S/390: Disassemble 31-bit binaries with "zarch" opcode set by default
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "gdbthread.h"
36 #include "target.h"
37 #include "language.h"
38 #include "gdb_string.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "solib.h"
53 #include "solist.h"
54 #include "observer.h"
55 #include "exceptions.h"
56 #include "memattr.h"
57 #include "ada-lang.h"
58 #include "top.h"
59 #include "valprint.h"
60 #include "jit.h"
61 #include "xml-syscall.h"
62 #include "parser-defs.h"
63 #include "gdb_regex.h"
64 #include "probe.h"
65 #include "cli/cli-utils.h"
66 #include "continuations.h"
67 #include "stack.h"
68 #include "skip.h"
69 #include "gdb_regex.h"
70 #include "ax-gdb.h"
71 #include "dummy-frame.h"
72
73 #include "format.h"
74
75 /* readline include files */
76 #include "readline/readline.h"
77 #include "readline/history.h"
78
79 /* readline defines this. */
80 #undef savestring
81
82 #include "mi/mi-common.h"
83 #include "python/python.h"
84
85 /* Enums for exception-handling support. */
86 enum exception_event_kind
87 {
88 EX_EVENT_THROW,
89 EX_EVENT_RETHROW,
90 EX_EVENT_CATCH
91 };
92
93 /* Prototypes for local functions. */
94
95 static void enable_delete_command (char *, int);
96
97 static void enable_once_command (char *, int);
98
99 static void enable_count_command (char *, int);
100
101 static void disable_command (char *, int);
102
103 static void enable_command (char *, int);
104
105 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
106 void *),
107 void *);
108
109 static void ignore_command (char *, int);
110
111 static int breakpoint_re_set_one (void *);
112
113 static void breakpoint_re_set_default (struct breakpoint *);
114
115 static void create_sals_from_address_default (char **,
116 struct linespec_result *,
117 enum bptype, char *,
118 char **);
119
120 static void create_breakpoints_sal_default (struct gdbarch *,
121 struct linespec_result *,
122 char *, char *, enum bptype,
123 enum bpdisp, int, int,
124 int,
125 const struct breakpoint_ops *,
126 int, int, int, unsigned);
127
128 static void decode_linespec_default (struct breakpoint *, char **,
129 struct symtabs_and_lines *);
130
131 static void clear_command (char *, int);
132
133 static void catch_command (char *, int);
134
135 static int can_use_hardware_watchpoint (struct value *);
136
137 static void break_command_1 (char *, int, int);
138
139 static void mention (struct breakpoint *);
140
141 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
142 enum bptype,
143 const struct breakpoint_ops *);
144 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
145 const struct symtab_and_line *);
146
147 /* This function is used in gdbtk sources and thus can not be made
148 static. */
149 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
150 struct symtab_and_line,
151 enum bptype,
152 const struct breakpoint_ops *);
153
154 static struct breakpoint *
155 momentary_breakpoint_from_master (struct breakpoint *orig,
156 enum bptype type,
157 const struct breakpoint_ops *ops);
158
159 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
160
161 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
162 CORE_ADDR bpaddr,
163 enum bptype bptype);
164
165 static void describe_other_breakpoints (struct gdbarch *,
166 struct program_space *, CORE_ADDR,
167 struct obj_section *, int);
168
169 static int breakpoint_address_match (struct address_space *aspace1,
170 CORE_ADDR addr1,
171 struct address_space *aspace2,
172 CORE_ADDR addr2);
173
174 static int watchpoint_locations_match (struct bp_location *loc1,
175 struct bp_location *loc2);
176
177 static int breakpoint_location_address_match (struct bp_location *bl,
178 struct address_space *aspace,
179 CORE_ADDR addr);
180
181 static void breakpoints_info (char *, int);
182
183 static void watchpoints_info (char *, int);
184
185 static int breakpoint_1 (char *, int,
186 int (*) (const struct breakpoint *));
187
188 static int breakpoint_cond_eval (void *);
189
190 static void cleanup_executing_breakpoints (void *);
191
192 static void commands_command (char *, int);
193
194 static void condition_command (char *, int);
195
196 typedef enum
197 {
198 mark_inserted,
199 mark_uninserted
200 }
201 insertion_state_t;
202
203 static int remove_breakpoint (struct bp_location *, insertion_state_t);
204 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
205
206 static enum print_stop_action print_bp_stop_message (bpstat bs);
207
208 static int watchpoint_check (void *);
209
210 static void maintenance_info_breakpoints (char *, int);
211
212 static int hw_breakpoint_used_count (void);
213
214 static int hw_watchpoint_use_count (struct breakpoint *);
215
216 static int hw_watchpoint_used_count_others (struct breakpoint *except,
217 enum bptype type,
218 int *other_type_used);
219
220 static void hbreak_command (char *, int);
221
222 static void thbreak_command (char *, int);
223
224 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
225 int count);
226
227 static void stop_command (char *arg, int from_tty);
228
229 static void stopin_command (char *arg, int from_tty);
230
231 static void stopat_command (char *arg, int from_tty);
232
233 static void tcatch_command (char *arg, int from_tty);
234
235 static void detach_single_step_breakpoints (void);
236
237 static int single_step_breakpoint_inserted_here_p (struct address_space *,
238 CORE_ADDR pc);
239
240 static void free_bp_location (struct bp_location *loc);
241 static void incref_bp_location (struct bp_location *loc);
242 static void decref_bp_location (struct bp_location **loc);
243
244 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
245
246 static void update_global_location_list (int);
247
248 static void update_global_location_list_nothrow (int);
249
250 static int is_hardware_watchpoint (const struct breakpoint *bpt);
251
252 static void insert_breakpoint_locations (void);
253
254 static int syscall_catchpoint_p (struct breakpoint *b);
255
256 static void tracepoints_info (char *, int);
257
258 static void delete_trace_command (char *, int);
259
260 static void enable_trace_command (char *, int);
261
262 static void disable_trace_command (char *, int);
263
264 static void trace_pass_command (char *, int);
265
266 static void set_tracepoint_count (int num);
267
268 static int is_masked_watchpoint (const struct breakpoint *b);
269
270 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
271
272 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
273 otherwise. */
274
275 static int strace_marker_p (struct breakpoint *b);
276
277 /* The abstract base class all breakpoint_ops structures inherit
278 from. */
279 struct breakpoint_ops base_breakpoint_ops;
280
281 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
282 that are implemented on top of software or hardware breakpoints
283 (user breakpoints, internal and momentary breakpoints, etc.). */
284 static struct breakpoint_ops bkpt_base_breakpoint_ops;
285
286 /* Internal breakpoints class type. */
287 static struct breakpoint_ops internal_breakpoint_ops;
288
289 /* Momentary breakpoints class type. */
290 static struct breakpoint_ops momentary_breakpoint_ops;
291
292 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
293 static struct breakpoint_ops longjmp_breakpoint_ops;
294
295 /* The breakpoint_ops structure to be used in regular user created
296 breakpoints. */
297 struct breakpoint_ops bkpt_breakpoint_ops;
298
299 /* Breakpoints set on probes. */
300 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
301
302 /* Dynamic printf class type. */
303 struct breakpoint_ops dprintf_breakpoint_ops;
304
305 /* The style in which to perform a dynamic printf. This is a user
306 option because different output options have different tradeoffs;
307 if GDB does the printing, there is better error handling if there
308 is a problem with any of the arguments, but using an inferior
309 function lets you have special-purpose printers and sending of
310 output to the same place as compiled-in print functions. */
311
312 static const char dprintf_style_gdb[] = "gdb";
313 static const char dprintf_style_call[] = "call";
314 static const char dprintf_style_agent[] = "agent";
315 static const char *const dprintf_style_enums[] = {
316 dprintf_style_gdb,
317 dprintf_style_call,
318 dprintf_style_agent,
319 NULL
320 };
321 static const char *dprintf_style = dprintf_style_gdb;
322
323 /* The function to use for dynamic printf if the preferred style is to
324 call into the inferior. The value is simply a string that is
325 copied into the command, so it can be anything that GDB can
326 evaluate to a callable address, not necessarily a function name. */
327
328 static char *dprintf_function = "";
329
330 /* The channel to use for dynamic printf if the preferred style is to
331 call into the inferior; if a nonempty string, it will be passed to
332 the call as the first argument, with the format string as the
333 second. As with the dprintf function, this can be anything that
334 GDB knows how to evaluate, so in addition to common choices like
335 "stderr", this could be an app-specific expression like
336 "mystreams[curlogger]". */
337
338 static char *dprintf_channel = "";
339
340 /* True if dprintf commands should continue to operate even if GDB
341 has disconnected. */
342 static int disconnected_dprintf = 1;
343
344 /* A reference-counted struct command_line. This lets multiple
345 breakpoints share a single command list. */
346 struct counted_command_line
347 {
348 /* The reference count. */
349 int refc;
350
351 /* The command list. */
352 struct command_line *commands;
353 };
354
355 struct command_line *
356 breakpoint_commands (struct breakpoint *b)
357 {
358 return b->commands ? b->commands->commands : NULL;
359 }
360
361 /* Flag indicating that a command has proceeded the inferior past the
362 current breakpoint. */
363
364 static int breakpoint_proceeded;
365
366 const char *
367 bpdisp_text (enum bpdisp disp)
368 {
369 /* NOTE: the following values are a part of MI protocol and
370 represent values of 'disp' field returned when inferior stops at
371 a breakpoint. */
372 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
373
374 return bpdisps[(int) disp];
375 }
376
377 /* Prototypes for exported functions. */
378 /* If FALSE, gdb will not use hardware support for watchpoints, even
379 if such is available. */
380 static int can_use_hw_watchpoints;
381
382 static void
383 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c,
385 const char *value)
386 {
387 fprintf_filtered (file,
388 _("Debugger's willingness to use "
389 "watchpoint hardware is %s.\n"),
390 value);
391 }
392
393 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
394 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
395 for unrecognized breakpoint locations.
396 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
397 static enum auto_boolean pending_break_support;
398 static void
399 show_pending_break_support (struct ui_file *file, int from_tty,
400 struct cmd_list_element *c,
401 const char *value)
402 {
403 fprintf_filtered (file,
404 _("Debugger's behavior regarding "
405 "pending breakpoints is %s.\n"),
406 value);
407 }
408
409 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
410 set with "break" but falling in read-only memory.
411 If 0, gdb will warn about such breakpoints, but won't automatically
412 use hardware breakpoints. */
413 static int automatic_hardware_breakpoints;
414 static void
415 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
416 struct cmd_list_element *c,
417 const char *value)
418 {
419 fprintf_filtered (file,
420 _("Automatic usage of hardware breakpoints is %s.\n"),
421 value);
422 }
423
424 /* If on, gdb will keep breakpoints inserted even as inferior is
425 stopped, and immediately insert any new breakpoints. If off, gdb
426 will insert breakpoints into inferior only when resuming it, and
427 will remove breakpoints upon stop. If auto, GDB will behave as ON
428 if in non-stop mode, and as OFF if all-stop mode.*/
429
430 static enum auto_boolean always_inserted_mode = AUTO_BOOLEAN_AUTO;
431
432 static void
433 show_always_inserted_mode (struct ui_file *file, int from_tty,
434 struct cmd_list_element *c, const char *value)
435 {
436 if (always_inserted_mode == AUTO_BOOLEAN_AUTO)
437 fprintf_filtered (file,
438 _("Always inserted breakpoint "
439 "mode is %s (currently %s).\n"),
440 value,
441 breakpoints_always_inserted_mode () ? "on" : "off");
442 else
443 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
444 value);
445 }
446
447 int
448 breakpoints_always_inserted_mode (void)
449 {
450 return (always_inserted_mode == AUTO_BOOLEAN_TRUE
451 || (always_inserted_mode == AUTO_BOOLEAN_AUTO && non_stop));
452 }
453
454 static const char condition_evaluation_both[] = "host or target";
455
456 /* Modes for breakpoint condition evaluation. */
457 static const char condition_evaluation_auto[] = "auto";
458 static const char condition_evaluation_host[] = "host";
459 static const char condition_evaluation_target[] = "target";
460 static const char *const condition_evaluation_enums[] = {
461 condition_evaluation_auto,
462 condition_evaluation_host,
463 condition_evaluation_target,
464 NULL
465 };
466
467 /* Global that holds the current mode for breakpoint condition evaluation. */
468 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
469
470 /* Global that we use to display information to the user (gets its value from
471 condition_evaluation_mode_1. */
472 static const char *condition_evaluation_mode = condition_evaluation_auto;
473
474 /* Translate a condition evaluation mode MODE into either "host"
475 or "target". This is used mostly to translate from "auto" to the
476 real setting that is being used. It returns the translated
477 evaluation mode. */
478
479 static const char *
480 translate_condition_evaluation_mode (const char *mode)
481 {
482 if (mode == condition_evaluation_auto)
483 {
484 if (target_supports_evaluation_of_breakpoint_conditions ())
485 return condition_evaluation_target;
486 else
487 return condition_evaluation_host;
488 }
489 else
490 return mode;
491 }
492
493 /* Discovers what condition_evaluation_auto translates to. */
494
495 static const char *
496 breakpoint_condition_evaluation_mode (void)
497 {
498 return translate_condition_evaluation_mode (condition_evaluation_mode);
499 }
500
501 /* Return true if GDB should evaluate breakpoint conditions or false
502 otherwise. */
503
504 static int
505 gdb_evaluates_breakpoint_condition_p (void)
506 {
507 const char *mode = breakpoint_condition_evaluation_mode ();
508
509 return (mode == condition_evaluation_host);
510 }
511
512 void _initialize_breakpoint (void);
513
514 /* Are we executing breakpoint commands? */
515 static int executing_breakpoint_commands;
516
517 /* Are overlay event breakpoints enabled? */
518 static int overlay_events_enabled;
519
520 /* See description in breakpoint.h. */
521 int target_exact_watchpoints = 0;
522
523 /* Walk the following statement or block through all breakpoints.
524 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
525 current breakpoint. */
526
527 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
528
529 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
530 for (B = breakpoint_chain; \
531 B ? (TMP=B->next, 1): 0; \
532 B = TMP)
533
534 /* Similar iterator for the low-level breakpoints. SAFE variant is
535 not provided so update_global_location_list must not be called
536 while executing the block of ALL_BP_LOCATIONS. */
537
538 #define ALL_BP_LOCATIONS(B,BP_TMP) \
539 for (BP_TMP = bp_location; \
540 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
541 BP_TMP++)
542
543 /* Iterates through locations with address ADDRESS for the currently selected
544 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
545 to where the loop should start from.
546 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
547 appropriate location to start with. */
548
549 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
550 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
551 BP_LOCP_TMP = BP_LOCP_START; \
552 BP_LOCP_START \
553 && (BP_LOCP_TMP < bp_location + bp_location_count \
554 && (*BP_LOCP_TMP)->address == ADDRESS); \
555 BP_LOCP_TMP++)
556
557 /* Iterator for tracepoints only. */
558
559 #define ALL_TRACEPOINTS(B) \
560 for (B = breakpoint_chain; B; B = B->next) \
561 if (is_tracepoint (B))
562
563 /* Chains of all breakpoints defined. */
564
565 struct breakpoint *breakpoint_chain;
566
567 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
568
569 static struct bp_location **bp_location;
570
571 /* Number of elements of BP_LOCATION. */
572
573 static unsigned bp_location_count;
574
575 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
576 ADDRESS for the current elements of BP_LOCATION which get a valid
577 result from bp_location_has_shadow. You can use it for roughly
578 limiting the subrange of BP_LOCATION to scan for shadow bytes for
579 an address you need to read. */
580
581 static CORE_ADDR bp_location_placed_address_before_address_max;
582
583 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
584 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
585 BP_LOCATION which get a valid result from bp_location_has_shadow.
586 You can use it for roughly limiting the subrange of BP_LOCATION to
587 scan for shadow bytes for an address you need to read. */
588
589 static CORE_ADDR bp_location_shadow_len_after_address_max;
590
591 /* The locations that no longer correspond to any breakpoint, unlinked
592 from bp_location array, but for which a hit may still be reported
593 by a target. */
594 VEC(bp_location_p) *moribund_locations = NULL;
595
596 /* Number of last breakpoint made. */
597
598 static int breakpoint_count;
599
600 /* The value of `breakpoint_count' before the last command that
601 created breakpoints. If the last (break-like) command created more
602 than one breakpoint, then the difference between BREAKPOINT_COUNT
603 and PREV_BREAKPOINT_COUNT is more than one. */
604 static int prev_breakpoint_count;
605
606 /* Number of last tracepoint made. */
607
608 static int tracepoint_count;
609
610 static struct cmd_list_element *breakpoint_set_cmdlist;
611 static struct cmd_list_element *breakpoint_show_cmdlist;
612 struct cmd_list_element *save_cmdlist;
613
614 /* Return whether a breakpoint is an active enabled breakpoint. */
615 static int
616 breakpoint_enabled (struct breakpoint *b)
617 {
618 return (b->enable_state == bp_enabled);
619 }
620
621 /* Set breakpoint count to NUM. */
622
623 static void
624 set_breakpoint_count (int num)
625 {
626 prev_breakpoint_count = breakpoint_count;
627 breakpoint_count = num;
628 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
629 }
630
631 /* Used by `start_rbreak_breakpoints' below, to record the current
632 breakpoint count before "rbreak" creates any breakpoint. */
633 static int rbreak_start_breakpoint_count;
634
635 /* Called at the start an "rbreak" command to record the first
636 breakpoint made. */
637
638 void
639 start_rbreak_breakpoints (void)
640 {
641 rbreak_start_breakpoint_count = breakpoint_count;
642 }
643
644 /* Called at the end of an "rbreak" command to record the last
645 breakpoint made. */
646
647 void
648 end_rbreak_breakpoints (void)
649 {
650 prev_breakpoint_count = rbreak_start_breakpoint_count;
651 }
652
653 /* Used in run_command to zero the hit count when a new run starts. */
654
655 void
656 clear_breakpoint_hit_counts (void)
657 {
658 struct breakpoint *b;
659
660 ALL_BREAKPOINTS (b)
661 b->hit_count = 0;
662 }
663
664 /* Allocate a new counted_command_line with reference count of 1.
665 The new structure owns COMMANDS. */
666
667 static struct counted_command_line *
668 alloc_counted_command_line (struct command_line *commands)
669 {
670 struct counted_command_line *result
671 = xmalloc (sizeof (struct counted_command_line));
672
673 result->refc = 1;
674 result->commands = commands;
675 return result;
676 }
677
678 /* Increment reference count. This does nothing if CMD is NULL. */
679
680 static void
681 incref_counted_command_line (struct counted_command_line *cmd)
682 {
683 if (cmd)
684 ++cmd->refc;
685 }
686
687 /* Decrement reference count. If the reference count reaches 0,
688 destroy the counted_command_line. Sets *CMDP to NULL. This does
689 nothing if *CMDP is NULL. */
690
691 static void
692 decref_counted_command_line (struct counted_command_line **cmdp)
693 {
694 if (*cmdp)
695 {
696 if (--(*cmdp)->refc == 0)
697 {
698 free_command_lines (&(*cmdp)->commands);
699 xfree (*cmdp);
700 }
701 *cmdp = NULL;
702 }
703 }
704
705 /* A cleanup function that calls decref_counted_command_line. */
706
707 static void
708 do_cleanup_counted_command_line (void *arg)
709 {
710 decref_counted_command_line (arg);
711 }
712
713 /* Create a cleanup that calls decref_counted_command_line on the
714 argument. */
715
716 static struct cleanup *
717 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
718 {
719 return make_cleanup (do_cleanup_counted_command_line, cmdp);
720 }
721
722 \f
723 /* Return the breakpoint with the specified number, or NULL
724 if the number does not refer to an existing breakpoint. */
725
726 struct breakpoint *
727 get_breakpoint (int num)
728 {
729 struct breakpoint *b;
730
731 ALL_BREAKPOINTS (b)
732 if (b->number == num)
733 return b;
734
735 return NULL;
736 }
737
738 \f
739
740 /* Mark locations as "conditions have changed" in case the target supports
741 evaluating conditions on its side. */
742
743 static void
744 mark_breakpoint_modified (struct breakpoint *b)
745 {
746 struct bp_location *loc;
747
748 /* This is only meaningful if the target is
749 evaluating conditions and if the user has
750 opted for condition evaluation on the target's
751 side. */
752 if (gdb_evaluates_breakpoint_condition_p ()
753 || !target_supports_evaluation_of_breakpoint_conditions ())
754 return;
755
756 if (!is_breakpoint (b))
757 return;
758
759 for (loc = b->loc; loc; loc = loc->next)
760 loc->condition_changed = condition_modified;
761 }
762
763 /* Mark location as "conditions have changed" in case the target supports
764 evaluating conditions on its side. */
765
766 static void
767 mark_breakpoint_location_modified (struct bp_location *loc)
768 {
769 /* This is only meaningful if the target is
770 evaluating conditions and if the user has
771 opted for condition evaluation on the target's
772 side. */
773 if (gdb_evaluates_breakpoint_condition_p ()
774 || !target_supports_evaluation_of_breakpoint_conditions ())
775
776 return;
777
778 if (!is_breakpoint (loc->owner))
779 return;
780
781 loc->condition_changed = condition_modified;
782 }
783
784 /* Sets the condition-evaluation mode using the static global
785 condition_evaluation_mode. */
786
787 static void
788 set_condition_evaluation_mode (char *args, int from_tty,
789 struct cmd_list_element *c)
790 {
791 const char *old_mode, *new_mode;
792
793 if ((condition_evaluation_mode_1 == condition_evaluation_target)
794 && !target_supports_evaluation_of_breakpoint_conditions ())
795 {
796 condition_evaluation_mode_1 = condition_evaluation_mode;
797 warning (_("Target does not support breakpoint condition evaluation.\n"
798 "Using host evaluation mode instead."));
799 return;
800 }
801
802 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
803 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
804
805 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
806 settings was "auto". */
807 condition_evaluation_mode = condition_evaluation_mode_1;
808
809 /* Only update the mode if the user picked a different one. */
810 if (new_mode != old_mode)
811 {
812 struct bp_location *loc, **loc_tmp;
813 /* If the user switched to a different evaluation mode, we
814 need to synch the changes with the target as follows:
815
816 "host" -> "target": Send all (valid) conditions to the target.
817 "target" -> "host": Remove all the conditions from the target.
818 */
819
820 if (new_mode == condition_evaluation_target)
821 {
822 /* Mark everything modified and synch conditions with the
823 target. */
824 ALL_BP_LOCATIONS (loc, loc_tmp)
825 mark_breakpoint_location_modified (loc);
826 }
827 else
828 {
829 /* Manually mark non-duplicate locations to synch conditions
830 with the target. We do this to remove all the conditions the
831 target knows about. */
832 ALL_BP_LOCATIONS (loc, loc_tmp)
833 if (is_breakpoint (loc->owner) && loc->inserted)
834 loc->needs_update = 1;
835 }
836
837 /* Do the update. */
838 update_global_location_list (1);
839 }
840
841 return;
842 }
843
844 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
845 what "auto" is translating to. */
846
847 static void
848 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
849 struct cmd_list_element *c, const char *value)
850 {
851 if (condition_evaluation_mode == condition_evaluation_auto)
852 fprintf_filtered (file,
853 _("Breakpoint condition evaluation "
854 "mode is %s (currently %s).\n"),
855 value,
856 breakpoint_condition_evaluation_mode ());
857 else
858 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
859 value);
860 }
861
862 /* A comparison function for bp_location AP and BP that is used by
863 bsearch. This comparison function only cares about addresses, unlike
864 the more general bp_location_compare function. */
865
866 static int
867 bp_location_compare_addrs (const void *ap, const void *bp)
868 {
869 struct bp_location *a = *(void **) ap;
870 struct bp_location *b = *(void **) bp;
871
872 if (a->address == b->address)
873 return 0;
874 else
875 return ((a->address > b->address) - (a->address < b->address));
876 }
877
878 /* Helper function to skip all bp_locations with addresses
879 less than ADDRESS. It returns the first bp_location that
880 is greater than or equal to ADDRESS. If none is found, just
881 return NULL. */
882
883 static struct bp_location **
884 get_first_locp_gte_addr (CORE_ADDR address)
885 {
886 struct bp_location dummy_loc;
887 struct bp_location *dummy_locp = &dummy_loc;
888 struct bp_location **locp_found = NULL;
889
890 /* Initialize the dummy location's address field. */
891 memset (&dummy_loc, 0, sizeof (struct bp_location));
892 dummy_loc.address = address;
893
894 /* Find a close match to the first location at ADDRESS. */
895 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
896 sizeof (struct bp_location **),
897 bp_location_compare_addrs);
898
899 /* Nothing was found, nothing left to do. */
900 if (locp_found == NULL)
901 return NULL;
902
903 /* We may have found a location that is at ADDRESS but is not the first in the
904 location's list. Go backwards (if possible) and locate the first one. */
905 while ((locp_found - 1) >= bp_location
906 && (*(locp_found - 1))->address == address)
907 locp_found--;
908
909 return locp_found;
910 }
911
912 void
913 set_breakpoint_condition (struct breakpoint *b, char *exp,
914 int from_tty)
915 {
916 xfree (b->cond_string);
917 b->cond_string = NULL;
918
919 if (is_watchpoint (b))
920 {
921 struct watchpoint *w = (struct watchpoint *) b;
922
923 xfree (w->cond_exp);
924 w->cond_exp = NULL;
925 }
926 else
927 {
928 struct bp_location *loc;
929
930 for (loc = b->loc; loc; loc = loc->next)
931 {
932 xfree (loc->cond);
933 loc->cond = NULL;
934
935 /* No need to free the condition agent expression
936 bytecode (if we have one). We will handle this
937 when we go through update_global_location_list. */
938 }
939 }
940
941 if (*exp == 0)
942 {
943 if (from_tty)
944 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
945 }
946 else
947 {
948 const char *arg = exp;
949
950 /* I don't know if it matters whether this is the string the user
951 typed in or the decompiled expression. */
952 b->cond_string = xstrdup (arg);
953 b->condition_not_parsed = 0;
954
955 if (is_watchpoint (b))
956 {
957 struct watchpoint *w = (struct watchpoint *) b;
958
959 innermost_block = NULL;
960 arg = exp;
961 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
962 if (*arg)
963 error (_("Junk at end of expression"));
964 w->cond_exp_valid_block = innermost_block;
965 }
966 else
967 {
968 struct bp_location *loc;
969
970 for (loc = b->loc; loc; loc = loc->next)
971 {
972 arg = exp;
973 loc->cond =
974 parse_exp_1 (&arg, loc->address,
975 block_for_pc (loc->address), 0);
976 if (*arg)
977 error (_("Junk at end of expression"));
978 }
979 }
980 }
981 mark_breakpoint_modified (b);
982
983 observer_notify_breakpoint_modified (b);
984 }
985
986 /* Completion for the "condition" command. */
987
988 static VEC (char_ptr) *
989 condition_completer (struct cmd_list_element *cmd,
990 const char *text, const char *word)
991 {
992 const char *space;
993
994 text = skip_spaces_const (text);
995 space = skip_to_space_const (text);
996 if (*space == '\0')
997 {
998 int len;
999 struct breakpoint *b;
1000 VEC (char_ptr) *result = NULL;
1001
1002 if (text[0] == '$')
1003 {
1004 /* We don't support completion of history indices. */
1005 if (isdigit (text[1]))
1006 return NULL;
1007 return complete_internalvar (&text[1]);
1008 }
1009
1010 /* We're completing the breakpoint number. */
1011 len = strlen (text);
1012
1013 ALL_BREAKPOINTS (b)
1014 {
1015 char number[50];
1016
1017 xsnprintf (number, sizeof (number), "%d", b->number);
1018
1019 if (strncmp (number, text, len) == 0)
1020 VEC_safe_push (char_ptr, result, xstrdup (number));
1021 }
1022
1023 return result;
1024 }
1025
1026 /* We're completing the expression part. */
1027 text = skip_spaces_const (space);
1028 return expression_completer (cmd, text, word);
1029 }
1030
1031 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1032
1033 static void
1034 condition_command (char *arg, int from_tty)
1035 {
1036 struct breakpoint *b;
1037 char *p;
1038 int bnum;
1039
1040 if (arg == 0)
1041 error_no_arg (_("breakpoint number"));
1042
1043 p = arg;
1044 bnum = get_number (&p);
1045 if (bnum == 0)
1046 error (_("Bad breakpoint argument: '%s'"), arg);
1047
1048 ALL_BREAKPOINTS (b)
1049 if (b->number == bnum)
1050 {
1051 /* Check if this breakpoint has a Python object assigned to
1052 it, and if it has a definition of the "stop"
1053 method. This method and conditions entered into GDB from
1054 the CLI are mutually exclusive. */
1055 if (b->py_bp_object
1056 && gdbpy_breakpoint_has_py_cond (b->py_bp_object))
1057 error (_("Cannot set a condition where a Python 'stop' "
1058 "method has been defined in the breakpoint."));
1059 set_breakpoint_condition (b, p, from_tty);
1060
1061 if (is_breakpoint (b))
1062 update_global_location_list (1);
1063
1064 return;
1065 }
1066
1067 error (_("No breakpoint number %d."), bnum);
1068 }
1069
1070 /* Check that COMMAND do not contain commands that are suitable
1071 only for tracepoints and not suitable for ordinary breakpoints.
1072 Throw if any such commands is found. */
1073
1074 static void
1075 check_no_tracepoint_commands (struct command_line *commands)
1076 {
1077 struct command_line *c;
1078
1079 for (c = commands; c; c = c->next)
1080 {
1081 int i;
1082
1083 if (c->control_type == while_stepping_control)
1084 error (_("The 'while-stepping' command can "
1085 "only be used for tracepoints"));
1086
1087 for (i = 0; i < c->body_count; ++i)
1088 check_no_tracepoint_commands ((c->body_list)[i]);
1089
1090 /* Not that command parsing removes leading whitespace and comment
1091 lines and also empty lines. So, we only need to check for
1092 command directly. */
1093 if (strstr (c->line, "collect ") == c->line)
1094 error (_("The 'collect' command can only be used for tracepoints"));
1095
1096 if (strstr (c->line, "teval ") == c->line)
1097 error (_("The 'teval' command can only be used for tracepoints"));
1098 }
1099 }
1100
1101 /* Encapsulate tests for different types of tracepoints. */
1102
1103 static int
1104 is_tracepoint_type (enum bptype type)
1105 {
1106 return (type == bp_tracepoint
1107 || type == bp_fast_tracepoint
1108 || type == bp_static_tracepoint);
1109 }
1110
1111 int
1112 is_tracepoint (const struct breakpoint *b)
1113 {
1114 return is_tracepoint_type (b->type);
1115 }
1116
1117 /* A helper function that validates that COMMANDS are valid for a
1118 breakpoint. This function will throw an exception if a problem is
1119 found. */
1120
1121 static void
1122 validate_commands_for_breakpoint (struct breakpoint *b,
1123 struct command_line *commands)
1124 {
1125 if (is_tracepoint (b))
1126 {
1127 struct tracepoint *t = (struct tracepoint *) b;
1128 struct command_line *c;
1129 struct command_line *while_stepping = 0;
1130
1131 /* Reset the while-stepping step count. The previous commands
1132 might have included a while-stepping action, while the new
1133 ones might not. */
1134 t->step_count = 0;
1135
1136 /* We need to verify that each top-level element of commands is
1137 valid for tracepoints, that there's at most one
1138 while-stepping element, and that the while-stepping's body
1139 has valid tracing commands excluding nested while-stepping.
1140 We also need to validate the tracepoint action line in the
1141 context of the tracepoint --- validate_actionline actually
1142 has side effects, like setting the tracepoint's
1143 while-stepping STEP_COUNT, in addition to checking if the
1144 collect/teval actions parse and make sense in the
1145 tracepoint's context. */
1146 for (c = commands; c; c = c->next)
1147 {
1148 if (c->control_type == while_stepping_control)
1149 {
1150 if (b->type == bp_fast_tracepoint)
1151 error (_("The 'while-stepping' command "
1152 "cannot be used for fast tracepoint"));
1153 else if (b->type == bp_static_tracepoint)
1154 error (_("The 'while-stepping' command "
1155 "cannot be used for static tracepoint"));
1156
1157 if (while_stepping)
1158 error (_("The 'while-stepping' command "
1159 "can be used only once"));
1160 else
1161 while_stepping = c;
1162 }
1163
1164 validate_actionline (c->line, b);
1165 }
1166 if (while_stepping)
1167 {
1168 struct command_line *c2;
1169
1170 gdb_assert (while_stepping->body_count == 1);
1171 c2 = while_stepping->body_list[0];
1172 for (; c2; c2 = c2->next)
1173 {
1174 if (c2->control_type == while_stepping_control)
1175 error (_("The 'while-stepping' command cannot be nested"));
1176 }
1177 }
1178 }
1179 else
1180 {
1181 check_no_tracepoint_commands (commands);
1182 }
1183 }
1184
1185 /* Return a vector of all the static tracepoints set at ADDR. The
1186 caller is responsible for releasing the vector. */
1187
1188 VEC(breakpoint_p) *
1189 static_tracepoints_here (CORE_ADDR addr)
1190 {
1191 struct breakpoint *b;
1192 VEC(breakpoint_p) *found = 0;
1193 struct bp_location *loc;
1194
1195 ALL_BREAKPOINTS (b)
1196 if (b->type == bp_static_tracepoint)
1197 {
1198 for (loc = b->loc; loc; loc = loc->next)
1199 if (loc->address == addr)
1200 VEC_safe_push(breakpoint_p, found, b);
1201 }
1202
1203 return found;
1204 }
1205
1206 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1207 validate that only allowed commands are included. */
1208
1209 void
1210 breakpoint_set_commands (struct breakpoint *b,
1211 struct command_line *commands)
1212 {
1213 validate_commands_for_breakpoint (b, commands);
1214
1215 decref_counted_command_line (&b->commands);
1216 b->commands = alloc_counted_command_line (commands);
1217 observer_notify_breakpoint_modified (b);
1218 }
1219
1220 /* Set the internal `silent' flag on the breakpoint. Note that this
1221 is not the same as the "silent" that may appear in the breakpoint's
1222 commands. */
1223
1224 void
1225 breakpoint_set_silent (struct breakpoint *b, int silent)
1226 {
1227 int old_silent = b->silent;
1228
1229 b->silent = silent;
1230 if (old_silent != silent)
1231 observer_notify_breakpoint_modified (b);
1232 }
1233
1234 /* Set the thread for this breakpoint. If THREAD is -1, make the
1235 breakpoint work for any thread. */
1236
1237 void
1238 breakpoint_set_thread (struct breakpoint *b, int thread)
1239 {
1240 int old_thread = b->thread;
1241
1242 b->thread = thread;
1243 if (old_thread != thread)
1244 observer_notify_breakpoint_modified (b);
1245 }
1246
1247 /* Set the task for this breakpoint. If TASK is 0, make the
1248 breakpoint work for any task. */
1249
1250 void
1251 breakpoint_set_task (struct breakpoint *b, int task)
1252 {
1253 int old_task = b->task;
1254
1255 b->task = task;
1256 if (old_task != task)
1257 observer_notify_breakpoint_modified (b);
1258 }
1259
1260 void
1261 check_tracepoint_command (char *line, void *closure)
1262 {
1263 struct breakpoint *b = closure;
1264
1265 validate_actionline (line, b);
1266 }
1267
1268 /* A structure used to pass information through
1269 map_breakpoint_numbers. */
1270
1271 struct commands_info
1272 {
1273 /* True if the command was typed at a tty. */
1274 int from_tty;
1275
1276 /* The breakpoint range spec. */
1277 char *arg;
1278
1279 /* Non-NULL if the body of the commands are being read from this
1280 already-parsed command. */
1281 struct command_line *control;
1282
1283 /* The command lines read from the user, or NULL if they have not
1284 yet been read. */
1285 struct counted_command_line *cmd;
1286 };
1287
1288 /* A callback for map_breakpoint_numbers that sets the commands for
1289 commands_command. */
1290
1291 static void
1292 do_map_commands_command (struct breakpoint *b, void *data)
1293 {
1294 struct commands_info *info = data;
1295
1296 if (info->cmd == NULL)
1297 {
1298 struct command_line *l;
1299
1300 if (info->control != NULL)
1301 l = copy_command_lines (info->control->body_list[0]);
1302 else
1303 {
1304 struct cleanup *old_chain;
1305 char *str;
1306
1307 str = xstrprintf (_("Type commands for breakpoint(s) "
1308 "%s, one per line."),
1309 info->arg);
1310
1311 old_chain = make_cleanup (xfree, str);
1312
1313 l = read_command_lines (str,
1314 info->from_tty, 1,
1315 (is_tracepoint (b)
1316 ? check_tracepoint_command : 0),
1317 b);
1318
1319 do_cleanups (old_chain);
1320 }
1321
1322 info->cmd = alloc_counted_command_line (l);
1323 }
1324
1325 /* If a breakpoint was on the list more than once, we don't need to
1326 do anything. */
1327 if (b->commands != info->cmd)
1328 {
1329 validate_commands_for_breakpoint (b, info->cmd->commands);
1330 incref_counted_command_line (info->cmd);
1331 decref_counted_command_line (&b->commands);
1332 b->commands = info->cmd;
1333 observer_notify_breakpoint_modified (b);
1334 }
1335 }
1336
1337 static void
1338 commands_command_1 (char *arg, int from_tty,
1339 struct command_line *control)
1340 {
1341 struct cleanup *cleanups;
1342 struct commands_info info;
1343
1344 info.from_tty = from_tty;
1345 info.control = control;
1346 info.cmd = NULL;
1347 /* If we read command lines from the user, then `info' will hold an
1348 extra reference to the commands that we must clean up. */
1349 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1350
1351 if (arg == NULL || !*arg)
1352 {
1353 if (breakpoint_count - prev_breakpoint_count > 1)
1354 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1355 breakpoint_count);
1356 else if (breakpoint_count > 0)
1357 arg = xstrprintf ("%d", breakpoint_count);
1358 else
1359 {
1360 /* So that we don't try to free the incoming non-NULL
1361 argument in the cleanup below. Mapping breakpoint
1362 numbers will fail in this case. */
1363 arg = NULL;
1364 }
1365 }
1366 else
1367 /* The command loop has some static state, so we need to preserve
1368 our argument. */
1369 arg = xstrdup (arg);
1370
1371 if (arg != NULL)
1372 make_cleanup (xfree, arg);
1373
1374 info.arg = arg;
1375
1376 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1377
1378 if (info.cmd == NULL)
1379 error (_("No breakpoints specified."));
1380
1381 do_cleanups (cleanups);
1382 }
1383
1384 static void
1385 commands_command (char *arg, int from_tty)
1386 {
1387 commands_command_1 (arg, from_tty, NULL);
1388 }
1389
1390 /* Like commands_command, but instead of reading the commands from
1391 input stream, takes them from an already parsed command structure.
1392
1393 This is used by cli-script.c to DTRT with breakpoint commands
1394 that are part of if and while bodies. */
1395 enum command_control_type
1396 commands_from_control_command (char *arg, struct command_line *cmd)
1397 {
1398 commands_command_1 (arg, 0, cmd);
1399 return simple_control;
1400 }
1401
1402 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1403
1404 static int
1405 bp_location_has_shadow (struct bp_location *bl)
1406 {
1407 if (bl->loc_type != bp_loc_software_breakpoint)
1408 return 0;
1409 if (!bl->inserted)
1410 return 0;
1411 if (bl->target_info.shadow_len == 0)
1412 /* BL isn't valid, or doesn't shadow memory. */
1413 return 0;
1414 return 1;
1415 }
1416
1417 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1418 by replacing any memory breakpoints with their shadowed contents.
1419
1420 If READBUF is not NULL, this buffer must not overlap with any of
1421 the breakpoint location's shadow_contents buffers. Otherwise,
1422 a failed assertion internal error will be raised.
1423
1424 The range of shadowed area by each bp_location is:
1425 bl->address - bp_location_placed_address_before_address_max
1426 up to bl->address + bp_location_shadow_len_after_address_max
1427 The range we were requested to resolve shadows for is:
1428 memaddr ... memaddr + len
1429 Thus the safe cutoff boundaries for performance optimization are
1430 memaddr + len <= (bl->address
1431 - bp_location_placed_address_before_address_max)
1432 and:
1433 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1434
1435 void
1436 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1437 const gdb_byte *writebuf_org,
1438 ULONGEST memaddr, LONGEST len)
1439 {
1440 /* Left boundary, right boundary and median element of our binary
1441 search. */
1442 unsigned bc_l, bc_r, bc;
1443
1444 /* Find BC_L which is a leftmost element which may affect BUF
1445 content. It is safe to report lower value but a failure to
1446 report higher one. */
1447
1448 bc_l = 0;
1449 bc_r = bp_location_count;
1450 while (bc_l + 1 < bc_r)
1451 {
1452 struct bp_location *bl;
1453
1454 bc = (bc_l + bc_r) / 2;
1455 bl = bp_location[bc];
1456
1457 /* Check first BL->ADDRESS will not overflow due to the added
1458 constant. Then advance the left boundary only if we are sure
1459 the BC element can in no way affect the BUF content (MEMADDR
1460 to MEMADDR + LEN range).
1461
1462 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1463 offset so that we cannot miss a breakpoint with its shadow
1464 range tail still reaching MEMADDR. */
1465
1466 if ((bl->address + bp_location_shadow_len_after_address_max
1467 >= bl->address)
1468 && (bl->address + bp_location_shadow_len_after_address_max
1469 <= memaddr))
1470 bc_l = bc;
1471 else
1472 bc_r = bc;
1473 }
1474
1475 /* Due to the binary search above, we need to make sure we pick the
1476 first location that's at BC_L's address. E.g., if there are
1477 multiple locations at the same address, BC_L may end up pointing
1478 at a duplicate location, and miss the "master"/"inserted"
1479 location. Say, given locations L1, L2 and L3 at addresses A and
1480 B:
1481
1482 L1@A, L2@A, L3@B, ...
1483
1484 BC_L could end up pointing at location L2, while the "master"
1485 location could be L1. Since the `loc->inserted' flag is only set
1486 on "master" locations, we'd forget to restore the shadow of L1
1487 and L2. */
1488 while (bc_l > 0
1489 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1490 bc_l--;
1491
1492 /* Now do full processing of the found relevant range of elements. */
1493
1494 for (bc = bc_l; bc < bp_location_count; bc++)
1495 {
1496 struct bp_location *bl = bp_location[bc];
1497 CORE_ADDR bp_addr = 0;
1498 int bp_size = 0;
1499 int bptoffset = 0;
1500
1501 /* bp_location array has BL->OWNER always non-NULL. */
1502 if (bl->owner->type == bp_none)
1503 warning (_("reading through apparently deleted breakpoint #%d?"),
1504 bl->owner->number);
1505
1506 /* Performance optimization: any further element can no longer affect BUF
1507 content. */
1508
1509 if (bl->address >= bp_location_placed_address_before_address_max
1510 && memaddr + len <= (bl->address
1511 - bp_location_placed_address_before_address_max))
1512 break;
1513
1514 if (!bp_location_has_shadow (bl))
1515 continue;
1516 if (!breakpoint_address_match (bl->target_info.placed_address_space, 0,
1517 current_program_space->aspace, 0))
1518 continue;
1519
1520 /* Addresses and length of the part of the breakpoint that
1521 we need to copy. */
1522 bp_addr = bl->target_info.placed_address;
1523 bp_size = bl->target_info.shadow_len;
1524
1525 if (bp_addr + bp_size <= memaddr)
1526 /* The breakpoint is entirely before the chunk of memory we
1527 are reading. */
1528 continue;
1529
1530 if (bp_addr >= memaddr + len)
1531 /* The breakpoint is entirely after the chunk of memory we are
1532 reading. */
1533 continue;
1534
1535 /* Offset within shadow_contents. */
1536 if (bp_addr < memaddr)
1537 {
1538 /* Only copy the second part of the breakpoint. */
1539 bp_size -= memaddr - bp_addr;
1540 bptoffset = memaddr - bp_addr;
1541 bp_addr = memaddr;
1542 }
1543
1544 if (bp_addr + bp_size > memaddr + len)
1545 {
1546 /* Only copy the first part of the breakpoint. */
1547 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1548 }
1549
1550 if (readbuf != NULL)
1551 {
1552 /* Verify that the readbuf buffer does not overlap with
1553 the shadow_contents buffer. */
1554 gdb_assert (bl->target_info.shadow_contents >= readbuf + len
1555 || readbuf >= (bl->target_info.shadow_contents
1556 + bl->target_info.shadow_len));
1557
1558 /* Update the read buffer with this inserted breakpoint's
1559 shadow. */
1560 memcpy (readbuf + bp_addr - memaddr,
1561 bl->target_info.shadow_contents + bptoffset, bp_size);
1562 }
1563 else
1564 {
1565 struct gdbarch *gdbarch = bl->gdbarch;
1566 const unsigned char *bp;
1567 CORE_ADDR placed_address = bl->target_info.placed_address;
1568 int placed_size = bl->target_info.placed_size;
1569
1570 /* Update the shadow with what we want to write to memory. */
1571 memcpy (bl->target_info.shadow_contents + bptoffset,
1572 writebuf_org + bp_addr - memaddr, bp_size);
1573
1574 /* Determine appropriate breakpoint contents and size for this
1575 address. */
1576 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1577
1578 /* Update the final write buffer with this inserted
1579 breakpoint's INSN. */
1580 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1581 }
1582 }
1583 }
1584 \f
1585
1586 /* Return true if BPT is either a software breakpoint or a hardware
1587 breakpoint. */
1588
1589 int
1590 is_breakpoint (const struct breakpoint *bpt)
1591 {
1592 return (bpt->type == bp_breakpoint
1593 || bpt->type == bp_hardware_breakpoint
1594 || bpt->type == bp_dprintf);
1595 }
1596
1597 /* Return true if BPT is of any hardware watchpoint kind. */
1598
1599 static int
1600 is_hardware_watchpoint (const struct breakpoint *bpt)
1601 {
1602 return (bpt->type == bp_hardware_watchpoint
1603 || bpt->type == bp_read_watchpoint
1604 || bpt->type == bp_access_watchpoint);
1605 }
1606
1607 /* Return true if BPT is of any watchpoint kind, hardware or
1608 software. */
1609
1610 int
1611 is_watchpoint (const struct breakpoint *bpt)
1612 {
1613 return (is_hardware_watchpoint (bpt)
1614 || bpt->type == bp_watchpoint);
1615 }
1616
1617 /* Returns true if the current thread and its running state are safe
1618 to evaluate or update watchpoint B. Watchpoints on local
1619 expressions need to be evaluated in the context of the thread that
1620 was current when the watchpoint was created, and, that thread needs
1621 to be stopped to be able to select the correct frame context.
1622 Watchpoints on global expressions can be evaluated on any thread,
1623 and in any state. It is presently left to the target allowing
1624 memory accesses when threads are running. */
1625
1626 static int
1627 watchpoint_in_thread_scope (struct watchpoint *b)
1628 {
1629 return (b->base.pspace == current_program_space
1630 && (ptid_equal (b->watchpoint_thread, null_ptid)
1631 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1632 && !is_executing (inferior_ptid))));
1633 }
1634
1635 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1636 associated bp_watchpoint_scope breakpoint. */
1637
1638 static void
1639 watchpoint_del_at_next_stop (struct watchpoint *w)
1640 {
1641 struct breakpoint *b = &w->base;
1642
1643 if (b->related_breakpoint != b)
1644 {
1645 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1646 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1647 b->related_breakpoint->disposition = disp_del_at_next_stop;
1648 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1649 b->related_breakpoint = b;
1650 }
1651 b->disposition = disp_del_at_next_stop;
1652 }
1653
1654 /* Assuming that B is a watchpoint:
1655 - Reparse watchpoint expression, if REPARSE is non-zero
1656 - Evaluate expression and store the result in B->val
1657 - Evaluate the condition if there is one, and store the result
1658 in b->loc->cond.
1659 - Update the list of values that must be watched in B->loc.
1660
1661 If the watchpoint disposition is disp_del_at_next_stop, then do
1662 nothing. If this is local watchpoint that is out of scope, delete
1663 it.
1664
1665 Even with `set breakpoint always-inserted on' the watchpoints are
1666 removed + inserted on each stop here. Normal breakpoints must
1667 never be removed because they might be missed by a running thread
1668 when debugging in non-stop mode. On the other hand, hardware
1669 watchpoints (is_hardware_watchpoint; processed here) are specific
1670 to each LWP since they are stored in each LWP's hardware debug
1671 registers. Therefore, such LWP must be stopped first in order to
1672 be able to modify its hardware watchpoints.
1673
1674 Hardware watchpoints must be reset exactly once after being
1675 presented to the user. It cannot be done sooner, because it would
1676 reset the data used to present the watchpoint hit to the user. And
1677 it must not be done later because it could display the same single
1678 watchpoint hit during multiple GDB stops. Note that the latter is
1679 relevant only to the hardware watchpoint types bp_read_watchpoint
1680 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1681 not user-visible - its hit is suppressed if the memory content has
1682 not changed.
1683
1684 The following constraints influence the location where we can reset
1685 hardware watchpoints:
1686
1687 * target_stopped_by_watchpoint and target_stopped_data_address are
1688 called several times when GDB stops.
1689
1690 [linux]
1691 * Multiple hardware watchpoints can be hit at the same time,
1692 causing GDB to stop. GDB only presents one hardware watchpoint
1693 hit at a time as the reason for stopping, and all the other hits
1694 are presented later, one after the other, each time the user
1695 requests the execution to be resumed. Execution is not resumed
1696 for the threads still having pending hit event stored in
1697 LWP_INFO->STATUS. While the watchpoint is already removed from
1698 the inferior on the first stop the thread hit event is kept being
1699 reported from its cached value by linux_nat_stopped_data_address
1700 until the real thread resume happens after the watchpoint gets
1701 presented and thus its LWP_INFO->STATUS gets reset.
1702
1703 Therefore the hardware watchpoint hit can get safely reset on the
1704 watchpoint removal from inferior. */
1705
1706 static void
1707 update_watchpoint (struct watchpoint *b, int reparse)
1708 {
1709 int within_current_scope;
1710 struct frame_id saved_frame_id;
1711 int frame_saved;
1712
1713 /* If this is a local watchpoint, we only want to check if the
1714 watchpoint frame is in scope if the current thread is the thread
1715 that was used to create the watchpoint. */
1716 if (!watchpoint_in_thread_scope (b))
1717 return;
1718
1719 if (b->base.disposition == disp_del_at_next_stop)
1720 return;
1721
1722 frame_saved = 0;
1723
1724 /* Determine if the watchpoint is within scope. */
1725 if (b->exp_valid_block == NULL)
1726 within_current_scope = 1;
1727 else
1728 {
1729 struct frame_info *fi = get_current_frame ();
1730 struct gdbarch *frame_arch = get_frame_arch (fi);
1731 CORE_ADDR frame_pc = get_frame_pc (fi);
1732
1733 /* If we're in a function epilogue, unwinding may not work
1734 properly, so do not attempt to recreate locations at this
1735 point. See similar comments in watchpoint_check. */
1736 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1737 return;
1738
1739 /* Save the current frame's ID so we can restore it after
1740 evaluating the watchpoint expression on its own frame. */
1741 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1742 took a frame parameter, so that we didn't have to change the
1743 selected frame. */
1744 frame_saved = 1;
1745 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1746
1747 fi = frame_find_by_id (b->watchpoint_frame);
1748 within_current_scope = (fi != NULL);
1749 if (within_current_scope)
1750 select_frame (fi);
1751 }
1752
1753 /* We don't free locations. They are stored in the bp_location array
1754 and update_global_location_list will eventually delete them and
1755 remove breakpoints if needed. */
1756 b->base.loc = NULL;
1757
1758 if (within_current_scope && reparse)
1759 {
1760 const char *s;
1761
1762 if (b->exp)
1763 {
1764 xfree (b->exp);
1765 b->exp = NULL;
1766 }
1767 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1768 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1769 /* If the meaning of expression itself changed, the old value is
1770 no longer relevant. We don't want to report a watchpoint hit
1771 to the user when the old value and the new value may actually
1772 be completely different objects. */
1773 value_free (b->val);
1774 b->val = NULL;
1775 b->val_valid = 0;
1776
1777 /* Note that unlike with breakpoints, the watchpoint's condition
1778 expression is stored in the breakpoint object, not in the
1779 locations (re)created below. */
1780 if (b->base.cond_string != NULL)
1781 {
1782 if (b->cond_exp != NULL)
1783 {
1784 xfree (b->cond_exp);
1785 b->cond_exp = NULL;
1786 }
1787
1788 s = b->base.cond_string;
1789 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1790 }
1791 }
1792
1793 /* If we failed to parse the expression, for example because
1794 it refers to a global variable in a not-yet-loaded shared library,
1795 don't try to insert watchpoint. We don't automatically delete
1796 such watchpoint, though, since failure to parse expression
1797 is different from out-of-scope watchpoint. */
1798 if (!target_has_execution)
1799 {
1800 /* Without execution, memory can't change. No use to try and
1801 set watchpoint locations. The watchpoint will be reset when
1802 the target gains execution, through breakpoint_re_set. */
1803 if (!can_use_hw_watchpoints)
1804 {
1805 if (b->base.ops->works_in_software_mode (&b->base))
1806 b->base.type = bp_watchpoint;
1807 else
1808 error (_("Software read/access watchpoints not supported."));
1809 }
1810 }
1811 else if (within_current_scope && b->exp)
1812 {
1813 int pc = 0;
1814 struct value *val_chain, *v, *result, *next;
1815 struct program_space *frame_pspace;
1816
1817 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain, 0);
1818
1819 /* Avoid setting b->val if it's already set. The meaning of
1820 b->val is 'the last value' user saw, and we should update
1821 it only if we reported that last value to user. As it
1822 happens, the code that reports it updates b->val directly.
1823 We don't keep track of the memory value for masked
1824 watchpoints. */
1825 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1826 {
1827 b->val = v;
1828 b->val_valid = 1;
1829 }
1830
1831 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1832
1833 /* Look at each value on the value chain. */
1834 for (v = val_chain; v; v = value_next (v))
1835 {
1836 /* If it's a memory location, and GDB actually needed
1837 its contents to evaluate the expression, then we
1838 must watch it. If the first value returned is
1839 still lazy, that means an error occurred reading it;
1840 watch it anyway in case it becomes readable. */
1841 if (VALUE_LVAL (v) == lval_memory
1842 && (v == val_chain || ! value_lazy (v)))
1843 {
1844 struct type *vtype = check_typedef (value_type (v));
1845
1846 /* We only watch structs and arrays if user asked
1847 for it explicitly, never if they just happen to
1848 appear in the middle of some value chain. */
1849 if (v == result
1850 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1851 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1852 {
1853 CORE_ADDR addr;
1854 int type;
1855 struct bp_location *loc, **tmp;
1856
1857 addr = value_address (v);
1858 type = hw_write;
1859 if (b->base.type == bp_read_watchpoint)
1860 type = hw_read;
1861 else if (b->base.type == bp_access_watchpoint)
1862 type = hw_access;
1863
1864 loc = allocate_bp_location (&b->base);
1865 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1866 ;
1867 *tmp = loc;
1868 loc->gdbarch = get_type_arch (value_type (v));
1869
1870 loc->pspace = frame_pspace;
1871 loc->address = addr;
1872 loc->length = TYPE_LENGTH (value_type (v));
1873 loc->watchpoint_type = type;
1874 }
1875 }
1876 }
1877
1878 /* Change the type of breakpoint between hardware assisted or
1879 an ordinary watchpoint depending on the hardware support
1880 and free hardware slots. REPARSE is set when the inferior
1881 is started. */
1882 if (reparse)
1883 {
1884 int reg_cnt;
1885 enum bp_loc_type loc_type;
1886 struct bp_location *bl;
1887
1888 reg_cnt = can_use_hardware_watchpoint (val_chain);
1889
1890 if (reg_cnt)
1891 {
1892 int i, target_resources_ok, other_type_used;
1893 enum bptype type;
1894
1895 /* Use an exact watchpoint when there's only one memory region to be
1896 watched, and only one debug register is needed to watch it. */
1897 b->exact = target_exact_watchpoints && reg_cnt == 1;
1898
1899 /* We need to determine how many resources are already
1900 used for all other hardware watchpoints plus this one
1901 to see if we still have enough resources to also fit
1902 this watchpoint in as well. */
1903
1904 /* If this is a software watchpoint, we try to turn it
1905 to a hardware one -- count resources as if B was of
1906 hardware watchpoint type. */
1907 type = b->base.type;
1908 if (type == bp_watchpoint)
1909 type = bp_hardware_watchpoint;
1910
1911 /* This watchpoint may or may not have been placed on
1912 the list yet at this point (it won't be in the list
1913 if we're trying to create it for the first time,
1914 through watch_command), so always account for it
1915 manually. */
1916
1917 /* Count resources used by all watchpoints except B. */
1918 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
1919
1920 /* Add in the resources needed for B. */
1921 i += hw_watchpoint_use_count (&b->base);
1922
1923 target_resources_ok
1924 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1925 if (target_resources_ok <= 0)
1926 {
1927 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
1928
1929 if (target_resources_ok == 0 && !sw_mode)
1930 error (_("Target does not support this type of "
1931 "hardware watchpoint."));
1932 else if (target_resources_ok < 0 && !sw_mode)
1933 error (_("There are not enough available hardware "
1934 "resources for this watchpoint."));
1935
1936 /* Downgrade to software watchpoint. */
1937 b->base.type = bp_watchpoint;
1938 }
1939 else
1940 {
1941 /* If this was a software watchpoint, we've just
1942 found we have enough resources to turn it to a
1943 hardware watchpoint. Otherwise, this is a
1944 nop. */
1945 b->base.type = type;
1946 }
1947 }
1948 else if (!b->base.ops->works_in_software_mode (&b->base))
1949 error (_("Expression cannot be implemented with "
1950 "read/access watchpoint."));
1951 else
1952 b->base.type = bp_watchpoint;
1953
1954 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
1955 : bp_loc_hardware_watchpoint);
1956 for (bl = b->base.loc; bl; bl = bl->next)
1957 bl->loc_type = loc_type;
1958 }
1959
1960 for (v = val_chain; v; v = next)
1961 {
1962 next = value_next (v);
1963 if (v != b->val)
1964 value_free (v);
1965 }
1966
1967 /* If a software watchpoint is not watching any memory, then the
1968 above left it without any location set up. But,
1969 bpstat_stop_status requires a location to be able to report
1970 stops, so make sure there's at least a dummy one. */
1971 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
1972 {
1973 struct breakpoint *base = &b->base;
1974 base->loc = allocate_bp_location (base);
1975 base->loc->pspace = frame_pspace;
1976 base->loc->address = -1;
1977 base->loc->length = -1;
1978 base->loc->watchpoint_type = -1;
1979 }
1980 }
1981 else if (!within_current_scope)
1982 {
1983 printf_filtered (_("\
1984 Watchpoint %d deleted because the program has left the block\n\
1985 in which its expression is valid.\n"),
1986 b->base.number);
1987 watchpoint_del_at_next_stop (b);
1988 }
1989
1990 /* Restore the selected frame. */
1991 if (frame_saved)
1992 select_frame (frame_find_by_id (saved_frame_id));
1993 }
1994
1995
1996 /* Returns 1 iff breakpoint location should be
1997 inserted in the inferior. We don't differentiate the type of BL's owner
1998 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1999 breakpoint_ops is not defined, because in insert_bp_location,
2000 tracepoint's insert_location will not be called. */
2001 static int
2002 should_be_inserted (struct bp_location *bl)
2003 {
2004 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2005 return 0;
2006
2007 if (bl->owner->disposition == disp_del_at_next_stop)
2008 return 0;
2009
2010 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2011 return 0;
2012
2013 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2014 return 0;
2015
2016 /* This is set for example, when we're attached to the parent of a
2017 vfork, and have detached from the child. The child is running
2018 free, and we expect it to do an exec or exit, at which point the
2019 OS makes the parent schedulable again (and the target reports
2020 that the vfork is done). Until the child is done with the shared
2021 memory region, do not insert breakpoints in the parent, otherwise
2022 the child could still trip on the parent's breakpoints. Since
2023 the parent is blocked anyway, it won't miss any breakpoint. */
2024 if (bl->pspace->breakpoints_not_allowed)
2025 return 0;
2026
2027 return 1;
2028 }
2029
2030 /* Same as should_be_inserted but does the check assuming
2031 that the location is not duplicated. */
2032
2033 static int
2034 unduplicated_should_be_inserted (struct bp_location *bl)
2035 {
2036 int result;
2037 const int save_duplicate = bl->duplicate;
2038
2039 bl->duplicate = 0;
2040 result = should_be_inserted (bl);
2041 bl->duplicate = save_duplicate;
2042 return result;
2043 }
2044
2045 /* Parses a conditional described by an expression COND into an
2046 agent expression bytecode suitable for evaluation
2047 by the bytecode interpreter. Return NULL if there was
2048 any error during parsing. */
2049
2050 static struct agent_expr *
2051 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2052 {
2053 struct agent_expr *aexpr = NULL;
2054 volatile struct gdb_exception ex;
2055
2056 if (!cond)
2057 return NULL;
2058
2059 /* We don't want to stop processing, so catch any errors
2060 that may show up. */
2061 TRY_CATCH (ex, RETURN_MASK_ERROR)
2062 {
2063 aexpr = gen_eval_for_expr (scope, cond);
2064 }
2065
2066 if (ex.reason < 0)
2067 {
2068 /* If we got here, it means the condition could not be parsed to a valid
2069 bytecode expression and thus can't be evaluated on the target's side.
2070 It's no use iterating through the conditions. */
2071 return NULL;
2072 }
2073
2074 /* We have a valid agent expression. */
2075 return aexpr;
2076 }
2077
2078 /* Based on location BL, create a list of breakpoint conditions to be
2079 passed on to the target. If we have duplicated locations with different
2080 conditions, we will add such conditions to the list. The idea is that the
2081 target will evaluate the list of conditions and will only notify GDB when
2082 one of them is true. */
2083
2084 static void
2085 build_target_condition_list (struct bp_location *bl)
2086 {
2087 struct bp_location **locp = NULL, **loc2p;
2088 int null_condition_or_parse_error = 0;
2089 int modified = bl->needs_update;
2090 struct bp_location *loc;
2091
2092 /* This is only meaningful if the target is
2093 evaluating conditions and if the user has
2094 opted for condition evaluation on the target's
2095 side. */
2096 if (gdb_evaluates_breakpoint_condition_p ()
2097 || !target_supports_evaluation_of_breakpoint_conditions ())
2098 return;
2099
2100 /* Do a first pass to check for locations with no assigned
2101 conditions or conditions that fail to parse to a valid agent expression
2102 bytecode. If any of these happen, then it's no use to send conditions
2103 to the target since this location will always trigger and generate a
2104 response back to GDB. */
2105 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2106 {
2107 loc = (*loc2p);
2108 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2109 {
2110 if (modified)
2111 {
2112 struct agent_expr *aexpr;
2113
2114 /* Re-parse the conditions since something changed. In that
2115 case we already freed the condition bytecodes (see
2116 force_breakpoint_reinsertion). We just
2117 need to parse the condition to bytecodes again. */
2118 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2119 loc->cond_bytecode = aexpr;
2120
2121 /* Check if we managed to parse the conditional expression
2122 correctly. If not, we will not send this condition
2123 to the target. */
2124 if (aexpr)
2125 continue;
2126 }
2127
2128 /* If we have a NULL bytecode expression, it means something
2129 went wrong or we have a null condition expression. */
2130 if (!loc->cond_bytecode)
2131 {
2132 null_condition_or_parse_error = 1;
2133 break;
2134 }
2135 }
2136 }
2137
2138 /* If any of these happened, it means we will have to evaluate the conditions
2139 for the location's address on gdb's side. It is no use keeping bytecodes
2140 for all the other duplicate locations, thus we free all of them here.
2141
2142 This is so we have a finer control over which locations' conditions are
2143 being evaluated by GDB or the remote stub. */
2144 if (null_condition_or_parse_error)
2145 {
2146 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2147 {
2148 loc = (*loc2p);
2149 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2150 {
2151 /* Only go as far as the first NULL bytecode is
2152 located. */
2153 if (!loc->cond_bytecode)
2154 return;
2155
2156 free_agent_expr (loc->cond_bytecode);
2157 loc->cond_bytecode = NULL;
2158 }
2159 }
2160 }
2161
2162 /* No NULL conditions or failed bytecode generation. Build a condition list
2163 for this location's address. */
2164 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2165 {
2166 loc = (*loc2p);
2167 if (loc->cond
2168 && is_breakpoint (loc->owner)
2169 && loc->pspace->num == bl->pspace->num
2170 && loc->owner->enable_state == bp_enabled
2171 && loc->enabled)
2172 /* Add the condition to the vector. This will be used later to send the
2173 conditions to the target. */
2174 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2175 loc->cond_bytecode);
2176 }
2177
2178 return;
2179 }
2180
2181 /* Parses a command described by string CMD into an agent expression
2182 bytecode suitable for evaluation by the bytecode interpreter.
