gdb/
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "gdbthread.h"
36 #include "target.h"
37 #include "language.h"
38 #include "gdb_string.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "solib.h"
53 #include "solist.h"
54 #include "observer.h"
55 #include "exceptions.h"
56 #include "memattr.h"
57 #include "ada-lang.h"
58 #include "top.h"
59 #include "valprint.h"
60 #include "jit.h"
61 #include "xml-syscall.h"
62 #include "parser-defs.h"
63 #include "gdb_regex.h"
64 #include "probe.h"
65 #include "cli/cli-utils.h"
66 #include "continuations.h"
67 #include "stack.h"
68 #include "skip.h"
69 #include "gdb_regex.h"
70 #include "ax-gdb.h"
71 #include "dummy-frame.h"
72
73 #include "format.h"
74
75 /* readline include files */
76 #include "readline/readline.h"
77 #include "readline/history.h"
78
79 /* readline defines this. */
80 #undef savestring
81
82 #include "mi/mi-common.h"
83 #include "python/python.h"
84
85 /* Enums for exception-handling support. */
86 enum exception_event_kind
87 {
88 EX_EVENT_THROW,
89 EX_EVENT_CATCH
90 };
91
92 /* Prototypes for local functions. */
93
94 static void enable_delete_command (char *, int);
95
96 static void enable_once_command (char *, int);
97
98 static void enable_count_command (char *, int);
99
100 static void disable_command (char *, int);
101
102 static void enable_command (char *, int);
103
104 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
105 void *),
106 void *);
107
108 static void ignore_command (char *, int);
109
110 static int breakpoint_re_set_one (void *);
111
112 static void breakpoint_re_set_default (struct breakpoint *);
113
114 static void create_sals_from_address_default (char **,
115 struct linespec_result *,
116 enum bptype, char *,
117 char **);
118
119 static void create_breakpoints_sal_default (struct gdbarch *,
120 struct linespec_result *,
121 struct linespec_sals *,
122 char *, char *, enum bptype,
123 enum bpdisp, int, int,
124 int,
125 const struct breakpoint_ops *,
126 int, int, int, unsigned);
127
128 static void decode_linespec_default (struct breakpoint *, char **,
129 struct symtabs_and_lines *);
130
131 static void clear_command (char *, int);
132
133 static void catch_command (char *, int);
134
135 static int can_use_hardware_watchpoint (struct value *);
136
137 static void break_command_1 (char *, int, int);
138
139 static void mention (struct breakpoint *);
140
141 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
142 enum bptype,
143 const struct breakpoint_ops *);
144 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
145 const struct symtab_and_line *);
146
147 /* This function is used in gdbtk sources and thus can not be made
148 static. */
149 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
150 struct symtab_and_line,
151 enum bptype,
152 const struct breakpoint_ops *);
153
154 static struct breakpoint *
155 momentary_breakpoint_from_master (struct breakpoint *orig,
156 enum bptype type,
157 const struct breakpoint_ops *ops);
158
159 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
160
161 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
162 CORE_ADDR bpaddr,
163 enum bptype bptype);
164
165 static void describe_other_breakpoints (struct gdbarch *,
166 struct program_space *, CORE_ADDR,
167 struct obj_section *, int);
168
169 static int breakpoint_address_match (struct address_space *aspace1,
170 CORE_ADDR addr1,
171 struct address_space *aspace2,
172 CORE_ADDR addr2);
173
174 static int watchpoint_locations_match (struct bp_location *loc1,
175 struct bp_location *loc2);
176
177 static int breakpoint_location_address_match (struct bp_location *bl,
178 struct address_space *aspace,
179 CORE_ADDR addr);
180
181 static void breakpoints_info (char *, int);
182
183 static void watchpoints_info (char *, int);
184
185 static int breakpoint_1 (char *, int,
186 int (*) (const struct breakpoint *));
187
188 static int breakpoint_cond_eval (void *);
189
190 static void cleanup_executing_breakpoints (void *);
191
192 static void commands_command (char *, int);
193
194 static void condition_command (char *, int);
195
196 typedef enum
197 {
198 mark_inserted,
199 mark_uninserted
200 }
201 insertion_state_t;
202
203 static int remove_breakpoint (struct bp_location *, insertion_state_t);
204 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
205
206 static enum print_stop_action print_bp_stop_message (bpstat bs);
207
208 static int watchpoint_check (void *);
209
210 static void maintenance_info_breakpoints (char *, int);
211
212 static int hw_breakpoint_used_count (void);
213
214 static int hw_watchpoint_use_count (struct breakpoint *);
215
216 static int hw_watchpoint_used_count_others (struct breakpoint *except,
217 enum bptype type,
218 int *other_type_used);
219
220 static void hbreak_command (char *, int);
221
222 static void thbreak_command (char *, int);
223
224 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
225 int count);
226
227 static void stop_command (char *arg, int from_tty);
228
229 static void stopin_command (char *arg, int from_tty);
230
231 static void stopat_command (char *arg, int from_tty);
232
233 static char *ep_parse_optional_if_clause (char **arg);
234
235 static void catch_exception_command_1 (enum exception_event_kind ex_event,
236 char *arg, int tempflag, int from_tty);
237
238 static void tcatch_command (char *arg, int from_tty);
239
240 static void detach_single_step_breakpoints (void);
241
242 static int single_step_breakpoint_inserted_here_p (struct address_space *,
243 CORE_ADDR pc);
244
245 static void free_bp_location (struct bp_location *loc);
246 static void incref_bp_location (struct bp_location *loc);
247 static void decref_bp_location (struct bp_location **loc);
248
249 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
250
251 static void update_global_location_list (int);
252
253 static void update_global_location_list_nothrow (int);
254
255 static int is_hardware_watchpoint (const struct breakpoint *bpt);
256
257 static void insert_breakpoint_locations (void);
258
259 static int syscall_catchpoint_p (struct breakpoint *b);
260
261 static void tracepoints_info (char *, int);
262
263 static void delete_trace_command (char *, int);
264
265 static void enable_trace_command (char *, int);
266
267 static void disable_trace_command (char *, int);
268
269 static void trace_pass_command (char *, int);
270
271 static void set_tracepoint_count (int num);
272
273 static int is_masked_watchpoint (const struct breakpoint *b);
274
275 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
276
277 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
278 otherwise. */
279
280 static int strace_marker_p (struct breakpoint *b);
281
282 /* The abstract base class all breakpoint_ops structures inherit
283 from. */
284 struct breakpoint_ops base_breakpoint_ops;
285
286 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
287 that are implemented on top of software or hardware breakpoints
288 (user breakpoints, internal and momentary breakpoints, etc.). */
289 static struct breakpoint_ops bkpt_base_breakpoint_ops;
290
291 /* Internal breakpoints class type. */
292 static struct breakpoint_ops internal_breakpoint_ops;
293
294 /* Momentary breakpoints class type. */
295 static struct breakpoint_ops momentary_breakpoint_ops;
296
297 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
298 static struct breakpoint_ops longjmp_breakpoint_ops;
299
300 /* The breakpoint_ops structure to be used in regular user created
301 breakpoints. */
302 struct breakpoint_ops bkpt_breakpoint_ops;
303
304 /* Breakpoints set on probes. */
305 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
306
307 /* Dynamic printf class type. */
308 static struct breakpoint_ops dprintf_breakpoint_ops;
309
310 /* The style in which to perform a dynamic printf. This is a user
311 option because different output options have different tradeoffs;
312 if GDB does the printing, there is better error handling if there
313 is a problem with any of the arguments, but using an inferior
314 function lets you have special-purpose printers and sending of
315 output to the same place as compiled-in print functions. */
316
317 static const char dprintf_style_gdb[] = "gdb";
318 static const char dprintf_style_call[] = "call";
319 static const char dprintf_style_agent[] = "agent";
320 static const char *const dprintf_style_enums[] = {
321 dprintf_style_gdb,
322 dprintf_style_call,
323 dprintf_style_agent,
324 NULL
325 };
326 static const char *dprintf_style = dprintf_style_gdb;
327
328 /* The function to use for dynamic printf if the preferred style is to
329 call into the inferior. The value is simply a string that is
330 copied into the command, so it can be anything that GDB can
331 evaluate to a callable address, not necessarily a function name. */
332
333 static char *dprintf_function = "";
334
335 /* The channel to use for dynamic printf if the preferred style is to
336 call into the inferior; if a nonempty string, it will be passed to
337 the call as the first argument, with the format string as the
338 second. As with the dprintf function, this can be anything that
339 GDB knows how to evaluate, so in addition to common choices like
340 "stderr", this could be an app-specific expression like
341 "mystreams[curlogger]". */
342
343 static char *dprintf_channel = "";
344
345 /* True if dprintf commands should continue to operate even if GDB
346 has disconnected. */
347 static int disconnected_dprintf = 1;
348
349 /* A reference-counted struct command_line. This lets multiple
350 breakpoints share a single command list. */
351 struct counted_command_line
352 {
353 /* The reference count. */
354 int refc;
355
356 /* The command list. */
357 struct command_line *commands;
358 };
359
360 struct command_line *
361 breakpoint_commands (struct breakpoint *b)
362 {
363 return b->commands ? b->commands->commands : NULL;
364 }
365
366 /* Flag indicating that a command has proceeded the inferior past the
367 current breakpoint. */
368
369 static int breakpoint_proceeded;
370
371 const char *
372 bpdisp_text (enum bpdisp disp)
373 {
374 /* NOTE: the following values are a part of MI protocol and
375 represent values of 'disp' field returned when inferior stops at
376 a breakpoint. */
377 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
378
379 return bpdisps[(int) disp];
380 }
381
382 /* Prototypes for exported functions. */
383 /* If FALSE, gdb will not use hardware support for watchpoints, even
384 if such is available. */
385 static int can_use_hw_watchpoints;
386
387 static void
388 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
389 struct cmd_list_element *c,
390 const char *value)
391 {
392 fprintf_filtered (file,
393 _("Debugger's willingness to use "
394 "watchpoint hardware is %s.\n"),
395 value);
396 }
397
398 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
399 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
400 for unrecognized breakpoint locations.
401 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
402 static enum auto_boolean pending_break_support;
403 static void
404 show_pending_break_support (struct ui_file *file, int from_tty,
405 struct cmd_list_element *c,
406 const char *value)
407 {
408 fprintf_filtered (file,
409 _("Debugger's behavior regarding "
410 "pending breakpoints is %s.\n"),
411 value);
412 }
413
414 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
415 set with "break" but falling in read-only memory.
416 If 0, gdb will warn about such breakpoints, but won't automatically
417 use hardware breakpoints. */
418 static int automatic_hardware_breakpoints;
419 static void
420 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
421 struct cmd_list_element *c,
422 const char *value)
423 {
424 fprintf_filtered (file,
425 _("Automatic usage of hardware breakpoints is %s.\n"),
426 value);
427 }
428
429 /* If on, gdb will keep breakpoints inserted even as inferior is
430 stopped, and immediately insert any new breakpoints. If off, gdb
431 will insert breakpoints into inferior only when resuming it, and
432 will remove breakpoints upon stop. If auto, GDB will behave as ON
433 if in non-stop mode, and as OFF if all-stop mode.*/
434
435 static enum auto_boolean always_inserted_mode = AUTO_BOOLEAN_AUTO;
436
437 static void
438 show_always_inserted_mode (struct ui_file *file, int from_tty,
439 struct cmd_list_element *c, const char *value)
440 {
441 if (always_inserted_mode == AUTO_BOOLEAN_AUTO)
442 fprintf_filtered (file,
443 _("Always inserted breakpoint "
444 "mode is %s (currently %s).\n"),
445 value,
446 breakpoints_always_inserted_mode () ? "on" : "off");
447 else
448 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
449 value);
450 }
451
452 int
453 breakpoints_always_inserted_mode (void)
454 {
455 return (always_inserted_mode == AUTO_BOOLEAN_TRUE
456 || (always_inserted_mode == AUTO_BOOLEAN_AUTO && non_stop));
457 }
458
459 static const char condition_evaluation_both[] = "host or target";
460
461 /* Modes for breakpoint condition evaluation. */
462 static const char condition_evaluation_auto[] = "auto";
463 static const char condition_evaluation_host[] = "host";
464 static const char condition_evaluation_target[] = "target";
465 static const char *const condition_evaluation_enums[] = {
466 condition_evaluation_auto,
467 condition_evaluation_host,
468 condition_evaluation_target,
469 NULL
470 };
471
472 /* Global that holds the current mode for breakpoint condition evaluation. */
473 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
474
475 /* Global that we use to display information to the user (gets its value from
476 condition_evaluation_mode_1. */
477 static const char *condition_evaluation_mode = condition_evaluation_auto;
478
479 /* Translate a condition evaluation mode MODE into either "host"
480 or "target". This is used mostly to translate from "auto" to the
481 real setting that is being used. It returns the translated
482 evaluation mode. */
483
484 static const char *
485 translate_condition_evaluation_mode (const char *mode)
486 {
487 if (mode == condition_evaluation_auto)
488 {
489 if (target_supports_evaluation_of_breakpoint_conditions ())
490 return condition_evaluation_target;
491 else
492 return condition_evaluation_host;
493 }
494 else
495 return mode;
496 }
497
498 /* Discovers what condition_evaluation_auto translates to. */
499
500 static const char *
501 breakpoint_condition_evaluation_mode (void)
502 {
503 return translate_condition_evaluation_mode (condition_evaluation_mode);
504 }
505
506 /* Return true if GDB should evaluate breakpoint conditions or false
507 otherwise. */
508
509 static int
510 gdb_evaluates_breakpoint_condition_p (void)
511 {
512 const char *mode = breakpoint_condition_evaluation_mode ();
513
514 return (mode == condition_evaluation_host);
515 }
516
517 void _initialize_breakpoint (void);
518
519 /* Are we executing breakpoint commands? */
520 static int executing_breakpoint_commands;
521
522 /* Are overlay event breakpoints enabled? */
523 static int overlay_events_enabled;
524
525 /* See description in breakpoint.h. */
526 int target_exact_watchpoints = 0;
527
528 /* Walk the following statement or block through all breakpoints.
529 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
530 current breakpoint. */
531
532 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
533
534 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
535 for (B = breakpoint_chain; \
536 B ? (TMP=B->next, 1): 0; \
537 B = TMP)
538
539 /* Similar iterator for the low-level breakpoints. SAFE variant is
540 not provided so update_global_location_list must not be called
541 while executing the block of ALL_BP_LOCATIONS. */
542
543 #define ALL_BP_LOCATIONS(B,BP_TMP) \
544 for (BP_TMP = bp_location; \
545 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
546 BP_TMP++)
547
548 /* Iterates through locations with address ADDRESS for the currently selected
549 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
550 to where the loop should start from.
551 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
552 appropriate location to start with. */
553
554 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
555 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
556 BP_LOCP_TMP = BP_LOCP_START; \
557 BP_LOCP_START \
558 && (BP_LOCP_TMP < bp_location + bp_location_count \
559 && (*BP_LOCP_TMP)->address == ADDRESS); \
560 BP_LOCP_TMP++)
561
562 /* Iterator for tracepoints only. */
563
564 #define ALL_TRACEPOINTS(B) \
565 for (B = breakpoint_chain; B; B = B->next) \
566 if (is_tracepoint (B))
567
568 /* Chains of all breakpoints defined. */
569
570 struct breakpoint *breakpoint_chain;
571
572 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
573
574 static struct bp_location **bp_location;
575
576 /* Number of elements of BP_LOCATION. */
577
578 static unsigned bp_location_count;
579
580 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
581 ADDRESS for the current elements of BP_LOCATION which get a valid
582 result from bp_location_has_shadow. You can use it for roughly
583 limiting the subrange of BP_LOCATION to scan for shadow bytes for
584 an address you need to read. */
585
586 static CORE_ADDR bp_location_placed_address_before_address_max;
587
588 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
589 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
590 BP_LOCATION which get a valid result from bp_location_has_shadow.
591 You can use it for roughly limiting the subrange of BP_LOCATION to
592 scan for shadow bytes for an address you need to read. */
593
594 static CORE_ADDR bp_location_shadow_len_after_address_max;
595
596 /* The locations that no longer correspond to any breakpoint, unlinked
597 from bp_location array, but for which a hit may still be reported
598 by a target. */
599 VEC(bp_location_p) *moribund_locations = NULL;
600
601 /* Number of last breakpoint made. */
602
603 static int breakpoint_count;
604
605 /* The value of `breakpoint_count' before the last command that
606 created breakpoints. If the last (break-like) command created more
607 than one breakpoint, then the difference between BREAKPOINT_COUNT
608 and PREV_BREAKPOINT_COUNT is more than one. */
609 static int prev_breakpoint_count;
610
611 /* Number of last tracepoint made. */
612
613 static int tracepoint_count;
614
615 static struct cmd_list_element *breakpoint_set_cmdlist;
616 static struct cmd_list_element *breakpoint_show_cmdlist;
617 struct cmd_list_element *save_cmdlist;
618
619 /* Return whether a breakpoint is an active enabled breakpoint. */
620 static int
621 breakpoint_enabled (struct breakpoint *b)
622 {
623 return (b->enable_state == bp_enabled);
624 }
625
626 /* Set breakpoint count to NUM. */
627
628 static void
629 set_breakpoint_count (int num)
630 {
631 prev_breakpoint_count = breakpoint_count;
632 breakpoint_count = num;
633 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
634 }
635
636 /* Used by `start_rbreak_breakpoints' below, to record the current
637 breakpoint count before "rbreak" creates any breakpoint. */
638 static int rbreak_start_breakpoint_count;
639
640 /* Called at the start an "rbreak" command to record the first
641 breakpoint made. */
642
643 void
644 start_rbreak_breakpoints (void)
645 {
646 rbreak_start_breakpoint_count = breakpoint_count;
647 }
648
649 /* Called at the end of an "rbreak" command to record the last
650 breakpoint made. */
651
652 void
653 end_rbreak_breakpoints (void)
654 {
655 prev_breakpoint_count = rbreak_start_breakpoint_count;
656 }
657
658 /* Used in run_command to zero the hit count when a new run starts. */
659
660 void
661 clear_breakpoint_hit_counts (void)
662 {
663 struct breakpoint *b;
664
665 ALL_BREAKPOINTS (b)
666 b->hit_count = 0;
667 }
668
669 /* Allocate a new counted_command_line with reference count of 1.
670 The new structure owns COMMANDS. */
671
672 static struct counted_command_line *
673 alloc_counted_command_line (struct command_line *commands)
674 {
675 struct counted_command_line *result
676 = xmalloc (sizeof (struct counted_command_line));
677
678 result->refc = 1;
679 result->commands = commands;
680 return result;
681 }
682
683 /* Increment reference count. This does nothing if CMD is NULL. */
684
685 static void
686 incref_counted_command_line (struct counted_command_line *cmd)
687 {
688 if (cmd)
689 ++cmd->refc;
690 }
691
692 /* Decrement reference count. If the reference count reaches 0,
693 destroy the counted_command_line. Sets *CMDP to NULL. This does
694 nothing if *CMDP is NULL. */
695
696 static void
697 decref_counted_command_line (struct counted_command_line **cmdp)
698 {
699 if (*cmdp)
700 {
701 if (--(*cmdp)->refc == 0)
702 {
703 free_command_lines (&(*cmdp)->commands);
704 xfree (*cmdp);
705 }
706 *cmdp = NULL;
707 }
708 }
709
710 /* A cleanup function that calls decref_counted_command_line. */
711
712 static void
713 do_cleanup_counted_command_line (void *arg)
714 {
715 decref_counted_command_line (arg);
716 }
717
718 /* Create a cleanup that calls decref_counted_command_line on the
719 argument. */
720
721 static struct cleanup *
722 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
723 {
724 return make_cleanup (do_cleanup_counted_command_line, cmdp);
725 }
726
727 \f
728 /* Return the breakpoint with the specified number, or NULL
729 if the number does not refer to an existing breakpoint. */
730
731 struct breakpoint *
732 get_breakpoint (int num)
733 {
734 struct breakpoint *b;
735
736 ALL_BREAKPOINTS (b)
737 if (b->number == num)
738 return b;
739
740 return NULL;
741 }
742
743 \f
744
745 /* Mark locations as "conditions have changed" in case the target supports
746 evaluating conditions on its side. */
747
748 static void
749 mark_breakpoint_modified (struct breakpoint *b)
750 {
751 struct bp_location *loc;
752
753 /* This is only meaningful if the target is
754 evaluating conditions and if the user has
755 opted for condition evaluation on the target's
756 side. */
757 if (gdb_evaluates_breakpoint_condition_p ()
758 || !target_supports_evaluation_of_breakpoint_conditions ())
759 return;
760
761 if (!is_breakpoint (b))
762 return;
763
764 for (loc = b->loc; loc; loc = loc->next)
765 loc->condition_changed = condition_modified;
766 }
767
768 /* Mark location as "conditions have changed" in case the target supports
769 evaluating conditions on its side. */
770
771 static void
772 mark_breakpoint_location_modified (struct bp_location *loc)
773 {
774 /* This is only meaningful if the target is
775 evaluating conditions and if the user has
776 opted for condition evaluation on the target's
777 side. */
778 if (gdb_evaluates_breakpoint_condition_p ()
779 || !target_supports_evaluation_of_breakpoint_conditions ())
780
781 return;
782
783 if (!is_breakpoint (loc->owner))
784 return;
785
786 loc->condition_changed = condition_modified;
787 }
788
789 /* Sets the condition-evaluation mode using the static global
790 condition_evaluation_mode. */
791
792 static void
793 set_condition_evaluation_mode (char *args, int from_tty,
794 struct cmd_list_element *c)
795 {
796 const char *old_mode, *new_mode;
797
798 if ((condition_evaluation_mode_1 == condition_evaluation_target)
799 && !target_supports_evaluation_of_breakpoint_conditions ())
800 {
801 condition_evaluation_mode_1 = condition_evaluation_mode;
802 warning (_("Target does not support breakpoint condition evaluation.\n"
803 "Using host evaluation mode instead."));
804 return;
805 }
806
807 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
808 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
809
810 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
811 settings was "auto". */
812 condition_evaluation_mode = condition_evaluation_mode_1;
813
814 /* Only update the mode if the user picked a different one. */
815 if (new_mode != old_mode)
816 {
817 struct bp_location *loc, **loc_tmp;
818 /* If the user switched to a different evaluation mode, we
819 need to synch the changes with the target as follows:
820
821 "host" -> "target": Send all (valid) conditions to the target.
822 "target" -> "host": Remove all the conditions from the target.
823 */
824
825 if (new_mode == condition_evaluation_target)
826 {
827 /* Mark everything modified and synch conditions with the
828 target. */
829 ALL_BP_LOCATIONS (loc, loc_tmp)
830 mark_breakpoint_location_modified (loc);
831 }
832 else
833 {
834 /* Manually mark non-duplicate locations to synch conditions
835 with the target. We do this to remove all the conditions the
836 target knows about. */
837 ALL_BP_LOCATIONS (loc, loc_tmp)
838 if (is_breakpoint (loc->owner) && loc->inserted)
839 loc->needs_update = 1;
840 }
841
842 /* Do the update. */
843 update_global_location_list (1);
844 }
845
846 return;
847 }
848
849 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
850 what "auto" is translating to. */
851
852 static void
853 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
854 struct cmd_list_element *c, const char *value)
855 {
856 if (condition_evaluation_mode == condition_evaluation_auto)
857 fprintf_filtered (file,
858 _("Breakpoint condition evaluation "
859 "mode is %s (currently %s).\n"),
860 value,
861 breakpoint_condition_evaluation_mode ());
862 else
863 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
864 value);
865 }
866
867 /* A comparison function for bp_location AP and BP that is used by
868 bsearch. This comparison function only cares about addresses, unlike
869 the more general bp_location_compare function. */
870
871 static int
872 bp_location_compare_addrs (const void *ap, const void *bp)
873 {
874 struct bp_location *a = *(void **) ap;
875 struct bp_location *b = *(void **) bp;
876
877 if (a->address == b->address)
878 return 0;
879 else
880 return ((a->address > b->address) - (a->address < b->address));
881 }
882
883 /* Helper function to skip all bp_locations with addresses
884 less than ADDRESS. It returns the first bp_location that
885 is greater than or equal to ADDRESS. If none is found, just
886 return NULL. */
887
888 static struct bp_location **
889 get_first_locp_gte_addr (CORE_ADDR address)
890 {
891 struct bp_location dummy_loc;
892 struct bp_location *dummy_locp = &dummy_loc;
893 struct bp_location **locp_found = NULL;
894
895 /* Initialize the dummy location's address field. */
896 memset (&dummy_loc, 0, sizeof (struct bp_location));
897 dummy_loc.address = address;
898
899 /* Find a close match to the first location at ADDRESS. */
900 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
901 sizeof (struct bp_location **),
902 bp_location_compare_addrs);
903
904 /* Nothing was found, nothing left to do. */
905 if (locp_found == NULL)
906 return NULL;
907
908 /* We may have found a location that is at ADDRESS but is not the first in the
909 location's list. Go backwards (if possible) and locate the first one. */
910 while ((locp_found - 1) >= bp_location
911 && (*(locp_found - 1))->address == address)
912 locp_found--;
913
914 return locp_found;
915 }
916
917 void
918 set_breakpoint_condition (struct breakpoint *b, char *exp,
919 int from_tty)
920 {
921 xfree (b->cond_string);
922 b->cond_string = NULL;
923
924 if (is_watchpoint (b))
925 {
926 struct watchpoint *w = (struct watchpoint *) b;
927
928 xfree (w->cond_exp);
929 w->cond_exp = NULL;
930 }
931 else
932 {
933 struct bp_location *loc;
934
935 for (loc = b->loc; loc; loc = loc->next)
936 {
937 xfree (loc->cond);
938 loc->cond = NULL;
939
940 /* No need to free the condition agent expression
941 bytecode (if we have one). We will handle this
942 when we go through update_global_location_list. */
943 }
944 }
945
946 if (*exp == 0)
947 {
948 if (from_tty)
949 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
950 }
951 else
952 {
953 char *arg = exp;
954
955 /* I don't know if it matters whether this is the string the user
956 typed in or the decompiled expression. */
957 b->cond_string = xstrdup (arg);
958 b->condition_not_parsed = 0;
959
960 if (is_watchpoint (b))
961 {
962 struct watchpoint *w = (struct watchpoint *) b;
963
964 innermost_block = NULL;
965 arg = exp;
966 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
967 if (*arg)
968 error (_("Junk at end of expression"));
969 w->cond_exp_valid_block = innermost_block;
970 }
971 else
972 {
973 struct bp_location *loc;
974
975 for (loc = b->loc; loc; loc = loc->next)
976 {
977 arg = exp;
978 loc->cond =
979 parse_exp_1 (&arg, loc->address,
980 block_for_pc (loc->address), 0);
981 if (*arg)
982 error (_("Junk at end of expression"));
983 }
984 }
985 }
986 mark_breakpoint_modified (b);
987
988 observer_notify_breakpoint_modified (b);
989 }
990
991 /* Completion for the "condition" command. */
992
993 static VEC (char_ptr) *
994 condition_completer (struct cmd_list_element *cmd, char *text, char *word)
995 {
996 char *space;
997
998 text = skip_spaces (text);
999 space = skip_to_space (text);
1000 if (*space == '\0')
1001 {
1002 int len;
1003 struct breakpoint *b;
1004 VEC (char_ptr) *result = NULL;
1005
1006 if (text[0] == '$')
1007 {
1008 /* We don't support completion of history indices. */
1009 if (isdigit (text[1]))
1010 return NULL;
1011 return complete_internalvar (&text[1]);
1012 }
1013
1014 /* We're completing the breakpoint number. */
1015 len = strlen (text);
1016
1017 ALL_BREAKPOINTS (b)
1018 {
1019 int single = b->loc->next == NULL;
1020 struct bp_location *loc;
1021 int count = 1;
1022
1023 for (loc = b->loc; loc; loc = loc->next)
1024 {
1025 char location[50];
1026
1027 if (single)
1028 xsnprintf (location, sizeof (location), "%d", b->number);
1029 else
1030 xsnprintf (location, sizeof (location), "%d.%d", b->number,
1031 count);
1032
1033 if (strncmp (location, text, len) == 0)
1034 VEC_safe_push (char_ptr, result, xstrdup (location));
1035
1036 ++count;
1037 }
1038 }
1039
1040 return result;
1041 }
1042
1043 /* We're completing the expression part. */
1044 text = skip_spaces (space);
1045 return expression_completer (cmd, text, word);
1046 }
1047
1048 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1049
1050 static void
1051 condition_command (char *arg, int from_tty)
1052 {
1053 struct breakpoint *b;
1054 char *p;
1055 int bnum;
1056
1057 if (arg == 0)
1058 error_no_arg (_("breakpoint number"));
1059
1060 p = arg;
1061 bnum = get_number (&p);
1062 if (bnum == 0)
1063 error (_("Bad breakpoint argument: '%s'"), arg);
1064
1065 ALL_BREAKPOINTS (b)
1066 if (b->number == bnum)
1067 {
1068 /* Check if this breakpoint has a Python object assigned to
1069 it, and if it has a definition of the "stop"
1070 method. This method and conditions entered into GDB from
1071 the CLI are mutually exclusive. */
1072 if (b->py_bp_object
1073 && gdbpy_breakpoint_has_py_cond (b->py_bp_object))
1074 error (_("Cannot set a condition where a Python 'stop' "
1075 "method has been defined in the breakpoint."));
1076 set_breakpoint_condition (b, p, from_tty);
1077
1078 if (is_breakpoint (b))
1079 update_global_location_list (1);
1080
1081 return;
1082 }
1083
1084 error (_("No breakpoint number %d."), bnum);
1085 }
1086
1087 /* Check that COMMAND do not contain commands that are suitable
1088 only for tracepoints and not suitable for ordinary breakpoints.
1089 Throw if any such commands is found. */
1090
1091 static void
1092 check_no_tracepoint_commands (struct command_line *commands)
1093 {
1094 struct command_line *c;
1095
1096 for (c = commands; c; c = c->next)
1097 {
1098 int i;
1099
1100 if (c->control_type == while_stepping_control)
1101 error (_("The 'while-stepping' command can "
1102 "only be used for tracepoints"));
1103
1104 for (i = 0; i < c->body_count; ++i)
1105 check_no_tracepoint_commands ((c->body_list)[i]);
1106
1107 /* Not that command parsing removes leading whitespace and comment
1108 lines and also empty lines. So, we only need to check for
1109 command directly. */
1110 if (strstr (c->line, "collect ") == c->line)
1111 error (_("The 'collect' command can only be used for tracepoints"));
1112
1113 if (strstr (c->line, "teval ") == c->line)
1114 error (_("The 'teval' command can only be used for tracepoints"));
1115 }
1116 }
1117
1118 /* Encapsulate tests for different types of tracepoints. */
1119
1120 static int
1121 is_tracepoint_type (enum bptype type)
1122 {
1123 return (type == bp_tracepoint
1124 || type == bp_fast_tracepoint
1125 || type == bp_static_tracepoint);
1126 }
1127
1128 int
1129 is_tracepoint (const struct breakpoint *b)
1130 {
1131 return is_tracepoint_type (b->type);
1132 }
1133
1134 /* A helper function that validates that COMMANDS are valid for a
1135 breakpoint. This function will throw an exception if a problem is
1136 found. */
1137
1138 static void
1139 validate_commands_for_breakpoint (struct breakpoint *b,
1140 struct command_line *commands)
1141 {
1142 if (is_tracepoint (b))
1143 {
1144 /* We need to verify that each top-level element of commands is
1145 valid for tracepoints, that there's at most one
1146 while-stepping element, and that while-stepping's body has
1147 valid tracing commands excluding nested while-stepping. */
1148 struct command_line *c;
1149 struct command_line *while_stepping = 0;
1150 for (c = commands; c; c = c->next)
1151 {
1152 if (c->control_type == while_stepping_control)
1153 {
1154 if (b->type == bp_fast_tracepoint)
1155 error (_("The 'while-stepping' command "
1156 "cannot be used for fast tracepoint"));
1157 else if (b->type == bp_static_tracepoint)
1158 error (_("The 'while-stepping' command "
1159 "cannot be used for static tracepoint"));
1160
1161 if (while_stepping)
1162 error (_("The 'while-stepping' command "
1163 "can be used only once"));
1164 else
1165 while_stepping = c;
1166 }
1167 }
1168 if (while_stepping)
1169 {
1170 struct command_line *c2;
1171
1172 gdb_assert (while_stepping->body_count == 1);
1173 c2 = while_stepping->body_list[0];
1174 for (; c2; c2 = c2->next)
1175 {
1176 if (c2->control_type == while_stepping_control)
1177 error (_("The 'while-stepping' command cannot be nested"));
1178 }
1179 }
1180 }
1181 else
1182 {
1183 check_no_tracepoint_commands (commands);
1184 }
1185 }
1186
1187 /* Return a vector of all the static tracepoints set at ADDR. The
1188 caller is responsible for releasing the vector. */
1189
1190 VEC(breakpoint_p) *
1191 static_tracepoints_here (CORE_ADDR addr)
1192 {
1193 struct breakpoint *b;
1194 VEC(breakpoint_p) *found = 0;
1195 struct bp_location *loc;
1196
1197 ALL_BREAKPOINTS (b)
1198 if (b->type == bp_static_tracepoint)
1199 {
1200 for (loc = b->loc; loc; loc = loc->next)
1201 if (loc->address == addr)
1202 VEC_safe_push(breakpoint_p, found, b);
1203 }
1204
1205 return found;
1206 }
1207
1208 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1209 validate that only allowed commands are included. */
1210
1211 void
1212 breakpoint_set_commands (struct breakpoint *b,
1213 struct command_line *commands)
1214 {
1215 validate_commands_for_breakpoint (b, commands);
1216
1217 decref_counted_command_line (&b->commands);
1218 b->commands = alloc_counted_command_line (commands);
1219 observer_notify_breakpoint_modified (b);
1220 }
1221
1222 /* Set the internal `silent' flag on the breakpoint. Note that this
1223 is not the same as the "silent" that may appear in the breakpoint's
1224 commands. */
1225
1226 void
1227 breakpoint_set_silent (struct breakpoint *b, int silent)
1228 {
1229 int old_silent = b->silent;
1230
1231 b->silent = silent;
1232 if (old_silent != silent)
1233 observer_notify_breakpoint_modified (b);
1234 }
1235
1236 /* Set the thread for this breakpoint. If THREAD is -1, make the
1237 breakpoint work for any thread. */
1238
1239 void
1240 breakpoint_set_thread (struct breakpoint *b, int thread)
1241 {
1242 int old_thread = b->thread;
1243
1244 b->thread = thread;
1245 if (old_thread != thread)
1246 observer_notify_breakpoint_modified (b);
1247 }
1248
1249 /* Set the task for this breakpoint. If TASK is 0, make the
1250 breakpoint work for any task. */
1251
1252 void
1253 breakpoint_set_task (struct breakpoint *b, int task)
1254 {
1255 int old_task = b->task;
1256
1257 b->task = task;
1258 if (old_task != task)
1259 observer_notify_breakpoint_modified (b);
1260 }
1261
1262 void
1263 check_tracepoint_command (char *line, void *closure)
1264 {
1265 struct breakpoint *b = closure;
1266
1267 validate_actionline (&line, b);
1268 }
1269
1270 /* A structure used to pass information through
1271 map_breakpoint_numbers. */
1272
1273 struct commands_info
1274 {
1275 /* True if the command was typed at a tty. */
1276 int from_tty;
1277
1278 /* The breakpoint range spec. */
1279 char *arg;
1280
1281 /* Non-NULL if the body of the commands are being read from this
1282 already-parsed command. */
1283 struct command_line *control;
1284
1285 /* The command lines read from the user, or NULL if they have not
1286 yet been read. */
1287 struct counted_command_line *cmd;
1288 };
1289
1290 /* A callback for map_breakpoint_numbers that sets the commands for
1291 commands_command. */
1292
1293 static void
1294 do_map_commands_command (struct breakpoint *b, void *data)
1295 {
1296 struct commands_info *info = data;
1297
1298 if (info->cmd == NULL)
1299 {
1300 struct command_line *l;
1301
1302 if (info->control != NULL)
1303 l = copy_command_lines (info->control->body_list[0]);
1304 else
1305 {
1306 struct cleanup *old_chain;
1307 char *str;
1308
1309 str = xstrprintf (_("Type commands for breakpoint(s) "
1310 "%s, one per line."),
1311 info->arg);
1312
1313 old_chain = make_cleanup (xfree, str);
1314
1315 l = read_command_lines (str,
1316 info->from_tty, 1,
1317 (is_tracepoint (b)
1318 ? check_tracepoint_command : 0),
1319 b);
1320
1321 do_cleanups (old_chain);
1322 }
1323
1324 info->cmd = alloc_counted_command_line (l);
1325 }
1326
1327 /* If a breakpoint was on the list more than once, we don't need to
1328 do anything. */
1329 if (b->commands != info->cmd)
1330 {
1331 validate_commands_for_breakpoint (b, info->cmd->commands);
1332 incref_counted_command_line (info->cmd);
1333 decref_counted_command_line (&b->commands);
1334 b->commands = info->cmd;
1335 observer_notify_breakpoint_modified (b);
1336 }
1337 }
1338
1339 static void
1340 commands_command_1 (char *arg, int from_tty,
1341 struct command_line *control)
1342 {
1343 struct cleanup *cleanups;
1344 struct commands_info info;
1345
1346 info.from_tty = from_tty;
1347 info.control = control;
1348 info.cmd = NULL;
1349 /* If we read command lines from the user, then `info' will hold an
1350 extra reference to the commands that we must clean up. */
1351 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1352
1353 if (arg == NULL || !*arg)
1354 {
1355 if (breakpoint_count - prev_breakpoint_count > 1)
1356 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1357 breakpoint_count);
1358 else if (breakpoint_count > 0)
1359 arg = xstrprintf ("%d", breakpoint_count);
1360 else
1361 {
1362 /* So that we don't try to free the incoming non-NULL
1363 argument in the cleanup below. Mapping breakpoint
1364 numbers will fail in this case. */
1365 arg = NULL;
1366 }
1367 }
1368 else
1369 /* The command loop has some static state, so we need to preserve
1370 our argument. */
1371 arg = xstrdup (arg);
1372
1373 if (arg != NULL)
1374 make_cleanup (xfree, arg);
1375
1376 info.arg = arg;
1377
1378 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1379
1380 if (info.cmd == NULL)
1381 error (_("No breakpoints specified."));
1382
1383 do_cleanups (cleanups);
1384 }
1385
1386 static void
1387 commands_command (char *arg, int from_tty)
1388 {
1389 commands_command_1 (arg, from_tty, NULL);
1390 }
1391
1392 /* Like commands_command, but instead of reading the commands from
1393 input stream, takes them from an already parsed command structure.
1394
1395 This is used by cli-script.c to DTRT with breakpoint commands
1396 that are part of if and while bodies. */
1397 enum command_control_type
1398 commands_from_control_command (char *arg, struct command_line *cmd)
1399 {
1400 commands_command_1 (arg, 0, cmd);
1401 return simple_control;
1402 }
1403
1404 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1405
1406 static int
1407 bp_location_has_shadow (struct bp_location *bl)
1408 {
1409 if (bl->loc_type != bp_loc_software_breakpoint)
1410 return 0;
1411 if (!bl->inserted)
1412 return 0;
1413 if (bl->target_info.shadow_len == 0)
1414 /* BL isn't valid, or doesn't shadow memory. */
1415 return 0;
1416 return 1;
1417 }
1418
1419 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1420 by replacing any memory breakpoints with their shadowed contents.
1421
1422 If READBUF is not NULL, this buffer must not overlap with any of
1423 the breakpoint location's shadow_contents buffers. Otherwise,
1424 a failed assertion internal error will be raised.
1425
1426 The range of shadowed area by each bp_location is:
1427 bl->address - bp_location_placed_address_before_address_max
1428 up to bl->address + bp_location_shadow_len_after_address_max
1429 The range we were requested to resolve shadows for is:
1430 memaddr ... memaddr + len
1431 Thus the safe cutoff boundaries for performance optimization are
1432 memaddr + len <= (bl->address
1433 - bp_location_placed_address_before_address_max)
1434 and:
1435 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1436
1437 void
1438 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1439 const gdb_byte *writebuf_org,
1440 ULONGEST memaddr, LONGEST len)
1441 {
1442 /* Left boundary, right boundary and median element of our binary
1443 search. */
1444 unsigned bc_l, bc_r, bc;
1445
1446 /* Find BC_L which is a leftmost element which may affect BUF
1447 content. It is safe to report lower value but a failure to
1448 report higher one. */
1449
1450 bc_l = 0;
1451 bc_r = bp_location_count;
1452 while (bc_l + 1 < bc_r)
1453 {
1454 struct bp_location *bl;
1455
1456 bc = (bc_l + bc_r) / 2;
1457 bl = bp_location[bc];
1458
1459 /* Check first BL->ADDRESS will not overflow due to the added
1460 constant. Then advance the left boundary only if we are sure
1461 the BC element can in no way affect the BUF content (MEMADDR
1462 to MEMADDR + LEN range).
1463
1464 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1465 offset so that we cannot miss a breakpoint with its shadow
1466 range tail still reaching MEMADDR. */
1467
1468 if ((bl->address + bp_location_shadow_len_after_address_max
1469 >= bl->address)
1470 && (bl->address + bp_location_shadow_len_after_address_max
1471 <= memaddr))
1472 bc_l = bc;
1473 else
1474 bc_r = bc;
1475 }
1476
1477 /* Due to the binary search above, we need to make sure we pick the
1478 first location that's at BC_L's address. E.g., if there are
1479 multiple locations at the same address, BC_L may end up pointing
1480 at a duplicate location, and miss the "master"/"inserted"
1481 location. Say, given locations L1, L2 and L3 at addresses A and
1482 B:
1483
1484 L1@A, L2@A, L3@B, ...
1485
1486 BC_L could end up pointing at location L2, while the "master"
1487 location could be L1. Since the `loc->inserted' flag is only set
1488 on "master" locations, we'd forget to restore the shadow of L1
1489 and L2. */
1490 while (bc_l > 0
1491 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1492 bc_l--;
1493
1494 /* Now do full processing of the found relevant range of elements. */
1495
1496 for (bc = bc_l; bc < bp_location_count; bc++)
1497 {
1498 struct bp_location *bl = bp_location[bc];
1499 CORE_ADDR bp_addr = 0;
1500 int bp_size = 0;
1501 int bptoffset = 0;
1502
1503 /* bp_location array has BL->OWNER always non-NULL. */
1504 if (bl->owner->type == bp_none)
1505 warning (_("reading through apparently deleted breakpoint #%d?"),
1506 bl->owner->number);
1507
1508 /* Performance optimization: any further element can no longer affect BUF
1509 content. */
1510
1511 if (bl->address >= bp_location_placed_address_before_address_max
1512 && memaddr + len <= (bl->address
1513 - bp_location_placed_address_before_address_max))
1514 break;
1515
1516 if (!bp_location_has_shadow (bl))
1517 continue;
1518 if (!breakpoint_address_match (bl->target_info.placed_address_space, 0,
1519 current_program_space->aspace, 0))
1520 continue;
1521
1522 /* Addresses and length of the part of the breakpoint that
1523 we need to copy. */
1524 bp_addr = bl->target_info.placed_address;
1525 bp_size = bl->target_info.shadow_len;
1526
1527 if (bp_addr + bp_size <= memaddr)
1528 /* The breakpoint is entirely before the chunk of memory we
1529 are reading. */
1530 continue;
1531
1532 if (bp_addr >= memaddr + len)
1533 /* The breakpoint is entirely after the chunk of memory we are
1534 reading. */
1535 continue;
1536
1537 /* Offset within shadow_contents. */
1538 if (bp_addr < memaddr)
1539 {
1540 /* Only copy the second part of the breakpoint. */
1541 bp_size -= memaddr - bp_addr;
1542 bptoffset = memaddr - bp_addr;
1543 bp_addr = memaddr;
1544 }
1545
1546 if (bp_addr + bp_size > memaddr + len)
1547 {
1548 /* Only copy the first part of the breakpoint. */
1549 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1550 }
1551
1552 if (readbuf != NULL)
1553 {
1554 /* Verify that the readbuf buffer does not overlap with
1555 the shadow_contents buffer. */
1556 gdb_assert (bl->target_info.shadow_contents >= readbuf + len
1557 || readbuf >= (bl->target_info.shadow_contents
1558 + bl->target_info.shadow_len));
1559
1560 /* Update the read buffer with this inserted breakpoint's
1561 shadow. */
1562 memcpy (readbuf + bp_addr - memaddr,
1563 bl->target_info.shadow_contents + bptoffset, bp_size);
1564 }
1565 else
1566 {
1567 struct gdbarch *gdbarch = bl->gdbarch;
1568 const unsigned char *bp;
1569 CORE_ADDR placed_address = bl->target_info.placed_address;
1570 unsigned placed_size = bl->target_info.placed_size;
1571
1572 /* Update the shadow with what we want to write to memory. */
1573 memcpy (bl->target_info.shadow_contents + bptoffset,
1574 writebuf_org + bp_addr - memaddr, bp_size);
1575
1576 /* Determine appropriate breakpoint contents and size for this
1577 address. */
1578 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1579
1580 /* Update the final write buffer with this inserted
1581 breakpoint's INSN. */
1582 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1583 }
1584 }
1585 }
1586 \f
1587
1588 /* Return true if BPT is either a software breakpoint or a hardware
1589 breakpoint. */
1590
1591 int
1592 is_breakpoint (const struct breakpoint *bpt)
1593 {
1594 return (bpt->type == bp_breakpoint
1595 || bpt->type == bp_hardware_breakpoint
1596 || bpt->type == bp_dprintf);
1597 }
1598
1599 /* Return true if BPT is of any hardware watchpoint kind. */
1600
1601 static int
1602 is_hardware_watchpoint (const struct breakpoint *bpt)
1603 {
1604 return (bpt->type == bp_hardware_watchpoint
1605 || bpt->type == bp_read_watchpoint
1606 || bpt->type == bp_access_watchpoint);
1607 }
1608
1609 /* Return true if BPT is of any watchpoint kind, hardware or
1610 software. */
1611
1612 int
1613 is_watchpoint (const struct breakpoint *bpt)
1614 {
1615 return (is_hardware_watchpoint (bpt)
1616 || bpt->type == bp_watchpoint);
1617 }
1618
1619 /* Returns true if the current thread and its running state are safe
1620 to evaluate or update watchpoint B. Watchpoints on local
1621 expressions need to be evaluated in the context of the thread that
1622 was current when the watchpoint was created, and, that thread needs
1623 to be stopped to be able to select the correct frame context.
1624 Watchpoints on global expressions can be evaluated on any thread,
1625 and in any state. It is presently left to the target allowing
1626 memory accesses when threads are running. */
1627
1628 static int
1629 watchpoint_in_thread_scope (struct watchpoint *b)
1630 {
1631 return (b->base.pspace == current_program_space
1632 && (ptid_equal (b->watchpoint_thread, null_ptid)
1633 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1634 && !is_executing (inferior_ptid))));
1635 }
1636
1637 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1638 associated bp_watchpoint_scope breakpoint. */
1639
1640 static void
1641 watchpoint_del_at_next_stop (struct watchpoint *w)
1642 {
1643 struct breakpoint *b = &w->base;
1644
1645 if (b->related_breakpoint != b)
1646 {
1647 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1648 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1649 b->related_breakpoint->disposition = disp_del_at_next_stop;
1650 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1651 b->related_breakpoint = b;
1652 }
1653 b->disposition = disp_del_at_next_stop;
1654 }
1655
1656 /* Assuming that B is a watchpoint:
1657 - Reparse watchpoint expression, if REPARSE is non-zero
1658 - Evaluate expression and store the result in B->val
1659 - Evaluate the condition if there is one, and store the result
1660 in b->loc->cond.
1661 - Update the list of values that must be watched in B->loc.
1662
1663 If the watchpoint disposition is disp_del_at_next_stop, then do
1664 nothing. If this is local watchpoint that is out of scope, delete
1665 it.
1666
1667 Even with `set breakpoint always-inserted on' the watchpoints are
1668 removed + inserted on each stop here. Normal breakpoints must
1669 never be removed because they might be missed by a running thread
1670 when debugging in non-stop mode. On the other hand, hardware
1671 watchpoints (is_hardware_watchpoint; processed here) are specific
1672 to each LWP since they are stored in each LWP's hardware debug
1673 registers. Therefore, such LWP must be stopped first in order to
1674 be able to modify its hardware watchpoints.
1675
1676 Hardware watchpoints must be reset exactly once after being
1677 presented to the user. It cannot be done sooner, because it would
1678 reset the data used to present the watchpoint hit to the user. And
1679 it must not be done later because it could display the same single
1680 watchpoint hit during multiple GDB stops. Note that the latter is
1681 relevant only to the hardware watchpoint types bp_read_watchpoint
1682 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1683 not user-visible - its hit is suppressed if the memory content has
1684 not changed.
1685
1686 The following constraints influence the location where we can reset
1687 hardware watchpoints:
1688
1689 * target_stopped_by_watchpoint and target_stopped_data_address are
1690 called several times when GDB stops.
1691
1692 [linux]
1693 * Multiple hardware watchpoints can be hit at the same time,
1694 causing GDB to stop. GDB only presents one hardware watchpoint
1695 hit at a time as the reason for stopping, and all the other hits
1696 are presented later, one after the other, each time the user
1697 requests the execution to be resumed. Execution is not resumed
1698 for the threads still having pending hit event stored in
1699 LWP_INFO->STATUS. While the watchpoint is already removed from
1700 the inferior on the first stop the thread hit event is kept being
1701 reported from its cached value by linux_nat_stopped_data_address
1702 until the real thread resume happens after the watchpoint gets
1703 presented and thus its LWP_INFO->STATUS gets reset.
1704
1705 Therefore the hardware watchpoint hit can get safely reset on the
1706 watchpoint removal from inferior. */
1707
1708 static void
1709 update_watchpoint (struct watchpoint *b, int reparse)
1710 {
1711 int within_current_scope;
1712 struct frame_id saved_frame_id;
1713 int frame_saved;
1714
1715 /* If this is a local watchpoint, we only want to check if the
1716 watchpoint frame is in scope if the current thread is the thread
1717 that was used to create the watchpoint. */
1718 if (!watchpoint_in_thread_scope (b))
1719 return;
1720
1721 if (b->base.disposition == disp_del_at_next_stop)
1722 return;
1723
1724 frame_saved = 0;
1725
1726 /* Determine if the watchpoint is within scope. */
1727 if (b->exp_valid_block == NULL)
1728 within_current_scope = 1;
1729 else
1730 {
1731 struct frame_info *fi = get_current_frame ();
1732 struct gdbarch *frame_arch = get_frame_arch (fi);
1733 CORE_ADDR frame_pc = get_frame_pc (fi);
1734
1735 /* If we're in a function epilogue, unwinding may not work
1736 properly, so do not attempt to recreate locations at this
1737 point. See similar comments in watchpoint_check. */
1738 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1739 return;
1740
1741 /* Save the current frame's ID so we can restore it after
1742 evaluating the watchpoint expression on its own frame. */
1743 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1744 took a frame parameter, so that we didn't have to change the
1745 selected frame. */
1746 frame_saved = 1;
1747 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1748
1749 fi = frame_find_by_id (b->watchpoint_frame);
1750 within_current_scope = (fi != NULL);
1751 if (within_current_scope)
1752 select_frame (fi);
1753 }
1754
1755 /* We don't free locations. They are stored in the bp_location array
1756 and update_global_location_list will eventually delete them and
1757 remove breakpoints if needed. */
1758 b->base.loc = NULL;
1759
1760 if (within_current_scope && reparse)
1761 {
1762 char *s;
1763
1764 if (b->exp)
1765 {
1766 xfree (b->exp);
1767 b->exp = NULL;
1768 }
1769 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1770 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1771 /* If the meaning of expression itself changed, the old value is
1772 no longer relevant. We don't want to report a watchpoint hit
1773 to the user when the old value and the new value may actually
1774 be completely different objects. */
1775 value_free (b->val);
1776 b->val = NULL;
1777 b->val_valid = 0;
1778
1779 /* Note that unlike with breakpoints, the watchpoint's condition
1780 expression is stored in the breakpoint object, not in the
1781 locations (re)created below. */
1782 if (b->base.cond_string != NULL)
1783 {
1784 if (b->cond_exp != NULL)
1785 {
1786 xfree (b->cond_exp);
1787 b->cond_exp = NULL;
1788 }
1789
1790 s = b->base.cond_string;
1791 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1792 }
1793 }
1794
1795 /* If we failed to parse the expression, for example because
1796 it refers to a global variable in a not-yet-loaded shared library,
1797 don't try to insert watchpoint. We don't automatically delete
1798 such watchpoint, though, since failure to parse expression
1799 is different from out-of-scope watchpoint. */
1800 if ( !target_has_execution)
1801 {
1802 /* Without execution, memory can't change. No use to try and
1803 set watchpoint locations. The watchpoint will be reset when
1804 the target gains execution, through breakpoint_re_set. */
1805 }
1806 else if (within_current_scope && b->exp)
1807 {
1808 int pc = 0;
1809 struct value *val_chain, *v, *result, *next;
1810 struct program_space *frame_pspace;
1811
1812 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain);
1813
1814 /* Avoid setting b->val if it's already set. The meaning of
1815 b->val is 'the last value' user saw, and we should update
1816 it only if we reported that last value to user. As it
1817 happens, the code that reports it updates b->val directly.
1818 We don't keep track of the memory value for masked
1819 watchpoints. */
1820 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1821 {
1822 b->val = v;
1823 b->val_valid = 1;
1824 }
1825
1826 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1827
1828 /* Look at each value on the value chain. */
1829 for (v = val_chain; v; v = value_next (v))
1830 {
1831 /* If it's a memory location, and GDB actually needed
1832 its contents to evaluate the expression, then we
1833 must watch it. If the first value returned is
1834 still lazy, that means an error occurred reading it;
1835 watch it anyway in case it becomes readable. */
1836 if (VALUE_LVAL (v) == lval_memory
1837 && (v == val_chain || ! value_lazy (v)))
1838 {
1839 struct type *vtype = check_typedef (value_type (v));
1840
1841 /* We only watch structs and arrays if user asked
1842 for it explicitly, never if they just happen to
1843 appear in the middle of some value chain. */
1844 if (v == result
1845 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1846 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1847 {
1848 CORE_ADDR addr;
1849 int type;
1850 struct bp_location *loc, **tmp;
1851
1852 addr = value_address (v);
1853 type = hw_write;
1854 if (b->base.type == bp_read_watchpoint)
1855 type = hw_read;
1856 else if (b->base.type == bp_access_watchpoint)
1857 type = hw_access;
1858
1859 loc = allocate_bp_location (&b->base);
1860 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1861 ;
1862 *tmp = loc;
1863 loc->gdbarch = get_type_arch (value_type (v));
1864
1865 loc->pspace = frame_pspace;
1866 loc->address = addr;
1867 loc->length = TYPE_LENGTH (value_type (v));
1868 loc->watchpoint_type = type;
1869 }
1870 }
1871 }
1872
1873 /* Change the type of breakpoint between hardware assisted or
1874 an ordinary watchpoint depending on the hardware support
1875 and free hardware slots. REPARSE is set when the inferior
1876 is started. */
1877 if (reparse)
1878 {
1879 int reg_cnt;
1880 enum bp_loc_type loc_type;
1881 struct bp_location *bl;
1882
1883 reg_cnt = can_use_hardware_watchpoint (val_chain);
1884
1885 if (reg_cnt)
1886 {
1887 int i, target_resources_ok, other_type_used;
1888 enum bptype type;
1889
1890 /* Use an exact watchpoint when there's only one memory region to be
1891 watched, and only one debug register is needed to watch it. */
1892 b->exact = target_exact_watchpoints && reg_cnt == 1;
1893
1894 /* We need to determine how many resources are already
1895 used for all other hardware watchpoints plus this one
1896 to see if we still have enough resources to also fit
1897 this watchpoint in as well. */
1898
1899 /* If this is a software watchpoint, we try to turn it
1900 to a hardware one -- count resources as if B was of
1901 hardware watchpoint type. */
1902 type = b->base.type;
1903 if (type == bp_watchpoint)
1904 type = bp_hardware_watchpoint;
1905
1906 /* This watchpoint may or may not have been placed on
1907 the list yet at this point (it won't be in the list
1908 if we're trying to create it for the first time,
1909 through watch_command), so always account for it
1910 manually. */
1911
1912 /* Count resources used by all watchpoints except B. */
1913 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
1914
1915 /* Add in the resources needed for B. */
1916 i += hw_watchpoint_use_count (&b->base);
1917
1918 target_resources_ok
1919 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1920 if (target_resources_ok <= 0)
1921 {
1922 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
1923
1924 if (target_resources_ok == 0 && !sw_mode)
1925 error (_("Target does not support this type of "
1926 "hardware watchpoint."));
1927 else if (target_resources_ok < 0 && !sw_mode)
1928 error (_("There are not enough available hardware "
1929 "resources for this watchpoint."));
1930
1931 /* Downgrade to software watchpoint. */
1932 b->base.type = bp_watchpoint;
1933 }
1934 else
1935 {
1936 /* If this was a software watchpoint, we've just
1937 found we have enough resources to turn it to a
1938 hardware watchpoint. Otherwise, this is a
1939 nop. */
1940 b->base.type = type;
1941 }
1942 }
1943 else if (!b->base.ops->works_in_software_mode (&b->base))
1944 error (_("Expression cannot be implemented with "
1945 "read/access watchpoint."));
1946 else
1947 b->base.type = bp_watchpoint;
1948
1949 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
1950 : bp_loc_hardware_watchpoint);
1951 for (bl = b->base.loc; bl; bl = bl->next)
1952 bl->loc_type = loc_type;
1953 }
1954
1955 for (v = val_chain; v; v = next)
1956 {
1957 next = value_next (v);
1958 if (v != b->val)
1959 value_free (v);
1960 }
1961
1962 /* If a software watchpoint is not watching any memory, then the
1963 above left it without any location set up. But,
1964 bpstat_stop_status requires a location to be able to report
1965 stops, so make sure there's at least a dummy one. */
1966 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
1967 {
1968 struct breakpoint *base = &b->base;
1969 base->loc = allocate_bp_location (base);
1970 base->loc->pspace = frame_pspace;
1971 base->loc->address = -1;
1972 base->loc->length = -1;
1973 base->loc->watchpoint_type = -1;
1974 }
1975 }
1976 else if (!within_current_scope)
1977 {
1978 printf_filtered (_("\
1979 Watchpoint %d deleted because the program has left the block\n\
1980 in which its expression is valid.\n"),
1981 b->base.number);
1982 watchpoint_del_at_next_stop (b);
1983 }
1984
1985 /* Restore the selected frame. */
1986 if (frame_saved)
1987 select_frame (frame_find_by_id (saved_frame_id));
1988 }
1989
1990
1991 /* Returns 1 iff breakpoint location should be
1992 inserted in the inferior. We don't differentiate the type of BL's owner
1993 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1994 breakpoint_ops is not defined, because in insert_bp_location,
1995 tracepoint's insert_location will not be called. */
1996 static int
1997 should_be_inserted (struct bp_location *bl)
1998 {
1999 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2000 return 0;
2001
2002 if (bl->owner->disposition == disp_del_at_next_stop)
2003 return 0;
2004
2005 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2006 return 0;
2007
2008 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2009 return 0;
2010
2011 /* This is set for example, when we're attached to the parent of a
2012 vfork, and have detached from the child. The child is running
2013 free, and we expect it to do an exec or exit, at which point the
2014 OS makes the parent schedulable again (and the target reports
2015 that the vfork is done). Until the child is done with the shared
2016 memory region, do not insert breakpoints in the parent, otherwise
2017 the child could still trip on the parent's breakpoints. Since
2018 the parent is blocked anyway, it won't miss any breakpoint. */
2019 if (bl->pspace->breakpoints_not_allowed)
2020 return 0;
2021
2022 return 1;
2023 }
2024
2025 /* Same as should_be_inserted but does the check assuming
2026 that the location is not duplicated. */
2027
2028 static int
2029 unduplicated_should_be_inserted (struct bp_location *bl)
2030 {
2031 int result;
2032 const int save_duplicate = bl->duplicate;
2033
2034 bl->duplicate = 0;
2035 result = should_be_inserted (bl);
2036 bl->duplicate = save_duplicate;
2037 return result;
2038 }
2039
2040 /* Parses a conditional described by an expression COND into an
2041 agent expression bytecode suitable for evaluation
2042 by the bytecode interpreter. Return NULL if there was
2043 any error during parsing. */
2044
2045 static struct agent_expr *
2046 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2047 {
2048 struct agent_expr *aexpr = NULL;
2049 struct cleanup *old_chain = NULL;
2050 volatile struct gdb_exception ex;
2051
2052 if (!cond)
2053 return NULL;
2054
2055 /* We don't want to stop processing, so catch any errors
2056 that may show up. */
2057 TRY_CATCH (ex, RETURN_MASK_ERROR)
2058 {
2059 aexpr = gen_eval_for_expr (scope, cond);
2060 }
2061
2062 if (ex.reason < 0)
2063 {
2064 /* If we got here, it means the condition could not be parsed to a valid
2065 bytecode expression and thus can't be evaluated on the target's side.
2066 It's no use iterating through the conditions. */
2067 return NULL;
2068 }
2069
2070 /* We have a valid agent expression. */
2071 return aexpr;
2072 }
2073
2074 /* Based on location BL, create a list of breakpoint conditions to be
2075 passed on to the target. If we have duplicated locations with different
2076 conditions, we will add such conditions to the list. The idea is that the
2077 target will evaluate the list of conditions and will only notify GDB when
2078 one of them is true. */
2079
2080 static void
2081 build_target_condition_list (struct bp_location *bl)
2082 {
2083 struct bp_location **locp = NULL, **loc2p;
2084 int null_condition_or_parse_error = 0;
2085 int modified = bl->needs_update;
2086 struct bp_location *loc;
2087
2088 /* This is only meaningful if the target is
2089 evaluating conditions and if the user has
2090 opted for condition evaluation on the target's
2091 side. */
2092 if (gdb_evaluates_breakpoint_condition_p ()
2093 || !target_supports_evaluation_of_breakpoint_conditions ())
2094 return;
2095
2096 /* Do a first pass to check for locations with no assigned
2097 conditions or conditions that fail to parse to a valid agent expression
2098 bytecode. If any of these happen, then it's no use to send conditions
2099 to the target since this location will always trigger and generate a
2100 response back to GDB. */
2101 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2102 {
2103 loc = (*loc2p);
2104 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2105 {
2106 if (modified)
2107 {
2108 struct agent_expr *aexpr;
2109
2110 /* Re-parse the conditions since something changed. In that
2111 case we already freed the condition bytecodes (see
2112 force_breakpoint_reinsertion). We just
2113 need to parse the condition to bytecodes again. */
2114 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2115 loc->cond_bytecode = aexpr;
2116
2117 /* Check if we managed to parse the conditional expression
2118 correctly. If not, we will not send this condition
2119 to the target. */
2120 if (aexpr)
2121 continue;
2122 }
2123
2124 /* If we have a NULL bytecode expression, it means something
2125 went wrong or we have a null condition expression. */
2126 if (!loc->cond_bytecode)
2127 {
2128 null_condition_or_parse_error = 1;
2129 break;
2130 }
2131 }
2132 }
2133
2134 /* If any of these happened, it means we will have to evaluate the conditions
2135 for the location's address on gdb's side. It is no use keeping bytecodes
2136 for all the other duplicate locations, thus we free all of them here.
2137
2138 This is so we have a finer control over which locations' conditions are
2139 being evaluated by GDB or the remote stub. */
2140 if (null_condition_or_parse_error)
2141 {
2142 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2143 {
2144 loc = (*loc2p);
2145 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2146 {
2147 /* Only go as far as the first NULL bytecode is
2148 located. */
2149 if (!loc->cond_bytecode)
2150 return;
2151
2152 free_agent_expr (loc->cond_bytecode);
2153 loc->cond_bytecode = NULL;
2154 }
2155 }
2156 }
2157
2158 /* No NULL conditions or failed bytecode generation. Build a condition list
2159 for this location's address. */
2160 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2161 {
2162 loc = (*loc2p);
2163 if (loc->cond
2164 && is_breakpoint (loc->owner)
2165 && loc->pspace->num == bl->pspace->num
2166 && loc->owner->enable_state == bp_enabled
2167 && loc->enabled)
2168 /* Add the condition to the vector. This will be used later to send the
2169 conditions to the target. */
2170 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2171 loc->cond_bytecode);
2172 }
2173
2174 return;
2175 }
2176
2177 /* Parses a command described by string CMD into an agent expression
2178 bytecode suitable for evaluation by the bytecode interpreter.
