Use a std::vector for ada_exceptions_list
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "block.h"
51 #include "solib.h"
52 #include "solist.h"
53 #include "observer.h"
54 #include "memattr.h"
55 #include "ada-lang.h"
56 #include "top.h"
57 #include "valprint.h"
58 #include "jit.h"
59 #include "parser-defs.h"
60 #include "gdb_regex.h"
61 #include "probe.h"
62 #include "cli/cli-utils.h"
63 #include "continuations.h"
64 #include "stack.h"
65 #include "skip.h"
66 #include "ax-gdb.h"
67 #include "dummy-frame.h"
68 #include "interps.h"
69 #include "format.h"
70 #include "thread-fsm.h"
71 #include "tid-parse.h"
72
73 /* readline include files */
74 #include "readline/readline.h"
75 #include "readline/history.h"
76
77 /* readline defines this. */
78 #undef savestring
79
80 #include "mi/mi-common.h"
81 #include "extension.h"
82 #include <algorithm>
83 #include "progspace-and-thread.h"
84 #include "common/array-view.h"
85 #include "common/gdb_optional.h"
86
87 /* Enums for exception-handling support. */
88 enum exception_event_kind
89 {
90 EX_EVENT_THROW,
91 EX_EVENT_RETHROW,
92 EX_EVENT_CATCH
93 };
94
95 /* Prototypes for local functions. */
96
97 static void disable_command (char *, int);
98
99 static void enable_command (char *, int);
100
101 static void map_breakpoint_numbers (const char *,
102 gdb::function_view<void (breakpoint *)>);
103
104 static void ignore_command (char *, int);
105
106 static int breakpoint_re_set_one (void *);
107
108 static void breakpoint_re_set_default (struct breakpoint *);
109
110 static void
111 create_sals_from_location_default (const struct event_location *location,
112 struct linespec_result *canonical,
113 enum bptype type_wanted);
114
115 static void create_breakpoints_sal_default (struct gdbarch *,
116 struct linespec_result *,
117 gdb::unique_xmalloc_ptr<char>,
118 gdb::unique_xmalloc_ptr<char>,
119 enum bptype,
120 enum bpdisp, int, int,
121 int,
122 const struct breakpoint_ops *,
123 int, int, int, unsigned);
124
125 static std::vector<symtab_and_line> decode_location_default
126 (struct breakpoint *b, const struct event_location *location,
127 struct program_space *search_pspace);
128
129 static void clear_command (char *, int);
130
131 static void catch_command (char *, int);
132
133 static int can_use_hardware_watchpoint (struct value *);
134
135 static void mention (struct breakpoint *);
136
137 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
138 enum bptype,
139 const struct breakpoint_ops *);
140 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
141 const struct symtab_and_line *);
142
143 /* This function is used in gdbtk sources and thus can not be made
144 static. */
145 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
146 struct symtab_and_line,
147 enum bptype,
148 const struct breakpoint_ops *);
149
150 static struct breakpoint *
151 momentary_breakpoint_from_master (struct breakpoint *orig,
152 enum bptype type,
153 const struct breakpoint_ops *ops,
154 int loc_enabled);
155
156 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
157
158 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
159 CORE_ADDR bpaddr,
160 enum bptype bptype);
161
162 static void describe_other_breakpoints (struct gdbarch *,
163 struct program_space *, CORE_ADDR,
164 struct obj_section *, int);
165
166 static int watchpoint_locations_match (struct bp_location *loc1,
167 struct bp_location *loc2);
168
169 static int breakpoint_location_address_match (struct bp_location *bl,
170 struct address_space *aspace,
171 CORE_ADDR addr);
172
173 static int breakpoint_location_address_range_overlap (struct bp_location *,
174 struct address_space *,
175 CORE_ADDR, int);
176
177 static void info_breakpoints_command (char *, int);
178
179 static void info_watchpoints_command (char *, int);
180
181 static int breakpoint_cond_eval (void *);
182
183 static void cleanup_executing_breakpoints (void *);
184
185 static void commands_command (char *, int);
186
187 static void condition_command (char *, int);
188
189 static int remove_breakpoint (struct bp_location *);
190 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
191
192 static enum print_stop_action print_bp_stop_message (bpstat bs);
193
194 static int watchpoint_check (void *);
195
196 static int hw_breakpoint_used_count (void);
197
198 static int hw_watchpoint_use_count (struct breakpoint *);
199
200 static int hw_watchpoint_used_count_others (struct breakpoint *except,
201 enum bptype type,
202 int *other_type_used);
203
204 static void hbreak_command (char *, int);
205
206 static void thbreak_command (char *, int);
207
208 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
209 int count);
210
211 static void stop_command (char *arg, int from_tty);
212
213 static void tcatch_command (char *arg, int from_tty);
214
215 static void free_bp_location (struct bp_location *loc);
216 static void incref_bp_location (struct bp_location *loc);
217 static void decref_bp_location (struct bp_location **loc);
218
219 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
220
221 /* update_global_location_list's modes of operation wrt to whether to
222 insert locations now. */
223 enum ugll_insert_mode
224 {
225 /* Don't insert any breakpoint locations into the inferior, only
226 remove already-inserted locations that no longer should be
227 inserted. Functions that delete a breakpoint or breakpoints
228 should specify this mode, so that deleting a breakpoint doesn't
229 have the side effect of inserting the locations of other
230 breakpoints that are marked not-inserted, but should_be_inserted
231 returns true on them.
232
233 This behavior is useful is situations close to tear-down -- e.g.,
234 after an exec, while the target still has execution, but
235 breakpoint shadows of the previous executable image should *NOT*
236 be restored to the new image; or before detaching, where the
237 target still has execution and wants to delete breakpoints from
238 GDB's lists, and all breakpoints had already been removed from
239 the inferior. */
240 UGLL_DONT_INSERT,
241
242 /* May insert breakpoints iff breakpoints_should_be_inserted_now
243 claims breakpoints should be inserted now. */
244 UGLL_MAY_INSERT,
245
246 /* Insert locations now, irrespective of
247 breakpoints_should_be_inserted_now. E.g., say all threads are
248 stopped right now, and the user did "continue". We need to
249 insert breakpoints _before_ resuming the target, but
250 UGLL_MAY_INSERT wouldn't insert them, because
251 breakpoints_should_be_inserted_now returns false at that point,
252 as no thread is running yet. */
253 UGLL_INSERT
254 };
255
256 static void update_global_location_list (enum ugll_insert_mode);
257
258 static void update_global_location_list_nothrow (enum ugll_insert_mode);
259
260 static int is_hardware_watchpoint (const struct breakpoint *bpt);
261
262 static void insert_breakpoint_locations (void);
263
264 static void info_tracepoints_command (char *, int);
265
266 static void enable_trace_command (char *, int);
267
268 static void disable_trace_command (char *, int);
269
270 static void trace_pass_command (char *, int);
271
272 static void set_tracepoint_count (int num);
273
274 static int is_masked_watchpoint (const struct breakpoint *b);
275
276 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
277
278 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
279 otherwise. */
280
281 static int strace_marker_p (struct breakpoint *b);
282
283 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
284 that are implemented on top of software or hardware breakpoints
285 (user breakpoints, internal and momentary breakpoints, etc.). */
286 static struct breakpoint_ops bkpt_base_breakpoint_ops;
287
288 /* Internal breakpoints class type. */
289 static struct breakpoint_ops internal_breakpoint_ops;
290
291 /* Momentary breakpoints class type. */
292 static struct breakpoint_ops momentary_breakpoint_ops;
293
294 /* The breakpoint_ops structure to be used in regular user created
295 breakpoints. */
296 struct breakpoint_ops bkpt_breakpoint_ops;
297
298 /* Breakpoints set on probes. */
299 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
300
301 /* Dynamic printf class type. */
302 struct breakpoint_ops dprintf_breakpoint_ops;
303
304 /* The style in which to perform a dynamic printf. This is a user
305 option because different output options have different tradeoffs;
306 if GDB does the printing, there is better error handling if there
307 is a problem with any of the arguments, but using an inferior
308 function lets you have special-purpose printers and sending of
309 output to the same place as compiled-in print functions. */
310
311 static const char dprintf_style_gdb[] = "gdb";
312 static const char dprintf_style_call[] = "call";
313 static const char dprintf_style_agent[] = "agent";
314 static const char *const dprintf_style_enums[] = {
315 dprintf_style_gdb,
316 dprintf_style_call,
317 dprintf_style_agent,
318 NULL
319 };
320 static const char *dprintf_style = dprintf_style_gdb;
321
322 /* The function to use for dynamic printf if the preferred style is to
323 call into the inferior. The value is simply a string that is
324 copied into the command, so it can be anything that GDB can
325 evaluate to a callable address, not necessarily a function name. */
326
327 static char *dprintf_function;
328
329 /* The channel to use for dynamic printf if the preferred style is to
330 call into the inferior; if a nonempty string, it will be passed to
331 the call as the first argument, with the format string as the
332 second. As with the dprintf function, this can be anything that
333 GDB knows how to evaluate, so in addition to common choices like
334 "stderr", this could be an app-specific expression like
335 "mystreams[curlogger]". */
336
337 static char *dprintf_channel;
338
339 /* True if dprintf commands should continue to operate even if GDB
340 has disconnected. */
341 static int disconnected_dprintf = 1;
342
343 struct command_line *
344 breakpoint_commands (struct breakpoint *b)
345 {
346 return b->commands ? b->commands.get () : NULL;
347 }
348
349 /* Flag indicating that a command has proceeded the inferior past the
350 current breakpoint. */
351
352 static int breakpoint_proceeded;
353
354 const char *
355 bpdisp_text (enum bpdisp disp)
356 {
357 /* NOTE: the following values are a part of MI protocol and
358 represent values of 'disp' field returned when inferior stops at
359 a breakpoint. */
360 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
361
362 return bpdisps[(int) disp];
363 }
364
365 /* Prototypes for exported functions. */
366 /* If FALSE, gdb will not use hardware support for watchpoints, even
367 if such is available. */
368 static int can_use_hw_watchpoints;
369
370 static void
371 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
372 struct cmd_list_element *c,
373 const char *value)
374 {
375 fprintf_filtered (file,
376 _("Debugger's willingness to use "
377 "watchpoint hardware is %s.\n"),
378 value);
379 }
380
381 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
382 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
383 for unrecognized breakpoint locations.
384 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
385 static enum auto_boolean pending_break_support;
386 static void
387 show_pending_break_support (struct ui_file *file, int from_tty,
388 struct cmd_list_element *c,
389 const char *value)
390 {
391 fprintf_filtered (file,
392 _("Debugger's behavior regarding "
393 "pending breakpoints is %s.\n"),
394 value);
395 }
396
397 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
398 set with "break" but falling in read-only memory.
399 If 0, gdb will warn about such breakpoints, but won't automatically
400 use hardware breakpoints. */
401 static int automatic_hardware_breakpoints;
402 static void
403 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
404 struct cmd_list_element *c,
405 const char *value)
406 {
407 fprintf_filtered (file,
408 _("Automatic usage of hardware breakpoints is %s.\n"),
409 value);
410 }
411
412 /* If on, GDB keeps breakpoints inserted even if the inferior is
413 stopped, and immediately inserts any new breakpoints as soon as
414 they're created. If off (default), GDB keeps breakpoints off of
415 the target as long as possible. That is, it delays inserting
416 breakpoints until the next resume, and removes them again when the
417 target fully stops. This is a bit safer in case GDB crashes while
418 processing user input. */
419 static int always_inserted_mode = 0;
420
421 static void
422 show_always_inserted_mode (struct ui_file *file, int from_tty,
423 struct cmd_list_element *c, const char *value)
424 {
425 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
426 value);
427 }
428
429 /* See breakpoint.h. */
430
431 int
432 breakpoints_should_be_inserted_now (void)
433 {
434 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
435 {
436 /* If breakpoints are global, they should be inserted even if no
437 thread under gdb's control is running, or even if there are
438 no threads under GDB's control yet. */
439 return 1;
440 }
441 else if (target_has_execution)
442 {
443 struct thread_info *tp;
444
445 if (always_inserted_mode)
446 {
447 /* The user wants breakpoints inserted even if all threads
448 are stopped. */
449 return 1;
450 }
451
452 if (threads_are_executing ())
453 return 1;
454
455 /* Don't remove breakpoints yet if, even though all threads are
456 stopped, we still have events to process. */
457 ALL_NON_EXITED_THREADS (tp)
458 if (tp->resumed
459 && tp->suspend.waitstatus_pending_p)
460 return 1;
461 }
462 return 0;
463 }
464
465 static const char condition_evaluation_both[] = "host or target";
466
467 /* Modes for breakpoint condition evaluation. */
468 static const char condition_evaluation_auto[] = "auto";
469 static const char condition_evaluation_host[] = "host";
470 static const char condition_evaluation_target[] = "target";
471 static const char *const condition_evaluation_enums[] = {
472 condition_evaluation_auto,
473 condition_evaluation_host,
474 condition_evaluation_target,
475 NULL
476 };
477
478 /* Global that holds the current mode for breakpoint condition evaluation. */
479 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
480
481 /* Global that we use to display information to the user (gets its value from
482 condition_evaluation_mode_1. */
483 static const char *condition_evaluation_mode = condition_evaluation_auto;
484
485 /* Translate a condition evaluation mode MODE into either "host"
486 or "target". This is used mostly to translate from "auto" to the
487 real setting that is being used. It returns the translated
488 evaluation mode. */
489
490 static const char *
491 translate_condition_evaluation_mode (const char *mode)
492 {
493 if (mode == condition_evaluation_auto)
494 {
495 if (target_supports_evaluation_of_breakpoint_conditions ())
496 return condition_evaluation_target;
497 else
498 return condition_evaluation_host;
499 }
500 else
501 return mode;
502 }
503
504 /* Discovers what condition_evaluation_auto translates to. */
505
506 static const char *
507 breakpoint_condition_evaluation_mode (void)
508 {
509 return translate_condition_evaluation_mode (condition_evaluation_mode);
510 }
511
512 /* Return true if GDB should evaluate breakpoint conditions or false
513 otherwise. */
514
515 static int
516 gdb_evaluates_breakpoint_condition_p (void)
517 {
518 const char *mode = breakpoint_condition_evaluation_mode ();
519
520 return (mode == condition_evaluation_host);
521 }
522
523 /* Are we executing breakpoint commands? */
524 static int executing_breakpoint_commands;
525
526 /* Are overlay event breakpoints enabled? */
527 static int overlay_events_enabled;
528
529 /* See description in breakpoint.h. */
530 int target_exact_watchpoints = 0;
531
532 /* Walk the following statement or block through all breakpoints.
533 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
534 current breakpoint. */
535
536 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
537
538 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
539 for (B = breakpoint_chain; \
540 B ? (TMP=B->next, 1): 0; \
541 B = TMP)
542
543 /* Similar iterator for the low-level breakpoints. SAFE variant is
544 not provided so update_global_location_list must not be called
545 while executing the block of ALL_BP_LOCATIONS. */
546
547 #define ALL_BP_LOCATIONS(B,BP_TMP) \
548 for (BP_TMP = bp_locations; \
549 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
550 BP_TMP++)
551
552 /* Iterates through locations with address ADDRESS for the currently selected
553 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
554 to where the loop should start from.
555 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
556 appropriate location to start with. */
557
558 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
559 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
560 BP_LOCP_TMP = BP_LOCP_START; \
561 BP_LOCP_START \
562 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
563 && (*BP_LOCP_TMP)->address == ADDRESS); \
564 BP_LOCP_TMP++)
565
566 /* Iterator for tracepoints only. */
567
568 #define ALL_TRACEPOINTS(B) \
569 for (B = breakpoint_chain; B; B = B->next) \
570 if (is_tracepoint (B))
571
572 /* Chains of all breakpoints defined. */
573
574 struct breakpoint *breakpoint_chain;
575
576 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
577
578 static struct bp_location **bp_locations;
579
580 /* Number of elements of BP_LOCATIONS. */
581
582 static unsigned bp_locations_count;
583
584 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
585 ADDRESS for the current elements of BP_LOCATIONS which get a valid
586 result from bp_location_has_shadow. You can use it for roughly
587 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
588 an address you need to read. */
589
590 static CORE_ADDR bp_locations_placed_address_before_address_max;
591
592 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
593 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
594 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
595 You can use it for roughly limiting the subrange of BP_LOCATIONS to
596 scan for shadow bytes for an address you need to read. */
597
598 static CORE_ADDR bp_locations_shadow_len_after_address_max;
599
600 /* The locations that no longer correspond to any breakpoint, unlinked
601 from the bp_locations array, but for which a hit may still be
602 reported by a target. */
603 VEC(bp_location_p) *moribund_locations = NULL;
604
605 /* Number of last breakpoint made. */
606
607 static int breakpoint_count;
608
609 /* The value of `breakpoint_count' before the last command that
610 created breakpoints. If the last (break-like) command created more
611 than one breakpoint, then the difference between BREAKPOINT_COUNT
612 and PREV_BREAKPOINT_COUNT is more than one. */
613 static int prev_breakpoint_count;
614
615 /* Number of last tracepoint made. */
616
617 static int tracepoint_count;
618
619 static struct cmd_list_element *breakpoint_set_cmdlist;
620 static struct cmd_list_element *breakpoint_show_cmdlist;
621 struct cmd_list_element *save_cmdlist;
622
623 /* See declaration at breakpoint.h. */
624
625 struct breakpoint *
626 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
627 void *user_data)
628 {
629 struct breakpoint *b = NULL;
630
631 ALL_BREAKPOINTS (b)
632 {
633 if (func (b, user_data) != 0)
634 break;
635 }
636
637 return b;
638 }
639
640 /* Return whether a breakpoint is an active enabled breakpoint. */
641 static int
642 breakpoint_enabled (struct breakpoint *b)
643 {
644 return (b->enable_state == bp_enabled);
645 }
646
647 /* Set breakpoint count to NUM. */
648
649 static void
650 set_breakpoint_count (int num)
651 {
652 prev_breakpoint_count = breakpoint_count;
653 breakpoint_count = num;
654 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
655 }
656
657 /* Used by `start_rbreak_breakpoints' below, to record the current
658 breakpoint count before "rbreak" creates any breakpoint. */
659 static int rbreak_start_breakpoint_count;
660
661 /* Called at the start an "rbreak" command to record the first
662 breakpoint made. */
663
664 void
665 start_rbreak_breakpoints (void)
666 {
667 rbreak_start_breakpoint_count = breakpoint_count;
668 }
669
670 /* Called at the end of an "rbreak" command to record the last
671 breakpoint made. */
672
673 void
674 end_rbreak_breakpoints (void)
675 {
676 prev_breakpoint_count = rbreak_start_breakpoint_count;
677 }
678
679 /* Used in run_command to zero the hit count when a new run starts. */
680
681 void
682 clear_breakpoint_hit_counts (void)
683 {
684 struct breakpoint *b;
685
686 ALL_BREAKPOINTS (b)
687 b->hit_count = 0;
688 }
689
690 \f
691 /* Return the breakpoint with the specified number, or NULL
692 if the number does not refer to an existing breakpoint. */
693
694 struct breakpoint *
695 get_breakpoint (int num)
696 {
697 struct breakpoint *b;
698
699 ALL_BREAKPOINTS (b)
700 if (b->number == num)
701 return b;
702
703 return NULL;
704 }
705
706 \f
707
708 /* Mark locations as "conditions have changed" in case the target supports
709 evaluating conditions on its side. */
710
711 static void
712 mark_breakpoint_modified (struct breakpoint *b)
713 {
714 struct bp_location *loc;
715
716 /* This is only meaningful if the target is
717 evaluating conditions and if the user has
718 opted for condition evaluation on the target's
719 side. */
720 if (gdb_evaluates_breakpoint_condition_p ()
721 || !target_supports_evaluation_of_breakpoint_conditions ())
722 return;
723
724 if (!is_breakpoint (b))
725 return;
726
727 for (loc = b->loc; loc; loc = loc->next)
728 loc->condition_changed = condition_modified;
729 }
730
731 /* Mark location as "conditions have changed" in case the target supports
732 evaluating conditions on its side. */
733
734 static void
735 mark_breakpoint_location_modified (struct bp_location *loc)
736 {
737 /* This is only meaningful if the target is
738 evaluating conditions and if the user has
739 opted for condition evaluation on the target's
740 side. */
741 if (gdb_evaluates_breakpoint_condition_p ()
742 || !target_supports_evaluation_of_breakpoint_conditions ())
743
744 return;
745
746 if (!is_breakpoint (loc->owner))
747 return;
748
749 loc->condition_changed = condition_modified;
750 }
751
752 /* Sets the condition-evaluation mode using the static global
753 condition_evaluation_mode. */
754
755 static void
756 set_condition_evaluation_mode (char *args, int from_tty,
757 struct cmd_list_element *c)
758 {
759 const char *old_mode, *new_mode;
760
761 if ((condition_evaluation_mode_1 == condition_evaluation_target)
762 && !target_supports_evaluation_of_breakpoint_conditions ())
763 {
764 condition_evaluation_mode_1 = condition_evaluation_mode;
765 warning (_("Target does not support breakpoint condition evaluation.\n"
766 "Using host evaluation mode instead."));
767 return;
768 }
769
770 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
771 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
772
773 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
774 settings was "auto". */
775 condition_evaluation_mode = condition_evaluation_mode_1;
776
777 /* Only update the mode if the user picked a different one. */
778 if (new_mode != old_mode)
779 {
780 struct bp_location *loc, **loc_tmp;
781 /* If the user switched to a different evaluation mode, we
782 need to synch the changes with the target as follows:
783
784 "host" -> "target": Send all (valid) conditions to the target.
785 "target" -> "host": Remove all the conditions from the target.
786 */
787
788 if (new_mode == condition_evaluation_target)
789 {
790 /* Mark everything modified and synch conditions with the
791 target. */
792 ALL_BP_LOCATIONS (loc, loc_tmp)
793 mark_breakpoint_location_modified (loc);
794 }
795 else
796 {
797 /* Manually mark non-duplicate locations to synch conditions
798 with the target. We do this to remove all the conditions the
799 target knows about. */
800 ALL_BP_LOCATIONS (loc, loc_tmp)
801 if (is_breakpoint (loc->owner) && loc->inserted)
802 loc->needs_update = 1;
803 }
804
805 /* Do the update. */
806 update_global_location_list (UGLL_MAY_INSERT);
807 }
808
809 return;
810 }
811
812 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
813 what "auto" is translating to. */
814
815 static void
816 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
817 struct cmd_list_element *c, const char *value)
818 {
819 if (condition_evaluation_mode == condition_evaluation_auto)
820 fprintf_filtered (file,
821 _("Breakpoint condition evaluation "
822 "mode is %s (currently %s).\n"),
823 value,
824 breakpoint_condition_evaluation_mode ());
825 else
826 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
827 value);
828 }
829
830 /* A comparison function for bp_location AP and BP that is used by
831 bsearch. This comparison function only cares about addresses, unlike
832 the more general bp_locations_compare function. */
833
834 static int
835 bp_locations_compare_addrs (const void *ap, const void *bp)
836 {
837 const struct bp_location *a = *(const struct bp_location **) ap;
838 const struct bp_location *b = *(const struct bp_location **) bp;
839
840 if (a->address == b->address)
841 return 0;
842 else
843 return ((a->address > b->address) - (a->address < b->address));
844 }
845
846 /* Helper function to skip all bp_locations with addresses
847 less than ADDRESS. It returns the first bp_location that
848 is greater than or equal to ADDRESS. If none is found, just
849 return NULL. */
850
851 static struct bp_location **
852 get_first_locp_gte_addr (CORE_ADDR address)
853 {
854 struct bp_location dummy_loc;
855 struct bp_location *dummy_locp = &dummy_loc;
856 struct bp_location **locp_found = NULL;
857
858 /* Initialize the dummy location's address field. */
859 dummy_loc.address = address;
860
861 /* Find a close match to the first location at ADDRESS. */
862 locp_found = ((struct bp_location **)
863 bsearch (&dummy_locp, bp_locations, bp_locations_count,
864 sizeof (struct bp_location **),
865 bp_locations_compare_addrs));
866
867 /* Nothing was found, nothing left to do. */
868 if (locp_found == NULL)
869 return NULL;
870
871 /* We may have found a location that is at ADDRESS but is not the first in the
872 location's list. Go backwards (if possible) and locate the first one. */
873 while ((locp_found - 1) >= bp_locations
874 && (*(locp_found - 1))->address == address)
875 locp_found--;
876
877 return locp_found;
878 }
879
880 void
881 set_breakpoint_condition (struct breakpoint *b, const char *exp,
882 int from_tty)
883 {
884 xfree (b->cond_string);
885 b->cond_string = NULL;
886
887 if (is_watchpoint (b))
888 {
889 struct watchpoint *w = (struct watchpoint *) b;
890
891 w->cond_exp.reset ();
892 }
893 else
894 {
895 struct bp_location *loc;
896
897 for (loc = b->loc; loc; loc = loc->next)
898 {
899 loc->cond.reset ();
900
901 /* No need to free the condition agent expression
902 bytecode (if we have one). We will handle this
903 when we go through update_global_location_list. */
904 }
905 }
906
907 if (*exp == 0)
908 {
909 if (from_tty)
910 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
911 }
912 else
913 {
914 const char *arg = exp;
915
916 /* I don't know if it matters whether this is the string the user
917 typed in or the decompiled expression. */
918 b->cond_string = xstrdup (arg);
919 b->condition_not_parsed = 0;
920
921 if (is_watchpoint (b))
922 {
923 struct watchpoint *w = (struct watchpoint *) b;
924
925 innermost_block = NULL;
926 arg = exp;
927 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
928 if (*arg)
929 error (_("Junk at end of expression"));
930 w->cond_exp_valid_block = innermost_block;
931 }
932 else
933 {
934 struct bp_location *loc;
935
936 for (loc = b->loc; loc; loc = loc->next)
937 {
938 arg = exp;
939 loc->cond =
940 parse_exp_1 (&arg, loc->address,
941 block_for_pc (loc->address), 0);
942 if (*arg)
943 error (_("Junk at end of expression"));
944 }
945 }
946 }
947 mark_breakpoint_modified (b);
948
949 observer_notify_breakpoint_modified (b);
950 }
951
952 /* Completion for the "condition" command. */
953
954 static void
955 condition_completer (struct cmd_list_element *cmd,
956 completion_tracker &tracker,
957 const char *text, const char *word)
958 {
959 const char *space;
960
961 text = skip_spaces (text);
962 space = skip_to_space (text);
963 if (*space == '\0')
964 {
965 int len;
966 struct breakpoint *b;
967 VEC (char_ptr) *result = NULL;
968
969 if (text[0] == '$')
970 {
971 /* We don't support completion of history indices. */
972 if (!isdigit (text[1]))
973 complete_internalvar (tracker, &text[1]);
974 return;
975 }
976
977 /* We're completing the breakpoint number. */
978 len = strlen (text);
979
980 ALL_BREAKPOINTS (b)
981 {
982 char number[50];
983
984 xsnprintf (number, sizeof (number), "%d", b->number);
985
986 if (strncmp (number, text, len) == 0)
987 {
988 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
989 tracker.add_completion (std::move (copy));
990 }
991 }
992
993 return;
994 }
995
996 /* We're completing the expression part. */
997 text = skip_spaces (space);
998 expression_completer (cmd, tracker, text, word);
999 }
1000
1001 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1002
1003 static void
1004 condition_command (char *arg, int from_tty)
1005 {
1006 struct breakpoint *b;
1007 char *p;
1008 int bnum;
1009
1010 if (arg == 0)
1011 error_no_arg (_("breakpoint number"));
1012
1013 p = arg;
1014 bnum = get_number (&p);
1015 if (bnum == 0)
1016 error (_("Bad breakpoint argument: '%s'"), arg);
1017
1018 ALL_BREAKPOINTS (b)
1019 if (b->number == bnum)
1020 {
1021 /* Check if this breakpoint has a "stop" method implemented in an
1022 extension language. This method and conditions entered into GDB
1023 from the CLI are mutually exclusive. */
1024 const struct extension_language_defn *extlang
1025 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1026
1027 if (extlang != NULL)
1028 {
1029 error (_("Only one stop condition allowed. There is currently"
1030 " a %s stop condition defined for this breakpoint."),
1031 ext_lang_capitalized_name (extlang));
1032 }
1033 set_breakpoint_condition (b, p, from_tty);
1034
1035 if (is_breakpoint (b))
1036 update_global_location_list (UGLL_MAY_INSERT);
1037
1038 return;
1039 }
1040
1041 error (_("No breakpoint number %d."), bnum);
1042 }
1043
1044 /* Check that COMMAND do not contain commands that are suitable
1045 only for tracepoints and not suitable for ordinary breakpoints.
1046 Throw if any such commands is found. */
1047
1048 static void
1049 check_no_tracepoint_commands (struct command_line *commands)
1050 {
1051 struct command_line *c;
1052
1053 for (c = commands; c; c = c->next)
1054 {
1055 int i;
1056
1057 if (c->control_type == while_stepping_control)
1058 error (_("The 'while-stepping' command can "
1059 "only be used for tracepoints"));
1060
1061 for (i = 0; i < c->body_count; ++i)
1062 check_no_tracepoint_commands ((c->body_list)[i]);
1063
1064 /* Not that command parsing removes leading whitespace and comment
1065 lines and also empty lines. So, we only need to check for
1066 command directly. */
1067 if (strstr (c->line, "collect ") == c->line)
1068 error (_("The 'collect' command can only be used for tracepoints"));
1069
1070 if (strstr (c->line, "teval ") == c->line)
1071 error (_("The 'teval' command can only be used for tracepoints"));
1072 }
1073 }
1074
1075 struct longjmp_breakpoint : public breakpoint
1076 {
1077 ~longjmp_breakpoint () override;
1078 };
1079
1080 /* Encapsulate tests for different types of tracepoints. */
1081
1082 static bool
1083 is_tracepoint_type (bptype type)
1084 {
1085 return (type == bp_tracepoint
1086 || type == bp_fast_tracepoint
1087 || type == bp_static_tracepoint);
1088 }
1089
1090 static bool
1091 is_longjmp_type (bptype type)
1092 {
1093 return type == bp_longjmp || type == bp_exception;
1094 }
1095
1096 int
1097 is_tracepoint (const struct breakpoint *b)
1098 {
1099 return is_tracepoint_type (b->type);
1100 }
1101
1102 /* Factory function to create an appropriate instance of breakpoint given
1103 TYPE. */
1104
1105 static std::unique_ptr<breakpoint>
1106 new_breakpoint_from_type (bptype type)
1107 {
1108 breakpoint *b;
1109
1110 if (is_tracepoint_type (type))
1111 b = new tracepoint ();
1112 else if (is_longjmp_type (type))
1113 b = new longjmp_breakpoint ();
1114 else
1115 b = new breakpoint ();
1116
1117 return std::unique_ptr<breakpoint> (b);
1118 }
1119
1120 /* A helper function that validates that COMMANDS are valid for a
1121 breakpoint. This function will throw an exception if a problem is
1122 found. */
1123
1124 static void
1125 validate_commands_for_breakpoint (struct breakpoint *b,
1126 struct command_line *commands)
1127 {
1128 if (is_tracepoint (b))
1129 {
1130 struct tracepoint *t = (struct tracepoint *) b;
1131 struct command_line *c;
1132 struct command_line *while_stepping = 0;
1133
1134 /* Reset the while-stepping step count. The previous commands
1135 might have included a while-stepping action, while the new
1136 ones might not. */
1137 t->step_count = 0;
1138
1139 /* We need to verify that each top-level element of commands is
1140 valid for tracepoints, that there's at most one
1141 while-stepping element, and that the while-stepping's body
1142 has valid tracing commands excluding nested while-stepping.
1143 We also need to validate the tracepoint action line in the
1144 context of the tracepoint --- validate_actionline actually
1145 has side effects, like setting the tracepoint's
1146 while-stepping STEP_COUNT, in addition to checking if the
1147 collect/teval actions parse and make sense in the
1148 tracepoint's context. */
1149 for (c = commands; c; c = c->next)
1150 {
1151 if (c->control_type == while_stepping_control)
1152 {
1153 if (b->type == bp_fast_tracepoint)
1154 error (_("The 'while-stepping' command "
1155 "cannot be used for fast tracepoint"));
1156 else if (b->type == bp_static_tracepoint)
1157 error (_("The 'while-stepping' command "
1158 "cannot be used for static tracepoint"));
1159
1160 if (while_stepping)
1161 error (_("The 'while-stepping' command "
1162 "can be used only once"));
1163 else
1164 while_stepping = c;
1165 }
1166
1167 validate_actionline (c->line, b);
1168 }
1169 if (while_stepping)
1170 {
1171 struct command_line *c2;
1172
1173 gdb_assert (while_stepping->body_count == 1);
1174 c2 = while_stepping->body_list[0];
1175 for (; c2; c2 = c2->next)
1176 {
1177 if (c2->control_type == while_stepping_control)
1178 error (_("The 'while-stepping' command cannot be nested"));
1179 }
1180 }
1181 }
1182 else
1183 {
1184 check_no_tracepoint_commands (commands);
1185 }
1186 }
1187
1188 /* Return a vector of all the static tracepoints set at ADDR. The
1189 caller is responsible for releasing the vector. */
1190
1191 VEC(breakpoint_p) *
1192 static_tracepoints_here (CORE_ADDR addr)
1193 {
1194 struct breakpoint *b;
1195 VEC(breakpoint_p) *found = 0;
1196 struct bp_location *loc;
1197
1198 ALL_BREAKPOINTS (b)
1199 if (b->type == bp_static_tracepoint)
1200 {
1201 for (loc = b->loc; loc; loc = loc->next)
1202 if (loc->address == addr)
1203 VEC_safe_push(breakpoint_p, found, b);
1204 }
1205
1206 return found;
1207 }
1208
1209 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1210 validate that only allowed commands are included. */
1211
1212 void
1213 breakpoint_set_commands (struct breakpoint *b,
1214 command_line_up &&commands)
1215 {
1216 validate_commands_for_breakpoint (b, commands.get ());
1217
1218 b->commands = std::move (commands);
1219 observer_notify_breakpoint_modified (b);
1220 }
1221
1222 /* Set the internal `silent' flag on the breakpoint. Note that this
1223 is not the same as the "silent" that may appear in the breakpoint's
1224 commands. */
1225
1226 void
1227 breakpoint_set_silent (struct breakpoint *b, int silent)
1228 {
1229 int old_silent = b->silent;
1230
1231 b->silent = silent;
1232 if (old_silent != silent)
1233 observer_notify_breakpoint_modified (b);
1234 }
1235
1236 /* Set the thread for this breakpoint. If THREAD is -1, make the
1237 breakpoint work for any thread. */
1238
1239 void
1240 breakpoint_set_thread (struct breakpoint *b, int thread)
1241 {
1242 int old_thread = b->thread;
1243
1244 b->thread = thread;
1245 if (old_thread != thread)
1246 observer_notify_breakpoint_modified (b);
1247 }
1248
1249 /* Set the task for this breakpoint. If TASK is 0, make the
1250 breakpoint work for any task. */
1251
1252 void
1253 breakpoint_set_task (struct breakpoint *b, int task)
1254 {
1255 int old_task = b->task;
1256
1257 b->task = task;
1258 if (old_task != task)
1259 observer_notify_breakpoint_modified (b);
1260 }
1261
1262 void
1263 check_tracepoint_command (char *line, void *closure)
1264 {
1265 struct breakpoint *b = (struct breakpoint *) closure;
1266
1267 validate_actionline (line, b);
1268 }
1269
1270 static void
1271 commands_command_1 (const char *arg, int from_tty,
1272 struct command_line *control)
1273 {
1274 counted_command_line cmd;
1275
1276 std::string new_arg;
1277
1278 if (arg == NULL || !*arg)
1279 {
1280 if (breakpoint_count - prev_breakpoint_count > 1)
1281 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1282 breakpoint_count);
1283 else if (breakpoint_count > 0)
1284 new_arg = string_printf ("%d", breakpoint_count);
1285 arg = new_arg.c_str ();
1286 }
1287
1288 map_breakpoint_numbers
1289 (arg, [&] (breakpoint *b)
1290 {
1291 if (cmd == NULL)
1292 {
1293 if (control != NULL)
1294 cmd = copy_command_lines (control->body_list[0]);
1295 else
1296 {
1297 struct cleanup *old_chain;
1298 char *str;
1299
1300 str = xstrprintf (_("Type commands for breakpoint(s) "
1301 "%s, one per line."),
1302 arg);
1303
1304 old_chain = make_cleanup (xfree, str);
1305
1306 cmd = read_command_lines (str,
1307 from_tty, 1,
1308 (is_tracepoint (b)
1309 ? check_tracepoint_command : 0),
1310 b);
1311
1312 do_cleanups (old_chain);
1313 }
1314 }
1315
1316 /* If a breakpoint was on the list more than once, we don't need to
1317 do anything. */
1318 if (b->commands != cmd)
1319 {
1320 validate_commands_for_breakpoint (b, cmd.get ());
1321 b->commands = cmd;
1322 observer_notify_breakpoint_modified (b);
1323 }
1324 });
1325
1326 if (cmd == NULL)
1327 error (_("No breakpoints specified."));
1328 }
1329
1330 static void
1331 commands_command (char *arg, int from_tty)
1332 {
1333 commands_command_1 (arg, from_tty, NULL);
1334 }
1335
1336 /* Like commands_command, but instead of reading the commands from
1337 input stream, takes them from an already parsed command structure.
1338
1339 This is used by cli-script.c to DTRT with breakpoint commands
1340 that are part of if and while bodies. */
1341 enum command_control_type
1342 commands_from_control_command (const char *arg, struct command_line *cmd)
1343 {
1344 commands_command_1 (arg, 0, cmd);
1345 return simple_control;
1346 }
1347
1348 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1349
1350 static int
1351 bp_location_has_shadow (struct bp_location *bl)
1352 {
1353 if (bl->loc_type != bp_loc_software_breakpoint)
1354 return 0;
1355 if (!bl->inserted)
1356 return 0;
1357 if (bl->target_info.shadow_len == 0)
1358 /* BL isn't valid, or doesn't shadow memory. */
1359 return 0;
1360 return 1;
1361 }
1362
1363 /* Update BUF, which is LEN bytes read from the target address
1364 MEMADDR, by replacing a memory breakpoint with its shadowed
1365 contents.
1366
1367 If READBUF is not NULL, this buffer must not overlap with the of
1368 the breakpoint location's shadow_contents buffer. Otherwise, a
1369 failed assertion internal error will be raised. */
1370
1371 static void
1372 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1373 const gdb_byte *writebuf_org,
1374 ULONGEST memaddr, LONGEST len,
1375 struct bp_target_info *target_info,
1376 struct gdbarch *gdbarch)
1377 {
1378 /* Now do full processing of the found relevant range of elements. */
1379 CORE_ADDR bp_addr = 0;
1380 int bp_size = 0;
1381 int bptoffset = 0;
1382
1383 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1384 current_program_space->aspace, 0))
1385 {
1386 /* The breakpoint is inserted in a different address space. */
1387 return;
1388 }
1389
1390 /* Addresses and length of the part of the breakpoint that
1391 we need to copy. */
1392 bp_addr = target_info->placed_address;
1393 bp_size = target_info->shadow_len;
1394
1395 if (bp_addr + bp_size <= memaddr)
1396 {
1397 /* The breakpoint is entirely before the chunk of memory we are
1398 reading. */
1399 return;
1400 }
1401
1402 if (bp_addr >= memaddr + len)
1403 {
1404 /* The breakpoint is entirely after the chunk of memory we are
1405 reading. */
1406 return;
1407 }
1408
1409 /* Offset within shadow_contents. */
1410 if (bp_addr < memaddr)
1411 {
1412 /* Only copy the second part of the breakpoint. */
1413 bp_size -= memaddr - bp_addr;
1414 bptoffset = memaddr - bp_addr;
1415 bp_addr = memaddr;
1416 }
1417
1418 if (bp_addr + bp_size > memaddr + len)
1419 {
1420 /* Only copy the first part of the breakpoint. */
1421 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1422 }
1423
1424 if (readbuf != NULL)
1425 {
1426 /* Verify that the readbuf buffer does not overlap with the
1427 shadow_contents buffer. */
1428 gdb_assert (target_info->shadow_contents >= readbuf + len
1429 || readbuf >= (target_info->shadow_contents
1430 + target_info->shadow_len));
1431
1432 /* Update the read buffer with this inserted breakpoint's
1433 shadow. */
1434 memcpy (readbuf + bp_addr - memaddr,
1435 target_info->shadow_contents + bptoffset, bp_size);
1436 }
1437 else
1438 {
1439 const unsigned char *bp;
1440 CORE_ADDR addr = target_info->reqstd_address;
1441 int placed_size;
1442
1443 /* Update the shadow with what we want to write to memory. */
1444 memcpy (target_info->shadow_contents + bptoffset,
1445 writebuf_org + bp_addr - memaddr, bp_size);
1446
1447 /* Determine appropriate breakpoint contents and size for this
1448 address. */
1449 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1450
1451 /* Update the final write buffer with this inserted
1452 breakpoint's INSN. */
1453 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1454 }
1455 }
1456
1457 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1458 by replacing any memory breakpoints with their shadowed contents.
1459
1460 If READBUF is not NULL, this buffer must not overlap with any of
1461 the breakpoint location's shadow_contents buffers. Otherwise,
1462 a failed assertion internal error will be raised.
1463
1464 The range of shadowed area by each bp_location is:
1465 bl->address - bp_locations_placed_address_before_address_max
1466 up to bl->address + bp_locations_shadow_len_after_address_max
1467 The range we were requested to resolve shadows for is:
1468 memaddr ... memaddr + len
1469 Thus the safe cutoff boundaries for performance optimization are
1470 memaddr + len <= (bl->address
1471 - bp_locations_placed_address_before_address_max)
1472 and:
1473 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1474
1475 void
1476 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1477 const gdb_byte *writebuf_org,
1478 ULONGEST memaddr, LONGEST len)
1479 {
1480 /* Left boundary, right boundary and median element of our binary
1481 search. */
1482 unsigned bc_l, bc_r, bc;
1483
1484 /* Find BC_L which is a leftmost element which may affect BUF
1485 content. It is safe to report lower value but a failure to
1486 report higher one. */
1487
1488 bc_l = 0;
1489 bc_r = bp_locations_count;
1490 while (bc_l + 1 < bc_r)
1491 {
1492 struct bp_location *bl;
1493
1494 bc = (bc_l + bc_r) / 2;
1495 bl = bp_locations[bc];
1496
1497 /* Check first BL->ADDRESS will not overflow due to the added
1498 constant. Then advance the left boundary only if we are sure
1499 the BC element can in no way affect the BUF content (MEMADDR
1500 to MEMADDR + LEN range).
1501
1502 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1503 offset so that we cannot miss a breakpoint with its shadow
1504 range tail still reaching MEMADDR. */
1505
1506 if ((bl->address + bp_locations_shadow_len_after_address_max
1507 >= bl->address)
1508 && (bl->address + bp_locations_shadow_len_after_address_max
1509 <= memaddr))
1510 bc_l = bc;
1511 else
1512 bc_r = bc;
1513 }
1514
1515 /* Due to the binary search above, we need to make sure we pick the
1516 first location that's at BC_L's address. E.g., if there are
1517 multiple locations at the same address, BC_L may end up pointing
1518 at a duplicate location, and miss the "master"/"inserted"
1519 location. Say, given locations L1, L2 and L3 at addresses A and
1520 B:
1521
1522 L1@A, L2@A, L3@B, ...
1523
1524 BC_L could end up pointing at location L2, while the "master"
1525 location could be L1. Since the `loc->inserted' flag is only set
1526 on "master" locations, we'd forget to restore the shadow of L1
1527 and L2. */
1528 while (bc_l > 0
1529 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1530 bc_l--;
1531
1532 /* Now do full processing of the found relevant range of elements. */
1533
1534 for (bc = bc_l; bc < bp_locations_count; bc++)
1535 {
1536 struct bp_location *bl = bp_locations[bc];
1537
1538 /* bp_location array has BL->OWNER always non-NULL. */
1539 if (bl->owner->type == bp_none)
1540 warning (_("reading through apparently deleted breakpoint #%d?"),
1541 bl->owner->number);
1542
1543 /* Performance optimization: any further element can no longer affect BUF
1544 content. */
1545
1546 if (bl->address >= bp_locations_placed_address_before_address_max
1547 && memaddr + len <= (bl->address
1548 - bp_locations_placed_address_before_address_max))
1549 break;
1550
1551 if (!bp_location_has_shadow (bl))
1552 continue;
1553
1554 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1555 memaddr, len, &bl->target_info, bl->gdbarch);
1556 }
1557 }
1558
1559 \f
1560
1561 /* Return true if BPT is either a software breakpoint or a hardware
1562 breakpoint. */
1563
1564 int
1565 is_breakpoint (const struct breakpoint *bpt)
1566 {
1567 return (bpt->type == bp_breakpoint
1568 || bpt->type == bp_hardware_breakpoint
1569 || bpt->type == bp_dprintf);
1570 }
1571
1572 /* Return true if BPT is of any hardware watchpoint kind. */
1573
1574 static int
1575 is_hardware_watchpoint (const struct breakpoint *bpt)
1576 {
1577 return (bpt->type == bp_hardware_watchpoint
1578 || bpt->type == bp_read_watchpoint
1579 || bpt->type == bp_access_watchpoint);
1580 }
1581
1582 /* Return true if BPT is of any watchpoint kind, hardware or
1583 software. */
1584
1585 int
1586 is_watchpoint (const struct breakpoint *bpt)
1587 {
1588 return (is_hardware_watchpoint (bpt)
1589 || bpt->type == bp_watchpoint);
1590 }
1591
1592 /* Returns true if the current thread and its running state are safe
1593 to evaluate or update watchpoint B. Watchpoints on local
1594 expressions need to be evaluated in the context of the thread that
1595 was current when the watchpoint was created, and, that thread needs
1596 to be stopped to be able to select the correct frame context.
1597 Watchpoints on global expressions can be evaluated on any thread,
1598 and in any state. It is presently left to the target allowing
1599 memory accesses when threads are running. */
1600
1601 static int
1602 watchpoint_in_thread_scope (struct watchpoint *b)
1603 {
1604 return (b->pspace == current_program_space
1605 && (ptid_equal (b->watchpoint_thread, null_ptid)
1606 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1607 && !is_executing (inferior_ptid))));
1608 }
1609
1610 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1611 associated bp_watchpoint_scope breakpoint. */
1612
1613 static void
1614 watchpoint_del_at_next_stop (struct watchpoint *w)
1615 {
1616 if (w->related_breakpoint != w)
1617 {
1618 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1619 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1620 w->related_breakpoint->disposition = disp_del_at_next_stop;
1621 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1622 w->related_breakpoint = w;
1623 }
1624 w->disposition = disp_del_at_next_stop;
1625 }
1626
1627 /* Extract a bitfield value from value VAL using the bit parameters contained in
1628 watchpoint W. */
1629
1630 static struct value *
1631 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1632 {
1633 struct value *bit_val;
1634
1635 if (val == NULL)
1636 return NULL;
1637
1638 bit_val = allocate_value (value_type (val));
1639
1640 unpack_value_bitfield (bit_val,
1641 w->val_bitpos,
1642 w->val_bitsize,
1643 value_contents_for_printing (val),
1644 value_offset (val),
1645 val);
1646
1647 return bit_val;
1648 }
1649
1650 /* Allocate a dummy location and add it to B, which must be a software
1651 watchpoint. This is required because even if a software watchpoint
1652 is not watching any memory, bpstat_stop_status requires a location
1653 to be able to report stops. */
1654
1655 static void
1656 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1657 struct program_space *pspace)
1658 {
1659 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1660
1661 b->loc = allocate_bp_location (b);
1662 b->loc->pspace = pspace;
1663 b->loc->address = -1;
1664 b->loc->length = -1;
1665 }
1666
1667 /* Returns true if B is a software watchpoint that is not watching any
1668 memory (e.g., "watch $pc"). */
1669
1670 static int
1671 is_no_memory_software_watchpoint (struct breakpoint *b)
1672 {
1673 return (b->type == bp_watchpoint
1674 && b->loc != NULL
1675 && b->loc->next == NULL
1676 && b->loc->address == -1
1677 && b->loc->length == -1);
1678 }
1679
1680 /* Assuming that B is a watchpoint:
1681 - Reparse watchpoint expression, if REPARSE is non-zero
1682 - Evaluate expression and store the result in B->val
1683 - Evaluate the condition if there is one, and store the result
1684 in b->loc->cond.
1685 - Update the list of values that must be watched in B->loc.
1686
1687 If the watchpoint disposition is disp_del_at_next_stop, then do
1688 nothing. If this is local watchpoint that is out of scope, delete
1689 it.
1690
1691 Even with `set breakpoint always-inserted on' the watchpoints are
1692 removed + inserted on each stop here. Normal breakpoints must
1693 never be removed because they might be missed by a running thread
1694 when debugging in non-stop mode. On the other hand, hardware
1695 watchpoints (is_hardware_watchpoint; processed here) are specific
1696 to each LWP since they are stored in each LWP's hardware debug
1697 registers. Therefore, such LWP must be stopped first in order to
1698 be able to modify its hardware watchpoints.
1699
1700 Hardware watchpoints must be reset exactly once after being
1701 presented to the user. It cannot be done sooner, because it would
1702 reset the data used to present the watchpoint hit to the user. And
1703 it must not be done later because it could display the same single
1704 watchpoint hit during multiple GDB stops. Note that the latter is
1705 relevant only to the hardware watchpoint types bp_read_watchpoint
1706 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1707 not user-visible - its hit is suppressed if the memory content has
1708 not changed.
1709
1710 The following constraints influence the location where we can reset
1711 hardware watchpoints:
1712
1713 * target_stopped_by_watchpoint and target_stopped_data_address are
1714 called several times when GDB stops.
1715
1716 [linux]
1717 * Multiple hardware watchpoints can be hit at the same time,
1718 causing GDB to stop. GDB only presents one hardware watchpoint
1719 hit at a time as the reason for stopping, and all the other hits
1720 are presented later, one after the other, each time the user
1721 requests the execution to be resumed. Execution is not resumed
1722 for the threads still having pending hit event stored in
1723 LWP_INFO->STATUS. While the watchpoint is already removed from
1724 the inferior on the first stop the thread hit event is kept being
1725 reported from its cached value by linux_nat_stopped_data_address
1726 until the real thread resume happens after the watchpoint gets
1727 presented and thus its LWP_INFO->STATUS gets reset.
1728
1729 Therefore the hardware watchpoint hit can get safely reset on the
1730 watchpoint removal from inferior. */
1731
1732 static void
1733 update_watchpoint (struct watchpoint *b, int reparse)
1734 {
1735 int within_current_scope;
1736 struct frame_id saved_frame_id;
1737 int frame_saved;
1738
1739 /* If this is a local watchpoint, we only want to check if the
1740 watchpoint frame is in scope if the current thread is the thread
1741 that was used to create the watchpoint. */
1742 if (!watchpoint_in_thread_scope (b))
1743 return;
1744
1745 if (b->disposition == disp_del_at_next_stop)
1746 return;
1747
1748 frame_saved = 0;
1749
1750 /* Determine if the watchpoint is within scope. */
1751 if (b->exp_valid_block == NULL)
1752 within_current_scope = 1;
1753 else
1754 {
1755 struct frame_info *fi = get_current_frame ();
1756 struct gdbarch *frame_arch = get_frame_arch (fi);
1757 CORE_ADDR frame_pc = get_frame_pc (fi);
1758
1759 /* If we're at a point where the stack has been destroyed
1760 (e.g. in a function epilogue), unwinding may not work
1761 properly. Do not attempt to recreate locations at this
1762 point. See similar comments in watchpoint_check. */
1763 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1764 return;
1765
1766 /* Save the current frame's ID so we can restore it after
1767 evaluating the watchpoint expression on its own frame. */
1768 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1769 took a frame parameter, so that we didn't have to change the
1770 selected frame. */
1771 frame_saved = 1;
1772 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1773
1774 fi = frame_find_by_id (b->watchpoint_frame);
1775 within_current_scope = (fi != NULL);
1776 if (within_current_scope)
1777 select_frame (fi);
1778 }
1779
1780 /* We don't free locations. They are stored in the bp_location array
1781 and update_global_location_list will eventually delete them and
1782 remove breakpoints if needed. */
1783 b->loc = NULL;
1784
1785 if (within_current_scope && reparse)
1786 {
1787 const char *s;
1788
1789 b->exp.reset ();
1790 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1791 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1792 /* If the meaning of expression itself changed, the old value is
1793 no longer relevant. We don't want to report a watchpoint hit
1794 to the user when the old value and the new value may actually
1795 be completely different objects. */
1796 value_free (b->val);
1797 b->val = NULL;
1798 b->val_valid = 0;
1799
1800 /* Note that unlike with breakpoints, the watchpoint's condition
1801 expression is stored in the breakpoint object, not in the
1802 locations (re)created below. */
1803 if (b->cond_string != NULL)
1804 {
1805 b->cond_exp.reset ();
1806
1807 s = b->cond_string;
1808 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1809 }
1810 }
1811
1812 /* If we failed to parse the expression, for example because
1813 it refers to a global variable in a not-yet-loaded shared library,
1814 don't try to insert watchpoint. We don't automatically delete
1815 such watchpoint, though, since failure to parse expression
1816 is different from out-of-scope watchpoint. */
1817 if (!target_has_execution)
1818 {
1819 /* Without execution, memory can't change. No use to try and
1820 set watchpoint locations. The watchpoint will be reset when
1821 the target gains execution, through breakpoint_re_set. */
1822 if (!can_use_hw_watchpoints)
1823 {
1824 if (b->ops->works_in_software_mode (b))
1825 b->type = bp_watchpoint;
1826 else
1827 error (_("Can't set read/access watchpoint when "
1828 "hardware watchpoints are disabled."));
1829 }
1830 }
1831 else if (within_current_scope && b->exp)
1832 {
1833 int pc = 0;
1834 struct value *val_chain, *v, *result, *next;
1835 struct program_space *frame_pspace;
1836
1837 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1838
1839 /* Avoid setting b->val if it's already set. The meaning of
1840 b->val is 'the last value' user saw, and we should update
1841 it only if we reported that last value to user. As it
1842 happens, the code that reports it updates b->val directly.
1843 We don't keep track of the memory value for masked
1844 watchpoints. */
1845 if (!b->val_valid && !is_masked_watchpoint (b))
1846 {
1847 if (b->val_bitsize != 0)
1848 {
1849 v = extract_bitfield_from_watchpoint_value (b, v);
1850 if (v != NULL)
1851 release_value (v);
1852 }
1853 b->val = v;
1854 b->val_valid = 1;
1855 }
1856
1857 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1858
1859 /* Look at each value on the value chain. */
1860 for (v = val_chain; v; v = value_next (v))
1861 {
1862 /* If it's a memory location, and GDB actually needed
1863 its contents to evaluate the expression, then we
1864 must watch it. If the first value returned is
1865 still lazy, that means an error occurred reading it;
1866 watch it anyway in case it becomes readable. */
1867 if (VALUE_LVAL (v) == lval_memory
1868 && (v == val_chain || ! value_lazy (v)))
1869 {
1870 struct type *vtype = check_typedef (value_type (v));
1871
1872 /* We only watch structs and arrays if user asked
1873 for it explicitly, never if they just happen to
1874 appear in the middle of some value chain. */
1875 if (v == result
1876 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1877 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1878 {
1879 CORE_ADDR addr;
1880 enum target_hw_bp_type type;
1881 struct bp_location *loc, **tmp;
1882 int bitpos = 0, bitsize = 0;
1883
1884 if (value_bitsize (v) != 0)
1885 {
1886 /* Extract the bit parameters out from the bitfield
1887 sub-expression. */
1888 bitpos = value_bitpos (v);
1889 bitsize = value_bitsize (v);
1890 }
1891 else if (v == result && b->val_bitsize != 0)
1892 {
1893 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1894 lvalue whose bit parameters are saved in the fields
1895 VAL_BITPOS and VAL_BITSIZE. */
1896 bitpos = b->val_bitpos;
1897 bitsize = b->val_bitsize;
1898 }
1899
1900 addr = value_address (v);
1901 if (bitsize != 0)
1902 {
1903 /* Skip the bytes that don't contain the bitfield. */
1904 addr += bitpos / 8;
1905 }
1906
1907 type = hw_write;
1908 if (b->type == bp_read_watchpoint)
1909 type = hw_read;
1910 else if (b->type == bp_access_watchpoint)
1911 type = hw_access;
1912
1913 loc = allocate_bp_location (b);
1914 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1915 ;
1916 *tmp = loc;
1917 loc->gdbarch = get_type_arch (value_type (v));
1918
1919 loc->pspace = frame_pspace;
1920 loc->address = addr;
1921
1922 if (bitsize != 0)
1923 {
1924 /* Just cover the bytes that make up the bitfield. */
1925 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1926 }
1927 else
1928 loc->length = TYPE_LENGTH (value_type (v));
1929
1930 loc->watchpoint_type = type;
1931 }
1932 }
1933 }
1934
1935 /* Change the type of breakpoint between hardware assisted or
1936 an ordinary watchpoint depending on the hardware support
1937 and free hardware slots. REPARSE is set when the inferior
1938 is started. */
1939 if (reparse)
1940 {
1941 int reg_cnt;
1942 enum bp_loc_type loc_type;
1943 struct bp_location *bl;
1944
1945 reg_cnt = can_use_hardware_watchpoint (val_chain);
1946
1947 if (reg_cnt)
1948 {
1949 int i, target_resources_ok, other_type_used;
1950 enum bptype type;
1951
1952 /* Use an exact watchpoint when there's only one memory region to be
1953 watched, and only one debug register is needed to watch it. */
1954 b->exact = target_exact_watchpoints && reg_cnt == 1;
1955
1956 /* We need to determine how many resources are already
1957 used for all other hardware watchpoints plus this one
1958 to see if we still have enough resources to also fit
1959 this watchpoint in as well. */
1960
1961 /* If this is a software watchpoint, we try to turn it
1962 to a hardware one -- count resources as if B was of
1963 hardware watchpoint type. */
1964 type = b->type;
1965 if (type == bp_watchpoint)
1966 type = bp_hardware_watchpoint;
1967
1968 /* This watchpoint may or may not have been placed on
1969 the list yet at this point (it won't be in the list
1970 if we're trying to create it for the first time,
1971 through watch_command), so always account for it
1972 manually. */
1973
1974 /* Count resources used by all watchpoints except B. */
1975 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1976
1977 /* Add in the resources needed for B. */
1978 i += hw_watchpoint_use_count (b);
1979
1980 target_resources_ok
1981 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1982 if (target_resources_ok <= 0)
1983 {
1984 int sw_mode = b->ops->works_in_software_mode (b);
1985
1986 if (target_resources_ok == 0 && !sw_mode)
1987 error (_("Target does not support this type of "
1988 "hardware watchpoint."));
1989 else if (target_resources_ok < 0 && !sw_mode)
1990 error (_("There are not enough available hardware "
1991 "resources for this watchpoint."));
1992
1993 /* Downgrade to software watchpoint. */
1994 b->type = bp_watchpoint;
1995 }
1996 else
1997 {
1998 /* If this was a software watchpoint, we've just
1999 found we have enough resources to turn it to a
2000 hardware watchpoint. Otherwise, this is a
2001 nop. */
2002 b->type = type;
2003 }
2004 }
2005 else if (!b->ops->works_in_software_mode (b))
2006 {
2007 if (!can_use_hw_watchpoints)
2008 error (_("Can't set read/access watchpoint when "
2009 "hardware watchpoints are disabled."));
2010 else
2011 error (_("Expression cannot be implemented with "
2012 "read/access watchpoint."));
2013 }
2014 else
2015 b->type = bp_watchpoint;
2016
2017 loc_type = (b->type == bp_watchpoint? bp_loc_other
2018 : bp_loc_hardware_watchpoint);
2019 for (bl = b->loc; bl; bl = bl->next)
2020 bl->loc_type = loc_type;
2021 }
2022
2023 for (v = val_chain; v; v = next)
2024 {
2025 next = value_next (v);
2026 if (v != b->val)
2027 value_free (v);
2028 }
2029
2030 /* If a software watchpoint is not watching any memory, then the
2031 above left it without any location set up. But,
2032 bpstat_stop_status requires a location to be able to report
2033 stops, so make sure there's at least a dummy one. */
2034 if (b->type == bp_watchpoint && b->loc == NULL)
2035 software_watchpoint_add_no_memory_location (b, frame_pspace);
2036 }
2037 else if (!within_current_scope)
2038 {
2039 printf_filtered (_("\
2040 Watchpoint %d deleted because the program has left the block\n\
2041 in which its expression is valid.\n"),
2042 b->number);
2043 watchpoint_del_at_next_stop (b);
2044 }
2045
2046 /* Restore the selected frame. */
2047 if (frame_saved)
2048 select_frame (frame_find_by_id (saved_frame_id));
2049 }
2050
2051
2052 /* Returns 1 iff breakpoint location should be
2053 inserted in the inferior. We don't differentiate the type of BL's owner
2054 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2055 breakpoint_ops is not defined, because in insert_bp_location,
2056 tracepoint's insert_location will not be called. */
2057 static int
2058 should_be_inserted (struct bp_location *bl)
2059 {
2060 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2061 return 0;
2062
2063 if (bl->owner->disposition == disp_del_at_next_stop)
2064 return 0;
2065
2066 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2067 return 0;
2068
2069 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2070 return 0;
2071
2072 /* This is set for example, when we're attached to the parent of a
2073 vfork, and have detached from the child. The child is running
2074 free, and we expect it to do an exec or exit, at which point the
2075 OS makes the parent schedulable again (and the target reports
2076 that the vfork is done). Until the child is done with the shared
2077 memory region, do not insert breakpoints in the parent, otherwise
2078 the child could still trip on the parent's breakpoints. Since
2079 the parent is blocked anyway, it won't miss any breakpoint. */
2080 if (bl->pspace->breakpoints_not_allowed)
2081 return 0;
2082
2083 /* Don't insert a breakpoint if we're trying to step past its
2084 location, except if the breakpoint is a single-step breakpoint,
2085 and the breakpoint's thread is the thread which is stepping past
2086 a breakpoint. */
2087 if ((bl->loc_type == bp_loc_software_breakpoint
2088 || bl->loc_type == bp_loc_hardware_breakpoint)
2089 && stepping_past_instruction_at (bl->pspace->aspace,
2090 bl->address)
2091 /* The single-step breakpoint may be inserted at the location
2092 we're trying to step if the instruction branches to itself.
2093 However, the instruction won't be executed at all and it may
2094 break the semantics of the instruction, for example, the
2095 instruction is a conditional branch or updates some flags.