2183 Return NULL if there was any error during parsing. */
2184
2185 static struct agent_expr *
2186 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2187 {
2188 struct cleanup *old_cleanups = 0;
2189 struct expression *expr, **argvec;
2190 struct agent_expr *aexpr = NULL;
2191 volatile struct gdb_exception ex;
2192 const char *cmdrest;
2193 const char *format_start, *format_end;
2194 struct format_piece *fpieces;
2195 int nargs;
2196 struct gdbarch *gdbarch = get_current_arch ();
2197
2198 if (!cmd)
2199 return NULL;
2200
2201 cmdrest = cmd;
2202
2203 if (*cmdrest == ',')
2204 ++cmdrest;
2205 cmdrest = skip_spaces_const (cmdrest);
2206
2207 if (*cmdrest++ != '"')
2208 error (_("No format string following the location"));
2209
2210 format_start = cmdrest;
2211
2212 fpieces = parse_format_string (&cmdrest);
2213
2214 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2215
2216 format_end = cmdrest;
2217
2218 if (*cmdrest++ != '"')
2219 error (_("Bad format string, non-terminated '\"'."));
2220
2221 cmdrest = skip_spaces_const (cmdrest);
2222
2223 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2224 error (_("Invalid argument syntax"));
2225
2226 if (*cmdrest == ',')
2227 cmdrest++;
2228 cmdrest = skip_spaces_const (cmdrest);
2229
2230 /* For each argument, make an expression. */
2231
2232 argvec = (struct expression **) alloca (strlen (cmd)
2233 * sizeof (struct expression *));
2234
2235 nargs = 0;
2236 while (*cmdrest != '\0')
2237 {
2238 const char *cmd1;
2239
2240 cmd1 = cmdrest;
2241 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2242 argvec[nargs++] = expr;
2243 cmdrest = cmd1;
2244 if (*cmdrest == ',')
2245 ++cmdrest;
2246 }
2247
2248 /* We don't want to stop processing, so catch any errors
2249 that may show up. */
2250 TRY_CATCH (ex, RETURN_MASK_ERROR)
2251 {
2252 aexpr = gen_printf (scope, gdbarch, 0, 0,
2253 format_start, format_end - format_start,
2254 fpieces, nargs, argvec);
2255 }
2256
2257 do_cleanups (old_cleanups);
2258
2259 if (ex.reason < 0)
2260 {
2261 /* If we got here, it means the command could not be parsed to a valid
2262 bytecode expression and thus can't be evaluated on the target's side.
2263 It's no use iterating through the other commands. */
2264 return NULL;
2265 }
2266
2267 /* We have a valid agent expression, return it. */
2268 return aexpr;
2269 }
2270
2271 /* Based on location BL, create a list of breakpoint commands to be
2272 passed on to the target. If we have duplicated locations with
2273 different commands, we will add any such to the list. */
2274
2275 static void
2276 build_target_command_list (struct bp_location *bl)
2277 {
2278 struct bp_location **locp = NULL, **loc2p;
2279 int null_command_or_parse_error = 0;
2280 int modified = bl->needs_update;
2281 struct bp_location *loc;
2282
2283 /* For now, limit to agent-style dprintf breakpoints. */
2284 if (bl->owner->type != bp_dprintf
2285 || strcmp (dprintf_style, dprintf_style_agent) != 0)
2286 return;
2287
2288 if (!target_can_run_breakpoint_commands ())
2289 return;
2290
2291 /* Do a first pass to check for locations with no assigned
2292 conditions or conditions that fail to parse to a valid agent expression
2293 bytecode. If any of these happen, then it's no use to send conditions
2294 to the target since this location will always trigger and generate a
2295 response back to GDB. */
2296 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2297 {
2298 loc = (*loc2p);
2299 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2300 {
2301 if (modified)
2302 {
2303 struct agent_expr *aexpr;
2304
2305 /* Re-parse the commands since something changed. In that
2306 case we already freed the command bytecodes (see
2307 force_breakpoint_reinsertion). We just
2308 need to parse the command to bytecodes again. */
2309 aexpr = parse_cmd_to_aexpr (bl->address,
2310 loc->owner->extra_string);
2311 loc->cmd_bytecode = aexpr;
2312
2313 if (!aexpr)
2314 continue;
2315 }
2316
2317 /* If we have a NULL bytecode expression, it means something
2318 went wrong or we have a null command expression. */
2319 if (!loc->cmd_bytecode)
2320 {
2321 null_command_or_parse_error = 1;
2322 break;
2323 }
2324 }
2325 }
2326
2327 /* If anything failed, then we're not doing target-side commands,
2328 and so clean up. */
2329 if (null_command_or_parse_error)
2330 {
2331 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2332 {
2333 loc = (*loc2p);
2334 if (is_breakpoint (loc->owner)
2335 && loc->pspace->num == bl->pspace->num)
2336 {
2337 /* Only go as far as the first NULL bytecode is
2338 located. */
2339 if (loc->cmd_bytecode == NULL)
2340 return;
2341
2342 free_agent_expr (loc->cmd_bytecode);
2343 loc->cmd_bytecode = NULL;
2344 }
2345 }
2346 }
2347
2348 /* No NULL commands or failed bytecode generation. Build a command list
2349 for this location's address. */
2350 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2351 {
2352 loc = (*loc2p);
2353 if (loc->owner->extra_string
2354 && is_breakpoint (loc->owner)
2355 && loc->pspace->num == bl->pspace->num
2356 && loc->owner->enable_state == bp_enabled
2357 && loc->enabled)
2358 /* Add the command to the vector. This will be used later
2359 to send the commands to the target. */
2360 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2361 loc->cmd_bytecode);
2362 }
2363
2364 bl->target_info.persist = 0;
2365 /* Maybe flag this location as persistent. */
2366 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2367 bl->target_info.persist = 1;
2368 }
2369
2370 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2371 location. Any error messages are printed to TMP_ERROR_STREAM; and
2372 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2373 Returns 0 for success, 1 if the bp_location type is not supported or
2374 -1 for failure.
2375
2376 NOTE drow/2003-09-09: This routine could be broken down to an
2377 object-style method for each breakpoint or catchpoint type. */
2378 static int
2379 insert_bp_location (struct bp_location *bl,
2380 struct ui_file *tmp_error_stream,
2381 int *disabled_breaks,
2382 int *hw_breakpoint_error,
2383 int *hw_bp_error_explained_already)
2384 {
2385 int val = 0;
2386 char *hw_bp_err_string = NULL;
2387 struct gdb_exception e;
2388
2389 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2390 return 0;
2391
2392 /* Note we don't initialize bl->target_info, as that wipes out
2393 the breakpoint location's shadow_contents if the breakpoint
2394 is still inserted at that location. This in turn breaks
2395 target_read_memory which depends on these buffers when
2396 a memory read is requested at the breakpoint location:
2397 Once the target_info has been wiped, we fail to see that
2398 we have a breakpoint inserted at that address and thus
2399 read the breakpoint instead of returning the data saved in
2400 the breakpoint location's shadow contents. */
2401 bl->target_info.placed_address = bl->address;
2402 bl->target_info.placed_address_space = bl->pspace->aspace;
2403 bl->target_info.length = bl->length;
2404
2405 /* When working with target-side conditions, we must pass all the conditions
2406 for the same breakpoint address down to the target since GDB will not
2407 insert those locations. With a list of breakpoint conditions, the target
2408 can decide when to stop and notify GDB. */
2409
2410 if (is_breakpoint (bl->owner))
2411 {
2412 build_target_condition_list (bl);
2413 build_target_command_list (bl);
2414 /* Reset the modification marker. */
2415 bl->needs_update = 0;
2416 }
2417
2418 if (bl->loc_type == bp_loc_software_breakpoint
2419 || bl->loc_type == bp_loc_hardware_breakpoint)
2420 {
2421 if (bl->owner->type != bp_hardware_breakpoint)
2422 {
2423 /* If the explicitly specified breakpoint type
2424 is not hardware breakpoint, check the memory map to see
2425 if the breakpoint address is in read only memory or not.
2426
2427 Two important cases are:
2428 - location type is not hardware breakpoint, memory
2429 is readonly. We change the type of the location to
2430 hardware breakpoint.
2431 - location type is hardware breakpoint, memory is
2432 read-write. This means we've previously made the
2433 location hardware one, but then the memory map changed,
2434 so we undo.
2435
2436 When breakpoints are removed, remove_breakpoints will use
2437 location types we've just set here, the only possible
2438 problem is that memory map has changed during running
2439 program, but it's not going to work anyway with current
2440 gdb. */
2441 struct mem_region *mr
2442 = lookup_mem_region (bl->target_info.placed_address);
2443
2444 if (mr)
2445 {
2446 if (automatic_hardware_breakpoints)
2447 {
2448 enum bp_loc_type new_type;
2449
2450 if (mr->attrib.mode != MEM_RW)
2451 new_type = bp_loc_hardware_breakpoint;
2452 else
2453 new_type = bp_loc_software_breakpoint;
2454
2455 if (new_type != bl->loc_type)
2456 {
2457 static int said = 0;
2458
2459 bl->loc_type = new_type;
2460 if (!said)
2461 {
2462 fprintf_filtered (gdb_stdout,
2463 _("Note: automatically using "
2464 "hardware breakpoints for "
2465 "read-only addresses.\n"));
2466 said = 1;
2467 }
2468 }
2469 }
2470 else if (bl->loc_type == bp_loc_software_breakpoint
2471 && mr->attrib.mode != MEM_RW)
2472 warning (_("cannot set software breakpoint "
2473 "at readonly address %s"),
2474 paddress (bl->gdbarch, bl->address));
2475 }
2476 }
2477
2478 /* First check to see if we have to handle an overlay. */
2479 if (overlay_debugging == ovly_off
2480 || bl->section == NULL
2481 || !(section_is_overlay (bl->section)))
2482 {
2483 /* No overlay handling: just set the breakpoint. */
2484 TRY_CATCH (e, RETURN_MASK_ALL)
2485 {
2486 val = bl->owner->ops->insert_location (bl);
2487 }
2488 if (e.reason < 0)
2489 {
2490 val = 1;
2491 hw_bp_err_string = (char *) e.message;
2492 }
2493 }
2494 else
2495 {
2496 /* This breakpoint is in an overlay section.
2497 Shall we set a breakpoint at the LMA? */
2498 if (!overlay_events_enabled)
2499 {
2500 /* Yes -- overlay event support is not active,
2501 so we must try to set a breakpoint at the LMA.
2502 This will not work for a hardware breakpoint. */
2503 if (bl->loc_type == bp_loc_hardware_breakpoint)
2504 warning (_("hardware breakpoint %d not supported in overlay!"),
2505 bl->owner->number);
2506 else
2507 {
2508 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2509 bl->section);
2510 /* Set a software (trap) breakpoint at the LMA. */
2511 bl->overlay_target_info = bl->target_info;
2512 bl->overlay_target_info.placed_address = addr;
2513 val = target_insert_breakpoint (bl->gdbarch,
2514 &bl->overlay_target_info);
2515 if (val != 0)
2516 fprintf_unfiltered (tmp_error_stream,
2517 "Overlay breakpoint %d "
2518 "failed: in ROM?\n",
2519 bl->owner->number);
2520 }
2521 }
2522 /* Shall we set a breakpoint at the VMA? */
2523 if (section_is_mapped (bl->section))
2524 {
2525 /* Yes. This overlay section is mapped into memory. */
2526 TRY_CATCH (e, RETURN_MASK_ALL)
2527 {
2528 val = bl->owner->ops->insert_location (bl);
2529 }
2530 if (e.reason < 0)
2531 {
2532 val = 1;
2533 hw_bp_err_string = (char *) e.message;
2534 }
2535 }
2536 else
2537 {
2538 /* No. This breakpoint will not be inserted.
2539 No error, but do not mark the bp as 'inserted'. */
2540 return 0;
2541 }
2542 }
2543
2544 if (val)
2545 {
2546 /* Can't set the breakpoint. */
2547 if (solib_name_from_address (bl->pspace, bl->address))
2548 {
2549 /* See also: disable_breakpoints_in_shlibs. */
2550 val = 0;
2551 bl->shlib_disabled = 1;
2552 observer_notify_breakpoint_modified (bl->owner);
2553 if (!*disabled_breaks)
2554 {
2555 fprintf_unfiltered (tmp_error_stream,
2556 "Cannot insert breakpoint %d.\n",
2557 bl->owner->number);
2558 fprintf_unfiltered (tmp_error_stream,
2559 "Temporarily disabling shared "
2560 "library breakpoints:\n");
2561 }
2562 *disabled_breaks = 1;
2563 fprintf_unfiltered (tmp_error_stream,
2564 "breakpoint #%d\n", bl->owner->number);
2565 }
2566 else
2567 {
2568 if (bl->loc_type == bp_loc_hardware_breakpoint)
2569 {
2570 *hw_breakpoint_error = 1;
2571 *hw_bp_error_explained_already = hw_bp_err_string != NULL;
2572 fprintf_unfiltered (tmp_error_stream,
2573 "Cannot insert hardware breakpoint %d%s",
2574 bl->owner->number, hw_bp_err_string ? ":" : ".\n");
2575 if (hw_bp_err_string)
2576 fprintf_unfiltered (tmp_error_stream, "%s.\n", hw_bp_err_string);
2577 }
2578 else
2579 {
2580 char *message = memory_error_message (TARGET_XFER_E_IO,
2581 bl->gdbarch, bl->address);
2582 struct cleanup *old_chain = make_cleanup (xfree, message);
2583
2584 fprintf_unfiltered (tmp_error_stream,
2585 "Cannot insert breakpoint %d.\n"
2586 "%s\n",
2587 bl->owner->number, message);
2588
2589 do_cleanups (old_chain);
2590 }
2591
2592 }
2593 }
2594 else
2595 bl->inserted = 1;
2596
2597 return val;
2598 }
2599
2600 else if (bl->loc_type == bp_loc_hardware_watchpoint
2601 /* NOTE drow/2003-09-08: This state only exists for removing
2602 watchpoints. It's not clear that it's necessary... */
2603 && bl->owner->disposition != disp_del_at_next_stop)
2604 {
2605 gdb_assert (bl->owner->ops != NULL
2606 && bl->owner->ops->insert_location != NULL);
2607
2608 val = bl->owner->ops->insert_location (bl);
2609
2610 /* If trying to set a read-watchpoint, and it turns out it's not
2611 supported, try emulating one with an access watchpoint. */
2612 if (val == 1 && bl->watchpoint_type == hw_read)
2613 {
2614 struct bp_location *loc, **loc_temp;
2615
2616 /* But don't try to insert it, if there's already another
2617 hw_access location that would be considered a duplicate
2618 of this one. */
2619 ALL_BP_LOCATIONS (loc, loc_temp)
2620 if (loc != bl
2621 && loc->watchpoint_type == hw_access
2622 && watchpoint_locations_match (bl, loc))
2623 {
2624 bl->duplicate = 1;
2625 bl->inserted = 1;
2626 bl->target_info = loc->target_info;
2627 bl->watchpoint_type = hw_access;
2628 val = 0;
2629 break;
2630 }
2631
2632 if (val == 1)
2633 {
2634 bl->watchpoint_type = hw_access;
2635 val = bl->owner->ops->insert_location (bl);
2636
2637 if (val)
2638 /* Back to the original value. */
2639 bl->watchpoint_type = hw_read;
2640 }
2641 }
2642
2643 bl->inserted = (val == 0);
2644 }
2645
2646 else if (bl->owner->type == bp_catchpoint)
2647 {
2648 gdb_assert (bl->owner->ops != NULL
2649 && bl->owner->ops->insert_location != NULL);
2650
2651 val = bl->owner->ops->insert_location (bl);
2652 if (val)
2653 {
2654 bl->owner->enable_state = bp_disabled;
2655
2656 if (val == 1)
2657 warning (_("\
2658 Error inserting catchpoint %d: Your system does not support this type\n\
2659 of catchpoint."), bl->owner->number);
2660 else
2661 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2662 }
2663
2664 bl->inserted = (val == 0);
2665
2666 /* We've already printed an error message if there was a problem
2667 inserting this catchpoint, and we've disabled the catchpoint,
2668 so just return success. */
2669 return 0;
2670 }
2671
2672 return 0;
2673 }
2674
2675 /* This function is called when program space PSPACE is about to be
2676 deleted. It takes care of updating breakpoints to not reference
2677 PSPACE anymore. */
2678
2679 void
2680 breakpoint_program_space_exit (struct program_space *pspace)
2681 {
2682 struct breakpoint *b, *b_temp;
2683 struct bp_location *loc, **loc_temp;
2684
2685 /* Remove any breakpoint that was set through this program space. */
2686 ALL_BREAKPOINTS_SAFE (b, b_temp)
2687 {
2688 if (b->pspace == pspace)
2689 delete_breakpoint (b);
2690 }
2691
2692 /* Breakpoints set through other program spaces could have locations
2693 bound to PSPACE as well. Remove those. */
2694 ALL_BP_LOCATIONS (loc, loc_temp)
2695 {
2696 struct bp_location *tmp;
2697
2698 if (loc->pspace == pspace)
2699 {
2700 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2701 if (loc->owner->loc == loc)
2702 loc->owner->loc = loc->next;
2703 else
2704 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2705 if (tmp->next == loc)
2706 {
2707 tmp->next = loc->next;
2708 break;
2709 }
2710 }
2711 }
2712
2713 /* Now update the global location list to permanently delete the
2714 removed locations above. */
2715 update_global_location_list (0);
2716 }
2717
2718 /* Make sure all breakpoints are inserted in inferior.
2719 Throws exception on any error.
2720 A breakpoint that is already inserted won't be inserted
2721 again, so calling this function twice is safe. */
2722 void
2723 insert_breakpoints (void)
2724 {
2725 struct breakpoint *bpt;
2726
2727 ALL_BREAKPOINTS (bpt)
2728 if (is_hardware_watchpoint (bpt))
2729 {
2730 struct watchpoint *w = (struct watchpoint *) bpt;
2731
2732 update_watchpoint (w, 0 /* don't reparse. */);
2733 }
2734
2735 update_global_location_list (1);
2736
2737 /* update_global_location_list does not insert breakpoints when
2738 always_inserted_mode is not enabled. Explicitly insert them
2739 now. */
2740 if (!breakpoints_always_inserted_mode ())
2741 insert_breakpoint_locations ();
2742 }
2743
2744 /* Invoke CALLBACK for each of bp_location. */
2745
2746 void
2747 iterate_over_bp_locations (walk_bp_location_callback callback)
2748 {
2749 struct bp_location *loc, **loc_tmp;
2750
2751 ALL_BP_LOCATIONS (loc, loc_tmp)
2752 {
2753 callback (loc, NULL);
2754 }
2755 }
2756
2757 /* This is used when we need to synch breakpoint conditions between GDB and the
2758 target. It is the case with deleting and disabling of breakpoints when using
2759 always-inserted mode. */
2760
2761 static void
2762 update_inserted_breakpoint_locations (void)
2763 {
2764 struct bp_location *bl, **blp_tmp;
2765 int error_flag = 0;
2766 int val = 0;
2767 int disabled_breaks = 0;
2768 int hw_breakpoint_error = 0;
2769 int hw_bp_details_reported = 0;
2770
2771 struct ui_file *tmp_error_stream = mem_fileopen ();
2772 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2773
2774 /* Explicitly mark the warning -- this will only be printed if
2775 there was an error. */
2776 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2777
2778 save_current_space_and_thread ();
2779
2780 ALL_BP_LOCATIONS (bl, blp_tmp)
2781 {
2782 /* We only want to update software breakpoints and hardware
2783 breakpoints. */
2784 if (!is_breakpoint (bl->owner))
2785 continue;
2786
2787 /* We only want to update locations that are already inserted
2788 and need updating. This is to avoid unwanted insertion during
2789 deletion of breakpoints. */
2790 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2791 continue;
2792
2793 switch_to_program_space_and_thread (bl->pspace);
2794
2795 /* For targets that support global breakpoints, there's no need
2796 to select an inferior to insert breakpoint to. In fact, even
2797 if we aren't attached to any process yet, we should still
2798 insert breakpoints. */
2799 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2800 && ptid_equal (inferior_ptid, null_ptid))
2801 continue;
2802
2803 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2804 &hw_breakpoint_error, &hw_bp_details_reported);
2805 if (val)
2806 error_flag = val;
2807 }
2808
2809 if (error_flag)
2810 {
2811 target_terminal_ours_for_output ();
2812 error_stream (tmp_error_stream);
2813 }
2814
2815 do_cleanups (cleanups);
2816 }
2817
2818 /* Used when starting or continuing the program. */
2819
2820 static void
2821 insert_breakpoint_locations (void)
2822 {
2823 struct breakpoint *bpt;
2824 struct bp_location *bl, **blp_tmp;
2825 int error_flag = 0;
2826 int val = 0;
2827 int disabled_breaks = 0;
2828 int hw_breakpoint_error = 0;
2829 int hw_bp_error_explained_already = 0;
2830
2831 struct ui_file *tmp_error_stream = mem_fileopen ();
2832 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2833
2834 /* Explicitly mark the warning -- this will only be printed if
2835 there was an error. */
2836 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2837
2838 save_current_space_and_thread ();
2839
2840 ALL_BP_LOCATIONS (bl, blp_tmp)
2841 {
2842 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2843 continue;
2844
2845 /* There is no point inserting thread-specific breakpoints if
2846 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2847 has BL->OWNER always non-NULL. */
2848 if (bl->owner->thread != -1
2849 && !valid_thread_id (bl->owner->thread))
2850 continue;
2851
2852 switch_to_program_space_and_thread (bl->pspace);
2853
2854 /* For targets that support global breakpoints, there's no need
2855 to select an inferior to insert breakpoint to. In fact, even
2856 if we aren't attached to any process yet, we should still
2857 insert breakpoints. */
2858 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2859 && ptid_equal (inferior_ptid, null_ptid))
2860 continue;
2861
2862 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2863 &hw_breakpoint_error, &hw_bp_error_explained_already);
2864 if (val)
2865 error_flag = val;
2866 }
2867
2868 /* If we failed to insert all locations of a watchpoint, remove
2869 them, as half-inserted watchpoint is of limited use. */
2870 ALL_BREAKPOINTS (bpt)
2871 {
2872 int some_failed = 0;
2873 struct bp_location *loc;
2874
2875 if (!is_hardware_watchpoint (bpt))
2876 continue;
2877
2878 if (!breakpoint_enabled (bpt))
2879 continue;
2880
2881 if (bpt->disposition == disp_del_at_next_stop)
2882 continue;
2883
2884 for (loc = bpt->loc; loc; loc = loc->next)
2885 if (!loc->inserted && should_be_inserted (loc))
2886 {
2887 some_failed = 1;
2888 break;
2889 }
2890 if (some_failed)
2891 {
2892 for (loc = bpt->loc; loc; loc = loc->next)
2893 if (loc->inserted)
2894 remove_breakpoint (loc, mark_uninserted);
2895
2896 hw_breakpoint_error = 1;
2897 fprintf_unfiltered (tmp_error_stream,
2898 "Could not insert hardware watchpoint %d.\n",
2899 bpt->number);
2900 error_flag = -1;
2901 }
2902 }
2903
2904 if (error_flag)
2905 {
2906 /* If a hardware breakpoint or watchpoint was inserted, add a
2907 message about possibly exhausted resources. */
2908 if (hw_breakpoint_error && !hw_bp_error_explained_already)
2909 {
2910 fprintf_unfiltered (tmp_error_stream,
2911 "Could not insert hardware breakpoints:\n\
2912 You may have requested too many hardware breakpoints/watchpoints.\n");
2913 }
2914 target_terminal_ours_for_output ();
2915 error_stream (tmp_error_stream);
2916 }
2917
2918 do_cleanups (cleanups);
2919 }
2920
2921 /* Used when the program stops.
2922 Returns zero if successful, or non-zero if there was a problem
2923 removing a breakpoint location. */
2924
2925 int
2926 remove_breakpoints (void)
2927 {
2928 struct bp_location *bl, **blp_tmp;
2929 int val = 0;
2930
2931 ALL_BP_LOCATIONS (bl, blp_tmp)
2932 {
2933 if (bl->inserted && !is_tracepoint (bl->owner))
2934 val |= remove_breakpoint (bl, mark_uninserted);
2935 }
2936 return val;
2937 }
2938
2939 /* When a thread exits, remove breakpoints that are related to
2940 that thread. */
2941
2942 static void
2943 remove_threaded_breakpoints (struct thread_info *tp, int silent)
2944 {
2945 struct breakpoint *b, *b_tmp;
2946
2947 ALL_BREAKPOINTS_SAFE (b, b_tmp)
2948 {
2949 if (b->thread == tp->num && user_breakpoint_p (b))
2950 {
2951 b->disposition = disp_del_at_next_stop;
2952
2953 printf_filtered (_("\
2954 Thread-specific breakpoint %d deleted - thread %d no longer in the thread list.\n"),
2955 b->number, tp->num);
2956
2957 /* Hide it from the user. */
2958 b->number = 0;
2959 }
2960 }
2961 }
2962
2963 /* Remove breakpoints of process PID. */
2964
2965 int
2966 remove_breakpoints_pid (int pid)
2967 {
2968 struct bp_location *bl, **blp_tmp;
2969 int val;
2970 struct inferior *inf = find_inferior_pid (pid);
2971
2972 ALL_BP_LOCATIONS (bl, blp_tmp)
2973 {
2974 if (bl->pspace != inf->pspace)
2975 continue;
2976
2977 if (bl->owner->type == bp_dprintf)
2978 continue;
2979
2980 if (bl->inserted)
2981 {
2982 val = remove_breakpoint (bl, mark_uninserted);
2983 if (val != 0)
2984 return val;
2985 }
2986 }
2987 return 0;
2988 }
2989
2990 int
2991 reattach_breakpoints (int pid)
2992 {
2993 struct cleanup *old_chain;
2994 struct bp_location *bl, **blp_tmp;
2995 int val;
2996 struct ui_file *tmp_error_stream;
2997 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
2998 struct inferior *inf;
2999 struct thread_info *tp;
3000
3001 tp = any_live_thread_of_process (pid);
3002 if (tp == NULL)
3003 return 1;
3004
3005 inf = find_inferior_pid (pid);
3006 old_chain = save_inferior_ptid ();
3007
3008 inferior_ptid = tp->ptid;
3009
3010 tmp_error_stream = mem_fileopen ();
3011 make_cleanup_ui_file_delete (tmp_error_stream);
3012
3013 ALL_BP_LOCATIONS (bl, blp_tmp)
3014 {
3015 if (bl->pspace != inf->pspace)
3016 continue;
3017
3018 if (bl->inserted)
3019 {
3020 bl->inserted = 0;
3021 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3022 if (val != 0)
3023 {
3024 do_cleanups (old_chain);
3025 return val;
3026 }
3027 }
3028 }
3029 do_cleanups (old_chain);
3030 return 0;
3031 }
3032
3033 static int internal_breakpoint_number = -1;
3034
3035 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3036 If INTERNAL is non-zero, the breakpoint number will be populated
3037 from internal_breakpoint_number and that variable decremented.
3038 Otherwise the breakpoint number will be populated from
3039 breakpoint_count and that value incremented. Internal breakpoints
3040 do not set the internal var bpnum. */
3041 static void
3042 set_breakpoint_number (int internal, struct breakpoint *b)
3043 {
3044 if (internal)
3045 b->number = internal_breakpoint_number--;
3046 else
3047 {
3048 set_breakpoint_count (breakpoint_count + 1);
3049 b->number = breakpoint_count;
3050 }
3051 }
3052
3053 static struct breakpoint *
3054 create_internal_breakpoint (struct gdbarch *gdbarch,
3055 CORE_ADDR address, enum bptype type,
3056 const struct breakpoint_ops *ops)
3057 {
3058 struct symtab_and_line sal;
3059 struct breakpoint *b;
3060
3061 init_sal (&sal); /* Initialize to zeroes. */
3062
3063 sal.pc = address;
3064 sal.section = find_pc_overlay (sal.pc);
3065 sal.pspace = current_program_space;
3066
3067 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3068 b->number = internal_breakpoint_number--;
3069 b->disposition = disp_donttouch;
3070
3071 return b;
3072 }
3073
3074 static const char *const longjmp_names[] =
3075 {
3076 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3077 };
3078 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3079
3080 /* Per-objfile data private to breakpoint.c. */
3081 struct breakpoint_objfile_data
3082 {
3083 /* Minimal symbol for "_ovly_debug_event" (if any). */
3084 struct minimal_symbol *overlay_msym;
3085
3086 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3087 struct minimal_symbol *longjmp_msym[NUM_LONGJMP_NAMES];
3088
3089 /* True if we have looked for longjmp probes. */
3090 int longjmp_searched;
3091
3092 /* SystemTap probe points for longjmp (if any). */
3093 VEC (probe_p) *longjmp_probes;
3094
3095 /* Minimal symbol for "std::terminate()" (if any). */
3096 struct minimal_symbol *terminate_msym;
3097
3098 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3099 struct minimal_symbol *exception_msym;
3100
3101 /* True if we have looked for exception probes. */
3102 int exception_searched;
3103
3104 /* SystemTap probe points for unwinding (if any). */
3105 VEC (probe_p) *exception_probes;
3106 };
3107
3108 static const struct objfile_data *breakpoint_objfile_key;
3109
3110 /* Minimal symbol not found sentinel. */
3111 static struct minimal_symbol msym_not_found;
3112
3113 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3114
3115 static int
3116 msym_not_found_p (const struct minimal_symbol *msym)
3117 {
3118 return msym == &msym_not_found;
3119 }
3120
3121 /* Return per-objfile data needed by breakpoint.c.
3122 Allocate the data if necessary. */
3123
3124 static struct breakpoint_objfile_data *
3125 get_breakpoint_objfile_data (struct objfile *objfile)
3126 {
3127 struct breakpoint_objfile_data *bp_objfile_data;
3128
3129 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3130 if (bp_objfile_data == NULL)
3131 {
3132 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3133 sizeof (*bp_objfile_data));
3134
3135 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3136 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3137 }
3138 return bp_objfile_data;
3139 }
3140
3141 static void
3142 free_breakpoint_probes (struct objfile *obj, void *data)
3143 {
3144 struct breakpoint_objfile_data *bp_objfile_data = data;
3145
3146 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3147 VEC_free (probe_p, bp_objfile_data->exception_probes);
3148 }
3149
3150 static void
3151 create_overlay_event_breakpoint (void)
3152 {
3153 struct objfile *objfile;
3154 const char *const func_name = "_ovly_debug_event";
3155
3156 ALL_OBJFILES (objfile)
3157 {
3158 struct breakpoint *b;
3159 struct breakpoint_objfile_data *bp_objfile_data;
3160 CORE_ADDR addr;
3161
3162 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3163
3164 if (msym_not_found_p (bp_objfile_data->overlay_msym))
3165 continue;
3166
3167 if (bp_objfile_data->overlay_msym == NULL)
3168 {
3169 struct minimal_symbol *m;
3170
3171 m = lookup_minimal_symbol_text (func_name, objfile);
3172 if (m == NULL)
3173 {
3174 /* Avoid future lookups in this objfile. */
3175 bp_objfile_data->overlay_msym = &msym_not_found;
3176 continue;
3177 }
3178 bp_objfile_data->overlay_msym = m;
3179 }
3180
3181 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3182 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3183 bp_overlay_event,
3184 &internal_breakpoint_ops);
3185 b->addr_string = xstrdup (func_name);
3186
3187 if (overlay_debugging == ovly_auto)
3188 {
3189 b->enable_state = bp_enabled;
3190 overlay_events_enabled = 1;
3191 }
3192 else
3193 {
3194 b->enable_state = bp_disabled;
3195 overlay_events_enabled = 0;
3196 }
3197 }
3198 update_global_location_list (1);
3199 }
3200
3201 static void
3202 create_longjmp_master_breakpoint (void)
3203 {
3204 struct program_space *pspace;
3205 struct cleanup *old_chain;
3206
3207 old_chain = save_current_program_space ();
3208
3209 ALL_PSPACES (pspace)
3210 {
3211 struct objfile *objfile;
3212
3213 set_current_program_space (pspace);
3214
3215 ALL_OBJFILES (objfile)
3216 {
3217 int i;
3218 struct gdbarch *gdbarch;
3219 struct breakpoint_objfile_data *bp_objfile_data;
3220
3221 gdbarch = get_objfile_arch (objfile);
3222 if (!gdbarch_get_longjmp_target_p (gdbarch))
3223 continue;
3224
3225 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3226
3227 if (!bp_objfile_data->longjmp_searched)
3228 {
3229 VEC (probe_p) *ret;
3230
3231 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3232 if (ret != NULL)
3233 {
3234 /* We are only interested in checking one element. */
3235 struct probe *p = VEC_index (probe_p, ret, 0);
3236
3237 if (!can_evaluate_probe_arguments (p))
3238 {
3239 /* We cannot use the probe interface here, because it does
3240 not know how to evaluate arguments. */
3241 VEC_free (probe_p, ret);
3242 ret = NULL;
3243 }
3244 }
3245 bp_objfile_data->longjmp_probes = ret;
3246 bp_objfile_data->longjmp_searched = 1;
3247 }
3248
3249 if (bp_objfile_data->longjmp_probes != NULL)
3250 {
3251 int i;
3252 struct probe *probe;
3253 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3254
3255 for (i = 0;
3256 VEC_iterate (probe_p,
3257 bp_objfile_data->longjmp_probes,
3258 i, probe);
3259 ++i)
3260 {
3261 struct breakpoint *b;
3262
3263 b = create_internal_breakpoint (gdbarch, probe->address,
3264 bp_longjmp_master,
3265 &internal_breakpoint_ops);
3266 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3267 b->enable_state = bp_disabled;
3268 }
3269
3270 continue;
3271 }
3272
3273 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3274 {
3275 struct breakpoint *b;
3276 const char *func_name;
3277 CORE_ADDR addr;
3278
3279 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i]))
3280 continue;
3281
3282 func_name = longjmp_names[i];
3283 if (bp_objfile_data->longjmp_msym[i] == NULL)
3284 {
3285 struct minimal_symbol *m;
3286
3287 m = lookup_minimal_symbol_text (func_name, objfile);
3288 if (m == NULL)
3289 {
3290 /* Prevent future lookups in this objfile. */
3291 bp_objfile_data->longjmp_msym[i] = &msym_not_found;
3292 continue;
3293 }
3294 bp_objfile_data->longjmp_msym[i] = m;
3295 }
3296
3297 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3298 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3299 &internal_breakpoint_ops);
3300 b->addr_string = xstrdup (func_name);
3301 b->enable_state = bp_disabled;
3302 }
3303 }
3304 }
3305 update_global_location_list (1);
3306
3307 do_cleanups (old_chain);
3308 }
3309
3310 /* Create a master std::terminate breakpoint. */
3311 static void
3312 create_std_terminate_master_breakpoint (void)
3313 {
3314 struct program_space *pspace;
3315 struct cleanup *old_chain;
3316 const char *const func_name = "std::terminate()";
3317
3318 old_chain = save_current_program_space ();
3319
3320 ALL_PSPACES (pspace)
3321 {
3322 struct objfile *objfile;
3323 CORE_ADDR addr;
3324
3325 set_current_program_space (pspace);
3326
3327 ALL_OBJFILES (objfile)
3328 {
3329 struct breakpoint *b;
3330 struct breakpoint_objfile_data *bp_objfile_data;
3331
3332 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3333
3334 if (msym_not_found_p (bp_objfile_data->terminate_msym))
3335 continue;
3336
3337 if (bp_objfile_data->terminate_msym == NULL)
3338 {
3339 struct minimal_symbol *m;
3340
3341 m = lookup_minimal_symbol (func_name, NULL, objfile);
3342 if (m == NULL || (MSYMBOL_TYPE (m) != mst_text
3343 && MSYMBOL_TYPE (m) != mst_file_text))
3344 {
3345 /* Prevent future lookups in this objfile. */
3346 bp_objfile_data->terminate_msym = &msym_not_found;
3347 continue;
3348 }
3349 bp_objfile_data->terminate_msym = m;
3350 }
3351
3352 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3353 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3354 bp_std_terminate_master,
3355 &internal_breakpoint_ops);
3356 b->addr_string = xstrdup (func_name);
3357 b->enable_state = bp_disabled;
3358 }
3359 }
3360
3361 update_global_location_list (1);
3362
3363 do_cleanups (old_chain);
3364 }
3365
3366 /* Install a master breakpoint on the unwinder's debug hook. */
3367
3368 static void
3369 create_exception_master_breakpoint (void)
3370 {
3371 struct objfile *objfile;
3372 const char *const func_name = "_Unwind_DebugHook";
3373
3374 ALL_OBJFILES (objfile)
3375 {
3376 struct breakpoint *b;
3377 struct gdbarch *gdbarch;
3378 struct breakpoint_objfile_data *bp_objfile_data;
3379 CORE_ADDR addr;
3380
3381 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3382
3383 /* We prefer the SystemTap probe point if it exists. */
3384 if (!bp_objfile_data->exception_searched)
3385 {
3386 VEC (probe_p) *ret;
3387
3388 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3389
3390 if (ret != NULL)
3391 {
3392 /* We are only interested in checking one element. */
3393 struct probe *p = VEC_index (probe_p, ret, 0);
3394
3395 if (!can_evaluate_probe_arguments (p))
3396 {
3397 /* We cannot use the probe interface here, because it does
3398 not know how to evaluate arguments. */
3399 VEC_free (probe_p, ret);
3400 ret = NULL;
3401 }
3402 }
3403 bp_objfile_data->exception_probes = ret;
3404 bp_objfile_data->exception_searched = 1;
3405 }
3406
3407 if (bp_objfile_data->exception_probes != NULL)
3408 {
3409 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3410 int i;
3411 struct probe *probe;
3412
3413 for (i = 0;
3414 VEC_iterate (probe_p,
3415 bp_objfile_data->exception_probes,
3416 i, probe);
3417 ++i)
3418 {
3419 struct breakpoint *b;
3420
3421 b = create_internal_breakpoint (gdbarch, probe->address,
3422 bp_exception_master,
3423 &internal_breakpoint_ops);
3424 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3425 b->enable_state = bp_disabled;
3426 }
3427
3428 continue;
3429 }
3430
3431 /* Otherwise, try the hook function. */
3432
3433 if (msym_not_found_p (bp_objfile_data->exception_msym))
3434 continue;
3435
3436 gdbarch = get_objfile_arch (objfile);
3437
3438 if (bp_objfile_data->exception_msym == NULL)
3439 {
3440 struct minimal_symbol *debug_hook;
3441
3442 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3443 if (debug_hook == NULL)
3444 {
3445 bp_objfile_data->exception_msym = &msym_not_found;
3446 continue;
3447 }
3448
3449 bp_objfile_data->exception_msym = debug_hook;
3450 }
3451
3452 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3453 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3454 &current_target);
3455 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3456 &internal_breakpoint_ops);
3457 b->addr_string = xstrdup (func_name);
3458 b->enable_state = bp_disabled;
3459 }
3460
3461 update_global_location_list (1);
3462 }
3463
3464 void
3465 update_breakpoints_after_exec (void)
3466 {
3467 struct breakpoint *b, *b_tmp;
3468 struct bp_location *bploc, **bplocp_tmp;
3469
3470 /* We're about to delete breakpoints from GDB's lists. If the
3471 INSERTED flag is true, GDB will try to lift the breakpoints by
3472 writing the breakpoints' "shadow contents" back into memory. The
3473 "shadow contents" are NOT valid after an exec, so GDB should not
3474 do that. Instead, the target is responsible from marking
3475 breakpoints out as soon as it detects an exec. We don't do that
3476 here instead, because there may be other attempts to delete
3477 breakpoints after detecting an exec and before reaching here. */
3478 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3479 if (bploc->pspace == current_program_space)
3480 gdb_assert (!bploc->inserted);
3481
3482 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3483 {
3484 if (b->pspace != current_program_space)
3485 continue;
3486
3487 /* Solib breakpoints must be explicitly reset after an exec(). */
3488 if (b->type == bp_shlib_event)
3489 {
3490 delete_breakpoint (b);
3491 continue;
3492 }
3493
3494 /* JIT breakpoints must be explicitly reset after an exec(). */
3495 if (b->type == bp_jit_event)
3496 {
3497 delete_breakpoint (b);
3498 continue;
3499 }
3500
3501 /* Thread event breakpoints must be set anew after an exec(),
3502 as must overlay event and longjmp master breakpoints. */
3503 if (b->type == bp_thread_event || b->type == bp_overlay_event
3504 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3505 || b->type == bp_exception_master)
3506 {
3507 delete_breakpoint (b);
3508 continue;
3509 }
3510
3511 /* Step-resume breakpoints are meaningless after an exec(). */
3512 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3513 {
3514 delete_breakpoint (b);
3515 continue;
3516 }
3517
3518 /* Longjmp and longjmp-resume breakpoints are also meaningless
3519 after an exec. */
3520 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3521 || b->type == bp_longjmp_call_dummy
3522 || b->type == bp_exception || b->type == bp_exception_resume)
3523 {
3524 delete_breakpoint (b);
3525 continue;
3526 }
3527
3528 if (b->type == bp_catchpoint)
3529 {
3530 /* For now, none of the bp_catchpoint breakpoints need to
3531 do anything at this point. In the future, if some of
3532 the catchpoints need to something, we will need to add
3533 a new method, and call this method from here. */
3534 continue;
3535 }
3536
3537 /* bp_finish is a special case. The only way we ought to be able
3538 to see one of these when an exec() has happened, is if the user
3539 caught a vfork, and then said "finish". Ordinarily a finish just
3540 carries them to the call-site of the current callee, by setting
3541 a temporary bp there and resuming. But in this case, the finish
3542 will carry them entirely through the vfork & exec.
3543
3544 We don't want to allow a bp_finish to remain inserted now. But
3545 we can't safely delete it, 'cause finish_command has a handle to
3546 the bp on a bpstat, and will later want to delete it. There's a
3547 chance (and I've seen it happen) that if we delete the bp_finish
3548 here, that its storage will get reused by the time finish_command
3549 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3550 We really must allow finish_command to delete a bp_finish.
3551
3552 In the absence of a general solution for the "how do we know
3553 it's safe to delete something others may have handles to?"
3554 problem, what we'll do here is just uninsert the bp_finish, and
3555 let finish_command delete it.
3556
3557 (We know the bp_finish is "doomed" in the sense that it's
3558 momentary, and will be deleted as soon as finish_command sees
3559 the inferior stopped. So it doesn't matter that the bp's
3560 address is probably bogus in the new a.out, unlike e.g., the
3561 solib breakpoints.) */
3562
3563 if (b->type == bp_finish)
3564 {
3565 continue;
3566 }
3567
3568 /* Without a symbolic address, we have little hope of the
3569 pre-exec() address meaning the same thing in the post-exec()
3570 a.out. */
3571 if (b->addr_string == NULL)
3572 {
3573 delete_breakpoint (b);
3574 continue;
3575 }
3576 }
3577 /* FIXME what about longjmp breakpoints? Re-create them here? */
3578 create_overlay_event_breakpoint ();
3579 create_longjmp_master_breakpoint ();
3580 create_std_terminate_master_breakpoint ();
3581 create_exception_master_breakpoint ();
3582 }
3583
3584 int
3585 detach_breakpoints (ptid_t ptid)
3586 {
3587 struct bp_location *bl, **blp_tmp;
3588 int val = 0;
3589 struct cleanup *old_chain = save_inferior_ptid ();
3590 struct inferior *inf = current_inferior ();
3591
3592 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3593 error (_("Cannot detach breakpoints of inferior_ptid"));
3594
3595 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3596 inferior_ptid = ptid;
3597 ALL_BP_LOCATIONS (bl, blp_tmp)
3598 {
3599 if (bl->pspace != inf->pspace)
3600 continue;
3601
3602 /* This function must physically remove breakpoints locations
3603 from the specified ptid, without modifying the breakpoint
3604 package's state. Locations of type bp_loc_other are only
3605 maintained at GDB side. So, there is no need to remove
3606 these bp_loc_other locations. Moreover, removing these
3607 would modify the breakpoint package's state. */
3608 if (bl->loc_type == bp_loc_other)
3609 continue;
3610
3611 if (bl->inserted)
3612 val |= remove_breakpoint_1 (bl, mark_inserted);
3613 }
3614
3615 /* Detach single-step breakpoints as well. */
3616 detach_single_step_breakpoints ();
3617
3618 do_cleanups (old_chain);
3619 return val;
3620 }
3621
3622 /* Remove the breakpoint location BL from the current address space.
3623 Note that this is used to detach breakpoints from a child fork.
3624 When we get here, the child isn't in the inferior list, and neither
3625 do we have objects to represent its address space --- we should
3626 *not* look at bl->pspace->aspace here. */
3627
3628 static int
3629 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3630 {
3631 int val;
3632
3633 /* BL is never in moribund_locations by our callers. */
3634 gdb_assert (bl->owner != NULL);
3635
3636 if (bl->owner->enable_state == bp_permanent)
3637 /* Permanent breakpoints cannot be inserted or removed. */
3638 return 0;
3639
3640 /* The type of none suggests that owner is actually deleted.
3641 This should not ever happen. */
3642 gdb_assert (bl->owner->type != bp_none);
3643
3644 if (bl->loc_type == bp_loc_software_breakpoint
3645 || bl->loc_type == bp_loc_hardware_breakpoint)
3646 {
3647 /* "Normal" instruction breakpoint: either the standard
3648 trap-instruction bp (bp_breakpoint), or a
3649 bp_hardware_breakpoint. */
3650
3651 /* First check to see if we have to handle an overlay. */
3652 if (overlay_debugging == ovly_off
3653 || bl->section == NULL
3654 || !(section_is_overlay (bl->section)))
3655 {
3656 /* No overlay handling: just remove the breakpoint. */
3657 val = bl->owner->ops->remove_location (bl);
3658 }
3659 else
3660 {
3661 /* This breakpoint is in an overlay section.
3662 Did we set a breakpoint at the LMA? */
3663 if (!overlay_events_enabled)
3664 {
3665 /* Yes -- overlay event support is not active, so we
3666 should have set a breakpoint at the LMA. Remove it.
3667 */
3668 /* Ignore any failures: if the LMA is in ROM, we will
3669 have already warned when we failed to insert it. */
3670 if (bl->loc_type == bp_loc_hardware_breakpoint)
3671 target_remove_hw_breakpoint (bl->gdbarch,
3672 &bl->overlay_target_info);
3673 else
3674 target_remove_breakpoint (bl->gdbarch,
3675 &bl->overlay_target_info);
3676 }
3677 /* Did we set a breakpoint at the VMA?
3678 If so, we will have marked the breakpoint 'inserted'. */
3679 if (bl->inserted)
3680 {
3681 /* Yes -- remove it. Previously we did not bother to
3682 remove the breakpoint if the section had been
3683 unmapped, but let's not rely on that being safe. We
3684 don't know what the overlay manager might do. */
3685
3686 /* However, we should remove *software* breakpoints only
3687 if the section is still mapped, or else we overwrite
3688 wrong code with the saved shadow contents. */
3689 if (bl->loc_type == bp_loc_hardware_breakpoint
3690 || section_is_mapped (bl->section))
3691 val = bl->owner->ops->remove_location (bl);
3692 else
3693 val = 0;
3694 }
3695 else
3696 {
3697 /* No -- not inserted, so no need to remove. No error. */
3698 val = 0;
3699 }
3700 }
3701
3702 /* In some cases, we might not be able to remove a breakpoint
3703 in a shared library that has already been removed, but we
3704 have not yet processed the shlib unload event. */
3705 if (val && solib_name_from_address (bl->pspace, bl->address))
3706 val = 0;
3707
3708 if (val)
3709 return val;
3710 bl->inserted = (is == mark_inserted);
3711 }
3712 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3713 {
3714 gdb_assert (bl->owner->ops != NULL
3715 && bl->owner->ops->remove_location != NULL);
3716
3717 bl->inserted = (is == mark_inserted);
3718 bl->owner->ops->remove_location (bl);
3719
3720 /* Failure to remove any of the hardware watchpoints comes here. */
3721 if ((is == mark_uninserted) && (bl->inserted))
3722 warning (_("Could not remove hardware watchpoint %d."),
3723 bl->owner->number);
3724 }
3725 else if (bl->owner->type == bp_catchpoint
3726 && breakpoint_enabled (bl->owner)
3727 && !bl->duplicate)
3728 {
3729 gdb_assert (bl->owner->ops != NULL
3730 && bl->owner->ops->remove_location != NULL);
3731
3732 val = bl->owner->ops->remove_location (bl);
3733 if (val)
3734 return val;
3735
3736 bl->inserted = (is == mark_inserted);
3737 }
3738
3739 return 0;
3740 }
3741
3742 static int
3743 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
3744 {
3745 int ret;
3746 struct cleanup *old_chain;
3747
3748 /* BL is never in moribund_locations by our callers. */
3749 gdb_assert (bl->owner != NULL);
3750
3751 if (bl->owner->enable_state == bp_permanent)
3752 /* Permanent breakpoints cannot be inserted or removed. */
3753 return 0;
3754
3755 /* The type of none suggests that owner is actually deleted.
3756 This should not ever happen. */
3757 gdb_assert (bl->owner->type != bp_none);
3758
3759 old_chain = save_current_space_and_thread ();
3760
3761 switch_to_program_space_and_thread (bl->pspace);
3762
3763 ret = remove_breakpoint_1 (bl, is);
3764
3765 do_cleanups (old_chain);
3766 return ret;
3767 }
3768
3769 /* Clear the "inserted" flag in all breakpoints. */
3770
3771 void
3772 mark_breakpoints_out (void)
3773 {
3774 struct bp_location *bl, **blp_tmp;
3775
3776 ALL_BP_LOCATIONS (bl, blp_tmp)
3777 if (bl->pspace == current_program_space)
3778 bl->inserted = 0;
3779 }
3780
3781 /* Clear the "inserted" flag in all breakpoints and delete any
3782 breakpoints which should go away between runs of the program.
3783
3784 Plus other such housekeeping that has to be done for breakpoints
3785 between runs.
3786
3787 Note: this function gets called at the end of a run (by
3788 generic_mourn_inferior) and when a run begins (by
3789 init_wait_for_inferior). */
3790
3791
3792
3793 void
3794 breakpoint_init_inferior (enum inf_context context)
3795 {
3796 struct breakpoint *b, *b_tmp;
3797 struct bp_location *bl, **blp_tmp;
3798 int ix;
3799 struct program_space *pspace = current_program_space;
3800
3801 /* If breakpoint locations are shared across processes, then there's
3802 nothing to do. */
3803 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3804 return;
3805
3806 ALL_BP_LOCATIONS (bl, blp_tmp)
3807 {
3808 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3809 if (bl->pspace == pspace
3810 && bl->owner->enable_state != bp_permanent)
3811 bl->inserted = 0;
3812 }
3813
3814 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3815 {
3816 if (b->loc && b->loc->pspace != pspace)
3817 continue;
3818
3819 switch (b->type)
3820 {
3821 case bp_call_dummy:
3822 case bp_longjmp_call_dummy:
3823
3824 /* If the call dummy breakpoint is at the entry point it will
3825 cause problems when the inferior is rerun, so we better get
3826 rid of it. */
3827
3828 case bp_watchpoint_scope:
3829
3830 /* Also get rid of scope breakpoints. */
3831
3832 case bp_shlib_event:
3833
3834 /* Also remove solib event breakpoints. Their addresses may
3835 have changed since the last time we ran the program.
3836 Actually we may now be debugging against different target;
3837 and so the solib backend that installed this breakpoint may
3838 not be used in by the target. E.g.,
3839
3840 (gdb) file prog-linux
3841 (gdb) run # native linux target
3842 ...
3843 (gdb) kill
3844 (gdb) file prog-win.exe
3845 (gdb) tar rem :9999 # remote Windows gdbserver.
3846 */
3847
3848 case bp_step_resume:
3849
3850 /* Also remove step-resume breakpoints. */
3851
3852 delete_breakpoint (b);
3853 break;
3854
3855 case bp_watchpoint:
3856 case bp_hardware_watchpoint:
3857 case bp_read_watchpoint:
3858 case bp_access_watchpoint:
3859 {
3860 struct watchpoint *w = (struct watchpoint *) b;
3861
3862 /* Likewise for watchpoints on local expressions. */
3863 if (w->exp_valid_block != NULL)
3864 delete_breakpoint (b);
3865 else if (context == inf_starting)
3866 {
3867 /* Reset val field to force reread of starting value in
3868 insert_breakpoints. */
3869 if (w->val)
3870 value_free (w->val);
3871 w->val = NULL;
3872 w->val_valid = 0;
3873 }
3874 }
3875 break;
3876 default:
3877 break;
3878 }
3879 }
3880
3881 /* Get rid of the moribund locations. */
3882 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3883 decref_bp_location (&bl);
3884 VEC_free (bp_location_p, moribund_locations);
3885 }
3886
3887 /* These functions concern about actual breakpoints inserted in the
3888 target --- to e.g. check if we need to do decr_pc adjustment or if
3889 we need to hop over the bkpt --- so we check for address space
3890 match, not program space. */
3891
3892 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3893 exists at PC. It returns ordinary_breakpoint_here if it's an
3894 ordinary breakpoint, or permanent_breakpoint_here if it's a
3895 permanent breakpoint.
3896 - When continuing from a location with an ordinary breakpoint, we
3897 actually single step once before calling insert_breakpoints.
3898 - When continuing from a location with a permanent breakpoint, we
3899 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3900 the target, to advance the PC past the breakpoint. */
3901
3902 enum breakpoint_here
3903 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3904 {
3905 struct bp_location *bl, **blp_tmp;
3906 int any_breakpoint_here = 0;
3907
3908 ALL_BP_LOCATIONS (bl, blp_tmp)
3909 {
3910 if (bl->loc_type != bp_loc_software_breakpoint
3911 && bl->loc_type != bp_loc_hardware_breakpoint)
3912 continue;
3913
3914 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3915 if ((breakpoint_enabled (bl->owner)
3916 || bl->owner->enable_state == bp_permanent)
3917 && breakpoint_location_address_match (bl, aspace, pc))
3918 {
3919 if (overlay_debugging
3920 && section_is_overlay (bl->section)
3921 && !section_is_mapped (bl->section))
3922 continue; /* unmapped overlay -- can't be a match */
3923 else if (bl->owner->enable_state == bp_permanent)
3924 return permanent_breakpoint_here;
3925 else
3926 any_breakpoint_here = 1;
3927 }
3928 }
3929
3930 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
3931 }
3932
3933 /* Return true if there's a moribund breakpoint at PC. */
3934
3935 int
3936 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3937 {
3938 struct bp_location *loc;
3939 int ix;
3940
3941 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
3942 if (breakpoint_location_address_match (loc, aspace, pc))
3943 return 1;
3944
3945 return 0;
3946 }
3947
3948 /* Returns non-zero if there's a breakpoint inserted at PC, which is
3949 inserted using regular breakpoint_chain / bp_location array
3950 mechanism. This does not check for single-step breakpoints, which
3951 are inserted and removed using direct target manipulation. */
3952
3953 int
3954 regular_breakpoint_inserted_here_p (struct address_space *aspace,
3955 CORE_ADDR pc)
3956 {
3957 struct bp_location *bl, **blp_tmp;
3958
3959 ALL_BP_LOCATIONS (bl, blp_tmp)
3960 {
3961 if (bl->loc_type != bp_loc_software_breakpoint
3962 && bl->loc_type != bp_loc_hardware_breakpoint)
3963 continue;
3964
3965 if (bl->inserted
3966 && breakpoint_location_address_match (bl, aspace, pc))
3967 {
3968 if (overlay_debugging
3969 && section_is_overlay (bl->section)
3970 && !section_is_mapped (bl->section))
3971 continue; /* unmapped overlay -- can't be a match */
3972 else
3973 return 1;
3974 }
3975 }
3976 return 0;
3977 }
3978
3979 /* Returns non-zero iff there's either regular breakpoint
3980 or a single step breakpoint inserted at PC. */
3981
3982 int
3983 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
3984 {
3985 if (regular_breakpoint_inserted_here_p (aspace, pc))
3986 return 1;
3987
3988 if (single_step_breakpoint_inserted_here_p (aspace, pc))
3989 return 1;
3990
3991 return 0;
3992 }
3993
3994 /* This function returns non-zero iff there is a software breakpoint
3995 inserted at PC. */
3996
3997 int
3998 software_breakpoint_inserted_here_p (struct address_space *aspace,
3999 CORE_ADDR pc)
4000 {
4001 struct bp_location *bl, **blp_tmp;
4002
4003 ALL_BP_LOCATIONS (bl, blp_tmp)
4004 {
4005 if (bl->loc_type != bp_loc_software_breakpoint)
4006 continue;
4007
4008 if (bl->inserted
4009 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4010 aspace, pc))
4011 {
4012 if (overlay_debugging
4013 && section_is_overlay (bl->section)
4014 && !section_is_mapped (bl->section))
4015 continue; /* unmapped overlay -- can't be a match */
4016 else
4017 return 1;
4018 }
4019 }
4020
4021 /* Also check for software single-step breakpoints. */
4022 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4023 return 1;
4024
4025 return 0;
4026 }
4027
4028 int
4029 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4030 CORE_ADDR addr, ULONGEST len)
4031 {
4032 struct breakpoint *bpt;
4033
4034 ALL_BREAKPOINTS (bpt)
4035 {
4036 struct bp_location *loc;
4037
4038 if (bpt->type != bp_hardware_watchpoint
4039 && bpt->type != bp_access_watchpoint)
4040 continue;
4041
4042 if (!breakpoint_enabled (bpt))
4043 continue;
4044
4045 for (loc = bpt->loc; loc; loc = loc->next)
4046 if (loc->pspace->aspace == aspace && loc->inserted)
4047 {
4048 CORE_ADDR l, h;
4049
4050 /* Check for intersection. */
4051 l = max (loc->address, addr);
4052 h = min (loc->address + loc->length, addr + len);
4053 if (l < h)
4054 return 1;
4055 }
4056 }
4057 return 0;
4058 }
4059
4060 /* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
4061 PC is valid for process/thread PTID. */
4062
4063 int
4064 breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
4065 ptid_t ptid)
4066 {
4067 struct bp_location *bl, **blp_tmp;
4068 /* The thread and task IDs associated to PTID, computed lazily. */
4069 int thread = -1;
4070 int task = 0;
4071
4072 ALL_BP_LOCATIONS (bl, blp_tmp)
4073 {
4074 if (bl->loc_type != bp_loc_software_breakpoint
4075 && bl->loc_type != bp_loc_hardware_breakpoint)
4076 continue;
4077
4078 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4079 if (!breakpoint_enabled (bl->owner)
4080 && bl->owner->enable_state != bp_permanent)
4081 continue;
4082
4083 if (!breakpoint_location_address_match (bl, aspace, pc))
4084 continue;
4085
4086 if (bl->owner->thread != -1)
4087 {
4088 /* This is a thread-specific breakpoint. Check that ptid
4089 matches that thread. If thread hasn't been computed yet,
4090 it is now time to do so. */
4091 if (thread == -1)
4092 thread = pid_to_thread_id (ptid);
4093 if (bl->owner->thread != thread)
4094 continue;
4095 }
4096
4097 if (bl->owner->task != 0)
4098 {
4099 /* This is a task-specific breakpoint. Check that ptid
4100 matches that task. If task hasn't been computed yet,
4101 it is now time to do so. */
4102 if (task == 0)
4103 task = ada_get_task_number (ptid);
4104 if (bl->owner->task != task)
4105 continue;
4106 }
4107
4108 if (overlay_debugging
4109 && section_is_overlay (bl->section)
4110 && !section_is_mapped (bl->section))
4111 continue; /* unmapped overlay -- can't be a match */
4112
4113 return 1;
4114 }
4115
4116 return 0;
4117 }
4118 \f
4119
4120 /* bpstat stuff. External routines' interfaces are documented
4121 in breakpoint.h. */
4122
4123 int
4124 is_catchpoint (struct breakpoint *ep)
4125 {
4126 return (ep->type == bp_catchpoint);
4127 }
4128
4129 /* Frees any storage that is part of a bpstat. Does not walk the
4130 'next' chain. */
4131
4132 static void
4133 bpstat_free (bpstat bs)
4134 {
4135 if (bs->old_val != NULL)
4136 value_free (bs->old_val);
4137 decref_counted_command_line (&bs->commands);
4138 decref_bp_location (&bs->bp_location_at);
4139 xfree (bs);
4140 }
4141
4142 /* Clear a bpstat so that it says we are not at any breakpoint.
4143 Also free any storage that is part of a bpstat. */
4144
4145 void
4146 bpstat_clear (bpstat *bsp)
4147 {
4148 bpstat p;
4149 bpstat q;
4150
4151 if (bsp == 0)
4152 return;
4153 p = *bsp;
4154 while (p != NULL)
4155 {
4156 q = p->next;
4157 bpstat_free (p);
4158 p = q;
4159 }
4160 *bsp = NULL;
4161 }
4162
4163 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4164 is part of the bpstat is copied as well. */
4165
4166 bpstat
4167 bpstat_copy (bpstat bs)
4168 {
4169 bpstat p = NULL;
4170 bpstat tmp;
4171 bpstat retval = NULL;
4172
4173 if (bs == NULL)
4174 return bs;
4175
4176 for (; bs != NULL; bs = bs->next)
4177 {
4178 tmp = (bpstat) xmalloc (sizeof (*tmp));
4179 memcpy (tmp, bs, sizeof (*tmp));
4180 incref_counted_command_line (tmp->commands);
4181 incref_bp_location (tmp->bp_location_at);
4182 if (bs->old_val != NULL)
4183 {
4184 tmp->old_val = value_copy (bs->old_val);
4185 release_value (tmp->old_val);
4186 }
4187
4188 if (p == NULL)
4189 /* This is the first thing in the chain. */
4190 retval = tmp;
4191 else
4192 p->next = tmp;
4193 p = tmp;
4194 }
4195 p->next = NULL;
4196 return retval;
4197 }
4198
4199 /* Find the bpstat associated with this breakpoint. */
4200
4201 bpstat
4202 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4203 {
4204 if (bsp == NULL)
4205 return NULL;
4206
4207 for (; bsp != NULL; bsp = bsp->next)
4208 {
4209 if (bsp->breakpoint_at == breakpoint)
4210 return bsp;
4211 }
4212 return NULL;
4213 }
4214
4215 /* See breakpoint.h. */
4216
4217 enum bpstat_signal_value
4218 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4219 {
4220 enum bpstat_signal_value result = BPSTAT_SIGNAL_NO;
4221
4222 for (; bsp != NULL; bsp = bsp->next)
4223 {
4224 /* Ensure that, if we ever entered this loop, then we at least
4225 return BPSTAT_SIGNAL_HIDE. */
4226 enum bpstat_signal_value newval;
4227
4228 if (bsp->breakpoint_at == NULL)
4229 {
4230 /* A moribund location can never explain a signal other than
4231 GDB_SIGNAL_TRAP. */
4232 if (sig == GDB_SIGNAL_TRAP)
4233 newval = BPSTAT_SIGNAL_HIDE;
4234 else
4235 newval = BPSTAT_SIGNAL_NO;
4236 }
4237 else
4238 newval = bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4239 sig);
4240
4241 if (newval > result)
4242 result = newval;
4243 }
4244
4245 return result;
4246 }
4247
4248 /* Put in *NUM the breakpoint number of the first breakpoint we are
4249 stopped at. *BSP upon return is a bpstat which points to the
4250 remaining breakpoints stopped at (but which is not guaranteed to be
4251 good for anything but further calls to bpstat_num).
4252
4253 Return 0 if passed a bpstat which does not indicate any breakpoints.
4254 Return -1 if stopped at a breakpoint that has been deleted since
4255 we set it.