2179 Return NULL if there was any error during parsing. */
2180
2181 static struct agent_expr *
2182 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2183 {
2184 struct cleanup *old_cleanups = 0;
2185 struct expression *expr, **argvec;
2186 struct agent_expr *aexpr = NULL;
2187 struct cleanup *old_chain = NULL;
2188 volatile struct gdb_exception ex;
2189 char *cmdrest;
2190 char *format_start, *format_end;
2191 struct format_piece *fpieces;
2192 int nargs;
2193 struct gdbarch *gdbarch = get_current_arch ();
2194
2195 if (!cmd)
2196 return NULL;
2197
2198 cmdrest = cmd;
2199
2200 if (*cmdrest == ',')
2201 ++cmdrest;
2202 cmdrest = skip_spaces (cmdrest);
2203
2204 if (*cmdrest++ != '"')
2205 error (_("No format string following the location"));
2206
2207 format_start = cmdrest;
2208
2209 fpieces = parse_format_string (&cmdrest);
2210
2211 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2212
2213 format_end = cmdrest;
2214
2215 if (*cmdrest++ != '"')
2216 error (_("Bad format string, non-terminated '\"'."));
2217
2218 cmdrest = skip_spaces (cmdrest);
2219
2220 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2221 error (_("Invalid argument syntax"));
2222
2223 if (*cmdrest == ',')
2224 cmdrest++;
2225 cmdrest = skip_spaces (cmdrest);
2226
2227 /* For each argument, make an expression. */
2228
2229 argvec = (struct expression **) alloca (strlen (cmd)
2230 * sizeof (struct expression *));
2231
2232 nargs = 0;
2233 while (*cmdrest != '\0')
2234 {
2235 char *cmd1;
2236
2237 cmd1 = cmdrest;
2238 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2239 argvec[nargs++] = expr;
2240 cmdrest = cmd1;
2241 if (*cmdrest == ',')
2242 ++cmdrest;
2243 }
2244
2245 /* We don't want to stop processing, so catch any errors
2246 that may show up. */
2247 TRY_CATCH (ex, RETURN_MASK_ERROR)
2248 {
2249 aexpr = gen_printf (scope, gdbarch, 0, 0,
2250 format_start, format_end - format_start,
2251 fpieces, nargs, argvec);
2252 }
2253
2254 if (ex.reason < 0)
2255 {
2256 /* If we got here, it means the command could not be parsed to a valid
2257 bytecode expression and thus can't be evaluated on the target's side.
2258 It's no use iterating through the other commands. */
2259 return NULL;
2260 }
2261
2262 do_cleanups (old_cleanups);
2263
2264 /* We have a valid agent expression, return it. */
2265 return aexpr;
2266 }
2267
2268 /* Based on location BL, create a list of breakpoint commands to be
2269 passed on to the target. If we have duplicated locations with
2270 different commands, we will add any such to the list. */
2271
2272 static void
2273 build_target_command_list (struct bp_location *bl)
2274 {
2275 struct bp_location **locp = NULL, **loc2p;
2276 int null_command_or_parse_error = 0;
2277 int modified = bl->needs_update;
2278 struct bp_location *loc;
2279
2280 /* For now, limit to agent-style dprintf breakpoints. */
2281 if (bl->owner->type != bp_dprintf
2282 || strcmp (dprintf_style, dprintf_style_agent) != 0)
2283 return;
2284
2285 if (!target_can_run_breakpoint_commands ())
2286 return;
2287
2288 /* Do a first pass to check for locations with no assigned
2289 conditions or conditions that fail to parse to a valid agent expression
2290 bytecode. If any of these happen, then it's no use to send conditions
2291 to the target since this location will always trigger and generate a
2292 response back to GDB. */
2293 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2294 {
2295 loc = (*loc2p);
2296 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2297 {
2298 if (modified)
2299 {
2300 struct agent_expr *aexpr;
2301
2302 /* Re-parse the commands since something changed. In that
2303 case we already freed the command bytecodes (see
2304 force_breakpoint_reinsertion). We just
2305 need to parse the command to bytecodes again. */
2306 aexpr = parse_cmd_to_aexpr (bl->address,
2307 loc->owner->extra_string);
2308 loc->cmd_bytecode = aexpr;
2309
2310 if (!aexpr)
2311 continue;
2312 }
2313
2314 /* If we have a NULL bytecode expression, it means something
2315 went wrong or we have a null command expression. */
2316 if (!loc->cmd_bytecode)
2317 {
2318 null_command_or_parse_error = 1;
2319 break;
2320 }
2321 }
2322 }
2323
2324 /* If anything failed, then we're not doing target-side commands,
2325 and so clean up. */
2326 if (null_command_or_parse_error)
2327 {
2328 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2329 {
2330 loc = (*loc2p);
2331 if (is_breakpoint (loc->owner)
2332 && loc->pspace->num == bl->pspace->num)
2333 {
2334 /* Only go as far as the first NULL bytecode is
2335 located. */
2336 if (!loc->cond_bytecode)
2337 return;
2338
2339 free_agent_expr (loc->cond_bytecode);
2340 loc->cond_bytecode = NULL;
2341 }
2342 }
2343 }
2344
2345 /* No NULL commands or failed bytecode generation. Build a command list
2346 for this location's address. */
2347 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2348 {
2349 loc = (*loc2p);
2350 if (loc->owner->extra_string
2351 && is_breakpoint (loc->owner)
2352 && loc->pspace->num == bl->pspace->num
2353 && loc->owner->enable_state == bp_enabled
2354 && loc->enabled)
2355 /* Add the command to the vector. This will be used later
2356 to send the commands to the target. */
2357 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2358 loc->cmd_bytecode);
2359 }
2360
2361 bl->target_info.persist = 0;
2362 /* Maybe flag this location as persistent. */
2363 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2364 bl->target_info.persist = 1;
2365 }
2366
2367 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2368 location. Any error messages are printed to TMP_ERROR_STREAM; and
2369 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2370 Returns 0 for success, 1 if the bp_location type is not supported or
2371 -1 for failure.
2372
2373 NOTE drow/2003-09-09: This routine could be broken down to an
2374 object-style method for each breakpoint or catchpoint type. */
2375 static int
2376 insert_bp_location (struct bp_location *bl,
2377 struct ui_file *tmp_error_stream,
2378 int *disabled_breaks,
2379 int *hw_breakpoint_error,
2380 int *hw_bp_error_explained_already)
2381 {
2382 int val = 0;
2383 char *hw_bp_err_string = NULL;
2384 struct gdb_exception e;
2385
2386 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2387 return 0;
2388
2389 /* Note we don't initialize bl->target_info, as that wipes out
2390 the breakpoint location's shadow_contents if the breakpoint
2391 is still inserted at that location. This in turn breaks
2392 target_read_memory which depends on these buffers when
2393 a memory read is requested at the breakpoint location:
2394 Once the target_info has been wiped, we fail to see that
2395 we have a breakpoint inserted at that address and thus
2396 read the breakpoint instead of returning the data saved in
2397 the breakpoint location's shadow contents. */
2398 bl->target_info.placed_address = bl->address;
2399 bl->target_info.placed_address_space = bl->pspace->aspace;
2400 bl->target_info.length = bl->length;
2401
2402 /* When working with target-side conditions, we must pass all the conditions
2403 for the same breakpoint address down to the target since GDB will not
2404 insert those locations. With a list of breakpoint conditions, the target
2405 can decide when to stop and notify GDB. */
2406
2407 if (is_breakpoint (bl->owner))
2408 {
2409 build_target_condition_list (bl);
2410 build_target_command_list (bl);
2411 /* Reset the modification marker. */
2412 bl->needs_update = 0;
2413 }
2414
2415 if (bl->loc_type == bp_loc_software_breakpoint
2416 || bl->loc_type == bp_loc_hardware_breakpoint)
2417 {
2418 if (bl->owner->type != bp_hardware_breakpoint)
2419 {
2420 /* If the explicitly specified breakpoint type
2421 is not hardware breakpoint, check the memory map to see
2422 if the breakpoint address is in read only memory or not.
2423
2424 Two important cases are:
2425 - location type is not hardware breakpoint, memory
2426 is readonly. We change the type of the location to
2427 hardware breakpoint.
2428 - location type is hardware breakpoint, memory is
2429 read-write. This means we've previously made the
2430 location hardware one, but then the memory map changed,
2431 so we undo.
2432
2433 When breakpoints are removed, remove_breakpoints will use
2434 location types we've just set here, the only possible
2435 problem is that memory map has changed during running
2436 program, but it's not going to work anyway with current
2437 gdb. */
2438 struct mem_region *mr
2439 = lookup_mem_region (bl->target_info.placed_address);
2440
2441 if (mr)
2442 {
2443 if (automatic_hardware_breakpoints)
2444 {
2445 enum bp_loc_type new_type;
2446
2447 if (mr->attrib.mode != MEM_RW)
2448 new_type = bp_loc_hardware_breakpoint;
2449 else
2450 new_type = bp_loc_software_breakpoint;
2451
2452 if (new_type != bl->loc_type)
2453 {
2454 static int said = 0;
2455
2456 bl->loc_type = new_type;
2457 if (!said)
2458 {
2459 fprintf_filtered (gdb_stdout,
2460 _("Note: automatically using "
2461 "hardware breakpoints for "
2462 "read-only addresses.\n"));
2463 said = 1;
2464 }
2465 }
2466 }
2467 else if (bl->loc_type == bp_loc_software_breakpoint
2468 && mr->attrib.mode != MEM_RW)
2469 warning (_("cannot set software breakpoint "
2470 "at readonly address %s"),
2471 paddress (bl->gdbarch, bl->address));
2472 }
2473 }
2474
2475 /* First check to see if we have to handle an overlay. */
2476 if (overlay_debugging == ovly_off
2477 || bl->section == NULL
2478 || !(section_is_overlay (bl->section)))
2479 {
2480 /* No overlay handling: just set the breakpoint. */
2481 TRY_CATCH (e, RETURN_MASK_ALL)
2482 {
2483 val = bl->owner->ops->insert_location (bl);
2484 }
2485 if (e.reason < 0)
2486 {
2487 val = 1;
2488 hw_bp_err_string = (char *) e.message;
2489 }
2490 }
2491 else
2492 {
2493 /* This breakpoint is in an overlay section.
2494 Shall we set a breakpoint at the LMA? */
2495 if (!overlay_events_enabled)
2496 {
2497 /* Yes -- overlay event support is not active,
2498 so we must try to set a breakpoint at the LMA.
2499 This will not work for a hardware breakpoint. */
2500 if (bl->loc_type == bp_loc_hardware_breakpoint)
2501 warning (_("hardware breakpoint %d not supported in overlay!"),
2502 bl->owner->number);
2503 else
2504 {
2505 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2506 bl->section);
2507 /* Set a software (trap) breakpoint at the LMA. */
2508 bl->overlay_target_info = bl->target_info;
2509 bl->overlay_target_info.placed_address = addr;
2510 val = target_insert_breakpoint (bl->gdbarch,
2511 &bl->overlay_target_info);
2512 if (val != 0)
2513 fprintf_unfiltered (tmp_error_stream,
2514 "Overlay breakpoint %d "
2515 "failed: in ROM?\n",
2516 bl->owner->number);
2517 }
2518 }
2519 /* Shall we set a breakpoint at the VMA? */
2520 if (section_is_mapped (bl->section))
2521 {
2522 /* Yes. This overlay section is mapped into memory. */
2523 TRY_CATCH (e, RETURN_MASK_ALL)
2524 {
2525 val = bl->owner->ops->insert_location (bl);
2526 }
2527 if (e.reason < 0)
2528 {
2529 val = 1;
2530 hw_bp_err_string = (char *) e.message;
2531 }
2532 }
2533 else
2534 {
2535 /* No. This breakpoint will not be inserted.
2536 No error, but do not mark the bp as 'inserted'. */
2537 return 0;
2538 }
2539 }
2540
2541 if (val)
2542 {
2543 /* Can't set the breakpoint. */
2544 if (solib_name_from_address (bl->pspace, bl->address))
2545 {
2546 /* See also: disable_breakpoints_in_shlibs. */
2547 val = 0;
2548 bl->shlib_disabled = 1;
2549 observer_notify_breakpoint_modified (bl->owner);
2550 if (!*disabled_breaks)
2551 {
2552 fprintf_unfiltered (tmp_error_stream,
2553 "Cannot insert breakpoint %d.\n",
2554 bl->owner->number);
2555 fprintf_unfiltered (tmp_error_stream,
2556 "Temporarily disabling shared "
2557 "library breakpoints:\n");
2558 }
2559 *disabled_breaks = 1;
2560 fprintf_unfiltered (tmp_error_stream,
2561 "breakpoint #%d\n", bl->owner->number);
2562 }
2563 else
2564 {
2565 if (bl->loc_type == bp_loc_hardware_breakpoint)
2566 {
2567 *hw_breakpoint_error = 1;
2568 *hw_bp_error_explained_already = hw_bp_err_string != NULL;
2569 fprintf_unfiltered (tmp_error_stream,
2570 "Cannot insert hardware breakpoint %d%s",
2571 bl->owner->number, hw_bp_err_string ? ":" : ".\n");
2572 if (hw_bp_err_string)
2573 fprintf_unfiltered (tmp_error_stream, "%s.\n", hw_bp_err_string);
2574 }
2575 else
2576 {
2577 fprintf_unfiltered (tmp_error_stream,
2578 "Cannot insert breakpoint %d.\n",
2579 bl->owner->number);
2580 fprintf_filtered (tmp_error_stream,
2581 "Error accessing memory address ");
2582 fputs_filtered (paddress (bl->gdbarch, bl->address),
2583 tmp_error_stream);
2584 fprintf_filtered (tmp_error_stream, ": %s.\n",
2585 safe_strerror (val));
2586 }
2587
2588 }
2589 }
2590 else
2591 bl->inserted = 1;
2592
2593 return val;
2594 }
2595
2596 else if (bl->loc_type == bp_loc_hardware_watchpoint
2597 /* NOTE drow/2003-09-08: This state only exists for removing
2598 watchpoints. It's not clear that it's necessary... */
2599 && bl->owner->disposition != disp_del_at_next_stop)
2600 {
2601 gdb_assert (bl->owner->ops != NULL
2602 && bl->owner->ops->insert_location != NULL);
2603
2604 val = bl->owner->ops->insert_location (bl);
2605
2606 /* If trying to set a read-watchpoint, and it turns out it's not
2607 supported, try emulating one with an access watchpoint. */
2608 if (val == 1 && bl->watchpoint_type == hw_read)
2609 {
2610 struct bp_location *loc, **loc_temp;
2611
2612 /* But don't try to insert it, if there's already another
2613 hw_access location that would be considered a duplicate
2614 of this one. */
2615 ALL_BP_LOCATIONS (loc, loc_temp)
2616 if (loc != bl
2617 && loc->watchpoint_type == hw_access
2618 && watchpoint_locations_match (bl, loc))
2619 {
2620 bl->duplicate = 1;
2621 bl->inserted = 1;
2622 bl->target_info = loc->target_info;
2623 bl->watchpoint_type = hw_access;
2624 val = 0;
2625 break;
2626 }
2627
2628 if (val == 1)
2629 {
2630 bl->watchpoint_type = hw_access;
2631 val = bl->owner->ops->insert_location (bl);
2632
2633 if (val)
2634 /* Back to the original value. */
2635 bl->watchpoint_type = hw_read;
2636 }
2637 }
2638
2639 bl->inserted = (val == 0);
2640 }
2641
2642 else if (bl->owner->type == bp_catchpoint)
2643 {
2644 gdb_assert (bl->owner->ops != NULL
2645 && bl->owner->ops->insert_location != NULL);
2646
2647 val = bl->owner->ops->insert_location (bl);
2648 if (val)
2649 {
2650 bl->owner->enable_state = bp_disabled;
2651
2652 if (val == 1)
2653 warning (_("\
2654 Error inserting catchpoint %d: Your system does not support this type\n\
2655 of catchpoint."), bl->owner->number);
2656 else
2657 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2658 }
2659
2660 bl->inserted = (val == 0);
2661
2662 /* We've already printed an error message if there was a problem
2663 inserting this catchpoint, and we've disabled the catchpoint,
2664 so just return success. */
2665 return 0;
2666 }
2667
2668 return 0;
2669 }
2670
2671 /* This function is called when program space PSPACE is about to be
2672 deleted. It takes care of updating breakpoints to not reference
2673 PSPACE anymore. */
2674
2675 void
2676 breakpoint_program_space_exit (struct program_space *pspace)
2677 {
2678 struct breakpoint *b, *b_temp;
2679 struct bp_location *loc, **loc_temp;
2680
2681 /* Remove any breakpoint that was set through this program space. */
2682 ALL_BREAKPOINTS_SAFE (b, b_temp)
2683 {
2684 if (b->pspace == pspace)
2685 delete_breakpoint (b);
2686 }
2687
2688 /* Breakpoints set through other program spaces could have locations
2689 bound to PSPACE as well. Remove those. */
2690 ALL_BP_LOCATIONS (loc, loc_temp)
2691 {
2692 struct bp_location *tmp;
2693
2694 if (loc->pspace == pspace)
2695 {
2696 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2697 if (loc->owner->loc == loc)
2698 loc->owner->loc = loc->next;
2699 else
2700 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2701 if (tmp->next == loc)
2702 {
2703 tmp->next = loc->next;
2704 break;
2705 }
2706 }
2707 }
2708
2709 /* Now update the global location list to permanently delete the
2710 removed locations above. */
2711 update_global_location_list (0);
2712 }
2713
2714 /* Make sure all breakpoints are inserted in inferior.
2715 Throws exception on any error.
2716 A breakpoint that is already inserted won't be inserted
2717 again, so calling this function twice is safe. */
2718 void
2719 insert_breakpoints (void)
2720 {
2721 struct breakpoint *bpt;
2722
2723 ALL_BREAKPOINTS (bpt)
2724 if (is_hardware_watchpoint (bpt))
2725 {
2726 struct watchpoint *w = (struct watchpoint *) bpt;
2727
2728 update_watchpoint (w, 0 /* don't reparse. */);
2729 }
2730
2731 update_global_location_list (1);
2732
2733 /* update_global_location_list does not insert breakpoints when
2734 always_inserted_mode is not enabled. Explicitly insert them
2735 now. */
2736 if (!breakpoints_always_inserted_mode ())
2737 insert_breakpoint_locations ();
2738 }
2739
2740 /* Invoke CALLBACK for each of bp_location. */
2741
2742 void
2743 iterate_over_bp_locations (walk_bp_location_callback callback)
2744 {
2745 struct bp_location *loc, **loc_tmp;
2746
2747 ALL_BP_LOCATIONS (loc, loc_tmp)
2748 {
2749 callback (loc, NULL);
2750 }
2751 }
2752
2753 /* This is used when we need to synch breakpoint conditions between GDB and the
2754 target. It is the case with deleting and disabling of breakpoints when using
2755 always-inserted mode. */
2756
2757 static void
2758 update_inserted_breakpoint_locations (void)
2759 {
2760 struct bp_location *bl, **blp_tmp;
2761 int error_flag = 0;
2762 int val = 0;
2763 int disabled_breaks = 0;
2764 int hw_breakpoint_error = 0;
2765 int hw_bp_details_reported = 0;
2766
2767 struct ui_file *tmp_error_stream = mem_fileopen ();
2768 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2769
2770 /* Explicitly mark the warning -- this will only be printed if
2771 there was an error. */
2772 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2773
2774 save_current_space_and_thread ();
2775
2776 ALL_BP_LOCATIONS (bl, blp_tmp)
2777 {
2778 /* We only want to update software breakpoints and hardware
2779 breakpoints. */
2780 if (!is_breakpoint (bl->owner))
2781 continue;
2782
2783 /* We only want to update locations that are already inserted
2784 and need updating. This is to avoid unwanted insertion during
2785 deletion of breakpoints. */
2786 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2787 continue;
2788
2789 switch_to_program_space_and_thread (bl->pspace);
2790
2791 /* For targets that support global breakpoints, there's no need
2792 to select an inferior to insert breakpoint to. In fact, even
2793 if we aren't attached to any process yet, we should still
2794 insert breakpoints. */
2795 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2796 && ptid_equal (inferior_ptid, null_ptid))
2797 continue;
2798
2799 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2800 &hw_breakpoint_error, &hw_bp_details_reported);
2801 if (val)
2802 error_flag = val;
2803 }
2804
2805 if (error_flag)
2806 {
2807 target_terminal_ours_for_output ();
2808 error_stream (tmp_error_stream);
2809 }
2810
2811 do_cleanups (cleanups);
2812 }
2813
2814 /* Used when starting or continuing the program. */
2815
2816 static void
2817 insert_breakpoint_locations (void)
2818 {
2819 struct breakpoint *bpt;
2820 struct bp_location *bl, **blp_tmp;
2821 int error_flag = 0;
2822 int val = 0;
2823 int disabled_breaks = 0;
2824 int hw_breakpoint_error = 0;
2825 int hw_bp_error_explained_already = 0;
2826
2827 struct ui_file *tmp_error_stream = mem_fileopen ();
2828 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2829
2830 /* Explicitly mark the warning -- this will only be printed if
2831 there was an error. */
2832 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2833
2834 save_current_space_and_thread ();
2835
2836 ALL_BP_LOCATIONS (bl, blp_tmp)
2837 {
2838 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2839 continue;
2840
2841 /* There is no point inserting thread-specific breakpoints if
2842 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2843 has BL->OWNER always non-NULL. */
2844 if (bl->owner->thread != -1
2845 && !valid_thread_id (bl->owner->thread))
2846 continue;
2847
2848 switch_to_program_space_and_thread (bl->pspace);
2849
2850 /* For targets that support global breakpoints, there's no need
2851 to select an inferior to insert breakpoint to. In fact, even
2852 if we aren't attached to any process yet, we should still
2853 insert breakpoints. */
2854 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2855 && ptid_equal (inferior_ptid, null_ptid))
2856 continue;
2857
2858 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2859 &hw_breakpoint_error, &hw_bp_error_explained_already);
2860 if (val)
2861 error_flag = val;
2862 }
2863
2864 /* If we failed to insert all locations of a watchpoint, remove
2865 them, as half-inserted watchpoint is of limited use. */
2866 ALL_BREAKPOINTS (bpt)
2867 {
2868 int some_failed = 0;
2869 struct bp_location *loc;
2870
2871 if (!is_hardware_watchpoint (bpt))
2872 continue;
2873
2874 if (!breakpoint_enabled (bpt))
2875 continue;
2876
2877 if (bpt->disposition == disp_del_at_next_stop)
2878 continue;
2879
2880 for (loc = bpt->loc; loc; loc = loc->next)
2881 if (!loc->inserted && should_be_inserted (loc))
2882 {
2883 some_failed = 1;
2884 break;
2885 }
2886 if (some_failed)
2887 {
2888 for (loc = bpt->loc; loc; loc = loc->next)
2889 if (loc->inserted)
2890 remove_breakpoint (loc, mark_uninserted);
2891
2892 hw_breakpoint_error = 1;
2893 fprintf_unfiltered (tmp_error_stream,
2894 "Could not insert hardware watchpoint %d.\n",
2895 bpt->number);
2896 error_flag = -1;
2897 }
2898 }
2899
2900 if (error_flag)
2901 {
2902 /* If a hardware breakpoint or watchpoint was inserted, add a
2903 message about possibly exhausted resources. */
2904 if (hw_breakpoint_error && !hw_bp_error_explained_already)
2905 {
2906 fprintf_unfiltered (tmp_error_stream,
2907 "Could not insert hardware breakpoints:\n\
2908 You may have requested too many hardware breakpoints/watchpoints.\n");
2909 }
2910 target_terminal_ours_for_output ();
2911 error_stream (tmp_error_stream);
2912 }
2913
2914 do_cleanups (cleanups);
2915 }
2916
2917 /* Used when the program stops.
2918 Returns zero if successful, or non-zero if there was a problem
2919 removing a breakpoint location. */
2920
2921 int
2922 remove_breakpoints (void)
2923 {
2924 struct bp_location *bl, **blp_tmp;
2925 int val = 0;
2926
2927 ALL_BP_LOCATIONS (bl, blp_tmp)
2928 {
2929 if (bl->inserted && !is_tracepoint (bl->owner))
2930 val |= remove_breakpoint (bl, mark_uninserted);
2931 }
2932 return val;
2933 }
2934
2935 /* Remove breakpoints of process PID. */
2936
2937 int
2938 remove_breakpoints_pid (int pid)
2939 {
2940 struct bp_location *bl, **blp_tmp;
2941 int val;
2942 struct inferior *inf = find_inferior_pid (pid);
2943
2944 ALL_BP_LOCATIONS (bl, blp_tmp)
2945 {
2946 if (bl->pspace != inf->pspace)
2947 continue;
2948
2949 if (bl->owner->type == bp_dprintf)
2950 continue;
2951
2952 if (bl->inserted)
2953 {
2954 val = remove_breakpoint (bl, mark_uninserted);
2955 if (val != 0)
2956 return val;
2957 }
2958 }
2959 return 0;
2960 }
2961
2962 int
2963 reattach_breakpoints (int pid)
2964 {
2965 struct cleanup *old_chain;
2966 struct bp_location *bl, **blp_tmp;
2967 int val;
2968 struct ui_file *tmp_error_stream;
2969 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
2970 struct inferior *inf;
2971 struct thread_info *tp;
2972
2973 tp = any_live_thread_of_process (pid);
2974 if (tp == NULL)
2975 return 1;
2976
2977 inf = find_inferior_pid (pid);
2978 old_chain = save_inferior_ptid ();
2979
2980 inferior_ptid = tp->ptid;
2981
2982 tmp_error_stream = mem_fileopen ();
2983 make_cleanup_ui_file_delete (tmp_error_stream);
2984
2985 ALL_BP_LOCATIONS (bl, blp_tmp)
2986 {
2987 if (bl->pspace != inf->pspace)
2988 continue;
2989
2990 if (bl->inserted)
2991 {
2992 bl->inserted = 0;
2993 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
2994 if (val != 0)
2995 {
2996 do_cleanups (old_chain);
2997 return val;
2998 }
2999 }
3000 }
3001 do_cleanups (old_chain);
3002 return 0;
3003 }
3004
3005 static int internal_breakpoint_number = -1;
3006
3007 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3008 If INTERNAL is non-zero, the breakpoint number will be populated
3009 from internal_breakpoint_number and that variable decremented.
3010 Otherwise the breakpoint number will be populated from
3011 breakpoint_count and that value incremented. Internal breakpoints
3012 do not set the internal var bpnum. */
3013 static void
3014 set_breakpoint_number (int internal, struct breakpoint *b)
3015 {
3016 if (internal)
3017 b->number = internal_breakpoint_number--;
3018 else
3019 {
3020 set_breakpoint_count (breakpoint_count + 1);
3021 b->number = breakpoint_count;
3022 }
3023 }
3024
3025 static struct breakpoint *
3026 create_internal_breakpoint (struct gdbarch *gdbarch,
3027 CORE_ADDR address, enum bptype type,
3028 const struct breakpoint_ops *ops)
3029 {
3030 struct symtab_and_line sal;
3031 struct breakpoint *b;
3032
3033 init_sal (&sal); /* Initialize to zeroes. */
3034
3035 sal.pc = address;
3036 sal.section = find_pc_overlay (sal.pc);
3037 sal.pspace = current_program_space;
3038
3039 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3040 b->number = internal_breakpoint_number--;
3041 b->disposition = disp_donttouch;
3042
3043 return b;
3044 }
3045
3046 static const char *const longjmp_names[] =
3047 {
3048 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3049 };
3050 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3051
3052 /* Per-objfile data private to breakpoint.c. */
3053 struct breakpoint_objfile_data
3054 {
3055 /* Minimal symbol for "_ovly_debug_event" (if any). */
3056 struct minimal_symbol *overlay_msym;
3057
3058 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3059 struct minimal_symbol *longjmp_msym[NUM_LONGJMP_NAMES];
3060
3061 /* True if we have looked for longjmp probes. */
3062 int longjmp_searched;
3063
3064 /* SystemTap probe points for longjmp (if any). */
3065 VEC (probe_p) *longjmp_probes;
3066
3067 /* Minimal symbol for "std::terminate()" (if any). */
3068 struct minimal_symbol *terminate_msym;
3069
3070 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3071 struct minimal_symbol *exception_msym;
3072
3073 /* True if we have looked for exception probes. */
3074 int exception_searched;
3075
3076 /* SystemTap probe points for unwinding (if any). */
3077 VEC (probe_p) *exception_probes;
3078 };
3079
3080 static const struct objfile_data *breakpoint_objfile_key;
3081
3082 /* Minimal symbol not found sentinel. */
3083 static struct minimal_symbol msym_not_found;
3084
3085 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3086
3087 static int
3088 msym_not_found_p (const struct minimal_symbol *msym)
3089 {
3090 return msym == &msym_not_found;
3091 }
3092
3093 /* Return per-objfile data needed by breakpoint.c.
3094 Allocate the data if necessary. */
3095
3096 static struct breakpoint_objfile_data *
3097 get_breakpoint_objfile_data (struct objfile *objfile)
3098 {
3099 struct breakpoint_objfile_data *bp_objfile_data;
3100
3101 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3102 if (bp_objfile_data == NULL)
3103 {
3104 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3105 sizeof (*bp_objfile_data));
3106
3107 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3108 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3109 }
3110 return bp_objfile_data;
3111 }
3112
3113 static void
3114 free_breakpoint_probes (struct objfile *obj, void *data)
3115 {
3116 struct breakpoint_objfile_data *bp_objfile_data = data;
3117
3118 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3119 VEC_free (probe_p, bp_objfile_data->exception_probes);
3120 }
3121
3122 static void
3123 create_overlay_event_breakpoint (void)
3124 {
3125 struct objfile *objfile;
3126 const char *const func_name = "_ovly_debug_event";
3127
3128 ALL_OBJFILES (objfile)
3129 {
3130 struct breakpoint *b;
3131 struct breakpoint_objfile_data *bp_objfile_data;
3132 CORE_ADDR addr;
3133
3134 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3135
3136 if (msym_not_found_p (bp_objfile_data->overlay_msym))
3137 continue;
3138
3139 if (bp_objfile_data->overlay_msym == NULL)
3140 {
3141 struct minimal_symbol *m;
3142
3143 m = lookup_minimal_symbol_text (func_name, objfile);
3144 if (m == NULL)
3145 {
3146 /* Avoid future lookups in this objfile. */
3147 bp_objfile_data->overlay_msym = &msym_not_found;
3148 continue;
3149 }
3150 bp_objfile_data->overlay_msym = m;
3151 }
3152
3153 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3154 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3155 bp_overlay_event,
3156 &internal_breakpoint_ops);
3157 b->addr_string = xstrdup (func_name);
3158
3159 if (overlay_debugging == ovly_auto)
3160 {
3161 b->enable_state = bp_enabled;
3162 overlay_events_enabled = 1;
3163 }
3164 else
3165 {
3166 b->enable_state = bp_disabled;
3167 overlay_events_enabled = 0;
3168 }
3169 }
3170 update_global_location_list (1);
3171 }
3172
3173 static void
3174 create_longjmp_master_breakpoint (void)
3175 {
3176 struct program_space *pspace;
3177 struct cleanup *old_chain;
3178
3179 old_chain = save_current_program_space ();
3180
3181 ALL_PSPACES (pspace)
3182 {
3183 struct objfile *objfile;
3184
3185 set_current_program_space (pspace);
3186
3187 ALL_OBJFILES (objfile)
3188 {
3189 int i;
3190 struct gdbarch *gdbarch;
3191 struct breakpoint_objfile_data *bp_objfile_data;
3192
3193 gdbarch = get_objfile_arch (objfile);
3194 if (!gdbarch_get_longjmp_target_p (gdbarch))
3195 continue;
3196
3197 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3198
3199 if (!bp_objfile_data->longjmp_searched)
3200 {
3201 bp_objfile_data->longjmp_probes
3202 = find_probes_in_objfile (objfile, "libc", "longjmp");
3203 bp_objfile_data->longjmp_searched = 1;
3204 }
3205
3206 if (bp_objfile_data->longjmp_probes != NULL)
3207 {
3208 int i;
3209 struct probe *probe;
3210 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3211
3212 for (i = 0;
3213 VEC_iterate (probe_p,
3214 bp_objfile_data->longjmp_probes,
3215 i, probe);
3216 ++i)
3217 {
3218 struct breakpoint *b;
3219
3220 b = create_internal_breakpoint (gdbarch, probe->address,
3221 bp_longjmp_master,
3222 &internal_breakpoint_ops);
3223 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3224 b->enable_state = bp_disabled;
3225 }
3226
3227 continue;
3228 }
3229
3230 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3231 {
3232 struct breakpoint *b;
3233 const char *func_name;
3234 CORE_ADDR addr;
3235
3236 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i]))
3237 continue;
3238
3239 func_name = longjmp_names[i];
3240 if (bp_objfile_data->longjmp_msym[i] == NULL)
3241 {
3242 struct minimal_symbol *m;
3243
3244 m = lookup_minimal_symbol_text (func_name, objfile);
3245 if (m == NULL)
3246 {
3247 /* Prevent future lookups in this objfile. */
3248 bp_objfile_data->longjmp_msym[i] = &msym_not_found;
3249 continue;
3250 }
3251 bp_objfile_data->longjmp_msym[i] = m;
3252 }
3253
3254 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3255 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3256 &internal_breakpoint_ops);
3257 b->addr_string = xstrdup (func_name);
3258 b->enable_state = bp_disabled;
3259 }
3260 }
3261 }
3262 update_global_location_list (1);
3263
3264 do_cleanups (old_chain);
3265 }
3266
3267 /* Create a master std::terminate breakpoint. */
3268 static void
3269 create_std_terminate_master_breakpoint (void)
3270 {
3271 struct program_space *pspace;
3272 struct cleanup *old_chain;
3273 const char *const func_name = "std::terminate()";
3274
3275 old_chain = save_current_program_space ();
3276
3277 ALL_PSPACES (pspace)
3278 {
3279 struct objfile *objfile;
3280 CORE_ADDR addr;
3281
3282 set_current_program_space (pspace);
3283
3284 ALL_OBJFILES (objfile)
3285 {
3286 struct breakpoint *b;
3287 struct breakpoint_objfile_data *bp_objfile_data;
3288
3289 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3290
3291 if (msym_not_found_p (bp_objfile_data->terminate_msym))
3292 continue;
3293
3294 if (bp_objfile_data->terminate_msym == NULL)
3295 {
3296 struct minimal_symbol *m;
3297
3298 m = lookup_minimal_symbol (func_name, NULL, objfile);
3299 if (m == NULL || (MSYMBOL_TYPE (m) != mst_text
3300 && MSYMBOL_TYPE (m) != mst_file_text))
3301 {
3302 /* Prevent future lookups in this objfile. */
3303 bp_objfile_data->terminate_msym = &msym_not_found;
3304 continue;
3305 }
3306 bp_objfile_data->terminate_msym = m;
3307 }
3308
3309 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3310 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3311 bp_std_terminate_master,
3312 &internal_breakpoint_ops);
3313 b->addr_string = xstrdup (func_name);
3314 b->enable_state = bp_disabled;
3315 }
3316 }
3317
3318 update_global_location_list (1);
3319
3320 do_cleanups (old_chain);
3321 }
3322
3323 /* Install a master breakpoint on the unwinder's debug hook. */
3324
3325 static void
3326 create_exception_master_breakpoint (void)
3327 {
3328 struct objfile *objfile;
3329 const char *const func_name = "_Unwind_DebugHook";
3330
3331 ALL_OBJFILES (objfile)
3332 {
3333 struct breakpoint *b;
3334 struct gdbarch *gdbarch;
3335 struct breakpoint_objfile_data *bp_objfile_data;
3336 CORE_ADDR addr;
3337
3338 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3339
3340 /* We prefer the SystemTap probe point if it exists. */
3341 if (!bp_objfile_data->exception_searched)
3342 {
3343 bp_objfile_data->exception_probes
3344 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3345 bp_objfile_data->exception_searched = 1;
3346 }
3347
3348 if (bp_objfile_data->exception_probes != NULL)
3349 {
3350 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3351 int i;
3352 struct probe *probe;
3353
3354 for (i = 0;
3355 VEC_iterate (probe_p,
3356 bp_objfile_data->exception_probes,
3357 i, probe);
3358 ++i)
3359 {
3360 struct breakpoint *b;
3361
3362 b = create_internal_breakpoint (gdbarch, probe->address,
3363 bp_exception_master,
3364 &internal_breakpoint_ops);
3365 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3366 b->enable_state = bp_disabled;
3367 }
3368
3369 continue;
3370 }
3371
3372 /* Otherwise, try the hook function. */
3373
3374 if (msym_not_found_p (bp_objfile_data->exception_msym))
3375 continue;
3376
3377 gdbarch = get_objfile_arch (objfile);
3378
3379 if (bp_objfile_data->exception_msym == NULL)
3380 {
3381 struct minimal_symbol *debug_hook;
3382
3383 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3384 if (debug_hook == NULL)
3385 {
3386 bp_objfile_data->exception_msym = &msym_not_found;
3387 continue;
3388 }
3389
3390 bp_objfile_data->exception_msym = debug_hook;
3391 }
3392
3393 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3394 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3395 &current_target);
3396 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3397 &internal_breakpoint_ops);
3398 b->addr_string = xstrdup (func_name);
3399 b->enable_state = bp_disabled;
3400 }
3401
3402 update_global_location_list (1);
3403 }
3404
3405 void
3406 update_breakpoints_after_exec (void)
3407 {
3408 struct breakpoint *b, *b_tmp;
3409 struct bp_location *bploc, **bplocp_tmp;
3410
3411 /* We're about to delete breakpoints from GDB's lists. If the
3412 INSERTED flag is true, GDB will try to lift the breakpoints by
3413 writing the breakpoints' "shadow contents" back into memory. The
3414 "shadow contents" are NOT valid after an exec, so GDB should not
3415 do that. Instead, the target is responsible from marking
3416 breakpoints out as soon as it detects an exec. We don't do that
3417 here instead, because there may be other attempts to delete
3418 breakpoints after detecting an exec and before reaching here. */
3419 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3420 if (bploc->pspace == current_program_space)
3421 gdb_assert (!bploc->inserted);
3422
3423 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3424 {
3425 if (b->pspace != current_program_space)
3426 continue;
3427
3428 /* Solib breakpoints must be explicitly reset after an exec(). */
3429 if (b->type == bp_shlib_event)
3430 {
3431 delete_breakpoint (b);
3432 continue;
3433 }
3434
3435 /* JIT breakpoints must be explicitly reset after an exec(). */
3436 if (b->type == bp_jit_event)
3437 {
3438 delete_breakpoint (b);
3439 continue;
3440 }
3441
3442 /* Thread event breakpoints must be set anew after an exec(),
3443 as must overlay event and longjmp master breakpoints. */
3444 if (b->type == bp_thread_event || b->type == bp_overlay_event
3445 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3446 || b->type == bp_exception_master)
3447 {
3448 delete_breakpoint (b);
3449 continue;
3450 }
3451
3452 /* Step-resume breakpoints are meaningless after an exec(). */
3453 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3454 {
3455 delete_breakpoint (b);
3456 continue;
3457 }
3458
3459 /* Longjmp and longjmp-resume breakpoints are also meaningless
3460 after an exec. */
3461 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3462 || b->type == bp_longjmp_call_dummy
3463 || b->type == bp_exception || b->type == bp_exception_resume)
3464 {
3465 delete_breakpoint (b);
3466 continue;
3467 }
3468
3469 if (b->type == bp_catchpoint)
3470 {
3471 /* For now, none of the bp_catchpoint breakpoints need to
3472 do anything at this point. In the future, if some of
3473 the catchpoints need to something, we will need to add
3474 a new method, and call this method from here. */
3475 continue;
3476 }
3477
3478 /* bp_finish is a special case. The only way we ought to be able
3479 to see one of these when an exec() has happened, is if the user
3480 caught a vfork, and then said "finish". Ordinarily a finish just
3481 carries them to the call-site of the current callee, by setting
3482 a temporary bp there and resuming. But in this case, the finish
3483 will carry them entirely through the vfork & exec.
3484
3485 We don't want to allow a bp_finish to remain inserted now. But
3486 we can't safely delete it, 'cause finish_command has a handle to
3487 the bp on a bpstat, and will later want to delete it. There's a
3488 chance (and I've seen it happen) that if we delete the bp_finish
3489 here, that its storage will get reused by the time finish_command
3490 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3491 We really must allow finish_command to delete a bp_finish.
3492
3493 In the absence of a general solution for the "how do we know
3494 it's safe to delete something others may have handles to?"
3495 problem, what we'll do here is just uninsert the bp_finish, and
3496 let finish_command delete it.
3497
3498 (We know the bp_finish is "doomed" in the sense that it's
3499 momentary, and will be deleted as soon as finish_command sees
3500 the inferior stopped. So it doesn't matter that the bp's
3501 address is probably bogus in the new a.out, unlike e.g., the
3502 solib breakpoints.) */
3503
3504 if (b->type == bp_finish)
3505 {
3506 continue;
3507 }
3508
3509 /* Without a symbolic address, we have little hope of the
3510 pre-exec() address meaning the same thing in the post-exec()
3511 a.out. */
3512 if (b->addr_string == NULL)
3513 {
3514 delete_breakpoint (b);
3515 continue;
3516 }
3517 }
3518 /* FIXME what about longjmp breakpoints? Re-create them here? */
3519 create_overlay_event_breakpoint ();
3520 create_longjmp_master_breakpoint ();
3521 create_std_terminate_master_breakpoint ();
3522 create_exception_master_breakpoint ();
3523 }
3524
3525 int
3526 detach_breakpoints (ptid_t ptid)
3527 {
3528 struct bp_location *bl, **blp_tmp;
3529 int val = 0;
3530 struct cleanup *old_chain = save_inferior_ptid ();
3531 struct inferior *inf = current_inferior ();
3532
3533 if (PIDGET (ptid) == PIDGET (inferior_ptid))
3534 error (_("Cannot detach breakpoints of inferior_ptid"));
3535
3536 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3537 inferior_ptid = ptid;
3538 ALL_BP_LOCATIONS (bl, blp_tmp)
3539 {
3540 if (bl->pspace != inf->pspace)
3541 continue;
3542
3543 if (bl->inserted)
3544 val |= remove_breakpoint_1 (bl, mark_inserted);
3545 }
3546
3547 /* Detach single-step breakpoints as well. */
3548 detach_single_step_breakpoints ();
3549
3550 do_cleanups (old_chain);
3551 return val;
3552 }
3553
3554 /* Remove the breakpoint location BL from the current address space.
3555 Note that this is used to detach breakpoints from a child fork.
3556 When we get here, the child isn't in the inferior list, and neither
3557 do we have objects to represent its address space --- we should
3558 *not* look at bl->pspace->aspace here. */
3559
3560 static int
3561 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3562 {
3563 int val;
3564
3565 /* BL is never in moribund_locations by our callers. */
3566 gdb_assert (bl->owner != NULL);
3567
3568 if (bl->owner->enable_state == bp_permanent)
3569 /* Permanent breakpoints cannot be inserted or removed. */
3570 return 0;
3571
3572 /* The type of none suggests that owner is actually deleted.
3573 This should not ever happen. */
3574 gdb_assert (bl->owner->type != bp_none);
3575
3576 if (bl->loc_type == bp_loc_software_breakpoint
3577 || bl->loc_type == bp_loc_hardware_breakpoint)
3578 {
3579 /* "Normal" instruction breakpoint: either the standard
3580 trap-instruction bp (bp_breakpoint), or a
3581 bp_hardware_breakpoint. */
3582
3583 /* First check to see if we have to handle an overlay. */
3584 if (overlay_debugging == ovly_off
3585 || bl->section == NULL
3586 || !(section_is_overlay (bl->section)))
3587 {
3588 /* No overlay handling: just remove the breakpoint. */
3589 val = bl->owner->ops->remove_location (bl);
3590 }
3591 else
3592 {
3593 /* This breakpoint is in an overlay section.
3594 Did we set a breakpoint at the LMA? */
3595 if (!overlay_events_enabled)
3596 {
3597 /* Yes -- overlay event support is not active, so we
3598 should have set a breakpoint at the LMA. Remove it.
3599 */
3600 /* Ignore any failures: if the LMA is in ROM, we will
3601 have already warned when we failed to insert it. */
3602 if (bl->loc_type == bp_loc_hardware_breakpoint)
3603 target_remove_hw_breakpoint (bl->gdbarch,
3604 &bl->overlay_target_info);
3605 else
3606 target_remove_breakpoint (bl->gdbarch,
3607 &bl->overlay_target_info);
3608 }
3609 /* Did we set a breakpoint at the VMA?
3610 If so, we will have marked the breakpoint 'inserted'. */
3611 if (bl->inserted)
3612 {
3613 /* Yes -- remove it. Previously we did not bother to
3614 remove the breakpoint if the section had been
3615 unmapped, but let's not rely on that being safe. We
3616 don't know what the overlay manager might do. */
3617
3618 /* However, we should remove *software* breakpoints only
3619 if the section is still mapped, or else we overwrite
3620 wrong code with the saved shadow contents. */
3621 if (bl->loc_type == bp_loc_hardware_breakpoint
3622 || section_is_mapped (bl->section))
3623 val = bl->owner->ops->remove_location (bl);
3624 else
3625 val = 0;
3626 }
3627 else
3628 {
3629 /* No -- not inserted, so no need to remove. No error. */
3630 val = 0;
3631 }
3632 }
3633
3634 /* In some cases, we might not be able to remove a breakpoint
3635 in a shared library that has already been removed, but we
3636 have not yet processed the shlib unload event. */
3637 if (val && solib_name_from_address (bl->pspace, bl->address))
3638 val = 0;
3639
3640 if (val)
3641 return val;
3642 bl->inserted = (is == mark_inserted);
3643 }
3644 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3645 {
3646 gdb_assert (bl->owner->ops != NULL
3647 && bl->owner->ops->remove_location != NULL);
3648
3649 bl->inserted = (is == mark_inserted);
3650 bl->owner->ops->remove_location (bl);
3651
3652 /* Failure to remove any of the hardware watchpoints comes here. */
3653 if ((is == mark_uninserted) && (bl->inserted))
3654 warning (_("Could not remove hardware watchpoint %d."),
3655 bl->owner->number);
3656 }
3657 else if (bl->owner->type == bp_catchpoint
3658 && breakpoint_enabled (bl->owner)
3659 && !bl->duplicate)
3660 {
3661 gdb_assert (bl->owner->ops != NULL
3662 && bl->owner->ops->remove_location != NULL);
3663
3664 val = bl->owner->ops->remove_location (bl);
3665 if (val)
3666 return val;
3667
3668 bl->inserted = (is == mark_inserted);
3669 }
3670
3671 return 0;
3672 }
3673
3674 static int
3675 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
3676 {
3677 int ret;
3678 struct cleanup *old_chain;
3679
3680 /* BL is never in moribund_locations by our callers. */
3681 gdb_assert (bl->owner != NULL);
3682
3683 if (bl->owner->enable_state == bp_permanent)
3684 /* Permanent breakpoints cannot be inserted or removed. */
3685 return 0;
3686
3687 /* The type of none suggests that owner is actually deleted.
3688 This should not ever happen. */
3689 gdb_assert (bl->owner->type != bp_none);
3690
3691 old_chain = save_current_space_and_thread ();
3692
3693 switch_to_program_space_and_thread (bl->pspace);
3694
3695 ret = remove_breakpoint_1 (bl, is);
3696
3697 do_cleanups (old_chain);
3698 return ret;
3699 }
3700
3701 /* Clear the "inserted" flag in all breakpoints. */
3702
3703 void
3704 mark_breakpoints_out (void)
3705 {
3706 struct bp_location *bl, **blp_tmp;
3707
3708 ALL_BP_LOCATIONS (bl, blp_tmp)
3709 if (bl->pspace == current_program_space)
3710 bl->inserted = 0;
3711 }
3712
3713 /* Clear the "inserted" flag in all breakpoints and delete any
3714 breakpoints which should go away between runs of the program.
3715
3716 Plus other such housekeeping that has to be done for breakpoints
3717 between runs.
3718
3719 Note: this function gets called at the end of a run (by
3720 generic_mourn_inferior) and when a run begins (by
3721 init_wait_for_inferior). */
3722
3723
3724
3725 void
3726 breakpoint_init_inferior (enum inf_context context)
3727 {
3728 struct breakpoint *b, *b_tmp;
3729 struct bp_location *bl, **blp_tmp;
3730 int ix;
3731 struct program_space *pspace = current_program_space;
3732
3733 /* If breakpoint locations are shared across processes, then there's
3734 nothing to do. */
3735 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3736 return;
3737
3738 ALL_BP_LOCATIONS (bl, blp_tmp)
3739 {
3740 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3741 if (bl->pspace == pspace
3742 && bl->owner->enable_state != bp_permanent)
3743 bl->inserted = 0;
3744 }
3745
3746 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3747 {
3748 if (b->loc && b->loc->pspace != pspace)
3749 continue;
3750
3751 switch (b->type)
3752 {
3753 case bp_call_dummy:
3754 case bp_longjmp_call_dummy:
3755
3756 /* If the call dummy breakpoint is at the entry point it will
3757 cause problems when the inferior is rerun, so we better get
3758 rid of it. */
3759
3760 case bp_watchpoint_scope:
3761
3762 /* Also get rid of scope breakpoints. */
3763
3764 case bp_shlib_event:
3765
3766 /* Also remove solib event breakpoints. Their addresses may
3767 have changed since the last time we ran the program.
3768 Actually we may now be debugging against different target;
3769 and so the solib backend that installed this breakpoint may
3770 not be used in by the target. E.g.,
3771
3772 (gdb) file prog-linux
3773 (gdb) run # native linux target
3774 ...
3775 (gdb) kill
3776 (gdb) file prog-win.exe
3777 (gdb) tar rem :9999 # remote Windows gdbserver.
3778 */
3779
3780 case bp_step_resume:
3781
3782 /* Also remove step-resume breakpoints. */
3783
3784 delete_breakpoint (b);
3785 break;
3786
3787 case bp_watchpoint:
3788 case bp_hardware_watchpoint:
3789 case bp_read_watchpoint:
3790 case bp_access_watchpoint:
3791 {
3792 struct watchpoint *w = (struct watchpoint *) b;
3793
3794 /* Likewise for watchpoints on local expressions. */
3795 if (w->exp_valid_block != NULL)
3796 delete_breakpoint (b);
3797 else if (context == inf_starting)
3798 {
3799 /* Reset val field to force reread of starting value in
3800 insert_breakpoints. */
3801 if (w->val)
3802 value_free (w->val);
3803 w->val = NULL;
3804 w->val_valid = 0;
3805 }
3806 }
3807 break;
3808 default:
3809 break;
3810 }
3811 }
3812
3813 /* Get rid of the moribund locations. */
3814 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3815 decref_bp_location (&bl);
3816 VEC_free (bp_location_p, moribund_locations);
3817 }
3818
3819 /* These functions concern about actual breakpoints inserted in the
3820 target --- to e.g. check if we need to do decr_pc adjustment or if
3821 we need to hop over the bkpt --- so we check for address space
3822 match, not program space. */
3823
3824 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3825 exists at PC. It returns ordinary_breakpoint_here if it's an
3826 ordinary breakpoint, or permanent_breakpoint_here if it's a
3827 permanent breakpoint.
3828 - When continuing from a location with an ordinary breakpoint, we
3829 actually single step once before calling insert_breakpoints.
3830 - When continuing from a location with a permanent breakpoint, we
3831 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3832 the target, to advance the PC past the breakpoint. */
3833
3834 enum breakpoint_here
3835 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3836 {
3837 struct bp_location *bl, **blp_tmp;
3838 int any_breakpoint_here = 0;
3839
3840 ALL_BP_LOCATIONS (bl, blp_tmp)
3841 {
3842 if (bl->loc_type != bp_loc_software_breakpoint
3843 && bl->loc_type != bp_loc_hardware_breakpoint)
3844 continue;
3845
3846 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3847 if ((breakpoint_enabled (bl->owner)
3848 || bl->owner->enable_state == bp_permanent)
3849 && breakpoint_location_address_match (bl, aspace, pc))
3850 {
3851 if (overlay_debugging
3852 && section_is_overlay (bl->section)
3853 && !section_is_mapped (bl->section))
3854 continue; /* unmapped overlay -- can't be a match */
3855 else if (bl->owner->enable_state == bp_permanent)
3856 return permanent_breakpoint_here;
3857 else
3858 any_breakpoint_here = 1;
3859 }
3860 }
3861
3862 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
3863 }
3864
3865 /* Return true if there's a moribund breakpoint at PC. */
3866
3867 int
3868 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3869 {
3870 struct bp_location *loc;
3871 int ix;
3872
3873 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
3874 if (breakpoint_location_address_match (loc, aspace, pc))
3875 return 1;
3876
3877 return 0;
3878 }
3879
3880 /* Returns non-zero if there's a breakpoint inserted at PC, which is
3881 inserted using regular breakpoint_chain / bp_location array
3882 mechanism. This does not check for single-step breakpoints, which
3883 are inserted and removed using direct target manipulation. */
3884
3885 int
3886 regular_breakpoint_inserted_here_p (struct address_space *aspace,
3887 CORE_ADDR pc)
3888 {
3889 struct bp_location *bl, **blp_tmp;
3890
3891 ALL_BP_LOCATIONS (bl, blp_tmp)
3892 {
3893 if (bl->loc_type != bp_loc_software_breakpoint
3894 && bl->loc_type != bp_loc_hardware_breakpoint)
3895 continue;
3896
3897 if (bl->inserted
3898 && breakpoint_location_address_match (bl, aspace, pc))
3899 {
3900 if (overlay_debugging
3901 && section_is_overlay (bl->section)
3902 && !section_is_mapped (bl->section))
3903 continue; /* unmapped overlay -- can't be a match */
3904 else
3905 return 1;
3906 }
3907 }
3908 return 0;
3909 }
3910
3911 /* Returns non-zero iff there's either regular breakpoint
3912 or a single step breakpoint inserted at PC. */
3913
3914 int
3915 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
3916 {
3917 if (regular_breakpoint_inserted_here_p (aspace, pc))
3918 return 1;
3919
3920 if (single_step_breakpoint_inserted_here_p (aspace, pc))
3921 return 1;
3922
3923 return 0;
3924 }
3925
3926 /* This function returns non-zero iff there is a software breakpoint
3927 inserted at PC. */
3928
3929 int
3930 software_breakpoint_inserted_here_p (struct address_space *aspace,
3931 CORE_ADDR pc)
3932 {
3933 struct bp_location *bl, **blp_tmp;
3934
3935 ALL_BP_LOCATIONS (bl, blp_tmp)
3936 {
3937 if (bl->loc_type != bp_loc_software_breakpoint)
3938 continue;
3939
3940 if (bl->inserted
3941 && breakpoint_address_match (bl->pspace->aspace, bl->address,
3942 aspace, pc))
3943 {
3944 if (overlay_debugging
3945 && section_is_overlay (bl->section)
3946 && !section_is_mapped (bl->section))
3947 continue; /* unmapped overlay -- can't be a match */
3948 else
3949 return 1;
3950 }
3951 }
3952
3953 /* Also check for software single-step breakpoints. */
3954 if (single_step_breakpoint_inserted_here_p (aspace, pc))
3955 return 1;
3956
3957 return 0;
3958 }
3959
3960 int
3961 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
3962 CORE_ADDR addr, ULONGEST len)
3963 {
3964 struct breakpoint *bpt;
3965
3966 ALL_BREAKPOINTS (bpt)
3967 {
3968 struct bp_location *loc;
3969
3970 if (bpt->type != bp_hardware_watchpoint
3971 && bpt->type != bp_access_watchpoint)
3972 continue;
3973
3974 if (!breakpoint_enabled (bpt))
3975 continue;
3976
3977 for (loc = bpt->loc; loc; loc = loc->next)
3978 if (loc->pspace->aspace == aspace && loc->inserted)
3979 {
3980 CORE_ADDR l, h;
3981
3982 /* Check for intersection. */
3983 l = max (loc->address, addr);
3984 h = min (loc->address + loc->length, addr + len);
3985 if (l < h)
3986 return 1;
3987 }
3988 }
3989 return 0;
3990 }
3991
3992 /* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
3993 PC is valid for process/thread PTID. */
3994
3995 int
3996 breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
3997 ptid_t ptid)
3998 {
3999 struct bp_location *bl, **blp_tmp;
4000 /* The thread and task IDs associated to PTID, computed lazily. */
4001 int thread = -1;
4002 int task = 0;
4003
4004 ALL_BP_LOCATIONS (bl, blp_tmp)
4005 {
4006 if (bl->loc_type != bp_loc_software_breakpoint
4007 && bl->loc_type != bp_loc_hardware_breakpoint)
4008 continue;
4009
4010 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4011 if (!breakpoint_enabled (bl->owner)
4012 && bl->owner->enable_state != bp_permanent)
4013 continue;
4014
4015 if (!breakpoint_location_address_match (bl, aspace, pc))
4016 continue;
4017
4018 if (bl->owner->thread != -1)
4019 {
4020 /* This is a thread-specific breakpoint. Check that ptid
4021 matches that thread. If thread hasn't been computed yet,
4022 it is now time to do so. */
4023 if (thread == -1)
4024 thread = pid_to_thread_id (ptid);
4025 if (bl->owner->thread != thread)
4026 continue;
4027 }
4028
4029 if (bl->owner->task != 0)
4030 {
4031 /* This is a task-specific breakpoint. Check that ptid
4032 matches that task. If task hasn't been computed yet,
4033 it is now time to do so. */
4034 if (task == 0)
4035 task = ada_get_task_number (ptid);
4036 if (bl->owner->task != task)
4037 continue;
4038 }
4039
4040 if (overlay_debugging
4041 && section_is_overlay (bl->section)
4042 && !section_is_mapped (bl->section))
4043 continue; /* unmapped overlay -- can't be a match */
4044
4045 return 1;
4046 }
4047
4048 return 0;
4049 }
4050 \f
4051
4052 /* bpstat stuff. External routines' interfaces are documented
4053 in breakpoint.h. */
4054
4055 int
4056 is_catchpoint (struct breakpoint *ep)
4057 {
4058 return (ep->type == bp_catchpoint);
4059 }
4060
4061 /* Frees any storage that is part of a bpstat. Does not walk the
4062 'next' chain. */
4063
4064 static void
4065 bpstat_free (bpstat bs)
4066 {
4067 if (bs->old_val != NULL)
4068 value_free (bs->old_val);
4069 decref_counted_command_line (&bs->commands);
4070 decref_bp_location (&bs->bp_location_at);
4071 xfree (bs);
4072 }
4073
4074 /* Clear a bpstat so that it says we are not at any breakpoint.
4075 Also free any storage that is part of a bpstat. */
4076
4077 void
4078 bpstat_clear (bpstat *bsp)
4079 {
4080 bpstat p;
4081 bpstat q;
4082
4083 if (bsp == 0)
4084 return;
4085 p = *bsp;
4086 while (p != NULL)
4087 {
4088 q = p->next;
4089 bpstat_free (p);
4090 p = q;
4091 }
4092 *bsp = NULL;
4093 }
4094
4095 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4096 is part of the bpstat is copied as well. */
4097
4098 bpstat
4099 bpstat_copy (bpstat bs)
4100 {
4101 bpstat p = NULL;
4102 bpstat tmp;
4103 bpstat retval = NULL;
4104
4105 if (bs == NULL)
4106 return bs;
4107
4108 for (; bs != NULL; bs = bs->next)
4109 {
4110 tmp = (bpstat) xmalloc (sizeof (*tmp));
4111 memcpy (tmp, bs, sizeof (*tmp));
4112 incref_counted_command_line (tmp->commands);
4113 incref_bp_location (tmp->bp_location_at);
4114 if (bs->old_val != NULL)
4115 {
4116 tmp->old_val = value_copy (bs->old_val);
4117 release_value (tmp->old_val);
4118 }
4119
4120 if (p == NULL)
4121 /* This is the first thing in the chain. */
4122 retval = tmp;
4123 else
4124 p->next = tmp;
4125 p = tmp;
4126 }
4127 p->next = NULL;
4128 return retval;
4129 }
4130
4131 /* Find the bpstat associated with this breakpoint. */
4132
4133 bpstat
4134 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4135 {
4136 if (bsp == NULL)
4137 return NULL;
4138
4139 for (; bsp != NULL; bsp = bsp->next)
4140 {
4141 if (bsp->breakpoint_at == breakpoint)
4142 return bsp;
4143 }
4144 return NULL;
4145 }
4146
4147 /* See breakpoint.h. */
4148
4149 enum bpstat_signal_value
4150 bpstat_explains_signal (bpstat bsp)
4151 {
4152 enum bpstat_signal_value result = BPSTAT_SIGNAL_NO;
4153
4154 for (; bsp != NULL; bsp = bsp->next)
4155 {
4156 /* Ensure that, if we ever entered this loop, then we at least
4157 return BPSTAT_SIGNAL_HIDE. */
4158 enum bpstat_signal_value newval = BPSTAT_SIGNAL_HIDE;
4159
4160 if (bsp->breakpoint_at != NULL)
4161 newval = bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at);
4162
4163 if (newval > result)
4164 result = newval;
4165 }
4166
4167 return result;
4168 }
4169
4170 /* Put in *NUM the breakpoint number of the first breakpoint we are
4171 stopped at. *BSP upon return is a bpstat which points to the
4172 remaining breakpoints stopped at (but which is not guaranteed to be
4173 good for anything but further calls to bpstat_num).
4174
4175 Return 0 if passed a bpstat which does not indicate any breakpoints.
4176 Return -1 if stopped at a breakpoint that has been deleted since
4177 we set it.
4178 Return 1 otherwise. */
4179
4180 int
4181 bpstat_num (bpstat *bsp, int *num)
4182 {
4183 struct breakpoint *b;
4184
4185 if ((*bsp) == NULL)
4186 return 0; /* No more breakpoint values */
4187
4188 /* We assume we'll never have several bpstats that correspond to a
4189 single breakpoint -- otherwise, this function might return the
4190 same number more than once and this will look ugly. */
4191 b = (*bsp)->breakpoint_at;
4192 *bsp = (*bsp)->next;
4193 if (b == NULL)
4194 return -1; /* breakpoint that's been deleted since */
4195
4196 *num = b->number; /* We have its number */
4197 return 1;
4198 }
4199
4200 /* See breakpoint.h. */
4201
4202 void
4203 bpstat_clear_actions (void)
4204 {
4205 struct thread_info *tp;
4206 bpstat bs;
4207
4208 if (ptid_equal (inferior_ptid, null_ptid))
4209 return;
4210
4211 tp = find_thread_ptid (inferior_ptid);
4212 if (tp == NULL)
4213 return;
4214
4215 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4216 {
4217 decref_counted_command_line (&bs->commands);
4218
4219 if (bs->old_val != NULL)
4220 {
4221 value_free (bs->old_val);
4222 bs->old_val = NULL;
4223 }
4224 }
4225 }
4226
4227 /* Called when a command is about to proceed the inferior. */
4228
4229 static void
4230 breakpoint_about_to_proceed (void)
4231 {
4232 if (!ptid_equal (inferior_ptid, null_ptid))
4233 {
4234 struct thread_info *tp = inferior_thread ();
4235
4236 /* Allow inferior function calls in breakpoint commands to not
4237 interrupt the command list. When the call finishes
4238 successfully, the inferior will be standing at the same
4239 breakpoint as if nothing happened. */
4240 if (tp->control.in_infcall)
4241 return;
4242 }
4243
4244 breakpoint_proceeded = 1;
4245 }
4246
4247 /* Stub for cleaning up our state if we error-out of a breakpoint
4248 command. */
4249 static void
4250 cleanup_executing_breakpoints (void *ignore)
4251 {
4252 executing_breakpoint_commands = 0;
4253 }
4254
4255 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4256 or its equivalent. */
4257
4258 static int
4259 command_line_is_silent (struct command_line *cmd)
4260 {
4261 return cmd && (strcmp ("silent", cmd->line) == 0
4262 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4263 }
4264
4265 /* Execute all the commands associated with all the breakpoints at
4266 this location. Any of these commands could cause the process to
4267 proceed beyond this point, etc. We look out for such changes by
4268 checking the global "breakpoint_proceeded" after each command.