2096 We can't fix it unless GDB is able to emulate the instruction
2097 or switch to displaced stepping. */
2098 && !(bl->owner->type == bp_single_step
2099 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2100 {
2101 if (debug_infrun)
2102 {
2103 fprintf_unfiltered (gdb_stdlog,
2104 "infrun: skipping breakpoint: "
2105 "stepping past insn at: %s\n",
2106 paddress (bl->gdbarch, bl->address));
2107 }
2108 return 0;
2109 }
2110
2111 /* Don't insert watchpoints if we're trying to step past the
2112 instruction that triggered one. */
2113 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2114 && stepping_past_nonsteppable_watchpoint ())
2115 {
2116 if (debug_infrun)
2117 {
2118 fprintf_unfiltered (gdb_stdlog,
2119 "infrun: stepping past non-steppable watchpoint. "
2120 "skipping watchpoint at %s:%d\n",
2121 paddress (bl->gdbarch, bl->address),
2122 bl->length);
2123 }
2124 return 0;
2125 }
2126
2127 return 1;
2128 }
2129
2130 /* Same as should_be_inserted but does the check assuming
2131 that the location is not duplicated. */
2132
2133 static int
2134 unduplicated_should_be_inserted (struct bp_location *bl)
2135 {
2136 int result;
2137 const int save_duplicate = bl->duplicate;
2138
2139 bl->duplicate = 0;
2140 result = should_be_inserted (bl);
2141 bl->duplicate = save_duplicate;
2142 return result;
2143 }
2144
2145 /* Parses a conditional described by an expression COND into an
2146 agent expression bytecode suitable for evaluation
2147 by the bytecode interpreter. Return NULL if there was
2148 any error during parsing. */
2149
2150 static agent_expr_up
2151 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2152 {
2153 if (cond == NULL)
2154 return NULL;
2155
2156 agent_expr_up aexpr;
2157
2158 /* We don't want to stop processing, so catch any errors
2159 that may show up. */
2160 TRY
2161 {
2162 aexpr = gen_eval_for_expr (scope, cond);
2163 }
2164
2165 CATCH (ex, RETURN_MASK_ERROR)
2166 {
2167 /* If we got here, it means the condition could not be parsed to a valid
2168 bytecode expression and thus can't be evaluated on the target's side.
2169 It's no use iterating through the conditions. */
2170 }
2171 END_CATCH
2172
2173 /* We have a valid agent expression. */
2174 return aexpr;
2175 }
2176
2177 /* Based on location BL, create a list of breakpoint conditions to be
2178 passed on to the target. If we have duplicated locations with different
2179 conditions, we will add such conditions to the list. The idea is that the
2180 target will evaluate the list of conditions and will only notify GDB when
2181 one of them is true. */
2182
2183 static void
2184 build_target_condition_list (struct bp_location *bl)
2185 {
2186 struct bp_location **locp = NULL, **loc2p;
2187 int null_condition_or_parse_error = 0;
2188 int modified = bl->needs_update;
2189 struct bp_location *loc;
2190
2191 /* Release conditions left over from a previous insert. */
2192 bl->target_info.conditions.clear ();
2193
2194 /* This is only meaningful if the target is
2195 evaluating conditions and if the user has
2196 opted for condition evaluation on the target's
2197 side. */
2198 if (gdb_evaluates_breakpoint_condition_p ()
2199 || !target_supports_evaluation_of_breakpoint_conditions ())
2200 return;
2201
2202 /* Do a first pass to check for locations with no assigned
2203 conditions or conditions that fail to parse to a valid agent expression
2204 bytecode. If any of these happen, then it's no use to send conditions
2205 to the target since this location will always trigger and generate a
2206 response back to GDB. */
2207 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2208 {
2209 loc = (*loc2p);
2210 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2211 {
2212 if (modified)
2213 {
2214 /* Re-parse the conditions since something changed. In that
2215 case we already freed the condition bytecodes (see
2216 force_breakpoint_reinsertion). We just
2217 need to parse the condition to bytecodes again. */
2218 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2219 loc->cond.get ());
2220 }
2221
2222 /* If we have a NULL bytecode expression, it means something
2223 went wrong or we have a null condition expression. */
2224 if (!loc->cond_bytecode)
2225 {
2226 null_condition_or_parse_error = 1;
2227 break;
2228 }
2229 }
2230 }
2231
2232 /* If any of these happened, it means we will have to evaluate the conditions
2233 for the location's address on gdb's side. It is no use keeping bytecodes
2234 for all the other duplicate locations, thus we free all of them here.
2235
2236 This is so we have a finer control over which locations' conditions are
2237 being evaluated by GDB or the remote stub. */
2238 if (null_condition_or_parse_error)
2239 {
2240 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2241 {
2242 loc = (*loc2p);
2243 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2244 {
2245 /* Only go as far as the first NULL bytecode is
2246 located. */
2247 if (!loc->cond_bytecode)
2248 return;
2249
2250 loc->cond_bytecode.reset ();
2251 }
2252 }
2253 }
2254
2255 /* No NULL conditions or failed bytecode generation. Build a condition list
2256 for this location's address. */
2257 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2258 {
2259 loc = (*loc2p);
2260 if (loc->cond
2261 && is_breakpoint (loc->owner)
2262 && loc->pspace->num == bl->pspace->num
2263 && loc->owner->enable_state == bp_enabled
2264 && loc->enabled)
2265 {
2266 /* Add the condition to the vector. This will be used later
2267 to send the conditions to the target. */
2268 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2269 }
2270 }
2271
2272 return;
2273 }
2274
2275 /* Parses a command described by string CMD into an agent expression
2276 bytecode suitable for evaluation by the bytecode interpreter.
2277 Return NULL if there was any error during parsing. */
2278
2279 static agent_expr_up
2280 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2281 {
2282 struct cleanup *old_cleanups = 0;
2283 struct expression **argvec;
2284 const char *cmdrest;
2285 const char *format_start, *format_end;
2286 struct format_piece *fpieces;
2287 int nargs;
2288 struct gdbarch *gdbarch = get_current_arch ();
2289
2290 if (cmd == NULL)
2291 return NULL;
2292
2293 cmdrest = cmd;
2294
2295 if (*cmdrest == ',')
2296 ++cmdrest;
2297 cmdrest = skip_spaces (cmdrest);
2298
2299 if (*cmdrest++ != '"')
2300 error (_("No format string following the location"));
2301
2302 format_start = cmdrest;
2303
2304 fpieces = parse_format_string (&cmdrest);
2305
2306 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2307
2308 format_end = cmdrest;
2309
2310 if (*cmdrest++ != '"')
2311 error (_("Bad format string, non-terminated '\"'."));
2312
2313 cmdrest = skip_spaces (cmdrest);
2314
2315 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2316 error (_("Invalid argument syntax"));
2317
2318 if (*cmdrest == ',')
2319 cmdrest++;
2320 cmdrest = skip_spaces (cmdrest);
2321
2322 /* For each argument, make an expression. */
2323
2324 argvec = (struct expression **) alloca (strlen (cmd)
2325 * sizeof (struct expression *));
2326
2327 nargs = 0;
2328 while (*cmdrest != '\0')
2329 {
2330 const char *cmd1;
2331
2332 cmd1 = cmdrest;
2333 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2334 argvec[nargs++] = expr.release ();
2335 cmdrest = cmd1;
2336 if (*cmdrest == ',')
2337 ++cmdrest;
2338 }
2339
2340 agent_expr_up aexpr;
2341
2342 /* We don't want to stop processing, so catch any errors
2343 that may show up. */
2344 TRY
2345 {
2346 aexpr = gen_printf (scope, gdbarch, 0, 0,
2347 format_start, format_end - format_start,
2348 fpieces, nargs, argvec);
2349 }
2350 CATCH (ex, RETURN_MASK_ERROR)
2351 {
2352 /* If we got here, it means the command could not be parsed to a valid
2353 bytecode expression and thus can't be evaluated on the target's side.
2354 It's no use iterating through the other commands. */
2355 }
2356 END_CATCH
2357
2358 do_cleanups (old_cleanups);
2359
2360 /* We have a valid agent expression, return it. */
2361 return aexpr;
2362 }
2363
2364 /* Based on location BL, create a list of breakpoint commands to be
2365 passed on to the target. If we have duplicated locations with
2366 different commands, we will add any such to the list. */
2367
2368 static void
2369 build_target_command_list (struct bp_location *bl)
2370 {
2371 struct bp_location **locp = NULL, **loc2p;
2372 int null_command_or_parse_error = 0;
2373 int modified = bl->needs_update;
2374 struct bp_location *loc;
2375
2376 /* Clear commands left over from a previous insert. */
2377 bl->target_info.tcommands.clear ();
2378
2379 if (!target_can_run_breakpoint_commands ())
2380 return;
2381
2382 /* For now, limit to agent-style dprintf breakpoints. */
2383 if (dprintf_style != dprintf_style_agent)
2384 return;
2385
2386 /* For now, if we have any duplicate location that isn't a dprintf,
2387 don't install the target-side commands, as that would make the
2388 breakpoint not be reported to the core, and we'd lose
2389 control. */
2390 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2391 {
2392 loc = (*loc2p);
2393 if (is_breakpoint (loc->owner)
2394 && loc->pspace->num == bl->pspace->num
2395 && loc->owner->type != bp_dprintf)
2396 return;
2397 }
2398
2399 /* Do a first pass to check for locations with no assigned
2400 conditions or conditions that fail to parse to a valid agent expression
2401 bytecode. If any of these happen, then it's no use to send conditions
2402 to the target since this location will always trigger and generate a
2403 response back to GDB. */
2404 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2405 {
2406 loc = (*loc2p);
2407 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2408 {
2409 if (modified)
2410 {
2411 /* Re-parse the commands since something changed. In that
2412 case we already freed the command bytecodes (see
2413 force_breakpoint_reinsertion). We just
2414 need to parse the command to bytecodes again. */
2415 loc->cmd_bytecode
2416 = parse_cmd_to_aexpr (bl->address,
2417 loc->owner->extra_string);
2418 }
2419
2420 /* If we have a NULL bytecode expression, it means something
2421 went wrong or we have a null command expression. */
2422 if (!loc->cmd_bytecode)
2423 {
2424 null_command_or_parse_error = 1;
2425 break;
2426 }
2427 }
2428 }
2429
2430 /* If anything failed, then we're not doing target-side commands,
2431 and so clean up. */
2432 if (null_command_or_parse_error)
2433 {
2434 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2435 {
2436 loc = (*loc2p);
2437 if (is_breakpoint (loc->owner)
2438 && loc->pspace->num == bl->pspace->num)
2439 {
2440 /* Only go as far as the first NULL bytecode is
2441 located. */
2442 if (loc->cmd_bytecode == NULL)
2443 return;
2444
2445 loc->cmd_bytecode.reset ();
2446 }
2447 }
2448 }
2449
2450 /* No NULL commands or failed bytecode generation. Build a command list
2451 for this location's address. */
2452 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2453 {
2454 loc = (*loc2p);
2455 if (loc->owner->extra_string
2456 && is_breakpoint (loc->owner)
2457 && loc->pspace->num == bl->pspace->num
2458 && loc->owner->enable_state == bp_enabled
2459 && loc->enabled)
2460 {
2461 /* Add the command to the vector. This will be used later
2462 to send the commands to the target. */
2463 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2464 }
2465 }
2466
2467 bl->target_info.persist = 0;
2468 /* Maybe flag this location as persistent. */
2469 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2470 bl->target_info.persist = 1;
2471 }
2472
2473 /* Return the kind of breakpoint on address *ADDR. Get the kind
2474 of breakpoint according to ADDR except single-step breakpoint.
2475 Get the kind of single-step breakpoint according to the current
2476 registers state. */
2477
2478 static int
2479 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2480 {
2481 if (bl->owner->type == bp_single_step)
2482 {
2483 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2484 struct regcache *regcache;
2485
2486 regcache = get_thread_regcache (thr->ptid);
2487
2488 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2489 regcache, addr);
2490 }
2491 else
2492 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2493 }
2494
2495 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2496 location. Any error messages are printed to TMP_ERROR_STREAM; and
2497 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2498 Returns 0 for success, 1 if the bp_location type is not supported or
2499 -1 for failure.
2500
2501 NOTE drow/2003-09-09: This routine could be broken down to an
2502 object-style method for each breakpoint or catchpoint type. */
2503 static int
2504 insert_bp_location (struct bp_location *bl,
2505 struct ui_file *tmp_error_stream,
2506 int *disabled_breaks,
2507 int *hw_breakpoint_error,
2508 int *hw_bp_error_explained_already)
2509 {
2510 enum errors bp_err = GDB_NO_ERROR;
2511 const char *bp_err_message = NULL;
2512
2513 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2514 return 0;
2515
2516 /* Note we don't initialize bl->target_info, as that wipes out
2517 the breakpoint location's shadow_contents if the breakpoint
2518 is still inserted at that location. This in turn breaks
2519 target_read_memory which depends on these buffers when
2520 a memory read is requested at the breakpoint location:
2521 Once the target_info has been wiped, we fail to see that
2522 we have a breakpoint inserted at that address and thus
2523 read the breakpoint instead of returning the data saved in
2524 the breakpoint location's shadow contents. */
2525 bl->target_info.reqstd_address = bl->address;
2526 bl->target_info.placed_address_space = bl->pspace->aspace;
2527 bl->target_info.length = bl->length;
2528
2529 /* When working with target-side conditions, we must pass all the conditions
2530 for the same breakpoint address down to the target since GDB will not
2531 insert those locations. With a list of breakpoint conditions, the target
2532 can decide when to stop and notify GDB. */
2533
2534 if (is_breakpoint (bl->owner))
2535 {
2536 build_target_condition_list (bl);
2537 build_target_command_list (bl);
2538 /* Reset the modification marker. */
2539 bl->needs_update = 0;
2540 }
2541
2542 if (bl->loc_type == bp_loc_software_breakpoint
2543 || bl->loc_type == bp_loc_hardware_breakpoint)
2544 {
2545 if (bl->owner->type != bp_hardware_breakpoint)
2546 {
2547 /* If the explicitly specified breakpoint type
2548 is not hardware breakpoint, check the memory map to see
2549 if the breakpoint address is in read only memory or not.
2550
2551 Two important cases are:
2552 - location type is not hardware breakpoint, memory
2553 is readonly. We change the type of the location to
2554 hardware breakpoint.
2555 - location type is hardware breakpoint, memory is
2556 read-write. This means we've previously made the
2557 location hardware one, but then the memory map changed,
2558 so we undo.
2559
2560 When breakpoints are removed, remove_breakpoints will use
2561 location types we've just set here, the only possible
2562 problem is that memory map has changed during running
2563 program, but it's not going to work anyway with current
2564 gdb. */
2565 struct mem_region *mr
2566 = lookup_mem_region (bl->target_info.reqstd_address);
2567
2568 if (mr)
2569 {
2570 if (automatic_hardware_breakpoints)
2571 {
2572 enum bp_loc_type new_type;
2573
2574 if (mr->attrib.mode != MEM_RW)
2575 new_type = bp_loc_hardware_breakpoint;
2576 else
2577 new_type = bp_loc_software_breakpoint;
2578
2579 if (new_type != bl->loc_type)
2580 {
2581 static int said = 0;
2582
2583 bl->loc_type = new_type;
2584 if (!said)
2585 {
2586 fprintf_filtered (gdb_stdout,
2587 _("Note: automatically using "
2588 "hardware breakpoints for "
2589 "read-only addresses.\n"));
2590 said = 1;
2591 }
2592 }
2593 }
2594 else if (bl->loc_type == bp_loc_software_breakpoint
2595 && mr->attrib.mode != MEM_RW)
2596 {
2597 fprintf_unfiltered (tmp_error_stream,
2598 _("Cannot insert breakpoint %d.\n"
2599 "Cannot set software breakpoint "
2600 "at read-only address %s\n"),
2601 bl->owner->number,
2602 paddress (bl->gdbarch, bl->address));
2603 return 1;
2604 }
2605 }
2606 }
2607
2608 /* First check to see if we have to handle an overlay. */
2609 if (overlay_debugging == ovly_off
2610 || bl->section == NULL
2611 || !(section_is_overlay (bl->section)))
2612 {
2613 /* No overlay handling: just set the breakpoint. */
2614 TRY
2615 {
2616 int val;
2617
2618 val = bl->owner->ops->insert_location (bl);
2619 if (val)
2620 bp_err = GENERIC_ERROR;
2621 }
2622 CATCH (e, RETURN_MASK_ALL)
2623 {
2624 bp_err = e.error;
2625 bp_err_message = e.message;
2626 }
2627 END_CATCH
2628 }
2629 else
2630 {
2631 /* This breakpoint is in an overlay section.
2632 Shall we set a breakpoint at the LMA? */
2633 if (!overlay_events_enabled)
2634 {
2635 /* Yes -- overlay event support is not active,
2636 so we must try to set a breakpoint at the LMA.
2637 This will not work for a hardware breakpoint. */
2638 if (bl->loc_type == bp_loc_hardware_breakpoint)
2639 warning (_("hardware breakpoint %d not supported in overlay!"),
2640 bl->owner->number);
2641 else
2642 {
2643 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2644 bl->section);
2645 /* Set a software (trap) breakpoint at the LMA. */
2646 bl->overlay_target_info = bl->target_info;
2647 bl->overlay_target_info.reqstd_address = addr;
2648
2649 /* No overlay handling: just set the breakpoint. */
2650 TRY
2651 {
2652 int val;
2653
2654 bl->overlay_target_info.kind
2655 = breakpoint_kind (bl, &addr);
2656 bl->overlay_target_info.placed_address = addr;
2657 val = target_insert_breakpoint (bl->gdbarch,
2658 &bl->overlay_target_info);
2659 if (val)
2660 bp_err = GENERIC_ERROR;
2661 }
2662 CATCH (e, RETURN_MASK_ALL)
2663 {
2664 bp_err = e.error;
2665 bp_err_message = e.message;
2666 }
2667 END_CATCH
2668
2669 if (bp_err != GDB_NO_ERROR)
2670 fprintf_unfiltered (tmp_error_stream,
2671 "Overlay breakpoint %d "
2672 "failed: in ROM?\n",
2673 bl->owner->number);
2674 }
2675 }
2676 /* Shall we set a breakpoint at the VMA? */
2677 if (section_is_mapped (bl->section))
2678 {
2679 /* Yes. This overlay section is mapped into memory. */
2680 TRY
2681 {
2682 int val;
2683
2684 val = bl->owner->ops->insert_location (bl);
2685 if (val)
2686 bp_err = GENERIC_ERROR;
2687 }
2688 CATCH (e, RETURN_MASK_ALL)
2689 {
2690 bp_err = e.error;
2691 bp_err_message = e.message;
2692 }
2693 END_CATCH
2694 }
2695 else
2696 {
2697 /* No. This breakpoint will not be inserted.
2698 No error, but do not mark the bp as 'inserted'. */
2699 return 0;
2700 }
2701 }
2702
2703 if (bp_err != GDB_NO_ERROR)
2704 {
2705 /* Can't set the breakpoint. */
2706
2707 /* In some cases, we might not be able to insert a
2708 breakpoint in a shared library that has already been
2709 removed, but we have not yet processed the shlib unload
2710 event. Unfortunately, some targets that implement
2711 breakpoint insertion themselves can't tell why the
2712 breakpoint insertion failed (e.g., the remote target
2713 doesn't define error codes), so we must treat generic
2714 errors as memory errors. */
2715 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2716 && bl->loc_type == bp_loc_software_breakpoint
2717 && (solib_name_from_address (bl->pspace, bl->address)
2718 || shared_objfile_contains_address_p (bl->pspace,
2719 bl->address)))
2720 {
2721 /* See also: disable_breakpoints_in_shlibs. */
2722 bl->shlib_disabled = 1;
2723 observer_notify_breakpoint_modified (bl->owner);
2724 if (!*disabled_breaks)
2725 {
2726 fprintf_unfiltered (tmp_error_stream,
2727 "Cannot insert breakpoint %d.\n",
2728 bl->owner->number);
2729 fprintf_unfiltered (tmp_error_stream,
2730 "Temporarily disabling shared "
2731 "library breakpoints:\n");
2732 }
2733 *disabled_breaks = 1;
2734 fprintf_unfiltered (tmp_error_stream,
2735 "breakpoint #%d\n", bl->owner->number);
2736 return 0;
2737 }
2738 else
2739 {
2740 if (bl->loc_type == bp_loc_hardware_breakpoint)
2741 {
2742 *hw_breakpoint_error = 1;
2743 *hw_bp_error_explained_already = bp_err_message != NULL;
2744 fprintf_unfiltered (tmp_error_stream,
2745 "Cannot insert hardware breakpoint %d%s",
2746 bl->owner->number, bp_err_message ? ":" : ".\n");
2747 if (bp_err_message != NULL)
2748 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2749 }
2750 else
2751 {
2752 if (bp_err_message == NULL)
2753 {
2754 std::string message
2755 = memory_error_message (TARGET_XFER_E_IO,
2756 bl->gdbarch, bl->address);
2757
2758 fprintf_unfiltered (tmp_error_stream,
2759 "Cannot insert breakpoint %d.\n"
2760 "%s\n",
2761 bl->owner->number, message.c_str ());
2762 }
2763 else
2764 {
2765 fprintf_unfiltered (tmp_error_stream,
2766 "Cannot insert breakpoint %d: %s\n",
2767 bl->owner->number,
2768 bp_err_message);
2769 }
2770 }
2771 return 1;
2772
2773 }
2774 }
2775 else
2776 bl->inserted = 1;
2777
2778 return 0;
2779 }
2780
2781 else if (bl->loc_type == bp_loc_hardware_watchpoint
2782 /* NOTE drow/2003-09-08: This state only exists for removing
2783 watchpoints. It's not clear that it's necessary... */
2784 && bl->owner->disposition != disp_del_at_next_stop)
2785 {
2786 int val;
2787
2788 gdb_assert (bl->owner->ops != NULL
2789 && bl->owner->ops->insert_location != NULL);
2790
2791 val = bl->owner->ops->insert_location (bl);
2792
2793 /* If trying to set a read-watchpoint, and it turns out it's not
2794 supported, try emulating one with an access watchpoint. */
2795 if (val == 1 && bl->watchpoint_type == hw_read)
2796 {
2797 struct bp_location *loc, **loc_temp;
2798
2799 /* But don't try to insert it, if there's already another
2800 hw_access location that would be considered a duplicate
2801 of this one. */
2802 ALL_BP_LOCATIONS (loc, loc_temp)
2803 if (loc != bl
2804 && loc->watchpoint_type == hw_access
2805 && watchpoint_locations_match (bl, loc))
2806 {
2807 bl->duplicate = 1;
2808 bl->inserted = 1;
2809 bl->target_info = loc->target_info;
2810 bl->watchpoint_type = hw_access;
2811 val = 0;
2812 break;
2813 }
2814
2815 if (val == 1)
2816 {
2817 bl->watchpoint_type = hw_access;
2818 val = bl->owner->ops->insert_location (bl);
2819
2820 if (val)
2821 /* Back to the original value. */
2822 bl->watchpoint_type = hw_read;
2823 }
2824 }
2825
2826 bl->inserted = (val == 0);
2827 }
2828
2829 else if (bl->owner->type == bp_catchpoint)
2830 {
2831 int val;
2832
2833 gdb_assert (bl->owner->ops != NULL
2834 && bl->owner->ops->insert_location != NULL);
2835
2836 val = bl->owner->ops->insert_location (bl);
2837 if (val)
2838 {
2839 bl->owner->enable_state = bp_disabled;
2840
2841 if (val == 1)
2842 warning (_("\
2843 Error inserting catchpoint %d: Your system does not support this type\n\
2844 of catchpoint."), bl->owner->number);
2845 else
2846 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2847 }
2848
2849 bl->inserted = (val == 0);
2850
2851 /* We've already printed an error message if there was a problem
2852 inserting this catchpoint, and we've disabled the catchpoint,
2853 so just return success. */
2854 return 0;
2855 }
2856
2857 return 0;
2858 }
2859
2860 /* This function is called when program space PSPACE is about to be
2861 deleted. It takes care of updating breakpoints to not reference
2862 PSPACE anymore. */
2863
2864 void
2865 breakpoint_program_space_exit (struct program_space *pspace)
2866 {
2867 struct breakpoint *b, *b_temp;
2868 struct bp_location *loc, **loc_temp;
2869
2870 /* Remove any breakpoint that was set through this program space. */
2871 ALL_BREAKPOINTS_SAFE (b, b_temp)
2872 {
2873 if (b->pspace == pspace)
2874 delete_breakpoint (b);
2875 }
2876
2877 /* Breakpoints set through other program spaces could have locations
2878 bound to PSPACE as well. Remove those. */
2879 ALL_BP_LOCATIONS (loc, loc_temp)
2880 {
2881 struct bp_location *tmp;
2882
2883 if (loc->pspace == pspace)
2884 {
2885 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2886 if (loc->owner->loc == loc)
2887 loc->owner->loc = loc->next;
2888 else
2889 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2890 if (tmp->next == loc)
2891 {
2892 tmp->next = loc->next;
2893 break;
2894 }
2895 }
2896 }
2897
2898 /* Now update the global location list to permanently delete the
2899 removed locations above. */
2900 update_global_location_list (UGLL_DONT_INSERT);
2901 }
2902
2903 /* Make sure all breakpoints are inserted in inferior.
2904 Throws exception on any error.
2905 A breakpoint that is already inserted won't be inserted
2906 again, so calling this function twice is safe. */
2907 void
2908 insert_breakpoints (void)
2909 {
2910 struct breakpoint *bpt;
2911
2912 ALL_BREAKPOINTS (bpt)
2913 if (is_hardware_watchpoint (bpt))
2914 {
2915 struct watchpoint *w = (struct watchpoint *) bpt;
2916
2917 update_watchpoint (w, 0 /* don't reparse. */);
2918 }
2919
2920 /* Updating watchpoints creates new locations, so update the global
2921 location list. Explicitly tell ugll to insert locations and
2922 ignore breakpoints_always_inserted_mode. */
2923 update_global_location_list (UGLL_INSERT);
2924 }
2925
2926 /* Invoke CALLBACK for each of bp_location. */
2927
2928 void
2929 iterate_over_bp_locations (walk_bp_location_callback callback)
2930 {
2931 struct bp_location *loc, **loc_tmp;
2932
2933 ALL_BP_LOCATIONS (loc, loc_tmp)
2934 {
2935 callback (loc, NULL);
2936 }
2937 }
2938
2939 /* This is used when we need to synch breakpoint conditions between GDB and the
2940 target. It is the case with deleting and disabling of breakpoints when using
2941 always-inserted mode. */
2942
2943 static void
2944 update_inserted_breakpoint_locations (void)
2945 {
2946 struct bp_location *bl, **blp_tmp;
2947 int error_flag = 0;
2948 int val = 0;
2949 int disabled_breaks = 0;
2950 int hw_breakpoint_error = 0;
2951 int hw_bp_details_reported = 0;
2952
2953 string_file tmp_error_stream;
2954
2955 /* Explicitly mark the warning -- this will only be printed if
2956 there was an error. */
2957 tmp_error_stream.puts ("Warning:\n");
2958
2959 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2960
2961 ALL_BP_LOCATIONS (bl, blp_tmp)
2962 {
2963 /* We only want to update software breakpoints and hardware
2964 breakpoints. */
2965 if (!is_breakpoint (bl->owner))
2966 continue;
2967
2968 /* We only want to update locations that are already inserted
2969 and need updating. This is to avoid unwanted insertion during
2970 deletion of breakpoints. */
2971 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2972 continue;
2973
2974 switch_to_program_space_and_thread (bl->pspace);
2975
2976 /* For targets that support global breakpoints, there's no need
2977 to select an inferior to insert breakpoint to. In fact, even
2978 if we aren't attached to any process yet, we should still
2979 insert breakpoints. */
2980 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2981 && ptid_equal (inferior_ptid, null_ptid))
2982 continue;
2983
2984 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2985 &hw_breakpoint_error, &hw_bp_details_reported);
2986 if (val)
2987 error_flag = val;
2988 }
2989
2990 if (error_flag)
2991 {
2992 target_terminal::ours_for_output ();
2993 error_stream (tmp_error_stream);
2994 }
2995 }
2996
2997 /* Used when starting or continuing the program. */
2998
2999 static void
3000 insert_breakpoint_locations (void)
3001 {
3002 struct breakpoint *bpt;
3003 struct bp_location *bl, **blp_tmp;
3004 int error_flag = 0;
3005 int val = 0;
3006 int disabled_breaks = 0;
3007 int hw_breakpoint_error = 0;
3008 int hw_bp_error_explained_already = 0;
3009
3010 string_file tmp_error_stream;
3011
3012 /* Explicitly mark the warning -- this will only be printed if
3013 there was an error. */
3014 tmp_error_stream.puts ("Warning:\n");
3015
3016 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3017
3018 ALL_BP_LOCATIONS (bl, blp_tmp)
3019 {
3020 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
3021 continue;
3022
3023 /* There is no point inserting thread-specific breakpoints if
3024 the thread no longer exists. ALL_BP_LOCATIONS bp_location
3025 has BL->OWNER always non-NULL. */
3026 if (bl->owner->thread != -1
3027 && !valid_global_thread_id (bl->owner->thread))
3028 continue;
3029
3030 switch_to_program_space_and_thread (bl->pspace);
3031
3032 /* For targets that support global breakpoints, there's no need
3033 to select an inferior to insert breakpoint to. In fact, even
3034 if we aren't attached to any process yet, we should still
3035 insert breakpoints. */
3036 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3037 && ptid_equal (inferior_ptid, null_ptid))
3038 continue;
3039
3040 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
3041 &hw_breakpoint_error, &hw_bp_error_explained_already);
3042 if (val)
3043 error_flag = val;
3044 }
3045
3046 /* If we failed to insert all locations of a watchpoint, remove
3047 them, as half-inserted watchpoint is of limited use. */
3048 ALL_BREAKPOINTS (bpt)
3049 {
3050 int some_failed = 0;
3051 struct bp_location *loc;
3052
3053 if (!is_hardware_watchpoint (bpt))
3054 continue;
3055
3056 if (!breakpoint_enabled (bpt))
3057 continue;
3058
3059 if (bpt->disposition == disp_del_at_next_stop)
3060 continue;
3061
3062 for (loc = bpt->loc; loc; loc = loc->next)
3063 if (!loc->inserted && should_be_inserted (loc))
3064 {
3065 some_failed = 1;
3066 break;
3067 }
3068 if (some_failed)
3069 {
3070 for (loc = bpt->loc; loc; loc = loc->next)
3071 if (loc->inserted)
3072 remove_breakpoint (loc);
3073
3074 hw_breakpoint_error = 1;
3075 tmp_error_stream.printf ("Could not insert "
3076 "hardware watchpoint %d.\n",
3077 bpt->number);
3078 error_flag = -1;
3079 }
3080 }
3081
3082 if (error_flag)
3083 {
3084 /* If a hardware breakpoint or watchpoint was inserted, add a
3085 message about possibly exhausted resources. */
3086 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3087 {
3088 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3089 You may have requested too many hardware breakpoints/watchpoints.\n");
3090 }
3091 target_terminal::ours_for_output ();
3092 error_stream (tmp_error_stream);
3093 }
3094 }
3095
3096 /* Used when the program stops.
3097 Returns zero if successful, or non-zero if there was a problem
3098 removing a breakpoint location. */
3099
3100 int
3101 remove_breakpoints (void)
3102 {
3103 struct bp_location *bl, **blp_tmp;
3104 int val = 0;
3105
3106 ALL_BP_LOCATIONS (bl, blp_tmp)
3107 {
3108 if (bl->inserted && !is_tracepoint (bl->owner))
3109 val |= remove_breakpoint (bl);
3110 }
3111 return val;
3112 }
3113
3114 /* When a thread exits, remove breakpoints that are related to
3115 that thread. */
3116
3117 static void
3118 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3119 {
3120 struct breakpoint *b, *b_tmp;
3121
3122 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3123 {
3124 if (b->thread == tp->global_num && user_breakpoint_p (b))
3125 {
3126 b->disposition = disp_del_at_next_stop;
3127
3128 printf_filtered (_("\
3129 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3130 b->number, print_thread_id (tp));
3131
3132 /* Hide it from the user. */
3133 b->number = 0;
3134 }
3135 }
3136 }
3137
3138 /* Remove breakpoints of process PID. */
3139
3140 int
3141 remove_breakpoints_pid (int pid)
3142 {
3143 struct bp_location *bl, **blp_tmp;
3144 int val;
3145 struct inferior *inf = find_inferior_pid (pid);
3146
3147 ALL_BP_LOCATIONS (bl, blp_tmp)
3148 {
3149 if (bl->pspace != inf->pspace)
3150 continue;
3151
3152 if (bl->inserted && !bl->target_info.persist)
3153 {
3154 val = remove_breakpoint (bl);
3155 if (val != 0)
3156 return val;
3157 }
3158 }
3159 return 0;
3160 }
3161
3162 int
3163 reattach_breakpoints (int pid)
3164 {
3165 struct bp_location *bl, **blp_tmp;
3166 int val;
3167 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3168 struct inferior *inf;
3169 struct thread_info *tp;
3170
3171 tp = any_live_thread_of_process (pid);
3172 if (tp == NULL)
3173 return 1;
3174
3175 inf = find_inferior_pid (pid);
3176
3177 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3178 inferior_ptid = tp->ptid;
3179
3180 string_file tmp_error_stream;
3181
3182 ALL_BP_LOCATIONS (bl, blp_tmp)
3183 {
3184 if (bl->pspace != inf->pspace)
3185 continue;
3186
3187 if (bl->inserted)
3188 {
3189 bl->inserted = 0;
3190 val = insert_bp_location (bl, &tmp_error_stream, &dummy1, &dummy2, &dummy3);
3191 if (val != 0)
3192 return val;
3193 }
3194 }
3195 return 0;
3196 }
3197
3198 static int internal_breakpoint_number = -1;
3199
3200 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3201 If INTERNAL is non-zero, the breakpoint number will be populated
3202 from internal_breakpoint_number and that variable decremented.
3203 Otherwise the breakpoint number will be populated from
3204 breakpoint_count and that value incremented. Internal breakpoints
3205 do not set the internal var bpnum. */
3206 static void
3207 set_breakpoint_number (int internal, struct breakpoint *b)
3208 {
3209 if (internal)
3210 b->number = internal_breakpoint_number--;
3211 else
3212 {
3213 set_breakpoint_count (breakpoint_count + 1);
3214 b->number = breakpoint_count;
3215 }
3216 }
3217
3218 static struct breakpoint *
3219 create_internal_breakpoint (struct gdbarch *gdbarch,
3220 CORE_ADDR address, enum bptype type,
3221 const struct breakpoint_ops *ops)
3222 {
3223 symtab_and_line sal;
3224 sal.pc = address;
3225 sal.section = find_pc_overlay (sal.pc);
3226 sal.pspace = current_program_space;
3227
3228 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3229 b->number = internal_breakpoint_number--;
3230 b->disposition = disp_donttouch;
3231
3232 return b;
3233 }
3234
3235 static const char *const longjmp_names[] =
3236 {
3237 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3238 };
3239 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3240
3241 /* Per-objfile data private to breakpoint.c. */
3242 struct breakpoint_objfile_data
3243 {
3244 /* Minimal symbol for "_ovly_debug_event" (if any). */
3245 struct bound_minimal_symbol overlay_msym;
3246
3247 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3248 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3249
3250 /* True if we have looked for longjmp probes. */
3251 int longjmp_searched;
3252
3253 /* SystemTap probe points for longjmp (if any). */
3254 VEC (probe_p) *longjmp_probes;
3255
3256 /* Minimal symbol for "std::terminate()" (if any). */
3257 struct bound_minimal_symbol terminate_msym;
3258
3259 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3260 struct bound_minimal_symbol exception_msym;
3261
3262 /* True if we have looked for exception probes. */
3263 int exception_searched;
3264
3265 /* SystemTap probe points for unwinding (if any). */
3266 VEC (probe_p) *exception_probes;
3267 };
3268
3269 static const struct objfile_data *breakpoint_objfile_key;
3270
3271 /* Minimal symbol not found sentinel. */
3272 static struct minimal_symbol msym_not_found;
3273
3274 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3275
3276 static int
3277 msym_not_found_p (const struct minimal_symbol *msym)
3278 {
3279 return msym == &msym_not_found;
3280 }
3281
3282 /* Return per-objfile data needed by breakpoint.c.
3283 Allocate the data if necessary. */
3284
3285 static struct breakpoint_objfile_data *
3286 get_breakpoint_objfile_data (struct objfile *objfile)
3287 {
3288 struct breakpoint_objfile_data *bp_objfile_data;
3289
3290 bp_objfile_data = ((struct breakpoint_objfile_data *)
3291 objfile_data (objfile, breakpoint_objfile_key));
3292 if (bp_objfile_data == NULL)
3293 {
3294 bp_objfile_data =
3295 XOBNEW (&objfile->objfile_obstack, struct breakpoint_objfile_data);
3296
3297 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3298 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3299 }
3300 return bp_objfile_data;
3301 }
3302
3303 static void
3304 free_breakpoint_probes (struct objfile *obj, void *data)
3305 {
3306 struct breakpoint_objfile_data *bp_objfile_data
3307 = (struct breakpoint_objfile_data *) data;
3308
3309 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3310 VEC_free (probe_p, bp_objfile_data->exception_probes);
3311 }
3312
3313 static void
3314 create_overlay_event_breakpoint (void)
3315 {
3316 struct objfile *objfile;
3317 const char *const func_name = "_ovly_debug_event";
3318
3319 ALL_OBJFILES (objfile)
3320 {
3321 struct breakpoint *b;
3322 struct breakpoint_objfile_data *bp_objfile_data;
3323 CORE_ADDR addr;
3324 struct explicit_location explicit_loc;
3325
3326 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3327
3328 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3329 continue;
3330
3331 if (bp_objfile_data->overlay_msym.minsym == NULL)
3332 {
3333 struct bound_minimal_symbol m;
3334
3335 m = lookup_minimal_symbol_text (func_name, objfile);
3336 if (m.minsym == NULL)
3337 {
3338 /* Avoid future lookups in this objfile. */
3339 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3340 continue;
3341 }
3342 bp_objfile_data->overlay_msym = m;
3343 }
3344
3345 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3346 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3347 bp_overlay_event,
3348 &internal_breakpoint_ops);
3349 initialize_explicit_location (&explicit_loc);
3350 explicit_loc.function_name = ASTRDUP (func_name);
3351 b->location = new_explicit_location (&explicit_loc);
3352
3353 if (overlay_debugging == ovly_auto)
3354 {
3355 b->enable_state = bp_enabled;
3356 overlay_events_enabled = 1;
3357 }
3358 else
3359 {
3360 b->enable_state = bp_disabled;
3361 overlay_events_enabled = 0;
3362 }
3363 }
3364 }
3365
3366 static void
3367 create_longjmp_master_breakpoint (void)
3368 {
3369 struct program_space *pspace;
3370
3371 scoped_restore_current_program_space restore_pspace;
3372
3373 ALL_PSPACES (pspace)
3374 {
3375 struct objfile *objfile;
3376
3377 set_current_program_space (pspace);
3378
3379 ALL_OBJFILES (objfile)
3380 {
3381 int i;
3382 struct gdbarch *gdbarch;
3383 struct breakpoint_objfile_data *bp_objfile_data;
3384
3385 gdbarch = get_objfile_arch (objfile);
3386
3387 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3388
3389 if (!bp_objfile_data->longjmp_searched)
3390 {
3391 VEC (probe_p) *ret;
3392
3393 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3394 if (ret != NULL)
3395 {
3396 /* We are only interested in checking one element. */
3397 struct probe *p = VEC_index (probe_p, ret, 0);
3398
3399 if (!can_evaluate_probe_arguments (p))
3400 {
3401 /* We cannot use the probe interface here, because it does
3402 not know how to evaluate arguments. */
3403 VEC_free (probe_p, ret);
3404 ret = NULL;
3405 }
3406 }
3407 bp_objfile_data->longjmp_probes = ret;
3408 bp_objfile_data->longjmp_searched = 1;
3409 }
3410
3411 if (bp_objfile_data->longjmp_probes != NULL)
3412 {
3413 int i;
3414 struct probe *probe;
3415 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3416
3417 for (i = 0;
3418 VEC_iterate (probe_p,
3419 bp_objfile_data->longjmp_probes,
3420 i, probe);
3421 ++i)
3422 {
3423 struct breakpoint *b;
3424
3425 b = create_internal_breakpoint (gdbarch,
3426 get_probe_address (probe,
3427 objfile),
3428 bp_longjmp_master,
3429 &internal_breakpoint_ops);
3430 b->location = new_probe_location ("-probe-stap libc:longjmp");
3431 b->enable_state = bp_disabled;
3432 }
3433
3434 continue;
3435 }
3436
3437 if (!gdbarch_get_longjmp_target_p (gdbarch))
3438 continue;
3439
3440 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3441 {
3442 struct breakpoint *b;
3443 const char *func_name;
3444 CORE_ADDR addr;
3445 struct explicit_location explicit_loc;
3446
3447 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3448 continue;
3449
3450 func_name = longjmp_names[i];
3451 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3452 {
3453 struct bound_minimal_symbol m;
3454
3455 m = lookup_minimal_symbol_text (func_name, objfile);
3456 if (m.minsym == NULL)
3457 {
3458 /* Prevent future lookups in this objfile. */
3459 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3460 continue;
3461 }
3462 bp_objfile_data->longjmp_msym[i] = m;
3463 }
3464
3465 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3466 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3467 &internal_breakpoint_ops);
3468 initialize_explicit_location (&explicit_loc);
3469 explicit_loc.function_name = ASTRDUP (func_name);
3470 b->location = new_explicit_location (&explicit_loc);
3471 b->enable_state = bp_disabled;
3472 }
3473 }
3474 }
3475 }
3476
3477 /* Create a master std::terminate breakpoint. */
3478 static void
3479 create_std_terminate_master_breakpoint (void)
3480 {
3481 struct program_space *pspace;
3482 const char *const func_name = "std::terminate()";
3483
3484 scoped_restore_current_program_space restore_pspace;
3485
3486 ALL_PSPACES (pspace)
3487 {
3488 struct objfile *objfile;
3489 CORE_ADDR addr;
3490
3491 set_current_program_space (pspace);
3492
3493 ALL_OBJFILES (objfile)
3494 {
3495 struct breakpoint *b;
3496 struct breakpoint_objfile_data *bp_objfile_data;
3497 struct explicit_location explicit_loc;
3498
3499 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3500
3501 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3502 continue;
3503
3504 if (bp_objfile_data->terminate_msym.minsym == NULL)
3505 {
3506 struct bound_minimal_symbol m;
3507
3508 m = lookup_minimal_symbol (func_name, NULL, objfile);
3509 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3510 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3511 {
3512 /* Prevent future lookups in this objfile. */
3513 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3514 continue;
3515 }
3516 bp_objfile_data->terminate_msym = m;
3517 }
3518
3519 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3520 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3521 bp_std_terminate_master,
3522 &internal_breakpoint_ops);
3523 initialize_explicit_location (&explicit_loc);
3524 explicit_loc.function_name = ASTRDUP (func_name);
3525 b->location = new_explicit_location (&explicit_loc);
3526 b->enable_state = bp_disabled;
3527 }
3528 }
3529 }
3530
3531 /* Install a master breakpoint on the unwinder's debug hook. */
3532
3533 static void
3534 create_exception_master_breakpoint (void)
3535 {
3536 struct objfile *objfile;
3537 const char *const func_name = "_Unwind_DebugHook";
3538
3539 ALL_OBJFILES (objfile)
3540 {
3541 struct breakpoint *b;
3542 struct gdbarch *gdbarch;
3543 struct breakpoint_objfile_data *bp_objfile_data;
3544 CORE_ADDR addr;
3545 struct explicit_location explicit_loc;
3546
3547 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3548
3549 /* We prefer the SystemTap probe point if it exists. */
3550 if (!bp_objfile_data->exception_searched)
3551 {
3552 VEC (probe_p) *ret;
3553
3554 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3555
3556 if (ret != NULL)
3557 {
3558 /* We are only interested in checking one element. */
3559 struct probe *p = VEC_index (probe_p, ret, 0);
3560
3561 if (!can_evaluate_probe_arguments (p))
3562 {
3563 /* We cannot use the probe interface here, because it does
3564 not know how to evaluate arguments. */
3565 VEC_free (probe_p, ret);
3566 ret = NULL;
3567 }
3568 }
3569 bp_objfile_data->exception_probes = ret;
3570 bp_objfile_data->exception_searched = 1;
3571 }
3572
3573 if (bp_objfile_data->exception_probes != NULL)
3574 {
3575 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3576 int i;
3577 struct probe *probe;
3578
3579 for (i = 0;
3580 VEC_iterate (probe_p,
3581 bp_objfile_data->exception_probes,
3582 i, probe);
3583 ++i)
3584 {
3585 struct breakpoint *b;
3586
3587 b = create_internal_breakpoint (gdbarch,
3588 get_probe_address (probe,
3589 objfile),
3590 bp_exception_master,
3591 &internal_breakpoint_ops);
3592 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3593 b->enable_state = bp_disabled;
3594 }
3595
3596 continue;
3597 }
3598
3599 /* Otherwise, try the hook function. */
3600
3601 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3602 continue;
3603
3604 gdbarch = get_objfile_arch (objfile);
3605
3606 if (bp_objfile_data->exception_msym.minsym == NULL)
3607 {
3608 struct bound_minimal_symbol debug_hook;
3609
3610 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3611 if (debug_hook.minsym == NULL)
3612 {
3613 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3614 continue;
3615 }
3616
3617 bp_objfile_data->exception_msym = debug_hook;
3618 }
3619
3620 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3621 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3622 &current_target);
3623 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3624 &internal_breakpoint_ops);
3625 initialize_explicit_location (&explicit_loc);
3626 explicit_loc.function_name = ASTRDUP (func_name);
3627 b->location = new_explicit_location (&explicit_loc);
3628 b->enable_state = bp_disabled;
3629 }
3630 }
3631
3632 /* Does B have a location spec? */
3633
3634 static int
3635 breakpoint_event_location_empty_p (const struct breakpoint *b)
3636 {
3637 return b->location != NULL && event_location_empty_p (b->location.get ());
3638 }
3639
3640 void
3641 update_breakpoints_after_exec (void)
3642 {
3643 struct breakpoint *b, *b_tmp;
3644 struct bp_location *bploc, **bplocp_tmp;
3645
3646 /* We're about to delete breakpoints from GDB's lists. If the
3647 INSERTED flag is true, GDB will try to lift the breakpoints by
3648 writing the breakpoints' "shadow contents" back into memory. The
3649 "shadow contents" are NOT valid after an exec, so GDB should not
3650 do that. Instead, the target is responsible from marking
3651 breakpoints out as soon as it detects an exec. We don't do that
3652 here instead, because there may be other attempts to delete
3653 breakpoints after detecting an exec and before reaching here. */
3654 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3655 if (bploc->pspace == current_program_space)
3656 gdb_assert (!bploc->inserted);
3657
3658 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3659 {
3660 if (b->pspace != current_program_space)
3661 continue;
3662
3663 /* Solib breakpoints must be explicitly reset after an exec(). */
3664 if (b->type == bp_shlib_event)
3665 {
3666 delete_breakpoint (b);
3667 continue;
3668 }
3669
3670 /* JIT breakpoints must be explicitly reset after an exec(). */
3671 if (b->type == bp_jit_event)
3672 {
3673 delete_breakpoint (b);
3674 continue;
3675 }
3676
3677 /* Thread event breakpoints must be set anew after an exec(),
3678 as must overlay event and longjmp master breakpoints. */
3679 if (b->type == bp_thread_event || b->type == bp_overlay_event
3680 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3681 || b->type == bp_exception_master)
3682 {
3683 delete_breakpoint (b);
3684 continue;
3685 }
3686
3687 /* Step-resume breakpoints are meaningless after an exec(). */
3688 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3689 {
3690 delete_breakpoint (b);
3691 continue;
3692 }
3693
3694 /* Just like single-step breakpoints. */
3695 if (b->type == bp_single_step)
3696 {
3697 delete_breakpoint (b);
3698 continue;
3699 }
3700
3701 /* Longjmp and longjmp-resume breakpoints are also meaningless
3702 after an exec. */
3703 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3704 || b->type == bp_longjmp_call_dummy
3705 || b->type == bp_exception || b->type == bp_exception_resume)
3706 {
3707 delete_breakpoint (b);
3708 continue;
3709 }
3710
3711 if (b->type == bp_catchpoint)
3712 {
3713 /* For now, none of the bp_catchpoint breakpoints need to
3714 do anything at this point. In the future, if some of
3715 the catchpoints need to something, we will need to add
3716 a new method, and call this method from here. */
3717 continue;
3718 }
3719
3720 /* bp_finish is a special case. The only way we ought to be able
3721 to see one of these when an exec() has happened, is if the user
3722 caught a vfork, and then said "finish". Ordinarily a finish just
3723 carries them to the call-site of the current callee, by setting
3724 a temporary bp there and resuming. But in this case, the finish
3725 will carry them entirely through the vfork & exec.
3726
3727 We don't want to allow a bp_finish to remain inserted now. But
3728 we can't safely delete it, 'cause finish_command has a handle to
3729 the bp on a bpstat, and will later want to delete it. There's a
3730 chance (and I've seen it happen) that if we delete the bp_finish
3731 here, that its storage will get reused by the time finish_command
3732 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3733 We really must allow finish_command to delete a bp_finish.
3734
3735 In the absence of a general solution for the "how do we know
3736 it's safe to delete something others may have handles to?"
3737 problem, what we'll do here is just uninsert the bp_finish, and
3738 let finish_command delete it.
3739
3740 (We know the bp_finish is "doomed" in the sense that it's
3741 momentary, and will be deleted as soon as finish_command sees
3742 the inferior stopped. So it doesn't matter that the bp's
3743 address is probably bogus in the new a.out, unlike e.g., the
3744 solib breakpoints.) */
3745
3746 if (b->type == bp_finish)
3747 {
3748 continue;
3749 }
3750
3751 /* Without a symbolic address, we have little hope of the
3752 pre-exec() address meaning the same thing in the post-exec()
3753 a.out. */
3754 if (breakpoint_event_location_empty_p (b))
3755 {
3756 delete_breakpoint (b);
3757 continue;
3758 }
3759 }
3760 }
3761
3762 int
3763 detach_breakpoints (ptid_t ptid)
3764 {
3765 struct bp_location *bl, **blp_tmp;
3766 int val = 0;
3767 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3768 struct inferior *inf = current_inferior ();
3769
3770 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3771 error (_("Cannot detach breakpoints of inferior_ptid"));
3772
3773 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3774 inferior_ptid = ptid;
3775 ALL_BP_LOCATIONS (bl, blp_tmp)
3776 {
3777 if (bl->pspace != inf->pspace)
3778 continue;
3779
3780 /* This function must physically remove breakpoints locations
3781 from the specified ptid, without modifying the breakpoint
3782 package's state. Locations of type bp_loc_other are only
3783 maintained at GDB side. So, there is no need to remove
3784 these bp_loc_other locations. Moreover, removing these
3785 would modify the breakpoint package's state. */
3786 if (bl->loc_type == bp_loc_other)
3787 continue;
3788
3789 if (bl->inserted)
3790 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3791 }
3792
3793 return val;
3794 }
3795
3796 /* Remove the breakpoint location BL from the current address space.
3797 Note that this is used to detach breakpoints from a child fork.
3798 When we get here, the child isn't in the inferior list, and neither
3799 do we have objects to represent its address space --- we should
3800 *not* look at bl->pspace->aspace here. */
3801
3802 static int
3803 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3804 {
3805 int val;
3806
3807 /* BL is never in moribund_locations by our callers. */
3808 gdb_assert (bl->owner != NULL);
3809
3810 /* The type of none suggests that owner is actually deleted.
3811 This should not ever happen. */
3812 gdb_assert (bl->owner->type != bp_none);
3813
3814 if (bl->loc_type == bp_loc_software_breakpoint
3815 || bl->loc_type == bp_loc_hardware_breakpoint)
3816 {
3817 /* "Normal" instruction breakpoint: either the standard
3818 trap-instruction bp (bp_breakpoint), or a
3819 bp_hardware_breakpoint. */
3820
3821 /* First check to see if we have to handle an overlay. */
3822 if (overlay_debugging == ovly_off
3823 || bl->section == NULL
3824 || !(section_is_overlay (bl->section)))
3825 {
3826 /* No overlay handling: just remove the breakpoint. */
3827
3828 /* If we're trying to uninsert a memory breakpoint that we
3829 know is set in a dynamic object that is marked
3830 shlib_disabled, then either the dynamic object was
3831 removed with "remove-symbol-file" or with
3832 "nosharedlibrary". In the former case, we don't know
3833 whether another dynamic object might have loaded over the
3834 breakpoint's address -- the user might well let us know
3835 about it next with add-symbol-file (the whole point of
3836 add-symbol-file is letting the user manually maintain a
3837 list of dynamically loaded objects). If we have the
3838 breakpoint's shadow memory, that is, this is a software
3839 breakpoint managed by GDB, check whether the breakpoint
3840 is still inserted in memory, to avoid overwriting wrong
3841 code with stale saved shadow contents. Note that HW
3842 breakpoints don't have shadow memory, as they're
3843 implemented using a mechanism that is not dependent on
3844 being able to modify the target's memory, and as such
3845 they should always be removed. */
3846 if (bl->shlib_disabled
3847 && bl->target_info.shadow_len != 0
3848 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3849 val = 0;
3850 else
3851 val = bl->owner->ops->remove_location (bl, reason);
3852 }
3853 else
3854 {
3855 /* This breakpoint is in an overlay section.
3856 Did we set a breakpoint at the LMA? */
3857 if (!overlay_events_enabled)
3858 {
3859 /* Yes -- overlay event support is not active, so we
3860 should have set a breakpoint at the LMA. Remove it.
3861 */
3862 /* Ignore any failures: if the LMA is in ROM, we will
3863 have already warned when we failed to insert it. */
3864 if (bl->loc_type == bp_loc_hardware_breakpoint)
3865 target_remove_hw_breakpoint (bl->gdbarch,
3866 &bl->overlay_target_info);
3867 else
3868 target_remove_breakpoint (bl->gdbarch,
3869 &bl->overlay_target_info,
3870 reason);
3871 }
3872 /* Did we set a breakpoint at the VMA?
3873 If so, we will have marked the breakpoint 'inserted'. */
3874 if (bl->inserted)
3875 {
3876 /* Yes -- remove it. Previously we did not bother to
3877 remove the breakpoint if the section had been
3878 unmapped, but let's not rely on that being safe. We
3879 don't know what the overlay manager might do. */
3880
3881 /* However, we should remove *software* breakpoints only
3882 if the section is still mapped, or else we overwrite
3883 wrong code with the saved shadow contents. */
3884 if (bl->loc_type == bp_loc_hardware_breakpoint
3885 || section_is_mapped (bl->section))
3886 val = bl->owner->ops->remove_location (bl, reason);
3887 else
3888 val = 0;
3889 }
3890 else
3891 {
3892 /* No -- not inserted, so no need to remove. No error. */
3893 val = 0;
3894 }
3895 }
3896
3897 /* In some cases, we might not be able to remove a breakpoint in
3898 a shared library that has already been removed, but we have
3899 not yet processed the shlib unload event. Similarly for an
3900 unloaded add-symbol-file object - the user might not yet have
3901 had the chance to remove-symbol-file it. shlib_disabled will
3902 be set if the library/object has already been removed, but
3903 the breakpoint hasn't been uninserted yet, e.g., after
3904 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3905 always-inserted mode. */
3906 if (val
3907 && (bl->loc_type == bp_loc_software_breakpoint
3908 && (bl->shlib_disabled
3909 || solib_name_from_address (bl->pspace, bl->address)
3910 || shared_objfile_contains_address_p (bl->pspace,
3911 bl->address))))
3912 val = 0;
3913
3914 if (val)
3915 return val;
3916 bl->inserted = (reason == DETACH_BREAKPOINT);
3917 }
3918 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3919 {
3920 gdb_assert (bl->owner->ops != NULL
3921 && bl->owner->ops->remove_location != NULL);
3922
3923 bl->inserted = (reason == DETACH_BREAKPOINT);
3924 bl->owner->ops->remove_location (bl, reason);
3925
3926 /* Failure to remove any of the hardware watchpoints comes here. */
3927 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3928 warning (_("Could not remove hardware watchpoint %d."),
3929 bl->owner->number);
3930 }
3931 else if (bl->owner->type == bp_catchpoint
3932 && breakpoint_enabled (bl->owner)
3933 && !bl->duplicate)
3934 {
3935 gdb_assert (bl->owner->ops != NULL
3936 && bl->owner->ops->remove_location != NULL);
3937
3938 val = bl->owner->ops->remove_location (bl, reason);
3939 if (val)
3940 return val;
3941
3942 bl->inserted = (reason == DETACH_BREAKPOINT);
3943 }
3944
3945 return 0;
3946 }
3947
3948 static int
3949 remove_breakpoint (struct bp_location *bl)
3950 {
3951 /* BL is never in moribund_locations by our callers. */
3952 gdb_assert (bl->owner != NULL);
3953
3954 /* The type of none suggests that owner is actually deleted.
3955 This should not ever happen. */
3956 gdb_assert (bl->owner->type != bp_none);
3957
3958 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3959
3960 switch_to_program_space_and_thread (bl->pspace);
3961
3962 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3963 }
3964
3965 /* Clear the "inserted" flag in all breakpoints. */
3966
3967 void
3968 mark_breakpoints_out (void)
3969 {
3970 struct bp_location *bl, **blp_tmp;
3971
3972 ALL_BP_LOCATIONS (bl, blp_tmp)
3973 if (bl->pspace == current_program_space)
3974 bl->inserted = 0;
3975 }
3976
3977 /* Clear the "inserted" flag in all breakpoints and delete any
3978 breakpoints which should go away between runs of the program.
3979
3980 Plus other such housekeeping that has to be done for breakpoints
3981 between runs.
3982
3983 Note: this function gets called at the end of a run (by
3984 generic_mourn_inferior) and when a run begins (by
3985 init_wait_for_inferior). */
3986
3987
3988
3989 void
3990 breakpoint_init_inferior (enum inf_context context)
3991 {
3992 struct breakpoint *b, *b_tmp;
3993 struct bp_location *bl;
3994 int ix;
3995 struct program_space *pspace = current_program_space;
3996
3997 /* If breakpoint locations are shared across processes, then there's
3998 nothing to do. */
3999 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
4000 return;
4001
4002 mark_breakpoints_out ();
4003
4004 ALL_BREAKPOINTS_SAFE (b, b_tmp)
4005 {
4006 if (b->loc && b->loc->pspace != pspace)
4007 continue;
4008
4009 switch (b->type)
4010 {
4011 case bp_call_dummy:
4012 case bp_longjmp_call_dummy:
4013
4014 /* If the call dummy breakpoint is at the entry point it will
4015 cause problems when the inferior is rerun, so we better get
4016 rid of it. */
4017
4018 case bp_watchpoint_scope:
4019
4020 /* Also get rid of scope breakpoints. */
4021
4022 case bp_shlib_event:
4023
4024 /* Also remove solib event breakpoints. Their addresses may
4025 have changed since the last time we ran the program.
4026 Actually we may now be debugging against different target;
4027 and so the solib backend that installed this breakpoint may
4028 not be used in by the target. E.g.,
4029
4030 (gdb) file prog-linux
4031 (gdb) run # native linux target
4032 ...
4033 (gdb) kill
4034 (gdb) file prog-win.exe
4035 (gdb) tar rem :9999 # remote Windows gdbserver.
4036 */
4037
4038 case bp_step_resume:
4039
4040 /* Also remove step-resume breakpoints. */
4041
4042 case bp_single_step:
4043
4044 /* Also remove single-step breakpoints. */
4045
4046 delete_breakpoint (b);
4047 break;
4048
4049 case bp_watchpoint:
4050 case bp_hardware_watchpoint:
4051 case bp_read_watchpoint:
4052 case bp_access_watchpoint:
4053 {
4054 struct watchpoint *w = (struct watchpoint *) b;
4055
4056 /* Likewise for watchpoints on local expressions. */
4057 if (w->exp_valid_block != NULL)
4058 delete_breakpoint (b);
4059 else
4060 {
4061 /* Get rid of existing locations, which are no longer
4062 valid. New ones will be created in
4063 update_watchpoint, when the inferior is restarted.
4064 The next update_global_location_list call will
4065 garbage collect them. */
4066 b->loc = NULL;
4067
4068 if (context == inf_starting)
4069 {
4070 /* Reset val field to force reread of starting value in
4071 insert_breakpoints. */
4072 if (w->val)
4073 value_free (w->val);
4074 w->val = NULL;
4075 w->val_valid = 0;
4076 }
4077 }
4078 }
4079 break;
4080 default:
4081 break;
4082 }
4083 }
4084
4085 /* Get rid of the moribund locations. */
4086 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
4087 decref_bp_location (&bl);
4088 VEC_free (bp_location_p, moribund_locations);
4089 }
4090
4091 /* These functions concern about actual breakpoints inserted in the
4092 target --- to e.g. check if we need to do decr_pc adjustment or if
4093 we need to hop over the bkpt --- so we check for address space
4094 match, not program space. */
4095
4096 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4097 exists at PC. It returns ordinary_breakpoint_here if it's an
4098 ordinary breakpoint, or permanent_breakpoint_here if it's a
4099 permanent breakpoint.
4100 - When continuing from a location with an ordinary breakpoint, we
4101 actually single step once before calling insert_breakpoints.
