Add command support for Guile.
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include <string.h>
40 #include "gdb-demangle.h"
41 #include "filenames.h"
42 #include "annotate.h"
43 #include "symfile.h"
44 #include "objfiles.h"
45 #include "source.h"
46 #include "linespec.h"
47 #include "completer.h"
48 #include "gdb.h"
49 #include "ui-out.h"
50 #include "cli/cli-script.h"
51 #include "gdb_assert.h"
52 #include "block.h"
53 #include "solib.h"
54 #include "solist.h"
55 #include "observer.h"
56 #include "exceptions.h"
57 #include "memattr.h"
58 #include "ada-lang.h"
59 #include "top.h"
60 #include "valprint.h"
61 #include "jit.h"
62 #include "xml-syscall.h"
63 #include "parser-defs.h"
64 #include "gdb_regex.h"
65 #include "probe.h"
66 #include "cli/cli-utils.h"
67 #include "continuations.h"
68 #include "stack.h"
69 #include "skip.h"
70 #include "ax-gdb.h"
71 #include "dummy-frame.h"
72
73 #include "format.h"
74
75 /* readline include files */
76 #include "readline/readline.h"
77 #include "readline/history.h"
78
79 /* readline defines this. */
80 #undef savestring
81
82 #include "mi/mi-common.h"
83 #include "extension.h"
84
85 /* Enums for exception-handling support. */
86 enum exception_event_kind
87 {
88 EX_EVENT_THROW,
89 EX_EVENT_RETHROW,
90 EX_EVENT_CATCH
91 };
92
93 /* Prototypes for local functions. */
94
95 static void enable_delete_command (char *, int);
96
97 static void enable_once_command (char *, int);
98
99 static void enable_count_command (char *, int);
100
101 static void disable_command (char *, int);
102
103 static void enable_command (char *, int);
104
105 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
106 void *),
107 void *);
108
109 static void ignore_command (char *, int);
110
111 static int breakpoint_re_set_one (void *);
112
113 static void breakpoint_re_set_default (struct breakpoint *);
114
115 static void create_sals_from_address_default (char **,
116 struct linespec_result *,
117 enum bptype, char *,
118 char **);
119
120 static void create_breakpoints_sal_default (struct gdbarch *,
121 struct linespec_result *,
122 char *, char *, enum bptype,
123 enum bpdisp, int, int,
124 int,
125 const struct breakpoint_ops *,
126 int, int, int, unsigned);
127
128 static void decode_linespec_default (struct breakpoint *, char **,
129 struct symtabs_and_lines *);
130
131 static void clear_command (char *, int);
132
133 static void catch_command (char *, int);
134
135 static int can_use_hardware_watchpoint (struct value *);
136
137 static void break_command_1 (char *, int, int);
138
139 static void mention (struct breakpoint *);
140
141 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
142 enum bptype,
143 const struct breakpoint_ops *);
144 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
145 const struct symtab_and_line *);
146
147 /* This function is used in gdbtk sources and thus can not be made
148 static. */
149 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
150 struct symtab_and_line,
151 enum bptype,
152 const struct breakpoint_ops *);
153
154 static struct breakpoint *
155 momentary_breakpoint_from_master (struct breakpoint *orig,
156 enum bptype type,
157 const struct breakpoint_ops *ops);
158
159 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
160
161 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
162 CORE_ADDR bpaddr,
163 enum bptype bptype);
164
165 static void describe_other_breakpoints (struct gdbarch *,
166 struct program_space *, CORE_ADDR,
167 struct obj_section *, int);
168
169 static int watchpoint_locations_match (struct bp_location *loc1,
170 struct bp_location *loc2);
171
172 static int breakpoint_location_address_match (struct bp_location *bl,
173 struct address_space *aspace,
174 CORE_ADDR addr);
175
176 static void breakpoints_info (char *, int);
177
178 static void watchpoints_info (char *, int);
179
180 static int breakpoint_1 (char *, int,
181 int (*) (const struct breakpoint *));
182
183 static int breakpoint_cond_eval (void *);
184
185 static void cleanup_executing_breakpoints (void *);
186
187 static void commands_command (char *, int);
188
189 static void condition_command (char *, int);
190
191 typedef enum
192 {
193 mark_inserted,
194 mark_uninserted
195 }
196 insertion_state_t;
197
198 static int remove_breakpoint (struct bp_location *, insertion_state_t);
199 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
200
201 static enum print_stop_action print_bp_stop_message (bpstat bs);
202
203 static int watchpoint_check (void *);
204
205 static void maintenance_info_breakpoints (char *, int);
206
207 static int hw_breakpoint_used_count (void);
208
209 static int hw_watchpoint_use_count (struct breakpoint *);
210
211 static int hw_watchpoint_used_count_others (struct breakpoint *except,
212 enum bptype type,
213 int *other_type_used);
214
215 static void hbreak_command (char *, int);
216
217 static void thbreak_command (char *, int);
218
219 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
220 int count);
221
222 static void stop_command (char *arg, int from_tty);
223
224 static void stopin_command (char *arg, int from_tty);
225
226 static void stopat_command (char *arg, int from_tty);
227
228 static void tcatch_command (char *arg, int from_tty);
229
230 static void detach_single_step_breakpoints (void);
231
232 static void free_bp_location (struct bp_location *loc);
233 static void incref_bp_location (struct bp_location *loc);
234 static void decref_bp_location (struct bp_location **loc);
235
236 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
237
238 static void update_global_location_list (int);
239
240 static void update_global_location_list_nothrow (int);
241
242 static int is_hardware_watchpoint (const struct breakpoint *bpt);
243
244 static void insert_breakpoint_locations (void);
245
246 static int syscall_catchpoint_p (struct breakpoint *b);
247
248 static void tracepoints_info (char *, int);
249
250 static void delete_trace_command (char *, int);
251
252 static void enable_trace_command (char *, int);
253
254 static void disable_trace_command (char *, int);
255
256 static void trace_pass_command (char *, int);
257
258 static void set_tracepoint_count (int num);
259
260 static int is_masked_watchpoint (const struct breakpoint *b);
261
262 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
263
264 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
265 otherwise. */
266
267 static int strace_marker_p (struct breakpoint *b);
268
269 /* The abstract base class all breakpoint_ops structures inherit
270 from. */
271 struct breakpoint_ops base_breakpoint_ops;
272
273 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
274 that are implemented on top of software or hardware breakpoints
275 (user breakpoints, internal and momentary breakpoints, etc.). */
276 static struct breakpoint_ops bkpt_base_breakpoint_ops;
277
278 /* Internal breakpoints class type. */
279 static struct breakpoint_ops internal_breakpoint_ops;
280
281 /* Momentary breakpoints class type. */
282 static struct breakpoint_ops momentary_breakpoint_ops;
283
284 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
285 static struct breakpoint_ops longjmp_breakpoint_ops;
286
287 /* The breakpoint_ops structure to be used in regular user created
288 breakpoints. */
289 struct breakpoint_ops bkpt_breakpoint_ops;
290
291 /* Breakpoints set on probes. */
292 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
293
294 /* Dynamic printf class type. */
295 struct breakpoint_ops dprintf_breakpoint_ops;
296
297 /* One (or perhaps two) breakpoints used for software single
298 stepping. */
299
300 static void *single_step_breakpoints[2];
301 static struct gdbarch *single_step_gdbarch[2];
302
303 /* The style in which to perform a dynamic printf. This is a user
304 option because different output options have different tradeoffs;
305 if GDB does the printing, there is better error handling if there
306 is a problem with any of the arguments, but using an inferior
307 function lets you have special-purpose printers and sending of
308 output to the same place as compiled-in print functions. */
309
310 static const char dprintf_style_gdb[] = "gdb";
311 static const char dprintf_style_call[] = "call";
312 static const char dprintf_style_agent[] = "agent";
313 static const char *const dprintf_style_enums[] = {
314 dprintf_style_gdb,
315 dprintf_style_call,
316 dprintf_style_agent,
317 NULL
318 };
319 static const char *dprintf_style = dprintf_style_gdb;
320
321 /* The function to use for dynamic printf if the preferred style is to
322 call into the inferior. The value is simply a string that is
323 copied into the command, so it can be anything that GDB can
324 evaluate to a callable address, not necessarily a function name. */
325
326 static char *dprintf_function = "";
327
328 /* The channel to use for dynamic printf if the preferred style is to
329 call into the inferior; if a nonempty string, it will be passed to
330 the call as the first argument, with the format string as the
331 second. As with the dprintf function, this can be anything that
332 GDB knows how to evaluate, so in addition to common choices like
333 "stderr", this could be an app-specific expression like
334 "mystreams[curlogger]". */
335
336 static char *dprintf_channel = "";
337
338 /* True if dprintf commands should continue to operate even if GDB
339 has disconnected. */
340 static int disconnected_dprintf = 1;
341
342 /* A reference-counted struct command_line. This lets multiple
343 breakpoints share a single command list. */
344 struct counted_command_line
345 {
346 /* The reference count. */
347 int refc;
348
349 /* The command list. */
350 struct command_line *commands;
351 };
352
353 struct command_line *
354 breakpoint_commands (struct breakpoint *b)
355 {
356 return b->commands ? b->commands->commands : NULL;
357 }
358
359 /* Flag indicating that a command has proceeded the inferior past the
360 current breakpoint. */
361
362 static int breakpoint_proceeded;
363
364 const char *
365 bpdisp_text (enum bpdisp disp)
366 {
367 /* NOTE: the following values are a part of MI protocol and
368 represent values of 'disp' field returned when inferior stops at
369 a breakpoint. */
370 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
371
372 return bpdisps[(int) disp];
373 }
374
375 /* Prototypes for exported functions. */
376 /* If FALSE, gdb will not use hardware support for watchpoints, even
377 if such is available. */
378 static int can_use_hw_watchpoints;
379
380 static void
381 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
382 struct cmd_list_element *c,
383 const char *value)
384 {
385 fprintf_filtered (file,
386 _("Debugger's willingness to use "
387 "watchpoint hardware is %s.\n"),
388 value);
389 }
390
391 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
392 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
393 for unrecognized breakpoint locations.
394 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
395 static enum auto_boolean pending_break_support;
396 static void
397 show_pending_break_support (struct ui_file *file, int from_tty,
398 struct cmd_list_element *c,
399 const char *value)
400 {
401 fprintf_filtered (file,
402 _("Debugger's behavior regarding "
403 "pending breakpoints is %s.\n"),
404 value);
405 }
406
407 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
408 set with "break" but falling in read-only memory.
409 If 0, gdb will warn about such breakpoints, but won't automatically
410 use hardware breakpoints. */
411 static int automatic_hardware_breakpoints;
412 static void
413 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
414 struct cmd_list_element *c,
415 const char *value)
416 {
417 fprintf_filtered (file,
418 _("Automatic usage of hardware breakpoints is %s.\n"),
419 value);
420 }
421
422 /* If on, gdb will keep breakpoints inserted even as inferior is
423 stopped, and immediately insert any new breakpoints. If off, gdb
424 will insert breakpoints into inferior only when resuming it, and
425 will remove breakpoints upon stop. If auto, GDB will behave as ON
426 if in non-stop mode, and as OFF if all-stop mode.*/
427
428 static enum auto_boolean always_inserted_mode = AUTO_BOOLEAN_AUTO;
429
430 static void
431 show_always_inserted_mode (struct ui_file *file, int from_tty,
432 struct cmd_list_element *c, const char *value)
433 {
434 if (always_inserted_mode == AUTO_BOOLEAN_AUTO)
435 fprintf_filtered (file,
436 _("Always inserted breakpoint "
437 "mode is %s (currently %s).\n"),
438 value,
439 breakpoints_always_inserted_mode () ? "on" : "off");
440 else
441 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
442 value);
443 }
444
445 int
446 breakpoints_always_inserted_mode (void)
447 {
448 return (always_inserted_mode == AUTO_BOOLEAN_TRUE
449 || (always_inserted_mode == AUTO_BOOLEAN_AUTO && non_stop));
450 }
451
452 static const char condition_evaluation_both[] = "host or target";
453
454 /* Modes for breakpoint condition evaluation. */
455 static const char condition_evaluation_auto[] = "auto";
456 static const char condition_evaluation_host[] = "host";
457 static const char condition_evaluation_target[] = "target";
458 static const char *const condition_evaluation_enums[] = {
459 condition_evaluation_auto,
460 condition_evaluation_host,
461 condition_evaluation_target,
462 NULL
463 };
464
465 /* Global that holds the current mode for breakpoint condition evaluation. */
466 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
467
468 /* Global that we use to display information to the user (gets its value from
469 condition_evaluation_mode_1. */
470 static const char *condition_evaluation_mode = condition_evaluation_auto;
471
472 /* Translate a condition evaluation mode MODE into either "host"
473 or "target". This is used mostly to translate from "auto" to the
474 real setting that is being used. It returns the translated
475 evaluation mode. */
476
477 static const char *
478 translate_condition_evaluation_mode (const char *mode)
479 {
480 if (mode == condition_evaluation_auto)
481 {
482 if (target_supports_evaluation_of_breakpoint_conditions ())
483 return condition_evaluation_target;
484 else
485 return condition_evaluation_host;
486 }
487 else
488 return mode;
489 }
490
491 /* Discovers what condition_evaluation_auto translates to. */
492
493 static const char *
494 breakpoint_condition_evaluation_mode (void)
495 {
496 return translate_condition_evaluation_mode (condition_evaluation_mode);
497 }
498
499 /* Return true if GDB should evaluate breakpoint conditions or false
500 otherwise. */
501
502 static int
503 gdb_evaluates_breakpoint_condition_p (void)
504 {
505 const char *mode = breakpoint_condition_evaluation_mode ();
506
507 return (mode == condition_evaluation_host);
508 }
509
510 void _initialize_breakpoint (void);
511
512 /* Are we executing breakpoint commands? */
513 static int executing_breakpoint_commands;
514
515 /* Are overlay event breakpoints enabled? */
516 static int overlay_events_enabled;
517
518 /* See description in breakpoint.h. */
519 int target_exact_watchpoints = 0;
520
521 /* Walk the following statement or block through all breakpoints.
522 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
523 current breakpoint. */
524
525 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
526
527 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
528 for (B = breakpoint_chain; \
529 B ? (TMP=B->next, 1): 0; \
530 B = TMP)
531
532 /* Similar iterator for the low-level breakpoints. SAFE variant is
533 not provided so update_global_location_list must not be called
534 while executing the block of ALL_BP_LOCATIONS. */
535
536 #define ALL_BP_LOCATIONS(B,BP_TMP) \
537 for (BP_TMP = bp_location; \
538 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
539 BP_TMP++)
540
541 /* Iterates through locations with address ADDRESS for the currently selected
542 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
543 to where the loop should start from.
544 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
545 appropriate location to start with. */
546
547 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
548 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
549 BP_LOCP_TMP = BP_LOCP_START; \
550 BP_LOCP_START \
551 && (BP_LOCP_TMP < bp_location + bp_location_count \
552 && (*BP_LOCP_TMP)->address == ADDRESS); \
553 BP_LOCP_TMP++)
554
555 /* Iterator for tracepoints only. */
556
557 #define ALL_TRACEPOINTS(B) \
558 for (B = breakpoint_chain; B; B = B->next) \
559 if (is_tracepoint (B))
560
561 /* Chains of all breakpoints defined. */
562
563 struct breakpoint *breakpoint_chain;
564
565 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
566
567 static struct bp_location **bp_location;
568
569 /* Number of elements of BP_LOCATION. */
570
571 static unsigned bp_location_count;
572
573 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
574 ADDRESS for the current elements of BP_LOCATION which get a valid
575 result from bp_location_has_shadow. You can use it for roughly
576 limiting the subrange of BP_LOCATION to scan for shadow bytes for
577 an address you need to read. */
578
579 static CORE_ADDR bp_location_placed_address_before_address_max;
580
581 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
582 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
583 BP_LOCATION which get a valid result from bp_location_has_shadow.
584 You can use it for roughly limiting the subrange of BP_LOCATION to
585 scan for shadow bytes for an address you need to read. */
586
587 static CORE_ADDR bp_location_shadow_len_after_address_max;
588
589 /* The locations that no longer correspond to any breakpoint, unlinked
590 from bp_location array, but for which a hit may still be reported
591 by a target. */
592 VEC(bp_location_p) *moribund_locations = NULL;
593
594 /* Number of last breakpoint made. */
595
596 static int breakpoint_count;
597
598 /* The value of `breakpoint_count' before the last command that
599 created breakpoints. If the last (break-like) command created more
600 than one breakpoint, then the difference between BREAKPOINT_COUNT
601 and PREV_BREAKPOINT_COUNT is more than one. */
602 static int prev_breakpoint_count;
603
604 /* Number of last tracepoint made. */
605
606 static int tracepoint_count;
607
608 static struct cmd_list_element *breakpoint_set_cmdlist;
609 static struct cmd_list_element *breakpoint_show_cmdlist;
610 struct cmd_list_element *save_cmdlist;
611
612 /* Return whether a breakpoint is an active enabled breakpoint. */
613 static int
614 breakpoint_enabled (struct breakpoint *b)
615 {
616 return (b->enable_state == bp_enabled);
617 }
618
619 /* Set breakpoint count to NUM. */
620
621 static void
622 set_breakpoint_count (int num)
623 {
624 prev_breakpoint_count = breakpoint_count;
625 breakpoint_count = num;
626 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
627 }
628
629 /* Used by `start_rbreak_breakpoints' below, to record the current
630 breakpoint count before "rbreak" creates any breakpoint. */
631 static int rbreak_start_breakpoint_count;
632
633 /* Called at the start an "rbreak" command to record the first
634 breakpoint made. */
635
636 void
637 start_rbreak_breakpoints (void)
638 {
639 rbreak_start_breakpoint_count = breakpoint_count;
640 }
641
642 /* Called at the end of an "rbreak" command to record the last
643 breakpoint made. */
644
645 void
646 end_rbreak_breakpoints (void)
647 {
648 prev_breakpoint_count = rbreak_start_breakpoint_count;
649 }
650
651 /* Used in run_command to zero the hit count when a new run starts. */
652
653 void
654 clear_breakpoint_hit_counts (void)
655 {
656 struct breakpoint *b;
657
658 ALL_BREAKPOINTS (b)
659 b->hit_count = 0;
660 }
661
662 /* Allocate a new counted_command_line with reference count of 1.
663 The new structure owns COMMANDS. */
664
665 static struct counted_command_line *
666 alloc_counted_command_line (struct command_line *commands)
667 {
668 struct counted_command_line *result
669 = xmalloc (sizeof (struct counted_command_line));
670
671 result->refc = 1;
672 result->commands = commands;
673 return result;
674 }
675
676 /* Increment reference count. This does nothing if CMD is NULL. */
677
678 static void
679 incref_counted_command_line (struct counted_command_line *cmd)
680 {
681 if (cmd)
682 ++cmd->refc;
683 }
684
685 /* Decrement reference count. If the reference count reaches 0,
686 destroy the counted_command_line. Sets *CMDP to NULL. This does
687 nothing if *CMDP is NULL. */
688
689 static void
690 decref_counted_command_line (struct counted_command_line **cmdp)
691 {
692 if (*cmdp)
693 {
694 if (--(*cmdp)->refc == 0)
695 {
696 free_command_lines (&(*cmdp)->commands);
697 xfree (*cmdp);
698 }
699 *cmdp = NULL;
700 }
701 }
702
703 /* A cleanup function that calls decref_counted_command_line. */
704
705 static void
706 do_cleanup_counted_command_line (void *arg)
707 {
708 decref_counted_command_line (arg);
709 }
710
711 /* Create a cleanup that calls decref_counted_command_line on the
712 argument. */
713
714 static struct cleanup *
715 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
716 {
717 return make_cleanup (do_cleanup_counted_command_line, cmdp);
718 }
719
720 \f
721 /* Return the breakpoint with the specified number, or NULL
722 if the number does not refer to an existing breakpoint. */
723
724 struct breakpoint *
725 get_breakpoint (int num)
726 {
727 struct breakpoint *b;
728
729 ALL_BREAKPOINTS (b)
730 if (b->number == num)
731 return b;
732
733 return NULL;
734 }
735
736 \f
737
738 /* Mark locations as "conditions have changed" in case the target supports
739 evaluating conditions on its side. */
740
741 static void
742 mark_breakpoint_modified (struct breakpoint *b)
743 {
744 struct bp_location *loc;
745
746 /* This is only meaningful if the target is
747 evaluating conditions and if the user has
748 opted for condition evaluation on the target's
749 side. */
750 if (gdb_evaluates_breakpoint_condition_p ()
751 || !target_supports_evaluation_of_breakpoint_conditions ())
752 return;
753
754 if (!is_breakpoint (b))
755 return;
756
757 for (loc = b->loc; loc; loc = loc->next)
758 loc->condition_changed = condition_modified;
759 }
760
761 /* Mark location as "conditions have changed" in case the target supports
762 evaluating conditions on its side. */
763
764 static void
765 mark_breakpoint_location_modified (struct bp_location *loc)
766 {
767 /* This is only meaningful if the target is
768 evaluating conditions and if the user has
769 opted for condition evaluation on the target's
770 side. */
771 if (gdb_evaluates_breakpoint_condition_p ()
772 || !target_supports_evaluation_of_breakpoint_conditions ())
773
774 return;
775
776 if (!is_breakpoint (loc->owner))
777 return;
778
779 loc->condition_changed = condition_modified;
780 }
781
782 /* Sets the condition-evaluation mode using the static global
783 condition_evaluation_mode. */
784
785 static void
786 set_condition_evaluation_mode (char *args, int from_tty,
787 struct cmd_list_element *c)
788 {
789 const char *old_mode, *new_mode;
790
791 if ((condition_evaluation_mode_1 == condition_evaluation_target)
792 && !target_supports_evaluation_of_breakpoint_conditions ())
793 {
794 condition_evaluation_mode_1 = condition_evaluation_mode;
795 warning (_("Target does not support breakpoint condition evaluation.\n"
796 "Using host evaluation mode instead."));
797 return;
798 }
799
800 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
801 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
802
803 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
804 settings was "auto". */
805 condition_evaluation_mode = condition_evaluation_mode_1;
806
807 /* Only update the mode if the user picked a different one. */
808 if (new_mode != old_mode)
809 {
810 struct bp_location *loc, **loc_tmp;
811 /* If the user switched to a different evaluation mode, we
812 need to synch the changes with the target as follows:
813
814 "host" -> "target": Send all (valid) conditions to the target.
815 "target" -> "host": Remove all the conditions from the target.
816 */
817
818 if (new_mode == condition_evaluation_target)
819 {
820 /* Mark everything modified and synch conditions with the
821 target. */
822 ALL_BP_LOCATIONS (loc, loc_tmp)
823 mark_breakpoint_location_modified (loc);
824 }
825 else
826 {
827 /* Manually mark non-duplicate locations to synch conditions
828 with the target. We do this to remove all the conditions the
829 target knows about. */
830 ALL_BP_LOCATIONS (loc, loc_tmp)
831 if (is_breakpoint (loc->owner) && loc->inserted)
832 loc->needs_update = 1;
833 }
834
835 /* Do the update. */
836 update_global_location_list (1);
837 }
838
839 return;
840 }
841
842 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
843 what "auto" is translating to. */
844
845 static void
846 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
847 struct cmd_list_element *c, const char *value)
848 {
849 if (condition_evaluation_mode == condition_evaluation_auto)
850 fprintf_filtered (file,
851 _("Breakpoint condition evaluation "
852 "mode is %s (currently %s).\n"),
853 value,
854 breakpoint_condition_evaluation_mode ());
855 else
856 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
857 value);
858 }
859
860 /* A comparison function for bp_location AP and BP that is used by
861 bsearch. This comparison function only cares about addresses, unlike
862 the more general bp_location_compare function. */
863
864 static int
865 bp_location_compare_addrs (const void *ap, const void *bp)
866 {
867 struct bp_location *a = *(void **) ap;
868 struct bp_location *b = *(void **) bp;
869
870 if (a->address == b->address)
871 return 0;
872 else
873 return ((a->address > b->address) - (a->address < b->address));
874 }
875
876 /* Helper function to skip all bp_locations with addresses
877 less than ADDRESS. It returns the first bp_location that
878 is greater than or equal to ADDRESS. If none is found, just
879 return NULL. */
880
881 static struct bp_location **
882 get_first_locp_gte_addr (CORE_ADDR address)
883 {
884 struct bp_location dummy_loc;
885 struct bp_location *dummy_locp = &dummy_loc;
886 struct bp_location **locp_found = NULL;
887
888 /* Initialize the dummy location's address field. */
889 memset (&dummy_loc, 0, sizeof (struct bp_location));
890 dummy_loc.address = address;
891
892 /* Find a close match to the first location at ADDRESS. */
893 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
894 sizeof (struct bp_location **),
895 bp_location_compare_addrs);
896
897 /* Nothing was found, nothing left to do. */
898 if (locp_found == NULL)
899 return NULL;
900
901 /* We may have found a location that is at ADDRESS but is not the first in the
902 location's list. Go backwards (if possible) and locate the first one. */
903 while ((locp_found - 1) >= bp_location
904 && (*(locp_found - 1))->address == address)
905 locp_found--;
906
907 return locp_found;
908 }
909
910 void
911 set_breakpoint_condition (struct breakpoint *b, char *exp,
912 int from_tty)
913 {
914 xfree (b->cond_string);
915 b->cond_string = NULL;
916
917 if (is_watchpoint (b))
918 {
919 struct watchpoint *w = (struct watchpoint *) b;
920
921 xfree (w->cond_exp);
922 w->cond_exp = NULL;
923 }
924 else
925 {
926 struct bp_location *loc;
927
928 for (loc = b->loc; loc; loc = loc->next)
929 {
930 xfree (loc->cond);
931 loc->cond = NULL;
932
933 /* No need to free the condition agent expression
934 bytecode (if we have one). We will handle this
935 when we go through update_global_location_list. */
936 }
937 }
938
939 if (*exp == 0)
940 {
941 if (from_tty)
942 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
943 }
944 else
945 {
946 const char *arg = exp;
947
948 /* I don't know if it matters whether this is the string the user
949 typed in or the decompiled expression. */
950 b->cond_string = xstrdup (arg);
951 b->condition_not_parsed = 0;
952
953 if (is_watchpoint (b))
954 {
955 struct watchpoint *w = (struct watchpoint *) b;
956
957 innermost_block = NULL;
958 arg = exp;
959 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
960 if (*arg)
961 error (_("Junk at end of expression"));
962 w->cond_exp_valid_block = innermost_block;
963 }
964 else
965 {
966 struct bp_location *loc;
967
968 for (loc = b->loc; loc; loc = loc->next)
969 {
970 arg = exp;
971 loc->cond =
972 parse_exp_1 (&arg, loc->address,
973 block_for_pc (loc->address), 0);
974 if (*arg)
975 error (_("Junk at end of expression"));
976 }
977 }
978 }
979 mark_breakpoint_modified (b);
980
981 observer_notify_breakpoint_modified (b);
982 }
983
984 /* Completion for the "condition" command. */
985
986 static VEC (char_ptr) *
987 condition_completer (struct cmd_list_element *cmd,
988 const char *text, const char *word)
989 {
990 const char *space;
991
992 text = skip_spaces_const (text);
993 space = skip_to_space_const (text);
994 if (*space == '\0')
995 {
996 int len;
997 struct breakpoint *b;
998 VEC (char_ptr) *result = NULL;
999
1000 if (text[0] == '$')
1001 {
1002 /* We don't support completion of history indices. */
1003 if (isdigit (text[1]))
1004 return NULL;
1005 return complete_internalvar (&text[1]);
1006 }
1007
1008 /* We're completing the breakpoint number. */
1009 len = strlen (text);
1010
1011 ALL_BREAKPOINTS (b)
1012 {
1013 char number[50];
1014
1015 xsnprintf (number, sizeof (number), "%d", b->number);
1016
1017 if (strncmp (number, text, len) == 0)
1018 VEC_safe_push (char_ptr, result, xstrdup (number));
1019 }
1020
1021 return result;
1022 }
1023
1024 /* We're completing the expression part. */
1025 text = skip_spaces_const (space);
1026 return expression_completer (cmd, text, word);
1027 }
1028
1029 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1030
1031 static void
1032 condition_command (char *arg, int from_tty)
1033 {
1034 struct breakpoint *b;
1035 char *p;
1036 int bnum;
1037
1038 if (arg == 0)
1039 error_no_arg (_("breakpoint number"));
1040
1041 p = arg;
1042 bnum = get_number (&p);
1043 if (bnum == 0)
1044 error (_("Bad breakpoint argument: '%s'"), arg);
1045
1046 ALL_BREAKPOINTS (b)
1047 if (b->number == bnum)
1048 {
1049 /* Check if this breakpoint has a "stop" method implemented in an
1050 extension language. This method and conditions entered into GDB
1051 from the CLI are mutually exclusive. */
1052 const struct extension_language_defn *extlang
1053 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1054
1055 if (extlang != NULL)
1056 {
1057 error (_("Only one stop condition allowed. There is currently"
1058 " a %s stop condition defined for this breakpoint."),
1059 ext_lang_capitalized_name (extlang));
1060 }
1061 set_breakpoint_condition (b, p, from_tty);
1062
1063 if (is_breakpoint (b))
1064 update_global_location_list (1);
1065
1066 return;
1067 }
1068
1069 error (_("No breakpoint number %d."), bnum);
1070 }
1071
1072 /* Check that COMMAND do not contain commands that are suitable
1073 only for tracepoints and not suitable for ordinary breakpoints.
1074 Throw if any such commands is found. */
1075
1076 static void
1077 check_no_tracepoint_commands (struct command_line *commands)
1078 {
1079 struct command_line *c;
1080
1081 for (c = commands; c; c = c->next)
1082 {
1083 int i;
1084
1085 if (c->control_type == while_stepping_control)
1086 error (_("The 'while-stepping' command can "
1087 "only be used for tracepoints"));
1088
1089 for (i = 0; i < c->body_count; ++i)
1090 check_no_tracepoint_commands ((c->body_list)[i]);
1091
1092 /* Not that command parsing removes leading whitespace and comment
1093 lines and also empty lines. So, we only need to check for
1094 command directly. */
1095 if (strstr (c->line, "collect ") == c->line)
1096 error (_("The 'collect' command can only be used for tracepoints"));
1097
1098 if (strstr (c->line, "teval ") == c->line)
1099 error (_("The 'teval' command can only be used for tracepoints"));
1100 }
1101 }
1102
1103 /* Encapsulate tests for different types of tracepoints. */
1104
1105 static int
1106 is_tracepoint_type (enum bptype type)
1107 {
1108 return (type == bp_tracepoint
1109 || type == bp_fast_tracepoint
1110 || type == bp_static_tracepoint);
1111 }
1112
1113 int
1114 is_tracepoint (const struct breakpoint *b)
1115 {
1116 return is_tracepoint_type (b->type);
1117 }
1118
1119 /* A helper function that validates that COMMANDS are valid for a
1120 breakpoint. This function will throw an exception if a problem is
1121 found. */
1122
1123 static void
1124 validate_commands_for_breakpoint (struct breakpoint *b,
1125 struct command_line *commands)
1126 {
1127 if (is_tracepoint (b))
1128 {
1129 struct tracepoint *t = (struct tracepoint *) b;
1130 struct command_line *c;
1131 struct command_line *while_stepping = 0;
1132
1133 /* Reset the while-stepping step count. The previous commands
1134 might have included a while-stepping action, while the new
1135 ones might not. */
1136 t->step_count = 0;
1137
1138 /* We need to verify that each top-level element of commands is
1139 valid for tracepoints, that there's at most one
1140 while-stepping element, and that the while-stepping's body
1141 has valid tracing commands excluding nested while-stepping.
1142 We also need to validate the tracepoint action line in the
1143 context of the tracepoint --- validate_actionline actually
1144 has side effects, like setting the tracepoint's
1145 while-stepping STEP_COUNT, in addition to checking if the
1146 collect/teval actions parse and make sense in the
1147 tracepoint's context. */
1148 for (c = commands; c; c = c->next)
1149 {
1150 if (c->control_type == while_stepping_control)
1151 {
1152 if (b->type == bp_fast_tracepoint)
1153 error (_("The 'while-stepping' command "
1154 "cannot be used for fast tracepoint"));
1155 else if (b->type == bp_static_tracepoint)
1156 error (_("The 'while-stepping' command "
1157 "cannot be used for static tracepoint"));
1158
1159 if (while_stepping)
1160 error (_("The 'while-stepping' command "
1161 "can be used only once"));
1162 else
1163 while_stepping = c;
1164 }
1165
1166 validate_actionline (c->line, b);
1167 }
1168 if (while_stepping)
1169 {
1170 struct command_line *c2;
1171
1172 gdb_assert (while_stepping->body_count == 1);
1173 c2 = while_stepping->body_list[0];
1174 for (; c2; c2 = c2->next)
1175 {
1176 if (c2->control_type == while_stepping_control)
1177 error (_("The 'while-stepping' command cannot be nested"));
1178 }
1179 }
1180 }
1181 else
1182 {
1183 check_no_tracepoint_commands (commands);
1184 }
1185 }
1186
1187 /* Return a vector of all the static tracepoints set at ADDR. The
1188 caller is responsible for releasing the vector. */
1189
1190 VEC(breakpoint_p) *
1191 static_tracepoints_here (CORE_ADDR addr)
1192 {
1193 struct breakpoint *b;
1194 VEC(breakpoint_p) *found = 0;
1195 struct bp_location *loc;
1196
1197 ALL_BREAKPOINTS (b)
1198 if (b->type == bp_static_tracepoint)
1199 {
1200 for (loc = b->loc; loc; loc = loc->next)
1201 if (loc->address == addr)
1202 VEC_safe_push(breakpoint_p, found, b);
1203 }
1204
1205 return found;
1206 }
1207
1208 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1209 validate that only allowed commands are included. */
1210
1211 void
1212 breakpoint_set_commands (struct breakpoint *b,
1213 struct command_line *commands)
1214 {
1215 validate_commands_for_breakpoint (b, commands);
1216
1217 decref_counted_command_line (&b->commands);
1218 b->commands = alloc_counted_command_line (commands);
1219 observer_notify_breakpoint_modified (b);
1220 }
1221
1222 /* Set the internal `silent' flag on the breakpoint. Note that this
1223 is not the same as the "silent" that may appear in the breakpoint's
1224 commands. */
1225
1226 void
1227 breakpoint_set_silent (struct breakpoint *b, int silent)
1228 {
1229 int old_silent = b->silent;
1230
1231 b->silent = silent;
1232 if (old_silent != silent)
1233 observer_notify_breakpoint_modified (b);
1234 }
1235
1236 /* Set the thread for this breakpoint. If THREAD is -1, make the
1237 breakpoint work for any thread. */
1238
1239 void
1240 breakpoint_set_thread (struct breakpoint *b, int thread)
1241 {
1242 int old_thread = b->thread;
1243
1244 b->thread = thread;
1245 if (old_thread != thread)
1246 observer_notify_breakpoint_modified (b);
1247 }
1248
1249 /* Set the task for this breakpoint. If TASK is 0, make the
1250 breakpoint work for any task. */
1251
1252 void
1253 breakpoint_set_task (struct breakpoint *b, int task)
1254 {
1255 int old_task = b->task;
1256
1257 b->task = task;
1258 if (old_task != task)
1259 observer_notify_breakpoint_modified (b);
1260 }
1261
1262 void
1263 check_tracepoint_command (char *line, void *closure)
1264 {
1265 struct breakpoint *b = closure;
1266
1267 validate_actionline (line, b);
1268 }
1269
1270 /* A structure used to pass information through
1271 map_breakpoint_numbers. */
1272
1273 struct commands_info
1274 {
1275 /* True if the command was typed at a tty. */
1276 int from_tty;
1277
1278 /* The breakpoint range spec. */
1279 char *arg;
1280
1281 /* Non-NULL if the body of the commands are being read from this
1282 already-parsed command. */
1283 struct command_line *control;
1284
1285 /* The command lines read from the user, or NULL if they have not
1286 yet been read. */
1287 struct counted_command_line *cmd;
1288 };
1289
1290 /* A callback for map_breakpoint_numbers that sets the commands for
1291 commands_command. */
1292
1293 static void
1294 do_map_commands_command (struct breakpoint *b, void *data)
1295 {
1296 struct commands_info *info = data;
1297
1298 if (info->cmd == NULL)
1299 {
1300 struct command_line *l;
1301
1302 if (info->control != NULL)
1303 l = copy_command_lines (info->control->body_list[0]);
1304 else
1305 {
1306 struct cleanup *old_chain;
1307 char *str;
1308
1309 str = xstrprintf (_("Type commands for breakpoint(s) "
1310 "%s, one per line."),
1311 info->arg);
1312
1313 old_chain = make_cleanup (xfree, str);
1314
1315 l = read_command_lines (str,
1316 info->from_tty, 1,
1317 (is_tracepoint (b)
1318 ? check_tracepoint_command : 0),
1319 b);
1320
1321 do_cleanups (old_chain);
1322 }
1323
1324 info->cmd = alloc_counted_command_line (l);
1325 }
1326
1327 /* If a breakpoint was on the list more than once, we don't need to
1328 do anything. */
1329 if (b->commands != info->cmd)
1330 {
1331 validate_commands_for_breakpoint (b, info->cmd->commands);
1332 incref_counted_command_line (info->cmd);
1333 decref_counted_command_line (&b->commands);
1334 b->commands = info->cmd;
1335 observer_notify_breakpoint_modified (b);
1336 }
1337 }
1338
1339 static void
1340 commands_command_1 (char *arg, int from_tty,
1341 struct command_line *control)
1342 {
1343 struct cleanup *cleanups;
1344 struct commands_info info;
1345
1346 info.from_tty = from_tty;
1347 info.control = control;
1348 info.cmd = NULL;
1349 /* If we read command lines from the user, then `info' will hold an
1350 extra reference to the commands that we must clean up. */
1351 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1352
1353 if (arg == NULL || !*arg)
1354 {
1355 if (breakpoint_count - prev_breakpoint_count > 1)
1356 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1357 breakpoint_count);
1358 else if (breakpoint_count > 0)
1359 arg = xstrprintf ("%d", breakpoint_count);
1360 else
1361 {
1362 /* So that we don't try to free the incoming non-NULL
1363 argument in the cleanup below. Mapping breakpoint
1364 numbers will fail in this case. */
1365 arg = NULL;
1366 }
1367 }
1368 else
1369 /* The command loop has some static state, so we need to preserve
1370 our argument. */
1371 arg = xstrdup (arg);
1372
1373 if (arg != NULL)
1374 make_cleanup (xfree, arg);
1375
1376 info.arg = arg;
1377
1378 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1379
1380 if (info.cmd == NULL)
1381 error (_("No breakpoints specified."));
1382
1383 do_cleanups (cleanups);
1384 }
1385
1386 static void
1387 commands_command (char *arg, int from_tty)
1388 {
1389 commands_command_1 (arg, from_tty, NULL);
1390 }
1391
1392 /* Like commands_command, but instead of reading the commands from
1393 input stream, takes them from an already parsed command structure.
1394
1395 This is used by cli-script.c to DTRT with breakpoint commands
1396 that are part of if and while bodies. */
1397 enum command_control_type
1398 commands_from_control_command (char *arg, struct command_line *cmd)
1399 {
1400 commands_command_1 (arg, 0, cmd);
1401 return simple_control;
1402 }
1403
1404 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1405
1406 static int
1407 bp_location_has_shadow (struct bp_location *bl)
1408 {
1409 if (bl->loc_type != bp_loc_software_breakpoint)
1410 return 0;
1411 if (!bl->inserted)
1412 return 0;
1413 if (bl->target_info.shadow_len == 0)
1414 /* BL isn't valid, or doesn't shadow memory. */
1415 return 0;
1416 return 1;
1417 }
1418
1419 /* Update BUF, which is LEN bytes read from the target address
1420 MEMADDR, by replacing a memory breakpoint with its shadowed
1421 contents.
1422
1423 If READBUF is not NULL, this buffer must not overlap with the of
1424 the breakpoint location's shadow_contents buffer. Otherwise, a
1425 failed assertion internal error will be raised. */
1426
1427 static void
1428 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1429 const gdb_byte *writebuf_org,
1430 ULONGEST memaddr, LONGEST len,
1431 struct bp_target_info *target_info,
1432 struct gdbarch *gdbarch)
1433 {
1434 /* Now do full processing of the found relevant range of elements. */
1435 CORE_ADDR bp_addr = 0;
1436 int bp_size = 0;
1437 int bptoffset = 0;
1438
1439 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1440 current_program_space->aspace, 0))
1441 {
1442 /* The breakpoint is inserted in a different address space. */
1443 return;
1444 }
1445
1446 /* Addresses and length of the part of the breakpoint that
1447 we need to copy. */
1448 bp_addr = target_info->placed_address;
1449 bp_size = target_info->shadow_len;
1450
1451 if (bp_addr + bp_size <= memaddr)
1452 {
1453 /* The breakpoint is entirely before the chunk of memory we are
1454 reading. */
1455 return;
1456 }
1457
1458 if (bp_addr >= memaddr + len)
1459 {
1460 /* The breakpoint is entirely after the chunk of memory we are
1461 reading. */
1462 return;
1463 }
1464
1465 /* Offset within shadow_contents. */
1466 if (bp_addr < memaddr)
1467 {
1468 /* Only copy the second part of the breakpoint. */
1469 bp_size -= memaddr - bp_addr;
1470 bptoffset = memaddr - bp_addr;
1471 bp_addr = memaddr;
1472 }
1473
1474 if (bp_addr + bp_size > memaddr + len)
1475 {
1476 /* Only copy the first part of the breakpoint. */
1477 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1478 }
1479
1480 if (readbuf != NULL)
1481 {
1482 /* Verify that the readbuf buffer does not overlap with the
1483 shadow_contents buffer. */
1484 gdb_assert (target_info->shadow_contents >= readbuf + len
1485 || readbuf >= (target_info->shadow_contents
1486 + target_info->shadow_len));
1487
1488 /* Update the read buffer with this inserted breakpoint's
1489 shadow. */
1490 memcpy (readbuf + bp_addr - memaddr,
1491 target_info->shadow_contents + bptoffset, bp_size);
1492 }
1493 else
1494 {
1495 const unsigned char *bp;
1496 CORE_ADDR placed_address = target_info->placed_address;
1497 int placed_size = target_info->placed_size;
1498
1499 /* Update the shadow with what we want to write to memory. */
1500 memcpy (target_info->shadow_contents + bptoffset,
1501 writebuf_org + bp_addr - memaddr, bp_size);
1502
1503 /* Determine appropriate breakpoint contents and size for this
1504 address. */
1505 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1506
1507 /* Update the final write buffer with this inserted
1508 breakpoint's INSN. */
1509 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1510 }
1511 }
1512
1513 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1514 by replacing any memory breakpoints with their shadowed contents.
1515
1516 If READBUF is not NULL, this buffer must not overlap with any of
1517 the breakpoint location's shadow_contents buffers. Otherwise,
1518 a failed assertion internal error will be raised.
1519
1520 The range of shadowed area by each bp_location is:
1521 bl->address - bp_location_placed_address_before_address_max
1522 up to bl->address + bp_location_shadow_len_after_address_max
1523 The range we were requested to resolve shadows for is:
1524 memaddr ... memaddr + len
1525 Thus the safe cutoff boundaries for performance optimization are
1526 memaddr + len <= (bl->address
1527 - bp_location_placed_address_before_address_max)
1528 and:
1529 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1530
1531 void
1532 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1533 const gdb_byte *writebuf_org,
1534 ULONGEST memaddr, LONGEST len)
1535 {
1536 /* Left boundary, right boundary and median element of our binary
1537 search. */
1538 unsigned bc_l, bc_r, bc;
1539 size_t i;
1540
1541 /* Find BC_L which is a leftmost element which may affect BUF
1542 content. It is safe to report lower value but a failure to
1543 report higher one. */
1544
1545 bc_l = 0;
1546 bc_r = bp_location_count;
1547 while (bc_l + 1 < bc_r)
1548 {
1549 struct bp_location *bl;
1550
1551 bc = (bc_l + bc_r) / 2;
1552 bl = bp_location[bc];
1553
1554 /* Check first BL->ADDRESS will not overflow due to the added
1555 constant. Then advance the left boundary only if we are sure
1556 the BC element can in no way affect the BUF content (MEMADDR
1557 to MEMADDR + LEN range).
1558
1559 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1560 offset so that we cannot miss a breakpoint with its shadow
1561 range tail still reaching MEMADDR. */
1562
1563 if ((bl->address + bp_location_shadow_len_after_address_max
1564 >= bl->address)
1565 && (bl->address + bp_location_shadow_len_after_address_max
1566 <= memaddr))
1567 bc_l = bc;
1568 else
1569 bc_r = bc;
1570 }
1571
1572 /* Due to the binary search above, we need to make sure we pick the
1573 first location that's at BC_L's address. E.g., if there are
1574 multiple locations at the same address, BC_L may end up pointing
1575 at a duplicate location, and miss the "master"/"inserted"
1576 location. Say, given locations L1, L2 and L3 at addresses A and
1577 B:
1578
1579 L1@A, L2@A, L3@B, ...
1580
1581 BC_L could end up pointing at location L2, while the "master"
1582 location could be L1. Since the `loc->inserted' flag is only set
1583 on "master" locations, we'd forget to restore the shadow of L1
1584 and L2. */
1585 while (bc_l > 0
1586 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1587 bc_l--;
1588
1589 /* Now do full processing of the found relevant range of elements. */
1590
1591 for (bc = bc_l; bc < bp_location_count; bc++)
1592 {
1593 struct bp_location *bl = bp_location[bc];
1594 CORE_ADDR bp_addr = 0;
1595 int bp_size = 0;
1596 int bptoffset = 0;
1597
1598 /* bp_location array has BL->OWNER always non-NULL. */
1599 if (bl->owner->type == bp_none)
1600 warning (_("reading through apparently deleted breakpoint #%d?"),
1601 bl->owner->number);
1602
1603 /* Performance optimization: any further element can no longer affect BUF
1604 content. */
1605
1606 if (bl->address >= bp_location_placed_address_before_address_max
1607 && memaddr + len <= (bl->address
1608 - bp_location_placed_address_before_address_max))
1609 break;
1610
1611 if (!bp_location_has_shadow (bl))
1612 continue;
1613
1614 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1615 memaddr, len, &bl->target_info, bl->gdbarch);
1616 }
1617
1618 /* Now process single-step breakpoints. These are not found in the
1619 bp_location array. */
1620 for (i = 0; i < 2; i++)
1621 {
1622 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
1623
1624 if (bp_tgt != NULL)
1625 {
1626 struct gdbarch *gdbarch = single_step_gdbarch[i];
1627
1628 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1629 memaddr, len, bp_tgt, gdbarch);
1630 }
1631 }
1632 }
1633
1634 \f
1635
1636 /* Return true if BPT is either a software breakpoint or a hardware
1637 breakpoint. */
1638
1639 int
1640 is_breakpoint (const struct breakpoint *bpt)
1641 {
1642 return (bpt->type == bp_breakpoint
1643 || bpt->type == bp_hardware_breakpoint
1644 || bpt->type == bp_dprintf);
1645 }
1646
1647 /* Return true if BPT is of any hardware watchpoint kind. */
1648
1649 static int
1650 is_hardware_watchpoint (const struct breakpoint *bpt)
1651 {
1652 return (bpt->type == bp_hardware_watchpoint
1653 || bpt->type == bp_read_watchpoint
1654 || bpt->type == bp_access_watchpoint);
1655 }
1656
1657 /* Return true if BPT is of any watchpoint kind, hardware or
1658 software. */
1659
1660 int
1661 is_watchpoint (const struct breakpoint *bpt)
1662 {
1663 return (is_hardware_watchpoint (bpt)
1664 || bpt->type == bp_watchpoint);
1665 }
1666
1667 /* Returns true if the current thread and its running state are safe
1668 to evaluate or update watchpoint B. Watchpoints on local
1669 expressions need to be evaluated in the context of the thread that
1670 was current when the watchpoint was created, and, that thread needs
1671 to be stopped to be able to select the correct frame context.
1672 Watchpoints on global expressions can be evaluated on any thread,
1673 and in any state. It is presently left to the target allowing
1674 memory accesses when threads are running. */
1675
1676 static int
1677 watchpoint_in_thread_scope (struct watchpoint *b)
1678 {
1679 return (b->base.pspace == current_program_space
1680 && (ptid_equal (b->watchpoint_thread, null_ptid)
1681 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1682 && !is_executing (inferior_ptid))));
1683 }
1684
1685 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1686 associated bp_watchpoint_scope breakpoint. */
1687
1688 static void
1689 watchpoint_del_at_next_stop (struct watchpoint *w)
1690 {
1691 struct breakpoint *b = &w->base;
1692
1693 if (b->related_breakpoint != b)
1694 {
1695 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1696 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1697 b->related_breakpoint->disposition = disp_del_at_next_stop;
1698 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1699 b->related_breakpoint = b;
1700 }
1701 b->disposition = disp_del_at_next_stop;
1702 }
1703
1704 /* Assuming that B is a watchpoint:
1705 - Reparse watchpoint expression, if REPARSE is non-zero
1706 - Evaluate expression and store the result in B->val
1707 - Evaluate the condition if there is one, and store the result
1708 in b->loc->cond.
1709 - Update the list of values that must be watched in B->loc.
1710
1711 If the watchpoint disposition is disp_del_at_next_stop, then do
1712 nothing. If this is local watchpoint that is out of scope, delete
1713 it.
1714
1715 Even with `set breakpoint always-inserted on' the watchpoints are
1716 removed + inserted on each stop here. Normal breakpoints must
1717 never be removed because they might be missed by a running thread
1718 when debugging in non-stop mode. On the other hand, hardware
1719 watchpoints (is_hardware_watchpoint; processed here) are specific
1720 to each LWP since they are stored in each LWP's hardware debug
1721 registers. Therefore, such LWP must be stopped first in order to
1722 be able to modify its hardware watchpoints.
1723
1724 Hardware watchpoints must be reset exactly once after being
1725 presented to the user. It cannot be done sooner, because it would
1726 reset the data used to present the watchpoint hit to the user. And
1727 it must not be done later because it could display the same single
1728 watchpoint hit during multiple GDB stops. Note that the latter is
1729 relevant only to the hardware watchpoint types bp_read_watchpoint
1730 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1731 not user-visible - its hit is suppressed if the memory content has
1732 not changed.
1733
1734 The following constraints influence the location where we can reset
1735 hardware watchpoints:
1736
1737 * target_stopped_by_watchpoint and target_stopped_data_address are
1738 called several times when GDB stops.
1739
1740 [linux]
1741 * Multiple hardware watchpoints can be hit at the same time,
1742 causing GDB to stop. GDB only presents one hardware watchpoint
1743 hit at a time as the reason for stopping, and all the other hits
1744 are presented later, one after the other, each time the user
1745 requests the execution to be resumed. Execution is not resumed
1746 for the threads still having pending hit event stored in
1747 LWP_INFO->STATUS. While the watchpoint is already removed from
1748 the inferior on the first stop the thread hit event is kept being
1749 reported from its cached value by linux_nat_stopped_data_address
1750 until the real thread resume happens after the watchpoint gets
1751 presented and thus its LWP_INFO->STATUS gets reset.
1752
1753 Therefore the hardware watchpoint hit can get safely reset on the
1754 watchpoint removal from inferior. */
1755
1756 static void
1757 update_watchpoint (struct watchpoint *b, int reparse)
1758 {
1759 int within_current_scope;
1760 struct frame_id saved_frame_id;
1761 int frame_saved;
1762
1763 /* If this is a local watchpoint, we only want to check if the
1764 watchpoint frame is in scope if the current thread is the thread
1765 that was used to create the watchpoint. */
1766 if (!watchpoint_in_thread_scope (b))
1767 return;
1768
1769 if (b->base.disposition == disp_del_at_next_stop)
1770 return;
1771
1772 frame_saved = 0;
1773
1774 /* Determine if the watchpoint is within scope. */
1775 if (b->exp_valid_block == NULL)
1776 within_current_scope = 1;
1777 else
1778 {
1779 struct frame_info *fi = get_current_frame ();
1780 struct gdbarch *frame_arch = get_frame_arch (fi);
1781 CORE_ADDR frame_pc = get_frame_pc (fi);
1782
1783 /* If we're in a function epilogue, unwinding may not work
1784 properly, so do not attempt to recreate locations at this
1785 point. See similar comments in watchpoint_check. */
1786 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1787 return;
1788
1789 /* Save the current frame's ID so we can restore it after
1790 evaluating the watchpoint expression on its own frame. */
1791 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1792 took a frame parameter, so that we didn't have to change the
1793 selected frame. */
1794 frame_saved = 1;
1795 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1796
1797 fi = frame_find_by_id (b->watchpoint_frame);
1798 within_current_scope = (fi != NULL);
1799 if (within_current_scope)
1800 select_frame (fi);
1801 }
1802
1803 /* We don't free locations. They are stored in the bp_location array
1804 and update_global_location_list will eventually delete them and
1805 remove breakpoints if needed. */
1806 b->base.loc = NULL;
1807
1808 if (within_current_scope && reparse)
1809 {
1810 const char *s;
1811
1812 if (b->exp)
1813 {
1814 xfree (b->exp);
1815 b->exp = NULL;
1816 }
1817 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1818 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1819 /* If the meaning of expression itself changed, the old value is
1820 no longer relevant. We don't want to report a watchpoint hit
1821 to the user when the old value and the new value may actually
1822 be completely different objects. */
1823 value_free (b->val);
1824 b->val = NULL;
1825 b->val_valid = 0;
1826
1827 /* Note that unlike with breakpoints, the watchpoint's condition
1828 expression is stored in the breakpoint object, not in the
1829 locations (re)created below. */
1830 if (b->base.cond_string != NULL)
1831 {
1832 if (b->cond_exp != NULL)
1833 {
1834 xfree (b->cond_exp);
1835 b->cond_exp = NULL;
1836 }
1837
1838 s = b->base.cond_string;
1839 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1840 }
1841 }
1842
1843 /* If we failed to parse the expression, for example because
1844 it refers to a global variable in a not-yet-loaded shared library,
1845 don't try to insert watchpoint. We don't automatically delete
1846 such watchpoint, though, since failure to parse expression
1847 is different from out-of-scope watchpoint. */
1848 if (!target_has_execution)
1849 {
1850 /* Without execution, memory can't change. No use to try and
1851 set watchpoint locations. The watchpoint will be reset when
1852 the target gains execution, through breakpoint_re_set. */
1853 if (!can_use_hw_watchpoints)
1854 {
1855 if (b->base.ops->works_in_software_mode (&b->base))
1856 b->base.type = bp_watchpoint;
1857 else
1858 error (_("Can't set read/access watchpoint when "
1859 "hardware watchpoints are disabled."));
1860 }
1861 }
1862 else if (within_current_scope && b->exp)
1863 {
1864 int pc = 0;
1865 struct value *val_chain, *v, *result, *next;
1866 struct program_space *frame_pspace;
1867
1868 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain, 0);
1869
1870 /* Avoid setting b->val if it's already set. The meaning of
1871 b->val is 'the last value' user saw, and we should update
1872 it only if we reported that last value to user. As it
1873 happens, the code that reports it updates b->val directly.
1874 We don't keep track of the memory value for masked
1875 watchpoints. */
1876 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1877 {
1878 b->val = v;
1879 b->val_valid = 1;
1880 }
1881
1882 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1883
1884 /* Look at each value on the value chain. */
1885 for (v = val_chain; v; v = value_next (v))
1886 {
1887 /* If it's a memory location, and GDB actually needed
1888 its contents to evaluate the expression, then we
1889 must watch it. If the first value returned is
1890 still lazy, that means an error occurred reading it;
1891 watch it anyway in case it becomes readable. */
1892 if (VALUE_LVAL (v) == lval_memory
1893 && (v == val_chain || ! value_lazy (v)))
1894 {
1895 struct type *vtype = check_typedef (value_type (v));
1896
1897 /* We only watch structs and arrays if user asked
1898 for it explicitly, never if they just happen to
1899 appear in the middle of some value chain. */
1900 if (v == result
1901 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1902 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1903 {
1904 CORE_ADDR addr;
1905 int type;
1906 struct bp_location *loc, **tmp;
1907
1908 addr = value_address (v);
1909 type = hw_write;
1910 if (b->base.type == bp_read_watchpoint)
1911 type = hw_read;
1912 else if (b->base.type == bp_access_watchpoint)
1913 type = hw_access;
1914
1915 loc = allocate_bp_location (&b->base);
1916 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1917 ;
1918 *tmp = loc;
1919 loc->gdbarch = get_type_arch (value_type (v));
1920
1921 loc->pspace = frame_pspace;
1922 loc->address = addr;
1923 loc->length = TYPE_LENGTH (value_type (v));
1924 loc->watchpoint_type = type;
1925 }
1926 }
1927 }
1928
1929 /* Change the type of breakpoint between hardware assisted or
1930 an ordinary watchpoint depending on the hardware support
1931 and free hardware slots. REPARSE is set when the inferior
1932 is started. */
1933 if (reparse)
1934 {
1935 int reg_cnt;
1936 enum bp_loc_type loc_type;
1937 struct bp_location *bl;
1938
1939 reg_cnt = can_use_hardware_watchpoint (val_chain);
1940
1941 if (reg_cnt)
1942 {
1943 int i, target_resources_ok, other_type_used;
1944 enum bptype type;
1945
1946 /* Use an exact watchpoint when there's only one memory region to be
1947 watched, and only one debug register is needed to watch it. */
1948 b->exact = target_exact_watchpoints && reg_cnt == 1;
1949
1950 /* We need to determine how many resources are already
1951 used for all other hardware watchpoints plus this one
1952 to see if we still have enough resources to also fit
1953 this watchpoint in as well. */
1954
1955 /* If this is a software watchpoint, we try to turn it
1956 to a hardware one -- count resources as if B was of
1957 hardware watchpoint type. */
1958 type = b->base.type;
1959 if (type == bp_watchpoint)
1960 type = bp_hardware_watchpoint;
1961
1962 /* This watchpoint may or may not have been placed on
1963 the list yet at this point (it won't be in the list
1964 if we're trying to create it for the first time,
1965 through watch_command), so always account for it
1966 manually. */
1967
1968 /* Count resources used by all watchpoints except B. */
1969 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
1970
1971 /* Add in the resources needed for B. */
1972 i += hw_watchpoint_use_count (&b->base);
1973
1974 target_resources_ok
1975 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1976 if (target_resources_ok <= 0)
1977 {
1978 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
1979
1980 if (target_resources_ok == 0 && !sw_mode)
1981 error (_("Target does not support this type of "
1982 "hardware watchpoint."));
1983 else if (target_resources_ok < 0 && !sw_mode)
1984 error (_("There are not enough available hardware "
1985 "resources for this watchpoint."));
1986
1987 /* Downgrade to software watchpoint. */
1988 b->base.type = bp_watchpoint;
1989 }
1990 else
1991 {
1992 /* If this was a software watchpoint, we've just
1993 found we have enough resources to turn it to a
1994 hardware watchpoint. Otherwise, this is a
1995 nop. */
1996 b->base.type = type;
1997 }
1998 }
1999 else if (!b->base.ops->works_in_software_mode (&b->base))
2000 {
2001 if (!can_use_hw_watchpoints)
2002 error (_("Can't set read/access watchpoint when "
2003 "hardware watchpoints are disabled."));
2004 else
2005 error (_("Expression cannot be implemented with "
2006 "read/access watchpoint."));
2007 }
2008 else
2009 b->base.type = bp_watchpoint;
2010
2011 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
2012 : bp_loc_hardware_watchpoint);
2013 for (bl = b->base.loc; bl; bl = bl->next)
2014 bl->loc_type = loc_type;
2015 }
2016
2017 for (v = val_chain; v; v = next)
2018 {
2019 next = value_next (v);
2020 if (v != b->val)
2021 value_free (v);
2022 }
2023
2024 /* If a software watchpoint is not watching any memory, then the
2025 above left it without any location set up. But,
2026 bpstat_stop_status requires a location to be able to report
2027 stops, so make sure there's at least a dummy one. */
2028 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
2029 {
2030 struct breakpoint *base = &b->base;
2031 base->loc = allocate_bp_location (base);
2032 base->loc->pspace = frame_pspace;
2033 base->loc->address = -1;
2034 base->loc->length = -1;
2035 base->loc->watchpoint_type = -1;
2036 }
2037 }
2038 else if (!within_current_scope)
2039 {
2040 printf_filtered (_("\
2041 Watchpoint %d deleted because the program has left the block\n\
2042 in which its expression is valid.\n"),
2043 b->base.number);
2044 watchpoint_del_at_next_stop (b);
2045 }
2046
2047 /* Restore the selected frame. */
2048 if (frame_saved)
2049 select_frame (frame_find_by_id (saved_frame_id));
2050 }
2051
2052
2053 /* Returns 1 iff breakpoint location should be
2054 inserted in the inferior. We don't differentiate the type of BL's owner
2055 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2056 breakpoint_ops is not defined, because in insert_bp_location,
2057 tracepoint's insert_location will not be called. */
2058 static int
2059 should_be_inserted (struct bp_location *bl)
2060 {
2061 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2062 return 0;
2063
2064 if (bl->owner->disposition == disp_del_at_next_stop)
2065 return 0;
2066
2067 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2068 return 0;
2069
2070 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2071 return 0;
2072
2073 /* This is set for example, when we're attached to the parent of a
2074 vfork, and have detached from the child. The child is running
2075 free, and we expect it to do an exec or exit, at which point the
2076 OS makes the parent schedulable again (and the target reports
2077 that the vfork is done). Until the child is done with the shared
2078 memory region, do not insert breakpoints in the parent, otherwise
2079 the child could still trip on the parent's breakpoints. Since
2080 the parent is blocked anyway, it won't miss any breakpoint. */
2081 if (bl->pspace->breakpoints_not_allowed)
2082 return 0;
2083
2084 /* Don't insert a breakpoint if we're trying to step past its
2085 location. */
2086 if ((bl->loc_type == bp_loc_software_breakpoint
2087 || bl->loc_type == bp_loc_hardware_breakpoint)
2088 && stepping_past_instruction_at (bl->pspace->aspace,
2089 bl->address))
2090 return 0;
2091
2092 return 1;
2093 }
2094
2095 /* Same as should_be_inserted but does the check assuming
2096 that the location is not duplicated. */
2097
2098 static int
2099 unduplicated_should_be_inserted (struct bp_location *bl)
2100 {
2101 int result;
2102 const int save_duplicate = bl->duplicate;
2103
2104 bl->duplicate = 0;
2105 result = should_be_inserted (bl);
2106 bl->duplicate = save_duplicate;
2107 return result;
2108 }
2109
2110 /* Parses a conditional described by an expression COND into an
2111 agent expression bytecode suitable for evaluation
2112 by the bytecode interpreter. Return NULL if there was
2113 any error during parsing. */
2114
2115 static struct agent_expr *
2116 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2117 {
2118 struct agent_expr *aexpr = NULL;
2119 volatile struct gdb_exception ex;
2120
2121 if (!cond)
2122 return NULL;
2123
2124 /* We don't want to stop processing, so catch any errors
2125 that may show up. */
2126 TRY_CATCH (ex, RETURN_MASK_ERROR)
2127 {
2128 aexpr = gen_eval_for_expr (scope, cond);
2129 }
2130
2131 if (ex.reason < 0)
2132 {
2133 /* If we got here, it means the condition could not be parsed to a valid
2134 bytecode expression and thus can't be evaluated on the target's side.
2135 It's no use iterating through the conditions. */
2136 return NULL;
2137 }
2138
2139 /* We have a valid agent expression. */
2140 return aexpr;
2141 }
2142
2143 /* Based on location BL, create a list of breakpoint conditions to be
2144 passed on to the target. If we have duplicated locations with different
2145 conditions, we will add such conditions to the list. The idea is that the
2146 target will evaluate the list of conditions and will only notify GDB when
2147 one of them is true. */
2148
2149 static void
2150 build_target_condition_list (struct bp_location *bl)
2151 {
2152 struct bp_location **locp = NULL, **loc2p;
2153 int null_condition_or_parse_error = 0;
2154 int modified = bl->needs_update;
2155 struct bp_location *loc;
2156
2157 /* Release conditions left over from a previous insert. */
2158 VEC_free (agent_expr_p, bl->target_info.conditions);
2159
2160 /* This is only meaningful if the target is
2161 evaluating conditions and if the user has
2162 opted for condition evaluation on the target's
2163 side. */
2164 if (gdb_evaluates_breakpoint_condition_p ()
2165 || !target_supports_evaluation_of_breakpoint_conditions ())
2166 return;
2167
2168 /* Do a first pass to check for locations with no assigned
2169 conditions or conditions that fail to parse to a valid agent expression
2170 bytecode. If any of these happen, then it's no use to send conditions
2171 to the target since this location will always trigger and generate a
2172 response back to GDB. */
2173 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2174 {
2175 loc = (*loc2p);
2176 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2177 {
2178 if (modified)
2179 {
2180 struct agent_expr *aexpr;
2181
2182 /* Re-parse the conditions since something changed. In that
2183 case we already freed the condition bytecodes (see
2184 force_breakpoint_reinsertion). We just
2185 need to parse the condition to bytecodes again. */
2186 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2187 loc->cond_bytecode = aexpr;
2188
2189 /* Check if we managed to parse the conditional expression
2190 correctly. If not, we will not send this condition
2191 to the target. */
2192 if (aexpr)
2193 continue;
2194 }
2195
2196 /* If we have a NULL bytecode expression, it means something
2197 went wrong or we have a null condition expression. */
2198 if (!loc->cond_bytecode)
2199 {
2200 null_condition_or_parse_error = 1;
2201 break;
2202 }
2203 }
2204 }
2205
2206 /* If any of these happened, it means we will have to evaluate the conditions
2207 for the location's address on gdb's side. It is no use keeping bytecodes
2208 for all the other duplicate locations, thus we free all of them here.