4269
4270 Returns true if a breakpoint command resumed the inferior. In that
4271 case, it is the caller's responsibility to recall it again with the
4272 bpstat of the current thread. */
4273
4274 static int
4275 bpstat_do_actions_1 (bpstat *bsp)
4276 {
4277 bpstat bs;
4278 struct cleanup *old_chain;
4279 int again = 0;
4280
4281 /* Avoid endless recursion if a `source' command is contained
4282 in bs->commands. */
4283 if (executing_breakpoint_commands)
4284 return 0;
4285
4286 executing_breakpoint_commands = 1;
4287 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4288
4289 prevent_dont_repeat ();
4290
4291 /* This pointer will iterate over the list of bpstat's. */
4292 bs = *bsp;
4293
4294 breakpoint_proceeded = 0;
4295 for (; bs != NULL; bs = bs->next)
4296 {
4297 struct counted_command_line *ccmd;
4298 struct command_line *cmd;
4299 struct cleanup *this_cmd_tree_chain;
4300
4301 /* Take ownership of the BSP's command tree, if it has one.
4302
4303 The command tree could legitimately contain commands like
4304 'step' and 'next', which call clear_proceed_status, which
4305 frees stop_bpstat's command tree. To make sure this doesn't
4306 free the tree we're executing out from under us, we need to
4307 take ownership of the tree ourselves. Since a given bpstat's
4308 commands are only executed once, we don't need to copy it; we
4309 can clear the pointer in the bpstat, and make sure we free
4310 the tree when we're done. */
4311 ccmd = bs->commands;
4312 bs->commands = NULL;
4313 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4314 cmd = ccmd ? ccmd->commands : NULL;
4315 if (command_line_is_silent (cmd))
4316 {
4317 /* The action has been already done by bpstat_stop_status. */
4318 cmd = cmd->next;
4319 }
4320
4321 while (cmd != NULL)
4322 {
4323 execute_control_command (cmd);
4324
4325 if (breakpoint_proceeded)
4326 break;
4327 else
4328 cmd = cmd->next;
4329 }
4330
4331 /* We can free this command tree now. */
4332 do_cleanups (this_cmd_tree_chain);
4333
4334 if (breakpoint_proceeded)
4335 {
4336 if (target_can_async_p ())
4337 /* If we are in async mode, then the target might be still
4338 running, not stopped at any breakpoint, so nothing for
4339 us to do here -- just return to the event loop. */
4340 ;
4341 else
4342 /* In sync mode, when execute_control_command returns
4343 we're already standing on the next breakpoint.
4344 Breakpoint commands for that stop were not run, since
4345 execute_command does not run breakpoint commands --
4346 only command_line_handler does, but that one is not
4347 involved in execution of breakpoint commands. So, we
4348 can now execute breakpoint commands. It should be
4349 noted that making execute_command do bpstat actions is
4350 not an option -- in this case we'll have recursive
4351 invocation of bpstat for each breakpoint with a
4352 command, and can easily blow up GDB stack. Instead, we
4353 return true, which will trigger the caller to recall us
4354 with the new stop_bpstat. */
4355 again = 1;
4356 break;
4357 }
4358 }
4359 do_cleanups (old_chain);
4360 return again;
4361 }
4362
4363 void
4364 bpstat_do_actions (void)
4365 {
4366 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4367
4368 /* Do any commands attached to breakpoint we are stopped at. */
4369 while (!ptid_equal (inferior_ptid, null_ptid)
4370 && target_has_execution
4371 && !is_exited (inferior_ptid)
4372 && !is_executing (inferior_ptid))
4373 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4374 and only return when it is stopped at the next breakpoint, we
4375 keep doing breakpoint actions until it returns false to
4376 indicate the inferior was not resumed. */
4377 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4378 break;
4379
4380 discard_cleanups (cleanup_if_error);
4381 }
4382
4383 /* Print out the (old or new) value associated with a watchpoint. */
4384
4385 static void
4386 watchpoint_value_print (struct value *val, struct ui_file *stream)
4387 {
4388 if (val == NULL)
4389 fprintf_unfiltered (stream, _("<unreadable>"));
4390 else
4391 {
4392 struct value_print_options opts;
4393 get_user_print_options (&opts);
4394 value_print (val, stream, &opts);
4395 }
4396 }
4397
4398 /* Generic routine for printing messages indicating why we
4399 stopped. The behavior of this function depends on the value
4400 'print_it' in the bpstat structure. Under some circumstances we
4401 may decide not to print anything here and delegate the task to
4402 normal_stop(). */
4403
4404 static enum print_stop_action
4405 print_bp_stop_message (bpstat bs)
4406 {
4407 switch (bs->print_it)
4408 {
4409 case print_it_noop:
4410 /* Nothing should be printed for this bpstat entry. */
4411 return PRINT_UNKNOWN;
4412 break;
4413
4414 case print_it_done:
4415 /* We still want to print the frame, but we already printed the
4416 relevant messages. */
4417 return PRINT_SRC_AND_LOC;
4418 break;
4419
4420 case print_it_normal:
4421 {
4422 struct breakpoint *b = bs->breakpoint_at;
4423
4424 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4425 which has since been deleted. */
4426 if (b == NULL)
4427 return PRINT_UNKNOWN;
4428
4429 /* Normal case. Call the breakpoint's print_it method. */
4430 return b->ops->print_it (bs);
4431 }
4432 break;
4433
4434 default:
4435 internal_error (__FILE__, __LINE__,
4436 _("print_bp_stop_message: unrecognized enum value"));
4437 break;
4438 }
4439 }
4440
4441 /* A helper function that prints a shared library stopped event. */
4442
4443 static void
4444 print_solib_event (int is_catchpoint)
4445 {
4446 int any_deleted
4447 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4448 int any_added
4449 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4450
4451 if (!is_catchpoint)
4452 {
4453 if (any_added || any_deleted)
4454 ui_out_text (current_uiout,
4455 _("Stopped due to shared library event:\n"));
4456 else
4457 ui_out_text (current_uiout,
4458 _("Stopped due to shared library event (no "
4459 "libraries added or removed)\n"));
4460 }
4461
4462 if (ui_out_is_mi_like_p (current_uiout))
4463 ui_out_field_string (current_uiout, "reason",
4464 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4465
4466 if (any_deleted)
4467 {
4468 struct cleanup *cleanup;
4469 char *name;
4470 int ix;
4471
4472 ui_out_text (current_uiout, _(" Inferior unloaded "));
4473 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4474 "removed");
4475 for (ix = 0;
4476 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4477 ix, name);
4478 ++ix)
4479 {
4480 if (ix > 0)
4481 ui_out_text (current_uiout, " ");
4482 ui_out_field_string (current_uiout, "library", name);
4483 ui_out_text (current_uiout, "\n");
4484 }
4485
4486 do_cleanups (cleanup);
4487 }
4488
4489 if (any_added)
4490 {
4491 struct so_list *iter;
4492 int ix;
4493 struct cleanup *cleanup;
4494
4495 ui_out_text (current_uiout, _(" Inferior loaded "));
4496 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4497 "added");
4498 for (ix = 0;
4499 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4500 ix, iter);
4501 ++ix)
4502 {
4503 if (ix > 0)
4504 ui_out_text (current_uiout, " ");
4505 ui_out_field_string (current_uiout, "library", iter->so_name);
4506 ui_out_text (current_uiout, "\n");
4507 }
4508
4509 do_cleanups (cleanup);
4510 }
4511 }
4512
4513 /* Print a message indicating what happened. This is called from
4514 normal_stop(). The input to this routine is the head of the bpstat
4515 list - a list of the eventpoints that caused this stop. KIND is
4516 the target_waitkind for the stopping event. This
4517 routine calls the generic print routine for printing a message
4518 about reasons for stopping. This will print (for example) the
4519 "Breakpoint n," part of the output. The return value of this
4520 routine is one of:
4521
4522 PRINT_UNKNOWN: Means we printed nothing.
4523 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4524 code to print the location. An example is
4525 "Breakpoint 1, " which should be followed by
4526 the location.
4527 PRINT_SRC_ONLY: Means we printed something, but there is no need
4528 to also print the location part of the message.
4529 An example is the catch/throw messages, which
4530 don't require a location appended to the end.
4531 PRINT_NOTHING: We have done some printing and we don't need any
4532 further info to be printed. */
4533
4534 enum print_stop_action
4535 bpstat_print (bpstat bs, int kind)
4536 {
4537 int val;
4538
4539 /* Maybe another breakpoint in the chain caused us to stop.
4540 (Currently all watchpoints go on the bpstat whether hit or not.
4541 That probably could (should) be changed, provided care is taken
4542 with respect to bpstat_explains_signal). */
4543 for (; bs; bs = bs->next)
4544 {
4545 val = print_bp_stop_message (bs);
4546 if (val == PRINT_SRC_ONLY
4547 || val == PRINT_SRC_AND_LOC
4548 || val == PRINT_NOTHING)
4549 return val;
4550 }
4551
4552 /* If we had hit a shared library event breakpoint,
4553 print_bp_stop_message would print out this message. If we hit an
4554 OS-level shared library event, do the same thing. */
4555 if (kind == TARGET_WAITKIND_LOADED)
4556 {
4557 print_solib_event (0);
4558 return PRINT_NOTHING;
4559 }
4560
4561 /* We reached the end of the chain, or we got a null BS to start
4562 with and nothing was printed. */
4563 return PRINT_UNKNOWN;
4564 }
4565
4566 /* Evaluate the expression EXP and return 1 if value is zero. This is
4567 used inside a catch_errors to evaluate the breakpoint condition.
4568 The argument is a "struct expression *" that has been cast to a
4569 "char *" to make it pass through catch_errors. */
4570
4571 static int
4572 breakpoint_cond_eval (void *exp)
4573 {
4574 struct value *mark = value_mark ();
4575 int i = !value_true (evaluate_expression ((struct expression *) exp));
4576
4577 value_free_to_mark (mark);
4578 return i;
4579 }
4580
4581 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4582
4583 static bpstat
4584 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4585 {
4586 bpstat bs;
4587
4588 bs = (bpstat) xmalloc (sizeof (*bs));
4589 bs->next = NULL;
4590 **bs_link_pointer = bs;
4591 *bs_link_pointer = &bs->next;
4592 bs->breakpoint_at = bl->owner;
4593 bs->bp_location_at = bl;
4594 incref_bp_location (bl);
4595 /* If the condition is false, etc., don't do the commands. */
4596 bs->commands = NULL;
4597 bs->old_val = NULL;
4598 bs->print_it = print_it_normal;
4599 return bs;
4600 }
4601 \f
4602 /* The target has stopped with waitstatus WS. Check if any hardware
4603 watchpoints have triggered, according to the target. */
4604
4605 int
4606 watchpoints_triggered (struct target_waitstatus *ws)
4607 {
4608 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4609 CORE_ADDR addr;
4610 struct breakpoint *b;
4611
4612 if (!stopped_by_watchpoint)
4613 {
4614 /* We were not stopped by a watchpoint. Mark all watchpoints
4615 as not triggered. */
4616 ALL_BREAKPOINTS (b)
4617 if (is_hardware_watchpoint (b))
4618 {
4619 struct watchpoint *w = (struct watchpoint *) b;
4620
4621 w->watchpoint_triggered = watch_triggered_no;
4622 }
4623
4624 return 0;
4625 }
4626
4627 if (!target_stopped_data_address (&current_target, &addr))
4628 {
4629 /* We were stopped by a watchpoint, but we don't know where.
4630 Mark all watchpoints as unknown. */
4631 ALL_BREAKPOINTS (b)
4632 if (is_hardware_watchpoint (b))
4633 {
4634 struct watchpoint *w = (struct watchpoint *) b;
4635
4636 w->watchpoint_triggered = watch_triggered_unknown;
4637 }
4638
4639 return stopped_by_watchpoint;
4640 }
4641
4642 /* The target could report the data address. Mark watchpoints
4643 affected by this data address as triggered, and all others as not
4644 triggered. */
4645
4646 ALL_BREAKPOINTS (b)
4647 if (is_hardware_watchpoint (b))
4648 {
4649 struct watchpoint *w = (struct watchpoint *) b;
4650 struct bp_location *loc;
4651
4652 w->watchpoint_triggered = watch_triggered_no;
4653 for (loc = b->loc; loc; loc = loc->next)
4654 {
4655 if (is_masked_watchpoint (b))
4656 {
4657 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4658 CORE_ADDR start = loc->address & w->hw_wp_mask;
4659
4660 if (newaddr == start)
4661 {
4662 w->watchpoint_triggered = watch_triggered_yes;
4663 break;
4664 }
4665 }
4666 /* Exact match not required. Within range is sufficient. */
4667 else if (target_watchpoint_addr_within_range (&current_target,
4668 addr, loc->address,
4669 loc->length))
4670 {
4671 w->watchpoint_triggered = watch_triggered_yes;
4672 break;
4673 }
4674 }
4675 }
4676
4677 return 1;
4678 }
4679
4680 /* Possible return values for watchpoint_check (this can't be an enum
4681 because of check_errors). */
4682 /* The watchpoint has been deleted. */
4683 #define WP_DELETED 1
4684 /* The value has changed. */
4685 #define WP_VALUE_CHANGED 2
4686 /* The value has not changed. */
4687 #define WP_VALUE_NOT_CHANGED 3
4688 /* Ignore this watchpoint, no matter if the value changed or not. */
4689 #define WP_IGNORE 4
4690
4691 #define BP_TEMPFLAG 1
4692 #define BP_HARDWAREFLAG 2
4693
4694 /* Evaluate watchpoint condition expression and check if its value
4695 changed.
4696
4697 P should be a pointer to struct bpstat, but is defined as a void *
4698 in order for this function to be usable with catch_errors. */
4699
4700 static int
4701 watchpoint_check (void *p)
4702 {
4703 bpstat bs = (bpstat) p;
4704 struct watchpoint *b;
4705 struct frame_info *fr;
4706 int within_current_scope;
4707
4708 /* BS is built from an existing struct breakpoint. */
4709 gdb_assert (bs->breakpoint_at != NULL);
4710 b = (struct watchpoint *) bs->breakpoint_at;
4711
4712 /* If this is a local watchpoint, we only want to check if the
4713 watchpoint frame is in scope if the current thread is the thread
4714 that was used to create the watchpoint. */
4715 if (!watchpoint_in_thread_scope (b))
4716 return WP_IGNORE;
4717
4718 if (b->exp_valid_block == NULL)
4719 within_current_scope = 1;
4720 else
4721 {
4722 struct frame_info *frame = get_current_frame ();
4723 struct gdbarch *frame_arch = get_frame_arch (frame);
4724 CORE_ADDR frame_pc = get_frame_pc (frame);
4725
4726 /* in_function_epilogue_p() returns a non-zero value if we're
4727 still in the function but the stack frame has already been
4728 invalidated. Since we can't rely on the values of local
4729 variables after the stack has been destroyed, we are treating
4730 the watchpoint in that state as `not changed' without further
4731 checking. Don't mark watchpoints as changed if the current
4732 frame is in an epilogue - even if they are in some other
4733 frame, our view of the stack is likely to be wrong and
4734 frame_find_by_id could error out. */
4735 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
4736 return WP_IGNORE;
4737
4738 fr = frame_find_by_id (b->watchpoint_frame);
4739 within_current_scope = (fr != NULL);
4740
4741 /* If we've gotten confused in the unwinder, we might have
4742 returned a frame that can't describe this variable. */
4743 if (within_current_scope)
4744 {
4745 struct symbol *function;
4746
4747 function = get_frame_function (fr);
4748 if (function == NULL
4749 || !contained_in (b->exp_valid_block,
4750 SYMBOL_BLOCK_VALUE (function)))
4751 within_current_scope = 0;
4752 }
4753
4754 if (within_current_scope)
4755 /* If we end up stopping, the current frame will get selected
4756 in normal_stop. So this call to select_frame won't affect
4757 the user. */
4758 select_frame (fr);
4759 }
4760
4761 if (within_current_scope)
4762 {
4763 /* We use value_{,free_to_}mark because it could be a *long*
4764 time before we return to the command level and call
4765 free_all_values. We can't call free_all_values because we
4766 might be in the middle of evaluating a function call. */
4767
4768 int pc = 0;
4769 struct value *mark;
4770 struct value *new_val;
4771
4772 if (is_masked_watchpoint (&b->base))
4773 /* Since we don't know the exact trigger address (from
4774 stopped_data_address), just tell the user we've triggered
4775 a mask watchpoint. */
4776 return WP_VALUE_CHANGED;
4777
4778 mark = value_mark ();
4779 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL);
4780
4781 /* We use value_equal_contents instead of value_equal because
4782 the latter coerces an array to a pointer, thus comparing just
4783 the address of the array instead of its contents. This is
4784 not what we want. */
4785 if ((b->val != NULL) != (new_val != NULL)
4786 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4787 {
4788 if (new_val != NULL)
4789 {
4790 release_value (new_val);
4791 value_free_to_mark (mark);
4792 }
4793 bs->old_val = b->val;
4794 b->val = new_val;
4795 b->val_valid = 1;
4796 return WP_VALUE_CHANGED;
4797 }
4798 else
4799 {
4800 /* Nothing changed. */
4801 value_free_to_mark (mark);
4802 return WP_VALUE_NOT_CHANGED;
4803 }
4804 }
4805 else
4806 {
4807 struct ui_out *uiout = current_uiout;
4808
4809 /* This seems like the only logical thing to do because
4810 if we temporarily ignored the watchpoint, then when
4811 we reenter the block in which it is valid it contains
4812 garbage (in the case of a function, it may have two
4813 garbage values, one before and one after the prologue).
4814 So we can't even detect the first assignment to it and
4815 watch after that (since the garbage may or may not equal
4816 the first value assigned). */
4817 /* We print all the stop information in
4818 breakpoint_ops->print_it, but in this case, by the time we
4819 call breakpoint_ops->print_it this bp will be deleted
4820 already. So we have no choice but print the information
4821 here. */
4822 if (ui_out_is_mi_like_p (uiout))
4823 ui_out_field_string
4824 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4825 ui_out_text (uiout, "\nWatchpoint ");
4826 ui_out_field_int (uiout, "wpnum", b->base.number);
4827 ui_out_text (uiout,
4828 " deleted because the program has left the block in\n\
4829 which its expression is valid.\n");
4830
4831 /* Make sure the watchpoint's commands aren't executed. */
4832 decref_counted_command_line (&b->base.commands);
4833 watchpoint_del_at_next_stop (b);
4834
4835 return WP_DELETED;
4836 }
4837 }
4838
4839 /* Return true if it looks like target has stopped due to hitting
4840 breakpoint location BL. This function does not check if we should
4841 stop, only if BL explains the stop. */
4842
4843 static int
4844 bpstat_check_location (const struct bp_location *bl,
4845 struct address_space *aspace, CORE_ADDR bp_addr,
4846 const struct target_waitstatus *ws)
4847 {
4848 struct breakpoint *b = bl->owner;
4849
4850 /* BL is from an existing breakpoint. */
4851 gdb_assert (b != NULL);
4852
4853 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4854 }
4855
4856 /* Determine if the watched values have actually changed, and we
4857 should stop. If not, set BS->stop to 0. */
4858
4859 static void
4860 bpstat_check_watchpoint (bpstat bs)
4861 {
4862 const struct bp_location *bl;
4863 struct watchpoint *b;
4864
4865 /* BS is built for existing struct breakpoint. */
4866 bl = bs->bp_location_at;
4867 gdb_assert (bl != NULL);
4868 b = (struct watchpoint *) bs->breakpoint_at;
4869 gdb_assert (b != NULL);
4870
4871 {
4872 int must_check_value = 0;
4873
4874 if (b->base.type == bp_watchpoint)
4875 /* For a software watchpoint, we must always check the
4876 watched value. */
4877 must_check_value = 1;
4878 else if (b->watchpoint_triggered == watch_triggered_yes)
4879 /* We have a hardware watchpoint (read, write, or access)
4880 and the target earlier reported an address watched by
4881 this watchpoint. */
4882 must_check_value = 1;
4883 else if (b->watchpoint_triggered == watch_triggered_unknown
4884 && b->base.type == bp_hardware_watchpoint)
4885 /* We were stopped by a hardware watchpoint, but the target could
4886 not report the data address. We must check the watchpoint's
4887 value. Access and read watchpoints are out of luck; without
4888 a data address, we can't figure it out. */
4889 must_check_value = 1;
4890
4891 if (must_check_value)
4892 {
4893 char *message
4894 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
4895 b->base.number);
4896 struct cleanup *cleanups = make_cleanup (xfree, message);
4897 int e = catch_errors (watchpoint_check, bs, message,
4898 RETURN_MASK_ALL);
4899 do_cleanups (cleanups);
4900 switch (e)
4901 {
4902 case WP_DELETED:
4903 /* We've already printed what needs to be printed. */
4904 bs->print_it = print_it_done;
4905 /* Stop. */
4906 break;
4907 case WP_IGNORE:
4908 bs->print_it = print_it_noop;
4909 bs->stop = 0;
4910 break;
4911 case WP_VALUE_CHANGED:
4912 if (b->base.type == bp_read_watchpoint)
4913 {
4914 /* There are two cases to consider here:
4915
4916 1. We're watching the triggered memory for reads.
4917 In that case, trust the target, and always report
4918 the watchpoint hit to the user. Even though
4919 reads don't cause value changes, the value may
4920 have changed since the last time it was read, and
4921 since we're not trapping writes, we will not see
4922 those, and as such we should ignore our notion of
4923 old value.
4924
4925 2. We're watching the triggered memory for both
4926 reads and writes. There are two ways this may
4927 happen:
4928
4929 2.1. This is a target that can't break on data
4930 reads only, but can break on accesses (reads or
4931 writes), such as e.g., x86. We detect this case
4932 at the time we try to insert read watchpoints.
4933
4934 2.2. Otherwise, the target supports read
4935 watchpoints, but, the user set an access or write
4936 watchpoint watching the same memory as this read
4937 watchpoint.
4938
4939 If we're watching memory writes as well as reads,
4940 ignore watchpoint hits when we find that the
4941 value hasn't changed, as reads don't cause
4942 changes. This still gives false positives when
4943 the program writes the same value to memory as
4944 what there was already in memory (we will confuse
4945 it for a read), but it's much better than
4946 nothing. */
4947
4948 int other_write_watchpoint = 0;
4949
4950 if (bl->watchpoint_type == hw_read)
4951 {
4952 struct breakpoint *other_b;
4953
4954 ALL_BREAKPOINTS (other_b)
4955 if (other_b->type == bp_hardware_watchpoint
4956 || other_b->type == bp_access_watchpoint)
4957 {
4958 struct watchpoint *other_w =
4959 (struct watchpoint *) other_b;
4960
4961 if (other_w->watchpoint_triggered
4962 == watch_triggered_yes)
4963 {
4964 other_write_watchpoint = 1;
4965 break;
4966 }
4967 }
4968 }
4969
4970 if (other_write_watchpoint
4971 || bl->watchpoint_type == hw_access)
4972 {
4973 /* We're watching the same memory for writes,
4974 and the value changed since the last time we
4975 updated it, so this trap must be for a write.
4976 Ignore it. */
4977 bs->print_it = print_it_noop;
4978 bs->stop = 0;
4979 }
4980 }
4981 break;
4982 case WP_VALUE_NOT_CHANGED:
4983 if (b->base.type == bp_hardware_watchpoint
4984 || b->base.type == bp_watchpoint)
4985 {
4986 /* Don't stop: write watchpoints shouldn't fire if
4987 the value hasn't changed. */
4988 bs->print_it = print_it_noop;
4989 bs->stop = 0;
4990 }
4991 /* Stop. */
4992 break;
4993 default:
4994 /* Can't happen. */
4995 case 0:
4996 /* Error from catch_errors. */
4997 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
4998 watchpoint_del_at_next_stop (b);
4999 /* We've already printed what needs to be printed. */
5000 bs->print_it = print_it_done;
5001 break;
5002 }
5003 }
5004 else /* must_check_value == 0 */
5005 {
5006 /* This is a case where some watchpoint(s) triggered, but
5007 not at the address of this watchpoint, or else no
5008 watchpoint triggered after all. So don't print
5009 anything for this watchpoint. */
5010 bs->print_it = print_it_noop;
5011 bs->stop = 0;
5012 }
5013 }
5014 }
5015
5016
5017 /* Check conditions (condition proper, frame, thread and ignore count)
5018 of breakpoint referred to by BS. If we should not stop for this
5019 breakpoint, set BS->stop to 0. */
5020
5021 static void
5022 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5023 {
5024 int thread_id = pid_to_thread_id (ptid);
5025 const struct bp_location *bl;
5026 struct breakpoint *b;
5027
5028 /* BS is built for existing struct breakpoint. */
5029 bl = bs->bp_location_at;
5030 gdb_assert (bl != NULL);
5031 b = bs->breakpoint_at;
5032 gdb_assert (b != NULL);
5033
5034 /* Even if the target evaluated the condition on its end and notified GDB, we
5035 need to do so again since GDB does not know if we stopped due to a
5036 breakpoint or a single step breakpoint. */
5037
5038 if (frame_id_p (b->frame_id)
5039 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5040 bs->stop = 0;
5041 else if (bs->stop)
5042 {
5043 int value_is_zero = 0;
5044 struct expression *cond;
5045
5046 /* Evaluate Python breakpoints that have a "stop"
5047 method implemented. */
5048 if (b->py_bp_object)
5049 bs->stop = gdbpy_should_stop (b->py_bp_object);
5050
5051 if (is_watchpoint (b))
5052 {
5053 struct watchpoint *w = (struct watchpoint *) b;
5054
5055 cond = w->cond_exp;
5056 }
5057 else
5058 cond = bl->cond;
5059
5060 if (cond && b->disposition != disp_del_at_next_stop)
5061 {
5062 int within_current_scope = 1;
5063 struct watchpoint * w;
5064
5065 /* We use value_mark and value_free_to_mark because it could
5066 be a long time before we return to the command level and
5067 call free_all_values. We can't call free_all_values
5068 because we might be in the middle of evaluating a
5069 function call. */
5070 struct value *mark = value_mark ();
5071
5072 if (is_watchpoint (b))
5073 w = (struct watchpoint *) b;
5074 else
5075 w = NULL;
5076
5077 /* Need to select the frame, with all that implies so that
5078 the conditions will have the right context. Because we
5079 use the frame, we will not see an inlined function's
5080 variables when we arrive at a breakpoint at the start
5081 of the inlined function; the current frame will be the
5082 call site. */
5083 if (w == NULL || w->cond_exp_valid_block == NULL)
5084 select_frame (get_current_frame ());
5085 else
5086 {
5087 struct frame_info *frame;
5088
5089 /* For local watchpoint expressions, which particular
5090 instance of a local is being watched matters, so we
5091 keep track of the frame to evaluate the expression
5092 in. To evaluate the condition however, it doesn't
5093 really matter which instantiation of the function
5094 where the condition makes sense triggers the
5095 watchpoint. This allows an expression like "watch
5096 global if q > 10" set in `func', catch writes to
5097 global on all threads that call `func', or catch
5098 writes on all recursive calls of `func' by a single
5099 thread. We simply always evaluate the condition in
5100 the innermost frame that's executing where it makes
5101 sense to evaluate the condition. It seems
5102 intuitive. */
5103 frame = block_innermost_frame (w->cond_exp_valid_block);
5104 if (frame != NULL)
5105 select_frame (frame);
5106 else
5107 within_current_scope = 0;
5108 }
5109 if (within_current_scope)
5110 value_is_zero
5111 = catch_errors (breakpoint_cond_eval, cond,
5112 "Error in testing breakpoint condition:\n",
5113 RETURN_MASK_ALL);
5114 else
5115 {
5116 warning (_("Watchpoint condition cannot be tested "
5117 "in the current scope"));
5118 /* If we failed to set the right context for this
5119 watchpoint, unconditionally report it. */
5120 value_is_zero = 0;
5121 }
5122 /* FIXME-someday, should give breakpoint #. */
5123 value_free_to_mark (mark);
5124 }
5125
5126 if (cond && value_is_zero)
5127 {
5128 bs->stop = 0;
5129 }
5130 else if (b->thread != -1 && b->thread != thread_id)
5131 {
5132 bs->stop = 0;
5133 }
5134 else if (b->ignore_count > 0)
5135 {
5136 b->ignore_count--;
5137 bs->stop = 0;
5138 /* Increase the hit count even though we don't stop. */
5139 ++(b->hit_count);
5140 observer_notify_breakpoint_modified (b);
5141 }
5142 }
5143 }
5144
5145
5146 /* Get a bpstat associated with having just stopped at address
5147 BP_ADDR in thread PTID.
5148
5149 Determine whether we stopped at a breakpoint, etc, or whether we
5150 don't understand this stop. Result is a chain of bpstat's such
5151 that:
5152
5153 if we don't understand the stop, the result is a null pointer.
5154
5155 if we understand why we stopped, the result is not null.
5156
5157 Each element of the chain refers to a particular breakpoint or
5158 watchpoint at which we have stopped. (We may have stopped for
5159 several reasons concurrently.)
5160
5161 Each element of the chain has valid next, breakpoint_at,
5162 commands, FIXME??? fields. */
5163
5164 bpstat
5165 bpstat_stop_status (struct address_space *aspace,
5166 CORE_ADDR bp_addr, ptid_t ptid,
5167 const struct target_waitstatus *ws)
5168 {
5169 struct breakpoint *b = NULL;
5170 struct bp_location *bl;
5171 struct bp_location *loc;
5172 /* First item of allocated bpstat's. */
5173 bpstat bs_head = NULL, *bs_link = &bs_head;
5174 /* Pointer to the last thing in the chain currently. */
5175 bpstat bs;
5176 int ix;
5177 int need_remove_insert;
5178 int removed_any;
5179
5180 /* First, build the bpstat chain with locations that explain a
5181 target stop, while being careful to not set the target running,
5182 as that may invalidate locations (in particular watchpoint
5183 locations are recreated). Resuming will happen here with
5184 breakpoint conditions or watchpoint expressions that include
5185 inferior function calls. */
5186
5187 ALL_BREAKPOINTS (b)
5188 {
5189 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5190 continue;
5191
5192 for (bl = b->loc; bl != NULL; bl = bl->next)
5193 {
5194 /* For hardware watchpoints, we look only at the first
5195 location. The watchpoint_check function will work on the
5196 entire expression, not the individual locations. For
5197 read watchpoints, the watchpoints_triggered function has
5198 checked all locations already. */
5199 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5200 break;
5201
5202 if (!bl->enabled || bl->shlib_disabled)
5203 continue;
5204
5205 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5206 continue;
5207
5208 /* Come here if it's a watchpoint, or if the break address
5209 matches. */
5210
5211 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5212 explain stop. */
5213
5214 /* Assume we stop. Should we find a watchpoint that is not
5215 actually triggered, or if the condition of the breakpoint
5216 evaluates as false, we'll reset 'stop' to 0. */
5217 bs->stop = 1;
5218 bs->print = 1;
5219
5220 /* If this is a scope breakpoint, mark the associated
5221 watchpoint as triggered so that we will handle the
5222 out-of-scope event. We'll get to the watchpoint next
5223 iteration. */
5224 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5225 {
5226 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5227
5228 w->watchpoint_triggered = watch_triggered_yes;
5229 }
5230 }
5231 }
5232
5233 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5234 {
5235 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5236 {
5237 bs = bpstat_alloc (loc, &bs_link);
5238 /* For hits of moribund locations, we should just proceed. */
5239 bs->stop = 0;
5240 bs->print = 0;
5241 bs->print_it = print_it_noop;
5242 }
5243 }
5244
5245 /* A bit of special processing for shlib breakpoints. We need to
5246 process solib loading here, so that the lists of loaded and
5247 unloaded libraries are correct before we handle "catch load" and
5248 "catch unload". */
5249 for (bs = bs_head; bs != NULL; bs = bs->next)
5250 {
5251 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5252 {
5253 handle_solib_event ();
5254 break;
5255 }
5256 }
5257
5258 /* Now go through the locations that caused the target to stop, and
5259 check whether we're interested in reporting this stop to higher
5260 layers, or whether we should resume the target transparently. */
5261
5262 removed_any = 0;
5263
5264 for (bs = bs_head; bs != NULL; bs = bs->next)
5265 {
5266 if (!bs->stop)
5267 continue;
5268
5269 b = bs->breakpoint_at;
5270 b->ops->check_status (bs);
5271 if (bs->stop)
5272 {
5273 bpstat_check_breakpoint_conditions (bs, ptid);
5274
5275 if (bs->stop)
5276 {
5277 ++(b->hit_count);
5278 observer_notify_breakpoint_modified (b);
5279
5280 /* We will stop here. */
5281 if (b->disposition == disp_disable)
5282 {
5283 --(b->enable_count);
5284 if (b->enable_count <= 0
5285 && b->enable_state != bp_permanent)
5286 b->enable_state = bp_disabled;
5287 removed_any = 1;
5288 }
5289 if (b->silent)
5290 bs->print = 0;
5291 bs->commands = b->commands;
5292 incref_counted_command_line (bs->commands);
5293 if (command_line_is_silent (bs->commands
5294 ? bs->commands->commands : NULL))
5295 bs->print = 0;
5296 }
5297
5298 }
5299
5300 /* Print nothing for this entry if we don't stop or don't
5301 print. */
5302 if (!bs->stop || !bs->print)
5303 bs->print_it = print_it_noop;
5304 }
5305
5306 /* If we aren't stopping, the value of some hardware watchpoint may
5307 not have changed, but the intermediate memory locations we are
5308 watching may have. Don't bother if we're stopping; this will get
5309 done later. */
5310 need_remove_insert = 0;
5311 if (! bpstat_causes_stop (bs_head))
5312 for (bs = bs_head; bs != NULL; bs = bs->next)
5313 if (!bs->stop
5314 && bs->breakpoint_at
5315 && is_hardware_watchpoint (bs->breakpoint_at))
5316 {
5317 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5318
5319 update_watchpoint (w, 0 /* don't reparse. */);
5320 need_remove_insert = 1;
5321 }
5322
5323 if (need_remove_insert)
5324 update_global_location_list (1);
5325 else if (removed_any)
5326 update_global_location_list (0);
5327
5328 return bs_head;
5329 }
5330
5331 static void
5332 handle_jit_event (void)
5333 {
5334 struct frame_info *frame;
5335 struct gdbarch *gdbarch;
5336
5337 /* Switch terminal for any messages produced by
5338 breakpoint_re_set. */
5339 target_terminal_ours_for_output ();
5340
5341 frame = get_current_frame ();
5342 gdbarch = get_frame_arch (frame);
5343
5344 jit_event_handler (gdbarch);
5345
5346 target_terminal_inferior ();
5347 }
5348
5349 /* Handle an solib event by calling solib_add. */
5350
5351 void
5352 handle_solib_event (void)
5353 {
5354 clear_program_space_solib_cache (current_inferior ()->pspace);
5355
5356 /* Check for any newly added shared libraries if we're supposed to
5357 be adding them automatically. Switch terminal for any messages
5358 produced by breakpoint_re_set. */
5359 target_terminal_ours_for_output ();
5360 #ifdef SOLIB_ADD
5361 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
5362 #else
5363 solib_add (NULL, 0, &current_target, auto_solib_add);
5364 #endif
5365 target_terminal_inferior ();
5366 }
5367
5368 /* Prepare WHAT final decision for infrun. */
5369
5370 /* Decide what infrun needs to do with this bpstat. */
5371
5372 struct bpstat_what
5373 bpstat_what (bpstat bs_head)
5374 {
5375 struct bpstat_what retval;
5376 int jit_event = 0;
5377 bpstat bs;
5378
5379 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5380 retval.call_dummy = STOP_NONE;
5381 retval.is_longjmp = 0;
5382
5383 for (bs = bs_head; bs != NULL; bs = bs->next)
5384 {
5385 /* Extract this BS's action. After processing each BS, we check
5386 if its action overrides all we've seem so far. */
5387 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5388 enum bptype bptype;
5389
5390 if (bs->breakpoint_at == NULL)
5391 {
5392 /* I suspect this can happen if it was a momentary
5393 breakpoint which has since been deleted. */
5394 bptype = bp_none;
5395 }
5396 else
5397 bptype = bs->breakpoint_at->type;
5398
5399 switch (bptype)
5400 {
5401 case bp_none:
5402 break;
5403 case bp_breakpoint:
5404 case bp_hardware_breakpoint:
5405 case bp_until:
5406 case bp_finish:
5407 case bp_shlib_event:
5408 if (bs->stop)
5409 {
5410 if (bs->print)
5411 this_action = BPSTAT_WHAT_STOP_NOISY;
5412 else
5413 this_action = BPSTAT_WHAT_STOP_SILENT;
5414 }
5415 else
5416 this_action = BPSTAT_WHAT_SINGLE;
5417 break;
5418 case bp_watchpoint:
5419 case bp_hardware_watchpoint:
5420 case bp_read_watchpoint:
5421 case bp_access_watchpoint:
5422 if (bs->stop)
5423 {
5424 if (bs->print)
5425 this_action = BPSTAT_WHAT_STOP_NOISY;
5426 else
5427 this_action = BPSTAT_WHAT_STOP_SILENT;
5428 }
5429 else
5430 {
5431 /* There was a watchpoint, but we're not stopping.
5432 This requires no further action. */
5433 }
5434 break;
5435 case bp_longjmp:
5436 case bp_longjmp_call_dummy:
5437 case bp_exception:
5438 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5439 retval.is_longjmp = bptype != bp_exception;
5440 break;
5441 case bp_longjmp_resume:
5442 case bp_exception_resume:
5443 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5444 retval.is_longjmp = bptype == bp_longjmp_resume;
5445 break;
5446 case bp_step_resume:
5447 if (bs->stop)
5448 this_action = BPSTAT_WHAT_STEP_RESUME;
5449 else
5450 {
5451 /* It is for the wrong frame. */
5452 this_action = BPSTAT_WHAT_SINGLE;
5453 }
5454 break;
5455 case bp_hp_step_resume:
5456 if (bs->stop)
5457 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5458 else
5459 {
5460 /* It is for the wrong frame. */
5461 this_action = BPSTAT_WHAT_SINGLE;
5462 }
5463 break;
5464 case bp_watchpoint_scope:
5465 case bp_thread_event:
5466 case bp_overlay_event:
5467 case bp_longjmp_master:
5468 case bp_std_terminate_master:
5469 case bp_exception_master:
5470 this_action = BPSTAT_WHAT_SINGLE;
5471 break;
5472 case bp_catchpoint:
5473 if (bs->stop)
5474 {
5475 if (bs->print)
5476 this_action = BPSTAT_WHAT_STOP_NOISY;
5477 else
5478 this_action = BPSTAT_WHAT_STOP_SILENT;
5479 }
5480 else
5481 {
5482 /* There was a catchpoint, but we're not stopping.
5483 This requires no further action. */
5484 }
5485 break;
5486 case bp_jit_event:
5487 jit_event = 1;
5488 this_action = BPSTAT_WHAT_SINGLE;
5489 break;
5490 case bp_call_dummy:
5491 /* Make sure the action is stop (silent or noisy),
5492 so infrun.c pops the dummy frame. */
5493 retval.call_dummy = STOP_STACK_DUMMY;
5494 this_action = BPSTAT_WHAT_STOP_SILENT;
5495 break;
5496 case bp_std_terminate:
5497 /* Make sure the action is stop (silent or noisy),
5498 so infrun.c pops the dummy frame. */
5499 retval.call_dummy = STOP_STD_TERMINATE;
5500 this_action = BPSTAT_WHAT_STOP_SILENT;
5501 break;
5502 case bp_tracepoint:
5503 case bp_fast_tracepoint:
5504 case bp_static_tracepoint:
5505 /* Tracepoint hits should not be reported back to GDB, and
5506 if one got through somehow, it should have been filtered
5507 out already. */
5508 internal_error (__FILE__, __LINE__,
5509 _("bpstat_what: tracepoint encountered"));
5510 break;
5511 case bp_gnu_ifunc_resolver:
5512 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5513 this_action = BPSTAT_WHAT_SINGLE;
5514 break;
5515 case bp_gnu_ifunc_resolver_return:
5516 /* The breakpoint will be removed, execution will restart from the
5517 PC of the former breakpoint. */
5518 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5519 break;
5520
5521 case bp_dprintf:
5522 this_action = BPSTAT_WHAT_STOP_SILENT;
5523 break;
5524
5525 default:
5526 internal_error (__FILE__, __LINE__,
5527 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5528 }
5529
5530 retval.main_action = max (retval.main_action, this_action);
5531 }
5532
5533 /* These operations may affect the bs->breakpoint_at state so they are
5534 delayed after MAIN_ACTION is decided above. */
5535
5536 if (jit_event)
5537 {
5538 if (debug_infrun)
5539 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5540
5541 handle_jit_event ();
5542 }
5543
5544 for (bs = bs_head; bs != NULL; bs = bs->next)
5545 {
5546 struct breakpoint *b = bs->breakpoint_at;
5547
5548 if (b == NULL)
5549 continue;
5550 switch (b->type)
5551 {
5552 case bp_gnu_ifunc_resolver:
5553 gnu_ifunc_resolver_stop (b);
5554 break;
5555 case bp_gnu_ifunc_resolver_return:
5556 gnu_ifunc_resolver_return_stop (b);
5557 break;
5558 }
5559 }
5560
5561 return retval;
5562 }
5563
5564 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5565 without hardware support). This isn't related to a specific bpstat,
5566 just to things like whether watchpoints are set. */
5567
5568 int
5569 bpstat_should_step (void)
5570 {
5571 struct breakpoint *b;
5572
5573 ALL_BREAKPOINTS (b)
5574 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5575 return 1;
5576 return 0;
5577 }
5578
5579 int
5580 bpstat_causes_stop (bpstat bs)
5581 {
5582 for (; bs != NULL; bs = bs->next)
5583 if (bs->stop)
5584 return 1;
5585
5586 return 0;
5587 }
5588
5589 \f
5590
5591 /* Compute a string of spaces suitable to indent the next line
5592 so it starts at the position corresponding to the table column
5593 named COL_NAME in the currently active table of UIOUT. */
5594
5595 static char *
5596 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5597 {
5598 static char wrap_indent[80];
5599 int i, total_width, width, align;
5600 char *text;
5601
5602 total_width = 0;
5603 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5604 {
5605 if (strcmp (text, col_name) == 0)
5606 {
5607 gdb_assert (total_width < sizeof wrap_indent);
5608 memset (wrap_indent, ' ', total_width);
5609 wrap_indent[total_width] = 0;
5610
5611 return wrap_indent;
5612 }
5613
5614 total_width += width + 1;
5615 }
5616
5617 return NULL;
5618 }
5619
5620 /* Determine if the locations of this breakpoint will have their conditions
5621 evaluated by the target, host or a mix of both. Returns the following:
5622
5623 "host": Host evals condition.
5624 "host or target": Host or Target evals condition.
5625 "target": Target evals condition.
5626 */
5627
5628 static const char *
5629 bp_condition_evaluator (struct breakpoint *b)
5630 {
5631 struct bp_location *bl;
5632 char host_evals = 0;
5633 char target_evals = 0;
5634
5635 if (!b)
5636 return NULL;
5637
5638 if (!is_breakpoint (b))
5639 return NULL;
5640
5641 if (gdb_evaluates_breakpoint_condition_p ()
5642 || !target_supports_evaluation_of_breakpoint_conditions ())
5643 return condition_evaluation_host;
5644
5645 for (bl = b->loc; bl; bl = bl->next)
5646 {
5647 if (bl->cond_bytecode)
5648 target_evals++;
5649 else
5650 host_evals++;
5651 }
5652
5653 if (host_evals && target_evals)
5654 return condition_evaluation_both;
5655 else if (target_evals)
5656 return condition_evaluation_target;
5657 else
5658 return condition_evaluation_host;
5659 }
5660
5661 /* Determine the breakpoint location's condition evaluator. This is
5662 similar to bp_condition_evaluator, but for locations. */
5663
5664 static const char *
5665 bp_location_condition_evaluator (struct bp_location *bl)
5666 {
5667 if (bl && !is_breakpoint (bl->owner))
5668 return NULL;
5669
5670 if (gdb_evaluates_breakpoint_condition_p ()
5671 || !target_supports_evaluation_of_breakpoint_conditions ())
5672 return condition_evaluation_host;
5673
5674 if (bl && bl->cond_bytecode)
5675 return condition_evaluation_target;
5676 else
5677 return condition_evaluation_host;
5678 }
5679
5680 /* Print the LOC location out of the list of B->LOC locations. */
5681
5682 static void
5683 print_breakpoint_location (struct breakpoint *b,
5684 struct bp_location *loc)
5685 {
5686 struct ui_out *uiout = current_uiout;
5687 struct cleanup *old_chain = save_current_program_space ();
5688
5689 if (loc != NULL && loc->shlib_disabled)
5690 loc = NULL;
5691
5692 if (loc != NULL)
5693 set_current_program_space (loc->pspace);
5694
5695 if (b->display_canonical)
5696 ui_out_field_string (uiout, "what", b->addr_string);
5697 else if (loc && loc->symtab)
5698 {
5699 struct symbol *sym
5700 = find_pc_sect_function (loc->address, loc->section);
5701 if (sym)
5702 {
5703 ui_out_text (uiout, "in ");
5704 ui_out_field_string (uiout, "func",
5705 SYMBOL_PRINT_NAME (sym));
5706 ui_out_text (uiout, " ");
5707 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
5708 ui_out_text (uiout, "at ");
5709 }
5710 ui_out_field_string (uiout, "file", loc->symtab->filename);
5711 ui_out_text (uiout, ":");
5712
5713 if (ui_out_is_mi_like_p (uiout))
5714 ui_out_field_string (uiout, "fullname",
5715 symtab_to_fullname (loc->symtab));
5716
5717 ui_out_field_int (uiout, "line", loc->line_number);
5718 }
5719 else if (loc)
5720 {
5721 struct ui_file *stb = mem_fileopen ();
5722 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
5723
5724 print_address_symbolic (loc->gdbarch, loc->address, stb,
5725 demangle, "");
5726 ui_out_field_stream (uiout, "at", stb);
5727
5728 do_cleanups (stb_chain);
5729 }
5730 else
5731 ui_out_field_string (uiout, "pending", b->addr_string);
5732
5733 if (loc && is_breakpoint (b)
5734 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5735 && bp_condition_evaluator (b) == condition_evaluation_both)
5736 {
5737 ui_out_text (uiout, " (");
5738 ui_out_field_string (uiout, "evaluated-by",
5739 bp_location_condition_evaluator (loc));
5740 ui_out_text (uiout, ")");
5741 }
5742
5743 do_cleanups (old_chain);
5744 }
5745
5746 static const char *
5747 bptype_string (enum bptype type)
5748 {
5749 struct ep_type_description
5750 {
5751 enum bptype type;
5752 char *description;
5753 };
5754 static struct ep_type_description bptypes[] =
5755 {
5756 {bp_none, "?deleted?"},
5757 {bp_breakpoint, "breakpoint"},
5758 {bp_hardware_breakpoint, "hw breakpoint"},
5759 {bp_until, "until"},
5760 {bp_finish, "finish"},
5761 {bp_watchpoint, "watchpoint"},
5762 {bp_hardware_watchpoint, "hw watchpoint"},
5763 {bp_read_watchpoint, "read watchpoint"},
5764 {bp_access_watchpoint, "acc watchpoint"},
5765 {bp_longjmp, "longjmp"},
5766 {bp_longjmp_resume, "longjmp resume"},
5767 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5768 {bp_exception, "exception"},
5769 {bp_exception_resume, "exception resume"},
5770 {bp_step_resume, "step resume"},
5771 {bp_hp_step_resume, "high-priority step resume"},
5772 {bp_watchpoint_scope, "watchpoint scope"},
5773 {bp_call_dummy, "call dummy"},
5774 {bp_std_terminate, "std::terminate"},
5775 {bp_shlib_event, "shlib events"},
5776 {bp_thread_event, "thread events"},
5777 {bp_overlay_event, "overlay events"},
5778 {bp_longjmp_master, "longjmp master"},
5779 {bp_std_terminate_master, "std::terminate master"},
5780 {bp_exception_master, "exception master"},
5781 {bp_catchpoint, "catchpoint"},
5782 {bp_tracepoint, "tracepoint"},
5783 {bp_fast_tracepoint, "fast tracepoint"},
5784 {bp_static_tracepoint, "static tracepoint"},
5785 {bp_dprintf, "dprintf"},
5786 {bp_jit_event, "jit events"},
5787 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5788 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5789 };
5790
5791 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5792 || ((int) type != bptypes[(int) type].type))
5793 internal_error (__FILE__, __LINE__,
5794 _("bptypes table does not describe type #%d."),
5795 (int) type);
5796
5797 return bptypes[(int) type].description;
5798 }
5799
5800 DEF_VEC_I(int);
5801
5802 /* For MI, output a field named 'thread-groups' with a list as the value.
5803 For CLI, prefix the list with the string 'inf'. */
5804
5805 static void
5806 output_thread_groups (struct ui_out *uiout,
5807 const char *field_name,
5808 VEC(int) *inf_num,
5809 int mi_only)
5810 {
5811 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end (uiout,
5812 field_name);
5813 int is_mi = ui_out_is_mi_like_p (uiout);
5814 int inf;
5815 int i;
5816
5817 /* For backward compatibility, don't display inferiors in CLI unless
5818 there are several. Always display them for MI. */
5819 if (!is_mi && mi_only)
5820 return;
5821
5822 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
5823 {
5824 if (is_mi)
5825 {
5826 char mi_group[10];
5827
5828 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
5829 ui_out_field_string (uiout, NULL, mi_group);
5830 }
5831 else
5832 {
5833 if (i == 0)
5834 ui_out_text (uiout, " inf ");
5835 else
5836 ui_out_text (uiout, ", ");
5837
5838 ui_out_text (uiout, plongest (inf));
5839 }
5840 }
5841
5842 do_cleanups (back_to);
5843 }
5844
5845 /* Print B to gdb_stdout. */
5846
5847 static void
5848 print_one_breakpoint_location (struct breakpoint *b,
5849 struct bp_location *loc,
5850 int loc_number,
5851 struct bp_location **last_loc,
5852 int allflag)
5853 {
5854 struct command_line *l;
5855 static char bpenables[] = "nynny";
5856
5857 struct ui_out *uiout = current_uiout;
5858 int header_of_multiple = 0;
5859 int part_of_multiple = (loc != NULL);
5860 struct value_print_options opts;
5861
5862 get_user_print_options (&opts);
5863
5864 gdb_assert (!loc || loc_number != 0);
5865 /* See comment in print_one_breakpoint concerning treatment of
5866 breakpoints with single disabled location. */
5867 if (loc == NULL
5868 && (b->loc != NULL
5869 && (b->loc->next != NULL || !b->loc->enabled)))
5870 header_of_multiple = 1;
5871 if (loc == NULL)
5872 loc = b->loc;
5873
5874 annotate_record ();
5875
5876 /* 1 */
5877 annotate_field (0);
5878 if (part_of_multiple)
5879 {
5880 char *formatted;
5881 formatted = xstrprintf ("%d.%d", b->number, loc_number);
5882 ui_out_field_string (uiout, "number", formatted);
5883 xfree (formatted);
5884 }
5885 else
5886 {
5887 ui_out_field_int (uiout, "number", b->number);
5888 }
5889
5890 /* 2 */
5891 annotate_field (1);
5892 if (part_of_multiple)
5893 ui_out_field_skip (uiout, "type");
5894 else
5895 ui_out_field_string (uiout, "type", bptype_string (b->type));
5896
5897 /* 3 */
5898 annotate_field (2);
5899 if (part_of_multiple)
5900 ui_out_field_skip (uiout, "disp");
5901 else
5902 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
5903
5904
5905 /* 4 */
5906 annotate_field (3);
5907 if (part_of_multiple)
5908 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
5909 else
5910 ui_out_field_fmt (uiout, "enabled", "%c",
5911 bpenables[(int) b->enable_state]);
5912 ui_out_spaces (uiout, 2);
5913
5914
5915 /* 5 and 6 */
5916 if (b->ops != NULL && b->ops->print_one != NULL)
5917 {
5918 /* Although the print_one can possibly print all locations,
5919 calling it here is not likely to get any nice result. So,
5920 make sure there's just one location. */
5921 gdb_assert (b->loc == NULL || b->loc->next == NULL);
5922 b->ops->print_one (b, last_loc);
5923 }
5924 else
5925 switch (b->type)
5926 {
5927 case bp_none:
5928 internal_error (__FILE__, __LINE__,
5929 _("print_one_breakpoint: bp_none encountered\n"));
5930 break;
5931
5932 case bp_watchpoint:
5933 case bp_hardware_watchpoint:
5934 case bp_read_watchpoint:
5935 case bp_access_watchpoint:
5936 {
5937 struct watchpoint *w = (struct watchpoint *) b;
5938
5939 /* Field 4, the address, is omitted (which makes the columns
5940 not line up too nicely with the headers, but the effect
5941 is relatively readable). */
5942 if (opts.addressprint)
5943 ui_out_field_skip (uiout, "addr");
5944 annotate_field (5);
5945 ui_out_field_string (uiout, "what", w->exp_string);
5946 }
5947 break;
5948
5949 case bp_breakpoint:
5950 case bp_hardware_breakpoint:
5951 case bp_until:
5952 case bp_finish:
5953 case bp_longjmp:
5954 case bp_longjmp_resume:
5955 case bp_longjmp_call_dummy:
5956 case bp_exception:
5957 case bp_exception_resume:
5958 case bp_step_resume:
5959 case bp_hp_step_resume:
5960 case bp_watchpoint_scope:
5961 case bp_call_dummy:
5962 case bp_std_terminate:
5963 case bp_shlib_event:
5964 case bp_thread_event:
5965 case bp_overlay_event:
5966 case bp_longjmp_master:
5967 case bp_std_terminate_master:
5968 case bp_exception_master:
5969 case bp_tracepoint:
5970 case bp_fast_tracepoint:
5971 case bp_static_tracepoint:
5972 case bp_dprintf:
5973 case bp_jit_event:
5974 case bp_gnu_ifunc_resolver:
5975 case bp_gnu_ifunc_resolver_return:
5976 if (opts.addressprint)
5977 {
5978 annotate_field (4);
5979 if (header_of_multiple)
5980 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
5981 else if (b->loc == NULL || loc->shlib_disabled)
5982 ui_out_field_string (uiout, "addr", "<PENDING>");
5983 else
5984 ui_out_field_core_addr (uiout, "addr",
5985 loc->gdbarch, loc->address);
5986 }
5987 annotate_field (5);
5988 if (!header_of_multiple)
5989 print_breakpoint_location (b, loc);
5990 if (b->loc)
5991 *last_loc = b->loc;
5992 break;
5993 }
5994
5995
5996 if (loc != NULL && !header_of_multiple)
5997 {
5998 struct inferior *inf;
5999 VEC(int) *inf_num = NULL;
6000 int mi_only = 1;
6001
6002 ALL_INFERIORS (inf)
6003 {
6004 if (inf->pspace == loc->pspace)
6005 VEC_safe_push (int, inf_num, inf->num);
6006 }
6007
6008 /* For backward compatibility, don't display inferiors in CLI unless
6009 there are several. Always display for MI. */
6010 if (allflag
6011 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6012 && (number_of_program_spaces () > 1
6013 || number_of_inferiors () > 1)
6014 /* LOC is for existing B, it cannot be in
6015 moribund_locations and thus having NULL OWNER. */
6016 && loc->owner->type != bp_catchpoint))
6017 mi_only = 0;
6018 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6019 VEC_free (int, inf_num);
6020 }
6021
6022 if (!part_of_multiple)
6023 {
6024 if (b->thread != -1)
6025 {
6026 /* FIXME: This seems to be redundant and lost here; see the
6027 "stop only in" line a little further down. */
6028 ui_out_text (uiout, " thread ");
6029 ui_out_field_int (uiout, "thread", b->thread);
6030 }
6031 else if (b->task != 0)
6032 {
6033 ui_out_text (uiout, " task ");
6034 ui_out_field_int (uiout, "task", b->task);
6035 }
6036 }
6037
6038 ui_out_text (uiout, "\n");
6039
6040 if (!part_of_multiple)
6041 b->ops->print_one_detail (b, uiout);
6042
6043 if (part_of_multiple && frame_id_p (b->frame_id))
6044 {
6045 annotate_field (6);
6046 ui_out_text (uiout, "\tstop only in stack frame at ");
6047 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6048 the frame ID. */
6049 ui_out_field_core_addr (uiout, "frame",
6050 b->gdbarch, b->frame_id.stack_addr);
6051 ui_out_text (uiout, "\n");
6052 }
6053
6054 if (!part_of_multiple && b->cond_string)
6055 {
6056 annotate_field (7);
6057 if (is_tracepoint (b))
6058 ui_out_text (uiout, "\ttrace only if ");
6059 else
6060 ui_out_text (uiout, "\tstop only if ");
6061 ui_out_field_string (uiout, "cond", b->cond_string);
6062
6063 /* Print whether the target is doing the breakpoint's condition
6064 evaluation. If GDB is doing the evaluation, don't print anything. */
6065 if (is_breakpoint (b)
6066 && breakpoint_condition_evaluation_mode ()
6067 == condition_evaluation_target)
6068 {
6069 ui_out_text (uiout, " (");
6070 ui_out_field_string (uiout, "evaluated-by",
6071 bp_condition_evaluator (b));
6072 ui_out_text (uiout, " evals)");
6073 }
6074 ui_out_text (uiout, "\n");
6075 }
6076
6077 if (!part_of_multiple && b->thread != -1)
6078 {
6079 /* FIXME should make an annotation for this. */
6080 ui_out_text (uiout, "\tstop only in thread ");
6081 ui_out_field_int (uiout, "thread", b->thread);
6082 ui_out_text (uiout, "\n");
6083 }
6084
6085 if (!part_of_multiple)
6086 {
6087 if (b->hit_count)
6088 {
6089 /* FIXME should make an annotation for this. */
6090 if (is_catchpoint (b))
6091 ui_out_text (uiout, "\tcatchpoint");
6092 else if (is_tracepoint (b))
6093 ui_out_text (uiout, "\ttracepoint");
6094 else
6095 ui_out_text (uiout, "\tbreakpoint");
6096 ui_out_text (uiout, " already hit ");
6097 ui_out_field_int (uiout, "times", b->hit_count);
6098 if (b->hit_count == 1)
6099 ui_out_text (uiout, " time\n");
6100 else
6101 ui_out_text (uiout, " times\n");
6102 }
6103 else
6104 {
6105 /* Output the count also if it is zero, but only if this is mi. */
6106 if (ui_out_is_mi_like_p (uiout))
6107 ui_out_field_int (uiout, "times", b->hit_count);
6108 }
6109 }
6110
6111 if (!part_of_multiple && b->ignore_count)
6112 {
6113 annotate_field (8);
6114 ui_out_text (uiout, "\tignore next ");
6115 ui_out_field_int (uiout, "ignore", b->ignore_count);
6116 ui_out_text (uiout, " hits\n");
6117 }
6118
6119 /* Note that an enable count of 1 corresponds to "enable once"
6120 behavior, which is reported by the combination of enablement and
6121 disposition, so we don't need to mention it here. */
6122 if (!part_of_multiple && b->enable_count > 1)
6123 {
6124 annotate_field (8);
6125 ui_out_text (uiout, "\tdisable after ");
6126 /* Tweak the wording to clarify that ignore and enable counts
6127 are distinct, and have additive effect. */
6128 if (b->ignore_count)
6129 ui_out_text (uiout, "additional ");
6130 else
6131 ui_out_text (uiout, "next ");
6132 ui_out_field_int (uiout, "enable", b->enable_count);
6133 ui_out_text (uiout, " hits\n");
6134 }
6135
6136 if (!part_of_multiple && is_tracepoint (b))
6137 {
6138 struct tracepoint *tp = (struct tracepoint *) b;
6139
6140 if (tp->traceframe_usage)
6141 {
6142 ui_out_text (uiout, "\ttrace buffer usage ");
6143 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6144 ui_out_text (uiout, " bytes\n");
6145 }
6146 }
6147
6148 l = b->commands ? b->commands->commands : NULL;
6149 if (!part_of_multiple && l)
6150 {
6151 struct cleanup *script_chain;
6152
6153 annotate_field (9);
6154 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6155 print_command_lines (uiout, l, 4);
6156 do_cleanups (script_chain);
6157 }
6158
6159 if (is_tracepoint (b))
6160 {
6161 struct tracepoint *t = (struct tracepoint *) b;
6162
6163 if (!part_of_multiple && t->pass_count)
6164 {
6165 annotate_field (10);
6166 ui_out_text (uiout, "\tpass count ");
6167 ui_out_field_int (uiout, "pass", t->pass_count);
6168 ui_out_text (uiout, " \n");
6169 }
6170
6171 /* Don't display it when tracepoint or tracepoint location is
6172 pending. */
6173 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6174 {
6175 annotate_field (11);
6176
6177 if (ui_out_is_mi_like_p (uiout))
6178 ui_out_field_string (uiout, "installed",
6179 loc->inserted ? "y" : "n");
6180 else
6181 {
6182 if (loc->inserted)
6183 ui_out_text (uiout, "\t");
6184 else
6185 ui_out_text (uiout, "\tnot ");
6186 ui_out_text (uiout, "installed on target\n");
6187 }
6188 }
6189 }
6190
6191 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6192 {
6193 if (is_watchpoint (b))
6194 {
6195 struct watchpoint *w = (struct watchpoint *) b;
6196
6197 ui_out_field_string (uiout, "original-location", w->exp_string);
6198 }
6199 else if (b->addr_string)
6200 ui_out_field_string (uiout, "original-location", b->addr_string);
6201 }
6202 }
6203
6204 static void
6205 print_one_breakpoint (struct breakpoint *b,
6206 struct bp_location **last_loc,
6207 int allflag)
6208 {
6209 struct cleanup *bkpt_chain;
6210 struct ui_out *uiout = current_uiout;
6211
6212 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6213
6214 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6215 do_cleanups (bkpt_chain);
6216
6217 /* If this breakpoint has custom print function,
6218 it's already printed. Otherwise, print individual
6219 locations, if any. */
6220 if (b->ops == NULL || b->ops->print_one == NULL)
6221 {
6222 /* If breakpoint has a single location that is disabled, we
6223 print it as if it had several locations, since otherwise it's
6224 hard to represent "breakpoint enabled, location disabled"
6225 situation.
