doc: fix PAC typo
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "gdbsupport/format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71 #include "cli/cli-style.h"
72 #include "mi/mi-main.h"
73
74 /* readline include files */
75 #include "readline/readline.h"
76 #include "readline/history.h"
77
78 /* readline defines this. */
79 #undef savestring
80
81 #include "mi/mi-common.h"
82 #include "extension.h"
83 #include <algorithm>
84 #include "progspace-and-thread.h"
85 #include "gdbsupport/array-view.h"
86 #include "gdbsupport/gdb_optional.h"
87
88 /* Prototypes for local functions. */
89
90 static void map_breakpoint_numbers (const char *,
91 gdb::function_view<void (breakpoint *)>);
92
93 static void breakpoint_re_set_default (struct breakpoint *);
94
95 static void
96 create_sals_from_location_default (const struct event_location *location,
97 struct linespec_result *canonical,
98 enum bptype type_wanted);
99
100 static void create_breakpoints_sal_default (struct gdbarch *,
101 struct linespec_result *,
102 gdb::unique_xmalloc_ptr<char>,
103 gdb::unique_xmalloc_ptr<char>,
104 enum bptype,
105 enum bpdisp, int, int,
106 int,
107 const struct breakpoint_ops *,
108 int, int, int, unsigned);
109
110 static std::vector<symtab_and_line> decode_location_default
111 (struct breakpoint *b, const struct event_location *location,
112 struct program_space *search_pspace);
113
114 static int can_use_hardware_watchpoint
115 (const std::vector<value_ref_ptr> &vals);
116
117 static void mention (struct breakpoint *);
118
119 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
120 enum bptype,
121 const struct breakpoint_ops *);
122 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
123 const struct symtab_and_line *);
124
125 /* This function is used in gdbtk sources and thus can not be made
126 static. */
127 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
128 struct symtab_and_line,
129 enum bptype,
130 const struct breakpoint_ops *);
131
132 static struct breakpoint *
133 momentary_breakpoint_from_master (struct breakpoint *orig,
134 enum bptype type,
135 const struct breakpoint_ops *ops,
136 int loc_enabled);
137
138 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
139
140 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
141 CORE_ADDR bpaddr,
142 enum bptype bptype);
143
144 static void describe_other_breakpoints (struct gdbarch *,
145 struct program_space *, CORE_ADDR,
146 struct obj_section *, int);
147
148 static int watchpoint_locations_match (struct bp_location *loc1,
149 struct bp_location *loc2);
150
151 static int breakpoint_location_address_match (struct bp_location *bl,
152 const struct address_space *aspace,
153 CORE_ADDR addr);
154
155 static int breakpoint_location_address_range_overlap (struct bp_location *,
156 const address_space *,
157 CORE_ADDR, int);
158
159 static int remove_breakpoint (struct bp_location *);
160 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
161
162 static enum print_stop_action print_bp_stop_message (bpstat bs);
163
164 static int hw_breakpoint_used_count (void);
165
166 static int hw_watchpoint_use_count (struct breakpoint *);
167
168 static int hw_watchpoint_used_count_others (struct breakpoint *except,
169 enum bptype type,
170 int *other_type_used);
171
172 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
173 int count);
174
175 static void free_bp_location (struct bp_location *loc);
176 static void incref_bp_location (struct bp_location *loc);
177 static void decref_bp_location (struct bp_location **loc);
178
179 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
180
181 /* update_global_location_list's modes of operation wrt to whether to
182 insert locations now. */
183 enum ugll_insert_mode
184 {
185 /* Don't insert any breakpoint locations into the inferior, only
186 remove already-inserted locations that no longer should be
187 inserted. Functions that delete a breakpoint or breakpoints
188 should specify this mode, so that deleting a breakpoint doesn't
189 have the side effect of inserting the locations of other
190 breakpoints that are marked not-inserted, but should_be_inserted
191 returns true on them.
192
193 This behavior is useful is situations close to tear-down -- e.g.,
194 after an exec, while the target still has execution, but
195 breakpoint shadows of the previous executable image should *NOT*
196 be restored to the new image; or before detaching, where the
197 target still has execution and wants to delete breakpoints from
198 GDB's lists, and all breakpoints had already been removed from
199 the inferior. */
200 UGLL_DONT_INSERT,
201
202 /* May insert breakpoints iff breakpoints_should_be_inserted_now
203 claims breakpoints should be inserted now. */
204 UGLL_MAY_INSERT,
205
206 /* Insert locations now, irrespective of
207 breakpoints_should_be_inserted_now. E.g., say all threads are
208 stopped right now, and the user did "continue". We need to
209 insert breakpoints _before_ resuming the target, but
210 UGLL_MAY_INSERT wouldn't insert them, because
211 breakpoints_should_be_inserted_now returns false at that point,
212 as no thread is running yet. */
213 UGLL_INSERT
214 };
215
216 static void update_global_location_list (enum ugll_insert_mode);
217
218 static void update_global_location_list_nothrow (enum ugll_insert_mode);
219
220 static void insert_breakpoint_locations (void);
221
222 static void trace_pass_command (const char *, int);
223
224 static void set_tracepoint_count (int num);
225
226 static bool is_masked_watchpoint (const struct breakpoint *b);
227
228 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
229
230 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
231 otherwise. */
232
233 static int strace_marker_p (struct breakpoint *b);
234
235 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
236 that are implemented on top of software or hardware breakpoints
237 (user breakpoints, internal and momentary breakpoints, etc.). */
238 static struct breakpoint_ops bkpt_base_breakpoint_ops;
239
240 /* Internal breakpoints class type. */
241 static struct breakpoint_ops internal_breakpoint_ops;
242
243 /* Momentary breakpoints class type. */
244 static struct breakpoint_ops momentary_breakpoint_ops;
245
246 /* The breakpoint_ops structure to be used in regular user created
247 breakpoints. */
248 struct breakpoint_ops bkpt_breakpoint_ops;
249
250 /* Breakpoints set on probes. */
251 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
252
253 /* Dynamic printf class type. */
254 struct breakpoint_ops dprintf_breakpoint_ops;
255
256 /* The style in which to perform a dynamic printf. This is a user
257 option because different output options have different tradeoffs;
258 if GDB does the printing, there is better error handling if there
259 is a problem with any of the arguments, but using an inferior
260 function lets you have special-purpose printers and sending of
261 output to the same place as compiled-in print functions. */
262
263 static const char dprintf_style_gdb[] = "gdb";
264 static const char dprintf_style_call[] = "call";
265 static const char dprintf_style_agent[] = "agent";
266 static const char *const dprintf_style_enums[] = {
267 dprintf_style_gdb,
268 dprintf_style_call,
269 dprintf_style_agent,
270 NULL
271 };
272 static const char *dprintf_style = dprintf_style_gdb;
273
274 /* The function to use for dynamic printf if the preferred style is to
275 call into the inferior. The value is simply a string that is
276 copied into the command, so it can be anything that GDB can
277 evaluate to a callable address, not necessarily a function name. */
278
279 static char *dprintf_function;
280
281 /* The channel to use for dynamic printf if the preferred style is to
282 call into the inferior; if a nonempty string, it will be passed to
283 the call as the first argument, with the format string as the
284 second. As with the dprintf function, this can be anything that
285 GDB knows how to evaluate, so in addition to common choices like
286 "stderr", this could be an app-specific expression like
287 "mystreams[curlogger]". */
288
289 static char *dprintf_channel;
290
291 /* True if dprintf commands should continue to operate even if GDB
292 has disconnected. */
293 static int disconnected_dprintf = 1;
294
295 struct command_line *
296 breakpoint_commands (struct breakpoint *b)
297 {
298 return b->commands ? b->commands.get () : NULL;
299 }
300
301 /* Flag indicating that a command has proceeded the inferior past the
302 current breakpoint. */
303
304 static int breakpoint_proceeded;
305
306 const char *
307 bpdisp_text (enum bpdisp disp)
308 {
309 /* NOTE: the following values are a part of MI protocol and
310 represent values of 'disp' field returned when inferior stops at
311 a breakpoint. */
312 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
313
314 return bpdisps[(int) disp];
315 }
316
317 /* Prototypes for exported functions. */
318 /* If FALSE, gdb will not use hardware support for watchpoints, even
319 if such is available. */
320 static int can_use_hw_watchpoints;
321
322 static void
323 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
324 struct cmd_list_element *c,
325 const char *value)
326 {
327 fprintf_filtered (file,
328 _("Debugger's willingness to use "
329 "watchpoint hardware is %s.\n"),
330 value);
331 }
332
333 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
334 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
335 for unrecognized breakpoint locations.
336 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
337 static enum auto_boolean pending_break_support;
338 static void
339 show_pending_break_support (struct ui_file *file, int from_tty,
340 struct cmd_list_element *c,
341 const char *value)
342 {
343 fprintf_filtered (file,
344 _("Debugger's behavior regarding "
345 "pending breakpoints is %s.\n"),
346 value);
347 }
348
349 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
350 set with "break" but falling in read-only memory.
351 If 0, gdb will warn about such breakpoints, but won't automatically
352 use hardware breakpoints. */
353 static int automatic_hardware_breakpoints;
354 static void
355 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
356 struct cmd_list_element *c,
357 const char *value)
358 {
359 fprintf_filtered (file,
360 _("Automatic usage of hardware breakpoints is %s.\n"),
361 value);
362 }
363
364 /* If on, GDB keeps breakpoints inserted even if the inferior is
365 stopped, and immediately inserts any new breakpoints as soon as
366 they're created. If off (default), GDB keeps breakpoints off of
367 the target as long as possible. That is, it delays inserting
368 breakpoints until the next resume, and removes them again when the
369 target fully stops. This is a bit safer in case GDB crashes while
370 processing user input. */
371 static int always_inserted_mode = 0;
372
373 static void
374 show_always_inserted_mode (struct ui_file *file, int from_tty,
375 struct cmd_list_element *c, const char *value)
376 {
377 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
378 value);
379 }
380
381 /* See breakpoint.h. */
382
383 int
384 breakpoints_should_be_inserted_now (void)
385 {
386 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
387 {
388 /* If breakpoints are global, they should be inserted even if no
389 thread under gdb's control is running, or even if there are
390 no threads under GDB's control yet. */
391 return 1;
392 }
393 else if (target_has_execution)
394 {
395 if (always_inserted_mode)
396 {
397 /* The user wants breakpoints inserted even if all threads
398 are stopped. */
399 return 1;
400 }
401
402 if (threads_are_executing ())
403 return 1;
404
405 /* Don't remove breakpoints yet if, even though all threads are
406 stopped, we still have events to process. */
407 for (thread_info *tp : all_non_exited_threads ())
408 if (tp->resumed
409 && tp->suspend.waitstatus_pending_p)
410 return 1;
411 }
412 return 0;
413 }
414
415 static const char condition_evaluation_both[] = "host or target";
416
417 /* Modes for breakpoint condition evaluation. */
418 static const char condition_evaluation_auto[] = "auto";
419 static const char condition_evaluation_host[] = "host";
420 static const char condition_evaluation_target[] = "target";
421 static const char *const condition_evaluation_enums[] = {
422 condition_evaluation_auto,
423 condition_evaluation_host,
424 condition_evaluation_target,
425 NULL
426 };
427
428 /* Global that holds the current mode for breakpoint condition evaluation. */
429 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
430
431 /* Global that we use to display information to the user (gets its value from
432 condition_evaluation_mode_1. */
433 static const char *condition_evaluation_mode = condition_evaluation_auto;
434
435 /* Translate a condition evaluation mode MODE into either "host"
436 or "target". This is used mostly to translate from "auto" to the
437 real setting that is being used. It returns the translated
438 evaluation mode. */
439
440 static const char *
441 translate_condition_evaluation_mode (const char *mode)
442 {
443 if (mode == condition_evaluation_auto)
444 {
445 if (target_supports_evaluation_of_breakpoint_conditions ())
446 return condition_evaluation_target;
447 else
448 return condition_evaluation_host;
449 }
450 else
451 return mode;
452 }
453
454 /* Discovers what condition_evaluation_auto translates to. */
455
456 static const char *
457 breakpoint_condition_evaluation_mode (void)
458 {
459 return translate_condition_evaluation_mode (condition_evaluation_mode);
460 }
461
462 /* Return true if GDB should evaluate breakpoint conditions or false
463 otherwise. */
464
465 static int
466 gdb_evaluates_breakpoint_condition_p (void)
467 {
468 const char *mode = breakpoint_condition_evaluation_mode ();
469
470 return (mode == condition_evaluation_host);
471 }
472
473 /* Are we executing breakpoint commands? */
474 static int executing_breakpoint_commands;
475
476 /* Are overlay event breakpoints enabled? */
477 static int overlay_events_enabled;
478
479 /* See description in breakpoint.h. */
480 int target_exact_watchpoints = 0;
481
482 /* Walk the following statement or block through all breakpoints.
483 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
484 current breakpoint. */
485
486 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
487
488 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
489 for (B = breakpoint_chain; \
490 B ? (TMP=B->next, 1): 0; \
491 B = TMP)
492
493 /* Similar iterator for the low-level breakpoints. SAFE variant is
494 not provided so update_global_location_list must not be called
495 while executing the block of ALL_BP_LOCATIONS. */
496
497 #define ALL_BP_LOCATIONS(B,BP_TMP) \
498 for (BP_TMP = bp_locations; \
499 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
500 BP_TMP++)
501
502 /* Iterates through locations with address ADDRESS for the currently selected
503 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
504 to where the loop should start from.
505 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
506 appropriate location to start with. */
507
508 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
509 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
510 BP_LOCP_TMP = BP_LOCP_START; \
511 BP_LOCP_START \
512 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
513 && (*BP_LOCP_TMP)->address == ADDRESS); \
514 BP_LOCP_TMP++)
515
516 /* Iterator for tracepoints only. */
517
518 #define ALL_TRACEPOINTS(B) \
519 for (B = breakpoint_chain; B; B = B->next) \
520 if (is_tracepoint (B))
521
522 /* Chains of all breakpoints defined. */
523
524 struct breakpoint *breakpoint_chain;
525
526 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
527
528 static struct bp_location **bp_locations;
529
530 /* Number of elements of BP_LOCATIONS. */
531
532 static unsigned bp_locations_count;
533
534 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
535 ADDRESS for the current elements of BP_LOCATIONS which get a valid
536 result from bp_location_has_shadow. You can use it for roughly
537 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
538 an address you need to read. */
539
540 static CORE_ADDR bp_locations_placed_address_before_address_max;
541
542 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
543 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
544 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
545 You can use it for roughly limiting the subrange of BP_LOCATIONS to
546 scan for shadow bytes for an address you need to read. */
547
548 static CORE_ADDR bp_locations_shadow_len_after_address_max;
549
550 /* The locations that no longer correspond to any breakpoint, unlinked
551 from the bp_locations array, but for which a hit may still be
552 reported by a target. */
553 static std::vector<bp_location *> moribund_locations;
554
555 /* Number of last breakpoint made. */
556
557 static int breakpoint_count;
558
559 /* The value of `breakpoint_count' before the last command that
560 created breakpoints. If the last (break-like) command created more
561 than one breakpoint, then the difference between BREAKPOINT_COUNT
562 and PREV_BREAKPOINT_COUNT is more than one. */
563 static int prev_breakpoint_count;
564
565 /* Number of last tracepoint made. */
566
567 static int tracepoint_count;
568
569 static struct cmd_list_element *breakpoint_set_cmdlist;
570 static struct cmd_list_element *breakpoint_show_cmdlist;
571 struct cmd_list_element *save_cmdlist;
572
573 /* See declaration at breakpoint.h. */
574
575 struct breakpoint *
576 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
577 void *user_data)
578 {
579 struct breakpoint *b = NULL;
580
581 ALL_BREAKPOINTS (b)
582 {
583 if (func (b, user_data) != 0)
584 break;
585 }
586
587 return b;
588 }
589
590 /* Return whether a breakpoint is an active enabled breakpoint. */
591 static int
592 breakpoint_enabled (struct breakpoint *b)
593 {
594 return (b->enable_state == bp_enabled);
595 }
596
597 /* Set breakpoint count to NUM. */
598
599 static void
600 set_breakpoint_count (int num)
601 {
602 prev_breakpoint_count = breakpoint_count;
603 breakpoint_count = num;
604 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
605 }
606
607 /* Used by `start_rbreak_breakpoints' below, to record the current
608 breakpoint count before "rbreak" creates any breakpoint. */
609 static int rbreak_start_breakpoint_count;
610
611 /* Called at the start an "rbreak" command to record the first
612 breakpoint made. */
613
614 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
615 {
616 rbreak_start_breakpoint_count = breakpoint_count;
617 }
618
619 /* Called at the end of an "rbreak" command to record the last
620 breakpoint made. */
621
622 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
623 {
624 prev_breakpoint_count = rbreak_start_breakpoint_count;
625 }
626
627 /* Used in run_command to zero the hit count when a new run starts. */
628
629 void
630 clear_breakpoint_hit_counts (void)
631 {
632 struct breakpoint *b;
633
634 ALL_BREAKPOINTS (b)
635 b->hit_count = 0;
636 }
637
638 \f
639 /* Return the breakpoint with the specified number, or NULL
640 if the number does not refer to an existing breakpoint. */
641
642 struct breakpoint *
643 get_breakpoint (int num)
644 {
645 struct breakpoint *b;
646
647 ALL_BREAKPOINTS (b)
648 if (b->number == num)
649 return b;
650
651 return NULL;
652 }
653
654 \f
655
656 /* Mark locations as "conditions have changed" in case the target supports
657 evaluating conditions on its side. */
658
659 static void
660 mark_breakpoint_modified (struct breakpoint *b)
661 {
662 struct bp_location *loc;
663
664 /* This is only meaningful if the target is
665 evaluating conditions and if the user has
666 opted for condition evaluation on the target's
667 side. */
668 if (gdb_evaluates_breakpoint_condition_p ()
669 || !target_supports_evaluation_of_breakpoint_conditions ())
670 return;
671
672 if (!is_breakpoint (b))
673 return;
674
675 for (loc = b->loc; loc; loc = loc->next)
676 loc->condition_changed = condition_modified;
677 }
678
679 /* Mark location as "conditions have changed" in case the target supports
680 evaluating conditions on its side. */
681
682 static void
683 mark_breakpoint_location_modified (struct bp_location *loc)
684 {
685 /* This is only meaningful if the target is
686 evaluating conditions and if the user has
687 opted for condition evaluation on the target's
688 side. */
689 if (gdb_evaluates_breakpoint_condition_p ()
690 || !target_supports_evaluation_of_breakpoint_conditions ())
691
692 return;
693
694 if (!is_breakpoint (loc->owner))
695 return;
696
697 loc->condition_changed = condition_modified;
698 }
699
700 /* Sets the condition-evaluation mode using the static global
701 condition_evaluation_mode. */
702
703 static void
704 set_condition_evaluation_mode (const char *args, int from_tty,
705 struct cmd_list_element *c)
706 {
707 const char *old_mode, *new_mode;
708
709 if ((condition_evaluation_mode_1 == condition_evaluation_target)
710 && !target_supports_evaluation_of_breakpoint_conditions ())
711 {
712 condition_evaluation_mode_1 = condition_evaluation_mode;
713 warning (_("Target does not support breakpoint condition evaluation.\n"
714 "Using host evaluation mode instead."));
715 return;
716 }
717
718 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
719 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
720
721 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
722 settings was "auto". */
723 condition_evaluation_mode = condition_evaluation_mode_1;
724
725 /* Only update the mode if the user picked a different one. */
726 if (new_mode != old_mode)
727 {
728 struct bp_location *loc, **loc_tmp;
729 /* If the user switched to a different evaluation mode, we
730 need to synch the changes with the target as follows:
731
732 "host" -> "target": Send all (valid) conditions to the target.
