Comment and whitespace changes
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "block.h"
51 #include "solib.h"
52 #include "solist.h"
53 #include "observer.h"
54 #include "memattr.h"
55 #include "ada-lang.h"
56 #include "top.h"
57 #include "valprint.h"
58 #include "jit.h"
59 #include "parser-defs.h"
60 #include "gdb_regex.h"
61 #include "probe.h"
62 #include "cli/cli-utils.h"
63 #include "continuations.h"
64 #include "stack.h"
65 #include "skip.h"
66 #include "ax-gdb.h"
67 #include "dummy-frame.h"
68 #include "interps.h"
69 #include "format.h"
70
71 /* readline include files */
72 #include "readline/readline.h"
73 #include "readline/history.h"
74
75 /* readline defines this. */
76 #undef savestring
77
78 #include "mi/mi-common.h"
79 #include "extension.h"
80
81 /* Enums for exception-handling support. */
82 enum exception_event_kind
83 {
84 EX_EVENT_THROW,
85 EX_EVENT_RETHROW,
86 EX_EVENT_CATCH
87 };
88
89 /* Prototypes for local functions. */
90
91 static void enable_delete_command (char *, int);
92
93 static void enable_once_command (char *, int);
94
95 static void enable_count_command (char *, int);
96
97 static void disable_command (char *, int);
98
99 static void enable_command (char *, int);
100
101 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
102 void *),
103 void *);
104
105 static void ignore_command (char *, int);
106
107 static int breakpoint_re_set_one (void *);
108
109 static void breakpoint_re_set_default (struct breakpoint *);
110
111 static void create_sals_from_address_default (char **,
112 struct linespec_result *,
113 enum bptype, char *,
114 char **);
115
116 static void create_breakpoints_sal_default (struct gdbarch *,
117 struct linespec_result *,
118 char *, char *, enum bptype,
119 enum bpdisp, int, int,
120 int,
121 const struct breakpoint_ops *,
122 int, int, int, unsigned);
123
124 static void decode_linespec_default (struct breakpoint *, char **,
125 struct symtabs_and_lines *);
126
127 static void clear_command (char *, int);
128
129 static void catch_command (char *, int);
130
131 static int can_use_hardware_watchpoint (struct value *);
132
133 static void break_command_1 (char *, int, int);
134
135 static void mention (struct breakpoint *);
136
137 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
138 enum bptype,
139 const struct breakpoint_ops *);
140 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
141 const struct symtab_and_line *);
142
143 /* This function is used in gdbtk sources and thus can not be made
144 static. */
145 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
146 struct symtab_and_line,
147 enum bptype,
148 const struct breakpoint_ops *);
149
150 static struct breakpoint *
151 momentary_breakpoint_from_master (struct breakpoint *orig,
152 enum bptype type,
153 const struct breakpoint_ops *ops,
154 int loc_enabled);
155
156 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
157
158 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
159 CORE_ADDR bpaddr,
160 enum bptype bptype);
161
162 static void describe_other_breakpoints (struct gdbarch *,
163 struct program_space *, CORE_ADDR,
164 struct obj_section *, int);
165
166 static int watchpoint_locations_match (struct bp_location *loc1,
167 struct bp_location *loc2);
168
169 static int breakpoint_location_address_match (struct bp_location *bl,
170 struct address_space *aspace,
171 CORE_ADDR addr);
172
173 static void breakpoints_info (char *, int);
174
175 static void watchpoints_info (char *, int);
176
177 static int breakpoint_1 (char *, int,
178 int (*) (const struct breakpoint *));
179
180 static int breakpoint_cond_eval (void *);
181
182 static void cleanup_executing_breakpoints (void *);
183
184 static void commands_command (char *, int);
185
186 static void condition_command (char *, int);
187
188 typedef enum
189 {
190 mark_inserted,
191 mark_uninserted
192 }
193 insertion_state_t;
194
195 static int remove_breakpoint (struct bp_location *, insertion_state_t);
196 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
197
198 static enum print_stop_action print_bp_stop_message (bpstat bs);
199
200 static int watchpoint_check (void *);
201
202 static void maintenance_info_breakpoints (char *, int);
203
204 static int hw_breakpoint_used_count (void);
205
206 static int hw_watchpoint_use_count (struct breakpoint *);
207
208 static int hw_watchpoint_used_count_others (struct breakpoint *except,
209 enum bptype type,
210 int *other_type_used);
211
212 static void hbreak_command (char *, int);
213
214 static void thbreak_command (char *, int);
215
216 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
217 int count);
218
219 static void stop_command (char *arg, int from_tty);
220
221 static void stopin_command (char *arg, int from_tty);
222
223 static void stopat_command (char *arg, int from_tty);
224
225 static void tcatch_command (char *arg, int from_tty);
226
227 static void free_bp_location (struct bp_location *loc);
228 static void incref_bp_location (struct bp_location *loc);
229 static void decref_bp_location (struct bp_location **loc);
230
231 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
232
233 /* update_global_location_list's modes of operation wrt to whether to
234 insert locations now. */
235 enum ugll_insert_mode
236 {
237 /* Don't insert any breakpoint locations into the inferior, only
238 remove already-inserted locations that no longer should be
239 inserted. Functions that delete a breakpoint or breakpoints
240 should specify this mode, so that deleting a breakpoint doesn't
241 have the side effect of inserting the locations of other
242 breakpoints that are marked not-inserted, but should_be_inserted
243 returns true on them.
244
245 This behavior is useful is situations close to tear-down -- e.g.,
246 after an exec, while the target still has execution, but
247 breakpoint shadows of the previous executable image should *NOT*
248 be restored to the new image; or before detaching, where the
249 target still has execution and wants to delete breakpoints from
250 GDB's lists, and all breakpoints had already been removed from
251 the inferior. */
252 UGLL_DONT_INSERT,
253
254 /* May insert breakpoints iff breakpoints_should_be_inserted_now
255 claims breakpoints should be inserted now. */
256 UGLL_MAY_INSERT,
257
258 /* Insert locations now, irrespective of
259 breakpoints_should_be_inserted_now. E.g., say all threads are
260 stopped right now, and the user did "continue". We need to
261 insert breakpoints _before_ resuming the target, but
262 UGLL_MAY_INSERT wouldn't insert them, because
263 breakpoints_should_be_inserted_now returns false at that point,
264 as no thread is running yet. */
265 UGLL_INSERT
266 };
267
268 static void update_global_location_list (enum ugll_insert_mode);
269
270 static void update_global_location_list_nothrow (enum ugll_insert_mode);
271
272 static int is_hardware_watchpoint (const struct breakpoint *bpt);
273
274 static void insert_breakpoint_locations (void);
275
276 static void tracepoints_info (char *, int);
277
278 static void delete_trace_command (char *, int);
279
280 static void enable_trace_command (char *, int);
281
282 static void disable_trace_command (char *, int);
283
284 static void trace_pass_command (char *, int);
285
286 static void set_tracepoint_count (int num);
287
288 static int is_masked_watchpoint (const struct breakpoint *b);
289
290 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
291
292 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
293 otherwise. */
294
295 static int strace_marker_p (struct breakpoint *b);
296
297 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
298 that are implemented on top of software or hardware breakpoints
299 (user breakpoints, internal and momentary breakpoints, etc.). */
300 static struct breakpoint_ops bkpt_base_breakpoint_ops;
301
302 /* Internal breakpoints class type. */
303 static struct breakpoint_ops internal_breakpoint_ops;
304
305 /* Momentary breakpoints class type. */
306 static struct breakpoint_ops momentary_breakpoint_ops;
307
308 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
309 static struct breakpoint_ops longjmp_breakpoint_ops;
310
311 /* The breakpoint_ops structure to be used in regular user created
312 breakpoints. */
313 struct breakpoint_ops bkpt_breakpoint_ops;
314
315 /* Breakpoints set on probes. */
316 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
317
318 /* Dynamic printf class type. */
319 struct breakpoint_ops dprintf_breakpoint_ops;
320
321 /* The style in which to perform a dynamic printf. This is a user
322 option because different output options have different tradeoffs;
323 if GDB does the printing, there is better error handling if there
324 is a problem with any of the arguments, but using an inferior
325 function lets you have special-purpose printers and sending of
326 output to the same place as compiled-in print functions. */
327
328 static const char dprintf_style_gdb[] = "gdb";
329 static const char dprintf_style_call[] = "call";
330 static const char dprintf_style_agent[] = "agent";
331 static const char *const dprintf_style_enums[] = {
332 dprintf_style_gdb,
333 dprintf_style_call,
334 dprintf_style_agent,
335 NULL
336 };
337 static const char *dprintf_style = dprintf_style_gdb;
338
339 /* The function to use for dynamic printf if the preferred style is to
340 call into the inferior. The value is simply a string that is
341 copied into the command, so it can be anything that GDB can
342 evaluate to a callable address, not necessarily a function name. */
343
344 static char *dprintf_function = "";
345
346 /* The channel to use for dynamic printf if the preferred style is to
347 call into the inferior; if a nonempty string, it will be passed to
348 the call as the first argument, with the format string as the
349 second. As with the dprintf function, this can be anything that
350 GDB knows how to evaluate, so in addition to common choices like
351 "stderr", this could be an app-specific expression like
352 "mystreams[curlogger]". */
353
354 static char *dprintf_channel = "";
355
356 /* True if dprintf commands should continue to operate even if GDB
357 has disconnected. */
358 static int disconnected_dprintf = 1;
359
360 /* A reference-counted struct command_line. This lets multiple
361 breakpoints share a single command list. */
362 struct counted_command_line
363 {
364 /* The reference count. */
365 int refc;
366
367 /* The command list. */
368 struct command_line *commands;
369 };
370
371 struct command_line *
372 breakpoint_commands (struct breakpoint *b)
373 {
374 return b->commands ? b->commands->commands : NULL;
375 }
376
377 /* Flag indicating that a command has proceeded the inferior past the
378 current breakpoint. */
379
380 static int breakpoint_proceeded;
381
382 const char *
383 bpdisp_text (enum bpdisp disp)
384 {
385 /* NOTE: the following values are a part of MI protocol and
386 represent values of 'disp' field returned when inferior stops at
387 a breakpoint. */
388 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
389
390 return bpdisps[(int) disp];
391 }
392
393 /* Prototypes for exported functions. */
394 /* If FALSE, gdb will not use hardware support for watchpoints, even
395 if such is available. */
396 static int can_use_hw_watchpoints;
397
398 static void
399 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
400 struct cmd_list_element *c,
401 const char *value)
402 {
403 fprintf_filtered (file,
404 _("Debugger's willingness to use "
405 "watchpoint hardware is %s.\n"),
406 value);
407 }
408
409 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
410 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
411 for unrecognized breakpoint locations.
412 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
413 static enum auto_boolean pending_break_support;
414 static void
415 show_pending_break_support (struct ui_file *file, int from_tty,
416 struct cmd_list_element *c,
417 const char *value)
418 {
419 fprintf_filtered (file,
420 _("Debugger's behavior regarding "
421 "pending breakpoints is %s.\n"),
422 value);
423 }
424
425 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
426 set with "break" but falling in read-only memory.
427 If 0, gdb will warn about such breakpoints, but won't automatically
428 use hardware breakpoints. */
429 static int automatic_hardware_breakpoints;
430 static void
431 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
432 struct cmd_list_element *c,
433 const char *value)
434 {
435 fprintf_filtered (file,
436 _("Automatic usage of hardware breakpoints is %s.\n"),
437 value);
438 }
439
440 /* If on, GDB keeps breakpoints inserted even if the inferior is
441 stopped, and immediately inserts any new breakpoints as soon as
442 they're created. If off (default), GDB keeps breakpoints off of
443 the target as long as possible. That is, it delays inserting
444 breakpoints until the next resume, and removes them again when the
445 target fully stops. This is a bit safer in case GDB crashes while
446 processing user input. */
447 static int always_inserted_mode = 0;
448
449 static void
450 show_always_inserted_mode (struct ui_file *file, int from_tty,
451 struct cmd_list_element *c, const char *value)
452 {
453 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
454 value);
455 }
456
457 /* See breakpoint.h. */
458
459 int
460 breakpoints_should_be_inserted_now (void)
461 {
462 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
463 {
464 /* If breakpoints are global, they should be inserted even if no
465 thread under gdb's control is running, or even if there are
466 no threads under GDB's control yet. */
467 return 1;
468 }
469 else if (target_has_execution)
470 {
471 if (always_inserted_mode)
472 {
473 /* The user wants breakpoints inserted even if all threads
474 are stopped. */
475 return 1;
476 }
477
478 if (threads_are_executing ())
479 return 1;
480 }
481 return 0;
482 }
483
484 static const char condition_evaluation_both[] = "host or target";
485
486 /* Modes for breakpoint condition evaluation. */
487 static const char condition_evaluation_auto[] = "auto";
488 static const char condition_evaluation_host[] = "host";
489 static const char condition_evaluation_target[] = "target";
490 static const char *const condition_evaluation_enums[] = {
491 condition_evaluation_auto,
492 condition_evaluation_host,
493 condition_evaluation_target,
494 NULL
495 };
496
497 /* Global that holds the current mode for breakpoint condition evaluation. */
498 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
499
500 /* Global that we use to display information to the user (gets its value from
501 condition_evaluation_mode_1. */
502 static const char *condition_evaluation_mode = condition_evaluation_auto;
503
504 /* Translate a condition evaluation mode MODE into either "host"
505 or "target". This is used mostly to translate from "auto" to the
506 real setting that is being used. It returns the translated
507 evaluation mode. */
508
509 static const char *
510 translate_condition_evaluation_mode (const char *mode)
511 {
512 if (mode == condition_evaluation_auto)
513 {
514 if (target_supports_evaluation_of_breakpoint_conditions ())
515 return condition_evaluation_target;
516 else
517 return condition_evaluation_host;
518 }
519 else
520 return mode;
521 }
522
523 /* Discovers what condition_evaluation_auto translates to. */
524
525 static const char *
526 breakpoint_condition_evaluation_mode (void)
527 {
528 return translate_condition_evaluation_mode (condition_evaluation_mode);
529 }
530
531 /* Return true if GDB should evaluate breakpoint conditions or false
532 otherwise. */
533
534 static int
535 gdb_evaluates_breakpoint_condition_p (void)
536 {
537 const char *mode = breakpoint_condition_evaluation_mode ();
538
539 return (mode == condition_evaluation_host);
540 }
541
542 void _initialize_breakpoint (void);
543
544 /* Are we executing breakpoint commands? */
545 static int executing_breakpoint_commands;
546
547 /* Are overlay event breakpoints enabled? */
548 static int overlay_events_enabled;
549
550 /* See description in breakpoint.h. */
551 int target_exact_watchpoints = 0;
552
553 /* Walk the following statement or block through all breakpoints.
554 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
555 current breakpoint. */
556
557 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
558
559 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
560 for (B = breakpoint_chain; \
561 B ? (TMP=B->next, 1): 0; \
562 B = TMP)
563
564 /* Similar iterator for the low-level breakpoints. SAFE variant is
565 not provided so update_global_location_list must not be called
566 while executing the block of ALL_BP_LOCATIONS. */
567
568 #define ALL_BP_LOCATIONS(B,BP_TMP) \
569 for (BP_TMP = bp_location; \
570 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
571 BP_TMP++)
572
573 /* Iterates through locations with address ADDRESS for the currently selected
574 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
575 to where the loop should start from.
576 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
577 appropriate location to start with. */
578
579 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
580 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
581 BP_LOCP_TMP = BP_LOCP_START; \
582 BP_LOCP_START \
583 && (BP_LOCP_TMP < bp_location + bp_location_count \
584 && (*BP_LOCP_TMP)->address == ADDRESS); \
585 BP_LOCP_TMP++)
586
587 /* Iterator for tracepoints only. */
588
589 #define ALL_TRACEPOINTS(B) \
590 for (B = breakpoint_chain; B; B = B->next) \
591 if (is_tracepoint (B))
592
593 /* Chains of all breakpoints defined. */
594
595 struct breakpoint *breakpoint_chain;
596
597 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
598
599 static struct bp_location **bp_location;
600
601 /* Number of elements of BP_LOCATION. */
602
603 static unsigned bp_location_count;
604
605 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
606 ADDRESS for the current elements of BP_LOCATION which get a valid
607 result from bp_location_has_shadow. You can use it for roughly
608 limiting the subrange of BP_LOCATION to scan for shadow bytes for
609 an address you need to read. */
610
611 static CORE_ADDR bp_location_placed_address_before_address_max;
612
613 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
614 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
615 BP_LOCATION which get a valid result from bp_location_has_shadow.
616 You can use it for roughly limiting the subrange of BP_LOCATION to
617 scan for shadow bytes for an address you need to read. */
618
619 static CORE_ADDR bp_location_shadow_len_after_address_max;
620
621 /* The locations that no longer correspond to any breakpoint, unlinked
622 from bp_location array, but for which a hit may still be reported
623 by a target. */
624 VEC(bp_location_p) *moribund_locations = NULL;
625
626 /* Number of last breakpoint made. */
627
628 static int breakpoint_count;
629
630 /* The value of `breakpoint_count' before the last command that
631 created breakpoints. If the last (break-like) command created more
632 than one breakpoint, then the difference between BREAKPOINT_COUNT
633 and PREV_BREAKPOINT_COUNT is more than one. */
634 static int prev_breakpoint_count;
635
636 /* Number of last tracepoint made. */
637
638 static int tracepoint_count;
639
640 static struct cmd_list_element *breakpoint_set_cmdlist;
641 static struct cmd_list_element *breakpoint_show_cmdlist;
642 struct cmd_list_element *save_cmdlist;
643
644 /* See declaration at breakpoint.h. */
645
646 struct breakpoint *
647 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
648 void *user_data)
649 {
650 struct breakpoint *b = NULL;
651
652 ALL_BREAKPOINTS (b)
653 {
654 if (func (b, user_data) != 0)
655 break;
656 }
657
658 return b;
659 }
660
661 /* Return whether a breakpoint is an active enabled breakpoint. */
662 static int
663 breakpoint_enabled (struct breakpoint *b)
664 {
665 return (b->enable_state == bp_enabled);
666 }
667
668 /* Set breakpoint count to NUM. */
669
670 static void
671 set_breakpoint_count (int num)
672 {
673 prev_breakpoint_count = breakpoint_count;
674 breakpoint_count = num;
675 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
676 }
677
678 /* Used by `start_rbreak_breakpoints' below, to record the current
679 breakpoint count before "rbreak" creates any breakpoint. */
680 static int rbreak_start_breakpoint_count;
681
682 /* Called at the start an "rbreak" command to record the first
683 breakpoint made. */
684
685 void
686 start_rbreak_breakpoints (void)
687 {
688 rbreak_start_breakpoint_count = breakpoint_count;
689 }
690
691 /* Called at the end of an "rbreak" command to record the last
692 breakpoint made. */
693
694 void
695 end_rbreak_breakpoints (void)
696 {
697 prev_breakpoint_count = rbreak_start_breakpoint_count;
698 }
699
700 /* Used in run_command to zero the hit count when a new run starts. */
701
702 void
703 clear_breakpoint_hit_counts (void)
704 {
705 struct breakpoint *b;
706
707 ALL_BREAKPOINTS (b)
708 b->hit_count = 0;
709 }
710
711 /* Allocate a new counted_command_line with reference count of 1.
712 The new structure owns COMMANDS. */
713
714 static struct counted_command_line *
715 alloc_counted_command_line (struct command_line *commands)
716 {
717 struct counted_command_line *result
718 = xmalloc (sizeof (struct counted_command_line));
719
720 result->refc = 1;
721 result->commands = commands;
722 return result;
723 }
724
725 /* Increment reference count. This does nothing if CMD is NULL. */
726
727 static void
728 incref_counted_command_line (struct counted_command_line *cmd)
729 {
730 if (cmd)
731 ++cmd->refc;
732 }
733
734 /* Decrement reference count. If the reference count reaches 0,
735 destroy the counted_command_line. Sets *CMDP to NULL. This does
736 nothing if *CMDP is NULL. */
737
738 static void
739 decref_counted_command_line (struct counted_command_line **cmdp)
740 {
741 if (*cmdp)
742 {
743 if (--(*cmdp)->refc == 0)
744 {
745 free_command_lines (&(*cmdp)->commands);
746 xfree (*cmdp);
747 }
748 *cmdp = NULL;
749 }
750 }
751
752 /* A cleanup function that calls decref_counted_command_line. */
753
754 static void
755 do_cleanup_counted_command_line (void *arg)
756 {
757 decref_counted_command_line (arg);
758 }
759
760 /* Create a cleanup that calls decref_counted_command_line on the
761 argument. */
762
763 static struct cleanup *
764 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
765 {
766 return make_cleanup (do_cleanup_counted_command_line, cmdp);
767 }
768
769 \f
770 /* Return the breakpoint with the specified number, or NULL
771 if the number does not refer to an existing breakpoint. */
772
773 struct breakpoint *
774 get_breakpoint (int num)
775 {
776 struct breakpoint *b;
777
778 ALL_BREAKPOINTS (b)
779 if (b->number == num)
780 return b;
781
782 return NULL;
783 }
784
785 \f
786
787 /* Mark locations as "conditions have changed" in case the target supports
788 evaluating conditions on its side. */
789
790 static void
791 mark_breakpoint_modified (struct breakpoint *b)
792 {
793 struct bp_location *loc;
794
795 /* This is only meaningful if the target is
796 evaluating conditions and if the user has
797 opted for condition evaluation on the target's
798 side. */
799 if (gdb_evaluates_breakpoint_condition_p ()
800 || !target_supports_evaluation_of_breakpoint_conditions ())
801 return;
802
803 if (!is_breakpoint (b))
804 return;
805
806 for (loc = b->loc; loc; loc = loc->next)
807 loc->condition_changed = condition_modified;
808 }
809
810 /* Mark location as "conditions have changed" in case the target supports
811 evaluating conditions on its side. */
812
813 static void
814 mark_breakpoint_location_modified (struct bp_location *loc)
815 {
816 /* This is only meaningful if the target is
817 evaluating conditions and if the user has
818 opted for condition evaluation on the target's
819 side. */
820 if (gdb_evaluates_breakpoint_condition_p ()
821 || !target_supports_evaluation_of_breakpoint_conditions ())
822
823 return;
824
825 if (!is_breakpoint (loc->owner))
826 return;
827
828 loc->condition_changed = condition_modified;
829 }
830
831 /* Sets the condition-evaluation mode using the static global
832 condition_evaluation_mode. */
833
834 static void
835 set_condition_evaluation_mode (char *args, int from_tty,
836 struct cmd_list_element *c)
837 {
838 const char *old_mode, *new_mode;
839
840 if ((condition_evaluation_mode_1 == condition_evaluation_target)
841 && !target_supports_evaluation_of_breakpoint_conditions ())
842 {
843 condition_evaluation_mode_1 = condition_evaluation_mode;
844 warning (_("Target does not support breakpoint condition evaluation.\n"
845 "Using host evaluation mode instead."));
846 return;
847 }
848
849 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
850 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
851
852 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
853 settings was "auto". */
854 condition_evaluation_mode = condition_evaluation_mode_1;
855
856 /* Only update the mode if the user picked a different one. */
857 if (new_mode != old_mode)
858 {
859 struct bp_location *loc, **loc_tmp;
860 /* If the user switched to a different evaluation mode, we
861 need to synch the changes with the target as follows:
862
863 "host" -> "target": Send all (valid) conditions to the target.
864 "target" -> "host": Remove all the conditions from the target.
865 */
866
867 if (new_mode == condition_evaluation_target)
868 {
869 /* Mark everything modified and synch conditions with the
870 target. */
871 ALL_BP_LOCATIONS (loc, loc_tmp)
872 mark_breakpoint_location_modified (loc);
873 }
874 else
875 {
876 /* Manually mark non-duplicate locations to synch conditions
877 with the target. We do this to remove all the conditions the
878 target knows about. */
879 ALL_BP_LOCATIONS (loc, loc_tmp)
880 if (is_breakpoint (loc->owner) && loc->inserted)
881 loc->needs_update = 1;
882 }
883
884 /* Do the update. */
885 update_global_location_list (UGLL_MAY_INSERT);
886 }
887
888 return;
889 }
890
891 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
892 what "auto" is translating to. */
893
894 static void
895 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
896 struct cmd_list_element *c, const char *value)
897 {
898 if (condition_evaluation_mode == condition_evaluation_auto)
899 fprintf_filtered (file,
900 _("Breakpoint condition evaluation "
901 "mode is %s (currently %s).\n"),
902 value,
903 breakpoint_condition_evaluation_mode ());
904 else
905 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
906 value);
907 }
908
909 /* A comparison function for bp_location AP and BP that is used by
910 bsearch. This comparison function only cares about addresses, unlike
911 the more general bp_location_compare function. */
912
913 static int
914 bp_location_compare_addrs (const void *ap, const void *bp)
915 {
916 struct bp_location *a = *(void **) ap;
917 struct bp_location *b = *(void **) bp;
918
919 if (a->address == b->address)
920 return 0;
921 else
922 return ((a->address > b->address) - (a->address < b->address));
923 }
924
925 /* Helper function to skip all bp_locations with addresses
926 less than ADDRESS. It returns the first bp_location that
927 is greater than or equal to ADDRESS. If none is found, just
928 return NULL. */
929
930 static struct bp_location **
931 get_first_locp_gte_addr (CORE_ADDR address)
932 {
933 struct bp_location dummy_loc;
934 struct bp_location *dummy_locp = &dummy_loc;
935 struct bp_location **locp_found = NULL;
936
937 /* Initialize the dummy location's address field. */
938 memset (&dummy_loc, 0, sizeof (struct bp_location));
939 dummy_loc.address = address;
940
941 /* Find a close match to the first location at ADDRESS. */
942 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
943 sizeof (struct bp_location **),
944 bp_location_compare_addrs);
945
946 /* Nothing was found, nothing left to do. */
947 if (locp_found == NULL)
948 return NULL;
949
950 /* We may have found a location that is at ADDRESS but is not the first in the
951 location's list. Go backwards (if possible) and locate the first one. */
952 while ((locp_found - 1) >= bp_location
953 && (*(locp_found - 1))->address == address)
954 locp_found--;
955
956 return locp_found;
957 }
958
959 void
960 set_breakpoint_condition (struct breakpoint *b, const char *exp,
961 int from_tty)
962 {
963 xfree (b->cond_string);
964 b->cond_string = NULL;
965
966 if (is_watchpoint (b))
967 {
968 struct watchpoint *w = (struct watchpoint *) b;
969
970 xfree (w->cond_exp);
971 w->cond_exp = NULL;
972 }
973 else
974 {
975 struct bp_location *loc;
976
977 for (loc = b->loc; loc; loc = loc->next)
978 {
979 xfree (loc->cond);
980 loc->cond = NULL;
981
982 /* No need to free the condition agent expression
983 bytecode (if we have one). We will handle this
984 when we go through update_global_location_list. */
985 }
986 }
987
988 if (*exp == 0)
989 {
990 if (from_tty)
991 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
992 }
993 else
994 {
995 const char *arg = exp;
996
997 /* I don't know if it matters whether this is the string the user
998 typed in or the decompiled expression. */
999 b->cond_string = xstrdup (arg);
1000 b->condition_not_parsed = 0;
1001
1002 if (is_watchpoint (b))
1003 {
1004 struct watchpoint *w = (struct watchpoint *) b;
1005
1006 innermost_block = NULL;
1007 arg = exp;
1008 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
1009 if (*arg)
1010 error (_("Junk at end of expression"));
1011 w->cond_exp_valid_block = innermost_block;
1012 }
1013 else
1014 {
1015 struct bp_location *loc;
1016
1017 for (loc = b->loc; loc; loc = loc->next)
1018 {
1019 arg = exp;
1020 loc->cond =
1021 parse_exp_1 (&arg, loc->address,
1022 block_for_pc (loc->address), 0);
1023 if (*arg)
1024 error (_("Junk at end of expression"));
1025 }
1026 }
1027 }
1028 mark_breakpoint_modified (b);
1029
1030 observer_notify_breakpoint_modified (b);
1031 }
1032
1033 /* Completion for the "condition" command. */
1034
1035 static VEC (char_ptr) *
1036 condition_completer (struct cmd_list_element *cmd,
1037 const char *text, const char *word)
1038 {
1039 const char *space;
1040
1041 text = skip_spaces_const (text);
1042 space = skip_to_space_const (text);
1043 if (*space == '\0')
1044 {
1045 int len;
1046 struct breakpoint *b;
1047 VEC (char_ptr) *result = NULL;
1048
1049 if (text[0] == '$')
1050 {
1051 /* We don't support completion of history indices. */
1052 if (isdigit (text[1]))
1053 return NULL;
1054 return complete_internalvar (&text[1]);
1055 }
1056
1057 /* We're completing the breakpoint number. */
1058 len = strlen (text);
1059
1060 ALL_BREAKPOINTS (b)
1061 {
1062 char number[50];
1063
1064 xsnprintf (number, sizeof (number), "%d", b->number);
1065
1066 if (strncmp (number, text, len) == 0)
1067 VEC_safe_push (char_ptr, result, xstrdup (number));
1068 }
1069
1070 return result;
1071 }
1072
1073 /* We're completing the expression part. */
1074 text = skip_spaces_const (space);
1075 return expression_completer (cmd, text, word);
1076 }
1077
1078 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1079
1080 static void
1081 condition_command (char *arg, int from_tty)
1082 {
1083 struct breakpoint *b;
1084 char *p;
1085 int bnum;
1086
1087 if (arg == 0)
1088 error_no_arg (_("breakpoint number"));
1089
1090 p = arg;
1091 bnum = get_number (&p);
1092 if (bnum == 0)
1093 error (_("Bad breakpoint argument: '%s'"), arg);
1094
1095 ALL_BREAKPOINTS (b)
1096 if (b->number == bnum)
1097 {
1098 /* Check if this breakpoint has a "stop" method implemented in an
1099 extension language. This method and conditions entered into GDB
1100 from the CLI are mutually exclusive. */
1101 const struct extension_language_defn *extlang
1102 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1103
1104 if (extlang != NULL)
1105 {
1106 error (_("Only one stop condition allowed. There is currently"
1107 " a %s stop condition defined for this breakpoint."),
1108 ext_lang_capitalized_name (extlang));
1109 }
1110 set_breakpoint_condition (b, p, from_tty);
1111
1112 if (is_breakpoint (b))
1113 update_global_location_list (UGLL_MAY_INSERT);
1114
1115 return;
1116 }
1117
1118 error (_("No breakpoint number %d."), bnum);
1119 }
1120
1121 /* Check that COMMAND do not contain commands that are suitable
1122 only for tracepoints and not suitable for ordinary breakpoints.
1123 Throw if any such commands is found. */
1124
1125 static void
1126 check_no_tracepoint_commands (struct command_line *commands)
1127 {
1128 struct command_line *c;
1129
1130 for (c = commands; c; c = c->next)
1131 {
1132 int i;
1133
1134 if (c->control_type == while_stepping_control)
1135 error (_("The 'while-stepping' command can "
1136 "only be used for tracepoints"));
1137
1138 for (i = 0; i < c->body_count; ++i)
1139 check_no_tracepoint_commands ((c->body_list)[i]);
1140
1141 /* Not that command parsing removes leading whitespace and comment
1142 lines and also empty lines. So, we only need to check for
1143 command directly. */
1144 if (strstr (c->line, "collect ") == c->line)
1145 error (_("The 'collect' command can only be used for tracepoints"));
1146
1147 if (strstr (c->line, "teval ") == c->line)
1148 error (_("The 'teval' command can only be used for tracepoints"));
1149 }
1150 }
1151
1152 /* Encapsulate tests for different types of tracepoints. */
1153
1154 static int
1155 is_tracepoint_type (enum bptype type)
1156 {
1157 return (type == bp_tracepoint
1158 || type == bp_fast_tracepoint
1159 || type == bp_static_tracepoint);
1160 }
1161
1162 int
1163 is_tracepoint (const struct breakpoint *b)
1164 {
1165 return is_tracepoint_type (b->type);
1166 }
1167
1168 /* A helper function that validates that COMMANDS are valid for a
1169 breakpoint. This function will throw an exception if a problem is
1170 found. */
1171
1172 static void
1173 validate_commands_for_breakpoint (struct breakpoint *b,
1174 struct command_line *commands)
1175 {
1176 if (is_tracepoint (b))
1177 {
1178 struct tracepoint *t = (struct tracepoint *) b;
1179 struct command_line *c;
1180 struct command_line *while_stepping = 0;
1181
1182 /* Reset the while-stepping step count. The previous commands
1183 might have included a while-stepping action, while the new
1184 ones might not. */
1185 t->step_count = 0;
1186
1187 /* We need to verify that each top-level element of commands is
1188 valid for tracepoints, that there's at most one
1189 while-stepping element, and that the while-stepping's body
1190 has valid tracing commands excluding nested while-stepping.
1191 We also need to validate the tracepoint action line in the
1192 context of the tracepoint --- validate_actionline actually
1193 has side effects, like setting the tracepoint's
1194 while-stepping STEP_COUNT, in addition to checking if the
1195 collect/teval actions parse and make sense in the
1196 tracepoint's context. */
1197 for (c = commands; c; c = c->next)
1198 {
1199 if (c->control_type == while_stepping_control)
1200 {
1201 if (b->type == bp_fast_tracepoint)
1202 error (_("The 'while-stepping' command "
1203 "cannot be used for fast tracepoint"));
1204 else if (b->type == bp_static_tracepoint)
1205 error (_("The 'while-stepping' command "
1206 "cannot be used for static tracepoint"));
1207
1208 if (while_stepping)
1209 error (_("The 'while-stepping' command "
1210 "can be used only once"));
1211 else
1212 while_stepping = c;
1213 }
1214
1215 validate_actionline (c->line, b);
1216 }
1217 if (while_stepping)
1218 {
1219 struct command_line *c2;
1220
1221 gdb_assert (while_stepping->body_count == 1);
1222 c2 = while_stepping->body_list[0];
1223 for (; c2; c2 = c2->next)
1224 {
1225 if (c2->control_type == while_stepping_control)
1226 error (_("The 'while-stepping' command cannot be nested"));
1227 }
1228 }
1229 }
1230 else
1231 {
1232 check_no_tracepoint_commands (commands);
1233 }
1234 }
1235
1236 /* Return a vector of all the static tracepoints set at ADDR. The
1237 caller is responsible for releasing the vector. */
1238
1239 VEC(breakpoint_p) *
1240 static_tracepoints_here (CORE_ADDR addr)
1241 {
1242 struct breakpoint *b;
1243 VEC(breakpoint_p) *found = 0;
1244 struct bp_location *loc;
1245
1246 ALL_BREAKPOINTS (b)
1247 if (b->type == bp_static_tracepoint)
1248 {
1249 for (loc = b->loc; loc; loc = loc->next)
1250 if (loc->address == addr)
1251 VEC_safe_push(breakpoint_p, found, b);
1252 }
1253
1254 return found;
1255 }
1256
1257 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1258 validate that only allowed commands are included. */
1259
1260 void
1261 breakpoint_set_commands (struct breakpoint *b,
1262 struct command_line *commands)
1263 {
1264 validate_commands_for_breakpoint (b, commands);
1265
1266 decref_counted_command_line (&b->commands);
1267 b->commands = alloc_counted_command_line (commands);
1268 observer_notify_breakpoint_modified (b);
1269 }
1270
1271 /* Set the internal `silent' flag on the breakpoint. Note that this
1272 is not the same as the "silent" that may appear in the breakpoint's
1273 commands. */
1274
1275 void
1276 breakpoint_set_silent (struct breakpoint *b, int silent)
1277 {
1278 int old_silent = b->silent;
1279
1280 b->silent = silent;
1281 if (old_silent != silent)
1282 observer_notify_breakpoint_modified (b);
1283 }
1284
1285 /* Set the thread for this breakpoint. If THREAD is -1, make the
1286 breakpoint work for any thread. */
1287
1288 void
1289 breakpoint_set_thread (struct breakpoint *b, int thread)
1290 {
1291 int old_thread = b->thread;
1292
1293 b->thread = thread;
1294 if (old_thread != thread)
1295 observer_notify_breakpoint_modified (b);
1296 }
1297
1298 /* Set the task for this breakpoint. If TASK is 0, make the
1299 breakpoint work for any task. */
1300
1301 void
1302 breakpoint_set_task (struct breakpoint *b, int task)
1303 {
1304 int old_task = b->task;
1305
1306 b->task = task;
1307 if (old_task != task)
1308 observer_notify_breakpoint_modified (b);
1309 }
1310
1311 void
1312 check_tracepoint_command (char *line, void *closure)
1313 {
1314 struct breakpoint *b = closure;
1315
1316 validate_actionline (line, b);
1317 }
1318
1319 /* A structure used to pass information through
1320 map_breakpoint_numbers. */
1321
1322 struct commands_info
1323 {
1324 /* True if the command was typed at a tty. */
1325 int from_tty;
1326
1327 /* The breakpoint range spec. */
1328 char *arg;
1329
1330 /* Non-NULL if the body of the commands are being read from this
1331 already-parsed command. */
1332 struct command_line *control;
1333
1334 /* The command lines read from the user, or NULL if they have not
1335 yet been read. */
1336 struct counted_command_line *cmd;
1337 };
1338
1339 /* A callback for map_breakpoint_numbers that sets the commands for
1340 commands_command. */
1341
1342 static void
1343 do_map_commands_command (struct breakpoint *b, void *data)
1344 {
1345 struct commands_info *info = data;
1346
1347 if (info->cmd == NULL)
1348 {
1349 struct command_line *l;
1350
1351 if (info->control != NULL)
1352 l = copy_command_lines (info->control->body_list[0]);
1353 else
1354 {
1355 struct cleanup *old_chain;
1356 char *str;
1357
1358 str = xstrprintf (_("Type commands for breakpoint(s) "
1359 "%s, one per line."),
1360 info->arg);
1361
1362 old_chain = make_cleanup (xfree, str);
1363
1364 l = read_command_lines (str,
1365 info->from_tty, 1,
1366 (is_tracepoint (b)
1367 ? check_tracepoint_command : 0),
1368 b);
1369
1370 do_cleanups (old_chain);
1371 }
1372
1373 info->cmd = alloc_counted_command_line (l);
1374 }
1375
1376 /* If a breakpoint was on the list more than once, we don't need to
1377 do anything. */
1378 if (b->commands != info->cmd)
1379 {
1380 validate_commands_for_breakpoint (b, info->cmd->commands);
1381 incref_counted_command_line (info->cmd);
1382 decref_counted_command_line (&b->commands);
1383 b->commands = info->cmd;
1384 observer_notify_breakpoint_modified (b);
1385 }
1386 }
1387
1388 static void
1389 commands_command_1 (char *arg, int from_tty,
1390 struct command_line *control)
1391 {
1392 struct cleanup *cleanups;
1393 struct commands_info info;
1394
1395 info.from_tty = from_tty;
1396 info.control = control;
1397 info.cmd = NULL;
1398 /* If we read command lines from the user, then `info' will hold an
1399 extra reference to the commands that we must clean up. */
1400 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1401
1402 if (arg == NULL || !*arg)
1403 {
1404 if (breakpoint_count - prev_breakpoint_count > 1)
1405 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1406 breakpoint_count);
1407 else if (breakpoint_count > 0)
1408 arg = xstrprintf ("%d", breakpoint_count);
1409 else
1410 {
1411 /* So that we don't try to free the incoming non-NULL
1412 argument in the cleanup below. Mapping breakpoint
1413 numbers will fail in this case. */
1414 arg = NULL;
1415 }
1416 }
1417 else
1418 /* The command loop has some static state, so we need to preserve
1419 our argument. */
1420 arg = xstrdup (arg);
1421
1422 if (arg != NULL)
1423 make_cleanup (xfree, arg);
1424
1425 info.arg = arg;
1426
1427 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1428
1429 if (info.cmd == NULL)
1430 error (_("No breakpoints specified."));
1431
1432 do_cleanups (cleanups);
1433 }
1434
1435 static void
1436 commands_command (char *arg, int from_tty)
1437 {
1438 commands_command_1 (arg, from_tty, NULL);
1439 }
1440
1441 /* Like commands_command, but instead of reading the commands from
1442 input stream, takes them from an already parsed command structure.
1443
1444 This is used by cli-script.c to DTRT with breakpoint commands
1445 that are part of if and while bodies. */
1446 enum command_control_type
1447 commands_from_control_command (char *arg, struct command_line *cmd)
1448 {
1449 commands_command_1 (arg, 0, cmd);
1450 return simple_control;
1451 }
1452
1453 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1454
1455 static int
1456 bp_location_has_shadow (struct bp_location *bl)
1457 {
1458 if (bl->loc_type != bp_loc_software_breakpoint)
1459 return 0;
1460 if (!bl->inserted)
1461 return 0;
1462 if (bl->target_info.shadow_len == 0)
1463 /* BL isn't valid, or doesn't shadow memory. */
1464 return 0;
1465 return 1;
1466 }
1467
1468 /* Update BUF, which is LEN bytes read from the target address
1469 MEMADDR, by replacing a memory breakpoint with its shadowed
1470 contents.
1471
1472 If READBUF is not NULL, this buffer must not overlap with the of
1473 the breakpoint location's shadow_contents buffer. Otherwise, a
1474 failed assertion internal error will be raised. */
1475
1476 static void
1477 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1478 const gdb_byte *writebuf_org,
1479 ULONGEST memaddr, LONGEST len,
1480 struct bp_target_info *target_info,
1481 struct gdbarch *gdbarch)
1482 {
1483 /* Now do full processing of the found relevant range of elements. */
1484 CORE_ADDR bp_addr = 0;
1485 int bp_size = 0;
1486 int bptoffset = 0;
1487
1488 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1489 current_program_space->aspace, 0))
1490 {
1491 /* The breakpoint is inserted in a different address space. */
1492 return;
1493 }
1494
1495 /* Addresses and length of the part of the breakpoint that
1496 we need to copy. */
1497 bp_addr = target_info->placed_address;
1498 bp_size = target_info->shadow_len;
1499
1500 if (bp_addr + bp_size <= memaddr)
1501 {
1502 /* The breakpoint is entirely before the chunk of memory we are
1503 reading. */
1504 return;
1505 }
1506
1507 if (bp_addr >= memaddr + len)
1508 {
1509 /* The breakpoint is entirely after the chunk of memory we are
1510 reading. */
1511 return;
1512 }
1513
1514 /* Offset within shadow_contents. */
1515 if (bp_addr < memaddr)
1516 {
1517 /* Only copy the second part of the breakpoint. */
1518 bp_size -= memaddr - bp_addr;
1519 bptoffset = memaddr - bp_addr;
1520 bp_addr = memaddr;
1521 }
1522
1523 if (bp_addr + bp_size > memaddr + len)
1524 {
1525 /* Only copy the first part of the breakpoint. */
1526 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1527 }
1528
1529 if (readbuf != NULL)
1530 {
1531 /* Verify that the readbuf buffer does not overlap with the
1532 shadow_contents buffer. */
1533 gdb_assert (target_info->shadow_contents >= readbuf + len
1534 || readbuf >= (target_info->shadow_contents
1535 + target_info->shadow_len));
1536
1537 /* Update the read buffer with this inserted breakpoint's
1538 shadow. */
1539 memcpy (readbuf + bp_addr - memaddr,
1540 target_info->shadow_contents + bptoffset, bp_size);
1541 }
1542 else
1543 {
1544 const unsigned char *bp;
1545 CORE_ADDR addr = target_info->reqstd_address;
1546 int placed_size;
1547
1548 /* Update the shadow with what we want to write to memory. */
1549 memcpy (target_info->shadow_contents + bptoffset,
1550 writebuf_org + bp_addr - memaddr, bp_size);
1551
1552 /* Determine appropriate breakpoint contents and size for this
1553 address. */
1554 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1555
1556 /* Update the final write buffer with this inserted
1557 breakpoint's INSN. */
1558 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1559 }
1560 }
1561
1562 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1563 by replacing any memory breakpoints with their shadowed contents.
1564
1565 If READBUF is not NULL, this buffer must not overlap with any of
1566 the breakpoint location's shadow_contents buffers. Otherwise,
1567 a failed assertion internal error will be raised.
1568
1569 The range of shadowed area by each bp_location is:
1570 bl->address - bp_location_placed_address_before_address_max
1571 up to bl->address + bp_location_shadow_len_after_address_max
1572 The range we were requested to resolve shadows for is:
1573 memaddr ... memaddr + len
1574 Thus the safe cutoff boundaries for performance optimization are
1575 memaddr + len <= (bl->address
1576 - bp_location_placed_address_before_address_max)
1577 and:
1578 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1579
1580 void
1581 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1582 const gdb_byte *writebuf_org,
1583 ULONGEST memaddr, LONGEST len)
1584 {
1585 /* Left boundary, right boundary and median element of our binary
1586 search. */
1587 unsigned bc_l, bc_r, bc;
1588 size_t i;
1589
1590 /* Find BC_L which is a leftmost element which may affect BUF
1591 content. It is safe to report lower value but a failure to
1592 report higher one. */
1593
1594 bc_l = 0;
1595 bc_r = bp_location_count;
1596 while (bc_l + 1 < bc_r)
1597 {
1598 struct bp_location *bl;
1599
1600 bc = (bc_l + bc_r) / 2;
1601 bl = bp_location[bc];
1602
1603 /* Check first BL->ADDRESS will not overflow due to the added
1604 constant. Then advance the left boundary only if we are sure
1605 the BC element can in no way affect the BUF content (MEMADDR
1606 to MEMADDR + LEN range).
1607
1608 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1609 offset so that we cannot miss a breakpoint with its shadow
1610 range tail still reaching MEMADDR. */
1611
1612 if ((bl->address + bp_location_shadow_len_after_address_max
1613 >= bl->address)
1614 && (bl->address + bp_location_shadow_len_after_address_max
1615 <= memaddr))
1616 bc_l = bc;
1617 else
1618 bc_r = bc;
1619 }
1620
1621 /* Due to the binary search above, we need to make sure we pick the
1622 first location that's at BC_L's address. E.g., if there are
1623 multiple locations at the same address, BC_L may end up pointing
1624 at a duplicate location, and miss the "master"/"inserted"
1625 location. Say, given locations L1, L2 and L3 at addresses A and
1626 B:
1627
1628 L1@A, L2@A, L3@B, ...
1629
1630 BC_L could end up pointing at location L2, while the "master"
1631 location could be L1. Since the `loc->inserted' flag is only set
1632 on "master" locations, we'd forget to restore the shadow of L1
1633 and L2. */
1634 while (bc_l > 0
1635 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1636 bc_l--;
1637
1638 /* Now do full processing of the found relevant range of elements. */
1639
1640 for (bc = bc_l; bc < bp_location_count; bc++)
1641 {
1642 struct bp_location *bl = bp_location[bc];
1643 CORE_ADDR bp_addr = 0;
1644 int bp_size = 0;
1645 int bptoffset = 0;
1646
1647 /* bp_location array has BL->OWNER always non-NULL. */
1648 if (bl->owner->type == bp_none)
1649 warning (_("reading through apparently deleted breakpoint #%d?"),
1650 bl->owner->number);
1651
1652 /* Performance optimization: any further element can no longer affect BUF
1653 content. */
1654
1655 if (bl->address >= bp_location_placed_address_before_address_max
1656 && memaddr + len <= (bl->address
1657 - bp_location_placed_address_before_address_max))
1658 break;
1659
1660 if (!bp_location_has_shadow (bl))
1661 continue;
1662
1663 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1664 memaddr, len, &bl->target_info, bl->gdbarch);
1665 }
1666 }
1667
1668 \f
1669
1670 /* Return true if BPT is either a software breakpoint or a hardware
1671 breakpoint. */
1672
1673 int
1674 is_breakpoint (const struct breakpoint *bpt)
1675 {
1676 return (bpt->type == bp_breakpoint
1677 || bpt->type == bp_hardware_breakpoint
1678 || bpt->type == bp_dprintf);
1679 }
1680
1681 /* Return true if BPT is of any hardware watchpoint kind. */
1682
1683 static int
1684 is_hardware_watchpoint (const struct breakpoint *bpt)
1685 {
1686 return (bpt->type == bp_hardware_watchpoint
1687 || bpt->type == bp_read_watchpoint
1688 || bpt->type == bp_access_watchpoint);
1689 }
1690
1691 /* Return true if BPT is of any watchpoint kind, hardware or
1692 software. */
1693
1694 int
1695 is_watchpoint (const struct breakpoint *bpt)
1696 {
1697 return (is_hardware_watchpoint (bpt)
1698 || bpt->type == bp_watchpoint);
1699 }
1700
1701 /* Returns true if the current thread and its running state are safe
1702 to evaluate or update watchpoint B. Watchpoints on local
1703 expressions need to be evaluated in the context of the thread that
1704 was current when the watchpoint was created, and, that thread needs
1705 to be stopped to be able to select the correct frame context.
1706 Watchpoints on global expressions can be evaluated on any thread,
1707 and in any state. It is presently left to the target allowing
1708 memory accesses when threads are running. */
1709
1710 static int
1711 watchpoint_in_thread_scope (struct watchpoint *b)
1712 {
1713 return (b->base.pspace == current_program_space
1714 && (ptid_equal (b->watchpoint_thread, null_ptid)
1715 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1716 && !is_executing (inferior_ptid))));
1717 }
1718
1719 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1720 associated bp_watchpoint_scope breakpoint. */
1721
1722 static void
1723 watchpoint_del_at_next_stop (struct watchpoint *w)
1724 {
1725 struct breakpoint *b = &w->base;
1726
1727 if (b->related_breakpoint != b)
1728 {
1729 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1730 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1731 b->related_breakpoint->disposition = disp_del_at_next_stop;
1732 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1733 b->related_breakpoint = b;
1734 }
1735 b->disposition = disp_del_at_next_stop;
1736 }
1737
1738 /* Extract a bitfield value from value VAL using the bit parameters contained in
1739 watchpoint W. */
1740
1741 static struct value *
1742 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1743 {
1744 struct value *bit_val;
1745
1746 if (val == NULL)
1747 return NULL;
1748
1749 bit_val = allocate_value (value_type (val));
1750
1751 unpack_value_bitfield (bit_val,
1752 w->val_bitpos,
1753 w->val_bitsize,
1754 value_contents_for_printing (val),
1755 value_offset (val),
1756 val);
1757
1758 return bit_val;
1759 }
1760
1761 /* Assuming that B is a watchpoint:
1762 - Reparse watchpoint expression, if REPARSE is non-zero
1763 - Evaluate expression and store the result in B->val
1764 - Evaluate the condition if there is one, and store the result
1765 in b->loc->cond.
1766 - Update the list of values that must be watched in B->loc.
1767
1768 If the watchpoint disposition is disp_del_at_next_stop, then do
1769 nothing. If this is local watchpoint that is out of scope, delete
1770 it.
1771
1772 Even with `set breakpoint always-inserted on' the watchpoints are
1773 removed + inserted on each stop here. Normal breakpoints must
1774 never be removed because they might be missed by a running thread
1775 when debugging in non-stop mode. On the other hand, hardware
1776 watchpoints (is_hardware_watchpoint; processed here) are specific
1777 to each LWP since they are stored in each LWP's hardware debug
1778 registers. Therefore, such LWP must be stopped first in order to
1779 be able to modify its hardware watchpoints.
1780
1781 Hardware watchpoints must be reset exactly once after being
1782 presented to the user. It cannot be done sooner, because it would
1783 reset the data used to present the watchpoint hit to the user. And
1784 it must not be done later because it could display the same single
1785 watchpoint hit during multiple GDB stops. Note that the latter is
1786 relevant only to the hardware watchpoint types bp_read_watchpoint
1787 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1788 not user-visible - its hit is suppressed if the memory content has
1789 not changed.
1790
1791 The following constraints influence the location where we can reset
1792 hardware watchpoints:
1793
1794 * target_stopped_by_watchpoint and target_stopped_data_address are
1795 called several times when GDB stops.
1796
1797 [linux]
1798 * Multiple hardware watchpoints can be hit at the same time,
1799 causing GDB to stop. GDB only presents one hardware watchpoint
1800 hit at a time as the reason for stopping, and all the other hits
1801 are presented later, one after the other, each time the user
1802 requests the execution to be resumed. Execution is not resumed
1803 for the threads still having pending hit event stored in
1804 LWP_INFO->STATUS. While the watchpoint is already removed from
1805 the inferior on the first stop the thread hit event is kept being
1806 reported from its cached value by linux_nat_stopped_data_address
1807 until the real thread resume happens after the watchpoint gets
1808 presented and thus its LWP_INFO->STATUS gets reset.
1809
1810 Therefore the hardware watchpoint hit can get safely reset on the
1811 watchpoint removal from inferior. */
1812
1813 static void
1814 update_watchpoint (struct watchpoint *b, int reparse)
1815 {
1816 int within_current_scope;
1817 struct frame_id saved_frame_id;
1818 int frame_saved;
1819
1820 /* If this is a local watchpoint, we only want to check if the
1821 watchpoint frame is in scope if the current thread is the thread
1822 that was used to create the watchpoint. */
1823 if (!watchpoint_in_thread_scope (b))
1824 return;
1825
1826 if (b->base.disposition == disp_del_at_next_stop)
1827 return;
1828
1829 frame_saved = 0;
1830
1831 /* Determine if the watchpoint is within scope. */
1832 if (b->exp_valid_block == NULL)
1833 within_current_scope = 1;
1834 else
1835 {
1836 struct frame_info *fi = get_current_frame ();
1837 struct gdbarch *frame_arch = get_frame_arch (fi);
1838 CORE_ADDR frame_pc = get_frame_pc (fi);
1839
1840 /* If we're at a point where the stack has been destroyed
1841 (e.g. in a function epilogue), unwinding may not work
1842 properly. Do not attempt to recreate locations at this
1843 point. See similar comments in watchpoint_check. */
1844 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1845 return;
1846
1847 /* Save the current frame's ID so we can restore it after
1848 evaluating the watchpoint expression on its own frame. */
1849 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1850 took a frame parameter, so that we didn't have to change the
1851 selected frame. */
1852 frame_saved = 1;
1853 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1854
1855 fi = frame_find_by_id (b->watchpoint_frame);
1856 within_current_scope = (fi != NULL);
1857 if (within_current_scope)
1858 select_frame (fi);
1859 }
1860
1861 /* We don't free locations. They are stored in the bp_location array
1862 and update_global_location_list will eventually delete them and
1863 remove breakpoints if needed. */
1864 b->base.loc = NULL;
1865
1866 if (within_current_scope && reparse)
1867 {
1868 const char *s;
1869
1870 if (b->exp)
1871 {
1872 xfree (b->exp);
1873 b->exp = NULL;
1874 }
1875 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1876 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1877 /* If the meaning of expression itself changed, the old value is
1878 no longer relevant. We don't want to report a watchpoint hit
1879 to the user when the old value and the new value may actually
1880 be completely different objects. */
1881 value_free (b->val);
1882 b->val = NULL;
1883 b->val_valid = 0;
1884
1885 /* Note that unlike with breakpoints, the watchpoint's condition
1886 expression is stored in the breakpoint object, not in the
1887 locations (re)created below. */
1888 if (b->base.cond_string != NULL)
1889 {
1890 if (b->cond_exp != NULL)
1891 {
1892 xfree (b->cond_exp);
1893 b->cond_exp = NULL;
1894 }
1895
1896 s = b->base.cond_string;
1897 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1898 }
1899 }
1900
1901 /* If we failed to parse the expression, for example because
1902 it refers to a global variable in a not-yet-loaded shared library,
1903 don't try to insert watchpoint. We don't automatically delete
1904 such watchpoint, though, since failure to parse expression
1905 is different from out-of-scope watchpoint. */
1906 if (!target_has_execution)
1907 {
1908 /* Without execution, memory can't change. No use to try and
1909 set watchpoint locations. The watchpoint will be reset when
1910 the target gains execution, through breakpoint_re_set. */
1911 if (!can_use_hw_watchpoints)
1912 {
1913 if (b->base.ops->works_in_software_mode (&b->base))
1914 b->base.type = bp_watchpoint;
1915 else
1916 error (_("Can't set read/access watchpoint when "
1917 "hardware watchpoints are disabled."));
1918 }
1919 }
1920 else if (within_current_scope && b->exp)
1921 {
1922 int pc = 0;
1923 struct value *val_chain, *v, *result, *next;
1924 struct program_space *frame_pspace;
1925
1926 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain, 0);
1927
1928 /* Avoid setting b->val if it's already set. The meaning of
1929 b->val is 'the last value' user saw, and we should update
1930 it only if we reported that last value to user. As it
1931 happens, the code that reports it updates b->val directly.
1932 We don't keep track of the memory value for masked
1933 watchpoints. */
1934 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1935 {
1936 if (b->val_bitsize != 0)
1937 {
1938 v = extract_bitfield_from_watchpoint_value (b, v);
1939 if (v != NULL)
1940 release_value (v);
1941 }
1942 b->val = v;
1943 b->val_valid = 1;
1944 }
1945
1946 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1947
1948 /* Look at each value on the value chain. */
1949 for (v = val_chain; v; v = value_next (v))
1950 {
1951 /* If it's a memory location, and GDB actually needed
1952 its contents to evaluate the expression, then we
1953 must watch it. If the first value returned is
1954 still lazy, that means an error occurred reading it;
1955 watch it anyway in case it becomes readable. */
1956 if (VALUE_LVAL (v) == lval_memory
1957 && (v == val_chain || ! value_lazy (v)))
1958 {
1959 struct type *vtype = check_typedef (value_type (v));
1960
1961 /* We only watch structs and arrays if user asked
1962 for it explicitly, never if they just happen to
1963 appear in the middle of some value chain. */
1964 if (v == result
1965 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1966 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1967 {
1968 CORE_ADDR addr;
1969 int type;
1970 struct bp_location *loc, **tmp;
1971 int bitpos = 0, bitsize = 0;
1972
1973 if (value_bitsize (v) != 0)
1974 {
1975 /* Extract the bit parameters out from the bitfield
1976 sub-expression. */
1977 bitpos = value_bitpos (v);
1978 bitsize = value_bitsize (v);
1979 }
1980 else if (v == result && b->val_bitsize != 0)
1981 {
1982 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1983 lvalue whose bit parameters are saved in the fields
1984 VAL_BITPOS and VAL_BITSIZE. */
1985 bitpos = b->val_bitpos;
1986 bitsize = b->val_bitsize;
1987 }
1988
1989 addr = value_address (v);
1990 if (bitsize != 0)
1991 {
1992 /* Skip the bytes that don't contain the bitfield. */
1993 addr += bitpos / 8;
1994 }
1995
1996 type = hw_write;
1997 if (b->base.type == bp_read_watchpoint)
1998 type = hw_read;
1999 else if (b->base.type == bp_access_watchpoint)
2000 type = hw_access;
2001
2002 loc = allocate_bp_location (&b->base);
2003 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
2004 ;
2005 *tmp = loc;
2006 loc->gdbarch = get_type_arch (value_type (v));
2007
2008 loc->pspace = frame_pspace;
2009 loc->address = addr;
2010
2011 if (bitsize != 0)
2012 {
2013 /* Just cover the bytes that make up the bitfield. */
2014 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
2015 }
2016 else
2017 loc->length = TYPE_LENGTH (value_type (v));
2018
2019 loc->watchpoint_type = type;
2020 }
2021 }
2022 }
2023
2024 /* Change the type of breakpoint between hardware assisted or
2025 an ordinary watchpoint depending on the hardware support
2026 and free hardware slots. REPARSE is set when the inferior
2027 is started. */
2028 if (reparse)
2029 {
2030 int reg_cnt;
2031 enum bp_loc_type loc_type;
2032 struct bp_location *bl;
2033
2034 reg_cnt = can_use_hardware_watchpoint (val_chain);
2035
2036 if (reg_cnt)
2037 {
2038 int i, target_resources_ok, other_type_used;
2039 enum bptype type;
2040
2041 /* Use an exact watchpoint when there's only one memory region to be
2042 watched, and only one debug register is needed to watch it. */
2043 b->exact = target_exact_watchpoints && reg_cnt == 1;
2044
2045 /* We need to determine how many resources are already
2046 used for all other hardware watchpoints plus this one
2047 to see if we still have enough resources to also fit
2048 this watchpoint in as well. */
2049
2050 /* If this is a software watchpoint, we try to turn it
2051 to a hardware one -- count resources as if B was of
2052 hardware watchpoint type. */
2053 type = b->base.type;
2054 if (type == bp_watchpoint)
2055 type = bp_hardware_watchpoint;
2056
2057 /* This watchpoint may or may not have been placed on
2058 the list yet at this point (it won't be in the list
2059 if we're trying to create it for the first time,
2060 through watch_command), so always account for it
2061 manually. */
2062
2063 /* Count resources used by all watchpoints except B. */
2064 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
2065
2066 /* Add in the resources needed for B. */
2067 i += hw_watchpoint_use_count (&b->base);
2068
2069 target_resources_ok
2070 = target_can_use_hardware_watchpoint (type, i, other_type_used);
2071 if (target_resources_ok <= 0)
2072 {
2073 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
2074
2075 if (target_resources_ok == 0 && !sw_mode)
2076 error (_("Target does not support this type of "
2077 "hardware watchpoint."));
2078 else if (target_resources_ok < 0 && !sw_mode)
2079 error (_("There are not enough available hardware "
2080 "resources for this watchpoint."));
2081
2082 /* Downgrade to software watchpoint. */
2083 b->base.type = bp_watchpoint;
2084 }
2085 else
2086 {
2087 /* If this was a software watchpoint, we've just
2088 found we have enough resources to turn it to a
2089 hardware watchpoint. Otherwise, this is a
2090 nop. */
2091 b->base.type = type;
2092 }
2093 }
2094 else if (!b->base.ops->works_in_software_mode (&b->base))
2095 {
2096 if (!can_use_hw_watchpoints)
2097 error (_("Can't set read/access watchpoint when "
2098 "hardware watchpoints are disabled."));
2099 else
2100 error (_("Expression cannot be implemented with "
2101 "read/access watchpoint."));
2102 }
2103 else
2104 b->base.type = bp_watchpoint;
2105
2106 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
2107 : bp_loc_hardware_watchpoint);
2108 for (bl = b->base.loc; bl; bl = bl->next)
2109 bl->loc_type = loc_type;
2110 }
2111
2112 for (v = val_chain; v; v = next)
2113 {
2114 next = value_next (v);
2115 if (v != b->val)
2116 value_free (v);
2117 }
2118
2119 /* If a software watchpoint is not watching any memory, then the
2120 above left it without any location set up. But,
2121 bpstat_stop_status requires a location to be able to report
2122 stops, so make sure there's at least a dummy one. */
2123 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
2124 {
2125 struct breakpoint *base = &b->base;
2126 base->loc = allocate_bp_location (base);
2127 base->loc->pspace = frame_pspace;
2128 base->loc->address = -1;
2129 base->loc->length = -1;
2130 base->loc->watchpoint_type = -1;
2131 }
2132 }
2133 else if (!within_current_scope)
2134 {
2135 printf_filtered (_("\
2136 Watchpoint %d deleted because the program has left the block\n\
2137 in which its expression is valid.\n"),
2138 b->base.number);
2139 watchpoint_del_at_next_stop (b);
2140 }
2141
2142 /* Restore the selected frame. */
2143 if (frame_saved)
2144 select_frame (frame_find_by_id (saved_frame_id));
2145 }
2146
2147
2148 /* Returns 1 iff breakpoint location should be
2149 inserted in the inferior. We don't differentiate the type of BL's owner
2150 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2151 breakpoint_ops is not defined, because in insert_bp_location,
2152 tracepoint's insert_location will not be called. */
2153 static int
2154 should_be_inserted (struct bp_location *bl)
2155 {
2156 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2157 return 0;
2158
2159 if (bl->owner->disposition == disp_del_at_next_stop)
2160 return 0;
2161
2162 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2163 return 0;
2164
2165 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2166 return 0;
2167
2168 /* This is set for example, when we're attached to the parent of a
2169 vfork, and have detached from the child. The child is running
2170 free, and we expect it to do an exec or exit, at which point the
2171 OS makes the parent schedulable again (and the target reports
2172 that the vfork is done). Until the child is done with the shared
2173 memory region, do not insert breakpoints in the parent, otherwise
2174 the child could still trip on the parent's breakpoints. Since
2175 the parent is blocked anyway, it won't miss any breakpoint. */
2176 if (bl->pspace->breakpoints_not_allowed)
2177 return 0;
2178
2179 /* Don't insert a breakpoint if we're trying to step past its
2180 location. */
2181 if ((bl->loc_type == bp_loc_software_breakpoint
2182 || bl->loc_type == bp_loc_hardware_breakpoint)
2183 && stepping_past_instruction_at (bl->pspace->aspace,
2184 bl->address))
2185 {
2186 if (debug_infrun)
2187 {
2188 fprintf_unfiltered (gdb_stdlog,
2189 "infrun: skipping breakpoint: "
2190 "stepping past insn at: %s\n",
2191 paddress (bl->gdbarch, bl->address));
2192 }
2193 return 0;
2194 }
2195
2196 /* Don't insert watchpoints if we're trying to step past the
2197 instruction that triggered one. */
2198 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2199 && stepping_past_nonsteppable_watchpoint ())
2200 {
2201 if (debug_infrun)
2202 {
2203 fprintf_unfiltered (gdb_stdlog,
2204 "infrun: stepping past non-steppable watchpoint. "
2205 "skipping watchpoint at %s:%d\n",
2206 paddress (bl->gdbarch, bl->address),
2207 bl->length);
2208 }
2209 return 0;
2210 }
2211
2212 return 1;
2213 }
2214
2215 /* Same as should_be_inserted but does the check assuming
2216 that the location is not duplicated. */
2217
2218 static int
2219 unduplicated_should_be_inserted (struct bp_location *bl)
2220 {
2221 int result;
2222 const int save_duplicate = bl->duplicate;
2223
2224 bl->duplicate = 0;
2225 result = should_be_inserted (bl);
2226 bl->duplicate = save_duplicate;
2227 return result;
2228 }
2229
2230 /* Parses a conditional described by an expression COND into an
2231 agent expression bytecode suitable for evaluation
2232 by the bytecode interpreter. Return NULL if there was
2233 any error during parsing. */
2234
2235 static struct agent_expr *
2236 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2237 {
2238 struct agent_expr *aexpr = NULL;
2239
2240 if (!cond)
2241 return NULL;
2242
2243 /* We don't want to stop processing, so catch any errors
2244 that may show up. */
2245 TRY
2246 {
2247 aexpr = gen_eval_for_expr (scope, cond);
2248 }
2249
2250 CATCH (ex, RETURN_MASK_ERROR)
2251 {
2252 /* If we got here, it means the condition could not be parsed to a valid
2253 bytecode expression and thus can't be evaluated on the target's side.
