2229 ++cmdrest;
2230 cmdrest = skip_spaces (cmdrest);
2231
2232 if (*cmdrest++ != '"')
2233 error (_("No format string following the location"));
2234
2235 format_start = cmdrest;
2236
2237 format_pieces fpieces (&cmdrest);
2238
2239 format_end = cmdrest;
2240
2241 if (*cmdrest++ != '"')
2242 error (_("Bad format string, non-terminated '\"'."));
2243
2244 cmdrest = skip_spaces (cmdrest);
2245
2246 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2247 error (_("Invalid argument syntax"));
2248
2249 if (*cmdrest == ',')
2250 cmdrest++;
2251 cmdrest = skip_spaces (cmdrest);
2252
2253 /* For each argument, make an expression. */
2254
2255 std::vector<struct expression *> argvec;
2256 while (*cmdrest != '\0')
2257 {
2258 const char *cmd1;
2259
2260 cmd1 = cmdrest;
2261 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2262 argvec.push_back (expr.release ());
2263 cmdrest = cmd1;
2264 if (*cmdrest == ',')
2265 ++cmdrest;
2266 }
2267
2268 agent_expr_up aexpr;
2269
2270 /* We don't want to stop processing, so catch any errors
2271 that may show up. */
2272 try
2273 {
2274 aexpr = gen_printf (scope, gdbarch, 0, 0,
2275 format_start, format_end - format_start,
2276 argvec.size (), argvec.data ());
2277 }
2278 catch (const gdb_exception_error &ex)
2279 {
2280 /* If we got here, it means the command could not be parsed to a valid
2281 bytecode expression and thus can't be evaluated on the target's side.
2282 It's no use iterating through the other commands. */
2283 }
2284
2285 /* We have a valid agent expression, return it. */
2286 return aexpr;
2287 }
2288
2289 /* Based on location BL, create a list of breakpoint commands to be
2290 passed on to the target. If we have duplicated locations with
2291 different commands, we will add any such to the list. */
2292
2293 static void
2294 build_target_command_list (struct bp_location *bl)
2295 {
2296 struct bp_location **locp = NULL, **loc2p;
2297 int null_command_or_parse_error = 0;
2298 int modified = bl->needs_update;
2299 struct bp_location *loc;
2300
2301 /* Clear commands left over from a previous insert. */
2302 bl->target_info.tcommands.clear ();
2303
2304 if (!target_can_run_breakpoint_commands ())
2305 return;
2306
2307 /* For now, limit to agent-style dprintf breakpoints. */
2308 if (dprintf_style != dprintf_style_agent)
2309 return;
2310
2311 /* For now, if we have any location at the same address that isn't a
2312 dprintf, don't install the target-side commands, as that would
2313 make the breakpoint not be reported to the core, and we'd lose
2314 control. */
2315 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2316 {
2317 loc = (*loc2p);
2318 if (is_breakpoint (loc->owner)
2319 && loc->pspace->num == bl->pspace->num
2320 && loc->owner->type != bp_dprintf)
2321 return;
2322 }
2323
2324 /* Do a first pass to check for locations with no assigned
2325 conditions or conditions that fail to parse to a valid agent expression
2326 bytecode. If any of these happen, then it's no use to send conditions
2327 to the target since this location will always trigger and generate a
2328 response back to GDB. */
2329 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2330 {
2331 loc = (*loc2p);
2332 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2333 {
2334 if (modified)
2335 {
2336 /* Re-parse the commands since something changed. In that
2337 case we already freed the command bytecodes (see
2338 force_breakpoint_reinsertion). We just
2339 need to parse the command to bytecodes again. */
2340 loc->cmd_bytecode
2341 = parse_cmd_to_aexpr (bl->address,
2342 loc->owner->extra_string);
2343 }
2344
2345 /* If we have a NULL bytecode expression, it means something
2346 went wrong or we have a null command expression. */
2347 if (!loc->cmd_bytecode)
2348 {
2349 null_command_or_parse_error = 1;
2350 break;
2351 }
2352 }
2353 }
2354
2355 /* If anything failed, then we're not doing target-side commands,
2356 and so clean up. */
2357 if (null_command_or_parse_error)
2358 {
2359 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2360 {
2361 loc = (*loc2p);
2362 if (is_breakpoint (loc->owner)
2363 && loc->pspace->num == bl->pspace->num)
2364 {
2365 /* Only go as far as the first NULL bytecode is
2366 located. */
2367 if (loc->cmd_bytecode == NULL)
2368 return;
2369
2370 loc->cmd_bytecode.reset ();
2371 }
2372 }
2373 }
2374
2375 /* No NULL commands or failed bytecode generation. Build a command
2376 list for all duplicate locations at this location's address.
2377 Note that here we must care for whether the breakpoint location
2378 types are considered duplicates, otherwise, say, if we have a
2379 software and hardware location at the same address, the target
2380 could end up running the commands twice. For the moment, we only
2381 support targets-side commands with dprintf, but it doesn't hurt
2382 to be pedantically correct in case that changes. */
2383 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2384 {
2385 loc = (*loc2p);
2386 if (breakpoint_locations_match (bl, loc)
2387 && loc->owner->extra_string
2388 && is_breakpoint (loc->owner)
2389 && loc->pspace->num == bl->pspace->num
2390 && loc->owner->enable_state == bp_enabled
2391 && loc->enabled)
2392 {
2393 /* Add the command to the vector. This will be used later
2394 to send the commands to the target. */
2395 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2396 }
2397 }
2398
2399 bl->target_info.persist = 0;
2400 /* Maybe flag this location as persistent. */
2401 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2402 bl->target_info.persist = 1;
2403 }
2404
2405 /* Return the kind of breakpoint on address *ADDR. Get the kind
2406 of breakpoint according to ADDR except single-step breakpoint.
2407 Get the kind of single-step breakpoint according to the current
2408 registers state. */
2409
2410 static int
2411 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2412 {
2413 if (bl->owner->type == bp_single_step)
2414 {
2415 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2416 struct regcache *regcache;
2417
2418 regcache = get_thread_regcache (thr);
2419
2420 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2421 regcache, addr);
2422 }
2423 else
2424 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2425 }
2426
2427 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2428 location. Any error messages are printed to TMP_ERROR_STREAM; and
2429 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2430 Returns 0 for success, 1 if the bp_location type is not supported or
2431 -1 for failure.
2432
2433 NOTE drow/2003-09-09: This routine could be broken down to an
2434 object-style method for each breakpoint or catchpoint type. */
2435 static int
2436 insert_bp_location (struct bp_location *bl,
2437 struct ui_file *tmp_error_stream,
2438 int *disabled_breaks,
2439 int *hw_breakpoint_error,
2440 int *hw_bp_error_explained_already)
2441 {
2442 gdb_exception bp_excpt;
2443
2444 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2445 return 0;
2446
2447 /* Note we don't initialize bl->target_info, as that wipes out
2448 the breakpoint location's shadow_contents if the breakpoint
2449 is still inserted at that location. This in turn breaks
2450 target_read_memory which depends on these buffers when
2451 a memory read is requested at the breakpoint location:
2452 Once the target_info has been wiped, we fail to see that
2453 we have a breakpoint inserted at that address and thus
2454 read the breakpoint instead of returning the data saved in
2455 the breakpoint location's shadow contents. */
2456 bl->target_info.reqstd_address = bl->address;
2457 bl->target_info.placed_address_space = bl->pspace->aspace;
2458 bl->target_info.length = bl->length;
2459
2460 /* When working with target-side conditions, we must pass all the conditions
2461 for the same breakpoint address down to the target since GDB will not
2462 insert those locations. With a list of breakpoint conditions, the target
2463 can decide when to stop and notify GDB. */
2464
2465 if (is_breakpoint (bl->owner))
2466 {
2467 build_target_condition_list (bl);
2468 build_target_command_list (bl);
2469 /* Reset the modification marker. */
2470 bl->needs_update = 0;
2471 }
2472
2473 /* If "set breakpoint auto-hw" is "on" and a software breakpoint was
2474 set at a read-only address, then a breakpoint location will have
2475 been changed to hardware breakpoint before we get here. If it is
2476 "off" however, error out before actually trying to insert the
2477 breakpoint, with a nicer error message. */
2478 if (bl->loc_type == bp_loc_software_breakpoint
2479 && !automatic_hardware_breakpoints)
2480 {
2481 mem_region *mr = lookup_mem_region (bl->address);
2482
2483 if (mr != nullptr && mr->attrib.mode != MEM_RW)
2484 {
2485 fprintf_unfiltered (tmp_error_stream,
2486 _("Cannot insert breakpoint %d.\n"
2487 "Cannot set software breakpoint "
2488 "at read-only address %s\n"),
2489 bl->owner->number,
2490 paddress (bl->gdbarch, bl->address));
2491 return 1;
2492 }
2493 }
2494
2495 if (bl->loc_type == bp_loc_software_breakpoint
2496 || bl->loc_type == bp_loc_hardware_breakpoint)
2497 {
2498 /* First check to see if we have to handle an overlay. */
2499 if (overlay_debugging == ovly_off
2500 || bl->section == NULL
2501 || !(section_is_overlay (bl->section)))
2502 {
2503 /* No overlay handling: just set the breakpoint. */
2504 try
2505 {
2506 int val;
2507
2508 val = bl->owner->ops->insert_location (bl);
2509 if (val)
2510 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2511 }
2512 catch (gdb_exception &e)
2513 {
2514 bp_excpt = std::move (e);
2515 }
2516 }
2517 else
2518 {
2519 /* This breakpoint is in an overlay section.
2520 Shall we set a breakpoint at the LMA? */
2521 if (!overlay_events_enabled)
2522 {
2523 /* Yes -- overlay event support is not active,
2524 so we must try to set a breakpoint at the LMA.
2525 This will not work for a hardware breakpoint. */
2526 if (bl->loc_type == bp_loc_hardware_breakpoint)
2527 warning (_("hardware breakpoint %d not supported in overlay!"),
2528 bl->owner->number);
2529 else
2530 {
2531 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2532 bl->section);
2533 /* Set a software (trap) breakpoint at the LMA. */
2534 bl->overlay_target_info = bl->target_info;
2535 bl->overlay_target_info.reqstd_address = addr;
2536
2537 /* No overlay handling: just set the breakpoint. */
2538 try
2539 {
2540 int val;
2541
2542 bl->overlay_target_info.kind
2543 = breakpoint_kind (bl, &addr);
2544 bl->overlay_target_info.placed_address = addr;
2545 val = target_insert_breakpoint (bl->gdbarch,
2546 &bl->overlay_target_info);
2547 if (val)
2548 bp_excpt
2549 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2550 }
2551 catch (gdb_exception &e)
2552 {
2553 bp_excpt = std::move (e);
2554 }
2555
2556 if (bp_excpt.reason != 0)
2557 fprintf_unfiltered (tmp_error_stream,
2558 "Overlay breakpoint %d "
2559 "failed: in ROM?\n",
2560 bl->owner->number);
2561 }
2562 }
2563 /* Shall we set a breakpoint at the VMA? */
2564 if (section_is_mapped (bl->section))
2565 {
2566 /* Yes. This overlay section is mapped into memory. */
2567 try
2568 {
2569 int val;
2570
2571 val = bl->owner->ops->insert_location (bl);
2572 if (val)
2573 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2574 }
2575 catch (gdb_exception &e)
2576 {
2577 bp_excpt = std::move (e);
2578 }
2579 }
2580 else
2581 {
2582 /* No. This breakpoint will not be inserted.
2583 No error, but do not mark the bp as 'inserted'. */
2584 return 0;
2585 }
2586 }
2587
2588 if (bp_excpt.reason != 0)
2589 {
2590 /* Can't set the breakpoint. */
2591
2592 /* In some cases, we might not be able to insert a
2593 breakpoint in a shared library that has already been
2594 removed, but we have not yet processed the shlib unload
2595 event. Unfortunately, some targets that implement
2596 breakpoint insertion themselves can't tell why the
2597 breakpoint insertion failed (e.g., the remote target
2598 doesn't define error codes), so we must treat generic
2599 errors as memory errors. */
2600 if (bp_excpt.reason == RETURN_ERROR
2601 && (bp_excpt.error == GENERIC_ERROR
2602 || bp_excpt.error == MEMORY_ERROR)
2603 && bl->loc_type == bp_loc_software_breakpoint
2604 && (solib_name_from_address (bl->pspace, bl->address)
2605 || shared_objfile_contains_address_p (bl->pspace,
2606 bl->address)))
2607 {
2608 /* See also: disable_breakpoints_in_shlibs. */
2609 bl->shlib_disabled = 1;
2610 gdb::observers::breakpoint_modified.notify (bl->owner);
2611 if (!*disabled_breaks)
2612 {
2613 fprintf_unfiltered (tmp_error_stream,
2614 "Cannot insert breakpoint %d.\n",
2615 bl->owner->number);
2616 fprintf_unfiltered (tmp_error_stream,
2617 "Temporarily disabling shared "
2618 "library breakpoints:\n");
2619 }
2620 *disabled_breaks = 1;
2621 fprintf_unfiltered (tmp_error_stream,
2622 "breakpoint #%d\n", bl->owner->number);
2623 return 0;
2624 }
2625 else
2626 {
2627 if (bl->loc_type == bp_loc_hardware_breakpoint)
2628 {
2629 *hw_breakpoint_error = 1;
2630 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2631 fprintf_unfiltered (tmp_error_stream,
2632 "Cannot insert hardware breakpoint %d%s",
2633 bl->owner->number,
2634 bp_excpt.message ? ":" : ".\n");
2635 if (bp_excpt.message != NULL)
2636 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2637 bp_excpt.what ());
2638 }
2639 else
2640 {
2641 if (bp_excpt.message == NULL)
2642 {
2643 std::string message
2644 = memory_error_message (TARGET_XFER_E_IO,
2645 bl->gdbarch, bl->address);
2646
2647 fprintf_unfiltered (tmp_error_stream,
2648 "Cannot insert breakpoint %d.\n"
2649 "%s\n",
2650 bl->owner->number, message.c_str ());
2651 }
2652 else
2653 {
2654 fprintf_unfiltered (tmp_error_stream,
2655 "Cannot insert breakpoint %d: %s\n",
2656 bl->owner->number,
2657 bp_excpt.what ());
2658 }
2659 }
2660 return 1;
2661
2662 }
2663 }
2664 else
2665 bl->inserted = 1;
2666
2667 return 0;
2668 }
2669
2670 else if (bl->loc_type == bp_loc_hardware_watchpoint
2671 /* NOTE drow/2003-09-08: This state only exists for removing
2672 watchpoints. It's not clear that it's necessary... */
2673 && bl->owner->disposition != disp_del_at_next_stop)
2674 {
2675 int val;
2676
2677 gdb_assert (bl->owner->ops != NULL
2678 && bl->owner->ops->insert_location != NULL);
2679
2680 val = bl->owner->ops->insert_location (bl);
2681
2682 /* If trying to set a read-watchpoint, and it turns out it's not
2683 supported, try emulating one with an access watchpoint. */
2684 if (val == 1 && bl->watchpoint_type == hw_read)
2685 {
2686 struct bp_location *loc, **loc_temp;
2687
2688 /* But don't try to insert it, if there's already another
2689 hw_access location that would be considered a duplicate
2690 of this one. */
2691 ALL_BP_LOCATIONS (loc, loc_temp)
2692 if (loc != bl
2693 && loc->watchpoint_type == hw_access
2694 && watchpoint_locations_match (bl, loc))
2695 {
2696 bl->duplicate = 1;
2697 bl->inserted = 1;
2698 bl->target_info = loc->target_info;
2699 bl->watchpoint_type = hw_access;
2700 val = 0;
2701 break;
2702 }
2703
2704 if (val == 1)
2705 {
2706 bl->watchpoint_type = hw_access;
2707 val = bl->owner->ops->insert_location (bl);
2708
2709 if (val)
2710 /* Back to the original value. */
2711 bl->watchpoint_type = hw_read;
2712 }
2713 }
2714
2715 bl->inserted = (val == 0);
2716 }
2717
2718 else if (bl->owner->type == bp_catchpoint)
2719 {
2720 int val;
2721
2722 gdb_assert (bl->owner->ops != NULL
2723 && bl->owner->ops->insert_location != NULL);
2724
2725 val = bl->owner->ops->insert_location (bl);
2726 if (val)
2727 {
2728 bl->owner->enable_state = bp_disabled;
2729
2730 if (val == 1)
2731 warning (_("\
2732 Error inserting catchpoint %d: Your system does not support this type\n\
2733 of catchpoint."), bl->owner->number);
2734 else
2735 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2736 }
2737
2738 bl->inserted = (val == 0);
2739
2740 /* We've already printed an error message if there was a problem
2741 inserting this catchpoint, and we've disabled the catchpoint,
2742 so just return success. */
2743 return 0;
2744 }
2745
2746 return 0;
2747 }
2748
2749 /* This function is called when program space PSPACE is about to be
2750 deleted. It takes care of updating breakpoints to not reference
2751 PSPACE anymore. */
2752
2753 void
2754 breakpoint_program_space_exit (struct program_space *pspace)
2755 {
2756 struct breakpoint *b, *b_temp;
2757 struct bp_location *loc, **loc_temp;
2758
2759 /* Remove any breakpoint that was set through this program space. */
2760 ALL_BREAKPOINTS_SAFE (b, b_temp)
2761 {
2762 if (b->pspace == pspace)
2763 delete_breakpoint (b);
2764 }
2765
2766 /* Breakpoints set through other program spaces could have locations
2767 bound to PSPACE as well. Remove those. */
2768 ALL_BP_LOCATIONS (loc, loc_temp)
2769 {
2770 struct bp_location *tmp;
2771
2772 if (loc->pspace == pspace)
2773 {
2774 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2775 if (loc->owner->loc == loc)
2776 loc->owner->loc = loc->next;
2777 else
2778 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2779 if (tmp->next == loc)
2780 {
2781 tmp->next = loc->next;
2782 break;
2783 }
2784 }
2785 }
2786
2787 /* Now update the global location list to permanently delete the
2788 removed locations above. */
2789 update_global_location_list (UGLL_DONT_INSERT);
2790 }
2791
2792 /* Make sure all breakpoints are inserted in inferior.
2793 Throws exception on any error.
2794 A breakpoint that is already inserted won't be inserted
2795 again, so calling this function twice is safe. */
2796 void
2797 insert_breakpoints (void)
2798 {
2799 struct breakpoint *bpt;
2800
2801 ALL_BREAKPOINTS (bpt)
2802 if (is_hardware_watchpoint (bpt))
2803 {
2804 struct watchpoint *w = (struct watchpoint *) bpt;
2805
2806 update_watchpoint (w, 0 /* don't reparse. */);
2807 }
2808
2809 /* Updating watchpoints creates new locations, so update the global
2810 location list. Explicitly tell ugll to insert locations and
2811 ignore breakpoints_always_inserted_mode. Also,
2812 update_global_location_list tries to "upgrade" software
2813 breakpoints to hardware breakpoints to handle "set breakpoint
2814 auto-hw", so we need to call it even if we don't have new
2815 locations. */
2816 update_global_location_list (UGLL_INSERT);
2817 }
2818
2819 /* Invoke CALLBACK for each of bp_location. */
2820
2821 void
2822 iterate_over_bp_locations (walk_bp_location_callback callback)
2823 {
2824 struct bp_location *loc, **loc_tmp;
2825
2826 ALL_BP_LOCATIONS (loc, loc_tmp)
2827 {
2828 callback (loc, NULL);
2829 }
2830 }
2831
2832 /* This is used when we need to synch breakpoint conditions between GDB and the
2833 target. It is the case with deleting and disabling of breakpoints when using
2834 always-inserted mode. */
2835
2836 static void
2837 update_inserted_breakpoint_locations (void)
2838 {
2839 struct bp_location *bl, **blp_tmp;
2840 int error_flag = 0;
2841 int val = 0;
2842 int disabled_breaks = 0;
2843 int hw_breakpoint_error = 0;
2844 int hw_bp_details_reported = 0;
2845
2846 string_file tmp_error_stream;
2847
2848 /* Explicitly mark the warning -- this will only be printed if
2849 there was an error. */
2850 tmp_error_stream.puts ("Warning:\n");
2851
2852 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2853
2854 ALL_BP_LOCATIONS (bl, blp_tmp)
2855 {
2856 /* We only want to update software breakpoints and hardware
2857 breakpoints. */
2858 if (!is_breakpoint (bl->owner))
2859 continue;
2860
2861 /* We only want to update locations that are already inserted
2862 and need updating. This is to avoid unwanted insertion during
2863 deletion of breakpoints. */
2864 if (!bl->inserted || !bl->needs_update)
2865 continue;
2866
2867 switch_to_program_space_and_thread (bl->pspace);
2868
2869 /* For targets that support global breakpoints, there's no need
2870 to select an inferior to insert breakpoint to. In fact, even
2871 if we aren't attached to any process yet, we should still
2872 insert breakpoints. */
2873 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2874 && (inferior_ptid == null_ptid || !target_has_execution))
2875 continue;
2876
2877 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2878 &hw_breakpoint_error, &hw_bp_details_reported);
2879 if (val)
2880 error_flag = val;
2881 }
2882
2883 if (error_flag)
2884 {
2885 target_terminal::ours_for_output ();
2886 error_stream (tmp_error_stream);
2887 }
2888 }
2889
2890 /* Used when starting or continuing the program. */
2891
2892 static void
2893 insert_breakpoint_locations (void)
2894 {
2895 struct breakpoint *bpt;
2896 struct bp_location *bl, **blp_tmp;
2897 int error_flag = 0;
2898 int val = 0;
2899 int disabled_breaks = 0;
2900 int hw_breakpoint_error = 0;
2901 int hw_bp_error_explained_already = 0;
2902
2903 string_file tmp_error_stream;
2904
2905 /* Explicitly mark the warning -- this will only be printed if
2906 there was an error. */
2907 tmp_error_stream.puts ("Warning:\n");
2908
2909 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2910
2911 ALL_BP_LOCATIONS (bl, blp_tmp)
2912 {
2913 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2914 continue;
2915
2916 /* There is no point inserting thread-specific breakpoints if
2917 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2918 has BL->OWNER always non-NULL. */
2919 if (bl->owner->thread != -1
2920 && !valid_global_thread_id (bl->owner->thread))
2921 continue;
2922
2923 switch_to_program_space_and_thread (bl->pspace);
2924
2925 /* For targets that support global breakpoints, there's no need
2926 to select an inferior to insert breakpoint to. In fact, even
2927 if we aren't attached to any process yet, we should still
2928 insert breakpoints. */
2929 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2930 && (inferior_ptid == null_ptid || !target_has_execution))
2931 continue;
2932
2933 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2934 &hw_breakpoint_error, &hw_bp_error_explained_already);
2935 if (val)
2936 error_flag = val;
2937 }
2938
2939 /* If we failed to insert all locations of a watchpoint, remove
2940 them, as half-inserted watchpoint is of limited use. */
2941 ALL_BREAKPOINTS (bpt)
2942 {
2943 int some_failed = 0;
2944 struct bp_location *loc;
2945
2946 if (!is_hardware_watchpoint (bpt))
2947 continue;
2948
2949 if (!breakpoint_enabled (bpt))
2950 continue;
2951
2952 if (bpt->disposition == disp_del_at_next_stop)
2953 continue;
2954
2955 for (loc = bpt->loc; loc; loc = loc->next)
2956 if (!loc->inserted && should_be_inserted (loc))
2957 {
2958 some_failed = 1;
2959 break;
2960 }
2961 if (some_failed)
2962 {
2963 for (loc = bpt->loc; loc; loc = loc->next)
2964 if (loc->inserted)
2965 remove_breakpoint (loc);
2966
2967 hw_breakpoint_error = 1;
2968 tmp_error_stream.printf ("Could not insert "
2969 "hardware watchpoint %d.\n",
2970 bpt->number);
2971 error_flag = -1;
2972 }
2973 }
2974
2975 if (error_flag)
2976 {
2977 /* If a hardware breakpoint or watchpoint was inserted, add a
2978 message about possibly exhausted resources. */
2979 if (hw_breakpoint_error && !hw_bp_error_explained_already)
2980 {
2981 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
2982 You may have requested too many hardware breakpoints/watchpoints.\n");
2983 }
2984 target_terminal::ours_for_output ();
2985 error_stream (tmp_error_stream);
2986 }
2987 }
2988
2989 /* Used when the program stops.
2990 Returns zero if successful, or non-zero if there was a problem
2991 removing a breakpoint location. */
2992
2993 int
2994 remove_breakpoints (void)
2995 {
2996 struct bp_location *bl, **blp_tmp;
2997 int val = 0;
2998
2999 ALL_BP_LOCATIONS (bl, blp_tmp)
3000 {
3001 if (bl->inserted && !is_tracepoint (bl->owner))
3002 val |= remove_breakpoint (bl);
3003 }
3004 return val;
3005 }
3006
3007 /* When a thread exits, remove breakpoints that are related to
3008 that thread. */
3009
3010 static void
3011 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3012 {
3013 struct breakpoint *b, *b_tmp;
3014
3015 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3016 {
3017 if (b->thread == tp->global_num && user_breakpoint_p (b))
3018 {
3019 b->disposition = disp_del_at_next_stop;
3020
3021 printf_filtered (_("\
3022 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3023 b->number, print_thread_id (tp));
3024
3025 /* Hide it from the user. */
3026 b->number = 0;
3027 }
3028 }
3029 }
3030
3031 /* See breakpoint.h. */
3032
3033 void
3034 remove_breakpoints_inf (inferior *inf)
3035 {
3036 struct bp_location *bl, **blp_tmp;
3037 int val;
3038
3039 ALL_BP_LOCATIONS (bl, blp_tmp)
3040 {
3041 if (bl->pspace != inf->pspace)
3042 continue;
3043
3044 if (bl->inserted && !bl->target_info.persist)
3045 {
3046 val = remove_breakpoint (bl);
3047 if (val != 0)
3048 return;
3049 }
3050 }
3051 }
3052
3053 static int internal_breakpoint_number = -1;
3054
3055 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3056 If INTERNAL is non-zero, the breakpoint number will be populated
3057 from internal_breakpoint_number and that variable decremented.
3058 Otherwise the breakpoint number will be populated from
3059 breakpoint_count and that value incremented. Internal breakpoints
3060 do not set the internal var bpnum. */
3061 static void
3062 set_breakpoint_number (int internal, struct breakpoint *b)
3063 {
3064 if (internal)
3065 b->number = internal_breakpoint_number--;
3066 else
3067 {
3068 set_breakpoint_count (breakpoint_count + 1);
3069 b->number = breakpoint_count;
3070 }
3071 }
3072
3073 static struct breakpoint *
3074 create_internal_breakpoint (struct gdbarch *gdbarch,
3075 CORE_ADDR address, enum bptype type,
3076 const struct breakpoint_ops *ops)
3077 {
3078 symtab_and_line sal;
3079 sal.pc = address;
3080 sal.section = find_pc_overlay (sal.pc);
3081 sal.pspace = current_program_space;
3082
3083 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3084 b->number = internal_breakpoint_number--;
3085 b->disposition = disp_donttouch;
3086
3087 return b;
3088 }
3089
3090 static const char *const longjmp_names[] =
3091 {
3092 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3093 };
3094 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3095
3096 /* Per-objfile data private to breakpoint.c. */
3097 struct breakpoint_objfile_data
3098 {
3099 /* Minimal symbol for "_ovly_debug_event" (if any). */
3100 struct bound_minimal_symbol overlay_msym {};
3101
3102 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3103 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3104
3105 /* True if we have looked for longjmp probes. */
3106 int longjmp_searched = 0;
3107
3108 /* SystemTap probe points for longjmp (if any). These are non-owning
3109 references. */
3110 std::vector<probe *> longjmp_probes;
3111
3112 /* Minimal symbol for "std::terminate()" (if any). */
3113 struct bound_minimal_symbol terminate_msym {};
3114
3115 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3116 struct bound_minimal_symbol exception_msym {};
3117
3118 /* True if we have looked for exception probes. */
3119 int exception_searched = 0;
3120
3121 /* SystemTap probe points for unwinding (if any). These are non-owning
3122 references. */
3123 std::vector<probe *> exception_probes;
3124 };
3125
3126 static const struct objfile_key<breakpoint_objfile_data>
3127 breakpoint_objfile_key;
3128
3129 /* Minimal symbol not found sentinel. */
3130 static struct minimal_symbol msym_not_found;
3131
3132 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3133
3134 static int
3135 msym_not_found_p (const struct minimal_symbol *msym)
3136 {
3137 return msym == &msym_not_found;
3138 }
3139
3140 /* Return per-objfile data needed by breakpoint.c.
3141 Allocate the data if necessary. */
3142
3143 static struct breakpoint_objfile_data *
3144 get_breakpoint_objfile_data (struct objfile *objfile)
3145 {
3146 struct breakpoint_objfile_data *bp_objfile_data;
3147
3148 bp_objfile_data = breakpoint_objfile_key.get (objfile);
3149 if (bp_objfile_data == NULL)
3150 bp_objfile_data = breakpoint_objfile_key.emplace (objfile);
3151 return bp_objfile_data;
3152 }
3153
3154 static void
3155 create_overlay_event_breakpoint (void)
3156 {
3157 const char *const func_name = "_ovly_debug_event";
3158
3159 for (objfile *objfile : current_program_space->objfiles ())
3160 {
3161 struct breakpoint *b;
3162 struct breakpoint_objfile_data *bp_objfile_data;
3163 CORE_ADDR addr;
3164 struct explicit_location explicit_loc;
3165
3166 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3167
3168 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3169 continue;
3170
3171 if (bp_objfile_data->overlay_msym.minsym == NULL)
3172 {
3173 struct bound_minimal_symbol m;
3174
3175 m = lookup_minimal_symbol_text (func_name, objfile);
3176 if (m.minsym == NULL)
3177 {
3178 /* Avoid future lookups in this objfile. */
3179 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3180 continue;
3181 }
3182 bp_objfile_data->overlay_msym = m;
3183 }
3184
3185 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3186 b = create_internal_breakpoint (objfile->arch (), addr,
3187 bp_overlay_event,
3188 &internal_breakpoint_ops);
3189 initialize_explicit_location (&explicit_loc);
3190 explicit_loc.function_name = ASTRDUP (func_name);
3191 b->location = new_explicit_location (&explicit_loc);
3192
3193 if (overlay_debugging == ovly_auto)
3194 {
3195 b->enable_state = bp_enabled;
3196 overlay_events_enabled = 1;
3197 }
3198 else
3199 {
3200 b->enable_state = bp_disabled;
3201 overlay_events_enabled = 0;
3202 }
3203 }
3204 }
3205
3206 static void
3207 create_longjmp_master_breakpoint (void)
3208 {
3209 scoped_restore_current_program_space restore_pspace;
3210
3211 for (struct program_space *pspace : program_spaces)
3212 {
3213 set_current_program_space (pspace);
3214
3215 for (objfile *objfile : current_program_space->objfiles ())
3216 {
3217 int i;
3218 struct gdbarch *gdbarch;
3219 struct breakpoint_objfile_data *bp_objfile_data;
3220
3221 gdbarch = objfile->arch ();
3222
3223 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3224
3225 if (!bp_objfile_data->longjmp_searched)
3226 {
3227 std::vector<probe *> ret
3228 = find_probes_in_objfile (objfile, "libc", "longjmp");
3229
3230 if (!ret.empty ())
3231 {
3232 /* We are only interested in checking one element. */
3233 probe *p = ret[0];
3234
3235 if (!p->can_evaluate_arguments ())
3236 {
3237 /* We cannot use the probe interface here,
3238 because it does not know how to evaluate
3239 arguments. */
3240 ret.clear ();
3241 }
3242 }
3243 bp_objfile_data->longjmp_probes = ret;
3244 bp_objfile_data->longjmp_searched = 1;
3245 }
3246
3247 if (!bp_objfile_data->longjmp_probes.empty ())
3248 {
3249 for (probe *p : bp_objfile_data->longjmp_probes)
3250 {
3251 struct breakpoint *b;
3252
3253 b = create_internal_breakpoint (gdbarch,
3254 p->get_relocated_address (objfile),
3255 bp_longjmp_master,
3256 &internal_breakpoint_ops);
3257 b->location = new_probe_location ("-probe-stap libc:longjmp");
3258 b->enable_state = bp_disabled;
3259 }
3260
3261 continue;
3262 }
3263
3264 if (!gdbarch_get_longjmp_target_p (gdbarch))
3265 continue;
3266
3267 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3268 {
3269 struct breakpoint *b;
3270 const char *func_name;
3271 CORE_ADDR addr;
3272 struct explicit_location explicit_loc;
3273
3274 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3275 continue;
3276
3277 func_name = longjmp_names[i];
3278 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3279 {
3280 struct bound_minimal_symbol m;
3281
3282 m = lookup_minimal_symbol_text (func_name, objfile);
3283 if (m.minsym == NULL)
3284 {
3285 /* Prevent future lookups in this objfile. */
3286 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3287 continue;
3288 }
3289 bp_objfile_data->longjmp_msym[i] = m;
3290 }
3291
3292 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3293 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3294 &internal_breakpoint_ops);
3295 initialize_explicit_location (&explicit_loc);
3296 explicit_loc.function_name = ASTRDUP (func_name);
3297 b->location = new_explicit_location (&explicit_loc);
3298 b->enable_state = bp_disabled;
3299 }
3300 }
3301 }
3302 }
3303
3304 /* Create a master std::terminate breakpoint. */
3305 static void
3306 create_std_terminate_master_breakpoint (void)
3307 {
3308 const char *const func_name = "std::terminate()";
3309
3310 scoped_restore_current_program_space restore_pspace;
3311
3312 for (struct program_space *pspace : program_spaces)
3313 {
3314 CORE_ADDR addr;
3315
3316 set_current_program_space (pspace);
3317
3318 for (objfile *objfile : current_program_space->objfiles ())
3319 {
3320 struct breakpoint *b;
3321 struct breakpoint_objfile_data *bp_objfile_data;
3322 struct explicit_location explicit_loc;
3323
3324 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3325
3326 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3327 continue;
3328
3329 if (bp_objfile_data->terminate_msym.minsym == NULL)
3330 {
3331 struct bound_minimal_symbol m;
3332
3333 m = lookup_minimal_symbol (func_name, NULL, objfile);
3334 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3335 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3336 {
3337 /* Prevent future lookups in this objfile. */
3338 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3339 continue;
3340 }
3341 bp_objfile_data->terminate_msym = m;
3342 }
3343
3344 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3345 b = create_internal_breakpoint (objfile->arch (), addr,
3346 bp_std_terminate_master,
3347 &internal_breakpoint_ops);
3348 initialize_explicit_location (&explicit_loc);
3349 explicit_loc.function_name = ASTRDUP (func_name);
3350 b->location = new_explicit_location (&explicit_loc);
3351 b->enable_state = bp_disabled;
3352 }
3353 }
3354 }
3355
3356 /* Install a master breakpoint on the unwinder's debug hook. */
3357
3358 static void
3359 create_exception_master_breakpoint (void)
3360 {
3361 const char *const func_name = "_Unwind_DebugHook";
3362
3363 for (objfile *objfile : current_program_space->objfiles ())
3364 {
3365 struct breakpoint *b;
3366 struct gdbarch *gdbarch;
3367 struct breakpoint_objfile_data *bp_objfile_data;
3368 CORE_ADDR addr;
3369 struct explicit_location explicit_loc;
3370
3371 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3372
3373 /* We prefer the SystemTap probe point if it exists. */
3374 if (!bp_objfile_data->exception_searched)
3375 {
3376 std::vector<probe *> ret
3377 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3378
3379 if (!ret.empty ())
3380 {
3381 /* We are only interested in checking one element. */
3382 probe *p = ret[0];
3383
3384 if (!p->can_evaluate_arguments ())
3385 {
3386 /* We cannot use the probe interface here, because it does
3387 not know how to evaluate arguments. */
3388 ret.clear ();
3389 }
3390 }
3391 bp_objfile_data->exception_probes = ret;
3392 bp_objfile_data->exception_searched = 1;
3393 }
3394
3395 if (!bp_objfile_data->exception_probes.empty ())
3396 {
3397 gdbarch = objfile->arch ();
3398
3399 for (probe *p : bp_objfile_data->exception_probes)
3400 {
3401 b = create_internal_breakpoint (gdbarch,
3402 p->get_relocated_address (objfile),
3403 bp_exception_master,
3404 &internal_breakpoint_ops);
3405 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3406 b->enable_state = bp_disabled;
3407 }
3408
3409 continue;
3410 }
3411
3412 /* Otherwise, try the hook function. */
3413
3414 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3415 continue;
3416
3417 gdbarch = objfile->arch ();
3418
3419 if (bp_objfile_data->exception_msym.minsym == NULL)
3420 {
3421 struct bound_minimal_symbol debug_hook;
3422
3423 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3424 if (debug_hook.minsym == NULL)
3425 {
3426 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3427 continue;
3428 }
3429
3430 bp_objfile_data->exception_msym = debug_hook;
3431 }
3432
3433 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3434 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3435 current_top_target ());
3436 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3437 &internal_breakpoint_ops);
3438 initialize_explicit_location (&explicit_loc);
3439 explicit_loc.function_name = ASTRDUP (func_name);
3440 b->location = new_explicit_location (&explicit_loc);
3441 b->enable_state = bp_disabled;
3442 }
3443 }
3444
3445 /* Does B have a location spec? */
3446
3447 static int
3448 breakpoint_event_location_empty_p (const struct breakpoint *b)
3449 {
3450 return b->location != NULL && event_location_empty_p (b->location.get ());
3451 }
3452
3453 void
3454 update_breakpoints_after_exec (void)
3455 {
3456 struct breakpoint *b, *b_tmp;
3457 struct bp_location *bploc, **bplocp_tmp;
3458
3459 /* We're about to delete breakpoints from GDB's lists. If the
3460 INSERTED flag is true, GDB will try to lift the breakpoints by
3461 writing the breakpoints' "shadow contents" back into memory. The
3462 "shadow contents" are NOT valid after an exec, so GDB should not
3463 do that. Instead, the target is responsible from marking
3464 breakpoints out as soon as it detects an exec. We don't do that
3465 here instead, because there may be other attempts to delete
3466 breakpoints after detecting an exec and before reaching here. */
3467 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3468 if (bploc->pspace == current_program_space)
3469 gdb_assert (!bploc->inserted);
3470
3471 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3472 {
3473 if (b->pspace != current_program_space)
3474 continue;
3475
3476 /* Solib breakpoints must be explicitly reset after an exec(). */
3477 if (b->type == bp_shlib_event)
3478 {
3479 delete_breakpoint (b);
3480 continue;
3481 }
3482
3483 /* JIT breakpoints must be explicitly reset after an exec(). */
3484 if (b->type == bp_jit_event)
3485 {
3486 delete_breakpoint (b);
3487 continue;
3488 }
3489
3490 /* Thread event breakpoints must be set anew after an exec(),
3491 as must overlay event and longjmp master breakpoints. */
3492 if (b->type == bp_thread_event || b->type == bp_overlay_event
3493 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3494 || b->type == bp_exception_master)
3495 {
3496 delete_breakpoint (b);
3497 continue;
3498 }
3499
3500 /* Step-resume breakpoints are meaningless after an exec(). */
3501 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3502 {
3503 delete_breakpoint (b);
3504 continue;
3505 }
3506
3507 /* Just like single-step breakpoints. */
3508 if (b->type == bp_single_step)
3509 {
3510 delete_breakpoint (b);
3511 continue;
3512 }
3513
3514 /* Longjmp and longjmp-resume breakpoints are also meaningless
3515 after an exec. */
3516 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3517 || b->type == bp_longjmp_call_dummy
3518 || b->type == bp_exception || b->type == bp_exception_resume)
3519 {
3520 delete_breakpoint (b);
3521 continue;
3522 }
3523
3524 if (b->type == bp_catchpoint)
3525 {
3526 /* For now, none of the bp_catchpoint breakpoints need to
3527 do anything at this point. In the future, if some of
3528 the catchpoints need to something, we will need to add
3529 a new method, and call this method from here. */
3530 continue;
3531 }
3532
3533 /* bp_finish is a special case. The only way we ought to be able
3534 to see one of these when an exec() has happened, is if the user
3535 caught a vfork, and then said "finish". Ordinarily a finish just
3536 carries them to the call-site of the current callee, by setting
3537 a temporary bp there and resuming. But in this case, the finish
3538 will carry them entirely through the vfork & exec.
3539
3540 We don't want to allow a bp_finish to remain inserted now. But
3541 we can't safely delete it, 'cause finish_command has a handle to
3542 the bp on a bpstat, and will later want to delete it. There's a
3543 chance (and I've seen it happen) that if we delete the bp_finish
3544 here, that its storage will get reused by the time finish_command
3545 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3546 We really must allow finish_command to delete a bp_finish.
3547
3548 In the absence of a general solution for the "how do we know
3549 it's safe to delete something others may have handles to?"
3550 problem, what we'll do here is just uninsert the bp_finish, and
3551 let finish_command delete it.
3552
3553 (We know the bp_finish is "doomed" in the sense that it's
3554 momentary, and will be deleted as soon as finish_command sees
3555 the inferior stopped. So it doesn't matter that the bp's
3556 address is probably bogus in the new a.out, unlike e.g., the
3557 solib breakpoints.) */
3558
3559 if (b->type == bp_finish)
3560 {
3561 continue;
3562 }
3563
3564 /* Without a symbolic address, we have little hope of the
3565 pre-exec() address meaning the same thing in the post-exec()
3566 a.out. */
3567 if (breakpoint_event_location_empty_p (b))
3568 {
3569 delete_breakpoint (b);
3570 continue;
3571 }
3572 }
3573 }
3574
3575 int
3576 detach_breakpoints (ptid_t ptid)
3577 {
3578 struct bp_location *bl, **blp_tmp;
3579 int val = 0;
3580 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3581 struct inferior *inf = current_inferior ();
3582
3583 if (ptid.pid () == inferior_ptid.pid ())
3584 error (_("Cannot detach breakpoints of inferior_ptid"));
3585
3586 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3587 inferior_ptid = ptid;
3588 ALL_BP_LOCATIONS (bl, blp_tmp)
3589 {
3590 if (bl->pspace != inf->pspace)
3591 continue;
3592
3593 /* This function must physically remove breakpoints locations
3594 from the specified ptid, without modifying the breakpoint
3595 package's state. Locations of type bp_loc_other are only
3596 maintained at GDB side. So, there is no need to remove
3597 these bp_loc_other locations. Moreover, removing these
3598 would modify the breakpoint package's state. */
3599 if (bl->loc_type == bp_loc_other)
3600 continue;
3601
3602 if (bl->inserted)
3603 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3604 }
3605
3606 return val;
3607 }
3608
3609 /* Remove the breakpoint location BL from the current address space.
3610 Note that this is used to detach breakpoints from a child fork.
3611 When we get here, the child isn't in the inferior list, and neither
3612 do we have objects to represent its address space --- we should
3613 *not* look at bl->pspace->aspace here. */
3614
3615 static int
3616 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3617 {
3618 int val;
3619
3620 /* BL is never in moribund_locations by our callers. */
3621 gdb_assert (bl->owner != NULL);
3622
3623 /* The type of none suggests that owner is actually deleted.
3624 This should not ever happen. */
3625 gdb_assert (bl->owner->type != bp_none);
3626
3627 if (bl->loc_type == bp_loc_software_breakpoint
3628 || bl->loc_type == bp_loc_hardware_breakpoint)
3629 {
3630 /* "Normal" instruction breakpoint: either the standard
3631 trap-instruction bp (bp_breakpoint), or a
3632 bp_hardware_breakpoint. */
3633
3634 /* First check to see if we have to handle an overlay. */
3635 if (overlay_debugging == ovly_off
3636 || bl->section == NULL
3637 || !(section_is_overlay (bl->section)))
3638 {
3639 /* No overlay handling: just remove the breakpoint. */
3640
3641 /* If we're trying to uninsert a memory breakpoint that we
3642 know is set in a dynamic object that is marked
3643 shlib_disabled, then either the dynamic object was
3644 removed with "remove-symbol-file" or with
3645 "nosharedlibrary". In the former case, we don't know
3646 whether another dynamic object might have loaded over the
3647 breakpoint's address -- the user might well let us know
3648 about it next with add-symbol-file (the whole point of
3649 add-symbol-file is letting the user manually maintain a
3650 list of dynamically loaded objects). If we have the
3651 breakpoint's shadow memory, that is, this is a software
3652 breakpoint managed by GDB, check whether the breakpoint
3653 is still inserted in memory, to avoid overwriting wrong
3654 code with stale saved shadow contents. Note that HW
3655 breakpoints don't have shadow memory, as they're
3656 implemented using a mechanism that is not dependent on
3657 being able to modify the target's memory, and as such
3658 they should always be removed. */
3659 if (bl->shlib_disabled
3660 && bl->target_info.shadow_len != 0
3661 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3662 val = 0;
3663 else
3664 val = bl->owner->ops->remove_location (bl, reason);
3665 }
3666 else
3667 {
3668 /* This breakpoint is in an overlay section.
3669 Did we set a breakpoint at the LMA? */
3670 if (!overlay_events_enabled)
3671 {
3672 /* Yes -- overlay event support is not active, so we
3673 should have set a breakpoint at the LMA. Remove it.
3674 */
3675 /* Ignore any failures: if the LMA is in ROM, we will
3676 have already warned when we failed to insert it. */
3677 if (bl->loc_type == bp_loc_hardware_breakpoint)
3678 target_remove_hw_breakpoint (bl->gdbarch,
3679 &bl->overlay_target_info);
3680 else
3681 target_remove_breakpoint (bl->gdbarch,
3682 &bl->overlay_target_info,
3683 reason);
3684 }
3685 /* Did we set a breakpoint at the VMA?
3686 If so, we will have marked the breakpoint 'inserted'. */
3687 if (bl->inserted)
3688 {
3689 /* Yes -- remove it. Previously we did not bother to
3690 remove the breakpoint if the section had been
3691 unmapped, but let's not rely on that being safe. We
3692 don't know what the overlay manager might do. */
3693
3694 /* However, we should remove *software* breakpoints only
3695 if the section is still mapped, or else we overwrite
3696 wrong code with the saved shadow contents. */
3697 if (bl->loc_type == bp_loc_hardware_breakpoint
3698 || section_is_mapped (bl->section))
3699 val = bl->owner->ops->remove_location (bl, reason);
3700 else
3701 val = 0;
3702 }
3703 else
3704 {
3705 /* No -- not inserted, so no need to remove. No error. */
3706 val = 0;
3707 }
3708 }
3709
3710 /* In some cases, we might not be able to remove a breakpoint in
3711 a shared library that has already been removed, but we have
3712 not yet processed the shlib unload event. Similarly for an
3713 unloaded add-symbol-file object - the user might not yet have
3714 had the chance to remove-symbol-file it. shlib_disabled will
3715 be set if the library/object has already been removed, but
3716 the breakpoint hasn't been uninserted yet, e.g., after
3717 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3718 always-inserted mode. */
3719 if (val
3720 && (bl->loc_type == bp_loc_software_breakpoint
3721 && (bl->shlib_disabled
3722 || solib_name_from_address (bl->pspace, bl->address)
3723 || shared_objfile_contains_address_p (bl->pspace,
3724 bl->address))))
3725 val = 0;
3726
3727 if (val)
3728 return val;
3729 bl->inserted = (reason == DETACH_BREAKPOINT);
3730 }
3731 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3732 {
3733 gdb_assert (bl->owner->ops != NULL
3734 && bl->owner->ops->remove_location != NULL);
3735
3736 bl->inserted = (reason == DETACH_BREAKPOINT);
3737 bl->owner->ops->remove_location (bl, reason);
3738
3739 /* Failure to remove any of the hardware watchpoints comes here. */
3740 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3741 warning (_("Could not remove hardware watchpoint %d."),
3742 bl->owner->number);
3743 }
3744 else if (bl->owner->type == bp_catchpoint
3745 && breakpoint_enabled (bl->owner)
3746 && !bl->duplicate)
3747 {
3748 gdb_assert (bl->owner->ops != NULL
3749 && bl->owner->ops->remove_location != NULL);
3750
3751 val = bl->owner->ops->remove_location (bl, reason);
3752 if (val)
3753 return val;
3754
3755 bl->inserted = (reason == DETACH_BREAKPOINT);
3756 }
3757
3758 return 0;
3759 }
3760
3761 static int
3762 remove_breakpoint (struct bp_location *bl)
3763 {
3764 /* BL is never in moribund_locations by our callers. */
3765 gdb_assert (bl->owner != NULL);
3766
3767 /* The type of none suggests that owner is actually deleted.
3768 This should not ever happen. */
3769 gdb_assert (bl->owner->type != bp_none);
3770
3771 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3772
3773 switch_to_program_space_and_thread (bl->pspace);
3774
3775 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3776 }
3777
3778 /* Clear the "inserted" flag in all breakpoints. */
3779
3780 void
3781 mark_breakpoints_out (void)
3782 {
3783 struct bp_location *bl, **blp_tmp;
3784
3785 ALL_BP_LOCATIONS (bl, blp_tmp)
3786 if (bl->pspace == current_program_space)
3787 bl->inserted = 0;
3788 }
3789
3790 /* Clear the "inserted" flag in all breakpoints and delete any
3791 breakpoints which should go away between runs of the program.
3792
3793 Plus other such housekeeping that has to be done for breakpoints
3794 between runs.
3795
3796 Note: this function gets called at the end of a run (by
3797 generic_mourn_inferior) and when a run begins (by
3798 init_wait_for_inferior). */
3799
3800
3801
3802 void
3803 breakpoint_init_inferior (enum inf_context context)
3804 {
3805 struct breakpoint *b, *b_tmp;
3806 struct program_space *pspace = current_program_space;
3807
3808 /* If breakpoint locations are shared across processes, then there's
3809 nothing to do. */
3810 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3811 return;
3812
3813 mark_breakpoints_out ();
3814
3815 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3816 {
3817 if (b->loc && b->loc->pspace != pspace)
3818 continue;
3819
3820 switch (b->type)
3821 {
3822 case bp_call_dummy:
3823 case bp_longjmp_call_dummy:
3824
3825 /* If the call dummy breakpoint is at the entry point it will
3826 cause problems when the inferior is rerun, so we better get
3827 rid of it. */
3828
3829 case bp_watchpoint_scope:
3830
3831 /* Also get rid of scope breakpoints. */
3832
3833 case bp_shlib_event:
3834
3835 /* Also remove solib event breakpoints. Their addresses may
3836 have changed since the last time we ran the program.
3837 Actually we may now be debugging against different target;
3838 and so the solib backend that installed this breakpoint may
3839 not be used in by the target. E.g.,
3840
3841 (gdb) file prog-linux
3842 (gdb) run # native linux target
3843 ...
3844 (gdb) kill
3845 (gdb) file prog-win.exe
3846 (gdb) tar rem :9999 # remote Windows gdbserver.
3847 */
3848
3849 case bp_step_resume:
3850
3851 /* Also remove step-resume breakpoints. */
3852
3853 case bp_single_step:
3854
3855 /* Also remove single-step breakpoints. */
3856
3857 delete_breakpoint (b);
3858 break;
3859
3860 case bp_watchpoint:
3861 case bp_hardware_watchpoint:
3862 case bp_read_watchpoint:
3863 case bp_access_watchpoint:
3864 {
3865 struct watchpoint *w = (struct watchpoint *) b;
3866
3867 /* Likewise for watchpoints on local expressions. */
3868 if (w->exp_valid_block != NULL)
3869 delete_breakpoint (b);
3870 else
3871 {
3872 /* Get rid of existing locations, which are no longer
3873 valid. New ones will be created in
3874 update_watchpoint, when the inferior is restarted.
3875 The next update_global_location_list call will
3876 garbage collect them. */
3877 b->loc = NULL;
3878
3879 if (context == inf_starting)
3880 {
3881 /* Reset val field to force reread of starting value in
3882 insert_breakpoints. */
3883 w->val.reset (nullptr);
3884 w->val_valid = false;
3885 }
3886 }
3887 }
3888 break;
3889 default:
3890 break;
3891 }
3892 }
3893
3894 /* Get rid of the moribund locations. */
3895 for (bp_location *bl : moribund_locations)
3896 decref_bp_location (&bl);
3897 moribund_locations.clear ();
3898 }
3899
3900 /* These functions concern about actual breakpoints inserted in the
3901 target --- to e.g. check if we need to do decr_pc adjustment or if
3902 we need to hop over the bkpt --- so we check for address space
3903 match, not program space. */
3904
3905 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3906 exists at PC. It returns ordinary_breakpoint_here if it's an
3907 ordinary breakpoint, or permanent_breakpoint_here if it's a
3908 permanent breakpoint.
3909 - When continuing from a location with an ordinary breakpoint, we
3910 actually single step once before calling insert_breakpoints.
