linux-mips-low.c: Change "private" variable name
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "block.h"
51 #include "solib.h"
52 #include "solist.h"
53 #include "observer.h"
54 #include "memattr.h"
55 #include "ada-lang.h"
56 #include "top.h"
57 #include "valprint.h"
58 #include "jit.h"
59 #include "parser-defs.h"
60 #include "gdb_regex.h"
61 #include "probe.h"
62 #include "cli/cli-utils.h"
63 #include "continuations.h"
64 #include "stack.h"
65 #include "skip.h"
66 #include "ax-gdb.h"
67 #include "dummy-frame.h"
68 #include "interps.h"
69 #include "format.h"
70 #include "location.h"
71 #include "thread-fsm.h"
72
73 /* readline include files */
74 #include "readline/readline.h"
75 #include "readline/history.h"
76
77 /* readline defines this. */
78 #undef savestring
79
80 #include "mi/mi-common.h"
81 #include "extension.h"
82
83 /* Enums for exception-handling support. */
84 enum exception_event_kind
85 {
86 EX_EVENT_THROW,
87 EX_EVENT_RETHROW,
88 EX_EVENT_CATCH
89 };
90
91 /* Prototypes for local functions. */
92
93 static void enable_delete_command (char *, int);
94
95 static void enable_once_command (char *, int);
96
97 static void enable_count_command (char *, int);
98
99 static void disable_command (char *, int);
100
101 static void enable_command (char *, int);
102
103 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
104 void *),
105 void *);
106
107 static void ignore_command (char *, int);
108
109 static int breakpoint_re_set_one (void *);
110
111 static void breakpoint_re_set_default (struct breakpoint *);
112
113 static void
114 create_sals_from_location_default (const struct event_location *location,
115 struct linespec_result *canonical,
116 enum bptype type_wanted);
117
118 static void create_breakpoints_sal_default (struct gdbarch *,
119 struct linespec_result *,
120 char *, char *, enum bptype,
121 enum bpdisp, int, int,
122 int,
123 const struct breakpoint_ops *,
124 int, int, int, unsigned);
125
126 static void decode_location_default (struct breakpoint *b,
127 const struct event_location *location,
128 struct symtabs_and_lines *sals);
129
130 static void clear_command (char *, int);
131
132 static void catch_command (char *, int);
133
134 static int can_use_hardware_watchpoint (struct value *);
135
136 static void break_command_1 (char *, int, int);
137
138 static void mention (struct breakpoint *);
139
140 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
141 enum bptype,
142 const struct breakpoint_ops *);
143 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
144 const struct symtab_and_line *);
145
146 /* This function is used in gdbtk sources and thus can not be made
147 static. */
148 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
149 struct symtab_and_line,
150 enum bptype,
151 const struct breakpoint_ops *);
152
153 static struct breakpoint *
154 momentary_breakpoint_from_master (struct breakpoint *orig,
155 enum bptype type,
156 const struct breakpoint_ops *ops,
157 int loc_enabled);
158
159 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
160
161 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
162 CORE_ADDR bpaddr,
163 enum bptype bptype);
164
165 static void describe_other_breakpoints (struct gdbarch *,
166 struct program_space *, CORE_ADDR,
167 struct obj_section *, int);
168
169 static int watchpoint_locations_match (struct bp_location *loc1,
170 struct bp_location *loc2);
171
172 static int breakpoint_location_address_match (struct bp_location *bl,
173 struct address_space *aspace,
174 CORE_ADDR addr);
175
176 static int breakpoint_location_address_range_overlap (struct bp_location *,
177 struct address_space *,
178 CORE_ADDR, int);
179
180 static void breakpoints_info (char *, int);
181
182 static void watchpoints_info (char *, int);
183
184 static int breakpoint_1 (char *, int,
185 int (*) (const struct breakpoint *));
186
187 static int breakpoint_cond_eval (void *);
188
189 static void cleanup_executing_breakpoints (void *);
190
191 static void commands_command (char *, int);
192
193 static void condition_command (char *, int);
194
195 typedef enum
196 {
197 mark_inserted,
198 mark_uninserted
199 }
200 insertion_state_t;
201
202 static int remove_breakpoint (struct bp_location *, insertion_state_t);
203 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
204
205 static enum print_stop_action print_bp_stop_message (bpstat bs);
206
207 static int watchpoint_check (void *);
208
209 static void maintenance_info_breakpoints (char *, int);
210
211 static int hw_breakpoint_used_count (void);
212
213 static int hw_watchpoint_use_count (struct breakpoint *);
214
215 static int hw_watchpoint_used_count_others (struct breakpoint *except,
216 enum bptype type,
217 int *other_type_used);
218
219 static void hbreak_command (char *, int);
220
221 static void thbreak_command (char *, int);
222
223 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
224 int count);
225
226 static void stop_command (char *arg, int from_tty);
227
228 static void stopin_command (char *arg, int from_tty);
229
230 static void stopat_command (char *arg, int from_tty);
231
232 static void tcatch_command (char *arg, int from_tty);
233
234 static void free_bp_location (struct bp_location *loc);
235 static void incref_bp_location (struct bp_location *loc);
236 static void decref_bp_location (struct bp_location **loc);
237
238 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
239
240 /* update_global_location_list's modes of operation wrt to whether to
241 insert locations now. */
242 enum ugll_insert_mode
243 {
244 /* Don't insert any breakpoint locations into the inferior, only
245 remove already-inserted locations that no longer should be
246 inserted. Functions that delete a breakpoint or breakpoints
247 should specify this mode, so that deleting a breakpoint doesn't
248 have the side effect of inserting the locations of other
249 breakpoints that are marked not-inserted, but should_be_inserted
250 returns true on them.
251
252 This behavior is useful is situations close to tear-down -- e.g.,
253 after an exec, while the target still has execution, but
254 breakpoint shadows of the previous executable image should *NOT*
255 be restored to the new image; or before detaching, where the
256 target still has execution and wants to delete breakpoints from
257 GDB's lists, and all breakpoints had already been removed from
258 the inferior. */
259 UGLL_DONT_INSERT,
260
261 /* May insert breakpoints iff breakpoints_should_be_inserted_now
262 claims breakpoints should be inserted now. */
263 UGLL_MAY_INSERT,
264
265 /* Insert locations now, irrespective of
266 breakpoints_should_be_inserted_now. E.g., say all threads are
267 stopped right now, and the user did "continue". We need to
268 insert breakpoints _before_ resuming the target, but
269 UGLL_MAY_INSERT wouldn't insert them, because
270 breakpoints_should_be_inserted_now returns false at that point,
271 as no thread is running yet. */
272 UGLL_INSERT
273 };
274
275 static void update_global_location_list (enum ugll_insert_mode);
276
277 static void update_global_location_list_nothrow (enum ugll_insert_mode);
278
279 static int is_hardware_watchpoint (const struct breakpoint *bpt);
280
281 static void insert_breakpoint_locations (void);
282
283 static void tracepoints_info (char *, int);
284
285 static void delete_trace_command (char *, int);
286
287 static void enable_trace_command (char *, int);
288
289 static void disable_trace_command (char *, int);
290
291 static void trace_pass_command (char *, int);
292
293 static void set_tracepoint_count (int num);
294
295 static int is_masked_watchpoint (const struct breakpoint *b);
296
297 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
298
299 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
300 otherwise. */
301
302 static int strace_marker_p (struct breakpoint *b);
303
304 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
305 that are implemented on top of software or hardware breakpoints
306 (user breakpoints, internal and momentary breakpoints, etc.). */
307 static struct breakpoint_ops bkpt_base_breakpoint_ops;
308
309 /* Internal breakpoints class type. */
310 static struct breakpoint_ops internal_breakpoint_ops;
311
312 /* Momentary breakpoints class type. */
313 static struct breakpoint_ops momentary_breakpoint_ops;
314
315 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
316 static struct breakpoint_ops longjmp_breakpoint_ops;
317
318 /* The breakpoint_ops structure to be used in regular user created
319 breakpoints. */
320 struct breakpoint_ops bkpt_breakpoint_ops;
321
322 /* Breakpoints set on probes. */
323 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
324
325 /* Dynamic printf class type. */
326 struct breakpoint_ops dprintf_breakpoint_ops;
327
328 /* The style in which to perform a dynamic printf. This is a user
329 option because different output options have different tradeoffs;
330 if GDB does the printing, there is better error handling if there
331 is a problem with any of the arguments, but using an inferior
332 function lets you have special-purpose printers and sending of
333 output to the same place as compiled-in print functions. */
334
335 static const char dprintf_style_gdb[] = "gdb";
336 static const char dprintf_style_call[] = "call";
337 static const char dprintf_style_agent[] = "agent";
338 static const char *const dprintf_style_enums[] = {
339 dprintf_style_gdb,
340 dprintf_style_call,
341 dprintf_style_agent,
342 NULL
343 };
344 static const char *dprintf_style = dprintf_style_gdb;
345
346 /* The function to use for dynamic printf if the preferred style is to
347 call into the inferior. The value is simply a string that is
348 copied into the command, so it can be anything that GDB can
349 evaluate to a callable address, not necessarily a function name. */
350
351 static char *dprintf_function = "";
352
353 /* The channel to use for dynamic printf if the preferred style is to
354 call into the inferior; if a nonempty string, it will be passed to
355 the call as the first argument, with the format string as the
356 second. As with the dprintf function, this can be anything that
357 GDB knows how to evaluate, so in addition to common choices like
358 "stderr", this could be an app-specific expression like
359 "mystreams[curlogger]". */
360
361 static char *dprintf_channel = "";
362
363 /* True if dprintf commands should continue to operate even if GDB
364 has disconnected. */
365 static int disconnected_dprintf = 1;
366
367 /* A reference-counted struct command_line. This lets multiple
368 breakpoints share a single command list. */
369 struct counted_command_line
370 {
371 /* The reference count. */
372 int refc;
373
374 /* The command list. */
375 struct command_line *commands;
376 };
377
378 struct command_line *
379 breakpoint_commands (struct breakpoint *b)
380 {
381 return b->commands ? b->commands->commands : NULL;
382 }
383
384 /* Flag indicating that a command has proceeded the inferior past the
385 current breakpoint. */
386
387 static int breakpoint_proceeded;
388
389 const char *
390 bpdisp_text (enum bpdisp disp)
391 {
392 /* NOTE: the following values are a part of MI protocol and
393 represent values of 'disp' field returned when inferior stops at
394 a breakpoint. */
395 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
396
397 return bpdisps[(int) disp];
398 }
399
400 /* Prototypes for exported functions. */
401 /* If FALSE, gdb will not use hardware support for watchpoints, even
402 if such is available. */
403 static int can_use_hw_watchpoints;
404
405 static void
406 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
407 struct cmd_list_element *c,
408 const char *value)
409 {
410 fprintf_filtered (file,
411 _("Debugger's willingness to use "
412 "watchpoint hardware is %s.\n"),
413 value);
414 }
415
416 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
417 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
418 for unrecognized breakpoint locations.
419 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
420 static enum auto_boolean pending_break_support;
421 static void
422 show_pending_break_support (struct ui_file *file, int from_tty,
423 struct cmd_list_element *c,
424 const char *value)
425 {
426 fprintf_filtered (file,
427 _("Debugger's behavior regarding "
428 "pending breakpoints is %s.\n"),
429 value);
430 }
431
432 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
433 set with "break" but falling in read-only memory.
434 If 0, gdb will warn about such breakpoints, but won't automatically
435 use hardware breakpoints. */
436 static int automatic_hardware_breakpoints;
437 static void
438 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
439 struct cmd_list_element *c,
440 const char *value)
441 {
442 fprintf_filtered (file,
443 _("Automatic usage of hardware breakpoints is %s.\n"),
444 value);
445 }
446
447 /* If on, GDB keeps breakpoints inserted even if the inferior is
448 stopped, and immediately inserts any new breakpoints as soon as
449 they're created. If off (default), GDB keeps breakpoints off of
450 the target as long as possible. That is, it delays inserting
451 breakpoints until the next resume, and removes them again when the
452 target fully stops. This is a bit safer in case GDB crashes while
453 processing user input. */
454 static int always_inserted_mode = 0;
455
456 static void
457 show_always_inserted_mode (struct ui_file *file, int from_tty,
458 struct cmd_list_element *c, const char *value)
459 {
460 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
461 value);
462 }
463
464 /* See breakpoint.h. */
465
466 int
467 breakpoints_should_be_inserted_now (void)
468 {
469 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
470 {
471 /* If breakpoints are global, they should be inserted even if no
472 thread under gdb's control is running, or even if there are
473 no threads under GDB's control yet. */
474 return 1;
475 }
476 else if (target_has_execution)
477 {
478 struct thread_info *tp;
479
480 if (always_inserted_mode)
481 {
482 /* The user wants breakpoints inserted even if all threads
483 are stopped. */
484 return 1;
485 }
486
487 if (threads_are_executing ())
488 return 1;
489
490 /* Don't remove breakpoints yet if, even though all threads are
491 stopped, we still have events to process. */
492 ALL_NON_EXITED_THREADS (tp)
493 if (tp->resumed
494 && tp->suspend.waitstatus_pending_p)
495 return 1;
496 }
497 return 0;
498 }
499
500 static const char condition_evaluation_both[] = "host or target";
501
502 /* Modes for breakpoint condition evaluation. */
503 static const char condition_evaluation_auto[] = "auto";
504 static const char condition_evaluation_host[] = "host";
505 static const char condition_evaluation_target[] = "target";
506 static const char *const condition_evaluation_enums[] = {
507 condition_evaluation_auto,
508 condition_evaluation_host,
509 condition_evaluation_target,
510 NULL
511 };
512
513 /* Global that holds the current mode for breakpoint condition evaluation. */
514 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
515
516 /* Global that we use to display information to the user (gets its value from
517 condition_evaluation_mode_1. */
518 static const char *condition_evaluation_mode = condition_evaluation_auto;
519
520 /* Translate a condition evaluation mode MODE into either "host"
521 or "target". This is used mostly to translate from "auto" to the
522 real setting that is being used. It returns the translated
523 evaluation mode. */
524
525 static const char *
526 translate_condition_evaluation_mode (const char *mode)
527 {
528 if (mode == condition_evaluation_auto)
529 {
530 if (target_supports_evaluation_of_breakpoint_conditions ())
531 return condition_evaluation_target;
532 else
533 return condition_evaluation_host;
534 }
535 else
536 return mode;
537 }
538
539 /* Discovers what condition_evaluation_auto translates to. */
540
541 static const char *
542 breakpoint_condition_evaluation_mode (void)
543 {
544 return translate_condition_evaluation_mode (condition_evaluation_mode);
545 }
546
547 /* Return true if GDB should evaluate breakpoint conditions or false
548 otherwise. */
549
550 static int
551 gdb_evaluates_breakpoint_condition_p (void)
552 {
553 const char *mode = breakpoint_condition_evaluation_mode ();
554
555 return (mode == condition_evaluation_host);
556 }
557
558 void _initialize_breakpoint (void);
559
560 /* Are we executing breakpoint commands? */
561 static int executing_breakpoint_commands;
562
563 /* Are overlay event breakpoints enabled? */
564 static int overlay_events_enabled;
565
566 /* See description in breakpoint.h. */
567 int target_exact_watchpoints = 0;
568
569 /* Walk the following statement or block through all breakpoints.
570 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
571 current breakpoint. */
572
573 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
574
575 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
576 for (B = breakpoint_chain; \
577 B ? (TMP=B->next, 1): 0; \
578 B = TMP)
579
580 /* Similar iterator for the low-level breakpoints. SAFE variant is
581 not provided so update_global_location_list must not be called
582 while executing the block of ALL_BP_LOCATIONS. */
583
584 #define ALL_BP_LOCATIONS(B,BP_TMP) \
585 for (BP_TMP = bp_location; \
586 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
587 BP_TMP++)
588
589 /* Iterates through locations with address ADDRESS for the currently selected
590 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
591 to where the loop should start from.
592 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
593 appropriate location to start with. */
594
595 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
596 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
597 BP_LOCP_TMP = BP_LOCP_START; \
598 BP_LOCP_START \
599 && (BP_LOCP_TMP < bp_location + bp_location_count \
600 && (*BP_LOCP_TMP)->address == ADDRESS); \
601 BP_LOCP_TMP++)
602
603 /* Iterator for tracepoints only. */
604
605 #define ALL_TRACEPOINTS(B) \
606 for (B = breakpoint_chain; B; B = B->next) \
607 if (is_tracepoint (B))
608
609 /* Chains of all breakpoints defined. */
610
611 struct breakpoint *breakpoint_chain;
612
613 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
614
615 static struct bp_location **bp_location;
616
617 /* Number of elements of BP_LOCATION. */
618
619 static unsigned bp_location_count;
620
621 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
622 ADDRESS for the current elements of BP_LOCATION which get a valid
623 result from bp_location_has_shadow. You can use it for roughly
624 limiting the subrange of BP_LOCATION to scan for shadow bytes for
625 an address you need to read. */
626
627 static CORE_ADDR bp_location_placed_address_before_address_max;
628
629 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
630 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
631 BP_LOCATION which get a valid result from bp_location_has_shadow.
632 You can use it for roughly limiting the subrange of BP_LOCATION to
633 scan for shadow bytes for an address you need to read. */
634
635 static CORE_ADDR bp_location_shadow_len_after_address_max;
636
637 /* The locations that no longer correspond to any breakpoint, unlinked
638 from bp_location array, but for which a hit may still be reported
639 by a target. */
640 VEC(bp_location_p) *moribund_locations = NULL;
641
642 /* Number of last breakpoint made. */
643
644 static int breakpoint_count;
645
646 /* The value of `breakpoint_count' before the last command that
647 created breakpoints. If the last (break-like) command created more
648 than one breakpoint, then the difference between BREAKPOINT_COUNT
649 and PREV_BREAKPOINT_COUNT is more than one. */
650 static int prev_breakpoint_count;
651
652 /* Number of last tracepoint made. */
653
654 static int tracepoint_count;
655
656 static struct cmd_list_element *breakpoint_set_cmdlist;
657 static struct cmd_list_element *breakpoint_show_cmdlist;
658 struct cmd_list_element *save_cmdlist;
659
660 /* See declaration at breakpoint.h. */
661
662 struct breakpoint *
663 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
664 void *user_data)
665 {
666 struct breakpoint *b = NULL;
667
668 ALL_BREAKPOINTS (b)
669 {
670 if (func (b, user_data) != 0)
671 break;
672 }
673
674 return b;
675 }
676
677 /* Return whether a breakpoint is an active enabled breakpoint. */
678 static int
679 breakpoint_enabled (struct breakpoint *b)
680 {
681 return (b->enable_state == bp_enabled);
682 }
683
684 /* Set breakpoint count to NUM. */
685
686 static void
687 set_breakpoint_count (int num)
688 {
689 prev_breakpoint_count = breakpoint_count;
690 breakpoint_count = num;
691 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
692 }
693
694 /* Used by `start_rbreak_breakpoints' below, to record the current
695 breakpoint count before "rbreak" creates any breakpoint. */
696 static int rbreak_start_breakpoint_count;
697
698 /* Called at the start an "rbreak" command to record the first
699 breakpoint made. */
700
701 void
702 start_rbreak_breakpoints (void)
703 {
704 rbreak_start_breakpoint_count = breakpoint_count;
705 }
706
707 /* Called at the end of an "rbreak" command to record the last
708 breakpoint made. */
709
710 void
711 end_rbreak_breakpoints (void)
712 {
713 prev_breakpoint_count = rbreak_start_breakpoint_count;
714 }
715
716 /* Used in run_command to zero the hit count when a new run starts. */
717
718 void
719 clear_breakpoint_hit_counts (void)
720 {
721 struct breakpoint *b;
722
723 ALL_BREAKPOINTS (b)
724 b->hit_count = 0;
725 }
726
727 /* Allocate a new counted_command_line with reference count of 1.
728 The new structure owns COMMANDS. */
729
730 static struct counted_command_line *
731 alloc_counted_command_line (struct command_line *commands)
732 {
733 struct counted_command_line *result = XNEW (struct counted_command_line);
734
735 result->refc = 1;
736 result->commands = commands;
737
738 return result;
739 }
740
741 /* Increment reference count. This does nothing if CMD is NULL. */
742
743 static void
744 incref_counted_command_line (struct counted_command_line *cmd)
745 {
746 if (cmd)
747 ++cmd->refc;
748 }
749
750 /* Decrement reference count. If the reference count reaches 0,
751 destroy the counted_command_line. Sets *CMDP to NULL. This does
752 nothing if *CMDP is NULL. */
753
754 static void
755 decref_counted_command_line (struct counted_command_line **cmdp)
756 {
757 if (*cmdp)
758 {
759 if (--(*cmdp)->refc == 0)
760 {
761 free_command_lines (&(*cmdp)->commands);
762 xfree (*cmdp);
763 }
764 *cmdp = NULL;
765 }
766 }
767
768 /* A cleanup function that calls decref_counted_command_line. */
769
770 static void
771 do_cleanup_counted_command_line (void *arg)
772 {
773 decref_counted_command_line ((struct counted_command_line **) arg);
774 }
775
776 /* Create a cleanup that calls decref_counted_command_line on the
777 argument. */
778
779 static struct cleanup *
780 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
781 {
782 return make_cleanup (do_cleanup_counted_command_line, cmdp);
783 }
784
785 \f
786 /* Return the breakpoint with the specified number, or NULL
787 if the number does not refer to an existing breakpoint. */
788
789 struct breakpoint *
790 get_breakpoint (int num)
791 {
792 struct breakpoint *b;
793
794 ALL_BREAKPOINTS (b)
795 if (b->number == num)
796 return b;
797
798 return NULL;
799 }
800
801 \f
802
803 /* Mark locations as "conditions have changed" in case the target supports
804 evaluating conditions on its side. */
805
806 static void
807 mark_breakpoint_modified (struct breakpoint *b)
808 {
809 struct bp_location *loc;
810
811 /* This is only meaningful if the target is
812 evaluating conditions and if the user has
813 opted for condition evaluation on the target's
814 side. */
815 if (gdb_evaluates_breakpoint_condition_p ()
816 || !target_supports_evaluation_of_breakpoint_conditions ())
817 return;
818
819 if (!is_breakpoint (b))
820 return;
821
822 for (loc = b->loc; loc; loc = loc->next)
823 loc->condition_changed = condition_modified;
824 }
825
826 /* Mark location as "conditions have changed" in case the target supports
827 evaluating conditions on its side. */
828
829 static void
830 mark_breakpoint_location_modified (struct bp_location *loc)
831 {
832 /* This is only meaningful if the target is
833 evaluating conditions and if the user has
834 opted for condition evaluation on the target's
835 side. */
836 if (gdb_evaluates_breakpoint_condition_p ()
837 || !target_supports_evaluation_of_breakpoint_conditions ())
838
839 return;
840
841 if (!is_breakpoint (loc->owner))
842 return;
843
844 loc->condition_changed = condition_modified;
845 }
846
847 /* Sets the condition-evaluation mode using the static global
848 condition_evaluation_mode. */
849
850 static void
851 set_condition_evaluation_mode (char *args, int from_tty,
852 struct cmd_list_element *c)
853 {
854 const char *old_mode, *new_mode;
855
856 if ((condition_evaluation_mode_1 == condition_evaluation_target)
857 && !target_supports_evaluation_of_breakpoint_conditions ())
858 {
859 condition_evaluation_mode_1 = condition_evaluation_mode;
860 warning (_("Target does not support breakpoint condition evaluation.\n"
861 "Using host evaluation mode instead."));
862 return;
863 }
864
865 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
866 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
867
868 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
869 settings was "auto". */
870 condition_evaluation_mode = condition_evaluation_mode_1;
871
872 /* Only update the mode if the user picked a different one. */
873 if (new_mode != old_mode)
874 {
875 struct bp_location *loc, **loc_tmp;
876 /* If the user switched to a different evaluation mode, we
877 need to synch the changes with the target as follows:
878
879 "host" -> "target": Send all (valid) conditions to the target.
880 "target" -> "host": Remove all the conditions from the target.
881 */
882
883 if (new_mode == condition_evaluation_target)
884 {
885 /* Mark everything modified and synch conditions with the
886 target. */
887 ALL_BP_LOCATIONS (loc, loc_tmp)
888 mark_breakpoint_location_modified (loc);
889 }
890 else
891 {
892 /* Manually mark non-duplicate locations to synch conditions
893 with the target. We do this to remove all the conditions the
894 target knows about. */
895 ALL_BP_LOCATIONS (loc, loc_tmp)
896 if (is_breakpoint (loc->owner) && loc->inserted)
897 loc->needs_update = 1;
898 }
899
900 /* Do the update. */
901 update_global_location_list (UGLL_MAY_INSERT);
902 }
903
904 return;
905 }
906
907 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
908 what "auto" is translating to. */
909
910 static void
911 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
912 struct cmd_list_element *c, const char *value)
913 {
914 if (condition_evaluation_mode == condition_evaluation_auto)
915 fprintf_filtered (file,
916 _("Breakpoint condition evaluation "
917 "mode is %s (currently %s).\n"),
918 value,
919 breakpoint_condition_evaluation_mode ());
920 else
921 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
922 value);
923 }
924
925 /* A comparison function for bp_location AP and BP that is used by
926 bsearch. This comparison function only cares about addresses, unlike
927 the more general bp_location_compare function. */
928
929 static int
930 bp_location_compare_addrs (const void *ap, const void *bp)
931 {
932 const struct bp_location *a = *(const struct bp_location **) ap;
933 const struct bp_location *b = *(const struct bp_location **) bp;
934
935 if (a->address == b->address)
936 return 0;
937 else
938 return ((a->address > b->address) - (a->address < b->address));
939 }
940
941 /* Helper function to skip all bp_locations with addresses
942 less than ADDRESS. It returns the first bp_location that
943 is greater than or equal to ADDRESS. If none is found, just
944 return NULL. */
945
946 static struct bp_location **
947 get_first_locp_gte_addr (CORE_ADDR address)
948 {
949 struct bp_location dummy_loc;
950 struct bp_location *dummy_locp = &dummy_loc;
951 struct bp_location **locp_found = NULL;
952
953 /* Initialize the dummy location's address field. */
954 memset (&dummy_loc, 0, sizeof (struct bp_location));
955 dummy_loc.address = address;
956
957 /* Find a close match to the first location at ADDRESS. */
958 locp_found = ((struct bp_location **)
959 bsearch (&dummy_locp, bp_location, bp_location_count,
960 sizeof (struct bp_location **),
961 bp_location_compare_addrs));
962
963 /* Nothing was found, nothing left to do. */
964 if (locp_found == NULL)
965 return NULL;
966
967 /* We may have found a location that is at ADDRESS but is not the first in the
968 location's list. Go backwards (if possible) and locate the first one. */
969 while ((locp_found - 1) >= bp_location
970 && (*(locp_found - 1))->address == address)
971 locp_found--;
972
973 return locp_found;
974 }
975
976 void
977 set_breakpoint_condition (struct breakpoint *b, const char *exp,
978 int from_tty)
979 {
980 xfree (b->cond_string);
981 b->cond_string = NULL;
982
983 if (is_watchpoint (b))
984 {
985 struct watchpoint *w = (struct watchpoint *) b;
986
987 xfree (w->cond_exp);
988 w->cond_exp = NULL;
989 }
990 else
991 {
992 struct bp_location *loc;
993
994 for (loc = b->loc; loc; loc = loc->next)
995 {
996 xfree (loc->cond);
997 loc->cond = NULL;
998
999 /* No need to free the condition agent expression
1000 bytecode (if we have one). We will handle this
1001 when we go through update_global_location_list. */
1002 }
1003 }
1004
1005 if (*exp == 0)
1006 {
1007 if (from_tty)
1008 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
1009 }
1010 else
1011 {
1012 const char *arg = exp;
1013
1014 /* I don't know if it matters whether this is the string the user
1015 typed in or the decompiled expression. */
1016 b->cond_string = xstrdup (arg);
1017 b->condition_not_parsed = 0;
1018
1019 if (is_watchpoint (b))
1020 {
1021 struct watchpoint *w = (struct watchpoint *) b;
1022
1023 innermost_block = NULL;
1024 arg = exp;
1025 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
1026 if (*arg)
1027 error (_("Junk at end of expression"));
1028 w->cond_exp_valid_block = innermost_block;
1029 }
1030 else
1031 {
1032 struct bp_location *loc;
1033
1034 for (loc = b->loc; loc; loc = loc->next)
1035 {
1036 arg = exp;
1037 loc->cond =
1038 parse_exp_1 (&arg, loc->address,
1039 block_for_pc (loc->address), 0);
1040 if (*arg)
1041 error (_("Junk at end of expression"));
1042 }
1043 }
1044 }
1045 mark_breakpoint_modified (b);
1046
1047 observer_notify_breakpoint_modified (b);
1048 }
1049
1050 /* Completion for the "condition" command. */
1051
1052 static VEC (char_ptr) *
1053 condition_completer (struct cmd_list_element *cmd,
1054 const char *text, const char *word)
1055 {
1056 const char *space;
1057
1058 text = skip_spaces_const (text);
1059 space = skip_to_space_const (text);
1060 if (*space == '\0')
1061 {
1062 int len;
1063 struct breakpoint *b;
1064 VEC (char_ptr) *result = NULL;
1065
1066 if (text[0] == '$')
1067 {
1068 /* We don't support completion of history indices. */
1069 if (isdigit (text[1]))
1070 return NULL;
1071 return complete_internalvar (&text[1]);
1072 }
1073
1074 /* We're completing the breakpoint number. */
1075 len = strlen (text);
1076
1077 ALL_BREAKPOINTS (b)
1078 {
1079 char number[50];
1080
1081 xsnprintf (number, sizeof (number), "%d", b->number);
1082
1083 if (strncmp (number, text, len) == 0)
1084 VEC_safe_push (char_ptr, result, xstrdup (number));
1085 }
1086
1087 return result;
1088 }
1089
1090 /* We're completing the expression part. */
1091 text = skip_spaces_const (space);
1092 return expression_completer (cmd, text, word);
1093 }
1094
1095 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1096
1097 static void
1098 condition_command (char *arg, int from_tty)
1099 {
1100 struct breakpoint *b;
1101 char *p;
1102 int bnum;
1103
1104 if (arg == 0)
1105 error_no_arg (_("breakpoint number"));
1106
1107 p = arg;
1108 bnum = get_number (&p);
1109 if (bnum == 0)
1110 error (_("Bad breakpoint argument: '%s'"), arg);
1111
1112 ALL_BREAKPOINTS (b)
1113 if (b->number == bnum)
1114 {
1115 /* Check if this breakpoint has a "stop" method implemented in an
1116 extension language. This method and conditions entered into GDB
1117 from the CLI are mutually exclusive. */
1118 const struct extension_language_defn *extlang
1119 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1120
1121 if (extlang != NULL)
1122 {
1123 error (_("Only one stop condition allowed. There is currently"
1124 " a %s stop condition defined for this breakpoint."),
1125 ext_lang_capitalized_name (extlang));
1126 }
1127 set_breakpoint_condition (b, p, from_tty);
1128
1129 if (is_breakpoint (b))
1130 update_global_location_list (UGLL_MAY_INSERT);
1131
1132 return;
1133 }
1134
1135 error (_("No breakpoint number %d."), bnum);
1136 }
1137
1138 /* Check that COMMAND do not contain commands that are suitable
1139 only for tracepoints and not suitable for ordinary breakpoints.
1140 Throw if any such commands is found. */
1141
1142 static void
1143 check_no_tracepoint_commands (struct command_line *commands)
1144 {
1145 struct command_line *c;
1146
1147 for (c = commands; c; c = c->next)
1148 {
1149 int i;
1150
1151 if (c->control_type == while_stepping_control)
1152 error (_("The 'while-stepping' command can "
1153 "only be used for tracepoints"));
1154
1155 for (i = 0; i < c->body_count; ++i)
1156 check_no_tracepoint_commands ((c->body_list)[i]);
1157
1158 /* Not that command parsing removes leading whitespace and comment
1159 lines and also empty lines. So, we only need to check for
1160 command directly. */
1161 if (strstr (c->line, "collect ") == c->line)
1162 error (_("The 'collect' command can only be used for tracepoints"));
1163
1164 if (strstr (c->line, "teval ") == c->line)
1165 error (_("The 'teval' command can only be used for tracepoints"));
1166 }
1167 }
1168
1169 /* Encapsulate tests for different types of tracepoints. */
1170
1171 static int
1172 is_tracepoint_type (enum bptype type)
1173 {
1174 return (type == bp_tracepoint
1175 || type == bp_fast_tracepoint
1176 || type == bp_static_tracepoint);
1177 }
1178
1179 int
1180 is_tracepoint (const struct breakpoint *b)
1181 {
1182 return is_tracepoint_type (b->type);
1183 }
1184
1185 /* A helper function that validates that COMMANDS are valid for a
1186 breakpoint. This function will throw an exception if a problem is
1187 found. */
1188
1189 static void
1190 validate_commands_for_breakpoint (struct breakpoint *b,
1191 struct command_line *commands)
1192 {
1193 if (is_tracepoint (b))
1194 {
1195 struct tracepoint *t = (struct tracepoint *) b;
1196 struct command_line *c;
1197 struct command_line *while_stepping = 0;
1198
1199 /* Reset the while-stepping step count. The previous commands
1200 might have included a while-stepping action, while the new
1201 ones might not. */
1202 t->step_count = 0;
1203
1204 /* We need to verify that each top-level element of commands is
1205 valid for tracepoints, that there's at most one
1206 while-stepping element, and that the while-stepping's body
1207 has valid tracing commands excluding nested while-stepping.
1208 We also need to validate the tracepoint action line in the
1209 context of the tracepoint --- validate_actionline actually
1210 has side effects, like setting the tracepoint's
1211 while-stepping STEP_COUNT, in addition to checking if the
1212 collect/teval actions parse and make sense in the
1213 tracepoint's context. */
1214 for (c = commands; c; c = c->next)
1215 {
1216 if (c->control_type == while_stepping_control)
1217 {
1218 if (b->type == bp_fast_tracepoint)
1219 error (_("The 'while-stepping' command "
1220 "cannot be used for fast tracepoint"));
1221 else if (b->type == bp_static_tracepoint)
1222 error (_("The 'while-stepping' command "
1223 "cannot be used for static tracepoint"));
1224
1225 if (while_stepping)
1226 error (_("The 'while-stepping' command "
1227 "can be used only once"));
1228 else
1229 while_stepping = c;
1230 }
1231
1232 validate_actionline (c->line, b);
1233 }
1234 if (while_stepping)
1235 {
1236 struct command_line *c2;
1237
1238 gdb_assert (while_stepping->body_count == 1);
1239 c2 = while_stepping->body_list[0];
1240 for (; c2; c2 = c2->next)
1241 {
1242 if (c2->control_type == while_stepping_control)
1243 error (_("The 'while-stepping' command cannot be nested"));
1244 }
1245 }
1246 }
1247 else
1248 {
1249 check_no_tracepoint_commands (commands);
1250 }
1251 }
1252
1253 /* Return a vector of all the static tracepoints set at ADDR. The
1254 caller is responsible for releasing the vector. */
1255
1256 VEC(breakpoint_p) *
1257 static_tracepoints_here (CORE_ADDR addr)
1258 {
1259 struct breakpoint *b;
1260 VEC(breakpoint_p) *found = 0;
1261 struct bp_location *loc;
1262
1263 ALL_BREAKPOINTS (b)
1264 if (b->type == bp_static_tracepoint)
1265 {
1266 for (loc = b->loc; loc; loc = loc->next)
1267 if (loc->address == addr)
1268 VEC_safe_push(breakpoint_p, found, b);
1269 }
1270
1271 return found;
1272 }
1273
1274 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1275 validate that only allowed commands are included. */
1276
1277 void
1278 breakpoint_set_commands (struct breakpoint *b,
1279 struct command_line *commands)
1280 {
1281 validate_commands_for_breakpoint (b, commands);
1282
1283 decref_counted_command_line (&b->commands);
1284 b->commands = alloc_counted_command_line (commands);
1285 observer_notify_breakpoint_modified (b);
1286 }
1287
1288 /* Set the internal `silent' flag on the breakpoint. Note that this
1289 is not the same as the "silent" that may appear in the breakpoint's
1290 commands. */
1291
1292 void
1293 breakpoint_set_silent (struct breakpoint *b, int silent)
1294 {
1295 int old_silent = b->silent;
1296
1297 b->silent = silent;
1298 if (old_silent != silent)
1299 observer_notify_breakpoint_modified (b);
1300 }
1301
1302 /* Set the thread for this breakpoint. If THREAD is -1, make the
1303 breakpoint work for any thread. */
1304
1305 void
1306 breakpoint_set_thread (struct breakpoint *b, int thread)
1307 {
1308 int old_thread = b->thread;
1309
1310 b->thread = thread;
1311 if (old_thread != thread)
1312 observer_notify_breakpoint_modified (b);
1313 }
1314
1315 /* Set the task for this breakpoint. If TASK is 0, make the
1316 breakpoint work for any task. */
1317
1318 void
1319 breakpoint_set_task (struct breakpoint *b, int task)
1320 {
1321 int old_task = b->task;
1322
1323 b->task = task;
1324 if (old_task != task)
1325 observer_notify_breakpoint_modified (b);
1326 }
1327
1328 void
1329 check_tracepoint_command (char *line, void *closure)
1330 {
1331 struct breakpoint *b = (struct breakpoint *) closure;
1332
1333 validate_actionline (line, b);
1334 }
1335
1336 /* A structure used to pass information through
1337 map_breakpoint_numbers. */
1338
1339 struct commands_info
1340 {
1341 /* True if the command was typed at a tty. */
1342 int from_tty;
1343
1344 /* The breakpoint range spec. */
1345 char *arg;
1346
1347 /* Non-NULL if the body of the commands are being read from this
1348 already-parsed command. */
1349 struct command_line *control;
1350
1351 /* The command lines read from the user, or NULL if they have not
1352 yet been read. */
1353 struct counted_command_line *cmd;
1354 };
1355
1356 /* A callback for map_breakpoint_numbers that sets the commands for
1357 commands_command. */
1358
1359 static void
1360 do_map_commands_command (struct breakpoint *b, void *data)
1361 {
1362 struct commands_info *info = (struct commands_info *) data;
1363
1364 if (info->cmd == NULL)
1365 {
1366 struct command_line *l;
1367
1368 if (info->control != NULL)
1369 l = copy_command_lines (info->control->body_list[0]);
1370 else
1371 {
1372 struct cleanup *old_chain;
1373 char *str;
1374
1375 str = xstrprintf (_("Type commands for breakpoint(s) "
1376 "%s, one per line."),
1377 info->arg);
1378
1379 old_chain = make_cleanup (xfree, str);
1380
1381 l = read_command_lines (str,
1382 info->from_tty, 1,
1383 (is_tracepoint (b)
1384 ? check_tracepoint_command : 0),
1385 b);
1386
1387 do_cleanups (old_chain);
1388 }
1389
1390 info->cmd = alloc_counted_command_line (l);
1391 }
1392
1393 /* If a breakpoint was on the list more than once, we don't need to
1394 do anything. */
1395 if (b->commands != info->cmd)
1396 {
1397 validate_commands_for_breakpoint (b, info->cmd->commands);
1398 incref_counted_command_line (info->cmd);
1399 decref_counted_command_line (&b->commands);
1400 b->commands = info->cmd;
1401 observer_notify_breakpoint_modified (b);
1402 }
1403 }
1404
1405 static void
1406 commands_command_1 (char *arg, int from_tty,
1407 struct command_line *control)
1408 {
1409 struct cleanup *cleanups;
1410 struct commands_info info;
1411
1412 info.from_tty = from_tty;
1413 info.control = control;
1414 info.cmd = NULL;
1415 /* If we read command lines from the user, then `info' will hold an
1416 extra reference to the commands that we must clean up. */
1417 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1418
1419 if (arg == NULL || !*arg)
1420 {
1421 if (breakpoint_count - prev_breakpoint_count > 1)
1422 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1423 breakpoint_count);
1424 else if (breakpoint_count > 0)
1425 arg = xstrprintf ("%d", breakpoint_count);
1426 else
1427 {
1428 /* So that we don't try to free the incoming non-NULL
1429 argument in the cleanup below. Mapping breakpoint
1430 numbers will fail in this case. */
1431 arg = NULL;
1432 }
1433 }
1434 else
1435 /* The command loop has some static state, so we need to preserve
1436 our argument. */
1437 arg = xstrdup (arg);
1438
1439 if (arg != NULL)
1440 make_cleanup (xfree, arg);
1441
1442 info.arg = arg;
1443
1444 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1445
1446 if (info.cmd == NULL)
1447 error (_("No breakpoints specified."));
1448
1449 do_cleanups (cleanups);
1450 }
1451
1452 static void
1453 commands_command (char *arg, int from_tty)
1454 {
1455 commands_command_1 (arg, from_tty, NULL);
1456 }
1457
1458 /* Like commands_command, but instead of reading the commands from
1459 input stream, takes them from an already parsed command structure.
1460
1461 This is used by cli-script.c to DTRT with breakpoint commands
1462 that are part of if and while bodies. */
1463 enum command_control_type
1464 commands_from_control_command (char *arg, struct command_line *cmd)
1465 {
1466 commands_command_1 (arg, 0, cmd);
1467 return simple_control;
1468 }
1469
1470 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1471
1472 static int
1473 bp_location_has_shadow (struct bp_location *bl)
1474 {
1475 if (bl->loc_type != bp_loc_software_breakpoint)
1476 return 0;
1477 if (!bl->inserted)
1478 return 0;
1479 if (bl->target_info.shadow_len == 0)
1480 /* BL isn't valid, or doesn't shadow memory. */
1481 return 0;
1482 return 1;
1483 }
1484
1485 /* Update BUF, which is LEN bytes read from the target address
1486 MEMADDR, by replacing a memory breakpoint with its shadowed
1487 contents.
1488
1489 If READBUF is not NULL, this buffer must not overlap with the of
1490 the breakpoint location's shadow_contents buffer. Otherwise, a
1491 failed assertion internal error will be raised. */
1492
1493 static void
1494 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1495 const gdb_byte *writebuf_org,
1496 ULONGEST memaddr, LONGEST len,
1497 struct bp_target_info *target_info,
1498 struct gdbarch *gdbarch)
1499 {
1500 /* Now do full processing of the found relevant range of elements. */
1501 CORE_ADDR bp_addr = 0;
1502 int bp_size = 0;
1503 int bptoffset = 0;
1504
1505 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1506 current_program_space->aspace, 0))
1507 {
1508 /* The breakpoint is inserted in a different address space. */
1509 return;
1510 }
1511
1512 /* Addresses and length of the part of the breakpoint that
1513 we need to copy. */
1514 bp_addr = target_info->placed_address;
1515 bp_size = target_info->shadow_len;
1516
1517 if (bp_addr + bp_size <= memaddr)
1518 {
1519 /* The breakpoint is entirely before the chunk of memory we are
1520 reading. */
1521 return;
1522 }
1523
1524 if (bp_addr >= memaddr + len)
1525 {
1526 /* The breakpoint is entirely after the chunk of memory we are
1527 reading. */
1528 return;
1529 }
1530
1531 /* Offset within shadow_contents. */
1532 if (bp_addr < memaddr)
1533 {
1534 /* Only copy the second part of the breakpoint. */
1535 bp_size -= memaddr - bp_addr;
1536 bptoffset = memaddr - bp_addr;
1537 bp_addr = memaddr;
1538 }
1539
1540 if (bp_addr + bp_size > memaddr + len)
1541 {
1542 /* Only copy the first part of the breakpoint. */
1543 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1544 }
1545
1546 if (readbuf != NULL)
1547 {
1548 /* Verify that the readbuf buffer does not overlap with the
1549 shadow_contents buffer. */
1550 gdb_assert (target_info->shadow_contents >= readbuf + len
1551 || readbuf >= (target_info->shadow_contents
1552 + target_info->shadow_len));
1553
1554 /* Update the read buffer with this inserted breakpoint's
1555 shadow. */
1556 memcpy (readbuf + bp_addr - memaddr,
1557 target_info->shadow_contents + bptoffset, bp_size);
1558 }
1559 else
1560 {
1561 const unsigned char *bp;
1562 CORE_ADDR addr = target_info->reqstd_address;
1563 int placed_size;
1564
1565 /* Update the shadow with what we want to write to memory. */
1566 memcpy (target_info->shadow_contents + bptoffset,
1567 writebuf_org + bp_addr - memaddr, bp_size);
1568
1569 /* Determine appropriate breakpoint contents and size for this
1570 address. */
1571 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1572
1573 /* Update the final write buffer with this inserted
1574 breakpoint's INSN. */
1575 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1576 }
1577 }
1578
1579 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1580 by replacing any memory breakpoints with their shadowed contents.
1581
1582 If READBUF is not NULL, this buffer must not overlap with any of
1583 the breakpoint location's shadow_contents buffers. Otherwise,
1584 a failed assertion internal error will be raised.
1585
1586 The range of shadowed area by each bp_location is:
1587 bl->address - bp_location_placed_address_before_address_max
1588 up to bl->address + bp_location_shadow_len_after_address_max
1589 The range we were requested to resolve shadows for is:
1590 memaddr ... memaddr + len
1591 Thus the safe cutoff boundaries for performance optimization are
1592 memaddr + len <= (bl->address
1593 - bp_location_placed_address_before_address_max)
1594 and:
1595 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1596
1597 void
1598 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1599 const gdb_byte *writebuf_org,
1600 ULONGEST memaddr, LONGEST len)
1601 {
1602 /* Left boundary, right boundary and median element of our binary
1603 search. */
1604 unsigned bc_l, bc_r, bc;
1605 size_t i;
1606
1607 /* Find BC_L which is a leftmost element which may affect BUF
1608 content. It is safe to report lower value but a failure to
1609 report higher one. */
1610
1611 bc_l = 0;
1612 bc_r = bp_location_count;
1613 while (bc_l + 1 < bc_r)
1614 {
1615 struct bp_location *bl;
1616
1617 bc = (bc_l + bc_r) / 2;
1618 bl = bp_location[bc];
1619
1620 /* Check first BL->ADDRESS will not overflow due to the added
1621 constant. Then advance the left boundary only if we are sure
1622 the BC element can in no way affect the BUF content (MEMADDR
1623 to MEMADDR + LEN range).
1624
1625 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1626 offset so that we cannot miss a breakpoint with its shadow
1627 range tail still reaching MEMADDR. */
1628
1629 if ((bl->address + bp_location_shadow_len_after_address_max
1630 >= bl->address)
1631 && (bl->address + bp_location_shadow_len_after_address_max
1632 <= memaddr))
1633 bc_l = bc;
1634 else
1635 bc_r = bc;
1636 }
1637
1638 /* Due to the binary search above, we need to make sure we pick the
1639 first location that's at BC_L's address. E.g., if there are
1640 multiple locations at the same address, BC_L may end up pointing
1641 at a duplicate location, and miss the "master"/"inserted"
1642 location. Say, given locations L1, L2 and L3 at addresses A and
1643 B:
1644
1645 L1@A, L2@A, L3@B, ...
1646
1647 BC_L could end up pointing at location L2, while the "master"
1648 location could be L1. Since the `loc->inserted' flag is only set
1649 on "master" locations, we'd forget to restore the shadow of L1
1650 and L2. */
1651 while (bc_l > 0
1652 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1653 bc_l--;
1654
1655 /* Now do full processing of the found relevant range of elements. */
1656
1657 for (bc = bc_l; bc < bp_location_count; bc++)
1658 {
1659 struct bp_location *bl = bp_location[bc];
1660 CORE_ADDR bp_addr = 0;
1661 int bp_size = 0;
1662 int bptoffset = 0;
1663
1664 /* bp_location array has BL->OWNER always non-NULL. */
1665 if (bl->owner->type == bp_none)
1666 warning (_("reading through apparently deleted breakpoint #%d?"),
1667 bl->owner->number);
1668
1669 /* Performance optimization: any further element can no longer affect BUF
1670 content. */
1671
1672 if (bl->address >= bp_location_placed_address_before_address_max
1673 && memaddr + len <= (bl->address
1674 - bp_location_placed_address_before_address_max))
1675 break;
1676
1677 if (!bp_location_has_shadow (bl))
1678 continue;
1679
1680 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1681 memaddr, len, &bl->target_info, bl->gdbarch);
1682 }
1683 }
1684
1685 \f
1686
1687 /* Return true if BPT is either a software breakpoint or a hardware
1688 breakpoint. */
1689
1690 int
1691 is_breakpoint (const struct breakpoint *bpt)
1692 {
1693 return (bpt->type == bp_breakpoint
1694 || bpt->type == bp_hardware_breakpoint
1695 || bpt->type == bp_dprintf);
1696 }
1697
1698 /* Return true if BPT is of any hardware watchpoint kind. */
1699
1700 static int
1701 is_hardware_watchpoint (const struct breakpoint *bpt)
1702 {
1703 return (bpt->type == bp_hardware_watchpoint
1704 || bpt->type == bp_read_watchpoint
1705 || bpt->type == bp_access_watchpoint);
1706 }
1707
1708 /* Return true if BPT is of any watchpoint kind, hardware or
1709 software. */
1710
1711 int
1712 is_watchpoint (const struct breakpoint *bpt)
1713 {
1714 return (is_hardware_watchpoint (bpt)
1715 || bpt->type == bp_watchpoint);
1716 }
1717
1718 /* Returns true if the current thread and its running state are safe
1719 to evaluate or update watchpoint B. Watchpoints on local
1720 expressions need to be evaluated in the context of the thread that
1721 was current when the watchpoint was created, and, that thread needs
1722 to be stopped to be able to select the correct frame context.
1723 Watchpoints on global expressions can be evaluated on any thread,
1724 and in any state. It is presently left to the target allowing
1725 memory accesses when threads are running. */
1726
1727 static int
1728 watchpoint_in_thread_scope (struct watchpoint *b)
1729 {
1730 return (b->base.pspace == current_program_space
1731 && (ptid_equal (b->watchpoint_thread, null_ptid)
1732 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1733 && !is_executing (inferior_ptid))));
1734 }
1735
1736 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1737 associated bp_watchpoint_scope breakpoint. */
1738
1739 static void
1740 watchpoint_del_at_next_stop (struct watchpoint *w)
1741 {
1742 struct breakpoint *b = &w->base;
1743
1744 if (b->related_breakpoint != b)
1745 {
1746 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1747 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1748 b->related_breakpoint->disposition = disp_del_at_next_stop;
1749 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1750 b->related_breakpoint = b;
1751 }
1752 b->disposition = disp_del_at_next_stop;
1753 }
1754
1755 /* Extract a bitfield value from value VAL using the bit parameters contained in
1756 watchpoint W. */
1757
1758 static struct value *
1759 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1760 {
1761 struct value *bit_val;
1762
1763 if (val == NULL)
1764 return NULL;
1765
1766 bit_val = allocate_value (value_type (val));
1767
1768 unpack_value_bitfield (bit_val,
1769 w->val_bitpos,
1770 w->val_bitsize,
1771 value_contents_for_printing (val),
1772 value_offset (val),
1773 val);
1774
1775 return bit_val;
1776 }
1777
1778 /* Assuming that B is a watchpoint:
1779 - Reparse watchpoint expression, if REPARSE is non-zero
1780 - Evaluate expression and store the result in B->val
1781 - Evaluate the condition if there is one, and store the result
1782 in b->loc->cond.
1783 - Update the list of values that must be watched in B->loc.
1784
1785 If the watchpoint disposition is disp_del_at_next_stop, then do
1786 nothing. If this is local watchpoint that is out of scope, delete
1787 it.
1788
1789 Even with `set breakpoint always-inserted on' the watchpoints are
1790 removed + inserted on each stop here. Normal breakpoints must
1791 never be removed because they might be missed by a running thread
1792 when debugging in non-stop mode. On the other hand, hardware
1793 watchpoints (is_hardware_watchpoint; processed here) are specific
1794 to each LWP since they are stored in each LWP's hardware debug
1795 registers. Therefore, such LWP must be stopped first in order to
1796 be able to modify its hardware watchpoints.
1797
1798 Hardware watchpoints must be reset exactly once after being
1799 presented to the user. It cannot be done sooner, because it would
1800 reset the data used to present the watchpoint hit to the user. And
1801 it must not be done later because it could display the same single
1802 watchpoint hit during multiple GDB stops. Note that the latter is
1803 relevant only to the hardware watchpoint types bp_read_watchpoint
1804 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1805 not user-visible - its hit is suppressed if the memory content has
1806 not changed.
1807
1808 The following constraints influence the location where we can reset
1809 hardware watchpoints:
1810
1811 * target_stopped_by_watchpoint and target_stopped_data_address are
1812 called several times when GDB stops.
1813
1814 [linux]
1815 * Multiple hardware watchpoints can be hit at the same time,
1816 causing GDB to stop. GDB only presents one hardware watchpoint
1817 hit at a time as the reason for stopping, and all the other hits
1818 are presented later, one after the other, each time the user
1819 requests the execution to be resumed. Execution is not resumed
1820 for the threads still having pending hit event stored in
1821 LWP_INFO->STATUS. While the watchpoint is already removed from
1822 the inferior on the first stop the thread hit event is kept being
1823 reported from its cached value by linux_nat_stopped_data_address
1824 until the real thread resume happens after the watchpoint gets
1825 presented and thus its LWP_INFO->STATUS gets reset.
1826
1827 Therefore the hardware watchpoint hit can get safely reset on the
1828 watchpoint removal from inferior. */
1829
1830 static void
1831 update_watchpoint (struct watchpoint *b, int reparse)
1832 {
1833 int within_current_scope;
1834 struct frame_id saved_frame_id;
1835 int frame_saved;
1836
1837 /* If this is a local watchpoint, we only want to check if the
1838 watchpoint frame is in scope if the current thread is the thread
1839 that was used to create the watchpoint. */
1840 if (!watchpoint_in_thread_scope (b))
1841 return;
1842
1843 if (b->base.disposition == disp_del_at_next_stop)
1844 return;
1845
1846 frame_saved = 0;
1847
1848 /* Determine if the watchpoint is within scope. */
1849 if (b->exp_valid_block == NULL)
1850 within_current_scope = 1;
1851 else
1852 {
1853 struct frame_info *fi = get_current_frame ();
1854 struct gdbarch *frame_arch = get_frame_arch (fi);
1855 CORE_ADDR frame_pc = get_frame_pc (fi);
1856
1857 /* If we're at a point where the stack has been destroyed
1858 (e.g. in a function epilogue), unwinding may not work
1859 properly. Do not attempt to recreate locations at this
1860 point. See similar comments in watchpoint_check. */
1861 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1862 return;
1863
1864 /* Save the current frame's ID so we can restore it after
1865 evaluating the watchpoint expression on its own frame. */
1866 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1867 took a frame parameter, so that we didn't have to change the
1868 selected frame. */
1869 frame_saved = 1;
1870 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1871
1872 fi = frame_find_by_id (b->watchpoint_frame);
1873 within_current_scope = (fi != NULL);
1874 if (within_current_scope)
1875 select_frame (fi);
1876 }
1877
1878 /* We don't free locations. They are stored in the bp_location array
1879 and update_global_location_list will eventually delete them and
1880 remove breakpoints if needed. */
1881 b->base.loc = NULL;
1882
1883 if (within_current_scope && reparse)
1884 {
1885 const char *s;
1886
1887 if (b->exp)
1888 {
1889 xfree (b->exp);
1890 b->exp = NULL;
1891 }
1892 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1893 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1894 /* If the meaning of expression itself changed, the old value is
1895 no longer relevant. We don't want to report a watchpoint hit
1896 to the user when the old value and the new value may actually
1897 be completely different objects. */
1898 value_free (b->val);
1899 b->val = NULL;
1900 b->val_valid = 0;
1901
1902 /* Note that unlike with breakpoints, the watchpoint's condition
1903 expression is stored in the breakpoint object, not in the
1904 locations (re)created below. */
1905 if (b->base.cond_string != NULL)
1906 {
1907 if (b->cond_exp != NULL)
1908 {
1909 xfree (b->cond_exp);
1910 b->cond_exp = NULL;
1911 }
1912
1913 s = b->base.cond_string;
1914 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1915 }
1916 }
1917
1918 /* If we failed to parse the expression, for example because
1919 it refers to a global variable in a not-yet-loaded shared library,
1920 don't try to insert watchpoint. We don't automatically delete
1921 such watchpoint, though, since failure to parse expression
1922 is different from out-of-scope watchpoint. */
1923 if (!target_has_execution)
1924 {
1925 /* Without execution, memory can't change. No use to try and
1926 set watchpoint locations. The watchpoint will be reset when
1927 the target gains execution, through breakpoint_re_set. */
1928 if (!can_use_hw_watchpoints)
1929 {
1930 if (b->base.ops->works_in_software_mode (&b->base))
1931 b->base.type = bp_watchpoint;
1932 else
1933 error (_("Can't set read/access watchpoint when "
1934 "hardware watchpoints are disabled."));
1935 }
1936 }
1937 else if (within_current_scope && b->exp)
1938 {
1939 int pc = 0;
1940 struct value *val_chain, *v, *result, *next;
1941 struct program_space *frame_pspace;
1942
1943 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain, 0);
1944
1945 /* Avoid setting b->val if it's already set. The meaning of
1946 b->val is 'the last value' user saw, and we should update
1947 it only if we reported that last value to user. As it
1948 happens, the code that reports it updates b->val directly.
1949 We don't keep track of the memory value for masked
1950 watchpoints. */
1951 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1952 {
1953 if (b->val_bitsize != 0)
1954 {
1955 v = extract_bitfield_from_watchpoint_value (b, v);
1956 if (v != NULL)
1957 release_value (v);
1958 }
1959 b->val = v;
1960 b->val_valid = 1;
1961 }
1962
1963 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1964
1965 /* Look at each value on the value chain. */
1966 for (v = val_chain; v; v = value_next (v))
1967 {
1968 /* If it's a memory location, and GDB actually needed
1969 its contents to evaluate the expression, then we
1970 must watch it. If the first value returned is
1971 still lazy, that means an error occurred reading it;
1972 watch it anyway in case it becomes readable. */
1973 if (VALUE_LVAL (v) == lval_memory
1974 && (v == val_chain || ! value_lazy (v)))
1975 {
1976 struct type *vtype = check_typedef (value_type (v));
1977
1978 /* We only watch structs and arrays if user asked
1979 for it explicitly, never if they just happen to
1980 appear in the middle of some value chain. */
1981 if (v == result
1982 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1983 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1984 {
1985 CORE_ADDR addr;
1986 enum target_hw_bp_type type;
1987 struct bp_location *loc, **tmp;
1988 int bitpos = 0, bitsize = 0;
1989
1990 if (value_bitsize (v) != 0)
1991 {
1992 /* Extract the bit parameters out from the bitfield
1993 sub-expression. */
1994 bitpos = value_bitpos (v);
1995 bitsize = value_bitsize (v);
1996 }
1997 else if (v == result && b->val_bitsize != 0)
1998 {
1999 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
2000 lvalue whose bit parameters are saved in the fields
2001 VAL_BITPOS and VAL_BITSIZE. */
2002 bitpos = b->val_bitpos;
2003 bitsize = b->val_bitsize;
2004 }
2005
2006 addr = value_address (v);
2007 if (bitsize != 0)
2008 {
2009 /* Skip the bytes that don't contain the bitfield. */
2010 addr += bitpos / 8;
2011 }
2012
2013 type = hw_write;
2014 if (b->base.type == bp_read_watchpoint)
2015 type = hw_read;
2016 else if (b->base.type == bp_access_watchpoint)
2017 type = hw_access;
2018
2019 loc = allocate_bp_location (&b->base);
2020 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
2021 ;
2022 *tmp = loc;
2023 loc->gdbarch = get_type_arch (value_type (v));
2024
2025 loc->pspace = frame_pspace;
2026 loc->address = addr;
2027
2028 if (bitsize != 0)
2029 {
2030 /* Just cover the bytes that make up the bitfield. */
2031 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
2032 }
2033 else
2034 loc->length = TYPE_LENGTH (value_type (v));
2035
2036 loc->watchpoint_type = type;
2037 }
2038 }
2039 }
2040
2041 /* Change the type of breakpoint between hardware assisted or
2042 an ordinary watchpoint depending on the hardware support
2043 and free hardware slots. REPARSE is set when the inferior
2044 is started. */
2045 if (reparse)
2046 {
2047 int reg_cnt;
2048 enum bp_loc_type loc_type;
2049 struct bp_location *bl;
2050
2051 reg_cnt = can_use_hardware_watchpoint (val_chain);
2052
2053 if (reg_cnt)
2054 {
2055 int i, target_resources_ok, other_type_used;
2056 enum bptype type;
2057
2058 /* Use an exact watchpoint when there's only one memory region to be
2059 watched, and only one debug register is needed to watch it. */
2060 b->exact = target_exact_watchpoints && reg_cnt == 1;
2061
2062 /* We need to determine how many resources are already
2063 used for all other hardware watchpoints plus this one
2064 to see if we still have enough resources to also fit
2065 this watchpoint in as well. */
2066
2067 /* If this is a software watchpoint, we try to turn it
2068 to a hardware one -- count resources as if B was of
2069 hardware watchpoint type. */
2070 type = b->base.type;
2071 if (type == bp_watchpoint)
2072 type = bp_hardware_watchpoint;
2073
2074 /* This watchpoint may or may not have been placed on
2075 the list yet at this point (it won't be in the list
2076 if we're trying to create it for the first time,
2077 through watch_command), so always account for it
2078 manually. */
2079
2080 /* Count resources used by all watchpoints except B. */
2081 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
2082
2083 /* Add in the resources needed for B. */
2084 i += hw_watchpoint_use_count (&b->base);
2085
2086 target_resources_ok
2087 = target_can_use_hardware_watchpoint (type, i, other_type_used);
2088 if (target_resources_ok <= 0)
2089 {
2090 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
2091
2092 if (target_resources_ok == 0 && !sw_mode)
2093 error (_("Target does not support this type of "
2094 "hardware watchpoint."));
2095 else if (target_resources_ok < 0 && !sw_mode)
2096 error (_("There are not enough available hardware "
2097 "resources for this watchpoint."));
2098
2099 /* Downgrade to software watchpoint. */
2100 b->base.type = bp_watchpoint;
2101 }
2102 else
2103 {
2104 /* If this was a software watchpoint, we've just
2105 found we have enough resources to turn it to a
2106 hardware watchpoint. Otherwise, this is a
2107 nop. */
2108 b->base.type = type;
2109 }
2110 }
2111 else if (!b->base.ops->works_in_software_mode (&b->base))
2112 {
2113 if (!can_use_hw_watchpoints)
2114 error (_("Can't set read/access watchpoint when "
2115 "hardware watchpoints are disabled."));
2116 else
2117 error (_("Expression cannot be implemented with "
2118 "read/access watchpoint."));
2119 }
2120 else
2121 b->base.type = bp_watchpoint;
2122
2123 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
2124 : bp_loc_hardware_watchpoint);
2125 for (bl = b->base.loc; bl; bl = bl->next)
2126 bl->loc_type = loc_type;
2127 }
2128
2129 for (v = val_chain; v; v = next)
2130 {
2131 next = value_next (v);
2132 if (v != b->val)
2133 value_free (v);
2134 }
2135
2136 /* If a software watchpoint is not watching any memory, then the
2137 above left it without any location set up. But,
2138 bpstat_stop_status requires a location to be able to report
2139 stops, so make sure there's at least a dummy one. */
2140 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
2141 {
2142 struct breakpoint *base = &b->base;
2143 base->loc = allocate_bp_location (base);
2144 base->loc->pspace = frame_pspace;
2145 base->loc->address = -1;
2146 base->loc->length = -1;
2147 base->loc->watchpoint_type = -1;
2148 }
2149 }
2150 else if (!within_current_scope)
2151 {
2152 printf_filtered (_("\
2153 Watchpoint %d deleted because the program has left the block\n\
2154 in which its expression is valid.\n"),
2155 b->base.number);
2156 watchpoint_del_at_next_stop (b);
2157 }
2158
2159 /* Restore the selected frame. */
2160 if (frame_saved)
2161 select_frame (frame_find_by_id (saved_frame_id));
2162 }
2163
2164
2165 /* Returns 1 iff breakpoint location should be
2166 inserted in the inferior. We don't differentiate the type of BL's owner
2167 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2168 breakpoint_ops is not defined, because in insert_bp_location,
2169 tracepoint's insert_location will not be called. */
2170 static int
2171 should_be_inserted (struct bp_location *bl)
2172 {
2173 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2174 return 0;
2175
2176 if (bl->owner->disposition == disp_del_at_next_stop)
2177 return 0;
2178
2179 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2180 return 0;
2181
2182 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2183 return 0;
2184
2185 /* This is set for example, when we're attached to the parent of a
2186 vfork, and have detached from the child. The child is running
2187 free, and we expect it to do an exec or exit, at which point the
2188 OS makes the parent schedulable again (and the target reports
2189 that the vfork is done). Until the child is done with the shared
2190 memory region, do not insert breakpoints in the parent, otherwise
2191 the child could still trip on the parent's breakpoints. Since
2192 the parent is blocked anyway, it won't miss any breakpoint. */
2193 if (bl->pspace->breakpoints_not_allowed)
2194 return 0;
2195
2196 /* Don't insert a breakpoint if we're trying to step past its
2197 location. */
2198 if ((bl->loc_type == bp_loc_software_breakpoint
2199 || bl->loc_type == bp_loc_hardware_breakpoint)
2200 && stepping_past_instruction_at (bl->pspace->aspace,
2201 bl->address))
2202 {
2203 if (debug_infrun)
2204 {
2205 fprintf_unfiltered (gdb_stdlog,
2206 "infrun: skipping breakpoint: "
2207 "stepping past insn at: %s\n",
2208 paddress (bl->gdbarch, bl->address));
2209 }
2210 return 0;
2211 }
2212
2213 /* Don't insert watchpoints if we're trying to step past the
2214 instruction that triggered one. */
2215 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2216 && stepping_past_nonsteppable_watchpoint ())
2217 {
2218 if (debug_infrun)
2219 {
2220 fprintf_unfiltered (gdb_stdlog,
2221 "infrun: stepping past non-steppable watchpoint. "
2222 "skipping watchpoint at %s:%d\n",
2223 paddress (bl->gdbarch, bl->address),
2224 bl->length);
2225 }
2226 return 0;
2227 }
2228
2229 return 1;
2230 }
2231
2232 /* Same as should_be_inserted but does the check assuming
2233 that the location is not duplicated. */
2234
2235 static int
2236 unduplicated_should_be_inserted (struct bp_location *bl)
2237 {
2238 int result;
2239 const int save_duplicate = bl->duplicate;
2240
2241 bl->duplicate = 0;
2242 result = should_be_inserted (bl);
2243 bl->duplicate = save_duplicate;
2244 return result;
2245 }
2246
2247 /* Parses a conditional described by an expression COND into an
2248 agent expression bytecode suitable for evaluation
2249 by the bytecode interpreter. Return NULL if there was
2250 any error during parsing. */
2251
2252 static struct agent_expr *
2253 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2254 {
2255 struct agent_expr *aexpr = NULL;
2256
2257 if (!cond)
2258 return NULL;
2259
2260 /* We don't want to stop processing, so catch any errors
2261 that may show up. */
2262 TRY
2263 {
2264 aexpr = gen_eval_for_expr (scope, cond);
2265 }
2266
2267 CATCH (ex, RETURN_MASK_ERROR)
2268 {
2269 /* If we got here, it means the condition could not be parsed to a valid
2270 bytecode expression and thus can't be evaluated on the target's side.