2254 It's no use iterating through the conditions. */
2255 return NULL;
2256 }
2257 END_CATCH
2258
2259 /* We have a valid agent expression. */
2260 return aexpr;
2261 }
2262
2263 /* Based on location BL, create a list of breakpoint conditions to be
2264 passed on to the target. If we have duplicated locations with different
2265 conditions, we will add such conditions to the list. The idea is that the
2266 target will evaluate the list of conditions and will only notify GDB when
2267 one of them is true. */
2268
2269 static void
2270 build_target_condition_list (struct bp_location *bl)
2271 {
2272 struct bp_location **locp = NULL, **loc2p;
2273 int null_condition_or_parse_error = 0;
2274 int modified = bl->needs_update;
2275 struct bp_location *loc;
2276
2277 /* Release conditions left over from a previous insert. */
2278 VEC_free (agent_expr_p, bl->target_info.conditions);
2279
2280 /* This is only meaningful if the target is
2281 evaluating conditions and if the user has
2282 opted for condition evaluation on the target's
2283 side. */
2284 if (gdb_evaluates_breakpoint_condition_p ()
2285 || !target_supports_evaluation_of_breakpoint_conditions ())
2286 return;
2287
2288 /* Do a first pass to check for locations with no assigned
2289 conditions or conditions that fail to parse to a valid agent expression
2290 bytecode. If any of these happen, then it's no use to send conditions
2291 to the target since this location will always trigger and generate a
2292 response back to GDB. */
2293 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2294 {
2295 loc = (*loc2p);
2296 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2297 {
2298 if (modified)
2299 {
2300 struct agent_expr *aexpr;
2301
2302 /* Re-parse the conditions since something changed. In that
2303 case we already freed the condition bytecodes (see
2304 force_breakpoint_reinsertion). We just
2305 need to parse the condition to bytecodes again. */
2306 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2307 loc->cond_bytecode = aexpr;
2308
2309 /* Check if we managed to parse the conditional expression
2310 correctly. If not, we will not send this condition
2311 to the target. */
2312 if (aexpr)
2313 continue;
2314 }
2315
2316 /* If we have a NULL bytecode expression, it means something
2317 went wrong or we have a null condition expression. */
2318 if (!loc->cond_bytecode)
2319 {
2320 null_condition_or_parse_error = 1;
2321 break;
2322 }
2323 }
2324 }
2325
2326 /* If any of these happened, it means we will have to evaluate the conditions
2327 for the location's address on gdb's side. It is no use keeping bytecodes
2328 for all the other duplicate locations, thus we free all of them here.
2329
2330 This is so we have a finer control over which locations' conditions are
2331 being evaluated by GDB or the remote stub. */
2332 if (null_condition_or_parse_error)
2333 {
2334 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2335 {
2336 loc = (*loc2p);
2337 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2338 {
2339 /* Only go as far as the first NULL bytecode is
2340 located. */
2341 if (!loc->cond_bytecode)
2342 return;
2343
2344 free_agent_expr (loc->cond_bytecode);
2345 loc->cond_bytecode = NULL;
2346 }
2347 }
2348 }
2349
2350 /* No NULL conditions or failed bytecode generation. Build a condition list
2351 for this location's address. */
2352 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2353 {
2354 loc = (*loc2p);
2355 if (loc->cond
2356 && is_breakpoint (loc->owner)
2357 && loc->pspace->num == bl->pspace->num
2358 && loc->owner->enable_state == bp_enabled
2359 && loc->enabled)
2360 /* Add the condition to the vector. This will be used later to send the
2361 conditions to the target. */
2362 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2363 loc->cond_bytecode);
2364 }
2365
2366 return;
2367 }
2368
2369 /* Parses a command described by string CMD into an agent expression
2370 bytecode suitable for evaluation by the bytecode interpreter.
2371 Return NULL if there was any error during parsing. */
2372
2373 static struct agent_expr *
2374 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2375 {
2376 struct cleanup *old_cleanups = 0;
2377 struct expression *expr, **argvec;
2378 struct agent_expr *aexpr = NULL;
2379 const char *cmdrest;
2380 const char *format_start, *format_end;
2381 struct format_piece *fpieces;
2382 int nargs;
2383 struct gdbarch *gdbarch = get_current_arch ();
2384
2385 if (!cmd)
2386 return NULL;
2387
2388 cmdrest = cmd;
2389
2390 if (*cmdrest == ',')
2391 ++cmdrest;
2392 cmdrest = skip_spaces_const (cmdrest);
2393
2394 if (*cmdrest++ != '"')
2395 error (_("No format string following the location"));
2396
2397 format_start = cmdrest;
2398
2399 fpieces = parse_format_string (&cmdrest);
2400
2401 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2402
2403 format_end = cmdrest;
2404
2405 if (*cmdrest++ != '"')
2406 error (_("Bad format string, non-terminated '\"'."));
2407
2408 cmdrest = skip_spaces_const (cmdrest);
2409
2410 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2411 error (_("Invalid argument syntax"));
2412
2413 if (*cmdrest == ',')
2414 cmdrest++;
2415 cmdrest = skip_spaces_const (cmdrest);
2416
2417 /* For each argument, make an expression. */
2418
2419 argvec = (struct expression **) alloca (strlen (cmd)
2420 * sizeof (struct expression *));
2421
2422 nargs = 0;
2423 while (*cmdrest != '\0')
2424 {
2425 const char *cmd1;
2426
2427 cmd1 = cmdrest;
2428 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2429 argvec[nargs++] = expr;
2430 cmdrest = cmd1;
2431 if (*cmdrest == ',')
2432 ++cmdrest;
2433 }
2434
2435 /* We don't want to stop processing, so catch any errors
2436 that may show up. */
2437 TRY
2438 {
2439 aexpr = gen_printf (scope, gdbarch, 0, 0,
2440 format_start, format_end - format_start,
2441 fpieces, nargs, argvec);
2442 }
2443 CATCH (ex, RETURN_MASK_ERROR)
2444 {
2445 /* If we got here, it means the command could not be parsed to a valid
2446 bytecode expression and thus can't be evaluated on the target's side.
2447 It's no use iterating through the other commands. */
2448 aexpr = NULL;
2449 }
2450 END_CATCH
2451
2452 do_cleanups (old_cleanups);
2453
2454 /* We have a valid agent expression, return it. */
2455 return aexpr;
2456 }
2457
2458 /* Based on location BL, create a list of breakpoint commands to be
2459 passed on to the target. If we have duplicated locations with
2460 different commands, we will add any such to the list. */
2461
2462 static void
2463 build_target_command_list (struct bp_location *bl)
2464 {
2465 struct bp_location **locp = NULL, **loc2p;
2466 int null_command_or_parse_error = 0;
2467 int modified = bl->needs_update;
2468 struct bp_location *loc;
2469
2470 /* Release commands left over from a previous insert. */
2471 VEC_free (agent_expr_p, bl->target_info.tcommands);
2472
2473 if (!target_can_run_breakpoint_commands ())
2474 return;
2475
2476 /* For now, limit to agent-style dprintf breakpoints. */
2477 if (dprintf_style != dprintf_style_agent)
2478 return;
2479
2480 /* For now, if we have any duplicate location that isn't a dprintf,
2481 don't install the target-side commands, as that would make the
2482 breakpoint not be reported to the core, and we'd lose
2483 control. */
2484 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2485 {
2486 loc = (*loc2p);
2487 if (is_breakpoint (loc->owner)
2488 && loc->pspace->num == bl->pspace->num
2489 && loc->owner->type != bp_dprintf)
2490 return;
2491 }
2492
2493 /* Do a first pass to check for locations with no assigned
2494 conditions or conditions that fail to parse to a valid agent expression
2495 bytecode. If any of these happen, then it's no use to send conditions
2496 to the target since this location will always trigger and generate a
2497 response back to GDB. */
2498 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2499 {
2500 loc = (*loc2p);
2501 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2502 {
2503 if (modified)
2504 {
2505 struct agent_expr *aexpr;
2506
2507 /* Re-parse the commands since something changed. In that
2508 case we already freed the command bytecodes (see
2509 force_breakpoint_reinsertion). We just
2510 need to parse the command to bytecodes again. */
2511 aexpr = parse_cmd_to_aexpr (bl->address,
2512 loc->owner->extra_string);
2513 loc->cmd_bytecode = aexpr;
2514
2515 if (!aexpr)
2516 continue;
2517 }
2518
2519 /* If we have a NULL bytecode expression, it means something
2520 went wrong or we have a null command expression. */
2521 if (!loc->cmd_bytecode)
2522 {
2523 null_command_or_parse_error = 1;
2524 break;
2525 }
2526 }
2527 }
2528
2529 /* If anything failed, then we're not doing target-side commands,
2530 and so clean up. */
2531 if (null_command_or_parse_error)
2532 {
2533 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2534 {
2535 loc = (*loc2p);
2536 if (is_breakpoint (loc->owner)
2537 && loc->pspace->num == bl->pspace->num)
2538 {
2539 /* Only go as far as the first NULL bytecode is
2540 located. */
2541 if (loc->cmd_bytecode == NULL)
2542 return;
2543
2544 free_agent_expr (loc->cmd_bytecode);
2545 loc->cmd_bytecode = NULL;
2546 }
2547 }
2548 }
2549
2550 /* No NULL commands or failed bytecode generation. Build a command list
2551 for this location's address. */
2552 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2553 {
2554 loc = (*loc2p);
2555 if (loc->owner->extra_string
2556 && is_breakpoint (loc->owner)
2557 && loc->pspace->num == bl->pspace->num
2558 && loc->owner->enable_state == bp_enabled
2559 && loc->enabled)
2560 /* Add the command to the vector. This will be used later
2561 to send the commands to the target. */
2562 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2563 loc->cmd_bytecode);
2564 }
2565
2566 bl->target_info.persist = 0;
2567 /* Maybe flag this location as persistent. */
2568 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2569 bl->target_info.persist = 1;
2570 }
2571
2572 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2573 location. Any error messages are printed to TMP_ERROR_STREAM; and
2574 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2575 Returns 0 for success, 1 if the bp_location type is not supported or
2576 -1 for failure.
2577
2578 NOTE drow/2003-09-09: This routine could be broken down to an
2579 object-style method for each breakpoint or catchpoint type. */
2580 static int
2581 insert_bp_location (struct bp_location *bl,
2582 struct ui_file *tmp_error_stream,
2583 int *disabled_breaks,
2584 int *hw_breakpoint_error,
2585 int *hw_bp_error_explained_already)
2586 {
2587 enum errors bp_err = GDB_NO_ERROR;
2588 const char *bp_err_message = NULL;
2589
2590 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2591 return 0;
2592
2593 /* Note we don't initialize bl->target_info, as that wipes out
2594 the breakpoint location's shadow_contents if the breakpoint
2595 is still inserted at that location. This in turn breaks
2596 target_read_memory which depends on these buffers when
2597 a memory read is requested at the breakpoint location:
2598 Once the target_info has been wiped, we fail to see that
2599 we have a breakpoint inserted at that address and thus
2600 read the breakpoint instead of returning the data saved in
2601 the breakpoint location's shadow contents. */
2602 bl->target_info.reqstd_address = bl->address;
2603 bl->target_info.placed_address_space = bl->pspace->aspace;
2604 bl->target_info.length = bl->length;
2605
2606 /* When working with target-side conditions, we must pass all the conditions
2607 for the same breakpoint address down to the target since GDB will not
2608 insert those locations. With a list of breakpoint conditions, the target
2609 can decide when to stop and notify GDB. */
2610
2611 if (is_breakpoint (bl->owner))
2612 {
2613 build_target_condition_list (bl);
2614 build_target_command_list (bl);
2615 /* Reset the modification marker. */
2616 bl->needs_update = 0;
2617 }
2618
2619 if (bl->loc_type == bp_loc_software_breakpoint
2620 || bl->loc_type == bp_loc_hardware_breakpoint)
2621 {
2622 if (bl->owner->type != bp_hardware_breakpoint)
2623 {
2624 /* If the explicitly specified breakpoint type
2625 is not hardware breakpoint, check the memory map to see
2626 if the breakpoint address is in read only memory or not.
2627
2628 Two important cases are:
2629 - location type is not hardware breakpoint, memory
2630 is readonly. We change the type of the location to
2631 hardware breakpoint.
2632 - location type is hardware breakpoint, memory is
2633 read-write. This means we've previously made the
2634 location hardware one, but then the memory map changed,
2635 so we undo.
2636
2637 When breakpoints are removed, remove_breakpoints will use
2638 location types we've just set here, the only possible
2639 problem is that memory map has changed during running
2640 program, but it's not going to work anyway with current
2641 gdb. */
2642 struct mem_region *mr
2643 = lookup_mem_region (bl->target_info.reqstd_address);
2644
2645 if (mr)
2646 {
2647 if (automatic_hardware_breakpoints)
2648 {
2649 enum bp_loc_type new_type;
2650
2651 if (mr->attrib.mode != MEM_RW)
2652 new_type = bp_loc_hardware_breakpoint;
2653 else
2654 new_type = bp_loc_software_breakpoint;
2655
2656 if (new_type != bl->loc_type)
2657 {
2658 static int said = 0;
2659
2660 bl->loc_type = new_type;
2661 if (!said)
2662 {
2663 fprintf_filtered (gdb_stdout,
2664 _("Note: automatically using "
2665 "hardware breakpoints for "
2666 "read-only addresses.\n"));
2667 said = 1;
2668 }
2669 }
2670 }
2671 else if (bl->loc_type == bp_loc_software_breakpoint
2672 && mr->attrib.mode != MEM_RW)
2673 {
2674 fprintf_unfiltered (tmp_error_stream,
2675 _("Cannot insert breakpoint %d.\n"
2676 "Cannot set software breakpoint "
2677 "at read-only address %s\n"),
2678 bl->owner->number,
2679 paddress (bl->gdbarch, bl->address));
2680 return 1;
2681 }
2682 }
2683 }
2684
2685 /* First check to see if we have to handle an overlay. */
2686 if (overlay_debugging == ovly_off
2687 || bl->section == NULL
2688 || !(section_is_overlay (bl->section)))
2689 {
2690 /* No overlay handling: just set the breakpoint. */
2691 TRY
2692 {
2693 int val;
2694
2695 val = bl->owner->ops->insert_location (bl);
2696 if (val)
2697 bp_err = GENERIC_ERROR;
2698 }
2699 CATCH (e, RETURN_MASK_ALL)
2700 {
2701 bp_err = e.error;
2702 bp_err_message = e.message;
2703 }
2704 END_CATCH
2705 }
2706 else
2707 {
2708 /* This breakpoint is in an overlay section.
2709 Shall we set a breakpoint at the LMA? */
2710 if (!overlay_events_enabled)
2711 {
2712 /* Yes -- overlay event support is not active,
2713 so we must try to set a breakpoint at the LMA.
2714 This will not work for a hardware breakpoint. */
2715 if (bl->loc_type == bp_loc_hardware_breakpoint)
2716 warning (_("hardware breakpoint %d not supported in overlay!"),
2717 bl->owner->number);
2718 else
2719 {
2720 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2721 bl->section);
2722 /* Set a software (trap) breakpoint at the LMA. */
2723 bl->overlay_target_info = bl->target_info;
2724 bl->overlay_target_info.reqstd_address = addr;
2725
2726 /* No overlay handling: just set the breakpoint. */
2727 TRY
2728 {
2729 int val;
2730
2731 val = target_insert_breakpoint (bl->gdbarch,
2732 &bl->overlay_target_info);
2733 if (val)
2734 bp_err = GENERIC_ERROR;
2735 }
2736 CATCH (e, RETURN_MASK_ALL)
2737 {
2738 bp_err = e.error;
2739 bp_err_message = e.message;
2740 }
2741 END_CATCH
2742
2743 if (bp_err != GDB_NO_ERROR)
2744 fprintf_unfiltered (tmp_error_stream,
2745 "Overlay breakpoint %d "
2746 "failed: in ROM?\n",
2747 bl->owner->number);
2748 }
2749 }
2750 /* Shall we set a breakpoint at the VMA? */
2751 if (section_is_mapped (bl->section))
2752 {
2753 /* Yes. This overlay section is mapped into memory. */
2754 TRY
2755 {
2756 int val;
2757
2758 val = bl->owner->ops->insert_location (bl);
2759 if (val)
2760 bp_err = GENERIC_ERROR;
2761 }
2762 CATCH (e, RETURN_MASK_ALL)
2763 {
2764 bp_err = e.error;
2765 bp_err_message = e.message;
2766 }
2767 END_CATCH
2768 }
2769 else
2770 {
2771 /* No. This breakpoint will not be inserted.
2772 No error, but do not mark the bp as 'inserted'. */
2773 return 0;
2774 }
2775 }
2776
2777 if (bp_err != GDB_NO_ERROR)
2778 {
2779 /* Can't set the breakpoint. */
2780
2781 /* In some cases, we might not be able to insert a
2782 breakpoint in a shared library that has already been
2783 removed, but we have not yet processed the shlib unload
2784 event. Unfortunately, some targets that implement
2785 breakpoint insertion themselves can't tell why the
2786 breakpoint insertion failed (e.g., the remote target
2787 doesn't define error codes), so we must treat generic
2788 errors as memory errors. */
2789 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2790 && bl->loc_type == bp_loc_software_breakpoint
2791 && (solib_name_from_address (bl->pspace, bl->address)
2792 || shared_objfile_contains_address_p (bl->pspace,
2793 bl->address)))
2794 {
2795 /* See also: disable_breakpoints_in_shlibs. */
2796 bl->shlib_disabled = 1;
2797 observer_notify_breakpoint_modified (bl->owner);
2798 if (!*disabled_breaks)
2799 {
2800 fprintf_unfiltered (tmp_error_stream,
2801 "Cannot insert breakpoint %d.\n",
2802 bl->owner->number);
2803 fprintf_unfiltered (tmp_error_stream,
2804 "Temporarily disabling shared "
2805 "library breakpoints:\n");
2806 }
2807 *disabled_breaks = 1;
2808 fprintf_unfiltered (tmp_error_stream,
2809 "breakpoint #%d\n", bl->owner->number);
2810 return 0;
2811 }
2812 else
2813 {
2814 if (bl->loc_type == bp_loc_hardware_breakpoint)
2815 {
2816 *hw_breakpoint_error = 1;
2817 *hw_bp_error_explained_already = bp_err_message != NULL;
2818 fprintf_unfiltered (tmp_error_stream,
2819 "Cannot insert hardware breakpoint %d%s",
2820 bl->owner->number, bp_err_message ? ":" : ".\n");
2821 if (bp_err_message != NULL)
2822 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2823 }
2824 else
2825 {
2826 if (bp_err_message == NULL)
2827 {
2828 char *message
2829 = memory_error_message (TARGET_XFER_E_IO,
2830 bl->gdbarch, bl->address);
2831 struct cleanup *old_chain = make_cleanup (xfree, message);
2832
2833 fprintf_unfiltered (tmp_error_stream,
2834 "Cannot insert breakpoint %d.\n"
2835 "%s\n",
2836 bl->owner->number, message);
2837 do_cleanups (old_chain);
2838 }
2839 else
2840 {
2841 fprintf_unfiltered (tmp_error_stream,
2842 "Cannot insert breakpoint %d: %s\n",
2843 bl->owner->number,
2844 bp_err_message);
2845 }
2846 }
2847 return 1;
2848
2849 }
2850 }
2851 else
2852 bl->inserted = 1;
2853
2854 return 0;
2855 }
2856
2857 else if (bl->loc_type == bp_loc_hardware_watchpoint
2858 /* NOTE drow/2003-09-08: This state only exists for removing
2859 watchpoints. It's not clear that it's necessary... */
2860 && bl->owner->disposition != disp_del_at_next_stop)
2861 {
2862 int val;
2863
2864 gdb_assert (bl->owner->ops != NULL
2865 && bl->owner->ops->insert_location != NULL);
2866
2867 val = bl->owner->ops->insert_location (bl);
2868
2869 /* If trying to set a read-watchpoint, and it turns out it's not
2870 supported, try emulating one with an access watchpoint. */
2871 if (val == 1 && bl->watchpoint_type == hw_read)
2872 {
2873 struct bp_location *loc, **loc_temp;
2874
2875 /* But don't try to insert it, if there's already another
2876 hw_access location that would be considered a duplicate
2877 of this one. */
2878 ALL_BP_LOCATIONS (loc, loc_temp)
2879 if (loc != bl
2880 && loc->watchpoint_type == hw_access
2881 && watchpoint_locations_match (bl, loc))
2882 {
2883 bl->duplicate = 1;
2884 bl->inserted = 1;
2885 bl->target_info = loc->target_info;
2886 bl->watchpoint_type = hw_access;
2887 val = 0;
2888 break;
2889 }
2890
2891 if (val == 1)
2892 {
2893 bl->watchpoint_type = hw_access;
2894 val = bl->owner->ops->insert_location (bl);
2895
2896 if (val)
2897 /* Back to the original value. */
2898 bl->watchpoint_type = hw_read;
2899 }
2900 }
2901
2902 bl->inserted = (val == 0);
2903 }
2904
2905 else if (bl->owner->type == bp_catchpoint)
2906 {
2907 int val;
2908
2909 gdb_assert (bl->owner->ops != NULL
2910 && bl->owner->ops->insert_location != NULL);
2911
2912 val = bl->owner->ops->insert_location (bl);
2913 if (val)
2914 {
2915 bl->owner->enable_state = bp_disabled;
2916
2917 if (val == 1)
2918 warning (_("\
2919 Error inserting catchpoint %d: Your system does not support this type\n\
2920 of catchpoint."), bl->owner->number);
2921 else
2922 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2923 }
2924
2925 bl->inserted = (val == 0);
2926
2927 /* We've already printed an error message if there was a problem
2928 inserting this catchpoint, and we've disabled the catchpoint,
2929 so just return success. */
2930 return 0;
2931 }
2932
2933 return 0;
2934 }
2935
2936 /* This function is called when program space PSPACE is about to be
2937 deleted. It takes care of updating breakpoints to not reference
2938 PSPACE anymore. */
2939
2940 void
2941 breakpoint_program_space_exit (struct program_space *pspace)
2942 {
2943 struct breakpoint *b, *b_temp;
2944 struct bp_location *loc, **loc_temp;
2945
2946 /* Remove any breakpoint that was set through this program space. */
2947 ALL_BREAKPOINTS_SAFE (b, b_temp)
2948 {
2949 if (b->pspace == pspace)
2950 delete_breakpoint (b);
2951 }
2952
2953 /* Breakpoints set through other program spaces could have locations
2954 bound to PSPACE as well. Remove those. */
2955 ALL_BP_LOCATIONS (loc, loc_temp)
2956 {
2957 struct bp_location *tmp;
2958
2959 if (loc->pspace == pspace)
2960 {
2961 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2962 if (loc->owner->loc == loc)
2963 loc->owner->loc = loc->next;
2964 else
2965 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2966 if (tmp->next == loc)
2967 {
2968 tmp->next = loc->next;
2969 break;
2970 }
2971 }
2972 }
2973
2974 /* Now update the global location list to permanently delete the
2975 removed locations above. */
2976 update_global_location_list (UGLL_DONT_INSERT);
2977 }
2978
2979 /* Make sure all breakpoints are inserted in inferior.
2980 Throws exception on any error.
2981 A breakpoint that is already inserted won't be inserted
2982 again, so calling this function twice is safe. */
2983 void
2984 insert_breakpoints (void)
2985 {
2986 struct breakpoint *bpt;
2987
2988 ALL_BREAKPOINTS (bpt)
2989 if (is_hardware_watchpoint (bpt))
2990 {
2991 struct watchpoint *w = (struct watchpoint *) bpt;
2992
2993 update_watchpoint (w, 0 /* don't reparse. */);
2994 }
2995
2996 /* Updating watchpoints creates new locations, so update the global
2997 location list. Explicitly tell ugll to insert locations and
2998 ignore breakpoints_always_inserted_mode. */
2999 update_global_location_list (UGLL_INSERT);
3000 }
3001
3002 /* Invoke CALLBACK for each of bp_location. */
3003
3004 void
3005 iterate_over_bp_locations (walk_bp_location_callback callback)
3006 {
3007 struct bp_location *loc, **loc_tmp;
3008
3009 ALL_BP_LOCATIONS (loc, loc_tmp)
3010 {
3011 callback (loc, NULL);
3012 }
3013 }
3014
3015 /* This is used when we need to synch breakpoint conditions between GDB and the
3016 target. It is the case with deleting and disabling of breakpoints when using
3017 always-inserted mode. */
3018
3019 static void
3020 update_inserted_breakpoint_locations (void)
3021 {
3022 struct bp_location *bl, **blp_tmp;
3023 int error_flag = 0;
3024 int val = 0;
3025 int disabled_breaks = 0;
3026 int hw_breakpoint_error = 0;
3027 int hw_bp_details_reported = 0;
3028
3029 struct ui_file *tmp_error_stream = mem_fileopen ();
3030 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
3031
3032 /* Explicitly mark the warning -- this will only be printed if
3033 there was an error. */
3034 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
3035
3036 save_current_space_and_thread ();
3037
3038 ALL_BP_LOCATIONS (bl, blp_tmp)
3039 {
3040 /* We only want to update software breakpoints and hardware
3041 breakpoints. */
3042 if (!is_breakpoint (bl->owner))
3043 continue;
3044
3045 /* We only want to update locations that are already inserted
3046 and need updating. This is to avoid unwanted insertion during
3047 deletion of breakpoints. */
3048 if (!bl->inserted || (bl->inserted && !bl->needs_update))
3049 continue;
3050
3051 switch_to_program_space_and_thread (bl->pspace);
3052
3053 /* For targets that support global breakpoints, there's no need
3054 to select an inferior to insert breakpoint to. In fact, even
3055 if we aren't attached to any process yet, we should still
3056 insert breakpoints. */
3057 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3058 && ptid_equal (inferior_ptid, null_ptid))
3059 continue;
3060
3061 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
3062 &hw_breakpoint_error, &hw_bp_details_reported);
3063 if (val)
3064 error_flag = val;
3065 }
3066
3067 if (error_flag)
3068 {
3069 target_terminal_ours_for_output ();
3070 error_stream (tmp_error_stream);
3071 }
3072
3073 do_cleanups (cleanups);
3074 }
3075
3076 /* Used when starting or continuing the program. */
3077
3078 static void
3079 insert_breakpoint_locations (void)
3080 {
3081 struct breakpoint *bpt;
3082 struct bp_location *bl, **blp_tmp;
3083 int error_flag = 0;
3084 int val = 0;
3085 int disabled_breaks = 0;
3086 int hw_breakpoint_error = 0;
3087 int hw_bp_error_explained_already = 0;
3088
3089 struct ui_file *tmp_error_stream = mem_fileopen ();
3090 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
3091
3092 /* Explicitly mark the warning -- this will only be printed if
3093 there was an error. */
3094 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
3095
3096 save_current_space_and_thread ();
3097
3098 ALL_BP_LOCATIONS (bl, blp_tmp)
3099 {
3100 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
3101 continue;
3102
3103 /* There is no point inserting thread-specific breakpoints if
3104 the thread no longer exists. ALL_BP_LOCATIONS bp_location
3105 has BL->OWNER always non-NULL. */
3106 if (bl->owner->thread != -1
3107 && !valid_thread_id (bl->owner->thread))
3108 continue;
3109
3110 switch_to_program_space_and_thread (bl->pspace);
3111
3112 /* For targets that support global breakpoints, there's no need
3113 to select an inferior to insert breakpoint to. In fact, even
3114 if we aren't attached to any process yet, we should still
3115 insert breakpoints. */
3116 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3117 && ptid_equal (inferior_ptid, null_ptid))
3118 continue;
3119
3120 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
3121 &hw_breakpoint_error, &hw_bp_error_explained_already);
3122 if (val)
3123 error_flag = val;
3124 }
3125
3126 /* If we failed to insert all locations of a watchpoint, remove
3127 them, as half-inserted watchpoint is of limited use. */
3128 ALL_BREAKPOINTS (bpt)
3129 {
3130 int some_failed = 0;
3131 struct bp_location *loc;
3132
3133 if (!is_hardware_watchpoint (bpt))
3134 continue;
3135
3136 if (!breakpoint_enabled (bpt))
3137 continue;
3138
3139 if (bpt->disposition == disp_del_at_next_stop)
3140 continue;
3141
3142 for (loc = bpt->loc; loc; loc = loc->next)
3143 if (!loc->inserted && should_be_inserted (loc))
3144 {
3145 some_failed = 1;
3146 break;
3147 }
3148 if (some_failed)
3149 {
3150 for (loc = bpt->loc; loc; loc = loc->next)
3151 if (loc->inserted)
3152 remove_breakpoint (loc, mark_uninserted);
3153
3154 hw_breakpoint_error = 1;
3155 fprintf_unfiltered (tmp_error_stream,
3156 "Could not insert hardware watchpoint %d.\n",
3157 bpt->number);
3158 error_flag = -1;
3159 }
3160 }
3161
3162 if (error_flag)
3163 {
3164 /* If a hardware breakpoint or watchpoint was inserted, add a
3165 message about possibly exhausted resources. */
3166 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3167 {
3168 fprintf_unfiltered (tmp_error_stream,
3169 "Could not insert hardware breakpoints:\n\
3170 You may have requested too many hardware breakpoints/watchpoints.\n");
3171 }
3172 target_terminal_ours_for_output ();
3173 error_stream (tmp_error_stream);
3174 }
3175
3176 do_cleanups (cleanups);
3177 }
3178
3179 /* Used when the program stops.
3180 Returns zero if successful, or non-zero if there was a problem
3181 removing a breakpoint location. */
3182
3183 int
3184 remove_breakpoints (void)
3185 {
3186 struct bp_location *bl, **blp_tmp;
3187 int val = 0;
3188
3189 ALL_BP_LOCATIONS (bl, blp_tmp)
3190 {
3191 if (bl->inserted && !is_tracepoint (bl->owner))
3192 val |= remove_breakpoint (bl, mark_uninserted);
3193 }
3194 return val;
3195 }
3196
3197 /* When a thread exits, remove breakpoints that are related to
3198 that thread. */
3199
3200 static void
3201 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3202 {
3203 struct breakpoint *b, *b_tmp;
3204
3205 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3206 {
3207 if (b->thread == tp->num && user_breakpoint_p (b))
3208 {
3209 b->disposition = disp_del_at_next_stop;
3210
3211 printf_filtered (_("\
3212 Thread-specific breakpoint %d deleted - thread %d no longer in the thread list.\n"),
3213 b->number, tp->num);
3214
3215 /* Hide it from the user. */
3216 b->number = 0;
3217 }
3218 }
3219 }
3220
3221 /* Remove breakpoints of process PID. */
3222
3223 int
3224 remove_breakpoints_pid (int pid)
3225 {
3226 struct bp_location *bl, **blp_tmp;
3227 int val;
3228 struct inferior *inf = find_inferior_pid (pid);
3229
3230 ALL_BP_LOCATIONS (bl, blp_tmp)
3231 {
3232 if (bl->pspace != inf->pspace)
3233 continue;
3234
3235 if (bl->inserted && !bl->target_info.persist)
3236 {
3237 val = remove_breakpoint (bl, mark_uninserted);
3238 if (val != 0)
3239 return val;
3240 }
3241 }
3242 return 0;
3243 }
3244
3245 int
3246 reattach_breakpoints (int pid)
3247 {
3248 struct cleanup *old_chain;
3249 struct bp_location *bl, **blp_tmp;
3250 int val;
3251 struct ui_file *tmp_error_stream;
3252 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3253 struct inferior *inf;
3254 struct thread_info *tp;
3255
3256 tp = any_live_thread_of_process (pid);
3257 if (tp == NULL)
3258 return 1;
3259
3260 inf = find_inferior_pid (pid);
3261 old_chain = save_inferior_ptid ();
3262
3263 inferior_ptid = tp->ptid;
3264
3265 tmp_error_stream = mem_fileopen ();
3266 make_cleanup_ui_file_delete (tmp_error_stream);
3267
3268 ALL_BP_LOCATIONS (bl, blp_tmp)
3269 {
3270 if (bl->pspace != inf->pspace)
3271 continue;
3272
3273 if (bl->inserted)
3274 {
3275 bl->inserted = 0;
3276 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3277 if (val != 0)
3278 {
3279 do_cleanups (old_chain);
3280 return val;
3281 }
3282 }
3283 }
3284 do_cleanups (old_chain);
3285 return 0;
3286 }
3287
3288 static int internal_breakpoint_number = -1;
3289
3290 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3291 If INTERNAL is non-zero, the breakpoint number will be populated
3292 from internal_breakpoint_number and that variable decremented.
3293 Otherwise the breakpoint number will be populated from
3294 breakpoint_count and that value incremented. Internal breakpoints
3295 do not set the internal var bpnum. */
3296 static void
3297 set_breakpoint_number (int internal, struct breakpoint *b)
3298 {
3299 if (internal)
3300 b->number = internal_breakpoint_number--;
3301 else
3302 {
3303 set_breakpoint_count (breakpoint_count + 1);
3304 b->number = breakpoint_count;
3305 }
3306 }
3307
3308 static struct breakpoint *
3309 create_internal_breakpoint (struct gdbarch *gdbarch,
3310 CORE_ADDR address, enum bptype type,
3311 const struct breakpoint_ops *ops)
3312 {
3313 struct symtab_and_line sal;
3314 struct breakpoint *b;
3315
3316 init_sal (&sal); /* Initialize to zeroes. */
3317
3318 sal.pc = address;
3319 sal.section = find_pc_overlay (sal.pc);
3320 sal.pspace = current_program_space;
3321
3322 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3323 b->number = internal_breakpoint_number--;
3324 b->disposition = disp_donttouch;
3325
3326 return b;
3327 }
3328
3329 static const char *const longjmp_names[] =
3330 {
3331 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3332 };
3333 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3334
3335 /* Per-objfile data private to breakpoint.c. */
3336 struct breakpoint_objfile_data
3337 {
3338 /* Minimal symbol for "_ovly_debug_event" (if any). */
3339 struct bound_minimal_symbol overlay_msym;
3340
3341 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3342 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3343
3344 /* True if we have looked for longjmp probes. */
3345 int longjmp_searched;
3346
3347 /* SystemTap probe points for longjmp (if any). */
3348 VEC (probe_p) *longjmp_probes;
3349
3350 /* Minimal symbol for "std::terminate()" (if any). */
3351 struct bound_minimal_symbol terminate_msym;
3352
3353 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3354 struct bound_minimal_symbol exception_msym;
3355
3356 /* True if we have looked for exception probes. */
3357 int exception_searched;
3358
3359 /* SystemTap probe points for unwinding (if any). */
3360 VEC (probe_p) *exception_probes;
3361 };
3362
3363 static const struct objfile_data *breakpoint_objfile_key;
3364
3365 /* Minimal symbol not found sentinel. */
3366 static struct minimal_symbol msym_not_found;
3367
3368 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3369
3370 static int
3371 msym_not_found_p (const struct minimal_symbol *msym)
3372 {
3373 return msym == &msym_not_found;
3374 }
3375
3376 /* Return per-objfile data needed by breakpoint.c.
3377 Allocate the data if necessary. */
3378
3379 static struct breakpoint_objfile_data *
3380 get_breakpoint_objfile_data (struct objfile *objfile)
3381 {
3382 struct breakpoint_objfile_data *bp_objfile_data;
3383
3384 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3385 if (bp_objfile_data == NULL)
3386 {
3387 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3388 sizeof (*bp_objfile_data));
3389
3390 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3391 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3392 }
3393 return bp_objfile_data;
3394 }
3395
3396 static void
3397 free_breakpoint_probes (struct objfile *obj, void *data)
3398 {
3399 struct breakpoint_objfile_data *bp_objfile_data = data;
3400
3401 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3402 VEC_free (probe_p, bp_objfile_data->exception_probes);
3403 }
3404
3405 static void
3406 create_overlay_event_breakpoint (void)
3407 {
3408 struct objfile *objfile;
3409 const char *const func_name = "_ovly_debug_event";
3410
3411 ALL_OBJFILES (objfile)
3412 {
3413 struct breakpoint *b;
3414 struct breakpoint_objfile_data *bp_objfile_data;
3415 CORE_ADDR addr;
3416
3417 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3418
3419 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3420 continue;
3421
3422 if (bp_objfile_data->overlay_msym.minsym == NULL)
3423 {
3424 struct bound_minimal_symbol m;
3425
3426 m = lookup_minimal_symbol_text (func_name, objfile);
3427 if (m.minsym == NULL)
3428 {
3429 /* Avoid future lookups in this objfile. */
3430 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3431 continue;
3432 }
3433 bp_objfile_data->overlay_msym = m;
3434 }
3435
3436 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3437 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3438 bp_overlay_event,
3439 &internal_breakpoint_ops);
3440 b->addr_string = xstrdup (func_name);
3441
3442 if (overlay_debugging == ovly_auto)
3443 {
3444 b->enable_state = bp_enabled;
3445 overlay_events_enabled = 1;
3446 }
3447 else
3448 {
3449 b->enable_state = bp_disabled;
3450 overlay_events_enabled = 0;
3451 }
3452 }
3453 update_global_location_list (UGLL_MAY_INSERT);
3454 }
3455
3456 static void
3457 create_longjmp_master_breakpoint (void)
3458 {
3459 struct program_space *pspace;
3460 struct cleanup *old_chain;
3461
3462 old_chain = save_current_program_space ();
3463
3464 ALL_PSPACES (pspace)
3465 {
3466 struct objfile *objfile;
3467
3468 set_current_program_space (pspace);
3469
3470 ALL_OBJFILES (objfile)
3471 {
3472 int i;
3473 struct gdbarch *gdbarch;
3474 struct breakpoint_objfile_data *bp_objfile_data;
3475
3476 gdbarch = get_objfile_arch (objfile);
3477
3478 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3479
3480 if (!bp_objfile_data->longjmp_searched)
3481 {
3482 VEC (probe_p) *ret;
3483
3484 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3485 if (ret != NULL)
3486 {
3487 /* We are only interested in checking one element. */
3488 struct probe *p = VEC_index (probe_p, ret, 0);
3489
3490 if (!can_evaluate_probe_arguments (p))
3491 {
3492 /* We cannot use the probe interface here, because it does
3493 not know how to evaluate arguments. */
3494 VEC_free (probe_p, ret);
3495 ret = NULL;
3496 }
3497 }
3498 bp_objfile_data->longjmp_probes = ret;
3499 bp_objfile_data->longjmp_searched = 1;
3500 }
3501
3502 if (bp_objfile_data->longjmp_probes != NULL)
3503 {
3504 int i;
3505 struct probe *probe;
3506 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3507
3508 for (i = 0;
3509 VEC_iterate (probe_p,
3510 bp_objfile_data->longjmp_probes,
3511 i, probe);
3512 ++i)
3513 {
3514 struct breakpoint *b;
3515
3516 b = create_internal_breakpoint (gdbarch,
3517 get_probe_address (probe,
3518 objfile),
3519 bp_longjmp_master,
3520 &internal_breakpoint_ops);
3521 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3522 b->enable_state = bp_disabled;
3523 }
3524
3525 continue;
3526 }
3527
3528 if (!gdbarch_get_longjmp_target_p (gdbarch))
3529 continue;
3530
3531 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3532 {
3533 struct breakpoint *b;
3534 const char *func_name;
3535 CORE_ADDR addr;
3536
3537 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3538 continue;
3539
3540 func_name = longjmp_names[i];
3541 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3542 {
3543 struct bound_minimal_symbol m;
3544
3545 m = lookup_minimal_symbol_text (func_name, objfile);
3546 if (m.minsym == NULL)
3547 {
3548 /* Prevent future lookups in this objfile. */
3549 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3550 continue;
3551 }
3552 bp_objfile_data->longjmp_msym[i] = m;
3553 }
3554
3555 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3556 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3557 &internal_breakpoint_ops);
3558 b->addr_string = xstrdup (func_name);
3559 b->enable_state = bp_disabled;
3560 }
3561 }
3562 }
3563 update_global_location_list (UGLL_MAY_INSERT);
3564
3565 do_cleanups (old_chain);
3566 }
3567
3568 /* Create a master std::terminate breakpoint. */
3569 static void
3570 create_std_terminate_master_breakpoint (void)
3571 {
3572 struct program_space *pspace;
3573 struct cleanup *old_chain;
3574 const char *const func_name = "std::terminate()";
3575
3576 old_chain = save_current_program_space ();
3577
3578 ALL_PSPACES (pspace)
3579 {
3580 struct objfile *objfile;
3581 CORE_ADDR addr;
3582
3583 set_current_program_space (pspace);
3584
3585 ALL_OBJFILES (objfile)
3586 {
3587 struct breakpoint *b;
3588 struct breakpoint_objfile_data *bp_objfile_data;
3589
3590 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3591
3592 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3593 continue;
3594
3595 if (bp_objfile_data->terminate_msym.minsym == NULL)
3596 {
3597 struct bound_minimal_symbol m;
3598
3599 m = lookup_minimal_symbol (func_name, NULL, objfile);
3600 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3601 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3602 {
3603 /* Prevent future lookups in this objfile. */
3604 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3605 continue;
3606 }
3607 bp_objfile_data->terminate_msym = m;
3608 }
3609
3610 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3611 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3612 bp_std_terminate_master,
3613 &internal_breakpoint_ops);
3614 b->addr_string = xstrdup (func_name);
3615 b->enable_state = bp_disabled;
3616 }
3617 }
3618
3619 update_global_location_list (UGLL_MAY_INSERT);
3620
3621 do_cleanups (old_chain);
3622 }
3623
3624 /* Install a master breakpoint on the unwinder's debug hook. */
3625
3626 static void
3627 create_exception_master_breakpoint (void)
3628 {
3629 struct objfile *objfile;
3630 const char *const func_name = "_Unwind_DebugHook";
3631
3632 ALL_OBJFILES (objfile)
3633 {
3634 struct breakpoint *b;
3635 struct gdbarch *gdbarch;
3636 struct breakpoint_objfile_data *bp_objfile_data;
3637 CORE_ADDR addr;
3638
3639 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3640
3641 /* We prefer the SystemTap probe point if it exists. */
3642 if (!bp_objfile_data->exception_searched)
3643 {
3644 VEC (probe_p) *ret;
3645
3646 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3647
3648 if (ret != NULL)
3649 {
3650 /* We are only interested in checking one element. */
3651 struct probe *p = VEC_index (probe_p, ret, 0);
3652
3653 if (!can_evaluate_probe_arguments (p))
3654 {
3655 /* We cannot use the probe interface here, because it does
3656 not know how to evaluate arguments. */
3657 VEC_free (probe_p, ret);
3658 ret = NULL;
3659 }
3660 }
3661 bp_objfile_data->exception_probes = ret;
3662 bp_objfile_data->exception_searched = 1;
3663 }
3664
3665 if (bp_objfile_data->exception_probes != NULL)
3666 {
3667 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3668 int i;
3669 struct probe *probe;
3670
3671 for (i = 0;
3672 VEC_iterate (probe_p,
3673 bp_objfile_data->exception_probes,
3674 i, probe);
3675 ++i)
3676 {
3677 struct breakpoint *b;
3678
3679 b = create_internal_breakpoint (gdbarch,
3680 get_probe_address (probe,
3681 objfile),
3682 bp_exception_master,
3683 &internal_breakpoint_ops);
3684 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3685 b->enable_state = bp_disabled;
3686 }
3687
3688 continue;
3689 }
3690
3691 /* Otherwise, try the hook function. */
3692
3693 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3694 continue;
3695
3696 gdbarch = get_objfile_arch (objfile);
3697
3698 if (bp_objfile_data->exception_msym.minsym == NULL)
3699 {
3700 struct bound_minimal_symbol debug_hook;
3701
3702 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3703 if (debug_hook.minsym == NULL)
3704 {
3705 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3706 continue;
3707 }
3708
3709 bp_objfile_data->exception_msym = debug_hook;
3710 }
3711
3712 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3713 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3714 &current_target);
3715 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3716 &internal_breakpoint_ops);
3717 b->addr_string = xstrdup (func_name);
3718 b->enable_state = bp_disabled;
3719 }
3720
3721 update_global_location_list (UGLL_MAY_INSERT);
3722 }
3723
3724 void
3725 update_breakpoints_after_exec (void)
3726 {
3727 struct breakpoint *b, *b_tmp;
3728 struct bp_location *bploc, **bplocp_tmp;
3729
3730 /* We're about to delete breakpoints from GDB's lists. If the
3731 INSERTED flag is true, GDB will try to lift the breakpoints by
3732 writing the breakpoints' "shadow contents" back into memory. The
3733 "shadow contents" are NOT valid after an exec, so GDB should not
3734 do that. Instead, the target is responsible from marking
3735 breakpoints out as soon as it detects an exec. We don't do that
3736 here instead, because there may be other attempts to delete
3737 breakpoints after detecting an exec and before reaching here. */
3738 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3739 if (bploc->pspace == current_program_space)
3740 gdb_assert (!bploc->inserted);
3741
3742 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3743 {
3744 if (b->pspace != current_program_space)
3745 continue;
3746
3747 /* Solib breakpoints must be explicitly reset after an exec(). */
3748 if (b->type == bp_shlib_event)
3749 {
3750 delete_breakpoint (b);
3751 continue;
3752 }
3753
3754 /* JIT breakpoints must be explicitly reset after an exec(). */
3755 if (b->type == bp_jit_event)
3756 {
3757 delete_breakpoint (b);
3758 continue;
3759 }
3760
3761 /* Thread event breakpoints must be set anew after an exec(),
3762 as must overlay event and longjmp master breakpoints. */
3763 if (b->type == bp_thread_event || b->type == bp_overlay_event
3764 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3765 || b->type == bp_exception_master)
3766 {
3767 delete_breakpoint (b);
3768 continue;
3769 }
3770
3771 /* Step-resume breakpoints are meaningless after an exec(). */
3772 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3773 {
3774 delete_breakpoint (b);
3775 continue;
3776 }
3777
3778 /* Just like single-step breakpoints. */
3779 if (b->type == bp_single_step)
3780 {
3781 delete_breakpoint (b);
3782 continue;
3783 }
3784
3785 /* Longjmp and longjmp-resume breakpoints are also meaningless
3786 after an exec. */
3787 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3788 || b->type == bp_longjmp_call_dummy
3789 || b->type == bp_exception || b->type == bp_exception_resume)
3790 {
3791 delete_breakpoint (b);
3792 continue;
3793 }
3794
3795 if (b->type == bp_catchpoint)
3796 {
3797 /* For now, none of the bp_catchpoint breakpoints need to
3798 do anything at this point. In the future, if some of
3799 the catchpoints need to something, we will need to add
3800 a new method, and call this method from here. */
3801 continue;
3802 }
3803
3804 /* bp_finish is a special case. The only way we ought to be able
3805 to see one of these when an exec() has happened, is if the user
3806 caught a vfork, and then said "finish". Ordinarily a finish just
3807 carries them to the call-site of the current callee, by setting
3808 a temporary bp there and resuming. But in this case, the finish
3809 will carry them entirely through the vfork & exec.
3810
3811 We don't want to allow a bp_finish to remain inserted now. But
3812 we can't safely delete it, 'cause finish_command has a handle to
3813 the bp on a bpstat, and will later want to delete it. There's a
3814 chance (and I've seen it happen) that if we delete the bp_finish
3815 here, that its storage will get reused by the time finish_command
3816 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3817 We really must allow finish_command to delete a bp_finish.
3818
3819 In the absence of a general solution for the "how do we know
3820 it's safe to delete something others may have handles to?"
3821 problem, what we'll do here is just uninsert the bp_finish, and
3822 let finish_command delete it.
3823
3824 (We know the bp_finish is "doomed" in the sense that it's
3825 momentary, and will be deleted as soon as finish_command sees
3826 the inferior stopped. So it doesn't matter that the bp's
3827 address is probably bogus in the new a.out, unlike e.g., the
3828 solib breakpoints.) */
3829
3830 if (b->type == bp_finish)
3831 {
3832 continue;
3833 }
3834
3835 /* Without a symbolic address, we have little hope of the
3836 pre-exec() address meaning the same thing in the post-exec()
3837 a.out. */
3838 if (b->addr_string == NULL)
3839 {
3840 delete_breakpoint (b);
3841 continue;
3842 }
3843 }
3844 }
3845
3846 int
3847 detach_breakpoints (ptid_t ptid)
3848 {
3849 struct bp_location *bl, **blp_tmp;
3850 int val = 0;
3851 struct cleanup *old_chain = save_inferior_ptid ();
3852 struct inferior *inf = current_inferior ();
3853
3854 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3855 error (_("Cannot detach breakpoints of inferior_ptid"));
3856
3857 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3858 inferior_ptid = ptid;
3859 ALL_BP_LOCATIONS (bl, blp_tmp)
3860 {
3861 if (bl->pspace != inf->pspace)
3862 continue;
3863
3864 /* This function must physically remove breakpoints locations
3865 from the specified ptid, without modifying the breakpoint
3866 package's state. Locations of type bp_loc_other are only
3867 maintained at GDB side. So, there is no need to remove
3868 these bp_loc_other locations. Moreover, removing these
3869 would modify the breakpoint package's state. */
3870 if (bl->loc_type == bp_loc_other)
3871 continue;
3872
3873 if (bl->inserted)
3874 val |= remove_breakpoint_1 (bl, mark_inserted);
3875 }
3876
3877 do_cleanups (old_chain);
3878 return val;
3879 }
3880
3881 /* Remove the breakpoint location BL from the current address space.
3882 Note that this is used to detach breakpoints from a child fork.
3883 When we get here, the child isn't in the inferior list, and neither
3884 do we have objects to represent its address space --- we should
3885 *not* look at bl->pspace->aspace here. */
3886
3887 static int
3888 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3889 {
3890 int val;
3891
3892 /* BL is never in moribund_locations by our callers. */
3893 gdb_assert (bl->owner != NULL);
3894
3895 if (bl->permanent)
3896 /* Permanent breakpoints cannot be inserted or removed. */
3897 return 0;
3898
3899 /* The type of none suggests that owner is actually deleted.
3900 This should not ever happen. */
3901 gdb_assert (bl->owner->type != bp_none);
3902
3903 if (bl->loc_type == bp_loc_software_breakpoint
3904 || bl->loc_type == bp_loc_hardware_breakpoint)
3905 {
3906 /* "Normal" instruction breakpoint: either the standard
3907 trap-instruction bp (bp_breakpoint), or a
3908 bp_hardware_breakpoint. */
3909
3910 /* First check to see if we have to handle an overlay. */
3911 if (overlay_debugging == ovly_off
3912 || bl->section == NULL
3913 || !(section_is_overlay (bl->section)))
3914 {
3915 /* No overlay handling: just remove the breakpoint. */
3916
3917 /* If we're trying to uninsert a memory breakpoint that we
3918 know is set in a dynamic object that is marked
3919 shlib_disabled, then either the dynamic object was
3920 removed with "remove-symbol-file" or with
3921 "nosharedlibrary". In the former case, we don't know
3922 whether another dynamic object might have loaded over the
3923 breakpoint's address -- the user might well let us know
3924 about it next with add-symbol-file (the whole point of
3925 add-symbol-file is letting the user manually maintain a
3926 list of dynamically loaded objects). If we have the
3927 breakpoint's shadow memory, that is, this is a software
3928 breakpoint managed by GDB, check whether the breakpoint
3929 is still inserted in memory, to avoid overwriting wrong
3930 code with stale saved shadow contents. Note that HW
3931 breakpoints don't have shadow memory, as they're
3932 implemented using a mechanism that is not dependent on
3933 being able to modify the target's memory, and as such
3934 they should always be removed. */
3935 if (bl->shlib_disabled
3936 && bl->target_info.shadow_len != 0
3937 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3938 val = 0;
3939 else
3940 val = bl->owner->ops->remove_location (bl);
3941 }
3942 else
3943 {
3944 /* This breakpoint is in an overlay section.
3945 Did we set a breakpoint at the LMA? */
3946 if (!overlay_events_enabled)
3947 {
3948 /* Yes -- overlay event support is not active, so we
3949 should have set a breakpoint at the LMA. Remove it.
3950 */
3951 /* Ignore any failures: if the LMA is in ROM, we will
3952 have already warned when we failed to insert it. */
3953 if (bl->loc_type == bp_loc_hardware_breakpoint)
3954 target_remove_hw_breakpoint (bl->gdbarch,
3955 &bl->overlay_target_info);
3956 else
3957 target_remove_breakpoint (bl->gdbarch,
3958 &bl->overlay_target_info);
3959 }
3960 /* Did we set a breakpoint at the VMA?
3961 If so, we will have marked the breakpoint 'inserted'. */
3962 if (bl->inserted)
3963 {
3964 /* Yes -- remove it. Previously we did not bother to
3965 remove the breakpoint if the section had been
3966 unmapped, but let's not rely on that being safe. We
3967 don't know what the overlay manager might do. */
3968
3969 /* However, we should remove *software* breakpoints only
3970 if the section is still mapped, or else we overwrite
3971 wrong code with the saved shadow contents. */
3972 if (bl->loc_type == bp_loc_hardware_breakpoint
3973 || section_is_mapped (bl->section))
3974 val = bl->owner->ops->remove_location (bl);
3975 else
3976 val = 0;
3977 }
3978 else
3979 {
3980 /* No -- not inserted, so no need to remove. No error. */
3981 val = 0;
3982 }
3983 }
3984
3985 /* In some cases, we might not be able to remove a breakpoint in
3986 a shared library that has already been removed, but we have
3987 not yet processed the shlib unload event. Similarly for an
3988 unloaded add-symbol-file object - the user might not yet have
3989 had the chance to remove-symbol-file it. shlib_disabled will
3990 be set if the library/object has already been removed, but
3991 the breakpoint hasn't been uninserted yet, e.g., after
3992 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3993 always-inserted mode. */
3994 if (val
3995 && (bl->loc_type == bp_loc_software_breakpoint
3996 && (bl->shlib_disabled
3997 || solib_name_from_address (bl->pspace, bl->address)
3998 || shared_objfile_contains_address_p (bl->pspace,
3999 bl->address))))
4000 val = 0;
4001
4002 if (val)
4003 return val;
4004 bl->inserted = (is == mark_inserted);
4005 }
4006 else if (bl->loc_type == bp_loc_hardware_watchpoint)
4007 {
4008 gdb_assert (bl->owner->ops != NULL
4009 && bl->owner->ops->remove_location != NULL);
4010
4011 bl->inserted = (is == mark_inserted);
4012 bl->owner->ops->remove_location (bl);
4013
4014 /* Failure to remove any of the hardware watchpoints comes here. */
4015 if ((is == mark_uninserted) && (bl->inserted))
4016 warning (_("Could not remove hardware watchpoint %d."),
4017 bl->owner->number);
4018 }
4019 else if (bl->owner->type == bp_catchpoint
4020 && breakpoint_enabled (bl->owner)
4021 && !bl->duplicate)
4022 {
4023 gdb_assert (bl->owner->ops != NULL
4024 && bl->owner->ops->remove_location != NULL);
4025
4026 val = bl->owner->ops->remove_location (bl);
4027 if (val)
4028 return val;
4029
4030 bl->inserted = (is == mark_inserted);
4031 }
4032
4033 return 0;
4034 }
4035
4036 static int
4037 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
4038 {
4039 int ret;
4040 struct cleanup *old_chain;
4041
4042 /* BL is never in moribund_locations by our callers. */
4043 gdb_assert (bl->owner != NULL);
4044
4045 if (bl->permanent)
4046 /* Permanent breakpoints cannot be inserted or removed. */
4047 return 0;
4048
4049 /* The type of none suggests that owner is actually deleted.
4050 This should not ever happen. */
4051 gdb_assert (bl->owner->type != bp_none);
4052
4053 old_chain = save_current_space_and_thread ();
4054
4055 switch_to_program_space_and_thread (bl->pspace);
4056
4057 ret = remove_breakpoint_1 (bl, is);
4058
4059 do_cleanups (old_chain);
4060 return ret;
4061 }
4062
4063 /* Clear the "inserted" flag in all breakpoints. */
4064
4065 void
4066 mark_breakpoints_out (void)
4067 {
4068 struct bp_location *bl, **blp_tmp;
4069
4070 ALL_BP_LOCATIONS (bl, blp_tmp)
4071 if (bl->pspace == current_program_space
4072 && !bl->permanent)
4073 bl->inserted = 0;
4074 }
4075
4076 /* Clear the "inserted" flag in all breakpoints and delete any
4077 breakpoints which should go away between runs of the program.
4078
4079 Plus other such housekeeping that has to be done for breakpoints
4080 between runs.
4081
4082 Note: this function gets called at the end of a run (by
4083 generic_mourn_inferior) and when a run begins (by
4084 init_wait_for_inferior). */
4085
4086
4087
4088 void
4089 breakpoint_init_inferior (enum inf_context context)
4090 {
4091 struct breakpoint *b, *b_tmp;
4092 struct bp_location *bl, **blp_tmp;
4093 int ix;
4094 struct program_space *pspace = current_program_space;
4095
4096 /* If breakpoint locations are shared across processes, then there's
4097 nothing to do. */
4098 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
4099 return;
4100
4101 mark_breakpoints_out ();
4102
4103 ALL_BREAKPOINTS_SAFE (b, b_tmp)
4104 {
4105 if (b->loc && b->loc->pspace != pspace)
4106 continue;
4107
4108 switch (b->type)
4109 {
4110 case bp_call_dummy:
4111 case bp_longjmp_call_dummy:
4112
4113 /* If the call dummy breakpoint is at the entry point it will
4114 cause problems when the inferior is rerun, so we better get
4115 rid of it. */
4116
4117 case bp_watchpoint_scope:
4118
4119 /* Also get rid of scope breakpoints. */
4120
4121 case bp_shlib_event:
4122
4123 /* Also remove solib event breakpoints. Their addresses may
4124 have changed since the last time we ran the program.
4125 Actually we may now be debugging against different target;
4126 and so the solib backend that installed this breakpoint may
4127 not be used in by the target. E.g.,
4128
4129 (gdb) file prog-linux
4130 (gdb) run # native linux target
4131 ...
4132 (gdb) kill
4133 (gdb) file prog-win.exe
4134 (gdb) tar rem :9999 # remote Windows gdbserver.
4135 */
4136
4137 case bp_step_resume:
4138
4139 /* Also remove step-resume breakpoints. */
4140
4141 case bp_single_step:
4142
4143 /* Also remove single-step breakpoints. */
4144
4145 delete_breakpoint (b);
4146 break;
4147
4148 case bp_watchpoint:
4149 case bp_hardware_watchpoint:
4150 case bp_read_watchpoint:
4151 case bp_access_watchpoint:
4152 {
4153 struct watchpoint *w = (struct watchpoint *) b;
4154
4155 /* Likewise for watchpoints on local expressions. */
4156 if (w->exp_valid_block != NULL)
4157 delete_breakpoint (b);
4158 else if (context == inf_starting)
4159 {
4160 /* Reset val field to force reread of starting value in
4161 insert_breakpoints. */
4162 if (w->val)
4163 value_free (w->val);
4164 w->val = NULL;
4165 w->val_valid = 0;
4166 }
4167 }
4168 break;
4169 default:
4170 break;
4171 }
4172 }
4173
4174 /* Get rid of the moribund locations. */
4175 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
4176 decref_bp_location (&bl);
4177 VEC_free (bp_location_p, moribund_locations);
4178 }
4179
4180 /* These functions concern about actual breakpoints inserted in the
4181 target --- to e.g. check if we need to do decr_pc adjustment or if
4182 we need to hop over the bkpt --- so we check for address space
4183 match, not program space. */
4184
4185 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4186 exists at PC. It returns ordinary_breakpoint_here if it's an
4187 ordinary breakpoint, or permanent_breakpoint_here if it's a
4188 permanent breakpoint.