2209
2210 This is so we have a finer control over which locations' conditions are
2211 being evaluated by GDB or the remote stub. */
2212 if (null_condition_or_parse_error)
2213 {
2214 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2215 {
2216 loc = (*loc2p);
2217 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2218 {
2219 /* Only go as far as the first NULL bytecode is
2220 located. */
2221 if (!loc->cond_bytecode)
2222 return;
2223
2224 free_agent_expr (loc->cond_bytecode);
2225 loc->cond_bytecode = NULL;
2226 }
2227 }
2228 }
2229
2230 /* No NULL conditions or failed bytecode generation. Build a condition list
2231 for this location's address. */
2232 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2233 {
2234 loc = (*loc2p);
2235 if (loc->cond
2236 && is_breakpoint (loc->owner)
2237 && loc->pspace->num == bl->pspace->num
2238 && loc->owner->enable_state == bp_enabled
2239 && loc->enabled)
2240 /* Add the condition to the vector. This will be used later to send the
2241 conditions to the target. */
2242 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2243 loc->cond_bytecode);
2244 }
2245
2246 return;
2247 }
2248
2249 /* Parses a command described by string CMD into an agent expression
2250 bytecode suitable for evaluation by the bytecode interpreter.
2251 Return NULL if there was any error during parsing. */
2252
2253 static struct agent_expr *
2254 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2255 {
2256 struct cleanup *old_cleanups = 0;
2257 struct expression *expr, **argvec;
2258 struct agent_expr *aexpr = NULL;
2259 volatile struct gdb_exception ex;
2260 const char *cmdrest;
2261 const char *format_start, *format_end;
2262 struct format_piece *fpieces;
2263 int nargs;
2264 struct gdbarch *gdbarch = get_current_arch ();
2265
2266 if (!cmd)
2267 return NULL;
2268
2269 cmdrest = cmd;
2270
2271 if (*cmdrest == ',')
2272 ++cmdrest;
2273 cmdrest = skip_spaces_const (cmdrest);
2274
2275 if (*cmdrest++ != '"')
2276 error (_("No format string following the location"));
2277
2278 format_start = cmdrest;
2279
2280 fpieces = parse_format_string (&cmdrest);
2281
2282 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2283
2284 format_end = cmdrest;
2285
2286 if (*cmdrest++ != '"')
2287 error (_("Bad format string, non-terminated '\"'."));
2288
2289 cmdrest = skip_spaces_const (cmdrest);
2290
2291 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2292 error (_("Invalid argument syntax"));
2293
2294 if (*cmdrest == ',')
2295 cmdrest++;
2296 cmdrest = skip_spaces_const (cmdrest);
2297
2298 /* For each argument, make an expression. */
2299
2300 argvec = (struct expression **) alloca (strlen (cmd)
2301 * sizeof (struct expression *));
2302
2303 nargs = 0;
2304 while (*cmdrest != '\0')
2305 {
2306 const char *cmd1;
2307
2308 cmd1 = cmdrest;
2309 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2310 argvec[nargs++] = expr;
2311 cmdrest = cmd1;
2312 if (*cmdrest == ',')
2313 ++cmdrest;
2314 }
2315
2316 /* We don't want to stop processing, so catch any errors
2317 that may show up. */
2318 TRY_CATCH (ex, RETURN_MASK_ERROR)
2319 {
2320 aexpr = gen_printf (scope, gdbarch, 0, 0,
2321 format_start, format_end - format_start,
2322 fpieces, nargs, argvec);
2323 }
2324
2325 do_cleanups (old_cleanups);
2326
2327 if (ex.reason < 0)
2328 {
2329 /* If we got here, it means the command could not be parsed to a valid
2330 bytecode expression and thus can't be evaluated on the target's side.
2331 It's no use iterating through the other commands. */
2332 return NULL;
2333 }
2334
2335 /* We have a valid agent expression, return it. */
2336 return aexpr;
2337 }
2338
2339 /* Based on location BL, create a list of breakpoint commands to be
2340 passed on to the target. If we have duplicated locations with
2341 different commands, we will add any such to the list. */
2342
2343 static void
2344 build_target_command_list (struct bp_location *bl)
2345 {
2346 struct bp_location **locp = NULL, **loc2p;
2347 int null_command_or_parse_error = 0;
2348 int modified = bl->needs_update;
2349 struct bp_location *loc;
2350
2351 /* Release commands left over from a previous insert. */
2352 VEC_free (agent_expr_p, bl->target_info.tcommands);
2353
2354 if (!target_can_run_breakpoint_commands ())
2355 return;
2356
2357 /* For now, limit to agent-style dprintf breakpoints. */
2358 if (dprintf_style != dprintf_style_agent)
2359 return;
2360
2361 /* For now, if we have any duplicate location that isn't a dprintf,
2362 don't install the target-side commands, as that would make the
2363 breakpoint not be reported to the core, and we'd lose
2364 control. */
2365 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2366 {
2367 loc = (*loc2p);
2368 if (is_breakpoint (loc->owner)
2369 && loc->pspace->num == bl->pspace->num
2370 && loc->owner->type != bp_dprintf)
2371 return;
2372 }
2373
2374 /* Do a first pass to check for locations with no assigned
2375 conditions or conditions that fail to parse to a valid agent expression
2376 bytecode. If any of these happen, then it's no use to send conditions
2377 to the target since this location will always trigger and generate a
2378 response back to GDB. */
2379 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2380 {
2381 loc = (*loc2p);
2382 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2383 {
2384 if (modified)
2385 {
2386 struct agent_expr *aexpr;
2387
2388 /* Re-parse the commands since something changed. In that
2389 case we already freed the command bytecodes (see
2390 force_breakpoint_reinsertion). We just
2391 need to parse the command to bytecodes again. */
2392 aexpr = parse_cmd_to_aexpr (bl->address,
2393 loc->owner->extra_string);
2394 loc->cmd_bytecode = aexpr;
2395
2396 if (!aexpr)
2397 continue;
2398 }
2399
2400 /* If we have a NULL bytecode expression, it means something
2401 went wrong or we have a null command expression. */
2402 if (!loc->cmd_bytecode)
2403 {
2404 null_command_or_parse_error = 1;
2405 break;
2406 }
2407 }
2408 }
2409
2410 /* If anything failed, then we're not doing target-side commands,
2411 and so clean up. */
2412 if (null_command_or_parse_error)
2413 {
2414 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2415 {
2416 loc = (*loc2p);
2417 if (is_breakpoint (loc->owner)
2418 && loc->pspace->num == bl->pspace->num)
2419 {
2420 /* Only go as far as the first NULL bytecode is
2421 located. */
2422 if (loc->cmd_bytecode == NULL)
2423 return;
2424
2425 free_agent_expr (loc->cmd_bytecode);
2426 loc->cmd_bytecode = NULL;
2427 }
2428 }
2429 }
2430
2431 /* No NULL commands or failed bytecode generation. Build a command list
2432 for this location's address. */
2433 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2434 {
2435 loc = (*loc2p);
2436 if (loc->owner->extra_string
2437 && is_breakpoint (loc->owner)
2438 && loc->pspace->num == bl->pspace->num
2439 && loc->owner->enable_state == bp_enabled
2440 && loc->enabled)
2441 /* Add the command to the vector. This will be used later
2442 to send the commands to the target. */
2443 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2444 loc->cmd_bytecode);
2445 }
2446
2447 bl->target_info.persist = 0;
2448 /* Maybe flag this location as persistent. */
2449 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2450 bl->target_info.persist = 1;
2451 }
2452
2453 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2454 location. Any error messages are printed to TMP_ERROR_STREAM; and
2455 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2456 Returns 0 for success, 1 if the bp_location type is not supported or
2457 -1 for failure.
2458
2459 NOTE drow/2003-09-09: This routine could be broken down to an
2460 object-style method for each breakpoint or catchpoint type. */
2461 static int
2462 insert_bp_location (struct bp_location *bl,
2463 struct ui_file *tmp_error_stream,
2464 int *disabled_breaks,
2465 int *hw_breakpoint_error,
2466 int *hw_bp_error_explained_already)
2467 {
2468 enum errors bp_err = GDB_NO_ERROR;
2469 const char *bp_err_message = NULL;
2470 volatile struct gdb_exception e;
2471
2472 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2473 return 0;
2474
2475 /* Note we don't initialize bl->target_info, as that wipes out
2476 the breakpoint location's shadow_contents if the breakpoint
2477 is still inserted at that location. This in turn breaks
2478 target_read_memory which depends on these buffers when
2479 a memory read is requested at the breakpoint location:
2480 Once the target_info has been wiped, we fail to see that
2481 we have a breakpoint inserted at that address and thus
2482 read the breakpoint instead of returning the data saved in
2483 the breakpoint location's shadow contents. */
2484 bl->target_info.placed_address = bl->address;
2485 bl->target_info.placed_address_space = bl->pspace->aspace;
2486 bl->target_info.length = bl->length;
2487
2488 /* When working with target-side conditions, we must pass all the conditions
2489 for the same breakpoint address down to the target since GDB will not
2490 insert those locations. With a list of breakpoint conditions, the target
2491 can decide when to stop and notify GDB. */
2492
2493 if (is_breakpoint (bl->owner))
2494 {
2495 build_target_condition_list (bl);
2496 build_target_command_list (bl);
2497 /* Reset the modification marker. */
2498 bl->needs_update = 0;
2499 }
2500
2501 if (bl->loc_type == bp_loc_software_breakpoint
2502 || bl->loc_type == bp_loc_hardware_breakpoint)
2503 {
2504 if (bl->owner->type != bp_hardware_breakpoint)
2505 {
2506 /* If the explicitly specified breakpoint type
2507 is not hardware breakpoint, check the memory map to see
2508 if the breakpoint address is in read only memory or not.
2509
2510 Two important cases are:
2511 - location type is not hardware breakpoint, memory
2512 is readonly. We change the type of the location to
2513 hardware breakpoint.
2514 - location type is hardware breakpoint, memory is
2515 read-write. This means we've previously made the
2516 location hardware one, but then the memory map changed,
2517 so we undo.
2518
2519 When breakpoints are removed, remove_breakpoints will use
2520 location types we've just set here, the only possible
2521 problem is that memory map has changed during running
2522 program, but it's not going to work anyway with current
2523 gdb. */
2524 struct mem_region *mr
2525 = lookup_mem_region (bl->target_info.placed_address);
2526
2527 if (mr)
2528 {
2529 if (automatic_hardware_breakpoints)
2530 {
2531 enum bp_loc_type new_type;
2532
2533 if (mr->attrib.mode != MEM_RW)
2534 new_type = bp_loc_hardware_breakpoint;
2535 else
2536 new_type = bp_loc_software_breakpoint;
2537
2538 if (new_type != bl->loc_type)
2539 {
2540 static int said = 0;
2541
2542 bl->loc_type = new_type;
2543 if (!said)
2544 {
2545 fprintf_filtered (gdb_stdout,
2546 _("Note: automatically using "
2547 "hardware breakpoints for "
2548 "read-only addresses.\n"));
2549 said = 1;
2550 }
2551 }
2552 }
2553 else if (bl->loc_type == bp_loc_software_breakpoint
2554 && mr->attrib.mode != MEM_RW)
2555 warning (_("cannot set software breakpoint "
2556 "at readonly address %s"),
2557 paddress (bl->gdbarch, bl->address));
2558 }
2559 }
2560
2561 /* First check to see if we have to handle an overlay. */
2562 if (overlay_debugging == ovly_off
2563 || bl->section == NULL
2564 || !(section_is_overlay (bl->section)))
2565 {
2566 /* No overlay handling: just set the breakpoint. */
2567 TRY_CATCH (e, RETURN_MASK_ALL)
2568 {
2569 int val;
2570
2571 val = bl->owner->ops->insert_location (bl);
2572 if (val)
2573 bp_err = GENERIC_ERROR;
2574 }
2575 if (e.reason < 0)
2576 {
2577 bp_err = e.error;
2578 bp_err_message = e.message;
2579 }
2580 }
2581 else
2582 {
2583 /* This breakpoint is in an overlay section.
2584 Shall we set a breakpoint at the LMA? */
2585 if (!overlay_events_enabled)
2586 {
2587 /* Yes -- overlay event support is not active,
2588 so we must try to set a breakpoint at the LMA.
2589 This will not work for a hardware breakpoint. */
2590 if (bl->loc_type == bp_loc_hardware_breakpoint)
2591 warning (_("hardware breakpoint %d not supported in overlay!"),
2592 bl->owner->number);
2593 else
2594 {
2595 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2596 bl->section);
2597 /* Set a software (trap) breakpoint at the LMA. */
2598 bl->overlay_target_info = bl->target_info;
2599 bl->overlay_target_info.placed_address = addr;
2600
2601 /* No overlay handling: just set the breakpoint. */
2602 TRY_CATCH (e, RETURN_MASK_ALL)
2603 {
2604 int val;
2605
2606 val = target_insert_breakpoint (bl->gdbarch,
2607 &bl->overlay_target_info);
2608 if (val)
2609 bp_err = GENERIC_ERROR;
2610 }
2611 if (e.reason < 0)
2612 {
2613 bp_err = e.error;
2614 bp_err_message = e.message;
2615 }
2616
2617 if (bp_err != GDB_NO_ERROR)
2618 fprintf_unfiltered (tmp_error_stream,
2619 "Overlay breakpoint %d "
2620 "failed: in ROM?\n",
2621 bl->owner->number);
2622 }
2623 }
2624 /* Shall we set a breakpoint at the VMA? */
2625 if (section_is_mapped (bl->section))
2626 {
2627 /* Yes. This overlay section is mapped into memory. */
2628 TRY_CATCH (e, RETURN_MASK_ALL)
2629 {
2630 int val;
2631
2632 val = bl->owner->ops->insert_location (bl);
2633 if (val)
2634 bp_err = GENERIC_ERROR;
2635 }
2636 if (e.reason < 0)
2637 {
2638 bp_err = e.error;
2639 bp_err_message = e.message;
2640 }
2641 }
2642 else
2643 {
2644 /* No. This breakpoint will not be inserted.
2645 No error, but do not mark the bp as 'inserted'. */
2646 return 0;
2647 }
2648 }
2649
2650 if (bp_err != GDB_NO_ERROR)
2651 {
2652 /* Can't set the breakpoint. */
2653
2654 /* In some cases, we might not be able to insert a
2655 breakpoint in a shared library that has already been
2656 removed, but we have not yet processed the shlib unload
2657 event. Unfortunately, some targets that implement
2658 breakpoint insertion themselves can't tell why the
2659 breakpoint insertion failed (e.g., the remote target
2660 doesn't define error codes), so we must treat generic
2661 errors as memory errors. */
2662 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2663 && bl->loc_type == bp_loc_software_breakpoint
2664 && (solib_name_from_address (bl->pspace, bl->address)
2665 || userloaded_objfile_contains_address_p (bl->pspace,
2666 bl->address)))
2667 {
2668 /* See also: disable_breakpoints_in_shlibs. */
2669 bl->shlib_disabled = 1;
2670 observer_notify_breakpoint_modified (bl->owner);
2671 if (!*disabled_breaks)
2672 {
2673 fprintf_unfiltered (tmp_error_stream,
2674 "Cannot insert breakpoint %d.\n",
2675 bl->owner->number);
2676 fprintf_unfiltered (tmp_error_stream,
2677 "Temporarily disabling shared "
2678 "library breakpoints:\n");
2679 }
2680 *disabled_breaks = 1;
2681 fprintf_unfiltered (tmp_error_stream,
2682 "breakpoint #%d\n", bl->owner->number);
2683 return 0;
2684 }
2685 else
2686 {
2687 if (bl->loc_type == bp_loc_hardware_breakpoint)
2688 {
2689 *hw_breakpoint_error = 1;
2690 *hw_bp_error_explained_already = bp_err_message != NULL;
2691 fprintf_unfiltered (tmp_error_stream,
2692 "Cannot insert hardware breakpoint %d%s",
2693 bl->owner->number, bp_err_message ? ":" : ".\n");
2694 if (bp_err_message != NULL)
2695 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2696 }
2697 else
2698 {
2699 if (bp_err_message == NULL)
2700 {
2701 char *message
2702 = memory_error_message (TARGET_XFER_E_IO,
2703 bl->gdbarch, bl->address);
2704 struct cleanup *old_chain = make_cleanup (xfree, message);
2705
2706 fprintf_unfiltered (tmp_error_stream,
2707 "Cannot insert breakpoint %d.\n"
2708 "%s\n",
2709 bl->owner->number, message);
2710 do_cleanups (old_chain);
2711 }
2712 else
2713 {
2714 fprintf_unfiltered (tmp_error_stream,
2715 "Cannot insert breakpoint %d: %s\n",
2716 bl->owner->number,
2717 bp_err_message);
2718 }
2719 }
2720 return 1;
2721
2722 }
2723 }
2724 else
2725 bl->inserted = 1;
2726
2727 return 0;
2728 }
2729
2730 else if (bl->loc_type == bp_loc_hardware_watchpoint
2731 /* NOTE drow/2003-09-08: This state only exists for removing
2732 watchpoints. It's not clear that it's necessary... */
2733 && bl->owner->disposition != disp_del_at_next_stop)
2734 {
2735 int val;
2736
2737 gdb_assert (bl->owner->ops != NULL
2738 && bl->owner->ops->insert_location != NULL);
2739
2740 val = bl->owner->ops->insert_location (bl);
2741
2742 /* If trying to set a read-watchpoint, and it turns out it's not
2743 supported, try emulating one with an access watchpoint. */
2744 if (val == 1 && bl->watchpoint_type == hw_read)
2745 {
2746 struct bp_location *loc, **loc_temp;
2747
2748 /* But don't try to insert it, if there's already another
2749 hw_access location that would be considered a duplicate
2750 of this one. */
2751 ALL_BP_LOCATIONS (loc, loc_temp)
2752 if (loc != bl
2753 && loc->watchpoint_type == hw_access
2754 && watchpoint_locations_match (bl, loc))
2755 {
2756 bl->duplicate = 1;
2757 bl->inserted = 1;
2758 bl->target_info = loc->target_info;
2759 bl->watchpoint_type = hw_access;
2760 val = 0;
2761 break;
2762 }
2763
2764 if (val == 1)
2765 {
2766 bl->watchpoint_type = hw_access;
2767 val = bl->owner->ops->insert_location (bl);
2768
2769 if (val)
2770 /* Back to the original value. */
2771 bl->watchpoint_type = hw_read;
2772 }
2773 }
2774
2775 bl->inserted = (val == 0);
2776 }
2777
2778 else if (bl->owner->type == bp_catchpoint)
2779 {
2780 int val;
2781
2782 gdb_assert (bl->owner->ops != NULL
2783 && bl->owner->ops->insert_location != NULL);
2784
2785 val = bl->owner->ops->insert_location (bl);
2786 if (val)
2787 {
2788 bl->owner->enable_state = bp_disabled;
2789
2790 if (val == 1)
2791 warning (_("\
2792 Error inserting catchpoint %d: Your system does not support this type\n\
2793 of catchpoint."), bl->owner->number);
2794 else
2795 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2796 }
2797
2798 bl->inserted = (val == 0);
2799
2800 /* We've already printed an error message if there was a problem
2801 inserting this catchpoint, and we've disabled the catchpoint,
2802 so just return success. */
2803 return 0;
2804 }
2805
2806 return 0;
2807 }
2808
2809 /* This function is called when program space PSPACE is about to be
2810 deleted. It takes care of updating breakpoints to not reference
2811 PSPACE anymore. */
2812
2813 void
2814 breakpoint_program_space_exit (struct program_space *pspace)
2815 {
2816 struct breakpoint *b, *b_temp;
2817 struct bp_location *loc, **loc_temp;
2818
2819 /* Remove any breakpoint that was set through this program space. */
2820 ALL_BREAKPOINTS_SAFE (b, b_temp)
2821 {
2822 if (b->pspace == pspace)
2823 delete_breakpoint (b);
2824 }
2825
2826 /* Breakpoints set through other program spaces could have locations
2827 bound to PSPACE as well. Remove those. */
2828 ALL_BP_LOCATIONS (loc, loc_temp)
2829 {
2830 struct bp_location *tmp;
2831
2832 if (loc->pspace == pspace)
2833 {
2834 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2835 if (loc->owner->loc == loc)
2836 loc->owner->loc = loc->next;
2837 else
2838 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2839 if (tmp->next == loc)
2840 {
2841 tmp->next = loc->next;
2842 break;
2843 }
2844 }
2845 }
2846
2847 /* Now update the global location list to permanently delete the
2848 removed locations above. */
2849 update_global_location_list (0);
2850 }
2851
2852 /* Make sure all breakpoints are inserted in inferior.
2853 Throws exception on any error.
2854 A breakpoint that is already inserted won't be inserted
2855 again, so calling this function twice is safe. */
2856 void
2857 insert_breakpoints (void)
2858 {
2859 struct breakpoint *bpt;
2860
2861 ALL_BREAKPOINTS (bpt)
2862 if (is_hardware_watchpoint (bpt))
2863 {
2864 struct watchpoint *w = (struct watchpoint *) bpt;
2865
2866 update_watchpoint (w, 0 /* don't reparse. */);
2867 }
2868
2869 update_global_location_list (1);
2870
2871 /* update_global_location_list does not insert breakpoints when
2872 always_inserted_mode is not enabled. Explicitly insert them
2873 now. */
2874 if (!breakpoints_always_inserted_mode ())
2875 insert_breakpoint_locations ();
2876 }
2877
2878 /* Invoke CALLBACK for each of bp_location. */
2879
2880 void
2881 iterate_over_bp_locations (walk_bp_location_callback callback)
2882 {
2883 struct bp_location *loc, **loc_tmp;
2884
2885 ALL_BP_LOCATIONS (loc, loc_tmp)
2886 {
2887 callback (loc, NULL);
2888 }
2889 }
2890
2891 /* This is used when we need to synch breakpoint conditions between GDB and the
2892 target. It is the case with deleting and disabling of breakpoints when using
2893 always-inserted mode. */
2894
2895 static void
2896 update_inserted_breakpoint_locations (void)
2897 {
2898 struct bp_location *bl, **blp_tmp;
2899 int error_flag = 0;
2900 int val = 0;
2901 int disabled_breaks = 0;
2902 int hw_breakpoint_error = 0;
2903 int hw_bp_details_reported = 0;
2904
2905 struct ui_file *tmp_error_stream = mem_fileopen ();
2906 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2907
2908 /* Explicitly mark the warning -- this will only be printed if
2909 there was an error. */
2910 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2911
2912 save_current_space_and_thread ();
2913
2914 ALL_BP_LOCATIONS (bl, blp_tmp)
2915 {
2916 /* We only want to update software breakpoints and hardware
2917 breakpoints. */
2918 if (!is_breakpoint (bl->owner))
2919 continue;
2920
2921 /* We only want to update locations that are already inserted
2922 and need updating. This is to avoid unwanted insertion during
2923 deletion of breakpoints. */
2924 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2925 continue;
2926
2927 switch_to_program_space_and_thread (bl->pspace);
2928
2929 /* For targets that support global breakpoints, there's no need
2930 to select an inferior to insert breakpoint to. In fact, even
2931 if we aren't attached to any process yet, we should still
2932 insert breakpoints. */
2933 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2934 && ptid_equal (inferior_ptid, null_ptid))
2935 continue;
2936
2937 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2938 &hw_breakpoint_error, &hw_bp_details_reported);
2939 if (val)
2940 error_flag = val;
2941 }
2942
2943 if (error_flag)
2944 {
2945 target_terminal_ours_for_output ();
2946 error_stream (tmp_error_stream);
2947 }
2948
2949 do_cleanups (cleanups);
2950 }
2951
2952 /* Used when starting or continuing the program. */
2953
2954 static void
2955 insert_breakpoint_locations (void)
2956 {
2957 struct breakpoint *bpt;
2958 struct bp_location *bl, **blp_tmp;
2959 int error_flag = 0;
2960 int val = 0;
2961 int disabled_breaks = 0;
2962 int hw_breakpoint_error = 0;
2963 int hw_bp_error_explained_already = 0;
2964
2965 struct ui_file *tmp_error_stream = mem_fileopen ();
2966 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2967
2968 /* Explicitly mark the warning -- this will only be printed if
2969 there was an error. */
2970 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2971
2972 save_current_space_and_thread ();
2973
2974 ALL_BP_LOCATIONS (bl, blp_tmp)
2975 {
2976 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2977 continue;
2978
2979 /* There is no point inserting thread-specific breakpoints if
2980 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2981 has BL->OWNER always non-NULL. */
2982 if (bl->owner->thread != -1
2983 && !valid_thread_id (bl->owner->thread))
2984 continue;
2985
2986 switch_to_program_space_and_thread (bl->pspace);
2987
2988 /* For targets that support global breakpoints, there's no need
2989 to select an inferior to insert breakpoint to. In fact, even
2990 if we aren't attached to any process yet, we should still
2991 insert breakpoints. */
2992 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2993 && ptid_equal (inferior_ptid, null_ptid))
2994 continue;
2995
2996 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2997 &hw_breakpoint_error, &hw_bp_error_explained_already);
2998 if (val)
2999 error_flag = val;
3000 }
3001
3002 /* If we failed to insert all locations of a watchpoint, remove
3003 them, as half-inserted watchpoint is of limited use. */
3004 ALL_BREAKPOINTS (bpt)
3005 {
3006 int some_failed = 0;
3007 struct bp_location *loc;
3008
3009 if (!is_hardware_watchpoint (bpt))
3010 continue;
3011
3012 if (!breakpoint_enabled (bpt))
3013 continue;
3014
3015 if (bpt->disposition == disp_del_at_next_stop)
3016 continue;
3017
3018 for (loc = bpt->loc; loc; loc = loc->next)
3019 if (!loc->inserted && should_be_inserted (loc))
3020 {
3021 some_failed = 1;
3022 break;
3023 }
3024 if (some_failed)
3025 {
3026 for (loc = bpt->loc; loc; loc = loc->next)
3027 if (loc->inserted)
3028 remove_breakpoint (loc, mark_uninserted);
3029
3030 hw_breakpoint_error = 1;
3031 fprintf_unfiltered (tmp_error_stream,
3032 "Could not insert hardware watchpoint %d.\n",
3033 bpt->number);
3034 error_flag = -1;
3035 }
3036 }
3037
3038 if (error_flag)
3039 {
3040 /* If a hardware breakpoint or watchpoint was inserted, add a
3041 message about possibly exhausted resources. */
3042 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3043 {
3044 fprintf_unfiltered (tmp_error_stream,
3045 "Could not insert hardware breakpoints:\n\
3046 You may have requested too many hardware breakpoints/watchpoints.\n");
3047 }
3048 target_terminal_ours_for_output ();
3049 error_stream (tmp_error_stream);
3050 }
3051
3052 do_cleanups (cleanups);
3053 }
3054
3055 /* Used when the program stops.
3056 Returns zero if successful, or non-zero if there was a problem
3057 removing a breakpoint location. */
3058
3059 int
3060 remove_breakpoints (void)
3061 {
3062 struct bp_location *bl, **blp_tmp;
3063 int val = 0;
3064
3065 ALL_BP_LOCATIONS (bl, blp_tmp)
3066 {
3067 if (bl->inserted && !is_tracepoint (bl->owner))
3068 val |= remove_breakpoint (bl, mark_uninserted);
3069 }
3070 return val;
3071 }
3072
3073 /* When a thread exits, remove breakpoints that are related to
3074 that thread. */
3075
3076 static void
3077 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3078 {
3079 struct breakpoint *b, *b_tmp;
3080
3081 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3082 {
3083 if (b->thread == tp->num && user_breakpoint_p (b))
3084 {
3085 b->disposition = disp_del_at_next_stop;
3086
3087 printf_filtered (_("\
3088 Thread-specific breakpoint %d deleted - thread %d no longer in the thread list.\n"),
3089 b->number, tp->num);
3090
3091 /* Hide it from the user. */
3092 b->number = 0;
3093 }
3094 }
3095 }
3096
3097 /* Remove breakpoints of process PID. */
3098
3099 int
3100 remove_breakpoints_pid (int pid)
3101 {
3102 struct bp_location *bl, **blp_tmp;
3103 int val;
3104 struct inferior *inf = find_inferior_pid (pid);
3105
3106 ALL_BP_LOCATIONS (bl, blp_tmp)
3107 {
3108 if (bl->pspace != inf->pspace)
3109 continue;
3110
3111 if (bl->owner->type == bp_dprintf)
3112 continue;
3113
3114 if (bl->inserted)
3115 {
3116 val = remove_breakpoint (bl, mark_uninserted);
3117 if (val != 0)
3118 return val;
3119 }
3120 }
3121 return 0;
3122 }
3123
3124 int
3125 reattach_breakpoints (int pid)
3126 {
3127 struct cleanup *old_chain;
3128 struct bp_location *bl, **blp_tmp;
3129 int val;
3130 struct ui_file *tmp_error_stream;
3131 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3132 struct inferior *inf;
3133 struct thread_info *tp;
3134
3135 tp = any_live_thread_of_process (pid);
3136 if (tp == NULL)
3137 return 1;
3138
3139 inf = find_inferior_pid (pid);
3140 old_chain = save_inferior_ptid ();
3141
3142 inferior_ptid = tp->ptid;
3143
3144 tmp_error_stream = mem_fileopen ();
3145 make_cleanup_ui_file_delete (tmp_error_stream);
3146
3147 ALL_BP_LOCATIONS (bl, blp_tmp)
3148 {
3149 if (bl->pspace != inf->pspace)
3150 continue;
3151
3152 if (bl->inserted)
3153 {
3154 bl->inserted = 0;
3155 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3156 if (val != 0)
3157 {
3158 do_cleanups (old_chain);
3159 return val;
3160 }
3161 }
3162 }
3163 do_cleanups (old_chain);
3164 return 0;
3165 }
3166
3167 static int internal_breakpoint_number = -1;
3168
3169 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3170 If INTERNAL is non-zero, the breakpoint number will be populated
3171 from internal_breakpoint_number and that variable decremented.
3172 Otherwise the breakpoint number will be populated from
3173 breakpoint_count and that value incremented. Internal breakpoints
3174 do not set the internal var bpnum. */
3175 static void
3176 set_breakpoint_number (int internal, struct breakpoint *b)
3177 {
3178 if (internal)
3179 b->number = internal_breakpoint_number--;
3180 else
3181 {
3182 set_breakpoint_count (breakpoint_count + 1);
3183 b->number = breakpoint_count;
3184 }
3185 }
3186
3187 static struct breakpoint *
3188 create_internal_breakpoint (struct gdbarch *gdbarch,
3189 CORE_ADDR address, enum bptype type,
3190 const struct breakpoint_ops *ops)
3191 {
3192 struct symtab_and_line sal;
3193 struct breakpoint *b;
3194
3195 init_sal (&sal); /* Initialize to zeroes. */
3196
3197 sal.pc = address;
3198 sal.section = find_pc_overlay (sal.pc);
3199 sal.pspace = current_program_space;
3200
3201 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3202 b->number = internal_breakpoint_number--;
3203 b->disposition = disp_donttouch;
3204
3205 return b;
3206 }
3207
3208 static const char *const longjmp_names[] =
3209 {
3210 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3211 };
3212 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3213
3214 /* Per-objfile data private to breakpoint.c. */
3215 struct breakpoint_objfile_data
3216 {
3217 /* Minimal symbol for "_ovly_debug_event" (if any). */
3218 struct bound_minimal_symbol overlay_msym;
3219
3220 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3221 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3222
3223 /* True if we have looked for longjmp probes. */
3224 int longjmp_searched;
3225
3226 /* SystemTap probe points for longjmp (if any). */
3227 VEC (probe_p) *longjmp_probes;
3228
3229 /* Minimal symbol for "std::terminate()" (if any). */
3230 struct bound_minimal_symbol terminate_msym;
3231
3232 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3233 struct bound_minimal_symbol exception_msym;
3234
3235 /* True if we have looked for exception probes. */
3236 int exception_searched;
3237
3238 /* SystemTap probe points for unwinding (if any). */
3239 VEC (probe_p) *exception_probes;
3240 };
3241
3242 static const struct objfile_data *breakpoint_objfile_key;
3243
3244 /* Minimal symbol not found sentinel. */
3245 static struct minimal_symbol msym_not_found;
3246
3247 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3248
3249 static int
3250 msym_not_found_p (const struct minimal_symbol *msym)
3251 {
3252 return msym == &msym_not_found;
3253 }
3254
3255 /* Return per-objfile data needed by breakpoint.c.
3256 Allocate the data if necessary. */
3257
3258 static struct breakpoint_objfile_data *
3259 get_breakpoint_objfile_data (struct objfile *objfile)
3260 {
3261 struct breakpoint_objfile_data *bp_objfile_data;
3262
3263 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3264 if (bp_objfile_data == NULL)
3265 {
3266 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3267 sizeof (*bp_objfile_data));
3268
3269 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3270 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3271 }
3272 return bp_objfile_data;
3273 }
3274
3275 static void
3276 free_breakpoint_probes (struct objfile *obj, void *data)
3277 {
3278 struct breakpoint_objfile_data *bp_objfile_data = data;
3279
3280 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3281 VEC_free (probe_p, bp_objfile_data->exception_probes);
3282 }
3283
3284 static void
3285 create_overlay_event_breakpoint (void)
3286 {
3287 struct objfile *objfile;
3288 const char *const func_name = "_ovly_debug_event";
3289
3290 ALL_OBJFILES (objfile)
3291 {
3292 struct breakpoint *b;
3293 struct breakpoint_objfile_data *bp_objfile_data;
3294 CORE_ADDR addr;
3295
3296 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3297
3298 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3299 continue;
3300
3301 if (bp_objfile_data->overlay_msym.minsym == NULL)
3302 {
3303 struct bound_minimal_symbol m;
3304
3305 m = lookup_minimal_symbol_text (func_name, objfile);
3306 if (m.minsym == NULL)
3307 {
3308 /* Avoid future lookups in this objfile. */
3309 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3310 continue;
3311 }
3312 bp_objfile_data->overlay_msym = m;
3313 }
3314
3315 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3316 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3317 bp_overlay_event,
3318 &internal_breakpoint_ops);
3319 b->addr_string = xstrdup (func_name);
3320
3321 if (overlay_debugging == ovly_auto)
3322 {
3323 b->enable_state = bp_enabled;
3324 overlay_events_enabled = 1;
3325 }
3326 else
3327 {
3328 b->enable_state = bp_disabled;
3329 overlay_events_enabled = 0;
3330 }
3331 }
3332 update_global_location_list (1);
3333 }
3334
3335 static void
3336 create_longjmp_master_breakpoint (void)
3337 {
3338 struct program_space *pspace;
3339 struct cleanup *old_chain;
3340
3341 old_chain = save_current_program_space ();
3342
3343 ALL_PSPACES (pspace)
3344 {
3345 struct objfile *objfile;
3346
3347 set_current_program_space (pspace);
3348
3349 ALL_OBJFILES (objfile)
3350 {
3351 int i;
3352 struct gdbarch *gdbarch;
3353 struct breakpoint_objfile_data *bp_objfile_data;
3354
3355 gdbarch = get_objfile_arch (objfile);
3356
3357 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3358
3359 if (!bp_objfile_data->longjmp_searched)
3360 {
3361 VEC (probe_p) *ret;
3362
3363 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3364 if (ret != NULL)
3365 {
3366 /* We are only interested in checking one element. */
3367 struct probe *p = VEC_index (probe_p, ret, 0);
3368
3369 if (!can_evaluate_probe_arguments (p))
3370 {
3371 /* We cannot use the probe interface here, because it does
3372 not know how to evaluate arguments. */
3373 VEC_free (probe_p, ret);
3374 ret = NULL;
3375 }
3376 }
3377 bp_objfile_data->longjmp_probes = ret;
3378 bp_objfile_data->longjmp_searched = 1;
3379 }
3380
3381 if (bp_objfile_data->longjmp_probes != NULL)
3382 {
3383 int i;
3384 struct probe *probe;
3385 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3386
3387 for (i = 0;
3388 VEC_iterate (probe_p,
3389 bp_objfile_data->longjmp_probes,
3390 i, probe);
3391 ++i)
3392 {
3393 struct breakpoint *b;
3394
3395 b = create_internal_breakpoint (gdbarch,
3396 get_probe_address (probe,
3397 objfile),
3398 bp_longjmp_master,
3399 &internal_breakpoint_ops);
3400 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3401 b->enable_state = bp_disabled;
3402 }
3403
3404 continue;
3405 }
3406
3407 if (!gdbarch_get_longjmp_target_p (gdbarch))
3408 continue;
3409
3410 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3411 {
3412 struct breakpoint *b;
3413 const char *func_name;
3414 CORE_ADDR addr;
3415
3416 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3417 continue;
3418
3419 func_name = longjmp_names[i];
3420 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3421 {
3422 struct bound_minimal_symbol m;
3423
3424 m = lookup_minimal_symbol_text (func_name, objfile);
3425 if (m.minsym == NULL)
3426 {
3427 /* Prevent future lookups in this objfile. */
3428 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3429 continue;
3430 }
3431 bp_objfile_data->longjmp_msym[i] = m;
3432 }
3433
3434 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3435 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3436 &internal_breakpoint_ops);
3437 b->addr_string = xstrdup (func_name);
3438 b->enable_state = bp_disabled;
3439 }
3440 }
3441 }
3442 update_global_location_list (1);
3443
3444 do_cleanups (old_chain);
3445 }
3446
3447 /* Create a master std::terminate breakpoint. */
3448 static void
3449 create_std_terminate_master_breakpoint (void)
3450 {
3451 struct program_space *pspace;
3452 struct cleanup *old_chain;
3453 const char *const func_name = "std::terminate()";
3454
3455 old_chain = save_current_program_space ();
3456
3457 ALL_PSPACES (pspace)
3458 {
3459 struct objfile *objfile;
3460 CORE_ADDR addr;
3461
3462 set_current_program_space (pspace);
3463
3464 ALL_OBJFILES (objfile)
3465 {
3466 struct breakpoint *b;
3467 struct breakpoint_objfile_data *bp_objfile_data;
3468
3469 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3470
3471 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3472 continue;
3473
3474 if (bp_objfile_data->terminate_msym.minsym == NULL)
3475 {
3476 struct bound_minimal_symbol m;
3477
3478 m = lookup_minimal_symbol (func_name, NULL, objfile);
3479 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3480 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3481 {
3482 /* Prevent future lookups in this objfile. */
3483 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3484 continue;
3485 }
3486 bp_objfile_data->terminate_msym = m;
3487 }
3488
3489 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3490 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3491 bp_std_terminate_master,
3492 &internal_breakpoint_ops);
3493 b->addr_string = xstrdup (func_name);
3494 b->enable_state = bp_disabled;
3495 }
3496 }
3497
3498 update_global_location_list (1);
3499
3500 do_cleanups (old_chain);
3501 }
3502
3503 /* Install a master breakpoint on the unwinder's debug hook. */
3504
3505 static void
3506 create_exception_master_breakpoint (void)
3507 {
3508 struct objfile *objfile;
3509 const char *const func_name = "_Unwind_DebugHook";
3510
3511 ALL_OBJFILES (objfile)
3512 {
3513 struct breakpoint *b;
3514 struct gdbarch *gdbarch;
3515 struct breakpoint_objfile_data *bp_objfile_data;
3516 CORE_ADDR addr;
3517
3518 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3519
3520 /* We prefer the SystemTap probe point if it exists. */
3521 if (!bp_objfile_data->exception_searched)
3522 {
3523 VEC (probe_p) *ret;
3524
3525 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3526
3527 if (ret != NULL)
3528 {
3529 /* We are only interested in checking one element. */
3530 struct probe *p = VEC_index (probe_p, ret, 0);
3531
3532 if (!can_evaluate_probe_arguments (p))
3533 {
3534 /* We cannot use the probe interface here, because it does
3535 not know how to evaluate arguments. */
3536 VEC_free (probe_p, ret);
3537 ret = NULL;
3538 }
3539 }
3540 bp_objfile_data->exception_probes = ret;
3541 bp_objfile_data->exception_searched = 1;
3542 }
3543
3544 if (bp_objfile_data->exception_probes != NULL)
3545 {
3546 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3547 int i;
3548 struct probe *probe;
3549
3550 for (i = 0;
3551 VEC_iterate (probe_p,
3552 bp_objfile_data->exception_probes,
3553 i, probe);
3554 ++i)
3555 {
3556 struct breakpoint *b;
3557
3558 b = create_internal_breakpoint (gdbarch,
3559 get_probe_address (probe,
3560 objfile),
3561 bp_exception_master,
3562 &internal_breakpoint_ops);
3563 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3564 b->enable_state = bp_disabled;
3565 }
3566
3567 continue;
3568 }
3569
3570 /* Otherwise, try the hook function. */
3571
3572 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3573 continue;
3574
3575 gdbarch = get_objfile_arch (objfile);
3576
3577 if (bp_objfile_data->exception_msym.minsym == NULL)
3578 {
3579 struct bound_minimal_symbol debug_hook;
3580
3581 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3582 if (debug_hook.minsym == NULL)
3583 {
3584 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3585 continue;
3586 }
3587
3588 bp_objfile_data->exception_msym = debug_hook;
3589 }
3590
3591 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3592 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3593 &current_target);
3594 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3595 &internal_breakpoint_ops);
3596 b->addr_string = xstrdup (func_name);
3597 b->enable_state = bp_disabled;
3598 }
3599
3600 update_global_location_list (1);
3601 }
3602
3603 void
3604 update_breakpoints_after_exec (void)
3605 {
3606 struct breakpoint *b, *b_tmp;
3607 struct bp_location *bploc, **bplocp_tmp;
3608
3609 /* We're about to delete breakpoints from GDB's lists. If the
3610 INSERTED flag is true, GDB will try to lift the breakpoints by
3611 writing the breakpoints' "shadow contents" back into memory. The
3612 "shadow contents" are NOT valid after an exec, so GDB should not
3613 do that. Instead, the target is responsible from marking
3614 breakpoints out as soon as it detects an exec. We don't do that
3615 here instead, because there may be other attempts to delete
3616 breakpoints after detecting an exec and before reaching here. */
3617 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3618 if (bploc->pspace == current_program_space)
3619 gdb_assert (!bploc->inserted);
3620
3621 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3622 {
3623 if (b->pspace != current_program_space)
3624 continue;
3625
3626 /* Solib breakpoints must be explicitly reset after an exec(). */
3627 if (b->type == bp_shlib_event)
3628 {
3629 delete_breakpoint (b);
3630 continue;
3631 }
3632
3633 /* JIT breakpoints must be explicitly reset after an exec(). */
3634 if (b->type == bp_jit_event)
3635 {
3636 delete_breakpoint (b);
3637 continue;
3638 }
3639
3640 /* Thread event breakpoints must be set anew after an exec(),
3641 as must overlay event and longjmp master breakpoints. */
3642 if (b->type == bp_thread_event || b->type == bp_overlay_event
3643 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3644 || b->type == bp_exception_master)
3645 {
3646 delete_breakpoint (b);
3647 continue;
3648 }
3649
3650 /* Step-resume breakpoints are meaningless after an exec(). */
3651 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3652 {
3653 delete_breakpoint (b);
3654 continue;
3655 }
3656
3657 /* Longjmp and longjmp-resume breakpoints are also meaningless
3658 after an exec. */
3659 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3660 || b->type == bp_longjmp_call_dummy
3661 || b->type == bp_exception || b->type == bp_exception_resume)
3662 {
3663 delete_breakpoint (b);
3664 continue;
3665 }
3666
3667 if (b->type == bp_catchpoint)
3668 {
3669 /* For now, none of the bp_catchpoint breakpoints need to
3670 do anything at this point. In the future, if some of
3671 the catchpoints need to something, we will need to add
3672 a new method, and call this method from here. */
3673 continue;
3674 }
3675
3676 /* bp_finish is a special case. The only way we ought to be able
3677 to see one of these when an exec() has happened, is if the user
3678 caught a vfork, and then said "finish". Ordinarily a finish just
3679 carries them to the call-site of the current callee, by setting
3680 a temporary bp there and resuming. But in this case, the finish
3681 will carry them entirely through the vfork & exec.
3682
3683 We don't want to allow a bp_finish to remain inserted now. But
3684 we can't safely delete it, 'cause finish_command has a handle to
3685 the bp on a bpstat, and will later want to delete it. There's a
3686 chance (and I've seen it happen) that if we delete the bp_finish
3687 here, that its storage will get reused by the time finish_command
3688 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3689 We really must allow finish_command to delete a bp_finish.
3690
3691 In the absence of a general solution for the "how do we know
3692 it's safe to delete something others may have handles to?"
3693 problem, what we'll do here is just uninsert the bp_finish, and
3694 let finish_command delete it.
3695
3696 (We know the bp_finish is "doomed" in the sense that it's
3697 momentary, and will be deleted as soon as finish_command sees
3698 the inferior stopped. So it doesn't matter that the bp's
3699 address is probably bogus in the new a.out, unlike e.g., the
3700 solib breakpoints.) */
3701
3702 if (b->type == bp_finish)
3703 {
3704 continue;
3705 }
3706
3707 /* Without a symbolic address, we have little hope of the
3708 pre-exec() address meaning the same thing in the post-exec()
3709 a.out. */
3710 if (b->addr_string == NULL)
3711 {
3712 delete_breakpoint (b);
3713 continue;
3714 }
3715 }
3716 /* FIXME what about longjmp breakpoints? Re-create them here? */
3717 create_overlay_event_breakpoint ();
3718 create_longjmp_master_breakpoint ();
3719 create_std_terminate_master_breakpoint ();
3720 create_exception_master_breakpoint ();
3721 }
3722
3723 int
3724 detach_breakpoints (ptid_t ptid)
3725 {
3726 struct bp_location *bl, **blp_tmp;
3727 int val = 0;
3728 struct cleanup *old_chain = save_inferior_ptid ();
3729 struct inferior *inf = current_inferior ();
3730
3731 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3732 error (_("Cannot detach breakpoints of inferior_ptid"));
3733
3734 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3735 inferior_ptid = ptid;
3736 ALL_BP_LOCATIONS (bl, blp_tmp)
3737 {
3738 if (bl->pspace != inf->pspace)
3739 continue;
3740
3741 /* This function must physically remove breakpoints locations
3742 from the specified ptid, without modifying the breakpoint
3743 package's state. Locations of type bp_loc_other are only
3744 maintained at GDB side. So, there is no need to remove
3745 these bp_loc_other locations. Moreover, removing these
3746 would modify the breakpoint package's state. */
3747 if (bl->loc_type == bp_loc_other)
3748 continue;
3749
3750 if (bl->inserted)
3751 val |= remove_breakpoint_1 (bl, mark_inserted);
3752 }
3753
3754 /* Detach single-step breakpoints as well. */
3755 detach_single_step_breakpoints ();
3756
3757 do_cleanups (old_chain);
3758 return val;
3759 }
3760
3761 /* Remove the breakpoint location BL from the current address space.
3762 Note that this is used to detach breakpoints from a child fork.
3763 When we get here, the child isn't in the inferior list, and neither
3764 do we have objects to represent its address space --- we should
3765 *not* look at bl->pspace->aspace here. */
3766
3767 static int
3768 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3769 {
3770 int val;
3771
3772 /* BL is never in moribund_locations by our callers. */
3773 gdb_assert (bl->owner != NULL);
3774
3775 if (bl->owner->enable_state == bp_permanent)
3776 /* Permanent breakpoints cannot be inserted or removed. */
3777 return 0;
3778
3779 /* The type of none suggests that owner is actually deleted.
3780 This should not ever happen. */
3781 gdb_assert (bl->owner->type != bp_none);
3782
3783 if (bl->loc_type == bp_loc_software_breakpoint
3784 || bl->loc_type == bp_loc_hardware_breakpoint)
3785 {
3786 /* "Normal" instruction breakpoint: either the standard
3787 trap-instruction bp (bp_breakpoint), or a
3788 bp_hardware_breakpoint. */
3789
3790 /* First check to see if we have to handle an overlay. */
3791 if (overlay_debugging == ovly_off
3792 || bl->section == NULL
3793 || !(section_is_overlay (bl->section)))
3794 {
3795 /* No overlay handling: just remove the breakpoint. */
3796
3797 /* If we're trying to uninsert a memory breakpoint that we
3798 know is set in a dynamic object that is marked
3799 shlib_disabled, then either the dynamic object was
3800 removed with "remove-symbol-file" or with
3801 "nosharedlibrary". In the former case, we don't know
3802 whether another dynamic object might have loaded over the
3803 breakpoint's address -- the user might well let us know
3804 about it next with add-symbol-file (the whole point of
3805 OBJF_USERLOADED is letting the user manually maintain a
3806 list of dynamically loaded objects). If we have the
3807 breakpoint's shadow memory, that is, this is a software
3808 breakpoint managed by GDB, check whether the breakpoint
3809 is still inserted in memory, to avoid overwriting wrong
3810 code with stale saved shadow contents. Note that HW
3811 breakpoints don't have shadow memory, as they're
3812 implemented using a mechanism that is not dependent on
3813 being able to modify the target's memory, and as such
3814 they should always be removed. */
3815 if (bl->shlib_disabled
3816 && bl->target_info.shadow_len != 0
3817 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3818 val = 0;
3819 else
3820 val = bl->owner->ops->remove_location (bl);
3821 }
3822 else
3823 {
3824 /* This breakpoint is in an overlay section.
3825 Did we set a breakpoint at the LMA? */
3826 if (!overlay_events_enabled)
3827 {
3828 /* Yes -- overlay event support is not active, so we
3829 should have set a breakpoint at the LMA. Remove it.
3830 */
3831 /* Ignore any failures: if the LMA is in ROM, we will
3832 have already warned when we failed to insert it. */
3833 if (bl->loc_type == bp_loc_hardware_breakpoint)
3834 target_remove_hw_breakpoint (bl->gdbarch,
3835 &bl->overlay_target_info);
3836 else
3837 target_remove_breakpoint (bl->gdbarch,
3838 &bl->overlay_target_info);
3839 }
3840 /* Did we set a breakpoint at the VMA?
3841 If so, we will have marked the breakpoint 'inserted'. */
3842 if (bl->inserted)
3843 {
3844 /* Yes -- remove it. Previously we did not bother to
3845 remove the breakpoint if the section had been
3846 unmapped, but let's not rely on that being safe. We
3847 don't know what the overlay manager might do. */
3848
3849 /* However, we should remove *software* breakpoints only
3850 if the section is still mapped, or else we overwrite
3851 wrong code with the saved shadow contents. */
3852 if (bl->loc_type == bp_loc_hardware_breakpoint
3853 || section_is_mapped (bl->section))
3854 val = bl->owner->ops->remove_location (bl);
3855 else
3856 val = 0;
3857 }
3858 else
3859 {
3860 /* No -- not inserted, so no need to remove. No error. */
3861 val = 0;
3862 }
3863 }
3864
3865 /* In some cases, we might not be able to remove a breakpoint in
3866 a shared library that has already been removed, but we have
3867 not yet processed the shlib unload event. Similarly for an
3868 unloaded add-symbol-file object - the user might not yet have
3869 had the chance to remove-symbol-file it. shlib_disabled will
3870 be set if the library/object has already been removed, but
3871 the breakpoint hasn't been uninserted yet, e.g., after
3872 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3873 always-inserted mode. */
3874 if (val
3875 && (bl->loc_type == bp_loc_software_breakpoint
3876 && (bl->shlib_disabled
3877 || solib_name_from_address (bl->pspace, bl->address)
3878 || userloaded_objfile_contains_address_p (bl->pspace,
3879 bl->address))))
3880 val = 0;
3881
3882 if (val)
3883 return val;
3884 bl->inserted = (is == mark_inserted);
3885 }
3886 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3887 {
3888 gdb_assert (bl->owner->ops != NULL
3889 && bl->owner->ops->remove_location != NULL);
3890
3891 bl->inserted = (is == mark_inserted);
3892 bl->owner->ops->remove_location (bl);
3893
3894 /* Failure to remove any of the hardware watchpoints comes here. */
3895 if ((is == mark_uninserted) && (bl->inserted))
3896 warning (_("Could not remove hardware watchpoint %d."),
3897 bl->owner->number);
3898 }
3899 else if (bl->owner->type == bp_catchpoint
3900 && breakpoint_enabled (bl->owner)
3901 && !bl->duplicate)
3902 {
3903 gdb_assert (bl->owner->ops != NULL
3904 && bl->owner->ops->remove_location != NULL);
3905
3906 val = bl->owner->ops->remove_location (bl);
3907 if (val)
3908 return val;
3909
3910 bl->inserted = (is == mark_inserted);
3911 }
3912
3913 return 0;
3914 }
3915
3916 static int
3917 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
3918 {
3919 int ret;
3920 struct cleanup *old_chain;
3921
3922 /* BL is never in moribund_locations by our callers. */
3923 gdb_assert (bl->owner != NULL);
3924
3925 if (bl->owner->enable_state == bp_permanent)
3926 /* Permanent breakpoints cannot be inserted or removed. */
3927 return 0;
3928
3929 /* The type of none suggests that owner is actually deleted.
3930 This should not ever happen. */
3931 gdb_assert (bl->owner->type != bp_none);
3932
3933 old_chain = save_current_space_and_thread ();
3934
3935 switch_to_program_space_and_thread (bl->pspace);
3936
3937 ret = remove_breakpoint_1 (bl, is);
3938
3939 do_cleanups (old_chain);
3940 return ret;
3941 }
3942
3943 /* Clear the "inserted" flag in all breakpoints. */
3944
3945 void
3946 mark_breakpoints_out (void)
3947 {
3948 struct bp_location *bl, **blp_tmp;
3949
3950 ALL_BP_LOCATIONS (bl, blp_tmp)
3951 if (bl->pspace == current_program_space)
3952 bl->inserted = 0;
3953 }
3954
3955 /* Clear the "inserted" flag in all breakpoints and delete any
3956 breakpoints which should go away between runs of the program.
3957
3958 Plus other such housekeeping that has to be done for breakpoints
3959 between runs.
3960
3961 Note: this function gets called at the end of a run (by
3962 generic_mourn_inferior) and when a run begins (by
3963 init_wait_for_inferior). */
3964
3965
3966
3967 void
3968 breakpoint_init_inferior (enum inf_context context)
3969 {
3970 struct breakpoint *b, *b_tmp;
3971 struct bp_location *bl, **blp_tmp;
3972 int ix;
3973 struct program_space *pspace = current_program_space;
3974
3975 /* If breakpoint locations are shared across processes, then there's
3976 nothing to do. */
3977 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3978 return;
3979
3980 ALL_BP_LOCATIONS (bl, blp_tmp)
3981 {
3982 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3983 if (bl->pspace == pspace
3984 && bl->owner->enable_state != bp_permanent)
3985 bl->inserted = 0;
3986 }
3987
3988 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3989 {
3990 if (b->loc && b->loc->pspace != pspace)
3991 continue;
3992
3993 switch (b->type)
3994 {
3995 case bp_call_dummy:
3996 case bp_longjmp_call_dummy:
3997
3998 /* If the call dummy breakpoint is at the entry point it will
3999 cause problems when the inferior is rerun, so we better get
4000 rid of it. */
4001
4002 case bp_watchpoint_scope:
4003
4004 /* Also get rid of scope breakpoints. */
4005
4006 case bp_shlib_event:
4007
4008 /* Also remove solib event breakpoints. Their addresses may
4009 have changed since the last time we ran the program.
4010 Actually we may now be debugging against different target;
4011 and so the solib backend that installed this breakpoint may
4012 not be used in by the target. E.g.,
4013
4014 (gdb) file prog-linux
4015 (gdb) run # native linux target
4016 ...
4017 (gdb) kill
4018 (gdb) file prog-win.exe
4019 (gdb) tar rem :9999 # remote Windows gdbserver.
4020 */
4021
4022 case bp_step_resume:
4023
4024 /* Also remove step-resume breakpoints. */
4025
4026 delete_breakpoint (b);
4027 break;
4028
4029 case bp_watchpoint:
4030 case bp_hardware_watchpoint:
4031 case bp_read_watchpoint:
4032 case bp_access_watchpoint:
4033 {
4034 struct watchpoint *w = (struct watchpoint *) b;
4035
4036 /* Likewise for watchpoints on local expressions. */
4037 if (w->exp_valid_block != NULL)
4038 delete_breakpoint (b);
4039 else if (context == inf_starting)
4040 {
4041 /* Reset val field to force reread of starting value in
4042 insert_breakpoints. */
4043 if (w->val)
4044 value_free (w->val);
4045 w->val = NULL;
4046 w->val_valid = 0;
4047 }
4048 }
4049 break;
4050 default:
4051 break;
4052 }
4053 }
4054
4055 /* Get rid of the moribund locations. */
4056 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
4057 decref_bp_location (&bl);
4058 VEC_free (bp_location_p, moribund_locations);
4059 }
4060
4061 /* These functions concern about actual breakpoints inserted in the
4062 target --- to e.g. check if we need to do decr_pc adjustment or if
4063 we need to hop over the bkpt --- so we check for address space
4064 match, not program space. */
4065
4066 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4067 exists at PC. It returns ordinary_breakpoint_here if it's an
4068 ordinary breakpoint, or permanent_breakpoint_here if it's a
4069 permanent breakpoint.
4070 - When continuing from a location with an ordinary breakpoint, we
4071 actually single step once before calling insert_breakpoints.
4072 - When continuing from a location with a permanent breakpoint, we
4073 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4074 the target, to advance the PC past the breakpoint. */
4075
4076 enum breakpoint_here
4077 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4078 {
4079 struct bp_location *bl, **blp_tmp;
4080 int any_breakpoint_here = 0;
4081
4082 ALL_BP_LOCATIONS (bl, blp_tmp)
4083 {
4084 if (bl->loc_type != bp_loc_software_breakpoint
4085 && bl->loc_type != bp_loc_hardware_breakpoint)
4086 continue;
4087
4088 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4089 if ((breakpoint_enabled (bl->owner)
4090 || bl->owner->enable_state == bp_permanent)
4091 && breakpoint_location_address_match (bl, aspace, pc))
4092 {
4093 if (overlay_debugging
4094 && section_is_overlay (bl->section)
4095 && !section_is_mapped (bl->section))
4096 continue; /* unmapped overlay -- can't be a match */
4097 else if (bl->owner->enable_state == bp_permanent)
4098 return permanent_breakpoint_here;
4099 else
4100 any_breakpoint_here = 1;
4101 }
4102 }
4103
4104 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
4105 }
4106
4107 /* Return true if there's a moribund breakpoint at PC. */
4108
4109 int
4110 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4111 {
4112 struct bp_location *loc;
4113 int ix;
4114
4115 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4116 if (breakpoint_location_address_match (loc, aspace, pc))
4117 return 1;
4118
4119 return 0;
4120 }
4121
4122 /* Returns non-zero if there's a breakpoint inserted at PC, which is
4123 inserted using regular breakpoint_chain / bp_location array
4124 mechanism. This does not check for single-step breakpoints, which
4125 are inserted and removed using direct target manipulation. */
4126
4127 int
4128 regular_breakpoint_inserted_here_p (struct address_space *aspace,
4129 CORE_ADDR pc)
4130 {
4131 struct bp_location *bl, **blp_tmp;
4132
4133 ALL_BP_LOCATIONS (bl, blp_tmp)
4134 {
4135 if (bl->loc_type != bp_loc_software_breakpoint
4136 && bl->loc_type != bp_loc_hardware_breakpoint)
4137 continue;
4138
4139 if (bl->inserted
4140 && breakpoint_location_address_match (bl, aspace, pc))
4141 {
4142 if (overlay_debugging
4143 && section_is_overlay (bl->section)
4144 && !section_is_mapped (bl->section))
4145 continue; /* unmapped overlay -- can't be a match */
4146 else
4147 return 1;
4148 }
4149 }
4150 return 0;
4151 }
4152
4153 /* Returns non-zero iff there's either regular breakpoint
4154 or a single step breakpoint inserted at PC. */
4155
4156 int
4157 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4158 {
4159 if (regular_breakpoint_inserted_here_p (aspace, pc))
4160 return 1;
4161
4162 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4163 return 1;
4164
4165 return 0;
4166 }
4167
4168 /* This function returns non-zero iff there is a software breakpoint
4169 inserted at PC. */
4170
4171 int
4172 software_breakpoint_inserted_here_p (struct address_space *aspace,
4173 CORE_ADDR pc)
4174 {
4175 struct bp_location *bl, **blp_tmp;
4176
4177 ALL_BP_LOCATIONS (bl, blp_tmp)
4178 {
4179 if (bl->loc_type != bp_loc_software_breakpoint)
4180 continue;
4181
4182 if (bl->inserted
4183 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4184 aspace, pc))
4185 {
4186 if (overlay_debugging
4187 && section_is_overlay (bl->section)
4188 && !section_is_mapped (bl->section))
4189 continue; /* unmapped overlay -- can't be a match */
4190 else
4191 return 1;
4192 }
4193 }
4194
4195 /* Also check for software single-step breakpoints. */
4196 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4197 return 1;
4198
4199 return 0;
4200 }
4201
4202 int
4203 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4204 CORE_ADDR addr, ULONGEST len)
4205 {
4206 struct breakpoint *bpt;
4207
4208 ALL_BREAKPOINTS (bpt)
4209 {
4210 struct bp_location *loc;
4211
4212 if (bpt->type != bp_hardware_watchpoint
4213 && bpt->type != bp_access_watchpoint)
4214 continue;
4215
4216 if (!breakpoint_enabled (bpt))
4217 continue;
4218
4219 for (loc = bpt->loc; loc; loc = loc->next)
4220 if (loc->pspace->aspace == aspace && loc->inserted)
4221 {
4222 CORE_ADDR l, h;
4223
4224 /* Check for intersection. */
4225 l = max (loc->address, addr);
4226 h = min (loc->address + loc->length, addr + len);
4227 if (l < h)
4228 return 1;
4229 }
4230 }
4231 return 0;
4232 }
4233
4234 /* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
4235 PC is valid for process/thread PTID. */
4236
4237 int
4238 breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
4239 ptid_t ptid)
4240 {
4241 struct bp_location *bl, **blp_tmp;
4242 /* The thread and task IDs associated to PTID, computed lazily. */
4243 int thread = -1;
4244 int task = 0;
4245
4246 ALL_BP_LOCATIONS (bl, blp_tmp)
4247 {
4248 if (bl->loc_type != bp_loc_software_breakpoint
4249 && bl->loc_type != bp_loc_hardware_breakpoint)
4250 continue;
4251
4252 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4253 if (!breakpoint_enabled (bl->owner)
4254 && bl->owner->enable_state != bp_permanent)
4255 continue;
4256
4257 if (!breakpoint_location_address_match (bl, aspace, pc))
4258 continue;
4259
4260 if (bl->owner->thread != -1)
4261 {
4262 /* This is a thread-specific breakpoint. Check that ptid
4263 matches that thread. If thread hasn't been computed yet,
4264 it is now time to do so. */
4265 if (thread == -1)
4266 thread = pid_to_thread_id (ptid);
4267 if (bl->owner->thread != thread)
4268 continue;
4269 }
4270
4271 if (bl->owner->task != 0)
4272 {
4273 /* This is a task-specific breakpoint. Check that ptid
4274 matches that task. If task hasn't been computed yet,
4275 it is now time to do so. */
4276 if (task == 0)
4277 task = ada_get_task_number (ptid);
4278 if (bl->owner->task != task)
4279 continue;
4280 }
4281
4282 if (overlay_debugging
4283 && section_is_overlay (bl->section)
4284 && !section_is_mapped (bl->section))
4285 continue; /* unmapped overlay -- can't be a match */
4286
4287 return 1;
4288 }
4289
4290 return 0;
4291 }
4292 \f
4293
4294 /* bpstat stuff. External routines' interfaces are documented
4295 in breakpoint.h. */
4296
4297 int
4298 is_catchpoint (struct breakpoint *ep)
4299 {
4300 return (ep->type == bp_catchpoint);
4301 }
4302
4303 /* Frees any storage that is part of a bpstat. Does not walk the
4304 'next' chain. */
4305
4306 static void
4307 bpstat_free (bpstat bs)
4308 {
4309 if (bs->old_val != NULL)
4310 value_free (bs->old_val);
4311 decref_counted_command_line (&bs->commands);
4312 decref_bp_location (&bs->bp_location_at);
4313 xfree (bs);
4314 }
4315
4316 /* Clear a bpstat so that it says we are not at any breakpoint.