3911 - When continuing from a location with a permanent breakpoint, we
3912 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3913 the target, to advance the PC past the breakpoint. */
3914
3915 enum breakpoint_here
3916 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3917 {
3918 struct bp_location *bl, **blp_tmp;
3919 int any_breakpoint_here = 0;
3920
3921 ALL_BP_LOCATIONS (bl, blp_tmp)
3922 {
3923 if (bl->loc_type != bp_loc_software_breakpoint
3924 && bl->loc_type != bp_loc_hardware_breakpoint)
3925 continue;
3926
3927 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3928 if ((breakpoint_enabled (bl->owner)
3929 || bl->permanent)
3930 && breakpoint_location_address_match (bl, aspace, pc))
3931 {
3932 if (overlay_debugging
3933 && section_is_overlay (bl->section)
3934 && !section_is_mapped (bl->section))
3935 continue; /* unmapped overlay -- can't be a match */
3936 else if (bl->permanent)
3937 return permanent_breakpoint_here;
3938 else
3939 any_breakpoint_here = 1;
3940 }
3941 }
3942
3943 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
3944 }
3945
3946 /* See breakpoint.h. */
3947
3948 int
3949 breakpoint_in_range_p (const address_space *aspace,
3950 CORE_ADDR addr, ULONGEST len)
3951 {
3952 struct bp_location *bl, **blp_tmp;
3953
3954 ALL_BP_LOCATIONS (bl, blp_tmp)
3955 {
3956 if (bl->loc_type != bp_loc_software_breakpoint
3957 && bl->loc_type != bp_loc_hardware_breakpoint)
3958 continue;
3959
3960 if ((breakpoint_enabled (bl->owner)
3961 || bl->permanent)
3962 && breakpoint_location_address_range_overlap (bl, aspace,
3963 addr, len))
3964 {
3965 if (overlay_debugging
3966 && section_is_overlay (bl->section)
3967 && !section_is_mapped (bl->section))
3968 {
3969 /* Unmapped overlay -- can't be a match. */
3970 continue;
3971 }
3972
3973 return 1;
3974 }
3975 }
3976
3977 return 0;
3978 }
3979
3980 /* Return true if there's a moribund breakpoint at PC. */
3981
3982 int
3983 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3984 {
3985 for (bp_location *loc : moribund_locations)
3986 if (breakpoint_location_address_match (loc, aspace, pc))
3987 return 1;
3988
3989 return 0;
3990 }
3991
3992 /* Returns non-zero iff BL is inserted at PC, in address space
3993 ASPACE. */
3994
3995 static int
3996 bp_location_inserted_here_p (struct bp_location *bl,
3997 const address_space *aspace, CORE_ADDR pc)
3998 {
3999 if (bl->inserted
4000 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4001 aspace, pc))
4002 {
4003 if (overlay_debugging
4004 && section_is_overlay (bl->section)
4005 && !section_is_mapped (bl->section))
4006 return 0; /* unmapped overlay -- can't be a match */
4007 else
4008 return 1;
4009 }
4010 return 0;
4011 }
4012
4013 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4014
4015 int
4016 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4017 {
4018 struct bp_location **blp, **blp_tmp = NULL;
4019
4020 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4021 {
4022 struct bp_location *bl = *blp;
4023
4024 if (bl->loc_type != bp_loc_software_breakpoint
4025 && bl->loc_type != bp_loc_hardware_breakpoint)
4026 continue;
4027
4028 if (bp_location_inserted_here_p (bl, aspace, pc))
4029 return 1;
4030 }
4031 return 0;
4032 }
4033
4034 /* This function returns non-zero iff there is a software breakpoint
4035 inserted at PC. */
4036
4037 int
4038 software_breakpoint_inserted_here_p (const address_space *aspace,
4039 CORE_ADDR pc)
4040 {
4041 struct bp_location **blp, **blp_tmp = NULL;
4042
4043 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4044 {
4045 struct bp_location *bl = *blp;
4046
4047 if (bl->loc_type != bp_loc_software_breakpoint)
4048 continue;
4049
4050 if (bp_location_inserted_here_p (bl, aspace, pc))
4051 return 1;
4052 }
4053
4054 return 0;
4055 }
4056
4057 /* See breakpoint.h. */
4058
4059 int
4060 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4061 CORE_ADDR pc)
4062 {
4063 struct bp_location **blp, **blp_tmp = NULL;
4064
4065 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4066 {
4067 struct bp_location *bl = *blp;
4068
4069 if (bl->loc_type != bp_loc_hardware_breakpoint)
4070 continue;
4071
4072 if (bp_location_inserted_here_p (bl, aspace, pc))
4073 return 1;
4074 }
4075
4076 return 0;
4077 }
4078
4079 int
4080 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4081 CORE_ADDR addr, ULONGEST len)
4082 {
4083 struct breakpoint *bpt;
4084
4085 ALL_BREAKPOINTS (bpt)
4086 {
4087 struct bp_location *loc;
4088
4089 if (bpt->type != bp_hardware_watchpoint
4090 && bpt->type != bp_access_watchpoint)
4091 continue;
4092
4093 if (!breakpoint_enabled (bpt))
4094 continue;
4095
4096 for (loc = bpt->loc; loc; loc = loc->next)
4097 if (loc->pspace->aspace == aspace && loc->inserted)
4098 {
4099 CORE_ADDR l, h;
4100
4101 /* Check for intersection. */
4102 l = std::max<CORE_ADDR> (loc->address, addr);
4103 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4104 if (l < h)
4105 return 1;
4106 }
4107 }
4108 return 0;
4109 }
4110
4111 /* See breakpoint.h. */
4112
4113 bool
4114 is_catchpoint (struct breakpoint *b)
4115 {
4116 return (b->type == bp_catchpoint);
4117 }
4118
4119 /* Frees any storage that is part of a bpstat. Does not walk the
4120 'next' chain. */
4121
4122 bpstats::~bpstats ()
4123 {
4124 if (bp_location_at != NULL)
4125 decref_bp_location (&bp_location_at);
4126 }
4127
4128 /* Clear a bpstat so that it says we are not at any breakpoint.
4129 Also free any storage that is part of a bpstat. */
4130
4131 void
4132 bpstat_clear (bpstat *bsp)
4133 {
4134 bpstat p;
4135 bpstat q;
4136
4137 if (bsp == 0)
4138 return;
4139 p = *bsp;
4140 while (p != NULL)
4141 {
4142 q = p->next;
4143 delete p;
4144 p = q;
4145 }
4146 *bsp = NULL;
4147 }
4148
4149 bpstats::bpstats (const bpstats &other)
4150 : next (NULL),
4151 bp_location_at (other.bp_location_at),
4152 breakpoint_at (other.breakpoint_at),
4153 commands (other.commands),
4154 print (other.print),
4155 stop (other.stop),
4156 print_it (other.print_it)
4157 {
4158 if (other.old_val != NULL)
4159 old_val = release_value (value_copy (other.old_val.get ()));
4160 incref_bp_location (bp_location_at);
4161 }
4162
4163 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4164 is part of the bpstat is copied as well. */
4165
4166 bpstat
4167 bpstat_copy (bpstat bs)
4168 {
4169 bpstat p = NULL;
4170 bpstat tmp;
4171 bpstat retval = NULL;
4172
4173 if (bs == NULL)
4174 return bs;
4175
4176 for (; bs != NULL; bs = bs->next)
4177 {
4178 tmp = new bpstats (*bs);
4179
4180 if (p == NULL)
4181 /* This is the first thing in the chain. */
4182 retval = tmp;
4183 else
4184 p->next = tmp;
4185 p = tmp;
4186 }
4187 p->next = NULL;
4188 return retval;
4189 }
4190
4191 /* Find the bpstat associated with this breakpoint. */
4192
4193 bpstat
4194 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4195 {
4196 if (bsp == NULL)
4197 return NULL;
4198
4199 for (; bsp != NULL; bsp = bsp->next)
4200 {
4201 if (bsp->breakpoint_at == breakpoint)
4202 return bsp;
4203 }
4204 return NULL;
4205 }
4206
4207 /* See breakpoint.h. */
4208
4209 bool
4210 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4211 {
4212 for (; bsp != NULL; bsp = bsp->next)
4213 {
4214 if (bsp->breakpoint_at == NULL)
4215 {
4216 /* A moribund location can never explain a signal other than
4217 GDB_SIGNAL_TRAP. */
4218 if (sig == GDB_SIGNAL_TRAP)
4219 return true;
4220 }
4221 else
4222 {
4223 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4224 sig))
4225 return true;
4226 }
4227 }
4228
4229 return false;
4230 }
4231
4232 /* Put in *NUM the breakpoint number of the first breakpoint we are
4233 stopped at. *BSP upon return is a bpstat which points to the
4234 remaining breakpoints stopped at (but which is not guaranteed to be
4235 good for anything but further calls to bpstat_num).
4236
4237 Return 0 if passed a bpstat which does not indicate any breakpoints.
4238 Return -1 if stopped at a breakpoint that has been deleted since
4239 we set it.
4240 Return 1 otherwise. */
4241
4242 int
4243 bpstat_num (bpstat *bsp, int *num)
4244 {
4245 struct breakpoint *b;
4246
4247 if ((*bsp) == NULL)
4248 return 0; /* No more breakpoint values */
4249
4250 /* We assume we'll never have several bpstats that correspond to a
4251 single breakpoint -- otherwise, this function might return the
4252 same number more than once and this will look ugly. */
4253 b = (*bsp)->breakpoint_at;
4254 *bsp = (*bsp)->next;
4255 if (b == NULL)
4256 return -1; /* breakpoint that's been deleted since */
4257
4258 *num = b->number; /* We have its number */
4259 return 1;
4260 }
4261
4262 /* See breakpoint.h. */
4263
4264 void
4265 bpstat_clear_actions (void)
4266 {
4267 bpstat bs;
4268
4269 if (inferior_ptid == null_ptid)
4270 return;
4271
4272 thread_info *tp = inferior_thread ();
4273 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4274 {
4275 bs->commands = NULL;
4276 bs->old_val.reset (nullptr);
4277 }
4278 }
4279
4280 /* Called when a command is about to proceed the inferior. */
4281
4282 static void
4283 breakpoint_about_to_proceed (void)
4284 {
4285 if (inferior_ptid != null_ptid)
4286 {
4287 struct thread_info *tp = inferior_thread ();
4288
4289 /* Allow inferior function calls in breakpoint commands to not
4290 interrupt the command list. When the call finishes
4291 successfully, the inferior will be standing at the same
4292 breakpoint as if nothing happened. */
4293 if (tp->control.in_infcall)
4294 return;
4295 }
4296
4297 breakpoint_proceeded = 1;
4298 }
4299
4300 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4301 or its equivalent. */
4302
4303 static int
4304 command_line_is_silent (struct command_line *cmd)
4305 {
4306 return cmd && (strcmp ("silent", cmd->line) == 0);
4307 }
4308
4309 /* Execute all the commands associated with all the breakpoints at
4310 this location. Any of these commands could cause the process to
4311 proceed beyond this point, etc. We look out for such changes by
4312 checking the global "breakpoint_proceeded" after each command.
4313
4314 Returns true if a breakpoint command resumed the inferior. In that
4315 case, it is the caller's responsibility to recall it again with the
4316 bpstat of the current thread. */
4317
4318 static int
4319 bpstat_do_actions_1 (bpstat *bsp)
4320 {
4321 bpstat bs;
4322 int again = 0;
4323
4324 /* Avoid endless recursion if a `source' command is contained
4325 in bs->commands. */
4326 if (executing_breakpoint_commands)
4327 return 0;
4328
4329 scoped_restore save_executing
4330 = make_scoped_restore (&executing_breakpoint_commands, 1);
4331
4332 scoped_restore preventer = prevent_dont_repeat ();
4333
4334 /* This pointer will iterate over the list of bpstat's. */
4335 bs = *bsp;
4336
4337 breakpoint_proceeded = 0;
4338 for (; bs != NULL; bs = bs->next)
4339 {
4340 struct command_line *cmd = NULL;
4341
4342 /* Take ownership of the BSP's command tree, if it has one.
4343
4344 The command tree could legitimately contain commands like
4345 'step' and 'next', which call clear_proceed_status, which
4346 frees stop_bpstat's command tree. To make sure this doesn't
4347 free the tree we're executing out from under us, we need to
4348 take ownership of the tree ourselves. Since a given bpstat's
4349 commands are only executed once, we don't need to copy it; we
4350 can clear the pointer in the bpstat, and make sure we free
4351 the tree when we're done. */
4352 counted_command_line ccmd = bs->commands;
4353 bs->commands = NULL;
4354 if (ccmd != NULL)
4355 cmd = ccmd.get ();
4356 if (command_line_is_silent (cmd))
4357 {
4358 /* The action has been already done by bpstat_stop_status. */
4359 cmd = cmd->next;
4360 }
4361
4362 while (cmd != NULL)
4363 {
4364 execute_control_command (cmd);
4365
4366 if (breakpoint_proceeded)
4367 break;
4368 else
4369 cmd = cmd->next;
4370 }
4371
4372 if (breakpoint_proceeded)
4373 {
4374 if (current_ui->async)
4375 /* If we are in async mode, then the target might be still
4376 running, not stopped at any breakpoint, so nothing for
4377 us to do here -- just return to the event loop. */
4378 ;
4379 else
4380 /* In sync mode, when execute_control_command returns
4381 we're already standing on the next breakpoint.
4382 Breakpoint commands for that stop were not run, since
4383 execute_command does not run breakpoint commands --
4384 only command_line_handler does, but that one is not
4385 involved in execution of breakpoint commands. So, we
4386 can now execute breakpoint commands. It should be
4387 noted that making execute_command do bpstat actions is
4388 not an option -- in this case we'll have recursive
4389 invocation of bpstat for each breakpoint with a
4390 command, and can easily blow up GDB stack. Instead, we
4391 return true, which will trigger the caller to recall us
4392 with the new stop_bpstat. */
4393 again = 1;
4394 break;
4395 }
4396 }
4397 return again;
4398 }
4399
4400 /* Helper for bpstat_do_actions. Get the current thread, if there's
4401 one, is alive and has execution. Return NULL otherwise. */
4402
4403 static thread_info *
4404 get_bpstat_thread ()
4405 {
4406 if (inferior_ptid == null_ptid || !target_has_execution)
4407 return NULL;
4408
4409 thread_info *tp = inferior_thread ();
4410 if (tp->state == THREAD_EXITED || tp->executing)
4411 return NULL;
4412 return tp;
4413 }
4414
4415 void
4416 bpstat_do_actions (void)
4417 {
4418 auto cleanup_if_error = make_scope_exit (bpstat_clear_actions);
4419 thread_info *tp;
4420
4421 /* Do any commands attached to breakpoint we are stopped at. */
4422 while ((tp = get_bpstat_thread ()) != NULL)
4423 {
4424 /* Since in sync mode, bpstat_do_actions may resume the
4425 inferior, and only return when it is stopped at the next
4426 breakpoint, we keep doing breakpoint actions until it returns
4427 false to indicate the inferior was not resumed. */
4428 if (!bpstat_do_actions_1 (&tp->control.stop_bpstat))
4429 break;
4430 }
4431
4432 cleanup_if_error.release ();
4433 }
4434
4435 /* Print out the (old or new) value associated with a watchpoint. */
4436
4437 static void
4438 watchpoint_value_print (struct value *val, struct ui_file *stream)
4439 {
4440 if (val == NULL)
4441 fprintf_styled (stream, metadata_style.style (), _("<unreadable>"));
4442 else
4443 {
4444 struct value_print_options opts;
4445 get_user_print_options (&opts);
4446 value_print (val, stream, &opts);
4447 }
4448 }
4449
4450 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4451 debugging multiple threads. */
4452
4453 void
4454 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4455 {
4456 if (uiout->is_mi_like_p ())
4457 return;
4458
4459 uiout->text ("\n");
4460
4461 if (show_thread_that_caused_stop ())
4462 {
4463 const char *name;
4464 struct thread_info *thr = inferior_thread ();
4465
4466 uiout->text ("Thread ");
4467 uiout->field_string ("thread-id", print_thread_id (thr));
4468
4469 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4470 if (name != NULL)
4471 {
4472 uiout->text (" \"");
4473 uiout->field_string ("name", name);
4474 uiout->text ("\"");
4475 }
4476
4477 uiout->text (" hit ");
4478 }
4479 }
4480
4481 /* Generic routine for printing messages indicating why we
4482 stopped. The behavior of this function depends on the value
4483 'print_it' in the bpstat structure. Under some circumstances we
4484 may decide not to print anything here and delegate the task to
4485 normal_stop(). */
4486
4487 static enum print_stop_action
4488 print_bp_stop_message (bpstat bs)
4489 {
4490 switch (bs->print_it)
4491 {
4492 case print_it_noop:
4493 /* Nothing should be printed for this bpstat entry. */
4494 return PRINT_UNKNOWN;
4495 break;
4496
4497 case print_it_done:
4498 /* We still want to print the frame, but we already printed the
4499 relevant messages. */
4500 return PRINT_SRC_AND_LOC;
4501 break;
4502
4503 case print_it_normal:
4504 {
4505 struct breakpoint *b = bs->breakpoint_at;
4506
4507 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4508 which has since been deleted. */
4509 if (b == NULL)
4510 return PRINT_UNKNOWN;
4511
4512 /* Normal case. Call the breakpoint's print_it method. */
4513 return b->ops->print_it (bs);
4514 }
4515 break;
4516
4517 default:
4518 internal_error (__FILE__, __LINE__,
4519 _("print_bp_stop_message: unrecognized enum value"));
4520 break;
4521 }
4522 }
4523
4524 /* A helper function that prints a shared library stopped event. */
4525
4526 static void
4527 print_solib_event (int is_catchpoint)
4528 {
4529 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4530 bool any_added = !current_program_space->added_solibs.empty ();
4531
4532 if (!is_catchpoint)
4533 {
4534 if (any_added || any_deleted)
4535 current_uiout->text (_("Stopped due to shared library event:\n"));
4536 else
4537 current_uiout->text (_("Stopped due to shared library event (no "
4538 "libraries added or removed)\n"));
4539 }
4540
4541 if (current_uiout->is_mi_like_p ())
4542 current_uiout->field_string ("reason",
4543 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4544
4545 if (any_deleted)
4546 {
4547 current_uiout->text (_(" Inferior unloaded "));
4548 ui_out_emit_list list_emitter (current_uiout, "removed");
4549 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4550 {
4551 const std::string &name = current_program_space->deleted_solibs[ix];
4552
4553 if (ix > 0)
4554 current_uiout->text (" ");
4555 current_uiout->field_string ("library", name);
4556 current_uiout->text ("\n");
4557 }
4558 }
4559
4560 if (any_added)
4561 {
4562 current_uiout->text (_(" Inferior loaded "));
4563 ui_out_emit_list list_emitter (current_uiout, "added");
4564 bool first = true;
4565 for (so_list *iter : current_program_space->added_solibs)
4566 {
4567 if (!first)
4568 current_uiout->text (" ");
4569 first = false;
4570 current_uiout->field_string ("library", iter->so_name);
4571 current_uiout->text ("\n");
4572 }
4573 }
4574 }
4575
4576 /* Print a message indicating what happened. This is called from
4577 normal_stop(). The input to this routine is the head of the bpstat
4578 list - a list of the eventpoints that caused this stop. KIND is
4579 the target_waitkind for the stopping event. This
4580 routine calls the generic print routine for printing a message
4581 about reasons for stopping. This will print (for example) the
4582 "Breakpoint n," part of the output. The return value of this
4583 routine is one of:
4584
4585 PRINT_UNKNOWN: Means we printed nothing.
4586 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4587 code to print the location. An example is
4588 "Breakpoint 1, " which should be followed by
4589 the location.
4590 PRINT_SRC_ONLY: Means we printed something, but there is no need
4591 to also print the location part of the message.
4592 An example is the catch/throw messages, which
4593 don't require a location appended to the end.
4594 PRINT_NOTHING: We have done some printing and we don't need any
4595 further info to be printed. */
4596
4597 enum print_stop_action
4598 bpstat_print (bpstat bs, int kind)
4599 {
4600 enum print_stop_action val;
4601
4602 /* Maybe another breakpoint in the chain caused us to stop.
4603 (Currently all watchpoints go on the bpstat whether hit or not.
4604 That probably could (should) be changed, provided care is taken
4605 with respect to bpstat_explains_signal). */
4606 for (; bs; bs = bs->next)
4607 {
4608 val = print_bp_stop_message (bs);
4609 if (val == PRINT_SRC_ONLY
4610 || val == PRINT_SRC_AND_LOC
4611 || val == PRINT_NOTHING)
4612 return val;
4613 }
4614
4615 /* If we had hit a shared library event breakpoint,
4616 print_bp_stop_message would print out this message. If we hit an
4617 OS-level shared library event, do the same thing. */
4618 if (kind == TARGET_WAITKIND_LOADED)
4619 {
4620 print_solib_event (0);
4621 return PRINT_NOTHING;
4622 }
4623
4624 /* We reached the end of the chain, or we got a null BS to start
4625 with and nothing was printed. */
4626 return PRINT_UNKNOWN;
4627 }
4628
4629 /* Evaluate the boolean expression EXP and return the result. */
4630
4631 static bool
4632 breakpoint_cond_eval (expression *exp)
4633 {
4634 struct value *mark = value_mark ();
4635 bool res = value_true (evaluate_expression (exp));
4636
4637 value_free_to_mark (mark);
4638 return res;
4639 }
4640
4641 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4642
4643 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4644 : next (NULL),
4645 bp_location_at (bl),
4646 breakpoint_at (bl->owner),
4647 commands (NULL),
4648 print (0),
4649 stop (0),
4650 print_it (print_it_normal)
4651 {
4652 incref_bp_location (bl);
4653 **bs_link_pointer = this;
4654 *bs_link_pointer = &next;
4655 }
4656
4657 bpstats::bpstats ()
4658 : next (NULL),
4659 bp_location_at (NULL),
4660 breakpoint_at (NULL),
4661 commands (NULL),
4662 print (0),
4663 stop (0),
4664 print_it (print_it_normal)
4665 {
4666 }
4667 \f
4668 /* The target has stopped with waitstatus WS. Check if any hardware
4669 watchpoints have triggered, according to the target. */
4670
4671 int
4672 watchpoints_triggered (struct target_waitstatus *ws)
4673 {
4674 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4675 CORE_ADDR addr;
4676 struct breakpoint *b;
4677
4678 if (!stopped_by_watchpoint)
4679 {
4680 /* We were not stopped by a watchpoint. Mark all watchpoints
4681 as not triggered. */
4682 ALL_BREAKPOINTS (b)
4683 if (is_hardware_watchpoint (b))
4684 {
4685 struct watchpoint *w = (struct watchpoint *) b;
4686
4687 w->watchpoint_triggered = watch_triggered_no;
4688 }
4689
4690 return 0;
4691 }
4692
4693 if (!target_stopped_data_address (current_top_target (), &addr))
4694 {
4695 /* We were stopped by a watchpoint, but we don't know where.
4696 Mark all watchpoints as unknown. */
4697 ALL_BREAKPOINTS (b)
4698 if (is_hardware_watchpoint (b))
4699 {
4700 struct watchpoint *w = (struct watchpoint *) b;
4701
4702 w->watchpoint_triggered = watch_triggered_unknown;
4703 }
4704
4705 return 1;
4706 }
4707
4708 /* The target could report the data address. Mark watchpoints
4709 affected by this data address as triggered, and all others as not
4710 triggered. */
4711
4712 ALL_BREAKPOINTS (b)
4713 if (is_hardware_watchpoint (b))
4714 {
4715 struct watchpoint *w = (struct watchpoint *) b;
4716 struct bp_location *loc;
4717
4718 w->watchpoint_triggered = watch_triggered_no;
4719 for (loc = b->loc; loc; loc = loc->next)
4720 {
4721 if (is_masked_watchpoint (b))
4722 {
4723 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4724 CORE_ADDR start = loc->address & w->hw_wp_mask;
4725
4726 if (newaddr == start)
4727 {
4728 w->watchpoint_triggered = watch_triggered_yes;
4729 break;
4730 }
4731 }
4732 /* Exact match not required. Within range is sufficient. */
4733 else if (target_watchpoint_addr_within_range (current_top_target (),
4734 addr, loc->address,
4735 loc->length))
4736 {
4737 w->watchpoint_triggered = watch_triggered_yes;
4738 break;
4739 }
4740 }
4741 }
4742
4743 return 1;
4744 }
4745
4746 /* Possible return values for watchpoint_check. */
4747 enum wp_check_result
4748 {
4749 /* The watchpoint has been deleted. */
4750 WP_DELETED = 1,
4751
4752 /* The value has changed. */
4753 WP_VALUE_CHANGED = 2,
4754
4755 /* The value has not changed. */
4756 WP_VALUE_NOT_CHANGED = 3,
4757
4758 /* Ignore this watchpoint, no matter if the value changed or not. */
4759 WP_IGNORE = 4,
4760 };
4761
4762 #define BP_TEMPFLAG 1
4763 #define BP_HARDWAREFLAG 2
4764
4765 /* Evaluate watchpoint condition expression and check if its value
4766 changed. */
4767
4768 static wp_check_result
4769 watchpoint_check (bpstat bs)
4770 {
4771 struct watchpoint *b;
4772 struct frame_info *fr;
4773 int within_current_scope;
4774
4775 /* BS is built from an existing struct breakpoint. */
4776 gdb_assert (bs->breakpoint_at != NULL);
4777 b = (struct watchpoint *) bs->breakpoint_at;
4778
4779 /* If this is a local watchpoint, we only want to check if the
4780 watchpoint frame is in scope if the current thread is the thread
4781 that was used to create the watchpoint. */
4782 if (!watchpoint_in_thread_scope (b))
4783 return WP_IGNORE;
4784
4785 if (b->exp_valid_block == NULL)
4786 within_current_scope = 1;
4787 else
4788 {
4789 struct frame_info *frame = get_current_frame ();
4790 struct gdbarch *frame_arch = get_frame_arch (frame);
4791 CORE_ADDR frame_pc = get_frame_pc (frame);
4792
4793 /* stack_frame_destroyed_p() returns a non-zero value if we're
4794 still in the function but the stack frame has already been
4795 invalidated. Since we can't rely on the values of local
4796 variables after the stack has been destroyed, we are treating
4797 the watchpoint in that state as `not changed' without further
4798 checking. Don't mark watchpoints as changed if the current
4799 frame is in an epilogue - even if they are in some other
4800 frame, our view of the stack is likely to be wrong and
4801 frame_find_by_id could error out. */
4802 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4803 return WP_IGNORE;
4804
4805 fr = frame_find_by_id (b->watchpoint_frame);
4806 within_current_scope = (fr != NULL);
4807
4808 /* If we've gotten confused in the unwinder, we might have
4809 returned a frame that can't describe this variable. */
4810 if (within_current_scope)
4811 {
4812 struct symbol *function;
4813
4814 function = get_frame_function (fr);
4815 if (function == NULL
4816 || !contained_in (b->exp_valid_block,
4817 SYMBOL_BLOCK_VALUE (function)))
4818 within_current_scope = 0;
4819 }
4820
4821 if (within_current_scope)
4822 /* If we end up stopping, the current frame will get selected
4823 in normal_stop. So this call to select_frame won't affect
4824 the user. */
4825 select_frame (fr);
4826 }
4827
4828 if (within_current_scope)
4829 {
4830 /* We use value_{,free_to_}mark because it could be a *long*
4831 time before we return to the command level and call
4832 free_all_values. We can't call free_all_values because we
4833 might be in the middle of evaluating a function call. */
4834
4835 int pc = 0;
4836 struct value *mark;
4837 struct value *new_val;
4838
4839 if (is_masked_watchpoint (b))
4840 /* Since we don't know the exact trigger address (from
4841 stopped_data_address), just tell the user we've triggered
4842 a mask watchpoint. */
4843 return WP_VALUE_CHANGED;
4844
4845 mark = value_mark ();
4846 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4847
4848 if (b->val_bitsize != 0)
4849 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4850
4851 /* We use value_equal_contents instead of value_equal because
4852 the latter coerces an array to a pointer, thus comparing just
4853 the address of the array instead of its contents. This is
4854 not what we want. */
4855 if ((b->val != NULL) != (new_val != NULL)
4856 || (b->val != NULL && !value_equal_contents (b->val.get (),
4857 new_val)))
4858 {
4859 bs->old_val = b->val;
4860 b->val = release_value (new_val);
4861 b->val_valid = true;
4862 if (new_val != NULL)
4863 value_free_to_mark (mark);
4864 return WP_VALUE_CHANGED;
4865 }
4866 else
4867 {
4868 /* Nothing changed. */
4869 value_free_to_mark (mark);
4870 return WP_VALUE_NOT_CHANGED;
4871 }
4872 }
4873 else
4874 {
4875 /* This seems like the only logical thing to do because
4876 if we temporarily ignored the watchpoint, then when
4877 we reenter the block in which it is valid it contains
4878 garbage (in the case of a function, it may have two
4879 garbage values, one before and one after the prologue).
4880 So we can't even detect the first assignment to it and
4881 watch after that (since the garbage may or may not equal
4882 the first value assigned). */
4883 /* We print all the stop information in
4884 breakpoint_ops->print_it, but in this case, by the time we
4885 call breakpoint_ops->print_it this bp will be deleted
4886 already. So we have no choice but print the information
4887 here. */
4888
4889 SWITCH_THRU_ALL_UIS ()
4890 {
4891 struct ui_out *uiout = current_uiout;
4892
4893 if (uiout->is_mi_like_p ())
4894 uiout->field_string
4895 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4896 uiout->message ("\nWatchpoint %pF deleted because the program has "
4897 "left the block in\n"
4898 "which its expression is valid.\n",
4899 signed_field ("wpnum", b->number));
4900 }
4901
4902 /* Make sure the watchpoint's commands aren't executed. */
4903 b->commands = NULL;
4904 watchpoint_del_at_next_stop (b);
4905
4906 return WP_DELETED;
4907 }
4908 }
4909
4910 /* Return true if it looks like target has stopped due to hitting
4911 breakpoint location BL. This function does not check if we should
4912 stop, only if BL explains the stop. */
4913
4914 static int
4915 bpstat_check_location (const struct bp_location *bl,
4916 const address_space *aspace, CORE_ADDR bp_addr,
4917 const struct target_waitstatus *ws)
4918 {
4919 struct breakpoint *b = bl->owner;
4920
4921 /* BL is from an existing breakpoint. */
4922 gdb_assert (b != NULL);
4923
4924 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4925 }
4926
4927 /* Determine if the watched values have actually changed, and we
4928 should stop. If not, set BS->stop to 0. */
4929
4930 static void
4931 bpstat_check_watchpoint (bpstat bs)
4932 {
4933 const struct bp_location *bl;
4934 struct watchpoint *b;
4935
4936 /* BS is built for existing struct breakpoint. */
4937 bl = bs->bp_location_at;
4938 gdb_assert (bl != NULL);
4939 b = (struct watchpoint *) bs->breakpoint_at;
4940 gdb_assert (b != NULL);
4941
4942 {
4943 int must_check_value = 0;
4944
4945 if (b->type == bp_watchpoint)
4946 /* For a software watchpoint, we must always check the
4947 watched value. */
4948 must_check_value = 1;
4949 else if (b->watchpoint_triggered == watch_triggered_yes)
4950 /* We have a hardware watchpoint (read, write, or access)
4951 and the target earlier reported an address watched by
4952 this watchpoint. */
4953 must_check_value = 1;
4954 else if (b->watchpoint_triggered == watch_triggered_unknown
4955 && b->type == bp_hardware_watchpoint)
4956 /* We were stopped by a hardware watchpoint, but the target could
4957 not report the data address. We must check the watchpoint's
4958 value. Access and read watchpoints are out of luck; without
4959 a data address, we can't figure it out. */
4960 must_check_value = 1;
4961
4962 if (must_check_value)
4963 {
4964 wp_check_result e;
4965
4966 try
4967 {
4968 e = watchpoint_check (bs);
4969 }
4970 catch (const gdb_exception &ex)
4971 {
4972 exception_fprintf (gdb_stderr, ex,
4973 "Error evaluating expression "
4974 "for watchpoint %d\n",
4975 b->number);
4976
4977 SWITCH_THRU_ALL_UIS ()
4978 {
4979 printf_filtered (_("Watchpoint %d deleted.\n"),
4980 b->number);
4981 }
4982 watchpoint_del_at_next_stop (b);
4983 e = WP_DELETED;
4984 }
4985
4986 switch (e)
4987 {
4988 case WP_DELETED:
4989 /* We've already printed what needs to be printed. */
4990 bs->print_it = print_it_done;
4991 /* Stop. */
4992 break;
4993 case WP_IGNORE:
4994 bs->print_it = print_it_noop;
4995 bs->stop = 0;
4996 break;
4997 case WP_VALUE_CHANGED:
4998 if (b->type == bp_read_watchpoint)
4999 {
5000 /* There are two cases to consider here:
5001
5002 1. We're watching the triggered memory for reads.
5003 In that case, trust the target, and always report
5004 the watchpoint hit to the user. Even though
5005 reads don't cause value changes, the value may
5006 have changed since the last time it was read, and
5007 since we're not trapping writes, we will not see
5008 those, and as such we should ignore our notion of
5009 old value.
5010
5011 2. We're watching the triggered memory for both
5012 reads and writes. There are two ways this may
5013 happen:
5014
5015 2.1. This is a target that can't break on data
5016 reads only, but can break on accesses (reads or
5017 writes), such as e.g., x86. We detect this case
5018 at the time we try to insert read watchpoints.
5019
5020 2.2. Otherwise, the target supports read
5021 watchpoints, but, the user set an access or write
5022 watchpoint watching the same memory as this read
5023 watchpoint.
5024
5025 If we're watching memory writes as well as reads,
5026 ignore watchpoint hits when we find that the
5027 value hasn't changed, as reads don't cause
5028 changes. This still gives false positives when
5029 the program writes the same value to memory as
5030 what there was already in memory (we will confuse
5031 it for a read), but it's much better than
5032 nothing. */
5033
5034 int other_write_watchpoint = 0;
5035
5036 if (bl->watchpoint_type == hw_read)
5037 {
5038 struct breakpoint *other_b;
5039
5040 ALL_BREAKPOINTS (other_b)
5041 if (other_b->type == bp_hardware_watchpoint
5042 || other_b->type == bp_access_watchpoint)
5043 {
5044 struct watchpoint *other_w =
5045 (struct watchpoint *) other_b;
5046
5047 if (other_w->watchpoint_triggered
5048 == watch_triggered_yes)
5049 {
5050 other_write_watchpoint = 1;
5051 break;
5052 }
5053 }
5054 }
5055
5056 if (other_write_watchpoint
5057 || bl->watchpoint_type == hw_access)
5058 {
5059 /* We're watching the same memory for writes,
5060 and the value changed since the last time we
5061 updated it, so this trap must be for a write.
5062 Ignore it. */
5063 bs->print_it = print_it_noop;
5064 bs->stop = 0;
5065 }
5066 }
5067 break;
5068 case WP_VALUE_NOT_CHANGED:
5069 if (b->type == bp_hardware_watchpoint
5070 || b->type == bp_watchpoint)
5071 {
5072 /* Don't stop: write watchpoints shouldn't fire if
5073 the value hasn't changed. */
5074 bs->print_it = print_it_noop;
5075 bs->stop = 0;
5076 }
5077 /* Stop. */
5078 break;
5079 default:
5080 /* Can't happen. */
5081 break;
5082 }
5083 }
5084 else /* must_check_value == 0 */
5085 {
5086 /* This is a case where some watchpoint(s) triggered, but
5087 not at the address of this watchpoint, or else no
5088 watchpoint triggered after all. So don't print
5089 anything for this watchpoint. */
5090 bs->print_it = print_it_noop;
5091 bs->stop = 0;
5092 }
5093 }
5094 }
5095
5096 /* For breakpoints that are currently marked as telling gdb to stop,
5097 check conditions (condition proper, frame, thread and ignore count)
5098 of breakpoint referred to by BS. If we should not stop for this
5099 breakpoint, set BS->stop to 0. */
5100
5101 static void
5102 bpstat_check_breakpoint_conditions (bpstat bs, thread_info *thread)
5103 {
5104 const struct bp_location *bl;
5105 struct breakpoint *b;
5106 /* Assume stop. */
5107 bool condition_result = true;
5108 struct expression *cond;
5109
5110 gdb_assert (bs->stop);
5111
5112 /* BS is built for existing struct breakpoint. */
5113 bl = bs->bp_location_at;
5114 gdb_assert (bl != NULL);
5115 b = bs->breakpoint_at;
5116 gdb_assert (b != NULL);
5117
5118 /* Even if the target evaluated the condition on its end and notified GDB, we
5119 need to do so again since GDB does not know if we stopped due to a
5120 breakpoint or a single step breakpoint. */
5121
5122 if (frame_id_p (b->frame_id)
5123 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5124 {
5125 bs->stop = 0;
5126 return;
5127 }
5128
5129 /* If this is a thread/task-specific breakpoint, don't waste cpu
5130 evaluating the condition if this isn't the specified
5131 thread/task. */
5132 if ((b->thread != -1 && b->thread != thread->global_num)
5133 || (b->task != 0 && b->task != ada_get_task_number (thread)))
5134 {
5135 bs->stop = 0;
5136 return;
5137 }
5138
5139 /* Evaluate extension language breakpoints that have a "stop" method
5140 implemented. */
5141 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5142
5143 if (is_watchpoint (b))
5144 {
5145 struct watchpoint *w = (struct watchpoint *) b;
5146
5147 cond = w->cond_exp.get ();
5148 }
5149 else
5150 cond = bl->cond.get ();
5151
5152 if (cond && b->disposition != disp_del_at_next_stop)
5153 {
5154 int within_current_scope = 1;
5155 struct watchpoint * w;
5156
5157 /* We use value_mark and value_free_to_mark because it could
5158 be a long time before we return to the command level and
5159 call free_all_values. We can't call free_all_values
5160 because we might be in the middle of evaluating a
5161 function call. */
5162 struct value *mark = value_mark ();
5163
5164 if (is_watchpoint (b))
5165 w = (struct watchpoint *) b;
5166 else
5167 w = NULL;
5168
5169 /* Need to select the frame, with all that implies so that
5170 the conditions will have the right context. Because we
5171 use the frame, we will not see an inlined function's
5172 variables when we arrive at a breakpoint at the start
5173 of the inlined function; the current frame will be the
5174 call site. */
5175 if (w == NULL || w->cond_exp_valid_block == NULL)
5176 select_frame (get_current_frame ());
5177 else
5178 {
5179 struct frame_info *frame;
5180
5181 /* For local watchpoint expressions, which particular
5182 instance of a local is being watched matters, so we
5183 keep track of the frame to evaluate the expression
5184 in. To evaluate the condition however, it doesn't
5185 really matter which instantiation of the function
5186 where the condition makes sense triggers the
5187 watchpoint. This allows an expression like "watch
5188 global if q > 10" set in `func', catch writes to
5189 global on all threads that call `func', or catch
5190 writes on all recursive calls of `func' by a single
5191 thread. We simply always evaluate the condition in
5192 the innermost frame that's executing where it makes
5193 sense to evaluate the condition. It seems
5194 intuitive. */
5195 frame = block_innermost_frame (w->cond_exp_valid_block);
5196 if (frame != NULL)
5197 select_frame (frame);
5198 else
5199 within_current_scope = 0;
5200 }
5201 if (within_current_scope)
5202 {
5203 try
5204 {
5205 condition_result = breakpoint_cond_eval (cond);
5206 }
5207 catch (const gdb_exception &ex)
5208 {
5209 exception_fprintf (gdb_stderr, ex,
5210 "Error in testing breakpoint condition:\n");
5211 }
5212 }
5213 else
5214 {
5215 warning (_("Watchpoint condition cannot be tested "
5216 "in the current scope"));
5217 /* If we failed to set the right context for this
5218 watchpoint, unconditionally report it. */
5219 }
5220 /* FIXME-someday, should give breakpoint #. */
5221 value_free_to_mark (mark);
5222 }
5223
5224 if (cond && !condition_result)
5225 {
5226 bs->stop = 0;
5227 }
5228 else if (b->ignore_count > 0)
5229 {
5230 b->ignore_count--;
5231 bs->stop = 0;
5232 /* Increase the hit count even though we don't stop. */
5233 ++(b->hit_count);
5234 gdb::observers::breakpoint_modified.notify (b);
5235 }
5236 }
5237
5238 /* Returns true if we need to track moribund locations of LOC's type
5239 on the current target. */
5240
5241 static int
5242 need_moribund_for_location_type (struct bp_location *loc)
5243 {
5244 return ((loc->loc_type == bp_loc_software_breakpoint
5245 && !target_supports_stopped_by_sw_breakpoint ())
5246 || (loc->loc_type == bp_loc_hardware_breakpoint
5247 && !target_supports_stopped_by_hw_breakpoint ()));
5248 }
5249
5250 /* See breakpoint.h. */
5251
5252 bpstat
5253 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5254 const struct target_waitstatus *ws)
5255 {
5256 struct breakpoint *b;
5257 bpstat bs_head = NULL, *bs_link = &bs_head;
5258
5259 ALL_BREAKPOINTS (b)
5260 {
5261 if (!breakpoint_enabled (b))
5262 continue;
5263
5264 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next)
5265 {
5266 /* For hardware watchpoints, we look only at the first
5267 location. The watchpoint_check function will work on the
5268 entire expression, not the individual locations. For
5269 read watchpoints, the watchpoints_triggered function has
5270 checked all locations already. */
5271 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5272 break;
5273
5274 if (!bl->enabled || bl->shlib_disabled)
5275 continue;
5276
5277 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5278 continue;
5279
5280 /* Come here if it's a watchpoint, or if the break address
5281 matches. */
5282
5283 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5284 explain stop. */
5285
5286 /* Assume we stop. Should we find a watchpoint that is not
5287 actually triggered, or if the condition of the breakpoint
5288 evaluates as false, we'll reset 'stop' to 0. */
5289 bs->stop = 1;
5290 bs->print = 1;
5291
5292 /* If this is a scope breakpoint, mark the associated
5293 watchpoint as triggered so that we will handle the
5294 out-of-scope event. We'll get to the watchpoint next
5295 iteration. */
5296 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5297 {
5298 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5299
5300 w->watchpoint_triggered = watch_triggered_yes;
5301 }
5302 }
5303 }
5304
5305 /* Check if a moribund breakpoint explains the stop. */
5306 if (!target_supports_stopped_by_sw_breakpoint ()
5307 || !target_supports_stopped_by_hw_breakpoint ())
5308 {
5309 for (bp_location *loc : moribund_locations)
5310 {
5311 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5312 && need_moribund_for_location_type (loc))
5313 {
5314 bpstat bs = new bpstats (loc, &bs_link);
5315 /* For hits of moribund locations, we should just proceed. */
5316 bs->stop = 0;
5317 bs->print = 0;
5318 bs->print_it = print_it_noop;
5319 }
5320 }
5321 }
5322
5323 return bs_head;
5324 }
5325
5326 /* See breakpoint.h. */
5327
5328 bpstat
5329 bpstat_stop_status (const address_space *aspace,
5330 CORE_ADDR bp_addr, thread_info *thread,
5331 const struct target_waitstatus *ws,
5332 bpstat stop_chain)
5333 {
5334 struct breakpoint *b = NULL;
5335 /* First item of allocated bpstat's. */
5336 bpstat bs_head = stop_chain;
5337 bpstat bs;
5338 int need_remove_insert;
5339 int removed_any;
5340
5341 /* First, build the bpstat chain with locations that explain a
5342 target stop, while being careful to not set the target running,
5343 as that may invalidate locations (in particular watchpoint
5344 locations are recreated). Resuming will happen here with
5345 breakpoint conditions or watchpoint expressions that include
5346 inferior function calls. */
5347 if (bs_head == NULL)
5348 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5349
5350 /* A bit of special processing for shlib breakpoints. We need to
5351 process solib loading here, so that the lists of loaded and
5352 unloaded libraries are correct before we handle "catch load" and
5353 "catch unload". */
5354 for (bs = bs_head; bs != NULL; bs = bs->next)
5355 {
5356 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5357 {
5358 handle_solib_event ();
5359 break;
5360 }
5361 }
5362
5363 /* Now go through the locations that caused the target to stop, and
5364 check whether we're interested in reporting this stop to higher
5365 layers, or whether we should resume the target transparently. */
5366
5367 removed_any = 0;
5368
5369 for (bs = bs_head; bs != NULL; bs = bs->next)
5370 {
5371 if (!bs->stop)
5372 continue;
5373
5374 b = bs->breakpoint_at;
5375 b->ops->check_status (bs);
5376 if (bs->stop)
5377 {
5378 bpstat_check_breakpoint_conditions (bs, thread);
5379
5380 if (bs->stop)
5381 {
5382 ++(b->hit_count);
5383 gdb::observers::breakpoint_modified.notify (b);
5384
5385 /* We will stop here. */
5386 if (b->disposition == disp_disable)
5387 {
5388 --(b->enable_count);
5389 if (b->enable_count <= 0)
5390 b->enable_state = bp_disabled;
5391 removed_any = 1;
5392 }
5393 if (b->silent)
5394 bs->print = 0;
5395 bs->commands = b->commands;
5396 if (command_line_is_silent (bs->commands
5397 ? bs->commands.get () : NULL))
5398 bs->print = 0;
5399
5400 b->ops->after_condition_true (bs);
5401 }
5402
5403 }
5404
5405 /* Print nothing for this entry if we don't stop or don't
5406 print. */
5407 if (!bs->stop || !bs->print)
5408 bs->print_it = print_it_noop;
5409 }
5410
5411 /* If we aren't stopping, the value of some hardware watchpoint may
5412 not have changed, but the intermediate memory locations we are
5413 watching may have. Don't bother if we're stopping; this will get
5414 done later. */
5415 need_remove_insert = 0;
5416 if (! bpstat_causes_stop (bs_head))
5417 for (bs = bs_head; bs != NULL; bs = bs->next)
5418 if (!bs->stop
5419 && bs->breakpoint_at
5420 && is_hardware_watchpoint (bs->breakpoint_at))
5421 {
5422 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5423
5424 update_watchpoint (w, 0 /* don't reparse. */);
5425 need_remove_insert = 1;
5426 }
5427
5428 if (need_remove_insert)
5429 update_global_location_list (UGLL_MAY_INSERT);
5430 else if (removed_any)
5431 update_global_location_list (UGLL_DONT_INSERT);
5432
5433 return bs_head;
5434 }
5435
5436 static void
5437 handle_jit_event (void)
5438 {
5439 struct frame_info *frame;
5440 struct gdbarch *gdbarch;
5441
5442 if (debug_infrun)
5443 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5444
5445 /* Switch terminal for any messages produced by
5446 breakpoint_re_set. */
5447 target_terminal::ours_for_output ();
5448
5449 frame = get_current_frame ();
5450 gdbarch = get_frame_arch (frame);
5451 objfile *jiter = symbol_objfile (get_frame_function (frame));
5452
5453 jit_event_handler (gdbarch, jiter);
5454
5455 target_terminal::inferior ();
5456 }
5457
5458 /* Prepare WHAT final decision for infrun. */
5459
5460 /* Decide what infrun needs to do with this bpstat. */
5461
5462 struct bpstat_what
5463 bpstat_what (bpstat bs_head)
5464 {
5465 struct bpstat_what retval;
5466 bpstat bs;
5467
5468 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5469 retval.call_dummy = STOP_NONE;
5470 retval.is_longjmp = false;
5471
5472 for (bs = bs_head; bs != NULL; bs = bs->next)
5473 {
5474 /* Extract this BS's action. After processing each BS, we check
5475 if its action overrides all we've seem so far. */
5476 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5477 enum bptype bptype;
5478
5479 if (bs->breakpoint_at == NULL)
5480 {
5481 /* I suspect this can happen if it was a momentary
5482 breakpoint which has since been deleted. */
5483 bptype = bp_none;
5484 }
5485 else
5486 bptype = bs->breakpoint_at->type;
5487
5488 switch (bptype)
5489 {
5490 case bp_none:
5491 break;
5492 case bp_breakpoint:
5493 case bp_hardware_breakpoint:
5494 case bp_single_step:
5495 case bp_until:
5496 case bp_finish:
5497 case bp_shlib_event:
5498 if (bs->stop)
5499 {
5500 if (bs->print)
5501 this_action = BPSTAT_WHAT_STOP_NOISY;
5502 else
5503 this_action = BPSTAT_WHAT_STOP_SILENT;
5504 }
5505 else
5506 this_action = BPSTAT_WHAT_SINGLE;
5507 break;
5508 case bp_watchpoint:
5509 case bp_hardware_watchpoint:
5510 case bp_read_watchpoint:
5511 case bp_access_watchpoint:
5512 if (bs->stop)
5513 {
5514 if (bs->print)
5515 this_action = BPSTAT_WHAT_STOP_NOISY;
5516 else
5517 this_action = BPSTAT_WHAT_STOP_SILENT;
5518 }
5519 else
5520 {
5521 /* There was a watchpoint, but we're not stopping.
5522 This requires no further action. */
5523 }
5524 break;
5525 case bp_longjmp:
5526 case bp_longjmp_call_dummy:
5527 case bp_exception:
5528 if (bs->stop)
5529 {
5530 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5531 retval.is_longjmp = bptype != bp_exception;
5532 }
5533 else
5534 this_action = BPSTAT_WHAT_SINGLE;
5535 break;
5536 case bp_longjmp_resume:
5537 case bp_exception_resume:
5538 if (bs->stop)
5539 {
5540 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5541 retval.is_longjmp = bptype == bp_longjmp_resume;
5542 }
5543 else
5544 this_action = BPSTAT_WHAT_SINGLE;
5545 break;
5546 case bp_step_resume:
5547 if (bs->stop)
5548 this_action = BPSTAT_WHAT_STEP_RESUME;
5549 else
5550 {
5551 /* It is for the wrong frame. */
5552 this_action = BPSTAT_WHAT_SINGLE;
5553 }
5554 break;
5555 case bp_hp_step_resume:
5556 if (bs->stop)
5557 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5558 else
5559 {
5560 /* It is for the wrong frame. */
5561 this_action = BPSTAT_WHAT_SINGLE;
5562 }
5563 break;
5564 case bp_watchpoint_scope:
5565 case bp_thread_event:
5566 case bp_overlay_event:
5567 case bp_longjmp_master:
5568 case bp_std_terminate_master:
5569 case bp_exception_master:
5570 this_action = BPSTAT_WHAT_SINGLE;
5571 break;
5572 case bp_catchpoint:
5573 if (bs->stop)
5574 {
5575 if (bs->print)
5576 this_action = BPSTAT_WHAT_STOP_NOISY;
5577 else
5578 this_action = BPSTAT_WHAT_STOP_SILENT;
5579 }
5580 else
5581 {
5582 /* Some catchpoints are implemented with breakpoints.
5583 For those, we need to step over the breakpoint. */
5584 if (bs->bp_location_at->loc_type != bp_loc_other)
5585 this_action = BPSTAT_WHAT_SINGLE;
5586 }
5587 break;
5588 case bp_jit_event:
5589 this_action = BPSTAT_WHAT_SINGLE;
5590 break;
5591 case bp_call_dummy:
5592 /* Make sure the action is stop (silent or noisy),
5593 so infrun.c pops the dummy frame. */
5594 retval.call_dummy = STOP_STACK_DUMMY;
5595 this_action = BPSTAT_WHAT_STOP_SILENT;
5596 break;
5597 case bp_std_terminate:
5598 /* Make sure the action is stop (silent or noisy),
5599 so infrun.c pops the dummy frame. */
5600 retval.call_dummy = STOP_STD_TERMINATE;
5601 this_action = BPSTAT_WHAT_STOP_SILENT;
5602 break;
5603 case bp_tracepoint:
5604 case bp_fast_tracepoint:
5605 case bp_static_tracepoint:
5606 /* Tracepoint hits should not be reported back to GDB, and
5607 if one got through somehow, it should have been filtered
5608 out already. */
5609 internal_error (__FILE__, __LINE__,
5610 _("bpstat_what: tracepoint encountered"));
5611 break;
5612 case bp_gnu_ifunc_resolver:
5613 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5614 this_action = BPSTAT_WHAT_SINGLE;
5615 break;
5616 case bp_gnu_ifunc_resolver_return:
5617 /* The breakpoint will be removed, execution will restart from the
5618 PC of the former breakpoint. */
5619 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5620 break;
5621
5622 case bp_dprintf:
5623 if (bs->stop)
5624 this_action = BPSTAT_WHAT_STOP_SILENT;
5625 else
5626 this_action = BPSTAT_WHAT_SINGLE;
5627 break;
5628
5629 default:
5630 internal_error (__FILE__, __LINE__,
5631 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5632 }
5633
5634 retval.main_action = std::max (retval.main_action, this_action);
5635 }
5636
5637 return retval;
5638 }
5639
5640 void
5641 bpstat_run_callbacks (bpstat bs_head)
5642 {
5643 bpstat bs;
5644
5645 for (bs = bs_head; bs != NULL; bs = bs->next)
5646 {
5647 struct breakpoint *b = bs->breakpoint_at;
5648
5649 if (b == NULL)
5650 continue;
5651 switch (b->type)
5652 {
5653 case bp_jit_event:
5654 handle_jit_event ();
5655 break;
5656 case bp_gnu_ifunc_resolver:
5657 gnu_ifunc_resolver_stop (b);
5658 break;
5659 case bp_gnu_ifunc_resolver_return:
5660 gnu_ifunc_resolver_return_stop (b);
5661 break;
5662 }
5663 }
5664 }
5665
5666 /* See breakpoint.h. */
5667
5668 bool
5669 bpstat_should_step ()
5670 {
5671 struct breakpoint *b;
5672
5673 ALL_BREAKPOINTS (b)
5674 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5675 return true;
5676 return false;
5677 }
5678
5679 /* See breakpoint.h. */
5680
5681 bool
5682 bpstat_causes_stop (bpstat bs)
5683 {
5684 for (; bs != NULL; bs = bs->next)
5685 if (bs->stop)
5686 return true;
5687
5688 return false;
5689 }
5690
5691 \f
5692
5693 /* Compute a string of spaces suitable to indent the next line
5694 so it starts at the position corresponding to the table column
5695 named COL_NAME in the currently active table of UIOUT. */
5696
5697 static char *
5698 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5699 {
5700 static char wrap_indent[80];
5701 int i, total_width, width, align;
5702 const char *text;
5703
5704 total_width = 0;
5705 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5706 {
5707 if (strcmp (text, col_name) == 0)
5708 {
5709 gdb_assert (total_width < sizeof wrap_indent);
5710 memset (wrap_indent, ' ', total_width);
5711 wrap_indent[total_width] = 0;
5712
5713 return wrap_indent;
5714 }
5715
5716 total_width += width + 1;
5717 }
5718
5719 return NULL;
5720 }
5721
5722 /* Determine if the locations of this breakpoint will have their conditions
5723 evaluated by the target, host or a mix of both. Returns the following:
5724
5725 "host": Host evals condition.
5726 "host or target": Host or Target evals condition.
5727 "target": Target evals condition.