4189 - When continuing from a location with an ordinary breakpoint, we
4190 actually single step once before calling insert_breakpoints.
4191 - When continuing from a location with a permanent breakpoint, we
4192 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4193 the target, to advance the PC past the breakpoint. */
4194
4195 enum breakpoint_here
4196 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4197 {
4198 struct bp_location *bl, **blp_tmp;
4199 int any_breakpoint_here = 0;
4200
4201 ALL_BP_LOCATIONS (bl, blp_tmp)
4202 {
4203 if (bl->loc_type != bp_loc_software_breakpoint
4204 && bl->loc_type != bp_loc_hardware_breakpoint)
4205 continue;
4206
4207 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4208 if ((breakpoint_enabled (bl->owner)
4209 || bl->permanent)
4210 && breakpoint_location_address_match (bl, aspace, pc))
4211 {
4212 if (overlay_debugging
4213 && section_is_overlay (bl->section)
4214 && !section_is_mapped (bl->section))
4215 continue; /* unmapped overlay -- can't be a match */
4216 else if (bl->permanent)
4217 return permanent_breakpoint_here;
4218 else
4219 any_breakpoint_here = 1;
4220 }
4221 }
4222
4223 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
4224 }
4225
4226 /* Return true if there's a moribund breakpoint at PC. */
4227
4228 int
4229 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4230 {
4231 struct bp_location *loc;
4232 int ix;
4233
4234 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4235 if (breakpoint_location_address_match (loc, aspace, pc))
4236 return 1;
4237
4238 return 0;
4239 }
4240
4241 /* Returns non-zero iff BL is inserted at PC, in address space
4242 ASPACE. */
4243
4244 static int
4245 bp_location_inserted_here_p (struct bp_location *bl,
4246 struct address_space *aspace, CORE_ADDR pc)
4247 {
4248 if (bl->inserted
4249 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4250 aspace, pc))
4251 {
4252 if (overlay_debugging
4253 && section_is_overlay (bl->section)
4254 && !section_is_mapped (bl->section))
4255 return 0; /* unmapped overlay -- can't be a match */
4256 else
4257 return 1;
4258 }
4259 return 0;
4260 }
4261
4262 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4263
4264 int
4265 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4266 {
4267 struct bp_location **blp, **blp_tmp = NULL;
4268 struct bp_location *bl;
4269
4270 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4271 {
4272 struct bp_location *bl = *blp;
4273
4274 if (bl->loc_type != bp_loc_software_breakpoint
4275 && bl->loc_type != bp_loc_hardware_breakpoint)
4276 continue;
4277
4278 if (bp_location_inserted_here_p (bl, aspace, pc))
4279 return 1;
4280 }
4281 return 0;
4282 }
4283
4284 /* This function returns non-zero iff there is a software breakpoint
4285 inserted at PC. */
4286
4287 int
4288 software_breakpoint_inserted_here_p (struct address_space *aspace,
4289 CORE_ADDR pc)
4290 {
4291 struct bp_location **blp, **blp_tmp = NULL;
4292 struct bp_location *bl;
4293
4294 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4295 {
4296 struct bp_location *bl = *blp;
4297
4298 if (bl->loc_type != bp_loc_software_breakpoint)
4299 continue;
4300
4301 if (bp_location_inserted_here_p (bl, aspace, pc))
4302 return 1;
4303 }
4304
4305 return 0;
4306 }
4307
4308 /* See breakpoint.h. */
4309
4310 int
4311 hardware_breakpoint_inserted_here_p (struct address_space *aspace,
4312 CORE_ADDR pc)
4313 {
4314 struct bp_location **blp, **blp_tmp = NULL;
4315 struct bp_location *bl;
4316
4317 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4318 {
4319 struct bp_location *bl = *blp;
4320
4321 if (bl->loc_type != bp_loc_hardware_breakpoint)
4322 continue;
4323
4324 if (bp_location_inserted_here_p (bl, aspace, pc))
4325 return 1;
4326 }
4327
4328 return 0;
4329 }
4330
4331 int
4332 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4333 CORE_ADDR addr, ULONGEST len)
4334 {
4335 struct breakpoint *bpt;
4336
4337 ALL_BREAKPOINTS (bpt)
4338 {
4339 struct bp_location *loc;
4340
4341 if (bpt->type != bp_hardware_watchpoint
4342 && bpt->type != bp_access_watchpoint)
4343 continue;
4344
4345 if (!breakpoint_enabled (bpt))
4346 continue;
4347
4348 for (loc = bpt->loc; loc; loc = loc->next)
4349 if (loc->pspace->aspace == aspace && loc->inserted)
4350 {
4351 CORE_ADDR l, h;
4352
4353 /* Check for intersection. */
4354 l = max (loc->address, addr);
4355 h = min (loc->address + loc->length, addr + len);
4356 if (l < h)
4357 return 1;
4358 }
4359 }
4360 return 0;
4361 }
4362 \f
4363
4364 /* bpstat stuff. External routines' interfaces are documented
4365 in breakpoint.h. */
4366
4367 int
4368 is_catchpoint (struct breakpoint *ep)
4369 {
4370 return (ep->type == bp_catchpoint);
4371 }
4372
4373 /* Frees any storage that is part of a bpstat. Does not walk the
4374 'next' chain. */
4375
4376 static void
4377 bpstat_free (bpstat bs)
4378 {
4379 if (bs->old_val != NULL)
4380 value_free (bs->old_val);
4381 decref_counted_command_line (&bs->commands);
4382 decref_bp_location (&bs->bp_location_at);
4383 xfree (bs);
4384 }
4385
4386 /* Clear a bpstat so that it says we are not at any breakpoint.
4387 Also free any storage that is part of a bpstat. */
4388
4389 void
4390 bpstat_clear (bpstat *bsp)
4391 {
4392 bpstat p;
4393 bpstat q;
4394
4395 if (bsp == 0)
4396 return;
4397 p = *bsp;
4398 while (p != NULL)
4399 {
4400 q = p->next;
4401 bpstat_free (p);
4402 p = q;
4403 }
4404 *bsp = NULL;
4405 }
4406
4407 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4408 is part of the bpstat is copied as well. */
4409
4410 bpstat
4411 bpstat_copy (bpstat bs)
4412 {
4413 bpstat p = NULL;
4414 bpstat tmp;
4415 bpstat retval = NULL;
4416
4417 if (bs == NULL)
4418 return bs;
4419
4420 for (; bs != NULL; bs = bs->next)
4421 {
4422 tmp = (bpstat) xmalloc (sizeof (*tmp));
4423 memcpy (tmp, bs, sizeof (*tmp));
4424 incref_counted_command_line (tmp->commands);
4425 incref_bp_location (tmp->bp_location_at);
4426 if (bs->old_val != NULL)
4427 {
4428 tmp->old_val = value_copy (bs->old_val);
4429 release_value (tmp->old_val);
4430 }
4431
4432 if (p == NULL)
4433 /* This is the first thing in the chain. */
4434 retval = tmp;
4435 else
4436 p->next = tmp;
4437 p = tmp;
4438 }
4439 p->next = NULL;
4440 return retval;
4441 }
4442
4443 /* Find the bpstat associated with this breakpoint. */
4444
4445 bpstat
4446 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4447 {
4448 if (bsp == NULL)
4449 return NULL;
4450
4451 for (; bsp != NULL; bsp = bsp->next)
4452 {
4453 if (bsp->breakpoint_at == breakpoint)
4454 return bsp;
4455 }
4456 return NULL;
4457 }
4458
4459 /* See breakpoint.h. */
4460
4461 int
4462 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4463 {
4464 for (; bsp != NULL; bsp = bsp->next)
4465 {
4466 if (bsp->breakpoint_at == NULL)
4467 {
4468 /* A moribund location can never explain a signal other than
4469 GDB_SIGNAL_TRAP. */
4470 if (sig == GDB_SIGNAL_TRAP)
4471 return 1;
4472 }
4473 else
4474 {
4475 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4476 sig))
4477 return 1;
4478 }
4479 }
4480
4481 return 0;
4482 }
4483
4484 /* Put in *NUM the breakpoint number of the first breakpoint we are
4485 stopped at. *BSP upon return is a bpstat which points to the
4486 remaining breakpoints stopped at (but which is not guaranteed to be
4487 good for anything but further calls to bpstat_num).
4488
4489 Return 0 if passed a bpstat which does not indicate any breakpoints.
4490 Return -1 if stopped at a breakpoint that has been deleted since
4491 we set it.
4492 Return 1 otherwise. */
4493
4494 int
4495 bpstat_num (bpstat *bsp, int *num)
4496 {
4497 struct breakpoint *b;
4498
4499 if ((*bsp) == NULL)
4500 return 0; /* No more breakpoint values */
4501
4502 /* We assume we'll never have several bpstats that correspond to a
4503 single breakpoint -- otherwise, this function might return the
4504 same number more than once and this will look ugly. */
4505 b = (*bsp)->breakpoint_at;
4506 *bsp = (*bsp)->next;
4507 if (b == NULL)
4508 return -1; /* breakpoint that's been deleted since */
4509
4510 *num = b->number; /* We have its number */
4511 return 1;
4512 }
4513
4514 /* See breakpoint.h. */
4515
4516 void
4517 bpstat_clear_actions (void)
4518 {
4519 struct thread_info *tp;
4520 bpstat bs;
4521
4522 if (ptid_equal (inferior_ptid, null_ptid))
4523 return;
4524
4525 tp = find_thread_ptid (inferior_ptid);
4526 if (tp == NULL)
4527 return;
4528
4529 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4530 {
4531 decref_counted_command_line (&bs->commands);
4532
4533 if (bs->old_val != NULL)
4534 {
4535 value_free (bs->old_val);
4536 bs->old_val = NULL;
4537 }
4538 }
4539 }
4540
4541 /* Called when a command is about to proceed the inferior. */
4542
4543 static void
4544 breakpoint_about_to_proceed (void)
4545 {
4546 if (!ptid_equal (inferior_ptid, null_ptid))
4547 {
4548 struct thread_info *tp = inferior_thread ();
4549
4550 /* Allow inferior function calls in breakpoint commands to not
4551 interrupt the command list. When the call finishes
4552 successfully, the inferior will be standing at the same
4553 breakpoint as if nothing happened. */
4554 if (tp->control.in_infcall)
4555 return;
4556 }
4557
4558 breakpoint_proceeded = 1;
4559 }
4560
4561 /* Stub for cleaning up our state if we error-out of a breakpoint
4562 command. */
4563 static void
4564 cleanup_executing_breakpoints (void *ignore)
4565 {
4566 executing_breakpoint_commands = 0;
4567 }
4568
4569 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4570 or its equivalent. */
4571
4572 static int
4573 command_line_is_silent (struct command_line *cmd)
4574 {
4575 return cmd && (strcmp ("silent", cmd->line) == 0);
4576 }
4577
4578 /* Execute all the commands associated with all the breakpoints at
4579 this location. Any of these commands could cause the process to
4580 proceed beyond this point, etc. We look out for such changes by
4581 checking the global "breakpoint_proceeded" after each command.
4582
4583 Returns true if a breakpoint command resumed the inferior. In that
4584 case, it is the caller's responsibility to recall it again with the
4585 bpstat of the current thread. */
4586
4587 static int
4588 bpstat_do_actions_1 (bpstat *bsp)
4589 {
4590 bpstat bs;
4591 struct cleanup *old_chain;
4592 int again = 0;
4593
4594 /* Avoid endless recursion if a `source' command is contained
4595 in bs->commands. */
4596 if (executing_breakpoint_commands)
4597 return 0;
4598
4599 executing_breakpoint_commands = 1;
4600 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4601
4602 prevent_dont_repeat ();
4603
4604 /* This pointer will iterate over the list of bpstat's. */
4605 bs = *bsp;
4606
4607 breakpoint_proceeded = 0;
4608 for (; bs != NULL; bs = bs->next)
4609 {
4610 struct counted_command_line *ccmd;
4611 struct command_line *cmd;
4612 struct cleanup *this_cmd_tree_chain;
4613
4614 /* Take ownership of the BSP's command tree, if it has one.
4615
4616 The command tree could legitimately contain commands like
4617 'step' and 'next', which call clear_proceed_status, which
4618 frees stop_bpstat's command tree. To make sure this doesn't
4619 free the tree we're executing out from under us, we need to
4620 take ownership of the tree ourselves. Since a given bpstat's
4621 commands are only executed once, we don't need to copy it; we
4622 can clear the pointer in the bpstat, and make sure we free
4623 the tree when we're done. */
4624 ccmd = bs->commands;
4625 bs->commands = NULL;
4626 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4627 cmd = ccmd ? ccmd->commands : NULL;
4628 if (command_line_is_silent (cmd))
4629 {
4630 /* The action has been already done by bpstat_stop_status. */
4631 cmd = cmd->next;
4632 }
4633
4634 while (cmd != NULL)
4635 {
4636 execute_control_command (cmd);
4637
4638 if (breakpoint_proceeded)
4639 break;
4640 else
4641 cmd = cmd->next;
4642 }
4643
4644 /* We can free this command tree now. */
4645 do_cleanups (this_cmd_tree_chain);
4646
4647 if (breakpoint_proceeded)
4648 {
4649 if (interpreter_async && target_can_async_p ())
4650 /* If we are in async mode, then the target might be still
4651 running, not stopped at any breakpoint, so nothing for
4652 us to do here -- just return to the event loop. */
4653 ;
4654 else
4655 /* In sync mode, when execute_control_command returns
4656 we're already standing on the next breakpoint.
4657 Breakpoint commands for that stop were not run, since
4658 execute_command does not run breakpoint commands --
4659 only command_line_handler does, but that one is not
4660 involved in execution of breakpoint commands. So, we
4661 can now execute breakpoint commands. It should be
4662 noted that making execute_command do bpstat actions is
4663 not an option -- in this case we'll have recursive
4664 invocation of bpstat for each breakpoint with a
4665 command, and can easily blow up GDB stack. Instead, we
4666 return true, which will trigger the caller to recall us
4667 with the new stop_bpstat. */
4668 again = 1;
4669 break;
4670 }
4671 }
4672 do_cleanups (old_chain);
4673 return again;
4674 }
4675
4676 void
4677 bpstat_do_actions (void)
4678 {
4679 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4680
4681 /* Do any commands attached to breakpoint we are stopped at. */
4682 while (!ptid_equal (inferior_ptid, null_ptid)
4683 && target_has_execution
4684 && !is_exited (inferior_ptid)
4685 && !is_executing (inferior_ptid))
4686 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4687 and only return when it is stopped at the next breakpoint, we
4688 keep doing breakpoint actions until it returns false to
4689 indicate the inferior was not resumed. */
4690 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4691 break;
4692
4693 discard_cleanups (cleanup_if_error);
4694 }
4695
4696 /* Print out the (old or new) value associated with a watchpoint. */
4697
4698 static void
4699 watchpoint_value_print (struct value *val, struct ui_file *stream)
4700 {
4701 if (val == NULL)
4702 fprintf_unfiltered (stream, _("<unreadable>"));
4703 else
4704 {
4705 struct value_print_options opts;
4706 get_user_print_options (&opts);
4707 value_print (val, stream, &opts);
4708 }
4709 }
4710
4711 /* Generic routine for printing messages indicating why we
4712 stopped. The behavior of this function depends on the value
4713 'print_it' in the bpstat structure. Under some circumstances we
4714 may decide not to print anything here and delegate the task to
4715 normal_stop(). */
4716
4717 static enum print_stop_action
4718 print_bp_stop_message (bpstat bs)
4719 {
4720 switch (bs->print_it)
4721 {
4722 case print_it_noop:
4723 /* Nothing should be printed for this bpstat entry. */
4724 return PRINT_UNKNOWN;
4725 break;
4726
4727 case print_it_done:
4728 /* We still want to print the frame, but we already printed the
4729 relevant messages. */
4730 return PRINT_SRC_AND_LOC;
4731 break;
4732
4733 case print_it_normal:
4734 {
4735 struct breakpoint *b = bs->breakpoint_at;
4736
4737 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4738 which has since been deleted. */
4739 if (b == NULL)
4740 return PRINT_UNKNOWN;
4741
4742 /* Normal case. Call the breakpoint's print_it method. */
4743 return b->ops->print_it (bs);
4744 }
4745 break;
4746
4747 default:
4748 internal_error (__FILE__, __LINE__,
4749 _("print_bp_stop_message: unrecognized enum value"));
4750 break;
4751 }
4752 }
4753
4754 /* A helper function that prints a shared library stopped event. */
4755
4756 static void
4757 print_solib_event (int is_catchpoint)
4758 {
4759 int any_deleted
4760 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4761 int any_added
4762 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4763
4764 if (!is_catchpoint)
4765 {
4766 if (any_added || any_deleted)
4767 ui_out_text (current_uiout,
4768 _("Stopped due to shared library event:\n"));
4769 else
4770 ui_out_text (current_uiout,
4771 _("Stopped due to shared library event (no "
4772 "libraries added or removed)\n"));
4773 }
4774
4775 if (ui_out_is_mi_like_p (current_uiout))
4776 ui_out_field_string (current_uiout, "reason",
4777 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4778
4779 if (any_deleted)
4780 {
4781 struct cleanup *cleanup;
4782 char *name;
4783 int ix;
4784
4785 ui_out_text (current_uiout, _(" Inferior unloaded "));
4786 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4787 "removed");
4788 for (ix = 0;
4789 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4790 ix, name);
4791 ++ix)
4792 {
4793 if (ix > 0)
4794 ui_out_text (current_uiout, " ");
4795 ui_out_field_string (current_uiout, "library", name);
4796 ui_out_text (current_uiout, "\n");
4797 }
4798
4799 do_cleanups (cleanup);
4800 }
4801
4802 if (any_added)
4803 {
4804 struct so_list *iter;
4805 int ix;
4806 struct cleanup *cleanup;
4807
4808 ui_out_text (current_uiout, _(" Inferior loaded "));
4809 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4810 "added");
4811 for (ix = 0;
4812 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4813 ix, iter);
4814 ++ix)
4815 {
4816 if (ix > 0)
4817 ui_out_text (current_uiout, " ");
4818 ui_out_field_string (current_uiout, "library", iter->so_name);
4819 ui_out_text (current_uiout, "\n");
4820 }
4821
4822 do_cleanups (cleanup);
4823 }
4824 }
4825
4826 /* Print a message indicating what happened. This is called from
4827 normal_stop(). The input to this routine is the head of the bpstat
4828 list - a list of the eventpoints that caused this stop. KIND is
4829 the target_waitkind for the stopping event. This
4830 routine calls the generic print routine for printing a message
4831 about reasons for stopping. This will print (for example) the
4832 "Breakpoint n," part of the output. The return value of this
4833 routine is one of:
4834
4835 PRINT_UNKNOWN: Means we printed nothing.
4836 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4837 code to print the location. An example is
4838 "Breakpoint 1, " which should be followed by
4839 the location.
4840 PRINT_SRC_ONLY: Means we printed something, but there is no need
4841 to also print the location part of the message.
4842 An example is the catch/throw messages, which
4843 don't require a location appended to the end.
4844 PRINT_NOTHING: We have done some printing and we don't need any
4845 further info to be printed. */
4846
4847 enum print_stop_action
4848 bpstat_print (bpstat bs, int kind)
4849 {
4850 int val;
4851
4852 /* Maybe another breakpoint in the chain caused us to stop.
4853 (Currently all watchpoints go on the bpstat whether hit or not.
4854 That probably could (should) be changed, provided care is taken
4855 with respect to bpstat_explains_signal). */
4856 for (; bs; bs = bs->next)
4857 {
4858 val = print_bp_stop_message (bs);
4859 if (val == PRINT_SRC_ONLY
4860 || val == PRINT_SRC_AND_LOC
4861 || val == PRINT_NOTHING)
4862 return val;
4863 }
4864
4865 /* If we had hit a shared library event breakpoint,
4866 print_bp_stop_message would print out this message. If we hit an
4867 OS-level shared library event, do the same thing. */
4868 if (kind == TARGET_WAITKIND_LOADED)
4869 {
4870 print_solib_event (0);
4871 return PRINT_NOTHING;
4872 }
4873
4874 /* We reached the end of the chain, or we got a null BS to start
4875 with and nothing was printed. */
4876 return PRINT_UNKNOWN;
4877 }
4878
4879 /* Evaluate the expression EXP and return 1 if value is zero.
4880 This returns the inverse of the condition because it is called
4881 from catch_errors which returns 0 if an exception happened, and if an
4882 exception happens we want execution to stop.
4883 The argument is a "struct expression *" that has been cast to a
4884 "void *" to make it pass through catch_errors. */
4885
4886 static int
4887 breakpoint_cond_eval (void *exp)
4888 {
4889 struct value *mark = value_mark ();
4890 int i = !value_true (evaluate_expression ((struct expression *) exp));
4891
4892 value_free_to_mark (mark);
4893 return i;
4894 }
4895
4896 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4897
4898 static bpstat
4899 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4900 {
4901 bpstat bs;
4902
4903 bs = (bpstat) xmalloc (sizeof (*bs));
4904 bs->next = NULL;
4905 **bs_link_pointer = bs;
4906 *bs_link_pointer = &bs->next;
4907 bs->breakpoint_at = bl->owner;
4908 bs->bp_location_at = bl;
4909 incref_bp_location (bl);
4910 /* If the condition is false, etc., don't do the commands. */
4911 bs->commands = NULL;
4912 bs->old_val = NULL;
4913 bs->print_it = print_it_normal;
4914 return bs;
4915 }
4916 \f
4917 /* The target has stopped with waitstatus WS. Check if any hardware
4918 watchpoints have triggered, according to the target. */
4919
4920 int
4921 watchpoints_triggered (struct target_waitstatus *ws)
4922 {
4923 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4924 CORE_ADDR addr;
4925 struct breakpoint *b;
4926
4927 if (!stopped_by_watchpoint)
4928 {
4929 /* We were not stopped by a watchpoint. Mark all watchpoints
4930 as not triggered. */
4931 ALL_BREAKPOINTS (b)
4932 if (is_hardware_watchpoint (b))
4933 {
4934 struct watchpoint *w = (struct watchpoint *) b;
4935
4936 w->watchpoint_triggered = watch_triggered_no;
4937 }
4938
4939 return 0;
4940 }
4941
4942 if (!target_stopped_data_address (&current_target, &addr))
4943 {
4944 /* We were stopped by a watchpoint, but we don't know where.
4945 Mark all watchpoints as unknown. */
4946 ALL_BREAKPOINTS (b)
4947 if (is_hardware_watchpoint (b))
4948 {
4949 struct watchpoint *w = (struct watchpoint *) b;
4950
4951 w->watchpoint_triggered = watch_triggered_unknown;
4952 }
4953
4954 return 1;
4955 }
4956
4957 /* The target could report the data address. Mark watchpoints
4958 affected by this data address as triggered, and all others as not
4959 triggered. */
4960
4961 ALL_BREAKPOINTS (b)
4962 if (is_hardware_watchpoint (b))
4963 {
4964 struct watchpoint *w = (struct watchpoint *) b;
4965 struct bp_location *loc;
4966
4967 w->watchpoint_triggered = watch_triggered_no;
4968 for (loc = b->loc; loc; loc = loc->next)
4969 {
4970 if (is_masked_watchpoint (b))
4971 {
4972 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4973 CORE_ADDR start = loc->address & w->hw_wp_mask;
4974
4975 if (newaddr == start)
4976 {
4977 w->watchpoint_triggered = watch_triggered_yes;
4978 break;
4979 }
4980 }
4981 /* Exact match not required. Within range is sufficient. */
4982 else if (target_watchpoint_addr_within_range (&current_target,
4983 addr, loc->address,
4984 loc->length))
4985 {
4986 w->watchpoint_triggered = watch_triggered_yes;
4987 break;
4988 }
4989 }
4990 }
4991
4992 return 1;
4993 }
4994
4995 /* Possible return values for watchpoint_check (this can't be an enum
4996 because of check_errors). */
4997 /* The watchpoint has been deleted. */
4998 #define WP_DELETED 1
4999 /* The value has changed. */
5000 #define WP_VALUE_CHANGED 2
5001 /* The value has not changed. */
5002 #define WP_VALUE_NOT_CHANGED 3
5003 /* Ignore this watchpoint, no matter if the value changed or not. */
5004 #define WP_IGNORE 4
5005
5006 #define BP_TEMPFLAG 1
5007 #define BP_HARDWAREFLAG 2
5008
5009 /* Evaluate watchpoint condition expression and check if its value
5010 changed.
5011
5012 P should be a pointer to struct bpstat, but is defined as a void *
5013 in order for this function to be usable with catch_errors. */
5014
5015 static int
5016 watchpoint_check (void *p)
5017 {
5018 bpstat bs = (bpstat) p;
5019 struct watchpoint *b;
5020 struct frame_info *fr;
5021 int within_current_scope;
5022
5023 /* BS is built from an existing struct breakpoint. */
5024 gdb_assert (bs->breakpoint_at != NULL);
5025 b = (struct watchpoint *) bs->breakpoint_at;
5026
5027 /* If this is a local watchpoint, we only want to check if the
5028 watchpoint frame is in scope if the current thread is the thread
5029 that was used to create the watchpoint. */
5030 if (!watchpoint_in_thread_scope (b))
5031 return WP_IGNORE;
5032
5033 if (b->exp_valid_block == NULL)
5034 within_current_scope = 1;
5035 else
5036 {
5037 struct frame_info *frame = get_current_frame ();
5038 struct gdbarch *frame_arch = get_frame_arch (frame);
5039 CORE_ADDR frame_pc = get_frame_pc (frame);
5040
5041 /* stack_frame_destroyed_p() returns a non-zero value if we're
5042 still in the function but the stack frame has already been
5043 invalidated. Since we can't rely on the values of local
5044 variables after the stack has been destroyed, we are treating
5045 the watchpoint in that state as `not changed' without further
5046 checking. Don't mark watchpoints as changed if the current
5047 frame is in an epilogue - even if they are in some other
5048 frame, our view of the stack is likely to be wrong and
5049 frame_find_by_id could error out. */
5050 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
5051 return WP_IGNORE;
5052
5053 fr = frame_find_by_id (b->watchpoint_frame);
5054 within_current_scope = (fr != NULL);
5055
5056 /* If we've gotten confused in the unwinder, we might have
5057 returned a frame that can't describe this variable. */
5058 if (within_current_scope)
5059 {
5060 struct symbol *function;
5061
5062 function = get_frame_function (fr);
5063 if (function == NULL
5064 || !contained_in (b->exp_valid_block,
5065 SYMBOL_BLOCK_VALUE (function)))
5066 within_current_scope = 0;
5067 }
5068
5069 if (within_current_scope)
5070 /* If we end up stopping, the current frame will get selected
5071 in normal_stop. So this call to select_frame won't affect
5072 the user. */
5073 select_frame (fr);
5074 }
5075
5076 if (within_current_scope)
5077 {
5078 /* We use value_{,free_to_}mark because it could be a *long*
5079 time before we return to the command level and call
5080 free_all_values. We can't call free_all_values because we
5081 might be in the middle of evaluating a function call. */
5082
5083 int pc = 0;
5084 struct value *mark;
5085 struct value *new_val;
5086
5087 if (is_masked_watchpoint (&b->base))
5088 /* Since we don't know the exact trigger address (from
5089 stopped_data_address), just tell the user we've triggered
5090 a mask watchpoint. */
5091 return WP_VALUE_CHANGED;
5092
5093 mark = value_mark ();
5094 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL, 0);
5095
5096 if (b->val_bitsize != 0)
5097 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
5098
5099 /* We use value_equal_contents instead of value_equal because
5100 the latter coerces an array to a pointer, thus comparing just
5101 the address of the array instead of its contents. This is
5102 not what we want. */
5103 if ((b->val != NULL) != (new_val != NULL)
5104 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
5105 {
5106 if (new_val != NULL)
5107 {
5108 release_value (new_val);
5109 value_free_to_mark (mark);
5110 }
5111 bs->old_val = b->val;
5112 b->val = new_val;
5113 b->val_valid = 1;
5114 return WP_VALUE_CHANGED;
5115 }
5116 else
5117 {
5118 /* Nothing changed. */
5119 value_free_to_mark (mark);
5120 return WP_VALUE_NOT_CHANGED;
5121 }
5122 }
5123 else
5124 {
5125 struct ui_out *uiout = current_uiout;
5126
5127 /* This seems like the only logical thing to do because
5128 if we temporarily ignored the watchpoint, then when
5129 we reenter the block in which it is valid it contains
5130 garbage (in the case of a function, it may have two
5131 garbage values, one before and one after the prologue).
5132 So we can't even detect the first assignment to it and
5133 watch after that (since the garbage may or may not equal
5134 the first value assigned). */
5135 /* We print all the stop information in
5136 breakpoint_ops->print_it, but in this case, by the time we
5137 call breakpoint_ops->print_it this bp will be deleted
5138 already. So we have no choice but print the information
5139 here. */
5140 if (ui_out_is_mi_like_p (uiout))
5141 ui_out_field_string
5142 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5143 ui_out_text (uiout, "\nWatchpoint ");
5144 ui_out_field_int (uiout, "wpnum", b->base.number);
5145 ui_out_text (uiout,
5146 " deleted because the program has left the block in\n\
5147 which its expression is valid.\n");
5148
5149 /* Make sure the watchpoint's commands aren't executed. */
5150 decref_counted_command_line (&b->base.commands);
5151 watchpoint_del_at_next_stop (b);
5152
5153 return WP_DELETED;
5154 }
5155 }
5156
5157 /* Return true if it looks like target has stopped due to hitting
5158 breakpoint location BL. This function does not check if we should
5159 stop, only if BL explains the stop. */
5160
5161 static int
5162 bpstat_check_location (const struct bp_location *bl,
5163 struct address_space *aspace, CORE_ADDR bp_addr,
5164 const struct target_waitstatus *ws)
5165 {
5166 struct breakpoint *b = bl->owner;
5167
5168 /* BL is from an existing breakpoint. */
5169 gdb_assert (b != NULL);
5170
5171 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5172 }
5173
5174 /* Determine if the watched values have actually changed, and we
5175 should stop. If not, set BS->stop to 0. */
5176
5177 static void
5178 bpstat_check_watchpoint (bpstat bs)
5179 {
5180 const struct bp_location *bl;
5181 struct watchpoint *b;
5182
5183 /* BS is built for existing struct breakpoint. */
5184 bl = bs->bp_location_at;
5185 gdb_assert (bl != NULL);
5186 b = (struct watchpoint *) bs->breakpoint_at;
5187 gdb_assert (b != NULL);
5188
5189 {
5190 int must_check_value = 0;
5191
5192 if (b->base.type == bp_watchpoint)
5193 /* For a software watchpoint, we must always check the
5194 watched value. */
5195 must_check_value = 1;
5196 else if (b->watchpoint_triggered == watch_triggered_yes)
5197 /* We have a hardware watchpoint (read, write, or access)
5198 and the target earlier reported an address watched by
5199 this watchpoint. */
5200 must_check_value = 1;
5201 else if (b->watchpoint_triggered == watch_triggered_unknown
5202 && b->base.type == bp_hardware_watchpoint)
5203 /* We were stopped by a hardware watchpoint, but the target could
5204 not report the data address. We must check the watchpoint's
5205 value. Access and read watchpoints are out of luck; without
5206 a data address, we can't figure it out. */
5207 must_check_value = 1;
5208
5209 if (must_check_value)
5210 {
5211 char *message
5212 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5213 b->base.number);
5214 struct cleanup *cleanups = make_cleanup (xfree, message);
5215 int e = catch_errors (watchpoint_check, bs, message,
5216 RETURN_MASK_ALL);
5217 do_cleanups (cleanups);
5218 switch (e)
5219 {
5220 case WP_DELETED:
5221 /* We've already printed what needs to be printed. */
5222 bs->print_it = print_it_done;
5223 /* Stop. */
5224 break;
5225 case WP_IGNORE:
5226 bs->print_it = print_it_noop;
5227 bs->stop = 0;
5228 break;
5229 case WP_VALUE_CHANGED:
5230 if (b->base.type == bp_read_watchpoint)
5231 {
5232 /* There are two cases to consider here:
5233
5234 1. We're watching the triggered memory for reads.
5235 In that case, trust the target, and always report
5236 the watchpoint hit to the user. Even though
5237 reads don't cause value changes, the value may
5238 have changed since the last time it was read, and
5239 since we're not trapping writes, we will not see
5240 those, and as such we should ignore our notion of
5241 old value.
5242
5243 2. We're watching the triggered memory for both
5244 reads and writes. There are two ways this may
5245 happen:
5246
5247 2.1. This is a target that can't break on data
5248 reads only, but can break on accesses (reads or
5249 writes), such as e.g., x86. We detect this case
5250 at the time we try to insert read watchpoints.
5251
5252 2.2. Otherwise, the target supports read
5253 watchpoints, but, the user set an access or write
5254 watchpoint watching the same memory as this read
5255 watchpoint.
5256
5257 If we're watching memory writes as well as reads,
5258 ignore watchpoint hits when we find that the
5259 value hasn't changed, as reads don't cause
5260 changes. This still gives false positives when
5261 the program writes the same value to memory as
5262 what there was already in memory (we will confuse
5263 it for a read), but it's much better than
5264 nothing. */
5265
5266 int other_write_watchpoint = 0;
5267
5268 if (bl->watchpoint_type == hw_read)
5269 {
5270 struct breakpoint *other_b;
5271
5272 ALL_BREAKPOINTS (other_b)
5273 if (other_b->type == bp_hardware_watchpoint
5274 || other_b->type == bp_access_watchpoint)
5275 {
5276 struct watchpoint *other_w =
5277 (struct watchpoint *) other_b;
5278
5279 if (other_w->watchpoint_triggered
5280 == watch_triggered_yes)
5281 {
5282 other_write_watchpoint = 1;
5283 break;
5284 }
5285 }
5286 }
5287
5288 if (other_write_watchpoint
5289 || bl->watchpoint_type == hw_access)
5290 {
5291 /* We're watching the same memory for writes,
5292 and the value changed since the last time we
5293 updated it, so this trap must be for a write.
5294 Ignore it. */
5295 bs->print_it = print_it_noop;
5296 bs->stop = 0;
5297 }
5298 }
5299 break;
5300 case WP_VALUE_NOT_CHANGED:
5301 if (b->base.type == bp_hardware_watchpoint
5302 || b->base.type == bp_watchpoint)
5303 {
5304 /* Don't stop: write watchpoints shouldn't fire if
5305 the value hasn't changed. */
5306 bs->print_it = print_it_noop;
5307 bs->stop = 0;
5308 }
5309 /* Stop. */
5310 break;
5311 default:
5312 /* Can't happen. */
5313 case 0:
5314 /* Error from catch_errors. */
5315 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5316 watchpoint_del_at_next_stop (b);
5317 /* We've already printed what needs to be printed. */
5318 bs->print_it = print_it_done;
5319 break;
5320 }
5321 }
5322 else /* must_check_value == 0 */
5323 {
5324 /* This is a case where some watchpoint(s) triggered, but
5325 not at the address of this watchpoint, or else no
5326 watchpoint triggered after all. So don't print
5327 anything for this watchpoint. */
5328 bs->print_it = print_it_noop;
5329 bs->stop = 0;
5330 }
5331 }
5332 }
5333
5334 /* For breakpoints that are currently marked as telling gdb to stop,
5335 check conditions (condition proper, frame, thread and ignore count)
5336 of breakpoint referred to by BS. If we should not stop for this
5337 breakpoint, set BS->stop to 0. */
5338
5339 static void
5340 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5341 {
5342 const struct bp_location *bl;
5343 struct breakpoint *b;
5344 int value_is_zero = 0;
5345 struct expression *cond;
5346
5347 gdb_assert (bs->stop);
5348
5349 /* BS is built for existing struct breakpoint. */
5350 bl = bs->bp_location_at;
5351 gdb_assert (bl != NULL);
5352 b = bs->breakpoint_at;
5353 gdb_assert (b != NULL);
5354
5355 /* Even if the target evaluated the condition on its end and notified GDB, we
5356 need to do so again since GDB does not know if we stopped due to a
5357 breakpoint or a single step breakpoint. */
5358
5359 if (frame_id_p (b->frame_id)
5360 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5361 {
5362 bs->stop = 0;
5363 return;
5364 }
5365
5366 /* If this is a thread/task-specific breakpoint, don't waste cpu
5367 evaluating the condition if this isn't the specified
5368 thread/task. */
5369 if ((b->thread != -1 && b->thread != pid_to_thread_id (ptid))
5370 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5371
5372 {
5373 bs->stop = 0;
5374 return;
5375 }
5376
5377 /* Evaluate extension language breakpoints that have a "stop" method
5378 implemented. */
5379 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5380
5381 if (is_watchpoint (b))
5382 {
5383 struct watchpoint *w = (struct watchpoint *) b;
5384
5385 cond = w->cond_exp;
5386 }
5387 else
5388 cond = bl->cond;
5389
5390 if (cond && b->disposition != disp_del_at_next_stop)
5391 {
5392 int within_current_scope = 1;
5393 struct watchpoint * w;
5394
5395 /* We use value_mark and value_free_to_mark because it could
5396 be a long time before we return to the command level and
5397 call free_all_values. We can't call free_all_values
5398 because we might be in the middle of evaluating a
5399 function call. */
5400 struct value *mark = value_mark ();
5401
5402 if (is_watchpoint (b))
5403 w = (struct watchpoint *) b;
5404 else
5405 w = NULL;
5406
5407 /* Need to select the frame, with all that implies so that
5408 the conditions will have the right context. Because we
5409 use the frame, we will not see an inlined function's
5410 variables when we arrive at a breakpoint at the start
5411 of the inlined function; the current frame will be the
5412 call site. */
5413 if (w == NULL || w->cond_exp_valid_block == NULL)
5414 select_frame (get_current_frame ());
5415 else
5416 {
5417 struct frame_info *frame;
5418
5419 /* For local watchpoint expressions, which particular
5420 instance of a local is being watched matters, so we
5421 keep track of the frame to evaluate the expression
5422 in. To evaluate the condition however, it doesn't
5423 really matter which instantiation of the function
5424 where the condition makes sense triggers the
5425 watchpoint. This allows an expression like "watch
5426 global if q > 10" set in `func', catch writes to
5427 global on all threads that call `func', or catch
5428 writes on all recursive calls of `func' by a single
5429 thread. We simply always evaluate the condition in
5430 the innermost frame that's executing where it makes
5431 sense to evaluate the condition. It seems
5432 intuitive. */
5433 frame = block_innermost_frame (w->cond_exp_valid_block);
5434 if (frame != NULL)
5435 select_frame (frame);
5436 else
5437 within_current_scope = 0;
5438 }
5439 if (within_current_scope)
5440 value_is_zero
5441 = catch_errors (breakpoint_cond_eval, cond,
5442 "Error in testing breakpoint condition:\n",
5443 RETURN_MASK_ALL);
5444 else
5445 {
5446 warning (_("Watchpoint condition cannot be tested "
5447 "in the current scope"));
5448 /* If we failed to set the right context for this
5449 watchpoint, unconditionally report it. */
5450 value_is_zero = 0;
5451 }
5452 /* FIXME-someday, should give breakpoint #. */
5453 value_free_to_mark (mark);
5454 }
5455
5456 if (cond && value_is_zero)
5457 {
5458 bs->stop = 0;
5459 }
5460 else if (b->ignore_count > 0)
5461 {
5462 b->ignore_count--;
5463 bs->stop = 0;
5464 /* Increase the hit count even though we don't stop. */
5465 ++(b->hit_count);
5466 observer_notify_breakpoint_modified (b);
5467 }
5468 }
5469
5470 /* Returns true if we need to track moribund locations of LOC's type
5471 on the current target. */
5472
5473 static int
5474 need_moribund_for_location_type (struct bp_location *loc)
5475 {
5476 return ((loc->loc_type == bp_loc_software_breakpoint
5477 && !target_supports_stopped_by_sw_breakpoint ())
5478 || (loc->loc_type == bp_loc_hardware_breakpoint
5479 && !target_supports_stopped_by_hw_breakpoint ()));
5480 }
5481
5482
5483 /* Get a bpstat associated with having just stopped at address
5484 BP_ADDR in thread PTID.
5485
5486 Determine whether we stopped at a breakpoint, etc, or whether we
5487 don't understand this stop. Result is a chain of bpstat's such
5488 that:
5489
5490 if we don't understand the stop, the result is a null pointer.
5491
5492 if we understand why we stopped, the result is not null.
5493
5494 Each element of the chain refers to a particular breakpoint or
5495 watchpoint at which we have stopped. (We may have stopped for
5496 several reasons concurrently.)
5497
5498 Each element of the chain has valid next, breakpoint_at,
5499 commands, FIXME??? fields. */
5500
5501 bpstat
5502 bpstat_stop_status (struct address_space *aspace,
5503 CORE_ADDR bp_addr, ptid_t ptid,
5504 const struct target_waitstatus *ws)
5505 {
5506 struct breakpoint *b = NULL;
5507 struct bp_location *bl;
5508 struct bp_location *loc;
5509 /* First item of allocated bpstat's. */
5510 bpstat bs_head = NULL, *bs_link = &bs_head;
5511 /* Pointer to the last thing in the chain currently. */
5512 bpstat bs;
5513 int ix;
5514 int need_remove_insert;
5515 int removed_any;
5516
5517 /* First, build the bpstat chain with locations that explain a
5518 target stop, while being careful to not set the target running,
5519 as that may invalidate locations (in particular watchpoint
5520 locations are recreated). Resuming will happen here with
5521 breakpoint conditions or watchpoint expressions that include
5522 inferior function calls. */
5523
5524 ALL_BREAKPOINTS (b)
5525 {
5526 if (!breakpoint_enabled (b))
5527 continue;
5528
5529 for (bl = b->loc; bl != NULL; bl = bl->next)
5530 {
5531 /* For hardware watchpoints, we look only at the first
5532 location. The watchpoint_check function will work on the
5533 entire expression, not the individual locations. For
5534 read watchpoints, the watchpoints_triggered function has
5535 checked all locations already. */
5536 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5537 break;
5538
5539 if (!bl->enabled || bl->shlib_disabled)
5540 continue;
5541
5542 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5543 continue;
5544
5545 /* Come here if it's a watchpoint, or if the break address
5546 matches. */
5547
5548 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5549 explain stop. */
5550
5551 /* Assume we stop. Should we find a watchpoint that is not
5552 actually triggered, or if the condition of the breakpoint
5553 evaluates as false, we'll reset 'stop' to 0. */
5554 bs->stop = 1;
5555 bs->print = 1;
5556
5557 /* If this is a scope breakpoint, mark the associated
5558 watchpoint as triggered so that we will handle the
5559 out-of-scope event. We'll get to the watchpoint next
5560 iteration. */
5561 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5562 {
5563 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5564
5565 w->watchpoint_triggered = watch_triggered_yes;
5566 }
5567 }
5568 }
5569
5570 /* Check if a moribund breakpoint explains the stop. */
5571 if (!target_supports_stopped_by_sw_breakpoint ()
5572 || !target_supports_stopped_by_hw_breakpoint ())
5573 {
5574 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5575 {
5576 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5577 && need_moribund_for_location_type (loc))
5578 {
5579 bs = bpstat_alloc (loc, &bs_link);
5580 /* For hits of moribund locations, we should just proceed. */
5581 bs->stop = 0;
5582 bs->print = 0;
5583 bs->print_it = print_it_noop;
5584 }
5585 }
5586 }
5587
5588 /* A bit of special processing for shlib breakpoints. We need to
5589 process solib loading here, so that the lists of loaded and
5590 unloaded libraries are correct before we handle "catch load" and
5591 "catch unload". */
5592 for (bs = bs_head; bs != NULL; bs = bs->next)
5593 {
5594 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5595 {
5596 handle_solib_event ();
5597 break;
5598 }
5599 }
5600
5601 /* Now go through the locations that caused the target to stop, and
5602 check whether we're interested in reporting this stop to higher
5603 layers, or whether we should resume the target transparently. */
5604
5605 removed_any = 0;
5606
5607 for (bs = bs_head; bs != NULL; bs = bs->next)
5608 {
5609 if (!bs->stop)
5610 continue;
5611
5612 b = bs->breakpoint_at;
5613 b->ops->check_status (bs);
5614 if (bs->stop)
5615 {
5616 bpstat_check_breakpoint_conditions (bs, ptid);
5617
5618 if (bs->stop)
5619 {
5620 ++(b->hit_count);
5621 observer_notify_breakpoint_modified (b);
5622
5623 /* We will stop here. */
5624 if (b->disposition == disp_disable)
5625 {
5626 --(b->enable_count);
5627 if (b->enable_count <= 0)
5628 b->enable_state = bp_disabled;
5629 removed_any = 1;
5630 }
5631 if (b->silent)
5632 bs->print = 0;
5633 bs->commands = b->commands;
5634 incref_counted_command_line (bs->commands);
5635 if (command_line_is_silent (bs->commands
5636 ? bs->commands->commands : NULL))
5637 bs->print = 0;
5638
5639 b->ops->after_condition_true (bs);
5640 }
5641
5642 }
5643
5644 /* Print nothing for this entry if we don't stop or don't
5645 print. */
5646 if (!bs->stop || !bs->print)
5647 bs->print_it = print_it_noop;
5648 }
5649
5650 /* If we aren't stopping, the value of some hardware watchpoint may
5651 not have changed, but the intermediate memory locations we are
5652 watching may have. Don't bother if we're stopping; this will get
5653 done later. */
5654 need_remove_insert = 0;
5655 if (! bpstat_causes_stop (bs_head))
5656 for (bs = bs_head; bs != NULL; bs = bs->next)
5657 if (!bs->stop
5658 && bs->breakpoint_at
5659 && is_hardware_watchpoint (bs->breakpoint_at))
5660 {
5661 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5662
5663 update_watchpoint (w, 0 /* don't reparse. */);
5664 need_remove_insert = 1;
5665 }
5666
5667 if (need_remove_insert)
5668 update_global_location_list (UGLL_MAY_INSERT);
5669 else if (removed_any)
5670 update_global_location_list (UGLL_DONT_INSERT);
5671
5672 return bs_head;
5673 }
5674
5675 static void
5676 handle_jit_event (void)
5677 {
5678 struct frame_info *frame;
5679 struct gdbarch *gdbarch;
5680
5681 /* Switch terminal for any messages produced by
5682 breakpoint_re_set. */
5683 target_terminal_ours_for_output ();
5684
5685 frame = get_current_frame ();
5686 gdbarch = get_frame_arch (frame);
5687
5688 jit_event_handler (gdbarch);
5689
5690 target_terminal_inferior ();
5691 }
5692
5693 /* Prepare WHAT final decision for infrun. */
5694
5695 /* Decide what infrun needs to do with this bpstat. */
5696
5697 struct bpstat_what
5698 bpstat_what (bpstat bs_head)
5699 {
5700 struct bpstat_what retval;
5701 int jit_event = 0;
5702 bpstat bs;
5703
5704 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5705 retval.call_dummy = STOP_NONE;
5706 retval.is_longjmp = 0;
5707
5708 for (bs = bs_head; bs != NULL; bs = bs->next)
5709 {
5710 /* Extract this BS's action. After processing each BS, we check
5711 if its action overrides all we've seem so far. */
5712 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5713 enum bptype bptype;
5714
5715 if (bs->breakpoint_at == NULL)
5716 {
5717 /* I suspect this can happen if it was a momentary
5718 breakpoint which has since been deleted. */
5719 bptype = bp_none;
5720 }
5721 else
5722 bptype = bs->breakpoint_at->type;
5723
5724 switch (bptype)
5725 {
5726 case bp_none:
5727 break;
5728 case bp_breakpoint:
5729 case bp_hardware_breakpoint:
5730 case bp_single_step:
5731 case bp_until:
5732 case bp_finish:
5733 case bp_shlib_event:
5734 if (bs->stop)
5735 {
5736 if (bs->print)
5737 this_action = BPSTAT_WHAT_STOP_NOISY;
5738 else
5739 this_action = BPSTAT_WHAT_STOP_SILENT;
5740 }
5741 else
5742 this_action = BPSTAT_WHAT_SINGLE;
5743 break;
5744 case bp_watchpoint:
5745 case bp_hardware_watchpoint:
5746 case bp_read_watchpoint:
5747 case bp_access_watchpoint:
5748 if (bs->stop)
5749 {
5750 if (bs->print)
5751 this_action = BPSTAT_WHAT_STOP_NOISY;
5752 else
5753 this_action = BPSTAT_WHAT_STOP_SILENT;
5754 }
5755 else
5756 {
5757 /* There was a watchpoint, but we're not stopping.
5758 This requires no further action. */
5759 }
5760 break;
5761 case bp_longjmp:
5762 case bp_longjmp_call_dummy:
5763 case bp_exception:
5764 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5765 retval.is_longjmp = bptype != bp_exception;
5766 break;
5767 case bp_longjmp_resume:
5768 case bp_exception_resume:
5769 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5770 retval.is_longjmp = bptype == bp_longjmp_resume;
5771 break;
5772 case bp_step_resume:
5773 if (bs->stop)
5774 this_action = BPSTAT_WHAT_STEP_RESUME;
5775 else
5776 {
5777 /* It is for the wrong frame. */
5778 this_action = BPSTAT_WHAT_SINGLE;
5779 }
5780 break;
5781 case bp_hp_step_resume:
5782 if (bs->stop)
5783 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5784 else
5785 {
5786 /* It is for the wrong frame. */
5787 this_action = BPSTAT_WHAT_SINGLE;
5788 }
5789 break;
5790 case bp_watchpoint_scope:
5791 case bp_thread_event:
5792 case bp_overlay_event:
5793 case bp_longjmp_master:
5794 case bp_std_terminate_master:
5795 case bp_exception_master:
5796 this_action = BPSTAT_WHAT_SINGLE;
5797 break;
5798 case bp_catchpoint:
5799 if (bs->stop)
5800 {
5801 if (bs->print)
5802 this_action = BPSTAT_WHAT_STOP_NOISY;
5803 else
5804 this_action = BPSTAT_WHAT_STOP_SILENT;
5805 }
5806 else
5807 {
5808 /* There was a catchpoint, but we're not stopping.
5809 This requires no further action. */
5810 }
5811 break;
5812 case bp_jit_event:
5813 jit_event = 1;
5814 this_action = BPSTAT_WHAT_SINGLE;
5815 break;
5816 case bp_call_dummy:
5817 /* Make sure the action is stop (silent or noisy),
5818 so infrun.c pops the dummy frame. */
5819 retval.call_dummy = STOP_STACK_DUMMY;
5820 this_action = BPSTAT_WHAT_STOP_SILENT;
5821 break;
5822 case bp_std_terminate:
5823 /* Make sure the action is stop (silent or noisy),
5824 so infrun.c pops the dummy frame. */
5825 retval.call_dummy = STOP_STD_TERMINATE;
5826 this_action = BPSTAT_WHAT_STOP_SILENT;
5827 break;
5828 case bp_tracepoint:
5829 case bp_fast_tracepoint:
5830 case bp_static_tracepoint:
5831 /* Tracepoint hits should not be reported back to GDB, and
5832 if one got through somehow, it should have been filtered
5833 out already. */
5834 internal_error (__FILE__, __LINE__,
5835 _("bpstat_what: tracepoint encountered"));
5836 break;
5837 case bp_gnu_ifunc_resolver:
5838 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5839 this_action = BPSTAT_WHAT_SINGLE;
5840 break;
5841 case bp_gnu_ifunc_resolver_return:
5842 /* The breakpoint will be removed, execution will restart from the
5843 PC of the former breakpoint. */
5844 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5845 break;
5846
5847 case bp_dprintf:
5848 if (bs->stop)
5849 this_action = BPSTAT_WHAT_STOP_SILENT;
5850 else
5851 this_action = BPSTAT_WHAT_SINGLE;
5852 break;
5853
5854 default:
5855 internal_error (__FILE__, __LINE__,
5856 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5857 }
5858
5859 retval.main_action = max (retval.main_action, this_action);
5860 }
5861
5862 /* These operations may affect the bs->breakpoint_at state so they are
5863 delayed after MAIN_ACTION is decided above. */
5864
5865 if (jit_event)
5866 {
5867 if (debug_infrun)
5868 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5869
5870 handle_jit_event ();
5871 }
5872
5873 for (bs = bs_head; bs != NULL; bs = bs->next)
5874 {
5875 struct breakpoint *b = bs->breakpoint_at;
5876
5877 if (b == NULL)
5878 continue;
5879 switch (b->type)
5880 {
5881 case bp_gnu_ifunc_resolver:
5882 gnu_ifunc_resolver_stop (b);
5883 break;
5884 case bp_gnu_ifunc_resolver_return:
5885 gnu_ifunc_resolver_return_stop (b);
5886 break;
5887 }
5888 }
5889
5890 return retval;
5891 }
5892
5893 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5894 without hardware support). This isn't related to a specific bpstat,
5895 just to things like whether watchpoints are set. */
5896
5897 int
5898 bpstat_should_step (void)
5899 {
5900 struct breakpoint *b;
5901
5902 ALL_BREAKPOINTS (b)
5903 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5904 return 1;
5905 return 0;
5906 }
5907
5908 int
5909 bpstat_causes_stop (bpstat bs)
5910 {
5911 for (; bs != NULL; bs = bs->next)
5912 if (bs->stop)
5913 return 1;
5914
5915 return 0;
5916 }
5917
5918 \f
5919
5920 /* Compute a string of spaces suitable to indent the next line
5921 so it starts at the position corresponding to the table column
5922 named COL_NAME in the currently active table of UIOUT. */
5923
5924 static char *
5925 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5926 {
5927 static char wrap_indent[80];
5928 int i, total_width, width, align;
5929 char *text;
5930
5931 total_width = 0;
5932 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5933 {
5934 if (strcmp (text, col_name) == 0)
5935 {
5936 gdb_assert (total_width < sizeof wrap_indent);
5937 memset (wrap_indent, ' ', total_width);
5938 wrap_indent[total_width] = 0;
5939
5940 return wrap_indent;
5941 }
5942
5943 total_width += width + 1;
5944 }
5945
5946 return NULL;
5947 }
5948
5949 /* Determine if the locations of this breakpoint will have their conditions
5950 evaluated by the target, host or a mix of both. Returns the following:
5951
5952 "host": Host evals condition.
5953 "host or target": Host or Target evals condition.
5954 "target": Target evals condition.
5955 */
5956
5957 static const char *
5958 bp_condition_evaluator (struct breakpoint *b)
5959 {
5960 struct bp_location *bl;
5961 char host_evals = 0;
5962 char target_evals = 0;
5963
5964 if (!b)
5965 return NULL;
5966
5967 if (!is_breakpoint (b))
5968 return NULL;
5969
5970 if (gdb_evaluates_breakpoint_condition_p ()
5971 || !target_supports_evaluation_of_breakpoint_conditions ())
5972 return condition_evaluation_host;
5973
5974 for (bl = b->loc; bl; bl = bl->next)
5975 {
5976 if (bl->cond_bytecode)
5977 target_evals++;
5978 else
5979 host_evals++;
5980 }
5981
5982 if (host_evals && target_evals)
5983 return condition_evaluation_both;
5984 else if (target_evals)
5985 return condition_evaluation_target;
5986 else
5987 return condition_evaluation_host;
5988 }
5989
5990 /* Determine the breakpoint location's condition evaluator. This is
5991 similar to bp_condition_evaluator, but for locations. */
5992
5993 static const char *
5994 bp_location_condition_evaluator (struct bp_location *bl)
5995 {
5996 if (bl && !is_breakpoint (bl->owner))
5997 return NULL;
5998
5999 if (gdb_evaluates_breakpoint_condition_p ()
6000 || !target_supports_evaluation_of_breakpoint_conditions ())
6001 return condition_evaluation_host;
6002
6003 if (bl && bl->cond_bytecode)
6004 return condition_evaluation_target;
6005 else
6006 return condition_evaluation_host;
6007 }
6008
6009 /* Print the LOC location out of the list of B->LOC locations. */
6010
6011 static void
6012 print_breakpoint_location (struct breakpoint *b,
6013 struct bp_location *loc)
6014 {
6015 struct ui_out *uiout = current_uiout;
6016 struct cleanup *old_chain = save_current_program_space ();
6017
6018 if (loc != NULL && loc->shlib_disabled)
6019 loc = NULL;
6020
6021 if (loc != NULL)
6022 set_current_program_space (loc->pspace);
6023
6024 if (b->display_canonical)
6025 ui_out_field_string (uiout, "what", b->addr_string);
6026 else if (loc && loc->symtab)
6027 {
6028 struct symbol *sym
6029 = find_pc_sect_function (loc->address, loc->section);
6030 if (sym)
6031 {
6032 ui_out_text (uiout, "in ");
6033 ui_out_field_string (uiout, "func",
6034 SYMBOL_PRINT_NAME (sym));
6035 ui_out_text (uiout, " ");
6036 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
6037 ui_out_text (uiout, "at ");
6038 }
6039 ui_out_field_string (uiout, "file",
6040 symtab_to_filename_for_display (loc->symtab));
6041 ui_out_text (uiout, ":");
6042
6043 if (ui_out_is_mi_like_p (uiout))
6044 ui_out_field_string (uiout, "fullname",
6045 symtab_to_fullname (loc->symtab));
6046
6047 ui_out_field_int (uiout, "line", loc->line_number);
6048 }
6049 else if (loc)
6050 {
6051 struct ui_file *stb = mem_fileopen ();
6052 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
6053
6054 print_address_symbolic (loc->gdbarch, loc->address, stb,
6055 demangle, "");
6056 ui_out_field_stream (uiout, "at", stb);
6057
6058 do_cleanups (stb_chain);
6059 }
6060 else
6061 ui_out_field_string (uiout, "pending", b->addr_string);
6062
6063 if (loc && is_breakpoint (b)
6064 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
6065 && bp_condition_evaluator (b) == condition_evaluation_both)
6066 {
6067 ui_out_text (uiout, " (");
6068 ui_out_field_string (uiout, "evaluated-by",
6069 bp_location_condition_evaluator (loc));
6070 ui_out_text (uiout, ")");
6071 }
6072
6073 do_cleanups (old_chain);
6074 }
6075
6076 static const char *
6077 bptype_string (enum bptype type)
6078 {
6079 struct ep_type_description
6080 {
6081 enum bptype type;
6082 char *description;
6083 };
6084 static struct ep_type_description bptypes[] =
6085 {
6086 {bp_none, "?deleted?"},
6087 {bp_breakpoint, "breakpoint"},
6088 {bp_hardware_breakpoint, "hw breakpoint"},
6089 {bp_single_step, "sw single-step"},
6090 {bp_until, "until"},
6091 {bp_finish, "finish"},
6092 {bp_watchpoint, "watchpoint"},
6093 {bp_hardware_watchpoint, "hw watchpoint"},
6094 {bp_read_watchpoint, "read watchpoint"},
6095 {bp_access_watchpoint, "acc watchpoint"},
6096 {bp_longjmp, "longjmp"},
6097 {bp_longjmp_resume, "longjmp resume"},
6098 {bp_longjmp_call_dummy, "longjmp for call dummy"},
6099 {bp_exception, "exception"},
6100 {bp_exception_resume, "exception resume"},
6101 {bp_step_resume, "step resume"},
6102 {bp_hp_step_resume, "high-priority step resume"},
6103 {bp_watchpoint_scope, "watchpoint scope"},
6104 {bp_call_dummy, "call dummy"},
6105 {bp_std_terminate, "std::terminate"},
6106 {bp_shlib_event, "shlib events"},
6107 {bp_thread_event, "thread events"},
6108 {bp_overlay_event, "overlay events"},
6109 {bp_longjmp_master, "longjmp master"},
6110 {bp_std_terminate_master, "std::terminate master"},
6111 {bp_exception_master, "exception master"},
6112 {bp_catchpoint, "catchpoint"},
6113 {bp_tracepoint, "tracepoint"},
6114 {bp_fast_tracepoint, "fast tracepoint"},
6115 {bp_static_tracepoint, "static tracepoint"},
6116 {bp_dprintf, "dprintf"},
6117 {bp_jit_event, "jit events"},
6118 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6119 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6120 };
6121
6122 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6123 || ((int) type != bptypes[(int) type].type))
6124 internal_error (__FILE__, __LINE__,
6125 _("bptypes table does not describe type #%d."),
6126 (int) type);
6127
6128 return bptypes[(int) type].description;
6129 }
6130
6131 /* For MI, output a field named 'thread-groups' with a list as the value.