4317 Also free any storage that is part of a bpstat. */
4318
4319 void
4320 bpstat_clear (bpstat *bsp)
4321 {
4322 bpstat p;
4323 bpstat q;
4324
4325 if (bsp == 0)
4326 return;
4327 p = *bsp;
4328 while (p != NULL)
4329 {
4330 q = p->next;
4331 bpstat_free (p);
4332 p = q;
4333 }
4334 *bsp = NULL;
4335 }
4336
4337 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4338 is part of the bpstat is copied as well. */
4339
4340 bpstat
4341 bpstat_copy (bpstat bs)
4342 {
4343 bpstat p = NULL;
4344 bpstat tmp;
4345 bpstat retval = NULL;
4346
4347 if (bs == NULL)
4348 return bs;
4349
4350 for (; bs != NULL; bs = bs->next)
4351 {
4352 tmp = (bpstat) xmalloc (sizeof (*tmp));
4353 memcpy (tmp, bs, sizeof (*tmp));
4354 incref_counted_command_line (tmp->commands);
4355 incref_bp_location (tmp->bp_location_at);
4356 if (bs->old_val != NULL)
4357 {
4358 tmp->old_val = value_copy (bs->old_val);
4359 release_value (tmp->old_val);
4360 }
4361
4362 if (p == NULL)
4363 /* This is the first thing in the chain. */
4364 retval = tmp;
4365 else
4366 p->next = tmp;
4367 p = tmp;
4368 }
4369 p->next = NULL;
4370 return retval;
4371 }
4372
4373 /* Find the bpstat associated with this breakpoint. */
4374
4375 bpstat
4376 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4377 {
4378 if (bsp == NULL)
4379 return NULL;
4380
4381 for (; bsp != NULL; bsp = bsp->next)
4382 {
4383 if (bsp->breakpoint_at == breakpoint)
4384 return bsp;
4385 }
4386 return NULL;
4387 }
4388
4389 /* See breakpoint.h. */
4390
4391 int
4392 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4393 {
4394 for (; bsp != NULL; bsp = bsp->next)
4395 {
4396 if (bsp->breakpoint_at == NULL)
4397 {
4398 /* A moribund location can never explain a signal other than
4399 GDB_SIGNAL_TRAP. */
4400 if (sig == GDB_SIGNAL_TRAP)
4401 return 1;
4402 }
4403 else
4404 {
4405 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4406 sig))
4407 return 1;
4408 }
4409 }
4410
4411 return 0;
4412 }
4413
4414 /* Put in *NUM the breakpoint number of the first breakpoint we are
4415 stopped at. *BSP upon return is a bpstat which points to the
4416 remaining breakpoints stopped at (but which is not guaranteed to be
4417 good for anything but further calls to bpstat_num).
4418
4419 Return 0 if passed a bpstat which does not indicate any breakpoints.
4420 Return -1 if stopped at a breakpoint that has been deleted since
4421 we set it.
4422 Return 1 otherwise. */
4423
4424 int
4425 bpstat_num (bpstat *bsp, int *num)
4426 {
4427 struct breakpoint *b;
4428
4429 if ((*bsp) == NULL)
4430 return 0; /* No more breakpoint values */
4431
4432 /* We assume we'll never have several bpstats that correspond to a
4433 single breakpoint -- otherwise, this function might return the
4434 same number more than once and this will look ugly. */
4435 b = (*bsp)->breakpoint_at;
4436 *bsp = (*bsp)->next;
4437 if (b == NULL)
4438 return -1; /* breakpoint that's been deleted since */
4439
4440 *num = b->number; /* We have its number */
4441 return 1;
4442 }
4443
4444 /* See breakpoint.h. */
4445
4446 void
4447 bpstat_clear_actions (void)
4448 {
4449 struct thread_info *tp;
4450 bpstat bs;
4451
4452 if (ptid_equal (inferior_ptid, null_ptid))
4453 return;
4454
4455 tp = find_thread_ptid (inferior_ptid);
4456 if (tp == NULL)
4457 return;
4458
4459 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4460 {
4461 decref_counted_command_line (&bs->commands);
4462
4463 if (bs->old_val != NULL)
4464 {
4465 value_free (bs->old_val);
4466 bs->old_val = NULL;
4467 }
4468 }
4469 }
4470
4471 /* Called when a command is about to proceed the inferior. */
4472
4473 static void
4474 breakpoint_about_to_proceed (void)
4475 {
4476 if (!ptid_equal (inferior_ptid, null_ptid))
4477 {
4478 struct thread_info *tp = inferior_thread ();
4479
4480 /* Allow inferior function calls in breakpoint commands to not
4481 interrupt the command list. When the call finishes
4482 successfully, the inferior will be standing at the same
4483 breakpoint as if nothing happened. */
4484 if (tp->control.in_infcall)
4485 return;
4486 }
4487
4488 breakpoint_proceeded = 1;
4489 }
4490
4491 /* Stub for cleaning up our state if we error-out of a breakpoint
4492 command. */
4493 static void
4494 cleanup_executing_breakpoints (void *ignore)
4495 {
4496 executing_breakpoint_commands = 0;
4497 }
4498
4499 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4500 or its equivalent. */
4501
4502 static int
4503 command_line_is_silent (struct command_line *cmd)
4504 {
4505 return cmd && (strcmp ("silent", cmd->line) == 0
4506 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4507 }
4508
4509 /* Execute all the commands associated with all the breakpoints at
4510 this location. Any of these commands could cause the process to
4511 proceed beyond this point, etc. We look out for such changes by
4512 checking the global "breakpoint_proceeded" after each command.
4513
4514 Returns true if a breakpoint command resumed the inferior. In that
4515 case, it is the caller's responsibility to recall it again with the
4516 bpstat of the current thread. */
4517
4518 static int
4519 bpstat_do_actions_1 (bpstat *bsp)
4520 {
4521 bpstat bs;
4522 struct cleanup *old_chain;
4523 int again = 0;
4524
4525 /* Avoid endless recursion if a `source' command is contained
4526 in bs->commands. */
4527 if (executing_breakpoint_commands)
4528 return 0;
4529
4530 executing_breakpoint_commands = 1;
4531 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4532
4533 prevent_dont_repeat ();
4534
4535 /* This pointer will iterate over the list of bpstat's. */
4536 bs = *bsp;
4537
4538 breakpoint_proceeded = 0;
4539 for (; bs != NULL; bs = bs->next)
4540 {
4541 struct counted_command_line *ccmd;
4542 struct command_line *cmd;
4543 struct cleanup *this_cmd_tree_chain;
4544
4545 /* Take ownership of the BSP's command tree, if it has one.
4546
4547 The command tree could legitimately contain commands like
4548 'step' and 'next', which call clear_proceed_status, which
4549 frees stop_bpstat's command tree. To make sure this doesn't
4550 free the tree we're executing out from under us, we need to
4551 take ownership of the tree ourselves. Since a given bpstat's
4552 commands are only executed once, we don't need to copy it; we
4553 can clear the pointer in the bpstat, and make sure we free
4554 the tree when we're done. */
4555 ccmd = bs->commands;
4556 bs->commands = NULL;
4557 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4558 cmd = ccmd ? ccmd->commands : NULL;
4559 if (command_line_is_silent (cmd))
4560 {
4561 /* The action has been already done by bpstat_stop_status. */
4562 cmd = cmd->next;
4563 }
4564
4565 while (cmd != NULL)
4566 {
4567 execute_control_command (cmd);
4568
4569 if (breakpoint_proceeded)
4570 break;
4571 else
4572 cmd = cmd->next;
4573 }
4574
4575 /* We can free this command tree now. */
4576 do_cleanups (this_cmd_tree_chain);
4577
4578 if (breakpoint_proceeded)
4579 {
4580 if (target_can_async_p ())
4581 /* If we are in async mode, then the target might be still
4582 running, not stopped at any breakpoint, so nothing for
4583 us to do here -- just return to the event loop. */
4584 ;
4585 else
4586 /* In sync mode, when execute_control_command returns
4587 we're already standing on the next breakpoint.
4588 Breakpoint commands for that stop were not run, since
4589 execute_command does not run breakpoint commands --
4590 only command_line_handler does, but that one is not
4591 involved in execution of breakpoint commands. So, we
4592 can now execute breakpoint commands. It should be
4593 noted that making execute_command do bpstat actions is
4594 not an option -- in this case we'll have recursive
4595 invocation of bpstat for each breakpoint with a
4596 command, and can easily blow up GDB stack. Instead, we
4597 return true, which will trigger the caller to recall us
4598 with the new stop_bpstat. */
4599 again = 1;
4600 break;
4601 }
4602 }
4603 do_cleanups (old_chain);
4604 return again;
4605 }
4606
4607 void
4608 bpstat_do_actions (void)
4609 {
4610 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4611
4612 /* Do any commands attached to breakpoint we are stopped at. */
4613 while (!ptid_equal (inferior_ptid, null_ptid)
4614 && target_has_execution
4615 && !is_exited (inferior_ptid)
4616 && !is_executing (inferior_ptid))
4617 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4618 and only return when it is stopped at the next breakpoint, we
4619 keep doing breakpoint actions until it returns false to
4620 indicate the inferior was not resumed. */
4621 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4622 break;
4623
4624 discard_cleanups (cleanup_if_error);
4625 }
4626
4627 /* Print out the (old or new) value associated with a watchpoint. */
4628
4629 static void
4630 watchpoint_value_print (struct value *val, struct ui_file *stream)
4631 {
4632 if (val == NULL)
4633 fprintf_unfiltered (stream, _("<unreadable>"));
4634 else
4635 {
4636 struct value_print_options opts;
4637 get_user_print_options (&opts);
4638 value_print (val, stream, &opts);
4639 }
4640 }
4641
4642 /* Generic routine for printing messages indicating why we
4643 stopped. The behavior of this function depends on the value
4644 'print_it' in the bpstat structure. Under some circumstances we
4645 may decide not to print anything here and delegate the task to
4646 normal_stop(). */
4647
4648 static enum print_stop_action
4649 print_bp_stop_message (bpstat bs)
4650 {
4651 switch (bs->print_it)
4652 {
4653 case print_it_noop:
4654 /* Nothing should be printed for this bpstat entry. */
4655 return PRINT_UNKNOWN;
4656 break;
4657
4658 case print_it_done:
4659 /* We still want to print the frame, but we already printed the
4660 relevant messages. */
4661 return PRINT_SRC_AND_LOC;
4662 break;
4663
4664 case print_it_normal:
4665 {
4666 struct breakpoint *b = bs->breakpoint_at;
4667
4668 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4669 which has since been deleted. */
4670 if (b == NULL)
4671 return PRINT_UNKNOWN;
4672
4673 /* Normal case. Call the breakpoint's print_it method. */
4674 return b->ops->print_it (bs);
4675 }
4676 break;
4677
4678 default:
4679 internal_error (__FILE__, __LINE__,
4680 _("print_bp_stop_message: unrecognized enum value"));
4681 break;
4682 }
4683 }
4684
4685 /* A helper function that prints a shared library stopped event. */
4686
4687 static void
4688 print_solib_event (int is_catchpoint)
4689 {
4690 int any_deleted
4691 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4692 int any_added
4693 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4694
4695 if (!is_catchpoint)
4696 {
4697 if (any_added || any_deleted)
4698 ui_out_text (current_uiout,
4699 _("Stopped due to shared library event:\n"));
4700 else
4701 ui_out_text (current_uiout,
4702 _("Stopped due to shared library event (no "
4703 "libraries added or removed)\n"));
4704 }
4705
4706 if (ui_out_is_mi_like_p (current_uiout))
4707 ui_out_field_string (current_uiout, "reason",
4708 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4709
4710 if (any_deleted)
4711 {
4712 struct cleanup *cleanup;
4713 char *name;
4714 int ix;
4715
4716 ui_out_text (current_uiout, _(" Inferior unloaded "));
4717 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4718 "removed");
4719 for (ix = 0;
4720 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4721 ix, name);
4722 ++ix)
4723 {
4724 if (ix > 0)
4725 ui_out_text (current_uiout, " ");
4726 ui_out_field_string (current_uiout, "library", name);
4727 ui_out_text (current_uiout, "\n");
4728 }
4729
4730 do_cleanups (cleanup);
4731 }
4732
4733 if (any_added)
4734 {
4735 struct so_list *iter;
4736 int ix;
4737 struct cleanup *cleanup;
4738
4739 ui_out_text (current_uiout, _(" Inferior loaded "));
4740 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4741 "added");
4742 for (ix = 0;
4743 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4744 ix, iter);
4745 ++ix)
4746 {
4747 if (ix > 0)
4748 ui_out_text (current_uiout, " ");
4749 ui_out_field_string (current_uiout, "library", iter->so_name);
4750 ui_out_text (current_uiout, "\n");
4751 }
4752
4753 do_cleanups (cleanup);
4754 }
4755 }
4756
4757 /* Print a message indicating what happened. This is called from
4758 normal_stop(). The input to this routine is the head of the bpstat
4759 list - a list of the eventpoints that caused this stop. KIND is
4760 the target_waitkind for the stopping event. This
4761 routine calls the generic print routine for printing a message
4762 about reasons for stopping. This will print (for example) the
4763 "Breakpoint n," part of the output. The return value of this
4764 routine is one of:
4765
4766 PRINT_UNKNOWN: Means we printed nothing.
4767 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4768 code to print the location. An example is
4769 "Breakpoint 1, " which should be followed by
4770 the location.
4771 PRINT_SRC_ONLY: Means we printed something, but there is no need
4772 to also print the location part of the message.
4773 An example is the catch/throw messages, which
4774 don't require a location appended to the end.
4775 PRINT_NOTHING: We have done some printing and we don't need any
4776 further info to be printed. */
4777
4778 enum print_stop_action
4779 bpstat_print (bpstat bs, int kind)
4780 {
4781 int val;
4782
4783 /* Maybe another breakpoint in the chain caused us to stop.
4784 (Currently all watchpoints go on the bpstat whether hit or not.
4785 That probably could (should) be changed, provided care is taken
4786 with respect to bpstat_explains_signal). */
4787 for (; bs; bs = bs->next)
4788 {
4789 val = print_bp_stop_message (bs);
4790 if (val == PRINT_SRC_ONLY
4791 || val == PRINT_SRC_AND_LOC
4792 || val == PRINT_NOTHING)
4793 return val;
4794 }
4795
4796 /* If we had hit a shared library event breakpoint,
4797 print_bp_stop_message would print out this message. If we hit an
4798 OS-level shared library event, do the same thing. */
4799 if (kind == TARGET_WAITKIND_LOADED)
4800 {
4801 print_solib_event (0);
4802 return PRINT_NOTHING;
4803 }
4804
4805 /* We reached the end of the chain, or we got a null BS to start
4806 with and nothing was printed. */
4807 return PRINT_UNKNOWN;
4808 }
4809
4810 /* Evaluate the expression EXP and return 1 if value is zero.
4811 This returns the inverse of the condition because it is called
4812 from catch_errors which returns 0 if an exception happened, and if an
4813 exception happens we want execution to stop.
4814 The argument is a "struct expression *" that has been cast to a
4815 "void *" to make it pass through catch_errors. */
4816
4817 static int
4818 breakpoint_cond_eval (void *exp)
4819 {
4820 struct value *mark = value_mark ();
4821 int i = !value_true (evaluate_expression ((struct expression *) exp));
4822
4823 value_free_to_mark (mark);
4824 return i;
4825 }
4826
4827 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4828
4829 static bpstat
4830 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4831 {
4832 bpstat bs;
4833
4834 bs = (bpstat) xmalloc (sizeof (*bs));
4835 bs->next = NULL;
4836 **bs_link_pointer = bs;
4837 *bs_link_pointer = &bs->next;
4838 bs->breakpoint_at = bl->owner;
4839 bs->bp_location_at = bl;
4840 incref_bp_location (bl);
4841 /* If the condition is false, etc., don't do the commands. */
4842 bs->commands = NULL;
4843 bs->old_val = NULL;
4844 bs->print_it = print_it_normal;
4845 return bs;
4846 }
4847 \f
4848 /* The target has stopped with waitstatus WS. Check if any hardware
4849 watchpoints have triggered, according to the target. */
4850
4851 int
4852 watchpoints_triggered (struct target_waitstatus *ws)
4853 {
4854 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4855 CORE_ADDR addr;
4856 struct breakpoint *b;
4857
4858 if (!stopped_by_watchpoint)
4859 {
4860 /* We were not stopped by a watchpoint. Mark all watchpoints
4861 as not triggered. */
4862 ALL_BREAKPOINTS (b)
4863 if (is_hardware_watchpoint (b))
4864 {
4865 struct watchpoint *w = (struct watchpoint *) b;
4866
4867 w->watchpoint_triggered = watch_triggered_no;
4868 }
4869
4870 return 0;
4871 }
4872
4873 if (!target_stopped_data_address (&current_target, &addr))
4874 {
4875 /* We were stopped by a watchpoint, but we don't know where.
4876 Mark all watchpoints as unknown. */
4877 ALL_BREAKPOINTS (b)
4878 if (is_hardware_watchpoint (b))
4879 {
4880 struct watchpoint *w = (struct watchpoint *) b;
4881
4882 w->watchpoint_triggered = watch_triggered_unknown;
4883 }
4884
4885 return 1;
4886 }
4887
4888 /* The target could report the data address. Mark watchpoints
4889 affected by this data address as triggered, and all others as not
4890 triggered. */
4891
4892 ALL_BREAKPOINTS (b)
4893 if (is_hardware_watchpoint (b))
4894 {
4895 struct watchpoint *w = (struct watchpoint *) b;
4896 struct bp_location *loc;
4897
4898 w->watchpoint_triggered = watch_triggered_no;
4899 for (loc = b->loc; loc; loc = loc->next)
4900 {
4901 if (is_masked_watchpoint (b))
4902 {
4903 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4904 CORE_ADDR start = loc->address & w->hw_wp_mask;
4905
4906 if (newaddr == start)
4907 {
4908 w->watchpoint_triggered = watch_triggered_yes;
4909 break;
4910 }
4911 }
4912 /* Exact match not required. Within range is sufficient. */
4913 else if (target_watchpoint_addr_within_range (&current_target,
4914 addr, loc->address,
4915 loc->length))
4916 {
4917 w->watchpoint_triggered = watch_triggered_yes;
4918 break;
4919 }
4920 }
4921 }
4922
4923 return 1;
4924 }
4925
4926 /* Possible return values for watchpoint_check (this can't be an enum
4927 because of check_errors). */
4928 /* The watchpoint has been deleted. */
4929 #define WP_DELETED 1
4930 /* The value has changed. */
4931 #define WP_VALUE_CHANGED 2
4932 /* The value has not changed. */
4933 #define WP_VALUE_NOT_CHANGED 3
4934 /* Ignore this watchpoint, no matter if the value changed or not. */
4935 #define WP_IGNORE 4
4936
4937 #define BP_TEMPFLAG 1
4938 #define BP_HARDWAREFLAG 2
4939
4940 /* Evaluate watchpoint condition expression and check if its value
4941 changed.
4942
4943 P should be a pointer to struct bpstat, but is defined as a void *
4944 in order for this function to be usable with catch_errors. */
4945
4946 static int
4947 watchpoint_check (void *p)
4948 {
4949 bpstat bs = (bpstat) p;
4950 struct watchpoint *b;
4951 struct frame_info *fr;
4952 int within_current_scope;
4953
4954 /* BS is built from an existing struct breakpoint. */
4955 gdb_assert (bs->breakpoint_at != NULL);
4956 b = (struct watchpoint *) bs->breakpoint_at;
4957
4958 /* If this is a local watchpoint, we only want to check if the
4959 watchpoint frame is in scope if the current thread is the thread
4960 that was used to create the watchpoint. */
4961 if (!watchpoint_in_thread_scope (b))
4962 return WP_IGNORE;
4963
4964 if (b->exp_valid_block == NULL)
4965 within_current_scope = 1;
4966 else
4967 {
4968 struct frame_info *frame = get_current_frame ();
4969 struct gdbarch *frame_arch = get_frame_arch (frame);
4970 CORE_ADDR frame_pc = get_frame_pc (frame);
4971
4972 /* in_function_epilogue_p() returns a non-zero value if we're
4973 still in the function but the stack frame has already been
4974 invalidated. Since we can't rely on the values of local
4975 variables after the stack has been destroyed, we are treating
4976 the watchpoint in that state as `not changed' without further
4977 checking. Don't mark watchpoints as changed if the current
4978 frame is in an epilogue - even if they are in some other
4979 frame, our view of the stack is likely to be wrong and
4980 frame_find_by_id could error out. */
4981 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
4982 return WP_IGNORE;
4983
4984 fr = frame_find_by_id (b->watchpoint_frame);
4985 within_current_scope = (fr != NULL);
4986
4987 /* If we've gotten confused in the unwinder, we might have
4988 returned a frame that can't describe this variable. */
4989 if (within_current_scope)
4990 {
4991 struct symbol *function;
4992
4993 function = get_frame_function (fr);
4994 if (function == NULL
4995 || !contained_in (b->exp_valid_block,
4996 SYMBOL_BLOCK_VALUE (function)))
4997 within_current_scope = 0;
4998 }
4999
5000 if (within_current_scope)
5001 /* If we end up stopping, the current frame will get selected
5002 in normal_stop. So this call to select_frame won't affect
5003 the user. */
5004 select_frame (fr);
5005 }
5006
5007 if (within_current_scope)
5008 {
5009 /* We use value_{,free_to_}mark because it could be a *long*
5010 time before we return to the command level and call
5011 free_all_values. We can't call free_all_values because we
5012 might be in the middle of evaluating a function call. */
5013
5014 int pc = 0;
5015 struct value *mark;
5016 struct value *new_val;
5017
5018 if (is_masked_watchpoint (&b->base))
5019 /* Since we don't know the exact trigger address (from
5020 stopped_data_address), just tell the user we've triggered
5021 a mask watchpoint. */
5022 return WP_VALUE_CHANGED;
5023
5024 mark = value_mark ();
5025 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL, 0);
5026
5027 /* We use value_equal_contents instead of value_equal because
5028 the latter coerces an array to a pointer, thus comparing just
5029 the address of the array instead of its contents. This is
5030 not what we want. */
5031 if ((b->val != NULL) != (new_val != NULL)
5032 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
5033 {
5034 if (new_val != NULL)
5035 {
5036 release_value (new_val);
5037 value_free_to_mark (mark);
5038 }
5039 bs->old_val = b->val;
5040 b->val = new_val;
5041 b->val_valid = 1;
5042 return WP_VALUE_CHANGED;
5043 }
5044 else
5045 {
5046 /* Nothing changed. */
5047 value_free_to_mark (mark);
5048 return WP_VALUE_NOT_CHANGED;
5049 }
5050 }
5051 else
5052 {
5053 struct ui_out *uiout = current_uiout;
5054
5055 /* This seems like the only logical thing to do because
5056 if we temporarily ignored the watchpoint, then when
5057 we reenter the block in which it is valid it contains
5058 garbage (in the case of a function, it may have two
5059 garbage values, one before and one after the prologue).
5060 So we can't even detect the first assignment to it and
5061 watch after that (since the garbage may or may not equal
5062 the first value assigned). */
5063 /* We print all the stop information in
5064 breakpoint_ops->print_it, but in this case, by the time we
5065 call breakpoint_ops->print_it this bp will be deleted
5066 already. So we have no choice but print the information
5067 here. */
5068 if (ui_out_is_mi_like_p (uiout))
5069 ui_out_field_string
5070 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5071 ui_out_text (uiout, "\nWatchpoint ");
5072 ui_out_field_int (uiout, "wpnum", b->base.number);
5073 ui_out_text (uiout,
5074 " deleted because the program has left the block in\n\
5075 which its expression is valid.\n");
5076
5077 /* Make sure the watchpoint's commands aren't executed. */
5078 decref_counted_command_line (&b->base.commands);
5079 watchpoint_del_at_next_stop (b);
5080
5081 return WP_DELETED;
5082 }
5083 }
5084
5085 /* Return true if it looks like target has stopped due to hitting
5086 breakpoint location BL. This function does not check if we should
5087 stop, only if BL explains the stop. */
5088
5089 static int
5090 bpstat_check_location (const struct bp_location *bl,
5091 struct address_space *aspace, CORE_ADDR bp_addr,
5092 const struct target_waitstatus *ws)
5093 {
5094 struct breakpoint *b = bl->owner;
5095
5096 /* BL is from an existing breakpoint. */
5097 gdb_assert (b != NULL);
5098
5099 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5100 }
5101
5102 /* Determine if the watched values have actually changed, and we
5103 should stop. If not, set BS->stop to 0. */
5104
5105 static void
5106 bpstat_check_watchpoint (bpstat bs)
5107 {
5108 const struct bp_location *bl;
5109 struct watchpoint *b;
5110
5111 /* BS is built for existing struct breakpoint. */
5112 bl = bs->bp_location_at;
5113 gdb_assert (bl != NULL);
5114 b = (struct watchpoint *) bs->breakpoint_at;
5115 gdb_assert (b != NULL);
5116
5117 {
5118 int must_check_value = 0;
5119
5120 if (b->base.type == bp_watchpoint)
5121 /* For a software watchpoint, we must always check the
5122 watched value. */
5123 must_check_value = 1;
5124 else if (b->watchpoint_triggered == watch_triggered_yes)
5125 /* We have a hardware watchpoint (read, write, or access)
5126 and the target earlier reported an address watched by
5127 this watchpoint. */
5128 must_check_value = 1;
5129 else if (b->watchpoint_triggered == watch_triggered_unknown
5130 && b->base.type == bp_hardware_watchpoint)
5131 /* We were stopped by a hardware watchpoint, but the target could
5132 not report the data address. We must check the watchpoint's
5133 value. Access and read watchpoints are out of luck; without
5134 a data address, we can't figure it out. */
5135 must_check_value = 1;
5136
5137 if (must_check_value)
5138 {
5139 char *message
5140 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5141 b->base.number);
5142 struct cleanup *cleanups = make_cleanup (xfree, message);
5143 int e = catch_errors (watchpoint_check, bs, message,
5144 RETURN_MASK_ALL);
5145 do_cleanups (cleanups);
5146 switch (e)
5147 {
5148 case WP_DELETED:
5149 /* We've already printed what needs to be printed. */
5150 bs->print_it = print_it_done;
5151 /* Stop. */
5152 break;
5153 case WP_IGNORE:
5154 bs->print_it = print_it_noop;
5155 bs->stop = 0;
5156 break;
5157 case WP_VALUE_CHANGED:
5158 if (b->base.type == bp_read_watchpoint)
5159 {
5160 /* There are two cases to consider here:
5161
5162 1. We're watching the triggered memory for reads.
5163 In that case, trust the target, and always report
5164 the watchpoint hit to the user. Even though
5165 reads don't cause value changes, the value may
5166 have changed since the last time it was read, and
5167 since we're not trapping writes, we will not see
5168 those, and as such we should ignore our notion of
5169 old value.
5170
5171 2. We're watching the triggered memory for both
5172 reads and writes. There are two ways this may
5173 happen:
5174
5175 2.1. This is a target that can't break on data
5176 reads only, but can break on accesses (reads or
5177 writes), such as e.g., x86. We detect this case
5178 at the time we try to insert read watchpoints.
5179
5180 2.2. Otherwise, the target supports read
5181 watchpoints, but, the user set an access or write
5182 watchpoint watching the same memory as this read
5183 watchpoint.
5184
5185 If we're watching memory writes as well as reads,
5186 ignore watchpoint hits when we find that the
5187 value hasn't changed, as reads don't cause
5188 changes. This still gives false positives when
5189 the program writes the same value to memory as
5190 what there was already in memory (we will confuse
5191 it for a read), but it's much better than
5192 nothing. */
5193
5194 int other_write_watchpoint = 0;
5195
5196 if (bl->watchpoint_type == hw_read)
5197 {
5198 struct breakpoint *other_b;
5199
5200 ALL_BREAKPOINTS (other_b)
5201 if (other_b->type == bp_hardware_watchpoint
5202 || other_b->type == bp_access_watchpoint)
5203 {
5204 struct watchpoint *other_w =
5205 (struct watchpoint *) other_b;
5206
5207 if (other_w->watchpoint_triggered
5208 == watch_triggered_yes)
5209 {
5210 other_write_watchpoint = 1;
5211 break;
5212 }
5213 }
5214 }
5215
5216 if (other_write_watchpoint
5217 || bl->watchpoint_type == hw_access)
5218 {
5219 /* We're watching the same memory for writes,
5220 and the value changed since the last time we
5221 updated it, so this trap must be for a write.
5222 Ignore it. */
5223 bs->print_it = print_it_noop;
5224 bs->stop = 0;
5225 }
5226 }
5227 break;
5228 case WP_VALUE_NOT_CHANGED:
5229 if (b->base.type == bp_hardware_watchpoint
5230 || b->base.type == bp_watchpoint)
5231 {
5232 /* Don't stop: write watchpoints shouldn't fire if
5233 the value hasn't changed. */
5234 bs->print_it = print_it_noop;
5235 bs->stop = 0;
5236 }
5237 /* Stop. */
5238 break;
5239 default:
5240 /* Can't happen. */
5241 case 0:
5242 /* Error from catch_errors. */
5243 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5244 watchpoint_del_at_next_stop (b);
5245 /* We've already printed what needs to be printed. */
5246 bs->print_it = print_it_done;
5247 break;
5248 }
5249 }
5250 else /* must_check_value == 0 */
5251 {
5252 /* This is a case where some watchpoint(s) triggered, but
5253 not at the address of this watchpoint, or else no
5254 watchpoint triggered after all. So don't print
5255 anything for this watchpoint. */
5256 bs->print_it = print_it_noop;
5257 bs->stop = 0;
5258 }
5259 }
5260 }
5261
5262 /* For breakpoints that are currently marked as telling gdb to stop,
5263 check conditions (condition proper, frame, thread and ignore count)
5264 of breakpoint referred to by BS. If we should not stop for this
5265 breakpoint, set BS->stop to 0. */
5266
5267 static void
5268 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5269 {
5270 const struct bp_location *bl;
5271 struct breakpoint *b;
5272 int value_is_zero = 0;
5273 struct expression *cond;
5274
5275 gdb_assert (bs->stop);
5276
5277 /* BS is built for existing struct breakpoint. */
5278 bl = bs->bp_location_at;
5279 gdb_assert (bl != NULL);
5280 b = bs->breakpoint_at;
5281 gdb_assert (b != NULL);
5282
5283 /* Even if the target evaluated the condition on its end and notified GDB, we
5284 need to do so again since GDB does not know if we stopped due to a
5285 breakpoint or a single step breakpoint. */
5286
5287 if (frame_id_p (b->frame_id)
5288 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5289 {
5290 bs->stop = 0;
5291 return;
5292 }
5293
5294 /* If this is a thread/task-specific breakpoint, don't waste cpu
5295 evaluating the condition if this isn't the specified
5296 thread/task. */
5297 if ((b->thread != -1 && b->thread != pid_to_thread_id (ptid))
5298 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5299
5300 {
5301 bs->stop = 0;
5302 return;
5303 }
5304
5305 /* Evaluate extension language breakpoints that have a "stop" method
5306 implemented. */
5307 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5308
5309 if (is_watchpoint (b))
5310 {
5311 struct watchpoint *w = (struct watchpoint *) b;
5312
5313 cond = w->cond_exp;
5314 }
5315 else
5316 cond = bl->cond;
5317
5318 if (cond && b->disposition != disp_del_at_next_stop)
5319 {
5320 int within_current_scope = 1;
5321 struct watchpoint * w;
5322
5323 /* We use value_mark and value_free_to_mark because it could
5324 be a long time before we return to the command level and
5325 call free_all_values. We can't call free_all_values
5326 because we might be in the middle of evaluating a
5327 function call. */
5328 struct value *mark = value_mark ();
5329
5330 if (is_watchpoint (b))
5331 w = (struct watchpoint *) b;
5332 else
5333 w = NULL;
5334
5335 /* Need to select the frame, with all that implies so that
5336 the conditions will have the right context. Because we
5337 use the frame, we will not see an inlined function's
5338 variables when we arrive at a breakpoint at the start
5339 of the inlined function; the current frame will be the
5340 call site. */
5341 if (w == NULL || w->cond_exp_valid_block == NULL)
5342 select_frame (get_current_frame ());
5343 else
5344 {
5345 struct frame_info *frame;
5346
5347 /* For local watchpoint expressions, which particular
5348 instance of a local is being watched matters, so we
5349 keep track of the frame to evaluate the expression
5350 in. To evaluate the condition however, it doesn't
5351 really matter which instantiation of the function
5352 where the condition makes sense triggers the
5353 watchpoint. This allows an expression like "watch
5354 global if q > 10" set in `func', catch writes to
5355 global on all threads that call `func', or catch
5356 writes on all recursive calls of `func' by a single
5357 thread. We simply always evaluate the condition in
5358 the innermost frame that's executing where it makes
5359 sense to evaluate the condition. It seems
5360 intuitive. */
5361 frame = block_innermost_frame (w->cond_exp_valid_block);
5362 if (frame != NULL)
5363 select_frame (frame);
5364 else
5365 within_current_scope = 0;
5366 }
5367 if (within_current_scope)
5368 value_is_zero
5369 = catch_errors (breakpoint_cond_eval, cond,
5370 "Error in testing breakpoint condition:\n",
5371 RETURN_MASK_ALL);
5372 else
5373 {
5374 warning (_("Watchpoint condition cannot be tested "
5375 "in the current scope"));
5376 /* If we failed to set the right context for this
5377 watchpoint, unconditionally report it. */
5378 value_is_zero = 0;
5379 }
5380 /* FIXME-someday, should give breakpoint #. */
5381 value_free_to_mark (mark);
5382 }
5383
5384 if (cond && value_is_zero)
5385 {
5386 bs->stop = 0;
5387 }
5388 else if (b->ignore_count > 0)
5389 {
5390 b->ignore_count--;
5391 bs->stop = 0;
5392 /* Increase the hit count even though we don't stop. */
5393 ++(b->hit_count);
5394 observer_notify_breakpoint_modified (b);
5395 }
5396 }
5397
5398
5399 /* Get a bpstat associated with having just stopped at address
5400 BP_ADDR in thread PTID.
5401
5402 Determine whether we stopped at a breakpoint, etc, or whether we
5403 don't understand this stop. Result is a chain of bpstat's such
5404 that:
5405
5406 if we don't understand the stop, the result is a null pointer.
5407
5408 if we understand why we stopped, the result is not null.
5409
5410 Each element of the chain refers to a particular breakpoint or
5411 watchpoint at which we have stopped. (We may have stopped for
5412 several reasons concurrently.)
5413
5414 Each element of the chain has valid next, breakpoint_at,
5415 commands, FIXME??? fields. */
5416
5417 bpstat
5418 bpstat_stop_status (struct address_space *aspace,
5419 CORE_ADDR bp_addr, ptid_t ptid,
5420 const struct target_waitstatus *ws)
5421 {
5422 struct breakpoint *b = NULL;
5423 struct bp_location *bl;
5424 struct bp_location *loc;
5425 /* First item of allocated bpstat's. */
5426 bpstat bs_head = NULL, *bs_link = &bs_head;
5427 /* Pointer to the last thing in the chain currently. */
5428 bpstat bs;
5429 int ix;
5430 int need_remove_insert;
5431 int removed_any;
5432
5433 /* First, build the bpstat chain with locations that explain a
5434 target stop, while being careful to not set the target running,
5435 as that may invalidate locations (in particular watchpoint
5436 locations are recreated). Resuming will happen here with
5437 breakpoint conditions or watchpoint expressions that include
5438 inferior function calls. */
5439
5440 ALL_BREAKPOINTS (b)
5441 {
5442 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5443 continue;
5444
5445 for (bl = b->loc; bl != NULL; bl = bl->next)
5446 {
5447 /* For hardware watchpoints, we look only at the first
5448 location. The watchpoint_check function will work on the
5449 entire expression, not the individual locations. For
5450 read watchpoints, the watchpoints_triggered function has
5451 checked all locations already. */
5452 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5453 break;
5454
5455 if (!bl->enabled || bl->shlib_disabled)
5456 continue;
5457
5458 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5459 continue;
5460
5461 /* Come here if it's a watchpoint, or if the break address
5462 matches. */
5463
5464 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5465 explain stop. */
5466
5467 /* Assume we stop. Should we find a watchpoint that is not
5468 actually triggered, or if the condition of the breakpoint
5469 evaluates as false, we'll reset 'stop' to 0. */
5470 bs->stop = 1;
5471 bs->print = 1;
5472
5473 /* If this is a scope breakpoint, mark the associated
5474 watchpoint as triggered so that we will handle the
5475 out-of-scope event. We'll get to the watchpoint next
5476 iteration. */
5477 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5478 {
5479 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5480
5481 w->watchpoint_triggered = watch_triggered_yes;
5482 }
5483 }
5484 }
5485
5486 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5487 {
5488 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5489 {
5490 bs = bpstat_alloc (loc, &bs_link);
5491 /* For hits of moribund locations, we should just proceed. */
5492 bs->stop = 0;
5493 bs->print = 0;
5494 bs->print_it = print_it_noop;
5495 }
5496 }
5497
5498 /* A bit of special processing for shlib breakpoints. We need to
5499 process solib loading here, so that the lists of loaded and
5500 unloaded libraries are correct before we handle "catch load" and
5501 "catch unload". */
5502 for (bs = bs_head; bs != NULL; bs = bs->next)
5503 {
5504 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5505 {
5506 handle_solib_event ();
5507 break;
5508 }
5509 }
5510
5511 /* Now go through the locations that caused the target to stop, and
5512 check whether we're interested in reporting this stop to higher
5513 layers, or whether we should resume the target transparently. */
5514
5515 removed_any = 0;
5516
5517 for (bs = bs_head; bs != NULL; bs = bs->next)
5518 {
5519 if (!bs->stop)
5520 continue;
5521
5522 b = bs->breakpoint_at;
5523 b->ops->check_status (bs);
5524 if (bs->stop)
5525 {
5526 bpstat_check_breakpoint_conditions (bs, ptid);
5527
5528 if (bs->stop)
5529 {
5530 ++(b->hit_count);
5531 observer_notify_breakpoint_modified (b);
5532
5533 /* We will stop here. */
5534 if (b->disposition == disp_disable)
5535 {
5536 --(b->enable_count);
5537 if (b->enable_count <= 0
5538 && b->enable_state != bp_permanent)
5539 b->enable_state = bp_disabled;
5540 removed_any = 1;
5541 }
5542 if (b->silent)
5543 bs->print = 0;
5544 bs->commands = b->commands;
5545 incref_counted_command_line (bs->commands);
5546 if (command_line_is_silent (bs->commands
5547 ? bs->commands->commands : NULL))
5548 bs->print = 0;
5549
5550 b->ops->after_condition_true (bs);
5551 }
5552
5553 }
5554
5555 /* Print nothing for this entry if we don't stop or don't
5556 print. */
5557 if (!bs->stop || !bs->print)
5558 bs->print_it = print_it_noop;
5559 }
5560
5561 /* If we aren't stopping, the value of some hardware watchpoint may
5562 not have changed, but the intermediate memory locations we are
5563 watching may have. Don't bother if we're stopping; this will get
5564 done later. */
5565 need_remove_insert = 0;
5566 if (! bpstat_causes_stop (bs_head))
5567 for (bs = bs_head; bs != NULL; bs = bs->next)
5568 if (!bs->stop
5569 && bs->breakpoint_at
5570 && is_hardware_watchpoint (bs->breakpoint_at))
5571 {
5572 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5573
5574 update_watchpoint (w, 0 /* don't reparse. */);
5575 need_remove_insert = 1;
5576 }
5577
5578 if (need_remove_insert)
5579 update_global_location_list (1);
5580 else if (removed_any)
5581 update_global_location_list (0);
5582
5583 return bs_head;
5584 }
5585
5586 static void
5587 handle_jit_event (void)
5588 {
5589 struct frame_info *frame;
5590 struct gdbarch *gdbarch;
5591
5592 /* Switch terminal for any messages produced by
5593 breakpoint_re_set. */
5594 target_terminal_ours_for_output ();
5595
5596 frame = get_current_frame ();
5597 gdbarch = get_frame_arch (frame);
5598
5599 jit_event_handler (gdbarch);
5600
5601 target_terminal_inferior ();
5602 }
5603
5604 /* Prepare WHAT final decision for infrun. */
5605
5606 /* Decide what infrun needs to do with this bpstat. */
5607
5608 struct bpstat_what
5609 bpstat_what (bpstat bs_head)
5610 {
5611 struct bpstat_what retval;
5612 int jit_event = 0;
5613 bpstat bs;
5614
5615 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5616 retval.call_dummy = STOP_NONE;
5617 retval.is_longjmp = 0;
5618
5619 for (bs = bs_head; bs != NULL; bs = bs->next)
5620 {
5621 /* Extract this BS's action. After processing each BS, we check
5622 if its action overrides all we've seem so far. */
5623 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5624 enum bptype bptype;
5625
5626 if (bs->breakpoint_at == NULL)
5627 {
5628 /* I suspect this can happen if it was a momentary
5629 breakpoint which has since been deleted. */
5630 bptype = bp_none;
5631 }
5632 else
5633 bptype = bs->breakpoint_at->type;
5634
5635 switch (bptype)
5636 {
5637 case bp_none:
5638 break;
5639 case bp_breakpoint:
5640 case bp_hardware_breakpoint:
5641 case bp_until:
5642 case bp_finish:
5643 case bp_shlib_event:
5644 if (bs->stop)
5645 {
5646 if (bs->print)
5647 this_action = BPSTAT_WHAT_STOP_NOISY;
5648 else
5649 this_action = BPSTAT_WHAT_STOP_SILENT;
5650 }
5651 else
5652 this_action = BPSTAT_WHAT_SINGLE;
5653 break;
5654 case bp_watchpoint:
5655 case bp_hardware_watchpoint:
5656 case bp_read_watchpoint:
5657 case bp_access_watchpoint:
5658 if (bs->stop)
5659 {
5660 if (bs->print)
5661 this_action = BPSTAT_WHAT_STOP_NOISY;
5662 else
5663 this_action = BPSTAT_WHAT_STOP_SILENT;
5664 }
5665 else
5666 {
5667 /* There was a watchpoint, but we're not stopping.
5668 This requires no further action. */
5669 }
5670 break;
5671 case bp_longjmp:
5672 case bp_longjmp_call_dummy:
5673 case bp_exception:
5674 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5675 retval.is_longjmp = bptype != bp_exception;
5676 break;
5677 case bp_longjmp_resume:
5678 case bp_exception_resume:
5679 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5680 retval.is_longjmp = bptype == bp_longjmp_resume;
5681 break;
5682 case bp_step_resume:
5683 if (bs->stop)
5684 this_action = BPSTAT_WHAT_STEP_RESUME;
5685 else
5686 {
5687 /* It is for the wrong frame. */
5688 this_action = BPSTAT_WHAT_SINGLE;
5689 }
5690 break;
5691 case bp_hp_step_resume:
5692 if (bs->stop)
5693 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5694 else
5695 {
5696 /* It is for the wrong frame. */
5697 this_action = BPSTAT_WHAT_SINGLE;
5698 }
5699 break;
5700 case bp_watchpoint_scope:
5701 case bp_thread_event:
5702 case bp_overlay_event:
5703 case bp_longjmp_master:
5704 case bp_std_terminate_master:
5705 case bp_exception_master:
5706 this_action = BPSTAT_WHAT_SINGLE;
5707 break;
5708 case bp_catchpoint:
5709 if (bs->stop)
5710 {
5711 if (bs->print)
5712 this_action = BPSTAT_WHAT_STOP_NOISY;
5713 else
5714 this_action = BPSTAT_WHAT_STOP_SILENT;
5715 }
5716 else
5717 {
5718 /* There was a catchpoint, but we're not stopping.
5719 This requires no further action. */
5720 }
5721 break;
5722 case bp_jit_event:
5723 jit_event = 1;
5724 this_action = BPSTAT_WHAT_SINGLE;
5725 break;
5726 case bp_call_dummy:
5727 /* Make sure the action is stop (silent or noisy),
5728 so infrun.c pops the dummy frame. */
5729 retval.call_dummy = STOP_STACK_DUMMY;
5730 this_action = BPSTAT_WHAT_STOP_SILENT;
5731 break;
5732 case bp_std_terminate:
5733 /* Make sure the action is stop (silent or noisy),
5734 so infrun.c pops the dummy frame. */
5735 retval.call_dummy = STOP_STD_TERMINATE;
5736 this_action = BPSTAT_WHAT_STOP_SILENT;
5737 break;
5738 case bp_tracepoint:
5739 case bp_fast_tracepoint:
5740 case bp_static_tracepoint:
5741 /* Tracepoint hits should not be reported back to GDB, and
5742 if one got through somehow, it should have been filtered
5743 out already. */
5744 internal_error (__FILE__, __LINE__,
5745 _("bpstat_what: tracepoint encountered"));
5746 break;
5747 case bp_gnu_ifunc_resolver:
5748 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5749 this_action = BPSTAT_WHAT_SINGLE;
5750 break;
5751 case bp_gnu_ifunc_resolver_return:
5752 /* The breakpoint will be removed, execution will restart from the
5753 PC of the former breakpoint. */
5754 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5755 break;
5756
5757 case bp_dprintf:
5758 if (bs->stop)
5759 this_action = BPSTAT_WHAT_STOP_SILENT;
5760 else
5761 this_action = BPSTAT_WHAT_SINGLE;
5762 break;
5763
5764 default:
5765 internal_error (__FILE__, __LINE__,
5766 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5767 }
5768
5769 retval.main_action = max (retval.main_action, this_action);
5770 }
5771
5772 /* These operations may affect the bs->breakpoint_at state so they are
5773 delayed after MAIN_ACTION is decided above. */
5774
5775 if (jit_event)
5776 {
5777 if (debug_infrun)
5778 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5779
5780 handle_jit_event ();
5781 }
5782
5783 for (bs = bs_head; bs != NULL; bs = bs->next)
5784 {
5785 struct breakpoint *b = bs->breakpoint_at;
5786
5787 if (b == NULL)
5788 continue;
5789 switch (b->type)
5790 {
5791 case bp_gnu_ifunc_resolver:
5792 gnu_ifunc_resolver_stop (b);
5793 break;
5794 case bp_gnu_ifunc_resolver_return:
5795 gnu_ifunc_resolver_return_stop (b);
5796 break;
5797 }
5798 }
5799
5800 return retval;
5801 }
5802
5803 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5804 without hardware support). This isn't related to a specific bpstat,
5805 just to things like whether watchpoints are set. */
5806
5807 int
5808 bpstat_should_step (void)
5809 {
5810 struct breakpoint *b;
5811
5812 ALL_BREAKPOINTS (b)
5813 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5814 return 1;
5815 return 0;
5816 }
5817
5818 int
5819 bpstat_causes_stop (bpstat bs)
5820 {
5821 for (; bs != NULL; bs = bs->next)
5822 if (bs->stop)
5823 return 1;
5824
5825 return 0;
5826 }
5827
5828 \f
5829
5830 /* Compute a string of spaces suitable to indent the next line
5831 so it starts at the position corresponding to the table column
5832 named COL_NAME in the currently active table of UIOUT. */
5833
5834 static char *
5835 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5836 {
5837 static char wrap_indent[80];
5838 int i, total_width, width, align;
5839 char *text;
5840
5841 total_width = 0;
5842 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5843 {
5844 if (strcmp (text, col_name) == 0)
5845 {
5846 gdb_assert (total_width < sizeof wrap_indent);
5847 memset (wrap_indent, ' ', total_width);
5848 wrap_indent[total_width] = 0;
5849
5850 return wrap_indent;
5851 }
5852
5853 total_width += width + 1;
5854 }
5855
5856 return NULL;
5857 }
5858
5859 /* Determine if the locations of this breakpoint will have their conditions
5860 evaluated by the target, host or a mix of both. Returns the following:
5861
5862 "host": Host evals condition.
5863 "host or target": Host or Target evals condition.
5864 "target": Target evals condition.
5865 */
5866
5867 static const char *
5868 bp_condition_evaluator (struct breakpoint *b)
5869 {
5870 struct bp_location *bl;
5871 char host_evals = 0;
5872 char target_evals = 0;
5873
5874 if (!b)
5875 return NULL;
5876
5877 if (!is_breakpoint (b))
5878 return NULL;
5879
5880 if (gdb_evaluates_breakpoint_condition_p ()
5881 || !target_supports_evaluation_of_breakpoint_conditions ())
5882 return condition_evaluation_host;
5883
5884 for (bl = b->loc; bl; bl = bl->next)
5885 {
5886 if (bl->cond_bytecode)
5887 target_evals++;
5888 else
5889 host_evals++;
5890 }
5891
5892 if (host_evals && target_evals)
5893 return condition_evaluation_both;
5894 else if (target_evals)
5895 return condition_evaluation_target;
5896 else
5897 return condition_evaluation_host;
5898 }
5899
5900 /* Determine the breakpoint location's condition evaluator. This is
5901 similar to bp_condition_evaluator, but for locations. */
5902
5903 static const char *
5904 bp_location_condition_evaluator (struct bp_location *bl)
5905 {
5906 if (bl && !is_breakpoint (bl->owner))
5907 return NULL;
5908
5909 if (gdb_evaluates_breakpoint_condition_p ()
5910 || !target_supports_evaluation_of_breakpoint_conditions ())
5911 return condition_evaluation_host;
5912
5913 if (bl && bl->cond_bytecode)
5914 return condition_evaluation_target;
5915 else
5916 return condition_evaluation_host;
5917 }
5918
5919 /* Print the LOC location out of the list of B->LOC locations. */
5920
5921 static void
5922 print_breakpoint_location (struct breakpoint *b,
5923 struct bp_location *loc)
5924 {
5925 struct ui_out *uiout = current_uiout;
5926 struct cleanup *old_chain = save_current_program_space ();
5927
5928 if (loc != NULL && loc->shlib_disabled)
5929 loc = NULL;
5930
5931 if (loc != NULL)
5932 set_current_program_space (loc->pspace);
5933
5934 if (b->display_canonical)
5935 ui_out_field_string (uiout, "what", b->addr_string);
5936 else if (loc && loc->symtab)
5937 {
5938 struct symbol *sym
5939 = find_pc_sect_function (loc->address, loc->section);
5940 if (sym)
5941 {
5942 ui_out_text (uiout, "in ");
5943 ui_out_field_string (uiout, "func",
5944 SYMBOL_PRINT_NAME (sym));
5945 ui_out_text (uiout, " ");
5946 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
5947 ui_out_text (uiout, "at ");
5948 }
5949 ui_out_field_string (uiout, "file",
5950 symtab_to_filename_for_display (loc->symtab));
5951 ui_out_text (uiout, ":");
5952
5953 if (ui_out_is_mi_like_p (uiout))
5954 ui_out_field_string (uiout, "fullname",
5955 symtab_to_fullname (loc->symtab));
5956
5957 ui_out_field_int (uiout, "line", loc->line_number);
5958 }
5959 else if (loc)
5960 {
5961 struct ui_file *stb = mem_fileopen ();
5962 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
5963
5964 print_address_symbolic (loc->gdbarch, loc->address, stb,
5965 demangle, "");
5966 ui_out_field_stream (uiout, "at", stb);
5967
5968 do_cleanups (stb_chain);
5969 }
5970 else
5971 ui_out_field_string (uiout, "pending", b->addr_string);
5972
5973 if (loc && is_breakpoint (b)
5974 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5975 && bp_condition_evaluator (b) == condition_evaluation_both)
5976 {
5977 ui_out_text (uiout, " (");
5978 ui_out_field_string (uiout, "evaluated-by",
5979 bp_location_condition_evaluator (loc));
5980 ui_out_text (uiout, ")");
5981 }
5982
5983 do_cleanups (old_chain);
5984 }
5985
5986 static const char *
5987 bptype_string (enum bptype type)
5988 {
5989 struct ep_type_description
5990 {
5991 enum bptype type;
5992 char *description;
5993 };
5994 static struct ep_type_description bptypes[] =
5995 {
5996 {bp_none, "?deleted?"},
5997 {bp_breakpoint, "breakpoint"},
5998 {bp_hardware_breakpoint, "hw breakpoint"},
5999 {bp_until, "until"},
6000 {bp_finish, "finish"},
6001 {bp_watchpoint, "watchpoint"},
6002 {bp_hardware_watchpoint, "hw watchpoint"},
6003 {bp_read_watchpoint, "read watchpoint"},
6004 {bp_access_watchpoint, "acc watchpoint"},
6005 {bp_longjmp, "longjmp"},
6006 {bp_longjmp_resume, "longjmp resume"},
6007 {bp_longjmp_call_dummy, "longjmp for call dummy"},
6008 {bp_exception, "exception"},
6009 {bp_exception_resume, "exception resume"},
6010 {bp_step_resume, "step resume"},
6011 {bp_hp_step_resume, "high-priority step resume"},
6012 {bp_watchpoint_scope, "watchpoint scope"},
6013 {bp_call_dummy, "call dummy"},
6014 {bp_std_terminate, "std::terminate"},
6015 {bp_shlib_event, "shlib events"},
6016 {bp_thread_event, "thread events"},
6017 {bp_overlay_event, "overlay events"},
6018 {bp_longjmp_master, "longjmp master"},
6019 {bp_std_terminate_master, "std::terminate master"},
6020 {bp_exception_master, "exception master"},
6021 {bp_catchpoint, "catchpoint"},
6022 {bp_tracepoint, "tracepoint"},
6023 {bp_fast_tracepoint, "fast tracepoint"},
6024 {bp_static_tracepoint, "static tracepoint"},
6025 {bp_dprintf, "dprintf"},
6026 {bp_jit_event, "jit events"},
6027 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6028 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6029 };
6030
6031 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6032 || ((int) type != bptypes[(int) type].type))
6033 internal_error (__FILE__, __LINE__,
6034 _("bptypes table does not describe type #%d."),
6035 (int) type);
6036
6037 return bptypes[(int) type].description;
6038 }
6039
6040 /* For MI, output a field named 'thread-groups' with a list as the value.
6041 For CLI, prefix the list with the string 'inf'. */
6042
6043 static void
6044 output_thread_groups (struct ui_out *uiout,
6045 const char *field_name,
6046 VEC(int) *inf_num,
6047 int mi_only)
6048 {
6049 struct cleanup *back_to;
6050 int is_mi = ui_out_is_mi_like_p (uiout);
6051 int inf;
6052 int i;
6053
6054 /* For backward compatibility, don't display inferiors in CLI unless
6055 there are several. Always display them for MI. */
6056 if (!is_mi && mi_only)
6057 return;
6058
6059 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
6060
6061 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
6062 {
6063 if (is_mi)
6064 {
6065 char mi_group[10];
6066
6067 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
6068 ui_out_field_string (uiout, NULL, mi_group);
6069 }
6070 else
6071 {
6072 if (i == 0)
6073 ui_out_text (uiout, " inf ");
6074 else
6075 ui_out_text (uiout, ", ");
6076
6077 ui_out_text (uiout, plongest (inf));
6078 }
6079 }
6080
6081 do_cleanups (back_to);
6082 }
6083
6084 /* Print B to gdb_stdout. */
6085
6086 static void
6087 print_one_breakpoint_location (struct breakpoint *b,
6088 struct bp_location *loc,
6089 int loc_number,
6090 struct bp_location **last_loc,
6091 int allflag)
6092 {
6093 struct command_line *l;
6094 static char bpenables[] = "nynny";
6095
6096 struct ui_out *uiout = current_uiout;
6097 int header_of_multiple = 0;
6098 int part_of_multiple = (loc != NULL);
6099 struct value_print_options opts;
6100
6101 get_user_print_options (&opts);
6102
6103 gdb_assert (!loc || loc_number != 0);
6104 /* See comment in print_one_breakpoint concerning treatment of
6105 breakpoints with single disabled location. */
6106 if (loc == NULL
6107 && (b->loc != NULL
6108 && (b->loc->next != NULL || !b->loc->enabled)))
6109 header_of_multiple = 1;
6110 if (loc == NULL)
6111 loc = b->loc;
6112
6113 annotate_record ();
6114
6115 /* 1 */
6116 annotate_field (0);
6117 if (part_of_multiple)
6118 {
6119 char *formatted;
6120 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6121 ui_out_field_string (uiout, "number", formatted);
6122 xfree (formatted);
6123 }
6124 else
6125 {
6126 ui_out_field_int (uiout, "number", b->number);
6127 }
6128
6129 /* 2 */
6130 annotate_field (1);
6131 if (part_of_multiple)
6132 ui_out_field_skip (uiout, "type");
6133 else
6134 ui_out_field_string (uiout, "type", bptype_string (b->type));
6135
6136 /* 3 */
6137 annotate_field (2);
6138 if (part_of_multiple)
6139 ui_out_field_skip (uiout, "disp");
6140 else
6141 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
6142
6143
6144 /* 4 */
6145 annotate_field (3);
6146 if (part_of_multiple)
6147 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
6148 else
6149 ui_out_field_fmt (uiout, "enabled", "%c",
6150 bpenables[(int) b->enable_state]);
6151 ui_out_spaces (uiout, 2);
6152
6153
6154 /* 5 and 6 */
6155 if (b->ops != NULL && b->ops->print_one != NULL)
6156 {
6157 /* Although the print_one can possibly print all locations,
6158 calling it here is not likely to get any nice result. So,
6159 make sure there's just one location. */
6160 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6161 b->ops->print_one (b, last_loc);
6162 }
6163 else
6164 switch (b->type)
6165 {
6166 case bp_none:
6167 internal_error (__FILE__, __LINE__,
6168 _("print_one_breakpoint: bp_none encountered\n"));
6169 break;
6170
6171 case bp_watchpoint:
6172 case bp_hardware_watchpoint:
6173 case bp_read_watchpoint:
6174 case bp_access_watchpoint:
6175 {
6176 struct watchpoint *w = (struct watchpoint *) b;
6177
6178 /* Field 4, the address, is omitted (which makes the columns
6179 not line up too nicely with the headers, but the effect
6180 is relatively readable). */
6181 if (opts.addressprint)
6182 ui_out_field_skip (uiout, "addr");
6183 annotate_field (5);
6184 ui_out_field_string (uiout, "what", w->exp_string);
6185 }
6186 break;
6187
6188 case bp_breakpoint:
6189 case bp_hardware_breakpoint:
6190 case bp_until:
6191 case bp_finish:
6192 case bp_longjmp:
6193 case bp_longjmp_resume:
6194 case bp_longjmp_call_dummy:
6195 case bp_exception:
6196 case bp_exception_resume:
6197 case bp_step_resume:
6198 case bp_hp_step_resume:
6199 case bp_watchpoint_scope:
6200 case bp_call_dummy:
6201 case bp_std_terminate:
6202 case bp_shlib_event:
6203 case bp_thread_event:
6204 case bp_overlay_event:
6205 case bp_longjmp_master:
6206 case bp_std_terminate_master:
6207 case bp_exception_master:
6208 case bp_tracepoint:
6209 case bp_fast_tracepoint:
6210 case bp_static_tracepoint:
6211 case bp_dprintf:
6212 case bp_jit_event:
6213 case bp_gnu_ifunc_resolver:
6214 case bp_gnu_ifunc_resolver_return:
6215 if (opts.addressprint)
6216 {
6217 annotate_field (4);
6218 if (header_of_multiple)
6219 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
6220 else if (b->loc == NULL || loc->shlib_disabled)
6221 ui_out_field_string (uiout, "addr", "<PENDING>");
6222 else
6223 ui_out_field_core_addr (uiout, "addr",
6224 loc->gdbarch, loc->address);
6225 }
6226 annotate_field (5);
6227 if (!header_of_multiple)
6228 print_breakpoint_location (b, loc);
6229 if (b->loc)
6230 *last_loc = b->loc;
6231 break;
6232 }
6233
6234
6235 if (loc != NULL && !header_of_multiple)
6236 {
6237 struct inferior *inf;
6238 VEC(int) *inf_num = NULL;
6239 int mi_only = 1;
6240
6241 ALL_INFERIORS (inf)
6242 {
6243 if (inf->pspace == loc->pspace)
6244 VEC_safe_push (int, inf_num, inf->num);
6245 }
6246
6247 /* For backward compatibility, don't display inferiors in CLI unless
6248 there are several. Always display for MI. */
6249 if (allflag
6250 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6251 && (number_of_program_spaces () > 1
6252 || number_of_inferiors () > 1)
6253 /* LOC is for existing B, it cannot be in
6254 moribund_locations and thus having NULL OWNER. */
6255 && loc->owner->type != bp_catchpoint))
6256 mi_only = 0;
6257 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6258 VEC_free (int, inf_num);
6259 }
6260
6261 if (!part_of_multiple)
6262 {
6263 if (b->thread != -1)
6264 {
6265 /* FIXME: This seems to be redundant and lost here; see the
6266 "stop only in" line a little further down. */
6267 ui_out_text (uiout, " thread ");
6268 ui_out_field_int (uiout, "thread", b->thread);
6269 }
6270 else if (b->task != 0)
6271 {
6272 ui_out_text (uiout, " task ");
6273 ui_out_field_int (uiout, "task", b->task);
6274 }
6275 }
6276
6277 ui_out_text (uiout, "\n");
6278
6279 if (!part_of_multiple)
6280 b->ops->print_one_detail (b, uiout);
6281
6282 if (part_of_multiple && frame_id_p (b->frame_id))
6283 {
6284 annotate_field (6);
6285 ui_out_text (uiout, "\tstop only in stack frame at ");
6286 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6287 the frame ID. */
6288 ui_out_field_core_addr (uiout, "frame",
6289 b->gdbarch, b->frame_id.stack_addr);
6290 ui_out_text (uiout, "\n");
6291 }
6292
6293 if (!part_of_multiple && b->cond_string)
6294 {
6295 annotate_field (7);
6296 if (is_tracepoint (b))
6297 ui_out_text (uiout, "\ttrace only if ");
6298 else
6299 ui_out_text (uiout, "\tstop only if ");
6300 ui_out_field_string (uiout, "cond", b->cond_string);
6301
6302 /* Print whether the target is doing the breakpoint's condition
6303 evaluation. If GDB is doing the evaluation, don't print anything. */
6304 if (is_breakpoint (b)
6305 && breakpoint_condition_evaluation_mode ()
6306 == condition_evaluation_target)
6307 {
6308 ui_out_text (uiout, " (");
6309 ui_out_field_string (uiout, "evaluated-by",
6310 bp_condition_evaluator (b));
6311 ui_out_text (uiout, " evals)");
6312 }
6313 ui_out_text (uiout, "\n");
6314 }
6315
6316 if (!part_of_multiple && b->thread != -1)
6317 {
6318 /* FIXME should make an annotation for this. */
6319 ui_out_text (uiout, "\tstop only in thread ");
6320 ui_out_field_int (uiout, "thread", b->thread);
6321 ui_out_text (uiout, "\n");
6322 }
6323
6324 if (!part_of_multiple)
6325 {
6326 if (b->hit_count)
6327 {
6328 /* FIXME should make an annotation for this. */
6329 if (is_catchpoint (b))
6330 ui_out_text (uiout, "\tcatchpoint");
6331 else if (is_tracepoint (b))
6332 ui_out_text (uiout, "\ttracepoint");
6333 else
6334 ui_out_text (uiout, "\tbreakpoint");
6335 ui_out_text (uiout, " already hit ");
6336 ui_out_field_int (uiout, "times", b->hit_count);
6337 if (b->hit_count == 1)
6338 ui_out_text (uiout, " time\n");
6339 else
6340 ui_out_text (uiout, " times\n");
6341 }
6342 else
6343 {
6344 /* Output the count also if it is zero, but only if this is mi. */
6345 if (ui_out_is_mi_like_p (uiout))
6346 ui_out_field_int (uiout, "times", b->hit_count);
6347 }
6348 }
6349
6350 if (!part_of_multiple && b->ignore_count)
6351 {
6352 annotate_field (8);
6353 ui_out_text (uiout, "\tignore next ");
6354 ui_out_field_int (uiout, "ignore", b->ignore_count);
6355 ui_out_text (uiout, " hits\n");
6356 }
6357
6358 /* Note that an enable count of 1 corresponds to "enable once"
6359 behavior, which is reported by the combination of enablement and
6360 disposition, so we don't need to mention it here. */
6361 if (!part_of_multiple && b->enable_count > 1)
6362 {
6363 annotate_field (8);
6364 ui_out_text (uiout, "\tdisable after ");
6365 /* Tweak the wording to clarify that ignore and enable counts
6366 are distinct, and have additive effect. */
6367 if (b->ignore_count)
6368 ui_out_text (uiout, "additional ");
6369 else
6370 ui_out_text (uiout, "next ");
6371 ui_out_field_int (uiout, "enable", b->enable_count);
6372 ui_out_text (uiout, " hits\n");
6373 }
6374
6375 if (!part_of_multiple && is_tracepoint (b))
6376 {
6377 struct tracepoint *tp = (struct tracepoint *) b;
6378
6379 if (tp->traceframe_usage)
6380 {
6381 ui_out_text (uiout, "\ttrace buffer usage ");
6382 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6383 ui_out_text (uiout, " bytes\n");
6384 }
6385 }
6386
6387 l = b->commands ? b->commands->commands : NULL;
6388 if (!part_of_multiple && l)
6389 {
6390 struct cleanup *script_chain;
6391
6392 annotate_field (9);
6393 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6394 print_command_lines (uiout, l, 4);
6395 do_cleanups (script_chain);
6396 }
6397
6398 if (is_tracepoint (b))
6399 {
6400 struct tracepoint *t = (struct tracepoint *) b;
6401
6402 if (!part_of_multiple && t->pass_count)
6403 {
6404 annotate_field (10);
6405 ui_out_text (uiout, "\tpass count ");
6406 ui_out_field_int (uiout, "pass", t->pass_count);
6407 ui_out_text (uiout, " \n");
6408 }
6409
6410 /* Don't display it when tracepoint or tracepoint location is
6411 pending. */
6412 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6413 {
6414 annotate_field (11);
6415
6416 if (ui_out_is_mi_like_p (uiout))
6417 ui_out_field_string (uiout, "installed",
6418 loc->inserted ? "y" : "n");
6419 else
6420 {
6421 if (loc->inserted)
6422 ui_out_text (uiout, "\t");
6423 else
6424 ui_out_text (uiout, "\tnot ");
6425 ui_out_text (uiout, "installed on target\n");
6426 }
6427 }
6428 }
6429
6430 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6431 {
6432 if (is_watchpoint (b))
6433 {
6434 struct watchpoint *w = (struct watchpoint *) b;
6435
6436 ui_out_field_string (uiout, "original-location", w->exp_string);
6437 }
6438 else if (b->addr_string)
6439 ui_out_field_string (uiout, "original-location", b->addr_string);
6440 }
6441 }
6442
6443 static void
6444 print_one_breakpoint (struct breakpoint *b,
6445 struct bp_location **last_loc,
6446 int allflag)
6447 {
6448 struct cleanup *bkpt_chain;
6449 struct ui_out *uiout = current_uiout;
6450
6451 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6452
6453 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6454 do_cleanups (bkpt_chain);
6455
6456 /* If this breakpoint has custom print function,
6457 it's already printed. Otherwise, print individual
6458 locations, if any. */
6459 if (b->ops == NULL || b->ops->print_one == NULL)
6460 {
6461 /* If breakpoint has a single location that is disabled, we
6462 print it as if it had several locations, since otherwise it's
6463 hard to represent "breakpoint enabled, location disabled"
6464 situation.