733 "target" -> "host": Remove all the conditions from the target.
734 */
735
736 if (new_mode == condition_evaluation_target)
737 {
738 /* Mark everything modified and synch conditions with the
739 target. */
740 ALL_BP_LOCATIONS (loc, loc_tmp)
741 mark_breakpoint_location_modified (loc);
742 }
743 else
744 {
745 /* Manually mark non-duplicate locations to synch conditions
746 with the target. We do this to remove all the conditions the
747 target knows about. */
748 ALL_BP_LOCATIONS (loc, loc_tmp)
749 if (is_breakpoint (loc->owner) && loc->inserted)
750 loc->needs_update = 1;
751 }
752
753 /* Do the update. */
754 update_global_location_list (UGLL_MAY_INSERT);
755 }
756
757 return;
758 }
759
760 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
761 what "auto" is translating to. */
762
763 static void
764 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
765 struct cmd_list_element *c, const char *value)
766 {
767 if (condition_evaluation_mode == condition_evaluation_auto)
768 fprintf_filtered (file,
769 _("Breakpoint condition evaluation "
770 "mode is %s (currently %s).\n"),
771 value,
772 breakpoint_condition_evaluation_mode ());
773 else
774 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
775 value);
776 }
777
778 /* A comparison function for bp_location AP and BP that is used by
779 bsearch. This comparison function only cares about addresses, unlike
780 the more general bp_locations_compare function. */
781
782 static int
783 bp_locations_compare_addrs (const void *ap, const void *bp)
784 {
785 const struct bp_location *a = *(const struct bp_location **) ap;
786 const struct bp_location *b = *(const struct bp_location **) bp;
787
788 if (a->address == b->address)
789 return 0;
790 else
791 return ((a->address > b->address) - (a->address < b->address));
792 }
793
794 /* Helper function to skip all bp_locations with addresses
795 less than ADDRESS. It returns the first bp_location that
796 is greater than or equal to ADDRESS. If none is found, just
797 return NULL. */
798
799 static struct bp_location **
800 get_first_locp_gte_addr (CORE_ADDR address)
801 {
802 struct bp_location dummy_loc;
803 struct bp_location *dummy_locp = &dummy_loc;
804 struct bp_location **locp_found = NULL;
805
806 /* Initialize the dummy location's address field. */
807 dummy_loc.address = address;
808
809 /* Find a close match to the first location at ADDRESS. */
810 locp_found = ((struct bp_location **)
811 bsearch (&dummy_locp, bp_locations, bp_locations_count,
812 sizeof (struct bp_location **),
813 bp_locations_compare_addrs));
814
815 /* Nothing was found, nothing left to do. */
816 if (locp_found == NULL)
817 return NULL;
818
819 /* We may have found a location that is at ADDRESS but is not the first in the
820 location's list. Go backwards (if possible) and locate the first one. */
821 while ((locp_found - 1) >= bp_locations
822 && (*(locp_found - 1))->address == address)
823 locp_found--;
824
825 return locp_found;
826 }
827
828 void
829 set_breakpoint_condition (struct breakpoint *b, const char *exp,
830 int from_tty)
831 {
832 xfree (b->cond_string);
833 b->cond_string = NULL;
834
835 if (is_watchpoint (b))
836 {
837 struct watchpoint *w = (struct watchpoint *) b;
838
839 w->cond_exp.reset ();
840 }
841 else
842 {
843 struct bp_location *loc;
844
845 for (loc = b->loc; loc; loc = loc->next)
846 {
847 loc->cond.reset ();
848
849 /* No need to free the condition agent expression
850 bytecode (if we have one). We will handle this
851 when we go through update_global_location_list. */
852 }
853 }
854
855 if (*exp == 0)
856 {
857 if (from_tty)
858 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
859 }
860 else
861 {
862 const char *arg = exp;
863
864 /* I don't know if it matters whether this is the string the user
865 typed in or the decompiled expression. */
866 b->cond_string = xstrdup (arg);
867 b->condition_not_parsed = 0;
868
869 if (is_watchpoint (b))
870 {
871 struct watchpoint *w = (struct watchpoint *) b;
872
873 innermost_block_tracker tracker;
874 arg = exp;
875 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
876 if (*arg)
877 error (_("Junk at end of expression"));
878 w->cond_exp_valid_block = tracker.block ();
879 }
880 else
881 {
882 struct bp_location *loc;
883
884 for (loc = b->loc; loc; loc = loc->next)
885 {
886 arg = exp;
887 loc->cond =
888 parse_exp_1 (&arg, loc->address,
889 block_for_pc (loc->address), 0);
890 if (*arg)
891 error (_("Junk at end of expression"));
892 }
893 }
894 }
895 mark_breakpoint_modified (b);
896
897 gdb::observers::breakpoint_modified.notify (b);
898 }
899
900 /* Completion for the "condition" command. */
901
902 static void
903 condition_completer (struct cmd_list_element *cmd,
904 completion_tracker &tracker,
905 const char *text, const char *word)
906 {
907 const char *space;
908
909 text = skip_spaces (text);
910 space = skip_to_space (text);
911 if (*space == '\0')
912 {
913 int len;
914 struct breakpoint *b;
915
916 if (text[0] == '$')
917 {
918 /* We don't support completion of history indices. */
919 if (!isdigit (text[1]))
920 complete_internalvar (tracker, &text[1]);
921 return;
922 }
923
924 /* We're completing the breakpoint number. */
925 len = strlen (text);
926
927 ALL_BREAKPOINTS (b)
928 {
929 char number[50];
930
931 xsnprintf (number, sizeof (number), "%d", b->number);
932
933 if (strncmp (number, text, len) == 0)
934 tracker.add_completion (make_unique_xstrdup (number));
935 }
936
937 return;
938 }
939
940 /* We're completing the expression part. */
941 text = skip_spaces (space);
942 expression_completer (cmd, tracker, text, word);
943 }
944
945 /* condition N EXP -- set break condition of breakpoint N to EXP. */
946
947 static void
948 condition_command (const char *arg, int from_tty)
949 {
950 struct breakpoint *b;
951 const char *p;
952 int bnum;
953
954 if (arg == 0)
955 error_no_arg (_("breakpoint number"));
956
957 p = arg;
958 bnum = get_number (&p);
959 if (bnum == 0)
960 error (_("Bad breakpoint argument: '%s'"), arg);
961
962 ALL_BREAKPOINTS (b)
963 if (b->number == bnum)
964 {
965 /* Check if this breakpoint has a "stop" method implemented in an
966 extension language. This method and conditions entered into GDB
967 from the CLI are mutually exclusive. */
968 const struct extension_language_defn *extlang
969 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
970
971 if (extlang != NULL)
972 {
973 error (_("Only one stop condition allowed. There is currently"
974 " a %s stop condition defined for this breakpoint."),
975 ext_lang_capitalized_name (extlang));
976 }
977 set_breakpoint_condition (b, p, from_tty);
978
979 if (is_breakpoint (b))
980 update_global_location_list (UGLL_MAY_INSERT);
981
982 return;
983 }
984
985 error (_("No breakpoint number %d."), bnum);
986 }
987
988 /* Check that COMMAND do not contain commands that are suitable
989 only for tracepoints and not suitable for ordinary breakpoints.
990 Throw if any such commands is found. */
991
992 static void
993 check_no_tracepoint_commands (struct command_line *commands)
994 {
995 struct command_line *c;
996
997 for (c = commands; c; c = c->next)
998 {
999 if (c->control_type == while_stepping_control)
1000 error (_("The 'while-stepping' command can "
1001 "only be used for tracepoints"));
1002
1003 check_no_tracepoint_commands (c->body_list_0.get ());
1004 check_no_tracepoint_commands (c->body_list_1.get ());
1005
1006 /* Not that command parsing removes leading whitespace and comment
1007 lines and also empty lines. So, we only need to check for
1008 command directly. */
1009 if (strstr (c->line, "collect ") == c->line)
1010 error (_("The 'collect' command can only be used for tracepoints"));
1011
1012 if (strstr (c->line, "teval ") == c->line)
1013 error (_("The 'teval' command can only be used for tracepoints"));
1014 }
1015 }
1016
1017 struct longjmp_breakpoint : public breakpoint
1018 {
1019 ~longjmp_breakpoint () override;
1020 };
1021
1022 /* Encapsulate tests for different types of tracepoints. */
1023
1024 static bool
1025 is_tracepoint_type (bptype type)
1026 {
1027 return (type == bp_tracepoint
1028 || type == bp_fast_tracepoint
1029 || type == bp_static_tracepoint);
1030 }
1031
1032 static bool
1033 is_longjmp_type (bptype type)
1034 {
1035 return type == bp_longjmp || type == bp_exception;
1036 }
1037
1038 /* See breakpoint.h. */
1039
1040 bool
1041 is_tracepoint (const struct breakpoint *b)
1042 {
1043 return is_tracepoint_type (b->type);
1044 }
1045
1046 /* Factory function to create an appropriate instance of breakpoint given
1047 TYPE. */
1048
1049 static std::unique_ptr<breakpoint>
1050 new_breakpoint_from_type (bptype type)
1051 {
1052 breakpoint *b;
1053
1054 if (is_tracepoint_type (type))
1055 b = new tracepoint ();
1056 else if (is_longjmp_type (type))
1057 b = new longjmp_breakpoint ();
1058 else
1059 b = new breakpoint ();
1060
1061 return std::unique_ptr<breakpoint> (b);
1062 }
1063
1064 /* A helper function that validates that COMMANDS are valid for a
1065 breakpoint. This function will throw an exception if a problem is
1066 found. */
1067
1068 static void
1069 validate_commands_for_breakpoint (struct breakpoint *b,
1070 struct command_line *commands)
1071 {
1072 if (is_tracepoint (b))
1073 {
1074 struct tracepoint *t = (struct tracepoint *) b;
1075 struct command_line *c;
1076 struct command_line *while_stepping = 0;
1077
1078 /* Reset the while-stepping step count. The previous commands
1079 might have included a while-stepping action, while the new
1080 ones might not. */
1081 t->step_count = 0;
1082
1083 /* We need to verify that each top-level element of commands is
1084 valid for tracepoints, that there's at most one
1085 while-stepping element, and that the while-stepping's body
1086 has valid tracing commands excluding nested while-stepping.
1087 We also need to validate the tracepoint action line in the
1088 context of the tracepoint --- validate_actionline actually
1089 has side effects, like setting the tracepoint's
1090 while-stepping STEP_COUNT, in addition to checking if the
1091 collect/teval actions parse and make sense in the
1092 tracepoint's context. */
1093 for (c = commands; c; c = c->next)
1094 {
1095 if (c->control_type == while_stepping_control)
1096 {
1097 if (b->type == bp_fast_tracepoint)
1098 error (_("The 'while-stepping' command "
1099 "cannot be used for fast tracepoint"));
1100 else if (b->type == bp_static_tracepoint)
1101 error (_("The 'while-stepping' command "
1102 "cannot be used for static tracepoint"));
1103
1104 if (while_stepping)
1105 error (_("The 'while-stepping' command "
1106 "can be used only once"));
1107 else
1108 while_stepping = c;
1109 }
1110
1111 validate_actionline (c->line, b);
1112 }
1113 if (while_stepping)
1114 {
1115 struct command_line *c2;
1116
1117 gdb_assert (while_stepping->body_list_1 == nullptr);
1118 c2 = while_stepping->body_list_0.get ();
1119 for (; c2; c2 = c2->next)
1120 {
1121 if (c2->control_type == while_stepping_control)
1122 error (_("The 'while-stepping' command cannot be nested"));
1123 }
1124 }
1125 }
1126 else
1127 {
1128 check_no_tracepoint_commands (commands);
1129 }
1130 }
1131
1132 /* Return a vector of all the static tracepoints set at ADDR. The
1133 caller is responsible for releasing the vector. */
1134
1135 std::vector<breakpoint *>
1136 static_tracepoints_here (CORE_ADDR addr)
1137 {
1138 struct breakpoint *b;
1139 std::vector<breakpoint *> found;
1140 struct bp_location *loc;
1141
1142 ALL_BREAKPOINTS (b)
1143 if (b->type == bp_static_tracepoint)
1144 {
1145 for (loc = b->loc; loc; loc = loc->next)
1146 if (loc->address == addr)
1147 found.push_back (b);
1148 }
1149
1150 return found;
1151 }
1152
1153 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1154 validate that only allowed commands are included. */
1155
1156 void
1157 breakpoint_set_commands (struct breakpoint *b,
1158 counted_command_line &&commands)
1159 {
1160 validate_commands_for_breakpoint (b, commands.get ());
1161
1162 b->commands = std::move (commands);
1163 gdb::observers::breakpoint_modified.notify (b);
1164 }
1165
1166 /* Set the internal `silent' flag on the breakpoint. Note that this
1167 is not the same as the "silent" that may appear in the breakpoint's
1168 commands. */
1169
1170 void
1171 breakpoint_set_silent (struct breakpoint *b, int silent)
1172 {
1173 int old_silent = b->silent;
1174
1175 b->silent = silent;
1176 if (old_silent != silent)
1177 gdb::observers::breakpoint_modified.notify (b);
1178 }
1179
1180 /* Set the thread for this breakpoint. If THREAD is -1, make the
1181 breakpoint work for any thread. */
1182
1183 void
1184 breakpoint_set_thread (struct breakpoint *b, int thread)
1185 {
1186 int old_thread = b->thread;
1187
1188 b->thread = thread;
1189 if (old_thread != thread)
1190 gdb::observers::breakpoint_modified.notify (b);
1191 }
1192
1193 /* Set the task for this breakpoint. If TASK is 0, make the
1194 breakpoint work for any task. */
1195
1196 void
1197 breakpoint_set_task (struct breakpoint *b, int task)
1198 {
1199 int old_task = b->task;
1200
1201 b->task = task;
1202 if (old_task != task)
1203 gdb::observers::breakpoint_modified.notify (b);
1204 }
1205
1206 static void
1207 commands_command_1 (const char *arg, int from_tty,
1208 struct command_line *control)
1209 {
1210 counted_command_line cmd;
1211 /* cmd_read will be true once we have read cmd. Note that cmd might still be
1212 NULL after the call to read_command_lines if the user provides an empty
1213 list of command by just typing "end". */
1214 bool cmd_read = false;
1215
1216 std::string new_arg;
1217
1218 if (arg == NULL || !*arg)
1219 {
1220 if (breakpoint_count - prev_breakpoint_count > 1)
1221 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1222 breakpoint_count);
1223 else if (breakpoint_count > 0)
1224 new_arg = string_printf ("%d", breakpoint_count);
1225 arg = new_arg.c_str ();
1226 }
1227
1228 map_breakpoint_numbers
1229 (arg, [&] (breakpoint *b)
1230 {
1231 if (!cmd_read)
1232 {
1233 gdb_assert (cmd == NULL);
1234 if (control != NULL)
1235 cmd = control->body_list_0;
1236 else
1237 {
1238 std::string str
1239 = string_printf (_("Type commands for breakpoint(s) "
1240 "%s, one per line."),
1241 arg);
1242
1243 auto do_validate = [=] (const char *line)
1244 {
1245 validate_actionline (line, b);
1246 };
1247 gdb::function_view<void (const char *)> validator;
1248 if (is_tracepoint (b))
1249 validator = do_validate;
1250
1251 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1252 }
1253 cmd_read = true;
1254 }
1255
1256 /* If a breakpoint was on the list more than once, we don't need to
1257 do anything. */
1258 if (b->commands != cmd)
1259 {
1260 validate_commands_for_breakpoint (b, cmd.get ());
1261 b->commands = cmd;
1262 gdb::observers::breakpoint_modified.notify (b);
1263 }
1264 });
1265 }
1266
1267 static void
1268 commands_command (const char *arg, int from_tty)
1269 {
1270 commands_command_1 (arg, from_tty, NULL);
1271 }
1272
1273 /* Like commands_command, but instead of reading the commands from
1274 input stream, takes them from an already parsed command structure.
1275
1276 This is used by cli-script.c to DTRT with breakpoint commands
1277 that are part of if and while bodies. */
1278 enum command_control_type
1279 commands_from_control_command (const char *arg, struct command_line *cmd)
1280 {
1281 commands_command_1 (arg, 0, cmd);
1282 return simple_control;
1283 }
1284
1285 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1286
1287 static int
1288 bp_location_has_shadow (struct bp_location *bl)
1289 {
1290 if (bl->loc_type != bp_loc_software_breakpoint)
1291 return 0;
1292 if (!bl->inserted)
1293 return 0;
1294 if (bl->target_info.shadow_len == 0)
1295 /* BL isn't valid, or doesn't shadow memory. */
1296 return 0;
1297 return 1;
1298 }
1299
1300 /* Update BUF, which is LEN bytes read from the target address
1301 MEMADDR, by replacing a memory breakpoint with its shadowed
1302 contents.
1303
1304 If READBUF is not NULL, this buffer must not overlap with the of
1305 the breakpoint location's shadow_contents buffer. Otherwise, a
1306 failed assertion internal error will be raised. */
1307
1308 static void
1309 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1310 const gdb_byte *writebuf_org,
1311 ULONGEST memaddr, LONGEST len,
1312 struct bp_target_info *target_info,
1313 struct gdbarch *gdbarch)
1314 {
1315 /* Now do full processing of the found relevant range of elements. */
1316 CORE_ADDR bp_addr = 0;
1317 int bp_size = 0;
1318 int bptoffset = 0;
1319
1320 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1321 current_program_space->aspace, 0))
1322 {
1323 /* The breakpoint is inserted in a different address space. */
1324 return;
1325 }
1326
1327 /* Addresses and length of the part of the breakpoint that
1328 we need to copy. */
1329 bp_addr = target_info->placed_address;
1330 bp_size = target_info->shadow_len;
1331
1332 if (bp_addr + bp_size <= memaddr)
1333 {
1334 /* The breakpoint is entirely before the chunk of memory we are
1335 reading. */
1336 return;
1337 }
1338
1339 if (bp_addr >= memaddr + len)
1340 {
1341 /* The breakpoint is entirely after the chunk of memory we are
1342 reading. */
1343 return;
1344 }
1345
1346 /* Offset within shadow_contents. */
1347 if (bp_addr < memaddr)
1348 {
1349 /* Only copy the second part of the breakpoint. */
1350 bp_size -= memaddr - bp_addr;
1351 bptoffset = memaddr - bp_addr;
1352 bp_addr = memaddr;
1353 }
1354
1355 if (bp_addr + bp_size > memaddr + len)
1356 {
1357 /* Only copy the first part of the breakpoint. */
1358 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1359 }
1360
1361 if (readbuf != NULL)
1362 {
1363 /* Verify that the readbuf buffer does not overlap with the
1364 shadow_contents buffer. */
1365 gdb_assert (target_info->shadow_contents >= readbuf + len
1366 || readbuf >= (target_info->shadow_contents
1367 + target_info->shadow_len));
1368
1369 /* Update the read buffer with this inserted breakpoint's
1370 shadow. */
1371 memcpy (readbuf + bp_addr - memaddr,
1372 target_info->shadow_contents + bptoffset, bp_size);
1373 }
1374 else
1375 {
1376 const unsigned char *bp;
1377 CORE_ADDR addr = target_info->reqstd_address;
1378 int placed_size;
1379
1380 /* Update the shadow with what we want to write to memory. */
1381 memcpy (target_info->shadow_contents + bptoffset,
1382 writebuf_org + bp_addr - memaddr, bp_size);
1383
1384 /* Determine appropriate breakpoint contents and size for this
1385 address. */
1386 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1387
1388 /* Update the final write buffer with this inserted
1389 breakpoint's INSN. */
1390 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1391 }
1392 }
1393
1394 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1395 by replacing any memory breakpoints with their shadowed contents.