5728 */
5729
5730 static const char *
5731 bp_condition_evaluator (struct breakpoint *b)
5732 {
5733 struct bp_location *bl;
5734 char host_evals = 0;
5735 char target_evals = 0;
5736
5737 if (!b)
5738 return NULL;
5739
5740 if (!is_breakpoint (b))
5741 return NULL;
5742
5743 if (gdb_evaluates_breakpoint_condition_p ()
5744 || !target_supports_evaluation_of_breakpoint_conditions ())
5745 return condition_evaluation_host;
5746
5747 for (bl = b->loc; bl; bl = bl->next)
5748 {
5749 if (bl->cond_bytecode)
5750 target_evals++;
5751 else
5752 host_evals++;
5753 }
5754
5755 if (host_evals && target_evals)
5756 return condition_evaluation_both;
5757 else if (target_evals)
5758 return condition_evaluation_target;
5759 else
5760 return condition_evaluation_host;
5761 }
5762
5763 /* Determine the breakpoint location's condition evaluator. This is
5764 similar to bp_condition_evaluator, but for locations. */
5765
5766 static const char *
5767 bp_location_condition_evaluator (struct bp_location *bl)
5768 {
5769 if (bl && !is_breakpoint (bl->owner))
5770 return NULL;
5771
5772 if (gdb_evaluates_breakpoint_condition_p ()
5773 || !target_supports_evaluation_of_breakpoint_conditions ())
5774 return condition_evaluation_host;
5775
5776 if (bl && bl->cond_bytecode)
5777 return condition_evaluation_target;
5778 else
5779 return condition_evaluation_host;
5780 }
5781
5782 /* Print the LOC location out of the list of B->LOC locations. */
5783
5784 static void
5785 print_breakpoint_location (struct breakpoint *b,
5786 struct bp_location *loc)
5787 {
5788 struct ui_out *uiout = current_uiout;
5789
5790 scoped_restore_current_program_space restore_pspace;
5791
5792 if (loc != NULL && loc->shlib_disabled)
5793 loc = NULL;
5794
5795 if (loc != NULL)
5796 set_current_program_space (loc->pspace);
5797
5798 if (b->display_canonical)
5799 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5800 else if (loc && loc->symtab)
5801 {
5802 const struct symbol *sym = loc->symbol;
5803
5804 if (sym)
5805 {
5806 uiout->text ("in ");
5807 uiout->field_string ("func", sym->print_name (),
5808 function_name_style.style ());
5809 uiout->text (" ");
5810 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5811 uiout->text ("at ");
5812 }
5813 uiout->field_string ("file",
5814 symtab_to_filename_for_display (loc->symtab),
5815 file_name_style.style ());
5816 uiout->text (":");
5817
5818 if (uiout->is_mi_like_p ())
5819 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5820
5821 uiout->field_signed ("line", loc->line_number);
5822 }
5823 else if (loc)
5824 {
5825 string_file stb;
5826
5827 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5828 demangle, "");
5829 uiout->field_stream ("at", stb);
5830 }
5831 else
5832 {
5833 uiout->field_string ("pending",
5834 event_location_to_string (b->location.get ()));
5835 /* If extra_string is available, it could be holding a condition
5836 or dprintf arguments. In either case, make sure it is printed,
5837 too, but only for non-MI streams. */
5838 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5839 {
5840 if (b->type == bp_dprintf)
5841 uiout->text (",");
5842 else
5843 uiout->text (" ");
5844 uiout->text (b->extra_string);
5845 }
5846 }
5847
5848 if (loc && is_breakpoint (b)
5849 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5850 && bp_condition_evaluator (b) == condition_evaluation_both)
5851 {
5852 uiout->text (" (");
5853 uiout->field_string ("evaluated-by",
5854 bp_location_condition_evaluator (loc));
5855 uiout->text (")");
5856 }
5857 }
5858
5859 static const char *
5860 bptype_string (enum bptype type)
5861 {
5862 struct ep_type_description
5863 {
5864 enum bptype type;
5865 const char *description;
5866 };
5867 static struct ep_type_description bptypes[] =
5868 {
5869 {bp_none, "?deleted?"},
5870 {bp_breakpoint, "breakpoint"},
5871 {bp_hardware_breakpoint, "hw breakpoint"},
5872 {bp_single_step, "sw single-step"},
5873 {bp_until, "until"},
5874 {bp_finish, "finish"},
5875 {bp_watchpoint, "watchpoint"},
5876 {bp_hardware_watchpoint, "hw watchpoint"},
5877 {bp_read_watchpoint, "read watchpoint"},
5878 {bp_access_watchpoint, "acc watchpoint"},
5879 {bp_longjmp, "longjmp"},
5880 {bp_longjmp_resume, "longjmp resume"},
5881 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5882 {bp_exception, "exception"},
5883 {bp_exception_resume, "exception resume"},
5884 {bp_step_resume, "step resume"},
5885 {bp_hp_step_resume, "high-priority step resume"},
5886 {bp_watchpoint_scope, "watchpoint scope"},
5887 {bp_call_dummy, "call dummy"},
5888 {bp_std_terminate, "std::terminate"},
5889 {bp_shlib_event, "shlib events"},
5890 {bp_thread_event, "thread events"},
5891 {bp_overlay_event, "overlay events"},
5892 {bp_longjmp_master, "longjmp master"},
5893 {bp_std_terminate_master, "std::terminate master"},
5894 {bp_exception_master, "exception master"},
5895 {bp_catchpoint, "catchpoint"},
5896 {bp_tracepoint, "tracepoint"},
5897 {bp_fast_tracepoint, "fast tracepoint"},
5898 {bp_static_tracepoint, "static tracepoint"},
5899 {bp_dprintf, "dprintf"},
5900 {bp_jit_event, "jit events"},
5901 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5902 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5903 };
5904
5905 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5906 || ((int) type != bptypes[(int) type].type))
5907 internal_error (__FILE__, __LINE__,
5908 _("bptypes table does not describe type #%d."),
5909 (int) type);
5910
5911 return bptypes[(int) type].description;
5912 }
5913
5914 /* For MI, output a field named 'thread-groups' with a list as the value.
5915 For CLI, prefix the list with the string 'inf'. */
5916
5917 static void
5918 output_thread_groups (struct ui_out *uiout,
5919 const char *field_name,
5920 const std::vector<int> &inf_nums,
5921 int mi_only)
5922 {
5923 int is_mi = uiout->is_mi_like_p ();
5924
5925 /* For backward compatibility, don't display inferiors in CLI unless
5926 there are several. Always display them for MI. */
5927 if (!is_mi && mi_only)
5928 return;
5929
5930 ui_out_emit_list list_emitter (uiout, field_name);
5931
5932 for (size_t i = 0; i < inf_nums.size (); i++)
5933 {
5934 if (is_mi)
5935 {
5936 char mi_group[10];
5937
5938 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
5939 uiout->field_string (NULL, mi_group);
5940 }
5941 else
5942 {
5943 if (i == 0)
5944 uiout->text (" inf ");
5945 else
5946 uiout->text (", ");
5947
5948 uiout->text (plongest (inf_nums[i]));
5949 }
5950 }
5951 }
5952
5953 /* Print B to gdb_stdout. If RAW_LOC, print raw breakpoint locations
5954 instead of going via breakpoint_ops::print_one. This makes "maint
5955 info breakpoints" show the software breakpoint locations of
5956 catchpoints, which are considered internal implementation
5957 detail. */
5958
5959 static void
5960 print_one_breakpoint_location (struct breakpoint *b,
5961 struct bp_location *loc,
5962 int loc_number,
5963 struct bp_location **last_loc,
5964 int allflag, bool raw_loc)
5965 {
5966 struct command_line *l;
5967 static char bpenables[] = "nynny";
5968
5969 struct ui_out *uiout = current_uiout;
5970 int header_of_multiple = 0;
5971 int part_of_multiple = (loc != NULL);
5972 struct value_print_options opts;
5973
5974 get_user_print_options (&opts);
5975
5976 gdb_assert (!loc || loc_number != 0);
5977 /* See comment in print_one_breakpoint concerning treatment of
5978 breakpoints with single disabled location. */
5979 if (loc == NULL
5980 && (b->loc != NULL
5981 && (b->loc->next != NULL || !b->loc->enabled)))
5982 header_of_multiple = 1;
5983 if (loc == NULL)
5984 loc = b->loc;
5985
5986 annotate_record ();
5987
5988 /* 1 */
5989 annotate_field (0);
5990 if (part_of_multiple)
5991 uiout->field_fmt ("number", "%d.%d", b->number, loc_number);
5992 else
5993 uiout->field_signed ("number", b->number);
5994
5995 /* 2 */
5996 annotate_field (1);
5997 if (part_of_multiple)
5998 uiout->field_skip ("type");
5999 else
6000 uiout->field_string ("type", bptype_string (b->type));
6001
6002 /* 3 */
6003 annotate_field (2);
6004 if (part_of_multiple)
6005 uiout->field_skip ("disp");
6006 else
6007 uiout->field_string ("disp", bpdisp_text (b->disposition));
6008
6009 /* 4 */
6010 annotate_field (3);
6011 if (part_of_multiple)
6012 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6013 else
6014 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6015
6016 /* 5 and 6 */
6017 if (!raw_loc && b->ops != NULL && b->ops->print_one != NULL)
6018 b->ops->print_one (b, last_loc);
6019 else
6020 {
6021 if (is_watchpoint (b))
6022 {
6023 struct watchpoint *w = (struct watchpoint *) b;
6024
6025 /* Field 4, the address, is omitted (which makes the columns
6026 not line up too nicely with the headers, but the effect
6027 is relatively readable). */
6028 if (opts.addressprint)
6029 uiout->field_skip ("addr");
6030 annotate_field (5);
6031 uiout->field_string ("what", w->exp_string);
6032 }
6033 else if (!is_catchpoint (b) || is_exception_catchpoint (b)
6034 || is_ada_exception_catchpoint (b))
6035 {
6036 if (opts.addressprint)
6037 {
6038 annotate_field (4);
6039 if (header_of_multiple)
6040 uiout->field_string ("addr", "<MULTIPLE>",
6041 metadata_style.style ());
6042 else if (b->loc == NULL || loc->shlib_disabled)
6043 uiout->field_string ("addr", "<PENDING>",
6044 metadata_style.style ());
6045 else
6046 uiout->field_core_addr ("addr",
6047 loc->gdbarch, loc->address);
6048 }
6049 annotate_field (5);
6050 if (!header_of_multiple)
6051 print_breakpoint_location (b, loc);
6052 if (b->loc)
6053 *last_loc = b->loc;
6054 }
6055 }
6056
6057 if (loc != NULL && !header_of_multiple)
6058 {
6059 std::vector<int> inf_nums;
6060 int mi_only = 1;
6061
6062 for (inferior *inf : all_inferiors ())
6063 {
6064 if (inf->pspace == loc->pspace)
6065 inf_nums.push_back (inf->num);
6066 }
6067
6068 /* For backward compatibility, don't display inferiors in CLI unless
6069 there are several. Always display for MI. */
6070 if (allflag
6071 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6072 && (program_spaces.size () > 1
6073 || number_of_inferiors () > 1)
6074 /* LOC is for existing B, it cannot be in
6075 moribund_locations and thus having NULL OWNER. */
6076 && loc->owner->type != bp_catchpoint))
6077 mi_only = 0;
6078 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6079 }
6080
6081 if (!part_of_multiple)
6082 {
6083 if (b->thread != -1)
6084 {
6085 /* FIXME: This seems to be redundant and lost here; see the
6086 "stop only in" line a little further down. */
6087 uiout->text (" thread ");
6088 uiout->field_signed ("thread", b->thread);
6089 }
6090 else if (b->task != 0)
6091 {
6092 uiout->text (" task ");
6093 uiout->field_signed ("task", b->task);
6094 }
6095 }
6096
6097 uiout->text ("\n");
6098
6099 if (!part_of_multiple)
6100 b->ops->print_one_detail (b, uiout);
6101
6102 if (part_of_multiple && frame_id_p (b->frame_id))
6103 {
6104 annotate_field (6);
6105 uiout->text ("\tstop only in stack frame at ");
6106 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6107 the frame ID. */
6108 uiout->field_core_addr ("frame",
6109 b->gdbarch, b->frame_id.stack_addr);
6110 uiout->text ("\n");
6111 }
6112
6113 if (!part_of_multiple && b->cond_string)
6114 {
6115 annotate_field (7);
6116 if (is_tracepoint (b))
6117 uiout->text ("\ttrace only if ");
6118 else
6119 uiout->text ("\tstop only if ");
6120 uiout->field_string ("cond", b->cond_string);
6121
6122 /* Print whether the target is doing the breakpoint's condition
6123 evaluation. If GDB is doing the evaluation, don't print anything. */
6124 if (is_breakpoint (b)
6125 && breakpoint_condition_evaluation_mode ()
6126 == condition_evaluation_target)
6127 {
6128 uiout->message (" (%pF evals)",
6129 string_field ("evaluated-by",
6130 bp_condition_evaluator (b)));
6131 }
6132 uiout->text ("\n");
6133 }
6134
6135 if (!part_of_multiple && b->thread != -1)
6136 {
6137 /* FIXME should make an annotation for this. */
6138 uiout->text ("\tstop only in thread ");
6139 if (uiout->is_mi_like_p ())
6140 uiout->field_signed ("thread", b->thread);
6141 else
6142 {
6143 struct thread_info *thr = find_thread_global_id (b->thread);
6144
6145 uiout->field_string ("thread", print_thread_id (thr));
6146 }
6147 uiout->text ("\n");
6148 }
6149
6150 if (!part_of_multiple)
6151 {
6152 if (b->hit_count)
6153 {
6154 /* FIXME should make an annotation for this. */
6155 if (is_catchpoint (b))
6156 uiout->text ("\tcatchpoint");
6157 else if (is_tracepoint (b))
6158 uiout->text ("\ttracepoint");
6159 else
6160 uiout->text ("\tbreakpoint");
6161 uiout->text (" already hit ");
6162 uiout->field_signed ("times", b->hit_count);
6163 if (b->hit_count == 1)
6164 uiout->text (" time\n");
6165 else
6166 uiout->text (" times\n");
6167 }
6168 else
6169 {
6170 /* Output the count also if it is zero, but only if this is mi. */
6171 if (uiout->is_mi_like_p ())
6172 uiout->field_signed ("times", b->hit_count);
6173 }
6174 }
6175
6176 if (!part_of_multiple && b->ignore_count)
6177 {
6178 annotate_field (8);
6179 uiout->message ("\tignore next %pF hits\n",
6180 signed_field ("ignore", b->ignore_count));
6181 }
6182
6183 /* Note that an enable count of 1 corresponds to "enable once"
6184 behavior, which is reported by the combination of enablement and
6185 disposition, so we don't need to mention it here. */
6186 if (!part_of_multiple && b->enable_count > 1)
6187 {
6188 annotate_field (8);
6189 uiout->text ("\tdisable after ");
6190 /* Tweak the wording to clarify that ignore and enable counts
6191 are distinct, and have additive effect. */
6192 if (b->ignore_count)
6193 uiout->text ("additional ");
6194 else
6195 uiout->text ("next ");
6196 uiout->field_signed ("enable", b->enable_count);
6197 uiout->text (" hits\n");
6198 }
6199
6200 if (!part_of_multiple && is_tracepoint (b))
6201 {
6202 struct tracepoint *tp = (struct tracepoint *) b;
6203
6204 if (tp->traceframe_usage)
6205 {
6206 uiout->text ("\ttrace buffer usage ");
6207 uiout->field_signed ("traceframe-usage", tp->traceframe_usage);
6208 uiout->text (" bytes\n");
6209 }
6210 }
6211
6212 l = b->commands ? b->commands.get () : NULL;
6213 if (!part_of_multiple && l)
6214 {
6215 annotate_field (9);
6216 ui_out_emit_tuple tuple_emitter (uiout, "script");
6217 print_command_lines (uiout, l, 4);
6218 }
6219
6220 if (is_tracepoint (b))
6221 {
6222 struct tracepoint *t = (struct tracepoint *) b;
6223
6224 if (!part_of_multiple && t->pass_count)
6225 {
6226 annotate_field (10);
6227 uiout->text ("\tpass count ");
6228 uiout->field_signed ("pass", t->pass_count);
6229 uiout->text (" \n");
6230 }
6231
6232 /* Don't display it when tracepoint or tracepoint location is
6233 pending. */
6234 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6235 {
6236 annotate_field (11);
6237
6238 if (uiout->is_mi_like_p ())
6239 uiout->field_string ("installed",
6240 loc->inserted ? "y" : "n");
6241 else
6242 {
6243 if (loc->inserted)
6244 uiout->text ("\t");
6245 else
6246 uiout->text ("\tnot ");
6247 uiout->text ("installed on target\n");
6248 }
6249 }
6250 }
6251
6252 if (uiout->is_mi_like_p () && !part_of_multiple)
6253 {
6254 if (is_watchpoint (b))
6255 {
6256 struct watchpoint *w = (struct watchpoint *) b;
6257
6258 uiout->field_string ("original-location", w->exp_string);
6259 }
6260 else if (b->location != NULL
6261 && event_location_to_string (b->location.get ()) != NULL)
6262 uiout->field_string ("original-location",
6263 event_location_to_string (b->location.get ()));
6264 }
6265 }
6266
6267 /* See breakpoint.h. */
6268
6269 bool fix_multi_location_breakpoint_output_globally = false;
6270
6271 static void
6272 print_one_breakpoint (struct breakpoint *b,
6273 struct bp_location **last_loc,
6274 int allflag)
6275 {
6276 struct ui_out *uiout = current_uiout;
6277 bool use_fixed_output
6278 = (uiout->test_flags (fix_multi_location_breakpoint_output)
6279 || fix_multi_location_breakpoint_output_globally);
6280
6281 gdb::optional<ui_out_emit_tuple> bkpt_tuple_emitter (gdb::in_place, uiout, "bkpt");
6282 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag, false);
6283
6284 /* The mi2 broken format: the main breakpoint tuple ends here, the locations
6285 are outside. */
6286 if (!use_fixed_output)
6287 bkpt_tuple_emitter.reset ();
6288
6289 /* If this breakpoint has custom print function,
6290 it's already printed. Otherwise, print individual
6291 locations, if any. */
6292 if (b->ops == NULL
6293 || b->ops->print_one == NULL
6294 || allflag)
6295 {
6296 /* If breakpoint has a single location that is disabled, we
6297 print it as if it had several locations, since otherwise it's
6298 hard to represent "breakpoint enabled, location disabled"
6299 situation.
6300
6301 Note that while hardware watchpoints have several locations
6302 internally, that's not a property exposed to users.
6303
6304 Likewise, while catchpoints may be implemented with
6305 breakpoints (e.g., catch throw), that's not a property
6306 exposed to users. We do however display the internal
6307 breakpoint locations with "maint info breakpoints". */
6308 if (!is_hardware_watchpoint (b)
6309 && (!is_catchpoint (b) || is_exception_catchpoint (b)
6310 || is_ada_exception_catchpoint (b))
6311 && (allflag
6312 || (b->loc && (b->loc->next || !b->loc->enabled))))
6313 {
6314 gdb::optional<ui_out_emit_list> locations_list;
6315
6316 /* For MI version <= 2, keep the behavior where GDB outputs an invalid
6317 MI record. For later versions, place breakpoint locations in a
6318 list. */
6319 if (uiout->is_mi_like_p () && use_fixed_output)
6320 locations_list.emplace (uiout, "locations");
6321
6322 int n = 1;
6323 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next, ++n)
6324 {
6325 ui_out_emit_tuple loc_tuple_emitter (uiout, NULL);
6326 print_one_breakpoint_location (b, loc, n, last_loc,
6327 allflag, allflag);
6328 }
6329 }
6330 }
6331 }
6332
6333 static int
6334 breakpoint_address_bits (struct breakpoint *b)
6335 {
6336 int print_address_bits = 0;
6337 struct bp_location *loc;
6338
6339 /* Software watchpoints that aren't watching memory don't have an
6340 address to print. */
6341 if (is_no_memory_software_watchpoint (b))
6342 return 0;
6343
6344 for (loc = b->loc; loc; loc = loc->next)
6345 {
6346 int addr_bit;
6347
6348 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6349 if (addr_bit > print_address_bits)
6350 print_address_bits = addr_bit;
6351 }
6352
6353 return print_address_bits;
6354 }
6355
6356 /* See breakpoint.h. */
6357
6358 void
6359 print_breakpoint (breakpoint *b)
6360 {
6361 struct bp_location *dummy_loc = NULL;
6362 print_one_breakpoint (b, &dummy_loc, 0);
6363 }
6364
6365 /* Return true if this breakpoint was set by the user, false if it is
6366 internal or momentary. */
6367
6368 int
6369 user_breakpoint_p (struct breakpoint *b)
6370 {
6371 return b->number > 0;
6372 }
6373
6374 /* See breakpoint.h. */
6375
6376 int
6377 pending_breakpoint_p (struct breakpoint *b)
6378 {
6379 return b->loc == NULL;
6380 }
6381
6382 /* Print information on breakpoints (including watchpoints and tracepoints).
6383
6384 If non-NULL, BP_NUM_LIST is a list of numbers and number ranges as
6385 understood by number_or_range_parser. Only breakpoints included in this
6386 list are then printed.
6387
6388 If SHOW_INTERNAL is true, print internal breakpoints.
6389
6390 If FILTER is non-NULL, call it on each breakpoint and only include the
6391 ones for which it returns true.
6392
6393 Return the total number of breakpoints listed. */
6394
6395 static int
6396 breakpoint_1 (const char *bp_num_list, bool show_internal,
6397 bool (*filter) (const struct breakpoint *))
6398 {
6399 struct breakpoint *b;
6400 struct bp_location *last_loc = NULL;
6401 int nr_printable_breakpoints;
6402 struct value_print_options opts;
6403 int print_address_bits = 0;
6404 int print_type_col_width = 14;
6405 struct ui_out *uiout = current_uiout;
6406
6407 get_user_print_options (&opts);
6408
6409 /* Compute the number of rows in the table, as well as the size
6410 required for address fields. */
6411 nr_printable_breakpoints = 0;
6412 ALL_BREAKPOINTS (b)
6413 {
6414 /* If we have a filter, only list the breakpoints it accepts. */
6415 if (filter && !filter (b))
6416 continue;
6417
6418 /* If we have a BP_NUM_LIST string, it is a list of breakpoints to
6419 accept. Skip the others. */
6420 if (bp_num_list != NULL && *bp_num_list != '\0')
6421 {
6422 if (show_internal && parse_and_eval_long (bp_num_list) != b->number)
6423 continue;
6424 if (!show_internal && !number_is_in_list (bp_num_list, b->number))
6425 continue;
6426 }
6427
6428 if (show_internal || user_breakpoint_p (b))
6429 {
6430 int addr_bit, type_len;
6431
6432 addr_bit = breakpoint_address_bits (b);
6433 if (addr_bit > print_address_bits)
6434 print_address_bits = addr_bit;
6435
6436 type_len = strlen (bptype_string (b->type));
6437 if (type_len > print_type_col_width)
6438 print_type_col_width = type_len;
6439
6440 nr_printable_breakpoints++;
6441 }
6442 }
6443
6444 {
6445 ui_out_emit_table table_emitter (uiout,
6446 opts.addressprint ? 6 : 5,
6447 nr_printable_breakpoints,
6448 "BreakpointTable");
6449
6450 if (nr_printable_breakpoints > 0)
6451 annotate_breakpoints_headers ();
6452 if (nr_printable_breakpoints > 0)
6453 annotate_field (0);
6454 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6455 if (nr_printable_breakpoints > 0)
6456 annotate_field (1);
6457 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6458 if (nr_printable_breakpoints > 0)
6459 annotate_field (2);
6460 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6461 if (nr_printable_breakpoints > 0)
6462 annotate_field (3);
6463 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6464 if (opts.addressprint)
6465 {
6466 if (nr_printable_breakpoints > 0)
6467 annotate_field (4);
6468 if (print_address_bits <= 32)
6469 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6470 else
6471 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6472 }
6473 if (nr_printable_breakpoints > 0)
6474 annotate_field (5);
6475 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6476 uiout->table_body ();
6477 if (nr_printable_breakpoints > 0)
6478 annotate_breakpoints_table ();
6479
6480 ALL_BREAKPOINTS (b)
6481 {
6482 QUIT;
6483 /* If we have a filter, only list the breakpoints it accepts. */
6484 if (filter && !filter (b))
6485 continue;
6486
6487 /* If we have a BP_NUM_LIST string, it is a list of breakpoints to
6488 accept. Skip the others. */
6489
6490 if (bp_num_list != NULL && *bp_num_list != '\0')
6491 {
6492 if (show_internal) /* maintenance info breakpoint */
6493 {
6494 if (parse_and_eval_long (bp_num_list) != b->number)
6495 continue;
6496 }
6497 else /* all others */
6498 {
6499 if (!number_is_in_list (bp_num_list, b->number))
6500 continue;
6501 }
6502 }
6503 /* We only print out user settable breakpoints unless the
6504 show_internal is set. */
6505 if (show_internal || user_breakpoint_p (b))
6506 print_one_breakpoint (b, &last_loc, show_internal);
6507 }
6508 }
6509
6510 if (nr_printable_breakpoints == 0)
6511 {
6512 /* If there's a filter, let the caller decide how to report
6513 empty list. */
6514 if (!filter)
6515 {
6516 if (bp_num_list == NULL || *bp_num_list == '\0')
6517 uiout->message ("No breakpoints or watchpoints.\n");
6518 else
6519 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6520 bp_num_list);
6521 }
6522 }
6523 else
6524 {
6525 if (last_loc && !server_command)
6526 set_next_address (last_loc->gdbarch, last_loc->address);
6527 }
6528
6529 /* FIXME? Should this be moved up so that it is only called when
6530 there have been breakpoints? */
6531 annotate_breakpoints_table_end ();
6532
6533 return nr_printable_breakpoints;
6534 }
6535
6536 /* Display the value of default-collect in a way that is generally
6537 compatible with the breakpoint list. */
6538
6539 static void
6540 default_collect_info (void)
6541 {
6542 struct ui_out *uiout = current_uiout;
6543
6544 /* If it has no value (which is frequently the case), say nothing; a
6545 message like "No default-collect." gets in user's face when it's
6546 not wanted. */
6547 if (!*default_collect)
6548 return;
6549
6550 /* The following phrase lines up nicely with per-tracepoint collect
6551 actions. */
6552 uiout->text ("default collect ");
6553 uiout->field_string ("default-collect", default_collect);
6554 uiout->text (" \n");
6555 }
6556
6557 static void
6558 info_breakpoints_command (const char *args, int from_tty)
6559 {
6560 breakpoint_1 (args, false, NULL);
6561
6562 default_collect_info ();
6563 }
6564
6565 static void
6566 info_watchpoints_command (const char *args, int from_tty)
6567 {
6568 int num_printed = breakpoint_1 (args, false, is_watchpoint);
6569 struct ui_out *uiout = current_uiout;
6570
6571 if (num_printed == 0)
6572 {
6573 if (args == NULL || *args == '\0')
6574 uiout->message ("No watchpoints.\n");
6575 else
6576 uiout->message ("No watchpoint matching '%s'.\n", args);
6577 }
6578 }
6579
6580 static void
6581 maintenance_info_breakpoints (const char *args, int from_tty)
6582 {
6583 breakpoint_1 (args, true, NULL);
6584
6585 default_collect_info ();
6586 }
6587
6588 static int
6589 breakpoint_has_pc (struct breakpoint *b,
6590 struct program_space *pspace,
6591 CORE_ADDR pc, struct obj_section *section)
6592 {
6593 struct bp_location *bl = b->loc;
6594
6595 for (; bl; bl = bl->next)
6596 {
6597 if (bl->pspace == pspace
6598 && bl->address == pc
6599 && (!overlay_debugging || bl->section == section))
6600 return 1;
6601 }
6602 return 0;
6603 }
6604
6605 /* Print a message describing any user-breakpoints set at PC. This
6606 concerns with logical breakpoints, so we match program spaces, not
6607 address spaces. */
6608
6609 static void
6610 describe_other_breakpoints (struct gdbarch *gdbarch,
6611 struct program_space *pspace, CORE_ADDR pc,
6612 struct obj_section *section, int thread)
6613 {
6614 int others = 0;
6615 struct breakpoint *b;
6616
6617 ALL_BREAKPOINTS (b)
6618 others += (user_breakpoint_p (b)
6619 && breakpoint_has_pc (b, pspace, pc, section));
6620 if (others > 0)
6621 {
6622 if (others == 1)
6623 printf_filtered (_("Note: breakpoint "));
6624 else /* if (others == ???) */
6625 printf_filtered (_("Note: breakpoints "));
6626 ALL_BREAKPOINTS (b)
6627 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6628 {
6629 others--;
6630 printf_filtered ("%d", b->number);
6631 if (b->thread == -1 && thread != -1)
6632 printf_filtered (" (all threads)");
6633 else if (b->thread != -1)
6634 printf_filtered (" (thread %d)", b->thread);
6635 printf_filtered ("%s%s ",
6636 ((b->enable_state == bp_disabled
6637 || b->enable_state == bp_call_disabled)
6638 ? " (disabled)"
6639 : ""),
6640 (others > 1) ? ","
6641 : ((others == 1) ? " and" : ""));
6642 }
6643 current_uiout->message (_("also set at pc %ps.\n"),
6644 styled_string (address_style.style (),
6645 paddress (gdbarch, pc)));
6646 }
6647 }
6648 \f
6649
6650 /* Return true iff it is meaningful to use the address member of LOC.
6651 For some breakpoint types, the locations' address members are
6652 irrelevant and it makes no sense to attempt to compare them to
6653 other addresses (or use them for any other purpose either).
6654
6655 More specifically, software watchpoints and catchpoints that are
6656 not backed by breakpoints always have a zero valued location
6657 address and we don't want to mark breakpoints of any of these types
6658 to be a duplicate of an actual breakpoint location at address
6659 zero. */
6660
6661 static bool
6662 bl_address_is_meaningful (bp_location *loc)
6663 {
6664 return loc->loc_type != bp_loc_other;
6665 }
6666
6667 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6668 true if LOC1 and LOC2 represent the same watchpoint location. */
6669
6670 static int
6671 watchpoint_locations_match (struct bp_location *loc1,
6672 struct bp_location *loc2)
6673 {
6674 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6675 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6676
6677 /* Both of them must exist. */
6678 gdb_assert (w1 != NULL);
6679 gdb_assert (w2 != NULL);
6680
6681 /* If the target can evaluate the condition expression in hardware,
6682 then we we need to insert both watchpoints even if they are at
6683 the same place. Otherwise the watchpoint will only trigger when
6684 the condition of whichever watchpoint was inserted evaluates to
6685 true, not giving a chance for GDB to check the condition of the
6686 other watchpoint. */
6687 if ((w1->cond_exp
6688 && target_can_accel_watchpoint_condition (loc1->address,
6689 loc1->length,
6690 loc1->watchpoint_type,
6691 w1->cond_exp.get ()))
6692 || (w2->cond_exp
6693 && target_can_accel_watchpoint_condition (loc2->address,
6694 loc2->length,
6695 loc2->watchpoint_type,
6696 w2->cond_exp.get ())))
6697 return 0;
6698
6699 /* Note that this checks the owner's type, not the location's. In
6700 case the target does not support read watchpoints, but does
6701 support access watchpoints, we'll have bp_read_watchpoint
6702 watchpoints with hw_access locations. Those should be considered
6703 duplicates of hw_read locations. The hw_read locations will
6704 become hw_access locations later. */
6705 return (loc1->owner->type == loc2->owner->type
6706 && loc1->pspace->aspace == loc2->pspace->aspace
6707 && loc1->address == loc2->address
6708 && loc1->length == loc2->length);
6709 }
6710
6711 /* See breakpoint.h. */
6712
6713 int
6714 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6715 const address_space *aspace2, CORE_ADDR addr2)
6716 {
6717 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6718 || aspace1 == aspace2)
6719 && addr1 == addr2);
6720 }
6721
6722 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6723 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6724 matches ASPACE2. On targets that have global breakpoints, the address
6725 space doesn't really matter. */
6726
6727 static int
6728 breakpoint_address_match_range (const address_space *aspace1,
6729 CORE_ADDR addr1,
6730 int len1, const address_space *aspace2,
6731 CORE_ADDR addr2)
6732 {
6733 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6734 || aspace1 == aspace2)
6735 && addr2 >= addr1 && addr2 < addr1 + len1);
6736 }
6737
6738 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6739 a ranged breakpoint. In most targets, a match happens only if ASPACE
6740 matches the breakpoint's address space. On targets that have global
6741 breakpoints, the address space doesn't really matter. */
6742
6743 static int
6744 breakpoint_location_address_match (struct bp_location *bl,
6745 const address_space *aspace,
6746 CORE_ADDR addr)
6747 {
6748 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6749 aspace, addr)
6750 || (bl->length
6751 && breakpoint_address_match_range (bl->pspace->aspace,
6752 bl->address, bl->length,
6753 aspace, addr)));
6754 }
6755
6756 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6757 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6758 match happens only if ASPACE matches the breakpoint's address
6759 space. On targets that have global breakpoints, the address space
6760 doesn't really matter. */
6761
6762 static int
6763 breakpoint_location_address_range_overlap (struct bp_location *bl,
6764 const address_space *aspace,
6765 CORE_ADDR addr, int len)
6766 {
6767 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6768 || bl->pspace->aspace == aspace)
6769 {
6770 int bl_len = bl->length != 0 ? bl->length : 1;
6771
6772 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6773 return 1;
6774 }
6775 return 0;
6776 }
6777
6778 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6779 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6780 true, otherwise returns false. */
6781
6782 static int
6783 tracepoint_locations_match (struct bp_location *loc1,
6784 struct bp_location *loc2)
6785 {
6786 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6787 /* Since tracepoint locations are never duplicated with others', tracepoint
6788 locations at the same address of different tracepoints are regarded as
6789 different locations. */
6790 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6791 else
6792 return 0;
6793 }
6794
6795 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6796 (bl_address_is_meaningful), returns true if LOC1 and LOC2 represent
6797 the same location. If SW_HW_BPS_MATCH is true, then software
6798 breakpoint locations and hardware breakpoint locations match,
6799 otherwise they don't. */
6800
6801 static int
6802 breakpoint_locations_match (struct bp_location *loc1,
6803 struct bp_location *loc2,
6804 bool sw_hw_bps_match)
6805 {
6806 int hw_point1, hw_point2;
6807
6808 /* Both of them must not be in moribund_locations. */
6809 gdb_assert (loc1->owner != NULL);
6810 gdb_assert (loc2->owner != NULL);
6811
6812 hw_point1 = is_hardware_watchpoint (loc1->owner);
6813 hw_point2 = is_hardware_watchpoint (loc2->owner);
6814
6815 if (hw_point1 != hw_point2)
6816 return 0;
6817 else if (hw_point1)
6818 return watchpoint_locations_match (loc1, loc2);
6819 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6820 return tracepoint_locations_match (loc1, loc2);
6821 else
6822 /* We compare bp_location.length in order to cover ranged
6823 breakpoints. Keep this in sync with
6824 bp_location_is_less_than. */
6825 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6826 loc2->pspace->aspace, loc2->address)
6827 && (loc1->loc_type == loc2->loc_type || sw_hw_bps_match)
6828 && loc1->length == loc2->length);
6829 }
6830
6831 static void
6832 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6833 int bnum, int have_bnum)
6834 {
6835 /* The longest string possibly returned by hex_string_custom
6836 is 50 chars. These must be at least that big for safety. */
6837 char astr1[64];
6838 char astr2[64];
6839
6840 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6841 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6842 if (have_bnum)
6843 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6844 bnum, astr1, astr2);
6845 else
6846 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6847 }
6848
6849 /* Adjust a breakpoint's address to account for architectural
6850 constraints on breakpoint placement. Return the adjusted address.
6851 Note: Very few targets require this kind of adjustment. For most
6852 targets, this function is simply the identity function. */
6853
6854 static CORE_ADDR
6855 adjust_breakpoint_address (struct gdbarch *gdbarch,
6856 CORE_ADDR bpaddr, enum bptype bptype)
6857 {
6858 if (bptype == bp_watchpoint
6859 || bptype == bp_hardware_watchpoint
6860 || bptype == bp_read_watchpoint
6861 || bptype == bp_access_watchpoint
6862 || bptype == bp_catchpoint)
6863 {
6864 /* Watchpoints and the various bp_catch_* eventpoints should not
6865 have their addresses modified. */
6866 return bpaddr;
6867 }
6868 else if (bptype == bp_single_step)
6869 {
6870 /* Single-step breakpoints should not have their addresses
6871 modified. If there's any architectural constrain that
6872 applies to this address, then it should have already been
6873 taken into account when the breakpoint was created in the
6874 first place. If we didn't do this, stepping through e.g.,
6875 Thumb-2 IT blocks would break. */
6876 return bpaddr;
6877 }
6878 else
6879 {
6880 CORE_ADDR adjusted_bpaddr = bpaddr;
6881
6882 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6883 {
6884 /* Some targets have architectural constraints on the placement
6885 of breakpoint instructions. Obtain the adjusted address. */
6886 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6887 }
6888
6889 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6890
6891 /* An adjusted breakpoint address can significantly alter
6892 a user's expectations. Print a warning if an adjustment
6893 is required. */
6894 if (adjusted_bpaddr != bpaddr)
6895 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6896
6897 return adjusted_bpaddr;
6898 }
6899 }
6900
6901 static bp_loc_type
6902 bp_location_from_bp_type (bptype type)
6903 {
6904 switch (type)
6905 {
6906 case bp_breakpoint:
6907 case bp_single_step:
6908 case bp_until:
6909 case bp_finish:
6910 case bp_longjmp:
6911 case bp_longjmp_resume:
6912 case bp_longjmp_call_dummy:
6913 case bp_exception:
6914 case bp_exception_resume:
6915 case bp_step_resume:
6916 case bp_hp_step_resume:
6917 case bp_watchpoint_scope:
6918 case bp_call_dummy:
6919 case bp_std_terminate:
6920 case bp_shlib_event:
6921 case bp_thread_event:
6922 case bp_overlay_event:
6923 case bp_jit_event:
6924 case bp_longjmp_master:
6925 case bp_std_terminate_master:
6926 case bp_exception_master:
6927 case bp_gnu_ifunc_resolver:
6928 case bp_gnu_ifunc_resolver_return:
6929 case bp_dprintf:
6930 return bp_loc_software_breakpoint;
6931 case bp_hardware_breakpoint:
6932 return bp_loc_hardware_breakpoint;
6933 case bp_hardware_watchpoint:
6934 case bp_read_watchpoint:
6935 case bp_access_watchpoint:
6936 return bp_loc_hardware_watchpoint;
6937 case bp_watchpoint:
6938 case bp_catchpoint:
6939 case bp_tracepoint:
6940 case bp_fast_tracepoint:
6941 case bp_static_tracepoint:
6942 return bp_loc_other;
6943 default:
6944 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
6945 }
6946 }
6947
6948 bp_location::bp_location (breakpoint *owner, bp_loc_type type)
6949 {
6950 this->owner = owner;
6951 this->cond_bytecode = NULL;
6952 this->shlib_disabled = 0;
6953 this->enabled = 1;
6954
6955 this->loc_type = type;
6956
6957 if (this->loc_type == bp_loc_software_breakpoint
6958 || this->loc_type == bp_loc_hardware_breakpoint)
6959 mark_breakpoint_location_modified (this);
6960
6961 this->refc = 1;
6962 }
6963
6964 bp_location::bp_location (breakpoint *owner)
6965 : bp_location::bp_location (owner,
6966 bp_location_from_bp_type (owner->type))
6967 {
6968 }
6969
6970 /* Allocate a struct bp_location. */
6971
6972 static struct bp_location *
6973 allocate_bp_location (struct breakpoint *bpt)
6974 {
6975 return bpt->ops->allocate_location (bpt);
6976 }
6977
6978 static void
6979 free_bp_location (struct bp_location *loc)
6980 {
6981 delete loc;
6982 }
6983
6984 /* Increment reference count. */
6985
6986 static void
6987 incref_bp_location (struct bp_location *bl)
6988 {
6989 ++bl->refc;
6990 }
6991
6992 /* Decrement reference count. If the reference count reaches 0,
6993 destroy the bp_location. Sets *BLP to NULL. */
6994
6995 static void
6996 decref_bp_location (struct bp_location **blp)
6997 {
6998 gdb_assert ((*blp)->refc > 0);
6999
7000 if (--(*blp)->refc == 0)
7001 free_bp_location (*blp);
7002 *blp = NULL;
7003 }
7004
7005 /* Add breakpoint B at the end of the global breakpoint chain. */
7006
7007 static breakpoint *
7008 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7009 {
7010 struct breakpoint *b1;
7011 struct breakpoint *result = b.get ();
7012
7013 /* Add this breakpoint to the end of the chain so that a list of
7014 breakpoints will come out in order of increasing numbers. */
7015
7016 b1 = breakpoint_chain;
7017 if (b1 == 0)
7018 breakpoint_chain = b.release ();
7019 else
7020 {
7021 while (b1->next)
7022 b1 = b1->next;
7023 b1->next = b.release ();
7024 }
7025
7026 return result;
7027 }
7028
7029 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7030
7031 static void
7032 init_raw_breakpoint_without_location (struct breakpoint *b,
7033 struct gdbarch *gdbarch,
7034 enum bptype bptype,
7035 const struct breakpoint_ops *ops)
7036 {
7037 gdb_assert (ops != NULL);
7038
7039 b->ops = ops;
7040 b->type = bptype;
7041 b->gdbarch = gdbarch;
7042 b->language = current_language->la_language;
7043 b->input_radix = input_radix;
7044 b->related_breakpoint = b;
7045 }
7046
7047 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7048 that has type BPTYPE and has no locations as yet. */
7049
7050 static struct breakpoint *
7051 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7052 enum bptype bptype,
7053 const struct breakpoint_ops *ops)
7054 {
7055 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7056
7057 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7058 return add_to_breakpoint_chain (std::move (b));
7059 }
7060
7061 /* Initialize loc->function_name. */
7062
7063 static void
7064 set_breakpoint_location_function (struct bp_location *loc)
7065 {
7066 gdb_assert (loc->owner != NULL);
7067
7068 if (loc->owner->type == bp_breakpoint
7069 || loc->owner->type == bp_hardware_breakpoint
7070 || is_tracepoint (loc->owner))
7071 {
7072 const char *function_name;
7073
7074 if (loc->msymbol != NULL
7075 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7076 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc))
7077 {
7078 struct breakpoint *b = loc->owner;
7079
7080 function_name = loc->msymbol->linkage_name ();
7081
7082 if (b->type == bp_breakpoint && b->loc == loc
7083 && loc->next == NULL && b->related_breakpoint == b)
7084 {
7085 /* Create only the whole new breakpoint of this type but do not
7086 mess more complicated breakpoints with multiple locations. */
7087 b->type = bp_gnu_ifunc_resolver;
7088 /* Remember the resolver's address for use by the return
7089 breakpoint. */
7090 loc->related_address = loc->address;
7091 }
7092 }
7093 else
7094 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7095
7096 if (function_name)
7097 loc->function_name = xstrdup (function_name);
7098 }
7099 }
7100
7101 /* Attempt to determine architecture of location identified by SAL. */
7102 struct gdbarch *
7103 get_sal_arch (struct symtab_and_line sal)
7104 {
7105 if (sal.section)
7106 return sal.section->objfile->arch ();
7107 if (sal.symtab)
7108 return SYMTAB_OBJFILE (sal.symtab)->arch ();
7109
7110 return NULL;
7111 }
7112
7113 /* Low level routine for partially initializing a breakpoint of type
7114 BPTYPE. The newly created breakpoint's address, section, source
7115 file name, and line number are provided by SAL.
7116
7117 It is expected that the caller will complete the initialization of
7118 the newly created breakpoint struct as well as output any status
7119 information regarding the creation of a new breakpoint. */
7120
7121 static void
7122 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7123 struct symtab_and_line sal, enum bptype bptype,
7124 const struct breakpoint_ops *ops)
7125 {
7126 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7127
7128 add_location_to_breakpoint (b, &sal);
7129
7130 if (bptype != bp_catchpoint)
7131 gdb_assert (sal.pspace != NULL);
7132
7133 /* Store the program space that was used to set the breakpoint,
7134 except for ordinary breakpoints, which are independent of the
7135 program space. */
7136 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7137 b->pspace = sal.pspace;
7138 }
7139
7140 /* set_raw_breakpoint is a low level routine for allocating and
7141 partially initializing a breakpoint of type BPTYPE. The newly
7142 created breakpoint's address, section, source file name, and line
7143 number are provided by SAL. The newly created and partially
7144 initialized breakpoint is added to the breakpoint chain and
7145 is also returned as the value of this function.
7146
7147 It is expected that the caller will complete the initialization of
7148 the newly created breakpoint struct as well as output any status
7149 information regarding the creation of a new breakpoint. In
7150 particular, set_raw_breakpoint does NOT set the breakpoint
7151 number! Care should be taken to not allow an error to occur
7152 prior to completing the initialization of the breakpoint. If this
7153 should happen, a bogus breakpoint will be left on the chain. */
7154
7155 struct breakpoint *
7156 set_raw_breakpoint (struct gdbarch *gdbarch,
7157 struct symtab_and_line sal, enum bptype bptype,
7158 const struct breakpoint_ops *ops)
7159 {
7160 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7161
7162 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7163 return add_to_breakpoint_chain (std::move (b));
7164 }
7165
7166 /* Call this routine when stepping and nexting to enable a breakpoint
7167 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7168 initiated the operation. */
7169
7170 void
7171 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7172 {
7173 struct breakpoint *b, *b_tmp;
7174 int thread = tp->global_num;
7175
7176 /* To avoid having to rescan all objfile symbols at every step,
7177 we maintain a list of continually-inserted but always disabled
7178 longjmp "master" breakpoints. Here, we simply create momentary
7179 clones of those and enable them for the requested thread. */
7180 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7181 if (b->pspace == current_program_space
7182 && (b->type == bp_longjmp_master
7183 || b->type == bp_exception_master))
7184 {
7185 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7186 struct breakpoint *clone;
7187
7188 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7189 after their removal. */
7190 clone = momentary_breakpoint_from_master (b, type,
7191 &momentary_breakpoint_ops, 1);
7192 clone->thread = thread;
7193 }
7194
7195 tp->initiating_frame = frame;
7196 }
7197
7198 /* Delete all longjmp breakpoints from THREAD. */
7199 void
7200 delete_longjmp_breakpoint (int thread)
7201 {
7202 struct breakpoint *b, *b_tmp;
7203
7204 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7205 if (b->type == bp_longjmp || b->type == bp_exception)
7206 {
7207 if (b->thread == thread)
7208 delete_breakpoint (b);
7209 }
7210 }
7211
7212 void
7213 delete_longjmp_breakpoint_at_next_stop (int thread)
7214 {
7215 struct breakpoint *b, *b_tmp;
7216
7217 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7218 if (b->type == bp_longjmp || b->type == bp_exception)
7219 {
7220 if (b->thread == thread)
7221 b->disposition = disp_del_at_next_stop;
7222 }
7223 }
7224
7225 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7226 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7227 pointer to any of them. Return NULL if this system cannot place longjmp
7228 breakpoints. */
7229
7230 struct breakpoint *
7231 set_longjmp_breakpoint_for_call_dummy (void)
7232 {
7233 struct breakpoint *b, *retval = NULL;
7234
7235 ALL_BREAKPOINTS (b)
7236 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7237 {
7238 struct breakpoint *new_b;
7239
7240 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7241 &momentary_breakpoint_ops,
7242 1);
7243 new_b->thread = inferior_thread ()->global_num;
7244
7245 /* Link NEW_B into the chain of RETVAL breakpoints. */
7246
7247 gdb_assert (new_b->related_breakpoint == new_b);
7248 if (retval == NULL)
7249 retval = new_b;
7250 new_b->related_breakpoint = retval;
7251 while (retval->related_breakpoint != new_b->related_breakpoint)
7252 retval = retval->related_breakpoint;
7253 retval->related_breakpoint = new_b;
7254 }
7255
7256 return retval;
7257 }
7258
7259 /* Verify all existing dummy frames and their associated breakpoints for
7260 TP. Remove those which can no longer be found in the current frame
7261 stack.
7262
7263 You should call this function only at places where it is safe to currently
7264 unwind the whole stack. Failed stack unwind would discard live dummy
7265 frames. */
7266
7267 void
7268 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7269 {
7270 struct breakpoint *b, *b_tmp;
7271
7272 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7273 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7274 {
7275 struct breakpoint *dummy_b = b->related_breakpoint;
7276
7277 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7278 dummy_b = dummy_b->related_breakpoint;
7279 if (dummy_b->type != bp_call_dummy
7280 || frame_find_by_id (dummy_b->frame_id) != NULL)
7281 continue;
7282
7283 dummy_frame_discard (dummy_b->frame_id, tp);
7284
7285 while (b->related_breakpoint != b)
7286 {
7287 if (b_tmp == b->related_breakpoint)
7288 b_tmp = b->related_breakpoint->next;
7289 delete_breakpoint (b->related_breakpoint);
7290 }
7291 delete_breakpoint (b);
7292 }
7293 }
7294
7295 void
7296 enable_overlay_breakpoints (void)
7297 {
7298 struct breakpoint *b;
7299
7300 ALL_BREAKPOINTS (b)
7301 if (b->type == bp_overlay_event)
7302 {
7303 b->enable_state = bp_enabled;
7304 update_global_location_list (UGLL_MAY_INSERT);
7305 overlay_events_enabled = 1;
7306 }
7307 }
7308
7309 void
7310 disable_overlay_breakpoints (void)
7311 {
7312 struct breakpoint *b;
7313
7314 ALL_BREAKPOINTS (b)
7315 if (b->type == bp_overlay_event)
7316 {
7317 b->enable_state = bp_disabled;
7318 update_global_location_list (UGLL_DONT_INSERT);
7319 overlay_events_enabled = 0;
7320 }
7321 }
7322
7323 /* Set an active std::terminate breakpoint for each std::terminate
7324 master breakpoint. */
7325 void
7326 set_std_terminate_breakpoint (void)
7327 {
7328 struct breakpoint *b, *b_tmp;
7329
7330 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7331 if (b->pspace == current_program_space
7332 && b->type == bp_std_terminate_master)
7333 {
7334 momentary_breakpoint_from_master (b, bp_std_terminate,
7335 &momentary_breakpoint_ops, 1);
7336 }
7337 }
7338
7339 /* Delete all the std::terminate breakpoints. */
7340 void
7341 delete_std_terminate_breakpoint (void)
7342 {
7343 struct breakpoint *b, *b_tmp;
7344
7345 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7346 if (b->type == bp_std_terminate)
7347 delete_breakpoint (b);
7348 }
7349
7350 struct breakpoint *
7351 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7352 {
7353 struct breakpoint *b;
7354
7355 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7356 &internal_breakpoint_ops);
7357
7358 b->enable_state = bp_enabled;
7359 /* location has to be used or breakpoint_re_set will delete me. */
7360 b->location = new_address_location (b->loc->address, NULL, 0);
7361
7362 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7363
7364 return b;
7365 }
7366
7367 struct lang_and_radix
7368 {
7369 enum language lang;
7370 int radix;
7371 };
7372
7373 /* Create a breakpoint for JIT code registration and unregistration. */
7374
7375 struct breakpoint *
7376 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7377 {
7378 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7379 &internal_breakpoint_ops);
7380 }
7381
7382 /* Remove JIT code registration and unregistration breakpoint(s). */
7383
7384 void
7385 remove_jit_event_breakpoints (void)
7386 {
7387 struct breakpoint *b, *b_tmp;
7388
7389 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7390 if (b->type == bp_jit_event
7391 && b->loc->pspace == current_program_space)
7392 delete_breakpoint (b);
7393 }
7394
7395 void
7396 remove_solib_event_breakpoints (void)
7397 {
7398 struct breakpoint *b, *b_tmp;
7399
7400 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7401 if (b->type == bp_shlib_event
7402 && b->loc->pspace == current_program_space)
7403 delete_breakpoint (b);
7404 }
7405
7406 /* See breakpoint.h. */
7407
7408 void
7409 remove_solib_event_breakpoints_at_next_stop (void)
7410 {
7411 struct breakpoint *b, *b_tmp;
7412
7413 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7414 if (b->type == bp_shlib_event
7415 && b->loc->pspace == current_program_space)
7416 b->disposition = disp_del_at_next_stop;
7417 }
7418
7419 /* Helper for create_solib_event_breakpoint /
7420 create_and_insert_solib_event_breakpoint. Allows specifying which
7421 INSERT_MODE to pass through to update_global_location_list. */
7422
7423 static struct breakpoint *
7424 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7425 enum ugll_insert_mode insert_mode)
7426 {
7427 struct breakpoint *b;
7428
7429 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7430 &internal_breakpoint_ops);
7431 update_global_location_list_nothrow (insert_mode);
7432 return b;
7433 }
7434
7435 struct breakpoint *
7436 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7437 {
7438 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7439 }
7440
7441 /* See breakpoint.h. */
7442
7443 struct breakpoint *
7444 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7445 {
7446 struct breakpoint *b;
7447
7448 /* Explicitly tell update_global_location_list to insert
7449 locations. */
7450 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7451 if (!b->loc->inserted)
7452 {
7453 delete_breakpoint (b);
7454 return NULL;
7455 }
7456 return b;
7457 }
7458
7459 /* Disable any breakpoints that are on code in shared libraries. Only
7460 apply to enabled breakpoints, disabled ones can just stay disabled. */
7461
7462 void
7463 disable_breakpoints_in_shlibs (void)
7464 {
7465 struct bp_location *loc, **locp_tmp;
7466
7467 ALL_BP_LOCATIONS (loc, locp_tmp)
7468 {
7469 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7470 struct breakpoint *b = loc->owner;
7471
7472 /* We apply the check to all breakpoints, including disabled for
7473 those with loc->duplicate set. This is so that when breakpoint
7474 becomes enabled, or the duplicate is removed, gdb will try to
7475 insert all breakpoints. If we don't set shlib_disabled here,
7476 we'll try to insert those breakpoints and fail. */
7477 if (((b->type == bp_breakpoint)
7478 || (b->type == bp_jit_event)
7479 || (b->type == bp_hardware_breakpoint)
7480 || (is_tracepoint (b)))
7481 && loc->pspace == current_program_space
7482 && !loc->shlib_disabled
7483 && solib_name_from_address (loc->pspace, loc->address)
7484 )
7485 {
7486 loc->shlib_disabled = 1;
7487 }
7488 }
7489 }
7490
7491 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7492 notification of unloaded_shlib. Only apply to enabled breakpoints,
7493 disabled ones can just stay disabled. */
7494
7495 static void
7496 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7497 {
7498 struct bp_location *loc, **locp_tmp;
7499 int disabled_shlib_breaks = 0;
7500
7501 ALL_BP_LOCATIONS (loc, locp_tmp)
7502 {
7503 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7504 struct breakpoint *b = loc->owner;
7505
7506 if (solib->pspace == loc->pspace
7507 && !loc->shlib_disabled
7508 && (((b->type == bp_breakpoint
7509 || b->type == bp_jit_event
7510 || b->type == bp_hardware_breakpoint)
7511 && (loc->loc_type == bp_loc_hardware_breakpoint
7512 || loc->loc_type == bp_loc_software_breakpoint))
7513 || is_tracepoint (b))
7514 && solib_contains_address_p (solib, loc->address))
7515 {
7516 loc->shlib_disabled = 1;
7517 /* At this point, we cannot rely on remove_breakpoint
7518 succeeding so we must mark the breakpoint as not inserted
7519 to prevent future errors occurring in remove_breakpoints. */
7520 loc->inserted = 0;
7521
7522 /* This may cause duplicate notifications for the same breakpoint. */
7523 gdb::observers::breakpoint_modified.notify (b);
7524
7525 if (!disabled_shlib_breaks)
7526 {
7527 target_terminal::ours_for_output ();
7528 warning (_("Temporarily disabling breakpoints "
7529 "for unloaded shared library \"%s\""),
7530 solib->so_name);
7531 }
7532 disabled_shlib_breaks = 1;
7533 }
7534 }
7535 }
7536
7537 /* Disable any breakpoints and tracepoints in OBJFILE upon
7538 notification of free_objfile. Only apply to enabled breakpoints,
7539 disabled ones can just stay disabled. */
7540
7541 static void
7542 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7543 {
7544 struct breakpoint *b;
7545
7546 if (objfile == NULL)
7547 return;
7548
7549 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7550 managed by the user with add-symbol-file/remove-symbol-file.