6465
6466 Note that while hardware watchpoints have several locations
6467 internally, that's not a property exposed to user. */
6468 if (b->loc
6469 && !is_hardware_watchpoint (b)
6470 && (b->loc->next || !b->loc->enabled))
6471 {
6472 struct bp_location *loc;
6473 int n = 1;
6474
6475 for (loc = b->loc; loc; loc = loc->next, ++n)
6476 {
6477 struct cleanup *inner2 =
6478 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6479 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6480 do_cleanups (inner2);
6481 }
6482 }
6483 }
6484 }
6485
6486 static int
6487 breakpoint_address_bits (struct breakpoint *b)
6488 {
6489 int print_address_bits = 0;
6490 struct bp_location *loc;
6491
6492 for (loc = b->loc; loc; loc = loc->next)
6493 {
6494 int addr_bit;
6495
6496 /* Software watchpoints that aren't watching memory don't have
6497 an address to print. */
6498 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6499 continue;
6500
6501 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6502 if (addr_bit > print_address_bits)
6503 print_address_bits = addr_bit;
6504 }
6505
6506 return print_address_bits;
6507 }
6508
6509 struct captured_breakpoint_query_args
6510 {
6511 int bnum;
6512 };
6513
6514 static int
6515 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6516 {
6517 struct captured_breakpoint_query_args *args = data;
6518 struct breakpoint *b;
6519 struct bp_location *dummy_loc = NULL;
6520
6521 ALL_BREAKPOINTS (b)
6522 {
6523 if (args->bnum == b->number)
6524 {
6525 print_one_breakpoint (b, &dummy_loc, 0);
6526 return GDB_RC_OK;
6527 }
6528 }
6529 return GDB_RC_NONE;
6530 }
6531
6532 enum gdb_rc
6533 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6534 char **error_message)
6535 {
6536 struct captured_breakpoint_query_args args;
6537
6538 args.bnum = bnum;
6539 /* For the moment we don't trust print_one_breakpoint() to not throw
6540 an error. */
6541 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6542 error_message, RETURN_MASK_ALL) < 0)
6543 return GDB_RC_FAIL;
6544 else
6545 return GDB_RC_OK;
6546 }
6547
6548 /* Return true if this breakpoint was set by the user, false if it is
6549 internal or momentary. */
6550
6551 int
6552 user_breakpoint_p (struct breakpoint *b)
6553 {
6554 return b->number > 0;
6555 }
6556
6557 /* Print information on user settable breakpoint (watchpoint, etc)
6558 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6559 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6560 FILTER is non-NULL, call it on each breakpoint and only include the
6561 ones for which it returns non-zero. Return the total number of
6562 breakpoints listed. */
6563
6564 static int
6565 breakpoint_1 (char *args, int allflag,
6566 int (*filter) (const struct breakpoint *))
6567 {
6568 struct breakpoint *b;
6569 struct bp_location *last_loc = NULL;
6570 int nr_printable_breakpoints;
6571 struct cleanup *bkpttbl_chain;
6572 struct value_print_options opts;
6573 int print_address_bits = 0;
6574 int print_type_col_width = 14;
6575 struct ui_out *uiout = current_uiout;
6576
6577 get_user_print_options (&opts);
6578
6579 /* Compute the number of rows in the table, as well as the size
6580 required for address fields. */
6581 nr_printable_breakpoints = 0;
6582 ALL_BREAKPOINTS (b)
6583 {
6584 /* If we have a filter, only list the breakpoints it accepts. */
6585 if (filter && !filter (b))
6586 continue;
6587
6588 /* If we have an "args" string, it is a list of breakpoints to
6589 accept. Skip the others. */
6590 if (args != NULL && *args != '\0')
6591 {
6592 if (allflag && parse_and_eval_long (args) != b->number)
6593 continue;
6594 if (!allflag && !number_is_in_list (args, b->number))
6595 continue;
6596 }
6597
6598 if (allflag || user_breakpoint_p (b))
6599 {
6600 int addr_bit, type_len;
6601
6602 addr_bit = breakpoint_address_bits (b);
6603 if (addr_bit > print_address_bits)
6604 print_address_bits = addr_bit;
6605
6606 type_len = strlen (bptype_string (b->type));
6607 if (type_len > print_type_col_width)
6608 print_type_col_width = type_len;
6609
6610 nr_printable_breakpoints++;
6611 }
6612 }
6613
6614 if (opts.addressprint)
6615 bkpttbl_chain
6616 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6617 nr_printable_breakpoints,
6618 "BreakpointTable");
6619 else
6620 bkpttbl_chain
6621 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6622 nr_printable_breakpoints,
6623 "BreakpointTable");
6624
6625 if (nr_printable_breakpoints > 0)
6626 annotate_breakpoints_headers ();
6627 if (nr_printable_breakpoints > 0)
6628 annotate_field (0);
6629 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6630 if (nr_printable_breakpoints > 0)
6631 annotate_field (1);
6632 ui_out_table_header (uiout, print_type_col_width, ui_left,
6633 "type", "Type"); /* 2 */
6634 if (nr_printable_breakpoints > 0)
6635 annotate_field (2);
6636 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6637 if (nr_printable_breakpoints > 0)
6638 annotate_field (3);
6639 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6640 if (opts.addressprint)
6641 {
6642 if (nr_printable_breakpoints > 0)
6643 annotate_field (4);
6644 if (print_address_bits <= 32)
6645 ui_out_table_header (uiout, 10, ui_left,
6646 "addr", "Address"); /* 5 */
6647 else
6648 ui_out_table_header (uiout, 18, ui_left,
6649 "addr", "Address"); /* 5 */
6650 }
6651 if (nr_printable_breakpoints > 0)
6652 annotate_field (5);
6653 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6654 ui_out_table_body (uiout);
6655 if (nr_printable_breakpoints > 0)
6656 annotate_breakpoints_table ();
6657
6658 ALL_BREAKPOINTS (b)
6659 {
6660 QUIT;
6661 /* If we have a filter, only list the breakpoints it accepts. */
6662 if (filter && !filter (b))
6663 continue;
6664
6665 /* If we have an "args" string, it is a list of breakpoints to
6666 accept. Skip the others. */
6667
6668 if (args != NULL && *args != '\0')
6669 {
6670 if (allflag) /* maintenance info breakpoint */
6671 {
6672 if (parse_and_eval_long (args) != b->number)
6673 continue;
6674 }
6675 else /* all others */
6676 {
6677 if (!number_is_in_list (args, b->number))
6678 continue;
6679 }
6680 }
6681 /* We only print out user settable breakpoints unless the
6682 allflag is set. */
6683 if (allflag || user_breakpoint_p (b))
6684 print_one_breakpoint (b, &last_loc, allflag);
6685 }
6686
6687 do_cleanups (bkpttbl_chain);
6688
6689 if (nr_printable_breakpoints == 0)
6690 {
6691 /* If there's a filter, let the caller decide how to report
6692 empty list. */
6693 if (!filter)
6694 {
6695 if (args == NULL || *args == '\0')
6696 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6697 else
6698 ui_out_message (uiout, 0,
6699 "No breakpoint or watchpoint matching '%s'.\n",
6700 args);
6701 }
6702 }
6703 else
6704 {
6705 if (last_loc && !server_command)
6706 set_next_address (last_loc->gdbarch, last_loc->address);
6707 }
6708
6709 /* FIXME? Should this be moved up so that it is only called when
6710 there have been breakpoints? */
6711 annotate_breakpoints_table_end ();
6712
6713 return nr_printable_breakpoints;
6714 }
6715
6716 /* Display the value of default-collect in a way that is generally
6717 compatible with the breakpoint list. */
6718
6719 static void
6720 default_collect_info (void)
6721 {
6722 struct ui_out *uiout = current_uiout;
6723
6724 /* If it has no value (which is frequently the case), say nothing; a
6725 message like "No default-collect." gets in user's face when it's
6726 not wanted. */
6727 if (!*default_collect)
6728 return;
6729
6730 /* The following phrase lines up nicely with per-tracepoint collect
6731 actions. */
6732 ui_out_text (uiout, "default collect ");
6733 ui_out_field_string (uiout, "default-collect", default_collect);
6734 ui_out_text (uiout, " \n");
6735 }
6736
6737 static void
6738 breakpoints_info (char *args, int from_tty)
6739 {
6740 breakpoint_1 (args, 0, NULL);
6741
6742 default_collect_info ();
6743 }
6744
6745 static void
6746 watchpoints_info (char *args, int from_tty)
6747 {
6748 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6749 struct ui_out *uiout = current_uiout;
6750
6751 if (num_printed == 0)
6752 {
6753 if (args == NULL || *args == '\0')
6754 ui_out_message (uiout, 0, "No watchpoints.\n");
6755 else
6756 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6757 }
6758 }
6759
6760 static void
6761 maintenance_info_breakpoints (char *args, int from_tty)
6762 {
6763 breakpoint_1 (args, 1, NULL);
6764
6765 default_collect_info ();
6766 }
6767
6768 static int
6769 breakpoint_has_pc (struct breakpoint *b,
6770 struct program_space *pspace,
6771 CORE_ADDR pc, struct obj_section *section)
6772 {
6773 struct bp_location *bl = b->loc;
6774
6775 for (; bl; bl = bl->next)
6776 {
6777 if (bl->pspace == pspace
6778 && bl->address == pc
6779 && (!overlay_debugging || bl->section == section))
6780 return 1;
6781 }
6782 return 0;
6783 }
6784
6785 /* Print a message describing any user-breakpoints set at PC. This
6786 concerns with logical breakpoints, so we match program spaces, not
6787 address spaces. */
6788
6789 static void
6790 describe_other_breakpoints (struct gdbarch *gdbarch,
6791 struct program_space *pspace, CORE_ADDR pc,
6792 struct obj_section *section, int thread)
6793 {
6794 int others = 0;
6795 struct breakpoint *b;
6796
6797 ALL_BREAKPOINTS (b)
6798 others += (user_breakpoint_p (b)
6799 && breakpoint_has_pc (b, pspace, pc, section));
6800 if (others > 0)
6801 {
6802 if (others == 1)
6803 printf_filtered (_("Note: breakpoint "));
6804 else /* if (others == ???) */
6805 printf_filtered (_("Note: breakpoints "));
6806 ALL_BREAKPOINTS (b)
6807 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6808 {
6809 others--;
6810 printf_filtered ("%d", b->number);
6811 if (b->thread == -1 && thread != -1)
6812 printf_filtered (" (all threads)");
6813 else if (b->thread != -1)
6814 printf_filtered (" (thread %d)", b->thread);
6815 printf_filtered ("%s%s ",
6816 ((b->enable_state == bp_disabled
6817 || b->enable_state == bp_call_disabled)
6818 ? " (disabled)"
6819 : b->enable_state == bp_permanent
6820 ? " (permanent)"
6821 : ""),
6822 (others > 1) ? ","
6823 : ((others == 1) ? " and" : ""));
6824 }
6825 printf_filtered (_("also set at pc "));
6826 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6827 printf_filtered (".\n");
6828 }
6829 }
6830 \f
6831
6832 /* Return true iff it is meaningful to use the address member of
6833 BPT. For some breakpoint types, the address member is irrelevant
6834 and it makes no sense to attempt to compare it to other addresses
6835 (or use it for any other purpose either).
6836
6837 More specifically, each of the following breakpoint types will
6838 always have a zero valued address and we don't want to mark
6839 breakpoints of any of these types to be a duplicate of an actual
6840 breakpoint at address zero:
6841
6842 bp_watchpoint
6843 bp_catchpoint
6844
6845 */
6846
6847 static int
6848 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6849 {
6850 enum bptype type = bpt->type;
6851
6852 return (type != bp_watchpoint && type != bp_catchpoint);
6853 }
6854
6855 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6856 true if LOC1 and LOC2 represent the same watchpoint location. */
6857
6858 static int
6859 watchpoint_locations_match (struct bp_location *loc1,
6860 struct bp_location *loc2)
6861 {
6862 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6863 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6864
6865 /* Both of them must exist. */
6866 gdb_assert (w1 != NULL);
6867 gdb_assert (w2 != NULL);
6868
6869 /* If the target can evaluate the condition expression in hardware,
6870 then we we need to insert both watchpoints even if they are at
6871 the same place. Otherwise the watchpoint will only trigger when
6872 the condition of whichever watchpoint was inserted evaluates to
6873 true, not giving a chance for GDB to check the condition of the
6874 other watchpoint. */
6875 if ((w1->cond_exp
6876 && target_can_accel_watchpoint_condition (loc1->address,
6877 loc1->length,
6878 loc1->watchpoint_type,
6879 w1->cond_exp))
6880 || (w2->cond_exp
6881 && target_can_accel_watchpoint_condition (loc2->address,
6882 loc2->length,
6883 loc2->watchpoint_type,
6884 w2->cond_exp)))
6885 return 0;
6886
6887 /* Note that this checks the owner's type, not the location's. In
6888 case the target does not support read watchpoints, but does
6889 support access watchpoints, we'll have bp_read_watchpoint
6890 watchpoints with hw_access locations. Those should be considered
6891 duplicates of hw_read locations. The hw_read locations will
6892 become hw_access locations later. */
6893 return (loc1->owner->type == loc2->owner->type
6894 && loc1->pspace->aspace == loc2->pspace->aspace
6895 && loc1->address == loc2->address
6896 && loc1->length == loc2->length);
6897 }
6898
6899 /* See breakpoint.h. */
6900
6901 int
6902 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6903 struct address_space *aspace2, CORE_ADDR addr2)
6904 {
6905 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6906 || aspace1 == aspace2)
6907 && addr1 == addr2);
6908 }
6909
6910 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6911 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6912 matches ASPACE2. On targets that have global breakpoints, the address
6913 space doesn't really matter. */
6914
6915 static int
6916 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6917 int len1, struct address_space *aspace2,
6918 CORE_ADDR addr2)
6919 {
6920 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6921 || aspace1 == aspace2)
6922 && addr2 >= addr1 && addr2 < addr1 + len1);
6923 }
6924
6925 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6926 a ranged breakpoint. In most targets, a match happens only if ASPACE
6927 matches the breakpoint's address space. On targets that have global
6928 breakpoints, the address space doesn't really matter. */
6929
6930 static int
6931 breakpoint_location_address_match (struct bp_location *bl,
6932 struct address_space *aspace,
6933 CORE_ADDR addr)
6934 {
6935 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6936 aspace, addr)
6937 || (bl->length
6938 && breakpoint_address_match_range (bl->pspace->aspace,
6939 bl->address, bl->length,
6940 aspace, addr)));
6941 }
6942
6943 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6944 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6945 true, otherwise returns false. */
6946
6947 static int
6948 tracepoint_locations_match (struct bp_location *loc1,
6949 struct bp_location *loc2)
6950 {
6951 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6952 /* Since tracepoint locations are never duplicated with others', tracepoint
6953 locations at the same address of different tracepoints are regarded as
6954 different locations. */
6955 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6956 else
6957 return 0;
6958 }
6959
6960 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6961 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6962 represent the same location. */
6963
6964 static int
6965 breakpoint_locations_match (struct bp_location *loc1,
6966 struct bp_location *loc2)
6967 {
6968 int hw_point1, hw_point2;
6969
6970 /* Both of them must not be in moribund_locations. */
6971 gdb_assert (loc1->owner != NULL);
6972 gdb_assert (loc2->owner != NULL);
6973
6974 hw_point1 = is_hardware_watchpoint (loc1->owner);
6975 hw_point2 = is_hardware_watchpoint (loc2->owner);
6976
6977 if (hw_point1 != hw_point2)
6978 return 0;
6979 else if (hw_point1)
6980 return watchpoint_locations_match (loc1, loc2);
6981 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6982 return tracepoint_locations_match (loc1, loc2);
6983 else
6984 /* We compare bp_location.length in order to cover ranged breakpoints. */
6985 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6986 loc2->pspace->aspace, loc2->address)
6987 && loc1->length == loc2->length);
6988 }
6989
6990 static void
6991 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6992 int bnum, int have_bnum)
6993 {
6994 /* The longest string possibly returned by hex_string_custom
6995 is 50 chars. These must be at least that big for safety. */
6996 char astr1[64];
6997 char astr2[64];
6998
6999 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
7000 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
7001 if (have_bnum)
7002 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
7003 bnum, astr1, astr2);
7004 else
7005 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
7006 }
7007
7008 /* Adjust a breakpoint's address to account for architectural
7009 constraints on breakpoint placement. Return the adjusted address.
7010 Note: Very few targets require this kind of adjustment. For most
7011 targets, this function is simply the identity function. */
7012
7013 static CORE_ADDR
7014 adjust_breakpoint_address (struct gdbarch *gdbarch,
7015 CORE_ADDR bpaddr, enum bptype bptype)
7016 {
7017 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
7018 {
7019 /* Very few targets need any kind of breakpoint adjustment. */
7020 return bpaddr;
7021 }
7022 else if (bptype == bp_watchpoint
7023 || bptype == bp_hardware_watchpoint
7024 || bptype == bp_read_watchpoint
7025 || bptype == bp_access_watchpoint
7026 || bptype == bp_catchpoint)
7027 {
7028 /* Watchpoints and the various bp_catch_* eventpoints should not
7029 have their addresses modified. */
7030 return bpaddr;
7031 }
7032 else
7033 {
7034 CORE_ADDR adjusted_bpaddr;
7035
7036 /* Some targets have architectural constraints on the placement
7037 of breakpoint instructions. Obtain the adjusted address. */
7038 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7039
7040 /* An adjusted breakpoint address can significantly alter
7041 a user's expectations. Print a warning if an adjustment
7042 is required. */
7043 if (adjusted_bpaddr != bpaddr)
7044 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7045
7046 return adjusted_bpaddr;
7047 }
7048 }
7049
7050 void
7051 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
7052 struct breakpoint *owner)
7053 {
7054 memset (loc, 0, sizeof (*loc));
7055
7056 gdb_assert (ops != NULL);
7057
7058 loc->ops = ops;
7059 loc->owner = owner;
7060 loc->cond = NULL;
7061 loc->cond_bytecode = NULL;
7062 loc->shlib_disabled = 0;
7063 loc->enabled = 1;
7064
7065 switch (owner->type)
7066 {
7067 case bp_breakpoint:
7068 case bp_until:
7069 case bp_finish:
7070 case bp_longjmp:
7071 case bp_longjmp_resume:
7072 case bp_longjmp_call_dummy:
7073 case bp_exception:
7074 case bp_exception_resume:
7075 case bp_step_resume:
7076 case bp_hp_step_resume:
7077 case bp_watchpoint_scope:
7078 case bp_call_dummy:
7079 case bp_std_terminate:
7080 case bp_shlib_event:
7081 case bp_thread_event:
7082 case bp_overlay_event:
7083 case bp_jit_event:
7084 case bp_longjmp_master:
7085 case bp_std_terminate_master:
7086 case bp_exception_master:
7087 case bp_gnu_ifunc_resolver:
7088 case bp_gnu_ifunc_resolver_return:
7089 case bp_dprintf:
7090 loc->loc_type = bp_loc_software_breakpoint;
7091 mark_breakpoint_location_modified (loc);
7092 break;
7093 case bp_hardware_breakpoint:
7094 loc->loc_type = bp_loc_hardware_breakpoint;
7095 mark_breakpoint_location_modified (loc);
7096 break;
7097 case bp_hardware_watchpoint:
7098 case bp_read_watchpoint:
7099 case bp_access_watchpoint:
7100 loc->loc_type = bp_loc_hardware_watchpoint;
7101 break;
7102 case bp_watchpoint:
7103 case bp_catchpoint:
7104 case bp_tracepoint:
7105 case bp_fast_tracepoint:
7106 case bp_static_tracepoint:
7107 loc->loc_type = bp_loc_other;
7108 break;
7109 default:
7110 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7111 }
7112
7113 loc->refc = 1;
7114 }
7115
7116 /* Allocate a struct bp_location. */
7117
7118 static struct bp_location *
7119 allocate_bp_location (struct breakpoint *bpt)
7120 {
7121 return bpt->ops->allocate_location (bpt);
7122 }
7123
7124 static void
7125 free_bp_location (struct bp_location *loc)
7126 {
7127 loc->ops->dtor (loc);
7128 xfree (loc);
7129 }
7130
7131 /* Increment reference count. */
7132
7133 static void
7134 incref_bp_location (struct bp_location *bl)
7135 {
7136 ++bl->refc;
7137 }
7138
7139 /* Decrement reference count. If the reference count reaches 0,
7140 destroy the bp_location. Sets *BLP to NULL. */
7141
7142 static void
7143 decref_bp_location (struct bp_location **blp)
7144 {
7145 gdb_assert ((*blp)->refc > 0);
7146
7147 if (--(*blp)->refc == 0)
7148 free_bp_location (*blp);
7149 *blp = NULL;
7150 }
7151
7152 /* Add breakpoint B at the end of the global breakpoint chain. */
7153
7154 static void
7155 add_to_breakpoint_chain (struct breakpoint *b)
7156 {
7157 struct breakpoint *b1;
7158
7159 /* Add this breakpoint to the end of the chain so that a list of
7160 breakpoints will come out in order of increasing numbers. */
7161
7162 b1 = breakpoint_chain;
7163 if (b1 == 0)
7164 breakpoint_chain = b;
7165 else
7166 {
7167 while (b1->next)
7168 b1 = b1->next;
7169 b1->next = b;
7170 }
7171 }
7172
7173 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7174
7175 static void
7176 init_raw_breakpoint_without_location (struct breakpoint *b,
7177 struct gdbarch *gdbarch,
7178 enum bptype bptype,
7179 const struct breakpoint_ops *ops)
7180 {
7181 memset (b, 0, sizeof (*b));
7182
7183 gdb_assert (ops != NULL);
7184
7185 b->ops = ops;
7186 b->type = bptype;
7187 b->gdbarch = gdbarch;
7188 b->language = current_language->la_language;
7189 b->input_radix = input_radix;
7190 b->thread = -1;
7191 b->enable_state = bp_enabled;
7192 b->next = 0;
7193 b->silent = 0;
7194 b->ignore_count = 0;
7195 b->commands = NULL;
7196 b->frame_id = null_frame_id;
7197 b->condition_not_parsed = 0;
7198 b->py_bp_object = NULL;
7199 b->related_breakpoint = b;
7200 }
7201
7202 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7203 that has type BPTYPE and has no locations as yet. */
7204
7205 static struct breakpoint *
7206 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7207 enum bptype bptype,
7208 const struct breakpoint_ops *ops)
7209 {
7210 struct breakpoint *b = XNEW (struct breakpoint);
7211
7212 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7213 add_to_breakpoint_chain (b);
7214 return b;
7215 }
7216
7217 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7218 resolutions should be made as the user specified the location explicitly
7219 enough. */
7220
7221 static void
7222 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7223 {
7224 gdb_assert (loc->owner != NULL);
7225
7226 if (loc->owner->type == bp_breakpoint
7227 || loc->owner->type == bp_hardware_breakpoint
7228 || is_tracepoint (loc->owner))
7229 {
7230 int is_gnu_ifunc;
7231 const char *function_name;
7232 CORE_ADDR func_addr;
7233
7234 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7235 &func_addr, NULL, &is_gnu_ifunc);
7236
7237 if (is_gnu_ifunc && !explicit_loc)
7238 {
7239 struct breakpoint *b = loc->owner;
7240
7241 gdb_assert (loc->pspace == current_program_space);
7242 if (gnu_ifunc_resolve_name (function_name,
7243 &loc->requested_address))
7244 {
7245 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7246 loc->address = adjust_breakpoint_address (loc->gdbarch,
7247 loc->requested_address,
7248 b->type);
7249 }
7250 else if (b->type == bp_breakpoint && b->loc == loc
7251 && loc->next == NULL && b->related_breakpoint == b)
7252 {
7253 /* Create only the whole new breakpoint of this type but do not
7254 mess more complicated breakpoints with multiple locations. */
7255 b->type = bp_gnu_ifunc_resolver;
7256 /* Remember the resolver's address for use by the return
7257 breakpoint. */
7258 loc->related_address = func_addr;
7259 }
7260 }
7261
7262 if (function_name)
7263 loc->function_name = xstrdup (function_name);
7264 }
7265 }
7266
7267 /* Attempt to determine architecture of location identified by SAL. */
7268 struct gdbarch *
7269 get_sal_arch (struct symtab_and_line sal)
7270 {
7271 if (sal.section)
7272 return get_objfile_arch (sal.section->objfile);
7273 if (sal.symtab)
7274 return get_objfile_arch (sal.symtab->objfile);
7275
7276 return NULL;
7277 }
7278
7279 /* Low level routine for partially initializing a breakpoint of type
7280 BPTYPE. The newly created breakpoint's address, section, source
7281 file name, and line number are provided by SAL.
7282
7283 It is expected that the caller will complete the initialization of
7284 the newly created breakpoint struct as well as output any status
7285 information regarding the creation of a new breakpoint. */
7286
7287 static void
7288 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7289 struct symtab_and_line sal, enum bptype bptype,
7290 const struct breakpoint_ops *ops)
7291 {
7292 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7293
7294 add_location_to_breakpoint (b, &sal);
7295
7296 if (bptype != bp_catchpoint)
7297 gdb_assert (sal.pspace != NULL);
7298
7299 /* Store the program space that was used to set the breakpoint,
7300 except for ordinary breakpoints, which are independent of the
7301 program space. */
7302 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7303 b->pspace = sal.pspace;
7304 }
7305
7306 /* set_raw_breakpoint is a low level routine for allocating and
7307 partially initializing a breakpoint of type BPTYPE. The newly
7308 created breakpoint's address, section, source file name, and line
7309 number are provided by SAL. The newly created and partially
7310 initialized breakpoint is added to the breakpoint chain and
7311 is also returned as the value of this function.
7312
7313 It is expected that the caller will complete the initialization of
7314 the newly created breakpoint struct as well as output any status
7315 information regarding the creation of a new breakpoint. In
7316 particular, set_raw_breakpoint does NOT set the breakpoint
7317 number! Care should be taken to not allow an error to occur
7318 prior to completing the initialization of the breakpoint. If this
7319 should happen, a bogus breakpoint will be left on the chain. */
7320
7321 struct breakpoint *
7322 set_raw_breakpoint (struct gdbarch *gdbarch,
7323 struct symtab_and_line sal, enum bptype bptype,
7324 const struct breakpoint_ops *ops)
7325 {
7326 struct breakpoint *b = XNEW (struct breakpoint);
7327
7328 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7329 add_to_breakpoint_chain (b);
7330 return b;
7331 }
7332
7333
7334 /* Note that the breakpoint object B describes a permanent breakpoint
7335 instruction, hard-wired into the inferior's code. */
7336 void
7337 make_breakpoint_permanent (struct breakpoint *b)
7338 {
7339 struct bp_location *bl;
7340
7341 b->enable_state = bp_permanent;
7342
7343 /* By definition, permanent breakpoints are already present in the
7344 code. Mark all locations as inserted. For now,
7345 make_breakpoint_permanent is called in just one place, so it's
7346 hard to say if it's reasonable to have permanent breakpoint with
7347 multiple locations or not, but it's easy to implement. */
7348 for (bl = b->loc; bl; bl = bl->next)
7349 bl->inserted = 1;
7350 }
7351
7352 /* Call this routine when stepping and nexting to enable a breakpoint
7353 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7354 initiated the operation. */
7355
7356 void
7357 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7358 {
7359 struct breakpoint *b, *b_tmp;
7360 int thread = tp->num;
7361
7362 /* To avoid having to rescan all objfile symbols at every step,
7363 we maintain a list of continually-inserted but always disabled
7364 longjmp "master" breakpoints. Here, we simply create momentary
7365 clones of those and enable them for the requested thread. */
7366 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7367 if (b->pspace == current_program_space
7368 && (b->type == bp_longjmp_master
7369 || b->type == bp_exception_master))
7370 {
7371 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7372 struct breakpoint *clone;
7373
7374 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7375 after their removal. */
7376 clone = momentary_breakpoint_from_master (b, type,
7377 &longjmp_breakpoint_ops);
7378 clone->thread = thread;
7379 }
7380
7381 tp->initiating_frame = frame;
7382 }
7383
7384 /* Delete all longjmp breakpoints from THREAD. */
7385 void
7386 delete_longjmp_breakpoint (int thread)
7387 {
7388 struct breakpoint *b, *b_tmp;
7389
7390 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7391 if (b->type == bp_longjmp || b->type == bp_exception)
7392 {
7393 if (b->thread == thread)
7394 delete_breakpoint (b);
7395 }
7396 }
7397
7398 void
7399 delete_longjmp_breakpoint_at_next_stop (int thread)
7400 {
7401 struct breakpoint *b, *b_tmp;
7402
7403 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7404 if (b->type == bp_longjmp || b->type == bp_exception)
7405 {
7406 if (b->thread == thread)
7407 b->disposition = disp_del_at_next_stop;
7408 }
7409 }
7410
7411 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7412 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7413 pointer to any of them. Return NULL if this system cannot place longjmp
7414 breakpoints. */
7415
7416 struct breakpoint *
7417 set_longjmp_breakpoint_for_call_dummy (void)
7418 {
7419 struct breakpoint *b, *retval = NULL;
7420
7421 ALL_BREAKPOINTS (b)
7422 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7423 {
7424 struct breakpoint *new_b;
7425
7426 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7427 &momentary_breakpoint_ops);
7428 new_b->thread = pid_to_thread_id (inferior_ptid);
7429
7430 /* Link NEW_B into the chain of RETVAL breakpoints. */
7431
7432 gdb_assert (new_b->related_breakpoint == new_b);
7433 if (retval == NULL)
7434 retval = new_b;
7435 new_b->related_breakpoint = retval;
7436 while (retval->related_breakpoint != new_b->related_breakpoint)
7437 retval = retval->related_breakpoint;
7438 retval->related_breakpoint = new_b;
7439 }
7440
7441 return retval;
7442 }
7443
7444 /* Verify all existing dummy frames and their associated breakpoints for
7445 THREAD. Remove those which can no longer be found in the current frame
7446 stack.
7447
7448 You should call this function only at places where it is safe to currently
7449 unwind the whole stack. Failed stack unwind would discard live dummy
7450 frames. */
7451
7452 void
7453 check_longjmp_breakpoint_for_call_dummy (int thread)
7454 {
7455 struct breakpoint *b, *b_tmp;
7456
7457 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7458 if (b->type == bp_longjmp_call_dummy && b->thread == thread)
7459 {
7460 struct breakpoint *dummy_b = b->related_breakpoint;
7461
7462 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7463 dummy_b = dummy_b->related_breakpoint;
7464 if (dummy_b->type != bp_call_dummy
7465 || frame_find_by_id (dummy_b->frame_id) != NULL)
7466 continue;
7467
7468 dummy_frame_discard (dummy_b->frame_id);
7469
7470 while (b->related_breakpoint != b)
7471 {
7472 if (b_tmp == b->related_breakpoint)
7473 b_tmp = b->related_breakpoint->next;
7474 delete_breakpoint (b->related_breakpoint);
7475 }
7476 delete_breakpoint (b);
7477 }
7478 }
7479
7480 void
7481 enable_overlay_breakpoints (void)
7482 {
7483 struct breakpoint *b;
7484
7485 ALL_BREAKPOINTS (b)
7486 if (b->type == bp_overlay_event)
7487 {
7488 b->enable_state = bp_enabled;
7489 update_global_location_list (1);
7490 overlay_events_enabled = 1;
7491 }
7492 }
7493
7494 void
7495 disable_overlay_breakpoints (void)
7496 {
7497 struct breakpoint *b;
7498
7499 ALL_BREAKPOINTS (b)
7500 if (b->type == bp_overlay_event)
7501 {
7502 b->enable_state = bp_disabled;
7503 update_global_location_list (0);
7504 overlay_events_enabled = 0;
7505 }
7506 }
7507
7508 /* Set an active std::terminate breakpoint for each std::terminate
7509 master breakpoint. */
7510 void
7511 set_std_terminate_breakpoint (void)
7512 {
7513 struct breakpoint *b, *b_tmp;
7514
7515 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7516 if (b->pspace == current_program_space
7517 && b->type == bp_std_terminate_master)
7518 {
7519 momentary_breakpoint_from_master (b, bp_std_terminate,
7520 &momentary_breakpoint_ops);
7521 }
7522 }
7523
7524 /* Delete all the std::terminate breakpoints. */
7525 void
7526 delete_std_terminate_breakpoint (void)
7527 {
7528 struct breakpoint *b, *b_tmp;
7529
7530 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7531 if (b->type == bp_std_terminate)
7532 delete_breakpoint (b);
7533 }
7534
7535 struct breakpoint *
7536 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7537 {
7538 struct breakpoint *b;
7539
7540 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7541 &internal_breakpoint_ops);
7542
7543 b->enable_state = bp_enabled;
7544 /* addr_string has to be used or breakpoint_re_set will delete me. */
7545 b->addr_string
7546 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7547
7548 update_global_location_list_nothrow (1);
7549
7550 return b;
7551 }
7552
7553 void
7554 remove_thread_event_breakpoints (void)
7555 {
7556 struct breakpoint *b, *b_tmp;
7557
7558 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7559 if (b->type == bp_thread_event
7560 && b->loc->pspace == current_program_space)
7561 delete_breakpoint (b);
7562 }
7563
7564 struct lang_and_radix
7565 {
7566 enum language lang;
7567 int radix;
7568 };
7569
7570 /* Create a breakpoint for JIT code registration and unregistration. */
7571
7572 struct breakpoint *
7573 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7574 {
7575 struct breakpoint *b;
7576
7577 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7578 &internal_breakpoint_ops);
7579 update_global_location_list_nothrow (1);
7580 return b;
7581 }
7582
7583 /* Remove JIT code registration and unregistration breakpoint(s). */
7584
7585 void
7586 remove_jit_event_breakpoints (void)
7587 {
7588 struct breakpoint *b, *b_tmp;
7589
7590 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7591 if (b->type == bp_jit_event
7592 && b->loc->pspace == current_program_space)
7593 delete_breakpoint (b);
7594 }
7595
7596 void
7597 remove_solib_event_breakpoints (void)
7598 {
7599 struct breakpoint *b, *b_tmp;
7600
7601 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7602 if (b->type == bp_shlib_event
7603 && b->loc->pspace == current_program_space)
7604 delete_breakpoint (b);
7605 }
7606
7607 struct breakpoint *
7608 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7609 {
7610 struct breakpoint *b;
7611
7612 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7613 &internal_breakpoint_ops);
7614 update_global_location_list_nothrow (1);
7615 return b;
7616 }
7617
7618 /* Disable any breakpoints that are on code in shared libraries. Only
7619 apply to enabled breakpoints, disabled ones can just stay disabled. */
7620
7621 void
7622 disable_breakpoints_in_shlibs (void)
7623 {
7624 struct bp_location *loc, **locp_tmp;
7625
7626 ALL_BP_LOCATIONS (loc, locp_tmp)
7627 {
7628 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7629 struct breakpoint *b = loc->owner;
7630
7631 /* We apply the check to all breakpoints, including disabled for
7632 those with loc->duplicate set. This is so that when breakpoint
7633 becomes enabled, or the duplicate is removed, gdb will try to
7634 insert all breakpoints. If we don't set shlib_disabled here,
7635 we'll try to insert those breakpoints and fail. */
7636 if (((b->type == bp_breakpoint)
7637 || (b->type == bp_jit_event)
7638 || (b->type == bp_hardware_breakpoint)
7639 || (is_tracepoint (b)))
7640 && loc->pspace == current_program_space
7641 && !loc->shlib_disabled
7642 && solib_name_from_address (loc->pspace, loc->address)
7643 )
7644 {
7645 loc->shlib_disabled = 1;
7646 }
7647 }
7648 }
7649
7650 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7651 notification of unloaded_shlib. Only apply to enabled breakpoints,
7652 disabled ones can just stay disabled. */
7653
7654 static void
7655 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7656 {
7657 struct bp_location *loc, **locp_tmp;
7658 int disabled_shlib_breaks = 0;
7659
7660 /* SunOS a.out shared libraries are always mapped, so do not
7661 disable breakpoints; they will only be reported as unloaded
7662 through clear_solib when GDB discards its shared library
7663 list. See clear_solib for more information. */
7664 if (exec_bfd != NULL
7665 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7666 return;
7667
7668 ALL_BP_LOCATIONS (loc, locp_tmp)
7669 {
7670 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7671 struct breakpoint *b = loc->owner;
7672
7673 if (solib->pspace == loc->pspace
7674 && !loc->shlib_disabled
7675 && (((b->type == bp_breakpoint
7676 || b->type == bp_jit_event
7677 || b->type == bp_hardware_breakpoint)
7678 && (loc->loc_type == bp_loc_hardware_breakpoint
7679 || loc->loc_type == bp_loc_software_breakpoint))
7680 || is_tracepoint (b))
7681 && solib_contains_address_p (solib, loc->address))
7682 {
7683 loc->shlib_disabled = 1;
7684 /* At this point, we cannot rely on remove_breakpoint
7685 succeeding so we must mark the breakpoint as not inserted
7686 to prevent future errors occurring in remove_breakpoints. */
7687 loc->inserted = 0;
7688
7689 /* This may cause duplicate notifications for the same breakpoint. */
7690 observer_notify_breakpoint_modified (b);
7691
7692 if (!disabled_shlib_breaks)
7693 {
7694 target_terminal_ours_for_output ();
7695 warning (_("Temporarily disabling breakpoints "
7696 "for unloaded shared library \"%s\""),
7697 solib->so_name);
7698 }
7699 disabled_shlib_breaks = 1;
7700 }
7701 }
7702 }
7703
7704 /* Disable any breakpoints and tracepoints in OBJFILE upon
7705 notification of free_objfile. Only apply to enabled breakpoints,
7706 disabled ones can just stay disabled. */
7707
7708 static void
7709 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7710 {
7711 struct breakpoint *b;
7712
7713 if (objfile == NULL)
7714 return;
7715
7716 /* OBJF_USERLOADED are dynamic modules manually managed by the user
7717 with add-symbol-file/remove-symbol-file. Similarly to how
7718 breakpoints in shared libraries are handled in response to
7719 "nosharedlibrary", mark breakpoints in OBJF_USERLOADED modules
7720 shlib_disabled so they end up uninserted on the next global
7721 location list update. Shared libraries not loaded by the user
7722 aren't handled here -- they're already handled in
7723 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7724 solib_unloaded observer. We skip objfiles that are not
7725 OBJF_USERLOADED (nor OBJF_SHARED) as those aren't considered
7726 dynamic objects (e.g. the main objfile). */
7727 if ((objfile->flags & OBJF_USERLOADED) == 0)
7728 return;
7729
7730 ALL_BREAKPOINTS (b)
7731 {
7732 struct bp_location *loc;
7733 int bp_modified = 0;
7734
7735 if (!is_breakpoint (b) && !is_tracepoint (b))
7736 continue;
7737
7738 for (loc = b->loc; loc != NULL; loc = loc->next)
7739 {
7740 CORE_ADDR loc_addr = loc->address;
7741
7742 if (loc->loc_type != bp_loc_hardware_breakpoint
7743 && loc->loc_type != bp_loc_software_breakpoint)
7744 continue;
7745
7746 if (loc->shlib_disabled != 0)
7747 continue;
7748
7749 if (objfile->pspace != loc->pspace)
7750 continue;
7751
7752 if (loc->loc_type != bp_loc_hardware_breakpoint
7753 && loc->loc_type != bp_loc_software_breakpoint)
7754 continue;
7755
7756 if (is_addr_in_objfile (loc_addr, objfile))
7757 {
7758 loc->shlib_disabled = 1;
7759 /* At this point, we don't know whether the object was
7760 unmapped from the inferior or not, so leave the
7761 inserted flag alone. We'll handle failure to
7762 uninsert quietly, in case the object was indeed
7763 unmapped. */
7764
7765 mark_breakpoint_location_modified (loc);
7766
7767 bp_modified = 1;
7768 }
7769 }
7770
7771 if (bp_modified)
7772 observer_notify_breakpoint_modified (b);
7773 }
7774 }
7775
7776 /* FORK & VFORK catchpoints. */
7777
7778 /* An instance of this type is used to represent a fork or vfork
7779 catchpoint. It includes a "struct breakpoint" as a kind of base
7780 class; users downcast to "struct breakpoint *" when needed. A
7781 breakpoint is really of this type iff its ops pointer points to
7782 CATCH_FORK_BREAKPOINT_OPS. */
7783
7784 struct fork_catchpoint
7785 {
7786 /* The base class. */
7787 struct breakpoint base;
7788
7789 /* Process id of a child process whose forking triggered this
7790 catchpoint. This field is only valid immediately after this
7791 catchpoint has triggered. */
7792 ptid_t forked_inferior_pid;
7793 };
7794
7795 /* Implement the "insert" breakpoint_ops method for fork
7796 catchpoints. */
7797
7798 static int
7799 insert_catch_fork (struct bp_location *bl)
7800 {
7801 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7802 }
7803
7804 /* Implement the "remove" breakpoint_ops method for fork
7805 catchpoints. */
7806
7807 static int
7808 remove_catch_fork (struct bp_location *bl)
7809 {
7810 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7811 }
7812
7813 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7814 catchpoints. */
7815
7816 static int
7817 breakpoint_hit_catch_fork (const struct bp_location *bl,
7818 struct address_space *aspace, CORE_ADDR bp_addr,
7819 const struct target_waitstatus *ws)
7820 {
7821 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7822
7823 if (ws->kind != TARGET_WAITKIND_FORKED)
7824 return 0;
7825
7826 c->forked_inferior_pid = ws->value.related_pid;
7827 return 1;
7828 }
7829
7830 /* Implement the "print_it" breakpoint_ops method for fork
7831 catchpoints. */
7832
7833 static enum print_stop_action
7834 print_it_catch_fork (bpstat bs)
7835 {
7836 struct ui_out *uiout = current_uiout;
7837 struct breakpoint *b = bs->breakpoint_at;
7838 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7839
7840 annotate_catchpoint (b->number);
7841 if (b->disposition == disp_del)
7842 ui_out_text (uiout, "\nTemporary catchpoint ");
7843 else
7844 ui_out_text (uiout, "\nCatchpoint ");
7845 if (ui_out_is_mi_like_p (uiout))
7846 {
7847 ui_out_field_string (uiout, "reason",
7848 async_reason_lookup (EXEC_ASYNC_FORK));
7849 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7850 }
7851 ui_out_field_int (uiout, "bkptno", b->number);
7852 ui_out_text (uiout, " (forked process ");
7853 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7854 ui_out_text (uiout, "), ");
7855 return PRINT_SRC_AND_LOC;
7856 }
7857
7858 /* Implement the "print_one" breakpoint_ops method for fork
7859 catchpoints. */
7860
7861 static void
7862 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7863 {
7864 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7865 struct value_print_options opts;
7866 struct ui_out *uiout = current_uiout;
7867
7868 get_user_print_options (&opts);
7869
7870 /* Field 4, the address, is omitted (which makes the columns not
7871 line up too nicely with the headers, but the effect is relatively
7872 readable). */
7873 if (opts.addressprint)
7874 ui_out_field_skip (uiout, "addr");
7875 annotate_field (5);
7876 ui_out_text (uiout, "fork");
7877 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7878 {
7879 ui_out_text (uiout, ", process ");
7880 ui_out_field_int (uiout, "what",
7881 ptid_get_pid (c->forked_inferior_pid));
7882 ui_out_spaces (uiout, 1);
7883 }
7884
7885 if (ui_out_is_mi_like_p (uiout))
7886 ui_out_field_string (uiout, "catch-type", "fork");
7887 }
7888
7889 /* Implement the "print_mention" breakpoint_ops method for fork
7890 catchpoints. */
7891
7892 static void
7893 print_mention_catch_fork (struct breakpoint *b)
7894 {
7895 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7896 }
7897
7898 /* Implement the "print_recreate" breakpoint_ops method for fork
7899 catchpoints. */
7900
7901 static void
7902 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7903 {
7904 fprintf_unfiltered (fp, "catch fork");
7905 print_recreate_thread (b, fp);
7906 }
7907
7908 /* The breakpoint_ops structure to be used in fork catchpoints. */
7909
7910 static struct breakpoint_ops catch_fork_breakpoint_ops;
7911
7912 /* Implement the "insert" breakpoint_ops method for vfork
7913 catchpoints. */
7914
7915 static int
7916 insert_catch_vfork (struct bp_location *bl)
7917 {
7918 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7919 }
7920
7921 /* Implement the "remove" breakpoint_ops method for vfork
7922 catchpoints. */
7923
7924 static int
7925 remove_catch_vfork (struct bp_location *bl)
7926 {
7927 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7928 }
7929
7930 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7931 catchpoints. */
7932
7933 static int
7934 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7935 struct address_space *aspace, CORE_ADDR bp_addr,
7936 const struct target_waitstatus *ws)
7937 {
7938 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7939
7940 if (ws->kind != TARGET_WAITKIND_VFORKED)
7941 return 0;
7942
7943 c->forked_inferior_pid = ws->value.related_pid;
7944 return 1;
7945 }
7946
7947 /* Implement the "print_it" breakpoint_ops method for vfork
7948 catchpoints. */
7949
7950 static enum print_stop_action
7951 print_it_catch_vfork (bpstat bs)
7952 {
7953 struct ui_out *uiout = current_uiout;
7954 struct breakpoint *b = bs->breakpoint_at;
7955 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7956
7957 annotate_catchpoint (b->number);
7958 if (b->disposition == disp_del)
7959 ui_out_text (uiout, "\nTemporary catchpoint ");
7960 else
7961 ui_out_text (uiout, "\nCatchpoint ");
7962 if (ui_out_is_mi_like_p (uiout))
7963 {
7964 ui_out_field_string (uiout, "reason",
7965 async_reason_lookup (EXEC_ASYNC_VFORK));
7966 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7967 }
7968 ui_out_field_int (uiout, "bkptno", b->number);
7969 ui_out_text (uiout, " (vforked process ");
7970 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7971 ui_out_text (uiout, "), ");
7972 return PRINT_SRC_AND_LOC;
7973 }
7974
7975 /* Implement the "print_one" breakpoint_ops method for vfork
7976 catchpoints. */
7977
7978 static void
7979 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7980 {
7981 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7982 struct value_print_options opts;
7983 struct ui_out *uiout = current_uiout;
7984
7985 get_user_print_options (&opts);
7986 /* Field 4, the address, is omitted (which makes the columns not
7987 line up too nicely with the headers, but the effect is relatively
7988 readable). */
7989 if (opts.addressprint)
7990 ui_out_field_skip (uiout, "addr");
7991 annotate_field (5);
7992 ui_out_text (uiout, "vfork");
7993 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7994 {
7995 ui_out_text (uiout, ", process ");
7996 ui_out_field_int (uiout, "what",
7997 ptid_get_pid (c->forked_inferior_pid));
7998 ui_out_spaces (uiout, 1);
7999 }
8000
8001 if (ui_out_is_mi_like_p (uiout))
8002 ui_out_field_string (uiout, "catch-type", "vfork");
8003 }
8004
8005 /* Implement the "print_mention" breakpoint_ops method for vfork
8006 catchpoints. */
8007
8008 static void
8009 print_mention_catch_vfork (struct breakpoint *b)
8010 {
8011 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
8012 }
8013
8014 /* Implement the "print_recreate" breakpoint_ops method for vfork
8015 catchpoints. */
8016
8017 static void
8018 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
8019 {
8020 fprintf_unfiltered (fp, "catch vfork");
8021 print_recreate_thread (b, fp);
8022 }
8023
8024 /* The breakpoint_ops structure to be used in vfork catchpoints. */
8025
8026 static struct breakpoint_ops catch_vfork_breakpoint_ops;
8027
8028 /* An instance of this type is used to represent an solib catchpoint.
8029 It includes a "struct breakpoint" as a kind of base class; users
8030 downcast to "struct breakpoint *" when needed. A breakpoint is
8031 really of this type iff its ops pointer points to
8032 CATCH_SOLIB_BREAKPOINT_OPS. */
8033
8034 struct solib_catchpoint
8035 {
8036 /* The base class. */
8037 struct breakpoint base;
8038
8039 /* True for "catch load", false for "catch unload". */
8040 unsigned char is_load;
8041
8042 /* Regular expression to match, if any. COMPILED is only valid when
8043 REGEX is non-NULL. */
8044 char *regex;
8045 regex_t compiled;
8046 };
8047
8048 static void
8049 dtor_catch_solib (struct breakpoint *b)
8050 {
8051 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8052
8053 if (self->regex)
8054 regfree (&self->compiled);
8055 xfree (self->regex);
8056
8057 base_breakpoint_ops.dtor (b);
8058 }
8059
8060 static int
8061 insert_catch_solib (struct bp_location *ignore)
8062 {
8063 return 0;
8064 }
8065
8066 static int
8067 remove_catch_solib (struct bp_location *ignore)
8068 {
8069 return 0;
8070 }
8071
8072 static int
8073 breakpoint_hit_catch_solib (const struct bp_location *bl,
8074 struct address_space *aspace,
8075 CORE_ADDR bp_addr,
8076 const struct target_waitstatus *ws)
8077 {
8078 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8079 struct breakpoint *other;
8080
8081 if (ws->kind == TARGET_WAITKIND_LOADED)
8082 return 1;
8083
8084 ALL_BREAKPOINTS (other)
8085 {
8086 struct bp_location *other_bl;
8087
8088 if (other == bl->owner)
8089 continue;
8090
8091 if (other->type != bp_shlib_event)
8092 continue;
8093
8094 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
8095 continue;
8096
8097 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8098 {
8099 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8100 return 1;
8101 }
8102 }
8103
8104 return 0;
8105 }
8106
8107 static void
8108 check_status_catch_solib (struct bpstats *bs)
8109 {
8110 struct solib_catchpoint *self
8111 = (struct solib_catchpoint *) bs->breakpoint_at;
8112 int ix;
8113
8114 if (self->is_load)
8115 {
8116 struct so_list *iter;
8117
8118 for (ix = 0;
8119 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8120 ix, iter);
8121 ++ix)
8122 {
8123 if (!self->regex
8124 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
8125 return;
8126 }
8127 }
8128 else
8129 {
8130 char *iter;
8131
8132 for (ix = 0;
8133 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8134 ix, iter);
8135 ++ix)
8136 {
8137 if (!self->regex
8138 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
8139 return;
8140 }
8141 }
8142
8143 bs->stop = 0;
8144 bs->print_it = print_it_noop;
8145 }
8146
8147 static enum print_stop_action
8148 print_it_catch_solib (bpstat bs)
8149 {
8150 struct breakpoint *b = bs->breakpoint_at;
8151 struct ui_out *uiout = current_uiout;
8152
8153 annotate_catchpoint (b->number);
8154 if (b->disposition == disp_del)
8155 ui_out_text (uiout, "\nTemporary catchpoint ");
8156 else
8157 ui_out_text (uiout, "\nCatchpoint ");
8158 ui_out_field_int (uiout, "bkptno", b->number);
8159 ui_out_text (uiout, "\n");
8160 if (ui_out_is_mi_like_p (uiout))
8161 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8162 print_solib_event (1);
8163 return PRINT_SRC_AND_LOC;
8164 }
8165
8166 static void
8167 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8168 {
8169 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8170 struct value_print_options opts;
8171 struct ui_out *uiout = current_uiout;
8172 char *msg;
8173
8174 get_user_print_options (&opts);
8175 /* Field 4, the address, is omitted (which makes the columns not
8176 line up too nicely with the headers, but the effect is relatively
8177 readable). */
8178 if (opts.addressprint)
8179 {
8180 annotate_field (4);
8181 ui_out_field_skip (uiout, "addr");
8182 }
8183
8184 annotate_field (5);
8185 if (self->is_load)
8186 {
8187 if (self->regex)
8188 msg = xstrprintf (_("load of library matching %s"), self->regex);
8189 else
8190 msg = xstrdup (_("load of library"));
8191 }
8192 else
8193 {
8194 if (self->regex)
8195 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8196 else
8197 msg = xstrdup (_("unload of library"));
8198 }
8199 ui_out_field_string (uiout, "what", msg);
8200 xfree (msg);
8201
8202 if (ui_out_is_mi_like_p (uiout))
8203 ui_out_field_string (uiout, "catch-type",
8204 self->is_load ? "load" : "unload");
8205 }
8206
8207 static void
8208 print_mention_catch_solib (struct breakpoint *b)
8209 {
8210 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8211
8212 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8213 self->is_load ? "load" : "unload");
8214 }
8215
8216 static void
8217 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8218 {
8219 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8220
8221 fprintf_unfiltered (fp, "%s %s",
8222 b->disposition == disp_del ? "tcatch" : "catch",
8223 self->is_load ? "load" : "unload");
8224 if (self->regex)
8225 fprintf_unfiltered (fp, " %s", self->regex);
8226 fprintf_unfiltered (fp, "\n");
8227 }
8228
8229 static struct breakpoint_ops catch_solib_breakpoint_ops;
8230
8231 /* Shared helper function (MI and CLI) for creating and installing
8232 a shared object event catchpoint. If IS_LOAD is non-zero then
8233 the events to be caught are load events, otherwise they are
8234 unload events. If IS_TEMP is non-zero the catchpoint is a
8235 temporary one. If ENABLED is non-zero the catchpoint is
8236 created in an enabled state. */
8237
8238 void
8239 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
8240 {
8241 struct solib_catchpoint *c;
8242 struct gdbarch *gdbarch = get_current_arch ();
8243 struct cleanup *cleanup;
8244
8245 if (!arg)
8246 arg = "";
8247 arg = skip_spaces (arg);
8248
8249 c = XCNEW (struct solib_catchpoint);
8250 cleanup = make_cleanup (xfree, c);
8251
8252 if (*arg != '\0')
8253 {
8254 int errcode;
8255
8256 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8257 if (errcode != 0)
8258 {
8259 char *err = get_regcomp_error (errcode, &c->compiled);
8260
8261 make_cleanup (xfree, err);
8262 error (_("Invalid regexp (%s): %s"), err, arg);
8263 }
8264 c->regex = xstrdup (arg);
8265 }
8266
8267 c->is_load = is_load;
8268 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8269 &catch_solib_breakpoint_ops);
8270
8271 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8272
8273 discard_cleanups (cleanup);
8274 install_breakpoint (0, &c->base, 1);
8275 }
8276
8277 /* A helper function that does all the work for "catch load" and
8278 "catch unload". */
8279
8280 static void
8281 catch_load_or_unload (char *arg, int from_tty, int is_load,
8282 struct cmd_list_element *command)
8283 {
8284 int tempflag;
8285 const int enabled = 1;
8286
8287 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8288
8289 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8290 }
8291
8292 static void
8293 catch_load_command_1 (char *arg, int from_tty,
8294 struct cmd_list_element *command)
8295 {
8296 catch_load_or_unload (arg, from_tty, 1, command);
8297 }
8298
8299 static void
8300 catch_unload_command_1 (char *arg, int from_tty,
8301 struct cmd_list_element *command)
8302 {
8303 catch_load_or_unload (arg, from_tty, 0, command);
8304 }
8305
8306 /* An instance of this type is used to represent a syscall catchpoint.
8307 It includes a "struct breakpoint" as a kind of base class; users
8308 downcast to "struct breakpoint *" when needed. A breakpoint is
8309 really of this type iff its ops pointer points to
8310 CATCH_SYSCALL_BREAKPOINT_OPS. */
8311
8312 struct syscall_catchpoint
8313 {
8314 /* The base class. */
8315 struct breakpoint base;
8316
8317 /* Syscall numbers used for the 'catch syscall' feature. If no
8318 syscall has been specified for filtering, its value is NULL.
8319 Otherwise, it holds a list of all syscalls to be caught. The
8320 list elements are allocated with xmalloc. */
8321 VEC(int) *syscalls_to_be_caught;
8322 };
8323
8324 /* Implement the "dtor" breakpoint_ops method for syscall
8325 catchpoints. */
8326
8327 static void
8328 dtor_catch_syscall (struct breakpoint *b)
8329 {
8330 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8331
8332 VEC_free (int, c->syscalls_to_be_caught);
8333
8334 base_breakpoint_ops.dtor (b);
8335 }
8336
8337 static const struct inferior_data *catch_syscall_inferior_data = NULL;
8338
8339 struct catch_syscall_inferior_data
8340 {
8341 /* We keep a count of the number of times the user has requested a
8342 particular syscall to be tracked, and pass this information to the
8343 target. This lets capable targets implement filtering directly. */
8344
8345 /* Number of times that "any" syscall is requested. */
8346 int any_syscall_count;
8347
8348 /* Count of each system call. */
8349 VEC(int) *syscalls_counts;
8350
8351 /* This counts all syscall catch requests, so we can readily determine
8352 if any catching is necessary. */
8353 int total_syscalls_count;
8354 };
8355
8356 static struct catch_syscall_inferior_data*
8357 get_catch_syscall_inferior_data (struct inferior *inf)
8358 {
8359 struct catch_syscall_inferior_data *inf_data;
8360
8361 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8362 if (inf_data == NULL)
8363 {
8364 inf_data = XCNEW (struct catch_syscall_inferior_data);
8365 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8366 }
8367
8368 return inf_data;
8369 }
8370
8371 static void
8372 catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8373 {
8374 xfree (arg);
8375 }
8376
8377
8378 /* Implement the "insert" breakpoint_ops method for syscall
8379 catchpoints. */
8380
8381 static int
8382 insert_catch_syscall (struct bp_location *bl)
8383 {
8384 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8385 struct inferior *inf = current_inferior ();
8386 struct catch_syscall_inferior_data *inf_data
8387 = get_catch_syscall_inferior_data (inf);
8388
8389 ++inf_data->total_syscalls_count;
8390 if (!c->syscalls_to_be_caught)
8391 ++inf_data->any_syscall_count;
8392 else
8393 {
8394 int i, iter;
8395
8396 for (i = 0;
8397 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8398 i++)
8399 {
8400 int elem;
8401
8402 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8403 {
8404 int old_size = VEC_length (int, inf_data->syscalls_counts);
8405 uintptr_t vec_addr_offset
8406 = old_size * ((uintptr_t) sizeof (int));
8407 uintptr_t vec_addr;
8408 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8409 vec_addr = ((uintptr_t) VEC_address (int,
8410 inf_data->syscalls_counts)
8411 + vec_addr_offset);
8412 memset ((void *) vec_addr, 0,
8413 (iter + 1 - old_size) * sizeof (int));
8414 }
8415 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8416 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8417 }
8418 }
8419
8420 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8421 inf_data->total_syscalls_count != 0,
8422 inf_data->any_syscall_count,
8423 VEC_length (int,
8424 inf_data->syscalls_counts),
8425 VEC_address (int,
8426 inf_data->syscalls_counts));
8427 }
8428
8429 /* Implement the "remove" breakpoint_ops method for syscall
8430 catchpoints. */
8431
8432 static int
8433 remove_catch_syscall (struct bp_location *bl)
8434 {
8435 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8436 struct inferior *inf = current_inferior ();
8437 struct catch_syscall_inferior_data *inf_data
8438 = get_catch_syscall_inferior_data (inf);
8439
8440 --inf_data->total_syscalls_count;
8441 if (!c->syscalls_to_be_caught)
8442 --inf_data->any_syscall_count;
8443 else
8444 {
8445 int i, iter;
8446
8447 for (i = 0;
8448 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8449 i++)
8450 {
8451 int elem;
8452 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8453 /* Shouldn't happen. */
8454 continue;
8455 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8456 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8457 }
8458 }
8459
8460 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8461 inf_data->total_syscalls_count != 0,
8462 inf_data->any_syscall_count,
8463 VEC_length (int,
8464 inf_data->syscalls_counts),
8465 VEC_address (int,
8466 inf_data->syscalls_counts));
8467 }
8468
8469 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8470 catchpoints. */
8471
8472 static int
8473 breakpoint_hit_catch_syscall (const struct bp_location *bl,
8474 struct address_space *aspace, CORE_ADDR bp_addr,
8475 const struct target_waitstatus *ws)
8476 {
8477 /* We must check if we are catching specific syscalls in this
8478 breakpoint. If we are, then we must guarantee that the called
8479 syscall is the same syscall we are catching. */
8480 int syscall_number = 0;
8481 const struct syscall_catchpoint *c
8482 = (const struct syscall_catchpoint *) bl->owner;
8483
8484 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8485 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8486 return 0;
8487
8488 syscall_number = ws->value.syscall_number;
8489
8490 /* Now, checking if the syscall is the same. */
8491 if (c->syscalls_to_be_caught)
8492 {
8493 int i, iter;
8494
8495 for (i = 0;
8496 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8497 i++)
8498 if (syscall_number == iter)
8499 return 1;
8500
8501 return 0;
8502 }
8503
8504 return 1;
8505 }
8506
8507 /* Implement the "print_it" breakpoint_ops method for syscall
8508 catchpoints. */
8509
8510 static enum print_stop_action
8511 print_it_catch_syscall (bpstat bs)
8512 {
8513 struct ui_out *uiout = current_uiout;
8514 struct breakpoint *b = bs->breakpoint_at;
8515 /* These are needed because we want to know in which state a
8516 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8517 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8518 must print "called syscall" or "returned from syscall". */
8519 ptid_t ptid;
8520 struct target_waitstatus last;
8521 struct syscall s;
8522
8523 get_last_target_status (&ptid, &last);
8524
8525 get_syscall_by_number (last.value.syscall_number, &s);
8526
8527 annotate_catchpoint (b->number);
8528
8529 if (b->disposition == disp_del)
8530 ui_out_text (uiout, "\nTemporary catchpoint ");
8531 else
8532 ui_out_text (uiout, "\nCatchpoint ");
8533 if (ui_out_is_mi_like_p (uiout))
8534 {
8535 ui_out_field_string (uiout, "reason",
8536 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8537 ? EXEC_ASYNC_SYSCALL_ENTRY
8538 : EXEC_ASYNC_SYSCALL_RETURN));
8539 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8540 }
8541 ui_out_field_int (uiout, "bkptno", b->number);
8542
8543 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8544 ui_out_text (uiout, " (call to syscall ");
8545 else
8546 ui_out_text (uiout, " (returned from syscall ");
8547
8548 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8549 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8550 if (s.name != NULL)
8551 ui_out_field_string (uiout, "syscall-name", s.name);
8552
8553 ui_out_text (uiout, "), ");
8554
8555 return PRINT_SRC_AND_LOC;
8556 }
8557
8558 /* Implement the "print_one" breakpoint_ops method for syscall
8559 catchpoints. */
8560
8561 static void
8562 print_one_catch_syscall (struct breakpoint *b,
8563 struct bp_location **last_loc)
8564 {
8565 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8566 struct value_print_options opts;
8567 struct ui_out *uiout = current_uiout;
8568
8569 get_user_print_options (&opts);
8570 /* Field 4, the address, is omitted (which makes the columns not
8571 line up too nicely with the headers, but the effect is relatively
8572 readable). */
8573 if (opts.addressprint)
8574 ui_out_field_skip (uiout, "addr");
8575 annotate_field (5);
8576
8577 if (c->syscalls_to_be_caught
8578 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8579 ui_out_text (uiout, "syscalls \"");
8580 else
8581 ui_out_text (uiout, "syscall \"");
8582
8583 if (c->syscalls_to_be_caught)
8584 {
8585 int i, iter;
8586 char *text = xstrprintf ("%s", "");
8587
8588 for (i = 0;
8589 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8590 i++)
8591 {
8592 char *x = text;
8593 struct syscall s;
8594 get_syscall_by_number (iter, &s);
8595
8596 if (s.name != NULL)
8597 text = xstrprintf ("%s%s, ", text, s.name);
8598 else
8599 text = xstrprintf ("%s%d, ", text, iter);
8600
8601 /* We have to xfree the last 'text' (now stored at 'x')
8602 because xstrprintf dynamically allocates new space for it
8603 on every call. */
8604 xfree (x);
8605 }
8606 /* Remove the last comma. */
8607 text[strlen (text) - 2] = '\0';
8608 ui_out_field_string (uiout, "what", text);
8609 }
8610 else
8611 ui_out_field_string (uiout, "what", "<any syscall>");
8612 ui_out_text (uiout, "\" ");
8613
8614 if (ui_out_is_mi_like_p (uiout))
8615 ui_out_field_string (uiout, "catch-type", "syscall");
8616 }
8617
8618 /* Implement the "print_mention" breakpoint_ops method for syscall
8619 catchpoints. */
8620
8621 static void
8622 print_mention_catch_syscall (struct breakpoint *b)
8623 {
8624 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8625
8626 if (c->syscalls_to_be_caught)
8627 {
8628 int i, iter;
8629
8630 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8631 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8632 else
8633 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8634
8635 for (i = 0;
8636 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8637 i++)
8638 {
8639 struct syscall s;
8640 get_syscall_by_number (iter, &s);
8641
8642 if (s.name)
8643 printf_filtered (" '%s' [%d]", s.name, s.number);
8644 else
8645 printf_filtered (" %d", s.number);
8646 }
8647 printf_filtered (")");
8648 }
8649 else
8650 printf_filtered (_("Catchpoint %d (any syscall)"),
8651 b->number);
8652 }
8653
8654 /* Implement the "print_recreate" breakpoint_ops method for syscall
8655 catchpoints. */
8656
8657 static void
8658 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8659 {
8660 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8661
8662 fprintf_unfiltered (fp, "catch syscall");
8663
8664 if (c->syscalls_to_be_caught)
8665 {
8666 int i, iter;
8667
8668 for (i = 0;
8669 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8670 i++)
8671 {
8672 struct syscall s;
8673
8674 get_syscall_by_number (iter, &s);
8675 if (s.name)
8676 fprintf_unfiltered (fp, " %s", s.name);
8677 else
8678 fprintf_unfiltered (fp, " %d", s.number);
8679 }
8680 }
8681 print_recreate_thread (b, fp);
8682 }
8683
8684 /* The breakpoint_ops structure to be used in syscall catchpoints. */
8685
8686 static struct breakpoint_ops catch_syscall_breakpoint_ops;
8687
8688 /* Returns non-zero if 'b' is a syscall catchpoint. */
8689
8690 static int
8691 syscall_catchpoint_p (struct breakpoint *b)
8692 {
8693 return (b->ops == &catch_syscall_breakpoint_ops);
8694 }
8695
8696 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8697 is non-zero, then make the breakpoint temporary. If COND_STRING is
8698 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8699 the breakpoint_ops structure associated to the catchpoint. */
8700
8701 void
8702 init_catchpoint (struct breakpoint *b,
8703 struct gdbarch *gdbarch, int tempflag,
8704 char *cond_string,
8705 const struct breakpoint_ops *ops)
8706 {
8707 struct symtab_and_line sal;
8708
8709 init_sal (&sal);
8710 sal.pspace = current_program_space;
8711
8712 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8713
8714 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8715 b->disposition = tempflag ? disp_del : disp_donttouch;
8716 }
8717
8718 void
8719 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8720 {
8721 add_to_breakpoint_chain (b);
8722 set_breakpoint_number (internal, b);
8723 if (is_tracepoint (b))
8724 set_tracepoint_count (breakpoint_count);
8725 if (!internal)
8726 mention (b);
8727 observer_notify_breakpoint_created (b);
8728
8729 if (update_gll)
8730 update_global_location_list (1);
8731 }
8732
8733 static void
8734 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8735 int tempflag, char *cond_string,
8736 const struct breakpoint_ops *ops)
8737 {
8738 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8739
8740 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8741
8742 c->forked_inferior_pid = null_ptid;
8743
8744 install_breakpoint (0, &c->base, 1);
8745 }
8746
8747 /* Exec catchpoints. */
8748
8749 /* An instance of this type is used to represent an exec catchpoint.