2271 It's no use iterating through the conditions. */
2272 return NULL;
2273 }
2274 END_CATCH
2275
2276 /* We have a valid agent expression. */
2277 return aexpr;
2278 }
2279
2280 /* Based on location BL, create a list of breakpoint conditions to be
2281 passed on to the target. If we have duplicated locations with different
2282 conditions, we will add such conditions to the list. The idea is that the
2283 target will evaluate the list of conditions and will only notify GDB when
2284 one of them is true. */
2285
2286 static void
2287 build_target_condition_list (struct bp_location *bl)
2288 {
2289 struct bp_location **locp = NULL, **loc2p;
2290 int null_condition_or_parse_error = 0;
2291 int modified = bl->needs_update;
2292 struct bp_location *loc;
2293
2294 /* Release conditions left over from a previous insert. */
2295 VEC_free (agent_expr_p, bl->target_info.conditions);
2296
2297 /* This is only meaningful if the target is
2298 evaluating conditions and if the user has
2299 opted for condition evaluation on the target's
2300 side. */
2301 if (gdb_evaluates_breakpoint_condition_p ()
2302 || !target_supports_evaluation_of_breakpoint_conditions ())
2303 return;
2304
2305 /* Do a first pass to check for locations with no assigned
2306 conditions or conditions that fail to parse to a valid agent expression
2307 bytecode. If any of these happen, then it's no use to send conditions
2308 to the target since this location will always trigger and generate a
2309 response back to GDB. */
2310 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2311 {
2312 loc = (*loc2p);
2313 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2314 {
2315 if (modified)
2316 {
2317 struct agent_expr *aexpr;
2318
2319 /* Re-parse the conditions since something changed. In that
2320 case we already freed the condition bytecodes (see
2321 force_breakpoint_reinsertion). We just
2322 need to parse the condition to bytecodes again. */
2323 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2324 loc->cond_bytecode = aexpr;
2325
2326 /* Check if we managed to parse the conditional expression
2327 correctly. If not, we will not send this condition
2328 to the target. */
2329 if (aexpr)
2330 continue;
2331 }
2332
2333 /* If we have a NULL bytecode expression, it means something
2334 went wrong or we have a null condition expression. */
2335 if (!loc->cond_bytecode)
2336 {
2337 null_condition_or_parse_error = 1;
2338 break;
2339 }
2340 }
2341 }
2342
2343 /* If any of these happened, it means we will have to evaluate the conditions
2344 for the location's address on gdb's side. It is no use keeping bytecodes
2345 for all the other duplicate locations, thus we free all of them here.
2346
2347 This is so we have a finer control over which locations' conditions are
2348 being evaluated by GDB or the remote stub. */
2349 if (null_condition_or_parse_error)
2350 {
2351 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2352 {
2353 loc = (*loc2p);
2354 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2355 {
2356 /* Only go as far as the first NULL bytecode is
2357 located. */
2358 if (!loc->cond_bytecode)
2359 return;
2360
2361 free_agent_expr (loc->cond_bytecode);
2362 loc->cond_bytecode = NULL;
2363 }
2364 }
2365 }
2366
2367 /* No NULL conditions or failed bytecode generation. Build a condition list
2368 for this location's address. */
2369 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2370 {
2371 loc = (*loc2p);
2372 if (loc->cond
2373 && is_breakpoint (loc->owner)
2374 && loc->pspace->num == bl->pspace->num
2375 && loc->owner->enable_state == bp_enabled
2376 && loc->enabled)
2377 /* Add the condition to the vector. This will be used later to send the
2378 conditions to the target. */
2379 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2380 loc->cond_bytecode);
2381 }
2382
2383 return;
2384 }
2385
2386 /* Parses a command described by string CMD into an agent expression
2387 bytecode suitable for evaluation by the bytecode interpreter.
2388 Return NULL if there was any error during parsing. */
2389
2390 static struct agent_expr *
2391 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2392 {
2393 struct cleanup *old_cleanups = 0;
2394 struct expression *expr, **argvec;
2395 struct agent_expr *aexpr = NULL;
2396 const char *cmdrest;
2397 const char *format_start, *format_end;
2398 struct format_piece *fpieces;
2399 int nargs;
2400 struct gdbarch *gdbarch = get_current_arch ();
2401
2402 if (!cmd)
2403 return NULL;
2404
2405 cmdrest = cmd;
2406
2407 if (*cmdrest == ',')
2408 ++cmdrest;
2409 cmdrest = skip_spaces_const (cmdrest);
2410
2411 if (*cmdrest++ != '"')
2412 error (_("No format string following the location"));
2413
2414 format_start = cmdrest;
2415
2416 fpieces = parse_format_string (&cmdrest);
2417
2418 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2419
2420 format_end = cmdrest;
2421
2422 if (*cmdrest++ != '"')
2423 error (_("Bad format string, non-terminated '\"'."));
2424
2425 cmdrest = skip_spaces_const (cmdrest);
2426
2427 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2428 error (_("Invalid argument syntax"));
2429
2430 if (*cmdrest == ',')
2431 cmdrest++;
2432 cmdrest = skip_spaces_const (cmdrest);
2433
2434 /* For each argument, make an expression. */
2435
2436 argvec = (struct expression **) alloca (strlen (cmd)
2437 * sizeof (struct expression *));
2438
2439 nargs = 0;
2440 while (*cmdrest != '\0')
2441 {
2442 const char *cmd1;
2443
2444 cmd1 = cmdrest;
2445 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2446 argvec[nargs++] = expr;
2447 cmdrest = cmd1;
2448 if (*cmdrest == ',')
2449 ++cmdrest;
2450 }
2451
2452 /* We don't want to stop processing, so catch any errors
2453 that may show up. */
2454 TRY
2455 {
2456 aexpr = gen_printf (scope, gdbarch, 0, 0,
2457 format_start, format_end - format_start,
2458 fpieces, nargs, argvec);
2459 }
2460 CATCH (ex, RETURN_MASK_ERROR)
2461 {
2462 /* If we got here, it means the command could not be parsed to a valid
2463 bytecode expression and thus can't be evaluated on the target's side.
2464 It's no use iterating through the other commands. */
2465 aexpr = NULL;
2466 }
2467 END_CATCH
2468
2469 do_cleanups (old_cleanups);
2470
2471 /* We have a valid agent expression, return it. */
2472 return aexpr;
2473 }
2474
2475 /* Based on location BL, create a list of breakpoint commands to be
2476 passed on to the target. If we have duplicated locations with
2477 different commands, we will add any such to the list. */
2478
2479 static void
2480 build_target_command_list (struct bp_location *bl)
2481 {
2482 struct bp_location **locp = NULL, **loc2p;
2483 int null_command_or_parse_error = 0;
2484 int modified = bl->needs_update;
2485 struct bp_location *loc;
2486
2487 /* Release commands left over from a previous insert. */
2488 VEC_free (agent_expr_p, bl->target_info.tcommands);
2489
2490 if (!target_can_run_breakpoint_commands ())
2491 return;
2492
2493 /* For now, limit to agent-style dprintf breakpoints. */
2494 if (dprintf_style != dprintf_style_agent)
2495 return;
2496
2497 /* For now, if we have any duplicate location that isn't a dprintf,
2498 don't install the target-side commands, as that would make the
2499 breakpoint not be reported to the core, and we'd lose
2500 control. */
2501 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2502 {
2503 loc = (*loc2p);
2504 if (is_breakpoint (loc->owner)
2505 && loc->pspace->num == bl->pspace->num
2506 && loc->owner->type != bp_dprintf)
2507 return;
2508 }
2509
2510 /* Do a first pass to check for locations with no assigned
2511 conditions or conditions that fail to parse to a valid agent expression
2512 bytecode. If any of these happen, then it's no use to send conditions
2513 to the target since this location will always trigger and generate a
2514 response back to GDB. */
2515 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2516 {
2517 loc = (*loc2p);
2518 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2519 {
2520 if (modified)
2521 {
2522 struct agent_expr *aexpr;
2523
2524 /* Re-parse the commands since something changed. In that
2525 case we already freed the command bytecodes (see
2526 force_breakpoint_reinsertion). We just
2527 need to parse the command to bytecodes again. */
2528 aexpr = parse_cmd_to_aexpr (bl->address,
2529 loc->owner->extra_string);
2530 loc->cmd_bytecode = aexpr;
2531
2532 if (!aexpr)
2533 continue;
2534 }
2535
2536 /* If we have a NULL bytecode expression, it means something
2537 went wrong or we have a null command expression. */
2538 if (!loc->cmd_bytecode)
2539 {
2540 null_command_or_parse_error = 1;
2541 break;
2542 }
2543 }
2544 }
2545
2546 /* If anything failed, then we're not doing target-side commands,
2547 and so clean up. */
2548 if (null_command_or_parse_error)
2549 {
2550 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2551 {
2552 loc = (*loc2p);
2553 if (is_breakpoint (loc->owner)
2554 && loc->pspace->num == bl->pspace->num)
2555 {
2556 /* Only go as far as the first NULL bytecode is
2557 located. */
2558 if (loc->cmd_bytecode == NULL)
2559 return;
2560
2561 free_agent_expr (loc->cmd_bytecode);
2562 loc->cmd_bytecode = NULL;
2563 }
2564 }
2565 }
2566
2567 /* No NULL commands or failed bytecode generation. Build a command list
2568 for this location's address. */
2569 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2570 {
2571 loc = (*loc2p);
2572 if (loc->owner->extra_string
2573 && is_breakpoint (loc->owner)
2574 && loc->pspace->num == bl->pspace->num
2575 && loc->owner->enable_state == bp_enabled
2576 && loc->enabled)
2577 /* Add the command to the vector. This will be used later
2578 to send the commands to the target. */
2579 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2580 loc->cmd_bytecode);
2581 }
2582
2583 bl->target_info.persist = 0;
2584 /* Maybe flag this location as persistent. */
2585 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2586 bl->target_info.persist = 1;
2587 }
2588
2589 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2590 location. Any error messages are printed to TMP_ERROR_STREAM; and
2591 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2592 Returns 0 for success, 1 if the bp_location type is not supported or
2593 -1 for failure.
2594
2595 NOTE drow/2003-09-09: This routine could be broken down to an
2596 object-style method for each breakpoint or catchpoint type. */
2597 static int
2598 insert_bp_location (struct bp_location *bl,
2599 struct ui_file *tmp_error_stream,
2600 int *disabled_breaks,
2601 int *hw_breakpoint_error,
2602 int *hw_bp_error_explained_already)
2603 {
2604 enum errors bp_err = GDB_NO_ERROR;
2605 const char *bp_err_message = NULL;
2606
2607 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2608 return 0;
2609
2610 /* Note we don't initialize bl->target_info, as that wipes out
2611 the breakpoint location's shadow_contents if the breakpoint
2612 is still inserted at that location. This in turn breaks
2613 target_read_memory which depends on these buffers when
2614 a memory read is requested at the breakpoint location:
2615 Once the target_info has been wiped, we fail to see that
2616 we have a breakpoint inserted at that address and thus
2617 read the breakpoint instead of returning the data saved in
2618 the breakpoint location's shadow contents. */
2619 bl->target_info.reqstd_address = bl->address;
2620 bl->target_info.placed_address_space = bl->pspace->aspace;
2621 bl->target_info.length = bl->length;
2622
2623 /* When working with target-side conditions, we must pass all the conditions
2624 for the same breakpoint address down to the target since GDB will not
2625 insert those locations. With a list of breakpoint conditions, the target
2626 can decide when to stop and notify GDB. */
2627
2628 if (is_breakpoint (bl->owner))
2629 {
2630 build_target_condition_list (bl);
2631 build_target_command_list (bl);
2632 /* Reset the modification marker. */
2633 bl->needs_update = 0;
2634 }
2635
2636 if (bl->loc_type == bp_loc_software_breakpoint
2637 || bl->loc_type == bp_loc_hardware_breakpoint)
2638 {
2639 if (bl->owner->type != bp_hardware_breakpoint)
2640 {
2641 /* If the explicitly specified breakpoint type
2642 is not hardware breakpoint, check the memory map to see
2643 if the breakpoint address is in read only memory or not.
2644
2645 Two important cases are:
2646 - location type is not hardware breakpoint, memory
2647 is readonly. We change the type of the location to
2648 hardware breakpoint.
2649 - location type is hardware breakpoint, memory is
2650 read-write. This means we've previously made the
2651 location hardware one, but then the memory map changed,
2652 so we undo.
2653
2654 When breakpoints are removed, remove_breakpoints will use
2655 location types we've just set here, the only possible
2656 problem is that memory map has changed during running
2657 program, but it's not going to work anyway with current
2658 gdb. */
2659 struct mem_region *mr
2660 = lookup_mem_region (bl->target_info.reqstd_address);
2661
2662 if (mr)
2663 {
2664 if (automatic_hardware_breakpoints)
2665 {
2666 enum bp_loc_type new_type;
2667
2668 if (mr->attrib.mode != MEM_RW)
2669 new_type = bp_loc_hardware_breakpoint;
2670 else
2671 new_type = bp_loc_software_breakpoint;
2672
2673 if (new_type != bl->loc_type)
2674 {
2675 static int said = 0;
2676
2677 bl->loc_type = new_type;
2678 if (!said)
2679 {
2680 fprintf_filtered (gdb_stdout,
2681 _("Note: automatically using "
2682 "hardware breakpoints for "
2683 "read-only addresses.\n"));
2684 said = 1;
2685 }
2686 }
2687 }
2688 else if (bl->loc_type == bp_loc_software_breakpoint
2689 && mr->attrib.mode != MEM_RW)
2690 {
2691 fprintf_unfiltered (tmp_error_stream,
2692 _("Cannot insert breakpoint %d.\n"
2693 "Cannot set software breakpoint "
2694 "at read-only address %s\n"),
2695 bl->owner->number,
2696 paddress (bl->gdbarch, bl->address));
2697 return 1;
2698 }
2699 }
2700 }
2701
2702 /* First check to see if we have to handle an overlay. */
2703 if (overlay_debugging == ovly_off
2704 || bl->section == NULL
2705 || !(section_is_overlay (bl->section)))
2706 {
2707 /* No overlay handling: just set the breakpoint. */
2708 TRY
2709 {
2710 int val;
2711
2712 val = bl->owner->ops->insert_location (bl);
2713 if (val)
2714 bp_err = GENERIC_ERROR;
2715 }
2716 CATCH (e, RETURN_MASK_ALL)
2717 {
2718 bp_err = e.error;
2719 bp_err_message = e.message;
2720 }
2721 END_CATCH
2722 }
2723 else
2724 {
2725 /* This breakpoint is in an overlay section.
2726 Shall we set a breakpoint at the LMA? */
2727 if (!overlay_events_enabled)
2728 {
2729 /* Yes -- overlay event support is not active,
2730 so we must try to set a breakpoint at the LMA.
2731 This will not work for a hardware breakpoint. */
2732 if (bl->loc_type == bp_loc_hardware_breakpoint)
2733 warning (_("hardware breakpoint %d not supported in overlay!"),
2734 bl->owner->number);
2735 else
2736 {
2737 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2738 bl->section);
2739 /* Set a software (trap) breakpoint at the LMA. */
2740 bl->overlay_target_info = bl->target_info;
2741 bl->overlay_target_info.reqstd_address = addr;
2742
2743 /* No overlay handling: just set the breakpoint. */
2744 TRY
2745 {
2746 int val;
2747
2748 val = target_insert_breakpoint (bl->gdbarch,
2749 &bl->overlay_target_info);
2750 if (val)
2751 bp_err = GENERIC_ERROR;
2752 }
2753 CATCH (e, RETURN_MASK_ALL)
2754 {
2755 bp_err = e.error;
2756 bp_err_message = e.message;
2757 }
2758 END_CATCH
2759
2760 if (bp_err != GDB_NO_ERROR)
2761 fprintf_unfiltered (tmp_error_stream,
2762 "Overlay breakpoint %d "
2763 "failed: in ROM?\n",
2764 bl->owner->number);
2765 }
2766 }
2767 /* Shall we set a breakpoint at the VMA? */
2768 if (section_is_mapped (bl->section))
2769 {
2770 /* Yes. This overlay section is mapped into memory. */
2771 TRY
2772 {
2773 int val;
2774
2775 val = bl->owner->ops->insert_location (bl);
2776 if (val)
2777 bp_err = GENERIC_ERROR;
2778 }
2779 CATCH (e, RETURN_MASK_ALL)
2780 {
2781 bp_err = e.error;
2782 bp_err_message = e.message;
2783 }
2784 END_CATCH
2785 }
2786 else
2787 {
2788 /* No. This breakpoint will not be inserted.
2789 No error, but do not mark the bp as 'inserted'. */
2790 return 0;
2791 }
2792 }
2793
2794 if (bp_err != GDB_NO_ERROR)
2795 {
2796 /* Can't set the breakpoint. */
2797
2798 /* In some cases, we might not be able to insert a
2799 breakpoint in a shared library that has already been
2800 removed, but we have not yet processed the shlib unload
2801 event. Unfortunately, some targets that implement
2802 breakpoint insertion themselves can't tell why the
2803 breakpoint insertion failed (e.g., the remote target
2804 doesn't define error codes), so we must treat generic
2805 errors as memory errors. */
2806 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2807 && bl->loc_type == bp_loc_software_breakpoint
2808 && (solib_name_from_address (bl->pspace, bl->address)
2809 || shared_objfile_contains_address_p (bl->pspace,
2810 bl->address)))
2811 {
2812 /* See also: disable_breakpoints_in_shlibs. */
2813 bl->shlib_disabled = 1;
2814 observer_notify_breakpoint_modified (bl->owner);
2815 if (!*disabled_breaks)
2816 {
2817 fprintf_unfiltered (tmp_error_stream,
2818 "Cannot insert breakpoint %d.\n",
2819 bl->owner->number);
2820 fprintf_unfiltered (tmp_error_stream,
2821 "Temporarily disabling shared "
2822 "library breakpoints:\n");
2823 }
2824 *disabled_breaks = 1;
2825 fprintf_unfiltered (tmp_error_stream,
2826 "breakpoint #%d\n", bl->owner->number);
2827 return 0;
2828 }
2829 else
2830 {
2831 if (bl->loc_type == bp_loc_hardware_breakpoint)
2832 {
2833 *hw_breakpoint_error = 1;
2834 *hw_bp_error_explained_already = bp_err_message != NULL;
2835 fprintf_unfiltered (tmp_error_stream,
2836 "Cannot insert hardware breakpoint %d%s",
2837 bl->owner->number, bp_err_message ? ":" : ".\n");
2838 if (bp_err_message != NULL)
2839 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2840 }
2841 else
2842 {
2843 if (bp_err_message == NULL)
2844 {
2845 char *message
2846 = memory_error_message (TARGET_XFER_E_IO,
2847 bl->gdbarch, bl->address);
2848 struct cleanup *old_chain = make_cleanup (xfree, message);
2849
2850 fprintf_unfiltered (tmp_error_stream,
2851 "Cannot insert breakpoint %d.\n"
2852 "%s\n",
2853 bl->owner->number, message);
2854 do_cleanups (old_chain);
2855 }
2856 else
2857 {
2858 fprintf_unfiltered (tmp_error_stream,
2859 "Cannot insert breakpoint %d: %s\n",
2860 bl->owner->number,
2861 bp_err_message);
2862 }
2863 }
2864 return 1;
2865
2866 }
2867 }
2868 else
2869 bl->inserted = 1;
2870
2871 return 0;
2872 }
2873
2874 else if (bl->loc_type == bp_loc_hardware_watchpoint
2875 /* NOTE drow/2003-09-08: This state only exists for removing
2876 watchpoints. It's not clear that it's necessary... */
2877 && bl->owner->disposition != disp_del_at_next_stop)
2878 {
2879 int val;
2880
2881 gdb_assert (bl->owner->ops != NULL
2882 && bl->owner->ops->insert_location != NULL);
2883
2884 val = bl->owner->ops->insert_location (bl);
2885
2886 /* If trying to set a read-watchpoint, and it turns out it's not
2887 supported, try emulating one with an access watchpoint. */
2888 if (val == 1 && bl->watchpoint_type == hw_read)
2889 {
2890 struct bp_location *loc, **loc_temp;
2891
2892 /* But don't try to insert it, if there's already another
2893 hw_access location that would be considered a duplicate
2894 of this one. */
2895 ALL_BP_LOCATIONS (loc, loc_temp)
2896 if (loc != bl
2897 && loc->watchpoint_type == hw_access
2898 && watchpoint_locations_match (bl, loc))
2899 {
2900 bl->duplicate = 1;
2901 bl->inserted = 1;
2902 bl->target_info = loc->target_info;
2903 bl->watchpoint_type = hw_access;
2904 val = 0;
2905 break;
2906 }
2907
2908 if (val == 1)
2909 {
2910 bl->watchpoint_type = hw_access;
2911 val = bl->owner->ops->insert_location (bl);
2912
2913 if (val)
2914 /* Back to the original value. */
2915 bl->watchpoint_type = hw_read;
2916 }
2917 }
2918
2919 bl->inserted = (val == 0);
2920 }
2921
2922 else if (bl->owner->type == bp_catchpoint)
2923 {
2924 int val;
2925
2926 gdb_assert (bl->owner->ops != NULL
2927 && bl->owner->ops->insert_location != NULL);
2928
2929 val = bl->owner->ops->insert_location (bl);
2930 if (val)
2931 {
2932 bl->owner->enable_state = bp_disabled;
2933
2934 if (val == 1)
2935 warning (_("\
2936 Error inserting catchpoint %d: Your system does not support this type\n\
2937 of catchpoint."), bl->owner->number);
2938 else
2939 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2940 }
2941
2942 bl->inserted = (val == 0);
2943
2944 /* We've already printed an error message if there was a problem
2945 inserting this catchpoint, and we've disabled the catchpoint,
2946 so just return success. */
2947 return 0;
2948 }
2949
2950 return 0;
2951 }
2952
2953 /* This function is called when program space PSPACE is about to be
2954 deleted. It takes care of updating breakpoints to not reference
2955 PSPACE anymore. */
2956
2957 void
2958 breakpoint_program_space_exit (struct program_space *pspace)
2959 {
2960 struct breakpoint *b, *b_temp;
2961 struct bp_location *loc, **loc_temp;
2962
2963 /* Remove any breakpoint that was set through this program space. */
2964 ALL_BREAKPOINTS_SAFE (b, b_temp)
2965 {
2966 if (b->pspace == pspace)
2967 delete_breakpoint (b);
2968 }
2969
2970 /* Breakpoints set through other program spaces could have locations
2971 bound to PSPACE as well. Remove those. */
2972 ALL_BP_LOCATIONS (loc, loc_temp)
2973 {
2974 struct bp_location *tmp;
2975
2976 if (loc->pspace == pspace)
2977 {
2978 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2979 if (loc->owner->loc == loc)
2980 loc->owner->loc = loc->next;
2981 else
2982 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2983 if (tmp->next == loc)
2984 {
2985 tmp->next = loc->next;
2986 break;
2987 }
2988 }
2989 }
2990
2991 /* Now update the global location list to permanently delete the
2992 removed locations above. */
2993 update_global_location_list (UGLL_DONT_INSERT);
2994 }
2995
2996 /* Make sure all breakpoints are inserted in inferior.
2997 Throws exception on any error.
2998 A breakpoint that is already inserted won't be inserted
2999 again, so calling this function twice is safe. */
3000 void
3001 insert_breakpoints (void)
3002 {
3003 struct breakpoint *bpt;
3004
3005 ALL_BREAKPOINTS (bpt)
3006 if (is_hardware_watchpoint (bpt))
3007 {
3008 struct watchpoint *w = (struct watchpoint *) bpt;
3009
3010 update_watchpoint (w, 0 /* don't reparse. */);
3011 }
3012
3013 /* Updating watchpoints creates new locations, so update the global
3014 location list. Explicitly tell ugll to insert locations and
3015 ignore breakpoints_always_inserted_mode. */
3016 update_global_location_list (UGLL_INSERT);
3017 }
3018
3019 /* Invoke CALLBACK for each of bp_location. */
3020
3021 void
3022 iterate_over_bp_locations (walk_bp_location_callback callback)
3023 {
3024 struct bp_location *loc, **loc_tmp;
3025
3026 ALL_BP_LOCATIONS (loc, loc_tmp)
3027 {
3028 callback (loc, NULL);
3029 }
3030 }
3031
3032 /* This is used when we need to synch breakpoint conditions between GDB and the
3033 target. It is the case with deleting and disabling of breakpoints when using
3034 always-inserted mode. */
3035
3036 static void
3037 update_inserted_breakpoint_locations (void)
3038 {
3039 struct bp_location *bl, **blp_tmp;
3040 int error_flag = 0;
3041 int val = 0;
3042 int disabled_breaks = 0;
3043 int hw_breakpoint_error = 0;
3044 int hw_bp_details_reported = 0;
3045
3046 struct ui_file *tmp_error_stream = mem_fileopen ();
3047 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
3048
3049 /* Explicitly mark the warning -- this will only be printed if
3050 there was an error. */
3051 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
3052
3053 save_current_space_and_thread ();
3054
3055 ALL_BP_LOCATIONS (bl, blp_tmp)
3056 {
3057 /* We only want to update software breakpoints and hardware
3058 breakpoints. */
3059 if (!is_breakpoint (bl->owner))
3060 continue;
3061
3062 /* We only want to update locations that are already inserted
3063 and need updating. This is to avoid unwanted insertion during
3064 deletion of breakpoints. */
3065 if (!bl->inserted || (bl->inserted && !bl->needs_update))
3066 continue;
3067
3068 switch_to_program_space_and_thread (bl->pspace);
3069
3070 /* For targets that support global breakpoints, there's no need
3071 to select an inferior to insert breakpoint to. In fact, even
3072 if we aren't attached to any process yet, we should still
3073 insert breakpoints. */
3074 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3075 && ptid_equal (inferior_ptid, null_ptid))
3076 continue;
3077
3078 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
3079 &hw_breakpoint_error, &hw_bp_details_reported);
3080 if (val)
3081 error_flag = val;
3082 }
3083
3084 if (error_flag)
3085 {
3086 target_terminal_ours_for_output ();
3087 error_stream (tmp_error_stream);
3088 }
3089
3090 do_cleanups (cleanups);
3091 }
3092
3093 /* Used when starting or continuing the program. */
3094
3095 static void
3096 insert_breakpoint_locations (void)
3097 {
3098 struct breakpoint *bpt;
3099 struct bp_location *bl, **blp_tmp;
3100 int error_flag = 0;
3101 int val = 0;
3102 int disabled_breaks = 0;
3103 int hw_breakpoint_error = 0;
3104 int hw_bp_error_explained_already = 0;
3105
3106 struct ui_file *tmp_error_stream = mem_fileopen ();
3107 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
3108
3109 /* Explicitly mark the warning -- this will only be printed if
3110 there was an error. */
3111 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
3112
3113 save_current_space_and_thread ();
3114
3115 ALL_BP_LOCATIONS (bl, blp_tmp)
3116 {
3117 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
3118 continue;
3119
3120 /* There is no point inserting thread-specific breakpoints if
3121 the thread no longer exists. ALL_BP_LOCATIONS bp_location
3122 has BL->OWNER always non-NULL. */
3123 if (bl->owner->thread != -1
3124 && !valid_thread_id (bl->owner->thread))
3125 continue;
3126
3127 switch_to_program_space_and_thread (bl->pspace);
3128
3129 /* For targets that support global breakpoints, there's no need
3130 to select an inferior to insert breakpoint to. In fact, even
3131 if we aren't attached to any process yet, we should still
3132 insert breakpoints. */
3133 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3134 && ptid_equal (inferior_ptid, null_ptid))
3135 continue;
3136
3137 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
3138 &hw_breakpoint_error, &hw_bp_error_explained_already);
3139 if (val)
3140 error_flag = val;
3141 }
3142
3143 /* If we failed to insert all locations of a watchpoint, remove
3144 them, as half-inserted watchpoint is of limited use. */
3145 ALL_BREAKPOINTS (bpt)
3146 {
3147 int some_failed = 0;
3148 struct bp_location *loc;
3149
3150 if (!is_hardware_watchpoint (bpt))
3151 continue;
3152
3153 if (!breakpoint_enabled (bpt))
3154 continue;
3155
3156 if (bpt->disposition == disp_del_at_next_stop)
3157 continue;
3158
3159 for (loc = bpt->loc; loc; loc = loc->next)
3160 if (!loc->inserted && should_be_inserted (loc))
3161 {
3162 some_failed = 1;
3163 break;
3164 }
3165 if (some_failed)
3166 {
3167 for (loc = bpt->loc; loc; loc = loc->next)
3168 if (loc->inserted)
3169 remove_breakpoint (loc, mark_uninserted);
3170
3171 hw_breakpoint_error = 1;
3172 fprintf_unfiltered (tmp_error_stream,
3173 "Could not insert hardware watchpoint %d.\n",
3174 bpt->number);
3175 error_flag = -1;
3176 }
3177 }
3178
3179 if (error_flag)
3180 {
3181 /* If a hardware breakpoint or watchpoint was inserted, add a
3182 message about possibly exhausted resources. */
3183 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3184 {
3185 fprintf_unfiltered (tmp_error_stream,
3186 "Could not insert hardware breakpoints:\n\
3187 You may have requested too many hardware breakpoints/watchpoints.\n");
3188 }
3189 target_terminal_ours_for_output ();
3190 error_stream (tmp_error_stream);
3191 }
3192
3193 do_cleanups (cleanups);
3194 }
3195
3196 /* Used when the program stops.
3197 Returns zero if successful, or non-zero if there was a problem
3198 removing a breakpoint location. */
3199
3200 int
3201 remove_breakpoints (void)
3202 {
3203 struct bp_location *bl, **blp_tmp;
3204 int val = 0;
3205
3206 ALL_BP_LOCATIONS (bl, blp_tmp)
3207 {
3208 if (bl->inserted && !is_tracepoint (bl->owner))
3209 val |= remove_breakpoint (bl, mark_uninserted);
3210 }
3211 return val;
3212 }
3213
3214 /* When a thread exits, remove breakpoints that are related to
3215 that thread. */
3216
3217 static void
3218 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3219 {
3220 struct breakpoint *b, *b_tmp;
3221
3222 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3223 {
3224 if (b->thread == tp->num && user_breakpoint_p (b))
3225 {
3226 b->disposition = disp_del_at_next_stop;
3227
3228 printf_filtered (_("\
3229 Thread-specific breakpoint %d deleted - thread %d no longer in the thread list.\n"),
3230 b->number, tp->num);
3231
3232 /* Hide it from the user. */
3233 b->number = 0;
3234 }
3235 }
3236 }
3237
3238 /* Remove breakpoints of process PID. */
3239
3240 int
3241 remove_breakpoints_pid (int pid)
3242 {
3243 struct bp_location *bl, **blp_tmp;
3244 int val;
3245 struct inferior *inf = find_inferior_pid (pid);
3246
3247 ALL_BP_LOCATIONS (bl, blp_tmp)
3248 {
3249 if (bl->pspace != inf->pspace)
3250 continue;
3251
3252 if (bl->inserted && !bl->target_info.persist)
3253 {
3254 val = remove_breakpoint (bl, mark_uninserted);
3255 if (val != 0)
3256 return val;
3257 }
3258 }
3259 return 0;
3260 }
3261
3262 int
3263 reattach_breakpoints (int pid)
3264 {
3265 struct cleanup *old_chain;
3266 struct bp_location *bl, **blp_tmp;
3267 int val;
3268 struct ui_file *tmp_error_stream;
3269 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3270 struct inferior *inf;
3271 struct thread_info *tp;
3272
3273 tp = any_live_thread_of_process (pid);
3274 if (tp == NULL)
3275 return 1;
3276
3277 inf = find_inferior_pid (pid);
3278 old_chain = save_inferior_ptid ();
3279
3280 inferior_ptid = tp->ptid;
3281
3282 tmp_error_stream = mem_fileopen ();
3283 make_cleanup_ui_file_delete (tmp_error_stream);
3284
3285 ALL_BP_LOCATIONS (bl, blp_tmp)
3286 {
3287 if (bl->pspace != inf->pspace)
3288 continue;
3289
3290 if (bl->inserted)
3291 {
3292 bl->inserted = 0;
3293 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3294 if (val != 0)
3295 {
3296 do_cleanups (old_chain);
3297 return val;
3298 }
3299 }
3300 }
3301 do_cleanups (old_chain);
3302 return 0;
3303 }
3304
3305 static int internal_breakpoint_number = -1;
3306
3307 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3308 If INTERNAL is non-zero, the breakpoint number will be populated
3309 from internal_breakpoint_number and that variable decremented.
3310 Otherwise the breakpoint number will be populated from
3311 breakpoint_count and that value incremented. Internal breakpoints
3312 do not set the internal var bpnum. */
3313 static void
3314 set_breakpoint_number (int internal, struct breakpoint *b)
3315 {
3316 if (internal)
3317 b->number = internal_breakpoint_number--;
3318 else
3319 {
3320 set_breakpoint_count (breakpoint_count + 1);
3321 b->number = breakpoint_count;
3322 }
3323 }
3324
3325 static struct breakpoint *
3326 create_internal_breakpoint (struct gdbarch *gdbarch,
3327 CORE_ADDR address, enum bptype type,
3328 const struct breakpoint_ops *ops)
3329 {
3330 struct symtab_and_line sal;
3331 struct breakpoint *b;
3332
3333 init_sal (&sal); /* Initialize to zeroes. */
3334
3335 sal.pc = address;
3336 sal.section = find_pc_overlay (sal.pc);
3337 sal.pspace = current_program_space;
3338
3339 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3340 b->number = internal_breakpoint_number--;
3341 b->disposition = disp_donttouch;
3342
3343 return b;
3344 }
3345
3346 static const char *const longjmp_names[] =
3347 {
3348 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3349 };
3350 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3351
3352 /* Per-objfile data private to breakpoint.c. */
3353 struct breakpoint_objfile_data
3354 {
3355 /* Minimal symbol for "_ovly_debug_event" (if any). */
3356 struct bound_minimal_symbol overlay_msym;
3357
3358 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3359 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3360
3361 /* True if we have looked for longjmp probes. */
3362 int longjmp_searched;
3363
3364 /* SystemTap probe points for longjmp (if any). */
3365 VEC (probe_p) *longjmp_probes;
3366
3367 /* Minimal symbol for "std::terminate()" (if any). */
3368 struct bound_minimal_symbol terminate_msym;
3369
3370 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3371 struct bound_minimal_symbol exception_msym;
3372
3373 /* True if we have looked for exception probes. */
3374 int exception_searched;
3375
3376 /* SystemTap probe points for unwinding (if any). */
3377 VEC (probe_p) *exception_probes;
3378 };
3379
3380 static const struct objfile_data *breakpoint_objfile_key;
3381
3382 /* Minimal symbol not found sentinel. */
3383 static struct minimal_symbol msym_not_found;
3384
3385 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3386
3387 static int
3388 msym_not_found_p (const struct minimal_symbol *msym)
3389 {
3390 return msym == &msym_not_found;
3391 }
3392
3393 /* Return per-objfile data needed by breakpoint.c.
3394 Allocate the data if necessary. */
3395
3396 static struct breakpoint_objfile_data *
3397 get_breakpoint_objfile_data (struct objfile *objfile)
3398 {
3399 struct breakpoint_objfile_data *bp_objfile_data;
3400
3401 bp_objfile_data = ((struct breakpoint_objfile_data *)
3402 objfile_data (objfile, breakpoint_objfile_key));
3403 if (bp_objfile_data == NULL)
3404 {
3405 bp_objfile_data =
3406 XOBNEW (&objfile->objfile_obstack, struct breakpoint_objfile_data);
3407
3408 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3409 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3410 }
3411 return bp_objfile_data;
3412 }
3413
3414 static void
3415 free_breakpoint_probes (struct objfile *obj, void *data)
3416 {
3417 struct breakpoint_objfile_data *bp_objfile_data
3418 = (struct breakpoint_objfile_data *) data;
3419
3420 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3421 VEC_free (probe_p, bp_objfile_data->exception_probes);
3422 }
3423
3424 static void
3425 create_overlay_event_breakpoint (void)
3426 {
3427 struct objfile *objfile;
3428 const char *const func_name = "_ovly_debug_event";
3429
3430 ALL_OBJFILES (objfile)
3431 {
3432 struct breakpoint *b;
3433 struct breakpoint_objfile_data *bp_objfile_data;
3434 CORE_ADDR addr;
3435 struct explicit_location explicit_loc;
3436
3437 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3438
3439 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3440 continue;
3441
3442 if (bp_objfile_data->overlay_msym.minsym == NULL)
3443 {
3444 struct bound_minimal_symbol m;
3445
3446 m = lookup_minimal_symbol_text (func_name, objfile);
3447 if (m.minsym == NULL)
3448 {
3449 /* Avoid future lookups in this objfile. */
3450 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3451 continue;
3452 }
3453 bp_objfile_data->overlay_msym = m;
3454 }
3455
3456 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3457 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3458 bp_overlay_event,
3459 &internal_breakpoint_ops);
3460 initialize_explicit_location (&explicit_loc);
3461 explicit_loc.function_name = ASTRDUP (func_name);
3462 b->location = new_explicit_location (&explicit_loc);
3463
3464 if (overlay_debugging == ovly_auto)
3465 {
3466 b->enable_state = bp_enabled;
3467 overlay_events_enabled = 1;
3468 }
3469 else
3470 {
3471 b->enable_state = bp_disabled;
3472 overlay_events_enabled = 0;
3473 }
3474 }
3475 update_global_location_list (UGLL_MAY_INSERT);
3476 }
3477
3478 static void
3479 create_longjmp_master_breakpoint (void)
3480 {
3481 struct program_space *pspace;
3482 struct cleanup *old_chain;
3483
3484 old_chain = save_current_program_space ();
3485
3486 ALL_PSPACES (pspace)
3487 {
3488 struct objfile *objfile;
3489
3490 set_current_program_space (pspace);
3491
3492 ALL_OBJFILES (objfile)
3493 {
3494 int i;
3495 struct gdbarch *gdbarch;
3496 struct breakpoint_objfile_data *bp_objfile_data;
3497
3498 gdbarch = get_objfile_arch (objfile);
3499
3500 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3501
3502 if (!bp_objfile_data->longjmp_searched)
3503 {
3504 VEC (probe_p) *ret;
3505
3506 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3507 if (ret != NULL)
3508 {
3509 /* We are only interested in checking one element. */
3510 struct probe *p = VEC_index (probe_p, ret, 0);
3511
3512 if (!can_evaluate_probe_arguments (p))
3513 {
3514 /* We cannot use the probe interface here, because it does
3515 not know how to evaluate arguments. */
3516 VEC_free (probe_p, ret);
3517 ret = NULL;
3518 }
3519 }
3520 bp_objfile_data->longjmp_probes = ret;
3521 bp_objfile_data->longjmp_searched = 1;
3522 }
3523
3524 if (bp_objfile_data->longjmp_probes != NULL)
3525 {
3526 int i;
3527 struct probe *probe;
3528 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3529
3530 for (i = 0;
3531 VEC_iterate (probe_p,
3532 bp_objfile_data->longjmp_probes,
3533 i, probe);
3534 ++i)
3535 {
3536 struct breakpoint *b;
3537
3538 b = create_internal_breakpoint (gdbarch,
3539 get_probe_address (probe,
3540 objfile),
3541 bp_longjmp_master,
3542 &internal_breakpoint_ops);
3543 b->location
3544 = new_probe_location ("-probe-stap libc:longjmp");
3545 b->enable_state = bp_disabled;
3546 }
3547
3548 continue;
3549 }
3550
3551 if (!gdbarch_get_longjmp_target_p (gdbarch))
3552 continue;
3553
3554 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3555 {
3556 struct breakpoint *b;
3557 const char *func_name;
3558 CORE_ADDR addr;
3559 struct explicit_location explicit_loc;
3560
3561 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3562 continue;
3563
3564 func_name = longjmp_names[i];
3565 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3566 {
3567 struct bound_minimal_symbol m;
3568
3569 m = lookup_minimal_symbol_text (func_name, objfile);
3570 if (m.minsym == NULL)
3571 {
3572 /* Prevent future lookups in this objfile. */
3573 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3574 continue;
3575 }
3576 bp_objfile_data->longjmp_msym[i] = m;
3577 }
3578
3579 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3580 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3581 &internal_breakpoint_ops);
3582 initialize_explicit_location (&explicit_loc);
3583 explicit_loc.function_name = ASTRDUP (func_name);
3584 b->location = new_explicit_location (&explicit_loc);
3585 b->enable_state = bp_disabled;
3586 }
3587 }
3588 }
3589 update_global_location_list (UGLL_MAY_INSERT);
3590
3591 do_cleanups (old_chain);
3592 }
3593
3594 /* Create a master std::terminate breakpoint. */
3595 static void
3596 create_std_terminate_master_breakpoint (void)
3597 {
3598 struct program_space *pspace;
3599 struct cleanup *old_chain;
3600 const char *const func_name = "std::terminate()";
3601
3602 old_chain = save_current_program_space ();
3603
3604 ALL_PSPACES (pspace)
3605 {
3606 struct objfile *objfile;
3607 CORE_ADDR addr;
3608
3609 set_current_program_space (pspace);
3610
3611 ALL_OBJFILES (objfile)
3612 {
3613 struct breakpoint *b;
3614 struct breakpoint_objfile_data *bp_objfile_data;
3615 struct explicit_location explicit_loc;
3616
3617 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3618
3619 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3620 continue;
3621
3622 if (bp_objfile_data->terminate_msym.minsym == NULL)
3623 {
3624 struct bound_minimal_symbol m;
3625
3626 m = lookup_minimal_symbol (func_name, NULL, objfile);
3627 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3628 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3629 {
3630 /* Prevent future lookups in this objfile. */
3631 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3632 continue;
3633 }
3634 bp_objfile_data->terminate_msym = m;
3635 }
3636
3637 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3638 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3639 bp_std_terminate_master,
3640 &internal_breakpoint_ops);
3641 initialize_explicit_location (&explicit_loc);
3642 explicit_loc.function_name = ASTRDUP (func_name);
3643 b->location = new_explicit_location (&explicit_loc);
3644 b->enable_state = bp_disabled;
3645 }
3646 }
3647
3648 update_global_location_list (UGLL_MAY_INSERT);
3649
3650 do_cleanups (old_chain);
3651 }
3652
3653 /* Install a master breakpoint on the unwinder's debug hook. */
3654
3655 static void
3656 create_exception_master_breakpoint (void)
3657 {
3658 struct objfile *objfile;
3659 const char *const func_name = "_Unwind_DebugHook";
3660
3661 ALL_OBJFILES (objfile)
3662 {
3663 struct breakpoint *b;
3664 struct gdbarch *gdbarch;
3665 struct breakpoint_objfile_data *bp_objfile_data;
3666 CORE_ADDR addr;
3667 struct explicit_location explicit_loc;
3668
3669 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3670
3671 /* We prefer the SystemTap probe point if it exists. */
3672 if (!bp_objfile_data->exception_searched)
3673 {
3674 VEC (probe_p) *ret;
3675
3676 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3677
3678 if (ret != NULL)
3679 {
3680 /* We are only interested in checking one element. */
3681 struct probe *p = VEC_index (probe_p, ret, 0);
3682
3683 if (!can_evaluate_probe_arguments (p))
3684 {
3685 /* We cannot use the probe interface here, because it does
3686 not know how to evaluate arguments. */
3687 VEC_free (probe_p, ret);
3688 ret = NULL;
3689 }
3690 }
3691 bp_objfile_data->exception_probes = ret;
3692 bp_objfile_data->exception_searched = 1;
3693 }
3694
3695 if (bp_objfile_data->exception_probes != NULL)
3696 {
3697 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3698 int i;
3699 struct probe *probe;
3700
3701 for (i = 0;
3702 VEC_iterate (probe_p,
3703 bp_objfile_data->exception_probes,
3704 i, probe);
3705 ++i)
3706 {
3707 struct breakpoint *b;
3708
3709 b = create_internal_breakpoint (gdbarch,
3710 get_probe_address (probe,
3711 objfile),
3712 bp_exception_master,
3713 &internal_breakpoint_ops);
3714 b->location
3715 = new_probe_location ("-probe-stap libgcc:unwind");
3716 b->enable_state = bp_disabled;
3717 }
3718
3719 continue;
3720 }
3721
3722 /* Otherwise, try the hook function. */
3723
3724 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3725 continue;
3726
3727 gdbarch = get_objfile_arch (objfile);
3728
3729 if (bp_objfile_data->exception_msym.minsym == NULL)
3730 {
3731 struct bound_minimal_symbol debug_hook;
3732
3733 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3734 if (debug_hook.minsym == NULL)
3735 {
3736 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3737 continue;
3738 }
3739
3740 bp_objfile_data->exception_msym = debug_hook;
3741 }
3742
3743 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3744 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3745 &current_target);
3746 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3747 &internal_breakpoint_ops);
3748 initialize_explicit_location (&explicit_loc);
3749 explicit_loc.function_name = ASTRDUP (func_name);
3750 b->location = new_explicit_location (&explicit_loc);
3751 b->enable_state = bp_disabled;
3752 }
3753
3754 update_global_location_list (UGLL_MAY_INSERT);
3755 }
3756
3757 void
3758 update_breakpoints_after_exec (void)
3759 {
3760 struct breakpoint *b, *b_tmp;
3761 struct bp_location *bploc, **bplocp_tmp;
3762
3763 /* We're about to delete breakpoints from GDB's lists. If the
3764 INSERTED flag is true, GDB will try to lift the breakpoints by
3765 writing the breakpoints' "shadow contents" back into memory. The
3766 "shadow contents" are NOT valid after an exec, so GDB should not
3767 do that. Instead, the target is responsible from marking
3768 breakpoints out as soon as it detects an exec. We don't do that
3769 here instead, because there may be other attempts to delete
3770 breakpoints after detecting an exec and before reaching here. */
3771 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3772 if (bploc->pspace == current_program_space)
3773 gdb_assert (!bploc->inserted);
3774
3775 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3776 {
3777 if (b->pspace != current_program_space)
3778 continue;
3779
3780 /* Solib breakpoints must be explicitly reset after an exec(). */
3781 if (b->type == bp_shlib_event)
3782 {
3783 delete_breakpoint (b);
3784 continue;
3785 }
3786
3787 /* JIT breakpoints must be explicitly reset after an exec(). */
3788 if (b->type == bp_jit_event)
3789 {
3790 delete_breakpoint (b);
3791 continue;
3792 }
3793
3794 /* Thread event breakpoints must be set anew after an exec(),
3795 as must overlay event and longjmp master breakpoints. */
3796 if (b->type == bp_thread_event || b->type == bp_overlay_event
3797 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3798 || b->type == bp_exception_master)
3799 {
3800 delete_breakpoint (b);
3801 continue;
3802 }
3803
3804 /* Step-resume breakpoints are meaningless after an exec(). */
3805 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3806 {
3807 delete_breakpoint (b);
3808 continue;
3809 }
3810
3811 /* Just like single-step breakpoints. */
3812 if (b->type == bp_single_step)
3813 {
3814 delete_breakpoint (b);
3815 continue;
3816 }
3817
3818 /* Longjmp and longjmp-resume breakpoints are also meaningless
3819 after an exec. */
3820 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3821 || b->type == bp_longjmp_call_dummy
3822 || b->type == bp_exception || b->type == bp_exception_resume)
3823 {
3824 delete_breakpoint (b);
3825 continue;
3826 }
3827
3828 if (b->type == bp_catchpoint)
3829 {
3830 /* For now, none of the bp_catchpoint breakpoints need to
3831 do anything at this point. In the future, if some of
3832 the catchpoints need to something, we will need to add
3833 a new method, and call this method from here. */
3834 continue;
3835 }
3836
3837 /* bp_finish is a special case. The only way we ought to be able
3838 to see one of these when an exec() has happened, is if the user
3839 caught a vfork, and then said "finish". Ordinarily a finish just
3840 carries them to the call-site of the current callee, by setting
3841 a temporary bp there and resuming. But in this case, the finish
3842 will carry them entirely through the vfork & exec.
3843
3844 We don't want to allow a bp_finish to remain inserted now. But
3845 we can't safely delete it, 'cause finish_command has a handle to
3846 the bp on a bpstat, and will later want to delete it. There's a
3847 chance (and I've seen it happen) that if we delete the bp_finish
3848 here, that its storage will get reused by the time finish_command
3849 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3850 We really must allow finish_command to delete a bp_finish.
3851
3852 In the absence of a general solution for the "how do we know
3853 it's safe to delete something others may have handles to?"
3854 problem, what we'll do here is just uninsert the bp_finish, and
3855 let finish_command delete it.
3856
3857 (We know the bp_finish is "doomed" in the sense that it's
3858 momentary, and will be deleted as soon as finish_command sees
3859 the inferior stopped. So it doesn't matter that the bp's
3860 address is probably bogus in the new a.out, unlike e.g., the
3861 solib breakpoints.) */
3862
3863 if (b->type == bp_finish)
3864 {
3865 continue;
3866 }
3867
3868 /* Without a symbolic address, we have little hope of the
3869 pre-exec() address meaning the same thing in the post-exec()
3870 a.out. */
3871 if (event_location_empty_p (b->location))
3872 {
3873 delete_breakpoint (b);
3874 continue;
3875 }
3876 }
3877 }
3878
3879 int
3880 detach_breakpoints (ptid_t ptid)
3881 {
3882 struct bp_location *bl, **blp_tmp;
3883 int val = 0;
3884 struct cleanup *old_chain = save_inferior_ptid ();
3885 struct inferior *inf = current_inferior ();
3886
3887 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3888 error (_("Cannot detach breakpoints of inferior_ptid"));
3889
3890 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3891 inferior_ptid = ptid;
3892 ALL_BP_LOCATIONS (bl, blp_tmp)
3893 {
3894 if (bl->pspace != inf->pspace)
3895 continue;
3896
3897 /* This function must physically remove breakpoints locations
3898 from the specified ptid, without modifying the breakpoint
3899 package's state. Locations of type bp_loc_other are only
3900 maintained at GDB side. So, there is no need to remove
3901 these bp_loc_other locations. Moreover, removing these
3902 would modify the breakpoint package's state. */
3903 if (bl->loc_type == bp_loc_other)
3904 continue;
3905
3906 if (bl->inserted)
3907 val |= remove_breakpoint_1 (bl, mark_inserted);
3908 }
3909
3910 do_cleanups (old_chain);
3911 return val;
3912 }
3913
3914 /* Remove the breakpoint location BL from the current address space.
3915 Note that this is used to detach breakpoints from a child fork.
3916 When we get here, the child isn't in the inferior list, and neither
3917 do we have objects to represent its address space --- we should
3918 *not* look at bl->pspace->aspace here. */
3919
3920 static int
3921 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3922 {
3923 int val;
3924
3925 /* BL is never in moribund_locations by our callers. */
3926 gdb_assert (bl->owner != NULL);
3927
3928 /* The type of none suggests that owner is actually deleted.
3929 This should not ever happen. */
3930 gdb_assert (bl->owner->type != bp_none);
3931
3932 if (bl->loc_type == bp_loc_software_breakpoint
3933 || bl->loc_type == bp_loc_hardware_breakpoint)
3934 {
3935 /* "Normal" instruction breakpoint: either the standard
3936 trap-instruction bp (bp_breakpoint), or a
3937 bp_hardware_breakpoint. */
3938
3939 /* First check to see if we have to handle an overlay. */
3940 if (overlay_debugging == ovly_off
3941 || bl->section == NULL
3942 || !(section_is_overlay (bl->section)))
3943 {
3944 /* No overlay handling: just remove the breakpoint. */
3945
3946 /* If we're trying to uninsert a memory breakpoint that we
3947 know is set in a dynamic object that is marked
3948 shlib_disabled, then either the dynamic object was
3949 removed with "remove-symbol-file" or with
3950 "nosharedlibrary". In the former case, we don't know
3951 whether another dynamic object might have loaded over the
3952 breakpoint's address -- the user might well let us know
3953 about it next with add-symbol-file (the whole point of
3954 add-symbol-file is letting the user manually maintain a
3955 list of dynamically loaded objects). If we have the
3956 breakpoint's shadow memory, that is, this is a software
3957 breakpoint managed by GDB, check whether the breakpoint
3958 is still inserted in memory, to avoid overwriting wrong
3959 code with stale saved shadow contents. Note that HW
3960 breakpoints don't have shadow memory, as they're
3961 implemented using a mechanism that is not dependent on
3962 being able to modify the target's memory, and as such
3963 they should always be removed. */
3964 if (bl->shlib_disabled
3965 && bl->target_info.shadow_len != 0
3966 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3967 val = 0;
3968 else
3969 val = bl->owner->ops->remove_location (bl);
3970 }
3971 else
3972 {
3973 /* This breakpoint is in an overlay section.
3974 Did we set a breakpoint at the LMA? */
3975 if (!overlay_events_enabled)
3976 {
3977 /* Yes -- overlay event support is not active, so we
3978 should have set a breakpoint at the LMA. Remove it.
3979 */
3980 /* Ignore any failures: if the LMA is in ROM, we will
3981 have already warned when we failed to insert it. */
3982 if (bl->loc_type == bp_loc_hardware_breakpoint)
3983 target_remove_hw_breakpoint (bl->gdbarch,
3984 &bl->overlay_target_info);
3985 else
3986 target_remove_breakpoint (bl->gdbarch,
3987 &bl->overlay_target_info);
3988 }
3989 /* Did we set a breakpoint at the VMA?
3990 If so, we will have marked the breakpoint 'inserted'. */
3991 if (bl->inserted)
3992 {
3993 /* Yes -- remove it. Previously we did not bother to
3994 remove the breakpoint if the section had been
3995 unmapped, but let's not rely on that being safe. We
3996 don't know what the overlay manager might do. */
3997
3998 /* However, we should remove *software* breakpoints only
3999 if the section is still mapped, or else we overwrite
4000 wrong code with the saved shadow contents. */
4001 if (bl->loc_type == bp_loc_hardware_breakpoint
4002 || section_is_mapped (bl->section))
4003 val = bl->owner->ops->remove_location (bl);
4004 else
4005 val = 0;
4006 }
4007 else
4008 {
4009 /* No -- not inserted, so no need to remove. No error. */
4010 val = 0;
4011 }
4012 }
4013
4014 /* In some cases, we might not be able to remove a breakpoint in
4015 a shared library that has already been removed, but we have
4016 not yet processed the shlib unload event. Similarly for an
4017 unloaded add-symbol-file object - the user might not yet have
4018 had the chance to remove-symbol-file it. shlib_disabled will
4019 be set if the library/object has already been removed, but
4020 the breakpoint hasn't been uninserted yet, e.g., after
4021 "nosharedlibrary" or "remove-symbol-file" with breakpoints
4022 always-inserted mode. */
4023 if (val
4024 && (bl->loc_type == bp_loc_software_breakpoint
4025 && (bl->shlib_disabled
4026 || solib_name_from_address (bl->pspace, bl->address)
4027 || shared_objfile_contains_address_p (bl->pspace,
4028 bl->address))))
4029 val = 0;
4030
4031 if (val)
4032 return val;
4033 bl->inserted = (is == mark_inserted);
4034 }
4035 else if (bl->loc_type == bp_loc_hardware_watchpoint)
4036 {
4037 gdb_assert (bl->owner->ops != NULL
4038 && bl->owner->ops->remove_location != NULL);
4039
4040 bl->inserted = (is == mark_inserted);
4041 bl->owner->ops->remove_location (bl);
4042
4043 /* Failure to remove any of the hardware watchpoints comes here. */
4044 if ((is == mark_uninserted) && (bl->inserted))
4045 warning (_("Could not remove hardware watchpoint %d."),
4046 bl->owner->number);
4047 }
4048 else if (bl->owner->type == bp_catchpoint
4049 && breakpoint_enabled (bl->owner)
4050 && !bl->duplicate)
4051 {
4052 gdb_assert (bl->owner->ops != NULL
4053 && bl->owner->ops->remove_location != NULL);
4054
4055 val = bl->owner->ops->remove_location (bl);
4056 if (val)
4057 return val;
4058
4059 bl->inserted = (is == mark_inserted);
4060 }
4061
4062 return 0;
4063 }
4064
4065 static int
4066 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
4067 {
4068 int ret;
4069 struct cleanup *old_chain;
4070
4071 /* BL is never in moribund_locations by our callers. */
4072 gdb_assert (bl->owner != NULL);
4073
4074 /* The type of none suggests that owner is actually deleted.
4075 This should not ever happen. */
4076 gdb_assert (bl->owner->type != bp_none);
4077
4078 old_chain = save_current_space_and_thread ();
4079
4080 switch_to_program_space_and_thread (bl->pspace);
4081
4082 ret = remove_breakpoint_1 (bl, is);
4083
4084 do_cleanups (old_chain);
4085 return ret;
4086 }
4087
4088 /* Clear the "inserted" flag in all breakpoints. */
4089
4090 void
4091 mark_breakpoints_out (void)
4092 {
4093 struct bp_location *bl, **blp_tmp;
4094
4095 ALL_BP_LOCATIONS (bl, blp_tmp)
4096 if (bl->pspace == current_program_space)
4097 bl->inserted = 0;
4098 }
4099
4100 /* Clear the "inserted" flag in all breakpoints and delete any
4101 breakpoints which should go away between runs of the program.
4102
4103 Plus other such housekeeping that has to be done for breakpoints
4104 between runs.
4105
4106 Note: this function gets called at the end of a run (by
4107 generic_mourn_inferior) and when a run begins (by
4108 init_wait_for_inferior). */
4109
4110
4111
4112 void
4113 breakpoint_init_inferior (enum inf_context context)
4114 {
4115 struct breakpoint *b, *b_tmp;
4116 struct bp_location *bl, **blp_tmp;
4117 int ix;
4118 struct program_space *pspace = current_program_space;
4119
4120 /* If breakpoint locations are shared across processes, then there's
4121 nothing to do. */
4122 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
4123 return;
4124
4125 mark_breakpoints_out ();
4126
4127 ALL_BREAKPOINTS_SAFE (b, b_tmp)
4128 {
4129 if (b->loc && b->loc->pspace != pspace)
4130 continue;
4131
4132 switch (b->type)
4133 {
4134 case bp_call_dummy:
4135 case bp_longjmp_call_dummy:
4136
4137 /* If the call dummy breakpoint is at the entry point it will
4138 cause problems when the inferior is rerun, so we better get
4139 rid of it. */
4140
4141 case bp_watchpoint_scope:
4142
4143 /* Also get rid of scope breakpoints. */
4144
4145 case bp_shlib_event:
4146
4147 /* Also remove solib event breakpoints. Their addresses may
4148 have changed since the last time we ran the program.
4149 Actually we may now be debugging against different target;
4150 and so the solib backend that installed this breakpoint may
4151 not be used in by the target. E.g.,
4152
4153 (gdb) file prog-linux
4154 (gdb) run # native linux target
4155 ...
4156 (gdb) kill
4157 (gdb) file prog-win.exe
4158 (gdb) tar rem :9999 # remote Windows gdbserver.
4159 */
4160
4161 case bp_step_resume:
4162
4163 /* Also remove step-resume breakpoints. */
4164
4165 case bp_single_step:
4166
4167 /* Also remove single-step breakpoints. */
4168
4169 delete_breakpoint (b);
4170 break;
4171
4172 case bp_watchpoint:
4173 case bp_hardware_watchpoint:
4174 case bp_read_watchpoint:
4175 case bp_access_watchpoint:
4176 {
4177 struct watchpoint *w = (struct watchpoint *) b;
4178
4179 /* Likewise for watchpoints on local expressions. */
4180 if (w->exp_valid_block != NULL)
4181 delete_breakpoint (b);
4182 else if (context == inf_starting)
4183 {
4184 /* Reset val field to force reread of starting value in
4185 insert_breakpoints. */
4186 if (w->val)
4187 value_free (w->val);
4188 w->val = NULL;
4189 w->val_valid = 0;
4190 }
4191 }
4192 break;
4193 default:
4194 break;
4195 }
4196 }
4197
4198 /* Get rid of the moribund locations. */
4199 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
4200 decref_bp_location (&bl);
4201 VEC_free (bp_location_p, moribund_locations);
4202 }
4203
4204 /* These functions concern about actual breakpoints inserted in the
4205 target --- to e.g. check if we need to do decr_pc adjustment or if
4206 we need to hop over the bkpt --- so we check for address space
4207 match, not program space. */
4208
4209 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4210 exists at PC. It returns ordinary_breakpoint_here if it's an
4211 ordinary breakpoint, or permanent_breakpoint_here if it's a
4212 permanent breakpoint.
4213 - When continuing from a location with an ordinary breakpoint, we
4214 actually single step once before calling insert_breakpoints.