6226
6227 Note that while hardware watchpoints have several locations
6228 internally, that's not a property exposed to user. */
6229 if (b->loc
6230 && !is_hardware_watchpoint (b)
6231 && (b->loc->next || !b->loc->enabled))
6232 {
6233 struct bp_location *loc;
6234 int n = 1;
6235
6236 for (loc = b->loc; loc; loc = loc->next, ++n)
6237 {
6238 struct cleanup *inner2 =
6239 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6240 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6241 do_cleanups (inner2);
6242 }
6243 }
6244 }
6245 }
6246
6247 static int
6248 breakpoint_address_bits (struct breakpoint *b)
6249 {
6250 int print_address_bits = 0;
6251 struct bp_location *loc;
6252
6253 for (loc = b->loc; loc; loc = loc->next)
6254 {
6255 int addr_bit;
6256
6257 /* Software watchpoints that aren't watching memory don't have
6258 an address to print. */
6259 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6260 continue;
6261
6262 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6263 if (addr_bit > print_address_bits)
6264 print_address_bits = addr_bit;
6265 }
6266
6267 return print_address_bits;
6268 }
6269
6270 struct captured_breakpoint_query_args
6271 {
6272 int bnum;
6273 };
6274
6275 static int
6276 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6277 {
6278 struct captured_breakpoint_query_args *args = data;
6279 struct breakpoint *b;
6280 struct bp_location *dummy_loc = NULL;
6281
6282 ALL_BREAKPOINTS (b)
6283 {
6284 if (args->bnum == b->number)
6285 {
6286 print_one_breakpoint (b, &dummy_loc, 0);
6287 return GDB_RC_OK;
6288 }
6289 }
6290 return GDB_RC_NONE;
6291 }
6292
6293 enum gdb_rc
6294 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6295 char **error_message)
6296 {
6297 struct captured_breakpoint_query_args args;
6298
6299 args.bnum = bnum;
6300 /* For the moment we don't trust print_one_breakpoint() to not throw
6301 an error. */
6302 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6303 error_message, RETURN_MASK_ALL) < 0)
6304 return GDB_RC_FAIL;
6305 else
6306 return GDB_RC_OK;
6307 }
6308
6309 /* Return true if this breakpoint was set by the user, false if it is
6310 internal or momentary. */
6311
6312 int
6313 user_breakpoint_p (struct breakpoint *b)
6314 {
6315 return b->number > 0;
6316 }
6317
6318 /* Print information on user settable breakpoint (watchpoint, etc)
6319 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6320 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6321 FILTER is non-NULL, call it on each breakpoint and only include the
6322 ones for which it returns non-zero. Return the total number of
6323 breakpoints listed. */
6324
6325 static int
6326 breakpoint_1 (char *args, int allflag,
6327 int (*filter) (const struct breakpoint *))
6328 {
6329 struct breakpoint *b;
6330 struct bp_location *last_loc = NULL;
6331 int nr_printable_breakpoints;
6332 struct cleanup *bkpttbl_chain;
6333 struct value_print_options opts;
6334 int print_address_bits = 0;
6335 int print_type_col_width = 14;
6336 struct ui_out *uiout = current_uiout;
6337
6338 get_user_print_options (&opts);
6339
6340 /* Compute the number of rows in the table, as well as the size
6341 required for address fields. */
6342 nr_printable_breakpoints = 0;
6343 ALL_BREAKPOINTS (b)
6344 {
6345 /* If we have a filter, only list the breakpoints it accepts. */
6346 if (filter && !filter (b))
6347 continue;
6348
6349 /* If we have an "args" string, it is a list of breakpoints to
6350 accept. Skip the others. */
6351 if (args != NULL && *args != '\0')
6352 {
6353 if (allflag && parse_and_eval_long (args) != b->number)
6354 continue;
6355 if (!allflag && !number_is_in_list (args, b->number))
6356 continue;
6357 }
6358
6359 if (allflag || user_breakpoint_p (b))
6360 {
6361 int addr_bit, type_len;
6362
6363 addr_bit = breakpoint_address_bits (b);
6364 if (addr_bit > print_address_bits)
6365 print_address_bits = addr_bit;
6366
6367 type_len = strlen (bptype_string (b->type));
6368 if (type_len > print_type_col_width)
6369 print_type_col_width = type_len;
6370
6371 nr_printable_breakpoints++;
6372 }
6373 }
6374
6375 if (opts.addressprint)
6376 bkpttbl_chain
6377 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6378 nr_printable_breakpoints,
6379 "BreakpointTable");
6380 else
6381 bkpttbl_chain
6382 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6383 nr_printable_breakpoints,
6384 "BreakpointTable");
6385
6386 if (nr_printable_breakpoints > 0)
6387 annotate_breakpoints_headers ();
6388 if (nr_printable_breakpoints > 0)
6389 annotate_field (0);
6390 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6391 if (nr_printable_breakpoints > 0)
6392 annotate_field (1);
6393 ui_out_table_header (uiout, print_type_col_width, ui_left,
6394 "type", "Type"); /* 2 */
6395 if (nr_printable_breakpoints > 0)
6396 annotate_field (2);
6397 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6398 if (nr_printable_breakpoints > 0)
6399 annotate_field (3);
6400 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6401 if (opts.addressprint)
6402 {
6403 if (nr_printable_breakpoints > 0)
6404 annotate_field (4);
6405 if (print_address_bits <= 32)
6406 ui_out_table_header (uiout, 10, ui_left,
6407 "addr", "Address"); /* 5 */
6408 else
6409 ui_out_table_header (uiout, 18, ui_left,
6410 "addr", "Address"); /* 5 */
6411 }
6412 if (nr_printable_breakpoints > 0)
6413 annotate_field (5);
6414 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6415 ui_out_table_body (uiout);
6416 if (nr_printable_breakpoints > 0)
6417 annotate_breakpoints_table ();
6418
6419 ALL_BREAKPOINTS (b)
6420 {
6421 QUIT;
6422 /* If we have a filter, only list the breakpoints it accepts. */
6423 if (filter && !filter (b))
6424 continue;
6425
6426 /* If we have an "args" string, it is a list of breakpoints to
6427 accept. Skip the others. */
6428
6429 if (args != NULL && *args != '\0')
6430 {
6431 if (allflag) /* maintenance info breakpoint */
6432 {
6433 if (parse_and_eval_long (args) != b->number)
6434 continue;
6435 }
6436 else /* all others */
6437 {
6438 if (!number_is_in_list (args, b->number))
6439 continue;
6440 }
6441 }
6442 /* We only print out user settable breakpoints unless the
6443 allflag is set. */
6444 if (allflag || user_breakpoint_p (b))
6445 print_one_breakpoint (b, &last_loc, allflag);
6446 }
6447
6448 do_cleanups (bkpttbl_chain);
6449
6450 if (nr_printable_breakpoints == 0)
6451 {
6452 /* If there's a filter, let the caller decide how to report
6453 empty list. */
6454 if (!filter)
6455 {
6456 if (args == NULL || *args == '\0')
6457 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6458 else
6459 ui_out_message (uiout, 0,
6460 "No breakpoint or watchpoint matching '%s'.\n",
6461 args);
6462 }
6463 }
6464 else
6465 {
6466 if (last_loc && !server_command)
6467 set_next_address (last_loc->gdbarch, last_loc->address);
6468 }
6469
6470 /* FIXME? Should this be moved up so that it is only called when
6471 there have been breakpoints? */
6472 annotate_breakpoints_table_end ();
6473
6474 return nr_printable_breakpoints;
6475 }
6476
6477 /* Display the value of default-collect in a way that is generally
6478 compatible with the breakpoint list. */
6479
6480 static void
6481 default_collect_info (void)
6482 {
6483 struct ui_out *uiout = current_uiout;
6484
6485 /* If it has no value (which is frequently the case), say nothing; a
6486 message like "No default-collect." gets in user's face when it's
6487 not wanted. */
6488 if (!*default_collect)
6489 return;
6490
6491 /* The following phrase lines up nicely with per-tracepoint collect
6492 actions. */
6493 ui_out_text (uiout, "default collect ");
6494 ui_out_field_string (uiout, "default-collect", default_collect);
6495 ui_out_text (uiout, " \n");
6496 }
6497
6498 static void
6499 breakpoints_info (char *args, int from_tty)
6500 {
6501 breakpoint_1 (args, 0, NULL);
6502
6503 default_collect_info ();
6504 }
6505
6506 static void
6507 watchpoints_info (char *args, int from_tty)
6508 {
6509 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6510 struct ui_out *uiout = current_uiout;
6511
6512 if (num_printed == 0)
6513 {
6514 if (args == NULL || *args == '\0')
6515 ui_out_message (uiout, 0, "No watchpoints.\n");
6516 else
6517 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6518 }
6519 }
6520
6521 static void
6522 maintenance_info_breakpoints (char *args, int from_tty)
6523 {
6524 breakpoint_1 (args, 1, NULL);
6525
6526 default_collect_info ();
6527 }
6528
6529 static int
6530 breakpoint_has_pc (struct breakpoint *b,
6531 struct program_space *pspace,
6532 CORE_ADDR pc, struct obj_section *section)
6533 {
6534 struct bp_location *bl = b->loc;
6535
6536 for (; bl; bl = bl->next)
6537 {
6538 if (bl->pspace == pspace
6539 && bl->address == pc
6540 && (!overlay_debugging || bl->section == section))
6541 return 1;
6542 }
6543 return 0;
6544 }
6545
6546 /* Print a message describing any user-breakpoints set at PC. This
6547 concerns with logical breakpoints, so we match program spaces, not
6548 address spaces. */
6549
6550 static void
6551 describe_other_breakpoints (struct gdbarch *gdbarch,
6552 struct program_space *pspace, CORE_ADDR pc,
6553 struct obj_section *section, int thread)
6554 {
6555 int others = 0;
6556 struct breakpoint *b;
6557
6558 ALL_BREAKPOINTS (b)
6559 others += (user_breakpoint_p (b)
6560 && breakpoint_has_pc (b, pspace, pc, section));
6561 if (others > 0)
6562 {
6563 if (others == 1)
6564 printf_filtered (_("Note: breakpoint "));
6565 else /* if (others == ???) */
6566 printf_filtered (_("Note: breakpoints "));
6567 ALL_BREAKPOINTS (b)
6568 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6569 {
6570 others--;
6571 printf_filtered ("%d", b->number);
6572 if (b->thread == -1 && thread != -1)
6573 printf_filtered (" (all threads)");
6574 else if (b->thread != -1)
6575 printf_filtered (" (thread %d)", b->thread);
6576 printf_filtered ("%s%s ",
6577 ((b->enable_state == bp_disabled
6578 || b->enable_state == bp_call_disabled)
6579 ? " (disabled)"
6580 : b->enable_state == bp_permanent
6581 ? " (permanent)"
6582 : ""),
6583 (others > 1) ? ","
6584 : ((others == 1) ? " and" : ""));
6585 }
6586 printf_filtered (_("also set at pc "));
6587 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6588 printf_filtered (".\n");
6589 }
6590 }
6591 \f
6592
6593 /* Return true iff it is meaningful to use the address member of
6594 BPT. For some breakpoint types, the address member is irrelevant
6595 and it makes no sense to attempt to compare it to other addresses
6596 (or use it for any other purpose either).
6597
6598 More specifically, each of the following breakpoint types will
6599 always have a zero valued address and we don't want to mark
6600 breakpoints of any of these types to be a duplicate of an actual
6601 breakpoint at address zero:
6602
6603 bp_watchpoint
6604 bp_catchpoint
6605
6606 */
6607
6608 static int
6609 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6610 {
6611 enum bptype type = bpt->type;
6612
6613 return (type != bp_watchpoint && type != bp_catchpoint);
6614 }
6615
6616 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6617 true if LOC1 and LOC2 represent the same watchpoint location. */
6618
6619 static int
6620 watchpoint_locations_match (struct bp_location *loc1,
6621 struct bp_location *loc2)
6622 {
6623 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6624 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6625
6626 /* Both of them must exist. */
6627 gdb_assert (w1 != NULL);
6628 gdb_assert (w2 != NULL);
6629
6630 /* If the target can evaluate the condition expression in hardware,
6631 then we we need to insert both watchpoints even if they are at
6632 the same place. Otherwise the watchpoint will only trigger when
6633 the condition of whichever watchpoint was inserted evaluates to
6634 true, not giving a chance for GDB to check the condition of the
6635 other watchpoint. */
6636 if ((w1->cond_exp
6637 && target_can_accel_watchpoint_condition (loc1->address,
6638 loc1->length,
6639 loc1->watchpoint_type,
6640 w1->cond_exp))
6641 || (w2->cond_exp
6642 && target_can_accel_watchpoint_condition (loc2->address,
6643 loc2->length,
6644 loc2->watchpoint_type,
6645 w2->cond_exp)))
6646 return 0;
6647
6648 /* Note that this checks the owner's type, not the location's. In
6649 case the target does not support read watchpoints, but does
6650 support access watchpoints, we'll have bp_read_watchpoint
6651 watchpoints with hw_access locations. Those should be considered
6652 duplicates of hw_read locations. The hw_read locations will
6653 become hw_access locations later. */
6654 return (loc1->owner->type == loc2->owner->type
6655 && loc1->pspace->aspace == loc2->pspace->aspace
6656 && loc1->address == loc2->address
6657 && loc1->length == loc2->length);
6658 }
6659
6660 /* Returns true if {ASPACE1,ADDR1} and {ASPACE2,ADDR2} represent the
6661 same breakpoint location. In most targets, this can only be true
6662 if ASPACE1 matches ASPACE2. On targets that have global
6663 breakpoints, the address space doesn't really matter. */
6664
6665 static int
6666 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6667 struct address_space *aspace2, CORE_ADDR addr2)
6668 {
6669 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6670 || aspace1 == aspace2)
6671 && addr1 == addr2);
6672 }
6673
6674 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6675 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6676 matches ASPACE2. On targets that have global breakpoints, the address
6677 space doesn't really matter. */
6678
6679 static int
6680 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6681 int len1, struct address_space *aspace2,
6682 CORE_ADDR addr2)
6683 {
6684 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6685 || aspace1 == aspace2)
6686 && addr2 >= addr1 && addr2 < addr1 + len1);
6687 }
6688
6689 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6690 a ranged breakpoint. In most targets, a match happens only if ASPACE
6691 matches the breakpoint's address space. On targets that have global
6692 breakpoints, the address space doesn't really matter. */
6693
6694 static int
6695 breakpoint_location_address_match (struct bp_location *bl,
6696 struct address_space *aspace,
6697 CORE_ADDR addr)
6698 {
6699 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6700 aspace, addr)
6701 || (bl->length
6702 && breakpoint_address_match_range (bl->pspace->aspace,
6703 bl->address, bl->length,
6704 aspace, addr)));
6705 }
6706
6707 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6708 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6709 true, otherwise returns false. */
6710
6711 static int
6712 tracepoint_locations_match (struct bp_location *loc1,
6713 struct bp_location *loc2)
6714 {
6715 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6716 /* Since tracepoint locations are never duplicated with others', tracepoint
6717 locations at the same address of different tracepoints are regarded as
6718 different locations. */
6719 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6720 else
6721 return 0;
6722 }
6723
6724 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6725 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6726 represent the same location. */
6727
6728 static int
6729 breakpoint_locations_match (struct bp_location *loc1,
6730 struct bp_location *loc2)
6731 {
6732 int hw_point1, hw_point2;
6733
6734 /* Both of them must not be in moribund_locations. */
6735 gdb_assert (loc1->owner != NULL);
6736 gdb_assert (loc2->owner != NULL);
6737
6738 hw_point1 = is_hardware_watchpoint (loc1->owner);
6739 hw_point2 = is_hardware_watchpoint (loc2->owner);
6740
6741 if (hw_point1 != hw_point2)
6742 return 0;
6743 else if (hw_point1)
6744 return watchpoint_locations_match (loc1, loc2);
6745 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6746 return tracepoint_locations_match (loc1, loc2);
6747 else
6748 /* We compare bp_location.length in order to cover ranged breakpoints. */
6749 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6750 loc2->pspace->aspace, loc2->address)
6751 && loc1->length == loc2->length);
6752 }
6753
6754 static void
6755 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6756 int bnum, int have_bnum)
6757 {
6758 /* The longest string possibly returned by hex_string_custom
6759 is 50 chars. These must be at least that big for safety. */
6760 char astr1[64];
6761 char astr2[64];
6762
6763 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6764 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6765 if (have_bnum)
6766 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6767 bnum, astr1, astr2);
6768 else
6769 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6770 }
6771
6772 /* Adjust a breakpoint's address to account for architectural
6773 constraints on breakpoint placement. Return the adjusted address.
6774 Note: Very few targets require this kind of adjustment. For most
6775 targets, this function is simply the identity function. */
6776
6777 static CORE_ADDR
6778 adjust_breakpoint_address (struct gdbarch *gdbarch,
6779 CORE_ADDR bpaddr, enum bptype bptype)
6780 {
6781 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
6782 {
6783 /* Very few targets need any kind of breakpoint adjustment. */
6784 return bpaddr;
6785 }
6786 else if (bptype == bp_watchpoint
6787 || bptype == bp_hardware_watchpoint
6788 || bptype == bp_read_watchpoint
6789 || bptype == bp_access_watchpoint
6790 || bptype == bp_catchpoint)
6791 {
6792 /* Watchpoints and the various bp_catch_* eventpoints should not
6793 have their addresses modified. */
6794 return bpaddr;
6795 }
6796 else
6797 {
6798 CORE_ADDR adjusted_bpaddr;
6799
6800 /* Some targets have architectural constraints on the placement
6801 of breakpoint instructions. Obtain the adjusted address. */
6802 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6803
6804 /* An adjusted breakpoint address can significantly alter
6805 a user's expectations. Print a warning if an adjustment
6806 is required. */
6807 if (adjusted_bpaddr != bpaddr)
6808 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6809
6810 return adjusted_bpaddr;
6811 }
6812 }
6813
6814 void
6815 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
6816 struct breakpoint *owner)
6817 {
6818 memset (loc, 0, sizeof (*loc));
6819
6820 gdb_assert (ops != NULL);
6821
6822 loc->ops = ops;
6823 loc->owner = owner;
6824 loc->cond = NULL;
6825 loc->cond_bytecode = NULL;
6826 loc->shlib_disabled = 0;
6827 loc->enabled = 1;
6828
6829 switch (owner->type)
6830 {
6831 case bp_breakpoint:
6832 case bp_until:
6833 case bp_finish:
6834 case bp_longjmp:
6835 case bp_longjmp_resume:
6836 case bp_longjmp_call_dummy:
6837 case bp_exception:
6838 case bp_exception_resume:
6839 case bp_step_resume:
6840 case bp_hp_step_resume:
6841 case bp_watchpoint_scope:
6842 case bp_call_dummy:
6843 case bp_std_terminate:
6844 case bp_shlib_event:
6845 case bp_thread_event:
6846 case bp_overlay_event:
6847 case bp_jit_event:
6848 case bp_longjmp_master:
6849 case bp_std_terminate_master:
6850 case bp_exception_master:
6851 case bp_gnu_ifunc_resolver:
6852 case bp_gnu_ifunc_resolver_return:
6853 case bp_dprintf:
6854 loc->loc_type = bp_loc_software_breakpoint;
6855 mark_breakpoint_location_modified (loc);
6856 break;
6857 case bp_hardware_breakpoint:
6858 loc->loc_type = bp_loc_hardware_breakpoint;
6859 mark_breakpoint_location_modified (loc);
6860 break;
6861 case bp_hardware_watchpoint:
6862 case bp_read_watchpoint:
6863 case bp_access_watchpoint:
6864 loc->loc_type = bp_loc_hardware_watchpoint;
6865 break;
6866 case bp_watchpoint:
6867 case bp_catchpoint:
6868 case bp_tracepoint:
6869 case bp_fast_tracepoint:
6870 case bp_static_tracepoint:
6871 loc->loc_type = bp_loc_other;
6872 break;
6873 default:
6874 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
6875 }
6876
6877 loc->refc = 1;
6878 }
6879
6880 /* Allocate a struct bp_location. */
6881
6882 static struct bp_location *
6883 allocate_bp_location (struct breakpoint *bpt)
6884 {
6885 return bpt->ops->allocate_location (bpt);
6886 }
6887
6888 static void
6889 free_bp_location (struct bp_location *loc)
6890 {
6891 loc->ops->dtor (loc);
6892 xfree (loc);
6893 }
6894
6895 /* Increment reference count. */
6896
6897 static void
6898 incref_bp_location (struct bp_location *bl)
6899 {
6900 ++bl->refc;
6901 }
6902
6903 /* Decrement reference count. If the reference count reaches 0,
6904 destroy the bp_location. Sets *BLP to NULL. */
6905
6906 static void
6907 decref_bp_location (struct bp_location **blp)
6908 {
6909 gdb_assert ((*blp)->refc > 0);
6910
6911 if (--(*blp)->refc == 0)
6912 free_bp_location (*blp);
6913 *blp = NULL;
6914 }
6915
6916 /* Add breakpoint B at the end of the global breakpoint chain. */
6917
6918 static void
6919 add_to_breakpoint_chain (struct breakpoint *b)
6920 {
6921 struct breakpoint *b1;
6922
6923 /* Add this breakpoint to the end of the chain so that a list of
6924 breakpoints will come out in order of increasing numbers. */
6925
6926 b1 = breakpoint_chain;
6927 if (b1 == 0)
6928 breakpoint_chain = b;
6929 else
6930 {
6931 while (b1->next)
6932 b1 = b1->next;
6933 b1->next = b;
6934 }
6935 }
6936
6937 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
6938
6939 static void
6940 init_raw_breakpoint_without_location (struct breakpoint *b,
6941 struct gdbarch *gdbarch,
6942 enum bptype bptype,
6943 const struct breakpoint_ops *ops)
6944 {
6945 memset (b, 0, sizeof (*b));
6946
6947 gdb_assert (ops != NULL);
6948
6949 b->ops = ops;
6950 b->type = bptype;
6951 b->gdbarch = gdbarch;
6952 b->language = current_language->la_language;
6953 b->input_radix = input_radix;
6954 b->thread = -1;
6955 b->enable_state = bp_enabled;
6956 b->next = 0;
6957 b->silent = 0;
6958 b->ignore_count = 0;
6959 b->commands = NULL;
6960 b->frame_id = null_frame_id;
6961 b->condition_not_parsed = 0;
6962 b->py_bp_object = NULL;
6963 b->related_breakpoint = b;
6964 }
6965
6966 /* Helper to set_raw_breakpoint below. Creates a breakpoint
6967 that has type BPTYPE and has no locations as yet. */
6968
6969 static struct breakpoint *
6970 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
6971 enum bptype bptype,
6972 const struct breakpoint_ops *ops)
6973 {
6974 struct breakpoint *b = XNEW (struct breakpoint);
6975
6976 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
6977 add_to_breakpoint_chain (b);
6978 return b;
6979 }
6980
6981 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
6982 resolutions should be made as the user specified the location explicitly
6983 enough. */
6984
6985 static void
6986 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
6987 {
6988 gdb_assert (loc->owner != NULL);
6989
6990 if (loc->owner->type == bp_breakpoint
6991 || loc->owner->type == bp_hardware_breakpoint
6992 || is_tracepoint (loc->owner))
6993 {
6994 int is_gnu_ifunc;
6995 const char *function_name;
6996 CORE_ADDR func_addr;
6997
6998 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
6999 &func_addr, NULL, &is_gnu_ifunc);
7000
7001 if (is_gnu_ifunc && !explicit_loc)
7002 {
7003 struct breakpoint *b = loc->owner;
7004
7005 gdb_assert (loc->pspace == current_program_space);
7006 if (gnu_ifunc_resolve_name (function_name,
7007 &loc->requested_address))
7008 {
7009 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7010 loc->address = adjust_breakpoint_address (loc->gdbarch,
7011 loc->requested_address,
7012 b->type);
7013 }
7014 else if (b->type == bp_breakpoint && b->loc == loc
7015 && loc->next == NULL && b->related_breakpoint == b)
7016 {
7017 /* Create only the whole new breakpoint of this type but do not
7018 mess more complicated breakpoints with multiple locations. */
7019 b->type = bp_gnu_ifunc_resolver;
7020 /* Remember the resolver's address for use by the return
7021 breakpoint. */
7022 loc->related_address = func_addr;
7023 }
7024 }
7025
7026 if (function_name)
7027 loc->function_name = xstrdup (function_name);
7028 }
7029 }
7030
7031 /* Attempt to determine architecture of location identified by SAL. */
7032 struct gdbarch *
7033 get_sal_arch (struct symtab_and_line sal)
7034 {
7035 if (sal.section)
7036 return get_objfile_arch (sal.section->objfile);
7037 if (sal.symtab)
7038 return get_objfile_arch (sal.symtab->objfile);
7039
7040 return NULL;
7041 }
7042
7043 /* Low level routine for partially initializing a breakpoint of type
7044 BPTYPE. The newly created breakpoint's address, section, source
7045 file name, and line number are provided by SAL.
7046
7047 It is expected that the caller will complete the initialization of
7048 the newly created breakpoint struct as well as output any status
7049 information regarding the creation of a new breakpoint. */
7050
7051 static void
7052 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7053 struct symtab_and_line sal, enum bptype bptype,
7054 const struct breakpoint_ops *ops)
7055 {
7056 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7057
7058 add_location_to_breakpoint (b, &sal);
7059
7060 if (bptype != bp_catchpoint)
7061 gdb_assert (sal.pspace != NULL);
7062
7063 /* Store the program space that was used to set the breakpoint,
7064 except for ordinary breakpoints, which are independent of the
7065 program space. */
7066 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7067 b->pspace = sal.pspace;
7068 }
7069
7070 /* set_raw_breakpoint is a low level routine for allocating and
7071 partially initializing a breakpoint of type BPTYPE. The newly
7072 created breakpoint's address, section, source file name, and line
7073 number are provided by SAL. The newly created and partially
7074 initialized breakpoint is added to the breakpoint chain and
7075 is also returned as the value of this function.
7076
7077 It is expected that the caller will complete the initialization of
7078 the newly created breakpoint struct as well as output any status
7079 information regarding the creation of a new breakpoint. In
7080 particular, set_raw_breakpoint does NOT set the breakpoint
7081 number! Care should be taken to not allow an error to occur
7082 prior to completing the initialization of the breakpoint. If this
7083 should happen, a bogus breakpoint will be left on the chain. */
7084
7085 struct breakpoint *
7086 set_raw_breakpoint (struct gdbarch *gdbarch,
7087 struct symtab_and_line sal, enum bptype bptype,
7088 const struct breakpoint_ops *ops)
7089 {
7090 struct breakpoint *b = XNEW (struct breakpoint);
7091
7092 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7093 add_to_breakpoint_chain (b);
7094 return b;
7095 }
7096
7097
7098 /* Note that the breakpoint object B describes a permanent breakpoint
7099 instruction, hard-wired into the inferior's code. */
7100 void
7101 make_breakpoint_permanent (struct breakpoint *b)
7102 {
7103 struct bp_location *bl;
7104
7105 b->enable_state = bp_permanent;
7106
7107 /* By definition, permanent breakpoints are already present in the
7108 code. Mark all locations as inserted. For now,
7109 make_breakpoint_permanent is called in just one place, so it's
7110 hard to say if it's reasonable to have permanent breakpoint with
7111 multiple locations or not, but it's easy to implement. */
7112 for (bl = b->loc; bl; bl = bl->next)
7113 bl->inserted = 1;
7114 }
7115
7116 /* Call this routine when stepping and nexting to enable a breakpoint
7117 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7118 initiated the operation. */
7119
7120 void
7121 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7122 {
7123 struct breakpoint *b, *b_tmp;
7124 int thread = tp->num;
7125
7126 /* To avoid having to rescan all objfile symbols at every step,
7127 we maintain a list of continually-inserted but always disabled
7128 longjmp "master" breakpoints. Here, we simply create momentary
7129 clones of those and enable them for the requested thread. */
7130 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7131 if (b->pspace == current_program_space
7132 && (b->type == bp_longjmp_master
7133 || b->type == bp_exception_master))
7134 {
7135 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7136 struct breakpoint *clone;
7137
7138 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7139 after their removal. */
7140 clone = momentary_breakpoint_from_master (b, type,
7141 &longjmp_breakpoint_ops);
7142 clone->thread = thread;
7143 }
7144
7145 tp->initiating_frame = frame;
7146 }
7147
7148 /* Delete all longjmp breakpoints from THREAD. */
7149 void
7150 delete_longjmp_breakpoint (int thread)
7151 {
7152 struct breakpoint *b, *b_tmp;
7153
7154 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7155 if (b->type == bp_longjmp || b->type == bp_exception)
7156 {
7157 if (b->thread == thread)
7158 delete_breakpoint (b);
7159 }
7160 }
7161
7162 void
7163 delete_longjmp_breakpoint_at_next_stop (int thread)
7164 {
7165 struct breakpoint *b, *b_tmp;
7166
7167 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7168 if (b->type == bp_longjmp || b->type == bp_exception)
7169 {
7170 if (b->thread == thread)
7171 b->disposition = disp_del_at_next_stop;
7172 }
7173 }
7174
7175 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7176 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7177 pointer to any of them. Return NULL if this system cannot place longjmp
7178 breakpoints. */
7179
7180 struct breakpoint *
7181 set_longjmp_breakpoint_for_call_dummy (void)
7182 {
7183 struct breakpoint *b, *retval = NULL;
7184
7185 ALL_BREAKPOINTS (b)
7186 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7187 {
7188 struct breakpoint *new_b;
7189
7190 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7191 &momentary_breakpoint_ops);
7192 new_b->thread = pid_to_thread_id (inferior_ptid);
7193
7194 /* Link NEW_B into the chain of RETVAL breakpoints. */
7195
7196 gdb_assert (new_b->related_breakpoint == new_b);
7197 if (retval == NULL)
7198 retval = new_b;
7199 new_b->related_breakpoint = retval;
7200 while (retval->related_breakpoint != new_b->related_breakpoint)
7201 retval = retval->related_breakpoint;
7202 retval->related_breakpoint = new_b;
7203 }
7204
7205 return retval;
7206 }
7207
7208 /* Verify all existing dummy frames and their associated breakpoints for
7209 THREAD. Remove those which can no longer be found in the current frame
7210 stack.
7211
7212 You should call this function only at places where it is safe to currently
7213 unwind the whole stack. Failed stack unwind would discard live dummy
7214 frames. */
7215
7216 void
7217 check_longjmp_breakpoint_for_call_dummy (int thread)
7218 {
7219 struct breakpoint *b, *b_tmp;
7220
7221 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7222 if (b->type == bp_longjmp_call_dummy && b->thread == thread)
7223 {
7224 struct breakpoint *dummy_b = b->related_breakpoint;
7225
7226 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7227 dummy_b = dummy_b->related_breakpoint;
7228 if (dummy_b->type != bp_call_dummy
7229 || frame_find_by_id (dummy_b->frame_id) != NULL)
7230 continue;
7231
7232 dummy_frame_discard (dummy_b->frame_id);
7233
7234 while (b->related_breakpoint != b)
7235 {
7236 if (b_tmp == b->related_breakpoint)
7237 b_tmp = b->related_breakpoint->next;
7238 delete_breakpoint (b->related_breakpoint);
7239 }
7240 delete_breakpoint (b);
7241 }
7242 }
7243
7244 void
7245 enable_overlay_breakpoints (void)
7246 {
7247 struct breakpoint *b;
7248
7249 ALL_BREAKPOINTS (b)
7250 if (b->type == bp_overlay_event)
7251 {
7252 b->enable_state = bp_enabled;
7253 update_global_location_list (1);
7254 overlay_events_enabled = 1;
7255 }
7256 }
7257
7258 void
7259 disable_overlay_breakpoints (void)
7260 {
7261 struct breakpoint *b;
7262
7263 ALL_BREAKPOINTS (b)
7264 if (b->type == bp_overlay_event)
7265 {
7266 b->enable_state = bp_disabled;
7267 update_global_location_list (0);
7268 overlay_events_enabled = 0;
7269 }
7270 }
7271
7272 /* Set an active std::terminate breakpoint for each std::terminate
7273 master breakpoint. */
7274 void
7275 set_std_terminate_breakpoint (void)
7276 {
7277 struct breakpoint *b, *b_tmp;
7278
7279 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7280 if (b->pspace == current_program_space
7281 && b->type == bp_std_terminate_master)
7282 {
7283 momentary_breakpoint_from_master (b, bp_std_terminate,
7284 &momentary_breakpoint_ops);
7285 }
7286 }
7287
7288 /* Delete all the std::terminate breakpoints. */
7289 void
7290 delete_std_terminate_breakpoint (void)
7291 {
7292 struct breakpoint *b, *b_tmp;
7293
7294 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7295 if (b->type == bp_std_terminate)
7296 delete_breakpoint (b);
7297 }
7298
7299 struct breakpoint *
7300 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7301 {
7302 struct breakpoint *b;
7303
7304 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7305 &internal_breakpoint_ops);
7306
7307 b->enable_state = bp_enabled;
7308 /* addr_string has to be used or breakpoint_re_set will delete me. */
7309 b->addr_string
7310 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7311
7312 update_global_location_list_nothrow (1);
7313
7314 return b;
7315 }
7316
7317 void
7318 remove_thread_event_breakpoints (void)
7319 {
7320 struct breakpoint *b, *b_tmp;
7321
7322 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7323 if (b->type == bp_thread_event
7324 && b->loc->pspace == current_program_space)
7325 delete_breakpoint (b);
7326 }
7327
7328 struct lang_and_radix
7329 {
7330 enum language lang;
7331 int radix;
7332 };
7333
7334 /* Create a breakpoint for JIT code registration and unregistration. */
7335
7336 struct breakpoint *
7337 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7338 {
7339 struct breakpoint *b;
7340
7341 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7342 &internal_breakpoint_ops);
7343 update_global_location_list_nothrow (1);
7344 return b;
7345 }
7346
7347 /* Remove JIT code registration and unregistration breakpoint(s). */
7348
7349 void
7350 remove_jit_event_breakpoints (void)
7351 {
7352 struct breakpoint *b, *b_tmp;
7353
7354 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7355 if (b->type == bp_jit_event
7356 && b->loc->pspace == current_program_space)
7357 delete_breakpoint (b);
7358 }
7359
7360 void
7361 remove_solib_event_breakpoints (void)
7362 {
7363 struct breakpoint *b, *b_tmp;
7364
7365 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7366 if (b->type == bp_shlib_event
7367 && b->loc->pspace == current_program_space)
7368 delete_breakpoint (b);
7369 }
7370
7371 struct breakpoint *
7372 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7373 {
7374 struct breakpoint *b;
7375
7376 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7377 &internal_breakpoint_ops);
7378 update_global_location_list_nothrow (1);
7379 return b;
7380 }
7381
7382 /* Disable any breakpoints that are on code in shared libraries. Only
7383 apply to enabled breakpoints, disabled ones can just stay disabled. */
7384
7385 void
7386 disable_breakpoints_in_shlibs (void)
7387 {
7388 struct bp_location *loc, **locp_tmp;
7389
7390 ALL_BP_LOCATIONS (loc, locp_tmp)
7391 {
7392 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7393 struct breakpoint *b = loc->owner;
7394
7395 /* We apply the check to all breakpoints, including disabled for
7396 those with loc->duplicate set. This is so that when breakpoint
7397 becomes enabled, or the duplicate is removed, gdb will try to
7398 insert all breakpoints. If we don't set shlib_disabled here,
7399 we'll try to insert those breakpoints and fail. */
7400 if (((b->type == bp_breakpoint)
7401 || (b->type == bp_jit_event)
7402 || (b->type == bp_hardware_breakpoint)
7403 || (is_tracepoint (b)))
7404 && loc->pspace == current_program_space
7405 && !loc->shlib_disabled
7406 #ifdef PC_SOLIB
7407 && PC_SOLIB (loc->address)
7408 #else
7409 && solib_name_from_address (loc->pspace, loc->address)
7410 #endif
7411 )
7412 {
7413 loc->shlib_disabled = 1;
7414 }
7415 }
7416 }
7417
7418 /* Disable any breakpoints and tracepoints that are in an unloaded shared
7419 library. Only apply to enabled breakpoints, disabled ones can just stay
7420 disabled. */
7421
7422 static void
7423 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7424 {
7425 struct bp_location *loc, **locp_tmp;
7426 int disabled_shlib_breaks = 0;
7427
7428 /* SunOS a.out shared libraries are always mapped, so do not
7429 disable breakpoints; they will only be reported as unloaded
7430 through clear_solib when GDB discards its shared library
7431 list. See clear_solib for more information. */
7432 if (exec_bfd != NULL
7433 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7434 return;
7435
7436 ALL_BP_LOCATIONS (loc, locp_tmp)
7437 {
7438 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7439 struct breakpoint *b = loc->owner;
7440
7441 if (solib->pspace == loc->pspace
7442 && !loc->shlib_disabled
7443 && (((b->type == bp_breakpoint
7444 || b->type == bp_jit_event
7445 || b->type == bp_hardware_breakpoint)
7446 && (loc->loc_type == bp_loc_hardware_breakpoint
7447 || loc->loc_type == bp_loc_software_breakpoint))
7448 || is_tracepoint (b))
7449 && solib_contains_address_p (solib, loc->address))
7450 {
7451 loc->shlib_disabled = 1;
7452 /* At this point, we cannot rely on remove_breakpoint
7453 succeeding so we must mark the breakpoint as not inserted
7454 to prevent future errors occurring in remove_breakpoints. */
7455 loc->inserted = 0;
7456
7457 /* This may cause duplicate notifications for the same breakpoint. */
7458 observer_notify_breakpoint_modified (b);
7459
7460 if (!disabled_shlib_breaks)
7461 {
7462 target_terminal_ours_for_output ();
7463 warning (_("Temporarily disabling breakpoints "
7464 "for unloaded shared library \"%s\""),
7465 solib->so_name);
7466 }
7467 disabled_shlib_breaks = 1;
7468 }
7469 }
7470 }
7471
7472 /* FORK & VFORK catchpoints. */
7473
7474 /* An instance of this type is used to represent a fork or vfork
7475 catchpoint. It includes a "struct breakpoint" as a kind of base
7476 class; users downcast to "struct breakpoint *" when needed. A
7477 breakpoint is really of this type iff its ops pointer points to
7478 CATCH_FORK_BREAKPOINT_OPS. */
7479
7480 struct fork_catchpoint
7481 {
7482 /* The base class. */
7483 struct breakpoint base;
7484
7485 /* Process id of a child process whose forking triggered this
7486 catchpoint. This field is only valid immediately after this
7487 catchpoint has triggered. */
7488 ptid_t forked_inferior_pid;
7489 };
7490
7491 /* Implement the "insert" breakpoint_ops method for fork
7492 catchpoints. */
7493
7494 static int
7495 insert_catch_fork (struct bp_location *bl)
7496 {
7497 return target_insert_fork_catchpoint (PIDGET (inferior_ptid));
7498 }
7499
7500 /* Implement the "remove" breakpoint_ops method for fork
7501 catchpoints. */
7502
7503 static int
7504 remove_catch_fork (struct bp_location *bl)
7505 {
7506 return target_remove_fork_catchpoint (PIDGET (inferior_ptid));
7507 }
7508
7509 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7510 catchpoints. */
7511
7512 static int
7513 breakpoint_hit_catch_fork (const struct bp_location *bl,
7514 struct address_space *aspace, CORE_ADDR bp_addr,
7515 const struct target_waitstatus *ws)
7516 {
7517 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7518
7519 if (ws->kind != TARGET_WAITKIND_FORKED)
7520 return 0;
7521
7522 c->forked_inferior_pid = ws->value.related_pid;
7523 return 1;
7524 }
7525
7526 /* Implement the "print_it" breakpoint_ops method for fork
7527 catchpoints. */
7528
7529 static enum print_stop_action
7530 print_it_catch_fork (bpstat bs)
7531 {
7532 struct ui_out *uiout = current_uiout;
7533 struct breakpoint *b = bs->breakpoint_at;
7534 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7535
7536 annotate_catchpoint (b->number);
7537 if (b->disposition == disp_del)
7538 ui_out_text (uiout, "\nTemporary catchpoint ");
7539 else
7540 ui_out_text (uiout, "\nCatchpoint ");
7541 if (ui_out_is_mi_like_p (uiout))
7542 {
7543 ui_out_field_string (uiout, "reason",
7544 async_reason_lookup (EXEC_ASYNC_FORK));
7545 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7546 }
7547 ui_out_field_int (uiout, "bkptno", b->number);
7548 ui_out_text (uiout, " (forked process ");
7549 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7550 ui_out_text (uiout, "), ");
7551 return PRINT_SRC_AND_LOC;
7552 }
7553
7554 /* Implement the "print_one" breakpoint_ops method for fork
7555 catchpoints. */
7556
7557 static void
7558 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7559 {
7560 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7561 struct value_print_options opts;
7562 struct ui_out *uiout = current_uiout;
7563
7564 get_user_print_options (&opts);
7565
7566 /* Field 4, the address, is omitted (which makes the columns not
7567 line up too nicely with the headers, but the effect is relatively
7568 readable). */
7569 if (opts.addressprint)
7570 ui_out_field_skip (uiout, "addr");
7571 annotate_field (5);
7572 ui_out_text (uiout, "fork");
7573 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7574 {
7575 ui_out_text (uiout, ", process ");
7576 ui_out_field_int (uiout, "what",
7577 ptid_get_pid (c->forked_inferior_pid));
7578 ui_out_spaces (uiout, 1);
7579 }
7580
7581 if (ui_out_is_mi_like_p (uiout))
7582 ui_out_field_string (uiout, "catch-type", "fork");
7583 }
7584
7585 /* Implement the "print_mention" breakpoint_ops method for fork
7586 catchpoints. */
7587
7588 static void
7589 print_mention_catch_fork (struct breakpoint *b)
7590 {
7591 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7592 }
7593
7594 /* Implement the "print_recreate" breakpoint_ops method for fork
7595 catchpoints. */
7596
7597 static void
7598 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7599 {
7600 fprintf_unfiltered (fp, "catch fork");
7601 print_recreate_thread (b, fp);
7602 }
7603
7604 /* The breakpoint_ops structure to be used in fork catchpoints. */
7605
7606 static struct breakpoint_ops catch_fork_breakpoint_ops;
7607
7608 /* Implement the "insert" breakpoint_ops method for vfork
7609 catchpoints. */
7610
7611 static int
7612 insert_catch_vfork (struct bp_location *bl)
7613 {
7614 return target_insert_vfork_catchpoint (PIDGET (inferior_ptid));
7615 }
7616
7617 /* Implement the "remove" breakpoint_ops method for vfork
7618 catchpoints. */
7619
7620 static int
7621 remove_catch_vfork (struct bp_location *bl)
7622 {
7623 return target_remove_vfork_catchpoint (PIDGET (inferior_ptid));
7624 }
7625
7626 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7627 catchpoints. */
7628
7629 static int
7630 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7631 struct address_space *aspace, CORE_ADDR bp_addr,
7632 const struct target_waitstatus *ws)
7633 {
7634 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7635
7636 if (ws->kind != TARGET_WAITKIND_VFORKED)
7637 return 0;
7638
7639 c->forked_inferior_pid = ws->value.related_pid;
7640 return 1;
7641 }
7642
7643 /* Implement the "print_it" breakpoint_ops method for vfork
7644 catchpoints. */
7645
7646 static enum print_stop_action
7647 print_it_catch_vfork (bpstat bs)
7648 {
7649 struct ui_out *uiout = current_uiout;
7650 struct breakpoint *b = bs->breakpoint_at;
7651 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7652
7653 annotate_catchpoint (b->number);
7654 if (b->disposition == disp_del)
7655 ui_out_text (uiout, "\nTemporary catchpoint ");
7656 else
7657 ui_out_text (uiout, "\nCatchpoint ");
7658 if (ui_out_is_mi_like_p (uiout))
7659 {
7660 ui_out_field_string (uiout, "reason",
7661 async_reason_lookup (EXEC_ASYNC_VFORK));
7662 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7663 }
7664 ui_out_field_int (uiout, "bkptno", b->number);
7665 ui_out_text (uiout, " (vforked process ");
7666 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7667 ui_out_text (uiout, "), ");
7668 return PRINT_SRC_AND_LOC;
7669 }
7670
7671 /* Implement the "print_one" breakpoint_ops method for vfork
7672 catchpoints. */
7673
7674 static void
7675 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7676 {
7677 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7678 struct value_print_options opts;
7679 struct ui_out *uiout = current_uiout;
7680
7681 get_user_print_options (&opts);
7682 /* Field 4, the address, is omitted (which makes the columns not
7683 line up too nicely with the headers, but the effect is relatively
7684 readable). */
7685 if (opts.addressprint)
7686 ui_out_field_skip (uiout, "addr");
7687 annotate_field (5);
7688 ui_out_text (uiout, "vfork");
7689 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7690 {
7691 ui_out_text (uiout, ", process ");
7692 ui_out_field_int (uiout, "what",
7693 ptid_get_pid (c->forked_inferior_pid));
7694 ui_out_spaces (uiout, 1);
7695 }
7696
7697 if (ui_out_is_mi_like_p (uiout))
7698 ui_out_field_string (uiout, "catch-type", "vfork");
7699 }
7700
7701 /* Implement the "print_mention" breakpoint_ops method for vfork
7702 catchpoints. */
7703
7704 static void
7705 print_mention_catch_vfork (struct breakpoint *b)
7706 {
7707 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7708 }
7709
7710 /* Implement the "print_recreate" breakpoint_ops method for vfork
7711 catchpoints. */
7712
7713 static void
7714 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7715 {
7716 fprintf_unfiltered (fp, "catch vfork");
7717 print_recreate_thread (b, fp);
7718 }
7719
7720 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7721
7722 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7723
7724 /* An instance of this type is used to represent an solib catchpoint.
7725 It includes a "struct breakpoint" as a kind of base class; users
7726 downcast to "struct breakpoint *" when needed. A breakpoint is
7727 really of this type iff its ops pointer points to
7728 CATCH_SOLIB_BREAKPOINT_OPS. */
7729
7730 struct solib_catchpoint
7731 {
7732 /* The base class. */
7733 struct breakpoint base;
7734
7735 /* True for "catch load", false for "catch unload". */
7736 unsigned char is_load;
7737
7738 /* Regular expression to match, if any. COMPILED is only valid when
7739 REGEX is non-NULL. */
7740 char *regex;
7741 regex_t compiled;
7742 };
7743
7744 static void
7745 dtor_catch_solib (struct breakpoint *b)
7746 {
7747 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7748
7749 if (self->regex)
7750 regfree (&self->compiled);
7751 xfree (self->regex);
7752
7753 base_breakpoint_ops.dtor (b);
7754 }
7755
7756 static int
7757 insert_catch_solib (struct bp_location *ignore)
7758 {
7759 return 0;
7760 }
7761
7762 static int
7763 remove_catch_solib (struct bp_location *ignore)
7764 {
7765 return 0;
7766 }
7767
7768 static int
7769 breakpoint_hit_catch_solib (const struct bp_location *bl,
7770 struct address_space *aspace,
7771 CORE_ADDR bp_addr,
7772 const struct target_waitstatus *ws)
7773 {
7774 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7775 struct breakpoint *other;
7776
7777 if (ws->kind == TARGET_WAITKIND_LOADED)
7778 return 1;
7779
7780 ALL_BREAKPOINTS (other)
7781 {
7782 struct bp_location *other_bl;
7783
7784 if (other == bl->owner)
7785 continue;
7786
7787 if (other->type != bp_shlib_event)
7788 continue;
7789
7790 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
7791 continue;
7792
7793 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7794 {
7795 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7796 return 1;
7797 }
7798 }
7799
7800 return 0;
7801 }
7802
7803 static void
7804 check_status_catch_solib (struct bpstats *bs)
7805 {
7806 struct solib_catchpoint *self
7807 = (struct solib_catchpoint *) bs->breakpoint_at;
7808 int ix;
7809
7810 if (self->is_load)
7811 {
7812 struct so_list *iter;
7813
7814 for (ix = 0;
7815 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
7816 ix, iter);
7817 ++ix)
7818 {
7819 if (!self->regex
7820 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
7821 return;
7822 }
7823 }
7824 else
7825 {
7826 char *iter;
7827
7828 for (ix = 0;
7829 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
7830 ix, iter);
7831 ++ix)
7832 {
7833 if (!self->regex
7834 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
7835 return;
7836 }
7837 }
7838
7839 bs->stop = 0;
7840 bs->print_it = print_it_noop;
7841 }
7842
7843 static enum print_stop_action
7844 print_it_catch_solib (bpstat bs)
7845 {
7846 struct breakpoint *b = bs->breakpoint_at;
7847 struct ui_out *uiout = current_uiout;
7848
7849 annotate_catchpoint (b->number);
7850 if (b->disposition == disp_del)
7851 ui_out_text (uiout, "\nTemporary catchpoint ");
7852 else
7853 ui_out_text (uiout, "\nCatchpoint ");
7854 ui_out_field_int (uiout, "bkptno", b->number);
7855 ui_out_text (uiout, "\n");
7856 if (ui_out_is_mi_like_p (uiout))
7857 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7858 print_solib_event (1);
7859 return PRINT_SRC_AND_LOC;
7860 }
7861
7862 static void
7863 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
7864 {
7865 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7866 struct value_print_options opts;
7867 struct ui_out *uiout = current_uiout;
7868 char *msg;
7869
7870 get_user_print_options (&opts);
7871 /* Field 4, the address, is omitted (which makes the columns not
7872 line up too nicely with the headers, but the effect is relatively
7873 readable). */
7874 if (opts.addressprint)
7875 {
7876 annotate_field (4);
7877 ui_out_field_skip (uiout, "addr");
7878 }
7879
7880 annotate_field (5);
7881 if (self->is_load)
7882 {
7883 if (self->regex)
7884 msg = xstrprintf (_("load of library matching %s"), self->regex);
7885 else
7886 msg = xstrdup (_("load of library"));
7887 }
7888 else
7889 {
7890 if (self->regex)
7891 msg = xstrprintf (_("unload of library matching %s"), self->regex);
7892 else
7893 msg = xstrdup (_("unload of library"));
7894 }
7895 ui_out_field_string (uiout, "what", msg);
7896 xfree (msg);
7897
7898 if (ui_out_is_mi_like_p (uiout))
7899 ui_out_field_string (uiout, "catch-type",
7900 self->is_load ? "load" : "unload");
7901 }
7902
7903 static void
7904 print_mention_catch_solib (struct breakpoint *b)
7905 {
7906 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7907
7908 printf_filtered (_("Catchpoint %d (%s)"), b->number,
7909 self->is_load ? "load" : "unload");
7910 }
7911
7912 static void
7913 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
7914 {
7915 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7916
7917 fprintf_unfiltered (fp, "%s %s",
7918 b->disposition == disp_del ? "tcatch" : "catch",
7919 self->is_load ? "load" : "unload");
7920 if (self->regex)
7921 fprintf_unfiltered (fp, " %s", self->regex);
7922 fprintf_unfiltered (fp, "\n");
7923 }
7924
7925 static struct breakpoint_ops catch_solib_breakpoint_ops;
7926
7927 /* Shared helper function (MI and CLI) for creating and installing
7928 a shared object event catchpoint. If IS_LOAD is non-zero then
7929 the events to be caught are load events, otherwise they are
7930 unload events. If IS_TEMP is non-zero the catchpoint is a
7931 temporary one. If ENABLED is non-zero the catchpoint is
7932 created in an enabled state. */
7933
7934 void
7935 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
7936 {
7937 struct solib_catchpoint *c;
7938 struct gdbarch *gdbarch = get_current_arch ();
7939 struct cleanup *cleanup;
7940
7941 if (!arg)
7942 arg = "";
7943 arg = skip_spaces (arg);
7944
7945 c = XCNEW (struct solib_catchpoint);
7946 cleanup = make_cleanup (xfree, c);
7947
7948 if (*arg != '\0')
7949 {
7950 int errcode;
7951
7952 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
7953 if (errcode != 0)
7954 {
7955 char *err = get_regcomp_error (errcode, &c->compiled);
7956
7957 make_cleanup (xfree, err);
7958 error (_("Invalid regexp (%s): %s"), err, arg);
7959 }
7960 c->regex = xstrdup (arg);
7961 }
7962
7963 c->is_load = is_load;
7964 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
7965 &catch_solib_breakpoint_ops);
7966
7967 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
7968
7969 discard_cleanups (cleanup);
7970 install_breakpoint (0, &c->base, 1);
7971 }
7972
7973 /* A helper function that does all the work for "catch load" and
7974 "catch unload". */
7975
7976 static void
7977 catch_load_or_unload (char *arg, int from_tty, int is_load,
7978 struct cmd_list_element *command)
7979 {
7980 int tempflag;
7981 const int enabled = 1;
7982
7983 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
7984
7985 add_solib_catchpoint (arg, is_load, tempflag, enabled);
7986 }
7987
7988 static void
7989 catch_load_command_1 (char *arg, int from_tty,
7990 struct cmd_list_element *command)
7991 {
7992 catch_load_or_unload (arg, from_tty, 1, command);
7993 }
7994
7995 static void
7996 catch_unload_command_1 (char *arg, int from_tty,
7997 struct cmd_list_element *command)
7998 {
7999 catch_load_or_unload (arg, from_tty, 0, command);
8000 }
8001
8002 /* An instance of this type is used to represent a syscall catchpoint.
8003 It includes a "struct breakpoint" as a kind of base class; users
8004 downcast to "struct breakpoint *" when needed. A breakpoint is
8005 really of this type iff its ops pointer points to
8006 CATCH_SYSCALL_BREAKPOINT_OPS. */
8007
8008 struct syscall_catchpoint
8009 {
8010 /* The base class. */
8011 struct breakpoint base;
8012
8013 /* Syscall numbers used for the 'catch syscall' feature. If no
8014 syscall has been specified for filtering, its value is NULL.
8015 Otherwise, it holds a list of all syscalls to be caught. The
8016 list elements are allocated with xmalloc. */
8017 VEC(int) *syscalls_to_be_caught;
8018 };
8019
8020 /* Implement the "dtor" breakpoint_ops method for syscall
8021 catchpoints. */
8022
8023 static void
8024 dtor_catch_syscall (struct breakpoint *b)
8025 {
8026 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8027
8028 VEC_free (int, c->syscalls_to_be_caught);
8029
8030 base_breakpoint_ops.dtor (b);
8031 }
8032
8033 static const struct inferior_data *catch_syscall_inferior_data = NULL;
8034
8035 struct catch_syscall_inferior_data
8036 {
8037 /* We keep a count of the number of times the user has requested a
8038 particular syscall to be tracked, and pass this information to the
8039 target. This lets capable targets implement filtering directly. */
8040
8041 /* Number of times that "any" syscall is requested. */
8042 int any_syscall_count;
8043
8044 /* Count of each system call. */
8045 VEC(int) *syscalls_counts;
8046
8047 /* This counts all syscall catch requests, so we can readily determine
8048 if any catching is necessary. */
8049 int total_syscalls_count;
8050 };
8051
8052 static struct catch_syscall_inferior_data*
8053 get_catch_syscall_inferior_data (struct inferior *inf)
8054 {
8055 struct catch_syscall_inferior_data *inf_data;
8056
8057 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8058 if (inf_data == NULL)
8059 {
8060 inf_data = XZALLOC (struct catch_syscall_inferior_data);
8061 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8062 }
8063
8064 return inf_data;
8065 }
8066
8067 static void
8068 catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8069 {
8070 xfree (arg);
8071 }
8072
8073
8074 /* Implement the "insert" breakpoint_ops method for syscall
8075 catchpoints. */
8076
8077 static int
8078 insert_catch_syscall (struct bp_location *bl)
8079 {
8080 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8081 struct inferior *inf = current_inferior ();
8082 struct catch_syscall_inferior_data *inf_data
8083 = get_catch_syscall_inferior_data (inf);
8084
8085 ++inf_data->total_syscalls_count;
8086 if (!c->syscalls_to_be_caught)
8087 ++inf_data->any_syscall_count;
8088 else
8089 {
8090 int i, iter;
8091
8092 for (i = 0;
8093 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8094 i++)
8095 {
8096 int elem;
8097
8098 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8099 {
8100 int old_size = VEC_length (int, inf_data->syscalls_counts);
8101 uintptr_t vec_addr_offset
8102 = old_size * ((uintptr_t) sizeof (int));
8103 uintptr_t vec_addr;
8104 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8105 vec_addr = ((uintptr_t) VEC_address (int,
8106 inf_data->syscalls_counts)
8107 + vec_addr_offset);
8108 memset ((void *) vec_addr, 0,
8109 (iter + 1 - old_size) * sizeof (int));
8110 }
8111 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8112 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8113 }
8114 }
8115
8116 return target_set_syscall_catchpoint (PIDGET (inferior_ptid),
8117 inf_data->total_syscalls_count != 0,
8118 inf_data->any_syscall_count,
8119 VEC_length (int,
8120 inf_data->syscalls_counts),
8121 VEC_address (int,
8122 inf_data->syscalls_counts));
8123 }
8124
8125 /* Implement the "remove" breakpoint_ops method for syscall
8126 catchpoints. */
8127
8128 static int
8129 remove_catch_syscall (struct bp_location *bl)
8130 {
8131 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8132 struct inferior *inf = current_inferior ();
8133 struct catch_syscall_inferior_data *inf_data
8134 = get_catch_syscall_inferior_data (inf);
8135
8136 --inf_data->total_syscalls_count;
8137 if (!c->syscalls_to_be_caught)
8138 --inf_data->any_syscall_count;
8139 else
8140 {
8141 int i, iter;
8142
8143 for (i = 0;
8144 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8145 i++)
8146 {
8147 int elem;
8148 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8149 /* Shouldn't happen. */
8150 continue;
8151 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8152 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8153 }
8154 }
8155
8156 return target_set_syscall_catchpoint (PIDGET (inferior_ptid),
8157 inf_data->total_syscalls_count != 0,
8158 inf_data->any_syscall_count,
8159 VEC_length (int,
8160 inf_data->syscalls_counts),
8161 VEC_address (int,
8162 inf_data->syscalls_counts));
8163 }
8164
8165 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8166 catchpoints. */
8167
8168 static int
8169 breakpoint_hit_catch_syscall (const struct bp_location *bl,
8170 struct address_space *aspace, CORE_ADDR bp_addr,
8171 const struct target_waitstatus *ws)
8172 {
8173 /* We must check if we are catching specific syscalls in this
8174 breakpoint. If we are, then we must guarantee that the called
8175 syscall is the same syscall we are catching. */
8176 int syscall_number = 0;
8177 const struct syscall_catchpoint *c
8178 = (const struct syscall_catchpoint *) bl->owner;
8179
8180 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8181 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8182 return 0;
8183
8184 syscall_number = ws->value.syscall_number;
8185
8186 /* Now, checking if the syscall is the same. */
8187 if (c->syscalls_to_be_caught)
8188 {
8189 int i, iter;
8190
8191 for (i = 0;
8192 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8193 i++)
8194 if (syscall_number == iter)
8195 break;
8196 /* Not the same. */
8197 if (!iter)
8198 return 0;
8199 }
8200
8201 return 1;
8202 }
8203
8204 /* Implement the "print_it" breakpoint_ops method for syscall
8205 catchpoints. */
8206
8207 static enum print_stop_action
8208 print_it_catch_syscall (bpstat bs)
8209 {
8210 struct ui_out *uiout = current_uiout;
8211 struct breakpoint *b = bs->breakpoint_at;
8212 /* These are needed because we want to know in which state a
8213 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8214 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8215 must print "called syscall" or "returned from syscall". */
8216 ptid_t ptid;
8217 struct target_waitstatus last;
8218 struct syscall s;
8219
8220 get_last_target_status (&ptid, &last);
8221
8222 get_syscall_by_number (last.value.syscall_number, &s);
8223
8224 annotate_catchpoint (b->number);
8225
8226 if (b->disposition == disp_del)
8227 ui_out_text (uiout, "\nTemporary catchpoint ");
8228 else
8229 ui_out_text (uiout, "\nCatchpoint ");
8230 if (ui_out_is_mi_like_p (uiout))
8231 {
8232 ui_out_field_string (uiout, "reason",
8233 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8234 ? EXEC_ASYNC_SYSCALL_ENTRY
8235 : EXEC_ASYNC_SYSCALL_RETURN));
8236 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8237 }
8238 ui_out_field_int (uiout, "bkptno", b->number);
8239
8240 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8241 ui_out_text (uiout, " (call to syscall ");
8242 else
8243 ui_out_text (uiout, " (returned from syscall ");
8244
8245 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8246 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8247 if (s.name != NULL)
8248 ui_out_field_string (uiout, "syscall-name", s.name);
8249
8250 ui_out_text (uiout, "), ");
8251
8252 return PRINT_SRC_AND_LOC;
8253 }
8254
8255 /* Implement the "print_one" breakpoint_ops method for syscall
8256 catchpoints. */
8257
8258 static void
8259 print_one_catch_syscall (struct breakpoint *b,
8260 struct bp_location **last_loc)
8261 {
8262 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8263 struct value_print_options opts;
8264 struct ui_out *uiout = current_uiout;
8265
8266 get_user_print_options (&opts);
8267 /* Field 4, the address, is omitted (which makes the columns not
8268 line up too nicely with the headers, but the effect is relatively
8269 readable). */
8270 if (opts.addressprint)
8271 ui_out_field_skip (uiout, "addr");
8272 annotate_field (5);
8273
8274 if (c->syscalls_to_be_caught
8275 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8276 ui_out_text (uiout, "syscalls \"");
8277 else
8278 ui_out_text (uiout, "syscall \"");
8279
8280 if (c->syscalls_to_be_caught)
8281 {
8282 int i, iter;
8283 char *text = xstrprintf ("%s", "");
8284
8285 for (i = 0;
8286 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8287 i++)
8288 {
8289 char *x = text;
8290 struct syscall s;
8291 get_syscall_by_number (iter, &s);
8292
8293 if (s.name != NULL)
8294 text = xstrprintf ("%s%s, ", text, s.name);
8295 else
8296 text = xstrprintf ("%s%d, ", text, iter);
8297
8298 /* We have to xfree the last 'text' (now stored at 'x')
8299 because xstrprintf dynamically allocates new space for it
8300 on every call. */
8301 xfree (x);
8302 }
8303 /* Remove the last comma. */
8304 text[strlen (text) - 2] = '\0';
8305 ui_out_field_string (uiout, "what", text);
8306 }
8307 else
8308 ui_out_field_string (uiout, "what", "<any syscall>");
8309 ui_out_text (uiout, "\" ");
8310
8311 if (ui_out_is_mi_like_p (uiout))
8312 ui_out_field_string (uiout, "catch-type", "syscall");
8313 }
8314
8315 /* Implement the "print_mention" breakpoint_ops method for syscall
8316 catchpoints. */
8317
8318 static void
8319 print_mention_catch_syscall (struct breakpoint *b)
8320 {
8321 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8322
8323 if (c->syscalls_to_be_caught)
8324 {
8325 int i, iter;
8326
8327 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8328 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8329 else
8330 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8331
8332 for (i = 0;
8333 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8334 i++)
8335 {
8336 struct syscall s;
8337 get_syscall_by_number (iter, &s);
8338
8339 if (s.name)
8340 printf_filtered (" '%s' [%d]", s.name, s.number);
8341 else
8342 printf_filtered (" %d", s.number);
8343 }
8344 printf_filtered (")");
8345 }
8346 else
8347 printf_filtered (_("Catchpoint %d (any syscall)"),
8348 b->number);
8349 }
8350
8351 /* Implement the "print_recreate" breakpoint_ops method for syscall
8352 catchpoints. */
8353
8354 static void
8355 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8356 {
8357 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8358
8359 fprintf_unfiltered (fp, "catch syscall");
8360
8361 if (c->syscalls_to_be_caught)
8362 {
8363 int i, iter;
8364
8365 for (i = 0;
8366 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8367 i++)
8368 {
8369 struct syscall s;
8370
8371 get_syscall_by_number (iter, &s);
8372 if (s.name)
8373 fprintf_unfiltered (fp, " %s", s.name);
8374 else
8375 fprintf_unfiltered (fp, " %d", s.number);
8376 }
8377 }
8378 print_recreate_thread (b, fp);
8379 }
8380
8381 /* The breakpoint_ops structure to be used in syscall catchpoints. */
8382
8383 static struct breakpoint_ops catch_syscall_breakpoint_ops;
8384
8385 /* Returns non-zero if 'b' is a syscall catchpoint. */
8386
8387 static int
8388 syscall_catchpoint_p (struct breakpoint *b)
8389 {
8390 return (b->ops == &catch_syscall_breakpoint_ops);
8391 }
8392
8393 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8394 is non-zero, then make the breakpoint temporary. If COND_STRING is
8395 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8396 the breakpoint_ops structure associated to the catchpoint. */
8397
8398 void
8399 init_catchpoint (struct breakpoint *b,
8400 struct gdbarch *gdbarch, int tempflag,
8401 char *cond_string,
8402 const struct breakpoint_ops *ops)
8403 {
8404 struct symtab_and_line sal;
8405
8406 init_sal (&sal);
8407 sal.pspace = current_program_space;
8408
8409 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8410
8411 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8412 b->disposition = tempflag ? disp_del : disp_donttouch;
8413 }
8414
8415 void
8416 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8417 {
8418 add_to_breakpoint_chain (b);
8419 set_breakpoint_number (internal, b);
8420 if (is_tracepoint (b))
8421 set_tracepoint_count (breakpoint_count);
8422 if (!internal)
8423 mention (b);
8424 observer_notify_breakpoint_created (b);
8425
8426 if (update_gll)
8427 update_global_location_list (1);
8428 }
8429
8430 static void
8431 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8432 int tempflag, char *cond_string,
8433 const struct breakpoint_ops *ops)
8434 {
8435 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8436
8437 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8438
8439 c->forked_inferior_pid = null_ptid;
8440
8441 install_breakpoint (0, &c->base, 1);
8442 }
8443
8444 /* Exec catchpoints. */
8445
8446 /* An instance of this type is used to represent an exec catchpoint.
8447 It includes a "struct breakpoint" as a kind of base class; users
8448 downcast to "struct breakpoint *" when needed. A breakpoint is
8449 really of this type iff its ops pointer points to
8450 CATCH_EXEC_BREAKPOINT_OPS. */
8451
8452 struct exec_catchpoint
8453 {
8454 /* The base class. */
8455 struct breakpoint base;
8456
8457 /* Filename of a program whose exec triggered this catchpoint.