4102 - When continuing from a location with a permanent breakpoint, we
4103 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4104 the target, to advance the PC past the breakpoint. */
4105
4106 enum breakpoint_here
4107 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4108 {
4109 struct bp_location *bl, **blp_tmp;
4110 int any_breakpoint_here = 0;
4111
4112 ALL_BP_LOCATIONS (bl, blp_tmp)
4113 {
4114 if (bl->loc_type != bp_loc_software_breakpoint
4115 && bl->loc_type != bp_loc_hardware_breakpoint)
4116 continue;
4117
4118 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4119 if ((breakpoint_enabled (bl->owner)
4120 || bl->permanent)
4121 && breakpoint_location_address_match (bl, aspace, pc))
4122 {
4123 if (overlay_debugging
4124 && section_is_overlay (bl->section)
4125 && !section_is_mapped (bl->section))
4126 continue; /* unmapped overlay -- can't be a match */
4127 else if (bl->permanent)
4128 return permanent_breakpoint_here;
4129 else
4130 any_breakpoint_here = 1;
4131 }
4132 }
4133
4134 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4135 }
4136
4137 /* See breakpoint.h. */
4138
4139 int
4140 breakpoint_in_range_p (struct address_space *aspace,
4141 CORE_ADDR addr, ULONGEST len)
4142 {
4143 struct bp_location *bl, **blp_tmp;
4144
4145 ALL_BP_LOCATIONS (bl, blp_tmp)
4146 {
4147 if (bl->loc_type != bp_loc_software_breakpoint
4148 && bl->loc_type != bp_loc_hardware_breakpoint)
4149 continue;
4150
4151 if ((breakpoint_enabled (bl->owner)
4152 || bl->permanent)
4153 && breakpoint_location_address_range_overlap (bl, aspace,
4154 addr, len))
4155 {
4156 if (overlay_debugging
4157 && section_is_overlay (bl->section)
4158 && !section_is_mapped (bl->section))
4159 {
4160 /* Unmapped overlay -- can't be a match. */
4161 continue;
4162 }
4163
4164 return 1;
4165 }
4166 }
4167
4168 return 0;
4169 }
4170
4171 /* Return true if there's a moribund breakpoint at PC. */
4172
4173 int
4174 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4175 {
4176 struct bp_location *loc;
4177 int ix;
4178
4179 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4180 if (breakpoint_location_address_match (loc, aspace, pc))
4181 return 1;
4182
4183 return 0;
4184 }
4185
4186 /* Returns non-zero iff BL is inserted at PC, in address space
4187 ASPACE. */
4188
4189 static int
4190 bp_location_inserted_here_p (struct bp_location *bl,
4191 struct address_space *aspace, CORE_ADDR pc)
4192 {
4193 if (bl->inserted
4194 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4195 aspace, pc))
4196 {
4197 if (overlay_debugging
4198 && section_is_overlay (bl->section)
4199 && !section_is_mapped (bl->section))
4200 return 0; /* unmapped overlay -- can't be a match */
4201 else
4202 return 1;
4203 }
4204 return 0;
4205 }
4206
4207 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4208
4209 int
4210 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4211 {
4212 struct bp_location **blp, **blp_tmp = NULL;
4213
4214 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4215 {
4216 struct bp_location *bl = *blp;
4217
4218 if (bl->loc_type != bp_loc_software_breakpoint
4219 && bl->loc_type != bp_loc_hardware_breakpoint)
4220 continue;
4221
4222 if (bp_location_inserted_here_p (bl, aspace, pc))
4223 return 1;
4224 }
4225 return 0;
4226 }
4227
4228 /* This function returns non-zero iff there is a software breakpoint
4229 inserted at PC. */
4230
4231 int
4232 software_breakpoint_inserted_here_p (struct address_space *aspace,
4233 CORE_ADDR pc)
4234 {
4235 struct bp_location **blp, **blp_tmp = NULL;
4236
4237 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4238 {
4239 struct bp_location *bl = *blp;
4240
4241 if (bl->loc_type != bp_loc_software_breakpoint)
4242 continue;
4243
4244 if (bp_location_inserted_here_p (bl, aspace, pc))
4245 return 1;
4246 }
4247
4248 return 0;
4249 }
4250
4251 /* See breakpoint.h. */
4252
4253 int
4254 hardware_breakpoint_inserted_here_p (struct address_space *aspace,
4255 CORE_ADDR pc)
4256 {
4257 struct bp_location **blp, **blp_tmp = NULL;
4258
4259 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4260 {
4261 struct bp_location *bl = *blp;
4262
4263 if (bl->loc_type != bp_loc_hardware_breakpoint)
4264 continue;
4265
4266 if (bp_location_inserted_here_p (bl, aspace, pc))
4267 return 1;
4268 }
4269
4270 return 0;
4271 }
4272
4273 int
4274 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4275 CORE_ADDR addr, ULONGEST len)
4276 {
4277 struct breakpoint *bpt;
4278
4279 ALL_BREAKPOINTS (bpt)
4280 {
4281 struct bp_location *loc;
4282
4283 if (bpt->type != bp_hardware_watchpoint
4284 && bpt->type != bp_access_watchpoint)
4285 continue;
4286
4287 if (!breakpoint_enabled (bpt))
4288 continue;
4289
4290 for (loc = bpt->loc; loc; loc = loc->next)
4291 if (loc->pspace->aspace == aspace && loc->inserted)
4292 {
4293 CORE_ADDR l, h;
4294
4295 /* Check for intersection. */
4296 l = std::max<CORE_ADDR> (loc->address, addr);
4297 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4298 if (l < h)
4299 return 1;
4300 }
4301 }
4302 return 0;
4303 }
4304 \f
4305
4306 /* bpstat stuff. External routines' interfaces are documented
4307 in breakpoint.h. */
4308
4309 int
4310 is_catchpoint (struct breakpoint *ep)
4311 {
4312 return (ep->type == bp_catchpoint);
4313 }
4314
4315 /* Frees any storage that is part of a bpstat. Does not walk the
4316 'next' chain. */
4317
4318 bpstats::~bpstats ()
4319 {
4320 if (old_val != NULL)
4321 value_free (old_val);
4322 if (bp_location_at != NULL)
4323 decref_bp_location (&bp_location_at);
4324 }
4325
4326 /* Clear a bpstat so that it says we are not at any breakpoint.
4327 Also free any storage that is part of a bpstat. */
4328
4329 void
4330 bpstat_clear (bpstat *bsp)
4331 {
4332 bpstat p;
4333 bpstat q;
4334
4335 if (bsp == 0)
4336 return;
4337 p = *bsp;
4338 while (p != NULL)
4339 {
4340 q = p->next;
4341 delete p;
4342 p = q;
4343 }
4344 *bsp = NULL;
4345 }
4346
4347 bpstats::bpstats (const bpstats &other)
4348 : next (NULL),
4349 bp_location_at (other.bp_location_at),
4350 breakpoint_at (other.breakpoint_at),
4351 commands (other.commands),
4352 old_val (other.old_val),
4353 print (other.print),
4354 stop (other.stop),
4355 print_it (other.print_it)
4356 {
4357 if (old_val != NULL)
4358 {
4359 old_val = value_copy (old_val);
4360 release_value (old_val);
4361 }
4362 incref_bp_location (bp_location_at);
4363 }
4364
4365 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4366 is part of the bpstat is copied as well. */
4367
4368 bpstat
4369 bpstat_copy (bpstat bs)
4370 {
4371 bpstat p = NULL;
4372 bpstat tmp;
4373 bpstat retval = NULL;
4374
4375 if (bs == NULL)
4376 return bs;
4377
4378 for (; bs != NULL; bs = bs->next)
4379 {
4380 tmp = new bpstats (*bs);
4381
4382 if (p == NULL)
4383 /* This is the first thing in the chain. */
4384 retval = tmp;
4385 else
4386 p->next = tmp;
4387 p = tmp;
4388 }
4389 p->next = NULL;
4390 return retval;
4391 }
4392
4393 /* Find the bpstat associated with this breakpoint. */
4394
4395 bpstat
4396 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4397 {
4398 if (bsp == NULL)
4399 return NULL;
4400
4401 for (; bsp != NULL; bsp = bsp->next)
4402 {
4403 if (bsp->breakpoint_at == breakpoint)
4404 return bsp;
4405 }
4406 return NULL;
4407 }
4408
4409 /* See breakpoint.h. */
4410
4411 int
4412 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4413 {
4414 for (; bsp != NULL; bsp = bsp->next)
4415 {
4416 if (bsp->breakpoint_at == NULL)
4417 {
4418 /* A moribund location can never explain a signal other than
4419 GDB_SIGNAL_TRAP. */
4420 if (sig == GDB_SIGNAL_TRAP)
4421 return 1;
4422 }
4423 else
4424 {
4425 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4426 sig))
4427 return 1;
4428 }
4429 }
4430
4431 return 0;
4432 }
4433
4434 /* Put in *NUM the breakpoint number of the first breakpoint we are
4435 stopped at. *BSP upon return is a bpstat which points to the
4436 remaining breakpoints stopped at (but which is not guaranteed to be
4437 good for anything but further calls to bpstat_num).
4438
4439 Return 0 if passed a bpstat which does not indicate any breakpoints.
4440 Return -1 if stopped at a breakpoint that has been deleted since
4441 we set it.
4442 Return 1 otherwise. */
4443
4444 int
4445 bpstat_num (bpstat *bsp, int *num)
4446 {
4447 struct breakpoint *b;
4448
4449 if ((*bsp) == NULL)
4450 return 0; /* No more breakpoint values */
4451
4452 /* We assume we'll never have several bpstats that correspond to a
4453 single breakpoint -- otherwise, this function might return the
4454 same number more than once and this will look ugly. */
4455 b = (*bsp)->breakpoint_at;
4456 *bsp = (*bsp)->next;
4457 if (b == NULL)
4458 return -1; /* breakpoint that's been deleted since */
4459
4460 *num = b->number; /* We have its number */
4461 return 1;
4462 }
4463
4464 /* See breakpoint.h. */
4465
4466 void
4467 bpstat_clear_actions (void)
4468 {
4469 struct thread_info *tp;
4470 bpstat bs;
4471
4472 if (ptid_equal (inferior_ptid, null_ptid))
4473 return;
4474
4475 tp = find_thread_ptid (inferior_ptid);
4476 if (tp == NULL)
4477 return;
4478
4479 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4480 {
4481 bs->commands = NULL;
4482
4483 if (bs->old_val != NULL)
4484 {
4485 value_free (bs->old_val);
4486 bs->old_val = NULL;
4487 }
4488 }
4489 }
4490
4491 /* Called when a command is about to proceed the inferior. */
4492
4493 static void
4494 breakpoint_about_to_proceed (void)
4495 {
4496 if (!ptid_equal (inferior_ptid, null_ptid))
4497 {
4498 struct thread_info *tp = inferior_thread ();
4499
4500 /* Allow inferior function calls in breakpoint commands to not
4501 interrupt the command list. When the call finishes
4502 successfully, the inferior will be standing at the same
4503 breakpoint as if nothing happened. */
4504 if (tp->control.in_infcall)
4505 return;
4506 }
4507
4508 breakpoint_proceeded = 1;
4509 }
4510
4511 /* Stub for cleaning up our state if we error-out of a breakpoint
4512 command. */
4513 static void
4514 cleanup_executing_breakpoints (void *ignore)
4515 {
4516 executing_breakpoint_commands = 0;
4517 }
4518
4519 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4520 or its equivalent. */
4521
4522 static int
4523 command_line_is_silent (struct command_line *cmd)
4524 {
4525 return cmd && (strcmp ("silent", cmd->line) == 0);
4526 }
4527
4528 /* Execute all the commands associated with all the breakpoints at
4529 this location. Any of these commands could cause the process to
4530 proceed beyond this point, etc. We look out for such changes by
4531 checking the global "breakpoint_proceeded" after each command.
4532
4533 Returns true if a breakpoint command resumed the inferior. In that
4534 case, it is the caller's responsibility to recall it again with the
4535 bpstat of the current thread. */
4536
4537 static int
4538 bpstat_do_actions_1 (bpstat *bsp)
4539 {
4540 bpstat bs;
4541 struct cleanup *old_chain;
4542 int again = 0;
4543
4544 /* Avoid endless recursion if a `source' command is contained
4545 in bs->commands. */
4546 if (executing_breakpoint_commands)
4547 return 0;
4548
4549 executing_breakpoint_commands = 1;
4550 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4551
4552 scoped_restore preventer = prevent_dont_repeat ();
4553
4554 /* This pointer will iterate over the list of bpstat's. */
4555 bs = *bsp;
4556
4557 breakpoint_proceeded = 0;
4558 for (; bs != NULL; bs = bs->next)
4559 {
4560 struct command_line *cmd = NULL;
4561
4562 /* Take ownership of the BSP's command tree, if it has one.
4563
4564 The command tree could legitimately contain commands like
4565 'step' and 'next', which call clear_proceed_status, which
4566 frees stop_bpstat's command tree. To make sure this doesn't
4567 free the tree we're executing out from under us, we need to
4568 take ownership of the tree ourselves. Since a given bpstat's
4569 commands are only executed once, we don't need to copy it; we
4570 can clear the pointer in the bpstat, and make sure we free
4571 the tree when we're done. */
4572 counted_command_line ccmd = bs->commands;
4573 bs->commands = NULL;
4574 if (ccmd != NULL)
4575 cmd = ccmd.get ();
4576 if (command_line_is_silent (cmd))
4577 {
4578 /* The action has been already done by bpstat_stop_status. */
4579 cmd = cmd->next;
4580 }
4581
4582 while (cmd != NULL)
4583 {
4584 execute_control_command (cmd);
4585
4586 if (breakpoint_proceeded)
4587 break;
4588 else
4589 cmd = cmd->next;
4590 }
4591
4592 if (breakpoint_proceeded)
4593 {
4594 if (current_ui->async)
4595 /* If we are in async mode, then the target might be still
4596 running, not stopped at any breakpoint, so nothing for
4597 us to do here -- just return to the event loop. */
4598 ;
4599 else
4600 /* In sync mode, when execute_control_command returns
4601 we're already standing on the next breakpoint.
4602 Breakpoint commands for that stop were not run, since
4603 execute_command does not run breakpoint commands --
4604 only command_line_handler does, but that one is not
4605 involved in execution of breakpoint commands. So, we
4606 can now execute breakpoint commands. It should be
4607 noted that making execute_command do bpstat actions is
4608 not an option -- in this case we'll have recursive
4609 invocation of bpstat for each breakpoint with a
4610 command, and can easily blow up GDB stack. Instead, we
4611 return true, which will trigger the caller to recall us
4612 with the new stop_bpstat. */
4613 again = 1;
4614 break;
4615 }
4616 }
4617 do_cleanups (old_chain);
4618 return again;
4619 }
4620
4621 void
4622 bpstat_do_actions (void)
4623 {
4624 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4625
4626 /* Do any commands attached to breakpoint we are stopped at. */
4627 while (!ptid_equal (inferior_ptid, null_ptid)
4628 && target_has_execution
4629 && !is_exited (inferior_ptid)
4630 && !is_executing (inferior_ptid))
4631 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4632 and only return when it is stopped at the next breakpoint, we
4633 keep doing breakpoint actions until it returns false to
4634 indicate the inferior was not resumed. */
4635 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4636 break;
4637
4638 discard_cleanups (cleanup_if_error);
4639 }
4640
4641 /* Print out the (old or new) value associated with a watchpoint. */
4642
4643 static void
4644 watchpoint_value_print (struct value *val, struct ui_file *stream)
4645 {
4646 if (val == NULL)
4647 fprintf_unfiltered (stream, _("<unreadable>"));
4648 else
4649 {
4650 struct value_print_options opts;
4651 get_user_print_options (&opts);
4652 value_print (val, stream, &opts);
4653 }
4654 }
4655
4656 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4657 debugging multiple threads. */
4658
4659 void
4660 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4661 {
4662 if (uiout->is_mi_like_p ())
4663 return;
4664
4665 uiout->text ("\n");
4666
4667 if (show_thread_that_caused_stop ())
4668 {
4669 const char *name;
4670 struct thread_info *thr = inferior_thread ();
4671
4672 uiout->text ("Thread ");
4673 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4674
4675 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4676 if (name != NULL)
4677 {
4678 uiout->text (" \"");
4679 uiout->field_fmt ("name", "%s", name);
4680 uiout->text ("\"");
4681 }
4682
4683 uiout->text (" hit ");
4684 }
4685 }
4686
4687 /* Generic routine for printing messages indicating why we
4688 stopped. The behavior of this function depends on the value
4689 'print_it' in the bpstat structure. Under some circumstances we
4690 may decide not to print anything here and delegate the task to
4691 normal_stop(). */
4692
4693 static enum print_stop_action
4694 print_bp_stop_message (bpstat bs)
4695 {
4696 switch (bs->print_it)
4697 {
4698 case print_it_noop:
4699 /* Nothing should be printed for this bpstat entry. */
4700 return PRINT_UNKNOWN;
4701 break;
4702
4703 case print_it_done:
4704 /* We still want to print the frame, but we already printed the
4705 relevant messages. */
4706 return PRINT_SRC_AND_LOC;
4707 break;
4708
4709 case print_it_normal:
4710 {
4711 struct breakpoint *b = bs->breakpoint_at;
4712
4713 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4714 which has since been deleted. */
4715 if (b == NULL)
4716 return PRINT_UNKNOWN;
4717
4718 /* Normal case. Call the breakpoint's print_it method. */
4719 return b->ops->print_it (bs);
4720 }
4721 break;
4722
4723 default:
4724 internal_error (__FILE__, __LINE__,
4725 _("print_bp_stop_message: unrecognized enum value"));
4726 break;
4727 }
4728 }
4729
4730 /* A helper function that prints a shared library stopped event. */
4731
4732 static void
4733 print_solib_event (int is_catchpoint)
4734 {
4735 int any_deleted
4736 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4737 int any_added
4738 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4739
4740 if (!is_catchpoint)
4741 {
4742 if (any_added || any_deleted)
4743 current_uiout->text (_("Stopped due to shared library event:\n"));
4744 else
4745 current_uiout->text (_("Stopped due to shared library event (no "
4746 "libraries added or removed)\n"));
4747 }
4748
4749 if (current_uiout->is_mi_like_p ())
4750 current_uiout->field_string ("reason",
4751 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4752
4753 if (any_deleted)
4754 {
4755 char *name;
4756 int ix;
4757
4758 current_uiout->text (_(" Inferior unloaded "));
4759 ui_out_emit_list list_emitter (current_uiout, "removed");
4760 for (ix = 0;
4761 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4762 ix, name);
4763 ++ix)
4764 {
4765 if (ix > 0)
4766 current_uiout->text (" ");
4767 current_uiout->field_string ("library", name);
4768 current_uiout->text ("\n");
4769 }
4770 }
4771
4772 if (any_added)
4773 {
4774 struct so_list *iter;
4775 int ix;
4776
4777 current_uiout->text (_(" Inferior loaded "));
4778 ui_out_emit_list list_emitter (current_uiout, "added");
4779 for (ix = 0;
4780 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4781 ix, iter);
4782 ++ix)
4783 {
4784 if (ix > 0)
4785 current_uiout->text (" ");
4786 current_uiout->field_string ("library", iter->so_name);
4787 current_uiout->text ("\n");
4788 }
4789 }
4790 }
4791
4792 /* Print a message indicating what happened. This is called from
4793 normal_stop(). The input to this routine is the head of the bpstat
4794 list - a list of the eventpoints that caused this stop. KIND is
4795 the target_waitkind for the stopping event. This
4796 routine calls the generic print routine for printing a message
4797 about reasons for stopping. This will print (for example) the
4798 "Breakpoint n," part of the output. The return value of this
4799 routine is one of:
4800
4801 PRINT_UNKNOWN: Means we printed nothing.
4802 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4803 code to print the location. An example is
4804 "Breakpoint 1, " which should be followed by
4805 the location.
4806 PRINT_SRC_ONLY: Means we printed something, but there is no need
4807 to also print the location part of the message.
4808 An example is the catch/throw messages, which
4809 don't require a location appended to the end.
4810 PRINT_NOTHING: We have done some printing and we don't need any
4811 further info to be printed. */
4812
4813 enum print_stop_action
4814 bpstat_print (bpstat bs, int kind)
4815 {
4816 enum print_stop_action val;
4817
4818 /* Maybe another breakpoint in the chain caused us to stop.
4819 (Currently all watchpoints go on the bpstat whether hit or not.
4820 That probably could (should) be changed, provided care is taken
4821 with respect to bpstat_explains_signal). */
4822 for (; bs; bs = bs->next)
4823 {
4824 val = print_bp_stop_message (bs);
4825 if (val == PRINT_SRC_ONLY
4826 || val == PRINT_SRC_AND_LOC
4827 || val == PRINT_NOTHING)
4828 return val;
4829 }
4830
4831 /* If we had hit a shared library event breakpoint,
4832 print_bp_stop_message would print out this message. If we hit an
4833 OS-level shared library event, do the same thing. */
4834 if (kind == TARGET_WAITKIND_LOADED)
4835 {
4836 print_solib_event (0);
4837 return PRINT_NOTHING;
4838 }
4839
4840 /* We reached the end of the chain, or we got a null BS to start
4841 with and nothing was printed. */
4842 return PRINT_UNKNOWN;
4843 }
4844
4845 /* Evaluate the expression EXP and return 1 if value is zero.
4846 This returns the inverse of the condition because it is called
4847 from catch_errors which returns 0 if an exception happened, and if an
4848 exception happens we want execution to stop.
4849 The argument is a "struct expression *" that has been cast to a
4850 "void *" to make it pass through catch_errors. */
4851
4852 static int
4853 breakpoint_cond_eval (void *exp)
4854 {
4855 struct value *mark = value_mark ();
4856 int i = !value_true (evaluate_expression ((struct expression *) exp));
4857
4858 value_free_to_mark (mark);
4859 return i;
4860 }
4861
4862 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4863
4864 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4865 : next (NULL),
4866 bp_location_at (bl),
4867 breakpoint_at (bl->owner),
4868 commands (NULL),
4869 old_val (NULL),
4870 print (0),
4871 stop (0),
4872 print_it (print_it_normal)
4873 {
4874 incref_bp_location (bl);
4875 **bs_link_pointer = this;
4876 *bs_link_pointer = &next;
4877 }
4878
4879 bpstats::bpstats ()
4880 : next (NULL),
4881 bp_location_at (NULL),
4882 breakpoint_at (NULL),
4883 commands (NULL),
4884 old_val (NULL),
4885 print (0),
4886 stop (0),
4887 print_it (print_it_normal)
4888 {
4889 }
4890 \f
4891 /* The target has stopped with waitstatus WS. Check if any hardware
4892 watchpoints have triggered, according to the target. */
4893
4894 int
4895 watchpoints_triggered (struct target_waitstatus *ws)
4896 {
4897 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4898 CORE_ADDR addr;
4899 struct breakpoint *b;
4900
4901 if (!stopped_by_watchpoint)
4902 {
4903 /* We were not stopped by a watchpoint. Mark all watchpoints
4904 as not triggered. */
4905 ALL_BREAKPOINTS (b)
4906 if (is_hardware_watchpoint (b))
4907 {
4908 struct watchpoint *w = (struct watchpoint *) b;
4909
4910 w->watchpoint_triggered = watch_triggered_no;
4911 }
4912
4913 return 0;
4914 }
4915
4916 if (!target_stopped_data_address (&current_target, &addr))
4917 {
4918 /* We were stopped by a watchpoint, but we don't know where.
4919 Mark all watchpoints as unknown. */
4920 ALL_BREAKPOINTS (b)
4921 if (is_hardware_watchpoint (b))
4922 {
4923 struct watchpoint *w = (struct watchpoint *) b;
4924
4925 w->watchpoint_triggered = watch_triggered_unknown;
4926 }
4927
4928 return 1;
4929 }
4930
4931 /* The target could report the data address. Mark watchpoints
4932 affected by this data address as triggered, and all others as not
4933 triggered. */
4934
4935 ALL_BREAKPOINTS (b)
4936 if (is_hardware_watchpoint (b))
4937 {
4938 struct watchpoint *w = (struct watchpoint *) b;
4939 struct bp_location *loc;
4940
4941 w->watchpoint_triggered = watch_triggered_no;
4942 for (loc = b->loc; loc; loc = loc->next)
4943 {
4944 if (is_masked_watchpoint (b))
4945 {
4946 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4947 CORE_ADDR start = loc->address & w->hw_wp_mask;
4948
4949 if (newaddr == start)
4950 {
4951 w->watchpoint_triggered = watch_triggered_yes;
4952 break;
4953 }
4954 }
4955 /* Exact match not required. Within range is sufficient. */
4956 else if (target_watchpoint_addr_within_range (&current_target,
4957 addr, loc->address,
4958 loc->length))
4959 {
4960 w->watchpoint_triggered = watch_triggered_yes;
4961 break;
4962 }
4963 }
4964 }
4965
4966 return 1;
4967 }
4968
4969 /* Possible return values for watchpoint_check (this can't be an enum
4970 because of check_errors). */
4971 /* The watchpoint has been deleted. */
4972 #define WP_DELETED 1
4973 /* The value has changed. */
4974 #define WP_VALUE_CHANGED 2
4975 /* The value has not changed. */
4976 #define WP_VALUE_NOT_CHANGED 3
4977 /* Ignore this watchpoint, no matter if the value changed or not. */
4978 #define WP_IGNORE 4
4979
4980 #define BP_TEMPFLAG 1
4981 #define BP_HARDWAREFLAG 2
4982
4983 /* Evaluate watchpoint condition expression and check if its value
4984 changed.
4985
4986 P should be a pointer to struct bpstat, but is defined as a void *
4987 in order for this function to be usable with catch_errors. */
4988
4989 static int
4990 watchpoint_check (void *p)
4991 {
4992 bpstat bs = (bpstat) p;
4993 struct watchpoint *b;
4994 struct frame_info *fr;
4995 int within_current_scope;
4996
4997 /* BS is built from an existing struct breakpoint. */
4998 gdb_assert (bs->breakpoint_at != NULL);
4999 b = (struct watchpoint *) bs->breakpoint_at;
5000
5001 /* If this is a local watchpoint, we only want to check if the
5002 watchpoint frame is in scope if the current thread is the thread
5003 that was used to create the watchpoint. */
5004 if (!watchpoint_in_thread_scope (b))
5005 return WP_IGNORE;
5006
5007 if (b->exp_valid_block == NULL)
5008 within_current_scope = 1;
5009 else
5010 {
5011 struct frame_info *frame = get_current_frame ();
5012 struct gdbarch *frame_arch = get_frame_arch (frame);
5013 CORE_ADDR frame_pc = get_frame_pc (frame);
5014
5015 /* stack_frame_destroyed_p() returns a non-zero value if we're
5016 still in the function but the stack frame has already been
5017 invalidated. Since we can't rely on the values of local
5018 variables after the stack has been destroyed, we are treating
5019 the watchpoint in that state as `not changed' without further
5020 checking. Don't mark watchpoints as changed if the current
5021 frame is in an epilogue - even if they are in some other
5022 frame, our view of the stack is likely to be wrong and
5023 frame_find_by_id could error out. */
5024 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
5025 return WP_IGNORE;
5026
5027 fr = frame_find_by_id (b->watchpoint_frame);
5028 within_current_scope = (fr != NULL);
5029
5030 /* If we've gotten confused in the unwinder, we might have
5031 returned a frame that can't describe this variable. */
5032 if (within_current_scope)
5033 {
5034 struct symbol *function;
5035
5036 function = get_frame_function (fr);
5037 if (function == NULL
5038 || !contained_in (b->exp_valid_block,
5039 SYMBOL_BLOCK_VALUE (function)))
5040 within_current_scope = 0;
5041 }
5042
5043 if (within_current_scope)
5044 /* If we end up stopping, the current frame will get selected
5045 in normal_stop. So this call to select_frame won't affect
5046 the user. */
5047 select_frame (fr);
5048 }
5049
5050 if (within_current_scope)
5051 {
5052 /* We use value_{,free_to_}mark because it could be a *long*
5053 time before we return to the command level and call
5054 free_all_values. We can't call free_all_values because we
5055 might be in the middle of evaluating a function call. */
5056
5057 int pc = 0;
5058 struct value *mark;
5059 struct value *new_val;
5060
5061 if (is_masked_watchpoint (b))
5062 /* Since we don't know the exact trigger address (from
5063 stopped_data_address), just tell the user we've triggered
5064 a mask watchpoint. */
5065 return WP_VALUE_CHANGED;
5066
5067 mark = value_mark ();
5068 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
5069
5070 if (b->val_bitsize != 0)
5071 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
5072
5073 /* We use value_equal_contents instead of value_equal because
5074 the latter coerces an array to a pointer, thus comparing just
5075 the address of the array instead of its contents. This is
5076 not what we want. */
5077 if ((b->val != NULL) != (new_val != NULL)
5078 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
5079 {
5080 if (new_val != NULL)
5081 {
5082 release_value (new_val);
5083 value_free_to_mark (mark);
5084 }
5085 bs->old_val = b->val;
5086 b->val = new_val;
5087 b->val_valid = 1;
5088 return WP_VALUE_CHANGED;
5089 }
5090 else
5091 {
5092 /* Nothing changed. */
5093 value_free_to_mark (mark);
5094 return WP_VALUE_NOT_CHANGED;
5095 }
5096 }
5097 else
5098 {
5099 /* This seems like the only logical thing to do because
5100 if we temporarily ignored the watchpoint, then when
5101 we reenter the block in which it is valid it contains
5102 garbage (in the case of a function, it may have two
5103 garbage values, one before and one after the prologue).
5104 So we can't even detect the first assignment to it and
5105 watch after that (since the garbage may or may not equal
5106 the first value assigned). */
5107 /* We print all the stop information in
5108 breakpoint_ops->print_it, but in this case, by the time we
5109 call breakpoint_ops->print_it this bp will be deleted
5110 already. So we have no choice but print the information
5111 here. */
5112
5113 SWITCH_THRU_ALL_UIS ()
5114 {
5115 struct ui_out *uiout = current_uiout;
5116
5117 if (uiout->is_mi_like_p ())
5118 uiout->field_string
5119 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5120 uiout->text ("\nWatchpoint ");
5121 uiout->field_int ("wpnum", b->number);
5122 uiout->text (" deleted because the program has left the block in\n"
5123 "which its expression is valid.\n");
5124 }
5125
5126 /* Make sure the watchpoint's commands aren't executed. */
5127 b->commands = NULL;
5128 watchpoint_del_at_next_stop (b);
5129
5130 return WP_DELETED;
5131 }
5132 }
5133
5134 /* Return true if it looks like target has stopped due to hitting
5135 breakpoint location BL. This function does not check if we should
5136 stop, only if BL explains the stop. */
5137
5138 static int
5139 bpstat_check_location (const struct bp_location *bl,
5140 struct address_space *aspace, CORE_ADDR bp_addr,
5141 const struct target_waitstatus *ws)
5142 {
5143 struct breakpoint *b = bl->owner;
5144
5145 /* BL is from an existing breakpoint. */
5146 gdb_assert (b != NULL);
5147
5148 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5149 }
5150
5151 /* Determine if the watched values have actually changed, and we
5152 should stop. If not, set BS->stop to 0. */
5153
5154 static void
5155 bpstat_check_watchpoint (bpstat bs)
5156 {
5157 const struct bp_location *bl;
5158 struct watchpoint *b;
5159
5160 /* BS is built for existing struct breakpoint. */
5161 bl = bs->bp_location_at;
5162 gdb_assert (bl != NULL);
5163 b = (struct watchpoint *) bs->breakpoint_at;
5164 gdb_assert (b != NULL);
5165
5166 {
5167 int must_check_value = 0;
5168
5169 if (b->type == bp_watchpoint)
5170 /* For a software watchpoint, we must always check the
5171 watched value. */
5172 must_check_value = 1;
5173 else if (b->watchpoint_triggered == watch_triggered_yes)
5174 /* We have a hardware watchpoint (read, write, or access)
5175 and the target earlier reported an address watched by
5176 this watchpoint. */
5177 must_check_value = 1;
5178 else if (b->watchpoint_triggered == watch_triggered_unknown
5179 && b->type == bp_hardware_watchpoint)
5180 /* We were stopped by a hardware watchpoint, but the target could
5181 not report the data address. We must check the watchpoint's
5182 value. Access and read watchpoints are out of luck; without
5183 a data address, we can't figure it out. */
5184 must_check_value = 1;
5185
5186 if (must_check_value)
5187 {
5188 char *message
5189 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5190 b->number);
5191 struct cleanup *cleanups = make_cleanup (xfree, message);
5192 int e = catch_errors (watchpoint_check, bs, message,
5193 RETURN_MASK_ALL);
5194 do_cleanups (cleanups);
5195 switch (e)
5196 {
5197 case WP_DELETED:
5198 /* We've already printed what needs to be printed. */
5199 bs->print_it = print_it_done;
5200 /* Stop. */
5201 break;
5202 case WP_IGNORE:
5203 bs->print_it = print_it_noop;
5204 bs->stop = 0;
5205 break;
5206 case WP_VALUE_CHANGED:
5207 if (b->type == bp_read_watchpoint)
5208 {
5209 /* There are two cases to consider here:
5210
5211 1. We're watching the triggered memory for reads.
5212 In that case, trust the target, and always report
5213 the watchpoint hit to the user. Even though
5214 reads don't cause value changes, the value may
5215 have changed since the last time it was read, and
5216 since we're not trapping writes, we will not see
5217 those, and as such we should ignore our notion of
5218 old value.
5219
5220 2. We're watching the triggered memory for both
5221 reads and writes. There are two ways this may
5222 happen:
5223
5224 2.1. This is a target that can't break on data
5225 reads only, but can break on accesses (reads or
5226 writes), such as e.g., x86. We detect this case
5227 at the time we try to insert read watchpoints.
5228
5229 2.2. Otherwise, the target supports read
5230 watchpoints, but, the user set an access or write
5231 watchpoint watching the same memory as this read
5232 watchpoint.
5233
5234 If we're watching memory writes as well as reads,
5235 ignore watchpoint hits when we find that the
5236 value hasn't changed, as reads don't cause
5237 changes. This still gives false positives when
5238 the program writes the same value to memory as
5239 what there was already in memory (we will confuse
5240 it for a read), but it's much better than
5241 nothing. */
5242
5243 int other_write_watchpoint = 0;
5244
5245 if (bl->watchpoint_type == hw_read)
5246 {
5247 struct breakpoint *other_b;
5248
5249 ALL_BREAKPOINTS (other_b)
5250 if (other_b->type == bp_hardware_watchpoint
5251 || other_b->type == bp_access_watchpoint)
5252 {
5253 struct watchpoint *other_w =
5254 (struct watchpoint *) other_b;
5255
5256 if (other_w->watchpoint_triggered
5257 == watch_triggered_yes)
5258 {
5259 other_write_watchpoint = 1;
5260 break;
5261 }
5262 }
5263 }
5264
5265 if (other_write_watchpoint
5266 || bl->watchpoint_type == hw_access)
5267 {
5268 /* We're watching the same memory for writes,
5269 and the value changed since the last time we
5270 updated it, so this trap must be for a write.
5271 Ignore it. */
5272 bs->print_it = print_it_noop;
5273 bs->stop = 0;
5274 }
5275 }
5276 break;
5277 case WP_VALUE_NOT_CHANGED:
5278 if (b->type == bp_hardware_watchpoint
5279 || b->type == bp_watchpoint)
5280 {
5281 /* Don't stop: write watchpoints shouldn't fire if
5282 the value hasn't changed. */
5283 bs->print_it = print_it_noop;
5284 bs->stop = 0;
5285 }
5286 /* Stop. */
5287 break;
5288 default:
5289 /* Can't happen. */
5290 case 0:
5291 /* Error from catch_errors. */
5292 {
5293 SWITCH_THRU_ALL_UIS ()
5294 {
5295 printf_filtered (_("Watchpoint %d deleted.\n"),
5296 b->number);
5297 }
5298 watchpoint_del_at_next_stop (b);
5299 /* We've already printed what needs to be printed. */
5300 bs->print_it = print_it_done;
5301 }
5302 break;
5303 }
5304 }
5305 else /* must_check_value == 0 */
5306 {
5307 /* This is a case where some watchpoint(s) triggered, but
5308 not at the address of this watchpoint, or else no
5309 watchpoint triggered after all. So don't print
5310 anything for this watchpoint. */
5311 bs->print_it = print_it_noop;
5312 bs->stop = 0;
5313 }
5314 }
5315 }
5316
5317 /* For breakpoints that are currently marked as telling gdb to stop,
5318 check conditions (condition proper, frame, thread and ignore count)
5319 of breakpoint referred to by BS. If we should not stop for this
5320 breakpoint, set BS->stop to 0. */
5321
5322 static void
5323 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5324 {
5325 const struct bp_location *bl;
5326 struct breakpoint *b;
5327 int value_is_zero = 0;
5328 struct expression *cond;
5329
5330 gdb_assert (bs->stop);
5331
5332 /* BS is built for existing struct breakpoint. */
5333 bl = bs->bp_location_at;
5334 gdb_assert (bl != NULL);
5335 b = bs->breakpoint_at;
5336 gdb_assert (b != NULL);
5337
5338 /* Even if the target evaluated the condition on its end and notified GDB, we
5339 need to do so again since GDB does not know if we stopped due to a
5340 breakpoint or a single step breakpoint. */
5341
5342 if (frame_id_p (b->frame_id)
5343 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5344 {
5345 bs->stop = 0;
5346 return;
5347 }
5348
5349 /* If this is a thread/task-specific breakpoint, don't waste cpu
5350 evaluating the condition if this isn't the specified
5351 thread/task. */
5352 if ((b->thread != -1 && b->thread != ptid_to_global_thread_id (ptid))
5353 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5354
5355 {
5356 bs->stop = 0;
5357 return;
5358 }
5359
5360 /* Evaluate extension language breakpoints that have a "stop" method
5361 implemented. */
5362 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5363
5364 if (is_watchpoint (b))
5365 {
5366 struct watchpoint *w = (struct watchpoint *) b;
5367
5368 cond = w->cond_exp.get ();
5369 }
5370 else
5371 cond = bl->cond.get ();
5372
5373 if (cond && b->disposition != disp_del_at_next_stop)
5374 {
5375 int within_current_scope = 1;
5376 struct watchpoint * w;
5377
5378 /* We use value_mark and value_free_to_mark because it could
5379 be a long time before we return to the command level and
5380 call free_all_values. We can't call free_all_values
5381 because we might be in the middle of evaluating a
5382 function call. */
5383 struct value *mark = value_mark ();
5384
5385 if (is_watchpoint (b))
5386 w = (struct watchpoint *) b;
5387 else
5388 w = NULL;
5389
5390 /* Need to select the frame, with all that implies so that
5391 the conditions will have the right context. Because we
5392 use the frame, we will not see an inlined function's
5393 variables when we arrive at a breakpoint at the start
5394 of the inlined function; the current frame will be the
5395 call site. */
5396 if (w == NULL || w->cond_exp_valid_block == NULL)
5397 select_frame (get_current_frame ());
5398 else
5399 {
5400 struct frame_info *frame;
5401
5402 /* For local watchpoint expressions, which particular
5403 instance of a local is being watched matters, so we
5404 keep track of the frame to evaluate the expression
5405 in. To evaluate the condition however, it doesn't
5406 really matter which instantiation of the function
5407 where the condition makes sense triggers the
5408 watchpoint. This allows an expression like "watch
5409 global if q > 10" set in `func', catch writes to
5410 global on all threads that call `func', or catch
5411 writes on all recursive calls of `func' by a single
5412 thread. We simply always evaluate the condition in
5413 the innermost frame that's executing where it makes
5414 sense to evaluate the condition. It seems
5415 intuitive. */
5416 frame = block_innermost_frame (w->cond_exp_valid_block);
5417 if (frame != NULL)
5418 select_frame (frame);
5419 else
5420 within_current_scope = 0;
5421 }
5422 if (within_current_scope)
5423 value_is_zero
5424 = catch_errors (breakpoint_cond_eval, cond,
5425 "Error in testing breakpoint condition:\n",
5426 RETURN_MASK_ALL);
5427 else
5428 {
5429 warning (_("Watchpoint condition cannot be tested "
5430 "in the current scope"));
5431 /* If we failed to set the right context for this
5432 watchpoint, unconditionally report it. */
5433 value_is_zero = 0;
5434 }
5435 /* FIXME-someday, should give breakpoint #. */
5436 value_free_to_mark (mark);
5437 }
5438
5439 if (cond && value_is_zero)
5440 {
5441 bs->stop = 0;
5442 }
5443 else if (b->ignore_count > 0)
5444 {
5445 b->ignore_count--;
5446 bs->stop = 0;
5447 /* Increase the hit count even though we don't stop. */
5448 ++(b->hit_count);
5449 observer_notify_breakpoint_modified (b);
5450 }
5451 }
5452
5453 /* Returns true if we need to track moribund locations of LOC's type
5454 on the current target. */
5455
5456 static int
5457 need_moribund_for_location_type (struct bp_location *loc)
5458 {
5459 return ((loc->loc_type == bp_loc_software_breakpoint
5460 && !target_supports_stopped_by_sw_breakpoint ())
5461 || (loc->loc_type == bp_loc_hardware_breakpoint
5462 && !target_supports_stopped_by_hw_breakpoint ()));
5463 }
5464
5465
5466 /* Get a bpstat associated with having just stopped at address
5467 BP_ADDR in thread PTID.
5468
5469 Determine whether we stopped at a breakpoint, etc, or whether we
5470 don't understand this stop. Result is a chain of bpstat's such
5471 that:
5472
5473 if we don't understand the stop, the result is a null pointer.
5474
5475 if we understand why we stopped, the result is not null.
5476
5477 Each element of the chain refers to a particular breakpoint or
5478 watchpoint at which we have stopped. (We may have stopped for
5479 several reasons concurrently.)
5480
5481 Each element of the chain has valid next, breakpoint_at,
5482 commands, FIXME??? fields. */
5483
5484 bpstat
5485 bpstat_stop_status (struct address_space *aspace,
5486 CORE_ADDR bp_addr, ptid_t ptid,
5487 const struct target_waitstatus *ws)
5488 {
5489 struct breakpoint *b = NULL;
5490 struct bp_location *bl;
5491 struct bp_location *loc;
5492 /* First item of allocated bpstat's. */
5493 bpstat bs_head = NULL, *bs_link = &bs_head;
5494 /* Pointer to the last thing in the chain currently. */
5495 bpstat bs;
5496 int ix;
5497 int need_remove_insert;
5498 int removed_any;
5499
5500 /* First, build the bpstat chain with locations that explain a
5501 target stop, while being careful to not set the target running,
5502 as that may invalidate locations (in particular watchpoint
5503 locations are recreated). Resuming will happen here with
5504 breakpoint conditions or watchpoint expressions that include
5505 inferior function calls. */
5506
5507 ALL_BREAKPOINTS (b)
5508 {
5509 if (!breakpoint_enabled (b))
5510 continue;
5511
5512 for (bl = b->loc; bl != NULL; bl = bl->next)
5513 {
5514 /* For hardware watchpoints, we look only at the first
5515 location. The watchpoint_check function will work on the
5516 entire expression, not the individual locations. For
5517 read watchpoints, the watchpoints_triggered function has
5518 checked all locations already. */
5519 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5520 break;
5521
5522 if (!bl->enabled || bl->shlib_disabled)
5523 continue;
5524
5525 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5526 continue;
5527
5528 /* Come here if it's a watchpoint, or if the break address
5529 matches. */
5530
5531 bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5532 explain stop. */
5533
5534 /* Assume we stop. Should we find a watchpoint that is not
5535 actually triggered, or if the condition of the breakpoint
5536 evaluates as false, we'll reset 'stop' to 0. */
5537 bs->stop = 1;
5538 bs->print = 1;
5539
5540 /* If this is a scope breakpoint, mark the associated
5541 watchpoint as triggered so that we will handle the
5542 out-of-scope event. We'll get to the watchpoint next
5543 iteration. */
5544 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5545 {
5546 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5547
5548 w->watchpoint_triggered = watch_triggered_yes;
5549 }
5550 }
5551 }
5552
5553 /* Check if a moribund breakpoint explains the stop. */
5554 if (!target_supports_stopped_by_sw_breakpoint ()
5555 || !target_supports_stopped_by_hw_breakpoint ())
5556 {
5557 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5558 {
5559 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5560 && need_moribund_for_location_type (loc))
5561 {
5562 bs = new bpstats (loc, &bs_link);
5563 /* For hits of moribund locations, we should just proceed. */
5564 bs->stop = 0;
5565 bs->print = 0;
5566 bs->print_it = print_it_noop;
5567 }
5568 }
5569 }
5570
5571 /* A bit of special processing for shlib breakpoints. We need to
5572 process solib loading here, so that the lists of loaded and
5573 unloaded libraries are correct before we handle "catch load" and
5574 "catch unload". */
5575 for (bs = bs_head; bs != NULL; bs = bs->next)
5576 {
5577 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5578 {
5579 handle_solib_event ();
5580 break;
5581 }
5582 }
5583
5584 /* Now go through the locations that caused the target to stop, and
5585 check whether we're interested in reporting this stop to higher
5586 layers, or whether we should resume the target transparently. */
5587
5588 removed_any = 0;
5589
5590 for (bs = bs_head; bs != NULL; bs = bs->next)
5591 {
5592 if (!bs->stop)
5593 continue;
5594
5595 b = bs->breakpoint_at;
5596 b->ops->check_status (bs);
5597 if (bs->stop)
5598 {
5599 bpstat_check_breakpoint_conditions (bs, ptid);
5600
5601 if (bs->stop)
5602 {
5603 ++(b->hit_count);
5604 observer_notify_breakpoint_modified (b);
5605
5606 /* We will stop here. */
5607 if (b->disposition == disp_disable)
5608 {
5609 --(b->enable_count);
5610 if (b->enable_count <= 0)
5611 b->enable_state = bp_disabled;
5612 removed_any = 1;
5613 }
5614 if (b->silent)
5615 bs->print = 0;
5616 bs->commands = b->commands;
5617 if (command_line_is_silent (bs->commands
5618 ? bs->commands.get () : NULL))
5619 bs->print = 0;
5620
5621 b->ops->after_condition_true (bs);
5622 }
5623
5624 }
5625
5626 /* Print nothing for this entry if we don't stop or don't
5627 print. */
5628 if (!bs->stop || !bs->print)
5629 bs->print_it = print_it_noop;
5630 }
5631
5632 /* If we aren't stopping, the value of some hardware watchpoint may
5633 not have changed, but the intermediate memory locations we are
5634 watching may have. Don't bother if we're stopping; this will get
5635 done later. */
5636 need_remove_insert = 0;
5637 if (! bpstat_causes_stop (bs_head))
5638 for (bs = bs_head; bs != NULL; bs = bs->next)
5639 if (!bs->stop
5640 && bs->breakpoint_at
5641 && is_hardware_watchpoint (bs->breakpoint_at))
5642 {
5643 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5644
5645 update_watchpoint (w, 0 /* don't reparse. */);
5646 need_remove_insert = 1;
5647 }
5648
5649 if (need_remove_insert)
5650 update_global_location_list (UGLL_MAY_INSERT);
5651 else if (removed_any)
5652 update_global_location_list (UGLL_DONT_INSERT);
5653
5654 return bs_head;
5655 }
5656
5657 static void
5658 handle_jit_event (void)
5659 {
5660 struct frame_info *frame;
5661 struct gdbarch *gdbarch;
5662
5663 if (debug_infrun)
5664 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5665
5666 /* Switch terminal for any messages produced by
5667 breakpoint_re_set. */
5668 target_terminal::ours_for_output ();
5669
5670 frame = get_current_frame ();
5671 gdbarch = get_frame_arch (frame);
5672
5673 jit_event_handler (gdbarch);
5674
5675 target_terminal::inferior ();
5676 }
5677
5678 /* Prepare WHAT final decision for infrun. */
5679
5680 /* Decide what infrun needs to do with this bpstat. */
5681
5682 struct bpstat_what
5683 bpstat_what (bpstat bs_head)
5684 {
5685 struct bpstat_what retval;
5686 bpstat bs;
5687
5688 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5689 retval.call_dummy = STOP_NONE;
5690 retval.is_longjmp = 0;
5691
5692 for (bs = bs_head; bs != NULL; bs = bs->next)
5693 {
5694 /* Extract this BS's action. After processing each BS, we check
5695 if its action overrides all we've seem so far. */
5696 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5697 enum bptype bptype;
5698
5699 if (bs->breakpoint_at == NULL)
5700 {
5701 /* I suspect this can happen if it was a momentary
5702 breakpoint which has since been deleted. */
5703 bptype = bp_none;
5704 }
5705 else
5706 bptype = bs->breakpoint_at->type;
5707
5708 switch (bptype)
5709 {
5710 case bp_none:
5711 break;
5712 case bp_breakpoint:
5713 case bp_hardware_breakpoint:
5714 case bp_single_step:
5715 case bp_until:
5716 case bp_finish:
5717 case bp_shlib_event:
5718 if (bs->stop)
5719 {
5720 if (bs->print)
5721 this_action = BPSTAT_WHAT_STOP_NOISY;
5722 else
5723 this_action = BPSTAT_WHAT_STOP_SILENT;
5724 }
5725 else
5726 this_action = BPSTAT_WHAT_SINGLE;
5727 break;
5728 case bp_watchpoint:
5729 case bp_hardware_watchpoint:
5730 case bp_read_watchpoint:
5731 case bp_access_watchpoint:
5732 if (bs->stop)
5733 {
5734 if (bs->print)
5735 this_action = BPSTAT_WHAT_STOP_NOISY;
5736 else
5737 this_action = BPSTAT_WHAT_STOP_SILENT;
5738 }
5739 else
5740 {
5741 /* There was a watchpoint, but we're not stopping.
5742 This requires no further action. */
5743 }
5744 break;
5745 case bp_longjmp:
5746 case bp_longjmp_call_dummy:
5747 case bp_exception:
5748 if (bs->stop)
5749 {
5750 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5751 retval.is_longjmp = bptype != bp_exception;
5752 }
5753 else
5754 this_action = BPSTAT_WHAT_SINGLE;
5755 break;
5756 case bp_longjmp_resume:
5757 case bp_exception_resume:
5758 if (bs->stop)
5759 {
5760 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5761 retval.is_longjmp = bptype == bp_longjmp_resume;
5762 }
5763 else
5764 this_action = BPSTAT_WHAT_SINGLE;
5765 break;
5766 case bp_step_resume:
5767 if (bs->stop)
5768 this_action = BPSTAT_WHAT_STEP_RESUME;
5769 else
5770 {
5771 /* It is for the wrong frame. */
5772 this_action = BPSTAT_WHAT_SINGLE;
5773 }
5774 break;
5775 case bp_hp_step_resume:
5776 if (bs->stop)
5777 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5778 else
5779 {
5780 /* It is for the wrong frame. */
5781 this_action = BPSTAT_WHAT_SINGLE;
5782 }
5783 break;
5784 case bp_watchpoint_scope:
5785 case bp_thread_event:
5786 case bp_overlay_event:
5787 case bp_longjmp_master:
5788 case bp_std_terminate_master:
5789 case bp_exception_master:
5790 this_action = BPSTAT_WHAT_SINGLE;
5791 break;
5792 case bp_catchpoint:
5793 if (bs->stop)
5794 {
5795 if (bs->print)
5796 this_action = BPSTAT_WHAT_STOP_NOISY;
5797 else
5798 this_action = BPSTAT_WHAT_STOP_SILENT;
5799 }
5800 else
5801 {
5802 /* There was a catchpoint, but we're not stopping.
5803 This requires no further action. */
5804 }
5805 break;
5806 case bp_jit_event:
5807 this_action = BPSTAT_WHAT_SINGLE;
5808 break;
5809 case bp_call_dummy:
5810 /* Make sure the action is stop (silent or noisy),
5811 so infrun.c pops the dummy frame. */
5812 retval.call_dummy = STOP_STACK_DUMMY;
5813 this_action = BPSTAT_WHAT_STOP_SILENT;
5814 break;
5815 case bp_std_terminate:
5816 /* Make sure the action is stop (silent or noisy),
5817 so infrun.c pops the dummy frame. */
5818 retval.call_dummy = STOP_STD_TERMINATE;
5819 this_action = BPSTAT_WHAT_STOP_SILENT;
5820 break;
5821 case bp_tracepoint:
5822 case bp_fast_tracepoint:
5823 case bp_static_tracepoint:
5824 /* Tracepoint hits should not be reported back to GDB, and
5825 if one got through somehow, it should have been filtered
5826 out already. */
5827 internal_error (__FILE__, __LINE__,
5828 _("bpstat_what: tracepoint encountered"));
5829 break;
5830 case bp_gnu_ifunc_resolver:
5831 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5832 this_action = BPSTAT_WHAT_SINGLE;
5833 break;
5834 case bp_gnu_ifunc_resolver_return:
5835 /* The breakpoint will be removed, execution will restart from the
5836 PC of the former breakpoint. */
5837 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5838 break;
5839
5840 case bp_dprintf:
5841 if (bs->stop)
5842 this_action = BPSTAT_WHAT_STOP_SILENT;
5843 else
5844 this_action = BPSTAT_WHAT_SINGLE;
5845 break;
5846
5847 default:
5848 internal_error (__FILE__, __LINE__,
5849 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5850 }
5851
5852 retval.main_action = std::max (retval.main_action, this_action);
5853 }
5854
5855 return retval;
5856 }
5857
5858 void
5859 bpstat_run_callbacks (bpstat bs_head)
5860 {
5861 bpstat bs;
5862
5863 for (bs = bs_head; bs != NULL; bs = bs->next)
5864 {
5865 struct breakpoint *b = bs->breakpoint_at;
5866
5867 if (b == NULL)
5868 continue;
5869 switch (b->type)
5870 {
5871 case bp_jit_event:
5872 handle_jit_event ();
5873 break;
5874 case bp_gnu_ifunc_resolver:
5875 gnu_ifunc_resolver_stop (b);
5876 break;
5877 case bp_gnu_ifunc_resolver_return:
5878 gnu_ifunc_resolver_return_stop (b);
5879 break;
5880 }
5881 }
5882 }
5883
5884 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5885 without hardware support). This isn't related to a specific bpstat,
5886 just to things like whether watchpoints are set. */
5887
5888 int
5889 bpstat_should_step (void)
5890 {
5891 struct breakpoint *b;
5892
5893 ALL_BREAKPOINTS (b)
5894 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5895 return 1;
5896 return 0;
5897 }
5898
5899 int
5900 bpstat_causes_stop (bpstat bs)
5901 {
5902 for (; bs != NULL; bs = bs->next)
5903 if (bs->stop)
5904 return 1;
5905
5906 return 0;
5907 }
5908
5909 \f
5910
5911 /* Compute a string of spaces suitable to indent the next line
5912 so it starts at the position corresponding to the table column
5913 named COL_NAME in the currently active table of UIOUT. */
5914
5915 static char *
5916 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5917 {
5918 static char wrap_indent[80];
5919 int i, total_width, width, align;
5920 const char *text;
5921
5922 total_width = 0;
5923 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5924 {
5925 if (strcmp (text, col_name) == 0)
5926 {
5927 gdb_assert (total_width < sizeof wrap_indent);
5928 memset (wrap_indent, ' ', total_width);
5929 wrap_indent[total_width] = 0;
5930
5931 return wrap_indent;
5932 }
5933
5934 total_width += width + 1;
5935 }
5936
5937 return NULL;
5938 }
5939
5940 /* Determine if the locations of this breakpoint will have their conditions
5941 evaluated by the target, host or a mix of both. Returns the following:
5942
5943 "host": Host evals condition.
5944 "host or target": Host or Target evals condition.
5945 "target": Target evals condition.
5946 */
5947
5948 static const char *
5949 bp_condition_evaluator (struct breakpoint *b)
5950 {
5951 struct bp_location *bl;
5952 char host_evals = 0;
5953 char target_evals = 0;
5954
5955 if (!b)
5956 return NULL;
5957
5958 if (!is_breakpoint (b))
5959 return NULL;
5960
5961 if (gdb_evaluates_breakpoint_condition_p ()
5962 || !target_supports_evaluation_of_breakpoint_conditions ())
5963 return condition_evaluation_host;
5964
5965 for (bl = b->loc; bl; bl = bl->next)
5966 {
5967 if (bl->cond_bytecode)
5968 target_evals++;
5969 else
5970 host_evals++;
5971 }
5972
5973 if (host_evals && target_evals)
5974 return condition_evaluation_both;
5975 else if (target_evals)
5976 return condition_evaluation_target;
5977 else
5978 return condition_evaluation_host;
5979 }
5980
5981 /* Determine the breakpoint location's condition evaluator. This is
5982 similar to bp_condition_evaluator, but for locations. */
5983
5984 static const char *
5985 bp_location_condition_evaluator (struct bp_location *bl)
5986 {
5987 if (bl && !is_breakpoint (bl->owner))
5988 return NULL;
5989
5990 if (gdb_evaluates_breakpoint_condition_p ()
5991 || !target_supports_evaluation_of_breakpoint_conditions ())
5992 return condition_evaluation_host;
5993
5994 if (bl && bl->cond_bytecode)
5995 return condition_evaluation_target;
5996 else
5997 return condition_evaluation_host;
5998 }
5999
6000 /* Print the LOC location out of the list of B->LOC locations. */
6001
6002 static void
6003 print_breakpoint_location (struct breakpoint *b,
6004 struct bp_location *loc)
6005 {
6006 struct ui_out *uiout = current_uiout;
6007
6008 scoped_restore_current_program_space restore_pspace;
6009
6010 if (loc != NULL && loc->shlib_disabled)
6011 loc = NULL;
6012
6013 if (loc != NULL)
6014 set_current_program_space (loc->pspace);
6015
6016 if (b->display_canonical)
6017 uiout->field_string ("what", event_location_to_string (b->location.get ()));
6018 else if (loc && loc->symtab)
6019 {
6020 struct symbol *sym
6021 = find_pc_sect_function (loc->address, loc->section);
6022 if (sym)
6023 {
6024 uiout->text ("in ");
6025 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
6026 uiout->text (" ");
6027 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
6028 uiout->text ("at ");
6029 }
6030 uiout->field_string ("file",
6031 symtab_to_filename_for_display (loc->symtab));
6032 uiout->text (":");
6033
6034 if (uiout->is_mi_like_p ())
6035 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
6036
6037 uiout->field_int ("line", loc->line_number);
6038 }
6039 else if (loc)
6040 {
6041 string_file stb;
6042
6043 print_address_symbolic (loc->gdbarch, loc->address, &stb,
6044 demangle, "");
6045 uiout->field_stream ("at", stb);
6046 }
6047 else
6048 {
6049 uiout->field_string ("pending",
6050 event_location_to_string (b->location.get ()));
6051 /* If extra_string is available, it could be holding a condition
6052 or dprintf arguments. In either case, make sure it is printed,
6053 too, but only for non-MI streams. */
6054 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
6055 {
6056 if (b->type == bp_dprintf)
6057 uiout->text (",");
6058 else
6059 uiout->text (" ");
6060 uiout->text (b->extra_string);
6061 }
6062 }
6063
6064 if (loc && is_breakpoint (b)
6065 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
6066 && bp_condition_evaluator (b) == condition_evaluation_both)
6067 {
6068 uiout->text (" (");
6069 uiout->field_string ("evaluated-by",
6070 bp_location_condition_evaluator (loc));
6071 uiout->text (")");
6072 }
6073 }
6074
6075 static const char *
6076 bptype_string (enum bptype type)
6077 {
6078 struct ep_type_description
6079 {
6080 enum bptype type;
6081 const char *description;
6082 };
6083 static struct ep_type_description bptypes[] =
6084 {
6085 {bp_none, "?deleted?"},
6086 {bp_breakpoint, "breakpoint"},
6087 {bp_hardware_breakpoint, "hw breakpoint"},
6088 {bp_single_step, "sw single-step"},
6089 {bp_until, "until"},
6090 {bp_finish, "finish"},
6091 {bp_watchpoint, "watchpoint"},
6092 {bp_hardware_watchpoint, "hw watchpoint"},
6093 {bp_read_watchpoint, "read watchpoint"},
6094 {bp_access_watchpoint, "acc watchpoint"},
6095 {bp_longjmp, "longjmp"},
6096 {bp_longjmp_resume, "longjmp resume"},
6097 {bp_longjmp_call_dummy, "longjmp for call dummy"},
6098 {bp_exception, "exception"},
6099 {bp_exception_resume, "exception resume"},
6100 {bp_step_resume, "step resume"},
6101 {bp_hp_step_resume, "high-priority step resume"},
6102 {bp_watchpoint_scope, "watchpoint scope"},
6103 {bp_call_dummy, "call dummy"},
6104 {bp_std_terminate, "std::terminate"},
6105 {bp_shlib_event, "shlib events"},
6106 {bp_thread_event, "thread events"},
6107 {bp_overlay_event, "overlay events"},
6108 {bp_longjmp_master, "longjmp master"},
6109 {bp_std_terminate_master, "std::terminate master"},
6110 {bp_exception_master, "exception master"},
6111 {bp_catchpoint, "catchpoint"},
6112 {bp_tracepoint, "tracepoint"},
6113 {bp_fast_tracepoint, "fast tracepoint"},
6114 {bp_static_tracepoint, "static tracepoint"},
6115 {bp_dprintf, "dprintf"},
6116 {bp_jit_event, "jit events"},
6117 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6118 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6119 };
6120
6121 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6122 || ((int) type != bptypes[(int) type].type))
6123 internal_error (__FILE__, __LINE__,
6124 _("bptypes table does not describe type #%d."),
6125 (int) type);
6126
6127 return bptypes[(int) type].description;
6128 }
6129
6130 /* For MI, output a field named 'thread-groups' with a list as the value.