8750 It includes a "struct breakpoint" as a kind of base class; users
8751 downcast to "struct breakpoint *" when needed. A breakpoint is
8752 really of this type iff its ops pointer points to
8753 CATCH_EXEC_BREAKPOINT_OPS. */
8754
8755 struct exec_catchpoint
8756 {
8757 /* The base class. */
8758 struct breakpoint base;
8759
8760 /* Filename of a program whose exec triggered this catchpoint.
8761 This field is only valid immediately after this catchpoint has
8762 triggered. */
8763 char *exec_pathname;
8764 };
8765
8766 /* Implement the "dtor" breakpoint_ops method for exec
8767 catchpoints. */
8768
8769 static void
8770 dtor_catch_exec (struct breakpoint *b)
8771 {
8772 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8773
8774 xfree (c->exec_pathname);
8775
8776 base_breakpoint_ops.dtor (b);
8777 }
8778
8779 static int
8780 insert_catch_exec (struct bp_location *bl)
8781 {
8782 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8783 }
8784
8785 static int
8786 remove_catch_exec (struct bp_location *bl)
8787 {
8788 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8789 }
8790
8791 static int
8792 breakpoint_hit_catch_exec (const struct bp_location *bl,
8793 struct address_space *aspace, CORE_ADDR bp_addr,
8794 const struct target_waitstatus *ws)
8795 {
8796 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8797
8798 if (ws->kind != TARGET_WAITKIND_EXECD)
8799 return 0;
8800
8801 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8802 return 1;
8803 }
8804
8805 static enum print_stop_action
8806 print_it_catch_exec (bpstat bs)
8807 {
8808 struct ui_out *uiout = current_uiout;
8809 struct breakpoint *b = bs->breakpoint_at;
8810 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8811
8812 annotate_catchpoint (b->number);
8813 if (b->disposition == disp_del)
8814 ui_out_text (uiout, "\nTemporary catchpoint ");
8815 else
8816 ui_out_text (uiout, "\nCatchpoint ");
8817 if (ui_out_is_mi_like_p (uiout))
8818 {
8819 ui_out_field_string (uiout, "reason",
8820 async_reason_lookup (EXEC_ASYNC_EXEC));
8821 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8822 }
8823 ui_out_field_int (uiout, "bkptno", b->number);
8824 ui_out_text (uiout, " (exec'd ");
8825 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8826 ui_out_text (uiout, "), ");
8827
8828 return PRINT_SRC_AND_LOC;
8829 }
8830
8831 static void
8832 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8833 {
8834 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8835 struct value_print_options opts;
8836 struct ui_out *uiout = current_uiout;
8837
8838 get_user_print_options (&opts);
8839
8840 /* Field 4, the address, is omitted (which makes the columns
8841 not line up too nicely with the headers, but the effect
8842 is relatively readable). */
8843 if (opts.addressprint)
8844 ui_out_field_skip (uiout, "addr");
8845 annotate_field (5);
8846 ui_out_text (uiout, "exec");
8847 if (c->exec_pathname != NULL)
8848 {
8849 ui_out_text (uiout, ", program \"");
8850 ui_out_field_string (uiout, "what", c->exec_pathname);
8851 ui_out_text (uiout, "\" ");
8852 }
8853
8854 if (ui_out_is_mi_like_p (uiout))
8855 ui_out_field_string (uiout, "catch-type", "exec");
8856 }
8857
8858 static void
8859 print_mention_catch_exec (struct breakpoint *b)
8860 {
8861 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8862 }
8863
8864 /* Implement the "print_recreate" breakpoint_ops method for exec
8865 catchpoints. */
8866
8867 static void
8868 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8869 {
8870 fprintf_unfiltered (fp, "catch exec");
8871 print_recreate_thread (b, fp);
8872 }
8873
8874 static struct breakpoint_ops catch_exec_breakpoint_ops;
8875
8876 static void
8877 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
8878 const struct breakpoint_ops *ops)
8879 {
8880 struct syscall_catchpoint *c;
8881 struct gdbarch *gdbarch = get_current_arch ();
8882
8883 c = XNEW (struct syscall_catchpoint);
8884 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
8885 c->syscalls_to_be_caught = filter;
8886
8887 install_breakpoint (0, &c->base, 1);
8888 }
8889
8890 static int
8891 hw_breakpoint_used_count (void)
8892 {
8893 int i = 0;
8894 struct breakpoint *b;
8895 struct bp_location *bl;
8896
8897 ALL_BREAKPOINTS (b)
8898 {
8899 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8900 for (bl = b->loc; bl; bl = bl->next)
8901 {
8902 /* Special types of hardware breakpoints may use more than
8903 one register. */
8904 i += b->ops->resources_needed (bl);
8905 }
8906 }
8907
8908 return i;
8909 }
8910
8911 /* Returns the resources B would use if it were a hardware
8912 watchpoint. */
8913
8914 static int
8915 hw_watchpoint_use_count (struct breakpoint *b)
8916 {
8917 int i = 0;
8918 struct bp_location *bl;
8919
8920 if (!breakpoint_enabled (b))
8921 return 0;
8922
8923 for (bl = b->loc; bl; bl = bl->next)
8924 {
8925 /* Special types of hardware watchpoints may use more than
8926 one register. */
8927 i += b->ops->resources_needed (bl);
8928 }
8929
8930 return i;
8931 }
8932
8933 /* Returns the sum the used resources of all hardware watchpoints of
8934 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8935 the sum of the used resources of all hardware watchpoints of other
8936 types _not_ TYPE. */
8937
8938 static int
8939 hw_watchpoint_used_count_others (struct breakpoint *except,
8940 enum bptype type, int *other_type_used)
8941 {
8942 int i = 0;
8943 struct breakpoint *b;
8944
8945 *other_type_used = 0;
8946 ALL_BREAKPOINTS (b)
8947 {
8948 if (b == except)
8949 continue;
8950 if (!breakpoint_enabled (b))
8951 continue;
8952
8953 if (b->type == type)
8954 i += hw_watchpoint_use_count (b);
8955 else if (is_hardware_watchpoint (b))
8956 *other_type_used = 1;
8957 }
8958
8959 return i;
8960 }
8961
8962 void
8963 disable_watchpoints_before_interactive_call_start (void)
8964 {
8965 struct breakpoint *b;
8966
8967 ALL_BREAKPOINTS (b)
8968 {
8969 if (is_watchpoint (b) && breakpoint_enabled (b))
8970 {
8971 b->enable_state = bp_call_disabled;
8972 update_global_location_list (0);
8973 }
8974 }
8975 }
8976
8977 void
8978 enable_watchpoints_after_interactive_call_stop (void)
8979 {
8980 struct breakpoint *b;
8981
8982 ALL_BREAKPOINTS (b)
8983 {
8984 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8985 {
8986 b->enable_state = bp_enabled;
8987 update_global_location_list (1);
8988 }
8989 }
8990 }
8991
8992 void
8993 disable_breakpoints_before_startup (void)
8994 {
8995 current_program_space->executing_startup = 1;
8996 update_global_location_list (0);
8997 }
8998
8999 void
9000 enable_breakpoints_after_startup (void)
9001 {
9002 current_program_space->executing_startup = 0;
9003 breakpoint_re_set ();
9004 }
9005
9006
9007 /* Set a breakpoint that will evaporate an end of command
9008 at address specified by SAL.
9009 Restrict it to frame FRAME if FRAME is nonzero. */
9010
9011 struct breakpoint *
9012 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
9013 struct frame_id frame_id, enum bptype type)
9014 {
9015 struct breakpoint *b;
9016
9017 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
9018 tail-called one. */
9019 gdb_assert (!frame_id_artificial_p (frame_id));
9020
9021 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
9022 b->enable_state = bp_enabled;
9023 b->disposition = disp_donttouch;
9024 b->frame_id = frame_id;
9025
9026 /* If we're debugging a multi-threaded program, then we want
9027 momentary breakpoints to be active in only a single thread of
9028 control. */
9029 if (in_thread_list (inferior_ptid))
9030 b->thread = pid_to_thread_id (inferior_ptid);
9031
9032 update_global_location_list_nothrow (1);
9033
9034 return b;
9035 }
9036
9037 /* Make a momentary breakpoint based on the master breakpoint ORIG.
9038 The new breakpoint will have type TYPE, and use OPS as it
9039 breakpoint_ops. */
9040
9041 static struct breakpoint *
9042 momentary_breakpoint_from_master (struct breakpoint *orig,
9043 enum bptype type,
9044 const struct breakpoint_ops *ops)
9045 {
9046 struct breakpoint *copy;
9047
9048 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
9049 copy->loc = allocate_bp_location (copy);
9050 set_breakpoint_location_function (copy->loc, 1);
9051
9052 copy->loc->gdbarch = orig->loc->gdbarch;
9053 copy->loc->requested_address = orig->loc->requested_address;
9054 copy->loc->address = orig->loc->address;
9055 copy->loc->section = orig->loc->section;
9056 copy->loc->pspace = orig->loc->pspace;
9057 copy->loc->probe = orig->loc->probe;
9058 copy->loc->line_number = orig->loc->line_number;
9059 copy->loc->symtab = orig->loc->symtab;
9060 copy->frame_id = orig->frame_id;
9061 copy->thread = orig->thread;
9062 copy->pspace = orig->pspace;
9063
9064 copy->enable_state = bp_enabled;
9065 copy->disposition = disp_donttouch;
9066 copy->number = internal_breakpoint_number--;
9067
9068 update_global_location_list_nothrow (0);
9069 return copy;
9070 }
9071
9072 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
9073 ORIG is NULL. */
9074
9075 struct breakpoint *
9076 clone_momentary_breakpoint (struct breakpoint *orig)
9077 {
9078 /* If there's nothing to clone, then return nothing. */
9079 if (orig == NULL)
9080 return NULL;
9081
9082 return momentary_breakpoint_from_master (orig, orig->type, orig->ops);
9083 }
9084
9085 struct breakpoint *
9086 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
9087 enum bptype type)
9088 {
9089 struct symtab_and_line sal;
9090
9091 sal = find_pc_line (pc, 0);
9092 sal.pc = pc;
9093 sal.section = find_pc_overlay (pc);
9094 sal.explicit_pc = 1;
9095
9096 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
9097 }
9098 \f
9099
9100 /* Tell the user we have just set a breakpoint B. */
9101
9102 static void
9103 mention (struct breakpoint *b)
9104 {
9105 b->ops->print_mention (b);
9106 if (ui_out_is_mi_like_p (current_uiout))
9107 return;
9108 printf_filtered ("\n");
9109 }
9110 \f
9111
9112 static struct bp_location *
9113 add_location_to_breakpoint (struct breakpoint *b,
9114 const struct symtab_and_line *sal)
9115 {
9116 struct bp_location *loc, **tmp;
9117 CORE_ADDR adjusted_address;
9118 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
9119
9120 if (loc_gdbarch == NULL)
9121 loc_gdbarch = b->gdbarch;
9122
9123 /* Adjust the breakpoint's address prior to allocating a location.
9124 Once we call allocate_bp_location(), that mostly uninitialized
9125 location will be placed on the location chain. Adjustment of the
9126 breakpoint may cause target_read_memory() to be called and we do
9127 not want its scan of the location chain to find a breakpoint and
9128 location that's only been partially initialized. */
9129 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
9130 sal->pc, b->type);
9131
9132 /* Sort the locations by their ADDRESS. */
9133 loc = allocate_bp_location (b);
9134 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
9135 tmp = &((*tmp)->next))
9136 ;
9137 loc->next = *tmp;
9138 *tmp = loc;
9139
9140 loc->requested_address = sal->pc;
9141 loc->address = adjusted_address;
9142 loc->pspace = sal->pspace;
9143 loc->probe.probe = sal->probe;
9144 loc->probe.objfile = sal->objfile;
9145 gdb_assert (loc->pspace != NULL);
9146 loc->section = sal->section;
9147 loc->gdbarch = loc_gdbarch;
9148 loc->line_number = sal->line;
9149 loc->symtab = sal->symtab;
9150
9151 set_breakpoint_location_function (loc,
9152 sal->explicit_pc || sal->explicit_line);
9153 return loc;
9154 }
9155 \f
9156
9157 /* Return 1 if LOC is pointing to a permanent breakpoint,
9158 return 0 otherwise. */
9159
9160 static int
9161 bp_loc_is_permanent (struct bp_location *loc)
9162 {
9163 int len;
9164 CORE_ADDR addr;
9165 const gdb_byte *bpoint;
9166 gdb_byte *target_mem;
9167 struct cleanup *cleanup;
9168 int retval = 0;
9169
9170 gdb_assert (loc != NULL);
9171
9172 addr = loc->address;
9173 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
9174
9175 /* Software breakpoints unsupported? */
9176 if (bpoint == NULL)
9177 return 0;
9178
9179 target_mem = alloca (len);
9180
9181 /* Enable the automatic memory restoration from breakpoints while
9182 we read the memory. Otherwise we could say about our temporary
9183 breakpoints they are permanent. */
9184 cleanup = save_current_space_and_thread ();
9185
9186 switch_to_program_space_and_thread (loc->pspace);
9187 make_show_memory_breakpoints_cleanup (0);
9188
9189 if (target_read_memory (loc->address, target_mem, len) == 0
9190 && memcmp (target_mem, bpoint, len) == 0)
9191 retval = 1;
9192
9193 do_cleanups (cleanup);
9194
9195 return retval;
9196 }
9197
9198 /* Build a command list for the dprintf corresponding to the current
9199 settings of the dprintf style options. */
9200
9201 static void
9202 update_dprintf_command_list (struct breakpoint *b)
9203 {
9204 char *dprintf_args = b->extra_string;
9205 char *printf_line = NULL;
9206
9207 if (!dprintf_args)
9208 return;
9209
9210 dprintf_args = skip_spaces (dprintf_args);
9211
9212 /* Allow a comma, as it may have terminated a location, but don't
9213 insist on it. */
9214 if (*dprintf_args == ',')
9215 ++dprintf_args;
9216 dprintf_args = skip_spaces (dprintf_args);
9217
9218 if (*dprintf_args != '"')
9219 error (_("Bad format string, missing '\"'."));
9220
9221 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9222 printf_line = xstrprintf ("printf %s", dprintf_args);
9223 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9224 {
9225 if (!dprintf_function)
9226 error (_("No function supplied for dprintf call"));
9227
9228 if (dprintf_channel && strlen (dprintf_channel) > 0)
9229 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9230 dprintf_function,
9231 dprintf_channel,
9232 dprintf_args);
9233 else
9234 printf_line = xstrprintf ("call (void) %s (%s)",
9235 dprintf_function,
9236 dprintf_args);
9237 }
9238 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9239 {
9240 if (target_can_run_breakpoint_commands ())
9241 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9242 else
9243 {
9244 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9245 printf_line = xstrprintf ("printf %s", dprintf_args);
9246 }
9247 }
9248 else
9249 internal_error (__FILE__, __LINE__,
9250 _("Invalid dprintf style."));
9251
9252 gdb_assert (printf_line != NULL);
9253 /* Manufacture a printf sequence. */
9254 {
9255 struct command_line *printf_cmd_line
9256 = xmalloc (sizeof (struct command_line));
9257
9258 printf_cmd_line = xmalloc (sizeof (struct command_line));
9259 printf_cmd_line->control_type = simple_control;
9260 printf_cmd_line->body_count = 0;
9261 printf_cmd_line->body_list = NULL;
9262 printf_cmd_line->next = NULL;
9263 printf_cmd_line->line = printf_line;
9264
9265 breakpoint_set_commands (b, printf_cmd_line);
9266 }
9267 }
9268
9269 /* Update all dprintf commands, making their command lists reflect
9270 current style settings. */
9271
9272 static void
9273 update_dprintf_commands (char *args, int from_tty,
9274 struct cmd_list_element *c)
9275 {
9276 struct breakpoint *b;
9277
9278 ALL_BREAKPOINTS (b)
9279 {
9280 if (b->type == bp_dprintf)
9281 update_dprintf_command_list (b);
9282 }
9283 }
9284
9285 /* Create a breakpoint with SAL as location. Use ADDR_STRING
9286 as textual description of the location, and COND_STRING
9287 as condition expression. */
9288
9289 static void
9290 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9291 struct symtabs_and_lines sals, char *addr_string,
9292 char *filter, char *cond_string,
9293 char *extra_string,
9294 enum bptype type, enum bpdisp disposition,
9295 int thread, int task, int ignore_count,
9296 const struct breakpoint_ops *ops, int from_tty,
9297 int enabled, int internal, unsigned flags,
9298 int display_canonical)
9299 {
9300 int i;
9301
9302 if (type == bp_hardware_breakpoint)
9303 {
9304 int target_resources_ok;
9305
9306 i = hw_breakpoint_used_count ();
9307 target_resources_ok =
9308 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9309 i + 1, 0);
9310 if (target_resources_ok == 0)
9311 error (_("No hardware breakpoint support in the target."));
9312 else if (target_resources_ok < 0)
9313 error (_("Hardware breakpoints used exceeds limit."));
9314 }
9315
9316 gdb_assert (sals.nelts > 0);
9317
9318 for (i = 0; i < sals.nelts; ++i)
9319 {
9320 struct symtab_and_line sal = sals.sals[i];
9321 struct bp_location *loc;
9322
9323 if (from_tty)
9324 {
9325 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9326 if (!loc_gdbarch)
9327 loc_gdbarch = gdbarch;
9328
9329 describe_other_breakpoints (loc_gdbarch,
9330 sal.pspace, sal.pc, sal.section, thread);
9331 }
9332
9333 if (i == 0)
9334 {
9335 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9336 b->thread = thread;
9337 b->task = task;
9338
9339 b->cond_string = cond_string;
9340 b->extra_string = extra_string;
9341 b->ignore_count = ignore_count;
9342 b->enable_state = enabled ? bp_enabled : bp_disabled;
9343 b->disposition = disposition;
9344
9345 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9346 b->loc->inserted = 1;
9347
9348 if (type == bp_static_tracepoint)
9349 {
9350 struct tracepoint *t = (struct tracepoint *) b;
9351 struct static_tracepoint_marker marker;
9352
9353 if (strace_marker_p (b))
9354 {
9355 /* We already know the marker exists, otherwise, we
9356 wouldn't see a sal for it. */
9357 char *p = &addr_string[3];
9358 char *endp;
9359 char *marker_str;
9360
9361 p = skip_spaces (p);
9362
9363 endp = skip_to_space (p);
9364
9365 marker_str = savestring (p, endp - p);
9366 t->static_trace_marker_id = marker_str;
9367
9368 printf_filtered (_("Probed static tracepoint "
9369 "marker \"%s\"\n"),
9370 t->static_trace_marker_id);
9371 }
9372 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9373 {
9374 t->static_trace_marker_id = xstrdup (marker.str_id);
9375 release_static_tracepoint_marker (&marker);
9376
9377 printf_filtered (_("Probed static tracepoint "
9378 "marker \"%s\"\n"),
9379 t->static_trace_marker_id);
9380 }
9381 else
9382 warning (_("Couldn't determine the static "
9383 "tracepoint marker to probe"));
9384 }
9385
9386 loc = b->loc;
9387 }
9388 else
9389 {
9390 loc = add_location_to_breakpoint (b, &sal);
9391 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9392 loc->inserted = 1;
9393 }
9394
9395 if (bp_loc_is_permanent (loc))
9396 make_breakpoint_permanent (b);
9397
9398 if (b->cond_string)
9399 {
9400 const char *arg = b->cond_string;
9401
9402 loc->cond = parse_exp_1 (&arg, loc->address,
9403 block_for_pc (loc->address), 0);
9404 if (*arg)
9405 error (_("Garbage '%s' follows condition"), arg);
9406 }
9407
9408 /* Dynamic printf requires and uses additional arguments on the
9409 command line, otherwise it's an error. */
9410 if (type == bp_dprintf)
9411 {
9412 if (b->extra_string)
9413 update_dprintf_command_list (b);
9414 else
9415 error (_("Format string required"));
9416 }
9417 else if (b->extra_string)
9418 error (_("Garbage '%s' at end of command"), b->extra_string);
9419 }
9420
9421 b->display_canonical = display_canonical;
9422 if (addr_string)
9423 b->addr_string = addr_string;
9424 else
9425 /* addr_string has to be used or breakpoint_re_set will delete
9426 me. */
9427 b->addr_string
9428 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9429 b->filter = filter;
9430 }
9431
9432 static void
9433 create_breakpoint_sal (struct gdbarch *gdbarch,
9434 struct symtabs_and_lines sals, char *addr_string,
9435 char *filter, char *cond_string,
9436 char *extra_string,
9437 enum bptype type, enum bpdisp disposition,
9438 int thread, int task, int ignore_count,
9439 const struct breakpoint_ops *ops, int from_tty,
9440 int enabled, int internal, unsigned flags,
9441 int display_canonical)
9442 {
9443 struct breakpoint *b;
9444 struct cleanup *old_chain;
9445
9446 if (is_tracepoint_type (type))
9447 {
9448 struct tracepoint *t;
9449
9450 t = XCNEW (struct tracepoint);
9451 b = &t->base;
9452 }
9453 else
9454 b = XNEW (struct breakpoint);
9455
9456 old_chain = make_cleanup (xfree, b);
9457
9458 init_breakpoint_sal (b, gdbarch,
9459 sals, addr_string,
9460 filter, cond_string, extra_string,
9461 type, disposition,
9462 thread, task, ignore_count,
9463 ops, from_tty,
9464 enabled, internal, flags,
9465 display_canonical);
9466 discard_cleanups (old_chain);
9467
9468 install_breakpoint (internal, b, 0);
9469 }
9470
9471 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9472 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9473 value. COND_STRING, if not NULL, specified the condition to be
9474 used for all breakpoints. Essentially the only case where
9475 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9476 function. In that case, it's still not possible to specify
9477 separate conditions for different overloaded functions, so
9478 we take just a single condition string.
9479
9480 NOTE: If the function succeeds, the caller is expected to cleanup
9481 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9482 array contents). If the function fails (error() is called), the
9483 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9484 COND and SALS arrays and each of those arrays contents. */
9485
9486 static void
9487 create_breakpoints_sal (struct gdbarch *gdbarch,
9488 struct linespec_result *canonical,
9489 char *cond_string, char *extra_string,
9490 enum bptype type, enum bpdisp disposition,
9491 int thread, int task, int ignore_count,
9492 const struct breakpoint_ops *ops, int from_tty,
9493 int enabled, int internal, unsigned flags)
9494 {
9495 int i;
9496 struct linespec_sals *lsal;
9497
9498 if (canonical->pre_expanded)
9499 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9500
9501 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9502 {
9503 /* Note that 'addr_string' can be NULL in the case of a plain
9504 'break', without arguments. */
9505 char *addr_string = (canonical->addr_string
9506 ? xstrdup (canonical->addr_string)
9507 : NULL);
9508 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9509 struct cleanup *inner = make_cleanup (xfree, addr_string);
9510
9511 make_cleanup (xfree, filter_string);
9512 create_breakpoint_sal (gdbarch, lsal->sals,
9513 addr_string,
9514 filter_string,
9515 cond_string, extra_string,
9516 type, disposition,
9517 thread, task, ignore_count, ops,
9518 from_tty, enabled, internal, flags,
9519 canonical->special_display);
9520 discard_cleanups (inner);
9521 }
9522 }
9523
9524 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9525 followed by conditionals. On return, SALS contains an array of SAL
9526 addresses found. ADDR_STRING contains a vector of (canonical)
9527 address strings. ADDRESS points to the end of the SAL.
9528
9529 The array and the line spec strings are allocated on the heap, it is
9530 the caller's responsibility to free them. */
9531
9532 static void
9533 parse_breakpoint_sals (char **address,
9534 struct linespec_result *canonical)
9535 {
9536 /* If no arg given, or if first arg is 'if ', use the default
9537 breakpoint. */
9538 if ((*address) == NULL
9539 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9540 {
9541 /* The last displayed codepoint, if it's valid, is our default breakpoint
9542 address. */
9543 if (last_displayed_sal_is_valid ())
9544 {
9545 struct linespec_sals lsal;
9546 struct symtab_and_line sal;
9547 CORE_ADDR pc;
9548
9549 init_sal (&sal); /* Initialize to zeroes. */
9550 lsal.sals.sals = (struct symtab_and_line *)
9551 xmalloc (sizeof (struct symtab_and_line));
9552
9553 /* Set sal's pspace, pc, symtab, and line to the values
9554 corresponding to the last call to print_frame_info.
9555 Be sure to reinitialize LINE with NOTCURRENT == 0
9556 as the breakpoint line number is inappropriate otherwise.
9557 find_pc_line would adjust PC, re-set it back. */
9558 get_last_displayed_sal (&sal);
9559 pc = sal.pc;
9560 sal = find_pc_line (pc, 0);
9561
9562 /* "break" without arguments is equivalent to "break *PC"
9563 where PC is the last displayed codepoint's address. So
9564 make sure to set sal.explicit_pc to prevent GDB from
9565 trying to expand the list of sals to include all other
9566 instances with the same symtab and line. */
9567 sal.pc = pc;
9568 sal.explicit_pc = 1;
9569
9570 lsal.sals.sals[0] = sal;
9571 lsal.sals.nelts = 1;
9572 lsal.canonical = NULL;
9573
9574 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9575 }
9576 else
9577 error (_("No default breakpoint address now."));
9578 }
9579 else
9580 {
9581 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9582
9583 /* Force almost all breakpoints to be in terms of the
9584 current_source_symtab (which is decode_line_1's default).
9585 This should produce the results we want almost all of the
9586 time while leaving default_breakpoint_* alone.
9587
9588 ObjC: However, don't match an Objective-C method name which
9589 may have a '+' or '-' succeeded by a '['. */
9590 if (last_displayed_sal_is_valid ()
9591 && (!cursal.symtab
9592 || ((strchr ("+-", (*address)[0]) != NULL)
9593 && ((*address)[1] != '['))))
9594 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9595 get_last_displayed_symtab (),
9596 get_last_displayed_line (),
9597 canonical, NULL, NULL);
9598 else
9599 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9600 cursal.symtab, cursal.line, canonical, NULL, NULL);
9601 }
9602 }
9603
9604
9605 /* Convert each SAL into a real PC. Verify that the PC can be
9606 inserted as a breakpoint. If it can't throw an error. */
9607
9608 static void
9609 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9610 {
9611 int i;
9612
9613 for (i = 0; i < sals->nelts; i++)
9614 resolve_sal_pc (&sals->sals[i]);
9615 }
9616
9617 /* Fast tracepoints may have restrictions on valid locations. For
9618 instance, a fast tracepoint using a jump instead of a trap will
9619 likely have to overwrite more bytes than a trap would, and so can
9620 only be placed where the instruction is longer than the jump, or a
9621 multi-instruction sequence does not have a jump into the middle of
9622 it, etc. */
9623
9624 static void
9625 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9626 struct symtabs_and_lines *sals)
9627 {
9628 int i, rslt;
9629 struct symtab_and_line *sal;
9630 char *msg;
9631 struct cleanup *old_chain;
9632
9633 for (i = 0; i < sals->nelts; i++)
9634 {
9635 struct gdbarch *sarch;
9636
9637 sal = &sals->sals[i];
9638
9639 sarch = get_sal_arch (*sal);
9640 /* We fall back to GDBARCH if there is no architecture
9641 associated with SAL. */
9642 if (sarch == NULL)
9643 sarch = gdbarch;
9644 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9645 NULL, &msg);
9646 old_chain = make_cleanup (xfree, msg);
9647
9648 if (!rslt)
9649 error (_("May not have a fast tracepoint at 0x%s%s"),
9650 paddress (sarch, sal->pc), (msg ? msg : ""));
9651
9652 do_cleanups (old_chain);
9653 }
9654 }
9655
9656 /* Issue an invalid thread ID error. */
9657
9658 static void ATTRIBUTE_NORETURN
9659 invalid_thread_id_error (int id)
9660 {
9661 error (_("Unknown thread %d."), id);
9662 }
9663
9664 /* Given TOK, a string specification of condition and thread, as
9665 accepted by the 'break' command, extract the condition
9666 string and thread number and set *COND_STRING and *THREAD.
9667 PC identifies the context at which the condition should be parsed.
9668 If no condition is found, *COND_STRING is set to NULL.
9669 If no thread is found, *THREAD is set to -1. */
9670
9671 static void
9672 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9673 char **cond_string, int *thread, int *task,
9674 char **rest)
9675 {
9676 *cond_string = NULL;
9677 *thread = -1;
9678 *task = 0;
9679 *rest = NULL;
9680
9681 while (tok && *tok)
9682 {
9683 const char *end_tok;
9684 int toklen;
9685 const char *cond_start = NULL;
9686 const char *cond_end = NULL;
9687
9688 tok = skip_spaces_const (tok);
9689
9690 if ((*tok == '"' || *tok == ',') && rest)
9691 {
9692 *rest = savestring (tok, strlen (tok));
9693 return;
9694 }
9695
9696 end_tok = skip_to_space_const (tok);
9697
9698 toklen = end_tok - tok;
9699
9700 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9701 {
9702 struct expression *expr;
9703
9704 tok = cond_start = end_tok + 1;
9705 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9706 xfree (expr);
9707 cond_end = tok;
9708 *cond_string = savestring (cond_start, cond_end - cond_start);
9709 }
9710 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9711 {
9712 char *tmptok;
9713
9714 tok = end_tok + 1;
9715 *thread = strtol (tok, &tmptok, 0);
9716 if (tok == tmptok)
9717 error (_("Junk after thread keyword."));
9718 if (!valid_thread_id (*thread))
9719 invalid_thread_id_error (*thread);
9720 tok = tmptok;
9721 }
9722 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9723 {
9724 char *tmptok;
9725
9726 tok = end_tok + 1;
9727 *task = strtol (tok, &tmptok, 0);
9728 if (tok == tmptok)
9729 error (_("Junk after task keyword."));
9730 if (!valid_task_id (*task))
9731 error (_("Unknown task %d."), *task);
9732 tok = tmptok;
9733 }
9734 else if (rest)
9735 {
9736 *rest = savestring (tok, strlen (tok));
9737 return;
9738 }
9739 else
9740 error (_("Junk at end of arguments."));
9741 }
9742 }
9743
9744 /* Decode a static tracepoint marker spec. */
9745
9746 static struct symtabs_and_lines
9747 decode_static_tracepoint_spec (char **arg_p)
9748 {
9749 VEC(static_tracepoint_marker_p) *markers = NULL;
9750 struct symtabs_and_lines sals;
9751 struct cleanup *old_chain;
9752 char *p = &(*arg_p)[3];
9753 char *endp;
9754 char *marker_str;
9755 int i;
9756
9757 p = skip_spaces (p);
9758
9759 endp = skip_to_space (p);
9760
9761 marker_str = savestring (p, endp - p);
9762 old_chain = make_cleanup (xfree, marker_str);
9763
9764 markers = target_static_tracepoint_markers_by_strid (marker_str);
9765 if (VEC_empty(static_tracepoint_marker_p, markers))
9766 error (_("No known static tracepoint marker named %s"), marker_str);
9767
9768 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9769 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9770
9771 for (i = 0; i < sals.nelts; i++)
9772 {
9773 struct static_tracepoint_marker *marker;
9774
9775 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9776
9777 init_sal (&sals.sals[i]);
9778
9779 sals.sals[i] = find_pc_line (marker->address, 0);
9780 sals.sals[i].pc = marker->address;
9781
9782 release_static_tracepoint_marker (marker);
9783 }
9784
9785 do_cleanups (old_chain);
9786
9787 *arg_p = endp;
9788 return sals;
9789 }
9790
9791 /* Set a breakpoint. This function is shared between CLI and MI
9792 functions for setting a breakpoint. This function has two major
9793 modes of operations, selected by the PARSE_ARG parameter. If
9794 non-zero, the function will parse ARG, extracting location,
9795 condition, thread and extra string. Otherwise, ARG is just the
9796 breakpoint's location, with condition, thread, and extra string
9797 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9798 If INTERNAL is non-zero, the breakpoint number will be allocated
9799 from the internal breakpoint count. Returns true if any breakpoint
9800 was created; false otherwise. */
9801
9802 int
9803 create_breakpoint (struct gdbarch *gdbarch,
9804 char *arg, char *cond_string,
9805 int thread, char *extra_string,
9806 int parse_arg,
9807 int tempflag, enum bptype type_wanted,
9808 int ignore_count,
9809 enum auto_boolean pending_break_support,
9810 const struct breakpoint_ops *ops,
9811 int from_tty, int enabled, int internal,
9812 unsigned flags)
9813 {
9814 volatile struct gdb_exception e;
9815 char *copy_arg = NULL;
9816 char *addr_start = arg;
9817 struct linespec_result canonical;
9818 struct cleanup *old_chain;
9819 struct cleanup *bkpt_chain = NULL;
9820 int pending = 0;
9821 int task = 0;
9822 int prev_bkpt_count = breakpoint_count;
9823
9824 gdb_assert (ops != NULL);
9825
9826 init_linespec_result (&canonical);
9827
9828 TRY_CATCH (e, RETURN_MASK_ALL)
9829 {
9830 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9831 addr_start, &copy_arg);
9832 }
9833
9834 /* If caller is interested in rc value from parse, set value. */
9835 switch (e.reason)
9836 {
9837 case GDB_NO_ERROR:
9838 if (VEC_empty (linespec_sals, canonical.sals))
9839 return 0;
9840 break;
9841 case RETURN_ERROR:
9842 switch (e.error)
9843 {
9844 case NOT_FOUND_ERROR:
9845
9846 /* If pending breakpoint support is turned off, throw
9847 error. */
9848
9849 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9850 throw_exception (e);
9851
9852 exception_print (gdb_stderr, e);
9853
9854 /* If pending breakpoint support is auto query and the user
9855 selects no, then simply return the error code. */
9856 if (pending_break_support == AUTO_BOOLEAN_AUTO
9857 && !nquery (_("Make %s pending on future shared library load? "),
9858 bptype_string (type_wanted)))
9859 return 0;
9860
9861 /* At this point, either the user was queried about setting
9862 a pending breakpoint and selected yes, or pending
9863 breakpoint behavior is on and thus a pending breakpoint
9864 is defaulted on behalf of the user. */
9865 {
9866 struct linespec_sals lsal;
9867
9868 copy_arg = xstrdup (addr_start);
9869 lsal.canonical = xstrdup (copy_arg);
9870 lsal.sals.nelts = 1;
9871 lsal.sals.sals = XNEW (struct symtab_and_line);
9872 init_sal (&lsal.sals.sals[0]);
9873 pending = 1;
9874 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9875 }
9876 break;
9877 default:
9878 throw_exception (e);
9879 }
9880 break;
9881 default:
9882 throw_exception (e);
9883 }
9884
9885 /* Create a chain of things that always need to be cleaned up. */
9886 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9887
9888 /* ----------------------------- SNIP -----------------------------
9889 Anything added to the cleanup chain beyond this point is assumed
9890 to be part of a breakpoint. If the breakpoint create succeeds
9891 then the memory is not reclaimed. */
9892 bkpt_chain = make_cleanup (null_cleanup, 0);
9893
9894 /* Resolve all line numbers to PC's and verify that the addresses
9895 are ok for the target. */
9896 if (!pending)
9897 {
9898 int ix;
9899 struct linespec_sals *iter;
9900
9901 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9902 breakpoint_sals_to_pc (&iter->sals);
9903 }
9904
9905 /* Fast tracepoints may have additional restrictions on location. */
9906 if (!pending && type_wanted == bp_fast_tracepoint)
9907 {
9908 int ix;
9909 struct linespec_sals *iter;
9910
9911 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9912 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9913 }
9914
9915 /* Verify that condition can be parsed, before setting any
9916 breakpoints. Allocate a separate condition expression for each
9917 breakpoint. */
9918 if (!pending)
9919 {
9920 if (parse_arg)
9921 {
9922 char *rest;
9923 struct linespec_sals *lsal;
9924
9925 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9926
9927 /* Here we only parse 'arg' to separate condition
9928 from thread number, so parsing in context of first
9929 sal is OK. When setting the breakpoint we'll
9930 re-parse it in context of each sal. */
9931
9932 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9933 &thread, &task, &rest);
9934 if (cond_string)
9935 make_cleanup (xfree, cond_string);
9936 if (rest)
9937 make_cleanup (xfree, rest);
9938 if (rest)
9939 extra_string = rest;
9940 }
9941 else
9942 {
9943 if (*arg != '\0')
9944 error (_("Garbage '%s' at end of location"), arg);
9945
9946 /* Create a private copy of condition string. */
9947 if (cond_string)
9948 {
9949 cond_string = xstrdup (cond_string);
9950 make_cleanup (xfree, cond_string);
9951 }
9952 /* Create a private copy of any extra string. */
9953 if (extra_string)
9954 {
9955 extra_string = xstrdup (extra_string);
9956 make_cleanup (xfree, extra_string);
9957 }
9958 }
9959
9960 ops->create_breakpoints_sal (gdbarch, &canonical,
9961 cond_string, extra_string, type_wanted,
9962 tempflag ? disp_del : disp_donttouch,
9963 thread, task, ignore_count, ops,
9964 from_tty, enabled, internal, flags);
9965 }
9966 else
9967 {
9968 struct breakpoint *b;
9969
9970 make_cleanup (xfree, copy_arg);
9971
9972 if (is_tracepoint_type (type_wanted))
9973 {
9974 struct tracepoint *t;
9975
9976 t = XCNEW (struct tracepoint);
9977 b = &t->base;
9978 }
9979 else
9980 b = XNEW (struct breakpoint);
9981
9982 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9983
9984 b->addr_string = copy_arg;
9985 if (parse_arg)
9986 b->cond_string = NULL;
9987 else
9988 {
9989 /* Create a private copy of condition string. */
9990 if (cond_string)
9991 {
9992 cond_string = xstrdup (cond_string);
9993 make_cleanup (xfree, cond_string);
9994 }
9995 b->cond_string = cond_string;
9996 }
9997 b->extra_string = NULL;
9998 b->ignore_count = ignore_count;
9999 b->disposition = tempflag ? disp_del : disp_donttouch;
10000 b->condition_not_parsed = 1;
10001 b->enable_state = enabled ? bp_enabled : bp_disabled;
10002 if ((type_wanted != bp_breakpoint
10003 && type_wanted != bp_hardware_breakpoint) || thread != -1)
10004 b->pspace = current_program_space;
10005
10006 install_breakpoint (internal, b, 0);
10007 }
10008
10009 if (VEC_length (linespec_sals, canonical.sals) > 1)
10010 {
10011 warning (_("Multiple breakpoints were set.\nUse the "
10012 "\"delete\" command to delete unwanted breakpoints."));
10013 prev_breakpoint_count = prev_bkpt_count;
10014 }
10015
10016 /* That's it. Discard the cleanups for data inserted into the
10017 breakpoint. */
10018 discard_cleanups (bkpt_chain);
10019 /* But cleanup everything else. */
10020 do_cleanups (old_chain);
10021
10022 /* error call may happen here - have BKPT_CHAIN already discarded. */
10023 update_global_location_list (1);
10024
10025 return 1;
10026 }
10027
10028 /* Set a breakpoint.
10029 ARG is a string describing breakpoint address,
10030 condition, and thread.
10031 FLAG specifies if a breakpoint is hardware on,
10032 and if breakpoint is temporary, using BP_HARDWARE_FLAG
10033 and BP_TEMPFLAG. */
10034
10035 static void
10036 break_command_1 (char *arg, int flag, int from_tty)
10037 {
10038 int tempflag = flag & BP_TEMPFLAG;
10039 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
10040 ? bp_hardware_breakpoint
10041 : bp_breakpoint);
10042 struct breakpoint_ops *ops;
10043 const char *arg_cp = arg;
10044
10045 /* Matching breakpoints on probes. */
10046 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
10047 ops = &bkpt_probe_breakpoint_ops;
10048 else
10049 ops = &bkpt_breakpoint_ops;
10050
10051 create_breakpoint (get_current_arch (),
10052 arg,
10053 NULL, 0, NULL, 1 /* parse arg */,
10054 tempflag, type_wanted,
10055 0 /* Ignore count */,
10056 pending_break_support,
10057 ops,
10058 from_tty,
10059 1 /* enabled */,
10060 0 /* internal */,
10061 0);
10062 }
10063
10064 /* Helper function for break_command_1 and disassemble_command. */
10065
10066 void
10067 resolve_sal_pc (struct symtab_and_line *sal)
10068 {
10069 CORE_ADDR pc;
10070
10071 if (sal->pc == 0 && sal->symtab != NULL)
10072 {
10073 if (!find_line_pc (sal->symtab, sal->line, &pc))
10074 error (_("No line %d in file \"%s\"."),
10075 sal->line, symtab_to_filename_for_display (sal->symtab));
10076 sal->pc = pc;
10077
10078 /* If this SAL corresponds to a breakpoint inserted using a line
10079 number, then skip the function prologue if necessary. */
10080 if (sal->explicit_line)
10081 skip_prologue_sal (sal);
10082 }
10083
10084 if (sal->section == 0 && sal->symtab != NULL)
10085 {
10086 struct blockvector *bv;
10087 struct block *b;
10088 struct symbol *sym;
10089
10090 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
10091 if (bv != NULL)
10092 {
10093 sym = block_linkage_function (b);
10094 if (sym != NULL)
10095 {
10096 fixup_symbol_section (sym, sal->symtab->objfile);
10097 sal->section = SYMBOL_OBJ_SECTION (sal->symtab->objfile, sym);
10098 }
10099 else
10100 {
10101 /* It really is worthwhile to have the section, so we'll
10102 just have to look harder. This case can be executed
10103 if we have line numbers but no functions (as can
10104 happen in assembly source). */
10105
10106 struct bound_minimal_symbol msym;
10107 struct cleanup *old_chain = save_current_space_and_thread ();
10108
10109 switch_to_program_space_and_thread (sal->pspace);
10110
10111 msym = lookup_minimal_symbol_by_pc (sal->pc);
10112 if (msym.minsym)
10113 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
10114
10115 do_cleanups (old_chain);
10116 }
10117 }
10118 }
10119 }
10120
10121 void
10122 break_command (char *arg, int from_tty)
10123 {
10124 break_command_1 (arg, 0, from_tty);
10125 }
10126
10127 void
10128 tbreak_command (char *arg, int from_tty)
10129 {
10130 break_command_1 (arg, BP_TEMPFLAG, from_tty);
10131 }
10132
10133 static void
10134 hbreak_command (char *arg, int from_tty)
10135 {
10136 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
10137 }
10138
10139 static void
10140 thbreak_command (char *arg, int from_tty)
10141 {
10142 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
10143 }
10144
10145 static void
10146 stop_command (char *arg, int from_tty)
10147 {
10148 printf_filtered (_("Specify the type of breakpoint to set.\n\
10149 Usage: stop in <function | address>\n\
10150 stop at <line>\n"));
10151 }
10152
10153 static void
10154 stopin_command (char *arg, int from_tty)
10155 {
10156 int badInput = 0;
10157
10158 if (arg == (char *) NULL)
10159 badInput = 1;
10160 else if (*arg != '*')
10161 {
10162 char *argptr = arg;
10163 int hasColon = 0;
10164
10165 /* Look for a ':'. If this is a line number specification, then
10166 say it is bad, otherwise, it should be an address or
10167 function/method name. */
10168 while (*argptr && !hasColon)
10169 {
10170 hasColon = (*argptr == ':');
10171 argptr++;
10172 }
10173
10174 if (hasColon)
10175 badInput = (*argptr != ':'); /* Not a class::method */
10176 else
10177 badInput = isdigit (*arg); /* a simple line number */
10178 }
10179
10180 if (badInput)
10181 printf_filtered (_("Usage: stop in <function | address>\n"));
10182 else
10183 break_command_1 (arg, 0, from_tty);
10184 }
10185
10186 static void
10187 stopat_command (char *arg, int from_tty)
10188 {
10189 int badInput = 0;
10190
10191 if (arg == (char *) NULL || *arg == '*') /* no line number */
10192 badInput = 1;
10193 else
10194 {
10195 char *argptr = arg;
10196 int hasColon = 0;
10197
10198 /* Look for a ':'. If there is a '::' then get out, otherwise
10199 it is probably a line number. */
10200 while (*argptr && !hasColon)
10201 {
10202 hasColon = (*argptr == ':');
10203 argptr++;
10204 }
10205
10206 if (hasColon)
10207 badInput = (*argptr == ':'); /* we have class::method */
10208 else
10209 badInput = !isdigit (*arg); /* not a line number */
10210 }
10211
10212 if (badInput)
10213 printf_filtered (_("Usage: stop at <line>\n"));
10214 else
10215 break_command_1 (arg, 0, from_tty);
10216 }
10217
10218 /* The dynamic printf command is mostly like a regular breakpoint, but
10219 with a prewired command list consisting of a single output command,
10220 built from extra arguments supplied on the dprintf command
10221 line. */
10222
10223 static void
10224 dprintf_command (char *arg, int from_tty)
10225 {
10226 create_breakpoint (get_current_arch (),
10227 arg,
10228 NULL, 0, NULL, 1 /* parse arg */,
10229 0, bp_dprintf,
10230 0 /* Ignore count */,
10231 pending_break_support,
10232 &dprintf_breakpoint_ops,
10233 from_tty,
10234 1 /* enabled */,
10235 0 /* internal */,
10236 0);
10237 }
10238
10239 static void
10240 agent_printf_command (char *arg, int from_tty)
10241 {
10242 error (_("May only run agent-printf on the target"));
10243 }
10244
10245 /* Implement the "breakpoint_hit" breakpoint_ops method for
10246 ranged breakpoints. */
10247
10248 static int
10249 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10250 struct address_space *aspace,
10251 CORE_ADDR bp_addr,
10252 const struct target_waitstatus *ws)
10253 {
10254 if (ws->kind != TARGET_WAITKIND_STOPPED
10255 || ws->value.sig != GDB_SIGNAL_TRAP)
10256 return 0;
10257
10258 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10259 bl->length, aspace, bp_addr);
10260 }
10261
10262 /* Implement the "resources_needed" breakpoint_ops method for
10263 ranged breakpoints. */
10264
10265 static int
10266 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10267 {
10268 return target_ranged_break_num_registers ();
10269 }
10270
10271 /* Implement the "print_it" breakpoint_ops method for
10272 ranged breakpoints. */
10273
10274 static enum print_stop_action
10275 print_it_ranged_breakpoint (bpstat bs)
10276 {
10277 struct breakpoint *b = bs->breakpoint_at;
10278 struct bp_location *bl = b->loc;
10279 struct ui_out *uiout = current_uiout;
10280
10281 gdb_assert (b->type == bp_hardware_breakpoint);
10282
10283 /* Ranged breakpoints have only one location. */
10284 gdb_assert (bl && bl->next == NULL);
10285
10286 annotate_breakpoint (b->number);
10287 if (b->disposition == disp_del)
10288 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
10289 else
10290 ui_out_text (uiout, "\nRanged breakpoint ");
10291 if (ui_out_is_mi_like_p (uiout))
10292 {
10293 ui_out_field_string (uiout, "reason",
10294 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10295 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10296 }
10297 ui_out_field_int (uiout, "bkptno", b->number);
10298 ui_out_text (uiout, ", ");
10299
10300 return PRINT_SRC_AND_LOC;
10301 }
10302
10303 /* Implement the "print_one" breakpoint_ops method for
10304 ranged breakpoints. */
10305
10306 static void
10307 print_one_ranged_breakpoint (struct breakpoint *b,
10308 struct bp_location **last_loc)
10309 {
10310 struct bp_location *bl = b->loc;
10311 struct value_print_options opts;
10312 struct ui_out *uiout = current_uiout;
10313
10314 /* Ranged breakpoints have only one location. */
10315 gdb_assert (bl && bl->next == NULL);
10316
10317 get_user_print_options (&opts);
10318
10319 if (opts.addressprint)
10320 /* We don't print the address range here, it will be printed later
10321 by print_one_detail_ranged_breakpoint. */
10322 ui_out_field_skip (uiout, "addr");
10323 annotate_field (5);
10324 print_breakpoint_location (b, bl);
10325 *last_loc = bl;
10326 }
10327
10328 /* Implement the "print_one_detail" breakpoint_ops method for
10329 ranged breakpoints. */
10330
10331 static void
10332 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10333 struct ui_out *uiout)
10334 {
10335 CORE_ADDR address_start, address_end;
10336 struct bp_location *bl = b->loc;
10337 struct ui_file *stb = mem_fileopen ();
10338 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10339
10340 gdb_assert (bl);
10341
10342 address_start = bl->address;
10343 address_end = address_start + bl->length - 1;
10344
10345 ui_out_text (uiout, "\taddress range: ");
10346 fprintf_unfiltered (stb, "[%s, %s]",
10347 print_core_address (bl->gdbarch, address_start),
10348 print_core_address (bl->gdbarch, address_end));
10349 ui_out_field_stream (uiout, "addr", stb);
10350 ui_out_text (uiout, "\n");
10351
10352 do_cleanups (cleanup);
10353 }
10354
10355 /* Implement the "print_mention" breakpoint_ops method for
10356 ranged breakpoints. */
10357
10358 static void
10359 print_mention_ranged_breakpoint (struct breakpoint *b)
10360 {
10361 struct bp_location *bl = b->loc;
10362 struct ui_out *uiout = current_uiout;
10363
10364 gdb_assert (bl);
10365 gdb_assert (b->type == bp_hardware_breakpoint);
10366
10367 if (ui_out_is_mi_like_p (uiout))
10368 return;
10369
10370 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10371 b->number, paddress (bl->gdbarch, bl->address),
10372 paddress (bl->gdbarch, bl->address + bl->length - 1));
10373 }
10374
10375 /* Implement the "print_recreate" breakpoint_ops method for
10376 ranged breakpoints. */
10377
10378 static void
10379 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10380 {
10381 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10382 b->addr_string_range_end);
10383 print_recreate_thread (b, fp);
10384 }
10385
10386 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10387
10388 static struct breakpoint_ops ranged_breakpoint_ops;
10389
10390 /* Find the address where the end of the breakpoint range should be
10391 placed, given the SAL of the end of the range. This is so that if
10392 the user provides a line number, the end of the range is set to the
10393 last instruction of the given line. */
10394
10395 static CORE_ADDR
10396 find_breakpoint_range_end (struct symtab_and_line sal)
10397 {
10398 CORE_ADDR end;
10399
10400 /* If the user provided a PC value, use it. Otherwise,
10401 find the address of the end of the given location. */
10402 if (sal.explicit_pc)
10403 end = sal.pc;
10404 else
10405 {
10406 int ret;
10407 CORE_ADDR start;
10408
10409 ret = find_line_pc_range (sal, &start, &end);
10410 if (!ret)
10411 error (_("Could not find location of the end of the range."));
10412
10413 /* find_line_pc_range returns the start of the next line. */
10414 end--;
10415 }
10416
10417 return end;
10418 }
10419
10420 /* Implement the "break-range" CLI command. */
10421
10422 static void
10423 break_range_command (char *arg, int from_tty)
10424 {
10425 char *arg_start, *addr_string_start, *addr_string_end;
10426 struct linespec_result canonical_start, canonical_end;
10427 int bp_count, can_use_bp, length;
10428 CORE_ADDR end;
10429 struct breakpoint *b;
10430 struct symtab_and_line sal_start, sal_end;
10431 struct cleanup *cleanup_bkpt;
10432 struct linespec_sals *lsal_start, *lsal_end;
10433
10434 /* We don't support software ranged breakpoints. */
10435 if (target_ranged_break_num_registers () < 0)
10436 error (_("This target does not support hardware ranged breakpoints."));
10437
10438 bp_count = hw_breakpoint_used_count ();
10439 bp_count += target_ranged_break_num_registers ();
10440 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10441 bp_count, 0);
10442 if (can_use_bp < 0)
10443 error (_("Hardware breakpoints used exceeds limit."));
10444
10445 arg = skip_spaces (arg);
10446 if (arg == NULL || arg[0] == '\0')
10447 error(_("No address range specified."));
10448
10449 init_linespec_result (&canonical_start);
10450
10451 arg_start = arg;
10452 parse_breakpoint_sals (&arg, &canonical_start);
10453
10454 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10455
10456 if (arg[0] != ',')
10457 error (_("Too few arguments."));
10458 else if (VEC_empty (linespec_sals, canonical_start.sals))
10459 error (_("Could not find location of the beginning of the range."));
10460
10461 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10462
10463 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10464 || lsal_start->sals.nelts != 1)
10465 error (_("Cannot create a ranged breakpoint with multiple locations."));
10466
10467 sal_start = lsal_start->sals.sals[0];
10468 addr_string_start = savestring (arg_start, arg - arg_start);
10469 make_cleanup (xfree, addr_string_start);
10470
10471 arg++; /* Skip the comma. */
10472 arg = skip_spaces (arg);
10473
10474 /* Parse the end location. */
10475
10476 init_linespec_result (&canonical_end);
10477 arg_start = arg;
10478
10479 /* We call decode_line_full directly here instead of using
10480 parse_breakpoint_sals because we need to specify the start location's
10481 symtab and line as the default symtab and line for the end of the
10482 range. This makes it possible to have ranges like "foo.c:27, +14",
10483 where +14 means 14 lines from the start location. */
10484 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10485 sal_start.symtab, sal_start.line,
10486 &canonical_end, NULL, NULL);
10487
10488 make_cleanup_destroy_linespec_result (&canonical_end);
10489
10490 if (VEC_empty (linespec_sals, canonical_end.sals))
10491 error (_("Could not find location of the end of the range."));
10492
10493 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10494 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10495 || lsal_end->sals.nelts != 1)
10496 error (_("Cannot create a ranged breakpoint with multiple locations."));
10497
10498 sal_end = lsal_end->sals.sals[0];
10499 addr_string_end = savestring (arg_start, arg - arg_start);
10500 make_cleanup (xfree, addr_string_end);
10501
10502 end = find_breakpoint_range_end (sal_end);
10503 if (sal_start.pc > end)
10504 error (_("Invalid address range, end precedes start."));
10505
10506 length = end - sal_start.pc + 1;
10507 if (length < 0)
10508 /* Length overflowed. */
10509 error (_("Address range too large."));
10510 else if (length == 1)
10511 {
10512 /* This range is simple enough to be handled by
10513 the `hbreak' command. */
10514 hbreak_command (addr_string_start, 1);
10515
10516 do_cleanups (cleanup_bkpt);
10517
10518 return;
10519 }
10520
10521 /* Now set up the breakpoint. */
10522 b = set_raw_breakpoint (get_current_arch (), sal_start,
10523 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10524 set_breakpoint_count (breakpoint_count + 1);
10525 b->number = breakpoint_count;
10526 b->disposition = disp_donttouch;
10527 b->addr_string = xstrdup (addr_string_start);
10528 b->addr_string_range_end = xstrdup (addr_string_end);
10529 b->loc->length = length;
10530
10531 do_cleanups (cleanup_bkpt);
10532
10533 mention (b);
10534 observer_notify_breakpoint_created (b);
10535 update_global_location_list (1);
10536 }
10537
10538 /* Return non-zero if EXP is verified as constant. Returned zero
10539 means EXP is variable. Also the constant detection may fail for
10540 some constant expressions and in such case still falsely return
10541 zero. */
10542
10543 static int
10544 watchpoint_exp_is_const (const struct expression *exp)
10545 {
10546 int i = exp->nelts;
10547
10548 while (i > 0)
10549 {
10550 int oplenp, argsp;
10551
10552 /* We are only interested in the descriptor of each element. */
10553 operator_length (exp, i, &oplenp, &argsp);
10554 i -= oplenp;
10555
10556 switch (exp->elts[i].opcode)
10557 {
10558 case BINOP_ADD:
10559 case BINOP_SUB:
10560 case BINOP_MUL:
10561 case BINOP_DIV:
10562 case BINOP_REM:
10563 case BINOP_MOD:
10564 case BINOP_LSH:
10565 case BINOP_RSH:
10566 case BINOP_LOGICAL_AND:
10567 case BINOP_LOGICAL_OR:
10568 case BINOP_BITWISE_AND:
10569 case BINOP_BITWISE_IOR:
10570 case BINOP_BITWISE_XOR:
10571 case BINOP_EQUAL:
10572 case BINOP_NOTEQUAL:
10573 case BINOP_LESS:
10574 case BINOP_GTR:
10575 case BINOP_LEQ:
10576 case BINOP_GEQ:
10577 case BINOP_REPEAT:
10578 case BINOP_COMMA:
10579 case BINOP_EXP:
10580 case BINOP_MIN:
10581 case BINOP_MAX:
10582 case BINOP_INTDIV:
10583 case BINOP_CONCAT:
10584 case BINOP_IN:
10585 case BINOP_RANGE:
10586 case TERNOP_COND:
10587 case TERNOP_SLICE:
10588
10589 case OP_LONG:
10590 case OP_DOUBLE:
10591 case OP_DECFLOAT:
10592 case OP_LAST:
10593 case OP_COMPLEX:
10594 case OP_STRING:
10595 case OP_ARRAY:
10596 case OP_TYPE:
10597 case OP_TYPEOF:
10598 case OP_DECLTYPE:
10599 case OP_TYPEID:
10600 case OP_NAME:
10601 case OP_OBJC_NSSTRING:
10602
10603 case UNOP_NEG:
10604 case UNOP_LOGICAL_NOT:
10605 case UNOP_COMPLEMENT:
10606 case UNOP_ADDR:
10607 case UNOP_HIGH:
10608 case UNOP_CAST:
10609
10610 case UNOP_CAST_TYPE:
10611 case UNOP_REINTERPRET_CAST:
10612 case UNOP_DYNAMIC_CAST:
10613 /* Unary, binary and ternary operators: We have to check
10614 their operands. If they are constant, then so is the
10615 result of that operation. For instance, if A and B are
10616 determined to be constants, then so is "A + B".
10617
10618 UNOP_IND is one exception to the rule above, because the
10619 value of *ADDR is not necessarily a constant, even when
10620 ADDR is. */
10621 break;
10622
10623 case OP_VAR_VALUE:
10624 /* Check whether the associated symbol is a constant.
10625
10626 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10627 possible that a buggy compiler could mark a variable as
10628 constant even when it is not, and TYPE_CONST would return
10629 true in this case, while SYMBOL_CLASS wouldn't.
10630
10631 We also have to check for function symbols because they
10632 are always constant. */
10633 {
10634 struct symbol *s = exp->elts[i + 2].symbol;
10635
10636 if (SYMBOL_CLASS (s) != LOC_BLOCK
10637 && SYMBOL_CLASS (s) != LOC_CONST
10638 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10639 return 0;
10640 break;
10641 }
10642
10643 /* The default action is to return 0 because we are using
10644 the optimistic approach here: If we don't know something,
10645 then it is not a constant. */
10646 default:
10647 return 0;
10648 }
10649 }
10650
10651 return 1;
10652 }
10653
10654 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10655
10656 static void
10657 dtor_watchpoint (struct breakpoint *self)
10658 {
10659 struct watchpoint *w = (struct watchpoint *) self;
10660
10661 xfree (w->cond_exp);
10662 xfree (w->exp);
10663 xfree (w->exp_string);
10664 xfree (w->exp_string_reparse);
10665 value_free (w->val);
10666
10667 base_breakpoint_ops.dtor (self);
10668 }
10669
10670 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10671
10672 static void
10673 re_set_watchpoint (struct breakpoint *b)
10674 {
10675 struct watchpoint *w = (struct watchpoint *) b;
10676
10677 /* Watchpoint can be either on expression using entirely global
10678 variables, or it can be on local variables.
10679
10680 Watchpoints of the first kind are never auto-deleted, and even
10681 persist across program restarts. Since they can use variables
10682 from shared libraries, we need to reparse expression as libraries
10683 are loaded and unloaded.
10684
10685 Watchpoints on local variables can also change meaning as result
10686 of solib event. For example, if a watchpoint uses both a local
10687 and a global variables in expression, it's a local watchpoint,
10688 but unloading of a shared library will make the expression
10689 invalid. This is not a very common use case, but we still
10690 re-evaluate expression, to avoid surprises to the user.
10691
10692 Note that for local watchpoints, we re-evaluate it only if
10693 watchpoints frame id is still valid. If it's not, it means the
10694 watchpoint is out of scope and will be deleted soon. In fact,
10695 I'm not sure we'll ever be called in this case.
10696
10697 If a local watchpoint's frame id is still valid, then
10698 w->exp_valid_block is likewise valid, and we can safely use it.