4256 Return 1 otherwise. */
4257
4258 int
4259 bpstat_num (bpstat *bsp, int *num)
4260 {
4261 struct breakpoint *b;
4262
4263 if ((*bsp) == NULL)
4264 return 0; /* No more breakpoint values */
4265
4266 /* We assume we'll never have several bpstats that correspond to a
4267 single breakpoint -- otherwise, this function might return the
4268 same number more than once and this will look ugly. */
4269 b = (*bsp)->breakpoint_at;
4270 *bsp = (*bsp)->next;
4271 if (b == NULL)
4272 return -1; /* breakpoint that's been deleted since */
4273
4274 *num = b->number; /* We have its number */
4275 return 1;
4276 }
4277
4278 /* See breakpoint.h. */
4279
4280 void
4281 bpstat_clear_actions (void)
4282 {
4283 struct thread_info *tp;
4284 bpstat bs;
4285
4286 if (ptid_equal (inferior_ptid, null_ptid))
4287 return;
4288
4289 tp = find_thread_ptid (inferior_ptid);
4290 if (tp == NULL)
4291 return;
4292
4293 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4294 {
4295 decref_counted_command_line (&bs->commands);
4296
4297 if (bs->old_val != NULL)
4298 {
4299 value_free (bs->old_val);
4300 bs->old_val = NULL;
4301 }
4302 }
4303 }
4304
4305 /* Called when a command is about to proceed the inferior. */
4306
4307 static void
4308 breakpoint_about_to_proceed (void)
4309 {
4310 if (!ptid_equal (inferior_ptid, null_ptid))
4311 {
4312 struct thread_info *tp = inferior_thread ();
4313
4314 /* Allow inferior function calls in breakpoint commands to not
4315 interrupt the command list. When the call finishes
4316 successfully, the inferior will be standing at the same
4317 breakpoint as if nothing happened. */
4318 if (tp->control.in_infcall)
4319 return;
4320 }
4321
4322 breakpoint_proceeded = 1;
4323 }
4324
4325 /* Stub for cleaning up our state if we error-out of a breakpoint
4326 command. */
4327 static void
4328 cleanup_executing_breakpoints (void *ignore)
4329 {
4330 executing_breakpoint_commands = 0;
4331 }
4332
4333 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4334 or its equivalent. */
4335
4336 static int
4337 command_line_is_silent (struct command_line *cmd)
4338 {
4339 return cmd && (strcmp ("silent", cmd->line) == 0
4340 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4341 }
4342
4343 /* Execute all the commands associated with all the breakpoints at
4344 this location. Any of these commands could cause the process to
4345 proceed beyond this point, etc. We look out for such changes by
4346 checking the global "breakpoint_proceeded" after each command.
4347
4348 Returns true if a breakpoint command resumed the inferior. In that
4349 case, it is the caller's responsibility to recall it again with the
4350 bpstat of the current thread. */
4351
4352 static int
4353 bpstat_do_actions_1 (bpstat *bsp)
4354 {
4355 bpstat bs;
4356 struct cleanup *old_chain;
4357 int again = 0;
4358
4359 /* Avoid endless recursion if a `source' command is contained
4360 in bs->commands. */
4361 if (executing_breakpoint_commands)
4362 return 0;
4363
4364 executing_breakpoint_commands = 1;
4365 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4366
4367 prevent_dont_repeat ();
4368
4369 /* This pointer will iterate over the list of bpstat's. */
4370 bs = *bsp;
4371
4372 breakpoint_proceeded = 0;
4373 for (; bs != NULL; bs = bs->next)
4374 {
4375 struct counted_command_line *ccmd;
4376 struct command_line *cmd;
4377 struct cleanup *this_cmd_tree_chain;
4378
4379 /* Take ownership of the BSP's command tree, if it has one.
4380
4381 The command tree could legitimately contain commands like
4382 'step' and 'next', which call clear_proceed_status, which
4383 frees stop_bpstat's command tree. To make sure this doesn't
4384 free the tree we're executing out from under us, we need to
4385 take ownership of the tree ourselves. Since a given bpstat's
4386 commands are only executed once, we don't need to copy it; we
4387 can clear the pointer in the bpstat, and make sure we free
4388 the tree when we're done. */
4389 ccmd = bs->commands;
4390 bs->commands = NULL;
4391 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4392 cmd = ccmd ? ccmd->commands : NULL;
4393 if (command_line_is_silent (cmd))
4394 {
4395 /* The action has been already done by bpstat_stop_status. */
4396 cmd = cmd->next;
4397 }
4398
4399 while (cmd != NULL)
4400 {
4401 execute_control_command (cmd);
4402
4403 if (breakpoint_proceeded)
4404 break;
4405 else
4406 cmd = cmd->next;
4407 }
4408
4409 /* We can free this command tree now. */
4410 do_cleanups (this_cmd_tree_chain);
4411
4412 if (breakpoint_proceeded)
4413 {
4414 if (target_can_async_p ())
4415 /* If we are in async mode, then the target might be still
4416 running, not stopped at any breakpoint, so nothing for
4417 us to do here -- just return to the event loop. */
4418 ;
4419 else
4420 /* In sync mode, when execute_control_command returns
4421 we're already standing on the next breakpoint.
4422 Breakpoint commands for that stop were not run, since
4423 execute_command does not run breakpoint commands --
4424 only command_line_handler does, but that one is not
4425 involved in execution of breakpoint commands. So, we
4426 can now execute breakpoint commands. It should be
4427 noted that making execute_command do bpstat actions is
4428 not an option -- in this case we'll have recursive
4429 invocation of bpstat for each breakpoint with a
4430 command, and can easily blow up GDB stack. Instead, we
4431 return true, which will trigger the caller to recall us
4432 with the new stop_bpstat. */
4433 again = 1;
4434 break;
4435 }
4436 }
4437 do_cleanups (old_chain);
4438 return again;
4439 }
4440
4441 void
4442 bpstat_do_actions (void)
4443 {
4444 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4445
4446 /* Do any commands attached to breakpoint we are stopped at. */
4447 while (!ptid_equal (inferior_ptid, null_ptid)
4448 && target_has_execution
4449 && !is_exited (inferior_ptid)
4450 && !is_executing (inferior_ptid))
4451 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4452 and only return when it is stopped at the next breakpoint, we
4453 keep doing breakpoint actions until it returns false to
4454 indicate the inferior was not resumed. */
4455 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4456 break;
4457
4458 discard_cleanups (cleanup_if_error);
4459 }
4460
4461 /* Print out the (old or new) value associated with a watchpoint. */
4462
4463 static void
4464 watchpoint_value_print (struct value *val, struct ui_file *stream)
4465 {
4466 if (val == NULL)
4467 fprintf_unfiltered (stream, _("<unreadable>"));
4468 else
4469 {
4470 struct value_print_options opts;
4471 get_user_print_options (&opts);
4472 value_print (val, stream, &opts);
4473 }
4474 }
4475
4476 /* Generic routine for printing messages indicating why we
4477 stopped. The behavior of this function depends on the value
4478 'print_it' in the bpstat structure. Under some circumstances we
4479 may decide not to print anything here and delegate the task to
4480 normal_stop(). */
4481
4482 static enum print_stop_action
4483 print_bp_stop_message (bpstat bs)
4484 {
4485 switch (bs->print_it)
4486 {
4487 case print_it_noop:
4488 /* Nothing should be printed for this bpstat entry. */
4489 return PRINT_UNKNOWN;
4490 break;
4491
4492 case print_it_done:
4493 /* We still want to print the frame, but we already printed the
4494 relevant messages. */
4495 return PRINT_SRC_AND_LOC;
4496 break;
4497
4498 case print_it_normal:
4499 {
4500 struct breakpoint *b = bs->breakpoint_at;
4501
4502 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4503 which has since been deleted. */
4504 if (b == NULL)
4505 return PRINT_UNKNOWN;
4506
4507 /* Normal case. Call the breakpoint's print_it method. */
4508 return b->ops->print_it (bs);
4509 }
4510 break;
4511
4512 default:
4513 internal_error (__FILE__, __LINE__,
4514 _("print_bp_stop_message: unrecognized enum value"));
4515 break;
4516 }
4517 }
4518
4519 /* A helper function that prints a shared library stopped event. */
4520
4521 static void
4522 print_solib_event (int is_catchpoint)
4523 {
4524 int any_deleted
4525 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4526 int any_added
4527 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4528
4529 if (!is_catchpoint)
4530 {
4531 if (any_added || any_deleted)
4532 ui_out_text (current_uiout,
4533 _("Stopped due to shared library event:\n"));
4534 else
4535 ui_out_text (current_uiout,
4536 _("Stopped due to shared library event (no "
4537 "libraries added or removed)\n"));
4538 }
4539
4540 if (ui_out_is_mi_like_p (current_uiout))
4541 ui_out_field_string (current_uiout, "reason",
4542 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4543
4544 if (any_deleted)
4545 {
4546 struct cleanup *cleanup;
4547 char *name;
4548 int ix;
4549
4550 ui_out_text (current_uiout, _(" Inferior unloaded "));
4551 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4552 "removed");
4553 for (ix = 0;
4554 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4555 ix, name);
4556 ++ix)
4557 {
4558 if (ix > 0)
4559 ui_out_text (current_uiout, " ");
4560 ui_out_field_string (current_uiout, "library", name);
4561 ui_out_text (current_uiout, "\n");
4562 }
4563
4564 do_cleanups (cleanup);
4565 }
4566
4567 if (any_added)
4568 {
4569 struct so_list *iter;
4570 int ix;
4571 struct cleanup *cleanup;
4572
4573 ui_out_text (current_uiout, _(" Inferior loaded "));
4574 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4575 "added");
4576 for (ix = 0;
4577 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4578 ix, iter);
4579 ++ix)
4580 {
4581 if (ix > 0)
4582 ui_out_text (current_uiout, " ");
4583 ui_out_field_string (current_uiout, "library", iter->so_name);
4584 ui_out_text (current_uiout, "\n");
4585 }
4586
4587 do_cleanups (cleanup);
4588 }
4589 }
4590
4591 /* Print a message indicating what happened. This is called from
4592 normal_stop(). The input to this routine is the head of the bpstat
4593 list - a list of the eventpoints that caused this stop. KIND is
4594 the target_waitkind for the stopping event. This
4595 routine calls the generic print routine for printing a message
4596 about reasons for stopping. This will print (for example) the
4597 "Breakpoint n," part of the output. The return value of this
4598 routine is one of:
4599
4600 PRINT_UNKNOWN: Means we printed nothing.
4601 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4602 code to print the location. An example is
4603 "Breakpoint 1, " which should be followed by
4604 the location.
4605 PRINT_SRC_ONLY: Means we printed something, but there is no need
4606 to also print the location part of the message.
4607 An example is the catch/throw messages, which
4608 don't require a location appended to the end.
4609 PRINT_NOTHING: We have done some printing and we don't need any
4610 further info to be printed. */
4611
4612 enum print_stop_action
4613 bpstat_print (bpstat bs, int kind)
4614 {
4615 int val;
4616
4617 /* Maybe another breakpoint in the chain caused us to stop.
4618 (Currently all watchpoints go on the bpstat whether hit or not.
4619 That probably could (should) be changed, provided care is taken
4620 with respect to bpstat_explains_signal). */
4621 for (; bs; bs = bs->next)
4622 {
4623 val = print_bp_stop_message (bs);
4624 if (val == PRINT_SRC_ONLY
4625 || val == PRINT_SRC_AND_LOC
4626 || val == PRINT_NOTHING)
4627 return val;
4628 }
4629
4630 /* If we had hit a shared library event breakpoint,
4631 print_bp_stop_message would print out this message. If we hit an
4632 OS-level shared library event, do the same thing. */
4633 if (kind == TARGET_WAITKIND_LOADED)
4634 {
4635 print_solib_event (0);
4636 return PRINT_NOTHING;
4637 }
4638
4639 /* We reached the end of the chain, or we got a null BS to start
4640 with and nothing was printed. */
4641 return PRINT_UNKNOWN;
4642 }
4643
4644 /* Evaluate the expression EXP and return 1 if value is zero. This is
4645 used inside a catch_errors to evaluate the breakpoint condition.
4646 The argument is a "struct expression *" that has been cast to a
4647 "char *" to make it pass through catch_errors. */
4648
4649 static int
4650 breakpoint_cond_eval (void *exp)
4651 {
4652 struct value *mark = value_mark ();
4653 int i = !value_true (evaluate_expression ((struct expression *) exp));
4654
4655 value_free_to_mark (mark);
4656 return i;
4657 }
4658
4659 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4660
4661 static bpstat
4662 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4663 {
4664 bpstat bs;
4665
4666 bs = (bpstat) xmalloc (sizeof (*bs));
4667 bs->next = NULL;
4668 **bs_link_pointer = bs;
4669 *bs_link_pointer = &bs->next;
4670 bs->breakpoint_at = bl->owner;
4671 bs->bp_location_at = bl;
4672 incref_bp_location (bl);
4673 /* If the condition is false, etc., don't do the commands. */
4674 bs->commands = NULL;
4675 bs->old_val = NULL;
4676 bs->print_it = print_it_normal;
4677 return bs;
4678 }
4679 \f
4680 /* The target has stopped with waitstatus WS. Check if any hardware
4681 watchpoints have triggered, according to the target. */
4682
4683 int
4684 watchpoints_triggered (struct target_waitstatus *ws)
4685 {
4686 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4687 CORE_ADDR addr;
4688 struct breakpoint *b;
4689
4690 if (!stopped_by_watchpoint)
4691 {
4692 /* We were not stopped by a watchpoint. Mark all watchpoints
4693 as not triggered. */
4694 ALL_BREAKPOINTS (b)
4695 if (is_hardware_watchpoint (b))
4696 {
4697 struct watchpoint *w = (struct watchpoint *) b;
4698
4699 w->watchpoint_triggered = watch_triggered_no;
4700 }
4701
4702 return 0;
4703 }
4704
4705 if (!target_stopped_data_address (&current_target, &addr))
4706 {
4707 /* We were stopped by a watchpoint, but we don't know where.
4708 Mark all watchpoints as unknown. */
4709 ALL_BREAKPOINTS (b)
4710 if (is_hardware_watchpoint (b))
4711 {
4712 struct watchpoint *w = (struct watchpoint *) b;
4713
4714 w->watchpoint_triggered = watch_triggered_unknown;
4715 }
4716
4717 return 1;
4718 }
4719
4720 /* The target could report the data address. Mark watchpoints
4721 affected by this data address as triggered, and all others as not
4722 triggered. */
4723
4724 ALL_BREAKPOINTS (b)
4725 if (is_hardware_watchpoint (b))
4726 {
4727 struct watchpoint *w = (struct watchpoint *) b;
4728 struct bp_location *loc;
4729
4730 w->watchpoint_triggered = watch_triggered_no;
4731 for (loc = b->loc; loc; loc = loc->next)
4732 {
4733 if (is_masked_watchpoint (b))
4734 {
4735 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4736 CORE_ADDR start = loc->address & w->hw_wp_mask;
4737
4738 if (newaddr == start)
4739 {
4740 w->watchpoint_triggered = watch_triggered_yes;
4741 break;
4742 }
4743 }
4744 /* Exact match not required. Within range is sufficient. */
4745 else if (target_watchpoint_addr_within_range (&current_target,
4746 addr, loc->address,
4747 loc->length))
4748 {
4749 w->watchpoint_triggered = watch_triggered_yes;
4750 break;
4751 }
4752 }
4753 }
4754
4755 return 1;
4756 }
4757
4758 /* Possible return values for watchpoint_check (this can't be an enum
4759 because of check_errors). */
4760 /* The watchpoint has been deleted. */
4761 #define WP_DELETED 1
4762 /* The value has changed. */
4763 #define WP_VALUE_CHANGED 2
4764 /* The value has not changed. */
4765 #define WP_VALUE_NOT_CHANGED 3
4766 /* Ignore this watchpoint, no matter if the value changed or not. */
4767 #define WP_IGNORE 4
4768
4769 #define BP_TEMPFLAG 1
4770 #define BP_HARDWAREFLAG 2
4771
4772 /* Evaluate watchpoint condition expression and check if its value
4773 changed.
4774
4775 P should be a pointer to struct bpstat, but is defined as a void *
4776 in order for this function to be usable with catch_errors. */
4777
4778 static int
4779 watchpoint_check (void *p)
4780 {
4781 bpstat bs = (bpstat) p;
4782 struct watchpoint *b;
4783 struct frame_info *fr;
4784 int within_current_scope;
4785
4786 /* BS is built from an existing struct breakpoint. */
4787 gdb_assert (bs->breakpoint_at != NULL);
4788 b = (struct watchpoint *) bs->breakpoint_at;
4789
4790 /* If this is a local watchpoint, we only want to check if the
4791 watchpoint frame is in scope if the current thread is the thread
4792 that was used to create the watchpoint. */
4793 if (!watchpoint_in_thread_scope (b))
4794 return WP_IGNORE;
4795
4796 if (b->exp_valid_block == NULL)
4797 within_current_scope = 1;
4798 else
4799 {
4800 struct frame_info *frame = get_current_frame ();
4801 struct gdbarch *frame_arch = get_frame_arch (frame);
4802 CORE_ADDR frame_pc = get_frame_pc (frame);
4803
4804 /* in_function_epilogue_p() returns a non-zero value if we're
4805 still in the function but the stack frame has already been
4806 invalidated. Since we can't rely on the values of local
4807 variables after the stack has been destroyed, we are treating
4808 the watchpoint in that state as `not changed' without further
4809 checking. Don't mark watchpoints as changed if the current
4810 frame is in an epilogue - even if they are in some other
4811 frame, our view of the stack is likely to be wrong and
4812 frame_find_by_id could error out. */
4813 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
4814 return WP_IGNORE;
4815
4816 fr = frame_find_by_id (b->watchpoint_frame);
4817 within_current_scope = (fr != NULL);
4818
4819 /* If we've gotten confused in the unwinder, we might have
4820 returned a frame that can't describe this variable. */
4821 if (within_current_scope)
4822 {
4823 struct symbol *function;
4824
4825 function = get_frame_function (fr);
4826 if (function == NULL
4827 || !contained_in (b->exp_valid_block,
4828 SYMBOL_BLOCK_VALUE (function)))
4829 within_current_scope = 0;
4830 }
4831
4832 if (within_current_scope)
4833 /* If we end up stopping, the current frame will get selected
4834 in normal_stop. So this call to select_frame won't affect
4835 the user. */
4836 select_frame (fr);
4837 }
4838
4839 if (within_current_scope)
4840 {
4841 /* We use value_{,free_to_}mark because it could be a *long*
4842 time before we return to the command level and call
4843 free_all_values. We can't call free_all_values because we
4844 might be in the middle of evaluating a function call. */
4845
4846 int pc = 0;
4847 struct value *mark;
4848 struct value *new_val;
4849
4850 if (is_masked_watchpoint (&b->base))
4851 /* Since we don't know the exact trigger address (from
4852 stopped_data_address), just tell the user we've triggered
4853 a mask watchpoint. */
4854 return WP_VALUE_CHANGED;
4855
4856 mark = value_mark ();
4857 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL, 0);
4858
4859 /* We use value_equal_contents instead of value_equal because
4860 the latter coerces an array to a pointer, thus comparing just
4861 the address of the array instead of its contents. This is
4862 not what we want. */
4863 if ((b->val != NULL) != (new_val != NULL)
4864 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4865 {
4866 if (new_val != NULL)
4867 {
4868 release_value (new_val);
4869 value_free_to_mark (mark);
4870 }
4871 bs->old_val = b->val;
4872 b->val = new_val;
4873 b->val_valid = 1;
4874 return WP_VALUE_CHANGED;
4875 }
4876 else
4877 {
4878 /* Nothing changed. */
4879 value_free_to_mark (mark);
4880 return WP_VALUE_NOT_CHANGED;
4881 }
4882 }
4883 else
4884 {
4885 struct ui_out *uiout = current_uiout;
4886
4887 /* This seems like the only logical thing to do because
4888 if we temporarily ignored the watchpoint, then when
4889 we reenter the block in which it is valid it contains
4890 garbage (in the case of a function, it may have two
4891 garbage values, one before and one after the prologue).
4892 So we can't even detect the first assignment to it and
4893 watch after that (since the garbage may or may not equal
4894 the first value assigned). */
4895 /* We print all the stop information in
4896 breakpoint_ops->print_it, but in this case, by the time we
4897 call breakpoint_ops->print_it this bp will be deleted
4898 already. So we have no choice but print the information
4899 here. */
4900 if (ui_out_is_mi_like_p (uiout))
4901 ui_out_field_string
4902 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4903 ui_out_text (uiout, "\nWatchpoint ");
4904 ui_out_field_int (uiout, "wpnum", b->base.number);
4905 ui_out_text (uiout,
4906 " deleted because the program has left the block in\n\
4907 which its expression is valid.\n");
4908
4909 /* Make sure the watchpoint's commands aren't executed. */
4910 decref_counted_command_line (&b->base.commands);
4911 watchpoint_del_at_next_stop (b);
4912
4913 return WP_DELETED;
4914 }
4915 }
4916
4917 /* Return true if it looks like target has stopped due to hitting
4918 breakpoint location BL. This function does not check if we should
4919 stop, only if BL explains the stop. */
4920
4921 static int
4922 bpstat_check_location (const struct bp_location *bl,
4923 struct address_space *aspace, CORE_ADDR bp_addr,
4924 const struct target_waitstatus *ws)
4925 {
4926 struct breakpoint *b = bl->owner;
4927
4928 /* BL is from an existing breakpoint. */
4929 gdb_assert (b != NULL);
4930
4931 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4932 }
4933
4934 /* Determine if the watched values have actually changed, and we
4935 should stop. If not, set BS->stop to 0. */
4936
4937 static void
4938 bpstat_check_watchpoint (bpstat bs)
4939 {
4940 const struct bp_location *bl;
4941 struct watchpoint *b;
4942
4943 /* BS is built for existing struct breakpoint. */
4944 bl = bs->bp_location_at;
4945 gdb_assert (bl != NULL);
4946 b = (struct watchpoint *) bs->breakpoint_at;
4947 gdb_assert (b != NULL);
4948
4949 {
4950 int must_check_value = 0;
4951
4952 if (b->base.type == bp_watchpoint)
4953 /* For a software watchpoint, we must always check the
4954 watched value. */
4955 must_check_value = 1;
4956 else if (b->watchpoint_triggered == watch_triggered_yes)
4957 /* We have a hardware watchpoint (read, write, or access)
4958 and the target earlier reported an address watched by
4959 this watchpoint. */
4960 must_check_value = 1;
4961 else if (b->watchpoint_triggered == watch_triggered_unknown
4962 && b->base.type == bp_hardware_watchpoint)
4963 /* We were stopped by a hardware watchpoint, but the target could
4964 not report the data address. We must check the watchpoint's
4965 value. Access and read watchpoints are out of luck; without
4966 a data address, we can't figure it out. */
4967 must_check_value = 1;
4968
4969 if (must_check_value)
4970 {
4971 char *message
4972 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
4973 b->base.number);
4974 struct cleanup *cleanups = make_cleanup (xfree, message);
4975 int e = catch_errors (watchpoint_check, bs, message,
4976 RETURN_MASK_ALL);
4977 do_cleanups (cleanups);
4978 switch (e)
4979 {
4980 case WP_DELETED:
4981 /* We've already printed what needs to be printed. */
4982 bs->print_it = print_it_done;
4983 /* Stop. */
4984 break;
4985 case WP_IGNORE:
4986 bs->print_it = print_it_noop;
4987 bs->stop = 0;
4988 break;
4989 case WP_VALUE_CHANGED:
4990 if (b->base.type == bp_read_watchpoint)
4991 {
4992 /* There are two cases to consider here:
4993
4994 1. We're watching the triggered memory for reads.
4995 In that case, trust the target, and always report
4996 the watchpoint hit to the user. Even though
4997 reads don't cause value changes, the value may
4998 have changed since the last time it was read, and
4999 since we're not trapping writes, we will not see
5000 those, and as such we should ignore our notion of
5001 old value.
5002
5003 2. We're watching the triggered memory for both
5004 reads and writes. There are two ways this may
5005 happen:
5006
5007 2.1. This is a target that can't break on data
5008 reads only, but can break on accesses (reads or
5009 writes), such as e.g., x86. We detect this case
5010 at the time we try to insert read watchpoints.
5011
5012 2.2. Otherwise, the target supports read
5013 watchpoints, but, the user set an access or write
5014 watchpoint watching the same memory as this read
5015 watchpoint.
5016
5017 If we're watching memory writes as well as reads,
5018 ignore watchpoint hits when we find that the
5019 value hasn't changed, as reads don't cause
5020 changes. This still gives false positives when
5021 the program writes the same value to memory as
5022 what there was already in memory (we will confuse
5023 it for a read), but it's much better than
5024 nothing. */
5025
5026 int other_write_watchpoint = 0;
5027
5028 if (bl->watchpoint_type == hw_read)
5029 {
5030 struct breakpoint *other_b;
5031
5032 ALL_BREAKPOINTS (other_b)
5033 if (other_b->type == bp_hardware_watchpoint
5034 || other_b->type == bp_access_watchpoint)
5035 {
5036 struct watchpoint *other_w =
5037 (struct watchpoint *) other_b;
5038
5039 if (other_w->watchpoint_triggered
5040 == watch_triggered_yes)
5041 {
5042 other_write_watchpoint = 1;
5043 break;
5044 }
5045 }
5046 }
5047
5048 if (other_write_watchpoint
5049 || bl->watchpoint_type == hw_access)
5050 {
5051 /* We're watching the same memory for writes,
5052 and the value changed since the last time we
5053 updated it, so this trap must be for a write.
5054 Ignore it. */
5055 bs->print_it = print_it_noop;
5056 bs->stop = 0;
5057 }
5058 }
5059 break;
5060 case WP_VALUE_NOT_CHANGED:
5061 if (b->base.type == bp_hardware_watchpoint
5062 || b->base.type == bp_watchpoint)
5063 {
5064 /* Don't stop: write watchpoints shouldn't fire if
5065 the value hasn't changed. */
5066 bs->print_it = print_it_noop;
5067 bs->stop = 0;
5068 }
5069 /* Stop. */
5070 break;
5071 default:
5072 /* Can't happen. */
5073 case 0:
5074 /* Error from catch_errors. */
5075 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5076 watchpoint_del_at_next_stop (b);
5077 /* We've already printed what needs to be printed. */
5078 bs->print_it = print_it_done;
5079 break;
5080 }
5081 }
5082 else /* must_check_value == 0 */
5083 {
5084 /* This is a case where some watchpoint(s) triggered, but
5085 not at the address of this watchpoint, or else no
5086 watchpoint triggered after all. So don't print
5087 anything for this watchpoint. */
5088 bs->print_it = print_it_noop;
5089 bs->stop = 0;
5090 }
5091 }
5092 }
5093
5094
5095 /* Check conditions (condition proper, frame, thread and ignore count)
5096 of breakpoint referred to by BS. If we should not stop for this
5097 breakpoint, set BS->stop to 0. */
5098
5099 static void
5100 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5101 {
5102 int thread_id = pid_to_thread_id (ptid);
5103 const struct bp_location *bl;
5104 struct breakpoint *b;
5105
5106 /* BS is built for existing struct breakpoint. */
5107 bl = bs->bp_location_at;
5108 gdb_assert (bl != NULL);
5109 b = bs->breakpoint_at;
5110 gdb_assert (b != NULL);
5111
5112 /* Even if the target evaluated the condition on its end and notified GDB, we
5113 need to do so again since GDB does not know if we stopped due to a
5114 breakpoint or a single step breakpoint. */
5115
5116 if (frame_id_p (b->frame_id)
5117 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5118 bs->stop = 0;
5119 else if (bs->stop)
5120 {
5121 int value_is_zero = 0;
5122 struct expression *cond;
5123
5124 /* Evaluate Python breakpoints that have a "stop"
5125 method implemented. */
5126 if (b->py_bp_object)
5127 bs->stop = gdbpy_should_stop (b->py_bp_object);
5128
5129 if (is_watchpoint (b))
5130 {
5131 struct watchpoint *w = (struct watchpoint *) b;
5132
5133 cond = w->cond_exp;
5134 }
5135 else
5136 cond = bl->cond;
5137
5138 if (cond && b->disposition != disp_del_at_next_stop)
5139 {
5140 int within_current_scope = 1;
5141 struct watchpoint * w;
5142
5143 /* We use value_mark and value_free_to_mark because it could
5144 be a long time before we return to the command level and
5145 call free_all_values. We can't call free_all_values
5146 because we might be in the middle of evaluating a
5147 function call. */
5148 struct value *mark = value_mark ();
5149
5150 if (is_watchpoint (b))
5151 w = (struct watchpoint *) b;
5152 else
5153 w = NULL;
5154
5155 /* Need to select the frame, with all that implies so that
5156 the conditions will have the right context. Because we
5157 use the frame, we will not see an inlined function's
5158 variables when we arrive at a breakpoint at the start
5159 of the inlined function; the current frame will be the
5160 call site. */
5161 if (w == NULL || w->cond_exp_valid_block == NULL)
5162 select_frame (get_current_frame ());
5163 else
5164 {
5165 struct frame_info *frame;
5166
5167 /* For local watchpoint expressions, which particular
5168 instance of a local is being watched matters, so we
5169 keep track of the frame to evaluate the expression
5170 in. To evaluate the condition however, it doesn't
5171 really matter which instantiation of the function
5172 where the condition makes sense triggers the
5173 watchpoint. This allows an expression like "watch
5174 global if q > 10" set in `func', catch writes to
5175 global on all threads that call `func', or catch
5176 writes on all recursive calls of `func' by a single
5177 thread. We simply always evaluate the condition in
5178 the innermost frame that's executing where it makes
5179 sense to evaluate the condition. It seems
5180 intuitive. */
5181 frame = block_innermost_frame (w->cond_exp_valid_block);
5182 if (frame != NULL)
5183 select_frame (frame);
5184 else
5185 within_current_scope = 0;
5186 }
5187 if (within_current_scope)
5188 value_is_zero
5189 = catch_errors (breakpoint_cond_eval, cond,
5190 "Error in testing breakpoint condition:\n",
5191 RETURN_MASK_ALL);
5192 else
5193 {
5194 warning (_("Watchpoint condition cannot be tested "
5195 "in the current scope"));
5196 /* If we failed to set the right context for this
5197 watchpoint, unconditionally report it. */
5198 value_is_zero = 0;
5199 }
5200 /* FIXME-someday, should give breakpoint #. */
5201 value_free_to_mark (mark);
5202 }
5203
5204 if (cond && value_is_zero)
5205 {
5206 bs->stop = 0;
5207 }
5208 else if (b->thread != -1 && b->thread != thread_id)
5209 {
5210 bs->stop = 0;
5211 }
5212 else if (b->ignore_count > 0)
5213 {
5214 b->ignore_count--;
5215 bs->stop = 0;
5216 /* Increase the hit count even though we don't stop. */
5217 ++(b->hit_count);
5218 observer_notify_breakpoint_modified (b);
5219 }
5220 }
5221 }
5222
5223
5224 /* Get a bpstat associated with having just stopped at address
5225 BP_ADDR in thread PTID.
5226
5227 Determine whether we stopped at a breakpoint, etc, or whether we
5228 don't understand this stop. Result is a chain of bpstat's such
5229 that:
5230
5231 if we don't understand the stop, the result is a null pointer.
5232
5233 if we understand why we stopped, the result is not null.
5234
5235 Each element of the chain refers to a particular breakpoint or
5236 watchpoint at which we have stopped. (We may have stopped for
5237 several reasons concurrently.)
5238
5239 Each element of the chain has valid next, breakpoint_at,
5240 commands, FIXME??? fields. */
5241
5242 bpstat
5243 bpstat_stop_status (struct address_space *aspace,
5244 CORE_ADDR bp_addr, ptid_t ptid,
5245 const struct target_waitstatus *ws)
5246 {
5247 struct breakpoint *b = NULL;
5248 struct bp_location *bl;
5249 struct bp_location *loc;
5250 /* First item of allocated bpstat's. */
5251 bpstat bs_head = NULL, *bs_link = &bs_head;
5252 /* Pointer to the last thing in the chain currently. */
5253 bpstat bs;
5254 int ix;
5255 int need_remove_insert;
5256 int removed_any;
5257
5258 /* First, build the bpstat chain with locations that explain a
5259 target stop, while being careful to not set the target running,
5260 as that may invalidate locations (in particular watchpoint
5261 locations are recreated). Resuming will happen here with
5262 breakpoint conditions or watchpoint expressions that include
5263 inferior function calls. */
5264
5265 ALL_BREAKPOINTS (b)
5266 {
5267 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5268 continue;
5269
5270 for (bl = b->loc; bl != NULL; bl = bl->next)
5271 {
5272 /* For hardware watchpoints, we look only at the first
5273 location. The watchpoint_check function will work on the
5274 entire expression, not the individual locations. For
5275 read watchpoints, the watchpoints_triggered function has
5276 checked all locations already. */
5277 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5278 break;
5279
5280 if (!bl->enabled || bl->shlib_disabled)
5281 continue;
5282
5283 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5284 continue;
5285
5286 /* Come here if it's a watchpoint, or if the break address
5287 matches. */
5288
5289 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5290 explain stop. */
5291
5292 /* Assume we stop. Should we find a watchpoint that is not
5293 actually triggered, or if the condition of the breakpoint
5294 evaluates as false, we'll reset 'stop' to 0. */
5295 bs->stop = 1;
5296 bs->print = 1;
5297
5298 /* If this is a scope breakpoint, mark the associated
5299 watchpoint as triggered so that we will handle the
5300 out-of-scope event. We'll get to the watchpoint next
5301 iteration. */
5302 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5303 {
5304 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5305
5306 w->watchpoint_triggered = watch_triggered_yes;
5307 }
5308 }
5309 }
5310
5311 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5312 {
5313 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5314 {
5315 bs = bpstat_alloc (loc, &bs_link);
5316 /* For hits of moribund locations, we should just proceed. */
5317 bs->stop = 0;
5318 bs->print = 0;
5319 bs->print_it = print_it_noop;
5320 }
5321 }
5322
5323 /* A bit of special processing for shlib breakpoints. We need to
5324 process solib loading here, so that the lists of loaded and
5325 unloaded libraries are correct before we handle "catch load" and
5326 "catch unload". */
5327 for (bs = bs_head; bs != NULL; bs = bs->next)
5328 {
5329 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5330 {
5331 handle_solib_event ();
5332 break;
5333 }
5334 }
5335
5336 /* Now go through the locations that caused the target to stop, and
5337 check whether we're interested in reporting this stop to higher
5338 layers, or whether we should resume the target transparently. */
5339
5340 removed_any = 0;
5341
5342 for (bs = bs_head; bs != NULL; bs = bs->next)
5343 {
5344 if (!bs->stop)
5345 continue;
5346
5347 b = bs->breakpoint_at;
5348 b->ops->check_status (bs);
5349 if (bs->stop)
5350 {
5351 bpstat_check_breakpoint_conditions (bs, ptid);
5352
5353 if (bs->stop)
5354 {
5355 ++(b->hit_count);
5356 observer_notify_breakpoint_modified (b);
5357
5358 /* We will stop here. */
5359 if (b->disposition == disp_disable)
5360 {
5361 --(b->enable_count);
5362 if (b->enable_count <= 0
5363 && b->enable_state != bp_permanent)
5364 b->enable_state = bp_disabled;
5365 removed_any = 1;
5366 }
5367 if (b->silent)
5368 bs->print = 0;
5369 bs->commands = b->commands;
5370 incref_counted_command_line (bs->commands);
5371 if (command_line_is_silent (bs->commands
5372 ? bs->commands->commands : NULL))
5373 bs->print = 0;
5374
5375 b->ops->after_condition_true (bs);
5376 }
5377
5378 }
5379
5380 /* Print nothing for this entry if we don't stop or don't
5381 print. */
5382 if (!bs->stop || !bs->print)
5383 bs->print_it = print_it_noop;
5384 }
5385
5386 /* If we aren't stopping, the value of some hardware watchpoint may
5387 not have changed, but the intermediate memory locations we are
5388 watching may have. Don't bother if we're stopping; this will get
5389 done later. */
5390 need_remove_insert = 0;
5391 if (! bpstat_causes_stop (bs_head))
5392 for (bs = bs_head; bs != NULL; bs = bs->next)
5393 if (!bs->stop
5394 && bs->breakpoint_at
5395 && is_hardware_watchpoint (bs->breakpoint_at))
5396 {
5397 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5398
5399 update_watchpoint (w, 0 /* don't reparse. */);
5400 need_remove_insert = 1;
5401 }
5402
5403 if (need_remove_insert)
5404 update_global_location_list (1);
5405 else if (removed_any)
5406 update_global_location_list (0);
5407
5408 return bs_head;
5409 }
5410
5411 static void
5412 handle_jit_event (void)
5413 {
5414 struct frame_info *frame;
5415 struct gdbarch *gdbarch;
5416
5417 /* Switch terminal for any messages produced by
5418 breakpoint_re_set. */
5419 target_terminal_ours_for_output ();
5420
5421 frame = get_current_frame ();
5422 gdbarch = get_frame_arch (frame);
5423
5424 jit_event_handler (gdbarch);
5425
5426 target_terminal_inferior ();
5427 }
5428
5429 /* Prepare WHAT final decision for infrun. */
5430
5431 /* Decide what infrun needs to do with this bpstat. */
5432
5433 struct bpstat_what
5434 bpstat_what (bpstat bs_head)
5435 {
5436 struct bpstat_what retval;
5437 int jit_event = 0;
5438 bpstat bs;
5439
5440 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5441 retval.call_dummy = STOP_NONE;
5442 retval.is_longjmp = 0;
5443
5444 for (bs = bs_head; bs != NULL; bs = bs->next)
5445 {
5446 /* Extract this BS's action. After processing each BS, we check
5447 if its action overrides all we've seem so far. */
5448 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5449 enum bptype bptype;
5450
5451 if (bs->breakpoint_at == NULL)
5452 {
5453 /* I suspect this can happen if it was a momentary
5454 breakpoint which has since been deleted. */
5455 bptype = bp_none;
5456 }
5457 else
5458 bptype = bs->breakpoint_at->type;
5459
5460 switch (bptype)
5461 {
5462 case bp_none:
5463 break;
5464 case bp_breakpoint:
5465 case bp_hardware_breakpoint:
5466 case bp_until:
5467 case bp_finish:
5468 case bp_shlib_event:
5469 if (bs->stop)
5470 {
5471 if (bs->print)
5472 this_action = BPSTAT_WHAT_STOP_NOISY;
5473 else
5474 this_action = BPSTAT_WHAT_STOP_SILENT;
5475 }
5476 else
5477 this_action = BPSTAT_WHAT_SINGLE;
5478 break;
5479 case bp_watchpoint:
5480 case bp_hardware_watchpoint:
5481 case bp_read_watchpoint:
5482 case bp_access_watchpoint:
5483 if (bs->stop)
5484 {
5485 if (bs->print)
5486 this_action = BPSTAT_WHAT_STOP_NOISY;
5487 else
5488 this_action = BPSTAT_WHAT_STOP_SILENT;
5489 }
5490 else
5491 {
5492 /* There was a watchpoint, but we're not stopping.
5493 This requires no further action. */
5494 }
5495 break;
5496 case bp_longjmp:
5497 case bp_longjmp_call_dummy:
5498 case bp_exception:
5499 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5500 retval.is_longjmp = bptype != bp_exception;
5501 break;
5502 case bp_longjmp_resume:
5503 case bp_exception_resume:
5504 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5505 retval.is_longjmp = bptype == bp_longjmp_resume;
5506 break;
5507 case bp_step_resume:
5508 if (bs->stop)
5509 this_action = BPSTAT_WHAT_STEP_RESUME;
5510 else
5511 {
5512 /* It is for the wrong frame. */
5513 this_action = BPSTAT_WHAT_SINGLE;
5514 }
5515 break;
5516 case bp_hp_step_resume:
5517 if (bs->stop)
5518 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5519 else
5520 {
5521 /* It is for the wrong frame. */
5522 this_action = BPSTAT_WHAT_SINGLE;
5523 }
5524 break;
5525 case bp_watchpoint_scope:
5526 case bp_thread_event:
5527 case bp_overlay_event:
5528 case bp_longjmp_master:
5529 case bp_std_terminate_master:
5530 case bp_exception_master:
5531 this_action = BPSTAT_WHAT_SINGLE;
5532 break;
5533 case bp_catchpoint:
5534 if (bs->stop)
5535 {
5536 if (bs->print)
5537 this_action = BPSTAT_WHAT_STOP_NOISY;
5538 else
5539 this_action = BPSTAT_WHAT_STOP_SILENT;
5540 }
5541 else
5542 {
5543 /* There was a catchpoint, but we're not stopping.
5544 This requires no further action. */
5545 }
5546 break;
5547 case bp_jit_event:
5548 jit_event = 1;
5549 this_action = BPSTAT_WHAT_SINGLE;
5550 break;
5551 case bp_call_dummy:
5552 /* Make sure the action is stop (silent or noisy),
5553 so infrun.c pops the dummy frame. */
5554 retval.call_dummy = STOP_STACK_DUMMY;
5555 this_action = BPSTAT_WHAT_STOP_SILENT;
5556 break;
5557 case bp_std_terminate:
5558 /* Make sure the action is stop (silent or noisy),
5559 so infrun.c pops the dummy frame. */
5560 retval.call_dummy = STOP_STD_TERMINATE;
5561 this_action = BPSTAT_WHAT_STOP_SILENT;
5562 break;
5563 case bp_tracepoint:
5564 case bp_fast_tracepoint:
5565 case bp_static_tracepoint:
5566 /* Tracepoint hits should not be reported back to GDB, and
5567 if one got through somehow, it should have been filtered
5568 out already. */
5569 internal_error (__FILE__, __LINE__,
5570 _("bpstat_what: tracepoint encountered"));
5571 break;
5572 case bp_gnu_ifunc_resolver:
5573 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5574 this_action = BPSTAT_WHAT_SINGLE;
5575 break;
5576 case bp_gnu_ifunc_resolver_return:
5577 /* The breakpoint will be removed, execution will restart from the
5578 PC of the former breakpoint. */
5579 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5580 break;
5581
5582 case bp_dprintf:
5583 if (bs->stop)
5584 this_action = BPSTAT_WHAT_STOP_SILENT;
5585 else
5586 this_action = BPSTAT_WHAT_SINGLE;
5587 break;
5588
5589 default:
5590 internal_error (__FILE__, __LINE__,
5591 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5592 }
5593
5594 retval.main_action = max (retval.main_action, this_action);
5595 }
5596
5597 /* These operations may affect the bs->breakpoint_at state so they are
5598 delayed after MAIN_ACTION is decided above. */
5599
5600 if (jit_event)
5601 {
5602 if (debug_infrun)
5603 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5604
5605 handle_jit_event ();
5606 }
5607
5608 for (bs = bs_head; bs != NULL; bs = bs->next)
5609 {
5610 struct breakpoint *b = bs->breakpoint_at;
5611
5612 if (b == NULL)
5613 continue;
5614 switch (b->type)
5615 {
5616 case bp_gnu_ifunc_resolver:
5617 gnu_ifunc_resolver_stop (b);
5618 break;
5619 case bp_gnu_ifunc_resolver_return:
5620 gnu_ifunc_resolver_return_stop (b);
5621 break;
5622 }
5623 }
5624
5625 return retval;
5626 }
5627
5628 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5629 without hardware support). This isn't related to a specific bpstat,
5630 just to things like whether watchpoints are set. */
5631
5632 int
5633 bpstat_should_step (void)
5634 {
5635 struct breakpoint *b;
5636
5637 ALL_BREAKPOINTS (b)
5638 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5639 return 1;
5640 return 0;
5641 }
5642
5643 int
5644 bpstat_causes_stop (bpstat bs)
5645 {
5646 for (; bs != NULL; bs = bs->next)
5647 if (bs->stop)
5648 return 1;
5649
5650 return 0;
5651 }
5652
5653 \f
5654
5655 /* Compute a string of spaces suitable to indent the next line
5656 so it starts at the position corresponding to the table column
5657 named COL_NAME in the currently active table of UIOUT. */
5658
5659 static char *
5660 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5661 {
5662 static char wrap_indent[80];
5663 int i, total_width, width, align;
5664 char *text;
5665
5666 total_width = 0;
5667 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5668 {
5669 if (strcmp (text, col_name) == 0)
5670 {
5671 gdb_assert (total_width < sizeof wrap_indent);
5672 memset (wrap_indent, ' ', total_width);
5673 wrap_indent[total_width] = 0;
5674
5675 return wrap_indent;
5676 }
5677
5678 total_width += width + 1;
5679 }
5680
5681 return NULL;
5682 }
5683
5684 /* Determine if the locations of this breakpoint will have their conditions
5685 evaluated by the target, host or a mix of both. Returns the following:
5686
5687 "host": Host evals condition.
5688 "host or target": Host or Target evals condition.
5689 "target": Target evals condition.
5690 */
5691
5692 static const char *
5693 bp_condition_evaluator (struct breakpoint *b)
5694 {
5695 struct bp_location *bl;
5696 char host_evals = 0;
5697 char target_evals = 0;
5698
5699 if (!b)
5700 return NULL;
5701
5702 if (!is_breakpoint (b))
5703 return NULL;
5704
5705 if (gdb_evaluates_breakpoint_condition_p ()
5706 || !target_supports_evaluation_of_breakpoint_conditions ())
5707 return condition_evaluation_host;
5708
5709 for (bl = b->loc; bl; bl = bl->next)
5710 {
5711 if (bl->cond_bytecode)
5712 target_evals++;
5713 else
5714 host_evals++;
5715 }
5716
5717 if (host_evals && target_evals)
5718 return condition_evaluation_both;
5719 else if (target_evals)
5720 return condition_evaluation_target;
5721 else
5722 return condition_evaluation_host;
5723 }
5724
5725 /* Determine the breakpoint location's condition evaluator. This is
5726 similar to bp_condition_evaluator, but for locations. */
5727
5728 static const char *
5729 bp_location_condition_evaluator (struct bp_location *bl)
5730 {
5731 if (bl && !is_breakpoint (bl->owner))
5732 return NULL;
5733
5734 if (gdb_evaluates_breakpoint_condition_p ()
5735 || !target_supports_evaluation_of_breakpoint_conditions ())
5736 return condition_evaluation_host;
5737
5738 if (bl && bl->cond_bytecode)
5739 return condition_evaluation_target;
5740 else
5741 return condition_evaluation_host;
5742 }
5743
5744 /* Print the LOC location out of the list of B->LOC locations. */
5745
5746 static void
5747 print_breakpoint_location (struct breakpoint *b,
5748 struct bp_location *loc)
5749 {
5750 struct ui_out *uiout = current_uiout;
5751 struct cleanup *old_chain = save_current_program_space ();
5752
5753 if (loc != NULL && loc->shlib_disabled)
5754 loc = NULL;
5755
5756 if (loc != NULL)
5757 set_current_program_space (loc->pspace);
5758
5759 if (b->display_canonical)
5760 ui_out_field_string (uiout, "what", b->addr_string);
5761 else if (loc && loc->symtab)
5762 {
5763 struct symbol *sym
5764 = find_pc_sect_function (loc->address, loc->section);
5765 if (sym)
5766 {
5767 ui_out_text (uiout, "in ");
5768 ui_out_field_string (uiout, "func",
5769 SYMBOL_PRINT_NAME (sym));
5770 ui_out_text (uiout, " ");
5771 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
5772 ui_out_text (uiout, "at ");
5773 }
5774 ui_out_field_string (uiout, "file",
5775 symtab_to_filename_for_display (loc->symtab));
5776 ui_out_text (uiout, ":");
5777
5778 if (ui_out_is_mi_like_p (uiout))
5779 ui_out_field_string (uiout, "fullname",
5780 symtab_to_fullname (loc->symtab));
5781
5782 ui_out_field_int (uiout, "line", loc->line_number);
5783 }
5784 else if (loc)
5785 {
5786 struct ui_file *stb = mem_fileopen ();
5787 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
5788
5789 print_address_symbolic (loc->gdbarch, loc->address, stb,
5790 demangle, "");
5791 ui_out_field_stream (uiout, "at", stb);
5792
5793 do_cleanups (stb_chain);
5794 }
5795 else
5796 ui_out_field_string (uiout, "pending", b->addr_string);
5797
5798 if (loc && is_breakpoint (b)
5799 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5800 && bp_condition_evaluator (b) == condition_evaluation_both)
5801 {
5802 ui_out_text (uiout, " (");
5803 ui_out_field_string (uiout, "evaluated-by",
5804 bp_location_condition_evaluator (loc));
5805 ui_out_text (uiout, ")");
5806 }
5807
5808 do_cleanups (old_chain);
5809 }
5810
5811 static const char *
5812 bptype_string (enum bptype type)
5813 {
5814 struct ep_type_description
5815 {
5816 enum bptype type;
5817 char *description;
5818 };
5819 static struct ep_type_description bptypes[] =
5820 {
5821 {bp_none, "?deleted?"},
5822 {bp_breakpoint, "breakpoint"},
5823 {bp_hardware_breakpoint, "hw breakpoint"},
5824 {bp_until, "until"},
5825 {bp_finish, "finish"},
5826 {bp_watchpoint, "watchpoint"},
5827 {bp_hardware_watchpoint, "hw watchpoint"},
5828 {bp_read_watchpoint, "read watchpoint"},
5829 {bp_access_watchpoint, "acc watchpoint"},
5830 {bp_longjmp, "longjmp"},
5831 {bp_longjmp_resume, "longjmp resume"},
5832 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5833 {bp_exception, "exception"},
5834 {bp_exception_resume, "exception resume"},
5835 {bp_step_resume, "step resume"},
5836 {bp_hp_step_resume, "high-priority step resume"},
5837 {bp_watchpoint_scope, "watchpoint scope"},
5838 {bp_call_dummy, "call dummy"},
5839 {bp_std_terminate, "std::terminate"},
5840 {bp_shlib_event, "shlib events"},
5841 {bp_thread_event, "thread events"},
5842 {bp_overlay_event, "overlay events"},
5843 {bp_longjmp_master, "longjmp master"},
5844 {bp_std_terminate_master, "std::terminate master"},
5845 {bp_exception_master, "exception master"},
5846 {bp_catchpoint, "catchpoint"},
5847 {bp_tracepoint, "tracepoint"},
5848 {bp_fast_tracepoint, "fast tracepoint"},
5849 {bp_static_tracepoint, "static tracepoint"},
5850 {bp_dprintf, "dprintf"},
5851 {bp_jit_event, "jit events"},
5852 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5853 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5854 };
5855
5856 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5857 || ((int) type != bptypes[(int) type].type))
5858 internal_error (__FILE__, __LINE__,
5859 _("bptypes table does not describe type #%d."),
5860 (int) type);
5861
5862 return bptypes[(int) type].description;
5863 }
5864
5865 /* For MI, output a field named 'thread-groups' with a list as the value.
5866 For CLI, prefix the list with the string 'inf'. */
5867
5868 static void
5869 output_thread_groups (struct ui_out *uiout,
5870 const char *field_name,
5871 VEC(int) *inf_num,
5872 int mi_only)
5873 {
5874 struct cleanup *back_to;
5875 int is_mi = ui_out_is_mi_like_p (uiout);
5876 int inf;
5877 int i;
5878
5879 /* For backward compatibility, don't display inferiors in CLI unless
5880 there are several. Always display them for MI. */
5881 if (!is_mi && mi_only)
5882 return;
5883
5884 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
5885
5886 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
5887 {
5888 if (is_mi)
5889 {
5890 char mi_group[10];
5891
5892 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
5893 ui_out_field_string (uiout, NULL, mi_group);
5894 }
5895 else
5896 {
5897 if (i == 0)
5898 ui_out_text (uiout, " inf ");
5899 else
5900 ui_out_text (uiout, ", ");
5901
5902 ui_out_text (uiout, plongest (inf));
5903 }
5904 }
5905
5906 do_cleanups (back_to);
5907 }
5908
5909 /* Print B to gdb_stdout. */
5910
5911 static void
5912 print_one_breakpoint_location (struct breakpoint *b,
5913 struct bp_location *loc,
5914 int loc_number,
5915 struct bp_location **last_loc,
5916 int allflag)
5917 {
5918 struct command_line *l;
5919 static char bpenables[] = "nynny";
5920
5921 struct ui_out *uiout = current_uiout;
5922 int header_of_multiple = 0;
5923 int part_of_multiple = (loc != NULL);
5924 struct value_print_options opts;
5925
5926 get_user_print_options (&opts);
5927
5928 gdb_assert (!loc || loc_number != 0);
5929 /* See comment in print_one_breakpoint concerning treatment of
5930 breakpoints with single disabled location. */
5931 if (loc == NULL
5932 && (b->loc != NULL
5933 && (b->loc->next != NULL || !b->loc->enabled)))
5934 header_of_multiple = 1;
5935 if (loc == NULL)
5936 loc = b->loc;
5937
5938 annotate_record ();
5939
5940 /* 1 */
5941 annotate_field (0);
5942 if (part_of_multiple)
5943 {
5944 char *formatted;
5945 formatted = xstrprintf ("%d.%d", b->number, loc_number);
5946 ui_out_field_string (uiout, "number", formatted);
5947 xfree (formatted);
5948 }
5949 else
5950 {
5951 ui_out_field_int (uiout, "number", b->number);
5952 }
5953
5954 /* 2 */
5955 annotate_field (1);
5956 if (part_of_multiple)
5957 ui_out_field_skip (uiout, "type");
5958 else
5959 ui_out_field_string (uiout, "type", bptype_string (b->type));
5960
5961 /* 3 */
5962 annotate_field (2);
5963 if (part_of_multiple)
5964 ui_out_field_skip (uiout, "disp");
5965 else
5966 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
5967
5968
5969 /* 4 */
5970 annotate_field (3);
5971 if (part_of_multiple)
5972 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
5973 else
5974 ui_out_field_fmt (uiout, "enabled", "%c",
5975 bpenables[(int) b->enable_state]);
5976 ui_out_spaces (uiout, 2);
5977
5978
5979 /* 5 and 6 */
5980 if (b->ops != NULL && b->ops->print_one != NULL)
5981 {
5982 /* Although the print_one can possibly print all locations,
5983 calling it here is not likely to get any nice result. So,
5984 make sure there's just one location. */
5985 gdb_assert (b->loc == NULL || b->loc->next == NULL);
5986 b->ops->print_one (b, last_loc);
5987 }
5988 else
5989 switch (b->type)
5990 {
5991 case bp_none:
5992 internal_error (__FILE__, __LINE__,
5993 _("print_one_breakpoint: bp_none encountered\n"));
5994 break;
5995
5996 case bp_watchpoint:
5997 case bp_hardware_watchpoint:
5998 case bp_read_watchpoint:
5999 case bp_access_watchpoint:
6000 {
6001 struct watchpoint *w = (struct watchpoint *) b;
6002
6003 /* Field 4, the address, is omitted (which makes the columns
6004 not line up too nicely with the headers, but the effect
6005 is relatively readable). */
6006 if (opts.addressprint)
6007 ui_out_field_skip (uiout, "addr");
6008 annotate_field (5);
6009 ui_out_field_string (uiout, "what", w->exp_string);
6010 }
6011 break;
6012
6013 case bp_breakpoint:
6014 case bp_hardware_breakpoint:
6015 case bp_until:
6016 case bp_finish:
6017 case bp_longjmp:
6018 case bp_longjmp_resume:
6019 case bp_longjmp_call_dummy:
6020 case bp_exception:
6021 case bp_exception_resume:
6022 case bp_step_resume:
6023 case bp_hp_step_resume:
6024 case bp_watchpoint_scope:
6025 case bp_call_dummy:
6026 case bp_std_terminate:
6027 case bp_shlib_event:
6028 case bp_thread_event:
6029 case bp_overlay_event:
6030 case bp_longjmp_master:
6031 case bp_std_terminate_master:
6032 case bp_exception_master:
6033 case bp_tracepoint:
6034 case bp_fast_tracepoint:
6035 case bp_static_tracepoint:
6036 case bp_dprintf:
6037 case bp_jit_event:
6038 case bp_gnu_ifunc_resolver:
6039 case bp_gnu_ifunc_resolver_return:
6040 if (opts.addressprint)
6041 {
6042 annotate_field (4);
6043 if (header_of_multiple)
6044 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
6045 else if (b->loc == NULL || loc->shlib_disabled)
6046 ui_out_field_string (uiout, "addr", "<PENDING>");
6047 else
6048 ui_out_field_core_addr (uiout, "addr",
6049 loc->gdbarch, loc->address);
6050 }
6051 annotate_field (5);
6052 if (!header_of_multiple)
6053 print_breakpoint_location (b, loc);
6054 if (b->loc)
6055 *last_loc = b->loc;
6056 break;
6057 }
6058
6059
6060 if (loc != NULL && !header_of_multiple)
6061 {
6062 struct inferior *inf;
6063 VEC(int) *inf_num = NULL;
6064 int mi_only = 1;
6065
6066 ALL_INFERIORS (inf)
6067 {
6068 if (inf->pspace == loc->pspace)
6069 VEC_safe_push (int, inf_num, inf->num);
6070 }
6071
6072 /* For backward compatibility, don't display inferiors in CLI unless
6073 there are several. Always display for MI. */
6074 if (allflag
6075 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6076 && (number_of_program_spaces () > 1
6077 || number_of_inferiors () > 1)
6078 /* LOC is for existing B, it cannot be in
6079 moribund_locations and thus having NULL OWNER. */
6080 && loc->owner->type != bp_catchpoint))
6081 mi_only = 0;
6082 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6083 VEC_free (int, inf_num);
6084 }
6085
6086 if (!part_of_multiple)
6087 {
6088 if (b->thread != -1)
6089 {
6090 /* FIXME: This seems to be redundant and lost here; see the
6091 "stop only in" line a little further down. */
6092 ui_out_text (uiout, " thread ");
6093 ui_out_field_int (uiout, "thread", b->thread);
6094 }
6095 else if (b->task != 0)
6096 {
6097 ui_out_text (uiout, " task ");
6098 ui_out_field_int (uiout, "task", b->task);
6099 }
6100 }
6101
6102 ui_out_text (uiout, "\n");
6103
6104 if (!part_of_multiple)
6105 b->ops->print_one_detail (b, uiout);
6106
6107 if (part_of_multiple && frame_id_p (b->frame_id))
6108 {
6109 annotate_field (6);
6110 ui_out_text (uiout, "\tstop only in stack frame at ");
6111 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6112 the frame ID. */
6113 ui_out_field_core_addr (uiout, "frame",
6114 b->gdbarch, b->frame_id.stack_addr);
6115 ui_out_text (uiout, "\n");
6116 }
6117
6118 if (!part_of_multiple && b->cond_string)
6119 {
6120 annotate_field (7);
6121 if (is_tracepoint (b))
6122 ui_out_text (uiout, "\ttrace only if ");
6123 else
6124 ui_out_text (uiout, "\tstop only if ");
6125 ui_out_field_string (uiout, "cond", b->cond_string);
6126
6127 /* Print whether the target is doing the breakpoint's condition
6128 evaluation. If GDB is doing the evaluation, don't print anything. */
6129 if (is_breakpoint (b)
6130 && breakpoint_condition_evaluation_mode ()
6131 == condition_evaluation_target)
6132 {
6133 ui_out_text (uiout, " (");
6134 ui_out_field_string (uiout, "evaluated-by",
6135 bp_condition_evaluator (b));
6136 ui_out_text (uiout, " evals)");
6137 }
6138 ui_out_text (uiout, "\n");
6139 }
6140
6141 if (!part_of_multiple && b->thread != -1)
6142 {
6143 /* FIXME should make an annotation for this. */
6144 ui_out_text (uiout, "\tstop only in thread ");
6145 ui_out_field_int (uiout, "thread", b->thread);
6146 ui_out_text (uiout, "\n");
6147 }
6148
6149 if (!part_of_multiple)
6150 {
6151 if (b->hit_count)
6152 {
6153 /* FIXME should make an annotation for this. */
6154 if (is_catchpoint (b))
6155 ui_out_text (uiout, "\tcatchpoint");
6156 else if (is_tracepoint (b))
6157 ui_out_text (uiout, "\ttracepoint");
6158 else
6159 ui_out_text (uiout, "\tbreakpoint");
6160 ui_out_text (uiout, " already hit ");
6161 ui_out_field_int (uiout, "times", b->hit_count);
6162 if (b->hit_count == 1)
6163 ui_out_text (uiout, " time\n");
6164 else
6165 ui_out_text (uiout, " times\n");
6166 }
6167 else
6168 {
6169 /* Output the count also if it is zero, but only if this is mi. */
6170 if (ui_out_is_mi_like_p (uiout))
6171 ui_out_field_int (uiout, "times", b->hit_count);
6172 }
6173 }
6174
6175 if (!part_of_multiple && b->ignore_count)
6176 {
6177 annotate_field (8);
6178 ui_out_text (uiout, "\tignore next ");
6179 ui_out_field_int (uiout, "ignore", b->ignore_count);
6180 ui_out_text (uiout, " hits\n");
6181 }
6182
6183 /* Note that an enable count of 1 corresponds to "enable once"
6184 behavior, which is reported by the combination of enablement and
6185 disposition, so we don't need to mention it here. */
6186 if (!part_of_multiple && b->enable_count > 1)
6187 {
6188 annotate_field (8);
6189 ui_out_text (uiout, "\tdisable after ");
6190 /* Tweak the wording to clarify that ignore and enable counts
6191 are distinct, and have additive effect. */
6192 if (b->ignore_count)
6193 ui_out_text (uiout, "additional ");
6194 else
6195 ui_out_text (uiout, "next ");
6196 ui_out_field_int (uiout, "enable", b->enable_count);
6197 ui_out_text (uiout, " hits\n");
6198 }
6199
6200 if (!part_of_multiple && is_tracepoint (b))
6201 {
6202 struct tracepoint *tp = (struct tracepoint *) b;
6203
6204 if (tp->traceframe_usage)
6205 {
6206 ui_out_text (uiout, "\ttrace buffer usage ");
6207 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6208 ui_out_text (uiout, " bytes\n");
6209 }
6210 }
6211
6212 l = b->commands ? b->commands->commands : NULL;
6213 if (!part_of_multiple && l)
6214 {
6215 struct cleanup *script_chain;
6216
6217 annotate_field (9);
6218 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6219 print_command_lines (uiout, l, 4);
6220 do_cleanups (script_chain);
6221 }
6222
6223 if (is_tracepoint (b))
6224 {
6225 struct tracepoint *t = (struct tracepoint *) b;
6226
6227 if (!part_of_multiple && t->pass_count)
6228 {
6229 annotate_field (10);
6230 ui_out_text (uiout, "\tpass count ");
6231 ui_out_field_int (uiout, "pass", t->pass_count);
6232 ui_out_text (uiout, " \n");
6233 }
6234
6235 /* Don't display it when tracepoint or tracepoint location is
6236 pending. */
6237 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6238 {
6239 annotate_field (11);
6240
6241 if (ui_out_is_mi_like_p (uiout))
6242 ui_out_field_string (uiout, "installed",
6243 loc->inserted ? "y" : "n");
6244 else
6245 {
6246 if (loc->inserted)
6247 ui_out_text (uiout, "\t");
6248 else
6249 ui_out_text (uiout, "\tnot ");
6250 ui_out_text (uiout, "installed on target\n");
6251 }
6252 }
6253 }
6254
6255 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6256 {
6257 if (is_watchpoint (b))
6258 {
6259 struct watchpoint *w = (struct watchpoint *) b;
6260
6261 ui_out_field_string (uiout, "original-location", w->exp_string);
6262 }
6263 else if (b->addr_string)
6264 ui_out_field_string (uiout, "original-location", b->addr_string);
6265 }
6266 }
6267
6268 static void
6269 print_one_breakpoint (struct breakpoint *b,
6270 struct bp_location **last_loc,
6271 int allflag)
6272 {
6273 struct cleanup *bkpt_chain;
6274 struct ui_out *uiout = current_uiout;
6275
6276 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6277
6278 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6279 do_cleanups (bkpt_chain);
6280
6281 /* If this breakpoint has custom print function,
6282 it's already printed. Otherwise, print individual
6283 locations, if any. */
6284 if (b->ops == NULL || b->ops->print_one == NULL)
6285 {
6286 /* If breakpoint has a single location that is disabled, we
6287 print it as if it had several locations, since otherwise it's
6288 hard to represent "breakpoint enabled, location disabled"
6289 situation.