1396
1397 If READBUF is not NULL, this buffer must not overlap with any of
1398 the breakpoint location's shadow_contents buffers. Otherwise,
1399 a failed assertion internal error will be raised.
1400
1401 The range of shadowed area by each bp_location is:
1402 bl->address - bp_locations_placed_address_before_address_max
1403 up to bl->address + bp_locations_shadow_len_after_address_max
1404 The range we were requested to resolve shadows for is:
1405 memaddr ... memaddr + len
1406 Thus the safe cutoff boundaries for performance optimization are
1407 memaddr + len <= (bl->address
1408 - bp_locations_placed_address_before_address_max)
1409 and:
1410 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1411
1412 void
1413 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1414 const gdb_byte *writebuf_org,
1415 ULONGEST memaddr, LONGEST len)
1416 {
1417 /* Left boundary, right boundary and median element of our binary
1418 search. */
1419 unsigned bc_l, bc_r, bc;
1420
1421 /* Find BC_L which is a leftmost element which may affect BUF
1422 content. It is safe to report lower value but a failure to
1423 report higher one. */
1424
1425 bc_l = 0;
1426 bc_r = bp_locations_count;
1427 while (bc_l + 1 < bc_r)
1428 {
1429 struct bp_location *bl;
1430
1431 bc = (bc_l + bc_r) / 2;
1432 bl = bp_locations[bc];
1433
1434 /* Check first BL->ADDRESS will not overflow due to the added
1435 constant. Then advance the left boundary only if we are sure
1436 the BC element can in no way affect the BUF content (MEMADDR
1437 to MEMADDR + LEN range).
1438
1439 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1440 offset so that we cannot miss a breakpoint with its shadow
1441 range tail still reaching MEMADDR. */
1442
1443 if ((bl->address + bp_locations_shadow_len_after_address_max
1444 >= bl->address)
1445 && (bl->address + bp_locations_shadow_len_after_address_max
1446 <= memaddr))
1447 bc_l = bc;
1448 else
1449 bc_r = bc;
1450 }
1451
1452 /* Due to the binary search above, we need to make sure we pick the
1453 first location that's at BC_L's address. E.g., if there are
1454 multiple locations at the same address, BC_L may end up pointing
1455 at a duplicate location, and miss the "master"/"inserted"
1456 location. Say, given locations L1, L2 and L3 at addresses A and
1457 B:
1458
1459 L1@A, L2@A, L3@B, ...
1460
1461 BC_L could end up pointing at location L2, while the "master"
1462 location could be L1. Since the `loc->inserted' flag is only set
1463 on "master" locations, we'd forget to restore the shadow of L1
1464 and L2. */
1465 while (bc_l > 0
1466 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1467 bc_l--;
1468
1469 /* Now do full processing of the found relevant range of elements. */
1470
1471 for (bc = bc_l; bc < bp_locations_count; bc++)
1472 {
1473 struct bp_location *bl = bp_locations[bc];
1474
1475 /* bp_location array has BL->OWNER always non-NULL. */
1476 if (bl->owner->type == bp_none)
1477 warning (_("reading through apparently deleted breakpoint #%d?"),
1478 bl->owner->number);
1479
1480 /* Performance optimization: any further element can no longer affect BUF
1481 content. */
1482
1483 if (bl->address >= bp_locations_placed_address_before_address_max
1484 && memaddr + len <= (bl->address
1485 - bp_locations_placed_address_before_address_max))
1486 break;
1487
1488 if (!bp_location_has_shadow (bl))
1489 continue;
1490
1491 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1492 memaddr, len, &bl->target_info, bl->gdbarch);
1493 }
1494 }
1495
1496 /* See breakpoint.h. */
1497
1498 bool
1499 is_breakpoint (const struct breakpoint *bpt)
1500 {
1501 return (bpt->type == bp_breakpoint
1502 || bpt->type == bp_hardware_breakpoint
1503 || bpt->type == bp_dprintf);
1504 }
1505
1506 /* Return true if BPT is of any hardware watchpoint kind. */
1507
1508 static bool
1509 is_hardware_watchpoint (const struct breakpoint *bpt)
1510 {
1511 return (bpt->type == bp_hardware_watchpoint
1512 || bpt->type == bp_read_watchpoint
1513 || bpt->type == bp_access_watchpoint);
1514 }
1515
1516 /* See breakpoint.h. */
1517
1518 bool
1519 is_watchpoint (const struct breakpoint *bpt)
1520 {
1521 return (is_hardware_watchpoint (bpt)
1522 || bpt->type == bp_watchpoint);
1523 }
1524
1525 /* Returns true if the current thread and its running state are safe
1526 to evaluate or update watchpoint B. Watchpoints on local
1527 expressions need to be evaluated in the context of the thread that
1528 was current when the watchpoint was created, and, that thread needs
1529 to be stopped to be able to select the correct frame context.
1530 Watchpoints on global expressions can be evaluated on any thread,
1531 and in any state. It is presently left to the target allowing
1532 memory accesses when threads are running. */
1533
1534 static int
1535 watchpoint_in_thread_scope (struct watchpoint *b)
1536 {
1537 return (b->pspace == current_program_space
1538 && (b->watchpoint_thread == null_ptid
1539 || (inferior_ptid == b->watchpoint_thread
1540 && !inferior_thread ()->executing)));
1541 }
1542
1543 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1544 associated bp_watchpoint_scope breakpoint. */
1545
1546 static void
1547 watchpoint_del_at_next_stop (struct watchpoint *w)
1548 {
1549 if (w->related_breakpoint != w)
1550 {
1551 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1552 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1553 w->related_breakpoint->disposition = disp_del_at_next_stop;
1554 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1555 w->related_breakpoint = w;
1556 }
1557 w->disposition = disp_del_at_next_stop;
1558 }
1559
1560 /* Extract a bitfield value from value VAL using the bit parameters contained in
1561 watchpoint W. */
1562
1563 static struct value *
1564 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1565 {
1566 struct value *bit_val;
1567
1568 if (val == NULL)
1569 return NULL;
1570
1571 bit_val = allocate_value (value_type (val));
1572
1573 unpack_value_bitfield (bit_val,
1574 w->val_bitpos,
1575 w->val_bitsize,
1576 value_contents_for_printing (val),
1577 value_offset (val),
1578 val);
1579
1580 return bit_val;
1581 }
1582
1583 /* Allocate a dummy location and add it to B, which must be a software
1584 watchpoint. This is required because even if a software watchpoint
1585 is not watching any memory, bpstat_stop_status requires a location
1586 to be able to report stops. */
1587
1588 static void
1589 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1590 struct program_space *pspace)
1591 {
1592 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1593
1594 b->loc = allocate_bp_location (b);
1595 b->loc->pspace = pspace;
1596 b->loc->address = -1;
1597 b->loc->length = -1;
1598 }
1599
1600 /* Returns true if B is a software watchpoint that is not watching any
1601 memory (e.g., "watch $pc"). */
1602
1603 static bool
1604 is_no_memory_software_watchpoint (struct breakpoint *b)
1605 {
1606 return (b->type == bp_watchpoint
1607 && b->loc != NULL
1608 && b->loc->next == NULL
1609 && b->loc->address == -1
1610 && b->loc->length == -1);
1611 }
1612
1613 /* Assuming that B is a watchpoint:
1614 - Reparse watchpoint expression, if REPARSE is non-zero
1615 - Evaluate expression and store the result in B->val
1616 - Evaluate the condition if there is one, and store the result
1617 in b->loc->cond.
1618 - Update the list of values that must be watched in B->loc.
1619
1620 If the watchpoint disposition is disp_del_at_next_stop, then do
1621 nothing. If this is local watchpoint that is out of scope, delete
1622 it.
1623
1624 Even with `set breakpoint always-inserted on' the watchpoints are
1625 removed + inserted on each stop here. Normal breakpoints must
1626 never be removed because they might be missed by a running thread
1627 when debugging in non-stop mode. On the other hand, hardware
1628 watchpoints (is_hardware_watchpoint; processed here) are specific
1629 to each LWP since they are stored in each LWP's hardware debug
1630 registers. Therefore, such LWP must be stopped first in order to
1631 be able to modify its hardware watchpoints.
1632
1633 Hardware watchpoints must be reset exactly once after being
1634 presented to the user. It cannot be done sooner, because it would
1635 reset the data used to present the watchpoint hit to the user. And
1636 it must not be done later because it could display the same single
1637 watchpoint hit during multiple GDB stops. Note that the latter is
1638 relevant only to the hardware watchpoint types bp_read_watchpoint
1639 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1640 not user-visible - its hit is suppressed if the memory content has
1641 not changed.
1642
1643 The following constraints influence the location where we can reset
1644 hardware watchpoints:
1645
1646 * target_stopped_by_watchpoint and target_stopped_data_address are
1647 called several times when GDB stops.
1648
1649 [linux]
1650 * Multiple hardware watchpoints can be hit at the same time,
1651 causing GDB to stop. GDB only presents one hardware watchpoint
1652 hit at a time as the reason for stopping, and all the other hits
1653 are presented later, one after the other, each time the user
1654 requests the execution to be resumed. Execution is not resumed
1655 for the threads still having pending hit event stored in
1656 LWP_INFO->STATUS. While the watchpoint is already removed from
1657 the inferior on the first stop the thread hit event is kept being
1658 reported from its cached value by linux_nat_stopped_data_address
1659 until the real thread resume happens after the watchpoint gets
1660 presented and thus its LWP_INFO->STATUS gets reset.
1661
1662 Therefore the hardware watchpoint hit can get safely reset on the
1663 watchpoint removal from inferior. */
1664
1665 static void
1666 update_watchpoint (struct watchpoint *b, int reparse)
1667 {
1668 int within_current_scope;
1669 struct frame_id saved_frame_id;
1670 int frame_saved;
1671
1672 /* If this is a local watchpoint, we only want to check if the
1673 watchpoint frame is in scope if the current thread is the thread
1674 that was used to create the watchpoint. */
1675 if (!watchpoint_in_thread_scope (b))
1676 return;
1677
1678 if (b->disposition == disp_del_at_next_stop)
1679 return;
1680
1681 frame_saved = 0;
1682
1683 /* Determine if the watchpoint is within scope. */
1684 if (b->exp_valid_block == NULL)
1685 within_current_scope = 1;
1686 else
1687 {
1688 struct frame_info *fi = get_current_frame ();
1689 struct gdbarch *frame_arch = get_frame_arch (fi);
1690 CORE_ADDR frame_pc = get_frame_pc (fi);
1691
1692 /* If we're at a point where the stack has been destroyed
1693 (e.g. in a function epilogue), unwinding may not work
1694 properly. Do not attempt to recreate locations at this
1695 point. See similar comments in watchpoint_check. */
1696 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1697 return;
1698
1699 /* Save the current frame's ID so we can restore it after
1700 evaluating the watchpoint expression on its own frame. */
1701 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1702 took a frame parameter, so that we didn't have to change the
1703 selected frame. */
1704 frame_saved = 1;
1705 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1706
1707 fi = frame_find_by_id (b->watchpoint_frame);
1708 within_current_scope = (fi != NULL);
1709 if (within_current_scope)
1710 select_frame (fi);
1711 }
1712
1713 /* We don't free locations. They are stored in the bp_location array
1714 and update_global_location_list will eventually delete them and
1715 remove breakpoints if needed. */
1716 b->loc = NULL;
1717
1718 if (within_current_scope && reparse)
1719 {
1720 const char *s;
1721
1722 b->exp.reset ();
1723 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1724 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1725 /* If the meaning of expression itself changed, the old value is
1726 no longer relevant. We don't want to report a watchpoint hit
1727 to the user when the old value and the new value may actually
1728 be completely different objects. */
1729 b->val = NULL;
1730 b->val_valid = 0;
1731
1732 /* Note that unlike with breakpoints, the watchpoint's condition
1733 expression is stored in the breakpoint object, not in the
1734 locations (re)created below. */
1735 if (b->cond_string != NULL)
1736 {
1737 b->cond_exp.reset ();
1738
1739 s = b->cond_string;
1740 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1741 }
1742 }
1743
1744 /* If we failed to parse the expression, for example because
1745 it refers to a global variable in a not-yet-loaded shared library,
1746 don't try to insert watchpoint. We don't automatically delete
1747 such watchpoint, though, since failure to parse expression
1748 is different from out-of-scope watchpoint. */
1749 if (!target_has_execution)
1750 {
1751 /* Without execution, memory can't change. No use to try and
1752 set watchpoint locations. The watchpoint will be reset when
1753 the target gains execution, through breakpoint_re_set. */
1754 if (!can_use_hw_watchpoints)
1755 {
1756 if (b->ops->works_in_software_mode (b))
1757 b->type = bp_watchpoint;
1758 else
1759 error (_("Can't set read/access watchpoint when "
1760 "hardware watchpoints are disabled."));
1761 }
1762 }
1763 else if (within_current_scope && b->exp)
1764 {
1765 int pc = 0;
1766 std::vector<value_ref_ptr> val_chain;
1767 struct value *v, *result;
1768 struct program_space *frame_pspace;
1769
1770 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1771
1772 /* Avoid setting b->val if it's already set. The meaning of
1773 b->val is 'the last value' user saw, and we should update
1774 it only if we reported that last value to user. As it
1775 happens, the code that reports it updates b->val directly.
1776 We don't keep track of the memory value for masked
1777 watchpoints. */
1778 if (!b->val_valid && !is_masked_watchpoint (b))
1779 {
1780 if (b->val_bitsize != 0)
1781 v = extract_bitfield_from_watchpoint_value (b, v);
1782 b->val = release_value (v);
1783 b->val_valid = 1;
1784 }
1785
1786 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1787
1788 /* Look at each value on the value chain. */
1789 gdb_assert (!val_chain.empty ());
1790 for (const value_ref_ptr &iter : val_chain)
1791 {
1792 v = iter.get ();
1793
1794 /* If it's a memory location, and GDB actually needed
1795 its contents to evaluate the expression, then we
1796 must watch it. If the first value returned is
1797 still lazy, that means an error occurred reading it;
1798 watch it anyway in case it becomes readable. */
1799 if (VALUE_LVAL (v) == lval_memory
1800 && (v == val_chain[0] || ! value_lazy (v)))
1801 {
1802 struct type *vtype = check_typedef (value_type (v));
1803
1804 /* We only watch structs and arrays if user asked
1805 for it explicitly, never if they just happen to
1806 appear in the middle of some value chain. */
1807 if (v == result
1808 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1809 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1810 {
1811 CORE_ADDR addr;
1812 enum target_hw_bp_type type;
1813 struct bp_location *loc, **tmp;
1814 int bitpos = 0, bitsize = 0;
1815
1816 if (value_bitsize (v) != 0)
1817 {
1818 /* Extract the bit parameters out from the bitfield
1819 sub-expression. */
1820 bitpos = value_bitpos (v);
1821 bitsize = value_bitsize (v);
1822 }
1823 else if (v == result && b->val_bitsize != 0)
1824 {
1825 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1826 lvalue whose bit parameters are saved in the fields
1827 VAL_BITPOS and VAL_BITSIZE. */
1828 bitpos = b->val_bitpos;
1829 bitsize = b->val_bitsize;
1830 }
1831
1832 addr = value_address (v);
1833 if (bitsize != 0)
1834 {
1835 /* Skip the bytes that don't contain the bitfield. */
1836 addr += bitpos / 8;
1837 }
1838
1839 type = hw_write;
1840 if (b->type == bp_read_watchpoint)
1841 type = hw_read;
1842 else if (b->type == bp_access_watchpoint)
1843 type = hw_access;
1844
1845 loc = allocate_bp_location (b);
1846 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1847 ;
1848 *tmp = loc;
1849 loc->gdbarch = get_type_arch (value_type (v));
1850
1851 loc->pspace = frame_pspace;
1852 loc->address = address_significant (loc->gdbarch, addr);
1853
1854 if (bitsize != 0)
1855 {
1856 /* Just cover the bytes that make up the bitfield. */
1857 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1858 }
1859 else
1860 loc->length = TYPE_LENGTH (value_type (v));
1861
1862 loc->watchpoint_type = type;
1863 }
1864 }
1865 }
1866
1867 /* Change the type of breakpoint between hardware assisted or
1868 an ordinary watchpoint depending on the hardware support
1869 and free hardware slots. REPARSE is set when the inferior
1870 is started. */
1871 if (reparse)
1872 {
1873 int reg_cnt;
1874 enum bp_loc_type loc_type;
1875 struct bp_location *bl;
1876
1877 reg_cnt = can_use_hardware_watchpoint (val_chain);
1878
1879 if (reg_cnt)
1880 {
1881 int i, target_resources_ok, other_type_used;
1882 enum bptype type;
1883
1884 /* Use an exact watchpoint when there's only one memory region to be
1885 watched, and only one debug register is needed to watch it. */
1886 b->exact = target_exact_watchpoints && reg_cnt == 1;
1887
1888 /* We need to determine how many resources are already
1889 used for all other hardware watchpoints plus this one
1890 to see if we still have enough resources to also fit
1891 this watchpoint in as well. */
1892
1893 /* If this is a software watchpoint, we try to turn it
1894 to a hardware one -- count resources as if B was of
1895 hardware watchpoint type. */
1896 type = b->type;
1897 if (type == bp_watchpoint)
1898 type = bp_hardware_watchpoint;
1899
1900 /* This watchpoint may or may not have been placed on
1901 the list yet at this point (it won't be in the list
1902 if we're trying to create it for the first time,
1903 through watch_command), so always account for it
1904 manually. */
1905
1906 /* Count resources used by all watchpoints except B. */
1907 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1908
1909 /* Add in the resources needed for B. */
1910 i += hw_watchpoint_use_count (b);
1911
1912 target_resources_ok
1913 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1914 if (target_resources_ok <= 0)
1915 {
1916 int sw_mode = b->ops->works_in_software_mode (b);
1917
1918 if (target_resources_ok == 0 && !sw_mode)
1919 error (_("Target does not support this type of "
1920 "hardware watchpoint."));
1921 else if (target_resources_ok < 0 && !sw_mode)
1922 error (_("There are not enough available hardware "
1923 "resources for this watchpoint."));
1924
1925 /* Downgrade to software watchpoint. */
1926 b->type = bp_watchpoint;
1927 }
1928 else
1929 {
1930 /* If this was a software watchpoint, we've just
1931 found we have enough resources to turn it to a
1932 hardware watchpoint. Otherwise, this is a
1933 nop. */
1934 b->type = type;
1935 }
1936 }
1937 else if (!b->ops->works_in_software_mode (b))
1938 {
1939 if (!can_use_hw_watchpoints)
1940 error (_("Can't set read/access watchpoint when "
1941 "hardware watchpoints are disabled."));
1942 else
1943 error (_("Expression cannot be implemented with "
1944 "read/access watchpoint."));
1945 }
1946 else
1947 b->type = bp_watchpoint;
1948
1949 loc_type = (b->type == bp_watchpoint? bp_loc_other
1950 : bp_loc_hardware_watchpoint);
1951 for (bl = b->loc; bl; bl = bl->next)
1952 bl->loc_type = loc_type;
1953 }
1954
1955 /* If a software watchpoint is not watching any memory, then the
1956 above left it without any location set up. But,
1957 bpstat_stop_status requires a location to be able to report
1958 stops, so make sure there's at least a dummy one. */
1959 if (b->type == bp_watchpoint && b->loc == NULL)
1960 software_watchpoint_add_no_memory_location (b, frame_pspace);
1961 }
1962 else if (!within_current_scope)
1963 {
1964 printf_filtered (_("\
1965 Watchpoint %d deleted because the program has left the block\n\
1966 in which its expression is valid.\n"),
1967 b->number);
1968 watchpoint_del_at_next_stop (b);
1969 }
1970
1971 /* Restore the selected frame. */
1972 if (frame_saved)
1973 select_frame (frame_find_by_id (saved_frame_id));
1974 }
1975
1976
1977 /* Returns 1 iff breakpoint location should be
1978 inserted in the inferior. We don't differentiate the type of BL's owner
1979 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1980 breakpoint_ops is not defined, because in insert_bp_location,
1981 tracepoint's insert_location will not be called. */
1982 static int
1983 should_be_inserted (struct bp_location *bl)
1984 {
1985 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
1986 return 0;
1987
1988 if (bl->owner->disposition == disp_del_at_next_stop)
1989 return 0;
1990
1991 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
1992 return 0;
1993
1994 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
1995 return 0;
1996
1997 /* This is set for example, when we're attached to the parent of a
1998 vfork, and have detached from the child. The child is running
1999 free, and we expect it to do an exec or exit, at which point the
2000 OS makes the parent schedulable again (and the target reports
2001 that the vfork is done). Until the child is done with the shared
2002 memory region, do not insert breakpoints in the parent, otherwise
2003 the child could still trip on the parent's breakpoints. Since
2004 the parent is blocked anyway, it won't miss any breakpoint. */
2005 if (bl->pspace->breakpoints_not_allowed)
2006 return 0;
2007
2008 /* Don't insert a breakpoint if we're trying to step past its
2009 location, except if the breakpoint is a single-step breakpoint,
2010 and the breakpoint's thread is the thread which is stepping past
2011 a breakpoint. */
2012 if ((bl->loc_type == bp_loc_software_breakpoint
2013 || bl->loc_type == bp_loc_hardware_breakpoint)
2014 && stepping_past_instruction_at (bl->pspace->aspace,
2015 bl->address)
2016 /* The single-step breakpoint may be inserted at the location
2017 we're trying to step if the instruction branches to itself.