7551 Similarly to how breakpoints in shared libraries are handled in
7552 response to "nosharedlibrary", mark breakpoints in such modules
7553 shlib_disabled so they end up uninserted on the next global
7554 location list update. Shared libraries not loaded by the user
7555 aren't handled here -- they're already handled in
7556 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7557 solib_unloaded observer. We skip objfiles that are not
7558 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7559 main objfile). */
7560 if ((objfile->flags & OBJF_SHARED) == 0
7561 || (objfile->flags & OBJF_USERLOADED) == 0)
7562 return;
7563
7564 ALL_BREAKPOINTS (b)
7565 {
7566 struct bp_location *loc;
7567 int bp_modified = 0;
7568
7569 if (!is_breakpoint (b) && !is_tracepoint (b))
7570 continue;
7571
7572 for (loc = b->loc; loc != NULL; loc = loc->next)
7573 {
7574 CORE_ADDR loc_addr = loc->address;
7575
7576 if (loc->loc_type != bp_loc_hardware_breakpoint
7577 && loc->loc_type != bp_loc_software_breakpoint)
7578 continue;
7579
7580 if (loc->shlib_disabled != 0)
7581 continue;
7582
7583 if (objfile->pspace != loc->pspace)
7584 continue;
7585
7586 if (loc->loc_type != bp_loc_hardware_breakpoint
7587 && loc->loc_type != bp_loc_software_breakpoint)
7588 continue;
7589
7590 if (is_addr_in_objfile (loc_addr, objfile))
7591 {
7592 loc->shlib_disabled = 1;
7593 /* At this point, we don't know whether the object was
7594 unmapped from the inferior or not, so leave the
7595 inserted flag alone. We'll handle failure to
7596 uninsert quietly, in case the object was indeed
7597 unmapped. */
7598
7599 mark_breakpoint_location_modified (loc);
7600
7601 bp_modified = 1;
7602 }
7603 }
7604
7605 if (bp_modified)
7606 gdb::observers::breakpoint_modified.notify (b);
7607 }
7608 }
7609
7610 /* FORK & VFORK catchpoints. */
7611
7612 /* An instance of this type is used to represent a fork or vfork
7613 catchpoint. A breakpoint is really of this type iff its ops pointer points
7614 to CATCH_FORK_BREAKPOINT_OPS. */
7615
7616 struct fork_catchpoint : public breakpoint
7617 {
7618 /* Process id of a child process whose forking triggered this
7619 catchpoint. This field is only valid immediately after this
7620 catchpoint has triggered. */
7621 ptid_t forked_inferior_pid;
7622 };
7623
7624 /* Implement the "insert" breakpoint_ops method for fork
7625 catchpoints. */
7626
7627 static int
7628 insert_catch_fork (struct bp_location *bl)
7629 {
7630 return target_insert_fork_catchpoint (inferior_ptid.pid ());
7631 }
7632
7633 /* Implement the "remove" breakpoint_ops method for fork
7634 catchpoints. */
7635
7636 static int
7637 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7638 {
7639 return target_remove_fork_catchpoint (inferior_ptid.pid ());
7640 }
7641
7642 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7643 catchpoints. */
7644
7645 static int
7646 breakpoint_hit_catch_fork (const struct bp_location *bl,
7647 const address_space *aspace, CORE_ADDR bp_addr,
7648 const struct target_waitstatus *ws)
7649 {
7650 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7651
7652 if (ws->kind != TARGET_WAITKIND_FORKED)
7653 return 0;
7654
7655 c->forked_inferior_pid = ws->value.related_pid;
7656 return 1;
7657 }
7658
7659 /* Implement the "print_it" breakpoint_ops method for fork
7660 catchpoints. */
7661
7662 static enum print_stop_action
7663 print_it_catch_fork (bpstat bs)
7664 {
7665 struct ui_out *uiout = current_uiout;
7666 struct breakpoint *b = bs->breakpoint_at;
7667 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7668
7669 annotate_catchpoint (b->number);
7670 maybe_print_thread_hit_breakpoint (uiout);
7671 if (b->disposition == disp_del)
7672 uiout->text ("Temporary catchpoint ");
7673 else
7674 uiout->text ("Catchpoint ");
7675 if (uiout->is_mi_like_p ())
7676 {
7677 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7678 uiout->field_string ("disp", bpdisp_text (b->disposition));
7679 }
7680 uiout->field_signed ("bkptno", b->number);
7681 uiout->text (" (forked process ");
7682 uiout->field_signed ("newpid", c->forked_inferior_pid.pid ());
7683 uiout->text ("), ");
7684 return PRINT_SRC_AND_LOC;
7685 }
7686
7687 /* Implement the "print_one" breakpoint_ops method for fork
7688 catchpoints. */
7689
7690 static void
7691 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7692 {
7693 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7694 struct value_print_options opts;
7695 struct ui_out *uiout = current_uiout;
7696
7697 get_user_print_options (&opts);
7698
7699 /* Field 4, the address, is omitted (which makes the columns not
7700 line up too nicely with the headers, but the effect is relatively
7701 readable). */
7702 if (opts.addressprint)
7703 uiout->field_skip ("addr");
7704 annotate_field (5);
7705 uiout->text ("fork");
7706 if (c->forked_inferior_pid != null_ptid)
7707 {
7708 uiout->text (", process ");
7709 uiout->field_signed ("what", c->forked_inferior_pid.pid ());
7710 uiout->spaces (1);
7711 }
7712
7713 if (uiout->is_mi_like_p ())
7714 uiout->field_string ("catch-type", "fork");
7715 }
7716
7717 /* Implement the "print_mention" breakpoint_ops method for fork
7718 catchpoints. */
7719
7720 static void
7721 print_mention_catch_fork (struct breakpoint *b)
7722 {
7723 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7724 }
7725
7726 /* Implement the "print_recreate" breakpoint_ops method for fork
7727 catchpoints. */
7728
7729 static void
7730 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7731 {
7732 fprintf_unfiltered (fp, "catch fork");
7733 print_recreate_thread (b, fp);
7734 }
7735
7736 /* The breakpoint_ops structure to be used in fork catchpoints. */
7737
7738 static struct breakpoint_ops catch_fork_breakpoint_ops;
7739
7740 /* Implement the "insert" breakpoint_ops method for vfork
7741 catchpoints. */
7742
7743 static int
7744 insert_catch_vfork (struct bp_location *bl)
7745 {
7746 return target_insert_vfork_catchpoint (inferior_ptid.pid ());
7747 }
7748
7749 /* Implement the "remove" breakpoint_ops method for vfork
7750 catchpoints. */
7751
7752 static int
7753 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7754 {
7755 return target_remove_vfork_catchpoint (inferior_ptid.pid ());
7756 }
7757
7758 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7759 catchpoints. */
7760
7761 static int
7762 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7763 const address_space *aspace, CORE_ADDR bp_addr,
7764 const struct target_waitstatus *ws)
7765 {
7766 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7767
7768 if (ws->kind != TARGET_WAITKIND_VFORKED)
7769 return 0;
7770
7771 c->forked_inferior_pid = ws->value.related_pid;
7772 return 1;
7773 }
7774
7775 /* Implement the "print_it" breakpoint_ops method for vfork
7776 catchpoints. */
7777
7778 static enum print_stop_action
7779 print_it_catch_vfork (bpstat bs)
7780 {
7781 struct ui_out *uiout = current_uiout;
7782 struct breakpoint *b = bs->breakpoint_at;
7783 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7784
7785 annotate_catchpoint (b->number);
7786 maybe_print_thread_hit_breakpoint (uiout);
7787 if (b->disposition == disp_del)
7788 uiout->text ("Temporary catchpoint ");
7789 else
7790 uiout->text ("Catchpoint ");
7791 if (uiout->is_mi_like_p ())
7792 {
7793 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7794 uiout->field_string ("disp", bpdisp_text (b->disposition));
7795 }
7796 uiout->field_signed ("bkptno", b->number);
7797 uiout->text (" (vforked process ");
7798 uiout->field_signed ("newpid", c->forked_inferior_pid.pid ());
7799 uiout->text ("), ");
7800 return PRINT_SRC_AND_LOC;
7801 }
7802
7803 /* Implement the "print_one" breakpoint_ops method for vfork
7804 catchpoints. */
7805
7806 static void
7807 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7808 {
7809 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7810 struct value_print_options opts;
7811 struct ui_out *uiout = current_uiout;
7812
7813 get_user_print_options (&opts);
7814 /* Field 4, the address, is omitted (which makes the columns not
7815 line up too nicely with the headers, but the effect is relatively
7816 readable). */
7817 if (opts.addressprint)
7818 uiout->field_skip ("addr");
7819 annotate_field (5);
7820 uiout->text ("vfork");
7821 if (c->forked_inferior_pid != null_ptid)
7822 {
7823 uiout->text (", process ");
7824 uiout->field_signed ("what", c->forked_inferior_pid.pid ());
7825 uiout->spaces (1);
7826 }
7827
7828 if (uiout->is_mi_like_p ())
7829 uiout->field_string ("catch-type", "vfork");
7830 }
7831
7832 /* Implement the "print_mention" breakpoint_ops method for vfork
7833 catchpoints. */
7834
7835 static void
7836 print_mention_catch_vfork (struct breakpoint *b)
7837 {
7838 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7839 }
7840
7841 /* Implement the "print_recreate" breakpoint_ops method for vfork
7842 catchpoints. */
7843
7844 static void
7845 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7846 {
7847 fprintf_unfiltered (fp, "catch vfork");
7848 print_recreate_thread (b, fp);
7849 }
7850
7851 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7852
7853 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7854
7855 /* An instance of this type is used to represent an solib catchpoint.
7856 A breakpoint is really of this type iff its ops pointer points to
7857 CATCH_SOLIB_BREAKPOINT_OPS. */
7858
7859 struct solib_catchpoint : public breakpoint
7860 {
7861 ~solib_catchpoint () override;
7862
7863 /* True for "catch load", false for "catch unload". */
7864 unsigned char is_load;
7865
7866 /* Regular expression to match, if any. COMPILED is only valid when
7867 REGEX is non-NULL. */
7868 char *regex;
7869 std::unique_ptr<compiled_regex> compiled;
7870 };
7871
7872 solib_catchpoint::~solib_catchpoint ()
7873 {
7874 xfree (this->regex);
7875 }
7876
7877 static int
7878 insert_catch_solib (struct bp_location *ignore)
7879 {
7880 return 0;
7881 }
7882
7883 static int
7884 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7885 {
7886 return 0;
7887 }
7888
7889 static int
7890 breakpoint_hit_catch_solib (const struct bp_location *bl,
7891 const address_space *aspace,
7892 CORE_ADDR bp_addr,
7893 const struct target_waitstatus *ws)
7894 {
7895 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7896 struct breakpoint *other;
7897
7898 if (ws->kind == TARGET_WAITKIND_LOADED)
7899 return 1;
7900
7901 ALL_BREAKPOINTS (other)
7902 {
7903 struct bp_location *other_bl;
7904
7905 if (other == bl->owner)
7906 continue;
7907
7908 if (other->type != bp_shlib_event)
7909 continue;
7910
7911 if (self->pspace != NULL && other->pspace != self->pspace)
7912 continue;
7913
7914 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7915 {
7916 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7917 return 1;
7918 }
7919 }
7920
7921 return 0;
7922 }
7923
7924 static void
7925 check_status_catch_solib (struct bpstats *bs)
7926 {
7927 struct solib_catchpoint *self
7928 = (struct solib_catchpoint *) bs->breakpoint_at;
7929
7930 if (self->is_load)
7931 {
7932 for (so_list *iter : current_program_space->added_solibs)
7933 {
7934 if (!self->regex
7935 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
7936 return;
7937 }
7938 }
7939 else
7940 {
7941 for (const std::string &iter : current_program_space->deleted_solibs)
7942 {
7943 if (!self->regex
7944 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
7945 return;
7946 }
7947 }
7948
7949 bs->stop = 0;
7950 bs->print_it = print_it_noop;
7951 }
7952
7953 static enum print_stop_action
7954 print_it_catch_solib (bpstat bs)
7955 {
7956 struct breakpoint *b = bs->breakpoint_at;
7957 struct ui_out *uiout = current_uiout;
7958
7959 annotate_catchpoint (b->number);
7960 maybe_print_thread_hit_breakpoint (uiout);
7961 if (b->disposition == disp_del)
7962 uiout->text ("Temporary catchpoint ");
7963 else
7964 uiout->text ("Catchpoint ");
7965 uiout->field_signed ("bkptno", b->number);
7966 uiout->text ("\n");
7967 if (uiout->is_mi_like_p ())
7968 uiout->field_string ("disp", bpdisp_text (b->disposition));
7969 print_solib_event (1);
7970 return PRINT_SRC_AND_LOC;
7971 }
7972
7973 static void
7974 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
7975 {
7976 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7977 struct value_print_options opts;
7978 struct ui_out *uiout = current_uiout;
7979
7980 get_user_print_options (&opts);
7981 /* Field 4, the address, is omitted (which makes the columns not
7982 line up too nicely with the headers, but the effect is relatively
7983 readable). */
7984 if (opts.addressprint)
7985 {
7986 annotate_field (4);
7987 uiout->field_skip ("addr");
7988 }
7989
7990 std::string msg;
7991 annotate_field (5);
7992 if (self->is_load)
7993 {
7994 if (self->regex)
7995 msg = string_printf (_("load of library matching %s"), self->regex);
7996 else
7997 msg = _("load of library");
7998 }
7999 else
8000 {
8001 if (self->regex)
8002 msg = string_printf (_("unload of library matching %s"), self->regex);
8003 else
8004 msg = _("unload of library");
8005 }
8006 uiout->field_string ("what", msg);
8007
8008 if (uiout->is_mi_like_p ())
8009 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8010 }
8011
8012 static void
8013 print_mention_catch_solib (struct breakpoint *b)
8014 {
8015 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8016
8017 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8018 self->is_load ? "load" : "unload");
8019 }
8020
8021 static void
8022 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8023 {
8024 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8025
8026 fprintf_unfiltered (fp, "%s %s",
8027 b->disposition == disp_del ? "tcatch" : "catch",
8028 self->is_load ? "load" : "unload");
8029 if (self->regex)
8030 fprintf_unfiltered (fp, " %s", self->regex);
8031 fprintf_unfiltered (fp, "\n");
8032 }
8033
8034 static struct breakpoint_ops catch_solib_breakpoint_ops;
8035
8036 /* Shared helper function (MI and CLI) for creating and installing
8037 a shared object event catchpoint. If IS_LOAD is non-zero then
8038 the events to be caught are load events, otherwise they are
8039 unload events. If IS_TEMP is non-zero the catchpoint is a
8040 temporary one. If ENABLED is non-zero the catchpoint is
8041 created in an enabled state. */
8042
8043 void
8044 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8045 {
8046 struct gdbarch *gdbarch = get_current_arch ();
8047
8048 if (!arg)
8049 arg = "";
8050 arg = skip_spaces (arg);
8051
8052 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8053
8054 if (*arg != '\0')
8055 {
8056 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8057 _("Invalid regexp")));
8058 c->regex = xstrdup (arg);
8059 }
8060
8061 c->is_load = is_load;
8062 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8063 &catch_solib_breakpoint_ops);
8064
8065 c->enable_state = enabled ? bp_enabled : bp_disabled;
8066
8067 install_breakpoint (0, std::move (c), 1);
8068 }
8069
8070 /* A helper function that does all the work for "catch load" and
8071 "catch unload". */
8072
8073 static void
8074 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8075 struct cmd_list_element *command)
8076 {
8077 int tempflag;
8078 const int enabled = 1;
8079
8080 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8081
8082 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8083 }
8084
8085 static void
8086 catch_load_command_1 (const char *arg, int from_tty,
8087 struct cmd_list_element *command)
8088 {
8089 catch_load_or_unload (arg, from_tty, 1, command);
8090 }
8091
8092 static void
8093 catch_unload_command_1 (const char *arg, int from_tty,
8094 struct cmd_list_element *command)
8095 {
8096 catch_load_or_unload (arg, from_tty, 0, command);
8097 }
8098
8099 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8100 is non-zero, then make the breakpoint temporary. If COND_STRING is
8101 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8102 the breakpoint_ops structure associated to the catchpoint. */
8103
8104 void
8105 init_catchpoint (struct breakpoint *b,
8106 struct gdbarch *gdbarch, int tempflag,
8107 const char *cond_string,
8108 const struct breakpoint_ops *ops)
8109 {
8110 symtab_and_line sal;
8111 sal.pspace = current_program_space;
8112
8113 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8114
8115 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8116 b->disposition = tempflag ? disp_del : disp_donttouch;
8117 }
8118
8119 void
8120 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8121 {
8122 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8123 set_breakpoint_number (internal, b);
8124 if (is_tracepoint (b))
8125 set_tracepoint_count (breakpoint_count);
8126 if (!internal)
8127 mention (b);
8128 gdb::observers::breakpoint_created.notify (b);
8129
8130 if (update_gll)
8131 update_global_location_list (UGLL_MAY_INSERT);
8132 }
8133
8134 static void
8135 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8136 int tempflag, const char *cond_string,
8137 const struct breakpoint_ops *ops)
8138 {
8139 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8140
8141 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8142
8143 c->forked_inferior_pid = null_ptid;
8144
8145 install_breakpoint (0, std::move (c), 1);
8146 }
8147
8148 /* Exec catchpoints. */
8149
8150 /* An instance of this type is used to represent an exec catchpoint.
8151 A breakpoint is really of this type iff its ops pointer points to
8152 CATCH_EXEC_BREAKPOINT_OPS. */
8153
8154 struct exec_catchpoint : public breakpoint
8155 {
8156 ~exec_catchpoint () override;
8157
8158 /* Filename of a program whose exec triggered this catchpoint.
8159 This field is only valid immediately after this catchpoint has
8160 triggered. */
8161 char *exec_pathname;
8162 };
8163
8164 /* Exec catchpoint destructor. */
8165
8166 exec_catchpoint::~exec_catchpoint ()
8167 {
8168 xfree (this->exec_pathname);
8169 }
8170
8171 static int
8172 insert_catch_exec (struct bp_location *bl)
8173 {
8174 return target_insert_exec_catchpoint (inferior_ptid.pid ());
8175 }
8176
8177 static int
8178 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8179 {
8180 return target_remove_exec_catchpoint (inferior_ptid.pid ());
8181 }
8182
8183 static int
8184 breakpoint_hit_catch_exec (const struct bp_location *bl,
8185 const address_space *aspace, CORE_ADDR bp_addr,
8186 const struct target_waitstatus *ws)
8187 {
8188 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8189
8190 if (ws->kind != TARGET_WAITKIND_EXECD)
8191 return 0;
8192
8193 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8194 return 1;
8195 }
8196
8197 static enum print_stop_action
8198 print_it_catch_exec (bpstat bs)
8199 {
8200 struct ui_out *uiout = current_uiout;
8201 struct breakpoint *b = bs->breakpoint_at;
8202 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8203
8204 annotate_catchpoint (b->number);
8205 maybe_print_thread_hit_breakpoint (uiout);
8206 if (b->disposition == disp_del)
8207 uiout->text ("Temporary catchpoint ");
8208 else
8209 uiout->text ("Catchpoint ");
8210 if (uiout->is_mi_like_p ())
8211 {
8212 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8213 uiout->field_string ("disp", bpdisp_text (b->disposition));
8214 }
8215 uiout->field_signed ("bkptno", b->number);
8216 uiout->text (" (exec'd ");
8217 uiout->field_string ("new-exec", c->exec_pathname);
8218 uiout->text ("), ");
8219
8220 return PRINT_SRC_AND_LOC;
8221 }
8222
8223 static void
8224 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8225 {
8226 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8227 struct value_print_options opts;
8228 struct ui_out *uiout = current_uiout;
8229
8230 get_user_print_options (&opts);
8231
8232 /* Field 4, the address, is omitted (which makes the columns
8233 not line up too nicely with the headers, but the effect
8234 is relatively readable). */
8235 if (opts.addressprint)
8236 uiout->field_skip ("addr");
8237 annotate_field (5);
8238 uiout->text ("exec");
8239 if (c->exec_pathname != NULL)
8240 {
8241 uiout->text (", program \"");
8242 uiout->field_string ("what", c->exec_pathname);
8243 uiout->text ("\" ");
8244 }
8245
8246 if (uiout->is_mi_like_p ())
8247 uiout->field_string ("catch-type", "exec");
8248 }
8249
8250 static void
8251 print_mention_catch_exec (struct breakpoint *b)
8252 {
8253 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8254 }
8255
8256 /* Implement the "print_recreate" breakpoint_ops method for exec
8257 catchpoints. */
8258
8259 static void
8260 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8261 {
8262 fprintf_unfiltered (fp, "catch exec");
8263 print_recreate_thread (b, fp);
8264 }
8265
8266 static struct breakpoint_ops catch_exec_breakpoint_ops;
8267
8268 static int
8269 hw_breakpoint_used_count (void)
8270 {
8271 int i = 0;
8272 struct breakpoint *b;
8273 struct bp_location *bl;
8274
8275 ALL_BREAKPOINTS (b)
8276 {
8277 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8278 for (bl = b->loc; bl; bl = bl->next)
8279 {
8280 /* Special types of hardware breakpoints may use more than
8281 one register. */
8282 i += b->ops->resources_needed (bl);
8283 }
8284 }
8285
8286 return i;
8287 }
8288
8289 /* Returns the resources B would use if it were a hardware
8290 watchpoint. */
8291
8292 static int
8293 hw_watchpoint_use_count (struct breakpoint *b)
8294 {
8295 int i = 0;
8296 struct bp_location *bl;
8297
8298 if (!breakpoint_enabled (b))
8299 return 0;
8300
8301 for (bl = b->loc; bl; bl = bl->next)
8302 {
8303 /* Special types of hardware watchpoints may use more than
8304 one register. */
8305 i += b->ops->resources_needed (bl);
8306 }
8307
8308 return i;
8309 }
8310
8311 /* Returns the sum the used resources of all hardware watchpoints of
8312 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8313 the sum of the used resources of all hardware watchpoints of other
8314 types _not_ TYPE. */
8315
8316 static int
8317 hw_watchpoint_used_count_others (struct breakpoint *except,
8318 enum bptype type, int *other_type_used)
8319 {
8320 int i = 0;
8321 struct breakpoint *b;
8322
8323 *other_type_used = 0;
8324 ALL_BREAKPOINTS (b)
8325 {
8326 if (b == except)
8327 continue;
8328 if (!breakpoint_enabled (b))
8329 continue;
8330
8331 if (b->type == type)
8332 i += hw_watchpoint_use_count (b);
8333 else if (is_hardware_watchpoint (b))
8334 *other_type_used = 1;
8335 }
8336
8337 return i;
8338 }
8339
8340 void
8341 disable_watchpoints_before_interactive_call_start (void)
8342 {
8343 struct breakpoint *b;
8344
8345 ALL_BREAKPOINTS (b)
8346 {
8347 if (is_watchpoint (b) && breakpoint_enabled (b))
8348 {
8349 b->enable_state = bp_call_disabled;
8350 update_global_location_list (UGLL_DONT_INSERT);
8351 }
8352 }
8353 }
8354
8355 void
8356 enable_watchpoints_after_interactive_call_stop (void)
8357 {
8358 struct breakpoint *b;
8359
8360 ALL_BREAKPOINTS (b)
8361 {
8362 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8363 {
8364 b->enable_state = bp_enabled;
8365 update_global_location_list (UGLL_MAY_INSERT);
8366 }
8367 }
8368 }
8369
8370 void
8371 disable_breakpoints_before_startup (void)
8372 {
8373 current_program_space->executing_startup = 1;
8374 update_global_location_list (UGLL_DONT_INSERT);
8375 }
8376
8377 void
8378 enable_breakpoints_after_startup (void)
8379 {
8380 current_program_space->executing_startup = 0;
8381 breakpoint_re_set ();
8382 }
8383
8384 /* Create a new single-step breakpoint for thread THREAD, with no
8385 locations. */
8386
8387 static struct breakpoint *
8388 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8389 {
8390 std::unique_ptr<breakpoint> b (new breakpoint ());
8391
8392 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8393 &momentary_breakpoint_ops);
8394
8395 b->disposition = disp_donttouch;
8396 b->frame_id = null_frame_id;
8397
8398 b->thread = thread;
8399 gdb_assert (b->thread != 0);
8400
8401 return add_to_breakpoint_chain (std::move (b));
8402 }
8403
8404 /* Set a momentary breakpoint of type TYPE at address specified by
8405 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8406 frame. */
8407
8408 breakpoint_up
8409 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8410 struct frame_id frame_id, enum bptype type)
8411 {
8412 struct breakpoint *b;
8413
8414 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8415 tail-called one. */
8416 gdb_assert (!frame_id_artificial_p (frame_id));
8417
8418 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8419 b->enable_state = bp_enabled;
8420 b->disposition = disp_donttouch;
8421 b->frame_id = frame_id;
8422
8423 b->thread = inferior_thread ()->global_num;
8424
8425 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8426
8427 return breakpoint_up (b);
8428 }
8429
8430 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8431 The new breakpoint will have type TYPE, use OPS as its
8432 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8433
8434 static struct breakpoint *
8435 momentary_breakpoint_from_master (struct breakpoint *orig,
8436 enum bptype type,
8437 const struct breakpoint_ops *ops,
8438 int loc_enabled)
8439 {
8440 struct breakpoint *copy;
8441
8442 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8443 copy->loc = allocate_bp_location (copy);
8444 set_breakpoint_location_function (copy->loc);
8445
8446 copy->loc->gdbarch = orig->loc->gdbarch;
8447 copy->loc->requested_address = orig->loc->requested_address;
8448 copy->loc->address = orig->loc->address;
8449 copy->loc->section = orig->loc->section;
8450 copy->loc->pspace = orig->loc->pspace;
8451 copy->loc->probe = orig->loc->probe;
8452 copy->loc->line_number = orig->loc->line_number;
8453 copy->loc->symtab = orig->loc->symtab;
8454 copy->loc->enabled = loc_enabled;
8455 copy->frame_id = orig->frame_id;
8456 copy->thread = orig->thread;
8457 copy->pspace = orig->pspace;
8458
8459 copy->enable_state = bp_enabled;
8460 copy->disposition = disp_donttouch;
8461 copy->number = internal_breakpoint_number--;
8462
8463 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8464 return copy;
8465 }
8466
8467 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8468 ORIG is NULL. */
8469
8470 struct breakpoint *
8471 clone_momentary_breakpoint (struct breakpoint *orig)
8472 {
8473 /* If there's nothing to clone, then return nothing. */
8474 if (orig == NULL)
8475 return NULL;
8476
8477 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8478 }
8479
8480 breakpoint_up
8481 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8482 enum bptype type)
8483 {
8484 struct symtab_and_line sal;
8485
8486 sal = find_pc_line (pc, 0);
8487 sal.pc = pc;
8488 sal.section = find_pc_overlay (pc);
8489 sal.explicit_pc = 1;
8490
8491 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8492 }
8493 \f
8494
8495 /* Tell the user we have just set a breakpoint B. */
8496
8497 static void
8498 mention (struct breakpoint *b)
8499 {
8500 b->ops->print_mention (b);
8501 current_uiout->text ("\n");
8502 }
8503 \f
8504
8505 static bool bp_loc_is_permanent (struct bp_location *loc);
8506
8507 /* Handle "set breakpoint auto-hw on".
8508
8509 If the explicitly specified breakpoint type is not hardware
8510 breakpoint, check the memory map to see whether the breakpoint
8511 address is in read-only memory.
8512
8513 - location type is not hardware breakpoint, memory is read-only.
8514 We change the type of the location to hardware breakpoint.
8515
8516 - location type is hardware breakpoint, memory is read-write. This
8517 means we've previously made the location hardware one, but then the
8518 memory map changed, so we undo.
8519 */
8520
8521 static void
8522 handle_automatic_hardware_breakpoints (bp_location *bl)
8523 {
8524 if (automatic_hardware_breakpoints
8525 && bl->owner->type != bp_hardware_breakpoint
8526 && (bl->loc_type == bp_loc_software_breakpoint
8527 || bl->loc_type == bp_loc_hardware_breakpoint))
8528 {
8529 /* When breakpoints are removed, remove_breakpoints will use
8530 location types we've just set here, the only possible problem
8531 is that memory map has changed during running program, but
8532 it's not going to work anyway with current gdb. */
8533 mem_region *mr = lookup_mem_region (bl->address);
8534
8535 if (mr != nullptr)
8536 {
8537 enum bp_loc_type new_type;
8538
8539 if (mr->attrib.mode != MEM_RW)
8540 new_type = bp_loc_hardware_breakpoint;
8541 else
8542 new_type = bp_loc_software_breakpoint;
8543
8544 if (new_type != bl->loc_type)
8545 {
8546 static bool said = false;
8547
8548 bl->loc_type = new_type;
8549 if (!said)
8550 {
8551 fprintf_filtered (gdb_stdout,
8552 _("Note: automatically using "
8553 "hardware breakpoints for "
8554 "read-only addresses.\n"));
8555 said = true;
8556 }
8557 }
8558 }
8559 }
8560 }
8561
8562 static struct bp_location *
8563 add_location_to_breakpoint (struct breakpoint *b,
8564 const struct symtab_and_line *sal)
8565 {
8566 struct bp_location *loc, **tmp;
8567 CORE_ADDR adjusted_address;
8568 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8569
8570 if (loc_gdbarch == NULL)
8571 loc_gdbarch = b->gdbarch;
8572
8573 /* Adjust the breakpoint's address prior to allocating a location.
8574 Once we call allocate_bp_location(), that mostly uninitialized
8575 location will be placed on the location chain. Adjustment of the
8576 breakpoint may cause target_read_memory() to be called and we do
8577 not want its scan of the location chain to find a breakpoint and
8578 location that's only been partially initialized. */
8579 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8580 sal->pc, b->type);
8581
8582 /* Sort the locations by their ADDRESS. */
8583 loc = allocate_bp_location (b);
8584 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8585 tmp = &((*tmp)->next))
8586 ;
8587 loc->next = *tmp;
8588 *tmp = loc;
8589
8590 loc->requested_address = sal->pc;
8591 loc->address = adjusted_address;
8592 loc->pspace = sal->pspace;
8593 loc->probe.prob = sal->prob;
8594 loc->probe.objfile = sal->objfile;
8595 gdb_assert (loc->pspace != NULL);
8596 loc->section = sal->section;
8597 loc->gdbarch = loc_gdbarch;
8598 loc->line_number = sal->line;
8599 loc->symtab = sal->symtab;
8600 loc->symbol = sal->symbol;
8601 loc->msymbol = sal->msymbol;
8602 loc->objfile = sal->objfile;
8603
8604 set_breakpoint_location_function (loc);
8605
8606 /* While by definition, permanent breakpoints are already present in the
8607 code, we don't mark the location as inserted. Normally one would expect
8608 that GDB could rely on that breakpoint instruction to stop the program,
8609 thus removing the need to insert its own breakpoint, except that executing
8610 the breakpoint instruction can kill the target instead of reporting a
8611 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8612 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8613 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8614 breakpoint be inserted normally results in QEMU knowing about the GDB
8615 breakpoint, and thus trap before the breakpoint instruction is executed.
8616 (If GDB later needs to continue execution past the permanent breakpoint,
8617 it manually increments the PC, thus avoiding executing the breakpoint
8618 instruction.) */
8619 if (bp_loc_is_permanent (loc))
8620 loc->permanent = 1;
8621
8622 return loc;
8623 }
8624 \f
8625
8626 /* Return true if LOC is pointing to a permanent breakpoint,
8627 return false otherwise. */
8628
8629 static bool
8630 bp_loc_is_permanent (struct bp_location *loc)
8631 {
8632 gdb_assert (loc != NULL);
8633
8634 /* If we have a non-breakpoint-backed catchpoint or a software
8635 watchpoint, just return 0. We should not attempt to read from
8636 the addresses the locations of these breakpoint types point to.
8637 gdbarch_program_breakpoint_here_p, below, will attempt to read
8638 memory. */
8639 if (!bl_address_is_meaningful (loc))
8640 return false;
8641
8642 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8643 switch_to_program_space_and_thread (loc->pspace);
8644 return gdbarch_program_breakpoint_here_p (loc->gdbarch, loc->address);
8645 }
8646
8647 /* Build a command list for the dprintf corresponding to the current
8648 settings of the dprintf style options. */
8649
8650 static void
8651 update_dprintf_command_list (struct breakpoint *b)
8652 {
8653 char *dprintf_args = b->extra_string;
8654 char *printf_line = NULL;
8655
8656 if (!dprintf_args)
8657 return;
8658
8659 dprintf_args = skip_spaces (dprintf_args);
8660
8661 /* Allow a comma, as it may have terminated a location, but don't
8662 insist on it. */
8663 if (*dprintf_args == ',')
8664 ++dprintf_args;
8665 dprintf_args = skip_spaces (dprintf_args);
8666
8667 if (*dprintf_args != '"')
8668 error (_("Bad format string, missing '\"'."));
8669
8670 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8671 printf_line = xstrprintf ("printf %s", dprintf_args);
8672 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8673 {
8674 if (!dprintf_function)
8675 error (_("No function supplied for dprintf call"));
8676
8677 if (dprintf_channel && strlen (dprintf_channel) > 0)
8678 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8679 dprintf_function,
8680 dprintf_channel,
8681 dprintf_args);
8682 else
8683 printf_line = xstrprintf ("call (void) %s (%s)",
8684 dprintf_function,
8685 dprintf_args);
8686 }
8687 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8688 {
8689 if (target_can_run_breakpoint_commands ())
8690 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8691 else
8692 {
8693 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8694 printf_line = xstrprintf ("printf %s", dprintf_args);
8695 }
8696 }
8697 else
8698 internal_error (__FILE__, __LINE__,
8699 _("Invalid dprintf style."));
8700
8701 gdb_assert (printf_line != NULL);
8702
8703 /* Manufacture a printf sequence. */
8704 struct command_line *printf_cmd_line
8705 = new struct command_line (simple_control, printf_line);
8706 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8707 command_lines_deleter ()));
8708 }
8709
8710 /* Update all dprintf commands, making their command lists reflect
8711 current style settings. */
8712
8713 static void
8714 update_dprintf_commands (const char *args, int from_tty,
8715 struct cmd_list_element *c)
8716 {
8717 struct breakpoint *b;
8718
8719 ALL_BREAKPOINTS (b)
8720 {
8721 if (b->type == bp_dprintf)
8722 update_dprintf_command_list (b);
8723 }
8724 }
8725
8726 /* Create a breakpoint with SAL as location. Use LOCATION
8727 as a description of the location, and COND_STRING
8728 as condition expression. If LOCATION is NULL then create an
8729 "address location" from the address in the SAL. */
8730
8731 static void
8732 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8733 gdb::array_view<const symtab_and_line> sals,
8734 event_location_up &&location,
8735 gdb::unique_xmalloc_ptr<char> filter,
8736 gdb::unique_xmalloc_ptr<char> cond_string,
8737 gdb::unique_xmalloc_ptr<char> extra_string,
8738 enum bptype type, enum bpdisp disposition,
8739 int thread, int task, int ignore_count,
8740 const struct breakpoint_ops *ops, int from_tty,
8741 int enabled, int internal, unsigned flags,
8742 int display_canonical)
8743 {
8744 int i;
8745
8746 if (type == bp_hardware_breakpoint)
8747 {
8748 int target_resources_ok;
8749
8750 i = hw_breakpoint_used_count ();
8751 target_resources_ok =
8752 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8753 i + 1, 0);
8754 if (target_resources_ok == 0)
8755 error (_("No hardware breakpoint support in the target."));
8756 else if (target_resources_ok < 0)
8757 error (_("Hardware breakpoints used exceeds limit."));
8758 }
8759
8760 gdb_assert (!sals.empty ());
8761
8762 for (const auto &sal : sals)
8763 {
8764 struct bp_location *loc;
8765
8766 if (from_tty)
8767 {
8768 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8769 if (!loc_gdbarch)
8770 loc_gdbarch = gdbarch;
8771
8772 describe_other_breakpoints (loc_gdbarch,
8773 sal.pspace, sal.pc, sal.section, thread);
8774 }
8775
8776 if (&sal == &sals[0])
8777 {
8778 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8779 b->thread = thread;
8780 b->task = task;
8781
8782 b->cond_string = cond_string.release ();
8783 b->extra_string = extra_string.release ();
8784 b->ignore_count = ignore_count;
8785 b->enable_state = enabled ? bp_enabled : bp_disabled;
8786 b->disposition = disposition;
8787
8788 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8789 b->loc->inserted = 1;
8790
8791 if (type == bp_static_tracepoint)
8792 {
8793 struct tracepoint *t = (struct tracepoint *) b;
8794 struct static_tracepoint_marker marker;
8795
8796 if (strace_marker_p (b))
8797 {
8798 /* We already know the marker exists, otherwise, we
8799 wouldn't see a sal for it. */
8800 const char *p
8801 = &event_location_to_string (b->location.get ())[3];
8802 const char *endp;
8803
8804 p = skip_spaces (p);
8805
8806 endp = skip_to_space (p);
8807
8808 t->static_trace_marker_id.assign (p, endp - p);
8809
8810 printf_filtered (_("Probed static tracepoint "
8811 "marker \"%s\"\n"),
8812 t->static_trace_marker_id.c_str ());
8813 }
8814 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8815 {
8816 t->static_trace_marker_id = std::move (marker.str_id);
8817
8818 printf_filtered (_("Probed static tracepoint "
8819 "marker \"%s\"\n"),
8820 t->static_trace_marker_id.c_str ());
8821 }
8822 else
8823 warning (_("Couldn't determine the static "
8824 "tracepoint marker to probe"));
8825 }
8826
8827 loc = b->loc;
8828 }
8829 else
8830 {
8831 loc = add_location_to_breakpoint (b, &sal);
8832 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8833 loc->inserted = 1;
8834 }
8835
8836 if (b->cond_string)
8837 {
8838 const char *arg = b->cond_string;
8839
8840 loc->cond = parse_exp_1 (&arg, loc->address,
8841 block_for_pc (loc->address), 0);
8842 if (*arg)
8843 error (_("Garbage '%s' follows condition"), arg);
8844 }
8845
8846 /* Dynamic printf requires and uses additional arguments on the
8847 command line, otherwise it's an error. */
8848 if (type == bp_dprintf)
8849 {
8850 if (b->extra_string)
8851 update_dprintf_command_list (b);
8852 else
8853 error (_("Format string required"));
8854 }
8855 else if (b->extra_string)
8856 error (_("Garbage '%s' at end of command"), b->extra_string);
8857 }
8858
8859 b->display_canonical = display_canonical;
8860 if (location != NULL)
8861 b->location = std::move (location);
8862 else
8863 b->location = new_address_location (b->loc->address, NULL, 0);
8864 b->filter = std::move (filter);
8865 }
8866
8867 static void
8868 create_breakpoint_sal (struct gdbarch *gdbarch,
8869 gdb::array_view<const symtab_and_line> sals,
8870 event_location_up &&location,
8871 gdb::unique_xmalloc_ptr<char> filter,
8872 gdb::unique_xmalloc_ptr<char> cond_string,
8873 gdb::unique_xmalloc_ptr<char> extra_string,
8874 enum bptype type, enum bpdisp disposition,
8875 int thread, int task, int ignore_count,
8876 const struct breakpoint_ops *ops, int from_tty,
8877 int enabled, int internal, unsigned flags,
8878 int display_canonical)
8879 {
8880 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8881
8882 init_breakpoint_sal (b.get (), gdbarch,
8883 sals, std::move (location),
8884 std::move (filter),
8885 std::move (cond_string),
8886 std::move (extra_string),
8887 type, disposition,
8888 thread, task, ignore_count,
8889 ops, from_tty,
8890 enabled, internal, flags,
8891 display_canonical);
8892
8893 install_breakpoint (internal, std::move (b), 0);
8894 }
8895
8896 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8897 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8898 value. COND_STRING, if not NULL, specified the condition to be
8899 used for all breakpoints. Essentially the only case where
8900 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8901 function. In that case, it's still not possible to specify
8902 separate conditions for different overloaded functions, so
8903 we take just a single condition string.
8904
8905 NOTE: If the function succeeds, the caller is expected to cleanup
8906 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8907 array contents). If the function fails (error() is called), the
8908 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8909 COND and SALS arrays and each of those arrays contents. */
8910
8911 static void
8912 create_breakpoints_sal (struct gdbarch *gdbarch,
8913 struct linespec_result *canonical,
8914 gdb::unique_xmalloc_ptr<char> cond_string,
8915 gdb::unique_xmalloc_ptr<char> extra_string,
8916 enum bptype type, enum bpdisp disposition,
8917 int thread, int task, int ignore_count,
8918 const struct breakpoint_ops *ops, int from_tty,
8919 int enabled, int internal, unsigned flags)
8920 {
8921 if (canonical->pre_expanded)
8922 gdb_assert (canonical->lsals.size () == 1);
8923
8924 for (const auto &lsal : canonical->lsals)
8925 {
8926 /* Note that 'location' can be NULL in the case of a plain
8927 'break', without arguments. */
8928 event_location_up location
8929 = (canonical->location != NULL
8930 ? copy_event_location (canonical->location.get ()) : NULL);
8931 gdb::unique_xmalloc_ptr<char> filter_string
8932 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
8933
8934 create_breakpoint_sal (gdbarch, lsal.sals,
8935 std::move (location),
8936 std::move (filter_string),
8937 std::move (cond_string),
8938 std::move (extra_string),
8939 type, disposition,
8940 thread, task, ignore_count, ops,
8941 from_tty, enabled, internal, flags,
8942 canonical->special_display);
8943 }
8944 }
8945
8946 /* Parse LOCATION which is assumed to be a SAL specification possibly
8947 followed by conditionals. On return, SALS contains an array of SAL
8948 addresses found. LOCATION points to the end of the SAL (for
8949 linespec locations).
8950
8951 The array and the line spec strings are allocated on the heap, it is
8952 the caller's responsibility to free them. */
8953
8954 static void
8955 parse_breakpoint_sals (const struct event_location *location,
8956 struct linespec_result *canonical)
8957 {
8958 struct symtab_and_line cursal;
8959
8960 if (event_location_type (location) == LINESPEC_LOCATION)
8961 {
8962 const char *spec = get_linespec_location (location)->spec_string;
8963
8964 if (spec == NULL)
8965 {
8966 /* The last displayed codepoint, if it's valid, is our default
8967 breakpoint address. */
8968 if (last_displayed_sal_is_valid ())
8969 {
8970 /* Set sal's pspace, pc, symtab, and line to the values
8971 corresponding to the last call to print_frame_info.
8972 Be sure to reinitialize LINE with NOTCURRENT == 0
8973 as the breakpoint line number is inappropriate otherwise.
8974 find_pc_line would adjust PC, re-set it back. */
8975 symtab_and_line sal = get_last_displayed_sal ();
8976 CORE_ADDR pc = sal.pc;
8977
8978 sal = find_pc_line (pc, 0);
8979
8980 /* "break" without arguments is equivalent to "break *PC"
8981 where PC is the last displayed codepoint's address. So
8982 make sure to set sal.explicit_pc to prevent GDB from
8983 trying to expand the list of sals to include all other
8984 instances with the same symtab and line. */
8985 sal.pc = pc;
8986 sal.explicit_pc = 1;
8987
8988 struct linespec_sals lsal;
8989 lsal.sals = {sal};
8990 lsal.canonical = NULL;
8991
8992 canonical->lsals.push_back (std::move (lsal));
8993 return;
8994 }
8995 else
8996 error (_("No default breakpoint address now."));
8997 }
8998 }
8999
9000 /* Force almost all breakpoints to be in terms of the
9001 current_source_symtab (which is decode_line_1's default).
9002 This should produce the results we want almost all of the
9003 time while leaving default_breakpoint_* alone.
9004
9005 ObjC: However, don't match an Objective-C method name which
9006 may have a '+' or '-' succeeded by a '['. */
9007 cursal = get_current_source_symtab_and_line ();
9008 if (last_displayed_sal_is_valid ())
9009 {
9010 const char *spec = NULL;
9011
9012 if (event_location_type (location) == LINESPEC_LOCATION)
9013 spec = get_linespec_location (location)->spec_string;
9014
9015 if (!cursal.symtab
9016 || (spec != NULL
9017 && strchr ("+-", spec[0]) != NULL
9018 && spec[1] != '['))
9019 {
9020 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9021 get_last_displayed_symtab (),
9022 get_last_displayed_line (),
9023 canonical, NULL, NULL);
9024 return;
9025 }
9026 }
9027
9028 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9029 cursal.symtab, cursal.line, canonical, NULL, NULL);
9030 }
9031
9032
9033 /* Convert each SAL into a real PC. Verify that the PC can be
9034 inserted as a breakpoint. If it can't throw an error. */
9035
9036 static void
9037 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9038 {
9039 for (auto &sal : sals)
9040 resolve_sal_pc (&sal);
9041 }
9042
9043 /* Fast tracepoints may have restrictions on valid locations. For
9044 instance, a fast tracepoint using a jump instead of a trap will
9045 likely have to overwrite more bytes than a trap would, and so can
9046 only be placed where the instruction is longer than the jump, or a
9047 multi-instruction sequence does not have a jump into the middle of
9048 it, etc. */
9049
9050 static void
9051 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9052 gdb::array_view<const symtab_and_line> sals)
9053 {
9054 for (const auto &sal : sals)
9055 {
9056 struct gdbarch *sarch;
9057
9058 sarch = get_sal_arch (sal);
9059 /* We fall back to GDBARCH if there is no architecture
9060 associated with SAL. */
9061 if (sarch == NULL)
9062 sarch = gdbarch;
9063 std::string msg;
9064 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9065 error (_("May not have a fast tracepoint at %s%s"),
9066 paddress (sarch, sal.pc), msg.c_str ());
9067 }
9068 }
9069
9070 /* Given TOK, a string specification of condition and thread, as
9071 accepted by the 'break' command, extract the condition
9072 string and thread number and set *COND_STRING and *THREAD.
9073 PC identifies the context at which the condition should be parsed.
9074 If no condition is found, *COND_STRING is set to NULL.
9075 If no thread is found, *THREAD is set to -1. */
9076
9077 static void
9078 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9079 char **cond_string, int *thread, int *task,
9080 char **rest)
9081 {
9082 *cond_string = NULL;
9083 *thread = -1;
9084 *task = 0;
9085 *rest = NULL;
9086
9087 while (tok && *tok)
9088 {
9089 const char *end_tok;
9090 int toklen;
9091 const char *cond_start = NULL;
9092 const char *cond_end = NULL;
9093
9094 tok = skip_spaces (tok);
9095
9096 if ((*tok == '"' || *tok == ',') && rest)
9097 {
9098 *rest = savestring (tok, strlen (tok));
9099 return;
9100 }
9101
9102 end_tok = skip_to_space (tok);
9103
9104 toklen = end_tok - tok;
9105
9106 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9107 {
9108 tok = cond_start = end_tok + 1;
9109 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9110 cond_end = tok;
9111 *cond_string = savestring (cond_start, cond_end - cond_start);
9112 }
9113 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9114 {
9115 const char *tmptok;
9116 struct thread_info *thr;
9117
9118 tok = end_tok + 1;
9119 thr = parse_thread_id (tok, &tmptok);
9120 if (tok == tmptok)
9121 error (_("Junk after thread keyword."));
9122 *thread = thr->global_num;
9123 tok = tmptok;
9124 }
9125 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9126 {
9127 char *tmptok;
9128
9129 tok = end_tok + 1;
9130 *task = strtol (tok, &tmptok, 0);
9131 if (tok == tmptok)
9132 error (_("Junk after task keyword."));
9133 if (!valid_task_id (*task))
9134 error (_("Unknown task %d."), *task);
9135 tok = tmptok;
9136 }
9137 else if (rest)
9138 {
9139 *rest = savestring (tok, strlen (tok));
9140 return;
9141 }
9142 else
9143 error (_("Junk at end of arguments."));
9144 }
9145 }
9146
9147 /* Decode a static tracepoint marker spec. */
9148
9149 static std::vector<symtab_and_line>
9150 decode_static_tracepoint_spec (const char **arg_p)
9151 {
9152 const char *p = &(*arg_p)[3];
9153 const char *endp;
9154
9155 p = skip_spaces (p);
9156
9157 endp = skip_to_space (p);
9158
9159 std::string marker_str (p, endp - p);
9160
9161 std::vector<static_tracepoint_marker> markers
9162 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9163 if (markers.empty ())
9164 error (_("No known static tracepoint marker named %s"),
9165 marker_str.c_str ());
9166
9167 std::vector<symtab_and_line> sals;
9168 sals.reserve (markers.size ());
9169
9170 for (const static_tracepoint_marker &marker : markers)
9171 {
9172 symtab_and_line sal = find_pc_line (marker.address, 0);
9173 sal.pc = marker.address;
9174 sals.push_back (sal);
9175 }
9176
9177 *arg_p = endp;
9178 return sals;
9179 }
9180
9181 /* Returns the breakpoint ops appropriate for use with with LOCATION_TYPE and
9182 according to IS_TRACEPOINT. */
9183
9184 static const struct breakpoint_ops *
9185 breakpoint_ops_for_event_location_type (enum event_location_type location_type,
9186 bool is_tracepoint)
9187 {
9188 if (is_tracepoint)
9189 {
9190 if (location_type == PROBE_LOCATION)
9191 return &tracepoint_probe_breakpoint_ops;
9192 else
9193 return &tracepoint_breakpoint_ops;
9194 }
9195 else
9196 {
9197 if (location_type == PROBE_LOCATION)
9198 return &bkpt_probe_breakpoint_ops;
9199 else
9200 return &bkpt_breakpoint_ops;
9201 }
9202 }
9203
9204 /* See breakpoint.h. */
9205
9206 const struct breakpoint_ops *
9207 breakpoint_ops_for_event_location (const struct event_location *location,
9208 bool is_tracepoint)
9209 {
9210 if (location != nullptr)
9211 return breakpoint_ops_for_event_location_type
9212 (event_location_type (location), is_tracepoint);
9213 return is_tracepoint ? &tracepoint_breakpoint_ops : &bkpt_breakpoint_ops;
9214 }
9215
9216 /* See breakpoint.h. */
9217
9218 int
9219 create_breakpoint (struct gdbarch *gdbarch,
9220 const struct event_location *location,
9221 const char *cond_string,
9222 int thread, const char *extra_string,
9223 int parse_extra,
9224 int tempflag, enum bptype type_wanted,
9225 int ignore_count,
9226 enum auto_boolean pending_break_support,
9227 const struct breakpoint_ops *ops,
9228 int from_tty, int enabled, int internal,
9229 unsigned flags)
9230 {
9231 struct linespec_result canonical;
9232 int pending = 0;
9233 int task = 0;
9234 int prev_bkpt_count = breakpoint_count;
9235
9236 gdb_assert (ops != NULL);
9237
9238 /* If extra_string isn't useful, set it to NULL. */
9239 if (extra_string != NULL && *extra_string == '\0')
9240 extra_string = NULL;
9241
9242 try
9243 {
9244 ops->create_sals_from_location (location, &canonical, type_wanted);
9245 }
9246 catch (const gdb_exception_error &e)
9247 {
9248 /* If caller is interested in rc value from parse, set
9249 value. */
9250 if (e.error == NOT_FOUND_ERROR)
9251 {
9252 /* If pending breakpoint support is turned off, throw
9253 error. */
9254
9255 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9256 throw;
9257
9258 exception_print (gdb_stderr, e);
9259
9260 /* If pending breakpoint support is auto query and the user
9261 selects no, then simply return the error code. */
9262 if (pending_break_support == AUTO_BOOLEAN_AUTO
9263 && !nquery (_("Make %s pending on future shared library load? "),
9264 bptype_string (type_wanted)))
9265 return 0;
9266
9267 /* At this point, either the user was queried about setting
9268 a pending breakpoint and selected yes, or pending
9269 breakpoint behavior is on and thus a pending breakpoint
9270 is defaulted on behalf of the user. */
9271 pending = 1;
9272 }
9273 else
9274 throw;
9275 }
9276
9277 if (!pending && canonical.lsals.empty ())
9278 return 0;
9279
9280 /* Resolve all line numbers to PC's and verify that the addresses
9281 are ok for the target. */
9282 if (!pending)
9283 {
9284 for (auto &lsal : canonical.lsals)
9285 breakpoint_sals_to_pc (lsal.sals);
9286 }
9287
9288 /* Fast tracepoints may have additional restrictions on location. */
9289 if (!pending && type_wanted == bp_fast_tracepoint)
9290 {
9291 for (const auto &lsal : canonical.lsals)
9292 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9293 }
9294
9295 /* Verify that condition can be parsed, before setting any
9296 breakpoints. Allocate a separate condition expression for each
9297 breakpoint. */
9298 if (!pending)
9299 {
9300 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9301 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9302
9303 if (parse_extra)
9304 {
9305 char *rest;
9306 char *cond;
9307
9308 const linespec_sals &lsal = canonical.lsals[0];
9309
9310 /* Here we only parse 'arg' to separate condition
9311 from thread number, so parsing in context of first
9312 sal is OK. When setting the breakpoint we'll
9313 re-parse it in context of each sal. */
9314
9315 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9316 &cond, &thread, &task, &rest);
9317 cond_string_copy.reset (cond);
9318 extra_string_copy.reset (rest);
9319 }
9320 else
9321 {
9322 if (type_wanted != bp_dprintf
9323 && extra_string != NULL && *extra_string != '\0')
9324 error (_("Garbage '%s' at end of location"), extra_string);
9325
9326 /* Create a private copy of condition string. */
9327 if (cond_string)
9328 cond_string_copy.reset (xstrdup (cond_string));
9329 /* Create a private copy of any extra string. */
9330 if (extra_string)
9331 extra_string_copy.reset (xstrdup (extra_string));
9332 }
9333
9334 ops->create_breakpoints_sal (gdbarch, &canonical,
9335 std::move (cond_string_copy),
9336 std::move (extra_string_copy),
9337 type_wanted,
9338 tempflag ? disp_del : disp_donttouch,
9339 thread, task, ignore_count, ops,
9340 from_tty, enabled, internal, flags);
9341 }
9342 else
9343 {
9344 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9345
9346 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9347 b->location = copy_event_location (location);
9348
9349 if (parse_extra)
9350 b->cond_string = NULL;
9351 else
9352 {
9353 /* Create a private copy of condition string. */
9354 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9355 b->thread = thread;
9356 }
9357
9358 /* Create a private copy of any extra string. */
9359 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9360 b->ignore_count = ignore_count;
9361 b->disposition = tempflag ? disp_del : disp_donttouch;
9362 b->condition_not_parsed = 1;
9363 b->enable_state = enabled ? bp_enabled : bp_disabled;
9364 if ((type_wanted != bp_breakpoint
9365 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9366 b->pspace = current_program_space;
9367
9368 install_breakpoint (internal, std::move (b), 0);
9369 }
9370
9371 if (canonical.lsals.size () > 1)
9372 {
9373 warning (_("Multiple breakpoints were set.\nUse the "
9374 "\"delete\" command to delete unwanted breakpoints."));
9375 prev_breakpoint_count = prev_bkpt_count;
9376 }
9377
9378 update_global_location_list (UGLL_MAY_INSERT);
9379
9380 return 1;
9381 }
9382
9383 /* Set a breakpoint.