6132 For CLI, prefix the list with the string 'inf'. */
6133
6134 static void
6135 output_thread_groups (struct ui_out *uiout,
6136 const char *field_name,
6137 VEC(int) *inf_num,
6138 int mi_only)
6139 {
6140 struct cleanup *back_to;
6141 int is_mi = ui_out_is_mi_like_p (uiout);
6142 int inf;
6143 int i;
6144
6145 /* For backward compatibility, don't display inferiors in CLI unless
6146 there are several. Always display them for MI. */
6147 if (!is_mi && mi_only)
6148 return;
6149
6150 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
6151
6152 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
6153 {
6154 if (is_mi)
6155 {
6156 char mi_group[10];
6157
6158 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
6159 ui_out_field_string (uiout, NULL, mi_group);
6160 }
6161 else
6162 {
6163 if (i == 0)
6164 ui_out_text (uiout, " inf ");
6165 else
6166 ui_out_text (uiout, ", ");
6167
6168 ui_out_text (uiout, plongest (inf));
6169 }
6170 }
6171
6172 do_cleanups (back_to);
6173 }
6174
6175 /* Print B to gdb_stdout. */
6176
6177 static void
6178 print_one_breakpoint_location (struct breakpoint *b,
6179 struct bp_location *loc,
6180 int loc_number,
6181 struct bp_location **last_loc,
6182 int allflag)
6183 {
6184 struct command_line *l;
6185 static char bpenables[] = "nynny";
6186
6187 struct ui_out *uiout = current_uiout;
6188 int header_of_multiple = 0;
6189 int part_of_multiple = (loc != NULL);
6190 struct value_print_options opts;
6191
6192 get_user_print_options (&opts);
6193
6194 gdb_assert (!loc || loc_number != 0);
6195 /* See comment in print_one_breakpoint concerning treatment of
6196 breakpoints with single disabled location. */
6197 if (loc == NULL
6198 && (b->loc != NULL
6199 && (b->loc->next != NULL || !b->loc->enabled)))
6200 header_of_multiple = 1;
6201 if (loc == NULL)
6202 loc = b->loc;
6203
6204 annotate_record ();
6205
6206 /* 1 */
6207 annotate_field (0);
6208 if (part_of_multiple)
6209 {
6210 char *formatted;
6211 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6212 ui_out_field_string (uiout, "number", formatted);
6213 xfree (formatted);
6214 }
6215 else
6216 {
6217 ui_out_field_int (uiout, "number", b->number);
6218 }
6219
6220 /* 2 */
6221 annotate_field (1);
6222 if (part_of_multiple)
6223 ui_out_field_skip (uiout, "type");
6224 else
6225 ui_out_field_string (uiout, "type", bptype_string (b->type));
6226
6227 /* 3 */
6228 annotate_field (2);
6229 if (part_of_multiple)
6230 ui_out_field_skip (uiout, "disp");
6231 else
6232 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
6233
6234
6235 /* 4 */
6236 annotate_field (3);
6237 if (part_of_multiple)
6238 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
6239 else
6240 ui_out_field_fmt (uiout, "enabled", "%c",
6241 bpenables[(int) b->enable_state]);
6242 ui_out_spaces (uiout, 2);
6243
6244
6245 /* 5 and 6 */
6246 if (b->ops != NULL && b->ops->print_one != NULL)
6247 {
6248 /* Although the print_one can possibly print all locations,
6249 calling it here is not likely to get any nice result. So,
6250 make sure there's just one location. */
6251 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6252 b->ops->print_one (b, last_loc);
6253 }
6254 else
6255 switch (b->type)
6256 {
6257 case bp_none:
6258 internal_error (__FILE__, __LINE__,
6259 _("print_one_breakpoint: bp_none encountered\n"));
6260 break;
6261
6262 case bp_watchpoint:
6263 case bp_hardware_watchpoint:
6264 case bp_read_watchpoint:
6265 case bp_access_watchpoint:
6266 {
6267 struct watchpoint *w = (struct watchpoint *) b;
6268
6269 /* Field 4, the address, is omitted (which makes the columns
6270 not line up too nicely with the headers, but the effect
6271 is relatively readable). */
6272 if (opts.addressprint)
6273 ui_out_field_skip (uiout, "addr");
6274 annotate_field (5);
6275 ui_out_field_string (uiout, "what", w->exp_string);
6276 }
6277 break;
6278
6279 case bp_breakpoint:
6280 case bp_hardware_breakpoint:
6281 case bp_single_step:
6282 case bp_until:
6283 case bp_finish:
6284 case bp_longjmp:
6285 case bp_longjmp_resume:
6286 case bp_longjmp_call_dummy:
6287 case bp_exception:
6288 case bp_exception_resume:
6289 case bp_step_resume:
6290 case bp_hp_step_resume:
6291 case bp_watchpoint_scope:
6292 case bp_call_dummy:
6293 case bp_std_terminate:
6294 case bp_shlib_event:
6295 case bp_thread_event:
6296 case bp_overlay_event:
6297 case bp_longjmp_master:
6298 case bp_std_terminate_master:
6299 case bp_exception_master:
6300 case bp_tracepoint:
6301 case bp_fast_tracepoint:
6302 case bp_static_tracepoint:
6303 case bp_dprintf:
6304 case bp_jit_event:
6305 case bp_gnu_ifunc_resolver:
6306 case bp_gnu_ifunc_resolver_return:
6307 if (opts.addressprint)
6308 {
6309 annotate_field (4);
6310 if (header_of_multiple)
6311 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
6312 else if (b->loc == NULL || loc->shlib_disabled)
6313 ui_out_field_string (uiout, "addr", "<PENDING>");
6314 else
6315 ui_out_field_core_addr (uiout, "addr",
6316 loc->gdbarch, loc->address);
6317 }
6318 annotate_field (5);
6319 if (!header_of_multiple)
6320 print_breakpoint_location (b, loc);
6321 if (b->loc)
6322 *last_loc = b->loc;
6323 break;
6324 }
6325
6326
6327 if (loc != NULL && !header_of_multiple)
6328 {
6329 struct inferior *inf;
6330 VEC(int) *inf_num = NULL;
6331 int mi_only = 1;
6332
6333 ALL_INFERIORS (inf)
6334 {
6335 if (inf->pspace == loc->pspace)
6336 VEC_safe_push (int, inf_num, inf->num);
6337 }
6338
6339 /* For backward compatibility, don't display inferiors in CLI unless
6340 there are several. Always display for MI. */
6341 if (allflag
6342 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6343 && (number_of_program_spaces () > 1
6344 || number_of_inferiors () > 1)
6345 /* LOC is for existing B, it cannot be in
6346 moribund_locations and thus having NULL OWNER. */
6347 && loc->owner->type != bp_catchpoint))
6348 mi_only = 0;
6349 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6350 VEC_free (int, inf_num);
6351 }
6352
6353 if (!part_of_multiple)
6354 {
6355 if (b->thread != -1)
6356 {
6357 /* FIXME: This seems to be redundant and lost here; see the
6358 "stop only in" line a little further down. */
6359 ui_out_text (uiout, " thread ");
6360 ui_out_field_int (uiout, "thread", b->thread);
6361 }
6362 else if (b->task != 0)
6363 {
6364 ui_out_text (uiout, " task ");
6365 ui_out_field_int (uiout, "task", b->task);
6366 }
6367 }
6368
6369 ui_out_text (uiout, "\n");
6370
6371 if (!part_of_multiple)
6372 b->ops->print_one_detail (b, uiout);
6373
6374 if (part_of_multiple && frame_id_p (b->frame_id))
6375 {
6376 annotate_field (6);
6377 ui_out_text (uiout, "\tstop only in stack frame at ");
6378 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6379 the frame ID. */
6380 ui_out_field_core_addr (uiout, "frame",
6381 b->gdbarch, b->frame_id.stack_addr);
6382 ui_out_text (uiout, "\n");
6383 }
6384
6385 if (!part_of_multiple && b->cond_string)
6386 {
6387 annotate_field (7);
6388 if (is_tracepoint (b))
6389 ui_out_text (uiout, "\ttrace only if ");
6390 else
6391 ui_out_text (uiout, "\tstop only if ");
6392 ui_out_field_string (uiout, "cond", b->cond_string);
6393
6394 /* Print whether the target is doing the breakpoint's condition
6395 evaluation. If GDB is doing the evaluation, don't print anything. */
6396 if (is_breakpoint (b)
6397 && breakpoint_condition_evaluation_mode ()
6398 == condition_evaluation_target)
6399 {
6400 ui_out_text (uiout, " (");
6401 ui_out_field_string (uiout, "evaluated-by",
6402 bp_condition_evaluator (b));
6403 ui_out_text (uiout, " evals)");
6404 }
6405 ui_out_text (uiout, "\n");
6406 }
6407
6408 if (!part_of_multiple && b->thread != -1)
6409 {
6410 /* FIXME should make an annotation for this. */
6411 ui_out_text (uiout, "\tstop only in thread ");
6412 ui_out_field_int (uiout, "thread", b->thread);
6413 ui_out_text (uiout, "\n");
6414 }
6415
6416 if (!part_of_multiple)
6417 {
6418 if (b->hit_count)
6419 {
6420 /* FIXME should make an annotation for this. */
6421 if (is_catchpoint (b))
6422 ui_out_text (uiout, "\tcatchpoint");
6423 else if (is_tracepoint (b))
6424 ui_out_text (uiout, "\ttracepoint");
6425 else
6426 ui_out_text (uiout, "\tbreakpoint");
6427 ui_out_text (uiout, " already hit ");
6428 ui_out_field_int (uiout, "times", b->hit_count);
6429 if (b->hit_count == 1)
6430 ui_out_text (uiout, " time\n");
6431 else
6432 ui_out_text (uiout, " times\n");
6433 }
6434 else
6435 {
6436 /* Output the count also if it is zero, but only if this is mi. */
6437 if (ui_out_is_mi_like_p (uiout))
6438 ui_out_field_int (uiout, "times", b->hit_count);
6439 }
6440 }
6441
6442 if (!part_of_multiple && b->ignore_count)
6443 {
6444 annotate_field (8);
6445 ui_out_text (uiout, "\tignore next ");
6446 ui_out_field_int (uiout, "ignore", b->ignore_count);
6447 ui_out_text (uiout, " hits\n");
6448 }
6449
6450 /* Note that an enable count of 1 corresponds to "enable once"
6451 behavior, which is reported by the combination of enablement and
6452 disposition, so we don't need to mention it here. */
6453 if (!part_of_multiple && b->enable_count > 1)
6454 {
6455 annotate_field (8);
6456 ui_out_text (uiout, "\tdisable after ");
6457 /* Tweak the wording to clarify that ignore and enable counts
6458 are distinct, and have additive effect. */
6459 if (b->ignore_count)
6460 ui_out_text (uiout, "additional ");
6461 else
6462 ui_out_text (uiout, "next ");
6463 ui_out_field_int (uiout, "enable", b->enable_count);
6464 ui_out_text (uiout, " hits\n");
6465 }
6466
6467 if (!part_of_multiple && is_tracepoint (b))
6468 {
6469 struct tracepoint *tp = (struct tracepoint *) b;
6470
6471 if (tp->traceframe_usage)
6472 {
6473 ui_out_text (uiout, "\ttrace buffer usage ");
6474 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6475 ui_out_text (uiout, " bytes\n");
6476 }
6477 }
6478
6479 l = b->commands ? b->commands->commands : NULL;
6480 if (!part_of_multiple && l)
6481 {
6482 struct cleanup *script_chain;
6483
6484 annotate_field (9);
6485 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6486 print_command_lines (uiout, l, 4);
6487 do_cleanups (script_chain);
6488 }
6489
6490 if (is_tracepoint (b))
6491 {
6492 struct tracepoint *t = (struct tracepoint *) b;
6493
6494 if (!part_of_multiple && t->pass_count)
6495 {
6496 annotate_field (10);
6497 ui_out_text (uiout, "\tpass count ");
6498 ui_out_field_int (uiout, "pass", t->pass_count);
6499 ui_out_text (uiout, " \n");
6500 }
6501
6502 /* Don't display it when tracepoint or tracepoint location is
6503 pending. */
6504 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6505 {
6506 annotate_field (11);
6507
6508 if (ui_out_is_mi_like_p (uiout))
6509 ui_out_field_string (uiout, "installed",
6510 loc->inserted ? "y" : "n");
6511 else
6512 {
6513 if (loc->inserted)
6514 ui_out_text (uiout, "\t");
6515 else
6516 ui_out_text (uiout, "\tnot ");
6517 ui_out_text (uiout, "installed on target\n");
6518 }
6519 }
6520 }
6521
6522 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6523 {
6524 if (is_watchpoint (b))
6525 {
6526 struct watchpoint *w = (struct watchpoint *) b;
6527
6528 ui_out_field_string (uiout, "original-location", w->exp_string);
6529 }
6530 else if (b->addr_string)
6531 ui_out_field_string (uiout, "original-location", b->addr_string);
6532 }
6533 }
6534
6535 static void
6536 print_one_breakpoint (struct breakpoint *b,
6537 struct bp_location **last_loc,
6538 int allflag)
6539 {
6540 struct cleanup *bkpt_chain;
6541 struct ui_out *uiout = current_uiout;
6542
6543 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6544
6545 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6546 do_cleanups (bkpt_chain);
6547
6548 /* If this breakpoint has custom print function,
6549 it's already printed. Otherwise, print individual
6550 locations, if any. */
6551 if (b->ops == NULL || b->ops->print_one == NULL)
6552 {
6553 /* If breakpoint has a single location that is disabled, we
6554 print it as if it had several locations, since otherwise it's
6555 hard to represent "breakpoint enabled, location disabled"
6556 situation.
6557
6558 Note that while hardware watchpoints have several locations
6559 internally, that's not a property exposed to user. */
6560 if (b->loc
6561 && !is_hardware_watchpoint (b)
6562 && (b->loc->next || !b->loc->enabled))
6563 {
6564 struct bp_location *loc;
6565 int n = 1;
6566
6567 for (loc = b->loc; loc; loc = loc->next, ++n)
6568 {
6569 struct cleanup *inner2 =
6570 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6571 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6572 do_cleanups (inner2);
6573 }
6574 }
6575 }
6576 }
6577
6578 static int
6579 breakpoint_address_bits (struct breakpoint *b)
6580 {
6581 int print_address_bits = 0;
6582 struct bp_location *loc;
6583
6584 for (loc = b->loc; loc; loc = loc->next)
6585 {
6586 int addr_bit;
6587
6588 /* Software watchpoints that aren't watching memory don't have
6589 an address to print. */
6590 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6591 continue;
6592
6593 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6594 if (addr_bit > print_address_bits)
6595 print_address_bits = addr_bit;
6596 }
6597
6598 return print_address_bits;
6599 }
6600
6601 struct captured_breakpoint_query_args
6602 {
6603 int bnum;
6604 };
6605
6606 static int
6607 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6608 {
6609 struct captured_breakpoint_query_args *args = data;
6610 struct breakpoint *b;
6611 struct bp_location *dummy_loc = NULL;
6612
6613 ALL_BREAKPOINTS (b)
6614 {
6615 if (args->bnum == b->number)
6616 {
6617 print_one_breakpoint (b, &dummy_loc, 0);
6618 return GDB_RC_OK;
6619 }
6620 }
6621 return GDB_RC_NONE;
6622 }
6623
6624 enum gdb_rc
6625 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6626 char **error_message)
6627 {
6628 struct captured_breakpoint_query_args args;
6629
6630 args.bnum = bnum;
6631 /* For the moment we don't trust print_one_breakpoint() to not throw
6632 an error. */
6633 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6634 error_message, RETURN_MASK_ALL) < 0)
6635 return GDB_RC_FAIL;
6636 else
6637 return GDB_RC_OK;
6638 }
6639
6640 /* Return true if this breakpoint was set by the user, false if it is
6641 internal or momentary. */
6642
6643 int
6644 user_breakpoint_p (struct breakpoint *b)
6645 {
6646 return b->number > 0;
6647 }
6648
6649 /* Print information on user settable breakpoint (watchpoint, etc)
6650 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6651 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6652 FILTER is non-NULL, call it on each breakpoint and only include the
6653 ones for which it returns non-zero. Return the total number of
6654 breakpoints listed. */
6655
6656 static int
6657 breakpoint_1 (char *args, int allflag,
6658 int (*filter) (const struct breakpoint *))
6659 {
6660 struct breakpoint *b;
6661 struct bp_location *last_loc = NULL;
6662 int nr_printable_breakpoints;
6663 struct cleanup *bkpttbl_chain;
6664 struct value_print_options opts;
6665 int print_address_bits = 0;
6666 int print_type_col_width = 14;
6667 struct ui_out *uiout = current_uiout;
6668
6669 get_user_print_options (&opts);
6670
6671 /* Compute the number of rows in the table, as well as the size
6672 required for address fields. */
6673 nr_printable_breakpoints = 0;
6674 ALL_BREAKPOINTS (b)
6675 {
6676 /* If we have a filter, only list the breakpoints it accepts. */
6677 if (filter && !filter (b))
6678 continue;
6679
6680 /* If we have an "args" string, it is a list of breakpoints to
6681 accept. Skip the others. */
6682 if (args != NULL && *args != '\0')
6683 {
6684 if (allflag && parse_and_eval_long (args) != b->number)
6685 continue;
6686 if (!allflag && !number_is_in_list (args, b->number))
6687 continue;
6688 }
6689
6690 if (allflag || user_breakpoint_p (b))
6691 {
6692 int addr_bit, type_len;
6693
6694 addr_bit = breakpoint_address_bits (b);
6695 if (addr_bit > print_address_bits)
6696 print_address_bits = addr_bit;
6697
6698 type_len = strlen (bptype_string (b->type));
6699 if (type_len > print_type_col_width)
6700 print_type_col_width = type_len;
6701
6702 nr_printable_breakpoints++;
6703 }
6704 }
6705
6706 if (opts.addressprint)
6707 bkpttbl_chain
6708 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6709 nr_printable_breakpoints,
6710 "BreakpointTable");
6711 else
6712 bkpttbl_chain
6713 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6714 nr_printable_breakpoints,
6715 "BreakpointTable");
6716
6717 if (nr_printable_breakpoints > 0)
6718 annotate_breakpoints_headers ();
6719 if (nr_printable_breakpoints > 0)
6720 annotate_field (0);
6721 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6722 if (nr_printable_breakpoints > 0)
6723 annotate_field (1);
6724 ui_out_table_header (uiout, print_type_col_width, ui_left,
6725 "type", "Type"); /* 2 */
6726 if (nr_printable_breakpoints > 0)
6727 annotate_field (2);
6728 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6729 if (nr_printable_breakpoints > 0)
6730 annotate_field (3);
6731 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6732 if (opts.addressprint)
6733 {
6734 if (nr_printable_breakpoints > 0)
6735 annotate_field (4);
6736 if (print_address_bits <= 32)
6737 ui_out_table_header (uiout, 10, ui_left,
6738 "addr", "Address"); /* 5 */
6739 else
6740 ui_out_table_header (uiout, 18, ui_left,
6741 "addr", "Address"); /* 5 */
6742 }
6743 if (nr_printable_breakpoints > 0)
6744 annotate_field (5);
6745 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6746 ui_out_table_body (uiout);
6747 if (nr_printable_breakpoints > 0)
6748 annotate_breakpoints_table ();
6749
6750 ALL_BREAKPOINTS (b)
6751 {
6752 QUIT;
6753 /* If we have a filter, only list the breakpoints it accepts. */
6754 if (filter && !filter (b))
6755 continue;
6756
6757 /* If we have an "args" string, it is a list of breakpoints to
6758 accept. Skip the others. */
6759
6760 if (args != NULL && *args != '\0')
6761 {
6762 if (allflag) /* maintenance info breakpoint */
6763 {
6764 if (parse_and_eval_long (args) != b->number)
6765 continue;
6766 }
6767 else /* all others */
6768 {
6769 if (!number_is_in_list (args, b->number))
6770 continue;
6771 }
6772 }
6773 /* We only print out user settable breakpoints unless the
6774 allflag is set. */
6775 if (allflag || user_breakpoint_p (b))
6776 print_one_breakpoint (b, &last_loc, allflag);
6777 }
6778
6779 do_cleanups (bkpttbl_chain);
6780
6781 if (nr_printable_breakpoints == 0)
6782 {
6783 /* If there's a filter, let the caller decide how to report
6784 empty list. */
6785 if (!filter)
6786 {
6787 if (args == NULL || *args == '\0')
6788 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6789 else
6790 ui_out_message (uiout, 0,
6791 "No breakpoint or watchpoint matching '%s'.\n",
6792 args);
6793 }
6794 }
6795 else
6796 {
6797 if (last_loc && !server_command)
6798 set_next_address (last_loc->gdbarch, last_loc->address);
6799 }
6800
6801 /* FIXME? Should this be moved up so that it is only called when
6802 there have been breakpoints? */
6803 annotate_breakpoints_table_end ();
6804
6805 return nr_printable_breakpoints;
6806 }
6807
6808 /* Display the value of default-collect in a way that is generally
6809 compatible with the breakpoint list. */
6810
6811 static void
6812 default_collect_info (void)
6813 {
6814 struct ui_out *uiout = current_uiout;
6815
6816 /* If it has no value (which is frequently the case), say nothing; a
6817 message like "No default-collect." gets in user's face when it's
6818 not wanted. */
6819 if (!*default_collect)
6820 return;
6821
6822 /* The following phrase lines up nicely with per-tracepoint collect
6823 actions. */
6824 ui_out_text (uiout, "default collect ");
6825 ui_out_field_string (uiout, "default-collect", default_collect);
6826 ui_out_text (uiout, " \n");
6827 }
6828
6829 static void
6830 breakpoints_info (char *args, int from_tty)
6831 {
6832 breakpoint_1 (args, 0, NULL);
6833
6834 default_collect_info ();
6835 }
6836
6837 static void
6838 watchpoints_info (char *args, int from_tty)
6839 {
6840 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6841 struct ui_out *uiout = current_uiout;
6842
6843 if (num_printed == 0)
6844 {
6845 if (args == NULL || *args == '\0')
6846 ui_out_message (uiout, 0, "No watchpoints.\n");
6847 else
6848 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6849 }
6850 }
6851
6852 static void
6853 maintenance_info_breakpoints (char *args, int from_tty)
6854 {
6855 breakpoint_1 (args, 1, NULL);
6856
6857 default_collect_info ();
6858 }
6859
6860 static int
6861 breakpoint_has_pc (struct breakpoint *b,
6862 struct program_space *pspace,
6863 CORE_ADDR pc, struct obj_section *section)
6864 {
6865 struct bp_location *bl = b->loc;
6866
6867 for (; bl; bl = bl->next)
6868 {
6869 if (bl->pspace == pspace
6870 && bl->address == pc
6871 && (!overlay_debugging || bl->section == section))
6872 return 1;
6873 }
6874 return 0;
6875 }
6876
6877 /* Print a message describing any user-breakpoints set at PC. This
6878 concerns with logical breakpoints, so we match program spaces, not
6879 address spaces. */
6880
6881 static void
6882 describe_other_breakpoints (struct gdbarch *gdbarch,
6883 struct program_space *pspace, CORE_ADDR pc,
6884 struct obj_section *section, int thread)
6885 {
6886 int others = 0;
6887 struct breakpoint *b;
6888
6889 ALL_BREAKPOINTS (b)
6890 others += (user_breakpoint_p (b)
6891 && breakpoint_has_pc (b, pspace, pc, section));
6892 if (others > 0)
6893 {
6894 if (others == 1)
6895 printf_filtered (_("Note: breakpoint "));
6896 else /* if (others == ???) */
6897 printf_filtered (_("Note: breakpoints "));
6898 ALL_BREAKPOINTS (b)
6899 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6900 {
6901 others--;
6902 printf_filtered ("%d", b->number);
6903 if (b->thread == -1 && thread != -1)
6904 printf_filtered (" (all threads)");
6905 else if (b->thread != -1)
6906 printf_filtered (" (thread %d)", b->thread);
6907 printf_filtered ("%s%s ",
6908 ((b->enable_state == bp_disabled
6909 || b->enable_state == bp_call_disabled)
6910 ? " (disabled)"
6911 : ""),
6912 (others > 1) ? ","
6913 : ((others == 1) ? " and" : ""));
6914 }
6915 printf_filtered (_("also set at pc "));
6916 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6917 printf_filtered (".\n");
6918 }
6919 }
6920 \f
6921
6922 /* Return true iff it is meaningful to use the address member of
6923 BPT. For some breakpoint types, the address member is irrelevant
6924 and it makes no sense to attempt to compare it to other addresses
6925 (or use it for any other purpose either).
6926
6927 More specifically, each of the following breakpoint types will
6928 always have a zero valued address and we don't want to mark
6929 breakpoints of any of these types to be a duplicate of an actual
6930 breakpoint at address zero:
6931
6932 bp_watchpoint
6933 bp_catchpoint
6934
6935 */
6936
6937 static int
6938 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6939 {
6940 enum bptype type = bpt->type;
6941
6942 return (type != bp_watchpoint && type != bp_catchpoint);
6943 }
6944
6945 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6946 true if LOC1 and LOC2 represent the same watchpoint location. */
6947
6948 static int
6949 watchpoint_locations_match (struct bp_location *loc1,
6950 struct bp_location *loc2)
6951 {
6952 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6953 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6954
6955 /* Both of them must exist. */
6956 gdb_assert (w1 != NULL);
6957 gdb_assert (w2 != NULL);
6958
6959 /* If the target can evaluate the condition expression in hardware,
6960 then we we need to insert both watchpoints even if they are at
6961 the same place. Otherwise the watchpoint will only trigger when
6962 the condition of whichever watchpoint was inserted evaluates to
6963 true, not giving a chance for GDB to check the condition of the
6964 other watchpoint. */
6965 if ((w1->cond_exp
6966 && target_can_accel_watchpoint_condition (loc1->address,
6967 loc1->length,
6968 loc1->watchpoint_type,
6969 w1->cond_exp))
6970 || (w2->cond_exp
6971 && target_can_accel_watchpoint_condition (loc2->address,
6972 loc2->length,
6973 loc2->watchpoint_type,
6974 w2->cond_exp)))
6975 return 0;
6976
6977 /* Note that this checks the owner's type, not the location's. In
6978 case the target does not support read watchpoints, but does
6979 support access watchpoints, we'll have bp_read_watchpoint
6980 watchpoints with hw_access locations. Those should be considered
6981 duplicates of hw_read locations. The hw_read locations will
6982 become hw_access locations later. */
6983 return (loc1->owner->type == loc2->owner->type
6984 && loc1->pspace->aspace == loc2->pspace->aspace
6985 && loc1->address == loc2->address
6986 && loc1->length == loc2->length);
6987 }
6988
6989 /* See breakpoint.h. */
6990
6991 int
6992 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6993 struct address_space *aspace2, CORE_ADDR addr2)
6994 {
6995 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6996 || aspace1 == aspace2)
6997 && addr1 == addr2);
6998 }
6999
7000 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
7001 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
7002 matches ASPACE2. On targets that have global breakpoints, the address
7003 space doesn't really matter. */
7004
7005 static int
7006 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
7007 int len1, struct address_space *aspace2,
7008 CORE_ADDR addr2)
7009 {
7010 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7011 || aspace1 == aspace2)
7012 && addr2 >= addr1 && addr2 < addr1 + len1);
7013 }
7014
7015 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
7016 a ranged breakpoint. In most targets, a match happens only if ASPACE
7017 matches the breakpoint's address space. On targets that have global
7018 breakpoints, the address space doesn't really matter. */
7019
7020 static int
7021 breakpoint_location_address_match (struct bp_location *bl,
7022 struct address_space *aspace,
7023 CORE_ADDR addr)
7024 {
7025 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
7026 aspace, addr)
7027 || (bl->length
7028 && breakpoint_address_match_range (bl->pspace->aspace,
7029 bl->address, bl->length,
7030 aspace, addr)));
7031 }
7032
7033 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
7034 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
7035 true, otherwise returns false. */
7036
7037 static int
7038 tracepoint_locations_match (struct bp_location *loc1,
7039 struct bp_location *loc2)
7040 {
7041 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
7042 /* Since tracepoint locations are never duplicated with others', tracepoint
7043 locations at the same address of different tracepoints are regarded as
7044 different locations. */
7045 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
7046 else
7047 return 0;
7048 }
7049
7050 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
7051 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
7052 represent the same location. */
7053
7054 static int
7055 breakpoint_locations_match (struct bp_location *loc1,
7056 struct bp_location *loc2)
7057 {
7058 int hw_point1, hw_point2;
7059
7060 /* Both of them must not be in moribund_locations. */
7061 gdb_assert (loc1->owner != NULL);
7062 gdb_assert (loc2->owner != NULL);
7063
7064 hw_point1 = is_hardware_watchpoint (loc1->owner);
7065 hw_point2 = is_hardware_watchpoint (loc2->owner);
7066
7067 if (hw_point1 != hw_point2)
7068 return 0;
7069 else if (hw_point1)
7070 return watchpoint_locations_match (loc1, loc2);
7071 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
7072 return tracepoint_locations_match (loc1, loc2);
7073 else
7074 /* We compare bp_location.length in order to cover ranged breakpoints. */
7075 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
7076 loc2->pspace->aspace, loc2->address)
7077 && loc1->length == loc2->length);
7078 }
7079
7080 static void
7081 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
7082 int bnum, int have_bnum)
7083 {
7084 /* The longest string possibly returned by hex_string_custom
7085 is 50 chars. These must be at least that big for safety. */
7086 char astr1[64];
7087 char astr2[64];
7088
7089 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
7090 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
7091 if (have_bnum)
7092 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
7093 bnum, astr1, astr2);
7094 else
7095 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
7096 }
7097
7098 /* Adjust a breakpoint's address to account for architectural
7099 constraints on breakpoint placement. Return the adjusted address.
7100 Note: Very few targets require this kind of adjustment. For most
7101 targets, this function is simply the identity function. */
7102
7103 static CORE_ADDR
7104 adjust_breakpoint_address (struct gdbarch *gdbarch,
7105 CORE_ADDR bpaddr, enum bptype bptype)
7106 {
7107 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
7108 {
7109 /* Very few targets need any kind of breakpoint adjustment. */
7110 return bpaddr;
7111 }
7112 else if (bptype == bp_watchpoint
7113 || bptype == bp_hardware_watchpoint
7114 || bptype == bp_read_watchpoint
7115 || bptype == bp_access_watchpoint
7116 || bptype == bp_catchpoint)
7117 {
7118 /* Watchpoints and the various bp_catch_* eventpoints should not
7119 have their addresses modified. */
7120 return bpaddr;
7121 }
7122 else if (bptype == bp_single_step)
7123 {
7124 /* Single-step breakpoints should not have their addresses
7125 modified. If there's any architectural constrain that
7126 applies to this address, then it should have already been
7127 taken into account when the breakpoint was created in the
7128 first place. If we didn't do this, stepping through e.g.,
7129 Thumb-2 IT blocks would break. */
7130 return bpaddr;
7131 }
7132 else
7133 {
7134 CORE_ADDR adjusted_bpaddr;
7135
7136 /* Some targets have architectural constraints on the placement
7137 of breakpoint instructions. Obtain the adjusted address. */
7138 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7139
7140 /* An adjusted breakpoint address can significantly alter
7141 a user's expectations. Print a warning if an adjustment
7142 is required. */
7143 if (adjusted_bpaddr != bpaddr)
7144 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7145
7146 return adjusted_bpaddr;
7147 }
7148 }
7149
7150 void
7151 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
7152 struct breakpoint *owner)
7153 {
7154 memset (loc, 0, sizeof (*loc));
7155
7156 gdb_assert (ops != NULL);
7157
7158 loc->ops = ops;
7159 loc->owner = owner;
7160 loc->cond = NULL;
7161 loc->cond_bytecode = NULL;
7162 loc->shlib_disabled = 0;
7163 loc->enabled = 1;
7164
7165 switch (owner->type)
7166 {
7167 case bp_breakpoint:
7168 case bp_single_step:
7169 case bp_until:
7170 case bp_finish:
7171 case bp_longjmp:
7172 case bp_longjmp_resume:
7173 case bp_longjmp_call_dummy:
7174 case bp_exception:
7175 case bp_exception_resume:
7176 case bp_step_resume:
7177 case bp_hp_step_resume:
7178 case bp_watchpoint_scope:
7179 case bp_call_dummy:
7180 case bp_std_terminate:
7181 case bp_shlib_event:
7182 case bp_thread_event:
7183 case bp_overlay_event:
7184 case bp_jit_event:
7185 case bp_longjmp_master:
7186 case bp_std_terminate_master:
7187 case bp_exception_master:
7188 case bp_gnu_ifunc_resolver:
7189 case bp_gnu_ifunc_resolver_return:
7190 case bp_dprintf:
7191 loc->loc_type = bp_loc_software_breakpoint;
7192 mark_breakpoint_location_modified (loc);
7193 break;
7194 case bp_hardware_breakpoint:
7195 loc->loc_type = bp_loc_hardware_breakpoint;
7196 mark_breakpoint_location_modified (loc);
7197 break;
7198 case bp_hardware_watchpoint:
7199 case bp_read_watchpoint:
7200 case bp_access_watchpoint:
7201 loc->loc_type = bp_loc_hardware_watchpoint;
7202 break;
7203 case bp_watchpoint:
7204 case bp_catchpoint:
7205 case bp_tracepoint:
7206 case bp_fast_tracepoint:
7207 case bp_static_tracepoint:
7208 loc->loc_type = bp_loc_other;
7209 break;
7210 default:
7211 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7212 }
7213
7214 loc->refc = 1;
7215 }
7216
7217 /* Allocate a struct bp_location. */
7218
7219 static struct bp_location *
7220 allocate_bp_location (struct breakpoint *bpt)
7221 {
7222 return bpt->ops->allocate_location (bpt);
7223 }
7224
7225 static void
7226 free_bp_location (struct bp_location *loc)
7227 {
7228 loc->ops->dtor (loc);
7229 xfree (loc);
7230 }
7231
7232 /* Increment reference count. */
7233
7234 static void
7235 incref_bp_location (struct bp_location *bl)
7236 {
7237 ++bl->refc;
7238 }
7239
7240 /* Decrement reference count. If the reference count reaches 0,
7241 destroy the bp_location. Sets *BLP to NULL. */
7242
7243 static void
7244 decref_bp_location (struct bp_location **blp)
7245 {
7246 gdb_assert ((*blp)->refc > 0);
7247
7248 if (--(*blp)->refc == 0)
7249 free_bp_location (*blp);
7250 *blp = NULL;
7251 }
7252
7253 /* Add breakpoint B at the end of the global breakpoint chain. */
7254
7255 static void
7256 add_to_breakpoint_chain (struct breakpoint *b)
7257 {
7258 struct breakpoint *b1;
7259
7260 /* Add this breakpoint to the end of the chain so that a list of
7261 breakpoints will come out in order of increasing numbers. */
7262
7263 b1 = breakpoint_chain;
7264 if (b1 == 0)
7265 breakpoint_chain = b;
7266 else
7267 {
7268 while (b1->next)
7269 b1 = b1->next;
7270 b1->next = b;
7271 }
7272 }
7273
7274 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7275
7276 static void
7277 init_raw_breakpoint_without_location (struct breakpoint *b,
7278 struct gdbarch *gdbarch,
7279 enum bptype bptype,
7280 const struct breakpoint_ops *ops)
7281 {
7282 memset (b, 0, sizeof (*b));
7283
7284 gdb_assert (ops != NULL);
7285
7286 b->ops = ops;
7287 b->type = bptype;
7288 b->gdbarch = gdbarch;
7289 b->language = current_language->la_language;
7290 b->input_radix = input_radix;
7291 b->thread = -1;
7292 b->enable_state = bp_enabled;
7293 b->next = 0;
7294 b->silent = 0;
7295 b->ignore_count = 0;
7296 b->commands = NULL;
7297 b->frame_id = null_frame_id;
7298 b->condition_not_parsed = 0;
7299 b->py_bp_object = NULL;
7300 b->related_breakpoint = b;
7301 }
7302
7303 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7304 that has type BPTYPE and has no locations as yet. */
7305
7306 static struct breakpoint *
7307 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7308 enum bptype bptype,
7309 const struct breakpoint_ops *ops)
7310 {
7311 struct breakpoint *b = XNEW (struct breakpoint);
7312
7313 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7314 add_to_breakpoint_chain (b);
7315 return b;
7316 }
7317
7318 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7319 resolutions should be made as the user specified the location explicitly
7320 enough. */
7321
7322 static void
7323 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7324 {
7325 gdb_assert (loc->owner != NULL);
7326
7327 if (loc->owner->type == bp_breakpoint
7328 || loc->owner->type == bp_hardware_breakpoint
7329 || is_tracepoint (loc->owner))
7330 {
7331 int is_gnu_ifunc;
7332 const char *function_name;
7333 CORE_ADDR func_addr;
7334
7335 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7336 &func_addr, NULL, &is_gnu_ifunc);
7337
7338 if (is_gnu_ifunc && !explicit_loc)
7339 {
7340 struct breakpoint *b = loc->owner;
7341
7342 gdb_assert (loc->pspace == current_program_space);
7343 if (gnu_ifunc_resolve_name (function_name,
7344 &loc->requested_address))
7345 {
7346 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7347 loc->address = adjust_breakpoint_address (loc->gdbarch,
7348 loc->requested_address,
7349 b->type);
7350 }
7351 else if (b->type == bp_breakpoint && b->loc == loc
7352 && loc->next == NULL && b->related_breakpoint == b)
7353 {
7354 /* Create only the whole new breakpoint of this type but do not
7355 mess more complicated breakpoints with multiple locations. */
7356 b->type = bp_gnu_ifunc_resolver;
7357 /* Remember the resolver's address for use by the return
7358 breakpoint. */
7359 loc->related_address = func_addr;
7360 }
7361 }
7362
7363 if (function_name)
7364 loc->function_name = xstrdup (function_name);
7365 }
7366 }
7367
7368 /* Attempt to determine architecture of location identified by SAL. */
7369 struct gdbarch *
7370 get_sal_arch (struct symtab_and_line sal)
7371 {
7372 if (sal.section)
7373 return get_objfile_arch (sal.section->objfile);
7374 if (sal.symtab)
7375 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7376
7377 return NULL;
7378 }
7379
7380 /* Low level routine for partially initializing a breakpoint of type
7381 BPTYPE. The newly created breakpoint's address, section, source
7382 file name, and line number are provided by SAL.
7383
7384 It is expected that the caller will complete the initialization of
7385 the newly created breakpoint struct as well as output any status
7386 information regarding the creation of a new breakpoint. */
7387
7388 static void
7389 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7390 struct symtab_and_line sal, enum bptype bptype,
7391 const struct breakpoint_ops *ops)
7392 {
7393 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7394
7395 add_location_to_breakpoint (b, &sal);
7396
7397 if (bptype != bp_catchpoint)
7398 gdb_assert (sal.pspace != NULL);
7399
7400 /* Store the program space that was used to set the breakpoint,
7401 except for ordinary breakpoints, which are independent of the
7402 program space. */
7403 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7404 b->pspace = sal.pspace;
7405 }
7406
7407 /* set_raw_breakpoint is a low level routine for allocating and
7408 partially initializing a breakpoint of type BPTYPE. The newly
7409 created breakpoint's address, section, source file name, and line
7410 number are provided by SAL. The newly created and partially
7411 initialized breakpoint is added to the breakpoint chain and
7412 is also returned as the value of this function.
7413
7414 It is expected that the caller will complete the initialization of
7415 the newly created breakpoint struct as well as output any status
7416 information regarding the creation of a new breakpoint. In
7417 particular, set_raw_breakpoint does NOT set the breakpoint
7418 number! Care should be taken to not allow an error to occur
7419 prior to completing the initialization of the breakpoint. If this
7420 should happen, a bogus breakpoint will be left on the chain. */
7421
7422 struct breakpoint *
7423 set_raw_breakpoint (struct gdbarch *gdbarch,
7424 struct symtab_and_line sal, enum bptype bptype,
7425 const struct breakpoint_ops *ops)
7426 {
7427 struct breakpoint *b = XNEW (struct breakpoint);
7428
7429 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7430 add_to_breakpoint_chain (b);
7431 return b;
7432 }
7433
7434
7435 /* Note that the breakpoint object B describes a permanent breakpoint
7436 instruction, hard-wired into the inferior's code. */
7437 void
7438 make_breakpoint_permanent (struct breakpoint *b)
7439 {
7440 struct bp_location *bl;
7441
7442 /* By definition, permanent breakpoints are already present in the
7443 code. Mark all locations as inserted. For now,
7444 make_breakpoint_permanent is called in just one place, so it's
7445 hard to say if it's reasonable to have permanent breakpoint with
7446 multiple locations or not, but it's easy to implement. */
7447 for (bl = b->loc; bl; bl = bl->next)
7448 {
7449 bl->permanent = 1;
7450 bl->inserted = 1;
7451 }
7452 }
7453
7454 /* Call this routine when stepping and nexting to enable a breakpoint
7455 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7456 initiated the operation. */
7457
7458 void
7459 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7460 {
7461 struct breakpoint *b, *b_tmp;
7462 int thread = tp->num;
7463
7464 /* To avoid having to rescan all objfile symbols at every step,
7465 we maintain a list of continually-inserted but always disabled
7466 longjmp "master" breakpoints. Here, we simply create momentary
7467 clones of those and enable them for the requested thread. */
7468 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7469 if (b->pspace == current_program_space
7470 && (b->type == bp_longjmp_master
7471 || b->type == bp_exception_master))
7472 {
7473 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7474 struct breakpoint *clone;
7475
7476 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7477 after their removal. */
7478 clone = momentary_breakpoint_from_master (b, type,
7479 &longjmp_breakpoint_ops, 1);
7480 clone->thread = thread;
7481 }
7482
7483 tp->initiating_frame = frame;
7484 }
7485
7486 /* Delete all longjmp breakpoints from THREAD. */
7487 void
7488 delete_longjmp_breakpoint (int thread)
7489 {
7490 struct breakpoint *b, *b_tmp;
7491
7492 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7493 if (b->type == bp_longjmp || b->type == bp_exception)
7494 {
7495 if (b->thread == thread)
7496 delete_breakpoint (b);
7497 }
7498 }
7499
7500 void
7501 delete_longjmp_breakpoint_at_next_stop (int thread)
7502 {
7503 struct breakpoint *b, *b_tmp;
7504
7505 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7506 if (b->type == bp_longjmp || b->type == bp_exception)
7507 {
7508 if (b->thread == thread)
7509 b->disposition = disp_del_at_next_stop;
7510 }
7511 }
7512
7513 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7514 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7515 pointer to any of them. Return NULL if this system cannot place longjmp
7516 breakpoints. */
7517
7518 struct breakpoint *
7519 set_longjmp_breakpoint_for_call_dummy (void)
7520 {
7521 struct breakpoint *b, *retval = NULL;
7522
7523 ALL_BREAKPOINTS (b)
7524 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7525 {
7526 struct breakpoint *new_b;
7527
7528 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7529 &momentary_breakpoint_ops,
7530 1);
7531 new_b->thread = pid_to_thread_id (inferior_ptid);
7532
7533 /* Link NEW_B into the chain of RETVAL breakpoints. */
7534
7535 gdb_assert (new_b->related_breakpoint == new_b);
7536 if (retval == NULL)
7537 retval = new_b;
7538 new_b->related_breakpoint = retval;
7539 while (retval->related_breakpoint != new_b->related_breakpoint)
7540 retval = retval->related_breakpoint;
7541 retval->related_breakpoint = new_b;
7542 }
7543
7544 return retval;
7545 }
7546
7547 /* Verify all existing dummy frames and their associated breakpoints for
7548 TP. Remove those which can no longer be found in the current frame
7549 stack.
7550
7551 You should call this function only at places where it is safe to currently
7552 unwind the whole stack. Failed stack unwind would discard live dummy
7553 frames. */
7554
7555 void
7556 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7557 {
7558 struct breakpoint *b, *b_tmp;
7559
7560 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7561 if (b->type == bp_longjmp_call_dummy && b->thread == tp->num)
7562 {
7563 struct breakpoint *dummy_b = b->related_breakpoint;
7564
7565 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7566 dummy_b = dummy_b->related_breakpoint;
7567 if (dummy_b->type != bp_call_dummy
7568 || frame_find_by_id (dummy_b->frame_id) != NULL)
7569 continue;
7570
7571 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7572
7573 while (b->related_breakpoint != b)
7574 {
7575 if (b_tmp == b->related_breakpoint)
7576 b_tmp = b->related_breakpoint->next;
7577 delete_breakpoint (b->related_breakpoint);
7578 }
7579 delete_breakpoint (b);
7580 }
7581 }
7582
7583 void
7584 enable_overlay_breakpoints (void)
7585 {
7586 struct breakpoint *b;
7587
7588 ALL_BREAKPOINTS (b)
7589 if (b->type == bp_overlay_event)
7590 {
7591 b->enable_state = bp_enabled;
7592 update_global_location_list (UGLL_MAY_INSERT);
7593 overlay_events_enabled = 1;
7594 }
7595 }
7596
7597 void
7598 disable_overlay_breakpoints (void)
7599 {
7600 struct breakpoint *b;
7601
7602 ALL_BREAKPOINTS (b)
7603 if (b->type == bp_overlay_event)
7604 {
7605 b->enable_state = bp_disabled;
7606 update_global_location_list (UGLL_DONT_INSERT);
7607 overlay_events_enabled = 0;
7608 }
7609 }
7610
7611 /* Set an active std::terminate breakpoint for each std::terminate
7612 master breakpoint. */
7613 void
7614 set_std_terminate_breakpoint (void)
7615 {
7616 struct breakpoint *b, *b_tmp;
7617
7618 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7619 if (b->pspace == current_program_space
7620 && b->type == bp_std_terminate_master)
7621 {
7622 momentary_breakpoint_from_master (b, bp_std_terminate,
7623 &momentary_breakpoint_ops, 1);
7624 }
7625 }
7626
7627 /* Delete all the std::terminate breakpoints. */
7628 void
7629 delete_std_terminate_breakpoint (void)
7630 {
7631 struct breakpoint *b, *b_tmp;
7632
7633 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7634 if (b->type == bp_std_terminate)
7635 delete_breakpoint (b);
7636 }
7637
7638 struct breakpoint *
7639 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7640 {
7641 struct breakpoint *b;
7642
7643 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7644 &internal_breakpoint_ops);
7645
7646 b->enable_state = bp_enabled;
7647 /* addr_string has to be used or breakpoint_re_set will delete me. */
7648 b->addr_string
7649 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7650
7651 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7652
7653 return b;
7654 }
7655
7656 void
7657 remove_thread_event_breakpoints (void)
7658 {
7659 struct breakpoint *b, *b_tmp;
7660
7661 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7662 if (b->type == bp_thread_event
7663 && b->loc->pspace == current_program_space)
7664 delete_breakpoint (b);
7665 }
7666
7667 struct lang_and_radix
7668 {
7669 enum language lang;
7670 int radix;
7671 };
7672
7673 /* Create a breakpoint for JIT code registration and unregistration. */
7674
7675 struct breakpoint *
7676 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7677 {
7678 struct breakpoint *b;
7679
7680 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7681 &internal_breakpoint_ops);
7682 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7683 return b;
7684 }
7685
7686 /* Remove JIT code registration and unregistration breakpoint(s). */
7687
7688 void
7689 remove_jit_event_breakpoints (void)
7690 {
7691 struct breakpoint *b, *b_tmp;
7692
7693 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7694 if (b->type == bp_jit_event
7695 && b->loc->pspace == current_program_space)
7696 delete_breakpoint (b);
7697 }
7698
7699 void
7700 remove_solib_event_breakpoints (void)
7701 {
7702 struct breakpoint *b, *b_tmp;
7703
7704 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7705 if (b->type == bp_shlib_event
7706 && b->loc->pspace == current_program_space)
7707 delete_breakpoint (b);
7708 }
7709
7710 /* See breakpoint.h. */
7711
7712 void
7713 remove_solib_event_breakpoints_at_next_stop (void)
7714 {
7715 struct breakpoint *b, *b_tmp;
7716
7717 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7718 if (b->type == bp_shlib_event
7719 && b->loc->pspace == current_program_space)
7720 b->disposition = disp_del_at_next_stop;
7721 }
7722
7723 /* Helper for create_solib_event_breakpoint /
7724 create_and_insert_solib_event_breakpoint. Allows specifying which
7725 INSERT_MODE to pass through to update_global_location_list. */
7726
7727 static struct breakpoint *
7728 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7729 enum ugll_insert_mode insert_mode)
7730 {
7731 struct breakpoint *b;
7732
7733 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7734 &internal_breakpoint_ops);
7735 update_global_location_list_nothrow (insert_mode);
7736 return b;
7737 }
7738
7739 struct breakpoint *
7740 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7741 {
7742 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7743 }
7744
7745 /* See breakpoint.h. */
7746
7747 struct breakpoint *
7748 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7749 {
7750 struct breakpoint *b;
7751
7752 /* Explicitly tell update_global_location_list to insert
7753 locations. */
7754 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7755 if (!b->loc->inserted)
7756 {
7757 delete_breakpoint (b);
7758 return NULL;
7759 }
7760 return b;
7761 }
7762
7763 /* Disable any breakpoints that are on code in shared libraries. Only
7764 apply to enabled breakpoints, disabled ones can just stay disabled. */
7765
7766 void
7767 disable_breakpoints_in_shlibs (void)
7768 {
7769 struct bp_location *loc, **locp_tmp;
7770
7771 ALL_BP_LOCATIONS (loc, locp_tmp)
7772 {
7773 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7774 struct breakpoint *b = loc->owner;
7775
7776 /* We apply the check to all breakpoints, including disabled for
7777 those with loc->duplicate set. This is so that when breakpoint
7778 becomes enabled, or the duplicate is removed, gdb will try to
7779 insert all breakpoints. If we don't set shlib_disabled here,
7780 we'll try to insert those breakpoints and fail. */
7781 if (((b->type == bp_breakpoint)
7782 || (b->type == bp_jit_event)
7783 || (b->type == bp_hardware_breakpoint)
7784 || (is_tracepoint (b)))
7785 && loc->pspace == current_program_space
7786 && !loc->shlib_disabled
7787 && solib_name_from_address (loc->pspace, loc->address)
7788 )
7789 {
7790 loc->shlib_disabled = 1;
7791 }
7792 }
7793 }
7794
7795 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7796 notification of unloaded_shlib. Only apply to enabled breakpoints,
7797 disabled ones can just stay disabled. */
7798
7799 static void
7800 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7801 {
7802 struct bp_location *loc, **locp_tmp;
7803 int disabled_shlib_breaks = 0;
7804
7805 /* SunOS a.out shared libraries are always mapped, so do not
7806 disable breakpoints; they will only be reported as unloaded
7807 through clear_solib when GDB discards its shared library
7808 list. See clear_solib for more information. */
7809 if (exec_bfd != NULL
7810 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7811 return;
7812
7813 ALL_BP_LOCATIONS (loc, locp_tmp)
7814 {
7815 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7816 struct breakpoint *b = loc->owner;
7817
7818 if (solib->pspace == loc->pspace
7819 && !loc->shlib_disabled
7820 && (((b->type == bp_breakpoint
7821 || b->type == bp_jit_event
7822 || b->type == bp_hardware_breakpoint)
7823 && (loc->loc_type == bp_loc_hardware_breakpoint
7824 || loc->loc_type == bp_loc_software_breakpoint))
7825 || is_tracepoint (b))
7826 && solib_contains_address_p (solib, loc->address))
7827 {
7828 loc->shlib_disabled = 1;
7829 /* At this point, we cannot rely on remove_breakpoint
7830 succeeding so we must mark the breakpoint as not inserted
7831 to prevent future errors occurring in remove_breakpoints. */
7832 loc->inserted = 0;
7833
7834 /* This may cause duplicate notifications for the same breakpoint. */
7835 observer_notify_breakpoint_modified (b);
7836
7837 if (!disabled_shlib_breaks)
7838 {
7839 target_terminal_ours_for_output ();
7840 warning (_("Temporarily disabling breakpoints "
7841 "for unloaded shared library \"%s\""),
7842 solib->so_name);
7843 }
7844 disabled_shlib_breaks = 1;
7845 }
7846 }
7847 }
7848
7849 /* Disable any breakpoints and tracepoints in OBJFILE upon
7850 notification of free_objfile. Only apply to enabled breakpoints,
7851 disabled ones can just stay disabled. */
7852
7853 static void
7854 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7855 {
7856 struct breakpoint *b;
7857
7858 if (objfile == NULL)
7859 return;
7860
7861 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7862 managed by the user with add-symbol-file/remove-symbol-file.
7863 Similarly to how breakpoints in shared libraries are handled in
7864 response to "nosharedlibrary", mark breakpoints in such modules
7865 shlib_disabled so they end up uninserted on the next global
7866 location list update. Shared libraries not loaded by the user
7867 aren't handled here -- they're already handled in
7868 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7869 solib_unloaded observer. We skip objfiles that are not
7870 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7871 main objfile). */
7872 if ((objfile->flags & OBJF_SHARED) == 0
7873 || (objfile->flags & OBJF_USERLOADED) == 0)
7874 return;
7875
7876 ALL_BREAKPOINTS (b)
7877 {
7878 struct bp_location *loc;
7879 int bp_modified = 0;
7880
7881 if (!is_breakpoint (b) && !is_tracepoint (b))
7882 continue;
7883
7884 for (loc = b->loc; loc != NULL; loc = loc->next)
7885 {
7886 CORE_ADDR loc_addr = loc->address;
7887
7888 if (loc->loc_type != bp_loc_hardware_breakpoint
7889 && loc->loc_type != bp_loc_software_breakpoint)
7890 continue;
7891
7892 if (loc->shlib_disabled != 0)
7893 continue;
7894
7895 if (objfile->pspace != loc->pspace)
7896 continue;
7897
7898 if (loc->loc_type != bp_loc_hardware_breakpoint
7899 && loc->loc_type != bp_loc_software_breakpoint)
7900 continue;
7901
7902 if (is_addr_in_objfile (loc_addr, objfile))
7903 {
7904 loc->shlib_disabled = 1;
7905 /* At this point, we don't know whether the object was
7906 unmapped from the inferior or not, so leave the
7907 inserted flag alone. We'll handle failure to
7908 uninsert quietly, in case the object was indeed
7909 unmapped. */
7910
7911 mark_breakpoint_location_modified (loc);
7912
7913 bp_modified = 1;
7914 }
7915 }
7916
7917 if (bp_modified)
7918 observer_notify_breakpoint_modified (b);
7919 }
7920 }
7921
7922 /* FORK & VFORK catchpoints. */
7923
7924 /* An instance of this type is used to represent a fork or vfork
7925 catchpoint. It includes a "struct breakpoint" as a kind of base
7926 class; users downcast to "struct breakpoint *" when needed. A
7927 breakpoint is really of this type iff its ops pointer points to
7928 CATCH_FORK_BREAKPOINT_OPS. */
7929
7930 struct fork_catchpoint
7931 {
7932 /* The base class. */
7933 struct breakpoint base;
7934
7935 /* Process id of a child process whose forking triggered this
7936 catchpoint. This field is only valid immediately after this
7937 catchpoint has triggered. */
7938 ptid_t forked_inferior_pid;
7939 };
7940
7941 /* Implement the "insert" breakpoint_ops method for fork
7942 catchpoints. */
7943
7944 static int
7945 insert_catch_fork (struct bp_location *bl)
7946 {
7947 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7948 }
7949
7950 /* Implement the "remove" breakpoint_ops method for fork
7951 catchpoints. */
7952
7953 static int
7954 remove_catch_fork (struct bp_location *bl)
7955 {
7956 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7957 }
7958
7959 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7960 catchpoints. */
7961
7962 static int
7963 breakpoint_hit_catch_fork (const struct bp_location *bl,
7964 struct address_space *aspace, CORE_ADDR bp_addr,
7965 const struct target_waitstatus *ws)
7966 {
7967 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7968
7969 if (ws->kind != TARGET_WAITKIND_FORKED)
7970 return 0;
7971
7972 c->forked_inferior_pid = ws->value.related_pid;
7973 return 1;
7974 }
7975
7976 /* Implement the "print_it" breakpoint_ops method for fork
7977 catchpoints. */
7978
7979 static enum print_stop_action
7980 print_it_catch_fork (bpstat bs)
7981 {
7982 struct ui_out *uiout = current_uiout;
7983 struct breakpoint *b = bs->breakpoint_at;
7984 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7985
7986 annotate_catchpoint (b->number);
7987 if (b->disposition == disp_del)
7988 ui_out_text (uiout, "\nTemporary catchpoint ");
7989 else
7990 ui_out_text (uiout, "\nCatchpoint ");
7991 if (ui_out_is_mi_like_p (uiout))
7992 {
7993 ui_out_field_string (uiout, "reason",
7994 async_reason_lookup (EXEC_ASYNC_FORK));
7995 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7996 }
7997 ui_out_field_int (uiout, "bkptno", b->number);
7998 ui_out_text (uiout, " (forked process ");
7999 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
8000 ui_out_text (uiout, "), ");
8001 return PRINT_SRC_AND_LOC;
8002 }
8003
8004 /* Implement the "print_one" breakpoint_ops method for fork
8005 catchpoints. */
8006
8007 static void
8008 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
8009 {
8010 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8011 struct value_print_options opts;
8012 struct ui_out *uiout = current_uiout;
8013
8014 get_user_print_options (&opts);
8015
8016 /* Field 4, the address, is omitted (which makes the columns not
8017 line up too nicely with the headers, but the effect is relatively
8018 readable). */
8019 if (opts.addressprint)
8020 ui_out_field_skip (uiout, "addr");
8021 annotate_field (5);
8022 ui_out_text (uiout, "fork");
8023 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8024 {
8025 ui_out_text (uiout, ", process ");
8026 ui_out_field_int (uiout, "what",
8027 ptid_get_pid (c->forked_inferior_pid));
8028 ui_out_spaces (uiout, 1);
8029 }
8030
8031 if (ui_out_is_mi_like_p (uiout))
8032 ui_out_field_string (uiout, "catch-type", "fork");
8033 }
8034
8035 /* Implement the "print_mention" breakpoint_ops method for fork
8036 catchpoints. */
8037
8038 static void
8039 print_mention_catch_fork (struct breakpoint *b)
8040 {
8041 printf_filtered (_("Catchpoint %d (fork)"), b->number);
8042 }
8043
8044 /* Implement the "print_recreate" breakpoint_ops method for fork
8045 catchpoints. */
8046
8047 static void
8048 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
8049 {
8050 fprintf_unfiltered (fp, "catch fork");
8051 print_recreate_thread (b, fp);
8052 }
8053
8054 /* The breakpoint_ops structure to be used in fork catchpoints. */
8055
8056 static struct breakpoint_ops catch_fork_breakpoint_ops;
8057
8058 /* Implement the "insert" breakpoint_ops method for vfork
8059 catchpoints. */
8060
8061 static int
8062 insert_catch_vfork (struct bp_location *bl)
8063 {
8064 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8065 }
8066
8067 /* Implement the "remove" breakpoint_ops method for vfork
8068 catchpoints. */
8069
8070 static int
8071 remove_catch_vfork (struct bp_location *bl)
8072 {
8073 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8074 }
8075
8076 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
8077 catchpoints. */
8078
8079 static int
8080 breakpoint_hit_catch_vfork (const struct bp_location *bl,
8081 struct address_space *aspace, CORE_ADDR bp_addr,
8082 const struct target_waitstatus *ws)
8083 {
8084 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8085
8086 if (ws->kind != TARGET_WAITKIND_VFORKED)
8087 return 0;
8088
8089 c->forked_inferior_pid = ws->value.related_pid;
8090 return 1;
8091 }
8092
8093 /* Implement the "print_it" breakpoint_ops method for vfork
8094 catchpoints. */
8095
8096 static enum print_stop_action
8097 print_it_catch_vfork (bpstat bs)
8098 {
8099 struct ui_out *uiout = current_uiout;
8100 struct breakpoint *b = bs->breakpoint_at;
8101 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8102
8103 annotate_catchpoint (b->number);
8104 if (b->disposition == disp_del)
8105 ui_out_text (uiout, "\nTemporary catchpoint ");
8106 else
8107 ui_out_text (uiout, "\nCatchpoint ");
8108 if (ui_out_is_mi_like_p (uiout))
8109 {
8110 ui_out_field_string (uiout, "reason",
8111 async_reason_lookup (EXEC_ASYNC_VFORK));
8112 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8113 }
8114 ui_out_field_int (uiout, "bkptno", b->number);
8115 ui_out_text (uiout, " (vforked process ");
8116 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
8117 ui_out_text (uiout, "), ");
8118 return PRINT_SRC_AND_LOC;
8119 }
8120
8121 /* Implement the "print_one" breakpoint_ops method for vfork
8122 catchpoints. */
8123
8124 static void
8125 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
8126 {
8127 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8128 struct value_print_options opts;
8129 struct ui_out *uiout = current_uiout;
8130
8131 get_user_print_options (&opts);
8132 /* Field 4, the address, is omitted (which makes the columns not
8133 line up too nicely with the headers, but the effect is relatively
8134 readable). */
8135 if (opts.addressprint)
8136 ui_out_field_skip (uiout, "addr");
8137 annotate_field (5);
8138 ui_out_text (uiout, "vfork");
8139 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8140 {
8141 ui_out_text (uiout, ", process ");
8142 ui_out_field_int (uiout, "what",
8143 ptid_get_pid (c->forked_inferior_pid));
8144 ui_out_spaces (uiout, 1);
8145 }
8146
8147 if (ui_out_is_mi_like_p (uiout))
8148 ui_out_field_string (uiout, "catch-type", "vfork");
8149 }
8150
8151 /* Implement the "print_mention" breakpoint_ops method for vfork
8152 catchpoints. */
8153
8154 static void
8155 print_mention_catch_vfork (struct breakpoint *b)
8156 {
8157 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
8158 }
8159
8160 /* Implement the "print_recreate" breakpoint_ops method for vfork
8161 catchpoints. */
8162
8163 static void
8164 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
8165 {
8166 fprintf_unfiltered (fp, "catch vfork");
8167 print_recreate_thread (b, fp);
8168 }
8169
8170 /* The breakpoint_ops structure to be used in vfork catchpoints. */
8171
8172 static struct breakpoint_ops catch_vfork_breakpoint_ops;
8173
8174 /* An instance of this type is used to represent an solib catchpoint.