2018 However, the instruction won't be executed at all and it may
2019 break the semantics of the instruction, for example, the
2020 instruction is a conditional branch or updates some flags.
2021 We can't fix it unless GDB is able to emulate the instruction
2022 or switch to displaced stepping. */
2023 && !(bl->owner->type == bp_single_step
2024 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2025 {
2026 if (debug_infrun)
2027 {
2028 fprintf_unfiltered (gdb_stdlog,
2029 "infrun: skipping breakpoint: "
2030 "stepping past insn at: %s\n",
2031 paddress (bl->gdbarch, bl->address));
2032 }
2033 return 0;
2034 }
2035
2036 /* Don't insert watchpoints if we're trying to step past the
2037 instruction that triggered one. */
2038 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2039 && stepping_past_nonsteppable_watchpoint ())
2040 {
2041 if (debug_infrun)
2042 {
2043 fprintf_unfiltered (gdb_stdlog,
2044 "infrun: stepping past non-steppable watchpoint. "
2045 "skipping watchpoint at %s:%d\n",
2046 paddress (bl->gdbarch, bl->address),
2047 bl->length);
2048 }
2049 return 0;
2050 }
2051
2052 return 1;
2053 }
2054
2055 /* Same as should_be_inserted but does the check assuming
2056 that the location is not duplicated. */
2057
2058 static int
2059 unduplicated_should_be_inserted (struct bp_location *bl)
2060 {
2061 int result;
2062 const int save_duplicate = bl->duplicate;
2063
2064 bl->duplicate = 0;
2065 result = should_be_inserted (bl);
2066 bl->duplicate = save_duplicate;
2067 return result;
2068 }
2069
2070 /* Parses a conditional described by an expression COND into an
2071 agent expression bytecode suitable for evaluation
2072 by the bytecode interpreter. Return NULL if there was
2073 any error during parsing. */
2074
2075 static agent_expr_up
2076 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2077 {
2078 if (cond == NULL)
2079 return NULL;
2080
2081 agent_expr_up aexpr;
2082
2083 /* We don't want to stop processing, so catch any errors
2084 that may show up. */
2085 try
2086 {
2087 aexpr = gen_eval_for_expr (scope, cond);
2088 }
2089
2090 catch (const gdb_exception_error &ex)
2091 {
2092 /* If we got here, it means the condition could not be parsed to a valid
2093 bytecode expression and thus can't be evaluated on the target's side.
2094 It's no use iterating through the conditions. */
2095 }
2096
2097 /* We have a valid agent expression. */
2098 return aexpr;
2099 }
2100
2101 /* Based on location BL, create a list of breakpoint conditions to be
2102 passed on to the target. If we have duplicated locations with different
2103 conditions, we will add such conditions to the list. The idea is that the
2104 target will evaluate the list of conditions and will only notify GDB when
2105 one of them is true. */
2106
2107 static void
2108 build_target_condition_list (struct bp_location *bl)
2109 {
2110 struct bp_location **locp = NULL, **loc2p;
2111 int null_condition_or_parse_error = 0;
2112 int modified = bl->needs_update;
2113 struct bp_location *loc;
2114
2115 /* Release conditions left over from a previous insert. */
2116 bl->target_info.conditions.clear ();
2117
2118 /* This is only meaningful if the target is
2119 evaluating conditions and if the user has
2120 opted for condition evaluation on the target's
2121 side. */
2122 if (gdb_evaluates_breakpoint_condition_p ()
2123 || !target_supports_evaluation_of_breakpoint_conditions ())
2124 return;
2125
2126 /* Do a first pass to check for locations with no assigned
2127 conditions or conditions that fail to parse to a valid agent expression
2128 bytecode. If any of these happen, then it's no use to send conditions
2129 to the target since this location will always trigger and generate a
2130 response back to GDB. */
2131 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2132 {
2133 loc = (*loc2p);
2134 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2135 {
2136 if (modified)
2137 {
2138 /* Re-parse the conditions since something changed. In that
2139 case we already freed the condition bytecodes (see
2140 force_breakpoint_reinsertion). We just
2141 need to parse the condition to bytecodes again. */
2142 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2143 loc->cond.get ());
2144 }
2145
2146 /* If we have a NULL bytecode expression, it means something
2147 went wrong or we have a null condition expression. */
2148 if (!loc->cond_bytecode)
2149 {
2150 null_condition_or_parse_error = 1;
2151 break;
2152 }
2153 }
2154 }
2155
2156 /* If any of these happened, it means we will have to evaluate the conditions
2157 for the location's address on gdb's side. It is no use keeping bytecodes
2158 for all the other duplicate locations, thus we free all of them here.
2159
2160 This is so we have a finer control over which locations' conditions are
2161 being evaluated by GDB or the remote stub. */
2162 if (null_condition_or_parse_error)
2163 {
2164 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2165 {
2166 loc = (*loc2p);
2167 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2168 {
2169 /* Only go as far as the first NULL bytecode is
2170 located. */
2171 if (!loc->cond_bytecode)
2172 return;
2173
2174 loc->cond_bytecode.reset ();
2175 }
2176 }
2177 }
2178
2179 /* No NULL conditions or failed bytecode generation. Build a condition list
2180 for this location's address. */
2181 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2182 {
2183 loc = (*loc2p);
2184 if (loc->cond
2185 && is_breakpoint (loc->owner)
2186 && loc->pspace->num == bl->pspace->num
2187 && loc->owner->enable_state == bp_enabled
2188 && loc->enabled)
2189 {
2190 /* Add the condition to the vector. This will be used later
2191 to send the conditions to the target. */
2192 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2193 }
2194 }
2195
2196 return;
2197 }
2198
2199 /* Parses a command described by string CMD into an agent expression
2200 bytecode suitable for evaluation by the bytecode interpreter.
2201 Return NULL if there was any error during parsing. */
2202
2203 static agent_expr_up
2204 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2205 {
2206 const char *cmdrest;
2207 const char *format_start, *format_end;
2208 struct gdbarch *gdbarch = get_current_arch ();
2209
2210 if (cmd == NULL)
2211 return NULL;
2212
2213 cmdrest = cmd;
2214
2215 if (*cmdrest == ',')
2216 ++cmdrest;
2217 cmdrest = skip_spaces (cmdrest);
2218
2219 if (*cmdrest++ != '"')
2220 error (_("No format string following the location"));
2221
2222 format_start = cmdrest;
2223
2224 format_pieces fpieces (&cmdrest);
2225
2226 format_end = cmdrest;
2227
2228 if (*cmdrest++ != '"')
2229 error (_("Bad format string, non-terminated '\"'."));
2230
2231 cmdrest = skip_spaces (cmdrest);
2232
2233 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2234 error (_("Invalid argument syntax"));
2235
2236 if (*cmdrest == ',')
2237 cmdrest++;
2238 cmdrest = skip_spaces (cmdrest);
2239
2240 /* For each argument, make an expression. */
2241
2242 std::vector<struct expression *> argvec;
2243 while (*cmdrest != '\0')
2244 {
2245 const char *cmd1;
2246
2247 cmd1 = cmdrest;
2248 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2249 argvec.push_back (expr.release ());
2250 cmdrest = cmd1;
2251 if (*cmdrest == ',')
2252 ++cmdrest;
2253 }
2254
2255 agent_expr_up aexpr;
2256
2257 /* We don't want to stop processing, so catch any errors
2258 that may show up. */
2259 try
2260 {
2261 aexpr = gen_printf (scope, gdbarch, 0, 0,
2262 format_start, format_end - format_start,
2263 argvec.size (), argvec.data ());
2264 }
2265 catch (const gdb_exception_error &ex)
2266 {
2267 /* If we got here, it means the command could not be parsed to a valid
2268 bytecode expression and thus can't be evaluated on the target's side.
2269 It's no use iterating through the other commands. */
2270 }
2271
2272 /* We have a valid agent expression, return it. */
2273 return aexpr;
2274 }
2275
2276 /* Based on location BL, create a list of breakpoint commands to be
2277 passed on to the target. If we have duplicated locations with
2278 different commands, we will add any such to the list. */
2279
2280 static void
2281 build_target_command_list (struct bp_location *bl)
2282 {
2283 struct bp_location **locp = NULL, **loc2p;
2284 int null_command_or_parse_error = 0;
2285 int modified = bl->needs_update;
2286 struct bp_location *loc;
2287
2288 /* Clear commands left over from a previous insert. */
2289 bl->target_info.tcommands.clear ();
2290
2291 if (!target_can_run_breakpoint_commands ())
2292 return;
2293
2294 /* For now, limit to agent-style dprintf breakpoints. */
2295 if (dprintf_style != dprintf_style_agent)
2296 return;
2297
2298 /* For now, if we have any duplicate location that isn't a dprintf,
2299 don't install the target-side commands, as that would make the
2300 breakpoint not be reported to the core, and we'd lose
2301 control. */
2302 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2303 {
2304 loc = (*loc2p);
2305 if (is_breakpoint (loc->owner)
2306 && loc->pspace->num == bl->pspace->num
2307 && loc->owner->type != bp_dprintf)
2308 return;
2309 }
2310
2311 /* Do a first pass to check for locations with no assigned
2312 conditions or conditions that fail to parse to a valid agent expression
2313 bytecode. If any of these happen, then it's no use to send conditions
2314 to the target since this location will always trigger and generate a
2315 response back to GDB. */
2316 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2317 {
2318 loc = (*loc2p);
2319 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2320 {
2321 if (modified)
2322 {
2323 /* Re-parse the commands since something changed. In that
2324 case we already freed the command bytecodes (see
2325 force_breakpoint_reinsertion). We just
2326 need to parse the command to bytecodes again. */
2327 loc->cmd_bytecode
2328 = parse_cmd_to_aexpr (bl->address,
2329 loc->owner->extra_string);
2330 }
2331
2332 /* If we have a NULL bytecode expression, it means something
2333 went wrong or we have a null command expression. */
2334 if (!loc->cmd_bytecode)
2335 {
2336 null_command_or_parse_error = 1;
2337 break;
2338 }
2339 }
2340 }
2341
2342 /* If anything failed, then we're not doing target-side commands,
2343 and so clean up. */
2344 if (null_command_or_parse_error)
2345 {
2346 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2347 {
2348 loc = (*loc2p);
2349 if (is_breakpoint (loc->owner)
2350 && loc->pspace->num == bl->pspace->num)
2351 {
2352 /* Only go as far as the first NULL bytecode is
2353 located. */
2354 if (loc->cmd_bytecode == NULL)
2355 return;
2356
2357 loc->cmd_bytecode.reset ();
2358 }
2359 }
2360 }
2361
2362 /* No NULL commands or failed bytecode generation. Build a command list
2363 for this location's address. */
2364 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2365 {
2366 loc = (*loc2p);
2367 if (loc->owner->extra_string
2368 && is_breakpoint (loc->owner)
2369 && loc->pspace->num == bl->pspace->num
2370 && loc->owner->enable_state == bp_enabled
2371 && loc->enabled)
2372 {
2373 /* Add the command to the vector. This will be used later
2374 to send the commands to the target. */
2375 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2376 }
2377 }
2378
2379 bl->target_info.persist = 0;
2380 /* Maybe flag this location as persistent. */
2381 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2382 bl->target_info.persist = 1;
2383 }
2384
2385 /* Return the kind of breakpoint on address *ADDR. Get the kind
2386 of breakpoint according to ADDR except single-step breakpoint.
2387 Get the kind of single-step breakpoint according to the current
2388 registers state. */
2389
2390 static int
2391 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2392 {
2393 if (bl->owner->type == bp_single_step)
2394 {
2395 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2396 struct regcache *regcache;
2397
2398 regcache = get_thread_regcache (thr);
2399
2400 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2401 regcache, addr);
2402 }
2403 else
2404 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2405 }
2406
2407 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2408 location. Any error messages are printed to TMP_ERROR_STREAM; and
2409 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2410 Returns 0 for success, 1 if the bp_location type is not supported or
2411 -1 for failure.
2412
2413 NOTE drow/2003-09-09: This routine could be broken down to an
2414 object-style method for each breakpoint or catchpoint type. */
2415 static int
2416 insert_bp_location (struct bp_location *bl,
2417 struct ui_file *tmp_error_stream,
2418 int *disabled_breaks,
2419 int *hw_breakpoint_error,
2420 int *hw_bp_error_explained_already)
2421 {
2422 gdb_exception bp_excpt;
2423
2424 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2425 return 0;
2426
2427 /* Note we don't initialize bl->target_info, as that wipes out
2428 the breakpoint location's shadow_contents if the breakpoint
2429 is still inserted at that location. This in turn breaks
2430 target_read_memory which depends on these buffers when
2431 a memory read is requested at the breakpoint location:
2432 Once the target_info has been wiped, we fail to see that
2433 we have a breakpoint inserted at that address and thus
2434 read the breakpoint instead of returning the data saved in
2435 the breakpoint location's shadow contents. */
2436 bl->target_info.reqstd_address = bl->address;
2437 bl->target_info.placed_address_space = bl->pspace->aspace;
2438 bl->target_info.length = bl->length;
2439
2440 /* When working with target-side conditions, we must pass all the conditions
2441 for the same breakpoint address down to the target since GDB will not
2442 insert those locations. With a list of breakpoint conditions, the target
2443 can decide when to stop and notify GDB. */
2444
2445 if (is_breakpoint (bl->owner))
2446 {
2447 build_target_condition_list (bl);
2448 build_target_command_list (bl);
2449 /* Reset the modification marker. */
2450 bl->needs_update = 0;
2451 }
2452
2453 if (bl->loc_type == bp_loc_software_breakpoint
2454 || bl->loc_type == bp_loc_hardware_breakpoint)
2455 {
2456 if (bl->owner->type != bp_hardware_breakpoint)
2457 {
2458 /* If the explicitly specified breakpoint type
2459 is not hardware breakpoint, check the memory map to see
2460 if the breakpoint address is in read only memory or not.
2461
2462 Two important cases are:
2463 - location type is not hardware breakpoint, memory
2464 is readonly. We change the type of the location to
2465 hardware breakpoint.
2466 - location type is hardware breakpoint, memory is
2467 read-write. This means we've previously made the
2468 location hardware one, but then the memory map changed,
2469 so we undo.
2470
2471 When breakpoints are removed, remove_breakpoints will use
2472 location types we've just set here, the only possible
2473 problem is that memory map has changed during running
2474 program, but it's not going to work anyway with current
2475 gdb. */
2476 struct mem_region *mr
2477 = lookup_mem_region (bl->target_info.reqstd_address);
2478
2479 if (mr)
2480 {
2481 if (automatic_hardware_breakpoints)
2482 {
2483 enum bp_loc_type new_type;
2484
2485 if (mr->attrib.mode != MEM_RW)
2486 new_type = bp_loc_hardware_breakpoint;
2487 else
2488 new_type = bp_loc_software_breakpoint;
2489
2490 if (new_type != bl->loc_type)
2491 {
2492 static int said = 0;
2493
2494 bl->loc_type = new_type;
2495 if (!said)
2496 {
2497 fprintf_filtered (gdb_stdout,
2498 _("Note: automatically using "
2499 "hardware breakpoints for "
2500 "read-only addresses.\n"));
2501 said = 1;
2502 }
2503 }
2504 }
2505 else if (bl->loc_type == bp_loc_software_breakpoint
2506 && mr->attrib.mode != MEM_RW)
2507 {
2508 fprintf_unfiltered (tmp_error_stream,
2509 _("Cannot insert breakpoint %d.\n"
2510 "Cannot set software breakpoint "
2511 "at read-only address %s\n"),
2512 bl->owner->number,
2513 paddress (bl->gdbarch, bl->address));
2514 return 1;
2515 }
2516 }
2517 }
2518
2519 /* First check to see if we have to handle an overlay. */
2520 if (overlay_debugging == ovly_off
2521 || bl->section == NULL
2522 || !(section_is_overlay (bl->section)))
2523 {
2524 /* No overlay handling: just set the breakpoint. */
2525 try
2526 {
2527 int val;
2528
2529 val = bl->owner->ops->insert_location (bl);
2530 if (val)
2531 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2532 }
2533 catch (gdb_exception &e)
2534 {
2535 bp_excpt = std::move (e);
2536 }
2537 }
2538 else
2539 {
2540 /* This breakpoint is in an overlay section.
2541 Shall we set a breakpoint at the LMA? */
2542 if (!overlay_events_enabled)
2543 {
2544 /* Yes -- overlay event support is not active,
2545 so we must try to set a breakpoint at the LMA.
2546 This will not work for a hardware breakpoint. */
2547 if (bl->loc_type == bp_loc_hardware_breakpoint)
2548 warning (_("hardware breakpoint %d not supported in overlay!"),
2549 bl->owner->number);
2550 else
2551 {
2552 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2553 bl->section);
2554 /* Set a software (trap) breakpoint at the LMA. */
2555 bl->overlay_target_info = bl->target_info;
2556 bl->overlay_target_info.reqstd_address = addr;
2557
2558 /* No overlay handling: just set the breakpoint. */
2559 try
2560 {
2561 int val;
2562
2563 bl->overlay_target_info.kind
2564 = breakpoint_kind (bl, &addr);
2565 bl->overlay_target_info.placed_address = addr;
2566 val = target_insert_breakpoint (bl->gdbarch,
2567 &bl->overlay_target_info);
2568 if (val)
2569 bp_excpt
2570 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2571 }
2572 catch (gdb_exception &e)
2573 {
2574 bp_excpt = std::move (e);
2575 }
2576
2577 if (bp_excpt.reason != 0)
2578 fprintf_unfiltered (tmp_error_stream,
2579 "Overlay breakpoint %d "
2580 "failed: in ROM?\n",
2581 bl->owner->number);
2582 }
2583 }
2584 /* Shall we set a breakpoint at the VMA? */
2585 if (section_is_mapped (bl->section))
2586 {
2587 /* Yes. This overlay section is mapped into memory. */
2588 try
2589 {
2590 int val;
2591
2592 val = bl->owner->ops->insert_location (bl);
2593 if (val)
2594 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2595 }
2596 catch (gdb_exception &e)
2597 {
2598 bp_excpt = std::move (e);
2599 }
2600 }
2601 else
2602 {
2603 /* No. This breakpoint will not be inserted.