9384 ARG is a string describing breakpoint address,
9385 condition, and thread.
9386 FLAG specifies if a breakpoint is hardware on,
9387 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9388 and BP_TEMPFLAG. */
9389
9390 static void
9391 break_command_1 (const char *arg, int flag, int from_tty)
9392 {
9393 int tempflag = flag & BP_TEMPFLAG;
9394 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9395 ? bp_hardware_breakpoint
9396 : bp_breakpoint);
9397
9398 event_location_up location = string_to_event_location (&arg, current_language);
9399 const struct breakpoint_ops *ops = breakpoint_ops_for_event_location
9400 (location.get (), false /* is_tracepoint */);
9401
9402 create_breakpoint (get_current_arch (),
9403 location.get (),
9404 NULL, 0, arg, 1 /* parse arg */,
9405 tempflag, type_wanted,
9406 0 /* Ignore count */,
9407 pending_break_support,
9408 ops,
9409 from_tty,
9410 1 /* enabled */,
9411 0 /* internal */,
9412 0);
9413 }
9414
9415 /* Helper function for break_command_1 and disassemble_command. */
9416
9417 void
9418 resolve_sal_pc (struct symtab_and_line *sal)
9419 {
9420 CORE_ADDR pc;
9421
9422 if (sal->pc == 0 && sal->symtab != NULL)
9423 {
9424 if (!find_line_pc (sal->symtab, sal->line, &pc))
9425 error (_("No line %d in file \"%s\"."),
9426 sal->line, symtab_to_filename_for_display (sal->symtab));
9427 sal->pc = pc;
9428
9429 /* If this SAL corresponds to a breakpoint inserted using a line
9430 number, then skip the function prologue if necessary. */
9431 if (sal->explicit_line)
9432 skip_prologue_sal (sal);
9433 }
9434
9435 if (sal->section == 0 && sal->symtab != NULL)
9436 {
9437 const struct blockvector *bv;
9438 const struct block *b;
9439 struct symbol *sym;
9440
9441 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9442 SYMTAB_COMPUNIT (sal->symtab));
9443 if (bv != NULL)
9444 {
9445 sym = block_linkage_function (b);
9446 if (sym != NULL)
9447 {
9448 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9449 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9450 sym);
9451 }
9452 else
9453 {
9454 /* It really is worthwhile to have the section, so we'll
9455 just have to look harder. This case can be executed
9456 if we have line numbers but no functions (as can
9457 happen in assembly source). */
9458
9459 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9460 switch_to_program_space_and_thread (sal->pspace);
9461
9462 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9463 if (msym.minsym)
9464 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9465 }
9466 }
9467 }
9468 }
9469
9470 void
9471 break_command (const char *arg, int from_tty)
9472 {
9473 break_command_1 (arg, 0, from_tty);
9474 }
9475
9476 void
9477 tbreak_command (const char *arg, int from_tty)
9478 {
9479 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9480 }
9481
9482 static void
9483 hbreak_command (const char *arg, int from_tty)
9484 {
9485 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9486 }
9487
9488 static void
9489 thbreak_command (const char *arg, int from_tty)
9490 {
9491 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9492 }
9493
9494 static void
9495 stop_command (const char *arg, int from_tty)
9496 {
9497 printf_filtered (_("Specify the type of breakpoint to set.\n\
9498 Usage: stop in <function | address>\n\
9499 stop at <line>\n"));
9500 }
9501
9502 static void
9503 stopin_command (const char *arg, int from_tty)
9504 {
9505 int badInput = 0;
9506
9507 if (arg == NULL)
9508 badInput = 1;
9509 else if (*arg != '*')
9510 {
9511 const char *argptr = arg;
9512 int hasColon = 0;
9513
9514 /* Look for a ':'. If this is a line number specification, then
9515 say it is bad, otherwise, it should be an address or
9516 function/method name. */
9517 while (*argptr && !hasColon)
9518 {
9519 hasColon = (*argptr == ':');
9520 argptr++;
9521 }
9522
9523 if (hasColon)
9524 badInput = (*argptr != ':'); /* Not a class::method */
9525 else
9526 badInput = isdigit (*arg); /* a simple line number */
9527 }
9528
9529 if (badInput)
9530 printf_filtered (_("Usage: stop in <function | address>\n"));
9531 else
9532 break_command_1 (arg, 0, from_tty);
9533 }
9534
9535 static void
9536 stopat_command (const char *arg, int from_tty)
9537 {
9538 int badInput = 0;
9539
9540 if (arg == NULL || *arg == '*') /* no line number */
9541 badInput = 1;
9542 else
9543 {
9544 const char *argptr = arg;
9545 int hasColon = 0;
9546
9547 /* Look for a ':'. If there is a '::' then get out, otherwise
9548 it is probably a line number. */
9549 while (*argptr && !hasColon)
9550 {
9551 hasColon = (*argptr == ':');
9552 argptr++;
9553 }
9554
9555 if (hasColon)
9556 badInput = (*argptr == ':'); /* we have class::method */
9557 else
9558 badInput = !isdigit (*arg); /* not a line number */
9559 }
9560
9561 if (badInput)
9562 printf_filtered (_("Usage: stop at LINE\n"));
9563 else
9564 break_command_1 (arg, 0, from_tty);
9565 }
9566
9567 /* The dynamic printf command is mostly like a regular breakpoint, but
9568 with a prewired command list consisting of a single output command,
9569 built from extra arguments supplied on the dprintf command
9570 line. */
9571
9572 static void
9573 dprintf_command (const char *arg, int from_tty)
9574 {
9575 event_location_up location = string_to_event_location (&arg, current_language);
9576
9577 /* If non-NULL, ARG should have been advanced past the location;
9578 the next character must be ','. */
9579 if (arg != NULL)
9580 {
9581 if (arg[0] != ',' || arg[1] == '\0')
9582 error (_("Format string required"));
9583 else
9584 {
9585 /* Skip the comma. */
9586 ++arg;
9587 }
9588 }
9589
9590 create_breakpoint (get_current_arch (),
9591 location.get (),
9592 NULL, 0, arg, 1 /* parse arg */,
9593 0, bp_dprintf,
9594 0 /* Ignore count */,
9595 pending_break_support,
9596 &dprintf_breakpoint_ops,
9597 from_tty,
9598 1 /* enabled */,
9599 0 /* internal */,
9600 0);
9601 }
9602
9603 static void
9604 agent_printf_command (const char *arg, int from_tty)
9605 {
9606 error (_("May only run agent-printf on the target"));
9607 }
9608
9609 /* Implement the "breakpoint_hit" breakpoint_ops method for
9610 ranged breakpoints. */
9611
9612 static int
9613 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9614 const address_space *aspace,
9615 CORE_ADDR bp_addr,
9616 const struct target_waitstatus *ws)
9617 {
9618 if (ws->kind != TARGET_WAITKIND_STOPPED
9619 || ws->value.sig != GDB_SIGNAL_TRAP)
9620 return 0;
9621
9622 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9623 bl->length, aspace, bp_addr);
9624 }
9625
9626 /* Implement the "resources_needed" breakpoint_ops method for
9627 ranged breakpoints. */
9628
9629 static int
9630 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9631 {
9632 return target_ranged_break_num_registers ();
9633 }
9634
9635 /* Implement the "print_it" breakpoint_ops method for
9636 ranged breakpoints. */
9637
9638 static enum print_stop_action
9639 print_it_ranged_breakpoint (bpstat bs)
9640 {
9641 struct breakpoint *b = bs->breakpoint_at;
9642 struct bp_location *bl = b->loc;
9643 struct ui_out *uiout = current_uiout;
9644
9645 gdb_assert (b->type == bp_hardware_breakpoint);
9646
9647 /* Ranged breakpoints have only one location. */
9648 gdb_assert (bl && bl->next == NULL);
9649
9650 annotate_breakpoint (b->number);
9651
9652 maybe_print_thread_hit_breakpoint (uiout);
9653
9654 if (b->disposition == disp_del)
9655 uiout->text ("Temporary ranged breakpoint ");
9656 else
9657 uiout->text ("Ranged breakpoint ");
9658 if (uiout->is_mi_like_p ())
9659 {
9660 uiout->field_string ("reason",
9661 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9662 uiout->field_string ("disp", bpdisp_text (b->disposition));
9663 }
9664 uiout->field_signed ("bkptno", b->number);
9665 uiout->text (", ");
9666
9667 return PRINT_SRC_AND_LOC;
9668 }
9669
9670 /* Implement the "print_one" breakpoint_ops method for
9671 ranged breakpoints. */
9672
9673 static void
9674 print_one_ranged_breakpoint (struct breakpoint *b,
9675 struct bp_location **last_loc)
9676 {
9677 struct bp_location *bl = b->loc;
9678 struct value_print_options opts;
9679 struct ui_out *uiout = current_uiout;
9680
9681 /* Ranged breakpoints have only one location. */
9682 gdb_assert (bl && bl->next == NULL);
9683
9684 get_user_print_options (&opts);
9685
9686 if (opts.addressprint)
9687 /* We don't print the address range here, it will be printed later
9688 by print_one_detail_ranged_breakpoint. */
9689 uiout->field_skip ("addr");
9690 annotate_field (5);
9691 print_breakpoint_location (b, bl);
9692 *last_loc = bl;
9693 }
9694
9695 /* Implement the "print_one_detail" breakpoint_ops method for
9696 ranged breakpoints. */
9697
9698 static void
9699 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9700 struct ui_out *uiout)
9701 {
9702 CORE_ADDR address_start, address_end;
9703 struct bp_location *bl = b->loc;
9704 string_file stb;
9705
9706 gdb_assert (bl);
9707
9708 address_start = bl->address;
9709 address_end = address_start + bl->length - 1;
9710
9711 uiout->text ("\taddress range: ");
9712 stb.printf ("[%s, %s]",
9713 print_core_address (bl->gdbarch, address_start),
9714 print_core_address (bl->gdbarch, address_end));
9715 uiout->field_stream ("addr", stb);
9716 uiout->text ("\n");
9717 }
9718
9719 /* Implement the "print_mention" breakpoint_ops method for
9720 ranged breakpoints. */
9721
9722 static void
9723 print_mention_ranged_breakpoint (struct breakpoint *b)
9724 {
9725 struct bp_location *bl = b->loc;
9726 struct ui_out *uiout = current_uiout;
9727
9728 gdb_assert (bl);
9729 gdb_assert (b->type == bp_hardware_breakpoint);
9730
9731 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9732 b->number, paddress (bl->gdbarch, bl->address),
9733 paddress (bl->gdbarch, bl->address + bl->length - 1));
9734 }
9735
9736 /* Implement the "print_recreate" breakpoint_ops method for
9737 ranged breakpoints. */
9738
9739 static void
9740 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9741 {
9742 fprintf_unfiltered (fp, "break-range %s, %s",
9743 event_location_to_string (b->location.get ()),
9744 event_location_to_string (b->location_range_end.get ()));
9745 print_recreate_thread (b, fp);
9746 }
9747
9748 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9749
9750 static struct breakpoint_ops ranged_breakpoint_ops;
9751
9752 /* Find the address where the end of the breakpoint range should be
9753 placed, given the SAL of the end of the range. This is so that if
9754 the user provides a line number, the end of the range is set to the
9755 last instruction of the given line. */
9756
9757 static CORE_ADDR
9758 find_breakpoint_range_end (struct symtab_and_line sal)
9759 {
9760 CORE_ADDR end;
9761
9762 /* If the user provided a PC value, use it. Otherwise,
9763 find the address of the end of the given location. */
9764 if (sal.explicit_pc)
9765 end = sal.pc;
9766 else
9767 {
9768 int ret;
9769 CORE_ADDR start;
9770
9771 ret = find_line_pc_range (sal, &start, &end);
9772 if (!ret)
9773 error (_("Could not find location of the end of the range."));
9774
9775 /* find_line_pc_range returns the start of the next line. */
9776 end--;
9777 }
9778
9779 return end;
9780 }
9781
9782 /* Implement the "break-range" CLI command. */
9783
9784 static void
9785 break_range_command (const char *arg, int from_tty)
9786 {
9787 const char *arg_start;
9788 struct linespec_result canonical_start, canonical_end;
9789 int bp_count, can_use_bp, length;
9790 CORE_ADDR end;
9791 struct breakpoint *b;
9792
9793 /* We don't support software ranged breakpoints. */
9794 if (target_ranged_break_num_registers () < 0)
9795 error (_("This target does not support hardware ranged breakpoints."));
9796
9797 bp_count = hw_breakpoint_used_count ();
9798 bp_count += target_ranged_break_num_registers ();
9799 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9800 bp_count, 0);
9801 if (can_use_bp < 0)
9802 error (_("Hardware breakpoints used exceeds limit."));
9803
9804 arg = skip_spaces (arg);
9805 if (arg == NULL || arg[0] == '\0')
9806 error(_("No address range specified."));
9807
9808 arg_start = arg;
9809 event_location_up start_location = string_to_event_location (&arg,
9810 current_language);
9811 parse_breakpoint_sals (start_location.get (), &canonical_start);
9812
9813 if (arg[0] != ',')
9814 error (_("Too few arguments."));
9815 else if (canonical_start.lsals.empty ())
9816 error (_("Could not find location of the beginning of the range."));
9817
9818 const linespec_sals &lsal_start = canonical_start.lsals[0];
9819
9820 if (canonical_start.lsals.size () > 1
9821 || lsal_start.sals.size () != 1)
9822 error (_("Cannot create a ranged breakpoint with multiple locations."));
9823
9824 const symtab_and_line &sal_start = lsal_start.sals[0];
9825 std::string addr_string_start (arg_start, arg - arg_start);
9826
9827 arg++; /* Skip the comma. */
9828 arg = skip_spaces (arg);
9829
9830 /* Parse the end location. */
9831
9832 arg_start = arg;
9833
9834 /* We call decode_line_full directly here instead of using
9835 parse_breakpoint_sals because we need to specify the start location's
9836 symtab and line as the default symtab and line for the end of the
9837 range. This makes it possible to have ranges like "foo.c:27, +14",
9838 where +14 means 14 lines from the start location. */
9839 event_location_up end_location = string_to_event_location (&arg,
9840 current_language);
9841 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9842 sal_start.symtab, sal_start.line,
9843 &canonical_end, NULL, NULL);
9844
9845 if (canonical_end.lsals.empty ())
9846 error (_("Could not find location of the end of the range."));
9847
9848 const linespec_sals &lsal_end = canonical_end.lsals[0];
9849 if (canonical_end.lsals.size () > 1
9850 || lsal_end.sals.size () != 1)
9851 error (_("Cannot create a ranged breakpoint with multiple locations."));
9852
9853 const symtab_and_line &sal_end = lsal_end.sals[0];
9854
9855 end = find_breakpoint_range_end (sal_end);
9856 if (sal_start.pc > end)
9857 error (_("Invalid address range, end precedes start."));
9858
9859 length = end - sal_start.pc + 1;
9860 if (length < 0)
9861 /* Length overflowed. */
9862 error (_("Address range too large."));
9863 else if (length == 1)
9864 {
9865 /* This range is simple enough to be handled by
9866 the `hbreak' command. */
9867 hbreak_command (&addr_string_start[0], 1);
9868
9869 return;
9870 }
9871
9872 /* Now set up the breakpoint. */
9873 b = set_raw_breakpoint (get_current_arch (), sal_start,
9874 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9875 set_breakpoint_count (breakpoint_count + 1);
9876 b->number = breakpoint_count;
9877 b->disposition = disp_donttouch;
9878 b->location = std::move (start_location);
9879 b->location_range_end = std::move (end_location);
9880 b->loc->length = length;
9881
9882 mention (b);
9883 gdb::observers::breakpoint_created.notify (b);
9884 update_global_location_list (UGLL_MAY_INSERT);
9885 }
9886
9887 /* Return non-zero if EXP is verified as constant. Returned zero
9888 means EXP is variable. Also the constant detection may fail for
9889 some constant expressions and in such case still falsely return
9890 zero. */
9891
9892 static int
9893 watchpoint_exp_is_const (const struct expression *exp)
9894 {
9895 int i = exp->nelts;
9896
9897 while (i > 0)
9898 {
9899 int oplenp, argsp;
9900
9901 /* We are only interested in the descriptor of each element. */
9902 operator_length (exp, i, &oplenp, &argsp);
9903 i -= oplenp;
9904
9905 switch (exp->elts[i].opcode)
9906 {
9907 case BINOP_ADD:
9908 case BINOP_SUB:
9909 case BINOP_MUL:
9910 case BINOP_DIV:
9911 case BINOP_REM:
9912 case BINOP_MOD:
9913 case BINOP_LSH:
9914 case BINOP_RSH:
9915 case BINOP_LOGICAL_AND:
9916 case BINOP_LOGICAL_OR:
9917 case BINOP_BITWISE_AND:
9918 case BINOP_BITWISE_IOR:
9919 case BINOP_BITWISE_XOR:
9920 case BINOP_EQUAL:
9921 case BINOP_NOTEQUAL:
9922 case BINOP_LESS:
9923 case BINOP_GTR:
9924 case BINOP_LEQ:
9925 case BINOP_GEQ:
9926 case BINOP_REPEAT:
9927 case BINOP_COMMA:
9928 case BINOP_EXP:
9929 case BINOP_MIN:
9930 case BINOP_MAX:
9931 case BINOP_INTDIV:
9932 case BINOP_CONCAT:
9933 case TERNOP_COND:
9934 case TERNOP_SLICE:
9935
9936 case OP_LONG:
9937 case OP_FLOAT:
9938 case OP_LAST:
9939 case OP_COMPLEX:
9940 case OP_STRING:
9941 case OP_ARRAY:
9942 case OP_TYPE:
9943 case OP_TYPEOF:
9944 case OP_DECLTYPE:
9945 case OP_TYPEID:
9946 case OP_NAME:
9947 case OP_OBJC_NSSTRING:
9948
9949 case UNOP_NEG:
9950 case UNOP_LOGICAL_NOT:
9951 case UNOP_COMPLEMENT:
9952 case UNOP_ADDR:
9953 case UNOP_HIGH:
9954 case UNOP_CAST:
9955
9956 case UNOP_CAST_TYPE:
9957 case UNOP_REINTERPRET_CAST:
9958 case UNOP_DYNAMIC_CAST:
9959 /* Unary, binary and ternary operators: We have to check
9960 their operands. If they are constant, then so is the
9961 result of that operation. For instance, if A and B are
9962 determined to be constants, then so is "A + B".
9963
9964 UNOP_IND is one exception to the rule above, because the
9965 value of *ADDR is not necessarily a constant, even when
9966 ADDR is. */
9967 break;
9968
9969 case OP_VAR_VALUE:
9970 /* Check whether the associated symbol is a constant.
9971
9972 We use SYMBOL_CLASS rather than TYPE_CONST because it's
9973 possible that a buggy compiler could mark a variable as
9974 constant even when it is not, and TYPE_CONST would return
9975 true in this case, while SYMBOL_CLASS wouldn't.
9976
9977 We also have to check for function symbols because they
9978 are always constant. */
9979 {
9980 struct symbol *s = exp->elts[i + 2].symbol;
9981
9982 if (SYMBOL_CLASS (s) != LOC_BLOCK
9983 && SYMBOL_CLASS (s) != LOC_CONST
9984 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
9985 return 0;
9986 break;
9987 }
9988
9989 /* The default action is to return 0 because we are using
9990 the optimistic approach here: If we don't know something,
9991 then it is not a constant. */
9992 default:
9993 return 0;
9994 }
9995 }
9996
9997 return 1;
9998 }
9999
10000 /* Watchpoint destructor. */
10001
10002 watchpoint::~watchpoint ()
10003 {
10004 xfree (this->exp_string);
10005 xfree (this->exp_string_reparse);
10006 }
10007
10008 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10009
10010 static void
10011 re_set_watchpoint (struct breakpoint *b)
10012 {
10013 struct watchpoint *w = (struct watchpoint *) b;
10014
10015 /* Watchpoint can be either on expression using entirely global
10016 variables, or it can be on local variables.
10017
10018 Watchpoints of the first kind are never auto-deleted, and even
10019 persist across program restarts. Since they can use variables
10020 from shared libraries, we need to reparse expression as libraries
10021 are loaded and unloaded.
10022
10023 Watchpoints on local variables can also change meaning as result
10024 of solib event. For example, if a watchpoint uses both a local
10025 and a global variables in expression, it's a local watchpoint,
10026 but unloading of a shared library will make the expression
10027 invalid. This is not a very common use case, but we still
10028 re-evaluate expression, to avoid surprises to the user.
10029
10030 Note that for local watchpoints, we re-evaluate it only if
10031 watchpoints frame id is still valid. If it's not, it means the
10032 watchpoint is out of scope and will be deleted soon. In fact,
10033 I'm not sure we'll ever be called in this case.
10034
10035 If a local watchpoint's frame id is still valid, then
10036 w->exp_valid_block is likewise valid, and we can safely use it.
10037
10038 Don't do anything about disabled watchpoints, since they will be
10039 reevaluated again when enabled. */
10040 update_watchpoint (w, 1 /* reparse */);
10041 }
10042
10043 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10044
10045 static int
10046 insert_watchpoint (struct bp_location *bl)
10047 {
10048 struct watchpoint *w = (struct watchpoint *) bl->owner;
10049 int length = w->exact ? 1 : bl->length;
10050
10051 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10052 w->cond_exp.get ());
10053 }
10054
10055 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10056
10057 static int
10058 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10059 {
10060 struct watchpoint *w = (struct watchpoint *) bl->owner;
10061 int length = w->exact ? 1 : bl->length;
10062
10063 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10064 w->cond_exp.get ());
10065 }
10066
10067 static int
10068 breakpoint_hit_watchpoint (const struct bp_location *bl,
10069 const address_space *aspace, CORE_ADDR bp_addr,
10070 const struct target_waitstatus *ws)
10071 {
10072 struct breakpoint *b = bl->owner;
10073 struct watchpoint *w = (struct watchpoint *) b;
10074
10075 /* Continuable hardware watchpoints are treated as non-existent if the
10076 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10077 some data address). Otherwise gdb won't stop on a break instruction
10078 in the code (not from a breakpoint) when a hardware watchpoint has
10079 been defined. Also skip watchpoints which we know did not trigger
10080 (did not match the data address). */
10081 if (is_hardware_watchpoint (b)
10082 && w->watchpoint_triggered == watch_triggered_no)
10083 return 0;
10084
10085 return 1;
10086 }
10087
10088 static void
10089 check_status_watchpoint (bpstat bs)
10090 {
10091 gdb_assert (is_watchpoint (bs->breakpoint_at));
10092
10093 bpstat_check_watchpoint (bs);
10094 }
10095
10096 /* Implement the "resources_needed" breakpoint_ops method for
10097 hardware watchpoints. */
10098
10099 static int
10100 resources_needed_watchpoint (const struct bp_location *bl)
10101 {
10102 struct watchpoint *w = (struct watchpoint *) bl->owner;
10103 int length = w->exact? 1 : bl->length;
10104
10105 return target_region_ok_for_hw_watchpoint (bl->address, length);
10106 }
10107
10108 /* Implement the "works_in_software_mode" breakpoint_ops method for
10109 hardware watchpoints. */
10110
10111 static int
10112 works_in_software_mode_watchpoint (const struct breakpoint *b)
10113 {
10114 /* Read and access watchpoints only work with hardware support. */
10115 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10116 }
10117
10118 static enum print_stop_action
10119 print_it_watchpoint (bpstat bs)
10120 {
10121 struct breakpoint *b;
10122 enum print_stop_action result;
10123 struct watchpoint *w;
10124 struct ui_out *uiout = current_uiout;
10125
10126 gdb_assert (bs->bp_location_at != NULL);
10127
10128 b = bs->breakpoint_at;
10129 w = (struct watchpoint *) b;
10130
10131 annotate_watchpoint (b->number);
10132 maybe_print_thread_hit_breakpoint (uiout);
10133
10134 string_file stb;
10135
10136 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10137 switch (b->type)
10138 {
10139 case bp_watchpoint:
10140 case bp_hardware_watchpoint:
10141 if (uiout->is_mi_like_p ())
10142 uiout->field_string
10143 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10144 mention (b);
10145 tuple_emitter.emplace (uiout, "value");
10146 uiout->text ("\nOld value = ");
10147 watchpoint_value_print (bs->old_val.get (), &stb);
10148 uiout->field_stream ("old", stb);
10149 uiout->text ("\nNew value = ");
10150 watchpoint_value_print (w->val.get (), &stb);
10151 uiout->field_stream ("new", stb);
10152 uiout->text ("\n");
10153 /* More than one watchpoint may have been triggered. */
10154 result = PRINT_UNKNOWN;
10155 break;
10156
10157 case bp_read_watchpoint:
10158 if (uiout->is_mi_like_p ())
10159 uiout->field_string
10160 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10161 mention (b);
10162 tuple_emitter.emplace (uiout, "value");
10163 uiout->text ("\nValue = ");
10164 watchpoint_value_print (w->val.get (), &stb);
10165 uiout->field_stream ("value", stb);
10166 uiout->text ("\n");
10167 result = PRINT_UNKNOWN;
10168 break;
10169
10170 case bp_access_watchpoint:
10171 if (bs->old_val != NULL)
10172 {
10173 if (uiout->is_mi_like_p ())
10174 uiout->field_string
10175 ("reason",
10176 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10177 mention (b);
10178 tuple_emitter.emplace (uiout, "value");
10179 uiout->text ("\nOld value = ");
10180 watchpoint_value_print (bs->old_val.get (), &stb);
10181 uiout->field_stream ("old", stb);
10182 uiout->text ("\nNew value = ");
10183 }
10184 else
10185 {
10186 mention (b);
10187 if (uiout->is_mi_like_p ())
10188 uiout->field_string
10189 ("reason",
10190 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10191 tuple_emitter.emplace (uiout, "value");
10192 uiout->text ("\nValue = ");
10193 }
10194 watchpoint_value_print (w->val.get (), &stb);
10195 uiout->field_stream ("new", stb);
10196 uiout->text ("\n");
10197 result = PRINT_UNKNOWN;
10198 break;
10199 default:
10200 result = PRINT_UNKNOWN;
10201 }
10202
10203 return result;
10204 }
10205
10206 /* Implement the "print_mention" breakpoint_ops method for hardware
10207 watchpoints. */
10208
10209 static void
10210 print_mention_watchpoint (struct breakpoint *b)
10211 {
10212 struct watchpoint *w = (struct watchpoint *) b;
10213 struct ui_out *uiout = current_uiout;
10214 const char *tuple_name;
10215
10216 switch (b->type)
10217 {
10218 case bp_watchpoint:
10219 uiout->text ("Watchpoint ");
10220 tuple_name = "wpt";
10221 break;
10222 case bp_hardware_watchpoint:
10223 uiout->text ("Hardware watchpoint ");
10224 tuple_name = "wpt";
10225 break;
10226 case bp_read_watchpoint:
10227 uiout->text ("Hardware read watchpoint ");
10228 tuple_name = "hw-rwpt";
10229 break;
10230 case bp_access_watchpoint:
10231 uiout->text ("Hardware access (read/write) watchpoint ");
10232 tuple_name = "hw-awpt";
10233 break;
10234 default:
10235 internal_error (__FILE__, __LINE__,
10236 _("Invalid hardware watchpoint type."));
10237 }
10238
10239 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10240 uiout->field_signed ("number", b->number);
10241 uiout->text (": ");
10242 uiout->field_string ("exp", w->exp_string);
10243 }
10244
10245 /* Implement the "print_recreate" breakpoint_ops method for
10246 watchpoints. */
10247
10248 static void
10249 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10250 {
10251 struct watchpoint *w = (struct watchpoint *) b;
10252
10253 switch (b->type)
10254 {
10255 case bp_watchpoint:
10256 case bp_hardware_watchpoint:
10257 fprintf_unfiltered (fp, "watch");
10258 break;
10259 case bp_read_watchpoint:
10260 fprintf_unfiltered (fp, "rwatch");
10261 break;
10262 case bp_access_watchpoint:
10263 fprintf_unfiltered (fp, "awatch");
10264 break;
10265 default:
10266 internal_error (__FILE__, __LINE__,
10267 _("Invalid watchpoint type."));
10268 }
10269
10270 fprintf_unfiltered (fp, " %s", w->exp_string);
10271 print_recreate_thread (b, fp);
10272 }
10273
10274 /* Implement the "explains_signal" breakpoint_ops method for
10275 watchpoints. */
10276
10277 static int
10278 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10279 {
10280 /* A software watchpoint cannot cause a signal other than
10281 GDB_SIGNAL_TRAP. */
10282 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10283 return 0;
10284
10285 return 1;
10286 }
10287
10288 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10289
10290 static struct breakpoint_ops watchpoint_breakpoint_ops;
10291
10292 /* Implement the "insert" breakpoint_ops method for
10293 masked hardware watchpoints. */
10294
10295 static int
10296 insert_masked_watchpoint (struct bp_location *bl)
10297 {
10298 struct watchpoint *w = (struct watchpoint *) bl->owner;
10299
10300 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10301 bl->watchpoint_type);
10302 }
10303
10304 /* Implement the "remove" breakpoint_ops method for
10305 masked hardware watchpoints. */
10306
10307 static int
10308 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10309 {
10310 struct watchpoint *w = (struct watchpoint *) bl->owner;
10311
10312 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10313 bl->watchpoint_type);
10314 }
10315
10316 /* Implement the "resources_needed" breakpoint_ops method for
10317 masked hardware watchpoints. */
10318
10319 static int
10320 resources_needed_masked_watchpoint (const struct bp_location *bl)
10321 {
10322 struct watchpoint *w = (struct watchpoint *) bl->owner;
10323
10324 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10325 }
10326
10327 /* Implement the "works_in_software_mode" breakpoint_ops method for
10328 masked hardware watchpoints. */
10329
10330 static int
10331 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10332 {
10333 return 0;
10334 }
10335
10336 /* Implement the "print_it" breakpoint_ops method for
10337 masked hardware watchpoints. */
10338
10339 static enum print_stop_action
10340 print_it_masked_watchpoint (bpstat bs)
10341 {
10342 struct breakpoint *b = bs->breakpoint_at;
10343 struct ui_out *uiout = current_uiout;
10344
10345 /* Masked watchpoints have only one location. */
10346 gdb_assert (b->loc && b->loc->next == NULL);
10347
10348 annotate_watchpoint (b->number);
10349 maybe_print_thread_hit_breakpoint (uiout);
10350
10351 switch (b->type)
10352 {
10353 case bp_hardware_watchpoint:
10354 if (uiout->is_mi_like_p ())
10355 uiout->field_string
10356 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10357 break;
10358
10359 case bp_read_watchpoint:
10360 if (uiout->is_mi_like_p ())
10361 uiout->field_string
10362 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10363 break;
10364
10365 case bp_access_watchpoint:
10366 if (uiout->is_mi_like_p ())
10367 uiout->field_string
10368 ("reason",
10369 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10370 break;
10371 default:
10372 internal_error (__FILE__, __LINE__,
10373 _("Invalid hardware watchpoint type."));
10374 }
10375
10376 mention (b);
10377 uiout->text (_("\n\
10378 Check the underlying instruction at PC for the memory\n\
10379 address and value which triggered this watchpoint.\n"));
10380 uiout->text ("\n");
10381
10382 /* More than one watchpoint may have been triggered. */
10383 return PRINT_UNKNOWN;
10384 }
10385
10386 /* Implement the "print_one_detail" breakpoint_ops method for
10387 masked hardware watchpoints. */
10388
10389 static void
10390 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10391 struct ui_out *uiout)
10392 {
10393 struct watchpoint *w = (struct watchpoint *) b;
10394
10395 /* Masked watchpoints have only one location. */
10396 gdb_assert (b->loc && b->loc->next == NULL);
10397
10398 uiout->text ("\tmask ");
10399 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10400 uiout->text ("\n");
10401 }
10402
10403 /* Implement the "print_mention" breakpoint_ops method for
10404 masked hardware watchpoints. */
10405
10406 static void
10407 print_mention_masked_watchpoint (struct breakpoint *b)
10408 {
10409 struct watchpoint *w = (struct watchpoint *) b;
10410 struct ui_out *uiout = current_uiout;
10411 const char *tuple_name;
10412
10413 switch (b->type)
10414 {
10415 case bp_hardware_watchpoint:
10416 uiout->text ("Masked hardware watchpoint ");
10417 tuple_name = "wpt";
10418 break;
10419 case bp_read_watchpoint:
10420 uiout->text ("Masked hardware read watchpoint ");
10421 tuple_name = "hw-rwpt";
10422 break;
10423 case bp_access_watchpoint:
10424 uiout->text ("Masked hardware access (read/write) watchpoint ");
10425 tuple_name = "hw-awpt";
10426 break;
10427 default:
10428 internal_error (__FILE__, __LINE__,
10429 _("Invalid hardware watchpoint type."));
10430 }
10431
10432 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10433 uiout->field_signed ("number", b->number);
10434 uiout->text (": ");
10435 uiout->field_string ("exp", w->exp_string);
10436 }
10437
10438 /* Implement the "print_recreate" breakpoint_ops method for
10439 masked hardware watchpoints. */
10440
10441 static void
10442 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10443 {
10444 struct watchpoint *w = (struct watchpoint *) b;
10445
10446 switch (b->type)
10447 {
10448 case bp_hardware_watchpoint:
10449 fprintf_unfiltered (fp, "watch");
10450 break;
10451 case bp_read_watchpoint:
10452 fprintf_unfiltered (fp, "rwatch");
10453 break;
10454 case bp_access_watchpoint:
10455 fprintf_unfiltered (fp, "awatch");
10456 break;
10457 default:
10458 internal_error (__FILE__, __LINE__,
10459 _("Invalid hardware watchpoint type."));
10460 }
10461
10462 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string,
10463 phex (w->hw_wp_mask, sizeof (CORE_ADDR)));
10464 print_recreate_thread (b, fp);
10465 }
10466
10467 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10468
10469 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10470
10471 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10472
10473 static bool
10474 is_masked_watchpoint (const struct breakpoint *b)
10475 {
10476 return b->ops == &masked_watchpoint_breakpoint_ops;
10477 }
10478
10479 /* accessflag: hw_write: watch write,
10480 hw_read: watch read,
10481 hw_access: watch access (read or write) */
10482 static void
10483 watch_command_1 (const char *arg, int accessflag, int from_tty,
10484 int just_location, int internal)
10485 {
10486 struct breakpoint *scope_breakpoint = NULL;
10487 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10488 struct value *result;
10489 int saved_bitpos = 0, saved_bitsize = 0;
10490 const char *exp_start = NULL;
10491 const char *exp_end = NULL;
10492 const char *tok, *end_tok;
10493 int toklen = -1;
10494 const char *cond_start = NULL;
10495 const char *cond_end = NULL;
10496 enum bptype bp_type;
10497 int thread = -1;
10498 int pc = 0;
10499 /* Flag to indicate whether we are going to use masks for
10500 the hardware watchpoint. */
10501 int use_mask = 0;
10502 CORE_ADDR mask = 0;
10503
10504 /* Make sure that we actually have parameters to parse. */
10505 if (arg != NULL && arg[0] != '\0')
10506 {
10507 const char *value_start;
10508
10509 exp_end = arg + strlen (arg);
10510
10511 /* Look for "parameter value" pairs at the end
10512 of the arguments string. */
10513 for (tok = exp_end - 1; tok > arg; tok--)
10514 {
10515 /* Skip whitespace at the end of the argument list. */
10516 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10517 tok--;
10518
10519 /* Find the beginning of the last token.
10520 This is the value of the parameter. */
10521 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10522 tok--;
10523 value_start = tok + 1;
10524
10525 /* Skip whitespace. */
10526 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10527 tok--;
10528
10529 end_tok = tok;
10530
10531 /* Find the beginning of the second to last token.
10532 This is the parameter itself. */
10533 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10534 tok--;
10535 tok++;
10536 toklen = end_tok - tok + 1;
10537
10538 if (toklen == 6 && startswith (tok, "thread"))
10539 {
10540 struct thread_info *thr;
10541 /* At this point we've found a "thread" token, which means
10542 the user is trying to set a watchpoint that triggers
10543 only in a specific thread. */
10544 const char *endp;
10545
10546 if (thread != -1)
10547 error(_("You can specify only one thread."));
10548
10549 /* Extract the thread ID from the next token. */
10550 thr = parse_thread_id (value_start, &endp);
10551
10552 /* Check if the user provided a valid thread ID. */
10553 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10554 invalid_thread_id_error (value_start);
10555
10556 thread = thr->global_num;
10557 }
10558 else if (toklen == 4 && startswith (tok, "mask"))
10559 {
10560 /* We've found a "mask" token, which means the user wants to
10561 create a hardware watchpoint that is going to have the mask
10562 facility. */
10563 struct value *mask_value, *mark;
10564
10565 if (use_mask)
10566 error(_("You can specify only one mask."));
10567
10568 use_mask = just_location = 1;
10569
10570 mark = value_mark ();
10571 mask_value = parse_to_comma_and_eval (&value_start);
10572 mask = value_as_address (mask_value);
10573 value_free_to_mark (mark);
10574 }
10575 else
10576 /* We didn't recognize what we found. We should stop here. */
10577 break;
10578
10579 /* Truncate the string and get rid of the "parameter value" pair before
10580 the arguments string is parsed by the parse_exp_1 function. */
10581 exp_end = tok;
10582 }
10583 }
10584 else
10585 exp_end = arg;
10586
10587 /* Parse the rest of the arguments. From here on out, everything
10588 is in terms of a newly allocated string instead of the original
10589 ARG. */
10590 std::string expression (arg, exp_end - arg);
10591 exp_start = arg = expression.c_str ();
10592 innermost_block_tracker tracker;
10593 expression_up exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
10594 exp_end = arg;
10595 /* Remove trailing whitespace from the expression before saving it.
10596 This makes the eventual display of the expression string a bit
10597 prettier. */
10598 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10599 --exp_end;
10600
10601 /* Checking if the expression is not constant. */
10602 if (watchpoint_exp_is_const (exp.get ()))
10603 {
10604 int len;
10605
10606 len = exp_end - exp_start;
10607 while (len > 0 && isspace (exp_start[len - 1]))
10608 len--;
10609 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10610 }
10611
10612 exp_valid_block = tracker.block ();
10613 struct value *mark = value_mark ();
10614 struct value *val_as_value = nullptr;
10615 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10616 just_location);
10617
10618 if (val_as_value != NULL && just_location)
10619 {
10620 saved_bitpos = value_bitpos (val_as_value);
10621 saved_bitsize = value_bitsize (val_as_value);
10622 }
10623
10624 value_ref_ptr val;
10625 if (just_location)
10626 {
10627 int ret;
10628
10629 exp_valid_block = NULL;
10630 val = release_value (value_addr (result));
10631 value_free_to_mark (mark);
10632
10633 if (use_mask)
10634 {
10635 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10636 mask);
10637 if (ret == -1)
10638 error (_("This target does not support masked watchpoints."));
10639 else if (ret == -2)
10640 error (_("Invalid mask or memory region."));
10641 }
10642 }
10643 else if (val_as_value != NULL)
10644 val = release_value (val_as_value);
10645
10646 tok = skip_spaces (arg);
10647 end_tok = skip_to_space (tok);
10648
10649 toklen = end_tok - tok;
10650 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10651 {
10652 tok = cond_start = end_tok + 1;
10653 innermost_block_tracker if_tracker;
10654 parse_exp_1 (&tok, 0, 0, 0, &if_tracker);
10655
10656 /* The watchpoint expression may not be local, but the condition
10657 may still be. E.g.: `watch global if local > 0'. */
10658 cond_exp_valid_block = if_tracker.block ();
10659
10660 cond_end = tok;
10661 }
10662 if (*tok)
10663 error (_("Junk at end of command."));
10664
10665 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10666
10667 /* Save this because create_internal_breakpoint below invalidates
10668 'wp_frame'. */
10669 frame_id watchpoint_frame = get_frame_id (wp_frame);
10670
10671 /* If the expression is "local", then set up a "watchpoint scope"
10672 breakpoint at the point where we've left the scope of the watchpoint
10673 expression. Create the scope breakpoint before the watchpoint, so
10674 that we will encounter it first in bpstat_stop_status. */
10675 if (exp_valid_block != NULL && wp_frame != NULL)
10676 {
10677 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10678
10679 if (frame_id_p (caller_frame_id))
10680 {
10681 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10682 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10683
10684 scope_breakpoint
10685 = create_internal_breakpoint (caller_arch, caller_pc,
10686 bp_watchpoint_scope,
10687 &momentary_breakpoint_ops);
10688
10689 /* create_internal_breakpoint could invalidate WP_FRAME. */
10690 wp_frame = NULL;
10691
10692 scope_breakpoint->enable_state = bp_enabled;
10693
10694 /* Automatically delete the breakpoint when it hits. */
10695 scope_breakpoint->disposition = disp_del;
10696
10697 /* Only break in the proper frame (help with recursion). */
10698 scope_breakpoint->frame_id = caller_frame_id;
10699
10700 /* Set the address at which we will stop. */
10701 scope_breakpoint->loc->gdbarch = caller_arch;
10702 scope_breakpoint->loc->requested_address = caller_pc;
10703 scope_breakpoint->loc->address
10704 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10705 scope_breakpoint->loc->requested_address,
10706 scope_breakpoint->type);
10707 }
10708 }
10709
10710 /* Now set up the breakpoint. We create all watchpoints as hardware
10711 watchpoints here even if hardware watchpoints are turned off, a call
10712 to update_watchpoint later in this function will cause the type to
10713 drop back to bp_watchpoint (software watchpoint) if required. */
10714
10715 if (accessflag == hw_read)
10716 bp_type = bp_read_watchpoint;
10717 else if (accessflag == hw_access)
10718 bp_type = bp_access_watchpoint;
10719 else
10720 bp_type = bp_hardware_watchpoint;
10721
10722 std::unique_ptr<watchpoint> w (new watchpoint ());
10723
10724 if (use_mask)
10725 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10726 &masked_watchpoint_breakpoint_ops);
10727 else
10728 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10729 &watchpoint_breakpoint_ops);
10730 w->thread = thread;
10731 w->disposition = disp_donttouch;
10732 w->pspace = current_program_space;
10733 w->exp = std::move (exp);
10734 w->exp_valid_block = exp_valid_block;
10735 w->cond_exp_valid_block = cond_exp_valid_block;
10736 if (just_location)
10737 {
10738 struct type *t = value_type (val.get ());
10739 CORE_ADDR addr = value_as_address (val.get ());
10740
10741 w->exp_string_reparse
10742 = current_language->watch_location_expression (t, addr).release ();
10743
10744 w->exp_string = xstrprintf ("-location %.*s",
10745 (int) (exp_end - exp_start), exp_start);
10746 }
10747 else
10748 w->exp_string = savestring (exp_start, exp_end - exp_start);
10749
10750 if (use_mask)
10751 {
10752 w->hw_wp_mask = mask;
10753 }
10754 else
10755 {
10756 w->val = val;
10757 w->val_bitpos = saved_bitpos;
10758 w->val_bitsize = saved_bitsize;
10759 w->val_valid = true;
10760 }
10761
10762 if (cond_start)
10763 w->cond_string = savestring (cond_start, cond_end - cond_start);
10764 else
10765 w->cond_string = 0;
10766
10767 if (frame_id_p (watchpoint_frame))
10768 {
10769 w->watchpoint_frame = watchpoint_frame;
10770 w->watchpoint_thread = inferior_ptid;
10771 }
10772 else
10773 {
10774 w->watchpoint_frame = null_frame_id;
10775 w->watchpoint_thread = null_ptid;
10776 }
10777
10778 if (scope_breakpoint != NULL)
10779 {
10780 /* The scope breakpoint is related to the watchpoint. We will
10781 need to act on them together. */
10782 w->related_breakpoint = scope_breakpoint;
10783 scope_breakpoint->related_breakpoint = w.get ();
10784 }
10785
10786 if (!just_location)
10787 value_free_to_mark (mark);
10788
10789 /* Finally update the new watchpoint. This creates the locations
10790 that should be inserted. */
10791 update_watchpoint (w.get (), 1);
10792
10793 install_breakpoint (internal, std::move (w), 1);
10794 }
10795
10796 /* Return count of debug registers needed to watch the given expression.
10797 If the watchpoint cannot be handled in hardware return zero. */
10798
10799 static int
10800 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10801 {
10802 int found_memory_cnt = 0;
10803
10804 /* Did the user specifically forbid us to use hardware watchpoints? */
10805 if (!can_use_hw_watchpoints)
10806 return 0;
10807
10808 gdb_assert (!vals.empty ());
10809 struct value *head = vals[0].get ();
10810
10811 /* Make sure that the value of the expression depends only upon
10812 memory contents, and values computed from them within GDB. If we
10813 find any register references or function calls, we can't use a
10814 hardware watchpoint.
10815
10816 The idea here is that evaluating an expression generates a series
10817 of values, one holding the value of every subexpression. (The
10818 expression a*b+c has five subexpressions: a, b, a*b, c, and
10819 a*b+c.) GDB's values hold almost enough information to establish
10820 the criteria given above --- they identify memory lvalues,
10821 register lvalues, computed values, etcetera. So we can evaluate
10822 the expression, and then scan the chain of values that leaves
10823 behind to decide whether we can detect any possible change to the
10824 expression's final value using only hardware watchpoints.
10825
10826 However, I don't think that the values returned by inferior
10827 function calls are special in any way. So this function may not
10828 notice that an expression involving an inferior function call
10829 can't be watched with hardware watchpoints. FIXME. */
10830 for (const value_ref_ptr &iter : vals)
10831 {
10832 struct value *v = iter.get ();
10833
10834 if (VALUE_LVAL (v) == lval_memory)
10835 {
10836 if (v != head && value_lazy (v))
10837 /* A lazy memory lvalue in the chain is one that GDB never
10838 needed to fetch; we either just used its address (e.g.,
10839 `a' in `a.b') or we never needed it at all (e.g., `a'
10840 in `a,b'). This doesn't apply to HEAD; if that is
10841 lazy then it was not readable, but watch it anyway. */
10842 ;
10843 else
10844 {
10845 /* Ahh, memory we actually used! Check if we can cover
10846 it with hardware watchpoints. */
10847 struct type *vtype = check_typedef (value_type (v));
10848
10849 /* We only watch structs and arrays if user asked for it
10850 explicitly, never if they just happen to appear in a
10851 middle of some value chain. */
10852 if (v == head
10853 || (vtype->code () != TYPE_CODE_STRUCT
10854 && vtype->code () != TYPE_CODE_ARRAY))
10855 {
10856 CORE_ADDR vaddr = value_address (v);
10857 int len;
10858 int num_regs;
10859
10860 len = (target_exact_watchpoints
10861 && is_scalar_type_recursive (vtype))?
10862 1 : TYPE_LENGTH (value_type (v));
10863
10864 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10865 if (!num_regs)
10866 return 0;
10867 else
10868 found_memory_cnt += num_regs;
10869 }
10870 }
10871 }
10872 else if (VALUE_LVAL (v) != not_lval
10873 && deprecated_value_modifiable (v) == 0)
10874 return 0; /* These are values from the history (e.g., $1). */
10875 else if (VALUE_LVAL (v) == lval_register)
10876 return 0; /* Cannot watch a register with a HW watchpoint. */
10877 }
10878
10879 /* The expression itself looks suitable for using a hardware
10880 watchpoint, but give the target machine a chance to reject it. */
10881 return found_memory_cnt;
10882 }
10883
10884 void
10885 watch_command_wrapper (const char *arg, int from_tty, int internal)
10886 {
10887 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10888 }
10889
10890 /* A helper function that looks for the "-location" argument and then
10891 calls watch_command_1. */
10892
10893 static void
10894 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10895 {
10896 int just_location = 0;
10897
10898 if (arg
10899 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10900 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10901 just_location = 1;
10902
10903 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10904 }
10905
10906 static void
10907 watch_command (const char *arg, int from_tty)
10908 {
10909 watch_maybe_just_location (arg, hw_write, from_tty);
10910 }
10911
10912 void
10913 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10914 {
10915 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10916 }
10917
10918 static void
10919 rwatch_command (const char *arg, int from_tty)
10920 {
10921 watch_maybe_just_location (arg, hw_read, from_tty);
10922 }
10923
10924 void
10925 awatch_command_wrapper (const char *arg, int from_tty, int internal)
10926 {
10927 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10928 }
10929
10930 static void
10931 awatch_command (const char *arg, int from_tty)
10932 {
10933 watch_maybe_just_location (arg, hw_access, from_tty);
10934 }
10935 \f
10936
10937 /* Data for the FSM that manages the until(location)/advance commands
10938 in infcmd.c. Here because it uses the mechanisms of
10939 breakpoints. */
10940
10941 struct until_break_fsm : public thread_fsm
10942 {
10943 /* The thread that was current when the command was executed. */
10944 int thread;
10945
10946 /* The breakpoint set at the destination location. */
10947 breakpoint_up location_breakpoint;
10948
10949 /* Breakpoint set at the return address in the caller frame. May be
10950 NULL. */
10951 breakpoint_up caller_breakpoint;
10952
10953 until_break_fsm (struct interp *cmd_interp, int thread,
10954 breakpoint_up &&location_breakpoint,
10955 breakpoint_up &&caller_breakpoint)
10956 : thread_fsm (cmd_interp),
10957 thread (thread),
10958 location_breakpoint (std::move (location_breakpoint)),
10959 caller_breakpoint (std::move (caller_breakpoint))
10960 {
10961 }
10962
10963 void clean_up (struct thread_info *thread) override;
10964 bool should_stop (struct thread_info *thread) override;
10965 enum async_reply_reason do_async_reply_reason () override;
10966 };
10967
10968 /* Implementation of the 'should_stop' FSM method for the
10969 until(location)/advance commands. */
10970
10971 bool
10972 until_break_fsm::should_stop (struct thread_info *tp)
10973 {
10974 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
10975 location_breakpoint.get ()) != NULL
10976 || (caller_breakpoint != NULL
10977 && bpstat_find_breakpoint (tp->control.stop_bpstat,
10978 caller_breakpoint.get ()) != NULL))
10979 set_finished ();
10980
10981 return true;
10982 }
10983
10984 /* Implementation of the 'clean_up' FSM method for the
10985 until(location)/advance commands. */
10986
10987 void
10988 until_break_fsm::clean_up (struct thread_info *)
10989 {
10990 /* Clean up our temporary breakpoints. */
10991 location_breakpoint.reset ();
10992 caller_breakpoint.reset ();
10993 delete_longjmp_breakpoint (thread);
10994 }
10995
10996 /* Implementation of the 'async_reply_reason' FSM method for the
10997 until(location)/advance commands. */
10998
10999 enum async_reply_reason
11000 until_break_fsm::do_async_reply_reason ()
11001 {
11002 return EXEC_ASYNC_LOCATION_REACHED;
11003 }
11004
11005 void
11006 until_break_command (const char *arg, int from_tty, int anywhere)
11007 {
11008 struct frame_info *frame;
11009 struct gdbarch *frame_gdbarch;
11010 struct frame_id stack_frame_id;
11011 struct frame_id caller_frame_id;
11012 int thread;
11013 struct thread_info *tp;
11014
11015 clear_proceed_status (0);
11016
11017 /* Set a breakpoint where the user wants it and at return from
11018 this function. */
11019
11020 event_location_up location = string_to_event_location (&arg, current_language);
11021
11022 std::vector<symtab_and_line> sals
11023 = (last_displayed_sal_is_valid ()
11024 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11025 get_last_displayed_symtab (),
11026 get_last_displayed_line ())
11027 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11028 NULL, NULL, 0));
11029
11030 if (sals.size () != 1)
11031 error (_("Couldn't get information on specified line."));
11032
11033 symtab_and_line &sal = sals[0];
11034
11035 if (*arg)
11036 error (_("Junk at end of arguments."));
11037
11038 resolve_sal_pc (&sal);
11039
11040 tp = inferior_thread ();
11041 thread = tp->global_num;
11042
11043 /* Note linespec handling above invalidates the frame chain.