10699
10700 Don't do anything about disabled watchpoints, since they will be
10701 reevaluated again when enabled. */
10702 update_watchpoint (w, 1 /* reparse */);
10703 }
10704
10705 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10706
10707 static int
10708 insert_watchpoint (struct bp_location *bl)
10709 {
10710 struct watchpoint *w = (struct watchpoint *) bl->owner;
10711 int length = w->exact ? 1 : bl->length;
10712
10713 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10714 w->cond_exp);
10715 }
10716
10717 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10718
10719 static int
10720 remove_watchpoint (struct bp_location *bl)
10721 {
10722 struct watchpoint *w = (struct watchpoint *) bl->owner;
10723 int length = w->exact ? 1 : bl->length;
10724
10725 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10726 w->cond_exp);
10727 }
10728
10729 static int
10730 breakpoint_hit_watchpoint (const struct bp_location *bl,
10731 struct address_space *aspace, CORE_ADDR bp_addr,
10732 const struct target_waitstatus *ws)
10733 {
10734 struct breakpoint *b = bl->owner;
10735 struct watchpoint *w = (struct watchpoint *) b;
10736
10737 /* Continuable hardware watchpoints are treated as non-existent if the
10738 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10739 some data address). Otherwise gdb won't stop on a break instruction
10740 in the code (not from a breakpoint) when a hardware watchpoint has
10741 been defined. Also skip watchpoints which we know did not trigger
10742 (did not match the data address). */
10743 if (is_hardware_watchpoint (b)
10744 && w->watchpoint_triggered == watch_triggered_no)
10745 return 0;
10746
10747 return 1;
10748 }
10749
10750 static void
10751 check_status_watchpoint (bpstat bs)
10752 {
10753 gdb_assert (is_watchpoint (bs->breakpoint_at));
10754
10755 bpstat_check_watchpoint (bs);
10756 }
10757
10758 /* Implement the "resources_needed" breakpoint_ops method for
10759 hardware watchpoints. */
10760
10761 static int
10762 resources_needed_watchpoint (const struct bp_location *bl)
10763 {
10764 struct watchpoint *w = (struct watchpoint *) bl->owner;
10765 int length = w->exact? 1 : bl->length;
10766
10767 return target_region_ok_for_hw_watchpoint (bl->address, length);
10768 }
10769
10770 /* Implement the "works_in_software_mode" breakpoint_ops method for
10771 hardware watchpoints. */
10772
10773 static int
10774 works_in_software_mode_watchpoint (const struct breakpoint *b)
10775 {
10776 /* Read and access watchpoints only work with hardware support. */
10777 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10778 }
10779
10780 static enum print_stop_action
10781 print_it_watchpoint (bpstat bs)
10782 {
10783 struct cleanup *old_chain;
10784 struct breakpoint *b;
10785 struct ui_file *stb;
10786 enum print_stop_action result;
10787 struct watchpoint *w;
10788 struct ui_out *uiout = current_uiout;
10789
10790 gdb_assert (bs->bp_location_at != NULL);
10791
10792 b = bs->breakpoint_at;
10793 w = (struct watchpoint *) b;
10794
10795 stb = mem_fileopen ();
10796 old_chain = make_cleanup_ui_file_delete (stb);
10797
10798 switch (b->type)
10799 {
10800 case bp_watchpoint:
10801 case bp_hardware_watchpoint:
10802 annotate_watchpoint (b->number);
10803 if (ui_out_is_mi_like_p (uiout))
10804 ui_out_field_string
10805 (uiout, "reason",
10806 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10807 mention (b);
10808 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10809 ui_out_text (uiout, "\nOld value = ");
10810 watchpoint_value_print (bs->old_val, stb);
10811 ui_out_field_stream (uiout, "old", stb);
10812 ui_out_text (uiout, "\nNew value = ");
10813 watchpoint_value_print (w->val, stb);
10814 ui_out_field_stream (uiout, "new", stb);
10815 ui_out_text (uiout, "\n");
10816 /* More than one watchpoint may have been triggered. */
10817 result = PRINT_UNKNOWN;
10818 break;
10819
10820 case bp_read_watchpoint:
10821 if (ui_out_is_mi_like_p (uiout))
10822 ui_out_field_string
10823 (uiout, "reason",
10824 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10825 mention (b);
10826 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10827 ui_out_text (uiout, "\nValue = ");
10828 watchpoint_value_print (w->val, stb);
10829 ui_out_field_stream (uiout, "value", stb);
10830 ui_out_text (uiout, "\n");
10831 result = PRINT_UNKNOWN;
10832 break;
10833
10834 case bp_access_watchpoint:
10835 if (bs->old_val != NULL)
10836 {
10837 annotate_watchpoint (b->number);
10838 if (ui_out_is_mi_like_p (uiout))
10839 ui_out_field_string
10840 (uiout, "reason",
10841 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10842 mention (b);
10843 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10844 ui_out_text (uiout, "\nOld value = ");
10845 watchpoint_value_print (bs->old_val, stb);
10846 ui_out_field_stream (uiout, "old", stb);
10847 ui_out_text (uiout, "\nNew value = ");
10848 }
10849 else
10850 {
10851 mention (b);
10852 if (ui_out_is_mi_like_p (uiout))
10853 ui_out_field_string
10854 (uiout, "reason",
10855 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10856 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10857 ui_out_text (uiout, "\nValue = ");
10858 }
10859 watchpoint_value_print (w->val, stb);
10860 ui_out_field_stream (uiout, "new", stb);
10861 ui_out_text (uiout, "\n");
10862 result = PRINT_UNKNOWN;
10863 break;
10864 default:
10865 result = PRINT_UNKNOWN;
10866 }
10867
10868 do_cleanups (old_chain);
10869 return result;
10870 }
10871
10872 /* Implement the "print_mention" breakpoint_ops method for hardware
10873 watchpoints. */
10874
10875 static void
10876 print_mention_watchpoint (struct breakpoint *b)
10877 {
10878 struct cleanup *ui_out_chain;
10879 struct watchpoint *w = (struct watchpoint *) b;
10880 struct ui_out *uiout = current_uiout;
10881
10882 switch (b->type)
10883 {
10884 case bp_watchpoint:
10885 ui_out_text (uiout, "Watchpoint ");
10886 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10887 break;
10888 case bp_hardware_watchpoint:
10889 ui_out_text (uiout, "Hardware watchpoint ");
10890 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10891 break;
10892 case bp_read_watchpoint:
10893 ui_out_text (uiout, "Hardware read watchpoint ");
10894 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10895 break;
10896 case bp_access_watchpoint:
10897 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10898 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10899 break;
10900 default:
10901 internal_error (__FILE__, __LINE__,
10902 _("Invalid hardware watchpoint type."));
10903 }
10904
10905 ui_out_field_int (uiout, "number", b->number);
10906 ui_out_text (uiout, ": ");
10907 ui_out_field_string (uiout, "exp", w->exp_string);
10908 do_cleanups (ui_out_chain);
10909 }
10910
10911 /* Implement the "print_recreate" breakpoint_ops method for
10912 watchpoints. */
10913
10914 static void
10915 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10916 {
10917 struct watchpoint *w = (struct watchpoint *) b;
10918
10919 switch (b->type)
10920 {
10921 case bp_watchpoint:
10922 case bp_hardware_watchpoint:
10923 fprintf_unfiltered (fp, "watch");
10924 break;
10925 case bp_read_watchpoint:
10926 fprintf_unfiltered (fp, "rwatch");
10927 break;
10928 case bp_access_watchpoint:
10929 fprintf_unfiltered (fp, "awatch");
10930 break;
10931 default:
10932 internal_error (__FILE__, __LINE__,
10933 _("Invalid watchpoint type."));
10934 }
10935
10936 fprintf_unfiltered (fp, " %s", w->exp_string);
10937 print_recreate_thread (b, fp);
10938 }
10939
10940 /* Implement the "explains_signal" breakpoint_ops method for
10941 watchpoints. */
10942
10943 static int
10944 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10945 {
10946 /* A software watchpoint cannot cause a signal other than
10947 GDB_SIGNAL_TRAP. */
10948 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10949 return 0;
10950
10951 return 1;
10952 }
10953
10954 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10955
10956 static struct breakpoint_ops watchpoint_breakpoint_ops;
10957
10958 /* Implement the "insert" breakpoint_ops method for
10959 masked hardware watchpoints. */
10960
10961 static int
10962 insert_masked_watchpoint (struct bp_location *bl)
10963 {
10964 struct watchpoint *w = (struct watchpoint *) bl->owner;
10965
10966 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10967 bl->watchpoint_type);
10968 }
10969
10970 /* Implement the "remove" breakpoint_ops method for
10971 masked hardware watchpoints. */
10972
10973 static int
10974 remove_masked_watchpoint (struct bp_location *bl)
10975 {
10976 struct watchpoint *w = (struct watchpoint *) bl->owner;
10977
10978 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10979 bl->watchpoint_type);
10980 }
10981
10982 /* Implement the "resources_needed" breakpoint_ops method for
10983 masked hardware watchpoints. */
10984
10985 static int
10986 resources_needed_masked_watchpoint (const struct bp_location *bl)
10987 {
10988 struct watchpoint *w = (struct watchpoint *) bl->owner;
10989
10990 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10991 }
10992
10993 /* Implement the "works_in_software_mode" breakpoint_ops method for
10994 masked hardware watchpoints. */
10995
10996 static int
10997 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10998 {
10999 return 0;
11000 }
11001
11002 /* Implement the "print_it" breakpoint_ops method for
11003 masked hardware watchpoints. */
11004
11005 static enum print_stop_action
11006 print_it_masked_watchpoint (bpstat bs)
11007 {
11008 struct breakpoint *b = bs->breakpoint_at;
11009 struct ui_out *uiout = current_uiout;
11010
11011 /* Masked watchpoints have only one location. */
11012 gdb_assert (b->loc && b->loc->next == NULL);
11013
11014 switch (b->type)
11015 {
11016 case bp_hardware_watchpoint:
11017 annotate_watchpoint (b->number);
11018 if (ui_out_is_mi_like_p (uiout))
11019 ui_out_field_string
11020 (uiout, "reason",
11021 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
11022 break;
11023
11024 case bp_read_watchpoint:
11025 if (ui_out_is_mi_like_p (uiout))
11026 ui_out_field_string
11027 (uiout, "reason",
11028 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
11029 break;
11030
11031 case bp_access_watchpoint:
11032 if (ui_out_is_mi_like_p (uiout))
11033 ui_out_field_string
11034 (uiout, "reason",
11035 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
11036 break;
11037 default:
11038 internal_error (__FILE__, __LINE__,
11039 _("Invalid hardware watchpoint type."));
11040 }
11041
11042 mention (b);
11043 ui_out_text (uiout, _("\n\
11044 Check the underlying instruction at PC for the memory\n\
11045 address and value which triggered this watchpoint.\n"));
11046 ui_out_text (uiout, "\n");
11047
11048 /* More than one watchpoint may have been triggered. */
11049 return PRINT_UNKNOWN;
11050 }
11051
11052 /* Implement the "print_one_detail" breakpoint_ops method for
11053 masked hardware watchpoints. */
11054
11055 static void
11056 print_one_detail_masked_watchpoint (const struct breakpoint *b,
11057 struct ui_out *uiout)
11058 {
11059 struct watchpoint *w = (struct watchpoint *) b;
11060
11061 /* Masked watchpoints have only one location. */
11062 gdb_assert (b->loc && b->loc->next == NULL);
11063
11064 ui_out_text (uiout, "\tmask ");
11065 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
11066 ui_out_text (uiout, "\n");
11067 }
11068
11069 /* Implement the "print_mention" breakpoint_ops method for
11070 masked hardware watchpoints. */
11071
11072 static void
11073 print_mention_masked_watchpoint (struct breakpoint *b)
11074 {
11075 struct watchpoint *w = (struct watchpoint *) b;
11076 struct ui_out *uiout = current_uiout;
11077 struct cleanup *ui_out_chain;
11078
11079 switch (b->type)
11080 {
11081 case bp_hardware_watchpoint:
11082 ui_out_text (uiout, "Masked hardware watchpoint ");
11083 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
11084 break;
11085 case bp_read_watchpoint:
11086 ui_out_text (uiout, "Masked hardware read watchpoint ");
11087 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
11088 break;
11089 case bp_access_watchpoint:
11090 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
11091 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
11092 break;
11093 default:
11094 internal_error (__FILE__, __LINE__,
11095 _("Invalid hardware watchpoint type."));
11096 }
11097
11098 ui_out_field_int (uiout, "number", b->number);
11099 ui_out_text (uiout, ": ");
11100 ui_out_field_string (uiout, "exp", w->exp_string);
11101 do_cleanups (ui_out_chain);
11102 }
11103
11104 /* Implement the "print_recreate" breakpoint_ops method for
11105 masked hardware watchpoints. */
11106
11107 static void
11108 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
11109 {
11110 struct watchpoint *w = (struct watchpoint *) b;
11111 char tmp[40];
11112
11113 switch (b->type)
11114 {
11115 case bp_hardware_watchpoint:
11116 fprintf_unfiltered (fp, "watch");
11117 break;
11118 case bp_read_watchpoint:
11119 fprintf_unfiltered (fp, "rwatch");
11120 break;
11121 case bp_access_watchpoint:
11122 fprintf_unfiltered (fp, "awatch");
11123 break;
11124 default:
11125 internal_error (__FILE__, __LINE__,
11126 _("Invalid hardware watchpoint type."));
11127 }
11128
11129 sprintf_vma (tmp, w->hw_wp_mask);
11130 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
11131 print_recreate_thread (b, fp);
11132 }
11133
11134 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
11135
11136 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
11137
11138 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
11139
11140 static int
11141 is_masked_watchpoint (const struct breakpoint *b)
11142 {
11143 return b->ops == &masked_watchpoint_breakpoint_ops;
11144 }
11145
11146 /* accessflag: hw_write: watch write,
11147 hw_read: watch read,
11148 hw_access: watch access (read or write) */
11149 static void
11150 watch_command_1 (const char *arg, int accessflag, int from_tty,
11151 int just_location, int internal)
11152 {
11153 volatile struct gdb_exception e;
11154 struct breakpoint *b, *scope_breakpoint = NULL;
11155 struct expression *exp;
11156 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
11157 struct value *val, *mark, *result;
11158 struct frame_info *frame;
11159 const char *exp_start = NULL;
11160 const char *exp_end = NULL;
11161 const char *tok, *end_tok;
11162 int toklen = -1;
11163 const char *cond_start = NULL;
11164 const char *cond_end = NULL;
11165 enum bptype bp_type;
11166 int thread = -1;
11167 int pc = 0;
11168 /* Flag to indicate whether we are going to use masks for
11169 the hardware watchpoint. */
11170 int use_mask = 0;
11171 CORE_ADDR mask = 0;
11172 struct watchpoint *w;
11173 char *expression;
11174 struct cleanup *back_to;
11175
11176 /* Make sure that we actually have parameters to parse. */
11177 if (arg != NULL && arg[0] != '\0')
11178 {
11179 const char *value_start;
11180
11181 exp_end = arg + strlen (arg);
11182
11183 /* Look for "parameter value" pairs at the end
11184 of the arguments string. */
11185 for (tok = exp_end - 1; tok > arg; tok--)
11186 {
11187 /* Skip whitespace at the end of the argument list. */
11188 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11189 tok--;
11190
11191 /* Find the beginning of the last token.
11192 This is the value of the parameter. */
11193 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11194 tok--;
11195 value_start = tok + 1;
11196
11197 /* Skip whitespace. */
11198 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11199 tok--;
11200
11201 end_tok = tok;
11202
11203 /* Find the beginning of the second to last token.
11204 This is the parameter itself. */
11205 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11206 tok--;
11207 tok++;
11208 toklen = end_tok - tok + 1;
11209
11210 if (toklen == 6 && !strncmp (tok, "thread", 6))
11211 {
11212 /* At this point we've found a "thread" token, which means
11213 the user is trying to set a watchpoint that triggers
11214 only in a specific thread. */
11215 char *endp;
11216
11217 if (thread != -1)
11218 error(_("You can specify only one thread."));
11219
11220 /* Extract the thread ID from the next token. */
11221 thread = strtol (value_start, &endp, 0);
11222
11223 /* Check if the user provided a valid numeric value for the
11224 thread ID. */
11225 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11226 error (_("Invalid thread ID specification %s."), value_start);
11227
11228 /* Check if the thread actually exists. */
11229 if (!valid_thread_id (thread))
11230 invalid_thread_id_error (thread);
11231 }
11232 else if (toklen == 4 && !strncmp (tok, "mask", 4))
11233 {
11234 /* We've found a "mask" token, which means the user wants to
11235 create a hardware watchpoint that is going to have the mask
11236 facility. */
11237 struct value *mask_value, *mark;
11238
11239 if (use_mask)
11240 error(_("You can specify only one mask."));
11241
11242 use_mask = just_location = 1;
11243
11244 mark = value_mark ();
11245 mask_value = parse_to_comma_and_eval (&value_start);
11246 mask = value_as_address (mask_value);
11247 value_free_to_mark (mark);
11248 }
11249 else
11250 /* We didn't recognize what we found. We should stop here. */
11251 break;
11252
11253 /* Truncate the string and get rid of the "parameter value" pair before
11254 the arguments string is parsed by the parse_exp_1 function. */
11255 exp_end = tok;
11256 }
11257 }
11258 else
11259 exp_end = arg;
11260
11261 /* Parse the rest of the arguments. From here on out, everything
11262 is in terms of a newly allocated string instead of the original
11263 ARG. */
11264 innermost_block = NULL;
11265 expression = savestring (arg, exp_end - arg);
11266 back_to = make_cleanup (xfree, expression);
11267 exp_start = arg = expression;
11268 exp = parse_exp_1 (&arg, 0, 0, 0);
11269 exp_end = arg;
11270 /* Remove trailing whitespace from the expression before saving it.
11271 This makes the eventual display of the expression string a bit
11272 prettier. */
11273 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11274 --exp_end;
11275
11276 /* Checking if the expression is not constant. */
11277 if (watchpoint_exp_is_const (exp))
11278 {
11279 int len;
11280
11281 len = exp_end - exp_start;
11282 while (len > 0 && isspace (exp_start[len - 1]))
11283 len--;
11284 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11285 }
11286
11287 exp_valid_block = innermost_block;
11288 mark = value_mark ();
11289 fetch_subexp_value (exp, &pc, &val, &result, NULL, just_location);
11290
11291 if (just_location)
11292 {
11293 int ret;
11294
11295 exp_valid_block = NULL;
11296 val = value_addr (result);
11297 release_value (val);
11298 value_free_to_mark (mark);
11299
11300 if (use_mask)
11301 {
11302 ret = target_masked_watch_num_registers (value_as_address (val),
11303 mask);
11304 if (ret == -1)
11305 error (_("This target does not support masked watchpoints."));
11306 else if (ret == -2)
11307 error (_("Invalid mask or memory region."));
11308 }
11309 }
11310 else if (val != NULL)
11311 release_value (val);
11312
11313 tok = skip_spaces_const (arg);
11314 end_tok = skip_to_space_const (tok);
11315
11316 toklen = end_tok - tok;
11317 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11318 {
11319 struct expression *cond;
11320
11321 innermost_block = NULL;
11322 tok = cond_start = end_tok + 1;
11323 cond = parse_exp_1 (&tok, 0, 0, 0);
11324
11325 /* The watchpoint expression may not be local, but the condition
11326 may still be. E.g.: `watch global if local > 0'. */
11327 cond_exp_valid_block = innermost_block;
11328
11329 xfree (cond);
11330 cond_end = tok;
11331 }
11332 if (*tok)
11333 error (_("Junk at end of command."));
11334
11335 frame = block_innermost_frame (exp_valid_block);
11336
11337 /* If the expression is "local", then set up a "watchpoint scope"
11338 breakpoint at the point where we've left the scope of the watchpoint
11339 expression. Create the scope breakpoint before the watchpoint, so
11340 that we will encounter it first in bpstat_stop_status. */
11341 if (exp_valid_block && frame)
11342 {
11343 if (frame_id_p (frame_unwind_caller_id (frame)))
11344 {
11345 scope_breakpoint
11346 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11347 frame_unwind_caller_pc (frame),
11348 bp_watchpoint_scope,
11349 &momentary_breakpoint_ops);
11350
11351 scope_breakpoint->enable_state = bp_enabled;
11352
11353 /* Automatically delete the breakpoint when it hits. */
11354 scope_breakpoint->disposition = disp_del;
11355
11356 /* Only break in the proper frame (help with recursion). */
11357 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11358
11359 /* Set the address at which we will stop. */
11360 scope_breakpoint->loc->gdbarch
11361 = frame_unwind_caller_arch (frame);
11362 scope_breakpoint->loc->requested_address
11363 = frame_unwind_caller_pc (frame);
11364 scope_breakpoint->loc->address
11365 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11366 scope_breakpoint->loc->requested_address,
11367 scope_breakpoint->type);
11368 }
11369 }
11370
11371 /* Now set up the breakpoint. We create all watchpoints as hardware
11372 watchpoints here even if hardware watchpoints are turned off, a call
11373 to update_watchpoint later in this function will cause the type to
11374 drop back to bp_watchpoint (software watchpoint) if required. */
11375
11376 if (accessflag == hw_read)
11377 bp_type = bp_read_watchpoint;
11378 else if (accessflag == hw_access)
11379 bp_type = bp_access_watchpoint;
11380 else
11381 bp_type = bp_hardware_watchpoint;
11382
11383 w = XCNEW (struct watchpoint);
11384 b = &w->base;
11385 if (use_mask)
11386 init_raw_breakpoint_without_location (b, NULL, bp_type,
11387 &masked_watchpoint_breakpoint_ops);
11388 else
11389 init_raw_breakpoint_without_location (b, NULL, bp_type,
11390 &watchpoint_breakpoint_ops);
11391 b->thread = thread;
11392 b->disposition = disp_donttouch;
11393 b->pspace = current_program_space;
11394 w->exp = exp;
11395 w->exp_valid_block = exp_valid_block;
11396 w->cond_exp_valid_block = cond_exp_valid_block;
11397 if (just_location)
11398 {
11399 struct type *t = value_type (val);
11400 CORE_ADDR addr = value_as_address (val);
11401 char *name;
11402
11403 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11404 name = type_to_string (t);
11405
11406 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11407 core_addr_to_string (addr));
11408 xfree (name);
11409
11410 w->exp_string = xstrprintf ("-location %.*s",
11411 (int) (exp_end - exp_start), exp_start);
11412
11413 /* The above expression is in C. */
11414 b->language = language_c;
11415 }
11416 else
11417 w->exp_string = savestring (exp_start, exp_end - exp_start);
11418
11419 if (use_mask)
11420 {
11421 w->hw_wp_mask = mask;
11422 }
11423 else
11424 {
11425 w->val = val;
11426 w->val_valid = 1;
11427 }
11428
11429 if (cond_start)
11430 b->cond_string = savestring (cond_start, cond_end - cond_start);
11431 else
11432 b->cond_string = 0;
11433
11434 if (frame)
11435 {
11436 w->watchpoint_frame = get_frame_id (frame);
11437 w->watchpoint_thread = inferior_ptid;
11438 }
11439 else
11440 {
11441 w->watchpoint_frame = null_frame_id;
11442 w->watchpoint_thread = null_ptid;
11443 }
11444
11445 if (scope_breakpoint != NULL)
11446 {
11447 /* The scope breakpoint is related to the watchpoint. We will
11448 need to act on them together. */
11449 b->related_breakpoint = scope_breakpoint;
11450 scope_breakpoint->related_breakpoint = b;
11451 }
11452
11453 if (!just_location)
11454 value_free_to_mark (mark);
11455
11456 TRY_CATCH (e, RETURN_MASK_ALL)
11457 {
11458 /* Finally update the new watchpoint. This creates the locations
11459 that should be inserted. */
11460 update_watchpoint (w, 1);
11461 }
11462 if (e.reason < 0)
11463 {
11464 delete_breakpoint (b);
11465 throw_exception (e);
11466 }
11467
11468 install_breakpoint (internal, b, 1);
11469 do_cleanups (back_to);
11470 }
11471
11472 /* Return count of debug registers needed to watch the given expression.
11473 If the watchpoint cannot be handled in hardware return zero. */
11474
11475 static int
11476 can_use_hardware_watchpoint (struct value *v)
11477 {
11478 int found_memory_cnt = 0;
11479 struct value *head = v;
11480
11481 /* Did the user specifically forbid us to use hardware watchpoints? */
11482 if (!can_use_hw_watchpoints)
11483 return 0;
11484
11485 /* Make sure that the value of the expression depends only upon
11486 memory contents, and values computed from them within GDB. If we
11487 find any register references or function calls, we can't use a
11488 hardware watchpoint.
11489
11490 The idea here is that evaluating an expression generates a series
11491 of values, one holding the value of every subexpression. (The
11492 expression a*b+c has five subexpressions: a, b, a*b, c, and
11493 a*b+c.) GDB's values hold almost enough information to establish
11494 the criteria given above --- they identify memory lvalues,
11495 register lvalues, computed values, etcetera. So we can evaluate
11496 the expression, and then scan the chain of values that leaves
11497 behind to decide whether we can detect any possible change to the
11498 expression's final value using only hardware watchpoints.
11499
11500 However, I don't think that the values returned by inferior
11501 function calls are special in any way. So this function may not
11502 notice that an expression involving an inferior function call
11503 can't be watched with hardware watchpoints. FIXME. */
11504 for (; v; v = value_next (v))
11505 {
11506 if (VALUE_LVAL (v) == lval_memory)
11507 {
11508 if (v != head && value_lazy (v))
11509 /* A lazy memory lvalue in the chain is one that GDB never
11510 needed to fetch; we either just used its address (e.g.,
11511 `a' in `a.b') or we never needed it at all (e.g., `a'
11512 in `a,b'). This doesn't apply to HEAD; if that is
11513 lazy then it was not readable, but watch it anyway. */
11514 ;
11515 else
11516 {
11517 /* Ahh, memory we actually used! Check if we can cover
11518 it with hardware watchpoints. */
11519 struct type *vtype = check_typedef (value_type (v));
11520
11521 /* We only watch structs and arrays if user asked for it
11522 explicitly, never if they just happen to appear in a
11523 middle of some value chain. */
11524 if (v == head
11525 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11526 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11527 {
11528 CORE_ADDR vaddr = value_address (v);
11529 int len;
11530 int num_regs;
11531
11532 len = (target_exact_watchpoints
11533 && is_scalar_type_recursive (vtype))?
11534 1 : TYPE_LENGTH (value_type (v));
11535
11536 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11537 if (!num_regs)
11538 return 0;
11539 else
11540 found_memory_cnt += num_regs;
11541 }
11542 }
11543 }
11544 else if (VALUE_LVAL (v) != not_lval
11545 && deprecated_value_modifiable (v) == 0)
11546 return 0; /* These are values from the history (e.g., $1). */
11547 else if (VALUE_LVAL (v) == lval_register)
11548 return 0; /* Cannot watch a register with a HW watchpoint. */
11549 }
11550
11551 /* The expression itself looks suitable for using a hardware
11552 watchpoint, but give the target machine a chance to reject it. */
11553 return found_memory_cnt;
11554 }
11555
11556 void
11557 watch_command_wrapper (char *arg, int from_tty, int internal)
11558 {
11559 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11560 }
11561
11562 /* A helper function that looks for the "-location" argument and then
11563 calls watch_command_1. */
11564
11565 static void
11566 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11567 {
11568 int just_location = 0;
11569
11570 if (arg
11571 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11572 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11573 {
11574 arg = skip_spaces (arg);
11575 just_location = 1;
11576 }
11577
11578 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11579 }
11580
11581 static void
11582 watch_command (char *arg, int from_tty)
11583 {
11584 watch_maybe_just_location (arg, hw_write, from_tty);
11585 }
11586
11587 void
11588 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11589 {
11590 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11591 }
11592
11593 static void
11594 rwatch_command (char *arg, int from_tty)
11595 {
11596 watch_maybe_just_location (arg, hw_read, from_tty);
11597 }
11598
11599 void
11600 awatch_command_wrapper (char *arg, int from_tty, int internal)
11601 {
11602 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11603 }
11604
11605 static void
11606 awatch_command (char *arg, int from_tty)
11607 {
11608 watch_maybe_just_location (arg, hw_access, from_tty);
11609 }
11610 \f
11611
11612 /* Helper routines for the until_command routine in infcmd.c. Here
11613 because it uses the mechanisms of breakpoints. */
11614
11615 struct until_break_command_continuation_args
11616 {
11617 struct breakpoint *breakpoint;
11618 struct breakpoint *breakpoint2;
11619 int thread_num;
11620 };
11621
11622 /* This function is called by fetch_inferior_event via the
11623 cmd_continuation pointer, to complete the until command. It takes
11624 care of cleaning up the temporary breakpoints set up by the until
11625 command. */
11626 static void
11627 until_break_command_continuation (void *arg, int err)
11628 {
11629 struct until_break_command_continuation_args *a = arg;
11630
11631 delete_breakpoint (a->breakpoint);
11632 if (a->breakpoint2)
11633 delete_breakpoint (a->breakpoint2);
11634 delete_longjmp_breakpoint (a->thread_num);
11635 }
11636
11637 void
11638 until_break_command (char *arg, int from_tty, int anywhere)
11639 {
11640 struct symtabs_and_lines sals;
11641 struct symtab_and_line sal;
11642 struct frame_info *frame;
11643 struct gdbarch *frame_gdbarch;
11644 struct frame_id stack_frame_id;
11645 struct frame_id caller_frame_id;
11646 struct breakpoint *breakpoint;
11647 struct breakpoint *breakpoint2 = NULL;
11648 struct cleanup *old_chain;
11649 int thread;
11650 struct thread_info *tp;
11651
11652 clear_proceed_status ();
11653
11654 /* Set a breakpoint where the user wants it and at return from
11655 this function. */
11656
11657 if (last_displayed_sal_is_valid ())
11658 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11659 get_last_displayed_symtab (),
11660 get_last_displayed_line ());
11661 else
11662 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11663 (struct symtab *) NULL, 0);
11664
11665 if (sals.nelts != 1)
11666 error (_("Couldn't get information on specified line."));
11667
11668 sal = sals.sals[0];
11669 xfree (sals.sals); /* malloc'd, so freed. */
11670
11671 if (*arg)
11672 error (_("Junk at end of arguments."));
11673
11674 resolve_sal_pc (&sal);
11675
11676 tp = inferior_thread ();
11677 thread = tp->num;
11678
11679 old_chain = make_cleanup (null_cleanup, NULL);
11680
11681 /* Note linespec handling above invalidates the frame chain.
11682 Installing a breakpoint also invalidates the frame chain (as it
11683 may need to switch threads), so do any frame handling before
11684 that. */
11685
11686 frame = get_selected_frame (NULL);
11687 frame_gdbarch = get_frame_arch (frame);
11688 stack_frame_id = get_stack_frame_id (frame);
11689 caller_frame_id = frame_unwind_caller_id (frame);
11690
11691 /* Keep within the current frame, or in frames called by the current
11692 one. */
11693
11694 if (frame_id_p (caller_frame_id))
11695 {
11696 struct symtab_and_line sal2;
11697
11698 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11699 sal2.pc = frame_unwind_caller_pc (frame);
11700 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11701 sal2,
11702 caller_frame_id,
11703 bp_until);
11704 make_cleanup_delete_breakpoint (breakpoint2);
11705
11706 set_longjmp_breakpoint (tp, caller_frame_id);
11707 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11708 }
11709
11710 /* set_momentary_breakpoint could invalidate FRAME. */
11711 frame = NULL;
11712
11713 if (anywhere)
11714 /* If the user told us to continue until a specified location,
11715 we don't specify a frame at which we need to stop. */
11716 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11717 null_frame_id, bp_until);
11718 else
11719 /* Otherwise, specify the selected frame, because we want to stop
11720 only at the very same frame. */
11721 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11722 stack_frame_id, bp_until);
11723 make_cleanup_delete_breakpoint (breakpoint);
11724
11725 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11726
11727 /* If we are running asynchronously, and proceed call above has
11728 actually managed to start the target, arrange for breakpoints to
11729 be deleted when the target stops. Otherwise, we're already
11730 stopped and delete breakpoints via cleanup chain. */
11731
11732 if (target_can_async_p () && is_running (inferior_ptid))
11733 {
11734 struct until_break_command_continuation_args *args;
11735 args = xmalloc (sizeof (*args));
11736
11737 args->breakpoint = breakpoint;
11738 args->breakpoint2 = breakpoint2;
11739 args->thread_num = thread;
11740
11741 discard_cleanups (old_chain);
11742 add_continuation (inferior_thread (),
11743 until_break_command_continuation, args,
11744 xfree);
11745 }
11746 else
11747 do_cleanups (old_chain);
11748 }
11749
11750 /* This function attempts to parse an optional "if <cond>" clause
11751 from the arg string. If one is not found, it returns NULL.
11752
11753 Else, it returns a pointer to the condition string. (It does not
11754 attempt to evaluate the string against a particular block.) And,
11755 it updates arg to point to the first character following the parsed
11756 if clause in the arg string. */
11757
11758 char *
11759 ep_parse_optional_if_clause (char **arg)
11760 {
11761 char *cond_string;
11762
11763 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11764 return NULL;
11765
11766 /* Skip the "if" keyword. */
11767 (*arg) += 2;
11768
11769 /* Skip any extra leading whitespace, and record the start of the
11770 condition string. */
11771 *arg = skip_spaces (*arg);
11772 cond_string = *arg;
11773
11774 /* Assume that the condition occupies the remainder of the arg
11775 string. */
11776 (*arg) += strlen (cond_string);
11777
11778 return cond_string;
11779 }
11780
11781 /* Commands to deal with catching events, such as signals, exceptions,
11782 process start/exit, etc. */
11783
11784 typedef enum
11785 {
11786 catch_fork_temporary, catch_vfork_temporary,
11787 catch_fork_permanent, catch_vfork_permanent
11788 }
11789 catch_fork_kind;
11790
11791 static void
11792 catch_fork_command_1 (char *arg, int from_tty,
11793 struct cmd_list_element *command)
11794 {
11795 struct gdbarch *gdbarch = get_current_arch ();
11796 char *cond_string = NULL;
11797 catch_fork_kind fork_kind;
11798 int tempflag;
11799
11800 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11801 tempflag = (fork_kind == catch_fork_temporary
11802 || fork_kind == catch_vfork_temporary);
11803
11804 if (!arg)
11805 arg = "";
11806 arg = skip_spaces (arg);
11807
11808 /* The allowed syntax is:
11809 catch [v]fork
11810 catch [v]fork if <cond>
11811
11812 First, check if there's an if clause. */
11813 cond_string = ep_parse_optional_if_clause (&arg);
11814
11815 if ((*arg != '\0') && !isspace (*arg))
11816 error (_("Junk at end of arguments."));
11817
11818 /* If this target supports it, create a fork or vfork catchpoint
11819 and enable reporting of such events. */
11820 switch (fork_kind)
11821 {
11822 case catch_fork_temporary:
11823 case catch_fork_permanent:
11824 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11825 &catch_fork_breakpoint_ops);
11826 break;
11827 case catch_vfork_temporary:
11828 case catch_vfork_permanent:
11829 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11830 &catch_vfork_breakpoint_ops);
11831 break;
11832 default:
11833 error (_("unsupported or unknown fork kind; cannot catch it"));
11834 break;
11835 }
11836 }
11837
11838 static void
11839 catch_exec_command_1 (char *arg, int from_tty,
11840 struct cmd_list_element *command)
11841 {
11842 struct exec_catchpoint *c;
11843 struct gdbarch *gdbarch = get_current_arch ();
11844 int tempflag;
11845 char *cond_string = NULL;
11846
11847 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11848
11849 if (!arg)
11850 arg = "";
11851 arg = skip_spaces (arg);
11852
11853 /* The allowed syntax is:
11854 catch exec
11855 catch exec if <cond>
11856
11857 First, check if there's an if clause. */
11858 cond_string = ep_parse_optional_if_clause (&arg);
11859
11860 if ((*arg != '\0') && !isspace (*arg))
11861 error (_("Junk at end of arguments."));
11862
11863 c = XNEW (struct exec_catchpoint);
11864 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11865 &catch_exec_breakpoint_ops);
11866 c->exec_pathname = NULL;
11867
11868 install_breakpoint (0, &c->base, 1);
11869 }
11870
11871 void
11872 init_ada_exception_breakpoint (struct breakpoint *b,
11873 struct gdbarch *gdbarch,
11874 struct symtab_and_line sal,
11875 char *addr_string,
11876 const struct breakpoint_ops *ops,
11877 int tempflag,
11878 int enabled,
11879 int from_tty)
11880 {
11881 if (from_tty)
11882 {
11883 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11884 if (!loc_gdbarch)
11885 loc_gdbarch = gdbarch;
11886
11887 describe_other_breakpoints (loc_gdbarch,
11888 sal.pspace, sal.pc, sal.section, -1);
11889 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11890 version for exception catchpoints, because two catchpoints
11891 used for different exception names will use the same address.
11892 In this case, a "breakpoint ... also set at..." warning is
11893 unproductive. Besides, the warning phrasing is also a bit
11894 inappropriate, we should use the word catchpoint, and tell
11895 the user what type of catchpoint it is. The above is good
11896 enough for now, though. */
11897 }
11898
11899 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11900
11901 b->enable_state = enabled ? bp_enabled : bp_disabled;
11902 b->disposition = tempflag ? disp_del : disp_donttouch;
11903 b->addr_string = addr_string;
11904 b->language = language_ada;
11905 }
11906
11907 /* Splits the argument using space as delimiter. Returns an xmalloc'd
11908 filter list, or NULL if no filtering is required. */
11909 static VEC(int) *
11910 catch_syscall_split_args (char *arg)
11911 {
11912 VEC(int) *result = NULL;
11913 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
11914
11915 while (*arg != '\0')
11916 {
11917 int i, syscall_number;
11918 char *endptr;
11919 char cur_name[128];
11920 struct syscall s;
11921
11922 /* Skip whitespace. */
11923 arg = skip_spaces (arg);
11924
11925 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
11926 cur_name[i] = arg[i];
11927 cur_name[i] = '\0';
11928 arg += i;
11929
11930 /* Check if the user provided a syscall name or a number. */
11931 syscall_number = (int) strtol (cur_name, &endptr, 0);
11932 if (*endptr == '\0')
11933 get_syscall_by_number (syscall_number, &s);
11934 else
11935 {
11936 /* We have a name. Let's check if it's valid and convert it
11937 to a number. */
11938 get_syscall_by_name (cur_name, &s);
11939
11940 if (s.number == UNKNOWN_SYSCALL)
11941 /* Here we have to issue an error instead of a warning,
11942 because GDB cannot do anything useful if there's no
11943 syscall number to be caught. */
11944 error (_("Unknown syscall name '%s'."), cur_name);
11945 }
11946
11947 /* Ok, it's valid. */
11948 VEC_safe_push (int, result, s.number);
11949 }
11950
11951 discard_cleanups (cleanup);
11952 return result;
11953 }
11954
11955 /* Implement the "catch syscall" command. */
11956
11957 static void
11958 catch_syscall_command_1 (char *arg, int from_tty,
11959 struct cmd_list_element *command)
11960 {
11961 int tempflag;
11962 VEC(int) *filter;
11963 struct syscall s;
11964 struct gdbarch *gdbarch = get_current_arch ();
11965
11966 /* Checking if the feature if supported. */
11967 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
11968 error (_("The feature 'catch syscall' is not supported on \
11969 this architecture yet."));
11970
11971 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11972
11973 arg = skip_spaces (arg);
11974
11975 /* We need to do this first "dummy" translation in order
11976 to get the syscall XML file loaded or, most important,
11977 to display a warning to the user if there's no XML file
11978 for his/her architecture. */
11979 get_syscall_by_number (0, &s);
11980
11981 /* The allowed syntax is:
11982 catch syscall
11983 catch syscall <name | number> [<name | number> ... <name | number>]
11984
11985 Let's check if there's a syscall name. */
11986
11987 if (arg != NULL)
11988 filter = catch_syscall_split_args (arg);
11989 else
11990 filter = NULL;
11991
11992 create_syscall_event_catchpoint (tempflag, filter,
11993 &catch_syscall_breakpoint_ops);
11994 }
11995
11996 static void
11997 catch_command (char *arg, int from_tty)
11998 {
11999 error (_("Catch requires an event name."));
12000 }
12001 \f
12002
12003 static void
12004 tcatch_command (char *arg, int from_tty)
12005 {
12006 error (_("Catch requires an event name."));
12007 }
12008
12009 /* A qsort comparison function that sorts breakpoints in order. */
12010
12011 static int
12012 compare_breakpoints (const void *a, const void *b)
12013 {
12014 const breakpoint_p *ba = a;
12015 uintptr_t ua = (uintptr_t) *ba;
12016 const breakpoint_p *bb = b;
12017 uintptr_t ub = (uintptr_t) *bb;
12018
12019 if ((*ba)->number < (*bb)->number)
12020 return -1;
12021 else if ((*ba)->number > (*bb)->number)
12022 return 1;
12023
12024 /* Now sort by address, in case we see, e..g, two breakpoints with
12025 the number 0. */
12026 if (ua < ub)
12027 return -1;
12028 return ua > ub ? 1 : 0;
12029 }
12030
12031 /* Delete breakpoints by address or line. */
12032
12033 static void
12034 clear_command (char *arg, int from_tty)
12035 {
12036 struct breakpoint *b, *prev;
12037 VEC(breakpoint_p) *found = 0;
12038 int ix;
12039 int default_match;
12040 struct symtabs_and_lines sals;
12041 struct symtab_and_line sal;
12042 int i;
12043 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
12044
12045 if (arg)
12046 {
12047 sals = decode_line_with_current_source (arg,
12048 (DECODE_LINE_FUNFIRSTLINE
12049 | DECODE_LINE_LIST_MODE));
12050 make_cleanup (xfree, sals.sals);
12051 default_match = 0;
12052 }
12053 else
12054 {
12055 sals.sals = (struct symtab_and_line *)
12056 xmalloc (sizeof (struct symtab_and_line));
12057 make_cleanup (xfree, sals.sals);
12058 init_sal (&sal); /* Initialize to zeroes. */
12059
12060 /* Set sal's line, symtab, pc, and pspace to the values
12061 corresponding to the last call to print_frame_info. If the
12062 codepoint is not valid, this will set all the fields to 0. */
12063 get_last_displayed_sal (&sal);
12064 if (sal.symtab == 0)
12065 error (_("No source file specified."));
12066
12067 sals.sals[0] = sal;
12068 sals.nelts = 1;
12069
12070 default_match = 1;
12071 }
12072
12073 /* We don't call resolve_sal_pc here. That's not as bad as it
12074 seems, because all existing breakpoints typically have both
12075 file/line and pc set. So, if clear is given file/line, we can
12076 match this to existing breakpoint without obtaining pc at all.
12077
12078 We only support clearing given the address explicitly
12079 present in breakpoint table. Say, we've set breakpoint
12080 at file:line. There were several PC values for that file:line,
12081 due to optimization, all in one block.
12082
12083 We've picked one PC value. If "clear" is issued with another
12084 PC corresponding to the same file:line, the breakpoint won't
12085 be cleared. We probably can still clear the breakpoint, but
12086 since the other PC value is never presented to user, user
12087 can only find it by guessing, and it does not seem important
12088 to support that. */
12089
12090 /* For each line spec given, delete bps which correspond to it. Do
12091 it in two passes, solely to preserve the current behavior that
12092 from_tty is forced true if we delete more than one
12093 breakpoint. */
12094
12095 found = NULL;
12096 make_cleanup (VEC_cleanup (breakpoint_p), &found);
12097 for (i = 0; i < sals.nelts; i++)
12098 {
12099 const char *sal_fullname;
12100
12101 /* If exact pc given, clear bpts at that pc.
12102 If line given (pc == 0), clear all bpts on specified line.
12103 If defaulting, clear all bpts on default line
12104 or at default pc.
12105
12106 defaulting sal.pc != 0 tests to do
12107
12108 0 1 pc
12109 1 1 pc _and_ line
12110 0 0 line
12111 1 0 <can't happen> */
12112
12113 sal = sals.sals[i];
12114 sal_fullname = (sal.symtab == NULL
12115 ? NULL : symtab_to_fullname (sal.symtab));
12116
12117 /* Find all matching breakpoints and add them to 'found'. */
12118 ALL_BREAKPOINTS (b)
12119 {
12120 int match = 0;
12121 /* Are we going to delete b? */
12122 if (b->type != bp_none && !is_watchpoint (b))
12123 {
12124 struct bp_location *loc = b->loc;
12125 for (; loc; loc = loc->next)
12126 {
12127 /* If the user specified file:line, don't allow a PC
12128 match. This matches historical gdb behavior. */
12129 int pc_match = (!sal.explicit_line
12130 && sal.pc
12131 && (loc->pspace == sal.pspace)
12132 && (loc->address == sal.pc)
12133 && (!section_is_overlay (loc->section)
12134 || loc->section == sal.section));
12135 int line_match = 0;
12136
12137 if ((default_match || sal.explicit_line)
12138 && loc->symtab != NULL
12139 && sal_fullname != NULL
12140 && sal.pspace == loc->pspace
12141 && loc->line_number == sal.line
12142 && filename_cmp (symtab_to_fullname (loc->symtab),
12143 sal_fullname) == 0)
12144 line_match = 1;
12145
12146 if (pc_match || line_match)
12147 {
12148 match = 1;
12149 break;
12150 }
12151 }
12152 }
12153
12154 if (match)
12155 VEC_safe_push(breakpoint_p, found, b);
12156 }
12157 }
12158
12159 /* Now go thru the 'found' chain and delete them. */
12160 if (VEC_empty(breakpoint_p, found))
12161 {
12162 if (arg)
12163 error (_("No breakpoint at %s."), arg);
12164 else
12165 error (_("No breakpoint at this line."));
12166 }
12167
12168 /* Remove duplicates from the vec. */
12169 qsort (VEC_address (breakpoint_p, found),
12170 VEC_length (breakpoint_p, found),
12171 sizeof (breakpoint_p),
12172 compare_breakpoints);
12173 prev = VEC_index (breakpoint_p, found, 0);
12174 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
12175 {
12176 if (b == prev)
12177 {
12178 VEC_ordered_remove (breakpoint_p, found, ix);
12179 --ix;
12180 }
12181 }
12182
12183 if (VEC_length(breakpoint_p, found) > 1)
12184 from_tty = 1; /* Always report if deleted more than one. */
12185 if (from_tty)
12186 {
12187 if (VEC_length(breakpoint_p, found) == 1)
12188 printf_unfiltered (_("Deleted breakpoint "));
12189 else
12190 printf_unfiltered (_("Deleted breakpoints "));
12191 }
12192
12193 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
12194 {
12195 if (from_tty)
12196 printf_unfiltered ("%d ", b->number);
12197 delete_breakpoint (b);
12198 }
12199 if (from_tty)
12200 putchar_unfiltered ('\n');
12201
12202 do_cleanups (cleanups);
12203 }
12204 \f
12205 /* Delete breakpoint in BS if they are `delete' breakpoints and
12206 all breakpoints that are marked for deletion, whether hit or not.
12207 This is called after any breakpoint is hit, or after errors. */
12208
12209 void
12210 breakpoint_auto_delete (bpstat bs)
12211 {
12212 struct breakpoint *b, *b_tmp;
12213
12214 for (; bs; bs = bs->next)
12215 if (bs->breakpoint_at
12216 && bs->breakpoint_at->disposition == disp_del
12217 && bs->stop)
12218 delete_breakpoint (bs->breakpoint_at);
12219
12220 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12221 {
12222 if (b->disposition == disp_del_at_next_stop)
12223 delete_breakpoint (b);
12224 }
12225 }
12226
12227 /* A comparison function for bp_location AP and BP being interfaced to
12228 qsort. Sort elements primarily by their ADDRESS (no matter what
12229 does breakpoint_address_is_meaningful say for its OWNER),
12230 secondarily by ordering first bp_permanent OWNERed elements and
12231 terciarily just ensuring the array is sorted stable way despite
12232 qsort being an unstable algorithm. */
12233
12234 static int
12235 bp_location_compare (const void *ap, const void *bp)
12236 {
12237 struct bp_location *a = *(void **) ap;
12238 struct bp_location *b = *(void **) bp;
12239 /* A and B come from existing breakpoints having non-NULL OWNER. */
12240 int a_perm = a->owner->enable_state == bp_permanent;
12241 int b_perm = b->owner->enable_state == bp_permanent;
12242
12243 if (a->address != b->address)
12244 return (a->address > b->address) - (a->address < b->address);
12245
12246 /* Sort locations at the same address by their pspace number, keeping
12247 locations of the same inferior (in a multi-inferior environment)
12248 grouped. */
12249
12250 if (a->pspace->num != b->pspace->num)
12251 return ((a->pspace->num > b->pspace->num)
12252 - (a->pspace->num < b->pspace->num));
12253
12254 /* Sort permanent breakpoints first. */
12255 if (a_perm != b_perm)
12256 return (a_perm < b_perm) - (a_perm > b_perm);
12257
12258 /* Make the internal GDB representation stable across GDB runs
12259 where A and B memory inside GDB can differ. Breakpoint locations of
12260 the same type at the same address can be sorted in arbitrary order. */
12261
12262 if (a->owner->number != b->owner->number)
12263 return ((a->owner->number > b->owner->number)
12264 - (a->owner->number < b->owner->number));
12265
12266 return (a > b) - (a < b);
12267 }
12268
12269 /* Set bp_location_placed_address_before_address_max and
12270 bp_location_shadow_len_after_address_max according to the current
12271 content of the bp_location array. */
12272
12273 static void
12274 bp_location_target_extensions_update (void)
12275 {
12276 struct bp_location *bl, **blp_tmp;
12277
12278 bp_location_placed_address_before_address_max = 0;
12279 bp_location_shadow_len_after_address_max = 0;
12280
12281 ALL_BP_LOCATIONS (bl, blp_tmp)
12282 {
12283 CORE_ADDR start, end, addr;
12284
12285 if (!bp_location_has_shadow (bl))
12286 continue;
12287
12288 start = bl->target_info.placed_address;
12289 end = start + bl->target_info.shadow_len;
12290
12291 gdb_assert (bl->address >= start);
12292 addr = bl->address - start;
12293 if (addr > bp_location_placed_address_before_address_max)
12294 bp_location_placed_address_before_address_max = addr;
12295
12296 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12297
12298 gdb_assert (bl->address < end);
12299 addr = end - bl->address;
12300 if (addr > bp_location_shadow_len_after_address_max)
12301 bp_location_shadow_len_after_address_max = addr;
12302 }
12303 }
12304
12305 /* Download tracepoint locations if they haven't been. */
12306
12307 static void
12308 download_tracepoint_locations (void)
12309 {
12310 struct breakpoint *b;
12311 struct cleanup *old_chain;
12312
12313 if (!target_can_download_tracepoint ())
12314 return;
12315
12316 old_chain = save_current_space_and_thread ();
12317
12318 ALL_TRACEPOINTS (b)
12319 {
12320 struct bp_location *bl;
12321 struct tracepoint *t;
12322 int bp_location_downloaded = 0;
12323
12324 if ((b->type == bp_fast_tracepoint
12325 ? !may_insert_fast_tracepoints
12326 : !may_insert_tracepoints))
12327 continue;
12328
12329 for (bl = b->loc; bl; bl = bl->next)
12330 {
12331 /* In tracepoint, locations are _never_ duplicated, so
12332 should_be_inserted is equivalent to
12333 unduplicated_should_be_inserted. */
12334 if (!should_be_inserted (bl) || bl->inserted)
12335 continue;
12336
12337 switch_to_program_space_and_thread (bl->pspace);
12338
12339 target_download_tracepoint (bl);
12340
12341 bl->inserted = 1;
12342 bp_location_downloaded = 1;
12343 }
12344 t = (struct tracepoint *) b;
12345 t->number_on_target = b->number;
12346 if (bp_location_downloaded)
12347 observer_notify_breakpoint_modified (b);
12348 }
12349
12350 do_cleanups (old_chain);
12351 }
12352
12353 /* Swap the insertion/duplication state between two locations. */
12354
12355 static void
12356 swap_insertion (struct bp_location *left, struct bp_location *right)
12357 {
12358 const int left_inserted = left->inserted;
12359 const int left_duplicate = left->duplicate;
12360 const int left_needs_update = left->needs_update;
12361 const struct bp_target_info left_target_info = left->target_info;
12362
12363 /* Locations of tracepoints can never be duplicated. */
12364 if (is_tracepoint (left->owner))
12365 gdb_assert (!left->duplicate);
12366 if (is_tracepoint (right->owner))
12367 gdb_assert (!right->duplicate);
12368
12369 left->inserted = right->inserted;
12370 left->duplicate = right->duplicate;
12371 left->needs_update = right->needs_update;
12372 left->target_info = right->target_info;
12373 right->inserted = left_inserted;
12374 right->duplicate = left_duplicate;
12375 right->needs_update = left_needs_update;
12376 right->target_info = left_target_info;
12377 }
12378
12379 /* Force the re-insertion of the locations at ADDRESS. This is called
12380 once a new/deleted/modified duplicate location is found and we are evaluating
12381 conditions on the target's side. Such conditions need to be updated on
12382 the target. */
12383
12384 static void
12385 force_breakpoint_reinsertion (struct bp_location *bl)
12386 {
12387 struct bp_location **locp = NULL, **loc2p;
12388 struct bp_location *loc;
12389 CORE_ADDR address = 0;
12390 int pspace_num;
12391
12392 address = bl->address;
12393 pspace_num = bl->pspace->num;
12394
12395 /* This is only meaningful if the target is
12396 evaluating conditions and if the user has
12397 opted for condition evaluation on the target's
12398 side. */
12399 if (gdb_evaluates_breakpoint_condition_p ()
12400 || !target_supports_evaluation_of_breakpoint_conditions ())
12401 return;
12402
12403 /* Flag all breakpoint locations with this address and
12404 the same program space as the location
12405 as "its condition has changed". We need to
12406 update the conditions on the target's side. */
12407 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12408 {
12409 loc = *loc2p;
12410
12411 if (!is_breakpoint (loc->owner)
12412 || pspace_num != loc->pspace->num)
12413 continue;
12414
12415 /* Flag the location appropriately. We use a different state to
12416 let everyone know that we already updated the set of locations
12417 with addr bl->address and program space bl->pspace. This is so
12418 we don't have to keep calling these functions just to mark locations
12419 that have already been marked. */
12420 loc->condition_changed = condition_updated;
12421
12422 /* Free the agent expression bytecode as well. We will compute
12423 it later on. */
12424 if (loc->cond_bytecode)
12425 {
12426 free_agent_expr (loc->cond_bytecode);
12427 loc->cond_bytecode = NULL;
12428 }
12429 }
12430 }
12431
12432 /* If SHOULD_INSERT is false, do not insert any breakpoint locations
12433 into the inferior, only remove already-inserted locations that no
12434 longer should be inserted. Functions that delete a breakpoint or
12435 breakpoints should pass false, so that deleting a breakpoint
12436 doesn't have the side effect of inserting the locations of other
12437 breakpoints that are marked not-inserted, but should_be_inserted
12438 returns true on them.
12439
12440 This behaviour is useful is situations close to tear-down -- e.g.,
12441 after an exec, while the target still has execution, but breakpoint
12442 shadows of the previous executable image should *NOT* be restored
12443 to the new image; or before detaching, where the target still has
12444 execution and wants to delete breakpoints from GDB's lists, and all
12445 breakpoints had already been removed from the inferior. */
12446
12447 static void
12448 update_global_location_list (int should_insert)
12449 {
12450 struct breakpoint *b;
12451 struct bp_location **locp, *loc;
12452 struct cleanup *cleanups;
12453 /* Last breakpoint location address that was marked for update. */
12454 CORE_ADDR last_addr = 0;
12455 /* Last breakpoint location program space that was marked for update. */
12456 int last_pspace_num = -1;
12457
12458 /* Used in the duplicates detection below. When iterating over all
12459 bp_locations, points to the first bp_location of a given address.
12460 Breakpoints and watchpoints of different types are never
12461 duplicates of each other. Keep one pointer for each type of
12462 breakpoint/watchpoint, so we only need to loop over all locations
12463 once. */
12464 struct bp_location *bp_loc_first; /* breakpoint */
12465 struct bp_location *wp_loc_first; /* hardware watchpoint */
12466 struct bp_location *awp_loc_first; /* access watchpoint */
12467 struct bp_location *rwp_loc_first; /* read watchpoint */
12468
12469 /* Saved former bp_location array which we compare against the newly
12470 built bp_location from the current state of ALL_BREAKPOINTS. */
12471 struct bp_location **old_location, **old_locp;
12472 unsigned old_location_count;
12473
12474 old_location = bp_location;
12475 old_location_count = bp_location_count;
12476 bp_location = NULL;
12477 bp_location_count = 0;
12478 cleanups = make_cleanup (xfree, old_location);
12479
12480 ALL_BREAKPOINTS (b)
12481 for (loc = b->loc; loc; loc = loc->next)
12482 bp_location_count++;
12483
12484 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12485 locp = bp_location;
12486 ALL_BREAKPOINTS (b)
12487 for (loc = b->loc; loc; loc = loc->next)
12488 *locp++ = loc;
12489 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12490 bp_location_compare);
12491
12492 bp_location_target_extensions_update ();
12493
12494 /* Identify bp_location instances that are no longer present in the
12495 new list, and therefore should be freed. Note that it's not
12496 necessary that those locations should be removed from inferior --
12497 if there's another location at the same address (previously
12498 marked as duplicate), we don't need to remove/insert the
12499 location.
12500
12501 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12502 and former bp_location array state respectively. */
12503
12504 locp = bp_location;
12505 for (old_locp = old_location; old_locp < old_location + old_location_count;
12506 old_locp++)
12507 {
12508 struct bp_location *old_loc = *old_locp;
12509 struct bp_location **loc2p;
12510
12511 /* Tells if 'old_loc' is found among the new locations. If
12512 not, we have to free it. */
12513 int found_object = 0;
12514 /* Tells if the location should remain inserted in the target. */
12515 int keep_in_target = 0;
12516 int removed = 0;
12517
12518 /* Skip LOCP entries which will definitely never be needed.
12519 Stop either at or being the one matching OLD_LOC. */
12520 while (locp < bp_location + bp_location_count
12521 && (*locp)->address < old_loc->address)
12522 locp++;
12523
12524 for (loc2p = locp;
12525 (loc2p < bp_location + bp_location_count
12526 && (*loc2p)->address == old_loc->address);
12527 loc2p++)
12528 {
12529 /* Check if this is a new/duplicated location or a duplicated
12530 location that had its condition modified. If so, we want to send
12531 its condition to the target if evaluation of conditions is taking
12532 place there. */
12533 if ((*loc2p)->condition_changed == condition_modified
12534 && (last_addr != old_loc->address
12535 || last_pspace_num != old_loc->pspace->num))
12536 {
12537 force_breakpoint_reinsertion (*loc2p);
12538 last_pspace_num = old_loc->pspace->num;
12539 }
12540
12541 if (*loc2p == old_loc)
12542 found_object = 1;
12543 }
12544
12545 /* We have already handled this address, update it so that we don't
12546 have to go through updates again. */
12547 last_addr = old_loc->address;
12548
12549 /* Target-side condition evaluation: Handle deleted locations. */
12550 if (!found_object)
12551 force_breakpoint_reinsertion (old_loc);
12552
12553 /* If this location is no longer present, and inserted, look if
12554 there's maybe a new location at the same address. If so,
12555 mark that one inserted, and don't remove this one. This is
12556 needed so that we don't have a time window where a breakpoint
12557 at certain location is not inserted. */
12558
12559 if (old_loc->inserted)
12560 {
12561 /* If the location is inserted now, we might have to remove
12562 it. */
12563
12564 if (found_object && should_be_inserted (old_loc))
12565 {
12566 /* The location is still present in the location list,
12567 and still should be inserted. Don't do anything. */
12568 keep_in_target = 1;
12569 }
12570 else
12571 {
12572 /* This location still exists, but it won't be kept in the
12573 target since it may have been disabled. We proceed to
12574 remove its target-side condition. */
12575
12576 /* The location is either no longer present, or got
12577 disabled. See if there's another location at the
12578 same address, in which case we don't need to remove
12579 this one from the target. */
12580
12581 /* OLD_LOC comes from existing struct breakpoint. */
12582 if (breakpoint_address_is_meaningful (old_loc->owner))
12583 {
12584 for (loc2p = locp;
12585 (loc2p < bp_location + bp_location_count
12586 && (*loc2p)->address == old_loc->address);
12587 loc2p++)
12588 {
12589 struct bp_location *loc2 = *loc2p;
12590
12591 if (breakpoint_locations_match (loc2, old_loc))
12592 {
12593 /* Read watchpoint locations are switched to
12594 access watchpoints, if the former are not
12595 supported, but the latter are. */
12596 if (is_hardware_watchpoint (old_loc->owner))
12597 {
12598 gdb_assert (is_hardware_watchpoint (loc2->owner));
12599 loc2->watchpoint_type = old_loc->watchpoint_type;
12600 }
12601
12602 /* loc2 is a duplicated location. We need to check
12603 if it should be inserted in case it will be
12604 unduplicated. */
12605 if (loc2 != old_loc
12606 && unduplicated_should_be_inserted (loc2))
12607 {
12608 swap_insertion (old_loc, loc2);
12609 keep_in_target = 1;
12610 break;
12611 }
12612 }
12613 }
12614 }
12615 }
12616
12617 if (!keep_in_target)
12618 {
12619 if (remove_breakpoint (old_loc, mark_uninserted))
12620 {
12621 /* This is just about all we can do. We could keep
12622 this location on the global list, and try to
12623 remove it next time, but there's no particular
12624 reason why we will succeed next time.
12625
12626 Note that at this point, old_loc->owner is still
12627 valid, as delete_breakpoint frees the breakpoint
12628 only after calling us. */
12629 printf_filtered (_("warning: Error removing "
12630 "breakpoint %d\n"),
12631 old_loc->owner->number);
12632 }
12633 removed = 1;
12634 }
12635 }
12636
12637 if (!found_object)
12638 {
12639 if (removed && non_stop
12640 && breakpoint_address_is_meaningful (old_loc->owner)
12641 && !is_hardware_watchpoint (old_loc->owner))
12642 {
12643 /* This location was removed from the target. In
12644 non-stop mode, a race condition is possible where
12645 we've removed a breakpoint, but stop events for that
12646 breakpoint are already queued and will arrive later.
12647 We apply an heuristic to be able to distinguish such
12648 SIGTRAPs from other random SIGTRAPs: we keep this
12649 breakpoint location for a bit, and will retire it
12650 after we see some number of events. The theory here
12651 is that reporting of events should, "on the average",
12652 be fair, so after a while we'll see events from all
12653 threads that have anything of interest, and no longer
12654 need to keep this breakpoint location around. We
12655 don't hold locations forever so to reduce chances of
12656 mistaking a non-breakpoint SIGTRAP for a breakpoint
12657 SIGTRAP.
12658
12659 The heuristic failing can be disastrous on
12660 decr_pc_after_break targets.
12661
12662 On decr_pc_after_break targets, like e.g., x86-linux,
12663 if we fail to recognize a late breakpoint SIGTRAP,
12664 because events_till_retirement has reached 0 too
12665 soon, we'll fail to do the PC adjustment, and report
12666 a random SIGTRAP to the user. When the user resumes
12667 the inferior, it will most likely immediately crash
12668 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12669 corrupted, because of being resumed e.g., in the
12670 middle of a multi-byte instruction, or skipped a
12671 one-byte instruction. This was actually seen happen
12672 on native x86-linux, and should be less rare on
12673 targets that do not support new thread events, like
12674 remote, due to the heuristic depending on
12675 thread_count.
12676
12677 Mistaking a random SIGTRAP for a breakpoint trap
12678 causes similar symptoms (PC adjustment applied when
12679 it shouldn't), but then again, playing with SIGTRAPs
12680 behind the debugger's back is asking for trouble.
12681
12682 Since hardware watchpoint traps are always
12683 distinguishable from other traps, so we don't need to
12684 apply keep hardware watchpoint moribund locations
12685 around. We simply always ignore hardware watchpoint
12686 traps we can no longer explain. */
12687
12688 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12689 old_loc->owner = NULL;
12690
12691 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12692 }
12693 else
12694 {
12695 old_loc->owner = NULL;
12696 decref_bp_location (&old_loc);
12697 }
12698 }
12699 }
12700
12701 /* Rescan breakpoints at the same address and section, marking the
12702 first one as "first" and any others as "duplicates". This is so
12703 that the bpt instruction is only inserted once. If we have a
12704 permanent breakpoint at the same place as BPT, make that one the
12705 official one, and the rest as duplicates. Permanent breakpoints
12706 are sorted first for the same address.
12707
12708 Do the same for hardware watchpoints, but also considering the
12709 watchpoint's type (regular/access/read) and length. */
12710
12711 bp_loc_first = NULL;
12712 wp_loc_first = NULL;
12713 awp_loc_first = NULL;
12714 rwp_loc_first = NULL;
12715 ALL_BP_LOCATIONS (loc, locp)
12716 {
12717 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12718 non-NULL. */
12719 struct bp_location **loc_first_p;
12720 b = loc->owner;
12721
12722 if (!unduplicated_should_be_inserted (loc)
12723 || !breakpoint_address_is_meaningful (b)
12724 /* Don't detect duplicate for tracepoint locations because they are
12725 never duplicated. See the comments in field `duplicate' of
12726 `struct bp_location'. */
12727 || is_tracepoint (b))
12728 {
12729 /* Clear the condition modification flag. */
12730 loc->condition_changed = condition_unchanged;
12731 continue;
12732 }
12733
12734 /* Permanent breakpoint should always be inserted. */
12735 if (b->enable_state == bp_permanent && ! loc->inserted)
12736 internal_error (__FILE__, __LINE__,
12737 _("allegedly permanent breakpoint is not "
12738 "actually inserted"));
12739
12740 if (b->type == bp_hardware_watchpoint)
12741 loc_first_p = &wp_loc_first;
12742 else if (b->type == bp_read_watchpoint)
12743 loc_first_p = &rwp_loc_first;
12744 else if (b->type == bp_access_watchpoint)
12745 loc_first_p = &awp_loc_first;
12746 else
12747 loc_first_p = &bp_loc_first;
12748
12749 if (*loc_first_p == NULL
12750 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12751 || !breakpoint_locations_match (loc, *loc_first_p))
12752 {
12753 *loc_first_p = loc;
12754 loc->duplicate = 0;
12755
12756 if (is_breakpoint (loc->owner) && loc->condition_changed)
12757 {
12758 loc->needs_update = 1;
12759 /* Clear the condition modification flag. */
12760 loc->condition_changed = condition_unchanged;
12761 }
12762 continue;
12763 }
12764
12765
12766 /* This and the above ensure the invariant that the first location
12767 is not duplicated, and is the inserted one.