8175 It includes a "struct breakpoint" as a kind of base class; users
8176 downcast to "struct breakpoint *" when needed. A breakpoint is
8177 really of this type iff its ops pointer points to
8178 CATCH_SOLIB_BREAKPOINT_OPS. */
8179
8180 struct solib_catchpoint
8181 {
8182 /* The base class. */
8183 struct breakpoint base;
8184
8185 /* True for "catch load", false for "catch unload". */
8186 unsigned char is_load;
8187
8188 /* Regular expression to match, if any. COMPILED is only valid when
8189 REGEX is non-NULL. */
8190 char *regex;
8191 regex_t compiled;
8192 };
8193
8194 static void
8195 dtor_catch_solib (struct breakpoint *b)
8196 {
8197 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8198
8199 if (self->regex)
8200 regfree (&self->compiled);
8201 xfree (self->regex);
8202
8203 base_breakpoint_ops.dtor (b);
8204 }
8205
8206 static int
8207 insert_catch_solib (struct bp_location *ignore)
8208 {
8209 return 0;
8210 }
8211
8212 static int
8213 remove_catch_solib (struct bp_location *ignore)
8214 {
8215 return 0;
8216 }
8217
8218 static int
8219 breakpoint_hit_catch_solib (const struct bp_location *bl,
8220 struct address_space *aspace,
8221 CORE_ADDR bp_addr,
8222 const struct target_waitstatus *ws)
8223 {
8224 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8225 struct breakpoint *other;
8226
8227 if (ws->kind == TARGET_WAITKIND_LOADED)
8228 return 1;
8229
8230 ALL_BREAKPOINTS (other)
8231 {
8232 struct bp_location *other_bl;
8233
8234 if (other == bl->owner)
8235 continue;
8236
8237 if (other->type != bp_shlib_event)
8238 continue;
8239
8240 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
8241 continue;
8242
8243 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8244 {
8245 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8246 return 1;
8247 }
8248 }
8249
8250 return 0;
8251 }
8252
8253 static void
8254 check_status_catch_solib (struct bpstats *bs)
8255 {
8256 struct solib_catchpoint *self
8257 = (struct solib_catchpoint *) bs->breakpoint_at;
8258 int ix;
8259
8260 if (self->is_load)
8261 {
8262 struct so_list *iter;
8263
8264 for (ix = 0;
8265 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8266 ix, iter);
8267 ++ix)
8268 {
8269 if (!self->regex
8270 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
8271 return;
8272 }
8273 }
8274 else
8275 {
8276 char *iter;
8277
8278 for (ix = 0;
8279 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8280 ix, iter);
8281 ++ix)
8282 {
8283 if (!self->regex
8284 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
8285 return;
8286 }
8287 }
8288
8289 bs->stop = 0;
8290 bs->print_it = print_it_noop;
8291 }
8292
8293 static enum print_stop_action
8294 print_it_catch_solib (bpstat bs)
8295 {
8296 struct breakpoint *b = bs->breakpoint_at;
8297 struct ui_out *uiout = current_uiout;
8298
8299 annotate_catchpoint (b->number);
8300 if (b->disposition == disp_del)
8301 ui_out_text (uiout, "\nTemporary catchpoint ");
8302 else
8303 ui_out_text (uiout, "\nCatchpoint ");
8304 ui_out_field_int (uiout, "bkptno", b->number);
8305 ui_out_text (uiout, "\n");
8306 if (ui_out_is_mi_like_p (uiout))
8307 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8308 print_solib_event (1);
8309 return PRINT_SRC_AND_LOC;
8310 }
8311
8312 static void
8313 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8314 {
8315 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8316 struct value_print_options opts;
8317 struct ui_out *uiout = current_uiout;
8318 char *msg;
8319
8320 get_user_print_options (&opts);
8321 /* Field 4, the address, is omitted (which makes the columns not
8322 line up too nicely with the headers, but the effect is relatively
8323 readable). */
8324 if (opts.addressprint)
8325 {
8326 annotate_field (4);
8327 ui_out_field_skip (uiout, "addr");
8328 }
8329
8330 annotate_field (5);
8331 if (self->is_load)
8332 {
8333 if (self->regex)
8334 msg = xstrprintf (_("load of library matching %s"), self->regex);
8335 else
8336 msg = xstrdup (_("load of library"));
8337 }
8338 else
8339 {
8340 if (self->regex)
8341 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8342 else
8343 msg = xstrdup (_("unload of library"));
8344 }
8345 ui_out_field_string (uiout, "what", msg);
8346 xfree (msg);
8347
8348 if (ui_out_is_mi_like_p (uiout))
8349 ui_out_field_string (uiout, "catch-type",
8350 self->is_load ? "load" : "unload");
8351 }
8352
8353 static void
8354 print_mention_catch_solib (struct breakpoint *b)
8355 {
8356 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8357
8358 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8359 self->is_load ? "load" : "unload");
8360 }
8361
8362 static void
8363 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8364 {
8365 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8366
8367 fprintf_unfiltered (fp, "%s %s",
8368 b->disposition == disp_del ? "tcatch" : "catch",
8369 self->is_load ? "load" : "unload");
8370 if (self->regex)
8371 fprintf_unfiltered (fp, " %s", self->regex);
8372 fprintf_unfiltered (fp, "\n");
8373 }
8374
8375 static struct breakpoint_ops catch_solib_breakpoint_ops;
8376
8377 /* Shared helper function (MI and CLI) for creating and installing
8378 a shared object event catchpoint. If IS_LOAD is non-zero then
8379 the events to be caught are load events, otherwise they are
8380 unload events. If IS_TEMP is non-zero the catchpoint is a
8381 temporary one. If ENABLED is non-zero the catchpoint is
8382 created in an enabled state. */
8383
8384 void
8385 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
8386 {
8387 struct solib_catchpoint *c;
8388 struct gdbarch *gdbarch = get_current_arch ();
8389 struct cleanup *cleanup;
8390
8391 if (!arg)
8392 arg = "";
8393 arg = skip_spaces (arg);
8394
8395 c = XCNEW (struct solib_catchpoint);
8396 cleanup = make_cleanup (xfree, c);
8397
8398 if (*arg != '\0')
8399 {
8400 int errcode;
8401
8402 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8403 if (errcode != 0)
8404 {
8405 char *err = get_regcomp_error (errcode, &c->compiled);
8406
8407 make_cleanup (xfree, err);
8408 error (_("Invalid regexp (%s): %s"), err, arg);
8409 }
8410 c->regex = xstrdup (arg);
8411 }
8412
8413 c->is_load = is_load;
8414 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8415 &catch_solib_breakpoint_ops);
8416
8417 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8418
8419 discard_cleanups (cleanup);
8420 install_breakpoint (0, &c->base, 1);
8421 }
8422
8423 /* A helper function that does all the work for "catch load" and
8424 "catch unload". */
8425
8426 static void
8427 catch_load_or_unload (char *arg, int from_tty, int is_load,
8428 struct cmd_list_element *command)
8429 {
8430 int tempflag;
8431 const int enabled = 1;
8432
8433 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8434
8435 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8436 }
8437
8438 static void
8439 catch_load_command_1 (char *arg, int from_tty,
8440 struct cmd_list_element *command)
8441 {
8442 catch_load_or_unload (arg, from_tty, 1, command);
8443 }
8444
8445 static void
8446 catch_unload_command_1 (char *arg, int from_tty,
8447 struct cmd_list_element *command)
8448 {
8449 catch_load_or_unload (arg, from_tty, 0, command);
8450 }
8451
8452 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8453 is non-zero, then make the breakpoint temporary. If COND_STRING is
8454 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8455 the breakpoint_ops structure associated to the catchpoint. */
8456
8457 void
8458 init_catchpoint (struct breakpoint *b,
8459 struct gdbarch *gdbarch, int tempflag,
8460 char *cond_string,
8461 const struct breakpoint_ops *ops)
8462 {
8463 struct symtab_and_line sal;
8464
8465 init_sal (&sal);
8466 sal.pspace = current_program_space;
8467
8468 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8469
8470 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8471 b->disposition = tempflag ? disp_del : disp_donttouch;
8472 }
8473
8474 void
8475 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8476 {
8477 add_to_breakpoint_chain (b);
8478 set_breakpoint_number (internal, b);
8479 if (is_tracepoint (b))
8480 set_tracepoint_count (breakpoint_count);
8481 if (!internal)
8482 mention (b);
8483 observer_notify_breakpoint_created (b);
8484
8485 if (update_gll)
8486 update_global_location_list (UGLL_MAY_INSERT);
8487 }
8488
8489 static void
8490 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8491 int tempflag, char *cond_string,
8492 const struct breakpoint_ops *ops)
8493 {
8494 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8495
8496 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8497
8498 c->forked_inferior_pid = null_ptid;
8499
8500 install_breakpoint (0, &c->base, 1);
8501 }
8502
8503 /* Exec catchpoints. */
8504
8505 /* An instance of this type is used to represent an exec catchpoint.
8506 It includes a "struct breakpoint" as a kind of base class; users
8507 downcast to "struct breakpoint *" when needed. A breakpoint is
8508 really of this type iff its ops pointer points to
8509 CATCH_EXEC_BREAKPOINT_OPS. */
8510
8511 struct exec_catchpoint
8512 {
8513 /* The base class. */
8514 struct breakpoint base;
8515
8516 /* Filename of a program whose exec triggered this catchpoint.
8517 This field is only valid immediately after this catchpoint has
8518 triggered. */
8519 char *exec_pathname;
8520 };
8521
8522 /* Implement the "dtor" breakpoint_ops method for exec
8523 catchpoints. */
8524
8525 static void
8526 dtor_catch_exec (struct breakpoint *b)
8527 {
8528 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8529
8530 xfree (c->exec_pathname);
8531
8532 base_breakpoint_ops.dtor (b);
8533 }
8534
8535 static int
8536 insert_catch_exec (struct bp_location *bl)
8537 {
8538 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8539 }
8540
8541 static int
8542 remove_catch_exec (struct bp_location *bl)
8543 {
8544 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8545 }
8546
8547 static int
8548 breakpoint_hit_catch_exec (const struct bp_location *bl,
8549 struct address_space *aspace, CORE_ADDR bp_addr,
8550 const struct target_waitstatus *ws)
8551 {
8552 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8553
8554 if (ws->kind != TARGET_WAITKIND_EXECD)
8555 return 0;
8556
8557 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8558 return 1;
8559 }
8560
8561 static enum print_stop_action
8562 print_it_catch_exec (bpstat bs)
8563 {
8564 struct ui_out *uiout = current_uiout;
8565 struct breakpoint *b = bs->breakpoint_at;
8566 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8567
8568 annotate_catchpoint (b->number);
8569 if (b->disposition == disp_del)
8570 ui_out_text (uiout, "\nTemporary catchpoint ");
8571 else
8572 ui_out_text (uiout, "\nCatchpoint ");
8573 if (ui_out_is_mi_like_p (uiout))
8574 {
8575 ui_out_field_string (uiout, "reason",
8576 async_reason_lookup (EXEC_ASYNC_EXEC));
8577 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8578 }
8579 ui_out_field_int (uiout, "bkptno", b->number);
8580 ui_out_text (uiout, " (exec'd ");
8581 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8582 ui_out_text (uiout, "), ");
8583
8584 return PRINT_SRC_AND_LOC;
8585 }
8586
8587 static void
8588 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8589 {
8590 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8591 struct value_print_options opts;
8592 struct ui_out *uiout = current_uiout;
8593
8594 get_user_print_options (&opts);
8595
8596 /* Field 4, the address, is omitted (which makes the columns
8597 not line up too nicely with the headers, but the effect
8598 is relatively readable). */
8599 if (opts.addressprint)
8600 ui_out_field_skip (uiout, "addr");
8601 annotate_field (5);
8602 ui_out_text (uiout, "exec");
8603 if (c->exec_pathname != NULL)
8604 {
8605 ui_out_text (uiout, ", program \"");
8606 ui_out_field_string (uiout, "what", c->exec_pathname);
8607 ui_out_text (uiout, "\" ");
8608 }
8609
8610 if (ui_out_is_mi_like_p (uiout))
8611 ui_out_field_string (uiout, "catch-type", "exec");
8612 }
8613
8614 static void
8615 print_mention_catch_exec (struct breakpoint *b)
8616 {
8617 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8618 }
8619
8620 /* Implement the "print_recreate" breakpoint_ops method for exec
8621 catchpoints. */
8622
8623 static void
8624 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8625 {
8626 fprintf_unfiltered (fp, "catch exec");
8627 print_recreate_thread (b, fp);
8628 }
8629
8630 static struct breakpoint_ops catch_exec_breakpoint_ops;
8631
8632 static int
8633 hw_breakpoint_used_count (void)
8634 {
8635 int i = 0;
8636 struct breakpoint *b;
8637 struct bp_location *bl;
8638
8639 ALL_BREAKPOINTS (b)
8640 {
8641 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8642 for (bl = b->loc; bl; bl = bl->next)
8643 {
8644 /* Special types of hardware breakpoints may use more than
8645 one register. */
8646 i += b->ops->resources_needed (bl);
8647 }
8648 }
8649
8650 return i;
8651 }
8652
8653 /* Returns the resources B would use if it were a hardware
8654 watchpoint. */
8655
8656 static int
8657 hw_watchpoint_use_count (struct breakpoint *b)
8658 {
8659 int i = 0;
8660 struct bp_location *bl;
8661
8662 if (!breakpoint_enabled (b))
8663 return 0;
8664
8665 for (bl = b->loc; bl; bl = bl->next)
8666 {
8667 /* Special types of hardware watchpoints may use more than
8668 one register. */
8669 i += b->ops->resources_needed (bl);
8670 }
8671
8672 return i;
8673 }
8674
8675 /* Returns the sum the used resources of all hardware watchpoints of
8676 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8677 the sum of the used resources of all hardware watchpoints of other
8678 types _not_ TYPE. */
8679
8680 static int
8681 hw_watchpoint_used_count_others (struct breakpoint *except,
8682 enum bptype type, int *other_type_used)
8683 {
8684 int i = 0;
8685 struct breakpoint *b;
8686
8687 *other_type_used = 0;
8688 ALL_BREAKPOINTS (b)
8689 {
8690 if (b == except)
8691 continue;
8692 if (!breakpoint_enabled (b))
8693 continue;
8694
8695 if (b->type == type)
8696 i += hw_watchpoint_use_count (b);
8697 else if (is_hardware_watchpoint (b))
8698 *other_type_used = 1;
8699 }
8700
8701 return i;
8702 }
8703
8704 void
8705 disable_watchpoints_before_interactive_call_start (void)
8706 {
8707 struct breakpoint *b;
8708
8709 ALL_BREAKPOINTS (b)
8710 {
8711 if (is_watchpoint (b) && breakpoint_enabled (b))
8712 {
8713 b->enable_state = bp_call_disabled;
8714 update_global_location_list (UGLL_DONT_INSERT);
8715 }
8716 }
8717 }
8718
8719 void
8720 enable_watchpoints_after_interactive_call_stop (void)
8721 {
8722 struct breakpoint *b;
8723
8724 ALL_BREAKPOINTS (b)
8725 {
8726 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8727 {
8728 b->enable_state = bp_enabled;
8729 update_global_location_list (UGLL_MAY_INSERT);
8730 }
8731 }
8732 }
8733
8734 void
8735 disable_breakpoints_before_startup (void)
8736 {
8737 current_program_space->executing_startup = 1;
8738 update_global_location_list (UGLL_DONT_INSERT);
8739 }
8740
8741 void
8742 enable_breakpoints_after_startup (void)
8743 {
8744 current_program_space->executing_startup = 0;
8745 breakpoint_re_set ();
8746 }
8747
8748 /* Create a new single-step breakpoint for thread THREAD, with no
8749 locations. */
8750
8751 static struct breakpoint *
8752 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8753 {
8754 struct breakpoint *b = XNEW (struct breakpoint);
8755
8756 init_raw_breakpoint_without_location (b, gdbarch, bp_single_step,
8757 &momentary_breakpoint_ops);
8758
8759 b->disposition = disp_donttouch;
8760 b->frame_id = null_frame_id;
8761
8762 b->thread = thread;
8763 gdb_assert (b->thread != 0);
8764
8765 add_to_breakpoint_chain (b);
8766
8767 return b;
8768 }
8769
8770 /* Set a momentary breakpoint of type TYPE at address specified by
8771 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8772 frame. */
8773
8774 struct breakpoint *
8775 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8776 struct frame_id frame_id, enum bptype type)
8777 {
8778 struct breakpoint *b;
8779
8780 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8781 tail-called one. */
8782 gdb_assert (!frame_id_artificial_p (frame_id));
8783
8784 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8785 b->enable_state = bp_enabled;
8786 b->disposition = disp_donttouch;
8787 b->frame_id = frame_id;
8788
8789 /* If we're debugging a multi-threaded program, then we want
8790 momentary breakpoints to be active in only a single thread of
8791 control. */
8792 if (in_thread_list (inferior_ptid))
8793 b->thread = pid_to_thread_id (inferior_ptid);
8794
8795 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8796
8797 return b;
8798 }
8799
8800 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8801 The new breakpoint will have type TYPE, use OPS as its
8802 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8803
8804 static struct breakpoint *
8805 momentary_breakpoint_from_master (struct breakpoint *orig,
8806 enum bptype type,
8807 const struct breakpoint_ops *ops,
8808 int loc_enabled)
8809 {
8810 struct breakpoint *copy;
8811
8812 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8813 copy->loc = allocate_bp_location (copy);
8814 set_breakpoint_location_function (copy->loc, 1);
8815
8816 copy->loc->gdbarch = orig->loc->gdbarch;
8817 copy->loc->requested_address = orig->loc->requested_address;
8818 copy->loc->address = orig->loc->address;
8819 copy->loc->section = orig->loc->section;
8820 copy->loc->pspace = orig->loc->pspace;
8821 copy->loc->probe = orig->loc->probe;
8822 copy->loc->line_number = orig->loc->line_number;
8823 copy->loc->symtab = orig->loc->symtab;
8824 copy->loc->enabled = loc_enabled;
8825 copy->frame_id = orig->frame_id;
8826 copy->thread = orig->thread;
8827 copy->pspace = orig->pspace;
8828
8829 copy->enable_state = bp_enabled;
8830 copy->disposition = disp_donttouch;
8831 copy->number = internal_breakpoint_number--;
8832
8833 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8834 return copy;
8835 }
8836
8837 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8838 ORIG is NULL. */
8839
8840 struct breakpoint *
8841 clone_momentary_breakpoint (struct breakpoint *orig)
8842 {
8843 /* If there's nothing to clone, then return nothing. */
8844 if (orig == NULL)
8845 return NULL;
8846
8847 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8848 }
8849
8850 struct breakpoint *
8851 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8852 enum bptype type)
8853 {
8854 struct symtab_and_line sal;
8855
8856 sal = find_pc_line (pc, 0);
8857 sal.pc = pc;
8858 sal.section = find_pc_overlay (pc);
8859 sal.explicit_pc = 1;
8860
8861 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8862 }
8863 \f
8864
8865 /* Tell the user we have just set a breakpoint B. */
8866
8867 static void
8868 mention (struct breakpoint *b)
8869 {
8870 b->ops->print_mention (b);
8871 if (ui_out_is_mi_like_p (current_uiout))
8872 return;
8873 printf_filtered ("\n");
8874 }
8875 \f
8876
8877 static int bp_loc_is_permanent (struct bp_location *loc);
8878
8879 static struct bp_location *
8880 add_location_to_breakpoint (struct breakpoint *b,
8881 const struct symtab_and_line *sal)
8882 {
8883 struct bp_location *loc, **tmp;
8884 CORE_ADDR adjusted_address;
8885 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8886
8887 if (loc_gdbarch == NULL)
8888 loc_gdbarch = b->gdbarch;
8889
8890 /* Adjust the breakpoint's address prior to allocating a location.
8891 Once we call allocate_bp_location(), that mostly uninitialized
8892 location will be placed on the location chain. Adjustment of the
8893 breakpoint may cause target_read_memory() to be called and we do
8894 not want its scan of the location chain to find a breakpoint and
8895 location that's only been partially initialized. */
8896 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8897 sal->pc, b->type);
8898
8899 /* Sort the locations by their ADDRESS. */
8900 loc = allocate_bp_location (b);
8901 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8902 tmp = &((*tmp)->next))
8903 ;
8904 loc->next = *tmp;
8905 *tmp = loc;
8906
8907 loc->requested_address = sal->pc;
8908 loc->address = adjusted_address;
8909 loc->pspace = sal->pspace;
8910 loc->probe.probe = sal->probe;
8911 loc->probe.objfile = sal->objfile;
8912 gdb_assert (loc->pspace != NULL);
8913 loc->section = sal->section;
8914 loc->gdbarch = loc_gdbarch;
8915 loc->line_number = sal->line;
8916 loc->symtab = sal->symtab;
8917
8918 set_breakpoint_location_function (loc,
8919 sal->explicit_pc || sal->explicit_line);
8920
8921 if (bp_loc_is_permanent (loc))
8922 {
8923 loc->inserted = 1;
8924 loc->permanent = 1;
8925 }
8926
8927 return loc;
8928 }
8929 \f
8930
8931 /* See breakpoint.h. */
8932
8933 int
8934 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8935 {
8936 int len;
8937 CORE_ADDR addr;
8938 const gdb_byte *bpoint;
8939 gdb_byte *target_mem;
8940 struct cleanup *cleanup;
8941 int retval = 0;
8942
8943 addr = address;
8944 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8945
8946 /* Software breakpoints unsupported? */
8947 if (bpoint == NULL)
8948 return 0;
8949
8950 target_mem = alloca (len);
8951
8952 /* Enable the automatic memory restoration from breakpoints while
8953 we read the memory. Otherwise we could say about our temporary
8954 breakpoints they are permanent. */
8955 cleanup = make_show_memory_breakpoints_cleanup (0);
8956
8957 if (target_read_memory (address, target_mem, len) == 0
8958 && memcmp (target_mem, bpoint, len) == 0)
8959 retval = 1;
8960
8961 do_cleanups (cleanup);
8962
8963 return retval;
8964 }
8965
8966 /* Return 1 if LOC is pointing to a permanent breakpoint,
8967 return 0 otherwise. */
8968
8969 static int
8970 bp_loc_is_permanent (struct bp_location *loc)
8971 {
8972 struct cleanup *cleanup;
8973 int retval;
8974
8975 gdb_assert (loc != NULL);
8976
8977 /* bp_call_dummy breakpoint locations are usually memory locations
8978 where GDB just wrote a breakpoint instruction, making it look
8979 as if there is a permanent breakpoint at that location. Considering
8980 it permanent makes GDB rely on that breakpoint instruction to stop
8981 the program, thus removing the need to insert its own breakpoint
8982 there. This is normally expected to work, except that some versions
8983 of QEMU (Eg: QEMU 2.0.0 for SPARC) just report a fatal problem (Trap
8984 0x02 while interrupts disabled, Error state) instead of reporting
8985 a SIGTRAP. QEMU should probably be fixed, but in the interest of
8986 compatibility with versions that behave this way, we always consider
8987 bp_call_dummy breakpoint locations as non-permanent. */
8988 if (loc->owner->type == bp_call_dummy)
8989 return 0;
8990
8991 cleanup = save_current_space_and_thread ();
8992 switch_to_program_space_and_thread (loc->pspace);
8993
8994 retval = program_breakpoint_here_p (loc->gdbarch, loc->address);
8995
8996 do_cleanups (cleanup);
8997
8998 return retval;
8999 }
9000
9001 /* Build a command list for the dprintf corresponding to the current
9002 settings of the dprintf style options. */
9003
9004 static void
9005 update_dprintf_command_list (struct breakpoint *b)
9006 {
9007 char *dprintf_args = b->extra_string;
9008 char *printf_line = NULL;
9009
9010 if (!dprintf_args)
9011 return;
9012
9013 dprintf_args = skip_spaces (dprintf_args);
9014
9015 /* Allow a comma, as it may have terminated a location, but don't
9016 insist on it. */
9017 if (*dprintf_args == ',')
9018 ++dprintf_args;
9019 dprintf_args = skip_spaces (dprintf_args);
9020
9021 if (*dprintf_args != '"')
9022 error (_("Bad format string, missing '\"'."));
9023
9024 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9025 printf_line = xstrprintf ("printf %s", dprintf_args);
9026 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9027 {
9028 if (!dprintf_function)
9029 error (_("No function supplied for dprintf call"));
9030
9031 if (dprintf_channel && strlen (dprintf_channel) > 0)
9032 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9033 dprintf_function,
9034 dprintf_channel,
9035 dprintf_args);
9036 else
9037 printf_line = xstrprintf ("call (void) %s (%s)",
9038 dprintf_function,
9039 dprintf_args);
9040 }
9041 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9042 {
9043 if (target_can_run_breakpoint_commands ())
9044 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9045 else
9046 {
9047 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9048 printf_line = xstrprintf ("printf %s", dprintf_args);
9049 }
9050 }
9051 else
9052 internal_error (__FILE__, __LINE__,
9053 _("Invalid dprintf style."));
9054
9055 gdb_assert (printf_line != NULL);
9056 /* Manufacture a printf sequence. */
9057 {
9058 struct command_line *printf_cmd_line
9059 = xmalloc (sizeof (struct command_line));
9060
9061 printf_cmd_line->control_type = simple_control;
9062 printf_cmd_line->body_count = 0;
9063 printf_cmd_line->body_list = NULL;
9064 printf_cmd_line->next = NULL;
9065 printf_cmd_line->line = printf_line;
9066
9067 breakpoint_set_commands (b, printf_cmd_line);
9068 }
9069 }
9070
9071 /* Update all dprintf commands, making their command lists reflect
9072 current style settings. */
9073
9074 static void
9075 update_dprintf_commands (char *args, int from_tty,
9076 struct cmd_list_element *c)
9077 {
9078 struct breakpoint *b;
9079
9080 ALL_BREAKPOINTS (b)
9081 {
9082 if (b->type == bp_dprintf)
9083 update_dprintf_command_list (b);
9084 }
9085 }
9086
9087 /* Create a breakpoint with SAL as location. Use ADDR_STRING
9088 as textual description of the location, and COND_STRING
9089 as condition expression. */
9090
9091 static void
9092 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9093 struct symtabs_and_lines sals, char *addr_string,
9094 char *filter, char *cond_string,
9095 char *extra_string,
9096 enum bptype type, enum bpdisp disposition,
9097 int thread, int task, int ignore_count,
9098 const struct breakpoint_ops *ops, int from_tty,
9099 int enabled, int internal, unsigned flags,
9100 int display_canonical)
9101 {
9102 int i;
9103
9104 if (type == bp_hardware_breakpoint)
9105 {
9106 int target_resources_ok;
9107
9108 i = hw_breakpoint_used_count ();
9109 target_resources_ok =
9110 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9111 i + 1, 0);
9112 if (target_resources_ok == 0)
9113 error (_("No hardware breakpoint support in the target."));
9114 else if (target_resources_ok < 0)
9115 error (_("Hardware breakpoints used exceeds limit."));
9116 }
9117
9118 gdb_assert (sals.nelts > 0);
9119
9120 for (i = 0; i < sals.nelts; ++i)
9121 {
9122 struct symtab_and_line sal = sals.sals[i];
9123 struct bp_location *loc;
9124
9125 if (from_tty)
9126 {
9127 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9128 if (!loc_gdbarch)
9129 loc_gdbarch = gdbarch;
9130
9131 describe_other_breakpoints (loc_gdbarch,
9132 sal.pspace, sal.pc, sal.section, thread);
9133 }
9134
9135 if (i == 0)
9136 {
9137 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9138 b->thread = thread;
9139 b->task = task;
9140
9141 b->cond_string = cond_string;
9142 b->extra_string = extra_string;
9143 b->ignore_count = ignore_count;
9144 b->enable_state = enabled ? bp_enabled : bp_disabled;
9145 b->disposition = disposition;
9146
9147 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9148 b->loc->inserted = 1;
9149
9150 if (type == bp_static_tracepoint)
9151 {
9152 struct tracepoint *t = (struct tracepoint *) b;
9153 struct static_tracepoint_marker marker;
9154
9155 if (strace_marker_p (b))
9156 {
9157 /* We already know the marker exists, otherwise, we
9158 wouldn't see a sal for it. */
9159 char *p = &addr_string[3];
9160 char *endp;
9161 char *marker_str;
9162
9163 p = skip_spaces (p);
9164
9165 endp = skip_to_space (p);
9166
9167 marker_str = savestring (p, endp - p);
9168 t->static_trace_marker_id = marker_str;
9169
9170 printf_filtered (_("Probed static tracepoint "
9171 "marker \"%s\"\n"),
9172 t->static_trace_marker_id);
9173 }
9174 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9175 {
9176 t->static_trace_marker_id = xstrdup (marker.str_id);
9177 release_static_tracepoint_marker (&marker);
9178
9179 printf_filtered (_("Probed static tracepoint "
9180 "marker \"%s\"\n"),
9181 t->static_trace_marker_id);
9182 }
9183 else
9184 warning (_("Couldn't determine the static "
9185 "tracepoint marker to probe"));
9186 }
9187
9188 loc = b->loc;
9189 }
9190 else
9191 {
9192 loc = add_location_to_breakpoint (b, &sal);
9193 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9194 loc->inserted = 1;
9195 }
9196
9197 if (b->cond_string)
9198 {
9199 const char *arg = b->cond_string;
9200
9201 loc->cond = parse_exp_1 (&arg, loc->address,
9202 block_for_pc (loc->address), 0);
9203 if (*arg)
9204 error (_("Garbage '%s' follows condition"), arg);
9205 }
9206
9207 /* Dynamic printf requires and uses additional arguments on the
9208 command line, otherwise it's an error. */
9209 if (type == bp_dprintf)
9210 {
9211 if (b->extra_string)
9212 update_dprintf_command_list (b);
9213 else
9214 error (_("Format string required"));
9215 }
9216 else if (b->extra_string)
9217 error (_("Garbage '%s' at end of command"), b->extra_string);
9218 }
9219
9220 b->display_canonical = display_canonical;
9221 if (addr_string)
9222 b->addr_string = addr_string;
9223 else
9224 /* addr_string has to be used or breakpoint_re_set will delete
9225 me. */
9226 b->addr_string
9227 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9228 b->filter = filter;
9229 }
9230
9231 static void
9232 create_breakpoint_sal (struct gdbarch *gdbarch,
9233 struct symtabs_and_lines sals, char *addr_string,
9234 char *filter, char *cond_string,
9235 char *extra_string,
9236 enum bptype type, enum bpdisp disposition,
9237 int thread, int task, int ignore_count,
9238 const struct breakpoint_ops *ops, int from_tty,
9239 int enabled, int internal, unsigned flags,
9240 int display_canonical)
9241 {
9242 struct breakpoint *b;
9243 struct cleanup *old_chain;
9244
9245 if (is_tracepoint_type (type))
9246 {
9247 struct tracepoint *t;
9248
9249 t = XCNEW (struct tracepoint);
9250 b = &t->base;
9251 }
9252 else
9253 b = XNEW (struct breakpoint);
9254
9255 old_chain = make_cleanup (xfree, b);
9256
9257 init_breakpoint_sal (b, gdbarch,
9258 sals, addr_string,
9259 filter, cond_string, extra_string,
9260 type, disposition,
9261 thread, task, ignore_count,
9262 ops, from_tty,
9263 enabled, internal, flags,
9264 display_canonical);
9265 discard_cleanups (old_chain);
9266
9267 install_breakpoint (internal, b, 0);
9268 }
9269
9270 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9271 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9272 value. COND_STRING, if not NULL, specified the condition to be
9273 used for all breakpoints. Essentially the only case where
9274 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9275 function. In that case, it's still not possible to specify
9276 separate conditions for different overloaded functions, so
9277 we take just a single condition string.
9278
9279 NOTE: If the function succeeds, the caller is expected to cleanup
9280 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9281 array contents). If the function fails (error() is called), the
9282 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9283 COND and SALS arrays and each of those arrays contents. */
9284
9285 static void
9286 create_breakpoints_sal (struct gdbarch *gdbarch,
9287 struct linespec_result *canonical,
9288 char *cond_string, char *extra_string,
9289 enum bptype type, enum bpdisp disposition,
9290 int thread, int task, int ignore_count,
9291 const struct breakpoint_ops *ops, int from_tty,
9292 int enabled, int internal, unsigned flags)
9293 {
9294 int i;
9295 struct linespec_sals *lsal;
9296
9297 if (canonical->pre_expanded)
9298 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9299
9300 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9301 {
9302 /* Note that 'addr_string' can be NULL in the case of a plain
9303 'break', without arguments. */
9304 char *addr_string = (canonical->addr_string
9305 ? xstrdup (canonical->addr_string)
9306 : NULL);
9307 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9308 struct cleanup *inner = make_cleanup (xfree, addr_string);
9309
9310 make_cleanup (xfree, filter_string);
9311 create_breakpoint_sal (gdbarch, lsal->sals,
9312 addr_string,
9313 filter_string,
9314 cond_string, extra_string,
9315 type, disposition,
9316 thread, task, ignore_count, ops,
9317 from_tty, enabled, internal, flags,
9318 canonical->special_display);
9319 discard_cleanups (inner);
9320 }
9321 }
9322
9323 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9324 followed by conditionals. On return, SALS contains an array of SAL
9325 addresses found. ADDR_STRING contains a vector of (canonical)
9326 address strings. ADDRESS points to the end of the SAL.
9327
9328 The array and the line spec strings are allocated on the heap, it is
9329 the caller's responsibility to free them. */
9330
9331 static void
9332 parse_breakpoint_sals (char **address,
9333 struct linespec_result *canonical)
9334 {
9335 /* If no arg given, or if first arg is 'if ', use the default
9336 breakpoint. */
9337 if ((*address) == NULL || linespec_lexer_lex_keyword (*address))
9338 {
9339 /* The last displayed codepoint, if it's valid, is our default breakpoint
9340 address. */
9341 if (last_displayed_sal_is_valid ())
9342 {
9343 struct linespec_sals lsal;
9344 struct symtab_and_line sal;
9345 CORE_ADDR pc;
9346
9347 init_sal (&sal); /* Initialize to zeroes. */
9348 lsal.sals.sals = (struct symtab_and_line *)
9349 xmalloc (sizeof (struct symtab_and_line));
9350
9351 /* Set sal's pspace, pc, symtab, and line to the values
9352 corresponding to the last call to print_frame_info.
9353 Be sure to reinitialize LINE with NOTCURRENT == 0
9354 as the breakpoint line number is inappropriate otherwise.
9355 find_pc_line would adjust PC, re-set it back. */
9356 get_last_displayed_sal (&sal);
9357 pc = sal.pc;
9358 sal = find_pc_line (pc, 0);
9359
9360 /* "break" without arguments is equivalent to "break *PC"
9361 where PC is the last displayed codepoint's address. So
9362 make sure to set sal.explicit_pc to prevent GDB from
9363 trying to expand the list of sals to include all other
9364 instances with the same symtab and line. */
9365 sal.pc = pc;
9366 sal.explicit_pc = 1;
9367
9368 lsal.sals.sals[0] = sal;
9369 lsal.sals.nelts = 1;
9370 lsal.canonical = NULL;
9371
9372 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9373 }
9374 else
9375 error (_("No default breakpoint address now."));
9376 }
9377 else
9378 {
9379 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9380
9381 /* Force almost all breakpoints to be in terms of the
9382 current_source_symtab (which is decode_line_1's default).
9383 This should produce the results we want almost all of the
9384 time while leaving default_breakpoint_* alone.
9385
9386 ObjC: However, don't match an Objective-C method name which
9387 may have a '+' or '-' succeeded by a '['. */
9388 if (last_displayed_sal_is_valid ()
9389 && (!cursal.symtab
9390 || ((strchr ("+-", (*address)[0]) != NULL)
9391 && ((*address)[1] != '['))))
9392 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9393 get_last_displayed_symtab (),
9394 get_last_displayed_line (),
9395 canonical, NULL, NULL);
9396 else
9397 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9398 cursal.symtab, cursal.line, canonical, NULL, NULL);
9399 }
9400 }
9401
9402
9403 /* Convert each SAL into a real PC. Verify that the PC can be
9404 inserted as a breakpoint. If it can't throw an error. */
9405
9406 static void
9407 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9408 {
9409 int i;
9410
9411 for (i = 0; i < sals->nelts; i++)
9412 resolve_sal_pc (&sals->sals[i]);
9413 }
9414
9415 /* Fast tracepoints may have restrictions on valid locations. For
9416 instance, a fast tracepoint using a jump instead of a trap will
9417 likely have to overwrite more bytes than a trap would, and so can
9418 only be placed where the instruction is longer than the jump, or a
9419 multi-instruction sequence does not have a jump into the middle of
9420 it, etc. */
9421
9422 static void
9423 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9424 struct symtabs_and_lines *sals)
9425 {
9426 int i, rslt;
9427 struct symtab_and_line *sal;
9428 char *msg;
9429 struct cleanup *old_chain;
9430
9431 for (i = 0; i < sals->nelts; i++)
9432 {
9433 struct gdbarch *sarch;
9434
9435 sal = &sals->sals[i];
9436
9437 sarch = get_sal_arch (*sal);
9438 /* We fall back to GDBARCH if there is no architecture
9439 associated with SAL. */
9440 if (sarch == NULL)
9441 sarch = gdbarch;
9442 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9443 NULL, &msg);
9444 old_chain = make_cleanup (xfree, msg);
9445
9446 if (!rslt)
9447 error (_("May not have a fast tracepoint at 0x%s%s"),
9448 paddress (sarch, sal->pc), (msg ? msg : ""));
9449
9450 do_cleanups (old_chain);
9451 }
9452 }
9453
9454 /* Issue an invalid thread ID error. */
9455
9456 static void ATTRIBUTE_NORETURN
9457 invalid_thread_id_error (int id)
9458 {
9459 error (_("Unknown thread %d."), id);
9460 }
9461
9462 /* Given TOK, a string specification of condition and thread, as
9463 accepted by the 'break' command, extract the condition
9464 string and thread number and set *COND_STRING and *THREAD.
9465 PC identifies the context at which the condition should be parsed.
9466 If no condition is found, *COND_STRING is set to NULL.
9467 If no thread is found, *THREAD is set to -1. */
9468
9469 static void
9470 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9471 char **cond_string, int *thread, int *task,
9472 char **rest)
9473 {
9474 *cond_string = NULL;
9475 *thread = -1;
9476 *task = 0;
9477 *rest = NULL;
9478
9479 while (tok && *tok)
9480 {
9481 const char *end_tok;
9482 int toklen;
9483 const char *cond_start = NULL;
9484 const char *cond_end = NULL;
9485
9486 tok = skip_spaces_const (tok);
9487
9488 if ((*tok == '"' || *tok == ',') && rest)
9489 {
9490 *rest = savestring (tok, strlen (tok));
9491 return;
9492 }
9493
9494 end_tok = skip_to_space_const (tok);
9495
9496 toklen = end_tok - tok;
9497
9498 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9499 {
9500 struct expression *expr;
9501
9502 tok = cond_start = end_tok + 1;
9503 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9504 xfree (expr);
9505 cond_end = tok;
9506 *cond_string = savestring (cond_start, cond_end - cond_start);
9507 }
9508 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9509 {
9510 char *tmptok;
9511
9512 tok = end_tok + 1;
9513 *thread = strtol (tok, &tmptok, 0);
9514 if (tok == tmptok)
9515 error (_("Junk after thread keyword."));
9516 if (!valid_thread_id (*thread))
9517 invalid_thread_id_error (*thread);
9518 tok = tmptok;
9519 }
9520 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9521 {
9522 char *tmptok;
9523
9524 tok = end_tok + 1;
9525 *task = strtol (tok, &tmptok, 0);
9526 if (tok == tmptok)
9527 error (_("Junk after task keyword."));
9528 if (!valid_task_id (*task))
9529 error (_("Unknown task %d."), *task);
9530 tok = tmptok;
9531 }
9532 else if (rest)
9533 {
9534 *rest = savestring (tok, strlen (tok));
9535 return;
9536 }
9537 else
9538 error (_("Junk at end of arguments."));
9539 }
9540 }
9541
9542 /* Decode a static tracepoint marker spec. */
9543
9544 static struct symtabs_and_lines
9545 decode_static_tracepoint_spec (char **arg_p)
9546 {
9547 VEC(static_tracepoint_marker_p) *markers = NULL;
9548 struct symtabs_and_lines sals;
9549 struct cleanup *old_chain;
9550 char *p = &(*arg_p)[3];
9551 char *endp;
9552 char *marker_str;
9553 int i;
9554
9555 p = skip_spaces (p);
9556
9557 endp = skip_to_space (p);
9558
9559 marker_str = savestring (p, endp - p);
9560 old_chain = make_cleanup (xfree, marker_str);
9561
9562 markers = target_static_tracepoint_markers_by_strid (marker_str);
9563 if (VEC_empty(static_tracepoint_marker_p, markers))
9564 error (_("No known static tracepoint marker named %s"), marker_str);
9565
9566 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9567 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9568
9569 for (i = 0; i < sals.nelts; i++)
9570 {
9571 struct static_tracepoint_marker *marker;
9572
9573 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9574
9575 init_sal (&sals.sals[i]);
9576
9577 sals.sals[i] = find_pc_line (marker->address, 0);
9578 sals.sals[i].pc = marker->address;
9579
9580 release_static_tracepoint_marker (marker);
9581 }
9582
9583 do_cleanups (old_chain);
9584
9585 *arg_p = endp;
9586 return sals;
9587 }
9588
9589 /* Set a breakpoint. This function is shared between CLI and MI
9590 functions for setting a breakpoint. This function has two major
9591 modes of operations, selected by the PARSE_ARG parameter. If
9592 non-zero, the function will parse ARG, extracting location,
9593 condition, thread and extra string. Otherwise, ARG is just the
9594 breakpoint's location, with condition, thread, and extra string
9595 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9596 If INTERNAL is non-zero, the breakpoint number will be allocated
9597 from the internal breakpoint count. Returns true if any breakpoint
9598 was created; false otherwise. */
9599
9600 int
9601 create_breakpoint (struct gdbarch *gdbarch,
9602 char *arg, char *cond_string,
9603 int thread, char *extra_string,
9604 int parse_arg,
9605 int tempflag, enum bptype type_wanted,
9606 int ignore_count,
9607 enum auto_boolean pending_break_support,
9608 const struct breakpoint_ops *ops,
9609 int from_tty, int enabled, int internal,
9610 unsigned flags)
9611 {
9612 char *copy_arg = NULL;
9613 char *addr_start = arg;
9614 struct linespec_result canonical;
9615 struct cleanup *old_chain;
9616 struct cleanup *bkpt_chain = NULL;
9617 int pending = 0;
9618 int task = 0;
9619 int prev_bkpt_count = breakpoint_count;
9620
9621 gdb_assert (ops != NULL);
9622
9623 init_linespec_result (&canonical);
9624
9625 TRY
9626 {
9627 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9628 addr_start, &copy_arg);
9629 }
9630 CATCH (e, RETURN_MASK_ERROR)
9631 {
9632 /* If caller is interested in rc value from parse, set
9633 value. */
9634 if (e.error == NOT_FOUND_ERROR)
9635 {
9636 /* If pending breakpoint support is turned off, throw
9637 error. */
9638
9639 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9640 throw_exception (e);
9641
9642 exception_print (gdb_stderr, e);
9643
9644 /* If pending breakpoint support is auto query and the user
9645 selects no, then simply return the error code. */
9646 if (pending_break_support == AUTO_BOOLEAN_AUTO
9647 && !nquery (_("Make %s pending on future shared library load? "),
9648 bptype_string (type_wanted)))
9649 return 0;
9650
9651 /* At this point, either the user was queried about setting
9652 a pending breakpoint and selected yes, or pending
9653 breakpoint behavior is on and thus a pending breakpoint
9654 is defaulted on behalf of the user. */
9655 {
9656 struct linespec_sals lsal;
9657
9658 copy_arg = xstrdup (addr_start);
9659 lsal.canonical = xstrdup (copy_arg);
9660 lsal.sals.nelts = 1;
9661 lsal.sals.sals = XNEW (struct symtab_and_line);
9662 init_sal (&lsal.sals.sals[0]);
9663 pending = 1;
9664 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9665 }
9666 }
9667 else
9668 throw_exception (e);
9669 }
9670 END_CATCH
9671
9672 if (VEC_empty (linespec_sals, canonical.sals))
9673 return 0;
9674
9675 /* Create a chain of things that always need to be cleaned up. */
9676 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9677
9678 /* ----------------------------- SNIP -----------------------------
9679 Anything added to the cleanup chain beyond this point is assumed
9680 to be part of a breakpoint. If the breakpoint create succeeds
9681 then the memory is not reclaimed. */
9682 bkpt_chain = make_cleanup (null_cleanup, 0);
9683
9684 /* Resolve all line numbers to PC's and verify that the addresses
9685 are ok for the target. */
9686 if (!pending)
9687 {
9688 int ix;
9689 struct linespec_sals *iter;
9690
9691 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9692 breakpoint_sals_to_pc (&iter->sals);
9693 }
9694
9695 /* Fast tracepoints may have additional restrictions on location. */
9696 if (!pending && type_wanted == bp_fast_tracepoint)
9697 {
9698 int ix;
9699 struct linespec_sals *iter;
9700
9701 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9702 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9703 }
9704
9705 /* Verify that condition can be parsed, before setting any
9706 breakpoints. Allocate a separate condition expression for each
9707 breakpoint. */
9708 if (!pending)
9709 {
9710 if (parse_arg)
9711 {
9712 char *rest;
9713 struct linespec_sals *lsal;
9714
9715 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9716
9717 /* Here we only parse 'arg' to separate condition
9718 from thread number, so parsing in context of first
9719 sal is OK. When setting the breakpoint we'll
9720 re-parse it in context of each sal. */
9721
9722 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9723 &thread, &task, &rest);
9724 if (cond_string)
9725 make_cleanup (xfree, cond_string);
9726 if (rest)
9727 make_cleanup (xfree, rest);
9728 if (rest)
9729 extra_string = rest;
9730 }
9731 else
9732 {
9733 if (*arg != '\0')
9734 error (_("Garbage '%s' at end of location"), arg);
9735
9736 /* Create a private copy of condition string. */
9737 if (cond_string)
9738 {
9739 cond_string = xstrdup (cond_string);
9740 make_cleanup (xfree, cond_string);
9741 }
9742 /* Create a private copy of any extra string. */
9743 if (extra_string)
9744 {
9745 extra_string = xstrdup (extra_string);
9746 make_cleanup (xfree, extra_string);
9747 }
9748 }
9749
9750 ops->create_breakpoints_sal (gdbarch, &canonical,
9751 cond_string, extra_string, type_wanted,
9752 tempflag ? disp_del : disp_donttouch,
9753 thread, task, ignore_count, ops,
9754 from_tty, enabled, internal, flags);
9755 }
9756 else
9757 {
9758 struct breakpoint *b;
9759
9760 make_cleanup (xfree, copy_arg);
9761
9762 if (is_tracepoint_type (type_wanted))
9763 {
9764 struct tracepoint *t;
9765
9766 t = XCNEW (struct tracepoint);
9767 b = &t->base;
9768 }
9769 else
9770 b = XNEW (struct breakpoint);
9771
9772 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9773
9774 b->addr_string = copy_arg;
9775 if (parse_arg)
9776 b->cond_string = NULL;
9777 else
9778 {
9779 /* Create a private copy of condition string. */
9780 if (cond_string)
9781 {
9782 cond_string = xstrdup (cond_string);
9783 make_cleanup (xfree, cond_string);
9784 }
9785 b->cond_string = cond_string;
9786 b->thread = thread;
9787 }
9788 b->extra_string = NULL;
9789 b->ignore_count = ignore_count;
9790 b->disposition = tempflag ? disp_del : disp_donttouch;
9791 b->condition_not_parsed = 1;
9792 b->enable_state = enabled ? bp_enabled : bp_disabled;
9793 if ((type_wanted != bp_breakpoint
9794 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9795 b->pspace = current_program_space;
9796
9797 install_breakpoint (internal, b, 0);
9798 }
9799
9800 if (VEC_length (linespec_sals, canonical.sals) > 1)
9801 {
9802 warning (_("Multiple breakpoints were set.\nUse the "
9803 "\"delete\" command to delete unwanted breakpoints."));
9804 prev_breakpoint_count = prev_bkpt_count;
9805 }
9806
9807 /* That's it. Discard the cleanups for data inserted into the
9808 breakpoint. */
9809 discard_cleanups (bkpt_chain);
9810 /* But cleanup everything else. */
9811 do_cleanups (old_chain);
9812
9813 /* error call may happen here - have BKPT_CHAIN already discarded. */
9814 update_global_location_list (UGLL_MAY_INSERT);
9815
9816 return 1;
9817 }
9818
9819 /* Set a breakpoint.
9820 ARG is a string describing breakpoint address,
9821 condition, and thread.
9822 FLAG specifies if a breakpoint is hardware on,
9823 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9824 and BP_TEMPFLAG. */
9825
9826 static void
9827 break_command_1 (char *arg, int flag, int from_tty)
9828 {
9829 int tempflag = flag & BP_TEMPFLAG;
9830 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9831 ? bp_hardware_breakpoint
9832 : bp_breakpoint);
9833 struct breakpoint_ops *ops;
9834 const char *arg_cp = arg;
9835
9836 /* Matching breakpoints on probes. */
9837 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
9838 ops = &bkpt_probe_breakpoint_ops;
9839 else
9840 ops = &bkpt_breakpoint_ops;
9841
9842 create_breakpoint (get_current_arch (),
9843 arg,
9844 NULL, 0, NULL, 1 /* parse arg */,
9845 tempflag, type_wanted,
9846 0 /* Ignore count */,
9847 pending_break_support,
9848 ops,
9849 from_tty,
9850 1 /* enabled */,
9851 0 /* internal */,
9852 0);
9853 }
9854
9855 /* Helper function for break_command_1 and disassemble_command. */
9856
9857 void
9858 resolve_sal_pc (struct symtab_and_line *sal)
9859 {
9860 CORE_ADDR pc;
9861
9862 if (sal->pc == 0 && sal->symtab != NULL)
9863 {
9864 if (!find_line_pc (sal->symtab, sal->line, &pc))
9865 error (_("No line %d in file \"%s\"."),
9866 sal->line, symtab_to_filename_for_display (sal->symtab));
9867 sal->pc = pc;
9868
9869 /* If this SAL corresponds to a breakpoint inserted using a line
9870 number, then skip the function prologue if necessary. */
9871 if (sal->explicit_line)
9872 skip_prologue_sal (sal);
9873 }
9874
9875 if (sal->section == 0 && sal->symtab != NULL)
9876 {
9877 const struct blockvector *bv;
9878 const struct block *b;
9879 struct symbol *sym;
9880
9881 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9882 SYMTAB_COMPUNIT (sal->symtab));
9883 if (bv != NULL)
9884 {
9885 sym = block_linkage_function (b);
9886 if (sym != NULL)
9887 {
9888 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9889 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9890 sym);
9891 }
9892 else
9893 {
9894 /* It really is worthwhile to have the section, so we'll
9895 just have to look harder. This case can be executed
9896 if we have line numbers but no functions (as can
9897 happen in assembly source). */
9898
9899 struct bound_minimal_symbol msym;
9900 struct cleanup *old_chain = save_current_space_and_thread ();
9901
9902 switch_to_program_space_and_thread (sal->pspace);
9903
9904 msym = lookup_minimal_symbol_by_pc (sal->pc);
9905 if (msym.minsym)
9906 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9907
9908 do_cleanups (old_chain);
9909 }
9910 }
9911 }
9912 }
9913
9914 void
9915 break_command (char *arg, int from_tty)
9916 {
9917 break_command_1 (arg, 0, from_tty);
9918 }
9919
9920 void
9921 tbreak_command (char *arg, int from_tty)
9922 {
9923 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9924 }
9925
9926 static void
9927 hbreak_command (char *arg, int from_tty)
9928 {
9929 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9930 }
9931
9932 static void
9933 thbreak_command (char *arg, int from_tty)
9934 {
9935 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9936 }
9937
9938 static void
9939 stop_command (char *arg, int from_tty)
9940 {
9941 printf_filtered (_("Specify the type of breakpoint to set.\n\
9942 Usage: stop in <function | address>\n\
9943 stop at <line>\n"));
9944 }
9945
9946 static void
9947 stopin_command (char *arg, int from_tty)
9948 {
9949 int badInput = 0;
9950
9951 if (arg == (char *) NULL)
9952 badInput = 1;
9953 else if (*arg != '*')
9954 {
9955 char *argptr = arg;
9956 int hasColon = 0;
9957
9958 /* Look for a ':'. If this is a line number specification, then
9959 say it is bad, otherwise, it should be an address or
9960 function/method name. */
9961 while (*argptr && !hasColon)
9962 {
9963 hasColon = (*argptr == ':');
9964 argptr++;
9965 }
9966
9967 if (hasColon)
9968 badInput = (*argptr != ':'); /* Not a class::method */
9969 else
9970 badInput = isdigit (*arg); /* a simple line number */
9971 }
9972
9973 if (badInput)
9974 printf_filtered (_("Usage: stop in <function | address>\n"));
9975 else
9976 break_command_1 (arg, 0, from_tty);
9977 }
9978
9979 static void
9980 stopat_command (char *arg, int from_tty)
9981 {
9982 int badInput = 0;
9983
9984 if (arg == (char *) NULL || *arg == '*') /* no line number */
9985 badInput = 1;
9986 else
9987 {
9988 char *argptr = arg;
9989 int hasColon = 0;
9990
9991 /* Look for a ':'. If there is a '::' then get out, otherwise
9992 it is probably a line number. */
9993 while (*argptr && !hasColon)
9994 {
9995 hasColon = (*argptr == ':');
9996 argptr++;
9997 }
9998
9999 if (hasColon)
10000 badInput = (*argptr == ':'); /* we have class::method */
10001 else
10002 badInput = !isdigit (*arg); /* not a line number */
10003 }
10004
10005 if (badInput)
10006 printf_filtered (_("Usage: stop at <line>\n"));
10007 else
10008 break_command_1 (arg, 0, from_tty);
10009 }
10010
10011 /* The dynamic printf command is mostly like a regular breakpoint, but
10012 with a prewired command list consisting of a single output command,
10013 built from extra arguments supplied on the dprintf command
10014 line. */
10015
10016 static void
10017 dprintf_command (char *arg, int from_tty)
10018 {
10019 create_breakpoint (get_current_arch (),
10020 arg,
10021 NULL, 0, NULL, 1 /* parse arg */,
10022 0, bp_dprintf,
10023 0 /* Ignore count */,
10024 pending_break_support,
10025 &dprintf_breakpoint_ops,
10026 from_tty,
10027 1 /* enabled */,
10028 0 /* internal */,
10029 0);
10030 }
10031
10032 static void
10033 agent_printf_command (char *arg, int from_tty)
10034 {
10035 error (_("May only run agent-printf on the target"));
10036 }
10037
10038 /* Implement the "breakpoint_hit" breakpoint_ops method for
10039 ranged breakpoints. */
10040
10041 static int
10042 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10043 struct address_space *aspace,
10044 CORE_ADDR bp_addr,
10045 const struct target_waitstatus *ws)
10046 {
10047 if (ws->kind != TARGET_WAITKIND_STOPPED
10048 || ws->value.sig != GDB_SIGNAL_TRAP)
10049 return 0;
10050
10051 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10052 bl->length, aspace, bp_addr);
10053 }
10054
10055 /* Implement the "resources_needed" breakpoint_ops method for
10056 ranged breakpoints. */
10057
10058 static int
10059 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10060 {
10061 return target_ranged_break_num_registers ();
10062 }
10063
10064 /* Implement the "print_it" breakpoint_ops method for
10065 ranged breakpoints. */
10066
10067 static enum print_stop_action
10068 print_it_ranged_breakpoint (bpstat bs)
10069 {
10070 struct breakpoint *b = bs->breakpoint_at;
10071 struct bp_location *bl = b->loc;
10072 struct ui_out *uiout = current_uiout;
10073
10074 gdb_assert (b->type == bp_hardware_breakpoint);
10075
10076 /* Ranged breakpoints have only one location. */
10077 gdb_assert (bl && bl->next == NULL);
10078
10079 annotate_breakpoint (b->number);
10080 if (b->disposition == disp_del)
10081 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
10082 else
10083 ui_out_text (uiout, "\nRanged breakpoint ");
10084 if (ui_out_is_mi_like_p (uiout))
10085 {
10086 ui_out_field_string (uiout, "reason",
10087 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10088 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10089 }
10090 ui_out_field_int (uiout, "bkptno", b->number);
10091 ui_out_text (uiout, ", ");
10092
10093 return PRINT_SRC_AND_LOC;
10094 }
10095
10096 /* Implement the "print_one" breakpoint_ops method for
10097 ranged breakpoints. */
10098
10099 static void
10100 print_one_ranged_breakpoint (struct breakpoint *b,
10101 struct bp_location **last_loc)
10102 {
10103 struct bp_location *bl = b->loc;
10104 struct value_print_options opts;
10105 struct ui_out *uiout = current_uiout;
10106
10107 /* Ranged breakpoints have only one location. */
10108 gdb_assert (bl && bl->next == NULL);
10109
10110 get_user_print_options (&opts);
10111
10112 if (opts.addressprint)
10113 /* We don't print the address range here, it will be printed later
10114 by print_one_detail_ranged_breakpoint. */
10115 ui_out_field_skip (uiout, "addr");
10116 annotate_field (5);
10117 print_breakpoint_location (b, bl);
10118 *last_loc = bl;
10119 }
10120
10121 /* Implement the "print_one_detail" breakpoint_ops method for
10122 ranged breakpoints. */
10123
10124 static void
10125 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10126 struct ui_out *uiout)
10127 {
10128 CORE_ADDR address_start, address_end;
10129 struct bp_location *bl = b->loc;
10130 struct ui_file *stb = mem_fileopen ();
10131 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10132
10133 gdb_assert (bl);
10134
10135 address_start = bl->address;
10136 address_end = address_start + bl->length - 1;
10137
10138 ui_out_text (uiout, "\taddress range: ");
10139 fprintf_unfiltered (stb, "[%s, %s]",
10140 print_core_address (bl->gdbarch, address_start),
10141 print_core_address (bl->gdbarch, address_end));
10142 ui_out_field_stream (uiout, "addr", stb);
10143 ui_out_text (uiout, "\n");
10144
10145 do_cleanups (cleanup);
10146 }
10147
10148 /* Implement the "print_mention" breakpoint_ops method for
10149 ranged breakpoints. */
10150
10151 static void
10152 print_mention_ranged_breakpoint (struct breakpoint *b)
10153 {
10154 struct bp_location *bl = b->loc;
10155 struct ui_out *uiout = current_uiout;
10156
10157 gdb_assert (bl);
10158 gdb_assert (b->type == bp_hardware_breakpoint);
10159
10160 if (ui_out_is_mi_like_p (uiout))
10161 return;
10162
10163 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10164 b->number, paddress (bl->gdbarch, bl->address),
10165 paddress (bl->gdbarch, bl->address + bl->length - 1));
10166 }
10167
10168 /* Implement the "print_recreate" breakpoint_ops method for
10169 ranged breakpoints. */
10170
10171 static void
10172 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10173 {
10174 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10175 b->addr_string_range_end);
10176 print_recreate_thread (b, fp);
10177 }
10178
10179 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10180
10181 static struct breakpoint_ops ranged_breakpoint_ops;
10182
10183 /* Find the address where the end of the breakpoint range should be
10184 placed, given the SAL of the end of the range. This is so that if
10185 the user provides a line number, the end of the range is set to the
10186 last instruction of the given line. */
10187
10188 static CORE_ADDR
10189 find_breakpoint_range_end (struct symtab_and_line sal)
10190 {
10191 CORE_ADDR end;
10192
10193 /* If the user provided a PC value, use it. Otherwise,
10194 find the address of the end of the given location. */
10195 if (sal.explicit_pc)
10196 end = sal.pc;
10197 else
10198 {
10199 int ret;
10200 CORE_ADDR start;
10201
10202 ret = find_line_pc_range (sal, &start, &end);
10203 if (!ret)
10204 error (_("Could not find location of the end of the range."));
10205
10206 /* find_line_pc_range returns the start of the next line. */
10207 end--;
10208 }
10209
10210 return end;
10211 }
10212
10213 /* Implement the "break-range" CLI command. */
10214
10215 static void
10216 break_range_command (char *arg, int from_tty)
10217 {
10218 char *arg_start, *addr_string_start, *addr_string_end;
10219 struct linespec_result canonical_start, canonical_end;
10220 int bp_count, can_use_bp, length;
10221 CORE_ADDR end;
10222 struct breakpoint *b;
10223 struct symtab_and_line sal_start, sal_end;
10224 struct cleanup *cleanup_bkpt;
10225 struct linespec_sals *lsal_start, *lsal_end;
10226
10227 /* We don't support software ranged breakpoints. */
10228 if (target_ranged_break_num_registers () < 0)
10229 error (_("This target does not support hardware ranged breakpoints."));
10230
10231 bp_count = hw_breakpoint_used_count ();
10232 bp_count += target_ranged_break_num_registers ();
10233 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10234 bp_count, 0);
10235 if (can_use_bp < 0)
10236 error (_("Hardware breakpoints used exceeds limit."));
10237
10238 arg = skip_spaces (arg);
10239 if (arg == NULL || arg[0] == '\0')
10240 error(_("No address range specified."));
10241
10242 init_linespec_result (&canonical_start);
10243
10244 arg_start = arg;
10245 parse_breakpoint_sals (&arg, &canonical_start);
10246
10247 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10248
10249 if (arg[0] != ',')
10250 error (_("Too few arguments."));
10251 else if (VEC_empty (linespec_sals, canonical_start.sals))
10252 error (_("Could not find location of the beginning of the range."));
10253
10254 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10255
10256 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10257 || lsal_start->sals.nelts != 1)
10258 error (_("Cannot create a ranged breakpoint with multiple locations."));
10259
10260 sal_start = lsal_start->sals.sals[0];
10261 addr_string_start = savestring (arg_start, arg - arg_start);
10262 make_cleanup (xfree, addr_string_start);
10263
10264 arg++; /* Skip the comma. */
10265 arg = skip_spaces (arg);
10266
10267 /* Parse the end location. */
10268
10269 init_linespec_result (&canonical_end);
10270 arg_start = arg;
10271
10272 /* We call decode_line_full directly here instead of using
10273 parse_breakpoint_sals because we need to specify the start location's
10274 symtab and line as the default symtab and line for the end of the
10275 range. This makes it possible to have ranges like "foo.c:27, +14",
10276 where +14 means 14 lines from the start location. */
10277 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10278 sal_start.symtab, sal_start.line,
10279 &canonical_end, NULL, NULL);
10280
10281 make_cleanup_destroy_linespec_result (&canonical_end);
10282
10283 if (VEC_empty (linespec_sals, canonical_end.sals))
10284 error (_("Could not find location of the end of the range."));
10285
10286 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10287 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10288 || lsal_end->sals.nelts != 1)
10289 error (_("Cannot create a ranged breakpoint with multiple locations."));
10290
10291 sal_end = lsal_end->sals.sals[0];
10292 addr_string_end = savestring (arg_start, arg - arg_start);
10293 make_cleanup (xfree, addr_string_end);
10294
10295 end = find_breakpoint_range_end (sal_end);
10296 if (sal_start.pc > end)
10297 error (_("Invalid address range, end precedes start."));
10298
10299 length = end - sal_start.pc + 1;
10300 if (length < 0)
10301 /* Length overflowed. */
10302 error (_("Address range too large."));
10303 else if (length == 1)
10304 {
10305 /* This range is simple enough to be handled by
10306 the `hbreak' command. */
10307 hbreak_command (addr_string_start, 1);
10308
10309 do_cleanups (cleanup_bkpt);
10310
10311 return;
10312 }
10313
10314 /* Now set up the breakpoint. */
10315 b = set_raw_breakpoint (get_current_arch (), sal_start,
10316 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10317 set_breakpoint_count (breakpoint_count + 1);
10318 b->number = breakpoint_count;
10319 b->disposition = disp_donttouch;
10320 b->addr_string = xstrdup (addr_string_start);
10321 b->addr_string_range_end = xstrdup (addr_string_end);
10322 b->loc->length = length;
10323
10324 do_cleanups (cleanup_bkpt);
10325
10326 mention (b);
10327 observer_notify_breakpoint_created (b);
10328 update_global_location_list (UGLL_MAY_INSERT);
10329 }
10330
10331 /* Return non-zero if EXP is verified as constant. Returned zero
10332 means EXP is variable. Also the constant detection may fail for
10333 some constant expressions and in such case still falsely return
10334 zero. */
10335
10336 static int
10337 watchpoint_exp_is_const (const struct expression *exp)
10338 {
10339 int i = exp->nelts;
10340
10341 while (i > 0)
10342 {
10343 int oplenp, argsp;
10344
10345 /* We are only interested in the descriptor of each element. */
10346 operator_length (exp, i, &oplenp, &argsp);
10347 i -= oplenp;
10348
10349 switch (exp->elts[i].opcode)
10350 {
10351 case BINOP_ADD:
10352 case BINOP_SUB:
10353 case BINOP_MUL:
10354 case BINOP_DIV:
10355 case BINOP_REM:
10356 case BINOP_MOD:
10357 case BINOP_LSH:
10358 case BINOP_RSH:
10359 case BINOP_LOGICAL_AND:
10360 case BINOP_LOGICAL_OR:
10361 case BINOP_BITWISE_AND:
10362 case BINOP_BITWISE_IOR:
10363 case BINOP_BITWISE_XOR:
10364 case BINOP_EQUAL:
10365 case BINOP_NOTEQUAL:
10366 case BINOP_LESS:
10367 case BINOP_GTR:
10368 case BINOP_LEQ:
10369 case BINOP_GEQ:
10370 case BINOP_REPEAT:
10371 case BINOP_COMMA:
10372 case BINOP_EXP:
10373 case BINOP_MIN:
10374 case BINOP_MAX:
10375 case BINOP_INTDIV:
10376 case BINOP_CONCAT:
10377 case TERNOP_COND:
10378 case TERNOP_SLICE:
10379
10380 case OP_LONG:
10381 case OP_DOUBLE:
10382 case OP_DECFLOAT:
10383 case OP_LAST:
10384 case OP_COMPLEX:
10385 case OP_STRING:
10386 case OP_ARRAY:
10387 case OP_TYPE:
10388 case OP_TYPEOF:
10389 case OP_DECLTYPE:
10390 case OP_TYPEID:
10391 case OP_NAME:
10392 case OP_OBJC_NSSTRING:
10393
10394 case UNOP_NEG:
10395 case UNOP_LOGICAL_NOT:
10396 case UNOP_COMPLEMENT:
10397 case UNOP_ADDR:
10398 case UNOP_HIGH:
10399 case UNOP_CAST:
10400
10401 case UNOP_CAST_TYPE:
10402 case UNOP_REINTERPRET_CAST:
10403 case UNOP_DYNAMIC_CAST:
10404 /* Unary, binary and ternary operators: We have to check
10405 their operands. If they are constant, then so is the
10406 result of that operation. For instance, if A and B are
10407 determined to be constants, then so is "A + B".