8458 This field is only valid immediately after this catchpoint has
8459 triggered. */
8460 char *exec_pathname;
8461 };
8462
8463 /* Implement the "dtor" breakpoint_ops method for exec
8464 catchpoints. */
8465
8466 static void
8467 dtor_catch_exec (struct breakpoint *b)
8468 {
8469 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8470
8471 xfree (c->exec_pathname);
8472
8473 base_breakpoint_ops.dtor (b);
8474 }
8475
8476 static int
8477 insert_catch_exec (struct bp_location *bl)
8478 {
8479 return target_insert_exec_catchpoint (PIDGET (inferior_ptid));
8480 }
8481
8482 static int
8483 remove_catch_exec (struct bp_location *bl)
8484 {
8485 return target_remove_exec_catchpoint (PIDGET (inferior_ptid));
8486 }
8487
8488 static int
8489 breakpoint_hit_catch_exec (const struct bp_location *bl,
8490 struct address_space *aspace, CORE_ADDR bp_addr,
8491 const struct target_waitstatus *ws)
8492 {
8493 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8494
8495 if (ws->kind != TARGET_WAITKIND_EXECD)
8496 return 0;
8497
8498 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8499 return 1;
8500 }
8501
8502 static enum print_stop_action
8503 print_it_catch_exec (bpstat bs)
8504 {
8505 struct ui_out *uiout = current_uiout;
8506 struct breakpoint *b = bs->breakpoint_at;
8507 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8508
8509 annotate_catchpoint (b->number);
8510 if (b->disposition == disp_del)
8511 ui_out_text (uiout, "\nTemporary catchpoint ");
8512 else
8513 ui_out_text (uiout, "\nCatchpoint ");
8514 if (ui_out_is_mi_like_p (uiout))
8515 {
8516 ui_out_field_string (uiout, "reason",
8517 async_reason_lookup (EXEC_ASYNC_EXEC));
8518 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8519 }
8520 ui_out_field_int (uiout, "bkptno", b->number);
8521 ui_out_text (uiout, " (exec'd ");
8522 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8523 ui_out_text (uiout, "), ");
8524
8525 return PRINT_SRC_AND_LOC;
8526 }
8527
8528 static void
8529 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8530 {
8531 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8532 struct value_print_options opts;
8533 struct ui_out *uiout = current_uiout;
8534
8535 get_user_print_options (&opts);
8536
8537 /* Field 4, the address, is omitted (which makes the columns
8538 not line up too nicely with the headers, but the effect
8539 is relatively readable). */
8540 if (opts.addressprint)
8541 ui_out_field_skip (uiout, "addr");
8542 annotate_field (5);
8543 ui_out_text (uiout, "exec");
8544 if (c->exec_pathname != NULL)
8545 {
8546 ui_out_text (uiout, ", program \"");
8547 ui_out_field_string (uiout, "what", c->exec_pathname);
8548 ui_out_text (uiout, "\" ");
8549 }
8550
8551 if (ui_out_is_mi_like_p (uiout))
8552 ui_out_field_string (uiout, "catch-type", "exec");
8553 }
8554
8555 static void
8556 print_mention_catch_exec (struct breakpoint *b)
8557 {
8558 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8559 }
8560
8561 /* Implement the "print_recreate" breakpoint_ops method for exec
8562 catchpoints. */
8563
8564 static void
8565 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8566 {
8567 fprintf_unfiltered (fp, "catch exec");
8568 print_recreate_thread (b, fp);
8569 }
8570
8571 static struct breakpoint_ops catch_exec_breakpoint_ops;
8572
8573 static void
8574 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
8575 const struct breakpoint_ops *ops)
8576 {
8577 struct syscall_catchpoint *c;
8578 struct gdbarch *gdbarch = get_current_arch ();
8579
8580 c = XNEW (struct syscall_catchpoint);
8581 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
8582 c->syscalls_to_be_caught = filter;
8583
8584 install_breakpoint (0, &c->base, 1);
8585 }
8586
8587 static int
8588 hw_breakpoint_used_count (void)
8589 {
8590 int i = 0;
8591 struct breakpoint *b;
8592 struct bp_location *bl;
8593
8594 ALL_BREAKPOINTS (b)
8595 {
8596 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8597 for (bl = b->loc; bl; bl = bl->next)
8598 {
8599 /* Special types of hardware breakpoints may use more than
8600 one register. */
8601 i += b->ops->resources_needed (bl);
8602 }
8603 }
8604
8605 return i;
8606 }
8607
8608 /* Returns the resources B would use if it were a hardware
8609 watchpoint. */
8610
8611 static int
8612 hw_watchpoint_use_count (struct breakpoint *b)
8613 {
8614 int i = 0;
8615 struct bp_location *bl;
8616
8617 if (!breakpoint_enabled (b))
8618 return 0;
8619
8620 for (bl = b->loc; bl; bl = bl->next)
8621 {
8622 /* Special types of hardware watchpoints may use more than
8623 one register. */
8624 i += b->ops->resources_needed (bl);
8625 }
8626
8627 return i;
8628 }
8629
8630 /* Returns the sum the used resources of all hardware watchpoints of
8631 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8632 the sum of the used resources of all hardware watchpoints of other
8633 types _not_ TYPE. */
8634
8635 static int
8636 hw_watchpoint_used_count_others (struct breakpoint *except,
8637 enum bptype type, int *other_type_used)
8638 {
8639 int i = 0;
8640 struct breakpoint *b;
8641
8642 *other_type_used = 0;
8643 ALL_BREAKPOINTS (b)
8644 {
8645 if (b == except)
8646 continue;
8647 if (!breakpoint_enabled (b))
8648 continue;
8649
8650 if (b->type == type)
8651 i += hw_watchpoint_use_count (b);
8652 else if (is_hardware_watchpoint (b))
8653 *other_type_used = 1;
8654 }
8655
8656 return i;
8657 }
8658
8659 void
8660 disable_watchpoints_before_interactive_call_start (void)
8661 {
8662 struct breakpoint *b;
8663
8664 ALL_BREAKPOINTS (b)
8665 {
8666 if (is_watchpoint (b) && breakpoint_enabled (b))
8667 {
8668 b->enable_state = bp_call_disabled;
8669 update_global_location_list (0);
8670 }
8671 }
8672 }
8673
8674 void
8675 enable_watchpoints_after_interactive_call_stop (void)
8676 {
8677 struct breakpoint *b;
8678
8679 ALL_BREAKPOINTS (b)
8680 {
8681 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8682 {
8683 b->enable_state = bp_enabled;
8684 update_global_location_list (1);
8685 }
8686 }
8687 }
8688
8689 void
8690 disable_breakpoints_before_startup (void)
8691 {
8692 current_program_space->executing_startup = 1;
8693 update_global_location_list (0);
8694 }
8695
8696 void
8697 enable_breakpoints_after_startup (void)
8698 {
8699 current_program_space->executing_startup = 0;
8700 breakpoint_re_set ();
8701 }
8702
8703
8704 /* Set a breakpoint that will evaporate an end of command
8705 at address specified by SAL.
8706 Restrict it to frame FRAME if FRAME is nonzero. */
8707
8708 struct breakpoint *
8709 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8710 struct frame_id frame_id, enum bptype type)
8711 {
8712 struct breakpoint *b;
8713
8714 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8715 tail-called one. */
8716 gdb_assert (!frame_id_artificial_p (frame_id));
8717
8718 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8719 b->enable_state = bp_enabled;
8720 b->disposition = disp_donttouch;
8721 b->frame_id = frame_id;
8722
8723 /* If we're debugging a multi-threaded program, then we want
8724 momentary breakpoints to be active in only a single thread of
8725 control. */
8726 if (in_thread_list (inferior_ptid))
8727 b->thread = pid_to_thread_id (inferior_ptid);
8728
8729 update_global_location_list_nothrow (1);
8730
8731 return b;
8732 }
8733
8734 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8735 The new breakpoint will have type TYPE, and use OPS as it
8736 breakpoint_ops. */
8737
8738 static struct breakpoint *
8739 momentary_breakpoint_from_master (struct breakpoint *orig,
8740 enum bptype type,
8741 const struct breakpoint_ops *ops)
8742 {
8743 struct breakpoint *copy;
8744
8745 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8746 copy->loc = allocate_bp_location (copy);
8747 set_breakpoint_location_function (copy->loc, 1);
8748
8749 copy->loc->gdbarch = orig->loc->gdbarch;
8750 copy->loc->requested_address = orig->loc->requested_address;
8751 copy->loc->address = orig->loc->address;
8752 copy->loc->section = orig->loc->section;
8753 copy->loc->pspace = orig->loc->pspace;
8754 copy->loc->probe = orig->loc->probe;
8755 copy->loc->line_number = orig->loc->line_number;
8756 copy->loc->symtab = orig->loc->symtab;
8757 copy->frame_id = orig->frame_id;
8758 copy->thread = orig->thread;
8759 copy->pspace = orig->pspace;
8760
8761 copy->enable_state = bp_enabled;
8762 copy->disposition = disp_donttouch;
8763 copy->number = internal_breakpoint_number--;
8764
8765 update_global_location_list_nothrow (0);
8766 return copy;
8767 }
8768
8769 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8770 ORIG is NULL. */
8771
8772 struct breakpoint *
8773 clone_momentary_breakpoint (struct breakpoint *orig)
8774 {
8775 /* If there's nothing to clone, then return nothing. */
8776 if (orig == NULL)
8777 return NULL;
8778
8779 return momentary_breakpoint_from_master (orig, orig->type, orig->ops);
8780 }
8781
8782 struct breakpoint *
8783 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8784 enum bptype type)
8785 {
8786 struct symtab_and_line sal;
8787
8788 sal = find_pc_line (pc, 0);
8789 sal.pc = pc;
8790 sal.section = find_pc_overlay (pc);
8791 sal.explicit_pc = 1;
8792
8793 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8794 }
8795 \f
8796
8797 /* Tell the user we have just set a breakpoint B. */
8798
8799 static void
8800 mention (struct breakpoint *b)
8801 {
8802 b->ops->print_mention (b);
8803 if (ui_out_is_mi_like_p (current_uiout))
8804 return;
8805 printf_filtered ("\n");
8806 }
8807 \f
8808
8809 static struct bp_location *
8810 add_location_to_breakpoint (struct breakpoint *b,
8811 const struct symtab_and_line *sal)
8812 {
8813 struct bp_location *loc, **tmp;
8814 CORE_ADDR adjusted_address;
8815 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8816
8817 if (loc_gdbarch == NULL)
8818 loc_gdbarch = b->gdbarch;
8819
8820 /* Adjust the breakpoint's address prior to allocating a location.
8821 Once we call allocate_bp_location(), that mostly uninitialized
8822 location will be placed on the location chain. Adjustment of the
8823 breakpoint may cause target_read_memory() to be called and we do
8824 not want its scan of the location chain to find a breakpoint and
8825 location that's only been partially initialized. */
8826 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8827 sal->pc, b->type);
8828
8829 loc = allocate_bp_location (b);
8830 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
8831 ;
8832 *tmp = loc;
8833
8834 loc->requested_address = sal->pc;
8835 loc->address = adjusted_address;
8836 loc->pspace = sal->pspace;
8837 loc->probe = sal->probe;
8838 gdb_assert (loc->pspace != NULL);
8839 loc->section = sal->section;
8840 loc->gdbarch = loc_gdbarch;
8841 loc->line_number = sal->line;
8842 loc->symtab = sal->symtab;
8843
8844 set_breakpoint_location_function (loc,
8845 sal->explicit_pc || sal->explicit_line);
8846 return loc;
8847 }
8848 \f
8849
8850 /* Return 1 if LOC is pointing to a permanent breakpoint,
8851 return 0 otherwise. */
8852
8853 static int
8854 bp_loc_is_permanent (struct bp_location *loc)
8855 {
8856 int len;
8857 CORE_ADDR addr;
8858 const gdb_byte *bpoint;
8859 gdb_byte *target_mem;
8860 struct cleanup *cleanup;
8861 int retval = 0;
8862
8863 gdb_assert (loc != NULL);
8864
8865 addr = loc->address;
8866 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
8867
8868 /* Software breakpoints unsupported? */
8869 if (bpoint == NULL)
8870 return 0;
8871
8872 target_mem = alloca (len);
8873
8874 /* Enable the automatic memory restoration from breakpoints while
8875 we read the memory. Otherwise we could say about our temporary
8876 breakpoints they are permanent. */
8877 cleanup = save_current_space_and_thread ();
8878
8879 switch_to_program_space_and_thread (loc->pspace);
8880 make_show_memory_breakpoints_cleanup (0);
8881
8882 if (target_read_memory (loc->address, target_mem, len) == 0
8883 && memcmp (target_mem, bpoint, len) == 0)
8884 retval = 1;
8885
8886 do_cleanups (cleanup);
8887
8888 return retval;
8889 }
8890
8891 /* Build a command list for the dprintf corresponding to the current
8892 settings of the dprintf style options. */
8893
8894 static void
8895 update_dprintf_command_list (struct breakpoint *b)
8896 {
8897 char *dprintf_args = b->extra_string;
8898 char *printf_line = NULL;
8899
8900 if (!dprintf_args)
8901 return;
8902
8903 dprintf_args = skip_spaces (dprintf_args);
8904
8905 /* Allow a comma, as it may have terminated a location, but don't
8906 insist on it. */
8907 if (*dprintf_args == ',')
8908 ++dprintf_args;
8909 dprintf_args = skip_spaces (dprintf_args);
8910
8911 if (*dprintf_args != '"')
8912 error (_("Bad format string, missing '\"'."));
8913
8914 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8915 printf_line = xstrprintf ("printf %s", dprintf_args);
8916 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8917 {
8918 if (!dprintf_function)
8919 error (_("No function supplied for dprintf call"));
8920
8921 if (dprintf_channel && strlen (dprintf_channel) > 0)
8922 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8923 dprintf_function,
8924 dprintf_channel,
8925 dprintf_args);
8926 else
8927 printf_line = xstrprintf ("call (void) %s (%s)",
8928 dprintf_function,
8929 dprintf_args);
8930 }
8931 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8932 {
8933 if (target_can_run_breakpoint_commands ())
8934 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8935 else
8936 {
8937 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8938 printf_line = xstrprintf ("printf %s", dprintf_args);
8939 }
8940 }
8941 else
8942 internal_error (__FILE__, __LINE__,
8943 _("Invalid dprintf style."));
8944
8945 gdb_assert (printf_line != NULL);
8946 /* Manufacture a printf/continue sequence. */
8947 {
8948 struct command_line *printf_cmd_line, *cont_cmd_line = NULL;
8949
8950 if (strcmp (dprintf_style, dprintf_style_agent) != 0)
8951 {
8952 cont_cmd_line = xmalloc (sizeof (struct command_line));
8953 cont_cmd_line->control_type = simple_control;
8954 cont_cmd_line->body_count = 0;
8955 cont_cmd_line->body_list = NULL;
8956 cont_cmd_line->next = NULL;
8957 cont_cmd_line->line = xstrdup ("continue");
8958 }
8959
8960 printf_cmd_line = xmalloc (sizeof (struct command_line));
8961 printf_cmd_line->control_type = simple_control;
8962 printf_cmd_line->body_count = 0;
8963 printf_cmd_line->body_list = NULL;
8964 printf_cmd_line->next = cont_cmd_line;
8965 printf_cmd_line->line = printf_line;
8966
8967 breakpoint_set_commands (b, printf_cmd_line);
8968 }
8969 }
8970
8971 /* Update all dprintf commands, making their command lists reflect
8972 current style settings. */
8973
8974 static void
8975 update_dprintf_commands (char *args, int from_tty,
8976 struct cmd_list_element *c)
8977 {
8978 struct breakpoint *b;
8979
8980 ALL_BREAKPOINTS (b)
8981 {
8982 if (b->type == bp_dprintf)
8983 update_dprintf_command_list (b);
8984 }
8985 }
8986
8987 /* Create a breakpoint with SAL as location. Use ADDR_STRING
8988 as textual description of the location, and COND_STRING
8989 as condition expression. */
8990
8991 static void
8992 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8993 struct symtabs_and_lines sals, char *addr_string,
8994 char *filter, char *cond_string,
8995 char *extra_string,
8996 enum bptype type, enum bpdisp disposition,
8997 int thread, int task, int ignore_count,
8998 const struct breakpoint_ops *ops, int from_tty,
8999 int enabled, int internal, unsigned flags,
9000 int display_canonical)
9001 {
9002 int i;
9003
9004 if (type == bp_hardware_breakpoint)
9005 {
9006 int target_resources_ok;
9007
9008 i = hw_breakpoint_used_count ();
9009 target_resources_ok =
9010 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9011 i + 1, 0);
9012 if (target_resources_ok == 0)
9013 error (_("No hardware breakpoint support in the target."));
9014 else if (target_resources_ok < 0)
9015 error (_("Hardware breakpoints used exceeds limit."));
9016 }
9017
9018 gdb_assert (sals.nelts > 0);
9019
9020 for (i = 0; i < sals.nelts; ++i)
9021 {
9022 struct symtab_and_line sal = sals.sals[i];
9023 struct bp_location *loc;
9024
9025 if (from_tty)
9026 {
9027 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9028 if (!loc_gdbarch)
9029 loc_gdbarch = gdbarch;
9030
9031 describe_other_breakpoints (loc_gdbarch,
9032 sal.pspace, sal.pc, sal.section, thread);
9033 }
9034
9035 if (i == 0)
9036 {
9037 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9038 b->thread = thread;
9039 b->task = task;
9040
9041 b->cond_string = cond_string;
9042 b->extra_string = extra_string;
9043 b->ignore_count = ignore_count;
9044 b->enable_state = enabled ? bp_enabled : bp_disabled;
9045 b->disposition = disposition;
9046
9047 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9048 b->loc->inserted = 1;
9049
9050 if (type == bp_static_tracepoint)
9051 {
9052 struct tracepoint *t = (struct tracepoint *) b;
9053 struct static_tracepoint_marker marker;
9054
9055 if (strace_marker_p (b))
9056 {
9057 /* We already know the marker exists, otherwise, we
9058 wouldn't see a sal for it. */
9059 char *p = &addr_string[3];
9060 char *endp;
9061 char *marker_str;
9062
9063 p = skip_spaces (p);
9064
9065 endp = skip_to_space (p);
9066
9067 marker_str = savestring (p, endp - p);
9068 t->static_trace_marker_id = marker_str;
9069
9070 printf_filtered (_("Probed static tracepoint "
9071 "marker \"%s\"\n"),
9072 t->static_trace_marker_id);
9073 }
9074 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9075 {
9076 t->static_trace_marker_id = xstrdup (marker.str_id);
9077 release_static_tracepoint_marker (&marker);
9078
9079 printf_filtered (_("Probed static tracepoint "
9080 "marker \"%s\"\n"),
9081 t->static_trace_marker_id);
9082 }
9083 else
9084 warning (_("Couldn't determine the static "
9085 "tracepoint marker to probe"));
9086 }
9087
9088 loc = b->loc;
9089 }
9090 else
9091 {
9092 loc = add_location_to_breakpoint (b, &sal);
9093 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9094 loc->inserted = 1;
9095 }
9096
9097 if (bp_loc_is_permanent (loc))
9098 make_breakpoint_permanent (b);
9099
9100 if (b->cond_string)
9101 {
9102 char *arg = b->cond_string;
9103 loc->cond = parse_exp_1 (&arg, loc->address,
9104 block_for_pc (loc->address), 0);
9105 if (*arg)
9106 error (_("Garbage '%s' follows condition"), arg);
9107 }
9108
9109 /* Dynamic printf requires and uses additional arguments on the
9110 command line, otherwise it's an error. */
9111 if (type == bp_dprintf)
9112 {
9113 if (b->extra_string)
9114 update_dprintf_command_list (b);
9115 else
9116 error (_("Format string required"));
9117 }
9118 else if (b->extra_string)
9119 error (_("Garbage '%s' at end of command"), b->extra_string);
9120 }
9121
9122 b->display_canonical = display_canonical;
9123 if (addr_string)
9124 b->addr_string = addr_string;
9125 else
9126 /* addr_string has to be used or breakpoint_re_set will delete
9127 me. */
9128 b->addr_string
9129 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9130 b->filter = filter;
9131 }
9132
9133 static void
9134 create_breakpoint_sal (struct gdbarch *gdbarch,
9135 struct symtabs_and_lines sals, char *addr_string,
9136 char *filter, char *cond_string,
9137 char *extra_string,
9138 enum bptype type, enum bpdisp disposition,
9139 int thread, int task, int ignore_count,
9140 const struct breakpoint_ops *ops, int from_tty,
9141 int enabled, int internal, unsigned flags,
9142 int display_canonical)
9143 {
9144 struct breakpoint *b;
9145 struct cleanup *old_chain;
9146
9147 if (is_tracepoint_type (type))
9148 {
9149 struct tracepoint *t;
9150
9151 t = XCNEW (struct tracepoint);
9152 b = &t->base;
9153 }
9154 else
9155 b = XNEW (struct breakpoint);
9156
9157 old_chain = make_cleanup (xfree, b);
9158
9159 init_breakpoint_sal (b, gdbarch,
9160 sals, addr_string,
9161 filter, cond_string, extra_string,
9162 type, disposition,
9163 thread, task, ignore_count,
9164 ops, from_tty,
9165 enabled, internal, flags,
9166 display_canonical);
9167 discard_cleanups (old_chain);
9168
9169 install_breakpoint (internal, b, 0);
9170 }
9171
9172 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9173 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9174 value. COND_STRING, if not NULL, specified the condition to be
9175 used for all breakpoints. Essentially the only case where
9176 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9177 function. In that case, it's still not possible to specify
9178 separate conditions for different overloaded functions, so
9179 we take just a single condition string.
9180
9181 NOTE: If the function succeeds, the caller is expected to cleanup
9182 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9183 array contents). If the function fails (error() is called), the
9184 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9185 COND and SALS arrays and each of those arrays contents. */
9186
9187 static void
9188 create_breakpoints_sal (struct gdbarch *gdbarch,
9189 struct linespec_result *canonical,
9190 char *cond_string, char *extra_string,
9191 enum bptype type, enum bpdisp disposition,
9192 int thread, int task, int ignore_count,
9193 const struct breakpoint_ops *ops, int from_tty,
9194 int enabled, int internal, unsigned flags)
9195 {
9196 int i;
9197 struct linespec_sals *lsal;
9198
9199 if (canonical->pre_expanded)
9200 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9201
9202 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9203 {
9204 /* Note that 'addr_string' can be NULL in the case of a plain
9205 'break', without arguments. */
9206 char *addr_string = (canonical->addr_string
9207 ? xstrdup (canonical->addr_string)
9208 : NULL);
9209 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9210 struct cleanup *inner = make_cleanup (xfree, addr_string);
9211
9212 make_cleanup (xfree, filter_string);
9213 create_breakpoint_sal (gdbarch, lsal->sals,
9214 addr_string,
9215 filter_string,
9216 cond_string, extra_string,
9217 type, disposition,
9218 thread, task, ignore_count, ops,
9219 from_tty, enabled, internal, flags,
9220 canonical->special_display);
9221 discard_cleanups (inner);
9222 }
9223 }
9224
9225 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9226 followed by conditionals. On return, SALS contains an array of SAL
9227 addresses found. ADDR_STRING contains a vector of (canonical)
9228 address strings. ADDRESS points to the end of the SAL.
9229
9230 The array and the line spec strings are allocated on the heap, it is
9231 the caller's responsibility to free them. */
9232
9233 static void
9234 parse_breakpoint_sals (char **address,
9235 struct linespec_result *canonical)
9236 {
9237 /* If no arg given, or if first arg is 'if ', use the default
9238 breakpoint. */
9239 if ((*address) == NULL
9240 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9241 {
9242 /* The last displayed codepoint, if it's valid, is our default breakpoint
9243 address. */
9244 if (last_displayed_sal_is_valid ())
9245 {
9246 struct linespec_sals lsal;
9247 struct symtab_and_line sal;
9248 CORE_ADDR pc;
9249
9250 init_sal (&sal); /* Initialize to zeroes. */
9251 lsal.sals.sals = (struct symtab_and_line *)
9252 xmalloc (sizeof (struct symtab_and_line));
9253
9254 /* Set sal's pspace, pc, symtab, and line to the values
9255 corresponding to the last call to print_frame_info.
9256 Be sure to reinitialize LINE with NOTCURRENT == 0
9257 as the breakpoint line number is inappropriate otherwise.
9258 find_pc_line would adjust PC, re-set it back. */
9259 get_last_displayed_sal (&sal);
9260 pc = sal.pc;
9261 sal = find_pc_line (pc, 0);
9262
9263 /* "break" without arguments is equivalent to "break *PC"
9264 where PC is the last displayed codepoint's address. So
9265 make sure to set sal.explicit_pc to prevent GDB from
9266 trying to expand the list of sals to include all other
9267 instances with the same symtab and line. */
9268 sal.pc = pc;
9269 sal.explicit_pc = 1;
9270
9271 lsal.sals.sals[0] = sal;
9272 lsal.sals.nelts = 1;
9273 lsal.canonical = NULL;
9274
9275 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9276 }
9277 else
9278 error (_("No default breakpoint address now."));
9279 }
9280 else
9281 {
9282 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9283
9284 /* Force almost all breakpoints to be in terms of the
9285 current_source_symtab (which is decode_line_1's default).
9286 This should produce the results we want almost all of the
9287 time while leaving default_breakpoint_* alone.
9288
9289 ObjC: However, don't match an Objective-C method name which
9290 may have a '+' or '-' succeeded by a '['. */
9291 if (last_displayed_sal_is_valid ()
9292 && (!cursal.symtab
9293 || ((strchr ("+-", (*address)[0]) != NULL)
9294 && ((*address)[1] != '['))))
9295 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9296 get_last_displayed_symtab (),
9297 get_last_displayed_line (),
9298 canonical, NULL, NULL);
9299 else
9300 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9301 cursal.symtab, cursal.line, canonical, NULL, NULL);
9302 }
9303 }
9304
9305
9306 /* Convert each SAL into a real PC. Verify that the PC can be
9307 inserted as a breakpoint. If it can't throw an error. */
9308
9309 static void
9310 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9311 {
9312 int i;
9313
9314 for (i = 0; i < sals->nelts; i++)
9315 resolve_sal_pc (&sals->sals[i]);
9316 }
9317
9318 /* Fast tracepoints may have restrictions on valid locations. For
9319 instance, a fast tracepoint using a jump instead of a trap will
9320 likely have to overwrite more bytes than a trap would, and so can
9321 only be placed where the instruction is longer than the jump, or a
9322 multi-instruction sequence does not have a jump into the middle of
9323 it, etc. */
9324
9325 static void
9326 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9327 struct symtabs_and_lines *sals)
9328 {
9329 int i, rslt;
9330 struct symtab_and_line *sal;
9331 char *msg;
9332 struct cleanup *old_chain;
9333
9334 for (i = 0; i < sals->nelts; i++)
9335 {
9336 struct gdbarch *sarch;
9337
9338 sal = &sals->sals[i];
9339
9340 sarch = get_sal_arch (*sal);
9341 /* We fall back to GDBARCH if there is no architecture
9342 associated with SAL. */
9343 if (sarch == NULL)
9344 sarch = gdbarch;
9345 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9346 NULL, &msg);
9347 old_chain = make_cleanup (xfree, msg);
9348
9349 if (!rslt)
9350 error (_("May not have a fast tracepoint at 0x%s%s"),
9351 paddress (sarch, sal->pc), (msg ? msg : ""));
9352
9353 do_cleanups (old_chain);
9354 }
9355 }
9356
9357 /* Issue an invalid thread ID error. */
9358
9359 static void ATTRIBUTE_NORETURN
9360 invalid_thread_id_error (int id)
9361 {
9362 error (_("Unknown thread %d."), id);
9363 }
9364
9365 /* Given TOK, a string specification of condition and thread, as
9366 accepted by the 'break' command, extract the condition
9367 string and thread number and set *COND_STRING and *THREAD.
9368 PC identifies the context at which the condition should be parsed.
9369 If no condition is found, *COND_STRING is set to NULL.
9370 If no thread is found, *THREAD is set to -1. */
9371
9372 static void
9373 find_condition_and_thread (char *tok, CORE_ADDR pc,
9374 char **cond_string, int *thread, int *task,
9375 char **rest)
9376 {
9377 *cond_string = NULL;
9378 *thread = -1;
9379 *task = 0;
9380 *rest = NULL;
9381
9382 while (tok && *tok)
9383 {
9384 char *end_tok;
9385 int toklen;
9386 char *cond_start = NULL;
9387 char *cond_end = NULL;
9388
9389 tok = skip_spaces (tok);
9390
9391 if ((*tok == '"' || *tok == ',') && rest)
9392 {
9393 *rest = savestring (tok, strlen (tok));
9394 return;
9395 }
9396
9397 end_tok = skip_to_space (tok);
9398
9399 toklen = end_tok - tok;
9400
9401 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9402 {
9403 struct expression *expr;
9404
9405 tok = cond_start = end_tok + 1;
9406 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9407 xfree (expr);
9408 cond_end = tok;
9409 *cond_string = savestring (cond_start, cond_end - cond_start);
9410 }
9411 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9412 {
9413 char *tmptok;
9414
9415 tok = end_tok + 1;
9416 tmptok = tok;
9417 *thread = strtol (tok, &tok, 0);
9418 if (tok == tmptok)
9419 error (_("Junk after thread keyword."));
9420 if (!valid_thread_id (*thread))
9421 invalid_thread_id_error (*thread);
9422 }
9423 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9424 {
9425 char *tmptok;
9426
9427 tok = end_tok + 1;
9428 tmptok = tok;
9429 *task = strtol (tok, &tok, 0);
9430 if (tok == tmptok)
9431 error (_("Junk after task keyword."));
9432 if (!valid_task_id (*task))
9433 error (_("Unknown task %d."), *task);
9434 }
9435 else if (rest)
9436 {
9437 *rest = savestring (tok, strlen (tok));
9438 return;
9439 }
9440 else
9441 error (_("Junk at end of arguments."));
9442 }
9443 }
9444
9445 /* Decode a static tracepoint marker spec. */
9446
9447 static struct symtabs_and_lines
9448 decode_static_tracepoint_spec (char **arg_p)
9449 {
9450 VEC(static_tracepoint_marker_p) *markers = NULL;
9451 struct symtabs_and_lines sals;
9452 struct cleanup *old_chain;
9453 char *p = &(*arg_p)[3];
9454 char *endp;
9455 char *marker_str;
9456 int i;
9457
9458 p = skip_spaces (p);
9459
9460 endp = skip_to_space (p);
9461
9462 marker_str = savestring (p, endp - p);
9463 old_chain = make_cleanup (xfree, marker_str);
9464
9465 markers = target_static_tracepoint_markers_by_strid (marker_str);
9466 if (VEC_empty(static_tracepoint_marker_p, markers))
9467 error (_("No known static tracepoint marker named %s"), marker_str);
9468
9469 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9470 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9471
9472 for (i = 0; i < sals.nelts; i++)
9473 {
9474 struct static_tracepoint_marker *marker;
9475
9476 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9477
9478 init_sal (&sals.sals[i]);
9479
9480 sals.sals[i] = find_pc_line (marker->address, 0);
9481 sals.sals[i].pc = marker->address;
9482
9483 release_static_tracepoint_marker (marker);
9484 }
9485
9486 do_cleanups (old_chain);
9487
9488 *arg_p = endp;
9489 return sals;
9490 }
9491
9492 /* Set a breakpoint. This function is shared between CLI and MI
9493 functions for setting a breakpoint. This function has two major
9494 modes of operations, selected by the PARSE_CONDITION_AND_THREAD
9495 parameter. If non-zero, the function will parse arg, extracting
9496 breakpoint location, address and thread. Otherwise, ARG is just
9497 the location of breakpoint, with condition and thread specified by
9498 the COND_STRING and THREAD parameters. If INTERNAL is non-zero,
9499 the breakpoint number will be allocated from the internal
9500 breakpoint count. Returns true if any breakpoint was created;
9501 false otherwise. */
9502
9503 int
9504 create_breakpoint (struct gdbarch *gdbarch,
9505 char *arg, char *cond_string,
9506 int thread, char *extra_string,
9507 int parse_condition_and_thread,
9508 int tempflag, enum bptype type_wanted,
9509 int ignore_count,
9510 enum auto_boolean pending_break_support,
9511 const struct breakpoint_ops *ops,
9512 int from_tty, int enabled, int internal,
9513 unsigned flags)
9514 {
9515 volatile struct gdb_exception e;
9516 char *copy_arg = NULL;
9517 char *addr_start = arg;
9518 struct linespec_result canonical;
9519 struct cleanup *old_chain;
9520 struct cleanup *bkpt_chain = NULL;
9521 int pending = 0;
9522 int task = 0;
9523 int prev_bkpt_count = breakpoint_count;
9524
9525 gdb_assert (ops != NULL);
9526
9527 init_linespec_result (&canonical);
9528
9529 TRY_CATCH (e, RETURN_MASK_ALL)
9530 {
9531 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9532 addr_start, &copy_arg);
9533 }
9534
9535 /* If caller is interested in rc value from parse, set value. */
9536 switch (e.reason)
9537 {
9538 case GDB_NO_ERROR:
9539 if (VEC_empty (linespec_sals, canonical.sals))
9540 return 0;
9541 break;
9542 case RETURN_ERROR:
9543 switch (e.error)
9544 {
9545 case NOT_FOUND_ERROR:
9546
9547 /* If pending breakpoint support is turned off, throw
9548 error. */
9549
9550 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9551 throw_exception (e);
9552
9553 exception_print (gdb_stderr, e);
9554
9555 /* If pending breakpoint support is auto query and the user
9556 selects no, then simply return the error code. */
9557 if (pending_break_support == AUTO_BOOLEAN_AUTO
9558 && !nquery (_("Make %s pending on future shared library load? "),
9559 bptype_string (type_wanted)))
9560 return 0;
9561
9562 /* At this point, either the user was queried about setting
9563 a pending breakpoint and selected yes, or pending
9564 breakpoint behavior is on and thus a pending breakpoint
9565 is defaulted on behalf of the user. */
9566 {
9567 struct linespec_sals lsal;
9568
9569 copy_arg = xstrdup (addr_start);
9570 lsal.canonical = xstrdup (copy_arg);
9571 lsal.sals.nelts = 1;
9572 lsal.sals.sals = XNEW (struct symtab_and_line);
9573 init_sal (&lsal.sals.sals[0]);
9574 pending = 1;
9575 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9576 }
9577 break;
9578 default:
9579 throw_exception (e);
9580 }
9581 break;
9582 default:
9583 throw_exception (e);
9584 }
9585
9586 /* Create a chain of things that always need to be cleaned up. */
9587 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9588
9589 /* ----------------------------- SNIP -----------------------------
9590 Anything added to the cleanup chain beyond this point is assumed
9591 to be part of a breakpoint. If the breakpoint create succeeds
9592 then the memory is not reclaimed. */
9593 bkpt_chain = make_cleanup (null_cleanup, 0);
9594
9595 /* Resolve all line numbers to PC's and verify that the addresses
9596 are ok for the target. */
9597 if (!pending)
9598 {
9599 int ix;
9600 struct linespec_sals *iter;
9601
9602 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9603 breakpoint_sals_to_pc (&iter->sals);
9604 }
9605
9606 /* Fast tracepoints may have additional restrictions on location. */
9607 if (!pending && type_wanted == bp_fast_tracepoint)
9608 {
9609 int ix;
9610 struct linespec_sals *iter;
9611
9612 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9613 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9614 }
9615
9616 /* Verify that condition can be parsed, before setting any
9617 breakpoints. Allocate a separate condition expression for each
9618 breakpoint. */
9619 if (!pending)
9620 {
9621 struct linespec_sals *lsal;
9622
9623 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9624
9625 if (parse_condition_and_thread)
9626 {
9627 char *rest;
9628 /* Here we only parse 'arg' to separate condition
9629 from thread number, so parsing in context of first
9630 sal is OK. When setting the breakpoint we'll
9631 re-parse it in context of each sal. */
9632
9633 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9634 &thread, &task, &rest);
9635 if (cond_string)
9636 make_cleanup (xfree, cond_string);
9637 if (rest)
9638 make_cleanup (xfree, rest);
9639 if (rest)
9640 extra_string = rest;
9641 }
9642 else
9643 {
9644 /* Create a private copy of condition string. */
9645 if (cond_string)
9646 {
9647 cond_string = xstrdup (cond_string);
9648 make_cleanup (xfree, cond_string);
9649 }
9650 /* Create a private copy of any extra string. */
9651 if (extra_string)
9652 {
9653 extra_string = xstrdup (extra_string);
9654 make_cleanup (xfree, extra_string);
9655 }
9656 }
9657
9658 ops->create_breakpoints_sal (gdbarch, &canonical, lsal,
9659 cond_string, extra_string, type_wanted,
9660 tempflag ? disp_del : disp_donttouch,
9661 thread, task, ignore_count, ops,
9662 from_tty, enabled, internal, flags);
9663 }
9664 else
9665 {
9666 struct breakpoint *b;
9667
9668 make_cleanup (xfree, copy_arg);
9669
9670 if (is_tracepoint_type (type_wanted))
9671 {
9672 struct tracepoint *t;
9673
9674 t = XCNEW (struct tracepoint);
9675 b = &t->base;
9676 }
9677 else
9678 b = XNEW (struct breakpoint);
9679
9680 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9681
9682 b->addr_string = copy_arg;
9683 if (parse_condition_and_thread)
9684 b->cond_string = NULL;
9685 else
9686 {
9687 /* Create a private copy of condition string. */
9688 if (cond_string)
9689 {
9690 cond_string = xstrdup (cond_string);
9691 make_cleanup (xfree, cond_string);
9692 }
9693 b->cond_string = cond_string;
9694 }
9695 b->extra_string = NULL;
9696 b->ignore_count = ignore_count;
9697 b->disposition = tempflag ? disp_del : disp_donttouch;
9698 b->condition_not_parsed = 1;
9699 b->enable_state = enabled ? bp_enabled : bp_disabled;
9700 if ((type_wanted != bp_breakpoint
9701 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9702 b->pspace = current_program_space;
9703
9704 install_breakpoint (internal, b, 0);
9705 }
9706
9707 if (VEC_length (linespec_sals, canonical.sals) > 1)
9708 {
9709 warning (_("Multiple breakpoints were set.\nUse the "
9710 "\"delete\" command to delete unwanted breakpoints."));
9711 prev_breakpoint_count = prev_bkpt_count;
9712 }
9713
9714 /* That's it. Discard the cleanups for data inserted into the
9715 breakpoint. */
9716 discard_cleanups (bkpt_chain);
9717 /* But cleanup everything else. */
9718 do_cleanups (old_chain);
9719
9720 /* error call may happen here - have BKPT_CHAIN already discarded. */
9721 update_global_location_list (1);
9722
9723 return 1;
9724 }
9725
9726 /* Set a breakpoint.
9727 ARG is a string describing breakpoint address,
9728 condition, and thread.
9729 FLAG specifies if a breakpoint is hardware on,
9730 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9731 and BP_TEMPFLAG. */
9732
9733 static void
9734 break_command_1 (char *arg, int flag, int from_tty)
9735 {
9736 int tempflag = flag & BP_TEMPFLAG;
9737 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9738 ? bp_hardware_breakpoint
9739 : bp_breakpoint);
9740 struct breakpoint_ops *ops;
9741 const char *arg_cp = arg;
9742
9743 /* Matching breakpoints on probes. */
9744 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
9745 ops = &bkpt_probe_breakpoint_ops;
9746 else
9747 ops = &bkpt_breakpoint_ops;
9748
9749 create_breakpoint (get_current_arch (),
9750 arg,
9751 NULL, 0, NULL, 1 /* parse arg */,
9752 tempflag, type_wanted,
9753 0 /* Ignore count */,
9754 pending_break_support,
9755 ops,
9756 from_tty,
9757 1 /* enabled */,
9758 0 /* internal */,
9759 0);
9760 }
9761
9762 /* Helper function for break_command_1 and disassemble_command. */
9763
9764 void
9765 resolve_sal_pc (struct symtab_and_line *sal)
9766 {
9767 CORE_ADDR pc;
9768
9769 if (sal->pc == 0 && sal->symtab != NULL)
9770 {
9771 if (!find_line_pc (sal->symtab, sal->line, &pc))
9772 error (_("No line %d in file \"%s\"."),
9773 sal->line, sal->symtab->filename);
9774 sal->pc = pc;
9775
9776 /* If this SAL corresponds to a breakpoint inserted using a line
9777 number, then skip the function prologue if necessary. */
9778 if (sal->explicit_line)
9779 skip_prologue_sal (sal);
9780 }
9781
9782 if (sal->section == 0 && sal->symtab != NULL)
9783 {
9784 struct blockvector *bv;
9785 struct block *b;
9786 struct symbol *sym;
9787
9788 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
9789 if (bv != NULL)
9790 {
9791 sym = block_linkage_function (b);
9792 if (sym != NULL)
9793 {
9794 fixup_symbol_section (sym, sal->symtab->objfile);
9795 sal->section = SYMBOL_OBJ_SECTION (sym);
9796 }
9797 else
9798 {
9799 /* It really is worthwhile to have the section, so we'll
9800 just have to look harder. This case can be executed
9801 if we have line numbers but no functions (as can
9802 happen in assembly source). */
9803
9804 struct minimal_symbol *msym;
9805 struct cleanup *old_chain = save_current_space_and_thread ();
9806
9807 switch_to_program_space_and_thread (sal->pspace);
9808
9809 msym = lookup_minimal_symbol_by_pc (sal->pc);
9810 if (msym)
9811 sal->section = SYMBOL_OBJ_SECTION (msym);
9812
9813 do_cleanups (old_chain);
9814 }
9815 }
9816 }
9817 }
9818
9819 void
9820 break_command (char *arg, int from_tty)
9821 {
9822 break_command_1 (arg, 0, from_tty);
9823 }
9824
9825 void
9826 tbreak_command (char *arg, int from_tty)
9827 {
9828 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9829 }
9830
9831 static void
9832 hbreak_command (char *arg, int from_tty)
9833 {
9834 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9835 }
9836
9837 static void
9838 thbreak_command (char *arg, int from_tty)
9839 {
9840 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9841 }
9842
9843 static void
9844 stop_command (char *arg, int from_tty)
9845 {
9846 printf_filtered (_("Specify the type of breakpoint to set.\n\
9847 Usage: stop in <function | address>\n\
9848 stop at <line>\n"));
9849 }
9850
9851 static void
9852 stopin_command (char *arg, int from_tty)
9853 {
9854 int badInput = 0;
9855
9856 if (arg == (char *) NULL)
9857 badInput = 1;
9858 else if (*arg != '*')
9859 {
9860 char *argptr = arg;
9861 int hasColon = 0;
9862
9863 /* Look for a ':'. If this is a line number specification, then
9864 say it is bad, otherwise, it should be an address or
9865 function/method name. */
9866 while (*argptr && !hasColon)
9867 {
9868 hasColon = (*argptr == ':');
9869 argptr++;
9870 }
9871
9872 if (hasColon)
9873 badInput = (*argptr != ':'); /* Not a class::method */
9874 else
9875 badInput = isdigit (*arg); /* a simple line number */
9876 }
9877
9878 if (badInput)
9879 printf_filtered (_("Usage: stop in <function | address>\n"));
9880 else
9881 break_command_1 (arg, 0, from_tty);
9882 }
9883
9884 static void
9885 stopat_command (char *arg, int from_tty)
9886 {
9887 int badInput = 0;
9888
9889 if (arg == (char *) NULL || *arg == '*') /* no line number */
9890 badInput = 1;
9891 else
9892 {
9893 char *argptr = arg;
9894 int hasColon = 0;
9895
9896 /* Look for a ':'. If there is a '::' then get out, otherwise
9897 it is probably a line number. */
9898 while (*argptr && !hasColon)
9899 {
9900 hasColon = (*argptr == ':');
9901 argptr++;
9902 }
9903
9904 if (hasColon)
9905 badInput = (*argptr == ':'); /* we have class::method */
9906 else
9907 badInput = !isdigit (*arg); /* not a line number */
9908 }
9909
9910 if (badInput)
9911 printf_filtered (_("Usage: stop at <line>\n"));
9912 else
9913 break_command_1 (arg, 0, from_tty);
9914 }
9915
9916 /* The dynamic printf command is mostly like a regular breakpoint, but
9917 with a prewired command list consisting of a single output command,
9918 built from extra arguments supplied on the dprintf command
9919 line. */
9920
9921 static void
9922 dprintf_command (char *arg, int from_tty)
9923 {
9924 create_breakpoint (get_current_arch (),
9925 arg,
9926 NULL, 0, NULL, 1 /* parse arg */,
9927 0, bp_dprintf,
9928 0 /* Ignore count */,
9929 pending_break_support,
9930 &dprintf_breakpoint_ops,
9931 from_tty,
9932 1 /* enabled */,
9933 0 /* internal */,
9934 0);
9935 }
9936
9937 static void
9938 agent_printf_command (char *arg, int from_tty)
9939 {
9940 error (_("May only run agent-printf on the target"));
9941 }
9942
9943 /* Implement the "breakpoint_hit" breakpoint_ops method for
9944 ranged breakpoints. */
9945
9946 static int
9947 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9948 struct address_space *aspace,
9949 CORE_ADDR bp_addr,
9950 const struct target_waitstatus *ws)
9951 {
9952 if (ws->kind != TARGET_WAITKIND_STOPPED
9953 || ws->value.sig != GDB_SIGNAL_TRAP)
9954 return 0;
9955
9956 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9957 bl->length, aspace, bp_addr);
9958 }
9959
9960 /* Implement the "resources_needed" breakpoint_ops method for
9961 ranged breakpoints. */
9962
9963 static int
9964 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9965 {
9966 return target_ranged_break_num_registers ();
9967 }
9968
9969 /* Implement the "print_it" breakpoint_ops method for
9970 ranged breakpoints. */
9971
9972 static enum print_stop_action
9973 print_it_ranged_breakpoint (bpstat bs)
9974 {
9975 struct breakpoint *b = bs->breakpoint_at;
9976 struct bp_location *bl = b->loc;
9977 struct ui_out *uiout = current_uiout;
9978
9979 gdb_assert (b->type == bp_hardware_breakpoint);
9980
9981 /* Ranged breakpoints have only one location. */
9982 gdb_assert (bl && bl->next == NULL);
9983
9984 annotate_breakpoint (b->number);
9985 if (b->disposition == disp_del)
9986 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
9987 else
9988 ui_out_text (uiout, "\nRanged breakpoint ");
9989 if (ui_out_is_mi_like_p (uiout))
9990 {
9991 ui_out_field_string (uiout, "reason",
9992 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9993 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
9994 }
9995 ui_out_field_int (uiout, "bkptno", b->number);
9996 ui_out_text (uiout, ", ");
9997
9998 return PRINT_SRC_AND_LOC;
9999 }
10000
10001 /* Implement the "print_one" breakpoint_ops method for
10002 ranged breakpoints. */
10003
10004 static void
10005 print_one_ranged_breakpoint (struct breakpoint *b,
10006 struct bp_location **last_loc)
10007 {
10008 struct bp_location *bl = b->loc;
10009 struct value_print_options opts;
10010 struct ui_out *uiout = current_uiout;
10011
10012 /* Ranged breakpoints have only one location. */
10013 gdb_assert (bl && bl->next == NULL);
10014
10015 get_user_print_options (&opts);
10016
10017 if (opts.addressprint)
10018 /* We don't print the address range here, it will be printed later
10019 by print_one_detail_ranged_breakpoint. */
10020 ui_out_field_skip (uiout, "addr");
10021 annotate_field (5);
10022 print_breakpoint_location (b, bl);
10023 *last_loc = bl;
10024 }
10025
10026 /* Implement the "print_one_detail" breakpoint_ops method for
10027 ranged breakpoints. */
10028
10029 static void
10030 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10031 struct ui_out *uiout)
10032 {
10033 CORE_ADDR address_start, address_end;
10034 struct bp_location *bl = b->loc;
10035 struct ui_file *stb = mem_fileopen ();
10036 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10037
10038 gdb_assert (bl);
10039
10040 address_start = bl->address;
10041 address_end = address_start + bl->length - 1;
10042
10043 ui_out_text (uiout, "\taddress range: ");
10044 fprintf_unfiltered (stb, "[%s, %s]",
10045 print_core_address (bl->gdbarch, address_start),
10046 print_core_address (bl->gdbarch, address_end));
10047 ui_out_field_stream (uiout, "addr", stb);
10048 ui_out_text (uiout, "\n");
10049
10050 do_cleanups (cleanup);
10051 }
10052
10053 /* Implement the "print_mention" breakpoint_ops method for
10054 ranged breakpoints. */
10055
10056 static void
10057 print_mention_ranged_breakpoint (struct breakpoint *b)
10058 {
10059 struct bp_location *bl = b->loc;
10060 struct ui_out *uiout = current_uiout;
10061
10062 gdb_assert (bl);
10063 gdb_assert (b->type == bp_hardware_breakpoint);
10064
10065 if (ui_out_is_mi_like_p (uiout))
10066 return;
10067
10068 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10069 b->number, paddress (bl->gdbarch, bl->address),
10070 paddress (bl->gdbarch, bl->address + bl->length - 1));
10071 }
10072
10073 /* Implement the "print_recreate" breakpoint_ops method for
10074 ranged breakpoints. */
10075
10076 static void
10077 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10078 {
10079 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10080 b->addr_string_range_end);
10081 print_recreate_thread (b, fp);
10082 }
10083
10084 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10085
10086 static struct breakpoint_ops ranged_breakpoint_ops;
10087
10088 /* Find the address where the end of the breakpoint range should be
10089 placed, given the SAL of the end of the range. This is so that if
10090 the user provides a line number, the end of the range is set to the
10091 last instruction of the given line. */
10092
10093 static CORE_ADDR
10094 find_breakpoint_range_end (struct symtab_and_line sal)
10095 {
10096 CORE_ADDR end;
10097
10098 /* If the user provided a PC value, use it. Otherwise,
10099 find the address of the end of the given location. */
10100 if (sal.explicit_pc)
10101 end = sal.pc;
10102 else
10103 {
10104 int ret;
10105 CORE_ADDR start;
10106
10107 ret = find_line_pc_range (sal, &start, &end);
10108 if (!ret)
10109 error (_("Could not find location of the end of the range."));
10110
10111 /* find_line_pc_range returns the start of the next line. */
10112 end--;
10113 }
10114
10115 return end;
10116 }
10117
10118 /* Implement the "break-range" CLI command. */
10119
10120 static void
10121 break_range_command (char *arg, int from_tty)
10122 {
10123 char *arg_start, *addr_string_start, *addr_string_end;
10124 struct linespec_result canonical_start, canonical_end;
10125 int bp_count, can_use_bp, length;
10126 CORE_ADDR end;
10127 struct breakpoint *b;
10128 struct symtab_and_line sal_start, sal_end;
10129 struct cleanup *cleanup_bkpt;
10130 struct linespec_sals *lsal_start, *lsal_end;
10131
10132 /* We don't support software ranged breakpoints. */
10133 if (target_ranged_break_num_registers () < 0)
10134 error (_("This target does not support hardware ranged breakpoints."));
10135
10136 bp_count = hw_breakpoint_used_count ();
10137 bp_count += target_ranged_break_num_registers ();
10138 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10139 bp_count, 0);
10140 if (can_use_bp < 0)
10141 error (_("Hardware breakpoints used exceeds limit."));
10142
10143 arg = skip_spaces (arg);
10144 if (arg == NULL || arg[0] == '\0')
10145 error(_("No address range specified."));
10146
10147 init_linespec_result (&canonical_start);
10148
10149 arg_start = arg;
10150 parse_breakpoint_sals (&arg, &canonical_start);
10151
10152 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10153
10154 if (arg[0] != ',')
10155 error (_("Too few arguments."));
10156 else if (VEC_empty (linespec_sals, canonical_start.sals))
10157 error (_("Could not find location of the beginning of the range."));
10158
10159 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10160
10161 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10162 || lsal_start->sals.nelts != 1)
10163 error (_("Cannot create a ranged breakpoint with multiple locations."));
10164
10165 sal_start = lsal_start->sals.sals[0];
10166 addr_string_start = savestring (arg_start, arg - arg_start);
10167 make_cleanup (xfree, addr_string_start);
10168
10169 arg++; /* Skip the comma. */
10170 arg = skip_spaces (arg);
10171
10172 /* Parse the end location. */
10173
10174 init_linespec_result (&canonical_end);
10175 arg_start = arg;
10176
10177 /* We call decode_line_full directly here instead of using
10178 parse_breakpoint_sals because we need to specify the start location's
10179 symtab and line as the default symtab and line for the end of the
10180 range. This makes it possible to have ranges like "foo.c:27, +14",
10181 where +14 means 14 lines from the start location. */
10182 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10183 sal_start.symtab, sal_start.line,
10184 &canonical_end, NULL, NULL);
10185
10186 make_cleanup_destroy_linespec_result (&canonical_end);
10187
10188 if (VEC_empty (linespec_sals, canonical_end.sals))
10189 error (_("Could not find location of the end of the range."));
10190
10191 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10192 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10193 || lsal_end->sals.nelts != 1)
10194 error (_("Cannot create a ranged breakpoint with multiple locations."));
10195
10196 sal_end = lsal_end->sals.sals[0];
10197 addr_string_end = savestring (arg_start, arg - arg_start);
10198 make_cleanup (xfree, addr_string_end);
10199
10200 end = find_breakpoint_range_end (sal_end);
10201 if (sal_start.pc > end)
10202 error (_("Invalid address range, end precedes start."));
10203
10204 length = end - sal_start.pc + 1;
10205 if (length < 0)
10206 /* Length overflowed. */
10207 error (_("Address range too large."));
10208 else if (length == 1)
10209 {
10210 /* This range is simple enough to be handled by
10211 the `hbreak' command. */
10212 hbreak_command (addr_string_start, 1);
10213
10214 do_cleanups (cleanup_bkpt);
10215
10216 return;
10217 }
10218
10219 /* Now set up the breakpoint. */
10220 b = set_raw_breakpoint (get_current_arch (), sal_start,
10221 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10222 set_breakpoint_count (breakpoint_count + 1);
10223 b->number = breakpoint_count;
10224 b->disposition = disp_donttouch;
10225 b->addr_string = xstrdup (addr_string_start);
10226 b->addr_string_range_end = xstrdup (addr_string_end);
10227 b->loc->length = length;
10228
10229 do_cleanups (cleanup_bkpt);
10230
10231 mention (b);
10232 observer_notify_breakpoint_created (b);
10233 update_global_location_list (1);
10234 }
10235
10236 /* Return non-zero if EXP is verified as constant. Returned zero
10237 means EXP is variable. Also the constant detection may fail for
10238 some constant expressions and in such case still falsely return
10239 zero. */
10240
10241 static int
10242 watchpoint_exp_is_const (const struct expression *exp)
10243 {
10244 int i = exp->nelts;
10245
10246 while (i > 0)
10247 {
10248 int oplenp, argsp;
10249
10250 /* We are only interested in the descriptor of each element. */
10251 operator_length (exp, i, &oplenp, &argsp);
10252 i -= oplenp;
10253
10254 switch (exp->elts[i].opcode)
10255 {
10256 case BINOP_ADD:
10257 case BINOP_SUB:
10258 case BINOP_MUL:
10259 case BINOP_DIV:
10260 case BINOP_REM:
10261 case BINOP_MOD:
10262 case BINOP_LSH:
10263 case BINOP_RSH:
10264 case BINOP_LOGICAL_AND:
10265 case BINOP_LOGICAL_OR:
10266 case BINOP_BITWISE_AND:
10267 case BINOP_BITWISE_IOR:
10268 case BINOP_BITWISE_XOR:
10269 case BINOP_EQUAL:
10270 case BINOP_NOTEQUAL:
10271 case BINOP_LESS:
10272 case BINOP_GTR:
10273 case BINOP_LEQ:
10274 case BINOP_GEQ:
10275 case BINOP_REPEAT:
10276 case BINOP_COMMA:
10277 case BINOP_EXP:
10278 case BINOP_MIN:
10279 case BINOP_MAX:
10280 case BINOP_INTDIV:
10281 case BINOP_CONCAT:
10282 case BINOP_IN:
10283 case BINOP_RANGE:
10284 case TERNOP_COND:
10285 case TERNOP_SLICE:
10286
10287 case OP_LONG:
10288 case OP_DOUBLE:
10289 case OP_DECFLOAT:
10290 case OP_LAST:
10291 case OP_COMPLEX:
10292 case OP_STRING:
10293 case OP_ARRAY:
10294 case OP_TYPE:
10295 case OP_TYPEOF:
10296 case OP_DECLTYPE:
10297 case OP_NAME:
10298 case OP_OBJC_NSSTRING:
10299
10300 case UNOP_NEG:
10301 case UNOP_LOGICAL_NOT:
10302 case UNOP_COMPLEMENT:
10303 case UNOP_ADDR:
10304 case UNOP_HIGH:
10305 case UNOP_CAST:
10306
10307 case UNOP_CAST_TYPE:
10308 case UNOP_REINTERPRET_CAST:
10309 case UNOP_DYNAMIC_CAST:
10310 /* Unary, binary and ternary operators: We have to check
10311 their operands. If they are constant, then so is the
10312 result of that operation. For instance, if A and B are
10313 determined to be constants, then so is "A + B".
10314
10315 UNOP_IND is one exception to the rule above, because the
10316 value of *ADDR is not necessarily a constant, even when
10317 ADDR is. */
10318 break;
10319
10320 case OP_VAR_VALUE:
10321 /* Check whether the associated symbol is a constant.
10322
10323 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10324 possible that a buggy compiler could mark a variable as
10325 constant even when it is not, and TYPE_CONST would return
10326 true in this case, while SYMBOL_CLASS wouldn't.
10327
10328 We also have to check for function symbols because they
10329 are always constant. */
10330 {
10331 struct symbol *s = exp->elts[i + 2].symbol;
10332
10333 if (SYMBOL_CLASS (s) != LOC_BLOCK
10334 && SYMBOL_CLASS (s) != LOC_CONST
10335 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10336 return 0;
10337 break;
10338 }
10339
10340 /* The default action is to return 0 because we are using
10341 the optimistic approach here: If we don't know something,
10342 then it is not a constant. */
10343 default:
10344 return 0;
10345 }
10346 }
10347
10348 return 1;
10349 }
10350
10351 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10352
10353 static void
10354 dtor_watchpoint (struct breakpoint *self)
10355 {
10356 struct watchpoint *w = (struct watchpoint *) self;
10357
10358 xfree (w->cond_exp);
10359 xfree (w->exp);
10360 xfree (w->exp_string);
10361 xfree (w->exp_string_reparse);
10362 value_free (w->val);
10363
10364 base_breakpoint_ops.dtor (self);
10365 }
10366
10367 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10368
10369 static void
10370 re_set_watchpoint (struct breakpoint *b)
10371 {
10372 struct watchpoint *w = (struct watchpoint *) b;
10373
10374 /* Watchpoint can be either on expression using entirely global
10375 variables, or it can be on local variables.
10376
10377 Watchpoints of the first kind are never auto-deleted, and even
10378 persist across program restarts. Since they can use variables
10379 from shared libraries, we need to reparse expression as libraries
10380 are loaded and unloaded.
10381
10382 Watchpoints on local variables can also change meaning as result
10383 of solib event. For example, if a watchpoint uses both a local
10384 and a global variables in expression, it's a local watchpoint,
10385 but unloading of a shared library will make the expression
10386 invalid. This is not a very common use case, but we still
10387 re-evaluate expression, to avoid surprises to the user.
10388
10389 Note that for local watchpoints, we re-evaluate it only if
10390 watchpoints frame id is still valid. If it's not, it means the
10391 watchpoint is out of scope and will be deleted soon. In fact,
10392 I'm not sure we'll ever be called in this case.
10393
10394 If a local watchpoint's frame id is still valid, then
10395 w->exp_valid_block is likewise valid, and we can safely use it.