6131 For CLI, prefix the list with the string 'inf'. */
6132
6133 static void
6134 output_thread_groups (struct ui_out *uiout,
6135 const char *field_name,
6136 VEC(int) *inf_num,
6137 int mi_only)
6138 {
6139 int is_mi = uiout->is_mi_like_p ();
6140 int inf;
6141 int i;
6142
6143 /* For backward compatibility, don't display inferiors in CLI unless
6144 there are several. Always display them for MI. */
6145 if (!is_mi && mi_only)
6146 return;
6147
6148 ui_out_emit_list list_emitter (uiout, field_name);
6149
6150 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
6151 {
6152 if (is_mi)
6153 {
6154 char mi_group[10];
6155
6156 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
6157 uiout->field_string (NULL, mi_group);
6158 }
6159 else
6160 {
6161 if (i == 0)
6162 uiout->text (" inf ");
6163 else
6164 uiout->text (", ");
6165
6166 uiout->text (plongest (inf));
6167 }
6168 }
6169 }
6170
6171 /* Print B to gdb_stdout. */
6172
6173 static void
6174 print_one_breakpoint_location (struct breakpoint *b,
6175 struct bp_location *loc,
6176 int loc_number,
6177 struct bp_location **last_loc,
6178 int allflag)
6179 {
6180 struct command_line *l;
6181 static char bpenables[] = "nynny";
6182
6183 struct ui_out *uiout = current_uiout;
6184 int header_of_multiple = 0;
6185 int part_of_multiple = (loc != NULL);
6186 struct value_print_options opts;
6187
6188 get_user_print_options (&opts);
6189
6190 gdb_assert (!loc || loc_number != 0);
6191 /* See comment in print_one_breakpoint concerning treatment of
6192 breakpoints with single disabled location. */
6193 if (loc == NULL
6194 && (b->loc != NULL
6195 && (b->loc->next != NULL || !b->loc->enabled)))
6196 header_of_multiple = 1;
6197 if (loc == NULL)
6198 loc = b->loc;
6199
6200 annotate_record ();
6201
6202 /* 1 */
6203 annotate_field (0);
6204 if (part_of_multiple)
6205 {
6206 char *formatted;
6207 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6208 uiout->field_string ("number", formatted);
6209 xfree (formatted);
6210 }
6211 else
6212 {
6213 uiout->field_int ("number", b->number);
6214 }
6215
6216 /* 2 */
6217 annotate_field (1);
6218 if (part_of_multiple)
6219 uiout->field_skip ("type");
6220 else
6221 uiout->field_string ("type", bptype_string (b->type));
6222
6223 /* 3 */
6224 annotate_field (2);
6225 if (part_of_multiple)
6226 uiout->field_skip ("disp");
6227 else
6228 uiout->field_string ("disp", bpdisp_text (b->disposition));
6229
6230
6231 /* 4 */
6232 annotate_field (3);
6233 if (part_of_multiple)
6234 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6235 else
6236 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6237 uiout->spaces (2);
6238
6239
6240 /* 5 and 6 */
6241 if (b->ops != NULL && b->ops->print_one != NULL)
6242 {
6243 /* Although the print_one can possibly print all locations,
6244 calling it here is not likely to get any nice result. So,
6245 make sure there's just one location. */
6246 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6247 b->ops->print_one (b, last_loc);
6248 }
6249 else
6250 switch (b->type)
6251 {
6252 case bp_none:
6253 internal_error (__FILE__, __LINE__,
6254 _("print_one_breakpoint: bp_none encountered\n"));
6255 break;
6256
6257 case bp_watchpoint:
6258 case bp_hardware_watchpoint:
6259 case bp_read_watchpoint:
6260 case bp_access_watchpoint:
6261 {
6262 struct watchpoint *w = (struct watchpoint *) b;
6263
6264 /* Field 4, the address, is omitted (which makes the columns
6265 not line up too nicely with the headers, but the effect
6266 is relatively readable). */
6267 if (opts.addressprint)
6268 uiout->field_skip ("addr");
6269 annotate_field (5);
6270 uiout->field_string ("what", w->exp_string);
6271 }
6272 break;
6273
6274 case bp_breakpoint:
6275 case bp_hardware_breakpoint:
6276 case bp_single_step:
6277 case bp_until:
6278 case bp_finish:
6279 case bp_longjmp:
6280 case bp_longjmp_resume:
6281 case bp_longjmp_call_dummy:
6282 case bp_exception:
6283 case bp_exception_resume:
6284 case bp_step_resume:
6285 case bp_hp_step_resume:
6286 case bp_watchpoint_scope:
6287 case bp_call_dummy:
6288 case bp_std_terminate:
6289 case bp_shlib_event:
6290 case bp_thread_event:
6291 case bp_overlay_event:
6292 case bp_longjmp_master:
6293 case bp_std_terminate_master:
6294 case bp_exception_master:
6295 case bp_tracepoint:
6296 case bp_fast_tracepoint:
6297 case bp_static_tracepoint:
6298 case bp_dprintf:
6299 case bp_jit_event:
6300 case bp_gnu_ifunc_resolver:
6301 case bp_gnu_ifunc_resolver_return:
6302 if (opts.addressprint)
6303 {
6304 annotate_field (4);
6305 if (header_of_multiple)
6306 uiout->field_string ("addr", "<MULTIPLE>");
6307 else if (b->loc == NULL || loc->shlib_disabled)
6308 uiout->field_string ("addr", "<PENDING>");
6309 else
6310 uiout->field_core_addr ("addr",
6311 loc->gdbarch, loc->address);
6312 }
6313 annotate_field (5);
6314 if (!header_of_multiple)
6315 print_breakpoint_location (b, loc);
6316 if (b->loc)
6317 *last_loc = b->loc;
6318 break;
6319 }
6320
6321
6322 if (loc != NULL && !header_of_multiple)
6323 {
6324 struct inferior *inf;
6325 VEC(int) *inf_num = NULL;
6326 int mi_only = 1;
6327
6328 ALL_INFERIORS (inf)
6329 {
6330 if (inf->pspace == loc->pspace)
6331 VEC_safe_push (int, inf_num, inf->num);
6332 }
6333
6334 /* For backward compatibility, don't display inferiors in CLI unless
6335 there are several. Always display for MI. */
6336 if (allflag
6337 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6338 && (number_of_program_spaces () > 1
6339 || number_of_inferiors () > 1)
6340 /* LOC is for existing B, it cannot be in
6341 moribund_locations and thus having NULL OWNER. */
6342 && loc->owner->type != bp_catchpoint))
6343 mi_only = 0;
6344 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6345 VEC_free (int, inf_num);
6346 }
6347
6348 if (!part_of_multiple)
6349 {
6350 if (b->thread != -1)
6351 {
6352 /* FIXME: This seems to be redundant and lost here; see the
6353 "stop only in" line a little further down. */
6354 uiout->text (" thread ");
6355 uiout->field_int ("thread", b->thread);
6356 }
6357 else if (b->task != 0)
6358 {
6359 uiout->text (" task ");
6360 uiout->field_int ("task", b->task);
6361 }
6362 }
6363
6364 uiout->text ("\n");
6365
6366 if (!part_of_multiple)
6367 b->ops->print_one_detail (b, uiout);
6368
6369 if (part_of_multiple && frame_id_p (b->frame_id))
6370 {
6371 annotate_field (6);
6372 uiout->text ("\tstop only in stack frame at ");
6373 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6374 the frame ID. */
6375 uiout->field_core_addr ("frame",
6376 b->gdbarch, b->frame_id.stack_addr);
6377 uiout->text ("\n");
6378 }
6379
6380 if (!part_of_multiple && b->cond_string)
6381 {
6382 annotate_field (7);
6383 if (is_tracepoint (b))
6384 uiout->text ("\ttrace only if ");
6385 else
6386 uiout->text ("\tstop only if ");
6387 uiout->field_string ("cond", b->cond_string);
6388
6389 /* Print whether the target is doing the breakpoint's condition
6390 evaluation. If GDB is doing the evaluation, don't print anything. */
6391 if (is_breakpoint (b)
6392 && breakpoint_condition_evaluation_mode ()
6393 == condition_evaluation_target)
6394 {
6395 uiout->text (" (");
6396 uiout->field_string ("evaluated-by",
6397 bp_condition_evaluator (b));
6398 uiout->text (" evals)");
6399 }
6400 uiout->text ("\n");
6401 }
6402
6403 if (!part_of_multiple && b->thread != -1)
6404 {
6405 /* FIXME should make an annotation for this. */
6406 uiout->text ("\tstop only in thread ");
6407 if (uiout->is_mi_like_p ())
6408 uiout->field_int ("thread", b->thread);
6409 else
6410 {
6411 struct thread_info *thr = find_thread_global_id (b->thread);
6412
6413 uiout->field_string ("thread", print_thread_id (thr));
6414 }
6415 uiout->text ("\n");
6416 }
6417
6418 if (!part_of_multiple)
6419 {
6420 if (b->hit_count)
6421 {
6422 /* FIXME should make an annotation for this. */
6423 if (is_catchpoint (b))
6424 uiout->text ("\tcatchpoint");
6425 else if (is_tracepoint (b))
6426 uiout->text ("\ttracepoint");
6427 else
6428 uiout->text ("\tbreakpoint");
6429 uiout->text (" already hit ");
6430 uiout->field_int ("times", b->hit_count);
6431 if (b->hit_count == 1)
6432 uiout->text (" time\n");
6433 else
6434 uiout->text (" times\n");
6435 }
6436 else
6437 {
6438 /* Output the count also if it is zero, but only if this is mi. */
6439 if (uiout->is_mi_like_p ())
6440 uiout->field_int ("times", b->hit_count);
6441 }
6442 }
6443
6444 if (!part_of_multiple && b->ignore_count)
6445 {
6446 annotate_field (8);
6447 uiout->text ("\tignore next ");
6448 uiout->field_int ("ignore", b->ignore_count);
6449 uiout->text (" hits\n");
6450 }
6451
6452 /* Note that an enable count of 1 corresponds to "enable once"
6453 behavior, which is reported by the combination of enablement and
6454 disposition, so we don't need to mention it here. */
6455 if (!part_of_multiple && b->enable_count > 1)
6456 {
6457 annotate_field (8);
6458 uiout->text ("\tdisable after ");
6459 /* Tweak the wording to clarify that ignore and enable counts
6460 are distinct, and have additive effect. */
6461 if (b->ignore_count)
6462 uiout->text ("additional ");
6463 else
6464 uiout->text ("next ");
6465 uiout->field_int ("enable", b->enable_count);
6466 uiout->text (" hits\n");
6467 }
6468
6469 if (!part_of_multiple && is_tracepoint (b))
6470 {
6471 struct tracepoint *tp = (struct tracepoint *) b;
6472
6473 if (tp->traceframe_usage)
6474 {
6475 uiout->text ("\ttrace buffer usage ");
6476 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6477 uiout->text (" bytes\n");
6478 }
6479 }
6480
6481 l = b->commands ? b->commands.get () : NULL;
6482 if (!part_of_multiple && l)
6483 {
6484 annotate_field (9);
6485 ui_out_emit_tuple tuple_emitter (uiout, "script");
6486 print_command_lines (uiout, l, 4);
6487 }
6488
6489 if (is_tracepoint (b))
6490 {
6491 struct tracepoint *t = (struct tracepoint *) b;
6492
6493 if (!part_of_multiple && t->pass_count)
6494 {
6495 annotate_field (10);
6496 uiout->text ("\tpass count ");
6497 uiout->field_int ("pass", t->pass_count);
6498 uiout->text (" \n");
6499 }
6500
6501 /* Don't display it when tracepoint or tracepoint location is
6502 pending. */
6503 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6504 {
6505 annotate_field (11);
6506
6507 if (uiout->is_mi_like_p ())
6508 uiout->field_string ("installed",
6509 loc->inserted ? "y" : "n");
6510 else
6511 {
6512 if (loc->inserted)
6513 uiout->text ("\t");
6514 else
6515 uiout->text ("\tnot ");
6516 uiout->text ("installed on target\n");
6517 }
6518 }
6519 }
6520
6521 if (uiout->is_mi_like_p () && !part_of_multiple)
6522 {
6523 if (is_watchpoint (b))
6524 {
6525 struct watchpoint *w = (struct watchpoint *) b;
6526
6527 uiout->field_string ("original-location", w->exp_string);
6528 }
6529 else if (b->location != NULL
6530 && event_location_to_string (b->location.get ()) != NULL)
6531 uiout->field_string ("original-location",
6532 event_location_to_string (b->location.get ()));
6533 }
6534 }
6535
6536 static void
6537 print_one_breakpoint (struct breakpoint *b,
6538 struct bp_location **last_loc,
6539 int allflag)
6540 {
6541 struct ui_out *uiout = current_uiout;
6542
6543 {
6544 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6545
6546 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6547 }
6548
6549 /* If this breakpoint has custom print function,
6550 it's already printed. Otherwise, print individual
6551 locations, if any. */
6552 if (b->ops == NULL || b->ops->print_one == NULL)
6553 {
6554 /* If breakpoint has a single location that is disabled, we
6555 print it as if it had several locations, since otherwise it's
6556 hard to represent "breakpoint enabled, location disabled"
6557 situation.
6558
6559 Note that while hardware watchpoints have several locations
6560 internally, that's not a property exposed to user. */
6561 if (b->loc
6562 && !is_hardware_watchpoint (b)
6563 && (b->loc->next || !b->loc->enabled))
6564 {
6565 struct bp_location *loc;
6566 int n = 1;
6567
6568 for (loc = b->loc; loc; loc = loc->next, ++n)
6569 {
6570 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6571 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6572 }
6573 }
6574 }
6575 }
6576
6577 static int
6578 breakpoint_address_bits (struct breakpoint *b)
6579 {
6580 int print_address_bits = 0;
6581 struct bp_location *loc;
6582
6583 /* Software watchpoints that aren't watching memory don't have an
6584 address to print. */
6585 if (is_no_memory_software_watchpoint (b))
6586 return 0;
6587
6588 for (loc = b->loc; loc; loc = loc->next)
6589 {
6590 int addr_bit;
6591
6592 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6593 if (addr_bit > print_address_bits)
6594 print_address_bits = addr_bit;
6595 }
6596
6597 return print_address_bits;
6598 }
6599
6600 struct captured_breakpoint_query_args
6601 {
6602 int bnum;
6603 };
6604
6605 static int
6606 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6607 {
6608 struct captured_breakpoint_query_args *args
6609 = (struct captured_breakpoint_query_args *) data;
6610 struct breakpoint *b;
6611 struct bp_location *dummy_loc = NULL;
6612
6613 ALL_BREAKPOINTS (b)
6614 {
6615 if (args->bnum == b->number)
6616 {
6617 print_one_breakpoint (b, &dummy_loc, 0);
6618 return GDB_RC_OK;
6619 }
6620 }
6621 return GDB_RC_NONE;
6622 }
6623
6624 enum gdb_rc
6625 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6626 char **error_message)
6627 {
6628 struct captured_breakpoint_query_args args;
6629
6630 args.bnum = bnum;
6631 /* For the moment we don't trust print_one_breakpoint() to not throw
6632 an error. */
6633 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6634 error_message, RETURN_MASK_ALL) < 0)
6635 return GDB_RC_FAIL;
6636 else
6637 return GDB_RC_OK;
6638 }
6639
6640 /* Return true if this breakpoint was set by the user, false if it is
6641 internal or momentary. */
6642
6643 int
6644 user_breakpoint_p (struct breakpoint *b)
6645 {
6646 return b->number > 0;
6647 }
6648
6649 /* See breakpoint.h. */
6650
6651 int
6652 pending_breakpoint_p (struct breakpoint *b)
6653 {
6654 return b->loc == NULL;
6655 }
6656
6657 /* Print information on user settable breakpoint (watchpoint, etc)
6658 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6659 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6660 FILTER is non-NULL, call it on each breakpoint and only include the
6661 ones for which it returns non-zero. Return the total number of
6662 breakpoints listed. */
6663
6664 static int
6665 breakpoint_1 (const char *args, int allflag,
6666 int (*filter) (const struct breakpoint *))
6667 {
6668 struct breakpoint *b;
6669 struct bp_location *last_loc = NULL;
6670 int nr_printable_breakpoints;
6671 struct value_print_options opts;
6672 int print_address_bits = 0;
6673 int print_type_col_width = 14;
6674 struct ui_out *uiout = current_uiout;
6675
6676 get_user_print_options (&opts);
6677
6678 /* Compute the number of rows in the table, as well as the size
6679 required for address fields. */
6680 nr_printable_breakpoints = 0;
6681 ALL_BREAKPOINTS (b)
6682 {
6683 /* If we have a filter, only list the breakpoints it accepts. */
6684 if (filter && !filter (b))
6685 continue;
6686
6687 /* If we have an "args" string, it is a list of breakpoints to
6688 accept. Skip the others. */
6689 if (args != NULL && *args != '\0')
6690 {
6691 if (allflag && parse_and_eval_long (args) != b->number)
6692 continue;
6693 if (!allflag && !number_is_in_list (args, b->number))
6694 continue;
6695 }
6696
6697 if (allflag || user_breakpoint_p (b))
6698 {
6699 int addr_bit, type_len;
6700
6701 addr_bit = breakpoint_address_bits (b);
6702 if (addr_bit > print_address_bits)
6703 print_address_bits = addr_bit;
6704
6705 type_len = strlen (bptype_string (b->type));
6706 if (type_len > print_type_col_width)
6707 print_type_col_width = type_len;
6708
6709 nr_printable_breakpoints++;
6710 }
6711 }
6712
6713 {
6714 ui_out_emit_table table_emitter (uiout,
6715 opts.addressprint ? 6 : 5,
6716 nr_printable_breakpoints,
6717 "BreakpointTable");
6718
6719 if (nr_printable_breakpoints > 0)
6720 annotate_breakpoints_headers ();
6721 if (nr_printable_breakpoints > 0)
6722 annotate_field (0);
6723 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6724 if (nr_printable_breakpoints > 0)
6725 annotate_field (1);
6726 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6727 if (nr_printable_breakpoints > 0)
6728 annotate_field (2);
6729 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6730 if (nr_printable_breakpoints > 0)
6731 annotate_field (3);
6732 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6733 if (opts.addressprint)
6734 {
6735 if (nr_printable_breakpoints > 0)
6736 annotate_field (4);
6737 if (print_address_bits <= 32)
6738 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6739 else
6740 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6741 }
6742 if (nr_printable_breakpoints > 0)
6743 annotate_field (5);
6744 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6745 uiout->table_body ();
6746 if (nr_printable_breakpoints > 0)
6747 annotate_breakpoints_table ();
6748
6749 ALL_BREAKPOINTS (b)
6750 {
6751 QUIT;
6752 /* If we have a filter, only list the breakpoints it accepts. */
6753 if (filter && !filter (b))
6754 continue;
6755
6756 /* If we have an "args" string, it is a list of breakpoints to
6757 accept. Skip the others. */
6758
6759 if (args != NULL && *args != '\0')
6760 {
6761 if (allflag) /* maintenance info breakpoint */
6762 {
6763 if (parse_and_eval_long (args) != b->number)
6764 continue;
6765 }
6766 else /* all others */
6767 {
6768 if (!number_is_in_list (args, b->number))
6769 continue;
6770 }
6771 }
6772 /* We only print out user settable breakpoints unless the
6773 allflag is set. */
6774 if (allflag || user_breakpoint_p (b))
6775 print_one_breakpoint (b, &last_loc, allflag);
6776 }
6777 }
6778
6779 if (nr_printable_breakpoints == 0)
6780 {
6781 /* If there's a filter, let the caller decide how to report
6782 empty list. */
6783 if (!filter)
6784 {
6785 if (args == NULL || *args == '\0')
6786 uiout->message ("No breakpoints or watchpoints.\n");
6787 else
6788 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6789 args);
6790 }
6791 }
6792 else
6793 {
6794 if (last_loc && !server_command)
6795 set_next_address (last_loc->gdbarch, last_loc->address);
6796 }
6797
6798 /* FIXME? Should this be moved up so that it is only called when
6799 there have been breakpoints? */
6800 annotate_breakpoints_table_end ();
6801
6802 return nr_printable_breakpoints;
6803 }
6804
6805 /* Display the value of default-collect in a way that is generally
6806 compatible with the breakpoint list. */
6807
6808 static void
6809 default_collect_info (void)
6810 {
6811 struct ui_out *uiout = current_uiout;
6812
6813 /* If it has no value (which is frequently the case), say nothing; a
6814 message like "No default-collect." gets in user's face when it's
6815 not wanted. */
6816 if (!*default_collect)
6817 return;
6818
6819 /* The following phrase lines up nicely with per-tracepoint collect
6820 actions. */
6821 uiout->text ("default collect ");
6822 uiout->field_string ("default-collect", default_collect);
6823 uiout->text (" \n");
6824 }
6825
6826 static void
6827 info_breakpoints_command (char *args, int from_tty)
6828 {
6829 breakpoint_1 (args, 0, NULL);
6830
6831 default_collect_info ();
6832 }
6833
6834 static void
6835 info_watchpoints_command (char *args, int from_tty)
6836 {
6837 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6838 struct ui_out *uiout = current_uiout;
6839
6840 if (num_printed == 0)
6841 {
6842 if (args == NULL || *args == '\0')
6843 uiout->message ("No watchpoints.\n");
6844 else
6845 uiout->message ("No watchpoint matching '%s'.\n", args);
6846 }
6847 }
6848
6849 static void
6850 maintenance_info_breakpoints (const char *args, int from_tty)
6851 {
6852 breakpoint_1 (args, 1, NULL);
6853
6854 default_collect_info ();
6855 }
6856
6857 static int
6858 breakpoint_has_pc (struct breakpoint *b,
6859 struct program_space *pspace,
6860 CORE_ADDR pc, struct obj_section *section)
6861 {
6862 struct bp_location *bl = b->loc;
6863
6864 for (; bl; bl = bl->next)
6865 {
6866 if (bl->pspace == pspace
6867 && bl->address == pc
6868 && (!overlay_debugging || bl->section == section))
6869 return 1;
6870 }
6871 return 0;
6872 }
6873
6874 /* Print a message describing any user-breakpoints set at PC. This
6875 concerns with logical breakpoints, so we match program spaces, not
6876 address spaces. */
6877
6878 static void
6879 describe_other_breakpoints (struct gdbarch *gdbarch,
6880 struct program_space *pspace, CORE_ADDR pc,
6881 struct obj_section *section, int thread)
6882 {
6883 int others = 0;
6884 struct breakpoint *b;
6885
6886 ALL_BREAKPOINTS (b)
6887 others += (user_breakpoint_p (b)
6888 && breakpoint_has_pc (b, pspace, pc, section));
6889 if (others > 0)
6890 {
6891 if (others == 1)
6892 printf_filtered (_("Note: breakpoint "));
6893 else /* if (others == ???) */
6894 printf_filtered (_("Note: breakpoints "));
6895 ALL_BREAKPOINTS (b)
6896 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6897 {
6898 others--;
6899 printf_filtered ("%d", b->number);
6900 if (b->thread == -1 && thread != -1)
6901 printf_filtered (" (all threads)");
6902 else if (b->thread != -1)
6903 printf_filtered (" (thread %d)", b->thread);
6904 printf_filtered ("%s%s ",
6905 ((b->enable_state == bp_disabled
6906 || b->enable_state == bp_call_disabled)
6907 ? " (disabled)"
6908 : ""),
6909 (others > 1) ? ","
6910 : ((others == 1) ? " and" : ""));
6911 }
6912 printf_filtered (_("also set at pc "));
6913 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6914 printf_filtered (".\n");
6915 }
6916 }
6917 \f
6918
6919 /* Return true iff it is meaningful to use the address member of
6920 BPT locations. For some breakpoint types, the locations' address members
6921 are irrelevant and it makes no sense to attempt to compare them to other
6922 addresses (or use them for any other purpose either).
6923
6924 More specifically, each of the following breakpoint types will
6925 always have a zero valued location address and we don't want to mark
6926 breakpoints of any of these types to be a duplicate of an actual
6927 breakpoint location at address zero:
6928
6929 bp_watchpoint
6930 bp_catchpoint
6931
6932 */
6933
6934 static int
6935 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6936 {
6937 enum bptype type = bpt->type;
6938
6939 return (type != bp_watchpoint && type != bp_catchpoint);
6940 }
6941
6942 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6943 true if LOC1 and LOC2 represent the same watchpoint location. */
6944
6945 static int
6946 watchpoint_locations_match (struct bp_location *loc1,
6947 struct bp_location *loc2)
6948 {
6949 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6950 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6951
6952 /* Both of them must exist. */
6953 gdb_assert (w1 != NULL);
6954 gdb_assert (w2 != NULL);
6955
6956 /* If the target can evaluate the condition expression in hardware,
6957 then we we need to insert both watchpoints even if they are at
6958 the same place. Otherwise the watchpoint will only trigger when
6959 the condition of whichever watchpoint was inserted evaluates to
6960 true, not giving a chance for GDB to check the condition of the
6961 other watchpoint. */
6962 if ((w1->cond_exp
6963 && target_can_accel_watchpoint_condition (loc1->address,
6964 loc1->length,
6965 loc1->watchpoint_type,
6966 w1->cond_exp.get ()))
6967 || (w2->cond_exp
6968 && target_can_accel_watchpoint_condition (loc2->address,
6969 loc2->length,
6970 loc2->watchpoint_type,
6971 w2->cond_exp.get ())))
6972 return 0;
6973
6974 /* Note that this checks the owner's type, not the location's. In
6975 case the target does not support read watchpoints, but does
6976 support access watchpoints, we'll have bp_read_watchpoint
6977 watchpoints with hw_access locations. Those should be considered
6978 duplicates of hw_read locations. The hw_read locations will
6979 become hw_access locations later. */
6980 return (loc1->owner->type == loc2->owner->type
6981 && loc1->pspace->aspace == loc2->pspace->aspace
6982 && loc1->address == loc2->address
6983 && loc1->length == loc2->length);
6984 }
6985
6986 /* See breakpoint.h. */
6987
6988 int
6989 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6990 struct address_space *aspace2, CORE_ADDR addr2)
6991 {
6992 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6993 || aspace1 == aspace2)
6994 && addr1 == addr2);
6995 }
6996
6997 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6998 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6999 matches ASPACE2. On targets that have global breakpoints, the address
7000 space doesn't really matter. */
7001
7002 static int
7003 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
7004 int len1, struct address_space *aspace2,
7005 CORE_ADDR addr2)
7006 {
7007 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7008 || aspace1 == aspace2)
7009 && addr2 >= addr1 && addr2 < addr1 + len1);
7010 }
7011
7012 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
7013 a ranged breakpoint. In most targets, a match happens only if ASPACE
7014 matches the breakpoint's address space. On targets that have global
7015 breakpoints, the address space doesn't really matter. */
7016
7017 static int
7018 breakpoint_location_address_match (struct bp_location *bl,
7019 struct address_space *aspace,
7020 CORE_ADDR addr)
7021 {
7022 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
7023 aspace, addr)
7024 || (bl->length
7025 && breakpoint_address_match_range (bl->pspace->aspace,
7026 bl->address, bl->length,
7027 aspace, addr)));
7028 }
7029
7030 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
7031 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
7032 match happens only if ASPACE matches the breakpoint's address
7033 space. On targets that have global breakpoints, the address space
7034 doesn't really matter. */
7035
7036 static int
7037 breakpoint_location_address_range_overlap (struct bp_location *bl,
7038 struct address_space *aspace,
7039 CORE_ADDR addr, int len)
7040 {
7041 if (gdbarch_has_global_breakpoints (target_gdbarch ())
7042 || bl->pspace->aspace == aspace)
7043 {
7044 int bl_len = bl->length != 0 ? bl->length : 1;
7045
7046 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
7047 return 1;
7048 }
7049 return 0;
7050 }
7051
7052 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
7053 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
7054 true, otherwise returns false. */
7055
7056 static int
7057 tracepoint_locations_match (struct bp_location *loc1,
7058 struct bp_location *loc2)
7059 {
7060 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
7061 /* Since tracepoint locations are never duplicated with others', tracepoint
7062 locations at the same address of different tracepoints are regarded as
7063 different locations. */
7064 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
7065 else
7066 return 0;
7067 }
7068
7069 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
7070 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
7071 represent the same location. */
7072
7073 static int
7074 breakpoint_locations_match (struct bp_location *loc1,
7075 struct bp_location *loc2)
7076 {
7077 int hw_point1, hw_point2;
7078
7079 /* Both of them must not be in moribund_locations. */
7080 gdb_assert (loc1->owner != NULL);
7081 gdb_assert (loc2->owner != NULL);
7082
7083 hw_point1 = is_hardware_watchpoint (loc1->owner);
7084 hw_point2 = is_hardware_watchpoint (loc2->owner);
7085
7086 if (hw_point1 != hw_point2)
7087 return 0;
7088 else if (hw_point1)
7089 return watchpoint_locations_match (loc1, loc2);
7090 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
7091 return tracepoint_locations_match (loc1, loc2);
7092 else
7093 /* We compare bp_location.length in order to cover ranged breakpoints. */
7094 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
7095 loc2->pspace->aspace, loc2->address)
7096 && loc1->length == loc2->length);
7097 }
7098
7099 static void
7100 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
7101 int bnum, int have_bnum)
7102 {
7103 /* The longest string possibly returned by hex_string_custom
7104 is 50 chars. These must be at least that big for safety. */
7105 char astr1[64];
7106 char astr2[64];
7107
7108 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
7109 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
7110 if (have_bnum)
7111 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
7112 bnum, astr1, astr2);
7113 else
7114 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
7115 }
7116
7117 /* Adjust a breakpoint's address to account for architectural
7118 constraints on breakpoint placement. Return the adjusted address.
7119 Note: Very few targets require this kind of adjustment. For most
7120 targets, this function is simply the identity function. */
7121
7122 static CORE_ADDR
7123 adjust_breakpoint_address (struct gdbarch *gdbarch,
7124 CORE_ADDR bpaddr, enum bptype bptype)
7125 {
7126 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
7127 {
7128 /* Very few targets need any kind of breakpoint adjustment. */
7129 return bpaddr;
7130 }
7131 else if (bptype == bp_watchpoint
7132 || bptype == bp_hardware_watchpoint
7133 || bptype == bp_read_watchpoint
7134 || bptype == bp_access_watchpoint
7135 || bptype == bp_catchpoint)
7136 {
7137 /* Watchpoints and the various bp_catch_* eventpoints should not
7138 have their addresses modified. */
7139 return bpaddr;
7140 }
7141 else if (bptype == bp_single_step)
7142 {
7143 /* Single-step breakpoints should not have their addresses
7144 modified. If there's any architectural constrain that
7145 applies to this address, then it should have already been
7146 taken into account when the breakpoint was created in the
7147 first place. If we didn't do this, stepping through e.g.,
7148 Thumb-2 IT blocks would break. */
7149 return bpaddr;
7150 }
7151 else
7152 {
7153 CORE_ADDR adjusted_bpaddr;
7154
7155 /* Some targets have architectural constraints on the placement
7156 of breakpoint instructions. Obtain the adjusted address. */
7157 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7158
7159 /* An adjusted breakpoint address can significantly alter
7160 a user's expectations. Print a warning if an adjustment
7161 is required. */
7162 if (adjusted_bpaddr != bpaddr)
7163 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7164
7165 return adjusted_bpaddr;
7166 }
7167 }
7168
7169 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
7170 {
7171 bp_location *loc = this;
7172
7173 gdb_assert (ops != NULL);
7174
7175 loc->ops = ops;
7176 loc->owner = owner;
7177 loc->cond_bytecode = NULL;
7178 loc->shlib_disabled = 0;
7179 loc->enabled = 1;
7180
7181 switch (owner->type)
7182 {
7183 case bp_breakpoint:
7184 case bp_single_step:
7185 case bp_until:
7186 case bp_finish:
7187 case bp_longjmp:
7188 case bp_longjmp_resume:
7189 case bp_longjmp_call_dummy:
7190 case bp_exception:
7191 case bp_exception_resume:
7192 case bp_step_resume:
7193 case bp_hp_step_resume:
7194 case bp_watchpoint_scope:
7195 case bp_call_dummy:
7196 case bp_std_terminate:
7197 case bp_shlib_event:
7198 case bp_thread_event:
7199 case bp_overlay_event:
7200 case bp_jit_event:
7201 case bp_longjmp_master:
7202 case bp_std_terminate_master:
7203 case bp_exception_master:
7204 case bp_gnu_ifunc_resolver:
7205 case bp_gnu_ifunc_resolver_return:
7206 case bp_dprintf:
7207 loc->loc_type = bp_loc_software_breakpoint;
7208 mark_breakpoint_location_modified (loc);
7209 break;
7210 case bp_hardware_breakpoint:
7211 loc->loc_type = bp_loc_hardware_breakpoint;
7212 mark_breakpoint_location_modified (loc);
7213 break;
7214 case bp_hardware_watchpoint:
7215 case bp_read_watchpoint:
7216 case bp_access_watchpoint:
7217 loc->loc_type = bp_loc_hardware_watchpoint;
7218 break;
7219 case bp_watchpoint:
7220 case bp_catchpoint:
7221 case bp_tracepoint:
7222 case bp_fast_tracepoint:
7223 case bp_static_tracepoint:
7224 loc->loc_type = bp_loc_other;
7225 break;
7226 default:
7227 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7228 }
7229
7230 loc->refc = 1;
7231 }
7232
7233 /* Allocate a struct bp_location. */
7234
7235 static struct bp_location *
7236 allocate_bp_location (struct breakpoint *bpt)
7237 {
7238 return bpt->ops->allocate_location (bpt);
7239 }
7240
7241 static void
7242 free_bp_location (struct bp_location *loc)
7243 {
7244 loc->ops->dtor (loc);
7245 delete loc;
7246 }
7247
7248 /* Increment reference count. */
7249
7250 static void
7251 incref_bp_location (struct bp_location *bl)
7252 {
7253 ++bl->refc;
7254 }
7255
7256 /* Decrement reference count. If the reference count reaches 0,
7257 destroy the bp_location. Sets *BLP to NULL. */
7258
7259 static void
7260 decref_bp_location (struct bp_location **blp)
7261 {
7262 gdb_assert ((*blp)->refc > 0);
7263
7264 if (--(*blp)->refc == 0)
7265 free_bp_location (*blp);
7266 *blp = NULL;
7267 }
7268
7269 /* Add breakpoint B at the end of the global breakpoint chain. */
7270
7271 static breakpoint *
7272 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7273 {
7274 struct breakpoint *b1;
7275 struct breakpoint *result = b.get ();
7276
7277 /* Add this breakpoint to the end of the chain so that a list of
7278 breakpoints will come out in order of increasing numbers. */
7279
7280 b1 = breakpoint_chain;
7281 if (b1 == 0)
7282 breakpoint_chain = b.release ();
7283 else
7284 {
7285 while (b1->next)
7286 b1 = b1->next;
7287 b1->next = b.release ();
7288 }
7289
7290 return result;
7291 }
7292
7293 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7294
7295 static void
7296 init_raw_breakpoint_without_location (struct breakpoint *b,
7297 struct gdbarch *gdbarch,
7298 enum bptype bptype,
7299 const struct breakpoint_ops *ops)
7300 {
7301 gdb_assert (ops != NULL);
7302
7303 b->ops = ops;
7304 b->type = bptype;
7305 b->gdbarch = gdbarch;
7306 b->language = current_language->la_language;
7307 b->input_radix = input_radix;
7308 b->related_breakpoint = b;
7309 }
7310
7311 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7312 that has type BPTYPE and has no locations as yet. */
7313
7314 static struct breakpoint *
7315 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7316 enum bptype bptype,
7317 const struct breakpoint_ops *ops)
7318 {
7319 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7320
7321 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7322 return add_to_breakpoint_chain (std::move (b));
7323 }
7324
7325 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7326 resolutions should be made as the user specified the location explicitly
7327 enough. */
7328
7329 static void
7330 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7331 {
7332 gdb_assert (loc->owner != NULL);
7333
7334 if (loc->owner->type == bp_breakpoint
7335 || loc->owner->type == bp_hardware_breakpoint
7336 || is_tracepoint (loc->owner))
7337 {
7338 int is_gnu_ifunc;
7339 const char *function_name;
7340 CORE_ADDR func_addr;
7341
7342 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7343 &func_addr, NULL, &is_gnu_ifunc);
7344
7345 if (is_gnu_ifunc && !explicit_loc)
7346 {
7347 struct breakpoint *b = loc->owner;
7348
7349 gdb_assert (loc->pspace == current_program_space);
7350 if (gnu_ifunc_resolve_name (function_name,
7351 &loc->requested_address))
7352 {
7353 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7354 loc->address = adjust_breakpoint_address (loc->gdbarch,
7355 loc->requested_address,
7356 b->type);
7357 }
7358 else if (b->type == bp_breakpoint && b->loc == loc
7359 && loc->next == NULL && b->related_breakpoint == b)
7360 {
7361 /* Create only the whole new breakpoint of this type but do not
7362 mess more complicated breakpoints with multiple locations. */
7363 b->type = bp_gnu_ifunc_resolver;
7364 /* Remember the resolver's address for use by the return
7365 breakpoint. */
7366 loc->related_address = func_addr;
7367 }
7368 }
7369
7370 if (function_name)
7371 loc->function_name = xstrdup (function_name);
7372 }
7373 }
7374
7375 /* Attempt to determine architecture of location identified by SAL. */
7376 struct gdbarch *
7377 get_sal_arch (struct symtab_and_line sal)
7378 {
7379 if (sal.section)
7380 return get_objfile_arch (sal.section->objfile);
7381 if (sal.symtab)
7382 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7383
7384 return NULL;
7385 }
7386
7387 /* Low level routine for partially initializing a breakpoint of type
7388 BPTYPE. The newly created breakpoint's address, section, source
7389 file name, and line number are provided by SAL.
7390
7391 It is expected that the caller will complete the initialization of
7392 the newly created breakpoint struct as well as output any status
7393 information regarding the creation of a new breakpoint. */
7394
7395 static void
7396 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7397 struct symtab_and_line sal, enum bptype bptype,
7398 const struct breakpoint_ops *ops)
7399 {
7400 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7401
7402 add_location_to_breakpoint (b, &sal);
7403
7404 if (bptype != bp_catchpoint)
7405 gdb_assert (sal.pspace != NULL);
7406
7407 /* Store the program space that was used to set the breakpoint,
7408 except for ordinary breakpoints, which are independent of the
7409 program space. */
7410 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7411 b->pspace = sal.pspace;
7412 }
7413
7414 /* set_raw_breakpoint is a low level routine for allocating and
7415 partially initializing a breakpoint of type BPTYPE. The newly
7416 created breakpoint's address, section, source file name, and line
7417 number are provided by SAL. The newly created and partially
7418 initialized breakpoint is added to the breakpoint chain and
7419 is also returned as the value of this function.
7420
7421 It is expected that the caller will complete the initialization of
7422 the newly created breakpoint struct as well as output any status
7423 information regarding the creation of a new breakpoint. In
7424 particular, set_raw_breakpoint does NOT set the breakpoint
7425 number! Care should be taken to not allow an error to occur
7426 prior to completing the initialization of the breakpoint. If this
7427 should happen, a bogus breakpoint will be left on the chain. */
7428
7429 struct breakpoint *
7430 set_raw_breakpoint (struct gdbarch *gdbarch,
7431 struct symtab_and_line sal, enum bptype bptype,
7432 const struct breakpoint_ops *ops)
7433 {
7434 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7435
7436 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7437 return add_to_breakpoint_chain (std::move (b));
7438 }
7439
7440 /* Call this routine when stepping and nexting to enable a breakpoint
7441 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7442 initiated the operation. */
7443
7444 void
7445 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7446 {
7447 struct breakpoint *b, *b_tmp;
7448 int thread = tp->global_num;
7449
7450 /* To avoid having to rescan all objfile symbols at every step,
7451 we maintain a list of continually-inserted but always disabled
7452 longjmp "master" breakpoints. Here, we simply create momentary
7453 clones of those and enable them for the requested thread. */
7454 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7455 if (b->pspace == current_program_space
7456 && (b->type == bp_longjmp_master
7457 || b->type == bp_exception_master))
7458 {
7459 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7460 struct breakpoint *clone;
7461
7462 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7463 after their removal. */
7464 clone = momentary_breakpoint_from_master (b, type,
7465 &momentary_breakpoint_ops, 1);
7466 clone->thread = thread;
7467 }
7468
7469 tp->initiating_frame = frame;
7470 }
7471
7472 /* Delete all longjmp breakpoints from THREAD. */
7473 void
7474 delete_longjmp_breakpoint (int thread)
7475 {
7476 struct breakpoint *b, *b_tmp;
7477
7478 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7479 if (b->type == bp_longjmp || b->type == bp_exception)
7480 {
7481 if (b->thread == thread)
7482 delete_breakpoint (b);
7483 }
7484 }
7485
7486 void
7487 delete_longjmp_breakpoint_at_next_stop (int thread)
7488 {
7489 struct breakpoint *b, *b_tmp;
7490
7491 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7492 if (b->type == bp_longjmp || b->type == bp_exception)
7493 {
7494 if (b->thread == thread)
7495 b->disposition = disp_del_at_next_stop;
7496 }
7497 }
7498
7499 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7500 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7501 pointer to any of them. Return NULL if this system cannot place longjmp
7502 breakpoints. */
7503
7504 struct breakpoint *
7505 set_longjmp_breakpoint_for_call_dummy (void)
7506 {
7507 struct breakpoint *b, *retval = NULL;
7508
7509 ALL_BREAKPOINTS (b)
7510 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7511 {
7512 struct breakpoint *new_b;
7513
7514 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7515 &momentary_breakpoint_ops,
7516 1);
7517 new_b->thread = ptid_to_global_thread_id (inferior_ptid);
7518
7519 /* Link NEW_B into the chain of RETVAL breakpoints. */
7520
7521 gdb_assert (new_b->related_breakpoint == new_b);
7522 if (retval == NULL)
7523 retval = new_b;
7524 new_b->related_breakpoint = retval;
7525 while (retval->related_breakpoint != new_b->related_breakpoint)
7526 retval = retval->related_breakpoint;
7527 retval->related_breakpoint = new_b;
7528 }
7529
7530 return retval;
7531 }
7532
7533 /* Verify all existing dummy frames and their associated breakpoints for
7534 TP. Remove those which can no longer be found in the current frame
7535 stack.
7536
7537 You should call this function only at places where it is safe to currently
7538 unwind the whole stack. Failed stack unwind would discard live dummy
7539 frames. */
7540
7541 void
7542 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7543 {
7544 struct breakpoint *b, *b_tmp;
7545
7546 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7547 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7548 {
7549 struct breakpoint *dummy_b = b->related_breakpoint;
7550
7551 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7552 dummy_b = dummy_b->related_breakpoint;
7553 if (dummy_b->type != bp_call_dummy
7554 || frame_find_by_id (dummy_b->frame_id) != NULL)
7555 continue;
7556
7557 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7558
7559 while (b->related_breakpoint != b)
7560 {
7561 if (b_tmp == b->related_breakpoint)
7562 b_tmp = b->related_breakpoint->next;
7563 delete_breakpoint (b->related_breakpoint);
7564 }
7565 delete_breakpoint (b);
7566 }
7567 }
7568
7569 void
7570 enable_overlay_breakpoints (void)
7571 {
7572 struct breakpoint *b;
7573
7574 ALL_BREAKPOINTS (b)
7575 if (b->type == bp_overlay_event)
7576 {
7577 b->enable_state = bp_enabled;
7578 update_global_location_list (UGLL_MAY_INSERT);
7579 overlay_events_enabled = 1;
7580 }
7581 }
7582
7583 void
7584 disable_overlay_breakpoints (void)
7585 {
7586 struct breakpoint *b;
7587
7588 ALL_BREAKPOINTS (b)
7589 if (b->type == bp_overlay_event)
7590 {
7591 b->enable_state = bp_disabled;
7592 update_global_location_list (UGLL_DONT_INSERT);
7593 overlay_events_enabled = 0;
7594 }
7595 }
7596
7597 /* Set an active std::terminate breakpoint for each std::terminate
7598 master breakpoint. */
7599 void
7600 set_std_terminate_breakpoint (void)
7601 {
7602 struct breakpoint *b, *b_tmp;
7603
7604 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7605 if (b->pspace == current_program_space
7606 && b->type == bp_std_terminate_master)
7607 {
7608 momentary_breakpoint_from_master (b, bp_std_terminate,
7609 &momentary_breakpoint_ops, 1);
7610 }
7611 }
7612
7613 /* Delete all the std::terminate breakpoints. */
7614 void
7615 delete_std_terminate_breakpoint (void)
7616 {
7617 struct breakpoint *b, *b_tmp;
7618
7619 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7620 if (b->type == bp_std_terminate)
7621 delete_breakpoint (b);
7622 }
7623
7624 struct breakpoint *
7625 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7626 {
7627 struct breakpoint *b;
7628
7629 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7630 &internal_breakpoint_ops);
7631
7632 b->enable_state = bp_enabled;
7633 /* location has to be used or breakpoint_re_set will delete me. */
7634 b->location = new_address_location (b->loc->address, NULL, 0);
7635
7636 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7637
7638 return b;
7639 }
7640
7641 struct lang_and_radix
7642 {
7643 enum language lang;
7644 int radix;
7645 };
7646
7647 /* Create a breakpoint for JIT code registration and unregistration. */
7648
7649 struct breakpoint *
7650 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7651 {
7652 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7653 &internal_breakpoint_ops);
7654 }
7655
7656 /* Remove JIT code registration and unregistration breakpoint(s). */
7657
7658 void
7659 remove_jit_event_breakpoints (void)
7660 {
7661 struct breakpoint *b, *b_tmp;
7662
7663 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7664 if (b->type == bp_jit_event
7665 && b->loc->pspace == current_program_space)
7666 delete_breakpoint (b);
7667 }
7668
7669 void
7670 remove_solib_event_breakpoints (void)
7671 {
7672 struct breakpoint *b, *b_tmp;
7673
7674 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7675 if (b->type == bp_shlib_event
7676 && b->loc->pspace == current_program_space)
7677 delete_breakpoint (b);
7678 }
7679
7680 /* See breakpoint.h. */
7681
7682 void
7683 remove_solib_event_breakpoints_at_next_stop (void)
7684 {
7685 struct breakpoint *b, *b_tmp;
7686
7687 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7688 if (b->type == bp_shlib_event
7689 && b->loc->pspace == current_program_space)
7690 b->disposition = disp_del_at_next_stop;
7691 }
7692
7693 /* Helper for create_solib_event_breakpoint /
7694 create_and_insert_solib_event_breakpoint. Allows specifying which
7695 INSERT_MODE to pass through to update_global_location_list. */
7696
7697 static struct breakpoint *
7698 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7699 enum ugll_insert_mode insert_mode)
7700 {
7701 struct breakpoint *b;
7702
7703 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7704 &internal_breakpoint_ops);
7705 update_global_location_list_nothrow (insert_mode);
7706 return b;
7707 }
7708
7709 struct breakpoint *
7710 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7711 {
7712 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7713 }
7714
7715 /* See breakpoint.h. */
7716
7717 struct breakpoint *
7718 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7719 {
7720 struct breakpoint *b;
7721
7722 /* Explicitly tell update_global_location_list to insert
7723 locations. */
7724 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7725 if (!b->loc->inserted)
7726 {
7727 delete_breakpoint (b);
7728 return NULL;
7729 }
7730 return b;
7731 }
7732
7733 /* Disable any breakpoints that are on code in shared libraries. Only
7734 apply to enabled breakpoints, disabled ones can just stay disabled. */
7735
7736 void
7737 disable_breakpoints_in_shlibs (void)
7738 {
7739 struct bp_location *loc, **locp_tmp;
7740
7741 ALL_BP_LOCATIONS (loc, locp_tmp)
7742 {
7743 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7744 struct breakpoint *b = loc->owner;
7745
7746 /* We apply the check to all breakpoints, including disabled for
7747 those with loc->duplicate set. This is so that when breakpoint
7748 becomes enabled, or the duplicate is removed, gdb will try to
7749 insert all breakpoints. If we don't set shlib_disabled here,
7750 we'll try to insert those breakpoints and fail. */
7751 if (((b->type == bp_breakpoint)
7752 || (b->type == bp_jit_event)
7753 || (b->type == bp_hardware_breakpoint)
7754 || (is_tracepoint (b)))
7755 && loc->pspace == current_program_space
7756 && !loc->shlib_disabled
7757 && solib_name_from_address (loc->pspace, loc->address)
7758 )
7759 {
7760 loc->shlib_disabled = 1;
7761 }
7762 }
7763 }
7764
7765 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7766 notification of unloaded_shlib. Only apply to enabled breakpoints,
7767 disabled ones can just stay disabled. */
7768
7769 static void
7770 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7771 {
7772 struct bp_location *loc, **locp_tmp;
7773 int disabled_shlib_breaks = 0;
7774
7775 ALL_BP_LOCATIONS (loc, locp_tmp)
7776 {
7777 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7778 struct breakpoint *b = loc->owner;
7779
7780 if (solib->pspace == loc->pspace
7781 && !loc->shlib_disabled
7782 && (((b->type == bp_breakpoint
7783 || b->type == bp_jit_event
7784 || b->type == bp_hardware_breakpoint)
7785 && (loc->loc_type == bp_loc_hardware_breakpoint
7786 || loc->loc_type == bp_loc_software_breakpoint))
7787 || is_tracepoint (b))
7788 && solib_contains_address_p (solib, loc->address))
7789 {
7790 loc->shlib_disabled = 1;
7791 /* At this point, we cannot rely on remove_breakpoint
7792 succeeding so we must mark the breakpoint as not inserted
7793 to prevent future errors occurring in remove_breakpoints. */
7794 loc->inserted = 0;
7795
7796 /* This may cause duplicate notifications for the same breakpoint. */
7797 observer_notify_breakpoint_modified (b);
7798
7799 if (!disabled_shlib_breaks)
7800 {
7801 target_terminal::ours_for_output ();
7802 warning (_("Temporarily disabling breakpoints "
7803 "for unloaded shared library \"%s\""),
7804 solib->so_name);
7805 }
7806 disabled_shlib_breaks = 1;
7807 }
7808 }
7809 }
7810
7811 /* Disable any breakpoints and tracepoints in OBJFILE upon
7812 notification of free_objfile. Only apply to enabled breakpoints,
7813 disabled ones can just stay disabled. */
7814
7815 static void
7816 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7817 {
7818 struct breakpoint *b;
7819
7820 if (objfile == NULL)
7821 return;
7822
7823 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7824 managed by the user with add-symbol-file/remove-symbol-file.
7825 Similarly to how breakpoints in shared libraries are handled in
7826 response to "nosharedlibrary", mark breakpoints in such modules
7827 shlib_disabled so they end up uninserted on the next global
7828 location list update. Shared libraries not loaded by the user
7829 aren't handled here -- they're already handled in
7830 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7831 solib_unloaded observer. We skip objfiles that are not
7832 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7833 main objfile). */
7834 if ((objfile->flags & OBJF_SHARED) == 0
7835 || (objfile->flags & OBJF_USERLOADED) == 0)
7836 return;
7837
7838 ALL_BREAKPOINTS (b)
7839 {
7840 struct bp_location *loc;
7841 int bp_modified = 0;
7842
7843 if (!is_breakpoint (b) && !is_tracepoint (b))
7844 continue;
7845
7846 for (loc = b->loc; loc != NULL; loc = loc->next)
7847 {
7848 CORE_ADDR loc_addr = loc->address;
7849
7850 if (loc->loc_type != bp_loc_hardware_breakpoint
7851 && loc->loc_type != bp_loc_software_breakpoint)
7852 continue;
7853
7854 if (loc->shlib_disabled != 0)
7855 continue;
7856
7857 if (objfile->pspace != loc->pspace)
7858 continue;
7859
7860 if (loc->loc_type != bp_loc_hardware_breakpoint
7861 && loc->loc_type != bp_loc_software_breakpoint)
7862 continue;
7863
7864 if (is_addr_in_objfile (loc_addr, objfile))
7865 {
7866 loc->shlib_disabled = 1;
7867 /* At this point, we don't know whether the object was
7868 unmapped from the inferior or not, so leave the
7869 inserted flag alone. We'll handle failure to
7870 uninsert quietly, in case the object was indeed
7871 unmapped. */
7872
7873 mark_breakpoint_location_modified (loc);
7874
7875 bp_modified = 1;
7876 }
7877 }
7878
7879 if (bp_modified)
7880 observer_notify_breakpoint_modified (b);
7881 }
7882 }
7883
7884 /* FORK & VFORK catchpoints. */
7885
7886 /* An instance of this type is used to represent a fork or vfork
7887 catchpoint. A breakpoint is really of this type iff its ops pointer points
7888 to CATCH_FORK_BREAKPOINT_OPS. */
7889
7890 struct fork_catchpoint : public breakpoint
7891 {
7892 /* Process id of a child process whose forking triggered this
7893 catchpoint. This field is only valid immediately after this
7894 catchpoint has triggered. */
7895 ptid_t forked_inferior_pid;
7896 };
7897
7898 /* Implement the "insert" breakpoint_ops method for fork
7899 catchpoints. */
7900
7901 static int
7902 insert_catch_fork (struct bp_location *bl)
7903 {
7904 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7905 }
7906
7907 /* Implement the "remove" breakpoint_ops method for fork
7908 catchpoints. */
7909
7910 static int
7911 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7912 {
7913 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7914 }
7915
7916 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7917 catchpoints. */
7918
7919 static int
7920 breakpoint_hit_catch_fork (const struct bp_location *bl,
7921 struct address_space *aspace, CORE_ADDR bp_addr,
7922 const struct target_waitstatus *ws)
7923 {
7924 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7925
7926 if (ws->kind != TARGET_WAITKIND_FORKED)
7927 return 0;
7928
7929 c->forked_inferior_pid = ws->value.related_pid;
7930 return 1;
7931 }
7932
7933 /* Implement the "print_it" breakpoint_ops method for fork
7934 catchpoints. */
7935
7936 static enum print_stop_action
7937 print_it_catch_fork (bpstat bs)
7938 {
7939 struct ui_out *uiout = current_uiout;
7940 struct breakpoint *b = bs->breakpoint_at;
7941 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7942
7943 annotate_catchpoint (b->number);
7944 maybe_print_thread_hit_breakpoint (uiout);
7945 if (b->disposition == disp_del)
7946 uiout->text ("Temporary catchpoint ");
7947 else
7948 uiout->text ("Catchpoint ");
7949 if (uiout->is_mi_like_p ())
7950 {
7951 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7952 uiout->field_string ("disp", bpdisp_text (b->disposition));
7953 }
7954 uiout->field_int ("bkptno", b->number);
7955 uiout->text (" (forked process ");
7956 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7957 uiout->text ("), ");
7958 return PRINT_SRC_AND_LOC;
7959 }
7960
7961 /* Implement the "print_one" breakpoint_ops method for fork
7962 catchpoints. */
7963
7964 static void
7965 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7966 {
7967 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7968 struct value_print_options opts;
7969 struct ui_out *uiout = current_uiout;
7970
7971 get_user_print_options (&opts);
7972
7973 /* Field 4, the address, is omitted (which makes the columns not
7974 line up too nicely with the headers, but the effect is relatively
7975 readable). */
7976 if (opts.addressprint)
7977 uiout->field_skip ("addr");
7978 annotate_field (5);
7979 uiout->text ("fork");
7980 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7981 {
7982 uiout->text (", process ");
7983 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7984 uiout->spaces (1);
7985 }
7986
7987 if (uiout->is_mi_like_p ())
7988 uiout->field_string ("catch-type", "fork");
7989 }
7990
7991 /* Implement the "print_mention" breakpoint_ops method for fork
7992 catchpoints. */
7993
7994 static void
7995 print_mention_catch_fork (struct breakpoint *b)
7996 {
7997 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7998 }
7999
8000 /* Implement the "print_recreate" breakpoint_ops method for fork
8001 catchpoints. */
8002
8003 static void
8004 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
8005 {
8006 fprintf_unfiltered (fp, "catch fork");
8007 print_recreate_thread (b, fp);
8008 }
8009
8010 /* The breakpoint_ops structure to be used in fork catchpoints. */
8011
8012 static struct breakpoint_ops catch_fork_breakpoint_ops;
8013
8014 /* Implement the "insert" breakpoint_ops method for vfork
8015 catchpoints. */
8016
8017 static int
8018 insert_catch_vfork (struct bp_location *bl)
8019 {
8020 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8021 }
8022
8023 /* Implement the "remove" breakpoint_ops method for vfork
8024 catchpoints. */
8025
8026 static int
8027 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
8028 {
8029 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8030 }
8031
8032 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
8033 catchpoints. */
8034
8035 static int
8036 breakpoint_hit_catch_vfork (const struct bp_location *bl,
8037 struct address_space *aspace, CORE_ADDR bp_addr,
8038 const struct target_waitstatus *ws)
8039 {
8040 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8041
8042 if (ws->kind != TARGET_WAITKIND_VFORKED)
8043 return 0;
8044
8045 c->forked_inferior_pid = ws->value.related_pid;
8046 return 1;
8047 }
8048
8049 /* Implement the "print_it" breakpoint_ops method for vfork
8050 catchpoints. */
8051
8052 static enum print_stop_action
8053 print_it_catch_vfork (bpstat bs)
8054 {
8055 struct ui_out *uiout = current_uiout;
8056 struct breakpoint *b = bs->breakpoint_at;
8057 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8058
8059 annotate_catchpoint (b->number);
8060 maybe_print_thread_hit_breakpoint (uiout);
8061 if (b->disposition == disp_del)
8062 uiout->text ("Temporary catchpoint ");
8063 else
8064 uiout->text ("Catchpoint ");
8065 if (uiout->is_mi_like_p ())
8066 {
8067 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
8068 uiout->field_string ("disp", bpdisp_text (b->disposition));
8069 }
8070 uiout->field_int ("bkptno", b->number);
8071 uiout->text (" (vforked process ");
8072 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
8073 uiout->text ("), ");
8074 return PRINT_SRC_AND_LOC;
8075 }
8076
8077 /* Implement the "print_one" breakpoint_ops method for vfork
8078 catchpoints. */
8079
8080 static void
8081 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
8082 {
8083 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8084 struct value_print_options opts;
8085 struct ui_out *uiout = current_uiout;
8086
8087 get_user_print_options (&opts);
8088 /* Field 4, the address, is omitted (which makes the columns not
8089 line up too nicely with the headers, but the effect is relatively
8090 readable). */
8091 if (opts.addressprint)
8092 uiout->field_skip ("addr");
8093 annotate_field (5);
8094 uiout->text ("vfork");
8095 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8096 {
8097 uiout->text (", process ");
8098 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
8099 uiout->spaces (1);
8100 }
8101
8102 if (uiout->is_mi_like_p ())
8103 uiout->field_string ("catch-type", "vfork");
8104 }
8105
8106 /* Implement the "print_mention" breakpoint_ops method for vfork
8107 catchpoints. */
8108
8109 static void
8110 print_mention_catch_vfork (struct breakpoint *b)
8111 {
8112 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
8113 }
8114
8115 /* Implement the "print_recreate" breakpoint_ops method for vfork
8116 catchpoints. */
8117
8118 static void
8119 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
8120 {
8121 fprintf_unfiltered (fp, "catch vfork");
8122 print_recreate_thread (b, fp);
8123 }
8124
8125 /* The breakpoint_ops structure to be used in vfork catchpoints. */
8126
8127 static struct breakpoint_ops catch_vfork_breakpoint_ops;
8128
8129 /* An instance of this type is used to represent an solib catchpoint.
8130 A breakpoint is really of this type iff its ops pointer points to
8131 CATCH_SOLIB_BREAKPOINT_OPS. */
8132
8133 struct solib_catchpoint : public breakpoint
8134 {
8135 ~solib_catchpoint () override;
8136
8137 /* True for "catch load", false for "catch unload". */
8138 unsigned char is_load;
8139
8140 /* Regular expression to match, if any. COMPILED is only valid when
8141 REGEX is non-NULL. */
8142 char *regex;
8143 std::unique_ptr<compiled_regex> compiled;
8144 };
8145
8146 solib_catchpoint::~solib_catchpoint ()
8147 {
8148 xfree (this->regex);
8149 }
8150
8151 static int
8152 insert_catch_solib (struct bp_location *ignore)
8153 {
8154 return 0;
8155 }
8156
8157 static int
8158 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
8159 {
8160 return 0;
8161 }
8162
8163 static int
8164 breakpoint_hit_catch_solib (const struct bp_location *bl,
8165 struct address_space *aspace,
8166 CORE_ADDR bp_addr,
8167 const struct target_waitstatus *ws)
8168 {
8169 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8170 struct breakpoint *other;
8171
8172 if (ws->kind == TARGET_WAITKIND_LOADED)
8173 return 1;
8174
8175 ALL_BREAKPOINTS (other)
8176 {
8177 struct bp_location *other_bl;
8178
8179 if (other == bl->owner)
8180 continue;
8181
8182 if (other->type != bp_shlib_event)
8183 continue;
8184
8185 if (self->pspace != NULL && other->pspace != self->pspace)
8186 continue;
8187
8188 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8189 {
8190 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8191 return 1;
8192 }
8193 }
8194
8195 return 0;
8196 }
8197
8198 static void
8199 check_status_catch_solib (struct bpstats *bs)
8200 {
8201 struct solib_catchpoint *self
8202 = (struct solib_catchpoint *) bs->breakpoint_at;
8203 int ix;
8204
8205 if (self->is_load)
8206 {
8207 struct so_list *iter;
8208
8209 for (ix = 0;
8210 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8211 ix, iter);
8212 ++ix)
8213 {
8214 if (!self->regex
8215 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8216 return;
8217 }
8218 }
8219 else
8220 {
8221 char *iter;
8222
8223 for (ix = 0;
8224 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8225 ix, iter);
8226 ++ix)
8227 {
8228 if (!self->regex
8229 || self->compiled->exec (iter, 0, NULL, 0) == 0)
8230 return;
8231 }
8232 }
8233
8234 bs->stop = 0;
8235 bs->print_it = print_it_noop;
8236 }
8237
8238 static enum print_stop_action
8239 print_it_catch_solib (bpstat bs)
8240 {
8241 struct breakpoint *b = bs->breakpoint_at;
8242 struct ui_out *uiout = current_uiout;
8243
8244 annotate_catchpoint (b->number);
8245 maybe_print_thread_hit_breakpoint (uiout);
8246 if (b->disposition == disp_del)
8247 uiout->text ("Temporary catchpoint ");
8248 else
8249 uiout->text ("Catchpoint ");
8250 uiout->field_int ("bkptno", b->number);
8251 uiout->text ("\n");
8252 if (uiout->is_mi_like_p ())
8253 uiout->field_string ("disp", bpdisp_text (b->disposition));
8254 print_solib_event (1);
8255 return PRINT_SRC_AND_LOC;
8256 }
8257
8258 static void
8259 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8260 {
8261 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8262 struct value_print_options opts;
8263 struct ui_out *uiout = current_uiout;
8264 char *msg;
8265
8266 get_user_print_options (&opts);
8267 /* Field 4, the address, is omitted (which makes the columns not
8268 line up too nicely with the headers, but the effect is relatively
8269 readable). */
8270 if (opts.addressprint)
8271 {
8272 annotate_field (4);
8273 uiout->field_skip ("addr");
8274 }
8275
8276 annotate_field (5);
8277 if (self->is_load)
8278 {
8279 if (self->regex)
8280 msg = xstrprintf (_("load of library matching %s"), self->regex);
8281 else
8282 msg = xstrdup (_("load of library"));
8283 }
8284 else
8285 {
8286 if (self->regex)
8287 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8288 else
8289 msg = xstrdup (_("unload of library"));
8290 }
8291 uiout->field_string ("what", msg);
8292 xfree (msg);
8293
8294 if (uiout->is_mi_like_p ())
8295 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8296 }
8297
8298 static void
8299 print_mention_catch_solib (struct breakpoint *b)
8300 {
8301 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8302
8303 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8304 self->is_load ? "load" : "unload");
8305 }
8306
8307 static void
8308 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8309 {
8310 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8311
8312 fprintf_unfiltered (fp, "%s %s",
8313 b->disposition == disp_del ? "tcatch" : "catch",
8314 self->is_load ? "load" : "unload");
8315 if (self->regex)
8316 fprintf_unfiltered (fp, " %s", self->regex);
8317 fprintf_unfiltered (fp, "\n");
8318 }
8319
8320 static struct breakpoint_ops catch_solib_breakpoint_ops;
8321
8322 /* Shared helper function (MI and CLI) for creating and installing
8323 a shared object event catchpoint. If IS_LOAD is non-zero then
8324 the events to be caught are load events, otherwise they are
8325 unload events. If IS_TEMP is non-zero the catchpoint is a
8326 temporary one. If ENABLED is non-zero the catchpoint is
8327 created in an enabled state. */
8328
8329 void
8330 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8331 {
8332 struct gdbarch *gdbarch = get_current_arch ();
8333
8334 if (!arg)
8335 arg = "";
8336 arg = skip_spaces (arg);
8337
8338 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8339
8340 if (*arg != '\0')
8341 {
8342 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8343 _("Invalid regexp")));
8344 c->regex = xstrdup (arg);
8345 }
8346
8347 c->is_load = is_load;
8348 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8349 &catch_solib_breakpoint_ops);
8350
8351 c->enable_state = enabled ? bp_enabled : bp_disabled;
8352
8353 install_breakpoint (0, std::move (c), 1);
8354 }
8355
8356 /* A helper function that does all the work for "catch load" and
8357 "catch unload". */
8358
8359 static void
8360 catch_load_or_unload (char *arg, int from_tty, int is_load,
8361 struct cmd_list_element *command)
8362 {
8363 int tempflag;
8364 const int enabled = 1;
8365
8366 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8367
8368 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8369 }
8370
8371 static void
8372 catch_load_command_1 (char *arg, int from_tty,
8373 struct cmd_list_element *command)
8374 {
8375 catch_load_or_unload (arg, from_tty, 1, command);
8376 }
8377
8378 static void
8379 catch_unload_command_1 (char *arg, int from_tty,
8380 struct cmd_list_element *command)
8381 {
8382 catch_load_or_unload (arg, from_tty, 0, command);
8383 }
8384
8385 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8386 is non-zero, then make the breakpoint temporary. If COND_STRING is
8387 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8388 the breakpoint_ops structure associated to the catchpoint. */
8389
8390 void
8391 init_catchpoint (struct breakpoint *b,
8392 struct gdbarch *gdbarch, int tempflag,
8393 const char *cond_string,
8394 const struct breakpoint_ops *ops)
8395 {
8396 symtab_and_line sal;
8397 sal.pspace = current_program_space;
8398
8399 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8400
8401 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8402 b->disposition = tempflag ? disp_del : disp_donttouch;
8403 }
8404
8405 void
8406 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8407 {
8408 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8409 set_breakpoint_number (internal, b);
8410 if (is_tracepoint (b))
8411 set_tracepoint_count (breakpoint_count);
8412 if (!internal)
8413 mention (b);
8414 observer_notify_breakpoint_created (b);
8415
8416 if (update_gll)
8417 update_global_location_list (UGLL_MAY_INSERT);
8418 }
8419
8420 static void
8421 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8422 int tempflag, const char *cond_string,
8423 const struct breakpoint_ops *ops)
8424 {
8425 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8426
8427 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8428
8429 c->forked_inferior_pid = null_ptid;
8430
8431 install_breakpoint (0, std::move (c), 1);
8432 }
8433
8434 /* Exec catchpoints. */
8435
8436 /* An instance of this type is used to represent an exec catchpoint.