11044 Installing a breakpoint also invalidates the frame chain (as it
11045 may need to switch threads), so do any frame handling before
11046 that. */
11047
11048 frame = get_selected_frame (NULL);
11049 frame_gdbarch = get_frame_arch (frame);
11050 stack_frame_id = get_stack_frame_id (frame);
11051 caller_frame_id = frame_unwind_caller_id (frame);
11052
11053 /* Keep within the current frame, or in frames called by the current
11054 one. */
11055
11056 breakpoint_up caller_breakpoint;
11057
11058 gdb::optional<delete_longjmp_breakpoint_cleanup> lj_deleter;
11059
11060 if (frame_id_p (caller_frame_id))
11061 {
11062 struct symtab_and_line sal2;
11063 struct gdbarch *caller_gdbarch;
11064
11065 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11066 sal2.pc = frame_unwind_caller_pc (frame);
11067 caller_gdbarch = frame_unwind_caller_arch (frame);
11068 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11069 sal2,
11070 caller_frame_id,
11071 bp_until);
11072
11073 set_longjmp_breakpoint (tp, caller_frame_id);
11074 lj_deleter.emplace (thread);
11075 }
11076
11077 /* set_momentary_breakpoint could invalidate FRAME. */
11078 frame = NULL;
11079
11080 breakpoint_up location_breakpoint;
11081 if (anywhere)
11082 /* If the user told us to continue until a specified location,
11083 we don't specify a frame at which we need to stop. */
11084 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11085 null_frame_id, bp_until);
11086 else
11087 /* Otherwise, specify the selected frame, because we want to stop
11088 only at the very same frame. */
11089 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11090 stack_frame_id, bp_until);
11091
11092 tp->thread_fsm = new until_break_fsm (command_interp (), tp->global_num,
11093 std::move (location_breakpoint),
11094 std::move (caller_breakpoint));
11095
11096 if (lj_deleter)
11097 lj_deleter->release ();
11098
11099 proceed (-1, GDB_SIGNAL_DEFAULT);
11100 }
11101
11102 /* This function attempts to parse an optional "if <cond>" clause
11103 from the arg string. If one is not found, it returns NULL.
11104
11105 Else, it returns a pointer to the condition string. (It does not
11106 attempt to evaluate the string against a particular block.) And,
11107 it updates arg to point to the first character following the parsed
11108 if clause in the arg string. */
11109
11110 const char *
11111 ep_parse_optional_if_clause (const char **arg)
11112 {
11113 const char *cond_string;
11114
11115 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11116 return NULL;
11117
11118 /* Skip the "if" keyword. */
11119 (*arg) += 2;
11120
11121 /* Skip any extra leading whitespace, and record the start of the
11122 condition string. */
11123 *arg = skip_spaces (*arg);
11124 cond_string = *arg;
11125
11126 /* Assume that the condition occupies the remainder of the arg
11127 string. */
11128 (*arg) += strlen (cond_string);
11129
11130 return cond_string;
11131 }
11132
11133 /* Commands to deal with catching events, such as signals, exceptions,
11134 process start/exit, etc. */
11135
11136 typedef enum
11137 {
11138 catch_fork_temporary, catch_vfork_temporary,
11139 catch_fork_permanent, catch_vfork_permanent
11140 }
11141 catch_fork_kind;
11142
11143 static void
11144 catch_fork_command_1 (const char *arg, int from_tty,
11145 struct cmd_list_element *command)
11146 {
11147 struct gdbarch *gdbarch = get_current_arch ();
11148 const char *cond_string = NULL;
11149 catch_fork_kind fork_kind;
11150 int tempflag;
11151
11152 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11153 tempflag = (fork_kind == catch_fork_temporary
11154 || fork_kind == catch_vfork_temporary);
11155
11156 if (!arg)
11157 arg = "";
11158 arg = skip_spaces (arg);
11159
11160 /* The allowed syntax is:
11161 catch [v]fork
11162 catch [v]fork if <cond>
11163
11164 First, check if there's an if clause. */
11165 cond_string = ep_parse_optional_if_clause (&arg);
11166
11167 if ((*arg != '\0') && !isspace (*arg))
11168 error (_("Junk at end of arguments."));
11169
11170 /* If this target supports it, create a fork or vfork catchpoint
11171 and enable reporting of such events. */
11172 switch (fork_kind)
11173 {
11174 case catch_fork_temporary:
11175 case catch_fork_permanent:
11176 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11177 &catch_fork_breakpoint_ops);
11178 break;
11179 case catch_vfork_temporary:
11180 case catch_vfork_permanent:
11181 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11182 &catch_vfork_breakpoint_ops);
11183 break;
11184 default:
11185 error (_("unsupported or unknown fork kind; cannot catch it"));
11186 break;
11187 }
11188 }
11189
11190 static void
11191 catch_exec_command_1 (const char *arg, int from_tty,
11192 struct cmd_list_element *command)
11193 {
11194 struct gdbarch *gdbarch = get_current_arch ();
11195 int tempflag;
11196 const char *cond_string = NULL;
11197
11198 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11199
11200 if (!arg)
11201 arg = "";
11202 arg = skip_spaces (arg);
11203
11204 /* The allowed syntax is:
11205 catch exec
11206 catch exec if <cond>
11207
11208 First, check if there's an if clause. */
11209 cond_string = ep_parse_optional_if_clause (&arg);
11210
11211 if ((*arg != '\0') && !isspace (*arg))
11212 error (_("Junk at end of arguments."));
11213
11214 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11215 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11216 &catch_exec_breakpoint_ops);
11217 c->exec_pathname = NULL;
11218
11219 install_breakpoint (0, std::move (c), 1);
11220 }
11221
11222 void
11223 init_ada_exception_breakpoint (struct breakpoint *b,
11224 struct gdbarch *gdbarch,
11225 struct symtab_and_line sal,
11226 const char *addr_string,
11227 const struct breakpoint_ops *ops,
11228 int tempflag,
11229 int enabled,
11230 int from_tty)
11231 {
11232 if (from_tty)
11233 {
11234 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11235 if (!loc_gdbarch)
11236 loc_gdbarch = gdbarch;
11237
11238 describe_other_breakpoints (loc_gdbarch,
11239 sal.pspace, sal.pc, sal.section, -1);
11240 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11241 version for exception catchpoints, because two catchpoints
11242 used for different exception names will use the same address.
11243 In this case, a "breakpoint ... also set at..." warning is
11244 unproductive. Besides, the warning phrasing is also a bit
11245 inappropriate, we should use the word catchpoint, and tell
11246 the user what type of catchpoint it is. The above is good
11247 enough for now, though. */
11248 }
11249
11250 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
11251
11252 b->enable_state = enabled ? bp_enabled : bp_disabled;
11253 b->disposition = tempflag ? disp_del : disp_donttouch;
11254 b->location = string_to_event_location (&addr_string,
11255 language_def (language_ada));
11256 b->language = language_ada;
11257 }
11258
11259 \f
11260
11261 /* Compare two breakpoints and return a strcmp-like result. */
11262
11263 static int
11264 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11265 {
11266 uintptr_t ua = (uintptr_t) a;
11267 uintptr_t ub = (uintptr_t) b;
11268
11269 if (a->number < b->number)
11270 return -1;
11271 else if (a->number > b->number)
11272 return 1;
11273
11274 /* Now sort by address, in case we see, e..g, two breakpoints with
11275 the number 0. */
11276 if (ua < ub)
11277 return -1;
11278 return ua > ub ? 1 : 0;
11279 }
11280
11281 /* Delete breakpoints by address or line. */
11282
11283 static void
11284 clear_command (const char *arg, int from_tty)
11285 {
11286 struct breakpoint *b;
11287 int default_match;
11288
11289 std::vector<symtab_and_line> decoded_sals;
11290 symtab_and_line last_sal;
11291 gdb::array_view<symtab_and_line> sals;
11292 if (arg)
11293 {
11294 decoded_sals
11295 = decode_line_with_current_source (arg,
11296 (DECODE_LINE_FUNFIRSTLINE
11297 | DECODE_LINE_LIST_MODE));
11298 default_match = 0;
11299 sals = decoded_sals;
11300 }
11301 else
11302 {
11303 /* Set sal's line, symtab, pc, and pspace to the values
11304 corresponding to the last call to print_frame_info. If the
11305 codepoint is not valid, this will set all the fields to 0. */
11306 last_sal = get_last_displayed_sal ();
11307 if (last_sal.symtab == 0)
11308 error (_("No source file specified."));
11309
11310 default_match = 1;
11311 sals = last_sal;
11312 }
11313
11314 /* We don't call resolve_sal_pc here. That's not as bad as it
11315 seems, because all existing breakpoints typically have both
11316 file/line and pc set. So, if clear is given file/line, we can
11317 match this to existing breakpoint without obtaining pc at all.
11318
11319 We only support clearing given the address explicitly
11320 present in breakpoint table. Say, we've set breakpoint
11321 at file:line. There were several PC values for that file:line,
11322 due to optimization, all in one block.
11323
11324 We've picked one PC value. If "clear" is issued with another
11325 PC corresponding to the same file:line, the breakpoint won't
11326 be cleared. We probably can still clear the breakpoint, but
11327 since the other PC value is never presented to user, user
11328 can only find it by guessing, and it does not seem important
11329 to support that. */
11330
11331 /* For each line spec given, delete bps which correspond to it. Do
11332 it in two passes, solely to preserve the current behavior that
11333 from_tty is forced true if we delete more than one
11334 breakpoint. */
11335
11336 std::vector<struct breakpoint *> found;
11337 for (const auto &sal : sals)
11338 {
11339 const char *sal_fullname;
11340
11341 /* If exact pc given, clear bpts at that pc.
11342 If line given (pc == 0), clear all bpts on specified line.
11343 If defaulting, clear all bpts on default line
11344 or at default pc.
11345
11346 defaulting sal.pc != 0 tests to do
11347
11348 0 1 pc
11349 1 1 pc _and_ line
11350 0 0 line
11351 1 0 <can't happen> */
11352
11353 sal_fullname = (sal.symtab == NULL
11354 ? NULL : symtab_to_fullname (sal.symtab));
11355
11356 /* Find all matching breakpoints and add them to 'found'. */
11357 ALL_BREAKPOINTS (b)
11358 {
11359 int match = 0;
11360 /* Are we going to delete b? */
11361 if (b->type != bp_none && !is_watchpoint (b))
11362 {
11363 struct bp_location *loc = b->loc;
11364 for (; loc; loc = loc->next)
11365 {
11366 /* If the user specified file:line, don't allow a PC
11367 match. This matches historical gdb behavior. */
11368 int pc_match = (!sal.explicit_line
11369 && sal.pc
11370 && (loc->pspace == sal.pspace)
11371 && (loc->address == sal.pc)
11372 && (!section_is_overlay (loc->section)
11373 || loc->section == sal.section));
11374 int line_match = 0;
11375
11376 if ((default_match || sal.explicit_line)
11377 && loc->symtab != NULL
11378 && sal_fullname != NULL
11379 && sal.pspace == loc->pspace
11380 && loc->line_number == sal.line
11381 && filename_cmp (symtab_to_fullname (loc->symtab),
11382 sal_fullname) == 0)
11383 line_match = 1;
11384
11385 if (pc_match || line_match)
11386 {
11387 match = 1;
11388 break;
11389 }
11390 }
11391 }
11392
11393 if (match)
11394 found.push_back (b);
11395 }
11396 }
11397
11398 /* Now go thru the 'found' chain and delete them. */
11399 if (found.empty ())
11400 {
11401 if (arg)
11402 error (_("No breakpoint at %s."), arg);
11403 else
11404 error (_("No breakpoint at this line."));
11405 }
11406
11407 /* Remove duplicates from the vec. */
11408 std::sort (found.begin (), found.end (),
11409 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11410 {
11411 return compare_breakpoints (bp_a, bp_b) < 0;
11412 });
11413 found.erase (std::unique (found.begin (), found.end (),
11414 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11415 {
11416 return compare_breakpoints (bp_a, bp_b) == 0;
11417 }),
11418 found.end ());
11419
11420 if (found.size () > 1)
11421 from_tty = 1; /* Always report if deleted more than one. */
11422 if (from_tty)
11423 {
11424 if (found.size () == 1)
11425 printf_unfiltered (_("Deleted breakpoint "));
11426 else
11427 printf_unfiltered (_("Deleted breakpoints "));
11428 }
11429
11430 for (breakpoint *iter : found)
11431 {
11432 if (from_tty)
11433 printf_unfiltered ("%d ", iter->number);
11434 delete_breakpoint (iter);
11435 }
11436 if (from_tty)
11437 putchar_unfiltered ('\n');
11438 }
11439 \f
11440 /* Delete breakpoint in BS if they are `delete' breakpoints and
11441 all breakpoints that are marked for deletion, whether hit or not.
11442 This is called after any breakpoint is hit, or after errors. */
11443
11444 void
11445 breakpoint_auto_delete (bpstat bs)
11446 {
11447 struct breakpoint *b, *b_tmp;
11448
11449 for (; bs; bs = bs->next)
11450 if (bs->breakpoint_at
11451 && bs->breakpoint_at->disposition == disp_del
11452 && bs->stop)
11453 delete_breakpoint (bs->breakpoint_at);
11454
11455 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11456 {
11457 if (b->disposition == disp_del_at_next_stop)
11458 delete_breakpoint (b);
11459 }
11460 }
11461
11462 /* A comparison function for bp_location AP and BP being interfaced to
11463 std::sort. Sort elements primarily by their ADDRESS (no matter what
11464 bl_address_is_meaningful says), secondarily by ordering first
11465 permanent elements and terciarily just ensuring the array is sorted
11466 stable way despite std::sort being an unstable algorithm. */
11467
11468 static int
11469 bp_location_is_less_than (const bp_location *a, const bp_location *b)
11470 {
11471 if (a->address != b->address)
11472 return a->address < b->address;
11473
11474 /* Sort locations at the same address by their pspace number, keeping
11475 locations of the same inferior (in a multi-inferior environment)
11476 grouped. */
11477
11478 if (a->pspace->num != b->pspace->num)
11479 return a->pspace->num < b->pspace->num;
11480
11481 /* Sort permanent breakpoints first. */
11482 if (a->permanent != b->permanent)
11483 return a->permanent > b->permanent;
11484
11485 /* Sort by type in order to make duplicate determination easier.
11486 See update_global_location_list. This is kept in sync with
11487 breakpoint_locations_match. */
11488 if (a->loc_type < b->loc_type)
11489 return true;
11490
11491 /* Likewise, for range-breakpoints, sort by length. */
11492 if (a->loc_type == bp_loc_hardware_breakpoint
11493 && b->loc_type == bp_loc_hardware_breakpoint
11494 && a->length < b->length)
11495 return true;
11496
11497 /* Make the internal GDB representation stable across GDB runs
11498 where A and B memory inside GDB can differ. Breakpoint locations of
11499 the same type at the same address can be sorted in arbitrary order. */
11500
11501 if (a->owner->number != b->owner->number)
11502 return a->owner->number < b->owner->number;
11503
11504 return a < b;
11505 }
11506
11507 /* Set bp_locations_placed_address_before_address_max and
11508 bp_locations_shadow_len_after_address_max according to the current
11509 content of the bp_locations array. */
11510
11511 static void
11512 bp_locations_target_extensions_update (void)
11513 {
11514 struct bp_location *bl, **blp_tmp;
11515
11516 bp_locations_placed_address_before_address_max = 0;
11517 bp_locations_shadow_len_after_address_max = 0;
11518
11519 ALL_BP_LOCATIONS (bl, blp_tmp)
11520 {
11521 CORE_ADDR start, end, addr;
11522
11523 if (!bp_location_has_shadow (bl))
11524 continue;
11525
11526 start = bl->target_info.placed_address;
11527 end = start + bl->target_info.shadow_len;
11528
11529 gdb_assert (bl->address >= start);
11530 addr = bl->address - start;
11531 if (addr > bp_locations_placed_address_before_address_max)
11532 bp_locations_placed_address_before_address_max = addr;
11533
11534 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11535
11536 gdb_assert (bl->address < end);
11537 addr = end - bl->address;
11538 if (addr > bp_locations_shadow_len_after_address_max)
11539 bp_locations_shadow_len_after_address_max = addr;
11540 }
11541 }
11542
11543 /* Download tracepoint locations if they haven't been. */
11544
11545 static void
11546 download_tracepoint_locations (void)
11547 {
11548 struct breakpoint *b;
11549 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11550
11551 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11552
11553 ALL_TRACEPOINTS (b)
11554 {
11555 struct bp_location *bl;
11556 struct tracepoint *t;
11557 int bp_location_downloaded = 0;
11558
11559 if ((b->type == bp_fast_tracepoint
11560 ? !may_insert_fast_tracepoints
11561 : !may_insert_tracepoints))
11562 continue;
11563
11564 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11565 {
11566 if (target_can_download_tracepoint ())
11567 can_download_tracepoint = TRIBOOL_TRUE;
11568 else
11569 can_download_tracepoint = TRIBOOL_FALSE;
11570 }
11571
11572 if (can_download_tracepoint == TRIBOOL_FALSE)
11573 break;
11574
11575 for (bl = b->loc; bl; bl = bl->next)
11576 {
11577 /* In tracepoint, locations are _never_ duplicated, so
11578 should_be_inserted is equivalent to
11579 unduplicated_should_be_inserted. */
11580 if (!should_be_inserted (bl) || bl->inserted)
11581 continue;
11582
11583 switch_to_program_space_and_thread (bl->pspace);
11584
11585 target_download_tracepoint (bl);
11586
11587 bl->inserted = 1;
11588 bp_location_downloaded = 1;
11589 }
11590 t = (struct tracepoint *) b;
11591 t->number_on_target = b->number;
11592 if (bp_location_downloaded)
11593 gdb::observers::breakpoint_modified.notify (b);
11594 }
11595 }
11596
11597 /* Swap the insertion/duplication state between two locations. */
11598
11599 static void
11600 swap_insertion (struct bp_location *left, struct bp_location *right)
11601 {
11602 const int left_inserted = left->inserted;
11603 const int left_duplicate = left->duplicate;
11604 const int left_needs_update = left->needs_update;
11605 const struct bp_target_info left_target_info = left->target_info;
11606
11607 /* Locations of tracepoints can never be duplicated. */
11608 if (is_tracepoint (left->owner))
11609 gdb_assert (!left->duplicate);
11610 if (is_tracepoint (right->owner))
11611 gdb_assert (!right->duplicate);
11612
11613 left->inserted = right->inserted;
11614 left->duplicate = right->duplicate;
11615 left->needs_update = right->needs_update;
11616 left->target_info = right->target_info;
11617 right->inserted = left_inserted;
11618 right->duplicate = left_duplicate;
11619 right->needs_update = left_needs_update;
11620 right->target_info = left_target_info;
11621 }
11622
11623 /* Force the re-insertion of the locations at ADDRESS. This is called
11624 once a new/deleted/modified duplicate location is found and we are evaluating
11625 conditions on the target's side. Such conditions need to be updated on
11626 the target. */
11627
11628 static void
11629 force_breakpoint_reinsertion (struct bp_location *bl)
11630 {
11631 struct bp_location **locp = NULL, **loc2p;
11632 struct bp_location *loc;
11633 CORE_ADDR address = 0;
11634 int pspace_num;
11635
11636 address = bl->address;
11637 pspace_num = bl->pspace->num;
11638
11639 /* This is only meaningful if the target is
11640 evaluating conditions and if the user has
11641 opted for condition evaluation on the target's
11642 side. */
11643 if (gdb_evaluates_breakpoint_condition_p ()
11644 || !target_supports_evaluation_of_breakpoint_conditions ())
11645 return;
11646
11647 /* Flag all breakpoint locations with this address and
11648 the same program space as the location
11649 as "its condition has changed". We need to
11650 update the conditions on the target's side. */
11651 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11652 {
11653 loc = *loc2p;
11654
11655 if (!is_breakpoint (loc->owner)
11656 || pspace_num != loc->pspace->num)
11657 continue;
11658
11659 /* Flag the location appropriately. We use a different state to
11660 let everyone know that we already updated the set of locations
11661 with addr bl->address and program space bl->pspace. This is so
11662 we don't have to keep calling these functions just to mark locations
11663 that have already been marked. */
11664 loc->condition_changed = condition_updated;
11665
11666 /* Free the agent expression bytecode as well. We will compute
11667 it later on. */
11668 loc->cond_bytecode.reset ();
11669 }
11670 }
11671
11672 /* Called whether new breakpoints are created, or existing breakpoints
11673 deleted, to update the global location list and recompute which
11674 locations are duplicate of which.
11675
11676 The INSERT_MODE flag determines whether locations may not, may, or
11677 shall be inserted now. See 'enum ugll_insert_mode' for more
11678 info. */
11679
11680 static void
11681 update_global_location_list (enum ugll_insert_mode insert_mode)
11682 {
11683 struct breakpoint *b;
11684 struct bp_location **locp, *loc;
11685 /* Last breakpoint location address that was marked for update. */
11686 CORE_ADDR last_addr = 0;
11687 /* Last breakpoint location program space that was marked for update. */
11688 int last_pspace_num = -1;
11689
11690 /* Used in the duplicates detection below. When iterating over all
11691 bp_locations, points to the first bp_location of a given address.
11692 Breakpoints and watchpoints of different types are never
11693 duplicates of each other. Keep one pointer for each type of
11694 breakpoint/watchpoint, so we only need to loop over all locations
11695 once. */
11696 struct bp_location *bp_loc_first; /* breakpoint */
11697 struct bp_location *wp_loc_first; /* hardware watchpoint */
11698 struct bp_location *awp_loc_first; /* access watchpoint */
11699 struct bp_location *rwp_loc_first; /* read watchpoint */
11700
11701 /* Saved former bp_locations array which we compare against the newly
11702 built bp_locations from the current state of ALL_BREAKPOINTS. */
11703 struct bp_location **old_locp;
11704 unsigned old_locations_count;
11705 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11706
11707 old_locations_count = bp_locations_count;
11708 bp_locations = NULL;
11709 bp_locations_count = 0;
11710
11711 ALL_BREAKPOINTS (b)
11712 for (loc = b->loc; loc; loc = loc->next)
11713 bp_locations_count++;
11714
11715 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11716 locp = bp_locations;
11717 ALL_BREAKPOINTS (b)
11718 for (loc = b->loc; loc; loc = loc->next)
11719 *locp++ = loc;
11720
11721 /* See if we need to "upgrade" a software breakpoint to a hardware
11722 breakpoint. Do this before deciding whether locations are
11723 duplicates. Also do this before sorting because sorting order
11724 depends on location type. */
11725 for (locp = bp_locations;
11726 locp < bp_locations + bp_locations_count;
11727 locp++)
11728 {
11729 loc = *locp;
11730 if (!loc->inserted && should_be_inserted (loc))
11731 handle_automatic_hardware_breakpoints (loc);
11732 }
11733
11734 std::sort (bp_locations, bp_locations + bp_locations_count,
11735 bp_location_is_less_than);
11736
11737 bp_locations_target_extensions_update ();
11738
11739 /* Identify bp_location instances that are no longer present in the
11740 new list, and therefore should be freed. Note that it's not
11741 necessary that those locations should be removed from inferior --
11742 if there's another location at the same address (previously
11743 marked as duplicate), we don't need to remove/insert the
11744 location.
11745
11746 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11747 and former bp_location array state respectively. */
11748
11749 locp = bp_locations;
11750 for (old_locp = old_locations.get ();
11751 old_locp < old_locations.get () + old_locations_count;
11752 old_locp++)
11753 {
11754 struct bp_location *old_loc = *old_locp;
11755 struct bp_location **loc2p;
11756
11757 /* Tells if 'old_loc' is found among the new locations. If
11758 not, we have to free it. */
11759 int found_object = 0;
11760 /* Tells if the location should remain inserted in the target. */
11761 int keep_in_target = 0;
11762 int removed = 0;
11763
11764 /* Skip LOCP entries which will definitely never be needed.
11765 Stop either at or being the one matching OLD_LOC. */
11766 while (locp < bp_locations + bp_locations_count
11767 && (*locp)->address < old_loc->address)
11768 locp++;
11769
11770 for (loc2p = locp;
11771 (loc2p < bp_locations + bp_locations_count
11772 && (*loc2p)->address == old_loc->address);
11773 loc2p++)
11774 {
11775 /* Check if this is a new/duplicated location or a duplicated
11776 location that had its condition modified. If so, we want to send
11777 its condition to the target if evaluation of conditions is taking
11778 place there. */
11779 if ((*loc2p)->condition_changed == condition_modified
11780 && (last_addr != old_loc->address
11781 || last_pspace_num != old_loc->pspace->num))
11782 {
11783 force_breakpoint_reinsertion (*loc2p);
11784 last_pspace_num = old_loc->pspace->num;
11785 }
11786
11787 if (*loc2p == old_loc)
11788 found_object = 1;
11789 }
11790
11791 /* We have already handled this address, update it so that we don't
11792 have to go through updates again. */
11793 last_addr = old_loc->address;
11794
11795 /* Target-side condition evaluation: Handle deleted locations. */
11796 if (!found_object)
11797 force_breakpoint_reinsertion (old_loc);
11798
11799 /* If this location is no longer present, and inserted, look if
11800 there's maybe a new location at the same address. If so,
11801 mark that one inserted, and don't remove this one. This is
11802 needed so that we don't have a time window where a breakpoint
11803 at certain location is not inserted. */
11804
11805 if (old_loc->inserted)
11806 {
11807 /* If the location is inserted now, we might have to remove
11808 it. */
11809
11810 if (found_object && should_be_inserted (old_loc))
11811 {
11812 /* The location is still present in the location list,
11813 and still should be inserted. Don't do anything. */
11814 keep_in_target = 1;
11815 }
11816 else
11817 {
11818 /* This location still exists, but it won't be kept in the
11819 target since it may have been disabled. We proceed to
11820 remove its target-side condition. */
11821
11822 /* The location is either no longer present, or got
11823 disabled. See if there's another location at the
11824 same address, in which case we don't need to remove
11825 this one from the target. */
11826
11827 /* OLD_LOC comes from existing struct breakpoint. */
11828 if (bl_address_is_meaningful (old_loc))
11829 {
11830 for (loc2p = locp;
11831 (loc2p < bp_locations + bp_locations_count
11832 && (*loc2p)->address == old_loc->address);
11833 loc2p++)
11834 {
11835 struct bp_location *loc2 = *loc2p;
11836
11837 if (loc2 == old_loc)
11838 continue;
11839
11840 if (breakpoint_locations_match (loc2, old_loc))
11841 {
11842 /* Read watchpoint locations are switched to
11843 access watchpoints, if the former are not
11844 supported, but the latter are. */
11845 if (is_hardware_watchpoint (old_loc->owner))
11846 {
11847 gdb_assert (is_hardware_watchpoint (loc2->owner));
11848 loc2->watchpoint_type = old_loc->watchpoint_type;
11849 }
11850
11851 /* loc2 is a duplicated location. We need to check
11852 if it should be inserted in case it will be
11853 unduplicated. */
11854 if (unduplicated_should_be_inserted (loc2))
11855 {
11856 swap_insertion (old_loc, loc2);
11857 keep_in_target = 1;
11858 break;
11859 }
11860 }
11861 }
11862 }
11863 }
11864
11865 if (!keep_in_target)
11866 {
11867 if (remove_breakpoint (old_loc))
11868 {
11869 /* This is just about all we can do. We could keep
11870 this location on the global list, and try to
11871 remove it next time, but there's no particular
11872 reason why we will succeed next time.
11873
11874 Note that at this point, old_loc->owner is still
11875 valid, as delete_breakpoint frees the breakpoint
11876 only after calling us. */
11877 printf_filtered (_("warning: Error removing "
11878 "breakpoint %d\n"),
11879 old_loc->owner->number);
11880 }
11881 removed = 1;
11882 }
11883 }
11884
11885 if (!found_object)
11886 {
11887 if (removed && target_is_non_stop_p ()
11888 && need_moribund_for_location_type (old_loc))
11889 {
11890 /* This location was removed from the target. In
11891 non-stop mode, a race condition is possible where
11892 we've removed a breakpoint, but stop events for that
11893 breakpoint are already queued and will arrive later.
11894 We apply an heuristic to be able to distinguish such
11895 SIGTRAPs from other random SIGTRAPs: we keep this
11896 breakpoint location for a bit, and will retire it
11897 after we see some number of events. The theory here
11898 is that reporting of events should, "on the average",
11899 be fair, so after a while we'll see events from all
11900 threads that have anything of interest, and no longer
11901 need to keep this breakpoint location around. We
11902 don't hold locations forever so to reduce chances of
11903 mistaking a non-breakpoint SIGTRAP for a breakpoint
11904 SIGTRAP.
11905
11906 The heuristic failing can be disastrous on
11907 decr_pc_after_break targets.
11908
11909 On decr_pc_after_break targets, like e.g., x86-linux,
11910 if we fail to recognize a late breakpoint SIGTRAP,
11911 because events_till_retirement has reached 0 too
11912 soon, we'll fail to do the PC adjustment, and report
11913 a random SIGTRAP to the user. When the user resumes
11914 the inferior, it will most likely immediately crash
11915 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
11916 corrupted, because of being resumed e.g., in the
11917 middle of a multi-byte instruction, or skipped a
11918 one-byte instruction. This was actually seen happen
11919 on native x86-linux, and should be less rare on
11920 targets that do not support new thread events, like
11921 remote, due to the heuristic depending on
11922 thread_count.
11923
11924 Mistaking a random SIGTRAP for a breakpoint trap
11925 causes similar symptoms (PC adjustment applied when
11926 it shouldn't), but then again, playing with SIGTRAPs
11927 behind the debugger's back is asking for trouble.
11928
11929 Since hardware watchpoint traps are always
11930 distinguishable from other traps, so we don't need to
11931 apply keep hardware watchpoint moribund locations
11932 around. We simply always ignore hardware watchpoint
11933 traps we can no longer explain. */
11934
11935 process_stratum_target *proc_target = nullptr;
11936 for (inferior *inf : all_inferiors ())
11937 if (inf->pspace == old_loc->pspace)
11938 {
11939 proc_target = inf->process_target ();
11940 break;
11941 }
11942 if (proc_target != nullptr)
11943 old_loc->events_till_retirement
11944 = 3 * (thread_count (proc_target) + 1);
11945 else
11946 old_loc->events_till_retirement = 1;
11947 old_loc->owner = NULL;
11948
11949 moribund_locations.push_back (old_loc);
11950 }
11951 else
11952 {
11953 old_loc->owner = NULL;
11954 decref_bp_location (&old_loc);
11955 }
11956 }
11957 }
11958
11959 /* Rescan breakpoints at the same address and section, marking the
11960 first one as "first" and any others as "duplicates". This is so
11961 that the bpt instruction is only inserted once. If we have a
11962 permanent breakpoint at the same place as BPT, make that one the
11963 official one, and the rest as duplicates. Permanent breakpoints
11964 are sorted first for the same address.
11965
11966 Do the same for hardware watchpoints, but also considering the
11967 watchpoint's type (regular/access/read) and length. */
11968
11969 bp_loc_first = NULL;
11970 wp_loc_first = NULL;
11971 awp_loc_first = NULL;
11972 rwp_loc_first = NULL;
11973 ALL_BP_LOCATIONS (loc, locp)
11974 {
11975 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
11976 non-NULL. */
11977 struct bp_location **loc_first_p;
11978 b = loc->owner;
11979
11980 if (!unduplicated_should_be_inserted (loc)
11981 || !bl_address_is_meaningful (loc)
11982 /* Don't detect duplicate for tracepoint locations because they are
11983 never duplicated. See the comments in field `duplicate' of
11984 `struct bp_location'. */
11985 || is_tracepoint (b))
11986 {
11987 /* Clear the condition modification flag. */
11988 loc->condition_changed = condition_unchanged;
11989 continue;
11990 }
11991
11992 if (b->type == bp_hardware_watchpoint)
11993 loc_first_p = &wp_loc_first;
11994 else if (b->type == bp_read_watchpoint)
11995 loc_first_p = &rwp_loc_first;
11996 else if (b->type == bp_access_watchpoint)
11997 loc_first_p = &awp_loc_first;
11998 else
11999 loc_first_p = &bp_loc_first;
12000
12001 if (*loc_first_p == NULL
12002 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12003 || !breakpoint_locations_match (loc, *loc_first_p))
12004 {
12005 *loc_first_p = loc;
12006 loc->duplicate = 0;
12007
12008 if (is_breakpoint (loc->owner) && loc->condition_changed)
12009 {
12010 loc->needs_update = 1;
12011 /* Clear the condition modification flag. */
12012 loc->condition_changed = condition_unchanged;
12013 }
12014 continue;
12015 }
12016
12017
12018 /* This and the above ensure the invariant that the first location
12019 is not duplicated, and is the inserted one.
12020 All following are marked as duplicated, and are not inserted. */
12021 if (loc->inserted)
12022 swap_insertion (loc, *loc_first_p);
12023 loc->duplicate = 1;
12024
12025 /* Clear the condition modification flag. */
12026 loc->condition_changed = condition_unchanged;
12027 }
12028
12029 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12030 {
12031 if (insert_mode != UGLL_DONT_INSERT)
12032 insert_breakpoint_locations ();
12033 else
12034 {
12035 /* Even though the caller told us to not insert new
12036 locations, we may still need to update conditions on the
12037 target's side of breakpoints that were already inserted
12038 if the target is evaluating breakpoint conditions. We
12039 only update conditions for locations that are marked
12040 "needs_update". */
12041 update_inserted_breakpoint_locations ();
12042 }
12043 }
12044
12045 if (insert_mode != UGLL_DONT_INSERT)
12046 download_tracepoint_locations ();
12047 }
12048
12049 void
12050 breakpoint_retire_moribund (void)
12051 {
12052 for (int ix = 0; ix < moribund_locations.size (); ++ix)
12053 {
12054 struct bp_location *loc = moribund_locations[ix];
12055 if (--(loc->events_till_retirement) == 0)
12056 {
12057 decref_bp_location (&loc);
12058 unordered_remove (moribund_locations, ix);
12059 --ix;
12060 }
12061 }
12062 }
12063
12064 static void
12065 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12066 {
12067
12068 try
12069 {
12070 update_global_location_list (insert_mode);
12071 }
12072 catch (const gdb_exception_error &e)
12073 {
12074 }
12075 }
12076
12077 /* Clear BKP from a BPS. */
12078
12079 static void
12080 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12081 {
12082 bpstat bs;
12083
12084 for (bs = bps; bs; bs = bs->next)
12085 if (bs->breakpoint_at == bpt)
12086 {
12087 bs->breakpoint_at = NULL;
12088 bs->old_val = NULL;
12089 /* bs->commands will be freed later. */
12090 }
12091 }
12092
12093 /* Callback for iterate_over_threads. */
12094 static int
12095 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12096 {
12097 struct breakpoint *bpt = (struct breakpoint *) data;
12098
12099 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12100 return 0;
12101 }
12102
12103 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12104 callbacks. */
12105
12106 static void
12107 say_where (struct breakpoint *b)
12108 {
12109 struct value_print_options opts;
12110
12111 get_user_print_options (&opts);
12112
12113 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12114 single string. */
12115 if (b->loc == NULL)
12116 {
12117 /* For pending locations, the output differs slightly based
12118 on b->extra_string. If this is non-NULL, it contains either
12119 a condition or dprintf arguments. */
12120 if (b->extra_string == NULL)
12121 {
12122 printf_filtered (_(" (%s) pending."),
12123 event_location_to_string (b->location.get ()));
12124 }
12125 else if (b->type == bp_dprintf)
12126 {
12127 printf_filtered (_(" (%s,%s) pending."),
12128 event_location_to_string (b->location.get ()),
12129 b->extra_string);
12130 }
12131 else
12132 {
12133 printf_filtered (_(" (%s %s) pending."),
12134 event_location_to_string (b->location.get ()),
12135 b->extra_string);
12136 }
12137 }
12138 else
12139 {
12140 if (opts.addressprint || b->loc->symtab == NULL)
12141 printf_filtered (" at %ps",
12142 styled_string (address_style.style (),
12143 paddress (b->loc->gdbarch,
12144 b->loc->address)));
12145 if (b->loc->symtab != NULL)
12146 {
12147 /* If there is a single location, we can print the location
12148 more nicely. */
12149 if (b->loc->next == NULL)
12150 {
12151 const char *filename
12152 = symtab_to_filename_for_display (b->loc->symtab);
12153 printf_filtered (": file %ps, line %d.",
12154 styled_string (file_name_style.style (),
12155 filename),
12156 b->loc->line_number);
12157 }
12158 else
12159 /* This is not ideal, but each location may have a
12160 different file name, and this at least reflects the
12161 real situation somewhat. */
12162 printf_filtered (": %s.",
12163 event_location_to_string (b->location.get ()));
12164 }
12165
12166 if (b->loc->next)
12167 {
12168 struct bp_location *loc = b->loc;
12169 int n = 0;
12170 for (; loc; loc = loc->next)
12171 ++n;
12172 printf_filtered (" (%d locations)", n);
12173 }
12174 }
12175 }
12176
12177 bp_location::~bp_location ()
12178 {
12179 xfree (function_name);
12180 }
12181
12182 /* Destructor for the breakpoint base class. */
12183
12184 breakpoint::~breakpoint ()
12185 {
12186 xfree (this->cond_string);
12187 xfree (this->extra_string);
12188 }
12189
12190 static struct bp_location *
12191 base_breakpoint_allocate_location (struct breakpoint *self)
12192 {
12193 return new bp_location (self);
12194 }
12195
12196 static void
12197 base_breakpoint_re_set (struct breakpoint *b)
12198 {
12199 /* Nothing to re-set. */
12200 }
12201
12202 #define internal_error_pure_virtual_called() \
12203 gdb_assert_not_reached ("pure virtual function called")
12204
12205 static int
12206 base_breakpoint_insert_location (struct bp_location *bl)
12207 {
12208 internal_error_pure_virtual_called ();
12209 }
12210
12211 static int
12212 base_breakpoint_remove_location (struct bp_location *bl,
12213 enum remove_bp_reason reason)
12214 {
12215 internal_error_pure_virtual_called ();
12216 }
12217
12218 static int
12219 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12220 const address_space *aspace,
12221 CORE_ADDR bp_addr,
12222 const struct target_waitstatus *ws)
12223 {
12224 internal_error_pure_virtual_called ();
12225 }
12226
12227 static void
12228 base_breakpoint_check_status (bpstat bs)
12229 {
12230 /* Always stop. */
12231 }
12232
12233 /* A "works_in_software_mode" breakpoint_ops method that just internal
12234 errors. */
12235
12236 static int
12237 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12238 {
12239 internal_error_pure_virtual_called ();
12240 }
12241
12242 /* A "resources_needed" breakpoint_ops method that just internal
12243 errors. */
12244
12245 static int
12246 base_breakpoint_resources_needed (const struct bp_location *bl)
12247 {
12248 internal_error_pure_virtual_called ();
12249 }
12250
12251 static enum print_stop_action
12252 base_breakpoint_print_it (bpstat bs)
12253 {
12254 internal_error_pure_virtual_called ();
12255 }
12256
12257 static void
12258 base_breakpoint_print_one_detail (const struct breakpoint *self,
12259 struct ui_out *uiout)
12260 {
12261 /* nothing */
12262 }
12263
12264 static void
12265 base_breakpoint_print_mention (struct breakpoint *b)
12266 {
12267 internal_error_pure_virtual_called ();
12268 }
12269
12270 static void
12271 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12272 {
12273 internal_error_pure_virtual_called ();
12274 }
12275
12276 static void
12277 base_breakpoint_create_sals_from_location
12278 (const struct event_location *location,
12279 struct linespec_result *canonical,
12280 enum bptype type_wanted)
12281 {
12282 internal_error_pure_virtual_called ();
12283 }
12284
12285 static void
12286 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12287 struct linespec_result *c,
12288 gdb::unique_xmalloc_ptr<char> cond_string,
12289 gdb::unique_xmalloc_ptr<char> extra_string,
12290 enum bptype type_wanted,
12291 enum bpdisp disposition,
12292 int thread,
12293 int task, int ignore_count,
12294 const struct breakpoint_ops *o,
12295 int from_tty, int enabled,
12296 int internal, unsigned flags)
12297 {
12298 internal_error_pure_virtual_called ();
12299 }
12300
12301 static std::vector<symtab_and_line>
12302 base_breakpoint_decode_location (struct breakpoint *b,
12303 const struct event_location *location,
12304 struct program_space *search_pspace)
12305 {
12306 internal_error_pure_virtual_called ();
12307 }
12308
12309 /* The default 'explains_signal' method. */
12310
12311 static int
12312 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12313 {
12314 return 1;
12315 }
12316
12317 /* The default "after_condition_true" method. */
12318
12319 static void
12320 base_breakpoint_after_condition_true (struct bpstats *bs)
12321 {
12322 /* Nothing to do. */
12323 }
12324
12325 struct breakpoint_ops base_breakpoint_ops =
12326 {
12327 base_breakpoint_allocate_location,
12328 base_breakpoint_re_set,
12329 base_breakpoint_insert_location,
12330 base_breakpoint_remove_location,
12331 base_breakpoint_breakpoint_hit,
12332 base_breakpoint_check_status,
12333 base_breakpoint_resources_needed,
12334 base_breakpoint_works_in_software_mode,
12335 base_breakpoint_print_it,
12336 NULL,
12337 base_breakpoint_print_one_detail,
12338 base_breakpoint_print_mention,
12339 base_breakpoint_print_recreate,
12340 base_breakpoint_create_sals_from_location,
12341 base_breakpoint_create_breakpoints_sal,
12342 base_breakpoint_decode_location,
12343 base_breakpoint_explains_signal,
12344 base_breakpoint_after_condition_true,
12345 };
12346
12347 /* Default breakpoint_ops methods. */
12348
12349 static void
12350 bkpt_re_set (struct breakpoint *b)
12351 {
12352 /* FIXME: is this still reachable? */
12353 if (breakpoint_event_location_empty_p (b))
12354 {
12355 /* Anything without a location can't be re-set. */
12356 delete_breakpoint (b);
12357 return;
12358 }
12359
12360 breakpoint_re_set_default (b);
12361 }
12362
12363 static int
12364 bkpt_insert_location (struct bp_location *bl)
12365 {
12366 CORE_ADDR addr = bl->target_info.reqstd_address;
12367
12368 bl->target_info.kind = breakpoint_kind (bl, &addr);
12369 bl->target_info.placed_address = addr;
12370
12371 if (bl->loc_type == bp_loc_hardware_breakpoint)
12372 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12373 else
12374 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12375 }
12376
12377 static int
12378 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12379 {
12380 if (bl->loc_type == bp_loc_hardware_breakpoint)
12381 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12382 else
12383 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12384 }
12385
12386 static int
12387 bkpt_breakpoint_hit (const struct bp_location *bl,
12388 const address_space *aspace, CORE_ADDR bp_addr,
12389 const struct target_waitstatus *ws)
12390 {
12391 if (ws->kind != TARGET_WAITKIND_STOPPED
12392 || ws->value.sig != GDB_SIGNAL_TRAP)
12393 return 0;
12394
12395 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12396 aspace, bp_addr))
12397 return 0;
12398
12399 if (overlay_debugging /* unmapped overlay section */
12400 && section_is_overlay (bl->section)
12401 && !section_is_mapped (bl->section))
12402 return 0;
12403
12404 return 1;
12405 }
12406
12407 static int
12408 dprintf_breakpoint_hit (const struct bp_location *bl,
12409 const address_space *aspace, CORE_ADDR bp_addr,
12410 const struct target_waitstatus *ws)
12411 {
12412 if (dprintf_style == dprintf_style_agent
12413 && target_can_run_breakpoint_commands ())
12414 {
12415 /* An agent-style dprintf never causes a stop. If we see a trap
12416 for this address it must be for a breakpoint that happens to
12417 be set at the same address. */
12418 return 0;
12419 }
12420
12421 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12422 }
12423
12424 static int
12425 bkpt_resources_needed (const struct bp_location *bl)
12426 {
12427 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12428
12429 return 1;
12430 }
12431
12432 static enum print_stop_action
12433 bkpt_print_it (bpstat bs)
12434 {
12435 struct breakpoint *b;
12436 const struct bp_location *bl;
12437 int bp_temp;
12438 struct ui_out *uiout = current_uiout;
12439
12440 gdb_assert (bs->bp_location_at != NULL);
12441
12442 bl = bs->bp_location_at;
12443 b = bs->breakpoint_at;
12444
12445 bp_temp = b->disposition == disp_del;
12446 if (bl->address != bl->requested_address)
12447 breakpoint_adjustment_warning (bl->requested_address,
12448 bl->address,
12449 b->number, 1);
12450 annotate_breakpoint (b->number);
12451 maybe_print_thread_hit_breakpoint (uiout);
12452
12453 if (uiout->is_mi_like_p ())
12454 {
12455 uiout->field_string ("reason",
12456 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12457 uiout->field_string ("disp", bpdisp_text (b->disposition));
12458 }
12459 if (bp_temp)
12460 uiout->message ("Temporary breakpoint %pF, ",
12461 signed_field ("bkptno", b->number));
12462 else
12463 uiout->message ("Breakpoint %pF, ",
12464 signed_field ("bkptno", b->number));
12465
12466 return PRINT_SRC_AND_LOC;
12467 }
12468
12469 static void
12470 bkpt_print_mention (struct breakpoint *b)
12471 {
12472 if (current_uiout->is_mi_like_p ())
12473 return;
12474
12475 switch (b->type)
12476 {
12477 case bp_breakpoint:
12478 case bp_gnu_ifunc_resolver:
12479 if (b->disposition == disp_del)
12480 printf_filtered (_("Temporary breakpoint"));
12481 else
12482 printf_filtered (_("Breakpoint"));
12483 printf_filtered (_(" %d"), b->number);
12484 if (b->type == bp_gnu_ifunc_resolver)
12485 printf_filtered (_(" at gnu-indirect-function resolver"));
12486 break;
12487 case bp_hardware_breakpoint:
12488 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12489 break;
12490 case bp_dprintf:
12491 printf_filtered (_("Dprintf %d"), b->number);
12492 break;
12493 }
12494
12495 say_where (b);
12496 }
12497
12498 static void
12499 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12500 {
12501 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12502 fprintf_unfiltered (fp, "tbreak");
12503 else if (tp->type == bp_breakpoint)
12504 fprintf_unfiltered (fp, "break");
12505 else if (tp->type == bp_hardware_breakpoint
12506 && tp->disposition == disp_del)
12507 fprintf_unfiltered (fp, "thbreak");
12508 else if (tp->type == bp_hardware_breakpoint)
12509 fprintf_unfiltered (fp, "hbreak");
12510 else
12511 internal_error (__FILE__, __LINE__,
12512 _("unhandled breakpoint type %d"), (int) tp->type);
12513
12514 fprintf_unfiltered (fp, " %s",
12515 event_location_to_string (tp->location.get ()));
12516
12517 /* Print out extra_string if this breakpoint is pending. It might
12518 contain, for example, conditions that were set by the user. */
12519 if (tp->loc == NULL && tp->extra_string != NULL)
12520 fprintf_unfiltered (fp, " %s", tp->extra_string);
12521
12522 print_recreate_thread (tp, fp);
12523 }
12524
12525 static void
12526 bkpt_create_sals_from_location (const struct event_location *location,
12527 struct linespec_result *canonical,
12528 enum bptype type_wanted)
12529 {
12530 create_sals_from_location_default (location, canonical, type_wanted);
12531 }
12532
12533 static void
12534 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12535 struct linespec_result *canonical,
12536 gdb::unique_xmalloc_ptr<char> cond_string,
12537 gdb::unique_xmalloc_ptr<char> extra_string,
12538 enum bptype type_wanted,
12539 enum bpdisp disposition,
12540 int thread,
12541 int task, int ignore_count,
12542 const struct breakpoint_ops *ops,
12543 int from_tty, int enabled,
12544 int internal, unsigned flags)
12545 {
12546 create_breakpoints_sal_default (gdbarch, canonical,
12547 std::move (cond_string),
12548 std::move (extra_string),
12549 type_wanted,
12550 disposition, thread, task,
12551 ignore_count, ops, from_tty,
12552 enabled, internal, flags);
12553 }
12554
12555 static std::vector<symtab_and_line>
12556 bkpt_decode_location (struct breakpoint *b,
12557 const struct event_location *location,
12558 struct program_space *search_pspace)
12559 {
12560 return decode_location_default (b, location, search_pspace);
12561 }
12562
12563 /* Virtual table for internal breakpoints. */
12564
12565 static void
12566 internal_bkpt_re_set (struct breakpoint *b)
12567 {
12568 switch (b->type)
12569 {
12570 /* Delete overlay event and longjmp master breakpoints; they
12571 will be reset later by breakpoint_re_set. */
12572 case bp_overlay_event:
12573 case bp_longjmp_master:
12574 case bp_std_terminate_master:
12575 case bp_exception_master:
12576 delete_breakpoint (b);
12577 break;
12578
12579 /* This breakpoint is special, it's set up when the inferior
12580 starts and we really don't want to touch it. */
12581 case bp_shlib_event:
12582
12583 /* Like bp_shlib_event, this breakpoint type is special. Once
12584 it is set up, we do not want to touch it. */
12585 case bp_thread_event:
12586 break;
12587 }
12588 }
12589
12590 static void
12591 internal_bkpt_check_status (bpstat bs)
12592 {
12593 if (bs->breakpoint_at->type == bp_shlib_event)
12594 {
12595 /* If requested, stop when the dynamic linker notifies GDB of
12596 events. This allows the user to get control and place
12597 breakpoints in initializer routines for dynamically loaded
12598 objects (among other things). */
12599 bs->stop = stop_on_solib_events;
12600 bs->print = stop_on_solib_events;
12601 }
12602 else
12603 bs->stop = 0;
12604 }
12605
12606 static enum print_stop_action
12607 internal_bkpt_print_it (bpstat bs)
12608 {
12609 struct breakpoint *b;
12610
12611 b = bs->breakpoint_at;
12612
12613 switch (b->type)
12614 {
12615 case bp_shlib_event:
12616 /* Did we stop because the user set the stop_on_solib_events
12617 variable? (If so, we report this as a generic, "Stopped due
12618 to shlib event" message.) */
12619 print_solib_event (0);
12620 break;
12621
12622 case bp_thread_event:
12623 /* Not sure how we will get here.
12624 GDB should not stop for these breakpoints. */
12625 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12626 break;
12627
12628 case bp_overlay_event:
12629 /* By analogy with the thread event, GDB should not stop for these. */
12630 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12631 break;
12632
12633 case bp_longjmp_master:
12634 /* These should never be enabled. */
12635 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12636 break;
12637
12638 case bp_std_terminate_master:
12639 /* These should never be enabled. */
12640 printf_filtered (_("std::terminate Master Breakpoint: "
12641 "gdb should not stop!\n"));
12642 break;
12643
12644 case bp_exception_master:
12645 /* These should never be enabled. */
12646 printf_filtered (_("Exception Master Breakpoint: "
12647 "gdb should not stop!\n"));
12648 break;
12649 }
12650
12651 return PRINT_NOTHING;
12652 }
12653
12654 static void
12655 internal_bkpt_print_mention (struct breakpoint *b)
12656 {
12657 /* Nothing to mention. These breakpoints are internal. */
12658 }
12659
12660 /* Virtual table for momentary breakpoints */
12661
12662 static void
12663 momentary_bkpt_re_set (struct breakpoint *b)
12664 {
12665 /* Keep temporary breakpoints, which can be encountered when we step
12666 over a dlopen call and solib_add is resetting the breakpoints.