10408
10409 UNOP_IND is one exception to the rule above, because the
10410 value of *ADDR is not necessarily a constant, even when
10411 ADDR is. */
10412 break;
10413
10414 case OP_VAR_VALUE:
10415 /* Check whether the associated symbol is a constant.
10416
10417 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10418 possible that a buggy compiler could mark a variable as
10419 constant even when it is not, and TYPE_CONST would return
10420 true in this case, while SYMBOL_CLASS wouldn't.
10421
10422 We also have to check for function symbols because they
10423 are always constant. */
10424 {
10425 struct symbol *s = exp->elts[i + 2].symbol;
10426
10427 if (SYMBOL_CLASS (s) != LOC_BLOCK
10428 && SYMBOL_CLASS (s) != LOC_CONST
10429 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10430 return 0;
10431 break;
10432 }
10433
10434 /* The default action is to return 0 because we are using
10435 the optimistic approach here: If we don't know something,
10436 then it is not a constant. */
10437 default:
10438 return 0;
10439 }
10440 }
10441
10442 return 1;
10443 }
10444
10445 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10446
10447 static void
10448 dtor_watchpoint (struct breakpoint *self)
10449 {
10450 struct watchpoint *w = (struct watchpoint *) self;
10451
10452 xfree (w->cond_exp);
10453 xfree (w->exp);
10454 xfree (w->exp_string);
10455 xfree (w->exp_string_reparse);
10456 value_free (w->val);
10457
10458 base_breakpoint_ops.dtor (self);
10459 }
10460
10461 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10462
10463 static void
10464 re_set_watchpoint (struct breakpoint *b)
10465 {
10466 struct watchpoint *w = (struct watchpoint *) b;
10467
10468 /* Watchpoint can be either on expression using entirely global
10469 variables, or it can be on local variables.
10470
10471 Watchpoints of the first kind are never auto-deleted, and even
10472 persist across program restarts. Since they can use variables
10473 from shared libraries, we need to reparse expression as libraries
10474 are loaded and unloaded.
10475
10476 Watchpoints on local variables can also change meaning as result
10477 of solib event. For example, if a watchpoint uses both a local
10478 and a global variables in expression, it's a local watchpoint,
10479 but unloading of a shared library will make the expression
10480 invalid. This is not a very common use case, but we still
10481 re-evaluate expression, to avoid surprises to the user.
10482
10483 Note that for local watchpoints, we re-evaluate it only if
10484 watchpoints frame id is still valid. If it's not, it means the
10485 watchpoint is out of scope and will be deleted soon. In fact,
10486 I'm not sure we'll ever be called in this case.
10487
10488 If a local watchpoint's frame id is still valid, then
10489 w->exp_valid_block is likewise valid, and we can safely use it.
10490
10491 Don't do anything about disabled watchpoints, since they will be
10492 reevaluated again when enabled. */
10493 update_watchpoint (w, 1 /* reparse */);
10494 }
10495
10496 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10497
10498 static int
10499 insert_watchpoint (struct bp_location *bl)
10500 {
10501 struct watchpoint *w = (struct watchpoint *) bl->owner;
10502 int length = w->exact ? 1 : bl->length;
10503
10504 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10505 w->cond_exp);
10506 }
10507
10508 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10509
10510 static int
10511 remove_watchpoint (struct bp_location *bl)
10512 {
10513 struct watchpoint *w = (struct watchpoint *) bl->owner;
10514 int length = w->exact ? 1 : bl->length;
10515
10516 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10517 w->cond_exp);
10518 }
10519
10520 static int
10521 breakpoint_hit_watchpoint (const struct bp_location *bl,
10522 struct address_space *aspace, CORE_ADDR bp_addr,
10523 const struct target_waitstatus *ws)
10524 {
10525 struct breakpoint *b = bl->owner;
10526 struct watchpoint *w = (struct watchpoint *) b;
10527
10528 /* Continuable hardware watchpoints are treated as non-existent if the
10529 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10530 some data address). Otherwise gdb won't stop on a break instruction
10531 in the code (not from a breakpoint) when a hardware watchpoint has
10532 been defined. Also skip watchpoints which we know did not trigger
10533 (did not match the data address). */
10534 if (is_hardware_watchpoint (b)
10535 && w->watchpoint_triggered == watch_triggered_no)
10536 return 0;
10537
10538 return 1;
10539 }
10540
10541 static void
10542 check_status_watchpoint (bpstat bs)
10543 {
10544 gdb_assert (is_watchpoint (bs->breakpoint_at));
10545
10546 bpstat_check_watchpoint (bs);
10547 }
10548
10549 /* Implement the "resources_needed" breakpoint_ops method for
10550 hardware watchpoints. */
10551
10552 static int
10553 resources_needed_watchpoint (const struct bp_location *bl)
10554 {
10555 struct watchpoint *w = (struct watchpoint *) bl->owner;
10556 int length = w->exact? 1 : bl->length;
10557
10558 return target_region_ok_for_hw_watchpoint (bl->address, length);
10559 }
10560
10561 /* Implement the "works_in_software_mode" breakpoint_ops method for
10562 hardware watchpoints. */
10563
10564 static int
10565 works_in_software_mode_watchpoint (const struct breakpoint *b)
10566 {
10567 /* Read and access watchpoints only work with hardware support. */
10568 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10569 }
10570
10571 static enum print_stop_action
10572 print_it_watchpoint (bpstat bs)
10573 {
10574 struct cleanup *old_chain;
10575 struct breakpoint *b;
10576 struct ui_file *stb;
10577 enum print_stop_action result;
10578 struct watchpoint *w;
10579 struct ui_out *uiout = current_uiout;
10580
10581 gdb_assert (bs->bp_location_at != NULL);
10582
10583 b = bs->breakpoint_at;
10584 w = (struct watchpoint *) b;
10585
10586 stb = mem_fileopen ();
10587 old_chain = make_cleanup_ui_file_delete (stb);
10588
10589 switch (b->type)
10590 {
10591 case bp_watchpoint:
10592 case bp_hardware_watchpoint:
10593 annotate_watchpoint (b->number);
10594 if (ui_out_is_mi_like_p (uiout))
10595 ui_out_field_string
10596 (uiout, "reason",
10597 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10598 mention (b);
10599 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10600 ui_out_text (uiout, "\nOld value = ");
10601 watchpoint_value_print (bs->old_val, stb);
10602 ui_out_field_stream (uiout, "old", stb);
10603 ui_out_text (uiout, "\nNew value = ");
10604 watchpoint_value_print (w->val, stb);
10605 ui_out_field_stream (uiout, "new", stb);
10606 ui_out_text (uiout, "\n");
10607 /* More than one watchpoint may have been triggered. */
10608 result = PRINT_UNKNOWN;
10609 break;
10610
10611 case bp_read_watchpoint:
10612 if (ui_out_is_mi_like_p (uiout))
10613 ui_out_field_string
10614 (uiout, "reason",
10615 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10616 mention (b);
10617 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10618 ui_out_text (uiout, "\nValue = ");
10619 watchpoint_value_print (w->val, stb);
10620 ui_out_field_stream (uiout, "value", stb);
10621 ui_out_text (uiout, "\n");
10622 result = PRINT_UNKNOWN;
10623 break;
10624
10625 case bp_access_watchpoint:
10626 if (bs->old_val != NULL)
10627 {
10628 annotate_watchpoint (b->number);
10629 if (ui_out_is_mi_like_p (uiout))
10630 ui_out_field_string
10631 (uiout, "reason",
10632 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10633 mention (b);
10634 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10635 ui_out_text (uiout, "\nOld value = ");
10636 watchpoint_value_print (bs->old_val, stb);
10637 ui_out_field_stream (uiout, "old", stb);
10638 ui_out_text (uiout, "\nNew value = ");
10639 }
10640 else
10641 {
10642 mention (b);
10643 if (ui_out_is_mi_like_p (uiout))
10644 ui_out_field_string
10645 (uiout, "reason",
10646 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10647 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10648 ui_out_text (uiout, "\nValue = ");
10649 }
10650 watchpoint_value_print (w->val, stb);
10651 ui_out_field_stream (uiout, "new", stb);
10652 ui_out_text (uiout, "\n");
10653 result = PRINT_UNKNOWN;
10654 break;
10655 default:
10656 result = PRINT_UNKNOWN;
10657 }
10658
10659 do_cleanups (old_chain);
10660 return result;
10661 }
10662
10663 /* Implement the "print_mention" breakpoint_ops method for hardware
10664 watchpoints. */
10665
10666 static void
10667 print_mention_watchpoint (struct breakpoint *b)
10668 {
10669 struct cleanup *ui_out_chain;
10670 struct watchpoint *w = (struct watchpoint *) b;
10671 struct ui_out *uiout = current_uiout;
10672
10673 switch (b->type)
10674 {
10675 case bp_watchpoint:
10676 ui_out_text (uiout, "Watchpoint ");
10677 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10678 break;
10679 case bp_hardware_watchpoint:
10680 ui_out_text (uiout, "Hardware watchpoint ");
10681 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10682 break;
10683 case bp_read_watchpoint:
10684 ui_out_text (uiout, "Hardware read watchpoint ");
10685 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10686 break;
10687 case bp_access_watchpoint:
10688 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10689 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10690 break;
10691 default:
10692 internal_error (__FILE__, __LINE__,
10693 _("Invalid hardware watchpoint type."));
10694 }
10695
10696 ui_out_field_int (uiout, "number", b->number);
10697 ui_out_text (uiout, ": ");
10698 ui_out_field_string (uiout, "exp", w->exp_string);
10699 do_cleanups (ui_out_chain);
10700 }
10701
10702 /* Implement the "print_recreate" breakpoint_ops method for
10703 watchpoints. */
10704
10705 static void
10706 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10707 {
10708 struct watchpoint *w = (struct watchpoint *) b;
10709
10710 switch (b->type)
10711 {
10712 case bp_watchpoint:
10713 case bp_hardware_watchpoint:
10714 fprintf_unfiltered (fp, "watch");
10715 break;
10716 case bp_read_watchpoint:
10717 fprintf_unfiltered (fp, "rwatch");
10718 break;
10719 case bp_access_watchpoint:
10720 fprintf_unfiltered (fp, "awatch");
10721 break;
10722 default:
10723 internal_error (__FILE__, __LINE__,
10724 _("Invalid watchpoint type."));
10725 }
10726
10727 fprintf_unfiltered (fp, " %s", w->exp_string);
10728 print_recreate_thread (b, fp);
10729 }
10730
10731 /* Implement the "explains_signal" breakpoint_ops method for
10732 watchpoints. */
10733
10734 static int
10735 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10736 {
10737 /* A software watchpoint cannot cause a signal other than
10738 GDB_SIGNAL_TRAP. */
10739 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10740 return 0;
10741
10742 return 1;
10743 }
10744
10745 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10746
10747 static struct breakpoint_ops watchpoint_breakpoint_ops;
10748
10749 /* Implement the "insert" breakpoint_ops method for
10750 masked hardware watchpoints. */
10751
10752 static int
10753 insert_masked_watchpoint (struct bp_location *bl)
10754 {
10755 struct watchpoint *w = (struct watchpoint *) bl->owner;
10756
10757 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10758 bl->watchpoint_type);
10759 }
10760
10761 /* Implement the "remove" breakpoint_ops method for
10762 masked hardware watchpoints. */
10763
10764 static int
10765 remove_masked_watchpoint (struct bp_location *bl)
10766 {
10767 struct watchpoint *w = (struct watchpoint *) bl->owner;
10768
10769 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10770 bl->watchpoint_type);
10771 }
10772
10773 /* Implement the "resources_needed" breakpoint_ops method for
10774 masked hardware watchpoints. */
10775
10776 static int
10777 resources_needed_masked_watchpoint (const struct bp_location *bl)
10778 {
10779 struct watchpoint *w = (struct watchpoint *) bl->owner;
10780
10781 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10782 }
10783
10784 /* Implement the "works_in_software_mode" breakpoint_ops method for
10785 masked hardware watchpoints. */
10786
10787 static int
10788 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10789 {
10790 return 0;
10791 }
10792
10793 /* Implement the "print_it" breakpoint_ops method for
10794 masked hardware watchpoints. */
10795
10796 static enum print_stop_action
10797 print_it_masked_watchpoint (bpstat bs)
10798 {
10799 struct breakpoint *b = bs->breakpoint_at;
10800 struct ui_out *uiout = current_uiout;
10801
10802 /* Masked watchpoints have only one location. */
10803 gdb_assert (b->loc && b->loc->next == NULL);
10804
10805 switch (b->type)
10806 {
10807 case bp_hardware_watchpoint:
10808 annotate_watchpoint (b->number);
10809 if (ui_out_is_mi_like_p (uiout))
10810 ui_out_field_string
10811 (uiout, "reason",
10812 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10813 break;
10814
10815 case bp_read_watchpoint:
10816 if (ui_out_is_mi_like_p (uiout))
10817 ui_out_field_string
10818 (uiout, "reason",
10819 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10820 break;
10821
10822 case bp_access_watchpoint:
10823 if (ui_out_is_mi_like_p (uiout))
10824 ui_out_field_string
10825 (uiout, "reason",
10826 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10827 break;
10828 default:
10829 internal_error (__FILE__, __LINE__,
10830 _("Invalid hardware watchpoint type."));
10831 }
10832
10833 mention (b);
10834 ui_out_text (uiout, _("\n\
10835 Check the underlying instruction at PC for the memory\n\
10836 address and value which triggered this watchpoint.\n"));
10837 ui_out_text (uiout, "\n");
10838
10839 /* More than one watchpoint may have been triggered. */
10840 return PRINT_UNKNOWN;
10841 }
10842
10843 /* Implement the "print_one_detail" breakpoint_ops method for
10844 masked hardware watchpoints. */
10845
10846 static void
10847 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10848 struct ui_out *uiout)
10849 {
10850 struct watchpoint *w = (struct watchpoint *) b;
10851
10852 /* Masked watchpoints have only one location. */
10853 gdb_assert (b->loc && b->loc->next == NULL);
10854
10855 ui_out_text (uiout, "\tmask ");
10856 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
10857 ui_out_text (uiout, "\n");
10858 }
10859
10860 /* Implement the "print_mention" breakpoint_ops method for
10861 masked hardware watchpoints. */
10862
10863 static void
10864 print_mention_masked_watchpoint (struct breakpoint *b)
10865 {
10866 struct watchpoint *w = (struct watchpoint *) b;
10867 struct ui_out *uiout = current_uiout;
10868 struct cleanup *ui_out_chain;
10869
10870 switch (b->type)
10871 {
10872 case bp_hardware_watchpoint:
10873 ui_out_text (uiout, "Masked hardware watchpoint ");
10874 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10875 break;
10876 case bp_read_watchpoint:
10877 ui_out_text (uiout, "Masked hardware read watchpoint ");
10878 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10879 break;
10880 case bp_access_watchpoint:
10881 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
10882 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10883 break;
10884 default:
10885 internal_error (__FILE__, __LINE__,
10886 _("Invalid hardware watchpoint type."));
10887 }
10888
10889 ui_out_field_int (uiout, "number", b->number);
10890 ui_out_text (uiout, ": ");
10891 ui_out_field_string (uiout, "exp", w->exp_string);
10892 do_cleanups (ui_out_chain);
10893 }
10894
10895 /* Implement the "print_recreate" breakpoint_ops method for
10896 masked hardware watchpoints. */
10897
10898 static void
10899 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10900 {
10901 struct watchpoint *w = (struct watchpoint *) b;
10902 char tmp[40];
10903
10904 switch (b->type)
10905 {
10906 case bp_hardware_watchpoint:
10907 fprintf_unfiltered (fp, "watch");
10908 break;
10909 case bp_read_watchpoint:
10910 fprintf_unfiltered (fp, "rwatch");
10911 break;
10912 case bp_access_watchpoint:
10913 fprintf_unfiltered (fp, "awatch");
10914 break;
10915 default:
10916 internal_error (__FILE__, __LINE__,
10917 _("Invalid hardware watchpoint type."));
10918 }
10919
10920 sprintf_vma (tmp, w->hw_wp_mask);
10921 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10922 print_recreate_thread (b, fp);
10923 }
10924
10925 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10926
10927 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10928
10929 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10930
10931 static int
10932 is_masked_watchpoint (const struct breakpoint *b)
10933 {
10934 return b->ops == &masked_watchpoint_breakpoint_ops;
10935 }
10936
10937 /* accessflag: hw_write: watch write,
10938 hw_read: watch read,
10939 hw_access: watch access (read or write) */
10940 static void
10941 watch_command_1 (const char *arg, int accessflag, int from_tty,
10942 int just_location, int internal)
10943 {
10944 struct breakpoint *b, *scope_breakpoint = NULL;
10945 struct expression *exp;
10946 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10947 struct value *val, *mark, *result;
10948 int saved_bitpos = 0, saved_bitsize = 0;
10949 struct frame_info *frame;
10950 const char *exp_start = NULL;
10951 const char *exp_end = NULL;
10952 const char *tok, *end_tok;
10953 int toklen = -1;
10954 const char *cond_start = NULL;
10955 const char *cond_end = NULL;
10956 enum bptype bp_type;
10957 int thread = -1;
10958 int pc = 0;
10959 /* Flag to indicate whether we are going to use masks for
10960 the hardware watchpoint. */
10961 int use_mask = 0;
10962 CORE_ADDR mask = 0;
10963 struct watchpoint *w;
10964 char *expression;
10965 struct cleanup *back_to;
10966
10967 /* Make sure that we actually have parameters to parse. */
10968 if (arg != NULL && arg[0] != '\0')
10969 {
10970 const char *value_start;
10971
10972 exp_end = arg + strlen (arg);
10973
10974 /* Look for "parameter value" pairs at the end
10975 of the arguments string. */
10976 for (tok = exp_end - 1; tok > arg; tok--)
10977 {
10978 /* Skip whitespace at the end of the argument list. */
10979 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10980 tok--;
10981
10982 /* Find the beginning of the last token.
10983 This is the value of the parameter. */
10984 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10985 tok--;
10986 value_start = tok + 1;
10987
10988 /* Skip whitespace. */
10989 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10990 tok--;
10991
10992 end_tok = tok;
10993
10994 /* Find the beginning of the second to last token.
10995 This is the parameter itself. */
10996 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10997 tok--;
10998 tok++;
10999 toklen = end_tok - tok + 1;
11000
11001 if (toklen == 6 && startswith (tok, "thread"))
11002 {
11003 /* At this point we've found a "thread" token, which means
11004 the user is trying to set a watchpoint that triggers
11005 only in a specific thread. */
11006 char *endp;
11007
11008 if (thread != -1)
11009 error(_("You can specify only one thread."));
11010
11011 /* Extract the thread ID from the next token. */
11012 thread = strtol (value_start, &endp, 0);
11013
11014 /* Check if the user provided a valid numeric value for the
11015 thread ID. */
11016 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11017 error (_("Invalid thread ID specification %s."), value_start);
11018
11019 /* Check if the thread actually exists. */
11020 if (!valid_thread_id (thread))
11021 invalid_thread_id_error (thread);
11022 }
11023 else if (toklen == 4 && startswith (tok, "mask"))
11024 {
11025 /* We've found a "mask" token, which means the user wants to
11026 create a hardware watchpoint that is going to have the mask
11027 facility. */
11028 struct value *mask_value, *mark;
11029
11030 if (use_mask)
11031 error(_("You can specify only one mask."));
11032
11033 use_mask = just_location = 1;
11034
11035 mark = value_mark ();
11036 mask_value = parse_to_comma_and_eval (&value_start);
11037 mask = value_as_address (mask_value);
11038 value_free_to_mark (mark);
11039 }
11040 else
11041 /* We didn't recognize what we found. We should stop here. */
11042 break;
11043
11044 /* Truncate the string and get rid of the "parameter value" pair before
11045 the arguments string is parsed by the parse_exp_1 function. */
11046 exp_end = tok;
11047 }
11048 }
11049 else
11050 exp_end = arg;
11051
11052 /* Parse the rest of the arguments. From here on out, everything
11053 is in terms of a newly allocated string instead of the original
11054 ARG. */
11055 innermost_block = NULL;
11056 expression = savestring (arg, exp_end - arg);
11057 back_to = make_cleanup (xfree, expression);
11058 exp_start = arg = expression;
11059 exp = parse_exp_1 (&arg, 0, 0, 0);
11060 exp_end = arg;
11061 /* Remove trailing whitespace from the expression before saving it.
11062 This makes the eventual display of the expression string a bit
11063 prettier. */
11064 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11065 --exp_end;
11066
11067 /* Checking if the expression is not constant. */
11068 if (watchpoint_exp_is_const (exp))
11069 {
11070 int len;
11071
11072 len = exp_end - exp_start;
11073 while (len > 0 && isspace (exp_start[len - 1]))
11074 len--;
11075 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11076 }
11077
11078 exp_valid_block = innermost_block;
11079 mark = value_mark ();
11080 fetch_subexp_value (exp, &pc, &val, &result, NULL, just_location);
11081
11082 if (val != NULL && just_location)
11083 {
11084 saved_bitpos = value_bitpos (val);
11085 saved_bitsize = value_bitsize (val);
11086 }
11087
11088 if (just_location)
11089 {
11090 int ret;
11091
11092 exp_valid_block = NULL;
11093 val = value_addr (result);
11094 release_value (val);
11095 value_free_to_mark (mark);
11096
11097 if (use_mask)
11098 {
11099 ret = target_masked_watch_num_registers (value_as_address (val),
11100 mask);
11101 if (ret == -1)
11102 error (_("This target does not support masked watchpoints."));
11103 else if (ret == -2)
11104 error (_("Invalid mask or memory region."));
11105 }
11106 }
11107 else if (val != NULL)
11108 release_value (val);
11109
11110 tok = skip_spaces_const (arg);
11111 end_tok = skip_to_space_const (tok);
11112
11113 toklen = end_tok - tok;
11114 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11115 {
11116 struct expression *cond;
11117
11118 innermost_block = NULL;
11119 tok = cond_start = end_tok + 1;
11120 cond = parse_exp_1 (&tok, 0, 0, 0);
11121
11122 /* The watchpoint expression may not be local, but the condition
11123 may still be. E.g.: `watch global if local > 0'. */
11124 cond_exp_valid_block = innermost_block;
11125
11126 xfree (cond);
11127 cond_end = tok;
11128 }
11129 if (*tok)
11130 error (_("Junk at end of command."));
11131
11132 frame = block_innermost_frame (exp_valid_block);
11133
11134 /* If the expression is "local", then set up a "watchpoint scope"
11135 breakpoint at the point where we've left the scope of the watchpoint
11136 expression. Create the scope breakpoint before the watchpoint, so
11137 that we will encounter it first in bpstat_stop_status. */
11138 if (exp_valid_block && frame)
11139 {
11140 if (frame_id_p (frame_unwind_caller_id (frame)))
11141 {
11142 scope_breakpoint
11143 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11144 frame_unwind_caller_pc (frame),
11145 bp_watchpoint_scope,
11146 &momentary_breakpoint_ops);
11147
11148 scope_breakpoint->enable_state = bp_enabled;
11149
11150 /* Automatically delete the breakpoint when it hits. */
11151 scope_breakpoint->disposition = disp_del;
11152
11153 /* Only break in the proper frame (help with recursion). */
11154 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11155
11156 /* Set the address at which we will stop. */
11157 scope_breakpoint->loc->gdbarch
11158 = frame_unwind_caller_arch (frame);
11159 scope_breakpoint->loc->requested_address
11160 = frame_unwind_caller_pc (frame);
11161 scope_breakpoint->loc->address
11162 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11163 scope_breakpoint->loc->requested_address,
11164 scope_breakpoint->type);
11165 }
11166 }
11167
11168 /* Now set up the breakpoint. We create all watchpoints as hardware
11169 watchpoints here even if hardware watchpoints are turned off, a call
11170 to update_watchpoint later in this function will cause the type to
11171 drop back to bp_watchpoint (software watchpoint) if required. */
11172
11173 if (accessflag == hw_read)
11174 bp_type = bp_read_watchpoint;
11175 else if (accessflag == hw_access)
11176 bp_type = bp_access_watchpoint;
11177 else
11178 bp_type = bp_hardware_watchpoint;
11179
11180 w = XCNEW (struct watchpoint);
11181 b = &w->base;
11182 if (use_mask)
11183 init_raw_breakpoint_without_location (b, NULL, bp_type,
11184 &masked_watchpoint_breakpoint_ops);
11185 else
11186 init_raw_breakpoint_without_location (b, NULL, bp_type,
11187 &watchpoint_breakpoint_ops);
11188 b->thread = thread;
11189 b->disposition = disp_donttouch;
11190 b->pspace = current_program_space;
11191 w->exp = exp;
11192 w->exp_valid_block = exp_valid_block;
11193 w->cond_exp_valid_block = cond_exp_valid_block;
11194 if (just_location)
11195 {
11196 struct type *t = value_type (val);
11197 CORE_ADDR addr = value_as_address (val);
11198 char *name;
11199
11200 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11201 name = type_to_string (t);
11202
11203 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11204 core_addr_to_string (addr));
11205 xfree (name);
11206
11207 w->exp_string = xstrprintf ("-location %.*s",
11208 (int) (exp_end - exp_start), exp_start);
11209
11210 /* The above expression is in C. */
11211 b->language = language_c;
11212 }
11213 else
11214 w->exp_string = savestring (exp_start, exp_end - exp_start);
11215
11216 if (use_mask)
11217 {
11218 w->hw_wp_mask = mask;
11219 }
11220 else
11221 {
11222 w->val = val;
11223 w->val_bitpos = saved_bitpos;
11224 w->val_bitsize = saved_bitsize;
11225 w->val_valid = 1;
11226 }
11227
11228 if (cond_start)
11229 b->cond_string = savestring (cond_start, cond_end - cond_start);
11230 else
11231 b->cond_string = 0;
11232
11233 if (frame)
11234 {
11235 w->watchpoint_frame = get_frame_id (frame);
11236 w->watchpoint_thread = inferior_ptid;
11237 }
11238 else
11239 {
11240 w->watchpoint_frame = null_frame_id;
11241 w->watchpoint_thread = null_ptid;
11242 }
11243
11244 if (scope_breakpoint != NULL)
11245 {
11246 /* The scope breakpoint is related to the watchpoint. We will
11247 need to act on them together. */
11248 b->related_breakpoint = scope_breakpoint;
11249 scope_breakpoint->related_breakpoint = b;
11250 }
11251
11252 if (!just_location)
11253 value_free_to_mark (mark);
11254
11255 TRY
11256 {
11257 /* Finally update the new watchpoint. This creates the locations
11258 that should be inserted. */
11259 update_watchpoint (w, 1);
11260 }
11261 CATCH (e, RETURN_MASK_ALL)
11262 {
11263 delete_breakpoint (b);
11264 throw_exception (e);
11265 }
11266 END_CATCH
11267
11268 install_breakpoint (internal, b, 1);
11269 do_cleanups (back_to);
11270 }
11271
11272 /* Return count of debug registers needed to watch the given expression.
11273 If the watchpoint cannot be handled in hardware return zero. */
11274
11275 static int
11276 can_use_hardware_watchpoint (struct value *v)
11277 {
11278 int found_memory_cnt = 0;
11279 struct value *head = v;
11280
11281 /* Did the user specifically forbid us to use hardware watchpoints? */
11282 if (!can_use_hw_watchpoints)
11283 return 0;
11284
11285 /* Make sure that the value of the expression depends only upon
11286 memory contents, and values computed from them within GDB. If we
11287 find any register references or function calls, we can't use a
11288 hardware watchpoint.
11289
11290 The idea here is that evaluating an expression generates a series
11291 of values, one holding the value of every subexpression. (The
11292 expression a*b+c has five subexpressions: a, b, a*b, c, and
11293 a*b+c.) GDB's values hold almost enough information to establish
11294 the criteria given above --- they identify memory lvalues,
11295 register lvalues, computed values, etcetera. So we can evaluate
11296 the expression, and then scan the chain of values that leaves
11297 behind to decide whether we can detect any possible change to the
11298 expression's final value using only hardware watchpoints.
11299
11300 However, I don't think that the values returned by inferior
11301 function calls are special in any way. So this function may not
11302 notice that an expression involving an inferior function call
11303 can't be watched with hardware watchpoints. FIXME. */
11304 for (; v; v = value_next (v))
11305 {
11306 if (VALUE_LVAL (v) == lval_memory)
11307 {
11308 if (v != head && value_lazy (v))
11309 /* A lazy memory lvalue in the chain is one that GDB never
11310 needed to fetch; we either just used its address (e.g.,
11311 `a' in `a.b') or we never needed it at all (e.g., `a'
11312 in `a,b'). This doesn't apply to HEAD; if that is
11313 lazy then it was not readable, but watch it anyway. */
11314 ;
11315 else
11316 {
11317 /* Ahh, memory we actually used! Check if we can cover
11318 it with hardware watchpoints. */
11319 struct type *vtype = check_typedef (value_type (v));
11320
11321 /* We only watch structs and arrays if user asked for it
11322 explicitly, never if they just happen to appear in a
11323 middle of some value chain. */
11324 if (v == head
11325 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11326 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11327 {
11328 CORE_ADDR vaddr = value_address (v);
11329 int len;
11330 int num_regs;
11331
11332 len = (target_exact_watchpoints
11333 && is_scalar_type_recursive (vtype))?
11334 1 : TYPE_LENGTH (value_type (v));
11335
11336 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11337 if (!num_regs)
11338 return 0;
11339 else
11340 found_memory_cnt += num_regs;
11341 }
11342 }
11343 }
11344 else if (VALUE_LVAL (v) != not_lval
11345 && deprecated_value_modifiable (v) == 0)
11346 return 0; /* These are values from the history (e.g., $1). */
11347 else if (VALUE_LVAL (v) == lval_register)
11348 return 0; /* Cannot watch a register with a HW watchpoint. */
11349 }
11350
11351 /* The expression itself looks suitable for using a hardware
11352 watchpoint, but give the target machine a chance to reject it. */
11353 return found_memory_cnt;
11354 }
11355
11356 void
11357 watch_command_wrapper (char *arg, int from_tty, int internal)
11358 {
11359 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11360 }
11361
11362 /* A helper function that looks for the "-location" argument and then
11363 calls watch_command_1. */
11364
11365 static void
11366 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11367 {
11368 int just_location = 0;
11369
11370 if (arg
11371 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11372 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11373 {
11374 arg = skip_spaces (arg);
11375 just_location = 1;
11376 }
11377
11378 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11379 }
11380
11381 static void
11382 watch_command (char *arg, int from_tty)
11383 {
11384 watch_maybe_just_location (arg, hw_write, from_tty);
11385 }
11386
11387 void
11388 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11389 {
11390 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11391 }
11392
11393 static void
11394 rwatch_command (char *arg, int from_tty)
11395 {
11396 watch_maybe_just_location (arg, hw_read, from_tty);
11397 }
11398
11399 void
11400 awatch_command_wrapper (char *arg, int from_tty, int internal)
11401 {
11402 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11403 }
11404
11405 static void
11406 awatch_command (char *arg, int from_tty)
11407 {
11408 watch_maybe_just_location (arg, hw_access, from_tty);
11409 }
11410 \f
11411
11412 /* Helper routines for the until_command routine in infcmd.c. Here
11413 because it uses the mechanisms of breakpoints. */
11414
11415 struct until_break_command_continuation_args
11416 {
11417 struct breakpoint *breakpoint;
11418 struct breakpoint *breakpoint2;
11419 int thread_num;
11420 };
11421
11422 /* This function is called by fetch_inferior_event via the
11423 cmd_continuation pointer, to complete the until command. It takes
11424 care of cleaning up the temporary breakpoints set up by the until
11425 command. */
11426 static void
11427 until_break_command_continuation (void *arg, int err)
11428 {
11429 struct until_break_command_continuation_args *a = arg;
11430
11431 delete_breakpoint (a->breakpoint);
11432 if (a->breakpoint2)
11433 delete_breakpoint (a->breakpoint2);
11434 delete_longjmp_breakpoint (a->thread_num);
11435 }
11436
11437 void
11438 until_break_command (char *arg, int from_tty, int anywhere)
11439 {
11440 struct symtabs_and_lines sals;
11441 struct symtab_and_line sal;
11442 struct frame_info *frame;
11443 struct gdbarch *frame_gdbarch;
11444 struct frame_id stack_frame_id;
11445 struct frame_id caller_frame_id;
11446 struct breakpoint *breakpoint;
11447 struct breakpoint *breakpoint2 = NULL;
11448 struct cleanup *old_chain;
11449 int thread;
11450 struct thread_info *tp;
11451
11452 clear_proceed_status (0);
11453
11454 /* Set a breakpoint where the user wants it and at return from
11455 this function. */
11456
11457 if (last_displayed_sal_is_valid ())
11458 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11459 get_last_displayed_symtab (),
11460 get_last_displayed_line ());
11461 else
11462 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11463 (struct symtab *) NULL, 0);
11464
11465 if (sals.nelts != 1)
11466 error (_("Couldn't get information on specified line."));
11467
11468 sal = sals.sals[0];
11469 xfree (sals.sals); /* malloc'd, so freed. */
11470
11471 if (*arg)
11472 error (_("Junk at end of arguments."));
11473
11474 resolve_sal_pc (&sal);
11475
11476 tp = inferior_thread ();
11477 thread = tp->num;
11478
11479 old_chain = make_cleanup (null_cleanup, NULL);
11480
11481 /* Note linespec handling above invalidates the frame chain.
11482 Installing a breakpoint also invalidates the frame chain (as it
11483 may need to switch threads), so do any frame handling before
11484 that. */
11485
11486 frame = get_selected_frame (NULL);
11487 frame_gdbarch = get_frame_arch (frame);
11488 stack_frame_id = get_stack_frame_id (frame);
11489 caller_frame_id = frame_unwind_caller_id (frame);
11490
11491 /* Keep within the current frame, or in frames called by the current
11492 one. */
11493
11494 if (frame_id_p (caller_frame_id))
11495 {
11496 struct symtab_and_line sal2;
11497
11498 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11499 sal2.pc = frame_unwind_caller_pc (frame);
11500 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11501 sal2,
11502 caller_frame_id,
11503 bp_until);
11504 make_cleanup_delete_breakpoint (breakpoint2);
11505
11506 set_longjmp_breakpoint (tp, caller_frame_id);
11507 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11508 }
11509
11510 /* set_momentary_breakpoint could invalidate FRAME. */
11511 frame = NULL;
11512
11513 if (anywhere)
11514 /* If the user told us to continue until a specified location,
11515 we don't specify a frame at which we need to stop. */
11516 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11517 null_frame_id, bp_until);
11518 else
11519 /* Otherwise, specify the selected frame, because we want to stop
11520 only at the very same frame. */
11521 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11522 stack_frame_id, bp_until);
11523 make_cleanup_delete_breakpoint (breakpoint);
11524
11525 proceed (-1, GDB_SIGNAL_DEFAULT);
11526
11527 /* If we are running asynchronously, and proceed call above has
11528 actually managed to start the target, arrange for breakpoints to
11529 be deleted when the target stops. Otherwise, we're already
11530 stopped and delete breakpoints via cleanup chain. */
11531
11532 if (target_can_async_p () && is_running (inferior_ptid))
11533 {
11534 struct until_break_command_continuation_args *args;
11535 args = xmalloc (sizeof (*args));
11536
11537 args->breakpoint = breakpoint;
11538 args->breakpoint2 = breakpoint2;
11539 args->thread_num = thread;
11540
11541 discard_cleanups (old_chain);
11542 add_continuation (inferior_thread (),
11543 until_break_command_continuation, args,
11544 xfree);
11545 }
11546 else
11547 do_cleanups (old_chain);
11548 }
11549
11550 /* This function attempts to parse an optional "if <cond>" clause
11551 from the arg string. If one is not found, it returns NULL.
11552
11553 Else, it returns a pointer to the condition string. (It does not
11554 attempt to evaluate the string against a particular block.) And,
11555 it updates arg to point to the first character following the parsed
11556 if clause in the arg string. */
11557
11558 char *
11559 ep_parse_optional_if_clause (char **arg)
11560 {
11561 char *cond_string;
11562
11563 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11564 return NULL;
11565
11566 /* Skip the "if" keyword. */
11567 (*arg) += 2;
11568
11569 /* Skip any extra leading whitespace, and record the start of the
11570 condition string. */
11571 *arg = skip_spaces (*arg);
11572 cond_string = *arg;
11573
11574 /* Assume that the condition occupies the remainder of the arg
11575 string. */
11576 (*arg) += strlen (cond_string);
11577
11578 return cond_string;
11579 }
11580
11581 /* Commands to deal with catching events, such as signals, exceptions,
11582 process start/exit, etc. */
11583
11584 typedef enum
11585 {
11586 catch_fork_temporary, catch_vfork_temporary,
11587 catch_fork_permanent, catch_vfork_permanent
11588 }
11589 catch_fork_kind;
11590
11591 static void
11592 catch_fork_command_1 (char *arg, int from_tty,
11593 struct cmd_list_element *command)
11594 {
11595 struct gdbarch *gdbarch = get_current_arch ();
11596 char *cond_string = NULL;
11597 catch_fork_kind fork_kind;
11598 int tempflag;
11599
11600 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11601 tempflag = (fork_kind == catch_fork_temporary
11602 || fork_kind == catch_vfork_temporary);
11603
11604 if (!arg)
11605 arg = "";
11606 arg = skip_spaces (arg);
11607
11608 /* The allowed syntax is:
11609 catch [v]fork
11610 catch [v]fork if <cond>
11611
11612 First, check if there's an if clause. */
11613 cond_string = ep_parse_optional_if_clause (&arg);
11614
11615 if ((*arg != '\0') && !isspace (*arg))
11616 error (_("Junk at end of arguments."));
11617
11618 /* If this target supports it, create a fork or vfork catchpoint
11619 and enable reporting of such events. */
11620 switch (fork_kind)
11621 {
11622 case catch_fork_temporary:
11623 case catch_fork_permanent:
11624 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11625 &catch_fork_breakpoint_ops);
11626 break;
11627 case catch_vfork_temporary:
11628 case catch_vfork_permanent:
11629 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11630 &catch_vfork_breakpoint_ops);
11631 break;
11632 default:
11633 error (_("unsupported or unknown fork kind; cannot catch it"));
11634 break;
11635 }
11636 }
11637
11638 static void
11639 catch_exec_command_1 (char *arg, int from_tty,
11640 struct cmd_list_element *command)
11641 {
11642 struct exec_catchpoint *c;
11643 struct gdbarch *gdbarch = get_current_arch ();
11644 int tempflag;
11645 char *cond_string = NULL;
11646
11647 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11648
11649 if (!arg)
11650 arg = "";
11651 arg = skip_spaces (arg);
11652
11653 /* The allowed syntax is:
11654 catch exec
11655 catch exec if <cond>
11656
11657 First, check if there's an if clause. */
11658 cond_string = ep_parse_optional_if_clause (&arg);
11659
11660 if ((*arg != '\0') && !isspace (*arg))
11661 error (_("Junk at end of arguments."));
11662
11663 c = XNEW (struct exec_catchpoint);
11664 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11665 &catch_exec_breakpoint_ops);
11666 c->exec_pathname = NULL;
11667
11668 install_breakpoint (0, &c->base, 1);
11669 }
11670
11671 void
11672 init_ada_exception_breakpoint (struct breakpoint *b,
11673 struct gdbarch *gdbarch,
11674 struct symtab_and_line sal,
11675 char *addr_string,
11676 const struct breakpoint_ops *ops,
11677 int tempflag,
11678 int enabled,
11679 int from_tty)
11680 {
11681 if (from_tty)
11682 {
11683 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11684 if (!loc_gdbarch)
11685 loc_gdbarch = gdbarch;
11686
11687 describe_other_breakpoints (loc_gdbarch,
11688 sal.pspace, sal.pc, sal.section, -1);
11689 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11690 version for exception catchpoints, because two catchpoints
11691 used for different exception names will use the same address.
11692 In this case, a "breakpoint ... also set at..." warning is
11693 unproductive. Besides, the warning phrasing is also a bit
11694 inappropriate, we should use the word catchpoint, and tell
11695 the user what type of catchpoint it is. The above is good
11696 enough for now, though. */
11697 }
11698
11699 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11700
11701 b->enable_state = enabled ? bp_enabled : bp_disabled;
11702 b->disposition = tempflag ? disp_del : disp_donttouch;
11703 b->addr_string = addr_string;
11704 b->language = language_ada;
11705 }
11706
11707 static void
11708 catch_command (char *arg, int from_tty)
11709 {
11710 error (_("Catch requires an event name."));
11711 }
11712 \f
11713
11714 static void
11715 tcatch_command (char *arg, int from_tty)
11716 {
11717 error (_("Catch requires an event name."));
11718 }
11719
11720 /* A qsort comparison function that sorts breakpoints in order. */
11721
11722 static int
11723 compare_breakpoints (const void *a, const void *b)
11724 {
11725 const breakpoint_p *ba = a;
11726 uintptr_t ua = (uintptr_t) *ba;
11727 const breakpoint_p *bb = b;
11728 uintptr_t ub = (uintptr_t) *bb;
11729
11730 if ((*ba)->number < (*bb)->number)
11731 return -1;
11732 else if ((*ba)->number > (*bb)->number)
11733 return 1;
11734
11735 /* Now sort by address, in case we see, e..g, two breakpoints with
11736 the number 0. */
11737 if (ua < ub)
11738 return -1;
11739 return ua > ub ? 1 : 0;
11740 }
11741
11742 /* Delete breakpoints by address or line. */
11743
11744 static void
11745 clear_command (char *arg, int from_tty)
11746 {
11747 struct breakpoint *b, *prev;
11748 VEC(breakpoint_p) *found = 0;
11749 int ix;
11750 int default_match;
11751 struct symtabs_and_lines sals;
11752 struct symtab_and_line sal;
11753 int i;
11754 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11755
11756 if (arg)
11757 {
11758 sals = decode_line_with_current_source (arg,
11759 (DECODE_LINE_FUNFIRSTLINE
11760 | DECODE_LINE_LIST_MODE));
11761 make_cleanup (xfree, sals.sals);
11762 default_match = 0;
11763 }
11764 else
11765 {
11766 sals.sals = (struct symtab_and_line *)
11767 xmalloc (sizeof (struct symtab_and_line));
11768 make_cleanup (xfree, sals.sals);
11769 init_sal (&sal); /* Initialize to zeroes. */
11770
11771 /* Set sal's line, symtab, pc, and pspace to the values
11772 corresponding to the last call to print_frame_info. If the
11773 codepoint is not valid, this will set all the fields to 0. */
11774 get_last_displayed_sal (&sal);
11775 if (sal.symtab == 0)
11776 error (_("No source file specified."));
11777
11778 sals.sals[0] = sal;
11779 sals.nelts = 1;
11780
11781 default_match = 1;
11782 }
11783
11784 /* We don't call resolve_sal_pc here. That's not as bad as it
11785 seems, because all existing breakpoints typically have both
11786 file/line and pc set. So, if clear is given file/line, we can
11787 match this to existing breakpoint without obtaining pc at all.
11788
11789 We only support clearing given the address explicitly
11790 present in breakpoint table. Say, we've set breakpoint
11791 at file:line. There were several PC values for that file:line,
11792 due to optimization, all in one block.
11793
11794 We've picked one PC value. If "clear" is issued with another
11795 PC corresponding to the same file:line, the breakpoint won't
11796 be cleared. We probably can still clear the breakpoint, but
11797 since the other PC value is never presented to user, user
11798 can only find it by guessing, and it does not seem important
11799 to support that. */
11800
11801 /* For each line spec given, delete bps which correspond to it. Do
11802 it in two passes, solely to preserve the current behavior that
11803 from_tty is forced true if we delete more than one
11804 breakpoint. */
11805
11806 found = NULL;
11807 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11808 for (i = 0; i < sals.nelts; i++)
11809 {
11810 const char *sal_fullname;
11811
11812 /* If exact pc given, clear bpts at that pc.
11813 If line given (pc == 0), clear all bpts on specified line.
11814 If defaulting, clear all bpts on default line
11815 or at default pc.
11816
11817 defaulting sal.pc != 0 tests to do
11818
11819 0 1 pc
11820 1 1 pc _and_ line
11821 0 0 line
11822 1 0 <can't happen> */
11823
11824 sal = sals.sals[i];
11825 sal_fullname = (sal.symtab == NULL
11826 ? NULL : symtab_to_fullname (sal.symtab));
11827
11828 /* Find all matching breakpoints and add them to 'found'. */
11829 ALL_BREAKPOINTS (b)
11830 {
11831 int match = 0;
11832 /* Are we going to delete b? */
11833 if (b->type != bp_none && !is_watchpoint (b))
11834 {
11835 struct bp_location *loc = b->loc;
11836 for (; loc; loc = loc->next)
11837 {
11838 /* If the user specified file:line, don't allow a PC
11839 match. This matches historical gdb behavior. */
11840 int pc_match = (!sal.explicit_line
11841 && sal.pc
11842 && (loc->pspace == sal.pspace)
11843 && (loc->address == sal.pc)
11844 && (!section_is_overlay (loc->section)
11845 || loc->section == sal.section));
11846 int line_match = 0;
11847
11848 if ((default_match || sal.explicit_line)
11849 && loc->symtab != NULL
11850 && sal_fullname != NULL
11851 && sal.pspace == loc->pspace
11852 && loc->line_number == sal.line
11853 && filename_cmp (symtab_to_fullname (loc->symtab),
11854 sal_fullname) == 0)
11855 line_match = 1;
11856
11857 if (pc_match || line_match)
11858 {
11859 match = 1;
11860 break;
11861 }
11862 }
11863 }
11864
11865 if (match)
11866 VEC_safe_push(breakpoint_p, found, b);
11867 }
11868 }
11869
11870 /* Now go thru the 'found' chain and delete them. */
11871 if (VEC_empty(breakpoint_p, found))
11872 {
11873 if (arg)
11874 error (_("No breakpoint at %s."), arg);
11875 else
11876 error (_("No breakpoint at this line."));
11877 }
11878
11879 /* Remove duplicates from the vec. */
11880 qsort (VEC_address (breakpoint_p, found),
11881 VEC_length (breakpoint_p, found),
11882 sizeof (breakpoint_p),
11883 compare_breakpoints);
11884 prev = VEC_index (breakpoint_p, found, 0);
11885 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
11886 {
11887 if (b == prev)
11888 {
11889 VEC_ordered_remove (breakpoint_p, found, ix);
11890 --ix;
11891 }
11892 }
11893
11894 if (VEC_length(breakpoint_p, found) > 1)
11895 from_tty = 1; /* Always report if deleted more than one. */
11896 if (from_tty)
11897 {
11898 if (VEC_length(breakpoint_p, found) == 1)
11899 printf_unfiltered (_("Deleted breakpoint "));
11900 else
11901 printf_unfiltered (_("Deleted breakpoints "));
11902 }
11903
11904 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
11905 {
11906 if (from_tty)
11907 printf_unfiltered ("%d ", b->number);
11908 delete_breakpoint (b);
11909 }
11910 if (from_tty)
11911 putchar_unfiltered ('\n');
11912
11913 do_cleanups (cleanups);
11914 }
11915 \f
11916 /* Delete breakpoint in BS if they are `delete' breakpoints and
11917 all breakpoints that are marked for deletion, whether hit or not.
11918 This is called after any breakpoint is hit, or after errors. */
11919
11920 void
11921 breakpoint_auto_delete (bpstat bs)
11922 {
11923 struct breakpoint *b, *b_tmp;
11924
11925 for (; bs; bs = bs->next)
11926 if (bs->breakpoint_at
11927 && bs->breakpoint_at->disposition == disp_del
11928 && bs->stop)
11929 delete_breakpoint (bs->breakpoint_at);
11930
11931 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11932 {
11933 if (b->disposition == disp_del_at_next_stop)
11934 delete_breakpoint (b);
11935 }
11936 }
11937
11938 /* A comparison function for bp_location AP and BP being interfaced to
11939 qsort. Sort elements primarily by their ADDRESS (no matter what
11940 does breakpoint_address_is_meaningful say for its OWNER),
11941 secondarily by ordering first permanent elements and
11942 terciarily just ensuring the array is sorted stable way despite
11943 qsort being an unstable algorithm. */
11944
11945 static int
11946 bp_location_compare (const void *ap, const void *bp)
11947 {
11948 struct bp_location *a = *(void **) ap;
11949 struct bp_location *b = *(void **) bp;
11950
11951 if (a->address != b->address)
11952 return (a->address > b->address) - (a->address < b->address);
11953
11954 /* Sort locations at the same address by their pspace number, keeping
11955 locations of the same inferior (in a multi-inferior environment)
11956 grouped. */
11957
11958 if (a->pspace->num != b->pspace->num)
11959 return ((a->pspace->num > b->pspace->num)
11960 - (a->pspace->num < b->pspace->num));
11961
11962 /* Sort permanent breakpoints first. */
11963 if (a->permanent != b->permanent)
11964 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11965
11966 /* Make the internal GDB representation stable across GDB runs
11967 where A and B memory inside GDB can differ. Breakpoint locations of
11968 the same type at the same address can be sorted in arbitrary order. */
11969
11970 if (a->owner->number != b->owner->number)
11971 return ((a->owner->number > b->owner->number)
11972 - (a->owner->number < b->owner->number));
11973
11974 return (a > b) - (a < b);
11975 }
11976
11977 /* Set bp_location_placed_address_before_address_max and
11978 bp_location_shadow_len_after_address_max according to the current
11979 content of the bp_location array. */
11980
11981 static void
11982 bp_location_target_extensions_update (void)
11983 {
11984 struct bp_location *bl, **blp_tmp;
11985
11986 bp_location_placed_address_before_address_max = 0;
11987 bp_location_shadow_len_after_address_max = 0;
11988
11989 ALL_BP_LOCATIONS (bl, blp_tmp)
11990 {
11991 CORE_ADDR start, end, addr;
11992
11993 if (!bp_location_has_shadow (bl))
11994 continue;
11995
11996 start = bl->target_info.placed_address;
11997 end = start + bl->target_info.shadow_len;
11998
11999 gdb_assert (bl->address >= start);
12000 addr = bl->address - start;
12001 if (addr > bp_location_placed_address_before_address_max)
12002 bp_location_placed_address_before_address_max = addr;
12003
12004 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12005
12006 gdb_assert (bl->address < end);
12007 addr = end - bl->address;
12008 if (addr > bp_location_shadow_len_after_address_max)
12009 bp_location_shadow_len_after_address_max = addr;
12010 }
12011 }
12012
12013 /* Download tracepoint locations if they haven't been. */
12014
12015 static void
12016 download_tracepoint_locations (void)
12017 {
12018 struct breakpoint *b;
12019 struct cleanup *old_chain;
12020
12021 if (!target_can_download_tracepoint ())
12022 return;
12023
12024 old_chain = save_current_space_and_thread ();
12025
12026 ALL_TRACEPOINTS (b)
12027 {
12028 struct bp_location *bl;
12029 struct tracepoint *t;
12030 int bp_location_downloaded = 0;
12031
12032 if ((b->type == bp_fast_tracepoint
12033 ? !may_insert_fast_tracepoints
12034 : !may_insert_tracepoints))
12035 continue;
12036
12037 for (bl = b->loc; bl; bl = bl->next)
12038 {
12039 /* In tracepoint, locations are _never_ duplicated, so
12040 should_be_inserted is equivalent to
12041 unduplicated_should_be_inserted. */
12042 if (!should_be_inserted (bl) || bl->inserted)
12043 continue;
12044
12045 switch_to_program_space_and_thread (bl->pspace);
12046
12047 target_download_tracepoint (bl);
12048
12049 bl->inserted = 1;
12050 bp_location_downloaded = 1;
12051 }
12052 t = (struct tracepoint *) b;
12053 t->number_on_target = b->number;
12054 if (bp_location_downloaded)
12055 observer_notify_breakpoint_modified (b);
12056 }
12057
12058 do_cleanups (old_chain);
12059 }
12060
12061 /* Swap the insertion/duplication state between two locations. */
12062
12063 static void
12064 swap_insertion (struct bp_location *left, struct bp_location *right)
12065 {
12066 const int left_inserted = left->inserted;
12067 const int left_duplicate = left->duplicate;
12068 const int left_needs_update = left->needs_update;
12069 const struct bp_target_info left_target_info = left->target_info;
12070
12071 /* Locations of tracepoints can never be duplicated. */
12072 if (is_tracepoint (left->owner))
12073 gdb_assert (!left->duplicate);
12074 if (is_tracepoint (right->owner))
12075 gdb_assert (!right->duplicate);
12076
12077 left->inserted = right->inserted;
12078 left->duplicate = right->duplicate;
12079 left->needs_update = right->needs_update;
12080 left->target_info = right->target_info;
12081 right->inserted = left_inserted;
12082 right->duplicate = left_duplicate;
12083 right->needs_update = left_needs_update;
12084 right->target_info = left_target_info;
12085 }
12086
12087 /* Force the re-insertion of the locations at ADDRESS. This is called
12088 once a new/deleted/modified duplicate location is found and we are evaluating
12089 conditions on the target's side. Such conditions need to be updated on
12090 the target. */
12091
12092 static void
12093 force_breakpoint_reinsertion (struct bp_location *bl)
12094 {
12095 struct bp_location **locp = NULL, **loc2p;
12096 struct bp_location *loc;
12097 CORE_ADDR address = 0;
12098 int pspace_num;
12099
12100 address = bl->address;
12101 pspace_num = bl->pspace->num;
12102
12103 /* This is only meaningful if the target is
12104 evaluating conditions and if the user has
12105 opted for condition evaluation on the target's
12106 side. */
12107 if (gdb_evaluates_breakpoint_condition_p ()
12108 || !target_supports_evaluation_of_breakpoint_conditions ())
12109 return;
12110
12111 /* Flag all breakpoint locations with this address and
12112 the same program space as the location
12113 as "its condition has changed". We need to
12114 update the conditions on the target's side. */
12115 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12116 {
12117 loc = *loc2p;
12118
12119 if (!is_breakpoint (loc->owner)
12120 || pspace_num != loc->pspace->num)
12121 continue;
12122
12123 /* Flag the location appropriately. We use a different state to
12124 let everyone know that we already updated the set of locations
12125 with addr bl->address and program space bl->pspace. This is so
12126 we don't have to keep calling these functions just to mark locations
12127 that have already been marked. */
12128 loc->condition_changed = condition_updated;
12129
12130 /* Free the agent expression bytecode as well. We will compute
12131 it later on. */
12132 if (loc->cond_bytecode)
12133 {
12134 free_agent_expr (loc->cond_bytecode);
12135 loc->cond_bytecode = NULL;
12136 }
12137 }
12138 }
12139 /* Called whether new breakpoints are created, or existing breakpoints
12140 deleted, to update the global location list and recompute which
12141 locations are duplicate of which.
12142
12143 The INSERT_MODE flag determines whether locations may not, may, or
12144 shall be inserted now. See 'enum ugll_insert_mode' for more
12145 info. */
12146
12147 static void
12148 update_global_location_list (enum ugll_insert_mode insert_mode)
12149 {
12150 struct breakpoint *b;
12151 struct bp_location **locp, *loc;
12152 struct cleanup *cleanups;
12153 /* Last breakpoint location address that was marked for update. */
12154 CORE_ADDR last_addr = 0;
12155 /* Last breakpoint location program space that was marked for update. */
12156 int last_pspace_num = -1;
12157
12158 /* Used in the duplicates detection below. When iterating over all
12159 bp_locations, points to the first bp_location of a given address.
12160 Breakpoints and watchpoints of different types are never
12161 duplicates of each other. Keep one pointer for each type of
12162 breakpoint/watchpoint, so we only need to loop over all locations
12163 once. */
12164 struct bp_location *bp_loc_first; /* breakpoint */
12165 struct bp_location *wp_loc_first; /* hardware watchpoint */
12166 struct bp_location *awp_loc_first; /* access watchpoint */
12167 struct bp_location *rwp_loc_first; /* read watchpoint */
12168
12169 /* Saved former bp_location array which we compare against the newly
12170 built bp_location from the current state of ALL_BREAKPOINTS. */
12171 struct bp_location **old_location, **old_locp;
12172 unsigned old_location_count;
12173
12174 old_location = bp_location;
12175 old_location_count = bp_location_count;
12176 bp_location = NULL;
12177 bp_location_count = 0;
12178 cleanups = make_cleanup (xfree, old_location);
12179
12180 ALL_BREAKPOINTS (b)
12181 for (loc = b->loc; loc; loc = loc->next)
12182 bp_location_count++;
12183
12184 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12185 locp = bp_location;
12186 ALL_BREAKPOINTS (b)
12187 for (loc = b->loc; loc; loc = loc->next)
12188 *locp++ = loc;
12189 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12190 bp_location_compare);
12191
12192 bp_location_target_extensions_update ();
12193
12194 /* Identify bp_location instances that are no longer present in the
12195 new list, and therefore should be freed. Note that it's not
12196 necessary that those locations should be removed from inferior --
12197 if there's another location at the same address (previously
12198 marked as duplicate), we don't need to remove/insert the
12199 location.
12200
12201 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12202 and former bp_location array state respectively. */
12203
12204 locp = bp_location;
12205 for (old_locp = old_location; old_locp < old_location + old_location_count;
12206 old_locp++)
12207 {
12208 struct bp_location *old_loc = *old_locp;
12209 struct bp_location **loc2p;
12210
12211 /* Tells if 'old_loc' is found among the new locations. If
12212 not, we have to free it. */
12213 int found_object = 0;
12214 /* Tells if the location should remain inserted in the target. */
12215 int keep_in_target = 0;
12216 int removed = 0;
12217
12218 /* Skip LOCP entries which will definitely never be needed.
12219 Stop either at or being the one matching OLD_LOC. */
12220 while (locp < bp_location + bp_location_count
12221 && (*locp)->address < old_loc->address)
12222 locp++;
12223
12224 for (loc2p = locp;
12225 (loc2p < bp_location + bp_location_count
12226 && (*loc2p)->address == old_loc->address);
12227 loc2p++)
12228 {
12229 /* Check if this is a new/duplicated location or a duplicated
12230 location that had its condition modified. If so, we want to send
12231 its condition to the target if evaluation of conditions is taking
12232 place there. */
12233 if ((*loc2p)->condition_changed == condition_modified
12234 && (last_addr != old_loc->address
12235 || last_pspace_num != old_loc->pspace->num))
12236 {
12237 force_breakpoint_reinsertion (*loc2p);
12238 last_pspace_num = old_loc->pspace->num;
12239 }
12240
12241 if (*loc2p == old_loc)
12242 found_object = 1;
12243 }
12244
12245 /* We have already handled this address, update it so that we don't
12246 have to go through updates again. */
12247 last_addr = old_loc->address;
12248
12249 /* Target-side condition evaluation: Handle deleted locations. */
12250 if (!found_object)
12251 force_breakpoint_reinsertion (old_loc);
12252
12253 /* If this location is no longer present, and inserted, look if
12254 there's maybe a new location at the same address. If so,
12255 mark that one inserted, and don't remove this one. This is
12256 needed so that we don't have a time window where a breakpoint
12257 at certain location is not inserted. */
12258
12259 if (old_loc->inserted)
12260 {
12261 /* If the location is inserted now, we might have to remove
12262 it. */
12263
12264 if (found_object && should_be_inserted (old_loc))
12265 {
12266 /* The location is still present in the location list,
12267 and still should be inserted. Don't do anything. */
12268 keep_in_target = 1;
12269 }
12270 else
12271 {
12272 /* This location still exists, but it won't be kept in the
12273 target since it may have been disabled. We proceed to
12274 remove its target-side condition. */
12275
12276 /* The location is either no longer present, or got
12277 disabled. See if there's another location at the
12278 same address, in which case we don't need to remove
12279 this one from the target. */
12280
12281 /* OLD_LOC comes from existing struct breakpoint. */
12282 if (breakpoint_address_is_meaningful (old_loc->owner))
12283 {
12284 for (loc2p = locp;
12285 (loc2p < bp_location + bp_location_count
12286 && (*loc2p)->address == old_loc->address);
12287 loc2p++)
12288 {
12289 struct bp_location *loc2 = *loc2p;
12290
12291 if (breakpoint_locations_match (loc2, old_loc))
12292 {
12293 /* Read watchpoint locations are switched to
12294 access watchpoints, if the former are not
12295 supported, but the latter are. */
12296 if (is_hardware_watchpoint (old_loc->owner))
12297 {
12298 gdb_assert (is_hardware_watchpoint (loc2->owner));
12299 loc2->watchpoint_type = old_loc->watchpoint_type;
12300 }
12301
12302 /* loc2 is a duplicated location. We need to check
12303 if it should be inserted in case it will be
12304 unduplicated. */
12305 if (loc2 != old_loc
12306 && unduplicated_should_be_inserted (loc2))
12307 {
12308 swap_insertion (old_loc, loc2);
12309 keep_in_target = 1;
12310 break;
12311 }
12312 }
12313 }
12314 }
12315 }
12316
12317 if (!keep_in_target)
12318 {
12319 if (remove_breakpoint (old_loc, mark_uninserted))
12320 {
12321 /* This is just about all we can do. We could keep
12322 this location on the global list, and try to
12323 remove it next time, but there's no particular
12324 reason why we will succeed next time.
12325
12326 Note that at this point, old_loc->owner is still
12327 valid, as delete_breakpoint frees the breakpoint
12328 only after calling us. */
12329 printf_filtered (_("warning: Error removing "
12330 "breakpoint %d\n"),
12331 old_loc->owner->number);
12332 }
12333 removed = 1;
12334 }
12335 }
12336
12337 if (!found_object)
12338 {
12339 if (removed && non_stop
12340 && need_moribund_for_location_type (old_loc))
12341 {
12342 /* This location was removed from the target. In
12343 non-stop mode, a race condition is possible where
12344 we've removed a breakpoint, but stop events for that
12345 breakpoint are already queued and will arrive later.