6290
6291 Note that while hardware watchpoints have several locations
6292 internally, that's not a property exposed to user. */
6293 if (b->loc
6294 && !is_hardware_watchpoint (b)
6295 && (b->loc->next || !b->loc->enabled))
6296 {
6297 struct bp_location *loc;
6298 int n = 1;
6299
6300 for (loc = b->loc; loc; loc = loc->next, ++n)
6301 {
6302 struct cleanup *inner2 =
6303 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6304 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6305 do_cleanups (inner2);
6306 }
6307 }
6308 }
6309 }
6310
6311 static int
6312 breakpoint_address_bits (struct breakpoint *b)
6313 {
6314 int print_address_bits = 0;
6315 struct bp_location *loc;
6316
6317 for (loc = b->loc; loc; loc = loc->next)
6318 {
6319 int addr_bit;
6320
6321 /* Software watchpoints that aren't watching memory don't have
6322 an address to print. */
6323 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6324 continue;
6325
6326 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6327 if (addr_bit > print_address_bits)
6328 print_address_bits = addr_bit;
6329 }
6330
6331 return print_address_bits;
6332 }
6333
6334 struct captured_breakpoint_query_args
6335 {
6336 int bnum;
6337 };
6338
6339 static int
6340 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6341 {
6342 struct captured_breakpoint_query_args *args = data;
6343 struct breakpoint *b;
6344 struct bp_location *dummy_loc = NULL;
6345
6346 ALL_BREAKPOINTS (b)
6347 {
6348 if (args->bnum == b->number)
6349 {
6350 print_one_breakpoint (b, &dummy_loc, 0);
6351 return GDB_RC_OK;
6352 }
6353 }
6354 return GDB_RC_NONE;
6355 }
6356
6357 enum gdb_rc
6358 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6359 char **error_message)
6360 {
6361 struct captured_breakpoint_query_args args;
6362
6363 args.bnum = bnum;
6364 /* For the moment we don't trust print_one_breakpoint() to not throw
6365 an error. */
6366 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6367 error_message, RETURN_MASK_ALL) < 0)
6368 return GDB_RC_FAIL;
6369 else
6370 return GDB_RC_OK;
6371 }
6372
6373 /* Return true if this breakpoint was set by the user, false if it is
6374 internal or momentary. */
6375
6376 int
6377 user_breakpoint_p (struct breakpoint *b)
6378 {
6379 return b->number > 0;
6380 }
6381
6382 /* Print information on user settable breakpoint (watchpoint, etc)
6383 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6384 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6385 FILTER is non-NULL, call it on each breakpoint and only include the
6386 ones for which it returns non-zero. Return the total number of
6387 breakpoints listed. */
6388
6389 static int
6390 breakpoint_1 (char *args, int allflag,
6391 int (*filter) (const struct breakpoint *))
6392 {
6393 struct breakpoint *b;
6394 struct bp_location *last_loc = NULL;
6395 int nr_printable_breakpoints;
6396 struct cleanup *bkpttbl_chain;
6397 struct value_print_options opts;
6398 int print_address_bits = 0;
6399 int print_type_col_width = 14;
6400 struct ui_out *uiout = current_uiout;
6401
6402 get_user_print_options (&opts);
6403
6404 /* Compute the number of rows in the table, as well as the size
6405 required for address fields. */
6406 nr_printable_breakpoints = 0;
6407 ALL_BREAKPOINTS (b)
6408 {
6409 /* If we have a filter, only list the breakpoints it accepts. */
6410 if (filter && !filter (b))
6411 continue;
6412
6413 /* If we have an "args" string, it is a list of breakpoints to
6414 accept. Skip the others. */
6415 if (args != NULL && *args != '\0')
6416 {
6417 if (allflag && parse_and_eval_long (args) != b->number)
6418 continue;
6419 if (!allflag && !number_is_in_list (args, b->number))
6420 continue;
6421 }
6422
6423 if (allflag || user_breakpoint_p (b))
6424 {
6425 int addr_bit, type_len;
6426
6427 addr_bit = breakpoint_address_bits (b);
6428 if (addr_bit > print_address_bits)
6429 print_address_bits = addr_bit;
6430
6431 type_len = strlen (bptype_string (b->type));
6432 if (type_len > print_type_col_width)
6433 print_type_col_width = type_len;
6434
6435 nr_printable_breakpoints++;
6436 }
6437 }
6438
6439 if (opts.addressprint)
6440 bkpttbl_chain
6441 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6442 nr_printable_breakpoints,
6443 "BreakpointTable");
6444 else
6445 bkpttbl_chain
6446 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6447 nr_printable_breakpoints,
6448 "BreakpointTable");
6449
6450 if (nr_printable_breakpoints > 0)
6451 annotate_breakpoints_headers ();
6452 if (nr_printable_breakpoints > 0)
6453 annotate_field (0);
6454 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6455 if (nr_printable_breakpoints > 0)
6456 annotate_field (1);
6457 ui_out_table_header (uiout, print_type_col_width, ui_left,
6458 "type", "Type"); /* 2 */
6459 if (nr_printable_breakpoints > 0)
6460 annotate_field (2);
6461 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6462 if (nr_printable_breakpoints > 0)
6463 annotate_field (3);
6464 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6465 if (opts.addressprint)
6466 {
6467 if (nr_printable_breakpoints > 0)
6468 annotate_field (4);
6469 if (print_address_bits <= 32)
6470 ui_out_table_header (uiout, 10, ui_left,
6471 "addr", "Address"); /* 5 */
6472 else
6473 ui_out_table_header (uiout, 18, ui_left,
6474 "addr", "Address"); /* 5 */
6475 }
6476 if (nr_printable_breakpoints > 0)
6477 annotate_field (5);
6478 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6479 ui_out_table_body (uiout);
6480 if (nr_printable_breakpoints > 0)
6481 annotate_breakpoints_table ();
6482
6483 ALL_BREAKPOINTS (b)
6484 {
6485 QUIT;
6486 /* If we have a filter, only list the breakpoints it accepts. */
6487 if (filter && !filter (b))
6488 continue;
6489
6490 /* If we have an "args" string, it is a list of breakpoints to
6491 accept. Skip the others. */
6492
6493 if (args != NULL && *args != '\0')
6494 {
6495 if (allflag) /* maintenance info breakpoint */
6496 {
6497 if (parse_and_eval_long (args) != b->number)
6498 continue;
6499 }
6500 else /* all others */
6501 {
6502 if (!number_is_in_list (args, b->number))
6503 continue;
6504 }
6505 }
6506 /* We only print out user settable breakpoints unless the
6507 allflag is set. */
6508 if (allflag || user_breakpoint_p (b))
6509 print_one_breakpoint (b, &last_loc, allflag);
6510 }
6511
6512 do_cleanups (bkpttbl_chain);
6513
6514 if (nr_printable_breakpoints == 0)
6515 {
6516 /* If there's a filter, let the caller decide how to report
6517 empty list. */
6518 if (!filter)
6519 {
6520 if (args == NULL || *args == '\0')
6521 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6522 else
6523 ui_out_message (uiout, 0,
6524 "No breakpoint or watchpoint matching '%s'.\n",
6525 args);
6526 }
6527 }
6528 else
6529 {
6530 if (last_loc && !server_command)
6531 set_next_address (last_loc->gdbarch, last_loc->address);
6532 }
6533
6534 /* FIXME? Should this be moved up so that it is only called when
6535 there have been breakpoints? */
6536 annotate_breakpoints_table_end ();
6537
6538 return nr_printable_breakpoints;
6539 }
6540
6541 /* Display the value of default-collect in a way that is generally
6542 compatible with the breakpoint list. */
6543
6544 static void
6545 default_collect_info (void)
6546 {
6547 struct ui_out *uiout = current_uiout;
6548
6549 /* If it has no value (which is frequently the case), say nothing; a
6550 message like "No default-collect." gets in user's face when it's
6551 not wanted. */
6552 if (!*default_collect)
6553 return;
6554
6555 /* The following phrase lines up nicely with per-tracepoint collect
6556 actions. */
6557 ui_out_text (uiout, "default collect ");
6558 ui_out_field_string (uiout, "default-collect", default_collect);
6559 ui_out_text (uiout, " \n");
6560 }
6561
6562 static void
6563 breakpoints_info (char *args, int from_tty)
6564 {
6565 breakpoint_1 (args, 0, NULL);
6566
6567 default_collect_info ();
6568 }
6569
6570 static void
6571 watchpoints_info (char *args, int from_tty)
6572 {
6573 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6574 struct ui_out *uiout = current_uiout;
6575
6576 if (num_printed == 0)
6577 {
6578 if (args == NULL || *args == '\0')
6579 ui_out_message (uiout, 0, "No watchpoints.\n");
6580 else
6581 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6582 }
6583 }
6584
6585 static void
6586 maintenance_info_breakpoints (char *args, int from_tty)
6587 {
6588 breakpoint_1 (args, 1, NULL);
6589
6590 default_collect_info ();
6591 }
6592
6593 static int
6594 breakpoint_has_pc (struct breakpoint *b,
6595 struct program_space *pspace,
6596 CORE_ADDR pc, struct obj_section *section)
6597 {
6598 struct bp_location *bl = b->loc;
6599
6600 for (; bl; bl = bl->next)
6601 {
6602 if (bl->pspace == pspace
6603 && bl->address == pc
6604 && (!overlay_debugging || bl->section == section))
6605 return 1;
6606 }
6607 return 0;
6608 }
6609
6610 /* Print a message describing any user-breakpoints set at PC. This
6611 concerns with logical breakpoints, so we match program spaces, not
6612 address spaces. */
6613
6614 static void
6615 describe_other_breakpoints (struct gdbarch *gdbarch,
6616 struct program_space *pspace, CORE_ADDR pc,
6617 struct obj_section *section, int thread)
6618 {
6619 int others = 0;
6620 struct breakpoint *b;
6621
6622 ALL_BREAKPOINTS (b)
6623 others += (user_breakpoint_p (b)
6624 && breakpoint_has_pc (b, pspace, pc, section));
6625 if (others > 0)
6626 {
6627 if (others == 1)
6628 printf_filtered (_("Note: breakpoint "));
6629 else /* if (others == ???) */
6630 printf_filtered (_("Note: breakpoints "));
6631 ALL_BREAKPOINTS (b)
6632 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6633 {
6634 others--;
6635 printf_filtered ("%d", b->number);
6636 if (b->thread == -1 && thread != -1)
6637 printf_filtered (" (all threads)");
6638 else if (b->thread != -1)
6639 printf_filtered (" (thread %d)", b->thread);
6640 printf_filtered ("%s%s ",
6641 ((b->enable_state == bp_disabled
6642 || b->enable_state == bp_call_disabled)
6643 ? " (disabled)"
6644 : b->enable_state == bp_permanent
6645 ? " (permanent)"
6646 : ""),
6647 (others > 1) ? ","
6648 : ((others == 1) ? " and" : ""));
6649 }
6650 printf_filtered (_("also set at pc "));
6651 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6652 printf_filtered (".\n");
6653 }
6654 }
6655 \f
6656
6657 /* Return true iff it is meaningful to use the address member of
6658 BPT. For some breakpoint types, the address member is irrelevant
6659 and it makes no sense to attempt to compare it to other addresses
6660 (or use it for any other purpose either).
6661
6662 More specifically, each of the following breakpoint types will
6663 always have a zero valued address and we don't want to mark
6664 breakpoints of any of these types to be a duplicate of an actual
6665 breakpoint at address zero:
6666
6667 bp_watchpoint
6668 bp_catchpoint
6669
6670 */
6671
6672 static int
6673 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6674 {
6675 enum bptype type = bpt->type;
6676
6677 return (type != bp_watchpoint && type != bp_catchpoint);
6678 }
6679
6680 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6681 true if LOC1 and LOC2 represent the same watchpoint location. */
6682
6683 static int
6684 watchpoint_locations_match (struct bp_location *loc1,
6685 struct bp_location *loc2)
6686 {
6687 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6688 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6689
6690 /* Both of them must exist. */
6691 gdb_assert (w1 != NULL);
6692 gdb_assert (w2 != NULL);
6693
6694 /* If the target can evaluate the condition expression in hardware,
6695 then we we need to insert both watchpoints even if they are at
6696 the same place. Otherwise the watchpoint will only trigger when
6697 the condition of whichever watchpoint was inserted evaluates to
6698 true, not giving a chance for GDB to check the condition of the
6699 other watchpoint. */
6700 if ((w1->cond_exp
6701 && target_can_accel_watchpoint_condition (loc1->address,
6702 loc1->length,
6703 loc1->watchpoint_type,
6704 w1->cond_exp))
6705 || (w2->cond_exp
6706 && target_can_accel_watchpoint_condition (loc2->address,
6707 loc2->length,
6708 loc2->watchpoint_type,
6709 w2->cond_exp)))
6710 return 0;
6711
6712 /* Note that this checks the owner's type, not the location's. In
6713 case the target does not support read watchpoints, but does
6714 support access watchpoints, we'll have bp_read_watchpoint
6715 watchpoints with hw_access locations. Those should be considered
6716 duplicates of hw_read locations. The hw_read locations will
6717 become hw_access locations later. */
6718 return (loc1->owner->type == loc2->owner->type
6719 && loc1->pspace->aspace == loc2->pspace->aspace
6720 && loc1->address == loc2->address
6721 && loc1->length == loc2->length);
6722 }
6723
6724 /* Returns true if {ASPACE1,ADDR1} and {ASPACE2,ADDR2} represent the
6725 same breakpoint location. In most targets, this can only be true
6726 if ASPACE1 matches ASPACE2. On targets that have global
6727 breakpoints, the address space doesn't really matter. */
6728
6729 static int
6730 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6731 struct address_space *aspace2, CORE_ADDR addr2)
6732 {
6733 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6734 || aspace1 == aspace2)
6735 && addr1 == addr2);
6736 }
6737
6738 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6739 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6740 matches ASPACE2. On targets that have global breakpoints, the address
6741 space doesn't really matter. */
6742
6743 static int
6744 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6745 int len1, struct address_space *aspace2,
6746 CORE_ADDR addr2)
6747 {
6748 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6749 || aspace1 == aspace2)
6750 && addr2 >= addr1 && addr2 < addr1 + len1);
6751 }
6752
6753 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6754 a ranged breakpoint. In most targets, a match happens only if ASPACE
6755 matches the breakpoint's address space. On targets that have global
6756 breakpoints, the address space doesn't really matter. */
6757
6758 static int
6759 breakpoint_location_address_match (struct bp_location *bl,
6760 struct address_space *aspace,
6761 CORE_ADDR addr)
6762 {
6763 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6764 aspace, addr)
6765 || (bl->length
6766 && breakpoint_address_match_range (bl->pspace->aspace,
6767 bl->address, bl->length,
6768 aspace, addr)));
6769 }
6770
6771 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6772 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6773 true, otherwise returns false. */
6774
6775 static int
6776 tracepoint_locations_match (struct bp_location *loc1,
6777 struct bp_location *loc2)
6778 {
6779 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6780 /* Since tracepoint locations are never duplicated with others', tracepoint
6781 locations at the same address of different tracepoints are regarded as
6782 different locations. */
6783 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6784 else
6785 return 0;
6786 }
6787
6788 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6789 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6790 represent the same location. */
6791
6792 static int
6793 breakpoint_locations_match (struct bp_location *loc1,
6794 struct bp_location *loc2)
6795 {
6796 int hw_point1, hw_point2;
6797
6798 /* Both of them must not be in moribund_locations. */
6799 gdb_assert (loc1->owner != NULL);
6800 gdb_assert (loc2->owner != NULL);
6801
6802 hw_point1 = is_hardware_watchpoint (loc1->owner);
6803 hw_point2 = is_hardware_watchpoint (loc2->owner);
6804
6805 if (hw_point1 != hw_point2)
6806 return 0;
6807 else if (hw_point1)
6808 return watchpoint_locations_match (loc1, loc2);
6809 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6810 return tracepoint_locations_match (loc1, loc2);
6811 else
6812 /* We compare bp_location.length in order to cover ranged breakpoints. */
6813 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6814 loc2->pspace->aspace, loc2->address)
6815 && loc1->length == loc2->length);
6816 }
6817
6818 static void
6819 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6820 int bnum, int have_bnum)
6821 {
6822 /* The longest string possibly returned by hex_string_custom
6823 is 50 chars. These must be at least that big for safety. */
6824 char astr1[64];
6825 char astr2[64];
6826
6827 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6828 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6829 if (have_bnum)
6830 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6831 bnum, astr1, astr2);
6832 else
6833 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6834 }
6835
6836 /* Adjust a breakpoint's address to account for architectural
6837 constraints on breakpoint placement. Return the adjusted address.
6838 Note: Very few targets require this kind of adjustment. For most
6839 targets, this function is simply the identity function. */
6840
6841 static CORE_ADDR
6842 adjust_breakpoint_address (struct gdbarch *gdbarch,
6843 CORE_ADDR bpaddr, enum bptype bptype)
6844 {
6845 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
6846 {
6847 /* Very few targets need any kind of breakpoint adjustment. */
6848 return bpaddr;
6849 }
6850 else if (bptype == bp_watchpoint
6851 || bptype == bp_hardware_watchpoint
6852 || bptype == bp_read_watchpoint
6853 || bptype == bp_access_watchpoint
6854 || bptype == bp_catchpoint)
6855 {
6856 /* Watchpoints and the various bp_catch_* eventpoints should not
6857 have their addresses modified. */
6858 return bpaddr;
6859 }
6860 else
6861 {
6862 CORE_ADDR adjusted_bpaddr;
6863
6864 /* Some targets have architectural constraints on the placement
6865 of breakpoint instructions. Obtain the adjusted address. */
6866 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6867
6868 /* An adjusted breakpoint address can significantly alter
6869 a user's expectations. Print a warning if an adjustment
6870 is required. */
6871 if (adjusted_bpaddr != bpaddr)
6872 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6873
6874 return adjusted_bpaddr;
6875 }
6876 }
6877
6878 void
6879 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
6880 struct breakpoint *owner)
6881 {
6882 memset (loc, 0, sizeof (*loc));
6883
6884 gdb_assert (ops != NULL);
6885
6886 loc->ops = ops;
6887 loc->owner = owner;
6888 loc->cond = NULL;
6889 loc->cond_bytecode = NULL;
6890 loc->shlib_disabled = 0;
6891 loc->enabled = 1;
6892
6893 switch (owner->type)
6894 {
6895 case bp_breakpoint:
6896 case bp_until:
6897 case bp_finish:
6898 case bp_longjmp:
6899 case bp_longjmp_resume:
6900 case bp_longjmp_call_dummy:
6901 case bp_exception:
6902 case bp_exception_resume:
6903 case bp_step_resume:
6904 case bp_hp_step_resume:
6905 case bp_watchpoint_scope:
6906 case bp_call_dummy:
6907 case bp_std_terminate:
6908 case bp_shlib_event:
6909 case bp_thread_event:
6910 case bp_overlay_event:
6911 case bp_jit_event:
6912 case bp_longjmp_master:
6913 case bp_std_terminate_master:
6914 case bp_exception_master:
6915 case bp_gnu_ifunc_resolver:
6916 case bp_gnu_ifunc_resolver_return:
6917 case bp_dprintf:
6918 loc->loc_type = bp_loc_software_breakpoint;
6919 mark_breakpoint_location_modified (loc);
6920 break;
6921 case bp_hardware_breakpoint:
6922 loc->loc_type = bp_loc_hardware_breakpoint;
6923 mark_breakpoint_location_modified (loc);
6924 break;
6925 case bp_hardware_watchpoint:
6926 case bp_read_watchpoint:
6927 case bp_access_watchpoint:
6928 loc->loc_type = bp_loc_hardware_watchpoint;
6929 break;
6930 case bp_watchpoint:
6931 case bp_catchpoint:
6932 case bp_tracepoint:
6933 case bp_fast_tracepoint:
6934 case bp_static_tracepoint:
6935 loc->loc_type = bp_loc_other;
6936 break;
6937 default:
6938 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
6939 }
6940
6941 loc->refc = 1;
6942 }
6943
6944 /* Allocate a struct bp_location. */
6945
6946 static struct bp_location *
6947 allocate_bp_location (struct breakpoint *bpt)
6948 {
6949 return bpt->ops->allocate_location (bpt);
6950 }
6951
6952 static void
6953 free_bp_location (struct bp_location *loc)
6954 {
6955 loc->ops->dtor (loc);
6956 xfree (loc);
6957 }
6958
6959 /* Increment reference count. */
6960
6961 static void
6962 incref_bp_location (struct bp_location *bl)
6963 {
6964 ++bl->refc;
6965 }
6966
6967 /* Decrement reference count. If the reference count reaches 0,
6968 destroy the bp_location. Sets *BLP to NULL. */
6969
6970 static void
6971 decref_bp_location (struct bp_location **blp)
6972 {
6973 gdb_assert ((*blp)->refc > 0);
6974
6975 if (--(*blp)->refc == 0)
6976 free_bp_location (*blp);
6977 *blp = NULL;
6978 }
6979
6980 /* Add breakpoint B at the end of the global breakpoint chain. */
6981
6982 static void
6983 add_to_breakpoint_chain (struct breakpoint *b)
6984 {
6985 struct breakpoint *b1;
6986
6987 /* Add this breakpoint to the end of the chain so that a list of
6988 breakpoints will come out in order of increasing numbers. */
6989
6990 b1 = breakpoint_chain;
6991 if (b1 == 0)
6992 breakpoint_chain = b;
6993 else
6994 {
6995 while (b1->next)
6996 b1 = b1->next;
6997 b1->next = b;
6998 }
6999 }
7000
7001 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7002
7003 static void
7004 init_raw_breakpoint_without_location (struct breakpoint *b,
7005 struct gdbarch *gdbarch,
7006 enum bptype bptype,
7007 const struct breakpoint_ops *ops)
7008 {
7009 memset (b, 0, sizeof (*b));
7010
7011 gdb_assert (ops != NULL);
7012
7013 b->ops = ops;
7014 b->type = bptype;
7015 b->gdbarch = gdbarch;
7016 b->language = current_language->la_language;
7017 b->input_radix = input_radix;
7018 b->thread = -1;
7019 b->enable_state = bp_enabled;
7020 b->next = 0;
7021 b->silent = 0;
7022 b->ignore_count = 0;
7023 b->commands = NULL;
7024 b->frame_id = null_frame_id;
7025 b->condition_not_parsed = 0;
7026 b->py_bp_object = NULL;
7027 b->related_breakpoint = b;
7028 }
7029
7030 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7031 that has type BPTYPE and has no locations as yet. */
7032
7033 static struct breakpoint *
7034 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7035 enum bptype bptype,
7036 const struct breakpoint_ops *ops)
7037 {
7038 struct breakpoint *b = XNEW (struct breakpoint);
7039
7040 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7041 add_to_breakpoint_chain (b);
7042 return b;
7043 }
7044
7045 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7046 resolutions should be made as the user specified the location explicitly
7047 enough. */
7048
7049 static void
7050 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7051 {
7052 gdb_assert (loc->owner != NULL);
7053
7054 if (loc->owner->type == bp_breakpoint
7055 || loc->owner->type == bp_hardware_breakpoint
7056 || is_tracepoint (loc->owner))
7057 {
7058 int is_gnu_ifunc;
7059 const char *function_name;
7060 CORE_ADDR func_addr;
7061
7062 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7063 &func_addr, NULL, &is_gnu_ifunc);
7064
7065 if (is_gnu_ifunc && !explicit_loc)
7066 {
7067 struct breakpoint *b = loc->owner;
7068
7069 gdb_assert (loc->pspace == current_program_space);
7070 if (gnu_ifunc_resolve_name (function_name,
7071 &loc->requested_address))
7072 {
7073 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7074 loc->address = adjust_breakpoint_address (loc->gdbarch,
7075 loc->requested_address,
7076 b->type);
7077 }
7078 else if (b->type == bp_breakpoint && b->loc == loc
7079 && loc->next == NULL && b->related_breakpoint == b)
7080 {
7081 /* Create only the whole new breakpoint of this type but do not
7082 mess more complicated breakpoints with multiple locations. */
7083 b->type = bp_gnu_ifunc_resolver;
7084 /* Remember the resolver's address for use by the return
7085 breakpoint. */
7086 loc->related_address = func_addr;
7087 }
7088 }
7089
7090 if (function_name)
7091 loc->function_name = xstrdup (function_name);
7092 }
7093 }
7094
7095 /* Attempt to determine architecture of location identified by SAL. */
7096 struct gdbarch *
7097 get_sal_arch (struct symtab_and_line sal)
7098 {
7099 if (sal.section)
7100 return get_objfile_arch (sal.section->objfile);
7101 if (sal.symtab)
7102 return get_objfile_arch (sal.symtab->objfile);
7103
7104 return NULL;
7105 }
7106
7107 /* Low level routine for partially initializing a breakpoint of type
7108 BPTYPE. The newly created breakpoint's address, section, source
7109 file name, and line number are provided by SAL.
7110
7111 It is expected that the caller will complete the initialization of
7112 the newly created breakpoint struct as well as output any status
7113 information regarding the creation of a new breakpoint. */
7114
7115 static void
7116 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7117 struct symtab_and_line sal, enum bptype bptype,
7118 const struct breakpoint_ops *ops)
7119 {
7120 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7121
7122 add_location_to_breakpoint (b, &sal);
7123
7124 if (bptype != bp_catchpoint)
7125 gdb_assert (sal.pspace != NULL);
7126
7127 /* Store the program space that was used to set the breakpoint,
7128 except for ordinary breakpoints, which are independent of the
7129 program space. */
7130 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7131 b->pspace = sal.pspace;
7132 }
7133
7134 /* set_raw_breakpoint is a low level routine for allocating and
7135 partially initializing a breakpoint of type BPTYPE. The newly
7136 created breakpoint's address, section, source file name, and line
7137 number are provided by SAL. The newly created and partially
7138 initialized breakpoint is added to the breakpoint chain and
7139 is also returned as the value of this function.
7140
7141 It is expected that the caller will complete the initialization of
7142 the newly created breakpoint struct as well as output any status
7143 information regarding the creation of a new breakpoint. In
7144 particular, set_raw_breakpoint does NOT set the breakpoint
7145 number! Care should be taken to not allow an error to occur
7146 prior to completing the initialization of the breakpoint. If this
7147 should happen, a bogus breakpoint will be left on the chain. */
7148
7149 struct breakpoint *
7150 set_raw_breakpoint (struct gdbarch *gdbarch,
7151 struct symtab_and_line sal, enum bptype bptype,
7152 const struct breakpoint_ops *ops)
7153 {
7154 struct breakpoint *b = XNEW (struct breakpoint);
7155
7156 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7157 add_to_breakpoint_chain (b);
7158 return b;
7159 }
7160
7161
7162 /* Note that the breakpoint object B describes a permanent breakpoint
7163 instruction, hard-wired into the inferior's code. */
7164 void
7165 make_breakpoint_permanent (struct breakpoint *b)
7166 {
7167 struct bp_location *bl;
7168
7169 b->enable_state = bp_permanent;
7170
7171 /* By definition, permanent breakpoints are already present in the
7172 code. Mark all locations as inserted. For now,
7173 make_breakpoint_permanent is called in just one place, so it's
7174 hard to say if it's reasonable to have permanent breakpoint with
7175 multiple locations or not, but it's easy to implement. */
7176 for (bl = b->loc; bl; bl = bl->next)
7177 bl->inserted = 1;
7178 }
7179
7180 /* Call this routine when stepping and nexting to enable a breakpoint
7181 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7182 initiated the operation. */
7183
7184 void
7185 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7186 {
7187 struct breakpoint *b, *b_tmp;
7188 int thread = tp->num;
7189
7190 /* To avoid having to rescan all objfile symbols at every step,
7191 we maintain a list of continually-inserted but always disabled
7192 longjmp "master" breakpoints. Here, we simply create momentary
7193 clones of those and enable them for the requested thread. */
7194 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7195 if (b->pspace == current_program_space
7196 && (b->type == bp_longjmp_master
7197 || b->type == bp_exception_master))
7198 {
7199 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7200 struct breakpoint *clone;
7201
7202 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7203 after their removal. */
7204 clone = momentary_breakpoint_from_master (b, type,
7205 &longjmp_breakpoint_ops);
7206 clone->thread = thread;
7207 }
7208
7209 tp->initiating_frame = frame;
7210 }
7211
7212 /* Delete all longjmp breakpoints from THREAD. */
7213 void
7214 delete_longjmp_breakpoint (int thread)
7215 {
7216 struct breakpoint *b, *b_tmp;
7217
7218 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7219 if (b->type == bp_longjmp || b->type == bp_exception)
7220 {
7221 if (b->thread == thread)
7222 delete_breakpoint (b);
7223 }
7224 }
7225
7226 void
7227 delete_longjmp_breakpoint_at_next_stop (int thread)
7228 {
7229 struct breakpoint *b, *b_tmp;
7230
7231 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7232 if (b->type == bp_longjmp || b->type == bp_exception)
7233 {
7234 if (b->thread == thread)
7235 b->disposition = disp_del_at_next_stop;
7236 }
7237 }
7238
7239 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7240 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7241 pointer to any of them. Return NULL if this system cannot place longjmp
7242 breakpoints. */
7243
7244 struct breakpoint *
7245 set_longjmp_breakpoint_for_call_dummy (void)
7246 {
7247 struct breakpoint *b, *retval = NULL;
7248
7249 ALL_BREAKPOINTS (b)
7250 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7251 {
7252 struct breakpoint *new_b;
7253
7254 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7255 &momentary_breakpoint_ops);
7256 new_b->thread = pid_to_thread_id (inferior_ptid);
7257
7258 /* Link NEW_B into the chain of RETVAL breakpoints. */
7259
7260 gdb_assert (new_b->related_breakpoint == new_b);
7261 if (retval == NULL)
7262 retval = new_b;
7263 new_b->related_breakpoint = retval;
7264 while (retval->related_breakpoint != new_b->related_breakpoint)
7265 retval = retval->related_breakpoint;
7266 retval->related_breakpoint = new_b;
7267 }
7268
7269 return retval;
7270 }
7271
7272 /* Verify all existing dummy frames and their associated breakpoints for
7273 THREAD. Remove those which can no longer be found in the current frame
7274 stack.
7275
7276 You should call this function only at places where it is safe to currently
7277 unwind the whole stack. Failed stack unwind would discard live dummy
7278 frames. */
7279
7280 void
7281 check_longjmp_breakpoint_for_call_dummy (int thread)
7282 {
7283 struct breakpoint *b, *b_tmp;
7284
7285 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7286 if (b->type == bp_longjmp_call_dummy && b->thread == thread)
7287 {
7288 struct breakpoint *dummy_b = b->related_breakpoint;
7289
7290 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7291 dummy_b = dummy_b->related_breakpoint;
7292 if (dummy_b->type != bp_call_dummy
7293 || frame_find_by_id (dummy_b->frame_id) != NULL)
7294 continue;
7295
7296 dummy_frame_discard (dummy_b->frame_id);
7297
7298 while (b->related_breakpoint != b)
7299 {
7300 if (b_tmp == b->related_breakpoint)
7301 b_tmp = b->related_breakpoint->next;
7302 delete_breakpoint (b->related_breakpoint);
7303 }
7304 delete_breakpoint (b);
7305 }
7306 }
7307
7308 void
7309 enable_overlay_breakpoints (void)
7310 {
7311 struct breakpoint *b;
7312
7313 ALL_BREAKPOINTS (b)
7314 if (b->type == bp_overlay_event)
7315 {
7316 b->enable_state = bp_enabled;
7317 update_global_location_list (1);
7318 overlay_events_enabled = 1;
7319 }
7320 }
7321
7322 void
7323 disable_overlay_breakpoints (void)
7324 {
7325 struct breakpoint *b;
7326
7327 ALL_BREAKPOINTS (b)
7328 if (b->type == bp_overlay_event)
7329 {
7330 b->enable_state = bp_disabled;
7331 update_global_location_list (0);
7332 overlay_events_enabled = 0;
7333 }
7334 }
7335
7336 /* Set an active std::terminate breakpoint for each std::terminate
7337 master breakpoint. */
7338 void
7339 set_std_terminate_breakpoint (void)
7340 {
7341 struct breakpoint *b, *b_tmp;
7342
7343 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7344 if (b->pspace == current_program_space
7345 && b->type == bp_std_terminate_master)
7346 {
7347 momentary_breakpoint_from_master (b, bp_std_terminate,
7348 &momentary_breakpoint_ops);
7349 }
7350 }
7351
7352 /* Delete all the std::terminate breakpoints. */
7353 void
7354 delete_std_terminate_breakpoint (void)
7355 {
7356 struct breakpoint *b, *b_tmp;
7357
7358 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7359 if (b->type == bp_std_terminate)
7360 delete_breakpoint (b);
7361 }
7362
7363 struct breakpoint *
7364 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7365 {
7366 struct breakpoint *b;
7367
7368 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7369 &internal_breakpoint_ops);
7370
7371 b->enable_state = bp_enabled;
7372 /* addr_string has to be used or breakpoint_re_set will delete me. */
7373 b->addr_string
7374 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7375
7376 update_global_location_list_nothrow (1);
7377
7378 return b;
7379 }
7380
7381 void
7382 remove_thread_event_breakpoints (void)
7383 {
7384 struct breakpoint *b, *b_tmp;
7385
7386 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7387 if (b->type == bp_thread_event
7388 && b->loc->pspace == current_program_space)
7389 delete_breakpoint (b);
7390 }
7391
7392 struct lang_and_radix
7393 {
7394 enum language lang;
7395 int radix;
7396 };
7397
7398 /* Create a breakpoint for JIT code registration and unregistration. */
7399
7400 struct breakpoint *
7401 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7402 {
7403 struct breakpoint *b;
7404
7405 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7406 &internal_breakpoint_ops);
7407 update_global_location_list_nothrow (1);
7408 return b;
7409 }
7410
7411 /* Remove JIT code registration and unregistration breakpoint(s). */
7412
7413 void
7414 remove_jit_event_breakpoints (void)
7415 {
7416 struct breakpoint *b, *b_tmp;
7417
7418 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7419 if (b->type == bp_jit_event
7420 && b->loc->pspace == current_program_space)
7421 delete_breakpoint (b);
7422 }
7423
7424 void
7425 remove_solib_event_breakpoints (void)
7426 {
7427 struct breakpoint *b, *b_tmp;
7428
7429 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7430 if (b->type == bp_shlib_event
7431 && b->loc->pspace == current_program_space)
7432 delete_breakpoint (b);
7433 }
7434
7435 struct breakpoint *
7436 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7437 {
7438 struct breakpoint *b;
7439
7440 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7441 &internal_breakpoint_ops);
7442 update_global_location_list_nothrow (1);
7443 return b;
7444 }
7445
7446 /* Disable any breakpoints that are on code in shared libraries. Only
7447 apply to enabled breakpoints, disabled ones can just stay disabled. */
7448
7449 void
7450 disable_breakpoints_in_shlibs (void)
7451 {
7452 struct bp_location *loc, **locp_tmp;
7453
7454 ALL_BP_LOCATIONS (loc, locp_tmp)
7455 {
7456 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7457 struct breakpoint *b = loc->owner;
7458
7459 /* We apply the check to all breakpoints, including disabled for
7460 those with loc->duplicate set. This is so that when breakpoint
7461 becomes enabled, or the duplicate is removed, gdb will try to
7462 insert all breakpoints. If we don't set shlib_disabled here,
7463 we'll try to insert those breakpoints and fail. */
7464 if (((b->type == bp_breakpoint)
7465 || (b->type == bp_jit_event)
7466 || (b->type == bp_hardware_breakpoint)
7467 || (is_tracepoint (b)))
7468 && loc->pspace == current_program_space
7469 && !loc->shlib_disabled
7470 && solib_name_from_address (loc->pspace, loc->address)
7471 )
7472 {
7473 loc->shlib_disabled = 1;
7474 }
7475 }
7476 }
7477
7478 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7479 notification of unloaded_shlib. Only apply to enabled breakpoints,
7480 disabled ones can just stay disabled. */
7481
7482 static void
7483 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7484 {
7485 struct bp_location *loc, **locp_tmp;
7486 int disabled_shlib_breaks = 0;
7487
7488 /* SunOS a.out shared libraries are always mapped, so do not
7489 disable breakpoints; they will only be reported as unloaded
7490 through clear_solib when GDB discards its shared library
7491 list. See clear_solib for more information. */
7492 if (exec_bfd != NULL
7493 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7494 return;
7495
7496 ALL_BP_LOCATIONS (loc, locp_tmp)
7497 {
7498 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7499 struct breakpoint *b = loc->owner;
7500
7501 if (solib->pspace == loc->pspace
7502 && !loc->shlib_disabled
7503 && (((b->type == bp_breakpoint
7504 || b->type == bp_jit_event
7505 || b->type == bp_hardware_breakpoint)
7506 && (loc->loc_type == bp_loc_hardware_breakpoint
7507 || loc->loc_type == bp_loc_software_breakpoint))
7508 || is_tracepoint (b))
7509 && solib_contains_address_p (solib, loc->address))
7510 {
7511 loc->shlib_disabled = 1;
7512 /* At this point, we cannot rely on remove_breakpoint
7513 succeeding so we must mark the breakpoint as not inserted
7514 to prevent future errors occurring in remove_breakpoints. */
7515 loc->inserted = 0;
7516
7517 /* This may cause duplicate notifications for the same breakpoint. */
7518 observer_notify_breakpoint_modified (b);
7519
7520 if (!disabled_shlib_breaks)
7521 {
7522 target_terminal_ours_for_output ();
7523 warning (_("Temporarily disabling breakpoints "
7524 "for unloaded shared library \"%s\""),
7525 solib->so_name);
7526 }
7527 disabled_shlib_breaks = 1;
7528 }
7529 }
7530 }
7531
7532 /* Disable any breakpoints and tracepoints in OBJFILE upon
7533 notification of free_objfile. Only apply to enabled breakpoints,
7534 disabled ones can just stay disabled. */
7535
7536 static void
7537 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7538 {
7539 struct breakpoint *b;
7540
7541 if (objfile == NULL)
7542 return;
7543
7544 /* If the file is a shared library not loaded by the user then
7545 solib_unloaded was notified and disable_breakpoints_in_unloaded_shlib
7546 was called. In that case there is no need to take action again. */
7547 if ((objfile->flags & OBJF_SHARED) && !(objfile->flags & OBJF_USERLOADED))
7548 return;
7549
7550 ALL_BREAKPOINTS (b)
7551 {
7552 struct bp_location *loc;
7553 int bp_modified = 0;
7554
7555 if (!is_breakpoint (b) && !is_tracepoint (b))
7556 continue;
7557
7558 for (loc = b->loc; loc != NULL; loc = loc->next)
7559 {
7560 CORE_ADDR loc_addr = loc->address;
7561
7562 if (loc->loc_type != bp_loc_hardware_breakpoint
7563 && loc->loc_type != bp_loc_software_breakpoint)
7564 continue;
7565
7566 if (loc->shlib_disabled != 0)
7567 continue;
7568
7569 if (objfile->pspace != loc->pspace)
7570 continue;
7571
7572 if (loc->loc_type != bp_loc_hardware_breakpoint
7573 && loc->loc_type != bp_loc_software_breakpoint)
7574 continue;
7575
7576 if (is_addr_in_objfile (loc_addr, objfile))
7577 {
7578 loc->shlib_disabled = 1;
7579 loc->inserted = 0;
7580
7581 mark_breakpoint_location_modified (loc);
7582
7583 bp_modified = 1;
7584 }
7585 }
7586
7587 if (bp_modified)
7588 observer_notify_breakpoint_modified (b);
7589 }
7590 }
7591
7592 /* FORK & VFORK catchpoints. */
7593
7594 /* An instance of this type is used to represent a fork or vfork
7595 catchpoint. It includes a "struct breakpoint" as a kind of base
7596 class; users downcast to "struct breakpoint *" when needed. A
7597 breakpoint is really of this type iff its ops pointer points to
7598 CATCH_FORK_BREAKPOINT_OPS. */
7599
7600 struct fork_catchpoint
7601 {
7602 /* The base class. */
7603 struct breakpoint base;
7604
7605 /* Process id of a child process whose forking triggered this
7606 catchpoint. This field is only valid immediately after this
7607 catchpoint has triggered. */
7608 ptid_t forked_inferior_pid;
7609 };
7610
7611 /* Implement the "insert" breakpoint_ops method for fork
7612 catchpoints. */
7613
7614 static int
7615 insert_catch_fork (struct bp_location *bl)
7616 {
7617 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7618 }
7619
7620 /* Implement the "remove" breakpoint_ops method for fork
7621 catchpoints. */
7622
7623 static int
7624 remove_catch_fork (struct bp_location *bl)
7625 {
7626 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7627 }
7628
7629 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7630 catchpoints. */
7631
7632 static int
7633 breakpoint_hit_catch_fork (const struct bp_location *bl,
7634 struct address_space *aspace, CORE_ADDR bp_addr,
7635 const struct target_waitstatus *ws)
7636 {
7637 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7638
7639 if (ws->kind != TARGET_WAITKIND_FORKED)
7640 return 0;
7641
7642 c->forked_inferior_pid = ws->value.related_pid;
7643 return 1;
7644 }
7645
7646 /* Implement the "print_it" breakpoint_ops method for fork
7647 catchpoints. */
7648
7649 static enum print_stop_action
7650 print_it_catch_fork (bpstat bs)
7651 {
7652 struct ui_out *uiout = current_uiout;
7653 struct breakpoint *b = bs->breakpoint_at;
7654 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7655
7656 annotate_catchpoint (b->number);
7657 if (b->disposition == disp_del)
7658 ui_out_text (uiout, "\nTemporary catchpoint ");
7659 else
7660 ui_out_text (uiout, "\nCatchpoint ");
7661 if (ui_out_is_mi_like_p (uiout))
7662 {
7663 ui_out_field_string (uiout, "reason",
7664 async_reason_lookup (EXEC_ASYNC_FORK));
7665 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7666 }
7667 ui_out_field_int (uiout, "bkptno", b->number);
7668 ui_out_text (uiout, " (forked process ");
7669 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7670 ui_out_text (uiout, "), ");
7671 return PRINT_SRC_AND_LOC;
7672 }
7673
7674 /* Implement the "print_one" breakpoint_ops method for fork
7675 catchpoints. */
7676
7677 static void
7678 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7679 {
7680 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7681 struct value_print_options opts;
7682 struct ui_out *uiout = current_uiout;
7683
7684 get_user_print_options (&opts);
7685
7686 /* Field 4, the address, is omitted (which makes the columns not
7687 line up too nicely with the headers, but the effect is relatively
7688 readable). */
7689 if (opts.addressprint)
7690 ui_out_field_skip (uiout, "addr");
7691 annotate_field (5);
7692 ui_out_text (uiout, "fork");
7693 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7694 {
7695 ui_out_text (uiout, ", process ");
7696 ui_out_field_int (uiout, "what",
7697 ptid_get_pid (c->forked_inferior_pid));
7698 ui_out_spaces (uiout, 1);
7699 }
7700
7701 if (ui_out_is_mi_like_p (uiout))
7702 ui_out_field_string (uiout, "catch-type", "fork");
7703 }
7704
7705 /* Implement the "print_mention" breakpoint_ops method for fork
7706 catchpoints. */
7707
7708 static void
7709 print_mention_catch_fork (struct breakpoint *b)
7710 {
7711 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7712 }
7713
7714 /* Implement the "print_recreate" breakpoint_ops method for fork
7715 catchpoints. */
7716
7717 static void
7718 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7719 {
7720 fprintf_unfiltered (fp, "catch fork");
7721 print_recreate_thread (b, fp);
7722 }
7723
7724 /* The breakpoint_ops structure to be used in fork catchpoints. */
7725
7726 static struct breakpoint_ops catch_fork_breakpoint_ops;
7727
7728 /* Implement the "insert" breakpoint_ops method for vfork
7729 catchpoints. */
7730
7731 static int
7732 insert_catch_vfork (struct bp_location *bl)
7733 {
7734 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7735 }
7736
7737 /* Implement the "remove" breakpoint_ops method for vfork
7738 catchpoints. */
7739
7740 static int
7741 remove_catch_vfork (struct bp_location *bl)
7742 {
7743 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7744 }
7745
7746 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7747 catchpoints. */
7748
7749 static int
7750 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7751 struct address_space *aspace, CORE_ADDR bp_addr,
7752 const struct target_waitstatus *ws)
7753 {
7754 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7755
7756 if (ws->kind != TARGET_WAITKIND_VFORKED)
7757 return 0;
7758
7759 c->forked_inferior_pid = ws->value.related_pid;
7760 return 1;
7761 }
7762
7763 /* Implement the "print_it" breakpoint_ops method for vfork
7764 catchpoints. */
7765
7766 static enum print_stop_action
7767 print_it_catch_vfork (bpstat bs)
7768 {
7769 struct ui_out *uiout = current_uiout;
7770 struct breakpoint *b = bs->breakpoint_at;
7771 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7772
7773 annotate_catchpoint (b->number);
7774 if (b->disposition == disp_del)
7775 ui_out_text (uiout, "\nTemporary catchpoint ");
7776 else
7777 ui_out_text (uiout, "\nCatchpoint ");
7778 if (ui_out_is_mi_like_p (uiout))
7779 {
7780 ui_out_field_string (uiout, "reason",
7781 async_reason_lookup (EXEC_ASYNC_VFORK));
7782 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7783 }
7784 ui_out_field_int (uiout, "bkptno", b->number);
7785 ui_out_text (uiout, " (vforked process ");
7786 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7787 ui_out_text (uiout, "), ");
7788 return PRINT_SRC_AND_LOC;
7789 }
7790
7791 /* Implement the "print_one" breakpoint_ops method for vfork
7792 catchpoints. */
7793
7794 static void
7795 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7796 {
7797 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7798 struct value_print_options opts;
7799 struct ui_out *uiout = current_uiout;
7800
7801 get_user_print_options (&opts);
7802 /* Field 4, the address, is omitted (which makes the columns not
7803 line up too nicely with the headers, but the effect is relatively
7804 readable). */
7805 if (opts.addressprint)
7806 ui_out_field_skip (uiout, "addr");
7807 annotate_field (5);
7808 ui_out_text (uiout, "vfork");
7809 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7810 {
7811 ui_out_text (uiout, ", process ");
7812 ui_out_field_int (uiout, "what",
7813 ptid_get_pid (c->forked_inferior_pid));
7814 ui_out_spaces (uiout, 1);
7815 }
7816
7817 if (ui_out_is_mi_like_p (uiout))
7818 ui_out_field_string (uiout, "catch-type", "vfork");
7819 }
7820
7821 /* Implement the "print_mention" breakpoint_ops method for vfork
7822 catchpoints. */
7823
7824 static void
7825 print_mention_catch_vfork (struct breakpoint *b)
7826 {
7827 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7828 }
7829
7830 /* Implement the "print_recreate" breakpoint_ops method for vfork
7831 catchpoints. */
7832
7833 static void
7834 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7835 {
7836 fprintf_unfiltered (fp, "catch vfork");
7837 print_recreate_thread (b, fp);
7838 }
7839
7840 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7841
7842 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7843
7844 /* An instance of this type is used to represent an solib catchpoint.
7845 It includes a "struct breakpoint" as a kind of base class; users
7846 downcast to "struct breakpoint *" when needed. A breakpoint is
7847 really of this type iff its ops pointer points to
7848 CATCH_SOLIB_BREAKPOINT_OPS. */
7849
7850 struct solib_catchpoint
7851 {
7852 /* The base class. */
7853 struct breakpoint base;
7854
7855 /* True for "catch load", false for "catch unload". */
7856 unsigned char is_load;
7857
7858 /* Regular expression to match, if any. COMPILED is only valid when
7859 REGEX is non-NULL. */
7860 char *regex;
7861 regex_t compiled;
7862 };
7863
7864 static void
7865 dtor_catch_solib (struct breakpoint *b)
7866 {
7867 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7868
7869 if (self->regex)
7870 regfree (&self->compiled);
7871 xfree (self->regex);
7872
7873 base_breakpoint_ops.dtor (b);
7874 }
7875
7876 static int
7877 insert_catch_solib (struct bp_location *ignore)
7878 {
7879 return 0;
7880 }
7881
7882 static int
7883 remove_catch_solib (struct bp_location *ignore)
7884 {
7885 return 0;
7886 }
7887
7888 static int
7889 breakpoint_hit_catch_solib (const struct bp_location *bl,
7890 struct address_space *aspace,
7891 CORE_ADDR bp_addr,
7892 const struct target_waitstatus *ws)
7893 {
7894 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7895 struct breakpoint *other;
7896
7897 if (ws->kind == TARGET_WAITKIND_LOADED)
7898 return 1;
7899
7900 ALL_BREAKPOINTS (other)
7901 {
7902 struct bp_location *other_bl;
7903
7904 if (other == bl->owner)
7905 continue;
7906
7907 if (other->type != bp_shlib_event)
7908 continue;
7909
7910 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
7911 continue;
7912
7913 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7914 {
7915 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7916 return 1;
7917 }
7918 }
7919
7920 return 0;
7921 }
7922
7923 static void
7924 check_status_catch_solib (struct bpstats *bs)
7925 {
7926 struct solib_catchpoint *self
7927 = (struct solib_catchpoint *) bs->breakpoint_at;
7928 int ix;
7929
7930 if (self->is_load)
7931 {
7932 struct so_list *iter;
7933
7934 for (ix = 0;
7935 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
7936 ix, iter);
7937 ++ix)
7938 {
7939 if (!self->regex
7940 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
7941 return;
7942 }
7943 }
7944 else
7945 {
7946 char *iter;
7947
7948 for (ix = 0;
7949 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
7950 ix, iter);
7951 ++ix)
7952 {
7953 if (!self->regex
7954 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
7955 return;
7956 }
7957 }
7958
7959 bs->stop = 0;
7960 bs->print_it = print_it_noop;
7961 }
7962
7963 static enum print_stop_action
7964 print_it_catch_solib (bpstat bs)
7965 {
7966 struct breakpoint *b = bs->breakpoint_at;
7967 struct ui_out *uiout = current_uiout;
7968
7969 annotate_catchpoint (b->number);
7970 if (b->disposition == disp_del)
7971 ui_out_text (uiout, "\nTemporary catchpoint ");
7972 else
7973 ui_out_text (uiout, "\nCatchpoint ");
7974 ui_out_field_int (uiout, "bkptno", b->number);
7975 ui_out_text (uiout, "\n");
7976 if (ui_out_is_mi_like_p (uiout))
7977 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7978 print_solib_event (1);
7979 return PRINT_SRC_AND_LOC;
7980 }
7981
7982 static void
7983 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
7984 {
7985 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7986 struct value_print_options opts;
7987 struct ui_out *uiout = current_uiout;
7988 char *msg;
7989
7990 get_user_print_options (&opts);
7991 /* Field 4, the address, is omitted (which makes the columns not
7992 line up too nicely with the headers, but the effect is relatively
7993 readable). */
7994 if (opts.addressprint)
7995 {
7996 annotate_field (4);
7997 ui_out_field_skip (uiout, "addr");
7998 }
7999
8000 annotate_field (5);
8001 if (self->is_load)
8002 {
8003 if (self->regex)
8004 msg = xstrprintf (_("load of library matching %s"), self->regex);
8005 else
8006 msg = xstrdup (_("load of library"));
8007 }
8008 else
8009 {
8010 if (self->regex)
8011 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8012 else
8013 msg = xstrdup (_("unload of library"));
8014 }
8015 ui_out_field_string (uiout, "what", msg);
8016 xfree (msg);
8017
8018 if (ui_out_is_mi_like_p (uiout))
8019 ui_out_field_string (uiout, "catch-type",
8020 self->is_load ? "load" : "unload");
8021 }
8022
8023 static void
8024 print_mention_catch_solib (struct breakpoint *b)
8025 {
8026 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8027
8028 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8029 self->is_load ? "load" : "unload");
8030 }
8031
8032 static void
8033 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8034 {
8035 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8036
8037 fprintf_unfiltered (fp, "%s %s",
8038 b->disposition == disp_del ? "tcatch" : "catch",
8039 self->is_load ? "load" : "unload");
8040 if (self->regex)
8041 fprintf_unfiltered (fp, " %s", self->regex);
8042 fprintf_unfiltered (fp, "\n");
8043 }
8044
8045 static struct breakpoint_ops catch_solib_breakpoint_ops;
8046
8047 /* Shared helper function (MI and CLI) for creating and installing
8048 a shared object event catchpoint. If IS_LOAD is non-zero then
8049 the events to be caught are load events, otherwise they are
8050 unload events. If IS_TEMP is non-zero the catchpoint is a
8051 temporary one. If ENABLED is non-zero the catchpoint is
8052 created in an enabled state. */
8053
8054 void
8055 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
8056 {
8057 struct solib_catchpoint *c;
8058 struct gdbarch *gdbarch = get_current_arch ();
8059 struct cleanup *cleanup;
8060
8061 if (!arg)
8062 arg = "";
8063 arg = skip_spaces (arg);
8064
8065 c = XCNEW (struct solib_catchpoint);
8066 cleanup = make_cleanup (xfree, c);
8067
8068 if (*arg != '\0')
8069 {
8070 int errcode;
8071
8072 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8073 if (errcode != 0)
8074 {
8075 char *err = get_regcomp_error (errcode, &c->compiled);
8076
8077 make_cleanup (xfree, err);
8078 error (_("Invalid regexp (%s): %s"), err, arg);
8079 }
8080 c->regex = xstrdup (arg);
8081 }
8082
8083 c->is_load = is_load;
8084 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8085 &catch_solib_breakpoint_ops);
8086
8087 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8088
8089 discard_cleanups (cleanup);
8090 install_breakpoint (0, &c->base, 1);
8091 }
8092
8093 /* A helper function that does all the work for "catch load" and
8094 "catch unload". */
8095
8096 static void
8097 catch_load_or_unload (char *arg, int from_tty, int is_load,
8098 struct cmd_list_element *command)
8099 {
8100 int tempflag;
8101 const int enabled = 1;
8102
8103 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8104
8105 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8106 }
8107
8108 static void
8109 catch_load_command_1 (char *arg, int from_tty,
8110 struct cmd_list_element *command)
8111 {
8112 catch_load_or_unload (arg, from_tty, 1, command);
8113 }
8114
8115 static void
8116 catch_unload_command_1 (char *arg, int from_tty,
8117 struct cmd_list_element *command)
8118 {
8119 catch_load_or_unload (arg, from_tty, 0, command);
8120 }
8121
8122 /* An instance of this type is used to represent a syscall catchpoint.
8123 It includes a "struct breakpoint" as a kind of base class; users
8124 downcast to "struct breakpoint *" when needed. A breakpoint is
8125 really of this type iff its ops pointer points to
8126 CATCH_SYSCALL_BREAKPOINT_OPS. */
8127
8128 struct syscall_catchpoint
8129 {
8130 /* The base class. */
8131 struct breakpoint base;
8132
8133 /* Syscall numbers used for the 'catch syscall' feature. If no
8134 syscall has been specified for filtering, its value is NULL.
8135 Otherwise, it holds a list of all syscalls to be caught. The
8136 list elements are allocated with xmalloc. */
8137 VEC(int) *syscalls_to_be_caught;
8138 };
8139
8140 /* Implement the "dtor" breakpoint_ops method for syscall
8141 catchpoints. */
8142
8143 static void
8144 dtor_catch_syscall (struct breakpoint *b)
8145 {
8146 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8147
8148 VEC_free (int, c->syscalls_to_be_caught);
8149
8150 base_breakpoint_ops.dtor (b);
8151 }
8152
8153 static const struct inferior_data *catch_syscall_inferior_data = NULL;
8154
8155 struct catch_syscall_inferior_data
8156 {
8157 /* We keep a count of the number of times the user has requested a
8158 particular syscall to be tracked, and pass this information to the
8159 target. This lets capable targets implement filtering directly. */
8160
8161 /* Number of times that "any" syscall is requested. */
8162 int any_syscall_count;
8163
8164 /* Count of each system call. */
8165 VEC(int) *syscalls_counts;
8166
8167 /* This counts all syscall catch requests, so we can readily determine
8168 if any catching is necessary. */
8169 int total_syscalls_count;
8170 };
8171
8172 static struct catch_syscall_inferior_data*
8173 get_catch_syscall_inferior_data (struct inferior *inf)
8174 {
8175 struct catch_syscall_inferior_data *inf_data;
8176
8177 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8178 if (inf_data == NULL)
8179 {
8180 inf_data = XZALLOC (struct catch_syscall_inferior_data);
8181 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8182 }
8183
8184 return inf_data;
8185 }
8186
8187 static void
8188 catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8189 {
8190 xfree (arg);
8191 }
8192
8193
8194 /* Implement the "insert" breakpoint_ops method for syscall
8195 catchpoints. */
8196
8197 static int
8198 insert_catch_syscall (struct bp_location *bl)
8199 {
8200 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8201 struct inferior *inf = current_inferior ();
8202 struct catch_syscall_inferior_data *inf_data
8203 = get_catch_syscall_inferior_data (inf);
8204
8205 ++inf_data->total_syscalls_count;
8206 if (!c->syscalls_to_be_caught)
8207 ++inf_data->any_syscall_count;
8208 else
8209 {
8210 int i, iter;
8211
8212 for (i = 0;
8213 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8214 i++)
8215 {
8216 int elem;
8217
8218 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8219 {
8220 int old_size = VEC_length (int, inf_data->syscalls_counts);
8221 uintptr_t vec_addr_offset
8222 = old_size * ((uintptr_t) sizeof (int));
8223 uintptr_t vec_addr;
8224 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8225 vec_addr = ((uintptr_t) VEC_address (int,
8226 inf_data->syscalls_counts)
8227 + vec_addr_offset);
8228 memset ((void *) vec_addr, 0,
8229 (iter + 1 - old_size) * sizeof (int));
8230 }
8231 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8232 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8233 }
8234 }
8235
8236 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8237 inf_data->total_syscalls_count != 0,
8238 inf_data->any_syscall_count,
8239 VEC_length (int,
8240 inf_data->syscalls_counts),
8241 VEC_address (int,
8242 inf_data->syscalls_counts));
8243 }
8244
8245 /* Implement the "remove" breakpoint_ops method for syscall
8246 catchpoints. */
8247
8248 static int
8249 remove_catch_syscall (struct bp_location *bl)
8250 {
8251 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8252 struct inferior *inf = current_inferior ();
8253 struct catch_syscall_inferior_data *inf_data
8254 = get_catch_syscall_inferior_data (inf);
8255
8256 --inf_data->total_syscalls_count;
8257 if (!c->syscalls_to_be_caught)
8258 --inf_data->any_syscall_count;
8259 else
8260 {
8261 int i, iter;
8262
8263 for (i = 0;
8264 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8265 i++)
8266 {
8267 int elem;
8268 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8269 /* Shouldn't happen. */
8270 continue;
8271 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8272 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8273 }
8274 }
8275
8276 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8277 inf_data->total_syscalls_count != 0,
8278 inf_data->any_syscall_count,
8279 VEC_length (int,
8280 inf_data->syscalls_counts),
8281 VEC_address (int,
8282 inf_data->syscalls_counts));
8283 }
8284
8285 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8286 catchpoints. */
8287
8288 static int
8289 breakpoint_hit_catch_syscall (const struct bp_location *bl,
8290 struct address_space *aspace, CORE_ADDR bp_addr,
8291 const struct target_waitstatus *ws)
8292 {
8293 /* We must check if we are catching specific syscalls in this
8294 breakpoint. If we are, then we must guarantee that the called
8295 syscall is the same syscall we are catching. */
8296 int syscall_number = 0;
8297 const struct syscall_catchpoint *c
8298 = (const struct syscall_catchpoint *) bl->owner;
8299
8300 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8301 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8302 return 0;
8303
8304 syscall_number = ws->value.syscall_number;
8305
8306 /* Now, checking if the syscall is the same. */
8307 if (c->syscalls_to_be_caught)
8308 {
8309 int i, iter;
8310
8311 for (i = 0;
8312 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8313 i++)
8314 if (syscall_number == iter)
8315 break;
8316 /* Not the same. */
8317 if (!iter)
8318 return 0;
8319 }
8320
8321 return 1;
8322 }
8323
8324 /* Implement the "print_it" breakpoint_ops method for syscall
8325 catchpoints. */
8326
8327 static enum print_stop_action
8328 print_it_catch_syscall (bpstat bs)
8329 {
8330 struct ui_out *uiout = current_uiout;
8331 struct breakpoint *b = bs->breakpoint_at;
8332 /* These are needed because we want to know in which state a
8333 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8334 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8335 must print "called syscall" or "returned from syscall". */
8336 ptid_t ptid;
8337 struct target_waitstatus last;
8338 struct syscall s;
8339
8340 get_last_target_status (&ptid, &last);
8341
8342 get_syscall_by_number (last.value.syscall_number, &s);
8343
8344 annotate_catchpoint (b->number);
8345
8346 if (b->disposition == disp_del)
8347 ui_out_text (uiout, "\nTemporary catchpoint ");
8348 else
8349 ui_out_text (uiout, "\nCatchpoint ");
8350 if (ui_out_is_mi_like_p (uiout))
8351 {
8352 ui_out_field_string (uiout, "reason",
8353 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8354 ? EXEC_ASYNC_SYSCALL_ENTRY
8355 : EXEC_ASYNC_SYSCALL_RETURN));
8356 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8357 }
8358 ui_out_field_int (uiout, "bkptno", b->number);
8359
8360 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8361 ui_out_text (uiout, " (call to syscall ");
8362 else
8363 ui_out_text (uiout, " (returned from syscall ");
8364
8365 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8366 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8367 if (s.name != NULL)
8368 ui_out_field_string (uiout, "syscall-name", s.name);
8369
8370 ui_out_text (uiout, "), ");
8371
8372 return PRINT_SRC_AND_LOC;
8373 }
8374
8375 /* Implement the "print_one" breakpoint_ops method for syscall
8376 catchpoints. */
8377
8378 static void
8379 print_one_catch_syscall (struct breakpoint *b,
8380 struct bp_location **last_loc)
8381 {
8382 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8383 struct value_print_options opts;
8384 struct ui_out *uiout = current_uiout;
8385
8386 get_user_print_options (&opts);
8387 /* Field 4, the address, is omitted (which makes the columns not
8388 line up too nicely with the headers, but the effect is relatively
8389 readable). */
8390 if (opts.addressprint)
8391 ui_out_field_skip (uiout, "addr");
8392 annotate_field (5);
8393
8394 if (c->syscalls_to_be_caught
8395 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8396 ui_out_text (uiout, "syscalls \"");
8397 else
8398 ui_out_text (uiout, "syscall \"");
8399
8400 if (c->syscalls_to_be_caught)
8401 {
8402 int i, iter;
8403 char *text = xstrprintf ("%s", "");
8404
8405 for (i = 0;
8406 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8407 i++)
8408 {
8409 char *x = text;
8410 struct syscall s;
8411 get_syscall_by_number (iter, &s);
8412
8413 if (s.name != NULL)
8414 text = xstrprintf ("%s%s, ", text, s.name);
8415 else
8416 text = xstrprintf ("%s%d, ", text, iter);
8417
8418 /* We have to xfree the last 'text' (now stored at 'x')
8419 because xstrprintf dynamically allocates new space for it
8420 on every call. */
8421 xfree (x);
8422 }
8423 /* Remove the last comma. */
8424 text[strlen (text) - 2] = '\0';
8425 ui_out_field_string (uiout, "what", text);
8426 }
8427 else
8428 ui_out_field_string (uiout, "what", "<any syscall>");
8429 ui_out_text (uiout, "\" ");
8430
8431 if (ui_out_is_mi_like_p (uiout))
8432 ui_out_field_string (uiout, "catch-type", "syscall");
8433 }
8434
8435 /* Implement the "print_mention" breakpoint_ops method for syscall
8436 catchpoints. */
8437
8438 static void
8439 print_mention_catch_syscall (struct breakpoint *b)
8440 {
8441 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8442
8443 if (c->syscalls_to_be_caught)
8444 {
8445 int i, iter;
8446
8447 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8448 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8449 else
8450 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8451
8452 for (i = 0;
8453 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8454 i++)
8455 {
8456 struct syscall s;
8457 get_syscall_by_number (iter, &s);
8458
8459 if (s.name)
8460 printf_filtered (" '%s' [%d]", s.name, s.number);
8461 else
8462 printf_filtered (" %d", s.number);
8463 }
8464 printf_filtered (")");
8465 }
8466 else
8467 printf_filtered (_("Catchpoint %d (any syscall)"),
8468 b->number);
8469 }
8470
8471 /* Implement the "print_recreate" breakpoint_ops method for syscall
8472 catchpoints. */
8473
8474 static void
8475 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8476 {
8477 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8478
8479 fprintf_unfiltered (fp, "catch syscall");
8480
8481 if (c->syscalls_to_be_caught)
8482 {
8483 int i, iter;
8484
8485 for (i = 0;
8486 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8487 i++)
8488 {
8489 struct syscall s;
8490
8491 get_syscall_by_number (iter, &s);
8492 if (s.name)
8493 fprintf_unfiltered (fp, " %s", s.name);
8494 else
8495 fprintf_unfiltered (fp, " %d", s.number);
8496 }
8497 }
8498 print_recreate_thread (b, fp);
8499 }
8500
8501 /* The breakpoint_ops structure to be used in syscall catchpoints. */
8502
8503 static struct breakpoint_ops catch_syscall_breakpoint_ops;
8504
8505 /* Returns non-zero if 'b' is a syscall catchpoint. */
8506
8507 static int
8508 syscall_catchpoint_p (struct breakpoint *b)
8509 {
8510 return (b->ops == &catch_syscall_breakpoint_ops);
8511 }
8512
8513 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8514 is non-zero, then make the breakpoint temporary. If COND_STRING is
8515 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8516 the breakpoint_ops structure associated to the catchpoint. */
8517
8518 void
8519 init_catchpoint (struct breakpoint *b,
8520 struct gdbarch *gdbarch, int tempflag,
8521 char *cond_string,
8522 const struct breakpoint_ops *ops)
8523 {
8524 struct symtab_and_line sal;
8525
8526 init_sal (&sal);
8527 sal.pspace = current_program_space;
8528
8529 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8530
8531 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8532 b->disposition = tempflag ? disp_del : disp_donttouch;
8533 }
8534
8535 void
8536 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8537 {
8538 add_to_breakpoint_chain (b);
8539 set_breakpoint_number (internal, b);
8540 if (is_tracepoint (b))
8541 set_tracepoint_count (breakpoint_count);
8542 if (!internal)
8543 mention (b);
8544 observer_notify_breakpoint_created (b);
8545
8546 if (update_gll)
8547 update_global_location_list (1);
8548 }
8549
8550 static void
8551 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8552 int tempflag, char *cond_string,
8553 const struct breakpoint_ops *ops)
8554 {
8555 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8556
8557 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8558
8559 c->forked_inferior_pid = null_ptid;
8560
8561 install_breakpoint (0, &c->base, 1);
8562 }
8563
8564 /* Exec catchpoints. */
8565
8566 /* An instance of this type is used to represent an exec catchpoint.