10396
10397 Don't do anything about disabled watchpoints, since they will be
10398 reevaluated again when enabled. */
10399 update_watchpoint (w, 1 /* reparse */);
10400 }
10401
10402 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10403
10404 static int
10405 insert_watchpoint (struct bp_location *bl)
10406 {
10407 struct watchpoint *w = (struct watchpoint *) bl->owner;
10408 int length = w->exact ? 1 : bl->length;
10409
10410 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10411 w->cond_exp);
10412 }
10413
10414 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10415
10416 static int
10417 remove_watchpoint (struct bp_location *bl)
10418 {
10419 struct watchpoint *w = (struct watchpoint *) bl->owner;
10420 int length = w->exact ? 1 : bl->length;
10421
10422 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10423 w->cond_exp);
10424 }
10425
10426 static int
10427 breakpoint_hit_watchpoint (const struct bp_location *bl,
10428 struct address_space *aspace, CORE_ADDR bp_addr,
10429 const struct target_waitstatus *ws)
10430 {
10431 struct breakpoint *b = bl->owner;
10432 struct watchpoint *w = (struct watchpoint *) b;
10433
10434 /* Continuable hardware watchpoints are treated as non-existent if the
10435 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10436 some data address). Otherwise gdb won't stop on a break instruction
10437 in the code (not from a breakpoint) when a hardware watchpoint has
10438 been defined. Also skip watchpoints which we know did not trigger
10439 (did not match the data address). */
10440 if (is_hardware_watchpoint (b)
10441 && w->watchpoint_triggered == watch_triggered_no)
10442 return 0;
10443
10444 return 1;
10445 }
10446
10447 static void
10448 check_status_watchpoint (bpstat bs)
10449 {
10450 gdb_assert (is_watchpoint (bs->breakpoint_at));
10451
10452 bpstat_check_watchpoint (bs);
10453 }
10454
10455 /* Implement the "resources_needed" breakpoint_ops method for
10456 hardware watchpoints. */
10457
10458 static int
10459 resources_needed_watchpoint (const struct bp_location *bl)
10460 {
10461 struct watchpoint *w = (struct watchpoint *) bl->owner;
10462 int length = w->exact? 1 : bl->length;
10463
10464 return target_region_ok_for_hw_watchpoint (bl->address, length);
10465 }
10466
10467 /* Implement the "works_in_software_mode" breakpoint_ops method for
10468 hardware watchpoints. */
10469
10470 static int
10471 works_in_software_mode_watchpoint (const struct breakpoint *b)
10472 {
10473 /* Read and access watchpoints only work with hardware support. */
10474 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10475 }
10476
10477 static enum print_stop_action
10478 print_it_watchpoint (bpstat bs)
10479 {
10480 struct cleanup *old_chain;
10481 struct breakpoint *b;
10482 const struct bp_location *bl;
10483 struct ui_file *stb;
10484 enum print_stop_action result;
10485 struct watchpoint *w;
10486 struct ui_out *uiout = current_uiout;
10487
10488 gdb_assert (bs->bp_location_at != NULL);
10489
10490 bl = bs->bp_location_at;
10491 b = bs->breakpoint_at;
10492 w = (struct watchpoint *) b;
10493
10494 stb = mem_fileopen ();
10495 old_chain = make_cleanup_ui_file_delete (stb);
10496
10497 switch (b->type)
10498 {
10499 case bp_watchpoint:
10500 case bp_hardware_watchpoint:
10501 annotate_watchpoint (b->number);
10502 if (ui_out_is_mi_like_p (uiout))
10503 ui_out_field_string
10504 (uiout, "reason",
10505 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10506 mention (b);
10507 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10508 ui_out_text (uiout, "\nOld value = ");
10509 watchpoint_value_print (bs->old_val, stb);
10510 ui_out_field_stream (uiout, "old", stb);
10511 ui_out_text (uiout, "\nNew value = ");
10512 watchpoint_value_print (w->val, stb);
10513 ui_out_field_stream (uiout, "new", stb);
10514 ui_out_text (uiout, "\n");
10515 /* More than one watchpoint may have been triggered. */
10516 result = PRINT_UNKNOWN;
10517 break;
10518
10519 case bp_read_watchpoint:
10520 if (ui_out_is_mi_like_p (uiout))
10521 ui_out_field_string
10522 (uiout, "reason",
10523 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10524 mention (b);
10525 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10526 ui_out_text (uiout, "\nValue = ");
10527 watchpoint_value_print (w->val, stb);
10528 ui_out_field_stream (uiout, "value", stb);
10529 ui_out_text (uiout, "\n");
10530 result = PRINT_UNKNOWN;
10531 break;
10532
10533 case bp_access_watchpoint:
10534 if (bs->old_val != NULL)
10535 {
10536 annotate_watchpoint (b->number);
10537 if (ui_out_is_mi_like_p (uiout))
10538 ui_out_field_string
10539 (uiout, "reason",
10540 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10541 mention (b);
10542 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10543 ui_out_text (uiout, "\nOld value = ");
10544 watchpoint_value_print (bs->old_val, stb);
10545 ui_out_field_stream (uiout, "old", stb);
10546 ui_out_text (uiout, "\nNew value = ");
10547 }
10548 else
10549 {
10550 mention (b);
10551 if (ui_out_is_mi_like_p (uiout))
10552 ui_out_field_string
10553 (uiout, "reason",
10554 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10555 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10556 ui_out_text (uiout, "\nValue = ");
10557 }
10558 watchpoint_value_print (w->val, stb);
10559 ui_out_field_stream (uiout, "new", stb);
10560 ui_out_text (uiout, "\n");
10561 result = PRINT_UNKNOWN;
10562 break;
10563 default:
10564 result = PRINT_UNKNOWN;
10565 }
10566
10567 do_cleanups (old_chain);
10568 return result;
10569 }
10570
10571 /* Implement the "print_mention" breakpoint_ops method for hardware
10572 watchpoints. */
10573
10574 static void
10575 print_mention_watchpoint (struct breakpoint *b)
10576 {
10577 struct cleanup *ui_out_chain;
10578 struct watchpoint *w = (struct watchpoint *) b;
10579 struct ui_out *uiout = current_uiout;
10580
10581 switch (b->type)
10582 {
10583 case bp_watchpoint:
10584 ui_out_text (uiout, "Watchpoint ");
10585 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10586 break;
10587 case bp_hardware_watchpoint:
10588 ui_out_text (uiout, "Hardware watchpoint ");
10589 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10590 break;
10591 case bp_read_watchpoint:
10592 ui_out_text (uiout, "Hardware read watchpoint ");
10593 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10594 break;
10595 case bp_access_watchpoint:
10596 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10597 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10598 break;
10599 default:
10600 internal_error (__FILE__, __LINE__,
10601 _("Invalid hardware watchpoint type."));
10602 }
10603
10604 ui_out_field_int (uiout, "number", b->number);
10605 ui_out_text (uiout, ": ");
10606 ui_out_field_string (uiout, "exp", w->exp_string);
10607 do_cleanups (ui_out_chain);
10608 }
10609
10610 /* Implement the "print_recreate" breakpoint_ops method for
10611 watchpoints. */
10612
10613 static void
10614 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10615 {
10616 struct watchpoint *w = (struct watchpoint *) b;
10617
10618 switch (b->type)
10619 {
10620 case bp_watchpoint:
10621 case bp_hardware_watchpoint:
10622 fprintf_unfiltered (fp, "watch");
10623 break;
10624 case bp_read_watchpoint:
10625 fprintf_unfiltered (fp, "rwatch");
10626 break;
10627 case bp_access_watchpoint:
10628 fprintf_unfiltered (fp, "awatch");
10629 break;
10630 default:
10631 internal_error (__FILE__, __LINE__,
10632 _("Invalid watchpoint type."));
10633 }
10634
10635 fprintf_unfiltered (fp, " %s", w->exp_string);
10636 print_recreate_thread (b, fp);
10637 }
10638
10639 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10640
10641 static struct breakpoint_ops watchpoint_breakpoint_ops;
10642
10643 /* Implement the "insert" breakpoint_ops method for
10644 masked hardware watchpoints. */
10645
10646 static int
10647 insert_masked_watchpoint (struct bp_location *bl)
10648 {
10649 struct watchpoint *w = (struct watchpoint *) bl->owner;
10650
10651 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10652 bl->watchpoint_type);
10653 }
10654
10655 /* Implement the "remove" breakpoint_ops method for
10656 masked hardware watchpoints. */
10657
10658 static int
10659 remove_masked_watchpoint (struct bp_location *bl)
10660 {
10661 struct watchpoint *w = (struct watchpoint *) bl->owner;
10662
10663 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10664 bl->watchpoint_type);
10665 }
10666
10667 /* Implement the "resources_needed" breakpoint_ops method for
10668 masked hardware watchpoints. */
10669
10670 static int
10671 resources_needed_masked_watchpoint (const struct bp_location *bl)
10672 {
10673 struct watchpoint *w = (struct watchpoint *) bl->owner;
10674
10675 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10676 }
10677
10678 /* Implement the "works_in_software_mode" breakpoint_ops method for
10679 masked hardware watchpoints. */
10680
10681 static int
10682 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10683 {
10684 return 0;
10685 }
10686
10687 /* Implement the "print_it" breakpoint_ops method for
10688 masked hardware watchpoints. */
10689
10690 static enum print_stop_action
10691 print_it_masked_watchpoint (bpstat bs)
10692 {
10693 struct breakpoint *b = bs->breakpoint_at;
10694 struct ui_out *uiout = current_uiout;
10695
10696 /* Masked watchpoints have only one location. */
10697 gdb_assert (b->loc && b->loc->next == NULL);
10698
10699 switch (b->type)
10700 {
10701 case bp_hardware_watchpoint:
10702 annotate_watchpoint (b->number);
10703 if (ui_out_is_mi_like_p (uiout))
10704 ui_out_field_string
10705 (uiout, "reason",
10706 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10707 break;
10708
10709 case bp_read_watchpoint:
10710 if (ui_out_is_mi_like_p (uiout))
10711 ui_out_field_string
10712 (uiout, "reason",
10713 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10714 break;
10715
10716 case bp_access_watchpoint:
10717 if (ui_out_is_mi_like_p (uiout))
10718 ui_out_field_string
10719 (uiout, "reason",
10720 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10721 break;
10722 default:
10723 internal_error (__FILE__, __LINE__,
10724 _("Invalid hardware watchpoint type."));
10725 }
10726
10727 mention (b);
10728 ui_out_text (uiout, _("\n\
10729 Check the underlying instruction at PC for the memory\n\
10730 address and value which triggered this watchpoint.\n"));
10731 ui_out_text (uiout, "\n");
10732
10733 /* More than one watchpoint may have been triggered. */
10734 return PRINT_UNKNOWN;
10735 }
10736
10737 /* Implement the "print_one_detail" breakpoint_ops method for
10738 masked hardware watchpoints. */
10739
10740 static void
10741 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10742 struct ui_out *uiout)
10743 {
10744 struct watchpoint *w = (struct watchpoint *) b;
10745
10746 /* Masked watchpoints have only one location. */
10747 gdb_assert (b->loc && b->loc->next == NULL);
10748
10749 ui_out_text (uiout, "\tmask ");
10750 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
10751 ui_out_text (uiout, "\n");
10752 }
10753
10754 /* Implement the "print_mention" breakpoint_ops method for
10755 masked hardware watchpoints. */
10756
10757 static void
10758 print_mention_masked_watchpoint (struct breakpoint *b)
10759 {
10760 struct watchpoint *w = (struct watchpoint *) b;
10761 struct ui_out *uiout = current_uiout;
10762 struct cleanup *ui_out_chain;
10763
10764 switch (b->type)
10765 {
10766 case bp_hardware_watchpoint:
10767 ui_out_text (uiout, "Masked hardware watchpoint ");
10768 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10769 break;
10770 case bp_read_watchpoint:
10771 ui_out_text (uiout, "Masked hardware read watchpoint ");
10772 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10773 break;
10774 case bp_access_watchpoint:
10775 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
10776 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10777 break;
10778 default:
10779 internal_error (__FILE__, __LINE__,
10780 _("Invalid hardware watchpoint type."));
10781 }
10782
10783 ui_out_field_int (uiout, "number", b->number);
10784 ui_out_text (uiout, ": ");
10785 ui_out_field_string (uiout, "exp", w->exp_string);
10786 do_cleanups (ui_out_chain);
10787 }
10788
10789 /* Implement the "print_recreate" breakpoint_ops method for
10790 masked hardware watchpoints. */
10791
10792 static void
10793 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10794 {
10795 struct watchpoint *w = (struct watchpoint *) b;
10796 char tmp[40];
10797
10798 switch (b->type)
10799 {
10800 case bp_hardware_watchpoint:
10801 fprintf_unfiltered (fp, "watch");
10802 break;
10803 case bp_read_watchpoint:
10804 fprintf_unfiltered (fp, "rwatch");
10805 break;
10806 case bp_access_watchpoint:
10807 fprintf_unfiltered (fp, "awatch");
10808 break;
10809 default:
10810 internal_error (__FILE__, __LINE__,
10811 _("Invalid hardware watchpoint type."));
10812 }
10813
10814 sprintf_vma (tmp, w->hw_wp_mask);
10815 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10816 print_recreate_thread (b, fp);
10817 }
10818
10819 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10820
10821 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10822
10823 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10824
10825 static int
10826 is_masked_watchpoint (const struct breakpoint *b)
10827 {
10828 return b->ops == &masked_watchpoint_breakpoint_ops;
10829 }
10830
10831 /* accessflag: hw_write: watch write,
10832 hw_read: watch read,
10833 hw_access: watch access (read or write) */
10834 static void
10835 watch_command_1 (char *arg, int accessflag, int from_tty,
10836 int just_location, int internal)
10837 {
10838 volatile struct gdb_exception e;
10839 struct breakpoint *b, *scope_breakpoint = NULL;
10840 struct expression *exp;
10841 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10842 struct value *val, *mark, *result;
10843 struct frame_info *frame;
10844 char *exp_start = NULL;
10845 char *exp_end = NULL;
10846 char *tok, *end_tok;
10847 int toklen = -1;
10848 char *cond_start = NULL;
10849 char *cond_end = NULL;
10850 enum bptype bp_type;
10851 int thread = -1;
10852 int pc = 0;
10853 /* Flag to indicate whether we are going to use masks for
10854 the hardware watchpoint. */
10855 int use_mask = 0;
10856 CORE_ADDR mask = 0;
10857 struct watchpoint *w;
10858
10859 /* Make sure that we actually have parameters to parse. */
10860 if (arg != NULL && arg[0] != '\0')
10861 {
10862 char *value_start;
10863
10864 /* Look for "parameter value" pairs at the end
10865 of the arguments string. */
10866 for (tok = arg + strlen (arg) - 1; tok > arg; tok--)
10867 {
10868 /* Skip whitespace at the end of the argument list. */
10869 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10870 tok--;
10871
10872 /* Find the beginning of the last token.
10873 This is the value of the parameter. */
10874 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10875 tok--;
10876 value_start = tok + 1;
10877
10878 /* Skip whitespace. */
10879 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10880 tok--;
10881
10882 end_tok = tok;
10883
10884 /* Find the beginning of the second to last token.
10885 This is the parameter itself. */
10886 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10887 tok--;
10888 tok++;
10889 toklen = end_tok - tok + 1;
10890
10891 if (toklen == 6 && !strncmp (tok, "thread", 6))
10892 {
10893 /* At this point we've found a "thread" token, which means
10894 the user is trying to set a watchpoint that triggers
10895 only in a specific thread. */
10896 char *endp;
10897
10898 if (thread != -1)
10899 error(_("You can specify only one thread."));
10900
10901 /* Extract the thread ID from the next token. */
10902 thread = strtol (value_start, &endp, 0);
10903
10904 /* Check if the user provided a valid numeric value for the
10905 thread ID. */
10906 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10907 error (_("Invalid thread ID specification %s."), value_start);
10908
10909 /* Check if the thread actually exists. */
10910 if (!valid_thread_id (thread))
10911 invalid_thread_id_error (thread);
10912 }
10913 else if (toklen == 4 && !strncmp (tok, "mask", 4))
10914 {
10915 /* We've found a "mask" token, which means the user wants to
10916 create a hardware watchpoint that is going to have the mask
10917 facility. */
10918 struct value *mask_value, *mark;
10919
10920 if (use_mask)
10921 error(_("You can specify only one mask."));
10922
10923 use_mask = just_location = 1;
10924
10925 mark = value_mark ();
10926 mask_value = parse_to_comma_and_eval (&value_start);
10927 mask = value_as_address (mask_value);
10928 value_free_to_mark (mark);
10929 }
10930 else
10931 /* We didn't recognize what we found. We should stop here. */
10932 break;
10933
10934 /* Truncate the string and get rid of the "parameter value" pair before
10935 the arguments string is parsed by the parse_exp_1 function. */
10936 *tok = '\0';
10937 }
10938 }
10939
10940 /* Parse the rest of the arguments. */
10941 innermost_block = NULL;
10942 exp_start = arg;
10943 exp = parse_exp_1 (&arg, 0, 0, 0);
10944 exp_end = arg;
10945 /* Remove trailing whitespace from the expression before saving it.
10946 This makes the eventual display of the expression string a bit
10947 prettier. */
10948 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10949 --exp_end;
10950
10951 /* Checking if the expression is not constant. */
10952 if (watchpoint_exp_is_const (exp))
10953 {
10954 int len;
10955
10956 len = exp_end - exp_start;
10957 while (len > 0 && isspace (exp_start[len - 1]))
10958 len--;
10959 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10960 }
10961
10962 exp_valid_block = innermost_block;
10963 mark = value_mark ();
10964 fetch_subexp_value (exp, &pc, &val, &result, NULL);
10965
10966 if (just_location)
10967 {
10968 int ret;
10969
10970 exp_valid_block = NULL;
10971 val = value_addr (result);
10972 release_value (val);
10973 value_free_to_mark (mark);
10974
10975 if (use_mask)
10976 {
10977 ret = target_masked_watch_num_registers (value_as_address (val),
10978 mask);
10979 if (ret == -1)
10980 error (_("This target does not support masked watchpoints."));
10981 else if (ret == -2)
10982 error (_("Invalid mask or memory region."));
10983 }
10984 }
10985 else if (val != NULL)
10986 release_value (val);
10987
10988 tok = skip_spaces (arg);
10989 end_tok = skip_to_space (tok);
10990
10991 toklen = end_tok - tok;
10992 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10993 {
10994 struct expression *cond;
10995
10996 innermost_block = NULL;
10997 tok = cond_start = end_tok + 1;
10998 cond = parse_exp_1 (&tok, 0, 0, 0);
10999
11000 /* The watchpoint expression may not be local, but the condition
11001 may still be. E.g.: `watch global if local > 0'. */
11002 cond_exp_valid_block = innermost_block;
11003
11004 xfree (cond);
11005 cond_end = tok;
11006 }
11007 if (*tok)
11008 error (_("Junk at end of command."));
11009
11010 if (accessflag == hw_read)
11011 bp_type = bp_read_watchpoint;
11012 else if (accessflag == hw_access)
11013 bp_type = bp_access_watchpoint;
11014 else
11015 bp_type = bp_hardware_watchpoint;
11016
11017 frame = block_innermost_frame (exp_valid_block);
11018
11019 /* If the expression is "local", then set up a "watchpoint scope"
11020 breakpoint at the point where we've left the scope of the watchpoint
11021 expression. Create the scope breakpoint before the watchpoint, so
11022 that we will encounter it first in bpstat_stop_status. */
11023 if (exp_valid_block && frame)
11024 {
11025 if (frame_id_p (frame_unwind_caller_id (frame)))
11026 {
11027 scope_breakpoint
11028 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11029 frame_unwind_caller_pc (frame),
11030 bp_watchpoint_scope,
11031 &momentary_breakpoint_ops);
11032
11033 scope_breakpoint->enable_state = bp_enabled;
11034
11035 /* Automatically delete the breakpoint when it hits. */
11036 scope_breakpoint->disposition = disp_del;
11037
11038 /* Only break in the proper frame (help with recursion). */
11039 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11040
11041 /* Set the address at which we will stop. */
11042 scope_breakpoint->loc->gdbarch
11043 = frame_unwind_caller_arch (frame);
11044 scope_breakpoint->loc->requested_address
11045 = frame_unwind_caller_pc (frame);
11046 scope_breakpoint->loc->address
11047 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11048 scope_breakpoint->loc->requested_address,
11049 scope_breakpoint->type);
11050 }
11051 }
11052
11053 /* Now set up the breakpoint. */
11054
11055 w = XCNEW (struct watchpoint);
11056 b = &w->base;
11057 if (use_mask)
11058 init_raw_breakpoint_without_location (b, NULL, bp_type,
11059 &masked_watchpoint_breakpoint_ops);
11060 else
11061 init_raw_breakpoint_without_location (b, NULL, bp_type,
11062 &watchpoint_breakpoint_ops);
11063 b->thread = thread;
11064 b->disposition = disp_donttouch;
11065 b->pspace = current_program_space;
11066 w->exp = exp;
11067 w->exp_valid_block = exp_valid_block;
11068 w->cond_exp_valid_block = cond_exp_valid_block;
11069 if (just_location)
11070 {
11071 struct type *t = value_type (val);
11072 CORE_ADDR addr = value_as_address (val);
11073 char *name;
11074
11075 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11076 name = type_to_string (t);
11077
11078 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11079 core_addr_to_string (addr));
11080 xfree (name);
11081
11082 w->exp_string = xstrprintf ("-location %.*s",
11083 (int) (exp_end - exp_start), exp_start);
11084
11085 /* The above expression is in C. */
11086 b->language = language_c;
11087 }
11088 else
11089 w->exp_string = savestring (exp_start, exp_end - exp_start);
11090
11091 if (use_mask)
11092 {
11093 w->hw_wp_mask = mask;
11094 }
11095 else
11096 {
11097 w->val = val;
11098 w->val_valid = 1;
11099 }
11100
11101 if (cond_start)
11102 b->cond_string = savestring (cond_start, cond_end - cond_start);
11103 else
11104 b->cond_string = 0;
11105
11106 if (frame)
11107 {
11108 w->watchpoint_frame = get_frame_id (frame);
11109 w->watchpoint_thread = inferior_ptid;
11110 }
11111 else
11112 {
11113 w->watchpoint_frame = null_frame_id;
11114 w->watchpoint_thread = null_ptid;
11115 }
11116
11117 if (scope_breakpoint != NULL)
11118 {
11119 /* The scope breakpoint is related to the watchpoint. We will
11120 need to act on them together. */
11121 b->related_breakpoint = scope_breakpoint;
11122 scope_breakpoint->related_breakpoint = b;
11123 }
11124
11125 if (!just_location)
11126 value_free_to_mark (mark);
11127
11128 TRY_CATCH (e, RETURN_MASK_ALL)
11129 {
11130 /* Finally update the new watchpoint. This creates the locations
11131 that should be inserted. */
11132 update_watchpoint (w, 1);
11133 }
11134 if (e.reason < 0)
11135 {
11136 delete_breakpoint (b);
11137 throw_exception (e);
11138 }
11139
11140 install_breakpoint (internal, b, 1);
11141 }
11142
11143 /* Return count of debug registers needed to watch the given expression.
11144 If the watchpoint cannot be handled in hardware return zero. */
11145
11146 static int
11147 can_use_hardware_watchpoint (struct value *v)
11148 {
11149 int found_memory_cnt = 0;
11150 struct value *head = v;
11151
11152 /* Did the user specifically forbid us to use hardware watchpoints? */
11153 if (!can_use_hw_watchpoints)
11154 return 0;
11155
11156 /* Make sure that the value of the expression depends only upon
11157 memory contents, and values computed from them within GDB. If we
11158 find any register references or function calls, we can't use a
11159 hardware watchpoint.
11160
11161 The idea here is that evaluating an expression generates a series
11162 of values, one holding the value of every subexpression. (The
11163 expression a*b+c has five subexpressions: a, b, a*b, c, and
11164 a*b+c.) GDB's values hold almost enough information to establish
11165 the criteria given above --- they identify memory lvalues,
11166 register lvalues, computed values, etcetera. So we can evaluate
11167 the expression, and then scan the chain of values that leaves
11168 behind to decide whether we can detect any possible change to the
11169 expression's final value using only hardware watchpoints.
11170
11171 However, I don't think that the values returned by inferior
11172 function calls are special in any way. So this function may not
11173 notice that an expression involving an inferior function call
11174 can't be watched with hardware watchpoints. FIXME. */
11175 for (; v; v = value_next (v))
11176 {
11177 if (VALUE_LVAL (v) == lval_memory)
11178 {
11179 if (v != head && value_lazy (v))
11180 /* A lazy memory lvalue in the chain is one that GDB never
11181 needed to fetch; we either just used its address (e.g.,
11182 `a' in `a.b') or we never needed it at all (e.g., `a'
11183 in `a,b'). This doesn't apply to HEAD; if that is
11184 lazy then it was not readable, but watch it anyway. */
11185 ;
11186 else
11187 {
11188 /* Ahh, memory we actually used! Check if we can cover
11189 it with hardware watchpoints. */
11190 struct type *vtype = check_typedef (value_type (v));
11191
11192 /* We only watch structs and arrays if user asked for it
11193 explicitly, never if they just happen to appear in a
11194 middle of some value chain. */
11195 if (v == head
11196 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11197 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11198 {
11199 CORE_ADDR vaddr = value_address (v);
11200 int len;
11201 int num_regs;
11202
11203 len = (target_exact_watchpoints
11204 && is_scalar_type_recursive (vtype))?
11205 1 : TYPE_LENGTH (value_type (v));
11206
11207 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11208 if (!num_regs)
11209 return 0;
11210 else
11211 found_memory_cnt += num_regs;
11212 }
11213 }
11214 }
11215 else if (VALUE_LVAL (v) != not_lval
11216 && deprecated_value_modifiable (v) == 0)
11217 return 0; /* These are values from the history (e.g., $1). */
11218 else if (VALUE_LVAL (v) == lval_register)
11219 return 0; /* Cannot watch a register with a HW watchpoint. */
11220 }
11221
11222 /* The expression itself looks suitable for using a hardware
11223 watchpoint, but give the target machine a chance to reject it. */
11224 return found_memory_cnt;
11225 }
11226
11227 void
11228 watch_command_wrapper (char *arg, int from_tty, int internal)
11229 {
11230 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11231 }
11232
11233 /* A helper function that looks for the "-location" argument and then
11234 calls watch_command_1. */
11235
11236 static void
11237 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11238 {
11239 int just_location = 0;
11240
11241 if (arg
11242 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11243 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11244 {
11245 arg = skip_spaces (arg);
11246 just_location = 1;
11247 }
11248
11249 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11250 }
11251
11252 static void
11253 watch_command (char *arg, int from_tty)
11254 {
11255 watch_maybe_just_location (arg, hw_write, from_tty);
11256 }
11257
11258 void
11259 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11260 {
11261 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11262 }
11263
11264 static void
11265 rwatch_command (char *arg, int from_tty)
11266 {
11267 watch_maybe_just_location (arg, hw_read, from_tty);
11268 }
11269
11270 void
11271 awatch_command_wrapper (char *arg, int from_tty, int internal)
11272 {
11273 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11274 }
11275
11276 static void
11277 awatch_command (char *arg, int from_tty)
11278 {
11279 watch_maybe_just_location (arg, hw_access, from_tty);
11280 }
11281 \f
11282
11283 /* Helper routines for the until_command routine in infcmd.c. Here
11284 because it uses the mechanisms of breakpoints. */
11285
11286 struct until_break_command_continuation_args
11287 {
11288 struct breakpoint *breakpoint;
11289 struct breakpoint *breakpoint2;
11290 int thread_num;
11291 };
11292
11293 /* This function is called by fetch_inferior_event via the
11294 cmd_continuation pointer, to complete the until command. It takes
11295 care of cleaning up the temporary breakpoints set up by the until
11296 command. */
11297 static void
11298 until_break_command_continuation (void *arg, int err)
11299 {
11300 struct until_break_command_continuation_args *a = arg;
11301
11302 delete_breakpoint (a->breakpoint);
11303 if (a->breakpoint2)
11304 delete_breakpoint (a->breakpoint2);
11305 delete_longjmp_breakpoint (a->thread_num);
11306 }
11307
11308 void
11309 until_break_command (char *arg, int from_tty, int anywhere)
11310 {
11311 struct symtabs_and_lines sals;
11312 struct symtab_and_line sal;
11313 struct frame_info *frame;
11314 struct gdbarch *frame_gdbarch;
11315 struct frame_id stack_frame_id;
11316 struct frame_id caller_frame_id;
11317 struct breakpoint *breakpoint;
11318 struct breakpoint *breakpoint2 = NULL;
11319 struct cleanup *old_chain;
11320 int thread;
11321 struct thread_info *tp;
11322
11323 clear_proceed_status ();
11324
11325 /* Set a breakpoint where the user wants it and at return from
11326 this function. */
11327
11328 if (last_displayed_sal_is_valid ())
11329 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11330 get_last_displayed_symtab (),
11331 get_last_displayed_line ());
11332 else
11333 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11334 (struct symtab *) NULL, 0);
11335
11336 if (sals.nelts != 1)
11337 error (_("Couldn't get information on specified line."));
11338
11339 sal = sals.sals[0];
11340 xfree (sals.sals); /* malloc'd, so freed. */
11341
11342 if (*arg)
11343 error (_("Junk at end of arguments."));
11344
11345 resolve_sal_pc (&sal);
11346
11347 tp = inferior_thread ();
11348 thread = tp->num;
11349
11350 old_chain = make_cleanup (null_cleanup, NULL);
11351
11352 /* Note linespec handling above invalidates the frame chain.
11353 Installing a breakpoint also invalidates the frame chain (as it
11354 may need to switch threads), so do any frame handling before
11355 that. */
11356
11357 frame = get_selected_frame (NULL);
11358 frame_gdbarch = get_frame_arch (frame);
11359 stack_frame_id = get_stack_frame_id (frame);
11360 caller_frame_id = frame_unwind_caller_id (frame);
11361
11362 /* Keep within the current frame, or in frames called by the current
11363 one. */
11364
11365 if (frame_id_p (caller_frame_id))
11366 {
11367 struct symtab_and_line sal2;
11368
11369 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11370 sal2.pc = frame_unwind_caller_pc (frame);
11371 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11372 sal2,
11373 caller_frame_id,
11374 bp_until);
11375 make_cleanup_delete_breakpoint (breakpoint2);
11376
11377 set_longjmp_breakpoint (tp, caller_frame_id);
11378 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11379 }
11380
11381 /* set_momentary_breakpoint could invalidate FRAME. */
11382 frame = NULL;
11383
11384 if (anywhere)
11385 /* If the user told us to continue until a specified location,
11386 we don't specify a frame at which we need to stop. */
11387 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11388 null_frame_id, bp_until);
11389 else
11390 /* Otherwise, specify the selected frame, because we want to stop
11391 only at the very same frame. */
11392 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11393 stack_frame_id, bp_until);
11394 make_cleanup_delete_breakpoint (breakpoint);
11395
11396 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11397
11398 /* If we are running asynchronously, and proceed call above has
11399 actually managed to start the target, arrange for breakpoints to
11400 be deleted when the target stops. Otherwise, we're already
11401 stopped and delete breakpoints via cleanup chain. */
11402
11403 if (target_can_async_p () && is_running (inferior_ptid))
11404 {
11405 struct until_break_command_continuation_args *args;
11406 args = xmalloc (sizeof (*args));
11407
11408 args->breakpoint = breakpoint;
11409 args->breakpoint2 = breakpoint2;
11410 args->thread_num = thread;
11411
11412 discard_cleanups (old_chain);
11413 add_continuation (inferior_thread (),
11414 until_break_command_continuation, args,
11415 xfree);
11416 }
11417 else
11418 do_cleanups (old_chain);
11419 }
11420
11421 /* This function attempts to parse an optional "if <cond>" clause
11422 from the arg string. If one is not found, it returns NULL.
11423
11424 Else, it returns a pointer to the condition string. (It does not
11425 attempt to evaluate the string against a particular block.) And,
11426 it updates arg to point to the first character following the parsed
11427 if clause in the arg string. */
11428
11429 static char *
11430 ep_parse_optional_if_clause (char **arg)
11431 {
11432 char *cond_string;
11433
11434 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11435 return NULL;
11436
11437 /* Skip the "if" keyword. */
11438 (*arg) += 2;
11439
11440 /* Skip any extra leading whitespace, and record the start of the
11441 condition string. */
11442 *arg = skip_spaces (*arg);
11443 cond_string = *arg;
11444
11445 /* Assume that the condition occupies the remainder of the arg
11446 string. */
11447 (*arg) += strlen (cond_string);
11448
11449 return cond_string;
11450 }
11451
11452 /* Commands to deal with catching events, such as signals, exceptions,
11453 process start/exit, etc. */
11454
11455 typedef enum
11456 {
11457 catch_fork_temporary, catch_vfork_temporary,
11458 catch_fork_permanent, catch_vfork_permanent
11459 }
11460 catch_fork_kind;
11461
11462 static void
11463 catch_fork_command_1 (char *arg, int from_tty,
11464 struct cmd_list_element *command)
11465 {
11466 struct gdbarch *gdbarch = get_current_arch ();
11467 char *cond_string = NULL;
11468 catch_fork_kind fork_kind;
11469 int tempflag;
11470
11471 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11472 tempflag = (fork_kind == catch_fork_temporary
11473 || fork_kind == catch_vfork_temporary);
11474
11475 if (!arg)
11476 arg = "";
11477 arg = skip_spaces (arg);
11478
11479 /* The allowed syntax is:
11480 catch [v]fork
11481 catch [v]fork if <cond>
11482
11483 First, check if there's an if clause. */
11484 cond_string = ep_parse_optional_if_clause (&arg);
11485
11486 if ((*arg != '\0') && !isspace (*arg))
11487 error (_("Junk at end of arguments."));
11488
11489 /* If this target supports it, create a fork or vfork catchpoint
11490 and enable reporting of such events. */
11491 switch (fork_kind)
11492 {
11493 case catch_fork_temporary:
11494 case catch_fork_permanent:
11495 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11496 &catch_fork_breakpoint_ops);
11497 break;
11498 case catch_vfork_temporary:
11499 case catch_vfork_permanent:
11500 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11501 &catch_vfork_breakpoint_ops);
11502 break;
11503 default:
11504 error (_("unsupported or unknown fork kind; cannot catch it"));
11505 break;
11506 }
11507 }
11508
11509 static void
11510 catch_exec_command_1 (char *arg, int from_tty,
11511 struct cmd_list_element *command)
11512 {
11513 struct exec_catchpoint *c;
11514 struct gdbarch *gdbarch = get_current_arch ();
11515 int tempflag;
11516 char *cond_string = NULL;
11517
11518 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11519
11520 if (!arg)
11521 arg = "";
11522 arg = skip_spaces (arg);
11523
11524 /* The allowed syntax is:
11525 catch exec
11526 catch exec if <cond>
11527
11528 First, check if there's an if clause. */
11529 cond_string = ep_parse_optional_if_clause (&arg);
11530
11531 if ((*arg != '\0') && !isspace (*arg))
11532 error (_("Junk at end of arguments."));
11533
11534 c = XNEW (struct exec_catchpoint);
11535 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11536 &catch_exec_breakpoint_ops);
11537 c->exec_pathname = NULL;
11538
11539 install_breakpoint (0, &c->base, 1);
11540 }
11541
11542 static enum print_stop_action
11543 print_it_exception_catchpoint (bpstat bs)
11544 {
11545 struct ui_out *uiout = current_uiout;
11546 struct breakpoint *b = bs->breakpoint_at;
11547 int bp_temp, bp_throw;
11548
11549 annotate_catchpoint (b->number);
11550
11551 bp_throw = strstr (b->addr_string, "throw") != NULL;
11552 if (b->loc->address != b->loc->requested_address)
11553 breakpoint_adjustment_warning (b->loc->requested_address,
11554 b->loc->address,
11555 b->number, 1);
11556 bp_temp = b->disposition == disp_del;
11557 ui_out_text (uiout,
11558 bp_temp ? "Temporary catchpoint "
11559 : "Catchpoint ");
11560 if (!ui_out_is_mi_like_p (uiout))
11561 ui_out_field_int (uiout, "bkptno", b->number);
11562 ui_out_text (uiout,
11563 bp_throw ? " (exception thrown), "
11564 : " (exception caught), ");
11565 if (ui_out_is_mi_like_p (uiout))
11566 {
11567 ui_out_field_string (uiout, "reason",
11568 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11569 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11570 ui_out_field_int (uiout, "bkptno", b->number);
11571 }
11572 return PRINT_SRC_AND_LOC;
11573 }
11574
11575 static void
11576 print_one_exception_catchpoint (struct breakpoint *b,
11577 struct bp_location **last_loc)
11578 {
11579 struct value_print_options opts;
11580 struct ui_out *uiout = current_uiout;
11581
11582 get_user_print_options (&opts);
11583 if (opts.addressprint)
11584 {
11585 annotate_field (4);
11586 if (b->loc == NULL || b->loc->shlib_disabled)
11587 ui_out_field_string (uiout, "addr", "<PENDING>");
11588 else
11589 ui_out_field_core_addr (uiout, "addr",
11590 b->loc->gdbarch, b->loc->address);
11591 }
11592 annotate_field (5);
11593 if (b->loc)
11594 *last_loc = b->loc;
11595 if (strstr (b->addr_string, "throw") != NULL)
11596 {
11597 ui_out_field_string (uiout, "what", "exception throw");
11598 if (ui_out_is_mi_like_p (uiout))
11599 ui_out_field_string (uiout, "catch-type", "throw");
11600 }
11601 else
11602 {
11603 ui_out_field_string (uiout, "what", "exception catch");
11604 if (ui_out_is_mi_like_p (uiout))
11605 ui_out_field_string (uiout, "catch-type", "catch");
11606 }
11607 }
11608
11609 static void
11610 print_mention_exception_catchpoint (struct breakpoint *b)
11611 {
11612 struct ui_out *uiout = current_uiout;
11613 int bp_temp;
11614 int bp_throw;
11615
11616 bp_temp = b->disposition == disp_del;
11617 bp_throw = strstr (b->addr_string, "throw") != NULL;
11618 ui_out_text (uiout, bp_temp ? _("Temporary catchpoint ")
11619 : _("Catchpoint "));
11620 ui_out_field_int (uiout, "bkptno", b->number);
11621 ui_out_text (uiout, bp_throw ? _(" (throw)")
11622 : _(" (catch)"));
11623 }
11624
11625 /* Implement the "print_recreate" breakpoint_ops method for throw and
11626 catch catchpoints. */
11627
11628 static void
11629 print_recreate_exception_catchpoint (struct breakpoint *b,
11630 struct ui_file *fp)
11631 {
11632 int bp_temp;
11633 int bp_throw;
11634
11635 bp_temp = b->disposition == disp_del;
11636 bp_throw = strstr (b->addr_string, "throw") != NULL;
11637 fprintf_unfiltered (fp, bp_temp ? "tcatch " : "catch ");
11638 fprintf_unfiltered (fp, bp_throw ? "throw" : "catch");
11639 print_recreate_thread (b, fp);
11640 }
11641
11642 static struct breakpoint_ops gnu_v3_exception_catchpoint_ops;
11643
11644 static int
11645 handle_gnu_v3_exceptions (int tempflag, char *cond_string,
11646 enum exception_event_kind ex_event, int from_tty)
11647 {
11648 char *trigger_func_name;
11649
11650 if (ex_event == EX_EVENT_CATCH)
11651 trigger_func_name = "__cxa_begin_catch";
11652 else
11653 trigger_func_name = "__cxa_throw";
11654
11655 create_breakpoint (get_current_arch (),
11656 trigger_func_name, cond_string, -1, NULL,
11657 0 /* condition and thread are valid. */,
11658 tempflag, bp_breakpoint,
11659 0,
11660 AUTO_BOOLEAN_TRUE /* pending */,
11661 &gnu_v3_exception_catchpoint_ops, from_tty,
11662 1 /* enabled */,
11663 0 /* internal */,
11664 0);
11665
11666 return 1;
11667 }
11668
11669 /* Deal with "catch catch" and "catch throw" commands. */
11670
11671 static void
11672 catch_exception_command_1 (enum exception_event_kind ex_event, char *arg,
11673 int tempflag, int from_tty)
11674 {
11675 char *cond_string = NULL;
11676
11677 if (!arg)
11678 arg = "";
11679 arg = skip_spaces (arg);
11680
11681 cond_string = ep_parse_optional_if_clause (&arg);
11682
11683 if ((*arg != '\0') && !isspace (*arg))
11684 error (_("Junk at end of arguments."));
11685
11686 if (ex_event != EX_EVENT_THROW
11687 && ex_event != EX_EVENT_CATCH)
11688 error (_("Unsupported or unknown exception event; cannot catch it"));
11689
11690 if (handle_gnu_v3_exceptions (tempflag, cond_string, ex_event, from_tty))
11691 return;
11692
11693 warning (_("Unsupported with this platform/compiler combination."));
11694 }
11695
11696 /* Implementation of "catch catch" command. */
11697
11698 static void
11699 catch_catch_command (char *arg, int from_tty, struct cmd_list_element *command)
11700 {
11701 int tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11702
11703 catch_exception_command_1 (EX_EVENT_CATCH, arg, tempflag, from_tty);
11704 }
11705
11706 /* Implementation of "catch throw" command. */
11707
11708 static void
11709 catch_throw_command (char *arg, int from_tty, struct cmd_list_element *command)
11710 {
11711 int tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11712
11713 catch_exception_command_1 (EX_EVENT_THROW, arg, tempflag, from_tty);
11714 }
11715
11716 void
11717 init_ada_exception_breakpoint (struct breakpoint *b,
11718 struct gdbarch *gdbarch,
11719 struct symtab_and_line sal,
11720 char *addr_string,
11721 const struct breakpoint_ops *ops,
11722 int tempflag,
11723 int from_tty)
11724 {
11725 if (from_tty)
11726 {
11727 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11728 if (!loc_gdbarch)
11729 loc_gdbarch = gdbarch;
11730
11731 describe_other_breakpoints (loc_gdbarch,
11732 sal.pspace, sal.pc, sal.section, -1);
11733 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11734 version for exception catchpoints, because two catchpoints
11735 used for different exception names will use the same address.
11736 In this case, a "breakpoint ... also set at..." warning is
11737 unproductive. Besides, the warning phrasing is also a bit
11738 inappropriate, we should use the word catchpoint, and tell
11739 the user what type of catchpoint it is. The above is good
11740 enough for now, though. */
11741 }
11742
11743 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11744
11745 b->enable_state = bp_enabled;
11746 b->disposition = tempflag ? disp_del : disp_donttouch;
11747 b->addr_string = addr_string;
11748 b->language = language_ada;
11749 }
11750
11751 /* Splits the argument using space as delimiter. Returns an xmalloc'd
11752 filter list, or NULL if no filtering is required. */
11753 static VEC(int) *
11754 catch_syscall_split_args (char *arg)
11755 {
11756 VEC(int) *result = NULL;
11757 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
11758
11759 while (*arg != '\0')
11760 {
11761 int i, syscall_number;
11762 char *endptr;
11763 char cur_name[128];
11764 struct syscall s;
11765
11766 /* Skip whitespace. */
11767 while (isspace (*arg))
11768 arg++;
11769
11770 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
11771 cur_name[i] = arg[i];
11772 cur_name[i] = '\0';
11773 arg += i;
11774
11775 /* Check if the user provided a syscall name or a number. */
11776 syscall_number = (int) strtol (cur_name, &endptr, 0);
11777 if (*endptr == '\0')
11778 get_syscall_by_number (syscall_number, &s);
11779 else
11780 {
11781 /* We have a name. Let's check if it's valid and convert it
11782 to a number. */
11783 get_syscall_by_name (cur_name, &s);
11784
11785 if (s.number == UNKNOWN_SYSCALL)
11786 /* Here we have to issue an error instead of a warning,
11787 because GDB cannot do anything useful if there's no
11788 syscall number to be caught. */
11789 error (_("Unknown syscall name '%s'."), cur_name);
11790 }
11791
11792 /* Ok, it's valid. */
11793 VEC_safe_push (int, result, s.number);
11794 }
11795
11796 discard_cleanups (cleanup);
11797 return result;
11798 }
11799
11800 /* Implement the "catch syscall" command. */
11801
11802 static void
11803 catch_syscall_command_1 (char *arg, int from_tty,
11804 struct cmd_list_element *command)
11805 {
11806 int tempflag;
11807 VEC(int) *filter;
11808 struct syscall s;
11809 struct gdbarch *gdbarch = get_current_arch ();
11810
11811 /* Checking if the feature if supported. */
11812 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
11813 error (_("The feature 'catch syscall' is not supported on \
11814 this architecture yet."));
11815
11816 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11817
11818 arg = skip_spaces (arg);
11819
11820 /* We need to do this first "dummy" translation in order
11821 to get the syscall XML file loaded or, most important,
11822 to display a warning to the user if there's no XML file
11823 for his/her architecture. */
11824 get_syscall_by_number (0, &s);
11825
11826 /* The allowed syntax is:
11827 catch syscall
11828 catch syscall <name | number> [<name | number> ... <name | number>]
11829
11830 Let's check if there's a syscall name. */
11831
11832 if (arg != NULL)
11833 filter = catch_syscall_split_args (arg);
11834 else
11835 filter = NULL;
11836
11837 create_syscall_event_catchpoint (tempflag, filter,
11838 &catch_syscall_breakpoint_ops);
11839 }
11840
11841 static void
11842 catch_command (char *arg, int from_tty)
11843 {
11844 error (_("Catch requires an event name."));
11845 }
11846 \f
11847
11848 static void
11849 tcatch_command (char *arg, int from_tty)
11850 {
11851 error (_("Catch requires an event name."));
11852 }
11853
11854 /* A qsort comparison function that sorts breakpoints in order. */
11855
11856 static int
11857 compare_breakpoints (const void *a, const void *b)
11858 {
11859 const breakpoint_p *ba = a;
11860 uintptr_t ua = (uintptr_t) *ba;
11861 const breakpoint_p *bb = b;
11862 uintptr_t ub = (uintptr_t) *bb;
11863
11864 if ((*ba)->number < (*bb)->number)
11865 return -1;
11866 else if ((*ba)->number > (*bb)->number)
11867 return 1;
11868
11869 /* Now sort by address, in case we see, e..g, two breakpoints with
11870 the number 0. */
11871 if (ua < ub)
11872 return -1;
11873 return ua > ub ? 1 : 0;
11874 }
11875
11876 /* Delete breakpoints by address or line. */
11877
11878 static void
11879 clear_command (char *arg, int from_tty)
11880 {
11881 struct breakpoint *b, *prev;
11882 VEC(breakpoint_p) *found = 0;
11883 int ix;
11884 int default_match;
11885 struct symtabs_and_lines sals;
11886 struct symtab_and_line sal;
11887 int i;
11888 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11889
11890 if (arg)
11891 {
11892 sals = decode_line_with_current_source (arg,
11893 (DECODE_LINE_FUNFIRSTLINE
11894 | DECODE_LINE_LIST_MODE));
11895 make_cleanup (xfree, sals.sals);
11896 default_match = 0;
11897 }
11898 else
11899 {
11900 sals.sals = (struct symtab_and_line *)
11901 xmalloc (sizeof (struct symtab_and_line));
11902 make_cleanup (xfree, sals.sals);
11903 init_sal (&sal); /* Initialize to zeroes. */
11904
11905 /* Set sal's line, symtab, pc, and pspace to the values
11906 corresponding to the last call to print_frame_info. If the
11907 codepoint is not valid, this will set all the fields to 0. */
11908 get_last_displayed_sal (&sal);
11909 if (sal.symtab == 0)
11910 error (_("No source file specified."));
11911
11912 sals.sals[0] = sal;
11913 sals.nelts = 1;
11914
11915 default_match = 1;
11916 }
11917
11918 /* We don't call resolve_sal_pc here. That's not as bad as it
11919 seems, because all existing breakpoints typically have both
11920 file/line and pc set. So, if clear is given file/line, we can
11921 match this to existing breakpoint without obtaining pc at all.
11922
11923 We only support clearing given the address explicitly
11924 present in breakpoint table. Say, we've set breakpoint
11925 at file:line. There were several PC values for that file:line,
11926 due to optimization, all in one block.
11927
11928 We've picked one PC value. If "clear" is issued with another
11929 PC corresponding to the same file:line, the breakpoint won't
11930 be cleared. We probably can still clear the breakpoint, but
11931 since the other PC value is never presented to user, user
11932 can only find it by guessing, and it does not seem important
11933 to support that. */
11934
11935 /* For each line spec given, delete bps which correspond to it. Do
11936 it in two passes, solely to preserve the current behavior that
11937 from_tty is forced true if we delete more than one
11938 breakpoint. */
11939
11940 found = NULL;
11941 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11942 for (i = 0; i < sals.nelts; i++)
11943 {
11944 /* If exact pc given, clear bpts at that pc.
11945 If line given (pc == 0), clear all bpts on specified line.
11946 If defaulting, clear all bpts on default line
11947 or at default pc.
11948
11949 defaulting sal.pc != 0 tests to do
11950
11951 0 1 pc
11952 1 1 pc _and_ line
11953 0 0 line
11954 1 0 <can't happen> */
11955
11956 sal = sals.sals[i];
11957
11958 /* Find all matching breakpoints and add them to 'found'. */
11959 ALL_BREAKPOINTS (b)
11960 {
11961 int match = 0;
11962 /* Are we going to delete b? */
11963 if (b->type != bp_none && !is_watchpoint (b))
11964 {
11965 struct bp_location *loc = b->loc;
11966 for (; loc; loc = loc->next)
11967 {
11968 /* If the user specified file:line, don't allow a PC
11969 match. This matches historical gdb behavior. */
11970 int pc_match = (!sal.explicit_line
11971 && sal.pc
11972 && (loc->pspace == sal.pspace)
11973 && (loc->address == sal.pc)
11974 && (!section_is_overlay (loc->section)
11975 || loc->section == sal.section));
11976 int line_match = 0;
11977
11978 if ((default_match || sal.explicit_line)
11979 && loc->symtab != NULL
11980 && sal.symtab != NULL
11981 && sal.pspace == loc->pspace
11982 && loc->line_number == sal.line)
11983 {
11984 if (compare_filenames_for_search (loc->symtab->filename,
11985 sal.symtab->filename))
11986 line_match = 1;
11987 }
11988
11989 if (pc_match || line_match)
11990 {
11991 match = 1;
11992 break;
11993 }
11994 }
11995 }
11996
11997 if (match)
11998 VEC_safe_push(breakpoint_p, found, b);
11999 }
12000 }
12001
12002 /* Now go thru the 'found' chain and delete them. */
12003 if (VEC_empty(breakpoint_p, found))
12004 {
12005 if (arg)
12006 error (_("No breakpoint at %s."), arg);
12007 else
12008 error (_("No breakpoint at this line."));
12009 }
12010
12011 /* Remove duplicates from the vec. */
12012 qsort (VEC_address (breakpoint_p, found),
12013 VEC_length (breakpoint_p, found),
12014 sizeof (breakpoint_p),
12015 compare_breakpoints);
12016 prev = VEC_index (breakpoint_p, found, 0);
12017 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
12018 {
12019 if (b == prev)
12020 {
12021 VEC_ordered_remove (breakpoint_p, found, ix);
12022 --ix;
12023 }
12024 }
12025
12026 if (VEC_length(breakpoint_p, found) > 1)
12027 from_tty = 1; /* Always report if deleted more than one. */
12028 if (from_tty)
12029 {
12030 if (VEC_length(breakpoint_p, found) == 1)
12031 printf_unfiltered (_("Deleted breakpoint "));
12032 else
12033 printf_unfiltered (_("Deleted breakpoints "));
12034 }
12035
12036 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
12037 {
12038 if (from_tty)
12039 printf_unfiltered ("%d ", b->number);
12040 delete_breakpoint (b);
12041 }
12042 if (from_tty)
12043 putchar_unfiltered ('\n');
12044
12045 do_cleanups (cleanups);
12046 }
12047 \f
12048 /* Delete breakpoint in BS if they are `delete' breakpoints and
12049 all breakpoints that are marked for deletion, whether hit or not.
12050 This is called after any breakpoint is hit, or after errors. */
12051
12052 void
12053 breakpoint_auto_delete (bpstat bs)
12054 {
12055 struct breakpoint *b, *b_tmp;
12056
12057 for (; bs; bs = bs->next)
12058 if (bs->breakpoint_at
12059 && bs->breakpoint_at->disposition == disp_del
12060 && bs->stop)
12061 delete_breakpoint (bs->breakpoint_at);
12062
12063 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12064 {
12065 if (b->disposition == disp_del_at_next_stop)
12066 delete_breakpoint (b);
12067 }
12068 }
12069
12070 /* A comparison function for bp_location AP and BP being interfaced to
12071 qsort. Sort elements primarily by their ADDRESS (no matter what
12072 does breakpoint_address_is_meaningful say for its OWNER),
12073 secondarily by ordering first bp_permanent OWNERed elements and
12074 terciarily just ensuring the array is sorted stable way despite
12075 qsort being an unstable algorithm. */
12076
12077 static int
12078 bp_location_compare (const void *ap, const void *bp)
12079 {
12080 struct bp_location *a = *(void **) ap;
12081 struct bp_location *b = *(void **) bp;
12082 /* A and B come from existing breakpoints having non-NULL OWNER. */
12083 int a_perm = a->owner->enable_state == bp_permanent;
12084 int b_perm = b->owner->enable_state == bp_permanent;
12085
12086 if (a->address != b->address)
12087 return (a->address > b->address) - (a->address < b->address);
12088
12089 /* Sort locations at the same address by their pspace number, keeping
12090 locations of the same inferior (in a multi-inferior environment)
12091 grouped. */
12092
12093 if (a->pspace->num != b->pspace->num)
12094 return ((a->pspace->num > b->pspace->num)
12095 - (a->pspace->num < b->pspace->num));
12096
12097 /* Sort permanent breakpoints first. */
12098 if (a_perm != b_perm)
12099 return (a_perm < b_perm) - (a_perm > b_perm);
12100
12101 /* Make the internal GDB representation stable across GDB runs
12102 where A and B memory inside GDB can differ. Breakpoint locations of
12103 the same type at the same address can be sorted in arbitrary order. */
12104
12105 if (a->owner->number != b->owner->number)
12106 return ((a->owner->number > b->owner->number)
12107 - (a->owner->number < b->owner->number));
12108
12109 return (a > b) - (a < b);
12110 }
12111
12112 /* Set bp_location_placed_address_before_address_max and
12113 bp_location_shadow_len_after_address_max according to the current
12114 content of the bp_location array. */
12115
12116 static void
12117 bp_location_target_extensions_update (void)
12118 {
12119 struct bp_location *bl, **blp_tmp;
12120
12121 bp_location_placed_address_before_address_max = 0;
12122 bp_location_shadow_len_after_address_max = 0;
12123
12124 ALL_BP_LOCATIONS (bl, blp_tmp)
12125 {
12126 CORE_ADDR start, end, addr;
12127
12128 if (!bp_location_has_shadow (bl))
12129 continue;
12130
12131 start = bl->target_info.placed_address;
12132 end = start + bl->target_info.shadow_len;
12133
12134 gdb_assert (bl->address >= start);
12135 addr = bl->address - start;
12136 if (addr > bp_location_placed_address_before_address_max)
12137 bp_location_placed_address_before_address_max = addr;
12138
12139 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12140
12141 gdb_assert (bl->address < end);
12142 addr = end - bl->address;
12143 if (addr > bp_location_shadow_len_after_address_max)
12144 bp_location_shadow_len_after_address_max = addr;
12145 }
12146 }
12147
12148 /* Download tracepoint locations if they haven't been. */
12149
12150 static void
12151 download_tracepoint_locations (void)
12152 {
12153 struct breakpoint *b;
12154 struct cleanup *old_chain;
12155
12156 if (!target_can_download_tracepoint ())
12157 return;
12158
12159 old_chain = save_current_space_and_thread ();
12160
12161 ALL_TRACEPOINTS (b)
12162 {
12163 struct bp_location *bl;
12164 struct tracepoint *t;
12165 int bp_location_downloaded = 0;
12166
12167 if ((b->type == bp_fast_tracepoint
12168 ? !may_insert_fast_tracepoints
12169 : !may_insert_tracepoints))
12170 continue;
12171
12172 for (bl = b->loc; bl; bl = bl->next)
12173 {
12174 /* In tracepoint, locations are _never_ duplicated, so
12175 should_be_inserted is equivalent to
12176 unduplicated_should_be_inserted. */
12177 if (!should_be_inserted (bl) || bl->inserted)
12178 continue;
12179
12180 switch_to_program_space_and_thread (bl->pspace);
12181
12182 target_download_tracepoint (bl);
12183
12184 bl->inserted = 1;
12185 bp_location_downloaded = 1;
12186 }
12187 t = (struct tracepoint *) b;
12188 t->number_on_target = b->number;
12189 if (bp_location_downloaded)
12190 observer_notify_breakpoint_modified (b);
12191 }
12192
12193 do_cleanups (old_chain);
12194 }
12195
12196 /* Swap the insertion/duplication state between two locations. */
12197
12198 static void
12199 swap_insertion (struct bp_location *left, struct bp_location *right)
12200 {
12201 const int left_inserted = left->inserted;
12202 const int left_duplicate = left->duplicate;
12203 const int left_needs_update = left->needs_update;
12204 const struct bp_target_info left_target_info = left->target_info;
12205
12206 /* Locations of tracepoints can never be duplicated. */
12207 if (is_tracepoint (left->owner))
12208 gdb_assert (!left->duplicate);
12209 if (is_tracepoint (right->owner))
12210 gdb_assert (!right->duplicate);
12211
12212 left->inserted = right->inserted;
12213 left->duplicate = right->duplicate;
12214 left->needs_update = right->needs_update;
12215 left->target_info = right->target_info;
12216 right->inserted = left_inserted;
12217 right->duplicate = left_duplicate;
12218 right->needs_update = left_needs_update;
12219 right->target_info = left_target_info;
12220 }
12221
12222 /* Force the re-insertion of the locations at ADDRESS. This is called
12223 once a new/deleted/modified duplicate location is found and we are evaluating
12224 conditions on the target's side. Such conditions need to be updated on
12225 the target. */
12226
12227 static void
12228 force_breakpoint_reinsertion (struct bp_location *bl)
12229 {
12230 struct bp_location **locp = NULL, **loc2p;
12231 struct bp_location *loc;
12232 CORE_ADDR address = 0;
12233 int pspace_num;
12234
12235 address = bl->address;
12236 pspace_num = bl->pspace->num;
12237
12238 /* This is only meaningful if the target is
12239 evaluating conditions and if the user has
12240 opted for condition evaluation on the target's
12241 side. */
12242 if (gdb_evaluates_breakpoint_condition_p ()
12243 || !target_supports_evaluation_of_breakpoint_conditions ())
12244 return;
12245
12246 /* Flag all breakpoint locations with this address and
12247 the same program space as the location
12248 as "its condition has changed". We need to
12249 update the conditions on the target's side. */
12250 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12251 {
12252 loc = *loc2p;
12253
12254 if (!is_breakpoint (loc->owner)
12255 || pspace_num != loc->pspace->num)
12256 continue;
12257
12258 /* Flag the location appropriately. We use a different state to
12259 let everyone know that we already updated the set of locations
12260 with addr bl->address and program space bl->pspace. This is so
12261 we don't have to keep calling these functions just to mark locations
12262 that have already been marked. */
12263 loc->condition_changed = condition_updated;
12264
12265 /* Free the agent expression bytecode as well. We will compute
12266 it later on. */
12267 if (loc->cond_bytecode)
12268 {
12269 free_agent_expr (loc->cond_bytecode);
12270 loc->cond_bytecode = NULL;
12271 }
12272 }
12273 }
12274
12275 /* If SHOULD_INSERT is false, do not insert any breakpoint locations
12276 into the inferior, only remove already-inserted locations that no
12277 longer should be inserted. Functions that delete a breakpoint or
12278 breakpoints should pass false, so that deleting a breakpoint
12279 doesn't have the side effect of inserting the locations of other
12280 breakpoints that are marked not-inserted, but should_be_inserted
12281 returns true on them.
12282
12283 This behaviour is useful is situations close to tear-down -- e.g.,
12284 after an exec, while the target still has execution, but breakpoint
12285 shadows of the previous executable image should *NOT* be restored
12286 to the new image; or before detaching, where the target still has
12287 execution and wants to delete breakpoints from GDB's lists, and all
12288 breakpoints had already been removed from the inferior. */
12289
12290 static void
12291 update_global_location_list (int should_insert)
12292 {
12293 struct breakpoint *b;
12294 struct bp_location **locp, *loc;
12295 struct cleanup *cleanups;
12296 /* Last breakpoint location address that was marked for update. */
12297 CORE_ADDR last_addr = 0;
12298 /* Last breakpoint location program space that was marked for update. */
12299 int last_pspace_num = -1;
12300
12301 /* Used in the duplicates detection below. When iterating over all
12302 bp_locations, points to the first bp_location of a given address.
12303 Breakpoints and watchpoints of different types are never
12304 duplicates of each other. Keep one pointer for each type of
12305 breakpoint/watchpoint, so we only need to loop over all locations
12306 once. */
12307 struct bp_location *bp_loc_first; /* breakpoint */
12308 struct bp_location *wp_loc_first; /* hardware watchpoint */
12309 struct bp_location *awp_loc_first; /* access watchpoint */
12310 struct bp_location *rwp_loc_first; /* read watchpoint */
12311
12312 /* Saved former bp_location array which we compare against the newly
12313 built bp_location from the current state of ALL_BREAKPOINTS. */
12314 struct bp_location **old_location, **old_locp;
12315 unsigned old_location_count;
12316
12317 old_location = bp_location;
12318 old_location_count = bp_location_count;
12319 bp_location = NULL;
12320 bp_location_count = 0;
12321 cleanups = make_cleanup (xfree, old_location);
12322
12323 ALL_BREAKPOINTS (b)
12324 for (loc = b->loc; loc; loc = loc->next)
12325 bp_location_count++;
12326
12327 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12328 locp = bp_location;
12329 ALL_BREAKPOINTS (b)
12330 for (loc = b->loc; loc; loc = loc->next)
12331 *locp++ = loc;
12332 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12333 bp_location_compare);
12334
12335 bp_location_target_extensions_update ();
12336
12337 /* Identify bp_location instances that are no longer present in the
12338 new list, and therefore should be freed. Note that it's not
12339 necessary that those locations should be removed from inferior --
12340 if there's another location at the same address (previously
12341 marked as duplicate), we don't need to remove/insert the
12342 location.
12343
12344 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12345 and former bp_location array state respectively. */
12346
12347 locp = bp_location;
12348 for (old_locp = old_location; old_locp < old_location + old_location_count;
12349 old_locp++)
12350 {
12351 struct bp_location *old_loc = *old_locp;
12352 struct bp_location **loc2p;
12353
12354 /* Tells if 'old_loc' is found among the new locations. If
12355 not, we have to free it. */
12356 int found_object = 0;
12357 /* Tells if the location should remain inserted in the target. */
12358 int keep_in_target = 0;
12359 int removed = 0;
12360
12361 /* Skip LOCP entries which will definitely never be needed.
12362 Stop either at or being the one matching OLD_LOC. */
12363 while (locp < bp_location + bp_location_count
12364 && (*locp)->address < old_loc->address)
12365 locp++;
12366
12367 for (loc2p = locp;
12368 (loc2p < bp_location + bp_location_count
12369 && (*loc2p)->address == old_loc->address);
12370 loc2p++)
12371 {
12372 /* Check if this is a new/duplicated location or a duplicated
12373 location that had its condition modified. If so, we want to send
12374 its condition to the target if evaluation of conditions is taking
12375 place there. */
12376 if ((*loc2p)->condition_changed == condition_modified
12377 && (last_addr != old_loc->address
12378 || last_pspace_num != old_loc->pspace->num))
12379 {
12380 force_breakpoint_reinsertion (*loc2p);
12381 last_pspace_num = old_loc->pspace->num;
12382 }
12383
12384 if (*loc2p == old_loc)
12385 found_object = 1;
12386 }
12387
12388 /* We have already handled this address, update it so that we don't
12389 have to go through updates again. */
12390 last_addr = old_loc->address;
12391
12392 /* Target-side condition evaluation: Handle deleted locations. */
12393 if (!found_object)
12394 force_breakpoint_reinsertion (old_loc);
12395
12396 /* If this location is no longer present, and inserted, look if
12397 there's maybe a new location at the same address. If so,
12398 mark that one inserted, and don't remove this one. This is
12399 needed so that we don't have a time window where a breakpoint
12400 at certain location is not inserted. */
12401
12402 if (old_loc->inserted)
12403 {
12404 /* If the location is inserted now, we might have to remove
12405 it. */
12406
12407 if (found_object && should_be_inserted (old_loc))
12408 {
12409 /* The location is still present in the location list,
12410 and still should be inserted. Don't do anything. */
12411 keep_in_target = 1;
12412 }
12413 else
12414 {
12415 /* This location still exists, but it won't be kept in the
12416 target since it may have been disabled. We proceed to
12417 remove its target-side condition. */
12418
12419 /* The location is either no longer present, or got
12420 disabled. See if there's another location at the
12421 same address, in which case we don't need to remove
12422 this one from the target. */
12423
12424 /* OLD_LOC comes from existing struct breakpoint. */
12425 if (breakpoint_address_is_meaningful (old_loc->owner))
12426 {
12427 for (loc2p = locp;
12428 (loc2p < bp_location + bp_location_count
12429 && (*loc2p)->address == old_loc->address);
12430 loc2p++)
12431 {
12432 struct bp_location *loc2 = *loc2p;
12433
12434 if (breakpoint_locations_match (loc2, old_loc))
12435 {
12436 /* Read watchpoint locations are switched to
12437 access watchpoints, if the former are not
12438 supported, but the latter are. */
12439 if (is_hardware_watchpoint (old_loc->owner))
12440 {
12441 gdb_assert (is_hardware_watchpoint (loc2->owner));
12442 loc2->watchpoint_type = old_loc->watchpoint_type;
12443 }
12444
12445 /* loc2 is a duplicated location. We need to check
12446 if it should be inserted in case it will be
12447 unduplicated. */
12448 if (loc2 != old_loc
12449 && unduplicated_should_be_inserted (loc2))
12450 {
12451 swap_insertion (old_loc, loc2);
12452 keep_in_target = 1;
12453 break;
12454 }
12455 }
12456 }
12457 }
12458 }
12459
12460 if (!keep_in_target)
12461 {
12462 if (remove_breakpoint (old_loc, mark_uninserted))
12463 {
12464 /* This is just about all we can do. We could keep
12465 this location on the global list, and try to
12466 remove it next time, but there's no particular
12467 reason why we will succeed next time.
12468
12469 Note that at this point, old_loc->owner is still
12470 valid, as delete_breakpoint frees the breakpoint
12471 only after calling us. */
12472 printf_filtered (_("warning: Error removing "
12473 "breakpoint %d\n"),
12474 old_loc->owner->number);
12475 }
12476 removed = 1;
12477 }
12478 }
12479
12480 if (!found_object)
12481 {
12482 if (removed && non_stop
12483 && breakpoint_address_is_meaningful (old_loc->owner)
12484 && !is_hardware_watchpoint (old_loc->owner))
12485 {
12486 /* This location was removed from the target. In
12487 non-stop mode, a race condition is possible where
12488 we've removed a breakpoint, but stop events for that
12489 breakpoint are already queued and will arrive later.
12490 We apply an heuristic to be able to distinguish such
12491 SIGTRAPs from other random SIGTRAPs: we keep this
12492 breakpoint location for a bit, and will retire it
12493 after we see some number of events. The theory here
12494 is that reporting of events should, "on the average",
12495 be fair, so after a while we'll see events from all
12496 threads that have anything of interest, and no longer
12497 need to keep this breakpoint location around. We
12498 don't hold locations forever so to reduce chances of
12499 mistaking a non-breakpoint SIGTRAP for a breakpoint
12500 SIGTRAP.
12501
12502 The heuristic failing can be disastrous on
12503 decr_pc_after_break targets.
12504
12505 On decr_pc_after_break targets, like e.g., x86-linux,
12506 if we fail to recognize a late breakpoint SIGTRAP,
12507 because events_till_retirement has reached 0 too
12508 soon, we'll fail to do the PC adjustment, and report
12509 a random SIGTRAP to the user. When the user resumes
12510 the inferior, it will most likely immediately crash
12511 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12512 corrupted, because of being resumed e.g., in the
12513 middle of a multi-byte instruction, or skipped a
12514 one-byte instruction. This was actually seen happen
12515 on native x86-linux, and should be less rare on
12516 targets that do not support new thread events, like
12517 remote, due to the heuristic depending on
12518 thread_count.
12519
12520 Mistaking a random SIGTRAP for a breakpoint trap
12521 causes similar symptoms (PC adjustment applied when
12522 it shouldn't), but then again, playing with SIGTRAPs
12523 behind the debugger's back is asking for trouble.
12524
12525 Since hardware watchpoint traps are always
12526 distinguishable from other traps, so we don't need to
12527 apply keep hardware watchpoint moribund locations
12528 around. We simply always ignore hardware watchpoint
12529 traps we can no longer explain. */
12530
12531 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12532 old_loc->owner = NULL;
12533
12534 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12535 }
12536 else
12537 {
12538 old_loc->owner = NULL;
12539 decref_bp_location (&old_loc);
12540 }
12541 }
12542 }
12543
12544 /* Rescan breakpoints at the same address and section, marking the
12545 first one as "first" and any others as "duplicates". This is so
12546 that the bpt instruction is only inserted once. If we have a
12547 permanent breakpoint at the same place as BPT, make that one the
12548 official one, and the rest as duplicates. Permanent breakpoints
12549 are sorted first for the same address.