12346 We apply an heuristic to be able to distinguish such
12347 SIGTRAPs from other random SIGTRAPs: we keep this
12348 breakpoint location for a bit, and will retire it
12349 after we see some number of events. The theory here
12350 is that reporting of events should, "on the average",
12351 be fair, so after a while we'll see events from all
12352 threads that have anything of interest, and no longer
12353 need to keep this breakpoint location around. We
12354 don't hold locations forever so to reduce chances of
12355 mistaking a non-breakpoint SIGTRAP for a breakpoint
12356 SIGTRAP.
12357
12358 The heuristic failing can be disastrous on
12359 decr_pc_after_break targets.
12360
12361 On decr_pc_after_break targets, like e.g., x86-linux,
12362 if we fail to recognize a late breakpoint SIGTRAP,
12363 because events_till_retirement has reached 0 too
12364 soon, we'll fail to do the PC adjustment, and report
12365 a random SIGTRAP to the user. When the user resumes
12366 the inferior, it will most likely immediately crash
12367 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12368 corrupted, because of being resumed e.g., in the
12369 middle of a multi-byte instruction, or skipped a
12370 one-byte instruction. This was actually seen happen
12371 on native x86-linux, and should be less rare on
12372 targets that do not support new thread events, like
12373 remote, due to the heuristic depending on
12374 thread_count.
12375
12376 Mistaking a random SIGTRAP for a breakpoint trap
12377 causes similar symptoms (PC adjustment applied when
12378 it shouldn't), but then again, playing with SIGTRAPs
12379 behind the debugger's back is asking for trouble.
12380
12381 Since hardware watchpoint traps are always
12382 distinguishable from other traps, so we don't need to
12383 apply keep hardware watchpoint moribund locations
12384 around. We simply always ignore hardware watchpoint
12385 traps we can no longer explain. */
12386
12387 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12388 old_loc->owner = NULL;
12389
12390 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12391 }
12392 else
12393 {
12394 old_loc->owner = NULL;
12395 decref_bp_location (&old_loc);
12396 }
12397 }
12398 }
12399
12400 /* Rescan breakpoints at the same address and section, marking the
12401 first one as "first" and any others as "duplicates". This is so
12402 that the bpt instruction is only inserted once. If we have a
12403 permanent breakpoint at the same place as BPT, make that one the
12404 official one, and the rest as duplicates. Permanent breakpoints
12405 are sorted first for the same address.
12406
12407 Do the same for hardware watchpoints, but also considering the
12408 watchpoint's type (regular/access/read) and length. */
12409
12410 bp_loc_first = NULL;
12411 wp_loc_first = NULL;
12412 awp_loc_first = NULL;
12413 rwp_loc_first = NULL;
12414 ALL_BP_LOCATIONS (loc, locp)
12415 {
12416 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12417 non-NULL. */
12418 struct bp_location **loc_first_p;
12419 b = loc->owner;
12420
12421 if (!unduplicated_should_be_inserted (loc)
12422 || !breakpoint_address_is_meaningful (b)
12423 /* Don't detect duplicate for tracepoint locations because they are
12424 never duplicated. See the comments in field `duplicate' of
12425 `struct bp_location'. */
12426 || is_tracepoint (b))
12427 {
12428 /* Clear the condition modification flag. */
12429 loc->condition_changed = condition_unchanged;
12430 continue;
12431 }
12432
12433 /* Permanent breakpoint should always be inserted. */
12434 if (loc->permanent && ! loc->inserted)
12435 internal_error (__FILE__, __LINE__,
12436 _("allegedly permanent breakpoint is not "
12437 "actually inserted"));
12438
12439 if (b->type == bp_hardware_watchpoint)
12440 loc_first_p = &wp_loc_first;
12441 else if (b->type == bp_read_watchpoint)
12442 loc_first_p = &rwp_loc_first;
12443 else if (b->type == bp_access_watchpoint)
12444 loc_first_p = &awp_loc_first;
12445 else
12446 loc_first_p = &bp_loc_first;
12447
12448 if (*loc_first_p == NULL
12449 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12450 || !breakpoint_locations_match (loc, *loc_first_p))
12451 {
12452 *loc_first_p = loc;
12453 loc->duplicate = 0;
12454
12455 if (is_breakpoint (loc->owner) && loc->condition_changed)
12456 {
12457 loc->needs_update = 1;
12458 /* Clear the condition modification flag. */
12459 loc->condition_changed = condition_unchanged;
12460 }
12461 continue;
12462 }
12463
12464
12465 /* This and the above ensure the invariant that the first location
12466 is not duplicated, and is the inserted one.
12467 All following are marked as duplicated, and are not inserted. */
12468 if (loc->inserted)
12469 swap_insertion (loc, *loc_first_p);
12470 loc->duplicate = 1;
12471
12472 /* Clear the condition modification flag. */
12473 loc->condition_changed = condition_unchanged;
12474
12475 if (loc->inserted && !loc->permanent
12476 && (*loc_first_p)->permanent)
12477 internal_error (__FILE__, __LINE__,
12478 _("another breakpoint was inserted on top of "
12479 "a permanent breakpoint"));
12480 }
12481
12482 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12483 {
12484 if (insert_mode != UGLL_DONT_INSERT)
12485 insert_breakpoint_locations ();
12486 else
12487 {
12488 /* Even though the caller told us to not insert new
12489 locations, we may still need to update conditions on the
12490 target's side of breakpoints that were already inserted
12491 if the target is evaluating breakpoint conditions. We
12492 only update conditions for locations that are marked
12493 "needs_update". */
12494 update_inserted_breakpoint_locations ();
12495 }
12496 }
12497
12498 if (insert_mode != UGLL_DONT_INSERT)
12499 download_tracepoint_locations ();
12500
12501 do_cleanups (cleanups);
12502 }
12503
12504 void
12505 breakpoint_retire_moribund (void)
12506 {
12507 struct bp_location *loc;
12508 int ix;
12509
12510 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12511 if (--(loc->events_till_retirement) == 0)
12512 {
12513 decref_bp_location (&loc);
12514 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12515 --ix;
12516 }
12517 }
12518
12519 static void
12520 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12521 {
12522
12523 TRY
12524 {
12525 update_global_location_list (insert_mode);
12526 }
12527 CATCH (e, RETURN_MASK_ERROR)
12528 {
12529 }
12530 END_CATCH
12531 }
12532
12533 /* Clear BKP from a BPS. */
12534
12535 static void
12536 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12537 {
12538 bpstat bs;
12539
12540 for (bs = bps; bs; bs = bs->next)
12541 if (bs->breakpoint_at == bpt)
12542 {
12543 bs->breakpoint_at = NULL;
12544 bs->old_val = NULL;
12545 /* bs->commands will be freed later. */
12546 }
12547 }
12548
12549 /* Callback for iterate_over_threads. */
12550 static int
12551 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12552 {
12553 struct breakpoint *bpt = data;
12554
12555 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12556 return 0;
12557 }
12558
12559 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12560 callbacks. */
12561
12562 static void
12563 say_where (struct breakpoint *b)
12564 {
12565 struct value_print_options opts;
12566
12567 get_user_print_options (&opts);
12568
12569 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12570 single string. */
12571 if (b->loc == NULL)
12572 {
12573 printf_filtered (_(" (%s) pending."), b->addr_string);
12574 }
12575 else
12576 {
12577 if (opts.addressprint || b->loc->symtab == NULL)
12578 {
12579 printf_filtered (" at ");
12580 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12581 gdb_stdout);
12582 }
12583 if (b->loc->symtab != NULL)
12584 {
12585 /* If there is a single location, we can print the location
12586 more nicely. */
12587 if (b->loc->next == NULL)
12588 printf_filtered (": file %s, line %d.",
12589 symtab_to_filename_for_display (b->loc->symtab),
12590 b->loc->line_number);
12591 else
12592 /* This is not ideal, but each location may have a
12593 different file name, and this at least reflects the
12594 real situation somewhat. */
12595 printf_filtered (": %s.", b->addr_string);
12596 }
12597
12598 if (b->loc->next)
12599 {
12600 struct bp_location *loc = b->loc;
12601 int n = 0;
12602 for (; loc; loc = loc->next)
12603 ++n;
12604 printf_filtered (" (%d locations)", n);
12605 }
12606 }
12607 }
12608
12609 /* Default bp_location_ops methods. */
12610
12611 static void
12612 bp_location_dtor (struct bp_location *self)
12613 {
12614 xfree (self->cond);
12615 if (self->cond_bytecode)
12616 free_agent_expr (self->cond_bytecode);
12617 xfree (self->function_name);
12618
12619 VEC_free (agent_expr_p, self->target_info.conditions);
12620 VEC_free (agent_expr_p, self->target_info.tcommands);
12621 }
12622
12623 static const struct bp_location_ops bp_location_ops =
12624 {
12625 bp_location_dtor
12626 };
12627
12628 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12629 inherit from. */
12630
12631 static void
12632 base_breakpoint_dtor (struct breakpoint *self)
12633 {
12634 decref_counted_command_line (&self->commands);
12635 xfree (self->cond_string);
12636 xfree (self->extra_string);
12637 xfree (self->addr_string);
12638 xfree (self->filter);
12639 xfree (self->addr_string_range_end);
12640 }
12641
12642 static struct bp_location *
12643 base_breakpoint_allocate_location (struct breakpoint *self)
12644 {
12645 struct bp_location *loc;
12646
12647 loc = XNEW (struct bp_location);
12648 init_bp_location (loc, &bp_location_ops, self);
12649 return loc;
12650 }
12651
12652 static void
12653 base_breakpoint_re_set (struct breakpoint *b)
12654 {
12655 /* Nothing to re-set. */
12656 }
12657
12658 #define internal_error_pure_virtual_called() \
12659 gdb_assert_not_reached ("pure virtual function called")
12660
12661 static int
12662 base_breakpoint_insert_location (struct bp_location *bl)
12663 {
12664 internal_error_pure_virtual_called ();
12665 }
12666
12667 static int
12668 base_breakpoint_remove_location (struct bp_location *bl)
12669 {
12670 internal_error_pure_virtual_called ();
12671 }
12672
12673 static int
12674 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12675 struct address_space *aspace,
12676 CORE_ADDR bp_addr,
12677 const struct target_waitstatus *ws)
12678 {
12679 internal_error_pure_virtual_called ();
12680 }
12681
12682 static void
12683 base_breakpoint_check_status (bpstat bs)
12684 {
12685 /* Always stop. */
12686 }
12687
12688 /* A "works_in_software_mode" breakpoint_ops method that just internal
12689 errors. */
12690
12691 static int
12692 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12693 {
12694 internal_error_pure_virtual_called ();
12695 }
12696
12697 /* A "resources_needed" breakpoint_ops method that just internal
12698 errors. */
12699
12700 static int
12701 base_breakpoint_resources_needed (const struct bp_location *bl)
12702 {
12703 internal_error_pure_virtual_called ();
12704 }
12705
12706 static enum print_stop_action
12707 base_breakpoint_print_it (bpstat bs)
12708 {
12709 internal_error_pure_virtual_called ();
12710 }
12711
12712 static void
12713 base_breakpoint_print_one_detail (const struct breakpoint *self,
12714 struct ui_out *uiout)
12715 {
12716 /* nothing */
12717 }
12718
12719 static void
12720 base_breakpoint_print_mention (struct breakpoint *b)
12721 {
12722 internal_error_pure_virtual_called ();
12723 }
12724
12725 static void
12726 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12727 {
12728 internal_error_pure_virtual_called ();
12729 }
12730
12731 static void
12732 base_breakpoint_create_sals_from_address (char **arg,
12733 struct linespec_result *canonical,
12734 enum bptype type_wanted,
12735 char *addr_start,
12736 char **copy_arg)
12737 {
12738 internal_error_pure_virtual_called ();
12739 }
12740
12741 static void
12742 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12743 struct linespec_result *c,
12744 char *cond_string,
12745 char *extra_string,
12746 enum bptype type_wanted,
12747 enum bpdisp disposition,
12748 int thread,
12749 int task, int ignore_count,
12750 const struct breakpoint_ops *o,
12751 int from_tty, int enabled,
12752 int internal, unsigned flags)
12753 {
12754 internal_error_pure_virtual_called ();
12755 }
12756
12757 static void
12758 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
12759 struct symtabs_and_lines *sals)
12760 {
12761 internal_error_pure_virtual_called ();
12762 }
12763
12764 /* The default 'explains_signal' method. */
12765
12766 static int
12767 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12768 {
12769 return 1;
12770 }
12771
12772 /* The default "after_condition_true" method. */
12773
12774 static void
12775 base_breakpoint_after_condition_true (struct bpstats *bs)
12776 {
12777 /* Nothing to do. */
12778 }
12779
12780 struct breakpoint_ops base_breakpoint_ops =
12781 {
12782 base_breakpoint_dtor,
12783 base_breakpoint_allocate_location,
12784 base_breakpoint_re_set,
12785 base_breakpoint_insert_location,
12786 base_breakpoint_remove_location,
12787 base_breakpoint_breakpoint_hit,
12788 base_breakpoint_check_status,
12789 base_breakpoint_resources_needed,
12790 base_breakpoint_works_in_software_mode,
12791 base_breakpoint_print_it,
12792 NULL,
12793 base_breakpoint_print_one_detail,
12794 base_breakpoint_print_mention,
12795 base_breakpoint_print_recreate,
12796 base_breakpoint_create_sals_from_address,
12797 base_breakpoint_create_breakpoints_sal,
12798 base_breakpoint_decode_linespec,
12799 base_breakpoint_explains_signal,
12800 base_breakpoint_after_condition_true,
12801 };
12802
12803 /* Default breakpoint_ops methods. */
12804
12805 static void
12806 bkpt_re_set (struct breakpoint *b)
12807 {
12808 /* FIXME: is this still reachable? */
12809 if (b->addr_string == NULL)
12810 {
12811 /* Anything without a string can't be re-set. */
12812 delete_breakpoint (b);
12813 return;
12814 }
12815
12816 breakpoint_re_set_default (b);
12817 }
12818
12819 static int
12820 bkpt_insert_location (struct bp_location *bl)
12821 {
12822 if (bl->loc_type == bp_loc_hardware_breakpoint)
12823 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12824 else
12825 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12826 }
12827
12828 static int
12829 bkpt_remove_location (struct bp_location *bl)
12830 {
12831 if (bl->loc_type == bp_loc_hardware_breakpoint)
12832 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12833 else
12834 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
12835 }
12836
12837 static int
12838 bkpt_breakpoint_hit (const struct bp_location *bl,
12839 struct address_space *aspace, CORE_ADDR bp_addr,
12840 const struct target_waitstatus *ws)
12841 {
12842 if (ws->kind != TARGET_WAITKIND_STOPPED
12843 || ws->value.sig != GDB_SIGNAL_TRAP)
12844 return 0;
12845
12846 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12847 aspace, bp_addr))
12848 return 0;
12849
12850 if (overlay_debugging /* unmapped overlay section */
12851 && section_is_overlay (bl->section)
12852 && !section_is_mapped (bl->section))
12853 return 0;
12854
12855 return 1;
12856 }
12857
12858 static int
12859 dprintf_breakpoint_hit (const struct bp_location *bl,
12860 struct address_space *aspace, CORE_ADDR bp_addr,
12861 const struct target_waitstatus *ws)
12862 {
12863 if (dprintf_style == dprintf_style_agent
12864 && target_can_run_breakpoint_commands ())
12865 {
12866 /* An agent-style dprintf never causes a stop. If we see a trap
12867 for this address it must be for a breakpoint that happens to
12868 be set at the same address. */
12869 return 0;
12870 }
12871
12872 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12873 }
12874
12875 static int
12876 bkpt_resources_needed (const struct bp_location *bl)
12877 {
12878 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12879
12880 return 1;
12881 }
12882
12883 static enum print_stop_action
12884 bkpt_print_it (bpstat bs)
12885 {
12886 struct breakpoint *b;
12887 const struct bp_location *bl;
12888 int bp_temp;
12889 struct ui_out *uiout = current_uiout;
12890
12891 gdb_assert (bs->bp_location_at != NULL);
12892
12893 bl = bs->bp_location_at;
12894 b = bs->breakpoint_at;
12895
12896 bp_temp = b->disposition == disp_del;
12897 if (bl->address != bl->requested_address)
12898 breakpoint_adjustment_warning (bl->requested_address,
12899 bl->address,
12900 b->number, 1);
12901 annotate_breakpoint (b->number);
12902 if (bp_temp)
12903 ui_out_text (uiout, "\nTemporary breakpoint ");
12904 else
12905 ui_out_text (uiout, "\nBreakpoint ");
12906 if (ui_out_is_mi_like_p (uiout))
12907 {
12908 ui_out_field_string (uiout, "reason",
12909 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12910 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12911 }
12912 ui_out_field_int (uiout, "bkptno", b->number);
12913 ui_out_text (uiout, ", ");
12914
12915 return PRINT_SRC_AND_LOC;
12916 }
12917
12918 static void
12919 bkpt_print_mention (struct breakpoint *b)
12920 {
12921 if (ui_out_is_mi_like_p (current_uiout))
12922 return;
12923
12924 switch (b->type)
12925 {
12926 case bp_breakpoint:
12927 case bp_gnu_ifunc_resolver:
12928 if (b->disposition == disp_del)
12929 printf_filtered (_("Temporary breakpoint"));
12930 else
12931 printf_filtered (_("Breakpoint"));
12932 printf_filtered (_(" %d"), b->number);
12933 if (b->type == bp_gnu_ifunc_resolver)
12934 printf_filtered (_(" at gnu-indirect-function resolver"));
12935 break;
12936 case bp_hardware_breakpoint:
12937 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12938 break;
12939 case bp_dprintf:
12940 printf_filtered (_("Dprintf %d"), b->number);
12941 break;
12942 }
12943
12944 say_where (b);
12945 }
12946
12947 static void
12948 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12949 {
12950 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12951 fprintf_unfiltered (fp, "tbreak");
12952 else if (tp->type == bp_breakpoint)
12953 fprintf_unfiltered (fp, "break");
12954 else if (tp->type == bp_hardware_breakpoint
12955 && tp->disposition == disp_del)
12956 fprintf_unfiltered (fp, "thbreak");
12957 else if (tp->type == bp_hardware_breakpoint)
12958 fprintf_unfiltered (fp, "hbreak");
12959 else
12960 internal_error (__FILE__, __LINE__,
12961 _("unhandled breakpoint type %d"), (int) tp->type);
12962
12963 fprintf_unfiltered (fp, " %s", tp->addr_string);
12964 print_recreate_thread (tp, fp);
12965 }
12966
12967 static void
12968 bkpt_create_sals_from_address (char **arg,
12969 struct linespec_result *canonical,
12970 enum bptype type_wanted,
12971 char *addr_start, char **copy_arg)
12972 {
12973 create_sals_from_address_default (arg, canonical, type_wanted,
12974 addr_start, copy_arg);
12975 }
12976
12977 static void
12978 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12979 struct linespec_result *canonical,
12980 char *cond_string,
12981 char *extra_string,
12982 enum bptype type_wanted,
12983 enum bpdisp disposition,
12984 int thread,
12985 int task, int ignore_count,
12986 const struct breakpoint_ops *ops,
12987 int from_tty, int enabled,
12988 int internal, unsigned flags)
12989 {
12990 create_breakpoints_sal_default (gdbarch, canonical,
12991 cond_string, extra_string,
12992 type_wanted,
12993 disposition, thread, task,
12994 ignore_count, ops, from_tty,
12995 enabled, internal, flags);
12996 }
12997
12998 static void
12999 bkpt_decode_linespec (struct breakpoint *b, char **s,
13000 struct symtabs_and_lines *sals)
13001 {
13002 decode_linespec_default (b, s, sals);
13003 }
13004
13005 /* Virtual table for internal breakpoints. */
13006
13007 static void
13008 internal_bkpt_re_set (struct breakpoint *b)
13009 {
13010 switch (b->type)
13011 {
13012 /* Delete overlay event and longjmp master breakpoints; they
13013 will be reset later by breakpoint_re_set. */
13014 case bp_overlay_event:
13015 case bp_longjmp_master:
13016 case bp_std_terminate_master:
13017 case bp_exception_master:
13018 delete_breakpoint (b);
13019 break;
13020
13021 /* This breakpoint is special, it's set up when the inferior
13022 starts and we really don't want to touch it. */
13023 case bp_shlib_event:
13024
13025 /* Like bp_shlib_event, this breakpoint type is special. Once
13026 it is set up, we do not want to touch it. */
13027 case bp_thread_event:
13028 break;
13029 }
13030 }
13031
13032 static void
13033 internal_bkpt_check_status (bpstat bs)
13034 {
13035 if (bs->breakpoint_at->type == bp_shlib_event)
13036 {
13037 /* If requested, stop when the dynamic linker notifies GDB of
13038 events. This allows the user to get control and place
13039 breakpoints in initializer routines for dynamically loaded
13040 objects (among other things). */
13041 bs->stop = stop_on_solib_events;
13042 bs->print = stop_on_solib_events;
13043 }
13044 else
13045 bs->stop = 0;
13046 }
13047
13048 static enum print_stop_action
13049 internal_bkpt_print_it (bpstat bs)
13050 {
13051 struct breakpoint *b;
13052
13053 b = bs->breakpoint_at;
13054
13055 switch (b->type)
13056 {
13057 case bp_shlib_event:
13058 /* Did we stop because the user set the stop_on_solib_events
13059 variable? (If so, we report this as a generic, "Stopped due
13060 to shlib event" message.) */
13061 print_solib_event (0);
13062 break;
13063
13064 case bp_thread_event:
13065 /* Not sure how we will get here.
13066 GDB should not stop for these breakpoints. */
13067 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13068 break;
13069
13070 case bp_overlay_event:
13071 /* By analogy with the thread event, GDB should not stop for these. */
13072 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13073 break;
13074
13075 case bp_longjmp_master:
13076 /* These should never be enabled. */
13077 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13078 break;
13079
13080 case bp_std_terminate_master:
13081 /* These should never be enabled. */
13082 printf_filtered (_("std::terminate Master Breakpoint: "
13083 "gdb should not stop!\n"));
13084 break;
13085
13086 case bp_exception_master:
13087 /* These should never be enabled. */
13088 printf_filtered (_("Exception Master Breakpoint: "
13089 "gdb should not stop!\n"));
13090 break;
13091 }
13092
13093 return PRINT_NOTHING;
13094 }
13095
13096 static void
13097 internal_bkpt_print_mention (struct breakpoint *b)
13098 {
13099 /* Nothing to mention. These breakpoints are internal. */
13100 }
13101
13102 /* Virtual table for momentary breakpoints */
13103
13104 static void
13105 momentary_bkpt_re_set (struct breakpoint *b)
13106 {
13107 /* Keep temporary breakpoints, which can be encountered when we step
13108 over a dlopen call and solib_add is resetting the breakpoints.
13109 Otherwise these should have been blown away via the cleanup chain
13110 or by breakpoint_init_inferior when we rerun the executable. */
13111 }
13112
13113 static void
13114 momentary_bkpt_check_status (bpstat bs)
13115 {
13116 /* Nothing. The point of these breakpoints is causing a stop. */
13117 }
13118
13119 static enum print_stop_action
13120 momentary_bkpt_print_it (bpstat bs)
13121 {
13122 struct ui_out *uiout = current_uiout;
13123
13124 if (ui_out_is_mi_like_p (uiout))
13125 {
13126 struct breakpoint *b = bs->breakpoint_at;
13127
13128 switch (b->type)
13129 {
13130 case bp_finish:
13131 ui_out_field_string
13132 (uiout, "reason",
13133 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13134 break;
13135
13136 case bp_until:
13137 ui_out_field_string
13138 (uiout, "reason",
13139 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13140 break;
13141 }
13142 }
13143
13144 return PRINT_UNKNOWN;
13145 }
13146
13147 static void
13148 momentary_bkpt_print_mention (struct breakpoint *b)
13149 {
13150 /* Nothing to mention. These breakpoints are internal. */
13151 }
13152
13153 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13154
13155 It gets cleared already on the removal of the first one of such placed
13156 breakpoints. This is OK as they get all removed altogether. */
13157
13158 static void
13159 longjmp_bkpt_dtor (struct breakpoint *self)
13160 {
13161 struct thread_info *tp = find_thread_id (self->thread);
13162
13163 if (tp)
13164 tp->initiating_frame = null_frame_id;
13165
13166 momentary_breakpoint_ops.dtor (self);
13167 }
13168
13169 /* Specific methods for probe breakpoints. */
13170
13171 static int
13172 bkpt_probe_insert_location (struct bp_location *bl)
13173 {
13174 int v = bkpt_insert_location (bl);
13175
13176 if (v == 0)
13177 {
13178 /* The insertion was successful, now let's set the probe's semaphore
13179 if needed. */
13180 if (bl->probe.probe->pops->set_semaphore != NULL)
13181 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
13182 bl->probe.objfile,
13183 bl->gdbarch);
13184 }
13185
13186 return v;
13187 }
13188
13189 static int
13190 bkpt_probe_remove_location (struct bp_location *bl)
13191 {
13192 /* Let's clear the semaphore before removing the location. */
13193 if (bl->probe.probe->pops->clear_semaphore != NULL)
13194 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
13195 bl->probe.objfile,
13196 bl->gdbarch);
13197
13198 return bkpt_remove_location (bl);
13199 }
13200
13201 static void
13202 bkpt_probe_create_sals_from_address (char **arg,
13203 struct linespec_result *canonical,
13204 enum bptype type_wanted,
13205 char *addr_start, char **copy_arg)
13206 {
13207 struct linespec_sals lsal;
13208
13209 lsal.sals = parse_probes (arg, canonical);
13210
13211 *copy_arg = xstrdup (canonical->addr_string);
13212 lsal.canonical = xstrdup (*copy_arg);
13213
13214 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13215 }
13216
13217 static void
13218 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13219 struct symtabs_and_lines *sals)
13220 {
13221 *sals = parse_probes (s, NULL);
13222 if (!sals->sals)
13223 error (_("probe not found"));
13224 }
13225
13226 /* The breakpoint_ops structure to be used in tracepoints. */
13227
13228 static void
13229 tracepoint_re_set (struct breakpoint *b)
13230 {
13231 breakpoint_re_set_default (b);
13232 }
13233
13234 static int
13235 tracepoint_breakpoint_hit (const struct bp_location *bl,
13236 struct address_space *aspace, CORE_ADDR bp_addr,
13237 const struct target_waitstatus *ws)
13238 {
13239 /* By definition, the inferior does not report stops at
13240 tracepoints. */
13241 return 0;
13242 }
13243
13244 static void
13245 tracepoint_print_one_detail (const struct breakpoint *self,
13246 struct ui_out *uiout)
13247 {
13248 struct tracepoint *tp = (struct tracepoint *) self;
13249 if (tp->static_trace_marker_id)
13250 {
13251 gdb_assert (self->type == bp_static_tracepoint);
13252
13253 ui_out_text (uiout, "\tmarker id is ");
13254 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13255 tp->static_trace_marker_id);
13256 ui_out_text (uiout, "\n");
13257 }
13258 }
13259
13260 static void
13261 tracepoint_print_mention (struct breakpoint *b)
13262 {
13263 if (ui_out_is_mi_like_p (current_uiout))
13264 return;
13265
13266 switch (b->type)
13267 {
13268 case bp_tracepoint:
13269 printf_filtered (_("Tracepoint"));
13270 printf_filtered (_(" %d"), b->number);
13271 break;
13272 case bp_fast_tracepoint:
13273 printf_filtered (_("Fast tracepoint"));
13274 printf_filtered (_(" %d"), b->number);
13275 break;
13276 case bp_static_tracepoint:
13277 printf_filtered (_("Static tracepoint"));
13278 printf_filtered (_(" %d"), b->number);
13279 break;
13280 default:
13281 internal_error (__FILE__, __LINE__,
13282 _("unhandled tracepoint type %d"), (int) b->type);
13283 }
13284
13285 say_where (b);
13286 }
13287
13288 static void
13289 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13290 {
13291 struct tracepoint *tp = (struct tracepoint *) self;
13292
13293 if (self->type == bp_fast_tracepoint)
13294 fprintf_unfiltered (fp, "ftrace");
13295 if (self->type == bp_static_tracepoint)
13296 fprintf_unfiltered (fp, "strace");
13297 else if (self->type == bp_tracepoint)
13298 fprintf_unfiltered (fp, "trace");
13299 else
13300 internal_error (__FILE__, __LINE__,
13301 _("unhandled tracepoint type %d"), (int) self->type);
13302
13303 fprintf_unfiltered (fp, " %s", self->addr_string);
13304 print_recreate_thread (self, fp);
13305
13306 if (tp->pass_count)
13307 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13308 }
13309
13310 static void
13311 tracepoint_create_sals_from_address (char **arg,
13312 struct linespec_result *canonical,
13313 enum bptype type_wanted,
13314 char *addr_start, char **copy_arg)
13315 {
13316 create_sals_from_address_default (arg, canonical, type_wanted,
13317 addr_start, copy_arg);
13318 }
13319
13320 static void
13321 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13322 struct linespec_result *canonical,
13323 char *cond_string,
13324 char *extra_string,
13325 enum bptype type_wanted,
13326 enum bpdisp disposition,
13327 int thread,
13328 int task, int ignore_count,
13329 const struct breakpoint_ops *ops,
13330 int from_tty, int enabled,
13331 int internal, unsigned flags)
13332 {
13333 create_breakpoints_sal_default (gdbarch, canonical,
13334 cond_string, extra_string,
13335 type_wanted,
13336 disposition, thread, task,
13337 ignore_count, ops, from_tty,
13338 enabled, internal, flags);
13339 }
13340
13341 static void
13342 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13343 struct symtabs_and_lines *sals)
13344 {
13345 decode_linespec_default (b, s, sals);
13346 }
13347
13348 struct breakpoint_ops tracepoint_breakpoint_ops;
13349
13350 /* The breakpoint_ops structure to be use on tracepoints placed in a
13351 static probe. */
13352
13353 static void
13354 tracepoint_probe_create_sals_from_address (char **arg,
13355 struct linespec_result *canonical,
13356 enum bptype type_wanted,
13357 char *addr_start, char **copy_arg)
13358 {
13359 /* We use the same method for breakpoint on probes. */
13360 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13361 addr_start, copy_arg);
13362 }
13363
13364 static void
13365 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13366 struct symtabs_and_lines *sals)
13367 {
13368 /* We use the same method for breakpoint on probes. */
13369 bkpt_probe_decode_linespec (b, s, sals);
13370 }
13371
13372 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13373
13374 /* Dprintf breakpoint_ops methods. */
13375
13376 static void
13377 dprintf_re_set (struct breakpoint *b)
13378 {
13379 breakpoint_re_set_default (b);
13380
13381 /* This breakpoint could have been pending, and be resolved now, and
13382 if so, we should now have the extra string. If we don't, the
13383 dprintf was malformed when created, but we couldn't tell because
13384 we can't extract the extra string until the location is
13385 resolved. */
13386 if (b->loc != NULL && b->extra_string == NULL)
13387 error (_("Format string required"));
13388
13389 /* 1 - connect to target 1, that can run breakpoint commands.
13390 2 - create a dprintf, which resolves fine.
13391 3 - disconnect from target 1
13392 4 - connect to target 2, that can NOT run breakpoint commands.
13393
13394 After steps #3/#4, you'll want the dprintf command list to
13395 be updated, because target 1 and 2 may well return different
13396 answers for target_can_run_breakpoint_commands().
13397 Given absence of finer grained resetting, we get to do
13398 it all the time. */
13399 if (b->extra_string != NULL)
13400 update_dprintf_command_list (b);
13401 }
13402
13403 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13404
13405 static void
13406 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13407 {
13408 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13409 tp->extra_string);
13410 print_recreate_thread (tp, fp);
13411 }
13412
13413 /* Implement the "after_condition_true" breakpoint_ops method for
13414 dprintf.
13415
13416 dprintf's are implemented with regular commands in their command
13417 list, but we run the commands here instead of before presenting the
13418 stop to the user, as dprintf's don't actually cause a stop. This
13419 also makes it so that the commands of multiple dprintfs at the same
13420 address are all handled. */
13421
13422 static void
13423 dprintf_after_condition_true (struct bpstats *bs)
13424 {
13425 struct cleanup *old_chain;
13426 struct bpstats tmp_bs = { NULL };
13427 struct bpstats *tmp_bs_p = &tmp_bs;
13428
13429 /* dprintf's never cause a stop. This wasn't set in the
13430 check_status hook instead because that would make the dprintf's
13431 condition not be evaluated. */
13432 bs->stop = 0;
13433
13434 /* Run the command list here. Take ownership of it instead of
13435 copying. We never want these commands to run later in
13436 bpstat_do_actions, if a breakpoint that causes a stop happens to
13437 be set at same address as this dprintf, or even if running the
13438 commands here throws. */
13439 tmp_bs.commands = bs->commands;
13440 bs->commands = NULL;
13441 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13442
13443 bpstat_do_actions_1 (&tmp_bs_p);
13444
13445 /* 'tmp_bs.commands' will usually be NULL by now, but
13446 bpstat_do_actions_1 may return early without processing the whole
13447 list. */
13448 do_cleanups (old_chain);
13449 }
13450
13451 /* The breakpoint_ops structure to be used on static tracepoints with
13452 markers (`-m'). */
13453
13454 static void
13455 strace_marker_create_sals_from_address (char **arg,
13456 struct linespec_result *canonical,
13457 enum bptype type_wanted,
13458 char *addr_start, char **copy_arg)
13459 {
13460 struct linespec_sals lsal;
13461
13462 lsal.sals = decode_static_tracepoint_spec (arg);
13463
13464 *copy_arg = savestring (addr_start, *arg - addr_start);
13465
13466 canonical->addr_string = xstrdup (*copy_arg);
13467 lsal.canonical = xstrdup (*copy_arg);
13468 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13469 }
13470
13471 static void
13472 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13473 struct linespec_result *canonical,
13474 char *cond_string,
13475 char *extra_string,
13476 enum bptype type_wanted,
13477 enum bpdisp disposition,
13478 int thread,
13479 int task, int ignore_count,
13480 const struct breakpoint_ops *ops,
13481 int from_tty, int enabled,
13482 int internal, unsigned flags)
13483 {
13484 int i;
13485 struct linespec_sals *lsal = VEC_index (linespec_sals,
13486 canonical->sals, 0);
13487
13488 /* If the user is creating a static tracepoint by marker id
13489 (strace -m MARKER_ID), then store the sals index, so that
13490 breakpoint_re_set can try to match up which of the newly
13491 found markers corresponds to this one, and, don't try to
13492 expand multiple locations for each sal, given than SALS
13493 already should contain all sals for MARKER_ID. */
13494
13495 for (i = 0; i < lsal->sals.nelts; ++i)
13496 {
13497 struct symtabs_and_lines expanded;
13498 struct tracepoint *tp;
13499 struct cleanup *old_chain;
13500 char *addr_string;
13501
13502 expanded.nelts = 1;
13503 expanded.sals = &lsal->sals.sals[i];
13504
13505 addr_string = xstrdup (canonical->addr_string);
13506 old_chain = make_cleanup (xfree, addr_string);
13507
13508 tp = XCNEW (struct tracepoint);
13509 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13510 addr_string, NULL,
13511 cond_string, extra_string,
13512 type_wanted, disposition,
13513 thread, task, ignore_count, ops,
13514 from_tty, enabled, internal, flags,
13515 canonical->special_display);
13516 /* Given that its possible to have multiple markers with
13517 the same string id, if the user is creating a static
13518 tracepoint by marker id ("strace -m MARKER_ID"), then
13519 store the sals index, so that breakpoint_re_set can
13520 try to match up which of the newly found markers
13521 corresponds to this one */
13522 tp->static_trace_marker_id_idx = i;
13523
13524 install_breakpoint (internal, &tp->base, 0);
13525
13526 discard_cleanups (old_chain);
13527 }
13528 }
13529
13530 static void
13531 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13532 struct symtabs_and_lines *sals)
13533 {
13534 struct tracepoint *tp = (struct tracepoint *) b;
13535
13536 *sals = decode_static_tracepoint_spec (s);
13537 if (sals->nelts > tp->static_trace_marker_id_idx)
13538 {
13539 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13540 sals->nelts = 1;
13541 }
13542 else
13543 error (_("marker %s not found"), tp->static_trace_marker_id);
13544 }
13545
13546 static struct breakpoint_ops strace_marker_breakpoint_ops;
13547
13548 static int
13549 strace_marker_p (struct breakpoint *b)
13550 {
13551 return b->ops == &strace_marker_breakpoint_ops;
13552 }
13553
13554 /* Delete a breakpoint and clean up all traces of it in the data
13555 structures. */
13556
13557 void
13558 delete_breakpoint (struct breakpoint *bpt)
13559 {
13560 struct breakpoint *b;
13561
13562 gdb_assert (bpt != NULL);
13563
13564 /* Has this bp already been deleted? This can happen because
13565 multiple lists can hold pointers to bp's. bpstat lists are
13566 especial culprits.
13567
13568 One example of this happening is a watchpoint's scope bp. When
13569 the scope bp triggers, we notice that the watchpoint is out of
13570 scope, and delete it. We also delete its scope bp. But the
13571 scope bp is marked "auto-deleting", and is already on a bpstat.
13572 That bpstat is then checked for auto-deleting bp's, which are
13573 deleted.
13574
13575 A real solution to this problem might involve reference counts in
13576 bp's, and/or giving them pointers back to their referencing
13577 bpstat's, and teaching delete_breakpoint to only free a bp's
13578 storage when no more references were extent. A cheaper bandaid
13579 was chosen. */
13580 if (bpt->type == bp_none)
13581 return;
13582
13583 /* At least avoid this stale reference until the reference counting
13584 of breakpoints gets resolved. */
13585 if (bpt->related_breakpoint != bpt)
13586 {
13587 struct breakpoint *related;
13588 struct watchpoint *w;
13589
13590 if (bpt->type == bp_watchpoint_scope)
13591 w = (struct watchpoint *) bpt->related_breakpoint;
13592 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13593 w = (struct watchpoint *) bpt;
13594 else
13595 w = NULL;
13596 if (w != NULL)
13597 watchpoint_del_at_next_stop (w);
13598
13599 /* Unlink bpt from the bpt->related_breakpoint ring. */
13600 for (related = bpt; related->related_breakpoint != bpt;
13601 related = related->related_breakpoint);
13602 related->related_breakpoint = bpt->related_breakpoint;
13603 bpt->related_breakpoint = bpt;
13604 }
13605
13606 /* watch_command_1 creates a watchpoint but only sets its number if
13607 update_watchpoint succeeds in creating its bp_locations. If there's
13608 a problem in that process, we'll be asked to delete the half-created
13609 watchpoint. In that case, don't announce the deletion. */
13610 if (bpt->number)
13611 observer_notify_breakpoint_deleted (bpt);
13612
13613 if (breakpoint_chain == bpt)
13614 breakpoint_chain = bpt->next;
13615
13616 ALL_BREAKPOINTS (b)
13617 if (b->next == bpt)
13618 {
13619 b->next = bpt->next;
13620 break;
13621 }
13622
13623 /* Be sure no bpstat's are pointing at the breakpoint after it's
13624 been freed. */
13625 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13626 in all threads for now. Note that we cannot just remove bpstats
13627 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13628 commands are associated with the bpstat; if we remove it here,
13629 then the later call to bpstat_do_actions (&stop_bpstat); in
13630 event-top.c won't do anything, and temporary breakpoints with
13631 commands won't work. */
13632
13633 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13634
13635 /* Now that breakpoint is removed from breakpoint list, update the
13636 global location list. This will remove locations that used to
13637 belong to this breakpoint. Do this before freeing the breakpoint
13638 itself, since remove_breakpoint looks at location's owner. It
13639 might be better design to have location completely
13640 self-contained, but it's not the case now. */
13641 update_global_location_list (UGLL_DONT_INSERT);
13642
13643 bpt->ops->dtor (bpt);
13644 /* On the chance that someone will soon try again to delete this
13645 same bp, we mark it as deleted before freeing its storage. */
13646 bpt->type = bp_none;
13647 xfree (bpt);
13648 }
13649
13650 static void
13651 do_delete_breakpoint_cleanup (void *b)
13652 {
13653 delete_breakpoint (b);
13654 }
13655
13656 struct cleanup *
13657 make_cleanup_delete_breakpoint (struct breakpoint *b)
13658 {
13659 return make_cleanup (do_delete_breakpoint_cleanup, b);
13660 }
13661
13662 /* Iterator function to call a user-provided callback function once
13663 for each of B and its related breakpoints. */
13664
13665 static void
13666 iterate_over_related_breakpoints (struct breakpoint *b,
13667 void (*function) (struct breakpoint *,
13668 void *),
13669 void *data)
13670 {
13671 struct breakpoint *related;
13672
13673 related = b;
13674 do
13675 {
13676 struct breakpoint *next;
13677
13678 /* FUNCTION may delete RELATED. */
13679 next = related->related_breakpoint;
13680
13681 if (next == related)
13682 {
13683 /* RELATED is the last ring entry. */
13684 function (related, data);
13685
13686 /* FUNCTION may have deleted it, so we'd never reach back to
13687 B. There's nothing left to do anyway, so just break
13688 out. */
13689 break;
13690 }
13691 else
13692 function (related, data);
13693
13694 related = next;
13695 }
13696 while (related != b);
13697 }
13698
13699 static void
13700 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13701 {
13702 delete_breakpoint (b);
13703 }
13704
13705 /* A callback for map_breakpoint_numbers that calls
13706 delete_breakpoint. */
13707
13708 static void
13709 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13710 {
13711 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13712 }
13713
13714 void
13715 delete_command (char *arg, int from_tty)
13716 {
13717 struct breakpoint *b, *b_tmp;
13718
13719 dont_repeat ();
13720
13721 if (arg == 0)
13722 {
13723 int breaks_to_delete = 0;
13724
13725 /* Delete all breakpoints if no argument. Do not delete
13726 internal breakpoints, these have to be deleted with an
13727 explicit breakpoint number argument. */
13728 ALL_BREAKPOINTS (b)
13729 if (user_breakpoint_p (b))
13730 {
13731 breaks_to_delete = 1;
13732 break;
13733 }
13734
13735 /* Ask user only if there are some breakpoints to delete. */
13736 if (!from_tty
13737 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13738 {
13739 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13740 if (user_breakpoint_p (b))
13741 delete_breakpoint (b);
13742 }
13743 }
13744 else
13745 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13746 }
13747
13748 static int
13749 all_locations_are_pending (struct bp_location *loc)
13750 {
13751 for (; loc; loc = loc->next)
13752 if (!loc->shlib_disabled
13753 && !loc->pspace->executing_startup)
13754 return 0;
13755 return 1;
13756 }
13757
13758 /* Subroutine of update_breakpoint_locations to simplify it.
13759 Return non-zero if multiple fns in list LOC have the same name.
13760 Null names are ignored. */
13761
13762 static int
13763 ambiguous_names_p (struct bp_location *loc)
13764 {
13765 struct bp_location *l;
13766 htab_t htab = htab_create_alloc (13, htab_hash_string,
13767 (int (*) (const void *,
13768 const void *)) streq,
13769 NULL, xcalloc, xfree);
13770
13771 for (l = loc; l != NULL; l = l->next)
13772 {
13773 const char **slot;
13774 const char *name = l->function_name;
13775
13776 /* Allow for some names to be NULL, ignore them. */
13777 if (name == NULL)
13778 continue;
13779
13780 slot = (const char **) htab_find_slot (htab, (const void *) name,
13781 INSERT);
13782 /* NOTE: We can assume slot != NULL here because xcalloc never
13783 returns NULL. */
13784 if (*slot != NULL)
13785 {
13786 htab_delete (htab);
13787 return 1;
13788 }
13789 *slot = name;
13790 }
13791
13792 htab_delete (htab);
13793 return 0;
13794 }
13795
13796 /* When symbols change, it probably means the sources changed as well,
13797 and it might mean the static tracepoint markers are no longer at
13798 the same address or line numbers they used to be at last we
13799 checked. Losing your static tracepoints whenever you rebuild is
13800 undesirable. This function tries to resync/rematch gdb static
13801 tracepoints with the markers on the target, for static tracepoints
13802 that have not been set by marker id. Static tracepoint that have
13803 been set by marker id are reset by marker id in breakpoint_re_set.
13804 The heuristic is:
13805
13806 1) For a tracepoint set at a specific address, look for a marker at
13807 the old PC. If one is found there, assume to be the same marker.
13808 If the name / string id of the marker found is different from the
13809 previous known name, assume that means the user renamed the marker
13810 in the sources, and output a warning.
13811
13812 2) For a tracepoint set at a given line number, look for a marker
13813 at the new address of the old line number. If one is found there,
13814 assume to be the same marker. If the name / string id of the
13815 marker found is different from the previous known name, assume that
13816 means the user renamed the marker in the sources, and output a
13817 warning.
13818
13819 3) If a marker is no longer found at the same address or line, it
13820 may mean the marker no longer exists. But it may also just mean
13821 the code changed a bit. Maybe the user added a few lines of code
13822 that made the marker move up or down (in line number terms). Ask
13823 the target for info about the marker with the string id as we knew
13824 it. If found, update line number and address in the matching
13825 static tracepoint. This will get confused if there's more than one
13826 marker with the same ID (possible in UST, although unadvised
13827 precisely because it confuses tools). */
13828
13829 static struct symtab_and_line
13830 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13831 {
13832 struct tracepoint *tp = (struct tracepoint *) b;
13833 struct static_tracepoint_marker marker;
13834 CORE_ADDR pc;
13835
13836 pc = sal.pc;
13837 if (sal.line)
13838 find_line_pc (sal.symtab, sal.line, &pc);
13839
13840 if (target_static_tracepoint_marker_at (pc, &marker))
13841 {
13842 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13843 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13844 b->number,
13845 tp->static_trace_marker_id, marker.str_id);
13846
13847 xfree (tp->static_trace_marker_id);
13848 tp->static_trace_marker_id = xstrdup (marker.str_id);
13849 release_static_tracepoint_marker (&marker);
13850
13851 return sal;
13852 }
13853
13854 /* Old marker wasn't found on target at lineno. Try looking it up
13855 by string ID. */
13856 if (!sal.explicit_pc
13857 && sal.line != 0
13858 && sal.symtab != NULL
13859 && tp->static_trace_marker_id != NULL)
13860 {
13861 VEC(static_tracepoint_marker_p) *markers;
13862
13863 markers
13864 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13865
13866 if (!VEC_empty(static_tracepoint_marker_p, markers))
13867 {
13868 struct symtab_and_line sal2;
13869 struct symbol *sym;
13870 struct static_tracepoint_marker *tpmarker;
13871 struct ui_out *uiout = current_uiout;
13872
13873 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13874
13875 xfree (tp->static_trace_marker_id);
13876 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13877
13878 warning (_("marker for static tracepoint %d (%s) not "
13879 "found at previous line number"),
13880 b->number, tp->static_trace_marker_id);
13881
13882 init_sal (&sal2);
13883
13884 sal2.pc = tpmarker->address;
13885
13886 sal2 = find_pc_line (tpmarker->address, 0);
13887 sym = find_pc_sect_function (tpmarker->address, NULL);
13888 ui_out_text (uiout, "Now in ");
13889 if (sym)
13890 {
13891 ui_out_field_string (uiout, "func",
13892 SYMBOL_PRINT_NAME (sym));
13893 ui_out_text (uiout, " at ");
13894 }
13895 ui_out_field_string (uiout, "file",
13896 symtab_to_filename_for_display (sal2.symtab));
13897 ui_out_text (uiout, ":");
13898
13899 if (ui_out_is_mi_like_p (uiout))
13900 {
13901 const char *fullname = symtab_to_fullname (sal2.symtab);
13902
13903 ui_out_field_string (uiout, "fullname", fullname);
13904 }
13905
13906 ui_out_field_int (uiout, "line", sal2.line);
13907 ui_out_text (uiout, "\n");
13908
13909 b->loc->line_number = sal2.line;
13910 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13911
13912 xfree (b->addr_string);
13913 b->addr_string = xstrprintf ("%s:%d",
13914 symtab_to_filename_for_display (sal2.symtab),
13915 b->loc->line_number);
13916
13917 /* Might be nice to check if function changed, and warn if
13918 so. */
13919
13920 release_static_tracepoint_marker (tpmarker);
13921 }
13922 }
13923 return sal;
13924 }
13925
13926 /* Returns 1 iff locations A and B are sufficiently same that
13927 we don't need to report breakpoint as changed. */
13928
13929 static int
13930 locations_are_equal (struct bp_location *a, struct bp_location *b)
13931 {
13932 while (a && b)
13933 {
13934 if (a->address != b->address)
13935 return 0;
13936
13937 if (a->shlib_disabled != b->shlib_disabled)
13938 return 0;
13939
13940 if (a->enabled != b->enabled)
13941 return 0;
13942
13943 a = a->next;
13944 b = b->next;
13945 }
13946
13947 if ((a == NULL) != (b == NULL))
13948 return 0;
13949
13950 return 1;
13951 }
13952
13953 /* Create new breakpoint locations for B (a hardware or software breakpoint)
13954 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
13955 a ranged breakpoint. */
13956
13957 void
13958 update_breakpoint_locations (struct breakpoint *b,
13959 struct symtabs_and_lines sals,
13960 struct symtabs_and_lines sals_end)
13961 {
13962 int i;
13963 struct bp_location *existing_locations = b->loc;
13964
13965 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
13966 {
13967 /* Ranged breakpoints have only one start location and one end
13968 location. */
13969 b->enable_state = bp_disabled;
13970 update_global_location_list (UGLL_MAY_INSERT);
13971 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13972 "multiple locations found\n"),
13973 b->number);
13974 return;
13975 }
13976
13977 /* If there's no new locations, and all existing locations are
13978 pending, don't do anything. This optimizes the common case where
13979 all locations are in the same shared library, that was unloaded.
13980 We'd like to retain the location, so that when the library is
13981 loaded again, we don't loose the enabled/disabled status of the
13982 individual locations. */
13983 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
13984 return;
13985
13986 b->loc = NULL;
13987
13988 for (i = 0; i < sals.nelts; ++i)
13989 {
13990 struct bp_location *new_loc;
13991
13992 switch_to_program_space_and_thread (sals.sals[i].pspace);
13993
13994 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
13995
13996 /* Reparse conditions, they might contain references to the
13997 old symtab. */
13998 if (b->cond_string != NULL)
13999 {
14000 const char *s;
14001
14002 s = b->cond_string;
14003 TRY
14004 {
14005 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14006 block_for_pc (sals.sals[i].pc),
14007 0);
14008 }
14009 CATCH (e, RETURN_MASK_ERROR)
14010 {
14011 warning (_("failed to reevaluate condition "
14012 "for breakpoint %d: %s"),
14013 b->number, e.message);
14014 new_loc->enabled = 0;
14015 }
14016 END_CATCH
14017 }
14018
14019 if (sals_end.nelts)
14020 {
14021 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14022
14023 new_loc->length = end - sals.sals[0].pc + 1;
14024 }
14025 }
14026
14027 /* If possible, carry over 'disable' status from existing
14028 breakpoints. */
14029 {
14030 struct bp_location *e = existing_locations;
14031 /* If there are multiple breakpoints with the same function name,
14032 e.g. for inline functions, comparing function names won't work.
14033 Instead compare pc addresses; this is just a heuristic as things
14034 may have moved, but in practice it gives the correct answer
14035 often enough until a better solution is found. */
14036 int have_ambiguous_names = ambiguous_names_p (b->loc);
14037
14038 for (; e; e = e->next)
14039 {
14040 if (!e->enabled && e->function_name)
14041 {
14042 struct bp_location *l = b->loc;
14043 if (have_ambiguous_names)
14044 {
14045 for (; l; l = l->next)
14046 if (breakpoint_locations_match (e, l))
14047 {
14048 l->enabled = 0;
14049 break;
14050 }
14051 }
14052 else
14053 {
14054 for (; l; l = l->next)
14055 if (l->function_name
14056 && strcmp (e->function_name, l->function_name) == 0)
14057 {
14058 l->enabled = 0;
14059 break;
14060 }
14061 }
14062 }
14063 }
14064 }
14065
14066 if (!locations_are_equal (existing_locations, b->loc))
14067 observer_notify_breakpoint_modified (b);
14068
14069 update_global_location_list (UGLL_MAY_INSERT);
14070 }
14071
14072 /* Find the SaL locations corresponding to the given ADDR_STRING.
14073 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14074
14075 static struct symtabs_and_lines
14076 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14077 {
14078 char *s;
14079 struct symtabs_and_lines sals = {0};
14080 struct gdb_exception exception = exception_none;
14081
14082 gdb_assert (b->ops != NULL);
14083 s = addr_string;
14084
14085 TRY
14086 {
14087 b->ops->decode_linespec (b, &s, &sals);
14088 }
14089 CATCH (e, RETURN_MASK_ERROR)
14090 {
14091 int not_found_and_ok = 0;
14092
14093 exception = e;
14094
14095 /* For pending breakpoints, it's expected that parsing will
14096 fail until the right shared library is loaded. User has
14097 already told to create pending breakpoints and don't need
14098 extra messages. If breakpoint is in bp_shlib_disabled
14099 state, then user already saw the message about that
14100 breakpoint being disabled, and don't want to see more
14101 errors. */
14102 if (e.error == NOT_FOUND_ERROR
14103 && (b->condition_not_parsed
14104 || (b->loc && b->loc->shlib_disabled)
14105 || (b->loc && b->loc->pspace->executing_startup)
14106 || b->enable_state == bp_disabled))
14107 not_found_and_ok = 1;
14108
14109 if (!not_found_and_ok)
14110 {
14111 /* We surely don't want to warn about the same breakpoint
14112 10 times. One solution, implemented here, is disable
14113 the breakpoint on error. Another solution would be to
14114 have separate 'warning emitted' flag. Since this
14115 happens only when a binary has changed, I don't know
14116 which approach is better. */
14117 b->enable_state = bp_disabled;
14118 throw_exception (e);
14119 }
14120 }
14121 END_CATCH
14122
14123 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
14124 {
14125 int i;
14126
14127 for (i = 0; i < sals.nelts; ++i)
14128 resolve_sal_pc (&sals.sals[i]);
14129 if (b->condition_not_parsed && s && s[0])
14130 {
14131 char *cond_string, *extra_string;
14132 int thread, task;
14133
14134 find_condition_and_thread (s, sals.sals[0].pc,
14135 &cond_string, &thread, &task,
14136 &extra_string);
14137 if (cond_string)
14138 b->cond_string = cond_string;
14139 b->thread = thread;
14140 b->task = task;
14141 if (extra_string)
14142 b->extra_string = extra_string;
14143 b->condition_not_parsed = 0;
14144 }
14145
14146 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14147 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14148
14149 *found = 1;
14150 }
14151 else
14152 *found = 0;
14153
14154 return sals;
14155 }
14156
14157 /* The default re_set method, for typical hardware or software
14158 breakpoints. Reevaluate the breakpoint and recreate its
14159 locations. */
14160
14161 static void
14162 breakpoint_re_set_default (struct breakpoint *b)
14163 {
14164 int found;
14165 struct symtabs_and_lines sals, sals_end;
14166 struct symtabs_and_lines expanded = {0};
14167 struct symtabs_and_lines expanded_end = {0};
14168
14169 sals = addr_string_to_sals (b, b->addr_string, &found);
14170 if (found)
14171 {
14172 make_cleanup (xfree, sals.sals);
14173 expanded = sals;
14174 }
14175
14176 if (b->addr_string_range_end)
14177 {
14178 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14179 if (found)
14180 {
14181 make_cleanup (xfree, sals_end.sals);
14182 expanded_end = sals_end;
14183 }
14184 }
14185
14186 update_breakpoint_locations (b, expanded, expanded_end);
14187 }
14188
14189 /* Default method for creating SALs from an address string. It basically
14190 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14191
14192 static void
14193 create_sals_from_address_default (char **arg,
14194 struct linespec_result *canonical,
14195 enum bptype type_wanted,
14196 char *addr_start, char **copy_arg)
14197 {
14198 parse_breakpoint_sals (arg, canonical);
14199 }
14200
14201 /* Call create_breakpoints_sal for the given arguments. This is the default
14202 function for the `create_breakpoints_sal' method of
14203 breakpoint_ops. */
14204
14205 static void
14206 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14207 struct linespec_result *canonical,
14208 char *cond_string,
14209 char *extra_string,
14210 enum bptype type_wanted,
14211 enum bpdisp disposition,
14212 int thread,
14213 int task, int ignore_count,
14214 const struct breakpoint_ops *ops,
14215 int from_tty, int enabled,
14216 int internal, unsigned flags)
14217 {
14218 create_breakpoints_sal (gdbarch, canonical, cond_string,
14219 extra_string,
14220 type_wanted, disposition,
14221 thread, task, ignore_count, ops, from_tty,
14222 enabled, internal, flags);
14223 }
14224
14225 /* Decode the line represented by S by calling decode_line_full. This is the
14226 default function for the `decode_linespec' method of breakpoint_ops. */
14227
14228 static void
14229 decode_linespec_default (struct breakpoint *b, char **s,
14230 struct symtabs_and_lines *sals)
14231 {
14232 struct linespec_result canonical;
14233
14234 init_linespec_result (&canonical);
14235 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14236 (struct symtab *) NULL, 0,
14237 &canonical, multiple_symbols_all,
14238 b->filter);
14239
14240 /* We should get 0 or 1 resulting SALs. */
14241 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14242
14243 if (VEC_length (linespec_sals, canonical.sals) > 0)
14244 {
14245 struct linespec_sals *lsal;
14246
14247 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14248 *sals = lsal->sals;
14249 /* Arrange it so the destructor does not free the
14250 contents. */
14251 lsal->sals.sals = NULL;
14252 }
14253
14254 destroy_linespec_result (&canonical);
14255 }
14256
14257 /* Prepare the global context for a re-set of breakpoint B. */
14258
14259 static struct cleanup *
14260 prepare_re_set_context (struct breakpoint *b)
14261 {
14262 struct cleanup *cleanups;
14263
14264 input_radix = b->input_radix;
14265 cleanups = save_current_space_and_thread ();
14266 if (b->pspace != NULL)
14267 switch_to_program_space_and_thread (b->pspace);
14268 set_language (b->language);
14269
14270 return cleanups;
14271 }
14272
14273 /* Reset a breakpoint given it's struct breakpoint * BINT.
14274 The value we return ends up being the return value from catch_errors.
14275 Unused in this case. */
14276
14277 static int
14278 breakpoint_re_set_one (void *bint)
14279 {
14280 /* Get past catch_errs. */
14281 struct breakpoint *b = (struct breakpoint *) bint;
14282 struct cleanup *cleanups;
14283
14284 cleanups = prepare_re_set_context (b);
14285 b->ops->re_set (b);
14286 do_cleanups (cleanups);
14287 return 0;
14288 }
14289
14290 /* Re-set all breakpoints after symbols have been re-loaded. */
14291 void
14292 breakpoint_re_set (void)
14293 {
14294 struct breakpoint *b, *b_tmp;
14295 enum language save_language;
14296 int save_input_radix;
14297 struct cleanup *old_chain;
14298
14299 save_language = current_language->la_language;
14300 save_input_radix = input_radix;
14301 old_chain = save_current_program_space ();
14302
14303 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14304 {
14305 /* Format possible error msg. */
14306 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14307 b->number);
14308 struct cleanup *cleanups = make_cleanup (xfree, message);
14309 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14310 do_cleanups (cleanups);
14311 }
14312 set_language (save_language);
14313 input_radix = save_input_radix;
14314
14315 jit_breakpoint_re_set ();
14316
14317 do_cleanups (old_chain);
14318
14319 create_overlay_event_breakpoint ();
14320 create_longjmp_master_breakpoint ();
14321 create_std_terminate_master_breakpoint ();
14322 create_exception_master_breakpoint ();
14323 }
14324 \f
14325 /* Reset the thread number of this breakpoint:
14326
14327 - If the breakpoint is for all threads, leave it as-is.