8567 It includes a "struct breakpoint" as a kind of base class; users
8568 downcast to "struct breakpoint *" when needed. A breakpoint is
8569 really of this type iff its ops pointer points to
8570 CATCH_EXEC_BREAKPOINT_OPS. */
8571
8572 struct exec_catchpoint
8573 {
8574 /* The base class. */
8575 struct breakpoint base;
8576
8577 /* Filename of a program whose exec triggered this catchpoint.
8578 This field is only valid immediately after this catchpoint has
8579 triggered. */
8580 char *exec_pathname;
8581 };
8582
8583 /* Implement the "dtor" breakpoint_ops method for exec
8584 catchpoints. */
8585
8586 static void
8587 dtor_catch_exec (struct breakpoint *b)
8588 {
8589 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8590
8591 xfree (c->exec_pathname);
8592
8593 base_breakpoint_ops.dtor (b);
8594 }
8595
8596 static int
8597 insert_catch_exec (struct bp_location *bl)
8598 {
8599 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8600 }
8601
8602 static int
8603 remove_catch_exec (struct bp_location *bl)
8604 {
8605 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8606 }
8607
8608 static int
8609 breakpoint_hit_catch_exec (const struct bp_location *bl,
8610 struct address_space *aspace, CORE_ADDR bp_addr,
8611 const struct target_waitstatus *ws)
8612 {
8613 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8614
8615 if (ws->kind != TARGET_WAITKIND_EXECD)
8616 return 0;
8617
8618 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8619 return 1;
8620 }
8621
8622 static enum print_stop_action
8623 print_it_catch_exec (bpstat bs)
8624 {
8625 struct ui_out *uiout = current_uiout;
8626 struct breakpoint *b = bs->breakpoint_at;
8627 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8628
8629 annotate_catchpoint (b->number);
8630 if (b->disposition == disp_del)
8631 ui_out_text (uiout, "\nTemporary catchpoint ");
8632 else
8633 ui_out_text (uiout, "\nCatchpoint ");
8634 if (ui_out_is_mi_like_p (uiout))
8635 {
8636 ui_out_field_string (uiout, "reason",
8637 async_reason_lookup (EXEC_ASYNC_EXEC));
8638 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8639 }
8640 ui_out_field_int (uiout, "bkptno", b->number);
8641 ui_out_text (uiout, " (exec'd ");
8642 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8643 ui_out_text (uiout, "), ");
8644
8645 return PRINT_SRC_AND_LOC;
8646 }
8647
8648 static void
8649 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8650 {
8651 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8652 struct value_print_options opts;
8653 struct ui_out *uiout = current_uiout;
8654
8655 get_user_print_options (&opts);
8656
8657 /* Field 4, the address, is omitted (which makes the columns
8658 not line up too nicely with the headers, but the effect
8659 is relatively readable). */
8660 if (opts.addressprint)
8661 ui_out_field_skip (uiout, "addr");
8662 annotate_field (5);
8663 ui_out_text (uiout, "exec");
8664 if (c->exec_pathname != NULL)
8665 {
8666 ui_out_text (uiout, ", program \"");
8667 ui_out_field_string (uiout, "what", c->exec_pathname);
8668 ui_out_text (uiout, "\" ");
8669 }
8670
8671 if (ui_out_is_mi_like_p (uiout))
8672 ui_out_field_string (uiout, "catch-type", "exec");
8673 }
8674
8675 static void
8676 print_mention_catch_exec (struct breakpoint *b)
8677 {
8678 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8679 }
8680
8681 /* Implement the "print_recreate" breakpoint_ops method for exec
8682 catchpoints. */
8683
8684 static void
8685 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8686 {
8687 fprintf_unfiltered (fp, "catch exec");
8688 print_recreate_thread (b, fp);
8689 }
8690
8691 static struct breakpoint_ops catch_exec_breakpoint_ops;
8692
8693 static void
8694 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
8695 const struct breakpoint_ops *ops)
8696 {
8697 struct syscall_catchpoint *c;
8698 struct gdbarch *gdbarch = get_current_arch ();
8699
8700 c = XNEW (struct syscall_catchpoint);
8701 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
8702 c->syscalls_to_be_caught = filter;
8703
8704 install_breakpoint (0, &c->base, 1);
8705 }
8706
8707 static int
8708 hw_breakpoint_used_count (void)
8709 {
8710 int i = 0;
8711 struct breakpoint *b;
8712 struct bp_location *bl;
8713
8714 ALL_BREAKPOINTS (b)
8715 {
8716 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8717 for (bl = b->loc; bl; bl = bl->next)
8718 {
8719 /* Special types of hardware breakpoints may use more than
8720 one register. */
8721 i += b->ops->resources_needed (bl);
8722 }
8723 }
8724
8725 return i;
8726 }
8727
8728 /* Returns the resources B would use if it were a hardware
8729 watchpoint. */
8730
8731 static int
8732 hw_watchpoint_use_count (struct breakpoint *b)
8733 {
8734 int i = 0;
8735 struct bp_location *bl;
8736
8737 if (!breakpoint_enabled (b))
8738 return 0;
8739
8740 for (bl = b->loc; bl; bl = bl->next)
8741 {
8742 /* Special types of hardware watchpoints may use more than
8743 one register. */
8744 i += b->ops->resources_needed (bl);
8745 }
8746
8747 return i;
8748 }
8749
8750 /* Returns the sum the used resources of all hardware watchpoints of
8751 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8752 the sum of the used resources of all hardware watchpoints of other
8753 types _not_ TYPE. */
8754
8755 static int
8756 hw_watchpoint_used_count_others (struct breakpoint *except,
8757 enum bptype type, int *other_type_used)
8758 {
8759 int i = 0;
8760 struct breakpoint *b;
8761
8762 *other_type_used = 0;
8763 ALL_BREAKPOINTS (b)
8764 {
8765 if (b == except)
8766 continue;
8767 if (!breakpoint_enabled (b))
8768 continue;
8769
8770 if (b->type == type)
8771 i += hw_watchpoint_use_count (b);
8772 else if (is_hardware_watchpoint (b))
8773 *other_type_used = 1;
8774 }
8775
8776 return i;
8777 }
8778
8779 void
8780 disable_watchpoints_before_interactive_call_start (void)
8781 {
8782 struct breakpoint *b;
8783
8784 ALL_BREAKPOINTS (b)
8785 {
8786 if (is_watchpoint (b) && breakpoint_enabled (b))
8787 {
8788 b->enable_state = bp_call_disabled;
8789 update_global_location_list (0);
8790 }
8791 }
8792 }
8793
8794 void
8795 enable_watchpoints_after_interactive_call_stop (void)
8796 {
8797 struct breakpoint *b;
8798
8799 ALL_BREAKPOINTS (b)
8800 {
8801 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8802 {
8803 b->enable_state = bp_enabled;
8804 update_global_location_list (1);
8805 }
8806 }
8807 }
8808
8809 void
8810 disable_breakpoints_before_startup (void)
8811 {
8812 current_program_space->executing_startup = 1;
8813 update_global_location_list (0);
8814 }
8815
8816 void
8817 enable_breakpoints_after_startup (void)
8818 {
8819 current_program_space->executing_startup = 0;
8820 breakpoint_re_set ();
8821 }
8822
8823
8824 /* Set a breakpoint that will evaporate an end of command
8825 at address specified by SAL.
8826 Restrict it to frame FRAME if FRAME is nonzero. */
8827
8828 struct breakpoint *
8829 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8830 struct frame_id frame_id, enum bptype type)
8831 {
8832 struct breakpoint *b;
8833
8834 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8835 tail-called one. */
8836 gdb_assert (!frame_id_artificial_p (frame_id));
8837
8838 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8839 b->enable_state = bp_enabled;
8840 b->disposition = disp_donttouch;
8841 b->frame_id = frame_id;
8842
8843 /* If we're debugging a multi-threaded program, then we want
8844 momentary breakpoints to be active in only a single thread of
8845 control. */
8846 if (in_thread_list (inferior_ptid))
8847 b->thread = pid_to_thread_id (inferior_ptid);
8848
8849 update_global_location_list_nothrow (1);
8850
8851 return b;
8852 }
8853
8854 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8855 The new breakpoint will have type TYPE, and use OPS as it
8856 breakpoint_ops. */
8857
8858 static struct breakpoint *
8859 momentary_breakpoint_from_master (struct breakpoint *orig,
8860 enum bptype type,
8861 const struct breakpoint_ops *ops)
8862 {
8863 struct breakpoint *copy;
8864
8865 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8866 copy->loc = allocate_bp_location (copy);
8867 set_breakpoint_location_function (copy->loc, 1);
8868
8869 copy->loc->gdbarch = orig->loc->gdbarch;
8870 copy->loc->requested_address = orig->loc->requested_address;
8871 copy->loc->address = orig->loc->address;
8872 copy->loc->section = orig->loc->section;
8873 copy->loc->pspace = orig->loc->pspace;
8874 copy->loc->probe = orig->loc->probe;
8875 copy->loc->line_number = orig->loc->line_number;
8876 copy->loc->symtab = orig->loc->symtab;
8877 copy->frame_id = orig->frame_id;
8878 copy->thread = orig->thread;
8879 copy->pspace = orig->pspace;
8880
8881 copy->enable_state = bp_enabled;
8882 copy->disposition = disp_donttouch;
8883 copy->number = internal_breakpoint_number--;
8884
8885 update_global_location_list_nothrow (0);
8886 return copy;
8887 }
8888
8889 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8890 ORIG is NULL. */
8891
8892 struct breakpoint *
8893 clone_momentary_breakpoint (struct breakpoint *orig)
8894 {
8895 /* If there's nothing to clone, then return nothing. */
8896 if (orig == NULL)
8897 return NULL;
8898
8899 return momentary_breakpoint_from_master (orig, orig->type, orig->ops);
8900 }
8901
8902 struct breakpoint *
8903 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8904 enum bptype type)
8905 {
8906 struct symtab_and_line sal;
8907
8908 sal = find_pc_line (pc, 0);
8909 sal.pc = pc;
8910 sal.section = find_pc_overlay (pc);
8911 sal.explicit_pc = 1;
8912
8913 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8914 }
8915 \f
8916
8917 /* Tell the user we have just set a breakpoint B. */
8918
8919 static void
8920 mention (struct breakpoint *b)
8921 {
8922 b->ops->print_mention (b);
8923 if (ui_out_is_mi_like_p (current_uiout))
8924 return;
8925 printf_filtered ("\n");
8926 }
8927 \f
8928
8929 static struct bp_location *
8930 add_location_to_breakpoint (struct breakpoint *b,
8931 const struct symtab_and_line *sal)
8932 {
8933 struct bp_location *loc, **tmp;
8934 CORE_ADDR adjusted_address;
8935 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8936
8937 if (loc_gdbarch == NULL)
8938 loc_gdbarch = b->gdbarch;
8939
8940 /* Adjust the breakpoint's address prior to allocating a location.
8941 Once we call allocate_bp_location(), that mostly uninitialized
8942 location will be placed on the location chain. Adjustment of the
8943 breakpoint may cause target_read_memory() to be called and we do
8944 not want its scan of the location chain to find a breakpoint and
8945 location that's only been partially initialized. */
8946 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8947 sal->pc, b->type);
8948
8949 /* Sort the locations by their ADDRESS. */
8950 loc = allocate_bp_location (b);
8951 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8952 tmp = &((*tmp)->next))
8953 ;
8954 loc->next = *tmp;
8955 *tmp = loc;
8956
8957 loc->requested_address = sal->pc;
8958 loc->address = adjusted_address;
8959 loc->pspace = sal->pspace;
8960 loc->probe = sal->probe;
8961 gdb_assert (loc->pspace != NULL);
8962 loc->section = sal->section;
8963 loc->gdbarch = loc_gdbarch;
8964 loc->line_number = sal->line;
8965 loc->symtab = sal->symtab;
8966
8967 set_breakpoint_location_function (loc,
8968 sal->explicit_pc || sal->explicit_line);
8969 return loc;
8970 }
8971 \f
8972
8973 /* Return 1 if LOC is pointing to a permanent breakpoint,
8974 return 0 otherwise. */
8975
8976 static int
8977 bp_loc_is_permanent (struct bp_location *loc)
8978 {
8979 int len;
8980 CORE_ADDR addr;
8981 const gdb_byte *bpoint;
8982 gdb_byte *target_mem;
8983 struct cleanup *cleanup;
8984 int retval = 0;
8985
8986 gdb_assert (loc != NULL);
8987
8988 addr = loc->address;
8989 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
8990
8991 /* Software breakpoints unsupported? */
8992 if (bpoint == NULL)
8993 return 0;
8994
8995 target_mem = alloca (len);
8996
8997 /* Enable the automatic memory restoration from breakpoints while
8998 we read the memory. Otherwise we could say about our temporary
8999 breakpoints they are permanent. */
9000 cleanup = save_current_space_and_thread ();
9001
9002 switch_to_program_space_and_thread (loc->pspace);
9003 make_show_memory_breakpoints_cleanup (0);
9004
9005 if (target_read_memory (loc->address, target_mem, len) == 0
9006 && memcmp (target_mem, bpoint, len) == 0)
9007 retval = 1;
9008
9009 do_cleanups (cleanup);
9010
9011 return retval;
9012 }
9013
9014 /* Build a command list for the dprintf corresponding to the current
9015 settings of the dprintf style options. */
9016
9017 static void
9018 update_dprintf_command_list (struct breakpoint *b)
9019 {
9020 char *dprintf_args = b->extra_string;
9021 char *printf_line = NULL;
9022
9023 if (!dprintf_args)
9024 return;
9025
9026 dprintf_args = skip_spaces (dprintf_args);
9027
9028 /* Allow a comma, as it may have terminated a location, but don't
9029 insist on it. */
9030 if (*dprintf_args == ',')
9031 ++dprintf_args;
9032 dprintf_args = skip_spaces (dprintf_args);
9033
9034 if (*dprintf_args != '"')
9035 error (_("Bad format string, missing '\"'."));
9036
9037 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9038 printf_line = xstrprintf ("printf %s", dprintf_args);
9039 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9040 {
9041 if (!dprintf_function)
9042 error (_("No function supplied for dprintf call"));
9043
9044 if (dprintf_channel && strlen (dprintf_channel) > 0)
9045 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9046 dprintf_function,
9047 dprintf_channel,
9048 dprintf_args);
9049 else
9050 printf_line = xstrprintf ("call (void) %s (%s)",
9051 dprintf_function,
9052 dprintf_args);
9053 }
9054 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9055 {
9056 if (target_can_run_breakpoint_commands ())
9057 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9058 else
9059 {
9060 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9061 printf_line = xstrprintf ("printf %s", dprintf_args);
9062 }
9063 }
9064 else
9065 internal_error (__FILE__, __LINE__,
9066 _("Invalid dprintf style."));
9067
9068 gdb_assert (printf_line != NULL);
9069 /* Manufacture a printf sequence. */
9070 {
9071 struct command_line *printf_cmd_line
9072 = xmalloc (sizeof (struct command_line));
9073
9074 printf_cmd_line = xmalloc (sizeof (struct command_line));
9075 printf_cmd_line->control_type = simple_control;
9076 printf_cmd_line->body_count = 0;
9077 printf_cmd_line->body_list = NULL;
9078 printf_cmd_line->next = NULL;
9079 printf_cmd_line->line = printf_line;
9080
9081 breakpoint_set_commands (b, printf_cmd_line);
9082 }
9083 }
9084
9085 /* Update all dprintf commands, making their command lists reflect
9086 current style settings. */
9087
9088 static void
9089 update_dprintf_commands (char *args, int from_tty,
9090 struct cmd_list_element *c)
9091 {
9092 struct breakpoint *b;
9093
9094 ALL_BREAKPOINTS (b)
9095 {
9096 if (b->type == bp_dprintf)
9097 update_dprintf_command_list (b);
9098 }
9099 }
9100
9101 /* Create a breakpoint with SAL as location. Use ADDR_STRING
9102 as textual description of the location, and COND_STRING
9103 as condition expression. */
9104
9105 static void
9106 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9107 struct symtabs_and_lines sals, char *addr_string,
9108 char *filter, char *cond_string,
9109 char *extra_string,
9110 enum bptype type, enum bpdisp disposition,
9111 int thread, int task, int ignore_count,
9112 const struct breakpoint_ops *ops, int from_tty,
9113 int enabled, int internal, unsigned flags,
9114 int display_canonical)
9115 {
9116 int i;
9117
9118 if (type == bp_hardware_breakpoint)
9119 {
9120 int target_resources_ok;
9121
9122 i = hw_breakpoint_used_count ();
9123 target_resources_ok =
9124 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9125 i + 1, 0);
9126 if (target_resources_ok == 0)
9127 error (_("No hardware breakpoint support in the target."));
9128 else if (target_resources_ok < 0)
9129 error (_("Hardware breakpoints used exceeds limit."));
9130 }
9131
9132 gdb_assert (sals.nelts > 0);
9133
9134 for (i = 0; i < sals.nelts; ++i)
9135 {
9136 struct symtab_and_line sal = sals.sals[i];
9137 struct bp_location *loc;
9138
9139 if (from_tty)
9140 {
9141 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9142 if (!loc_gdbarch)
9143 loc_gdbarch = gdbarch;
9144
9145 describe_other_breakpoints (loc_gdbarch,
9146 sal.pspace, sal.pc, sal.section, thread);
9147 }
9148
9149 if (i == 0)
9150 {
9151 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9152 b->thread = thread;
9153 b->task = task;
9154
9155 b->cond_string = cond_string;
9156 b->extra_string = extra_string;
9157 b->ignore_count = ignore_count;
9158 b->enable_state = enabled ? bp_enabled : bp_disabled;
9159 b->disposition = disposition;
9160
9161 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9162 b->loc->inserted = 1;
9163
9164 if (type == bp_static_tracepoint)
9165 {
9166 struct tracepoint *t = (struct tracepoint *) b;
9167 struct static_tracepoint_marker marker;
9168
9169 if (strace_marker_p (b))
9170 {
9171 /* We already know the marker exists, otherwise, we
9172 wouldn't see a sal for it. */
9173 char *p = &addr_string[3];
9174 char *endp;
9175 char *marker_str;
9176
9177 p = skip_spaces (p);
9178
9179 endp = skip_to_space (p);
9180
9181 marker_str = savestring (p, endp - p);
9182 t->static_trace_marker_id = marker_str;
9183
9184 printf_filtered (_("Probed static tracepoint "
9185 "marker \"%s\"\n"),
9186 t->static_trace_marker_id);
9187 }
9188 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9189 {
9190 t->static_trace_marker_id = xstrdup (marker.str_id);
9191 release_static_tracepoint_marker (&marker);
9192
9193 printf_filtered (_("Probed static tracepoint "
9194 "marker \"%s\"\n"),
9195 t->static_trace_marker_id);
9196 }
9197 else
9198 warning (_("Couldn't determine the static "
9199 "tracepoint marker to probe"));
9200 }
9201
9202 loc = b->loc;
9203 }
9204 else
9205 {
9206 loc = add_location_to_breakpoint (b, &sal);
9207 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9208 loc->inserted = 1;
9209 }
9210
9211 if (bp_loc_is_permanent (loc))
9212 make_breakpoint_permanent (b);
9213
9214 if (b->cond_string)
9215 {
9216 const char *arg = b->cond_string;
9217
9218 loc->cond = parse_exp_1 (&arg, loc->address,
9219 block_for_pc (loc->address), 0);
9220 if (*arg)
9221 error (_("Garbage '%s' follows condition"), arg);
9222 }
9223
9224 /* Dynamic printf requires and uses additional arguments on the
9225 command line, otherwise it's an error. */
9226 if (type == bp_dprintf)
9227 {
9228 if (b->extra_string)
9229 update_dprintf_command_list (b);
9230 else
9231 error (_("Format string required"));
9232 }
9233 else if (b->extra_string)
9234 error (_("Garbage '%s' at end of command"), b->extra_string);
9235 }
9236
9237 b->display_canonical = display_canonical;
9238 if (addr_string)
9239 b->addr_string = addr_string;
9240 else
9241 /* addr_string has to be used or breakpoint_re_set will delete
9242 me. */
9243 b->addr_string
9244 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9245 b->filter = filter;
9246 }
9247
9248 static void
9249 create_breakpoint_sal (struct gdbarch *gdbarch,
9250 struct symtabs_and_lines sals, char *addr_string,
9251 char *filter, char *cond_string,
9252 char *extra_string,
9253 enum bptype type, enum bpdisp disposition,
9254 int thread, int task, int ignore_count,
9255 const struct breakpoint_ops *ops, int from_tty,
9256 int enabled, int internal, unsigned flags,
9257 int display_canonical)
9258 {
9259 struct breakpoint *b;
9260 struct cleanup *old_chain;
9261
9262 if (is_tracepoint_type (type))
9263 {
9264 struct tracepoint *t;
9265
9266 t = XCNEW (struct tracepoint);
9267 b = &t->base;
9268 }
9269 else
9270 b = XNEW (struct breakpoint);
9271
9272 old_chain = make_cleanup (xfree, b);
9273
9274 init_breakpoint_sal (b, gdbarch,
9275 sals, addr_string,
9276 filter, cond_string, extra_string,
9277 type, disposition,
9278 thread, task, ignore_count,
9279 ops, from_tty,
9280 enabled, internal, flags,
9281 display_canonical);
9282 discard_cleanups (old_chain);
9283
9284 install_breakpoint (internal, b, 0);
9285 }
9286
9287 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9288 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9289 value. COND_STRING, if not NULL, specified the condition to be
9290 used for all breakpoints. Essentially the only case where
9291 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9292 function. In that case, it's still not possible to specify
9293 separate conditions for different overloaded functions, so
9294 we take just a single condition string.
9295
9296 NOTE: If the function succeeds, the caller is expected to cleanup
9297 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9298 array contents). If the function fails (error() is called), the
9299 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9300 COND and SALS arrays and each of those arrays contents. */
9301
9302 static void
9303 create_breakpoints_sal (struct gdbarch *gdbarch,
9304 struct linespec_result *canonical,
9305 char *cond_string, char *extra_string,
9306 enum bptype type, enum bpdisp disposition,
9307 int thread, int task, int ignore_count,
9308 const struct breakpoint_ops *ops, int from_tty,
9309 int enabled, int internal, unsigned flags)
9310 {
9311 int i;
9312 struct linespec_sals *lsal;
9313
9314 if (canonical->pre_expanded)
9315 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9316
9317 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9318 {
9319 /* Note that 'addr_string' can be NULL in the case of a plain
9320 'break', without arguments. */
9321 char *addr_string = (canonical->addr_string
9322 ? xstrdup (canonical->addr_string)
9323 : NULL);
9324 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9325 struct cleanup *inner = make_cleanup (xfree, addr_string);
9326
9327 make_cleanup (xfree, filter_string);
9328 create_breakpoint_sal (gdbarch, lsal->sals,
9329 addr_string,
9330 filter_string,
9331 cond_string, extra_string,
9332 type, disposition,
9333 thread, task, ignore_count, ops,
9334 from_tty, enabled, internal, flags,
9335 canonical->special_display);
9336 discard_cleanups (inner);
9337 }
9338 }
9339
9340 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9341 followed by conditionals. On return, SALS contains an array of SAL
9342 addresses found. ADDR_STRING contains a vector of (canonical)
9343 address strings. ADDRESS points to the end of the SAL.
9344
9345 The array and the line spec strings are allocated on the heap, it is
9346 the caller's responsibility to free them. */
9347
9348 static void
9349 parse_breakpoint_sals (char **address,
9350 struct linespec_result *canonical)
9351 {
9352 /* If no arg given, or if first arg is 'if ', use the default
9353 breakpoint. */
9354 if ((*address) == NULL
9355 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9356 {
9357 /* The last displayed codepoint, if it's valid, is our default breakpoint
9358 address. */
9359 if (last_displayed_sal_is_valid ())
9360 {
9361 struct linespec_sals lsal;
9362 struct symtab_and_line sal;
9363 CORE_ADDR pc;
9364
9365 init_sal (&sal); /* Initialize to zeroes. */
9366 lsal.sals.sals = (struct symtab_and_line *)
9367 xmalloc (sizeof (struct symtab_and_line));
9368
9369 /* Set sal's pspace, pc, symtab, and line to the values
9370 corresponding to the last call to print_frame_info.
9371 Be sure to reinitialize LINE with NOTCURRENT == 0
9372 as the breakpoint line number is inappropriate otherwise.
9373 find_pc_line would adjust PC, re-set it back. */
9374 get_last_displayed_sal (&sal);
9375 pc = sal.pc;
9376 sal = find_pc_line (pc, 0);
9377
9378 /* "break" without arguments is equivalent to "break *PC"
9379 where PC is the last displayed codepoint's address. So
9380 make sure to set sal.explicit_pc to prevent GDB from
9381 trying to expand the list of sals to include all other
9382 instances with the same symtab and line. */
9383 sal.pc = pc;
9384 sal.explicit_pc = 1;
9385
9386 lsal.sals.sals[0] = sal;
9387 lsal.sals.nelts = 1;
9388 lsal.canonical = NULL;
9389
9390 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9391 }
9392 else
9393 error (_("No default breakpoint address now."));
9394 }
9395 else
9396 {
9397 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9398
9399 /* Force almost all breakpoints to be in terms of the
9400 current_source_symtab (which is decode_line_1's default).
9401 This should produce the results we want almost all of the
9402 time while leaving default_breakpoint_* alone.
9403
9404 ObjC: However, don't match an Objective-C method name which
9405 may have a '+' or '-' succeeded by a '['. */
9406 if (last_displayed_sal_is_valid ()
9407 && (!cursal.symtab
9408 || ((strchr ("+-", (*address)[0]) != NULL)
9409 && ((*address)[1] != '['))))
9410 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9411 get_last_displayed_symtab (),
9412 get_last_displayed_line (),
9413 canonical, NULL, NULL);
9414 else
9415 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9416 cursal.symtab, cursal.line, canonical, NULL, NULL);
9417 }
9418 }
9419
9420
9421 /* Convert each SAL into a real PC. Verify that the PC can be
9422 inserted as a breakpoint. If it can't throw an error. */
9423
9424 static void
9425 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9426 {
9427 int i;
9428
9429 for (i = 0; i < sals->nelts; i++)
9430 resolve_sal_pc (&sals->sals[i]);
9431 }
9432
9433 /* Fast tracepoints may have restrictions on valid locations. For
9434 instance, a fast tracepoint using a jump instead of a trap will
9435 likely have to overwrite more bytes than a trap would, and so can
9436 only be placed where the instruction is longer than the jump, or a
9437 multi-instruction sequence does not have a jump into the middle of
9438 it, etc. */
9439
9440 static void
9441 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9442 struct symtabs_and_lines *sals)
9443 {
9444 int i, rslt;
9445 struct symtab_and_line *sal;
9446 char *msg;
9447 struct cleanup *old_chain;
9448
9449 for (i = 0; i < sals->nelts; i++)
9450 {
9451 struct gdbarch *sarch;
9452
9453 sal = &sals->sals[i];
9454
9455 sarch = get_sal_arch (*sal);
9456 /* We fall back to GDBARCH if there is no architecture
9457 associated with SAL. */
9458 if (sarch == NULL)
9459 sarch = gdbarch;
9460 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9461 NULL, &msg);
9462 old_chain = make_cleanup (xfree, msg);
9463
9464 if (!rslt)
9465 error (_("May not have a fast tracepoint at 0x%s%s"),
9466 paddress (sarch, sal->pc), (msg ? msg : ""));
9467
9468 do_cleanups (old_chain);
9469 }
9470 }
9471
9472 /* Issue an invalid thread ID error. */
9473
9474 static void ATTRIBUTE_NORETURN
9475 invalid_thread_id_error (int id)
9476 {
9477 error (_("Unknown thread %d."), id);
9478 }
9479
9480 /* Given TOK, a string specification of condition and thread, as
9481 accepted by the 'break' command, extract the condition
9482 string and thread number and set *COND_STRING and *THREAD.
9483 PC identifies the context at which the condition should be parsed.
9484 If no condition is found, *COND_STRING is set to NULL.
9485 If no thread is found, *THREAD is set to -1. */
9486
9487 static void
9488 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9489 char **cond_string, int *thread, int *task,
9490 char **rest)
9491 {
9492 *cond_string = NULL;
9493 *thread = -1;
9494 *task = 0;
9495 *rest = NULL;
9496
9497 while (tok && *tok)
9498 {
9499 const char *end_tok;
9500 int toklen;
9501 const char *cond_start = NULL;
9502 const char *cond_end = NULL;
9503
9504 tok = skip_spaces_const (tok);
9505
9506 if ((*tok == '"' || *tok == ',') && rest)
9507 {
9508 *rest = savestring (tok, strlen (tok));
9509 return;
9510 }
9511
9512 end_tok = skip_to_space_const (tok);
9513
9514 toklen = end_tok - tok;
9515
9516 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9517 {
9518 struct expression *expr;
9519
9520 tok = cond_start = end_tok + 1;
9521 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9522 xfree (expr);
9523 cond_end = tok;
9524 *cond_string = savestring (cond_start, cond_end - cond_start);
9525 }
9526 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9527 {
9528 char *tmptok;
9529
9530 tok = end_tok + 1;
9531 *thread = strtol (tok, &tmptok, 0);
9532 if (tok == tmptok)
9533 error (_("Junk after thread keyword."));
9534 if (!valid_thread_id (*thread))
9535 invalid_thread_id_error (*thread);
9536 tok = tmptok;
9537 }
9538 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9539 {
9540 char *tmptok;
9541
9542 tok = end_tok + 1;
9543 *task = strtol (tok, &tmptok, 0);
9544 if (tok == tmptok)
9545 error (_("Junk after task keyword."));
9546 if (!valid_task_id (*task))
9547 error (_("Unknown task %d."), *task);
9548 tok = tmptok;
9549 }
9550 else if (rest)
9551 {
9552 *rest = savestring (tok, strlen (tok));
9553 return;
9554 }
9555 else
9556 error (_("Junk at end of arguments."));
9557 }
9558 }
9559
9560 /* Decode a static tracepoint marker spec. */
9561
9562 static struct symtabs_and_lines
9563 decode_static_tracepoint_spec (char **arg_p)
9564 {
9565 VEC(static_tracepoint_marker_p) *markers = NULL;
9566 struct symtabs_and_lines sals;
9567 struct cleanup *old_chain;
9568 char *p = &(*arg_p)[3];
9569 char *endp;
9570 char *marker_str;
9571 int i;
9572
9573 p = skip_spaces (p);
9574
9575 endp = skip_to_space (p);
9576
9577 marker_str = savestring (p, endp - p);
9578 old_chain = make_cleanup (xfree, marker_str);
9579
9580 markers = target_static_tracepoint_markers_by_strid (marker_str);
9581 if (VEC_empty(static_tracepoint_marker_p, markers))
9582 error (_("No known static tracepoint marker named %s"), marker_str);
9583
9584 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9585 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9586
9587 for (i = 0; i < sals.nelts; i++)
9588 {
9589 struct static_tracepoint_marker *marker;
9590
9591 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9592
9593 init_sal (&sals.sals[i]);
9594
9595 sals.sals[i] = find_pc_line (marker->address, 0);
9596 sals.sals[i].pc = marker->address;
9597
9598 release_static_tracepoint_marker (marker);
9599 }
9600
9601 do_cleanups (old_chain);
9602
9603 *arg_p = endp;
9604 return sals;
9605 }
9606
9607 /* Set a breakpoint. This function is shared between CLI and MI
9608 functions for setting a breakpoint. This function has two major
9609 modes of operations, selected by the PARSE_ARG parameter. If
9610 non-zero, the function will parse ARG, extracting location,
9611 condition, thread and extra string. Otherwise, ARG is just the
9612 breakpoint's location, with condition, thread, and extra string
9613 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9614 If INTERNAL is non-zero, the breakpoint number will be allocated
9615 from the internal breakpoint count. Returns true if any breakpoint
9616 was created; false otherwise. */
9617
9618 int
9619 create_breakpoint (struct gdbarch *gdbarch,
9620 char *arg, char *cond_string,
9621 int thread, char *extra_string,
9622 int parse_arg,
9623 int tempflag, enum bptype type_wanted,
9624 int ignore_count,
9625 enum auto_boolean pending_break_support,
9626 const struct breakpoint_ops *ops,
9627 int from_tty, int enabled, int internal,
9628 unsigned flags)
9629 {
9630 volatile struct gdb_exception e;
9631 char *copy_arg = NULL;
9632 char *addr_start = arg;
9633 struct linespec_result canonical;
9634 struct cleanup *old_chain;
9635 struct cleanup *bkpt_chain = NULL;
9636 int pending = 0;
9637 int task = 0;
9638 int prev_bkpt_count = breakpoint_count;
9639
9640 gdb_assert (ops != NULL);
9641
9642 init_linespec_result (&canonical);
9643
9644 TRY_CATCH (e, RETURN_MASK_ALL)
9645 {
9646 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9647 addr_start, &copy_arg);
9648 }
9649
9650 /* If caller is interested in rc value from parse, set value. */
9651 switch (e.reason)
9652 {
9653 case GDB_NO_ERROR:
9654 if (VEC_empty (linespec_sals, canonical.sals))
9655 return 0;
9656 break;
9657 case RETURN_ERROR:
9658 switch (e.error)
9659 {
9660 case NOT_FOUND_ERROR:
9661
9662 /* If pending breakpoint support is turned off, throw
9663 error. */
9664
9665 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9666 throw_exception (e);
9667
9668 exception_print (gdb_stderr, e);
9669
9670 /* If pending breakpoint support is auto query and the user
9671 selects no, then simply return the error code. */
9672 if (pending_break_support == AUTO_BOOLEAN_AUTO
9673 && !nquery (_("Make %s pending on future shared library load? "),
9674 bptype_string (type_wanted)))
9675 return 0;
9676
9677 /* At this point, either the user was queried about setting
9678 a pending breakpoint and selected yes, or pending
9679 breakpoint behavior is on and thus a pending breakpoint
9680 is defaulted on behalf of the user. */
9681 {
9682 struct linespec_sals lsal;
9683
9684 copy_arg = xstrdup (addr_start);
9685 lsal.canonical = xstrdup (copy_arg);
9686 lsal.sals.nelts = 1;
9687 lsal.sals.sals = XNEW (struct symtab_and_line);
9688 init_sal (&lsal.sals.sals[0]);
9689 pending = 1;
9690 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9691 }
9692 break;
9693 default:
9694 throw_exception (e);
9695 }
9696 break;
9697 default:
9698 throw_exception (e);
9699 }
9700
9701 /* Create a chain of things that always need to be cleaned up. */
9702 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9703
9704 /* ----------------------------- SNIP -----------------------------
9705 Anything added to the cleanup chain beyond this point is assumed
9706 to be part of a breakpoint. If the breakpoint create succeeds
9707 then the memory is not reclaimed. */
9708 bkpt_chain = make_cleanup (null_cleanup, 0);
9709
9710 /* Resolve all line numbers to PC's and verify that the addresses
9711 are ok for the target. */
9712 if (!pending)
9713 {
9714 int ix;
9715 struct linespec_sals *iter;
9716
9717 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9718 breakpoint_sals_to_pc (&iter->sals);
9719 }
9720
9721 /* Fast tracepoints may have additional restrictions on location. */
9722 if (!pending && type_wanted == bp_fast_tracepoint)
9723 {
9724 int ix;
9725 struct linespec_sals *iter;
9726
9727 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9728 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9729 }
9730
9731 /* Verify that condition can be parsed, before setting any
9732 breakpoints. Allocate a separate condition expression for each
9733 breakpoint. */
9734 if (!pending)
9735 {
9736 if (parse_arg)
9737 {
9738 char *rest;
9739 struct linespec_sals *lsal;
9740
9741 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9742
9743 /* Here we only parse 'arg' to separate condition
9744 from thread number, so parsing in context of first
9745 sal is OK. When setting the breakpoint we'll
9746 re-parse it in context of each sal. */
9747
9748 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9749 &thread, &task, &rest);
9750 if (cond_string)
9751 make_cleanup (xfree, cond_string);
9752 if (rest)
9753 make_cleanup (xfree, rest);
9754 if (rest)
9755 extra_string = rest;
9756 }
9757 else
9758 {
9759 if (*arg != '\0')
9760 error (_("Garbage '%s' at end of location"), arg);
9761
9762 /* Create a private copy of condition string. */
9763 if (cond_string)
9764 {
9765 cond_string = xstrdup (cond_string);
9766 make_cleanup (xfree, cond_string);
9767 }
9768 /* Create a private copy of any extra string. */
9769 if (extra_string)
9770 {
9771 extra_string = xstrdup (extra_string);
9772 make_cleanup (xfree, extra_string);
9773 }
9774 }
9775
9776 ops->create_breakpoints_sal (gdbarch, &canonical,
9777 cond_string, extra_string, type_wanted,
9778 tempflag ? disp_del : disp_donttouch,
9779 thread, task, ignore_count, ops,
9780 from_tty, enabled, internal, flags);
9781 }
9782 else
9783 {
9784 struct breakpoint *b;
9785
9786 make_cleanup (xfree, copy_arg);
9787
9788 if (is_tracepoint_type (type_wanted))
9789 {
9790 struct tracepoint *t;
9791
9792 t = XCNEW (struct tracepoint);
9793 b = &t->base;
9794 }
9795 else
9796 b = XNEW (struct breakpoint);
9797
9798 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9799
9800 b->addr_string = copy_arg;
9801 if (parse_arg)
9802 b->cond_string = NULL;
9803 else
9804 {
9805 /* Create a private copy of condition string. */
9806 if (cond_string)
9807 {
9808 cond_string = xstrdup (cond_string);
9809 make_cleanup (xfree, cond_string);
9810 }
9811 b->cond_string = cond_string;
9812 }
9813 b->extra_string = NULL;
9814 b->ignore_count = ignore_count;
9815 b->disposition = tempflag ? disp_del : disp_donttouch;
9816 b->condition_not_parsed = 1;
9817 b->enable_state = enabled ? bp_enabled : bp_disabled;
9818 if ((type_wanted != bp_breakpoint
9819 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9820 b->pspace = current_program_space;
9821
9822 install_breakpoint (internal, b, 0);
9823 }
9824
9825 if (VEC_length (linespec_sals, canonical.sals) > 1)
9826 {
9827 warning (_("Multiple breakpoints were set.\nUse the "
9828 "\"delete\" command to delete unwanted breakpoints."));
9829 prev_breakpoint_count = prev_bkpt_count;
9830 }
9831
9832 /* That's it. Discard the cleanups for data inserted into the
9833 breakpoint. */
9834 discard_cleanups (bkpt_chain);
9835 /* But cleanup everything else. */
9836 do_cleanups (old_chain);
9837
9838 /* error call may happen here - have BKPT_CHAIN already discarded. */
9839 update_global_location_list (1);
9840
9841 return 1;
9842 }
9843
9844 /* Set a breakpoint.
9845 ARG is a string describing breakpoint address,
9846 condition, and thread.
9847 FLAG specifies if a breakpoint is hardware on,
9848 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9849 and BP_TEMPFLAG. */
9850
9851 static void
9852 break_command_1 (char *arg, int flag, int from_tty)
9853 {
9854 int tempflag = flag & BP_TEMPFLAG;
9855 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9856 ? bp_hardware_breakpoint
9857 : bp_breakpoint);
9858 struct breakpoint_ops *ops;
9859 const char *arg_cp = arg;
9860
9861 /* Matching breakpoints on probes. */
9862 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
9863 ops = &bkpt_probe_breakpoint_ops;
9864 else
9865 ops = &bkpt_breakpoint_ops;
9866
9867 create_breakpoint (get_current_arch (),
9868 arg,
9869 NULL, 0, NULL, 1 /* parse arg */,
9870 tempflag, type_wanted,
9871 0 /* Ignore count */,
9872 pending_break_support,
9873 ops,
9874 from_tty,
9875 1 /* enabled */,
9876 0 /* internal */,
9877 0);
9878 }
9879
9880 /* Helper function for break_command_1 and disassemble_command. */
9881
9882 void
9883 resolve_sal_pc (struct symtab_and_line *sal)
9884 {
9885 CORE_ADDR pc;
9886
9887 if (sal->pc == 0 && sal->symtab != NULL)
9888 {
9889 if (!find_line_pc (sal->symtab, sal->line, &pc))
9890 error (_("No line %d in file \"%s\"."),
9891 sal->line, symtab_to_filename_for_display (sal->symtab));
9892 sal->pc = pc;
9893
9894 /* If this SAL corresponds to a breakpoint inserted using a line
9895 number, then skip the function prologue if necessary. */
9896 if (sal->explicit_line)
9897 skip_prologue_sal (sal);
9898 }
9899
9900 if (sal->section == 0 && sal->symtab != NULL)
9901 {
9902 struct blockvector *bv;
9903 struct block *b;
9904 struct symbol *sym;
9905
9906 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
9907 if (bv != NULL)
9908 {
9909 sym = block_linkage_function (b);
9910 if (sym != NULL)
9911 {
9912 fixup_symbol_section (sym, sal->symtab->objfile);
9913 sal->section = SYMBOL_OBJ_SECTION (sal->symtab->objfile, sym);
9914 }
9915 else
9916 {
9917 /* It really is worthwhile to have the section, so we'll
9918 just have to look harder. This case can be executed
9919 if we have line numbers but no functions (as can
9920 happen in assembly source). */
9921
9922 struct bound_minimal_symbol msym;
9923 struct cleanup *old_chain = save_current_space_and_thread ();
9924
9925 switch_to_program_space_and_thread (sal->pspace);
9926
9927 msym = lookup_minimal_symbol_by_pc (sal->pc);
9928 if (msym.minsym)
9929 sal->section = SYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9930
9931 do_cleanups (old_chain);
9932 }
9933 }
9934 }
9935 }
9936
9937 void
9938 break_command (char *arg, int from_tty)
9939 {
9940 break_command_1 (arg, 0, from_tty);
9941 }
9942
9943 void
9944 tbreak_command (char *arg, int from_tty)
9945 {
9946 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9947 }
9948
9949 static void
9950 hbreak_command (char *arg, int from_tty)
9951 {
9952 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9953 }
9954
9955 static void
9956 thbreak_command (char *arg, int from_tty)
9957 {
9958 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9959 }
9960
9961 static void
9962 stop_command (char *arg, int from_tty)
9963 {
9964 printf_filtered (_("Specify the type of breakpoint to set.\n\
9965 Usage: stop in <function | address>\n\
9966 stop at <line>\n"));
9967 }
9968
9969 static void
9970 stopin_command (char *arg, int from_tty)
9971 {
9972 int badInput = 0;
9973
9974 if (arg == (char *) NULL)
9975 badInput = 1;
9976 else if (*arg != '*')
9977 {
9978 char *argptr = arg;
9979 int hasColon = 0;
9980
9981 /* Look for a ':'. If this is a line number specification, then
9982 say it is bad, otherwise, it should be an address or
9983 function/method name. */
9984 while (*argptr && !hasColon)
9985 {
9986 hasColon = (*argptr == ':');
9987 argptr++;
9988 }
9989
9990 if (hasColon)
9991 badInput = (*argptr != ':'); /* Not a class::method */
9992 else
9993 badInput = isdigit (*arg); /* a simple line number */
9994 }
9995
9996 if (badInput)
9997 printf_filtered (_("Usage: stop in <function | address>\n"));
9998 else
9999 break_command_1 (arg, 0, from_tty);
10000 }
10001
10002 static void
10003 stopat_command (char *arg, int from_tty)
10004 {
10005 int badInput = 0;
10006
10007 if (arg == (char *) NULL || *arg == '*') /* no line number */
10008 badInput = 1;
10009 else
10010 {
10011 char *argptr = arg;
10012 int hasColon = 0;
10013
10014 /* Look for a ':'. If there is a '::' then get out, otherwise
10015 it is probably a line number. */
10016 while (*argptr && !hasColon)
10017 {
10018 hasColon = (*argptr == ':');
10019 argptr++;
10020 }
10021
10022 if (hasColon)
10023 badInput = (*argptr == ':'); /* we have class::method */
10024 else
10025 badInput = !isdigit (*arg); /* not a line number */
10026 }
10027
10028 if (badInput)
10029 printf_filtered (_("Usage: stop at <line>\n"));
10030 else
10031 break_command_1 (arg, 0, from_tty);
10032 }
10033
10034 /* The dynamic printf command is mostly like a regular breakpoint, but
10035 with a prewired command list consisting of a single output command,
10036 built from extra arguments supplied on the dprintf command
10037 line. */
10038
10039 static void
10040 dprintf_command (char *arg, int from_tty)
10041 {
10042 create_breakpoint (get_current_arch (),
10043 arg,
10044 NULL, 0, NULL, 1 /* parse arg */,
10045 0, bp_dprintf,
10046 0 /* Ignore count */,
10047 pending_break_support,
10048 &dprintf_breakpoint_ops,
10049 from_tty,
10050 1 /* enabled */,
10051 0 /* internal */,
10052 0);
10053 }
10054
10055 static void
10056 agent_printf_command (char *arg, int from_tty)
10057 {
10058 error (_("May only run agent-printf on the target"));
10059 }
10060
10061 /* Implement the "breakpoint_hit" breakpoint_ops method for
10062 ranged breakpoints. */
10063
10064 static int
10065 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10066 struct address_space *aspace,
10067 CORE_ADDR bp_addr,
10068 const struct target_waitstatus *ws)
10069 {
10070 if (ws->kind != TARGET_WAITKIND_STOPPED
10071 || ws->value.sig != GDB_SIGNAL_TRAP)
10072 return 0;
10073
10074 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10075 bl->length, aspace, bp_addr);
10076 }
10077
10078 /* Implement the "resources_needed" breakpoint_ops method for
10079 ranged breakpoints. */
10080
10081 static int
10082 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10083 {
10084 return target_ranged_break_num_registers ();
10085 }
10086
10087 /* Implement the "print_it" breakpoint_ops method for
10088 ranged breakpoints. */
10089
10090 static enum print_stop_action
10091 print_it_ranged_breakpoint (bpstat bs)
10092 {
10093 struct breakpoint *b = bs->breakpoint_at;
10094 struct bp_location *bl = b->loc;
10095 struct ui_out *uiout = current_uiout;
10096
10097 gdb_assert (b->type == bp_hardware_breakpoint);
10098
10099 /* Ranged breakpoints have only one location. */
10100 gdb_assert (bl && bl->next == NULL);
10101
10102 annotate_breakpoint (b->number);
10103 if (b->disposition == disp_del)
10104 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
10105 else
10106 ui_out_text (uiout, "\nRanged breakpoint ");
10107 if (ui_out_is_mi_like_p (uiout))
10108 {
10109 ui_out_field_string (uiout, "reason",
10110 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10111 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10112 }
10113 ui_out_field_int (uiout, "bkptno", b->number);
10114 ui_out_text (uiout, ", ");
10115
10116 return PRINT_SRC_AND_LOC;
10117 }
10118
10119 /* Implement the "print_one" breakpoint_ops method for
10120 ranged breakpoints. */
10121
10122 static void
10123 print_one_ranged_breakpoint (struct breakpoint *b,
10124 struct bp_location **last_loc)
10125 {
10126 struct bp_location *bl = b->loc;
10127 struct value_print_options opts;
10128 struct ui_out *uiout = current_uiout;
10129
10130 /* Ranged breakpoints have only one location. */
10131 gdb_assert (bl && bl->next == NULL);
10132
10133 get_user_print_options (&opts);
10134
10135 if (opts.addressprint)
10136 /* We don't print the address range here, it will be printed later
10137 by print_one_detail_ranged_breakpoint. */
10138 ui_out_field_skip (uiout, "addr");
10139 annotate_field (5);
10140 print_breakpoint_location (b, bl);
10141 *last_loc = bl;
10142 }
10143
10144 /* Implement the "print_one_detail" breakpoint_ops method for
10145 ranged breakpoints. */
10146
10147 static void
10148 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10149 struct ui_out *uiout)
10150 {
10151 CORE_ADDR address_start, address_end;
10152 struct bp_location *bl = b->loc;
10153 struct ui_file *stb = mem_fileopen ();
10154 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10155
10156 gdb_assert (bl);
10157
10158 address_start = bl->address;
10159 address_end = address_start + bl->length - 1;
10160
10161 ui_out_text (uiout, "\taddress range: ");
10162 fprintf_unfiltered (stb, "[%s, %s]",
10163 print_core_address (bl->gdbarch, address_start),
10164 print_core_address (bl->gdbarch, address_end));
10165 ui_out_field_stream (uiout, "addr", stb);
10166 ui_out_text (uiout, "\n");
10167
10168 do_cleanups (cleanup);
10169 }
10170
10171 /* Implement the "print_mention" breakpoint_ops method for
10172 ranged breakpoints. */
10173
10174 static void
10175 print_mention_ranged_breakpoint (struct breakpoint *b)
10176 {
10177 struct bp_location *bl = b->loc;
10178 struct ui_out *uiout = current_uiout;
10179
10180 gdb_assert (bl);
10181 gdb_assert (b->type == bp_hardware_breakpoint);
10182
10183 if (ui_out_is_mi_like_p (uiout))
10184 return;
10185
10186 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10187 b->number, paddress (bl->gdbarch, bl->address),
10188 paddress (bl->gdbarch, bl->address + bl->length - 1));
10189 }
10190
10191 /* Implement the "print_recreate" breakpoint_ops method for
10192 ranged breakpoints. */
10193
10194 static void
10195 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10196 {
10197 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10198 b->addr_string_range_end);
10199 print_recreate_thread (b, fp);
10200 }
10201
10202 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10203
10204 static struct breakpoint_ops ranged_breakpoint_ops;
10205
10206 /* Find the address where the end of the breakpoint range should be
10207 placed, given the SAL of the end of the range. This is so that if
10208 the user provides a line number, the end of the range is set to the
10209 last instruction of the given line. */
10210
10211 static CORE_ADDR
10212 find_breakpoint_range_end (struct symtab_and_line sal)
10213 {
10214 CORE_ADDR end;
10215
10216 /* If the user provided a PC value, use it. Otherwise,
10217 find the address of the end of the given location. */
10218 if (sal.explicit_pc)
10219 end = sal.pc;
10220 else
10221 {
10222 int ret;
10223 CORE_ADDR start;
10224
10225 ret = find_line_pc_range (sal, &start, &end);
10226 if (!ret)
10227 error (_("Could not find location of the end of the range."));
10228
10229 /* find_line_pc_range returns the start of the next line. */
10230 end--;
10231 }
10232
10233 return end;
10234 }
10235
10236 /* Implement the "break-range" CLI command. */
10237
10238 static void
10239 break_range_command (char *arg, int from_tty)
10240 {
10241 char *arg_start, *addr_string_start, *addr_string_end;
10242 struct linespec_result canonical_start, canonical_end;
10243 int bp_count, can_use_bp, length;
10244 CORE_ADDR end;
10245 struct breakpoint *b;
10246 struct symtab_and_line sal_start, sal_end;
10247 struct cleanup *cleanup_bkpt;
10248 struct linespec_sals *lsal_start, *lsal_end;
10249
10250 /* We don't support software ranged breakpoints. */
10251 if (target_ranged_break_num_registers () < 0)
10252 error (_("This target does not support hardware ranged breakpoints."));
10253
10254 bp_count = hw_breakpoint_used_count ();
10255 bp_count += target_ranged_break_num_registers ();
10256 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10257 bp_count, 0);
10258 if (can_use_bp < 0)
10259 error (_("Hardware breakpoints used exceeds limit."));
10260
10261 arg = skip_spaces (arg);
10262 if (arg == NULL || arg[0] == '\0')
10263 error(_("No address range specified."));
10264
10265 init_linespec_result (&canonical_start);
10266
10267 arg_start = arg;
10268 parse_breakpoint_sals (&arg, &canonical_start);
10269
10270 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10271
10272 if (arg[0] != ',')
10273 error (_("Too few arguments."));
10274 else if (VEC_empty (linespec_sals, canonical_start.sals))
10275 error (_("Could not find location of the beginning of the range."));
10276
10277 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10278
10279 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10280 || lsal_start->sals.nelts != 1)
10281 error (_("Cannot create a ranged breakpoint with multiple locations."));
10282
10283 sal_start = lsal_start->sals.sals[0];
10284 addr_string_start = savestring (arg_start, arg - arg_start);
10285 make_cleanup (xfree, addr_string_start);
10286
10287 arg++; /* Skip the comma. */
10288 arg = skip_spaces (arg);
10289
10290 /* Parse the end location. */
10291
10292 init_linespec_result (&canonical_end);
10293 arg_start = arg;
10294
10295 /* We call decode_line_full directly here instead of using
10296 parse_breakpoint_sals because we need to specify the start location's
10297 symtab and line as the default symtab and line for the end of the
10298 range. This makes it possible to have ranges like "foo.c:27, +14",
10299 where +14 means 14 lines from the start location. */
10300 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10301 sal_start.symtab, sal_start.line,
10302 &canonical_end, NULL, NULL);
10303
10304 make_cleanup_destroy_linespec_result (&canonical_end);
10305
10306 if (VEC_empty (linespec_sals, canonical_end.sals))
10307 error (_("Could not find location of the end of the range."));
10308
10309 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10310 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10311 || lsal_end->sals.nelts != 1)
10312 error (_("Cannot create a ranged breakpoint with multiple locations."));
10313
10314 sal_end = lsal_end->sals.sals[0];
10315 addr_string_end = savestring (arg_start, arg - arg_start);
10316 make_cleanup (xfree, addr_string_end);
10317
10318 end = find_breakpoint_range_end (sal_end);
10319 if (sal_start.pc > end)
10320 error (_("Invalid address range, end precedes start."));
10321
10322 length = end - sal_start.pc + 1;
10323 if (length < 0)
10324 /* Length overflowed. */
10325 error (_("Address range too large."));
10326 else if (length == 1)
10327 {
10328 /* This range is simple enough to be handled by
10329 the `hbreak' command. */
10330 hbreak_command (addr_string_start, 1);
10331
10332 do_cleanups (cleanup_bkpt);
10333
10334 return;
10335 }
10336
10337 /* Now set up the breakpoint. */
10338 b = set_raw_breakpoint (get_current_arch (), sal_start,
10339 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10340 set_breakpoint_count (breakpoint_count + 1);
10341 b->number = breakpoint_count;
10342 b->disposition = disp_donttouch;
10343 b->addr_string = xstrdup (addr_string_start);
10344 b->addr_string_range_end = xstrdup (addr_string_end);
10345 b->loc->length = length;
10346
10347 do_cleanups (cleanup_bkpt);
10348
10349 mention (b);
10350 observer_notify_breakpoint_created (b);
10351 update_global_location_list (1);
10352 }
10353
10354 /* Return non-zero if EXP is verified as constant. Returned zero
10355 means EXP is variable. Also the constant detection may fail for
10356 some constant expressions and in such case still falsely return
10357 zero. */
10358
10359 static int
10360 watchpoint_exp_is_const (const struct expression *exp)
10361 {
10362 int i = exp->nelts;
10363
10364 while (i > 0)
10365 {
10366 int oplenp, argsp;
10367
10368 /* We are only interested in the descriptor of each element. */
10369 operator_length (exp, i, &oplenp, &argsp);
10370 i -= oplenp;
10371
10372 switch (exp->elts[i].opcode)
10373 {
10374 case BINOP_ADD:
10375 case BINOP_SUB:
10376 case BINOP_MUL:
10377 case BINOP_DIV:
10378 case BINOP_REM:
10379 case BINOP_MOD:
10380 case BINOP_LSH:
10381 case BINOP_RSH:
10382 case BINOP_LOGICAL_AND:
10383 case BINOP_LOGICAL_OR:
10384 case BINOP_BITWISE_AND:
10385 case BINOP_BITWISE_IOR:
10386 case BINOP_BITWISE_XOR:
10387 case BINOP_EQUAL:
10388 case BINOP_NOTEQUAL:
10389 case BINOP_LESS:
10390 case BINOP_GTR:
10391 case BINOP_LEQ:
10392 case BINOP_GEQ:
10393 case BINOP_REPEAT:
10394 case BINOP_COMMA:
10395 case BINOP_EXP:
10396 case BINOP_MIN:
10397 case BINOP_MAX:
10398 case BINOP_INTDIV:
10399 case BINOP_CONCAT:
10400 case BINOP_IN:
10401 case BINOP_RANGE:
10402 case TERNOP_COND:
10403 case TERNOP_SLICE:
10404
10405 case OP_LONG:
10406 case OP_DOUBLE:
10407 case OP_DECFLOAT:
10408 case OP_LAST:
10409 case OP_COMPLEX:
10410 case OP_STRING:
10411 case OP_ARRAY:
10412 case OP_TYPE:
10413 case OP_TYPEOF:
10414 case OP_DECLTYPE:
10415 case OP_TYPEID:
10416 case OP_NAME:
10417 case OP_OBJC_NSSTRING:
10418
10419 case UNOP_NEG:
10420 case UNOP_LOGICAL_NOT:
10421 case UNOP_COMPLEMENT:
10422 case UNOP_ADDR:
10423 case UNOP_HIGH:
10424 case UNOP_CAST:
10425
10426 case UNOP_CAST_TYPE:
10427 case UNOP_REINTERPRET_CAST:
10428 case UNOP_DYNAMIC_CAST:
10429 /* Unary, binary and ternary operators: We have to check
10430 their operands. If they are constant, then so is the
10431 result of that operation. For instance, if A and B are
10432 determined to be constants, then so is "A + B".
10433
10434 UNOP_IND is one exception to the rule above, because the
10435 value of *ADDR is not necessarily a constant, even when
10436 ADDR is. */
10437 break;
10438
10439 case OP_VAR_VALUE:
10440 /* Check whether the associated symbol is a constant.
10441
10442 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10443 possible that a buggy compiler could mark a variable as
10444 constant even when it is not, and TYPE_CONST would return
10445 true in this case, while SYMBOL_CLASS wouldn't.
10446
10447 We also have to check for function symbols because they
10448 are always constant. */
10449 {
10450 struct symbol *s = exp->elts[i + 2].symbol;
10451
10452 if (SYMBOL_CLASS (s) != LOC_BLOCK
10453 && SYMBOL_CLASS (s) != LOC_CONST
10454 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10455 return 0;
10456 break;
10457 }
10458
10459 /* The default action is to return 0 because we are using
10460 the optimistic approach here: If we don't know something,
10461 then it is not a constant. */
10462 default:
10463 return 0;
10464 }
10465 }
10466
10467 return 1;
10468 }
10469
10470 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10471
10472 static void
10473 dtor_watchpoint (struct breakpoint *self)
10474 {
10475 struct watchpoint *w = (struct watchpoint *) self;
10476
10477 xfree (w->cond_exp);
10478 xfree (w->exp);
10479 xfree (w->exp_string);
10480 xfree (w->exp_string_reparse);
10481 value_free (w->val);
10482
10483 base_breakpoint_ops.dtor (self);
10484 }
10485
10486 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10487
10488 static void
10489 re_set_watchpoint (struct breakpoint *b)
10490 {
10491 struct watchpoint *w = (struct watchpoint *) b;
10492
10493 /* Watchpoint can be either on expression using entirely global
10494 variables, or it can be on local variables.
10495
10496 Watchpoints of the first kind are never auto-deleted, and even
10497 persist across program restarts. Since they can use variables
10498 from shared libraries, we need to reparse expression as libraries
10499 are loaded and unloaded.
10500
10501 Watchpoints on local variables can also change meaning as result
10502 of solib event. For example, if a watchpoint uses both a local
10503 and a global variables in expression, it's a local watchpoint,
10504 but unloading of a shared library will make the expression
10505 invalid. This is not a very common use case, but we still
10506 re-evaluate expression, to avoid surprises to the user.
10507
10508 Note that for local watchpoints, we re-evaluate it only if
10509 watchpoints frame id is still valid. If it's not, it means the
10510 watchpoint is out of scope and will be deleted soon. In fact,
10511 I'm not sure we'll ever be called in this case.
10512
10513 If a local watchpoint's frame id is still valid, then
10514 w->exp_valid_block is likewise valid, and we can safely use it.