2604 No error, but do not mark the bp as 'inserted'. */
2605 return 0;
2606 }
2607 }
2608
2609 if (bp_excpt.reason != 0)
2610 {
2611 /* Can't set the breakpoint. */
2612
2613 /* In some cases, we might not be able to insert a
2614 breakpoint in a shared library that has already been
2615 removed, but we have not yet processed the shlib unload
2616 event. Unfortunately, some targets that implement
2617 breakpoint insertion themselves can't tell why the
2618 breakpoint insertion failed (e.g., the remote target
2619 doesn't define error codes), so we must treat generic
2620 errors as memory errors. */
2621 if (bp_excpt.reason == RETURN_ERROR
2622 && (bp_excpt.error == GENERIC_ERROR
2623 || bp_excpt.error == MEMORY_ERROR)
2624 && bl->loc_type == bp_loc_software_breakpoint
2625 && (solib_name_from_address (bl->pspace, bl->address)
2626 || shared_objfile_contains_address_p (bl->pspace,
2627 bl->address)))
2628 {
2629 /* See also: disable_breakpoints_in_shlibs. */
2630 bl->shlib_disabled = 1;
2631 gdb::observers::breakpoint_modified.notify (bl->owner);
2632 if (!*disabled_breaks)
2633 {
2634 fprintf_unfiltered (tmp_error_stream,
2635 "Cannot insert breakpoint %d.\n",
2636 bl->owner->number);
2637 fprintf_unfiltered (tmp_error_stream,
2638 "Temporarily disabling shared "
2639 "library breakpoints:\n");
2640 }
2641 *disabled_breaks = 1;
2642 fprintf_unfiltered (tmp_error_stream,
2643 "breakpoint #%d\n", bl->owner->number);
2644 return 0;
2645 }
2646 else
2647 {
2648 if (bl->loc_type == bp_loc_hardware_breakpoint)
2649 {
2650 *hw_breakpoint_error = 1;
2651 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2652 fprintf_unfiltered (tmp_error_stream,
2653 "Cannot insert hardware breakpoint %d%s",
2654 bl->owner->number,
2655 bp_excpt.message ? ":" : ".\n");
2656 if (bp_excpt.message != NULL)
2657 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2658 bp_excpt.what ());
2659 }
2660 else
2661 {
2662 if (bp_excpt.message == NULL)
2663 {
2664 std::string message
2665 = memory_error_message (TARGET_XFER_E_IO,
2666 bl->gdbarch, bl->address);
2667
2668 fprintf_unfiltered (tmp_error_stream,
2669 "Cannot insert breakpoint %d.\n"
2670 "%s\n",
2671 bl->owner->number, message.c_str ());
2672 }
2673 else
2674 {
2675 fprintf_unfiltered (tmp_error_stream,
2676 "Cannot insert breakpoint %d: %s\n",
2677 bl->owner->number,
2678 bp_excpt.what ());
2679 }
2680 }
2681 return 1;
2682
2683 }
2684 }
2685 else
2686 bl->inserted = 1;
2687
2688 return 0;
2689 }
2690
2691 else if (bl->loc_type == bp_loc_hardware_watchpoint
2692 /* NOTE drow/2003-09-08: This state only exists for removing
2693 watchpoints. It's not clear that it's necessary... */
2694 && bl->owner->disposition != disp_del_at_next_stop)
2695 {
2696 int val;
2697
2698 gdb_assert (bl->owner->ops != NULL
2699 && bl->owner->ops->insert_location != NULL);
2700
2701 val = bl->owner->ops->insert_location (bl);
2702
2703 /* If trying to set a read-watchpoint, and it turns out it's not
2704 supported, try emulating one with an access watchpoint. */
2705 if (val == 1 && bl->watchpoint_type == hw_read)
2706 {
2707 struct bp_location *loc, **loc_temp;
2708
2709 /* But don't try to insert it, if there's already another
2710 hw_access location that would be considered a duplicate
2711 of this one. */
2712 ALL_BP_LOCATIONS (loc, loc_temp)
2713 if (loc != bl
2714 && loc->watchpoint_type == hw_access
2715 && watchpoint_locations_match (bl, loc))
2716 {
2717 bl->duplicate = 1;
2718 bl->inserted = 1;
2719 bl->target_info = loc->target_info;
2720 bl->watchpoint_type = hw_access;
2721 val = 0;
2722 break;
2723 }
2724
2725 if (val == 1)
2726 {
2727 bl->watchpoint_type = hw_access;
2728 val = bl->owner->ops->insert_location (bl);
2729
2730 if (val)
2731 /* Back to the original value. */
2732 bl->watchpoint_type = hw_read;
2733 }
2734 }
2735
2736 bl->inserted = (val == 0);
2737 }
2738
2739 else if (bl->owner->type == bp_catchpoint)
2740 {
2741 int val;
2742
2743 gdb_assert (bl->owner->ops != NULL
2744 && bl->owner->ops->insert_location != NULL);
2745
2746 val = bl->owner->ops->insert_location (bl);
2747 if (val)
2748 {
2749 bl->owner->enable_state = bp_disabled;
2750
2751 if (val == 1)
2752 warning (_("\
2753 Error inserting catchpoint %d: Your system does not support this type\n\
2754 of catchpoint."), bl->owner->number);
2755 else
2756 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2757 }
2758
2759 bl->inserted = (val == 0);
2760
2761 /* We've already printed an error message if there was a problem
2762 inserting this catchpoint, and we've disabled the catchpoint,
2763 so just return success. */
2764 return 0;
2765 }
2766
2767 return 0;
2768 }
2769
2770 /* This function is called when program space PSPACE is about to be
2771 deleted. It takes care of updating breakpoints to not reference
2772 PSPACE anymore. */
2773
2774 void
2775 breakpoint_program_space_exit (struct program_space *pspace)
2776 {
2777 struct breakpoint *b, *b_temp;
2778 struct bp_location *loc, **loc_temp;
2779
2780 /* Remove any breakpoint that was set through this program space. */
2781 ALL_BREAKPOINTS_SAFE (b, b_temp)
2782 {
2783 if (b->pspace == pspace)
2784 delete_breakpoint (b);
2785 }
2786
2787 /* Breakpoints set through other program spaces could have locations
2788 bound to PSPACE as well. Remove those. */
2789 ALL_BP_LOCATIONS (loc, loc_temp)
2790 {
2791 struct bp_location *tmp;
2792
2793 if (loc->pspace == pspace)
2794 {
2795 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2796 if (loc->owner->loc == loc)
2797 loc->owner->loc = loc->next;
2798 else
2799 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2800 if (tmp->next == loc)
2801 {
2802 tmp->next = loc->next;
2803 break;
2804 }
2805 }
2806 }
2807
2808 /* Now update the global location list to permanently delete the
2809 removed locations above. */
2810 update_global_location_list (UGLL_DONT_INSERT);
2811 }
2812
2813 /* Make sure all breakpoints are inserted in inferior.
2814 Throws exception on any error.
2815 A breakpoint that is already inserted won't be inserted
2816 again, so calling this function twice is safe. */
2817 void
2818 insert_breakpoints (void)
2819 {
2820 struct breakpoint *bpt;
2821
2822 ALL_BREAKPOINTS (bpt)
2823 if (is_hardware_watchpoint (bpt))
2824 {
2825 struct watchpoint *w = (struct watchpoint *) bpt;
2826
2827 update_watchpoint (w, 0 /* don't reparse. */);
2828 }
2829
2830 /* Updating watchpoints creates new locations, so update the global
2831 location list. Explicitly tell ugll to insert locations and
2832 ignore breakpoints_always_inserted_mode. */
2833 update_global_location_list (UGLL_INSERT);
2834 }
2835
2836 /* Invoke CALLBACK for each of bp_location. */
2837
2838 void
2839 iterate_over_bp_locations (walk_bp_location_callback callback)
2840 {
2841 struct bp_location *loc, **loc_tmp;
2842
2843 ALL_BP_LOCATIONS (loc, loc_tmp)
2844 {
2845 callback (loc, NULL);
2846 }
2847 }
2848
2849 /* This is used when we need to synch breakpoint conditions between GDB and the
2850 target. It is the case with deleting and disabling of breakpoints when using
2851 always-inserted mode. */
2852
2853 static void
2854 update_inserted_breakpoint_locations (void)
2855 {
2856 struct bp_location *bl, **blp_tmp;
2857 int error_flag = 0;
2858 int val = 0;
2859 int disabled_breaks = 0;
2860 int hw_breakpoint_error = 0;
2861 int hw_bp_details_reported = 0;
2862
2863 string_file tmp_error_stream;
2864
2865 /* Explicitly mark the warning -- this will only be printed if
2866 there was an error. */
2867 tmp_error_stream.puts ("Warning:\n");
2868
2869 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2870
2871 ALL_BP_LOCATIONS (bl, blp_tmp)
2872 {
2873 /* We only want to update software breakpoints and hardware
2874 breakpoints. */
2875 if (!is_breakpoint (bl->owner))
2876 continue;
2877
2878 /* We only want to update locations that are already inserted
2879 and need updating. This is to avoid unwanted insertion during
2880 deletion of breakpoints. */
2881 if (!bl->inserted || !bl->needs_update)
2882 continue;
2883
2884 switch_to_program_space_and_thread (bl->pspace);
2885
2886 /* For targets that support global breakpoints, there's no need
2887 to select an inferior to insert breakpoint to. In fact, even
2888 if we aren't attached to any process yet, we should still
2889 insert breakpoints. */
2890 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2891 && inferior_ptid == null_ptid)
2892 continue;
2893
2894 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2895 &hw_breakpoint_error, &hw_bp_details_reported);
2896 if (val)
2897 error_flag = val;
2898 }
2899
2900 if (error_flag)
2901 {
2902 target_terminal::ours_for_output ();
2903 error_stream (tmp_error_stream);
2904 }
2905 }
2906
2907 /* Used when starting or continuing the program. */
2908
2909 static void
2910 insert_breakpoint_locations (void)
2911 {
2912 struct breakpoint *bpt;
2913 struct bp_location *bl, **blp_tmp;
2914 int error_flag = 0;
2915 int val = 0;
2916 int disabled_breaks = 0;
2917 int hw_breakpoint_error = 0;
2918 int hw_bp_error_explained_already = 0;
2919
2920 string_file tmp_error_stream;
2921
2922 /* Explicitly mark the warning -- this will only be printed if
2923 there was an error. */
2924 tmp_error_stream.puts ("Warning:\n");
2925
2926 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2927
2928 ALL_BP_LOCATIONS (bl, blp_tmp)
2929 {
2930 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2931 continue;
2932
2933 /* There is no point inserting thread-specific breakpoints if
2934 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2935 has BL->OWNER always non-NULL. */
2936 if (bl->owner->thread != -1
2937 && !valid_global_thread_id (bl->owner->thread))
2938 continue;
2939
2940 switch_to_program_space_and_thread (bl->pspace);
2941
2942 /* For targets that support global breakpoints, there's no need
2943 to select an inferior to insert breakpoint to. In fact, even
2944 if we aren't attached to any process yet, we should still
2945 insert breakpoints. */
2946 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2947 && inferior_ptid == null_ptid)
2948 continue;
2949
2950 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2951 &hw_breakpoint_error, &hw_bp_error_explained_already);
2952 if (val)
2953 error_flag = val;
2954 }
2955
2956 /* If we failed to insert all locations of a watchpoint, remove
2957 them, as half-inserted watchpoint is of limited use. */
2958 ALL_BREAKPOINTS (bpt)
2959 {
2960 int some_failed = 0;
2961 struct bp_location *loc;
2962
2963 if (!is_hardware_watchpoint (bpt))
2964 continue;
2965
2966 if (!breakpoint_enabled (bpt))
2967 continue;
2968
2969 if (bpt->disposition == disp_del_at_next_stop)
2970 continue;
2971
2972 for (loc = bpt->loc; loc; loc = loc->next)
2973 if (!loc->inserted && should_be_inserted (loc))
2974 {
2975 some_failed = 1;
2976 break;
2977 }
2978 if (some_failed)
2979 {
2980 for (loc = bpt->loc; loc; loc = loc->next)
2981 if (loc->inserted)
2982 remove_breakpoint (loc);
2983
2984 hw_breakpoint_error = 1;
2985 tmp_error_stream.printf ("Could not insert "
2986 "hardware watchpoint %d.\n",
2987 bpt->number);
2988 error_flag = -1;
2989 }
2990 }
2991
2992 if (error_flag)
2993 {
2994 /* If a hardware breakpoint or watchpoint was inserted, add a
2995 message about possibly exhausted resources. */
2996 if (hw_breakpoint_error && !hw_bp_error_explained_already)
2997 {
2998 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
2999 You may have requested too many hardware breakpoints/watchpoints.\n");
3000 }
3001 target_terminal::ours_for_output ();
3002 error_stream (tmp_error_stream);
3003 }
3004 }
3005
3006 /* Used when the program stops.
3007 Returns zero if successful, or non-zero if there was a problem
3008 removing a breakpoint location. */
3009
3010 int
3011 remove_breakpoints (void)
3012 {
3013 struct bp_location *bl, **blp_tmp;
3014 int val = 0;
3015
3016 ALL_BP_LOCATIONS (bl, blp_tmp)
3017 {
3018 if (bl->inserted && !is_tracepoint (bl->owner))
3019 val |= remove_breakpoint (bl);
3020 }
3021 return val;
3022 }
3023
3024 /* When a thread exits, remove breakpoints that are related to
3025 that thread. */
3026
3027 static void
3028 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3029 {
3030 struct breakpoint *b, *b_tmp;
3031
3032 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3033 {
3034 if (b->thread == tp->global_num && user_breakpoint_p (b))
3035 {
3036 b->disposition = disp_del_at_next_stop;
3037
3038 printf_filtered (_("\
3039 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3040 b->number, print_thread_id (tp));
3041
3042 /* Hide it from the user. */
3043 b->number = 0;
3044 }
3045 }
3046 }
3047
3048 /* See breakpoint.h. */
3049
3050 void
3051 remove_breakpoints_inf (inferior *inf)
3052 {
3053 struct bp_location *bl, **blp_tmp;
3054 int val;
3055
3056 ALL_BP_LOCATIONS (bl, blp_tmp)
3057 {
3058 if (bl->pspace != inf->pspace)
3059 continue;
3060
3061 if (bl->inserted && !bl->target_info.persist)
3062 {
3063 val = remove_breakpoint (bl);
3064 if (val != 0)
3065 return;
3066 }
3067 }
3068 }
3069
3070 static int internal_breakpoint_number = -1;
3071
3072 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3073 If INTERNAL is non-zero, the breakpoint number will be populated
3074 from internal_breakpoint_number and that variable decremented.
3075 Otherwise the breakpoint number will be populated from
3076 breakpoint_count and that value incremented. Internal breakpoints
3077 do not set the internal var bpnum. */
3078 static void
3079 set_breakpoint_number (int internal, struct breakpoint *b)
3080 {
3081 if (internal)
3082 b->number = internal_breakpoint_number--;
3083 else
3084 {
3085 set_breakpoint_count (breakpoint_count + 1);
3086 b->number = breakpoint_count;
3087 }
3088 }
3089
3090 static struct breakpoint *
3091 create_internal_breakpoint (struct gdbarch *gdbarch,
3092 CORE_ADDR address, enum bptype type,
3093 const struct breakpoint_ops *ops)
3094 {
3095 symtab_and_line sal;
3096 sal.pc = address;
3097 sal.section = find_pc_overlay (sal.pc);
3098 sal.pspace = current_program_space;
3099
3100 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3101 b->number = internal_breakpoint_number--;
3102 b->disposition = disp_donttouch;
3103
3104 return b;
3105 }
3106
3107 static const char *const longjmp_names[] =
3108 {
3109 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3110 };
3111 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3112
3113 /* Per-objfile data private to breakpoint.c. */
3114 struct breakpoint_objfile_data
3115 {
3116 /* Minimal symbol for "_ovly_debug_event" (if any). */
3117 struct bound_minimal_symbol overlay_msym {};
3118
3119 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3120 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3121
3122 /* True if we have looked for longjmp probes. */
3123 int longjmp_searched = 0;
3124
3125 /* SystemTap probe points for longjmp (if any). These are non-owning
3126 references. */
3127 std::vector<probe *> longjmp_probes;
3128
3129 /* Minimal symbol for "std::terminate()" (if any). */
3130 struct bound_minimal_symbol terminate_msym {};
3131
3132 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3133 struct bound_minimal_symbol exception_msym {};
3134
3135 /* True if we have looked for exception probes. */
3136 int exception_searched = 0;
3137
3138 /* SystemTap probe points for unwinding (if any). These are non-owning
3139 references. */
3140 std::vector<probe *> exception_probes;
3141 };
3142
3143 static const struct objfile_key<breakpoint_objfile_data>
3144 breakpoint_objfile_key;
3145
3146 /* Minimal symbol not found sentinel. */
3147 static struct minimal_symbol msym_not_found;
3148
3149 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3150
3151 static int
3152 msym_not_found_p (const struct minimal_symbol *msym)
3153 {
3154 return msym == &msym_not_found;
3155 }
3156
3157 /* Return per-objfile data needed by breakpoint.c.