8437 A breakpoint is really of this type iff its ops pointer points to
8438 CATCH_EXEC_BREAKPOINT_OPS. */
8439
8440 struct exec_catchpoint : public breakpoint
8441 {
8442 ~exec_catchpoint () override;
8443
8444 /* Filename of a program whose exec triggered this catchpoint.
8445 This field is only valid immediately after this catchpoint has
8446 triggered. */
8447 char *exec_pathname;
8448 };
8449
8450 /* Exec catchpoint destructor. */
8451
8452 exec_catchpoint::~exec_catchpoint ()
8453 {
8454 xfree (this->exec_pathname);
8455 }
8456
8457 static int
8458 insert_catch_exec (struct bp_location *bl)
8459 {
8460 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8461 }
8462
8463 static int
8464 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8465 {
8466 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8467 }
8468
8469 static int
8470 breakpoint_hit_catch_exec (const struct bp_location *bl,
8471 struct address_space *aspace, CORE_ADDR bp_addr,
8472 const struct target_waitstatus *ws)
8473 {
8474 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8475
8476 if (ws->kind != TARGET_WAITKIND_EXECD)
8477 return 0;
8478
8479 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8480 return 1;
8481 }
8482
8483 static enum print_stop_action
8484 print_it_catch_exec (bpstat bs)
8485 {
8486 struct ui_out *uiout = current_uiout;
8487 struct breakpoint *b = bs->breakpoint_at;
8488 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8489
8490 annotate_catchpoint (b->number);
8491 maybe_print_thread_hit_breakpoint (uiout);
8492 if (b->disposition == disp_del)
8493 uiout->text ("Temporary catchpoint ");
8494 else
8495 uiout->text ("Catchpoint ");
8496 if (uiout->is_mi_like_p ())
8497 {
8498 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8499 uiout->field_string ("disp", bpdisp_text (b->disposition));
8500 }
8501 uiout->field_int ("bkptno", b->number);
8502 uiout->text (" (exec'd ");
8503 uiout->field_string ("new-exec", c->exec_pathname);
8504 uiout->text ("), ");
8505
8506 return PRINT_SRC_AND_LOC;
8507 }
8508
8509 static void
8510 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8511 {
8512 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8513 struct value_print_options opts;
8514 struct ui_out *uiout = current_uiout;
8515
8516 get_user_print_options (&opts);
8517
8518 /* Field 4, the address, is omitted (which makes the columns
8519 not line up too nicely with the headers, but the effect
8520 is relatively readable). */
8521 if (opts.addressprint)
8522 uiout->field_skip ("addr");
8523 annotate_field (5);
8524 uiout->text ("exec");
8525 if (c->exec_pathname != NULL)
8526 {
8527 uiout->text (", program \"");
8528 uiout->field_string ("what", c->exec_pathname);
8529 uiout->text ("\" ");
8530 }
8531
8532 if (uiout->is_mi_like_p ())
8533 uiout->field_string ("catch-type", "exec");
8534 }
8535
8536 static void
8537 print_mention_catch_exec (struct breakpoint *b)
8538 {
8539 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8540 }
8541
8542 /* Implement the "print_recreate" breakpoint_ops method for exec
8543 catchpoints. */
8544
8545 static void
8546 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8547 {
8548 fprintf_unfiltered (fp, "catch exec");
8549 print_recreate_thread (b, fp);
8550 }
8551
8552 static struct breakpoint_ops catch_exec_breakpoint_ops;
8553
8554 static int
8555 hw_breakpoint_used_count (void)
8556 {
8557 int i = 0;
8558 struct breakpoint *b;
8559 struct bp_location *bl;
8560
8561 ALL_BREAKPOINTS (b)
8562 {
8563 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8564 for (bl = b->loc; bl; bl = bl->next)
8565 {
8566 /* Special types of hardware breakpoints may use more than
8567 one register. */
8568 i += b->ops->resources_needed (bl);
8569 }
8570 }
8571
8572 return i;
8573 }
8574
8575 /* Returns the resources B would use if it were a hardware
8576 watchpoint. */
8577
8578 static int
8579 hw_watchpoint_use_count (struct breakpoint *b)
8580 {
8581 int i = 0;
8582 struct bp_location *bl;
8583
8584 if (!breakpoint_enabled (b))
8585 return 0;
8586
8587 for (bl = b->loc; bl; bl = bl->next)
8588 {
8589 /* Special types of hardware watchpoints may use more than
8590 one register. */
8591 i += b->ops->resources_needed (bl);
8592 }
8593
8594 return i;
8595 }
8596
8597 /* Returns the sum the used resources of all hardware watchpoints of
8598 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8599 the sum of the used resources of all hardware watchpoints of other
8600 types _not_ TYPE. */
8601
8602 static int
8603 hw_watchpoint_used_count_others (struct breakpoint *except,
8604 enum bptype type, int *other_type_used)
8605 {
8606 int i = 0;
8607 struct breakpoint *b;
8608
8609 *other_type_used = 0;
8610 ALL_BREAKPOINTS (b)
8611 {
8612 if (b == except)
8613 continue;
8614 if (!breakpoint_enabled (b))
8615 continue;
8616
8617 if (b->type == type)
8618 i += hw_watchpoint_use_count (b);
8619 else if (is_hardware_watchpoint (b))
8620 *other_type_used = 1;
8621 }
8622
8623 return i;
8624 }
8625
8626 void
8627 disable_watchpoints_before_interactive_call_start (void)
8628 {
8629 struct breakpoint *b;
8630
8631 ALL_BREAKPOINTS (b)
8632 {
8633 if (is_watchpoint (b) && breakpoint_enabled (b))
8634 {
8635 b->enable_state = bp_call_disabled;
8636 update_global_location_list (UGLL_DONT_INSERT);
8637 }
8638 }
8639 }
8640
8641 void
8642 enable_watchpoints_after_interactive_call_stop (void)
8643 {
8644 struct breakpoint *b;
8645
8646 ALL_BREAKPOINTS (b)
8647 {
8648 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8649 {
8650 b->enable_state = bp_enabled;
8651 update_global_location_list (UGLL_MAY_INSERT);
8652 }
8653 }
8654 }
8655
8656 void
8657 disable_breakpoints_before_startup (void)
8658 {
8659 current_program_space->executing_startup = 1;
8660 update_global_location_list (UGLL_DONT_INSERT);
8661 }
8662
8663 void
8664 enable_breakpoints_after_startup (void)
8665 {
8666 current_program_space->executing_startup = 0;
8667 breakpoint_re_set ();
8668 }
8669
8670 /* Create a new single-step breakpoint for thread THREAD, with no
8671 locations. */
8672
8673 static struct breakpoint *
8674 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8675 {
8676 std::unique_ptr<breakpoint> b (new breakpoint ());
8677
8678 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8679 &momentary_breakpoint_ops);
8680
8681 b->disposition = disp_donttouch;
8682 b->frame_id = null_frame_id;
8683
8684 b->thread = thread;
8685 gdb_assert (b->thread != 0);
8686
8687 return add_to_breakpoint_chain (std::move (b));
8688 }
8689
8690 /* Set a momentary breakpoint of type TYPE at address specified by
8691 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8692 frame. */
8693
8694 struct breakpoint *
8695 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8696 struct frame_id frame_id, enum bptype type)
8697 {
8698 struct breakpoint *b;
8699
8700 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8701 tail-called one. */
8702 gdb_assert (!frame_id_artificial_p (frame_id));
8703
8704 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8705 b->enable_state = bp_enabled;
8706 b->disposition = disp_donttouch;
8707 b->frame_id = frame_id;
8708
8709 /* If we're debugging a multi-threaded program, then we want
8710 momentary breakpoints to be active in only a single thread of
8711 control. */
8712 if (in_thread_list (inferior_ptid))
8713 b->thread = ptid_to_global_thread_id (inferior_ptid);
8714
8715 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8716
8717 return b;
8718 }
8719
8720 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8721 The new breakpoint will have type TYPE, use OPS as its
8722 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8723
8724 static struct breakpoint *
8725 momentary_breakpoint_from_master (struct breakpoint *orig,
8726 enum bptype type,
8727 const struct breakpoint_ops *ops,
8728 int loc_enabled)
8729 {
8730 struct breakpoint *copy;
8731
8732 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8733 copy->loc = allocate_bp_location (copy);
8734 set_breakpoint_location_function (copy->loc, 1);
8735
8736 copy->loc->gdbarch = orig->loc->gdbarch;
8737 copy->loc->requested_address = orig->loc->requested_address;
8738 copy->loc->address = orig->loc->address;
8739 copy->loc->section = orig->loc->section;
8740 copy->loc->pspace = orig->loc->pspace;
8741 copy->loc->probe = orig->loc->probe;
8742 copy->loc->line_number = orig->loc->line_number;
8743 copy->loc->symtab = orig->loc->symtab;
8744 copy->loc->enabled = loc_enabled;
8745 copy->frame_id = orig->frame_id;
8746 copy->thread = orig->thread;
8747 copy->pspace = orig->pspace;
8748
8749 copy->enable_state = bp_enabled;
8750 copy->disposition = disp_donttouch;
8751 copy->number = internal_breakpoint_number--;
8752
8753 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8754 return copy;
8755 }
8756
8757 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8758 ORIG is NULL. */
8759
8760 struct breakpoint *
8761 clone_momentary_breakpoint (struct breakpoint *orig)
8762 {
8763 /* If there's nothing to clone, then return nothing. */
8764 if (orig == NULL)
8765 return NULL;
8766
8767 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8768 }
8769
8770 struct breakpoint *
8771 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8772 enum bptype type)
8773 {
8774 struct symtab_and_line sal;
8775
8776 sal = find_pc_line (pc, 0);
8777 sal.pc = pc;
8778 sal.section = find_pc_overlay (pc);
8779 sal.explicit_pc = 1;
8780
8781 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8782 }
8783 \f
8784
8785 /* Tell the user we have just set a breakpoint B. */
8786
8787 static void
8788 mention (struct breakpoint *b)
8789 {
8790 b->ops->print_mention (b);
8791 if (current_uiout->is_mi_like_p ())
8792 return;
8793 printf_filtered ("\n");
8794 }
8795 \f
8796
8797 static int bp_loc_is_permanent (struct bp_location *loc);
8798
8799 static struct bp_location *
8800 add_location_to_breakpoint (struct breakpoint *b,
8801 const struct symtab_and_line *sal)
8802 {
8803 struct bp_location *loc, **tmp;
8804 CORE_ADDR adjusted_address;
8805 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8806
8807 if (loc_gdbarch == NULL)
8808 loc_gdbarch = b->gdbarch;
8809
8810 /* Adjust the breakpoint's address prior to allocating a location.
8811 Once we call allocate_bp_location(), that mostly uninitialized
8812 location will be placed on the location chain. Adjustment of the
8813 breakpoint may cause target_read_memory() to be called and we do
8814 not want its scan of the location chain to find a breakpoint and
8815 location that's only been partially initialized. */
8816 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8817 sal->pc, b->type);
8818
8819 /* Sort the locations by their ADDRESS. */
8820 loc = allocate_bp_location (b);
8821 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8822 tmp = &((*tmp)->next))
8823 ;
8824 loc->next = *tmp;
8825 *tmp = loc;
8826
8827 loc->requested_address = sal->pc;
8828 loc->address = adjusted_address;
8829 loc->pspace = sal->pspace;
8830 loc->probe.probe = sal->probe;
8831 loc->probe.objfile = sal->objfile;
8832 gdb_assert (loc->pspace != NULL);
8833 loc->section = sal->section;
8834 loc->gdbarch = loc_gdbarch;
8835 loc->line_number = sal->line;
8836 loc->symtab = sal->symtab;
8837
8838 set_breakpoint_location_function (loc,
8839 sal->explicit_pc || sal->explicit_line);
8840
8841 /* While by definition, permanent breakpoints are already present in the
8842 code, we don't mark the location as inserted. Normally one would expect
8843 that GDB could rely on that breakpoint instruction to stop the program,
8844 thus removing the need to insert its own breakpoint, except that executing
8845 the breakpoint instruction can kill the target instead of reporting a
8846 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8847 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8848 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8849 breakpoint be inserted normally results in QEMU knowing about the GDB
8850 breakpoint, and thus trap before the breakpoint instruction is executed.
8851 (If GDB later needs to continue execution past the permanent breakpoint,
8852 it manually increments the PC, thus avoiding executing the breakpoint
8853 instruction.) */
8854 if (bp_loc_is_permanent (loc))
8855 loc->permanent = 1;
8856
8857 return loc;
8858 }
8859 \f
8860
8861 /* See breakpoint.h. */
8862
8863 int
8864 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8865 {
8866 int len;
8867 CORE_ADDR addr;
8868 const gdb_byte *bpoint;
8869 gdb_byte *target_mem;
8870
8871 addr = address;
8872 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8873
8874 /* Software breakpoints unsupported? */
8875 if (bpoint == NULL)
8876 return 0;
8877
8878 target_mem = (gdb_byte *) alloca (len);
8879
8880 /* Enable the automatic memory restoration from breakpoints while
8881 we read the memory. Otherwise we could say about our temporary
8882 breakpoints they are permanent. */
8883 scoped_restore restore_memory
8884 = make_scoped_restore_show_memory_breakpoints (0);
8885
8886 if (target_read_memory (address, target_mem, len) == 0
8887 && memcmp (target_mem, bpoint, len) == 0)
8888 return 1;
8889
8890 return 0;
8891 }
8892
8893 /* Return 1 if LOC is pointing to a permanent breakpoint,
8894 return 0 otherwise. */
8895
8896 static int
8897 bp_loc_is_permanent (struct bp_location *loc)
8898 {
8899 gdb_assert (loc != NULL);
8900
8901 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8902 attempt to read from the addresses the locations of these breakpoint types
8903 point to. program_breakpoint_here_p, below, will attempt to read
8904 memory. */
8905 if (!breakpoint_address_is_meaningful (loc->owner))
8906 return 0;
8907
8908 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8909 switch_to_program_space_and_thread (loc->pspace);
8910 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8911 }
8912
8913 /* Build a command list for the dprintf corresponding to the current
8914 settings of the dprintf style options. */
8915
8916 static void
8917 update_dprintf_command_list (struct breakpoint *b)
8918 {
8919 char *dprintf_args = b->extra_string;
8920 char *printf_line = NULL;
8921
8922 if (!dprintf_args)
8923 return;
8924
8925 dprintf_args = skip_spaces (dprintf_args);
8926
8927 /* Allow a comma, as it may have terminated a location, but don't
8928 insist on it. */
8929 if (*dprintf_args == ',')
8930 ++dprintf_args;
8931 dprintf_args = skip_spaces (dprintf_args);
8932
8933 if (*dprintf_args != '"')
8934 error (_("Bad format string, missing '\"'."));
8935
8936 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8937 printf_line = xstrprintf ("printf %s", dprintf_args);
8938 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8939 {
8940 if (!dprintf_function)
8941 error (_("No function supplied for dprintf call"));
8942
8943 if (dprintf_channel && strlen (dprintf_channel) > 0)
8944 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8945 dprintf_function,
8946 dprintf_channel,
8947 dprintf_args);
8948 else
8949 printf_line = xstrprintf ("call (void) %s (%s)",
8950 dprintf_function,
8951 dprintf_args);
8952 }
8953 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8954 {
8955 if (target_can_run_breakpoint_commands ())
8956 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8957 else
8958 {
8959 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8960 printf_line = xstrprintf ("printf %s", dprintf_args);
8961 }
8962 }
8963 else
8964 internal_error (__FILE__, __LINE__,
8965 _("Invalid dprintf style."));
8966
8967 gdb_assert (printf_line != NULL);
8968 /* Manufacture a printf sequence. */
8969 {
8970 struct command_line *printf_cmd_line = XNEW (struct command_line);
8971
8972 printf_cmd_line->control_type = simple_control;
8973 printf_cmd_line->body_count = 0;
8974 printf_cmd_line->body_list = NULL;
8975 printf_cmd_line->next = NULL;
8976 printf_cmd_line->line = printf_line;
8977
8978 breakpoint_set_commands (b, command_line_up (printf_cmd_line));
8979 }
8980 }
8981
8982 /* Update all dprintf commands, making their command lists reflect
8983 current style settings. */
8984
8985 static void
8986 update_dprintf_commands (char *args, int from_tty,
8987 struct cmd_list_element *c)
8988 {
8989 struct breakpoint *b;
8990
8991 ALL_BREAKPOINTS (b)
8992 {
8993 if (b->type == bp_dprintf)
8994 update_dprintf_command_list (b);
8995 }
8996 }
8997
8998 /* Create a breakpoint with SAL as location. Use LOCATION
8999 as a description of the location, and COND_STRING
9000 as condition expression. If LOCATION is NULL then create an
9001 "address location" from the address in the SAL. */
9002
9003 static void
9004 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9005 gdb::array_view<const symtab_and_line> sals,
9006 event_location_up &&location,
9007 gdb::unique_xmalloc_ptr<char> filter,
9008 gdb::unique_xmalloc_ptr<char> cond_string,
9009 gdb::unique_xmalloc_ptr<char> extra_string,
9010 enum bptype type, enum bpdisp disposition,
9011 int thread, int task, int ignore_count,
9012 const struct breakpoint_ops *ops, int from_tty,
9013 int enabled, int internal, unsigned flags,
9014 int display_canonical)
9015 {
9016 int i;
9017
9018 if (type == bp_hardware_breakpoint)
9019 {
9020 int target_resources_ok;
9021
9022 i = hw_breakpoint_used_count ();
9023 target_resources_ok =
9024 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9025 i + 1, 0);
9026 if (target_resources_ok == 0)
9027 error (_("No hardware breakpoint support in the target."));
9028 else if (target_resources_ok < 0)
9029 error (_("Hardware breakpoints used exceeds limit."));
9030 }
9031
9032 gdb_assert (!sals.empty ());
9033
9034 for (const auto &sal : sals)
9035 {
9036 struct bp_location *loc;
9037
9038 if (from_tty)
9039 {
9040 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9041 if (!loc_gdbarch)
9042 loc_gdbarch = gdbarch;
9043
9044 describe_other_breakpoints (loc_gdbarch,
9045 sal.pspace, sal.pc, sal.section, thread);
9046 }
9047
9048 if (&sal == &sals[0])
9049 {
9050 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9051 b->thread = thread;
9052 b->task = task;
9053
9054 b->cond_string = cond_string.release ();
9055 b->extra_string = extra_string.release ();
9056 b->ignore_count = ignore_count;
9057 b->enable_state = enabled ? bp_enabled : bp_disabled;
9058 b->disposition = disposition;
9059
9060 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9061 b->loc->inserted = 1;
9062
9063 if (type == bp_static_tracepoint)
9064 {
9065 struct tracepoint *t = (struct tracepoint *) b;
9066 struct static_tracepoint_marker marker;
9067
9068 if (strace_marker_p (b))
9069 {
9070 /* We already know the marker exists, otherwise, we
9071 wouldn't see a sal for it. */
9072 const char *p
9073 = &event_location_to_string (b->location.get ())[3];
9074 const char *endp;
9075 char *marker_str;
9076
9077 p = skip_spaces (p);
9078
9079 endp = skip_to_space (p);
9080
9081 marker_str = savestring (p, endp - p);
9082 t->static_trace_marker_id = marker_str;
9083
9084 printf_filtered (_("Probed static tracepoint "
9085 "marker \"%s\"\n"),
9086 t->static_trace_marker_id);
9087 }
9088 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9089 {
9090 t->static_trace_marker_id = xstrdup (marker.str_id);
9091 release_static_tracepoint_marker (&marker);
9092
9093 printf_filtered (_("Probed static tracepoint "
9094 "marker \"%s\"\n"),
9095 t->static_trace_marker_id);
9096 }
9097 else
9098 warning (_("Couldn't determine the static "
9099 "tracepoint marker to probe"));
9100 }
9101
9102 loc = b->loc;
9103 }
9104 else
9105 {
9106 loc = add_location_to_breakpoint (b, &sal);
9107 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9108 loc->inserted = 1;
9109 }
9110
9111 if (b->cond_string)
9112 {
9113 const char *arg = b->cond_string;
9114
9115 loc->cond = parse_exp_1 (&arg, loc->address,
9116 block_for_pc (loc->address), 0);
9117 if (*arg)
9118 error (_("Garbage '%s' follows condition"), arg);
9119 }
9120
9121 /* Dynamic printf requires and uses additional arguments on the
9122 command line, otherwise it's an error. */
9123 if (type == bp_dprintf)
9124 {
9125 if (b->extra_string)
9126 update_dprintf_command_list (b);
9127 else
9128 error (_("Format string required"));
9129 }
9130 else if (b->extra_string)
9131 error (_("Garbage '%s' at end of command"), b->extra_string);
9132 }
9133
9134 b->display_canonical = display_canonical;
9135 if (location != NULL)
9136 b->location = std::move (location);
9137 else
9138 b->location = new_address_location (b->loc->address, NULL, 0);
9139 b->filter = filter.release ();
9140 }
9141
9142 static void
9143 create_breakpoint_sal (struct gdbarch *gdbarch,
9144 gdb::array_view<const symtab_and_line> sals,
9145 event_location_up &&location,
9146 gdb::unique_xmalloc_ptr<char> filter,
9147 gdb::unique_xmalloc_ptr<char> cond_string,
9148 gdb::unique_xmalloc_ptr<char> extra_string,
9149 enum bptype type, enum bpdisp disposition,
9150 int thread, int task, int ignore_count,
9151 const struct breakpoint_ops *ops, int from_tty,
9152 int enabled, int internal, unsigned flags,
9153 int display_canonical)
9154 {
9155 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
9156
9157 init_breakpoint_sal (b.get (), gdbarch,
9158 sals, std::move (location),
9159 std::move (filter),
9160 std::move (cond_string),
9161 std::move (extra_string),
9162 type, disposition,
9163 thread, task, ignore_count,
9164 ops, from_tty,
9165 enabled, internal, flags,
9166 display_canonical);
9167
9168 install_breakpoint (internal, std::move (b), 0);
9169 }
9170
9171 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9172 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9173 value. COND_STRING, if not NULL, specified the condition to be
9174 used for all breakpoints. Essentially the only case where
9175 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9176 function. In that case, it's still not possible to specify
9177 separate conditions for different overloaded functions, so
9178 we take just a single condition string.
9179
9180 NOTE: If the function succeeds, the caller is expected to cleanup
9181 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9182 array contents). If the function fails (error() is called), the
9183 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9184 COND and SALS arrays and each of those arrays contents. */
9185
9186 static void
9187 create_breakpoints_sal (struct gdbarch *gdbarch,
9188 struct linespec_result *canonical,
9189 gdb::unique_xmalloc_ptr<char> cond_string,
9190 gdb::unique_xmalloc_ptr<char> extra_string,
9191 enum bptype type, enum bpdisp disposition,
9192 int thread, int task, int ignore_count,
9193 const struct breakpoint_ops *ops, int from_tty,
9194 int enabled, int internal, unsigned flags)
9195 {
9196 if (canonical->pre_expanded)
9197 gdb_assert (canonical->lsals.size () == 1);
9198
9199 for (const auto &lsal : canonical->lsals)
9200 {
9201 /* Note that 'location' can be NULL in the case of a plain
9202 'break', without arguments. */
9203 event_location_up location
9204 = (canonical->location != NULL
9205 ? copy_event_location (canonical->location.get ()) : NULL);
9206 gdb::unique_xmalloc_ptr<char> filter_string
9207 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
9208
9209 create_breakpoint_sal (gdbarch, lsal.sals,
9210 std::move (location),
9211 std::move (filter_string),
9212 std::move (cond_string),
9213 std::move (extra_string),
9214 type, disposition,
9215 thread, task, ignore_count, ops,
9216 from_tty, enabled, internal, flags,
9217 canonical->special_display);
9218 }
9219 }
9220
9221 /* Parse LOCATION which is assumed to be a SAL specification possibly
9222 followed by conditionals. On return, SALS contains an array of SAL
9223 addresses found. LOCATION points to the end of the SAL (for
9224 linespec locations).
9225
9226 The array and the line spec strings are allocated on the heap, it is
9227 the caller's responsibility to free them. */
9228
9229 static void
9230 parse_breakpoint_sals (const struct event_location *location,
9231 struct linespec_result *canonical)
9232 {
9233 struct symtab_and_line cursal;
9234
9235 if (event_location_type (location) == LINESPEC_LOCATION)
9236 {
9237 const char *address = get_linespec_location (location);
9238
9239 if (address == NULL)
9240 {
9241 /* The last displayed codepoint, if it's valid, is our default
9242 breakpoint address. */
9243 if (last_displayed_sal_is_valid ())
9244 {
9245 /* Set sal's pspace, pc, symtab, and line to the values
9246 corresponding to the last call to print_frame_info.
9247 Be sure to reinitialize LINE with NOTCURRENT == 0
9248 as the breakpoint line number is inappropriate otherwise.
9249 find_pc_line would adjust PC, re-set it back. */
9250 symtab_and_line sal = get_last_displayed_sal ();
9251 CORE_ADDR pc = sal.pc;
9252
9253 sal = find_pc_line (pc, 0);
9254
9255 /* "break" without arguments is equivalent to "break *PC"
9256 where PC is the last displayed codepoint's address. So
9257 make sure to set sal.explicit_pc to prevent GDB from
9258 trying to expand the list of sals to include all other
9259 instances with the same symtab and line. */
9260 sal.pc = pc;
9261 sal.explicit_pc = 1;
9262
9263 struct linespec_sals lsal;
9264 lsal.sals = {sal};
9265 lsal.canonical = NULL;
9266
9267 canonical->lsals.push_back (std::move (lsal));
9268 return;
9269 }
9270 else
9271 error (_("No default breakpoint address now."));
9272 }
9273 }
9274
9275 /* Force almost all breakpoints to be in terms of the
9276 current_source_symtab (which is decode_line_1's default).
9277 This should produce the results we want almost all of the
9278 time while leaving default_breakpoint_* alone.
9279
9280 ObjC: However, don't match an Objective-C method name which
9281 may have a '+' or '-' succeeded by a '['. */
9282 cursal = get_current_source_symtab_and_line ();
9283 if (last_displayed_sal_is_valid ())
9284 {
9285 const char *address = NULL;
9286
9287 if (event_location_type (location) == LINESPEC_LOCATION)
9288 address = get_linespec_location (location);
9289
9290 if (!cursal.symtab
9291 || (address != NULL
9292 && strchr ("+-", address[0]) != NULL
9293 && address[1] != '['))
9294 {
9295 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9296 get_last_displayed_symtab (),
9297 get_last_displayed_line (),
9298 canonical, NULL, NULL);
9299 return;
9300 }
9301 }
9302
9303 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9304 cursal.symtab, cursal.line, canonical, NULL, NULL);
9305 }
9306
9307
9308 /* Convert each SAL into a real PC. Verify that the PC can be
9309 inserted as a breakpoint. If it can't throw an error. */
9310
9311 static void
9312 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9313 {
9314 for (auto &sal : sals)
9315 resolve_sal_pc (&sal);
9316 }
9317
9318 /* Fast tracepoints may have restrictions on valid locations. For
9319 instance, a fast tracepoint using a jump instead of a trap will
9320 likely have to overwrite more bytes than a trap would, and so can
9321 only be placed where the instruction is longer than the jump, or a
9322 multi-instruction sequence does not have a jump into the middle of
9323 it, etc. */
9324
9325 static void
9326 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9327 gdb::array_view<const symtab_and_line> sals)
9328 {
9329 int rslt;
9330 char *msg;
9331 struct cleanup *old_chain;
9332
9333 for (const auto &sal : sals)
9334 {
9335 struct gdbarch *sarch;
9336
9337 sarch = get_sal_arch (sal);
9338 /* We fall back to GDBARCH if there is no architecture
9339 associated with SAL. */
9340 if (sarch == NULL)
9341 sarch = gdbarch;
9342 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg);
9343 old_chain = make_cleanup (xfree, msg);
9344
9345 if (!rslt)
9346 error (_("May not have a fast tracepoint at %s%s"),
9347 paddress (sarch, sal.pc), (msg ? msg : ""));
9348
9349 do_cleanups (old_chain);
9350 }
9351 }
9352
9353 /* Given TOK, a string specification of condition and thread, as
9354 accepted by the 'break' command, extract the condition
9355 string and thread number and set *COND_STRING and *THREAD.
9356 PC identifies the context at which the condition should be parsed.
9357 If no condition is found, *COND_STRING is set to NULL.
9358 If no thread is found, *THREAD is set to -1. */
9359
9360 static void
9361 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9362 char **cond_string, int *thread, int *task,
9363 char **rest)
9364 {
9365 *cond_string = NULL;
9366 *thread = -1;
9367 *task = 0;
9368 *rest = NULL;
9369
9370 while (tok && *tok)
9371 {
9372 const char *end_tok;
9373 int toklen;
9374 const char *cond_start = NULL;
9375 const char *cond_end = NULL;
9376
9377 tok = skip_spaces (tok);
9378
9379 if ((*tok == '"' || *tok == ',') && rest)
9380 {
9381 *rest = savestring (tok, strlen (tok));
9382 return;
9383 }
9384
9385 end_tok = skip_to_space (tok);
9386
9387 toklen = end_tok - tok;
9388
9389 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9390 {
9391 tok = cond_start = end_tok + 1;
9392 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9393 cond_end = tok;
9394 *cond_string = savestring (cond_start, cond_end - cond_start);
9395 }
9396 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9397 {
9398 const char *tmptok;
9399 struct thread_info *thr;
9400
9401 tok = end_tok + 1;
9402 thr = parse_thread_id (tok, &tmptok);
9403 if (tok == tmptok)
9404 error (_("Junk after thread keyword."));
9405 *thread = thr->global_num;
9406 tok = tmptok;
9407 }
9408 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9409 {
9410 char *tmptok;
9411
9412 tok = end_tok + 1;
9413 *task = strtol (tok, &tmptok, 0);
9414 if (tok == tmptok)
9415 error (_("Junk after task keyword."));
9416 if (!valid_task_id (*task))
9417 error (_("Unknown task %d."), *task);
9418 tok = tmptok;
9419 }
9420 else if (rest)
9421 {
9422 *rest = savestring (tok, strlen (tok));
9423 return;
9424 }
9425 else
9426 error (_("Junk at end of arguments."));
9427 }
9428 }
9429
9430 /* Decode a static tracepoint marker spec. */
9431
9432 static std::vector<symtab_and_line>
9433 decode_static_tracepoint_spec (const char **arg_p)
9434 {
9435 VEC(static_tracepoint_marker_p) *markers = NULL;
9436 struct cleanup *old_chain;
9437 const char *p = &(*arg_p)[3];
9438 const char *endp;
9439 char *marker_str;
9440 int i;
9441
9442 p = skip_spaces (p);
9443
9444 endp = skip_to_space (p);
9445
9446 marker_str = savestring (p, endp - p);
9447 old_chain = make_cleanup (xfree, marker_str);
9448
9449 markers = target_static_tracepoint_markers_by_strid (marker_str);
9450 if (VEC_empty(static_tracepoint_marker_p, markers))
9451 error (_("No known static tracepoint marker named %s"), marker_str);
9452
9453 std::vector<symtab_and_line> sals;
9454 sals.reserve (VEC_length(static_tracepoint_marker_p, markers));
9455
9456 for (i = 0; i < VEC_length(static_tracepoint_marker_p, markers); i++)
9457 {
9458 struct static_tracepoint_marker *marker;
9459
9460 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9461
9462 symtab_and_line sal = find_pc_line (marker->address, 0);
9463 sal.pc = marker->address;
9464 sals.push_back (sal);
9465
9466 release_static_tracepoint_marker (marker);
9467 }
9468
9469 do_cleanups (old_chain);
9470
9471 *arg_p = endp;
9472 return sals;
9473 }
9474
9475 /* See breakpoint.h. */
9476
9477 int
9478 create_breakpoint (struct gdbarch *gdbarch,
9479 const struct event_location *location,
9480 const char *cond_string,
9481 int thread, const char *extra_string,
9482 int parse_extra,
9483 int tempflag, enum bptype type_wanted,
9484 int ignore_count,
9485 enum auto_boolean pending_break_support,
9486 const struct breakpoint_ops *ops,
9487 int from_tty, int enabled, int internal,
9488 unsigned flags)
9489 {
9490 struct linespec_result canonical;
9491 struct cleanup *bkpt_chain = NULL;
9492 int pending = 0;
9493 int task = 0;
9494 int prev_bkpt_count = breakpoint_count;
9495
9496 gdb_assert (ops != NULL);
9497
9498 /* If extra_string isn't useful, set it to NULL. */
9499 if (extra_string != NULL && *extra_string == '\0')
9500 extra_string = NULL;
9501
9502 TRY
9503 {
9504 ops->create_sals_from_location (location, &canonical, type_wanted);
9505 }
9506 CATCH (e, RETURN_MASK_ERROR)
9507 {
9508 /* If caller is interested in rc value from parse, set
9509 value. */
9510 if (e.error == NOT_FOUND_ERROR)
9511 {
9512 /* If pending breakpoint support is turned off, throw
9513 error. */
9514
9515 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9516 throw_exception (e);
9517
9518 exception_print (gdb_stderr, e);
9519
9520 /* If pending breakpoint support is auto query and the user
9521 selects no, then simply return the error code. */
9522 if (pending_break_support == AUTO_BOOLEAN_AUTO
9523 && !nquery (_("Make %s pending on future shared library load? "),
9524 bptype_string (type_wanted)))
9525 return 0;
9526
9527 /* At this point, either the user was queried about setting
9528 a pending breakpoint and selected yes, or pending
9529 breakpoint behavior is on and thus a pending breakpoint
9530 is defaulted on behalf of the user. */
9531 pending = 1;
9532 }
9533 else
9534 throw_exception (e);
9535 }
9536 END_CATCH
9537
9538 if (!pending && canonical.lsals.empty ())
9539 return 0;
9540
9541 /* ----------------------------- SNIP -----------------------------
9542 Anything added to the cleanup chain beyond this point is assumed
9543 to be part of a breakpoint. If the breakpoint create succeeds
9544 then the memory is not reclaimed. */
9545 bkpt_chain = make_cleanup (null_cleanup, 0);
9546
9547 /* Resolve all line numbers to PC's and verify that the addresses
9548 are ok for the target. */
9549 if (!pending)
9550 {
9551 for (auto &lsal : canonical.lsals)
9552 breakpoint_sals_to_pc (lsal.sals);
9553 }
9554
9555 /* Fast tracepoints may have additional restrictions on location. */
9556 if (!pending && type_wanted == bp_fast_tracepoint)
9557 {
9558 for (const auto &lsal : canonical.lsals)
9559 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9560 }
9561
9562 /* Verify that condition can be parsed, before setting any
9563 breakpoints. Allocate a separate condition expression for each
9564 breakpoint. */
9565 if (!pending)
9566 {
9567 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9568 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9569
9570 if (parse_extra)
9571 {
9572 char *rest;
9573 char *cond;
9574
9575 const linespec_sals &lsal = canonical.lsals[0];
9576
9577 /* Here we only parse 'arg' to separate condition
9578 from thread number, so parsing in context of first
9579 sal is OK. When setting the breakpoint we'll
9580 re-parse it in context of each sal. */
9581
9582 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9583 &cond, &thread, &task, &rest);
9584 cond_string_copy.reset (cond);
9585 extra_string_copy.reset (rest);
9586 }
9587 else
9588 {
9589 if (type_wanted != bp_dprintf
9590 && extra_string != NULL && *extra_string != '\0')
9591 error (_("Garbage '%s' at end of location"), extra_string);
9592
9593 /* Create a private copy of condition string. */
9594 if (cond_string)
9595 cond_string_copy.reset (xstrdup (cond_string));
9596 /* Create a private copy of any extra string. */
9597 if (extra_string)
9598 extra_string_copy.reset (xstrdup (extra_string));
9599 }
9600
9601 ops->create_breakpoints_sal (gdbarch, &canonical,
9602 std::move (cond_string_copy),
9603 std::move (extra_string_copy),
9604 type_wanted,
9605 tempflag ? disp_del : disp_donttouch,
9606 thread, task, ignore_count, ops,
9607 from_tty, enabled, internal, flags);
9608 }
9609 else
9610 {
9611 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9612
9613 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9614 b->location = copy_event_location (location);
9615
9616 if (parse_extra)
9617 b->cond_string = NULL;
9618 else
9619 {
9620 /* Create a private copy of condition string. */
9621 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9622 b->thread = thread;
9623 }
9624
9625 /* Create a private copy of any extra string. */
9626 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9627 b->ignore_count = ignore_count;
9628 b->disposition = tempflag ? disp_del : disp_donttouch;
9629 b->condition_not_parsed = 1;
9630 b->enable_state = enabled ? bp_enabled : bp_disabled;
9631 if ((type_wanted != bp_breakpoint
9632 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9633 b->pspace = current_program_space;
9634
9635 install_breakpoint (internal, std::move (b), 0);
9636 }
9637
9638 if (canonical.lsals.size () > 1)
9639 {
9640 warning (_("Multiple breakpoints were set.\nUse the "
9641 "\"delete\" command to delete unwanted breakpoints."));
9642 prev_breakpoint_count = prev_bkpt_count;
9643 }
9644
9645 /* That's it. Discard the cleanups for data inserted into the
9646 breakpoint. */
9647 discard_cleanups (bkpt_chain);
9648
9649 /* error call may happen here - have BKPT_CHAIN already discarded. */
9650 update_global_location_list (UGLL_MAY_INSERT);
9651
9652 return 1;
9653 }
9654
9655 /* Set a breakpoint.
9656 ARG is a string describing breakpoint address,
9657 condition, and thread.
9658 FLAG specifies if a breakpoint is hardware on,
9659 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9660 and BP_TEMPFLAG. */
9661
9662 static void
9663 break_command_1 (const char *arg, int flag, int from_tty)
9664 {
9665 int tempflag = flag & BP_TEMPFLAG;
9666 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9667 ? bp_hardware_breakpoint
9668 : bp_breakpoint);
9669 struct breakpoint_ops *ops;
9670
9671 event_location_up location = string_to_event_location (&arg, current_language);
9672
9673 /* Matching breakpoints on probes. */
9674 if (location != NULL
9675 && event_location_type (location.get ()) == PROBE_LOCATION)
9676 ops = &bkpt_probe_breakpoint_ops;
9677 else
9678 ops = &bkpt_breakpoint_ops;
9679
9680 create_breakpoint (get_current_arch (),
9681 location.get (),
9682 NULL, 0, arg, 1 /* parse arg */,
9683 tempflag, type_wanted,
9684 0 /* Ignore count */,
9685 pending_break_support,
9686 ops,
9687 from_tty,
9688 1 /* enabled */,
9689 0 /* internal */,
9690 0);
9691 }
9692
9693 /* Helper function for break_command_1 and disassemble_command. */
9694
9695 void
9696 resolve_sal_pc (struct symtab_and_line *sal)
9697 {
9698 CORE_ADDR pc;
9699
9700 if (sal->pc == 0 && sal->symtab != NULL)
9701 {
9702 if (!find_line_pc (sal->symtab, sal->line, &pc))
9703 error (_("No line %d in file \"%s\"."),
9704 sal->line, symtab_to_filename_for_display (sal->symtab));
9705 sal->pc = pc;
9706
9707 /* If this SAL corresponds to a breakpoint inserted using a line
9708 number, then skip the function prologue if necessary. */
9709 if (sal->explicit_line)
9710 skip_prologue_sal (sal);
9711 }
9712
9713 if (sal->section == 0 && sal->symtab != NULL)
9714 {
9715 const struct blockvector *bv;
9716 const struct block *b;
9717 struct symbol *sym;
9718
9719 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9720 SYMTAB_COMPUNIT (sal->symtab));
9721 if (bv != NULL)
9722 {
9723 sym = block_linkage_function (b);
9724 if (sym != NULL)
9725 {
9726 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9727 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9728 sym);
9729 }
9730 else
9731 {
9732 /* It really is worthwhile to have the section, so we'll
9733 just have to look harder. This case can be executed
9734 if we have line numbers but no functions (as can
9735 happen in assembly source). */
9736
9737 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9738 switch_to_program_space_and_thread (sal->pspace);
9739
9740 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9741 if (msym.minsym)
9742 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9743 }
9744 }
9745 }
9746 }
9747
9748 void
9749 break_command (char *arg, int from_tty)
9750 {
9751 break_command_1 (arg, 0, from_tty);
9752 }
9753
9754 void
9755 tbreak_command (char *arg, int from_tty)
9756 {
9757 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9758 }
9759
9760 static void
9761 hbreak_command (char *arg, int from_tty)
9762 {
9763 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9764 }
9765
9766 static void
9767 thbreak_command (char *arg, int from_tty)
9768 {
9769 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9770 }
9771
9772 static void
9773 stop_command (char *arg, int from_tty)
9774 {
9775 printf_filtered (_("Specify the type of breakpoint to set.\n\
9776 Usage: stop in <function | address>\n\
9777 stop at <line>\n"));
9778 }
9779
9780 static void
9781 stopin_command (const char *arg, int from_tty)
9782 {
9783 int badInput = 0;
9784
9785 if (arg == (char *) NULL)
9786 badInput = 1;
9787 else if (*arg != '*')
9788 {
9789 const char *argptr = arg;
9790 int hasColon = 0;
9791
9792 /* Look for a ':'. If this is a line number specification, then
9793 say it is bad, otherwise, it should be an address or
9794 function/method name. */
9795 while (*argptr && !hasColon)
9796 {
9797 hasColon = (*argptr == ':');
9798 argptr++;
9799 }
9800
9801 if (hasColon)
9802 badInput = (*argptr != ':'); /* Not a class::method */
9803 else
9804 badInput = isdigit (*arg); /* a simple line number */
9805 }
9806
9807 if (badInput)
9808 printf_filtered (_("Usage: stop in <function | address>\n"));
9809 else
9810 break_command_1 (arg, 0, from_tty);
9811 }
9812
9813 static void
9814 stopat_command (const char *arg, int from_tty)
9815 {
9816 int badInput = 0;
9817
9818 if (arg == (char *) NULL || *arg == '*') /* no line number */
9819 badInput = 1;
9820 else
9821 {
9822 const char *argptr = arg;
9823 int hasColon = 0;
9824
9825 /* Look for a ':'. If there is a '::' then get out, otherwise
9826 it is probably a line number. */
9827 while (*argptr && !hasColon)
9828 {
9829 hasColon = (*argptr == ':');
9830 argptr++;
9831 }
9832
9833 if (hasColon)
9834 badInput = (*argptr == ':'); /* we have class::method */
9835 else
9836 badInput = !isdigit (*arg); /* not a line number */
9837 }
9838
9839 if (badInput)
9840 printf_filtered (_("Usage: stop at <line>\n"));
9841 else
9842 break_command_1 (arg, 0, from_tty);
9843 }
9844
9845 /* The dynamic printf command is mostly like a regular breakpoint, but
9846 with a prewired command list consisting of a single output command,
9847 built from extra arguments supplied on the dprintf command
9848 line. */
9849
9850 static void
9851 dprintf_command (char *arg_in, int from_tty)
9852 {
9853 const char *arg = arg_in;
9854 event_location_up location = string_to_event_location (&arg, current_language);
9855
9856 /* If non-NULL, ARG should have been advanced past the location;
9857 the next character must be ','. */
9858 if (arg != NULL)
9859 {
9860 if (arg[0] != ',' || arg[1] == '\0')
9861 error (_("Format string required"));
9862 else
9863 {
9864 /* Skip the comma. */
9865 ++arg;
9866 }
9867 }
9868
9869 create_breakpoint (get_current_arch (),
9870 location.get (),
9871 NULL, 0, arg, 1 /* parse arg */,
9872 0, bp_dprintf,
9873 0 /* Ignore count */,
9874 pending_break_support,
9875 &dprintf_breakpoint_ops,
9876 from_tty,
9877 1 /* enabled */,
9878 0 /* internal */,
9879 0);
9880 }
9881
9882 static void
9883 agent_printf_command (char *arg, int from_tty)
9884 {
9885 error (_("May only run agent-printf on the target"));
9886 }
9887
9888 /* Implement the "breakpoint_hit" breakpoint_ops method for
9889 ranged breakpoints. */
9890
9891 static int
9892 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9893 struct address_space *aspace,
9894 CORE_ADDR bp_addr,
9895 const struct target_waitstatus *ws)
9896 {
9897 if (ws->kind != TARGET_WAITKIND_STOPPED
9898 || ws->value.sig != GDB_SIGNAL_TRAP)
9899 return 0;
9900
9901 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9902 bl->length, aspace, bp_addr);
9903 }
9904
9905 /* Implement the "resources_needed" breakpoint_ops method for
9906 ranged breakpoints. */
9907
9908 static int
9909 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9910 {
9911 return target_ranged_break_num_registers ();
9912 }
9913
9914 /* Implement the "print_it" breakpoint_ops method for
9915 ranged breakpoints. */
9916
9917 static enum print_stop_action
9918 print_it_ranged_breakpoint (bpstat bs)
9919 {
9920 struct breakpoint *b = bs->breakpoint_at;
9921 struct bp_location *bl = b->loc;
9922 struct ui_out *uiout = current_uiout;
9923
9924 gdb_assert (b->type == bp_hardware_breakpoint);
9925
9926 /* Ranged breakpoints have only one location. */
9927 gdb_assert (bl && bl->next == NULL);
9928
9929 annotate_breakpoint (b->number);
9930
9931 maybe_print_thread_hit_breakpoint (uiout);
9932
9933 if (b->disposition == disp_del)
9934 uiout->text ("Temporary ranged breakpoint ");
9935 else
9936 uiout->text ("Ranged breakpoint ");
9937 if (uiout->is_mi_like_p ())
9938 {
9939 uiout->field_string ("reason",
9940 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9941 uiout->field_string ("disp", bpdisp_text (b->disposition));
9942 }
9943 uiout->field_int ("bkptno", b->number);
9944 uiout->text (", ");
9945
9946 return PRINT_SRC_AND_LOC;
9947 }
9948
9949 /* Implement the "print_one" breakpoint_ops method for
9950 ranged breakpoints. */
9951
9952 static void
9953 print_one_ranged_breakpoint (struct breakpoint *b,
9954 struct bp_location **last_loc)
9955 {
9956 struct bp_location *bl = b->loc;
9957 struct value_print_options opts;
9958 struct ui_out *uiout = current_uiout;
9959
9960 /* Ranged breakpoints have only one location. */
9961 gdb_assert (bl && bl->next == NULL);
9962
9963 get_user_print_options (&opts);
9964
9965 if (opts.addressprint)
9966 /* We don't print the address range here, it will be printed later
9967 by print_one_detail_ranged_breakpoint. */
9968 uiout->field_skip ("addr");
9969 annotate_field (5);
9970 print_breakpoint_location (b, bl);
9971 *last_loc = bl;
9972 }
9973
9974 /* Implement the "print_one_detail" breakpoint_ops method for
9975 ranged breakpoints. */
9976
9977 static void
9978 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9979 struct ui_out *uiout)
9980 {
9981 CORE_ADDR address_start, address_end;
9982 struct bp_location *bl = b->loc;
9983 string_file stb;
9984
9985 gdb_assert (bl);
9986
9987 address_start = bl->address;
9988 address_end = address_start + bl->length - 1;
9989
9990 uiout->text ("\taddress range: ");
9991 stb.printf ("[%s, %s]",
9992 print_core_address (bl->gdbarch, address_start),
9993 print_core_address (bl->gdbarch, address_end));
9994 uiout->field_stream ("addr", stb);
9995 uiout->text ("\n");
9996 }
9997
9998 /* Implement the "print_mention" breakpoint_ops method for
9999 ranged breakpoints. */
10000
10001 static void
10002 print_mention_ranged_breakpoint (struct breakpoint *b)
10003 {
10004 struct bp_location *bl = b->loc;
10005 struct ui_out *uiout = current_uiout;
10006
10007 gdb_assert (bl);
10008 gdb_assert (b->type == bp_hardware_breakpoint);
10009
10010 if (uiout->is_mi_like_p ())
10011 return;
10012
10013 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10014 b->number, paddress (bl->gdbarch, bl->address),
10015 paddress (bl->gdbarch, bl->address + bl->length - 1));
10016 }
10017
10018 /* Implement the "print_recreate" breakpoint_ops method for
10019 ranged breakpoints. */
10020
10021 static void
10022 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10023 {
10024 fprintf_unfiltered (fp, "break-range %s, %s",
10025 event_location_to_string (b->location.get ()),
10026 event_location_to_string (b->location_range_end.get ()));
10027 print_recreate_thread (b, fp);
10028 }
10029
10030 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10031
10032 static struct breakpoint_ops ranged_breakpoint_ops;
10033
10034 /* Find the address where the end of the breakpoint range should be
10035 placed, given the SAL of the end of the range. This is so that if
10036 the user provides a line number, the end of the range is set to the
10037 last instruction of the given line. */
10038
10039 static CORE_ADDR
10040 find_breakpoint_range_end (struct symtab_and_line sal)
10041 {
10042 CORE_ADDR end;
10043
10044 /* If the user provided a PC value, use it. Otherwise,
10045 find the address of the end of the given location. */
10046 if (sal.explicit_pc)
10047 end = sal.pc;
10048 else
10049 {
10050 int ret;
10051 CORE_ADDR start;
10052
10053 ret = find_line_pc_range (sal, &start, &end);
10054 if (!ret)
10055 error (_("Could not find location of the end of the range."));
10056
10057 /* find_line_pc_range returns the start of the next line. */
10058 end--;
10059 }
10060
10061 return end;
10062 }
10063
10064 /* Implement the "break-range" CLI command. */
10065
10066 static void
10067 break_range_command (char *arg_in, int from_tty)
10068 {
10069 const char *arg = arg_in;
10070 const char *arg_start;
10071 char *addr_string_start;
10072 struct linespec_result canonical_start, canonical_end;
10073 int bp_count, can_use_bp, length;
10074 CORE_ADDR end;
10075 struct breakpoint *b;
10076 struct cleanup *cleanup_bkpt;
10077
10078 /* We don't support software ranged breakpoints. */
10079 if (target_ranged_break_num_registers () < 0)
10080 error (_("This target does not support hardware ranged breakpoints."));
10081
10082 bp_count = hw_breakpoint_used_count ();
10083 bp_count += target_ranged_break_num_registers ();
10084 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10085 bp_count, 0);
10086 if (can_use_bp < 0)
10087 error (_("Hardware breakpoints used exceeds limit."));
10088
10089 arg = skip_spaces (arg);
10090 if (arg == NULL || arg[0] == '\0')
10091 error(_("No address range specified."));
10092
10093 arg_start = arg;
10094 event_location_up start_location = string_to_event_location (&arg,
10095 current_language);
10096 parse_breakpoint_sals (start_location.get (), &canonical_start);
10097
10098 if (arg[0] != ',')
10099 error (_("Too few arguments."));
10100 else if (canonical_start.lsals.empty ())
10101 error (_("Could not find location of the beginning of the range."));
10102
10103 const linespec_sals &lsal_start = canonical_start.lsals[0];
10104
10105 if (canonical_start.lsals.size () > 1
10106 || lsal_start.sals.size () != 1)
10107 error (_("Cannot create a ranged breakpoint with multiple locations."));
10108
10109 const symtab_and_line &sal_start = lsal_start.sals[0];
10110 addr_string_start = savestring (arg_start, arg - arg_start);
10111 cleanup_bkpt = make_cleanup (xfree, addr_string_start);
10112
10113 arg++; /* Skip the comma. */
10114 arg = skip_spaces (arg);
10115
10116 /* Parse the end location. */
10117
10118 arg_start = arg;
10119
10120 /* We call decode_line_full directly here instead of using
10121 parse_breakpoint_sals because we need to specify the start location's
10122 symtab and line as the default symtab and line for the end of the
10123 range. This makes it possible to have ranges like "foo.c:27, +14",
10124 where +14 means 14 lines from the start location. */
10125 event_location_up end_location = string_to_event_location (&arg,
10126 current_language);
10127 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
10128 sal_start.symtab, sal_start.line,
10129 &canonical_end, NULL, NULL);
10130
10131 if (canonical_end.lsals.empty ())
10132 error (_("Could not find location of the end of the range."));
10133
10134 const linespec_sals &lsal_end = canonical_end.lsals[0];
10135 if (canonical_end.lsals.size () > 1
10136 || lsal_end.sals.size () != 1)
10137 error (_("Cannot create a ranged breakpoint with multiple locations."));
10138
10139 const symtab_and_line &sal_end = lsal_end.sals[0];
10140
10141 end = find_breakpoint_range_end (sal_end);
10142 if (sal_start.pc > end)
10143 error (_("Invalid address range, end precedes start."));
10144
10145 length = end - sal_start.pc + 1;
10146 if (length < 0)
10147 /* Length overflowed. */
10148 error (_("Address range too large."));
10149 else if (length == 1)
10150 {
10151 /* This range is simple enough to be handled by
10152 the `hbreak' command. */
10153 hbreak_command (addr_string_start, 1);
10154
10155 do_cleanups (cleanup_bkpt);
10156
10157 return;
10158 }
10159
10160 /* Now set up the breakpoint. */
10161 b = set_raw_breakpoint (get_current_arch (), sal_start,
10162 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10163 set_breakpoint_count (breakpoint_count + 1);
10164 b->number = breakpoint_count;
10165 b->disposition = disp_donttouch;
10166 b->location = std::move (start_location);
10167 b->location_range_end = std::move (end_location);
10168 b->loc->length = length;
10169
10170 do_cleanups (cleanup_bkpt);
10171
10172 mention (b);
10173 observer_notify_breakpoint_created (b);
10174 update_global_location_list (UGLL_MAY_INSERT);
10175 }
10176
10177 /* Return non-zero if EXP is verified as constant. Returned zero
10178 means EXP is variable. Also the constant detection may fail for
10179 some constant expressions and in such case still falsely return
10180 zero. */
10181
10182 static int
10183 watchpoint_exp_is_const (const struct expression *exp)
10184 {
10185 int i = exp->nelts;
10186
10187 while (i > 0)
10188 {
10189 int oplenp, argsp;
10190
10191 /* We are only interested in the descriptor of each element. */
10192 operator_length (exp, i, &oplenp, &argsp);
10193 i -= oplenp;
10194
10195 switch (exp->elts[i].opcode)
10196 {
10197 case BINOP_ADD:
10198 case BINOP_SUB:
10199 case BINOP_MUL:
10200 case BINOP_DIV:
10201 case BINOP_REM:
10202 case BINOP_MOD:
10203 case BINOP_LSH:
10204 case BINOP_RSH:
10205 case BINOP_LOGICAL_AND:
10206 case BINOP_LOGICAL_OR:
10207 case BINOP_BITWISE_AND:
10208 case BINOP_BITWISE_IOR:
10209 case BINOP_BITWISE_XOR:
10210 case BINOP_EQUAL:
10211 case BINOP_NOTEQUAL:
10212 case BINOP_LESS:
10213 case BINOP_GTR:
10214 case BINOP_LEQ:
10215 case BINOP_GEQ:
10216 case BINOP_REPEAT:
10217 case BINOP_COMMA:
10218 case BINOP_EXP:
10219 case BINOP_MIN:
10220 case BINOP_MAX:
10221 case BINOP_INTDIV:
10222 case BINOP_CONCAT:
10223 case TERNOP_COND:
10224 case TERNOP_SLICE:
10225
10226 case OP_LONG:
10227 case OP_DOUBLE:
10228 case OP_DECFLOAT:
10229 case OP_LAST:
10230 case OP_COMPLEX:
10231 case OP_STRING:
10232 case OP_ARRAY:
10233 case OP_TYPE:
10234 case OP_TYPEOF:
10235 case OP_DECLTYPE:
10236 case OP_TYPEID:
10237 case OP_NAME:
10238 case OP_OBJC_NSSTRING:
10239
10240 case UNOP_NEG:
10241 case UNOP_LOGICAL_NOT:
10242 case UNOP_COMPLEMENT:
10243 case UNOP_ADDR:
10244 case UNOP_HIGH:
10245 case UNOP_CAST:
10246
10247 case UNOP_CAST_TYPE:
10248 case UNOP_REINTERPRET_CAST:
10249 case UNOP_DYNAMIC_CAST:
10250 /* Unary, binary and ternary operators: We have to check
10251 their operands. If they are constant, then so is the
10252 result of that operation. For instance, if A and B are
10253 determined to be constants, then so is "A + B".
10254
10255 UNOP_IND is one exception to the rule above, because the
10256 value of *ADDR is not necessarily a constant, even when
10257 ADDR is. */
10258 break;
10259
10260 case OP_VAR_VALUE:
10261 /* Check whether the associated symbol is a constant.
10262
10263 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10264 possible that a buggy compiler could mark a variable as
10265 constant even when it is not, and TYPE_CONST would return
10266 true in this case, while SYMBOL_CLASS wouldn't.
10267
10268 We also have to check for function symbols because they
10269 are always constant. */
10270 {
10271 struct symbol *s = exp->elts[i + 2].symbol;
10272
10273 if (SYMBOL_CLASS (s) != LOC_BLOCK
10274 && SYMBOL_CLASS (s) != LOC_CONST
10275 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10276 return 0;
10277 break;
10278 }
10279
10280 /* The default action is to return 0 because we are using
10281 the optimistic approach here: If we don't know something,
10282 then it is not a constant. */
10283 default:
10284 return 0;
10285 }
10286 }
10287
10288 return 1;
10289 }
10290
10291 /* Watchpoint destructor. */
10292
10293 watchpoint::~watchpoint ()
10294 {
10295 xfree (this->exp_string);
10296 xfree (this->exp_string_reparse);
10297 value_free (this->val);
10298 }
10299
10300 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10301
10302 static void
10303 re_set_watchpoint (struct breakpoint *b)
10304 {
10305 struct watchpoint *w = (struct watchpoint *) b;
10306
10307 /* Watchpoint can be either on expression using entirely global
10308 variables, or it can be on local variables.
10309
10310 Watchpoints of the first kind are never auto-deleted, and even
10311 persist across program restarts. Since they can use variables
10312 from shared libraries, we need to reparse expression as libraries
10313 are loaded and unloaded.
10314
10315 Watchpoints on local variables can also change meaning as result
10316 of solib event. For example, if a watchpoint uses both a local
10317 and a global variables in expression, it's a local watchpoint,
10318 but unloading of a shared library will make the expression
10319 invalid. This is not a very common use case, but we still
10320 re-evaluate expression, to avoid surprises to the user.
10321
10322 Note that for local watchpoints, we re-evaluate it only if
10323 watchpoints frame id is still valid. If it's not, it means the
10324 watchpoint is out of scope and will be deleted soon. In fact,
10325 I'm not sure we'll ever be called in this case.
10326
10327 If a local watchpoint's frame id is still valid, then
10328 w->exp_valid_block is likewise valid, and we can safely use it.