10515
10516 Don't do anything about disabled watchpoints, since they will be
10517 reevaluated again when enabled. */
10518 update_watchpoint (w, 1 /* reparse */);
10519 }
10520
10521 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10522
10523 static int
10524 insert_watchpoint (struct bp_location *bl)
10525 {
10526 struct watchpoint *w = (struct watchpoint *) bl->owner;
10527 int length = w->exact ? 1 : bl->length;
10528
10529 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10530 w->cond_exp);
10531 }
10532
10533 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10534
10535 static int
10536 remove_watchpoint (struct bp_location *bl)
10537 {
10538 struct watchpoint *w = (struct watchpoint *) bl->owner;
10539 int length = w->exact ? 1 : bl->length;
10540
10541 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10542 w->cond_exp);
10543 }
10544
10545 static int
10546 breakpoint_hit_watchpoint (const struct bp_location *bl,
10547 struct address_space *aspace, CORE_ADDR bp_addr,
10548 const struct target_waitstatus *ws)
10549 {
10550 struct breakpoint *b = bl->owner;
10551 struct watchpoint *w = (struct watchpoint *) b;
10552
10553 /* Continuable hardware watchpoints are treated as non-existent if the
10554 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10555 some data address). Otherwise gdb won't stop on a break instruction
10556 in the code (not from a breakpoint) when a hardware watchpoint has
10557 been defined. Also skip watchpoints which we know did not trigger
10558 (did not match the data address). */
10559 if (is_hardware_watchpoint (b)
10560 && w->watchpoint_triggered == watch_triggered_no)
10561 return 0;
10562
10563 return 1;
10564 }
10565
10566 static void
10567 check_status_watchpoint (bpstat bs)
10568 {
10569 gdb_assert (is_watchpoint (bs->breakpoint_at));
10570
10571 bpstat_check_watchpoint (bs);
10572 }
10573
10574 /* Implement the "resources_needed" breakpoint_ops method for
10575 hardware watchpoints. */
10576
10577 static int
10578 resources_needed_watchpoint (const struct bp_location *bl)
10579 {
10580 struct watchpoint *w = (struct watchpoint *) bl->owner;
10581 int length = w->exact? 1 : bl->length;
10582
10583 return target_region_ok_for_hw_watchpoint (bl->address, length);
10584 }
10585
10586 /* Implement the "works_in_software_mode" breakpoint_ops method for
10587 hardware watchpoints. */
10588
10589 static int
10590 works_in_software_mode_watchpoint (const struct breakpoint *b)
10591 {
10592 /* Read and access watchpoints only work with hardware support. */
10593 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10594 }
10595
10596 static enum print_stop_action
10597 print_it_watchpoint (bpstat bs)
10598 {
10599 struct cleanup *old_chain;
10600 struct breakpoint *b;
10601 struct ui_file *stb;
10602 enum print_stop_action result;
10603 struct watchpoint *w;
10604 struct ui_out *uiout = current_uiout;
10605
10606 gdb_assert (bs->bp_location_at != NULL);
10607
10608 b = bs->breakpoint_at;
10609 w = (struct watchpoint *) b;
10610
10611 stb = mem_fileopen ();
10612 old_chain = make_cleanup_ui_file_delete (stb);
10613
10614 switch (b->type)
10615 {
10616 case bp_watchpoint:
10617 case bp_hardware_watchpoint:
10618 annotate_watchpoint (b->number);
10619 if (ui_out_is_mi_like_p (uiout))
10620 ui_out_field_string
10621 (uiout, "reason",
10622 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10623 mention (b);
10624 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10625 ui_out_text (uiout, "\nOld value = ");
10626 watchpoint_value_print (bs->old_val, stb);
10627 ui_out_field_stream (uiout, "old", stb);
10628 ui_out_text (uiout, "\nNew value = ");
10629 watchpoint_value_print (w->val, stb);
10630 ui_out_field_stream (uiout, "new", stb);
10631 ui_out_text (uiout, "\n");
10632 /* More than one watchpoint may have been triggered. */
10633 result = PRINT_UNKNOWN;
10634 break;
10635
10636 case bp_read_watchpoint:
10637 if (ui_out_is_mi_like_p (uiout))
10638 ui_out_field_string
10639 (uiout, "reason",
10640 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10641 mention (b);
10642 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10643 ui_out_text (uiout, "\nValue = ");
10644 watchpoint_value_print (w->val, stb);
10645 ui_out_field_stream (uiout, "value", stb);
10646 ui_out_text (uiout, "\n");
10647 result = PRINT_UNKNOWN;
10648 break;
10649
10650 case bp_access_watchpoint:
10651 if (bs->old_val != NULL)
10652 {
10653 annotate_watchpoint (b->number);
10654 if (ui_out_is_mi_like_p (uiout))
10655 ui_out_field_string
10656 (uiout, "reason",
10657 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10658 mention (b);
10659 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10660 ui_out_text (uiout, "\nOld value = ");
10661 watchpoint_value_print (bs->old_val, stb);
10662 ui_out_field_stream (uiout, "old", stb);
10663 ui_out_text (uiout, "\nNew value = ");
10664 }
10665 else
10666 {
10667 mention (b);
10668 if (ui_out_is_mi_like_p (uiout))
10669 ui_out_field_string
10670 (uiout, "reason",
10671 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10672 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10673 ui_out_text (uiout, "\nValue = ");
10674 }
10675 watchpoint_value_print (w->val, stb);
10676 ui_out_field_stream (uiout, "new", stb);
10677 ui_out_text (uiout, "\n");
10678 result = PRINT_UNKNOWN;
10679 break;
10680 default:
10681 result = PRINT_UNKNOWN;
10682 }
10683
10684 do_cleanups (old_chain);
10685 return result;
10686 }
10687
10688 /* Implement the "print_mention" breakpoint_ops method for hardware
10689 watchpoints. */
10690
10691 static void
10692 print_mention_watchpoint (struct breakpoint *b)
10693 {
10694 struct cleanup *ui_out_chain;
10695 struct watchpoint *w = (struct watchpoint *) b;
10696 struct ui_out *uiout = current_uiout;
10697
10698 switch (b->type)
10699 {
10700 case bp_watchpoint:
10701 ui_out_text (uiout, "Watchpoint ");
10702 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10703 break;
10704 case bp_hardware_watchpoint:
10705 ui_out_text (uiout, "Hardware watchpoint ");
10706 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10707 break;
10708 case bp_read_watchpoint:
10709 ui_out_text (uiout, "Hardware read watchpoint ");
10710 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10711 break;
10712 case bp_access_watchpoint:
10713 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10714 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10715 break;
10716 default:
10717 internal_error (__FILE__, __LINE__,
10718 _("Invalid hardware watchpoint type."));
10719 }
10720
10721 ui_out_field_int (uiout, "number", b->number);
10722 ui_out_text (uiout, ": ");
10723 ui_out_field_string (uiout, "exp", w->exp_string);
10724 do_cleanups (ui_out_chain);
10725 }
10726
10727 /* Implement the "print_recreate" breakpoint_ops method for
10728 watchpoints. */
10729
10730 static void
10731 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10732 {
10733 struct watchpoint *w = (struct watchpoint *) b;
10734
10735 switch (b->type)
10736 {
10737 case bp_watchpoint:
10738 case bp_hardware_watchpoint:
10739 fprintf_unfiltered (fp, "watch");
10740 break;
10741 case bp_read_watchpoint:
10742 fprintf_unfiltered (fp, "rwatch");
10743 break;
10744 case bp_access_watchpoint:
10745 fprintf_unfiltered (fp, "awatch");
10746 break;
10747 default:
10748 internal_error (__FILE__, __LINE__,
10749 _("Invalid watchpoint type."));
10750 }
10751
10752 fprintf_unfiltered (fp, " %s", w->exp_string);
10753 print_recreate_thread (b, fp);
10754 }
10755
10756 /* Implement the "explains_signal" breakpoint_ops method for
10757 watchpoints. */
10758
10759 static enum bpstat_signal_value
10760 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10761 {
10762 /* A software watchpoint cannot cause a signal other than
10763 GDB_SIGNAL_TRAP. */
10764 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10765 return BPSTAT_SIGNAL_NO;
10766
10767 return BPSTAT_SIGNAL_HIDE;
10768 }
10769
10770 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10771
10772 static struct breakpoint_ops watchpoint_breakpoint_ops;
10773
10774 /* Implement the "insert" breakpoint_ops method for
10775 masked hardware watchpoints. */
10776
10777 static int
10778 insert_masked_watchpoint (struct bp_location *bl)
10779 {
10780 struct watchpoint *w = (struct watchpoint *) bl->owner;
10781
10782 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10783 bl->watchpoint_type);
10784 }
10785
10786 /* Implement the "remove" breakpoint_ops method for
10787 masked hardware watchpoints. */
10788
10789 static int
10790 remove_masked_watchpoint (struct bp_location *bl)
10791 {
10792 struct watchpoint *w = (struct watchpoint *) bl->owner;
10793
10794 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10795 bl->watchpoint_type);
10796 }
10797
10798 /* Implement the "resources_needed" breakpoint_ops method for
10799 masked hardware watchpoints. */
10800
10801 static int
10802 resources_needed_masked_watchpoint (const struct bp_location *bl)
10803 {
10804 struct watchpoint *w = (struct watchpoint *) bl->owner;
10805
10806 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10807 }
10808
10809 /* Implement the "works_in_software_mode" breakpoint_ops method for
10810 masked hardware watchpoints. */
10811
10812 static int
10813 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10814 {
10815 return 0;
10816 }
10817
10818 /* Implement the "print_it" breakpoint_ops method for
10819 masked hardware watchpoints. */
10820
10821 static enum print_stop_action
10822 print_it_masked_watchpoint (bpstat bs)
10823 {
10824 struct breakpoint *b = bs->breakpoint_at;
10825 struct ui_out *uiout = current_uiout;
10826
10827 /* Masked watchpoints have only one location. */
10828 gdb_assert (b->loc && b->loc->next == NULL);
10829
10830 switch (b->type)
10831 {
10832 case bp_hardware_watchpoint:
10833 annotate_watchpoint (b->number);
10834 if (ui_out_is_mi_like_p (uiout))
10835 ui_out_field_string
10836 (uiout, "reason",
10837 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10838 break;
10839
10840 case bp_read_watchpoint:
10841 if (ui_out_is_mi_like_p (uiout))
10842 ui_out_field_string
10843 (uiout, "reason",
10844 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10845 break;
10846
10847 case bp_access_watchpoint:
10848 if (ui_out_is_mi_like_p (uiout))
10849 ui_out_field_string
10850 (uiout, "reason",
10851 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10852 break;
10853 default:
10854 internal_error (__FILE__, __LINE__,
10855 _("Invalid hardware watchpoint type."));
10856 }
10857
10858 mention (b);
10859 ui_out_text (uiout, _("\n\
10860 Check the underlying instruction at PC for the memory\n\
10861 address and value which triggered this watchpoint.\n"));
10862 ui_out_text (uiout, "\n");
10863
10864 /* More than one watchpoint may have been triggered. */
10865 return PRINT_UNKNOWN;
10866 }
10867
10868 /* Implement the "print_one_detail" breakpoint_ops method for
10869 masked hardware watchpoints. */
10870
10871 static void
10872 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10873 struct ui_out *uiout)
10874 {
10875 struct watchpoint *w = (struct watchpoint *) b;
10876
10877 /* Masked watchpoints have only one location. */
10878 gdb_assert (b->loc && b->loc->next == NULL);
10879
10880 ui_out_text (uiout, "\tmask ");
10881 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
10882 ui_out_text (uiout, "\n");
10883 }
10884
10885 /* Implement the "print_mention" breakpoint_ops method for
10886 masked hardware watchpoints. */
10887
10888 static void
10889 print_mention_masked_watchpoint (struct breakpoint *b)
10890 {
10891 struct watchpoint *w = (struct watchpoint *) b;
10892 struct ui_out *uiout = current_uiout;
10893 struct cleanup *ui_out_chain;
10894
10895 switch (b->type)
10896 {
10897 case bp_hardware_watchpoint:
10898 ui_out_text (uiout, "Masked hardware watchpoint ");
10899 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10900 break;
10901 case bp_read_watchpoint:
10902 ui_out_text (uiout, "Masked hardware read watchpoint ");
10903 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10904 break;
10905 case bp_access_watchpoint:
10906 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
10907 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10908 break;
10909 default:
10910 internal_error (__FILE__, __LINE__,
10911 _("Invalid hardware watchpoint type."));
10912 }
10913
10914 ui_out_field_int (uiout, "number", b->number);
10915 ui_out_text (uiout, ": ");
10916 ui_out_field_string (uiout, "exp", w->exp_string);
10917 do_cleanups (ui_out_chain);
10918 }
10919
10920 /* Implement the "print_recreate" breakpoint_ops method for
10921 masked hardware watchpoints. */
10922
10923 static void
10924 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10925 {
10926 struct watchpoint *w = (struct watchpoint *) b;
10927 char tmp[40];
10928
10929 switch (b->type)
10930 {
10931 case bp_hardware_watchpoint:
10932 fprintf_unfiltered (fp, "watch");
10933 break;
10934 case bp_read_watchpoint:
10935 fprintf_unfiltered (fp, "rwatch");
10936 break;
10937 case bp_access_watchpoint:
10938 fprintf_unfiltered (fp, "awatch");
10939 break;
10940 default:
10941 internal_error (__FILE__, __LINE__,
10942 _("Invalid hardware watchpoint type."));
10943 }
10944
10945 sprintf_vma (tmp, w->hw_wp_mask);
10946 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10947 print_recreate_thread (b, fp);
10948 }
10949
10950 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10951
10952 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10953
10954 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10955
10956 static int
10957 is_masked_watchpoint (const struct breakpoint *b)
10958 {
10959 return b->ops == &masked_watchpoint_breakpoint_ops;
10960 }
10961
10962 /* accessflag: hw_write: watch write,
10963 hw_read: watch read,
10964 hw_access: watch access (read or write) */
10965 static void
10966 watch_command_1 (const char *arg, int accessflag, int from_tty,
10967 int just_location, int internal)
10968 {
10969 volatile struct gdb_exception e;
10970 struct breakpoint *b, *scope_breakpoint = NULL;
10971 struct expression *exp;
10972 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10973 struct value *val, *mark, *result;
10974 struct frame_info *frame;
10975 const char *exp_start = NULL;
10976 const char *exp_end = NULL;
10977 const char *tok, *end_tok;
10978 int toklen = -1;
10979 const char *cond_start = NULL;
10980 const char *cond_end = NULL;
10981 enum bptype bp_type;
10982 int thread = -1;
10983 int pc = 0;
10984 /* Flag to indicate whether we are going to use masks for
10985 the hardware watchpoint. */
10986 int use_mask = 0;
10987 CORE_ADDR mask = 0;
10988 struct watchpoint *w;
10989 char *expression;
10990 struct cleanup *back_to;
10991
10992 /* Make sure that we actually have parameters to parse. */
10993 if (arg != NULL && arg[0] != '\0')
10994 {
10995 const char *value_start;
10996
10997 exp_end = arg + strlen (arg);
10998
10999 /* Look for "parameter value" pairs at the end
11000 of the arguments string. */
11001 for (tok = exp_end - 1; tok > arg; tok--)
11002 {
11003 /* Skip whitespace at the end of the argument list. */
11004 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11005 tok--;
11006
11007 /* Find the beginning of the last token.
11008 This is the value of the parameter. */
11009 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11010 tok--;
11011 value_start = tok + 1;
11012
11013 /* Skip whitespace. */
11014 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11015 tok--;
11016
11017 end_tok = tok;
11018
11019 /* Find the beginning of the second to last token.
11020 This is the parameter itself. */
11021 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11022 tok--;
11023 tok++;
11024 toklen = end_tok - tok + 1;
11025
11026 if (toklen == 6 && !strncmp (tok, "thread", 6))
11027 {
11028 /* At this point we've found a "thread" token, which means
11029 the user is trying to set a watchpoint that triggers
11030 only in a specific thread. */
11031 char *endp;
11032
11033 if (thread != -1)
11034 error(_("You can specify only one thread."));
11035
11036 /* Extract the thread ID from the next token. */
11037 thread = strtol (value_start, &endp, 0);
11038
11039 /* Check if the user provided a valid numeric value for the
11040 thread ID. */
11041 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11042 error (_("Invalid thread ID specification %s."), value_start);
11043
11044 /* Check if the thread actually exists. */
11045 if (!valid_thread_id (thread))
11046 invalid_thread_id_error (thread);
11047 }
11048 else if (toklen == 4 && !strncmp (tok, "mask", 4))
11049 {
11050 /* We've found a "mask" token, which means the user wants to
11051 create a hardware watchpoint that is going to have the mask
11052 facility. */
11053 struct value *mask_value, *mark;
11054
11055 if (use_mask)
11056 error(_("You can specify only one mask."));
11057
11058 use_mask = just_location = 1;
11059
11060 mark = value_mark ();
11061 mask_value = parse_to_comma_and_eval (&value_start);
11062 mask = value_as_address (mask_value);
11063 value_free_to_mark (mark);
11064 }
11065 else
11066 /* We didn't recognize what we found. We should stop here. */
11067 break;
11068
11069 /* Truncate the string and get rid of the "parameter value" pair before
11070 the arguments string is parsed by the parse_exp_1 function. */
11071 exp_end = tok;
11072 }
11073 }
11074 else
11075 exp_end = arg;
11076
11077 /* Parse the rest of the arguments. From here on out, everything
11078 is in terms of a newly allocated string instead of the original
11079 ARG. */
11080 innermost_block = NULL;
11081 expression = savestring (arg, exp_end - arg);
11082 back_to = make_cleanup (xfree, expression);
11083 exp_start = arg = expression;
11084 exp = parse_exp_1 (&arg, 0, 0, 0);
11085 exp_end = arg;
11086 /* Remove trailing whitespace from the expression before saving it.
11087 This makes the eventual display of the expression string a bit
11088 prettier. */
11089 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11090 --exp_end;
11091
11092 /* Checking if the expression is not constant. */
11093 if (watchpoint_exp_is_const (exp))
11094 {
11095 int len;
11096
11097 len = exp_end - exp_start;
11098 while (len > 0 && isspace (exp_start[len - 1]))
11099 len--;
11100 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11101 }
11102
11103 exp_valid_block = innermost_block;
11104 mark = value_mark ();
11105 fetch_subexp_value (exp, &pc, &val, &result, NULL, just_location);
11106
11107 if (just_location)
11108 {
11109 int ret;
11110
11111 exp_valid_block = NULL;
11112 val = value_addr (result);
11113 release_value (val);
11114 value_free_to_mark (mark);
11115
11116 if (use_mask)
11117 {
11118 ret = target_masked_watch_num_registers (value_as_address (val),
11119 mask);
11120 if (ret == -1)
11121 error (_("This target does not support masked watchpoints."));
11122 else if (ret == -2)
11123 error (_("Invalid mask or memory region."));
11124 }
11125 }
11126 else if (val != NULL)
11127 release_value (val);
11128
11129 tok = skip_spaces_const (arg);
11130 end_tok = skip_to_space_const (tok);
11131
11132 toklen = end_tok - tok;
11133 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11134 {
11135 struct expression *cond;
11136
11137 innermost_block = NULL;
11138 tok = cond_start = end_tok + 1;
11139 cond = parse_exp_1 (&tok, 0, 0, 0);
11140
11141 /* The watchpoint expression may not be local, but the condition
11142 may still be. E.g.: `watch global if local > 0'. */
11143 cond_exp_valid_block = innermost_block;
11144
11145 xfree (cond);
11146 cond_end = tok;
11147 }
11148 if (*tok)
11149 error (_("Junk at end of command."));
11150
11151 frame = block_innermost_frame (exp_valid_block);
11152
11153 /* If the expression is "local", then set up a "watchpoint scope"
11154 breakpoint at the point where we've left the scope of the watchpoint
11155 expression. Create the scope breakpoint before the watchpoint, so
11156 that we will encounter it first in bpstat_stop_status. */
11157 if (exp_valid_block && frame)
11158 {
11159 if (frame_id_p (frame_unwind_caller_id (frame)))
11160 {
11161 scope_breakpoint
11162 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11163 frame_unwind_caller_pc (frame),
11164 bp_watchpoint_scope,
11165 &momentary_breakpoint_ops);
11166
11167 scope_breakpoint->enable_state = bp_enabled;
11168
11169 /* Automatically delete the breakpoint when it hits. */
11170 scope_breakpoint->disposition = disp_del;
11171
11172 /* Only break in the proper frame (help with recursion). */
11173 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11174
11175 /* Set the address at which we will stop. */
11176 scope_breakpoint->loc->gdbarch
11177 = frame_unwind_caller_arch (frame);
11178 scope_breakpoint->loc->requested_address
11179 = frame_unwind_caller_pc (frame);
11180 scope_breakpoint->loc->address
11181 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11182 scope_breakpoint->loc->requested_address,
11183 scope_breakpoint->type);
11184 }
11185 }
11186
11187 /* Now set up the breakpoint. We create all watchpoints as hardware
11188 watchpoints here even if hardware watchpoints are turned off, a call
11189 to update_watchpoint later in this function will cause the type to
11190 drop back to bp_watchpoint (software watchpoint) if required. */
11191
11192 if (accessflag == hw_read)
11193 bp_type = bp_read_watchpoint;
11194 else if (accessflag == hw_access)
11195 bp_type = bp_access_watchpoint;
11196 else
11197 bp_type = bp_hardware_watchpoint;
11198
11199 w = XCNEW (struct watchpoint);
11200 b = &w->base;
11201 if (use_mask)
11202 init_raw_breakpoint_without_location (b, NULL, bp_type,
11203 &masked_watchpoint_breakpoint_ops);
11204 else
11205 init_raw_breakpoint_without_location (b, NULL, bp_type,
11206 &watchpoint_breakpoint_ops);
11207 b->thread = thread;
11208 b->disposition = disp_donttouch;
11209 b->pspace = current_program_space;
11210 w->exp = exp;
11211 w->exp_valid_block = exp_valid_block;
11212 w->cond_exp_valid_block = cond_exp_valid_block;
11213 if (just_location)
11214 {
11215 struct type *t = value_type (val);
11216 CORE_ADDR addr = value_as_address (val);
11217 char *name;
11218
11219 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11220 name = type_to_string (t);
11221
11222 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11223 core_addr_to_string (addr));
11224 xfree (name);
11225
11226 w->exp_string = xstrprintf ("-location %.*s",
11227 (int) (exp_end - exp_start), exp_start);
11228
11229 /* The above expression is in C. */
11230 b->language = language_c;
11231 }
11232 else
11233 w->exp_string = savestring (exp_start, exp_end - exp_start);
11234
11235 if (use_mask)
11236 {
11237 w->hw_wp_mask = mask;
11238 }
11239 else
11240 {
11241 w->val = val;
11242 w->val_valid = 1;
11243 }
11244
11245 if (cond_start)
11246 b->cond_string = savestring (cond_start, cond_end - cond_start);
11247 else
11248 b->cond_string = 0;
11249
11250 if (frame)
11251 {
11252 w->watchpoint_frame = get_frame_id (frame);
11253 w->watchpoint_thread = inferior_ptid;
11254 }
11255 else
11256 {
11257 w->watchpoint_frame = null_frame_id;
11258 w->watchpoint_thread = null_ptid;
11259 }
11260
11261 if (scope_breakpoint != NULL)
11262 {
11263 /* The scope breakpoint is related to the watchpoint. We will
11264 need to act on them together. */
11265 b->related_breakpoint = scope_breakpoint;
11266 scope_breakpoint->related_breakpoint = b;
11267 }
11268
11269 if (!just_location)
11270 value_free_to_mark (mark);
11271
11272 TRY_CATCH (e, RETURN_MASK_ALL)
11273 {
11274 /* Finally update the new watchpoint. This creates the locations
11275 that should be inserted. */
11276 update_watchpoint (w, 1);
11277 }
11278 if (e.reason < 0)
11279 {
11280 delete_breakpoint (b);
11281 throw_exception (e);
11282 }
11283
11284 install_breakpoint (internal, b, 1);
11285 do_cleanups (back_to);
11286 }
11287
11288 /* Return count of debug registers needed to watch the given expression.
11289 If the watchpoint cannot be handled in hardware return zero. */
11290
11291 static int
11292 can_use_hardware_watchpoint (struct value *v)
11293 {
11294 int found_memory_cnt = 0;
11295 struct value *head = v;
11296
11297 /* Did the user specifically forbid us to use hardware watchpoints? */
11298 if (!can_use_hw_watchpoints)
11299 return 0;
11300
11301 /* Make sure that the value of the expression depends only upon
11302 memory contents, and values computed from them within GDB. If we
11303 find any register references or function calls, we can't use a
11304 hardware watchpoint.
11305
11306 The idea here is that evaluating an expression generates a series
11307 of values, one holding the value of every subexpression. (The
11308 expression a*b+c has five subexpressions: a, b, a*b, c, and
11309 a*b+c.) GDB's values hold almost enough information to establish
11310 the criteria given above --- they identify memory lvalues,
11311 register lvalues, computed values, etcetera. So we can evaluate
11312 the expression, and then scan the chain of values that leaves
11313 behind to decide whether we can detect any possible change to the
11314 expression's final value using only hardware watchpoints.
11315
11316 However, I don't think that the values returned by inferior
11317 function calls are special in any way. So this function may not
11318 notice that an expression involving an inferior function call
11319 can't be watched with hardware watchpoints. FIXME. */
11320 for (; v; v = value_next (v))
11321 {
11322 if (VALUE_LVAL (v) == lval_memory)
11323 {
11324 if (v != head && value_lazy (v))
11325 /* A lazy memory lvalue in the chain is one that GDB never
11326 needed to fetch; we either just used its address (e.g.,
11327 `a' in `a.b') or we never needed it at all (e.g., `a'
11328 in `a,b'). This doesn't apply to HEAD; if that is
11329 lazy then it was not readable, but watch it anyway. */
11330 ;
11331 else
11332 {
11333 /* Ahh, memory we actually used! Check if we can cover
11334 it with hardware watchpoints. */
11335 struct type *vtype = check_typedef (value_type (v));
11336
11337 /* We only watch structs and arrays if user asked for it
11338 explicitly, never if they just happen to appear in a
11339 middle of some value chain. */
11340 if (v == head
11341 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11342 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11343 {
11344 CORE_ADDR vaddr = value_address (v);
11345 int len;
11346 int num_regs;
11347
11348 len = (target_exact_watchpoints
11349 && is_scalar_type_recursive (vtype))?
11350 1 : TYPE_LENGTH (value_type (v));
11351
11352 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11353 if (!num_regs)
11354 return 0;
11355 else
11356 found_memory_cnt += num_regs;
11357 }
11358 }
11359 }
11360 else if (VALUE_LVAL (v) != not_lval
11361 && deprecated_value_modifiable (v) == 0)
11362 return 0; /* These are values from the history (e.g., $1). */
11363 else if (VALUE_LVAL (v) == lval_register)
11364 return 0; /* Cannot watch a register with a HW watchpoint. */
11365 }
11366
11367 /* The expression itself looks suitable for using a hardware
11368 watchpoint, but give the target machine a chance to reject it. */
11369 return found_memory_cnt;
11370 }
11371
11372 void
11373 watch_command_wrapper (char *arg, int from_tty, int internal)
11374 {
11375 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11376 }
11377
11378 /* A helper function that looks for the "-location" argument and then
11379 calls watch_command_1. */
11380
11381 static void
11382 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11383 {
11384 int just_location = 0;
11385
11386 if (arg
11387 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11388 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11389 {
11390 arg = skip_spaces (arg);
11391 just_location = 1;
11392 }
11393
11394 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11395 }
11396
11397 static void
11398 watch_command (char *arg, int from_tty)
11399 {
11400 watch_maybe_just_location (arg, hw_write, from_tty);
11401 }
11402
11403 void
11404 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11405 {
11406 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11407 }
11408
11409 static void
11410 rwatch_command (char *arg, int from_tty)
11411 {
11412 watch_maybe_just_location (arg, hw_read, from_tty);
11413 }
11414
11415 void
11416 awatch_command_wrapper (char *arg, int from_tty, int internal)
11417 {
11418 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11419 }
11420
11421 static void
11422 awatch_command (char *arg, int from_tty)
11423 {
11424 watch_maybe_just_location (arg, hw_access, from_tty);
11425 }
11426 \f
11427
11428 /* Helper routines for the until_command routine in infcmd.c. Here
11429 because it uses the mechanisms of breakpoints. */
11430
11431 struct until_break_command_continuation_args
11432 {
11433 struct breakpoint *breakpoint;
11434 struct breakpoint *breakpoint2;
11435 int thread_num;
11436 };
11437
11438 /* This function is called by fetch_inferior_event via the
11439 cmd_continuation pointer, to complete the until command. It takes
11440 care of cleaning up the temporary breakpoints set up by the until
11441 command. */
11442 static void
11443 until_break_command_continuation (void *arg, int err)
11444 {
11445 struct until_break_command_continuation_args *a = arg;
11446
11447 delete_breakpoint (a->breakpoint);
11448 if (a->breakpoint2)
11449 delete_breakpoint (a->breakpoint2);
11450 delete_longjmp_breakpoint (a->thread_num);
11451 }
11452
11453 void
11454 until_break_command (char *arg, int from_tty, int anywhere)
11455 {
11456 struct symtabs_and_lines sals;
11457 struct symtab_and_line sal;
11458 struct frame_info *frame;
11459 struct gdbarch *frame_gdbarch;
11460 struct frame_id stack_frame_id;
11461 struct frame_id caller_frame_id;
11462 struct breakpoint *breakpoint;
11463 struct breakpoint *breakpoint2 = NULL;
11464 struct cleanup *old_chain;
11465 int thread;
11466 struct thread_info *tp;
11467
11468 clear_proceed_status ();
11469
11470 /* Set a breakpoint where the user wants it and at return from
11471 this function. */
11472
11473 if (last_displayed_sal_is_valid ())
11474 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11475 get_last_displayed_symtab (),
11476 get_last_displayed_line ());
11477 else
11478 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11479 (struct symtab *) NULL, 0);
11480
11481 if (sals.nelts != 1)
11482 error (_("Couldn't get information on specified line."));
11483
11484 sal = sals.sals[0];
11485 xfree (sals.sals); /* malloc'd, so freed. */
11486
11487 if (*arg)
11488 error (_("Junk at end of arguments."));
11489
11490 resolve_sal_pc (&sal);
11491
11492 tp = inferior_thread ();
11493 thread = tp->num;
11494
11495 old_chain = make_cleanup (null_cleanup, NULL);
11496
11497 /* Note linespec handling above invalidates the frame chain.
11498 Installing a breakpoint also invalidates the frame chain (as it
11499 may need to switch threads), so do any frame handling before
11500 that. */
11501
11502 frame = get_selected_frame (NULL);
11503 frame_gdbarch = get_frame_arch (frame);
11504 stack_frame_id = get_stack_frame_id (frame);
11505 caller_frame_id = frame_unwind_caller_id (frame);
11506
11507 /* Keep within the current frame, or in frames called by the current
11508 one. */
11509
11510 if (frame_id_p (caller_frame_id))
11511 {
11512 struct symtab_and_line sal2;
11513
11514 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11515 sal2.pc = frame_unwind_caller_pc (frame);
11516 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11517 sal2,
11518 caller_frame_id,
11519 bp_until);
11520 make_cleanup_delete_breakpoint (breakpoint2);
11521
11522 set_longjmp_breakpoint (tp, caller_frame_id);
11523 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11524 }
11525
11526 /* set_momentary_breakpoint could invalidate FRAME. */
11527 frame = NULL;
11528
11529 if (anywhere)
11530 /* If the user told us to continue until a specified location,
11531 we don't specify a frame at which we need to stop. */
11532 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11533 null_frame_id, bp_until);
11534 else
11535 /* Otherwise, specify the selected frame, because we want to stop
11536 only at the very same frame. */
11537 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11538 stack_frame_id, bp_until);
11539 make_cleanup_delete_breakpoint (breakpoint);
11540
11541 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11542
11543 /* If we are running asynchronously, and proceed call above has
11544 actually managed to start the target, arrange for breakpoints to
11545 be deleted when the target stops. Otherwise, we're already
11546 stopped and delete breakpoints via cleanup chain. */
11547
11548 if (target_can_async_p () && is_running (inferior_ptid))
11549 {
11550 struct until_break_command_continuation_args *args;
11551 args = xmalloc (sizeof (*args));
11552
11553 args->breakpoint = breakpoint;
11554 args->breakpoint2 = breakpoint2;
11555 args->thread_num = thread;
11556
11557 discard_cleanups (old_chain);
11558 add_continuation (inferior_thread (),
11559 until_break_command_continuation, args,
11560 xfree);
11561 }
11562 else
11563 do_cleanups (old_chain);
11564 }
11565
11566 /* This function attempts to parse an optional "if <cond>" clause
11567 from the arg string. If one is not found, it returns NULL.
11568
11569 Else, it returns a pointer to the condition string. (It does not
11570 attempt to evaluate the string against a particular block.) And,
11571 it updates arg to point to the first character following the parsed
11572 if clause in the arg string. */
11573
11574 char *
11575 ep_parse_optional_if_clause (char **arg)
11576 {
11577 char *cond_string;
11578
11579 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11580 return NULL;
11581
11582 /* Skip the "if" keyword. */
11583 (*arg) += 2;
11584
11585 /* Skip any extra leading whitespace, and record the start of the
11586 condition string. */
11587 *arg = skip_spaces (*arg);
11588 cond_string = *arg;
11589
11590 /* Assume that the condition occupies the remainder of the arg
11591 string. */
11592 (*arg) += strlen (cond_string);
11593
11594 return cond_string;
11595 }
11596
11597 /* Commands to deal with catching events, such as signals, exceptions,
11598 process start/exit, etc. */
11599
11600 typedef enum
11601 {
11602 catch_fork_temporary, catch_vfork_temporary,
11603 catch_fork_permanent, catch_vfork_permanent
11604 }
11605 catch_fork_kind;
11606
11607 static void
11608 catch_fork_command_1 (char *arg, int from_tty,
11609 struct cmd_list_element *command)
11610 {
11611 struct gdbarch *gdbarch = get_current_arch ();
11612 char *cond_string = NULL;
11613 catch_fork_kind fork_kind;
11614 int tempflag;
11615
11616 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11617 tempflag = (fork_kind == catch_fork_temporary
11618 || fork_kind == catch_vfork_temporary);
11619
11620 if (!arg)
11621 arg = "";
11622 arg = skip_spaces (arg);
11623
11624 /* The allowed syntax is:
11625 catch [v]fork
11626 catch [v]fork if <cond>
11627
11628 First, check if there's an if clause. */
11629 cond_string = ep_parse_optional_if_clause (&arg);
11630
11631 if ((*arg != '\0') && !isspace (*arg))
11632 error (_("Junk at end of arguments."));
11633
11634 /* If this target supports it, create a fork or vfork catchpoint
11635 and enable reporting of such events. */
11636 switch (fork_kind)
11637 {
11638 case catch_fork_temporary:
11639 case catch_fork_permanent:
11640 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11641 &catch_fork_breakpoint_ops);
11642 break;
11643 case catch_vfork_temporary:
11644 case catch_vfork_permanent:
11645 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11646 &catch_vfork_breakpoint_ops);
11647 break;
11648 default:
11649 error (_("unsupported or unknown fork kind; cannot catch it"));
11650 break;
11651 }
11652 }
11653
11654 static void
11655 catch_exec_command_1 (char *arg, int from_tty,
11656 struct cmd_list_element *command)
11657 {
11658 struct exec_catchpoint *c;
11659 struct gdbarch *gdbarch = get_current_arch ();
11660 int tempflag;
11661 char *cond_string = NULL;
11662
11663 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11664
11665 if (!arg)
11666 arg = "";
11667 arg = skip_spaces (arg);
11668
11669 /* The allowed syntax is:
11670 catch exec
11671 catch exec if <cond>
11672
11673 First, check if there's an if clause. */
11674 cond_string = ep_parse_optional_if_clause (&arg);
11675
11676 if ((*arg != '\0') && !isspace (*arg))
11677 error (_("Junk at end of arguments."));
11678
11679 c = XNEW (struct exec_catchpoint);
11680 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11681 &catch_exec_breakpoint_ops);
11682 c->exec_pathname = NULL;
11683
11684 install_breakpoint (0, &c->base, 1);
11685 }
11686
11687 void
11688 init_ada_exception_breakpoint (struct breakpoint *b,
11689 struct gdbarch *gdbarch,
11690 struct symtab_and_line sal,
11691 char *addr_string,
11692 const struct breakpoint_ops *ops,
11693 int tempflag,
11694 int enabled,
11695 int from_tty)
11696 {
11697 if (from_tty)
11698 {
11699 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11700 if (!loc_gdbarch)
11701 loc_gdbarch = gdbarch;
11702
11703 describe_other_breakpoints (loc_gdbarch,
11704 sal.pspace, sal.pc, sal.section, -1);
11705 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11706 version for exception catchpoints, because two catchpoints
11707 used for different exception names will use the same address.
11708 In this case, a "breakpoint ... also set at..." warning is
11709 unproductive. Besides, the warning phrasing is also a bit
11710 inappropriate, we should use the word catchpoint, and tell
11711 the user what type of catchpoint it is. The above is good
11712 enough for now, though. */
11713 }
11714
11715 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11716
11717 b->enable_state = enabled ? bp_enabled : bp_disabled;
11718 b->disposition = tempflag ? disp_del : disp_donttouch;
11719 b->addr_string = addr_string;
11720 b->language = language_ada;
11721 }
11722
11723 /* Splits the argument using space as delimiter. Returns an xmalloc'd
11724 filter list, or NULL if no filtering is required. */
11725 static VEC(int) *
11726 catch_syscall_split_args (char *arg)
11727 {
11728 VEC(int) *result = NULL;
11729 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
11730
11731 while (*arg != '\0')
11732 {
11733 int i, syscall_number;
11734 char *endptr;
11735 char cur_name[128];
11736 struct syscall s;
11737
11738 /* Skip whitespace. */
11739 arg = skip_spaces (arg);
11740
11741 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
11742 cur_name[i] = arg[i];
11743 cur_name[i] = '\0';
11744 arg += i;
11745
11746 /* Check if the user provided a syscall name or a number. */
11747 syscall_number = (int) strtol (cur_name, &endptr, 0);
11748 if (*endptr == '\0')
11749 get_syscall_by_number (syscall_number, &s);
11750 else
11751 {
11752 /* We have a name. Let's check if it's valid and convert it
11753 to a number. */
11754 get_syscall_by_name (cur_name, &s);
11755
11756 if (s.number == UNKNOWN_SYSCALL)
11757 /* Here we have to issue an error instead of a warning,
11758 because GDB cannot do anything useful if there's no
11759 syscall number to be caught. */
11760 error (_("Unknown syscall name '%s'."), cur_name);
11761 }
11762
11763 /* Ok, it's valid. */
11764 VEC_safe_push (int, result, s.number);
11765 }
11766
11767 discard_cleanups (cleanup);
11768 return result;
11769 }
11770
11771 /* Implement the "catch syscall" command. */
11772
11773 static void
11774 catch_syscall_command_1 (char *arg, int from_tty,
11775 struct cmd_list_element *command)
11776 {
11777 int tempflag;
11778 VEC(int) *filter;
11779 struct syscall s;
11780 struct gdbarch *gdbarch = get_current_arch ();
11781
11782 /* Checking if the feature if supported. */
11783 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
11784 error (_("The feature 'catch syscall' is not supported on \
11785 this architecture yet."));
11786
11787 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11788
11789 arg = skip_spaces (arg);
11790
11791 /* We need to do this first "dummy" translation in order
11792 to get the syscall XML file loaded or, most important,
11793 to display a warning to the user if there's no XML file
11794 for his/her architecture. */
11795 get_syscall_by_number (0, &s);
11796
11797 /* The allowed syntax is:
11798 catch syscall
11799 catch syscall <name | number> [<name | number> ... <name | number>]
11800
11801 Let's check if there's a syscall name. */
11802
11803 if (arg != NULL)
11804 filter = catch_syscall_split_args (arg);
11805 else
11806 filter = NULL;
11807
11808 create_syscall_event_catchpoint (tempflag, filter,
11809 &catch_syscall_breakpoint_ops);
11810 }
11811
11812 static void
11813 catch_command (char *arg, int from_tty)
11814 {
11815 error (_("Catch requires an event name."));
11816 }
11817 \f
11818
11819 static void
11820 tcatch_command (char *arg, int from_tty)
11821 {
11822 error (_("Catch requires an event name."));
11823 }
11824
11825 /* A qsort comparison function that sorts breakpoints in order. */
11826
11827 static int
11828 compare_breakpoints (const void *a, const void *b)
11829 {
11830 const breakpoint_p *ba = a;
11831 uintptr_t ua = (uintptr_t) *ba;
11832 const breakpoint_p *bb = b;
11833 uintptr_t ub = (uintptr_t) *bb;
11834
11835 if ((*ba)->number < (*bb)->number)
11836 return -1;
11837 else if ((*ba)->number > (*bb)->number)
11838 return 1;
11839
11840 /* Now sort by address, in case we see, e..g, two breakpoints with
11841 the number 0. */
11842 if (ua < ub)
11843 return -1;
11844 return ua > ub ? 1 : 0;
11845 }
11846
11847 /* Delete breakpoints by address or line. */
11848
11849 static void
11850 clear_command (char *arg, int from_tty)
11851 {
11852 struct breakpoint *b, *prev;
11853 VEC(breakpoint_p) *found = 0;
11854 int ix;
11855 int default_match;
11856 struct symtabs_and_lines sals;
11857 struct symtab_and_line sal;
11858 int i;
11859 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11860
11861 if (arg)
11862 {
11863 sals = decode_line_with_current_source (arg,
11864 (DECODE_LINE_FUNFIRSTLINE
11865 | DECODE_LINE_LIST_MODE));
11866 make_cleanup (xfree, sals.sals);
11867 default_match = 0;
11868 }
11869 else
11870 {
11871 sals.sals = (struct symtab_and_line *)
11872 xmalloc (sizeof (struct symtab_and_line));
11873 make_cleanup (xfree, sals.sals);
11874 init_sal (&sal); /* Initialize to zeroes. */
11875
11876 /* Set sal's line, symtab, pc, and pspace to the values
11877 corresponding to the last call to print_frame_info. If the
11878 codepoint is not valid, this will set all the fields to 0. */
11879 get_last_displayed_sal (&sal);
11880 if (sal.symtab == 0)
11881 error (_("No source file specified."));
11882
11883 sals.sals[0] = sal;
11884 sals.nelts = 1;
11885
11886 default_match = 1;
11887 }
11888
11889 /* We don't call resolve_sal_pc here. That's not as bad as it
11890 seems, because all existing breakpoints typically have both
11891 file/line and pc set. So, if clear is given file/line, we can
11892 match this to existing breakpoint without obtaining pc at all.
11893
11894 We only support clearing given the address explicitly
11895 present in breakpoint table. Say, we've set breakpoint
11896 at file:line. There were several PC values for that file:line,
11897 due to optimization, all in one block.
11898
11899 We've picked one PC value. If "clear" is issued with another
11900 PC corresponding to the same file:line, the breakpoint won't
11901 be cleared. We probably can still clear the breakpoint, but
11902 since the other PC value is never presented to user, user
11903 can only find it by guessing, and it does not seem important
11904 to support that. */
11905
11906 /* For each line spec given, delete bps which correspond to it. Do
11907 it in two passes, solely to preserve the current behavior that
11908 from_tty is forced true if we delete more than one
11909 breakpoint. */
11910
11911 found = NULL;
11912 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11913 for (i = 0; i < sals.nelts; i++)
11914 {
11915 const char *sal_fullname;
11916
11917 /* If exact pc given, clear bpts at that pc.
11918 If line given (pc == 0), clear all bpts on specified line.
11919 If defaulting, clear all bpts on default line
11920 or at default pc.
11921
11922 defaulting sal.pc != 0 tests to do
11923
11924 0 1 pc
11925 1 1 pc _and_ line
11926 0 0 line
11927 1 0 <can't happen> */
11928
11929 sal = sals.sals[i];
11930 sal_fullname = (sal.symtab == NULL
11931 ? NULL : symtab_to_fullname (sal.symtab));
11932
11933 /* Find all matching breakpoints and add them to 'found'. */
11934 ALL_BREAKPOINTS (b)
11935 {
11936 int match = 0;
11937 /* Are we going to delete b? */
11938 if (b->type != bp_none && !is_watchpoint (b))
11939 {
11940 struct bp_location *loc = b->loc;
11941 for (; loc; loc = loc->next)
11942 {
11943 /* If the user specified file:line, don't allow a PC
11944 match. This matches historical gdb behavior. */
11945 int pc_match = (!sal.explicit_line
11946 && sal.pc
11947 && (loc->pspace == sal.pspace)
11948 && (loc->address == sal.pc)
11949 && (!section_is_overlay (loc->section)
11950 || loc->section == sal.section));
11951 int line_match = 0;
11952
11953 if ((default_match || sal.explicit_line)
11954 && loc->symtab != NULL
11955 && sal_fullname != NULL
11956 && sal.pspace == loc->pspace
11957 && loc->line_number == sal.line
11958 && filename_cmp (symtab_to_fullname (loc->symtab),
11959 sal_fullname) == 0)
11960 line_match = 1;
11961
11962 if (pc_match || line_match)
11963 {
11964 match = 1;
11965 break;
11966 }
11967 }
11968 }
11969
11970 if (match)
11971 VEC_safe_push(breakpoint_p, found, b);
11972 }
11973 }
11974
11975 /* Now go thru the 'found' chain and delete them. */
11976 if (VEC_empty(breakpoint_p, found))
11977 {
11978 if (arg)
11979 error (_("No breakpoint at %s."), arg);
11980 else
11981 error (_("No breakpoint at this line."));
11982 }
11983
11984 /* Remove duplicates from the vec. */
11985 qsort (VEC_address (breakpoint_p, found),
11986 VEC_length (breakpoint_p, found),
11987 sizeof (breakpoint_p),
11988 compare_breakpoints);
11989 prev = VEC_index (breakpoint_p, found, 0);
11990 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
11991 {
11992 if (b == prev)
11993 {
11994 VEC_ordered_remove (breakpoint_p, found, ix);
11995 --ix;
11996 }
11997 }
11998
11999 if (VEC_length(breakpoint_p, found) > 1)
12000 from_tty = 1; /* Always report if deleted more than one. */
12001 if (from_tty)
12002 {
12003 if (VEC_length(breakpoint_p, found) == 1)
12004 printf_unfiltered (_("Deleted breakpoint "));
12005 else
12006 printf_unfiltered (_("Deleted breakpoints "));
12007 }
12008
12009 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
12010 {
12011 if (from_tty)
12012 printf_unfiltered ("%d ", b->number);
12013 delete_breakpoint (b);
12014 }
12015 if (from_tty)
12016 putchar_unfiltered ('\n');
12017
12018 do_cleanups (cleanups);
12019 }
12020 \f
12021 /* Delete breakpoint in BS if they are `delete' breakpoints and
12022 all breakpoints that are marked for deletion, whether hit or not.
12023 This is called after any breakpoint is hit, or after errors. */
12024
12025 void
12026 breakpoint_auto_delete (bpstat bs)
12027 {
12028 struct breakpoint *b, *b_tmp;
12029
12030 for (; bs; bs = bs->next)
12031 if (bs->breakpoint_at
12032 && bs->breakpoint_at->disposition == disp_del
12033 && bs->stop)
12034 delete_breakpoint (bs->breakpoint_at);
12035
12036 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12037 {
12038 if (b->disposition == disp_del_at_next_stop)
12039 delete_breakpoint (b);
12040 }
12041 }
12042
12043 /* A comparison function for bp_location AP and BP being interfaced to
12044 qsort. Sort elements primarily by their ADDRESS (no matter what
12045 does breakpoint_address_is_meaningful say for its OWNER),
12046 secondarily by ordering first bp_permanent OWNERed elements and
12047 terciarily just ensuring the array is sorted stable way despite
12048 qsort being an unstable algorithm. */
12049
12050 static int
12051 bp_location_compare (const void *ap, const void *bp)
12052 {
12053 struct bp_location *a = *(void **) ap;
12054 struct bp_location *b = *(void **) bp;
12055 /* A and B come from existing breakpoints having non-NULL OWNER. */
12056 int a_perm = a->owner->enable_state == bp_permanent;
12057 int b_perm = b->owner->enable_state == bp_permanent;
12058
12059 if (a->address != b->address)
12060 return (a->address > b->address) - (a->address < b->address);
12061
12062 /* Sort locations at the same address by their pspace number, keeping
12063 locations of the same inferior (in a multi-inferior environment)
12064 grouped. */
12065
12066 if (a->pspace->num != b->pspace->num)
12067 return ((a->pspace->num > b->pspace->num)
12068 - (a->pspace->num < b->pspace->num));
12069
12070 /* Sort permanent breakpoints first. */
12071 if (a_perm != b_perm)
12072 return (a_perm < b_perm) - (a_perm > b_perm);
12073
12074 /* Make the internal GDB representation stable across GDB runs
12075 where A and B memory inside GDB can differ. Breakpoint locations of
12076 the same type at the same address can be sorted in arbitrary order. */
12077
12078 if (a->owner->number != b->owner->number)
12079 return ((a->owner->number > b->owner->number)
12080 - (a->owner->number < b->owner->number));
12081
12082 return (a > b) - (a < b);
12083 }
12084
12085 /* Set bp_location_placed_address_before_address_max and
12086 bp_location_shadow_len_after_address_max according to the current
12087 content of the bp_location array. */
12088
12089 static void
12090 bp_location_target_extensions_update (void)
12091 {
12092 struct bp_location *bl, **blp_tmp;
12093
12094 bp_location_placed_address_before_address_max = 0;
12095 bp_location_shadow_len_after_address_max = 0;
12096
12097 ALL_BP_LOCATIONS (bl, blp_tmp)
12098 {
12099 CORE_ADDR start, end, addr;
12100
12101 if (!bp_location_has_shadow (bl))
12102 continue;
12103
12104 start = bl->target_info.placed_address;
12105 end = start + bl->target_info.shadow_len;
12106
12107 gdb_assert (bl->address >= start);
12108 addr = bl->address - start;
12109 if (addr > bp_location_placed_address_before_address_max)
12110 bp_location_placed_address_before_address_max = addr;
12111
12112 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12113
12114 gdb_assert (bl->address < end);
12115 addr = end - bl->address;
12116 if (addr > bp_location_shadow_len_after_address_max)
12117 bp_location_shadow_len_after_address_max = addr;
12118 }
12119 }
12120
12121 /* Download tracepoint locations if they haven't been. */
12122
12123 static void
12124 download_tracepoint_locations (void)
12125 {
12126 struct breakpoint *b;
12127 struct cleanup *old_chain;
12128
12129 if (!target_can_download_tracepoint ())
12130 return;
12131
12132 old_chain = save_current_space_and_thread ();
12133
12134 ALL_TRACEPOINTS (b)
12135 {
12136 struct bp_location *bl;
12137 struct tracepoint *t;
12138 int bp_location_downloaded = 0;
12139
12140 if ((b->type == bp_fast_tracepoint
12141 ? !may_insert_fast_tracepoints
12142 : !may_insert_tracepoints))
12143 continue;
12144
12145 for (bl = b->loc; bl; bl = bl->next)
12146 {
12147 /* In tracepoint, locations are _never_ duplicated, so
12148 should_be_inserted is equivalent to
12149 unduplicated_should_be_inserted. */
12150 if (!should_be_inserted (bl) || bl->inserted)
12151 continue;
12152
12153 switch_to_program_space_and_thread (bl->pspace);
12154
12155 target_download_tracepoint (bl);
12156
12157 bl->inserted = 1;
12158 bp_location_downloaded = 1;
12159 }
12160 t = (struct tracepoint *) b;
12161 t->number_on_target = b->number;
12162 if (bp_location_downloaded)
12163 observer_notify_breakpoint_modified (b);
12164 }
12165
12166 do_cleanups (old_chain);
12167 }
12168
12169 /* Swap the insertion/duplication state between two locations. */
12170
12171 static void
12172 swap_insertion (struct bp_location *left, struct bp_location *right)
12173 {
12174 const int left_inserted = left->inserted;
12175 const int left_duplicate = left->duplicate;
12176 const int left_needs_update = left->needs_update;
12177 const struct bp_target_info left_target_info = left->target_info;
12178
12179 /* Locations of tracepoints can never be duplicated. */
12180 if (is_tracepoint (left->owner))
12181 gdb_assert (!left->duplicate);
12182 if (is_tracepoint (right->owner))
12183 gdb_assert (!right->duplicate);
12184
12185 left->inserted = right->inserted;
12186 left->duplicate = right->duplicate;
12187 left->needs_update = right->needs_update;
12188 left->target_info = right->target_info;
12189 right->inserted = left_inserted;
12190 right->duplicate = left_duplicate;
12191 right->needs_update = left_needs_update;
12192 right->target_info = left_target_info;
12193 }
12194
12195 /* Force the re-insertion of the locations at ADDRESS. This is called
12196 once a new/deleted/modified duplicate location is found and we are evaluating
12197 conditions on the target's side. Such conditions need to be updated on
12198 the target. */
12199
12200 static void
12201 force_breakpoint_reinsertion (struct bp_location *bl)
12202 {
12203 struct bp_location **locp = NULL, **loc2p;
12204 struct bp_location *loc;
12205 CORE_ADDR address = 0;
12206 int pspace_num;
12207
12208 address = bl->address;
12209 pspace_num = bl->pspace->num;
12210
12211 /* This is only meaningful if the target is
12212 evaluating conditions and if the user has
12213 opted for condition evaluation on the target's
12214 side. */
12215 if (gdb_evaluates_breakpoint_condition_p ()
12216 || !target_supports_evaluation_of_breakpoint_conditions ())
12217 return;
12218
12219 /* Flag all breakpoint locations with this address and
12220 the same program space as the location
12221 as "its condition has changed". We need to
12222 update the conditions on the target's side. */
12223 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12224 {
12225 loc = *loc2p;
12226
12227 if (!is_breakpoint (loc->owner)
12228 || pspace_num != loc->pspace->num)
12229 continue;
12230
12231 /* Flag the location appropriately. We use a different state to
12232 let everyone know that we already updated the set of locations
12233 with addr bl->address and program space bl->pspace. This is so
12234 we don't have to keep calling these functions just to mark locations
12235 that have already been marked. */
12236 loc->condition_changed = condition_updated;
12237
12238 /* Free the agent expression bytecode as well. We will compute
12239 it later on. */
12240 if (loc->cond_bytecode)
12241 {
12242 free_agent_expr (loc->cond_bytecode);
12243 loc->cond_bytecode = NULL;
12244 }
12245 }
12246 }
12247
12248 /* If SHOULD_INSERT is false, do not insert any breakpoint locations
12249 into the inferior, only remove already-inserted locations that no
12250 longer should be inserted. Functions that delete a breakpoint or
12251 breakpoints should pass false, so that deleting a breakpoint
12252 doesn't have the side effect of inserting the locations of other
12253 breakpoints that are marked not-inserted, but should_be_inserted
12254 returns true on them.
12255
12256 This behaviour is useful is situations close to tear-down -- e.g.,
12257 after an exec, while the target still has execution, but breakpoint
12258 shadows of the previous executable image should *NOT* be restored
12259 to the new image; or before detaching, where the target still has
12260 execution and wants to delete breakpoints from GDB's lists, and all
12261 breakpoints had already been removed from the inferior. */
12262
12263 static void
12264 update_global_location_list (int should_insert)
12265 {
12266 struct breakpoint *b;
12267 struct bp_location **locp, *loc;
12268 struct cleanup *cleanups;
12269 /* Last breakpoint location address that was marked for update. */
12270 CORE_ADDR last_addr = 0;
12271 /* Last breakpoint location program space that was marked for update. */
12272 int last_pspace_num = -1;
12273
12274 /* Used in the duplicates detection below. When iterating over all
12275 bp_locations, points to the first bp_location of a given address.
12276 Breakpoints and watchpoints of different types are never
12277 duplicates of each other. Keep one pointer for each type of
12278 breakpoint/watchpoint, so we only need to loop over all locations
12279 once. */
12280 struct bp_location *bp_loc_first; /* breakpoint */
12281 struct bp_location *wp_loc_first; /* hardware watchpoint */
12282 struct bp_location *awp_loc_first; /* access watchpoint */
12283 struct bp_location *rwp_loc_first; /* read watchpoint */
12284
12285 /* Saved former bp_location array which we compare against the newly
12286 built bp_location from the current state of ALL_BREAKPOINTS. */
12287 struct bp_location **old_location, **old_locp;
12288 unsigned old_location_count;
12289
12290 old_location = bp_location;
12291 old_location_count = bp_location_count;
12292 bp_location = NULL;
12293 bp_location_count = 0;
12294 cleanups = make_cleanup (xfree, old_location);
12295
12296 ALL_BREAKPOINTS (b)
12297 for (loc = b->loc; loc; loc = loc->next)
12298 bp_location_count++;
12299
12300 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12301 locp = bp_location;
12302 ALL_BREAKPOINTS (b)
12303 for (loc = b->loc; loc; loc = loc->next)
12304 *locp++ = loc;
12305 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12306 bp_location_compare);
12307
12308 bp_location_target_extensions_update ();
12309
12310 /* Identify bp_location instances that are no longer present in the
12311 new list, and therefore should be freed. Note that it's not
12312 necessary that those locations should be removed from inferior --
12313 if there's another location at the same address (previously
12314 marked as duplicate), we don't need to remove/insert the
12315 location.
12316
12317 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12318 and former bp_location array state respectively. */
12319
12320 locp = bp_location;
12321 for (old_locp = old_location; old_locp < old_location + old_location_count;
12322 old_locp++)
12323 {
12324 struct bp_location *old_loc = *old_locp;
12325 struct bp_location **loc2p;
12326
12327 /* Tells if 'old_loc' is found among the new locations. If
12328 not, we have to free it. */
12329 int found_object = 0;
12330 /* Tells if the location should remain inserted in the target. */
12331 int keep_in_target = 0;
12332 int removed = 0;
12333
12334 /* Skip LOCP entries which will definitely never be needed.
12335 Stop either at or being the one matching OLD_LOC. */
12336 while (locp < bp_location + bp_location_count
12337 && (*locp)->address < old_loc->address)
12338 locp++;
12339
12340 for (loc2p = locp;
12341 (loc2p < bp_location + bp_location_count
12342 && (*loc2p)->address == old_loc->address);
12343 loc2p++)
12344 {
12345 /* Check if this is a new/duplicated location or a duplicated
12346 location that had its condition modified. If so, we want to send
12347 its condition to the target if evaluation of conditions is taking
12348 place there. */
12349 if ((*loc2p)->condition_changed == condition_modified
12350 && (last_addr != old_loc->address
12351 || last_pspace_num != old_loc->pspace->num))
12352 {
12353 force_breakpoint_reinsertion (*loc2p);
12354 last_pspace_num = old_loc->pspace->num;
12355 }
12356
12357 if (*loc2p == old_loc)
12358 found_object = 1;
12359 }
12360
12361 /* We have already handled this address, update it so that we don't
12362 have to go through updates again. */
12363 last_addr = old_loc->address;
12364
12365 /* Target-side condition evaluation: Handle deleted locations. */
12366 if (!found_object)
12367 force_breakpoint_reinsertion (old_loc);
12368
12369 /* If this location is no longer present, and inserted, look if
12370 there's maybe a new location at the same address. If so,
12371 mark that one inserted, and don't remove this one. This is
12372 needed so that we don't have a time window where a breakpoint
12373 at certain location is not inserted. */
12374
12375 if (old_loc->inserted)
12376 {
12377 /* If the location is inserted now, we might have to remove
12378 it. */
12379
12380 if (found_object && should_be_inserted (old_loc))
12381 {
12382 /* The location is still present in the location list,
12383 and still should be inserted. Don't do anything. */
12384 keep_in_target = 1;
12385 }
12386 else
12387 {
12388 /* This location still exists, but it won't be kept in the
12389 target since it may have been disabled. We proceed to
12390 remove its target-side condition. */
12391
12392 /* The location is either no longer present, or got
12393 disabled. See if there's another location at the
12394 same address, in which case we don't need to remove
12395 this one from the target. */
12396
12397 /* OLD_LOC comes from existing struct breakpoint. */
12398 if (breakpoint_address_is_meaningful (old_loc->owner))
12399 {
12400 for (loc2p = locp;
12401 (loc2p < bp_location + bp_location_count
12402 && (*loc2p)->address == old_loc->address);
12403 loc2p++)
12404 {
12405 struct bp_location *loc2 = *loc2p;
12406
12407 if (breakpoint_locations_match (loc2, old_loc))
12408 {
12409 /* Read watchpoint locations are switched to
12410 access watchpoints, if the former are not
12411 supported, but the latter are. */
12412 if (is_hardware_watchpoint (old_loc->owner))
12413 {
12414 gdb_assert (is_hardware_watchpoint (loc2->owner));
12415 loc2->watchpoint_type = old_loc->watchpoint_type;
12416 }
12417
12418 /* loc2 is a duplicated location. We need to check
12419 if it should be inserted in case it will be
12420 unduplicated. */
12421 if (loc2 != old_loc
12422 && unduplicated_should_be_inserted (loc2))
12423 {
12424 swap_insertion (old_loc, loc2);
12425 keep_in_target = 1;
12426 break;
12427 }
12428 }
12429 }
12430 }
12431 }
12432
12433 if (!keep_in_target)
12434 {
12435 if (remove_breakpoint (old_loc, mark_uninserted))
12436 {
12437 /* This is just about all we can do. We could keep
12438 this location on the global list, and try to
12439 remove it next time, but there's no particular
12440 reason why we will succeed next time.
12441
12442 Note that at this point, old_loc->owner is still
12443 valid, as delete_breakpoint frees the breakpoint
12444 only after calling us. */
12445 printf_filtered (_("warning: Error removing "
12446 "breakpoint %d\n"),
12447 old_loc->owner->number);
12448 }
12449 removed = 1;
12450 }
12451 }
12452
12453 if (!found_object)
12454 {
12455 if (removed && non_stop
12456 && breakpoint_address_is_meaningful (old_loc->owner)
12457 && !is_hardware_watchpoint (old_loc->owner))
12458 {
12459 /* This location was removed from the target. In
12460 non-stop mode, a race condition is possible where
12461 we've removed a breakpoint, but stop events for that
12462 breakpoint are already queued and will arrive later.
12463 We apply an heuristic to be able to distinguish such
12464 SIGTRAPs from other random SIGTRAPs: we keep this
12465 breakpoint location for a bit, and will retire it
12466 after we see some number of events. The theory here
12467 is that reporting of events should, "on the average",
12468 be fair, so after a while we'll see events from all
12469 threads that have anything of interest, and no longer
12470 need to keep this breakpoint location around. We
12471 don't hold locations forever so to reduce chances of
12472 mistaking a non-breakpoint SIGTRAP for a breakpoint
12473 SIGTRAP.
12474
12475 The heuristic failing can be disastrous on
12476 decr_pc_after_break targets.
12477
12478 On decr_pc_after_break targets, like e.g., x86-linux,
12479 if we fail to recognize a late breakpoint SIGTRAP,
12480 because events_till_retirement has reached 0 too
12481 soon, we'll fail to do the PC adjustment, and report
12482 a random SIGTRAP to the user. When the user resumes
12483 the inferior, it will most likely immediately crash
12484 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12485 corrupted, because of being resumed e.g., in the
12486 middle of a multi-byte instruction, or skipped a
12487 one-byte instruction. This was actually seen happen
12488 on native x86-linux, and should be less rare on
12489 targets that do not support new thread events, like
12490 remote, due to the heuristic depending on
12491 thread_count.
12492
12493 Mistaking a random SIGTRAP for a breakpoint trap
12494 causes similar symptoms (PC adjustment applied when
12495 it shouldn't), but then again, playing with SIGTRAPs
12496 behind the debugger's back is asking for trouble.
12497
12498 Since hardware watchpoint traps are always
12499 distinguishable from other traps, so we don't need to
12500 apply keep hardware watchpoint moribund locations
12501 around. We simply always ignore hardware watchpoint
12502 traps we can no longer explain. */
12503
12504 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12505 old_loc->owner = NULL;
12506
12507 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12508 }
12509 else
12510 {
12511 old_loc->owner = NULL;
12512 decref_bp_location (&old_loc);
12513 }
12514 }
12515 }
12516
12517 /* Rescan breakpoints at the same address and section, marking the
12518 first one as "first" and any others as "duplicates". This is so
12519 that the bpt instruction is only inserted once. If we have a
12520 permanent breakpoint at the same place as BPT, make that one the
12521 official one, and the rest as duplicates. Permanent breakpoints
12522 are sorted first for the same address.
12523
12524 Do the same for hardware watchpoints, but also considering the
12525 watchpoint's type (regular/access/read) and length. */
12526
12527 bp_loc_first = NULL;
12528 wp_loc_first = NULL;
12529 awp_loc_first = NULL;
12530 rwp_loc_first = NULL;
12531 ALL_BP_LOCATIONS (loc, locp)
12532 {
12533 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12534 non-NULL. */
12535 struct bp_location **loc_first_p;
12536 b = loc->owner;
12537
12538 if (!unduplicated_should_be_inserted (loc)
12539 || !breakpoint_address_is_meaningful (b)
12540 /* Don't detect duplicate for tracepoint locations because they are
12541 never duplicated. See the comments in field `duplicate' of
12542 `struct bp_location'. */
12543 || is_tracepoint (b))
12544 {
12545 /* Clear the condition modification flag. */
12546 loc->condition_changed = condition_unchanged;
12547 continue;
12548 }
12549
12550 /* Permanent breakpoint should always be inserted. */
12551 if (b->enable_state == bp_permanent && ! loc->inserted)
12552 internal_error (__FILE__, __LINE__,
12553 _("allegedly permanent breakpoint is not "
12554 "actually inserted"));
12555
12556 if (b->type == bp_hardware_watchpoint)
12557 loc_first_p = &wp_loc_first;
12558 else if (b->type == bp_read_watchpoint)
12559 loc_first_p = &rwp_loc_first;
12560 else if (b->type == bp_access_watchpoint)
12561 loc_first_p = &awp_loc_first;
12562 else
12563 loc_first_p = &bp_loc_first;
12564
12565 if (*loc_first_p == NULL
12566 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12567 || !breakpoint_locations_match (loc, *loc_first_p))
12568 {
12569 *loc_first_p = loc;
12570 loc->duplicate = 0;
12571
12572 if (is_breakpoint (loc->owner) && loc->condition_changed)
12573 {
12574 loc->needs_update = 1;
12575 /* Clear the condition modification flag. */
12576 loc->condition_changed = condition_unchanged;
12577 }
12578 continue;
12579 }
12580
12581
12582 /* This and the above ensure the invariant that the first location
12583 is not duplicated, and is the inserted one.