12550
12551 Do the same for hardware watchpoints, but also considering the
12552 watchpoint's type (regular/access/read) and length. */
12553
12554 bp_loc_first = NULL;
12555 wp_loc_first = NULL;
12556 awp_loc_first = NULL;
12557 rwp_loc_first = NULL;
12558 ALL_BP_LOCATIONS (loc, locp)
12559 {
12560 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12561 non-NULL. */
12562 struct bp_location **loc_first_p;
12563 b = loc->owner;
12564
12565 if (!unduplicated_should_be_inserted (loc)
12566 || !breakpoint_address_is_meaningful (b)
12567 /* Don't detect duplicate for tracepoint locations because they are
12568 never duplicated. See the comments in field `duplicate' of
12569 `struct bp_location'. */
12570 || is_tracepoint (b))
12571 {
12572 /* Clear the condition modification flag. */
12573 loc->condition_changed = condition_unchanged;
12574 continue;
12575 }
12576
12577 /* Permanent breakpoint should always be inserted. */
12578 if (b->enable_state == bp_permanent && ! loc->inserted)
12579 internal_error (__FILE__, __LINE__,
12580 _("allegedly permanent breakpoint is not "
12581 "actually inserted"));
12582
12583 if (b->type == bp_hardware_watchpoint)
12584 loc_first_p = &wp_loc_first;
12585 else if (b->type == bp_read_watchpoint)
12586 loc_first_p = &rwp_loc_first;
12587 else if (b->type == bp_access_watchpoint)
12588 loc_first_p = &awp_loc_first;
12589 else
12590 loc_first_p = &bp_loc_first;
12591
12592 if (*loc_first_p == NULL
12593 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12594 || !breakpoint_locations_match (loc, *loc_first_p))
12595 {
12596 *loc_first_p = loc;
12597 loc->duplicate = 0;
12598
12599 if (is_breakpoint (loc->owner) && loc->condition_changed)
12600 {
12601 loc->needs_update = 1;
12602 /* Clear the condition modification flag. */
12603 loc->condition_changed = condition_unchanged;
12604 }
12605 continue;
12606 }
12607
12608
12609 /* This and the above ensure the invariant that the first location
12610 is not duplicated, and is the inserted one.
12611 All following are marked as duplicated, and are not inserted. */
12612 if (loc->inserted)
12613 swap_insertion (loc, *loc_first_p);
12614 loc->duplicate = 1;
12615
12616 /* Clear the condition modification flag. */
12617 loc->condition_changed = condition_unchanged;
12618
12619 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12620 && b->enable_state != bp_permanent)
12621 internal_error (__FILE__, __LINE__,
12622 _("another breakpoint was inserted on top of "
12623 "a permanent breakpoint"));
12624 }
12625
12626 if (breakpoints_always_inserted_mode ()
12627 && (have_live_inferiors ()
12628 || (gdbarch_has_global_breakpoints (target_gdbarch ()))))
12629 {
12630 if (should_insert)
12631 insert_breakpoint_locations ();
12632 else
12633 {
12634 /* Though should_insert is false, we may need to update conditions
12635 on the target's side if it is evaluating such conditions. We
12636 only update conditions for locations that are marked
12637 "needs_update". */
12638 update_inserted_breakpoint_locations ();
12639 }
12640 }
12641
12642 if (should_insert)
12643 download_tracepoint_locations ();
12644
12645 do_cleanups (cleanups);
12646 }
12647
12648 void
12649 breakpoint_retire_moribund (void)
12650 {
12651 struct bp_location *loc;
12652 int ix;
12653
12654 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12655 if (--(loc->events_till_retirement) == 0)
12656 {
12657 decref_bp_location (&loc);
12658 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12659 --ix;
12660 }
12661 }
12662
12663 static void
12664 update_global_location_list_nothrow (int inserting)
12665 {
12666 volatile struct gdb_exception e;
12667
12668 TRY_CATCH (e, RETURN_MASK_ERROR)
12669 update_global_location_list (inserting);
12670 }
12671
12672 /* Clear BKP from a BPS. */
12673
12674 static void
12675 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12676 {
12677 bpstat bs;
12678
12679 for (bs = bps; bs; bs = bs->next)
12680 if (bs->breakpoint_at == bpt)
12681 {
12682 bs->breakpoint_at = NULL;
12683 bs->old_val = NULL;
12684 /* bs->commands will be freed later. */
12685 }
12686 }
12687
12688 /* Callback for iterate_over_threads. */
12689 static int
12690 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12691 {
12692 struct breakpoint *bpt = data;
12693
12694 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12695 return 0;
12696 }
12697
12698 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12699 callbacks. */
12700
12701 static void
12702 say_where (struct breakpoint *b)
12703 {
12704 struct ui_out *uiout = current_uiout;
12705 struct value_print_options opts;
12706
12707 get_user_print_options (&opts);
12708
12709 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12710 single string. */
12711 if (b->loc == NULL)
12712 {
12713 printf_filtered (_(" (%s) pending."), b->addr_string);
12714 }
12715 else
12716 {
12717 if (opts.addressprint || b->loc->symtab == NULL)
12718 {
12719 printf_filtered (" at ");
12720 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12721 gdb_stdout);
12722 }
12723 if (b->loc->symtab != NULL)
12724 {
12725 /* If there is a single location, we can print the location
12726 more nicely. */
12727 if (b->loc->next == NULL)
12728 printf_filtered (": file %s, line %d.",
12729 b->loc->symtab->filename, b->loc->line_number);
12730 else
12731 /* This is not ideal, but each location may have a
12732 different file name, and this at least reflects the
12733 real situation somewhat. */
12734 printf_filtered (": %s.", b->addr_string);
12735 }
12736
12737 if (b->loc->next)
12738 {
12739 struct bp_location *loc = b->loc;
12740 int n = 0;
12741 for (; loc; loc = loc->next)
12742 ++n;
12743 printf_filtered (" (%d locations)", n);
12744 }
12745 }
12746 }
12747
12748 /* Default bp_location_ops methods. */
12749
12750 static void
12751 bp_location_dtor (struct bp_location *self)
12752 {
12753 xfree (self->cond);
12754 if (self->cond_bytecode)
12755 free_agent_expr (self->cond_bytecode);
12756 xfree (self->function_name);
12757 }
12758
12759 static const struct bp_location_ops bp_location_ops =
12760 {
12761 bp_location_dtor
12762 };
12763
12764 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12765 inherit from. */
12766
12767 static void
12768 base_breakpoint_dtor (struct breakpoint *self)
12769 {
12770 decref_counted_command_line (&self->commands);
12771 xfree (self->cond_string);
12772 xfree (self->addr_string);
12773 xfree (self->filter);
12774 xfree (self->addr_string_range_end);
12775 }
12776
12777 static struct bp_location *
12778 base_breakpoint_allocate_location (struct breakpoint *self)
12779 {
12780 struct bp_location *loc;
12781
12782 loc = XNEW (struct bp_location);
12783 init_bp_location (loc, &bp_location_ops, self);
12784 return loc;
12785 }
12786
12787 static void
12788 base_breakpoint_re_set (struct breakpoint *b)
12789 {
12790 /* Nothing to re-set. */
12791 }
12792
12793 #define internal_error_pure_virtual_called() \
12794 gdb_assert_not_reached ("pure virtual function called")
12795
12796 static int
12797 base_breakpoint_insert_location (struct bp_location *bl)
12798 {
12799 internal_error_pure_virtual_called ();
12800 }
12801
12802 static int
12803 base_breakpoint_remove_location (struct bp_location *bl)
12804 {
12805 internal_error_pure_virtual_called ();
12806 }
12807
12808 static int
12809 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12810 struct address_space *aspace,
12811 CORE_ADDR bp_addr,
12812 const struct target_waitstatus *ws)
12813 {
12814 internal_error_pure_virtual_called ();
12815 }
12816
12817 static void
12818 base_breakpoint_check_status (bpstat bs)
12819 {
12820 /* Always stop. */
12821 }
12822
12823 /* A "works_in_software_mode" breakpoint_ops method that just internal
12824 errors. */
12825
12826 static int
12827 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12828 {
12829 internal_error_pure_virtual_called ();
12830 }
12831
12832 /* A "resources_needed" breakpoint_ops method that just internal
12833 errors. */
12834
12835 static int
12836 base_breakpoint_resources_needed (const struct bp_location *bl)
12837 {
12838 internal_error_pure_virtual_called ();
12839 }
12840
12841 static enum print_stop_action
12842 base_breakpoint_print_it (bpstat bs)
12843 {
12844 internal_error_pure_virtual_called ();
12845 }
12846
12847 static void
12848 base_breakpoint_print_one_detail (const struct breakpoint *self,
12849 struct ui_out *uiout)
12850 {
12851 /* nothing */
12852 }
12853
12854 static void
12855 base_breakpoint_print_mention (struct breakpoint *b)
12856 {
12857 internal_error_pure_virtual_called ();
12858 }
12859
12860 static void
12861 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12862 {
12863 internal_error_pure_virtual_called ();
12864 }
12865
12866 static void
12867 base_breakpoint_create_sals_from_address (char **arg,
12868 struct linespec_result *canonical,
12869 enum bptype type_wanted,
12870 char *addr_start,
12871 char **copy_arg)
12872 {
12873 internal_error_pure_virtual_called ();
12874 }
12875
12876 static void
12877 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12878 struct linespec_result *c,
12879 struct linespec_sals *lsal,
12880 char *cond_string,
12881 char *extra_string,
12882 enum bptype type_wanted,
12883 enum bpdisp disposition,
12884 int thread,
12885 int task, int ignore_count,
12886 const struct breakpoint_ops *o,
12887 int from_tty, int enabled,
12888 int internal, unsigned flags)
12889 {
12890 internal_error_pure_virtual_called ();
12891 }
12892
12893 static void
12894 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
12895 struct symtabs_and_lines *sals)
12896 {
12897 internal_error_pure_virtual_called ();
12898 }
12899
12900 /* The default 'explains_signal' method. */
12901
12902 static enum bpstat_signal_value
12903 base_breakpoint_explains_signal (struct breakpoint *b)
12904 {
12905 return BPSTAT_SIGNAL_HIDE;
12906 }
12907
12908 struct breakpoint_ops base_breakpoint_ops =
12909 {
12910 base_breakpoint_dtor,
12911 base_breakpoint_allocate_location,
12912 base_breakpoint_re_set,
12913 base_breakpoint_insert_location,
12914 base_breakpoint_remove_location,
12915 base_breakpoint_breakpoint_hit,
12916 base_breakpoint_check_status,
12917 base_breakpoint_resources_needed,
12918 base_breakpoint_works_in_software_mode,
12919 base_breakpoint_print_it,
12920 NULL,
12921 base_breakpoint_print_one_detail,
12922 base_breakpoint_print_mention,
12923 base_breakpoint_print_recreate,
12924 base_breakpoint_create_sals_from_address,
12925 base_breakpoint_create_breakpoints_sal,
12926 base_breakpoint_decode_linespec,
12927 base_breakpoint_explains_signal
12928 };
12929
12930 /* Default breakpoint_ops methods. */
12931
12932 static void
12933 bkpt_re_set (struct breakpoint *b)
12934 {
12935 /* FIXME: is this still reachable? */
12936 if (b->addr_string == NULL)
12937 {
12938 /* Anything without a string can't be re-set. */
12939 delete_breakpoint (b);
12940 return;
12941 }
12942
12943 breakpoint_re_set_default (b);
12944 }
12945
12946 static int
12947 bkpt_insert_location (struct bp_location *bl)
12948 {
12949 if (bl->loc_type == bp_loc_hardware_breakpoint)
12950 return target_insert_hw_breakpoint (bl->gdbarch,
12951 &bl->target_info);
12952 else
12953 return target_insert_breakpoint (bl->gdbarch,
12954 &bl->target_info);
12955 }
12956
12957 static int
12958 bkpt_remove_location (struct bp_location *bl)
12959 {
12960 if (bl->loc_type == bp_loc_hardware_breakpoint)
12961 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12962 else
12963 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
12964 }
12965
12966 static int
12967 bkpt_breakpoint_hit (const struct bp_location *bl,
12968 struct address_space *aspace, CORE_ADDR bp_addr,
12969 const struct target_waitstatus *ws)
12970 {
12971 struct breakpoint *b = bl->owner;
12972
12973 if (ws->kind != TARGET_WAITKIND_STOPPED
12974 || ws->value.sig != GDB_SIGNAL_TRAP)
12975 return 0;
12976
12977 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12978 aspace, bp_addr))
12979 return 0;
12980
12981 if (overlay_debugging /* unmapped overlay section */
12982 && section_is_overlay (bl->section)
12983 && !section_is_mapped (bl->section))
12984 return 0;
12985
12986 return 1;
12987 }
12988
12989 static int
12990 bkpt_resources_needed (const struct bp_location *bl)
12991 {
12992 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12993
12994 return 1;
12995 }
12996
12997 static enum print_stop_action
12998 bkpt_print_it (bpstat bs)
12999 {
13000 struct breakpoint *b;
13001 const struct bp_location *bl;
13002 int bp_temp;
13003 struct ui_out *uiout = current_uiout;
13004
13005 gdb_assert (bs->bp_location_at != NULL);
13006
13007 bl = bs->bp_location_at;
13008 b = bs->breakpoint_at;
13009
13010 bp_temp = b->disposition == disp_del;
13011 if (bl->address != bl->requested_address)
13012 breakpoint_adjustment_warning (bl->requested_address,
13013 bl->address,
13014 b->number, 1);
13015 annotate_breakpoint (b->number);
13016 if (bp_temp)
13017 ui_out_text (uiout, "\nTemporary breakpoint ");
13018 else
13019 ui_out_text (uiout, "\nBreakpoint ");
13020 if (ui_out_is_mi_like_p (uiout))
13021 {
13022 ui_out_field_string (uiout, "reason",
13023 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
13024 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
13025 }
13026 ui_out_field_int (uiout, "bkptno", b->number);
13027 ui_out_text (uiout, ", ");
13028
13029 return PRINT_SRC_AND_LOC;
13030 }
13031
13032 static void
13033 bkpt_print_mention (struct breakpoint *b)
13034 {
13035 if (ui_out_is_mi_like_p (current_uiout))
13036 return;
13037
13038 switch (b->type)
13039 {
13040 case bp_breakpoint:
13041 case bp_gnu_ifunc_resolver:
13042 if (b->disposition == disp_del)
13043 printf_filtered (_("Temporary breakpoint"));
13044 else
13045 printf_filtered (_("Breakpoint"));
13046 printf_filtered (_(" %d"), b->number);
13047 if (b->type == bp_gnu_ifunc_resolver)
13048 printf_filtered (_(" at gnu-indirect-function resolver"));
13049 break;
13050 case bp_hardware_breakpoint:
13051 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13052 break;
13053 case bp_dprintf:
13054 printf_filtered (_("Dprintf %d"), b->number);
13055 break;
13056 }
13057
13058 say_where (b);
13059 }
13060
13061 static void
13062 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13063 {
13064 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13065 fprintf_unfiltered (fp, "tbreak");
13066 else if (tp->type == bp_breakpoint)
13067 fprintf_unfiltered (fp, "break");
13068 else if (tp->type == bp_hardware_breakpoint
13069 && tp->disposition == disp_del)
13070 fprintf_unfiltered (fp, "thbreak");
13071 else if (tp->type == bp_hardware_breakpoint)
13072 fprintf_unfiltered (fp, "hbreak");
13073 else
13074 internal_error (__FILE__, __LINE__,
13075 _("unhandled breakpoint type %d"), (int) tp->type);
13076
13077 fprintf_unfiltered (fp, " %s", tp->addr_string);
13078 print_recreate_thread (tp, fp);
13079 }
13080
13081 static void
13082 bkpt_create_sals_from_address (char **arg,
13083 struct linespec_result *canonical,
13084 enum bptype type_wanted,
13085 char *addr_start, char **copy_arg)
13086 {
13087 create_sals_from_address_default (arg, canonical, type_wanted,
13088 addr_start, copy_arg);
13089 }
13090
13091 static void
13092 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13093 struct linespec_result *canonical,
13094 struct linespec_sals *lsal,
13095 char *cond_string,
13096 char *extra_string,
13097 enum bptype type_wanted,
13098 enum bpdisp disposition,
13099 int thread,
13100 int task, int ignore_count,
13101 const struct breakpoint_ops *ops,
13102 int from_tty, int enabled,
13103 int internal, unsigned flags)
13104 {
13105 create_breakpoints_sal_default (gdbarch, canonical, lsal,
13106 cond_string, extra_string,
13107 type_wanted,
13108 disposition, thread, task,
13109 ignore_count, ops, from_tty,
13110 enabled, internal, flags);
13111 }
13112
13113 static void
13114 bkpt_decode_linespec (struct breakpoint *b, char **s,
13115 struct symtabs_and_lines *sals)
13116 {
13117 decode_linespec_default (b, s, sals);
13118 }
13119
13120 /* Virtual table for internal breakpoints. */
13121
13122 static void
13123 internal_bkpt_re_set (struct breakpoint *b)
13124 {
13125 switch (b->type)
13126 {
13127 /* Delete overlay event and longjmp master breakpoints; they
13128 will be reset later by breakpoint_re_set. */
13129 case bp_overlay_event:
13130 case bp_longjmp_master:
13131 case bp_std_terminate_master:
13132 case bp_exception_master:
13133 delete_breakpoint (b);
13134 break;
13135
13136 /* This breakpoint is special, it's set up when the inferior
13137 starts and we really don't want to touch it. */
13138 case bp_shlib_event:
13139
13140 /* Like bp_shlib_event, this breakpoint type is special. Once
13141 it is set up, we do not want to touch it. */
13142 case bp_thread_event:
13143 break;
13144 }
13145 }
13146
13147 static void
13148 internal_bkpt_check_status (bpstat bs)
13149 {
13150 if (bs->breakpoint_at->type == bp_shlib_event)
13151 {
13152 /* If requested, stop when the dynamic linker notifies GDB of
13153 events. This allows the user to get control and place
13154 breakpoints in initializer routines for dynamically loaded
13155 objects (among other things). */
13156 bs->stop = stop_on_solib_events;
13157 bs->print = stop_on_solib_events;
13158 }
13159 else
13160 bs->stop = 0;
13161 }
13162
13163 static enum print_stop_action
13164 internal_bkpt_print_it (bpstat bs)
13165 {
13166 struct ui_out *uiout = current_uiout;
13167 struct breakpoint *b;
13168
13169 b = bs->breakpoint_at;
13170
13171 switch (b->type)
13172 {
13173 case bp_shlib_event:
13174 /* Did we stop because the user set the stop_on_solib_events
13175 variable? (If so, we report this as a generic, "Stopped due
13176 to shlib event" message.) */
13177 print_solib_event (0);
13178 break;
13179
13180 case bp_thread_event:
13181 /* Not sure how we will get here.
13182 GDB should not stop for these breakpoints. */
13183 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13184 break;
13185
13186 case bp_overlay_event:
13187 /* By analogy with the thread event, GDB should not stop for these. */
13188 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13189 break;
13190
13191 case bp_longjmp_master:
13192 /* These should never be enabled. */
13193 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13194 break;
13195
13196 case bp_std_terminate_master:
13197 /* These should never be enabled. */
13198 printf_filtered (_("std::terminate Master Breakpoint: "
13199 "gdb should not stop!\n"));
13200 break;
13201
13202 case bp_exception_master:
13203 /* These should never be enabled. */
13204 printf_filtered (_("Exception Master Breakpoint: "
13205 "gdb should not stop!\n"));
13206 break;
13207 }
13208
13209 return PRINT_NOTHING;
13210 }
13211
13212 static void
13213 internal_bkpt_print_mention (struct breakpoint *b)
13214 {
13215 /* Nothing to mention. These breakpoints are internal. */
13216 }
13217
13218 /* Virtual table for momentary breakpoints */
13219
13220 static void
13221 momentary_bkpt_re_set (struct breakpoint *b)
13222 {
13223 /* Keep temporary breakpoints, which can be encountered when we step
13224 over a dlopen call and SOLIB_ADD is resetting the breakpoints.
13225 Otherwise these should have been blown away via the cleanup chain
13226 or by breakpoint_init_inferior when we rerun the executable. */
13227 }
13228
13229 static void
13230 momentary_bkpt_check_status (bpstat bs)
13231 {
13232 /* Nothing. The point of these breakpoints is causing a stop. */
13233 }
13234
13235 static enum print_stop_action
13236 momentary_bkpt_print_it (bpstat bs)
13237 {
13238 struct ui_out *uiout = current_uiout;
13239
13240 if (ui_out_is_mi_like_p (uiout))
13241 {
13242 struct breakpoint *b = bs->breakpoint_at;
13243
13244 switch (b->type)
13245 {
13246 case bp_finish:
13247 ui_out_field_string
13248 (uiout, "reason",
13249 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13250 break;
13251
13252 case bp_until:
13253 ui_out_field_string
13254 (uiout, "reason",
13255 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13256 break;
13257 }
13258 }
13259
13260 return PRINT_UNKNOWN;
13261 }
13262
13263 static void
13264 momentary_bkpt_print_mention (struct breakpoint *b)
13265 {
13266 /* Nothing to mention. These breakpoints are internal. */
13267 }
13268
13269 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13270
13271 It gets cleared already on the removal of the first one of such placed
13272 breakpoints. This is OK as they get all removed altogether. */
13273
13274 static void
13275 longjmp_bkpt_dtor (struct breakpoint *self)
13276 {
13277 struct thread_info *tp = find_thread_id (self->thread);
13278
13279 if (tp)
13280 tp->initiating_frame = null_frame_id;
13281
13282 momentary_breakpoint_ops.dtor (self);
13283 }
13284
13285 /* Specific methods for probe breakpoints. */
13286
13287 static int
13288 bkpt_probe_insert_location (struct bp_location *bl)
13289 {
13290 int v = bkpt_insert_location (bl);
13291
13292 if (v == 0)
13293 {
13294 /* The insertion was successful, now let's set the probe's semaphore
13295 if needed. */
13296 bl->probe->pops->set_semaphore (bl->probe, bl->gdbarch);
13297 }
13298
13299 return v;
13300 }
13301
13302 static int
13303 bkpt_probe_remove_location (struct bp_location *bl)
13304 {
13305 /* Let's clear the semaphore before removing the location. */
13306 bl->probe->pops->clear_semaphore (bl->probe, bl->gdbarch);
13307
13308 return bkpt_remove_location (bl);
13309 }
13310
13311 static void
13312 bkpt_probe_create_sals_from_address (char **arg,
13313 struct linespec_result *canonical,
13314 enum bptype type_wanted,
13315 char *addr_start, char **copy_arg)
13316 {
13317 struct linespec_sals lsal;
13318
13319 lsal.sals = parse_probes (arg, canonical);
13320
13321 *copy_arg = xstrdup (canonical->addr_string);
13322 lsal.canonical = xstrdup (*copy_arg);
13323
13324 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13325 }
13326
13327 static void
13328 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13329 struct symtabs_and_lines *sals)
13330 {
13331 *sals = parse_probes (s, NULL);
13332 if (!sals->sals)
13333 error (_("probe not found"));
13334 }
13335
13336 /* The breakpoint_ops structure to be used in tracepoints. */
13337
13338 static void
13339 tracepoint_re_set (struct breakpoint *b)
13340 {
13341 breakpoint_re_set_default (b);
13342 }
13343
13344 static int
13345 tracepoint_breakpoint_hit (const struct bp_location *bl,
13346 struct address_space *aspace, CORE_ADDR bp_addr,
13347 const struct target_waitstatus *ws)
13348 {
13349 /* By definition, the inferior does not report stops at
13350 tracepoints. */
13351 return 0;
13352 }
13353
13354 static void
13355 tracepoint_print_one_detail (const struct breakpoint *self,
13356 struct ui_out *uiout)
13357 {
13358 struct tracepoint *tp = (struct tracepoint *) self;
13359 if (tp->static_trace_marker_id)
13360 {
13361 gdb_assert (self->type == bp_static_tracepoint);
13362
13363 ui_out_text (uiout, "\tmarker id is ");
13364 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13365 tp->static_trace_marker_id);
13366 ui_out_text (uiout, "\n");
13367 }
13368 }
13369
13370 static void
13371 tracepoint_print_mention (struct breakpoint *b)
13372 {
13373 if (ui_out_is_mi_like_p (current_uiout))
13374 return;
13375
13376 switch (b->type)
13377 {
13378 case bp_tracepoint:
13379 printf_filtered (_("Tracepoint"));
13380 printf_filtered (_(" %d"), b->number);
13381 break;
13382 case bp_fast_tracepoint:
13383 printf_filtered (_("Fast tracepoint"));
13384 printf_filtered (_(" %d"), b->number);
13385 break;
13386 case bp_static_tracepoint:
13387 printf_filtered (_("Static tracepoint"));
13388 printf_filtered (_(" %d"), b->number);
13389 break;
13390 default:
13391 internal_error (__FILE__, __LINE__,
13392 _("unhandled tracepoint type %d"), (int) b->type);
13393 }
13394
13395 say_where (b);
13396 }
13397
13398 static void
13399 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13400 {
13401 struct tracepoint *tp = (struct tracepoint *) self;
13402
13403 if (self->type == bp_fast_tracepoint)
13404 fprintf_unfiltered (fp, "ftrace");
13405 if (self->type == bp_static_tracepoint)
13406 fprintf_unfiltered (fp, "strace");
13407 else if (self->type == bp_tracepoint)
13408 fprintf_unfiltered (fp, "trace");
13409 else
13410 internal_error (__FILE__, __LINE__,
13411 _("unhandled tracepoint type %d"), (int) self->type);
13412
13413 fprintf_unfiltered (fp, " %s", self->addr_string);
13414 print_recreate_thread (self, fp);
13415
13416 if (tp->pass_count)
13417 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13418 }
13419
13420 static void
13421 tracepoint_create_sals_from_address (char **arg,
13422 struct linespec_result *canonical,
13423 enum bptype type_wanted,
13424 char *addr_start, char **copy_arg)
13425 {
13426 create_sals_from_address_default (arg, canonical, type_wanted,
13427 addr_start, copy_arg);
13428 }
13429
13430 static void
13431 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13432 struct linespec_result *canonical,
13433 struct linespec_sals *lsal,
13434 char *cond_string,
13435 char *extra_string,
13436 enum bptype type_wanted,
13437 enum bpdisp disposition,
13438 int thread,
13439 int task, int ignore_count,
13440 const struct breakpoint_ops *ops,
13441 int from_tty, int enabled,
13442 int internal, unsigned flags)
13443 {
13444 create_breakpoints_sal_default (gdbarch, canonical, lsal,
13445 cond_string, extra_string,
13446 type_wanted,
13447 disposition, thread, task,
13448 ignore_count, ops, from_tty,
13449 enabled, internal, flags);
13450 }
13451
13452 static void
13453 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13454 struct symtabs_and_lines *sals)
13455 {
13456 decode_linespec_default (b, s, sals);
13457 }
13458
13459 struct breakpoint_ops tracepoint_breakpoint_ops;
13460
13461 /* The breakpoint_ops structure to be use on tracepoints placed in a
13462 static probe. */
13463
13464 static void
13465 tracepoint_probe_create_sals_from_address (char **arg,
13466 struct linespec_result *canonical,
13467 enum bptype type_wanted,
13468 char *addr_start, char **copy_arg)
13469 {
13470 /* We use the same method for breakpoint on probes. */
13471 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13472 addr_start, copy_arg);
13473 }
13474
13475 static void
13476 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13477 struct symtabs_and_lines *sals)
13478 {
13479 /* We use the same method for breakpoint on probes. */
13480 bkpt_probe_decode_linespec (b, s, sals);
13481 }
13482
13483 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13484
13485 /* The breakpoint_ops structure to be used on static tracepoints with
13486 markers (`-m'). */
13487
13488 static void
13489 strace_marker_create_sals_from_address (char **arg,
13490 struct linespec_result *canonical,
13491 enum bptype type_wanted,
13492 char *addr_start, char **copy_arg)
13493 {
13494 struct linespec_sals lsal;
13495
13496 lsal.sals = decode_static_tracepoint_spec (arg);
13497
13498 *copy_arg = savestring (addr_start, *arg - addr_start);
13499
13500 canonical->addr_string = xstrdup (*copy_arg);
13501 lsal.canonical = xstrdup (*copy_arg);
13502 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13503 }
13504
13505 static void
13506 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13507 struct linespec_result *canonical,
13508 struct linespec_sals *lsal,
13509 char *cond_string,
13510 char *extra_string,
13511 enum bptype type_wanted,
13512 enum bpdisp disposition,
13513 int thread,
13514 int task, int ignore_count,
13515 const struct breakpoint_ops *ops,
13516 int from_tty, int enabled,
13517 int internal, unsigned flags)
13518 {
13519 int i;
13520
13521 /* If the user is creating a static tracepoint by marker id
13522 (strace -m MARKER_ID), then store the sals index, so that
13523 breakpoint_re_set can try to match up which of the newly
13524 found markers corresponds to this one, and, don't try to
13525 expand multiple locations for each sal, given than SALS
13526 already should contain all sals for MARKER_ID. */
13527
13528 for (i = 0; i < lsal->sals.nelts; ++i)
13529 {
13530 struct symtabs_and_lines expanded;
13531 struct tracepoint *tp;
13532 struct cleanup *old_chain;
13533 char *addr_string;
13534
13535 expanded.nelts = 1;
13536 expanded.sals = &lsal->sals.sals[i];
13537
13538 addr_string = xstrdup (canonical->addr_string);
13539 old_chain = make_cleanup (xfree, addr_string);
13540
13541 tp = XCNEW (struct tracepoint);
13542 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13543 addr_string, NULL,
13544 cond_string, extra_string,
13545 type_wanted, disposition,
13546 thread, task, ignore_count, ops,
13547 from_tty, enabled, internal, flags,
13548 canonical->special_display);
13549 /* Given that its possible to have multiple markers with
13550 the same string id, if the user is creating a static
13551 tracepoint by marker id ("strace -m MARKER_ID"), then
13552 store the sals index, so that breakpoint_re_set can
13553 try to match up which of the newly found markers
13554 corresponds to this one */
13555 tp->static_trace_marker_id_idx = i;
13556
13557 install_breakpoint (internal, &tp->base, 0);
13558
13559 discard_cleanups (old_chain);
13560 }
13561 }
13562
13563 static void
13564 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13565 struct symtabs_and_lines *sals)
13566 {
13567 struct tracepoint *tp = (struct tracepoint *) b;
13568
13569 *sals = decode_static_tracepoint_spec (s);
13570 if (sals->nelts > tp->static_trace_marker_id_idx)
13571 {
13572 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13573 sals->nelts = 1;
13574 }
13575 else
13576 error (_("marker %s not found"), tp->static_trace_marker_id);
13577 }
13578
13579 static struct breakpoint_ops strace_marker_breakpoint_ops;
13580
13581 static int
13582 strace_marker_p (struct breakpoint *b)
13583 {
13584 return b->ops == &strace_marker_breakpoint_ops;
13585 }
13586
13587 /* Delete a breakpoint and clean up all traces of it in the data
13588 structures. */
13589
13590 void
13591 delete_breakpoint (struct breakpoint *bpt)
13592 {
13593 struct breakpoint *b;
13594
13595 gdb_assert (bpt != NULL);
13596
13597 /* Has this bp already been deleted? This can happen because
13598 multiple lists can hold pointers to bp's. bpstat lists are
13599 especial culprits.
13600
13601 One example of this happening is a watchpoint's scope bp. When
13602 the scope bp triggers, we notice that the watchpoint is out of
13603 scope, and delete it. We also delete its scope bp. But the
13604 scope bp is marked "auto-deleting", and is already on a bpstat.
13605 That bpstat is then checked for auto-deleting bp's, which are
13606 deleted.
13607
13608 A real solution to this problem might involve reference counts in
13609 bp's, and/or giving them pointers back to their referencing
13610 bpstat's, and teaching delete_breakpoint to only free a bp's
13611 storage when no more references were extent. A cheaper bandaid
13612 was chosen. */
13613 if (bpt->type == bp_none)
13614 return;
13615
13616 /* At least avoid this stale reference until the reference counting
13617 of breakpoints gets resolved. */
13618 if (bpt->related_breakpoint != bpt)
13619 {
13620 struct breakpoint *related;
13621 struct watchpoint *w;
13622
13623 if (bpt->type == bp_watchpoint_scope)
13624 w = (struct watchpoint *) bpt->related_breakpoint;
13625 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13626 w = (struct watchpoint *) bpt;
13627 else
13628 w = NULL;
13629 if (w != NULL)
13630 watchpoint_del_at_next_stop (w);
13631
13632 /* Unlink bpt from the bpt->related_breakpoint ring. */
13633 for (related = bpt; related->related_breakpoint != bpt;
13634 related = related->related_breakpoint);
13635 related->related_breakpoint = bpt->related_breakpoint;
13636 bpt->related_breakpoint = bpt;
13637 }
13638
13639 /* watch_command_1 creates a watchpoint but only sets its number if
13640 update_watchpoint succeeds in creating its bp_locations. If there's
13641 a problem in that process, we'll be asked to delete the half-created
13642 watchpoint. In that case, don't announce the deletion. */
13643 if (bpt->number)
13644 observer_notify_breakpoint_deleted (bpt);
13645
13646 if (breakpoint_chain == bpt)
13647 breakpoint_chain = bpt->next;
13648
13649 ALL_BREAKPOINTS (b)
13650 if (b->next == bpt)
13651 {
13652 b->next = bpt->next;
13653 break;
13654 }
13655
13656 /* Be sure no bpstat's are pointing at the breakpoint after it's
13657 been freed. */
13658 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13659 in all threads for now. Note that we cannot just remove bpstats
13660 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13661 commands are associated with the bpstat; if we remove it here,
13662 then the later call to bpstat_do_actions (&stop_bpstat); in
13663 event-top.c won't do anything, and temporary breakpoints with
13664 commands won't work. */
13665
13666 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13667
13668 /* Now that breakpoint is removed from breakpoint list, update the
13669 global location list. This will remove locations that used to
13670 belong to this breakpoint. Do this before freeing the breakpoint
13671 itself, since remove_breakpoint looks at location's owner. It
13672 might be better design to have location completely
13673 self-contained, but it's not the case now. */
13674 update_global_location_list (0);
13675
13676 bpt->ops->dtor (bpt);
13677 /* On the chance that someone will soon try again to delete this
13678 same bp, we mark it as deleted before freeing its storage. */
13679 bpt->type = bp_none;
13680 xfree (bpt);
13681 }
13682
13683 static void
13684 do_delete_breakpoint_cleanup (void *b)
13685 {
13686 delete_breakpoint (b);
13687 }
13688
13689 struct cleanup *
13690 make_cleanup_delete_breakpoint (struct breakpoint *b)
13691 {
13692 return make_cleanup (do_delete_breakpoint_cleanup, b);
13693 }
13694
13695 /* Iterator function to call a user-provided callback function once
13696 for each of B and its related breakpoints. */
13697
13698 static void
13699 iterate_over_related_breakpoints (struct breakpoint *b,
13700 void (*function) (struct breakpoint *,
13701 void *),
13702 void *data)
13703 {
13704 struct breakpoint *related;
13705
13706 related = b;
13707 do
13708 {
13709 struct breakpoint *next;
13710
13711 /* FUNCTION may delete RELATED. */
13712 next = related->related_breakpoint;
13713
13714 if (next == related)
13715 {
13716 /* RELATED is the last ring entry. */
13717 function (related, data);
13718
13719 /* FUNCTION may have deleted it, so we'd never reach back to
13720 B. There's nothing left to do anyway, so just break
13721 out. */
13722 break;
13723 }
13724 else
13725 function (related, data);
13726
13727 related = next;
13728 }
13729 while (related != b);
13730 }
13731
13732 static void
13733 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13734 {
13735 delete_breakpoint (b);
13736 }
13737
13738 /* A callback for map_breakpoint_numbers that calls
13739 delete_breakpoint. */
13740
13741 static void
13742 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13743 {
13744 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13745 }
13746
13747 void
13748 delete_command (char *arg, int from_tty)
13749 {
13750 struct breakpoint *b, *b_tmp;
13751
13752 dont_repeat ();
13753
13754 if (arg == 0)
13755 {
13756 int breaks_to_delete = 0;
13757
13758 /* Delete all breakpoints if no argument. Do not delete
13759 internal breakpoints, these have to be deleted with an
13760 explicit breakpoint number argument. */
13761 ALL_BREAKPOINTS (b)
13762 if (user_breakpoint_p (b))
13763 {
13764 breaks_to_delete = 1;
13765 break;
13766 }
13767
13768 /* Ask user only if there are some breakpoints to delete. */
13769 if (!from_tty
13770 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13771 {
13772 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13773 if (user_breakpoint_p (b))
13774 delete_breakpoint (b);
13775 }
13776 }
13777 else
13778 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13779 }
13780
13781 static int
13782 all_locations_are_pending (struct bp_location *loc)
13783 {
13784 for (; loc; loc = loc->next)
13785 if (!loc->shlib_disabled
13786 && !loc->pspace->executing_startup)
13787 return 0;
13788 return 1;
13789 }
13790
13791 /* Subroutine of update_breakpoint_locations to simplify it.
13792 Return non-zero if multiple fns in list LOC have the same name.
13793 Null names are ignored. */
13794
13795 static int
13796 ambiguous_names_p (struct bp_location *loc)
13797 {
13798 struct bp_location *l;
13799 htab_t htab = htab_create_alloc (13, htab_hash_string,
13800 (int (*) (const void *,
13801 const void *)) streq,
13802 NULL, xcalloc, xfree);
13803
13804 for (l = loc; l != NULL; l = l->next)
13805 {
13806 const char **slot;
13807 const char *name = l->function_name;
13808
13809 /* Allow for some names to be NULL, ignore them. */
13810 if (name == NULL)
13811 continue;
13812
13813 slot = (const char **) htab_find_slot (htab, (const void *) name,
13814 INSERT);
13815 /* NOTE: We can assume slot != NULL here because xcalloc never
13816 returns NULL. */
13817 if (*slot != NULL)
13818 {
13819 htab_delete (htab);
13820 return 1;
13821 }
13822 *slot = name;
13823 }
13824
13825 htab_delete (htab);
13826 return 0;
13827 }
13828
13829 /* When symbols change, it probably means the sources changed as well,
13830 and it might mean the static tracepoint markers are no longer at
13831 the same address or line numbers they used to be at last we
13832 checked. Losing your static tracepoints whenever you rebuild is
13833 undesirable. This function tries to resync/rematch gdb static
13834 tracepoints with the markers on the target, for static tracepoints
13835 that have not been set by marker id. Static tracepoint that have
13836 been set by marker id are reset by marker id in breakpoint_re_set.
13837 The heuristic is:
13838
13839 1) For a tracepoint set at a specific address, look for a marker at
13840 the old PC. If one is found there, assume to be the same marker.
13841 If the name / string id of the marker found is different from the
13842 previous known name, assume that means the user renamed the marker
13843 in the sources, and output a warning.
13844
13845 2) For a tracepoint set at a given line number, look for a marker
13846 at the new address of the old line number. If one is found there,
13847 assume to be the same marker. If the name / string id of the
13848 marker found is different from the previous known name, assume that
13849 means the user renamed the marker in the sources, and output a
13850 warning.
13851
13852 3) If a marker is no longer found at the same address or line, it
13853 may mean the marker no longer exists. But it may also just mean
13854 the code changed a bit. Maybe the user added a few lines of code
13855 that made the marker move up or down (in line number terms). Ask
13856 the target for info about the marker with the string id as we knew
13857 it. If found, update line number and address in the matching
13858 static tracepoint. This will get confused if there's more than one
13859 marker with the same ID (possible in UST, although unadvised
13860 precisely because it confuses tools). */
13861
13862 static struct symtab_and_line
13863 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13864 {
13865 struct tracepoint *tp = (struct tracepoint *) b;
13866 struct static_tracepoint_marker marker;
13867 CORE_ADDR pc;
13868
13869 pc = sal.pc;
13870 if (sal.line)
13871 find_line_pc (sal.symtab, sal.line, &pc);
13872
13873 if (target_static_tracepoint_marker_at (pc, &marker))
13874 {
13875 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13876 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13877 b->number,
13878 tp->static_trace_marker_id, marker.str_id);
13879
13880 xfree (tp->static_trace_marker_id);
13881 tp->static_trace_marker_id = xstrdup (marker.str_id);
13882 release_static_tracepoint_marker (&marker);
13883
13884 return sal;
13885 }
13886
13887 /* Old marker wasn't found on target at lineno. Try looking it up
13888 by string ID. */
13889 if (!sal.explicit_pc
13890 && sal.line != 0
13891 && sal.symtab != NULL
13892 && tp->static_trace_marker_id != NULL)
13893 {
13894 VEC(static_tracepoint_marker_p) *markers;
13895
13896 markers
13897 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13898
13899 if (!VEC_empty(static_tracepoint_marker_p, markers))
13900 {
13901 struct symtab_and_line sal2;
13902 struct symbol *sym;
13903 struct static_tracepoint_marker *tpmarker;
13904 struct ui_out *uiout = current_uiout;
13905
13906 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13907
13908 xfree (tp->static_trace_marker_id);
13909 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13910
13911 warning (_("marker for static tracepoint %d (%s) not "
13912 "found at previous line number"),
13913 b->number, tp->static_trace_marker_id);
13914
13915 init_sal (&sal2);
13916
13917 sal2.pc = tpmarker->address;
13918
13919 sal2 = find_pc_line (tpmarker->address, 0);
13920 sym = find_pc_sect_function (tpmarker->address, NULL);
13921 ui_out_text (uiout, "Now in ");
13922 if (sym)
13923 {
13924 ui_out_field_string (uiout, "func",
13925 SYMBOL_PRINT_NAME (sym));
13926 ui_out_text (uiout, " at ");
13927 }
13928 ui_out_field_string (uiout, "file", sal2.symtab->filename);
13929 ui_out_text (uiout, ":");
13930
13931 if (ui_out_is_mi_like_p (uiout))
13932 {
13933 const char *fullname = symtab_to_fullname (sal2.symtab);
13934
13935 ui_out_field_string (uiout, "fullname", fullname);
13936 }
13937
13938 ui_out_field_int (uiout, "line", sal2.line);
13939 ui_out_text (uiout, "\n");
13940
13941 b->loc->line_number = sal2.line;
13942 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13943
13944 xfree (b->addr_string);
13945 b->addr_string = xstrprintf ("%s:%d",
13946 sal2.symtab->filename,
13947 b->loc->line_number);
13948
13949 /* Might be nice to check if function changed, and warn if
13950 so. */
13951
13952 release_static_tracepoint_marker (tpmarker);
13953 }
13954 }
13955 return sal;
13956 }
13957
13958 /* Returns 1 iff locations A and B are sufficiently same that
13959 we don't need to report breakpoint as changed. */
13960
13961 static int
13962 locations_are_equal (struct bp_location *a, struct bp_location *b)
13963 {
13964 while (a && b)
13965 {
13966 if (a->address != b->address)
13967 return 0;
13968
13969 if (a->shlib_disabled != b->shlib_disabled)
13970 return 0;
13971
13972 if (a->enabled != b->enabled)
13973 return 0;
13974
13975 a = a->next;
13976 b = b->next;
13977 }
13978
13979 if ((a == NULL) != (b == NULL))
13980 return 0;
13981
13982 return 1;
13983 }
13984
13985 /* Create new breakpoint locations for B (a hardware or software breakpoint)
13986 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
13987 a ranged breakpoint. */
13988
13989 void
13990 update_breakpoint_locations (struct breakpoint *b,
13991 struct symtabs_and_lines sals,
13992 struct symtabs_and_lines sals_end)
13993 {
13994 int i;
13995 struct bp_location *existing_locations = b->loc;
13996
13997 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
13998 {
13999 /* Ranged breakpoints have only one start location and one end
14000 location. */
14001 b->enable_state = bp_disabled;
14002 update_global_location_list (1);
14003 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14004 "multiple locations found\n"),
14005 b->number);
14006 return;
14007 }
14008
14009 /* If there's no new locations, and all existing locations are
14010 pending, don't do anything. This optimizes the common case where
14011 all locations are in the same shared library, that was unloaded.
14012 We'd like to retain the location, so that when the library is
14013 loaded again, we don't loose the enabled/disabled status of the
14014 individual locations. */
14015 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
14016 return;
14017
14018 b->loc = NULL;
14019
14020 for (i = 0; i < sals.nelts; ++i)
14021 {
14022 struct bp_location *new_loc;
14023
14024 switch_to_program_space_and_thread (sals.sals[i].pspace);
14025
14026 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14027
14028 /* Reparse conditions, they might contain references to the
14029 old symtab. */
14030 if (b->cond_string != NULL)
14031 {
14032 char *s;
14033 volatile struct gdb_exception e;
14034
14035 s = b->cond_string;
14036 TRY_CATCH (e, RETURN_MASK_ERROR)
14037 {
14038 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14039 block_for_pc (sals.sals[i].pc),
14040 0);
14041 }
14042 if (e.reason < 0)
14043 {
14044 warning (_("failed to reevaluate condition "
14045 "for breakpoint %d: %s"),
14046 b->number, e.message);
14047 new_loc->enabled = 0;
14048 }
14049 }
14050
14051 if (sals_end.nelts)
14052 {
14053 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14054
14055 new_loc->length = end - sals.sals[0].pc + 1;
14056 }
14057 }
14058
14059 /* Update locations of permanent breakpoints. */
14060 if (b->enable_state == bp_permanent)
14061 make_breakpoint_permanent (b);
14062
14063 /* If possible, carry over 'disable' status from existing
14064 breakpoints. */
14065 {
14066 struct bp_location *e = existing_locations;
14067 /* If there are multiple breakpoints with the same function name,
14068 e.g. for inline functions, comparing function names won't work.
14069 Instead compare pc addresses; this is just a heuristic as things
14070 may have moved, but in practice it gives the correct answer
14071 often enough until a better solution is found. */
14072 int have_ambiguous_names = ambiguous_names_p (b->loc);
14073
14074 for (; e; e = e->next)
14075 {
14076 if (!e->enabled && e->function_name)
14077 {
14078 struct bp_location *l = b->loc;
14079 if (have_ambiguous_names)
14080 {
14081 for (; l; l = l->next)
14082 if (breakpoint_locations_match (e, l))
14083 {
14084 l->enabled = 0;
14085 break;
14086 }
14087 }
14088 else
14089 {
14090 for (; l; l = l->next)
14091 if (l->function_name
14092 && strcmp (e->function_name, l->function_name) == 0)
14093 {
14094 l->enabled = 0;
14095 break;
14096 }
14097 }
14098 }
14099 }
14100 }
14101
14102 if (!locations_are_equal (existing_locations, b->loc))
14103 observer_notify_breakpoint_modified (b);
14104
14105 update_global_location_list (1);
14106 }
14107
14108 /* Find the SaL locations corresponding to the given ADDR_STRING.
14109 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14110
14111 static struct symtabs_and_lines
14112 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14113 {
14114 char *s;
14115 struct symtabs_and_lines sals = {0};
14116 volatile struct gdb_exception e;
14117
14118 gdb_assert (b->ops != NULL);
14119 s = addr_string;
14120
14121 TRY_CATCH (e, RETURN_MASK_ERROR)
14122 {
14123 b->ops->decode_linespec (b, &s, &sals);
14124 }
14125 if (e.reason < 0)
14126 {
14127 int not_found_and_ok = 0;
14128 /* For pending breakpoints, it's expected that parsing will
14129 fail until the right shared library is loaded. User has
14130 already told to create pending breakpoints and don't need
14131 extra messages. If breakpoint is in bp_shlib_disabled
14132 state, then user already saw the message about that
14133 breakpoint being disabled, and don't want to see more
14134 errors. */
14135 if (e.error == NOT_FOUND_ERROR
14136 && (b->condition_not_parsed
14137 || (b->loc && b->loc->shlib_disabled)
14138 || (b->loc && b->loc->pspace->executing_startup)
14139 || b->enable_state == bp_disabled))
14140 not_found_and_ok = 1;
14141
14142 if (!not_found_and_ok)
14143 {
14144 /* We surely don't want to warn about the same breakpoint
14145 10 times. One solution, implemented here, is disable
14146 the breakpoint on error. Another solution would be to
14147 have separate 'warning emitted' flag. Since this
14148 happens only when a binary has changed, I don't know
14149 which approach is better. */
14150 b->enable_state = bp_disabled;
14151 throw_exception (e);
14152 }
14153 }
14154
14155 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14156 {
14157 int i;
14158
14159 for (i = 0; i < sals.nelts; ++i)
14160 resolve_sal_pc (&sals.sals[i]);
14161 if (b->condition_not_parsed && s && s[0])
14162 {
14163 char *cond_string, *extra_string;
14164 int thread, task;
14165
14166 find_condition_and_thread (s, sals.sals[0].pc,
14167 &cond_string, &thread, &task,
14168 &extra_string);
14169 if (cond_string)
14170 b->cond_string = cond_string;
14171 b->thread = thread;
14172 b->task = task;
14173 if (extra_string)
14174 b->extra_string = extra_string;
14175 b->condition_not_parsed = 0;
14176 }
14177
14178 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14179 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14180
14181 *found = 1;
14182 }
14183 else
14184 *found = 0;
14185
14186 return sals;
14187 }
14188
14189 /* The default re_set method, for typical hardware or software
14190 breakpoints. Reevaluate the breakpoint and recreate its
14191 locations. */
14192
14193 static void
14194 breakpoint_re_set_default (struct breakpoint *b)
14195 {
14196 int found;
14197 struct symtabs_and_lines sals, sals_end;
14198 struct symtabs_and_lines expanded = {0};
14199 struct symtabs_and_lines expanded_end = {0};
14200
14201 sals = addr_string_to_sals (b, b->addr_string, &found);
14202 if (found)
14203 {
14204 make_cleanup (xfree, sals.sals);
14205 expanded = sals;
14206 }
14207
14208 if (b->addr_string_range_end)
14209 {
14210 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14211 if (found)
14212 {
14213 make_cleanup (xfree, sals_end.sals);
14214 expanded_end = sals_end;
14215 }
14216 }
14217
14218 update_breakpoint_locations (b, expanded, expanded_end);
14219 }
14220
14221 /* Default method for creating SALs from an address string. It basically
14222 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14223
14224 static void
14225 create_sals_from_address_default (char **arg,
14226 struct linespec_result *canonical,
14227 enum bptype type_wanted,
14228 char *addr_start, char **copy_arg)
14229 {
14230 parse_breakpoint_sals (arg, canonical);
14231 }
14232
14233 /* Call create_breakpoints_sal for the given arguments. This is the default
14234 function for the `create_breakpoints_sal' method of
14235 breakpoint_ops. */
14236
14237 static void
14238 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14239 struct linespec_result *canonical,
14240 struct linespec_sals *lsal,
14241 char *cond_string,
14242 char *extra_string,
14243 enum bptype type_wanted,
14244 enum bpdisp disposition,
14245 int thread,
14246 int task, int ignore_count,
14247 const struct breakpoint_ops *ops,
14248 int from_tty, int enabled,
14249 int internal, unsigned flags)
14250 {
14251 create_breakpoints_sal (gdbarch, canonical, cond_string,
14252 extra_string,
14253 type_wanted, disposition,
14254 thread, task, ignore_count, ops, from_tty,
14255 enabled, internal, flags);
14256 }
14257
14258 /* Decode the line represented by S by calling decode_line_full. This is the
14259 default function for the `decode_linespec' method of breakpoint_ops. */
14260
14261 static void
14262 decode_linespec_default (struct breakpoint *b, char **s,
14263 struct symtabs_and_lines *sals)
14264 {
14265 struct linespec_result canonical;
14266
14267 init_linespec_result (&canonical);
14268 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14269 (struct symtab *) NULL, 0,
14270 &canonical, multiple_symbols_all,
14271 b->filter);
14272
14273 /* We should get 0 or 1 resulting SALs. */
14274 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14275
14276 if (VEC_length (linespec_sals, canonical.sals) > 0)
14277 {
14278 struct linespec_sals *lsal;
14279
14280 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14281 *sals = lsal->sals;
14282 /* Arrange it so the destructor does not free the
14283 contents. */
14284 lsal->sals.sals = NULL;
14285 }
14286
14287 destroy_linespec_result (&canonical);
14288 }
14289
14290 /* Prepare the global context for a re-set of breakpoint B. */
14291
14292 static struct cleanup *
14293 prepare_re_set_context (struct breakpoint *b)
14294 {
14295 struct cleanup *cleanups;
14296
14297 input_radix = b->input_radix;
14298 cleanups = save_current_space_and_thread ();
14299 if (b->pspace != NULL)
14300 switch_to_program_space_and_thread (b->pspace);
14301 set_language (b->language);
14302
14303 return cleanups;
14304 }
14305
14306 /* Reset a breakpoint given it's struct breakpoint * BINT.
14307 The value we return ends up being the return value from catch_errors.
14308 Unused in this case. */
14309
14310 static int
14311 breakpoint_re_set_one (void *bint)
14312 {
14313 /* Get past catch_errs. */
14314 struct breakpoint *b = (struct breakpoint *) bint;
14315 struct cleanup *cleanups;
14316
14317 cleanups = prepare_re_set_context (b);
14318 b->ops->re_set (b);
14319 do_cleanups (cleanups);
14320 return 0;
14321 }
14322
14323 /* Re-set all breakpoints after symbols have been re-loaded. */
14324 void
14325 breakpoint_re_set (void)
14326 {
14327 struct breakpoint *b, *b_tmp;
14328 enum language save_language;
14329 int save_input_radix;
14330 struct cleanup *old_chain;
14331
14332 save_language = current_language->la_language;
14333 save_input_radix = input_radix;
14334 old_chain = save_current_program_space ();
14335
14336 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14337 {
14338 /* Format possible error msg. */
14339 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14340 b->number);
14341 struct cleanup *cleanups = make_cleanup (xfree, message);
14342 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14343 do_cleanups (cleanups);
14344 }
14345 set_language (save_language);
14346 input_radix = save_input_radix;
14347
14348 jit_breakpoint_re_set ();
14349
14350 do_cleanups (old_chain);
14351
14352 create_overlay_event_breakpoint ();
14353 create_longjmp_master_breakpoint ();
14354 create_std_terminate_master_breakpoint ();
14355 create_exception_master_breakpoint ();
14356 }
14357 \f
14358 /* Reset the thread number of this breakpoint:
14359
14360 - If the breakpoint is for all threads, leave it as-is.
14361 - Else, reset it to the current thread for inferior_ptid. */
14362 void
14363 breakpoint_re_set_thread (struct breakpoint *b)
14364 {
14365 if (b->thread != -1)
14366 {
14367 if (in_thread_list (inferior_ptid))
14368 b->thread = pid_to_thread_id (inferior_ptid);
14369
14370 /* We're being called after following a fork. The new fork is
14371 selected as current, and unless this was a vfork will have a
14372 different program space from the original thread. Reset that
14373 as well. */
14374 b->loc->pspace = current_program_space;
14375 }
14376 }
14377
14378 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14379 If from_tty is nonzero, it prints a message to that effect,
14380 which ends with a period (no newline). */
14381
14382 void
14383 set_ignore_count (int bptnum, int count, int from_tty)
14384 {
14385 struct breakpoint *b;
14386
14387 if (count < 0)
14388 count = 0;
14389
14390 ALL_BREAKPOINTS (b)
14391 if (b->number == bptnum)
14392 {
14393 if (is_tracepoint (b))
14394 {
14395 if (from_tty && count != 0)
14396 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14397 bptnum);
14398 return;
14399 }
14400
14401 b->ignore_count = count;
14402 if (from_tty)
14403 {
14404 if (count == 0)
14405 printf_filtered (_("Will stop next time "
14406 "breakpoint %d is reached."),
14407 bptnum);
14408 else if (count == 1)
14409 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14410 bptnum);
14411 else
14412 printf_filtered (_("Will ignore next %d "
14413 "crossings of breakpoint %d."),
14414 count, bptnum);
14415 }
14416 observer_notify_breakpoint_modified (b);
14417 return;
14418 }
14419
14420 error (_("No breakpoint number %d."), bptnum);
14421 }
14422
14423 /* Command to set ignore-count of breakpoint N to COUNT. */
14424
14425 static void
14426 ignore_command (char *args, int from_tty)
14427 {
14428 char *p = args;
14429 int num;
14430
14431 if (p == 0)
14432 error_no_arg (_("a breakpoint number"));
14433
14434 num = get_number (&p);
14435 if (num == 0)
14436 error (_("bad breakpoint number: '%s'"), args);
14437 if (*p == 0)
14438 error (_("Second argument (specified ignore-count) is missing."));
14439
14440 set_ignore_count (num,
14441 longest_to_int (value_as_long (parse_and_eval (p))),
14442 from_tty);
14443 if (from_tty)
14444 printf_filtered ("\n");
14445 }
14446 \f
14447 /* Call FUNCTION on each of the breakpoints
14448 whose numbers are given in ARGS. */
14449
14450 static void
14451 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14452 void *),
14453 void *data)
14454 {
14455 int num;
14456 struct breakpoint *b, *tmp;
14457 int match;
14458 struct get_number_or_range_state state;
14459
14460 if (args == 0)
14461 error_no_arg (_("one or more breakpoint numbers"));
14462
14463 init_number_or_range (&state, args);
14464
14465 while (!state.finished)
14466 {
14467 char *p = state.string;
14468
14469 match = 0;
14470
14471 num = get_number_or_range (&state);
14472 if (num == 0)
14473 {
14474 warning (_("bad breakpoint number at or near '%s'"), p);
14475 }
14476 else
14477 {
14478 ALL_BREAKPOINTS_SAFE (b, tmp)
14479 if (b->number == num)
14480 {
14481 match = 1;
14482 function (b, data);
14483 break;
14484 }
14485 if (match == 0)
14486 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14487 }
14488 }
14489 }
14490
14491 static struct bp_location *
14492 find_location_by_number (char *number)
14493 {
14494 char *dot = strchr (number, '.');
14495 char *p1;
14496 int bp_num;
14497 int loc_num;
14498 struct breakpoint *b;
14499 struct bp_location *loc;
14500
14501 *dot = '\0';
14502
14503 p1 = number;
14504 bp_num = get_number (&p1);
14505 if (bp_num == 0)
14506 error (_("Bad breakpoint number '%s'"), number);
14507
14508 ALL_BREAKPOINTS (b)
14509 if (b->number == bp_num)
14510 {
14511 break;
14512 }
14513
14514 if (!b || b->number != bp_num)
14515 error (_("Bad breakpoint number '%s'"), number);
14516
14517 p1 = dot+1;
14518 loc_num = get_number (&p1);
14519 if (loc_num == 0)
14520 error (_("Bad breakpoint location number '%s'"), number);
14521
14522 --loc_num;
14523 loc = b->loc;
14524 for (;loc_num && loc; --loc_num, loc = loc->next)
14525 ;
14526 if (!loc)
14527 error (_("Bad breakpoint location number '%s'"), dot+1);
14528
14529 return loc;
14530 }
14531
14532
14533 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14534 If from_tty is nonzero, it prints a message to that effect,
14535 which ends with a period (no newline). */
14536
14537 void
14538 disable_breakpoint (struct breakpoint *bpt)
14539 {
14540 /* Never disable a watchpoint scope breakpoint; we want to
14541 hit them when we leave scope so we can delete both the
14542 watchpoint and its scope breakpoint at that time. */
14543 if (bpt->type == bp_watchpoint_scope)
14544 return;
14545
14546 /* You can't disable permanent breakpoints. */
14547 if (bpt->enable_state == bp_permanent)
14548 return;
14549
14550 bpt->enable_state = bp_disabled;
14551
14552 /* Mark breakpoint locations modified. */
14553 mark_breakpoint_modified (bpt);
14554
14555 if (target_supports_enable_disable_tracepoint ()
14556 && current_trace_status ()->running && is_tracepoint (bpt))
14557 {
14558 struct bp_location *location;
14559
14560 for (location = bpt->loc; location; location = location->next)
14561 target_disable_tracepoint (location);
14562 }
14563
14564 update_global_location_list (0);
14565
14566 observer_notify_breakpoint_modified (bpt);
14567 }
14568
14569 /* A callback for iterate_over_related_breakpoints. */
14570
14571 static void
14572 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14573 {
14574 disable_breakpoint (b);
14575 }
14576
14577 /* A callback for map_breakpoint_numbers that calls
14578 disable_breakpoint. */
14579
14580 static void
14581 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14582 {
14583 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14584 }
14585
14586 static void
14587 disable_command (char *args, int from_tty)
14588 {
14589 if (args == 0)
14590 {
14591 struct breakpoint *bpt;
14592
14593 ALL_BREAKPOINTS (bpt)
14594 if (user_breakpoint_p (bpt))
14595 disable_breakpoint (bpt);
14596 }
14597 else if (strchr (args, '.'))
14598 {
14599 struct bp_location *loc = find_location_by_number (args);
14600 if (loc)
14601 {
14602 if (loc->enabled)
14603 {
14604 loc->enabled = 0;
14605 mark_breakpoint_location_modified (loc);
14606 }
14607 if (target_supports_enable_disable_tracepoint ()
14608 && current_trace_status ()->running && loc->owner
14609 && is_tracepoint (loc->owner))
14610 target_disable_tracepoint (loc);
14611 }
14612 update_global_location_list (0);
14613 }
14614 else
14615 map_breakpoint_numbers (args, do_map_disable_breakpoint, NULL);
14616 }
14617
14618 static void
14619 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14620 int count)
14621 {
14622 int target_resources_ok;
14623
14624 if (bpt->type == bp_hardware_breakpoint)
14625 {
14626 int i;
14627 i = hw_breakpoint_used_count ();
14628 target_resources_ok =
14629 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14630 i + 1, 0);
14631 if (target_resources_ok == 0)
14632 error (_("No hardware breakpoint support in the target."));
14633 else if (target_resources_ok < 0)
14634 error (_("Hardware breakpoints used exceeds limit."));
14635 }
14636
14637 if (is_watchpoint (bpt))
14638 {
14639 /* Initialize it just to avoid a GCC false warning. */
14640 enum enable_state orig_enable_state = 0;
14641 volatile struct gdb_exception e;
14642
14643 TRY_CATCH (e, RETURN_MASK_ALL)
14644 {
14645 struct watchpoint *w = (struct watchpoint *) bpt;
14646
14647 orig_enable_state = bpt->enable_state;
14648 bpt->enable_state = bp_enabled;
14649 update_watchpoint (w, 1 /* reparse */);
14650 }
14651 if (e.reason < 0)
14652 {
14653 bpt->enable_state = orig_enable_state;
14654 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14655 bpt->number);
14656 return;
14657 }
14658 }
14659
14660 if (bpt->enable_state != bp_permanent)
14661 bpt->enable_state = bp_enabled;
14662
14663 bpt->enable_state = bp_enabled;
14664
14665 /* Mark breakpoint locations modified. */
14666 mark_breakpoint_modified (bpt);
14667
14668 if (target_supports_enable_disable_tracepoint ()
14669 && current_trace_status ()->running && is_tracepoint (bpt))
14670 {
14671 struct bp_location *location;
14672
14673 for (location = bpt->loc; location; location = location->next)
14674 target_enable_tracepoint (location);
14675 }
14676
14677 bpt->disposition = disposition;
14678 bpt->enable_count = count;
14679 update_global_location_list (1);
14680
14681 observer_notify_breakpoint_modified (bpt);
14682 }
14683
14684
14685 void
14686 enable_breakpoint (struct breakpoint *bpt)
14687 {
14688 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14689 }
14690
14691 static void
14692 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14693 {
14694 enable_breakpoint (bpt);
14695 }
14696
14697 /* A callback for map_breakpoint_numbers that calls
14698 enable_breakpoint. */
14699
14700 static void
14701 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14702 {
14703 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14704 }
14705
14706 /* The enable command enables the specified breakpoints (or all defined
14707 breakpoints) so they once again become (or continue to be) effective
14708 in stopping the inferior. */
14709
14710 static void
14711 enable_command (char *args, int from_tty)
14712 {
14713 if (args == 0)
14714 {
14715 struct breakpoint *bpt;
14716
14717 ALL_BREAKPOINTS (bpt)
14718 if (user_breakpoint_p (bpt))
14719 enable_breakpoint (bpt);
14720 }
14721 else if (strchr (args, '.'))