10329
10330 Don't do anything about disabled watchpoints, since they will be
10331 reevaluated again when enabled. */
10332 update_watchpoint (w, 1 /* reparse */);
10333 }
10334
10335 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10336
10337 static int
10338 insert_watchpoint (struct bp_location *bl)
10339 {
10340 struct watchpoint *w = (struct watchpoint *) bl->owner;
10341 int length = w->exact ? 1 : bl->length;
10342
10343 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10344 w->cond_exp.get ());
10345 }
10346
10347 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10348
10349 static int
10350 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10351 {
10352 struct watchpoint *w = (struct watchpoint *) bl->owner;
10353 int length = w->exact ? 1 : bl->length;
10354
10355 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10356 w->cond_exp.get ());
10357 }
10358
10359 static int
10360 breakpoint_hit_watchpoint (const struct bp_location *bl,
10361 struct address_space *aspace, CORE_ADDR bp_addr,
10362 const struct target_waitstatus *ws)
10363 {
10364 struct breakpoint *b = bl->owner;
10365 struct watchpoint *w = (struct watchpoint *) b;
10366
10367 /* Continuable hardware watchpoints are treated as non-existent if the
10368 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10369 some data address). Otherwise gdb won't stop on a break instruction
10370 in the code (not from a breakpoint) when a hardware watchpoint has
10371 been defined. Also skip watchpoints which we know did not trigger
10372 (did not match the data address). */
10373 if (is_hardware_watchpoint (b)
10374 && w->watchpoint_triggered == watch_triggered_no)
10375 return 0;
10376
10377 return 1;
10378 }
10379
10380 static void
10381 check_status_watchpoint (bpstat bs)
10382 {
10383 gdb_assert (is_watchpoint (bs->breakpoint_at));
10384
10385 bpstat_check_watchpoint (bs);
10386 }
10387
10388 /* Implement the "resources_needed" breakpoint_ops method for
10389 hardware watchpoints. */
10390
10391 static int
10392 resources_needed_watchpoint (const struct bp_location *bl)
10393 {
10394 struct watchpoint *w = (struct watchpoint *) bl->owner;
10395 int length = w->exact? 1 : bl->length;
10396
10397 return target_region_ok_for_hw_watchpoint (bl->address, length);
10398 }
10399
10400 /* Implement the "works_in_software_mode" breakpoint_ops method for
10401 hardware watchpoints. */
10402
10403 static int
10404 works_in_software_mode_watchpoint (const struct breakpoint *b)
10405 {
10406 /* Read and access watchpoints only work with hardware support. */
10407 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10408 }
10409
10410 static enum print_stop_action
10411 print_it_watchpoint (bpstat bs)
10412 {
10413 struct breakpoint *b;
10414 enum print_stop_action result;
10415 struct watchpoint *w;
10416 struct ui_out *uiout = current_uiout;
10417
10418 gdb_assert (bs->bp_location_at != NULL);
10419
10420 b = bs->breakpoint_at;
10421 w = (struct watchpoint *) b;
10422
10423 annotate_watchpoint (b->number);
10424 maybe_print_thread_hit_breakpoint (uiout);
10425
10426 string_file stb;
10427
10428 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10429 switch (b->type)
10430 {
10431 case bp_watchpoint:
10432 case bp_hardware_watchpoint:
10433 if (uiout->is_mi_like_p ())
10434 uiout->field_string
10435 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10436 mention (b);
10437 tuple_emitter.emplace (uiout, "value");
10438 uiout->text ("\nOld value = ");
10439 watchpoint_value_print (bs->old_val, &stb);
10440 uiout->field_stream ("old", stb);
10441 uiout->text ("\nNew value = ");
10442 watchpoint_value_print (w->val, &stb);
10443 uiout->field_stream ("new", stb);
10444 uiout->text ("\n");
10445 /* More than one watchpoint may have been triggered. */
10446 result = PRINT_UNKNOWN;
10447 break;
10448
10449 case bp_read_watchpoint:
10450 if (uiout->is_mi_like_p ())
10451 uiout->field_string
10452 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10453 mention (b);
10454 tuple_emitter.emplace (uiout, "value");
10455 uiout->text ("\nValue = ");
10456 watchpoint_value_print (w->val, &stb);
10457 uiout->field_stream ("value", stb);
10458 uiout->text ("\n");
10459 result = PRINT_UNKNOWN;
10460 break;
10461
10462 case bp_access_watchpoint:
10463 if (bs->old_val != NULL)
10464 {
10465 if (uiout->is_mi_like_p ())
10466 uiout->field_string
10467 ("reason",
10468 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10469 mention (b);
10470 tuple_emitter.emplace (uiout, "value");
10471 uiout->text ("\nOld value = ");
10472 watchpoint_value_print (bs->old_val, &stb);
10473 uiout->field_stream ("old", stb);
10474 uiout->text ("\nNew value = ");
10475 }
10476 else
10477 {
10478 mention (b);
10479 if (uiout->is_mi_like_p ())
10480 uiout->field_string
10481 ("reason",
10482 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10483 tuple_emitter.emplace (uiout, "value");
10484 uiout->text ("\nValue = ");
10485 }
10486 watchpoint_value_print (w->val, &stb);
10487 uiout->field_stream ("new", stb);
10488 uiout->text ("\n");
10489 result = PRINT_UNKNOWN;
10490 break;
10491 default:
10492 result = PRINT_UNKNOWN;
10493 }
10494
10495 return result;
10496 }
10497
10498 /* Implement the "print_mention" breakpoint_ops method for hardware
10499 watchpoints. */
10500
10501 static void
10502 print_mention_watchpoint (struct breakpoint *b)
10503 {
10504 struct watchpoint *w = (struct watchpoint *) b;
10505 struct ui_out *uiout = current_uiout;
10506 const char *tuple_name;
10507
10508 switch (b->type)
10509 {
10510 case bp_watchpoint:
10511 uiout->text ("Watchpoint ");
10512 tuple_name = "wpt";
10513 break;
10514 case bp_hardware_watchpoint:
10515 uiout->text ("Hardware watchpoint ");
10516 tuple_name = "wpt";
10517 break;
10518 case bp_read_watchpoint:
10519 uiout->text ("Hardware read watchpoint ");
10520 tuple_name = "hw-rwpt";
10521 break;
10522 case bp_access_watchpoint:
10523 uiout->text ("Hardware access (read/write) watchpoint ");
10524 tuple_name = "hw-awpt";
10525 break;
10526 default:
10527 internal_error (__FILE__, __LINE__,
10528 _("Invalid hardware watchpoint type."));
10529 }
10530
10531 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10532 uiout->field_int ("number", b->number);
10533 uiout->text (": ");
10534 uiout->field_string ("exp", w->exp_string);
10535 }
10536
10537 /* Implement the "print_recreate" breakpoint_ops method for
10538 watchpoints. */
10539
10540 static void
10541 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10542 {
10543 struct watchpoint *w = (struct watchpoint *) b;
10544
10545 switch (b->type)
10546 {
10547 case bp_watchpoint:
10548 case bp_hardware_watchpoint:
10549 fprintf_unfiltered (fp, "watch");
10550 break;
10551 case bp_read_watchpoint:
10552 fprintf_unfiltered (fp, "rwatch");
10553 break;
10554 case bp_access_watchpoint:
10555 fprintf_unfiltered (fp, "awatch");
10556 break;
10557 default:
10558 internal_error (__FILE__, __LINE__,
10559 _("Invalid watchpoint type."));
10560 }
10561
10562 fprintf_unfiltered (fp, " %s", w->exp_string);
10563 print_recreate_thread (b, fp);
10564 }
10565
10566 /* Implement the "explains_signal" breakpoint_ops method for
10567 watchpoints. */
10568
10569 static int
10570 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10571 {
10572 /* A software watchpoint cannot cause a signal other than
10573 GDB_SIGNAL_TRAP. */
10574 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10575 return 0;
10576
10577 return 1;
10578 }
10579
10580 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10581
10582 static struct breakpoint_ops watchpoint_breakpoint_ops;
10583
10584 /* Implement the "insert" breakpoint_ops method for
10585 masked hardware watchpoints. */
10586
10587 static int
10588 insert_masked_watchpoint (struct bp_location *bl)
10589 {
10590 struct watchpoint *w = (struct watchpoint *) bl->owner;
10591
10592 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10593 bl->watchpoint_type);
10594 }
10595
10596 /* Implement the "remove" breakpoint_ops method for
10597 masked hardware watchpoints. */
10598
10599 static int
10600 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10601 {
10602 struct watchpoint *w = (struct watchpoint *) bl->owner;
10603
10604 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10605 bl->watchpoint_type);
10606 }
10607
10608 /* Implement the "resources_needed" breakpoint_ops method for
10609 masked hardware watchpoints. */
10610
10611 static int
10612 resources_needed_masked_watchpoint (const struct bp_location *bl)
10613 {
10614 struct watchpoint *w = (struct watchpoint *) bl->owner;
10615
10616 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10617 }
10618
10619 /* Implement the "works_in_software_mode" breakpoint_ops method for
10620 masked hardware watchpoints. */
10621
10622 static int
10623 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10624 {
10625 return 0;
10626 }
10627
10628 /* Implement the "print_it" breakpoint_ops method for
10629 masked hardware watchpoints. */
10630
10631 static enum print_stop_action
10632 print_it_masked_watchpoint (bpstat bs)
10633 {
10634 struct breakpoint *b = bs->breakpoint_at;
10635 struct ui_out *uiout = current_uiout;
10636
10637 /* Masked watchpoints have only one location. */
10638 gdb_assert (b->loc && b->loc->next == NULL);
10639
10640 annotate_watchpoint (b->number);
10641 maybe_print_thread_hit_breakpoint (uiout);
10642
10643 switch (b->type)
10644 {
10645 case bp_hardware_watchpoint:
10646 if (uiout->is_mi_like_p ())
10647 uiout->field_string
10648 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10649 break;
10650
10651 case bp_read_watchpoint:
10652 if (uiout->is_mi_like_p ())
10653 uiout->field_string
10654 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10655 break;
10656
10657 case bp_access_watchpoint:
10658 if (uiout->is_mi_like_p ())
10659 uiout->field_string
10660 ("reason",
10661 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10662 break;
10663 default:
10664 internal_error (__FILE__, __LINE__,
10665 _("Invalid hardware watchpoint type."));
10666 }
10667
10668 mention (b);
10669 uiout->text (_("\n\
10670 Check the underlying instruction at PC for the memory\n\
10671 address and value which triggered this watchpoint.\n"));
10672 uiout->text ("\n");
10673
10674 /* More than one watchpoint may have been triggered. */
10675 return PRINT_UNKNOWN;
10676 }
10677
10678 /* Implement the "print_one_detail" breakpoint_ops method for
10679 masked hardware watchpoints. */
10680
10681 static void
10682 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10683 struct ui_out *uiout)
10684 {
10685 struct watchpoint *w = (struct watchpoint *) b;
10686
10687 /* Masked watchpoints have only one location. */
10688 gdb_assert (b->loc && b->loc->next == NULL);
10689
10690 uiout->text ("\tmask ");
10691 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10692 uiout->text ("\n");
10693 }
10694
10695 /* Implement the "print_mention" breakpoint_ops method for
10696 masked hardware watchpoints. */
10697
10698 static void
10699 print_mention_masked_watchpoint (struct breakpoint *b)
10700 {
10701 struct watchpoint *w = (struct watchpoint *) b;
10702 struct ui_out *uiout = current_uiout;
10703 const char *tuple_name;
10704
10705 switch (b->type)
10706 {
10707 case bp_hardware_watchpoint:
10708 uiout->text ("Masked hardware watchpoint ");
10709 tuple_name = "wpt";
10710 break;
10711 case bp_read_watchpoint:
10712 uiout->text ("Masked hardware read watchpoint ");
10713 tuple_name = "hw-rwpt";
10714 break;
10715 case bp_access_watchpoint:
10716 uiout->text ("Masked hardware access (read/write) watchpoint ");
10717 tuple_name = "hw-awpt";
10718 break;
10719 default:
10720 internal_error (__FILE__, __LINE__,
10721 _("Invalid hardware watchpoint type."));
10722 }
10723
10724 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10725 uiout->field_int ("number", b->number);
10726 uiout->text (": ");
10727 uiout->field_string ("exp", w->exp_string);
10728 }
10729
10730 /* Implement the "print_recreate" breakpoint_ops method for
10731 masked hardware watchpoints. */
10732
10733 static void
10734 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10735 {
10736 struct watchpoint *w = (struct watchpoint *) b;
10737 char tmp[40];
10738
10739 switch (b->type)
10740 {
10741 case bp_hardware_watchpoint:
10742 fprintf_unfiltered (fp, "watch");
10743 break;
10744 case bp_read_watchpoint:
10745 fprintf_unfiltered (fp, "rwatch");
10746 break;
10747 case bp_access_watchpoint:
10748 fprintf_unfiltered (fp, "awatch");
10749 break;
10750 default:
10751 internal_error (__FILE__, __LINE__,
10752 _("Invalid hardware watchpoint type."));
10753 }
10754
10755 sprintf_vma (tmp, w->hw_wp_mask);
10756 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10757 print_recreate_thread (b, fp);
10758 }
10759
10760 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10761
10762 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10763
10764 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10765
10766 static int
10767 is_masked_watchpoint (const struct breakpoint *b)
10768 {
10769 return b->ops == &masked_watchpoint_breakpoint_ops;
10770 }
10771
10772 /* accessflag: hw_write: watch write,
10773 hw_read: watch read,
10774 hw_access: watch access (read or write) */
10775 static void
10776 watch_command_1 (const char *arg, int accessflag, int from_tty,
10777 int just_location, int internal)
10778 {
10779 struct breakpoint *scope_breakpoint = NULL;
10780 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10781 struct value *val, *mark, *result;
10782 int saved_bitpos = 0, saved_bitsize = 0;
10783 const char *exp_start = NULL;
10784 const char *exp_end = NULL;
10785 const char *tok, *end_tok;
10786 int toklen = -1;
10787 const char *cond_start = NULL;
10788 const char *cond_end = NULL;
10789 enum bptype bp_type;
10790 int thread = -1;
10791 int pc = 0;
10792 /* Flag to indicate whether we are going to use masks for
10793 the hardware watchpoint. */
10794 int use_mask = 0;
10795 CORE_ADDR mask = 0;
10796 char *expression;
10797 struct cleanup *back_to;
10798
10799 /* Make sure that we actually have parameters to parse. */
10800 if (arg != NULL && arg[0] != '\0')
10801 {
10802 const char *value_start;
10803
10804 exp_end = arg + strlen (arg);
10805
10806 /* Look for "parameter value" pairs at the end
10807 of the arguments string. */
10808 for (tok = exp_end - 1; tok > arg; tok--)
10809 {
10810 /* Skip whitespace at the end of the argument list. */
10811 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10812 tok--;
10813
10814 /* Find the beginning of the last token.
10815 This is the value of the parameter. */
10816 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10817 tok--;
10818 value_start = tok + 1;
10819
10820 /* Skip whitespace. */
10821 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10822 tok--;
10823
10824 end_tok = tok;
10825
10826 /* Find the beginning of the second to last token.
10827 This is the parameter itself. */
10828 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10829 tok--;
10830 tok++;
10831 toklen = end_tok - tok + 1;
10832
10833 if (toklen == 6 && startswith (tok, "thread"))
10834 {
10835 struct thread_info *thr;
10836 /* At this point we've found a "thread" token, which means
10837 the user is trying to set a watchpoint that triggers
10838 only in a specific thread. */
10839 const char *endp;
10840
10841 if (thread != -1)
10842 error(_("You can specify only one thread."));
10843
10844 /* Extract the thread ID from the next token. */
10845 thr = parse_thread_id (value_start, &endp);
10846
10847 /* Check if the user provided a valid thread ID. */
10848 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10849 invalid_thread_id_error (value_start);
10850
10851 thread = thr->global_num;
10852 }
10853 else if (toklen == 4 && startswith (tok, "mask"))
10854 {
10855 /* We've found a "mask" token, which means the user wants to
10856 create a hardware watchpoint that is going to have the mask
10857 facility. */
10858 struct value *mask_value, *mark;
10859
10860 if (use_mask)
10861 error(_("You can specify only one mask."));
10862
10863 use_mask = just_location = 1;
10864
10865 mark = value_mark ();
10866 mask_value = parse_to_comma_and_eval (&value_start);
10867 mask = value_as_address (mask_value);
10868 value_free_to_mark (mark);
10869 }
10870 else
10871 /* We didn't recognize what we found. We should stop here. */
10872 break;
10873
10874 /* Truncate the string and get rid of the "parameter value" pair before
10875 the arguments string is parsed by the parse_exp_1 function. */
10876 exp_end = tok;
10877 }
10878 }
10879 else
10880 exp_end = arg;
10881
10882 /* Parse the rest of the arguments. From here on out, everything
10883 is in terms of a newly allocated string instead of the original
10884 ARG. */
10885 innermost_block = NULL;
10886 expression = savestring (arg, exp_end - arg);
10887 back_to = make_cleanup (xfree, expression);
10888 exp_start = arg = expression;
10889 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
10890 exp_end = arg;
10891 /* Remove trailing whitespace from the expression before saving it.
10892 This makes the eventual display of the expression string a bit
10893 prettier. */
10894 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10895 --exp_end;
10896
10897 /* Checking if the expression is not constant. */
10898 if (watchpoint_exp_is_const (exp.get ()))
10899 {
10900 int len;
10901
10902 len = exp_end - exp_start;
10903 while (len > 0 && isspace (exp_start[len - 1]))
10904 len--;
10905 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10906 }
10907
10908 exp_valid_block = innermost_block;
10909 mark = value_mark ();
10910 fetch_subexp_value (exp.get (), &pc, &val, &result, NULL, just_location);
10911
10912 if (val != NULL && just_location)
10913 {
10914 saved_bitpos = value_bitpos (val);
10915 saved_bitsize = value_bitsize (val);
10916 }
10917
10918 if (just_location)
10919 {
10920 int ret;
10921
10922 exp_valid_block = NULL;
10923 val = value_addr (result);
10924 release_value (val);
10925 value_free_to_mark (mark);
10926
10927 if (use_mask)
10928 {
10929 ret = target_masked_watch_num_registers (value_as_address (val),
10930 mask);
10931 if (ret == -1)
10932 error (_("This target does not support masked watchpoints."));
10933 else if (ret == -2)
10934 error (_("Invalid mask or memory region."));
10935 }
10936 }
10937 else if (val != NULL)
10938 release_value (val);
10939
10940 tok = skip_spaces (arg);
10941 end_tok = skip_to_space (tok);
10942
10943 toklen = end_tok - tok;
10944 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10945 {
10946 innermost_block = NULL;
10947 tok = cond_start = end_tok + 1;
10948 parse_exp_1 (&tok, 0, 0, 0);
10949
10950 /* The watchpoint expression may not be local, but the condition
10951 may still be. E.g.: `watch global if local > 0'. */
10952 cond_exp_valid_block = innermost_block;
10953
10954 cond_end = tok;
10955 }
10956 if (*tok)
10957 error (_("Junk at end of command."));
10958
10959 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10960
10961 /* Save this because create_internal_breakpoint below invalidates
10962 'wp_frame'. */
10963 frame_id watchpoint_frame = get_frame_id (wp_frame);
10964
10965 /* If the expression is "local", then set up a "watchpoint scope"
10966 breakpoint at the point where we've left the scope of the watchpoint
10967 expression. Create the scope breakpoint before the watchpoint, so
10968 that we will encounter it first in bpstat_stop_status. */
10969 if (exp_valid_block != NULL && wp_frame != NULL)
10970 {
10971 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10972
10973 if (frame_id_p (caller_frame_id))
10974 {
10975 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10976 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10977
10978 scope_breakpoint
10979 = create_internal_breakpoint (caller_arch, caller_pc,
10980 bp_watchpoint_scope,
10981 &momentary_breakpoint_ops);
10982
10983 /* create_internal_breakpoint could invalidate WP_FRAME. */
10984 wp_frame = NULL;
10985
10986 scope_breakpoint->enable_state = bp_enabled;
10987
10988 /* Automatically delete the breakpoint when it hits. */
10989 scope_breakpoint->disposition = disp_del;
10990
10991 /* Only break in the proper frame (help with recursion). */
10992 scope_breakpoint->frame_id = caller_frame_id;
10993
10994 /* Set the address at which we will stop. */
10995 scope_breakpoint->loc->gdbarch = caller_arch;
10996 scope_breakpoint->loc->requested_address = caller_pc;
10997 scope_breakpoint->loc->address
10998 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10999 scope_breakpoint->loc->requested_address,
11000 scope_breakpoint->type);
11001 }
11002 }
11003
11004 /* Now set up the breakpoint. We create all watchpoints as hardware
11005 watchpoints here even if hardware watchpoints are turned off, a call
11006 to update_watchpoint later in this function will cause the type to
11007 drop back to bp_watchpoint (software watchpoint) if required. */
11008
11009 if (accessflag == hw_read)
11010 bp_type = bp_read_watchpoint;
11011 else if (accessflag == hw_access)
11012 bp_type = bp_access_watchpoint;
11013 else
11014 bp_type = bp_hardware_watchpoint;
11015
11016 std::unique_ptr<watchpoint> w (new watchpoint ());
11017
11018 if (use_mask)
11019 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
11020 &masked_watchpoint_breakpoint_ops);
11021 else
11022 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
11023 &watchpoint_breakpoint_ops);
11024 w->thread = thread;
11025 w->disposition = disp_donttouch;
11026 w->pspace = current_program_space;
11027 w->exp = std::move (exp);
11028 w->exp_valid_block = exp_valid_block;
11029 w->cond_exp_valid_block = cond_exp_valid_block;
11030 if (just_location)
11031 {
11032 struct type *t = value_type (val);
11033 CORE_ADDR addr = value_as_address (val);
11034
11035 w->exp_string_reparse
11036 = current_language->la_watch_location_expression (t, addr).release ();
11037
11038 w->exp_string = xstrprintf ("-location %.*s",
11039 (int) (exp_end - exp_start), exp_start);
11040 }
11041 else
11042 w->exp_string = savestring (exp_start, exp_end - exp_start);
11043
11044 if (use_mask)
11045 {
11046 w->hw_wp_mask = mask;
11047 }
11048 else
11049 {
11050 w->val = val;
11051 w->val_bitpos = saved_bitpos;
11052 w->val_bitsize = saved_bitsize;
11053 w->val_valid = 1;
11054 }
11055
11056 if (cond_start)
11057 w->cond_string = savestring (cond_start, cond_end - cond_start);
11058 else
11059 w->cond_string = 0;
11060
11061 if (frame_id_p (watchpoint_frame))
11062 {
11063 w->watchpoint_frame = watchpoint_frame;
11064 w->watchpoint_thread = inferior_ptid;
11065 }
11066 else
11067 {
11068 w->watchpoint_frame = null_frame_id;
11069 w->watchpoint_thread = null_ptid;
11070 }
11071
11072 if (scope_breakpoint != NULL)
11073 {
11074 /* The scope breakpoint is related to the watchpoint. We will
11075 need to act on them together. */
11076 w->related_breakpoint = scope_breakpoint;
11077 scope_breakpoint->related_breakpoint = w.get ();
11078 }
11079
11080 if (!just_location)
11081 value_free_to_mark (mark);
11082
11083 /* Finally update the new watchpoint. This creates the locations
11084 that should be inserted. */
11085 update_watchpoint (w.get (), 1);
11086
11087 install_breakpoint (internal, std::move (w), 1);
11088 do_cleanups (back_to);
11089 }
11090
11091 /* Return count of debug registers needed to watch the given expression.
11092 If the watchpoint cannot be handled in hardware return zero. */
11093
11094 static int
11095 can_use_hardware_watchpoint (struct value *v)
11096 {
11097 int found_memory_cnt = 0;
11098 struct value *head = v;
11099
11100 /* Did the user specifically forbid us to use hardware watchpoints? */
11101 if (!can_use_hw_watchpoints)
11102 return 0;
11103
11104 /* Make sure that the value of the expression depends only upon
11105 memory contents, and values computed from them within GDB. If we
11106 find any register references or function calls, we can't use a
11107 hardware watchpoint.
11108
11109 The idea here is that evaluating an expression generates a series
11110 of values, one holding the value of every subexpression. (The
11111 expression a*b+c has five subexpressions: a, b, a*b, c, and
11112 a*b+c.) GDB's values hold almost enough information to establish
11113 the criteria given above --- they identify memory lvalues,
11114 register lvalues, computed values, etcetera. So we can evaluate
11115 the expression, and then scan the chain of values that leaves
11116 behind to decide whether we can detect any possible change to the
11117 expression's final value using only hardware watchpoints.
11118
11119 However, I don't think that the values returned by inferior
11120 function calls are special in any way. So this function may not
11121 notice that an expression involving an inferior function call
11122 can't be watched with hardware watchpoints. FIXME. */
11123 for (; v; v = value_next (v))
11124 {
11125 if (VALUE_LVAL (v) == lval_memory)
11126 {
11127 if (v != head && value_lazy (v))
11128 /* A lazy memory lvalue in the chain is one that GDB never
11129 needed to fetch; we either just used its address (e.g.,
11130 `a' in `a.b') or we never needed it at all (e.g., `a'
11131 in `a,b'). This doesn't apply to HEAD; if that is
11132 lazy then it was not readable, but watch it anyway. */
11133 ;
11134 else
11135 {
11136 /* Ahh, memory we actually used! Check if we can cover
11137 it with hardware watchpoints. */
11138 struct type *vtype = check_typedef (value_type (v));
11139
11140 /* We only watch structs and arrays if user asked for it
11141 explicitly, never if they just happen to appear in a
11142 middle of some value chain. */
11143 if (v == head
11144 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11145 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11146 {
11147 CORE_ADDR vaddr = value_address (v);
11148 int len;
11149 int num_regs;
11150
11151 len = (target_exact_watchpoints
11152 && is_scalar_type_recursive (vtype))?
11153 1 : TYPE_LENGTH (value_type (v));
11154
11155 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11156 if (!num_regs)
11157 return 0;
11158 else
11159 found_memory_cnt += num_regs;
11160 }
11161 }
11162 }
11163 else if (VALUE_LVAL (v) != not_lval
11164 && deprecated_value_modifiable (v) == 0)
11165 return 0; /* These are values from the history (e.g., $1). */
11166 else if (VALUE_LVAL (v) == lval_register)
11167 return 0; /* Cannot watch a register with a HW watchpoint. */
11168 }
11169
11170 /* The expression itself looks suitable for using a hardware
11171 watchpoint, but give the target machine a chance to reject it. */
11172 return found_memory_cnt;
11173 }
11174
11175 void
11176 watch_command_wrapper (const char *arg, int from_tty, int internal)
11177 {
11178 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11179 }
11180
11181 /* A helper function that looks for the "-location" argument and then
11182 calls watch_command_1. */
11183
11184 static void
11185 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11186 {
11187 int just_location = 0;
11188
11189 if (arg
11190 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11191 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11192 {
11193 arg = skip_spaces (arg);
11194 just_location = 1;
11195 }
11196
11197 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11198 }
11199
11200 static void
11201 watch_command (char *arg, int from_tty)
11202 {
11203 watch_maybe_just_location (arg, hw_write, from_tty);
11204 }
11205
11206 void
11207 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
11208 {
11209 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11210 }
11211
11212 static void
11213 rwatch_command (char *arg, int from_tty)
11214 {
11215 watch_maybe_just_location (arg, hw_read, from_tty);
11216 }
11217
11218 void
11219 awatch_command_wrapper (const char *arg, int from_tty, int internal)
11220 {
11221 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11222 }
11223
11224 static void
11225 awatch_command (char *arg, int from_tty)
11226 {
11227 watch_maybe_just_location (arg, hw_access, from_tty);
11228 }
11229 \f
11230
11231 /* Data for the FSM that manages the until(location)/advance commands
11232 in infcmd.c. Here because it uses the mechanisms of
11233 breakpoints. */
11234
11235 struct until_break_fsm
11236 {
11237 /* The base class. */
11238 struct thread_fsm thread_fsm;
11239
11240 /* The thread that as current when the command was executed. */
11241 int thread;
11242
11243 /* The breakpoint set at the destination location. */
11244 struct breakpoint *location_breakpoint;
11245
11246 /* Breakpoint set at the return address in the caller frame. May be
11247 NULL. */
11248 struct breakpoint *caller_breakpoint;
11249 };
11250
11251 static void until_break_fsm_clean_up (struct thread_fsm *self,
11252 struct thread_info *thread);
11253 static int until_break_fsm_should_stop (struct thread_fsm *self,
11254 struct thread_info *thread);
11255 static enum async_reply_reason
11256 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11257
11258 /* until_break_fsm's vtable. */
11259
11260 static struct thread_fsm_ops until_break_fsm_ops =
11261 {
11262 NULL, /* dtor */
11263 until_break_fsm_clean_up,
11264 until_break_fsm_should_stop,
11265 NULL, /* return_value */
11266 until_break_fsm_async_reply_reason,
11267 };
11268
11269 /* Allocate a new until_break_command_fsm. */
11270
11271 static struct until_break_fsm *
11272 new_until_break_fsm (struct interp *cmd_interp, int thread,
11273 struct breakpoint *location_breakpoint,
11274 struct breakpoint *caller_breakpoint)
11275 {
11276 struct until_break_fsm *sm;
11277
11278 sm = XCNEW (struct until_break_fsm);
11279 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11280
11281 sm->thread = thread;
11282 sm->location_breakpoint = location_breakpoint;
11283 sm->caller_breakpoint = caller_breakpoint;
11284
11285 return sm;
11286 }
11287
11288 /* Implementation of the 'should_stop' FSM method for the
11289 until(location)/advance commands. */
11290
11291 static int
11292 until_break_fsm_should_stop (struct thread_fsm *self,
11293 struct thread_info *tp)
11294 {
11295 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11296
11297 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11298 sm->location_breakpoint) != NULL
11299 || (sm->caller_breakpoint != NULL
11300 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11301 sm->caller_breakpoint) != NULL))
11302 thread_fsm_set_finished (self);
11303
11304 return 1;
11305 }
11306
11307 /* Implementation of the 'clean_up' FSM method for the
11308 until(location)/advance commands. */
11309
11310 static void
11311 until_break_fsm_clean_up (struct thread_fsm *self,
11312 struct thread_info *thread)
11313 {
11314 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11315
11316 /* Clean up our temporary breakpoints. */
11317 if (sm->location_breakpoint != NULL)
11318 {
11319 delete_breakpoint (sm->location_breakpoint);
11320 sm->location_breakpoint = NULL;
11321 }
11322 if (sm->caller_breakpoint != NULL)
11323 {
11324 delete_breakpoint (sm->caller_breakpoint);
11325 sm->caller_breakpoint = NULL;
11326 }
11327 delete_longjmp_breakpoint (sm->thread);
11328 }
11329
11330 /* Implementation of the 'async_reply_reason' FSM method for the
11331 until(location)/advance commands. */
11332
11333 static enum async_reply_reason
11334 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11335 {
11336 return EXEC_ASYNC_LOCATION_REACHED;
11337 }
11338
11339 void
11340 until_break_command (const char *arg, int from_tty, int anywhere)
11341 {
11342 struct frame_info *frame;
11343 struct gdbarch *frame_gdbarch;
11344 struct frame_id stack_frame_id;
11345 struct frame_id caller_frame_id;
11346 struct breakpoint *location_breakpoint;
11347 struct breakpoint *caller_breakpoint = NULL;
11348 struct cleanup *old_chain;
11349 int thread;
11350 struct thread_info *tp;
11351 struct until_break_fsm *sm;
11352
11353 clear_proceed_status (0);
11354
11355 /* Set a breakpoint where the user wants it and at return from
11356 this function. */
11357
11358 event_location_up location = string_to_event_location (&arg, current_language);
11359
11360 std::vector<symtab_and_line> sals
11361 = (last_displayed_sal_is_valid ()
11362 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11363 get_last_displayed_symtab (),
11364 get_last_displayed_line ())
11365 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11366 NULL, (struct symtab *) NULL, 0));
11367
11368 if (sals.size () != 1)
11369 error (_("Couldn't get information on specified line."));
11370
11371 symtab_and_line &sal = sals[0];
11372
11373 if (*arg)
11374 error (_("Junk at end of arguments."));
11375
11376 resolve_sal_pc (&sal);
11377
11378 tp = inferior_thread ();
11379 thread = tp->global_num;
11380
11381 old_chain = make_cleanup (null_cleanup, NULL);
11382
11383 /* Note linespec handling above invalidates the frame chain.
11384 Installing a breakpoint also invalidates the frame chain (as it
11385 may need to switch threads), so do any frame handling before
11386 that. */
11387
11388 frame = get_selected_frame (NULL);
11389 frame_gdbarch = get_frame_arch (frame);
11390 stack_frame_id = get_stack_frame_id (frame);
11391 caller_frame_id = frame_unwind_caller_id (frame);
11392
11393 /* Keep within the current frame, or in frames called by the current
11394 one. */
11395
11396 if (frame_id_p (caller_frame_id))
11397 {
11398 struct symtab_and_line sal2;
11399 struct gdbarch *caller_gdbarch;
11400
11401 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11402 sal2.pc = frame_unwind_caller_pc (frame);
11403 caller_gdbarch = frame_unwind_caller_arch (frame);
11404 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11405 sal2,
11406 caller_frame_id,
11407 bp_until);
11408 make_cleanup_delete_breakpoint (caller_breakpoint);
11409
11410 set_longjmp_breakpoint (tp, caller_frame_id);
11411 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11412 }
11413
11414 /* set_momentary_breakpoint could invalidate FRAME. */
11415 frame = NULL;
11416
11417 if (anywhere)
11418 /* If the user told us to continue until a specified location,
11419 we don't specify a frame at which we need to stop. */
11420 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11421 null_frame_id, bp_until);
11422 else
11423 /* Otherwise, specify the selected frame, because we want to stop
11424 only at the very same frame. */
11425 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11426 stack_frame_id, bp_until);
11427 make_cleanup_delete_breakpoint (location_breakpoint);
11428
11429 sm = new_until_break_fsm (command_interp (), tp->global_num,
11430 location_breakpoint, caller_breakpoint);
11431 tp->thread_fsm = &sm->thread_fsm;
11432
11433 discard_cleanups (old_chain);
11434
11435 proceed (-1, GDB_SIGNAL_DEFAULT);
11436 }
11437
11438 /* This function attempts to parse an optional "if <cond>" clause
11439 from the arg string. If one is not found, it returns NULL.
11440
11441 Else, it returns a pointer to the condition string. (It does not
11442 attempt to evaluate the string against a particular block.) And,
11443 it updates arg to point to the first character following the parsed
11444 if clause in the arg string. */
11445
11446 const char *
11447 ep_parse_optional_if_clause (const char **arg)
11448 {
11449 const char *cond_string;
11450
11451 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11452 return NULL;
11453
11454 /* Skip the "if" keyword. */
11455 (*arg) += 2;
11456
11457 /* Skip any extra leading whitespace, and record the start of the
11458 condition string. */
11459 *arg = skip_spaces (*arg);
11460 cond_string = *arg;
11461
11462 /* Assume that the condition occupies the remainder of the arg
11463 string. */
11464 (*arg) += strlen (cond_string);
11465
11466 return cond_string;
11467 }
11468
11469 /* Commands to deal with catching events, such as signals, exceptions,
11470 process start/exit, etc. */
11471
11472 typedef enum
11473 {
11474 catch_fork_temporary, catch_vfork_temporary,
11475 catch_fork_permanent, catch_vfork_permanent
11476 }
11477 catch_fork_kind;
11478
11479 static void
11480 catch_fork_command_1 (char *arg_entry, int from_tty,
11481 struct cmd_list_element *command)
11482 {
11483 const char *arg = arg_entry;
11484 struct gdbarch *gdbarch = get_current_arch ();
11485 const char *cond_string = NULL;
11486 catch_fork_kind fork_kind;
11487 int tempflag;
11488
11489 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11490 tempflag = (fork_kind == catch_fork_temporary
11491 || fork_kind == catch_vfork_temporary);
11492
11493 if (!arg)
11494 arg = "";
11495 arg = skip_spaces (arg);
11496
11497 /* The allowed syntax is:
11498 catch [v]fork
11499 catch [v]fork if <cond>
11500
11501 First, check if there's an if clause. */
11502 cond_string = ep_parse_optional_if_clause (&arg);
11503
11504 if ((*arg != '\0') && !isspace (*arg))
11505 error (_("Junk at end of arguments."));
11506
11507 /* If this target supports it, create a fork or vfork catchpoint
11508 and enable reporting of such events. */
11509 switch (fork_kind)
11510 {
11511 case catch_fork_temporary:
11512 case catch_fork_permanent:
11513 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11514 &catch_fork_breakpoint_ops);
11515 break;
11516 case catch_vfork_temporary:
11517 case catch_vfork_permanent:
11518 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11519 &catch_vfork_breakpoint_ops);
11520 break;
11521 default:
11522 error (_("unsupported or unknown fork kind; cannot catch it"));
11523 break;
11524 }
11525 }
11526
11527 static void
11528 catch_exec_command_1 (char *arg_entry, int from_tty,
11529 struct cmd_list_element *command)
11530 {
11531 const char *arg = arg_entry;
11532 struct gdbarch *gdbarch = get_current_arch ();
11533 int tempflag;
11534 const char *cond_string = NULL;
11535
11536 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11537
11538 if (!arg)
11539 arg = "";
11540 arg = skip_spaces (arg);
11541
11542 /* The allowed syntax is:
11543 catch exec
11544 catch exec if <cond>
11545
11546 First, check if there's an if clause. */
11547 cond_string = ep_parse_optional_if_clause (&arg);
11548
11549 if ((*arg != '\0') && !isspace (*arg))
11550 error (_("Junk at end of arguments."));
11551
11552 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11553 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11554 &catch_exec_breakpoint_ops);
11555 c->exec_pathname = NULL;
11556
11557 install_breakpoint (0, std::move (c), 1);
11558 }
11559
11560 void
11561 init_ada_exception_breakpoint (struct breakpoint *b,
11562 struct gdbarch *gdbarch,
11563 struct symtab_and_line sal,
11564 const char *addr_string,
11565 const struct breakpoint_ops *ops,
11566 int tempflag,
11567 int enabled,
11568 int from_tty)
11569 {
11570 if (from_tty)
11571 {
11572 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11573 if (!loc_gdbarch)
11574 loc_gdbarch = gdbarch;
11575
11576 describe_other_breakpoints (loc_gdbarch,
11577 sal.pspace, sal.pc, sal.section, -1);
11578 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11579 version for exception catchpoints, because two catchpoints
11580 used for different exception names will use the same address.
11581 In this case, a "breakpoint ... also set at..." warning is
11582 unproductive. Besides, the warning phrasing is also a bit
11583 inappropriate, we should use the word catchpoint, and tell
11584 the user what type of catchpoint it is. The above is good
11585 enough for now, though. */
11586 }
11587
11588 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11589
11590 b->enable_state = enabled ? bp_enabled : bp_disabled;
11591 b->disposition = tempflag ? disp_del : disp_donttouch;
11592 b->location = string_to_event_location (&addr_string,
11593 language_def (language_ada));
11594 b->language = language_ada;
11595 }
11596
11597 static void
11598 catch_command (char *arg, int from_tty)
11599 {
11600 error (_("Catch requires an event name."));
11601 }
11602 \f
11603
11604 static void
11605 tcatch_command (char *arg, int from_tty)
11606 {
11607 error (_("Catch requires an event name."));
11608 }
11609
11610 /* A qsort comparison function that sorts breakpoints in order. */
11611
11612 static int
11613 compare_breakpoints (const void *a, const void *b)
11614 {
11615 const breakpoint_p *ba = (const breakpoint_p *) a;
11616 uintptr_t ua = (uintptr_t) *ba;
11617 const breakpoint_p *bb = (const breakpoint_p *) b;
11618 uintptr_t ub = (uintptr_t) *bb;
11619
11620 if ((*ba)->number < (*bb)->number)
11621 return -1;
11622 else if ((*ba)->number > (*bb)->number)
11623 return 1;
11624
11625 /* Now sort by address, in case we see, e..g, two breakpoints with
11626 the number 0. */
11627 if (ua < ub)
11628 return -1;
11629 return ua > ub ? 1 : 0;
11630 }
11631
11632 /* Delete breakpoints by address or line. */
11633
11634 static void
11635 clear_command (char *arg, int from_tty)
11636 {
11637 struct breakpoint *b, *prev;
11638 VEC(breakpoint_p) *found = 0;
11639 int ix;
11640 int default_match;
11641 int i;
11642 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11643
11644 std::vector<symtab_and_line> decoded_sals;
11645 symtab_and_line last_sal;
11646 gdb::array_view<symtab_and_line> sals;
11647 if (arg)
11648 {
11649 decoded_sals
11650 = decode_line_with_current_source (arg,
11651 (DECODE_LINE_FUNFIRSTLINE
11652 | DECODE_LINE_LIST_MODE));
11653 default_match = 0;
11654 sals = decoded_sals;
11655 }
11656 else
11657 {
11658 /* Set sal's line, symtab, pc, and pspace to the values
11659 corresponding to the last call to print_frame_info. If the
11660 codepoint is not valid, this will set all the fields to 0. */
11661 last_sal = get_last_displayed_sal ();
11662 if (last_sal.symtab == 0)
11663 error (_("No source file specified."));
11664
11665 default_match = 1;
11666 sals = last_sal;
11667 }
11668
11669 /* We don't call resolve_sal_pc here. That's not as bad as it
11670 seems, because all existing breakpoints typically have both
11671 file/line and pc set. So, if clear is given file/line, we can
11672 match this to existing breakpoint without obtaining pc at all.
11673
11674 We only support clearing given the address explicitly
11675 present in breakpoint table. Say, we've set breakpoint
11676 at file:line. There were several PC values for that file:line,
11677 due to optimization, all in one block.
11678
11679 We've picked one PC value. If "clear" is issued with another
11680 PC corresponding to the same file:line, the breakpoint won't
11681 be cleared. We probably can still clear the breakpoint, but
11682 since the other PC value is never presented to user, user
11683 can only find it by guessing, and it does not seem important
11684 to support that. */
11685
11686 /* For each line spec given, delete bps which correspond to it. Do
11687 it in two passes, solely to preserve the current behavior that
11688 from_tty is forced true if we delete more than one
11689 breakpoint. */
11690
11691 found = NULL;
11692 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11693 for (const auto &sal : sals)
11694 {
11695 const char *sal_fullname;
11696
11697 /* If exact pc given, clear bpts at that pc.
11698 If line given (pc == 0), clear all bpts on specified line.
11699 If defaulting, clear all bpts on default line
11700 or at default pc.
11701
11702 defaulting sal.pc != 0 tests to do
11703
11704 0 1 pc
11705 1 1 pc _and_ line
11706 0 0 line
11707 1 0 <can't happen> */
11708
11709 sal_fullname = (sal.symtab == NULL
11710 ? NULL : symtab_to_fullname (sal.symtab));
11711
11712 /* Find all matching breakpoints and add them to 'found'. */
11713 ALL_BREAKPOINTS (b)
11714 {
11715 int match = 0;
11716 /* Are we going to delete b? */
11717 if (b->type != bp_none && !is_watchpoint (b))
11718 {
11719 struct bp_location *loc = b->loc;
11720 for (; loc; loc = loc->next)
11721 {
11722 /* If the user specified file:line, don't allow a PC
11723 match. This matches historical gdb behavior. */
11724 int pc_match = (!sal.explicit_line
11725 && sal.pc
11726 && (loc->pspace == sal.pspace)
11727 && (loc->address == sal.pc)
11728 && (!section_is_overlay (loc->section)
11729 || loc->section == sal.section));
11730 int line_match = 0;
11731
11732 if ((default_match || sal.explicit_line)
11733 && loc->symtab != NULL
11734 && sal_fullname != NULL
11735 && sal.pspace == loc->pspace
11736 && loc->line_number == sal.line
11737 && filename_cmp (symtab_to_fullname (loc->symtab),
11738 sal_fullname) == 0)
11739 line_match = 1;
11740
11741 if (pc_match || line_match)
11742 {
11743 match = 1;
11744 break;
11745 }
11746 }
11747 }
11748
11749 if (match)
11750 VEC_safe_push(breakpoint_p, found, b);
11751 }
11752 }
11753
11754 /* Now go thru the 'found' chain and delete them. */
11755 if (VEC_empty(breakpoint_p, found))
11756 {
11757 if (arg)
11758 error (_("No breakpoint at %s."), arg);
11759 else
11760 error (_("No breakpoint at this line."));
11761 }
11762
11763 /* Remove duplicates from the vec. */
11764 qsort (VEC_address (breakpoint_p, found),
11765 VEC_length (breakpoint_p, found),
11766 sizeof (breakpoint_p),
11767 compare_breakpoints);
11768 prev = VEC_index (breakpoint_p, found, 0);
11769 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
11770 {
11771 if (b == prev)
11772 {
11773 VEC_ordered_remove (breakpoint_p, found, ix);
11774 --ix;
11775 }
11776 }
11777
11778 if (VEC_length(breakpoint_p, found) > 1)
11779 from_tty = 1; /* Always report if deleted more than one. */
11780 if (from_tty)
11781 {
11782 if (VEC_length(breakpoint_p, found) == 1)
11783 printf_unfiltered (_("Deleted breakpoint "));
11784 else
11785 printf_unfiltered (_("Deleted breakpoints "));
11786 }
11787
11788 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
11789 {
11790 if (from_tty)
11791 printf_unfiltered ("%d ", b->number);
11792 delete_breakpoint (b);
11793 }
11794 if (from_tty)
11795 putchar_unfiltered ('\n');
11796
11797 do_cleanups (cleanups);
11798 }
11799 \f
11800 /* Delete breakpoint in BS if they are `delete' breakpoints and
11801 all breakpoints that are marked for deletion, whether hit or not.
11802 This is called after any breakpoint is hit, or after errors. */
11803
11804 void
11805 breakpoint_auto_delete (bpstat bs)
11806 {
11807 struct breakpoint *b, *b_tmp;
11808
11809 for (; bs; bs = bs->next)
11810 if (bs->breakpoint_at
11811 && bs->breakpoint_at->disposition == disp_del
11812 && bs->stop)
11813 delete_breakpoint (bs->breakpoint_at);
11814
11815 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11816 {
11817 if (b->disposition == disp_del_at_next_stop)
11818 delete_breakpoint (b);
11819 }
11820 }
11821
11822 /* A comparison function for bp_location AP and BP being interfaced to
11823 qsort. Sort elements primarily by their ADDRESS (no matter what
11824 does breakpoint_address_is_meaningful say for its OWNER),
11825 secondarily by ordering first permanent elements and
11826 terciarily just ensuring the array is sorted stable way despite
11827 qsort being an unstable algorithm. */
11828
11829 static int
11830 bp_locations_compare (const void *ap, const void *bp)
11831 {
11832 const struct bp_location *a = *(const struct bp_location **) ap;
11833 const struct bp_location *b = *(const struct bp_location **) bp;
11834
11835 if (a->address != b->address)
11836 return (a->address > b->address) - (a->address < b->address);
11837
11838 /* Sort locations at the same address by their pspace number, keeping
11839 locations of the same inferior (in a multi-inferior environment)
11840 grouped. */
11841
11842 if (a->pspace->num != b->pspace->num)
11843 return ((a->pspace->num > b->pspace->num)
11844 - (a->pspace->num < b->pspace->num));
11845
11846 /* Sort permanent breakpoints first. */
11847 if (a->permanent != b->permanent)
11848 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11849
11850 /* Make the internal GDB representation stable across GDB runs
11851 where A and B memory inside GDB can differ. Breakpoint locations of
11852 the same type at the same address can be sorted in arbitrary order. */
11853
11854 if (a->owner->number != b->owner->number)
11855 return ((a->owner->number > b->owner->number)
11856 - (a->owner->number < b->owner->number));
11857
11858 return (a > b) - (a < b);
11859 }
11860
11861 /* Set bp_locations_placed_address_before_address_max and
11862 bp_locations_shadow_len_after_address_max according to the current
11863 content of the bp_locations array. */
11864
11865 static void
11866 bp_locations_target_extensions_update (void)
11867 {
11868 struct bp_location *bl, **blp_tmp;
11869
11870 bp_locations_placed_address_before_address_max = 0;
11871 bp_locations_shadow_len_after_address_max = 0;
11872
11873 ALL_BP_LOCATIONS (bl, blp_tmp)
11874 {
11875 CORE_ADDR start, end, addr;
11876
11877 if (!bp_location_has_shadow (bl))
11878 continue;
11879
11880 start = bl->target_info.placed_address;
11881 end = start + bl->target_info.shadow_len;
11882
11883 gdb_assert (bl->address >= start);
11884 addr = bl->address - start;
11885 if (addr > bp_locations_placed_address_before_address_max)
11886 bp_locations_placed_address_before_address_max = addr;
11887
11888 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11889
11890 gdb_assert (bl->address < end);
11891 addr = end - bl->address;
11892 if (addr > bp_locations_shadow_len_after_address_max)
11893 bp_locations_shadow_len_after_address_max = addr;
11894 }
11895 }
11896
11897 /* Download tracepoint locations if they haven't been. */
11898
11899 static void
11900 download_tracepoint_locations (void)
11901 {
11902 struct breakpoint *b;
11903 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11904
11905 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11906
11907 ALL_TRACEPOINTS (b)
11908 {
11909 struct bp_location *bl;
11910 struct tracepoint *t;
11911 int bp_location_downloaded = 0;
11912
11913 if ((b->type == bp_fast_tracepoint
11914 ? !may_insert_fast_tracepoints
11915 : !may_insert_tracepoints))
11916 continue;
11917
11918 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11919 {
11920 if (target_can_download_tracepoint ())
11921 can_download_tracepoint = TRIBOOL_TRUE;
11922 else
11923 can_download_tracepoint = TRIBOOL_FALSE;
11924 }
11925
11926 if (can_download_tracepoint == TRIBOOL_FALSE)
11927 break;
11928
11929 for (bl = b->loc; bl; bl = bl->next)
11930 {
11931 /* In tracepoint, locations are _never_ duplicated, so
11932 should_be_inserted is equivalent to
11933 unduplicated_should_be_inserted. */
11934 if (!should_be_inserted (bl) || bl->inserted)
11935 continue;
11936
11937 switch_to_program_space_and_thread (bl->pspace);
11938
11939 target_download_tracepoint (bl);
11940
11941 bl->inserted = 1;
11942 bp_location_downloaded = 1;
11943 }
11944 t = (struct tracepoint *) b;
11945 t->number_on_target = b->number;
11946 if (bp_location_downloaded)
11947 observer_notify_breakpoint_modified (b);
11948 }
11949 }
11950
11951 /* Swap the insertion/duplication state between two locations. */
11952
11953 static void
11954 swap_insertion (struct bp_location *left, struct bp_location *right)
11955 {
11956 const int left_inserted = left->inserted;
11957 const int left_duplicate = left->duplicate;
11958 const int left_needs_update = left->needs_update;
11959 const struct bp_target_info left_target_info = left->target_info;
11960
11961 /* Locations of tracepoints can never be duplicated. */
11962 if (is_tracepoint (left->owner))
11963 gdb_assert (!left->duplicate);
11964 if (is_tracepoint (right->owner))
11965 gdb_assert (!right->duplicate);
11966
11967 left->inserted = right->inserted;
11968 left->duplicate = right->duplicate;
11969 left->needs_update = right->needs_update;
11970 left->target_info = right->target_info;
11971 right->inserted = left_inserted;
11972 right->duplicate = left_duplicate;
11973 right->needs_update = left_needs_update;
11974 right->target_info = left_target_info;
11975 }
11976
11977 /* Force the re-insertion of the locations at ADDRESS. This is called
11978 once a new/deleted/modified duplicate location is found and we are evaluating
11979 conditions on the target's side. Such conditions need to be updated on
11980 the target. */
11981
11982 static void
11983 force_breakpoint_reinsertion (struct bp_location *bl)
11984 {
11985 struct bp_location **locp = NULL, **loc2p;
11986 struct bp_location *loc;
11987 CORE_ADDR address = 0;
11988 int pspace_num;
11989
11990 address = bl->address;
11991 pspace_num = bl->pspace->num;
11992
11993 /* This is only meaningful if the target is
11994 evaluating conditions and if the user has
11995 opted for condition evaluation on the target's
11996 side. */
11997 if (gdb_evaluates_breakpoint_condition_p ()
11998 || !target_supports_evaluation_of_breakpoint_conditions ())
11999 return;
12000
12001 /* Flag all breakpoint locations with this address and
12002 the same program space as the location
12003 as "its condition has changed". We need to
12004 update the conditions on the target's side. */
12005 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12006 {
12007 loc = *loc2p;
12008
12009 if (!is_breakpoint (loc->owner)
12010 || pspace_num != loc->pspace->num)
12011 continue;
12012
12013 /* Flag the location appropriately. We use a different state to
12014 let everyone know that we already updated the set of locations
12015 with addr bl->address and program space bl->pspace. This is so
12016 we don't have to keep calling these functions just to mark locations
12017 that have already been marked. */
12018 loc->condition_changed = condition_updated;
12019
12020 /* Free the agent expression bytecode as well. We will compute
12021 it later on. */
12022 loc->cond_bytecode.reset ();
12023 }
12024 }
12025 /* Called whether new breakpoints are created, or existing breakpoints
12026 deleted, to update the global location list and recompute which
12027 locations are duplicate of which.
12028
12029 The INSERT_MODE flag determines whether locations may not, may, or
12030 shall be inserted now. See 'enum ugll_insert_mode' for more
12031 info. */
12032
12033 static void
12034 update_global_location_list (enum ugll_insert_mode insert_mode)
12035 {
12036 struct breakpoint *b;
12037 struct bp_location **locp, *loc;
12038 struct cleanup *cleanups;
12039 /* Last breakpoint location address that was marked for update. */
12040 CORE_ADDR last_addr = 0;
12041 /* Last breakpoint location program space that was marked for update. */
12042 int last_pspace_num = -1;
12043
12044 /* Used in the duplicates detection below. When iterating over all
12045 bp_locations, points to the first bp_location of a given address.
12046 Breakpoints and watchpoints of different types are never
12047 duplicates of each other. Keep one pointer for each type of
12048 breakpoint/watchpoint, so we only need to loop over all locations
12049 once. */
12050 struct bp_location *bp_loc_first; /* breakpoint */
12051 struct bp_location *wp_loc_first; /* hardware watchpoint */
12052 struct bp_location *awp_loc_first; /* access watchpoint */
12053 struct bp_location *rwp_loc_first; /* read watchpoint */
12054
12055 /* Saved former bp_locations array which we compare against the newly
12056 built bp_locations from the current state of ALL_BREAKPOINTS. */
12057 struct bp_location **old_locations, **old_locp;
12058 unsigned old_locations_count;
12059
12060 old_locations = bp_locations;
12061 old_locations_count = bp_locations_count;
12062 bp_locations = NULL;
12063 bp_locations_count = 0;
12064 cleanups = make_cleanup (xfree, old_locations);
12065
12066 ALL_BREAKPOINTS (b)
12067 for (loc = b->loc; loc; loc = loc->next)
12068 bp_locations_count++;
12069
12070 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
12071 locp = bp_locations;
12072 ALL_BREAKPOINTS (b)
12073 for (loc = b->loc; loc; loc = loc->next)
12074 *locp++ = loc;
12075 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
12076 bp_locations_compare);
12077
12078 bp_locations_target_extensions_update ();
12079
12080 /* Identify bp_location instances that are no longer present in the
12081 new list, and therefore should be freed. Note that it's not
12082 necessary that those locations should be removed from inferior --
12083 if there's another location at the same address (previously
12084 marked as duplicate), we don't need to remove/insert the
12085 location.
12086
12087 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12088 and former bp_location array state respectively. */
12089
12090 locp = bp_locations;
12091 for (old_locp = old_locations;
12092 old_locp < old_locations + old_locations_count;
12093 old_locp++)
12094 {
12095 struct bp_location *old_loc = *old_locp;
12096 struct bp_location **loc2p;
12097
12098 /* Tells if 'old_loc' is found among the new locations. If
12099 not, we have to free it. */
12100 int found_object = 0;
12101 /* Tells if the location should remain inserted in the target. */
12102 int keep_in_target = 0;
12103 int removed = 0;
12104
12105 /* Skip LOCP entries which will definitely never be needed.
12106 Stop either at or being the one matching OLD_LOC. */
12107 while (locp < bp_locations + bp_locations_count
12108 && (*locp)->address < old_loc->address)
12109 locp++;
12110
12111 for (loc2p = locp;
12112 (loc2p < bp_locations + bp_locations_count
12113 && (*loc2p)->address == old_loc->address);
12114 loc2p++)
12115 {
12116 /* Check if this is a new/duplicated location or a duplicated
12117 location that had its condition modified. If so, we want to send
12118 its condition to the target if evaluation of conditions is taking
12119 place there. */
12120 if ((*loc2p)->condition_changed == condition_modified
12121 && (last_addr != old_loc->address
12122 || last_pspace_num != old_loc->pspace->num))
12123 {
12124 force_breakpoint_reinsertion (*loc2p);
12125 last_pspace_num = old_loc->pspace->num;
12126 }
12127
12128 if (*loc2p == old_loc)
12129 found_object = 1;
12130 }
12131
12132 /* We have already handled this address, update it so that we don't
12133 have to go through updates again. */
12134 last_addr = old_loc->address;
12135
12136 /* Target-side condition evaluation: Handle deleted locations. */
12137 if (!found_object)
12138 force_breakpoint_reinsertion (old_loc);
12139
12140 /* If this location is no longer present, and inserted, look if
12141 there's maybe a new location at the same address. If so,
12142 mark that one inserted, and don't remove this one. This is
12143 needed so that we don't have a time window where a breakpoint
12144 at certain location is not inserted. */
12145
12146 if (old_loc->inserted)
12147 {
12148 /* If the location is inserted now, we might have to remove
12149 it. */
12150
12151 if (found_object && should_be_inserted (old_loc))
12152 {
12153 /* The location is still present in the location list,
12154 and still should be inserted. Don't do anything. */
12155 keep_in_target = 1;
12156 }
12157 else
12158 {
12159 /* This location still exists, but it won't be kept in the
12160 target since it may have been disabled. We proceed to
12161 remove its target-side condition. */
12162
12163 /* The location is either no longer present, or got
12164 disabled. See if there's another location at the
12165 same address, in which case we don't need to remove
12166 this one from the target. */
12167
12168 /* OLD_LOC comes from existing struct breakpoint. */
12169 if (breakpoint_address_is_meaningful (old_loc->owner))
12170 {
12171 for (loc2p = locp;
12172 (loc2p < bp_locations + bp_locations_count
12173 && (*loc2p)->address == old_loc->address);
12174 loc2p++)
12175 {
12176 struct bp_location *loc2 = *loc2p;
12177
12178 if (breakpoint_locations_match (loc2, old_loc))
12179 {
12180 /* Read watchpoint locations are switched to
12181 access watchpoints, if the former are not
12182 supported, but the latter are. */
12183 if (is_hardware_watchpoint (old_loc->owner))
12184 {
12185 gdb_assert (is_hardware_watchpoint (loc2->owner));
12186 loc2->watchpoint_type = old_loc->watchpoint_type;
12187 }
12188
12189 /* loc2 is a duplicated location. We need to check
12190 if it should be inserted in case it will be
12191 unduplicated. */
12192 if (loc2 != old_loc
12193 && unduplicated_should_be_inserted (loc2))
12194 {
12195 swap_insertion (old_loc, loc2);
12196 keep_in_target = 1;
12197 break;
12198 }
12199 }
12200 }
12201 }
12202 }
12203
12204 if (!keep_in_target)
12205 {
12206 if (remove_breakpoint (old_loc))
12207 {
12208 /* This is just about all we can do. We could keep
12209 this location on the global list, and try to
12210 remove it next time, but there's no particular
12211 reason why we will succeed next time.
12212
12213 Note that at this point, old_loc->owner is still
12214 valid, as delete_breakpoint frees the breakpoint
12215 only after calling us. */
12216 printf_filtered (_("warning: Error removing "
12217 "breakpoint %d\n"),
12218 old_loc->owner->number);
12219 }
12220 removed = 1;
12221 }
12222 }
12223
12224 if (!found_object)
12225 {
12226 if (removed && target_is_non_stop_p ()
12227 && need_moribund_for_location_type (old_loc))
12228 {
12229 /* This location was removed from the target. In
12230 non-stop mode, a race condition is possible where
12231 we've removed a breakpoint, but stop events for that
12232 breakpoint are already queued and will arrive later.
12233 We apply an heuristic to be able to distinguish such
12234 SIGTRAPs from other random SIGTRAPs: we keep this
12235 breakpoint location for a bit, and will retire it
12236 after we see some number of events. The theory here
12237 is that reporting of events should, "on the average",
12238 be fair, so after a while we'll see events from all
12239 threads that have anything of interest, and no longer
12240 need to keep this breakpoint location around. We
12241 don't hold locations forever so to reduce chances of
12242 mistaking a non-breakpoint SIGTRAP for a breakpoint
12243 SIGTRAP.
12244
12245 The heuristic failing can be disastrous on
12246 decr_pc_after_break targets.
12247
12248 On decr_pc_after_break targets, like e.g., x86-linux,
12249 if we fail to recognize a late breakpoint SIGTRAP,
12250 because events_till_retirement has reached 0 too
12251 soon, we'll fail to do the PC adjustment, and report
12252 a random SIGTRAP to the user. When the user resumes
12253 the inferior, it will most likely immediately crash
12254 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12255 corrupted, because of being resumed e.g., in the
12256 middle of a multi-byte instruction, or skipped a
12257 one-byte instruction. This was actually seen happen
12258 on native x86-linux, and should be less rare on
12259 targets that do not support new thread events, like
12260 remote, due to the heuristic depending on
12261 thread_count.
12262
12263 Mistaking a random SIGTRAP for a breakpoint trap
12264 causes similar symptoms (PC adjustment applied when
12265 it shouldn't), but then again, playing with SIGTRAPs
12266 behind the debugger's back is asking for trouble.
12267
12268 Since hardware watchpoint traps are always
12269 distinguishable from other traps, so we don't need to
12270 apply keep hardware watchpoint moribund locations
12271 around. We simply always ignore hardware watchpoint
12272 traps we can no longer explain. */
12273
12274 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12275 old_loc->owner = NULL;
12276
12277 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12278 }
12279 else
12280 {
12281 old_loc->owner = NULL;
12282 decref_bp_location (&old_loc);
12283 }
12284 }
12285 }
12286
12287 /* Rescan breakpoints at the same address and section, marking the
12288 first one as "first" and any others as "duplicates". This is so
12289 that the bpt instruction is only inserted once. If we have a
12290 permanent breakpoint at the same place as BPT, make that one the
12291 official one, and the rest as duplicates. Permanent breakpoints
12292 are sorted first for the same address.