3158 Allocate the data if necessary. */
3159
3160 static struct breakpoint_objfile_data *
3161 get_breakpoint_objfile_data (struct objfile *objfile)
3162 {
3163 struct breakpoint_objfile_data *bp_objfile_data;
3164
3165 bp_objfile_data = breakpoint_objfile_key.get (objfile);
3166 if (bp_objfile_data == NULL)
3167 bp_objfile_data = breakpoint_objfile_key.emplace (objfile);
3168 return bp_objfile_data;
3169 }
3170
3171 static void
3172 create_overlay_event_breakpoint (void)
3173 {
3174 const char *const func_name = "_ovly_debug_event";
3175
3176 for (objfile *objfile : current_program_space->objfiles ())
3177 {
3178 struct breakpoint *b;
3179 struct breakpoint_objfile_data *bp_objfile_data;
3180 CORE_ADDR addr;
3181 struct explicit_location explicit_loc;
3182
3183 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3184
3185 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3186 continue;
3187
3188 if (bp_objfile_data->overlay_msym.minsym == NULL)
3189 {
3190 struct bound_minimal_symbol m;
3191
3192 m = lookup_minimal_symbol_text (func_name, objfile);
3193 if (m.minsym == NULL)
3194 {
3195 /* Avoid future lookups in this objfile. */
3196 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3197 continue;
3198 }
3199 bp_objfile_data->overlay_msym = m;
3200 }
3201
3202 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3203 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3204 bp_overlay_event,
3205 &internal_breakpoint_ops);
3206 initialize_explicit_location (&explicit_loc);
3207 explicit_loc.function_name = ASTRDUP (func_name);
3208 b->location = new_explicit_location (&explicit_loc);
3209
3210 if (overlay_debugging == ovly_auto)
3211 {
3212 b->enable_state = bp_enabled;
3213 overlay_events_enabled = 1;
3214 }
3215 else
3216 {
3217 b->enable_state = bp_disabled;
3218 overlay_events_enabled = 0;
3219 }
3220 }
3221 }
3222
3223 static void
3224 create_longjmp_master_breakpoint (void)
3225 {
3226 struct program_space *pspace;
3227
3228 scoped_restore_current_program_space restore_pspace;
3229
3230 ALL_PSPACES (pspace)
3231 {
3232 set_current_program_space (pspace);
3233
3234 for (objfile *objfile : current_program_space->objfiles ())
3235 {
3236 int i;
3237 struct gdbarch *gdbarch;
3238 struct breakpoint_objfile_data *bp_objfile_data;
3239
3240 gdbarch = get_objfile_arch (objfile);
3241
3242 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3243
3244 if (!bp_objfile_data->longjmp_searched)
3245 {
3246 std::vector<probe *> ret
3247 = find_probes_in_objfile (objfile, "libc", "longjmp");
3248
3249 if (!ret.empty ())
3250 {
3251 /* We are only interested in checking one element. */
3252 probe *p = ret[0];
3253
3254 if (!p->can_evaluate_arguments ())
3255 {
3256 /* We cannot use the probe interface here, because it does
3257 not know how to evaluate arguments. */
3258 ret.clear ();
3259 }
3260 }
3261 bp_objfile_data->longjmp_probes = ret;
3262 bp_objfile_data->longjmp_searched = 1;
3263 }
3264
3265 if (!bp_objfile_data->longjmp_probes.empty ())
3266 {
3267 for (probe *p : bp_objfile_data->longjmp_probes)
3268 {
3269 struct breakpoint *b;
3270
3271 b = create_internal_breakpoint (gdbarch,
3272 p->get_relocated_address (objfile),
3273 bp_longjmp_master,
3274 &internal_breakpoint_ops);
3275 b->location = new_probe_location ("-probe-stap libc:longjmp");
3276 b->enable_state = bp_disabled;
3277 }
3278
3279 continue;
3280 }
3281
3282 if (!gdbarch_get_longjmp_target_p (gdbarch))
3283 continue;
3284
3285 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3286 {
3287 struct breakpoint *b;
3288 const char *func_name;
3289 CORE_ADDR addr;
3290 struct explicit_location explicit_loc;
3291
3292 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3293 continue;
3294
3295 func_name = longjmp_names[i];
3296 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3297 {
3298 struct bound_minimal_symbol m;
3299
3300 m = lookup_minimal_symbol_text (func_name, objfile);
3301 if (m.minsym == NULL)
3302 {
3303 /* Prevent future lookups in this objfile. */
3304 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3305 continue;
3306 }
3307 bp_objfile_data->longjmp_msym[i] = m;
3308 }
3309
3310 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3311 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3312 &internal_breakpoint_ops);
3313 initialize_explicit_location (&explicit_loc);
3314 explicit_loc.function_name = ASTRDUP (func_name);
3315 b->location = new_explicit_location (&explicit_loc);
3316 b->enable_state = bp_disabled;
3317 }
3318 }
3319 }
3320 }
3321
3322 /* Create a master std::terminate breakpoint. */
3323 static void
3324 create_std_terminate_master_breakpoint (void)
3325 {
3326 struct program_space *pspace;
3327 const char *const func_name = "std::terminate()";
3328
3329 scoped_restore_current_program_space restore_pspace;
3330
3331 ALL_PSPACES (pspace)
3332 {
3333 CORE_ADDR addr;
3334
3335 set_current_program_space (pspace);
3336
3337 for (objfile *objfile : current_program_space->objfiles ())
3338 {
3339 struct breakpoint *b;
3340 struct breakpoint_objfile_data *bp_objfile_data;
3341 struct explicit_location explicit_loc;
3342
3343 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3344
3345 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3346 continue;
3347
3348 if (bp_objfile_data->terminate_msym.minsym == NULL)
3349 {
3350 struct bound_minimal_symbol m;
3351
3352 m = lookup_minimal_symbol (func_name, NULL, objfile);
3353 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3354 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3355 {
3356 /* Prevent future lookups in this objfile. */
3357 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3358 continue;
3359 }
3360 bp_objfile_data->terminate_msym = m;
3361 }
3362
3363 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3364 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3365 bp_std_terminate_master,
3366 &internal_breakpoint_ops);
3367 initialize_explicit_location (&explicit_loc);
3368 explicit_loc.function_name = ASTRDUP (func_name);
3369 b->location = new_explicit_location (&explicit_loc);
3370 b->enable_state = bp_disabled;
3371 }
3372 }
3373 }
3374
3375 /* Install a master breakpoint on the unwinder's debug hook. */
3376
3377 static void
3378 create_exception_master_breakpoint (void)
3379 {
3380 const char *const func_name = "_Unwind_DebugHook";
3381
3382 for (objfile *objfile : current_program_space->objfiles ())
3383 {
3384 struct breakpoint *b;
3385 struct gdbarch *gdbarch;
3386 struct breakpoint_objfile_data *bp_objfile_data;
3387 CORE_ADDR addr;
3388 struct explicit_location explicit_loc;
3389
3390 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3391
3392 /* We prefer the SystemTap probe point if it exists. */
3393 if (!bp_objfile_data->exception_searched)
3394 {
3395 std::vector<probe *> ret
3396 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3397
3398 if (!ret.empty ())
3399 {
3400 /* We are only interested in checking one element. */
3401 probe *p = ret[0];
3402
3403 if (!p->can_evaluate_arguments ())
3404 {
3405 /* We cannot use the probe interface here, because it does
3406 not know how to evaluate arguments. */
3407 ret.clear ();
3408 }
3409 }
3410 bp_objfile_data->exception_probes = ret;
3411 bp_objfile_data->exception_searched = 1;
3412 }
3413
3414 if (!bp_objfile_data->exception_probes.empty ())
3415 {
3416 gdbarch = get_objfile_arch (objfile);
3417
3418 for (probe *p : bp_objfile_data->exception_probes)
3419 {
3420 b = create_internal_breakpoint (gdbarch,
3421 p->get_relocated_address (objfile),
3422 bp_exception_master,
3423 &internal_breakpoint_ops);
3424 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3425 b->enable_state = bp_disabled;
3426 }
3427
3428 continue;
3429 }
3430
3431 /* Otherwise, try the hook function. */
3432
3433 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3434 continue;
3435
3436 gdbarch = get_objfile_arch (objfile);
3437
3438 if (bp_objfile_data->exception_msym.minsym == NULL)
3439 {
3440 struct bound_minimal_symbol debug_hook;
3441
3442 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3443 if (debug_hook.minsym == NULL)
3444 {
3445 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3446 continue;
3447 }
3448
3449 bp_objfile_data->exception_msym = debug_hook;
3450 }
3451
3452 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3453 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3454 current_top_target ());
3455 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3456 &internal_breakpoint_ops);
3457 initialize_explicit_location (&explicit_loc);
3458 explicit_loc.function_name = ASTRDUP (func_name);
3459 b->location = new_explicit_location (&explicit_loc);
3460 b->enable_state = bp_disabled;
3461 }
3462 }
3463
3464 /* Does B have a location spec? */
3465
3466 static int
3467 breakpoint_event_location_empty_p (const struct breakpoint *b)
3468 {
3469 return b->location != NULL && event_location_empty_p (b->location.get ());
3470 }
3471
3472 void
3473 update_breakpoints_after_exec (void)
3474 {
3475 struct breakpoint *b, *b_tmp;
3476 struct bp_location *bploc, **bplocp_tmp;
3477
3478 /* We're about to delete breakpoints from GDB's lists. If the
3479 INSERTED flag is true, GDB will try to lift the breakpoints by
3480 writing the breakpoints' "shadow contents" back into memory. The
3481 "shadow contents" are NOT valid after an exec, so GDB should not
3482 do that. Instead, the target is responsible from marking
3483 breakpoints out as soon as it detects an exec. We don't do that
3484 here instead, because there may be other attempts to delete
3485 breakpoints after detecting an exec and before reaching here. */
3486 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3487 if (bploc->pspace == current_program_space)
3488 gdb_assert (!bploc->inserted);
3489
3490 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3491 {
3492 if (b->pspace != current_program_space)
3493 continue;
3494
3495 /* Solib breakpoints must be explicitly reset after an exec(). */
3496 if (b->type == bp_shlib_event)
3497 {
3498 delete_breakpoint (b);
3499 continue;
3500 }
3501
3502 /* JIT breakpoints must be explicitly reset after an exec(). */
3503 if (b->type == bp_jit_event)
3504 {
3505 delete_breakpoint (b);
3506 continue;
3507 }
3508
3509 /* Thread event breakpoints must be set anew after an exec(),
3510 as must overlay event and longjmp master breakpoints. */
3511 if (b->type == bp_thread_event || b->type == bp_overlay_event
3512 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3513 || b->type == bp_exception_master)
3514 {
3515 delete_breakpoint (b);
3516 continue;
3517 }
3518
3519 /* Step-resume breakpoints are meaningless after an exec(). */
3520 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3521 {
3522 delete_breakpoint (b);
3523 continue;
3524 }
3525
3526 /* Just like single-step breakpoints. */
3527 if (b->type == bp_single_step)
3528 {
3529 delete_breakpoint (b);
3530 continue;
3531 }
3532
3533 /* Longjmp and longjmp-resume breakpoints are also meaningless
3534 after an exec. */
3535 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3536 || b->type == bp_longjmp_call_dummy
3537 || b->type == bp_exception || b->type == bp_exception_resume)
3538 {
3539 delete_breakpoint (b);
3540 continue;
3541 }
3542
3543 if (b->type == bp_catchpoint)
3544 {
3545 /* For now, none of the bp_catchpoint breakpoints need to
3546 do anything at this point. In the future, if some of
3547 the catchpoints need to something, we will need to add
3548 a new method, and call this method from here. */
3549 continue;
3550 }
3551
3552 /* bp_finish is a special case. The only way we ought to be able
3553 to see one of these when an exec() has happened, is if the user
3554 caught a vfork, and then said "finish". Ordinarily a finish just
3555 carries them to the call-site of the current callee, by setting
3556 a temporary bp there and resuming. But in this case, the finish
3557 will carry them entirely through the vfork & exec.
3558
3559 We don't want to allow a bp_finish to remain inserted now. But
3560 we can't safely delete it, 'cause finish_command has a handle to
3561 the bp on a bpstat, and will later want to delete it. There's a
3562 chance (and I've seen it happen) that if we delete the bp_finish
3563 here, that its storage will get reused by the time finish_command
3564 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3565 We really must allow finish_command to delete a bp_finish.
3566
3567 In the absence of a general solution for the "how do we know
3568 it's safe to delete something others may have handles to?"
3569 problem, what we'll do here is just uninsert the bp_finish, and
3570 let finish_command delete it.
3571
3572 (We know the bp_finish is "doomed" in the sense that it's
3573 momentary, and will be deleted as soon as finish_command sees
3574 the inferior stopped. So it doesn't matter that the bp's
3575 address is probably bogus in the new a.out, unlike e.g., the
3576 solib breakpoints.) */
3577
3578 if (b->type == bp_finish)
3579 {
3580 continue;
3581 }
3582
3583 /* Without a symbolic address, we have little hope of the
3584 pre-exec() address meaning the same thing in the post-exec()
3585 a.out. */
3586 if (breakpoint_event_location_empty_p (b))
3587 {
3588 delete_breakpoint (b);
3589 continue;
3590 }
3591 }
3592 }
3593
3594 int
3595 detach_breakpoints (ptid_t ptid)
3596 {
3597 struct bp_location *bl, **blp_tmp;
3598 int val = 0;
3599 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3600 struct inferior *inf = current_inferior ();
3601
3602 if (ptid.pid () == inferior_ptid.pid ())
3603 error (_("Cannot detach breakpoints of inferior_ptid"));
3604
3605 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3606 inferior_ptid = ptid;
3607 ALL_BP_LOCATIONS (bl, blp_tmp)
3608 {
3609 if (bl->pspace != inf->pspace)
3610 continue;
3611
3612 /* This function must physically remove breakpoints locations
3613 from the specified ptid, without modifying the breakpoint
3614 package's state. Locations of type bp_loc_other are only
3615 maintained at GDB side. So, there is no need to remove
3616 these bp_loc_other locations. Moreover, removing these
3617 would modify the breakpoint package's state. */
3618 if (bl->loc_type == bp_loc_other)
3619 continue;
3620
3621 if (bl->inserted)
3622 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3623 }
3624
3625 return val;
3626 }
3627
3628 /* Remove the breakpoint location BL from the current address space.
3629 Note that this is used to detach breakpoints from a child fork.
3630 When we get here, the child isn't in the inferior list, and neither
3631 do we have objects to represent its address space --- we should
3632 *not* look at bl->pspace->aspace here. */
3633
3634 static int
3635 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3636 {
3637 int val;
3638
3639 /* BL is never in moribund_locations by our callers. */
3640 gdb_assert (bl->owner != NULL);
3641
3642 /* The type of none suggests that owner is actually deleted.
3643 This should not ever happen. */
3644 gdb_assert (bl->owner->type != bp_none);
3645
3646 if (bl->loc_type == bp_loc_software_breakpoint
3647 || bl->loc_type == bp_loc_hardware_breakpoint)
3648 {
3649 /* "Normal" instruction breakpoint: either the standard
3650 trap-instruction bp (bp_breakpoint), or a
3651 bp_hardware_breakpoint. */
3652
3653 /* First check to see if we have to handle an overlay. */
3654 if (overlay_debugging == ovly_off
3655 || bl->section == NULL
3656 || !(section_is_overlay (bl->section)))
3657 {
3658 /* No overlay handling: just remove the breakpoint. */
3659
3660 /* If we're trying to uninsert a memory breakpoint that we
3661 know is set in a dynamic object that is marked
3662 shlib_disabled, then either the dynamic object was
3663 removed with "remove-symbol-file" or with
3664 "nosharedlibrary". In the former case, we don't know
3665 whether another dynamic object might have loaded over the
3666 breakpoint's address -- the user might well let us know
3667 about it next with add-symbol-file (the whole point of
3668 add-symbol-file is letting the user manually maintain a
3669 list of dynamically loaded objects). If we have the
3670 breakpoint's shadow memory, that is, this is a software
3671 breakpoint managed by GDB, check whether the breakpoint
3672 is still inserted in memory, to avoid overwriting wrong
3673 code with stale saved shadow contents. Note that HW
3674 breakpoints don't have shadow memory, as they're
3675 implemented using a mechanism that is not dependent on
3676 being able to modify the target's memory, and as such
3677 they should always be removed. */
3678 if (bl->shlib_disabled
3679 && bl->target_info.shadow_len != 0
3680 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3681 val = 0;
3682 else
3683 val = bl->owner->ops->remove_location (bl, reason);
3684 }
3685 else
3686 {
3687 /* This breakpoint is in an overlay section.
3688 Did we set a breakpoint at the LMA? */
3689 if (!overlay_events_enabled)
3690 {
3691 /* Yes -- overlay event support is not active, so we
3692 should have set a breakpoint at the LMA. Remove it.
3693 */
3694 /* Ignore any failures: if the LMA is in ROM, we will
3695 have already warned when we failed to insert it. */
3696 if (bl->loc_type == bp_loc_hardware_breakpoint)
3697 target_remove_hw_breakpoint (bl->gdbarch,
3698 &bl->overlay_target_info);
3699 else
3700 target_remove_breakpoint (bl->gdbarch,
3701 &bl->overlay_target_info,
3702 reason);
3703 }
3704 /* Did we set a breakpoint at the VMA?
3705 If so, we will have marked the breakpoint 'inserted'. */
3706 if (bl->inserted)
3707 {
3708 /* Yes -- remove it. Previously we did not bother to
3709 remove the breakpoint if the section had been
3710 unmapped, but let's not rely on that being safe. We
3711 don't know what the overlay manager might do. */
3712
3713 /* However, we should remove *software* breakpoints only
3714 if the section is still mapped, or else we overwrite
3715 wrong code with the saved shadow contents. */
3716 if (bl->loc_type == bp_loc_hardware_breakpoint
3717 || section_is_mapped (bl->section))
3718 val = bl->owner->ops->remove_location (bl, reason);
3719 else
3720 val = 0;
3721 }
3722 else
3723 {
3724 /* No -- not inserted, so no need to remove. No error. */
3725 val = 0;
3726 }
3727 }
3728
3729 /* In some cases, we might not be able to remove a breakpoint in
3730 a shared library that has already been removed, but we have
3731 not yet processed the shlib unload event. Similarly for an
3732 unloaded add-symbol-file object - the user might not yet have
3733 had the chance to remove-symbol-file it. shlib_disabled will
3734 be set if the library/object has already been removed, but
3735 the breakpoint hasn't been uninserted yet, e.g., after
3736 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3737 always-inserted mode. */
3738 if (val
3739 && (bl->loc_type == bp_loc_software_breakpoint
3740 && (bl->shlib_disabled
3741 || solib_name_from_address (bl->pspace, bl->address)
3742 || shared_objfile_contains_address_p (bl->pspace,
3743 bl->address))))
3744 val = 0;
3745
3746 if (val)
3747 return val;
3748 bl->inserted = (reason == DETACH_BREAKPOINT);
3749 }
3750 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3751 {
3752 gdb_assert (bl->owner->ops != NULL
3753 && bl->owner->ops->remove_location != NULL);
3754
3755 bl->inserted = (reason == DETACH_BREAKPOINT);
3756 bl->owner->ops->remove_location (bl, reason);
3757
3758 /* Failure to remove any of the hardware watchpoints comes here. */
3759 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3760 warning (_("Could not remove hardware watchpoint %d."),
3761 bl->owner->number);
3762 }
3763 else if (bl->owner->type == bp_catchpoint
3764 && breakpoint_enabled (bl->owner)
3765 && !bl->duplicate)
3766 {
3767 gdb_assert (bl->owner->ops != NULL
3768 && bl->owner->ops->remove_location != NULL);
3769
3770 val = bl->owner->ops->remove_location (bl, reason);
3771 if (val)
3772 return val;
3773
3774 bl->inserted = (reason == DETACH_BREAKPOINT);
3775 }
3776
3777 return 0;
3778 }
3779
3780 static int
3781 remove_breakpoint (struct bp_location *bl)
3782 {
3783 /* BL is never in moribund_locations by our callers. */
3784 gdb_assert (bl->owner != NULL);
3785
3786 /* The type of none suggests that owner is actually deleted.
3787 This should not ever happen. */
3788 gdb_assert (bl->owner->type != bp_none);
3789
3790 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3791
3792 switch_to_program_space_and_thread (bl->pspace);
3793
3794 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3795 }
3796
3797 /* Clear the "inserted" flag in all breakpoints. */
3798
3799 void
3800 mark_breakpoints_out (void)
3801 {
3802 struct bp_location *bl, **blp_tmp;
3803
3804 ALL_BP_LOCATIONS (bl, blp_tmp)
3805 if (bl->pspace == current_program_space)
3806 bl->inserted = 0;
3807 }
3808
3809 /* Clear the "inserted" flag in all breakpoints and delete any
3810 breakpoints which should go away between runs of the program.
3811
3812 Plus other such housekeeping that has to be done for breakpoints
3813 between runs.
3814
3815 Note: this function gets called at the end of a run (by
3816 generic_mourn_inferior) and when a run begins (by
3817 init_wait_for_inferior). */
3818
3819
3820
3821 void
3822 breakpoint_init_inferior (enum inf_context context)
3823 {
3824 struct breakpoint *b, *b_tmp;
3825 struct program_space *pspace = current_program_space;
3826
3827 /* If breakpoint locations are shared across processes, then there's
3828 nothing to do. */
3829 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3830 return;
3831
3832 mark_breakpoints_out ();
3833
3834 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3835 {
3836 if (b->loc && b->loc->pspace != pspace)
3837 continue;
3838
3839 switch (b->type)
3840 {
3841 case bp_call_dummy:
3842 case bp_longjmp_call_dummy:
3843
3844 /* If the call dummy breakpoint is at the entry point it will
3845 cause problems when the inferior is rerun, so we better get
3846 rid of it. */
3847
3848 case bp_watchpoint_scope:
3849
3850 /* Also get rid of scope breakpoints. */
3851
3852 case bp_shlib_event:
3853
3854 /* Also remove solib event breakpoints. Their addresses may
3855 have changed since the last time we ran the program.