4215 - When continuing from a location with a permanent breakpoint, we
4216 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4217 the target, to advance the PC past the breakpoint. */
4218
4219 enum breakpoint_here
4220 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4221 {
4222 struct bp_location *bl, **blp_tmp;
4223 int any_breakpoint_here = 0;
4224
4225 ALL_BP_LOCATIONS (bl, blp_tmp)
4226 {
4227 if (bl->loc_type != bp_loc_software_breakpoint
4228 && bl->loc_type != bp_loc_hardware_breakpoint)
4229 continue;
4230
4231 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4232 if ((breakpoint_enabled (bl->owner)
4233 || bl->permanent)
4234 && breakpoint_location_address_match (bl, aspace, pc))
4235 {
4236 if (overlay_debugging
4237 && section_is_overlay (bl->section)
4238 && !section_is_mapped (bl->section))
4239 continue; /* unmapped overlay -- can't be a match */
4240 else if (bl->permanent)
4241 return permanent_breakpoint_here;
4242 else
4243 any_breakpoint_here = 1;
4244 }
4245 }
4246
4247 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4248 }
4249
4250 /* See breakpoint.h. */
4251
4252 int
4253 breakpoint_in_range_p (struct address_space *aspace,
4254 CORE_ADDR addr, ULONGEST len)
4255 {
4256 struct bp_location *bl, **blp_tmp;
4257
4258 ALL_BP_LOCATIONS (bl, blp_tmp)
4259 {
4260 if (bl->loc_type != bp_loc_software_breakpoint
4261 && bl->loc_type != bp_loc_hardware_breakpoint)
4262 continue;
4263
4264 if ((breakpoint_enabled (bl->owner)
4265 || bl->permanent)
4266 && breakpoint_location_address_range_overlap (bl, aspace,
4267 addr, len))
4268 {
4269 if (overlay_debugging
4270 && section_is_overlay (bl->section)
4271 && !section_is_mapped (bl->section))
4272 {
4273 /* Unmapped overlay -- can't be a match. */
4274 continue;
4275 }
4276
4277 return 1;
4278 }
4279 }
4280
4281 return 0;
4282 }
4283
4284 /* Return true if there's a moribund breakpoint at PC. */
4285
4286 int
4287 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4288 {
4289 struct bp_location *loc;
4290 int ix;
4291
4292 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4293 if (breakpoint_location_address_match (loc, aspace, pc))
4294 return 1;
4295
4296 return 0;
4297 }
4298
4299 /* Returns non-zero iff BL is inserted at PC, in address space
4300 ASPACE. */
4301
4302 static int
4303 bp_location_inserted_here_p (struct bp_location *bl,
4304 struct address_space *aspace, CORE_ADDR pc)
4305 {
4306 if (bl->inserted
4307 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4308 aspace, pc))
4309 {
4310 if (overlay_debugging
4311 && section_is_overlay (bl->section)
4312 && !section_is_mapped (bl->section))
4313 return 0; /* unmapped overlay -- can't be a match */
4314 else
4315 return 1;
4316 }
4317 return 0;
4318 }
4319
4320 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4321
4322 int
4323 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4324 {
4325 struct bp_location **blp, **blp_tmp = NULL;
4326 struct bp_location *bl;
4327
4328 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4329 {
4330 struct bp_location *bl = *blp;
4331
4332 if (bl->loc_type != bp_loc_software_breakpoint
4333 && bl->loc_type != bp_loc_hardware_breakpoint)
4334 continue;
4335
4336 if (bp_location_inserted_here_p (bl, aspace, pc))
4337 return 1;
4338 }
4339 return 0;
4340 }
4341
4342 /* This function returns non-zero iff there is a software breakpoint
4343 inserted at PC. */
4344
4345 int
4346 software_breakpoint_inserted_here_p (struct address_space *aspace,
4347 CORE_ADDR pc)
4348 {
4349 struct bp_location **blp, **blp_tmp = NULL;
4350 struct bp_location *bl;
4351
4352 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4353 {
4354 struct bp_location *bl = *blp;
4355
4356 if (bl->loc_type != bp_loc_software_breakpoint)
4357 continue;
4358
4359 if (bp_location_inserted_here_p (bl, aspace, pc))
4360 return 1;
4361 }
4362
4363 return 0;
4364 }
4365
4366 /* See breakpoint.h. */
4367
4368 int
4369 hardware_breakpoint_inserted_here_p (struct address_space *aspace,
4370 CORE_ADDR pc)
4371 {
4372 struct bp_location **blp, **blp_tmp = NULL;
4373 struct bp_location *bl;
4374
4375 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4376 {
4377 struct bp_location *bl = *blp;
4378
4379 if (bl->loc_type != bp_loc_hardware_breakpoint)
4380 continue;
4381
4382 if (bp_location_inserted_here_p (bl, aspace, pc))
4383 return 1;
4384 }
4385
4386 return 0;
4387 }
4388
4389 int
4390 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4391 CORE_ADDR addr, ULONGEST len)
4392 {
4393 struct breakpoint *bpt;
4394
4395 ALL_BREAKPOINTS (bpt)
4396 {
4397 struct bp_location *loc;
4398
4399 if (bpt->type != bp_hardware_watchpoint
4400 && bpt->type != bp_access_watchpoint)
4401 continue;
4402
4403 if (!breakpoint_enabled (bpt))
4404 continue;
4405
4406 for (loc = bpt->loc; loc; loc = loc->next)
4407 if (loc->pspace->aspace == aspace && loc->inserted)
4408 {
4409 CORE_ADDR l, h;
4410
4411 /* Check for intersection. */
4412 l = max (loc->address, addr);
4413 h = min (loc->address + loc->length, addr + len);
4414 if (l < h)
4415 return 1;
4416 }
4417 }
4418 return 0;
4419 }
4420 \f
4421
4422 /* bpstat stuff. External routines' interfaces are documented
4423 in breakpoint.h. */
4424
4425 int
4426 is_catchpoint (struct breakpoint *ep)
4427 {
4428 return (ep->type == bp_catchpoint);
4429 }
4430
4431 /* Frees any storage that is part of a bpstat. Does not walk the
4432 'next' chain. */
4433
4434 static void
4435 bpstat_free (bpstat bs)
4436 {
4437 if (bs->old_val != NULL)
4438 value_free (bs->old_val);
4439 decref_counted_command_line (&bs->commands);
4440 decref_bp_location (&bs->bp_location_at);
4441 xfree (bs);
4442 }
4443
4444 /* Clear a bpstat so that it says we are not at any breakpoint.
4445 Also free any storage that is part of a bpstat. */
4446
4447 void
4448 bpstat_clear (bpstat *bsp)
4449 {
4450 bpstat p;
4451 bpstat q;
4452
4453 if (bsp == 0)
4454 return;
4455 p = *bsp;
4456 while (p != NULL)
4457 {
4458 q = p->next;
4459 bpstat_free (p);
4460 p = q;
4461 }
4462 *bsp = NULL;
4463 }
4464
4465 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4466 is part of the bpstat is copied as well. */
4467
4468 bpstat
4469 bpstat_copy (bpstat bs)
4470 {
4471 bpstat p = NULL;
4472 bpstat tmp;
4473 bpstat retval = NULL;
4474
4475 if (bs == NULL)
4476 return bs;
4477
4478 for (; bs != NULL; bs = bs->next)
4479 {
4480 tmp = (bpstat) xmalloc (sizeof (*tmp));
4481 memcpy (tmp, bs, sizeof (*tmp));
4482 incref_counted_command_line (tmp->commands);
4483 incref_bp_location (tmp->bp_location_at);
4484 if (bs->old_val != NULL)
4485 {
4486 tmp->old_val = value_copy (bs->old_val);
4487 release_value (tmp->old_val);
4488 }
4489
4490 if (p == NULL)
4491 /* This is the first thing in the chain. */
4492 retval = tmp;
4493 else
4494 p->next = tmp;
4495 p = tmp;
4496 }
4497 p->next = NULL;
4498 return retval;
4499 }
4500
4501 /* Find the bpstat associated with this breakpoint. */
4502
4503 bpstat
4504 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4505 {
4506 if (bsp == NULL)
4507 return NULL;
4508
4509 for (; bsp != NULL; bsp = bsp->next)
4510 {
4511 if (bsp->breakpoint_at == breakpoint)
4512 return bsp;
4513 }
4514 return NULL;
4515 }
4516
4517 /* See breakpoint.h. */
4518
4519 int
4520 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4521 {
4522 for (; bsp != NULL; bsp = bsp->next)
4523 {
4524 if (bsp->breakpoint_at == NULL)
4525 {
4526 /* A moribund location can never explain a signal other than
4527 GDB_SIGNAL_TRAP. */
4528 if (sig == GDB_SIGNAL_TRAP)
4529 return 1;
4530 }
4531 else
4532 {
4533 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4534 sig))
4535 return 1;
4536 }
4537 }
4538
4539 return 0;
4540 }
4541
4542 /* Put in *NUM the breakpoint number of the first breakpoint we are
4543 stopped at. *BSP upon return is a bpstat which points to the
4544 remaining breakpoints stopped at (but which is not guaranteed to be
4545 good for anything but further calls to bpstat_num).
4546
4547 Return 0 if passed a bpstat which does not indicate any breakpoints.
4548 Return -1 if stopped at a breakpoint that has been deleted since
4549 we set it.
4550 Return 1 otherwise. */
4551
4552 int
4553 bpstat_num (bpstat *bsp, int *num)
4554 {
4555 struct breakpoint *b;
4556
4557 if ((*bsp) == NULL)
4558 return 0; /* No more breakpoint values */
4559
4560 /* We assume we'll never have several bpstats that correspond to a
4561 single breakpoint -- otherwise, this function might return the
4562 same number more than once and this will look ugly. */
4563 b = (*bsp)->breakpoint_at;
4564 *bsp = (*bsp)->next;
4565 if (b == NULL)
4566 return -1; /* breakpoint that's been deleted since */
4567
4568 *num = b->number; /* We have its number */
4569 return 1;
4570 }
4571
4572 /* See breakpoint.h. */
4573
4574 void
4575 bpstat_clear_actions (void)
4576 {
4577 struct thread_info *tp;
4578 bpstat bs;
4579
4580 if (ptid_equal (inferior_ptid, null_ptid))
4581 return;
4582
4583 tp = find_thread_ptid (inferior_ptid);
4584 if (tp == NULL)
4585 return;
4586
4587 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4588 {
4589 decref_counted_command_line (&bs->commands);
4590
4591 if (bs->old_val != NULL)
4592 {
4593 value_free (bs->old_val);
4594 bs->old_val = NULL;
4595 }
4596 }
4597 }
4598
4599 /* Called when a command is about to proceed the inferior. */
4600
4601 static void
4602 breakpoint_about_to_proceed (void)
4603 {
4604 if (!ptid_equal (inferior_ptid, null_ptid))
4605 {
4606 struct thread_info *tp = inferior_thread ();
4607
4608 /* Allow inferior function calls in breakpoint commands to not
4609 interrupt the command list. When the call finishes
4610 successfully, the inferior will be standing at the same
4611 breakpoint as if nothing happened. */
4612 if (tp->control.in_infcall)
4613 return;
4614 }
4615
4616 breakpoint_proceeded = 1;
4617 }
4618
4619 /* Stub for cleaning up our state if we error-out of a breakpoint
4620 command. */
4621 static void
4622 cleanup_executing_breakpoints (void *ignore)
4623 {
4624 executing_breakpoint_commands = 0;
4625 }
4626
4627 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4628 or its equivalent. */
4629
4630 static int
4631 command_line_is_silent (struct command_line *cmd)
4632 {
4633 return cmd && (strcmp ("silent", cmd->line) == 0);
4634 }
4635
4636 /* Execute all the commands associated with all the breakpoints at
4637 this location. Any of these commands could cause the process to
4638 proceed beyond this point, etc. We look out for such changes by
4639 checking the global "breakpoint_proceeded" after each command.
4640
4641 Returns true if a breakpoint command resumed the inferior. In that
4642 case, it is the caller's responsibility to recall it again with the
4643 bpstat of the current thread. */
4644
4645 static int
4646 bpstat_do_actions_1 (bpstat *bsp)
4647 {
4648 bpstat bs;
4649 struct cleanup *old_chain;
4650 int again = 0;
4651
4652 /* Avoid endless recursion if a `source' command is contained
4653 in bs->commands. */
4654 if (executing_breakpoint_commands)
4655 return 0;
4656
4657 executing_breakpoint_commands = 1;
4658 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4659
4660 prevent_dont_repeat ();
4661
4662 /* This pointer will iterate over the list of bpstat's. */
4663 bs = *bsp;
4664
4665 breakpoint_proceeded = 0;
4666 for (; bs != NULL; bs = bs->next)
4667 {
4668 struct counted_command_line *ccmd;
4669 struct command_line *cmd;
4670 struct cleanup *this_cmd_tree_chain;
4671
4672 /* Take ownership of the BSP's command tree, if it has one.
4673
4674 The command tree could legitimately contain commands like
4675 'step' and 'next', which call clear_proceed_status, which
4676 frees stop_bpstat's command tree. To make sure this doesn't
4677 free the tree we're executing out from under us, we need to
4678 take ownership of the tree ourselves. Since a given bpstat's
4679 commands are only executed once, we don't need to copy it; we
4680 can clear the pointer in the bpstat, and make sure we free
4681 the tree when we're done. */
4682 ccmd = bs->commands;
4683 bs->commands = NULL;
4684 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4685 cmd = ccmd ? ccmd->commands : NULL;
4686 if (command_line_is_silent (cmd))
4687 {
4688 /* The action has been already done by bpstat_stop_status. */
4689 cmd = cmd->next;
4690 }
4691
4692 while (cmd != NULL)
4693 {
4694 execute_control_command (cmd);
4695
4696 if (breakpoint_proceeded)
4697 break;
4698 else
4699 cmd = cmd->next;
4700 }
4701
4702 /* We can free this command tree now. */
4703 do_cleanups (this_cmd_tree_chain);
4704
4705 if (breakpoint_proceeded)
4706 {
4707 if (interpreter_async)
4708 /* If we are in async mode, then the target might be still
4709 running, not stopped at any breakpoint, so nothing for
4710 us to do here -- just return to the event loop. */
4711 ;
4712 else
4713 /* In sync mode, when execute_control_command returns
4714 we're already standing on the next breakpoint.
4715 Breakpoint commands for that stop were not run, since
4716 execute_command does not run breakpoint commands --
4717 only command_line_handler does, but that one is not
4718 involved in execution of breakpoint commands. So, we
4719 can now execute breakpoint commands. It should be
4720 noted that making execute_command do bpstat actions is
4721 not an option -- in this case we'll have recursive
4722 invocation of bpstat for each breakpoint with a
4723 command, and can easily blow up GDB stack. Instead, we
4724 return true, which will trigger the caller to recall us
4725 with the new stop_bpstat. */
4726 again = 1;
4727 break;
4728 }
4729 }
4730 do_cleanups (old_chain);
4731 return again;
4732 }
4733
4734 void
4735 bpstat_do_actions (void)
4736 {
4737 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4738
4739 /* Do any commands attached to breakpoint we are stopped at. */
4740 while (!ptid_equal (inferior_ptid, null_ptid)
4741 && target_has_execution
4742 && !is_exited (inferior_ptid)
4743 && !is_executing (inferior_ptid))
4744 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4745 and only return when it is stopped at the next breakpoint, we
4746 keep doing breakpoint actions until it returns false to
4747 indicate the inferior was not resumed. */
4748 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4749 break;
4750
4751 discard_cleanups (cleanup_if_error);
4752 }
4753
4754 /* Print out the (old or new) value associated with a watchpoint. */
4755
4756 static void
4757 watchpoint_value_print (struct value *val, struct ui_file *stream)
4758 {
4759 if (val == NULL)
4760 fprintf_unfiltered (stream, _("<unreadable>"));
4761 else
4762 {
4763 struct value_print_options opts;
4764 get_user_print_options (&opts);
4765 value_print (val, stream, &opts);
4766 }
4767 }
4768
4769 /* Generic routine for printing messages indicating why we
4770 stopped. The behavior of this function depends on the value
4771 'print_it' in the bpstat structure. Under some circumstances we
4772 may decide not to print anything here and delegate the task to
4773 normal_stop(). */
4774
4775 static enum print_stop_action
4776 print_bp_stop_message (bpstat bs)
4777 {
4778 switch (bs->print_it)
4779 {
4780 case print_it_noop:
4781 /* Nothing should be printed for this bpstat entry. */
4782 return PRINT_UNKNOWN;
4783 break;
4784
4785 case print_it_done:
4786 /* We still want to print the frame, but we already printed the
4787 relevant messages. */
4788 return PRINT_SRC_AND_LOC;
4789 break;
4790
4791 case print_it_normal:
4792 {
4793 struct breakpoint *b = bs->breakpoint_at;
4794
4795 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4796 which has since been deleted. */
4797 if (b == NULL)
4798 return PRINT_UNKNOWN;
4799
4800 /* Normal case. Call the breakpoint's print_it method. */
4801 return b->ops->print_it (bs);
4802 }
4803 break;
4804
4805 default:
4806 internal_error (__FILE__, __LINE__,
4807 _("print_bp_stop_message: unrecognized enum value"));
4808 break;
4809 }
4810 }
4811
4812 /* A helper function that prints a shared library stopped event. */
4813
4814 static void
4815 print_solib_event (int is_catchpoint)
4816 {
4817 int any_deleted
4818 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4819 int any_added
4820 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4821
4822 if (!is_catchpoint)
4823 {
4824 if (any_added || any_deleted)
4825 ui_out_text (current_uiout,
4826 _("Stopped due to shared library event:\n"));
4827 else
4828 ui_out_text (current_uiout,
4829 _("Stopped due to shared library event (no "
4830 "libraries added or removed)\n"));
4831 }
4832
4833 if (ui_out_is_mi_like_p (current_uiout))
4834 ui_out_field_string (current_uiout, "reason",
4835 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4836
4837 if (any_deleted)
4838 {
4839 struct cleanup *cleanup;
4840 char *name;
4841 int ix;
4842
4843 ui_out_text (current_uiout, _(" Inferior unloaded "));
4844 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4845 "removed");
4846 for (ix = 0;
4847 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4848 ix, name);
4849 ++ix)
4850 {
4851 if (ix > 0)
4852 ui_out_text (current_uiout, " ");
4853 ui_out_field_string (current_uiout, "library", name);
4854 ui_out_text (current_uiout, "\n");
4855 }
4856
4857 do_cleanups (cleanup);
4858 }
4859
4860 if (any_added)
4861 {
4862 struct so_list *iter;
4863 int ix;
4864 struct cleanup *cleanup;
4865
4866 ui_out_text (current_uiout, _(" Inferior loaded "));
4867 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4868 "added");
4869 for (ix = 0;
4870 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4871 ix, iter);
4872 ++ix)
4873 {
4874 if (ix > 0)
4875 ui_out_text (current_uiout, " ");
4876 ui_out_field_string (current_uiout, "library", iter->so_name);
4877 ui_out_text (current_uiout, "\n");
4878 }
4879
4880 do_cleanups (cleanup);
4881 }
4882 }
4883
4884 /* Print a message indicating what happened. This is called from
4885 normal_stop(). The input to this routine is the head of the bpstat
4886 list - a list of the eventpoints that caused this stop. KIND is
4887 the target_waitkind for the stopping event. This
4888 routine calls the generic print routine for printing a message
4889 about reasons for stopping. This will print (for example) the
4890 "Breakpoint n," part of the output. The return value of this
4891 routine is one of:
4892
4893 PRINT_UNKNOWN: Means we printed nothing.
4894 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4895 code to print the location. An example is
4896 "Breakpoint 1, " which should be followed by
4897 the location.
4898 PRINT_SRC_ONLY: Means we printed something, but there is no need
4899 to also print the location part of the message.
4900 An example is the catch/throw messages, which
4901 don't require a location appended to the end.
4902 PRINT_NOTHING: We have done some printing and we don't need any
4903 further info to be printed. */
4904
4905 enum print_stop_action
4906 bpstat_print (bpstat bs, int kind)
4907 {
4908 enum print_stop_action val;
4909
4910 /* Maybe another breakpoint in the chain caused us to stop.
4911 (Currently all watchpoints go on the bpstat whether hit or not.
4912 That probably could (should) be changed, provided care is taken
4913 with respect to bpstat_explains_signal). */
4914 for (; bs; bs = bs->next)
4915 {
4916 val = print_bp_stop_message (bs);
4917 if (val == PRINT_SRC_ONLY
4918 || val == PRINT_SRC_AND_LOC
4919 || val == PRINT_NOTHING)
4920 return val;
4921 }
4922
4923 /* If we had hit a shared library event breakpoint,
4924 print_bp_stop_message would print out this message. If we hit an
4925 OS-level shared library event, do the same thing. */
4926 if (kind == TARGET_WAITKIND_LOADED)
4927 {
4928 print_solib_event (0);
4929 return PRINT_NOTHING;
4930 }
4931
4932 /* We reached the end of the chain, or we got a null BS to start
4933 with and nothing was printed. */
4934 return PRINT_UNKNOWN;
4935 }
4936
4937 /* Evaluate the expression EXP and return 1 if value is zero.
4938 This returns the inverse of the condition because it is called
4939 from catch_errors which returns 0 if an exception happened, and if an
4940 exception happens we want execution to stop.
4941 The argument is a "struct expression *" that has been cast to a
4942 "void *" to make it pass through catch_errors. */
4943
4944 static int
4945 breakpoint_cond_eval (void *exp)
4946 {
4947 struct value *mark = value_mark ();
4948 int i = !value_true (evaluate_expression ((struct expression *) exp));
4949
4950 value_free_to_mark (mark);
4951 return i;
4952 }
4953
4954 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4955
4956 static bpstat
4957 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4958 {
4959 bpstat bs;
4960
4961 bs = (bpstat) xmalloc (sizeof (*bs));
4962 bs->next = NULL;
4963 **bs_link_pointer = bs;
4964 *bs_link_pointer = &bs->next;
4965 bs->breakpoint_at = bl->owner;
4966 bs->bp_location_at = bl;
4967 incref_bp_location (bl);
4968 /* If the condition is false, etc., don't do the commands. */
4969 bs->commands = NULL;
4970 bs->old_val = NULL;
4971 bs->print_it = print_it_normal;
4972 return bs;
4973 }
4974 \f
4975 /* The target has stopped with waitstatus WS. Check if any hardware
4976 watchpoints have triggered, according to the target. */
4977
4978 int
4979 watchpoints_triggered (struct target_waitstatus *ws)
4980 {
4981 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4982 CORE_ADDR addr;
4983 struct breakpoint *b;
4984
4985 if (!stopped_by_watchpoint)
4986 {
4987 /* We were not stopped by a watchpoint. Mark all watchpoints
4988 as not triggered. */
4989 ALL_BREAKPOINTS (b)
4990 if (is_hardware_watchpoint (b))
4991 {
4992 struct watchpoint *w = (struct watchpoint *) b;
4993
4994 w->watchpoint_triggered = watch_triggered_no;
4995 }
4996
4997 return 0;
4998 }
4999
5000 if (!target_stopped_data_address (&current_target, &addr))
5001 {
5002 /* We were stopped by a watchpoint, but we don't know where.
5003 Mark all watchpoints as unknown. */
5004 ALL_BREAKPOINTS (b)
5005 if (is_hardware_watchpoint (b))
5006 {
5007 struct watchpoint *w = (struct watchpoint *) b;
5008
5009 w->watchpoint_triggered = watch_triggered_unknown;
5010 }
5011
5012 return 1;
5013 }
5014
5015 /* The target could report the data address. Mark watchpoints
5016 affected by this data address as triggered, and all others as not
5017 triggered. */
5018
5019 ALL_BREAKPOINTS (b)
5020 if (is_hardware_watchpoint (b))
5021 {
5022 struct watchpoint *w = (struct watchpoint *) b;
5023 struct bp_location *loc;
5024
5025 w->watchpoint_triggered = watch_triggered_no;
5026 for (loc = b->loc; loc; loc = loc->next)
5027 {
5028 if (is_masked_watchpoint (b))
5029 {
5030 CORE_ADDR newaddr = addr & w->hw_wp_mask;
5031 CORE_ADDR start = loc->address & w->hw_wp_mask;
5032
5033 if (newaddr == start)
5034 {
5035 w->watchpoint_triggered = watch_triggered_yes;
5036 break;
5037 }
5038 }
5039 /* Exact match not required. Within range is sufficient. */
5040 else if (target_watchpoint_addr_within_range (&current_target,
5041 addr, loc->address,
5042 loc->length))
5043 {
5044 w->watchpoint_triggered = watch_triggered_yes;
5045 break;
5046 }
5047 }
5048 }
5049
5050 return 1;
5051 }
5052
5053 /* Possible return values for watchpoint_check (this can't be an enum
5054 because of check_errors). */
5055 /* The watchpoint has been deleted. */
5056 #define WP_DELETED 1
5057 /* The value has changed. */
5058 #define WP_VALUE_CHANGED 2
5059 /* The value has not changed. */
5060 #define WP_VALUE_NOT_CHANGED 3
5061 /* Ignore this watchpoint, no matter if the value changed or not. */
5062 #define WP_IGNORE 4
5063
5064 #define BP_TEMPFLAG 1
5065 #define BP_HARDWAREFLAG 2
5066
5067 /* Evaluate watchpoint condition expression and check if its value
5068 changed.
5069
5070 P should be a pointer to struct bpstat, but is defined as a void *
5071 in order for this function to be usable with catch_errors. */
5072
5073 static int
5074 watchpoint_check (void *p)
5075 {
5076 bpstat bs = (bpstat) p;
5077 struct watchpoint *b;
5078 struct frame_info *fr;
5079 int within_current_scope;
5080
5081 /* BS is built from an existing struct breakpoint. */
5082 gdb_assert (bs->breakpoint_at != NULL);
5083 b = (struct watchpoint *) bs->breakpoint_at;
5084
5085 /* If this is a local watchpoint, we only want to check if the
5086 watchpoint frame is in scope if the current thread is the thread
5087 that was used to create the watchpoint. */
5088 if (!watchpoint_in_thread_scope (b))
5089 return WP_IGNORE;
5090
5091 if (b->exp_valid_block == NULL)
5092 within_current_scope = 1;
5093 else
5094 {
5095 struct frame_info *frame = get_current_frame ();
5096 struct gdbarch *frame_arch = get_frame_arch (frame);
5097 CORE_ADDR frame_pc = get_frame_pc (frame);
5098
5099 /* stack_frame_destroyed_p() returns a non-zero value if we're
5100 still in the function but the stack frame has already been
5101 invalidated. Since we can't rely on the values of local
5102 variables after the stack has been destroyed, we are treating
5103 the watchpoint in that state as `not changed' without further
5104 checking. Don't mark watchpoints as changed if the current
5105 frame is in an epilogue - even if they are in some other
5106 frame, our view of the stack is likely to be wrong and
5107 frame_find_by_id could error out. */
5108 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
5109 return WP_IGNORE;
5110
5111 fr = frame_find_by_id (b->watchpoint_frame);
5112 within_current_scope = (fr != NULL);
5113
5114 /* If we've gotten confused in the unwinder, we might have
5115 returned a frame that can't describe this variable. */
5116 if (within_current_scope)
5117 {
5118 struct symbol *function;
5119
5120 function = get_frame_function (fr);
5121 if (function == NULL
5122 || !contained_in (b->exp_valid_block,
5123 SYMBOL_BLOCK_VALUE (function)))
5124 within_current_scope = 0;
5125 }
5126
5127 if (within_current_scope)
5128 /* If we end up stopping, the current frame will get selected
5129 in normal_stop. So this call to select_frame won't affect
5130 the user. */
5131 select_frame (fr);
5132 }
5133
5134 if (within_current_scope)
5135 {
5136 /* We use value_{,free_to_}mark because it could be a *long*
5137 time before we return to the command level and call
5138 free_all_values. We can't call free_all_values because we
5139 might be in the middle of evaluating a function call. */
5140
5141 int pc = 0;
5142 struct value *mark;
5143 struct value *new_val;
5144
5145 if (is_masked_watchpoint (&b->base))
5146 /* Since we don't know the exact trigger address (from
5147 stopped_data_address), just tell the user we've triggered
5148 a mask watchpoint. */
5149 return WP_VALUE_CHANGED;
5150
5151 mark = value_mark ();
5152 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL, 0);
5153
5154 if (b->val_bitsize != 0)
5155 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
5156
5157 /* We use value_equal_contents instead of value_equal because
5158 the latter coerces an array to a pointer, thus comparing just
5159 the address of the array instead of its contents. This is
5160 not what we want. */
5161 if ((b->val != NULL) != (new_val != NULL)
5162 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
5163 {
5164 if (new_val != NULL)
5165 {
5166 release_value (new_val);
5167 value_free_to_mark (mark);
5168 }
5169 bs->old_val = b->val;
5170 b->val = new_val;
5171 b->val_valid = 1;
5172 return WP_VALUE_CHANGED;
5173 }
5174 else
5175 {
5176 /* Nothing changed. */
5177 value_free_to_mark (mark);
5178 return WP_VALUE_NOT_CHANGED;
5179 }
5180 }
5181 else
5182 {
5183 struct ui_out *uiout = current_uiout;
5184
5185 /* This seems like the only logical thing to do because
5186 if we temporarily ignored the watchpoint, then when
5187 we reenter the block in which it is valid it contains
5188 garbage (in the case of a function, it may have two
5189 garbage values, one before and one after the prologue).
5190 So we can't even detect the first assignment to it and
5191 watch after that (since the garbage may or may not equal
5192 the first value assigned). */
5193 /* We print all the stop information in
5194 breakpoint_ops->print_it, but in this case, by the time we
5195 call breakpoint_ops->print_it this bp will be deleted
5196 already. So we have no choice but print the information
5197 here. */
5198 if (ui_out_is_mi_like_p (uiout))
5199 ui_out_field_string
5200 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5201 ui_out_text (uiout, "\nWatchpoint ");
5202 ui_out_field_int (uiout, "wpnum", b->base.number);
5203 ui_out_text (uiout,
5204 " deleted because the program has left the block in\n\
5205 which its expression is valid.\n");
5206
5207 /* Make sure the watchpoint's commands aren't executed. */
5208 decref_counted_command_line (&b->base.commands);
5209 watchpoint_del_at_next_stop (b);
5210
5211 return WP_DELETED;
5212 }
5213 }
5214
5215 /* Return true if it looks like target has stopped due to hitting
5216 breakpoint location BL. This function does not check if we should
5217 stop, only if BL explains the stop. */
5218
5219 static int
5220 bpstat_check_location (const struct bp_location *bl,
5221 struct address_space *aspace, CORE_ADDR bp_addr,
5222 const struct target_waitstatus *ws)
5223 {
5224 struct breakpoint *b = bl->owner;
5225
5226 /* BL is from an existing breakpoint. */
5227 gdb_assert (b != NULL);
5228
5229 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5230 }
5231
5232 /* Determine if the watched values have actually changed, and we
5233 should stop. If not, set BS->stop to 0. */
5234
5235 static void
5236 bpstat_check_watchpoint (bpstat bs)
5237 {
5238 const struct bp_location *bl;
5239 struct watchpoint *b;
5240
5241 /* BS is built for existing struct breakpoint. */
5242 bl = bs->bp_location_at;
5243 gdb_assert (bl != NULL);
5244 b = (struct watchpoint *) bs->breakpoint_at;
5245 gdb_assert (b != NULL);
5246
5247 {
5248 int must_check_value = 0;
5249
5250 if (b->base.type == bp_watchpoint)
5251 /* For a software watchpoint, we must always check the
5252 watched value. */
5253 must_check_value = 1;
5254 else if (b->watchpoint_triggered == watch_triggered_yes)
5255 /* We have a hardware watchpoint (read, write, or access)
5256 and the target earlier reported an address watched by
5257 this watchpoint. */
5258 must_check_value = 1;
5259 else if (b->watchpoint_triggered == watch_triggered_unknown
5260 && b->base.type == bp_hardware_watchpoint)
5261 /* We were stopped by a hardware watchpoint, but the target could
5262 not report the data address. We must check the watchpoint's
5263 value. Access and read watchpoints are out of luck; without
5264 a data address, we can't figure it out. */
5265 must_check_value = 1;
5266
5267 if (must_check_value)
5268 {
5269 char *message
5270 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5271 b->base.number);
5272 struct cleanup *cleanups = make_cleanup (xfree, message);
5273 int e = catch_errors (watchpoint_check, bs, message,
5274 RETURN_MASK_ALL);
5275 do_cleanups (cleanups);
5276 switch (e)
5277 {
5278 case WP_DELETED:
5279 /* We've already printed what needs to be printed. */
5280 bs->print_it = print_it_done;
5281 /* Stop. */
5282 break;
5283 case WP_IGNORE:
5284 bs->print_it = print_it_noop;
5285 bs->stop = 0;
5286 break;
5287 case WP_VALUE_CHANGED:
5288 if (b->base.type == bp_read_watchpoint)
5289 {
5290 /* There are two cases to consider here:
5291
5292 1. We're watching the triggered memory for reads.
5293 In that case, trust the target, and always report
5294 the watchpoint hit to the user. Even though
5295 reads don't cause value changes, the value may
5296 have changed since the last time it was read, and
5297 since we're not trapping writes, we will not see
5298 those, and as such we should ignore our notion of
5299 old value.
5300
5301 2. We're watching the triggered memory for both
5302 reads and writes. There are two ways this may
5303 happen:
5304
5305 2.1. This is a target that can't break on data
5306 reads only, but can break on accesses (reads or
5307 writes), such as e.g., x86. We detect this case
5308 at the time we try to insert read watchpoints.
5309
5310 2.2. Otherwise, the target supports read
5311 watchpoints, but, the user set an access or write
5312 watchpoint watching the same memory as this read
5313 watchpoint.
5314
5315 If we're watching memory writes as well as reads,
5316 ignore watchpoint hits when we find that the
5317 value hasn't changed, as reads don't cause
5318 changes. This still gives false positives when
5319 the program writes the same value to memory as
5320 what there was already in memory (we will confuse
5321 it for a read), but it's much better than
5322 nothing. */
5323
5324 int other_write_watchpoint = 0;
5325
5326 if (bl->watchpoint_type == hw_read)
5327 {
5328 struct breakpoint *other_b;
5329
5330 ALL_BREAKPOINTS (other_b)
5331 if (other_b->type == bp_hardware_watchpoint
5332 || other_b->type == bp_access_watchpoint)
5333 {
5334 struct watchpoint *other_w =
5335 (struct watchpoint *) other_b;
5336
5337 if (other_w->watchpoint_triggered
5338 == watch_triggered_yes)
5339 {
5340 other_write_watchpoint = 1;
5341 break;
5342 }
5343 }
5344 }
5345
5346 if (other_write_watchpoint
5347 || bl->watchpoint_type == hw_access)
5348 {
5349 /* We're watching the same memory for writes,
5350 and the value changed since the last time we
5351 updated it, so this trap must be for a write.
5352 Ignore it. */
5353 bs->print_it = print_it_noop;
5354 bs->stop = 0;
5355 }
5356 }
5357 break;
5358 case WP_VALUE_NOT_CHANGED:
5359 if (b->base.type == bp_hardware_watchpoint
5360 || b->base.type == bp_watchpoint)
5361 {
5362 /* Don't stop: write watchpoints shouldn't fire if
5363 the value hasn't changed. */
5364 bs->print_it = print_it_noop;
5365 bs->stop = 0;
5366 }
5367 /* Stop. */
5368 break;
5369 default:
5370 /* Can't happen. */
5371 case 0:
5372 /* Error from catch_errors. */
5373 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5374 watchpoint_del_at_next_stop (b);
5375 /* We've already printed what needs to be printed. */
5376 bs->print_it = print_it_done;
5377 break;
5378 }
5379 }
5380 else /* must_check_value == 0 */
5381 {
5382 /* This is a case where some watchpoint(s) triggered, but
5383 not at the address of this watchpoint, or else no
5384 watchpoint triggered after all. So don't print
5385 anything for this watchpoint. */
5386 bs->print_it = print_it_noop;
5387 bs->stop = 0;
5388 }
5389 }
5390 }
5391
5392 /* For breakpoints that are currently marked as telling gdb to stop,
5393 check conditions (condition proper, frame, thread and ignore count)
5394 of breakpoint referred to by BS. If we should not stop for this
5395 breakpoint, set BS->stop to 0. */
5396
5397 static void
5398 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5399 {
5400 const struct bp_location *bl;
5401 struct breakpoint *b;
5402 int value_is_zero = 0;
5403 struct expression *cond;
5404
5405 gdb_assert (bs->stop);
5406
5407 /* BS is built for existing struct breakpoint. */
5408 bl = bs->bp_location_at;
5409 gdb_assert (bl != NULL);
5410 b = bs->breakpoint_at;
5411 gdb_assert (b != NULL);
5412
5413 /* Even if the target evaluated the condition on its end and notified GDB, we
5414 need to do so again since GDB does not know if we stopped due to a
5415 breakpoint or a single step breakpoint. */
5416
5417 if (frame_id_p (b->frame_id)
5418 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5419 {
5420 bs->stop = 0;
5421 return;
5422 }
5423
5424 /* If this is a thread/task-specific breakpoint, don't waste cpu
5425 evaluating the condition if this isn't the specified
5426 thread/task. */
5427 if ((b->thread != -1 && b->thread != pid_to_thread_id (ptid))
5428 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5429
5430 {
5431 bs->stop = 0;
5432 return;
5433 }
5434
5435 /* Evaluate extension language breakpoints that have a "stop" method
5436 implemented. */
5437 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5438
5439 if (is_watchpoint (b))
5440 {
5441 struct watchpoint *w = (struct watchpoint *) b;
5442
5443 cond = w->cond_exp;
5444 }
5445 else
5446 cond = bl->cond;
5447
5448 if (cond && b->disposition != disp_del_at_next_stop)
5449 {
5450 int within_current_scope = 1;
5451 struct watchpoint * w;
5452
5453 /* We use value_mark and value_free_to_mark because it could
5454 be a long time before we return to the command level and
5455 call free_all_values. We can't call free_all_values
5456 because we might be in the middle of evaluating a
5457 function call. */
5458 struct value *mark = value_mark ();
5459
5460 if (is_watchpoint (b))
5461 w = (struct watchpoint *) b;
5462 else
5463 w = NULL;
5464
5465 /* Need to select the frame, with all that implies so that
5466 the conditions will have the right context. Because we
5467 use the frame, we will not see an inlined function's
5468 variables when we arrive at a breakpoint at the start
5469 of the inlined function; the current frame will be the
5470 call site. */
5471 if (w == NULL || w->cond_exp_valid_block == NULL)
5472 select_frame (get_current_frame ());
5473 else
5474 {
5475 struct frame_info *frame;
5476
5477 /* For local watchpoint expressions, which particular
5478 instance of a local is being watched matters, so we
5479 keep track of the frame to evaluate the expression
5480 in. To evaluate the condition however, it doesn't
5481 really matter which instantiation of the function
5482 where the condition makes sense triggers the
5483 watchpoint. This allows an expression like "watch
5484 global if q > 10" set in `func', catch writes to
5485 global on all threads that call `func', or catch
5486 writes on all recursive calls of `func' by a single
5487 thread. We simply always evaluate the condition in
5488 the innermost frame that's executing where it makes
5489 sense to evaluate the condition. It seems
5490 intuitive. */
5491 frame = block_innermost_frame (w->cond_exp_valid_block);
5492 if (frame != NULL)
5493 select_frame (frame);
5494 else
5495 within_current_scope = 0;
5496 }
5497 if (within_current_scope)
5498 value_is_zero
5499 = catch_errors (breakpoint_cond_eval, cond,
5500 "Error in testing breakpoint condition:\n",
5501 RETURN_MASK_ALL);
5502 else
5503 {
5504 warning (_("Watchpoint condition cannot be tested "
5505 "in the current scope"));
5506 /* If we failed to set the right context for this
5507 watchpoint, unconditionally report it. */
5508 value_is_zero = 0;
5509 }
5510 /* FIXME-someday, should give breakpoint #. */
5511 value_free_to_mark (mark);
5512 }
5513
5514 if (cond && value_is_zero)
5515 {
5516 bs->stop = 0;
5517 }
5518 else if (b->ignore_count > 0)
5519 {
5520 b->ignore_count--;
5521 bs->stop = 0;
5522 /* Increase the hit count even though we don't stop. */
5523 ++(b->hit_count);
5524 observer_notify_breakpoint_modified (b);
5525 }
5526 }
5527
5528 /* Returns true if we need to track moribund locations of LOC's type
5529 on the current target. */
5530
5531 static int
5532 need_moribund_for_location_type (struct bp_location *loc)
5533 {
5534 return ((loc->loc_type == bp_loc_software_breakpoint
5535 && !target_supports_stopped_by_sw_breakpoint ())
5536 || (loc->loc_type == bp_loc_hardware_breakpoint
5537 && !target_supports_stopped_by_hw_breakpoint ()));
5538 }
5539
5540
5541 /* Get a bpstat associated with having just stopped at address
5542 BP_ADDR in thread PTID.
5543
5544 Determine whether we stopped at a breakpoint, etc, or whether we
5545 don't understand this stop. Result is a chain of bpstat's such
5546 that:
5547
5548 if we don't understand the stop, the result is a null pointer.
5549
5550 if we understand why we stopped, the result is not null.
5551
5552 Each element of the chain refers to a particular breakpoint or
5553 watchpoint at which we have stopped. (We may have stopped for
5554 several reasons concurrently.)
5555
5556 Each element of the chain has valid next, breakpoint_at,
5557 commands, FIXME??? fields. */
5558
5559 bpstat
5560 bpstat_stop_status (struct address_space *aspace,
5561 CORE_ADDR bp_addr, ptid_t ptid,
5562 const struct target_waitstatus *ws)
5563 {
5564 struct breakpoint *b = NULL;
5565 struct bp_location *bl;
5566 struct bp_location *loc;
5567 /* First item of allocated bpstat's. */
5568 bpstat bs_head = NULL, *bs_link = &bs_head;
5569 /* Pointer to the last thing in the chain currently. */
5570 bpstat bs;
5571 int ix;
5572 int need_remove_insert;
5573 int removed_any;
5574
5575 /* First, build the bpstat chain with locations that explain a
5576 target stop, while being careful to not set the target running,
5577 as that may invalidate locations (in particular watchpoint
5578 locations are recreated). Resuming will happen here with
5579 breakpoint conditions or watchpoint expressions that include
5580 inferior function calls. */
5581
5582 ALL_BREAKPOINTS (b)
5583 {
5584 if (!breakpoint_enabled (b))
5585 continue;
5586
5587 for (bl = b->loc; bl != NULL; bl = bl->next)
5588 {
5589 /* For hardware watchpoints, we look only at the first
5590 location. The watchpoint_check function will work on the
5591 entire expression, not the individual locations. For
5592 read watchpoints, the watchpoints_triggered function has
5593 checked all locations already. */
5594 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5595 break;
5596
5597 if (!bl->enabled || bl->shlib_disabled)
5598 continue;
5599
5600 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5601 continue;
5602
5603 /* Come here if it's a watchpoint, or if the break address
5604 matches. */
5605
5606 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5607 explain stop. */
5608
5609 /* Assume we stop. Should we find a watchpoint that is not
5610 actually triggered, or if the condition of the breakpoint
5611 evaluates as false, we'll reset 'stop' to 0. */
5612 bs->stop = 1;
5613 bs->print = 1;
5614
5615 /* If this is a scope breakpoint, mark the associated
5616 watchpoint as triggered so that we will handle the
5617 out-of-scope event. We'll get to the watchpoint next
5618 iteration. */
5619 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5620 {
5621 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5622
5623 w->watchpoint_triggered = watch_triggered_yes;
5624 }
5625 }
5626 }
5627
5628 /* Check if a moribund breakpoint explains the stop. */
5629 if (!target_supports_stopped_by_sw_breakpoint ()
5630 || !target_supports_stopped_by_hw_breakpoint ())
5631 {
5632 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5633 {
5634 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5635 && need_moribund_for_location_type (loc))
5636 {
5637 bs = bpstat_alloc (loc, &bs_link);
5638 /* For hits of moribund locations, we should just proceed. */
5639 bs->stop = 0;
5640 bs->print = 0;
5641 bs->print_it = print_it_noop;
5642 }
5643 }
5644 }
5645
5646 /* A bit of special processing for shlib breakpoints. We need to
5647 process solib loading here, so that the lists of loaded and
5648 unloaded libraries are correct before we handle "catch load" and
5649 "catch unload". */
5650 for (bs = bs_head; bs != NULL; bs = bs->next)
5651 {
5652 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5653 {
5654 handle_solib_event ();
5655 break;
5656 }
5657 }
5658
5659 /* Now go through the locations that caused the target to stop, and
5660 check whether we're interested in reporting this stop to higher
5661 layers, or whether we should resume the target transparently. */
5662
5663 removed_any = 0;
5664
5665 for (bs = bs_head; bs != NULL; bs = bs->next)
5666 {
5667 if (!bs->stop)
5668 continue;
5669
5670 b = bs->breakpoint_at;
5671 b->ops->check_status (bs);
5672 if (bs->stop)
5673 {
5674 bpstat_check_breakpoint_conditions (bs, ptid);
5675
5676 if (bs->stop)
5677 {
5678 ++(b->hit_count);
5679 observer_notify_breakpoint_modified (b);
5680
5681 /* We will stop here. */
5682 if (b->disposition == disp_disable)
5683 {
5684 --(b->enable_count);
5685 if (b->enable_count <= 0)
5686 b->enable_state = bp_disabled;
5687 removed_any = 1;
5688 }
5689 if (b->silent)
5690 bs->print = 0;
5691 bs->commands = b->commands;
5692 incref_counted_command_line (bs->commands);
5693 if (command_line_is_silent (bs->commands
5694 ? bs->commands->commands : NULL))
5695 bs->print = 0;
5696
5697 b->ops->after_condition_true (bs);
5698 }
5699
5700 }
5701
5702 /* Print nothing for this entry if we don't stop or don't
5703 print. */
5704 if (!bs->stop || !bs->print)
5705 bs->print_it = print_it_noop;
5706 }
5707
5708 /* If we aren't stopping, the value of some hardware watchpoint may
5709 not have changed, but the intermediate memory locations we are
5710 watching may have. Don't bother if we're stopping; this will get
5711 done later. */
5712 need_remove_insert = 0;
5713 if (! bpstat_causes_stop (bs_head))
5714 for (bs = bs_head; bs != NULL; bs = bs->next)
5715 if (!bs->stop
5716 && bs->breakpoint_at
5717 && is_hardware_watchpoint (bs->breakpoint_at))
5718 {
5719 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5720
5721 update_watchpoint (w, 0 /* don't reparse. */);
5722 need_remove_insert = 1;
5723 }
5724
5725 if (need_remove_insert)
5726 update_global_location_list (UGLL_MAY_INSERT);
5727 else if (removed_any)
5728 update_global_location_list (UGLL_DONT_INSERT);
5729
5730 return bs_head;
5731 }
5732
5733 static void
5734 handle_jit_event (void)
5735 {
5736 struct frame_info *frame;
5737 struct gdbarch *gdbarch;
5738
5739 if (debug_infrun)
5740 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5741
5742 /* Switch terminal for any messages produced by
5743 breakpoint_re_set. */
5744 target_terminal_ours_for_output ();
5745
5746 frame = get_current_frame ();
5747 gdbarch = get_frame_arch (frame);
5748
5749 jit_event_handler (gdbarch);
5750
5751 target_terminal_inferior ();
5752 }
5753
5754 /* Prepare WHAT final decision for infrun. */
5755
5756 /* Decide what infrun needs to do with this bpstat. */
5757
5758 struct bpstat_what
5759 bpstat_what (bpstat bs_head)
5760 {
5761 struct bpstat_what retval;
5762 int jit_event = 0;
5763 bpstat bs;
5764
5765 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5766 retval.call_dummy = STOP_NONE;
5767 retval.is_longjmp = 0;
5768
5769 for (bs = bs_head; bs != NULL; bs = bs->next)
5770 {
5771 /* Extract this BS's action. After processing each BS, we check
5772 if its action overrides all we've seem so far. */
5773 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5774 enum bptype bptype;
5775
5776 if (bs->breakpoint_at == NULL)
5777 {
5778 /* I suspect this can happen if it was a momentary
5779 breakpoint which has since been deleted. */
5780 bptype = bp_none;
5781 }
5782 else
5783 bptype = bs->breakpoint_at->type;
5784
5785 switch (bptype)
5786 {
5787 case bp_none:
5788 break;
5789 case bp_breakpoint:
5790 case bp_hardware_breakpoint:
5791 case bp_single_step:
5792 case bp_until:
5793 case bp_finish:
5794 case bp_shlib_event:
5795 if (bs->stop)
5796 {
5797 if (bs->print)
5798 this_action = BPSTAT_WHAT_STOP_NOISY;
5799 else
5800 this_action = BPSTAT_WHAT_STOP_SILENT;
5801 }
5802 else
5803 this_action = BPSTAT_WHAT_SINGLE;
5804 break;
5805 case bp_watchpoint:
5806 case bp_hardware_watchpoint:
5807 case bp_read_watchpoint:
5808 case bp_access_watchpoint:
5809 if (bs->stop)
5810 {
5811 if (bs->print)
5812 this_action = BPSTAT_WHAT_STOP_NOISY;
5813 else
5814 this_action = BPSTAT_WHAT_STOP_SILENT;
5815 }
5816 else
5817 {
5818 /* There was a watchpoint, but we're not stopping.
5819 This requires no further action. */
5820 }
5821 break;
5822 case bp_longjmp:
5823 case bp_longjmp_call_dummy:
5824 case bp_exception:
5825 if (bs->stop)
5826 {
5827 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5828 retval.is_longjmp = bptype != bp_exception;
5829 }
5830 else
5831 this_action = BPSTAT_WHAT_SINGLE;
5832 break;
5833 case bp_longjmp_resume:
5834 case bp_exception_resume:
5835 if (bs->stop)
5836 {
5837 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5838 retval.is_longjmp = bptype == bp_longjmp_resume;
5839 }
5840 else
5841 this_action = BPSTAT_WHAT_SINGLE;
5842 break;
5843 case bp_step_resume:
5844 if (bs->stop)
5845 this_action = BPSTAT_WHAT_STEP_RESUME;
5846 else
5847 {
5848 /* It is for the wrong frame. */
5849 this_action = BPSTAT_WHAT_SINGLE;
5850 }
5851 break;
5852 case bp_hp_step_resume:
5853 if (bs->stop)
5854 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5855 else
5856 {
5857 /* It is for the wrong frame. */
5858 this_action = BPSTAT_WHAT_SINGLE;
5859 }
5860 break;
5861 case bp_watchpoint_scope:
5862 case bp_thread_event:
5863 case bp_overlay_event:
5864 case bp_longjmp_master:
5865 case bp_std_terminate_master:
5866 case bp_exception_master:
5867 this_action = BPSTAT_WHAT_SINGLE;
5868 break;
5869 case bp_catchpoint:
5870 if (bs->stop)
5871 {
5872 if (bs->print)
5873 this_action = BPSTAT_WHAT_STOP_NOISY;
5874 else
5875 this_action = BPSTAT_WHAT_STOP_SILENT;
5876 }
5877 else
5878 {
5879 /* There was a catchpoint, but we're not stopping.
5880 This requires no further action. */
5881 }
5882 break;
5883 case bp_jit_event:
5884 jit_event = 1;
5885 this_action = BPSTAT_WHAT_SINGLE;
5886 break;
5887 case bp_call_dummy:
5888 /* Make sure the action is stop (silent or noisy),
5889 so infrun.c pops the dummy frame. */
5890 retval.call_dummy = STOP_STACK_DUMMY;
5891 this_action = BPSTAT_WHAT_STOP_SILENT;
5892 break;
5893 case bp_std_terminate:
5894 /* Make sure the action is stop (silent or noisy),
5895 so infrun.c pops the dummy frame. */
5896 retval.call_dummy = STOP_STD_TERMINATE;
5897 this_action = BPSTAT_WHAT_STOP_SILENT;
5898 break;
5899 case bp_tracepoint:
5900 case bp_fast_tracepoint:
5901 case bp_static_tracepoint:
5902 /* Tracepoint hits should not be reported back to GDB, and
5903 if one got through somehow, it should have been filtered
5904 out already. */
5905 internal_error (__FILE__, __LINE__,
5906 _("bpstat_what: tracepoint encountered"));
5907 break;
5908 case bp_gnu_ifunc_resolver:
5909 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5910 this_action = BPSTAT_WHAT_SINGLE;
5911 break;
5912 case bp_gnu_ifunc_resolver_return:
5913 /* The breakpoint will be removed, execution will restart from the
5914 PC of the former breakpoint. */
5915 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5916 break;
5917
5918 case bp_dprintf:
5919 if (bs->stop)
5920 this_action = BPSTAT_WHAT_STOP_SILENT;
5921 else
5922 this_action = BPSTAT_WHAT_SINGLE;
5923 break;
5924
5925 default:
5926 internal_error (__FILE__, __LINE__,
5927 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5928 }
5929
5930 retval.main_action = max (retval.main_action, this_action);
5931 }
5932
5933 return retval;
5934 }
5935
5936 void
5937 bpstat_run_callbacks (bpstat bs_head)
5938 {
5939 bpstat bs;
5940
5941 for (bs = bs_head; bs != NULL; bs = bs->next)
5942 {
5943 struct breakpoint *b = bs->breakpoint_at;
5944
5945 if (b == NULL)
5946 continue;
5947 switch (b->type)
5948 {
5949 case bp_jit_event:
5950 handle_jit_event ();
5951 break;
5952 case bp_gnu_ifunc_resolver:
5953 gnu_ifunc_resolver_stop (b);
5954 break;
5955 case bp_gnu_ifunc_resolver_return:
5956 gnu_ifunc_resolver_return_stop (b);
5957 break;
5958 }
5959 }
5960 }
5961
5962 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5963 without hardware support). This isn't related to a specific bpstat,
5964 just to things like whether watchpoints are set. */
5965
5966 int
5967 bpstat_should_step (void)
5968 {
5969 struct breakpoint *b;
5970
5971 ALL_BREAKPOINTS (b)
5972 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5973 return 1;
5974 return 0;
5975 }
5976
5977 int
5978 bpstat_causes_stop (bpstat bs)
5979 {
5980 for (; bs != NULL; bs = bs->next)
5981 if (bs->stop)
5982 return 1;
5983
5984 return 0;
5985 }
5986
5987 \f
5988
5989 /* Compute a string of spaces suitable to indent the next line
5990 so it starts at the position corresponding to the table column
5991 named COL_NAME in the currently active table of UIOUT. */
5992
5993 static char *
5994 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5995 {
5996 static char wrap_indent[80];
5997 int i, total_width, width, align;
5998 char *text;
5999
6000 total_width = 0;
6001 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
6002 {
6003 if (strcmp (text, col_name) == 0)
6004 {
6005 gdb_assert (total_width < sizeof wrap_indent);
6006 memset (wrap_indent, ' ', total_width);
6007 wrap_indent[total_width] = 0;
6008
6009 return wrap_indent;
6010 }
6011
6012 total_width += width + 1;
6013 }
6014
6015 return NULL;
6016 }
6017
6018 /* Determine if the locations of this breakpoint will have their conditions
6019 evaluated by the target, host or a mix of both. Returns the following:
6020
6021 "host": Host evals condition.
6022 "host or target": Host or Target evals condition.
6023 "target": Target evals condition.
6024 */
6025
6026 static const char *
6027 bp_condition_evaluator (struct breakpoint *b)
6028 {
6029 struct bp_location *bl;
6030 char host_evals = 0;
6031 char target_evals = 0;
6032
6033 if (!b)
6034 return NULL;
6035
6036 if (!is_breakpoint (b))
6037 return NULL;
6038
6039 if (gdb_evaluates_breakpoint_condition_p ()
6040 || !target_supports_evaluation_of_breakpoint_conditions ())
6041 return condition_evaluation_host;
6042
6043 for (bl = b->loc; bl; bl = bl->next)
6044 {
6045 if (bl->cond_bytecode)
6046 target_evals++;
6047 else
6048 host_evals++;
6049 }
6050
6051 if (host_evals && target_evals)
6052 return condition_evaluation_both;
6053 else if (target_evals)
6054 return condition_evaluation_target;
6055 else
6056 return condition_evaluation_host;
6057 }
6058
6059 /* Determine the breakpoint location's condition evaluator. This is
6060 similar to bp_condition_evaluator, but for locations. */
6061
6062 static const char *
6063 bp_location_condition_evaluator (struct bp_location *bl)
6064 {
6065 if (bl && !is_breakpoint (bl->owner))
6066 return NULL;
6067
6068 if (gdb_evaluates_breakpoint_condition_p ()
6069 || !target_supports_evaluation_of_breakpoint_conditions ())
6070 return condition_evaluation_host;
6071
6072 if (bl && bl->cond_bytecode)
6073 return condition_evaluation_target;
6074 else
6075 return condition_evaluation_host;
6076 }
6077
6078 /* Print the LOC location out of the list of B->LOC locations. */
6079
6080 static void
6081 print_breakpoint_location (struct breakpoint *b,
6082 struct bp_location *loc)
6083 {
6084 struct ui_out *uiout = current_uiout;
6085 struct cleanup *old_chain = save_current_program_space ();
6086
6087 if (loc != NULL && loc->shlib_disabled)
6088 loc = NULL;
6089
6090 if (loc != NULL)
6091 set_current_program_space (loc->pspace);
6092
6093 if (b->display_canonical)
6094 ui_out_field_string (uiout, "what",
6095 event_location_to_string (b->location));
6096 else if (loc && loc->symtab)
6097 {
6098 struct symbol *sym
6099 = find_pc_sect_function (loc->address, loc->section);
6100 if (sym)
6101 {
6102 ui_out_text (uiout, "in ");
6103 ui_out_field_string (uiout, "func",
6104 SYMBOL_PRINT_NAME (sym));
6105 ui_out_text (uiout, " ");
6106 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
6107 ui_out_text (uiout, "at ");
6108 }
6109 ui_out_field_string (uiout, "file",
6110 symtab_to_filename_for_display (loc->symtab));
6111 ui_out_text (uiout, ":");
6112
6113 if (ui_out_is_mi_like_p (uiout))
6114 ui_out_field_string (uiout, "fullname",
6115 symtab_to_fullname (loc->symtab));
6116
6117 ui_out_field_int (uiout, "line", loc->line_number);
6118 }
6119 else if (loc)
6120 {
6121 struct ui_file *stb = mem_fileopen ();
6122 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
6123
6124 print_address_symbolic (loc->gdbarch, loc->address, stb,
6125 demangle, "");
6126 ui_out_field_stream (uiout, "at", stb);
6127
6128 do_cleanups (stb_chain);
6129 }
6130 else
6131 {
6132 ui_out_field_string (uiout, "pending",
6133 event_location_to_string (b->location));
6134 /* If extra_string is available, it could be holding a condition
6135 or dprintf arguments. In either case, make sure it is printed,
6136 too, but only for non-MI streams. */
6137 if (!ui_out_is_mi_like_p (uiout) && b->extra_string != NULL)
6138 {
6139 if (b->type == bp_dprintf)
6140 ui_out_text (uiout, ",");
6141 else
6142 ui_out_text (uiout, " ");
6143 ui_out_text (uiout, b->extra_string);
6144 }
6145 }
6146
6147 if (loc && is_breakpoint (b)
6148 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
6149 && bp_condition_evaluator (b) == condition_evaluation_both)
6150 {
6151 ui_out_text (uiout, " (");
6152 ui_out_field_string (uiout, "evaluated-by",
6153 bp_location_condition_evaluator (loc));
6154 ui_out_text (uiout, ")");
6155 }
6156
6157 do_cleanups (old_chain);
6158 }
6159
6160 static const char *
6161 bptype_string (enum bptype type)
6162 {
6163 struct ep_type_description
6164 {
6165 enum bptype type;
6166 char *description;
6167 };
6168 static struct ep_type_description bptypes[] =
6169 {
6170 {bp_none, "?deleted?"},
6171 {bp_breakpoint, "breakpoint"},
6172 {bp_hardware_breakpoint, "hw breakpoint"},
6173 {bp_single_step, "sw single-step"},
6174 {bp_until, "until"},
6175 {bp_finish, "finish"},
6176 {bp_watchpoint, "watchpoint"},
6177 {bp_hardware_watchpoint, "hw watchpoint"},
6178 {bp_read_watchpoint, "read watchpoint"},
6179 {bp_access_watchpoint, "acc watchpoint"},
6180 {bp_longjmp, "longjmp"},
6181 {bp_longjmp_resume, "longjmp resume"},
6182 {bp_longjmp_call_dummy, "longjmp for call dummy"},
6183 {bp_exception, "exception"},
6184 {bp_exception_resume, "exception resume"},
6185 {bp_step_resume, "step resume"},
6186 {bp_hp_step_resume, "high-priority step resume"},
6187 {bp_watchpoint_scope, "watchpoint scope"},
6188 {bp_call_dummy, "call dummy"},
6189 {bp_std_terminate, "std::terminate"},
6190 {bp_shlib_event, "shlib events"},
6191 {bp_thread_event, "thread events"},
6192 {bp_overlay_event, "overlay events"},
6193 {bp_longjmp_master, "longjmp master"},
6194 {bp_std_terminate_master, "std::terminate master"},
6195 {bp_exception_master, "exception master"},
6196 {bp_catchpoint, "catchpoint"},
6197 {bp_tracepoint, "tracepoint"},
6198 {bp_fast_tracepoint, "fast tracepoint"},
6199 {bp_static_tracepoint, "static tracepoint"},
6200 {bp_dprintf, "dprintf"},
6201 {bp_jit_event, "jit events"},
6202 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6203 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6204 };
6205
6206 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6207 || ((int) type != bptypes[(int) type].type))
6208 internal_error (__FILE__, __LINE__,
6209 _("bptypes table does not describe type #%d."),
6210 (int) type);
6211
6212 return bptypes[(int) type].description;
6213 }
6214
6215 /* For MI, output a field named 'thread-groups' with a list as the value.