12293
12294 Do the same for hardware watchpoints, but also considering the
12295 watchpoint's type (regular/access/read) and length. */
12296
12297 bp_loc_first = NULL;
12298 wp_loc_first = NULL;
12299 awp_loc_first = NULL;
12300 rwp_loc_first = NULL;
12301 ALL_BP_LOCATIONS (loc, locp)
12302 {
12303 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12304 non-NULL. */
12305 struct bp_location **loc_first_p;
12306 b = loc->owner;
12307
12308 if (!unduplicated_should_be_inserted (loc)
12309 || !breakpoint_address_is_meaningful (b)
12310 /* Don't detect duplicate for tracepoint locations because they are
12311 never duplicated. See the comments in field `duplicate' of
12312 `struct bp_location'. */
12313 || is_tracepoint (b))
12314 {
12315 /* Clear the condition modification flag. */
12316 loc->condition_changed = condition_unchanged;
12317 continue;
12318 }
12319
12320 if (b->type == bp_hardware_watchpoint)
12321 loc_first_p = &wp_loc_first;
12322 else if (b->type == bp_read_watchpoint)
12323 loc_first_p = &rwp_loc_first;
12324 else if (b->type == bp_access_watchpoint)
12325 loc_first_p = &awp_loc_first;
12326 else
12327 loc_first_p = &bp_loc_first;
12328
12329 if (*loc_first_p == NULL
12330 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12331 || !breakpoint_locations_match (loc, *loc_first_p))
12332 {
12333 *loc_first_p = loc;
12334 loc->duplicate = 0;
12335
12336 if (is_breakpoint (loc->owner) && loc->condition_changed)
12337 {
12338 loc->needs_update = 1;
12339 /* Clear the condition modification flag. */
12340 loc->condition_changed = condition_unchanged;
12341 }
12342 continue;
12343 }
12344
12345
12346 /* This and the above ensure the invariant that the first location
12347 is not duplicated, and is the inserted one.
12348 All following are marked as duplicated, and are not inserted. */
12349 if (loc->inserted)
12350 swap_insertion (loc, *loc_first_p);
12351 loc->duplicate = 1;
12352
12353 /* Clear the condition modification flag. */
12354 loc->condition_changed = condition_unchanged;
12355 }
12356
12357 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12358 {
12359 if (insert_mode != UGLL_DONT_INSERT)
12360 insert_breakpoint_locations ();
12361 else
12362 {
12363 /* Even though the caller told us to not insert new
12364 locations, we may still need to update conditions on the
12365 target's side of breakpoints that were already inserted
12366 if the target is evaluating breakpoint conditions. We
12367 only update conditions for locations that are marked
12368 "needs_update". */
12369 update_inserted_breakpoint_locations ();
12370 }
12371 }
12372
12373 if (insert_mode != UGLL_DONT_INSERT)
12374 download_tracepoint_locations ();
12375
12376 do_cleanups (cleanups);
12377 }
12378
12379 void
12380 breakpoint_retire_moribund (void)
12381 {
12382 struct bp_location *loc;
12383 int ix;
12384
12385 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12386 if (--(loc->events_till_retirement) == 0)
12387 {
12388 decref_bp_location (&loc);
12389 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12390 --ix;
12391 }
12392 }
12393
12394 static void
12395 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12396 {
12397
12398 TRY
12399 {
12400 update_global_location_list (insert_mode);
12401 }
12402 CATCH (e, RETURN_MASK_ERROR)
12403 {
12404 }
12405 END_CATCH
12406 }
12407
12408 /* Clear BKP from a BPS. */
12409
12410 static void
12411 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12412 {
12413 bpstat bs;
12414
12415 for (bs = bps; bs; bs = bs->next)
12416 if (bs->breakpoint_at == bpt)
12417 {
12418 bs->breakpoint_at = NULL;
12419 bs->old_val = NULL;
12420 /* bs->commands will be freed later. */
12421 }
12422 }
12423
12424 /* Callback for iterate_over_threads. */
12425 static int
12426 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12427 {
12428 struct breakpoint *bpt = (struct breakpoint *) data;
12429
12430 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12431 return 0;
12432 }
12433
12434 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12435 callbacks. */
12436
12437 static void
12438 say_where (struct breakpoint *b)
12439 {
12440 struct value_print_options opts;
12441
12442 get_user_print_options (&opts);
12443
12444 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12445 single string. */
12446 if (b->loc == NULL)
12447 {
12448 /* For pending locations, the output differs slightly based
12449 on b->extra_string. If this is non-NULL, it contains either
12450 a condition or dprintf arguments. */
12451 if (b->extra_string == NULL)
12452 {
12453 printf_filtered (_(" (%s) pending."),
12454 event_location_to_string (b->location.get ()));
12455 }
12456 else if (b->type == bp_dprintf)
12457 {
12458 printf_filtered (_(" (%s,%s) pending."),
12459 event_location_to_string (b->location.get ()),
12460 b->extra_string);
12461 }
12462 else
12463 {
12464 printf_filtered (_(" (%s %s) pending."),
12465 event_location_to_string (b->location.get ()),
12466 b->extra_string);
12467 }
12468 }
12469 else
12470 {
12471 if (opts.addressprint || b->loc->symtab == NULL)
12472 {
12473 printf_filtered (" at ");
12474 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12475 gdb_stdout);
12476 }
12477 if (b->loc->symtab != NULL)
12478 {
12479 /* If there is a single location, we can print the location
12480 more nicely. */
12481 if (b->loc->next == NULL)
12482 printf_filtered (": file %s, line %d.",
12483 symtab_to_filename_for_display (b->loc->symtab),
12484 b->loc->line_number);
12485 else
12486 /* This is not ideal, but each location may have a
12487 different file name, and this at least reflects the
12488 real situation somewhat. */
12489 printf_filtered (": %s.",
12490 event_location_to_string (b->location.get ()));
12491 }
12492
12493 if (b->loc->next)
12494 {
12495 struct bp_location *loc = b->loc;
12496 int n = 0;
12497 for (; loc; loc = loc->next)
12498 ++n;
12499 printf_filtered (" (%d locations)", n);
12500 }
12501 }
12502 }
12503
12504 /* Default bp_location_ops methods. */
12505
12506 static void
12507 bp_location_dtor (struct bp_location *self)
12508 {
12509 xfree (self->function_name);
12510 }
12511
12512 static const struct bp_location_ops bp_location_ops =
12513 {
12514 bp_location_dtor
12515 };
12516
12517 /* Destructor for the breakpoint base class. */
12518
12519 breakpoint::~breakpoint ()
12520 {
12521 xfree (this->cond_string);
12522 xfree (this->extra_string);
12523 xfree (this->filter);
12524 }
12525
12526 static struct bp_location *
12527 base_breakpoint_allocate_location (struct breakpoint *self)
12528 {
12529 return new bp_location (&bp_location_ops, self);
12530 }
12531
12532 static void
12533 base_breakpoint_re_set (struct breakpoint *b)
12534 {
12535 /* Nothing to re-set. */
12536 }
12537
12538 #define internal_error_pure_virtual_called() \
12539 gdb_assert_not_reached ("pure virtual function called")
12540
12541 static int
12542 base_breakpoint_insert_location (struct bp_location *bl)
12543 {
12544 internal_error_pure_virtual_called ();
12545 }
12546
12547 static int
12548 base_breakpoint_remove_location (struct bp_location *bl,
12549 enum remove_bp_reason reason)
12550 {
12551 internal_error_pure_virtual_called ();
12552 }
12553
12554 static int
12555 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12556 struct address_space *aspace,
12557 CORE_ADDR bp_addr,
12558 const struct target_waitstatus *ws)
12559 {
12560 internal_error_pure_virtual_called ();
12561 }
12562
12563 static void
12564 base_breakpoint_check_status (bpstat bs)
12565 {
12566 /* Always stop. */
12567 }
12568
12569 /* A "works_in_software_mode" breakpoint_ops method that just internal
12570 errors. */
12571
12572 static int
12573 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12574 {
12575 internal_error_pure_virtual_called ();
12576 }
12577
12578 /* A "resources_needed" breakpoint_ops method that just internal
12579 errors. */
12580
12581 static int
12582 base_breakpoint_resources_needed (const struct bp_location *bl)
12583 {
12584 internal_error_pure_virtual_called ();
12585 }
12586
12587 static enum print_stop_action
12588 base_breakpoint_print_it (bpstat bs)
12589 {
12590 internal_error_pure_virtual_called ();
12591 }
12592
12593 static void
12594 base_breakpoint_print_one_detail (const struct breakpoint *self,
12595 struct ui_out *uiout)
12596 {
12597 /* nothing */
12598 }
12599
12600 static void
12601 base_breakpoint_print_mention (struct breakpoint *b)
12602 {
12603 internal_error_pure_virtual_called ();
12604 }
12605
12606 static void
12607 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12608 {
12609 internal_error_pure_virtual_called ();
12610 }
12611
12612 static void
12613 base_breakpoint_create_sals_from_location
12614 (const struct event_location *location,
12615 struct linespec_result *canonical,
12616 enum bptype type_wanted)
12617 {
12618 internal_error_pure_virtual_called ();
12619 }
12620
12621 static void
12622 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12623 struct linespec_result *c,
12624 gdb::unique_xmalloc_ptr<char> cond_string,
12625 gdb::unique_xmalloc_ptr<char> extra_string,
12626 enum bptype type_wanted,
12627 enum bpdisp disposition,
12628 int thread,
12629 int task, int ignore_count,
12630 const struct breakpoint_ops *o,
12631 int from_tty, int enabled,
12632 int internal, unsigned flags)
12633 {
12634 internal_error_pure_virtual_called ();
12635 }
12636
12637 static std::vector<symtab_and_line>
12638 base_breakpoint_decode_location (struct breakpoint *b,
12639 const struct event_location *location,
12640 struct program_space *search_pspace)
12641 {
12642 internal_error_pure_virtual_called ();
12643 }
12644
12645 /* The default 'explains_signal' method. */
12646
12647 static int
12648 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12649 {
12650 return 1;
12651 }
12652
12653 /* The default "after_condition_true" method. */
12654
12655 static void
12656 base_breakpoint_after_condition_true (struct bpstats *bs)
12657 {
12658 /* Nothing to do. */
12659 }
12660
12661 struct breakpoint_ops base_breakpoint_ops =
12662 {
12663 base_breakpoint_allocate_location,
12664 base_breakpoint_re_set,
12665 base_breakpoint_insert_location,
12666 base_breakpoint_remove_location,
12667 base_breakpoint_breakpoint_hit,
12668 base_breakpoint_check_status,
12669 base_breakpoint_resources_needed,
12670 base_breakpoint_works_in_software_mode,
12671 base_breakpoint_print_it,
12672 NULL,
12673 base_breakpoint_print_one_detail,
12674 base_breakpoint_print_mention,
12675 base_breakpoint_print_recreate,
12676 base_breakpoint_create_sals_from_location,
12677 base_breakpoint_create_breakpoints_sal,
12678 base_breakpoint_decode_location,
12679 base_breakpoint_explains_signal,
12680 base_breakpoint_after_condition_true,
12681 };
12682
12683 /* Default breakpoint_ops methods. */
12684
12685 static void
12686 bkpt_re_set (struct breakpoint *b)
12687 {
12688 /* FIXME: is this still reachable? */
12689 if (breakpoint_event_location_empty_p (b))
12690 {
12691 /* Anything without a location can't be re-set. */
12692 delete_breakpoint (b);
12693 return;
12694 }
12695
12696 breakpoint_re_set_default (b);
12697 }
12698
12699 static int
12700 bkpt_insert_location (struct bp_location *bl)
12701 {
12702 CORE_ADDR addr = bl->target_info.reqstd_address;
12703
12704 bl->target_info.kind = breakpoint_kind (bl, &addr);
12705 bl->target_info.placed_address = addr;
12706
12707 if (bl->loc_type == bp_loc_hardware_breakpoint)
12708 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12709 else
12710 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12711 }
12712
12713 static int
12714 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12715 {
12716 if (bl->loc_type == bp_loc_hardware_breakpoint)
12717 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12718 else
12719 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12720 }
12721
12722 static int
12723 bkpt_breakpoint_hit (const struct bp_location *bl,
12724 struct address_space *aspace, CORE_ADDR bp_addr,
12725 const struct target_waitstatus *ws)
12726 {
12727 if (ws->kind != TARGET_WAITKIND_STOPPED
12728 || ws->value.sig != GDB_SIGNAL_TRAP)
12729 return 0;
12730
12731 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12732 aspace, bp_addr))
12733 return 0;
12734
12735 if (overlay_debugging /* unmapped overlay section */
12736 && section_is_overlay (bl->section)
12737 && !section_is_mapped (bl->section))
12738 return 0;
12739
12740 return 1;
12741 }
12742
12743 static int
12744 dprintf_breakpoint_hit (const struct bp_location *bl,
12745 struct address_space *aspace, CORE_ADDR bp_addr,
12746 const struct target_waitstatus *ws)
12747 {
12748 if (dprintf_style == dprintf_style_agent
12749 && target_can_run_breakpoint_commands ())
12750 {
12751 /* An agent-style dprintf never causes a stop. If we see a trap
12752 for this address it must be for a breakpoint that happens to
12753 be set at the same address. */
12754 return 0;
12755 }
12756
12757 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12758 }
12759
12760 static int
12761 bkpt_resources_needed (const struct bp_location *bl)
12762 {
12763 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12764
12765 return 1;
12766 }
12767
12768 static enum print_stop_action
12769 bkpt_print_it (bpstat bs)
12770 {
12771 struct breakpoint *b;
12772 const struct bp_location *bl;
12773 int bp_temp;
12774 struct ui_out *uiout = current_uiout;
12775
12776 gdb_assert (bs->bp_location_at != NULL);
12777
12778 bl = bs->bp_location_at;
12779 b = bs->breakpoint_at;
12780
12781 bp_temp = b->disposition == disp_del;
12782 if (bl->address != bl->requested_address)
12783 breakpoint_adjustment_warning (bl->requested_address,
12784 bl->address,
12785 b->number, 1);
12786 annotate_breakpoint (b->number);
12787 maybe_print_thread_hit_breakpoint (uiout);
12788
12789 if (bp_temp)
12790 uiout->text ("Temporary breakpoint ");
12791 else
12792 uiout->text ("Breakpoint ");
12793 if (uiout->is_mi_like_p ())
12794 {
12795 uiout->field_string ("reason",
12796 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12797 uiout->field_string ("disp", bpdisp_text (b->disposition));
12798 }
12799 uiout->field_int ("bkptno", b->number);
12800 uiout->text (", ");
12801
12802 return PRINT_SRC_AND_LOC;
12803 }
12804
12805 static void
12806 bkpt_print_mention (struct breakpoint *b)
12807 {
12808 if (current_uiout->is_mi_like_p ())
12809 return;
12810
12811 switch (b->type)
12812 {
12813 case bp_breakpoint:
12814 case bp_gnu_ifunc_resolver:
12815 if (b->disposition == disp_del)
12816 printf_filtered (_("Temporary breakpoint"));
12817 else
12818 printf_filtered (_("Breakpoint"));
12819 printf_filtered (_(" %d"), b->number);
12820 if (b->type == bp_gnu_ifunc_resolver)
12821 printf_filtered (_(" at gnu-indirect-function resolver"));
12822 break;
12823 case bp_hardware_breakpoint:
12824 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12825 break;
12826 case bp_dprintf:
12827 printf_filtered (_("Dprintf %d"), b->number);
12828 break;
12829 }
12830
12831 say_where (b);
12832 }
12833
12834 static void
12835 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12836 {
12837 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12838 fprintf_unfiltered (fp, "tbreak");
12839 else if (tp->type == bp_breakpoint)
12840 fprintf_unfiltered (fp, "break");
12841 else if (tp->type == bp_hardware_breakpoint
12842 && tp->disposition == disp_del)
12843 fprintf_unfiltered (fp, "thbreak");
12844 else if (tp->type == bp_hardware_breakpoint)
12845 fprintf_unfiltered (fp, "hbreak");
12846 else
12847 internal_error (__FILE__, __LINE__,
12848 _("unhandled breakpoint type %d"), (int) tp->type);
12849
12850 fprintf_unfiltered (fp, " %s",
12851 event_location_to_string (tp->location.get ()));
12852
12853 /* Print out extra_string if this breakpoint is pending. It might
12854 contain, for example, conditions that were set by the user. */
12855 if (tp->loc == NULL && tp->extra_string != NULL)
12856 fprintf_unfiltered (fp, " %s", tp->extra_string);
12857
12858 print_recreate_thread (tp, fp);
12859 }
12860
12861 static void
12862 bkpt_create_sals_from_location (const struct event_location *location,
12863 struct linespec_result *canonical,
12864 enum bptype type_wanted)
12865 {
12866 create_sals_from_location_default (location, canonical, type_wanted);
12867 }
12868
12869 static void
12870 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12871 struct linespec_result *canonical,
12872 gdb::unique_xmalloc_ptr<char> cond_string,
12873 gdb::unique_xmalloc_ptr<char> extra_string,
12874 enum bptype type_wanted,
12875 enum bpdisp disposition,
12876 int thread,
12877 int task, int ignore_count,
12878 const struct breakpoint_ops *ops,
12879 int from_tty, int enabled,
12880 int internal, unsigned flags)
12881 {
12882 create_breakpoints_sal_default (gdbarch, canonical,
12883 std::move (cond_string),
12884 std::move (extra_string),
12885 type_wanted,
12886 disposition, thread, task,
12887 ignore_count, ops, from_tty,
12888 enabled, internal, flags);
12889 }
12890
12891 static std::vector<symtab_and_line>
12892 bkpt_decode_location (struct breakpoint *b,
12893 const struct event_location *location,
12894 struct program_space *search_pspace)
12895 {
12896 return decode_location_default (b, location, search_pspace);
12897 }
12898
12899 /* Virtual table for internal breakpoints. */
12900
12901 static void
12902 internal_bkpt_re_set (struct breakpoint *b)
12903 {
12904 switch (b->type)
12905 {
12906 /* Delete overlay event and longjmp master breakpoints; they
12907 will be reset later by breakpoint_re_set. */
12908 case bp_overlay_event:
12909 case bp_longjmp_master:
12910 case bp_std_terminate_master:
12911 case bp_exception_master:
12912 delete_breakpoint (b);
12913 break;
12914
12915 /* This breakpoint is special, it's set up when the inferior
12916 starts and we really don't want to touch it. */
12917 case bp_shlib_event:
12918
12919 /* Like bp_shlib_event, this breakpoint type is special. Once
12920 it is set up, we do not want to touch it. */
12921 case bp_thread_event:
12922 break;
12923 }
12924 }
12925
12926 static void
12927 internal_bkpt_check_status (bpstat bs)
12928 {
12929 if (bs->breakpoint_at->type == bp_shlib_event)
12930 {
12931 /* If requested, stop when the dynamic linker notifies GDB of
12932 events. This allows the user to get control and place
12933 breakpoints in initializer routines for dynamically loaded
12934 objects (among other things). */
12935 bs->stop = stop_on_solib_events;
12936 bs->print = stop_on_solib_events;
12937 }
12938 else
12939 bs->stop = 0;
12940 }
12941
12942 static enum print_stop_action
12943 internal_bkpt_print_it (bpstat bs)
12944 {
12945 struct breakpoint *b;
12946
12947 b = bs->breakpoint_at;
12948
12949 switch (b->type)
12950 {
12951 case bp_shlib_event:
12952 /* Did we stop because the user set the stop_on_solib_events
12953 variable? (If so, we report this as a generic, "Stopped due
12954 to shlib event" message.) */
12955 print_solib_event (0);
12956 break;
12957
12958 case bp_thread_event:
12959 /* Not sure how we will get here.
12960 GDB should not stop for these breakpoints. */
12961 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12962 break;
12963
12964 case bp_overlay_event:
12965 /* By analogy with the thread event, GDB should not stop for these. */
12966 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12967 break;
12968
12969 case bp_longjmp_master:
12970 /* These should never be enabled. */
12971 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12972 break;
12973
12974 case bp_std_terminate_master:
12975 /* These should never be enabled. */
12976 printf_filtered (_("std::terminate Master Breakpoint: "
12977 "gdb should not stop!\n"));
12978 break;
12979
12980 case bp_exception_master:
12981 /* These should never be enabled. */
12982 printf_filtered (_("Exception Master Breakpoint: "
12983 "gdb should not stop!\n"));
12984 break;
12985 }
12986
12987 return PRINT_NOTHING;
12988 }
12989
12990 static void
12991 internal_bkpt_print_mention (struct breakpoint *b)
12992 {
12993 /* Nothing to mention. These breakpoints are internal. */
12994 }
12995
12996 /* Virtual table for momentary breakpoints */
12997
12998 static void
12999 momentary_bkpt_re_set (struct breakpoint *b)
13000 {
13001 /* Keep temporary breakpoints, which can be encountered when we step
13002 over a dlopen call and solib_add is resetting the breakpoints.
13003 Otherwise these should have been blown away via the cleanup chain
13004 or by breakpoint_init_inferior when we rerun the executable. */
13005 }
13006
13007 static void
13008 momentary_bkpt_check_status (bpstat bs)
13009 {
13010 /* Nothing. The point of these breakpoints is causing a stop. */
13011 }
13012
13013 static enum print_stop_action
13014 momentary_bkpt_print_it (bpstat bs)
13015 {
13016 return PRINT_UNKNOWN;
13017 }
13018
13019 static void
13020 momentary_bkpt_print_mention (struct breakpoint *b)
13021 {
13022 /* Nothing to mention. These breakpoints are internal. */
13023 }
13024
13025 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13026
13027 It gets cleared already on the removal of the first one of such placed
13028 breakpoints. This is OK as they get all removed altogether. */
13029
13030 longjmp_breakpoint::~longjmp_breakpoint ()
13031 {
13032 thread_info *tp = find_thread_global_id (this->thread);
13033
13034 if (tp != NULL)
13035 tp->initiating_frame = null_frame_id;
13036 }
13037
13038 /* Specific methods for probe breakpoints. */
13039
13040 static int
13041 bkpt_probe_insert_location (struct bp_location *bl)
13042 {
13043 int v = bkpt_insert_location (bl);
13044
13045 if (v == 0)
13046 {
13047 /* The insertion was successful, now let's set the probe's semaphore
13048 if needed. */
13049 if (bl->probe.probe->pops->set_semaphore != NULL)
13050 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
13051 bl->probe.objfile,
13052 bl->gdbarch);
13053 }
13054
13055 return v;
13056 }
13057
13058 static int
13059 bkpt_probe_remove_location (struct bp_location *bl,
13060 enum remove_bp_reason reason)
13061 {
13062 /* Let's clear the semaphore before removing the location. */
13063 if (bl->probe.probe->pops->clear_semaphore != NULL)
13064 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
13065 bl->probe.objfile,
13066 bl->gdbarch);
13067
13068 return bkpt_remove_location (bl, reason);
13069 }
13070
13071 static void
13072 bkpt_probe_create_sals_from_location (const struct event_location *location,
13073 struct linespec_result *canonical,
13074 enum bptype type_wanted)
13075 {
13076 struct linespec_sals lsal;
13077
13078 lsal.sals = parse_probes (location, NULL, canonical);
13079 lsal.canonical
13080 = xstrdup (event_location_to_string (canonical->location.get ()));
13081 canonical->lsals.push_back (std::move (lsal));
13082 }
13083
13084 static std::vector<symtab_and_line>
13085 bkpt_probe_decode_location (struct breakpoint *b,
13086 const struct event_location *location,
13087 struct program_space *search_pspace)
13088 {
13089 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
13090 if (sals.empty ())
13091 error (_("probe not found"));
13092 return sals;
13093 }
13094
13095 /* The breakpoint_ops structure to be used in tracepoints. */
13096
13097 static void
13098 tracepoint_re_set (struct breakpoint *b)
13099 {
13100 breakpoint_re_set_default (b);
13101 }
13102
13103 static int
13104 tracepoint_breakpoint_hit (const struct bp_location *bl,
13105 struct address_space *aspace, CORE_ADDR bp_addr,
13106 const struct target_waitstatus *ws)
13107 {
13108 /* By definition, the inferior does not report stops at
13109 tracepoints. */
13110 return 0;
13111 }
13112
13113 static void
13114 tracepoint_print_one_detail (const struct breakpoint *self,
13115 struct ui_out *uiout)
13116 {
13117 struct tracepoint *tp = (struct tracepoint *) self;
13118 if (tp->static_trace_marker_id)
13119 {
13120 gdb_assert (self->type == bp_static_tracepoint);
13121
13122 uiout->text ("\tmarker id is ");
13123 uiout->field_string ("static-tracepoint-marker-string-id",
13124 tp->static_trace_marker_id);
13125 uiout->text ("\n");
13126 }
13127 }
13128
13129 static void
13130 tracepoint_print_mention (struct breakpoint *b)
13131 {
13132 if (current_uiout->is_mi_like_p ())
13133 return;
13134
13135 switch (b->type)
13136 {
13137 case bp_tracepoint:
13138 printf_filtered (_("Tracepoint"));
13139 printf_filtered (_(" %d"), b->number);
13140 break;
13141 case bp_fast_tracepoint:
13142 printf_filtered (_("Fast tracepoint"));
13143 printf_filtered (_(" %d"), b->number);
13144 break;
13145 case bp_static_tracepoint:
13146 printf_filtered (_("Static tracepoint"));
13147 printf_filtered (_(" %d"), b->number);
13148 break;
13149 default:
13150 internal_error (__FILE__, __LINE__,
13151 _("unhandled tracepoint type %d"), (int) b->type);
13152 }
13153
13154 say_where (b);
13155 }
13156
13157 static void
13158 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13159 {
13160 struct tracepoint *tp = (struct tracepoint *) self;
13161
13162 if (self->type == bp_fast_tracepoint)
13163 fprintf_unfiltered (fp, "ftrace");
13164 else if (self->type == bp_static_tracepoint)
13165 fprintf_unfiltered (fp, "strace");
13166 else if (self->type == bp_tracepoint)
13167 fprintf_unfiltered (fp, "trace");
13168 else
13169 internal_error (__FILE__, __LINE__,
13170 _("unhandled tracepoint type %d"), (int) self->type);
13171
13172 fprintf_unfiltered (fp, " %s",
13173 event_location_to_string (self->location.get ()));
13174 print_recreate_thread (self, fp);
13175
13176 if (tp->pass_count)
13177 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13178 }
13179
13180 static void
13181 tracepoint_create_sals_from_location (const struct event_location *location,
13182 struct linespec_result *canonical,
13183 enum bptype type_wanted)
13184 {
13185 create_sals_from_location_default (location, canonical, type_wanted);
13186 }
13187
13188 static void
13189 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13190 struct linespec_result *canonical,
13191 gdb::unique_xmalloc_ptr<char> cond_string,
13192 gdb::unique_xmalloc_ptr<char> extra_string,
13193 enum bptype type_wanted,
13194 enum bpdisp disposition,
13195 int thread,
13196 int task, int ignore_count,
13197 const struct breakpoint_ops *ops,
13198 int from_tty, int enabled,
13199 int internal, unsigned flags)
13200 {
13201 create_breakpoints_sal_default (gdbarch, canonical,
13202 std::move (cond_string),
13203 std::move (extra_string),
13204 type_wanted,
13205 disposition, thread, task,
13206 ignore_count, ops, from_tty,
13207 enabled, internal, flags);
13208 }
13209
13210 static std::vector<symtab_and_line>
13211 tracepoint_decode_location (struct breakpoint *b,
13212 const struct event_location *location,
13213 struct program_space *search_pspace)
13214 {
13215 return decode_location_default (b, location, search_pspace);
13216 }
13217
13218 struct breakpoint_ops tracepoint_breakpoint_ops;
13219
13220 /* The breakpoint_ops structure to be use on tracepoints placed in a
13221 static probe. */
13222
13223 static void
13224 tracepoint_probe_create_sals_from_location
13225 (const struct event_location *location,
13226 struct linespec_result *canonical,
13227 enum bptype type_wanted)
13228 {
13229 /* We use the same method for breakpoint on probes. */
13230 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
13231 }
13232
13233 static std::vector<symtab_and_line>
13234 tracepoint_probe_decode_location (struct breakpoint *b,
13235 const struct event_location *location,
13236 struct program_space *search_pspace)
13237 {
13238 /* We use the same method for breakpoint on probes. */
13239 return bkpt_probe_decode_location (b, location, search_pspace);
13240 }
13241
13242 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13243
13244 /* Dprintf breakpoint_ops methods. */
13245
13246 static void
13247 dprintf_re_set (struct breakpoint *b)
13248 {
13249 breakpoint_re_set_default (b);
13250
13251 /* extra_string should never be non-NULL for dprintf. */
13252 gdb_assert (b->extra_string != NULL);
13253
13254 /* 1 - connect to target 1, that can run breakpoint commands.
13255 2 - create a dprintf, which resolves fine.
13256 3 - disconnect from target 1
13257 4 - connect to target 2, that can NOT run breakpoint commands.
13258
13259 After steps #3/#4, you'll want the dprintf command list to
13260 be updated, because target 1 and 2 may well return different
13261 answers for target_can_run_breakpoint_commands().
13262 Given absence of finer grained resetting, we get to do
13263 it all the time. */
13264 if (b->extra_string != NULL)
13265 update_dprintf_command_list (b);
13266 }
13267
13268 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13269
13270 static void
13271 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13272 {
13273 fprintf_unfiltered (fp, "dprintf %s,%s",
13274 event_location_to_string (tp->location.get ()),
13275 tp->extra_string);
13276 print_recreate_thread (tp, fp);
13277 }
13278
13279 /* Implement the "after_condition_true" breakpoint_ops method for
13280 dprintf.
13281
13282 dprintf's are implemented with regular commands in their command
13283 list, but we run the commands here instead of before presenting the
13284 stop to the user, as dprintf's don't actually cause a stop. This
13285 also makes it so that the commands of multiple dprintfs at the same
13286 address are all handled. */
13287
13288 static void
13289 dprintf_after_condition_true (struct bpstats *bs)
13290 {
13291 struct bpstats tmp_bs;
13292 struct bpstats *tmp_bs_p = &tmp_bs;
13293
13294 /* dprintf's never cause a stop. This wasn't set in the
13295 check_status hook instead because that would make the dprintf's
13296 condition not be evaluated. */
13297 bs->stop = 0;
13298
13299 /* Run the command list here. Take ownership of it instead of
13300 copying. We never want these commands to run later in
13301 bpstat_do_actions, if a breakpoint that causes a stop happens to
13302 be set at same address as this dprintf, or even if running the
13303 commands here throws. */
13304 tmp_bs.commands = bs->commands;
13305 bs->commands = NULL;
13306
13307 bpstat_do_actions_1 (&tmp_bs_p);
13308
13309 /* 'tmp_bs.commands' will usually be NULL by now, but
13310 bpstat_do_actions_1 may return early without processing the whole
13311 list. */
13312 }
13313
13314 /* The breakpoint_ops structure to be used on static tracepoints with
13315 markers (`-m'). */
13316
13317 static void
13318 strace_marker_create_sals_from_location (const struct event_location *location,
13319 struct linespec_result *canonical,
13320 enum bptype type_wanted)
13321 {
13322 struct linespec_sals lsal;
13323 const char *arg_start, *arg;
13324
13325 arg = arg_start = get_linespec_location (location);
13326 lsal.sals = decode_static_tracepoint_spec (&arg);
13327
13328 std::string str (arg_start, arg - arg_start);
13329 const char *ptr = str.c_str ();
13330 canonical->location = new_linespec_location (&ptr);
13331
13332 lsal.canonical
13333 = xstrdup (event_location_to_string (canonical->location.get ()));
13334 canonical->lsals.push_back (std::move (lsal));
13335 }
13336
13337 static void
13338 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13339 struct linespec_result *canonical,
13340 gdb::unique_xmalloc_ptr<char> cond_string,
13341 gdb::unique_xmalloc_ptr<char> extra_string,
13342 enum bptype type_wanted,
13343 enum bpdisp disposition,
13344 int thread,
13345 int task, int ignore_count,
13346 const struct breakpoint_ops *ops,
13347 int from_tty, int enabled,
13348 int internal, unsigned flags)
13349 {
13350 const linespec_sals &lsal = canonical->lsals[0];
13351
13352 /* If the user is creating a static tracepoint by marker id
13353 (strace -m MARKER_ID), then store the sals index, so that
13354 breakpoint_re_set can try to match up which of the newly
13355 found markers corresponds to this one, and, don't try to
13356 expand multiple locations for each sal, given than SALS
13357 already should contain all sals for MARKER_ID. */
13358
13359 for (size_t i = 0; i < lsal.sals.size (); i++)
13360 {
13361 event_location_up location
13362 = copy_event_location (canonical->location.get ());
13363
13364 std::unique_ptr<tracepoint> tp (new tracepoint ());
13365 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13366 std::move (location), NULL,
13367 std::move (cond_string),
13368 std::move (extra_string),
13369 type_wanted, disposition,
13370 thread, task, ignore_count, ops,
13371 from_tty, enabled, internal, flags,
13372 canonical->special_display);
13373 /* Given that its possible to have multiple markers with
13374 the same string id, if the user is creating a static
13375 tracepoint by marker id ("strace -m MARKER_ID"), then
13376 store the sals index, so that breakpoint_re_set can
13377 try to match up which of the newly found markers
13378 corresponds to this one */
13379 tp->static_trace_marker_id_idx = i;
13380
13381 install_breakpoint (internal, std::move (tp), 0);
13382 }
13383 }
13384
13385 static std::vector<symtab_and_line>
13386 strace_marker_decode_location (struct breakpoint *b,
13387 const struct event_location *location,
13388 struct program_space *search_pspace)
13389 {
13390 struct tracepoint *tp = (struct tracepoint *) b;
13391 const char *s = get_linespec_location (location);
13392
13393 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13394 if (sals.size () > tp->static_trace_marker_id_idx)
13395 {
13396 sals[0] = sals[tp->static_trace_marker_id_idx];
13397 sals.resize (1);
13398 return sals;
13399 }
13400 else
13401 error (_("marker %s not found"), tp->static_trace_marker_id);
13402 }
13403
13404 static struct breakpoint_ops strace_marker_breakpoint_ops;
13405
13406 static int
13407 strace_marker_p (struct breakpoint *b)
13408 {
13409 return b->ops == &strace_marker_breakpoint_ops;
13410 }
13411
13412 /* Delete a breakpoint and clean up all traces of it in the data
13413 structures. */
13414
13415 void
13416 delete_breakpoint (struct breakpoint *bpt)
13417 {
13418 struct breakpoint *b;
13419
13420 gdb_assert (bpt != NULL);
13421
13422 /* Has this bp already been deleted? This can happen because
13423 multiple lists can hold pointers to bp's. bpstat lists are
13424 especial culprits.
13425
13426 One example of this happening is a watchpoint's scope bp. When
13427 the scope bp triggers, we notice that the watchpoint is out of
13428 scope, and delete it. We also delete its scope bp. But the
13429 scope bp is marked "auto-deleting", and is already on a bpstat.
13430 That bpstat is then checked for auto-deleting bp's, which are
13431 deleted.
13432
13433 A real solution to this problem might involve reference counts in
13434 bp's, and/or giving them pointers back to their referencing
13435 bpstat's, and teaching delete_breakpoint to only free a bp's
13436 storage when no more references were extent. A cheaper bandaid
13437 was chosen. */
13438 if (bpt->type == bp_none)
13439 return;
13440
13441 /* At least avoid this stale reference until the reference counting
13442 of breakpoints gets resolved. */
13443 if (bpt->related_breakpoint != bpt)
13444 {
13445 struct breakpoint *related;
13446 struct watchpoint *w;
13447
13448 if (bpt->type == bp_watchpoint_scope)
13449 w = (struct watchpoint *) bpt->related_breakpoint;
13450 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13451 w = (struct watchpoint *) bpt;
13452 else
13453 w = NULL;
13454 if (w != NULL)
13455 watchpoint_del_at_next_stop (w);
13456
13457 /* Unlink bpt from the bpt->related_breakpoint ring. */
13458 for (related = bpt; related->related_breakpoint != bpt;
13459 related = related->related_breakpoint);
13460 related->related_breakpoint = bpt->related_breakpoint;
13461 bpt->related_breakpoint = bpt;
13462 }
13463
13464 /* watch_command_1 creates a watchpoint but only sets its number if
13465 update_watchpoint succeeds in creating its bp_locations. If there's
13466 a problem in that process, we'll be asked to delete the half-created
13467 watchpoint. In that case, don't announce the deletion. */
13468 if (bpt->number)
13469 observer_notify_breakpoint_deleted (bpt);
13470
13471 if (breakpoint_chain == bpt)
13472 breakpoint_chain = bpt->next;
13473
13474 ALL_BREAKPOINTS (b)
13475 if (b->next == bpt)
13476 {
13477 b->next = bpt->next;
13478 break;
13479 }
13480
13481 /* Be sure no bpstat's are pointing at the breakpoint after it's
13482 been freed. */
13483 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13484 in all threads for now. Note that we cannot just remove bpstats
13485 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13486 commands are associated with the bpstat; if we remove it here,
13487 then the later call to bpstat_do_actions (&stop_bpstat); in
13488 event-top.c won't do anything, and temporary breakpoints with
13489 commands won't work. */
13490
13491 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13492
13493 /* Now that breakpoint is removed from breakpoint list, update the
13494 global location list. This will remove locations that used to
13495 belong to this breakpoint. Do this before freeing the breakpoint
13496 itself, since remove_breakpoint looks at location's owner. It
13497 might be better design to have location completely
13498 self-contained, but it's not the case now. */
13499 update_global_location_list (UGLL_DONT_INSERT);
13500
13501 /* On the chance that someone will soon try again to delete this
13502 same bp, we mark it as deleted before freeing its storage. */
13503 bpt->type = bp_none;
13504 delete bpt;
13505 }
13506
13507 static void
13508 do_delete_breakpoint_cleanup (void *b)
13509 {
13510 delete_breakpoint ((struct breakpoint *) b);
13511 }
13512
13513 struct cleanup *
13514 make_cleanup_delete_breakpoint (struct breakpoint *b)
13515 {
13516 return make_cleanup (do_delete_breakpoint_cleanup, b);
13517 }
13518
13519 /* Iterator function to call a user-provided callback function once
13520 for each of B and its related breakpoints. */
13521
13522 static void
13523 iterate_over_related_breakpoints (struct breakpoint *b,
13524 gdb::function_view<void (breakpoint *)> function)
13525 {
13526 struct breakpoint *related;
13527
13528 related = b;
13529 do
13530 {
13531 struct breakpoint *next;
13532
13533 /* FUNCTION may delete RELATED. */
13534 next = related->related_breakpoint;
13535
13536 if (next == related)
13537 {
13538 /* RELATED is the last ring entry. */
13539 function (related);
13540
13541 /* FUNCTION may have deleted it, so we'd never reach back to
13542 B. There's nothing left to do anyway, so just break
13543 out. */
13544 break;
13545 }
13546 else
13547 function (related);
13548
13549 related = next;
13550 }
13551 while (related != b);
13552 }
13553
13554 static void
13555 delete_command (char *arg, int from_tty)
13556 {
13557 struct breakpoint *b, *b_tmp;
13558
13559 dont_repeat ();
13560
13561 if (arg == 0)
13562 {
13563 int breaks_to_delete = 0;
13564
13565 /* Delete all breakpoints if no argument. Do not delete
13566 internal breakpoints, these have to be deleted with an
13567 explicit breakpoint number argument. */
13568 ALL_BREAKPOINTS (b)
13569 if (user_breakpoint_p (b))
13570 {
13571 breaks_to_delete = 1;
13572 break;
13573 }
13574
13575 /* Ask user only if there are some breakpoints to delete. */
13576 if (!from_tty
13577 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13578 {
13579 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13580 if (user_breakpoint_p (b))
13581 delete_breakpoint (b);
13582 }
13583 }
13584 else
13585 map_breakpoint_numbers
13586 (arg, [&] (breakpoint *b)
13587 {
13588 iterate_over_related_breakpoints (b, delete_breakpoint);
13589 });
13590 }
13591
13592 /* Return true if all locations of B bound to PSPACE are pending. If
13593 PSPACE is NULL, all locations of all program spaces are
13594 considered. */
13595
13596 static int
13597 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13598 {
13599 struct bp_location *loc;
13600
13601 for (loc = b->loc; loc != NULL; loc = loc->next)
13602 if ((pspace == NULL
13603 || loc->pspace == pspace)
13604 && !loc->shlib_disabled
13605 && !loc->pspace->executing_startup)
13606 return 0;
13607 return 1;
13608 }
13609
13610 /* Subroutine of update_breakpoint_locations to simplify it.
13611 Return non-zero if multiple fns in list LOC have the same name.
13612 Null names are ignored. */
13613
13614 static int
13615 ambiguous_names_p (struct bp_location *loc)
13616 {
13617 struct bp_location *l;
13618 htab_t htab = htab_create_alloc (13, htab_hash_string,
13619 (int (*) (const void *,
13620 const void *)) streq,
13621 NULL, xcalloc, xfree);
13622
13623 for (l = loc; l != NULL; l = l->next)
13624 {
13625 const char **slot;
13626 const char *name = l->function_name;
13627
13628 /* Allow for some names to be NULL, ignore them. */
13629 if (name == NULL)
13630 continue;
13631
13632 slot = (const char **) htab_find_slot (htab, (const void *) name,
13633 INSERT);
13634 /* NOTE: We can assume slot != NULL here because xcalloc never
13635 returns NULL. */
13636 if (*slot != NULL)
13637 {
13638 htab_delete (htab);
13639 return 1;
13640 }
13641 *slot = name;
13642 }
13643
13644 htab_delete (htab);
13645 return 0;
13646 }
13647
13648 /* When symbols change, it probably means the sources changed as well,
13649 and it might mean the static tracepoint markers are no longer at
13650 the same address or line numbers they used to be at last we
13651 checked. Losing your static tracepoints whenever you rebuild is
13652 undesirable. This function tries to resync/rematch gdb static
13653 tracepoints with the markers on the target, for static tracepoints
13654 that have not been set by marker id. Static tracepoint that have
13655 been set by marker id are reset by marker id in breakpoint_re_set.
13656 The heuristic is:
13657
13658 1) For a tracepoint set at a specific address, look for a marker at
13659 the old PC. If one is found there, assume to be the same marker.
13660 If the name / string id of the marker found is different from the
13661 previous known name, assume that means the user renamed the marker
13662 in the sources, and output a warning.
13663
13664 2) For a tracepoint set at a given line number, look for a marker
13665 at the new address of the old line number. If one is found there,
13666 assume to be the same marker. If the name / string id of the
13667 marker found is different from the previous known name, assume that
13668 means the user renamed the marker in the sources, and output a
13669 warning.
13670
13671 3) If a marker is no longer found at the same address or line, it
13672 may mean the marker no longer exists. But it may also just mean
13673 the code changed a bit. Maybe the user added a few lines of code
13674 that made the marker move up or down (in line number terms). Ask
13675 the target for info about the marker with the string id as we knew
13676 it. If found, update line number and address in the matching
13677 static tracepoint. This will get confused if there's more than one
13678 marker with the same ID (possible in UST, although unadvised
13679 precisely because it confuses tools). */
13680
13681 static struct symtab_and_line
13682 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13683 {
13684 struct tracepoint *tp = (struct tracepoint *) b;
13685 struct static_tracepoint_marker marker;
13686 CORE_ADDR pc;
13687
13688 pc = sal.pc;
13689 if (sal.line)
13690 find_line_pc (sal.symtab, sal.line, &pc);
13691
13692 if (target_static_tracepoint_marker_at (pc, &marker))
13693 {
13694 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13695 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13696 b->number,
13697 tp->static_trace_marker_id, marker.str_id);
13698
13699 xfree (tp->static_trace_marker_id);
13700 tp->static_trace_marker_id = xstrdup (marker.str_id);
13701 release_static_tracepoint_marker (&marker);
13702
13703 return sal;
13704 }
13705
13706 /* Old marker wasn't found on target at lineno. Try looking it up
13707 by string ID. */
13708 if (!sal.explicit_pc
13709 && sal.line != 0
13710 && sal.symtab != NULL
13711 && tp->static_trace_marker_id != NULL)
13712 {
13713 VEC(static_tracepoint_marker_p) *markers;
13714
13715 markers
13716 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13717
13718 if (!VEC_empty(static_tracepoint_marker_p, markers))
13719 {
13720 struct symbol *sym;
13721 struct static_tracepoint_marker *tpmarker;
13722 struct ui_out *uiout = current_uiout;
13723 struct explicit_location explicit_loc;
13724
13725 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13726
13727 xfree (tp->static_trace_marker_id);
13728 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13729
13730 warning (_("marker for static tracepoint %d (%s) not "
13731 "found at previous line number"),
13732 b->number, tp->static_trace_marker_id);
13733
13734 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13735 sym = find_pc_sect_function (tpmarker->address, NULL);
13736 uiout->text ("Now in ");
13737 if (sym)
13738 {
13739 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
13740 uiout->text (" at ");
13741 }
13742 uiout->field_string ("file",
13743 symtab_to_filename_for_display (sal2.symtab));
13744 uiout->text (":");
13745
13746 if (uiout->is_mi_like_p ())
13747 {
13748 const char *fullname = symtab_to_fullname (sal2.symtab);
13749
13750 uiout->field_string ("fullname", fullname);
13751 }
13752
13753 uiout->field_int ("line", sal2.line);
13754 uiout->text ("\n");
13755
13756 b->loc->line_number = sal2.line;
13757 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13758
13759 b->location.reset (NULL);
13760 initialize_explicit_location (&explicit_loc);
13761 explicit_loc.source_filename
13762 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13763 explicit_loc.line_offset.offset = b->loc->line_number;
13764 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13765 b->location = new_explicit_location (&explicit_loc);
13766
13767 /* Might be nice to check if function changed, and warn if
13768 so. */
13769
13770 release_static_tracepoint_marker (tpmarker);
13771 }
13772 }
13773 return sal;
13774 }
13775
13776 /* Returns 1 iff locations A and B are sufficiently same that
13777 we don't need to report breakpoint as changed. */
13778
13779 static int
13780 locations_are_equal (struct bp_location *a, struct bp_location *b)
13781 {
13782 while (a && b)
13783 {
13784 if (a->address != b->address)
13785 return 0;
13786
13787 if (a->shlib_disabled != b->shlib_disabled)
13788 return 0;
13789
13790 if (a->enabled != b->enabled)
13791 return 0;
13792
13793 a = a->next;
13794 b = b->next;
13795 }
13796
13797 if ((a == NULL) != (b == NULL))
13798 return 0;
13799
13800 return 1;
13801 }
13802
13803 /* Split all locations of B that are bound to PSPACE out of B's
13804 location list to a separate list and return that list's head. If
13805 PSPACE is NULL, hoist out all locations of B. */
13806
13807 static struct bp_location *
13808 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13809 {
13810 struct bp_location head;
13811 struct bp_location *i = b->loc;
13812 struct bp_location **i_link = &b->loc;
13813 struct bp_location *hoisted = &head;
13814
13815 if (pspace == NULL)
13816 {
13817 i = b->loc;
13818 b->loc = NULL;
13819 return i;
13820 }
13821
13822 head.next = NULL;
13823
13824 while (i != NULL)
13825 {
13826 if (i->pspace == pspace)
13827 {
13828 *i_link = i->next;
13829 i->next = NULL;
13830 hoisted->next = i;
13831 hoisted = i;
13832 }
13833 else
13834 i_link = &i->next;
13835 i = *i_link;
13836 }
13837
13838 return head.next;
13839 }
13840
13841 /* Create new breakpoint locations for B (a hardware or software
13842 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13843 zero, then B is a ranged breakpoint. Only recreates locations for
13844 FILTER_PSPACE. Locations of other program spaces are left
13845 untouched. */
13846
13847 void
13848 update_breakpoint_locations (struct breakpoint *b,
13849 struct program_space *filter_pspace,
13850 gdb::array_view<const symtab_and_line> sals,
13851 gdb::array_view<const symtab_and_line> sals_end)
13852 {
13853 int i;
13854 struct bp_location *existing_locations;
13855
13856 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13857 {
13858 /* Ranged breakpoints have only one start location and one end
13859 location. */
13860 b->enable_state = bp_disabled;
13861 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13862 "multiple locations found\n"),
13863 b->number);
13864 return;
13865 }
13866
13867 /* If there's no new locations, and all existing locations are
13868 pending, don't do anything. This optimizes the common case where
13869 all locations are in the same shared library, that was unloaded.
13870 We'd like to retain the location, so that when the library is
13871 loaded again, we don't loose the enabled/disabled status of the
13872 individual locations. */
13873 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13874 return;
13875
13876 existing_locations = hoist_existing_locations (b, filter_pspace);
13877
13878 for (const auto &sal : sals)
13879 {
13880 struct bp_location *new_loc;
13881
13882 switch_to_program_space_and_thread (sal.pspace);
13883
13884 new_loc = add_location_to_breakpoint (b, &sal);
13885
13886 /* Reparse conditions, they might contain references to the
13887 old symtab. */
13888 if (b->cond_string != NULL)
13889 {
13890 const char *s;
13891
13892 s = b->cond_string;
13893 TRY
13894 {
13895 new_loc->cond = parse_exp_1 (&s, sal.pc,
13896 block_for_pc (sal.pc),
13897 0);
13898 }
13899 CATCH (e, RETURN_MASK_ERROR)
13900 {
13901 warning (_("failed to reevaluate condition "
13902 "for breakpoint %d: %s"),
13903 b->number, e.message);
13904 new_loc->enabled = 0;
13905 }
13906 END_CATCH
13907 }
13908
13909 if (!sals_end.empty ())
13910 {
13911 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13912
13913 new_loc->length = end - sals[0].pc + 1;
13914 }
13915 }
13916
13917 /* If possible, carry over 'disable' status from existing
13918 breakpoints. */
13919 {
13920 struct bp_location *e = existing_locations;
13921 /* If there are multiple breakpoints with the same function name,
13922 e.g. for inline functions, comparing function names won't work.
13923 Instead compare pc addresses; this is just a heuristic as things
13924 may have moved, but in practice it gives the correct answer
13925 often enough until a better solution is found. */
13926 int have_ambiguous_names = ambiguous_names_p (b->loc);
13927
13928 for (; e; e = e->next)
13929 {
13930 if (!e->enabled && e->function_name)
13931 {
13932 struct bp_location *l = b->loc;
13933 if (have_ambiguous_names)
13934 {
13935 for (; l; l = l->next)
13936 if (breakpoint_locations_match (e, l))
13937 {
13938 l->enabled = 0;
13939 break;
13940 }
13941 }
13942 else
13943 {
13944 for (; l; l = l->next)
13945 if (l->function_name
13946 && strcmp (e->function_name, l->function_name) == 0)
13947 {
13948 l->enabled = 0;
13949 break;
13950 }
13951 }
13952 }
13953 }
13954 }
13955
13956 if (!locations_are_equal (existing_locations, b->loc))
13957 observer_notify_breakpoint_modified (b);
13958 }
13959
13960 /* Find the SaL locations corresponding to the given LOCATION.
13961 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13962
13963 static std::vector<symtab_and_line>
13964 location_to_sals (struct breakpoint *b, struct event_location *location,
13965 struct program_space *search_pspace, int *found)
13966 {
13967 struct gdb_exception exception = exception_none;
13968
13969 gdb_assert (b->ops != NULL);
13970
13971 std::vector<symtab_and_line> sals;
13972
13973 TRY
13974 {
13975 sals = b->ops->decode_location (b, location, search_pspace);
13976 }
13977 CATCH (e, RETURN_MASK_ERROR)
13978 {
13979 int not_found_and_ok = 0;
13980
13981 exception = e;
13982
13983 /* For pending breakpoints, it's expected that parsing will
13984 fail until the right shared library is loaded. User has
13985 already told to create pending breakpoints and don't need
13986 extra messages. If breakpoint is in bp_shlib_disabled
13987 state, then user already saw the message about that
13988 breakpoint being disabled, and don't want to see more
13989 errors. */
13990 if (e.error == NOT_FOUND_ERROR
13991 && (b->condition_not_parsed
13992 || (b->loc != NULL
13993 && search_pspace != NULL
13994 && b->loc->pspace != search_pspace)
13995 || (b->loc && b->loc->shlib_disabled)
13996 || (b->loc && b->loc->pspace->executing_startup)
13997 || b->enable_state == bp_disabled))
13998 not_found_and_ok = 1;
13999
14000 if (!not_found_and_ok)
14001 {
14002 /* We surely don't want to warn about the same breakpoint
14003 10 times. One solution, implemented here, is disable
14004 the breakpoint on error. Another solution would be to
14005 have separate 'warning emitted' flag. Since this
14006 happens only when a binary has changed, I don't know
14007 which approach is better. */
14008 b->enable_state = bp_disabled;
14009 throw_exception (e);
14010 }
14011 }
14012 END_CATCH
14013
14014 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
14015 {
14016 for (auto &sal : sals)
14017 resolve_sal_pc (&sal);
14018 if (b->condition_not_parsed && b->extra_string != NULL)
14019 {
14020 char *cond_string, *extra_string;
14021 int thread, task;
14022
14023 find_condition_and_thread (b->extra_string, sals[0].pc,
14024 &cond_string, &thread, &task,
14025 &extra_string);
14026 gdb_assert (b->cond_string == NULL);
14027 if (cond_string)
14028 b->cond_string = cond_string;
14029 b->thread = thread;
14030 b->task = task;
14031 if (extra_string)
14032 {
14033 xfree (b->extra_string);
14034 b->extra_string = extra_string;
14035 }
14036 b->condition_not_parsed = 0;
14037 }
14038
14039 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14040 sals[0] = update_static_tracepoint (b, sals[0]);
14041
14042 *found = 1;
14043 }
14044 else
14045 *found = 0;
14046
14047 return sals;
14048 }
14049
14050 /* The default re_set method, for typical hardware or software
14051 breakpoints. Reevaluate the breakpoint and recreate its
14052 locations. */
14053
14054 static void
14055 breakpoint_re_set_default (struct breakpoint *b)
14056 {
14057 struct program_space *filter_pspace = current_program_space;
14058 std::vector<symtab_and_line> expanded, expanded_end;
14059
14060 int found;
14061 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
14062 filter_pspace, &found);
14063 if (found)
14064 expanded = std::move (sals);
14065
14066 if (b->location_range_end != NULL)
14067 {
14068 std::vector<symtab_and_line> sals_end
14069 = location_to_sals (b, b->location_range_end.get (),
14070 filter_pspace, &found);
14071 if (found)
14072 expanded_end = std::move (sals_end);
14073 }
14074
14075 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
14076 }
14077
14078 /* Default method for creating SALs from an address string. It basically
14079 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14080
14081 static void
14082 create_sals_from_location_default (const struct event_location *location,
14083 struct linespec_result *canonical,
14084 enum bptype type_wanted)
14085 {
14086 parse_breakpoint_sals (location, canonical);
14087 }
14088
14089 /* Call create_breakpoints_sal for the given arguments. This is the default
14090 function for the `create_breakpoints_sal' method of
14091 breakpoint_ops. */
14092
14093 static void
14094 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14095 struct linespec_result *canonical,
14096 gdb::unique_xmalloc_ptr<char> cond_string,
14097 gdb::unique_xmalloc_ptr<char> extra_string,
14098 enum bptype type_wanted,
14099 enum bpdisp disposition,
14100 int thread,
14101 int task, int ignore_count,
14102 const struct breakpoint_ops *ops,
14103 int from_tty, int enabled,
14104 int internal, unsigned flags)
14105 {
14106 create_breakpoints_sal (gdbarch, canonical,
14107 std::move (cond_string),
14108 std::move (extra_string),
14109 type_wanted, disposition,
14110 thread, task, ignore_count, ops, from_tty,
14111 enabled, internal, flags);
14112 }
14113
14114 /* Decode the line represented by S by calling decode_line_full. This is the
14115 default function for the `decode_location' method of breakpoint_ops. */
14116
14117 static std::vector<symtab_and_line>
14118 decode_location_default (struct breakpoint *b,
14119 const struct event_location *location,
14120 struct program_space *search_pspace)
14121 {
14122 struct linespec_result canonical;
14123
14124 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
14125 (struct symtab *) NULL, 0,
14126 &canonical, multiple_symbols_all,
14127 b->filter);
14128
14129 /* We should get 0 or 1 resulting SALs. */
14130 gdb_assert (canonical.lsals.size () < 2);
14131
14132 if (!canonical.lsals.empty ())
14133 {
14134 const linespec_sals &lsal = canonical.lsals[0];
14135 return std::move (lsal.sals);
14136 }
14137 return {};
14138 }
14139
14140 /* Prepare the global context for a re-set of breakpoint B. */
14141
14142 static struct cleanup *
14143 prepare_re_set_context (struct breakpoint *b)
14144 {
14145 input_radix = b->input_radix;
14146 set_language (b->language);
14147
14148 return make_cleanup (null_cleanup, NULL);
14149 }
14150
14151 /* Reset a breakpoint given it's struct breakpoint * BINT.
14152 The value we return ends up being the return value from catch_errors.
14153 Unused in this case. */
14154
14155 static int
14156 breakpoint_re_set_one (void *bint)
14157 {
14158 /* Get past catch_errs. */
14159 struct breakpoint *b = (struct breakpoint *) bint;
14160 struct cleanup *cleanups;
14161
14162 cleanups = prepare_re_set_context (b);
14163 b->ops->re_set (b);
14164 do_cleanups (cleanups);
14165 return 0;
14166 }
14167
14168 /* Re-set breakpoint locations for the current program space.
14169 Locations bound to other program spaces are left untouched. */
14170
14171 void
14172 breakpoint_re_set (void)
14173 {
14174 struct breakpoint *b, *b_tmp;
14175 enum language save_language;
14176 int save_input_radix;
14177
14178 save_language = current_language->la_language;
14179 save_input_radix = input_radix;
14180
14181 {
14182 scoped_restore_current_pspace_and_thread restore_pspace_thread;
14183
14184 /* Note: we must not try to insert locations until after all
14185 breakpoints have been re-set. Otherwise, e.g., when re-setting
14186 breakpoint 1, we'd insert the locations of breakpoint 2, which
14187 hadn't been re-set yet, and thus may have stale locations. */
14188
14189 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14190 {
14191 /* Format possible error msg. */
14192 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14193 b->number);
14194 struct cleanup *cleanups = make_cleanup (xfree, message);
14195 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14196 do_cleanups (cleanups);
14197 }
14198 set_language (save_language);
14199 input_radix = save_input_radix;
14200
14201 jit_breakpoint_re_set ();
14202 }
14203
14204 create_overlay_event_breakpoint ();
14205 create_longjmp_master_breakpoint ();
14206 create_std_terminate_master_breakpoint ();
14207 create_exception_master_breakpoint ();
14208
14209 /* Now we can insert. */
14210 update_global_location_list (UGLL_MAY_INSERT);
14211 }
14212 \f
14213 /* Reset the thread number of this breakpoint:
14214
14215 - If the breakpoint is for all threads, leave it as-is.
14216 - Else, reset it to the current thread for inferior_ptid. */
14217 void
14218 breakpoint_re_set_thread (struct breakpoint *b)
14219 {
14220 if (b->thread != -1)
14221 {
14222 if (in_thread_list (inferior_ptid))
14223 b->thread = ptid_to_global_thread_id (inferior_ptid);
14224
14225 /* We're being called after following a fork. The new fork is
14226 selected as current, and unless this was a vfork will have a
14227 different program space from the original thread. Reset that
14228 as well. */
14229 b->loc->pspace = current_program_space;
14230 }
14231 }
14232
14233 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14234 If from_tty is nonzero, it prints a message to that effect,
14235 which ends with a period (no newline). */
14236
14237 void
14238 set_ignore_count (int bptnum, int count, int from_tty)
14239 {
14240 struct breakpoint *b;
14241
14242 if (count < 0)
14243 count = 0;
14244
14245 ALL_BREAKPOINTS (b)
14246 if (b->number == bptnum)
14247 {
14248 if (is_tracepoint (b))
14249 {
14250 if (from_tty && count != 0)
14251 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14252 bptnum);
14253 return;
14254 }
14255
14256 b->ignore_count = count;
14257 if (from_tty)
14258 {
14259 if (count == 0)
14260 printf_filtered (_("Will stop next time "
14261 "breakpoint %d is reached."),
14262 bptnum);
14263 else if (count == 1)
14264 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14265 bptnum);
14266 else
14267 printf_filtered (_("Will ignore next %d "
14268 "crossings of breakpoint %d."),
14269 count, bptnum);
14270 }
14271 observer_notify_breakpoint_modified (b);
14272 return;
14273 }
14274
14275 error (_("No breakpoint number %d."), bptnum);
14276 }
14277
14278 /* Command to set ignore-count of breakpoint N to COUNT. */
14279
14280 static void
14281 ignore_command (char *args, int from_tty)
14282 {
14283 char *p = args;
14284 int num;
14285
14286 if (p == 0)
14287 error_no_arg (_("a breakpoint number"));
14288
14289 num = get_number (&p);
14290 if (num == 0)
14291 error (_("bad breakpoint number: '%s'"), args);
14292 if (*p == 0)
14293 error (_("Second argument (specified ignore-count) is missing."));
14294
14295 set_ignore_count (num,
14296 longest_to_int (value_as_long (parse_and_eval (p))),
14297 from_tty);
14298 if (from_tty)
14299 printf_filtered ("\n");
14300 }
14301 \f
14302 /* Call FUNCTION on each of the breakpoints
14303 whose numbers are given in ARGS. */
14304
14305 static void
14306 map_breakpoint_numbers (const char *args,
14307 gdb::function_view<void (breakpoint *)> function)
14308 {
14309 int num;
14310 struct breakpoint *b, *tmp;
14311
14312 if (args == 0 || *args == '\0')
14313 error_no_arg (_("one or more breakpoint numbers"));
14314
14315 number_or_range_parser parser (args);
14316
14317 while (!parser.finished ())
14318 {
14319 const char *p = parser.cur_tok ();
14320 bool match = false;
14321
14322 num = parser.get_number ();
14323 if (num == 0)
14324 {
14325 warning (_("bad breakpoint number at or near '%s'"), p);
14326 }
14327 else
14328 {
14329 ALL_BREAKPOINTS_SAFE (b, tmp)
14330 if (b->number == num)
14331 {
14332 match = true;
14333 function (b);
14334 break;
14335 }
14336 if (!match)
14337 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14338 }
14339 }
14340 }
14341
14342 static struct bp_location *
14343 find_location_by_number (const char *number)
14344 {
14345 const char *p1;
14346 int bp_num;
14347 int loc_num;
14348 struct breakpoint *b;
14349 struct bp_location *loc;
14350
14351 p1 = number;
14352 bp_num = get_number_trailer (&p1, '.');
14353 if (bp_num == 0 || p1[0] != '.')