12667 Otherwise these should have been blown away via the cleanup chain
12668 or by breakpoint_init_inferior when we rerun the executable. */
12669 }
12670
12671 static void
12672 momentary_bkpt_check_status (bpstat bs)
12673 {
12674 /* Nothing. The point of these breakpoints is causing a stop. */
12675 }
12676
12677 static enum print_stop_action
12678 momentary_bkpt_print_it (bpstat bs)
12679 {
12680 return PRINT_UNKNOWN;
12681 }
12682
12683 static void
12684 momentary_bkpt_print_mention (struct breakpoint *b)
12685 {
12686 /* Nothing to mention. These breakpoints are internal. */
12687 }
12688
12689 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12690
12691 It gets cleared already on the removal of the first one of such placed
12692 breakpoints. This is OK as they get all removed altogether. */
12693
12694 longjmp_breakpoint::~longjmp_breakpoint ()
12695 {
12696 thread_info *tp = find_thread_global_id (this->thread);
12697
12698 if (tp != NULL)
12699 tp->initiating_frame = null_frame_id;
12700 }
12701
12702 /* Specific methods for probe breakpoints. */
12703
12704 static int
12705 bkpt_probe_insert_location (struct bp_location *bl)
12706 {
12707 int v = bkpt_insert_location (bl);
12708
12709 if (v == 0)
12710 {
12711 /* The insertion was successful, now let's set the probe's semaphore
12712 if needed. */
12713 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12714 }
12715
12716 return v;
12717 }
12718
12719 static int
12720 bkpt_probe_remove_location (struct bp_location *bl,
12721 enum remove_bp_reason reason)
12722 {
12723 /* Let's clear the semaphore before removing the location. */
12724 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12725
12726 return bkpt_remove_location (bl, reason);
12727 }
12728
12729 static void
12730 bkpt_probe_create_sals_from_location (const struct event_location *location,
12731 struct linespec_result *canonical,
12732 enum bptype type_wanted)
12733 {
12734 struct linespec_sals lsal;
12735
12736 lsal.sals = parse_probes (location, NULL, canonical);
12737 lsal.canonical
12738 = xstrdup (event_location_to_string (canonical->location.get ()));
12739 canonical->lsals.push_back (std::move (lsal));
12740 }
12741
12742 static std::vector<symtab_and_line>
12743 bkpt_probe_decode_location (struct breakpoint *b,
12744 const struct event_location *location,
12745 struct program_space *search_pspace)
12746 {
12747 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12748 if (sals.empty ())
12749 error (_("probe not found"));
12750 return sals;
12751 }
12752
12753 /* The breakpoint_ops structure to be used in tracepoints. */
12754
12755 static void
12756 tracepoint_re_set (struct breakpoint *b)
12757 {
12758 breakpoint_re_set_default (b);
12759 }
12760
12761 static int
12762 tracepoint_breakpoint_hit (const struct bp_location *bl,
12763 const address_space *aspace, CORE_ADDR bp_addr,
12764 const struct target_waitstatus *ws)
12765 {
12766 /* By definition, the inferior does not report stops at
12767 tracepoints. */
12768 return 0;
12769 }
12770
12771 static void
12772 tracepoint_print_one_detail (const struct breakpoint *self,
12773 struct ui_out *uiout)
12774 {
12775 struct tracepoint *tp = (struct tracepoint *) self;
12776 if (!tp->static_trace_marker_id.empty ())
12777 {
12778 gdb_assert (self->type == bp_static_tracepoint);
12779
12780 uiout->message ("\tmarker id is %pF\n",
12781 string_field ("static-tracepoint-marker-string-id",
12782 tp->static_trace_marker_id.c_str ()));
12783 }
12784 }
12785
12786 static void
12787 tracepoint_print_mention (struct breakpoint *b)
12788 {
12789 if (current_uiout->is_mi_like_p ())
12790 return;
12791
12792 switch (b->type)
12793 {
12794 case bp_tracepoint:
12795 printf_filtered (_("Tracepoint"));
12796 printf_filtered (_(" %d"), b->number);
12797 break;
12798 case bp_fast_tracepoint:
12799 printf_filtered (_("Fast tracepoint"));
12800 printf_filtered (_(" %d"), b->number);
12801 break;
12802 case bp_static_tracepoint:
12803 printf_filtered (_("Static tracepoint"));
12804 printf_filtered (_(" %d"), b->number);
12805 break;
12806 default:
12807 internal_error (__FILE__, __LINE__,
12808 _("unhandled tracepoint type %d"), (int) b->type);
12809 }
12810
12811 say_where (b);
12812 }
12813
12814 static void
12815 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12816 {
12817 struct tracepoint *tp = (struct tracepoint *) self;
12818
12819 if (self->type == bp_fast_tracepoint)
12820 fprintf_unfiltered (fp, "ftrace");
12821 else if (self->type == bp_static_tracepoint)
12822 fprintf_unfiltered (fp, "strace");
12823 else if (self->type == bp_tracepoint)
12824 fprintf_unfiltered (fp, "trace");
12825 else
12826 internal_error (__FILE__, __LINE__,
12827 _("unhandled tracepoint type %d"), (int) self->type);
12828
12829 fprintf_unfiltered (fp, " %s",
12830 event_location_to_string (self->location.get ()));
12831 print_recreate_thread (self, fp);
12832
12833 if (tp->pass_count)
12834 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12835 }
12836
12837 static void
12838 tracepoint_create_sals_from_location (const struct event_location *location,
12839 struct linespec_result *canonical,
12840 enum bptype type_wanted)
12841 {
12842 create_sals_from_location_default (location, canonical, type_wanted);
12843 }
12844
12845 static void
12846 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12847 struct linespec_result *canonical,
12848 gdb::unique_xmalloc_ptr<char> cond_string,
12849 gdb::unique_xmalloc_ptr<char> extra_string,
12850 enum bptype type_wanted,
12851 enum bpdisp disposition,
12852 int thread,
12853 int task, int ignore_count,
12854 const struct breakpoint_ops *ops,
12855 int from_tty, int enabled,
12856 int internal, unsigned flags)
12857 {
12858 create_breakpoints_sal_default (gdbarch, canonical,
12859 std::move (cond_string),
12860 std::move (extra_string),
12861 type_wanted,
12862 disposition, thread, task,
12863 ignore_count, ops, from_tty,
12864 enabled, internal, flags);
12865 }
12866
12867 static std::vector<symtab_and_line>
12868 tracepoint_decode_location (struct breakpoint *b,
12869 const struct event_location *location,
12870 struct program_space *search_pspace)
12871 {
12872 return decode_location_default (b, location, search_pspace);
12873 }
12874
12875 struct breakpoint_ops tracepoint_breakpoint_ops;
12876
12877 /* Virtual table for tracepoints on static probes. */
12878
12879 static void
12880 tracepoint_probe_create_sals_from_location
12881 (const struct event_location *location,
12882 struct linespec_result *canonical,
12883 enum bptype type_wanted)
12884 {
12885 /* We use the same method for breakpoint on probes. */
12886 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12887 }
12888
12889 static std::vector<symtab_and_line>
12890 tracepoint_probe_decode_location (struct breakpoint *b,
12891 const struct event_location *location,
12892 struct program_space *search_pspace)
12893 {
12894 /* We use the same method for breakpoint on probes. */
12895 return bkpt_probe_decode_location (b, location, search_pspace);
12896 }
12897
12898 /* Dprintf breakpoint_ops methods. */
12899
12900 static void
12901 dprintf_re_set (struct breakpoint *b)
12902 {
12903 breakpoint_re_set_default (b);
12904
12905 /* extra_string should never be non-NULL for dprintf. */
12906 gdb_assert (b->extra_string != NULL);
12907
12908 /* 1 - connect to target 1, that can run breakpoint commands.
12909 2 - create a dprintf, which resolves fine.
12910 3 - disconnect from target 1
12911 4 - connect to target 2, that can NOT run breakpoint commands.
12912
12913 After steps #3/#4, you'll want the dprintf command list to
12914 be updated, because target 1 and 2 may well return different
12915 answers for target_can_run_breakpoint_commands().
12916 Given absence of finer grained resetting, we get to do
12917 it all the time. */
12918 if (b->extra_string != NULL)
12919 update_dprintf_command_list (b);
12920 }
12921
12922 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
12923
12924 static void
12925 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12926 {
12927 fprintf_unfiltered (fp, "dprintf %s,%s",
12928 event_location_to_string (tp->location.get ()),
12929 tp->extra_string);
12930 print_recreate_thread (tp, fp);
12931 }
12932
12933 /* Implement the "after_condition_true" breakpoint_ops method for
12934 dprintf.
12935
12936 dprintf's are implemented with regular commands in their command
12937 list, but we run the commands here instead of before presenting the
12938 stop to the user, as dprintf's don't actually cause a stop. This
12939 also makes it so that the commands of multiple dprintfs at the same
12940 address are all handled. */
12941
12942 static void
12943 dprintf_after_condition_true (struct bpstats *bs)
12944 {
12945 struct bpstats tmp_bs;
12946 struct bpstats *tmp_bs_p = &tmp_bs;
12947
12948 /* dprintf's never cause a stop. This wasn't set in the
12949 check_status hook instead because that would make the dprintf's
12950 condition not be evaluated. */
12951 bs->stop = 0;
12952
12953 /* Run the command list here. Take ownership of it instead of
12954 copying. We never want these commands to run later in
12955 bpstat_do_actions, if a breakpoint that causes a stop happens to
12956 be set at same address as this dprintf, or even if running the
12957 commands here throws. */
12958 tmp_bs.commands = bs->commands;
12959 bs->commands = NULL;
12960
12961 bpstat_do_actions_1 (&tmp_bs_p);
12962
12963 /* 'tmp_bs.commands' will usually be NULL by now, but
12964 bpstat_do_actions_1 may return early without processing the whole
12965 list. */
12966 }
12967
12968 /* The breakpoint_ops structure to be used on static tracepoints with
12969 markers (`-m'). */
12970
12971 static void
12972 strace_marker_create_sals_from_location (const struct event_location *location,
12973 struct linespec_result *canonical,
12974 enum bptype type_wanted)
12975 {
12976 struct linespec_sals lsal;
12977 const char *arg_start, *arg;
12978
12979 arg = arg_start = get_linespec_location (location)->spec_string;
12980 lsal.sals = decode_static_tracepoint_spec (&arg);
12981
12982 std::string str (arg_start, arg - arg_start);
12983 const char *ptr = str.c_str ();
12984 canonical->location
12985 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
12986
12987 lsal.canonical
12988 = xstrdup (event_location_to_string (canonical->location.get ()));
12989 canonical->lsals.push_back (std::move (lsal));
12990 }
12991
12992 static void
12993 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
12994 struct linespec_result *canonical,
12995 gdb::unique_xmalloc_ptr<char> cond_string,
12996 gdb::unique_xmalloc_ptr<char> extra_string,
12997 enum bptype type_wanted,
12998 enum bpdisp disposition,
12999 int thread,
13000 int task, int ignore_count,
13001 const struct breakpoint_ops *ops,
13002 int from_tty, int enabled,
13003 int internal, unsigned flags)
13004 {
13005 const linespec_sals &lsal = canonical->lsals[0];
13006
13007 /* If the user is creating a static tracepoint by marker id
13008 (strace -m MARKER_ID), then store the sals index, so that
13009 breakpoint_re_set can try to match up which of the newly
13010 found markers corresponds to this one, and, don't try to
13011 expand multiple locations for each sal, given than SALS
13012 already should contain all sals for MARKER_ID. */
13013
13014 for (size_t i = 0; i < lsal.sals.size (); i++)
13015 {
13016 event_location_up location
13017 = copy_event_location (canonical->location.get ());
13018
13019 std::unique_ptr<tracepoint> tp (new tracepoint ());
13020 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13021 std::move (location), NULL,
13022 std::move (cond_string),
13023 std::move (extra_string),
13024 type_wanted, disposition,
13025 thread, task, ignore_count, ops,
13026 from_tty, enabled, internal, flags,
13027 canonical->special_display);
13028 /* Given that its possible to have multiple markers with
13029 the same string id, if the user is creating a static
13030 tracepoint by marker id ("strace -m MARKER_ID"), then
13031 store the sals index, so that breakpoint_re_set can
13032 try to match up which of the newly found markers
13033 corresponds to this one */
13034 tp->static_trace_marker_id_idx = i;
13035
13036 install_breakpoint (internal, std::move (tp), 0);
13037 }
13038 }
13039
13040 static std::vector<symtab_and_line>
13041 strace_marker_decode_location (struct breakpoint *b,
13042 const struct event_location *location,
13043 struct program_space *search_pspace)
13044 {
13045 struct tracepoint *tp = (struct tracepoint *) b;
13046 const char *s = get_linespec_location (location)->spec_string;
13047
13048 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13049 if (sals.size () > tp->static_trace_marker_id_idx)
13050 {
13051 sals[0] = sals[tp->static_trace_marker_id_idx];
13052 sals.resize (1);
13053 return sals;
13054 }
13055 else
13056 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13057 }
13058
13059 static struct breakpoint_ops strace_marker_breakpoint_ops;
13060
13061 static int
13062 strace_marker_p (struct breakpoint *b)
13063 {
13064 return b->ops == &strace_marker_breakpoint_ops;
13065 }
13066
13067 /* Delete a breakpoint and clean up all traces of it in the data
13068 structures. */
13069
13070 void
13071 delete_breakpoint (struct breakpoint *bpt)
13072 {
13073 struct breakpoint *b;
13074
13075 gdb_assert (bpt != NULL);
13076
13077 /* Has this bp already been deleted? This can happen because
13078 multiple lists can hold pointers to bp's. bpstat lists are
13079 especial culprits.
13080
13081 One example of this happening is a watchpoint's scope bp. When
13082 the scope bp triggers, we notice that the watchpoint is out of
13083 scope, and delete it. We also delete its scope bp. But the
13084 scope bp is marked "auto-deleting", and is already on a bpstat.
13085 That bpstat is then checked for auto-deleting bp's, which are
13086 deleted.
13087
13088 A real solution to this problem might involve reference counts in
13089 bp's, and/or giving them pointers back to their referencing
13090 bpstat's, and teaching delete_breakpoint to only free a bp's
13091 storage when no more references were extent. A cheaper bandaid
13092 was chosen. */
13093 if (bpt->type == bp_none)
13094 return;
13095
13096 /* At least avoid this stale reference until the reference counting
13097 of breakpoints gets resolved. */
13098 if (bpt->related_breakpoint != bpt)
13099 {
13100 struct breakpoint *related;
13101 struct watchpoint *w;
13102
13103 if (bpt->type == bp_watchpoint_scope)
13104 w = (struct watchpoint *) bpt->related_breakpoint;
13105 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13106 w = (struct watchpoint *) bpt;
13107 else
13108 w = NULL;
13109 if (w != NULL)
13110 watchpoint_del_at_next_stop (w);
13111
13112 /* Unlink bpt from the bpt->related_breakpoint ring. */
13113 for (related = bpt; related->related_breakpoint != bpt;
13114 related = related->related_breakpoint);
13115 related->related_breakpoint = bpt->related_breakpoint;
13116 bpt->related_breakpoint = bpt;
13117 }
13118
13119 /* watch_command_1 creates a watchpoint but only sets its number if
13120 update_watchpoint succeeds in creating its bp_locations. If there's
13121 a problem in that process, we'll be asked to delete the half-created
13122 watchpoint. In that case, don't announce the deletion. */
13123 if (bpt->number)
13124 gdb::observers::breakpoint_deleted.notify (bpt);
13125
13126 if (breakpoint_chain == bpt)
13127 breakpoint_chain = bpt->next;
13128
13129 ALL_BREAKPOINTS (b)
13130 if (b->next == bpt)
13131 {
13132 b->next = bpt->next;
13133 break;
13134 }
13135
13136 /* Be sure no bpstat's are pointing at the breakpoint after it's
13137 been freed. */
13138 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13139 in all threads for now. Note that we cannot just remove bpstats
13140 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13141 commands are associated with the bpstat; if we remove it here,
13142 then the later call to bpstat_do_actions (&stop_bpstat); in
13143 event-top.c won't do anything, and temporary breakpoints with
13144 commands won't work. */
13145
13146 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13147
13148 /* Now that breakpoint is removed from breakpoint list, update the
13149 global location list. This will remove locations that used to
13150 belong to this breakpoint. Do this before freeing the breakpoint
13151 itself, since remove_breakpoint looks at location's owner. It
13152 might be better design to have location completely
13153 self-contained, but it's not the case now. */
13154 update_global_location_list (UGLL_DONT_INSERT);
13155
13156 /* On the chance that someone will soon try again to delete this
13157 same bp, we mark it as deleted before freeing its storage. */
13158 bpt->type = bp_none;
13159 delete bpt;
13160 }
13161
13162 /* Iterator function to call a user-provided callback function once
13163 for each of B and its related breakpoints. */
13164
13165 static void
13166 iterate_over_related_breakpoints (struct breakpoint *b,
13167 gdb::function_view<void (breakpoint *)> function)
13168 {
13169 struct breakpoint *related;
13170
13171 related = b;
13172 do
13173 {
13174 struct breakpoint *next;
13175
13176 /* FUNCTION may delete RELATED. */
13177 next = related->related_breakpoint;
13178
13179 if (next == related)
13180 {
13181 /* RELATED is the last ring entry. */
13182 function (related);
13183
13184 /* FUNCTION may have deleted it, so we'd never reach back to
13185 B. There's nothing left to do anyway, so just break
13186 out. */
13187 break;
13188 }
13189 else
13190 function (related);
13191
13192 related = next;
13193 }
13194 while (related != b);
13195 }
13196
13197 static void
13198 delete_command (const char *arg, int from_tty)
13199 {
13200 struct breakpoint *b, *b_tmp;
13201
13202 dont_repeat ();
13203
13204 if (arg == 0)
13205 {
13206 int breaks_to_delete = 0;
13207
13208 /* Delete all breakpoints if no argument. Do not delete
13209 internal breakpoints, these have to be deleted with an
13210 explicit breakpoint number argument. */
13211 ALL_BREAKPOINTS (b)
13212 if (user_breakpoint_p (b))
13213 {
13214 breaks_to_delete = 1;
13215 break;
13216 }
13217
13218 /* Ask user only if there are some breakpoints to delete. */
13219 if (!from_tty
13220 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13221 {
13222 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13223 if (user_breakpoint_p (b))
13224 delete_breakpoint (b);
13225 }
13226 }
13227 else
13228 map_breakpoint_numbers
13229 (arg, [&] (breakpoint *br)
13230 {
13231 iterate_over_related_breakpoints (br, delete_breakpoint);
13232 });
13233 }
13234
13235 /* Return true if all locations of B bound to PSPACE are pending. If
13236 PSPACE is NULL, all locations of all program spaces are
13237 considered. */
13238
13239 static int
13240 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13241 {
13242 struct bp_location *loc;
13243
13244 for (loc = b->loc; loc != NULL; loc = loc->next)
13245 if ((pspace == NULL
13246 || loc->pspace == pspace)
13247 && !loc->shlib_disabled
13248 && !loc->pspace->executing_startup)
13249 return 0;
13250 return 1;
13251 }
13252
13253 /* Subroutine of update_breakpoint_locations to simplify it.
13254 Return non-zero if multiple fns in list LOC have the same name.
13255 Null names are ignored. */
13256
13257 static int
13258 ambiguous_names_p (struct bp_location *loc)
13259 {
13260 struct bp_location *l;
13261 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13262 xcalloc, xfree);
13263
13264 for (l = loc; l != NULL; l = l->next)
13265 {
13266 const char **slot;
13267 const char *name = l->function_name;
13268
13269 /* Allow for some names to be NULL, ignore them. */
13270 if (name == NULL)
13271 continue;
13272
13273 slot = (const char **) htab_find_slot (htab, (const void *) name,
13274 INSERT);
13275 /* NOTE: We can assume slot != NULL here because xcalloc never
13276 returns NULL. */
13277 if (*slot != NULL)
13278 {
13279 htab_delete (htab);
13280 return 1;
13281 }
13282 *slot = name;
13283 }
13284
13285 htab_delete (htab);
13286 return 0;
13287 }
13288
13289 /* When symbols change, it probably means the sources changed as well,
13290 and it might mean the static tracepoint markers are no longer at
13291 the same address or line numbers they used to be at last we
13292 checked. Losing your static tracepoints whenever you rebuild is
13293 undesirable. This function tries to resync/rematch gdb static
13294 tracepoints with the markers on the target, for static tracepoints
13295 that have not been set by marker id. Static tracepoint that have
13296 been set by marker id are reset by marker id in breakpoint_re_set.
13297 The heuristic is:
13298
13299 1) For a tracepoint set at a specific address, look for a marker at
13300 the old PC. If one is found there, assume to be the same marker.
13301 If the name / string id of the marker found is different from the
13302 previous known name, assume that means the user renamed the marker
13303 in the sources, and output a warning.
13304
13305 2) For a tracepoint set at a given line number, look for a marker
13306 at the new address of the old line number. If one is found there,
13307 assume to be the same marker. If the name / string id of the
13308 marker found is different from the previous known name, assume that
13309 means the user renamed the marker in the sources, and output a
13310 warning.
13311
13312 3) If a marker is no longer found at the same address or line, it
13313 may mean the marker no longer exists. But it may also just mean
13314 the code changed a bit. Maybe the user added a few lines of code
13315 that made the marker move up or down (in line number terms). Ask
13316 the target for info about the marker with the string id as we knew
13317 it. If found, update line number and address in the matching
13318 static tracepoint. This will get confused if there's more than one
13319 marker with the same ID (possible in UST, although unadvised
13320 precisely because it confuses tools). */
13321
13322 static struct symtab_and_line
13323 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13324 {
13325 struct tracepoint *tp = (struct tracepoint *) b;
13326 struct static_tracepoint_marker marker;
13327 CORE_ADDR pc;
13328
13329 pc = sal.pc;
13330 if (sal.line)
13331 find_line_pc (sal.symtab, sal.line, &pc);
13332
13333 if (target_static_tracepoint_marker_at (pc, &marker))
13334 {
13335 if (tp->static_trace_marker_id != marker.str_id)
13336 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13337 b->number, tp->static_trace_marker_id.c_str (),
13338 marker.str_id.c_str ());
13339
13340 tp->static_trace_marker_id = std::move (marker.str_id);
13341
13342 return sal;
13343 }
13344
13345 /* Old marker wasn't found on target at lineno. Try looking it up
13346 by string ID. */
13347 if (!sal.explicit_pc
13348 && sal.line != 0
13349 && sal.symtab != NULL
13350 && !tp->static_trace_marker_id.empty ())
13351 {
13352 std::vector<static_tracepoint_marker> markers
13353 = target_static_tracepoint_markers_by_strid
13354 (tp->static_trace_marker_id.c_str ());
13355
13356 if (!markers.empty ())
13357 {
13358 struct symbol *sym;
13359 struct static_tracepoint_marker *tpmarker;
13360 struct ui_out *uiout = current_uiout;
13361 struct explicit_location explicit_loc;
13362
13363 tpmarker = &markers[0];
13364
13365 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13366
13367 warning (_("marker for static tracepoint %d (%s) not "
13368 "found at previous line number"),
13369 b->number, tp->static_trace_marker_id.c_str ());
13370
13371 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13372 sym = find_pc_sect_function (tpmarker->address, NULL);
13373 uiout->text ("Now in ");
13374 if (sym)
13375 {
13376 uiout->field_string ("func", sym->print_name (),
13377 function_name_style.style ());
13378 uiout->text (" at ");
13379 }
13380 uiout->field_string ("file",
13381 symtab_to_filename_for_display (sal2.symtab),
13382 file_name_style.style ());
13383 uiout->text (":");
13384
13385 if (uiout->is_mi_like_p ())
13386 {
13387 const char *fullname = symtab_to_fullname (sal2.symtab);
13388
13389 uiout->field_string ("fullname", fullname);
13390 }
13391
13392 uiout->field_signed ("line", sal2.line);
13393 uiout->text ("\n");
13394
13395 b->loc->line_number = sal2.line;
13396 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13397
13398 b->location.reset (NULL);
13399 initialize_explicit_location (&explicit_loc);
13400 explicit_loc.source_filename
13401 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13402 explicit_loc.line_offset.offset = b->loc->line_number;
13403 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13404 b->location = new_explicit_location (&explicit_loc);
13405
13406 /* Might be nice to check if function changed, and warn if
13407 so. */
13408 }
13409 }
13410 return sal;
13411 }
13412
13413 /* Returns 1 iff locations A and B are sufficiently same that
13414 we don't need to report breakpoint as changed. */
13415
13416 static int
13417 locations_are_equal (struct bp_location *a, struct bp_location *b)
13418 {
13419 while (a && b)
13420 {
13421 if (a->address != b->address)
13422 return 0;
13423
13424 if (a->shlib_disabled != b->shlib_disabled)
13425 return 0;
13426
13427 if (a->enabled != b->enabled)
13428 return 0;
13429
13430 a = a->next;
13431 b = b->next;
13432 }
13433
13434 if ((a == NULL) != (b == NULL))
13435 return 0;
13436
13437 return 1;
13438 }
13439
13440 /* Split all locations of B that are bound to PSPACE out of B's
13441 location list to a separate list and return that list's head. If
13442 PSPACE is NULL, hoist out all locations of B. */
13443
13444 static struct bp_location *
13445 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13446 {
13447 struct bp_location head;
13448 struct bp_location *i = b->loc;
13449 struct bp_location **i_link = &b->loc;
13450 struct bp_location *hoisted = &head;
13451
13452 if (pspace == NULL)
13453 {
13454 i = b->loc;
13455 b->loc = NULL;
13456 return i;
13457 }
13458
13459 head.next = NULL;
13460
13461 while (i != NULL)
13462 {
13463 if (i->pspace == pspace)
13464 {
13465 *i_link = i->next;
13466 i->next = NULL;
13467 hoisted->next = i;
13468 hoisted = i;
13469 }
13470 else
13471 i_link = &i->next;
13472 i = *i_link;
13473 }
13474
13475 return head.next;
13476 }
13477
13478 /* Create new breakpoint locations for B (a hardware or software
13479 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13480 zero, then B is a ranged breakpoint. Only recreates locations for
13481 FILTER_PSPACE. Locations of other program spaces are left
13482 untouched. */
13483
13484 void
13485 update_breakpoint_locations (struct breakpoint *b,
13486 struct program_space *filter_pspace,
13487 gdb::array_view<const symtab_and_line> sals,
13488 gdb::array_view<const symtab_and_line> sals_end)
13489 {
13490 struct bp_location *existing_locations;
13491
13492 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13493 {
13494 /* Ranged breakpoints have only one start location and one end
13495 location. */
13496 b->enable_state = bp_disabled;
13497 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13498 "multiple locations found\n"),
13499 b->number);
13500 return;
13501 }
13502
13503 /* If there's no new locations, and all existing locations are
13504 pending, don't do anything. This optimizes the common case where
13505 all locations are in the same shared library, that was unloaded.
13506 We'd like to retain the location, so that when the library is
13507 loaded again, we don't loose the enabled/disabled status of the
13508 individual locations. */
13509 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13510 return;
13511
13512 existing_locations = hoist_existing_locations (b, filter_pspace);
13513
13514 for (const auto &sal : sals)
13515 {
13516 struct bp_location *new_loc;
13517
13518 switch_to_program_space_and_thread (sal.pspace);
13519
13520 new_loc = add_location_to_breakpoint (b, &sal);
13521
13522 /* Reparse conditions, they might contain references to the
13523 old symtab. */
13524 if (b->cond_string != NULL)
13525 {
13526 const char *s;
13527
13528 s = b->cond_string;
13529 try
13530 {
13531 new_loc->cond = parse_exp_1 (&s, sal.pc,
13532 block_for_pc (sal.pc),
13533 0);
13534 }
13535 catch (const gdb_exception_error &e)
13536 {
13537 warning (_("failed to reevaluate condition "
13538 "for breakpoint %d: %s"),
13539 b->number, e.what ());
13540 new_loc->enabled = 0;
13541 }
13542 }
13543
13544 if (!sals_end.empty ())
13545 {
13546 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13547
13548 new_loc->length = end - sals[0].pc + 1;
13549 }
13550 }
13551
13552 /* If possible, carry over 'disable' status from existing
13553 breakpoints. */
13554 {
13555 struct bp_location *e = existing_locations;
13556 /* If there are multiple breakpoints with the same function name,
13557 e.g. for inline functions, comparing function names won't work.
13558 Instead compare pc addresses; this is just a heuristic as things
13559 may have moved, but in practice it gives the correct answer
13560 often enough until a better solution is found. */
13561 int have_ambiguous_names = ambiguous_names_p (b->loc);
13562
13563 for (; e; e = e->next)
13564 {
13565 if (!e->enabled && e->function_name)
13566 {
13567 struct bp_location *l = b->loc;
13568 if (have_ambiguous_names)
13569 {
13570 for (; l; l = l->next)
13571 {
13572 /* Ignore software vs hardware location type at
13573 this point, because with "set breakpoint
13574 auto-hw", after a re-set, locations that were
13575 hardware can end up as software, or vice versa.
13576 As mentioned above, this is an heuristic and in
13577 practice should give the correct answer often
13578 enough. */
13579 if (breakpoint_locations_match (e, l, true))
13580 {
13581 l->enabled = 0;
13582 break;
13583 }
13584 }
13585 }
13586 else
13587 {
13588 for (; l; l = l->next)
13589 if (l->function_name
13590 && strcmp (e->function_name, l->function_name) == 0)
13591 {
13592 l->enabled = 0;
13593 break;
13594 }
13595 }
13596 }
13597 }
13598 }
13599
13600 if (!locations_are_equal (existing_locations, b->loc))
13601 gdb::observers::breakpoint_modified.notify (b);
13602 }
13603
13604 /* Find the SaL locations corresponding to the given LOCATION.
13605 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13606
13607 static std::vector<symtab_and_line>
13608 location_to_sals (struct breakpoint *b, struct event_location *location,
13609 struct program_space *search_pspace, int *found)
13610 {
13611 struct gdb_exception exception;
13612
13613 gdb_assert (b->ops != NULL);
13614
13615 std::vector<symtab_and_line> sals;
13616
13617 try
13618 {
13619 sals = b->ops->decode_location (b, location, search_pspace);
13620 }
13621 catch (gdb_exception_error &e)
13622 {
13623 int not_found_and_ok = 0;
13624
13625 /* For pending breakpoints, it's expected that parsing will
13626 fail until the right shared library is loaded. User has
13627 already told to create pending breakpoints and don't need
13628 extra messages. If breakpoint is in bp_shlib_disabled
13629 state, then user already saw the message about that
13630 breakpoint being disabled, and don't want to see more
13631 errors. */
13632 if (e.error == NOT_FOUND_ERROR
13633 && (b->condition_not_parsed
13634 || (b->loc != NULL
13635 && search_pspace != NULL
13636 && b->loc->pspace != search_pspace)
13637 || (b->loc && b->loc->shlib_disabled)
13638 || (b->loc && b->loc->pspace->executing_startup)
13639 || b->enable_state == bp_disabled))
13640 not_found_and_ok = 1;
13641
13642 if (!not_found_and_ok)
13643 {
13644 /* We surely don't want to warn about the same breakpoint
13645 10 times. One solution, implemented here, is disable
13646 the breakpoint on error. Another solution would be to
13647 have separate 'warning emitted' flag. Since this
13648 happens only when a binary has changed, I don't know
13649 which approach is better. */
13650 b->enable_state = bp_disabled;
13651 throw;
13652 }
13653
13654 exception = std::move (e);
13655 }
13656
13657 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13658 {
13659 for (auto &sal : sals)
13660 resolve_sal_pc (&sal);
13661 if (b->condition_not_parsed && b->extra_string != NULL)
13662 {
13663 char *cond_string, *extra_string;
13664 int thread, task;
13665
13666 find_condition_and_thread (b->extra_string, sals[0].pc,
13667 &cond_string, &thread, &task,
13668 &extra_string);
13669 gdb_assert (b->cond_string == NULL);
13670 if (cond_string)
13671 b->cond_string = cond_string;
13672 b->thread = thread;
13673 b->task = task;
13674 if (extra_string)
13675 {
13676 xfree (b->extra_string);
13677 b->extra_string = extra_string;
13678 }
13679 b->condition_not_parsed = 0;
13680 }
13681
13682 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13683 sals[0] = update_static_tracepoint (b, sals[0]);
13684
13685 *found = 1;
13686 }
13687 else
13688 *found = 0;
13689
13690 return sals;
13691 }
13692
13693 /* The default re_set method, for typical hardware or software
13694 breakpoints. Reevaluate the breakpoint and recreate its
13695 locations. */
13696
13697 static void
13698 breakpoint_re_set_default (struct breakpoint *b)
13699 {
13700 struct program_space *filter_pspace = current_program_space;
13701 std::vector<symtab_and_line> expanded, expanded_end;
13702
13703 int found;
13704 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13705 filter_pspace, &found);
13706 if (found)
13707 expanded = std::move (sals);
13708
13709 if (b->location_range_end != NULL)
13710 {
13711 std::vector<symtab_and_line> sals_end
13712 = location_to_sals (b, b->location_range_end.get (),
13713 filter_pspace, &found);
13714 if (found)
13715 expanded_end = std::move (sals_end);
13716 }
13717
13718 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13719 }
13720
13721 /* Default method for creating SALs from an address string. It basically
13722 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13723
13724 static void
13725 create_sals_from_location_default (const struct event_location *location,
13726 struct linespec_result *canonical,
13727 enum bptype type_wanted)
13728 {
13729 parse_breakpoint_sals (location, canonical);
13730 }
13731
13732 /* Call create_breakpoints_sal for the given arguments. This is the default
13733 function for the `create_breakpoints_sal' method of
13734 breakpoint_ops. */
13735
13736 static void
13737 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13738 struct linespec_result *canonical,
13739 gdb::unique_xmalloc_ptr<char> cond_string,
13740 gdb::unique_xmalloc_ptr<char> extra_string,
13741 enum bptype type_wanted,
13742 enum bpdisp disposition,
13743 int thread,
13744 int task, int ignore_count,
13745 const struct breakpoint_ops *ops,
13746 int from_tty, int enabled,
13747 int internal, unsigned flags)
13748 {
13749 create_breakpoints_sal (gdbarch, canonical,
13750 std::move (cond_string),
13751 std::move (extra_string),
13752 type_wanted, disposition,
13753 thread, task, ignore_count, ops, from_tty,
13754 enabled, internal, flags);
13755 }
13756
13757 /* Decode the line represented by S by calling decode_line_full. This is the
13758 default function for the `decode_location' method of breakpoint_ops. */
13759
13760 static std::vector<symtab_and_line>
13761 decode_location_default (struct breakpoint *b,
13762 const struct event_location *location,
13763 struct program_space *search_pspace)
13764 {
13765 struct linespec_result canonical;
13766
13767 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13768 NULL, 0, &canonical, multiple_symbols_all,
13769 b->filter.get ());
13770
13771 /* We should get 0 or 1 resulting SALs. */
13772 gdb_assert (canonical.lsals.size () < 2);
13773
13774 if (!canonical.lsals.empty ())
13775 {
13776 const linespec_sals &lsal = canonical.lsals[0];
13777 return std::move (lsal.sals);
13778 }
13779 return {};
13780 }
13781
13782 /* Reset a breakpoint. */
13783
13784 static void
13785 breakpoint_re_set_one (breakpoint *b)
13786 {
13787 input_radix = b->input_radix;
13788 set_language (b->language);
13789
13790 b->ops->re_set (b);
13791 }
13792
13793 /* Re-set breakpoint locations for the current program space.
13794 Locations bound to other program spaces are left untouched. */
13795
13796 void
13797 breakpoint_re_set (void)
13798 {
13799 struct breakpoint *b, *b_tmp;
13800
13801 {
13802 scoped_restore_current_language save_language;
13803 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13804 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13805
13806 /* breakpoint_re_set_one sets the current_language to the language
13807 of the breakpoint it is resetting (see prepare_re_set_context)
13808 before re-evaluating the breakpoint's location. This change can
13809 unfortunately get undone by accident if the language_mode is set
13810 to auto, and we either switch frames, or more likely in this context,
13811 we select the current frame.
13812
13813 We prevent this by temporarily turning the language_mode to
13814 language_mode_manual. We restore it once all breakpoints
13815 have been reset. */
13816 scoped_restore save_language_mode = make_scoped_restore (&language_mode);
13817 language_mode = language_mode_manual;
13818
13819 /* Note: we must not try to insert locations until after all
13820 breakpoints have been re-set. Otherwise, e.g., when re-setting
13821 breakpoint 1, we'd insert the locations of breakpoint 2, which
13822 hadn't been re-set yet, and thus may have stale locations. */
13823
13824 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13825 {
13826 try
13827 {
13828 breakpoint_re_set_one (b);
13829 }
13830 catch (const gdb_exception &ex)
13831 {
13832 exception_fprintf (gdb_stderr, ex,
13833 "Error in re-setting breakpoint %d: ",
13834 b->number);
13835 }
13836 }
13837
13838 jit_breakpoint_re_set ();
13839 }
13840
13841 create_overlay_event_breakpoint ();
13842 create_longjmp_master_breakpoint ();
13843 create_std_terminate_master_breakpoint ();
13844 create_exception_master_breakpoint ();
13845
13846 /* Now we can insert. */
13847 update_global_location_list (UGLL_MAY_INSERT);
13848 }
13849 \f
13850 /* Reset the thread number of this breakpoint:
13851
13852 - If the breakpoint is for all threads, leave it as-is.
13853 - Else, reset it to the current thread for inferior_ptid. */
13854 void
13855 breakpoint_re_set_thread (struct breakpoint *b)
13856 {
13857 if (b->thread != -1)
13858 {
13859 b->thread = inferior_thread ()->global_num;
13860
13861 /* We're being called after following a fork. The new fork is
13862 selected as current, and unless this was a vfork will have a
13863 different program space from the original thread. Reset that
13864 as well. */
13865 b->loc->pspace = current_program_space;
13866 }
13867 }
13868
13869 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13870 If from_tty is nonzero, it prints a message to that effect,
13871 which ends with a period (no newline). */
13872
13873 void
13874 set_ignore_count (int bptnum, int count, int from_tty)
13875 {
13876 struct breakpoint *b;
13877
13878 if (count < 0)
13879 count = 0;
13880
13881 ALL_BREAKPOINTS (b)
13882 if (b->number == bptnum)
13883 {
13884 if (is_tracepoint (b))
13885 {
13886 if (from_tty && count != 0)
13887 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13888 bptnum);
13889 return;
13890 }
13891
13892 b->ignore_count = count;
13893 if (from_tty)
13894 {
13895 if (count == 0)
13896 printf_filtered (_("Will stop next time "
13897 "breakpoint %d is reached."),
13898 bptnum);
13899 else if (count == 1)
13900 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13901 bptnum);
13902 else
13903 printf_filtered (_("Will ignore next %d "
13904 "crossings of breakpoint %d."),
13905 count, bptnum);
13906 }
13907 gdb::observers::breakpoint_modified.notify (b);
13908 return;
13909 }
13910
13911 error (_("No breakpoint number %d."), bptnum);
13912 }
13913
13914 /* Command to set ignore-count of breakpoint N to COUNT. */
13915
13916 static void
13917 ignore_command (const char *args, int from_tty)
13918 {
13919 const char *p = args;
13920 int num;
13921
13922 if (p == 0)
13923 error_no_arg (_("a breakpoint number"));
13924
13925 num = get_number (&p);
13926 if (num == 0)
13927 error (_("bad breakpoint number: '%s'"), args);
13928 if (*p == 0)
13929 error (_("Second argument (specified ignore-count) is missing."));
13930
13931 set_ignore_count (num,
13932 longest_to_int (value_as_long (parse_and_eval (p))),
13933 from_tty);
13934 if (from_tty)
13935 printf_filtered ("\n");
13936 }
13937 \f
13938
13939 /* Call FUNCTION on each of the breakpoints with numbers in the range
13940 defined by BP_NUM_RANGE (an inclusive range). */
13941
13942 static void
13943 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
13944 gdb::function_view<void (breakpoint *)> function)
13945 {
13946 if (bp_num_range.first == 0)
13947 {
13948 warning (_("bad breakpoint number at or near '%d'"),
13949 bp_num_range.first);
13950 }
13951 else
13952 {
13953 struct breakpoint *b, *tmp;
13954
13955 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
13956 {
13957 bool match = false;
13958
13959 ALL_BREAKPOINTS_SAFE (b, tmp)
13960 if (b->number == i)
13961 {
13962 match = true;
13963 function (b);
13964 break;
13965 }
13966 if (!match)
13967 printf_unfiltered (_("No breakpoint number %d.\n"), i);
13968 }
13969 }
13970 }
13971
13972 /* Call FUNCTION on each of the breakpoints whose numbers are given in
13973 ARGS. */
13974
13975 static void
13976 map_breakpoint_numbers (const char *args,
13977 gdb::function_view<void (breakpoint *)> function)
13978 {
13979 if (args == NULL || *args == '\0')
13980 error_no_arg (_("one or more breakpoint numbers"));
13981
13982 number_or_range_parser parser (args);
13983
13984 while (!parser.finished ())
13985 {
13986 int num = parser.get_number ();
13987 map_breakpoint_number_range (std::make_pair (num, num), function);
13988 }
13989 }
13990
13991 /* Return the breakpoint location structure corresponding to the
13992 BP_NUM and LOC_NUM values. */
13993
13994 static struct bp_location *
13995 find_location_by_number (int bp_num, int loc_num)
13996 {
13997 struct breakpoint *b;
13998
13999 ALL_BREAKPOINTS (b)
14000 if (b->number == bp_num)
14001 {
14002 break;
14003 }
14004
14005 if (!b || b->number != bp_num)
14006 error (_("Bad breakpoint number '%d'"), bp_num);
14007
14008 if (loc_num == 0)
14009 error (_("Bad breakpoint location number '%d'"), loc_num);
14010
14011 int n = 0;
14012 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14013 if (++n == loc_num)
14014 return loc;
14015
14016 error (_("Bad breakpoint location number '%d'"), loc_num);
14017 }
14018
14019 /* Modes of operation for extract_bp_num. */
14020 enum class extract_bp_kind
14021 {
14022 /* Extracting a breakpoint number. */
14023 bp,
14024
14025 /* Extracting a location number. */
14026 loc,
14027 };
14028
14029 /* Extract a breakpoint or location number (as determined by KIND)
14030 from the string starting at START. TRAILER is a character which
14031 can be found after the number. If you don't want a trailer, use
14032 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14033 string. This always returns a positive integer. */
14034
14035 static int
14036 extract_bp_num (extract_bp_kind kind, const char *start,
14037 int trailer, const char **end_out = NULL)
14038 {
14039 const char *end = start;
14040 int num = get_number_trailer (&end, trailer);
14041 if (num < 0)
14042 error (kind == extract_bp_kind::bp
14043 ? _("Negative breakpoint number '%.*s'")
14044 : _("Negative breakpoint location number '%.*s'"),
14045 int (end - start), start);
14046 if (num == 0)
14047 error (kind == extract_bp_kind::bp
14048 ? _("Bad breakpoint number '%.*s'")
14049 : _("Bad breakpoint location number '%.*s'"),
14050 int (end - start), start);
14051
14052 if (end_out != NULL)
14053 *end_out = end;
14054 return num;
14055 }
14056
14057 /* Extract a breakpoint or location range (as determined by KIND) in
14058 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14059 representing the (inclusive) range. The returned pair's elements
14060 are always positive integers. */
14061
14062 static std::pair<int, int>
14063 extract_bp_or_bp_range (extract_bp_kind kind,
14064 const std::string &arg,
14065 std::string::size_type arg_offset)
14066 {
14067 std::pair<int, int> range;
14068 const char *bp_loc = &arg[arg_offset];
14069 std::string::size_type dash = arg.find ('-', arg_offset);
14070 if (dash != std::string::npos)
14071 {
14072 /* bp_loc is a range (x-z). */
14073 if (arg.length () == dash + 1)
14074 error (kind == extract_bp_kind::bp
14075 ? _("Bad breakpoint number at or near: '%s'")
14076 : _("Bad breakpoint location number at or near: '%s'"),
14077 bp_loc);
14078
14079 const char *end;
14080 const char *start_first = bp_loc;
14081 const char *start_second = &arg[dash + 1];
14082 range.first = extract_bp_num (kind, start_first, '-');
14083 range.second = extract_bp_num (kind, start_second, '\0', &end);
14084
14085 if (range.first > range.second)
14086 error (kind == extract_bp_kind::bp
14087 ? _("Inverted breakpoint range at '%.*s'")
14088 : _("Inverted breakpoint location range at '%.*s'"),
14089 int (end - start_first), start_first);
14090 }
14091 else
14092 {
14093 /* bp_loc is a single value. */
14094 range.first = extract_bp_num (kind, bp_loc, '\0');
14095 range.second = range.first;
14096 }
14097 return range;
14098 }
14099
14100 /* Extract the breakpoint/location range specified by ARG. Returns
14101 the breakpoint range in BP_NUM_RANGE, and the location range in
14102 BP_LOC_RANGE.
14103
14104 ARG may be in any of the following forms:
14105
14106 x where 'x' is a breakpoint number.
14107 x-y where 'x' and 'y' specify a breakpoint numbers range.
14108 x.y where 'x' is a breakpoint number and 'y' a location number.
14109 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14110 location number range.
14111 */
14112
14113 static void
14114 extract_bp_number_and_location (const std::string &arg,
14115 std::pair<int, int> &bp_num_range,
14116 std::pair<int, int> &bp_loc_range)
14117 {
14118 std::string::size_type dot = arg.find ('.');
14119
14120 if (dot != std::string::npos)
14121 {
14122 /* Handle 'x.y' and 'x.y-z' cases. */
14123
14124 if (arg.length () == dot + 1 || dot == 0)
14125 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14126
14127 bp_num_range.first
14128 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14129 bp_num_range.second = bp_num_range.first;
14130
14131 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14132 arg, dot + 1);
14133 }
14134 else
14135 {
14136 /* Handle x and x-y cases. */
14137
14138 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14139 bp_loc_range.first = 0;
14140 bp_loc_range.second = 0;
14141 }
14142 }
14143
14144 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14145 specifies whether to enable or disable. */
14146
14147 static void
14148 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14149 {
14150 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14151 if (loc != NULL)
14152 {
14153 if (loc->enabled != enable)
14154 {
14155 loc->enabled = enable;
14156 mark_breakpoint_location_modified (loc);
14157 }
14158 if (target_supports_enable_disable_tracepoint ()
14159 && current_trace_status ()->running && loc->owner
14160 && is_tracepoint (loc->owner))
14161 target_disable_tracepoint (loc);
14162 }
14163 update_global_location_list (UGLL_DONT_INSERT);
14164
14165 gdb::observers::breakpoint_modified.notify (loc->owner);
14166 }
14167
14168 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14169 number of the breakpoint, and BP_LOC_RANGE specifies the
14170 (inclusive) range of location numbers of that breakpoint to
14171 enable/disable. ENABLE specifies whether to enable or disable the
14172 location. */
14173
14174 static void
14175 enable_disable_breakpoint_location_range (int bp_num,
14176 std::pair<int, int> &bp_loc_range,
14177 bool enable)
14178 {
14179 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14180 enable_disable_bp_num_loc (bp_num, i, enable);
14181 }
14182
14183 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14184 If from_tty is nonzero, it prints a message to that effect,
14185 which ends with a period (no newline). */
14186
14187 void
14188 disable_breakpoint (struct breakpoint *bpt)
14189 {
14190 /* Never disable a watchpoint scope breakpoint; we want to
14191 hit them when we leave scope so we can delete both the
14192 watchpoint and its scope breakpoint at that time. */
14193 if (bpt->type == bp_watchpoint_scope)
14194 return;
14195
14196 bpt->enable_state = bp_disabled;
14197
14198 /* Mark breakpoint locations modified. */
14199 mark_breakpoint_modified (bpt);
14200
14201 if (target_supports_enable_disable_tracepoint ()
14202 && current_trace_status ()->running && is_tracepoint (bpt))
14203 {
14204 struct bp_location *location;
14205
14206 for (location = bpt->loc; location; location = location->next)
14207 target_disable_tracepoint (location);
14208 }
14209
14210 update_global_location_list (UGLL_DONT_INSERT);
14211
14212 gdb::observers::breakpoint_modified.notify (bpt);
14213 }
14214
14215 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14216 specified in ARGS. ARGS may be in any of the formats handled by
14217 extract_bp_number_and_location. ENABLE specifies whether to enable
14218 or disable the breakpoints/locations. */
14219
14220 static void
14221 enable_disable_command (const char *args, int from_tty, bool enable)
14222 {
14223 if (args == 0)
14224 {
14225 struct breakpoint *bpt;
14226
14227 ALL_BREAKPOINTS (bpt)
14228 if (user_breakpoint_p (bpt))
14229 {
14230 if (enable)
14231 enable_breakpoint (bpt);
14232 else
14233 disable_breakpoint (bpt);
14234 }
14235 }
14236 else
14237 {
14238 std::string num = extract_arg (&args);
14239
14240 while (!num.empty ())
14241 {
14242 std::pair<int, int> bp_num_range, bp_loc_range;
14243
14244 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14245
14246 if (bp_loc_range.first == bp_loc_range.second
14247 && bp_loc_range.first == 0)
14248 {
14249 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14250 map_breakpoint_number_range (bp_num_range,
14251 enable
14252 ? enable_breakpoint
14253 : disable_breakpoint);
14254 }
14255 else
14256 {
14257 /* Handle breakpoint ids with formats 'x.y' or
14258 'x.y-z'. */
14259 enable_disable_breakpoint_location_range
14260 (bp_num_range.first, bp_loc_range, enable);
14261 }
14262 num = extract_arg (&args);
14263 }
14264 }
14265 }
14266
14267 /* The disable command disables the specified breakpoints/locations
14268 (or all defined breakpoints) so they're no longer effective in
14269 stopping the inferior. ARGS may be in any of the forms defined in
14270 extract_bp_number_and_location. */
14271
14272 static void
14273 disable_command (const char *args, int from_tty)
14274 {
14275 enable_disable_command (args, from_tty, false);
14276 }
14277
14278 static void
14279 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14280 int count)
14281 {
14282 int target_resources_ok;
14283
14284 if (bpt->type == bp_hardware_breakpoint)
14285 {
14286 int i;
14287 i = hw_breakpoint_used_count ();
14288 target_resources_ok =
14289 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14290 i + 1, 0);
14291 if (target_resources_ok == 0)
14292 error (_("No hardware breakpoint support in the target."));
14293 else if (target_resources_ok < 0)
14294 error (_("Hardware breakpoints used exceeds limit."));
14295 }
14296
14297 if (is_watchpoint (bpt))
14298 {
14299 /* Initialize it just to avoid a GCC false warning. */
14300 enum enable_state orig_enable_state = bp_disabled;
14301
14302 try
14303 {
14304 struct watchpoint *w = (struct watchpoint *) bpt;
14305
14306 orig_enable_state = bpt->enable_state;
14307 bpt->enable_state = bp_enabled;
14308 update_watchpoint (w, 1 /* reparse */);
14309 }
14310 catch (const gdb_exception &e)
14311 {
14312 bpt->enable_state = orig_enable_state;
14313 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14314 bpt->number);
14315 return;
14316 }
14317 }
14318
14319 bpt->enable_state = bp_enabled;
14320
14321 /* Mark breakpoint locations modified. */
14322 mark_breakpoint_modified (bpt);
14323
14324 if (target_supports_enable_disable_tracepoint ()
14325 && current_trace_status ()->running && is_tracepoint (bpt))
14326 {
14327 struct bp_location *location;
14328
14329 for (location = bpt->loc; location; location = location->next)
14330 target_enable_tracepoint (location);
14331 }
14332
14333 bpt->disposition = disposition;
14334 bpt->enable_count = count;
14335 update_global_location_list (UGLL_MAY_INSERT);
14336
14337 gdb::observers::breakpoint_modified.notify (bpt);
14338 }
14339
14340
14341 void
14342 enable_breakpoint (struct breakpoint *bpt)
14343 {
14344 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14345 }
14346
14347 /* The enable command enables the specified breakpoints/locations (or
14348 all defined breakpoints) so they once again become (or continue to
14349 be) effective in stopping the inferior. ARGS may be in any of the
14350 forms defined in extract_bp_number_and_location. */
14351
14352 static void
14353 enable_command (const char *args, int from_tty)
14354 {
14355 enable_disable_command (args, from_tty, true);
14356 }
14357
14358 static void
14359 enable_once_command (const char *args, int from_tty)
14360 {
14361 map_breakpoint_numbers
14362 (args, [&] (breakpoint *b)
14363 {
14364 iterate_over_related_breakpoints
14365 (b, [&] (breakpoint *bpt)
14366 {
14367 enable_breakpoint_disp (bpt, disp_disable, 1);
14368 });
14369 });
14370 }
14371
14372 static void
14373 enable_count_command (const char *args, int from_tty)
14374 {
14375 int count;
14376
14377 if (args == NULL)
14378 error_no_arg (_("hit count"));
14379
14380 count = get_number (&args);
14381
14382 map_breakpoint_numbers
14383 (args, [&] (breakpoint *b)
14384 {
14385 iterate_over_related_breakpoints
14386 (b, [&] (breakpoint *bpt)
14387 {
14388 enable_breakpoint_disp (bpt, disp_disable, count);
14389 });
14390 });
14391 }
14392
14393 static void
14394 enable_delete_command (const char *args, int from_tty)
14395 {
14396 map_breakpoint_numbers
14397 (args, [&] (breakpoint *b)
14398 {
14399 iterate_over_related_breakpoints
14400 (b, [&] (breakpoint *bpt)
14401 {
14402 enable_breakpoint_disp (bpt, disp_del, 1);
14403 });
14404 });
14405 }
14406 \f
14407 /* Invalidate last known value of any hardware watchpoint if
14408 the memory which that value represents has been written to by
14409 GDB itself. */
14410
14411 static void
14412 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14413 CORE_ADDR addr, ssize_t len,
14414 const bfd_byte *data)
14415 {
14416 struct breakpoint *bp;
14417
14418 ALL_BREAKPOINTS (bp)
14419 if (bp->enable_state == bp_enabled
14420 && bp->type == bp_hardware_watchpoint)
14421 {
14422 struct watchpoint *wp = (struct watchpoint *) bp;
14423
14424 if (wp->val_valid && wp->val != nullptr)
14425 {
14426 struct bp_location *loc;
14427
14428 for (loc = bp->loc; loc != NULL; loc = loc->next)
14429 if (loc->loc_type == bp_loc_hardware_watchpoint
14430 && loc->address + loc->length > addr
14431 && addr + len > loc->address)
14432 {
14433 wp->val = NULL;
14434 wp->val_valid = false;
14435 }
14436 }
14437 }
14438 }
14439
14440 /* Create and insert a breakpoint for software single step. */
14441
14442 void
14443 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14444 const address_space *aspace,
14445 CORE_ADDR next_pc)
14446 {
14447 struct thread_info *tp = inferior_thread ();
14448 struct symtab_and_line sal;
14449 CORE_ADDR pc = next_pc;
14450
14451 if (tp->control.single_step_breakpoints == NULL)
14452 {
14453 tp->control.single_step_breakpoints
14454 = new_single_step_breakpoint (tp->global_num, gdbarch);
14455 }
14456
14457 sal = find_pc_line (pc, 0);
14458 sal.pc = pc;
14459 sal.section = find_pc_overlay (pc);
14460 sal.explicit_pc = 1;
14461 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14462
14463 update_global_location_list (UGLL_INSERT);
14464 }
14465
14466 /* Insert single step breakpoints according to the current state. */
14467
14468 int
14469 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14470 {
14471 struct regcache *regcache = get_current_regcache ();
14472 std::vector<CORE_ADDR> next_pcs;
14473
14474 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14475
14476 if (!next_pcs.empty ())
14477 {
14478 struct frame_info *frame = get_current_frame ();
14479 const address_space *aspace = get_frame_address_space (frame);
14480
14481 for (CORE_ADDR pc : next_pcs)
14482 insert_single_step_breakpoint (gdbarch, aspace, pc);
14483
14484 return 1;
14485 }
14486 else
14487 return 0;
14488 }
14489
14490 /* See breakpoint.h. */
14491
14492 int
14493 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14494 const address_space *aspace,
14495 CORE_ADDR pc)
14496 {
14497 struct bp_location *loc;
14498
14499 for (loc = bp->loc; loc != NULL; loc = loc->next)
14500 if (loc->inserted
14501 && breakpoint_location_address_match (loc, aspace, pc))
14502 return 1;
14503
14504 return 0;
14505 }
14506
14507 /* Check whether a software single-step breakpoint is inserted at
14508 PC. */
14509
14510 int
14511 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14512 CORE_ADDR pc)
14513 {
14514 struct breakpoint *bpt;
14515
14516 ALL_BREAKPOINTS (bpt)
14517 {
14518 if (bpt->type == bp_single_step
14519 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14520 return 1;
14521 }
14522 return 0;
14523 }
14524
14525 /* Tracepoint-specific operations. */
14526
14527 /* Set tracepoint count to NUM. */
14528 static void
14529 set_tracepoint_count (int num)
14530 {
14531 tracepoint_count = num;
14532 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14533 }
14534
14535 static void
14536 trace_command (const char *arg, int from_tty)
14537 {
14538 event_location_up location = string_to_event_location (&arg,
14539 current_language);
14540 const struct breakpoint_ops *ops = breakpoint_ops_for_event_location
14541 (location.get (), true /* is_tracepoint */);
14542
14543 create_breakpoint (get_current_arch (),
14544 location.get (),
14545 NULL, 0, arg, 1 /* parse arg */,
14546 0 /* tempflag */,
14547 bp_tracepoint /* type_wanted */,
14548 0 /* Ignore count */,
14549 pending_break_support,
14550 ops,
14551 from_tty,
14552 1 /* enabled */,
14553 0 /* internal */, 0);
14554 }
14555
14556 static void
14557 ftrace_command (const char *arg, int from_tty)
14558 {
14559 event_location_up location = string_to_event_location (&arg,
14560 current_language);
14561 create_breakpoint (get_current_arch (),
14562 location.get (),
14563 NULL, 0, arg, 1 /* parse arg */,
14564 0 /* tempflag */,
14565 bp_fast_tracepoint /* type_wanted */,
14566 0 /* Ignore count */,
14567 pending_break_support,
14568 &tracepoint_breakpoint_ops,
14569 from_tty,
14570 1 /* enabled */,
14571 0 /* internal */, 0);
14572 }
14573
14574 /* strace command implementation. Creates a static tracepoint. */
14575
14576 static void
14577 strace_command (const char *arg, int from_tty)
14578 {
14579 struct breakpoint_ops *ops;
14580 event_location_up location;
14581
14582 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14583 or with a normal static tracepoint. */
14584 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14585 {
14586 ops = &strace_marker_breakpoint_ops;
14587 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14588 }
14589 else
14590 {
14591 ops = &tracepoint_breakpoint_ops;
14592 location = string_to_event_location (&arg, current_language);
14593 }
14594
14595 create_breakpoint (get_current_arch (),
14596 location.get (),
14597 NULL, 0, arg, 1 /* parse arg */,
14598 0 /* tempflag */,
14599 bp_static_tracepoint /* type_wanted */,
14600 0 /* Ignore count */,
14601 pending_break_support,
14602 ops,
14603 from_tty,
14604 1 /* enabled */,
14605 0 /* internal */, 0);
14606 }
14607
14608 /* Set up a fake reader function that gets command lines from a linked
14609 list that was acquired during tracepoint uploading. */
14610
14611 static struct uploaded_tp *this_utp;
14612 static int next_cmd;
14613
14614 static char *
14615 read_uploaded_action (void)
14616 {
14617 char *rslt = nullptr;
14618
14619 if (next_cmd < this_utp->cmd_strings.size ())
14620 {
14621 rslt = this_utp->cmd_strings[next_cmd].get ();
14622 next_cmd++;
14623 }
14624
14625 return rslt;
14626 }
14627
14628 /* Given information about a tracepoint as recorded on a target (which
14629 can be either a live system or a trace file), attempt to create an
14630 equivalent GDB tracepoint. This is not a reliable process, since
14631 the target does not necessarily have all the information used when
14632 the tracepoint was originally defined. */
14633
14634 struct tracepoint *
14635 create_tracepoint_from_upload (struct uploaded_tp *utp)
14636 {
14637 const char *addr_str;
14638 char small_buf[100];
14639 struct tracepoint *tp;
14640
14641 if (utp->at_string)
14642 addr_str = utp->at_string.get ();
14643 else
14644 {
14645 /* In the absence of a source location, fall back to raw
14646 address. Since there is no way to confirm that the address
14647 means the same thing as when the trace was started, warn the
14648 user. */
14649 warning (_("Uploaded tracepoint %d has no "
14650 "source location, using raw address"),
14651 utp->number);
14652 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14653 addr_str = small_buf;
14654 }
14655
14656 /* There's not much we can do with a sequence of bytecodes. */
14657 if (utp->cond && !utp->cond_string)
14658 warning (_("Uploaded tracepoint %d condition "
14659 "has no source form, ignoring it"),
14660 utp->number);
14661
14662 event_location_up location = string_to_event_location (&addr_str,
14663 current_language);
14664 if (!create_breakpoint (get_current_arch (),
14665 location.get (),
14666 utp->cond_string.get (), -1, addr_str,
14667 0 /* parse cond/thread */,
14668 0 /* tempflag */,
14669 utp->type /* type_wanted */,
14670 0 /* Ignore count */,
14671 pending_break_support,
14672 &tracepoint_breakpoint_ops,
14673 0 /* from_tty */,
14674 utp->enabled /* enabled */,
14675 0 /* internal */,
14676 CREATE_BREAKPOINT_FLAGS_INSERTED))
14677 return NULL;
14678
14679 /* Get the tracepoint we just created. */
14680 tp = get_tracepoint (tracepoint_count);
14681 gdb_assert (tp != NULL);
14682
14683 if (utp->pass > 0)
14684 {
14685 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14686 tp->number);
14687
14688 trace_pass_command (small_buf, 0);
14689 }
14690
14691 /* If we have uploaded versions of the original commands, set up a
14692 special-purpose "reader" function and call the usual command line
14693 reader, then pass the result to the breakpoint command-setting
14694 function. */
14695 if (!utp->cmd_strings.empty ())
14696 {
14697 counted_command_line cmd_list;
14698
14699 this_utp = utp;
14700 next_cmd = 0;
14701
14702 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
14703
14704 breakpoint_set_commands (tp, std::move (cmd_list));
14705 }
14706 else if (!utp->actions.empty ()
14707 || !utp->step_actions.empty ())
14708 warning (_("Uploaded tracepoint %d actions "
14709 "have no source form, ignoring them"),
14710 utp->number);
14711
14712 /* Copy any status information that might be available. */
14713 tp->hit_count = utp->hit_count;
14714 tp->traceframe_usage = utp->traceframe_usage;
14715
14716 return tp;
14717 }
14718
14719 /* Print information on tracepoint number TPNUM_EXP, or all if
14720 omitted. */
14721
14722 static void
14723 info_tracepoints_command (const char *args, int from_tty)
14724 {
14725 struct ui_out *uiout = current_uiout;
14726 int num_printed;
14727
14728 num_printed = breakpoint_1 (args, false, is_tracepoint);
14729
14730 if (num_printed == 0)
14731 {
14732 if (args == NULL || *args == '\0')
14733 uiout->message ("No tracepoints.\n");
14734 else
14735 uiout->message ("No tracepoint matching '%s'.\n", args);
14736 }
14737
14738 default_collect_info ();
14739 }
14740
14741 /* The 'enable trace' command enables tracepoints.