14328 - Else, reset it to the current thread for inferior_ptid. */
14329 void
14330 breakpoint_re_set_thread (struct breakpoint *b)
14331 {
14332 if (b->thread != -1)
14333 {
14334 if (in_thread_list (inferior_ptid))
14335 b->thread = pid_to_thread_id (inferior_ptid);
14336
14337 /* We're being called after following a fork. The new fork is
14338 selected as current, and unless this was a vfork will have a
14339 different program space from the original thread. Reset that
14340 as well. */
14341 b->loc->pspace = current_program_space;
14342 }
14343 }
14344
14345 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14346 If from_tty is nonzero, it prints a message to that effect,
14347 which ends with a period (no newline). */
14348
14349 void
14350 set_ignore_count (int bptnum, int count, int from_tty)
14351 {
14352 struct breakpoint *b;
14353
14354 if (count < 0)
14355 count = 0;
14356
14357 ALL_BREAKPOINTS (b)
14358 if (b->number == bptnum)
14359 {
14360 if (is_tracepoint (b))
14361 {
14362 if (from_tty && count != 0)
14363 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14364 bptnum);
14365 return;
14366 }
14367
14368 b->ignore_count = count;
14369 if (from_tty)
14370 {
14371 if (count == 0)
14372 printf_filtered (_("Will stop next time "
14373 "breakpoint %d is reached."),
14374 bptnum);
14375 else if (count == 1)
14376 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14377 bptnum);
14378 else
14379 printf_filtered (_("Will ignore next %d "
14380 "crossings of breakpoint %d."),
14381 count, bptnum);
14382 }
14383 observer_notify_breakpoint_modified (b);
14384 return;
14385 }
14386
14387 error (_("No breakpoint number %d."), bptnum);
14388 }
14389
14390 /* Command to set ignore-count of breakpoint N to COUNT. */
14391
14392 static void
14393 ignore_command (char *args, int from_tty)
14394 {
14395 char *p = args;
14396 int num;
14397
14398 if (p == 0)
14399 error_no_arg (_("a breakpoint number"));
14400
14401 num = get_number (&p);
14402 if (num == 0)
14403 error (_("bad breakpoint number: '%s'"), args);
14404 if (*p == 0)
14405 error (_("Second argument (specified ignore-count) is missing."));
14406
14407 set_ignore_count (num,
14408 longest_to_int (value_as_long (parse_and_eval (p))),
14409 from_tty);
14410 if (from_tty)
14411 printf_filtered ("\n");
14412 }
14413 \f
14414 /* Call FUNCTION on each of the breakpoints
14415 whose numbers are given in ARGS. */
14416
14417 static void
14418 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14419 void *),
14420 void *data)
14421 {
14422 int num;
14423 struct breakpoint *b, *tmp;
14424 int match;
14425 struct get_number_or_range_state state;
14426
14427 if (args == 0 || *args == '\0')
14428 error_no_arg (_("one or more breakpoint numbers"));
14429
14430 init_number_or_range (&state, args);
14431
14432 while (!state.finished)
14433 {
14434 const char *p = state.string;
14435
14436 match = 0;
14437
14438 num = get_number_or_range (&state);
14439 if (num == 0)
14440 {
14441 warning (_("bad breakpoint number at or near '%s'"), p);
14442 }
14443 else
14444 {
14445 ALL_BREAKPOINTS_SAFE (b, tmp)
14446 if (b->number == num)
14447 {
14448 match = 1;
14449 function (b, data);
14450 break;
14451 }
14452 if (match == 0)
14453 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14454 }
14455 }
14456 }
14457
14458 static struct bp_location *
14459 find_location_by_number (char *number)
14460 {
14461 char *dot = strchr (number, '.');
14462 char *p1;
14463 int bp_num;
14464 int loc_num;
14465 struct breakpoint *b;
14466 struct bp_location *loc;
14467
14468 *dot = '\0';
14469
14470 p1 = number;
14471 bp_num = get_number (&p1);
14472 if (bp_num == 0)
14473 error (_("Bad breakpoint number '%s'"), number);
14474
14475 ALL_BREAKPOINTS (b)
14476 if (b->number == bp_num)
14477 {
14478 break;
14479 }
14480
14481 if (!b || b->number != bp_num)
14482 error (_("Bad breakpoint number '%s'"), number);
14483
14484 p1 = dot+1;
14485 loc_num = get_number (&p1);
14486 if (loc_num == 0)
14487 error (_("Bad breakpoint location number '%s'"), number);
14488
14489 --loc_num;
14490 loc = b->loc;
14491 for (;loc_num && loc; --loc_num, loc = loc->next)
14492 ;
14493 if (!loc)
14494 error (_("Bad breakpoint location number '%s'"), dot+1);
14495
14496 return loc;
14497 }
14498
14499
14500 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14501 If from_tty is nonzero, it prints a message to that effect,
14502 which ends with a period (no newline). */
14503
14504 void
14505 disable_breakpoint (struct breakpoint *bpt)
14506 {
14507 /* Never disable a watchpoint scope breakpoint; we want to
14508 hit them when we leave scope so we can delete both the
14509 watchpoint and its scope breakpoint at that time. */
14510 if (bpt->type == bp_watchpoint_scope)
14511 return;
14512
14513 bpt->enable_state = bp_disabled;
14514
14515 /* Mark breakpoint locations modified. */
14516 mark_breakpoint_modified (bpt);
14517
14518 if (target_supports_enable_disable_tracepoint ()
14519 && current_trace_status ()->running && is_tracepoint (bpt))
14520 {
14521 struct bp_location *location;
14522
14523 for (location = bpt->loc; location; location = location->next)
14524 target_disable_tracepoint (location);
14525 }
14526
14527 update_global_location_list (UGLL_DONT_INSERT);
14528
14529 observer_notify_breakpoint_modified (bpt);
14530 }
14531
14532 /* A callback for iterate_over_related_breakpoints. */
14533
14534 static void
14535 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14536 {
14537 disable_breakpoint (b);
14538 }
14539
14540 /* A callback for map_breakpoint_numbers that calls
14541 disable_breakpoint. */
14542
14543 static void
14544 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14545 {
14546 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14547 }
14548
14549 static void
14550 disable_command (char *args, int from_tty)
14551 {
14552 if (args == 0)
14553 {
14554 struct breakpoint *bpt;
14555
14556 ALL_BREAKPOINTS (bpt)
14557 if (user_breakpoint_p (bpt))
14558 disable_breakpoint (bpt);
14559 }
14560 else
14561 {
14562 char *num = extract_arg (&args);
14563
14564 while (num)
14565 {
14566 if (strchr (num, '.'))
14567 {
14568 struct bp_location *loc = find_location_by_number (num);
14569
14570 if (loc)
14571 {
14572 if (loc->enabled)
14573 {
14574 loc->enabled = 0;
14575 mark_breakpoint_location_modified (loc);
14576 }
14577 if (target_supports_enable_disable_tracepoint ()
14578 && current_trace_status ()->running && loc->owner
14579 && is_tracepoint (loc->owner))
14580 target_disable_tracepoint (loc);
14581 }
14582 update_global_location_list (UGLL_DONT_INSERT);
14583 }
14584 else
14585 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14586 num = extract_arg (&args);
14587 }
14588 }
14589 }
14590
14591 static void
14592 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14593 int count)
14594 {
14595 int target_resources_ok;
14596
14597 if (bpt->type == bp_hardware_breakpoint)
14598 {
14599 int i;
14600 i = hw_breakpoint_used_count ();
14601 target_resources_ok =
14602 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14603 i + 1, 0);
14604 if (target_resources_ok == 0)
14605 error (_("No hardware breakpoint support in the target."));
14606 else if (target_resources_ok < 0)
14607 error (_("Hardware breakpoints used exceeds limit."));
14608 }
14609
14610 if (is_watchpoint (bpt))
14611 {
14612 /* Initialize it just to avoid a GCC false warning. */
14613 enum enable_state orig_enable_state = 0;
14614
14615 TRY
14616 {
14617 struct watchpoint *w = (struct watchpoint *) bpt;
14618
14619 orig_enable_state = bpt->enable_state;
14620 bpt->enable_state = bp_enabled;
14621 update_watchpoint (w, 1 /* reparse */);
14622 }
14623 CATCH (e, RETURN_MASK_ALL)
14624 {
14625 bpt->enable_state = orig_enable_state;
14626 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14627 bpt->number);
14628 return;
14629 }
14630 END_CATCH
14631 }
14632
14633 bpt->enable_state = bp_enabled;
14634
14635 /* Mark breakpoint locations modified. */
14636 mark_breakpoint_modified (bpt);
14637
14638 if (target_supports_enable_disable_tracepoint ()
14639 && current_trace_status ()->running && is_tracepoint (bpt))
14640 {
14641 struct bp_location *location;
14642
14643 for (location = bpt->loc; location; location = location->next)
14644 target_enable_tracepoint (location);
14645 }
14646
14647 bpt->disposition = disposition;
14648 bpt->enable_count = count;
14649 update_global_location_list (UGLL_MAY_INSERT);
14650
14651 observer_notify_breakpoint_modified (bpt);
14652 }
14653
14654
14655 void
14656 enable_breakpoint (struct breakpoint *bpt)
14657 {
14658 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14659 }
14660
14661 static void
14662 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14663 {
14664 enable_breakpoint (bpt);
14665 }
14666
14667 /* A callback for map_breakpoint_numbers that calls
14668 enable_breakpoint. */
14669
14670 static void
14671 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14672 {
14673 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14674 }
14675
14676 /* The enable command enables the specified breakpoints (or all defined
14677 breakpoints) so they once again become (or continue to be) effective
14678 in stopping the inferior. */
14679
14680 static void
14681 enable_command (char *args, int from_tty)
14682 {
14683 if (args == 0)
14684 {
14685 struct breakpoint *bpt;
14686
14687 ALL_BREAKPOINTS (bpt)
14688 if (user_breakpoint_p (bpt))
14689 enable_breakpoint (bpt);
14690 }
14691 else
14692 {
14693 char *num = extract_arg (&args);
14694
14695 while (num)
14696 {
14697 if (strchr (num, '.'))
14698 {
14699 struct bp_location *loc = find_location_by_number (num);
14700
14701 if (loc)
14702 {
14703 if (!loc->enabled)
14704 {
14705 loc->enabled = 1;
14706 mark_breakpoint_location_modified (loc);
14707 }
14708 if (target_supports_enable_disable_tracepoint ()
14709 && current_trace_status ()->running && loc->owner
14710 && is_tracepoint (loc->owner))
14711 target_enable_tracepoint (loc);
14712 }
14713 update_global_location_list (UGLL_MAY_INSERT);
14714 }
14715 else
14716 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
14717 num = extract_arg (&args);
14718 }
14719 }
14720 }
14721
14722 /* This struct packages up disposition data for application to multiple
14723 breakpoints. */
14724
14725 struct disp_data
14726 {
14727 enum bpdisp disp;
14728 int count;
14729 };
14730
14731 static void
14732 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14733 {
14734 struct disp_data disp_data = *(struct disp_data *) arg;
14735
14736 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14737 }
14738
14739 static void
14740 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14741 {
14742 struct disp_data disp = { disp_disable, 1 };
14743
14744 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14745 }
14746
14747 static void
14748 enable_once_command (char *args, int from_tty)
14749 {
14750 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14751 }
14752
14753 static void
14754 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14755 {
14756 struct disp_data disp = { disp_disable, *(int *) countptr };
14757
14758 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14759 }
14760
14761 static void
14762 enable_count_command (char *args, int from_tty)
14763 {
14764 int count;
14765
14766 if (args == NULL)
14767 error_no_arg (_("hit count"));
14768
14769 count = get_number (&args);
14770
14771 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14772 }
14773
14774 static void
14775 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14776 {
14777 struct disp_data disp = { disp_del, 1 };
14778
14779 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14780 }
14781
14782 static void
14783 enable_delete_command (char *args, int from_tty)
14784 {
14785 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14786 }
14787 \f
14788 static void
14789 set_breakpoint_cmd (char *args, int from_tty)
14790 {
14791 }
14792
14793 static void
14794 show_breakpoint_cmd (char *args, int from_tty)
14795 {
14796 }
14797
14798 /* Invalidate last known value of any hardware watchpoint if
14799 the memory which that value represents has been written to by
14800 GDB itself. */
14801
14802 static void
14803 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14804 CORE_ADDR addr, ssize_t len,
14805 const bfd_byte *data)
14806 {
14807 struct breakpoint *bp;
14808
14809 ALL_BREAKPOINTS (bp)
14810 if (bp->enable_state == bp_enabled
14811 && bp->type == bp_hardware_watchpoint)
14812 {
14813 struct watchpoint *wp = (struct watchpoint *) bp;
14814
14815 if (wp->val_valid && wp->val)
14816 {
14817 struct bp_location *loc;
14818
14819 for (loc = bp->loc; loc != NULL; loc = loc->next)
14820 if (loc->loc_type == bp_loc_hardware_watchpoint
14821 && loc->address + loc->length > addr
14822 && addr + len > loc->address)
14823 {
14824 value_free (wp->val);
14825 wp->val = NULL;
14826 wp->val_valid = 0;
14827 }
14828 }
14829 }
14830 }
14831
14832 /* Create and insert a breakpoint for software single step. */
14833
14834 void
14835 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14836 struct address_space *aspace,
14837 CORE_ADDR next_pc)
14838 {
14839 struct thread_info *tp = inferior_thread ();
14840 struct symtab_and_line sal;
14841 CORE_ADDR pc = next_pc;
14842
14843 if (tp->control.single_step_breakpoints == NULL)
14844 {
14845 tp->control.single_step_breakpoints
14846 = new_single_step_breakpoint (tp->num, gdbarch);
14847 }
14848
14849 sal = find_pc_line (pc, 0);
14850 sal.pc = pc;
14851 sal.section = find_pc_overlay (pc);
14852 sal.explicit_pc = 1;
14853 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14854
14855 update_global_location_list (UGLL_INSERT);
14856 }
14857
14858 /* See breakpoint.h. */
14859
14860 int
14861 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14862 struct address_space *aspace,
14863 CORE_ADDR pc)
14864 {
14865 struct bp_location *loc;
14866
14867 for (loc = bp->loc; loc != NULL; loc = loc->next)
14868 if (loc->inserted
14869 && breakpoint_location_address_match (loc, aspace, pc))
14870 return 1;
14871
14872 return 0;
14873 }
14874
14875 /* Check whether a software single-step breakpoint is inserted at
14876 PC. */
14877
14878 int
14879 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
14880 CORE_ADDR pc)
14881 {
14882 struct breakpoint *bpt;
14883
14884 ALL_BREAKPOINTS (bpt)
14885 {
14886 if (bpt->type == bp_single_step
14887 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14888 return 1;
14889 }
14890 return 0;
14891 }
14892
14893 /* Tracepoint-specific operations. */
14894
14895 /* Set tracepoint count to NUM. */
14896 static void
14897 set_tracepoint_count (int num)
14898 {
14899 tracepoint_count = num;
14900 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14901 }
14902
14903 static void
14904 trace_command (char *arg, int from_tty)
14905 {
14906 struct breakpoint_ops *ops;
14907 const char *arg_cp = arg;
14908
14909 if (arg && probe_linespec_to_ops (&arg_cp))
14910 ops = &tracepoint_probe_breakpoint_ops;
14911 else
14912 ops = &tracepoint_breakpoint_ops;
14913
14914 create_breakpoint (get_current_arch (),
14915 arg,
14916 NULL, 0, NULL, 1 /* parse arg */,
14917 0 /* tempflag */,
14918 bp_tracepoint /* type_wanted */,
14919 0 /* Ignore count */,
14920 pending_break_support,
14921 ops,
14922 from_tty,
14923 1 /* enabled */,
14924 0 /* internal */, 0);
14925 }
14926
14927 static void
14928 ftrace_command (char *arg, int from_tty)
14929 {
14930 create_breakpoint (get_current_arch (),
14931 arg,
14932 NULL, 0, NULL, 1 /* parse arg */,
14933 0 /* tempflag */,
14934 bp_fast_tracepoint /* type_wanted */,
14935 0 /* Ignore count */,
14936 pending_break_support,
14937 &tracepoint_breakpoint_ops,
14938 from_tty,
14939 1 /* enabled */,
14940 0 /* internal */, 0);
14941 }
14942
14943 /* strace command implementation. Creates a static tracepoint. */
14944
14945 static void
14946 strace_command (char *arg, int from_tty)
14947 {
14948 struct breakpoint_ops *ops;
14949
14950 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14951 or with a normal static tracepoint. */
14952 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14953 ops = &strace_marker_breakpoint_ops;
14954 else
14955 ops = &tracepoint_breakpoint_ops;
14956
14957 create_breakpoint (get_current_arch (),
14958 arg,
14959 NULL, 0, NULL, 1 /* parse arg */,
14960 0 /* tempflag */,
14961 bp_static_tracepoint /* type_wanted */,
14962 0 /* Ignore count */,
14963 pending_break_support,
14964 ops,
14965 from_tty,
14966 1 /* enabled */,
14967 0 /* internal */, 0);
14968 }
14969
14970 /* Set up a fake reader function that gets command lines from a linked
14971 list that was acquired during tracepoint uploading. */
14972
14973 static struct uploaded_tp *this_utp;
14974 static int next_cmd;
14975
14976 static char *
14977 read_uploaded_action (void)
14978 {
14979 char *rslt;
14980
14981 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
14982
14983 next_cmd++;
14984
14985 return rslt;
14986 }
14987
14988 /* Given information about a tracepoint as recorded on a target (which
14989 can be either a live system or a trace file), attempt to create an
14990 equivalent GDB tracepoint. This is not a reliable process, since
14991 the target does not necessarily have all the information used when
14992 the tracepoint was originally defined. */
14993
14994 struct tracepoint *
14995 create_tracepoint_from_upload (struct uploaded_tp *utp)
14996 {
14997 char *addr_str, small_buf[100];
14998 struct tracepoint *tp;
14999
15000 if (utp->at_string)
15001 addr_str = utp->at_string;
15002 else
15003 {
15004 /* In the absence of a source location, fall back to raw
15005 address. Since there is no way to confirm that the address
15006 means the same thing as when the trace was started, warn the
15007 user. */
15008 warning (_("Uploaded tracepoint %d has no "
15009 "source location, using raw address"),
15010 utp->number);
15011 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15012 addr_str = small_buf;
15013 }
15014
15015 /* There's not much we can do with a sequence of bytecodes. */
15016 if (utp->cond && !utp->cond_string)
15017 warning (_("Uploaded tracepoint %d condition "
15018 "has no source form, ignoring it"),
15019 utp->number);
15020
15021 if (!create_breakpoint (get_current_arch (),
15022 addr_str,
15023 utp->cond_string, -1, NULL,
15024 0 /* parse cond/thread */,
15025 0 /* tempflag */,
15026 utp->type /* type_wanted */,
15027 0 /* Ignore count */,
15028 pending_break_support,
15029 &tracepoint_breakpoint_ops,
15030 0 /* from_tty */,
15031 utp->enabled /* enabled */,
15032 0 /* internal */,
15033 CREATE_BREAKPOINT_FLAGS_INSERTED))
15034 return NULL;
15035
15036 /* Get the tracepoint we just created. */
15037 tp = get_tracepoint (tracepoint_count);
15038 gdb_assert (tp != NULL);
15039
15040 if (utp->pass > 0)
15041 {
15042 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15043 tp->base.number);
15044
15045 trace_pass_command (small_buf, 0);
15046 }
15047
15048 /* If we have uploaded versions of the original commands, set up a
15049 special-purpose "reader" function and call the usual command line
15050 reader, then pass the result to the breakpoint command-setting
15051 function. */
15052 if (!VEC_empty (char_ptr, utp->cmd_strings))
15053 {
15054 struct command_line *cmd_list;
15055
15056 this_utp = utp;
15057 next_cmd = 0;
15058
15059 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15060
15061 breakpoint_set_commands (&tp->base, cmd_list);
15062 }
15063 else if (!VEC_empty (char_ptr, utp->actions)
15064 || !VEC_empty (char_ptr, utp->step_actions))
15065 warning (_("Uploaded tracepoint %d actions "
15066 "have no source form, ignoring them"),
15067 utp->number);
15068
15069 /* Copy any status information that might be available. */
15070 tp->base.hit_count = utp->hit_count;
15071 tp->traceframe_usage = utp->traceframe_usage;
15072
15073 return tp;
15074 }
15075
15076 /* Print information on tracepoint number TPNUM_EXP, or all if
15077 omitted. */
15078
15079 static void
15080 tracepoints_info (char *args, int from_tty)
15081 {
15082 struct ui_out *uiout = current_uiout;
15083 int num_printed;
15084
15085 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15086
15087 if (num_printed == 0)
15088 {
15089 if (args == NULL || *args == '\0')
15090 ui_out_message (uiout, 0, "No tracepoints.\n");
15091 else
15092 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15093 }
15094
15095 default_collect_info ();
15096 }
15097
15098 /* The 'enable trace' command enables tracepoints.
15099 Not supported by all targets. */
15100 static void
15101 enable_trace_command (char *args, int from_tty)
15102 {
15103 enable_command (args, from_tty);
15104 }
15105
15106 /* The 'disable trace' command disables tracepoints.
15107 Not supported by all targets. */
15108 static void
15109 disable_trace_command (char *args, int from_tty)
15110 {
15111 disable_command (args, from_tty);
15112 }
15113
15114 /* Remove a tracepoint (or all if no argument). */
15115 static void
15116 delete_trace_command (char *arg, int from_tty)
15117 {
15118 struct breakpoint *b, *b_tmp;
15119
15120 dont_repeat ();
15121
15122 if (arg == 0)
15123 {
15124 int breaks_to_delete = 0;
15125
15126 /* Delete all breakpoints if no argument.
15127 Do not delete internal or call-dummy breakpoints, these
15128 have to be deleted with an explicit breakpoint number
15129 argument. */
15130 ALL_TRACEPOINTS (b)
15131 if (is_tracepoint (b) && user_breakpoint_p (b))
15132 {
15133 breaks_to_delete = 1;
15134 break;
15135 }
15136
15137 /* Ask user only if there are some breakpoints to delete. */
15138 if (!from_tty
15139 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15140 {
15141 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15142 if (is_tracepoint (b) && user_breakpoint_p (b))
15143 delete_breakpoint (b);
15144 }
15145 }
15146 else
15147 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15148 }
15149
15150 /* Helper function for trace_pass_command. */
15151
15152 static void
15153 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15154 {
15155 tp->pass_count = count;
15156 observer_notify_breakpoint_modified (&tp->base);
15157 if (from_tty)
15158 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15159 tp->base.number, count);
15160 }
15161
15162 /* Set passcount for tracepoint.
15163
15164 First command argument is passcount, second is tracepoint number.
15165 If tracepoint number omitted, apply to most recently defined.
15166 Also accepts special argument "all". */
15167
15168 static void
15169 trace_pass_command (char *args, int from_tty)
15170 {
15171 struct tracepoint *t1;
15172 unsigned int count;
15173
15174 if (args == 0 || *args == 0)
15175 error (_("passcount command requires an "
15176 "argument (count + optional TP num)"));
15177
15178 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15179
15180 args = skip_spaces (args);
15181 if (*args && strncasecmp (args, "all", 3) == 0)
15182 {
15183 struct breakpoint *b;
15184
15185 args += 3; /* Skip special argument "all". */
15186 if (*args)
15187 error (_("Junk at end of arguments."));
15188
15189 ALL_TRACEPOINTS (b)
15190 {
15191 t1 = (struct tracepoint *) b;
15192 trace_pass_set_count (t1, count, from_tty);
15193 }
15194 }
15195 else if (*args == '\0')
15196 {
15197 t1 = get_tracepoint_by_number (&args, NULL);
15198 if (t1)
15199 trace_pass_set_count (t1, count, from_tty);
15200 }
15201 else
15202 {
15203 struct get_number_or_range_state state;
15204
15205 init_number_or_range (&state, args);
15206 while (!state.finished)
15207 {
15208 t1 = get_tracepoint_by_number (&args, &state);
15209 if (t1)
15210 trace_pass_set_count (t1, count, from_tty);
15211 }
15212 }
15213 }
15214
15215 struct tracepoint *
15216 get_tracepoint (int num)
15217 {
15218 struct breakpoint *t;
15219
15220 ALL_TRACEPOINTS (t)
15221 if (t->number == num)
15222 return (struct tracepoint *) t;
15223
15224 return NULL;
15225 }
15226
15227 /* Find the tracepoint with the given target-side number (which may be
15228 different from the tracepoint number after disconnecting and
15229 reconnecting). */
15230
15231 struct tracepoint *
15232 get_tracepoint_by_number_on_target (int num)
15233 {
15234 struct breakpoint *b;
15235
15236 ALL_TRACEPOINTS (b)
15237 {
15238 struct tracepoint *t = (struct tracepoint *) b;
15239
15240 if (t->number_on_target == num)
15241 return t;
15242 }
15243
15244 return NULL;
15245 }
15246
15247 /* Utility: parse a tracepoint number and look it up in the list.
15248 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15249 If the argument is missing, the most recent tracepoint
15250 (tracepoint_count) is returned. */
15251
15252 struct tracepoint *
15253 get_tracepoint_by_number (char **arg,
15254 struct get_number_or_range_state *state)
15255 {
15256 struct breakpoint *t;
15257 int tpnum;
15258 char *instring = arg == NULL ? NULL : *arg;
15259
15260 if (state)
15261 {
15262 gdb_assert (!state->finished);
15263 tpnum = get_number_or_range (state);
15264 }
15265 else if (arg == NULL || *arg == NULL || ! **arg)
15266 tpnum = tracepoint_count;
15267 else
15268 tpnum = get_number (arg);
15269
15270 if (tpnum <= 0)
15271 {
15272 if (instring && *instring)
15273 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15274 instring);
15275 else
15276 printf_filtered (_("No previous tracepoint\n"));
15277 return NULL;
15278 }
15279
15280 ALL_TRACEPOINTS (t)
15281 if (t->number == tpnum)
15282 {
15283 return (struct tracepoint *) t;
15284 }
15285
15286 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15287 return NULL;
15288 }
15289
15290 void
15291 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15292 {
15293 if (b->thread != -1)
15294 fprintf_unfiltered (fp, " thread %d", b->thread);
15295
15296 if (b->task != 0)
15297 fprintf_unfiltered (fp, " task %d", b->task);
15298
15299 fprintf_unfiltered (fp, "\n");
15300 }
15301
15302 /* Save information on user settable breakpoints (watchpoints, etc) to
15303 a new script file named FILENAME. If FILTER is non-NULL, call it
15304 on each breakpoint and only include the ones for which it returns
15305 non-zero. */
15306
15307 static void
15308 save_breakpoints (char *filename, int from_tty,
15309 int (*filter) (const struct breakpoint *))
15310 {
15311 struct breakpoint *tp;
15312 int any = 0;
15313 struct cleanup *cleanup;
15314 struct ui_file *fp;
15315 int extra_trace_bits = 0;
15316
15317 if (filename == 0 || *filename == 0)
15318 error (_("Argument required (file name in which to save)"));
15319
15320 /* See if we have anything to save. */
15321 ALL_BREAKPOINTS (tp)
15322 {
15323 /* Skip internal and momentary breakpoints. */
15324 if (!user_breakpoint_p (tp))
15325 continue;
15326
15327 /* If we have a filter, only save the breakpoints it accepts. */
15328 if (filter && !filter (tp))
15329 continue;
15330
15331 any = 1;
15332
15333 if (is_tracepoint (tp))
15334 {
15335 extra_trace_bits = 1;
15336
15337 /* We can stop searching. */
15338 break;
15339 }
15340 }
15341
15342 if (!any)
15343 {
15344 warning (_("Nothing to save."));
15345 return;
15346 }
15347
15348 filename = tilde_expand (filename);
15349 cleanup = make_cleanup (xfree, filename);
15350 fp = gdb_fopen (filename, "w");
15351 if (!fp)
15352 error (_("Unable to open file '%s' for saving (%s)"),
15353 filename, safe_strerror (errno));
15354 make_cleanup_ui_file_delete (fp);
15355
15356 if (extra_trace_bits)
15357 save_trace_state_variables (fp);
15358
15359 ALL_BREAKPOINTS (tp)
15360 {
15361 /* Skip internal and momentary breakpoints. */
15362 if (!user_breakpoint_p (tp))
15363 continue;
15364
15365 /* If we have a filter, only save the breakpoints it accepts. */
15366 if (filter && !filter (tp))
15367 continue;
15368
15369 tp->ops->print_recreate (tp, fp);
15370
15371 /* Note, we can't rely on tp->number for anything, as we can't
15372 assume the recreated breakpoint numbers will match. Use $bpnum
15373 instead. */
15374
15375 if (tp->cond_string)
15376 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15377
15378 if (tp->ignore_count)
15379 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15380
15381 if (tp->type != bp_dprintf && tp->commands)
15382 {
15383 struct gdb_exception exception;
15384
15385 fprintf_unfiltered (fp, " commands\n");
15386
15387 ui_out_redirect (current_uiout, fp);
15388 TRY
15389 {
15390 print_command_lines (current_uiout, tp->commands->commands, 2);
15391 }
15392 CATCH (ex, RETURN_MASK_ALL)
15393 {
15394 ui_out_redirect (current_uiout, NULL);
15395 throw_exception (ex);
15396 }
15397 END_CATCH
15398
15399 ui_out_redirect (current_uiout, NULL);
15400 fprintf_unfiltered (fp, " end\n");
15401 }
15402
15403 if (tp->enable_state == bp_disabled)
15404 fprintf_unfiltered (fp, "disable $bpnum\n");
15405
15406 /* If this is a multi-location breakpoint, check if the locations
15407 should be individually disabled. Watchpoint locations are
15408 special, and not user visible. */
15409 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15410 {
15411 struct bp_location *loc;
15412 int n = 1;
15413
15414 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15415 if (!loc->enabled)
15416 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15417 }
15418 }
15419
15420 if (extra_trace_bits && *default_collect)
15421 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15422
15423 if (from_tty)
15424 printf_filtered (_("Saved to file '%s'.\n"), filename);
15425 do_cleanups (cleanup);
15426 }
15427
15428 /* The `save breakpoints' command. */
15429
15430 static void
15431 save_breakpoints_command (char *args, int from_tty)
15432 {
15433 save_breakpoints (args, from_tty, NULL);
15434 }
15435
15436 /* The `save tracepoints' command. */
15437
15438 static void
15439 save_tracepoints_command (char *args, int from_tty)
15440 {
15441 save_breakpoints (args, from_tty, is_tracepoint);
15442 }
15443
15444 /* Create a vector of all tracepoints. */
15445
15446 VEC(breakpoint_p) *
15447 all_tracepoints (void)
15448 {
15449 VEC(breakpoint_p) *tp_vec = 0;
15450 struct breakpoint *tp;
15451
15452 ALL_TRACEPOINTS (tp)
15453 {
15454 VEC_safe_push (breakpoint_p, tp_vec, tp);
15455 }
15456
15457 return tp_vec;
15458 }
15459
15460 \f
15461 /* This help string is used for the break, hbreak, tbreak and thbreak
15462 commands. It is defined as a macro to prevent duplication.
15463 COMMAND should be a string constant containing the name of the
15464 command. */
15465 #define BREAK_ARGS_HELP(command) \
15466 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15467 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15468 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15469 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15470 `-probe-dtrace' (for a DTrace probe).\n\
15471 LOCATION may be a line number, function name, or \"*\" and an address.\n\
15472 If a line number is specified, break at start of code for that line.\n\
15473 If a function is specified, break at start of code for that function.\n\
15474 If an address is specified, break at that exact address.\n\
15475 With no LOCATION, uses current execution address of the selected\n\
15476 stack frame. This is useful for breaking on return to a stack frame.\n\
15477 \n\
15478 THREADNUM is the number from \"info threads\".\n\
15479 CONDITION is a boolean expression.\n\
15480 \n\
15481 Multiple breakpoints at one place are permitted, and useful if their\n\
15482 conditions are different.\n\
15483 \n\
15484 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15485
15486 /* List of subcommands for "catch". */
15487 static struct cmd_list_element *catch_cmdlist;
15488
15489 /* List of subcommands for "tcatch". */
15490 static struct cmd_list_element *tcatch_cmdlist;
15491
15492 void
15493 add_catch_command (char *name, char *docstring,
15494 cmd_sfunc_ftype *sfunc,
15495 completer_ftype *completer,
15496 void *user_data_catch,
15497 void *user_data_tcatch)
15498 {
15499 struct cmd_list_element *command;
15500
15501 command = add_cmd (name, class_breakpoint, NULL, docstring,
15502 &catch_cmdlist);
15503 set_cmd_sfunc (command, sfunc);
15504 set_cmd_context (command, user_data_catch);
15505 set_cmd_completer (command, completer);
15506
15507 command = add_cmd (name, class_breakpoint, NULL, docstring,
15508 &tcatch_cmdlist);
15509 set_cmd_sfunc (command, sfunc);
15510 set_cmd_context (command, user_data_tcatch);
15511 set_cmd_completer (command, completer);
15512 }
15513
15514 static void
15515 save_command (char *arg, int from_tty)
15516 {
15517 printf_unfiltered (_("\"save\" must be followed by "
15518 "the name of a save subcommand.\n"));
15519 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15520 }
15521
15522 struct breakpoint *
15523 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15524 void *data)
15525 {
15526 struct breakpoint *b, *b_tmp;
15527
15528 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15529 {
15530 if ((*callback) (b, data))
15531 return b;
15532 }
15533
15534 return NULL;
15535 }
15536
15537 /* Zero if any of the breakpoint's locations could be a location where
15538 functions have been inlined, nonzero otherwise. */
15539
15540 static int
15541 is_non_inline_function (struct breakpoint *b)
15542 {
15543 /* The shared library event breakpoint is set on the address of a
15544 non-inline function. */
15545 if (b->type == bp_shlib_event)
15546 return 1;
15547
15548 return 0;
15549 }
15550
15551 /* Nonzero if the specified PC cannot be a location where functions
15552 have been inlined. */
15553
15554 int
15555 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15556 const struct target_waitstatus *ws)
15557 {
15558 struct breakpoint *b;
15559 struct bp_location *bl;
15560
15561 ALL_BREAKPOINTS (b)
15562 {
15563 if (!is_non_inline_function (b))
15564 continue;
15565
15566 for (bl = b->loc; bl != NULL; bl = bl->next)
15567 {
15568 if (!bl->shlib_disabled
15569 && bpstat_check_location (bl, aspace, pc, ws))
15570 return 1;
15571 }
15572 }
15573
15574 return 0;
15575 }
15576
15577 /* Remove any references to OBJFILE which is going to be freed. */
15578
15579 void
15580 breakpoint_free_objfile (struct objfile *objfile)
15581 {
15582 struct bp_location **locp, *loc;
15583
15584 ALL_BP_LOCATIONS (loc, locp)
15585 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15586 loc->symtab = NULL;
15587 }
15588
15589 void
15590 initialize_breakpoint_ops (void)
15591 {
15592 static int initialized = 0;
15593
15594 struct breakpoint_ops *ops;
15595
15596 if (initialized)
15597 return;
15598 initialized = 1;
15599
15600 /* The breakpoint_ops structure to be inherit by all kinds of
15601 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15602 internal and momentary breakpoints, etc.). */
15603 ops = &bkpt_base_breakpoint_ops;
15604 *ops = base_breakpoint_ops;
15605 ops->re_set = bkpt_re_set;
15606 ops->insert_location = bkpt_insert_location;
15607 ops->remove_location = bkpt_remove_location;
15608 ops->breakpoint_hit = bkpt_breakpoint_hit;
15609 ops->create_sals_from_address = bkpt_create_sals_from_address;
15610 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15611 ops->decode_linespec = bkpt_decode_linespec;
15612
15613 /* The breakpoint_ops structure to be used in regular breakpoints. */
15614 ops = &bkpt_breakpoint_ops;
15615 *ops = bkpt_base_breakpoint_ops;
15616 ops->re_set = bkpt_re_set;
15617 ops->resources_needed = bkpt_resources_needed;
15618 ops->print_it = bkpt_print_it;
15619 ops->print_mention = bkpt_print_mention;
15620 ops->print_recreate = bkpt_print_recreate;
15621
15622 /* Ranged breakpoints. */
15623 ops = &ranged_breakpoint_ops;
15624 *ops = bkpt_breakpoint_ops;
15625 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15626 ops->resources_needed = resources_needed_ranged_breakpoint;
15627 ops->print_it = print_it_ranged_breakpoint;
15628 ops->print_one = print_one_ranged_breakpoint;
15629 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15630 ops->print_mention = print_mention_ranged_breakpoint;
15631 ops->print_recreate = print_recreate_ranged_breakpoint;
15632
15633 /* Internal breakpoints. */
15634 ops = &internal_breakpoint_ops;
15635 *ops = bkpt_base_breakpoint_ops;
15636 ops->re_set = internal_bkpt_re_set;
15637 ops->check_status = internal_bkpt_check_status;
15638 ops->print_it = internal_bkpt_print_it;
15639 ops->print_mention = internal_bkpt_print_mention;
15640
15641 /* Momentary breakpoints. */
15642 ops = &momentary_breakpoint_ops;
15643 *ops = bkpt_base_breakpoint_ops;
15644 ops->re_set = momentary_bkpt_re_set;
15645 ops->check_status = momentary_bkpt_check_status;
15646 ops->print_it = momentary_bkpt_print_it;
15647 ops->print_mention = momentary_bkpt_print_mention;
15648
15649 /* Momentary breakpoints for bp_longjmp and bp_exception. */
15650 ops = &longjmp_breakpoint_ops;
15651 *ops = momentary_breakpoint_ops;
15652 ops->dtor = longjmp_bkpt_dtor;
15653
15654 /* Probe breakpoints. */
15655 ops = &bkpt_probe_breakpoint_ops;
15656 *ops = bkpt_breakpoint_ops;
15657 ops->insert_location = bkpt_probe_insert_location;
15658 ops->remove_location = bkpt_probe_remove_location;
15659 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
15660 ops->decode_linespec = bkpt_probe_decode_linespec;
15661
15662 /* Watchpoints. */
15663 ops = &watchpoint_breakpoint_ops;
15664 *ops = base_breakpoint_ops;
15665 ops->dtor = dtor_watchpoint;
15666 ops->re_set = re_set_watchpoint;
15667 ops->insert_location = insert_watchpoint;
15668 ops->remove_location = remove_watchpoint;
15669 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15670 ops->check_status = check_status_watchpoint;
15671 ops->resources_needed = resources_needed_watchpoint;
15672 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15673 ops->print_it = print_it_watchpoint;
15674 ops->print_mention = print_mention_watchpoint;
15675 ops->print_recreate = print_recreate_watchpoint;
15676 ops->explains_signal = explains_signal_watchpoint;
15677
15678 /* Masked watchpoints. */
15679 ops = &masked_watchpoint_breakpoint_ops;
15680 *ops = watchpoint_breakpoint_ops;
15681 ops->insert_location = insert_masked_watchpoint;
15682 ops->remove_location = remove_masked_watchpoint;
15683 ops->resources_needed = resources_needed_masked_watchpoint;
15684 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15685 ops->print_it = print_it_masked_watchpoint;
15686 ops->print_one_detail = print_one_detail_masked_watchpoint;
15687 ops->print_mention = print_mention_masked_watchpoint;
15688 ops->print_recreate = print_recreate_masked_watchpoint;
15689
15690 /* Tracepoints. */
15691 ops = &tracepoint_breakpoint_ops;
15692 *ops = base_breakpoint_ops;
15693 ops->re_set = tracepoint_re_set;
15694 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15695 ops->print_one_detail = tracepoint_print_one_detail;
15696 ops->print_mention = tracepoint_print_mention;
15697 ops->print_recreate = tracepoint_print_recreate;
15698 ops->create_sals_from_address = tracepoint_create_sals_from_address;
15699 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15700 ops->decode_linespec = tracepoint_decode_linespec;
15701
15702 /* Probe tracepoints. */
15703 ops = &tracepoint_probe_breakpoint_ops;
15704 *ops = tracepoint_breakpoint_ops;
15705 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
15706 ops->decode_linespec = tracepoint_probe_decode_linespec;
15707
15708 /* Static tracepoints with marker (`-m'). */
15709 ops = &strace_marker_breakpoint_ops;
15710 *ops = tracepoint_breakpoint_ops;
15711 ops->create_sals_from_address = strace_marker_create_sals_from_address;
15712 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15713 ops->decode_linespec = strace_marker_decode_linespec;
15714
15715 /* Fork catchpoints. */
15716 ops = &catch_fork_breakpoint_ops;
15717 *ops = base_breakpoint_ops;
15718 ops->insert_location = insert_catch_fork;
15719 ops->remove_location = remove_catch_fork;
15720 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15721 ops->print_it = print_it_catch_fork;
15722 ops->print_one = print_one_catch_fork;
15723 ops->print_mention = print_mention_catch_fork;
15724 ops->print_recreate = print_recreate_catch_fork;
15725
15726 /* Vfork catchpoints. */
15727 ops = &catch_vfork_breakpoint_ops;
15728 *ops = base_breakpoint_ops;
15729 ops->insert_location = insert_catch_vfork;
15730 ops->remove_location = remove_catch_vfork;
15731 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15732 ops->print_it = print_it_catch_vfork;
15733 ops->print_one = print_one_catch_vfork;
15734 ops->print_mention = print_mention_catch_vfork;
15735 ops->print_recreate = print_recreate_catch_vfork;
15736
15737 /* Exec catchpoints. */
15738 ops = &catch_exec_breakpoint_ops;
15739 *ops = base_breakpoint_ops;
15740 ops->dtor = dtor_catch_exec;
15741 ops->insert_location = insert_catch_exec;
15742 ops->remove_location = remove_catch_exec;
15743 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15744 ops->print_it = print_it_catch_exec;
15745 ops->print_one = print_one_catch_exec;
15746 ops->print_mention = print_mention_catch_exec;
15747 ops->print_recreate = print_recreate_catch_exec;
15748
15749 /* Solib-related catchpoints. */
15750 ops = &catch_solib_breakpoint_ops;
15751 *ops = base_breakpoint_ops;
15752 ops->dtor = dtor_catch_solib;
15753 ops->insert_location = insert_catch_solib;
15754 ops->remove_location = remove_catch_solib;
15755 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15756 ops->check_status = check_status_catch_solib;
15757 ops->print_it = print_it_catch_solib;
15758 ops->print_one = print_one_catch_solib;
15759 ops->print_mention = print_mention_catch_solib;
15760 ops->print_recreate = print_recreate_catch_solib;
15761
15762 ops = &dprintf_breakpoint_ops;
15763 *ops = bkpt_base_breakpoint_ops;
15764 ops->re_set = dprintf_re_set;
15765 ops->resources_needed = bkpt_resources_needed;
15766 ops->print_it = bkpt_print_it;
15767 ops->print_mention = bkpt_print_mention;
15768 ops->print_recreate = dprintf_print_recreate;
15769 ops->after_condition_true = dprintf_after_condition_true;
15770 ops->breakpoint_hit = dprintf_breakpoint_hit;
15771 }
15772
15773 /* Chain containing all defined "enable breakpoint" subcommands. */
15774
15775 static struct cmd_list_element *enablebreaklist = NULL;
15776
15777 void
15778 _initialize_breakpoint (void)
15779 {
15780 struct cmd_list_element *c;
15781
15782 initialize_breakpoint_ops ();
15783
15784 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
15785 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
15786 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
15787
15788 breakpoint_objfile_key
15789 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
15790
15791 breakpoint_chain = 0;
15792 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15793 before a breakpoint is set. */
15794 breakpoint_count = 0;
15795
15796 tracepoint_count = 0;
15797
15798 add_com ("ignore", class_breakpoint, ignore_command, _("\
15799 Set ignore-count of breakpoint number N to COUNT.\n\
15800 Usage is `ignore N COUNT'."));
15801
15802 add_com ("commands", class_breakpoint, commands_command, _("\
15803 Set commands to be executed when a breakpoint is hit.\n\
15804 Give breakpoint number as argument after \"commands\".\n\
15805 With no argument, the targeted breakpoint is the last one set.\n\
15806 The commands themselves follow starting on the next line.\n\
15807 Type a line containing \"end\" to indicate the end of them.\n\
15808 Give \"silent\" as the first line to make the breakpoint silent;\n\
15809 then no output is printed when it is hit, except what the commands print."));
15810
15811 c = add_com ("condition", class_breakpoint, condition_command, _("\
15812 Specify breakpoint number N to break only if COND is true.\n\
15813 Usage is `condition N COND', where N is an integer and COND is an\n\
15814 expression to be evaluated whenever breakpoint N is reached."));
15815 set_cmd_completer (c, condition_completer);
15816
15817 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15818 Set a temporary breakpoint.\n\
15819 Like \"break\" except the breakpoint is only temporary,\n\
15820 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15821 by using \"enable delete\" on the breakpoint number.\n\
15822 \n"
15823 BREAK_ARGS_HELP ("tbreak")));
15824 set_cmd_completer (c, location_completer);
15825
15826 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15827 Set a hardware assisted breakpoint.\n\
15828 Like \"break\" except the breakpoint requires hardware support,\n\
15829 some target hardware may not have this support.\n\
15830 \n"
15831 BREAK_ARGS_HELP ("hbreak")));
15832 set_cmd_completer (c, location_completer);
15833
15834 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15835 Set a temporary hardware assisted breakpoint.\n\
15836 Like \"hbreak\" except the breakpoint is only temporary,\n\
15837 so it will be deleted when hit.\n\
15838 \n"
15839 BREAK_ARGS_HELP ("thbreak")));
15840 set_cmd_completer (c, location_completer);
15841
15842 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15843 Enable some breakpoints.\n\
15844 Give breakpoint numbers (separated by spaces) as arguments.\n\
15845 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15846 This is used to cancel the effect of the \"disable\" command.\n\
15847 With a subcommand you can enable temporarily."),
15848 &enablelist, "enable ", 1, &cmdlist);
15849
15850 add_com_alias ("en", "enable", class_breakpoint, 1);
15851
15852 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15853 Enable some breakpoints.\n\
15854 Give breakpoint numbers (separated by spaces) as arguments.\n\
15855 This is used to cancel the effect of the \"disable\" command.\n\
15856 May be abbreviated to simply \"enable\".\n"),
15857 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15858
15859 add_cmd ("once", no_class, enable_once_command, _("\
15860 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15861 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15862 &enablebreaklist);
15863
15864 add_cmd ("delete", no_class, enable_delete_command, _("\
15865 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15866 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15867 &enablebreaklist);
15868
15869 add_cmd ("count", no_class, enable_count_command, _("\
15870 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15871 If a breakpoint is hit while enabled in this fashion,\n\
15872 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15873 &enablebreaklist);
15874
15875 add_cmd ("delete", no_class, enable_delete_command, _("\
15876 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15877 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15878 &enablelist);
15879
15880 add_cmd ("once", no_class, enable_once_command, _("\
15881 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15882 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15883 &enablelist);
15884
15885 add_cmd ("count", no_class, enable_count_command, _("\
15886 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15887 If a breakpoint is hit while enabled in this fashion,\n\
15888 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15889 &enablelist);
15890
15891 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15892 Disable some breakpoints.\n\
15893 Arguments are breakpoint numbers with spaces in between.\n\
15894 To disable all breakpoints, give no argument.\n\
15895 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15896 &disablelist, "disable ", 1, &cmdlist);
15897 add_com_alias ("dis", "disable", class_breakpoint, 1);
15898 add_com_alias ("disa", "disable", class_breakpoint, 1);
15899
15900 add_cmd ("breakpoints", class_alias, disable_command, _("\
15901 Disable some breakpoints.\n\
15902 Arguments are breakpoint numbers with spaces in between.\n\
15903 To disable all breakpoints, give no argument.\n\
15904 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15905 This command may be abbreviated \"disable\"."),
15906 &disablelist);
15907
15908 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15909 Delete some breakpoints or auto-display expressions.\n\
15910 Arguments are breakpoint numbers with spaces in between.\n\
15911 To delete all breakpoints, give no argument.\n\
15912 \n\
15913 Also a prefix command for deletion of other GDB objects.\n\
15914 The \"unset\" command is also an alias for \"delete\"."),
15915 &deletelist, "delete ", 1, &cmdlist);
15916 add_com_alias ("d", "delete", class_breakpoint, 1);
15917 add_com_alias ("del", "delete", class_breakpoint, 1);
15918
15919 add_cmd ("breakpoints", class_alias, delete_command, _("\
15920 Delete some breakpoints or auto-display expressions.\n\
15921 Arguments are breakpoint numbers with spaces in between.\n\
15922 To delete all breakpoints, give no argument.\n\
15923 This command may be abbreviated \"delete\"."),
15924 &deletelist);
15925
15926 add_com ("clear", class_breakpoint, clear_command, _("\
15927 Clear breakpoint at specified line or function.\n\
15928 Argument may be line number, function name, or \"*\" and an address.\n\
15929 If line number is specified, all breakpoints in that line are cleared.\n\
15930 If function is specified, breakpoints at beginning of function are cleared.\n\
15931 If an address is specified, breakpoints at that address are cleared.\n\
15932 \n\
15933 With no argument, clears all breakpoints in the line that the selected frame\n\
15934 is executing in.\n\
15935 \n\
15936 See also the \"delete\" command which clears breakpoints by number."));
15937 add_com_alias ("cl", "clear", class_breakpoint, 1);
15938
15939 c = add_com ("break", class_breakpoint, break_command, _("\
15940 Set breakpoint at specified line or function.\n"
15941 BREAK_ARGS_HELP ("break")));
15942 set_cmd_completer (c, location_completer);
15943
15944 add_com_alias ("b", "break", class_run, 1);
15945 add_com_alias ("br", "break", class_run, 1);
15946 add_com_alias ("bre", "break", class_run, 1);
15947 add_com_alias ("brea", "break", class_run, 1);
15948
15949 if (dbx_commands)
15950 {
15951 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15952 Break in function/address or break at a line in the current file."),
15953 &stoplist, "stop ", 1, &cmdlist);
15954 add_cmd ("in", class_breakpoint, stopin_command,
15955 _("Break in function or address."), &stoplist);
15956 add_cmd ("at", class_breakpoint, stopat_command,
15957 _("Break at a line in the current file."), &stoplist);
15958 add_com ("status", class_info, breakpoints_info, _("\
15959 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15960 The \"Type\" column indicates one of:\n\
15961 \tbreakpoint - normal breakpoint\n\
15962 \twatchpoint - watchpoint\n\
15963 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15964 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15965 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15966 address and file/line number respectively.\n\
15967 \n\
15968 Convenience variable \"$_\" and default examine address for \"x\"\n\
15969 are set to the address of the last breakpoint listed unless the command\n\
15970 is prefixed with \"server \".\n\n\
15971 Convenience variable \"$bpnum\" contains the number of the last\n\
15972 breakpoint set."));
15973 }
15974
15975 add_info ("breakpoints", breakpoints_info, _("\
15976 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15977 The \"Type\" column indicates one of:\n\
15978 \tbreakpoint - normal breakpoint\n\
15979 \twatchpoint - watchpoint\n\
15980 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15981 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15982 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15983 address and file/line number respectively.\n\
15984 \n\
15985 Convenience variable \"$_\" and default examine address for \"x\"\n\
15986 are set to the address of the last breakpoint listed unless the command\n\
15987 is prefixed with \"server \".\n\n\
15988 Convenience variable \"$bpnum\" contains the number of the last\n\
15989 breakpoint set."));
15990
15991 add_info_alias ("b", "breakpoints", 1);
15992
15993 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15994 Status of all breakpoints, or breakpoint number NUMBER.\n\
15995 The \"Type\" column indicates one of:\n\
15996 \tbreakpoint - normal breakpoint\n\
15997 \twatchpoint - watchpoint\n\
15998 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15999 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16000 \tuntil - internal breakpoint used by the \"until\" command\n\
16001 \tfinish - internal breakpoint used by the \"finish\" command\n\
16002 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16003 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16004 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16005 address and file/line number respectively.\n\
16006 \n\
16007 Convenience variable \"$_\" and default examine address for \"x\"\n\
16008 are set to the address of the last breakpoint listed unless the command\n\
16009 is prefixed with \"server \".\n\n\
16010 Convenience variable \"$bpnum\" contains the number of the last\n\
16011 breakpoint set."),
16012 &maintenanceinfolist);
16013
16014 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16015 Set catchpoints to catch events."),
16016 &catch_cmdlist, "catch ",
16017 0/*allow-unknown*/, &cmdlist);
16018
16019 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16020 Set temporary catchpoints to catch events."),
16021 &tcatch_cmdlist, "tcatch ",
16022 0/*allow-unknown*/, &cmdlist);
16023
16024 add_catch_command ("fork", _("Catch calls to fork."),
16025 catch_fork_command_1,
16026 NULL,
16027 (void *) (uintptr_t) catch_fork_permanent,
16028 (void *) (uintptr_t) catch_fork_temporary);
16029 add_catch_command ("vfork", _("Catch calls to vfork."),
16030 catch_fork_command_1,
16031 NULL,
16032 (void *) (uintptr_t) catch_vfork_permanent,
16033 (void *) (uintptr_t) catch_vfork_temporary);
16034 add_catch_command ("exec", _("Catch calls to exec."),
16035 catch_exec_command_1,
16036 NULL,
16037 CATCH_PERMANENT,
16038 CATCH_TEMPORARY);
16039 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16040 Usage: catch load [REGEX]\n\
16041 If REGEX is given, only stop for libraries matching the regular expression."),
16042 catch_load_command_1,
16043 NULL,
16044 CATCH_PERMANENT,
16045 CATCH_TEMPORARY);
16046 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16047 Usage: catch unload [REGEX]\n\
16048 If REGEX is given, only stop for libraries matching the regular expression."),
16049 catch_unload_command_1,
16050 NULL,
16051 CATCH_PERMANENT,
16052 CATCH_TEMPORARY);
16053
16054 c = add_com ("watch", class_breakpoint, watch_command, _("\
16055 Set a watchpoint for an expression.\n\
16056 Usage: watch [-l|-location] EXPRESSION\n\
16057 A watchpoint stops execution of your program whenever the value of\n\
16058 an expression changes.\n\
16059 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16060 the memory to which it refers."));
16061 set_cmd_completer (c, expression_completer);
16062
16063 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16064 Set a read watchpoint for an expression.\n\
16065 Usage: rwatch [-l|-location] EXPRESSION\n\
16066 A watchpoint stops execution of your program whenever the value of\n\
16067 an expression is read.\n\
16068 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16069 the memory to which it refers."));
16070 set_cmd_completer (c, expression_completer);
16071
16072 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16073 Set a watchpoint for an expression.\n\
16074 Usage: awatch [-l|-location] EXPRESSION\n\
16075 A watchpoint stops execution of your program whenever the value of\n\
16076 an expression is either read or written.\n\
16077 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16078 the memory to which it refers."));
16079 set_cmd_completer (c, expression_completer);
16080
16081 add_info ("watchpoints", watchpoints_info, _("\
16082 Status of specified watchpoints (all watchpoints if no argument)."));
16083
16084 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16085 respond to changes - contrary to the description. */
16086 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16087 &can_use_hw_watchpoints, _("\
16088 Set debugger's willingness to use watchpoint hardware."), _("\
16089 Show debugger's willingness to use watchpoint hardware."), _("\
16090 If zero, gdb will not use hardware for new watchpoints, even if\n\
16091 such is available. (However, any hardware watchpoints that were\n\
16092 created before setting this to nonzero, will continue to use watchpoint\n\
16093 hardware.)"),
16094 NULL,
16095 show_can_use_hw_watchpoints,
16096 &setlist, &showlist);
16097
16098 can_use_hw_watchpoints = 1;
16099
16100 /* Tracepoint manipulation commands. */
16101
16102 c = add_com ("trace", class_breakpoint, trace_command, _("\
16103 Set a tracepoint at specified line or function.\n\
16104 \n"
16105 BREAK_ARGS_HELP ("trace") "\n\
16106 Do \"help tracepoints\" for info on other tracepoint commands."));
16107 set_cmd_completer (c, location_completer);
16108
16109 add_com_alias ("tp", "trace", class_alias, 0);
16110 add_com_alias ("tr", "trace", class_alias, 1);
16111 add_com_alias ("tra", "trace", class_alias, 1);
16112 add_com_alias ("trac", "trace", class_alias, 1);
16113
16114 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16115 Set a fast tracepoint at specified line or function.\n\
16116 \n"
16117 BREAK_ARGS_HELP ("ftrace") "\n\
16118 Do \"help tracepoints\" for info on other tracepoint commands."));
16119 set_cmd_completer (c, location_completer);
16120
16121 c = add_com ("strace", class_breakpoint, strace_command, _("\
16122 Set a static tracepoint at specified line, function or marker.\n\
16123 \n\
16124 strace [LOCATION] [if CONDITION]\n\
16125 LOCATION may be a line number, function name, \"*\" and an address,\n\
16126 or -m MARKER_ID.\n\
16127 If a line number is specified, probe the marker at start of code\n\
16128 for that line. If a function is specified, probe the marker at start\n\
16129 of code for that function. If an address is specified, probe the marker\n\
16130 at that exact address. If a marker id is specified, probe the marker\n\
16131 with that name. With no LOCATION, uses current execution address of\n\
16132 the selected stack frame.\n\
16133 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16134 This collects arbitrary user data passed in the probe point call to the\n\
16135 tracing library. You can inspect it when analyzing the trace buffer,\n\
16136 by printing the $_sdata variable like any other convenience variable.\n\
16137 \n\
16138 CONDITION is a boolean expression.\n\
16139 \n\
16140 Multiple tracepoints at one place are permitted, and useful if their\n\
16141 conditions are different.\n\
16142 \n\
16143 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16144 Do \"help tracepoints\" for info on other tracepoint commands."));
16145 set_cmd_completer (c, location_completer);
16146
16147 add_info ("tracepoints", tracepoints_info, _("\
16148 Status of specified tracepoints (all tracepoints if no argument).\n\
16149 Convenience variable \"$tpnum\" contains the number of the\n\
16150 last tracepoint set."));
16151
16152 add_info_alias ("tp", "tracepoints", 1);
16153
16154 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16155 Delete specified tracepoints.\n\
16156 Arguments are tracepoint numbers, separated by spaces.\n\
16157 No argument means delete all tracepoints."),
16158 &deletelist);
16159 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16160
16161 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16162 Disable specified tracepoints.\n\
16163 Arguments are tracepoint numbers, separated by spaces.\n\
16164 No argument means disable all tracepoints."),
16165 &disablelist);
16166 deprecate_cmd (c, "disable");
16167
16168 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16169 Enable specified tracepoints.\n\
16170 Arguments are tracepoint numbers, separated by spaces.\n\
16171 No argument means enable all tracepoints."),
16172 &enablelist);
16173 deprecate_cmd (c, "enable");
16174
16175 add_com ("passcount", class_trace, trace_pass_command, _("\
16176 Set the passcount for a tracepoint.\n\
16177 The trace will end when the tracepoint has been passed 'count' times.\n\
16178 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16179 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16180
16181 add_prefix_cmd ("save", class_breakpoint, save_command,
16182 _("Save breakpoint definitions as a script."),
16183 &save_cmdlist, "save ",
16184 0/*allow-unknown*/, &cmdlist);
16185
16186 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16187 Save current breakpoint definitions as a script.\n\
16188 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16189 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16190 session to restore them."),
16191 &save_cmdlist);
16192 set_cmd_completer (c, filename_completer);
16193
16194 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16195 Save current tracepoint definitions as a script.\n\
16196 Use the 'source' command in another debug session to restore them."),
16197 &save_cmdlist);
16198 set_cmd_completer (c, filename_completer);
16199
16200 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16201 deprecate_cmd (c, "save tracepoints");
16202
16203 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16204 Breakpoint specific settings\n\
16205 Configure various breakpoint-specific variables such as\n\
16206 pending breakpoint behavior"),
16207 &breakpoint_set_cmdlist, "set breakpoint ",
16208 0/*allow-unknown*/, &setlist);
16209 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16210 Breakpoint specific settings\n\
16211 Configure various breakpoint-specific variables such as\n\
16212 pending breakpoint behavior"),
16213 &breakpoint_show_cmdlist, "show breakpoint ",
16214 0/*allow-unknown*/, &showlist);
16215
16216 add_setshow_auto_boolean_cmd ("pending", no_class,
16217 &pending_break_support, _("\
16218 Set debugger's behavior regarding pending breakpoints."), _("\
16219 Show debugger's behavior regarding pending breakpoints."), _("\
16220 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16221 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16222 an error. If auto, an unrecognized breakpoint location results in a\n\
16223 user-query to see if a pending breakpoint should be created."),
16224 NULL,
16225 show_pending_break_support,
16226 &breakpoint_set_cmdlist,
16227 &breakpoint_show_cmdlist);
16228
16229 pending_break_support = AUTO_BOOLEAN_AUTO;
16230
16231 add_setshow_boolean_cmd ("auto-hw", no_class,
16232 &automatic_hardware_breakpoints, _("\
16233 Set automatic usage of hardware breakpoints."), _("\
16234 Show automatic usage of hardware breakpoints."), _("\
16235 If set, the debugger will automatically use hardware breakpoints for\n\
16236 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16237 a warning will be emitted for such breakpoints."),
16238 NULL,
16239 show_automatic_hardware_breakpoints,
16240 &breakpoint_set_cmdlist,
16241 &breakpoint_show_cmdlist);
16242
16243 add_setshow_boolean_cmd ("always-inserted", class_support,
16244 &always_inserted_mode, _("\
16245 Set mode for inserting breakpoints."), _("\
16246 Show mode for inserting breakpoints."), _("\
16247 When this mode is on, breakpoints are inserted immediately as soon as\n\
16248 they're created, kept inserted even when execution stops, and removed\n\
16249 only when the user deletes them. When this mode is off (the default),\n\
16250 breakpoints are inserted only when execution continues, and removed\n\
16251 when execution stops."),
16252 NULL,
16253 &show_always_inserted_mode,
16254 &breakpoint_set_cmdlist,
16255 &breakpoint_show_cmdlist);
16256
16257 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16258 condition_evaluation_enums,
16259 &condition_evaluation_mode_1, _("\
16260 Set mode of breakpoint condition evaluation."), _("\
16261 Show mode of breakpoint condition evaluation."), _("\
16262 When this is set to \"host\", breakpoint conditions will be\n\
16263 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16264 breakpoint conditions will be downloaded to the target (if the target\n\
16265 supports such feature) and conditions will be evaluated on the target's side.\n\
16266 If this is set to \"auto\" (default), this will be automatically set to\n\
16267 \"target\" if it supports condition evaluation, otherwise it will\n\
16268 be set to \"gdb\""),
16269 &set_condition_evaluation_mode,
16270 &show_condition_evaluation_mode,
16271 &breakpoint_set_cmdlist,
16272 &breakpoint_show_cmdlist);
16273
16274 add_com ("break-range", class_breakpoint, break_range_command, _("\
16275 Set a breakpoint for an address range.\n\
16276 break-range START-LOCATION, END-LOCATION\n\
16277 where START-LOCATION and END-LOCATION can be one of the following:\n\
16278 LINENUM, for that line in the current file,\n\
16279 FILE:LINENUM, for that line in that file,\n\
16280 +OFFSET, for that number of lines after the current line\n\
16281 or the start of the range\n\
16282 FUNCTION, for the first line in that function,\n\
16283 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16284 *ADDRESS, for the instruction at that address.\n\
16285 \n\
16286 The breakpoint will stop execution of the inferior whenever it executes\n\
16287 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16288 range (including START-LOCATION and END-LOCATION)."));
16289
16290 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16291 Set a dynamic printf at specified line or function.\n\
16292 dprintf location,format string,arg1,arg2,...\n\
16293 location may be a line number, function name, or \"*\" and an address.\n\
16294 If a line number is specified, break at start of code for that line.\n\
16295 If a function is specified, break at start of code for that function."));
16296 set_cmd_completer (c, location_completer);
16297
16298 add_setshow_enum_cmd ("dprintf-style", class_support,
16299 dprintf_style_enums, &dprintf_style, _("\
16300 Set the style of usage for dynamic printf."), _("\
16301 Show the style of usage for dynamic printf."), _("\
16302 This setting chooses how GDB will do a dynamic printf.\n\
16303 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16304 console, as with the \"printf\" command.\n\
16305 If the value is \"call\", the print is done by calling a function in your\n\
16306 program; by default printf(), but you can choose a different function or\n\
16307 output stream by setting dprintf-function and dprintf-channel."),
16308 update_dprintf_commands, NULL,
16309 &setlist, &showlist);
16310
16311 dprintf_function = xstrdup ("printf");
16312 add_setshow_string_cmd ("dprintf-function", class_support,
16313 &dprintf_function, _("\
16314 Set the function to use for dynamic printf"), _("\
16315 Show the function to use for dynamic printf"), NULL,
16316 update_dprintf_commands, NULL,
16317 &setlist, &showlist);
16318
16319 dprintf_channel = xstrdup ("");
16320 add_setshow_string_cmd ("dprintf-channel", class_support,
16321 &dprintf_channel, _("\
16322 Set the channel to use for dynamic printf"), _("\
16323 Show the channel to use for dynamic printf"), NULL,
16324 update_dprintf_commands, NULL,
16325 &setlist, &showlist);
16326
16327 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16328 &disconnected_dprintf, _("\
16329 Set whether dprintf continues after GDB disconnects."), _("\
16330 Show whether dprintf continues after GDB disconnects."), _("\
16331 Use this to let dprintf commands continue to hit and produce output\n\
16332 even if GDB disconnects or detaches from the target."),
16333 NULL,
16334 NULL,
16335 &setlist, &showlist);
16336
16337 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16338 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16339 (target agent only) This is useful for formatted output in user-defined commands."));
16340
16341 automatic_hardware_breakpoints = 1;
16342
16343 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16344 observer_attach_thread_exit (remove_threaded_breakpoints);
16345 }
This page took 0.414553 seconds and 4 git commands to generate.