12584 All following are marked as duplicated, and are not inserted. */
12585 if (loc->inserted)
12586 swap_insertion (loc, *loc_first_p);
12587 loc->duplicate = 1;
12588
12589 /* Clear the condition modification flag. */
12590 loc->condition_changed = condition_unchanged;
12591
12592 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12593 && b->enable_state != bp_permanent)
12594 internal_error (__FILE__, __LINE__,
12595 _("another breakpoint was inserted on top of "
12596 "a permanent breakpoint"));
12597 }
12598
12599 if (breakpoints_always_inserted_mode ()
12600 && (have_live_inferiors ()
12601 || (gdbarch_has_global_breakpoints (target_gdbarch ()))))
12602 {
12603 if (should_insert)
12604 insert_breakpoint_locations ();
12605 else
12606 {
12607 /* Though should_insert is false, we may need to update conditions
12608 on the target's side if it is evaluating such conditions. We
12609 only update conditions for locations that are marked
12610 "needs_update". */
12611 update_inserted_breakpoint_locations ();
12612 }
12613 }
12614
12615 if (should_insert)
12616 download_tracepoint_locations ();
12617
12618 do_cleanups (cleanups);
12619 }
12620
12621 void
12622 breakpoint_retire_moribund (void)
12623 {
12624 struct bp_location *loc;
12625 int ix;
12626
12627 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12628 if (--(loc->events_till_retirement) == 0)
12629 {
12630 decref_bp_location (&loc);
12631 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12632 --ix;
12633 }
12634 }
12635
12636 static void
12637 update_global_location_list_nothrow (int inserting)
12638 {
12639 volatile struct gdb_exception e;
12640
12641 TRY_CATCH (e, RETURN_MASK_ERROR)
12642 update_global_location_list (inserting);
12643 }
12644
12645 /* Clear BKP from a BPS. */
12646
12647 static void
12648 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12649 {
12650 bpstat bs;
12651
12652 for (bs = bps; bs; bs = bs->next)
12653 if (bs->breakpoint_at == bpt)
12654 {
12655 bs->breakpoint_at = NULL;
12656 bs->old_val = NULL;
12657 /* bs->commands will be freed later. */
12658 }
12659 }
12660
12661 /* Callback for iterate_over_threads. */
12662 static int
12663 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12664 {
12665 struct breakpoint *bpt = data;
12666
12667 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12668 return 0;
12669 }
12670
12671 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12672 callbacks. */
12673
12674 static void
12675 say_where (struct breakpoint *b)
12676 {
12677 struct value_print_options opts;
12678
12679 get_user_print_options (&opts);
12680
12681 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12682 single string. */
12683 if (b->loc == NULL)
12684 {
12685 printf_filtered (_(" (%s) pending."), b->addr_string);
12686 }
12687 else
12688 {
12689 if (opts.addressprint || b->loc->symtab == NULL)
12690 {
12691 printf_filtered (" at ");
12692 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12693 gdb_stdout);
12694 }
12695 if (b->loc->symtab != NULL)
12696 {
12697 /* If there is a single location, we can print the location
12698 more nicely. */
12699 if (b->loc->next == NULL)
12700 printf_filtered (": file %s, line %d.",
12701 symtab_to_filename_for_display (b->loc->symtab),
12702 b->loc->line_number);
12703 else
12704 /* This is not ideal, but each location may have a
12705 different file name, and this at least reflects the
12706 real situation somewhat. */
12707 printf_filtered (": %s.", b->addr_string);
12708 }
12709
12710 if (b->loc->next)
12711 {
12712 struct bp_location *loc = b->loc;
12713 int n = 0;
12714 for (; loc; loc = loc->next)
12715 ++n;
12716 printf_filtered (" (%d locations)", n);
12717 }
12718 }
12719 }
12720
12721 /* Default bp_location_ops methods. */
12722
12723 static void
12724 bp_location_dtor (struct bp_location *self)
12725 {
12726 xfree (self->cond);
12727 if (self->cond_bytecode)
12728 free_agent_expr (self->cond_bytecode);
12729 xfree (self->function_name);
12730 }
12731
12732 static const struct bp_location_ops bp_location_ops =
12733 {
12734 bp_location_dtor
12735 };
12736
12737 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12738 inherit from. */
12739
12740 static void
12741 base_breakpoint_dtor (struct breakpoint *self)
12742 {
12743 decref_counted_command_line (&self->commands);
12744 xfree (self->cond_string);
12745 xfree (self->extra_string);
12746 xfree (self->addr_string);
12747 xfree (self->filter);
12748 xfree (self->addr_string_range_end);
12749 }
12750
12751 static struct bp_location *
12752 base_breakpoint_allocate_location (struct breakpoint *self)
12753 {
12754 struct bp_location *loc;
12755
12756 loc = XNEW (struct bp_location);
12757 init_bp_location (loc, &bp_location_ops, self);
12758 return loc;
12759 }
12760
12761 static void
12762 base_breakpoint_re_set (struct breakpoint *b)
12763 {
12764 /* Nothing to re-set. */
12765 }
12766
12767 #define internal_error_pure_virtual_called() \
12768 gdb_assert_not_reached ("pure virtual function called")
12769
12770 static int
12771 base_breakpoint_insert_location (struct bp_location *bl)
12772 {
12773 internal_error_pure_virtual_called ();
12774 }
12775
12776 static int
12777 base_breakpoint_remove_location (struct bp_location *bl)
12778 {
12779 internal_error_pure_virtual_called ();
12780 }
12781
12782 static int
12783 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12784 struct address_space *aspace,
12785 CORE_ADDR bp_addr,
12786 const struct target_waitstatus *ws)
12787 {
12788 internal_error_pure_virtual_called ();
12789 }
12790
12791 static void
12792 base_breakpoint_check_status (bpstat bs)
12793 {
12794 /* Always stop. */
12795 }
12796
12797 /* A "works_in_software_mode" breakpoint_ops method that just internal
12798 errors. */
12799
12800 static int
12801 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12802 {
12803 internal_error_pure_virtual_called ();
12804 }
12805
12806 /* A "resources_needed" breakpoint_ops method that just internal
12807 errors. */
12808
12809 static int
12810 base_breakpoint_resources_needed (const struct bp_location *bl)
12811 {
12812 internal_error_pure_virtual_called ();
12813 }
12814
12815 static enum print_stop_action
12816 base_breakpoint_print_it (bpstat bs)
12817 {
12818 internal_error_pure_virtual_called ();
12819 }
12820
12821 static void
12822 base_breakpoint_print_one_detail (const struct breakpoint *self,
12823 struct ui_out *uiout)
12824 {
12825 /* nothing */
12826 }
12827
12828 static void
12829 base_breakpoint_print_mention (struct breakpoint *b)
12830 {
12831 internal_error_pure_virtual_called ();
12832 }
12833
12834 static void
12835 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12836 {
12837 internal_error_pure_virtual_called ();
12838 }
12839
12840 static void
12841 base_breakpoint_create_sals_from_address (char **arg,
12842 struct linespec_result *canonical,
12843 enum bptype type_wanted,
12844 char *addr_start,
12845 char **copy_arg)
12846 {
12847 internal_error_pure_virtual_called ();
12848 }
12849
12850 static void
12851 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12852 struct linespec_result *c,
12853 char *cond_string,
12854 char *extra_string,
12855 enum bptype type_wanted,
12856 enum bpdisp disposition,
12857 int thread,
12858 int task, int ignore_count,
12859 const struct breakpoint_ops *o,
12860 int from_tty, int enabled,
12861 int internal, unsigned flags)
12862 {
12863 internal_error_pure_virtual_called ();
12864 }
12865
12866 static void
12867 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
12868 struct symtabs_and_lines *sals)
12869 {
12870 internal_error_pure_virtual_called ();
12871 }
12872
12873 /* The default 'explains_signal' method. */
12874
12875 static enum bpstat_signal_value
12876 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12877 {
12878 return BPSTAT_SIGNAL_HIDE;
12879 }
12880
12881 /* The default "after_condition_true" method. */
12882
12883 static void
12884 base_breakpoint_after_condition_true (struct bpstats *bs)
12885 {
12886 /* Nothing to do. */
12887 }
12888
12889 struct breakpoint_ops base_breakpoint_ops =
12890 {
12891 base_breakpoint_dtor,
12892 base_breakpoint_allocate_location,
12893 base_breakpoint_re_set,
12894 base_breakpoint_insert_location,
12895 base_breakpoint_remove_location,
12896 base_breakpoint_breakpoint_hit,
12897 base_breakpoint_check_status,
12898 base_breakpoint_resources_needed,
12899 base_breakpoint_works_in_software_mode,
12900 base_breakpoint_print_it,
12901 NULL,
12902 base_breakpoint_print_one_detail,
12903 base_breakpoint_print_mention,
12904 base_breakpoint_print_recreate,
12905 base_breakpoint_create_sals_from_address,
12906 base_breakpoint_create_breakpoints_sal,
12907 base_breakpoint_decode_linespec,
12908 base_breakpoint_explains_signal,
12909 base_breakpoint_after_condition_true,
12910 };
12911
12912 /* Default breakpoint_ops methods. */
12913
12914 static void
12915 bkpt_re_set (struct breakpoint *b)
12916 {
12917 /* FIXME: is this still reachable? */
12918 if (b->addr_string == NULL)
12919 {
12920 /* Anything without a string can't be re-set. */
12921 delete_breakpoint (b);
12922 return;
12923 }
12924
12925 breakpoint_re_set_default (b);
12926 }
12927
12928 static int
12929 bkpt_insert_location (struct bp_location *bl)
12930 {
12931 if (bl->loc_type == bp_loc_hardware_breakpoint)
12932 return target_insert_hw_breakpoint (bl->gdbarch,
12933 &bl->target_info);
12934 else
12935 return target_insert_breakpoint (bl->gdbarch,
12936 &bl->target_info);
12937 }
12938
12939 static int
12940 bkpt_remove_location (struct bp_location *bl)
12941 {
12942 if (bl->loc_type == bp_loc_hardware_breakpoint)
12943 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12944 else
12945 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
12946 }
12947
12948 static int
12949 bkpt_breakpoint_hit (const struct bp_location *bl,
12950 struct address_space *aspace, CORE_ADDR bp_addr,
12951 const struct target_waitstatus *ws)
12952 {
12953 if (ws->kind != TARGET_WAITKIND_STOPPED
12954 || ws->value.sig != GDB_SIGNAL_TRAP)
12955 return 0;
12956
12957 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12958 aspace, bp_addr))
12959 return 0;
12960
12961 if (overlay_debugging /* unmapped overlay section */
12962 && section_is_overlay (bl->section)
12963 && !section_is_mapped (bl->section))
12964 return 0;
12965
12966 return 1;
12967 }
12968
12969 static int
12970 bkpt_resources_needed (const struct bp_location *bl)
12971 {
12972 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12973
12974 return 1;
12975 }
12976
12977 static enum print_stop_action
12978 bkpt_print_it (bpstat bs)
12979 {
12980 struct breakpoint *b;
12981 const struct bp_location *bl;
12982 int bp_temp;
12983 struct ui_out *uiout = current_uiout;
12984
12985 gdb_assert (bs->bp_location_at != NULL);
12986
12987 bl = bs->bp_location_at;
12988 b = bs->breakpoint_at;
12989
12990 bp_temp = b->disposition == disp_del;
12991 if (bl->address != bl->requested_address)
12992 breakpoint_adjustment_warning (bl->requested_address,
12993 bl->address,
12994 b->number, 1);
12995 annotate_breakpoint (b->number);
12996 if (bp_temp)
12997 ui_out_text (uiout, "\nTemporary breakpoint ");
12998 else
12999 ui_out_text (uiout, "\nBreakpoint ");
13000 if (ui_out_is_mi_like_p (uiout))
13001 {
13002 ui_out_field_string (uiout, "reason",
13003 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
13004 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
13005 }
13006 ui_out_field_int (uiout, "bkptno", b->number);
13007 ui_out_text (uiout, ", ");
13008
13009 return PRINT_SRC_AND_LOC;
13010 }
13011
13012 static void
13013 bkpt_print_mention (struct breakpoint *b)
13014 {
13015 if (ui_out_is_mi_like_p (current_uiout))
13016 return;
13017
13018 switch (b->type)
13019 {
13020 case bp_breakpoint:
13021 case bp_gnu_ifunc_resolver:
13022 if (b->disposition == disp_del)
13023 printf_filtered (_("Temporary breakpoint"));
13024 else
13025 printf_filtered (_("Breakpoint"));
13026 printf_filtered (_(" %d"), b->number);
13027 if (b->type == bp_gnu_ifunc_resolver)
13028 printf_filtered (_(" at gnu-indirect-function resolver"));
13029 break;
13030 case bp_hardware_breakpoint:
13031 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13032 break;
13033 case bp_dprintf:
13034 printf_filtered (_("Dprintf %d"), b->number);
13035 break;
13036 }
13037
13038 say_where (b);
13039 }
13040
13041 static void
13042 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13043 {
13044 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13045 fprintf_unfiltered (fp, "tbreak");
13046 else if (tp->type == bp_breakpoint)
13047 fprintf_unfiltered (fp, "break");
13048 else if (tp->type == bp_hardware_breakpoint
13049 && tp->disposition == disp_del)
13050 fprintf_unfiltered (fp, "thbreak");
13051 else if (tp->type == bp_hardware_breakpoint)
13052 fprintf_unfiltered (fp, "hbreak");
13053 else
13054 internal_error (__FILE__, __LINE__,
13055 _("unhandled breakpoint type %d"), (int) tp->type);
13056
13057 fprintf_unfiltered (fp, " %s", tp->addr_string);
13058 print_recreate_thread (tp, fp);
13059 }
13060
13061 static void
13062 bkpt_create_sals_from_address (char **arg,
13063 struct linespec_result *canonical,
13064 enum bptype type_wanted,
13065 char *addr_start, char **copy_arg)
13066 {
13067 create_sals_from_address_default (arg, canonical, type_wanted,
13068 addr_start, copy_arg);
13069 }
13070
13071 static void
13072 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13073 struct linespec_result *canonical,
13074 char *cond_string,
13075 char *extra_string,
13076 enum bptype type_wanted,
13077 enum bpdisp disposition,
13078 int thread,
13079 int task, int ignore_count,
13080 const struct breakpoint_ops *ops,
13081 int from_tty, int enabled,
13082 int internal, unsigned flags)
13083 {
13084 create_breakpoints_sal_default (gdbarch, canonical,
13085 cond_string, extra_string,
13086 type_wanted,
13087 disposition, thread, task,
13088 ignore_count, ops, from_tty,
13089 enabled, internal, flags);
13090 }
13091
13092 static void
13093 bkpt_decode_linespec (struct breakpoint *b, char **s,
13094 struct symtabs_and_lines *sals)
13095 {
13096 decode_linespec_default (b, s, sals);
13097 }
13098
13099 /* Virtual table for internal breakpoints. */
13100
13101 static void
13102 internal_bkpt_re_set (struct breakpoint *b)
13103 {
13104 switch (b->type)
13105 {
13106 /* Delete overlay event and longjmp master breakpoints; they
13107 will be reset later by breakpoint_re_set. */
13108 case bp_overlay_event:
13109 case bp_longjmp_master:
13110 case bp_std_terminate_master:
13111 case bp_exception_master:
13112 delete_breakpoint (b);
13113 break;
13114
13115 /* This breakpoint is special, it's set up when the inferior
13116 starts and we really don't want to touch it. */
13117 case bp_shlib_event:
13118
13119 /* Like bp_shlib_event, this breakpoint type is special. Once
13120 it is set up, we do not want to touch it. */
13121 case bp_thread_event:
13122 break;
13123 }
13124 }
13125
13126 static void
13127 internal_bkpt_check_status (bpstat bs)
13128 {
13129 if (bs->breakpoint_at->type == bp_shlib_event)
13130 {
13131 /* If requested, stop when the dynamic linker notifies GDB of
13132 events. This allows the user to get control and place
13133 breakpoints in initializer routines for dynamically loaded
13134 objects (among other things). */
13135 bs->stop = stop_on_solib_events;
13136 bs->print = stop_on_solib_events;
13137 }
13138 else
13139 bs->stop = 0;
13140 }
13141
13142 static enum print_stop_action
13143 internal_bkpt_print_it (bpstat bs)
13144 {
13145 struct breakpoint *b;
13146
13147 b = bs->breakpoint_at;
13148
13149 switch (b->type)
13150 {
13151 case bp_shlib_event:
13152 /* Did we stop because the user set the stop_on_solib_events
13153 variable? (If so, we report this as a generic, "Stopped due
13154 to shlib event" message.) */
13155 print_solib_event (0);
13156 break;
13157
13158 case bp_thread_event:
13159 /* Not sure how we will get here.
13160 GDB should not stop for these breakpoints. */
13161 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13162 break;
13163
13164 case bp_overlay_event:
13165 /* By analogy with the thread event, GDB should not stop for these. */
13166 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13167 break;
13168
13169 case bp_longjmp_master:
13170 /* These should never be enabled. */
13171 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13172 break;
13173
13174 case bp_std_terminate_master:
13175 /* These should never be enabled. */
13176 printf_filtered (_("std::terminate Master Breakpoint: "
13177 "gdb should not stop!\n"));
13178 break;
13179
13180 case bp_exception_master:
13181 /* These should never be enabled. */
13182 printf_filtered (_("Exception Master Breakpoint: "
13183 "gdb should not stop!\n"));
13184 break;
13185 }
13186
13187 return PRINT_NOTHING;
13188 }
13189
13190 static void
13191 internal_bkpt_print_mention (struct breakpoint *b)
13192 {
13193 /* Nothing to mention. These breakpoints are internal. */
13194 }
13195
13196 /* Virtual table for momentary breakpoints */
13197
13198 static void
13199 momentary_bkpt_re_set (struct breakpoint *b)
13200 {
13201 /* Keep temporary breakpoints, which can be encountered when we step
13202 over a dlopen call and solib_add is resetting the breakpoints.
13203 Otherwise these should have been blown away via the cleanup chain
13204 or by breakpoint_init_inferior when we rerun the executable. */
13205 }
13206
13207 static void
13208 momentary_bkpt_check_status (bpstat bs)
13209 {
13210 /* Nothing. The point of these breakpoints is causing a stop. */
13211 }
13212
13213 static enum print_stop_action
13214 momentary_bkpt_print_it (bpstat bs)
13215 {
13216 struct ui_out *uiout = current_uiout;
13217
13218 if (ui_out_is_mi_like_p (uiout))
13219 {
13220 struct breakpoint *b = bs->breakpoint_at;
13221
13222 switch (b->type)
13223 {
13224 case bp_finish:
13225 ui_out_field_string
13226 (uiout, "reason",
13227 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13228 break;
13229
13230 case bp_until:
13231 ui_out_field_string
13232 (uiout, "reason",
13233 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13234 break;
13235 }
13236 }
13237
13238 return PRINT_UNKNOWN;
13239 }
13240
13241 static void
13242 momentary_bkpt_print_mention (struct breakpoint *b)
13243 {
13244 /* Nothing to mention. These breakpoints are internal. */
13245 }
13246
13247 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13248
13249 It gets cleared already on the removal of the first one of such placed
13250 breakpoints. This is OK as they get all removed altogether. */
13251
13252 static void
13253 longjmp_bkpt_dtor (struct breakpoint *self)
13254 {
13255 struct thread_info *tp = find_thread_id (self->thread);
13256
13257 if (tp)
13258 tp->initiating_frame = null_frame_id;
13259
13260 momentary_breakpoint_ops.dtor (self);
13261 }
13262
13263 /* Specific methods for probe breakpoints. */
13264
13265 static int
13266 bkpt_probe_insert_location (struct bp_location *bl)
13267 {
13268 int v = bkpt_insert_location (bl);
13269
13270 if (v == 0)
13271 {
13272 /* The insertion was successful, now let's set the probe's semaphore
13273 if needed. */
13274 bl->probe->pops->set_semaphore (bl->probe, bl->gdbarch);
13275 }
13276
13277 return v;
13278 }
13279
13280 static int
13281 bkpt_probe_remove_location (struct bp_location *bl)
13282 {
13283 /* Let's clear the semaphore before removing the location. */
13284 bl->probe->pops->clear_semaphore (bl->probe, bl->gdbarch);
13285
13286 return bkpt_remove_location (bl);
13287 }
13288
13289 static void
13290 bkpt_probe_create_sals_from_address (char **arg,
13291 struct linespec_result *canonical,
13292 enum bptype type_wanted,
13293 char *addr_start, char **copy_arg)
13294 {
13295 struct linespec_sals lsal;
13296
13297 lsal.sals = parse_probes (arg, canonical);
13298
13299 *copy_arg = xstrdup (canonical->addr_string);
13300 lsal.canonical = xstrdup (*copy_arg);
13301
13302 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13303 }
13304
13305 static void
13306 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13307 struct symtabs_and_lines *sals)
13308 {
13309 *sals = parse_probes (s, NULL);
13310 if (!sals->sals)
13311 error (_("probe not found"));
13312 }
13313
13314 /* The breakpoint_ops structure to be used in tracepoints. */
13315
13316 static void
13317 tracepoint_re_set (struct breakpoint *b)
13318 {
13319 breakpoint_re_set_default (b);
13320 }
13321
13322 static int
13323 tracepoint_breakpoint_hit (const struct bp_location *bl,
13324 struct address_space *aspace, CORE_ADDR bp_addr,
13325 const struct target_waitstatus *ws)
13326 {
13327 /* By definition, the inferior does not report stops at
13328 tracepoints. */
13329 return 0;
13330 }
13331
13332 static void
13333 tracepoint_print_one_detail (const struct breakpoint *self,
13334 struct ui_out *uiout)
13335 {
13336 struct tracepoint *tp = (struct tracepoint *) self;
13337 if (tp->static_trace_marker_id)
13338 {
13339 gdb_assert (self->type == bp_static_tracepoint);
13340
13341 ui_out_text (uiout, "\tmarker id is ");
13342 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13343 tp->static_trace_marker_id);
13344 ui_out_text (uiout, "\n");
13345 }
13346 }
13347
13348 static void
13349 tracepoint_print_mention (struct breakpoint *b)
13350 {
13351 if (ui_out_is_mi_like_p (current_uiout))
13352 return;
13353
13354 switch (b->type)
13355 {
13356 case bp_tracepoint:
13357 printf_filtered (_("Tracepoint"));
13358 printf_filtered (_(" %d"), b->number);
13359 break;
13360 case bp_fast_tracepoint:
13361 printf_filtered (_("Fast tracepoint"));
13362 printf_filtered (_(" %d"), b->number);
13363 break;
13364 case bp_static_tracepoint:
13365 printf_filtered (_("Static tracepoint"));
13366 printf_filtered (_(" %d"), b->number);
13367 break;
13368 default:
13369 internal_error (__FILE__, __LINE__,
13370 _("unhandled tracepoint type %d"), (int) b->type);
13371 }
13372
13373 say_where (b);
13374 }
13375
13376 static void
13377 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13378 {
13379 struct tracepoint *tp = (struct tracepoint *) self;
13380
13381 if (self->type == bp_fast_tracepoint)
13382 fprintf_unfiltered (fp, "ftrace");
13383 if (self->type == bp_static_tracepoint)
13384 fprintf_unfiltered (fp, "strace");
13385 else if (self->type == bp_tracepoint)
13386 fprintf_unfiltered (fp, "trace");
13387 else
13388 internal_error (__FILE__, __LINE__,
13389 _("unhandled tracepoint type %d"), (int) self->type);
13390
13391 fprintf_unfiltered (fp, " %s", self->addr_string);
13392 print_recreate_thread (self, fp);
13393
13394 if (tp->pass_count)
13395 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13396 }
13397
13398 static void
13399 tracepoint_create_sals_from_address (char **arg,
13400 struct linespec_result *canonical,
13401 enum bptype type_wanted,
13402 char *addr_start, char **copy_arg)
13403 {
13404 create_sals_from_address_default (arg, canonical, type_wanted,
13405 addr_start, copy_arg);
13406 }
13407
13408 static void
13409 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13410 struct linespec_result *canonical,
13411 char *cond_string,
13412 char *extra_string,
13413 enum bptype type_wanted,
13414 enum bpdisp disposition,
13415 int thread,
13416 int task, int ignore_count,
13417 const struct breakpoint_ops *ops,
13418 int from_tty, int enabled,
13419 int internal, unsigned flags)
13420 {
13421 create_breakpoints_sal_default (gdbarch, canonical,
13422 cond_string, extra_string,
13423 type_wanted,
13424 disposition, thread, task,
13425 ignore_count, ops, from_tty,
13426 enabled, internal, flags);
13427 }
13428
13429 static void
13430 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13431 struct symtabs_and_lines *sals)
13432 {
13433 decode_linespec_default (b, s, sals);
13434 }
13435
13436 struct breakpoint_ops tracepoint_breakpoint_ops;
13437
13438 /* The breakpoint_ops structure to be use on tracepoints placed in a
13439 static probe. */
13440
13441 static void
13442 tracepoint_probe_create_sals_from_address (char **arg,
13443 struct linespec_result *canonical,
13444 enum bptype type_wanted,
13445 char *addr_start, char **copy_arg)
13446 {
13447 /* We use the same method for breakpoint on probes. */
13448 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13449 addr_start, copy_arg);
13450 }
13451
13452 static void
13453 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13454 struct symtabs_and_lines *sals)
13455 {
13456 /* We use the same method for breakpoint on probes. */
13457 bkpt_probe_decode_linespec (b, s, sals);
13458 }
13459
13460 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13461
13462 /* Dprintf breakpoint_ops methods. */
13463
13464 static void
13465 dprintf_re_set (struct breakpoint *b)
13466 {
13467 breakpoint_re_set_default (b);
13468
13469 /* This breakpoint could have been pending, and be resolved now, and
13470 if so, we should now have the extra string. If we don't, the
13471 dprintf was malformed when created, but we couldn't tell because
13472 we can't extract the extra string until the location is
13473 resolved. */
13474 if (b->loc != NULL && b->extra_string == NULL)
13475 error (_("Format string required"));
13476
13477 /* 1 - connect to target 1, that can run breakpoint commands.
13478 2 - create a dprintf, which resolves fine.
13479 3 - disconnect from target 1
13480 4 - connect to target 2, that can NOT run breakpoint commands.
13481
13482 After steps #3/#4, you'll want the dprintf command list to
13483 be updated, because target 1 and 2 may well return different
13484 answers for target_can_run_breakpoint_commands().
13485 Given absence of finer grained resetting, we get to do
13486 it all the time. */
13487 if (b->extra_string != NULL)
13488 update_dprintf_command_list (b);
13489 }
13490
13491 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13492
13493 static void
13494 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13495 {
13496 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13497 tp->extra_string);
13498 print_recreate_thread (tp, fp);
13499 }
13500
13501 /* Implement the "after_condition_true" breakpoint_ops method for
13502 dprintf.
13503
13504 dprintf's are implemented with regular commands in their command
13505 list, but we run the commands here instead of before presenting the
13506 stop to the user, as dprintf's don't actually cause a stop. This
13507 also makes it so that the commands of multiple dprintfs at the same
13508 address are all handled. */
13509
13510 static void
13511 dprintf_after_condition_true (struct bpstats *bs)
13512 {
13513 struct cleanup *old_chain;
13514 struct bpstats tmp_bs = { NULL };
13515 struct bpstats *tmp_bs_p = &tmp_bs;
13516
13517 /* dprintf's never cause a stop. This wasn't set in the
13518 check_status hook instead because that would make the dprintf's
13519 condition not be evaluated. */
13520 bs->stop = 0;
13521
13522 /* Run the command list here. Take ownership of it instead of
13523 copying. We never want these commands to run later in
13524 bpstat_do_actions, if a breakpoint that causes a stop happens to
13525 be set at same address as this dprintf, or even if running the
13526 commands here throws. */
13527 tmp_bs.commands = bs->commands;
13528 bs->commands = NULL;
13529 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13530
13531 bpstat_do_actions_1 (&tmp_bs_p);
13532
13533 /* 'tmp_bs.commands' will usually be NULL by now, but
13534 bpstat_do_actions_1 may return early without processing the whole
13535 list. */
13536 do_cleanups (old_chain);
13537 }
13538
13539 /* The breakpoint_ops structure to be used on static tracepoints with
13540 markers (`-m'). */
13541
13542 static void
13543 strace_marker_create_sals_from_address (char **arg,
13544 struct linespec_result *canonical,
13545 enum bptype type_wanted,
13546 char *addr_start, char **copy_arg)
13547 {
13548 struct linespec_sals lsal;
13549
13550 lsal.sals = decode_static_tracepoint_spec (arg);
13551
13552 *copy_arg = savestring (addr_start, *arg - addr_start);
13553
13554 canonical->addr_string = xstrdup (*copy_arg);
13555 lsal.canonical = xstrdup (*copy_arg);
13556 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13557 }
13558
13559 static void
13560 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13561 struct linespec_result *canonical,
13562 char *cond_string,
13563 char *extra_string,
13564 enum bptype type_wanted,
13565 enum bpdisp disposition,
13566 int thread,
13567 int task, int ignore_count,
13568 const struct breakpoint_ops *ops,
13569 int from_tty, int enabled,
13570 int internal, unsigned flags)
13571 {
13572 int i;
13573 struct linespec_sals *lsal = VEC_index (linespec_sals,
13574 canonical->sals, 0);
13575
13576 /* If the user is creating a static tracepoint by marker id
13577 (strace -m MARKER_ID), then store the sals index, so that
13578 breakpoint_re_set can try to match up which of the newly
13579 found markers corresponds to this one, and, don't try to
13580 expand multiple locations for each sal, given than SALS
13581 already should contain all sals for MARKER_ID. */
13582
13583 for (i = 0; i < lsal->sals.nelts; ++i)
13584 {
13585 struct symtabs_and_lines expanded;
13586 struct tracepoint *tp;
13587 struct cleanup *old_chain;
13588 char *addr_string;
13589
13590 expanded.nelts = 1;
13591 expanded.sals = &lsal->sals.sals[i];
13592
13593 addr_string = xstrdup (canonical->addr_string);
13594 old_chain = make_cleanup (xfree, addr_string);
13595
13596 tp = XCNEW (struct tracepoint);
13597 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13598 addr_string, NULL,
13599 cond_string, extra_string,
13600 type_wanted, disposition,
13601 thread, task, ignore_count, ops,
13602 from_tty, enabled, internal, flags,
13603 canonical->special_display);
13604 /* Given that its possible to have multiple markers with
13605 the same string id, if the user is creating a static
13606 tracepoint by marker id ("strace -m MARKER_ID"), then
13607 store the sals index, so that breakpoint_re_set can
13608 try to match up which of the newly found markers
13609 corresponds to this one */
13610 tp->static_trace_marker_id_idx = i;
13611
13612 install_breakpoint (internal, &tp->base, 0);
13613
13614 discard_cleanups (old_chain);
13615 }
13616 }
13617
13618 static void
13619 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13620 struct symtabs_and_lines *sals)
13621 {
13622 struct tracepoint *tp = (struct tracepoint *) b;
13623
13624 *sals = decode_static_tracepoint_spec (s);
13625 if (sals->nelts > tp->static_trace_marker_id_idx)
13626 {
13627 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13628 sals->nelts = 1;
13629 }
13630 else
13631 error (_("marker %s not found"), tp->static_trace_marker_id);
13632 }
13633
13634 static struct breakpoint_ops strace_marker_breakpoint_ops;
13635
13636 static int
13637 strace_marker_p (struct breakpoint *b)
13638 {
13639 return b->ops == &strace_marker_breakpoint_ops;
13640 }
13641
13642 /* Delete a breakpoint and clean up all traces of it in the data
13643 structures. */
13644
13645 void
13646 delete_breakpoint (struct breakpoint *bpt)
13647 {
13648 struct breakpoint *b;
13649
13650 gdb_assert (bpt != NULL);
13651
13652 /* Has this bp already been deleted? This can happen because
13653 multiple lists can hold pointers to bp's. bpstat lists are
13654 especial culprits.
13655
13656 One example of this happening is a watchpoint's scope bp. When
13657 the scope bp triggers, we notice that the watchpoint is out of
13658 scope, and delete it. We also delete its scope bp. But the
13659 scope bp is marked "auto-deleting", and is already on a bpstat.
13660 That bpstat is then checked for auto-deleting bp's, which are
13661 deleted.
13662
13663 A real solution to this problem might involve reference counts in
13664 bp's, and/or giving them pointers back to their referencing
13665 bpstat's, and teaching delete_breakpoint to only free a bp's
13666 storage when no more references were extent. A cheaper bandaid
13667 was chosen. */
13668 if (bpt->type == bp_none)
13669 return;
13670
13671 /* At least avoid this stale reference until the reference counting
13672 of breakpoints gets resolved. */
13673 if (bpt->related_breakpoint != bpt)
13674 {
13675 struct breakpoint *related;
13676 struct watchpoint *w;
13677
13678 if (bpt->type == bp_watchpoint_scope)
13679 w = (struct watchpoint *) bpt->related_breakpoint;
13680 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13681 w = (struct watchpoint *) bpt;
13682 else
13683 w = NULL;
13684 if (w != NULL)
13685 watchpoint_del_at_next_stop (w);
13686
13687 /* Unlink bpt from the bpt->related_breakpoint ring. */
13688 for (related = bpt; related->related_breakpoint != bpt;
13689 related = related->related_breakpoint);
13690 related->related_breakpoint = bpt->related_breakpoint;
13691 bpt->related_breakpoint = bpt;
13692 }
13693
13694 /* watch_command_1 creates a watchpoint but only sets its number if
13695 update_watchpoint succeeds in creating its bp_locations. If there's
13696 a problem in that process, we'll be asked to delete the half-created
13697 watchpoint. In that case, don't announce the deletion. */
13698 if (bpt->number)
13699 observer_notify_breakpoint_deleted (bpt);
13700
13701 if (breakpoint_chain == bpt)
13702 breakpoint_chain = bpt->next;
13703
13704 ALL_BREAKPOINTS (b)
13705 if (b->next == bpt)
13706 {
13707 b->next = bpt->next;
13708 break;
13709 }
13710
13711 /* Be sure no bpstat's are pointing at the breakpoint after it's
13712 been freed. */
13713 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13714 in all threads for now. Note that we cannot just remove bpstats
13715 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13716 commands are associated with the bpstat; if we remove it here,
13717 then the later call to bpstat_do_actions (&stop_bpstat); in
13718 event-top.c won't do anything, and temporary breakpoints with
13719 commands won't work. */
13720
13721 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13722
13723 /* Now that breakpoint is removed from breakpoint list, update the
13724 global location list. This will remove locations that used to
13725 belong to this breakpoint. Do this before freeing the breakpoint
13726 itself, since remove_breakpoint looks at location's owner. It
13727 might be better design to have location completely
13728 self-contained, but it's not the case now. */
13729 update_global_location_list (0);
13730
13731 bpt->ops->dtor (bpt);
13732 /* On the chance that someone will soon try again to delete this
13733 same bp, we mark it as deleted before freeing its storage. */
13734 bpt->type = bp_none;
13735 xfree (bpt);
13736 }
13737
13738 static void
13739 do_delete_breakpoint_cleanup (void *b)
13740 {
13741 delete_breakpoint (b);
13742 }
13743
13744 struct cleanup *
13745 make_cleanup_delete_breakpoint (struct breakpoint *b)
13746 {
13747 return make_cleanup (do_delete_breakpoint_cleanup, b);
13748 }
13749
13750 /* Iterator function to call a user-provided callback function once
13751 for each of B and its related breakpoints. */
13752
13753 static void
13754 iterate_over_related_breakpoints (struct breakpoint *b,
13755 void (*function) (struct breakpoint *,
13756 void *),
13757 void *data)
13758 {
13759 struct breakpoint *related;
13760
13761 related = b;
13762 do
13763 {
13764 struct breakpoint *next;
13765
13766 /* FUNCTION may delete RELATED. */
13767 next = related->related_breakpoint;
13768
13769 if (next == related)
13770 {
13771 /* RELATED is the last ring entry. */
13772 function (related, data);
13773
13774 /* FUNCTION may have deleted it, so we'd never reach back to
13775 B. There's nothing left to do anyway, so just break
13776 out. */
13777 break;
13778 }
13779 else
13780 function (related, data);
13781
13782 related = next;
13783 }
13784 while (related != b);
13785 }
13786
13787 static void
13788 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13789 {
13790 delete_breakpoint (b);
13791 }
13792
13793 /* A callback for map_breakpoint_numbers that calls
13794 delete_breakpoint. */
13795
13796 static void
13797 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13798 {
13799 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13800 }
13801
13802 void
13803 delete_command (char *arg, int from_tty)
13804 {
13805 struct breakpoint *b, *b_tmp;
13806
13807 dont_repeat ();
13808
13809 if (arg == 0)
13810 {
13811 int breaks_to_delete = 0;
13812
13813 /* Delete all breakpoints if no argument. Do not delete
13814 internal breakpoints, these have to be deleted with an
13815 explicit breakpoint number argument. */
13816 ALL_BREAKPOINTS (b)
13817 if (user_breakpoint_p (b))
13818 {
13819 breaks_to_delete = 1;
13820 break;
13821 }
13822
13823 /* Ask user only if there are some breakpoints to delete. */
13824 if (!from_tty
13825 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13826 {
13827 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13828 if (user_breakpoint_p (b))
13829 delete_breakpoint (b);
13830 }
13831 }
13832 else
13833 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13834 }
13835
13836 static int
13837 all_locations_are_pending (struct bp_location *loc)
13838 {
13839 for (; loc; loc = loc->next)
13840 if (!loc->shlib_disabled
13841 && !loc->pspace->executing_startup)
13842 return 0;
13843 return 1;
13844 }
13845
13846 /* Subroutine of update_breakpoint_locations to simplify it.
13847 Return non-zero if multiple fns in list LOC have the same name.
13848 Null names are ignored. */
13849
13850 static int
13851 ambiguous_names_p (struct bp_location *loc)
13852 {
13853 struct bp_location *l;
13854 htab_t htab = htab_create_alloc (13, htab_hash_string,
13855 (int (*) (const void *,
13856 const void *)) streq,
13857 NULL, xcalloc, xfree);
13858
13859 for (l = loc; l != NULL; l = l->next)
13860 {
13861 const char **slot;
13862 const char *name = l->function_name;
13863
13864 /* Allow for some names to be NULL, ignore them. */
13865 if (name == NULL)
13866 continue;
13867
13868 slot = (const char **) htab_find_slot (htab, (const void *) name,
13869 INSERT);
13870 /* NOTE: We can assume slot != NULL here because xcalloc never
13871 returns NULL. */
13872 if (*slot != NULL)
13873 {
13874 htab_delete (htab);
13875 return 1;
13876 }
13877 *slot = name;
13878 }
13879
13880 htab_delete (htab);
13881 return 0;
13882 }
13883
13884 /* When symbols change, it probably means the sources changed as well,
13885 and it might mean the static tracepoint markers are no longer at
13886 the same address or line numbers they used to be at last we
13887 checked. Losing your static tracepoints whenever you rebuild is
13888 undesirable. This function tries to resync/rematch gdb static
13889 tracepoints with the markers on the target, for static tracepoints
13890 that have not been set by marker id. Static tracepoint that have
13891 been set by marker id are reset by marker id in breakpoint_re_set.
13892 The heuristic is:
13893
13894 1) For a tracepoint set at a specific address, look for a marker at
13895 the old PC. If one is found there, assume to be the same marker.
13896 If the name / string id of the marker found is different from the
13897 previous known name, assume that means the user renamed the marker
13898 in the sources, and output a warning.
13899
13900 2) For a tracepoint set at a given line number, look for a marker
13901 at the new address of the old line number. If one is found there,
13902 assume to be the same marker. If the name / string id of the
13903 marker found is different from the previous known name, assume that
13904 means the user renamed the marker in the sources, and output a
13905 warning.
13906
13907 3) If a marker is no longer found at the same address or line, it
13908 may mean the marker no longer exists. But it may also just mean
13909 the code changed a bit. Maybe the user added a few lines of code
13910 that made the marker move up or down (in line number terms). Ask
13911 the target for info about the marker with the string id as we knew
13912 it. If found, update line number and address in the matching
13913 static tracepoint. This will get confused if there's more than one
13914 marker with the same ID (possible in UST, although unadvised
13915 precisely because it confuses tools). */
13916
13917 static struct symtab_and_line
13918 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13919 {
13920 struct tracepoint *tp = (struct tracepoint *) b;
13921 struct static_tracepoint_marker marker;
13922 CORE_ADDR pc;
13923
13924 pc = sal.pc;
13925 if (sal.line)
13926 find_line_pc (sal.symtab, sal.line, &pc);
13927
13928 if (target_static_tracepoint_marker_at (pc, &marker))
13929 {
13930 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13931 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13932 b->number,
13933 tp->static_trace_marker_id, marker.str_id);
13934
13935 xfree (tp->static_trace_marker_id);
13936 tp->static_trace_marker_id = xstrdup (marker.str_id);
13937 release_static_tracepoint_marker (&marker);
13938
13939 return sal;
13940 }
13941
13942 /* Old marker wasn't found on target at lineno. Try looking it up
13943 by string ID. */
13944 if (!sal.explicit_pc
13945 && sal.line != 0
13946 && sal.symtab != NULL
13947 && tp->static_trace_marker_id != NULL)
13948 {
13949 VEC(static_tracepoint_marker_p) *markers;
13950
13951 markers
13952 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13953
13954 if (!VEC_empty(static_tracepoint_marker_p, markers))
13955 {
13956 struct symtab_and_line sal2;
13957 struct symbol *sym;
13958 struct static_tracepoint_marker *tpmarker;
13959 struct ui_out *uiout = current_uiout;
13960
13961 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13962
13963 xfree (tp->static_trace_marker_id);
13964 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13965
13966 warning (_("marker for static tracepoint %d (%s) not "
13967 "found at previous line number"),
13968 b->number, tp->static_trace_marker_id);
13969
13970 init_sal (&sal2);
13971
13972 sal2.pc = tpmarker->address;
13973
13974 sal2 = find_pc_line (tpmarker->address, 0);
13975 sym = find_pc_sect_function (tpmarker->address, NULL);
13976 ui_out_text (uiout, "Now in ");
13977 if (sym)
13978 {
13979 ui_out_field_string (uiout, "func",
13980 SYMBOL_PRINT_NAME (sym));
13981 ui_out_text (uiout, " at ");
13982 }
13983 ui_out_field_string (uiout, "file",
13984 symtab_to_filename_for_display (sal2.symtab));
13985 ui_out_text (uiout, ":");
13986
13987 if (ui_out_is_mi_like_p (uiout))
13988 {
13989 const char *fullname = symtab_to_fullname (sal2.symtab);
13990
13991 ui_out_field_string (uiout, "fullname", fullname);
13992 }
13993
13994 ui_out_field_int (uiout, "line", sal2.line);
13995 ui_out_text (uiout, "\n");
13996
13997 b->loc->line_number = sal2.line;
13998 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13999
14000 xfree (b->addr_string);
14001 b->addr_string = xstrprintf ("%s:%d",
14002 symtab_to_filename_for_display (sal2.symtab),
14003 b->loc->line_number);
14004
14005 /* Might be nice to check if function changed, and warn if
14006 so. */
14007
14008 release_static_tracepoint_marker (tpmarker);
14009 }
14010 }
14011 return sal;
14012 }
14013
14014 /* Returns 1 iff locations A and B are sufficiently same that
14015 we don't need to report breakpoint as changed. */
14016
14017 static int
14018 locations_are_equal (struct bp_location *a, struct bp_location *b)
14019 {
14020 while (a && b)
14021 {
14022 if (a->address != b->address)
14023 return 0;
14024
14025 if (a->shlib_disabled != b->shlib_disabled)
14026 return 0;
14027
14028 if (a->enabled != b->enabled)
14029 return 0;
14030
14031 a = a->next;
14032 b = b->next;
14033 }
14034
14035 if ((a == NULL) != (b == NULL))
14036 return 0;
14037
14038 return 1;
14039 }
14040
14041 /* Create new breakpoint locations for B (a hardware or software breakpoint)
14042 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
14043 a ranged breakpoint. */
14044
14045 void
14046 update_breakpoint_locations (struct breakpoint *b,
14047 struct symtabs_and_lines sals,
14048 struct symtabs_and_lines sals_end)
14049 {
14050 int i;
14051 struct bp_location *existing_locations = b->loc;
14052
14053 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14054 {
14055 /* Ranged breakpoints have only one start location and one end
14056 location. */
14057 b->enable_state = bp_disabled;
14058 update_global_location_list (1);
14059 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14060 "multiple locations found\n"),
14061 b->number);
14062 return;
14063 }
14064
14065 /* If there's no new locations, and all existing locations are
14066 pending, don't do anything. This optimizes the common case where
14067 all locations are in the same shared library, that was unloaded.
14068 We'd like to retain the location, so that when the library is
14069 loaded again, we don't loose the enabled/disabled status of the
14070 individual locations. */
14071 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
14072 return;
14073
14074 b->loc = NULL;
14075
14076 for (i = 0; i < sals.nelts; ++i)
14077 {
14078 struct bp_location *new_loc;
14079
14080 switch_to_program_space_and_thread (sals.sals[i].pspace);
14081
14082 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14083
14084 /* Reparse conditions, they might contain references to the
14085 old symtab. */
14086 if (b->cond_string != NULL)
14087 {
14088 const char *s;
14089 volatile struct gdb_exception e;
14090
14091 s = b->cond_string;
14092 TRY_CATCH (e, RETURN_MASK_ERROR)
14093 {
14094 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14095 block_for_pc (sals.sals[i].pc),
14096 0);
14097 }
14098 if (e.reason < 0)
14099 {
14100 warning (_("failed to reevaluate condition "
14101 "for breakpoint %d: %s"),
14102 b->number, e.message);
14103 new_loc->enabled = 0;
14104 }
14105 }
14106
14107 if (sals_end.nelts)
14108 {
14109 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14110
14111 new_loc->length = end - sals.sals[0].pc + 1;
14112 }
14113 }
14114
14115 /* Update locations of permanent breakpoints. */
14116 if (b->enable_state == bp_permanent)
14117 make_breakpoint_permanent (b);
14118
14119 /* If possible, carry over 'disable' status from existing
14120 breakpoints. */
14121 {
14122 struct bp_location *e = existing_locations;
14123 /* If there are multiple breakpoints with the same function name,
14124 e.g. for inline functions, comparing function names won't work.
14125 Instead compare pc addresses; this is just a heuristic as things
14126 may have moved, but in practice it gives the correct answer
14127 often enough until a better solution is found. */
14128 int have_ambiguous_names = ambiguous_names_p (b->loc);
14129
14130 for (; e; e = e->next)
14131 {
14132 if (!e->enabled && e->function_name)
14133 {
14134 struct bp_location *l = b->loc;
14135 if (have_ambiguous_names)
14136 {
14137 for (; l; l = l->next)
14138 if (breakpoint_locations_match (e, l))
14139 {
14140 l->enabled = 0;
14141 break;
14142 }
14143 }
14144 else
14145 {
14146 for (; l; l = l->next)
14147 if (l->function_name
14148 && strcmp (e->function_name, l->function_name) == 0)
14149 {
14150 l->enabled = 0;
14151 break;
14152 }
14153 }
14154 }
14155 }
14156 }
14157
14158 if (!locations_are_equal (existing_locations, b->loc))
14159 observer_notify_breakpoint_modified (b);
14160
14161 update_global_location_list (1);
14162 }
14163
14164 /* Find the SaL locations corresponding to the given ADDR_STRING.
14165 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14166
14167 static struct symtabs_and_lines
14168 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14169 {
14170 char *s;
14171 struct symtabs_and_lines sals = {0};
14172 volatile struct gdb_exception e;
14173
14174 gdb_assert (b->ops != NULL);
14175 s = addr_string;
14176
14177 TRY_CATCH (e, RETURN_MASK_ERROR)
14178 {
14179 b->ops->decode_linespec (b, &s, &sals);
14180 }
14181 if (e.reason < 0)
14182 {
14183 int not_found_and_ok = 0;
14184 /* For pending breakpoints, it's expected that parsing will
14185 fail until the right shared library is loaded. User has
14186 already told to create pending breakpoints and don't need
14187 extra messages. If breakpoint is in bp_shlib_disabled
14188 state, then user already saw the message about that
14189 breakpoint being disabled, and don't want to see more
14190 errors. */
14191 if (e.error == NOT_FOUND_ERROR
14192 && (b->condition_not_parsed
14193 || (b->loc && b->loc->shlib_disabled)
14194 || (b->loc && b->loc->pspace->executing_startup)
14195 || b->enable_state == bp_disabled))
14196 not_found_and_ok = 1;
14197
14198 if (!not_found_and_ok)
14199 {
14200 /* We surely don't want to warn about the same breakpoint
14201 10 times. One solution, implemented here, is disable
14202 the breakpoint on error. Another solution would be to
14203 have separate 'warning emitted' flag. Since this
14204 happens only when a binary has changed, I don't know
14205 which approach is better. */
14206 b->enable_state = bp_disabled;
14207 throw_exception (e);
14208 }
14209 }
14210
14211 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14212 {
14213 int i;
14214
14215 for (i = 0; i < sals.nelts; ++i)
14216 resolve_sal_pc (&sals.sals[i]);
14217 if (b->condition_not_parsed && s && s[0])
14218 {
14219 char *cond_string, *extra_string;
14220 int thread, task;
14221
14222 find_condition_and_thread (s, sals.sals[0].pc,
14223 &cond_string, &thread, &task,
14224 &extra_string);
14225 if (cond_string)
14226 b->cond_string = cond_string;
14227 b->thread = thread;
14228 b->task = task;
14229 if (extra_string)
14230 b->extra_string = extra_string;
14231 b->condition_not_parsed = 0;
14232 }
14233
14234 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14235 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14236
14237 *found = 1;
14238 }
14239 else
14240 *found = 0;
14241
14242 return sals;
14243 }
14244
14245 /* The default re_set method, for typical hardware or software
14246 breakpoints. Reevaluate the breakpoint and recreate its
14247 locations. */
14248
14249 static void
14250 breakpoint_re_set_default (struct breakpoint *b)
14251 {
14252 int found;
14253 struct symtabs_and_lines sals, sals_end;
14254 struct symtabs_and_lines expanded = {0};
14255 struct symtabs_and_lines expanded_end = {0};
14256
14257 sals = addr_string_to_sals (b, b->addr_string, &found);
14258 if (found)
14259 {
14260 make_cleanup (xfree, sals.sals);
14261 expanded = sals;
14262 }
14263
14264 if (b->addr_string_range_end)
14265 {
14266 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14267 if (found)
14268 {
14269 make_cleanup (xfree, sals_end.sals);
14270 expanded_end = sals_end;
14271 }
14272 }
14273
14274 update_breakpoint_locations (b, expanded, expanded_end);
14275 }
14276
14277 /* Default method for creating SALs from an address string. It basically
14278 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14279
14280 static void
14281 create_sals_from_address_default (char **arg,
14282 struct linespec_result *canonical,
14283 enum bptype type_wanted,
14284 char *addr_start, char **copy_arg)
14285 {
14286 parse_breakpoint_sals (arg, canonical);
14287 }
14288
14289 /* Call create_breakpoints_sal for the given arguments. This is the default
14290 function for the `create_breakpoints_sal' method of
14291 breakpoint_ops. */
14292
14293 static void
14294 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14295 struct linespec_result *canonical,
14296 char *cond_string,
14297 char *extra_string,
14298 enum bptype type_wanted,
14299 enum bpdisp disposition,
14300 int thread,
14301 int task, int ignore_count,
14302 const struct breakpoint_ops *ops,
14303 int from_tty, int enabled,
14304 int internal, unsigned flags)
14305 {
14306 create_breakpoints_sal (gdbarch, canonical, cond_string,
14307 extra_string,
14308 type_wanted, disposition,
14309 thread, task, ignore_count, ops, from_tty,
14310 enabled, internal, flags);
14311 }
14312
14313 /* Decode the line represented by S by calling decode_line_full. This is the
14314 default function for the `decode_linespec' method of breakpoint_ops. */
14315
14316 static void
14317 decode_linespec_default (struct breakpoint *b, char **s,
14318 struct symtabs_and_lines *sals)
14319 {
14320 struct linespec_result canonical;
14321
14322 init_linespec_result (&canonical);
14323 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14324 (struct symtab *) NULL, 0,
14325 &canonical, multiple_symbols_all,
14326 b->filter);
14327
14328 /* We should get 0 or 1 resulting SALs. */
14329 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14330
14331 if (VEC_length (linespec_sals, canonical.sals) > 0)
14332 {
14333 struct linespec_sals *lsal;
14334
14335 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14336 *sals = lsal->sals;
14337 /* Arrange it so the destructor does not free the
14338 contents. */
14339 lsal->sals.sals = NULL;
14340 }
14341
14342 destroy_linespec_result (&canonical);
14343 }
14344
14345 /* Prepare the global context for a re-set of breakpoint B. */
14346
14347 static struct cleanup *
14348 prepare_re_set_context (struct breakpoint *b)
14349 {
14350 struct cleanup *cleanups;
14351
14352 input_radix = b->input_radix;
14353 cleanups = save_current_space_and_thread ();
14354 if (b->pspace != NULL)
14355 switch_to_program_space_and_thread (b->pspace);
14356 set_language (b->language);
14357
14358 return cleanups;
14359 }
14360
14361 /* Reset a breakpoint given it's struct breakpoint * BINT.
14362 The value we return ends up being the return value from catch_errors.
14363 Unused in this case. */
14364
14365 static int
14366 breakpoint_re_set_one (void *bint)
14367 {
14368 /* Get past catch_errs. */
14369 struct breakpoint *b = (struct breakpoint *) bint;
14370 struct cleanup *cleanups;
14371
14372 cleanups = prepare_re_set_context (b);
14373 b->ops->re_set (b);
14374 do_cleanups (cleanups);
14375 return 0;
14376 }
14377
14378 /* Re-set all breakpoints after symbols have been re-loaded. */
14379 void
14380 breakpoint_re_set (void)
14381 {
14382 struct breakpoint *b, *b_tmp;
14383 enum language save_language;
14384 int save_input_radix;
14385 struct cleanup *old_chain;
14386
14387 save_language = current_language->la_language;
14388 save_input_radix = input_radix;
14389 old_chain = save_current_program_space ();
14390
14391 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14392 {
14393 /* Format possible error msg. */
14394 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14395 b->number);
14396 struct cleanup *cleanups = make_cleanup (xfree, message);
14397 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14398 do_cleanups (cleanups);
14399 }
14400 set_language (save_language);
14401 input_radix = save_input_radix;
14402
14403 jit_breakpoint_re_set ();
14404
14405 do_cleanups (old_chain);
14406
14407 create_overlay_event_breakpoint ();
14408 create_longjmp_master_breakpoint ();
14409 create_std_terminate_master_breakpoint ();
14410 create_exception_master_breakpoint ();
14411 }
14412 \f
14413 /* Reset the thread number of this breakpoint:
14414
14415 - If the breakpoint is for all threads, leave it as-is.
14416 - Else, reset it to the current thread for inferior_ptid. */
14417 void
14418 breakpoint_re_set_thread (struct breakpoint *b)
14419 {
14420 if (b->thread != -1)
14421 {
14422 if (in_thread_list (inferior_ptid))
14423 b->thread = pid_to_thread_id (inferior_ptid);
14424
14425 /* We're being called after following a fork. The new fork is
14426 selected as current, and unless this was a vfork will have a
14427 different program space from the original thread. Reset that
14428 as well. */
14429 b->loc->pspace = current_program_space;
14430 }
14431 }
14432
14433 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14434 If from_tty is nonzero, it prints a message to that effect,
14435 which ends with a period (no newline). */
14436
14437 void
14438 set_ignore_count (int bptnum, int count, int from_tty)
14439 {
14440 struct breakpoint *b;
14441
14442 if (count < 0)
14443 count = 0;
14444
14445 ALL_BREAKPOINTS (b)
14446 if (b->number == bptnum)
14447 {
14448 if (is_tracepoint (b))
14449 {
14450 if (from_tty && count != 0)
14451 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14452 bptnum);
14453 return;
14454 }
14455
14456 b->ignore_count = count;
14457 if (from_tty)
14458 {
14459 if (count == 0)
14460 printf_filtered (_("Will stop next time "
14461 "breakpoint %d is reached."),
14462 bptnum);
14463 else if (count == 1)
14464 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14465 bptnum);
14466 else
14467 printf_filtered (_("Will ignore next %d "
14468 "crossings of breakpoint %d."),
14469 count, bptnum);
14470 }
14471 observer_notify_breakpoint_modified (b);
14472 return;
14473 }
14474
14475 error (_("No breakpoint number %d."), bptnum);
14476 }
14477
14478 /* Command to set ignore-count of breakpoint N to COUNT. */
14479
14480 static void
14481 ignore_command (char *args, int from_tty)
14482 {
14483 char *p = args;
14484 int num;
14485
14486 if (p == 0)
14487 error_no_arg (_("a breakpoint number"));
14488
14489 num = get_number (&p);
14490 if (num == 0)
14491 error (_("bad breakpoint number: '%s'"), args);
14492 if (*p == 0)
14493 error (_("Second argument (specified ignore-count) is missing."));
14494
14495 set_ignore_count (num,
14496 longest_to_int (value_as_long (parse_and_eval (p))),
14497 from_tty);
14498 if (from_tty)
14499 printf_filtered ("\n");
14500 }
14501 \f
14502 /* Call FUNCTION on each of the breakpoints
14503 whose numbers are given in ARGS. */
14504
14505 static void
14506 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14507 void *),
14508 void *data)
14509 {
14510 int num;
14511 struct breakpoint *b, *tmp;
14512 int match;
14513 struct get_number_or_range_state state;
14514
14515 if (args == 0)
14516 error_no_arg (_("one or more breakpoint numbers"));
14517
14518 init_number_or_range (&state, args);
14519
14520 while (!state.finished)
14521 {
14522 char *p = state.string;
14523
14524 match = 0;
14525
14526 num = get_number_or_range (&state);
14527 if (num == 0)
14528 {
14529 warning (_("bad breakpoint number at or near '%s'"), p);
14530 }
14531 else
14532 {
14533 ALL_BREAKPOINTS_SAFE (b, tmp)
14534 if (b->number == num)
14535 {
14536 match = 1;
14537 function (b, data);
14538 break;
14539 }
14540 if (match == 0)
14541 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14542 }
14543 }
14544 }
14545
14546 static struct bp_location *
14547 find_location_by_number (char *number)
14548 {
14549 char *dot = strchr (number, '.');
14550 char *p1;
14551 int bp_num;
14552 int loc_num;
14553 struct breakpoint *b;
14554 struct bp_location *loc;
14555
14556 *dot = '\0';
14557
14558 p1 = number;
14559 bp_num = get_number (&p1);
14560 if (bp_num == 0)
14561 error (_("Bad breakpoint number '%s'"), number);
14562
14563 ALL_BREAKPOINTS (b)
14564 if (b->number == bp_num)
14565 {
14566 break;
14567 }
14568
14569 if (!b || b->number != bp_num)
14570 error (_("Bad breakpoint number '%s'"), number);
14571
14572 p1 = dot+1;
14573 loc_num = get_number (&p1);
14574 if (loc_num == 0)
14575 error (_("Bad breakpoint location number '%s'"), number);
14576
14577 --loc_num;
14578 loc = b->loc;
14579 for (;loc_num && loc; --loc_num, loc = loc->next)
14580 ;
14581 if (!loc)
14582 error (_("Bad breakpoint location number '%s'"), dot+1);
14583
14584 return loc;
14585 }
14586
14587
14588 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14589 If from_tty is nonzero, it prints a message to that effect,
14590 which ends with a period (no newline). */
14591
14592 void
14593 disable_breakpoint (struct breakpoint *bpt)
14594 {
14595 /* Never disable a watchpoint scope breakpoint; we want to
14596 hit them when we leave scope so we can delete both the
14597 watchpoint and its scope breakpoint at that time. */
14598 if (bpt->type == bp_watchpoint_scope)
14599 return;
14600
14601 /* You can't disable permanent breakpoints. */
14602 if (bpt->enable_state == bp_permanent)
14603 return;
14604
14605 bpt->enable_state = bp_disabled;
14606
14607 /* Mark breakpoint locations modified. */
14608 mark_breakpoint_modified (bpt);
14609
14610 if (target_supports_enable_disable_tracepoint ()
14611 && current_trace_status ()->running && is_tracepoint (bpt))
14612 {
14613 struct bp_location *location;
14614
14615 for (location = bpt->loc; location; location = location->next)
14616 target_disable_tracepoint (location);
14617 }
14618
14619 update_global_location_list (0);
14620
14621 observer_notify_breakpoint_modified (bpt);
14622 }
14623
14624 /* A callback for iterate_over_related_breakpoints. */
14625
14626 static void
14627 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14628 {
14629 disable_breakpoint (b);
14630 }
14631
14632 /* A callback for map_breakpoint_numbers that calls
14633 disable_breakpoint. */
14634
14635 static void
14636 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14637 {
14638 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14639 }
14640
14641 static void
14642 disable_command (char *args, int from_tty)
14643 {
14644 if (args == 0)
14645 {
14646 struct breakpoint *bpt;
14647
14648 ALL_BREAKPOINTS (bpt)
14649 if (user_breakpoint_p (bpt))
14650 disable_breakpoint (bpt);
14651 }
14652 else
14653 {
14654 char *num = extract_arg (&args);
14655
14656 while (num)
14657 {
14658 if (strchr (num, '.'))
14659 {
14660 struct bp_location *loc = find_location_by_number (num);
14661
14662 if (loc)
14663 {
14664 if (loc->enabled)
14665 {
14666 loc->enabled = 0;
14667 mark_breakpoint_location_modified (loc);
14668 }
14669 if (target_supports_enable_disable_tracepoint ()
14670 && current_trace_status ()->running && loc->owner
14671 && is_tracepoint (loc->owner))
14672 target_disable_tracepoint (loc);
14673 }
14674 update_global_location_list (0);
14675 }
14676 else
14677 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14678 num = extract_arg (&args);
14679 }
14680 }
14681 }
14682
14683 static void
14684 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14685 int count)
14686 {
14687 int target_resources_ok;
14688
14689 if (bpt->type == bp_hardware_breakpoint)
14690 {
14691 int i;
14692 i = hw_breakpoint_used_count ();
14693 target_resources_ok =
14694 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14695 i + 1, 0);
14696 if (target_resources_ok == 0)
14697 error (_("No hardware breakpoint support in the target."));
14698 else if (target_resources_ok < 0)
14699 error (_("Hardware breakpoints used exceeds limit."));
14700 }
14701
14702 if (is_watchpoint (bpt))
14703 {
14704 /* Initialize it just to avoid a GCC false warning. */
14705 enum enable_state orig_enable_state = 0;
14706 volatile struct gdb_exception e;
14707
14708 TRY_CATCH (e, RETURN_MASK_ALL)
14709 {
14710 struct watchpoint *w = (struct watchpoint *) bpt;
14711
14712 orig_enable_state = bpt->enable_state;
14713 bpt->enable_state = bp_enabled;
14714 update_watchpoint (w, 1 /* reparse */);
14715 }
14716 if (e.reason < 0)
14717 {
14718 bpt->enable_state = orig_enable_state;
14719 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14720 bpt->number);
14721 return;
14722 }
14723 }
14724
14725 if (bpt->enable_state != bp_permanent)
14726 bpt->enable_state = bp_enabled;
14727
14728 bpt->enable_state = bp_enabled;
14729
14730 /* Mark breakpoint locations modified. */
14731 mark_breakpoint_modified (bpt);
14732
14733 if (target_supports_enable_disable_tracepoint ()
14734 && current_trace_status ()->running && is_tracepoint (bpt))
14735 {
14736 struct bp_location *location;
14737
14738 for (location = bpt->loc; location; location = location->next)
14739 target_enable_tracepoint (location);
14740 }
14741
14742 bpt->disposition = disposition;
14743 bpt->enable_count = count;
14744 update_global_location_list (1);
14745
14746 observer_notify_breakpoint_modified (bpt);
14747 }
14748
14749
14750 void
14751 enable_breakpoint (struct breakpoint *bpt)
14752 {
14753 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14754 }
14755
14756 static void
14757 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14758 {
14759 enable_breakpoint (bpt);
14760 }
14761
14762 /* A callback for map_breakpoint_numbers that calls
14763 enable_breakpoint. */
14764
14765 static void
14766 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14767 {
14768 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14769 }
14770
14771 /* The enable command enables the specified breakpoints (or all defined
14772 breakpoints) so they once again become (or continue to be) effective
14773 in stopping the inferior. */
14774
14775 static void
14776 enable_command (char *args, int from_tty)
14777 {
14778 if (args == 0)
14779 {
14780 struct breakpoint *bpt;
14781
14782 ALL_BREAKPOINTS (bpt)
14783 if (user_breakpoint_p (bpt))
14784 enable_breakpoint (bpt);
14785 }
14786 else
14787 {
14788 char *num = extract_arg (&args);
14789
14790 while (num)
14791 {
14792 if (strchr (num, '.'))