14354 error (_("Bad breakpoint number '%s'"), number);
14355
14356 ALL_BREAKPOINTS (b)
14357 if (b->number == bp_num)
14358 {
14359 break;
14360 }
14361
14362 if (!b || b->number != bp_num)
14363 error (_("Bad breakpoint number '%s'"), number);
14364
14365 /* Skip the dot. */
14366 ++p1;
14367 const char *save = p1;
14368 loc_num = get_number (&p1);
14369 if (loc_num == 0)
14370 error (_("Bad breakpoint location number '%s'"), number);
14371
14372 --loc_num;
14373 loc = b->loc;
14374 for (;loc_num && loc; --loc_num, loc = loc->next)
14375 ;
14376 if (!loc)
14377 error (_("Bad breakpoint location number '%s'"), save);
14378
14379 return loc;
14380 }
14381
14382
14383 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14384 If from_tty is nonzero, it prints a message to that effect,
14385 which ends with a period (no newline). */
14386
14387 void
14388 disable_breakpoint (struct breakpoint *bpt)
14389 {
14390 /* Never disable a watchpoint scope breakpoint; we want to
14391 hit them when we leave scope so we can delete both the
14392 watchpoint and its scope breakpoint at that time. */
14393 if (bpt->type == bp_watchpoint_scope)
14394 return;
14395
14396 bpt->enable_state = bp_disabled;
14397
14398 /* Mark breakpoint locations modified. */
14399 mark_breakpoint_modified (bpt);
14400
14401 if (target_supports_enable_disable_tracepoint ()
14402 && current_trace_status ()->running && is_tracepoint (bpt))
14403 {
14404 struct bp_location *location;
14405
14406 for (location = bpt->loc; location; location = location->next)
14407 target_disable_tracepoint (location);
14408 }
14409
14410 update_global_location_list (UGLL_DONT_INSERT);
14411
14412 observer_notify_breakpoint_modified (bpt);
14413 }
14414
14415 static void
14416 disable_command (char *args, int from_tty)
14417 {
14418 if (args == 0)
14419 {
14420 struct breakpoint *bpt;
14421
14422 ALL_BREAKPOINTS (bpt)
14423 if (user_breakpoint_p (bpt))
14424 disable_breakpoint (bpt);
14425 }
14426 else
14427 {
14428 std::string num = extract_arg (&args);
14429
14430 while (!num.empty ())
14431 {
14432 if (num.find ('.') != std::string::npos)
14433 {
14434 struct bp_location *loc = find_location_by_number (num.c_str ());
14435
14436 if (loc)
14437 {
14438 if (loc->enabled)
14439 {
14440 loc->enabled = 0;
14441 mark_breakpoint_location_modified (loc);
14442 }
14443 if (target_supports_enable_disable_tracepoint ()
14444 && current_trace_status ()->running && loc->owner
14445 && is_tracepoint (loc->owner))
14446 target_disable_tracepoint (loc);
14447 }
14448 update_global_location_list (UGLL_DONT_INSERT);
14449 }
14450 else
14451 map_breakpoint_numbers
14452 (num.c_str (), [&] (breakpoint *b)
14453 {
14454 iterate_over_related_breakpoints (b, disable_breakpoint);
14455 });
14456 num = extract_arg (&args);
14457 }
14458 }
14459 }
14460
14461 static void
14462 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14463 int count)
14464 {
14465 int target_resources_ok;
14466
14467 if (bpt->type == bp_hardware_breakpoint)
14468 {
14469 int i;
14470 i = hw_breakpoint_used_count ();
14471 target_resources_ok =
14472 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14473 i + 1, 0);
14474 if (target_resources_ok == 0)
14475 error (_("No hardware breakpoint support in the target."));
14476 else if (target_resources_ok < 0)
14477 error (_("Hardware breakpoints used exceeds limit."));
14478 }
14479
14480 if (is_watchpoint (bpt))
14481 {
14482 /* Initialize it just to avoid a GCC false warning. */
14483 enum enable_state orig_enable_state = bp_disabled;
14484
14485 TRY
14486 {
14487 struct watchpoint *w = (struct watchpoint *) bpt;
14488
14489 orig_enable_state = bpt->enable_state;
14490 bpt->enable_state = bp_enabled;
14491 update_watchpoint (w, 1 /* reparse */);
14492 }
14493 CATCH (e, RETURN_MASK_ALL)
14494 {
14495 bpt->enable_state = orig_enable_state;
14496 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14497 bpt->number);
14498 return;
14499 }
14500 END_CATCH
14501 }
14502
14503 bpt->enable_state = bp_enabled;
14504
14505 /* Mark breakpoint locations modified. */
14506 mark_breakpoint_modified (bpt);
14507
14508 if (target_supports_enable_disable_tracepoint ()
14509 && current_trace_status ()->running && is_tracepoint (bpt))
14510 {
14511 struct bp_location *location;
14512
14513 for (location = bpt->loc; location; location = location->next)
14514 target_enable_tracepoint (location);
14515 }
14516
14517 bpt->disposition = disposition;
14518 bpt->enable_count = count;
14519 update_global_location_list (UGLL_MAY_INSERT);
14520
14521 observer_notify_breakpoint_modified (bpt);
14522 }
14523
14524
14525 void
14526 enable_breakpoint (struct breakpoint *bpt)
14527 {
14528 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14529 }
14530
14531 /* The enable command enables the specified breakpoints (or all defined
14532 breakpoints) so they once again become (or continue to be) effective
14533 in stopping the inferior. */
14534
14535 static void
14536 enable_command (char *args, int from_tty)
14537 {
14538 if (args == 0)
14539 {
14540 struct breakpoint *bpt;
14541
14542 ALL_BREAKPOINTS (bpt)
14543 if (user_breakpoint_p (bpt))
14544 enable_breakpoint (bpt);
14545 }
14546 else
14547 {
14548 std::string num = extract_arg (&args);
14549
14550 while (!num.empty ())
14551 {
14552 if (num.find ('.') != std::string::npos)
14553 {
14554 struct bp_location *loc = find_location_by_number (num.c_str ());
14555
14556 if (loc)
14557 {
14558 if (!loc->enabled)
14559 {
14560 loc->enabled = 1;
14561 mark_breakpoint_location_modified (loc);
14562 }
14563 if (target_supports_enable_disable_tracepoint ()
14564 && current_trace_status ()->running && loc->owner
14565 && is_tracepoint (loc->owner))
14566 target_enable_tracepoint (loc);
14567 }
14568 update_global_location_list (UGLL_MAY_INSERT);
14569 }
14570 else
14571 map_breakpoint_numbers
14572 (num.c_str (), [&] (breakpoint *b)
14573 {
14574 iterate_over_related_breakpoints (b, enable_breakpoint);
14575 });
14576 num = extract_arg (&args);
14577 }
14578 }
14579 }
14580
14581 static void
14582 enable_once_command (const char *args, int from_tty)
14583 {
14584 map_breakpoint_numbers
14585 (args, [&] (breakpoint *b)
14586 {
14587 iterate_over_related_breakpoints
14588 (b, [&] (breakpoint *bpt)
14589 {
14590 enable_breakpoint_disp (bpt, disp_disable, 1);
14591 });
14592 });
14593 }
14594
14595 static void
14596 enable_count_command (const char *args, int from_tty)
14597 {
14598 int count;
14599
14600 if (args == NULL)
14601 error_no_arg (_("hit count"));
14602
14603 count = get_number (&args);
14604
14605 map_breakpoint_numbers
14606 (args, [&] (breakpoint *b)
14607 {
14608 iterate_over_related_breakpoints
14609 (b, [&] (breakpoint *bpt)
14610 {
14611 enable_breakpoint_disp (bpt, disp_disable, count);
14612 });
14613 });
14614 }
14615
14616 static void
14617 enable_delete_command (const char *args, int from_tty)
14618 {
14619 map_breakpoint_numbers
14620 (args, [&] (breakpoint *b)
14621 {
14622 iterate_over_related_breakpoints
14623 (b, [&] (breakpoint *bpt)
14624 {
14625 enable_breakpoint_disp (bpt, disp_del, 1);
14626 });
14627 });
14628 }
14629 \f
14630 static void
14631 set_breakpoint_cmd (char *args, int from_tty)
14632 {
14633 }
14634
14635 static void
14636 show_breakpoint_cmd (char *args, int from_tty)
14637 {
14638 }
14639
14640 /* Invalidate last known value of any hardware watchpoint if
14641 the memory which that value represents has been written to by
14642 GDB itself. */
14643
14644 static void
14645 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14646 CORE_ADDR addr, ssize_t len,
14647 const bfd_byte *data)
14648 {
14649 struct breakpoint *bp;
14650
14651 ALL_BREAKPOINTS (bp)
14652 if (bp->enable_state == bp_enabled
14653 && bp->type == bp_hardware_watchpoint)
14654 {
14655 struct watchpoint *wp = (struct watchpoint *) bp;
14656
14657 if (wp->val_valid && wp->val)
14658 {
14659 struct bp_location *loc;
14660
14661 for (loc = bp->loc; loc != NULL; loc = loc->next)
14662 if (loc->loc_type == bp_loc_hardware_watchpoint
14663 && loc->address + loc->length > addr
14664 && addr + len > loc->address)
14665 {
14666 value_free (wp->val);
14667 wp->val = NULL;
14668 wp->val_valid = 0;
14669 }
14670 }
14671 }
14672 }
14673
14674 /* Create and insert a breakpoint for software single step. */
14675
14676 void
14677 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14678 struct address_space *aspace,
14679 CORE_ADDR next_pc)
14680 {
14681 struct thread_info *tp = inferior_thread ();
14682 struct symtab_and_line sal;
14683 CORE_ADDR pc = next_pc;
14684
14685 if (tp->control.single_step_breakpoints == NULL)
14686 {
14687 tp->control.single_step_breakpoints
14688 = new_single_step_breakpoint (tp->global_num, gdbarch);
14689 }
14690
14691 sal = find_pc_line (pc, 0);
14692 sal.pc = pc;
14693 sal.section = find_pc_overlay (pc);
14694 sal.explicit_pc = 1;
14695 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14696
14697 update_global_location_list (UGLL_INSERT);
14698 }
14699
14700 /* Insert single step breakpoints according to the current state. */
14701
14702 int
14703 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14704 {
14705 struct regcache *regcache = get_current_regcache ();
14706 std::vector<CORE_ADDR> next_pcs;
14707
14708 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14709
14710 if (!next_pcs.empty ())
14711 {
14712 struct frame_info *frame = get_current_frame ();
14713 struct address_space *aspace = get_frame_address_space (frame);
14714
14715 for (CORE_ADDR pc : next_pcs)
14716 insert_single_step_breakpoint (gdbarch, aspace, pc);
14717
14718 return 1;
14719 }
14720 else
14721 return 0;
14722 }
14723
14724 /* See breakpoint.h. */
14725
14726 int
14727 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14728 struct address_space *aspace,
14729 CORE_ADDR pc)
14730 {
14731 struct bp_location *loc;
14732
14733 for (loc = bp->loc; loc != NULL; loc = loc->next)
14734 if (loc->inserted
14735 && breakpoint_location_address_match (loc, aspace, pc))
14736 return 1;
14737
14738 return 0;
14739 }
14740
14741 /* Check whether a software single-step breakpoint is inserted at
14742 PC. */
14743
14744 int
14745 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
14746 CORE_ADDR pc)
14747 {
14748 struct breakpoint *bpt;
14749
14750 ALL_BREAKPOINTS (bpt)
14751 {
14752 if (bpt->type == bp_single_step
14753 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14754 return 1;
14755 }
14756 return 0;
14757 }
14758
14759 /* Tracepoint-specific operations. */
14760
14761 /* Set tracepoint count to NUM. */
14762 static void
14763 set_tracepoint_count (int num)
14764 {
14765 tracepoint_count = num;
14766 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14767 }
14768
14769 static void
14770 trace_command (char *arg_in, int from_tty)
14771 {
14772 const char *arg = arg_in;
14773 struct breakpoint_ops *ops;
14774
14775 event_location_up location = string_to_event_location (&arg,
14776 current_language);
14777 if (location != NULL
14778 && event_location_type (location.get ()) == PROBE_LOCATION)
14779 ops = &tracepoint_probe_breakpoint_ops;
14780 else
14781 ops = &tracepoint_breakpoint_ops;
14782
14783 create_breakpoint (get_current_arch (),
14784 location.get (),
14785 NULL, 0, arg, 1 /* parse arg */,
14786 0 /* tempflag */,
14787 bp_tracepoint /* type_wanted */,
14788 0 /* Ignore count */,
14789 pending_break_support,
14790 ops,
14791 from_tty,
14792 1 /* enabled */,
14793 0 /* internal */, 0);
14794 }
14795
14796 static void
14797 ftrace_command (char *arg_in, int from_tty)
14798 {
14799 const char *arg = arg_in;
14800 event_location_up location = string_to_event_location (&arg,
14801 current_language);
14802 create_breakpoint (get_current_arch (),
14803 location.get (),
14804 NULL, 0, arg, 1 /* parse arg */,
14805 0 /* tempflag */,
14806 bp_fast_tracepoint /* type_wanted */,
14807 0 /* Ignore count */,
14808 pending_break_support,
14809 &tracepoint_breakpoint_ops,
14810 from_tty,
14811 1 /* enabled */,
14812 0 /* internal */, 0);
14813 }
14814
14815 /* strace command implementation. Creates a static tracepoint. */
14816
14817 static void
14818 strace_command (char *arg_in, int from_tty)
14819 {
14820 const char *arg = arg_in;
14821 struct breakpoint_ops *ops;
14822 event_location_up location;
14823 struct cleanup *back_to;
14824
14825 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14826 or with a normal static tracepoint. */
14827 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14828 {
14829 ops = &strace_marker_breakpoint_ops;
14830 location = new_linespec_location (&arg);
14831 }
14832 else
14833 {
14834 ops = &tracepoint_breakpoint_ops;
14835 location = string_to_event_location (&arg, current_language);
14836 }
14837
14838 create_breakpoint (get_current_arch (),
14839 location.get (),
14840 NULL, 0, arg, 1 /* parse arg */,
14841 0 /* tempflag */,
14842 bp_static_tracepoint /* type_wanted */,
14843 0 /* Ignore count */,
14844 pending_break_support,
14845 ops,
14846 from_tty,
14847 1 /* enabled */,
14848 0 /* internal */, 0);
14849 }
14850
14851 /* Set up a fake reader function that gets command lines from a linked
14852 list that was acquired during tracepoint uploading. */
14853
14854 static struct uploaded_tp *this_utp;
14855 static int next_cmd;
14856
14857 static char *
14858 read_uploaded_action (void)
14859 {
14860 char *rslt;
14861
14862 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
14863
14864 next_cmd++;
14865
14866 return rslt;
14867 }
14868
14869 /* Given information about a tracepoint as recorded on a target (which
14870 can be either a live system or a trace file), attempt to create an
14871 equivalent GDB tracepoint. This is not a reliable process, since
14872 the target does not necessarily have all the information used when
14873 the tracepoint was originally defined. */
14874
14875 struct tracepoint *
14876 create_tracepoint_from_upload (struct uploaded_tp *utp)
14877 {
14878 const char *addr_str;
14879 char small_buf[100];
14880 struct tracepoint *tp;
14881
14882 if (utp->at_string)
14883 addr_str = utp->at_string;
14884 else
14885 {
14886 /* In the absence of a source location, fall back to raw
14887 address. Since there is no way to confirm that the address
14888 means the same thing as when the trace was started, warn the
14889 user. */
14890 warning (_("Uploaded tracepoint %d has no "
14891 "source location, using raw address"),
14892 utp->number);
14893 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14894 addr_str = small_buf;
14895 }
14896
14897 /* There's not much we can do with a sequence of bytecodes. */
14898 if (utp->cond && !utp->cond_string)
14899 warning (_("Uploaded tracepoint %d condition "
14900 "has no source form, ignoring it"),
14901 utp->number);
14902
14903 event_location_up location = string_to_event_location (&addr_str,
14904 current_language);
14905 if (!create_breakpoint (get_current_arch (),
14906 location.get (),
14907 utp->cond_string, -1, addr_str,
14908 0 /* parse cond/thread */,
14909 0 /* tempflag */,
14910 utp->type /* type_wanted */,
14911 0 /* Ignore count */,
14912 pending_break_support,
14913 &tracepoint_breakpoint_ops,
14914 0 /* from_tty */,
14915 utp->enabled /* enabled */,
14916 0 /* internal */,
14917 CREATE_BREAKPOINT_FLAGS_INSERTED))
14918 return NULL;
14919
14920 /* Get the tracepoint we just created. */
14921 tp = get_tracepoint (tracepoint_count);
14922 gdb_assert (tp != NULL);
14923
14924 if (utp->pass > 0)
14925 {
14926 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14927 tp->number);
14928
14929 trace_pass_command (small_buf, 0);
14930 }
14931
14932 /* If we have uploaded versions of the original commands, set up a
14933 special-purpose "reader" function and call the usual command line
14934 reader, then pass the result to the breakpoint command-setting
14935 function. */
14936 if (!VEC_empty (char_ptr, utp->cmd_strings))
14937 {
14938 command_line_up cmd_list;
14939
14940 this_utp = utp;
14941 next_cmd = 0;
14942
14943 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
14944
14945 breakpoint_set_commands (tp, std::move (cmd_list));
14946 }
14947 else if (!VEC_empty (char_ptr, utp->actions)
14948 || !VEC_empty (char_ptr, utp->step_actions))
14949 warning (_("Uploaded tracepoint %d actions "
14950 "have no source form, ignoring them"),
14951 utp->number);
14952
14953 /* Copy any status information that might be available. */
14954 tp->hit_count = utp->hit_count;
14955 tp->traceframe_usage = utp->traceframe_usage;
14956
14957 return tp;
14958 }
14959
14960 /* Print information on tracepoint number TPNUM_EXP, or all if
14961 omitted. */
14962
14963 static void
14964 info_tracepoints_command (char *args, int from_tty)
14965 {
14966 struct ui_out *uiout = current_uiout;
14967 int num_printed;
14968
14969 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14970
14971 if (num_printed == 0)
14972 {
14973 if (args == NULL || *args == '\0')
14974 uiout->message ("No tracepoints.\n");
14975 else
14976 uiout->message ("No tracepoint matching '%s'.\n", args);
14977 }
14978
14979 default_collect_info ();
14980 }
14981
14982 /* The 'enable trace' command enables tracepoints.
14983 Not supported by all targets. */
14984 static void
14985 enable_trace_command (char *args, int from_tty)
14986 {
14987 enable_command (args, from_tty);
14988 }
14989
14990 /* The 'disable trace' command disables tracepoints.
14991 Not supported by all targets. */
14992 static void
14993 disable_trace_command (char *args, int from_tty)
14994 {
14995 disable_command (args, from_tty);
14996 }
14997
14998 /* Remove a tracepoint (or all if no argument). */
14999 static void
15000 delete_trace_command (const char *arg, int from_tty)
15001 {
15002 struct breakpoint *b, *b_tmp;
15003
15004 dont_repeat ();
15005
15006 if (arg == 0)
15007 {
15008 int breaks_to_delete = 0;
15009
15010 /* Delete all breakpoints if no argument.
15011 Do not delete internal or call-dummy breakpoints, these
15012 have to be deleted with an explicit breakpoint number
15013 argument. */
15014 ALL_TRACEPOINTS (b)
15015 if (is_tracepoint (b) && user_breakpoint_p (b))
15016 {
15017 breaks_to_delete = 1;
15018 break;
15019 }
15020
15021 /* Ask user only if there are some breakpoints to delete. */
15022 if (!from_tty
15023 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15024 {
15025 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15026 if (is_tracepoint (b) && user_breakpoint_p (b))
15027 delete_breakpoint (b);
15028 }
15029 }
15030 else
15031 map_breakpoint_numbers
15032 (arg, [&] (breakpoint *b)
15033 {
15034 iterate_over_related_breakpoints (b, delete_breakpoint);
15035 });
15036 }
15037
15038 /* Helper function for trace_pass_command. */
15039
15040 static void
15041 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15042 {
15043 tp->pass_count = count;
15044 observer_notify_breakpoint_modified (tp);
15045 if (from_tty)
15046 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15047 tp->number, count);
15048 }
15049
15050 /* Set passcount for tracepoint.
15051
15052 First command argument is passcount, second is tracepoint number.
15053 If tracepoint number omitted, apply to most recently defined.
15054 Also accepts special argument "all". */
15055
15056 static void
15057 trace_pass_command (char *args, int from_tty)
15058 {
15059 struct tracepoint *t1;
15060 unsigned int count;
15061
15062 if (args == 0 || *args == 0)
15063 error (_("passcount command requires an "
15064 "argument (count + optional TP num)"));
15065
15066 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15067
15068 args = skip_spaces (args);
15069 if (*args && strncasecmp (args, "all", 3) == 0)
15070 {
15071 struct breakpoint *b;
15072
15073 args += 3; /* Skip special argument "all". */
15074 if (*args)
15075 error (_("Junk at end of arguments."));
15076
15077 ALL_TRACEPOINTS (b)
15078 {
15079 t1 = (struct tracepoint *) b;
15080 trace_pass_set_count (t1, count, from_tty);
15081 }
15082 }
15083 else if (*args == '\0')
15084 {
15085 t1 = get_tracepoint_by_number (&args, NULL);
15086 if (t1)
15087 trace_pass_set_count (t1, count, from_tty);
15088 }
15089 else
15090 {
15091 number_or_range_parser parser (args);
15092 while (!parser.finished ())
15093 {
15094 t1 = get_tracepoint_by_number (&args, &parser);
15095 if (t1)
15096 trace_pass_set_count (t1, count, from_tty);
15097 }
15098 }
15099 }
15100
15101 struct tracepoint *
15102 get_tracepoint (int num)
15103 {
15104 struct breakpoint *t;
15105
15106 ALL_TRACEPOINTS (t)
15107 if (t->number == num)
15108 return (struct tracepoint *) t;
15109
15110 return NULL;
15111 }
15112
15113 /* Find the tracepoint with the given target-side number (which may be
15114 different from the tracepoint number after disconnecting and
15115 reconnecting). */
15116
15117 struct tracepoint *
15118 get_tracepoint_by_number_on_target (int num)
15119 {
15120 struct breakpoint *b;
15121
15122 ALL_TRACEPOINTS (b)
15123 {
15124 struct tracepoint *t = (struct tracepoint *) b;
15125
15126 if (t->number_on_target == num)
15127 return t;
15128 }
15129
15130 return NULL;
15131 }
15132
15133 /* Utility: parse a tracepoint number and look it up in the list.
15134 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15135 If the argument is missing, the most recent tracepoint
15136 (tracepoint_count) is returned. */
15137
15138 struct tracepoint *
15139 get_tracepoint_by_number (char **arg,
15140 number_or_range_parser *parser)
15141 {
15142 struct breakpoint *t;
15143 int tpnum;
15144 char *instring = arg == NULL ? NULL : *arg;
15145
15146 if (parser != NULL)
15147 {
15148 gdb_assert (!parser->finished ());
15149 tpnum = parser->get_number ();
15150 }
15151 else if (arg == NULL || *arg == NULL || ! **arg)
15152 tpnum = tracepoint_count;
15153 else
15154 tpnum = get_number (arg);
15155
15156 if (tpnum <= 0)
15157 {
15158 if (instring && *instring)
15159 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15160 instring);
15161 else
15162 printf_filtered (_("No previous tracepoint\n"));
15163 return NULL;
15164 }
15165
15166 ALL_TRACEPOINTS (t)
15167 if (t->number == tpnum)
15168 {
15169 return (struct tracepoint *) t;
15170 }
15171
15172 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15173 return NULL;
15174 }
15175
15176 void
15177 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15178 {
15179 if (b->thread != -1)
15180 fprintf_unfiltered (fp, " thread %d", b->thread);
15181
15182 if (b->task != 0)
15183 fprintf_unfiltered (fp, " task %d", b->task);
15184
15185 fprintf_unfiltered (fp, "\n");
15186 }
15187
15188 /* Save information on user settable breakpoints (watchpoints, etc) to
15189 a new script file named FILENAME. If FILTER is non-NULL, call it
15190 on each breakpoint and only include the ones for which it returns
15191 non-zero. */
15192
15193 static void
15194 save_breakpoints (const char *filename, int from_tty,
15195 int (*filter) (const struct breakpoint *))
15196 {
15197 struct breakpoint *tp;
15198 int any = 0;
15199 int extra_trace_bits = 0;
15200
15201 if (filename == 0 || *filename == 0)
15202 error (_("Argument required (file name in which to save)"));
15203
15204 /* See if we have anything to save. */
15205 ALL_BREAKPOINTS (tp)
15206 {
15207 /* Skip internal and momentary breakpoints. */
15208 if (!user_breakpoint_p (tp))
15209 continue;
15210
15211 /* If we have a filter, only save the breakpoints it accepts. */
15212 if (filter && !filter (tp))
15213 continue;
15214
15215 any = 1;
15216
15217 if (is_tracepoint (tp))
15218 {
15219 extra_trace_bits = 1;
15220
15221 /* We can stop searching. */
15222 break;
15223 }
15224 }
15225
15226 if (!any)
15227 {
15228 warning (_("Nothing to save."));
15229 return;
15230 }
15231
15232 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15233
15234 stdio_file fp;
15235
15236 if (!fp.open (expanded_filename.get (), "w"))
15237 error (_("Unable to open file '%s' for saving (%s)"),
15238 expanded_filename.get (), safe_strerror (errno));
15239
15240 if (extra_trace_bits)
15241 save_trace_state_variables (&fp);
15242
15243 ALL_BREAKPOINTS (tp)
15244 {
15245 /* Skip internal and momentary breakpoints. */
15246 if (!user_breakpoint_p (tp))
15247 continue;
15248
15249 /* If we have a filter, only save the breakpoints it accepts. */
15250 if (filter && !filter (tp))
15251 continue;
15252
15253 tp->ops->print_recreate (tp, &fp);
15254
15255 /* Note, we can't rely on tp->number for anything, as we can't
15256 assume the recreated breakpoint numbers will match. Use $bpnum
15257 instead. */
15258
15259 if (tp->cond_string)
15260 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15261
15262 if (tp->ignore_count)
15263 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15264
15265 if (tp->type != bp_dprintf && tp->commands)
15266 {
15267 fp.puts (" commands\n");
15268
15269 current_uiout->redirect (&fp);
15270 TRY
15271 {
15272 print_command_lines (current_uiout, tp->commands.get (), 2);
15273 }
15274 CATCH (ex, RETURN_MASK_ALL)
15275 {
15276 current_uiout->redirect (NULL);
15277 throw_exception (ex);
15278 }
15279 END_CATCH
15280
15281 current_uiout->redirect (NULL);
15282 fp.puts (" end\n");
15283 }
15284
15285 if (tp->enable_state == bp_disabled)
15286 fp.puts ("disable $bpnum\n");
15287
15288 /* If this is a multi-location breakpoint, check if the locations
15289 should be individually disabled. Watchpoint locations are
15290 special, and not user visible. */
15291 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15292 {
15293 struct bp_location *loc;
15294 int n = 1;
15295
15296 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15297 if (!loc->enabled)
15298 fp.printf ("disable $bpnum.%d\n", n);
15299 }
15300 }
15301
15302 if (extra_trace_bits && *default_collect)
15303 fp.printf ("set default-collect %s\n", default_collect);
15304
15305 if (from_tty)
15306 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15307 }
15308
15309 /* The `save breakpoints' command. */
15310
15311 static void
15312 save_breakpoints_command (const char *args, int from_tty)
15313 {
15314 save_breakpoints (args, from_tty, NULL);
15315 }
15316
15317 /* The `save tracepoints' command. */
15318
15319 static void
15320 save_tracepoints_command (const char *args, int from_tty)
15321 {
15322 save_breakpoints (args, from_tty, is_tracepoint);
15323 }
15324
15325 /* Create a vector of all tracepoints. */
15326
15327 VEC(breakpoint_p) *
15328 all_tracepoints (void)
15329 {
15330 VEC(breakpoint_p) *tp_vec = 0;
15331 struct breakpoint *tp;
15332
15333 ALL_TRACEPOINTS (tp)
15334 {
15335 VEC_safe_push (breakpoint_p, tp_vec, tp);
15336 }
15337
15338 return tp_vec;
15339 }
15340
15341 \f
15342 /* This help string is used to consolidate all the help string for specifying
15343 locations used by several commands. */
15344
15345 #define LOCATION_HELP_STRING \
15346 "Linespecs are colon-separated lists of location parameters, such as\n\
15347 source filename, function name, label name, and line number.\n\
15348 Example: To specify the start of a label named \"the_top\" in the\n\
15349 function \"fact\" in the file \"factorial.c\", use\n\
15350 \"factorial.c:fact:the_top\".\n\
15351 \n\
15352 Address locations begin with \"*\" and specify an exact address in the\n\
15353 program. Example: To specify the fourth byte past the start function\n\
15354 \"main\", use \"*main + 4\".\n\
15355 \n\
15356 Explicit locations are similar to linespecs but use an option/argument\n\
15357 syntax to specify location parameters.\n\
15358 Example: To specify the start of the label named \"the_top\" in the\n\
15359 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15360 -function fact -label the_top\".\n"
15361
15362 /* This help string is used for the break, hbreak, tbreak and thbreak
15363 commands. It is defined as a macro to prevent duplication.
15364 COMMAND should be a string constant containing the name of the
15365 command. */
15366
15367 #define BREAK_ARGS_HELP(command) \
15368 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15369 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15370 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15371 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15372 `-probe-dtrace' (for a DTrace probe).\n\
15373 LOCATION may be a linespec, address, or explicit location as described\n\
15374 below.\n\
15375 \n\
15376 With no LOCATION, uses current execution address of the selected\n\
15377 stack frame. This is useful for breaking on return to a stack frame.\n\
15378 \n\
15379 THREADNUM is the number from \"info threads\".\n\
15380 CONDITION is a boolean expression.\n\
15381 \n" LOCATION_HELP_STRING "\n\
15382 Multiple breakpoints at one place are permitted, and useful if their\n\
15383 conditions are different.\n\
15384 \n\
15385 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15386
15387 /* List of subcommands for "catch". */
15388 static struct cmd_list_element *catch_cmdlist;
15389
15390 /* List of subcommands for "tcatch". */
15391 static struct cmd_list_element *tcatch_cmdlist;
15392
15393 void
15394 add_catch_command (const char *name, const char *docstring,
15395 cmd_sfunc_ftype *sfunc,
15396 completer_ftype *completer,
15397 void *user_data_catch,
15398 void *user_data_tcatch)
15399 {
15400 struct cmd_list_element *command;
15401
15402 command = add_cmd (name, class_breakpoint, docstring,
15403 &catch_cmdlist);
15404 set_cmd_sfunc (command, sfunc);
15405 set_cmd_context (command, user_data_catch);
15406 set_cmd_completer (command, completer);
15407
15408 command = add_cmd (name, class_breakpoint, docstring,
15409 &tcatch_cmdlist);
15410 set_cmd_sfunc (command, sfunc);
15411 set_cmd_context (command, user_data_tcatch);
15412 set_cmd_completer (command, completer);
15413 }
15414
15415 static void
15416 save_command (char *arg, int from_tty)
15417 {
15418 printf_unfiltered (_("\"save\" must be followed by "
15419 "the name of a save subcommand.\n"));
15420 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15421 }
15422
15423 struct breakpoint *
15424 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15425 void *data)
15426 {
15427 struct breakpoint *b, *b_tmp;
15428
15429 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15430 {
15431 if ((*callback) (b, data))
15432 return b;
15433 }
15434
15435 return NULL;
15436 }
15437
15438 /* Zero if any of the breakpoint's locations could be a location where
15439 functions have been inlined, nonzero otherwise. */
15440
15441 static int
15442 is_non_inline_function (struct breakpoint *b)
15443 {
15444 /* The shared library event breakpoint is set on the address of a
15445 non-inline function. */
15446 if (b->type == bp_shlib_event)
15447 return 1;
15448
15449 return 0;
15450 }
15451
15452 /* Nonzero if the specified PC cannot be a location where functions
15453 have been inlined. */
15454
15455 int
15456 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15457 const struct target_waitstatus *ws)
15458 {
15459 struct breakpoint *b;
15460 struct bp_location *bl;
15461
15462 ALL_BREAKPOINTS (b)
15463 {
15464 if (!is_non_inline_function (b))
15465 continue;
15466
15467 for (bl = b->loc; bl != NULL; bl = bl->next)
15468 {
15469 if (!bl->shlib_disabled
15470 && bpstat_check_location (bl, aspace, pc, ws))
15471 return 1;
15472 }
15473 }
15474
15475 return 0;
15476 }
15477
15478 /* Remove any references to OBJFILE which is going to be freed. */
15479
15480 void
15481 breakpoint_free_objfile (struct objfile *objfile)
15482 {
15483 struct bp_location **locp, *loc;
15484
15485 ALL_BP_LOCATIONS (loc, locp)
15486 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15487 loc->symtab = NULL;
15488 }
15489
15490 void
15491 initialize_breakpoint_ops (void)
15492 {
15493 static int initialized = 0;
15494
15495 struct breakpoint_ops *ops;
15496
15497 if (initialized)
15498 return;
15499 initialized = 1;
15500
15501 /* The breakpoint_ops structure to be inherit by all kinds of
15502 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15503 internal and momentary breakpoints, etc.). */
15504 ops = &bkpt_base_breakpoint_ops;
15505 *ops = base_breakpoint_ops;
15506 ops->re_set = bkpt_re_set;
15507 ops->insert_location = bkpt_insert_location;
15508 ops->remove_location = bkpt_remove_location;
15509 ops->breakpoint_hit = bkpt_breakpoint_hit;
15510 ops->create_sals_from_location = bkpt_create_sals_from_location;
15511 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15512 ops->decode_location = bkpt_decode_location;
15513
15514 /* The breakpoint_ops structure to be used in regular breakpoints. */
15515 ops = &bkpt_breakpoint_ops;
15516 *ops = bkpt_base_breakpoint_ops;
15517 ops->re_set = bkpt_re_set;
15518 ops->resources_needed = bkpt_resources_needed;
15519 ops->print_it = bkpt_print_it;
15520 ops->print_mention = bkpt_print_mention;
15521 ops->print_recreate = bkpt_print_recreate;
15522
15523 /* Ranged breakpoints. */
15524 ops = &ranged_breakpoint_ops;
15525 *ops = bkpt_breakpoint_ops;
15526 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15527 ops->resources_needed = resources_needed_ranged_breakpoint;
15528 ops->print_it = print_it_ranged_breakpoint;
15529 ops->print_one = print_one_ranged_breakpoint;
15530 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15531 ops->print_mention = print_mention_ranged_breakpoint;
15532 ops->print_recreate = print_recreate_ranged_breakpoint;
15533
15534 /* Internal breakpoints. */
15535 ops = &internal_breakpoint_ops;
15536 *ops = bkpt_base_breakpoint_ops;
15537 ops->re_set = internal_bkpt_re_set;
15538 ops->check_status = internal_bkpt_check_status;
15539 ops->print_it = internal_bkpt_print_it;
15540 ops->print_mention = internal_bkpt_print_mention;
15541
15542 /* Momentary breakpoints. */
15543 ops = &momentary_breakpoint_ops;
15544 *ops = bkpt_base_breakpoint_ops;
15545 ops->re_set = momentary_bkpt_re_set;
15546 ops->check_status = momentary_bkpt_check_status;
15547 ops->print_it = momentary_bkpt_print_it;
15548 ops->print_mention = momentary_bkpt_print_mention;
15549
15550 /* Probe breakpoints. */
15551 ops = &bkpt_probe_breakpoint_ops;
15552 *ops = bkpt_breakpoint_ops;
15553 ops->insert_location = bkpt_probe_insert_location;
15554 ops->remove_location = bkpt_probe_remove_location;
15555 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15556 ops->decode_location = bkpt_probe_decode_location;
15557
15558 /* Watchpoints. */
15559 ops = &watchpoint_breakpoint_ops;
15560 *ops = base_breakpoint_ops;
15561 ops->re_set = re_set_watchpoint;
15562 ops->insert_location = insert_watchpoint;
15563 ops->remove_location = remove_watchpoint;
15564 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15565 ops->check_status = check_status_watchpoint;
15566 ops->resources_needed = resources_needed_watchpoint;
15567 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15568 ops->print_it = print_it_watchpoint;
15569 ops->print_mention = print_mention_watchpoint;
15570 ops->print_recreate = print_recreate_watchpoint;
15571 ops->explains_signal = explains_signal_watchpoint;
15572
15573 /* Masked watchpoints. */
15574 ops = &masked_watchpoint_breakpoint_ops;
15575 *ops = watchpoint_breakpoint_ops;
15576 ops->insert_location = insert_masked_watchpoint;
15577 ops->remove_location = remove_masked_watchpoint;
15578 ops->resources_needed = resources_needed_masked_watchpoint;
15579 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15580 ops->print_it = print_it_masked_watchpoint;
15581 ops->print_one_detail = print_one_detail_masked_watchpoint;
15582 ops->print_mention = print_mention_masked_watchpoint;
15583 ops->print_recreate = print_recreate_masked_watchpoint;
15584
15585 /* Tracepoints. */
15586 ops = &tracepoint_breakpoint_ops;
15587 *ops = base_breakpoint_ops;
15588 ops->re_set = tracepoint_re_set;
15589 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15590 ops->print_one_detail = tracepoint_print_one_detail;
15591 ops->print_mention = tracepoint_print_mention;
15592 ops->print_recreate = tracepoint_print_recreate;
15593 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15594 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15595 ops->decode_location = tracepoint_decode_location;
15596
15597 /* Probe tracepoints. */
15598 ops = &tracepoint_probe_breakpoint_ops;
15599 *ops = tracepoint_breakpoint_ops;
15600 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15601 ops->decode_location = tracepoint_probe_decode_location;
15602
15603 /* Static tracepoints with marker (`-m'). */
15604 ops = &strace_marker_breakpoint_ops;
15605 *ops = tracepoint_breakpoint_ops;
15606 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15607 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15608 ops->decode_location = strace_marker_decode_location;
15609
15610 /* Fork catchpoints. */
15611 ops = &catch_fork_breakpoint_ops;
15612 *ops = base_breakpoint_ops;
15613 ops->insert_location = insert_catch_fork;
15614 ops->remove_location = remove_catch_fork;
15615 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15616 ops->print_it = print_it_catch_fork;
15617 ops->print_one = print_one_catch_fork;
15618 ops->print_mention = print_mention_catch_fork;
15619 ops->print_recreate = print_recreate_catch_fork;
15620
15621 /* Vfork catchpoints. */
15622 ops = &catch_vfork_breakpoint_ops;
15623 *ops = base_breakpoint_ops;
15624 ops->insert_location = insert_catch_vfork;
15625 ops->remove_location = remove_catch_vfork;
15626 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15627 ops->print_it = print_it_catch_vfork;
15628 ops->print_one = print_one_catch_vfork;
15629 ops->print_mention = print_mention_catch_vfork;
15630 ops->print_recreate = print_recreate_catch_vfork;
15631
15632 /* Exec catchpoints. */
15633 ops = &catch_exec_breakpoint_ops;
15634 *ops = base_breakpoint_ops;
15635 ops->insert_location = insert_catch_exec;
15636 ops->remove_location = remove_catch_exec;
15637 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15638 ops->print_it = print_it_catch_exec;
15639 ops->print_one = print_one_catch_exec;
15640 ops->print_mention = print_mention_catch_exec;
15641 ops->print_recreate = print_recreate_catch_exec;
15642
15643 /* Solib-related catchpoints. */
15644 ops = &catch_solib_breakpoint_ops;
15645 *ops = base_breakpoint_ops;
15646 ops->insert_location = insert_catch_solib;
15647 ops->remove_location = remove_catch_solib;
15648 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15649 ops->check_status = check_status_catch_solib;
15650 ops->print_it = print_it_catch_solib;
15651 ops->print_one = print_one_catch_solib;
15652 ops->print_mention = print_mention_catch_solib;
15653 ops->print_recreate = print_recreate_catch_solib;
15654
15655 ops = &dprintf_breakpoint_ops;
15656 *ops = bkpt_base_breakpoint_ops;
15657 ops->re_set = dprintf_re_set;
15658 ops->resources_needed = bkpt_resources_needed;
15659 ops->print_it = bkpt_print_it;
15660 ops->print_mention = bkpt_print_mention;
15661 ops->print_recreate = dprintf_print_recreate;
15662 ops->after_condition_true = dprintf_after_condition_true;
15663 ops->breakpoint_hit = dprintf_breakpoint_hit;
15664 }
15665
15666 /* Chain containing all defined "enable breakpoint" subcommands. */
15667
15668 static struct cmd_list_element *enablebreaklist = NULL;
15669
15670 void
15671 _initialize_breakpoint (void)
15672 {
15673 struct cmd_list_element *c;
15674
15675 initialize_breakpoint_ops ();
15676
15677 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
15678 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
15679 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
15680
15681 breakpoint_objfile_key
15682 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
15683
15684 breakpoint_chain = 0;
15685 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15686 before a breakpoint is set. */
15687 breakpoint_count = 0;
15688
15689 tracepoint_count = 0;
15690
15691 add_com ("ignore", class_breakpoint, ignore_command, _("\
15692 Set ignore-count of breakpoint number N to COUNT.\n\
15693 Usage is `ignore N COUNT'."));
15694
15695 add_com ("commands", class_breakpoint, commands_command, _("\
15696 Set commands to be executed when the given breakpoints are hit.\n\
15697 Give a space-separated breakpoint list as argument after \"commands\".\n\
15698 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15699 (e.g. `5-7').\n\
15700 With no argument, the targeted breakpoint is the last one set.\n\
15701 The commands themselves follow starting on the next line.\n\
15702 Type a line containing \"end\" to indicate the end of them.\n\
15703 Give \"silent\" as the first line to make the breakpoint silent;\n\
15704 then no output is printed when it is hit, except what the commands print."));
15705
15706 c = add_com ("condition", class_breakpoint, condition_command, _("\
15707 Specify breakpoint number N to break only if COND is true.\n\
15708 Usage is `condition N COND', where N is an integer and COND is an\n\
15709 expression to be evaluated whenever breakpoint N is reached."));
15710 set_cmd_completer (c, condition_completer);
15711
15712 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15713 Set a temporary breakpoint.\n\
15714 Like \"break\" except the breakpoint is only temporary,\n\
15715 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15716 by using \"enable delete\" on the breakpoint number.\n\
15717 \n"
15718 BREAK_ARGS_HELP ("tbreak")));
15719 set_cmd_completer (c, location_completer);
15720
15721 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15722 Set a hardware assisted breakpoint.\n\
15723 Like \"break\" except the breakpoint requires hardware support,\n\
15724 some target hardware may not have this support.\n\
15725 \n"
15726 BREAK_ARGS_HELP ("hbreak")));
15727 set_cmd_completer (c, location_completer);
15728
15729 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15730 Set a temporary hardware assisted breakpoint.\n\
15731 Like \"hbreak\" except the breakpoint is only temporary,\n\
15732 so it will be deleted when hit.\n\
15733 \n"
15734 BREAK_ARGS_HELP ("thbreak")));
15735 set_cmd_completer (c, location_completer);
15736
15737 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15738 Enable some breakpoints.\n\
15739 Give breakpoint numbers (separated by spaces) as arguments.\n\
15740 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15741 This is used to cancel the effect of the \"disable\" command.\n\
15742 With a subcommand you can enable temporarily."),
15743 &enablelist, "enable ", 1, &cmdlist);
15744
15745 add_com_alias ("en", "enable", class_breakpoint, 1);
15746
15747 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15748 Enable some breakpoints.\n\
15749 Give breakpoint numbers (separated by spaces) as arguments.\n\
15750 This is used to cancel the effect of the \"disable\" command.\n\
15751 May be abbreviated to simply \"enable\".\n"),
15752 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15753
15754 add_cmd ("once", no_class, enable_once_command, _("\
15755 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15756 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15757 &enablebreaklist);
15758
15759 add_cmd ("delete", no_class, enable_delete_command, _("\
15760 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15761 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15762 &enablebreaklist);
15763
15764 add_cmd ("count", no_class, enable_count_command, _("\
15765 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15766 If a breakpoint is hit while enabled in this fashion,\n\
15767 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15768 &enablebreaklist);
15769
15770 add_cmd ("delete", no_class, enable_delete_command, _("\
15771 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15772 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15773 &enablelist);
15774
15775 add_cmd ("once", no_class, enable_once_command, _("\
15776 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15777 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15778 &enablelist);
15779
15780 add_cmd ("count", no_class, enable_count_command, _("\
15781 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15782 If a breakpoint is hit while enabled in this fashion,\n\
15783 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15784 &enablelist);
15785
15786 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15787 Disable some breakpoints.\n\
15788 Arguments are breakpoint numbers with spaces in between.\n\
15789 To disable all breakpoints, give no argument.\n\
15790 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15791 &disablelist, "disable ", 1, &cmdlist);
15792 add_com_alias ("dis", "disable", class_breakpoint, 1);
15793 add_com_alias ("disa", "disable", class_breakpoint, 1);
15794
15795 add_cmd ("breakpoints", class_alias, disable_command, _("\
15796 Disable some breakpoints.\n\
15797 Arguments are breakpoint numbers with spaces in between.\n\
15798 To disable all breakpoints, give no argument.\n\
15799 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15800 This command may be abbreviated \"disable\"."),
15801 &disablelist);
15802
15803 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15804 Delete some breakpoints or auto-display expressions.\n\
15805 Arguments are breakpoint numbers with spaces in between.\n\
15806 To delete all breakpoints, give no argument.\n\
15807 \n\
15808 Also a prefix command for deletion of other GDB objects.\n\
15809 The \"unset\" command is also an alias for \"delete\"."),
15810 &deletelist, "delete ", 1, &cmdlist);
15811 add_com_alias ("d", "delete", class_breakpoint, 1);
15812 add_com_alias ("del", "delete", class_breakpoint, 1);
15813
15814 add_cmd ("breakpoints", class_alias, delete_command, _("\
15815 Delete some breakpoints or auto-display expressions.\n\
15816 Arguments are breakpoint numbers with spaces in between.\n\
15817 To delete all breakpoints, give no argument.\n\
15818 This command may be abbreviated \"delete\"."),
15819 &deletelist);
15820
15821 add_com ("clear", class_breakpoint, clear_command, _("\
15822 Clear breakpoint at specified location.\n\
15823 Argument may be a linespec, explicit, or address location as described below.\n\
15824 \n\
15825 With no argument, clears all breakpoints in the line that the selected frame\n\
15826 is executing in.\n"
15827 "\n" LOCATION_HELP_STRING "\n\
15828 See also the \"delete\" command which clears breakpoints by number."));
15829 add_com_alias ("cl", "clear", class_breakpoint, 1);
15830
15831 c = add_com ("break", class_breakpoint, break_command, _("\
15832 Set breakpoint at specified location.\n"
15833 BREAK_ARGS_HELP ("break")));
15834 set_cmd_completer (c, location_completer);
15835
15836 add_com_alias ("b", "break", class_run, 1);
15837 add_com_alias ("br", "break", class_run, 1);
15838 add_com_alias ("bre", "break", class_run, 1);
15839 add_com_alias ("brea", "break", class_run, 1);
15840
15841 if (dbx_commands)
15842 {
15843 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15844 Break in function/address or break at a line in the current file."),
15845 &stoplist, "stop ", 1, &cmdlist);
15846 add_cmd ("in", class_breakpoint, stopin_command,
15847 _("Break in function or address."), &stoplist);
15848 add_cmd ("at", class_breakpoint, stopat_command,
15849 _("Break at a line in the current file."), &stoplist);
15850 add_com ("status", class_info, info_breakpoints_command, _("\
15851 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15852 The \"Type\" column indicates one of:\n\
15853 \tbreakpoint - normal breakpoint\n\
15854 \twatchpoint - watchpoint\n\
15855 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15856 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15857 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15858 address and file/line number respectively.\n\
15859 \n\
15860 Convenience variable \"$_\" and default examine address for \"x\"\n\
15861 are set to the address of the last breakpoint listed unless the command\n\
15862 is prefixed with \"server \".\n\n\
15863 Convenience variable \"$bpnum\" contains the number of the last\n\
15864 breakpoint set."));
15865 }
15866
15867 add_info ("breakpoints", info_breakpoints_command, _("\
15868 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15869 The \"Type\" column indicates one of:\n\
15870 \tbreakpoint - normal breakpoint\n\
15871 \twatchpoint - watchpoint\n\
15872 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15873 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15874 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15875 address and file/line number respectively.\n\
15876 \n\
15877 Convenience variable \"$_\" and default examine address for \"x\"\n\
15878 are set to the address of the last breakpoint listed unless the command\n\
15879 is prefixed with \"server \".\n\n\
15880 Convenience variable \"$bpnum\" contains the number of the last\n\
15881 breakpoint set."));
15882
15883 add_info_alias ("b", "breakpoints", 1);
15884
15885 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15886 Status of all breakpoints, or breakpoint number NUMBER.\n\
15887 The \"Type\" column indicates one of:\n\
15888 \tbreakpoint - normal breakpoint\n\
15889 \twatchpoint - watchpoint\n\
15890 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15891 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15892 \tuntil - internal breakpoint used by the \"until\" command\n\
15893 \tfinish - internal breakpoint used by the \"finish\" command\n\
15894 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15895 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15896 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15897 address and file/line number respectively.\n\
15898 \n\
15899 Convenience variable \"$_\" and default examine address for \"x\"\n\
15900 are set to the address of the last breakpoint listed unless the command\n\
15901 is prefixed with \"server \".\n\n\
15902 Convenience variable \"$bpnum\" contains the number of the last\n\
15903 breakpoint set."),
15904 &maintenanceinfolist);
15905
15906 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15907 Set catchpoints to catch events."),
15908 &catch_cmdlist, "catch ",
15909 0/*allow-unknown*/, &cmdlist);
15910
15911 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15912 Set temporary catchpoints to catch events."),
15913 &tcatch_cmdlist, "tcatch ",
15914 0/*allow-unknown*/, &cmdlist);
15915
15916 add_catch_command ("fork", _("Catch calls to fork."),
15917 catch_fork_command_1,
15918 NULL,
15919 (void *) (uintptr_t) catch_fork_permanent,
15920 (void *) (uintptr_t) catch_fork_temporary);
15921 add_catch_command ("vfork", _("Catch calls to vfork."),
15922 catch_fork_command_1,
15923 NULL,
15924 (void *) (uintptr_t) catch_vfork_permanent,
15925 (void *) (uintptr_t) catch_vfork_temporary);
15926 add_catch_command ("exec", _("Catch calls to exec."),
15927 catch_exec_command_1,
15928 NULL,
15929 CATCH_PERMANENT,
15930 CATCH_TEMPORARY);
15931 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15932 Usage: catch load [REGEX]\n\
15933 If REGEX is given, only stop for libraries matching the regular expression."),
15934 catch_load_command_1,
15935 NULL,
15936 CATCH_PERMANENT,
15937 CATCH_TEMPORARY);
15938 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15939 Usage: catch unload [REGEX]\n\
15940 If REGEX is given, only stop for libraries matching the regular expression."),
15941 catch_unload_command_1,
15942 NULL,
15943 CATCH_PERMANENT,
15944 CATCH_TEMPORARY);
15945
15946 c = add_com ("watch", class_breakpoint, watch_command, _("\
15947 Set a watchpoint for an expression.\n\
15948 Usage: watch [-l|-location] EXPRESSION\n\
15949 A watchpoint stops execution of your program whenever the value of\n\
15950 an expression changes.\n\
15951 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15952 the memory to which it refers."));
15953 set_cmd_completer (c, expression_completer);
15954
15955 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15956 Set a read watchpoint for an expression.\n\
15957 Usage: rwatch [-l|-location] EXPRESSION\n\
15958 A watchpoint stops execution of your program whenever the value of\n\
15959 an expression is read.\n\
15960 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15961 the memory to which it refers."));
15962 set_cmd_completer (c, expression_completer);
15963
15964 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15965 Set a watchpoint for an expression.\n\
15966 Usage: awatch [-l|-location] EXPRESSION\n\
15967 A watchpoint stops execution of your program whenever the value of\n\
15968 an expression is either read or written.\n\
15969 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15970 the memory to which it refers."));
15971 set_cmd_completer (c, expression_completer);
15972
15973 add_info ("watchpoints", info_watchpoints_command, _("\
15974 Status of specified watchpoints (all watchpoints if no argument)."));
15975
15976 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15977 respond to changes - contrary to the description. */
15978 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15979 &can_use_hw_watchpoints, _("\
15980 Set debugger's willingness to use watchpoint hardware."), _("\
15981 Show debugger's willingness to use watchpoint hardware."), _("\
15982 If zero, gdb will not use hardware for new watchpoints, even if\n\
15983 such is available. (However, any hardware watchpoints that were\n\
15984 created before setting this to nonzero, will continue to use watchpoint\n\
15985 hardware.)"),
15986 NULL,
15987 show_can_use_hw_watchpoints,
15988 &setlist, &showlist);
15989
15990 can_use_hw_watchpoints = 1;
15991
15992 /* Tracepoint manipulation commands. */
15993
15994 c = add_com ("trace", class_breakpoint, trace_command, _("\
15995 Set a tracepoint at specified location.\n\
15996 \n"
15997 BREAK_ARGS_HELP ("trace") "\n\
15998 Do \"help tracepoints\" for info on other tracepoint commands."));
15999 set_cmd_completer (c, location_completer);
16000
16001 add_com_alias ("tp", "trace", class_alias, 0);
16002 add_com_alias ("tr", "trace", class_alias, 1);
16003 add_com_alias ("tra", "trace", class_alias, 1);
16004 add_com_alias ("trac", "trace", class_alias, 1);
16005
16006 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16007 Set a fast tracepoint at specified location.\n\
16008 \n"
16009 BREAK_ARGS_HELP ("ftrace") "\n\
16010 Do \"help tracepoints\" for info on other tracepoint commands."));
16011 set_cmd_completer (c, location_completer);
16012
16013 c = add_com ("strace", class_breakpoint, strace_command, _("\
16014 Set a static tracepoint at location or marker.\n\
16015 \n\
16016 strace [LOCATION] [if CONDITION]\n\
16017 LOCATION may be a linespec, explicit, or address location (described below) \n\
16018 or -m MARKER_ID.\n\n\
16019 If a marker id is specified, probe the marker with that name. With\n\
16020 no LOCATION, uses current execution address of the selected stack frame.\n\
16021 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16022 This collects arbitrary user data passed in the probe point call to the\n\
16023 tracing library. You can inspect it when analyzing the trace buffer,\n\
16024 by printing the $_sdata variable like any other convenience variable.\n\
16025 \n\
16026 CONDITION is a boolean expression.\n\
16027 \n" LOCATION_HELP_STRING "\n\
16028 Multiple tracepoints at one place are permitted, and useful if their\n\
16029 conditions are different.\n\
16030 \n\
16031 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16032 Do \"help tracepoints\" for info on other tracepoint commands."));
16033 set_cmd_completer (c, location_completer);
16034
16035 add_info ("tracepoints", info_tracepoints_command, _("\
16036 Status of specified tracepoints (all tracepoints if no argument).\n\
16037 Convenience variable \"$tpnum\" contains the number of the\n\
16038 last tracepoint set."));
16039
16040 add_info_alias ("tp", "tracepoints", 1);
16041
16042 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16043 Delete specified tracepoints.\n\
16044 Arguments are tracepoint numbers, separated by spaces.\n\
16045 No argument means delete all tracepoints."),
16046 &deletelist);
16047 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16048
16049 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16050 Disable specified tracepoints.\n\
16051 Arguments are tracepoint numbers, separated by spaces.\n\
16052 No argument means disable all tracepoints."),
16053 &disablelist);
16054 deprecate_cmd (c, "disable");
16055
16056 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16057 Enable specified tracepoints.\n\
16058 Arguments are tracepoint numbers, separated by spaces.\n\
16059 No argument means enable all tracepoints."),
16060 &enablelist);
16061 deprecate_cmd (c, "enable");
16062
16063 add_com ("passcount", class_trace, trace_pass_command, _("\
16064 Set the passcount for a tracepoint.\n\
16065 The trace will end when the tracepoint has been passed 'count' times.\n\
16066 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16067 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16068
16069 add_prefix_cmd ("save", class_breakpoint, save_command,
16070 _("Save breakpoint definitions as a script."),
16071 &save_cmdlist, "save ",
16072 0/*allow-unknown*/, &cmdlist);
16073
16074 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16075 Save current breakpoint definitions as a script.\n\
16076 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16077 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16078 session to restore them."),
16079 &save_cmdlist);
16080 set_cmd_completer (c, filename_completer);
16081
16082 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16083 Save current tracepoint definitions as a script.\n\
16084 Use the 'source' command in another debug session to restore them."),
16085 &save_cmdlist);
16086 set_cmd_completer (c, filename_completer);
16087
16088 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16089 deprecate_cmd (c, "save tracepoints");
16090
16091 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16092 Breakpoint specific settings\n\
16093 Configure various breakpoint-specific variables such as\n\
16094 pending breakpoint behavior"),
16095 &breakpoint_set_cmdlist, "set breakpoint ",
16096 0/*allow-unknown*/, &setlist);
16097 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16098 Breakpoint specific settings\n\
16099 Configure various breakpoint-specific variables such as\n\
16100 pending breakpoint behavior"),
16101 &breakpoint_show_cmdlist, "show breakpoint ",
16102 0/*allow-unknown*/, &showlist);
16103
16104 add_setshow_auto_boolean_cmd ("pending", no_class,
16105 &pending_break_support, _("\
16106 Set debugger's behavior regarding pending breakpoints."), _("\
16107 Show debugger's behavior regarding pending breakpoints."), _("\
16108 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16109 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16110 an error. If auto, an unrecognized breakpoint location results in a\n\
16111 user-query to see if a pending breakpoint should be created."),
16112 NULL,
16113 show_pending_break_support,
16114 &breakpoint_set_cmdlist,
16115 &breakpoint_show_cmdlist);
16116
16117 pending_break_support = AUTO_BOOLEAN_AUTO;
16118
16119 add_setshow_boolean_cmd ("auto-hw", no_class,
16120 &automatic_hardware_breakpoints, _("\
16121 Set automatic usage of hardware breakpoints."), _("\
16122 Show automatic usage of hardware breakpoints."), _("\
16123 If set, the debugger will automatically use hardware breakpoints for\n\
16124 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16125 a warning will be emitted for such breakpoints."),
16126 NULL,
16127 show_automatic_hardware_breakpoints,
16128 &breakpoint_set_cmdlist,
16129 &breakpoint_show_cmdlist);
16130
16131 add_setshow_boolean_cmd ("always-inserted", class_support,
16132 &always_inserted_mode, _("\
16133 Set mode for inserting breakpoints."), _("\
16134 Show mode for inserting breakpoints."), _("\
16135 When this mode is on, breakpoints are inserted immediately as soon as\n\
16136 they're created, kept inserted even when execution stops, and removed\n\
16137 only when the user deletes them. When this mode is off (the default),\n\
16138 breakpoints are inserted only when execution continues, and removed\n\
16139 when execution stops."),
16140 NULL,
16141 &show_always_inserted_mode,
16142 &breakpoint_set_cmdlist,
16143 &breakpoint_show_cmdlist);
16144
16145 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16146 condition_evaluation_enums,
16147 &condition_evaluation_mode_1, _("\
16148 Set mode of breakpoint condition evaluation."), _("\
16149 Show mode of breakpoint condition evaluation."), _("\
16150 When this is set to \"host\", breakpoint conditions will be\n\
16151 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16152 breakpoint conditions will be downloaded to the target (if the target\n\
16153 supports such feature) and conditions will be evaluated on the target's side.\n\
16154 If this is set to \"auto\" (default), this will be automatically set to\n\
16155 \"target\" if it supports condition evaluation, otherwise it will\n\
16156 be set to \"gdb\""),
16157 &set_condition_evaluation_mode,
16158 &show_condition_evaluation_mode,
16159 &breakpoint_set_cmdlist,
16160 &breakpoint_show_cmdlist);
16161
16162 add_com ("break-range", class_breakpoint, break_range_command, _("\
16163 Set a breakpoint for an address range.\n\
16164 break-range START-LOCATION, END-LOCATION\n\
16165 where START-LOCATION and END-LOCATION can be one of the following:\n\
16166 LINENUM, for that line in the current file,\n\
16167 FILE:LINENUM, for that line in that file,\n\
16168 +OFFSET, for that number of lines after the current line\n\
16169 or the start of the range\n\
16170 FUNCTION, for the first line in that function,\n\
16171 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16172 *ADDRESS, for the instruction at that address.\n\
16173 \n\
16174 The breakpoint will stop execution of the inferior whenever it executes\n\
16175 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16176 range (including START-LOCATION and END-LOCATION)."));
16177
16178 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16179 Set a dynamic printf at specified location.\n\
16180 dprintf location,format string,arg1,arg2,...\n\
16181 location may be a linespec, explicit, or address location.\n"
16182 "\n" LOCATION_HELP_STRING));
16183 set_cmd_completer (c, location_completer);
16184
16185 add_setshow_enum_cmd ("dprintf-style", class_support,
16186 dprintf_style_enums, &dprintf_style, _("\
16187 Set the style of usage for dynamic printf."), _("\
16188 Show the style of usage for dynamic printf."), _("\
16189 This setting chooses how GDB will do a dynamic printf.\n\
16190 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16191 console, as with the \"printf\" command.\n\
16192 If the value is \"call\", the print is done by calling a function in your\n\
16193 program; by default printf(), but you can choose a different function or\n\
16194 output stream by setting dprintf-function and dprintf-channel."),
16195 update_dprintf_commands, NULL,
16196 &setlist, &showlist);
16197
16198 dprintf_function = xstrdup ("printf");
16199 add_setshow_string_cmd ("dprintf-function", class_support,
16200 &dprintf_function, _("\
16201 Set the function to use for dynamic printf"), _("\
16202 Show the function to use for dynamic printf"), NULL,
16203 update_dprintf_commands, NULL,
16204 &setlist, &showlist);
16205
16206 dprintf_channel = xstrdup ("");
16207 add_setshow_string_cmd ("dprintf-channel", class_support,
16208 &dprintf_channel, _("\
16209 Set the channel to use for dynamic printf"), _("\
16210 Show the channel to use for dynamic printf"), NULL,
16211 update_dprintf_commands, NULL,
16212 &setlist, &showlist);
16213
16214 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16215 &disconnected_dprintf, _("\
16216 Set whether dprintf continues after GDB disconnects."), _("\
16217 Show whether dprintf continues after GDB disconnects."), _("\
16218 Use this to let dprintf commands continue to hit and produce output\n\
16219 even if GDB disconnects or detaches from the target."),
16220 NULL,
16221 NULL,
16222 &setlist, &showlist);
16223
16224 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16225 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16226 (target agent only) This is useful for formatted output in user-defined commands."));
16227
16228 automatic_hardware_breakpoints = 1;
16229
16230 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16231 observer_attach_thread_exit (remove_threaded_breakpoints);
16232 }
This page took 0.533065 seconds and 4 git commands to generate.