3856 Actually we may now be debugging against different target;
3857 and so the solib backend that installed this breakpoint may
3858 not be used in by the target. E.g.,
3859
3860 (gdb) file prog-linux
3861 (gdb) run # native linux target
3862 ...
3863 (gdb) kill
3864 (gdb) file prog-win.exe
3865 (gdb) tar rem :9999 # remote Windows gdbserver.
3866 */
3867
3868 case bp_step_resume:
3869
3870 /* Also remove step-resume breakpoints. */
3871
3872 case bp_single_step:
3873
3874 /* Also remove single-step breakpoints. */
3875
3876 delete_breakpoint (b);
3877 break;
3878
3879 case bp_watchpoint:
3880 case bp_hardware_watchpoint:
3881 case bp_read_watchpoint:
3882 case bp_access_watchpoint:
3883 {
3884 struct watchpoint *w = (struct watchpoint *) b;
3885
3886 /* Likewise for watchpoints on local expressions. */
3887 if (w->exp_valid_block != NULL)
3888 delete_breakpoint (b);
3889 else
3890 {
3891 /* Get rid of existing locations, which are no longer
3892 valid. New ones will be created in
3893 update_watchpoint, when the inferior is restarted.
3894 The next update_global_location_list call will
3895 garbage collect them. */
3896 b->loc = NULL;
3897
3898 if (context == inf_starting)
3899 {
3900 /* Reset val field to force reread of starting value in
3901 insert_breakpoints. */
3902 w->val.reset (nullptr);
3903 w->val_valid = 0;
3904 }
3905 }
3906 }
3907 break;
3908 default:
3909 break;
3910 }
3911 }
3912
3913 /* Get rid of the moribund locations. */
3914 for (bp_location *bl : moribund_locations)
3915 decref_bp_location (&bl);
3916 moribund_locations.clear ();
3917 }
3918
3919 /* These functions concern about actual breakpoints inserted in the
3920 target --- to e.g. check if we need to do decr_pc adjustment or if
3921 we need to hop over the bkpt --- so we check for address space
3922 match, not program space. */
3923
3924 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3925 exists at PC. It returns ordinary_breakpoint_here if it's an
3926 ordinary breakpoint, or permanent_breakpoint_here if it's a
3927 permanent breakpoint.
3928 - When continuing from a location with an ordinary breakpoint, we
3929 actually single step once before calling insert_breakpoints.
3930 - When continuing from a location with a permanent breakpoint, we
3931 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3932 the target, to advance the PC past the breakpoint. */
3933
3934 enum breakpoint_here
3935 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3936 {
3937 struct bp_location *bl, **blp_tmp;
3938 int any_breakpoint_here = 0;
3939
3940 ALL_BP_LOCATIONS (bl, blp_tmp)
3941 {
3942 if (bl->loc_type != bp_loc_software_breakpoint
3943 && bl->loc_type != bp_loc_hardware_breakpoint)
3944 continue;
3945
3946 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3947 if ((breakpoint_enabled (bl->owner)
3948 || bl->permanent)
3949 && breakpoint_location_address_match (bl, aspace, pc))
3950 {
3951 if (overlay_debugging
3952 && section_is_overlay (bl->section)
3953 && !section_is_mapped (bl->section))
3954 continue; /* unmapped overlay -- can't be a match */
3955 else if (bl->permanent)
3956 return permanent_breakpoint_here;
3957 else
3958 any_breakpoint_here = 1;
3959 }
3960 }
3961
3962 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
3963 }
3964
3965 /* See breakpoint.h. */
3966
3967 int
3968 breakpoint_in_range_p (const address_space *aspace,
3969 CORE_ADDR addr, ULONGEST len)
3970 {
3971 struct bp_location *bl, **blp_tmp;
3972
3973 ALL_BP_LOCATIONS (bl, blp_tmp)
3974 {
3975 if (bl->loc_type != bp_loc_software_breakpoint
3976 && bl->loc_type != bp_loc_hardware_breakpoint)
3977 continue;
3978
3979 if ((breakpoint_enabled (bl->owner)
3980 || bl->permanent)
3981 && breakpoint_location_address_range_overlap (bl, aspace,
3982 addr, len))
3983 {
3984 if (overlay_debugging
3985 && section_is_overlay (bl->section)
3986 && !section_is_mapped (bl->section))
3987 {
3988 /* Unmapped overlay -- can't be a match. */
3989 continue;
3990 }
3991
3992 return 1;
3993 }
3994 }
3995
3996 return 0;
3997 }
3998
3999 /* Return true if there's a moribund breakpoint at PC. */
4000
4001 int
4002 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4003 {
4004 for (bp_location *loc : moribund_locations)
4005 if (breakpoint_location_address_match (loc, aspace, pc))
4006 return 1;
4007
4008 return 0;
4009 }
4010
4011 /* Returns non-zero iff BL is inserted at PC, in address space
4012 ASPACE. */
4013
4014 static int
4015 bp_location_inserted_here_p (struct bp_location *bl,
4016 const address_space *aspace, CORE_ADDR pc)
4017 {
4018 if (bl->inserted
4019 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4020 aspace, pc))
4021 {
4022 if (overlay_debugging
4023 && section_is_overlay (bl->section)
4024 && !section_is_mapped (bl->section))
4025 return 0; /* unmapped overlay -- can't be a match */
4026 else
4027 return 1;
4028 }
4029 return 0;
4030 }
4031
4032 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4033
4034 int
4035 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4036 {
4037 struct bp_location **blp, **blp_tmp = NULL;
4038
4039 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4040 {
4041 struct bp_location *bl = *blp;
4042
4043 if (bl->loc_type != bp_loc_software_breakpoint
4044 && bl->loc_type != bp_loc_hardware_breakpoint)
4045 continue;
4046
4047 if (bp_location_inserted_here_p (bl, aspace, pc))
4048 return 1;
4049 }
4050 return 0;
4051 }
4052
4053 /* This function returns non-zero iff there is a software breakpoint
4054 inserted at PC. */
4055
4056 int
4057 software_breakpoint_inserted_here_p (const address_space *aspace,
4058 CORE_ADDR pc)
4059 {
4060 struct bp_location **blp, **blp_tmp = NULL;
4061
4062 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4063 {
4064 struct bp_location *bl = *blp;
4065
4066 if (bl->loc_type != bp_loc_software_breakpoint)
4067 continue;
4068
4069 if (bp_location_inserted_here_p (bl, aspace, pc))
4070 return 1;
4071 }
4072
4073 return 0;
4074 }
4075
4076 /* See breakpoint.h. */
4077
4078 int
4079 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4080 CORE_ADDR pc)
4081 {
4082 struct bp_location **blp, **blp_tmp = NULL;
4083
4084 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4085 {
4086 struct bp_location *bl = *blp;
4087
4088 if (bl->loc_type != bp_loc_hardware_breakpoint)
4089 continue;
4090
4091 if (bp_location_inserted_here_p (bl, aspace, pc))
4092 return 1;
4093 }
4094
4095 return 0;
4096 }
4097
4098 int
4099 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4100 CORE_ADDR addr, ULONGEST len)
4101 {
4102 struct breakpoint *bpt;
4103
4104 ALL_BREAKPOINTS (bpt)
4105 {
4106 struct bp_location *loc;
4107
4108 if (bpt->type != bp_hardware_watchpoint
4109 && bpt->type != bp_access_watchpoint)
4110 continue;
4111
4112 if (!breakpoint_enabled (bpt))
4113 continue;
4114
4115 for (loc = bpt->loc; loc; loc = loc->next)
4116 if (loc->pspace->aspace == aspace && loc->inserted)
4117 {
4118 CORE_ADDR l, h;
4119
4120 /* Check for intersection. */
4121 l = std::max<CORE_ADDR> (loc->address, addr);
4122 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4123 if (l < h)
4124 return 1;
4125 }
4126 }
4127 return 0;
4128 }
4129
4130 /* See breakpoint.h. */
4131
4132 bool
4133 is_catchpoint (struct breakpoint *b)
4134 {
4135 return (b->type == bp_catchpoint);
4136 }
4137
4138 /* Frees any storage that is part of a bpstat. Does not walk the
4139 'next' chain. */
4140
4141 bpstats::~bpstats ()
4142 {
4143 if (bp_location_at != NULL)
4144 decref_bp_location (&bp_location_at);
4145 }
4146
4147 /* Clear a bpstat so that it says we are not at any breakpoint.
4148 Also free any storage that is part of a bpstat. */
4149
4150 void
4151 bpstat_clear (bpstat *bsp)
4152 {
4153 bpstat p;
4154 bpstat q;
4155
4156 if (bsp == 0)
4157 return;
4158 p = *bsp;
4159 while (p != NULL)
4160 {
4161 q = p->next;
4162 delete p;
4163 p = q;
4164 }
4165 *bsp = NULL;
4166 }
4167
4168 bpstats::bpstats (const bpstats &other)
4169 : next (NULL),
4170 bp_location_at (other.bp_location_at),
4171 breakpoint_at (other.breakpoint_at),
4172 commands (other.commands),
4173 print (other.print),
4174 stop (other.stop),
4175 print_it (other.print_it)
4176 {
4177 if (other.old_val != NULL)
4178 old_val = release_value (value_copy (other.old_val.get ()));
4179 incref_bp_location (bp_location_at);
4180 }
4181
4182 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4183 is part of the bpstat is copied as well. */
4184
4185 bpstat
4186 bpstat_copy (bpstat bs)
4187 {
4188 bpstat p = NULL;
4189 bpstat tmp;
4190 bpstat retval = NULL;
4191
4192 if (bs == NULL)
4193 return bs;
4194
4195 for (; bs != NULL; bs = bs->next)
4196 {
4197 tmp = new bpstats (*bs);
4198
4199 if (p == NULL)
4200 /* This is the first thing in the chain. */
4201 retval = tmp;
4202 else
4203 p->next = tmp;
4204 p = tmp;
4205 }
4206 p->next = NULL;
4207 return retval;
4208 }
4209
4210 /* Find the bpstat associated with this breakpoint. */
4211
4212 bpstat
4213 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4214 {
4215 if (bsp == NULL)
4216 return NULL;
4217
4218 for (; bsp != NULL; bsp = bsp->next)
4219 {
4220 if (bsp->breakpoint_at == breakpoint)
4221 return bsp;
4222 }
4223 return NULL;
4224 }
4225
4226 /* See breakpoint.h. */
4227
4228 bool
4229 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4230 {
4231 for (; bsp != NULL; bsp = bsp->next)
4232 {
4233 if (bsp->breakpoint_at == NULL)
4234 {
4235 /* A moribund location can never explain a signal other than
4236 GDB_SIGNAL_TRAP. */
4237 if (sig == GDB_SIGNAL_TRAP)
4238 return true;
4239 }
4240 else
4241 {
4242 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4243 sig))
4244 return true;
4245 }
4246 }
4247
4248 return false;
4249 }
4250
4251 /* Put in *NUM the breakpoint number of the first breakpoint we are
4252 stopped at. *BSP upon return is a bpstat which points to the
4253 remaining breakpoints stopped at (but which is not guaranteed to be
4254 good for anything but further calls to bpstat_num).
4255
4256 Return 0 if passed a bpstat which does not indicate any breakpoints.
4257 Return -1 if stopped at a breakpoint that has been deleted since
4258 we set it.
4259 Return 1 otherwise. */
4260
4261 int
4262 bpstat_num (bpstat *bsp, int *num)
4263 {
4264 struct breakpoint *b;
4265
4266 if ((*bsp) == NULL)
4267 return 0; /* No more breakpoint values */
4268
4269 /* We assume we'll never have several bpstats that correspond to a
4270 single breakpoint -- otherwise, this function might return the
4271 same number more than once and this will look ugly. */
4272 b = (*bsp)->breakpoint_at;
4273 *bsp = (*bsp)->next;
4274 if (b == NULL)
4275 return -1; /* breakpoint that's been deleted since */
4276
4277 *num = b->number; /* We have its number */
4278 return 1;
4279 }
4280
4281 /* See breakpoint.h. */
4282
4283 void
4284 bpstat_clear_actions (void)
4285 {
4286 bpstat bs;
4287
4288 if (inferior_ptid == null_ptid)
4289 return;
4290
4291 thread_info *tp = inferior_thread ();
4292 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4293 {
4294 bs->commands = NULL;
4295 bs->old_val.reset (nullptr);
4296 }
4297 }
4298
4299 /* Called when a command is about to proceed the inferior. */
4300
4301 static void
4302 breakpoint_about_to_proceed (void)
4303 {
4304 if (inferior_ptid != null_ptid)
4305 {
4306 struct thread_info *tp = inferior_thread ();
4307
4308 /* Allow inferior function calls in breakpoint commands to not
4309 interrupt the command list. When the call finishes
4310 successfully, the inferior will be standing at the same
4311 breakpoint as if nothing happened. */
4312 if (tp->control.in_infcall)
4313 return;
4314 }
4315
4316 breakpoint_proceeded = 1;
4317 }
4318
4319 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4320 or its equivalent. */
4321
4322 static int
4323 command_line_is_silent (struct command_line *cmd)
4324 {
4325 return cmd && (strcmp ("silent", cmd->line) == 0);
4326 }
4327
4328 /* Execute all the commands associated with all the breakpoints at
4329 this location. Any of these commands could cause the process to
4330 proceed beyond this point, etc. We look out for such changes by
4331 checking the global "breakpoint_proceeded" after each command.
4332
4333 Returns true if a breakpoint command resumed the inferior. In that
4334 case, it is the caller's responsibility to recall it again with the
4335 bpstat of the current thread. */
4336
4337 static int
4338 bpstat_do_actions_1 (bpstat *bsp)
4339 {
4340 bpstat bs;
4341 int again = 0;
4342
4343 /* Avoid endless recursion if a `source' command is contained
4344 in bs->commands. */
4345 if (executing_breakpoint_commands)
4346 return 0;
4347
4348 scoped_restore save_executing
4349 = make_scoped_restore (&executing_breakpoint_commands, 1);
4350
4351 scoped_restore preventer = prevent_dont_repeat ();
4352
4353 /* This pointer will iterate over the list of bpstat's. */
4354 bs = *bsp;
4355
4356 breakpoint_proceeded = 0;
4357 for (; bs != NULL; bs = bs->next)
4358 {
4359 struct command_line *cmd = NULL;
4360
4361 /* Take ownership of the BSP's command tree, if it has one.
4362
4363 The command tree could legitimately contain commands like
4364 'step' and 'next', which call clear_proceed_status, which
4365 frees stop_bpstat's command tree. To make sure this doesn't
4366 free the tree we're executing out from under us, we need to
4367 take ownership of the tree ourselves. Since a given bpstat's
4368 commands are only executed once, we don't need to copy it; we
4369 can clear the pointer in the bpstat, and make sure we free
4370 the tree when we're done. */
4371 counted_command_line ccmd = bs->commands;
4372 bs->commands = NULL;
4373 if (ccmd != NULL)
4374 cmd = ccmd.get ();
4375 if (command_line_is_silent (cmd))
4376 {
4377 /* The action has been already done by bpstat_stop_status. */
4378 cmd = cmd->next;
4379 }
4380
4381 while (cmd != NULL)
4382 {
4383 execute_control_command (cmd);
4384
4385 if (breakpoint_proceeded)
4386 break;
4387 else
4388 cmd = cmd->next;
4389 }
4390
4391 if (breakpoint_proceeded)
4392 {
4393 if (current_ui->async)
4394 /* If we are in async mode, then the target might be still
4395 running, not stopped at any breakpoint, so nothing for
4396 us to do here -- just return to the event loop. */
4397 ;
4398 else
4399 /* In sync mode, when execute_control_command returns
4400 we're already standing on the next breakpoint.
4401 Breakpoint commands for that stop were not run, since
4402 execute_command does not run breakpoint commands --
4403 only command_line_handler does, but that one is not
4404 involved in execution of breakpoint commands. So, we
4405 can now execute breakpoint commands. It should be
4406 noted that making execute_command do bpstat actions is
4407 not an option -- in this case we'll have recursive
4408 invocation of bpstat for each breakpoint with a
4409 command, and can easily blow up GDB stack. Instead, we
4410 return true, which will trigger the caller to recall us
4411 with the new stop_bpstat. */
4412 again = 1;
4413 break;
4414 }
4415 }
4416 return again;
4417 }
4418
4419 /* Helper for bpstat_do_actions. Get the current thread, if there's
4420 one, is alive and has execution. Return NULL otherwise. */
4421
4422 static thread_info *
4423 get_bpstat_thread ()
4424 {
4425 if (inferior_ptid == null_ptid || !target_has_execution)
4426 return NULL;
4427
4428 thread_info *tp = inferior_thread ();
4429 if (tp->state == THREAD_EXITED || tp->executing)
4430 return NULL;
4431 return tp;
4432 }
4433
4434 void
4435 bpstat_do_actions (void)
4436 {
4437 auto cleanup_if_error = make_scope_exit (bpstat_clear_actions);
4438 thread_info *tp;
4439
4440 /* Do any commands attached to breakpoint we are stopped at. */
4441 while ((tp = get_bpstat_thread ()) != NULL)
4442 {
4443 /* Since in sync mode, bpstat_do_actions may resume the
4444 inferior, and only return when it is stopped at the next
4445 breakpoint, we keep doing breakpoint actions until it returns
4446 false to indicate the inferior was not resumed. */
4447 if (!bpstat_do_actions_1 (&tp->control.stop_bpstat))
4448 break;
4449 }
4450
4451 cleanup_if_error.release ();
4452 }
4453
4454 /* Print out the (old or new) value associated with a watchpoint. */
4455
4456 static void
4457 watchpoint_value_print (struct value *val, struct ui_file *stream)
4458 {
4459 if (val == NULL)
4460 fprintf_unfiltered (stream, _("<unreadable>"));
4461 else
4462 {
4463 struct value_print_options opts;
4464 get_user_print_options (&opts);
4465 value_print (val, stream, &opts);
4466 }
4467 }
4468
4469 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4470 debugging multiple threads. */
4471
4472 void
4473 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4474 {
4475 if (uiout->is_mi_like_p ())
4476 return;
4477
4478 uiout->text ("\n");
4479
4480 if (show_thread_that_caused_stop ())
4481 {
4482 const char *name;
4483 struct thread_info *thr = inferior_thread ();
4484
4485 uiout->text ("Thread ");
4486 uiout->field_string ("thread-id", print_thread_id (thr));
4487
4488 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4489 if (name != NULL)
4490 {
4491 uiout->text (" \"");
4492 uiout->field_string ("name", name);
4493 uiout->text ("\"");
4494 }
4495
4496 uiout->text (" hit ");
4497 }
4498 }
4499
4500 /* Generic routine for printing messages indicating why we
4501 stopped. The behavior of this function depends on the value
4502 'print_it' in the bpstat structure. Under some circumstances we
4503 may decide not to print anything here and delegate the task to
4504 normal_stop(). */
4505
4506 static enum print_stop_action
4507 print_bp_stop_message (bpstat bs)
4508 {
4509 switch (bs->print_it)
4510 {
4511 case print_it_noop:
4512 /* Nothing should be printed for this bpstat entry. */
4513 return PRINT_UNKNOWN;
4514 break;
4515
4516 case print_it_done:
4517 /* We still want to print the frame, but we already printed the
4518 relevant messages. */
4519 return PRINT_SRC_AND_LOC;
4520 break;
4521
4522 case print_it_normal:
4523 {
4524 struct breakpoint *b = bs->breakpoint_at;
4525
4526 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4527 which has since been deleted. */
4528 if (b == NULL)
4529 return PRINT_UNKNOWN;
4530
4531 /* Normal case. Call the breakpoint's print_it method. */
4532 return b->ops->print_it (bs);
4533 }
4534 break;
4535
4536 default:
4537 internal_error (__FILE__, __LINE__,
4538 _("print_bp_stop_message: unrecognized enum value"));
4539 break;
4540 }
4541 }
4542
4543 /* A helper function that prints a shared library stopped event. */
4544
4545 static void
4546 print_solib_event (int is_catchpoint)
4547 {
4548 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4549 bool any_added = !current_program_space->added_solibs.empty ();
4550
4551 if (!is_catchpoint)
4552 {
4553 if (any_added || any_deleted)
4554 current_uiout->text (_("Stopped due to shared library event:\n"));
4555 else
4556 current_uiout->text (_("Stopped due to shared library event (no "
4557 "libraries added or removed)\n"));
4558 }
4559
4560 if (current_uiout->is_mi_like_p ())
4561 current_uiout->field_string ("reason",
4562 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4563
4564 if (any_deleted)
4565 {
4566 current_uiout->text (_(" Inferior unloaded "));
4567 ui_out_emit_list list_emitter (current_uiout, "removed");
4568 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4569 {
4570 const std::string &name = current_program_space->deleted_solibs[ix];
4571
4572 if (ix > 0)
4573 current_uiout->text (" ");
4574 current_uiout->field_string ("library", name);
4575 current_uiout->text ("\n");
4576 }
4577 }
4578
4579 if (any_added)
4580 {
4581 current_uiout->text (_(" Inferior loaded "));
4582 ui_out_emit_list list_emitter (current_uiout, "added");
4583 bool first = true;
4584 for (so_list *iter : current_program_space->added_solibs)
4585 {
4586 if (!first)
4587 current_uiout->text (" ");
4588 first = false;
4589 current_uiout->field_string ("library", iter->so_name);
4590 current_uiout->text ("\n");
4591 }
4592 }
4593 }
4594
4595 /* Print a message indicating what happened. This is called from
4596 normal_stop(). The input to this routine is the head of the bpstat
4597 list - a list of the eventpoints that caused this stop. KIND is
4598 the target_waitkind for the stopping event. This
4599 routine calls the generic print routine for printing a message
4600 about reasons for stopping. This will print (for example) the
4601 "Breakpoint n," part of the output. The return value of this
4602 routine is one of:
4603
4604 PRINT_UNKNOWN: Means we printed nothing.
4605 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4606 code to print the location. An example is
4607 "Breakpoint 1, " which should be followed by
4608 the location.