14793 {
14794 struct bp_location *loc = find_location_by_number (num);
14795
14796 if (loc)
14797 {
14798 if (!loc->enabled)
14799 {
14800 loc->enabled = 1;
14801 mark_breakpoint_location_modified (loc);
14802 }
14803 if (target_supports_enable_disable_tracepoint ()
14804 && current_trace_status ()->running && loc->owner
14805 && is_tracepoint (loc->owner))
14806 target_enable_tracepoint (loc);
14807 }
14808 update_global_location_list (1);
14809 }
14810 else
14811 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
14812 num = extract_arg (&args);
14813 }
14814 }
14815 }
14816
14817 /* This struct packages up disposition data for application to multiple
14818 breakpoints. */
14819
14820 struct disp_data
14821 {
14822 enum bpdisp disp;
14823 int count;
14824 };
14825
14826 static void
14827 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14828 {
14829 struct disp_data disp_data = *(struct disp_data *) arg;
14830
14831 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14832 }
14833
14834 static void
14835 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14836 {
14837 struct disp_data disp = { disp_disable, 1 };
14838
14839 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14840 }
14841
14842 static void
14843 enable_once_command (char *args, int from_tty)
14844 {
14845 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14846 }
14847
14848 static void
14849 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14850 {
14851 struct disp_data disp = { disp_disable, *(int *) countptr };
14852
14853 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14854 }
14855
14856 static void
14857 enable_count_command (char *args, int from_tty)
14858 {
14859 int count = get_number (&args);
14860
14861 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14862 }
14863
14864 static void
14865 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14866 {
14867 struct disp_data disp = { disp_del, 1 };
14868
14869 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14870 }
14871
14872 static void
14873 enable_delete_command (char *args, int from_tty)
14874 {
14875 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14876 }
14877 \f
14878 static void
14879 set_breakpoint_cmd (char *args, int from_tty)
14880 {
14881 }
14882
14883 static void
14884 show_breakpoint_cmd (char *args, int from_tty)
14885 {
14886 }
14887
14888 /* Invalidate last known value of any hardware watchpoint if
14889 the memory which that value represents has been written to by
14890 GDB itself. */
14891
14892 static void
14893 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14894 CORE_ADDR addr, ssize_t len,
14895 const bfd_byte *data)
14896 {
14897 struct breakpoint *bp;
14898
14899 ALL_BREAKPOINTS (bp)
14900 if (bp->enable_state == bp_enabled
14901 && bp->type == bp_hardware_watchpoint)
14902 {
14903 struct watchpoint *wp = (struct watchpoint *) bp;
14904
14905 if (wp->val_valid && wp->val)
14906 {
14907 struct bp_location *loc;
14908
14909 for (loc = bp->loc; loc != NULL; loc = loc->next)
14910 if (loc->loc_type == bp_loc_hardware_watchpoint
14911 && loc->address + loc->length > addr
14912 && addr + len > loc->address)
14913 {
14914 value_free (wp->val);
14915 wp->val = NULL;
14916 wp->val_valid = 0;
14917 }
14918 }
14919 }
14920 }
14921
14922 /* Create and insert a raw software breakpoint at PC. Return an
14923 identifier, which should be used to remove the breakpoint later.
14924 In general, places which call this should be using something on the
14925 breakpoint chain instead; this function should be eliminated
14926 someday. */
14927
14928 void *
14929 deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
14930 struct address_space *aspace, CORE_ADDR pc)
14931 {
14932 struct bp_target_info *bp_tgt;
14933
14934 bp_tgt = XZALLOC (struct bp_target_info);
14935
14936 bp_tgt->placed_address_space = aspace;
14937 bp_tgt->placed_address = pc;
14938
14939 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
14940 {
14941 /* Could not insert the breakpoint. */
14942 xfree (bp_tgt);
14943 return NULL;
14944 }
14945
14946 return bp_tgt;
14947 }
14948
14949 /* Remove a breakpoint BP inserted by
14950 deprecated_insert_raw_breakpoint. */
14951
14952 int
14953 deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
14954 {
14955 struct bp_target_info *bp_tgt = bp;
14956 int ret;
14957
14958 ret = target_remove_breakpoint (gdbarch, bp_tgt);
14959 xfree (bp_tgt);
14960
14961 return ret;
14962 }
14963
14964 /* One (or perhaps two) breakpoints used for software single
14965 stepping. */
14966
14967 static void *single_step_breakpoints[2];
14968 static struct gdbarch *single_step_gdbarch[2];
14969
14970 /* Create and insert a breakpoint for software single step. */
14971
14972 void
14973 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14974 struct address_space *aspace,
14975 CORE_ADDR next_pc)
14976 {
14977 void **bpt_p;
14978
14979 if (single_step_breakpoints[0] == NULL)
14980 {
14981 bpt_p = &single_step_breakpoints[0];
14982 single_step_gdbarch[0] = gdbarch;
14983 }
14984 else
14985 {
14986 gdb_assert (single_step_breakpoints[1] == NULL);
14987 bpt_p = &single_step_breakpoints[1];
14988 single_step_gdbarch[1] = gdbarch;
14989 }
14990
14991 /* NOTE drow/2006-04-11: A future improvement to this function would
14992 be to only create the breakpoints once, and actually put them on
14993 the breakpoint chain. That would let us use set_raw_breakpoint.
14994 We could adjust the addresses each time they were needed. Doing
14995 this requires corresponding changes elsewhere where single step
14996 breakpoints are handled, however. So, for now, we use this. */
14997
14998 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
14999 if (*bpt_p == NULL)
15000 error (_("Could not insert single-step breakpoint at %s"),
15001 paddress (gdbarch, next_pc));
15002 }
15003
15004 /* Check if the breakpoints used for software single stepping
15005 were inserted or not. */
15006
15007 int
15008 single_step_breakpoints_inserted (void)
15009 {
15010 return (single_step_breakpoints[0] != NULL
15011 || single_step_breakpoints[1] != NULL);
15012 }
15013
15014 /* Remove and delete any breakpoints used for software single step. */
15015
15016 void
15017 remove_single_step_breakpoints (void)
15018 {
15019 gdb_assert (single_step_breakpoints[0] != NULL);
15020
15021 /* See insert_single_step_breakpoint for more about this deprecated
15022 call. */
15023 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
15024 single_step_breakpoints[0]);
15025 single_step_gdbarch[0] = NULL;
15026 single_step_breakpoints[0] = NULL;
15027
15028 if (single_step_breakpoints[1] != NULL)
15029 {
15030 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
15031 single_step_breakpoints[1]);
15032 single_step_gdbarch[1] = NULL;
15033 single_step_breakpoints[1] = NULL;
15034 }
15035 }
15036
15037 /* Delete software single step breakpoints without removing them from
15038 the inferior. This is intended to be used if the inferior's address
15039 space where they were inserted is already gone, e.g. after exit or
15040 exec. */
15041
15042 void
15043 cancel_single_step_breakpoints (void)
15044 {
15045 int i;
15046
15047 for (i = 0; i < 2; i++)
15048 if (single_step_breakpoints[i])
15049 {
15050 xfree (single_step_breakpoints[i]);
15051 single_step_breakpoints[i] = NULL;
15052 single_step_gdbarch[i] = NULL;
15053 }
15054 }
15055
15056 /* Detach software single-step breakpoints from INFERIOR_PTID without
15057 removing them. */
15058
15059 static void
15060 detach_single_step_breakpoints (void)
15061 {
15062 int i;
15063
15064 for (i = 0; i < 2; i++)
15065 if (single_step_breakpoints[i])
15066 target_remove_breakpoint (single_step_gdbarch[i],
15067 single_step_breakpoints[i]);
15068 }
15069
15070 /* Check whether a software single-step breakpoint is inserted at
15071 PC. */
15072
15073 static int
15074 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15075 CORE_ADDR pc)
15076 {
15077 int i;
15078
15079 for (i = 0; i < 2; i++)
15080 {
15081 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
15082 if (bp_tgt
15083 && breakpoint_address_match (bp_tgt->placed_address_space,
15084 bp_tgt->placed_address,
15085 aspace, pc))
15086 return 1;
15087 }
15088
15089 return 0;
15090 }
15091
15092 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
15093 non-zero otherwise. */
15094 static int
15095 is_syscall_catchpoint_enabled (struct breakpoint *bp)
15096 {
15097 if (syscall_catchpoint_p (bp)
15098 && bp->enable_state != bp_disabled
15099 && bp->enable_state != bp_call_disabled)
15100 return 1;
15101 else
15102 return 0;
15103 }
15104
15105 int
15106 catch_syscall_enabled (void)
15107 {
15108 struct catch_syscall_inferior_data *inf_data
15109 = get_catch_syscall_inferior_data (current_inferior ());
15110
15111 return inf_data->total_syscalls_count != 0;
15112 }
15113
15114 int
15115 catching_syscall_number (int syscall_number)
15116 {
15117 struct breakpoint *bp;
15118
15119 ALL_BREAKPOINTS (bp)
15120 if (is_syscall_catchpoint_enabled (bp))
15121 {
15122 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
15123
15124 if (c->syscalls_to_be_caught)
15125 {
15126 int i, iter;
15127 for (i = 0;
15128 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
15129 i++)
15130 if (syscall_number == iter)
15131 return 1;
15132 }
15133 else
15134 return 1;
15135 }
15136
15137 return 0;
15138 }
15139
15140 /* Complete syscall names. Used by "catch syscall". */
15141 static VEC (char_ptr) *
15142 catch_syscall_completer (struct cmd_list_element *cmd,
15143 const char *text, const char *word)
15144 {
15145 const char **list = get_syscall_names ();
15146 VEC (char_ptr) *retlist
15147 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
15148
15149 xfree (list);
15150 return retlist;
15151 }
15152
15153 /* Tracepoint-specific operations. */
15154
15155 /* Set tracepoint count to NUM. */
15156 static void
15157 set_tracepoint_count (int num)
15158 {
15159 tracepoint_count = num;
15160 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15161 }
15162
15163 static void
15164 trace_command (char *arg, int from_tty)
15165 {
15166 struct breakpoint_ops *ops;
15167 const char *arg_cp = arg;
15168
15169 if (arg && probe_linespec_to_ops (&arg_cp))
15170 ops = &tracepoint_probe_breakpoint_ops;
15171 else
15172 ops = &tracepoint_breakpoint_ops;
15173
15174 create_breakpoint (get_current_arch (),
15175 arg,
15176 NULL, 0, NULL, 1 /* parse arg */,
15177 0 /* tempflag */,
15178 bp_tracepoint /* type_wanted */,
15179 0 /* Ignore count */,
15180 pending_break_support,
15181 ops,
15182 from_tty,
15183 1 /* enabled */,
15184 0 /* internal */, 0);
15185 }
15186
15187 static void
15188 ftrace_command (char *arg, int from_tty)
15189 {
15190 create_breakpoint (get_current_arch (),
15191 arg,
15192 NULL, 0, NULL, 1 /* parse arg */,
15193 0 /* tempflag */,
15194 bp_fast_tracepoint /* type_wanted */,
15195 0 /* Ignore count */,
15196 pending_break_support,
15197 &tracepoint_breakpoint_ops,
15198 from_tty,
15199 1 /* enabled */,
15200 0 /* internal */, 0);
15201 }
15202
15203 /* strace command implementation. Creates a static tracepoint. */
15204
15205 static void
15206 strace_command (char *arg, int from_tty)
15207 {
15208 struct breakpoint_ops *ops;
15209
15210 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15211 or with a normal static tracepoint. */
15212 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15213 ops = &strace_marker_breakpoint_ops;
15214 else
15215 ops = &tracepoint_breakpoint_ops;
15216
15217 create_breakpoint (get_current_arch (),
15218 arg,
15219 NULL, 0, NULL, 1 /* parse arg */,
15220 0 /* tempflag */,
15221 bp_static_tracepoint /* type_wanted */,
15222 0 /* Ignore count */,
15223 pending_break_support,
15224 ops,
15225 from_tty,
15226 1 /* enabled */,
15227 0 /* internal */, 0);
15228 }
15229
15230 /* Set up a fake reader function that gets command lines from a linked
15231 list that was acquired during tracepoint uploading. */
15232
15233 static struct uploaded_tp *this_utp;
15234 static int next_cmd;
15235
15236 static char *
15237 read_uploaded_action (void)
15238 {
15239 char *rslt;
15240
15241 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15242
15243 next_cmd++;
15244
15245 return rslt;
15246 }
15247
15248 /* Given information about a tracepoint as recorded on a target (which
15249 can be either a live system or a trace file), attempt to create an
15250 equivalent GDB tracepoint. This is not a reliable process, since
15251 the target does not necessarily have all the information used when
15252 the tracepoint was originally defined. */
15253
15254 struct tracepoint *
15255 create_tracepoint_from_upload (struct uploaded_tp *utp)
15256 {
15257 char *addr_str, small_buf[100];
15258 struct tracepoint *tp;
15259
15260 if (utp->at_string)
15261 addr_str = utp->at_string;
15262 else
15263 {
15264 /* In the absence of a source location, fall back to raw
15265 address. Since there is no way to confirm that the address
15266 means the same thing as when the trace was started, warn the
15267 user. */
15268 warning (_("Uploaded tracepoint %d has no "
15269 "source location, using raw address"),
15270 utp->number);
15271 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15272 addr_str = small_buf;
15273 }
15274
15275 /* There's not much we can do with a sequence of bytecodes. */
15276 if (utp->cond && !utp->cond_string)
15277 warning (_("Uploaded tracepoint %d condition "
15278 "has no source form, ignoring it"),
15279 utp->number);
15280
15281 if (!create_breakpoint (get_current_arch (),
15282 addr_str,
15283 utp->cond_string, -1, NULL,
15284 0 /* parse cond/thread */,
15285 0 /* tempflag */,
15286 utp->type /* type_wanted */,
15287 0 /* Ignore count */,
15288 pending_break_support,
15289 &tracepoint_breakpoint_ops,
15290 0 /* from_tty */,
15291 utp->enabled /* enabled */,
15292 0 /* internal */,
15293 CREATE_BREAKPOINT_FLAGS_INSERTED))
15294 return NULL;
15295
15296 /* Get the tracepoint we just created. */
15297 tp = get_tracepoint (tracepoint_count);
15298 gdb_assert (tp != NULL);
15299
15300 if (utp->pass > 0)
15301 {
15302 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15303 tp->base.number);
15304
15305 trace_pass_command (small_buf, 0);
15306 }
15307
15308 /* If we have uploaded versions of the original commands, set up a
15309 special-purpose "reader" function and call the usual command line
15310 reader, then pass the result to the breakpoint command-setting
15311 function. */
15312 if (!VEC_empty (char_ptr, utp->cmd_strings))
15313 {
15314 struct command_line *cmd_list;
15315
15316 this_utp = utp;
15317 next_cmd = 0;
15318
15319 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15320
15321 breakpoint_set_commands (&tp->base, cmd_list);
15322 }
15323 else if (!VEC_empty (char_ptr, utp->actions)
15324 || !VEC_empty (char_ptr, utp->step_actions))
15325 warning (_("Uploaded tracepoint %d actions "
15326 "have no source form, ignoring them"),
15327 utp->number);
15328
15329 /* Copy any status information that might be available. */
15330 tp->base.hit_count = utp->hit_count;
15331 tp->traceframe_usage = utp->traceframe_usage;
15332
15333 return tp;
15334 }
15335
15336 /* Print information on tracepoint number TPNUM_EXP, or all if
15337 omitted. */
15338
15339 static void
15340 tracepoints_info (char *args, int from_tty)
15341 {
15342 struct ui_out *uiout = current_uiout;
15343 int num_printed;
15344
15345 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15346
15347 if (num_printed == 0)
15348 {
15349 if (args == NULL || *args == '\0')
15350 ui_out_message (uiout, 0, "No tracepoints.\n");
15351 else
15352 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15353 }
15354
15355 default_collect_info ();
15356 }
15357
15358 /* The 'enable trace' command enables tracepoints.
15359 Not supported by all targets. */
15360 static void
15361 enable_trace_command (char *args, int from_tty)
15362 {
15363 enable_command (args, from_tty);
15364 }
15365
15366 /* The 'disable trace' command disables tracepoints.
15367 Not supported by all targets. */
15368 static void
15369 disable_trace_command (char *args, int from_tty)
15370 {
15371 disable_command (args, from_tty);
15372 }
15373
15374 /* Remove a tracepoint (or all if no argument). */
15375 static void
15376 delete_trace_command (char *arg, int from_tty)
15377 {
15378 struct breakpoint *b, *b_tmp;
15379
15380 dont_repeat ();
15381
15382 if (arg == 0)
15383 {
15384 int breaks_to_delete = 0;
15385
15386 /* Delete all breakpoints if no argument.
15387 Do not delete internal or call-dummy breakpoints, these
15388 have to be deleted with an explicit breakpoint number
15389 argument. */
15390 ALL_TRACEPOINTS (b)
15391 if (is_tracepoint (b) && user_breakpoint_p (b))
15392 {
15393 breaks_to_delete = 1;
15394 break;
15395 }
15396
15397 /* Ask user only if there are some breakpoints to delete. */
15398 if (!from_tty
15399 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15400 {
15401 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15402 if (is_tracepoint (b) && user_breakpoint_p (b))
15403 delete_breakpoint (b);
15404 }
15405 }
15406 else
15407 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15408 }
15409
15410 /* Helper function for trace_pass_command. */
15411
15412 static void
15413 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15414 {
15415 tp->pass_count = count;
15416 observer_notify_breakpoint_modified (&tp->base);
15417 if (from_tty)
15418 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15419 tp->base.number, count);
15420 }
15421
15422 /* Set passcount for tracepoint.
15423
15424 First command argument is passcount, second is tracepoint number.
15425 If tracepoint number omitted, apply to most recently defined.
15426 Also accepts special argument "all". */
15427
15428 static void
15429 trace_pass_command (char *args, int from_tty)
15430 {
15431 struct tracepoint *t1;
15432 unsigned int count;
15433
15434 if (args == 0 || *args == 0)
15435 error (_("passcount command requires an "
15436 "argument (count + optional TP num)"));
15437
15438 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15439
15440 args = skip_spaces (args);
15441 if (*args && strncasecmp (args, "all", 3) == 0)
15442 {
15443 struct breakpoint *b;
15444
15445 args += 3; /* Skip special argument "all". */
15446 if (*args)
15447 error (_("Junk at end of arguments."));
15448
15449 ALL_TRACEPOINTS (b)
15450 {
15451 t1 = (struct tracepoint *) b;
15452 trace_pass_set_count (t1, count, from_tty);
15453 }
15454 }
15455 else if (*args == '\0')
15456 {
15457 t1 = get_tracepoint_by_number (&args, NULL, 1);
15458 if (t1)
15459 trace_pass_set_count (t1, count, from_tty);
15460 }
15461 else
15462 {
15463 struct get_number_or_range_state state;
15464
15465 init_number_or_range (&state, args);
15466 while (!state.finished)
15467 {
15468 t1 = get_tracepoint_by_number (&args, &state, 1);
15469 if (t1)
15470 trace_pass_set_count (t1, count, from_tty);
15471 }
15472 }
15473 }
15474
15475 struct tracepoint *
15476 get_tracepoint (int num)
15477 {
15478 struct breakpoint *t;
15479
15480 ALL_TRACEPOINTS (t)
15481 if (t->number == num)
15482 return (struct tracepoint *) t;
15483
15484 return NULL;
15485 }
15486
15487 /* Find the tracepoint with the given target-side number (which may be
15488 different from the tracepoint number after disconnecting and
15489 reconnecting). */
15490
15491 struct tracepoint *
15492 get_tracepoint_by_number_on_target (int num)
15493 {
15494 struct breakpoint *b;
15495
15496 ALL_TRACEPOINTS (b)
15497 {
15498 struct tracepoint *t = (struct tracepoint *) b;
15499
15500 if (t->number_on_target == num)
15501 return t;
15502 }
15503
15504 return NULL;
15505 }
15506
15507 /* Utility: parse a tracepoint number and look it up in the list.
15508 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15509 If OPTIONAL_P is true, then if the argument is missing, the most
15510 recent tracepoint (tracepoint_count) is returned. */
15511 struct tracepoint *
15512 get_tracepoint_by_number (char **arg,
15513 struct get_number_or_range_state *state,
15514 int optional_p)
15515 {
15516 struct breakpoint *t;
15517 int tpnum;
15518 char *instring = arg == NULL ? NULL : *arg;
15519
15520 if (state)
15521 {
15522 gdb_assert (!state->finished);
15523 tpnum = get_number_or_range (state);
15524 }
15525 else if (arg == NULL || *arg == NULL || ! **arg)
15526 {
15527 if (optional_p)
15528 tpnum = tracepoint_count;
15529 else
15530 error_no_arg (_("tracepoint number"));
15531 }
15532 else
15533 tpnum = get_number (arg);
15534
15535 if (tpnum <= 0)
15536 {
15537 if (instring && *instring)
15538 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15539 instring);
15540 else
15541 printf_filtered (_("Tracepoint argument missing "
15542 "and no previous tracepoint\n"));
15543 return NULL;
15544 }
15545
15546 ALL_TRACEPOINTS (t)
15547 if (t->number == tpnum)
15548 {
15549 return (struct tracepoint *) t;
15550 }
15551
15552 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15553 return NULL;
15554 }
15555
15556 void
15557 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15558 {
15559 if (b->thread != -1)
15560 fprintf_unfiltered (fp, " thread %d", b->thread);
15561
15562 if (b->task != 0)
15563 fprintf_unfiltered (fp, " task %d", b->task);
15564
15565 fprintf_unfiltered (fp, "\n");
15566 }
15567
15568 /* Save information on user settable breakpoints (watchpoints, etc) to
15569 a new script file named FILENAME. If FILTER is non-NULL, call it
15570 on each breakpoint and only include the ones for which it returns
15571 non-zero. */
15572
15573 static void
15574 save_breakpoints (char *filename, int from_tty,
15575 int (*filter) (const struct breakpoint *))
15576 {
15577 struct breakpoint *tp;
15578 int any = 0;
15579 struct cleanup *cleanup;
15580 struct ui_file *fp;
15581 int extra_trace_bits = 0;
15582
15583 if (filename == 0 || *filename == 0)
15584 error (_("Argument required (file name in which to save)"));
15585
15586 /* See if we have anything to save. */
15587 ALL_BREAKPOINTS (tp)
15588 {
15589 /* Skip internal and momentary breakpoints. */
15590 if (!user_breakpoint_p (tp))
15591 continue;
15592
15593 /* If we have a filter, only save the breakpoints it accepts. */
15594 if (filter && !filter (tp))
15595 continue;
15596
15597 any = 1;
15598
15599 if (is_tracepoint (tp))
15600 {
15601 extra_trace_bits = 1;
15602
15603 /* We can stop searching. */
15604 break;
15605 }
15606 }
15607
15608 if (!any)
15609 {
15610 warning (_("Nothing to save."));
15611 return;
15612 }
15613
15614 filename = tilde_expand (filename);
15615 cleanup = make_cleanup (xfree, filename);
15616 fp = gdb_fopen (filename, "w");
15617 if (!fp)
15618 error (_("Unable to open file '%s' for saving (%s)"),
15619 filename, safe_strerror (errno));
15620 make_cleanup_ui_file_delete (fp);
15621
15622 if (extra_trace_bits)
15623 save_trace_state_variables (fp);
15624
15625 ALL_BREAKPOINTS (tp)
15626 {
15627 /* Skip internal and momentary breakpoints. */
15628 if (!user_breakpoint_p (tp))
15629 continue;
15630
15631 /* If we have a filter, only save the breakpoints it accepts. */
15632 if (filter && !filter (tp))
15633 continue;
15634
15635 tp->ops->print_recreate (tp, fp);
15636
15637 /* Note, we can't rely on tp->number for anything, as we can't
15638 assume the recreated breakpoint numbers will match. Use $bpnum
15639 instead. */
15640
15641 if (tp->cond_string)
15642 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15643
15644 if (tp->ignore_count)
15645 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15646
15647 if (tp->type != bp_dprintf && tp->commands)
15648 {
15649 volatile struct gdb_exception ex;
15650
15651 fprintf_unfiltered (fp, " commands\n");
15652
15653 ui_out_redirect (current_uiout, fp);
15654 TRY_CATCH (ex, RETURN_MASK_ALL)
15655 {
15656 print_command_lines (current_uiout, tp->commands->commands, 2);
15657 }
15658 ui_out_redirect (current_uiout, NULL);
15659
15660 if (ex.reason < 0)
15661 throw_exception (ex);
15662
15663 fprintf_unfiltered (fp, " end\n");
15664 }
15665
15666 if (tp->enable_state == bp_disabled)
15667 fprintf_unfiltered (fp, "disable\n");
15668
15669 /* If this is a multi-location breakpoint, check if the locations
15670 should be individually disabled. Watchpoint locations are
15671 special, and not user visible. */
15672 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15673 {
15674 struct bp_location *loc;
15675 int n = 1;
15676
15677 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15678 if (!loc->enabled)
15679 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15680 }
15681 }
15682
15683 if (extra_trace_bits && *default_collect)
15684 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15685
15686 if (from_tty)
15687 printf_filtered (_("Saved to file '%s'.\n"), filename);
15688 do_cleanups (cleanup);
15689 }
15690
15691 /* The `save breakpoints' command. */
15692
15693 static void
15694 save_breakpoints_command (char *args, int from_tty)
15695 {
15696 save_breakpoints (args, from_tty, NULL);
15697 }
15698
15699 /* The `save tracepoints' command. */
15700
15701 static void
15702 save_tracepoints_command (char *args, int from_tty)
15703 {
15704 save_breakpoints (args, from_tty, is_tracepoint);
15705 }
15706
15707 /* Create a vector of all tracepoints. */
15708
15709 VEC(breakpoint_p) *
15710 all_tracepoints (void)
15711 {
15712 VEC(breakpoint_p) *tp_vec = 0;
15713 struct breakpoint *tp;
15714
15715 ALL_TRACEPOINTS (tp)
15716 {
15717 VEC_safe_push (breakpoint_p, tp_vec, tp);
15718 }
15719
15720 return tp_vec;
15721 }
15722
15723 \f
15724 /* This help string is used for the break, hbreak, tbreak and thbreak
15725 commands. It is defined as a macro to prevent duplication.
15726 COMMAND should be a string constant containing the name of the
15727 command. */
15728 #define BREAK_ARGS_HELP(command) \
15729 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15730 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15731 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15732 guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
15733 LOCATION may be a line number, function name, or \"*\" and an address.\n\
15734 If a line number is specified, break at start of code for that line.\n\
15735 If a function is specified, break at start of code for that function.\n\
15736 If an address is specified, break at that exact address.\n\
15737 With no LOCATION, uses current execution address of the selected\n\
15738 stack frame. This is useful for breaking on return to a stack frame.\n\
15739 \n\
15740 THREADNUM is the number from \"info threads\".\n\
15741 CONDITION is a boolean expression.\n\
15742 \n\
15743 Multiple breakpoints at one place are permitted, and useful if their\n\
15744 conditions are different.\n\
15745 \n\
15746 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15747
15748 /* List of subcommands for "catch". */
15749 static struct cmd_list_element *catch_cmdlist;
15750
15751 /* List of subcommands for "tcatch". */
15752 static struct cmd_list_element *tcatch_cmdlist;
15753
15754 void
15755 add_catch_command (char *name, char *docstring,
15756 void (*sfunc) (char *args, int from_tty,
15757 struct cmd_list_element *command),
15758 completer_ftype *completer,
15759 void *user_data_catch,
15760 void *user_data_tcatch)
15761 {
15762 struct cmd_list_element *command;
15763
15764 command = add_cmd (name, class_breakpoint, NULL, docstring,
15765 &catch_cmdlist);
15766 set_cmd_sfunc (command, sfunc);
15767 set_cmd_context (command, user_data_catch);
15768 set_cmd_completer (command, completer);
15769
15770 command = add_cmd (name, class_breakpoint, NULL, docstring,
15771 &tcatch_cmdlist);
15772 set_cmd_sfunc (command, sfunc);
15773 set_cmd_context (command, user_data_tcatch);
15774 set_cmd_completer (command, completer);
15775 }
15776
15777 static void
15778 clear_syscall_counts (struct inferior *inf)
15779 {
15780 struct catch_syscall_inferior_data *inf_data
15781 = get_catch_syscall_inferior_data (inf);
15782
15783 inf_data->total_syscalls_count = 0;
15784 inf_data->any_syscall_count = 0;
15785 VEC_free (int, inf_data->syscalls_counts);
15786 }
15787
15788 static void
15789 save_command (char *arg, int from_tty)
15790 {
15791 printf_unfiltered (_("\"save\" must be followed by "
15792 "the name of a save subcommand.\n"));
15793 help_list (save_cmdlist, "save ", -1, gdb_stdout);
15794 }
15795
15796 struct breakpoint *
15797 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15798 void *data)
15799 {
15800 struct breakpoint *b, *b_tmp;
15801
15802 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15803 {
15804 if ((*callback) (b, data))
15805 return b;
15806 }
15807
15808 return NULL;
15809 }
15810
15811 /* Zero if any of the breakpoint's locations could be a location where
15812 functions have been inlined, nonzero otherwise. */
15813
15814 static int
15815 is_non_inline_function (struct breakpoint *b)
15816 {
15817 /* The shared library event breakpoint is set on the address of a
15818 non-inline function. */
15819 if (b->type == bp_shlib_event)
15820 return 1;
15821
15822 return 0;
15823 }
15824
15825 /* Nonzero if the specified PC cannot be a location where functions
15826 have been inlined. */
15827
15828 int
15829 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15830 const struct target_waitstatus *ws)
15831 {
15832 struct breakpoint *b;
15833 struct bp_location *bl;
15834
15835 ALL_BREAKPOINTS (b)
15836 {
15837 if (!is_non_inline_function (b))
15838 continue;
15839
15840 for (bl = b->loc; bl != NULL; bl = bl->next)
15841 {
15842 if (!bl->shlib_disabled
15843 && bpstat_check_location (bl, aspace, pc, ws))
15844 return 1;
15845 }
15846 }
15847
15848 return 0;
15849 }
15850
15851 /* Remove any references to OBJFILE which is going to be freed. */
15852
15853 void
15854 breakpoint_free_objfile (struct objfile *objfile)
15855 {
15856 struct bp_location **locp, *loc;
15857
15858 ALL_BP_LOCATIONS (loc, locp)
15859 if (loc->symtab != NULL && loc->symtab->objfile == objfile)
15860 loc->symtab = NULL;
15861 }
15862
15863 void
15864 initialize_breakpoint_ops (void)
15865 {
15866 static int initialized = 0;
15867
15868 struct breakpoint_ops *ops;
15869
15870 if (initialized)
15871 return;
15872 initialized = 1;
15873
15874 /* The breakpoint_ops structure to be inherit by all kinds of
15875 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15876 internal and momentary breakpoints, etc.). */
15877 ops = &bkpt_base_breakpoint_ops;
15878 *ops = base_breakpoint_ops;
15879 ops->re_set = bkpt_re_set;
15880 ops->insert_location = bkpt_insert_location;
15881 ops->remove_location = bkpt_remove_location;
15882 ops->breakpoint_hit = bkpt_breakpoint_hit;
15883 ops->create_sals_from_address = bkpt_create_sals_from_address;
15884 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15885 ops->decode_linespec = bkpt_decode_linespec;
15886
15887 /* The breakpoint_ops structure to be used in regular breakpoints. */
15888 ops = &bkpt_breakpoint_ops;
15889 *ops = bkpt_base_breakpoint_ops;
15890 ops->re_set = bkpt_re_set;
15891 ops->resources_needed = bkpt_resources_needed;
15892 ops->print_it = bkpt_print_it;
15893 ops->print_mention = bkpt_print_mention;
15894 ops->print_recreate = bkpt_print_recreate;
15895
15896 /* Ranged breakpoints. */
15897 ops = &ranged_breakpoint_ops;
15898 *ops = bkpt_breakpoint_ops;
15899 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15900 ops->resources_needed = resources_needed_ranged_breakpoint;
15901 ops->print_it = print_it_ranged_breakpoint;
15902 ops->print_one = print_one_ranged_breakpoint;
15903 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15904 ops->print_mention = print_mention_ranged_breakpoint;
15905 ops->print_recreate = print_recreate_ranged_breakpoint;
15906
15907 /* Internal breakpoints. */
15908 ops = &internal_breakpoint_ops;
15909 *ops = bkpt_base_breakpoint_ops;
15910 ops->re_set = internal_bkpt_re_set;
15911 ops->check_status = internal_bkpt_check_status;
15912 ops->print_it = internal_bkpt_print_it;
15913 ops->print_mention = internal_bkpt_print_mention;
15914
15915 /* Momentary breakpoints. */
15916 ops = &momentary_breakpoint_ops;
15917 *ops = bkpt_base_breakpoint_ops;
15918 ops->re_set = momentary_bkpt_re_set;
15919 ops->check_status = momentary_bkpt_check_status;
15920 ops->print_it = momentary_bkpt_print_it;
15921 ops->print_mention = momentary_bkpt_print_mention;
15922
15923 /* Momentary breakpoints for bp_longjmp and bp_exception. */
15924 ops = &longjmp_breakpoint_ops;
15925 *ops = momentary_breakpoint_ops;
15926 ops->dtor = longjmp_bkpt_dtor;
15927
15928 /* Probe breakpoints. */
15929 ops = &bkpt_probe_breakpoint_ops;
15930 *ops = bkpt_breakpoint_ops;
15931 ops->insert_location = bkpt_probe_insert_location;
15932 ops->remove_location = bkpt_probe_remove_location;
15933 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
15934 ops->decode_linespec = bkpt_probe_decode_linespec;
15935
15936 /* Watchpoints. */
15937 ops = &watchpoint_breakpoint_ops;
15938 *ops = base_breakpoint_ops;
15939 ops->dtor = dtor_watchpoint;
15940 ops->re_set = re_set_watchpoint;
15941 ops->insert_location = insert_watchpoint;
15942 ops->remove_location = remove_watchpoint;
15943 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15944 ops->check_status = check_status_watchpoint;
15945 ops->resources_needed = resources_needed_watchpoint;
15946 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15947 ops->print_it = print_it_watchpoint;
15948 ops->print_mention = print_mention_watchpoint;
15949 ops->print_recreate = print_recreate_watchpoint;
15950 ops->explains_signal = explains_signal_watchpoint;
15951
15952 /* Masked watchpoints. */
15953 ops = &masked_watchpoint_breakpoint_ops;
15954 *ops = watchpoint_breakpoint_ops;
15955 ops->insert_location = insert_masked_watchpoint;
15956 ops->remove_location = remove_masked_watchpoint;
15957 ops->resources_needed = resources_needed_masked_watchpoint;
15958 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15959 ops->print_it = print_it_masked_watchpoint;
15960 ops->print_one_detail = print_one_detail_masked_watchpoint;
15961 ops->print_mention = print_mention_masked_watchpoint;
15962 ops->print_recreate = print_recreate_masked_watchpoint;
15963
15964 /* Tracepoints. */
15965 ops = &tracepoint_breakpoint_ops;
15966 *ops = base_breakpoint_ops;
15967 ops->re_set = tracepoint_re_set;
15968 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15969 ops->print_one_detail = tracepoint_print_one_detail;
15970 ops->print_mention = tracepoint_print_mention;
15971 ops->print_recreate = tracepoint_print_recreate;
15972 ops->create_sals_from_address = tracepoint_create_sals_from_address;
15973 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15974 ops->decode_linespec = tracepoint_decode_linespec;
15975
15976 /* Probe tracepoints. */
15977 ops = &tracepoint_probe_breakpoint_ops;
15978 *ops = tracepoint_breakpoint_ops;
15979 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
15980 ops->decode_linespec = tracepoint_probe_decode_linespec;
15981
15982 /* Static tracepoints with marker (`-m'). */
15983 ops = &strace_marker_breakpoint_ops;
15984 *ops = tracepoint_breakpoint_ops;
15985 ops->create_sals_from_address = strace_marker_create_sals_from_address;
15986 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15987 ops->decode_linespec = strace_marker_decode_linespec;
15988
15989 /* Fork catchpoints. */
15990 ops = &catch_fork_breakpoint_ops;
15991 *ops = base_breakpoint_ops;
15992 ops->insert_location = insert_catch_fork;
15993 ops->remove_location = remove_catch_fork;
15994 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15995 ops->print_it = print_it_catch_fork;
15996 ops->print_one = print_one_catch_fork;
15997 ops->print_mention = print_mention_catch_fork;
15998 ops->print_recreate = print_recreate_catch_fork;
15999
16000 /* Vfork catchpoints. */
16001 ops = &catch_vfork_breakpoint_ops;
16002 *ops = base_breakpoint_ops;
16003 ops->insert_location = insert_catch_vfork;
16004 ops->remove_location = remove_catch_vfork;
16005 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
16006 ops->print_it = print_it_catch_vfork;
16007 ops->print_one = print_one_catch_vfork;
16008 ops->print_mention = print_mention_catch_vfork;
16009 ops->print_recreate = print_recreate_catch_vfork;
16010
16011 /* Exec catchpoints. */
16012 ops = &catch_exec_breakpoint_ops;
16013 *ops = base_breakpoint_ops;
16014 ops->dtor = dtor_catch_exec;
16015 ops->insert_location = insert_catch_exec;
16016 ops->remove_location = remove_catch_exec;
16017 ops->breakpoint_hit = breakpoint_hit_catch_exec;
16018 ops->print_it = print_it_catch_exec;
16019 ops->print_one = print_one_catch_exec;
16020 ops->print_mention = print_mention_catch_exec;
16021 ops->print_recreate = print_recreate_catch_exec;
16022
16023 /* Syscall catchpoints. */
16024 ops = &catch_syscall_breakpoint_ops;
16025 *ops = base_breakpoint_ops;
16026 ops->dtor = dtor_catch_syscall;
16027 ops->insert_location = insert_catch_syscall;
16028 ops->remove_location = remove_catch_syscall;
16029 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
16030 ops->print_it = print_it_catch_syscall;
16031 ops->print_one = print_one_catch_syscall;
16032 ops->print_mention = print_mention_catch_syscall;
16033 ops->print_recreate = print_recreate_catch_syscall;
16034
16035 /* Solib-related catchpoints. */
16036 ops = &catch_solib_breakpoint_ops;
16037 *ops = base_breakpoint_ops;
16038 ops->dtor = dtor_catch_solib;
16039 ops->insert_location = insert_catch_solib;
16040 ops->remove_location = remove_catch_solib;
16041 ops->breakpoint_hit = breakpoint_hit_catch_solib;
16042 ops->check_status = check_status_catch_solib;
16043 ops->print_it = print_it_catch_solib;
16044 ops->print_one = print_one_catch_solib;
16045 ops->print_mention = print_mention_catch_solib;
16046 ops->print_recreate = print_recreate_catch_solib;
16047
16048 ops = &dprintf_breakpoint_ops;
16049 *ops = bkpt_base_breakpoint_ops;
16050 ops->re_set = dprintf_re_set;
16051 ops->resources_needed = bkpt_resources_needed;
16052 ops->print_it = bkpt_print_it;
16053 ops->print_mention = bkpt_print_mention;
16054 ops->print_recreate = dprintf_print_recreate;
16055 ops->after_condition_true = dprintf_after_condition_true;
16056 }
16057
16058 /* Chain containing all defined "enable breakpoint" subcommands. */
16059
16060 static struct cmd_list_element *enablebreaklist = NULL;
16061
16062 void
16063 _initialize_breakpoint (void)
16064 {
16065 struct cmd_list_element *c;
16066
16067 initialize_breakpoint_ops ();
16068
16069 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
16070 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
16071 observer_attach_inferior_exit (clear_syscall_counts);
16072 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
16073
16074 breakpoint_objfile_key
16075 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
16076
16077 catch_syscall_inferior_data
16078 = register_inferior_data_with_cleanup (NULL,
16079 catch_syscall_inferior_data_cleanup);
16080
16081 breakpoint_chain = 0;
16082 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
16083 before a breakpoint is set. */
16084 breakpoint_count = 0;
16085
16086 tracepoint_count = 0;
16087
16088 add_com ("ignore", class_breakpoint, ignore_command, _("\
16089 Set ignore-count of breakpoint number N to COUNT.\n\
16090 Usage is `ignore N COUNT'."));
16091 if (xdb_commands)
16092 add_com_alias ("bc", "ignore", class_breakpoint, 1);
16093
16094 add_com ("commands", class_breakpoint, commands_command, _("\
16095 Set commands to be executed when a breakpoint is hit.\n\
16096 Give breakpoint number as argument after \"commands\".\n\
16097 With no argument, the targeted breakpoint is the last one set.\n\
16098 The commands themselves follow starting on the next line.\n\
16099 Type a line containing \"end\" to indicate the end of them.\n\
16100 Give \"silent\" as the first line to make the breakpoint silent;\n\
16101 then no output is printed when it is hit, except what the commands print."));
16102
16103 c = add_com ("condition", class_breakpoint, condition_command, _("\
16104 Specify breakpoint number N to break only if COND is true.\n\
16105 Usage is `condition N COND', where N is an integer and COND is an\n\
16106 expression to be evaluated whenever breakpoint N is reached."));
16107 set_cmd_completer (c, condition_completer);
16108
16109 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16110 Set a temporary breakpoint.\n\
16111 Like \"break\" except the breakpoint is only temporary,\n\
16112 so it will be deleted when hit. Equivalent to \"break\" followed\n\
16113 by using \"enable delete\" on the breakpoint number.\n\
16114 \n"
16115 BREAK_ARGS_HELP ("tbreak")));
16116 set_cmd_completer (c, location_completer);
16117
16118 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16119 Set a hardware assisted breakpoint.\n\
16120 Like \"break\" except the breakpoint requires hardware support,\n\
16121 some target hardware may not have this support.\n\
16122 \n"
16123 BREAK_ARGS_HELP ("hbreak")));
16124 set_cmd_completer (c, location_completer);
16125
16126 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16127 Set a temporary hardware assisted breakpoint.\n\
16128 Like \"hbreak\" except the breakpoint is only temporary,\n\
16129 so it will be deleted when hit.\n\
16130 \n"
16131 BREAK_ARGS_HELP ("thbreak")));
16132 set_cmd_completer (c, location_completer);
16133
16134 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16135 Enable some breakpoints.\n\
16136 Give breakpoint numbers (separated by spaces) as arguments.\n\
16137 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16138 This is used to cancel the effect of the \"disable\" command.\n\
16139 With a subcommand you can enable temporarily."),
16140 &enablelist, "enable ", 1, &cmdlist);
16141 if (xdb_commands)
16142 add_com ("ab", class_breakpoint, enable_command, _("\
16143 Enable some breakpoints.\n\
16144 Give breakpoint numbers (separated by spaces) as arguments.\n\
16145 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16146 This is used to cancel the effect of the \"disable\" command.\n\
16147 With a subcommand you can enable temporarily."));
16148
16149 add_com_alias ("en", "enable", class_breakpoint, 1);
16150
16151 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16152 Enable some breakpoints.\n\
16153 Give breakpoint numbers (separated by spaces) as arguments.\n\
16154 This is used to cancel the effect of the \"disable\" command.\n\
16155 May be abbreviated to simply \"enable\".\n"),
16156 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16157
16158 add_cmd ("once", no_class, enable_once_command, _("\
16159 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16160 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16161 &enablebreaklist);
16162
16163 add_cmd ("delete", no_class, enable_delete_command, _("\
16164 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16165 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16166 &enablebreaklist);
16167
16168 add_cmd ("count", no_class, enable_count_command, _("\
16169 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16170 If a breakpoint is hit while enabled in this fashion,\n\
16171 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16172 &enablebreaklist);
16173
16174 add_cmd ("delete", no_class, enable_delete_command, _("\
16175 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16176 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16177 &enablelist);
16178
16179 add_cmd ("once", no_class, enable_once_command, _("\
16180 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16181 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16182 &enablelist);
16183
16184 add_cmd ("count", no_class, enable_count_command, _("\
16185 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16186 If a breakpoint is hit while enabled in this fashion,\n\
16187 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16188 &enablelist);
16189
16190 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16191 Disable some breakpoints.\n\
16192 Arguments are breakpoint numbers with spaces in between.\n\
16193 To disable all breakpoints, give no argument.\n\
16194 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16195 &disablelist, "disable ", 1, &cmdlist);
16196 add_com_alias ("dis", "disable", class_breakpoint, 1);
16197 add_com_alias ("disa", "disable", class_breakpoint, 1);
16198 if (xdb_commands)
16199 add_com ("sb", class_breakpoint, disable_command, _("\
16200 Disable some breakpoints.\n\
16201 Arguments are breakpoint numbers with spaces in between.\n\
16202 To disable all breakpoints, give no argument.\n\
16203 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16204
16205 add_cmd ("breakpoints", class_alias, disable_command, _("\
16206 Disable some breakpoints.\n\
16207 Arguments are breakpoint numbers with spaces in between.\n\
16208 To disable all breakpoints, give no argument.\n\
16209 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16210 This command may be abbreviated \"disable\"."),
16211 &disablelist);
16212
16213 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16214 Delete some breakpoints or auto-display expressions.\n\
16215 Arguments are breakpoint numbers with spaces in between.\n\
16216 To delete all breakpoints, give no argument.\n\
16217 \n\
16218 Also a prefix command for deletion of other GDB objects.\n\
16219 The \"unset\" command is also an alias for \"delete\"."),
16220 &deletelist, "delete ", 1, &cmdlist);
16221 add_com_alias ("d", "delete", class_breakpoint, 1);
16222 add_com_alias ("del", "delete", class_breakpoint, 1);
16223 if (xdb_commands)
16224 add_com ("db", class_breakpoint, delete_command, _("\
16225 Delete some breakpoints.\n\
16226 Arguments are breakpoint numbers with spaces in between.\n\
16227 To delete all breakpoints, give no argument.\n"));
16228
16229 add_cmd ("breakpoints", class_alias, delete_command, _("\
16230 Delete some breakpoints or auto-display expressions.\n\
16231 Arguments are breakpoint numbers with spaces in between.\n\
16232 To delete all breakpoints, give no argument.\n\
16233 This command may be abbreviated \"delete\"."),
16234 &deletelist);
16235
16236 add_com ("clear", class_breakpoint, clear_command, _("\
16237 Clear breakpoint at specified line or function.\n\
16238 Argument may be line number, function name, or \"*\" and an address.\n\
16239 If line number is specified, all breakpoints in that line are cleared.\n\
16240 If function is specified, breakpoints at beginning of function are cleared.\n\
16241 If an address is specified, breakpoints at that address are cleared.\n\
16242 \n\
16243 With no argument, clears all breakpoints in the line that the selected frame\n\
16244 is executing in.\n\
16245 \n\
16246 See also the \"delete\" command which clears breakpoints by number."));
16247 add_com_alias ("cl", "clear", class_breakpoint, 1);
16248
16249 c = add_com ("break", class_breakpoint, break_command, _("\
16250 Set breakpoint at specified line or function.\n"
16251 BREAK_ARGS_HELP ("break")));
16252 set_cmd_completer (c, location_completer);
16253
16254 add_com_alias ("b", "break", class_run, 1);
16255 add_com_alias ("br", "break", class_run, 1);
16256 add_com_alias ("bre", "break", class_run, 1);
16257 add_com_alias ("brea", "break", class_run, 1);
16258
16259 if (xdb_commands)
16260 add_com_alias ("ba", "break", class_breakpoint, 1);
16261
16262 if (dbx_commands)
16263 {
16264 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16265 Break in function/address or break at a line in the current file."),
16266 &stoplist, "stop ", 1, &cmdlist);
16267 add_cmd ("in", class_breakpoint, stopin_command,
16268 _("Break in function or address."), &stoplist);
16269 add_cmd ("at", class_breakpoint, stopat_command,
16270 _("Break at a line in the current file."), &stoplist);
16271 add_com ("status", class_info, breakpoints_info, _("\
16272 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16273 The \"Type\" column indicates one of:\n\
16274 \tbreakpoint - normal breakpoint\n\
16275 \twatchpoint - watchpoint\n\
16276 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16277 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16278 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16279 address and file/line number respectively.\n\
16280 \n\
16281 Convenience variable \"$_\" and default examine address for \"x\"\n\
16282 are set to the address of the last breakpoint listed unless the command\n\
16283 is prefixed with \"server \".\n\n\
16284 Convenience variable \"$bpnum\" contains the number of the last\n\
16285 breakpoint set."));
16286 }
16287
16288 add_info ("breakpoints", breakpoints_info, _("\
16289 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16290 The \"Type\" column indicates one of:\n\
16291 \tbreakpoint - normal breakpoint\n\
16292 \twatchpoint - watchpoint\n\
16293 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16294 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16295 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16296 address and file/line number respectively.\n\
16297 \n\
16298 Convenience variable \"$_\" and default examine address for \"x\"\n\
16299 are set to the address of the last breakpoint listed unless the command\n\
16300 is prefixed with \"server \".\n\n\
16301 Convenience variable \"$bpnum\" contains the number of the last\n\
16302 breakpoint set."));
16303
16304 add_info_alias ("b", "breakpoints", 1);
16305
16306 if (xdb_commands)
16307 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16308 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16309 The \"Type\" column indicates one of:\n\
16310 \tbreakpoint - normal breakpoint\n\
16311 \twatchpoint - watchpoint\n\
16312 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16313 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16314 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16315 address and file/line number respectively.\n\
16316 \n\
16317 Convenience variable \"$_\" and default examine address for \"x\"\n\
16318 are set to the address of the last breakpoint listed unless the command\n\
16319 is prefixed with \"server \".\n\n\
16320 Convenience variable \"$bpnum\" contains the number of the last\n\
16321 breakpoint set."));
16322
16323 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16324 Status of all breakpoints, or breakpoint number NUMBER.\n\
16325 The \"Type\" column indicates one of:\n\
16326 \tbreakpoint - normal breakpoint\n\
16327 \twatchpoint - watchpoint\n\
16328 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16329 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16330 \tuntil - internal breakpoint used by the \"until\" command\n\
16331 \tfinish - internal breakpoint used by the \"finish\" command\n\
16332 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16333 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16334 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16335 address and file/line number respectively.\n\
16336 \n\
16337 Convenience variable \"$_\" and default examine address for \"x\"\n\
16338 are set to the address of the last breakpoint listed unless the command\n\
16339 is prefixed with \"server \".\n\n\
16340 Convenience variable \"$bpnum\" contains the number of the last\n\
16341 breakpoint set."),
16342 &maintenanceinfolist);
16343
16344 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16345 Set catchpoints to catch events."),
16346 &catch_cmdlist, "catch ",
16347 0/*allow-unknown*/, &cmdlist);
16348
16349 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16350 Set temporary catchpoints to catch events."),
16351 &tcatch_cmdlist, "tcatch ",
16352 0/*allow-unknown*/, &cmdlist);
16353
16354 add_catch_command ("fork", _("Catch calls to fork."),
16355 catch_fork_command_1,
16356 NULL,
16357 (void *) (uintptr_t) catch_fork_permanent,
16358 (void *) (uintptr_t) catch_fork_temporary);
16359 add_catch_command ("vfork", _("Catch calls to vfork."),
16360 catch_fork_command_1,
16361 NULL,
16362 (void *) (uintptr_t) catch_vfork_permanent,
16363 (void *) (uintptr_t) catch_vfork_temporary);
16364 add_catch_command ("exec", _("Catch calls to exec."),
16365 catch_exec_command_1,
16366 NULL,
16367 CATCH_PERMANENT,
16368 CATCH_TEMPORARY);
16369 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16370 Usage: catch load [REGEX]\n\
16371 If REGEX is given, only stop for libraries matching the regular expression."),
16372 catch_load_command_1,
16373 NULL,
16374 CATCH_PERMANENT,
16375 CATCH_TEMPORARY);
16376 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16377 Usage: catch unload [REGEX]\n\
16378 If REGEX is given, only stop for libraries matching the regular expression."),
16379 catch_unload_command_1,
16380 NULL,
16381 CATCH_PERMANENT,
16382 CATCH_TEMPORARY);
16383 add_catch_command ("syscall", _("\
16384 Catch system calls by their names and/or numbers.\n\
16385 Arguments say which system calls to catch. If no arguments\n\
16386 are given, every system call will be caught.\n\
16387 Arguments, if given, should be one or more system call names\n\
16388 (if your system supports that), or system call numbers."),
16389 catch_syscall_command_1,
16390 catch_syscall_completer,
16391 CATCH_PERMANENT,
16392 CATCH_TEMPORARY);
16393
16394 c = add_com ("watch", class_breakpoint, watch_command, _("\
16395 Set a watchpoint for an expression.\n\
16396 Usage: watch [-l|-location] EXPRESSION\n\
16397 A watchpoint stops execution of your program whenever the value of\n\
16398 an expression changes.\n\
16399 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16400 the memory to which it refers."));
16401 set_cmd_completer (c, expression_completer);
16402
16403 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16404 Set a read watchpoint for an expression.\n\
16405 Usage: rwatch [-l|-location] EXPRESSION\n\
16406 A watchpoint stops execution of your program whenever the value of\n\
16407 an expression is read.\n\
16408 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16409 the memory to which it refers."));
16410 set_cmd_completer (c, expression_completer);
16411
16412 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16413 Set a watchpoint for an expression.\n\
16414 Usage: awatch [-l|-location] EXPRESSION\n\
16415 A watchpoint stops execution of your program whenever the value of\n\
16416 an expression is either read or written.\n\
16417 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16418 the memory to which it refers."));
16419 set_cmd_completer (c, expression_completer);
16420
16421 add_info ("watchpoints", watchpoints_info, _("\
16422 Status of specified watchpoints (all watchpoints if no argument)."));
16423
16424 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16425 respond to changes - contrary to the description. */
16426 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16427 &can_use_hw_watchpoints, _("\
16428 Set debugger's willingness to use watchpoint hardware."), _("\
16429 Show debugger's willingness to use watchpoint hardware."), _("\
16430 If zero, gdb will not use hardware for new watchpoints, even if\n\
16431 such is available. (However, any hardware watchpoints that were\n\
16432 created before setting this to nonzero, will continue to use watchpoint\n\
16433 hardware.)"),
16434 NULL,
16435 show_can_use_hw_watchpoints,
16436 &setlist, &showlist);
16437
16438 can_use_hw_watchpoints = 1;
16439
16440 /* Tracepoint manipulation commands. */
16441
16442 c = add_com ("trace", class_breakpoint, trace_command, _("\
16443 Set a tracepoint at specified line or function.\n\
16444 \n"
16445 BREAK_ARGS_HELP ("trace") "\n\
16446 Do \"help tracepoints\" for info on other tracepoint commands."));
16447 set_cmd_completer (c, location_completer);
16448
16449 add_com_alias ("tp", "trace", class_alias, 0);
16450 add_com_alias ("tr", "trace", class_alias, 1);
16451 add_com_alias ("tra", "trace", class_alias, 1);
16452 add_com_alias ("trac", "trace", class_alias, 1);
16453
16454 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16455 Set a fast tracepoint at specified line or function.\n\
16456 \n"
16457 BREAK_ARGS_HELP ("ftrace") "\n\
16458 Do \"help tracepoints\" for info on other tracepoint commands."));
16459 set_cmd_completer (c, location_completer);
16460
16461 c = add_com ("strace", class_breakpoint, strace_command, _("\
16462 Set a static tracepoint at specified line, function or marker.\n\
16463 \n\
16464 strace [LOCATION] [if CONDITION]\n\
16465 LOCATION may be a line number, function name, \"*\" and an address,\n\
16466 or -m MARKER_ID.\n\
16467 If a line number is specified, probe the marker at start of code\n\
16468 for that line. If a function is specified, probe the marker at start\n\
16469 of code for that function. If an address is specified, probe the marker\n\
16470 at that exact address. If a marker id is specified, probe the marker\n\
16471 with that name. With no LOCATION, uses current execution address of\n\
16472 the selected stack frame.\n\
16473 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16474 This collects arbitrary user data passed in the probe point call to the\n\
16475 tracing library. You can inspect it when analyzing the trace buffer,\n\
16476 by printing the $_sdata variable like any other convenience variable.\n\
16477 \n\
16478 CONDITION is a boolean expression.\n\
16479 \n\
16480 Multiple tracepoints at one place are permitted, and useful if their\n\
16481 conditions are different.\n\
16482 \n\
16483 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16484 Do \"help tracepoints\" for info on other tracepoint commands."));
16485 set_cmd_completer (c, location_completer);
16486
16487 add_info ("tracepoints", tracepoints_info, _("\
16488 Status of specified tracepoints (all tracepoints if no argument).\n\
16489 Convenience variable \"$tpnum\" contains the number of the\n\
16490 last tracepoint set."));
16491
16492 add_info_alias ("tp", "tracepoints", 1);
16493
16494 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16495 Delete specified tracepoints.\n\
16496 Arguments are tracepoint numbers, separated by spaces.\n\
16497 No argument means delete all tracepoints."),
16498 &deletelist);
16499 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16500
16501 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16502 Disable specified tracepoints.\n\
16503 Arguments are tracepoint numbers, separated by spaces.\n\
16504 No argument means disable all tracepoints."),
16505 &disablelist);
16506 deprecate_cmd (c, "disable");
16507
16508 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16509 Enable specified tracepoints.\n\
16510 Arguments are tracepoint numbers, separated by spaces.\n\
16511 No argument means enable all tracepoints."),
16512 &enablelist);
16513 deprecate_cmd (c, "enable");
16514
16515 add_com ("passcount", class_trace, trace_pass_command, _("\
16516 Set the passcount for a tracepoint.\n\
16517 The trace will end when the tracepoint has been passed 'count' times.\n\
16518 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16519 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16520
16521 add_prefix_cmd ("save", class_breakpoint, save_command,
16522 _("Save breakpoint definitions as a script."),
16523 &save_cmdlist, "save ",
16524 0/*allow-unknown*/, &cmdlist);
16525
16526 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16527 Save current breakpoint definitions as a script.\n\
16528 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16529 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16530 session to restore them."),
16531 &save_cmdlist);
16532 set_cmd_completer (c, filename_completer);
16533
16534 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16535 Save current tracepoint definitions as a script.\n\
16536 Use the 'source' command in another debug session to restore them."),
16537 &save_cmdlist);
16538 set_cmd_completer (c, filename_completer);
16539
16540 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16541 deprecate_cmd (c, "save tracepoints");
16542
16543 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16544 Breakpoint specific settings\n\
16545 Configure various breakpoint-specific variables such as\n\
16546 pending breakpoint behavior"),
16547 &breakpoint_set_cmdlist, "set breakpoint ",
16548 0/*allow-unknown*/, &setlist);
16549 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16550 Breakpoint specific settings\n\
16551 Configure various breakpoint-specific variables such as\n\
16552 pending breakpoint behavior"),
16553 &breakpoint_show_cmdlist, "show breakpoint ",
16554 0/*allow-unknown*/, &showlist);
16555
16556 add_setshow_auto_boolean_cmd ("pending", no_class,
16557 &pending_break_support, _("\
16558 Set debugger's behavior regarding pending breakpoints."), _("\
16559 Show debugger's behavior regarding pending breakpoints."), _("\
16560 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16561 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16562 an error. If auto, an unrecognized breakpoint location results in a\n\
16563 user-query to see if a pending breakpoint should be created."),
16564 NULL,
16565 show_pending_break_support,
16566 &breakpoint_set_cmdlist,
16567 &breakpoint_show_cmdlist);
16568
16569 pending_break_support = AUTO_BOOLEAN_AUTO;
16570
16571 add_setshow_boolean_cmd ("auto-hw", no_class,
16572 &automatic_hardware_breakpoints, _("\
16573 Set automatic usage of hardware breakpoints."), _("\
16574 Show automatic usage of hardware breakpoints."), _("\
16575 If set, the debugger will automatically use hardware breakpoints for\n\
16576 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16577 a warning will be emitted for such breakpoints."),
16578 NULL,
16579 show_automatic_hardware_breakpoints,
16580 &breakpoint_set_cmdlist,
16581 &breakpoint_show_cmdlist);
16582
16583 add_setshow_auto_boolean_cmd ("always-inserted", class_support,
16584 &always_inserted_mode, _("\
16585 Set mode for inserting breakpoints."), _("\
16586 Show mode for inserting breakpoints."), _("\
16587 When this mode is off, breakpoints are inserted in inferior when it is\n\
16588 resumed, and removed when execution stops. When this mode is on,\n\
16589 breakpoints are inserted immediately and removed only when the user\n\
16590 deletes the breakpoint. When this mode is auto (which is the default),\n\
16591 the behaviour depends on the non-stop setting (see help set non-stop).\n\
16592 In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
16593 behaves as if always-inserted mode is on; if gdb is controlling the\n\
16594 inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
16595 NULL,
16596 &show_always_inserted_mode,
16597 &breakpoint_set_cmdlist,
16598 &breakpoint_show_cmdlist);
16599
16600 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16601 condition_evaluation_enums,
16602 &condition_evaluation_mode_1, _("\
16603 Set mode of breakpoint condition evaluation."), _("\
16604 Show mode of breakpoint condition evaluation."), _("\
16605 When this is set to \"host\", breakpoint conditions will be\n\
16606 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16607 breakpoint conditions will be downloaded to the target (if the target\n\
16608 supports such feature) and conditions will be evaluated on the target's side.\n\
16609 If this is set to \"auto\" (default), this will be automatically set to\n\
16610 \"target\" if it supports condition evaluation, otherwise it will\n\
16611 be set to \"gdb\""),
16612 &set_condition_evaluation_mode,
16613 &show_condition_evaluation_mode,
16614 &breakpoint_set_cmdlist,
16615 &breakpoint_show_cmdlist);
16616
16617 add_com ("break-range", class_breakpoint, break_range_command, _("\
16618 Set a breakpoint for an address range.\n\
16619 break-range START-LOCATION, END-LOCATION\n\
16620 where START-LOCATION and END-LOCATION can be one of the following:\n\
16621 LINENUM, for that line in the current file,\n\
16622 FILE:LINENUM, for that line in that file,\n\
16623 +OFFSET, for that number of lines after the current line\n\
16624 or the start of the range\n\
16625 FUNCTION, for the first line in that function,\n\
16626 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16627 *ADDRESS, for the instruction at that address.\n\
16628 \n\
16629 The breakpoint will stop execution of the inferior whenever it executes\n\
16630 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16631 range (including START-LOCATION and END-LOCATION)."));
16632
16633 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16634 Set a dynamic printf at specified line or function.\n\
16635 dprintf location,format string,arg1,arg2,...\n\
16636 location may be a line number, function name, or \"*\" and an address.\n\
16637 If a line number is specified, break at start of code for that line.\n\
16638 If a function is specified, break at start of code for that function."));
16639 set_cmd_completer (c, location_completer);
16640
16641 add_setshow_enum_cmd ("dprintf-style", class_support,
16642 dprintf_style_enums, &dprintf_style, _("\
16643 Set the style of usage for dynamic printf."), _("\
16644 Show the style of usage for dynamic printf."), _("\
16645 This setting chooses how GDB will do a dynamic printf.\n\
16646 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16647 console, as with the \"printf\" command.\n\
16648 If the value is \"call\", the print is done by calling a function in your\n\
16649 program; by default printf(), but you can choose a different function or\n\
16650 output stream by setting dprintf-function and dprintf-channel."),
16651 update_dprintf_commands, NULL,
16652 &setlist, &showlist);
16653
16654 dprintf_function = xstrdup ("printf");
16655 add_setshow_string_cmd ("dprintf-function", class_support,
16656 &dprintf_function, _("\
16657 Set the function to use for dynamic printf"), _("\
16658 Show the function to use for dynamic printf"), NULL,
16659 update_dprintf_commands, NULL,
16660 &setlist, &showlist);
16661
16662 dprintf_channel = xstrdup ("");
16663 add_setshow_string_cmd ("dprintf-channel", class_support,
16664 &dprintf_channel, _("\
16665 Set the channel to use for dynamic printf"), _("\
16666 Show the channel to use for dynamic printf"), NULL,
16667 update_dprintf_commands, NULL,
16668 &setlist, &showlist);
16669
16670 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16671 &disconnected_dprintf, _("\
16672 Set whether dprintf continues after GDB disconnects."), _("\
16673 Show whether dprintf continues after GDB disconnects."), _("\
16674 Use this to let dprintf commands continue to hit and produce output\n\
16675 even if GDB disconnects or detaches from the target."),
16676 NULL,
16677 NULL,
16678 &setlist, &showlist);
16679
16680 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16681 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16682 (target agent only) This is useful for formatted output in user-defined commands."));
16683
16684 automatic_hardware_breakpoints = 1;
16685
16686 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16687 observer_attach_thread_exit (remove_threaded_breakpoints);
16688 }
This page took 0.405471 seconds and 4 git commands to generate.