12768 All following are marked as duplicated, and are not inserted. */
12769 if (loc->inserted)
12770 swap_insertion (loc, *loc_first_p);
12771 loc->duplicate = 1;
12772
12773 /* Clear the condition modification flag. */
12774 loc->condition_changed = condition_unchanged;
12775
12776 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12777 && b->enable_state != bp_permanent)
12778 internal_error (__FILE__, __LINE__,
12779 _("another breakpoint was inserted on top of "
12780 "a permanent breakpoint"));
12781 }
12782
12783 if (breakpoints_always_inserted_mode ()
12784 && (have_live_inferiors ()
12785 || (gdbarch_has_global_breakpoints (target_gdbarch ()))))
12786 {
12787 if (should_insert)
12788 insert_breakpoint_locations ();
12789 else
12790 {
12791 /* Though should_insert is false, we may need to update conditions
12792 on the target's side if it is evaluating such conditions. We
12793 only update conditions for locations that are marked
12794 "needs_update". */
12795 update_inserted_breakpoint_locations ();
12796 }
12797 }
12798
12799 if (should_insert)
12800 download_tracepoint_locations ();
12801
12802 do_cleanups (cleanups);
12803 }
12804
12805 void
12806 breakpoint_retire_moribund (void)
12807 {
12808 struct bp_location *loc;
12809 int ix;
12810
12811 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12812 if (--(loc->events_till_retirement) == 0)
12813 {
12814 decref_bp_location (&loc);
12815 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12816 --ix;
12817 }
12818 }
12819
12820 static void
12821 update_global_location_list_nothrow (int inserting)
12822 {
12823 volatile struct gdb_exception e;
12824
12825 TRY_CATCH (e, RETURN_MASK_ERROR)
12826 update_global_location_list (inserting);
12827 }
12828
12829 /* Clear BKP from a BPS. */
12830
12831 static void
12832 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12833 {
12834 bpstat bs;
12835
12836 for (bs = bps; bs; bs = bs->next)
12837 if (bs->breakpoint_at == bpt)
12838 {
12839 bs->breakpoint_at = NULL;
12840 bs->old_val = NULL;
12841 /* bs->commands will be freed later. */
12842 }
12843 }
12844
12845 /* Callback for iterate_over_threads. */
12846 static int
12847 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12848 {
12849 struct breakpoint *bpt = data;
12850
12851 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12852 return 0;
12853 }
12854
12855 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12856 callbacks. */
12857
12858 static void
12859 say_where (struct breakpoint *b)
12860 {
12861 struct value_print_options opts;
12862
12863 get_user_print_options (&opts);
12864
12865 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12866 single string. */
12867 if (b->loc == NULL)
12868 {
12869 printf_filtered (_(" (%s) pending."), b->addr_string);
12870 }
12871 else
12872 {
12873 if (opts.addressprint || b->loc->symtab == NULL)
12874 {
12875 printf_filtered (" at ");
12876 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12877 gdb_stdout);
12878 }
12879 if (b->loc->symtab != NULL)
12880 {
12881 /* If there is a single location, we can print the location
12882 more nicely. */
12883 if (b->loc->next == NULL)
12884 printf_filtered (": file %s, line %d.",
12885 symtab_to_filename_for_display (b->loc->symtab),
12886 b->loc->line_number);
12887 else
12888 /* This is not ideal, but each location may have a
12889 different file name, and this at least reflects the
12890 real situation somewhat. */
12891 printf_filtered (": %s.", b->addr_string);
12892 }
12893
12894 if (b->loc->next)
12895 {
12896 struct bp_location *loc = b->loc;
12897 int n = 0;
12898 for (; loc; loc = loc->next)
12899 ++n;
12900 printf_filtered (" (%d locations)", n);
12901 }
12902 }
12903 }
12904
12905 /* Default bp_location_ops methods. */
12906
12907 static void
12908 bp_location_dtor (struct bp_location *self)
12909 {
12910 xfree (self->cond);
12911 if (self->cond_bytecode)
12912 free_agent_expr (self->cond_bytecode);
12913 xfree (self->function_name);
12914
12915 VEC_free (agent_expr_p, self->target_info.conditions);
12916 VEC_free (agent_expr_p, self->target_info.tcommands);
12917 }
12918
12919 static const struct bp_location_ops bp_location_ops =
12920 {
12921 bp_location_dtor
12922 };
12923
12924 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12925 inherit from. */
12926
12927 static void
12928 base_breakpoint_dtor (struct breakpoint *self)
12929 {
12930 decref_counted_command_line (&self->commands);
12931 xfree (self->cond_string);
12932 xfree (self->extra_string);
12933 xfree (self->addr_string);
12934 xfree (self->filter);
12935 xfree (self->addr_string_range_end);
12936 }
12937
12938 static struct bp_location *
12939 base_breakpoint_allocate_location (struct breakpoint *self)
12940 {
12941 struct bp_location *loc;
12942
12943 loc = XNEW (struct bp_location);
12944 init_bp_location (loc, &bp_location_ops, self);
12945 return loc;
12946 }
12947
12948 static void
12949 base_breakpoint_re_set (struct breakpoint *b)
12950 {
12951 /* Nothing to re-set. */
12952 }
12953
12954 #define internal_error_pure_virtual_called() \
12955 gdb_assert_not_reached ("pure virtual function called")
12956
12957 static int
12958 base_breakpoint_insert_location (struct bp_location *bl)
12959 {
12960 internal_error_pure_virtual_called ();
12961 }
12962
12963 static int
12964 base_breakpoint_remove_location (struct bp_location *bl)
12965 {
12966 internal_error_pure_virtual_called ();
12967 }
12968
12969 static int
12970 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12971 struct address_space *aspace,
12972 CORE_ADDR bp_addr,
12973 const struct target_waitstatus *ws)
12974 {
12975 internal_error_pure_virtual_called ();
12976 }
12977
12978 static void
12979 base_breakpoint_check_status (bpstat bs)
12980 {
12981 /* Always stop. */
12982 }
12983
12984 /* A "works_in_software_mode" breakpoint_ops method that just internal
12985 errors. */
12986
12987 static int
12988 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12989 {
12990 internal_error_pure_virtual_called ();
12991 }
12992
12993 /* A "resources_needed" breakpoint_ops method that just internal
12994 errors. */
12995
12996 static int
12997 base_breakpoint_resources_needed (const struct bp_location *bl)
12998 {
12999 internal_error_pure_virtual_called ();
13000 }
13001
13002 static enum print_stop_action
13003 base_breakpoint_print_it (bpstat bs)
13004 {
13005 internal_error_pure_virtual_called ();
13006 }
13007
13008 static void
13009 base_breakpoint_print_one_detail (const struct breakpoint *self,
13010 struct ui_out *uiout)
13011 {
13012 /* nothing */
13013 }
13014
13015 static void
13016 base_breakpoint_print_mention (struct breakpoint *b)
13017 {
13018 internal_error_pure_virtual_called ();
13019 }
13020
13021 static void
13022 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
13023 {
13024 internal_error_pure_virtual_called ();
13025 }
13026
13027 static void
13028 base_breakpoint_create_sals_from_address (char **arg,
13029 struct linespec_result *canonical,
13030 enum bptype type_wanted,
13031 char *addr_start,
13032 char **copy_arg)
13033 {
13034 internal_error_pure_virtual_called ();
13035 }
13036
13037 static void
13038 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13039 struct linespec_result *c,
13040 char *cond_string,
13041 char *extra_string,
13042 enum bptype type_wanted,
13043 enum bpdisp disposition,
13044 int thread,
13045 int task, int ignore_count,
13046 const struct breakpoint_ops *o,
13047 int from_tty, int enabled,
13048 int internal, unsigned flags)
13049 {
13050 internal_error_pure_virtual_called ();
13051 }
13052
13053 static void
13054 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
13055 struct symtabs_and_lines *sals)
13056 {
13057 internal_error_pure_virtual_called ();
13058 }
13059
13060 /* The default 'explains_signal' method. */
13061
13062 static int
13063 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
13064 {
13065 return 1;
13066 }
13067
13068 /* The default "after_condition_true" method. */
13069
13070 static void
13071 base_breakpoint_after_condition_true (struct bpstats *bs)
13072 {
13073 /* Nothing to do. */
13074 }
13075
13076 struct breakpoint_ops base_breakpoint_ops =
13077 {
13078 base_breakpoint_dtor,
13079 base_breakpoint_allocate_location,
13080 base_breakpoint_re_set,
13081 base_breakpoint_insert_location,
13082 base_breakpoint_remove_location,
13083 base_breakpoint_breakpoint_hit,
13084 base_breakpoint_check_status,
13085 base_breakpoint_resources_needed,
13086 base_breakpoint_works_in_software_mode,
13087 base_breakpoint_print_it,
13088 NULL,
13089 base_breakpoint_print_one_detail,
13090 base_breakpoint_print_mention,
13091 base_breakpoint_print_recreate,
13092 base_breakpoint_create_sals_from_address,
13093 base_breakpoint_create_breakpoints_sal,
13094 base_breakpoint_decode_linespec,
13095 base_breakpoint_explains_signal,
13096 base_breakpoint_after_condition_true,
13097 };
13098
13099 /* Default breakpoint_ops methods. */
13100
13101 static void
13102 bkpt_re_set (struct breakpoint *b)
13103 {
13104 /* FIXME: is this still reachable? */
13105 if (b->addr_string == NULL)
13106 {
13107 /* Anything without a string can't be re-set. */
13108 delete_breakpoint (b);
13109 return;
13110 }
13111
13112 breakpoint_re_set_default (b);
13113 }
13114
13115 static int
13116 bkpt_insert_location (struct bp_location *bl)
13117 {
13118 if (bl->loc_type == bp_loc_hardware_breakpoint)
13119 return target_insert_hw_breakpoint (bl->gdbarch,
13120 &bl->target_info);
13121 else
13122 return target_insert_breakpoint (bl->gdbarch,
13123 &bl->target_info);
13124 }
13125
13126 static int
13127 bkpt_remove_location (struct bp_location *bl)
13128 {
13129 if (bl->loc_type == bp_loc_hardware_breakpoint)
13130 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
13131 else
13132 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
13133 }
13134
13135 static int
13136 bkpt_breakpoint_hit (const struct bp_location *bl,
13137 struct address_space *aspace, CORE_ADDR bp_addr,
13138 const struct target_waitstatus *ws)
13139 {
13140 if (ws->kind != TARGET_WAITKIND_STOPPED
13141 || ws->value.sig != GDB_SIGNAL_TRAP)
13142 return 0;
13143
13144 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
13145 aspace, bp_addr))
13146 return 0;
13147
13148 if (overlay_debugging /* unmapped overlay section */
13149 && section_is_overlay (bl->section)
13150 && !section_is_mapped (bl->section))
13151 return 0;
13152
13153 return 1;
13154 }
13155
13156 static int
13157 dprintf_breakpoint_hit (const struct bp_location *bl,
13158 struct address_space *aspace, CORE_ADDR bp_addr,
13159 const struct target_waitstatus *ws)
13160 {
13161 if (dprintf_style == dprintf_style_agent
13162 && target_can_run_breakpoint_commands ())
13163 {
13164 /* An agent-style dprintf never causes a stop. If we see a trap
13165 for this address it must be for a breakpoint that happens to
13166 be set at the same address. */
13167 return 0;
13168 }
13169
13170 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
13171 }
13172
13173 static int
13174 bkpt_resources_needed (const struct bp_location *bl)
13175 {
13176 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
13177
13178 return 1;
13179 }
13180
13181 static enum print_stop_action
13182 bkpt_print_it (bpstat bs)
13183 {
13184 struct breakpoint *b;
13185 const struct bp_location *bl;
13186 int bp_temp;
13187 struct ui_out *uiout = current_uiout;
13188
13189 gdb_assert (bs->bp_location_at != NULL);
13190
13191 bl = bs->bp_location_at;
13192 b = bs->breakpoint_at;
13193
13194 bp_temp = b->disposition == disp_del;
13195 if (bl->address != bl->requested_address)
13196 breakpoint_adjustment_warning (bl->requested_address,
13197 bl->address,
13198 b->number, 1);
13199 annotate_breakpoint (b->number);
13200 if (bp_temp)
13201 ui_out_text (uiout, "\nTemporary breakpoint ");
13202 else
13203 ui_out_text (uiout, "\nBreakpoint ");
13204 if (ui_out_is_mi_like_p (uiout))
13205 {
13206 ui_out_field_string (uiout, "reason",
13207 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
13208 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
13209 }
13210 ui_out_field_int (uiout, "bkptno", b->number);
13211 ui_out_text (uiout, ", ");
13212
13213 return PRINT_SRC_AND_LOC;
13214 }
13215
13216 static void
13217 bkpt_print_mention (struct breakpoint *b)
13218 {
13219 if (ui_out_is_mi_like_p (current_uiout))
13220 return;
13221
13222 switch (b->type)
13223 {
13224 case bp_breakpoint:
13225 case bp_gnu_ifunc_resolver:
13226 if (b->disposition == disp_del)
13227 printf_filtered (_("Temporary breakpoint"));
13228 else
13229 printf_filtered (_("Breakpoint"));
13230 printf_filtered (_(" %d"), b->number);
13231 if (b->type == bp_gnu_ifunc_resolver)
13232 printf_filtered (_(" at gnu-indirect-function resolver"));
13233 break;
13234 case bp_hardware_breakpoint:
13235 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13236 break;
13237 case bp_dprintf:
13238 printf_filtered (_("Dprintf %d"), b->number);
13239 break;
13240 }
13241
13242 say_where (b);
13243 }
13244
13245 static void
13246 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13247 {
13248 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13249 fprintf_unfiltered (fp, "tbreak");
13250 else if (tp->type == bp_breakpoint)
13251 fprintf_unfiltered (fp, "break");
13252 else if (tp->type == bp_hardware_breakpoint
13253 && tp->disposition == disp_del)
13254 fprintf_unfiltered (fp, "thbreak");
13255 else if (tp->type == bp_hardware_breakpoint)
13256 fprintf_unfiltered (fp, "hbreak");
13257 else
13258 internal_error (__FILE__, __LINE__,
13259 _("unhandled breakpoint type %d"), (int) tp->type);
13260
13261 fprintf_unfiltered (fp, " %s", tp->addr_string);
13262 print_recreate_thread (tp, fp);
13263 }
13264
13265 static void
13266 bkpt_create_sals_from_address (char **arg,
13267 struct linespec_result *canonical,
13268 enum bptype type_wanted,
13269 char *addr_start, char **copy_arg)
13270 {
13271 create_sals_from_address_default (arg, canonical, type_wanted,
13272 addr_start, copy_arg);
13273 }
13274
13275 static void
13276 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13277 struct linespec_result *canonical,
13278 char *cond_string,
13279 char *extra_string,
13280 enum bptype type_wanted,
13281 enum bpdisp disposition,
13282 int thread,
13283 int task, int ignore_count,
13284 const struct breakpoint_ops *ops,
13285 int from_tty, int enabled,
13286 int internal, unsigned flags)
13287 {
13288 create_breakpoints_sal_default (gdbarch, canonical,
13289 cond_string, extra_string,
13290 type_wanted,
13291 disposition, thread, task,
13292 ignore_count, ops, from_tty,
13293 enabled, internal, flags);
13294 }
13295
13296 static void
13297 bkpt_decode_linespec (struct breakpoint *b, char **s,
13298 struct symtabs_and_lines *sals)
13299 {
13300 decode_linespec_default (b, s, sals);
13301 }
13302
13303 /* Virtual table for internal breakpoints. */
13304
13305 static void
13306 internal_bkpt_re_set (struct breakpoint *b)
13307 {
13308 switch (b->type)
13309 {
13310 /* Delete overlay event and longjmp master breakpoints; they
13311 will be reset later by breakpoint_re_set. */
13312 case bp_overlay_event:
13313 case bp_longjmp_master:
13314 case bp_std_terminate_master:
13315 case bp_exception_master:
13316 delete_breakpoint (b);
13317 break;
13318
13319 /* This breakpoint is special, it's set up when the inferior
13320 starts and we really don't want to touch it. */
13321 case bp_shlib_event:
13322
13323 /* Like bp_shlib_event, this breakpoint type is special. Once
13324 it is set up, we do not want to touch it. */
13325 case bp_thread_event:
13326 break;
13327 }
13328 }
13329
13330 static void
13331 internal_bkpt_check_status (bpstat bs)
13332 {
13333 if (bs->breakpoint_at->type == bp_shlib_event)
13334 {
13335 /* If requested, stop when the dynamic linker notifies GDB of
13336 events. This allows the user to get control and place
13337 breakpoints in initializer routines for dynamically loaded
13338 objects (among other things). */
13339 bs->stop = stop_on_solib_events;
13340 bs->print = stop_on_solib_events;
13341 }
13342 else
13343 bs->stop = 0;
13344 }
13345
13346 static enum print_stop_action
13347 internal_bkpt_print_it (bpstat bs)
13348 {
13349 struct breakpoint *b;
13350
13351 b = bs->breakpoint_at;
13352
13353 switch (b->type)
13354 {
13355 case bp_shlib_event:
13356 /* Did we stop because the user set the stop_on_solib_events
13357 variable? (If so, we report this as a generic, "Stopped due
13358 to shlib event" message.) */
13359 print_solib_event (0);
13360 break;
13361
13362 case bp_thread_event:
13363 /* Not sure how we will get here.
13364 GDB should not stop for these breakpoints. */
13365 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13366 break;
13367
13368 case bp_overlay_event:
13369 /* By analogy with the thread event, GDB should not stop for these. */
13370 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13371 break;
13372
13373 case bp_longjmp_master:
13374 /* These should never be enabled. */
13375 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13376 break;
13377
13378 case bp_std_terminate_master:
13379 /* These should never be enabled. */
13380 printf_filtered (_("std::terminate Master Breakpoint: "
13381 "gdb should not stop!\n"));
13382 break;
13383
13384 case bp_exception_master:
13385 /* These should never be enabled. */
13386 printf_filtered (_("Exception Master Breakpoint: "
13387 "gdb should not stop!\n"));
13388 break;
13389 }
13390
13391 return PRINT_NOTHING;
13392 }
13393
13394 static void
13395 internal_bkpt_print_mention (struct breakpoint *b)
13396 {
13397 /* Nothing to mention. These breakpoints are internal. */
13398 }
13399
13400 /* Virtual table for momentary breakpoints */
13401
13402 static void
13403 momentary_bkpt_re_set (struct breakpoint *b)
13404 {
13405 /* Keep temporary breakpoints, which can be encountered when we step
13406 over a dlopen call and solib_add is resetting the breakpoints.
13407 Otherwise these should have been blown away via the cleanup chain
13408 or by breakpoint_init_inferior when we rerun the executable. */
13409 }
13410
13411 static void
13412 momentary_bkpt_check_status (bpstat bs)
13413 {
13414 /* Nothing. The point of these breakpoints is causing a stop. */
13415 }
13416
13417 static enum print_stop_action
13418 momentary_bkpt_print_it (bpstat bs)
13419 {
13420 struct ui_out *uiout = current_uiout;
13421
13422 if (ui_out_is_mi_like_p (uiout))
13423 {
13424 struct breakpoint *b = bs->breakpoint_at;
13425
13426 switch (b->type)
13427 {
13428 case bp_finish:
13429 ui_out_field_string
13430 (uiout, "reason",
13431 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13432 break;
13433
13434 case bp_until:
13435 ui_out_field_string
13436 (uiout, "reason",
13437 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13438 break;
13439 }
13440 }
13441
13442 return PRINT_UNKNOWN;
13443 }
13444
13445 static void
13446 momentary_bkpt_print_mention (struct breakpoint *b)
13447 {
13448 /* Nothing to mention. These breakpoints are internal. */
13449 }
13450
13451 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13452
13453 It gets cleared already on the removal of the first one of such placed
13454 breakpoints. This is OK as they get all removed altogether. */
13455
13456 static void
13457 longjmp_bkpt_dtor (struct breakpoint *self)
13458 {
13459 struct thread_info *tp = find_thread_id (self->thread);
13460
13461 if (tp)
13462 tp->initiating_frame = null_frame_id;
13463
13464 momentary_breakpoint_ops.dtor (self);
13465 }
13466
13467 /* Specific methods for probe breakpoints. */
13468
13469 static int
13470 bkpt_probe_insert_location (struct bp_location *bl)
13471 {
13472 int v = bkpt_insert_location (bl);
13473
13474 if (v == 0)
13475 {
13476 /* The insertion was successful, now let's set the probe's semaphore
13477 if needed. */
13478 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
13479 bl->probe.objfile,
13480 bl->gdbarch);
13481 }
13482
13483 return v;
13484 }
13485
13486 static int
13487 bkpt_probe_remove_location (struct bp_location *bl)
13488 {
13489 /* Let's clear the semaphore before removing the location. */
13490 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
13491 bl->probe.objfile,
13492 bl->gdbarch);
13493
13494 return bkpt_remove_location (bl);
13495 }
13496
13497 static void
13498 bkpt_probe_create_sals_from_address (char **arg,
13499 struct linespec_result *canonical,
13500 enum bptype type_wanted,
13501 char *addr_start, char **copy_arg)
13502 {
13503 struct linespec_sals lsal;
13504
13505 lsal.sals = parse_probes (arg, canonical);
13506
13507 *copy_arg = xstrdup (canonical->addr_string);
13508 lsal.canonical = xstrdup (*copy_arg);
13509
13510 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13511 }
13512
13513 static void
13514 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13515 struct symtabs_and_lines *sals)
13516 {
13517 *sals = parse_probes (s, NULL);
13518 if (!sals->sals)
13519 error (_("probe not found"));
13520 }
13521
13522 /* The breakpoint_ops structure to be used in tracepoints. */
13523
13524 static void
13525 tracepoint_re_set (struct breakpoint *b)
13526 {
13527 breakpoint_re_set_default (b);
13528 }
13529
13530 static int
13531 tracepoint_breakpoint_hit (const struct bp_location *bl,
13532 struct address_space *aspace, CORE_ADDR bp_addr,
13533 const struct target_waitstatus *ws)
13534 {
13535 /* By definition, the inferior does not report stops at
13536 tracepoints. */
13537 return 0;
13538 }
13539
13540 static void
13541 tracepoint_print_one_detail (const struct breakpoint *self,
13542 struct ui_out *uiout)
13543 {
13544 struct tracepoint *tp = (struct tracepoint *) self;
13545 if (tp->static_trace_marker_id)
13546 {
13547 gdb_assert (self->type == bp_static_tracepoint);
13548
13549 ui_out_text (uiout, "\tmarker id is ");
13550 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13551 tp->static_trace_marker_id);
13552 ui_out_text (uiout, "\n");
13553 }
13554 }
13555
13556 static void
13557 tracepoint_print_mention (struct breakpoint *b)
13558 {
13559 if (ui_out_is_mi_like_p (current_uiout))
13560 return;
13561
13562 switch (b->type)
13563 {
13564 case bp_tracepoint:
13565 printf_filtered (_("Tracepoint"));
13566 printf_filtered (_(" %d"), b->number);
13567 break;
13568 case bp_fast_tracepoint:
13569 printf_filtered (_("Fast tracepoint"));
13570 printf_filtered (_(" %d"), b->number);
13571 break;
13572 case bp_static_tracepoint:
13573 printf_filtered (_("Static tracepoint"));
13574 printf_filtered (_(" %d"), b->number);
13575 break;
13576 default:
13577 internal_error (__FILE__, __LINE__,
13578 _("unhandled tracepoint type %d"), (int) b->type);
13579 }
13580
13581 say_where (b);
13582 }
13583
13584 static void
13585 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13586 {
13587 struct tracepoint *tp = (struct tracepoint *) self;
13588
13589 if (self->type == bp_fast_tracepoint)
13590 fprintf_unfiltered (fp, "ftrace");
13591 if (self->type == bp_static_tracepoint)
13592 fprintf_unfiltered (fp, "strace");
13593 else if (self->type == bp_tracepoint)
13594 fprintf_unfiltered (fp, "trace");
13595 else
13596 internal_error (__FILE__, __LINE__,
13597 _("unhandled tracepoint type %d"), (int) self->type);
13598
13599 fprintf_unfiltered (fp, " %s", self->addr_string);
13600 print_recreate_thread (self, fp);
13601
13602 if (tp->pass_count)
13603 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13604 }
13605
13606 static void
13607 tracepoint_create_sals_from_address (char **arg,
13608 struct linespec_result *canonical,
13609 enum bptype type_wanted,
13610 char *addr_start, char **copy_arg)
13611 {
13612 create_sals_from_address_default (arg, canonical, type_wanted,
13613 addr_start, copy_arg);
13614 }
13615
13616 static void
13617 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13618 struct linespec_result *canonical,
13619 char *cond_string,
13620 char *extra_string,
13621 enum bptype type_wanted,
13622 enum bpdisp disposition,
13623 int thread,
13624 int task, int ignore_count,
13625 const struct breakpoint_ops *ops,
13626 int from_tty, int enabled,
13627 int internal, unsigned flags)
13628 {
13629 create_breakpoints_sal_default (gdbarch, canonical,
13630 cond_string, extra_string,
13631 type_wanted,
13632 disposition, thread, task,
13633 ignore_count, ops, from_tty,
13634 enabled, internal, flags);
13635 }
13636
13637 static void
13638 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13639 struct symtabs_and_lines *sals)
13640 {
13641 decode_linespec_default (b, s, sals);
13642 }
13643
13644 struct breakpoint_ops tracepoint_breakpoint_ops;
13645
13646 /* The breakpoint_ops structure to be use on tracepoints placed in a
13647 static probe. */
13648
13649 static void
13650 tracepoint_probe_create_sals_from_address (char **arg,
13651 struct linespec_result *canonical,
13652 enum bptype type_wanted,
13653 char *addr_start, char **copy_arg)
13654 {
13655 /* We use the same method for breakpoint on probes. */
13656 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13657 addr_start, copy_arg);
13658 }
13659
13660 static void
13661 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13662 struct symtabs_and_lines *sals)
13663 {
13664 /* We use the same method for breakpoint on probes. */
13665 bkpt_probe_decode_linespec (b, s, sals);
13666 }
13667
13668 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13669
13670 /* Dprintf breakpoint_ops methods. */
13671
13672 static void
13673 dprintf_re_set (struct breakpoint *b)
13674 {
13675 breakpoint_re_set_default (b);
13676
13677 /* This breakpoint could have been pending, and be resolved now, and
13678 if so, we should now have the extra string. If we don't, the
13679 dprintf was malformed when created, but we couldn't tell because
13680 we can't extract the extra string until the location is
13681 resolved. */
13682 if (b->loc != NULL && b->extra_string == NULL)
13683 error (_("Format string required"));
13684
13685 /* 1 - connect to target 1, that can run breakpoint commands.
13686 2 - create a dprintf, which resolves fine.
13687 3 - disconnect from target 1
13688 4 - connect to target 2, that can NOT run breakpoint commands.
13689
13690 After steps #3/#4, you'll want the dprintf command list to
13691 be updated, because target 1 and 2 may well return different
13692 answers for target_can_run_breakpoint_commands().
13693 Given absence of finer grained resetting, we get to do
13694 it all the time. */
13695 if (b->extra_string != NULL)
13696 update_dprintf_command_list (b);
13697 }
13698
13699 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13700
13701 static void
13702 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13703 {
13704 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13705 tp->extra_string);
13706 print_recreate_thread (tp, fp);
13707 }
13708
13709 /* Implement the "after_condition_true" breakpoint_ops method for
13710 dprintf.
13711
13712 dprintf's are implemented with regular commands in their command
13713 list, but we run the commands here instead of before presenting the
13714 stop to the user, as dprintf's don't actually cause a stop. This
13715 also makes it so that the commands of multiple dprintfs at the same
13716 address are all handled. */
13717
13718 static void
13719 dprintf_after_condition_true (struct bpstats *bs)
13720 {
13721 struct cleanup *old_chain;
13722 struct bpstats tmp_bs = { NULL };
13723 struct bpstats *tmp_bs_p = &tmp_bs;
13724
13725 /* dprintf's never cause a stop. This wasn't set in the
13726 check_status hook instead because that would make the dprintf's
13727 condition not be evaluated. */
13728 bs->stop = 0;
13729
13730 /* Run the command list here. Take ownership of it instead of
13731 copying. We never want these commands to run later in
13732 bpstat_do_actions, if a breakpoint that causes a stop happens to
13733 be set at same address as this dprintf, or even if running the
13734 commands here throws. */
13735 tmp_bs.commands = bs->commands;
13736 bs->commands = NULL;
13737 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13738
13739 bpstat_do_actions_1 (&tmp_bs_p);
13740
13741 /* 'tmp_bs.commands' will usually be NULL by now, but
13742 bpstat_do_actions_1 may return early without processing the whole
13743 list. */
13744 do_cleanups (old_chain);
13745 }
13746
13747 /* The breakpoint_ops structure to be used on static tracepoints with
13748 markers (`-m'). */
13749
13750 static void
13751 strace_marker_create_sals_from_address (char **arg,
13752 struct linespec_result *canonical,
13753 enum bptype type_wanted,
13754 char *addr_start, char **copy_arg)
13755 {
13756 struct linespec_sals lsal;
13757
13758 lsal.sals = decode_static_tracepoint_spec (arg);
13759
13760 *copy_arg = savestring (addr_start, *arg - addr_start);
13761
13762 canonical->addr_string = xstrdup (*copy_arg);
13763 lsal.canonical = xstrdup (*copy_arg);
13764 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13765 }
13766
13767 static void
13768 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13769 struct linespec_result *canonical,
13770 char *cond_string,
13771 char *extra_string,
13772 enum bptype type_wanted,
13773 enum bpdisp disposition,
13774 int thread,
13775 int task, int ignore_count,
13776 const struct breakpoint_ops *ops,
13777 int from_tty, int enabled,
13778 int internal, unsigned flags)
13779 {
13780 int i;
13781 struct linespec_sals *lsal = VEC_index (linespec_sals,
13782 canonical->sals, 0);
13783
13784 /* If the user is creating a static tracepoint by marker id
13785 (strace -m MARKER_ID), then store the sals index, so that
13786 breakpoint_re_set can try to match up which of the newly
13787 found markers corresponds to this one, and, don't try to
13788 expand multiple locations for each sal, given than SALS
13789 already should contain all sals for MARKER_ID. */
13790
13791 for (i = 0; i < lsal->sals.nelts; ++i)
13792 {
13793 struct symtabs_and_lines expanded;
13794 struct tracepoint *tp;
13795 struct cleanup *old_chain;
13796 char *addr_string;
13797
13798 expanded.nelts = 1;
13799 expanded.sals = &lsal->sals.sals[i];
13800
13801 addr_string = xstrdup (canonical->addr_string);
13802 old_chain = make_cleanup (xfree, addr_string);
13803
13804 tp = XCNEW (struct tracepoint);
13805 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13806 addr_string, NULL,
13807 cond_string, extra_string,
13808 type_wanted, disposition,
13809 thread, task, ignore_count, ops,
13810 from_tty, enabled, internal, flags,
13811 canonical->special_display);
13812 /* Given that its possible to have multiple markers with
13813 the same string id, if the user is creating a static
13814 tracepoint by marker id ("strace -m MARKER_ID"), then
13815 store the sals index, so that breakpoint_re_set can
13816 try to match up which of the newly found markers
13817 corresponds to this one */
13818 tp->static_trace_marker_id_idx = i;
13819
13820 install_breakpoint (internal, &tp->base, 0);
13821
13822 discard_cleanups (old_chain);
13823 }
13824 }
13825
13826 static void
13827 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13828 struct symtabs_and_lines *sals)
13829 {
13830 struct tracepoint *tp = (struct tracepoint *) b;
13831
13832 *sals = decode_static_tracepoint_spec (s);
13833 if (sals->nelts > tp->static_trace_marker_id_idx)
13834 {
13835 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13836 sals->nelts = 1;
13837 }
13838 else
13839 error (_("marker %s not found"), tp->static_trace_marker_id);
13840 }
13841
13842 static struct breakpoint_ops strace_marker_breakpoint_ops;
13843
13844 static int
13845 strace_marker_p (struct breakpoint *b)
13846 {
13847 return b->ops == &strace_marker_breakpoint_ops;
13848 }
13849
13850 /* Delete a breakpoint and clean up all traces of it in the data
13851 structures. */
13852
13853 void
13854 delete_breakpoint (struct breakpoint *bpt)
13855 {
13856 struct breakpoint *b;
13857
13858 gdb_assert (bpt != NULL);
13859
13860 /* Has this bp already been deleted? This can happen because
13861 multiple lists can hold pointers to bp's. bpstat lists are
13862 especial culprits.
13863
13864 One example of this happening is a watchpoint's scope bp. When
13865 the scope bp triggers, we notice that the watchpoint is out of
13866 scope, and delete it. We also delete its scope bp. But the
13867 scope bp is marked "auto-deleting", and is already on a bpstat.
13868 That bpstat is then checked for auto-deleting bp's, which are
13869 deleted.
13870
13871 A real solution to this problem might involve reference counts in
13872 bp's, and/or giving them pointers back to their referencing
13873 bpstat's, and teaching delete_breakpoint to only free a bp's
13874 storage when no more references were extent. A cheaper bandaid
13875 was chosen. */
13876 if (bpt->type == bp_none)
13877 return;
13878
13879 /* At least avoid this stale reference until the reference counting
13880 of breakpoints gets resolved. */
13881 if (bpt->related_breakpoint != bpt)
13882 {
13883 struct breakpoint *related;
13884 struct watchpoint *w;
13885
13886 if (bpt->type == bp_watchpoint_scope)
13887 w = (struct watchpoint *) bpt->related_breakpoint;
13888 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13889 w = (struct watchpoint *) bpt;
13890 else
13891 w = NULL;
13892 if (w != NULL)
13893 watchpoint_del_at_next_stop (w);
13894
13895 /* Unlink bpt from the bpt->related_breakpoint ring. */
13896 for (related = bpt; related->related_breakpoint != bpt;
13897 related = related->related_breakpoint);
13898 related->related_breakpoint = bpt->related_breakpoint;
13899 bpt->related_breakpoint = bpt;
13900 }
13901
13902 /* watch_command_1 creates a watchpoint but only sets its number if
13903 update_watchpoint succeeds in creating its bp_locations. If there's
13904 a problem in that process, we'll be asked to delete the half-created
13905 watchpoint. In that case, don't announce the deletion. */
13906 if (bpt->number)
13907 observer_notify_breakpoint_deleted (bpt);
13908
13909 if (breakpoint_chain == bpt)
13910 breakpoint_chain = bpt->next;
13911
13912 ALL_BREAKPOINTS (b)
13913 if (b->next == bpt)
13914 {
13915 b->next = bpt->next;
13916 break;
13917 }
13918
13919 /* Be sure no bpstat's are pointing at the breakpoint after it's
13920 been freed. */
13921 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13922 in all threads for now. Note that we cannot just remove bpstats
13923 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13924 commands are associated with the bpstat; if we remove it here,
13925 then the later call to bpstat_do_actions (&stop_bpstat); in
13926 event-top.c won't do anything, and temporary breakpoints with
13927 commands won't work. */
13928
13929 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13930
13931 /* Now that breakpoint is removed from breakpoint list, update the
13932 global location list. This will remove locations that used to
13933 belong to this breakpoint. Do this before freeing the breakpoint
13934 itself, since remove_breakpoint looks at location's owner. It
13935 might be better design to have location completely
13936 self-contained, but it's not the case now. */
13937 update_global_location_list (0);
13938
13939 bpt->ops->dtor (bpt);
13940 /* On the chance that someone will soon try again to delete this
13941 same bp, we mark it as deleted before freeing its storage. */
13942 bpt->type = bp_none;
13943 xfree (bpt);
13944 }
13945
13946 static void
13947 do_delete_breakpoint_cleanup (void *b)
13948 {
13949 delete_breakpoint (b);
13950 }
13951
13952 struct cleanup *
13953 make_cleanup_delete_breakpoint (struct breakpoint *b)
13954 {
13955 return make_cleanup (do_delete_breakpoint_cleanup, b);
13956 }
13957
13958 /* Iterator function to call a user-provided callback function once
13959 for each of B and its related breakpoints. */
13960
13961 static void
13962 iterate_over_related_breakpoints (struct breakpoint *b,
13963 void (*function) (struct breakpoint *,
13964 void *),
13965 void *data)
13966 {
13967 struct breakpoint *related;
13968
13969 related = b;
13970 do
13971 {
13972 struct breakpoint *next;
13973
13974 /* FUNCTION may delete RELATED. */
13975 next = related->related_breakpoint;
13976
13977 if (next == related)
13978 {
13979 /* RELATED is the last ring entry. */
13980 function (related, data);
13981
13982 /* FUNCTION may have deleted it, so we'd never reach back to
13983 B. There's nothing left to do anyway, so just break
13984 out. */
13985 break;
13986 }
13987 else
13988 function (related, data);
13989
13990 related = next;
13991 }
13992 while (related != b);
13993 }
13994
13995 static void
13996 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13997 {
13998 delete_breakpoint (b);
13999 }
14000
14001 /* A callback for map_breakpoint_numbers that calls
14002 delete_breakpoint. */
14003
14004 static void
14005 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
14006 {
14007 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
14008 }
14009
14010 void
14011 delete_command (char *arg, int from_tty)
14012 {
14013 struct breakpoint *b, *b_tmp;
14014
14015 dont_repeat ();
14016
14017 if (arg == 0)
14018 {
14019 int breaks_to_delete = 0;
14020
14021 /* Delete all breakpoints if no argument. Do not delete
14022 internal breakpoints, these have to be deleted with an
14023 explicit breakpoint number argument. */
14024 ALL_BREAKPOINTS (b)
14025 if (user_breakpoint_p (b))
14026 {
14027 breaks_to_delete = 1;
14028 break;
14029 }
14030
14031 /* Ask user only if there are some breakpoints to delete. */
14032 if (!from_tty
14033 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
14034 {
14035 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14036 if (user_breakpoint_p (b))
14037 delete_breakpoint (b);
14038 }
14039 }
14040 else
14041 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
14042 }
14043
14044 static int
14045 all_locations_are_pending (struct bp_location *loc)
14046 {
14047 for (; loc; loc = loc->next)
14048 if (!loc->shlib_disabled
14049 && !loc->pspace->executing_startup)
14050 return 0;
14051 return 1;
14052 }
14053
14054 /* Subroutine of update_breakpoint_locations to simplify it.
14055 Return non-zero if multiple fns in list LOC have the same name.
14056 Null names are ignored. */
14057
14058 static int
14059 ambiguous_names_p (struct bp_location *loc)
14060 {
14061 struct bp_location *l;
14062 htab_t htab = htab_create_alloc (13, htab_hash_string,
14063 (int (*) (const void *,
14064 const void *)) streq,
14065 NULL, xcalloc, xfree);
14066
14067 for (l = loc; l != NULL; l = l->next)
14068 {
14069 const char **slot;
14070 const char *name = l->function_name;
14071
14072 /* Allow for some names to be NULL, ignore them. */
14073 if (name == NULL)
14074 continue;
14075
14076 slot = (const char **) htab_find_slot (htab, (const void *) name,
14077 INSERT);
14078 /* NOTE: We can assume slot != NULL here because xcalloc never
14079 returns NULL. */
14080 if (*slot != NULL)
14081 {
14082 htab_delete (htab);
14083 return 1;
14084 }
14085 *slot = name;
14086 }
14087
14088 htab_delete (htab);
14089 return 0;
14090 }
14091
14092 /* When symbols change, it probably means the sources changed as well,
14093 and it might mean the static tracepoint markers are no longer at
14094 the same address or line numbers they used to be at last we
14095 checked. Losing your static tracepoints whenever you rebuild is
14096 undesirable. This function tries to resync/rematch gdb static
14097 tracepoints with the markers on the target, for static tracepoints
14098 that have not been set by marker id. Static tracepoint that have
14099 been set by marker id are reset by marker id in breakpoint_re_set.
14100 The heuristic is:
14101
14102 1) For a tracepoint set at a specific address, look for a marker at
14103 the old PC. If one is found there, assume to be the same marker.
14104 If the name / string id of the marker found is different from the
14105 previous known name, assume that means the user renamed the marker
14106 in the sources, and output a warning.
14107
14108 2) For a tracepoint set at a given line number, look for a marker
14109 at the new address of the old line number. If one is found there,
14110 assume to be the same marker. If the name / string id of the
14111 marker found is different from the previous known name, assume that
14112 means the user renamed the marker in the sources, and output a
14113 warning.
14114
14115 3) If a marker is no longer found at the same address or line, it
14116 may mean the marker no longer exists. But it may also just mean
14117 the code changed a bit. Maybe the user added a few lines of code
14118 that made the marker move up or down (in line number terms). Ask
14119 the target for info about the marker with the string id as we knew
14120 it. If found, update line number and address in the matching
14121 static tracepoint. This will get confused if there's more than one
14122 marker with the same ID (possible in UST, although unadvised
14123 precisely because it confuses tools). */
14124
14125 static struct symtab_and_line
14126 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
14127 {
14128 struct tracepoint *tp = (struct tracepoint *) b;
14129 struct static_tracepoint_marker marker;
14130 CORE_ADDR pc;
14131
14132 pc = sal.pc;
14133 if (sal.line)
14134 find_line_pc (sal.symtab, sal.line, &pc);
14135
14136 if (target_static_tracepoint_marker_at (pc, &marker))
14137 {
14138 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
14139 warning (_("static tracepoint %d changed probed marker from %s to %s"),
14140 b->number,
14141 tp->static_trace_marker_id, marker.str_id);
14142
14143 xfree (tp->static_trace_marker_id);
14144 tp->static_trace_marker_id = xstrdup (marker.str_id);
14145 release_static_tracepoint_marker (&marker);
14146
14147 return sal;
14148 }
14149
14150 /* Old marker wasn't found on target at lineno. Try looking it up
14151 by string ID. */
14152 if (!sal.explicit_pc
14153 && sal.line != 0
14154 && sal.symtab != NULL
14155 && tp->static_trace_marker_id != NULL)
14156 {
14157 VEC(static_tracepoint_marker_p) *markers;
14158
14159 markers
14160 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
14161
14162 if (!VEC_empty(static_tracepoint_marker_p, markers))
14163 {
14164 struct symtab_and_line sal2;
14165 struct symbol *sym;
14166 struct static_tracepoint_marker *tpmarker;
14167 struct ui_out *uiout = current_uiout;
14168
14169 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
14170
14171 xfree (tp->static_trace_marker_id);
14172 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
14173
14174 warning (_("marker for static tracepoint %d (%s) not "
14175 "found at previous line number"),
14176 b->number, tp->static_trace_marker_id);
14177
14178 init_sal (&sal2);
14179
14180 sal2.pc = tpmarker->address;
14181
14182 sal2 = find_pc_line (tpmarker->address, 0);
14183 sym = find_pc_sect_function (tpmarker->address, NULL);
14184 ui_out_text (uiout, "Now in ");
14185 if (sym)
14186 {
14187 ui_out_field_string (uiout, "func",
14188 SYMBOL_PRINT_NAME (sym));
14189 ui_out_text (uiout, " at ");
14190 }
14191 ui_out_field_string (uiout, "file",
14192 symtab_to_filename_for_display (sal2.symtab));
14193 ui_out_text (uiout, ":");
14194
14195 if (ui_out_is_mi_like_p (uiout))
14196 {
14197 const char *fullname = symtab_to_fullname (sal2.symtab);
14198
14199 ui_out_field_string (uiout, "fullname", fullname);
14200 }
14201
14202 ui_out_field_int (uiout, "line", sal2.line);
14203 ui_out_text (uiout, "\n");
14204
14205 b->loc->line_number = sal2.line;
14206 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
14207
14208 xfree (b->addr_string);
14209 b->addr_string = xstrprintf ("%s:%d",
14210 symtab_to_filename_for_display (sal2.symtab),
14211 b->loc->line_number);
14212
14213 /* Might be nice to check if function changed, and warn if
14214 so. */
14215
14216 release_static_tracepoint_marker (tpmarker);
14217 }
14218 }
14219 return sal;
14220 }
14221
14222 /* Returns 1 iff locations A and B are sufficiently same that
14223 we don't need to report breakpoint as changed. */
14224
14225 static int
14226 locations_are_equal (struct bp_location *a, struct bp_location *b)
14227 {
14228 while (a && b)
14229 {
14230 if (a->address != b->address)
14231 return 0;
14232
14233 if (a->shlib_disabled != b->shlib_disabled)
14234 return 0;
14235
14236 if (a->enabled != b->enabled)
14237 return 0;
14238
14239 a = a->next;
14240 b = b->next;
14241 }
14242
14243 if ((a == NULL) != (b == NULL))
14244 return 0;
14245
14246 return 1;
14247 }
14248
14249 /* Create new breakpoint locations for B (a hardware or software breakpoint)
14250 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
14251 a ranged breakpoint. */
14252
14253 void
14254 update_breakpoint_locations (struct breakpoint *b,
14255 struct symtabs_and_lines sals,
14256 struct symtabs_and_lines sals_end)
14257 {
14258 int i;
14259 struct bp_location *existing_locations = b->loc;
14260
14261 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14262 {
14263 /* Ranged breakpoints have only one start location and one end
14264 location. */
14265 b->enable_state = bp_disabled;
14266 update_global_location_list (1);
14267 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14268 "multiple locations found\n"),
14269 b->number);
14270 return;
14271 }
14272
14273 /* If there's no new locations, and all existing locations are
14274 pending, don't do anything. This optimizes the common case where
14275 all locations are in the same shared library, that was unloaded.
14276 We'd like to retain the location, so that when the library is
14277 loaded again, we don't loose the enabled/disabled status of the
14278 individual locations. */
14279 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
14280 return;
14281
14282 b->loc = NULL;
14283
14284 for (i = 0; i < sals.nelts; ++i)
14285 {
14286 struct bp_location *new_loc;
14287
14288 switch_to_program_space_and_thread (sals.sals[i].pspace);
14289
14290 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14291
14292 /* Reparse conditions, they might contain references to the
14293 old symtab. */
14294 if (b->cond_string != NULL)
14295 {
14296 const char *s;
14297 volatile struct gdb_exception e;
14298
14299 s = b->cond_string;
14300 TRY_CATCH (e, RETURN_MASK_ERROR)
14301 {
14302 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14303 block_for_pc (sals.sals[i].pc),
14304 0);
14305 }
14306 if (e.reason < 0)
14307 {
14308 warning (_("failed to reevaluate condition "
14309 "for breakpoint %d: %s"),
14310 b->number, e.message);
14311 new_loc->enabled = 0;
14312 }
14313 }
14314
14315 if (sals_end.nelts)
14316 {
14317 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14318
14319 new_loc->length = end - sals.sals[0].pc + 1;
14320 }
14321 }
14322
14323 /* Update locations of permanent breakpoints. */
14324 if (b->enable_state == bp_permanent)
14325 make_breakpoint_permanent (b);
14326
14327 /* If possible, carry over 'disable' status from existing
14328 breakpoints. */
14329 {
14330 struct bp_location *e = existing_locations;
14331 /* If there are multiple breakpoints with the same function name,
14332 e.g. for inline functions, comparing function names won't work.
14333 Instead compare pc addresses; this is just a heuristic as things
14334 may have moved, but in practice it gives the correct answer
14335 often enough until a better solution is found. */
14336 int have_ambiguous_names = ambiguous_names_p (b->loc);
14337
14338 for (; e; e = e->next)
14339 {
14340 if (!e->enabled && e->function_name)
14341 {
14342 struct bp_location *l = b->loc;
14343 if (have_ambiguous_names)
14344 {
14345 for (; l; l = l->next)
14346 if (breakpoint_locations_match (e, l))
14347 {
14348 l->enabled = 0;
14349 break;
14350 }
14351 }
14352 else
14353 {
14354 for (; l; l = l->next)
14355 if (l->function_name
14356 && strcmp (e->function_name, l->function_name) == 0)
14357 {
14358 l->enabled = 0;
14359 break;
14360 }
14361 }
14362 }
14363 }
14364 }
14365
14366 if (!locations_are_equal (existing_locations, b->loc))
14367 observer_notify_breakpoint_modified (b);
14368
14369 update_global_location_list (1);
14370 }
14371
14372 /* Find the SaL locations corresponding to the given ADDR_STRING.
14373 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14374
14375 static struct symtabs_and_lines
14376 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14377 {
14378 char *s;
14379 struct symtabs_and_lines sals = {0};
14380 volatile struct gdb_exception e;
14381
14382 gdb_assert (b->ops != NULL);
14383 s = addr_string;
14384
14385 TRY_CATCH (e, RETURN_MASK_ERROR)
14386 {
14387 b->ops->decode_linespec (b, &s, &sals);
14388 }
14389 if (e.reason < 0)
14390 {
14391 int not_found_and_ok = 0;
14392 /* For pending breakpoints, it's expected that parsing will
14393 fail until the right shared library is loaded. User has
14394 already told to create pending breakpoints and don't need
14395 extra messages. If breakpoint is in bp_shlib_disabled
14396 state, then user already saw the message about that
14397 breakpoint being disabled, and don't want to see more
14398 errors. */
14399 if (e.error == NOT_FOUND_ERROR
14400 && (b->condition_not_parsed
14401 || (b->loc && b->loc->shlib_disabled)
14402 || (b->loc && b->loc->pspace->executing_startup)
14403 || b->enable_state == bp_disabled))
14404 not_found_and_ok = 1;
14405
14406 if (!not_found_and_ok)
14407 {
14408 /* We surely don't want to warn about the same breakpoint
14409 10 times. One solution, implemented here, is disable
14410 the breakpoint on error. Another solution would be to
14411 have separate 'warning emitted' flag. Since this
14412 happens only when a binary has changed, I don't know
14413 which approach is better. */
14414 b->enable_state = bp_disabled;
14415 throw_exception (e);
14416 }
14417 }
14418
14419 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14420 {
14421 int i;
14422
14423 for (i = 0; i < sals.nelts; ++i)
14424 resolve_sal_pc (&sals.sals[i]);
14425 if (b->condition_not_parsed && s && s[0])
14426 {
14427 char *cond_string, *extra_string;
14428 int thread, task;
14429
14430 find_condition_and_thread (s, sals.sals[0].pc,
14431 &cond_string, &thread, &task,
14432 &extra_string);
14433 if (cond_string)
14434 b->cond_string = cond_string;
14435 b->thread = thread;
14436 b->task = task;
14437 if (extra_string)
14438 b->extra_string = extra_string;
14439 b->condition_not_parsed = 0;
14440 }
14441
14442 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14443 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14444
14445 *found = 1;
14446 }
14447 else
14448 *found = 0;
14449
14450 return sals;
14451 }
14452
14453 /* The default re_set method, for typical hardware or software
14454 breakpoints. Reevaluate the breakpoint and recreate its
14455 locations. */
14456
14457 static void
14458 breakpoint_re_set_default (struct breakpoint *b)
14459 {
14460 int found;
14461 struct symtabs_and_lines sals, sals_end;
14462 struct symtabs_and_lines expanded = {0};
14463 struct symtabs_and_lines expanded_end = {0};
14464
14465 sals = addr_string_to_sals (b, b->addr_string, &found);
14466 if (found)
14467 {
14468 make_cleanup (xfree, sals.sals);
14469 expanded = sals;
14470 }
14471
14472 if (b->addr_string_range_end)
14473 {
14474 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14475 if (found)
14476 {
14477 make_cleanup (xfree, sals_end.sals);
14478 expanded_end = sals_end;
14479 }
14480 }
14481
14482 update_breakpoint_locations (b, expanded, expanded_end);
14483 }
14484
14485 /* Default method for creating SALs from an address string. It basically
14486 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14487
14488 static void
14489 create_sals_from_address_default (char **arg,
14490 struct linespec_result *canonical,
14491 enum bptype type_wanted,
14492 char *addr_start, char **copy_arg)
14493 {
14494 parse_breakpoint_sals (arg, canonical);
14495 }
14496
14497 /* Call create_breakpoints_sal for the given arguments. This is the default
14498 function for the `create_breakpoints_sal' method of
14499 breakpoint_ops. */
14500
14501 static void
14502 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14503 struct linespec_result *canonical,
14504 char *cond_string,
14505 char *extra_string,
14506 enum bptype type_wanted,
14507 enum bpdisp disposition,
14508 int thread,
14509 int task, int ignore_count,
14510 const struct breakpoint_ops *ops,
14511 int from_tty, int enabled,
14512 int internal, unsigned flags)
14513 {
14514 create_breakpoints_sal (gdbarch, canonical, cond_string,
14515 extra_string,
14516 type_wanted, disposition,
14517 thread, task, ignore_count, ops, from_tty,
14518 enabled, internal, flags);
14519 }
14520
14521 /* Decode the line represented by S by calling decode_line_full. This is the
14522 default function for the `decode_linespec' method of breakpoint_ops. */
14523
14524 static void
14525 decode_linespec_default (struct breakpoint *b, char **s,
14526 struct symtabs_and_lines *sals)
14527 {
14528 struct linespec_result canonical;
14529
14530 init_linespec_result (&canonical);
14531 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14532 (struct symtab *) NULL, 0,
14533 &canonical, multiple_symbols_all,
14534 b->filter);
14535
14536 /* We should get 0 or 1 resulting SALs. */
14537 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14538
14539 if (VEC_length (linespec_sals, canonical.sals) > 0)
14540 {
14541 struct linespec_sals *lsal;
14542
14543 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14544 *sals = lsal->sals;
14545 /* Arrange it so the destructor does not free the
14546 contents. */
14547 lsal->sals.sals = NULL;
14548 }
14549
14550 destroy_linespec_result (&canonical);
14551 }
14552
14553 /* Prepare the global context for a re-set of breakpoint B. */
14554
14555 static struct cleanup *
14556 prepare_re_set_context (struct breakpoint *b)
14557 {
14558 struct cleanup *cleanups;
14559
14560 input_radix = b->input_radix;
14561 cleanups = save_current_space_and_thread ();
14562 if (b->pspace != NULL)
14563 switch_to_program_space_and_thread (b->pspace);
14564 set_language (b->language);
14565
14566 return cleanups;
14567 }
14568
14569 /* Reset a breakpoint given it's struct breakpoint * BINT.
14570 The value we return ends up being the return value from catch_errors.
14571 Unused in this case. */
14572
14573 static int
14574 breakpoint_re_set_one (void *bint)
14575 {
14576 /* Get past catch_errs. */
14577 struct breakpoint *b = (struct breakpoint *) bint;
14578 struct cleanup *cleanups;
14579
14580 cleanups = prepare_re_set_context (b);
14581 b->ops->re_set (b);
14582 do_cleanups (cleanups);
14583 return 0;
14584 }
14585
14586 /* Re-set all breakpoints after symbols have been re-loaded. */
14587 void
14588 breakpoint_re_set (void)
14589 {
14590 struct breakpoint *b, *b_tmp;
14591 enum language save_language;
14592 int save_input_radix;
14593 struct cleanup *old_chain;
14594
14595 save_language = current_language->la_language;
14596 save_input_radix = input_radix;
14597 old_chain = save_current_program_space ();
14598
14599 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14600 {
14601 /* Format possible error msg. */
14602 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14603 b->number);
14604 struct cleanup *cleanups = make_cleanup (xfree, message);
14605 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14606 do_cleanups (cleanups);
14607 }
14608 set_language (save_language);
14609 input_radix = save_input_radix;
14610
14611 jit_breakpoint_re_set ();
14612
14613 do_cleanups (old_chain);
14614
14615 create_overlay_event_breakpoint ();
14616 create_longjmp_master_breakpoint ();
14617 create_std_terminate_master_breakpoint ();
14618 create_exception_master_breakpoint ();
14619 }
14620 \f
14621 /* Reset the thread number of this breakpoint:
14622
14623 - If the breakpoint is for all threads, leave it as-is.
14624 - Else, reset it to the current thread for inferior_ptid. */
14625 void
14626 breakpoint_re_set_thread (struct breakpoint *b)
14627 {
14628 if (b->thread != -1)
14629 {
14630 if (in_thread_list (inferior_ptid))
14631 b->thread = pid_to_thread_id (inferior_ptid);
14632
14633 /* We're being called after following a fork. The new fork is
14634 selected as current, and unless this was a vfork will have a
14635 different program space from the original thread. Reset that
14636 as well. */
14637 b->loc->pspace = current_program_space;
14638 }
14639 }
14640
14641 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14642 If from_tty is nonzero, it prints a message to that effect,
14643 which ends with a period (no newline). */
14644
14645 void
14646 set_ignore_count (int bptnum, int count, int from_tty)
14647 {
14648 struct breakpoint *b;
14649
14650 if (count < 0)
14651 count = 0;
14652
14653 ALL_BREAKPOINTS (b)
14654 if (b->number == bptnum)
14655 {
14656 if (is_tracepoint (b))
14657 {
14658 if (from_tty && count != 0)
14659 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14660 bptnum);
14661 return;
14662 }
14663
14664 b->ignore_count = count;
14665 if (from_tty)
14666 {
14667 if (count == 0)
14668 printf_filtered (_("Will stop next time "
14669 "breakpoint %d is reached."),
14670 bptnum);
14671 else if (count == 1)
14672 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14673 bptnum);
14674 else
14675 printf_filtered (_("Will ignore next %d "
14676 "crossings of breakpoint %d."),
14677 count, bptnum);
14678 }
14679 observer_notify_breakpoint_modified (b);
14680 return;
14681 }
14682
14683 error (_("No breakpoint number %d."), bptnum);
14684 }
14685
14686 /* Command to set ignore-count of breakpoint N to COUNT. */
14687
14688 static void
14689 ignore_command (char *args, int from_tty)
14690 {
14691 char *p = args;
14692 int num;
14693
14694 if (p == 0)
14695 error_no_arg (_("a breakpoint number"));
14696
14697 num = get_number (&p);
14698 if (num == 0)
14699 error (_("bad breakpoint number: '%s'"), args);
14700 if (*p == 0)
14701 error (_("Second argument (specified ignore-count) is missing."));
14702
14703 set_ignore_count (num,
14704 longest_to_int (value_as_long (parse_and_eval (p))),
14705 from_tty);
14706 if (from_tty)
14707 printf_filtered ("\n");
14708 }
14709 \f
14710 /* Call FUNCTION on each of the breakpoints
14711 whose numbers are given in ARGS. */
14712
14713 static void
14714 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14715 void *),
14716 void *data)
14717 {
14718 int num;
14719 struct breakpoint *b, *tmp;
14720 int match;
14721 struct get_number_or_range_state state;
14722
14723 if (args == 0)
14724 error_no_arg (_("one or more breakpoint numbers"));
14725
14726 init_number_or_range (&state, args);
14727
14728 while (!state.finished)
14729 {
14730 char *p = state.string;
14731
14732 match = 0;
14733
14734 num = get_number_or_range (&state);
14735 if (num == 0)
14736 {
14737 warning (_("bad breakpoint number at or near '%s'"), p);
14738 }
14739 else
14740 {
14741 ALL_BREAKPOINTS_SAFE (b, tmp)
14742 if (b->number == num)
14743 {
14744 match = 1;
14745 function (b, data);
14746 break;
14747 }
14748 if (match == 0)
14749 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14750 }
14751 }
14752 }
14753
14754 static struct bp_location *
14755 find_location_by_number (char *number)
14756 {
14757 char *dot = strchr (number, '.');
14758 char *p1;
14759 int bp_num;
14760 int loc_num;
14761 struct breakpoint *b;
14762 struct bp_location *loc;
14763
14764 *dot = '\0';
14765
14766 p1 = number;
14767 bp_num = get_number (&p1);
14768 if (bp_num == 0)
14769 error (_("Bad breakpoint number '%s'"), number);
14770
14771 ALL_BREAKPOINTS (b)
14772 if (b->number == bp_num)
14773 {
14774 break;
14775 }
14776
14777 if (!b || b->number != bp_num)
14778 error (_("Bad breakpoint number '%s'"), number);
14779
14780 p1 = dot+1;
14781 loc_num = get_number (&p1);
14782 if (loc_num == 0)
14783 error (_("Bad breakpoint location number '%s'"), number);
14784
14785 --loc_num;
14786 loc = b->loc;
14787 for (;loc_num && loc; --loc_num, loc = loc->next)
14788 ;
14789 if (!loc)
14790 error (_("Bad breakpoint location number '%s'"), dot+1);
14791
14792 return loc;
14793 }
14794
14795
14796 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14797 If from_tty is nonzero, it prints a message to that effect,
14798 which ends with a period (no newline). */
14799
14800 void
14801 disable_breakpoint (struct breakpoint *bpt)
14802 {
14803 /* Never disable a watchpoint scope breakpoint; we want to
14804 hit them when we leave scope so we can delete both the
14805 watchpoint and its scope breakpoint at that time. */
14806 if (bpt->type == bp_watchpoint_scope)
14807 return;
14808
14809 /* You can't disable permanent breakpoints. */
14810 if (bpt->enable_state == bp_permanent)
14811 return;
14812
14813 bpt->enable_state = bp_disabled;
14814
14815 /* Mark breakpoint locations modified. */
14816 mark_breakpoint_modified (bpt);
14817
14818 if (target_supports_enable_disable_tracepoint ()
14819 && current_trace_status ()->running && is_tracepoint (bpt))
14820 {
14821 struct bp_location *location;
14822
14823 for (location = bpt->loc; location; location = location->next)
14824 target_disable_tracepoint (location);
14825 }
14826
14827 update_global_location_list (0);
14828
14829 observer_notify_breakpoint_modified (bpt);
14830 }
14831
14832 /* A callback for iterate_over_related_breakpoints. */
14833
14834 static void
14835 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14836 {
14837 disable_breakpoint (b);
14838 }
14839
14840 /* A callback for map_breakpoint_numbers that calls
14841 disable_breakpoint. */
14842
14843 static void
14844 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14845 {
14846 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14847 }
14848
14849 static void
14850 disable_command (char *args, int from_tty)
14851 {
14852 if (args == 0)
14853 {
14854 struct breakpoint *bpt;
14855
14856 ALL_BREAKPOINTS (bpt)
14857 if (user_breakpoint_p (bpt))
14858 disable_breakpoint (bpt);
14859 }
14860 else
14861 {
14862 char *num = extract_arg (&args);
14863
14864 while (num)
14865 {
14866 if (strchr (num, '.'))
14867 {
14868 struct bp_location *loc = find_location_by_number (num);
14869
14870 if (loc)
14871 {
14872 if (loc->enabled)
14873 {
14874 loc->enabled = 0;
14875 mark_breakpoint_location_modified (loc);
14876 }
14877 if (target_supports_enable_disable_tracepoint ()
14878 && current_trace_status ()->running && loc->owner
14879 && is_tracepoint (loc->owner))
14880 target_disable_tracepoint (loc);
14881 }
14882 update_global_location_list (0);
14883 }
14884 else
14885 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14886 num = extract_arg (&args);
14887 }
14888 }
14889 }
14890
14891 static void
14892 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14893 int count)
14894 {
14895 int target_resources_ok;
14896
14897 if (bpt->type == bp_hardware_breakpoint)
14898 {
14899 int i;
14900 i = hw_breakpoint_used_count ();
14901 target_resources_ok =
14902 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14903 i + 1, 0);
14904 if (target_resources_ok == 0)
14905 error (_("No hardware breakpoint support in the target."));
14906 else if (target_resources_ok < 0)
14907 error (_("Hardware breakpoints used exceeds limit."));
14908 }
14909
14910 if (is_watchpoint (bpt))
14911 {
14912 /* Initialize it just to avoid a GCC false warning. */
14913 enum enable_state orig_enable_state = 0;
14914 volatile struct gdb_exception e;
14915
14916 TRY_CATCH (e, RETURN_MASK_ALL)
14917 {
14918 struct watchpoint *w = (struct watchpoint *) bpt;
14919
14920 orig_enable_state = bpt->enable_state;
14921 bpt->enable_state = bp_enabled;
14922 update_watchpoint (w, 1 /* reparse */);
14923 }
14924 if (e.reason < 0)
14925 {
14926 bpt->enable_state = orig_enable_state;
14927 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14928 bpt->number);
14929 return;
14930 }
14931 }
14932
14933 if (bpt->enable_state != bp_permanent)
14934 bpt->enable_state = bp_enabled;
14935
14936 bpt->enable_state = bp_enabled;
14937
14938 /* Mark breakpoint locations modified. */
14939 mark_breakpoint_modified (bpt);
14940
14941 if (target_supports_enable_disable_tracepoint ()
14942 && current_trace_status ()->running && is_tracepoint (bpt))
14943 {
14944 struct bp_location *location;
14945
14946 for (location = bpt->loc; location; location = location->next)
14947 target_enable_tracepoint (location);
14948 }
14949
14950 bpt->disposition = disposition;
14951 bpt->enable_count = count;
14952 update_global_location_list (1);
14953
14954 observer_notify_breakpoint_modified (bpt);
14955 }
14956
14957
14958 void
14959 enable_breakpoint (struct breakpoint *bpt)
14960 {
14961 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14962 }
14963
14964 static void
14965 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14966 {
14967 enable_breakpoint (bpt);
14968 }
14969
14970 /* A callback for map_breakpoint_numbers that calls
14971 enable_breakpoint. */
14972
14973 static void
14974 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14975 {
14976 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14977 }
14978
14979 /* The enable command enables the specified breakpoints (or all defined
14980 breakpoints) so they once again become (or continue to be) effective
14981 in stopping the inferior. */
14982
14983 static void
14984 enable_command (char *args, int from_tty)
14985 {
14986 if (args == 0)
14987 {
14988 struct breakpoint *bpt;
14989
14990 ALL_BREAKPOINTS (bpt)
14991 if (user_breakpoint_p (bpt))
14992 enable_breakpoint (bpt);
14993 }
14994 else
14995 {
14996 char *num = extract_arg (&args);
14997
14998 while (num)
14999 {
15000 if (strchr (num, '.'))