6216 For CLI, prefix the list with the string 'inf'. */
6217
6218 static void
6219 output_thread_groups (struct ui_out *uiout,
6220 const char *field_name,
6221 VEC(int) *inf_num,
6222 int mi_only)
6223 {
6224 struct cleanup *back_to;
6225 int is_mi = ui_out_is_mi_like_p (uiout);
6226 int inf;
6227 int i;
6228
6229 /* For backward compatibility, don't display inferiors in CLI unless
6230 there are several. Always display them for MI. */
6231 if (!is_mi && mi_only)
6232 return;
6233
6234 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
6235
6236 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
6237 {
6238 if (is_mi)
6239 {
6240 char mi_group[10];
6241
6242 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
6243 ui_out_field_string (uiout, NULL, mi_group);
6244 }
6245 else
6246 {
6247 if (i == 0)
6248 ui_out_text (uiout, " inf ");
6249 else
6250 ui_out_text (uiout, ", ");
6251
6252 ui_out_text (uiout, plongest (inf));
6253 }
6254 }
6255
6256 do_cleanups (back_to);
6257 }
6258
6259 /* Print B to gdb_stdout. */
6260
6261 static void
6262 print_one_breakpoint_location (struct breakpoint *b,
6263 struct bp_location *loc,
6264 int loc_number,
6265 struct bp_location **last_loc,
6266 int allflag)
6267 {
6268 struct command_line *l;
6269 static char bpenables[] = "nynny";
6270
6271 struct ui_out *uiout = current_uiout;
6272 int header_of_multiple = 0;
6273 int part_of_multiple = (loc != NULL);
6274 struct value_print_options opts;
6275
6276 get_user_print_options (&opts);
6277
6278 gdb_assert (!loc || loc_number != 0);
6279 /* See comment in print_one_breakpoint concerning treatment of
6280 breakpoints with single disabled location. */
6281 if (loc == NULL
6282 && (b->loc != NULL
6283 && (b->loc->next != NULL || !b->loc->enabled)))
6284 header_of_multiple = 1;
6285 if (loc == NULL)
6286 loc = b->loc;
6287
6288 annotate_record ();
6289
6290 /* 1 */
6291 annotate_field (0);
6292 if (part_of_multiple)
6293 {
6294 char *formatted;
6295 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6296 ui_out_field_string (uiout, "number", formatted);
6297 xfree (formatted);
6298 }
6299 else
6300 {
6301 ui_out_field_int (uiout, "number", b->number);
6302 }
6303
6304 /* 2 */
6305 annotate_field (1);
6306 if (part_of_multiple)
6307 ui_out_field_skip (uiout, "type");
6308 else
6309 ui_out_field_string (uiout, "type", bptype_string (b->type));
6310
6311 /* 3 */
6312 annotate_field (2);
6313 if (part_of_multiple)
6314 ui_out_field_skip (uiout, "disp");
6315 else
6316 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
6317
6318
6319 /* 4 */
6320 annotate_field (3);
6321 if (part_of_multiple)
6322 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
6323 else
6324 ui_out_field_fmt (uiout, "enabled", "%c",
6325 bpenables[(int) b->enable_state]);
6326 ui_out_spaces (uiout, 2);
6327
6328
6329 /* 5 and 6 */
6330 if (b->ops != NULL && b->ops->print_one != NULL)
6331 {
6332 /* Although the print_one can possibly print all locations,
6333 calling it here is not likely to get any nice result. So,
6334 make sure there's just one location. */
6335 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6336 b->ops->print_one (b, last_loc);
6337 }
6338 else
6339 switch (b->type)
6340 {
6341 case bp_none:
6342 internal_error (__FILE__, __LINE__,
6343 _("print_one_breakpoint: bp_none encountered\n"));
6344 break;
6345
6346 case bp_watchpoint:
6347 case bp_hardware_watchpoint:
6348 case bp_read_watchpoint:
6349 case bp_access_watchpoint:
6350 {
6351 struct watchpoint *w = (struct watchpoint *) b;
6352
6353 /* Field 4, the address, is omitted (which makes the columns
6354 not line up too nicely with the headers, but the effect
6355 is relatively readable). */
6356 if (opts.addressprint)
6357 ui_out_field_skip (uiout, "addr");
6358 annotate_field (5);
6359 ui_out_field_string (uiout, "what", w->exp_string);
6360 }
6361 break;
6362
6363 case bp_breakpoint:
6364 case bp_hardware_breakpoint:
6365 case bp_single_step:
6366 case bp_until:
6367 case bp_finish:
6368 case bp_longjmp:
6369 case bp_longjmp_resume:
6370 case bp_longjmp_call_dummy:
6371 case bp_exception:
6372 case bp_exception_resume:
6373 case bp_step_resume:
6374 case bp_hp_step_resume:
6375 case bp_watchpoint_scope:
6376 case bp_call_dummy:
6377 case bp_std_terminate:
6378 case bp_shlib_event:
6379 case bp_thread_event:
6380 case bp_overlay_event:
6381 case bp_longjmp_master:
6382 case bp_std_terminate_master:
6383 case bp_exception_master:
6384 case bp_tracepoint:
6385 case bp_fast_tracepoint:
6386 case bp_static_tracepoint:
6387 case bp_dprintf:
6388 case bp_jit_event:
6389 case bp_gnu_ifunc_resolver:
6390 case bp_gnu_ifunc_resolver_return:
6391 if (opts.addressprint)
6392 {
6393 annotate_field (4);
6394 if (header_of_multiple)
6395 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
6396 else if (b->loc == NULL || loc->shlib_disabled)
6397 ui_out_field_string (uiout, "addr", "<PENDING>");
6398 else
6399 ui_out_field_core_addr (uiout, "addr",
6400 loc->gdbarch, loc->address);
6401 }
6402 annotate_field (5);
6403 if (!header_of_multiple)
6404 print_breakpoint_location (b, loc);
6405 if (b->loc)
6406 *last_loc = b->loc;
6407 break;
6408 }
6409
6410
6411 if (loc != NULL && !header_of_multiple)
6412 {
6413 struct inferior *inf;
6414 VEC(int) *inf_num = NULL;
6415 int mi_only = 1;
6416
6417 ALL_INFERIORS (inf)
6418 {
6419 if (inf->pspace == loc->pspace)
6420 VEC_safe_push (int, inf_num, inf->num);
6421 }
6422
6423 /* For backward compatibility, don't display inferiors in CLI unless
6424 there are several. Always display for MI. */
6425 if (allflag
6426 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6427 && (number_of_program_spaces () > 1
6428 || number_of_inferiors () > 1)
6429 /* LOC is for existing B, it cannot be in
6430 moribund_locations and thus having NULL OWNER. */
6431 && loc->owner->type != bp_catchpoint))
6432 mi_only = 0;
6433 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6434 VEC_free (int, inf_num);
6435 }
6436
6437 if (!part_of_multiple)
6438 {
6439 if (b->thread != -1)
6440 {
6441 /* FIXME: This seems to be redundant and lost here; see the
6442 "stop only in" line a little further down. */
6443 ui_out_text (uiout, " thread ");
6444 ui_out_field_int (uiout, "thread", b->thread);
6445 }
6446 else if (b->task != 0)
6447 {
6448 ui_out_text (uiout, " task ");
6449 ui_out_field_int (uiout, "task", b->task);
6450 }
6451 }
6452
6453 ui_out_text (uiout, "\n");
6454
6455 if (!part_of_multiple)
6456 b->ops->print_one_detail (b, uiout);
6457
6458 if (part_of_multiple && frame_id_p (b->frame_id))
6459 {
6460 annotate_field (6);
6461 ui_out_text (uiout, "\tstop only in stack frame at ");
6462 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6463 the frame ID. */
6464 ui_out_field_core_addr (uiout, "frame",
6465 b->gdbarch, b->frame_id.stack_addr);
6466 ui_out_text (uiout, "\n");
6467 }
6468
6469 if (!part_of_multiple && b->cond_string)
6470 {
6471 annotate_field (7);
6472 if (is_tracepoint (b))
6473 ui_out_text (uiout, "\ttrace only if ");
6474 else
6475 ui_out_text (uiout, "\tstop only if ");
6476 ui_out_field_string (uiout, "cond", b->cond_string);
6477
6478 /* Print whether the target is doing the breakpoint's condition
6479 evaluation. If GDB is doing the evaluation, don't print anything. */
6480 if (is_breakpoint (b)
6481 && breakpoint_condition_evaluation_mode ()
6482 == condition_evaluation_target)
6483 {
6484 ui_out_text (uiout, " (");
6485 ui_out_field_string (uiout, "evaluated-by",
6486 bp_condition_evaluator (b));
6487 ui_out_text (uiout, " evals)");
6488 }
6489 ui_out_text (uiout, "\n");
6490 }
6491
6492 if (!part_of_multiple && b->thread != -1)
6493 {
6494 /* FIXME should make an annotation for this. */
6495 ui_out_text (uiout, "\tstop only in thread ");
6496 ui_out_field_int (uiout, "thread", b->thread);
6497 ui_out_text (uiout, "\n");
6498 }
6499
6500 if (!part_of_multiple)
6501 {
6502 if (b->hit_count)
6503 {
6504 /* FIXME should make an annotation for this. */
6505 if (is_catchpoint (b))
6506 ui_out_text (uiout, "\tcatchpoint");
6507 else if (is_tracepoint (b))
6508 ui_out_text (uiout, "\ttracepoint");
6509 else
6510 ui_out_text (uiout, "\tbreakpoint");
6511 ui_out_text (uiout, " already hit ");
6512 ui_out_field_int (uiout, "times", b->hit_count);
6513 if (b->hit_count == 1)
6514 ui_out_text (uiout, " time\n");
6515 else
6516 ui_out_text (uiout, " times\n");
6517 }
6518 else
6519 {
6520 /* Output the count also if it is zero, but only if this is mi. */
6521 if (ui_out_is_mi_like_p (uiout))
6522 ui_out_field_int (uiout, "times", b->hit_count);
6523 }
6524 }
6525
6526 if (!part_of_multiple && b->ignore_count)
6527 {
6528 annotate_field (8);
6529 ui_out_text (uiout, "\tignore next ");
6530 ui_out_field_int (uiout, "ignore", b->ignore_count);
6531 ui_out_text (uiout, " hits\n");
6532 }
6533
6534 /* Note that an enable count of 1 corresponds to "enable once"
6535 behavior, which is reported by the combination of enablement and
6536 disposition, so we don't need to mention it here. */
6537 if (!part_of_multiple && b->enable_count > 1)
6538 {
6539 annotate_field (8);
6540 ui_out_text (uiout, "\tdisable after ");
6541 /* Tweak the wording to clarify that ignore and enable counts
6542 are distinct, and have additive effect. */
6543 if (b->ignore_count)
6544 ui_out_text (uiout, "additional ");
6545 else
6546 ui_out_text (uiout, "next ");
6547 ui_out_field_int (uiout, "enable", b->enable_count);
6548 ui_out_text (uiout, " hits\n");
6549 }
6550
6551 if (!part_of_multiple && is_tracepoint (b))
6552 {
6553 struct tracepoint *tp = (struct tracepoint *) b;
6554
6555 if (tp->traceframe_usage)
6556 {
6557 ui_out_text (uiout, "\ttrace buffer usage ");
6558 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6559 ui_out_text (uiout, " bytes\n");
6560 }
6561 }
6562
6563 l = b->commands ? b->commands->commands : NULL;
6564 if (!part_of_multiple && l)
6565 {
6566 struct cleanup *script_chain;
6567
6568 annotate_field (9);
6569 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6570 print_command_lines (uiout, l, 4);
6571 do_cleanups (script_chain);
6572 }
6573
6574 if (is_tracepoint (b))
6575 {
6576 struct tracepoint *t = (struct tracepoint *) b;
6577
6578 if (!part_of_multiple && t->pass_count)
6579 {
6580 annotate_field (10);
6581 ui_out_text (uiout, "\tpass count ");
6582 ui_out_field_int (uiout, "pass", t->pass_count);
6583 ui_out_text (uiout, " \n");
6584 }
6585
6586 /* Don't display it when tracepoint or tracepoint location is
6587 pending. */
6588 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6589 {
6590 annotate_field (11);
6591
6592 if (ui_out_is_mi_like_p (uiout))
6593 ui_out_field_string (uiout, "installed",
6594 loc->inserted ? "y" : "n");
6595 else
6596 {
6597 if (loc->inserted)
6598 ui_out_text (uiout, "\t");
6599 else
6600 ui_out_text (uiout, "\tnot ");
6601 ui_out_text (uiout, "installed on target\n");
6602 }
6603 }
6604 }
6605
6606 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6607 {
6608 if (is_watchpoint (b))
6609 {
6610 struct watchpoint *w = (struct watchpoint *) b;
6611
6612 ui_out_field_string (uiout, "original-location", w->exp_string);
6613 }
6614 else if (b->location != NULL
6615 && event_location_to_string (b->location) != NULL)
6616 ui_out_field_string (uiout, "original-location",
6617 event_location_to_string (b->location));
6618 }
6619 }
6620
6621 static void
6622 print_one_breakpoint (struct breakpoint *b,
6623 struct bp_location **last_loc,
6624 int allflag)
6625 {
6626 struct cleanup *bkpt_chain;
6627 struct ui_out *uiout = current_uiout;
6628
6629 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6630
6631 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6632 do_cleanups (bkpt_chain);
6633
6634 /* If this breakpoint has custom print function,
6635 it's already printed. Otherwise, print individual
6636 locations, if any. */
6637 if (b->ops == NULL || b->ops->print_one == NULL)
6638 {
6639 /* If breakpoint has a single location that is disabled, we
6640 print it as if it had several locations, since otherwise it's
6641 hard to represent "breakpoint enabled, location disabled"
6642 situation.
6643
6644 Note that while hardware watchpoints have several locations
6645 internally, that's not a property exposed to user. */
6646 if (b->loc
6647 && !is_hardware_watchpoint (b)
6648 && (b->loc->next || !b->loc->enabled))
6649 {
6650 struct bp_location *loc;
6651 int n = 1;
6652
6653 for (loc = b->loc; loc; loc = loc->next, ++n)
6654 {
6655 struct cleanup *inner2 =
6656 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6657 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6658 do_cleanups (inner2);
6659 }
6660 }
6661 }
6662 }
6663
6664 static int
6665 breakpoint_address_bits (struct breakpoint *b)
6666 {
6667 int print_address_bits = 0;
6668 struct bp_location *loc;
6669
6670 for (loc = b->loc; loc; loc = loc->next)
6671 {
6672 int addr_bit;
6673
6674 /* Software watchpoints that aren't watching memory don't have
6675 an address to print. */
6676 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6677 continue;
6678
6679 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6680 if (addr_bit > print_address_bits)
6681 print_address_bits = addr_bit;
6682 }
6683
6684 return print_address_bits;
6685 }
6686
6687 struct captured_breakpoint_query_args
6688 {
6689 int bnum;
6690 };
6691
6692 static int
6693 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6694 {
6695 struct captured_breakpoint_query_args *args
6696 = (struct captured_breakpoint_query_args *) data;
6697 struct breakpoint *b;
6698 struct bp_location *dummy_loc = NULL;
6699
6700 ALL_BREAKPOINTS (b)
6701 {
6702 if (args->bnum == b->number)
6703 {
6704 print_one_breakpoint (b, &dummy_loc, 0);
6705 return GDB_RC_OK;
6706 }
6707 }
6708 return GDB_RC_NONE;
6709 }
6710
6711 enum gdb_rc
6712 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6713 char **error_message)
6714 {
6715 struct captured_breakpoint_query_args args;
6716
6717 args.bnum = bnum;
6718 /* For the moment we don't trust print_one_breakpoint() to not throw
6719 an error. */
6720 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6721 error_message, RETURN_MASK_ALL) < 0)
6722 return GDB_RC_FAIL;
6723 else
6724 return GDB_RC_OK;
6725 }
6726
6727 /* Return true if this breakpoint was set by the user, false if it is
6728 internal or momentary. */
6729
6730 int
6731 user_breakpoint_p (struct breakpoint *b)
6732 {
6733 return b->number > 0;
6734 }
6735
6736 /* Print information on user settable breakpoint (watchpoint, etc)
6737 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6738 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6739 FILTER is non-NULL, call it on each breakpoint and only include the
6740 ones for which it returns non-zero. Return the total number of
6741 breakpoints listed. */
6742
6743 static int
6744 breakpoint_1 (char *args, int allflag,
6745 int (*filter) (const struct breakpoint *))
6746 {
6747 struct breakpoint *b;
6748 struct bp_location *last_loc = NULL;
6749 int nr_printable_breakpoints;
6750 struct cleanup *bkpttbl_chain;
6751 struct value_print_options opts;
6752 int print_address_bits = 0;
6753 int print_type_col_width = 14;
6754 struct ui_out *uiout = current_uiout;
6755
6756 get_user_print_options (&opts);
6757
6758 /* Compute the number of rows in the table, as well as the size
6759 required for address fields. */
6760 nr_printable_breakpoints = 0;
6761 ALL_BREAKPOINTS (b)
6762 {
6763 /* If we have a filter, only list the breakpoints it accepts. */
6764 if (filter && !filter (b))
6765 continue;
6766
6767 /* If we have an "args" string, it is a list of breakpoints to
6768 accept. Skip the others. */
6769 if (args != NULL && *args != '\0')
6770 {
6771 if (allflag && parse_and_eval_long (args) != b->number)
6772 continue;
6773 if (!allflag && !number_is_in_list (args, b->number))
6774 continue;
6775 }
6776
6777 if (allflag || user_breakpoint_p (b))
6778 {
6779 int addr_bit, type_len;
6780
6781 addr_bit = breakpoint_address_bits (b);
6782 if (addr_bit > print_address_bits)
6783 print_address_bits = addr_bit;
6784
6785 type_len = strlen (bptype_string (b->type));
6786 if (type_len > print_type_col_width)
6787 print_type_col_width = type_len;
6788
6789 nr_printable_breakpoints++;
6790 }
6791 }
6792
6793 if (opts.addressprint)
6794 bkpttbl_chain
6795 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6796 nr_printable_breakpoints,
6797 "BreakpointTable");
6798 else
6799 bkpttbl_chain
6800 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6801 nr_printable_breakpoints,
6802 "BreakpointTable");
6803
6804 if (nr_printable_breakpoints > 0)
6805 annotate_breakpoints_headers ();
6806 if (nr_printable_breakpoints > 0)
6807 annotate_field (0);
6808 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6809 if (nr_printable_breakpoints > 0)
6810 annotate_field (1);
6811 ui_out_table_header (uiout, print_type_col_width, ui_left,
6812 "type", "Type"); /* 2 */
6813 if (nr_printable_breakpoints > 0)
6814 annotate_field (2);
6815 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6816 if (nr_printable_breakpoints > 0)
6817 annotate_field (3);
6818 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6819 if (opts.addressprint)
6820 {
6821 if (nr_printable_breakpoints > 0)
6822 annotate_field (4);
6823 if (print_address_bits <= 32)
6824 ui_out_table_header (uiout, 10, ui_left,
6825 "addr", "Address"); /* 5 */
6826 else
6827 ui_out_table_header (uiout, 18, ui_left,
6828 "addr", "Address"); /* 5 */
6829 }
6830 if (nr_printable_breakpoints > 0)
6831 annotate_field (5);
6832 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6833 ui_out_table_body (uiout);
6834 if (nr_printable_breakpoints > 0)
6835 annotate_breakpoints_table ();
6836
6837 ALL_BREAKPOINTS (b)
6838 {
6839 QUIT;
6840 /* If we have a filter, only list the breakpoints it accepts. */
6841 if (filter && !filter (b))
6842 continue;
6843
6844 /* If we have an "args" string, it is a list of breakpoints to
6845 accept. Skip the others. */
6846
6847 if (args != NULL && *args != '\0')
6848 {
6849 if (allflag) /* maintenance info breakpoint */
6850 {
6851 if (parse_and_eval_long (args) != b->number)
6852 continue;
6853 }
6854 else /* all others */
6855 {
6856 if (!number_is_in_list (args, b->number))
6857 continue;
6858 }
6859 }
6860 /* We only print out user settable breakpoints unless the
6861 allflag is set. */
6862 if (allflag || user_breakpoint_p (b))
6863 print_one_breakpoint (b, &last_loc, allflag);
6864 }
6865
6866 do_cleanups (bkpttbl_chain);
6867
6868 if (nr_printable_breakpoints == 0)
6869 {
6870 /* If there's a filter, let the caller decide how to report
6871 empty list. */
6872 if (!filter)
6873 {
6874 if (args == NULL || *args == '\0')
6875 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6876 else
6877 ui_out_message (uiout, 0,
6878 "No breakpoint or watchpoint matching '%s'.\n",
6879 args);
6880 }
6881 }
6882 else
6883 {
6884 if (last_loc && !server_command)
6885 set_next_address (last_loc->gdbarch, last_loc->address);
6886 }
6887
6888 /* FIXME? Should this be moved up so that it is only called when
6889 there have been breakpoints? */
6890 annotate_breakpoints_table_end ();
6891
6892 return nr_printable_breakpoints;
6893 }
6894
6895 /* Display the value of default-collect in a way that is generally
6896 compatible with the breakpoint list. */
6897
6898 static void
6899 default_collect_info (void)
6900 {
6901 struct ui_out *uiout = current_uiout;
6902
6903 /* If it has no value (which is frequently the case), say nothing; a
6904 message like "No default-collect." gets in user's face when it's
6905 not wanted. */
6906 if (!*default_collect)
6907 return;
6908
6909 /* The following phrase lines up nicely with per-tracepoint collect
6910 actions. */
6911 ui_out_text (uiout, "default collect ");
6912 ui_out_field_string (uiout, "default-collect", default_collect);
6913 ui_out_text (uiout, " \n");
6914 }
6915
6916 static void
6917 breakpoints_info (char *args, int from_tty)
6918 {
6919 breakpoint_1 (args, 0, NULL);
6920
6921 default_collect_info ();
6922 }
6923
6924 static void
6925 watchpoints_info (char *args, int from_tty)
6926 {
6927 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6928 struct ui_out *uiout = current_uiout;
6929
6930 if (num_printed == 0)
6931 {
6932 if (args == NULL || *args == '\0')
6933 ui_out_message (uiout, 0, "No watchpoints.\n");
6934 else
6935 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6936 }
6937 }
6938
6939 static void
6940 maintenance_info_breakpoints (char *args, int from_tty)
6941 {
6942 breakpoint_1 (args, 1, NULL);
6943
6944 default_collect_info ();
6945 }
6946
6947 static int
6948 breakpoint_has_pc (struct breakpoint *b,
6949 struct program_space *pspace,
6950 CORE_ADDR pc, struct obj_section *section)
6951 {
6952 struct bp_location *bl = b->loc;
6953
6954 for (; bl; bl = bl->next)
6955 {
6956 if (bl->pspace == pspace
6957 && bl->address == pc
6958 && (!overlay_debugging || bl->section == section))
6959 return 1;
6960 }
6961 return 0;
6962 }
6963
6964 /* Print a message describing any user-breakpoints set at PC. This
6965 concerns with logical breakpoints, so we match program spaces, not
6966 address spaces. */
6967
6968 static void
6969 describe_other_breakpoints (struct gdbarch *gdbarch,
6970 struct program_space *pspace, CORE_ADDR pc,
6971 struct obj_section *section, int thread)
6972 {
6973 int others = 0;
6974 struct breakpoint *b;
6975
6976 ALL_BREAKPOINTS (b)
6977 others += (user_breakpoint_p (b)
6978 && breakpoint_has_pc (b, pspace, pc, section));
6979 if (others > 0)
6980 {
6981 if (others == 1)
6982 printf_filtered (_("Note: breakpoint "));
6983 else /* if (others == ???) */
6984 printf_filtered (_("Note: breakpoints "));
6985 ALL_BREAKPOINTS (b)
6986 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6987 {
6988 others--;
6989 printf_filtered ("%d", b->number);
6990 if (b->thread == -1 && thread != -1)
6991 printf_filtered (" (all threads)");
6992 else if (b->thread != -1)
6993 printf_filtered (" (thread %d)", b->thread);
6994 printf_filtered ("%s%s ",
6995 ((b->enable_state == bp_disabled
6996 || b->enable_state == bp_call_disabled)
6997 ? " (disabled)"
6998 : ""),
6999 (others > 1) ? ","
7000 : ((others == 1) ? " and" : ""));
7001 }
7002 printf_filtered (_("also set at pc "));
7003 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
7004 printf_filtered (".\n");
7005 }
7006 }
7007 \f
7008
7009 /* Return true iff it is meaningful to use the address member of
7010 BPT locations. For some breakpoint types, the locations' address members
7011 are irrelevant and it makes no sense to attempt to compare them to other
7012 addresses (or use them for any other purpose either).
7013
7014 More specifically, each of the following breakpoint types will
7015 always have a zero valued location address and we don't want to mark
7016 breakpoints of any of these types to be a duplicate of an actual
7017 breakpoint location at address zero:
7018
7019 bp_watchpoint
7020 bp_catchpoint
7021
7022 */
7023
7024 static int
7025 breakpoint_address_is_meaningful (struct breakpoint *bpt)
7026 {
7027 enum bptype type = bpt->type;
7028
7029 return (type != bp_watchpoint && type != bp_catchpoint);
7030 }
7031
7032 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
7033 true if LOC1 and LOC2 represent the same watchpoint location. */
7034
7035 static int
7036 watchpoint_locations_match (struct bp_location *loc1,
7037 struct bp_location *loc2)
7038 {
7039 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
7040 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
7041
7042 /* Both of them must exist. */
7043 gdb_assert (w1 != NULL);
7044 gdb_assert (w2 != NULL);
7045
7046 /* If the target can evaluate the condition expression in hardware,
7047 then we we need to insert both watchpoints even if they are at
7048 the same place. Otherwise the watchpoint will only trigger when
7049 the condition of whichever watchpoint was inserted evaluates to
7050 true, not giving a chance for GDB to check the condition of the
7051 other watchpoint. */
7052 if ((w1->cond_exp
7053 && target_can_accel_watchpoint_condition (loc1->address,
7054 loc1->length,
7055 loc1->watchpoint_type,
7056 w1->cond_exp))
7057 || (w2->cond_exp
7058 && target_can_accel_watchpoint_condition (loc2->address,
7059 loc2->length,
7060 loc2->watchpoint_type,
7061 w2->cond_exp)))
7062 return 0;
7063
7064 /* Note that this checks the owner's type, not the location's. In
7065 case the target does not support read watchpoints, but does
7066 support access watchpoints, we'll have bp_read_watchpoint
7067 watchpoints with hw_access locations. Those should be considered
7068 duplicates of hw_read locations. The hw_read locations will
7069 become hw_access locations later. */
7070 return (loc1->owner->type == loc2->owner->type
7071 && loc1->pspace->aspace == loc2->pspace->aspace
7072 && loc1->address == loc2->address
7073 && loc1->length == loc2->length);
7074 }
7075
7076 /* See breakpoint.h. */
7077
7078 int
7079 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
7080 struct address_space *aspace2, CORE_ADDR addr2)
7081 {
7082 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7083 || aspace1 == aspace2)
7084 && addr1 == addr2);
7085 }
7086
7087 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
7088 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
7089 matches ASPACE2. On targets that have global breakpoints, the address
7090 space doesn't really matter. */
7091
7092 static int
7093 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
7094 int len1, struct address_space *aspace2,
7095 CORE_ADDR addr2)
7096 {
7097 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7098 || aspace1 == aspace2)
7099 && addr2 >= addr1 && addr2 < addr1 + len1);
7100 }
7101
7102 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
7103 a ranged breakpoint. In most targets, a match happens only if ASPACE
7104 matches the breakpoint's address space. On targets that have global
7105 breakpoints, the address space doesn't really matter. */
7106
7107 static int
7108 breakpoint_location_address_match (struct bp_location *bl,
7109 struct address_space *aspace,
7110 CORE_ADDR addr)
7111 {
7112 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
7113 aspace, addr)
7114 || (bl->length
7115 && breakpoint_address_match_range (bl->pspace->aspace,
7116 bl->address, bl->length,
7117 aspace, addr)));
7118 }
7119
7120 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
7121 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
7122 match happens only if ASPACE matches the breakpoint's address
7123 space. On targets that have global breakpoints, the address space
7124 doesn't really matter. */
7125
7126 static int
7127 breakpoint_location_address_range_overlap (struct bp_location *bl,
7128 struct address_space *aspace,
7129 CORE_ADDR addr, int len)
7130 {
7131 if (gdbarch_has_global_breakpoints (target_gdbarch ())
7132 || bl->pspace->aspace == aspace)
7133 {
7134 int bl_len = bl->length != 0 ? bl->length : 1;
7135
7136 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
7137 return 1;
7138 }
7139 return 0;
7140 }
7141
7142 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
7143 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
7144 true, otherwise returns false. */
7145
7146 static int
7147 tracepoint_locations_match (struct bp_location *loc1,
7148 struct bp_location *loc2)
7149 {
7150 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
7151 /* Since tracepoint locations are never duplicated with others', tracepoint
7152 locations at the same address of different tracepoints are regarded as
7153 different locations. */
7154 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
7155 else
7156 return 0;
7157 }
7158
7159 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
7160 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
7161 represent the same location. */
7162
7163 static int
7164 breakpoint_locations_match (struct bp_location *loc1,
7165 struct bp_location *loc2)
7166 {
7167 int hw_point1, hw_point2;
7168
7169 /* Both of them must not be in moribund_locations. */
7170 gdb_assert (loc1->owner != NULL);
7171 gdb_assert (loc2->owner != NULL);
7172
7173 hw_point1 = is_hardware_watchpoint (loc1->owner);
7174 hw_point2 = is_hardware_watchpoint (loc2->owner);
7175
7176 if (hw_point1 != hw_point2)
7177 return 0;
7178 else if (hw_point1)
7179 return watchpoint_locations_match (loc1, loc2);
7180 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
7181 return tracepoint_locations_match (loc1, loc2);
7182 else
7183 /* We compare bp_location.length in order to cover ranged breakpoints. */
7184 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
7185 loc2->pspace->aspace, loc2->address)
7186 && loc1->length == loc2->length);
7187 }
7188
7189 static void
7190 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
7191 int bnum, int have_bnum)
7192 {
7193 /* The longest string possibly returned by hex_string_custom
7194 is 50 chars. These must be at least that big for safety. */
7195 char astr1[64];
7196 char astr2[64];
7197
7198 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
7199 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
7200 if (have_bnum)
7201 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
7202 bnum, astr1, astr2);
7203 else
7204 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
7205 }
7206
7207 /* Adjust a breakpoint's address to account for architectural
7208 constraints on breakpoint placement. Return the adjusted address.
7209 Note: Very few targets require this kind of adjustment. For most
7210 targets, this function is simply the identity function. */
7211
7212 static CORE_ADDR
7213 adjust_breakpoint_address (struct gdbarch *gdbarch,
7214 CORE_ADDR bpaddr, enum bptype bptype)
7215 {
7216 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
7217 {
7218 /* Very few targets need any kind of breakpoint adjustment. */
7219 return bpaddr;
7220 }
7221 else if (bptype == bp_watchpoint
7222 || bptype == bp_hardware_watchpoint
7223 || bptype == bp_read_watchpoint
7224 || bptype == bp_access_watchpoint
7225 || bptype == bp_catchpoint)
7226 {
7227 /* Watchpoints and the various bp_catch_* eventpoints should not
7228 have their addresses modified. */
7229 return bpaddr;
7230 }
7231 else if (bptype == bp_single_step)
7232 {
7233 /* Single-step breakpoints should not have their addresses
7234 modified. If there's any architectural constrain that
7235 applies to this address, then it should have already been
7236 taken into account when the breakpoint was created in the
7237 first place. If we didn't do this, stepping through e.g.,
7238 Thumb-2 IT blocks would break. */
7239 return bpaddr;
7240 }
7241 else
7242 {
7243 CORE_ADDR adjusted_bpaddr;
7244
7245 /* Some targets have architectural constraints on the placement
7246 of breakpoint instructions. Obtain the adjusted address. */
7247 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7248
7249 /* An adjusted breakpoint address can significantly alter
7250 a user's expectations. Print a warning if an adjustment
7251 is required. */
7252 if (adjusted_bpaddr != bpaddr)
7253 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7254
7255 return adjusted_bpaddr;
7256 }
7257 }
7258
7259 void
7260 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
7261 struct breakpoint *owner)
7262 {
7263 memset (loc, 0, sizeof (*loc));
7264
7265 gdb_assert (ops != NULL);
7266
7267 loc->ops = ops;
7268 loc->owner = owner;
7269 loc->cond = NULL;
7270 loc->cond_bytecode = NULL;
7271 loc->shlib_disabled = 0;
7272 loc->enabled = 1;
7273
7274 switch (owner->type)
7275 {
7276 case bp_breakpoint:
7277 case bp_single_step:
7278 case bp_until:
7279 case bp_finish:
7280 case bp_longjmp:
7281 case bp_longjmp_resume:
7282 case bp_longjmp_call_dummy:
7283 case bp_exception:
7284 case bp_exception_resume:
7285 case bp_step_resume:
7286 case bp_hp_step_resume:
7287 case bp_watchpoint_scope:
7288 case bp_call_dummy:
7289 case bp_std_terminate:
7290 case bp_shlib_event:
7291 case bp_thread_event:
7292 case bp_overlay_event:
7293 case bp_jit_event:
7294 case bp_longjmp_master:
7295 case bp_std_terminate_master:
7296 case bp_exception_master:
7297 case bp_gnu_ifunc_resolver:
7298 case bp_gnu_ifunc_resolver_return:
7299 case bp_dprintf:
7300 loc->loc_type = bp_loc_software_breakpoint;
7301 mark_breakpoint_location_modified (loc);
7302 break;
7303 case bp_hardware_breakpoint:
7304 loc->loc_type = bp_loc_hardware_breakpoint;
7305 mark_breakpoint_location_modified (loc);
7306 break;
7307 case bp_hardware_watchpoint:
7308 case bp_read_watchpoint:
7309 case bp_access_watchpoint:
7310 loc->loc_type = bp_loc_hardware_watchpoint;
7311 break;
7312 case bp_watchpoint:
7313 case bp_catchpoint:
7314 case bp_tracepoint:
7315 case bp_fast_tracepoint:
7316 case bp_static_tracepoint:
7317 loc->loc_type = bp_loc_other;
7318 break;
7319 default:
7320 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7321 }
7322
7323 loc->refc = 1;
7324 }
7325
7326 /* Allocate a struct bp_location. */
7327
7328 static struct bp_location *
7329 allocate_bp_location (struct breakpoint *bpt)
7330 {
7331 return bpt->ops->allocate_location (bpt);
7332 }
7333
7334 static void
7335 free_bp_location (struct bp_location *loc)
7336 {
7337 loc->ops->dtor (loc);
7338 xfree (loc);
7339 }
7340
7341 /* Increment reference count. */
7342
7343 static void
7344 incref_bp_location (struct bp_location *bl)
7345 {
7346 ++bl->refc;
7347 }
7348
7349 /* Decrement reference count. If the reference count reaches 0,
7350 destroy the bp_location. Sets *BLP to NULL. */
7351
7352 static void
7353 decref_bp_location (struct bp_location **blp)
7354 {
7355 gdb_assert ((*blp)->refc > 0);
7356
7357 if (--(*blp)->refc == 0)
7358 free_bp_location (*blp);
7359 *blp = NULL;
7360 }
7361
7362 /* Add breakpoint B at the end of the global breakpoint chain. */
7363
7364 static void
7365 add_to_breakpoint_chain (struct breakpoint *b)
7366 {
7367 struct breakpoint *b1;
7368
7369 /* Add this breakpoint to the end of the chain so that a list of
7370 breakpoints will come out in order of increasing numbers. */
7371
7372 b1 = breakpoint_chain;
7373 if (b1 == 0)
7374 breakpoint_chain = b;
7375 else
7376 {
7377 while (b1->next)
7378 b1 = b1->next;
7379 b1->next = b;
7380 }
7381 }
7382
7383 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7384
7385 static void
7386 init_raw_breakpoint_without_location (struct breakpoint *b,
7387 struct gdbarch *gdbarch,
7388 enum bptype bptype,
7389 const struct breakpoint_ops *ops)
7390 {
7391 memset (b, 0, sizeof (*b));
7392
7393 gdb_assert (ops != NULL);
7394
7395 b->ops = ops;
7396 b->type = bptype;
7397 b->gdbarch = gdbarch;
7398 b->language = current_language->la_language;
7399 b->input_radix = input_radix;
7400 b->thread = -1;
7401 b->enable_state = bp_enabled;
7402 b->next = 0;
7403 b->silent = 0;
7404 b->ignore_count = 0;
7405 b->commands = NULL;
7406 b->frame_id = null_frame_id;
7407 b->condition_not_parsed = 0;
7408 b->py_bp_object = NULL;
7409 b->related_breakpoint = b;
7410 b->location = NULL;
7411 }
7412
7413 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7414 that has type BPTYPE and has no locations as yet. */
7415
7416 static struct breakpoint *
7417 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7418 enum bptype bptype,
7419 const struct breakpoint_ops *ops)
7420 {
7421 struct breakpoint *b = XNEW (struct breakpoint);
7422
7423 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7424 add_to_breakpoint_chain (b);
7425 return b;
7426 }
7427
7428 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7429 resolutions should be made as the user specified the location explicitly
7430 enough. */
7431
7432 static void
7433 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7434 {
7435 gdb_assert (loc->owner != NULL);
7436
7437 if (loc->owner->type == bp_breakpoint
7438 || loc->owner->type == bp_hardware_breakpoint
7439 || is_tracepoint (loc->owner))
7440 {
7441 int is_gnu_ifunc;
7442 const char *function_name;
7443 CORE_ADDR func_addr;
7444
7445 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7446 &func_addr, NULL, &is_gnu_ifunc);
7447
7448 if (is_gnu_ifunc && !explicit_loc)
7449 {
7450 struct breakpoint *b = loc->owner;
7451
7452 gdb_assert (loc->pspace == current_program_space);
7453 if (gnu_ifunc_resolve_name (function_name,
7454 &loc->requested_address))
7455 {
7456 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7457 loc->address = adjust_breakpoint_address (loc->gdbarch,
7458 loc->requested_address,
7459 b->type);
7460 }
7461 else if (b->type == bp_breakpoint && b->loc == loc
7462 && loc->next == NULL && b->related_breakpoint == b)
7463 {
7464 /* Create only the whole new breakpoint of this type but do not
7465 mess more complicated breakpoints with multiple locations. */
7466 b->type = bp_gnu_ifunc_resolver;
7467 /* Remember the resolver's address for use by the return
7468 breakpoint. */
7469 loc->related_address = func_addr;
7470 }
7471 }
7472
7473 if (function_name)
7474 loc->function_name = xstrdup (function_name);
7475 }
7476 }
7477
7478 /* Attempt to determine architecture of location identified by SAL. */
7479 struct gdbarch *
7480 get_sal_arch (struct symtab_and_line sal)
7481 {
7482 if (sal.section)
7483 return get_objfile_arch (sal.section->objfile);
7484 if (sal.symtab)
7485 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7486
7487 return NULL;
7488 }
7489
7490 /* Low level routine for partially initializing a breakpoint of type
7491 BPTYPE. The newly created breakpoint's address, section, source
7492 file name, and line number are provided by SAL.
7493
7494 It is expected that the caller will complete the initialization of
7495 the newly created breakpoint struct as well as output any status
7496 information regarding the creation of a new breakpoint. */
7497
7498 static void
7499 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7500 struct symtab_and_line sal, enum bptype bptype,
7501 const struct breakpoint_ops *ops)
7502 {
7503 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7504
7505 add_location_to_breakpoint (b, &sal);
7506
7507 if (bptype != bp_catchpoint)
7508 gdb_assert (sal.pspace != NULL);
7509
7510 /* Store the program space that was used to set the breakpoint,
7511 except for ordinary breakpoints, which are independent of the
7512 program space. */
7513 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7514 b->pspace = sal.pspace;
7515 }
7516
7517 /* set_raw_breakpoint is a low level routine for allocating and
7518 partially initializing a breakpoint of type BPTYPE. The newly
7519 created breakpoint's address, section, source file name, and line
7520 number are provided by SAL. The newly created and partially
7521 initialized breakpoint is added to the breakpoint chain and
7522 is also returned as the value of this function.
7523
7524 It is expected that the caller will complete the initialization of
7525 the newly created breakpoint struct as well as output any status
7526 information regarding the creation of a new breakpoint. In
7527 particular, set_raw_breakpoint does NOT set the breakpoint
7528 number! Care should be taken to not allow an error to occur
7529 prior to completing the initialization of the breakpoint. If this
7530 should happen, a bogus breakpoint will be left on the chain. */
7531
7532 struct breakpoint *
7533 set_raw_breakpoint (struct gdbarch *gdbarch,
7534 struct symtab_and_line sal, enum bptype bptype,
7535 const struct breakpoint_ops *ops)
7536 {
7537 struct breakpoint *b = XNEW (struct breakpoint);
7538
7539 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7540 add_to_breakpoint_chain (b);
7541 return b;
7542 }
7543
7544 /* Call this routine when stepping and nexting to enable a breakpoint
7545 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7546 initiated the operation. */
7547
7548 void
7549 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7550 {
7551 struct breakpoint *b, *b_tmp;
7552 int thread = tp->num;
7553
7554 /* To avoid having to rescan all objfile symbols at every step,
7555 we maintain a list of continually-inserted but always disabled
7556 longjmp "master" breakpoints. Here, we simply create momentary
7557 clones of those and enable them for the requested thread. */
7558 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7559 if (b->pspace == current_program_space
7560 && (b->type == bp_longjmp_master
7561 || b->type == bp_exception_master))
7562 {
7563 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7564 struct breakpoint *clone;
7565
7566 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7567 after their removal. */
7568 clone = momentary_breakpoint_from_master (b, type,
7569 &longjmp_breakpoint_ops, 1);
7570 clone->thread = thread;
7571 }
7572
7573 tp->initiating_frame = frame;
7574 }
7575
7576 /* Delete all longjmp breakpoints from THREAD. */
7577 void
7578 delete_longjmp_breakpoint (int thread)
7579 {
7580 struct breakpoint *b, *b_tmp;
7581
7582 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7583 if (b->type == bp_longjmp || b->type == bp_exception)
7584 {
7585 if (b->thread == thread)
7586 delete_breakpoint (b);
7587 }
7588 }
7589
7590 void
7591 delete_longjmp_breakpoint_at_next_stop (int thread)
7592 {
7593 struct breakpoint *b, *b_tmp;
7594
7595 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7596 if (b->type == bp_longjmp || b->type == bp_exception)
7597 {
7598 if (b->thread == thread)
7599 b->disposition = disp_del_at_next_stop;
7600 }
7601 }
7602
7603 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7604 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7605 pointer to any of them. Return NULL if this system cannot place longjmp
7606 breakpoints. */
7607
7608 struct breakpoint *
7609 set_longjmp_breakpoint_for_call_dummy (void)
7610 {
7611 struct breakpoint *b, *retval = NULL;
7612
7613 ALL_BREAKPOINTS (b)
7614 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7615 {
7616 struct breakpoint *new_b;
7617
7618 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7619 &momentary_breakpoint_ops,
7620 1);
7621 new_b->thread = pid_to_thread_id (inferior_ptid);
7622
7623 /* Link NEW_B into the chain of RETVAL breakpoints. */
7624
7625 gdb_assert (new_b->related_breakpoint == new_b);
7626 if (retval == NULL)
7627 retval = new_b;
7628 new_b->related_breakpoint = retval;
7629 while (retval->related_breakpoint != new_b->related_breakpoint)
7630 retval = retval->related_breakpoint;
7631 retval->related_breakpoint = new_b;
7632 }
7633
7634 return retval;
7635 }
7636
7637 /* Verify all existing dummy frames and their associated breakpoints for
7638 TP. Remove those which can no longer be found in the current frame
7639 stack.
7640
7641 You should call this function only at places where it is safe to currently
7642 unwind the whole stack. Failed stack unwind would discard live dummy
7643 frames. */
7644
7645 void
7646 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7647 {
7648 struct breakpoint *b, *b_tmp;
7649
7650 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7651 if (b->type == bp_longjmp_call_dummy && b->thread == tp->num)
7652 {
7653 struct breakpoint *dummy_b = b->related_breakpoint;
7654
7655 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7656 dummy_b = dummy_b->related_breakpoint;
7657 if (dummy_b->type != bp_call_dummy
7658 || frame_find_by_id (dummy_b->frame_id) != NULL)
7659 continue;
7660
7661 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7662
7663 while (b->related_breakpoint != b)
7664 {
7665 if (b_tmp == b->related_breakpoint)
7666 b_tmp = b->related_breakpoint->next;
7667 delete_breakpoint (b->related_breakpoint);
7668 }
7669 delete_breakpoint (b);
7670 }
7671 }
7672
7673 void
7674 enable_overlay_breakpoints (void)
7675 {
7676 struct breakpoint *b;
7677
7678 ALL_BREAKPOINTS (b)
7679 if (b->type == bp_overlay_event)
7680 {
7681 b->enable_state = bp_enabled;
7682 update_global_location_list (UGLL_MAY_INSERT);
7683 overlay_events_enabled = 1;
7684 }
7685 }
7686
7687 void
7688 disable_overlay_breakpoints (void)
7689 {
7690 struct breakpoint *b;
7691
7692 ALL_BREAKPOINTS (b)
7693 if (b->type == bp_overlay_event)
7694 {
7695 b->enable_state = bp_disabled;
7696 update_global_location_list (UGLL_DONT_INSERT);
7697 overlay_events_enabled = 0;
7698 }
7699 }
7700
7701 /* Set an active std::terminate breakpoint for each std::terminate
7702 master breakpoint. */
7703 void
7704 set_std_terminate_breakpoint (void)
7705 {
7706 struct breakpoint *b, *b_tmp;
7707
7708 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7709 if (b->pspace == current_program_space
7710 && b->type == bp_std_terminate_master)
7711 {
7712 momentary_breakpoint_from_master (b, bp_std_terminate,
7713 &momentary_breakpoint_ops, 1);
7714 }
7715 }
7716
7717 /* Delete all the std::terminate breakpoints. */
7718 void
7719 delete_std_terminate_breakpoint (void)
7720 {
7721 struct breakpoint *b, *b_tmp;
7722
7723 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7724 if (b->type == bp_std_terminate)
7725 delete_breakpoint (b);
7726 }
7727
7728 struct breakpoint *
7729 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7730 {
7731 struct breakpoint *b;
7732
7733 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7734 &internal_breakpoint_ops);
7735
7736 b->enable_state = bp_enabled;
7737 /* location has to be used or breakpoint_re_set will delete me. */
7738 b->location = new_address_location (b->loc->address);
7739
7740 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7741
7742 return b;
7743 }
7744
7745 void
7746 remove_thread_event_breakpoints (void)
7747 {
7748 struct breakpoint *b, *b_tmp;
7749
7750 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7751 if (b->type == bp_thread_event
7752 && b->loc->pspace == current_program_space)
7753 delete_breakpoint (b);
7754 }
7755
7756 struct lang_and_radix
7757 {
7758 enum language lang;
7759 int radix;
7760 };
7761
7762 /* Create a breakpoint for JIT code registration and unregistration. */
7763
7764 struct breakpoint *
7765 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7766 {
7767 struct breakpoint *b;
7768
7769 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7770 &internal_breakpoint_ops);
7771 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7772 return b;
7773 }
7774
7775 /* Remove JIT code registration and unregistration breakpoint(s). */
7776
7777 void
7778 remove_jit_event_breakpoints (void)
7779 {
7780 struct breakpoint *b, *b_tmp;
7781
7782 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7783 if (b->type == bp_jit_event
7784 && b->loc->pspace == current_program_space)
7785 delete_breakpoint (b);
7786 }
7787
7788 void
7789 remove_solib_event_breakpoints (void)
7790 {
7791 struct breakpoint *b, *b_tmp;
7792
7793 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7794 if (b->type == bp_shlib_event
7795 && b->loc->pspace == current_program_space)
7796 delete_breakpoint (b);
7797 }
7798
7799 /* See breakpoint.h. */
7800
7801 void
7802 remove_solib_event_breakpoints_at_next_stop (void)
7803 {
7804 struct breakpoint *b, *b_tmp;
7805
7806 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7807 if (b->type == bp_shlib_event
7808 && b->loc->pspace == current_program_space)
7809 b->disposition = disp_del_at_next_stop;
7810 }
7811
7812 /* Helper for create_solib_event_breakpoint /
7813 create_and_insert_solib_event_breakpoint. Allows specifying which
7814 INSERT_MODE to pass through to update_global_location_list. */
7815
7816 static struct breakpoint *
7817 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7818 enum ugll_insert_mode insert_mode)
7819 {
7820 struct breakpoint *b;
7821
7822 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7823 &internal_breakpoint_ops);
7824 update_global_location_list_nothrow (insert_mode);
7825 return b;
7826 }
7827
7828 struct breakpoint *
7829 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7830 {
7831 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7832 }
7833
7834 /* See breakpoint.h. */
7835
7836 struct breakpoint *
7837 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7838 {
7839 struct breakpoint *b;
7840
7841 /* Explicitly tell update_global_location_list to insert
7842 locations. */
7843 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7844 if (!b->loc->inserted)
7845 {
7846 delete_breakpoint (b);
7847 return NULL;
7848 }
7849 return b;
7850 }
7851
7852 /* Disable any breakpoints that are on code in shared libraries. Only
7853 apply to enabled breakpoints, disabled ones can just stay disabled. */
7854
7855 void
7856 disable_breakpoints_in_shlibs (void)
7857 {
7858 struct bp_location *loc, **locp_tmp;
7859
7860 ALL_BP_LOCATIONS (loc, locp_tmp)
7861 {
7862 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7863 struct breakpoint *b = loc->owner;
7864
7865 /* We apply the check to all breakpoints, including disabled for
7866 those with loc->duplicate set. This is so that when breakpoint
7867 becomes enabled, or the duplicate is removed, gdb will try to
7868 insert all breakpoints. If we don't set shlib_disabled here,
7869 we'll try to insert those breakpoints and fail. */
7870 if (((b->type == bp_breakpoint)
7871 || (b->type == bp_jit_event)
7872 || (b->type == bp_hardware_breakpoint)
7873 || (is_tracepoint (b)))
7874 && loc->pspace == current_program_space
7875 && !loc->shlib_disabled
7876 && solib_name_from_address (loc->pspace, loc->address)
7877 )
7878 {
7879 loc->shlib_disabled = 1;
7880 }
7881 }
7882 }
7883
7884 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7885 notification of unloaded_shlib. Only apply to enabled breakpoints,
7886 disabled ones can just stay disabled. */
7887
7888 static void
7889 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7890 {
7891 struct bp_location *loc, **locp_tmp;
7892 int disabled_shlib_breaks = 0;
7893
7894 /* SunOS a.out shared libraries are always mapped, so do not
7895 disable breakpoints; they will only be reported as unloaded
7896 through clear_solib when GDB discards its shared library
7897 list. See clear_solib for more information. */
7898 if (exec_bfd != NULL
7899 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7900 return;
7901
7902 ALL_BP_LOCATIONS (loc, locp_tmp)
7903 {
7904 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7905 struct breakpoint *b = loc->owner;
7906
7907 if (solib->pspace == loc->pspace
7908 && !loc->shlib_disabled
7909 && (((b->type == bp_breakpoint
7910 || b->type == bp_jit_event
7911 || b->type == bp_hardware_breakpoint)
7912 && (loc->loc_type == bp_loc_hardware_breakpoint
7913 || loc->loc_type == bp_loc_software_breakpoint))
7914 || is_tracepoint (b))
7915 && solib_contains_address_p (solib, loc->address))
7916 {
7917 loc->shlib_disabled = 1;
7918 /* At this point, we cannot rely on remove_breakpoint
7919 succeeding so we must mark the breakpoint as not inserted
7920 to prevent future errors occurring in remove_breakpoints. */
7921 loc->inserted = 0;
7922
7923 /* This may cause duplicate notifications for the same breakpoint. */
7924 observer_notify_breakpoint_modified (b);
7925
7926 if (!disabled_shlib_breaks)
7927 {
7928 target_terminal_ours_for_output ();
7929 warning (_("Temporarily disabling breakpoints "
7930 "for unloaded shared library \"%s\""),
7931 solib->so_name);
7932 }
7933 disabled_shlib_breaks = 1;
7934 }
7935 }
7936 }
7937
7938 /* Disable any breakpoints and tracepoints in OBJFILE upon
7939 notification of free_objfile. Only apply to enabled breakpoints,
7940 disabled ones can just stay disabled. */
7941
7942 static void
7943 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7944 {
7945 struct breakpoint *b;
7946
7947 if (objfile == NULL)
7948 return;
7949
7950 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7951 managed by the user with add-symbol-file/remove-symbol-file.
7952 Similarly to how breakpoints in shared libraries are handled in
7953 response to "nosharedlibrary", mark breakpoints in such modules
7954 shlib_disabled so they end up uninserted on the next global
7955 location list update. Shared libraries not loaded by the user
7956 aren't handled here -- they're already handled in
7957 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7958 solib_unloaded observer. We skip objfiles that are not
7959 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7960 main objfile). */
7961 if ((objfile->flags & OBJF_SHARED) == 0
7962 || (objfile->flags & OBJF_USERLOADED) == 0)
7963 return;
7964
7965 ALL_BREAKPOINTS (b)
7966 {
7967 struct bp_location *loc;
7968 int bp_modified = 0;
7969
7970 if (!is_breakpoint (b) && !is_tracepoint (b))
7971 continue;
7972
7973 for (loc = b->loc; loc != NULL; loc = loc->next)
7974 {
7975 CORE_ADDR loc_addr = loc->address;
7976
7977 if (loc->loc_type != bp_loc_hardware_breakpoint
7978 && loc->loc_type != bp_loc_software_breakpoint)
7979 continue;
7980
7981 if (loc->shlib_disabled != 0)
7982 continue;
7983
7984 if (objfile->pspace != loc->pspace)
7985 continue;
7986
7987 if (loc->loc_type != bp_loc_hardware_breakpoint
7988 && loc->loc_type != bp_loc_software_breakpoint)
7989 continue;
7990
7991 if (is_addr_in_objfile (loc_addr, objfile))
7992 {
7993 loc->shlib_disabled = 1;
7994 /* At this point, we don't know whether the object was
7995 unmapped from the inferior or not, so leave the
7996 inserted flag alone. We'll handle failure to
7997 uninsert quietly, in case the object was indeed
7998 unmapped. */
7999
8000 mark_breakpoint_location_modified (loc);
8001
8002 bp_modified = 1;
8003 }
8004 }
8005
8006 if (bp_modified)
8007 observer_notify_breakpoint_modified (b);
8008 }
8009 }
8010
8011 /* FORK & VFORK catchpoints. */
8012
8013 /* An instance of this type is used to represent a fork or vfork
8014 catchpoint. It includes a "struct breakpoint" as a kind of base
8015 class; users downcast to "struct breakpoint *" when needed. A
8016 breakpoint is really of this type iff its ops pointer points to
8017 CATCH_FORK_BREAKPOINT_OPS. */
8018
8019 struct fork_catchpoint
8020 {
8021 /* The base class. */
8022 struct breakpoint base;
8023
8024 /* Process id of a child process whose forking triggered this
8025 catchpoint. This field is only valid immediately after this
8026 catchpoint has triggered. */
8027 ptid_t forked_inferior_pid;
8028 };
8029
8030 /* Implement the "insert" breakpoint_ops method for fork
8031 catchpoints. */
8032
8033 static int
8034 insert_catch_fork (struct bp_location *bl)
8035 {
8036 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
8037 }
8038
8039 /* Implement the "remove" breakpoint_ops method for fork
8040 catchpoints. */
8041
8042 static int
8043 remove_catch_fork (struct bp_location *bl)
8044 {
8045 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
8046 }
8047
8048 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
8049 catchpoints. */
8050
8051 static int
8052 breakpoint_hit_catch_fork (const struct bp_location *bl,
8053 struct address_space *aspace, CORE_ADDR bp_addr,
8054 const struct target_waitstatus *ws)
8055 {
8056 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8057
8058 if (ws->kind != TARGET_WAITKIND_FORKED)
8059 return 0;
8060
8061 c->forked_inferior_pid = ws->value.related_pid;
8062 return 1;
8063 }
8064
8065 /* Implement the "print_it" breakpoint_ops method for fork
8066 catchpoints. */
8067
8068 static enum print_stop_action
8069 print_it_catch_fork (bpstat bs)
8070 {
8071 struct ui_out *uiout = current_uiout;
8072 struct breakpoint *b = bs->breakpoint_at;
8073 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
8074
8075 annotate_catchpoint (b->number);
8076 if (b->disposition == disp_del)
8077 ui_out_text (uiout, "\nTemporary catchpoint ");
8078 else
8079 ui_out_text (uiout, "\nCatchpoint ");
8080 if (ui_out_is_mi_like_p (uiout))
8081 {
8082 ui_out_field_string (uiout, "reason",
8083 async_reason_lookup (EXEC_ASYNC_FORK));
8084 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8085 }
8086 ui_out_field_int (uiout, "bkptno", b->number);
8087 ui_out_text (uiout, " (forked process ");
8088 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
8089 ui_out_text (uiout, "), ");
8090 return PRINT_SRC_AND_LOC;
8091 }
8092
8093 /* Implement the "print_one" breakpoint_ops method for fork
8094 catchpoints. */
8095
8096 static void
8097 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
8098 {
8099 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8100 struct value_print_options opts;
8101 struct ui_out *uiout = current_uiout;
8102
8103 get_user_print_options (&opts);
8104
8105 /* Field 4, the address, is omitted (which makes the columns not
8106 line up too nicely with the headers, but the effect is relatively
8107 readable). */
8108 if (opts.addressprint)
8109 ui_out_field_skip (uiout, "addr");
8110 annotate_field (5);
8111 ui_out_text (uiout, "fork");
8112 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8113 {
8114 ui_out_text (uiout, ", process ");
8115 ui_out_field_int (uiout, "what",
8116 ptid_get_pid (c->forked_inferior_pid));
8117 ui_out_spaces (uiout, 1);
8118 }
8119
8120 if (ui_out_is_mi_like_p (uiout))
8121 ui_out_field_string (uiout, "catch-type", "fork");
8122 }
8123
8124 /* Implement the "print_mention" breakpoint_ops method for fork
8125 catchpoints. */
8126
8127 static void
8128 print_mention_catch_fork (struct breakpoint *b)
8129 {
8130 printf_filtered (_("Catchpoint %d (fork)"), b->number);
8131 }
8132
8133 /* Implement the "print_recreate" breakpoint_ops method for fork
8134 catchpoints. */
8135
8136 static void
8137 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
8138 {
8139 fprintf_unfiltered (fp, "catch fork");
8140 print_recreate_thread (b, fp);
8141 }
8142
8143 /* The breakpoint_ops structure to be used in fork catchpoints. */
8144
8145 static struct breakpoint_ops catch_fork_breakpoint_ops;
8146
8147 /* Implement the "insert" breakpoint_ops method for vfork
8148 catchpoints. */
8149
8150 static int
8151 insert_catch_vfork (struct bp_location *bl)
8152 {
8153 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8154 }
8155
8156 /* Implement the "remove" breakpoint_ops method for vfork
8157 catchpoints. */
8158
8159 static int
8160 remove_catch_vfork (struct bp_location *bl)
8161 {
8162 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8163 }
8164
8165 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
8166 catchpoints. */
8167
8168 static int
8169 breakpoint_hit_catch_vfork (const struct bp_location *bl,
8170 struct address_space *aspace, CORE_ADDR bp_addr,
8171 const struct target_waitstatus *ws)
8172 {
8173 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8174
8175 if (ws->kind != TARGET_WAITKIND_VFORKED)
8176 return 0;
8177
8178 c->forked_inferior_pid = ws->value.related_pid;
8179 return 1;
8180 }
8181
8182 /* Implement the "print_it" breakpoint_ops method for vfork
8183 catchpoints. */
8184
8185 static enum print_stop_action
8186 print_it_catch_vfork (bpstat bs)
8187 {
8188 struct ui_out *uiout = current_uiout;
8189 struct breakpoint *b = bs->breakpoint_at;
8190 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8191
8192 annotate_catchpoint (b->number);
8193 if (b->disposition == disp_del)
8194 ui_out_text (uiout, "\nTemporary catchpoint ");
8195 else
8196 ui_out_text (uiout, "\nCatchpoint ");
8197 if (ui_out_is_mi_like_p (uiout))
8198 {
8199 ui_out_field_string (uiout, "reason",
8200 async_reason_lookup (EXEC_ASYNC_VFORK));
8201 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8202 }
8203 ui_out_field_int (uiout, "bkptno", b->number);
8204 ui_out_text (uiout, " (vforked process ");
8205 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
8206 ui_out_text (uiout, "), ");
8207 return PRINT_SRC_AND_LOC;
8208 }
8209
8210 /* Implement the "print_one" breakpoint_ops method for vfork
8211 catchpoints. */
8212
8213 static void
8214 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
8215 {
8216 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8217 struct value_print_options opts;
8218 struct ui_out *uiout = current_uiout;
8219
8220 get_user_print_options (&opts);
8221 /* Field 4, the address, is omitted (which makes the columns not
8222 line up too nicely with the headers, but the effect is relatively
8223 readable). */
8224 if (opts.addressprint)
8225 ui_out_field_skip (uiout, "addr");
8226 annotate_field (5);
8227 ui_out_text (uiout, "vfork");
8228 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8229 {
8230 ui_out_text (uiout, ", process ");
8231 ui_out_field_int (uiout, "what",
8232 ptid_get_pid (c->forked_inferior_pid));
8233 ui_out_spaces (uiout, 1);
8234 }
8235
8236 if (ui_out_is_mi_like_p (uiout))
8237 ui_out_field_string (uiout, "catch-type", "vfork");
8238 }
8239
8240 /* Implement the "print_mention" breakpoint_ops method for vfork
8241 catchpoints. */
8242
8243 static void
8244 print_mention_catch_vfork (struct breakpoint *b)
8245 {
8246 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
8247 }
8248
8249 /* Implement the "print_recreate" breakpoint_ops method for vfork
8250 catchpoints. */
8251
8252 static void
8253 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
8254 {
8255 fprintf_unfiltered (fp, "catch vfork");
8256 print_recreate_thread (b, fp);
8257 }
8258
8259 /* The breakpoint_ops structure to be used in vfork catchpoints. */
8260
8261 static struct breakpoint_ops catch_vfork_breakpoint_ops;
8262
8263 /* An instance of this type is used to represent an solib catchpoint.