14722 {
14723 struct bp_location *loc = find_location_by_number (args);
14724 if (loc)
14725 {
14726 if (!loc->enabled)
14727 {
14728 loc->enabled = 1;
14729 mark_breakpoint_location_modified (loc);
14730 }
14731 if (target_supports_enable_disable_tracepoint ()
14732 && current_trace_status ()->running && loc->owner
14733 && is_tracepoint (loc->owner))
14734 target_enable_tracepoint (loc);
14735 }
14736 update_global_location_list (1);
14737 }
14738 else
14739 map_breakpoint_numbers (args, do_map_enable_breakpoint, NULL);
14740 }
14741
14742 /* This struct packages up disposition data for application to multiple
14743 breakpoints. */
14744
14745 struct disp_data
14746 {
14747 enum bpdisp disp;
14748 int count;
14749 };
14750
14751 static void
14752 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14753 {
14754 struct disp_data disp_data = *(struct disp_data *) arg;
14755
14756 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14757 }
14758
14759 static void
14760 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14761 {
14762 struct disp_data disp = { disp_disable, 1 };
14763
14764 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14765 }
14766
14767 static void
14768 enable_once_command (char *args, int from_tty)
14769 {
14770 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14771 }
14772
14773 static void
14774 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14775 {
14776 struct disp_data disp = { disp_disable, *(int *) countptr };
14777
14778 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14779 }
14780
14781 static void
14782 enable_count_command (char *args, int from_tty)
14783 {
14784 int count = get_number (&args);
14785
14786 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14787 }
14788
14789 static void
14790 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14791 {
14792 struct disp_data disp = { disp_del, 1 };
14793
14794 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14795 }
14796
14797 static void
14798 enable_delete_command (char *args, int from_tty)
14799 {
14800 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14801 }
14802 \f
14803 static void
14804 set_breakpoint_cmd (char *args, int from_tty)
14805 {
14806 }
14807
14808 static void
14809 show_breakpoint_cmd (char *args, int from_tty)
14810 {
14811 }
14812
14813 /* Invalidate last known value of any hardware watchpoint if
14814 the memory which that value represents has been written to by
14815 GDB itself. */
14816
14817 static void
14818 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14819 CORE_ADDR addr, ssize_t len,
14820 const bfd_byte *data)
14821 {
14822 struct breakpoint *bp;
14823
14824 ALL_BREAKPOINTS (bp)
14825 if (bp->enable_state == bp_enabled
14826 && bp->type == bp_hardware_watchpoint)
14827 {
14828 struct watchpoint *wp = (struct watchpoint *) bp;
14829
14830 if (wp->val_valid && wp->val)
14831 {
14832 struct bp_location *loc;
14833
14834 for (loc = bp->loc; loc != NULL; loc = loc->next)
14835 if (loc->loc_type == bp_loc_hardware_watchpoint
14836 && loc->address + loc->length > addr
14837 && addr + len > loc->address)
14838 {
14839 value_free (wp->val);
14840 wp->val = NULL;
14841 wp->val_valid = 0;
14842 }
14843 }
14844 }
14845 }
14846
14847 /* Create and insert a raw software breakpoint at PC. Return an
14848 identifier, which should be used to remove the breakpoint later.
14849 In general, places which call this should be using something on the
14850 breakpoint chain instead; this function should be eliminated
14851 someday. */
14852
14853 void *
14854 deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
14855 struct address_space *aspace, CORE_ADDR pc)
14856 {
14857 struct bp_target_info *bp_tgt;
14858
14859 bp_tgt = XZALLOC (struct bp_target_info);
14860
14861 bp_tgt->placed_address_space = aspace;
14862 bp_tgt->placed_address = pc;
14863
14864 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
14865 {
14866 /* Could not insert the breakpoint. */
14867 xfree (bp_tgt);
14868 return NULL;
14869 }
14870
14871 return bp_tgt;
14872 }
14873
14874 /* Remove a breakpoint BP inserted by
14875 deprecated_insert_raw_breakpoint. */
14876
14877 int
14878 deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
14879 {
14880 struct bp_target_info *bp_tgt = bp;
14881 int ret;
14882
14883 ret = target_remove_breakpoint (gdbarch, bp_tgt);
14884 xfree (bp_tgt);
14885
14886 return ret;
14887 }
14888
14889 /* One (or perhaps two) breakpoints used for software single
14890 stepping. */
14891
14892 static void *single_step_breakpoints[2];
14893 static struct gdbarch *single_step_gdbarch[2];
14894
14895 /* Create and insert a breakpoint for software single step. */
14896
14897 void
14898 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14899 struct address_space *aspace,
14900 CORE_ADDR next_pc)
14901 {
14902 void **bpt_p;
14903
14904 if (single_step_breakpoints[0] == NULL)
14905 {
14906 bpt_p = &single_step_breakpoints[0];
14907 single_step_gdbarch[0] = gdbarch;
14908 }
14909 else
14910 {
14911 gdb_assert (single_step_breakpoints[1] == NULL);
14912 bpt_p = &single_step_breakpoints[1];
14913 single_step_gdbarch[1] = gdbarch;
14914 }
14915
14916 /* NOTE drow/2006-04-11: A future improvement to this function would
14917 be to only create the breakpoints once, and actually put them on
14918 the breakpoint chain. That would let us use set_raw_breakpoint.
14919 We could adjust the addresses each time they were needed. Doing
14920 this requires corresponding changes elsewhere where single step
14921 breakpoints are handled, however. So, for now, we use this. */
14922
14923 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
14924 if (*bpt_p == NULL)
14925 error (_("Could not insert single-step breakpoint at %s"),
14926 paddress (gdbarch, next_pc));
14927 }
14928
14929 /* Check if the breakpoints used for software single stepping
14930 were inserted or not. */
14931
14932 int
14933 single_step_breakpoints_inserted (void)
14934 {
14935 return (single_step_breakpoints[0] != NULL
14936 || single_step_breakpoints[1] != NULL);
14937 }
14938
14939 /* Remove and delete any breakpoints used for software single step. */
14940
14941 void
14942 remove_single_step_breakpoints (void)
14943 {
14944 gdb_assert (single_step_breakpoints[0] != NULL);
14945
14946 /* See insert_single_step_breakpoint for more about this deprecated
14947 call. */
14948 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
14949 single_step_breakpoints[0]);
14950 single_step_gdbarch[0] = NULL;
14951 single_step_breakpoints[0] = NULL;
14952
14953 if (single_step_breakpoints[1] != NULL)
14954 {
14955 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
14956 single_step_breakpoints[1]);
14957 single_step_gdbarch[1] = NULL;
14958 single_step_breakpoints[1] = NULL;
14959 }
14960 }
14961
14962 /* Delete software single step breakpoints without removing them from
14963 the inferior. This is intended to be used if the inferior's address
14964 space where they were inserted is already gone, e.g. after exit or
14965 exec. */
14966
14967 void
14968 cancel_single_step_breakpoints (void)
14969 {
14970 int i;
14971
14972 for (i = 0; i < 2; i++)
14973 if (single_step_breakpoints[i])
14974 {
14975 xfree (single_step_breakpoints[i]);
14976 single_step_breakpoints[i] = NULL;
14977 single_step_gdbarch[i] = NULL;
14978 }
14979 }
14980
14981 /* Detach software single-step breakpoints from INFERIOR_PTID without
14982 removing them. */
14983
14984 static void
14985 detach_single_step_breakpoints (void)
14986 {
14987 int i;
14988
14989 for (i = 0; i < 2; i++)
14990 if (single_step_breakpoints[i])
14991 target_remove_breakpoint (single_step_gdbarch[i],
14992 single_step_breakpoints[i]);
14993 }
14994
14995 /* Check whether a software single-step breakpoint is inserted at
14996 PC. */
14997
14998 static int
14999 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15000 CORE_ADDR pc)
15001 {
15002 int i;
15003
15004 for (i = 0; i < 2; i++)
15005 {
15006 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
15007 if (bp_tgt
15008 && breakpoint_address_match (bp_tgt->placed_address_space,
15009 bp_tgt->placed_address,
15010 aspace, pc))
15011 return 1;
15012 }
15013
15014 return 0;
15015 }
15016
15017 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
15018 non-zero otherwise. */
15019 static int
15020 is_syscall_catchpoint_enabled (struct breakpoint *bp)
15021 {
15022 if (syscall_catchpoint_p (bp)
15023 && bp->enable_state != bp_disabled
15024 && bp->enable_state != bp_call_disabled)
15025 return 1;
15026 else
15027 return 0;
15028 }
15029
15030 int
15031 catch_syscall_enabled (void)
15032 {
15033 struct catch_syscall_inferior_data *inf_data
15034 = get_catch_syscall_inferior_data (current_inferior ());
15035
15036 return inf_data->total_syscalls_count != 0;
15037 }
15038
15039 int
15040 catching_syscall_number (int syscall_number)
15041 {
15042 struct breakpoint *bp;
15043
15044 ALL_BREAKPOINTS (bp)
15045 if (is_syscall_catchpoint_enabled (bp))
15046 {
15047 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
15048
15049 if (c->syscalls_to_be_caught)
15050 {
15051 int i, iter;
15052 for (i = 0;
15053 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
15054 i++)
15055 if (syscall_number == iter)
15056 return 1;
15057 }
15058 else
15059 return 1;
15060 }
15061
15062 return 0;
15063 }
15064
15065 /* Complete syscall names. Used by "catch syscall". */
15066 static VEC (char_ptr) *
15067 catch_syscall_completer (struct cmd_list_element *cmd,
15068 char *text, char *word)
15069 {
15070 const char **list = get_syscall_names ();
15071 VEC (char_ptr) *retlist
15072 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
15073
15074 xfree (list);
15075 return retlist;
15076 }
15077
15078 /* Tracepoint-specific operations. */
15079
15080 /* Set tracepoint count to NUM. */
15081 static void
15082 set_tracepoint_count (int num)
15083 {
15084 tracepoint_count = num;
15085 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15086 }
15087
15088 static void
15089 trace_command (char *arg, int from_tty)
15090 {
15091 struct breakpoint_ops *ops;
15092 const char *arg_cp = arg;
15093
15094 if (arg && probe_linespec_to_ops (&arg_cp))
15095 ops = &tracepoint_probe_breakpoint_ops;
15096 else
15097 ops = &tracepoint_breakpoint_ops;
15098
15099 create_breakpoint (get_current_arch (),
15100 arg,
15101 NULL, 0, NULL, 1 /* parse arg */,
15102 0 /* tempflag */,
15103 bp_tracepoint /* type_wanted */,
15104 0 /* Ignore count */,
15105 pending_break_support,
15106 ops,
15107 from_tty,
15108 1 /* enabled */,
15109 0 /* internal */, 0);
15110 }
15111
15112 static void
15113 ftrace_command (char *arg, int from_tty)
15114 {
15115 create_breakpoint (get_current_arch (),
15116 arg,
15117 NULL, 0, NULL, 1 /* parse arg */,
15118 0 /* tempflag */,
15119 bp_fast_tracepoint /* type_wanted */,
15120 0 /* Ignore count */,
15121 pending_break_support,
15122 &tracepoint_breakpoint_ops,
15123 from_tty,
15124 1 /* enabled */,
15125 0 /* internal */, 0);
15126 }
15127
15128 /* strace command implementation. Creates a static tracepoint. */
15129
15130 static void
15131 strace_command (char *arg, int from_tty)
15132 {
15133 struct breakpoint_ops *ops;
15134
15135 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15136 or with a normal static tracepoint. */
15137 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15138 ops = &strace_marker_breakpoint_ops;
15139 else
15140 ops = &tracepoint_breakpoint_ops;
15141
15142 create_breakpoint (get_current_arch (),
15143 arg,
15144 NULL, 0, NULL, 1 /* parse arg */,
15145 0 /* tempflag */,
15146 bp_static_tracepoint /* type_wanted */,
15147 0 /* Ignore count */,
15148 pending_break_support,
15149 ops,
15150 from_tty,
15151 1 /* enabled */,
15152 0 /* internal */, 0);
15153 }
15154
15155 /* Set up a fake reader function that gets command lines from a linked
15156 list that was acquired during tracepoint uploading. */
15157
15158 static struct uploaded_tp *this_utp;
15159 static int next_cmd;
15160
15161 static char *
15162 read_uploaded_action (void)
15163 {
15164 char *rslt;
15165
15166 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15167
15168 next_cmd++;
15169
15170 return rslt;
15171 }
15172
15173 /* Given information about a tracepoint as recorded on a target (which
15174 can be either a live system or a trace file), attempt to create an
15175 equivalent GDB tracepoint. This is not a reliable process, since
15176 the target does not necessarily have all the information used when
15177 the tracepoint was originally defined. */
15178
15179 struct tracepoint *
15180 create_tracepoint_from_upload (struct uploaded_tp *utp)
15181 {
15182 char *addr_str, small_buf[100];
15183 struct tracepoint *tp;
15184
15185 if (utp->at_string)
15186 addr_str = utp->at_string;
15187 else
15188 {
15189 /* In the absence of a source location, fall back to raw
15190 address. Since there is no way to confirm that the address
15191 means the same thing as when the trace was started, warn the
15192 user. */
15193 warning (_("Uploaded tracepoint %d has no "
15194 "source location, using raw address"),
15195 utp->number);
15196 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15197 addr_str = small_buf;
15198 }
15199
15200 /* There's not much we can do with a sequence of bytecodes. */
15201 if (utp->cond && !utp->cond_string)
15202 warning (_("Uploaded tracepoint %d condition "
15203 "has no source form, ignoring it"),
15204 utp->number);
15205
15206 if (!create_breakpoint (get_current_arch (),
15207 addr_str,
15208 utp->cond_string, -1, NULL,
15209 0 /* parse cond/thread */,
15210 0 /* tempflag */,
15211 utp->type /* type_wanted */,
15212 0 /* Ignore count */,
15213 pending_break_support,
15214 &tracepoint_breakpoint_ops,
15215 0 /* from_tty */,
15216 utp->enabled /* enabled */,
15217 0 /* internal */,
15218 CREATE_BREAKPOINT_FLAGS_INSERTED))
15219 return NULL;
15220
15221 /* Get the tracepoint we just created. */
15222 tp = get_tracepoint (tracepoint_count);
15223 gdb_assert (tp != NULL);
15224
15225 if (utp->pass > 0)
15226 {
15227 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15228 tp->base.number);
15229
15230 trace_pass_command (small_buf, 0);
15231 }
15232
15233 /* If we have uploaded versions of the original commands, set up a
15234 special-purpose "reader" function and call the usual command line
15235 reader, then pass the result to the breakpoint command-setting
15236 function. */
15237 if (!VEC_empty (char_ptr, utp->cmd_strings))
15238 {
15239 struct command_line *cmd_list;
15240
15241 this_utp = utp;
15242 next_cmd = 0;
15243
15244 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15245
15246 breakpoint_set_commands (&tp->base, cmd_list);
15247 }
15248 else if (!VEC_empty (char_ptr, utp->actions)
15249 || !VEC_empty (char_ptr, utp->step_actions))
15250 warning (_("Uploaded tracepoint %d actions "
15251 "have no source form, ignoring them"),
15252 utp->number);
15253
15254 /* Copy any status information that might be available. */
15255 tp->base.hit_count = utp->hit_count;
15256 tp->traceframe_usage = utp->traceframe_usage;
15257
15258 return tp;
15259 }
15260
15261 /* Print information on tracepoint number TPNUM_EXP, or all if
15262 omitted. */
15263
15264 static void
15265 tracepoints_info (char *args, int from_tty)
15266 {
15267 struct ui_out *uiout = current_uiout;
15268 int num_printed;
15269
15270 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15271
15272 if (num_printed == 0)
15273 {
15274 if (args == NULL || *args == '\0')
15275 ui_out_message (uiout, 0, "No tracepoints.\n");
15276 else
15277 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15278 }
15279
15280 default_collect_info ();
15281 }
15282
15283 /* The 'enable trace' command enables tracepoints.
15284 Not supported by all targets. */
15285 static void
15286 enable_trace_command (char *args, int from_tty)
15287 {
15288 enable_command (args, from_tty);
15289 }
15290
15291 /* The 'disable trace' command disables tracepoints.
15292 Not supported by all targets. */
15293 static void
15294 disable_trace_command (char *args, int from_tty)
15295 {
15296 disable_command (args, from_tty);
15297 }
15298
15299 /* Remove a tracepoint (or all if no argument). */
15300 static void
15301 delete_trace_command (char *arg, int from_tty)
15302 {
15303 struct breakpoint *b, *b_tmp;
15304
15305 dont_repeat ();
15306
15307 if (arg == 0)
15308 {
15309 int breaks_to_delete = 0;
15310
15311 /* Delete all breakpoints if no argument.
15312 Do not delete internal or call-dummy breakpoints, these
15313 have to be deleted with an explicit breakpoint number
15314 argument. */
15315 ALL_TRACEPOINTS (b)
15316 if (is_tracepoint (b) && user_breakpoint_p (b))
15317 {
15318 breaks_to_delete = 1;
15319 break;
15320 }
15321
15322 /* Ask user only if there are some breakpoints to delete. */
15323 if (!from_tty
15324 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15325 {
15326 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15327 if (is_tracepoint (b) && user_breakpoint_p (b))
15328 delete_breakpoint (b);
15329 }
15330 }
15331 else
15332 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15333 }
15334
15335 /* Helper function for trace_pass_command. */
15336
15337 static void
15338 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15339 {
15340 tp->pass_count = count;
15341 observer_notify_breakpoint_modified (&tp->base);
15342 if (from_tty)
15343 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15344 tp->base.number, count);
15345 }
15346
15347 /* Set passcount for tracepoint.
15348
15349 First command argument is passcount, second is tracepoint number.
15350 If tracepoint number omitted, apply to most recently defined.
15351 Also accepts special argument "all". */
15352
15353 static void
15354 trace_pass_command (char *args, int from_tty)
15355 {
15356 struct tracepoint *t1;
15357 unsigned int count;
15358
15359 if (args == 0 || *args == 0)
15360 error (_("passcount command requires an "
15361 "argument (count + optional TP num)"));
15362
15363 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15364
15365 while (*args && isspace ((int) *args))
15366 args++;
15367
15368 if (*args && strncasecmp (args, "all", 3) == 0)
15369 {
15370 struct breakpoint *b;
15371
15372 args += 3; /* Skip special argument "all". */
15373 if (*args)
15374 error (_("Junk at end of arguments."));
15375
15376 ALL_TRACEPOINTS (b)
15377 {
15378 t1 = (struct tracepoint *) b;
15379 trace_pass_set_count (t1, count, from_tty);
15380 }
15381 }
15382 else if (*args == '\0')
15383 {
15384 t1 = get_tracepoint_by_number (&args, NULL, 1);
15385 if (t1)
15386 trace_pass_set_count (t1, count, from_tty);
15387 }
15388 else
15389 {
15390 struct get_number_or_range_state state;
15391
15392 init_number_or_range (&state, args);
15393 while (!state.finished)
15394 {
15395 t1 = get_tracepoint_by_number (&args, &state, 1);
15396 if (t1)
15397 trace_pass_set_count (t1, count, from_tty);
15398 }
15399 }
15400 }
15401
15402 struct tracepoint *
15403 get_tracepoint (int num)
15404 {
15405 struct breakpoint *t;
15406
15407 ALL_TRACEPOINTS (t)
15408 if (t->number == num)
15409 return (struct tracepoint *) t;
15410
15411 return NULL;
15412 }
15413
15414 /* Find the tracepoint with the given target-side number (which may be
15415 different from the tracepoint number after disconnecting and
15416 reconnecting). */
15417
15418 struct tracepoint *
15419 get_tracepoint_by_number_on_target (int num)
15420 {
15421 struct breakpoint *b;
15422
15423 ALL_TRACEPOINTS (b)
15424 {
15425 struct tracepoint *t = (struct tracepoint *) b;
15426
15427 if (t->number_on_target == num)
15428 return t;
15429 }
15430
15431 return NULL;
15432 }
15433
15434 /* Utility: parse a tracepoint number and look it up in the list.
15435 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15436 If OPTIONAL_P is true, then if the argument is missing, the most
15437 recent tracepoint (tracepoint_count) is returned. */
15438 struct tracepoint *
15439 get_tracepoint_by_number (char **arg,
15440 struct get_number_or_range_state *state,
15441 int optional_p)
15442 {
15443 struct breakpoint *t;
15444 int tpnum;
15445 char *instring = arg == NULL ? NULL : *arg;
15446
15447 if (state)
15448 {
15449 gdb_assert (!state->finished);
15450 tpnum = get_number_or_range (state);
15451 }
15452 else if (arg == NULL || *arg == NULL || ! **arg)
15453 {
15454 if (optional_p)
15455 tpnum = tracepoint_count;
15456 else
15457 error_no_arg (_("tracepoint number"));
15458 }
15459 else
15460 tpnum = get_number (arg);
15461
15462 if (tpnum <= 0)
15463 {
15464 if (instring && *instring)
15465 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15466 instring);
15467 else
15468 printf_filtered (_("Tracepoint argument missing "
15469 "and no previous tracepoint\n"));
15470 return NULL;
15471 }
15472
15473 ALL_TRACEPOINTS (t)
15474 if (t->number == tpnum)
15475 {
15476 return (struct tracepoint *) t;
15477 }
15478
15479 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15480 return NULL;
15481 }
15482
15483 void
15484 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15485 {
15486 if (b->thread != -1)
15487 fprintf_unfiltered (fp, " thread %d", b->thread);
15488
15489 if (b->task != 0)
15490 fprintf_unfiltered (fp, " task %d", b->task);
15491
15492 fprintf_unfiltered (fp, "\n");
15493 }
15494
15495 /* Save information on user settable breakpoints (watchpoints, etc) to
15496 a new script file named FILENAME. If FILTER is non-NULL, call it
15497 on each breakpoint and only include the ones for which it returns
15498 non-zero. */
15499
15500 static void
15501 save_breakpoints (char *filename, int from_tty,
15502 int (*filter) (const struct breakpoint *))
15503 {
15504 struct breakpoint *tp;
15505 int any = 0;
15506 char *pathname;
15507 struct cleanup *cleanup;
15508 struct ui_file *fp;
15509 int extra_trace_bits = 0;
15510
15511 if (filename == 0 || *filename == 0)
15512 error (_("Argument required (file name in which to save)"));
15513
15514 /* See if we have anything to save. */
15515 ALL_BREAKPOINTS (tp)
15516 {
15517 /* Skip internal and momentary breakpoints. */
15518 if (!user_breakpoint_p (tp))
15519 continue;
15520
15521 /* If we have a filter, only save the breakpoints it accepts. */
15522 if (filter && !filter (tp))
15523 continue;
15524
15525 any = 1;
15526
15527 if (is_tracepoint (tp))
15528 {
15529 extra_trace_bits = 1;
15530
15531 /* We can stop searching. */
15532 break;
15533 }
15534 }
15535
15536 if (!any)
15537 {
15538 warning (_("Nothing to save."));
15539 return;
15540 }
15541
15542 pathname = tilde_expand (filename);
15543 cleanup = make_cleanup (xfree, pathname);
15544 fp = gdb_fopen (pathname, "w");
15545 if (!fp)
15546 error (_("Unable to open file '%s' for saving (%s)"),
15547 filename, safe_strerror (errno));
15548 make_cleanup_ui_file_delete (fp);
15549
15550 if (extra_trace_bits)
15551 save_trace_state_variables (fp);
15552
15553 ALL_BREAKPOINTS (tp)
15554 {
15555 /* Skip internal and momentary breakpoints. */
15556 if (!user_breakpoint_p (tp))
15557 continue;
15558
15559 /* If we have a filter, only save the breakpoints it accepts. */
15560 if (filter && !filter (tp))
15561 continue;
15562
15563 tp->ops->print_recreate (tp, fp);
15564
15565 /* Note, we can't rely on tp->number for anything, as we can't
15566 assume the recreated breakpoint numbers will match. Use $bpnum
15567 instead. */
15568
15569 if (tp->cond_string)
15570 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15571
15572 if (tp->ignore_count)
15573 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15574
15575 if (tp->commands)
15576 {
15577 volatile struct gdb_exception ex;
15578
15579 fprintf_unfiltered (fp, " commands\n");
15580
15581 ui_out_redirect (current_uiout, fp);
15582 TRY_CATCH (ex, RETURN_MASK_ALL)
15583 {
15584 print_command_lines (current_uiout, tp->commands->commands, 2);
15585 }
15586 ui_out_redirect (current_uiout, NULL);
15587
15588 if (ex.reason < 0)
15589 throw_exception (ex);
15590
15591 fprintf_unfiltered (fp, " end\n");
15592 }
15593
15594 if (tp->enable_state == bp_disabled)
15595 fprintf_unfiltered (fp, "disable\n");
15596
15597 /* If this is a multi-location breakpoint, check if the locations
15598 should be individually disabled. Watchpoint locations are
15599 special, and not user visible. */
15600 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15601 {
15602 struct bp_location *loc;
15603 int n = 1;
15604
15605 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15606 if (!loc->enabled)
15607 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15608 }
15609 }
15610
15611 if (extra_trace_bits && *default_collect)
15612 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15613
15614 do_cleanups (cleanup);
15615 if (from_tty)
15616 printf_filtered (_("Saved to file '%s'.\n"), filename);
15617 }
15618
15619 /* The `save breakpoints' command. */
15620
15621 static void
15622 save_breakpoints_command (char *args, int from_tty)
15623 {
15624 save_breakpoints (args, from_tty, NULL);
15625 }
15626
15627 /* The `save tracepoints' command. */
15628
15629 static void
15630 save_tracepoints_command (char *args, int from_tty)
15631 {
15632 save_breakpoints (args, from_tty, is_tracepoint);
15633 }
15634
15635 /* Create a vector of all tracepoints. */
15636
15637 VEC(breakpoint_p) *
15638 all_tracepoints (void)
15639 {
15640 VEC(breakpoint_p) *tp_vec = 0;
15641 struct breakpoint *tp;
15642
15643 ALL_TRACEPOINTS (tp)
15644 {
15645 VEC_safe_push (breakpoint_p, tp_vec, tp);
15646 }
15647
15648 return tp_vec;
15649 }
15650
15651 \f
15652 /* This help string is used for the break, hbreak, tbreak and thbreak
15653 commands. It is defined as a macro to prevent duplication.
15654 COMMAND should be a string constant containing the name of the
15655 command. */
15656 #define BREAK_ARGS_HELP(command) \
15657 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15658 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15659 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15660 guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
15661 LOCATION may be a line number, function name, or \"*\" and an address.\n\
15662 If a line number is specified, break at start of code for that line.\n\
15663 If a function is specified, break at start of code for that function.\n\
15664 If an address is specified, break at that exact address.\n\
15665 With no LOCATION, uses current execution address of the selected\n\
15666 stack frame. This is useful for breaking on return to a stack frame.\n\
15667 \n\
15668 THREADNUM is the number from \"info threads\".\n\
15669 CONDITION is a boolean expression.\n\
15670 \n\
15671 Multiple breakpoints at one place are permitted, and useful if their\n\
15672 conditions are different.\n\
15673 \n\
15674 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15675
15676 /* List of subcommands for "catch". */
15677 static struct cmd_list_element *catch_cmdlist;
15678
15679 /* List of subcommands for "tcatch". */
15680 static struct cmd_list_element *tcatch_cmdlist;
15681
15682 void
15683 add_catch_command (char *name, char *docstring,
15684 void (*sfunc) (char *args, int from_tty,
15685 struct cmd_list_element *command),
15686 completer_ftype *completer,
15687 void *user_data_catch,
15688 void *user_data_tcatch)
15689 {
15690 struct cmd_list_element *command;
15691
15692 command = add_cmd (name, class_breakpoint, NULL, docstring,
15693 &catch_cmdlist);
15694 set_cmd_sfunc (command, sfunc);
15695 set_cmd_context (command, user_data_catch);
15696 set_cmd_completer (command, completer);
15697
15698 command = add_cmd (name, class_breakpoint, NULL, docstring,
15699 &tcatch_cmdlist);
15700 set_cmd_sfunc (command, sfunc);
15701 set_cmd_context (command, user_data_tcatch);
15702 set_cmd_completer (command, completer);
15703 }
15704
15705 static void
15706 clear_syscall_counts (struct inferior *inf)
15707 {
15708 struct catch_syscall_inferior_data *inf_data
15709 = get_catch_syscall_inferior_data (inf);
15710
15711 inf_data->total_syscalls_count = 0;
15712 inf_data->any_syscall_count = 0;
15713 VEC_free (int, inf_data->syscalls_counts);
15714 }
15715
15716 static void
15717 save_command (char *arg, int from_tty)
15718 {
15719 printf_unfiltered (_("\"save\" must be followed by "
15720 "the name of a save subcommand.\n"));
15721 help_list (save_cmdlist, "save ", -1, gdb_stdout);
15722 }
15723
15724 struct breakpoint *
15725 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15726 void *data)
15727 {
15728 struct breakpoint *b, *b_tmp;
15729
15730 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15731 {
15732 if ((*callback) (b, data))
15733 return b;
15734 }
15735
15736 return NULL;
15737 }
15738
15739 /* Zero if any of the breakpoint's locations could be a location where
15740 functions have been inlined, nonzero otherwise. */
15741
15742 static int
15743 is_non_inline_function (struct breakpoint *b)
15744 {
15745 /* The shared library event breakpoint is set on the address of a
15746 non-inline function. */
15747 if (b->type == bp_shlib_event)
15748 return 1;
15749
15750 return 0;
15751 }
15752
15753 /* Nonzero if the specified PC cannot be a location where functions
15754 have been inlined. */
15755
15756 int
15757 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15758 const struct target_waitstatus *ws)
15759 {
15760 struct breakpoint *b;
15761 struct bp_location *bl;
15762
15763 ALL_BREAKPOINTS (b)
15764 {
15765 if (!is_non_inline_function (b))
15766 continue;
15767
15768 for (bl = b->loc; bl != NULL; bl = bl->next)
15769 {
15770 if (!bl->shlib_disabled
15771 && bpstat_check_location (bl, aspace, pc, ws))
15772 return 1;
15773 }
15774 }
15775
15776 return 0;
15777 }
15778
15779 /* Remove any references to OBJFILE which is going to be freed. */
15780
15781 void
15782 breakpoint_free_objfile (struct objfile *objfile)
15783 {
15784 struct bp_location **locp, *loc;
15785
15786 ALL_BP_LOCATIONS (loc, locp)
15787 if (loc->symtab != NULL && loc->symtab->objfile == objfile)
15788 loc->symtab = NULL;
15789 }
15790
15791 void
15792 initialize_breakpoint_ops (void)
15793 {
15794 static int initialized = 0;
15795
15796 struct breakpoint_ops *ops;
15797
15798 if (initialized)
15799 return;
15800 initialized = 1;
15801
15802 /* The breakpoint_ops structure to be inherit by all kinds of
15803 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15804 internal and momentary breakpoints, etc.). */
15805 ops = &bkpt_base_breakpoint_ops;
15806 *ops = base_breakpoint_ops;
15807 ops->re_set = bkpt_re_set;
15808 ops->insert_location = bkpt_insert_location;
15809 ops->remove_location = bkpt_remove_location;
15810 ops->breakpoint_hit = bkpt_breakpoint_hit;
15811 ops->create_sals_from_address = bkpt_create_sals_from_address;
15812 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15813 ops->decode_linespec = bkpt_decode_linespec;
15814
15815 /* The breakpoint_ops structure to be used in regular breakpoints. */
15816 ops = &bkpt_breakpoint_ops;
15817 *ops = bkpt_base_breakpoint_ops;
15818 ops->re_set = bkpt_re_set;
15819 ops->resources_needed = bkpt_resources_needed;
15820 ops->print_it = bkpt_print_it;
15821 ops->print_mention = bkpt_print_mention;
15822 ops->print_recreate = bkpt_print_recreate;
15823
15824 /* Ranged breakpoints. */
15825 ops = &ranged_breakpoint_ops;
15826 *ops = bkpt_breakpoint_ops;
15827 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15828 ops->resources_needed = resources_needed_ranged_breakpoint;
15829 ops->print_it = print_it_ranged_breakpoint;
15830 ops->print_one = print_one_ranged_breakpoint;
15831 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15832 ops->print_mention = print_mention_ranged_breakpoint;
15833 ops->print_recreate = print_recreate_ranged_breakpoint;
15834
15835 /* Internal breakpoints. */
15836 ops = &internal_breakpoint_ops;
15837 *ops = bkpt_base_breakpoint_ops;
15838 ops->re_set = internal_bkpt_re_set;
15839 ops->check_status = internal_bkpt_check_status;
15840 ops->print_it = internal_bkpt_print_it;
15841 ops->print_mention = internal_bkpt_print_mention;
15842
15843 /* Momentary breakpoints. */
15844 ops = &momentary_breakpoint_ops;
15845 *ops = bkpt_base_breakpoint_ops;
15846 ops->re_set = momentary_bkpt_re_set;
15847 ops->check_status = momentary_bkpt_check_status;
15848 ops->print_it = momentary_bkpt_print_it;
15849 ops->print_mention = momentary_bkpt_print_mention;
15850
15851 /* Momentary breakpoints for bp_longjmp and bp_exception. */
15852 ops = &longjmp_breakpoint_ops;
15853 *ops = momentary_breakpoint_ops;
15854 ops->dtor = longjmp_bkpt_dtor;
15855
15856 /* Probe breakpoints. */
15857 ops = &bkpt_probe_breakpoint_ops;
15858 *ops = bkpt_breakpoint_ops;
15859 ops->insert_location = bkpt_probe_insert_location;
15860 ops->remove_location = bkpt_probe_remove_location;
15861 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
15862 ops->decode_linespec = bkpt_probe_decode_linespec;
15863
15864 /* GNU v3 exception catchpoints. */
15865 ops = &gnu_v3_exception_catchpoint_ops;
15866 *ops = bkpt_breakpoint_ops;
15867 ops->print_it = print_it_exception_catchpoint;
15868 ops->print_one = print_one_exception_catchpoint;
15869 ops->print_mention = print_mention_exception_catchpoint;
15870 ops->print_recreate = print_recreate_exception_catchpoint;
15871
15872 /* Watchpoints. */
15873 ops = &watchpoint_breakpoint_ops;
15874 *ops = base_breakpoint_ops;
15875 ops->dtor = dtor_watchpoint;
15876 ops->re_set = re_set_watchpoint;
15877 ops->insert_location = insert_watchpoint;
15878 ops->remove_location = remove_watchpoint;
15879 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15880 ops->check_status = check_status_watchpoint;
15881 ops->resources_needed = resources_needed_watchpoint;
15882 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15883 ops->print_it = print_it_watchpoint;
15884 ops->print_mention = print_mention_watchpoint;
15885 ops->print_recreate = print_recreate_watchpoint;
15886
15887 /* Masked watchpoints. */
15888 ops = &masked_watchpoint_breakpoint_ops;
15889 *ops = watchpoint_breakpoint_ops;
15890 ops->insert_location = insert_masked_watchpoint;
15891 ops->remove_location = remove_masked_watchpoint;
15892 ops->resources_needed = resources_needed_masked_watchpoint;
15893 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15894 ops->print_it = print_it_masked_watchpoint;
15895 ops->print_one_detail = print_one_detail_masked_watchpoint;
15896 ops->print_mention = print_mention_masked_watchpoint;
15897 ops->print_recreate = print_recreate_masked_watchpoint;
15898
15899 /* Tracepoints. */
15900 ops = &tracepoint_breakpoint_ops;
15901 *ops = base_breakpoint_ops;
15902 ops->re_set = tracepoint_re_set;
15903 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15904 ops->print_one_detail = tracepoint_print_one_detail;
15905 ops->print_mention = tracepoint_print_mention;
15906 ops->print_recreate = tracepoint_print_recreate;
15907 ops->create_sals_from_address = tracepoint_create_sals_from_address;
15908 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15909 ops->decode_linespec = tracepoint_decode_linespec;
15910
15911 /* Probe tracepoints. */
15912 ops = &tracepoint_probe_breakpoint_ops;
15913 *ops = tracepoint_breakpoint_ops;
15914 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
15915 ops->decode_linespec = tracepoint_probe_decode_linespec;
15916
15917 /* Static tracepoints with marker (`-m'). */
15918 ops = &strace_marker_breakpoint_ops;
15919 *ops = tracepoint_breakpoint_ops;
15920 ops->create_sals_from_address = strace_marker_create_sals_from_address;
15921 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15922 ops->decode_linespec = strace_marker_decode_linespec;
15923
15924 /* Fork catchpoints. */
15925 ops = &catch_fork_breakpoint_ops;
15926 *ops = base_breakpoint_ops;
15927 ops->insert_location = insert_catch_fork;
15928 ops->remove_location = remove_catch_fork;
15929 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15930 ops->print_it = print_it_catch_fork;
15931 ops->print_one = print_one_catch_fork;
15932 ops->print_mention = print_mention_catch_fork;
15933 ops->print_recreate = print_recreate_catch_fork;
15934
15935 /* Vfork catchpoints. */
15936 ops = &catch_vfork_breakpoint_ops;
15937 *ops = base_breakpoint_ops;
15938 ops->insert_location = insert_catch_vfork;
15939 ops->remove_location = remove_catch_vfork;
15940 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15941 ops->print_it = print_it_catch_vfork;
15942 ops->print_one = print_one_catch_vfork;
15943 ops->print_mention = print_mention_catch_vfork;
15944 ops->print_recreate = print_recreate_catch_vfork;
15945
15946 /* Exec catchpoints. */
15947 ops = &catch_exec_breakpoint_ops;
15948 *ops = base_breakpoint_ops;
15949 ops->dtor = dtor_catch_exec;
15950 ops->insert_location = insert_catch_exec;
15951 ops->remove_location = remove_catch_exec;
15952 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15953 ops->print_it = print_it_catch_exec;
15954 ops->print_one = print_one_catch_exec;
15955 ops->print_mention = print_mention_catch_exec;
15956 ops->print_recreate = print_recreate_catch_exec;
15957
15958 /* Syscall catchpoints. */
15959 ops = &catch_syscall_breakpoint_ops;
15960 *ops = base_breakpoint_ops;
15961 ops->dtor = dtor_catch_syscall;
15962 ops->insert_location = insert_catch_syscall;
15963 ops->remove_location = remove_catch_syscall;
15964 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
15965 ops->print_it = print_it_catch_syscall;
15966 ops->print_one = print_one_catch_syscall;
15967 ops->print_mention = print_mention_catch_syscall;
15968 ops->print_recreate = print_recreate_catch_syscall;
15969
15970 /* Solib-related catchpoints. */
15971 ops = &catch_solib_breakpoint_ops;
15972 *ops = base_breakpoint_ops;
15973 ops->dtor = dtor_catch_solib;
15974 ops->insert_location = insert_catch_solib;
15975 ops->remove_location = remove_catch_solib;
15976 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15977 ops->check_status = check_status_catch_solib;
15978 ops->print_it = print_it_catch_solib;
15979 ops->print_one = print_one_catch_solib;
15980 ops->print_mention = print_mention_catch_solib;
15981 ops->print_recreate = print_recreate_catch_solib;
15982
15983 ops = &dprintf_breakpoint_ops;
15984 *ops = bkpt_base_breakpoint_ops;
15985 ops->re_set = bkpt_re_set;
15986 ops->resources_needed = bkpt_resources_needed;
15987 ops->print_it = bkpt_print_it;
15988 ops->print_mention = bkpt_print_mention;
15989 ops->print_recreate = bkpt_print_recreate;
15990 }
15991
15992 /* Chain containing all defined "enable breakpoint" subcommands. */
15993
15994 static struct cmd_list_element *enablebreaklist = NULL;
15995
15996 void
15997 _initialize_breakpoint (void)
15998 {
15999 struct cmd_list_element *c;
16000
16001 initialize_breakpoint_ops ();
16002
16003 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
16004 observer_attach_inferior_exit (clear_syscall_counts);
16005 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
16006
16007 breakpoint_objfile_key
16008 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
16009
16010 catch_syscall_inferior_data
16011 = register_inferior_data_with_cleanup (NULL,
16012 catch_syscall_inferior_data_cleanup);
16013
16014 breakpoint_chain = 0;
16015 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
16016 before a breakpoint is set. */
16017 breakpoint_count = 0;
16018
16019 tracepoint_count = 0;
16020
16021 add_com ("ignore", class_breakpoint, ignore_command, _("\
16022 Set ignore-count of breakpoint number N to COUNT.\n\
16023 Usage is `ignore N COUNT'."));
16024 if (xdb_commands)
16025 add_com_alias ("bc", "ignore", class_breakpoint, 1);
16026
16027 add_com ("commands", class_breakpoint, commands_command, _("\
16028 Set commands to be executed when a breakpoint is hit.\n\
16029 Give breakpoint number as argument after \"commands\".\n\
16030 With no argument, the targeted breakpoint is the last one set.\n\
16031 The commands themselves follow starting on the next line.\n\
16032 Type a line containing \"end\" to indicate the end of them.\n\
16033 Give \"silent\" as the first line to make the breakpoint silent;\n\
16034 then no output is printed when it is hit, except what the commands print."));
16035
16036 c = add_com ("condition", class_breakpoint, condition_command, _("\
16037 Specify breakpoint number N to break only if COND is true.\n\
16038 Usage is `condition N COND', where N is an integer and COND is an\n\
16039 expression to be evaluated whenever breakpoint N is reached."));
16040 set_cmd_completer (c, condition_completer);
16041
16042 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16043 Set a temporary breakpoint.\n\
16044 Like \"break\" except the breakpoint is only temporary,\n\
16045 so it will be deleted when hit. Equivalent to \"break\" followed\n\
16046 by using \"enable delete\" on the breakpoint number.\n\
16047 \n"
16048 BREAK_ARGS_HELP ("tbreak")));
16049 set_cmd_completer (c, location_completer);
16050
16051 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16052 Set a hardware assisted breakpoint.\n\
16053 Like \"break\" except the breakpoint requires hardware support,\n\
16054 some target hardware may not have this support.\n\
16055 \n"
16056 BREAK_ARGS_HELP ("hbreak")));
16057 set_cmd_completer (c, location_completer);
16058
16059 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16060 Set a temporary hardware assisted breakpoint.\n\
16061 Like \"hbreak\" except the breakpoint is only temporary,\n\
16062 so it will be deleted when hit.\n\
16063 \n"
16064 BREAK_ARGS_HELP ("thbreak")));
16065 set_cmd_completer (c, location_completer);
16066
16067 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16068 Enable some breakpoints.\n\
16069 Give breakpoint numbers (separated by spaces) as arguments.\n\
16070 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16071 This is used to cancel the effect of the \"disable\" command.\n\
16072 With a subcommand you can enable temporarily."),
16073 &enablelist, "enable ", 1, &cmdlist);
16074 if (xdb_commands)
16075 add_com ("ab", class_breakpoint, enable_command, _("\
16076 Enable some breakpoints.\n\
16077 Give breakpoint numbers (separated by spaces) as arguments.\n\
16078 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16079 This is used to cancel the effect of the \"disable\" command.\n\
16080 With a subcommand you can enable temporarily."));
16081
16082 add_com_alias ("en", "enable", class_breakpoint, 1);
16083
16084 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16085 Enable some breakpoints.\n\
16086 Give breakpoint numbers (separated by spaces) as arguments.\n\
16087 This is used to cancel the effect of the \"disable\" command.\n\
16088 May be abbreviated to simply \"enable\".\n"),
16089 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16090
16091 add_cmd ("once", no_class, enable_once_command, _("\
16092 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16093 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16094 &enablebreaklist);
16095
16096 add_cmd ("delete", no_class, enable_delete_command, _("\
16097 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16098 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16099 &enablebreaklist);
16100
16101 add_cmd ("count", no_class, enable_count_command, _("\
16102 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16103 If a breakpoint is hit while enabled in this fashion,\n\
16104 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16105 &enablebreaklist);
16106
16107 add_cmd ("delete", no_class, enable_delete_command, _("\
16108 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16109 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16110 &enablelist);
16111
16112 add_cmd ("once", no_class, enable_once_command, _("\
16113 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16114 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16115 &enablelist);
16116
16117 add_cmd ("count", no_class, enable_count_command, _("\
16118 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16119 If a breakpoint is hit while enabled in this fashion,\n\
16120 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16121 &enablelist);
16122
16123 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16124 Disable some breakpoints.\n\
16125 Arguments are breakpoint numbers with spaces in between.\n\
16126 To disable all breakpoints, give no argument.\n\
16127 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16128 &disablelist, "disable ", 1, &cmdlist);
16129 add_com_alias ("dis", "disable", class_breakpoint, 1);
16130 add_com_alias ("disa", "disable", class_breakpoint, 1);
16131 if (xdb_commands)
16132 add_com ("sb", class_breakpoint, disable_command, _("\
16133 Disable some breakpoints.\n\
16134 Arguments are breakpoint numbers with spaces in between.\n\
16135 To disable all breakpoints, give no argument.\n\
16136 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16137
16138 add_cmd ("breakpoints", class_alias, disable_command, _("\
16139 Disable some breakpoints.\n\
16140 Arguments are breakpoint numbers with spaces in between.\n\
16141 To disable all breakpoints, give no argument.\n\
16142 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16143 This command may be abbreviated \"disable\"."),
16144 &disablelist);
16145
16146 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16147 Delete some breakpoints or auto-display expressions.\n\
16148 Arguments are breakpoint numbers with spaces in between.\n\
16149 To delete all breakpoints, give no argument.\n\
16150 \n\
16151 Also a prefix command for deletion of other GDB objects.\n\
16152 The \"unset\" command is also an alias for \"delete\"."),
16153 &deletelist, "delete ", 1, &cmdlist);
16154 add_com_alias ("d", "delete", class_breakpoint, 1);
16155 add_com_alias ("del", "delete", class_breakpoint, 1);
16156 if (xdb_commands)
16157 add_com ("db", class_breakpoint, delete_command, _("\
16158 Delete some breakpoints.\n\
16159 Arguments are breakpoint numbers with spaces in between.\n\
16160 To delete all breakpoints, give no argument.\n"));
16161
16162 add_cmd ("breakpoints", class_alias, delete_command, _("\
16163 Delete some breakpoints or auto-display expressions.\n\
16164 Arguments are breakpoint numbers with spaces in between.\n\
16165 To delete all breakpoints, give no argument.\n\
16166 This command may be abbreviated \"delete\"."),
16167 &deletelist);
16168
16169 add_com ("clear", class_breakpoint, clear_command, _("\
16170 Clear breakpoint at specified line or function.\n\
16171 Argument may be line number, function name, or \"*\" and an address.\n\
16172 If line number is specified, all breakpoints in that line are cleared.\n\
16173 If function is specified, breakpoints at beginning of function are cleared.\n\
16174 If an address is specified, breakpoints at that address are cleared.\n\
16175 \n\
16176 With no argument, clears all breakpoints in the line that the selected frame\n\
16177 is executing in.\n\
16178 \n\
16179 See also the \"delete\" command which clears breakpoints by number."));
16180 add_com_alias ("cl", "clear", class_breakpoint, 1);
16181
16182 c = add_com ("break", class_breakpoint, break_command, _("\
16183 Set breakpoint at specified line or function.\n"
16184 BREAK_ARGS_HELP ("break")));
16185 set_cmd_completer (c, location_completer);
16186
16187 add_com_alias ("b", "break", class_run, 1);
16188 add_com_alias ("br", "break", class_run, 1);
16189 add_com_alias ("bre", "break", class_run, 1);
16190 add_com_alias ("brea", "break", class_run, 1);
16191
16192 if (xdb_commands)
16193 add_com_alias ("ba", "break", class_breakpoint, 1);
16194
16195 if (dbx_commands)
16196 {
16197 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16198 Break in function/address or break at a line in the current file."),
16199 &stoplist, "stop ", 1, &cmdlist);
16200 add_cmd ("in", class_breakpoint, stopin_command,
16201 _("Break in function or address."), &stoplist);
16202 add_cmd ("at", class_breakpoint, stopat_command,
16203 _("Break at a line in the current file."), &stoplist);
16204 add_com ("status", class_info, breakpoints_info, _("\
16205 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16206 The \"Type\" column indicates one of:\n\
16207 \tbreakpoint - normal breakpoint\n\
16208 \twatchpoint - watchpoint\n\
16209 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16210 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16211 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16212 address and file/line number respectively.\n\
16213 \n\
16214 Convenience variable \"$_\" and default examine address for \"x\"\n\
16215 are set to the address of the last breakpoint listed unless the command\n\
16216 is prefixed with \"server \".\n\n\
16217 Convenience variable \"$bpnum\" contains the number of the last\n\
16218 breakpoint set."));
16219 }
16220
16221 add_info ("breakpoints", breakpoints_info, _("\
16222 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16223 The \"Type\" column indicates one of:\n\
16224 \tbreakpoint - normal breakpoint\n\
16225 \twatchpoint - watchpoint\n\
16226 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16227 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16228 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16229 address and file/line number respectively.\n\
16230 \n\
16231 Convenience variable \"$_\" and default examine address for \"x\"\n\
16232 are set to the address of the last breakpoint listed unless the command\n\
16233 is prefixed with \"server \".\n\n\
16234 Convenience variable \"$bpnum\" contains the number of the last\n\
16235 breakpoint set."));
16236
16237 add_info_alias ("b", "breakpoints", 1);
16238
16239 if (xdb_commands)
16240 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16241 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16242 The \"Type\" column indicates one of:\n\
16243 \tbreakpoint - normal breakpoint\n\
16244 \twatchpoint - watchpoint\n\
16245 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16246 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16247 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16248 address and file/line number respectively.\n\
16249 \n\
16250 Convenience variable \"$_\" and default examine address for \"x\"\n\
16251 are set to the address of the last breakpoint listed unless the command\n\
16252 is prefixed with \"server \".\n\n\
16253 Convenience variable \"$bpnum\" contains the number of the last\n\
16254 breakpoint set."));
16255
16256 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16257 Status of all breakpoints, or breakpoint number NUMBER.\n\
16258 The \"Type\" column indicates one of:\n\
16259 \tbreakpoint - normal breakpoint\n\
16260 \twatchpoint - watchpoint\n\
16261 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16262 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16263 \tuntil - internal breakpoint used by the \"until\" command\n\
16264 \tfinish - internal breakpoint used by the \"finish\" command\n\
16265 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16266 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16267 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16268 address and file/line number respectively.\n\
16269 \n\
16270 Convenience variable \"$_\" and default examine address for \"x\"\n\
16271 are set to the address of the last breakpoint listed unless the command\n\
16272 is prefixed with \"server \".\n\n\
16273 Convenience variable \"$bpnum\" contains the number of the last\n\
16274 breakpoint set."),
16275 &maintenanceinfolist);
16276
16277 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16278 Set catchpoints to catch events."),
16279 &catch_cmdlist, "catch ",
16280 0/*allow-unknown*/, &cmdlist);
16281
16282 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16283 Set temporary catchpoints to catch events."),
16284 &tcatch_cmdlist, "tcatch ",
16285 0/*allow-unknown*/, &cmdlist);
16286
16287 /* Add catch and tcatch sub-commands. */
16288 add_catch_command ("catch", _("\
16289 Catch an exception, when caught."),
16290 catch_catch_command,
16291 NULL,
16292 CATCH_PERMANENT,
16293 CATCH_TEMPORARY);
16294 add_catch_command ("throw", _("\
16295 Catch an exception, when thrown."),
16296 catch_throw_command,
16297 NULL,
16298 CATCH_PERMANENT,
16299 CATCH_TEMPORARY);
16300 add_catch_command ("fork", _("Catch calls to fork."),
16301 catch_fork_command_1,
16302 NULL,
16303 (void *) (uintptr_t) catch_fork_permanent,
16304 (void *) (uintptr_t) catch_fork_temporary);
16305 add_catch_command ("vfork", _("Catch calls to vfork."),
16306 catch_fork_command_1,
16307 NULL,
16308 (void *) (uintptr_t) catch_vfork_permanent,
16309 (void *) (uintptr_t) catch_vfork_temporary);
16310 add_catch_command ("exec", _("Catch calls to exec."),
16311 catch_exec_command_1,
16312 NULL,
16313 CATCH_PERMANENT,
16314 CATCH_TEMPORARY);
16315 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16316 Usage: catch load [REGEX]\n\
16317 If REGEX is given, only stop for libraries matching the regular expression."),
16318 catch_load_command_1,
16319 NULL,
16320 CATCH_PERMANENT,
16321 CATCH_TEMPORARY);
16322 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16323 Usage: catch unload [REGEX]\n\
16324 If REGEX is given, only stop for libraries matching the regular expression."),
16325 catch_unload_command_1,
16326 NULL,
16327 CATCH_PERMANENT,
16328 CATCH_TEMPORARY);
16329 add_catch_command ("syscall", _("\
16330 Catch system calls by their names and/or numbers.\n\
16331 Arguments say which system calls to catch. If no arguments\n\
16332 are given, every system call will be caught.\n\
16333 Arguments, if given, should be one or more system call names\n\
16334 (if your system supports that), or system call numbers."),
16335 catch_syscall_command_1,
16336 catch_syscall_completer,
16337 CATCH_PERMANENT,
16338 CATCH_TEMPORARY);
16339
16340 c = add_com ("watch", class_breakpoint, watch_command, _("\
16341 Set a watchpoint for an expression.\n\
16342 Usage: watch [-l|-location] EXPRESSION\n\
16343 A watchpoint stops execution of your program whenever the value of\n\
16344 an expression changes.\n\
16345 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16346 the memory to which it refers."));
16347 set_cmd_completer (c, expression_completer);
16348
16349 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16350 Set a read watchpoint for an expression.\n\
16351 Usage: rwatch [-l|-location] EXPRESSION\n\
16352 A watchpoint stops execution of your program whenever the value of\n\
16353 an expression is read.\n\
16354 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16355 the memory to which it refers."));
16356 set_cmd_completer (c, expression_completer);
16357
16358 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16359 Set a watchpoint for an expression.\n\
16360 Usage: awatch [-l|-location] EXPRESSION\n\
16361 A watchpoint stops execution of your program whenever the value of\n\
16362 an expression is either read or written.\n\
16363 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16364 the memory to which it refers."));
16365 set_cmd_completer (c, expression_completer);
16366
16367 add_info ("watchpoints", watchpoints_info, _("\
16368 Status of specified watchpoints (all watchpoints if no argument)."));
16369
16370 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16371 respond to changes - contrary to the description. */
16372 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16373 &can_use_hw_watchpoints, _("\
16374 Set debugger's willingness to use watchpoint hardware."), _("\
16375 Show debugger's willingness to use watchpoint hardware."), _("\
16376 If zero, gdb will not use hardware for new watchpoints, even if\n\
16377 such is available. (However, any hardware watchpoints that were\n\
16378 created before setting this to nonzero, will continue to use watchpoint\n\
16379 hardware.)"),
16380 NULL,
16381 show_can_use_hw_watchpoints,
16382 &setlist, &showlist);
16383
16384 can_use_hw_watchpoints = 1;
16385
16386 /* Tracepoint manipulation commands. */
16387
16388 c = add_com ("trace", class_breakpoint, trace_command, _("\
16389 Set a tracepoint at specified line or function.\n\
16390 \n"
16391 BREAK_ARGS_HELP ("trace") "\n\
16392 Do \"help tracepoints\" for info on other tracepoint commands."));
16393 set_cmd_completer (c, location_completer);
16394
16395 add_com_alias ("tp", "trace", class_alias, 0);
16396 add_com_alias ("tr", "trace", class_alias, 1);
16397 add_com_alias ("tra", "trace", class_alias, 1);
16398 add_com_alias ("trac", "trace", class_alias, 1);
16399
16400 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16401 Set a fast tracepoint at specified line or function.\n\
16402 \n"
16403 BREAK_ARGS_HELP ("ftrace") "\n\
16404 Do \"help tracepoints\" for info on other tracepoint commands."));
16405 set_cmd_completer (c, location_completer);
16406
16407 c = add_com ("strace", class_breakpoint, strace_command, _("\
16408 Set a static tracepoint at specified line, function or marker.\n\
16409 \n\
16410 strace [LOCATION] [if CONDITION]\n\
16411 LOCATION may be a line number, function name, \"*\" and an address,\n\
16412 or -m MARKER_ID.\n\
16413 If a line number is specified, probe the marker at start of code\n\
16414 for that line. If a function is specified, probe the marker at start\n\
16415 of code for that function. If an address is specified, probe the marker\n\
16416 at that exact address. If a marker id is specified, probe the marker\n\
16417 with that name. With no LOCATION, uses current execution address of\n\
16418 the selected stack frame.\n\
16419 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16420 This collects arbitrary user data passed in the probe point call to the\n\
16421 tracing library. You can inspect it when analyzing the trace buffer,\n\
16422 by printing the $_sdata variable like any other convenience variable.\n\
16423 \n\
16424 CONDITION is a boolean expression.\n\
16425 \n\
16426 Multiple tracepoints at one place are permitted, and useful if their\n\
16427 conditions are different.\n\
16428 \n\
16429 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16430 Do \"help tracepoints\" for info on other tracepoint commands."));
16431 set_cmd_completer (c, location_completer);
16432
16433 add_info ("tracepoints", tracepoints_info, _("\
16434 Status of specified tracepoints (all tracepoints if no argument).\n\
16435 Convenience variable \"$tpnum\" contains the number of the\n\
16436 last tracepoint set."));
16437
16438 add_info_alias ("tp", "tracepoints", 1);
16439
16440 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16441 Delete specified tracepoints.\n\
16442 Arguments are tracepoint numbers, separated by spaces.\n\
16443 No argument means delete all tracepoints."),
16444 &deletelist);
16445 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16446
16447 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16448 Disable specified tracepoints.\n\
16449 Arguments are tracepoint numbers, separated by spaces.\n\
16450 No argument means disable all tracepoints."),
16451 &disablelist);
16452 deprecate_cmd (c, "disable");
16453
16454 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16455 Enable specified tracepoints.\n\
16456 Arguments are tracepoint numbers, separated by spaces.\n\
16457 No argument means enable all tracepoints."),
16458 &enablelist);
16459 deprecate_cmd (c, "enable");
16460
16461 add_com ("passcount", class_trace, trace_pass_command, _("\
16462 Set the passcount for a tracepoint.\n\
16463 The trace will end when the tracepoint has been passed 'count' times.\n\
16464 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16465 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16466
16467 add_prefix_cmd ("save", class_breakpoint, save_command,
16468 _("Save breakpoint definitions as a script."),
16469 &save_cmdlist, "save ",
16470 0/*allow-unknown*/, &cmdlist);
16471
16472 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16473 Save current breakpoint definitions as a script.\n\
16474 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16475 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16476 session to restore them."),
16477 &save_cmdlist);
16478 set_cmd_completer (c, filename_completer);
16479
16480 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16481 Save current tracepoint definitions as a script.\n\
16482 Use the 'source' command in another debug session to restore them."),
16483 &save_cmdlist);
16484 set_cmd_completer (c, filename_completer);
16485
16486 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16487 deprecate_cmd (c, "save tracepoints");
16488
16489 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16490 Breakpoint specific settings\n\
16491 Configure various breakpoint-specific variables such as\n\
16492 pending breakpoint behavior"),
16493 &breakpoint_set_cmdlist, "set breakpoint ",
16494 0/*allow-unknown*/, &setlist);
16495 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16496 Breakpoint specific settings\n\
16497 Configure various breakpoint-specific variables such as\n\
16498 pending breakpoint behavior"),
16499 &breakpoint_show_cmdlist, "show breakpoint ",
16500 0/*allow-unknown*/, &showlist);
16501
16502 add_setshow_auto_boolean_cmd ("pending", no_class,
16503 &pending_break_support, _("\
16504 Set debugger's behavior regarding pending breakpoints."), _("\
16505 Show debugger's behavior regarding pending breakpoints."), _("\
16506 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16507 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16508 an error. If auto, an unrecognized breakpoint location results in a\n\
16509 user-query to see if a pending breakpoint should be created."),
16510 NULL,
16511 show_pending_break_support,
16512 &breakpoint_set_cmdlist,
16513 &breakpoint_show_cmdlist);
16514
16515 pending_break_support = AUTO_BOOLEAN_AUTO;
16516
16517 add_setshow_boolean_cmd ("auto-hw", no_class,
16518 &automatic_hardware_breakpoints, _("\
16519 Set automatic usage of hardware breakpoints."), _("\
16520 Show automatic usage of hardware breakpoints."), _("\
16521 If set, the debugger will automatically use hardware breakpoints for\n\
16522 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16523 a warning will be emitted for such breakpoints."),
16524 NULL,
16525 show_automatic_hardware_breakpoints,
16526 &breakpoint_set_cmdlist,
16527 &breakpoint_show_cmdlist);
16528
16529 add_setshow_auto_boolean_cmd ("always-inserted", class_support,
16530 &always_inserted_mode, _("\
16531 Set mode for inserting breakpoints."), _("\
16532 Show mode for inserting breakpoints."), _("\
16533 When this mode is off, breakpoints are inserted in inferior when it is\n\
16534 resumed, and removed when execution stops. When this mode is on,\n\
16535 breakpoints are inserted immediately and removed only when the user\n\
16536 deletes the breakpoint. When this mode is auto (which is the default),\n\
16537 the behaviour depends on the non-stop setting (see help set non-stop).\n\
16538 In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
16539 behaves as if always-inserted mode is on; if gdb is controlling the\n\
16540 inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
16541 NULL,
16542 &show_always_inserted_mode,
16543 &breakpoint_set_cmdlist,
16544 &breakpoint_show_cmdlist);
16545
16546 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16547 condition_evaluation_enums,
16548 &condition_evaluation_mode_1, _("\
16549 Set mode of breakpoint condition evaluation."), _("\
16550 Show mode of breakpoint condition evaluation."), _("\
16551 When this is set to \"host\", breakpoint conditions will be\n\
16552 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16553 breakpoint conditions will be downloaded to the target (if the target\n\
16554 supports such feature) and conditions will be evaluated on the target's side.\n\
16555 If this is set to \"auto\" (default), this will be automatically set to\n\
16556 \"target\" if it supports condition evaluation, otherwise it will\n\
16557 be set to \"gdb\""),
16558 &set_condition_evaluation_mode,
16559 &show_condition_evaluation_mode,
16560 &breakpoint_set_cmdlist,
16561 &breakpoint_show_cmdlist);
16562
16563 add_com ("break-range", class_breakpoint, break_range_command, _("\
16564 Set a breakpoint for an address range.\n\
16565 break-range START-LOCATION, END-LOCATION\n\
16566 where START-LOCATION and END-LOCATION can be one of the following:\n\
16567 LINENUM, for that line in the current file,\n\
16568 FILE:LINENUM, for that line in that file,\n\
16569 +OFFSET, for that number of lines after the current line\n\
16570 or the start of the range\n\
16571 FUNCTION, for the first line in that function,\n\
16572 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16573 *ADDRESS, for the instruction at that address.\n\
16574 \n\
16575 The breakpoint will stop execution of the inferior whenever it executes\n\
16576 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16577 range (including START-LOCATION and END-LOCATION)."));
16578
16579 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16580 Set a dynamic printf at specified line or function.\n\
16581 dprintf location,format string,arg1,arg2,...\n\
16582 location may be a line number, function name, or \"*\" and an address.\n\
16583 If a line number is specified, break at start of code for that line.\n\
16584 If a function is specified, break at start of code for that function.\n\
16585 "));
16586 set_cmd_completer (c, location_completer);
16587
16588 add_setshow_enum_cmd ("dprintf-style", class_support,
16589 dprintf_style_enums, &dprintf_style, _("\
16590 Set the style of usage for dynamic printf."), _("\
16591 Show the style of usage for dynamic printf."), _("\
16592 This setting chooses how GDB will do a dynamic printf.\n\
16593 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16594 console, as with the \"printf\" command.\n\
16595 If the value is \"call\", the print is done by calling a function in your\n\
16596 program; by default printf(), but you can choose a different function or\n\
16597 output stream by setting dprintf-function and dprintf-channel."),
16598 update_dprintf_commands, NULL,
16599 &setlist, &showlist);
16600
16601 dprintf_function = xstrdup ("printf");
16602 add_setshow_string_cmd ("dprintf-function", class_support,
16603 &dprintf_function, _("\
16604 Set the function to use for dynamic printf"), _("\
16605 Show the function to use for dynamic printf"), NULL,
16606 update_dprintf_commands, NULL,
16607 &setlist, &showlist);
16608
16609 dprintf_channel = xstrdup ("");
16610 add_setshow_string_cmd ("dprintf-channel", class_support,
16611 &dprintf_channel, _("\
16612 Set the channel to use for dynamic printf"), _("\
16613 Show the channel to use for dynamic printf"), NULL,
16614 update_dprintf_commands, NULL,
16615 &setlist, &showlist);
16616
16617 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16618 &disconnected_dprintf, _("\
16619 Set whether dprintf continues after GDB disconnects."), _("\
16620 Show whether dprintf continues after GDB disconnects."), _("\
16621 Use this to let dprintf commands continue to hit and produce output\n\
16622 even if GDB disconnects or detaches from the target."),
16623 NULL,
16624 NULL,
16625 &setlist, &showlist);
16626
16627 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16628 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16629 (target agent only) This is useful for formatted output in user-defined commands."));
16630
16631 automatic_hardware_breakpoints = 1;
16632
16633 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16634 }
This page took 0.596066 seconds and 4 git commands to generate.