15001 {
15002 struct bp_location *loc = find_location_by_number (num);
15003
15004 if (loc)
15005 {
15006 if (!loc->enabled)
15007 {
15008 loc->enabled = 1;
15009 mark_breakpoint_location_modified (loc);
15010 }
15011 if (target_supports_enable_disable_tracepoint ()
15012 && current_trace_status ()->running && loc->owner
15013 && is_tracepoint (loc->owner))
15014 target_enable_tracepoint (loc);
15015 }
15016 update_global_location_list (1);
15017 }
15018 else
15019 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
15020 num = extract_arg (&args);
15021 }
15022 }
15023 }
15024
15025 /* This struct packages up disposition data for application to multiple
15026 breakpoints. */
15027
15028 struct disp_data
15029 {
15030 enum bpdisp disp;
15031 int count;
15032 };
15033
15034 static void
15035 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
15036 {
15037 struct disp_data disp_data = *(struct disp_data *) arg;
15038
15039 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
15040 }
15041
15042 static void
15043 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
15044 {
15045 struct disp_data disp = { disp_disable, 1 };
15046
15047 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15048 }
15049
15050 static void
15051 enable_once_command (char *args, int from_tty)
15052 {
15053 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
15054 }
15055
15056 static void
15057 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
15058 {
15059 struct disp_data disp = { disp_disable, *(int *) countptr };
15060
15061 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15062 }
15063
15064 static void
15065 enable_count_command (char *args, int from_tty)
15066 {
15067 int count = get_number (&args);
15068
15069 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
15070 }
15071
15072 static void
15073 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
15074 {
15075 struct disp_data disp = { disp_del, 1 };
15076
15077 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15078 }
15079
15080 static void
15081 enable_delete_command (char *args, int from_tty)
15082 {
15083 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
15084 }
15085 \f
15086 static void
15087 set_breakpoint_cmd (char *args, int from_tty)
15088 {
15089 }
15090
15091 static void
15092 show_breakpoint_cmd (char *args, int from_tty)
15093 {
15094 }
15095
15096 /* Invalidate last known value of any hardware watchpoint if
15097 the memory which that value represents has been written to by
15098 GDB itself. */
15099
15100 static void
15101 invalidate_bp_value_on_memory_change (struct inferior *inferior,
15102 CORE_ADDR addr, ssize_t len,
15103 const bfd_byte *data)
15104 {
15105 struct breakpoint *bp;
15106
15107 ALL_BREAKPOINTS (bp)
15108 if (bp->enable_state == bp_enabled
15109 && bp->type == bp_hardware_watchpoint)
15110 {
15111 struct watchpoint *wp = (struct watchpoint *) bp;
15112
15113 if (wp->val_valid && wp->val)
15114 {
15115 struct bp_location *loc;
15116
15117 for (loc = bp->loc; loc != NULL; loc = loc->next)
15118 if (loc->loc_type == bp_loc_hardware_watchpoint
15119 && loc->address + loc->length > addr
15120 && addr + len > loc->address)
15121 {
15122 value_free (wp->val);
15123 wp->val = NULL;
15124 wp->val_valid = 0;
15125 }
15126 }
15127 }
15128 }
15129
15130 /* Create and insert a raw software breakpoint at PC. Return an
15131 identifier, which should be used to remove the breakpoint later.
15132 In general, places which call this should be using something on the
15133 breakpoint chain instead; this function should be eliminated
15134 someday. */
15135
15136 void *
15137 deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
15138 struct address_space *aspace, CORE_ADDR pc)
15139 {
15140 struct bp_target_info *bp_tgt;
15141
15142 bp_tgt = XCNEW (struct bp_target_info);
15143
15144 bp_tgt->placed_address_space = aspace;
15145 bp_tgt->placed_address = pc;
15146
15147 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
15148 {
15149 /* Could not insert the breakpoint. */
15150 xfree (bp_tgt);
15151 return NULL;
15152 }
15153
15154 return bp_tgt;
15155 }
15156
15157 /* Remove a breakpoint BP inserted by
15158 deprecated_insert_raw_breakpoint. */
15159
15160 int
15161 deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
15162 {
15163 struct bp_target_info *bp_tgt = bp;
15164 int ret;
15165
15166 ret = target_remove_breakpoint (gdbarch, bp_tgt);
15167 xfree (bp_tgt);
15168
15169 return ret;
15170 }
15171
15172 /* Create and insert a breakpoint for software single step. */
15173
15174 void
15175 insert_single_step_breakpoint (struct gdbarch *gdbarch,
15176 struct address_space *aspace,
15177 CORE_ADDR next_pc)
15178 {
15179 void **bpt_p;
15180
15181 if (single_step_breakpoints[0] == NULL)
15182 {
15183 bpt_p = &single_step_breakpoints[0];
15184 single_step_gdbarch[0] = gdbarch;
15185 }
15186 else
15187 {
15188 gdb_assert (single_step_breakpoints[1] == NULL);
15189 bpt_p = &single_step_breakpoints[1];
15190 single_step_gdbarch[1] = gdbarch;
15191 }
15192
15193 /* NOTE drow/2006-04-11: A future improvement to this function would
15194 be to only create the breakpoints once, and actually put them on
15195 the breakpoint chain. That would let us use set_raw_breakpoint.
15196 We could adjust the addresses each time they were needed. Doing
15197 this requires corresponding changes elsewhere where single step
15198 breakpoints are handled, however. So, for now, we use this. */
15199
15200 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
15201 if (*bpt_p == NULL)
15202 error (_("Could not insert single-step breakpoint at %s"),
15203 paddress (gdbarch, next_pc));
15204 }
15205
15206 /* Check if the breakpoints used for software single stepping
15207 were inserted or not. */
15208
15209 int
15210 single_step_breakpoints_inserted (void)
15211 {
15212 return (single_step_breakpoints[0] != NULL
15213 || single_step_breakpoints[1] != NULL);
15214 }
15215
15216 /* Remove and delete any breakpoints used for software single step. */
15217
15218 void
15219 remove_single_step_breakpoints (void)
15220 {
15221 gdb_assert (single_step_breakpoints[0] != NULL);
15222
15223 /* See insert_single_step_breakpoint for more about this deprecated
15224 call. */
15225 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
15226 single_step_breakpoints[0]);
15227 single_step_gdbarch[0] = NULL;
15228 single_step_breakpoints[0] = NULL;
15229
15230 if (single_step_breakpoints[1] != NULL)
15231 {
15232 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
15233 single_step_breakpoints[1]);
15234 single_step_gdbarch[1] = NULL;
15235 single_step_breakpoints[1] = NULL;
15236 }
15237 }
15238
15239 /* Delete software single step breakpoints without removing them from
15240 the inferior. This is intended to be used if the inferior's address
15241 space where they were inserted is already gone, e.g. after exit or
15242 exec. */
15243
15244 void
15245 cancel_single_step_breakpoints (void)
15246 {
15247 int i;
15248
15249 for (i = 0; i < 2; i++)
15250 if (single_step_breakpoints[i])
15251 {
15252 xfree (single_step_breakpoints[i]);
15253 single_step_breakpoints[i] = NULL;
15254 single_step_gdbarch[i] = NULL;
15255 }
15256 }
15257
15258 /* Detach software single-step breakpoints from INFERIOR_PTID without
15259 removing them. */
15260
15261 static void
15262 detach_single_step_breakpoints (void)
15263 {
15264 int i;
15265
15266 for (i = 0; i < 2; i++)
15267 if (single_step_breakpoints[i])
15268 target_remove_breakpoint (single_step_gdbarch[i],
15269 single_step_breakpoints[i]);
15270 }
15271
15272 /* Check whether a software single-step breakpoint is inserted at
15273 PC. */
15274
15275 int
15276 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15277 CORE_ADDR pc)
15278 {
15279 int i;
15280
15281 for (i = 0; i < 2; i++)
15282 {
15283 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
15284 if (bp_tgt
15285 && breakpoint_address_match (bp_tgt->placed_address_space,
15286 bp_tgt->placed_address,
15287 aspace, pc))
15288 return 1;
15289 }
15290
15291 return 0;
15292 }
15293
15294 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
15295 non-zero otherwise. */
15296 static int
15297 is_syscall_catchpoint_enabled (struct breakpoint *bp)
15298 {
15299 if (syscall_catchpoint_p (bp)
15300 && bp->enable_state != bp_disabled
15301 && bp->enable_state != bp_call_disabled)
15302 return 1;
15303 else
15304 return 0;
15305 }
15306
15307 int
15308 catch_syscall_enabled (void)
15309 {
15310 struct catch_syscall_inferior_data *inf_data
15311 = get_catch_syscall_inferior_data (current_inferior ());
15312
15313 return inf_data->total_syscalls_count != 0;
15314 }
15315
15316 int
15317 catching_syscall_number (int syscall_number)
15318 {
15319 struct breakpoint *bp;
15320
15321 ALL_BREAKPOINTS (bp)
15322 if (is_syscall_catchpoint_enabled (bp))
15323 {
15324 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
15325
15326 if (c->syscalls_to_be_caught)
15327 {
15328 int i, iter;
15329 for (i = 0;
15330 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
15331 i++)
15332 if (syscall_number == iter)
15333 return 1;
15334 }
15335 else
15336 return 1;
15337 }
15338
15339 return 0;
15340 }
15341
15342 /* Complete syscall names. Used by "catch syscall". */
15343 static VEC (char_ptr) *
15344 catch_syscall_completer (struct cmd_list_element *cmd,
15345 const char *text, const char *word)
15346 {
15347 const char **list = get_syscall_names ();
15348 VEC (char_ptr) *retlist
15349 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
15350
15351 xfree (list);
15352 return retlist;
15353 }
15354
15355 /* Tracepoint-specific operations. */
15356
15357 /* Set tracepoint count to NUM. */
15358 static void
15359 set_tracepoint_count (int num)
15360 {
15361 tracepoint_count = num;
15362 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15363 }
15364
15365 static void
15366 trace_command (char *arg, int from_tty)
15367 {
15368 struct breakpoint_ops *ops;
15369 const char *arg_cp = arg;
15370
15371 if (arg && probe_linespec_to_ops (&arg_cp))
15372 ops = &tracepoint_probe_breakpoint_ops;
15373 else
15374 ops = &tracepoint_breakpoint_ops;
15375
15376 create_breakpoint (get_current_arch (),
15377 arg,
15378 NULL, 0, NULL, 1 /* parse arg */,
15379 0 /* tempflag */,
15380 bp_tracepoint /* type_wanted */,
15381 0 /* Ignore count */,
15382 pending_break_support,
15383 ops,
15384 from_tty,
15385 1 /* enabled */,
15386 0 /* internal */, 0);
15387 }
15388
15389 static void
15390 ftrace_command (char *arg, int from_tty)
15391 {
15392 create_breakpoint (get_current_arch (),
15393 arg,
15394 NULL, 0, NULL, 1 /* parse arg */,
15395 0 /* tempflag */,
15396 bp_fast_tracepoint /* type_wanted */,
15397 0 /* Ignore count */,
15398 pending_break_support,
15399 &tracepoint_breakpoint_ops,
15400 from_tty,
15401 1 /* enabled */,
15402 0 /* internal */, 0);
15403 }
15404
15405 /* strace command implementation. Creates a static tracepoint. */
15406
15407 static void
15408 strace_command (char *arg, int from_tty)
15409 {
15410 struct breakpoint_ops *ops;
15411
15412 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15413 or with a normal static tracepoint. */
15414 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15415 ops = &strace_marker_breakpoint_ops;
15416 else
15417 ops = &tracepoint_breakpoint_ops;
15418
15419 create_breakpoint (get_current_arch (),
15420 arg,
15421 NULL, 0, NULL, 1 /* parse arg */,
15422 0 /* tempflag */,
15423 bp_static_tracepoint /* type_wanted */,
15424 0 /* Ignore count */,
15425 pending_break_support,
15426 ops,
15427 from_tty,
15428 1 /* enabled */,
15429 0 /* internal */, 0);
15430 }
15431
15432 /* Set up a fake reader function that gets command lines from a linked
15433 list that was acquired during tracepoint uploading. */
15434
15435 static struct uploaded_tp *this_utp;
15436 static int next_cmd;
15437
15438 static char *
15439 read_uploaded_action (void)
15440 {
15441 char *rslt;
15442
15443 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15444
15445 next_cmd++;
15446
15447 return rslt;
15448 }
15449
15450 /* Given information about a tracepoint as recorded on a target (which
15451 can be either a live system or a trace file), attempt to create an
15452 equivalent GDB tracepoint. This is not a reliable process, since
15453 the target does not necessarily have all the information used when
15454 the tracepoint was originally defined. */
15455
15456 struct tracepoint *
15457 create_tracepoint_from_upload (struct uploaded_tp *utp)
15458 {
15459 char *addr_str, small_buf[100];
15460 struct tracepoint *tp;
15461
15462 if (utp->at_string)
15463 addr_str = utp->at_string;
15464 else
15465 {
15466 /* In the absence of a source location, fall back to raw
15467 address. Since there is no way to confirm that the address
15468 means the same thing as when the trace was started, warn the
15469 user. */
15470 warning (_("Uploaded tracepoint %d has no "
15471 "source location, using raw address"),
15472 utp->number);
15473 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15474 addr_str = small_buf;
15475 }
15476
15477 /* There's not much we can do with a sequence of bytecodes. */
15478 if (utp->cond && !utp->cond_string)
15479 warning (_("Uploaded tracepoint %d condition "
15480 "has no source form, ignoring it"),
15481 utp->number);
15482
15483 if (!create_breakpoint (get_current_arch (),
15484 addr_str,
15485 utp->cond_string, -1, NULL,
15486 0 /* parse cond/thread */,
15487 0 /* tempflag */,
15488 utp->type /* type_wanted */,
15489 0 /* Ignore count */,
15490 pending_break_support,
15491 &tracepoint_breakpoint_ops,
15492 0 /* from_tty */,
15493 utp->enabled /* enabled */,
15494 0 /* internal */,
15495 CREATE_BREAKPOINT_FLAGS_INSERTED))
15496 return NULL;
15497
15498 /* Get the tracepoint we just created. */
15499 tp = get_tracepoint (tracepoint_count);
15500 gdb_assert (tp != NULL);
15501
15502 if (utp->pass > 0)
15503 {
15504 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15505 tp->base.number);
15506
15507 trace_pass_command (small_buf, 0);
15508 }
15509
15510 /* If we have uploaded versions of the original commands, set up a
15511 special-purpose "reader" function and call the usual command line
15512 reader, then pass the result to the breakpoint command-setting
15513 function. */
15514 if (!VEC_empty (char_ptr, utp->cmd_strings))
15515 {
15516 struct command_line *cmd_list;
15517
15518 this_utp = utp;
15519 next_cmd = 0;
15520
15521 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15522
15523 breakpoint_set_commands (&tp->base, cmd_list);
15524 }
15525 else if (!VEC_empty (char_ptr, utp->actions)
15526 || !VEC_empty (char_ptr, utp->step_actions))
15527 warning (_("Uploaded tracepoint %d actions "
15528 "have no source form, ignoring them"),
15529 utp->number);
15530
15531 /* Copy any status information that might be available. */
15532 tp->base.hit_count = utp->hit_count;
15533 tp->traceframe_usage = utp->traceframe_usage;
15534
15535 return tp;
15536 }
15537
15538 /* Print information on tracepoint number TPNUM_EXP, or all if
15539 omitted. */
15540
15541 static void
15542 tracepoints_info (char *args, int from_tty)
15543 {
15544 struct ui_out *uiout = current_uiout;
15545 int num_printed;
15546
15547 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15548
15549 if (num_printed == 0)
15550 {
15551 if (args == NULL || *args == '\0')
15552 ui_out_message (uiout, 0, "No tracepoints.\n");
15553 else
15554 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15555 }
15556
15557 default_collect_info ();
15558 }
15559
15560 /* The 'enable trace' command enables tracepoints.
15561 Not supported by all targets. */
15562 static void
15563 enable_trace_command (char *args, int from_tty)
15564 {
15565 enable_command (args, from_tty);
15566 }
15567
15568 /* The 'disable trace' command disables tracepoints.
15569 Not supported by all targets. */
15570 static void
15571 disable_trace_command (char *args, int from_tty)
15572 {
15573 disable_command (args, from_tty);
15574 }
15575
15576 /* Remove a tracepoint (or all if no argument). */
15577 static void
15578 delete_trace_command (char *arg, int from_tty)
15579 {
15580 struct breakpoint *b, *b_tmp;
15581
15582 dont_repeat ();
15583
15584 if (arg == 0)
15585 {
15586 int breaks_to_delete = 0;
15587
15588 /* Delete all breakpoints if no argument.
15589 Do not delete internal or call-dummy breakpoints, these
15590 have to be deleted with an explicit breakpoint number
15591 argument. */
15592 ALL_TRACEPOINTS (b)
15593 if (is_tracepoint (b) && user_breakpoint_p (b))
15594 {
15595 breaks_to_delete = 1;
15596 break;
15597 }
15598
15599 /* Ask user only if there are some breakpoints to delete. */
15600 if (!from_tty
15601 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15602 {
15603 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15604 if (is_tracepoint (b) && user_breakpoint_p (b))
15605 delete_breakpoint (b);
15606 }
15607 }
15608 else
15609 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15610 }
15611
15612 /* Helper function for trace_pass_command. */
15613
15614 static void
15615 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15616 {
15617 tp->pass_count = count;
15618 observer_notify_breakpoint_modified (&tp->base);
15619 if (from_tty)
15620 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15621 tp->base.number, count);
15622 }
15623
15624 /* Set passcount for tracepoint.
15625
15626 First command argument is passcount, second is tracepoint number.
15627 If tracepoint number omitted, apply to most recently defined.
15628 Also accepts special argument "all". */
15629
15630 static void
15631 trace_pass_command (char *args, int from_tty)
15632 {
15633 struct tracepoint *t1;
15634 unsigned int count;
15635
15636 if (args == 0 || *args == 0)
15637 error (_("passcount command requires an "
15638 "argument (count + optional TP num)"));
15639
15640 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15641
15642 args = skip_spaces (args);
15643 if (*args && strncasecmp (args, "all", 3) == 0)
15644 {
15645 struct breakpoint *b;
15646
15647 args += 3; /* Skip special argument "all". */
15648 if (*args)
15649 error (_("Junk at end of arguments."));
15650
15651 ALL_TRACEPOINTS (b)
15652 {
15653 t1 = (struct tracepoint *) b;
15654 trace_pass_set_count (t1, count, from_tty);
15655 }
15656 }
15657 else if (*args == '\0')
15658 {
15659 t1 = get_tracepoint_by_number (&args, NULL);
15660 if (t1)
15661 trace_pass_set_count (t1, count, from_tty);
15662 }
15663 else
15664 {
15665 struct get_number_or_range_state state;
15666
15667 init_number_or_range (&state, args);
15668 while (!state.finished)
15669 {
15670 t1 = get_tracepoint_by_number (&args, &state);
15671 if (t1)
15672 trace_pass_set_count (t1, count, from_tty);
15673 }
15674 }
15675 }
15676
15677 struct tracepoint *
15678 get_tracepoint (int num)
15679 {
15680 struct breakpoint *t;
15681
15682 ALL_TRACEPOINTS (t)
15683 if (t->number == num)
15684 return (struct tracepoint *) t;
15685
15686 return NULL;
15687 }
15688
15689 /* Find the tracepoint with the given target-side number (which may be
15690 different from the tracepoint number after disconnecting and
15691 reconnecting). */
15692
15693 struct tracepoint *
15694 get_tracepoint_by_number_on_target (int num)
15695 {
15696 struct breakpoint *b;
15697
15698 ALL_TRACEPOINTS (b)
15699 {
15700 struct tracepoint *t = (struct tracepoint *) b;
15701
15702 if (t->number_on_target == num)
15703 return t;
15704 }
15705
15706 return NULL;
15707 }
15708
15709 /* Utility: parse a tracepoint number and look it up in the list.
15710 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15711 If the argument is missing, the most recent tracepoint
15712 (tracepoint_count) is returned. */
15713
15714 struct tracepoint *
15715 get_tracepoint_by_number (char **arg,
15716 struct get_number_or_range_state *state)
15717 {
15718 struct breakpoint *t;
15719 int tpnum;
15720 char *instring = arg == NULL ? NULL : *arg;
15721
15722 if (state)
15723 {
15724 gdb_assert (!state->finished);
15725 tpnum = get_number_or_range (state);
15726 }
15727 else if (arg == NULL || *arg == NULL || ! **arg)
15728 tpnum = tracepoint_count;
15729 else
15730 tpnum = get_number (arg);
15731
15732 if (tpnum <= 0)
15733 {
15734 if (instring && *instring)
15735 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15736 instring);
15737 else
15738 printf_filtered (_("No previous tracepoint\n"));
15739 return NULL;
15740 }
15741
15742 ALL_TRACEPOINTS (t)
15743 if (t->number == tpnum)
15744 {
15745 return (struct tracepoint *) t;
15746 }
15747
15748 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15749 return NULL;
15750 }
15751
15752 void
15753 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15754 {
15755 if (b->thread != -1)
15756 fprintf_unfiltered (fp, " thread %d", b->thread);
15757
15758 if (b->task != 0)
15759 fprintf_unfiltered (fp, " task %d", b->task);
15760
15761 fprintf_unfiltered (fp, "\n");
15762 }
15763
15764 /* Save information on user settable breakpoints (watchpoints, etc) to
15765 a new script file named FILENAME. If FILTER is non-NULL, call it
15766 on each breakpoint and only include the ones for which it returns
15767 non-zero. */
15768
15769 static void
15770 save_breakpoints (char *filename, int from_tty,
15771 int (*filter) (const struct breakpoint *))
15772 {
15773 struct breakpoint *tp;
15774 int any = 0;
15775 struct cleanup *cleanup;
15776 struct ui_file *fp;
15777 int extra_trace_bits = 0;
15778
15779 if (filename == 0 || *filename == 0)
15780 error (_("Argument required (file name in which to save)"));
15781
15782 /* See if we have anything to save. */
15783 ALL_BREAKPOINTS (tp)
15784 {
15785 /* Skip internal and momentary breakpoints. */
15786 if (!user_breakpoint_p (tp))
15787 continue;
15788
15789 /* If we have a filter, only save the breakpoints it accepts. */
15790 if (filter && !filter (tp))
15791 continue;
15792
15793 any = 1;
15794
15795 if (is_tracepoint (tp))
15796 {
15797 extra_trace_bits = 1;
15798
15799 /* We can stop searching. */
15800 break;
15801 }
15802 }
15803
15804 if (!any)
15805 {
15806 warning (_("Nothing to save."));
15807 return;
15808 }
15809
15810 filename = tilde_expand (filename);
15811 cleanup = make_cleanup (xfree, filename);
15812 fp = gdb_fopen (filename, "w");
15813 if (!fp)
15814 error (_("Unable to open file '%s' for saving (%s)"),
15815 filename, safe_strerror (errno));
15816 make_cleanup_ui_file_delete (fp);
15817
15818 if (extra_trace_bits)
15819 save_trace_state_variables (fp);
15820
15821 ALL_BREAKPOINTS (tp)
15822 {
15823 /* Skip internal and momentary breakpoints. */
15824 if (!user_breakpoint_p (tp))
15825 continue;
15826
15827 /* If we have a filter, only save the breakpoints it accepts. */
15828 if (filter && !filter (tp))
15829 continue;
15830
15831 tp->ops->print_recreate (tp, fp);
15832
15833 /* Note, we can't rely on tp->number for anything, as we can't
15834 assume the recreated breakpoint numbers will match. Use $bpnum
15835 instead. */
15836
15837 if (tp->cond_string)
15838 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15839
15840 if (tp->ignore_count)
15841 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15842
15843 if (tp->type != bp_dprintf && tp->commands)
15844 {
15845 volatile struct gdb_exception ex;
15846
15847 fprintf_unfiltered (fp, " commands\n");
15848
15849 ui_out_redirect (current_uiout, fp);
15850 TRY_CATCH (ex, RETURN_MASK_ALL)
15851 {
15852 print_command_lines (current_uiout, tp->commands->commands, 2);
15853 }
15854 ui_out_redirect (current_uiout, NULL);
15855
15856 if (ex.reason < 0)
15857 throw_exception (ex);
15858
15859 fprintf_unfiltered (fp, " end\n");
15860 }
15861
15862 if (tp->enable_state == bp_disabled)
15863 fprintf_unfiltered (fp, "disable\n");
15864
15865 /* If this is a multi-location breakpoint, check if the locations
15866 should be individually disabled. Watchpoint locations are
15867 special, and not user visible. */
15868 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15869 {
15870 struct bp_location *loc;
15871 int n = 1;
15872
15873 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15874 if (!loc->enabled)
15875 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15876 }
15877 }
15878
15879 if (extra_trace_bits && *default_collect)
15880 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15881
15882 if (from_tty)
15883 printf_filtered (_("Saved to file '%s'.\n"), filename);
15884 do_cleanups (cleanup);
15885 }
15886
15887 /* The `save breakpoints' command. */
15888
15889 static void
15890 save_breakpoints_command (char *args, int from_tty)
15891 {
15892 save_breakpoints (args, from_tty, NULL);
15893 }
15894
15895 /* The `save tracepoints' command. */
15896
15897 static void
15898 save_tracepoints_command (char *args, int from_tty)
15899 {
15900 save_breakpoints (args, from_tty, is_tracepoint);
15901 }
15902
15903 /* Create a vector of all tracepoints. */
15904
15905 VEC(breakpoint_p) *
15906 all_tracepoints (void)
15907 {
15908 VEC(breakpoint_p) *tp_vec = 0;
15909 struct breakpoint *tp;
15910
15911 ALL_TRACEPOINTS (tp)
15912 {
15913 VEC_safe_push (breakpoint_p, tp_vec, tp);
15914 }
15915
15916 return tp_vec;
15917 }
15918
15919 \f
15920 /* This help string is used for the break, hbreak, tbreak and thbreak
15921 commands. It is defined as a macro to prevent duplication.
15922 COMMAND should be a string constant containing the name of the
15923 command. */
15924 #define BREAK_ARGS_HELP(command) \
15925 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15926 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15927 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15928 guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
15929 LOCATION may be a line number, function name, or \"*\" and an address.\n\
15930 If a line number is specified, break at start of code for that line.\n\
15931 If a function is specified, break at start of code for that function.\n\
15932 If an address is specified, break at that exact address.\n\
15933 With no LOCATION, uses current execution address of the selected\n\
15934 stack frame. This is useful for breaking on return to a stack frame.\n\
15935 \n\
15936 THREADNUM is the number from \"info threads\".\n\
15937 CONDITION is a boolean expression.\n\
15938 \n\
15939 Multiple breakpoints at one place are permitted, and useful if their\n\
15940 conditions are different.\n\
15941 \n\
15942 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15943
15944 /* List of subcommands for "catch". */
15945 static struct cmd_list_element *catch_cmdlist;
15946
15947 /* List of subcommands for "tcatch". */
15948 static struct cmd_list_element *tcatch_cmdlist;
15949
15950 void
15951 add_catch_command (char *name, char *docstring,
15952 void (*sfunc) (char *args, int from_tty,
15953 struct cmd_list_element *command),
15954 completer_ftype *completer,
15955 void *user_data_catch,
15956 void *user_data_tcatch)
15957 {
15958 struct cmd_list_element *command;
15959
15960 command = add_cmd (name, class_breakpoint, NULL, docstring,
15961 &catch_cmdlist);
15962 set_cmd_sfunc (command, sfunc);
15963 set_cmd_context (command, user_data_catch);
15964 set_cmd_completer (command, completer);
15965
15966 command = add_cmd (name, class_breakpoint, NULL, docstring,
15967 &tcatch_cmdlist);
15968 set_cmd_sfunc (command, sfunc);
15969 set_cmd_context (command, user_data_tcatch);
15970 set_cmd_completer (command, completer);
15971 }
15972
15973 static void
15974 clear_syscall_counts (struct inferior *inf)
15975 {
15976 struct catch_syscall_inferior_data *inf_data
15977 = get_catch_syscall_inferior_data (inf);
15978
15979 inf_data->total_syscalls_count = 0;
15980 inf_data->any_syscall_count = 0;
15981 VEC_free (int, inf_data->syscalls_counts);
15982 }
15983
15984 static void
15985 save_command (char *arg, int from_tty)
15986 {
15987 printf_unfiltered (_("\"save\" must be followed by "
15988 "the name of a save subcommand.\n"));
15989 help_list (save_cmdlist, "save ", -1, gdb_stdout);
15990 }
15991
15992 struct breakpoint *
15993 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15994 void *data)
15995 {
15996 struct breakpoint *b, *b_tmp;
15997
15998 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15999 {
16000 if ((*callback) (b, data))
16001 return b;
16002 }
16003
16004 return NULL;
16005 }
16006
16007 /* Zero if any of the breakpoint's locations could be a location where
16008 functions have been inlined, nonzero otherwise. */
16009
16010 static int
16011 is_non_inline_function (struct breakpoint *b)
16012 {
16013 /* The shared library event breakpoint is set on the address of a
16014 non-inline function. */
16015 if (b->type == bp_shlib_event)
16016 return 1;
16017
16018 return 0;
16019 }
16020
16021 /* Nonzero if the specified PC cannot be a location where functions
16022 have been inlined. */
16023
16024 int
16025 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
16026 const struct target_waitstatus *ws)
16027 {
16028 struct breakpoint *b;
16029 struct bp_location *bl;
16030
16031 ALL_BREAKPOINTS (b)
16032 {
16033 if (!is_non_inline_function (b))
16034 continue;
16035
16036 for (bl = b->loc; bl != NULL; bl = bl->next)
16037 {
16038 if (!bl->shlib_disabled
16039 && bpstat_check_location (bl, aspace, pc, ws))
16040 return 1;
16041 }
16042 }
16043
16044 return 0;
16045 }
16046
16047 /* Remove any references to OBJFILE which is going to be freed. */
16048
16049 void
16050 breakpoint_free_objfile (struct objfile *objfile)
16051 {
16052 struct bp_location **locp, *loc;
16053
16054 ALL_BP_LOCATIONS (loc, locp)
16055 if (loc->symtab != NULL && loc->symtab->objfile == objfile)
16056 loc->symtab = NULL;
16057 }
16058
16059 void
16060 initialize_breakpoint_ops (void)
16061 {
16062 static int initialized = 0;
16063
16064 struct breakpoint_ops *ops;
16065
16066 if (initialized)
16067 return;
16068 initialized = 1;
16069
16070 /* The breakpoint_ops structure to be inherit by all kinds of
16071 breakpoints (real breakpoints, i.e., user "break" breakpoints,
16072 internal and momentary breakpoints, etc.). */
16073 ops = &bkpt_base_breakpoint_ops;
16074 *ops = base_breakpoint_ops;
16075 ops->re_set = bkpt_re_set;
16076 ops->insert_location = bkpt_insert_location;
16077 ops->remove_location = bkpt_remove_location;
16078 ops->breakpoint_hit = bkpt_breakpoint_hit;
16079 ops->create_sals_from_address = bkpt_create_sals_from_address;
16080 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
16081 ops->decode_linespec = bkpt_decode_linespec;
16082
16083 /* The breakpoint_ops structure to be used in regular breakpoints. */
16084 ops = &bkpt_breakpoint_ops;
16085 *ops = bkpt_base_breakpoint_ops;
16086 ops->re_set = bkpt_re_set;
16087 ops->resources_needed = bkpt_resources_needed;
16088 ops->print_it = bkpt_print_it;
16089 ops->print_mention = bkpt_print_mention;
16090 ops->print_recreate = bkpt_print_recreate;
16091
16092 /* Ranged breakpoints. */
16093 ops = &ranged_breakpoint_ops;
16094 *ops = bkpt_breakpoint_ops;
16095 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
16096 ops->resources_needed = resources_needed_ranged_breakpoint;
16097 ops->print_it = print_it_ranged_breakpoint;
16098 ops->print_one = print_one_ranged_breakpoint;
16099 ops->print_one_detail = print_one_detail_ranged_breakpoint;
16100 ops->print_mention = print_mention_ranged_breakpoint;
16101 ops->print_recreate = print_recreate_ranged_breakpoint;
16102
16103 /* Internal breakpoints. */
16104 ops = &internal_breakpoint_ops;
16105 *ops = bkpt_base_breakpoint_ops;
16106 ops->re_set = internal_bkpt_re_set;
16107 ops->check_status = internal_bkpt_check_status;
16108 ops->print_it = internal_bkpt_print_it;
16109 ops->print_mention = internal_bkpt_print_mention;
16110
16111 /* Momentary breakpoints. */
16112 ops = &momentary_breakpoint_ops;
16113 *ops = bkpt_base_breakpoint_ops;
16114 ops->re_set = momentary_bkpt_re_set;
16115 ops->check_status = momentary_bkpt_check_status;
16116 ops->print_it = momentary_bkpt_print_it;
16117 ops->print_mention = momentary_bkpt_print_mention;
16118
16119 /* Momentary breakpoints for bp_longjmp and bp_exception. */
16120 ops = &longjmp_breakpoint_ops;
16121 *ops = momentary_breakpoint_ops;
16122 ops->dtor = longjmp_bkpt_dtor;
16123
16124 /* Probe breakpoints. */
16125 ops = &bkpt_probe_breakpoint_ops;
16126 *ops = bkpt_breakpoint_ops;
16127 ops->insert_location = bkpt_probe_insert_location;
16128 ops->remove_location = bkpt_probe_remove_location;
16129 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
16130 ops->decode_linespec = bkpt_probe_decode_linespec;
16131
16132 /* Watchpoints. */
16133 ops = &watchpoint_breakpoint_ops;
16134 *ops = base_breakpoint_ops;
16135 ops->dtor = dtor_watchpoint;
16136 ops->re_set = re_set_watchpoint;
16137 ops->insert_location = insert_watchpoint;
16138 ops->remove_location = remove_watchpoint;
16139 ops->breakpoint_hit = breakpoint_hit_watchpoint;
16140 ops->check_status = check_status_watchpoint;
16141 ops->resources_needed = resources_needed_watchpoint;
16142 ops->works_in_software_mode = works_in_software_mode_watchpoint;
16143 ops->print_it = print_it_watchpoint;
16144 ops->print_mention = print_mention_watchpoint;
16145 ops->print_recreate = print_recreate_watchpoint;
16146 ops->explains_signal = explains_signal_watchpoint;
16147
16148 /* Masked watchpoints. */
16149 ops = &masked_watchpoint_breakpoint_ops;
16150 *ops = watchpoint_breakpoint_ops;
16151 ops->insert_location = insert_masked_watchpoint;
16152 ops->remove_location = remove_masked_watchpoint;
16153 ops->resources_needed = resources_needed_masked_watchpoint;
16154 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
16155 ops->print_it = print_it_masked_watchpoint;
16156 ops->print_one_detail = print_one_detail_masked_watchpoint;
16157 ops->print_mention = print_mention_masked_watchpoint;
16158 ops->print_recreate = print_recreate_masked_watchpoint;
16159
16160 /* Tracepoints. */
16161 ops = &tracepoint_breakpoint_ops;
16162 *ops = base_breakpoint_ops;
16163 ops->re_set = tracepoint_re_set;
16164 ops->breakpoint_hit = tracepoint_breakpoint_hit;
16165 ops->print_one_detail = tracepoint_print_one_detail;
16166 ops->print_mention = tracepoint_print_mention;
16167 ops->print_recreate = tracepoint_print_recreate;
16168 ops->create_sals_from_address = tracepoint_create_sals_from_address;
16169 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
16170 ops->decode_linespec = tracepoint_decode_linespec;
16171
16172 /* Probe tracepoints. */
16173 ops = &tracepoint_probe_breakpoint_ops;
16174 *ops = tracepoint_breakpoint_ops;
16175 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
16176 ops->decode_linespec = tracepoint_probe_decode_linespec;
16177
16178 /* Static tracepoints with marker (`-m'). */
16179 ops = &strace_marker_breakpoint_ops;
16180 *ops = tracepoint_breakpoint_ops;
16181 ops->create_sals_from_address = strace_marker_create_sals_from_address;
16182 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
16183 ops->decode_linespec = strace_marker_decode_linespec;
16184
16185 /* Fork catchpoints. */
16186 ops = &catch_fork_breakpoint_ops;
16187 *ops = base_breakpoint_ops;
16188 ops->insert_location = insert_catch_fork;
16189 ops->remove_location = remove_catch_fork;
16190 ops->breakpoint_hit = breakpoint_hit_catch_fork;
16191 ops->print_it = print_it_catch_fork;
16192 ops->print_one = print_one_catch_fork;
16193 ops->print_mention = print_mention_catch_fork;
16194 ops->print_recreate = print_recreate_catch_fork;
16195
16196 /* Vfork catchpoints. */
16197 ops = &catch_vfork_breakpoint_ops;
16198 *ops = base_breakpoint_ops;
16199 ops->insert_location = insert_catch_vfork;
16200 ops->remove_location = remove_catch_vfork;
16201 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
16202 ops->print_it = print_it_catch_vfork;
16203 ops->print_one = print_one_catch_vfork;
16204 ops->print_mention = print_mention_catch_vfork;
16205 ops->print_recreate = print_recreate_catch_vfork;
16206
16207 /* Exec catchpoints. */
16208 ops = &catch_exec_breakpoint_ops;
16209 *ops = base_breakpoint_ops;
16210 ops->dtor = dtor_catch_exec;
16211 ops->insert_location = insert_catch_exec;
16212 ops->remove_location = remove_catch_exec;
16213 ops->breakpoint_hit = breakpoint_hit_catch_exec;
16214 ops->print_it = print_it_catch_exec;
16215 ops->print_one = print_one_catch_exec;
16216 ops->print_mention = print_mention_catch_exec;
16217 ops->print_recreate = print_recreate_catch_exec;
16218
16219 /* Syscall catchpoints. */
16220 ops = &catch_syscall_breakpoint_ops;
16221 *ops = base_breakpoint_ops;
16222 ops->dtor = dtor_catch_syscall;
16223 ops->insert_location = insert_catch_syscall;
16224 ops->remove_location = remove_catch_syscall;
16225 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
16226 ops->print_it = print_it_catch_syscall;
16227 ops->print_one = print_one_catch_syscall;
16228 ops->print_mention = print_mention_catch_syscall;
16229 ops->print_recreate = print_recreate_catch_syscall;
16230
16231 /* Solib-related catchpoints. */
16232 ops = &catch_solib_breakpoint_ops;
16233 *ops = base_breakpoint_ops;
16234 ops->dtor = dtor_catch_solib;
16235 ops->insert_location = insert_catch_solib;
16236 ops->remove_location = remove_catch_solib;
16237 ops->breakpoint_hit = breakpoint_hit_catch_solib;
16238 ops->check_status = check_status_catch_solib;
16239 ops->print_it = print_it_catch_solib;
16240 ops->print_one = print_one_catch_solib;
16241 ops->print_mention = print_mention_catch_solib;
16242 ops->print_recreate = print_recreate_catch_solib;
16243
16244 ops = &dprintf_breakpoint_ops;
16245 *ops = bkpt_base_breakpoint_ops;
16246 ops->re_set = dprintf_re_set;
16247 ops->resources_needed = bkpt_resources_needed;
16248 ops->print_it = bkpt_print_it;
16249 ops->print_mention = bkpt_print_mention;
16250 ops->print_recreate = dprintf_print_recreate;
16251 ops->after_condition_true = dprintf_after_condition_true;
16252 ops->breakpoint_hit = dprintf_breakpoint_hit;
16253 }
16254
16255 /* Chain containing all defined "enable breakpoint" subcommands. */
16256
16257 static struct cmd_list_element *enablebreaklist = NULL;
16258
16259 void
16260 _initialize_breakpoint (void)
16261 {
16262 struct cmd_list_element *c;
16263
16264 initialize_breakpoint_ops ();
16265
16266 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
16267 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
16268 observer_attach_inferior_exit (clear_syscall_counts);
16269 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
16270
16271 breakpoint_objfile_key
16272 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
16273
16274 catch_syscall_inferior_data
16275 = register_inferior_data_with_cleanup (NULL,
16276 catch_syscall_inferior_data_cleanup);
16277
16278 breakpoint_chain = 0;
16279 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
16280 before a breakpoint is set. */
16281 breakpoint_count = 0;
16282
16283 tracepoint_count = 0;
16284
16285 add_com ("ignore", class_breakpoint, ignore_command, _("\
16286 Set ignore-count of breakpoint number N to COUNT.\n\
16287 Usage is `ignore N COUNT'."));
16288 if (xdb_commands)
16289 add_com_alias ("bc", "ignore", class_breakpoint, 1);
16290
16291 add_com ("commands", class_breakpoint, commands_command, _("\
16292 Set commands to be executed when a breakpoint is hit.\n\
16293 Give breakpoint number as argument after \"commands\".\n\
16294 With no argument, the targeted breakpoint is the last one set.\n\
16295 The commands themselves follow starting on the next line.\n\
16296 Type a line containing \"end\" to indicate the end of them.\n\
16297 Give \"silent\" as the first line to make the breakpoint silent;\n\
16298 then no output is printed when it is hit, except what the commands print."));
16299
16300 c = add_com ("condition", class_breakpoint, condition_command, _("\
16301 Specify breakpoint number N to break only if COND is true.\n\
16302 Usage is `condition N COND', where N is an integer and COND is an\n\
16303 expression to be evaluated whenever breakpoint N is reached."));
16304 set_cmd_completer (c, condition_completer);
16305
16306 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16307 Set a temporary breakpoint.\n\
16308 Like \"break\" except the breakpoint is only temporary,\n\
16309 so it will be deleted when hit. Equivalent to \"break\" followed\n\
16310 by using \"enable delete\" on the breakpoint number.\n\
16311 \n"
16312 BREAK_ARGS_HELP ("tbreak")));
16313 set_cmd_completer (c, location_completer);
16314
16315 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16316 Set a hardware assisted breakpoint.\n\
16317 Like \"break\" except the breakpoint requires hardware support,\n\
16318 some target hardware may not have this support.\n\
16319 \n"
16320 BREAK_ARGS_HELP ("hbreak")));
16321 set_cmd_completer (c, location_completer);
16322
16323 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16324 Set a temporary hardware assisted breakpoint.\n\
16325 Like \"hbreak\" except the breakpoint is only temporary,\n\
16326 so it will be deleted when hit.\n\
16327 \n"
16328 BREAK_ARGS_HELP ("thbreak")));
16329 set_cmd_completer (c, location_completer);
16330
16331 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16332 Enable some breakpoints.\n\
16333 Give breakpoint numbers (separated by spaces) as arguments.\n\
16334 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16335 This is used to cancel the effect of the \"disable\" command.\n\
16336 With a subcommand you can enable temporarily."),
16337 &enablelist, "enable ", 1, &cmdlist);
16338 if (xdb_commands)
16339 add_com ("ab", class_breakpoint, enable_command, _("\
16340 Enable some breakpoints.\n\
16341 Give breakpoint numbers (separated by spaces) as arguments.\n\
16342 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16343 This is used to cancel the effect of the \"disable\" command.\n\
16344 With a subcommand you can enable temporarily."));
16345
16346 add_com_alias ("en", "enable", class_breakpoint, 1);
16347
16348 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16349 Enable some breakpoints.\n\
16350 Give breakpoint numbers (separated by spaces) as arguments.\n\
16351 This is used to cancel the effect of the \"disable\" command.\n\
16352 May be abbreviated to simply \"enable\".\n"),
16353 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16354
16355 add_cmd ("once", no_class, enable_once_command, _("\
16356 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16357 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16358 &enablebreaklist);
16359
16360 add_cmd ("delete", no_class, enable_delete_command, _("\
16361 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16362 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16363 &enablebreaklist);
16364
16365 add_cmd ("count", no_class, enable_count_command, _("\
16366 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16367 If a breakpoint is hit while enabled in this fashion,\n\
16368 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16369 &enablebreaklist);
16370
16371 add_cmd ("delete", no_class, enable_delete_command, _("\
16372 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16373 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16374 &enablelist);
16375
16376 add_cmd ("once", no_class, enable_once_command, _("\
16377 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16378 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16379 &enablelist);
16380
16381 add_cmd ("count", no_class, enable_count_command, _("\
16382 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16383 If a breakpoint is hit while enabled in this fashion,\n\
16384 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16385 &enablelist);
16386
16387 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16388 Disable some breakpoints.\n\
16389 Arguments are breakpoint numbers with spaces in between.\n\
16390 To disable all breakpoints, give no argument.\n\
16391 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16392 &disablelist, "disable ", 1, &cmdlist);
16393 add_com_alias ("dis", "disable", class_breakpoint, 1);
16394 add_com_alias ("disa", "disable", class_breakpoint, 1);
16395 if (xdb_commands)
16396 add_com ("sb", class_breakpoint, disable_command, _("\
16397 Disable some breakpoints.\n\
16398 Arguments are breakpoint numbers with spaces in between.\n\
16399 To disable all breakpoints, give no argument.\n\
16400 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16401
16402 add_cmd ("breakpoints", class_alias, disable_command, _("\
16403 Disable some breakpoints.\n\
16404 Arguments are breakpoint numbers with spaces in between.\n\
16405 To disable all breakpoints, give no argument.\n\
16406 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16407 This command may be abbreviated \"disable\"."),
16408 &disablelist);
16409
16410 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16411 Delete some breakpoints or auto-display expressions.\n\
16412 Arguments are breakpoint numbers with spaces in between.\n\
16413 To delete all breakpoints, give no argument.\n\
16414 \n\
16415 Also a prefix command for deletion of other GDB objects.\n\
16416 The \"unset\" command is also an alias for \"delete\"."),
16417 &deletelist, "delete ", 1, &cmdlist);
16418 add_com_alias ("d", "delete", class_breakpoint, 1);
16419 add_com_alias ("del", "delete", class_breakpoint, 1);
16420 if (xdb_commands)
16421 add_com ("db", class_breakpoint, delete_command, _("\
16422 Delete some breakpoints.\n\
16423 Arguments are breakpoint numbers with spaces in between.\n\
16424 To delete all breakpoints, give no argument.\n"));
16425
16426 add_cmd ("breakpoints", class_alias, delete_command, _("\
16427 Delete some breakpoints or auto-display expressions.\n\
16428 Arguments are breakpoint numbers with spaces in between.\n\
16429 To delete all breakpoints, give no argument.\n\
16430 This command may be abbreviated \"delete\"."),
16431 &deletelist);
16432
16433 add_com ("clear", class_breakpoint, clear_command, _("\
16434 Clear breakpoint at specified line or function.\n\
16435 Argument may be line number, function name, or \"*\" and an address.\n\
16436 If line number is specified, all breakpoints in that line are cleared.\n\
16437 If function is specified, breakpoints at beginning of function are cleared.\n\
16438 If an address is specified, breakpoints at that address are cleared.\n\
16439 \n\
16440 With no argument, clears all breakpoints in the line that the selected frame\n\
16441 is executing in.\n\
16442 \n\
16443 See also the \"delete\" command which clears breakpoints by number."));
16444 add_com_alias ("cl", "clear", class_breakpoint, 1);
16445
16446 c = add_com ("break", class_breakpoint, break_command, _("\
16447 Set breakpoint at specified line or function.\n"
16448 BREAK_ARGS_HELP ("break")));
16449 set_cmd_completer (c, location_completer);
16450
16451 add_com_alias ("b", "break", class_run, 1);
16452 add_com_alias ("br", "break", class_run, 1);
16453 add_com_alias ("bre", "break", class_run, 1);
16454 add_com_alias ("brea", "break", class_run, 1);
16455
16456 if (xdb_commands)
16457 add_com_alias ("ba", "break", class_breakpoint, 1);
16458
16459 if (dbx_commands)
16460 {
16461 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16462 Break in function/address or break at a line in the current file."),
16463 &stoplist, "stop ", 1, &cmdlist);
16464 add_cmd ("in", class_breakpoint, stopin_command,
16465 _("Break in function or address."), &stoplist);
16466 add_cmd ("at", class_breakpoint, stopat_command,
16467 _("Break at a line in the current file."), &stoplist);
16468 add_com ("status", class_info, breakpoints_info, _("\
16469 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16470 The \"Type\" column indicates one of:\n\
16471 \tbreakpoint - normal breakpoint\n\
16472 \twatchpoint - watchpoint\n\
16473 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16474 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16475 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16476 address and file/line number respectively.\n\
16477 \n\
16478 Convenience variable \"$_\" and default examine address for \"x\"\n\
16479 are set to the address of the last breakpoint listed unless the command\n\
16480 is prefixed with \"server \".\n\n\
16481 Convenience variable \"$bpnum\" contains the number of the last\n\
16482 breakpoint set."));
16483 }
16484
16485 add_info ("breakpoints", breakpoints_info, _("\
16486 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16487 The \"Type\" column indicates one of:\n\
16488 \tbreakpoint - normal breakpoint\n\
16489 \twatchpoint - watchpoint\n\
16490 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16491 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16492 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16493 address and file/line number respectively.\n\
16494 \n\
16495 Convenience variable \"$_\" and default examine address for \"x\"\n\
16496 are set to the address of the last breakpoint listed unless the command\n\
16497 is prefixed with \"server \".\n\n\
16498 Convenience variable \"$bpnum\" contains the number of the last\n\
16499 breakpoint set."));
16500
16501 add_info_alias ("b", "breakpoints", 1);
16502
16503 if (xdb_commands)
16504 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16505 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16506 The \"Type\" column indicates one of:\n\
16507 \tbreakpoint - normal breakpoint\n\
16508 \twatchpoint - watchpoint\n\
16509 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16510 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16511 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16512 address and file/line number respectively.\n\
16513 \n\
16514 Convenience variable \"$_\" and default examine address for \"x\"\n\
16515 are set to the address of the last breakpoint listed unless the command\n\
16516 is prefixed with \"server \".\n\n\
16517 Convenience variable \"$bpnum\" contains the number of the last\n\
16518 breakpoint set."));
16519
16520 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16521 Status of all breakpoints, or breakpoint number NUMBER.\n\
16522 The \"Type\" column indicates one of:\n\
16523 \tbreakpoint - normal breakpoint\n\
16524 \twatchpoint - watchpoint\n\
16525 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16526 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16527 \tuntil - internal breakpoint used by the \"until\" command\n\
16528 \tfinish - internal breakpoint used by the \"finish\" command\n\
16529 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16530 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16531 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16532 address and file/line number respectively.\n\
16533 \n\
16534 Convenience variable \"$_\" and default examine address for \"x\"\n\
16535 are set to the address of the last breakpoint listed unless the command\n\
16536 is prefixed with \"server \".\n\n\
16537 Convenience variable \"$bpnum\" contains the number of the last\n\
16538 breakpoint set."),
16539 &maintenanceinfolist);
16540
16541 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16542 Set catchpoints to catch events."),
16543 &catch_cmdlist, "catch ",
16544 0/*allow-unknown*/, &cmdlist);
16545
16546 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16547 Set temporary catchpoints to catch events."),
16548 &tcatch_cmdlist, "tcatch ",
16549 0/*allow-unknown*/, &cmdlist);
16550
16551 add_catch_command ("fork", _("Catch calls to fork."),
16552 catch_fork_command_1,
16553 NULL,
16554 (void *) (uintptr_t) catch_fork_permanent,
16555 (void *) (uintptr_t) catch_fork_temporary);
16556 add_catch_command ("vfork", _("Catch calls to vfork."),
16557 catch_fork_command_1,
16558 NULL,
16559 (void *) (uintptr_t) catch_vfork_permanent,
16560 (void *) (uintptr_t) catch_vfork_temporary);
16561 add_catch_command ("exec", _("Catch calls to exec."),
16562 catch_exec_command_1,
16563 NULL,
16564 CATCH_PERMANENT,
16565 CATCH_TEMPORARY);
16566 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16567 Usage: catch load [REGEX]\n\
16568 If REGEX is given, only stop for libraries matching the regular expression."),
16569 catch_load_command_1,
16570 NULL,
16571 CATCH_PERMANENT,
16572 CATCH_TEMPORARY);
16573 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16574 Usage: catch unload [REGEX]\n\
16575 If REGEX is given, only stop for libraries matching the regular expression."),
16576 catch_unload_command_1,
16577 NULL,
16578 CATCH_PERMANENT,
16579 CATCH_TEMPORARY);
16580 add_catch_command ("syscall", _("\
16581 Catch system calls by their names and/or numbers.\n\
16582 Arguments say which system calls to catch. If no arguments\n\
16583 are given, every system call will be caught.\n\
16584 Arguments, if given, should be one or more system call names\n\
16585 (if your system supports that), or system call numbers."),
16586 catch_syscall_command_1,
16587 catch_syscall_completer,
16588 CATCH_PERMANENT,
16589 CATCH_TEMPORARY);
16590
16591 c = add_com ("watch", class_breakpoint, watch_command, _("\
16592 Set a watchpoint for an expression.\n\
16593 Usage: watch [-l|-location] EXPRESSION\n\
16594 A watchpoint stops execution of your program whenever the value of\n\
16595 an expression changes.\n\
16596 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16597 the memory to which it refers."));
16598 set_cmd_completer (c, expression_completer);
16599
16600 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16601 Set a read watchpoint for an expression.\n\
16602 Usage: rwatch [-l|-location] EXPRESSION\n\
16603 A watchpoint stops execution of your program whenever the value of\n\
16604 an expression is read.\n\
16605 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16606 the memory to which it refers."));
16607 set_cmd_completer (c, expression_completer);
16608
16609 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16610 Set a watchpoint for an expression.\n\
16611 Usage: awatch [-l|-location] EXPRESSION\n\
16612 A watchpoint stops execution of your program whenever the value of\n\
16613 an expression is either read or written.\n\
16614 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16615 the memory to which it refers."));
16616 set_cmd_completer (c, expression_completer);
16617
16618 add_info ("watchpoints", watchpoints_info, _("\
16619 Status of specified watchpoints (all watchpoints if no argument)."));
16620
16621 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16622 respond to changes - contrary to the description. */
16623 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16624 &can_use_hw_watchpoints, _("\
16625 Set debugger's willingness to use watchpoint hardware."), _("\
16626 Show debugger's willingness to use watchpoint hardware."), _("\
16627 If zero, gdb will not use hardware for new watchpoints, even if\n\
16628 such is available. (However, any hardware watchpoints that were\n\
16629 created before setting this to nonzero, will continue to use watchpoint\n\
16630 hardware.)"),
16631 NULL,
16632 show_can_use_hw_watchpoints,
16633 &setlist, &showlist);
16634
16635 can_use_hw_watchpoints = 1;
16636
16637 /* Tracepoint manipulation commands. */
16638
16639 c = add_com ("trace", class_breakpoint, trace_command, _("\
16640 Set a tracepoint at specified line or function.\n\
16641 \n"
16642 BREAK_ARGS_HELP ("trace") "\n\
16643 Do \"help tracepoints\" for info on other tracepoint commands."));
16644 set_cmd_completer (c, location_completer);
16645
16646 add_com_alias ("tp", "trace", class_alias, 0);
16647 add_com_alias ("tr", "trace", class_alias, 1);
16648 add_com_alias ("tra", "trace", class_alias, 1);
16649 add_com_alias ("trac", "trace", class_alias, 1);
16650
16651 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16652 Set a fast tracepoint at specified line or function.\n\
16653 \n"
16654 BREAK_ARGS_HELP ("ftrace") "\n\
16655 Do \"help tracepoints\" for info on other tracepoint commands."));
16656 set_cmd_completer (c, location_completer);
16657
16658 c = add_com ("strace", class_breakpoint, strace_command, _("\
16659 Set a static tracepoint at specified line, function or marker.\n\
16660 \n\
16661 strace [LOCATION] [if CONDITION]\n\
16662 LOCATION may be a line number, function name, \"*\" and an address,\n\
16663 or -m MARKER_ID.\n\
16664 If a line number is specified, probe the marker at start of code\n\
16665 for that line. If a function is specified, probe the marker at start\n\
16666 of code for that function. If an address is specified, probe the marker\n\
16667 at that exact address. If a marker id is specified, probe the marker\n\
16668 with that name. With no LOCATION, uses current execution address of\n\
16669 the selected stack frame.\n\
16670 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16671 This collects arbitrary user data passed in the probe point call to the\n\
16672 tracing library. You can inspect it when analyzing the trace buffer,\n\
16673 by printing the $_sdata variable like any other convenience variable.\n\
16674 \n\
16675 CONDITION is a boolean expression.\n\
16676 \n\
16677 Multiple tracepoints at one place are permitted, and useful if their\n\
16678 conditions are different.\n\
16679 \n\
16680 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16681 Do \"help tracepoints\" for info on other tracepoint commands."));
16682 set_cmd_completer (c, location_completer);
16683
16684 add_info ("tracepoints", tracepoints_info, _("\
16685 Status of specified tracepoints (all tracepoints if no argument).\n\
16686 Convenience variable \"$tpnum\" contains the number of the\n\
16687 last tracepoint set."));
16688
16689 add_info_alias ("tp", "tracepoints", 1);
16690
16691 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16692 Delete specified tracepoints.\n\
16693 Arguments are tracepoint numbers, separated by spaces.\n\
16694 No argument means delete all tracepoints."),
16695 &deletelist);
16696 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16697
16698 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16699 Disable specified tracepoints.\n\
16700 Arguments are tracepoint numbers, separated by spaces.\n\
16701 No argument means disable all tracepoints."),
16702 &disablelist);
16703 deprecate_cmd (c, "disable");
16704
16705 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16706 Enable specified tracepoints.\n\
16707 Arguments are tracepoint numbers, separated by spaces.\n\
16708 No argument means enable all tracepoints."),
16709 &enablelist);
16710 deprecate_cmd (c, "enable");
16711
16712 add_com ("passcount", class_trace, trace_pass_command, _("\
16713 Set the passcount for a tracepoint.\n\
16714 The trace will end when the tracepoint has been passed 'count' times.\n\
16715 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16716 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16717
16718 add_prefix_cmd ("save", class_breakpoint, save_command,
16719 _("Save breakpoint definitions as a script."),
16720 &save_cmdlist, "save ",
16721 0/*allow-unknown*/, &cmdlist);
16722
16723 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16724 Save current breakpoint definitions as a script.\n\
16725 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16726 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16727 session to restore them."),
16728 &save_cmdlist);
16729 set_cmd_completer (c, filename_completer);
16730
16731 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16732 Save current tracepoint definitions as a script.\n\
16733 Use the 'source' command in another debug session to restore them."),
16734 &save_cmdlist);
16735 set_cmd_completer (c, filename_completer);
16736
16737 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16738 deprecate_cmd (c, "save tracepoints");
16739
16740 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16741 Breakpoint specific settings\n\
16742 Configure various breakpoint-specific variables such as\n\
16743 pending breakpoint behavior"),
16744 &breakpoint_set_cmdlist, "set breakpoint ",
16745 0/*allow-unknown*/, &setlist);
16746 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16747 Breakpoint specific settings\n\
16748 Configure various breakpoint-specific variables such as\n\
16749 pending breakpoint behavior"),
16750 &breakpoint_show_cmdlist, "show breakpoint ",
16751 0/*allow-unknown*/, &showlist);
16752
16753 add_setshow_auto_boolean_cmd ("pending", no_class,
16754 &pending_break_support, _("\
16755 Set debugger's behavior regarding pending breakpoints."), _("\
16756 Show debugger's behavior regarding pending breakpoints."), _("\
16757 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16758 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16759 an error. If auto, an unrecognized breakpoint location results in a\n\
16760 user-query to see if a pending breakpoint should be created."),
16761 NULL,
16762 show_pending_break_support,
16763 &breakpoint_set_cmdlist,
16764 &breakpoint_show_cmdlist);
16765
16766 pending_break_support = AUTO_BOOLEAN_AUTO;
16767
16768 add_setshow_boolean_cmd ("auto-hw", no_class,
16769 &automatic_hardware_breakpoints, _("\
16770 Set automatic usage of hardware breakpoints."), _("\
16771 Show automatic usage of hardware breakpoints."), _("\
16772 If set, the debugger will automatically use hardware breakpoints for\n\
16773 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16774 a warning will be emitted for such breakpoints."),
16775 NULL,
16776 show_automatic_hardware_breakpoints,
16777 &breakpoint_set_cmdlist,
16778 &breakpoint_show_cmdlist);
16779
16780 add_setshow_auto_boolean_cmd ("always-inserted", class_support,
16781 &always_inserted_mode, _("\
16782 Set mode for inserting breakpoints."), _("\
16783 Show mode for inserting breakpoints."), _("\
16784 When this mode is off, breakpoints are inserted in inferior when it is\n\
16785 resumed, and removed when execution stops. When this mode is on,\n\
16786 breakpoints are inserted immediately and removed only when the user\n\
16787 deletes the breakpoint. When this mode is auto (which is the default),\n\
16788 the behaviour depends on the non-stop setting (see help set non-stop).\n\
16789 In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
16790 behaves as if always-inserted mode is on; if gdb is controlling the\n\
16791 inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
16792 NULL,
16793 &show_always_inserted_mode,
16794 &breakpoint_set_cmdlist,
16795 &breakpoint_show_cmdlist);
16796
16797 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16798 condition_evaluation_enums,
16799 &condition_evaluation_mode_1, _("\
16800 Set mode of breakpoint condition evaluation."), _("\
16801 Show mode of breakpoint condition evaluation."), _("\
16802 When this is set to \"host\", breakpoint conditions will be\n\
16803 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16804 breakpoint conditions will be downloaded to the target (if the target\n\
16805 supports such feature) and conditions will be evaluated on the target's side.\n\
16806 If this is set to \"auto\" (default), this will be automatically set to\n\
16807 \"target\" if it supports condition evaluation, otherwise it will\n\
16808 be set to \"gdb\""),
16809 &set_condition_evaluation_mode,
16810 &show_condition_evaluation_mode,
16811 &breakpoint_set_cmdlist,
16812 &breakpoint_show_cmdlist);
16813
16814 add_com ("break-range", class_breakpoint, break_range_command, _("\
16815 Set a breakpoint for an address range.\n\
16816 break-range START-LOCATION, END-LOCATION\n\
16817 where START-LOCATION and END-LOCATION can be one of the following:\n\
16818 LINENUM, for that line in the current file,\n\
16819 FILE:LINENUM, for that line in that file,\n\
16820 +OFFSET, for that number of lines after the current line\n\
16821 or the start of the range\n\
16822 FUNCTION, for the first line in that function,\n\
16823 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16824 *ADDRESS, for the instruction at that address.\n\
16825 \n\
16826 The breakpoint will stop execution of the inferior whenever it executes\n\
16827 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16828 range (including START-LOCATION and END-LOCATION)."));
16829
16830 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16831 Set a dynamic printf at specified line or function.\n\
16832 dprintf location,format string,arg1,arg2,...\n\
16833 location may be a line number, function name, or \"*\" and an address.\n\
16834 If a line number is specified, break at start of code for that line.\n\
16835 If a function is specified, break at start of code for that function."));
16836 set_cmd_completer (c, location_completer);
16837
16838 add_setshow_enum_cmd ("dprintf-style", class_support,
16839 dprintf_style_enums, &dprintf_style, _("\
16840 Set the style of usage for dynamic printf."), _("\
16841 Show the style of usage for dynamic printf."), _("\
16842 This setting chooses how GDB will do a dynamic printf.\n\
16843 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16844 console, as with the \"printf\" command.\n\
16845 If the value is \"call\", the print is done by calling a function in your\n\
16846 program; by default printf(), but you can choose a different function or\n\
16847 output stream by setting dprintf-function and dprintf-channel."),
16848 update_dprintf_commands, NULL,
16849 &setlist, &showlist);
16850
16851 dprintf_function = xstrdup ("printf");
16852 add_setshow_string_cmd ("dprintf-function", class_support,
16853 &dprintf_function, _("\
16854 Set the function to use for dynamic printf"), _("\
16855 Show the function to use for dynamic printf"), NULL,
16856 update_dprintf_commands, NULL,
16857 &setlist, &showlist);
16858
16859 dprintf_channel = xstrdup ("");
16860 add_setshow_string_cmd ("dprintf-channel", class_support,
16861 &dprintf_channel, _("\
16862 Set the channel to use for dynamic printf"), _("\
16863 Show the channel to use for dynamic printf"), NULL,
16864 update_dprintf_commands, NULL,
16865 &setlist, &showlist);
16866
16867 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16868 &disconnected_dprintf, _("\
16869 Set whether dprintf continues after GDB disconnects."), _("\
16870 Show whether dprintf continues after GDB disconnects."), _("\
16871 Use this to let dprintf commands continue to hit and produce output\n\
16872 even if GDB disconnects or detaches from the target."),
16873 NULL,
16874 NULL,
16875 &setlist, &showlist);
16876
16877 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16878 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16879 (target agent only) This is useful for formatted output in user-defined commands."));
16880
16881 automatic_hardware_breakpoints = 1;
16882
16883 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16884 observer_attach_thread_exit (remove_threaded_breakpoints);
16885 }
This page took 0.675863 seconds and 4 git commands to generate.