8264 It includes a "struct breakpoint" as a kind of base class; users
8265 downcast to "struct breakpoint *" when needed. A breakpoint is
8266 really of this type iff its ops pointer points to
8267 CATCH_SOLIB_BREAKPOINT_OPS. */
8268
8269 struct solib_catchpoint
8270 {
8271 /* The base class. */
8272 struct breakpoint base;
8273
8274 /* True for "catch load", false for "catch unload". */
8275 unsigned char is_load;
8276
8277 /* Regular expression to match, if any. COMPILED is only valid when
8278 REGEX is non-NULL. */
8279 char *regex;
8280 regex_t compiled;
8281 };
8282
8283 static void
8284 dtor_catch_solib (struct breakpoint *b)
8285 {
8286 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8287
8288 if (self->regex)
8289 regfree (&self->compiled);
8290 xfree (self->regex);
8291
8292 base_breakpoint_ops.dtor (b);
8293 }
8294
8295 static int
8296 insert_catch_solib (struct bp_location *ignore)
8297 {
8298 return 0;
8299 }
8300
8301 static int
8302 remove_catch_solib (struct bp_location *ignore)
8303 {
8304 return 0;
8305 }
8306
8307 static int
8308 breakpoint_hit_catch_solib (const struct bp_location *bl,
8309 struct address_space *aspace,
8310 CORE_ADDR bp_addr,
8311 const struct target_waitstatus *ws)
8312 {
8313 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8314 struct breakpoint *other;
8315
8316 if (ws->kind == TARGET_WAITKIND_LOADED)
8317 return 1;
8318
8319 ALL_BREAKPOINTS (other)
8320 {
8321 struct bp_location *other_bl;
8322
8323 if (other == bl->owner)
8324 continue;
8325
8326 if (other->type != bp_shlib_event)
8327 continue;
8328
8329 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
8330 continue;
8331
8332 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8333 {
8334 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8335 return 1;
8336 }
8337 }
8338
8339 return 0;
8340 }
8341
8342 static void
8343 check_status_catch_solib (struct bpstats *bs)
8344 {
8345 struct solib_catchpoint *self
8346 = (struct solib_catchpoint *) bs->breakpoint_at;
8347 int ix;
8348
8349 if (self->is_load)
8350 {
8351 struct so_list *iter;
8352
8353 for (ix = 0;
8354 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8355 ix, iter);
8356 ++ix)
8357 {
8358 if (!self->regex
8359 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
8360 return;
8361 }
8362 }
8363 else
8364 {
8365 char *iter;
8366
8367 for (ix = 0;
8368 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8369 ix, iter);
8370 ++ix)
8371 {
8372 if (!self->regex
8373 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
8374 return;
8375 }
8376 }
8377
8378 bs->stop = 0;
8379 bs->print_it = print_it_noop;
8380 }
8381
8382 static enum print_stop_action
8383 print_it_catch_solib (bpstat bs)
8384 {
8385 struct breakpoint *b = bs->breakpoint_at;
8386 struct ui_out *uiout = current_uiout;
8387
8388 annotate_catchpoint (b->number);
8389 if (b->disposition == disp_del)
8390 ui_out_text (uiout, "\nTemporary catchpoint ");
8391 else
8392 ui_out_text (uiout, "\nCatchpoint ");
8393 ui_out_field_int (uiout, "bkptno", b->number);
8394 ui_out_text (uiout, "\n");
8395 if (ui_out_is_mi_like_p (uiout))
8396 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8397 print_solib_event (1);
8398 return PRINT_SRC_AND_LOC;
8399 }
8400
8401 static void
8402 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8403 {
8404 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8405 struct value_print_options opts;
8406 struct ui_out *uiout = current_uiout;
8407 char *msg;
8408
8409 get_user_print_options (&opts);
8410 /* Field 4, the address, is omitted (which makes the columns not
8411 line up too nicely with the headers, but the effect is relatively
8412 readable). */
8413 if (opts.addressprint)
8414 {
8415 annotate_field (4);
8416 ui_out_field_skip (uiout, "addr");
8417 }
8418
8419 annotate_field (5);
8420 if (self->is_load)
8421 {
8422 if (self->regex)
8423 msg = xstrprintf (_("load of library matching %s"), self->regex);
8424 else
8425 msg = xstrdup (_("load of library"));
8426 }
8427 else
8428 {
8429 if (self->regex)
8430 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8431 else
8432 msg = xstrdup (_("unload of library"));
8433 }
8434 ui_out_field_string (uiout, "what", msg);
8435 xfree (msg);
8436
8437 if (ui_out_is_mi_like_p (uiout))
8438 ui_out_field_string (uiout, "catch-type",
8439 self->is_load ? "load" : "unload");
8440 }
8441
8442 static void
8443 print_mention_catch_solib (struct breakpoint *b)
8444 {
8445 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8446
8447 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8448 self->is_load ? "load" : "unload");
8449 }
8450
8451 static void
8452 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8453 {
8454 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8455
8456 fprintf_unfiltered (fp, "%s %s",
8457 b->disposition == disp_del ? "tcatch" : "catch",
8458 self->is_load ? "load" : "unload");
8459 if (self->regex)
8460 fprintf_unfiltered (fp, " %s", self->regex);
8461 fprintf_unfiltered (fp, "\n");
8462 }
8463
8464 static struct breakpoint_ops catch_solib_breakpoint_ops;
8465
8466 /* Shared helper function (MI and CLI) for creating and installing
8467 a shared object event catchpoint. If IS_LOAD is non-zero then
8468 the events to be caught are load events, otherwise they are
8469 unload events. If IS_TEMP is non-zero the catchpoint is a
8470 temporary one. If ENABLED is non-zero the catchpoint is
8471 created in an enabled state. */
8472
8473 void
8474 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
8475 {
8476 struct solib_catchpoint *c;
8477 struct gdbarch *gdbarch = get_current_arch ();
8478 struct cleanup *cleanup;
8479
8480 if (!arg)
8481 arg = "";
8482 arg = skip_spaces (arg);
8483
8484 c = XCNEW (struct solib_catchpoint);
8485 cleanup = make_cleanup (xfree, c);
8486
8487 if (*arg != '\0')
8488 {
8489 int errcode;
8490
8491 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8492 if (errcode != 0)
8493 {
8494 char *err = get_regcomp_error (errcode, &c->compiled);
8495
8496 make_cleanup (xfree, err);
8497 error (_("Invalid regexp (%s): %s"), err, arg);
8498 }
8499 c->regex = xstrdup (arg);
8500 }
8501
8502 c->is_load = is_load;
8503 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8504 &catch_solib_breakpoint_ops);
8505
8506 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8507
8508 discard_cleanups (cleanup);
8509 install_breakpoint (0, &c->base, 1);
8510 }
8511
8512 /* A helper function that does all the work for "catch load" and
8513 "catch unload". */
8514
8515 static void
8516 catch_load_or_unload (char *arg, int from_tty, int is_load,
8517 struct cmd_list_element *command)
8518 {
8519 int tempflag;
8520 const int enabled = 1;
8521
8522 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8523
8524 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8525 }
8526
8527 static void
8528 catch_load_command_1 (char *arg, int from_tty,
8529 struct cmd_list_element *command)
8530 {
8531 catch_load_or_unload (arg, from_tty, 1, command);
8532 }
8533
8534 static void
8535 catch_unload_command_1 (char *arg, int from_tty,
8536 struct cmd_list_element *command)
8537 {
8538 catch_load_or_unload (arg, from_tty, 0, command);
8539 }
8540
8541 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8542 is non-zero, then make the breakpoint temporary. If COND_STRING is
8543 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8544 the breakpoint_ops structure associated to the catchpoint. */
8545
8546 void
8547 init_catchpoint (struct breakpoint *b,
8548 struct gdbarch *gdbarch, int tempflag,
8549 char *cond_string,
8550 const struct breakpoint_ops *ops)
8551 {
8552 struct symtab_and_line sal;
8553
8554 init_sal (&sal);
8555 sal.pspace = current_program_space;
8556
8557 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8558
8559 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8560 b->disposition = tempflag ? disp_del : disp_donttouch;
8561 }
8562
8563 void
8564 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8565 {
8566 add_to_breakpoint_chain (b);
8567 set_breakpoint_number (internal, b);
8568 if (is_tracepoint (b))
8569 set_tracepoint_count (breakpoint_count);
8570 if (!internal)
8571 mention (b);
8572 observer_notify_breakpoint_created (b);
8573
8574 if (update_gll)
8575 update_global_location_list (UGLL_MAY_INSERT);
8576 }
8577
8578 static void
8579 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8580 int tempflag, char *cond_string,
8581 const struct breakpoint_ops *ops)
8582 {
8583 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8584
8585 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8586
8587 c->forked_inferior_pid = null_ptid;
8588
8589 install_breakpoint (0, &c->base, 1);
8590 }
8591
8592 /* Exec catchpoints. */
8593
8594 /* An instance of this type is used to represent an exec catchpoint.
8595 It includes a "struct breakpoint" as a kind of base class; users
8596 downcast to "struct breakpoint *" when needed. A breakpoint is
8597 really of this type iff its ops pointer points to
8598 CATCH_EXEC_BREAKPOINT_OPS. */
8599
8600 struct exec_catchpoint
8601 {
8602 /* The base class. */
8603 struct breakpoint base;
8604
8605 /* Filename of a program whose exec triggered this catchpoint.
8606 This field is only valid immediately after this catchpoint has
8607 triggered. */
8608 char *exec_pathname;
8609 };
8610
8611 /* Implement the "dtor" breakpoint_ops method for exec
8612 catchpoints. */
8613
8614 static void
8615 dtor_catch_exec (struct breakpoint *b)
8616 {
8617 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8618
8619 xfree (c->exec_pathname);
8620
8621 base_breakpoint_ops.dtor (b);
8622 }
8623
8624 static int
8625 insert_catch_exec (struct bp_location *bl)
8626 {
8627 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8628 }
8629
8630 static int
8631 remove_catch_exec (struct bp_location *bl)
8632 {
8633 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8634 }
8635
8636 static int
8637 breakpoint_hit_catch_exec (const struct bp_location *bl,
8638 struct address_space *aspace, CORE_ADDR bp_addr,
8639 const struct target_waitstatus *ws)
8640 {
8641 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8642
8643 if (ws->kind != TARGET_WAITKIND_EXECD)
8644 return 0;
8645
8646 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8647 return 1;
8648 }
8649
8650 static enum print_stop_action
8651 print_it_catch_exec (bpstat bs)
8652 {
8653 struct ui_out *uiout = current_uiout;
8654 struct breakpoint *b = bs->breakpoint_at;
8655 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8656
8657 annotate_catchpoint (b->number);
8658 if (b->disposition == disp_del)
8659 ui_out_text (uiout, "\nTemporary catchpoint ");
8660 else
8661 ui_out_text (uiout, "\nCatchpoint ");
8662 if (ui_out_is_mi_like_p (uiout))
8663 {
8664 ui_out_field_string (uiout, "reason",
8665 async_reason_lookup (EXEC_ASYNC_EXEC));
8666 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8667 }
8668 ui_out_field_int (uiout, "bkptno", b->number);
8669 ui_out_text (uiout, " (exec'd ");
8670 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8671 ui_out_text (uiout, "), ");
8672
8673 return PRINT_SRC_AND_LOC;
8674 }
8675
8676 static void
8677 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8678 {
8679 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8680 struct value_print_options opts;
8681 struct ui_out *uiout = current_uiout;
8682
8683 get_user_print_options (&opts);
8684
8685 /* Field 4, the address, is omitted (which makes the columns
8686 not line up too nicely with the headers, but the effect
8687 is relatively readable). */
8688 if (opts.addressprint)
8689 ui_out_field_skip (uiout, "addr");
8690 annotate_field (5);
8691 ui_out_text (uiout, "exec");
8692 if (c->exec_pathname != NULL)
8693 {
8694 ui_out_text (uiout, ", program \"");
8695 ui_out_field_string (uiout, "what", c->exec_pathname);
8696 ui_out_text (uiout, "\" ");
8697 }
8698
8699 if (ui_out_is_mi_like_p (uiout))
8700 ui_out_field_string (uiout, "catch-type", "exec");
8701 }
8702
8703 static void
8704 print_mention_catch_exec (struct breakpoint *b)
8705 {
8706 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8707 }
8708
8709 /* Implement the "print_recreate" breakpoint_ops method for exec
8710 catchpoints. */
8711
8712 static void
8713 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8714 {
8715 fprintf_unfiltered (fp, "catch exec");
8716 print_recreate_thread (b, fp);
8717 }
8718
8719 static struct breakpoint_ops catch_exec_breakpoint_ops;
8720
8721 static int
8722 hw_breakpoint_used_count (void)
8723 {
8724 int i = 0;
8725 struct breakpoint *b;
8726 struct bp_location *bl;
8727
8728 ALL_BREAKPOINTS (b)
8729 {
8730 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8731 for (bl = b->loc; bl; bl = bl->next)
8732 {
8733 /* Special types of hardware breakpoints may use more than
8734 one register. */
8735 i += b->ops->resources_needed (bl);
8736 }
8737 }
8738
8739 return i;
8740 }
8741
8742 /* Returns the resources B would use if it were a hardware
8743 watchpoint. */
8744
8745 static int
8746 hw_watchpoint_use_count (struct breakpoint *b)
8747 {
8748 int i = 0;
8749 struct bp_location *bl;
8750
8751 if (!breakpoint_enabled (b))
8752 return 0;
8753
8754 for (bl = b->loc; bl; bl = bl->next)
8755 {
8756 /* Special types of hardware watchpoints may use more than
8757 one register. */
8758 i += b->ops->resources_needed (bl);
8759 }
8760
8761 return i;
8762 }
8763
8764 /* Returns the sum the used resources of all hardware watchpoints of
8765 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8766 the sum of the used resources of all hardware watchpoints of other
8767 types _not_ TYPE. */
8768
8769 static int
8770 hw_watchpoint_used_count_others (struct breakpoint *except,
8771 enum bptype type, int *other_type_used)
8772 {
8773 int i = 0;
8774 struct breakpoint *b;
8775
8776 *other_type_used = 0;
8777 ALL_BREAKPOINTS (b)
8778 {
8779 if (b == except)
8780 continue;
8781 if (!breakpoint_enabled (b))
8782 continue;
8783
8784 if (b->type == type)
8785 i += hw_watchpoint_use_count (b);
8786 else if (is_hardware_watchpoint (b))
8787 *other_type_used = 1;
8788 }
8789
8790 return i;
8791 }
8792
8793 void
8794 disable_watchpoints_before_interactive_call_start (void)
8795 {
8796 struct breakpoint *b;
8797
8798 ALL_BREAKPOINTS (b)
8799 {
8800 if (is_watchpoint (b) && breakpoint_enabled (b))
8801 {
8802 b->enable_state = bp_call_disabled;
8803 update_global_location_list (UGLL_DONT_INSERT);
8804 }
8805 }
8806 }
8807
8808 void
8809 enable_watchpoints_after_interactive_call_stop (void)
8810 {
8811 struct breakpoint *b;
8812
8813 ALL_BREAKPOINTS (b)
8814 {
8815 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8816 {
8817 b->enable_state = bp_enabled;
8818 update_global_location_list (UGLL_MAY_INSERT);
8819 }
8820 }
8821 }
8822
8823 void
8824 disable_breakpoints_before_startup (void)
8825 {
8826 current_program_space->executing_startup = 1;
8827 update_global_location_list (UGLL_DONT_INSERT);
8828 }
8829
8830 void
8831 enable_breakpoints_after_startup (void)
8832 {
8833 current_program_space->executing_startup = 0;
8834 breakpoint_re_set ();
8835 }
8836
8837 /* Create a new single-step breakpoint for thread THREAD, with no
8838 locations. */
8839
8840 static struct breakpoint *
8841 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8842 {
8843 struct breakpoint *b = XNEW (struct breakpoint);
8844
8845 init_raw_breakpoint_without_location (b, gdbarch, bp_single_step,
8846 &momentary_breakpoint_ops);
8847
8848 b->disposition = disp_donttouch;
8849 b->frame_id = null_frame_id;
8850
8851 b->thread = thread;
8852 gdb_assert (b->thread != 0);
8853
8854 add_to_breakpoint_chain (b);
8855
8856 return b;
8857 }
8858
8859 /* Set a momentary breakpoint of type TYPE at address specified by
8860 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8861 frame. */
8862
8863 struct breakpoint *
8864 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8865 struct frame_id frame_id, enum bptype type)
8866 {
8867 struct breakpoint *b;
8868
8869 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8870 tail-called one. */
8871 gdb_assert (!frame_id_artificial_p (frame_id));
8872
8873 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8874 b->enable_state = bp_enabled;
8875 b->disposition = disp_donttouch;
8876 b->frame_id = frame_id;
8877
8878 /* If we're debugging a multi-threaded program, then we want
8879 momentary breakpoints to be active in only a single thread of
8880 control. */
8881 if (in_thread_list (inferior_ptid))
8882 b->thread = pid_to_thread_id (inferior_ptid);
8883
8884 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8885
8886 return b;
8887 }
8888
8889 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8890 The new breakpoint will have type TYPE, use OPS as its
8891 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8892
8893 static struct breakpoint *
8894 momentary_breakpoint_from_master (struct breakpoint *orig,
8895 enum bptype type,
8896 const struct breakpoint_ops *ops,
8897 int loc_enabled)
8898 {
8899 struct breakpoint *copy;
8900
8901 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8902 copy->loc = allocate_bp_location (copy);
8903 set_breakpoint_location_function (copy->loc, 1);
8904
8905 copy->loc->gdbarch = orig->loc->gdbarch;
8906 copy->loc->requested_address = orig->loc->requested_address;
8907 copy->loc->address = orig->loc->address;
8908 copy->loc->section = orig->loc->section;
8909 copy->loc->pspace = orig->loc->pspace;
8910 copy->loc->probe = orig->loc->probe;
8911 copy->loc->line_number = orig->loc->line_number;
8912 copy->loc->symtab = orig->loc->symtab;
8913 copy->loc->enabled = loc_enabled;
8914 copy->frame_id = orig->frame_id;
8915 copy->thread = orig->thread;
8916 copy->pspace = orig->pspace;
8917
8918 copy->enable_state = bp_enabled;
8919 copy->disposition = disp_donttouch;
8920 copy->number = internal_breakpoint_number--;
8921
8922 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8923 return copy;
8924 }
8925
8926 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8927 ORIG is NULL. */
8928
8929 struct breakpoint *
8930 clone_momentary_breakpoint (struct breakpoint *orig)
8931 {
8932 /* If there's nothing to clone, then return nothing. */
8933 if (orig == NULL)
8934 return NULL;
8935
8936 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8937 }
8938
8939 struct breakpoint *
8940 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8941 enum bptype type)
8942 {
8943 struct symtab_and_line sal;
8944
8945 sal = find_pc_line (pc, 0);
8946 sal.pc = pc;
8947 sal.section = find_pc_overlay (pc);
8948 sal.explicit_pc = 1;
8949
8950 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8951 }
8952 \f
8953
8954 /* Tell the user we have just set a breakpoint B. */
8955
8956 static void
8957 mention (struct breakpoint *b)
8958 {
8959 b->ops->print_mention (b);
8960 if (ui_out_is_mi_like_p (current_uiout))
8961 return;
8962 printf_filtered ("\n");
8963 }
8964 \f
8965
8966 static int bp_loc_is_permanent (struct bp_location *loc);
8967
8968 static struct bp_location *
8969 add_location_to_breakpoint (struct breakpoint *b,
8970 const struct symtab_and_line *sal)
8971 {
8972 struct bp_location *loc, **tmp;
8973 CORE_ADDR adjusted_address;
8974 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8975
8976 if (loc_gdbarch == NULL)
8977 loc_gdbarch = b->gdbarch;
8978
8979 /* Adjust the breakpoint's address prior to allocating a location.
8980 Once we call allocate_bp_location(), that mostly uninitialized
8981 location will be placed on the location chain. Adjustment of the
8982 breakpoint may cause target_read_memory() to be called and we do
8983 not want its scan of the location chain to find a breakpoint and
8984 location that's only been partially initialized. */
8985 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8986 sal->pc, b->type);
8987
8988 /* Sort the locations by their ADDRESS. */
8989 loc = allocate_bp_location (b);
8990 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8991 tmp = &((*tmp)->next))
8992 ;
8993 loc->next = *tmp;
8994 *tmp = loc;
8995
8996 loc->requested_address = sal->pc;
8997 loc->address = adjusted_address;
8998 loc->pspace = sal->pspace;
8999 loc->probe.probe = sal->probe;
9000 loc->probe.objfile = sal->objfile;
9001 gdb_assert (loc->pspace != NULL);
9002 loc->section = sal->section;
9003 loc->gdbarch = loc_gdbarch;
9004 loc->line_number = sal->line;
9005 loc->symtab = sal->symtab;
9006
9007 set_breakpoint_location_function (loc,
9008 sal->explicit_pc || sal->explicit_line);
9009
9010 /* While by definition, permanent breakpoints are already present in the
9011 code, we don't mark the location as inserted. Normally one would expect
9012 that GDB could rely on that breakpoint instruction to stop the program,
9013 thus removing the need to insert its own breakpoint, except that executing
9014 the breakpoint instruction can kill the target instead of reporting a
9015 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
9016 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
9017 with "Trap 0x02 while interrupts disabled, Error state". Letting the
9018 breakpoint be inserted normally results in QEMU knowing about the GDB
9019 breakpoint, and thus trap before the breakpoint instruction is executed.
9020 (If GDB later needs to continue execution past the permanent breakpoint,
9021 it manually increments the PC, thus avoiding executing the breakpoint
9022 instruction.) */
9023 if (bp_loc_is_permanent (loc))
9024 loc->permanent = 1;
9025
9026 return loc;
9027 }
9028 \f
9029
9030 /* See breakpoint.h. */
9031
9032 int
9033 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
9034 {
9035 int len;
9036 CORE_ADDR addr;
9037 const gdb_byte *bpoint;
9038 gdb_byte *target_mem;
9039 struct cleanup *cleanup;
9040 int retval = 0;
9041
9042 addr = address;
9043 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
9044
9045 /* Software breakpoints unsupported? */
9046 if (bpoint == NULL)
9047 return 0;
9048
9049 target_mem = (gdb_byte *) alloca (len);
9050
9051 /* Enable the automatic memory restoration from breakpoints while
9052 we read the memory. Otherwise we could say about our temporary
9053 breakpoints they are permanent. */
9054 cleanup = make_show_memory_breakpoints_cleanup (0);
9055
9056 if (target_read_memory (address, target_mem, len) == 0
9057 && memcmp (target_mem, bpoint, len) == 0)
9058 retval = 1;
9059
9060 do_cleanups (cleanup);
9061
9062 return retval;
9063 }
9064
9065 /* Return 1 if LOC is pointing to a permanent breakpoint,
9066 return 0 otherwise. */
9067
9068 static int
9069 bp_loc_is_permanent (struct bp_location *loc)
9070 {
9071 struct cleanup *cleanup;
9072 int retval;
9073
9074 gdb_assert (loc != NULL);
9075
9076 /* If we have a catchpoint or a watchpoint, just return 0. We should not
9077 attempt to read from the addresses the locations of these breakpoint types
9078 point to. program_breakpoint_here_p, below, will attempt to read
9079 memory. */
9080 if (!breakpoint_address_is_meaningful (loc->owner))
9081 return 0;
9082
9083 cleanup = save_current_space_and_thread ();
9084 switch_to_program_space_and_thread (loc->pspace);
9085
9086 retval = program_breakpoint_here_p (loc->gdbarch, loc->address);
9087
9088 do_cleanups (cleanup);
9089
9090 return retval;
9091 }
9092
9093 /* Build a command list for the dprintf corresponding to the current
9094 settings of the dprintf style options. */
9095
9096 static void
9097 update_dprintf_command_list (struct breakpoint *b)
9098 {
9099 char *dprintf_args = b->extra_string;
9100 char *printf_line = NULL;
9101
9102 if (!dprintf_args)
9103 return;
9104
9105 dprintf_args = skip_spaces (dprintf_args);
9106
9107 /* Allow a comma, as it may have terminated a location, but don't
9108 insist on it. */
9109 if (*dprintf_args == ',')
9110 ++dprintf_args;
9111 dprintf_args = skip_spaces (dprintf_args);
9112
9113 if (*dprintf_args != '"')
9114 error (_("Bad format string, missing '\"'."));
9115
9116 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9117 printf_line = xstrprintf ("printf %s", dprintf_args);
9118 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9119 {
9120 if (!dprintf_function)
9121 error (_("No function supplied for dprintf call"));
9122
9123 if (dprintf_channel && strlen (dprintf_channel) > 0)
9124 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9125 dprintf_function,
9126 dprintf_channel,
9127 dprintf_args);
9128 else
9129 printf_line = xstrprintf ("call (void) %s (%s)",
9130 dprintf_function,
9131 dprintf_args);
9132 }
9133 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9134 {
9135 if (target_can_run_breakpoint_commands ())
9136 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9137 else
9138 {
9139 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9140 printf_line = xstrprintf ("printf %s", dprintf_args);
9141 }
9142 }
9143 else
9144 internal_error (__FILE__, __LINE__,
9145 _("Invalid dprintf style."));
9146
9147 gdb_assert (printf_line != NULL);
9148 /* Manufacture a printf sequence. */
9149 {
9150 struct command_line *printf_cmd_line = XNEW (struct command_line);
9151
9152 printf_cmd_line->control_type = simple_control;
9153 printf_cmd_line->body_count = 0;
9154 printf_cmd_line->body_list = NULL;
9155 printf_cmd_line->next = NULL;
9156 printf_cmd_line->line = printf_line;
9157
9158 breakpoint_set_commands (b, printf_cmd_line);
9159 }
9160 }
9161
9162 /* Update all dprintf commands, making their command lists reflect
9163 current style settings. */
9164
9165 static void
9166 update_dprintf_commands (char *args, int from_tty,
9167 struct cmd_list_element *c)
9168 {
9169 struct breakpoint *b;
9170
9171 ALL_BREAKPOINTS (b)
9172 {
9173 if (b->type == bp_dprintf)
9174 update_dprintf_command_list (b);
9175 }
9176 }
9177
9178 /* Create a breakpoint with SAL as location. Use LOCATION
9179 as a description of the location, and COND_STRING
9180 as condition expression. */
9181
9182 static void
9183 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9184 struct symtabs_and_lines sals,
9185 struct event_location *location,
9186 char *filter, char *cond_string,
9187 char *extra_string,
9188 enum bptype type, enum bpdisp disposition,
9189 int thread, int task, int ignore_count,
9190 const struct breakpoint_ops *ops, int from_tty,
9191 int enabled, int internal, unsigned flags,
9192 int display_canonical)
9193 {
9194 int i;
9195
9196 if (type == bp_hardware_breakpoint)
9197 {
9198 int target_resources_ok;
9199
9200 i = hw_breakpoint_used_count ();
9201 target_resources_ok =
9202 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9203 i + 1, 0);
9204 if (target_resources_ok == 0)
9205 error (_("No hardware breakpoint support in the target."));
9206 else if (target_resources_ok < 0)
9207 error (_("Hardware breakpoints used exceeds limit."));
9208 }
9209
9210 gdb_assert (sals.nelts > 0);
9211
9212 for (i = 0; i < sals.nelts; ++i)
9213 {
9214 struct symtab_and_line sal = sals.sals[i];
9215 struct bp_location *loc;
9216
9217 if (from_tty)
9218 {
9219 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9220 if (!loc_gdbarch)
9221 loc_gdbarch = gdbarch;
9222
9223 describe_other_breakpoints (loc_gdbarch,
9224 sal.pspace, sal.pc, sal.section, thread);
9225 }
9226
9227 if (i == 0)
9228 {
9229 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9230 b->thread = thread;
9231 b->task = task;
9232
9233 b->cond_string = cond_string;
9234 b->extra_string = extra_string;
9235 b->ignore_count = ignore_count;
9236 b->enable_state = enabled ? bp_enabled : bp_disabled;
9237 b->disposition = disposition;
9238
9239 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9240 b->loc->inserted = 1;
9241
9242 if (type == bp_static_tracepoint)
9243 {
9244 struct tracepoint *t = (struct tracepoint *) b;
9245 struct static_tracepoint_marker marker;
9246
9247 if (strace_marker_p (b))
9248 {
9249 /* We already know the marker exists, otherwise, we
9250 wouldn't see a sal for it. */
9251 const char *p = &event_location_to_string (b->location)[3];
9252 const char *endp;
9253 char *marker_str;
9254
9255 p = skip_spaces_const (p);
9256
9257 endp = skip_to_space_const (p);
9258
9259 marker_str = savestring (p, endp - p);
9260 t->static_trace_marker_id = marker_str;
9261
9262 printf_filtered (_("Probed static tracepoint "
9263 "marker \"%s\"\n"),
9264 t->static_trace_marker_id);
9265 }
9266 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9267 {
9268 t->static_trace_marker_id = xstrdup (marker.str_id);
9269 release_static_tracepoint_marker (&marker);
9270
9271 printf_filtered (_("Probed static tracepoint "
9272 "marker \"%s\"\n"),
9273 t->static_trace_marker_id);
9274 }
9275 else
9276 warning (_("Couldn't determine the static "
9277 "tracepoint marker to probe"));
9278 }
9279
9280 loc = b->loc;
9281 }
9282 else
9283 {
9284 loc = add_location_to_breakpoint (b, &sal);
9285 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9286 loc->inserted = 1;
9287 }
9288
9289 if (b->cond_string)
9290 {
9291 const char *arg = b->cond_string;
9292
9293 loc->cond = parse_exp_1 (&arg, loc->address,
9294 block_for_pc (loc->address), 0);
9295 if (*arg)
9296 error (_("Garbage '%s' follows condition"), arg);
9297 }
9298
9299 /* Dynamic printf requires and uses additional arguments on the
9300 command line, otherwise it's an error. */
9301 if (type == bp_dprintf)
9302 {
9303 if (b->extra_string)
9304 update_dprintf_command_list (b);
9305 else
9306 error (_("Format string required"));
9307 }
9308 else if (b->extra_string)
9309 error (_("Garbage '%s' at end of command"), b->extra_string);
9310 }
9311
9312 b->display_canonical = display_canonical;
9313 if (location != NULL)
9314 b->location = location;
9315 else
9316 b->location = new_address_location (b->loc->address);
9317 b->filter = filter;
9318 }
9319
9320 static void
9321 create_breakpoint_sal (struct gdbarch *gdbarch,
9322 struct symtabs_and_lines sals,
9323 struct event_location *location,
9324 char *filter, char *cond_string,
9325 char *extra_string,
9326 enum bptype type, enum bpdisp disposition,
9327 int thread, int task, int ignore_count,
9328 const struct breakpoint_ops *ops, int from_tty,
9329 int enabled, int internal, unsigned flags,
9330 int display_canonical)
9331 {
9332 struct breakpoint *b;
9333 struct cleanup *old_chain;
9334
9335 if (is_tracepoint_type (type))
9336 {
9337 struct tracepoint *t;
9338
9339 t = XCNEW (struct tracepoint);
9340 b = &t->base;
9341 }
9342 else
9343 b = XNEW (struct breakpoint);
9344
9345 old_chain = make_cleanup (xfree, b);
9346
9347 init_breakpoint_sal (b, gdbarch,
9348 sals, location,
9349 filter, cond_string, extra_string,
9350 type, disposition,
9351 thread, task, ignore_count,
9352 ops, from_tty,
9353 enabled, internal, flags,
9354 display_canonical);
9355 discard_cleanups (old_chain);
9356
9357 install_breakpoint (internal, b, 0);
9358 }
9359
9360 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9361 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9362 value. COND_STRING, if not NULL, specified the condition to be
9363 used for all breakpoints. Essentially the only case where
9364 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9365 function. In that case, it's still not possible to specify
9366 separate conditions for different overloaded functions, so
9367 we take just a single condition string.
9368
9369 NOTE: If the function succeeds, the caller is expected to cleanup
9370 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9371 array contents). If the function fails (error() is called), the
9372 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9373 COND and SALS arrays and each of those arrays contents. */
9374
9375 static void
9376 create_breakpoints_sal (struct gdbarch *gdbarch,
9377 struct linespec_result *canonical,
9378 char *cond_string, char *extra_string,
9379 enum bptype type, enum bpdisp disposition,
9380 int thread, int task, int ignore_count,
9381 const struct breakpoint_ops *ops, int from_tty,
9382 int enabled, int internal, unsigned flags)
9383 {
9384 int i;
9385 struct linespec_sals *lsal;
9386
9387 if (canonical->pre_expanded)
9388 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9389
9390 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9391 {
9392 /* Note that 'location' can be NULL in the case of a plain
9393 'break', without arguments. */
9394 struct event_location *location
9395 = (canonical->location != NULL
9396 ? copy_event_location (canonical->location) : NULL);
9397 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9398 struct cleanup *inner = make_cleanup_delete_event_location (location);
9399
9400 make_cleanup (xfree, filter_string);
9401 create_breakpoint_sal (gdbarch, lsal->sals,
9402 location,
9403 filter_string,
9404 cond_string, extra_string,
9405 type, disposition,
9406 thread, task, ignore_count, ops,
9407 from_tty, enabled, internal, flags,
9408 canonical->special_display);
9409 discard_cleanups (inner);
9410 }
9411 }
9412
9413 /* Parse LOCATION which is assumed to be a SAL specification possibly
9414 followed by conditionals. On return, SALS contains an array of SAL
9415 addresses found. LOCATION points to the end of the SAL (for
9416 linespec locations).
9417
9418 The array and the line spec strings are allocated on the heap, it is
9419 the caller's responsibility to free them. */
9420
9421 static void
9422 parse_breakpoint_sals (const struct event_location *location,
9423 struct linespec_result *canonical)
9424 {
9425 struct symtab_and_line cursal;
9426
9427 if (event_location_type (location) == LINESPEC_LOCATION)
9428 {
9429 const char *address = get_linespec_location (location);
9430
9431 if (address == NULL)
9432 {
9433 /* The last displayed codepoint, if it's valid, is our default
9434 breakpoint address. */
9435 if (last_displayed_sal_is_valid ())
9436 {
9437 struct linespec_sals lsal;
9438 struct symtab_and_line sal;
9439 CORE_ADDR pc;
9440
9441 init_sal (&sal); /* Initialize to zeroes. */
9442 lsal.sals.sals = XNEW (struct symtab_and_line);
9443
9444 /* Set sal's pspace, pc, symtab, and line to the values
9445 corresponding to the last call to print_frame_info.
9446 Be sure to reinitialize LINE with NOTCURRENT == 0
9447 as the breakpoint line number is inappropriate otherwise.
9448 find_pc_line would adjust PC, re-set it back. */
9449 get_last_displayed_sal (&sal);
9450 pc = sal.pc;
9451 sal = find_pc_line (pc, 0);
9452
9453 /* "break" without arguments is equivalent to "break *PC"
9454 where PC is the last displayed codepoint's address. So
9455 make sure to set sal.explicit_pc to prevent GDB from
9456 trying to expand the list of sals to include all other
9457 instances with the same symtab and line. */
9458 sal.pc = pc;
9459 sal.explicit_pc = 1;
9460
9461 lsal.sals.sals[0] = sal;
9462 lsal.sals.nelts = 1;
9463 lsal.canonical = NULL;
9464
9465 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9466 return;
9467 }
9468 else
9469 error (_("No default breakpoint address now."));
9470 }
9471 }
9472
9473 /* Force almost all breakpoints to be in terms of the
9474 current_source_symtab (which is decode_line_1's default).
9475 This should produce the results we want almost all of the
9476 time while leaving default_breakpoint_* alone.
9477
9478 ObjC: However, don't match an Objective-C method name which
9479 may have a '+' or '-' succeeded by a '['. */
9480 cursal = get_current_source_symtab_and_line ();
9481 if (last_displayed_sal_is_valid ())
9482 {
9483 const char *address = NULL;
9484
9485 if (event_location_type (location) == LINESPEC_LOCATION)
9486 address = get_linespec_location (location);
9487
9488 if (!cursal.symtab
9489 || (address != NULL
9490 && strchr ("+-", address[0]) != NULL
9491 && address[1] != '['))
9492 {
9493 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE,
9494 get_last_displayed_symtab (),
9495 get_last_displayed_line (),
9496 canonical, NULL, NULL);
9497 return;
9498 }
9499 }
9500
9501 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE,
9502 cursal.symtab, cursal.line, canonical, NULL, NULL);
9503 }
9504
9505
9506 /* Convert each SAL into a real PC. Verify that the PC can be
9507 inserted as a breakpoint. If it can't throw an error. */
9508
9509 static void
9510 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9511 {
9512 int i;
9513
9514 for (i = 0; i < sals->nelts; i++)
9515 resolve_sal_pc (&sals->sals[i]);
9516 }
9517
9518 /* Fast tracepoints may have restrictions on valid locations. For
9519 instance, a fast tracepoint using a jump instead of a trap will
9520 likely have to overwrite more bytes than a trap would, and so can
9521 only be placed where the instruction is longer than the jump, or a
9522 multi-instruction sequence does not have a jump into the middle of
9523 it, etc. */
9524
9525 static void
9526 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9527 struct symtabs_and_lines *sals)
9528 {
9529 int i, rslt;
9530 struct symtab_and_line *sal;
9531 char *msg;
9532 struct cleanup *old_chain;
9533
9534 for (i = 0; i < sals->nelts; i++)
9535 {
9536 struct gdbarch *sarch;
9537
9538 sal = &sals->sals[i];
9539
9540 sarch = get_sal_arch (*sal);
9541 /* We fall back to GDBARCH if there is no architecture
9542 associated with SAL. */
9543 if (sarch == NULL)
9544 sarch = gdbarch;
9545 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc, &msg);
9546 old_chain = make_cleanup (xfree, msg);
9547
9548 if (!rslt)
9549 error (_("May not have a fast tracepoint at 0x%s%s"),
9550 paddress (sarch, sal->pc), (msg ? msg : ""));
9551
9552 do_cleanups (old_chain);
9553 }
9554 }
9555
9556 /* Issue an invalid thread ID error. */
9557
9558 static void ATTRIBUTE_NORETURN
9559 invalid_thread_id_error (int id)
9560 {
9561 error (_("Unknown thread %d."), id);
9562 }
9563
9564 /* Given TOK, a string specification of condition and thread, as
9565 accepted by the 'break' command, extract the condition
9566 string and thread number and set *COND_STRING and *THREAD.
9567 PC identifies the context at which the condition should be parsed.
9568 If no condition is found, *COND_STRING is set to NULL.
9569 If no thread is found, *THREAD is set to -1. */
9570
9571 static void
9572 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9573 char **cond_string, int *thread, int *task,
9574 char **rest)
9575 {
9576 *cond_string = NULL;
9577 *thread = -1;
9578 *task = 0;
9579 *rest = NULL;
9580
9581 while (tok && *tok)
9582 {
9583 const char *end_tok;
9584 int toklen;
9585 const char *cond_start = NULL;
9586 const char *cond_end = NULL;
9587
9588 tok = skip_spaces_const (tok);
9589
9590 if ((*tok == '"' || *tok == ',') && rest)
9591 {
9592 *rest = savestring (tok, strlen (tok));
9593 return;
9594 }
9595
9596 end_tok = skip_to_space_const (tok);
9597
9598 toklen = end_tok - tok;
9599
9600 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9601 {
9602 struct expression *expr;
9603
9604 tok = cond_start = end_tok + 1;
9605 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9606 xfree (expr);
9607 cond_end = tok;
9608 *cond_string = savestring (cond_start, cond_end - cond_start);
9609 }
9610 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9611 {
9612 char *tmptok;
9613
9614 tok = end_tok + 1;
9615 *thread = strtol (tok, &tmptok, 0);
9616 if (tok == tmptok)
9617 error (_("Junk after thread keyword."));
9618 if (!valid_thread_id (*thread))
9619 invalid_thread_id_error (*thread);
9620 tok = tmptok;
9621 }
9622 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9623 {
9624 char *tmptok;
9625
9626 tok = end_tok + 1;
9627 *task = strtol (tok, &tmptok, 0);
9628 if (tok == tmptok)
9629 error (_("Junk after task keyword."));
9630 if (!valid_task_id (*task))
9631 error (_("Unknown task %d."), *task);
9632 tok = tmptok;
9633 }
9634 else if (rest)
9635 {
9636 *rest = savestring (tok, strlen (tok));
9637 return;
9638 }
9639 else
9640 error (_("Junk at end of arguments."));
9641 }
9642 }
9643
9644 /* Decode a static tracepoint marker spec. */
9645
9646 static struct symtabs_and_lines
9647 decode_static_tracepoint_spec (const char **arg_p)
9648 {
9649 VEC(static_tracepoint_marker_p) *markers = NULL;
9650 struct symtabs_and_lines sals;
9651 struct cleanup *old_chain;
9652 const char *p = &(*arg_p)[3];
9653 const char *endp;
9654 char *marker_str;
9655 int i;
9656
9657 p = skip_spaces_const (p);
9658
9659 endp = skip_to_space_const (p);
9660
9661 marker_str = savestring (p, endp - p);
9662 old_chain = make_cleanup (xfree, marker_str);
9663
9664 markers = target_static_tracepoint_markers_by_strid (marker_str);
9665 if (VEC_empty(static_tracepoint_marker_p, markers))
9666 error (_("No known static tracepoint marker named %s"), marker_str);
9667
9668 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9669 sals.sals = XNEWVEC (struct symtab_and_line, sals.nelts);
9670
9671 for (i = 0; i < sals.nelts; i++)
9672 {
9673 struct static_tracepoint_marker *marker;
9674
9675 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9676
9677 init_sal (&sals.sals[i]);
9678
9679 sals.sals[i] = find_pc_line (marker->address, 0);
9680 sals.sals[i].pc = marker->address;
9681
9682 release_static_tracepoint_marker (marker);
9683 }
9684
9685 do_cleanups (old_chain);
9686
9687 *arg_p = endp;
9688 return sals;
9689 }
9690
9691 /* See breakpoint.h. */
9692
9693 int
9694 create_breakpoint (struct gdbarch *gdbarch,
9695 const struct event_location *location, char *cond_string,
9696 int thread, char *extra_string,
9697 int parse_extra,
9698 int tempflag, enum bptype type_wanted,
9699 int ignore_count,
9700 enum auto_boolean pending_break_support,
9701 const struct breakpoint_ops *ops,
9702 int from_tty, int enabled, int internal,
9703 unsigned flags)
9704 {
9705 struct linespec_result canonical;
9706 struct cleanup *old_chain;
9707 struct cleanup *bkpt_chain = NULL;
9708 int pending = 0;
9709 int task = 0;
9710 int prev_bkpt_count = breakpoint_count;
9711
9712 gdb_assert (ops != NULL);
9713
9714 /* If extra_string isn't useful, set it to NULL. */
9715 if (extra_string != NULL && *extra_string == '\0')
9716 extra_string = NULL;
9717
9718 init_linespec_result (&canonical);
9719
9720 TRY
9721 {
9722 ops->create_sals_from_location (location, &canonical, type_wanted);
9723 }
9724 CATCH (e, RETURN_MASK_ERROR)
9725 {
9726 /* If caller is interested in rc value from parse, set
9727 value. */
9728 if (e.error == NOT_FOUND_ERROR)
9729 {
9730 /* If pending breakpoint support is turned off, throw
9731 error. */
9732
9733 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9734 throw_exception (e);
9735
9736 exception_print (gdb_stderr, e);
9737
9738 /* If pending breakpoint support is auto query and the user
9739 selects no, then simply return the error code. */
9740 if (pending_break_support == AUTO_BOOLEAN_AUTO
9741 && !nquery (_("Make %s pending on future shared library load? "),
9742 bptype_string (type_wanted)))
9743 return 0;
9744
9745 /* At this point, either the user was queried about setting
9746 a pending breakpoint and selected yes, or pending
9747 breakpoint behavior is on and thus a pending breakpoint
9748 is defaulted on behalf of the user. */
9749 pending = 1;
9750 }
9751 else
9752 throw_exception (e);
9753 }
9754 END_CATCH
9755
9756 if (!pending && VEC_empty (linespec_sals, canonical.sals))
9757 return 0;
9758
9759 /* Create a chain of things that always need to be cleaned up. */
9760 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9761
9762 /* ----------------------------- SNIP -----------------------------
9763 Anything added to the cleanup chain beyond this point is assumed
9764 to be part of a breakpoint. If the breakpoint create succeeds
9765 then the memory is not reclaimed. */
9766 bkpt_chain = make_cleanup (null_cleanup, 0);
9767
9768 /* Resolve all line numbers to PC's and verify that the addresses
9769 are ok for the target. */
9770 if (!pending)
9771 {
9772 int ix;
9773 struct linespec_sals *iter;
9774
9775 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9776 breakpoint_sals_to_pc (&iter->sals);
9777 }
9778
9779 /* Fast tracepoints may have additional restrictions on location. */
9780 if (!pending && type_wanted == bp_fast_tracepoint)
9781 {
9782 int ix;
9783 struct linespec_sals *iter;
9784
9785 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9786 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9787 }
9788
9789 /* Verify that condition can be parsed, before setting any
9790 breakpoints. Allocate a separate condition expression for each
9791 breakpoint. */
9792 if (!pending)
9793 {
9794 if (parse_extra)
9795 {
9796 char *rest;
9797 struct linespec_sals *lsal;
9798
9799 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9800
9801 /* Here we only parse 'arg' to separate condition
9802 from thread number, so parsing in context of first
9803 sal is OK. When setting the breakpoint we'll
9804 re-parse it in context of each sal. */
9805
9806 find_condition_and_thread (extra_string, lsal->sals.sals[0].pc,
9807 &cond_string, &thread, &task, &rest);
9808 if (cond_string)
9809 make_cleanup (xfree, cond_string);
9810 if (rest)
9811 make_cleanup (xfree, rest);
9812 if (rest)
9813 extra_string = rest;
9814 else
9815 extra_string = NULL;
9816 }
9817 else
9818 {
9819 if (type_wanted != bp_dprintf
9820 && extra_string != NULL && *extra_string != '\0')
9821 error (_("Garbage '%s' at end of location"), extra_string);
9822
9823 /* Create a private copy of condition string. */
9824 if (cond_string)
9825 {
9826 cond_string = xstrdup (cond_string);
9827 make_cleanup (xfree, cond_string);
9828 }
9829 /* Create a private copy of any extra string. */
9830 if (extra_string)
9831 {
9832 extra_string = xstrdup (extra_string);
9833 make_cleanup (xfree, extra_string);
9834 }
9835 }
9836
9837 ops->create_breakpoints_sal (gdbarch, &canonical,
9838 cond_string, extra_string, type_wanted,
9839 tempflag ? disp_del : disp_donttouch,
9840 thread, task, ignore_count, ops,
9841 from_tty, enabled, internal, flags);
9842 }
9843 else
9844 {
9845 struct breakpoint *b;
9846
9847 if (is_tracepoint_type (type_wanted))
9848 {
9849 struct tracepoint *t;
9850
9851 t = XCNEW (struct tracepoint);
9852 b = &t->base;
9853 }
9854 else
9855 b = XNEW (struct breakpoint);
9856
9857 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9858 b->location = copy_event_location (location);
9859
9860 if (parse_extra)
9861 b->cond_string = NULL;
9862 else
9863 {
9864 /* Create a private copy of condition string. */
9865 if (cond_string)
9866 {
9867 cond_string = xstrdup (cond_string);
9868 make_cleanup (xfree, cond_string);
9869 }
9870 b->cond_string = cond_string;
9871 b->thread = thread;
9872 }
9873
9874 /* Create a private copy of any extra string. */
9875 if (extra_string != NULL)
9876 {
9877 extra_string = xstrdup (extra_string);
9878 make_cleanup (xfree, extra_string);
9879 }
9880 b->extra_string = extra_string;
9881 b->ignore_count = ignore_count;
9882 b->disposition = tempflag ? disp_del : disp_donttouch;
9883 b->condition_not_parsed = 1;
9884 b->enable_state = enabled ? bp_enabled : bp_disabled;
9885 if ((type_wanted != bp_breakpoint
9886 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9887 b->pspace = current_program_space;
9888
9889 install_breakpoint (internal, b, 0);
9890 }
9891
9892 if (VEC_length (linespec_sals, canonical.sals) > 1)
9893 {
9894 warning (_("Multiple breakpoints were set.\nUse the "
9895 "\"delete\" command to delete unwanted breakpoints."));
9896 prev_breakpoint_count = prev_bkpt_count;
9897 }
9898
9899 /* That's it. Discard the cleanups for data inserted into the
9900 breakpoint. */
9901 discard_cleanups (bkpt_chain);
9902 /* But cleanup everything else. */
9903 do_cleanups (old_chain);
9904
9905 /* error call may happen here - have BKPT_CHAIN already discarded. */
9906 update_global_location_list (UGLL_MAY_INSERT);
9907
9908 return 1;
9909 }
9910
9911 /* Set a breakpoint.
9912 ARG is a string describing breakpoint address,
9913 condition, and thread.
9914 FLAG specifies if a breakpoint is hardware on,
9915 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9916 and BP_TEMPFLAG. */
9917
9918 static void
9919 break_command_1 (char *arg, int flag, int from_tty)
9920 {
9921 int tempflag = flag & BP_TEMPFLAG;
9922 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9923 ? bp_hardware_breakpoint
9924 : bp_breakpoint);
9925 struct breakpoint_ops *ops;
9926 struct event_location *location;
9927 struct cleanup *cleanup;
9928
9929 location = string_to_event_location (&arg, current_language);
9930 cleanup = make_cleanup_delete_event_location (location);
9931
9932 /* Matching breakpoints on probes. */
9933 if (location != NULL
9934 && event_location_type (location) == PROBE_LOCATION)
9935 ops = &bkpt_probe_breakpoint_ops;
9936 else
9937 ops = &bkpt_breakpoint_ops;
9938
9939 create_breakpoint (get_current_arch (),
9940 location,
9941 NULL, 0, arg, 1 /* parse arg */,
9942 tempflag, type_wanted,
9943 0 /* Ignore count */,
9944 pending_break_support,
9945 ops,
9946 from_tty,
9947 1 /* enabled */,
9948 0 /* internal */,
9949 0);
9950 do_cleanups (cleanup);
9951 }
9952
9953 /* Helper function for break_command_1 and disassemble_command. */
9954
9955 void
9956 resolve_sal_pc (struct symtab_and_line *sal)
9957 {
9958 CORE_ADDR pc;
9959
9960 if (sal->pc == 0 && sal->symtab != NULL)
9961 {
9962 if (!find_line_pc (sal->symtab, sal->line, &pc))
9963 error (_("No line %d in file \"%s\"."),
9964 sal->line, symtab_to_filename_for_display (sal->symtab));
9965 sal->pc = pc;
9966
9967 /* If this SAL corresponds to a breakpoint inserted using a line
9968 number, then skip the function prologue if necessary. */
9969 if (sal->explicit_line)
9970 skip_prologue_sal (sal);
9971 }
9972
9973 if (sal->section == 0 && sal->symtab != NULL)
9974 {
9975 const struct blockvector *bv;
9976 const struct block *b;
9977 struct symbol *sym;
9978
9979 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9980 SYMTAB_COMPUNIT (sal->symtab));
9981 if (bv != NULL)
9982 {
9983 sym = block_linkage_function (b);
9984 if (sym != NULL)
9985 {
9986 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9987 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9988 sym);
9989 }
9990 else
9991 {
9992 /* It really is worthwhile to have the section, so we'll
9993 just have to look harder. This case can be executed
9994 if we have line numbers but no functions (as can
9995 happen in assembly source). */
9996
9997 struct bound_minimal_symbol msym;
9998 struct cleanup *old_chain = save_current_space_and_thread ();
9999
10000 switch_to_program_space_and_thread (sal->pspace);
10001
10002 msym = lookup_minimal_symbol_by_pc (sal->pc);
10003 if (msym.minsym)
10004 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
10005
10006 do_cleanups (old_chain);
10007 }
10008 }
10009 }
10010 }
10011
10012 void
10013 break_command (char *arg, int from_tty)
10014 {
10015 break_command_1 (arg, 0, from_tty);
10016 }
10017
10018 void
10019 tbreak_command (char *arg, int from_tty)
10020 {
10021 break_command_1 (arg, BP_TEMPFLAG, from_tty);
10022 }
10023
10024 static void
10025 hbreak_command (char *arg, int from_tty)
10026 {
10027 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
10028 }
10029
10030 static void
10031 thbreak_command (char *arg, int from_tty)
10032 {
10033 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
10034 }
10035
10036 static void
10037 stop_command (char *arg, int from_tty)
10038 {
10039 printf_filtered (_("Specify the type of breakpoint to set.\n\
10040 Usage: stop in <function | address>\n\
10041 stop at <line>\n"));
10042 }
10043
10044 static void
10045 stopin_command (char *arg, int from_tty)
10046 {
10047 int badInput = 0;
10048
10049 if (arg == (char *) NULL)
10050 badInput = 1;
10051 else if (*arg != '*')
10052 {
10053 char *argptr = arg;
10054 int hasColon = 0;
10055
10056 /* Look for a ':'. If this is a line number specification, then
10057 say it is bad, otherwise, it should be an address or
10058 function/method name. */
10059 while (*argptr && !hasColon)
10060 {
10061 hasColon = (*argptr == ':');
10062 argptr++;
10063 }
10064
10065 if (hasColon)
10066 badInput = (*argptr != ':'); /* Not a class::method */
10067 else
10068 badInput = isdigit (*arg); /* a simple line number */
10069 }
10070
10071 if (badInput)
10072 printf_filtered (_("Usage: stop in <function | address>\n"));
10073 else
10074 break_command_1 (arg, 0, from_tty);
10075 }
10076
10077 static void
10078 stopat_command (char *arg, int from_tty)
10079 {
10080 int badInput = 0;
10081
10082 if (arg == (char *) NULL || *arg == '*') /* no line number */
10083 badInput = 1;
10084 else
10085 {
10086 char *argptr = arg;
10087 int hasColon = 0;
10088
10089 /* Look for a ':'. If there is a '::' then get out, otherwise
10090 it is probably a line number. */
10091 while (*argptr && !hasColon)
10092 {
10093 hasColon = (*argptr == ':');
10094 argptr++;
10095 }
10096
10097 if (hasColon)
10098 badInput = (*argptr == ':'); /* we have class::method */
10099 else
10100 badInput = !isdigit (*arg); /* not a line number */
10101 }
10102
10103 if (badInput)
10104 printf_filtered (_("Usage: stop at <line>\n"));
10105 else
10106 break_command_1 (arg, 0, from_tty);
10107 }
10108
10109 /* The dynamic printf command is mostly like a regular breakpoint, but
10110 with a prewired command list consisting of a single output command,
10111 built from extra arguments supplied on the dprintf command
10112 line. */
10113
10114 static void
10115 dprintf_command (char *arg, int from_tty)
10116 {
10117 struct event_location *location;
10118 struct cleanup *cleanup;
10119
10120 location = string_to_event_location (&arg, current_language);
10121 cleanup = make_cleanup_delete_event_location (location);
10122
10123 /* If non-NULL, ARG should have been advanced past the location;
10124 the next character must be ','. */
10125 if (arg != NULL)
10126 {
10127 if (arg[0] != ',' || arg[1] == '\0')
10128 error (_("Format string required"));
10129 else
10130 {
10131 /* Skip the comma. */
10132 ++arg;
10133 }
10134 }
10135
10136 create_breakpoint (get_current_arch (),
10137 location,
10138 NULL, 0, arg, 1 /* parse arg */,
10139 0, bp_dprintf,
10140 0 /* Ignore count */,
10141 pending_break_support,
10142 &dprintf_breakpoint_ops,
10143 from_tty,
10144 1 /* enabled */,
10145 0 /* internal */,
10146 0);
10147 do_cleanups (cleanup);
10148 }
10149
10150 static void
10151 agent_printf_command (char *arg, int from_tty)
10152 {
10153 error (_("May only run agent-printf on the target"));
10154 }
10155
10156 /* Implement the "breakpoint_hit" breakpoint_ops method for
10157 ranged breakpoints. */
10158
10159 static int
10160 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10161 struct address_space *aspace,
10162 CORE_ADDR bp_addr,
10163 const struct target_waitstatus *ws)
10164 {
10165 if (ws->kind != TARGET_WAITKIND_STOPPED
10166 || ws->value.sig != GDB_SIGNAL_TRAP)
10167 return 0;
10168
10169 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10170 bl->length, aspace, bp_addr);
10171 }
10172
10173 /* Implement the "resources_needed" breakpoint_ops method for
10174 ranged breakpoints. */
10175
10176 static int
10177 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10178 {
10179 return target_ranged_break_num_registers ();
10180 }
10181
10182 /* Implement the "print_it" breakpoint_ops method for
10183 ranged breakpoints. */
10184
10185 static enum print_stop_action
10186 print_it_ranged_breakpoint (bpstat bs)
10187 {
10188 struct breakpoint *b = bs->breakpoint_at;
10189 struct bp_location *bl = b->loc;
10190 struct ui_out *uiout = current_uiout;
10191
10192 gdb_assert (b->type == bp_hardware_breakpoint);
10193
10194 /* Ranged breakpoints have only one location. */
10195 gdb_assert (bl && bl->next == NULL);
10196
10197 annotate_breakpoint (b->number);
10198 if (b->disposition == disp_del)
10199 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
10200 else
10201 ui_out_text (uiout, "\nRanged breakpoint ");
10202 if (ui_out_is_mi_like_p (uiout))
10203 {
10204 ui_out_field_string (uiout, "reason",
10205 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10206 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10207 }
10208 ui_out_field_int (uiout, "bkptno", b->number);
10209 ui_out_text (uiout, ", ");
10210
10211 return PRINT_SRC_AND_LOC;
10212 }
10213
10214 /* Implement the "print_one" breakpoint_ops method for
10215 ranged breakpoints. */
10216
10217 static void
10218 print_one_ranged_breakpoint (struct breakpoint *b,
10219 struct bp_location **last_loc)
10220 {
10221 struct bp_location *bl = b->loc;
10222 struct value_print_options opts;
10223 struct ui_out *uiout = current_uiout;
10224
10225 /* Ranged breakpoints have only one location. */
10226 gdb_assert (bl && bl->next == NULL);
10227
10228 get_user_print_options (&opts);
10229
10230 if (opts.addressprint)
10231 /* We don't print the address range here, it will be printed later
10232 by print_one_detail_ranged_breakpoint. */
10233 ui_out_field_skip (uiout, "addr");
10234 annotate_field (5);
10235 print_breakpoint_location (b, bl);
10236 *last_loc = bl;
10237 }
10238
10239 /* Implement the "print_one_detail" breakpoint_ops method for
10240 ranged breakpoints. */
10241
10242 static void
10243 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10244 struct ui_out *uiout)
10245 {
10246 CORE_ADDR address_start, address_end;
10247 struct bp_location *bl = b->loc;
10248 struct ui_file *stb = mem_fileopen ();
10249 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10250
10251 gdb_assert (bl);
10252
10253 address_start = bl->address;
10254 address_end = address_start + bl->length - 1;
10255
10256 ui_out_text (uiout, "\taddress range: ");
10257 fprintf_unfiltered (stb, "[%s, %s]",
10258 print_core_address (bl->gdbarch, address_start),
10259 print_core_address (bl->gdbarch, address_end));
10260 ui_out_field_stream (uiout, "addr", stb);
10261 ui_out_text (uiout, "\n");
10262
10263 do_cleanups (cleanup);
10264 }
10265
10266 /* Implement the "print_mention" breakpoint_ops method for
10267 ranged breakpoints. */
10268
10269 static void
10270 print_mention_ranged_breakpoint (struct breakpoint *b)
10271 {
10272 struct bp_location *bl = b->loc;
10273 struct ui_out *uiout = current_uiout;
10274
10275 gdb_assert (bl);
10276 gdb_assert (b->type == bp_hardware_breakpoint);
10277
10278 if (ui_out_is_mi_like_p (uiout))
10279 return;
10280
10281 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10282 b->number, paddress (bl->gdbarch, bl->address),
10283 paddress (bl->gdbarch, bl->address + bl->length - 1));
10284 }
10285
10286 /* Implement the "print_recreate" breakpoint_ops method for
10287 ranged breakpoints. */
10288
10289 static void
10290 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10291 {
10292 fprintf_unfiltered (fp, "break-range %s, %s",
10293 event_location_to_string (b->location),
10294 event_location_to_string (b->location_range_end));
10295 print_recreate_thread (b, fp);
10296 }
10297
10298 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10299
10300 static struct breakpoint_ops ranged_breakpoint_ops;
10301
10302 /* Find the address where the end of the breakpoint range should be
10303 placed, given the SAL of the end of the range. This is so that if
10304 the user provides a line number, the end of the range is set to the
10305 last instruction of the given line. */
10306
10307 static CORE_ADDR
10308 find_breakpoint_range_end (struct symtab_and_line sal)
10309 {
10310 CORE_ADDR end;
10311
10312 /* If the user provided a PC value, use it. Otherwise,
10313 find the address of the end of the given location. */
10314 if (sal.explicit_pc)
10315 end = sal.pc;
10316 else
10317 {
10318 int ret;
10319 CORE_ADDR start;
10320
10321 ret = find_line_pc_range (sal, &start, &end);
10322 if (!ret)
10323 error (_("Could not find location of the end of the range."));
10324
10325 /* find_line_pc_range returns the start of the next line. */
10326 end--;
10327 }
10328
10329 return end;
10330 }
10331
10332 /* Implement the "break-range" CLI command. */
10333
10334 static void
10335 break_range_command (char *arg, int from_tty)
10336 {
10337 char *arg_start, *addr_string_start, *addr_string_end;
10338 struct linespec_result canonical_start, canonical_end;
10339 int bp_count, can_use_bp, length;
10340 CORE_ADDR end;
10341 struct breakpoint *b;
10342 struct symtab_and_line sal_start, sal_end;
10343 struct cleanup *cleanup_bkpt;
10344 struct linespec_sals *lsal_start, *lsal_end;
10345 struct event_location *start_location, *end_location;
10346
10347 /* We don't support software ranged breakpoints. */
10348 if (target_ranged_break_num_registers () < 0)
10349 error (_("This target does not support hardware ranged breakpoints."));
10350
10351 bp_count = hw_breakpoint_used_count ();
10352 bp_count += target_ranged_break_num_registers ();
10353 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10354 bp_count, 0);
10355 if (can_use_bp < 0)
10356 error (_("Hardware breakpoints used exceeds limit."));
10357
10358 arg = skip_spaces (arg);
10359 if (arg == NULL || arg[0] == '\0')
10360 error(_("No address range specified."));
10361
10362 init_linespec_result (&canonical_start);
10363
10364 arg_start = arg;
10365 start_location = string_to_event_location (&arg, current_language);
10366 cleanup_bkpt = make_cleanup_delete_event_location (start_location);
10367 parse_breakpoint_sals (start_location, &canonical_start);
10368 make_cleanup_destroy_linespec_result (&canonical_start);
10369
10370 if (arg[0] != ',')
10371 error (_("Too few arguments."));
10372 else if (VEC_empty (linespec_sals, canonical_start.sals))
10373 error (_("Could not find location of the beginning of the range."));
10374
10375 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10376
10377 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10378 || lsal_start->sals.nelts != 1)
10379 error (_("Cannot create a ranged breakpoint with multiple locations."));
10380
10381 sal_start = lsal_start->sals.sals[0];
10382 addr_string_start = savestring (arg_start, arg - arg_start);
10383 make_cleanup (xfree, addr_string_start);
10384
10385 arg++; /* Skip the comma. */
10386 arg = skip_spaces (arg);
10387
10388 /* Parse the end location. */
10389
10390 init_linespec_result (&canonical_end);
10391 arg_start = arg;
10392
10393 /* We call decode_line_full directly here instead of using
10394 parse_breakpoint_sals because we need to specify the start location's
10395 symtab and line as the default symtab and line for the end of the
10396 range. This makes it possible to have ranges like "foo.c:27, +14",
10397 where +14 means 14 lines from the start location. */
10398 end_location = string_to_event_location (&arg, current_language);
10399 make_cleanup_delete_event_location (end_location);
10400 decode_line_full (end_location, DECODE_LINE_FUNFIRSTLINE,
10401 sal_start.symtab, sal_start.line,
10402 &canonical_end, NULL, NULL);
10403
10404 make_cleanup_destroy_linespec_result (&canonical_end);
10405
10406 if (VEC_empty (linespec_sals, canonical_end.sals))
10407 error (_("Could not find location of the end of the range."));
10408
10409 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10410 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10411 || lsal_end->sals.nelts != 1)
10412 error (_("Cannot create a ranged breakpoint with multiple locations."));
10413
10414 sal_end = lsal_end->sals.sals[0];
10415
10416 end = find_breakpoint_range_end (sal_end);
10417 if (sal_start.pc > end)
10418 error (_("Invalid address range, end precedes start."));
10419
10420 length = end - sal_start.pc + 1;
10421 if (length < 0)
10422 /* Length overflowed. */
10423 error (_("Address range too large."));
10424 else if (length == 1)
10425 {
10426 /* This range is simple enough to be handled by
10427 the `hbreak' command. */
10428 hbreak_command (addr_string_start, 1);
10429
10430 do_cleanups (cleanup_bkpt);
10431
10432 return;
10433 }
10434
10435 /* Now set up the breakpoint. */
10436 b = set_raw_breakpoint (get_current_arch (), sal_start,
10437 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10438 set_breakpoint_count (breakpoint_count + 1);
10439 b->number = breakpoint_count;
10440 b->disposition = disp_donttouch;
10441 b->location = copy_event_location (start_location);
10442 b->location_range_end = copy_event_location (end_location);
10443 b->loc->length = length;
10444
10445 do_cleanups (cleanup_bkpt);
10446
10447 mention (b);
10448 observer_notify_breakpoint_created (b);
10449 update_global_location_list (UGLL_MAY_INSERT);
10450 }
10451
10452 /* Return non-zero if EXP is verified as constant. Returned zero
10453 means EXP is variable. Also the constant detection may fail for
10454 some constant expressions and in such case still falsely return
10455 zero. */
10456
10457 static int
10458 watchpoint_exp_is_const (const struct expression *exp)
10459 {
10460 int i = exp->nelts;
10461
10462 while (i > 0)
10463 {
10464 int oplenp, argsp;
10465
10466 /* We are only interested in the descriptor of each element. */
10467 operator_length (exp, i, &oplenp, &argsp);
10468 i -= oplenp;
10469
10470 switch (exp->elts[i].opcode)
10471 {
10472 case BINOP_ADD:
10473 case BINOP_SUB:
10474 case BINOP_MUL:
10475 case BINOP_DIV:
10476 case BINOP_REM:
10477 case BINOP_MOD:
10478 case BINOP_LSH:
10479 case BINOP_RSH:
10480 case BINOP_LOGICAL_AND:
10481 case BINOP_LOGICAL_OR:
10482 case BINOP_BITWISE_AND:
10483 case BINOP_BITWISE_IOR:
10484 case BINOP_BITWISE_XOR:
10485 case BINOP_EQUAL:
10486 case BINOP_NOTEQUAL:
10487 case BINOP_LESS:
10488 case BINOP_GTR:
10489 case BINOP_LEQ:
10490 case BINOP_GEQ:
10491 case BINOP_REPEAT:
10492 case BINOP_COMMA:
10493 case BINOP_EXP:
10494 case BINOP_MIN:
10495 case BINOP_MAX:
10496 case BINOP_INTDIV:
10497 case BINOP_CONCAT:
10498 case TERNOP_COND:
10499 case TERNOP_SLICE:
10500
10501 case OP_LONG:
10502 case OP_DOUBLE:
10503 case OP_DECFLOAT:
10504 case OP_LAST:
10505 case OP_COMPLEX:
10506 case OP_STRING:
10507 case OP_ARRAY:
10508 case OP_TYPE:
10509 case OP_TYPEOF:
10510 case OP_DECLTYPE:
10511 case OP_TYPEID:
10512 case OP_NAME:
10513 case OP_OBJC_NSSTRING:
10514
10515 case UNOP_NEG:
10516 case UNOP_LOGICAL_NOT:
10517 case UNOP_COMPLEMENT:
10518 case UNOP_ADDR:
10519 case UNOP_HIGH:
10520 case UNOP_CAST:
10521
10522 case UNOP_CAST_TYPE:
10523 case UNOP_REINTERPRET_CAST:
10524 case UNOP_DYNAMIC_CAST:
10525 /* Unary, binary and ternary operators: We have to check
10526 their operands. If they are constant, then so is the
10527 result of that operation. For instance, if A and B are
10528 determined to be constants, then so is "A + B".