14742 Not supported by all targets. */
14743 static void
14744 enable_trace_command (const char *args, int from_tty)
14745 {
14746 enable_command (args, from_tty);
14747 }
14748
14749 /* The 'disable trace' command disables tracepoints.
14750 Not supported by all targets. */
14751 static void
14752 disable_trace_command (const char *args, int from_tty)
14753 {
14754 disable_command (args, from_tty);
14755 }
14756
14757 /* Remove a tracepoint (or all if no argument). */
14758 static void
14759 delete_trace_command (const char *arg, int from_tty)
14760 {
14761 struct breakpoint *b, *b_tmp;
14762
14763 dont_repeat ();
14764
14765 if (arg == 0)
14766 {
14767 int breaks_to_delete = 0;
14768
14769 /* Delete all breakpoints if no argument.
14770 Do not delete internal or call-dummy breakpoints, these
14771 have to be deleted with an explicit breakpoint number
14772 argument. */
14773 ALL_TRACEPOINTS (b)
14774 if (is_tracepoint (b) && user_breakpoint_p (b))
14775 {
14776 breaks_to_delete = 1;
14777 break;
14778 }
14779
14780 /* Ask user only if there are some breakpoints to delete. */
14781 if (!from_tty
14782 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14783 {
14784 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14785 if (is_tracepoint (b) && user_breakpoint_p (b))
14786 delete_breakpoint (b);
14787 }
14788 }
14789 else
14790 map_breakpoint_numbers
14791 (arg, [&] (breakpoint *br)
14792 {
14793 iterate_over_related_breakpoints (br, delete_breakpoint);
14794 });
14795 }
14796
14797 /* Helper function for trace_pass_command. */
14798
14799 static void
14800 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14801 {
14802 tp->pass_count = count;
14803 gdb::observers::breakpoint_modified.notify (tp);
14804 if (from_tty)
14805 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14806 tp->number, count);
14807 }
14808
14809 /* Set passcount for tracepoint.
14810
14811 First command argument is passcount, second is tracepoint number.
14812 If tracepoint number omitted, apply to most recently defined.
14813 Also accepts special argument "all". */
14814
14815 static void
14816 trace_pass_command (const char *args, int from_tty)
14817 {
14818 struct tracepoint *t1;
14819 ULONGEST count;
14820
14821 if (args == 0 || *args == 0)
14822 error (_("passcount command requires an "
14823 "argument (count + optional TP num)"));
14824
14825 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14826
14827 args = skip_spaces (args);
14828 if (*args && strncasecmp (args, "all", 3) == 0)
14829 {
14830 struct breakpoint *b;
14831
14832 args += 3; /* Skip special argument "all". */
14833 if (*args)
14834 error (_("Junk at end of arguments."));
14835
14836 ALL_TRACEPOINTS (b)
14837 {
14838 t1 = (struct tracepoint *) b;
14839 trace_pass_set_count (t1, count, from_tty);
14840 }
14841 }
14842 else if (*args == '\0')
14843 {
14844 t1 = get_tracepoint_by_number (&args, NULL);
14845 if (t1)
14846 trace_pass_set_count (t1, count, from_tty);
14847 }
14848 else
14849 {
14850 number_or_range_parser parser (args);
14851 while (!parser.finished ())
14852 {
14853 t1 = get_tracepoint_by_number (&args, &parser);
14854 if (t1)
14855 trace_pass_set_count (t1, count, from_tty);
14856 }
14857 }
14858 }
14859
14860 struct tracepoint *
14861 get_tracepoint (int num)
14862 {
14863 struct breakpoint *t;
14864
14865 ALL_TRACEPOINTS (t)
14866 if (t->number == num)
14867 return (struct tracepoint *) t;
14868
14869 return NULL;
14870 }
14871
14872 /* Find the tracepoint with the given target-side number (which may be
14873 different from the tracepoint number after disconnecting and
14874 reconnecting). */
14875
14876 struct tracepoint *
14877 get_tracepoint_by_number_on_target (int num)
14878 {
14879 struct breakpoint *b;
14880
14881 ALL_TRACEPOINTS (b)
14882 {
14883 struct tracepoint *t = (struct tracepoint *) b;
14884
14885 if (t->number_on_target == num)
14886 return t;
14887 }
14888
14889 return NULL;
14890 }
14891
14892 /* Utility: parse a tracepoint number and look it up in the list.
14893 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14894 If the argument is missing, the most recent tracepoint
14895 (tracepoint_count) is returned. */
14896
14897 struct tracepoint *
14898 get_tracepoint_by_number (const char **arg,
14899 number_or_range_parser *parser)
14900 {
14901 struct breakpoint *t;
14902 int tpnum;
14903 const char *instring = arg == NULL ? NULL : *arg;
14904
14905 if (parser != NULL)
14906 {
14907 gdb_assert (!parser->finished ());
14908 tpnum = parser->get_number ();
14909 }
14910 else if (arg == NULL || *arg == NULL || ! **arg)
14911 tpnum = tracepoint_count;
14912 else
14913 tpnum = get_number (arg);
14914
14915 if (tpnum <= 0)
14916 {
14917 if (instring && *instring)
14918 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
14919 instring);
14920 else
14921 printf_filtered (_("No previous tracepoint\n"));
14922 return NULL;
14923 }
14924
14925 ALL_TRACEPOINTS (t)
14926 if (t->number == tpnum)
14927 {
14928 return (struct tracepoint *) t;
14929 }
14930
14931 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
14932 return NULL;
14933 }
14934
14935 void
14936 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
14937 {
14938 if (b->thread != -1)
14939 fprintf_unfiltered (fp, " thread %d", b->thread);
14940
14941 if (b->task != 0)
14942 fprintf_unfiltered (fp, " task %d", b->task);
14943
14944 fprintf_unfiltered (fp, "\n");
14945 }
14946
14947 /* Save information on user settable breakpoints (watchpoints, etc) to
14948 a new script file named FILENAME. If FILTER is non-NULL, call it
14949 on each breakpoint and only include the ones for which it returns
14950 true. */
14951
14952 static void
14953 save_breakpoints (const char *filename, int from_tty,
14954 bool (*filter) (const struct breakpoint *))
14955 {
14956 struct breakpoint *tp;
14957 int any = 0;
14958 int extra_trace_bits = 0;
14959
14960 if (filename == 0 || *filename == 0)
14961 error (_("Argument required (file name in which to save)"));
14962
14963 /* See if we have anything to save. */
14964 ALL_BREAKPOINTS (tp)
14965 {
14966 /* Skip internal and momentary breakpoints. */
14967 if (!user_breakpoint_p (tp))
14968 continue;
14969
14970 /* If we have a filter, only save the breakpoints it accepts. */
14971 if (filter && !filter (tp))
14972 continue;
14973
14974 any = 1;
14975
14976 if (is_tracepoint (tp))
14977 {
14978 extra_trace_bits = 1;
14979
14980 /* We can stop searching. */
14981 break;
14982 }
14983 }
14984
14985 if (!any)
14986 {
14987 warning (_("Nothing to save."));
14988 return;
14989 }
14990
14991 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
14992
14993 stdio_file fp;
14994
14995 if (!fp.open (expanded_filename.get (), "w"))
14996 error (_("Unable to open file '%s' for saving (%s)"),
14997 expanded_filename.get (), safe_strerror (errno));
14998
14999 if (extra_trace_bits)
15000 save_trace_state_variables (&fp);
15001
15002 ALL_BREAKPOINTS (tp)
15003 {
15004 /* Skip internal and momentary breakpoints. */
15005 if (!user_breakpoint_p (tp))
15006 continue;
15007
15008 /* If we have a filter, only save the breakpoints it accepts. */
15009 if (filter && !filter (tp))
15010 continue;
15011
15012 tp->ops->print_recreate (tp, &fp);
15013
15014 /* Note, we can't rely on tp->number for anything, as we can't
15015 assume the recreated breakpoint numbers will match. Use $bpnum
15016 instead. */
15017
15018 if (tp->cond_string)
15019 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15020
15021 if (tp->ignore_count)
15022 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15023
15024 if (tp->type != bp_dprintf && tp->commands)
15025 {
15026 fp.puts (" commands\n");
15027
15028 current_uiout->redirect (&fp);
15029 try
15030 {
15031 print_command_lines (current_uiout, tp->commands.get (), 2);
15032 }
15033 catch (const gdb_exception &ex)
15034 {
15035 current_uiout->redirect (NULL);
15036 throw;
15037 }
15038
15039 current_uiout->redirect (NULL);
15040 fp.puts (" end\n");
15041 }
15042
15043 if (tp->enable_state == bp_disabled)
15044 fp.puts ("disable $bpnum\n");
15045
15046 /* If this is a multi-location breakpoint, check if the locations
15047 should be individually disabled. Watchpoint locations are
15048 special, and not user visible. */
15049 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15050 {
15051 struct bp_location *loc;
15052 int n = 1;
15053
15054 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15055 if (!loc->enabled)
15056 fp.printf ("disable $bpnum.%d\n", n);
15057 }
15058 }
15059
15060 if (extra_trace_bits && *default_collect)
15061 fp.printf ("set default-collect %s\n", default_collect);
15062
15063 if (from_tty)
15064 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15065 }
15066
15067 /* The `save breakpoints' command. */
15068
15069 static void
15070 save_breakpoints_command (const char *args, int from_tty)
15071 {
15072 save_breakpoints (args, from_tty, NULL);
15073 }
15074
15075 /* The `save tracepoints' command. */
15076
15077 static void
15078 save_tracepoints_command (const char *args, int from_tty)
15079 {
15080 save_breakpoints (args, from_tty, is_tracepoint);
15081 }
15082
15083 /* Create a vector of all tracepoints. */
15084
15085 std::vector<breakpoint *>
15086 all_tracepoints (void)
15087 {
15088 std::vector<breakpoint *> tp_vec;
15089 struct breakpoint *tp;
15090
15091 ALL_TRACEPOINTS (tp)
15092 {
15093 tp_vec.push_back (tp);
15094 }
15095
15096 return tp_vec;
15097 }
15098
15099 \f
15100 /* This help string is used to consolidate all the help string for specifying
15101 locations used by several commands. */
15102
15103 #define LOCATION_HELP_STRING \
15104 "Linespecs are colon-separated lists of location parameters, such as\n\
15105 source filename, function name, label name, and line number.\n\
15106 Example: To specify the start of a label named \"the_top\" in the\n\
15107 function \"fact\" in the file \"factorial.c\", use\n\
15108 \"factorial.c:fact:the_top\".\n\
15109 \n\
15110 Address locations begin with \"*\" and specify an exact address in the\n\
15111 program. Example: To specify the fourth byte past the start function\n\
15112 \"main\", use \"*main + 4\".\n\
15113 \n\
15114 Explicit locations are similar to linespecs but use an option/argument\n\
15115 syntax to specify location parameters.\n\
15116 Example: To specify the start of the label named \"the_top\" in the\n\
15117 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15118 -function fact -label the_top\".\n\
15119 \n\
15120 By default, a specified function is matched against the program's\n\
15121 functions in all scopes. For C++, this means in all namespaces and\n\
15122 classes. For Ada, this means in all packages. E.g., in C++,\n\
15123 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15124 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15125 specified name as a complete fully-qualified name instead."
15126
15127 /* This help string is used for the break, hbreak, tbreak and thbreak
15128 commands. It is defined as a macro to prevent duplication.
15129 COMMAND should be a string constant containing the name of the
15130 command. */
15131
15132 #define BREAK_ARGS_HELP(command) \
15133 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15134 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15135 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15136 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15137 `-probe-dtrace' (for a DTrace probe).\n\
15138 LOCATION may be a linespec, address, or explicit location as described\n\
15139 below.\n\
15140 \n\
15141 With no LOCATION, uses current execution address of the selected\n\
15142 stack frame. This is useful for breaking on return to a stack frame.\n\
15143 \n\
15144 THREADNUM is the number from \"info threads\".\n\
15145 CONDITION is a boolean expression.\n\
15146 \n" LOCATION_HELP_STRING "\n\n\
15147 Multiple breakpoints at one place are permitted, and useful if their\n\
15148 conditions are different.\n\
15149 \n\
15150 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15151
15152 /* List of subcommands for "catch". */
15153 static struct cmd_list_element *catch_cmdlist;
15154
15155 /* List of subcommands for "tcatch". */
15156 static struct cmd_list_element *tcatch_cmdlist;
15157
15158 void
15159 add_catch_command (const char *name, const char *docstring,
15160 cmd_const_sfunc_ftype *sfunc,
15161 completer_ftype *completer,
15162 void *user_data_catch,
15163 void *user_data_tcatch)
15164 {
15165 struct cmd_list_element *command;
15166
15167 command = add_cmd (name, class_breakpoint, docstring,
15168 &catch_cmdlist);
15169 set_cmd_sfunc (command, sfunc);
15170 set_cmd_context (command, user_data_catch);
15171 set_cmd_completer (command, completer);
15172
15173 command = add_cmd (name, class_breakpoint, docstring,
15174 &tcatch_cmdlist);
15175 set_cmd_sfunc (command, sfunc);
15176 set_cmd_context (command, user_data_tcatch);
15177 set_cmd_completer (command, completer);
15178 }
15179
15180 struct breakpoint *
15181 iterate_over_breakpoints (gdb::function_view<bool (breakpoint *)> callback)
15182 {
15183 struct breakpoint *b, *b_tmp;
15184
15185 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15186 {
15187 if (callback (b))
15188 return b;
15189 }
15190
15191 return NULL;
15192 }
15193
15194 /* Zero if any of the breakpoint's locations could be a location where
15195 functions have been inlined, nonzero otherwise. */
15196
15197 static int
15198 is_non_inline_function (struct breakpoint *b)
15199 {
15200 /* The shared library event breakpoint is set on the address of a
15201 non-inline function. */
15202 if (b->type == bp_shlib_event)
15203 return 1;
15204
15205 return 0;
15206 }
15207
15208 /* Nonzero if the specified PC cannot be a location where functions
15209 have been inlined. */
15210
15211 int
15212 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15213 const struct target_waitstatus *ws)
15214 {
15215 struct breakpoint *b;
15216 struct bp_location *bl;
15217
15218 ALL_BREAKPOINTS (b)
15219 {
15220 if (!is_non_inline_function (b))
15221 continue;
15222
15223 for (bl = b->loc; bl != NULL; bl = bl->next)
15224 {
15225 if (!bl->shlib_disabled
15226 && bpstat_check_location (bl, aspace, pc, ws))
15227 return 1;
15228 }
15229 }
15230
15231 return 0;
15232 }
15233
15234 /* Remove any references to OBJFILE which is going to be freed. */
15235
15236 void
15237 breakpoint_free_objfile (struct objfile *objfile)
15238 {
15239 struct bp_location **locp, *loc;
15240
15241 ALL_BP_LOCATIONS (loc, locp)
15242 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15243 loc->symtab = NULL;
15244 }
15245
15246 void
15247 initialize_breakpoint_ops (void)
15248 {
15249 static int initialized = 0;
15250
15251 struct breakpoint_ops *ops;
15252
15253 if (initialized)
15254 return;
15255 initialized = 1;
15256
15257 /* The breakpoint_ops structure to be inherit by all kinds of
15258 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15259 internal and momentary breakpoints, etc.). */
15260 ops = &bkpt_base_breakpoint_ops;
15261 *ops = base_breakpoint_ops;
15262 ops->re_set = bkpt_re_set;
15263 ops->insert_location = bkpt_insert_location;
15264 ops->remove_location = bkpt_remove_location;
15265 ops->breakpoint_hit = bkpt_breakpoint_hit;
15266 ops->create_sals_from_location = bkpt_create_sals_from_location;
15267 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15268 ops->decode_location = bkpt_decode_location;
15269
15270 /* The breakpoint_ops structure to be used in regular breakpoints. */
15271 ops = &bkpt_breakpoint_ops;
15272 *ops = bkpt_base_breakpoint_ops;
15273 ops->re_set = bkpt_re_set;
15274 ops->resources_needed = bkpt_resources_needed;
15275 ops->print_it = bkpt_print_it;
15276 ops->print_mention = bkpt_print_mention;
15277 ops->print_recreate = bkpt_print_recreate;
15278
15279 /* Ranged breakpoints. */
15280 ops = &ranged_breakpoint_ops;
15281 *ops = bkpt_breakpoint_ops;
15282 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15283 ops->resources_needed = resources_needed_ranged_breakpoint;
15284 ops->print_it = print_it_ranged_breakpoint;
15285 ops->print_one = print_one_ranged_breakpoint;
15286 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15287 ops->print_mention = print_mention_ranged_breakpoint;
15288 ops->print_recreate = print_recreate_ranged_breakpoint;
15289
15290 /* Internal breakpoints. */
15291 ops = &internal_breakpoint_ops;
15292 *ops = bkpt_base_breakpoint_ops;
15293 ops->re_set = internal_bkpt_re_set;
15294 ops->check_status = internal_bkpt_check_status;
15295 ops->print_it = internal_bkpt_print_it;
15296 ops->print_mention = internal_bkpt_print_mention;
15297
15298 /* Momentary breakpoints. */
15299 ops = &momentary_breakpoint_ops;
15300 *ops = bkpt_base_breakpoint_ops;
15301 ops->re_set = momentary_bkpt_re_set;
15302 ops->check_status = momentary_bkpt_check_status;
15303 ops->print_it = momentary_bkpt_print_it;
15304 ops->print_mention = momentary_bkpt_print_mention;
15305
15306 /* Probe breakpoints. */
15307 ops = &bkpt_probe_breakpoint_ops;
15308 *ops = bkpt_breakpoint_ops;
15309 ops->insert_location = bkpt_probe_insert_location;
15310 ops->remove_location = bkpt_probe_remove_location;
15311 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15312 ops->decode_location = bkpt_probe_decode_location;
15313
15314 /* Watchpoints. */
15315 ops = &watchpoint_breakpoint_ops;
15316 *ops = base_breakpoint_ops;
15317 ops->re_set = re_set_watchpoint;
15318 ops->insert_location = insert_watchpoint;
15319 ops->remove_location = remove_watchpoint;
15320 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15321 ops->check_status = check_status_watchpoint;
15322 ops->resources_needed = resources_needed_watchpoint;
15323 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15324 ops->print_it = print_it_watchpoint;
15325 ops->print_mention = print_mention_watchpoint;
15326 ops->print_recreate = print_recreate_watchpoint;
15327 ops->explains_signal = explains_signal_watchpoint;
15328
15329 /* Masked watchpoints. */
15330 ops = &masked_watchpoint_breakpoint_ops;
15331 *ops = watchpoint_breakpoint_ops;
15332 ops->insert_location = insert_masked_watchpoint;
15333 ops->remove_location = remove_masked_watchpoint;
15334 ops->resources_needed = resources_needed_masked_watchpoint;
15335 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15336 ops->print_it = print_it_masked_watchpoint;
15337 ops->print_one_detail = print_one_detail_masked_watchpoint;
15338 ops->print_mention = print_mention_masked_watchpoint;
15339 ops->print_recreate = print_recreate_masked_watchpoint;
15340
15341 /* Tracepoints. */
15342 ops = &tracepoint_breakpoint_ops;
15343 *ops = base_breakpoint_ops;
15344 ops->re_set = tracepoint_re_set;
15345 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15346 ops->print_one_detail = tracepoint_print_one_detail;
15347 ops->print_mention = tracepoint_print_mention;
15348 ops->print_recreate = tracepoint_print_recreate;
15349 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15350 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15351 ops->decode_location = tracepoint_decode_location;
15352
15353 /* Probe tracepoints. */
15354 ops = &tracepoint_probe_breakpoint_ops;
15355 *ops = tracepoint_breakpoint_ops;
15356 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15357 ops->decode_location = tracepoint_probe_decode_location;
15358
15359 /* Static tracepoints with marker (`-m'). */
15360 ops = &strace_marker_breakpoint_ops;
15361 *ops = tracepoint_breakpoint_ops;
15362 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15363 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15364 ops->decode_location = strace_marker_decode_location;
15365
15366 /* Fork catchpoints. */
15367 ops = &catch_fork_breakpoint_ops;
15368 *ops = base_breakpoint_ops;
15369 ops->insert_location = insert_catch_fork;
15370 ops->remove_location = remove_catch_fork;
15371 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15372 ops->print_it = print_it_catch_fork;
15373 ops->print_one = print_one_catch_fork;
15374 ops->print_mention = print_mention_catch_fork;
15375 ops->print_recreate = print_recreate_catch_fork;
15376
15377 /* Vfork catchpoints. */
15378 ops = &catch_vfork_breakpoint_ops;
15379 *ops = base_breakpoint_ops;
15380 ops->insert_location = insert_catch_vfork;
15381 ops->remove_location = remove_catch_vfork;
15382 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15383 ops->print_it = print_it_catch_vfork;
15384 ops->print_one = print_one_catch_vfork;
15385 ops->print_mention = print_mention_catch_vfork;
15386 ops->print_recreate = print_recreate_catch_vfork;
15387
15388 /* Exec catchpoints. */
15389 ops = &catch_exec_breakpoint_ops;
15390 *ops = base_breakpoint_ops;
15391 ops->insert_location = insert_catch_exec;
15392 ops->remove_location = remove_catch_exec;
15393 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15394 ops->print_it = print_it_catch_exec;
15395 ops->print_one = print_one_catch_exec;
15396 ops->print_mention = print_mention_catch_exec;
15397 ops->print_recreate = print_recreate_catch_exec;
15398
15399 /* Solib-related catchpoints. */
15400 ops = &catch_solib_breakpoint_ops;
15401 *ops = base_breakpoint_ops;
15402 ops->insert_location = insert_catch_solib;
15403 ops->remove_location = remove_catch_solib;
15404 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15405 ops->check_status = check_status_catch_solib;
15406 ops->print_it = print_it_catch_solib;
15407 ops->print_one = print_one_catch_solib;
15408 ops->print_mention = print_mention_catch_solib;
15409 ops->print_recreate = print_recreate_catch_solib;
15410
15411 ops = &dprintf_breakpoint_ops;
15412 *ops = bkpt_base_breakpoint_ops;
15413 ops->re_set = dprintf_re_set;
15414 ops->resources_needed = bkpt_resources_needed;
15415 ops->print_it = bkpt_print_it;
15416 ops->print_mention = bkpt_print_mention;
15417 ops->print_recreate = dprintf_print_recreate;
15418 ops->after_condition_true = dprintf_after_condition_true;
15419 ops->breakpoint_hit = dprintf_breakpoint_hit;
15420 }
15421
15422 /* Chain containing all defined "enable breakpoint" subcommands. */
15423
15424 static struct cmd_list_element *enablebreaklist = NULL;
15425
15426 /* See breakpoint.h. */
15427
15428 cmd_list_element *commands_cmd_element = nullptr;
15429
15430 void _initialize_breakpoint ();
15431 void
15432 _initialize_breakpoint ()
15433 {
15434 struct cmd_list_element *c;
15435
15436 initialize_breakpoint_ops ();
15437
15438 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15439 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15440 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15441
15442 breakpoint_chain = 0;
15443 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15444 before a breakpoint is set. */
15445 breakpoint_count = 0;
15446
15447 tracepoint_count = 0;
15448
15449 add_com ("ignore", class_breakpoint, ignore_command, _("\
15450 Set ignore-count of breakpoint number N to COUNT.\n\
15451 Usage is `ignore N COUNT'."));
15452
15453 commands_cmd_element = add_com ("commands", class_breakpoint,
15454 commands_command, _("\
15455 Set commands to be executed when the given breakpoints are hit.\n\
15456 Give a space-separated breakpoint list as argument after \"commands\".\n\
15457 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15458 (e.g. `5-7').\n\
15459 With no argument, the targeted breakpoint is the last one set.\n\
15460 The commands themselves follow starting on the next line.\n\
15461 Type a line containing \"end\" to indicate the end of them.\n\
15462 Give \"silent\" as the first line to make the breakpoint silent;\n\
15463 then no output is printed when it is hit, except what the commands print."));
15464
15465 c = add_com ("condition", class_breakpoint, condition_command, _("\
15466 Specify breakpoint number N to break only if COND is true.\n\
15467 Usage is `condition N COND', where N is an integer and COND is an\n\
15468 expression to be evaluated whenever breakpoint N is reached."));
15469 set_cmd_completer (c, condition_completer);
15470
15471 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15472 Set a temporary breakpoint.\n\
15473 Like \"break\" except the breakpoint is only temporary,\n\
15474 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15475 by using \"enable delete\" on the breakpoint number.\n\
15476 \n"
15477 BREAK_ARGS_HELP ("tbreak")));
15478 set_cmd_completer (c, location_completer);
15479
15480 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15481 Set a hardware assisted breakpoint.\n\
15482 Like \"break\" except the breakpoint requires hardware support,\n\
15483 some target hardware may not have this support.\n\
15484 \n"
15485 BREAK_ARGS_HELP ("hbreak")));
15486 set_cmd_completer (c, location_completer);
15487
15488 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15489 Set a temporary hardware assisted breakpoint.\n\
15490 Like \"hbreak\" except the breakpoint is only temporary,\n\
15491 so it will be deleted when hit.\n\
15492 \n"
15493 BREAK_ARGS_HELP ("thbreak")));
15494 set_cmd_completer (c, location_completer);
15495
15496 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15497 Enable all or some breakpoints.\n\
15498 Usage: enable [BREAKPOINTNUM]...\n\
15499 Give breakpoint numbers (separated by spaces) as arguments.\n\
15500 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15501 This is used to cancel the effect of the \"disable\" command.\n\
15502 With a subcommand you can enable temporarily."),
15503 &enablelist, "enable ", 1, &cmdlist);
15504
15505 add_com_alias ("en", "enable", class_breakpoint, 1);
15506
15507 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15508 Enable all or some breakpoints.\n\
15509 Usage: enable breakpoints [BREAKPOINTNUM]...\n\
15510 Give breakpoint numbers (separated by spaces) as arguments.\n\
15511 This is used to cancel the effect of the \"disable\" command.\n\
15512 May be abbreviated to simply \"enable\"."),
15513 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15514
15515 add_cmd ("once", no_class, enable_once_command, _("\
15516 Enable some breakpoints for one hit.\n\
15517 Usage: enable breakpoints once BREAKPOINTNUM...\n\
15518 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15519 &enablebreaklist);
15520
15521 add_cmd ("delete", no_class, enable_delete_command, _("\
15522 Enable some breakpoints and delete when hit.\n\
15523 Usage: enable breakpoints delete BREAKPOINTNUM...\n\
15524 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15525 &enablebreaklist);
15526
15527 add_cmd ("count", no_class, enable_count_command, _("\
15528 Enable some breakpoints for COUNT hits.\n\
15529 Usage: enable breakpoints count COUNT BREAKPOINTNUM...\n\
15530 If a breakpoint is hit while enabled in this fashion,\n\
15531 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15532 &enablebreaklist);
15533
15534 add_cmd ("delete", no_class, enable_delete_command, _("\
15535 Enable some breakpoints and delete when hit.\n\
15536 Usage: enable delete BREAKPOINTNUM...\n\
15537 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15538 &enablelist);
15539
15540 add_cmd ("once", no_class, enable_once_command, _("\
15541 Enable some breakpoints for one hit.\n\
15542 Usage: enable once BREAKPOINTNUM...\n\
15543 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15544 &enablelist);
15545
15546 add_cmd ("count", no_class, enable_count_command, _("\
15547 Enable some breakpoints for COUNT hits.\n\
15548 Usage: enable count COUNT BREAKPOINTNUM...\n\
15549 If a breakpoint is hit while enabled in this fashion,\n\
15550 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15551 &enablelist);
15552
15553 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15554 Disable all or some breakpoints.\n\
15555 Usage: disable [BREAKPOINTNUM]...\n\
15556 Arguments are breakpoint numbers with spaces in between.\n\
15557 To disable all breakpoints, give no argument.\n\
15558 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15559 &disablelist, "disable ", 1, &cmdlist);
15560 add_com_alias ("dis", "disable", class_breakpoint, 1);
15561 add_com_alias ("disa", "disable", class_breakpoint, 1);
15562
15563 add_cmd ("breakpoints", class_breakpoint, disable_command, _("\
15564 Disable all or some breakpoints.\n\
15565 Usage: disable breakpoints [BREAKPOINTNUM]...\n\
15566 Arguments are breakpoint numbers with spaces in between.\n\
15567 To disable all breakpoints, give no argument.\n\
15568 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15569 This command may be abbreviated \"disable\"."),
15570 &disablelist);
15571
15572 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15573 Delete all or some breakpoints.\n\
15574 Usage: delete [BREAKPOINTNUM]...\n\
15575 Arguments are breakpoint numbers with spaces in between.\n\
15576 To delete all breakpoints, give no argument.\n\
15577 \n\
15578 Also a prefix command for deletion of other GDB objects."),
15579 &deletelist, "delete ", 1, &cmdlist);
15580 add_com_alias ("d", "delete", class_breakpoint, 1);
15581 add_com_alias ("del", "delete", class_breakpoint, 1);
15582
15583 add_cmd ("breakpoints", class_breakpoint, delete_command, _("\
15584 Delete all or some breakpoints or auto-display expressions.\n\
15585 Usage: delete breakpoints [BREAKPOINTNUM]...\n\
15586 Arguments are breakpoint numbers with spaces in between.\n\
15587 To delete all breakpoints, give no argument.\n\
15588 This command may be abbreviated \"delete\"."),
15589 &deletelist);
15590
15591 add_com ("clear", class_breakpoint, clear_command, _("\
15592 Clear breakpoint at specified location.\n\
15593 Argument may be a linespec, explicit, or address location as described below.\n\
15594 \n\
15595 With no argument, clears all breakpoints in the line that the selected frame\n\
15596 is executing in.\n"
15597 "\n" LOCATION_HELP_STRING "\n\n\
15598 See also the \"delete\" command which clears breakpoints by number."));
15599 add_com_alias ("cl", "clear", class_breakpoint, 1);
15600
15601 c = add_com ("break", class_breakpoint, break_command, _("\
15602 Set breakpoint at specified location.\n"
15603 BREAK_ARGS_HELP ("break")));
15604 set_cmd_completer (c, location_completer);
15605
15606 add_com_alias ("b", "break", class_run, 1);
15607 add_com_alias ("br", "break", class_run, 1);
15608 add_com_alias ("bre", "break", class_run, 1);
15609 add_com_alias ("brea", "break", class_run, 1);
15610
15611 if (dbx_commands)
15612 {
15613 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15614 Break in function/address or break at a line in the current file."),
15615 &stoplist, "stop ", 1, &cmdlist);
15616 add_cmd ("in", class_breakpoint, stopin_command,
15617 _("Break in function or address."), &stoplist);
15618 add_cmd ("at", class_breakpoint, stopat_command,
15619 _("Break at a line in the current file."), &stoplist);
15620 add_com ("status", class_info, info_breakpoints_command, _("\
15621 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15622 The \"Type\" column indicates one of:\n\
15623 \tbreakpoint - normal breakpoint\n\
15624 \twatchpoint - watchpoint\n\
15625 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15626 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15627 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15628 address and file/line number respectively.\n\
15629 \n\
15630 Convenience variable \"$_\" and default examine address for \"x\"\n\
15631 are set to the address of the last breakpoint listed unless the command\n\
15632 is prefixed with \"server \".\n\n\
15633 Convenience variable \"$bpnum\" contains the number of the last\n\
15634 breakpoint set."));
15635 }
15636
15637 add_info ("breakpoints", info_breakpoints_command, _("\
15638 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15639 The \"Type\" column indicates one of:\n\
15640 \tbreakpoint - normal breakpoint\n\
15641 \twatchpoint - watchpoint\n\
15642 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15643 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15644 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15645 address and file/line number respectively.\n\
15646 \n\
15647 Convenience variable \"$_\" and default examine address for \"x\"\n\
15648 are set to the address of the last breakpoint listed unless the command\n\
15649 is prefixed with \"server \".\n\n\
15650 Convenience variable \"$bpnum\" contains the number of the last\n\
15651 breakpoint set."));
15652
15653 add_info_alias ("b", "breakpoints", 1);
15654
15655 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15656 Status of all breakpoints, or breakpoint number NUMBER.\n\
15657 The \"Type\" column indicates one of:\n\
15658 \tbreakpoint - normal breakpoint\n\
15659 \twatchpoint - watchpoint\n\
15660 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15661 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15662 \tuntil - internal breakpoint used by the \"until\" command\n\
15663 \tfinish - internal breakpoint used by the \"finish\" command\n\
15664 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15665 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15666 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15667 address and file/line number respectively.\n\
15668 \n\
15669 Convenience variable \"$_\" and default examine address for \"x\"\n\
15670 are set to the address of the last breakpoint listed unless the command\n\
15671 is prefixed with \"server \".\n\n\
15672 Convenience variable \"$bpnum\" contains the number of the last\n\
15673 breakpoint set."),
15674 &maintenanceinfolist);
15675
15676 add_basic_prefix_cmd ("catch", class_breakpoint, _("\
15677 Set catchpoints to catch events."),
15678 &catch_cmdlist, "catch ",
15679 0/*allow-unknown*/, &cmdlist);
15680
15681 add_basic_prefix_cmd ("tcatch", class_breakpoint, _("\
15682 Set temporary catchpoints to catch events."),
15683 &tcatch_cmdlist, "tcatch ",
15684 0/*allow-unknown*/, &cmdlist);
15685
15686 add_catch_command ("fork", _("Catch calls to fork."),
15687 catch_fork_command_1,
15688 NULL,
15689 (void *) (uintptr_t) catch_fork_permanent,
15690 (void *) (uintptr_t) catch_fork_temporary);
15691 add_catch_command ("vfork", _("Catch calls to vfork."),
15692 catch_fork_command_1,
15693 NULL,
15694 (void *) (uintptr_t) catch_vfork_permanent,
15695 (void *) (uintptr_t) catch_vfork_temporary);
15696 add_catch_command ("exec", _("Catch calls to exec."),
15697 catch_exec_command_1,
15698 NULL,
15699 CATCH_PERMANENT,
15700 CATCH_TEMPORARY);
15701 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15702 Usage: catch load [REGEX]\n\
15703 If REGEX is given, only stop for libraries matching the regular expression."),
15704 catch_load_command_1,
15705 NULL,
15706 CATCH_PERMANENT,
15707 CATCH_TEMPORARY);
15708 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15709 Usage: catch unload [REGEX]\n\
15710 If REGEX is given, only stop for libraries matching the regular expression."),
15711 catch_unload_command_1,
15712 NULL,
15713 CATCH_PERMANENT,
15714 CATCH_TEMPORARY);
15715
15716 c = add_com ("watch", class_breakpoint, watch_command, _("\
15717 Set a watchpoint for an expression.\n\
15718 Usage: watch [-l|-location] EXPRESSION\n\
15719 A watchpoint stops execution of your program whenever the value of\n\
15720 an expression changes.\n\
15721 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15722 the memory to which it refers."));
15723 set_cmd_completer (c, expression_completer);
15724
15725 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15726 Set a read watchpoint for an expression.\n\
15727 Usage: rwatch [-l|-location] EXPRESSION\n\
15728 A watchpoint stops execution of your program whenever the value of\n\
15729 an expression is read.\n\
15730 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15731 the memory to which it refers."));
15732 set_cmd_completer (c, expression_completer);
15733
15734 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15735 Set a watchpoint for an expression.\n\
15736 Usage: awatch [-l|-location] EXPRESSION\n\
15737 A watchpoint stops execution of your program whenever the value of\n\
15738 an expression is either read or written.\n\
15739 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15740 the memory to which it refers."));
15741 set_cmd_completer (c, expression_completer);
15742
15743 add_info ("watchpoints", info_watchpoints_command, _("\
15744 Status of specified watchpoints (all watchpoints if no argument)."));
15745
15746 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15747 respond to changes - contrary to the description. */
15748 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15749 &can_use_hw_watchpoints, _("\
15750 Set debugger's willingness to use watchpoint hardware."), _("\
15751 Show debugger's willingness to use watchpoint hardware."), _("\
15752 If zero, gdb will not use hardware for new watchpoints, even if\n\
15753 such is available. (However, any hardware watchpoints that were\n\
15754 created before setting this to nonzero, will continue to use watchpoint\n\
15755 hardware.)"),
15756 NULL,
15757 show_can_use_hw_watchpoints,
15758 &setlist, &showlist);
15759
15760 can_use_hw_watchpoints = 1;
15761
15762 /* Tracepoint manipulation commands. */
15763
15764 c = add_com ("trace", class_breakpoint, trace_command, _("\
15765 Set a tracepoint at specified location.\n\
15766 \n"
15767 BREAK_ARGS_HELP ("trace") "\n\
15768 Do \"help tracepoints\" for info on other tracepoint commands."));
15769 set_cmd_completer (c, location_completer);
15770
15771 add_com_alias ("tp", "trace", class_breakpoint, 0);
15772 add_com_alias ("tr", "trace", class_breakpoint, 1);
15773 add_com_alias ("tra", "trace", class_breakpoint, 1);
15774 add_com_alias ("trac", "trace", class_breakpoint, 1);
15775
15776 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15777 Set a fast tracepoint at specified location.\n\
15778 \n"
15779 BREAK_ARGS_HELP ("ftrace") "\n\
15780 Do \"help tracepoints\" for info on other tracepoint commands."));
15781 set_cmd_completer (c, location_completer);
15782
15783 c = add_com ("strace", class_breakpoint, strace_command, _("\
15784 Set a static tracepoint at location or marker.\n\
15785 \n\
15786 strace [LOCATION] [if CONDITION]\n\
15787 LOCATION may be a linespec, explicit, or address location (described below) \n\
15788 or -m MARKER_ID.\n\n\
15789 If a marker id is specified, probe the marker with that name. With\n\
15790 no LOCATION, uses current execution address of the selected stack frame.\n\
15791 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15792 This collects arbitrary user data passed in the probe point call to the\n\
15793 tracing library. You can inspect it when analyzing the trace buffer,\n\
15794 by printing the $_sdata variable like any other convenience variable.\n\
15795 \n\
15796 CONDITION is a boolean expression.\n\
15797 \n" LOCATION_HELP_STRING "\n\n\
15798 Multiple tracepoints at one place are permitted, and useful if their\n\
15799 conditions are different.\n\
15800 \n\
15801 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15802 Do \"help tracepoints\" for info on other tracepoint commands."));
15803 set_cmd_completer (c, location_completer);
15804
15805 add_info ("tracepoints", info_tracepoints_command, _("\
15806 Status of specified tracepoints (all tracepoints if no argument).\n\
15807 Convenience variable \"$tpnum\" contains the number of the\n\
15808 last tracepoint set."));
15809
15810 add_info_alias ("tp", "tracepoints", 1);
15811
15812 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15813 Delete specified tracepoints.\n\
15814 Arguments are tracepoint numbers, separated by spaces.\n\
15815 No argument means delete all tracepoints."),
15816 &deletelist);
15817 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15818
15819 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15820 Disable specified tracepoints.\n\
15821 Arguments are tracepoint numbers, separated by spaces.\n\
15822 No argument means disable all tracepoints."),
15823 &disablelist);
15824 deprecate_cmd (c, "disable");
15825
15826 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15827 Enable specified tracepoints.\n\
15828 Arguments are tracepoint numbers, separated by spaces.\n\
15829 No argument means enable all tracepoints."),
15830 &enablelist);
15831 deprecate_cmd (c, "enable");
15832
15833 add_com ("passcount", class_trace, trace_pass_command, _("\
15834 Set the passcount for a tracepoint.\n\
15835 The trace will end when the tracepoint has been passed 'count' times.\n\
15836 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15837 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15838
15839 add_basic_prefix_cmd ("save", class_breakpoint,
15840 _("Save breakpoint definitions as a script."),
15841 &save_cmdlist, "save ",
15842 0/*allow-unknown*/, &cmdlist);
15843
15844 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15845 Save current breakpoint definitions as a script.\n\
15846 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15847 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15848 session to restore them."),
15849 &save_cmdlist);
15850 set_cmd_completer (c, filename_completer);
15851
15852 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15853 Save current tracepoint definitions as a script.\n\
15854 Use the 'source' command in another debug session to restore them."),
15855 &save_cmdlist);
15856 set_cmd_completer (c, filename_completer);
15857
15858 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15859 deprecate_cmd (c, "save tracepoints");
15860
15861 add_basic_prefix_cmd ("breakpoint", class_maintenance, _("\
15862 Breakpoint specific settings.\n\
15863 Configure various breakpoint-specific variables such as\n\
15864 pending breakpoint behavior."),
15865 &breakpoint_set_cmdlist, "set breakpoint ",
15866 0/*allow-unknown*/, &setlist);
15867 add_show_prefix_cmd ("breakpoint", class_maintenance, _("\
15868 Breakpoint specific settings.\n\
15869 Configure various breakpoint-specific variables such as\n\
15870 pending breakpoint behavior."),
15871 &breakpoint_show_cmdlist, "show breakpoint ",
15872 0/*allow-unknown*/, &showlist);
15873
15874 add_setshow_auto_boolean_cmd ("pending", no_class,
15875 &pending_break_support, _("\
15876 Set debugger's behavior regarding pending breakpoints."), _("\
15877 Show debugger's behavior regarding pending breakpoints."), _("\
15878 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15879 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15880 an error. If auto, an unrecognized breakpoint location results in a\n\
15881 user-query to see if a pending breakpoint should be created."),
15882 NULL,
15883 show_pending_break_support,
15884 &breakpoint_set_cmdlist,
15885 &breakpoint_show_cmdlist);
15886
15887 pending_break_support = AUTO_BOOLEAN_AUTO;
15888
15889 add_setshow_boolean_cmd ("auto-hw", no_class,
15890 &automatic_hardware_breakpoints, _("\
15891 Set automatic usage of hardware breakpoints."), _("\
15892 Show automatic usage of hardware breakpoints."), _("\
15893 If set, the debugger will automatically use hardware breakpoints for\n\
15894 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15895 a warning will be emitted for such breakpoints."),
15896 NULL,
15897 show_automatic_hardware_breakpoints,
15898 &breakpoint_set_cmdlist,
15899 &breakpoint_show_cmdlist);
15900
15901 add_setshow_boolean_cmd ("always-inserted", class_support,
15902 &always_inserted_mode, _("\
15903 Set mode for inserting breakpoints."), _("\
15904 Show mode for inserting breakpoints."), _("\
15905 When this mode is on, breakpoints are inserted immediately as soon as\n\
15906 they're created, kept inserted even when execution stops, and removed\n\
15907 only when the user deletes them. When this mode is off (the default),\n\
15908 breakpoints are inserted only when execution continues, and removed\n\
15909 when execution stops."),
15910 NULL,
15911 &show_always_inserted_mode,
15912 &breakpoint_set_cmdlist,
15913 &breakpoint_show_cmdlist);
15914
15915 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
15916 condition_evaluation_enums,
15917 &condition_evaluation_mode_1, _("\
15918 Set mode of breakpoint condition evaluation."), _("\
15919 Show mode of breakpoint condition evaluation."), _("\
15920 When this is set to \"host\", breakpoint conditions will be\n\
15921 evaluated on the host's side by GDB. When it is set to \"target\",\n\
15922 breakpoint conditions will be downloaded to the target (if the target\n\
15923 supports such feature) and conditions will be evaluated on the target's side.\n\
15924 If this is set to \"auto\" (default), this will be automatically set to\n\
15925 \"target\" if it supports condition evaluation, otherwise it will\n\
15926 be set to \"gdb\""),
15927 &set_condition_evaluation_mode,
15928 &show_condition_evaluation_mode,
15929 &breakpoint_set_cmdlist,
15930 &breakpoint_show_cmdlist);
15931
15932 add_com ("break-range", class_breakpoint, break_range_command, _("\
15933 Set a breakpoint for an address range.\n\
15934 break-range START-LOCATION, END-LOCATION\n\
15935 where START-LOCATION and END-LOCATION can be one of the following:\n\
15936 LINENUM, for that line in the current file,\n\
15937 FILE:LINENUM, for that line in that file,\n\
15938 +OFFSET, for that number of lines after the current line\n\
15939 or the start of the range\n\
15940 FUNCTION, for the first line in that function,\n\
15941 FILE:FUNCTION, to distinguish among like-named static functions.\n\
15942 *ADDRESS, for the instruction at that address.\n\
15943 \n\
15944 The breakpoint will stop execution of the inferior whenever it executes\n\
15945 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
15946 range (including START-LOCATION and END-LOCATION)."));
15947
15948 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
15949 Set a dynamic printf at specified location.\n\
15950 dprintf location,format string,arg1,arg2,...\n\
15951 location may be a linespec, explicit, or address location.\n"
15952 "\n" LOCATION_HELP_STRING));
15953 set_cmd_completer (c, location_completer);
15954
15955 add_setshow_enum_cmd ("dprintf-style", class_support,
15956 dprintf_style_enums, &dprintf_style, _("\
15957 Set the style of usage for dynamic printf."), _("\
15958 Show the style of usage for dynamic printf."), _("\
15959 This setting chooses how GDB will do a dynamic printf.\n\
15960 If the value is \"gdb\", then the printing is done by GDB to its own\n\
15961 console, as with the \"printf\" command.\n\
15962 If the value is \"call\", the print is done by calling a function in your\n\
15963 program; by default printf(), but you can choose a different function or\n\
15964 output stream by setting dprintf-function and dprintf-channel."),
15965 update_dprintf_commands, NULL,
15966 &setlist, &showlist);
15967
15968 dprintf_function = xstrdup ("printf");
15969 add_setshow_string_cmd ("dprintf-function", class_support,
15970 &dprintf_function, _("\
15971 Set the function to use for dynamic printf."), _("\
15972 Show the function to use for dynamic printf."), NULL,
15973 update_dprintf_commands, NULL,
15974 &setlist, &showlist);
15975
15976 dprintf_channel = xstrdup ("");
15977 add_setshow_string_cmd ("dprintf-channel", class_support,
15978 &dprintf_channel, _("\
15979 Set the channel to use for dynamic printf."), _("\
15980 Show the channel to use for dynamic printf."), NULL,
15981 update_dprintf_commands, NULL,
15982 &setlist, &showlist);
15983
15984 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
15985 &disconnected_dprintf, _("\
15986 Set whether dprintf continues after GDB disconnects."), _("\
15987 Show whether dprintf continues after GDB disconnects."), _("\
15988 Use this to let dprintf commands continue to hit and produce output\n\
15989 even if GDB disconnects or detaches from the target."),
15990 NULL,
15991 NULL,
15992 &setlist, &showlist);
15993
15994 add_com ("agent-printf", class_vars, agent_printf_command, _("\
15995 Target agent only formatted printing, like the C \"printf\" function.\n\
15996 Usage: agent-printf \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
15997 This supports most C printf format specifications, like %s, %d, etc.\n\
15998 This is useful for formatted output in user-defined commands."));
15999
16000 automatic_hardware_breakpoints = true;
16001
16002 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
16003 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
16004 }
This page took 0.360058 seconds and 4 git commands to generate.