10529
10530 UNOP_IND is one exception to the rule above, because the
10531 value of *ADDR is not necessarily a constant, even when
10532 ADDR is. */
10533 break;
10534
10535 case OP_VAR_VALUE:
10536 /* Check whether the associated symbol is a constant.
10537
10538 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10539 possible that a buggy compiler could mark a variable as
10540 constant even when it is not, and TYPE_CONST would return
10541 true in this case, while SYMBOL_CLASS wouldn't.
10542
10543 We also have to check for function symbols because they
10544 are always constant. */
10545 {
10546 struct symbol *s = exp->elts[i + 2].symbol;
10547
10548 if (SYMBOL_CLASS (s) != LOC_BLOCK
10549 && SYMBOL_CLASS (s) != LOC_CONST
10550 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10551 return 0;
10552 break;
10553 }
10554
10555 /* The default action is to return 0 because we are using
10556 the optimistic approach here: If we don't know something,
10557 then it is not a constant. */
10558 default:
10559 return 0;
10560 }
10561 }
10562
10563 return 1;
10564 }
10565
10566 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10567
10568 static void
10569 dtor_watchpoint (struct breakpoint *self)
10570 {
10571 struct watchpoint *w = (struct watchpoint *) self;
10572
10573 xfree (w->cond_exp);
10574 xfree (w->exp);
10575 xfree (w->exp_string);
10576 xfree (w->exp_string_reparse);
10577 value_free (w->val);
10578
10579 base_breakpoint_ops.dtor (self);
10580 }
10581
10582 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10583
10584 static void
10585 re_set_watchpoint (struct breakpoint *b)
10586 {
10587 struct watchpoint *w = (struct watchpoint *) b;
10588
10589 /* Watchpoint can be either on expression using entirely global
10590 variables, or it can be on local variables.
10591
10592 Watchpoints of the first kind are never auto-deleted, and even
10593 persist across program restarts. Since they can use variables
10594 from shared libraries, we need to reparse expression as libraries
10595 are loaded and unloaded.
10596
10597 Watchpoints on local variables can also change meaning as result
10598 of solib event. For example, if a watchpoint uses both a local
10599 and a global variables in expression, it's a local watchpoint,
10600 but unloading of a shared library will make the expression
10601 invalid. This is not a very common use case, but we still
10602 re-evaluate expression, to avoid surprises to the user.
10603
10604 Note that for local watchpoints, we re-evaluate it only if
10605 watchpoints frame id is still valid. If it's not, it means the
10606 watchpoint is out of scope and will be deleted soon. In fact,
10607 I'm not sure we'll ever be called in this case.
10608
10609 If a local watchpoint's frame id is still valid, then
10610 w->exp_valid_block is likewise valid, and we can safely use it.
10611
10612 Don't do anything about disabled watchpoints, since they will be
10613 reevaluated again when enabled. */
10614 update_watchpoint (w, 1 /* reparse */);
10615 }
10616
10617 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10618
10619 static int
10620 insert_watchpoint (struct bp_location *bl)
10621 {
10622 struct watchpoint *w = (struct watchpoint *) bl->owner;
10623 int length = w->exact ? 1 : bl->length;
10624
10625 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10626 w->cond_exp);
10627 }
10628
10629 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10630
10631 static int
10632 remove_watchpoint (struct bp_location *bl)
10633 {
10634 struct watchpoint *w = (struct watchpoint *) bl->owner;
10635 int length = w->exact ? 1 : bl->length;
10636
10637 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10638 w->cond_exp);
10639 }
10640
10641 static int
10642 breakpoint_hit_watchpoint (const struct bp_location *bl,
10643 struct address_space *aspace, CORE_ADDR bp_addr,
10644 const struct target_waitstatus *ws)
10645 {
10646 struct breakpoint *b = bl->owner;
10647 struct watchpoint *w = (struct watchpoint *) b;
10648
10649 /* Continuable hardware watchpoints are treated as non-existent if the
10650 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10651 some data address). Otherwise gdb won't stop on a break instruction
10652 in the code (not from a breakpoint) when a hardware watchpoint has
10653 been defined. Also skip watchpoints which we know did not trigger
10654 (did not match the data address). */
10655 if (is_hardware_watchpoint (b)
10656 && w->watchpoint_triggered == watch_triggered_no)
10657 return 0;
10658
10659 return 1;
10660 }
10661
10662 static void
10663 check_status_watchpoint (bpstat bs)
10664 {
10665 gdb_assert (is_watchpoint (bs->breakpoint_at));
10666
10667 bpstat_check_watchpoint (bs);
10668 }
10669
10670 /* Implement the "resources_needed" breakpoint_ops method for
10671 hardware watchpoints. */
10672
10673 static int
10674 resources_needed_watchpoint (const struct bp_location *bl)
10675 {
10676 struct watchpoint *w = (struct watchpoint *) bl->owner;
10677 int length = w->exact? 1 : bl->length;
10678
10679 return target_region_ok_for_hw_watchpoint (bl->address, length);
10680 }
10681
10682 /* Implement the "works_in_software_mode" breakpoint_ops method for
10683 hardware watchpoints. */
10684
10685 static int
10686 works_in_software_mode_watchpoint (const struct breakpoint *b)
10687 {
10688 /* Read and access watchpoints only work with hardware support. */
10689 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10690 }
10691
10692 static enum print_stop_action
10693 print_it_watchpoint (bpstat bs)
10694 {
10695 struct cleanup *old_chain;
10696 struct breakpoint *b;
10697 struct ui_file *stb;
10698 enum print_stop_action result;
10699 struct watchpoint *w;
10700 struct ui_out *uiout = current_uiout;
10701
10702 gdb_assert (bs->bp_location_at != NULL);
10703
10704 b = bs->breakpoint_at;
10705 w = (struct watchpoint *) b;
10706
10707 stb = mem_fileopen ();
10708 old_chain = make_cleanup_ui_file_delete (stb);
10709
10710 switch (b->type)
10711 {
10712 case bp_watchpoint:
10713 case bp_hardware_watchpoint:
10714 annotate_watchpoint (b->number);
10715 if (ui_out_is_mi_like_p (uiout))
10716 ui_out_field_string
10717 (uiout, "reason",
10718 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10719 mention (b);
10720 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10721 ui_out_text (uiout, "\nOld value = ");
10722 watchpoint_value_print (bs->old_val, stb);
10723 ui_out_field_stream (uiout, "old", stb);
10724 ui_out_text (uiout, "\nNew value = ");
10725 watchpoint_value_print (w->val, stb);
10726 ui_out_field_stream (uiout, "new", stb);
10727 ui_out_text (uiout, "\n");
10728 /* More than one watchpoint may have been triggered. */
10729 result = PRINT_UNKNOWN;
10730 break;
10731
10732 case bp_read_watchpoint:
10733 if (ui_out_is_mi_like_p (uiout))
10734 ui_out_field_string
10735 (uiout, "reason",
10736 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10737 mention (b);
10738 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10739 ui_out_text (uiout, "\nValue = ");
10740 watchpoint_value_print (w->val, stb);
10741 ui_out_field_stream (uiout, "value", stb);
10742 ui_out_text (uiout, "\n");
10743 result = PRINT_UNKNOWN;
10744 break;
10745
10746 case bp_access_watchpoint:
10747 if (bs->old_val != NULL)
10748 {
10749 annotate_watchpoint (b->number);
10750 if (ui_out_is_mi_like_p (uiout))
10751 ui_out_field_string
10752 (uiout, "reason",
10753 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10754 mention (b);
10755 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10756 ui_out_text (uiout, "\nOld value = ");
10757 watchpoint_value_print (bs->old_val, stb);
10758 ui_out_field_stream (uiout, "old", stb);
10759 ui_out_text (uiout, "\nNew value = ");
10760 }
10761 else
10762 {
10763 mention (b);
10764 if (ui_out_is_mi_like_p (uiout))
10765 ui_out_field_string
10766 (uiout, "reason",
10767 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10768 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10769 ui_out_text (uiout, "\nValue = ");
10770 }
10771 watchpoint_value_print (w->val, stb);
10772 ui_out_field_stream (uiout, "new", stb);
10773 ui_out_text (uiout, "\n");
10774 result = PRINT_UNKNOWN;
10775 break;
10776 default:
10777 result = PRINT_UNKNOWN;
10778 }
10779
10780 do_cleanups (old_chain);
10781 return result;
10782 }
10783
10784 /* Implement the "print_mention" breakpoint_ops method for hardware
10785 watchpoints. */
10786
10787 static void
10788 print_mention_watchpoint (struct breakpoint *b)
10789 {
10790 struct cleanup *ui_out_chain;
10791 struct watchpoint *w = (struct watchpoint *) b;
10792 struct ui_out *uiout = current_uiout;
10793
10794 switch (b->type)
10795 {
10796 case bp_watchpoint:
10797 ui_out_text (uiout, "Watchpoint ");
10798 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10799 break;
10800 case bp_hardware_watchpoint:
10801 ui_out_text (uiout, "Hardware watchpoint ");
10802 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10803 break;
10804 case bp_read_watchpoint:
10805 ui_out_text (uiout, "Hardware read watchpoint ");
10806 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10807 break;
10808 case bp_access_watchpoint:
10809 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10810 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10811 break;
10812 default:
10813 internal_error (__FILE__, __LINE__,
10814 _("Invalid hardware watchpoint type."));
10815 }
10816
10817 ui_out_field_int (uiout, "number", b->number);
10818 ui_out_text (uiout, ": ");
10819 ui_out_field_string (uiout, "exp", w->exp_string);
10820 do_cleanups (ui_out_chain);
10821 }
10822
10823 /* Implement the "print_recreate" breakpoint_ops method for
10824 watchpoints. */
10825
10826 static void
10827 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10828 {
10829 struct watchpoint *w = (struct watchpoint *) b;
10830
10831 switch (b->type)
10832 {
10833 case bp_watchpoint:
10834 case bp_hardware_watchpoint:
10835 fprintf_unfiltered (fp, "watch");
10836 break;
10837 case bp_read_watchpoint:
10838 fprintf_unfiltered (fp, "rwatch");
10839 break;
10840 case bp_access_watchpoint:
10841 fprintf_unfiltered (fp, "awatch");
10842 break;
10843 default:
10844 internal_error (__FILE__, __LINE__,
10845 _("Invalid watchpoint type."));
10846 }
10847
10848 fprintf_unfiltered (fp, " %s", w->exp_string);
10849 print_recreate_thread (b, fp);
10850 }
10851
10852 /* Implement the "explains_signal" breakpoint_ops method for
10853 watchpoints. */
10854
10855 static int
10856 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10857 {
10858 /* A software watchpoint cannot cause a signal other than
10859 GDB_SIGNAL_TRAP. */
10860 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10861 return 0;
10862
10863 return 1;
10864 }
10865
10866 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10867
10868 static struct breakpoint_ops watchpoint_breakpoint_ops;
10869
10870 /* Implement the "insert" breakpoint_ops method for
10871 masked hardware watchpoints. */
10872
10873 static int
10874 insert_masked_watchpoint (struct bp_location *bl)
10875 {
10876 struct watchpoint *w = (struct watchpoint *) bl->owner;
10877
10878 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10879 bl->watchpoint_type);
10880 }
10881
10882 /* Implement the "remove" breakpoint_ops method for
10883 masked hardware watchpoints. */
10884
10885 static int
10886 remove_masked_watchpoint (struct bp_location *bl)
10887 {
10888 struct watchpoint *w = (struct watchpoint *) bl->owner;
10889
10890 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10891 bl->watchpoint_type);
10892 }
10893
10894 /* Implement the "resources_needed" breakpoint_ops method for
10895 masked hardware watchpoints. */
10896
10897 static int
10898 resources_needed_masked_watchpoint (const struct bp_location *bl)
10899 {
10900 struct watchpoint *w = (struct watchpoint *) bl->owner;
10901
10902 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10903 }
10904
10905 /* Implement the "works_in_software_mode" breakpoint_ops method for
10906 masked hardware watchpoints. */
10907
10908 static int
10909 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10910 {
10911 return 0;
10912 }
10913
10914 /* Implement the "print_it" breakpoint_ops method for
10915 masked hardware watchpoints. */
10916
10917 static enum print_stop_action
10918 print_it_masked_watchpoint (bpstat bs)
10919 {
10920 struct breakpoint *b = bs->breakpoint_at;
10921 struct ui_out *uiout = current_uiout;
10922
10923 /* Masked watchpoints have only one location. */
10924 gdb_assert (b->loc && b->loc->next == NULL);
10925
10926 switch (b->type)
10927 {
10928 case bp_hardware_watchpoint:
10929 annotate_watchpoint (b->number);
10930 if (ui_out_is_mi_like_p (uiout))
10931 ui_out_field_string
10932 (uiout, "reason",
10933 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10934 break;
10935
10936 case bp_read_watchpoint:
10937 if (ui_out_is_mi_like_p (uiout))
10938 ui_out_field_string
10939 (uiout, "reason",
10940 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10941 break;
10942
10943 case bp_access_watchpoint:
10944 if (ui_out_is_mi_like_p (uiout))
10945 ui_out_field_string
10946 (uiout, "reason",
10947 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10948 break;
10949 default:
10950 internal_error (__FILE__, __LINE__,
10951 _("Invalid hardware watchpoint type."));
10952 }
10953
10954 mention (b);
10955 ui_out_text (uiout, _("\n\
10956 Check the underlying instruction at PC for the memory\n\
10957 address and value which triggered this watchpoint.\n"));
10958 ui_out_text (uiout, "\n");
10959
10960 /* More than one watchpoint may have been triggered. */
10961 return PRINT_UNKNOWN;
10962 }
10963
10964 /* Implement the "print_one_detail" breakpoint_ops method for
10965 masked hardware watchpoints. */
10966
10967 static void
10968 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10969 struct ui_out *uiout)
10970 {
10971 struct watchpoint *w = (struct watchpoint *) b;
10972
10973 /* Masked watchpoints have only one location. */
10974 gdb_assert (b->loc && b->loc->next == NULL);
10975
10976 ui_out_text (uiout, "\tmask ");
10977 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
10978 ui_out_text (uiout, "\n");
10979 }
10980
10981 /* Implement the "print_mention" breakpoint_ops method for
10982 masked hardware watchpoints. */
10983
10984 static void
10985 print_mention_masked_watchpoint (struct breakpoint *b)
10986 {
10987 struct watchpoint *w = (struct watchpoint *) b;
10988 struct ui_out *uiout = current_uiout;
10989 struct cleanup *ui_out_chain;
10990
10991 switch (b->type)
10992 {
10993 case bp_hardware_watchpoint:
10994 ui_out_text (uiout, "Masked hardware watchpoint ");
10995 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10996 break;
10997 case bp_read_watchpoint:
10998 ui_out_text (uiout, "Masked hardware read watchpoint ");
10999 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
11000 break;
11001 case bp_access_watchpoint:
11002 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
11003 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
11004 break;
11005 default:
11006 internal_error (__FILE__, __LINE__,
11007 _("Invalid hardware watchpoint type."));
11008 }
11009
11010 ui_out_field_int (uiout, "number", b->number);
11011 ui_out_text (uiout, ": ");
11012 ui_out_field_string (uiout, "exp", w->exp_string);
11013 do_cleanups (ui_out_chain);
11014 }
11015
11016 /* Implement the "print_recreate" breakpoint_ops method for
11017 masked hardware watchpoints. */
11018
11019 static void
11020 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
11021 {
11022 struct watchpoint *w = (struct watchpoint *) b;
11023 char tmp[40];
11024
11025 switch (b->type)
11026 {
11027 case bp_hardware_watchpoint:
11028 fprintf_unfiltered (fp, "watch");
11029 break;
11030 case bp_read_watchpoint:
11031 fprintf_unfiltered (fp, "rwatch");
11032 break;
11033 case bp_access_watchpoint:
11034 fprintf_unfiltered (fp, "awatch");
11035 break;
11036 default:
11037 internal_error (__FILE__, __LINE__,
11038 _("Invalid hardware watchpoint type."));
11039 }
11040
11041 sprintf_vma (tmp, w->hw_wp_mask);
11042 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
11043 print_recreate_thread (b, fp);
11044 }
11045
11046 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
11047
11048 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
11049
11050 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
11051
11052 static int
11053 is_masked_watchpoint (const struct breakpoint *b)
11054 {
11055 return b->ops == &masked_watchpoint_breakpoint_ops;
11056 }
11057
11058 /* accessflag: hw_write: watch write,
11059 hw_read: watch read,
11060 hw_access: watch access (read or write) */
11061 static void
11062 watch_command_1 (const char *arg, int accessflag, int from_tty,
11063 int just_location, int internal)
11064 {
11065 struct breakpoint *b, *scope_breakpoint = NULL;
11066 struct expression *exp;
11067 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
11068 struct value *val, *mark, *result;
11069 int saved_bitpos = 0, saved_bitsize = 0;
11070 struct frame_info *frame;
11071 const char *exp_start = NULL;
11072 const char *exp_end = NULL;
11073 const char *tok, *end_tok;
11074 int toklen = -1;
11075 const char *cond_start = NULL;
11076 const char *cond_end = NULL;
11077 enum bptype bp_type;
11078 int thread = -1;
11079 int pc = 0;
11080 /* Flag to indicate whether we are going to use masks for
11081 the hardware watchpoint. */
11082 int use_mask = 0;
11083 CORE_ADDR mask = 0;
11084 struct watchpoint *w;
11085 char *expression;
11086 struct cleanup *back_to;
11087
11088 /* Make sure that we actually have parameters to parse. */
11089 if (arg != NULL && arg[0] != '\0')
11090 {
11091 const char *value_start;
11092
11093 exp_end = arg + strlen (arg);
11094
11095 /* Look for "parameter value" pairs at the end
11096 of the arguments string. */
11097 for (tok = exp_end - 1; tok > arg; tok--)
11098 {
11099 /* Skip whitespace at the end of the argument list. */
11100 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11101 tok--;
11102
11103 /* Find the beginning of the last token.
11104 This is the value of the parameter. */
11105 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11106 tok--;
11107 value_start = tok + 1;
11108
11109 /* Skip whitespace. */
11110 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11111 tok--;
11112
11113 end_tok = tok;
11114
11115 /* Find the beginning of the second to last token.
11116 This is the parameter itself. */
11117 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11118 tok--;
11119 tok++;
11120 toklen = end_tok - tok + 1;
11121
11122 if (toklen == 6 && startswith (tok, "thread"))
11123 {
11124 /* At this point we've found a "thread" token, which means
11125 the user is trying to set a watchpoint that triggers
11126 only in a specific thread. */
11127 char *endp;
11128
11129 if (thread != -1)
11130 error(_("You can specify only one thread."));
11131
11132 /* Extract the thread ID from the next token. */
11133 thread = strtol (value_start, &endp, 0);
11134
11135 /* Check if the user provided a valid numeric value for the
11136 thread ID. */
11137 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11138 error (_("Invalid thread ID specification %s."), value_start);
11139
11140 /* Check if the thread actually exists. */
11141 if (!valid_thread_id (thread))
11142 invalid_thread_id_error (thread);
11143 }
11144 else if (toklen == 4 && startswith (tok, "mask"))
11145 {
11146 /* We've found a "mask" token, which means the user wants to
11147 create a hardware watchpoint that is going to have the mask
11148 facility. */
11149 struct value *mask_value, *mark;
11150
11151 if (use_mask)
11152 error(_("You can specify only one mask."));
11153
11154 use_mask = just_location = 1;
11155
11156 mark = value_mark ();
11157 mask_value = parse_to_comma_and_eval (&value_start);
11158 mask = value_as_address (mask_value);
11159 value_free_to_mark (mark);
11160 }
11161 else
11162 /* We didn't recognize what we found. We should stop here. */
11163 break;
11164
11165 /* Truncate the string and get rid of the "parameter value" pair before
11166 the arguments string is parsed by the parse_exp_1 function. */
11167 exp_end = tok;
11168 }
11169 }
11170 else
11171 exp_end = arg;
11172
11173 /* Parse the rest of the arguments. From here on out, everything
11174 is in terms of a newly allocated string instead of the original
11175 ARG. */
11176 innermost_block = NULL;
11177 expression = savestring (arg, exp_end - arg);
11178 back_to = make_cleanup (xfree, expression);
11179 exp_start = arg = expression;
11180 exp = parse_exp_1 (&arg, 0, 0, 0);
11181 exp_end = arg;
11182 /* Remove trailing whitespace from the expression before saving it.
11183 This makes the eventual display of the expression string a bit
11184 prettier. */
11185 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11186 --exp_end;
11187
11188 /* Checking if the expression is not constant. */
11189 if (watchpoint_exp_is_const (exp))
11190 {
11191 int len;
11192
11193 len = exp_end - exp_start;
11194 while (len > 0 && isspace (exp_start[len - 1]))
11195 len--;
11196 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11197 }
11198
11199 exp_valid_block = innermost_block;
11200 mark = value_mark ();
11201 fetch_subexp_value (exp, &pc, &val, &result, NULL, just_location);
11202
11203 if (val != NULL && just_location)
11204 {
11205 saved_bitpos = value_bitpos (val);
11206 saved_bitsize = value_bitsize (val);
11207 }
11208
11209 if (just_location)
11210 {
11211 int ret;
11212
11213 exp_valid_block = NULL;
11214 val = value_addr (result);
11215 release_value (val);
11216 value_free_to_mark (mark);
11217
11218 if (use_mask)
11219 {
11220 ret = target_masked_watch_num_registers (value_as_address (val),
11221 mask);
11222 if (ret == -1)
11223 error (_("This target does not support masked watchpoints."));
11224 else if (ret == -2)
11225 error (_("Invalid mask or memory region."));
11226 }
11227 }
11228 else if (val != NULL)
11229 release_value (val);
11230
11231 tok = skip_spaces_const (arg);
11232 end_tok = skip_to_space_const (tok);
11233
11234 toklen = end_tok - tok;
11235 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11236 {
11237 struct expression *cond;
11238
11239 innermost_block = NULL;
11240 tok = cond_start = end_tok + 1;
11241 cond = parse_exp_1 (&tok, 0, 0, 0);
11242
11243 /* The watchpoint expression may not be local, but the condition
11244 may still be. E.g.: `watch global if local > 0'. */
11245 cond_exp_valid_block = innermost_block;
11246
11247 xfree (cond);
11248 cond_end = tok;
11249 }
11250 if (*tok)
11251 error (_("Junk at end of command."));
11252
11253 frame = block_innermost_frame (exp_valid_block);
11254
11255 /* If the expression is "local", then set up a "watchpoint scope"
11256 breakpoint at the point where we've left the scope of the watchpoint
11257 expression. Create the scope breakpoint before the watchpoint, so
11258 that we will encounter it first in bpstat_stop_status. */
11259 if (exp_valid_block && frame)
11260 {
11261 if (frame_id_p (frame_unwind_caller_id (frame)))
11262 {
11263 scope_breakpoint
11264 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11265 frame_unwind_caller_pc (frame),
11266 bp_watchpoint_scope,
11267 &momentary_breakpoint_ops);
11268
11269 scope_breakpoint->enable_state = bp_enabled;
11270
11271 /* Automatically delete the breakpoint when it hits. */
11272 scope_breakpoint->disposition = disp_del;
11273
11274 /* Only break in the proper frame (help with recursion). */
11275 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11276
11277 /* Set the address at which we will stop. */
11278 scope_breakpoint->loc->gdbarch
11279 = frame_unwind_caller_arch (frame);
11280 scope_breakpoint->loc->requested_address
11281 = frame_unwind_caller_pc (frame);
11282 scope_breakpoint->loc->address
11283 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11284 scope_breakpoint->loc->requested_address,
11285 scope_breakpoint->type);
11286 }
11287 }
11288
11289 /* Now set up the breakpoint. We create all watchpoints as hardware
11290 watchpoints here even if hardware watchpoints are turned off, a call
11291 to update_watchpoint later in this function will cause the type to
11292 drop back to bp_watchpoint (software watchpoint) if required. */
11293
11294 if (accessflag == hw_read)
11295 bp_type = bp_read_watchpoint;
11296 else if (accessflag == hw_access)
11297 bp_type = bp_access_watchpoint;
11298 else
11299 bp_type = bp_hardware_watchpoint;
11300
11301 w = XCNEW (struct watchpoint);
11302 b = &w->base;
11303 if (use_mask)
11304 init_raw_breakpoint_without_location (b, NULL, bp_type,
11305 &masked_watchpoint_breakpoint_ops);
11306 else
11307 init_raw_breakpoint_without_location (b, NULL, bp_type,
11308 &watchpoint_breakpoint_ops);
11309 b->thread = thread;
11310 b->disposition = disp_donttouch;
11311 b->pspace = current_program_space;
11312 w->exp = exp;
11313 w->exp_valid_block = exp_valid_block;
11314 w->cond_exp_valid_block = cond_exp_valid_block;
11315 if (just_location)
11316 {
11317 struct type *t = value_type (val);
11318 CORE_ADDR addr = value_as_address (val);
11319 char *name;
11320
11321 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11322 name = type_to_string (t);
11323
11324 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11325 core_addr_to_string (addr));
11326 xfree (name);
11327
11328 w->exp_string = xstrprintf ("-location %.*s",
11329 (int) (exp_end - exp_start), exp_start);
11330
11331 /* The above expression is in C. */
11332 b->language = language_c;
11333 }
11334 else
11335 w->exp_string = savestring (exp_start, exp_end - exp_start);
11336
11337 if (use_mask)
11338 {
11339 w->hw_wp_mask = mask;
11340 }
11341 else
11342 {
11343 w->val = val;
11344 w->val_bitpos = saved_bitpos;
11345 w->val_bitsize = saved_bitsize;
11346 w->val_valid = 1;
11347 }
11348
11349 if (cond_start)
11350 b->cond_string = savestring (cond_start, cond_end - cond_start);
11351 else
11352 b->cond_string = 0;
11353
11354 if (frame)
11355 {
11356 w->watchpoint_frame = get_frame_id (frame);
11357 w->watchpoint_thread = inferior_ptid;
11358 }
11359 else
11360 {
11361 w->watchpoint_frame = null_frame_id;
11362 w->watchpoint_thread = null_ptid;
11363 }
11364
11365 if (scope_breakpoint != NULL)
11366 {
11367 /* The scope breakpoint is related to the watchpoint. We will
11368 need to act on them together. */
11369 b->related_breakpoint = scope_breakpoint;
11370 scope_breakpoint->related_breakpoint = b;
11371 }
11372
11373 if (!just_location)
11374 value_free_to_mark (mark);
11375
11376 TRY
11377 {
11378 /* Finally update the new watchpoint. This creates the locations
11379 that should be inserted. */
11380 update_watchpoint (w, 1);
11381 }
11382 CATCH (e, RETURN_MASK_ALL)
11383 {
11384 delete_breakpoint (b);
11385 throw_exception (e);
11386 }
11387 END_CATCH
11388
11389 install_breakpoint (internal, b, 1);
11390 do_cleanups (back_to);
11391 }
11392
11393 /* Return count of debug registers needed to watch the given expression.
11394 If the watchpoint cannot be handled in hardware return zero. */
11395
11396 static int
11397 can_use_hardware_watchpoint (struct value *v)
11398 {
11399 int found_memory_cnt = 0;
11400 struct value *head = v;
11401
11402 /* Did the user specifically forbid us to use hardware watchpoints? */
11403 if (!can_use_hw_watchpoints)
11404 return 0;
11405
11406 /* Make sure that the value of the expression depends only upon
11407 memory contents, and values computed from them within GDB. If we
11408 find any register references or function calls, we can't use a
11409 hardware watchpoint.
11410
11411 The idea here is that evaluating an expression generates a series
11412 of values, one holding the value of every subexpression. (The
11413 expression a*b+c has five subexpressions: a, b, a*b, c, and
11414 a*b+c.) GDB's values hold almost enough information to establish
11415 the criteria given above --- they identify memory lvalues,
11416 register lvalues, computed values, etcetera. So we can evaluate
11417 the expression, and then scan the chain of values that leaves
11418 behind to decide whether we can detect any possible change to the
11419 expression's final value using only hardware watchpoints.
11420
11421 However, I don't think that the values returned by inferior
11422 function calls are special in any way. So this function may not
11423 notice that an expression involving an inferior function call
11424 can't be watched with hardware watchpoints. FIXME. */
11425 for (; v; v = value_next (v))
11426 {
11427 if (VALUE_LVAL (v) == lval_memory)
11428 {
11429 if (v != head && value_lazy (v))
11430 /* A lazy memory lvalue in the chain is one that GDB never
11431 needed to fetch; we either just used its address (e.g.,
11432 `a' in `a.b') or we never needed it at all (e.g., `a'
11433 in `a,b'). This doesn't apply to HEAD; if that is
11434 lazy then it was not readable, but watch it anyway. */
11435 ;
11436 else
11437 {
11438 /* Ahh, memory we actually used! Check if we can cover
11439 it with hardware watchpoints. */
11440 struct type *vtype = check_typedef (value_type (v));
11441
11442 /* We only watch structs and arrays if user asked for it
11443 explicitly, never if they just happen to appear in a
11444 middle of some value chain. */
11445 if (v == head
11446 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11447 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11448 {
11449 CORE_ADDR vaddr = value_address (v);
11450 int len;
11451 int num_regs;
11452
11453 len = (target_exact_watchpoints
11454 && is_scalar_type_recursive (vtype))?
11455 1 : TYPE_LENGTH (value_type (v));
11456
11457 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11458 if (!num_regs)
11459 return 0;
11460 else
11461 found_memory_cnt += num_regs;
11462 }
11463 }
11464 }
11465 else if (VALUE_LVAL (v) != not_lval
11466 && deprecated_value_modifiable (v) == 0)
11467 return 0; /* These are values from the history (e.g., $1). */
11468 else if (VALUE_LVAL (v) == lval_register)
11469 return 0; /* Cannot watch a register with a HW watchpoint. */
11470 }
11471
11472 /* The expression itself looks suitable for using a hardware
11473 watchpoint, but give the target machine a chance to reject it. */
11474 return found_memory_cnt;
11475 }
11476
11477 void
11478 watch_command_wrapper (char *arg, int from_tty, int internal)
11479 {
11480 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11481 }
11482
11483 /* A helper function that looks for the "-location" argument and then
11484 calls watch_command_1. */
11485
11486 static void
11487 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11488 {
11489 int just_location = 0;
11490
11491 if (arg
11492 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11493 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11494 {
11495 arg = skip_spaces (arg);
11496 just_location = 1;
11497 }
11498
11499 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11500 }
11501
11502 static void
11503 watch_command (char *arg, int from_tty)
11504 {
11505 watch_maybe_just_location (arg, hw_write, from_tty);
11506 }
11507
11508 void
11509 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11510 {
11511 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11512 }
11513
11514 static void
11515 rwatch_command (char *arg, int from_tty)
11516 {
11517 watch_maybe_just_location (arg, hw_read, from_tty);
11518 }
11519
11520 void
11521 awatch_command_wrapper (char *arg, int from_tty, int internal)
11522 {
11523 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11524 }
11525
11526 static void
11527 awatch_command (char *arg, int from_tty)
11528 {
11529 watch_maybe_just_location (arg, hw_access, from_tty);
11530 }
11531 \f
11532
11533 /* Data for the FSM that manages the until(location)/advance commands
11534 in infcmd.c. Here because it uses the mechanisms of
11535 breakpoints. */
11536
11537 struct until_break_fsm
11538 {
11539 /* The base class. */
11540 struct thread_fsm thread_fsm;
11541
11542 /* The thread that as current when the command was executed. */
11543 int thread;
11544
11545 /* The breakpoint set at the destination location. */
11546 struct breakpoint *location_breakpoint;
11547
11548 /* Breakpoint set at the return address in the caller frame. May be
11549 NULL. */
11550 struct breakpoint *caller_breakpoint;
11551 };
11552
11553 static void until_break_fsm_clean_up (struct thread_fsm *self);
11554 static int until_break_fsm_should_stop (struct thread_fsm *self);
11555 static enum async_reply_reason
11556 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11557
11558 /* until_break_fsm's vtable. */
11559
11560 static struct thread_fsm_ops until_break_fsm_ops =
11561 {
11562 NULL, /* dtor */
11563 until_break_fsm_clean_up,
11564 until_break_fsm_should_stop,
11565 NULL, /* return_value */
11566 until_break_fsm_async_reply_reason,
11567 };
11568
11569 /* Allocate a new until_break_command_fsm. */
11570
11571 static struct until_break_fsm *
11572 new_until_break_fsm (int thread,
11573 struct breakpoint *location_breakpoint,
11574 struct breakpoint *caller_breakpoint)
11575 {
11576 struct until_break_fsm *sm;
11577
11578 sm = XCNEW (struct until_break_fsm);
11579 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops);
11580
11581 sm->thread = thread;
11582 sm->location_breakpoint = location_breakpoint;
11583 sm->caller_breakpoint = caller_breakpoint;
11584
11585 return sm;
11586 }
11587
11588 /* Implementation of the 'should_stop' FSM method for the
11589 until(location)/advance commands. */
11590
11591 static int
11592 until_break_fsm_should_stop (struct thread_fsm *self)
11593 {
11594 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11595 struct thread_info *tp = inferior_thread ();
11596
11597 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11598 sm->location_breakpoint) != NULL
11599 || (sm->caller_breakpoint != NULL
11600 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11601 sm->caller_breakpoint) != NULL))
11602 thread_fsm_set_finished (self);
11603
11604 return 1;
11605 }
11606
11607 /* Implementation of the 'clean_up' FSM method for the
11608 until(location)/advance commands. */
11609
11610 static void
11611 until_break_fsm_clean_up (struct thread_fsm *self)
11612 {
11613 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11614
11615 /* Clean up our temporary breakpoints. */
11616 if (sm->location_breakpoint != NULL)
11617 {
11618 delete_breakpoint (sm->location_breakpoint);
11619 sm->location_breakpoint = NULL;
11620 }
11621 if (sm->caller_breakpoint != NULL)
11622 {
11623 delete_breakpoint (sm->caller_breakpoint);
11624 sm->caller_breakpoint = NULL;
11625 }
11626 delete_longjmp_breakpoint (sm->thread);
11627 }
11628
11629 /* Implementation of the 'async_reply_reason' FSM method for the
11630 until(location)/advance commands. */
11631
11632 static enum async_reply_reason
11633 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11634 {
11635 return EXEC_ASYNC_LOCATION_REACHED;
11636 }
11637
11638 void
11639 until_break_command (char *arg, int from_tty, int anywhere)
11640 {
11641 struct symtabs_and_lines sals;
11642 struct symtab_and_line sal;
11643 struct frame_info *frame;
11644 struct gdbarch *frame_gdbarch;
11645 struct frame_id stack_frame_id;
11646 struct frame_id caller_frame_id;
11647 struct breakpoint *location_breakpoint;
11648 struct breakpoint *caller_breakpoint = NULL;
11649 struct cleanup *old_chain, *cleanup;
11650 int thread;
11651 struct thread_info *tp;
11652 struct event_location *location;
11653 struct until_break_fsm *sm;
11654
11655 clear_proceed_status (0);
11656
11657 /* Set a breakpoint where the user wants it and at return from
11658 this function. */
11659
11660 location = string_to_event_location (&arg, current_language);
11661 cleanup = make_cleanup_delete_event_location (location);
11662
11663 if (last_displayed_sal_is_valid ())
11664 sals = decode_line_1 (location, DECODE_LINE_FUNFIRSTLINE,
11665 get_last_displayed_symtab (),
11666 get_last_displayed_line ());
11667 else
11668 sals = decode_line_1 (location, DECODE_LINE_FUNFIRSTLINE,
11669 (struct symtab *) NULL, 0);
11670
11671 if (sals.nelts != 1)
11672 error (_("Couldn't get information on specified line."));
11673
11674 sal = sals.sals[0];
11675 xfree (sals.sals); /* malloc'd, so freed. */
11676
11677 if (*arg)
11678 error (_("Junk at end of arguments."));
11679
11680 resolve_sal_pc (&sal);
11681
11682 tp = inferior_thread ();
11683 thread = tp->num;
11684
11685 old_chain = make_cleanup (null_cleanup, NULL);
11686
11687 /* Note linespec handling above invalidates the frame chain.
11688 Installing a breakpoint also invalidates the frame chain (as it
11689 may need to switch threads), so do any frame handling before
11690 that. */
11691
11692 frame = get_selected_frame (NULL);
11693 frame_gdbarch = get_frame_arch (frame);
11694 stack_frame_id = get_stack_frame_id (frame);
11695 caller_frame_id = frame_unwind_caller_id (frame);
11696
11697 /* Keep within the current frame, or in frames called by the current
11698 one. */
11699
11700 if (frame_id_p (caller_frame_id))
11701 {
11702 struct symtab_and_line sal2;
11703 struct gdbarch *caller_gdbarch;
11704
11705 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11706 sal2.pc = frame_unwind_caller_pc (frame);
11707 caller_gdbarch = frame_unwind_caller_arch (frame);
11708 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11709 sal2,
11710 caller_frame_id,
11711 bp_until);
11712 make_cleanup_delete_breakpoint (caller_breakpoint);
11713
11714 set_longjmp_breakpoint (tp, caller_frame_id);
11715 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11716 }
11717
11718 /* set_momentary_breakpoint could invalidate FRAME. */
11719 frame = NULL;
11720
11721 if (anywhere)
11722 /* If the user told us to continue until a specified location,
11723 we don't specify a frame at which we need to stop. */
11724 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11725 null_frame_id, bp_until);
11726 else
11727 /* Otherwise, specify the selected frame, because we want to stop
11728 only at the very same frame. */
11729 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11730 stack_frame_id, bp_until);
11731 make_cleanup_delete_breakpoint (location_breakpoint);
11732
11733 sm = new_until_break_fsm (tp->num, location_breakpoint, caller_breakpoint);
11734 tp->thread_fsm = &sm->thread_fsm;
11735
11736 discard_cleanups (old_chain);
11737
11738 proceed (-1, GDB_SIGNAL_DEFAULT);
11739
11740 do_cleanups (cleanup);
11741 }
11742
11743 /* This function attempts to parse an optional "if <cond>" clause
11744 from the arg string. If one is not found, it returns NULL.
11745
11746 Else, it returns a pointer to the condition string. (It does not
11747 attempt to evaluate the string against a particular block.) And,
11748 it updates arg to point to the first character following the parsed
11749 if clause in the arg string. */
11750
11751 char *
11752 ep_parse_optional_if_clause (char **arg)
11753 {
11754 char *cond_string;
11755
11756 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11757 return NULL;
11758
11759 /* Skip the "if" keyword. */
11760 (*arg) += 2;
11761
11762 /* Skip any extra leading whitespace, and record the start of the
11763 condition string. */
11764 *arg = skip_spaces (*arg);
11765 cond_string = *arg;
11766
11767 /* Assume that the condition occupies the remainder of the arg
11768 string. */
11769 (*arg) += strlen (cond_string);
11770
11771 return cond_string;
11772 }
11773
11774 /* Commands to deal with catching events, such as signals, exceptions,
11775 process start/exit, etc. */
11776
11777 typedef enum
11778 {
11779 catch_fork_temporary, catch_vfork_temporary,
11780 catch_fork_permanent, catch_vfork_permanent
11781 }
11782 catch_fork_kind;
11783
11784 static void
11785 catch_fork_command_1 (char *arg, int from_tty,
11786 struct cmd_list_element *command)
11787 {
11788 struct gdbarch *gdbarch = get_current_arch ();
11789 char *cond_string = NULL;
11790 catch_fork_kind fork_kind;
11791 int tempflag;
11792
11793 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11794 tempflag = (fork_kind == catch_fork_temporary
11795 || fork_kind == catch_vfork_temporary);
11796
11797 if (!arg)
11798 arg = "";
11799 arg = skip_spaces (arg);
11800
11801 /* The allowed syntax is:
11802 catch [v]fork
11803 catch [v]fork if <cond>
11804
11805 First, check if there's an if clause. */
11806 cond_string = ep_parse_optional_if_clause (&arg);
11807
11808 if ((*arg != '\0') && !isspace (*arg))
11809 error (_("Junk at end of arguments."));
11810
11811 /* If this target supports it, create a fork or vfork catchpoint
11812 and enable reporting of such events. */
11813 switch (fork_kind)
11814 {
11815 case catch_fork_temporary:
11816 case catch_fork_permanent:
11817 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11818 &catch_fork_breakpoint_ops);
11819 break;
11820 case catch_vfork_temporary:
11821 case catch_vfork_permanent:
11822 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11823 &catch_vfork_breakpoint_ops);
11824 break;
11825 default:
11826 error (_("unsupported or unknown fork kind; cannot catch it"));
11827 break;
11828 }
11829 }
11830
11831 static void
11832 catch_exec_command_1 (char *arg, int from_tty,
11833 struct cmd_list_element *command)
11834 {
11835 struct exec_catchpoint *c;
11836 struct gdbarch *gdbarch = get_current_arch ();
11837 int tempflag;
11838 char *cond_string = NULL;
11839
11840 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11841
11842 if (!arg)
11843 arg = "";
11844 arg = skip_spaces (arg);
11845
11846 /* The allowed syntax is:
11847 catch exec
11848 catch exec if <cond>
11849
11850 First, check if there's an if clause. */
11851 cond_string = ep_parse_optional_if_clause (&arg);
11852
11853 if ((*arg != '\0') && !isspace (*arg))
11854 error (_("Junk at end of arguments."));
11855
11856 c = XNEW (struct exec_catchpoint);
11857 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11858 &catch_exec_breakpoint_ops);
11859 c->exec_pathname = NULL;
11860
11861 install_breakpoint (0, &c->base, 1);
11862 }
11863
11864 void
11865 init_ada_exception_breakpoint (struct breakpoint *b,
11866 struct gdbarch *gdbarch,
11867 struct symtab_and_line sal,
11868 char *addr_string,
11869 const struct breakpoint_ops *ops,
11870 int tempflag,
11871 int enabled,
11872 int from_tty)
11873 {
11874 if (from_tty)
11875 {
11876 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11877 if (!loc_gdbarch)
11878 loc_gdbarch = gdbarch;
11879
11880 describe_other_breakpoints (loc_gdbarch,
11881 sal.pspace, sal.pc, sal.section, -1);
11882 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11883 version for exception catchpoints, because two catchpoints
11884 used for different exception names will use the same address.
11885 In this case, a "breakpoint ... also set at..." warning is
11886 unproductive. Besides, the warning phrasing is also a bit
11887 inappropriate, we should use the word catchpoint, and tell
11888 the user what type of catchpoint it is. The above is good
11889 enough for now, though. */
11890 }
11891
11892 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11893
11894 b->enable_state = enabled ? bp_enabled : bp_disabled;
11895 b->disposition = tempflag ? disp_del : disp_donttouch;
11896 b->location = string_to_event_location (&addr_string,
11897 language_def (language_ada));
11898 b->language = language_ada;
11899 }
11900
11901 static void
11902 catch_command (char *arg, int from_tty)
11903 {
11904 error (_("Catch requires an event name."));
11905 }
11906 \f
11907
11908 static void
11909 tcatch_command (char *arg, int from_tty)
11910 {
11911 error (_("Catch requires an event name."));
11912 }
11913
11914 /* A qsort comparison function that sorts breakpoints in order. */
11915
11916 static int
11917 compare_breakpoints (const void *a, const void *b)
11918 {
11919 const breakpoint_p *ba = (const breakpoint_p *) a;
11920 uintptr_t ua = (uintptr_t) *ba;
11921 const breakpoint_p *bb = (const breakpoint_p *) b;
11922 uintptr_t ub = (uintptr_t) *bb;
11923
11924 if ((*ba)->number < (*bb)->number)
11925 return -1;
11926 else if ((*ba)->number > (*bb)->number)
11927 return 1;
11928
11929 /* Now sort by address, in case we see, e..g, two breakpoints with
11930 the number 0. */
11931 if (ua < ub)
11932 return -1;
11933 return ua > ub ? 1 : 0;
11934 }
11935
11936 /* Delete breakpoints by address or line. */
11937
11938 static void
11939 clear_command (char *arg, int from_tty)
11940 {
11941 struct breakpoint *b, *prev;
11942 VEC(breakpoint_p) *found = 0;
11943 int ix;
11944 int default_match;
11945 struct symtabs_and_lines sals;
11946 struct symtab_and_line sal;
11947 int i;
11948 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11949
11950 if (arg)
11951 {
11952 sals = decode_line_with_current_source (arg,
11953 (DECODE_LINE_FUNFIRSTLINE
11954 | DECODE_LINE_LIST_MODE));
11955 make_cleanup (xfree, sals.sals);
11956 default_match = 0;
11957 }
11958 else
11959 {
11960 sals.sals = XNEW (struct symtab_and_line);
11961 make_cleanup (xfree, sals.sals);
11962 init_sal (&sal); /* Initialize to zeroes. */
11963
11964 /* Set sal's line, symtab, pc, and pspace to the values
11965 corresponding to the last call to print_frame_info. If the
11966 codepoint is not valid, this will set all the fields to 0. */
11967 get_last_displayed_sal (&sal);
11968 if (sal.symtab == 0)
11969 error (_("No source file specified."));
11970
11971 sals.sals[0] = sal;
11972 sals.nelts = 1;
11973
11974 default_match = 1;
11975 }
11976
11977 /* We don't call resolve_sal_pc here. That's not as bad as it
11978 seems, because all existing breakpoints typically have both
11979 file/line and pc set. So, if clear is given file/line, we can
11980 match this to existing breakpoint without obtaining pc at all.
11981
11982 We only support clearing given the address explicitly
11983 present in breakpoint table. Say, we've set breakpoint
11984 at file:line. There were several PC values for that file:line,
11985 due to optimization, all in one block.
11986
11987 We've picked one PC value. If "clear" is issued with another
11988 PC corresponding to the same file:line, the breakpoint won't
11989 be cleared. We probably can still clear the breakpoint, but
11990 since the other PC value is never presented to user, user
11991 can only find it by guessing, and it does not seem important
11992 to support that. */
11993
11994 /* For each line spec given, delete bps which correspond to it. Do
11995 it in two passes, solely to preserve the current behavior that
11996 from_tty is forced true if we delete more than one
11997 breakpoint. */
11998
11999 found = NULL;
12000 make_cleanup (VEC_cleanup (breakpoint_p), &found);
12001 for (i = 0; i < sals.nelts; i++)
12002 {
12003 const char *sal_fullname;
12004
12005 /* If exact pc given, clear bpts at that pc.
12006 If line given (pc == 0), clear all bpts on specified line.
12007 If defaulting, clear all bpts on default line
12008 or at default pc.
12009
12010 defaulting sal.pc != 0 tests to do
12011
12012 0 1 pc
12013 1 1 pc _and_ line
12014 0 0 line
12015 1 0 <can't happen> */
12016
12017 sal = sals.sals[i];
12018 sal_fullname = (sal.symtab == NULL
12019 ? NULL : symtab_to_fullname (sal.symtab));
12020
12021 /* Find all matching breakpoints and add them to 'found'. */
12022 ALL_BREAKPOINTS (b)
12023 {
12024 int match = 0;
12025 /* Are we going to delete b? */
12026 if (b->type != bp_none && !is_watchpoint (b))
12027 {
12028 struct bp_location *loc = b->loc;
12029 for (; loc; loc = loc->next)
12030 {
12031 /* If the user specified file:line, don't allow a PC
12032 match. This matches historical gdb behavior. */
12033 int pc_match = (!sal.explicit_line
12034 && sal.pc
12035 && (loc->pspace == sal.pspace)
12036 && (loc->address == sal.pc)
12037 && (!section_is_overlay (loc->section)
12038 || loc->section == sal.section));
12039 int line_match = 0;
12040
12041 if ((default_match || sal.explicit_line)
12042 && loc->symtab != NULL
12043 && sal_fullname != NULL
12044 && sal.pspace == loc->pspace
12045 && loc->line_number == sal.line
12046 && filename_cmp (symtab_to_fullname (loc->symtab),
12047 sal_fullname) == 0)
12048 line_match = 1;
12049
12050 if (pc_match || line_match)
12051 {
12052 match = 1;
12053 break;
12054 }
12055 }
12056 }
12057
12058 if (match)
12059 VEC_safe_push(breakpoint_p, found, b);
12060 }
12061 }
12062
12063 /* Now go thru the 'found' chain and delete them. */
12064 if (VEC_empty(breakpoint_p, found))
12065 {
12066 if (arg)
12067 error (_("No breakpoint at %s."), arg);
12068 else
12069 error (_("No breakpoint at this line."));
12070 }
12071
12072 /* Remove duplicates from the vec. */
12073 qsort (VEC_address (breakpoint_p, found),
12074 VEC_length (breakpoint_p, found),
12075 sizeof (breakpoint_p),
12076 compare_breakpoints);
12077 prev = VEC_index (breakpoint_p, found, 0);
12078 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
12079 {
12080 if (b == prev)
12081 {
12082 VEC_ordered_remove (breakpoint_p, found, ix);
12083 --ix;
12084 }
12085 }
12086
12087 if (VEC_length(breakpoint_p, found) > 1)
12088 from_tty = 1; /* Always report if deleted more than one. */
12089 if (from_tty)
12090 {
12091 if (VEC_length(breakpoint_p, found) == 1)
12092 printf_unfiltered (_("Deleted breakpoint "));
12093 else
12094 printf_unfiltered (_("Deleted breakpoints "));
12095 }
12096
12097 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
12098 {
12099 if (from_tty)
12100 printf_unfiltered ("%d ", b->number);
12101 delete_breakpoint (b);
12102 }
12103 if (from_tty)
12104 putchar_unfiltered ('\n');
12105
12106 do_cleanups (cleanups);
12107 }
12108 \f
12109 /* Delete breakpoint in BS if they are `delete' breakpoints and
12110 all breakpoints that are marked for deletion, whether hit or not.
12111 This is called after any breakpoint is hit, or after errors. */
12112
12113 void
12114 breakpoint_auto_delete (bpstat bs)
12115 {
12116 struct breakpoint *b, *b_tmp;
12117
12118 for (; bs; bs = bs->next)
12119 if (bs->breakpoint_at
12120 && bs->breakpoint_at->disposition == disp_del
12121 && bs->stop)
12122 delete_breakpoint (bs->breakpoint_at);
12123
12124 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12125 {
12126 if (b->disposition == disp_del_at_next_stop)
12127 delete_breakpoint (b);
12128 }
12129 }
12130
12131 /* A comparison function for bp_location AP and BP being interfaced to
12132 qsort. Sort elements primarily by their ADDRESS (no matter what
12133 does breakpoint_address_is_meaningful say for its OWNER),
12134 secondarily by ordering first permanent elements and
12135 terciarily just ensuring the array is sorted stable way despite
12136 qsort being an unstable algorithm. */
12137
12138 static int
12139 bp_location_compare (const void *ap, const void *bp)
12140 {
12141 const struct bp_location *a = *(const struct bp_location **) ap;
12142 const struct bp_location *b = *(const struct bp_location **) bp;
12143
12144 if (a->address != b->address)
12145 return (a->address > b->address) - (a->address < b->address);
12146
12147 /* Sort locations at the same address by their pspace number, keeping
12148 locations of the same inferior (in a multi-inferior environment)
12149 grouped. */
12150
12151 if (a->pspace->num != b->pspace->num)
12152 return ((a->pspace->num > b->pspace->num)
12153 - (a->pspace->num < b->pspace->num));
12154
12155 /* Sort permanent breakpoints first. */
12156 if (a->permanent != b->permanent)
12157 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
12158
12159 /* Make the internal GDB representation stable across GDB runs
12160 where A and B memory inside GDB can differ. Breakpoint locations of
12161 the same type at the same address can be sorted in arbitrary order. */
12162
12163 if (a->owner->number != b->owner->number)
12164 return ((a->owner->number > b->owner->number)
12165 - (a->owner->number < b->owner->number));
12166
12167 return (a > b) - (a < b);
12168 }
12169
12170 /* Set bp_location_placed_address_before_address_max and
12171 bp_location_shadow_len_after_address_max according to the current
12172 content of the bp_location array. */
12173
12174 static void
12175 bp_location_target_extensions_update (void)
12176 {
12177 struct bp_location *bl, **blp_tmp;
12178
12179 bp_location_placed_address_before_address_max = 0;
12180 bp_location_shadow_len_after_address_max = 0;
12181
12182 ALL_BP_LOCATIONS (bl, blp_tmp)
12183 {
12184 CORE_ADDR start, end, addr;
12185
12186 if (!bp_location_has_shadow (bl))
12187 continue;
12188
12189 start = bl->target_info.placed_address;
12190 end = start + bl->target_info.shadow_len;
12191
12192 gdb_assert (bl->address >= start);
12193 addr = bl->address - start;
12194 if (addr > bp_location_placed_address_before_address_max)
12195 bp_location_placed_address_before_address_max = addr;
12196
12197 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12198
12199 gdb_assert (bl->address < end);
12200 addr = end - bl->address;
12201 if (addr > bp_location_shadow_len_after_address_max)
12202 bp_location_shadow_len_after_address_max = addr;
12203 }
12204 }
12205
12206 /* Download tracepoint locations if they haven't been. */
12207
12208 static void
12209 download_tracepoint_locations (void)
12210 {
12211 struct breakpoint *b;
12212 struct cleanup *old_chain;
12213 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
12214
12215 old_chain = save_current_space_and_thread ();
12216
12217 ALL_TRACEPOINTS (b)
12218 {
12219 struct bp_location *bl;
12220 struct tracepoint *t;
12221 int bp_location_downloaded = 0;
12222
12223 if ((b->type == bp_fast_tracepoint
12224 ? !may_insert_fast_tracepoints
12225 : !may_insert_tracepoints))
12226 continue;
12227
12228 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
12229 {
12230 if (target_can_download_tracepoint ())
12231 can_download_tracepoint = TRIBOOL_TRUE;
12232 else
12233 can_download_tracepoint = TRIBOOL_FALSE;
12234 }
12235
12236 if (can_download_tracepoint == TRIBOOL_FALSE)
12237 break;
12238
12239 for (bl = b->loc; bl; bl = bl->next)
12240 {
12241 /* In tracepoint, locations are _never_ duplicated, so
12242 should_be_inserted is equivalent to
12243 unduplicated_should_be_inserted. */
12244 if (!should_be_inserted (bl) || bl->inserted)
12245 continue;
12246
12247 switch_to_program_space_and_thread (bl->pspace);
12248
12249 target_download_tracepoint (bl);
12250
12251 bl->inserted = 1;
12252 bp_location_downloaded = 1;
12253 }
12254 t = (struct tracepoint *) b;
12255 t->number_on_target = b->number;
12256 if (bp_location_downloaded)
12257 observer_notify_breakpoint_modified (b);
12258 }
12259
12260 do_cleanups (old_chain);
12261 }
12262
12263 /* Swap the insertion/duplication state between two locations. */
12264
12265 static void
12266 swap_insertion (struct bp_location *left, struct bp_location *right)
12267 {
12268 const int left_inserted = left->inserted;
12269 const int left_duplicate = left->duplicate;
12270 const int left_needs_update = left->needs_update;
12271 const struct bp_target_info left_target_info = left->target_info;
12272
12273 /* Locations of tracepoints can never be duplicated. */
12274 if (is_tracepoint (left->owner))
12275 gdb_assert (!left->duplicate);
12276 if (is_tracepoint (right->owner))
12277 gdb_assert (!right->duplicate);
12278
12279 left->inserted = right->inserted;
12280 left->duplicate = right->duplicate;
12281 left->needs_update = right->needs_update;
12282 left->target_info = right->target_info;
12283 right->inserted = left_inserted;
12284 right->duplicate = left_duplicate;
12285 right->needs_update = left_needs_update;
12286 right->target_info = left_target_info;
12287 }
12288
12289 /* Force the re-insertion of the locations at ADDRESS. This is called
12290 once a new/deleted/modified duplicate location is found and we are evaluating
12291 conditions on the target's side. Such conditions need to be updated on
12292 the target. */
12293
12294 static void
12295 force_breakpoint_reinsertion (struct bp_location *bl)
12296 {
12297 struct bp_location **locp = NULL, **loc2p;
12298 struct bp_location *loc;
12299 CORE_ADDR address = 0;
12300 int pspace_num;
12301
12302 address = bl->address;
12303 pspace_num = bl->pspace->num;
12304
12305 /* This is only meaningful if the target is
12306 evaluating conditions and if the user has
12307 opted for condition evaluation on the target's
12308 side. */
12309 if (gdb_evaluates_breakpoint_condition_p ()
12310 || !target_supports_evaluation_of_breakpoint_conditions ())
12311 return;
12312
12313 /* Flag all breakpoint locations with this address and
12314 the same program space as the location
12315 as "its condition has changed". We need to
12316 update the conditions on the target's side. */
12317 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12318 {
12319 loc = *loc2p;
12320
12321 if (!is_breakpoint (loc->owner)
12322 || pspace_num != loc->pspace->num)
12323 continue;
12324
12325 /* Flag the location appropriately. We use a different state to
12326 let everyone know that we already updated the set of locations
12327 with addr bl->address and program space bl->pspace. This is so
12328 we don't have to keep calling these functions just to mark locations
12329 that have already been marked. */
12330 loc->condition_changed = condition_updated;
12331
12332 /* Free the agent expression bytecode as well. We will compute
12333 it later on. */
12334 if (loc->cond_bytecode)
12335 {
12336 free_agent_expr (loc->cond_bytecode);
12337 loc->cond_bytecode = NULL;
12338 }
12339 }
12340 }
12341 /* Called whether new breakpoints are created, or existing breakpoints
12342 deleted, to update the global location list and recompute which
12343 locations are duplicate of which.
12344
12345 The INSERT_MODE flag determines whether locations may not, may, or
12346 shall be inserted now. See 'enum ugll_insert_mode' for more
12347 info. */
12348
12349 static void
12350 update_global_location_list (enum ugll_insert_mode insert_mode)
12351 {
12352 struct breakpoint *b;
12353 struct bp_location **locp, *loc;
12354 struct cleanup *cleanups;
12355 /* Last breakpoint location address that was marked for update. */
12356 CORE_ADDR last_addr = 0;
12357 /* Last breakpoint location program space that was marked for update. */
12358 int last_pspace_num = -1;
12359
12360 /* Used in the duplicates detection below. When iterating over all
12361 bp_locations, points to the first bp_location of a given address.
12362 Breakpoints and watchpoints of different types are never
12363 duplicates of each other. Keep one pointer for each type of
12364 breakpoint/watchpoint, so we only need to loop over all locations
12365 once. */
12366 struct bp_location *bp_loc_first; /* breakpoint */
12367 struct bp_location *wp_loc_first; /* hardware watchpoint */
12368 struct bp_location *awp_loc_first; /* access watchpoint */
12369 struct bp_location *rwp_loc_first; /* read watchpoint */
12370
12371 /* Saved former bp_location array which we compare against the newly
12372 built bp_location from the current state of ALL_BREAKPOINTS. */
12373 struct bp_location **old_location, **old_locp;
12374 unsigned old_location_count;
12375
12376 old_location = bp_location;
12377 old_location_count = bp_location_count;
12378 bp_location = NULL;
12379 bp_location_count = 0;
12380 cleanups = make_cleanup (xfree, old_location);
12381
12382 ALL_BREAKPOINTS (b)
12383 for (loc = b->loc; loc; loc = loc->next)
12384 bp_location_count++;
12385
12386 bp_location = XNEWVEC (struct bp_location *, bp_location_count);
12387 locp = bp_location;
12388 ALL_BREAKPOINTS (b)
12389 for (loc = b->loc; loc; loc = loc->next)
12390 *locp++ = loc;
12391 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12392 bp_location_compare);
12393
12394 bp_location_target_extensions_update ();
12395
12396 /* Identify bp_location instances that are no longer present in the
12397 new list, and therefore should be freed. Note that it's not
12398 necessary that those locations should be removed from inferior --
12399 if there's another location at the same address (previously
12400 marked as duplicate), we don't need to remove/insert the
12401 location.
12402
12403 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12404 and former bp_location array state respectively. */
12405
12406 locp = bp_location;
12407 for (old_locp = old_location; old_locp < old_location + old_location_count;
12408 old_locp++)
12409 {
12410 struct bp_location *old_loc = *old_locp;
12411 struct bp_location **loc2p;
12412
12413 /* Tells if 'old_loc' is found among the new locations. If
12414 not, we have to free it. */
12415 int found_object = 0;
12416 /* Tells if the location should remain inserted in the target. */
12417 int keep_in_target = 0;
12418 int removed = 0;
12419
12420 /* Skip LOCP entries which will definitely never be needed.
12421 Stop either at or being the one matching OLD_LOC. */
12422 while (locp < bp_location + bp_location_count
12423 && (*locp)->address < old_loc->address)
12424 locp++;
12425
12426 for (loc2p = locp;
12427 (loc2p < bp_location + bp_location_count
12428 && (*loc2p)->address == old_loc->address);
12429 loc2p++)
12430 {
12431 /* Check if this is a new/duplicated location or a duplicated
12432 location that had its condition modified. If so, we want to send
12433 its condition to the target if evaluation of conditions is taking
12434 place there. */
12435 if ((*loc2p)->condition_changed == condition_modified
12436 && (last_addr != old_loc->address
12437 || last_pspace_num != old_loc->pspace->num))
12438 {
12439 force_breakpoint_reinsertion (*loc2p);
12440 last_pspace_num = old_loc->pspace->num;
12441 }
12442
12443 if (*loc2p == old_loc)
12444 found_object = 1;
12445 }
12446
12447 /* We have already handled this address, update it so that we don't
12448 have to go through updates again. */
12449 last_addr = old_loc->address;
12450
12451 /* Target-side condition evaluation: Handle deleted locations. */
12452 if (!found_object)
12453 force_breakpoint_reinsertion (old_loc);
12454
12455 /* If this location is no longer present, and inserted, look if
12456 there's maybe a new location at the same address. If so,
12457 mark that one inserted, and don't remove this one. This is
12458 needed so that we don't have a time window where a breakpoint
12459 at certain location is not inserted. */
12460
12461 if (old_loc->inserted)
12462 {
12463 /* If the location is inserted now, we might have to remove
12464 it. */
12465
12466 if (found_object && should_be_inserted (old_loc))
12467 {
12468 /* The location is still present in the location list,
12469 and still should be inserted. Don't do anything. */
12470 keep_in_target = 1;
12471 }
12472 else
12473 {
12474 /* This location still exists, but it won't be kept in the
12475 target since it may have been disabled. We proceed to
12476 remove its target-side condition. */
12477
12478 /* The location is either no longer present, or got
12479 disabled. See if there's another location at the
12480 same address, in which case we don't need to remove
12481 this one from the target. */
12482
12483 /* OLD_LOC comes from existing struct breakpoint. */
12484 if (breakpoint_address_is_meaningful (old_loc->owner))
12485 {
12486 for (loc2p = locp;
12487 (loc2p < bp_location + bp_location_count
12488 && (*loc2p)->address == old_loc->address);
12489 loc2p++)
12490 {
12491 struct bp_location *loc2 = *loc2p;
12492
12493 if (breakpoint_locations_match (loc2, old_loc))
12494 {
12495 /* Read watchpoint locations are switched to
12496 access watchpoints, if the former are not
12497 supported, but the latter are. */
12498 if (is_hardware_watchpoint (old_loc->owner))
12499 {
12500 gdb_assert (is_hardware_watchpoint (loc2->owner));
12501 loc2->watchpoint_type = old_loc->watchpoint_type;
12502 }
12503
12504 /* loc2 is a duplicated location. We need to check
12505 if it should be inserted in case it will be
12506 unduplicated. */
12507 if (loc2 != old_loc
12508 && unduplicated_should_be_inserted (loc2))
12509 {
12510 swap_insertion (old_loc, loc2);
12511 keep_in_target = 1;
12512 break;
12513 }
12514 }
12515 }
12516 }
12517 }
12518
12519 if (!keep_in_target)
12520 {
12521 if (remove_breakpoint (old_loc, mark_uninserted))
12522 {
12523 /* This is just about all we can do. We could keep
12524 this location on the global list, and try to
12525 remove it next time, but there's no particular
12526 reason why we will succeed next time.
12527
12528 Note that at this point, old_loc->owner is still
12529 valid, as delete_breakpoint frees the breakpoint
12530 only after calling us. */
12531 printf_filtered (_("warning: Error removing "
12532 "breakpoint %d\n"),
12533 old_loc->owner->number);
12534 }
12535 removed = 1;
12536 }
12537 }
12538
12539 if (!found_object)
12540 {
12541 if (removed && target_is_non_stop_p ()
12542 && need_moribund_for_location_type (old_loc))
12543 {
12544 /* This location was removed from the target. In
12545 non-stop mode, a race condition is possible where
12546 we've removed a breakpoint, but stop events for that
12547 breakpoint are already queued and will arrive later.
12548 We apply an heuristic to be able to distinguish such
12549 SIGTRAPs from other random SIGTRAPs: we keep this
12550 breakpoint location for a bit, and will retire it
12551 after we see some number of events. The theory here
12552 is that reporting of events should, "on the average",
12553 be fair, so after a while we'll see events from all
12554 threads that have anything of interest, and no longer
12555 need to keep this breakpoint location around. We
12556 don't hold locations forever so to reduce chances of
12557 mistaking a non-breakpoint SIGTRAP for a breakpoint
12558 SIGTRAP.
12559
12560 The heuristic failing can be disastrous on
12561 decr_pc_after_break targets.
12562
12563 On decr_pc_after_break targets, like e.g., x86-linux,
12564 if we fail to recognize a late breakpoint SIGTRAP,
12565 because events_till_retirement has reached 0 too
12566 soon, we'll fail to do the PC adjustment, and report
12567 a random SIGTRAP to the user. When the user resumes
12568 the inferior, it will most likely immediately crash
12569 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12570 corrupted, because of being resumed e.g., in the
12571 middle of a multi-byte instruction, or skipped a
12572 one-byte instruction. This was actually seen happen
12573 on native x86-linux, and should be less rare on
12574 targets that do not support new thread events, like
12575 remote, due to the heuristic depending on
12576 thread_count.
12577
12578 Mistaking a random SIGTRAP for a breakpoint trap
12579 causes similar symptoms (PC adjustment applied when
12580 it shouldn't), but then again, playing with SIGTRAPs
12581 behind the debugger's back is asking for trouble.
12582
12583 Since hardware watchpoint traps are always
12584 distinguishable from other traps, so we don't need to
12585 apply keep hardware watchpoint moribund locations
12586 around. We simply always ignore hardware watchpoint
12587 traps we can no longer explain. */
12588
12589 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12590 old_loc->owner = NULL;
12591
12592 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12593 }
12594 else
12595 {
12596 old_loc->owner = NULL;
12597 decref_bp_location (&old_loc);
12598 }
12599 }
12600 }
12601
12602 /* Rescan breakpoints at the same address and section, marking the
12603 first one as "first" and any others as "duplicates". This is so
12604 that the bpt instruction is only inserted once. If we have a
12605 permanent breakpoint at the same place as BPT, make that one the
12606 official one, and the rest as duplicates. Permanent breakpoints
12607 are sorted first for the same address.
12608
12609 Do the same for hardware watchpoints, but also considering the
12610 watchpoint's type (regular/access/read) and length. */
12611
12612 bp_loc_first = NULL;
12613 wp_loc_first = NULL;
12614 awp_loc_first = NULL;
12615 rwp_loc_first = NULL;
12616 ALL_BP_LOCATIONS (loc, locp)
12617 {
12618 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12619 non-NULL. */
12620 struct bp_location **loc_first_p;
12621 b = loc->owner;
12622
12623 if (!unduplicated_should_be_inserted (loc)
12624 || !breakpoint_address_is_meaningful (b)
12625 /* Don't detect duplicate for tracepoint locations because they are
12626 never duplicated. See the comments in field `duplicate' of
12627 `struct bp_location'. */
12628 || is_tracepoint (b))
12629 {
12630 /* Clear the condition modification flag. */
12631 loc->condition_changed = condition_unchanged;
12632 continue;
12633 }
12634
12635 if (b->type == bp_hardware_watchpoint)
12636 loc_first_p = &wp_loc_first;
12637 else if (b->type == bp_read_watchpoint)
12638 loc_first_p = &rwp_loc_first;
12639 else if (b->type == bp_access_watchpoint)
12640 loc_first_p = &awp_loc_first;
12641 else
12642 loc_first_p = &bp_loc_first;
12643
12644 if (*loc_first_p == NULL
12645 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12646 || !breakpoint_locations_match (loc, *loc_first_p))
12647 {
12648 *loc_first_p = loc;
12649 loc->duplicate = 0;
12650
12651 if (is_breakpoint (loc->owner) && loc->condition_changed)
12652 {
12653 loc->needs_update = 1;
12654 /* Clear the condition modification flag. */
12655 loc->condition_changed = condition_unchanged;
12656 }
12657 continue;
12658 }
12659
12660
12661 /* This and the above ensure the invariant that the first location
12662 is not duplicated, and is the inserted one.
12663 All following are marked as duplicated, and are not inserted. */
12664 if (loc->inserted)
12665 swap_insertion (loc, *loc_first_p);
12666 loc->duplicate = 1;
12667
12668 /* Clear the condition modification flag. */
12669 loc->condition_changed = condition_unchanged;
12670 }
12671
12672 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12673 {
12674 if (insert_mode != UGLL_DONT_INSERT)
12675 insert_breakpoint_locations ();
12676 else
12677 {
12678 /* Even though the caller told us to not insert new
12679 locations, we may still need to update conditions on the
12680 target's side of breakpoints that were already inserted
12681 if the target is evaluating breakpoint conditions. We
12682 only update conditions for locations that are marked
12683 "needs_update". */
12684 update_inserted_breakpoint_locations ();
12685 }
12686 }
12687
12688 if (insert_mode != UGLL_DONT_INSERT)
12689 download_tracepoint_locations ();
12690
12691 do_cleanups (cleanups);
12692 }
12693
12694 void
12695 breakpoint_retire_moribund (void)
12696 {
12697 struct bp_location *loc;
12698 int ix;
12699
12700 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12701 if (--(loc->events_till_retirement) == 0)
12702 {
12703 decref_bp_location (&loc);
12704 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12705 --ix;
12706 }
12707 }
12708
12709 static void
12710 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12711 {
12712
12713 TRY
12714 {
12715 update_global_location_list (insert_mode);
12716 }
12717 CATCH (e, RETURN_MASK_ERROR)
12718 {
12719 }
12720 END_CATCH
12721 }
12722
12723 /* Clear BKP from a BPS. */
12724
12725 static void
12726 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12727 {
12728 bpstat bs;
12729
12730 for (bs = bps; bs; bs = bs->next)
12731 if (bs->breakpoint_at == bpt)
12732 {
12733 bs->breakpoint_at = NULL;
12734 bs->old_val = NULL;
12735 /* bs->commands will be freed later. */
12736 }
12737 }
12738
12739 /* Callback for iterate_over_threads. */
12740 static int
12741 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12742 {
12743 struct breakpoint *bpt = (struct breakpoint *) data;
12744
12745 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12746 return 0;
12747 }
12748
12749 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12750 callbacks. */
12751
12752 static void
12753 say_where (struct breakpoint *b)
12754 {
12755 struct value_print_options opts;
12756
12757 get_user_print_options (&opts);
12758
12759 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12760 single string. */
12761 if (b->loc == NULL)
12762 {
12763 /* For pending locations, the output differs slightly based
12764 on b->extra_string. If this is non-NULL, it contains either
12765 a condition or dprintf arguments. */
12766 if (b->extra_string == NULL)
12767 {
12768 printf_filtered (_(" (%s) pending."),
12769 event_location_to_string (b->location));
12770 }
12771 else if (b->type == bp_dprintf)
12772 {
12773 printf_filtered (_(" (%s,%s) pending."),
12774 event_location_to_string (b->location),
12775 b->extra_string);
12776 }
12777 else
12778 {
12779 printf_filtered (_(" (%s %s) pending."),
12780 event_location_to_string (b->location),
12781 b->extra_string);
12782 }
12783 }
12784 else
12785 {
12786 if (opts.addressprint || b->loc->symtab == NULL)
12787 {
12788 printf_filtered (" at ");
12789 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12790 gdb_stdout);
12791 }
12792 if (b->loc->symtab != NULL)
12793 {
12794 /* If there is a single location, we can print the location
12795 more nicely. */
12796 if (b->loc->next == NULL)
12797 printf_filtered (": file %s, line %d.",
12798 symtab_to_filename_for_display (b->loc->symtab),
12799 b->loc->line_number);
12800 else
12801 /* This is not ideal, but each location may have a
12802 different file name, and this at least reflects the
12803 real situation somewhat. */
12804 printf_filtered (": %s.",
12805 event_location_to_string (b->location));
12806 }
12807
12808 if (b->loc->next)
12809 {
12810 struct bp_location *loc = b->loc;
12811 int n = 0;
12812 for (; loc; loc = loc->next)
12813 ++n;
12814 printf_filtered (" (%d locations)", n);
12815 }
12816 }
12817 }
12818
12819 /* Default bp_location_ops methods. */
12820
12821 static void
12822 bp_location_dtor (struct bp_location *self)
12823 {
12824 xfree (self->cond);
12825 if (self->cond_bytecode)
12826 free_agent_expr (self->cond_bytecode);
12827 xfree (self->function_name);
12828
12829 VEC_free (agent_expr_p, self->target_info.conditions);
12830 VEC_free (agent_expr_p, self->target_info.tcommands);
12831 }
12832
12833 static const struct bp_location_ops bp_location_ops =
12834 {
12835 bp_location_dtor
12836 };
12837
12838 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12839 inherit from. */
12840
12841 static void
12842 base_breakpoint_dtor (struct breakpoint *self)
12843 {
12844 decref_counted_command_line (&self->commands);
12845 xfree (self->cond_string);
12846 xfree (self->extra_string);
12847 xfree (self->filter);
12848 delete_event_location (self->location);
12849 delete_event_location (self->location_range_end);
12850 }
12851
12852 static struct bp_location *
12853 base_breakpoint_allocate_location (struct breakpoint *self)
12854 {
12855 struct bp_location *loc;
12856
12857 loc = XNEW (struct bp_location);
12858 init_bp_location (loc, &bp_location_ops, self);
12859 return loc;
12860 }
12861
12862 static void
12863 base_breakpoint_re_set (struct breakpoint *b)
12864 {
12865 /* Nothing to re-set. */
12866 }
12867
12868 #define internal_error_pure_virtual_called() \
12869 gdb_assert_not_reached ("pure virtual function called")
12870
12871 static int
12872 base_breakpoint_insert_location (struct bp_location *bl)
12873 {
12874 internal_error_pure_virtual_called ();
12875 }
12876
12877 static int
12878 base_breakpoint_remove_location (struct bp_location *bl)
12879 {
12880 internal_error_pure_virtual_called ();
12881 }
12882
12883 static int
12884 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12885 struct address_space *aspace,
12886 CORE_ADDR bp_addr,
12887 const struct target_waitstatus *ws)
12888 {
12889 internal_error_pure_virtual_called ();
12890 }
12891
12892 static void
12893 base_breakpoint_check_status (bpstat bs)
12894 {
12895 /* Always stop. */
12896 }
12897
12898 /* A "works_in_software_mode" breakpoint_ops method that just internal
12899 errors. */
12900
12901 static int
12902 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12903 {
12904 internal_error_pure_virtual_called ();
12905 }
12906
12907 /* A "resources_needed" breakpoint_ops method that just internal
12908 errors. */
12909
12910 static int
12911 base_breakpoint_resources_needed (const struct bp_location *bl)
12912 {
12913 internal_error_pure_virtual_called ();
12914 }
12915
12916 static enum print_stop_action
12917 base_breakpoint_print_it (bpstat bs)
12918 {
12919 internal_error_pure_virtual_called ();
12920 }
12921
12922 static void
12923 base_breakpoint_print_one_detail (const struct breakpoint *self,
12924 struct ui_out *uiout)
12925 {
12926 /* nothing */
12927 }
12928
12929 static void
12930 base_breakpoint_print_mention (struct breakpoint *b)
12931 {
12932 internal_error_pure_virtual_called ();
12933 }
12934
12935 static void
12936 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12937 {
12938 internal_error_pure_virtual_called ();
12939 }
12940
12941 static void
12942 base_breakpoint_create_sals_from_location
12943 (const struct event_location *location,
12944 struct linespec_result *canonical,
12945 enum bptype type_wanted)
12946 {
12947 internal_error_pure_virtual_called ();
12948 }
12949
12950 static void
12951 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12952 struct linespec_result *c,
12953 char *cond_string,
12954 char *extra_string,
12955 enum bptype type_wanted,
12956 enum bpdisp disposition,
12957 int thread,
12958 int task, int ignore_count,
12959 const struct breakpoint_ops *o,
12960 int from_tty, int enabled,
12961 int internal, unsigned flags)
12962 {
12963 internal_error_pure_virtual_called ();
12964 }
12965
12966 static void
12967 base_breakpoint_decode_location (struct breakpoint *b,
12968 const struct event_location *location,
12969 struct symtabs_and_lines *sals)
12970 {
12971 internal_error_pure_virtual_called ();
12972 }
12973
12974 /* The default 'explains_signal' method. */
12975
12976 static int
12977 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12978 {
12979 return 1;
12980 }
12981
12982 /* The default "after_condition_true" method. */
12983
12984 static void
12985 base_breakpoint_after_condition_true (struct bpstats *bs)
12986 {
12987 /* Nothing to do. */
12988 }
12989
12990 struct breakpoint_ops base_breakpoint_ops =
12991 {
12992 base_breakpoint_dtor,
12993 base_breakpoint_allocate_location,
12994 base_breakpoint_re_set,
12995 base_breakpoint_insert_location,
12996 base_breakpoint_remove_location,
12997 base_breakpoint_breakpoint_hit,
12998 base_breakpoint_check_status,
12999 base_breakpoint_resources_needed,
13000 base_breakpoint_works_in_software_mode,
13001 base_breakpoint_print_it,
13002 NULL,
13003 base_breakpoint_print_one_detail,
13004 base_breakpoint_print_mention,
13005 base_breakpoint_print_recreate,
13006 base_breakpoint_create_sals_from_location,
13007 base_breakpoint_create_breakpoints_sal,
13008 base_breakpoint_decode_location,
13009 base_breakpoint_explains_signal,
13010 base_breakpoint_after_condition_true,
13011 };
13012
13013 /* Default breakpoint_ops methods. */
13014
13015 static void
13016 bkpt_re_set (struct breakpoint *b)
13017 {
13018 /* FIXME: is this still reachable? */
13019 if (event_location_empty_p (b->location))
13020 {
13021 /* Anything without a location can't be re-set. */
13022 delete_breakpoint (b);
13023 return;
13024 }
13025
13026 breakpoint_re_set_default (b);
13027 }
13028
13029 static int
13030 bkpt_insert_location (struct bp_location *bl)
13031 {
13032 if (bl->loc_type == bp_loc_hardware_breakpoint)
13033 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
13034 else
13035 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
13036 }
13037
13038 static int
13039 bkpt_remove_location (struct bp_location *bl)
13040 {
13041 if (bl->loc_type == bp_loc_hardware_breakpoint)
13042 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
13043 else
13044 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
13045 }
13046
13047 static int
13048 bkpt_breakpoint_hit (const struct bp_location *bl,
13049 struct address_space *aspace, CORE_ADDR bp_addr,
13050 const struct target_waitstatus *ws)
13051 {
13052 if (ws->kind != TARGET_WAITKIND_STOPPED
13053 || ws->value.sig != GDB_SIGNAL_TRAP)
13054 return 0;
13055
13056 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
13057 aspace, bp_addr))
13058 return 0;
13059
13060 if (overlay_debugging /* unmapped overlay section */
13061 && section_is_overlay (bl->section)
13062 && !section_is_mapped (bl->section))
13063 return 0;
13064
13065 return 1;
13066 }
13067
13068 static int
13069 dprintf_breakpoint_hit (const struct bp_location *bl,
13070 struct address_space *aspace, CORE_ADDR bp_addr,
13071 const struct target_waitstatus *ws)
13072 {
13073 if (dprintf_style == dprintf_style_agent
13074 && target_can_run_breakpoint_commands ())
13075 {
13076 /* An agent-style dprintf never causes a stop. If we see a trap
13077 for this address it must be for a breakpoint that happens to
13078 be set at the same address. */
13079 return 0;
13080 }
13081
13082 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
13083 }
13084
13085 static int
13086 bkpt_resources_needed (const struct bp_location *bl)
13087 {
13088 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
13089
13090 return 1;
13091 }
13092
13093 static enum print_stop_action
13094 bkpt_print_it (bpstat bs)
13095 {
13096 struct breakpoint *b;
13097 const struct bp_location *bl;
13098 int bp_temp;
13099 struct ui_out *uiout = current_uiout;
13100
13101 gdb_assert (bs->bp_location_at != NULL);
13102
13103 bl = bs->bp_location_at;
13104 b = bs->breakpoint_at;
13105
13106 bp_temp = b->disposition == disp_del;
13107 if (bl->address != bl->requested_address)
13108 breakpoint_adjustment_warning (bl->requested_address,
13109 bl->address,
13110 b->number, 1);
13111 annotate_breakpoint (b->number);
13112 if (bp_temp)
13113 ui_out_text (uiout, "\nTemporary breakpoint ");
13114 else
13115 ui_out_text (uiout, "\nBreakpoint ");
13116 if (ui_out_is_mi_like_p (uiout))
13117 {
13118 ui_out_field_string (uiout, "reason",
13119 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
13120 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
13121 }
13122 ui_out_field_int (uiout, "bkptno", b->number);
13123 ui_out_text (uiout, ", ");
13124
13125 return PRINT_SRC_AND_LOC;
13126 }
13127
13128 static void
13129 bkpt_print_mention (struct breakpoint *b)
13130 {
13131 if (ui_out_is_mi_like_p (current_uiout))
13132 return;
13133
13134 switch (b->type)
13135 {
13136 case bp_breakpoint:
13137 case bp_gnu_ifunc_resolver:
13138 if (b->disposition == disp_del)
13139 printf_filtered (_("Temporary breakpoint"));
13140 else
13141 printf_filtered (_("Breakpoint"));
13142 printf_filtered (_(" %d"), b->number);
13143 if (b->type == bp_gnu_ifunc_resolver)
13144 printf_filtered (_(" at gnu-indirect-function resolver"));
13145 break;
13146 case bp_hardware_breakpoint:
13147 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13148 break;
13149 case bp_dprintf:
13150 printf_filtered (_("Dprintf %d"), b->number);
13151 break;
13152 }
13153
13154 say_where (b);
13155 }
13156
13157 static void
13158 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13159 {
13160 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13161 fprintf_unfiltered (fp, "tbreak");
13162 else if (tp->type == bp_breakpoint)
13163 fprintf_unfiltered (fp, "break");
13164 else if (tp->type == bp_hardware_breakpoint
13165 && tp->disposition == disp_del)
13166 fprintf_unfiltered (fp, "thbreak");
13167 else if (tp->type == bp_hardware_breakpoint)
13168 fprintf_unfiltered (fp, "hbreak");
13169 else
13170 internal_error (__FILE__, __LINE__,
13171 _("unhandled breakpoint type %d"), (int) tp->type);
13172
13173 fprintf_unfiltered (fp, " %s",
13174 event_location_to_string (tp->location));
13175
13176 /* Print out extra_string if this breakpoint is pending. It might
13177 contain, for example, conditions that were set by the user. */
13178 if (tp->loc == NULL && tp->extra_string != NULL)
13179 fprintf_unfiltered (fp, " %s", tp->extra_string);
13180
13181 print_recreate_thread (tp, fp);
13182 }
13183
13184 static void
13185 bkpt_create_sals_from_location (const struct event_location *location,
13186 struct linespec_result *canonical,
13187 enum bptype type_wanted)
13188 {
13189 create_sals_from_location_default (location, canonical, type_wanted);
13190 }
13191
13192 static void
13193 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13194 struct linespec_result *canonical,
13195 char *cond_string,
13196 char *extra_string,
13197 enum bptype type_wanted,
13198 enum bpdisp disposition,
13199 int thread,
13200 int task, int ignore_count,
13201 const struct breakpoint_ops *ops,
13202 int from_tty, int enabled,
13203 int internal, unsigned flags)
13204 {
13205 create_breakpoints_sal_default (gdbarch, canonical,
13206 cond_string, extra_string,
13207 type_wanted,
13208 disposition, thread, task,
13209 ignore_count, ops, from_tty,
13210 enabled, internal, flags);
13211 }
13212
13213 static void
13214 bkpt_decode_location (struct breakpoint *b,
13215 const struct event_location *location,
13216 struct symtabs_and_lines *sals)
13217 {
13218 decode_location_default (b, location, sals);
13219 }
13220
13221 /* Virtual table for internal breakpoints. */
13222
13223 static void
13224 internal_bkpt_re_set (struct breakpoint *b)
13225 {
13226 switch (b->type)
13227 {
13228 /* Delete overlay event and longjmp master breakpoints; they
13229 will be reset later by breakpoint_re_set. */
13230 case bp_overlay_event:
13231 case bp_longjmp_master:
13232 case bp_std_terminate_master:
13233 case bp_exception_master:
13234 delete_breakpoint (b);
13235 break;
13236
13237 /* This breakpoint is special, it's set up when the inferior
13238 starts and we really don't want to touch it. */
13239 case bp_shlib_event:
13240
13241 /* Like bp_shlib_event, this breakpoint type is special. Once
13242 it is set up, we do not want to touch it. */
13243 case bp_thread_event:
13244 break;
13245 }
13246 }
13247
13248 static void
13249 internal_bkpt_check_status (bpstat bs)
13250 {
13251 if (bs->breakpoint_at->type == bp_shlib_event)
13252 {
13253 /* If requested, stop when the dynamic linker notifies GDB of
13254 events. This allows the user to get control and place
13255 breakpoints in initializer routines for dynamically loaded
13256 objects (among other things). */
13257 bs->stop = stop_on_solib_events;
13258 bs->print = stop_on_solib_events;
13259 }
13260 else
13261 bs->stop = 0;
13262 }
13263
13264 static enum print_stop_action
13265 internal_bkpt_print_it (bpstat bs)
13266 {
13267 struct breakpoint *b;
13268
13269 b = bs->breakpoint_at;
13270
13271 switch (b->type)
13272 {
13273 case bp_shlib_event:
13274 /* Did we stop because the user set the stop_on_solib_events
13275 variable? (If so, we report this as a generic, "Stopped due
13276 to shlib event" message.) */
13277 print_solib_event (0);
13278 break;
13279
13280 case bp_thread_event:
13281 /* Not sure how we will get here.
13282 GDB should not stop for these breakpoints. */
13283 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13284 break;
13285
13286 case bp_overlay_event:
13287 /* By analogy with the thread event, GDB should not stop for these. */
13288 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13289 break;
13290
13291 case bp_longjmp_master:
13292 /* These should never be enabled. */
13293 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13294 break;
13295
13296 case bp_std_terminate_master:
13297 /* These should never be enabled. */
13298 printf_filtered (_("std::terminate Master Breakpoint: "
13299 "gdb should not stop!\n"));
13300 break;
13301
13302 case bp_exception_master:
13303 /* These should never be enabled. */
13304 printf_filtered (_("Exception Master Breakpoint: "
13305 "gdb should not stop!\n"));
13306 break;
13307 }
13308
13309 return PRINT_NOTHING;
13310 }
13311
13312 static void
13313 internal_bkpt_print_mention (struct breakpoint *b)
13314 {
13315 /* Nothing to mention. These breakpoints are internal. */
13316 }
13317
13318 /* Virtual table for momentary breakpoints */
13319
13320 static void
13321 momentary_bkpt_re_set (struct breakpoint *b)
13322 {
13323 /* Keep temporary breakpoints, which can be encountered when we step
13324 over a dlopen call and solib_add is resetting the breakpoints.
13325 Otherwise these should have been blown away via the cleanup chain
13326 or by breakpoint_init_inferior when we rerun the executable. */
13327 }
13328
13329 static void
13330 momentary_bkpt_check_status (bpstat bs)
13331 {
13332 /* Nothing. The point of these breakpoints is causing a stop. */
13333 }
13334
13335 static enum print_stop_action
13336 momentary_bkpt_print_it (bpstat bs)
13337 {
13338 return PRINT_UNKNOWN;
13339 }
13340
13341 static void
13342 momentary_bkpt_print_mention (struct breakpoint *b)
13343 {
13344 /* Nothing to mention. These breakpoints are internal. */
13345 }
13346
13347 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13348
13349 It gets cleared already on the removal of the first one of such placed
13350 breakpoints. This is OK as they get all removed altogether. */
13351
13352 static void
13353 longjmp_bkpt_dtor (struct breakpoint *self)
13354 {
13355 struct thread_info *tp = find_thread_id (self->thread);
13356
13357 if (tp)
13358 tp->initiating_frame = null_frame_id;
13359
13360 momentary_breakpoint_ops.dtor (self);
13361 }
13362
13363 /* Specific methods for probe breakpoints. */
13364
13365 static int
13366 bkpt_probe_insert_location (struct bp_location *bl)
13367 {
13368 int v = bkpt_insert_location (bl);
13369
13370 if (v == 0)
13371 {
13372 /* The insertion was successful, now let's set the probe's semaphore
13373 if needed. */
13374 if (bl->probe.probe->pops->set_semaphore != NULL)
13375 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
13376 bl->probe.objfile,
13377 bl->gdbarch);
13378 }
13379
13380 return v;
13381 }
13382
13383 static int
13384 bkpt_probe_remove_location (struct bp_location *bl)
13385 {
13386 /* Let's clear the semaphore before removing the location. */
13387 if (bl->probe.probe->pops->clear_semaphore != NULL)
13388 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
13389 bl->probe.objfile,
13390 bl->gdbarch);
13391
13392 return bkpt_remove_location (bl);
13393 }
13394
13395 static void
13396 bkpt_probe_create_sals_from_location (const struct event_location *location,
13397 struct linespec_result *canonical,
13398 enum bptype type_wanted)
13399 {
13400 struct linespec_sals lsal;
13401
13402 lsal.sals = parse_probes (location, canonical);
13403 lsal.canonical = xstrdup (event_location_to_string (canonical->location));
13404 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13405 }
13406
13407 static void
13408 bkpt_probe_decode_location (struct breakpoint *b,
13409 const struct event_location *location,
13410 struct symtabs_and_lines *sals)
13411 {
13412 *sals = parse_probes (location, NULL);
13413 if (!sals->sals)
13414 error (_("probe not found"));
13415 }
13416
13417 /* The breakpoint_ops structure to be used in tracepoints. */
13418
13419 static void
13420 tracepoint_re_set (struct breakpoint *b)
13421 {
13422 breakpoint_re_set_default (b);
13423 }
13424
13425 static int
13426 tracepoint_breakpoint_hit (const struct bp_location *bl,
13427 struct address_space *aspace, CORE_ADDR bp_addr,
13428 const struct target_waitstatus *ws)
13429 {
13430 /* By definition, the inferior does not report stops at
13431 tracepoints. */
13432 return 0;
13433 }
13434
13435 static void
13436 tracepoint_print_one_detail (const struct breakpoint *self,
13437 struct ui_out *uiout)
13438 {
13439 struct tracepoint *tp = (struct tracepoint *) self;
13440 if (tp->static_trace_marker_id)
13441 {
13442 gdb_assert (self->type == bp_static_tracepoint);
13443
13444 ui_out_text (uiout, "\tmarker id is ");
13445 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13446 tp->static_trace_marker_id);
13447 ui_out_text (uiout, "\n");
13448 }
13449 }
13450
13451 static void
13452 tracepoint_print_mention (struct breakpoint *b)
13453 {
13454 if (ui_out_is_mi_like_p (current_uiout))
13455 return;
13456
13457 switch (b->type)
13458 {
13459 case bp_tracepoint:
13460 printf_filtered (_("Tracepoint"));
13461 printf_filtered (_(" %d"), b->number);
13462 break;
13463 case bp_fast_tracepoint:
13464 printf_filtered (_("Fast tracepoint"));
13465 printf_filtered (_(" %d"), b->number);
13466 break;
13467 case bp_static_tracepoint:
13468 printf_filtered (_("Static tracepoint"));
13469 printf_filtered (_(" %d"), b->number);
13470 break;
13471 default:
13472 internal_error (__FILE__, __LINE__,
13473 _("unhandled tracepoint type %d"), (int) b->type);
13474 }
13475
13476 say_where (b);
13477 }
13478
13479 static void
13480 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13481 {
13482 struct tracepoint *tp = (struct tracepoint *) self;
13483
13484 if (self->type == bp_fast_tracepoint)
13485 fprintf_unfiltered (fp, "ftrace");
13486 if (self->type == bp_static_tracepoint)
13487 fprintf_unfiltered (fp, "strace");
13488 else if (self->type == bp_tracepoint)
13489 fprintf_unfiltered (fp, "trace");
13490 else
13491 internal_error (__FILE__, __LINE__,
13492 _("unhandled tracepoint type %d"), (int) self->type);
13493
13494 fprintf_unfiltered (fp, " %s",
13495 event_location_to_string (self->location));
13496 print_recreate_thread (self, fp);
13497
13498 if (tp->pass_count)
13499 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13500 }
13501
13502 static void
13503 tracepoint_create_sals_from_location (const struct event_location *location,
13504 struct linespec_result *canonical,
13505 enum bptype type_wanted)
13506 {
13507 create_sals_from_location_default (location, canonical, type_wanted);
13508 }
13509
13510 static void
13511 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13512 struct linespec_result *canonical,
13513 char *cond_string,
13514 char *extra_string,
13515 enum bptype type_wanted,
13516 enum bpdisp disposition,
13517 int thread,
13518 int task, int ignore_count,
13519 const struct breakpoint_ops *ops,
13520 int from_tty, int enabled,
13521 int internal, unsigned flags)
13522 {
13523 create_breakpoints_sal_default (gdbarch, canonical,
13524 cond_string, extra_string,
13525 type_wanted,
13526 disposition, thread, task,
13527 ignore_count, ops, from_tty,
13528 enabled, internal, flags);
13529 }
13530
13531 static void
13532 tracepoint_decode_location (struct breakpoint *b,
13533 const struct event_location *location,
13534 struct symtabs_and_lines *sals)
13535 {
13536 decode_location_default (b, location, sals);
13537 }
13538
13539 struct breakpoint_ops tracepoint_breakpoint_ops;
13540
13541 /* The breakpoint_ops structure to be use on tracepoints placed in a
13542 static probe. */
13543
13544 static void
13545 tracepoint_probe_create_sals_from_location
13546 (const struct event_location *location,
13547 struct linespec_result *canonical,
13548 enum bptype type_wanted)
13549 {
13550 /* We use the same method for breakpoint on probes. */
13551 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
13552 }
13553
13554 static void
13555 tracepoint_probe_decode_location (struct breakpoint *b,
13556 const struct event_location *location,
13557 struct symtabs_and_lines *sals)
13558 {
13559 /* We use the same method for breakpoint on probes. */
13560 bkpt_probe_decode_location (b, location, sals);
13561 }
13562
13563 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13564
13565 /* Dprintf breakpoint_ops methods. */
13566
13567 static void
13568 dprintf_re_set (struct breakpoint *b)
13569 {
13570 breakpoint_re_set_default (b);
13571
13572 /* extra_string should never be non-NULL for dprintf. */
13573 gdb_assert (b->extra_string != NULL);
13574
13575 /* 1 - connect to target 1, that can run breakpoint commands.
13576 2 - create a dprintf, which resolves fine.
13577 3 - disconnect from target 1
13578 4 - connect to target 2, that can NOT run breakpoint commands.
13579
13580 After steps #3/#4, you'll want the dprintf command list to
13581 be updated, because target 1 and 2 may well return different
13582 answers for target_can_run_breakpoint_commands().
13583 Given absence of finer grained resetting, we get to do
13584 it all the time. */
13585 if (b->extra_string != NULL)
13586 update_dprintf_command_list (b);
13587 }
13588
13589 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13590
13591 static void
13592 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13593 {
13594 fprintf_unfiltered (fp, "dprintf %s,%s",
13595 event_location_to_string (tp->location),
13596 tp->extra_string);
13597 print_recreate_thread (tp, fp);
13598 }
13599
13600 /* Implement the "after_condition_true" breakpoint_ops method for
13601 dprintf.
13602
13603 dprintf's are implemented with regular commands in their command
13604 list, but we run the commands here instead of before presenting the
13605 stop to the user, as dprintf's don't actually cause a stop. This
13606 also makes it so that the commands of multiple dprintfs at the same
13607 address are all handled. */
13608
13609 static void
13610 dprintf_after_condition_true (struct bpstats *bs)
13611 {
13612 struct cleanup *old_chain;
13613 struct bpstats tmp_bs = { NULL };
13614 struct bpstats *tmp_bs_p = &tmp_bs;
13615
13616 /* dprintf's never cause a stop. This wasn't set in the
13617 check_status hook instead because that would make the dprintf's
13618 condition not be evaluated. */
13619 bs->stop = 0;
13620
13621 /* Run the command list here. Take ownership of it instead of
13622 copying. We never want these commands to run later in
13623 bpstat_do_actions, if a breakpoint that causes a stop happens to
13624 be set at same address as this dprintf, or even if running the
13625 commands here throws. */
13626 tmp_bs.commands = bs->commands;
13627 bs->commands = NULL;
13628 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13629
13630 bpstat_do_actions_1 (&tmp_bs_p);
13631
13632 /* 'tmp_bs.commands' will usually be NULL by now, but
13633 bpstat_do_actions_1 may return early without processing the whole
13634 list. */
13635 do_cleanups (old_chain);
13636 }
13637
13638 /* The breakpoint_ops structure to be used on static tracepoints with
13639 markers (`-m'). */
13640
13641 static void
13642 strace_marker_create_sals_from_location (const struct event_location *location,
13643 struct linespec_result *canonical,
13644 enum bptype type_wanted)
13645 {
13646 struct linespec_sals lsal;
13647 const char *arg_start, *arg;
13648 char *str;
13649 struct cleanup *cleanup;
13650
13651 arg = arg_start = get_linespec_location (location);
13652 lsal.sals = decode_static_tracepoint_spec (&arg);
13653
13654 str = savestring (arg_start, arg - arg_start);
13655 cleanup = make_cleanup (xfree, str);
13656 canonical->location = new_linespec_location (&str);
13657 do_cleanups (cleanup);
13658
13659 lsal.canonical = xstrdup (event_location_to_string (canonical->location));
13660 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13661 }
13662
13663 static void
13664 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13665 struct linespec_result *canonical,
13666 char *cond_string,
13667 char *extra_string,
13668 enum bptype type_wanted,
13669 enum bpdisp disposition,
13670 int thread,
13671 int task, int ignore_count,
13672 const struct breakpoint_ops *ops,
13673 int from_tty, int enabled,
13674 int internal, unsigned flags)
13675 {
13676 int i;
13677 struct linespec_sals *lsal = VEC_index (linespec_sals,
13678 canonical->sals, 0);
13679
13680 /* If the user is creating a static tracepoint by marker id
13681 (strace -m MARKER_ID), then store the sals index, so that
13682 breakpoint_re_set can try to match up which of the newly
13683 found markers corresponds to this one, and, don't try to
13684 expand multiple locations for each sal, given than SALS
13685 already should contain all sals for MARKER_ID. */
13686
13687 for (i = 0; i < lsal->sals.nelts; ++i)
13688 {
13689 struct symtabs_and_lines expanded;
13690 struct tracepoint *tp;
13691 struct cleanup *old_chain;
13692 struct event_location *location;
13693
13694 expanded.nelts = 1;
13695 expanded.sals = &lsal->sals.sals[i];
13696
13697 location = copy_event_location (canonical->location);
13698 old_chain = make_cleanup_delete_event_location (location);
13699
13700 tp = XCNEW (struct tracepoint);
13701 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13702 location, NULL,
13703 cond_string, extra_string,
13704 type_wanted, disposition,
13705 thread, task, ignore_count, ops,
13706 from_tty, enabled, internal, flags,
13707 canonical->special_display);
13708 /* Given that its possible to have multiple markers with
13709 the same string id, if the user is creating a static
13710 tracepoint by marker id ("strace -m MARKER_ID"), then
13711 store the sals index, so that breakpoint_re_set can
13712 try to match up which of the newly found markers
13713 corresponds to this one */
13714 tp->static_trace_marker_id_idx = i;
13715
13716 install_breakpoint (internal, &tp->base, 0);
13717
13718 discard_cleanups (old_chain);
13719 }
13720 }
13721
13722 static void
13723 strace_marker_decode_location (struct breakpoint *b,
13724 const struct event_location *location,
13725 struct symtabs_and_lines *sals)
13726 {
13727 struct tracepoint *tp = (struct tracepoint *) b;
13728 const char *s = get_linespec_location (location);
13729
13730 *sals = decode_static_tracepoint_spec (&s);
13731 if (sals->nelts > tp->static_trace_marker_id_idx)
13732 {
13733 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13734 sals->nelts = 1;
13735 }
13736 else
13737 error (_("marker %s not found"), tp->static_trace_marker_id);
13738 }
13739
13740 static struct breakpoint_ops strace_marker_breakpoint_ops;
13741
13742 static int
13743 strace_marker_p (struct breakpoint *b)
13744 {
13745 return b->ops == &strace_marker_breakpoint_ops;
13746 }
13747
13748 /* Delete a breakpoint and clean up all traces of it in the data
13749 structures. */
13750
13751 void
13752 delete_breakpoint (struct breakpoint *bpt)
13753 {
13754 struct breakpoint *b;
13755
13756 gdb_assert (bpt != NULL);
13757
13758 /* Has this bp already been deleted? This can happen because
13759 multiple lists can hold pointers to bp's. bpstat lists are
13760 especial culprits.
13761
13762 One example of this happening is a watchpoint's scope bp. When
13763 the scope bp triggers, we notice that the watchpoint is out of
13764 scope, and delete it. We also delete its scope bp. But the
13765 scope bp is marked "auto-deleting", and is already on a bpstat.
13766 That bpstat is then checked for auto-deleting bp's, which are
13767 deleted.
13768
13769 A real solution to this problem might involve reference counts in
13770 bp's, and/or giving them pointers back to their referencing
13771 bpstat's, and teaching delete_breakpoint to only free a bp's
13772 storage when no more references were extent. A cheaper bandaid
13773 was chosen. */
13774 if (bpt->type == bp_none)
13775 return;
13776
13777 /* At least avoid this stale reference until the reference counting
13778 of breakpoints gets resolved. */
13779 if (bpt->related_breakpoint != bpt)
13780 {
13781 struct breakpoint *related;
13782 struct watchpoint *w;
13783
13784 if (bpt->type == bp_watchpoint_scope)
13785 w = (struct watchpoint *) bpt->related_breakpoint;
13786 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13787 w = (struct watchpoint *) bpt;
13788 else
13789 w = NULL;
13790 if (w != NULL)
13791 watchpoint_del_at_next_stop (w);
13792
13793 /* Unlink bpt from the bpt->related_breakpoint ring. */
13794 for (related = bpt; related->related_breakpoint != bpt;
13795 related = related->related_breakpoint);
13796 related->related_breakpoint = bpt->related_breakpoint;
13797 bpt->related_breakpoint = bpt;
13798 }
13799
13800 /* watch_command_1 creates a watchpoint but only sets its number if
13801 update_watchpoint succeeds in creating its bp_locations. If there's
13802 a problem in that process, we'll be asked to delete the half-created
13803 watchpoint. In that case, don't announce the deletion. */
13804 if (bpt->number)
13805 observer_notify_breakpoint_deleted (bpt);
13806
13807 if (breakpoint_chain == bpt)
13808 breakpoint_chain = bpt->next;
13809
13810 ALL_BREAKPOINTS (b)
13811 if (b->next == bpt)
13812 {
13813 b->next = bpt->next;
13814 break;
13815 }
13816
13817 /* Be sure no bpstat's are pointing at the breakpoint after it's
13818 been freed. */
13819 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13820 in all threads for now. Note that we cannot just remove bpstats
13821 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13822 commands are associated with the bpstat; if we remove it here,
13823 then the later call to bpstat_do_actions (&stop_bpstat); in
13824 event-top.c won't do anything, and temporary breakpoints with
13825 commands won't work. */
13826
13827 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13828
13829 /* Now that breakpoint is removed from breakpoint list, update the
13830 global location list. This will remove locations that used to
13831 belong to this breakpoint. Do this before freeing the breakpoint
13832 itself, since remove_breakpoint looks at location's owner. It
13833 might be better design to have location completely
13834 self-contained, but it's not the case now. */
13835 update_global_location_list (UGLL_DONT_INSERT);
13836
13837 bpt->ops->dtor (bpt);
13838 /* On the chance that someone will soon try again to delete this
13839 same bp, we mark it as deleted before freeing its storage. */
13840 bpt->type = bp_none;
13841 xfree (bpt);
13842 }
13843
13844 static void
13845 do_delete_breakpoint_cleanup (void *b)
13846 {
13847 delete_breakpoint ((struct breakpoint *) b);
13848 }
13849
13850 struct cleanup *
13851 make_cleanup_delete_breakpoint (struct breakpoint *b)
13852 {
13853 return make_cleanup (do_delete_breakpoint_cleanup, b);
13854 }
13855
13856 /* Iterator function to call a user-provided callback function once
13857 for each of B and its related breakpoints. */
13858
13859 static void
13860 iterate_over_related_breakpoints (struct breakpoint *b,
13861 void (*function) (struct breakpoint *,
13862 void *),
13863 void *data)
13864 {
13865 struct breakpoint *related;
13866
13867 related = b;
13868 do
13869 {
13870 struct breakpoint *next;
13871
13872 /* FUNCTION may delete RELATED. */
13873 next = related->related_breakpoint;
13874
13875 if (next == related)
13876 {
13877 /* RELATED is the last ring entry. */
13878 function (related, data);
13879
13880 /* FUNCTION may have deleted it, so we'd never reach back to
13881 B. There's nothing left to do anyway, so just break
13882 out. */
13883 break;
13884 }
13885 else
13886 function (related, data);
13887
13888 related = next;
13889 }
13890 while (related != b);
13891 }
13892
13893 static void
13894 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13895 {
13896 delete_breakpoint (b);
13897 }
13898
13899 /* A callback for map_breakpoint_numbers that calls
13900 delete_breakpoint. */
13901
13902 static void
13903 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13904 {
13905 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13906 }
13907
13908 void
13909 delete_command (char *arg, int from_tty)
13910 {
13911 struct breakpoint *b, *b_tmp;
13912
13913 dont_repeat ();
13914
13915 if (arg == 0)
13916 {
13917 int breaks_to_delete = 0;
13918
13919 /* Delete all breakpoints if no argument. Do not delete
13920 internal breakpoints, these have to be deleted with an
13921 explicit breakpoint number argument. */
13922 ALL_BREAKPOINTS (b)
13923 if (user_breakpoint_p (b))
13924 {
13925 breaks_to_delete = 1;
13926 break;
13927 }
13928
13929 /* Ask user only if there are some breakpoints to delete. */
13930 if (!from_tty
13931 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13932 {
13933 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13934 if (user_breakpoint_p (b))
13935 delete_breakpoint (b);
13936 }
13937 }
13938 else
13939 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13940 }
13941
13942 static int
13943 all_locations_are_pending (struct bp_location *loc)
13944 {
13945 for (; loc; loc = loc->next)
13946 if (!loc->shlib_disabled
13947 && !loc->pspace->executing_startup)
13948 return 0;
13949 return 1;
13950 }
13951
13952 /* Subroutine of update_breakpoint_locations to simplify it.
13953 Return non-zero if multiple fns in list LOC have the same name.
13954 Null names are ignored. */
13955
13956 static int
13957 ambiguous_names_p (struct bp_location *loc)
13958 {
13959 struct bp_location *l;
13960 htab_t htab = htab_create_alloc (13, htab_hash_string,
13961 (int (*) (const void *,
13962 const void *)) streq,
13963 NULL, xcalloc, xfree);
13964
13965 for (l = loc; l != NULL; l = l->next)
13966 {
13967 const char **slot;
13968 const char *name = l->function_name;
13969
13970 /* Allow for some names to be NULL, ignore them. */
13971 if (name == NULL)
13972 continue;
13973
13974 slot = (const char **) htab_find_slot (htab, (const void *) name,
13975 INSERT);
13976 /* NOTE: We can assume slot != NULL here because xcalloc never
13977 returns NULL. */
13978 if (*slot != NULL)
13979 {
13980 htab_delete (htab);
13981 return 1;
13982 }
13983 *slot = name;
13984 }
13985
13986 htab_delete (htab);
13987 return 0;
13988 }
13989
13990 /* When symbols change, it probably means the sources changed as well,
13991 and it might mean the static tracepoint markers are no longer at
13992 the same address or line numbers they used to be at last we
13993 checked. Losing your static tracepoints whenever you rebuild is
13994 undesirable. This function tries to resync/rematch gdb static
13995 tracepoints with the markers on the target, for static tracepoints
13996 that have not been set by marker id. Static tracepoint that have
13997 been set by marker id are reset by marker id in breakpoint_re_set.
13998 The heuristic is:
13999
14000 1) For a tracepoint set at a specific address, look for a marker at
14001 the old PC. If one is found there, assume to be the same marker.
14002 If the name / string id of the marker found is different from the
14003 previous known name, assume that means the user renamed the marker
14004 in the sources, and output a warning.
14005
14006 2) For a tracepoint set at a given line number, look for a marker
14007 at the new address of the old line number. If one is found there,
14008 assume to be the same marker. If the name / string id of the
14009 marker found is different from the previous known name, assume that
14010 means the user renamed the marker in the sources, and output a
14011 warning.
14012
14013 3) If a marker is no longer found at the same address or line, it
14014 may mean the marker no longer exists. But it may also just mean
14015 the code changed a bit. Maybe the user added a few lines of code
14016 that made the marker move up or down (in line number terms). Ask
14017 the target for info about the marker with the string id as we knew
14018 it. If found, update line number and address in the matching
14019 static tracepoint. This will get confused if there's more than one
14020 marker with the same ID (possible in UST, although unadvised
14021 precisely because it confuses tools). */
14022
14023 static struct symtab_and_line
14024 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
14025 {
14026 struct tracepoint *tp = (struct tracepoint *) b;
14027 struct static_tracepoint_marker marker;
14028 CORE_ADDR pc;
14029
14030 pc = sal.pc;
14031 if (sal.line)
14032 find_line_pc (sal.symtab, sal.line, &pc);
14033
14034 if (target_static_tracepoint_marker_at (pc, &marker))
14035 {
14036 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
14037 warning (_("static tracepoint %d changed probed marker from %s to %s"),
14038 b->number,
14039 tp->static_trace_marker_id, marker.str_id);
14040
14041 xfree (tp->static_trace_marker_id);
14042 tp->static_trace_marker_id = xstrdup (marker.str_id);
14043 release_static_tracepoint_marker (&marker);
14044
14045 return sal;
14046 }
14047
14048 /* Old marker wasn't found on target at lineno. Try looking it up
14049 by string ID. */
14050 if (!sal.explicit_pc
14051 && sal.line != 0
14052 && sal.symtab != NULL
14053 && tp->static_trace_marker_id != NULL)
14054 {
14055 VEC(static_tracepoint_marker_p) *markers;
14056
14057 markers
14058 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
14059
14060 if (!VEC_empty(static_tracepoint_marker_p, markers))
14061 {
14062 struct symtab_and_line sal2;
14063 struct symbol *sym;
14064 struct static_tracepoint_marker *tpmarker;
14065 struct ui_out *uiout = current_uiout;
14066 struct explicit_location explicit_loc;
14067
14068 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
14069
14070 xfree (tp->static_trace_marker_id);
14071 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
14072
14073 warning (_("marker for static tracepoint %d (%s) not "
14074 "found at previous line number"),
14075 b->number, tp->static_trace_marker_id);
14076
14077 init_sal (&sal2);
14078
14079 sal2.pc = tpmarker->address;
14080
14081 sal2 = find_pc_line (tpmarker->address, 0);
14082 sym = find_pc_sect_function (tpmarker->address, NULL);
14083 ui_out_text (uiout, "Now in ");
14084 if (sym)
14085 {
14086 ui_out_field_string (uiout, "func",
14087 SYMBOL_PRINT_NAME (sym));
14088 ui_out_text (uiout, " at ");
14089 }
14090 ui_out_field_string (uiout, "file",
14091 symtab_to_filename_for_display (sal2.symtab));
14092 ui_out_text (uiout, ":");
14093
14094 if (ui_out_is_mi_like_p (uiout))
14095 {
14096 const char *fullname = symtab_to_fullname (sal2.symtab);
14097
14098 ui_out_field_string (uiout, "fullname", fullname);
14099 }
14100
14101 ui_out_field_int (uiout, "line", sal2.line);
14102 ui_out_text (uiout, "\n");
14103
14104 b->loc->line_number = sal2.line;
14105 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
14106
14107 delete_event_location (b->location);
14108 initialize_explicit_location (&explicit_loc);
14109 explicit_loc.source_filename
14110 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
14111 explicit_loc.line_offset.offset = b->loc->line_number;
14112 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
14113 b->location = new_explicit_location (&explicit_loc);
14114
14115 /* Might be nice to check if function changed, and warn if
14116 so. */
14117
14118 release_static_tracepoint_marker (tpmarker);
14119 }
14120 }
14121 return sal;
14122 }
14123
14124 /* Returns 1 iff locations A and B are sufficiently same that
14125 we don't need to report breakpoint as changed. */
14126
14127 static int
14128 locations_are_equal (struct bp_location *a, struct bp_location *b)
14129 {
14130 while (a && b)
14131 {
14132 if (a->address != b->address)
14133 return 0;
14134
14135 if (a->shlib_disabled != b->shlib_disabled)
14136 return 0;
14137
14138 if (a->enabled != b->enabled)
14139 return 0;
14140
14141 a = a->next;
14142 b = b->next;
14143 }
14144
14145 if ((a == NULL) != (b == NULL))
14146 return 0;
14147
14148 return 1;
14149 }
14150
14151 /* Create new breakpoint locations for B (a hardware or software breakpoint)
14152 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
14153 a ranged breakpoint. */
14154
14155 void
14156 update_breakpoint_locations (struct breakpoint *b,
14157 struct symtabs_and_lines sals,
14158 struct symtabs_and_lines sals_end)
14159 {
14160 int i;
14161 struct bp_location *existing_locations = b->loc;
14162
14163 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14164 {
14165 /* Ranged breakpoints have only one start location and one end
14166 location. */
14167 b->enable_state = bp_disabled;
14168 update_global_location_list (UGLL_MAY_INSERT);
14169 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14170 "multiple locations found\n"),
14171 b->number);
14172 return;
14173 }
14174
14175 /* If there's no new locations, and all existing locations are
14176 pending, don't do anything. This optimizes the common case where
14177 all locations are in the same shared library, that was unloaded.
14178 We'd like to retain the location, so that when the library is
14179 loaded again, we don't loose the enabled/disabled status of the
14180 individual locations. */
14181 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
14182 return;
14183
14184 b->loc = NULL;
14185
14186 for (i = 0; i < sals.nelts; ++i)
14187 {
14188 struct bp_location *new_loc;
14189
14190 switch_to_program_space_and_thread (sals.sals[i].pspace);
14191
14192 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14193
14194 /* Reparse conditions, they might contain references to the
14195 old symtab. */
14196 if (b->cond_string != NULL)
14197 {
14198 const char *s;
14199
14200 s = b->cond_string;
14201 TRY
14202 {
14203 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14204 block_for_pc (sals.sals[i].pc),
14205 0);
14206 }
14207 CATCH (e, RETURN_MASK_ERROR)
14208 {
14209 warning (_("failed to reevaluate condition "
14210 "for breakpoint %d: %s"),
14211 b->number, e.message);
14212 new_loc->enabled = 0;
14213 }
14214 END_CATCH
14215 }
14216
14217 if (sals_end.nelts)
14218 {
14219 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14220
14221 new_loc->length = end - sals.sals[0].pc + 1;
14222 }
14223 }
14224
14225 /* If possible, carry over 'disable' status from existing
14226 breakpoints. */
14227 {
14228 struct bp_location *e = existing_locations;
14229 /* If there are multiple breakpoints with the same function name,
14230 e.g. for inline functions, comparing function names won't work.
14231 Instead compare pc addresses; this is just a heuristic as things
14232 may have moved, but in practice it gives the correct answer
14233 often enough until a better solution is found. */
14234 int have_ambiguous_names = ambiguous_names_p (b->loc);
14235
14236 for (; e; e = e->next)
14237 {
14238 if (!e->enabled && e->function_name)
14239 {
14240 struct bp_location *l = b->loc;
14241 if (have_ambiguous_names)
14242 {
14243 for (; l; l = l->next)
14244 if (breakpoint_locations_match (e, l))
14245 {
14246 l->enabled = 0;
14247 break;
14248 }
14249 }
14250 else
14251 {
14252 for (; l; l = l->next)
14253 if (l->function_name
14254 && strcmp (e->function_name, l->function_name) == 0)
14255 {
14256 l->enabled = 0;
14257 break;
14258 }
14259 }
14260 }
14261 }
14262 }
14263
14264 if (!locations_are_equal (existing_locations, b->loc))
14265 observer_notify_breakpoint_modified (b);
14266
14267 update_global_location_list (UGLL_MAY_INSERT);
14268 }
14269
14270 /* Find the SaL locations corresponding to the given LOCATION.
14271 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14272
14273 static struct symtabs_and_lines
14274 location_to_sals (struct breakpoint *b, struct event_location *location,
14275 int *found)
14276 {
14277 struct symtabs_and_lines sals = {0};
14278 struct gdb_exception exception = exception_none;
14279
14280 gdb_assert (b->ops != NULL);
14281
14282 TRY
14283 {
14284 b->ops->decode_location (b, location, &sals);
14285 }
14286 CATCH (e, RETURN_MASK_ERROR)
14287 {
14288 int not_found_and_ok = 0;
14289
14290 exception = e;
14291
14292 /* For pending breakpoints, it's expected that parsing will
14293 fail until the right shared library is loaded. User has
14294 already told to create pending breakpoints and don't need
14295 extra messages. If breakpoint is in bp_shlib_disabled
14296 state, then user already saw the message about that
14297 breakpoint being disabled, and don't want to see more
14298 errors. */
14299 if (e.error == NOT_FOUND_ERROR
14300 && (b->condition_not_parsed
14301 || (b->loc && b->loc->shlib_disabled)
14302 || (b->loc && b->loc->pspace->executing_startup)
14303 || b->enable_state == bp_disabled))
14304 not_found_and_ok = 1;
14305
14306 if (!not_found_and_ok)
14307 {
14308 /* We surely don't want to warn about the same breakpoint
14309 10 times. One solution, implemented here, is disable
14310 the breakpoint on error. Another solution would be to
14311 have separate 'warning emitted' flag. Since this
14312 happens only when a binary has changed, I don't know
14313 which approach is better. */
14314 b->enable_state = bp_disabled;
14315 throw_exception (e);
14316 }
14317 }
14318 END_CATCH
14319
14320 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
14321 {
14322 int i;
14323
14324 for (i = 0; i < sals.nelts; ++i)
14325 resolve_sal_pc (&sals.sals[i]);
14326 if (b->condition_not_parsed && b->extra_string != NULL)
14327 {
14328 char *cond_string, *extra_string;
14329 int thread, task;
14330
14331 find_condition_and_thread (b->extra_string, sals.sals[0].pc,
14332 &cond_string, &thread, &task,
14333 &extra_string);
14334 gdb_assert (b->cond_string == NULL);
14335 if (cond_string)
14336 b->cond_string = cond_string;
14337 b->thread = thread;
14338 b->task = task;
14339 if (extra_string)
14340 {
14341 xfree (b->extra_string);
14342 b->extra_string = extra_string;
14343 }
14344 b->condition_not_parsed = 0;
14345 }
14346
14347 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14348 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14349
14350 *found = 1;
14351 }
14352 else
14353 *found = 0;
14354
14355 return sals;
14356 }
14357
14358 /* The default re_set method, for typical hardware or software
14359 breakpoints. Reevaluate the breakpoint and recreate its
14360 locations. */
14361
14362 static void
14363 breakpoint_re_set_default (struct breakpoint *b)
14364 {
14365 int found;
14366 struct symtabs_and_lines sals, sals_end;
14367 struct symtabs_and_lines expanded = {0};
14368 struct symtabs_and_lines expanded_end = {0};
14369
14370 sals = location_to_sals (b, b->location, &found);
14371 if (found)
14372 {
14373 make_cleanup (xfree, sals.sals);
14374 expanded = sals;
14375 }
14376
14377 if (b->location_range_end != NULL)
14378 {
14379 sals_end = location_to_sals (b, b->location_range_end, &found);
14380 if (found)
14381 {
14382 make_cleanup (xfree, sals_end.sals);
14383 expanded_end = sals_end;
14384 }
14385 }
14386
14387 update_breakpoint_locations (b, expanded, expanded_end);
14388 }
14389
14390 /* Default method for creating SALs from an address string. It basically
14391 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14392
14393 static void
14394 create_sals_from_location_default (const struct event_location *location,
14395 struct linespec_result *canonical,
14396 enum bptype type_wanted)
14397 {
14398 parse_breakpoint_sals (location, canonical);
14399 }
14400
14401 /* Call create_breakpoints_sal for the given arguments. This is the default
14402 function for the `create_breakpoints_sal' method of
14403 breakpoint_ops. */
14404
14405 static void
14406 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14407 struct linespec_result *canonical,
14408 char *cond_string,
14409 char *extra_string,
14410 enum bptype type_wanted,
14411 enum bpdisp disposition,
14412 int thread,
14413 int task, int ignore_count,
14414 const struct breakpoint_ops *ops,
14415 int from_tty, int enabled,
14416 int internal, unsigned flags)
14417 {
14418 create_breakpoints_sal (gdbarch, canonical, cond_string,
14419 extra_string,
14420 type_wanted, disposition,
14421 thread, task, ignore_count, ops, from_tty,
14422 enabled, internal, flags);
14423 }
14424
14425 /* Decode the line represented by S by calling decode_line_full. This is the
14426 default function for the `decode_location' method of breakpoint_ops. */
14427
14428 static void
14429 decode_location_default (struct breakpoint *b,
14430 const struct event_location *location,
14431 struct symtabs_and_lines *sals)
14432 {
14433 struct linespec_result canonical;
14434
14435 init_linespec_result (&canonical);
14436 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE,
14437 (struct symtab *) NULL, 0,
14438 &canonical, multiple_symbols_all,
14439 b->filter);
14440
14441 /* We should get 0 or 1 resulting SALs. */
14442 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14443
14444 if (VEC_length (linespec_sals, canonical.sals) > 0)
14445 {
14446 struct linespec_sals *lsal;
14447
14448 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14449 *sals = lsal->sals;
14450 /* Arrange it so the destructor does not free the
14451 contents. */
14452 lsal->sals.sals = NULL;
14453 }
14454
14455 destroy_linespec_result (&canonical);
14456 }
14457
14458 /* Prepare the global context for a re-set of breakpoint B. */
14459
14460 static struct cleanup *
14461 prepare_re_set_context (struct breakpoint *b)
14462 {
14463 struct cleanup *cleanups;
14464
14465 input_radix = b->input_radix;
14466 cleanups = save_current_space_and_thread ();
14467 if (b->pspace != NULL)
14468 switch_to_program_space_and_thread (b->pspace);
14469 set_language (b->language);
14470
14471 return cleanups;
14472 }
14473
14474 /* Reset a breakpoint given it's struct breakpoint * BINT.
14475 The value we return ends up being the return value from catch_errors.
14476 Unused in this case. */
14477
14478 static int
14479 breakpoint_re_set_one (void *bint)
14480 {
14481 /* Get past catch_errs. */
14482 struct breakpoint *b = (struct breakpoint *) bint;
14483 struct cleanup *cleanups;
14484
14485 cleanups = prepare_re_set_context (b);
14486 b->ops->re_set (b);
14487 do_cleanups (cleanups);
14488 return 0;
14489 }
14490
14491 /* Re-set all breakpoints after symbols have been re-loaded. */
14492 void
14493 breakpoint_re_set (void)
14494 {
14495 struct breakpoint *b, *b_tmp;
14496 enum language save_language;
14497 int save_input_radix;
14498 struct cleanup *old_chain;
14499
14500 save_language = current_language->la_language;
14501 save_input_radix = input_radix;
14502 old_chain = save_current_program_space ();
14503
14504 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14505 {
14506 /* Format possible error msg. */
14507 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14508 b->number);
14509 struct cleanup *cleanups = make_cleanup (xfree, message);
14510 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14511 do_cleanups (cleanups);
14512 }
14513 set_language (save_language);
14514 input_radix = save_input_radix;
14515
14516 jit_breakpoint_re_set ();
14517
14518 do_cleanups (old_chain);
14519
14520 create_overlay_event_breakpoint ();
14521 create_longjmp_master_breakpoint ();
14522 create_std_terminate_master_breakpoint ();
14523 create_exception_master_breakpoint ();
14524 }
14525 \f
14526 /* Reset the thread number of this breakpoint:
14527
14528 - If the breakpoint is for all threads, leave it as-is.
14529 - Else, reset it to the current thread for inferior_ptid. */
14530 void
14531 breakpoint_re_set_thread (struct breakpoint *b)
14532 {
14533 if (b->thread != -1)
14534 {
14535 if (in_thread_list (inferior_ptid))
14536 b->thread = pid_to_thread_id (inferior_ptid);
14537
14538 /* We're being called after following a fork. The new fork is
14539 selected as current, and unless this was a vfork will have a
14540 different program space from the original thread. Reset that
14541 as well. */
14542 b->loc->pspace = current_program_space;
14543 }
14544 }
14545
14546 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14547 If from_tty is nonzero, it prints a message to that effect,
14548 which ends with a period (no newline). */
14549
14550 void
14551 set_ignore_count (int bptnum, int count, int from_tty)
14552 {
14553 struct breakpoint *b;
14554
14555 if (count < 0)
14556 count = 0;
14557
14558 ALL_BREAKPOINTS (b)
14559 if (b->number == bptnum)
14560 {
14561 if (is_tracepoint (b))
14562 {
14563 if (from_tty && count != 0)
14564 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14565 bptnum);
14566 return;
14567 }
14568
14569 b->ignore_count = count;
14570 if (from_tty)
14571 {
14572 if (count == 0)
14573 printf_filtered (_("Will stop next time "
14574 "breakpoint %d is reached."),
14575 bptnum);
14576 else if (count == 1)
14577 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14578 bptnum);
14579 else
14580 printf_filtered (_("Will ignore next %d "
14581 "crossings of breakpoint %d."),
14582 count, bptnum);
14583 }
14584 observer_notify_breakpoint_modified (b);
14585 return;
14586 }
14587
14588 error (_("No breakpoint number %d."), bptnum);
14589 }
14590
14591 /* Command to set ignore-count of breakpoint N to COUNT. */
14592
14593 static void
14594 ignore_command (char *args, int from_tty)
14595 {
14596 char *p = args;
14597 int num;
14598
14599 if (p == 0)
14600 error_no_arg (_("a breakpoint number"));
14601
14602 num = get_number (&p);
14603 if (num == 0)
14604 error (_("bad breakpoint number: '%s'"), args);
14605 if (*p == 0)
14606 error (_("Second argument (specified ignore-count) is missing."));
14607
14608 set_ignore_count (num,
14609 longest_to_int (value_as_long (parse_and_eval (p))),
14610 from_tty);
14611 if (from_tty)
14612 printf_filtered ("\n");
14613 }
14614 \f
14615 /* Call FUNCTION on each of the breakpoints
14616 whose numbers are given in ARGS. */
14617
14618 static void
14619 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14620 void *),
14621 void *data)
14622 {
14623 int num;
14624 struct breakpoint *b, *tmp;
14625 int match;
14626 struct get_number_or_range_state state;
14627
14628 if (args == 0 || *args == '\0')
14629 error_no_arg (_("one or more breakpoint numbers"));
14630
14631 init_number_or_range (&state, args);
14632
14633 while (!state.finished)
14634 {
14635 const char *p = state.string;
14636
14637 match = 0;
14638
14639 num = get_number_or_range (&state);
14640 if (num == 0)
14641 {
14642 warning (_("bad breakpoint number at or near '%s'"), p);
14643 }
14644 else
14645 {
14646 ALL_BREAKPOINTS_SAFE (b, tmp)
14647 if (b->number == num)
14648 {
14649 match = 1;
14650 function (b, data);
14651 break;
14652 }
14653 if (match == 0)
14654 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14655 }
14656 }
14657 }
14658
14659 static struct bp_location *
14660 find_location_by_number (char *number)
14661 {
14662 char *dot = strchr (number, '.');
14663 char *p1;
14664 int bp_num;
14665 int loc_num;
14666 struct breakpoint *b;
14667 struct bp_location *loc;
14668
14669 *dot = '\0';
14670
14671 p1 = number;
14672 bp_num = get_number (&p1);
14673 if (bp_num == 0)
14674 error (_("Bad breakpoint number '%s'"), number);
14675
14676 ALL_BREAKPOINTS (b)
14677 if (b->number == bp_num)
14678 {
14679 break;
14680 }
14681
14682 if (!b || b->number != bp_num)
14683 error (_("Bad breakpoint number '%s'"), number);
14684
14685 p1 = dot+1;
14686 loc_num = get_number (&p1);
14687 if (loc_num == 0)
14688 error (_("Bad breakpoint location number '%s'"), number);
14689
14690 --loc_num;
14691 loc = b->loc;
14692 for (;loc_num && loc; --loc_num, loc = loc->next)
14693 ;
14694 if (!loc)
14695 error (_("Bad breakpoint location number '%s'"), dot+1);
14696
14697 return loc;
14698 }
14699
14700
14701 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14702 If from_tty is nonzero, it prints a message to that effect,
14703 which ends with a period (no newline). */
14704
14705 void
14706 disable_breakpoint (struct breakpoint *bpt)
14707 {
14708 /* Never disable a watchpoint scope breakpoint; we want to
14709 hit them when we leave scope so we can delete both the
14710 watchpoint and its scope breakpoint at that time. */
14711 if (bpt->type == bp_watchpoint_scope)
14712 return;
14713
14714 bpt->enable_state = bp_disabled;
14715
14716 /* Mark breakpoint locations modified. */
14717 mark_breakpoint_modified (bpt);
14718
14719 if (target_supports_enable_disable_tracepoint ()
14720 && current_trace_status ()->running && is_tracepoint (bpt))
14721 {
14722 struct bp_location *location;
14723
14724 for (location = bpt->loc; location; location = location->next)
14725 target_disable_tracepoint (location);
14726 }
14727
14728 update_global_location_list (UGLL_DONT_INSERT);
14729
14730 observer_notify_breakpoint_modified (bpt);
14731 }
14732
14733 /* A callback for iterate_over_related_breakpoints. */
14734
14735 static void
14736 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14737 {
14738 disable_breakpoint (b);
14739 }
14740
14741 /* A callback for map_breakpoint_numbers that calls
14742 disable_breakpoint. */
14743
14744 static void
14745 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14746 {
14747 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14748 }
14749
14750 static void
14751 disable_command (char *args, int from_tty)
14752 {
14753 if (args == 0)
14754 {
14755 struct breakpoint *bpt;
14756
14757 ALL_BREAKPOINTS (bpt)
14758 if (user_breakpoint_p (bpt))
14759 disable_breakpoint (bpt);
14760 }
14761 else
14762 {
14763 char *num = extract_arg (&args);
14764
14765 while (num)
14766 {
14767 if (strchr (num, '.'))
14768 {
14769 struct bp_location *loc = find_location_by_number (num);
14770
14771 if (loc)
14772 {
14773 if (loc->enabled)
14774 {
14775 loc->enabled = 0;
14776 mark_breakpoint_location_modified (loc);
14777 }
14778 if (target_supports_enable_disable_tracepoint ()
14779 && current_trace_status ()->running && loc->owner
14780 && is_tracepoint (loc->owner))
14781 target_disable_tracepoint (loc);
14782 }
14783 update_global_location_list (UGLL_DONT_INSERT);
14784 }
14785 else
14786 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14787 num = extract_arg (&args);
14788 }
14789 }
14790 }
14791
14792 static void
14793 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14794 int count)
14795 {
14796 int target_resources_ok;
14797
14798 if (bpt->type == bp_hardware_breakpoint)
14799 {
14800 int i;
14801 i = hw_breakpoint_used_count ();
14802 target_resources_ok =
14803 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14804 i + 1, 0);
14805 if (target_resources_ok == 0)
14806 error (_("No hardware breakpoint support in the target."));
14807 else if (target_resources_ok < 0)
14808 error (_("Hardware breakpoints used exceeds limit."));
14809 }
14810
14811 if (is_watchpoint (bpt))
14812 {
14813 /* Initialize it just to avoid a GCC false warning. */
14814 enum enable_state orig_enable_state = bp_disabled;
14815
14816 TRY
14817 {
14818 struct watchpoint *w = (struct watchpoint *) bpt;
14819
14820 orig_enable_state = bpt->enable_state;
14821 bpt->enable_state = bp_enabled;
14822 update_watchpoint (w, 1 /* reparse */);
14823 }
14824 CATCH (e, RETURN_MASK_ALL)
14825 {
14826 bpt->enable_state = orig_enable_state;
14827 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14828 bpt->number);
14829 return;
14830 }
14831 END_CATCH
14832 }
14833
14834 bpt->enable_state = bp_enabled;
14835
14836 /* Mark breakpoint locations modified. */
14837 mark_breakpoint_modified (bpt);
14838
14839 if (target_supports_enable_disable_tracepoint ()
14840 && current_trace_status ()->running && is_tracepoint (bpt))
14841 {
14842 struct bp_location *location;
14843
14844 for (location = bpt->loc; location; location = location->next)
14845 target_enable_tracepoint (location);
14846 }
14847
14848 bpt->disposition = disposition;
14849 bpt->enable_count = count;
14850 update_global_location_list (UGLL_MAY_INSERT);
14851
14852 observer_notify_breakpoint_modified (bpt);
14853 }
14854
14855
14856 void
14857 enable_breakpoint (struct breakpoint *bpt)
14858 {
14859 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14860 }
14861
14862 static void
14863 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14864 {
14865 enable_breakpoint (bpt);
14866 }
14867
14868 /* A callback for map_breakpoint_numbers that calls
14869 enable_breakpoint. */
14870
14871 static void
14872 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14873 {
14874 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14875 }
14876
14877 /* The enable command enables the specified breakpoints (or all defined
14878 breakpoints) so they once again become (or continue to be) effective
14879 in stopping the inferior. */
14880
14881 static void
14882 enable_command (char *args, int from_tty)
14883 {
14884 if (args == 0)
14885 {
14886 struct breakpoint *bpt;
14887
14888 ALL_BREAKPOINTS (bpt)
14889 if (user_breakpoint_p (bpt))
14890 enable_breakpoint (bpt);
14891 }
14892 else
14893 {
14894 char *num = extract_arg (&args);
14895
14896 while (num)
14897 {
14898 if (strchr (num, '.'))
14899 {
14900 struct bp_location *loc = find_location_by_number (num);
14901
14902 if (loc)
14903 {
14904 if (!loc->enabled)
14905 {
14906 loc->enabled = 1;
14907 mark_breakpoint_location_modified (loc);
14908 }
14909 if (target_supports_enable_disable_tracepoint ()
14910 && current_trace_status ()->running && loc->owner
14911 && is_tracepoint (loc->owner))
14912 target_enable_tracepoint (loc);
14913 }
14914 update_global_location_list (UGLL_MAY_INSERT);
14915 }
14916 else
14917 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
14918 num = extract_arg (&args);
14919 }
14920 }
14921 }
14922
14923 /* This struct packages up disposition data for application to multiple
14924 breakpoints. */
14925
14926 struct disp_data
14927 {
14928 enum bpdisp disp;
14929 int count;
14930 };
14931
14932 static void
14933 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14934 {
14935 struct disp_data disp_data = *(struct disp_data *) arg;
14936
14937 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14938 }
14939
14940 static void
14941 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14942 {
14943 struct disp_data disp = { disp_disable, 1 };
14944
14945 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14946 }
14947
14948 static void
14949 enable_once_command (char *args, int from_tty)
14950 {
14951 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14952 }
14953
14954 static void
14955 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14956 {
14957 struct disp_data disp = { disp_disable, *(int *) countptr };
14958
14959 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14960 }
14961
14962 static void
14963 enable_count_command (char *args, int from_tty)
14964 {
14965 int count;
14966
14967 if (args == NULL)
14968 error_no_arg (_("hit count"));
14969
14970 count = get_number (&args);
14971
14972 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14973 }
14974
14975 static void
14976 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14977 {
14978 struct disp_data disp = { disp_del, 1 };
14979
14980 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14981 }
14982
14983 static void
14984 enable_delete_command (char *args, int from_tty)
14985 {
14986 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14987 }
14988 \f
14989 static void
14990 set_breakpoint_cmd (char *args, int from_tty)
14991 {
14992 }
14993
14994 static void
14995 show_breakpoint_cmd (char *args, int from_tty)
14996 {
14997 }
14998
14999 /* Invalidate last known value of any hardware watchpoint if
15000 the memory which that value represents has been written to by
15001 GDB itself. */
15002
15003 static void
15004 invalidate_bp_value_on_memory_change (struct inferior *inferior,
15005 CORE_ADDR addr, ssize_t len,
15006 const bfd_byte *data)
15007 {
15008 struct breakpoint *bp;
15009
15010 ALL_BREAKPOINTS (bp)
15011 if (bp->enable_state == bp_enabled
15012 && bp->type == bp_hardware_watchpoint)
15013 {
15014 struct watchpoint *wp = (struct watchpoint *) bp;
15015
15016 if (wp->val_valid && wp->val)
15017 {
15018 struct bp_location *loc;
15019
15020 for (loc = bp->loc; loc != NULL; loc = loc->next)
15021 if (loc->loc_type == bp_loc_hardware_watchpoint
15022 && loc->address + loc->length > addr
15023 && addr + len > loc->address)
15024 {
15025 value_free (wp->val);
15026 wp->val = NULL;
15027 wp->val_valid = 0;
15028 }
15029 }
15030 }
15031 }
15032
15033 /* Create and insert a breakpoint for software single step. */
15034
15035 void
15036 insert_single_step_breakpoint (struct gdbarch *gdbarch,
15037 struct address_space *aspace,
15038 CORE_ADDR next_pc)
15039 {
15040 struct thread_info *tp = inferior_thread ();
15041 struct symtab_and_line sal;
15042 CORE_ADDR pc = next_pc;
15043
15044 if (tp->control.single_step_breakpoints == NULL)
15045 {
15046 tp->control.single_step_breakpoints
15047 = new_single_step_breakpoint (tp->num, gdbarch);
15048 }
15049
15050 sal = find_pc_line (pc, 0);
15051 sal.pc = pc;
15052 sal.section = find_pc_overlay (pc);
15053 sal.explicit_pc = 1;
15054 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
15055
15056 update_global_location_list (UGLL_INSERT);
15057 }
15058
15059 /* See breakpoint.h. */
15060
15061 int
15062 breakpoint_has_location_inserted_here (struct breakpoint *bp,
15063 struct address_space *aspace,
15064 CORE_ADDR pc)
15065 {
15066 struct bp_location *loc;
15067
15068 for (loc = bp->loc; loc != NULL; loc = loc->next)
15069 if (loc->inserted
15070 && breakpoint_location_address_match (loc, aspace, pc))
15071 return 1;
15072
15073 return 0;
15074 }
15075
15076 /* Check whether a software single-step breakpoint is inserted at
15077 PC. */
15078
15079 int
15080 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15081 CORE_ADDR pc)
15082 {
15083 struct breakpoint *bpt;
15084
15085 ALL_BREAKPOINTS (bpt)
15086 {
15087 if (bpt->type == bp_single_step
15088 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
15089 return 1;
15090 }
15091 return 0;
15092 }
15093
15094 /* Tracepoint-specific operations. */
15095
15096 /* Set tracepoint count to NUM. */
15097 static void
15098 set_tracepoint_count (int num)
15099 {
15100 tracepoint_count = num;
15101 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15102 }
15103
15104 static void
15105 trace_command (char *arg, int from_tty)
15106 {
15107 struct breakpoint_ops *ops;
15108 struct event_location *location;
15109 struct cleanup *back_to;
15110
15111 location = string_to_event_location (&arg, current_language);
15112 back_to = make_cleanup_delete_event_location (location);
15113 if (location != NULL
15114 && event_location_type (location) == PROBE_LOCATION)
15115 ops = &tracepoint_probe_breakpoint_ops;
15116 else
15117 ops = &tracepoint_breakpoint_ops;
15118
15119 create_breakpoint (get_current_arch (),
15120 location,
15121 NULL, 0, arg, 1 /* parse arg */,
15122 0 /* tempflag */,
15123 bp_tracepoint /* type_wanted */,
15124 0 /* Ignore count */,
15125 pending_break_support,
15126 ops,
15127 from_tty,
15128 1 /* enabled */,
15129 0 /* internal */, 0);
15130 do_cleanups (back_to);
15131 }
15132
15133 static void
15134 ftrace_command (char *arg, int from_tty)
15135 {
15136 struct event_location *location;
15137 struct cleanup *back_to;
15138
15139 location = string_to_event_location (&arg, current_language);
15140 back_to = make_cleanup_delete_event_location (location);
15141 create_breakpoint (get_current_arch (),
15142 location,
15143 NULL, 0, arg, 1 /* parse arg */,
15144 0 /* tempflag */,
15145 bp_fast_tracepoint /* type_wanted */,
15146 0 /* Ignore count */,
15147 pending_break_support,
15148 &tracepoint_breakpoint_ops,
15149 from_tty,
15150 1 /* enabled */,
15151 0 /* internal */, 0);
15152 do_cleanups (back_to);
15153 }
15154
15155 /* strace command implementation. Creates a static tracepoint. */
15156
15157 static void
15158 strace_command (char *arg, int from_tty)
15159 {
15160 struct breakpoint_ops *ops;
15161 struct event_location *location;
15162 struct cleanup *back_to;
15163
15164 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15165 or with a normal static tracepoint. */
15166 if (arg && startswith (arg, "-m") && isspace (arg[2]))
15167 {
15168 ops = &strace_marker_breakpoint_ops;
15169 location = new_linespec_location (&arg);
15170 }
15171 else
15172 {
15173 ops = &tracepoint_breakpoint_ops;
15174 location = string_to_event_location (&arg, current_language);
15175 }
15176
15177 back_to = make_cleanup_delete_event_location (location);
15178 create_breakpoint (get_current_arch (),
15179 location,
15180 NULL, 0, arg, 1 /* parse arg */,
15181 0 /* tempflag */,
15182 bp_static_tracepoint /* type_wanted */,
15183 0 /* Ignore count */,
15184 pending_break_support,
15185 ops,
15186 from_tty,
15187 1 /* enabled */,
15188 0 /* internal */, 0);
15189 do_cleanups (back_to);
15190 }
15191
15192 /* Set up a fake reader function that gets command lines from a linked
15193 list that was acquired during tracepoint uploading. */
15194
15195 static struct uploaded_tp *this_utp;
15196 static int next_cmd;
15197
15198 static char *
15199 read_uploaded_action (void)
15200 {
15201 char *rslt;
15202
15203 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15204
15205 next_cmd++;
15206
15207 return rslt;
15208 }
15209
15210 /* Given information about a tracepoint as recorded on a target (which
15211 can be either a live system or a trace file), attempt to create an
15212 equivalent GDB tracepoint. This is not a reliable process, since
15213 the target does not necessarily have all the information used when
15214 the tracepoint was originally defined. */
15215
15216 struct tracepoint *
15217 create_tracepoint_from_upload (struct uploaded_tp *utp)
15218 {
15219 char *addr_str, small_buf[100];
15220 struct tracepoint *tp;
15221 struct event_location *location;
15222 struct cleanup *cleanup;
15223
15224 if (utp->at_string)
15225 addr_str = utp->at_string;
15226 else
15227 {
15228 /* In the absence of a source location, fall back to raw
15229 address. Since there is no way to confirm that the address
15230 means the same thing as when the trace was started, warn the
15231 user. */
15232 warning (_("Uploaded tracepoint %d has no "
15233 "source location, using raw address"),
15234 utp->number);
15235 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15236 addr_str = small_buf;
15237 }
15238
15239 /* There's not much we can do with a sequence of bytecodes. */
15240 if (utp->cond && !utp->cond_string)
15241 warning (_("Uploaded tracepoint %d condition "
15242 "has no source form, ignoring it"),
15243 utp->number);
15244
15245 location = string_to_event_location (&addr_str, current_language);
15246 cleanup = make_cleanup_delete_event_location (location);
15247 if (!create_breakpoint (get_current_arch (),
15248 location,
15249 utp->cond_string, -1, addr_str,
15250 0 /* parse cond/thread */,
15251 0 /* tempflag */,
15252 utp->type /* type_wanted */,
15253 0 /* Ignore count */,
15254 pending_break_support,
15255 &tracepoint_breakpoint_ops,
15256 0 /* from_tty */,
15257 utp->enabled /* enabled */,
15258 0 /* internal */,
15259 CREATE_BREAKPOINT_FLAGS_INSERTED))
15260 {
15261 do_cleanups (cleanup);
15262 return NULL;
15263 }
15264
15265 do_cleanups (cleanup);
15266
15267 /* Get the tracepoint we just created. */
15268 tp = get_tracepoint (tracepoint_count);
15269 gdb_assert (tp != NULL);
15270
15271 if (utp->pass > 0)
15272 {
15273 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15274 tp->base.number);
15275
15276 trace_pass_command (small_buf, 0);
15277 }
15278
15279 /* If we have uploaded versions of the original commands, set up a
15280 special-purpose "reader" function and call the usual command line
15281 reader, then pass the result to the breakpoint command-setting
15282 function. */
15283 if (!VEC_empty (char_ptr, utp->cmd_strings))
15284 {
15285 struct command_line *cmd_list;
15286
15287 this_utp = utp;
15288 next_cmd = 0;
15289
15290 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15291
15292 breakpoint_set_commands (&tp->base, cmd_list);
15293 }
15294 else if (!VEC_empty (char_ptr, utp->actions)
15295 || !VEC_empty (char_ptr, utp->step_actions))
15296 warning (_("Uploaded tracepoint %d actions "
15297 "have no source form, ignoring them"),
15298 utp->number);
15299
15300 /* Copy any status information that might be available. */
15301 tp->base.hit_count = utp->hit_count;
15302 tp->traceframe_usage = utp->traceframe_usage;
15303
15304 return tp;
15305 }
15306
15307 /* Print information on tracepoint number TPNUM_EXP, or all if
15308 omitted. */
15309
15310 static void
15311 tracepoints_info (char *args, int from_tty)
15312 {
15313 struct ui_out *uiout = current_uiout;
15314 int num_printed;
15315
15316 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15317
15318 if (num_printed == 0)
15319 {
15320 if (args == NULL || *args == '\0')
15321 ui_out_message (uiout, 0, "No tracepoints.\n");
15322 else
15323 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15324 }
15325
15326 default_collect_info ();
15327 }
15328
15329 /* The 'enable trace' command enables tracepoints.
15330 Not supported by all targets. */
15331 static void
15332 enable_trace_command (char *args, int from_tty)
15333 {
15334 enable_command (args, from_tty);
15335 }
15336
15337 /* The 'disable trace' command disables tracepoints.
15338 Not supported by all targets. */
15339 static void
15340 disable_trace_command (char *args, int from_tty)
15341 {
15342 disable_command (args, from_tty);
15343 }
15344
15345 /* Remove a tracepoint (or all if no argument). */
15346 static void
15347 delete_trace_command (char *arg, int from_tty)
15348 {
15349 struct breakpoint *b, *b_tmp;
15350
15351 dont_repeat ();
15352
15353 if (arg == 0)
15354 {
15355 int breaks_to_delete = 0;
15356
15357 /* Delete all breakpoints if no argument.
15358 Do not delete internal or call-dummy breakpoints, these
15359 have to be deleted with an explicit breakpoint number
15360 argument. */
15361 ALL_TRACEPOINTS (b)
15362 if (is_tracepoint (b) && user_breakpoint_p (b))
15363 {
15364 breaks_to_delete = 1;
15365 break;
15366 }
15367
15368 /* Ask user only if there are some breakpoints to delete. */
15369 if (!from_tty
15370 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15371 {
15372 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15373 if (is_tracepoint (b) && user_breakpoint_p (b))
15374 delete_breakpoint (b);
15375 }
15376 }
15377 else
15378 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15379 }
15380
15381 /* Helper function for trace_pass_command. */
15382
15383 static void
15384 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15385 {
15386 tp->pass_count = count;
15387 observer_notify_breakpoint_modified (&tp->base);
15388 if (from_tty)
15389 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15390 tp->base.number, count);
15391 }
15392
15393 /* Set passcount for tracepoint.
15394
15395 First command argument is passcount, second is tracepoint number.
15396 If tracepoint number omitted, apply to most recently defined.
15397 Also accepts special argument "all". */
15398
15399 static void
15400 trace_pass_command (char *args, int from_tty)
15401 {
15402 struct tracepoint *t1;
15403 unsigned int count;
15404
15405 if (args == 0 || *args == 0)
15406 error (_("passcount command requires an "
15407 "argument (count + optional TP num)"));
15408
15409 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15410
15411 args = skip_spaces (args);
15412 if (*args && strncasecmp (args, "all", 3) == 0)
15413 {
15414 struct breakpoint *b;
15415
15416 args += 3; /* Skip special argument "all". */
15417 if (*args)
15418 error (_("Junk at end of arguments."));
15419
15420 ALL_TRACEPOINTS (b)
15421 {
15422 t1 = (struct tracepoint *) b;
15423 trace_pass_set_count (t1, count, from_tty);
15424 }
15425 }
15426 else if (*args == '\0')
15427 {
15428 t1 = get_tracepoint_by_number (&args, NULL);
15429 if (t1)
15430 trace_pass_set_count (t1, count, from_tty);
15431 }
15432 else
15433 {
15434 struct get_number_or_range_state state;
15435
15436 init_number_or_range (&state, args);
15437 while (!state.finished)
15438 {
15439 t1 = get_tracepoint_by_number (&args, &state);
15440 if (t1)
15441 trace_pass_set_count (t1, count, from_tty);
15442 }
15443 }
15444 }
15445
15446 struct tracepoint *
15447 get_tracepoint (int num)
15448 {
15449 struct breakpoint *t;
15450
15451 ALL_TRACEPOINTS (t)
15452 if (t->number == num)
15453 return (struct tracepoint *) t;
15454
15455 return NULL;
15456 }
15457
15458 /* Find the tracepoint with the given target-side number (which may be
15459 different from the tracepoint number after disconnecting and
15460 reconnecting). */
15461
15462 struct tracepoint *
15463 get_tracepoint_by_number_on_target (int num)
15464 {
15465 struct breakpoint *b;
15466
15467 ALL_TRACEPOINTS (b)
15468 {
15469 struct tracepoint *t = (struct tracepoint *) b;
15470
15471 if (t->number_on_target == num)
15472 return t;
15473 }
15474
15475 return NULL;
15476 }
15477
15478 /* Utility: parse a tracepoint number and look it up in the list.
15479 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15480 If the argument is missing, the most recent tracepoint
15481 (tracepoint_count) is returned. */
15482
15483 struct tracepoint *
15484 get_tracepoint_by_number (char **arg,
15485 struct get_number_or_range_state *state)
15486 {
15487 struct breakpoint *t;
15488 int tpnum;
15489 char *instring = arg == NULL ? NULL : *arg;
15490
15491 if (state)
15492 {
15493 gdb_assert (!state->finished);
15494 tpnum = get_number_or_range (state);
15495 }
15496 else if (arg == NULL || *arg == NULL || ! **arg)
15497 tpnum = tracepoint_count;
15498 else
15499 tpnum = get_number (arg);
15500
15501 if (tpnum <= 0)
15502 {
15503 if (instring && *instring)
15504 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15505 instring);
15506 else
15507 printf_filtered (_("No previous tracepoint\n"));
15508 return NULL;
15509 }
15510
15511 ALL_TRACEPOINTS (t)
15512 if (t->number == tpnum)
15513 {
15514 return (struct tracepoint *) t;
15515 }
15516
15517 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15518 return NULL;
15519 }
15520
15521 void
15522 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15523 {
15524 if (b->thread != -1)
15525 fprintf_unfiltered (fp, " thread %d", b->thread);
15526
15527 if (b->task != 0)
15528 fprintf_unfiltered (fp, " task %d", b->task);
15529
15530 fprintf_unfiltered (fp, "\n");
15531 }
15532
15533 /* Save information on user settable breakpoints (watchpoints, etc) to
15534 a new script file named FILENAME. If FILTER is non-NULL, call it
15535 on each breakpoint and only include the ones for which it returns
15536 non-zero. */
15537
15538 static void
15539 save_breakpoints (char *filename, int from_tty,
15540 int (*filter) (const struct breakpoint *))
15541 {
15542 struct breakpoint *tp;
15543 int any = 0;
15544 struct cleanup *cleanup;
15545 struct ui_file *fp;
15546 int extra_trace_bits = 0;
15547
15548 if (filename == 0 || *filename == 0)
15549 error (_("Argument required (file name in which to save)"));
15550
15551 /* See if we have anything to save. */
15552 ALL_BREAKPOINTS (tp)
15553 {
15554 /* Skip internal and momentary breakpoints. */
15555 if (!user_breakpoint_p (tp))
15556 continue;
15557
15558 /* If we have a filter, only save the breakpoints it accepts. */
15559 if (filter && !filter (tp))
15560 continue;
15561
15562 any = 1;
15563
15564 if (is_tracepoint (tp))
15565 {
15566 extra_trace_bits = 1;
15567
15568 /* We can stop searching. */
15569 break;
15570 }
15571 }
15572
15573 if (!any)
15574 {
15575 warning (_("Nothing to save."));
15576 return;
15577 }
15578
15579 filename = tilde_expand (filename);
15580 cleanup = make_cleanup (xfree, filename);
15581 fp = gdb_fopen (filename, "w");
15582 if (!fp)
15583 error (_("Unable to open file '%s' for saving (%s)"),
15584 filename, safe_strerror (errno));
15585 make_cleanup_ui_file_delete (fp);
15586
15587 if (extra_trace_bits)
15588 save_trace_state_variables (fp);
15589
15590 ALL_BREAKPOINTS (tp)
15591 {
15592 /* Skip internal and momentary breakpoints. */
15593 if (!user_breakpoint_p (tp))
15594 continue;
15595
15596 /* If we have a filter, only save the breakpoints it accepts. */
15597 if (filter && !filter (tp))
15598 continue;
15599
15600 tp->ops->print_recreate (tp, fp);
15601
15602 /* Note, we can't rely on tp->number for anything, as we can't
15603 assume the recreated breakpoint numbers will match. Use $bpnum
15604 instead. */
15605
15606 if (tp->cond_string)
15607 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15608
15609 if (tp->ignore_count)
15610 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15611
15612 if (tp->type != bp_dprintf && tp->commands)
15613 {
15614 struct gdb_exception exception;
15615
15616 fprintf_unfiltered (fp, " commands\n");
15617
15618 ui_out_redirect (current_uiout, fp);
15619 TRY
15620 {
15621 print_command_lines (current_uiout, tp->commands->commands, 2);
15622 }
15623 CATCH (ex, RETURN_MASK_ALL)
15624 {
15625 ui_out_redirect (current_uiout, NULL);
15626 throw_exception (ex);
15627 }
15628 END_CATCH
15629
15630 ui_out_redirect (current_uiout, NULL);
15631 fprintf_unfiltered (fp, " end\n");
15632 }
15633
15634 if (tp->enable_state == bp_disabled)
15635 fprintf_unfiltered (fp, "disable $bpnum\n");
15636
15637 /* If this is a multi-location breakpoint, check if the locations
15638 should be individually disabled. Watchpoint locations are
15639 special, and not user visible. */
15640 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15641 {
15642 struct bp_location *loc;
15643 int n = 1;
15644
15645 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15646 if (!loc->enabled)
15647 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15648 }
15649 }
15650
15651 if (extra_trace_bits && *default_collect)
15652 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15653
15654 if (from_tty)
15655 printf_filtered (_("Saved to file '%s'.\n"), filename);
15656 do_cleanups (cleanup);
15657 }
15658
15659 /* The `save breakpoints' command. */
15660
15661 static void
15662 save_breakpoints_command (char *args, int from_tty)
15663 {
15664 save_breakpoints (args, from_tty, NULL);
15665 }
15666
15667 /* The `save tracepoints' command. */
15668
15669 static void
15670 save_tracepoints_command (char *args, int from_tty)
15671 {
15672 save_breakpoints (args, from_tty, is_tracepoint);
15673 }
15674
15675 /* Create a vector of all tracepoints. */
15676
15677 VEC(breakpoint_p) *
15678 all_tracepoints (void)
15679 {
15680 VEC(breakpoint_p) *tp_vec = 0;
15681 struct breakpoint *tp;
15682
15683 ALL_TRACEPOINTS (tp)
15684 {
15685 VEC_safe_push (breakpoint_p, tp_vec, tp);
15686 }
15687
15688 return tp_vec;
15689 }
15690
15691 \f
15692 /* This help string is used to consolidate all the help string for specifying
15693 locations used by several commands. */
15694
15695 #define LOCATION_HELP_STRING \
15696 "Linespecs are colon-separated lists of location parameters, such as\n\
15697 source filename, function name, label name, and line number.\n\
15698 Example: To specify the start of a label named \"the_top\" in the\n\
15699 function \"fact\" in the file \"factorial.c\", use\n\
15700 \"factorial.c:fact:the_top\".\n\
15701 \n\
15702 Address locations begin with \"*\" and specify an exact address in the\n\
15703 program. Example: To specify the fourth byte past the start function\n\
15704 \"main\", use \"*main + 4\".\n\
15705 \n\
15706 Explicit locations are similar to linespecs but use an option/argument\n\
15707 syntax to specify location parameters.\n\
15708 Example: To specify the start of the label named \"the_top\" in the\n\
15709 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15710 -function fact -label the_top\".\n"
15711
15712 /* This help string is used for the break, hbreak, tbreak and thbreak
15713 commands. It is defined as a macro to prevent duplication.
15714 COMMAND should be a string constant containing the name of the
15715 command. */
15716
15717 #define BREAK_ARGS_HELP(command) \
15718 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15719 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15720 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15721 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15722 `-probe-dtrace' (for a DTrace probe).\n\
15723 LOCATION may be a linespec, address, or explicit location as described\n\
15724 below.\n\
15725 \n\
15726 With no LOCATION, uses current execution address of the selected\n\
15727 stack frame. This is useful for breaking on return to a stack frame.\n\
15728 \n\
15729 THREADNUM is the number from \"info threads\".\n\
15730 CONDITION is a boolean expression.\n\
15731 \n" LOCATION_HELP_STRING "\n\
15732 Multiple breakpoints at one place are permitted, and useful if their\n\
15733 conditions are different.\n\
15734 \n\
15735 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15736
15737 /* List of subcommands for "catch". */
15738 static struct cmd_list_element *catch_cmdlist;
15739
15740 /* List of subcommands for "tcatch". */
15741 static struct cmd_list_element *tcatch_cmdlist;
15742
15743 void
15744 add_catch_command (char *name, char *docstring,
15745 cmd_sfunc_ftype *sfunc,
15746 completer_ftype *completer,
15747 void *user_data_catch,
15748 void *user_data_tcatch)
15749 {
15750 struct cmd_list_element *command;
15751
15752 command = add_cmd (name, class_breakpoint, NULL, docstring,
15753 &catch_cmdlist);
15754 set_cmd_sfunc (command, sfunc);
15755 set_cmd_context (command, user_data_catch);
15756 set_cmd_completer (command, completer);
15757
15758 command = add_cmd (name, class_breakpoint, NULL, docstring,
15759 &tcatch_cmdlist);
15760 set_cmd_sfunc (command, sfunc);
15761 set_cmd_context (command, user_data_tcatch);
15762 set_cmd_completer (command, completer);
15763 }
15764
15765 static void
15766 save_command (char *arg, int from_tty)
15767 {
15768 printf_unfiltered (_("\"save\" must be followed by "
15769 "the name of a save subcommand.\n"));
15770 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15771 }
15772
15773 struct breakpoint *
15774 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15775 void *data)
15776 {
15777 struct breakpoint *b, *b_tmp;
15778
15779 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15780 {
15781 if ((*callback) (b, data))
15782 return b;
15783 }
15784
15785 return NULL;
15786 }
15787
15788 /* Zero if any of the breakpoint's locations could be a location where
15789 functions have been inlined, nonzero otherwise. */
15790
15791 static int
15792 is_non_inline_function (struct breakpoint *b)
15793 {
15794 /* The shared library event breakpoint is set on the address of a
15795 non-inline function. */
15796 if (b->type == bp_shlib_event)
15797 return 1;
15798
15799 return 0;
15800 }
15801
15802 /* Nonzero if the specified PC cannot be a location where functions
15803 have been inlined. */
15804
15805 int
15806 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15807 const struct target_waitstatus *ws)
15808 {
15809 struct breakpoint *b;
15810 struct bp_location *bl;
15811
15812 ALL_BREAKPOINTS (b)
15813 {
15814 if (!is_non_inline_function (b))
15815 continue;
15816
15817 for (bl = b->loc; bl != NULL; bl = bl->next)
15818 {
15819 if (!bl->shlib_disabled
15820 && bpstat_check_location (bl, aspace, pc, ws))
15821 return 1;
15822 }
15823 }
15824
15825 return 0;
15826 }
15827
15828 /* Remove any references to OBJFILE which is going to be freed. */
15829
15830 void
15831 breakpoint_free_objfile (struct objfile *objfile)
15832 {
15833 struct bp_location **locp, *loc;
15834
15835 ALL_BP_LOCATIONS (loc, locp)
15836 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15837 loc->symtab = NULL;
15838 }
15839
15840 void
15841 initialize_breakpoint_ops (void)
15842 {
15843 static int initialized = 0;
15844
15845 struct breakpoint_ops *ops;
15846
15847 if (initialized)
15848 return;
15849 initialized = 1;
15850
15851 /* The breakpoint_ops structure to be inherit by all kinds of
15852 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15853 internal and momentary breakpoints, etc.). */
15854 ops = &bkpt_base_breakpoint_ops;
15855 *ops = base_breakpoint_ops;
15856 ops->re_set = bkpt_re_set;
15857 ops->insert_location = bkpt_insert_location;
15858 ops->remove_location = bkpt_remove_location;
15859 ops->breakpoint_hit = bkpt_breakpoint_hit;
15860 ops->create_sals_from_location = bkpt_create_sals_from_location;
15861 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15862 ops->decode_location = bkpt_decode_location;
15863
15864 /* The breakpoint_ops structure to be used in regular breakpoints. */
15865 ops = &bkpt_breakpoint_ops;
15866 *ops = bkpt_base_breakpoint_ops;
15867 ops->re_set = bkpt_re_set;
15868 ops->resources_needed = bkpt_resources_needed;
15869 ops->print_it = bkpt_print_it;
15870 ops->print_mention = bkpt_print_mention;
15871 ops->print_recreate = bkpt_print_recreate;
15872
15873 /* Ranged breakpoints. */
15874 ops = &ranged_breakpoint_ops;
15875 *ops = bkpt_breakpoint_ops;
15876 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15877 ops->resources_needed = resources_needed_ranged_breakpoint;
15878 ops->print_it = print_it_ranged_breakpoint;
15879 ops->print_one = print_one_ranged_breakpoint;
15880 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15881 ops->print_mention = print_mention_ranged_breakpoint;
15882 ops->print_recreate = print_recreate_ranged_breakpoint;
15883
15884 /* Internal breakpoints. */
15885 ops = &internal_breakpoint_ops;
15886 *ops = bkpt_base_breakpoint_ops;
15887 ops->re_set = internal_bkpt_re_set;
15888 ops->check_status = internal_bkpt_check_status;
15889 ops->print_it = internal_bkpt_print_it;
15890 ops->print_mention = internal_bkpt_print_mention;
15891
15892 /* Momentary breakpoints. */
15893 ops = &momentary_breakpoint_ops;
15894 *ops = bkpt_base_breakpoint_ops;
15895 ops->re_set = momentary_bkpt_re_set;
15896 ops->check_status = momentary_bkpt_check_status;
15897 ops->print_it = momentary_bkpt_print_it;
15898 ops->print_mention = momentary_bkpt_print_mention;
15899
15900 /* Momentary breakpoints for bp_longjmp and bp_exception. */
15901 ops = &longjmp_breakpoint_ops;
15902 *ops = momentary_breakpoint_ops;
15903 ops->dtor = longjmp_bkpt_dtor;
15904
15905 /* Probe breakpoints. */
15906 ops = &bkpt_probe_breakpoint_ops;
15907 *ops = bkpt_breakpoint_ops;
15908 ops->insert_location = bkpt_probe_insert_location;
15909 ops->remove_location = bkpt_probe_remove_location;
15910 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15911 ops->decode_location = bkpt_probe_decode_location;
15912
15913 /* Watchpoints. */
15914 ops = &watchpoint_breakpoint_ops;
15915 *ops = base_breakpoint_ops;
15916 ops->dtor = dtor_watchpoint;
15917 ops->re_set = re_set_watchpoint;
15918 ops->insert_location = insert_watchpoint;
15919 ops->remove_location = remove_watchpoint;
15920 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15921 ops->check_status = check_status_watchpoint;
15922 ops->resources_needed = resources_needed_watchpoint;
15923 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15924 ops->print_it = print_it_watchpoint;
15925 ops->print_mention = print_mention_watchpoint;
15926 ops->print_recreate = print_recreate_watchpoint;
15927 ops->explains_signal = explains_signal_watchpoint;
15928
15929 /* Masked watchpoints. */
15930 ops = &masked_watchpoint_breakpoint_ops;
15931 *ops = watchpoint_breakpoint_ops;
15932 ops->insert_location = insert_masked_watchpoint;
15933 ops->remove_location = remove_masked_watchpoint;
15934 ops->resources_needed = resources_needed_masked_watchpoint;
15935 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15936 ops->print_it = print_it_masked_watchpoint;
15937 ops->print_one_detail = print_one_detail_masked_watchpoint;
15938 ops->print_mention = print_mention_masked_watchpoint;
15939 ops->print_recreate = print_recreate_masked_watchpoint;
15940
15941 /* Tracepoints. */
15942 ops = &tracepoint_breakpoint_ops;
15943 *ops = base_breakpoint_ops;
15944 ops->re_set = tracepoint_re_set;
15945 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15946 ops->print_one_detail = tracepoint_print_one_detail;
15947 ops->print_mention = tracepoint_print_mention;
15948 ops->print_recreate = tracepoint_print_recreate;
15949 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15950 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15951 ops->decode_location = tracepoint_decode_location;
15952
15953 /* Probe tracepoints. */
15954 ops = &tracepoint_probe_breakpoint_ops;
15955 *ops = tracepoint_breakpoint_ops;
15956 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15957 ops->decode_location = tracepoint_probe_decode_location;
15958
15959 /* Static tracepoints with marker (`-m'). */
15960 ops = &strace_marker_breakpoint_ops;
15961 *ops = tracepoint_breakpoint_ops;
15962 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15963 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15964 ops->decode_location = strace_marker_decode_location;
15965
15966 /* Fork catchpoints. */
15967 ops = &catch_fork_breakpoint_ops;
15968 *ops = base_breakpoint_ops;
15969 ops->insert_location = insert_catch_fork;
15970 ops->remove_location = remove_catch_fork;
15971 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15972 ops->print_it = print_it_catch_fork;
15973 ops->print_one = print_one_catch_fork;
15974 ops->print_mention = print_mention_catch_fork;
15975 ops->print_recreate = print_recreate_catch_fork;
15976
15977 /* Vfork catchpoints. */
15978 ops = &catch_vfork_breakpoint_ops;
15979 *ops = base_breakpoint_ops;
15980 ops->insert_location = insert_catch_vfork;
15981 ops->remove_location = remove_catch_vfork;
15982 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15983 ops->print_it = print_it_catch_vfork;
15984 ops->print_one = print_one_catch_vfork;
15985 ops->print_mention = print_mention_catch_vfork;
15986 ops->print_recreate = print_recreate_catch_vfork;
15987
15988 /* Exec catchpoints. */
15989 ops = &catch_exec_breakpoint_ops;
15990 *ops = base_breakpoint_ops;
15991 ops->dtor = dtor_catch_exec;
15992 ops->insert_location = insert_catch_exec;
15993 ops->remove_location = remove_catch_exec;
15994 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15995 ops->print_it = print_it_catch_exec;
15996 ops->print_one = print_one_catch_exec;
15997 ops->print_mention = print_mention_catch_exec;
15998 ops->print_recreate = print_recreate_catch_exec;
15999
16000 /* Solib-related catchpoints. */
16001 ops = &catch_solib_breakpoint_ops;
16002 *ops = base_breakpoint_ops;
16003 ops->dtor = dtor_catch_solib;
16004 ops->insert_location = insert_catch_solib;
16005 ops->remove_location = remove_catch_solib;
16006 ops->breakpoint_hit = breakpoint_hit_catch_solib;
16007 ops->check_status = check_status_catch_solib;
16008 ops->print_it = print_it_catch_solib;
16009 ops->print_one = print_one_catch_solib;
16010 ops->print_mention = print_mention_catch_solib;
16011 ops->print_recreate = print_recreate_catch_solib;
16012
16013 ops = &dprintf_breakpoint_ops;
16014 *ops = bkpt_base_breakpoint_ops;
16015 ops->re_set = dprintf_re_set;
16016 ops->resources_needed = bkpt_resources_needed;
16017 ops->print_it = bkpt_print_it;
16018 ops->print_mention = bkpt_print_mention;
16019 ops->print_recreate = dprintf_print_recreate;
16020 ops->after_condition_true = dprintf_after_condition_true;
16021 ops->breakpoint_hit = dprintf_breakpoint_hit;
16022 }
16023
16024 /* Chain containing all defined "enable breakpoint" subcommands. */
16025
16026 static struct cmd_list_element *enablebreaklist = NULL;
16027
16028 void
16029 _initialize_breakpoint (void)
16030 {
16031 struct cmd_list_element *c;
16032
16033 initialize_breakpoint_ops ();
16034
16035 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
16036 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
16037 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
16038
16039 breakpoint_objfile_key
16040 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
16041
16042 breakpoint_chain = 0;
16043 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
16044 before a breakpoint is set. */
16045 breakpoint_count = 0;
16046
16047 tracepoint_count = 0;
16048
16049 add_com ("ignore", class_breakpoint, ignore_command, _("\
16050 Set ignore-count of breakpoint number N to COUNT.\n\
16051 Usage is `ignore N COUNT'."));
16052
16053 add_com ("commands", class_breakpoint, commands_command, _("\
16054 Set commands to be executed when a breakpoint is hit.\n\
16055 Give breakpoint number as argument after \"commands\".\n\
16056 With no argument, the targeted breakpoint is the last one set.\n\
16057 The commands themselves follow starting on the next line.\n\
16058 Type a line containing \"end\" to indicate the end of them.\n\
16059 Give \"silent\" as the first line to make the breakpoint silent;\n\
16060 then no output is printed when it is hit, except what the commands print."));
16061
16062 c = add_com ("condition", class_breakpoint, condition_command, _("\
16063 Specify breakpoint number N to break only if COND is true.\n\
16064 Usage is `condition N COND', where N is an integer and COND is an\n\
16065 expression to be evaluated whenever breakpoint N is reached."));
16066 set_cmd_completer (c, condition_completer);
16067
16068 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16069 Set a temporary breakpoint.\n\
16070 Like \"break\" except the breakpoint is only temporary,\n\
16071 so it will be deleted when hit. Equivalent to \"break\" followed\n\
16072 by using \"enable delete\" on the breakpoint number.\n\
16073 \n"
16074 BREAK_ARGS_HELP ("tbreak")));
16075 set_cmd_completer (c, location_completer);
16076
16077 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16078 Set a hardware assisted breakpoint.\n\
16079 Like \"break\" except the breakpoint requires hardware support,\n\
16080 some target hardware may not have this support.\n\
16081 \n"
16082 BREAK_ARGS_HELP ("hbreak")));
16083 set_cmd_completer (c, location_completer);
16084
16085 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16086 Set a temporary hardware assisted breakpoint.\n\
16087 Like \"hbreak\" except the breakpoint is only temporary,\n\
16088 so it will be deleted when hit.\n\
16089 \n"
16090 BREAK_ARGS_HELP ("thbreak")));
16091 set_cmd_completer (c, location_completer);
16092
16093 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16094 Enable some breakpoints.\n\
16095 Give breakpoint numbers (separated by spaces) as arguments.\n\
16096 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16097 This is used to cancel the effect of the \"disable\" command.\n\
16098 With a subcommand you can enable temporarily."),
16099 &enablelist, "enable ", 1, &cmdlist);
16100
16101 add_com_alias ("en", "enable", class_breakpoint, 1);
16102
16103 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16104 Enable some breakpoints.\n\
16105 Give breakpoint numbers (separated by spaces) as arguments.\n\
16106 This is used to cancel the effect of the \"disable\" command.\n\
16107 May be abbreviated to simply \"enable\".\n"),
16108 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16109
16110 add_cmd ("once", no_class, enable_once_command, _("\
16111 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16112 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16113 &enablebreaklist);
16114
16115 add_cmd ("delete", no_class, enable_delete_command, _("\
16116 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16117 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16118 &enablebreaklist);
16119
16120 add_cmd ("count", no_class, enable_count_command, _("\
16121 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16122 If a breakpoint is hit while enabled in this fashion,\n\
16123 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16124 &enablebreaklist);
16125
16126 add_cmd ("delete", no_class, enable_delete_command, _("\
16127 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16128 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16129 &enablelist);
16130
16131 add_cmd ("once", no_class, enable_once_command, _("\
16132 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16133 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16134 &enablelist);
16135
16136 add_cmd ("count", no_class, enable_count_command, _("\
16137 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16138 If a breakpoint is hit while enabled in this fashion,\n\
16139 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16140 &enablelist);
16141
16142 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16143 Disable some breakpoints.\n\
16144 Arguments are breakpoint numbers with spaces in between.\n\
16145 To disable all breakpoints, give no argument.\n\
16146 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16147 &disablelist, "disable ", 1, &cmdlist);
16148 add_com_alias ("dis", "disable", class_breakpoint, 1);
16149 add_com_alias ("disa", "disable", class_breakpoint, 1);
16150
16151 add_cmd ("breakpoints", class_alias, disable_command, _("\
16152 Disable some breakpoints.\n\
16153 Arguments are breakpoint numbers with spaces in between.\n\
16154 To disable all breakpoints, give no argument.\n\
16155 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16156 This command may be abbreviated \"disable\"."),
16157 &disablelist);
16158
16159 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16160 Delete some breakpoints or auto-display expressions.\n\
16161 Arguments are breakpoint numbers with spaces in between.\n\
16162 To delete all breakpoints, give no argument.\n\
16163 \n\
16164 Also a prefix command for deletion of other GDB objects.\n\
16165 The \"unset\" command is also an alias for \"delete\"."),
16166 &deletelist, "delete ", 1, &cmdlist);
16167 add_com_alias ("d", "delete", class_breakpoint, 1);
16168 add_com_alias ("del", "delete", class_breakpoint, 1);
16169
16170 add_cmd ("breakpoints", class_alias, delete_command, _("\
16171 Delete some breakpoints or auto-display expressions.\n\
16172 Arguments are breakpoint numbers with spaces in between.\n\
16173 To delete all breakpoints, give no argument.\n\
16174 This command may be abbreviated \"delete\"."),
16175 &deletelist);
16176
16177 add_com ("clear", class_breakpoint, clear_command, _("\
16178 Clear breakpoint at specified location.\n\
16179 Argument may be a linespec, explicit, or address location as described below.\n\
16180 \n\
16181 With no argument, clears all breakpoints in the line that the selected frame\n\
16182 is executing in.\n"
16183 "\n" LOCATION_HELP_STRING "\n\
16184 See also the \"delete\" command which clears breakpoints by number."));
16185 add_com_alias ("cl", "clear", class_breakpoint, 1);
16186
16187 c = add_com ("break", class_breakpoint, break_command, _("\
16188 Set breakpoint at specified location.\n"
16189 BREAK_ARGS_HELP ("break")));
16190 set_cmd_completer (c, location_completer);
16191
16192 add_com_alias ("b", "break", class_run, 1);
16193 add_com_alias ("br", "break", class_run, 1);
16194 add_com_alias ("bre", "break", class_run, 1);
16195 add_com_alias ("brea", "break", class_run, 1);
16196
16197 if (dbx_commands)
16198 {
16199 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16200 Break in function/address or break at a line in the current file."),
16201 &stoplist, "stop ", 1, &cmdlist);
16202 add_cmd ("in", class_breakpoint, stopin_command,
16203 _("Break in function or address."), &stoplist);
16204 add_cmd ("at", class_breakpoint, stopat_command,
16205 _("Break at a line in the current file."), &stoplist);
16206 add_com ("status", class_info, breakpoints_info, _("\
16207 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16208 The \"Type\" column indicates one of:\n\
16209 \tbreakpoint - normal breakpoint\n\
16210 \twatchpoint - watchpoint\n\
16211 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16212 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16213 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16214 address and file/line number respectively.\n\
16215 \n\
16216 Convenience variable \"$_\" and default examine address for \"x\"\n\
16217 are set to the address of the last breakpoint listed unless the command\n\
16218 is prefixed with \"server \".\n\n\
16219 Convenience variable \"$bpnum\" contains the number of the last\n\
16220 breakpoint set."));
16221 }
16222
16223 add_info ("breakpoints", breakpoints_info, _("\
16224 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16225 The \"Type\" column indicates one of:\n\
16226 \tbreakpoint - normal breakpoint\n\
16227 \twatchpoint - watchpoint\n\
16228 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16229 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16230 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16231 address and file/line number respectively.\n\
16232 \n\
16233 Convenience variable \"$_\" and default examine address for \"x\"\n\
16234 are set to the address of the last breakpoint listed unless the command\n\
16235 is prefixed with \"server \".\n\n\
16236 Convenience variable \"$bpnum\" contains the number of the last\n\
16237 breakpoint set."));
16238
16239 add_info_alias ("b", "breakpoints", 1);
16240
16241 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16242 Status of all breakpoints, or breakpoint number NUMBER.\n\
16243 The \"Type\" column indicates one of:\n\
16244 \tbreakpoint - normal breakpoint\n\
16245 \twatchpoint - watchpoint\n\
16246 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16247 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16248 \tuntil - internal breakpoint used by the \"until\" command\n\
16249 \tfinish - internal breakpoint used by the \"finish\" command\n\
16250 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16251 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16252 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16253 address and file/line number respectively.\n\
16254 \n\
16255 Convenience variable \"$_\" and default examine address for \"x\"\n\
16256 are set to the address of the last breakpoint listed unless the command\n\
16257 is prefixed with \"server \".\n\n\
16258 Convenience variable \"$bpnum\" contains the number of the last\n\
16259 breakpoint set."),
16260 &maintenanceinfolist);
16261
16262 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16263 Set catchpoints to catch events."),
16264 &catch_cmdlist, "catch ",
16265 0/*allow-unknown*/, &cmdlist);
16266
16267 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16268 Set temporary catchpoints to catch events."),
16269 &tcatch_cmdlist, "tcatch ",
16270 0/*allow-unknown*/, &cmdlist);
16271
16272 add_catch_command ("fork", _("Catch calls to fork."),
16273 catch_fork_command_1,
16274 NULL,
16275 (void *) (uintptr_t) catch_fork_permanent,
16276 (void *) (uintptr_t) catch_fork_temporary);
16277 add_catch_command ("vfork", _("Catch calls to vfork."),
16278 catch_fork_command_1,
16279 NULL,
16280 (void *) (uintptr_t) catch_vfork_permanent,
16281 (void *) (uintptr_t) catch_vfork_temporary);
16282 add_catch_command ("exec", _("Catch calls to exec."),
16283 catch_exec_command_1,
16284 NULL,
16285 CATCH_PERMANENT,
16286 CATCH_TEMPORARY);
16287 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16288 Usage: catch load [REGEX]\n\
16289 If REGEX is given, only stop for libraries matching the regular expression."),
16290 catch_load_command_1,
16291 NULL,
16292 CATCH_PERMANENT,
16293 CATCH_TEMPORARY);
16294 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16295 Usage: catch unload [REGEX]\n\
16296 If REGEX is given, only stop for libraries matching the regular expression."),
16297 catch_unload_command_1,
16298 NULL,
16299 CATCH_PERMANENT,
16300 CATCH_TEMPORARY);
16301
16302 c = add_com ("watch", class_breakpoint, watch_command, _("\
16303 Set a watchpoint for an expression.\n\
16304 Usage: watch [-l|-location] EXPRESSION\n\
16305 A watchpoint stops execution of your program whenever the value of\n\
16306 an expression changes.\n\
16307 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16308 the memory to which it refers."));
16309 set_cmd_completer (c, expression_completer);
16310
16311 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16312 Set a read watchpoint for an expression.\n\
16313 Usage: rwatch [-l|-location] EXPRESSION\n\
16314 A watchpoint stops execution of your program whenever the value of\n\
16315 an expression is read.\n\
16316 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16317 the memory to which it refers."));
16318 set_cmd_completer (c, expression_completer);
16319
16320 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16321 Set a watchpoint for an expression.\n\
16322 Usage: awatch [-l|-location] EXPRESSION\n\
16323 A watchpoint stops execution of your program whenever the value of\n\
16324 an expression is either read or written.\n\
16325 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16326 the memory to which it refers."));
16327 set_cmd_completer (c, expression_completer);
16328
16329 add_info ("watchpoints", watchpoints_info, _("\
16330 Status of specified watchpoints (all watchpoints if no argument)."));
16331
16332 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16333 respond to changes - contrary to the description. */
16334 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16335 &can_use_hw_watchpoints, _("\
16336 Set debugger's willingness to use watchpoint hardware."), _("\
16337 Show debugger's willingness to use watchpoint hardware."), _("\
16338 If zero, gdb will not use hardware for new watchpoints, even if\n\
16339 such is available. (However, any hardware watchpoints that were\n\
16340 created before setting this to nonzero, will continue to use watchpoint\n\
16341 hardware.)"),
16342 NULL,
16343 show_can_use_hw_watchpoints,
16344 &setlist, &showlist);
16345
16346 can_use_hw_watchpoints = 1;
16347
16348 /* Tracepoint manipulation commands. */
16349
16350 c = add_com ("trace", class_breakpoint, trace_command, _("\
16351 Set a tracepoint at specified location.\n\
16352 \n"
16353 BREAK_ARGS_HELP ("trace") "\n\
16354 Do \"help tracepoints\" for info on other tracepoint commands."));
16355 set_cmd_completer (c, location_completer);
16356
16357 add_com_alias ("tp", "trace", class_alias, 0);
16358 add_com_alias ("tr", "trace", class_alias, 1);
16359 add_com_alias ("tra", "trace", class_alias, 1);
16360 add_com_alias ("trac", "trace", class_alias, 1);
16361
16362 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16363 Set a fast tracepoint at specified location.\n\
16364 \n"
16365 BREAK_ARGS_HELP ("ftrace") "\n\
16366 Do \"help tracepoints\" for info on other tracepoint commands."));
16367 set_cmd_completer (c, location_completer);
16368
16369 c = add_com ("strace", class_breakpoint, strace_command, _("\
16370 Set a static tracepoint at location or marker.\n\
16371 \n\
16372 strace [LOCATION] [if CONDITION]\n\
16373 LOCATION may be a linespec, explicit, or address location (described below) \n\
16374 or -m MARKER_ID.\n\n\
16375 If a marker id is specified, probe the marker with that name. With\n\
16376 no LOCATION, uses current execution address of the selected stack frame.\n\
16377 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16378 This collects arbitrary user data passed in the probe point call to the\n\
16379 tracing library. You can inspect it when analyzing the trace buffer,\n\
16380 by printing the $_sdata variable like any other convenience variable.\n\
16381 \n\
16382 CONDITION is a boolean expression.\n\
16383 \n" LOCATION_HELP_STRING "\n\
16384 Multiple tracepoints at one place are permitted, and useful if their\n\
16385 conditions are different.\n\
16386 \n\
16387 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16388 Do \"help tracepoints\" for info on other tracepoint commands."));
16389 set_cmd_completer (c, location_completer);
16390
16391 add_info ("tracepoints", tracepoints_info, _("\
16392 Status of specified tracepoints (all tracepoints if no argument).\n\
16393 Convenience variable \"$tpnum\" contains the number of the\n\
16394 last tracepoint set."));
16395
16396 add_info_alias ("tp", "tracepoints", 1);
16397
16398 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16399 Delete specified tracepoints.\n\
16400 Arguments are tracepoint numbers, separated by spaces.\n\
16401 No argument means delete all tracepoints."),
16402 &deletelist);
16403 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16404
16405 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16406 Disable specified tracepoints.\n\
16407 Arguments are tracepoint numbers, separated by spaces.\n\
16408 No argument means disable all tracepoints."),
16409 &disablelist);
16410 deprecate_cmd (c, "disable");
16411
16412 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16413 Enable specified tracepoints.\n\
16414 Arguments are tracepoint numbers, separated by spaces.\n\
16415 No argument means enable all tracepoints."),
16416 &enablelist);
16417 deprecate_cmd (c, "enable");
16418
16419 add_com ("passcount", class_trace, trace_pass_command, _("\
16420 Set the passcount for a tracepoint.\n\
16421 The trace will end when the tracepoint has been passed 'count' times.\n\
16422 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16423 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16424
16425 add_prefix_cmd ("save", class_breakpoint, save_command,
16426 _("Save breakpoint definitions as a script."),
16427 &save_cmdlist, "save ",
16428 0/*allow-unknown*/, &cmdlist);
16429
16430 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16431 Save current breakpoint definitions as a script.\n\
16432 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16433 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16434 session to restore them."),
16435 &save_cmdlist);
16436 set_cmd_completer (c, filename_completer);
16437
16438 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16439 Save current tracepoint definitions as a script.\n\
16440 Use the 'source' command in another debug session to restore them."),
16441 &save_cmdlist);
16442 set_cmd_completer (c, filename_completer);
16443
16444 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16445 deprecate_cmd (c, "save tracepoints");
16446
16447 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16448 Breakpoint specific settings\n\
16449 Configure various breakpoint-specific variables such as\n\
16450 pending breakpoint behavior"),
16451 &breakpoint_set_cmdlist, "set breakpoint ",
16452 0/*allow-unknown*/, &setlist);
16453 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16454 Breakpoint specific settings\n\
16455 Configure various breakpoint-specific variables such as\n\
16456 pending breakpoint behavior"),
16457 &breakpoint_show_cmdlist, "show breakpoint ",
16458 0/*allow-unknown*/, &showlist);
16459
16460 add_setshow_auto_boolean_cmd ("pending", no_class,
16461 &pending_break_support, _("\
16462 Set debugger's behavior regarding pending breakpoints."), _("\
16463 Show debugger's behavior regarding pending breakpoints."), _("\
16464 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16465 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16466 an error. If auto, an unrecognized breakpoint location results in a\n\
16467 user-query to see if a pending breakpoint should be created."),
16468 NULL,
16469 show_pending_break_support,
16470 &breakpoint_set_cmdlist,
16471 &breakpoint_show_cmdlist);
16472
16473 pending_break_support = AUTO_BOOLEAN_AUTO;
16474
16475 add_setshow_boolean_cmd ("auto-hw", no_class,
16476 &automatic_hardware_breakpoints, _("\
16477 Set automatic usage of hardware breakpoints."), _("\
16478 Show automatic usage of hardware breakpoints."), _("\
16479 If set, the debugger will automatically use hardware breakpoints for\n\
16480 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16481 a warning will be emitted for such breakpoints."),
16482 NULL,
16483 show_automatic_hardware_breakpoints,
16484 &breakpoint_set_cmdlist,
16485 &breakpoint_show_cmdlist);
16486
16487 add_setshow_boolean_cmd ("always-inserted", class_support,
16488 &always_inserted_mode, _("\
16489 Set mode for inserting breakpoints."), _("\
16490 Show mode for inserting breakpoints."), _("\
16491 When this mode is on, breakpoints are inserted immediately as soon as\n\
16492 they're created, kept inserted even when execution stops, and removed\n\
16493 only when the user deletes them. When this mode is off (the default),\n\
16494 breakpoints are inserted only when execution continues, and removed\n\
16495 when execution stops."),
16496 NULL,
16497 &show_always_inserted_mode,
16498 &breakpoint_set_cmdlist,
16499 &breakpoint_show_cmdlist);
16500
16501 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16502 condition_evaluation_enums,
16503 &condition_evaluation_mode_1, _("\
16504 Set mode of breakpoint condition evaluation."), _("\
16505 Show mode of breakpoint condition evaluation."), _("\
16506 When this is set to \"host\", breakpoint conditions will be\n\
16507 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16508 breakpoint conditions will be downloaded to the target (if the target\n\
16509 supports such feature) and conditions will be evaluated on the target's side.\n\
16510 If this is set to \"auto\" (default), this will be automatically set to\n\
16511 \"target\" if it supports condition evaluation, otherwise it will\n\
16512 be set to \"gdb\""),
16513 &set_condition_evaluation_mode,
16514 &show_condition_evaluation_mode,
16515 &breakpoint_set_cmdlist,
16516 &breakpoint_show_cmdlist);
16517
16518 add_com ("break-range", class_breakpoint, break_range_command, _("\
16519 Set a breakpoint for an address range.\n\
16520 break-range START-LOCATION, END-LOCATION\n\
16521 where START-LOCATION and END-LOCATION can be one of the following:\n\
16522 LINENUM, for that line in the current file,\n\
16523 FILE:LINENUM, for that line in that file,\n\
16524 +OFFSET, for that number of lines after the current line\n\
16525 or the start of the range\n\
16526 FUNCTION, for the first line in that function,\n\
16527 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16528 *ADDRESS, for the instruction at that address.\n\
16529 \n\
16530 The breakpoint will stop execution of the inferior whenever it executes\n\
16531 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16532 range (including START-LOCATION and END-LOCATION)."));
16533
16534 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16535 Set a dynamic printf at specified location.\n\
16536 dprintf location,format string,arg1,arg2,...\n\
16537 location may be a linespec, explicit, or address location.\n"
16538 "\n" LOCATION_HELP_STRING));
16539 set_cmd_completer (c, location_completer);
16540
16541 add_setshow_enum_cmd ("dprintf-style", class_support,
16542 dprintf_style_enums, &dprintf_style, _("\
16543 Set the style of usage for dynamic printf."), _("\
16544 Show the style of usage for dynamic printf."), _("\
16545 This setting chooses how GDB will do a dynamic printf.\n\
16546 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16547 console, as with the \"printf\" command.\n\
16548 If the value is \"call\", the print is done by calling a function in your\n\
16549 program; by default printf(), but you can choose a different function or\n\
16550 output stream by setting dprintf-function and dprintf-channel."),
16551 update_dprintf_commands, NULL,
16552 &setlist, &showlist);
16553
16554 dprintf_function = xstrdup ("printf");
16555 add_setshow_string_cmd ("dprintf-function", class_support,
16556 &dprintf_function, _("\
16557 Set the function to use for dynamic printf"), _("\
16558 Show the function to use for dynamic printf"), NULL,
16559 update_dprintf_commands, NULL,
16560 &setlist, &showlist);
16561
16562 dprintf_channel = xstrdup ("");
16563 add_setshow_string_cmd ("dprintf-channel", class_support,
16564 &dprintf_channel, _("\
16565 Set the channel to use for dynamic printf"), _("\
16566 Show the channel to use for dynamic printf"), NULL,
16567 update_dprintf_commands, NULL,
16568 &setlist, &showlist);
16569
16570 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16571 &disconnected_dprintf, _("\
16572 Set whether dprintf continues after GDB disconnects."), _("\
16573 Show whether dprintf continues after GDB disconnects."), _("\
16574 Use this to let dprintf commands continue to hit and produce output\n\
16575 even if GDB disconnects or detaches from the target."),
16576 NULL,
16577 NULL,
16578 &setlist, &showlist);
16579
16580 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16581 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16582 (target agent only) This is useful for formatted output in user-defined commands."));
16583
16584 automatic_hardware_breakpoints = 1;
16585
16586 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16587 observer_attach_thread_exit (remove_threaded_breakpoints);
16588 }
This page took 0.462009 seconds and 4 git commands to generate.