4609 PRINT_SRC_ONLY: Means we printed something, but there is no need
4610 to also print the location part of the message.
4611 An example is the catch/throw messages, which
4612 don't require a location appended to the end.
4613 PRINT_NOTHING: We have done some printing and we don't need any
4614 further info to be printed. */
4615
4616 enum print_stop_action
4617 bpstat_print (bpstat bs, int kind)
4618 {
4619 enum print_stop_action val;
4620
4621 /* Maybe another breakpoint in the chain caused us to stop.
4622 (Currently all watchpoints go on the bpstat whether hit or not.
4623 That probably could (should) be changed, provided care is taken
4624 with respect to bpstat_explains_signal). */
4625 for (; bs; bs = bs->next)
4626 {
4627 val = print_bp_stop_message (bs);
4628 if (val == PRINT_SRC_ONLY
4629 || val == PRINT_SRC_AND_LOC
4630 || val == PRINT_NOTHING)
4631 return val;
4632 }
4633
4634 /* If we had hit a shared library event breakpoint,
4635 print_bp_stop_message would print out this message. If we hit an
4636 OS-level shared library event, do the same thing. */
4637 if (kind == TARGET_WAITKIND_LOADED)
4638 {
4639 print_solib_event (0);
4640 return PRINT_NOTHING;
4641 }
4642
4643 /* We reached the end of the chain, or we got a null BS to start
4644 with and nothing was printed. */
4645 return PRINT_UNKNOWN;
4646 }
4647
4648 /* Evaluate the boolean expression EXP and return the result. */
4649
4650 static bool
4651 breakpoint_cond_eval (expression *exp)
4652 {
4653 struct value *mark = value_mark ();
4654 bool res = value_true (evaluate_expression (exp));
4655
4656 value_free_to_mark (mark);
4657 return res;
4658 }
4659
4660 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4661
4662 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4663 : next (NULL),
4664 bp_location_at (bl),
4665 breakpoint_at (bl->owner),
4666 commands (NULL),
4667 print (0),
4668 stop (0),
4669 print_it (print_it_normal)
4670 {
4671 incref_bp_location (bl);
4672 **bs_link_pointer = this;
4673 *bs_link_pointer = &next;
4674 }
4675
4676 bpstats::bpstats ()
4677 : next (NULL),
4678 bp_location_at (NULL),
4679 breakpoint_at (NULL),
4680 commands (NULL),
4681 print (0),
4682 stop (0),
4683 print_it (print_it_normal)
4684 {
4685 }
4686 \f
4687 /* The target has stopped with waitstatus WS. Check if any hardware
4688 watchpoints have triggered, according to the target. */
4689
4690 int
4691 watchpoints_triggered (struct target_waitstatus *ws)
4692 {
4693 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4694 CORE_ADDR addr;
4695 struct breakpoint *b;
4696
4697 if (!stopped_by_watchpoint)
4698 {
4699 /* We were not stopped by a watchpoint. Mark all watchpoints
4700 as not triggered. */
4701 ALL_BREAKPOINTS (b)
4702 if (is_hardware_watchpoint (b))
4703 {
4704 struct watchpoint *w = (struct watchpoint *) b;
4705
4706 w->watchpoint_triggered = watch_triggered_no;
4707 }
4708
4709 return 0;
4710 }
4711
4712 if (!target_stopped_data_address (current_top_target (), &addr))
4713 {
4714 /* We were stopped by a watchpoint, but we don't know where.
4715 Mark all watchpoints as unknown. */
4716 ALL_BREAKPOINTS (b)
4717 if (is_hardware_watchpoint (b))
4718 {
4719 struct watchpoint *w = (struct watchpoint *) b;
4720
4721 w->watchpoint_triggered = watch_triggered_unknown;
4722 }
4723
4724 return 1;
4725 }
4726
4727 /* The target could report the data address. Mark watchpoints
4728 affected by this data address as triggered, and all others as not
4729 triggered. */
4730
4731 ALL_BREAKPOINTS (b)
4732 if (is_hardware_watchpoint (b))
4733 {
4734 struct watchpoint *w = (struct watchpoint *) b;
4735 struct bp_location *loc;
4736
4737 w->watchpoint_triggered = watch_triggered_no;
4738 for (loc = b->loc; loc; loc = loc->next)
4739 {
4740 if (is_masked_watchpoint (b))
4741 {
4742 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4743 CORE_ADDR start = loc->address & w->hw_wp_mask;
4744
4745 if (newaddr == start)
4746 {
4747 w->watchpoint_triggered = watch_triggered_yes;
4748 break;
4749 }
4750 }
4751 /* Exact match not required. Within range is sufficient. */
4752 else if (target_watchpoint_addr_within_range (current_top_target (),
4753 addr, loc->address,
4754 loc->length))
4755 {
4756 w->watchpoint_triggered = watch_triggered_yes;
4757 break;
4758 }
4759 }
4760 }
4761
4762 return 1;
4763 }
4764
4765 /* Possible return values for watchpoint_check. */
4766 enum wp_check_result
4767 {
4768 /* The watchpoint has been deleted. */
4769 WP_DELETED = 1,
4770
4771 /* The value has changed. */
4772 WP_VALUE_CHANGED = 2,
4773
4774 /* The value has not changed. */
4775 WP_VALUE_NOT_CHANGED = 3,
4776
4777 /* Ignore this watchpoint, no matter if the value changed or not. */
4778 WP_IGNORE = 4,
4779 };
4780
4781 #define BP_TEMPFLAG 1
4782 #define BP_HARDWAREFLAG 2
4783
4784 /* Evaluate watchpoint condition expression and check if its value
4785 changed. */
4786
4787 static wp_check_result
4788 watchpoint_check (bpstat bs)
4789 {
4790 struct watchpoint *b;
4791 struct frame_info *fr;
4792 int within_current_scope;
4793
4794 /* BS is built from an existing struct breakpoint. */
4795 gdb_assert (bs->breakpoint_at != NULL);
4796 b = (struct watchpoint *) bs->breakpoint_at;
4797
4798 /* If this is a local watchpoint, we only want to check if the
4799 watchpoint frame is in scope if the current thread is the thread
4800 that was used to create the watchpoint. */
4801 if (!watchpoint_in_thread_scope (b))
4802 return WP_IGNORE;
4803
4804 if (b->exp_valid_block == NULL)
4805 within_current_scope = 1;
4806 else
4807 {
4808 struct frame_info *frame = get_current_frame ();
4809 struct gdbarch *frame_arch = get_frame_arch (frame);
4810 CORE_ADDR frame_pc = get_frame_pc (frame);
4811
4812 /* stack_frame_destroyed_p() returns a non-zero value if we're
4813 still in the function but the stack frame has already been
4814 invalidated. Since we can't rely on the values of local
4815 variables after the stack has been destroyed, we are treating
4816 the watchpoint in that state as `not changed' without further
4817 checking. Don't mark watchpoints as changed if the current
4818 frame is in an epilogue - even if they are in some other
4819 frame, our view of the stack is likely to be wrong and
4820 frame_find_by_id could error out. */
4821 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4822 return WP_IGNORE;
4823
4824 fr = frame_find_by_id (b->watchpoint_frame);
4825 within_current_scope = (fr != NULL);
4826
4827 /* If we've gotten confused in the unwinder, we might have
4828 returned a frame that can't describe this variable. */
4829 if (within_current_scope)
4830 {
4831 struct symbol *function;
4832
4833 function = get_frame_function (fr);
4834 if (function == NULL
4835 || !contained_in (b->exp_valid_block,
4836 SYMBOL_BLOCK_VALUE (function)))
4837 within_current_scope = 0;
4838 }
4839
4840 if (within_current_scope)
4841 /* If we end up stopping, the current frame will get selected
4842 in normal_stop. So this call to select_frame won't affect
4843 the user. */
4844 select_frame (fr);
4845 }
4846
4847 if (within_current_scope)
4848 {
4849 /* We use value_{,free_to_}mark because it could be a *long*
4850 time before we return to the command level and call
4851 free_all_values. We can't call free_all_values because we
4852 might be in the middle of evaluating a function call. */
4853
4854 int pc = 0;
4855 struct value *mark;
4856 struct value *new_val;
4857
4858 if (is_masked_watchpoint (b))
4859 /* Since we don't know the exact trigger address (from
4860 stopped_data_address), just tell the user we've triggered
4861 a mask watchpoint. */
4862 return WP_VALUE_CHANGED;
4863
4864 mark = value_mark ();
4865 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4866
4867 if (b->val_bitsize != 0)
4868 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4869
4870 /* We use value_equal_contents instead of value_equal because
4871 the latter coerces an array to a pointer, thus comparing just
4872 the address of the array instead of its contents. This is
4873 not what we want. */
4874 if ((b->val != NULL) != (new_val != NULL)
4875 || (b->val != NULL && !value_equal_contents (b->val.get (),
4876 new_val)))
4877 {
4878 bs->old_val = b->val;
4879 b->val = release_value (new_val);
4880 b->val_valid = 1;
4881 if (new_val != NULL)
4882 value_free_to_mark (mark);
4883 return WP_VALUE_CHANGED;
4884 }
4885 else
4886 {
4887 /* Nothing changed. */
4888 value_free_to_mark (mark);
4889 return WP_VALUE_NOT_CHANGED;
4890 }
4891 }
4892 else
4893 {
4894 /* This seems like the only logical thing to do because
4895 if we temporarily ignored the watchpoint, then when
4896 we reenter the block in which it is valid it contains
4897 garbage (in the case of a function, it may have two
4898 garbage values, one before and one after the prologue).
4899 So we can't even detect the first assignment to it and
4900 watch after that (since the garbage may or may not equal
4901 the first value assigned). */
4902 /* We print all the stop information in
4903 breakpoint_ops->print_it, but in this case, by the time we
4904 call breakpoint_ops->print_it this bp will be deleted
4905 already. So we have no choice but print the information
4906 here. */
4907
4908 SWITCH_THRU_ALL_UIS ()
4909 {
4910 struct ui_out *uiout = current_uiout;
4911
4912 if (uiout->is_mi_like_p ())
4913 uiout->field_string
4914 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4915 uiout->text ("\nWatchpoint ");
4916 uiout->field_signed ("wpnum", b->number);
4917 uiout->text (" deleted because the program has left the block in\n"
4918 "which its expression is valid.\n");
4919 }
4920
4921 /* Make sure the watchpoint's commands aren't executed. */
4922 b->commands = NULL;
4923 watchpoint_del_at_next_stop (b);
4924
4925 return WP_DELETED;
4926 }
4927 }
4928
4929 /* Return true if it looks like target has stopped due to hitting
4930 breakpoint location BL. This function does not check if we should
4931 stop, only if BL explains the stop. */
4932
4933 static int
4934 bpstat_check_location (const struct bp_location *bl,
4935 const address_space *aspace, CORE_ADDR bp_addr,
4936 const struct target_waitstatus *ws)
4937 {
4938 struct breakpoint *b = bl->owner;
4939
4940 /* BL is from an existing breakpoint. */
4941 gdb_assert (b != NULL);
4942
4943 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4944 }
4945
4946 /* Determine if the watched values have actually changed, and we
4947 should stop. If not, set BS->stop to 0. */
4948
4949 static void
4950 bpstat_check_watchpoint (bpstat bs)
4951 {
4952 const struct bp_location *bl;
4953 struct watchpoint *b;
4954
4955 /* BS is built for existing struct breakpoint. */
4956 bl = bs->bp_location_at;
4957 gdb_assert (bl != NULL);
4958 b = (struct watchpoint *) bs->breakpoint_at;
4959 gdb_assert (b != NULL);
4960
4961 {
4962 int must_check_value = 0;
4963
4964 if (b->type == bp_watchpoint)
4965 /* For a software watchpoint, we must always check the
4966 watched value. */
4967 must_check_value = 1;
4968 else if (b->watchpoint_triggered == watch_triggered_yes)
4969 /* We have a hardware watchpoint (read, write, or access)
4970 and the target earlier reported an address watched by
4971 this watchpoint. */
4972 must_check_value = 1;
4973 else if (b->watchpoint_triggered == watch_triggered_unknown
4974 && b->type == bp_hardware_watchpoint)
4975 /* We were stopped by a hardware watchpoint, but the target could
4976 not report the data address. We must check the watchpoint's
4977 value. Access and read watchpoints are out of luck; without
4978 a data address, we can't figure it out. */
4979 must_check_value = 1;
4980
4981 if (must_check_value)
4982 {
4983 wp_check_result e;
4984
4985 try
4986 {
4987 e = watchpoint_check (bs);
4988 }
4989 catch (const gdb_exception &ex)
4990 {
4991 exception_fprintf (gdb_stderr, ex,
4992 "Error evaluating expression "
4993 "for watchpoint %d\n",
4994 b->number);
4995
4996 SWITCH_THRU_ALL_UIS ()
4997 {
4998 printf_filtered (_("Watchpoint %d deleted.\n"),
4999 b->number);
5000 }
5001 watchpoint_del_at_next_stop (b);
5002 e = WP_DELETED;
5003 }
5004
5005 switch (e)
5006 {
5007 case WP_DELETED:
5008 /* We've already printed what needs to be printed. */
5009 bs->print_it = print_it_done;
5010 /* Stop. */
5011 break;
5012 case WP_IGNORE:
5013 bs->print_it = print_it_noop;
5014 bs->stop = 0;
5015 break;
5016 case WP_VALUE_CHANGED:
5017 if (b->type == bp_read_watchpoint)
5018 {
5019 /* There are two cases to consider here:
5020
5021 1. We're watching the triggered memory for reads.
5022 In that case, trust the target, and always report
5023 the watchpoint hit to the user. Even though
5024 reads don't cause value changes, the value may
5025 have changed since the last time it was read, and
5026 since we're not trapping writes, we will not see
5027 those, and as such we should ignore our notion of
5028 old value.
5029
5030 2. We're watching the triggered memory for both
5031 reads and writes. There are two ways this may
5032 happen:
5033
5034 2.1. This is a target that can't break on data
5035 reads only, but can break on accesses (reads or
5036 writes), such as e.g., x86. We detect this case
5037 at the time we try to insert read watchpoints.
5038
5039 2.2. Otherwise, the target supports read
5040 watchpoints, but, the user set an access or write
5041 watchpoint watching the same memory as this read
5042 watchpoint.
5043
5044 If we're watching memory writes as well as reads,
5045 ignore watchpoint hits when we find that the
5046 value hasn't changed, as reads don't cause
5047 changes. This still gives false positives when
5048 the program writes the same value to memory as
5049 what there was already in memory (we will confuse
5050 it for a read), but it's much better than
5051 nothing. */
5052
5053 int other_write_watchpoint = 0;
5054
5055 if (bl->watchpoint_type == hw_read)
5056 {
5057 struct breakpoint *other_b;
5058
5059 ALL_BREAKPOINTS (other_b)
5060 if (other_b->type == bp_hardware_watchpoint
5061 || other_b->type == bp_access_watchpoint)
5062 {
5063 struct watchpoint *other_w =
5064 (struct watchpoint *) other_b;
5065
5066 if (other_w->watchpoint_triggered
5067 == watch_triggered_yes)
5068 {
5069 other_write_watchpoint = 1;
5070 break;
5071 }
5072 }
5073 }
5074
5075 if (other_write_watchpoint
5076 || bl->watchpoint_type == hw_access)
5077 {
5078 /* We're watching the same memory for writes,
5079 and the value changed since the last time we
5080 updated it, so this trap must be for a write.
5081 Ignore it. */
5082 bs->print_it = print_it_noop;
5083 bs->stop = 0;
5084 }
5085 }
5086 break;
5087 case WP_VALUE_NOT_CHANGED:
5088 if (b->type == bp_hardware_watchpoint
5089 || b->type == bp_watchpoint)
5090 {
5091 /* Don't stop: write watchpoints shouldn't fire if
5092 the value hasn't changed. */
5093 bs->print_it = print_it_noop;
5094 bs->stop = 0;
5095 }
5096 /* Stop. */
5097 break;
5098 default:
5099 /* Can't happen. */
5100 break;
5101 }
5102 }
5103 else /* must_check_value == 0 */
5104 {
5105 /* This is a case where some watchpoint(s) triggered, but
5106 not at the address of this watchpoint, or else no
5107 watchpoint triggered after all. So don't print
5108 anything for this watchpoint. */
5109 bs->print_it = print_it_noop;
5110 bs->stop = 0;
5111 }
5112 }
5113 }
5114
5115 /* For breakpoints that are currently marked as telling gdb to stop,
5116 check conditions (condition proper, frame, thread and ignore count)
5117 of breakpoint referred to by BS. If we should not stop for this
5118 breakpoint, set BS->stop to 0. */
5119
5120 static void
5121 bpstat_check_breakpoint_conditions (bpstat bs, thread_info *thread)
5122 {
5123 const struct bp_location *bl;
5124 struct breakpoint *b;
5125 /* Assume stop. */
5126 bool condition_result = true;
5127 struct expression *cond;
5128
5129 gdb_assert (bs->stop);
5130
5131 /* BS is built for existing struct breakpoint. */
5132 bl = bs->bp_location_at;
5133 gdb_assert (bl != NULL);
5134 b = bs->breakpoint_at;
5135 gdb_assert (b != NULL);
5136
5137 /* Even if the target evaluated the condition on its end and notified GDB, we
5138 need to do so again since GDB does not know if we stopped due to a
5139 breakpoint or a single step breakpoint. */
5140
5141 if (frame_id_p (b->frame_id)
5142 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5143 {
5144 bs->stop = 0;
5145 return;
5146 }
5147
5148 /* If this is a thread/task-specific breakpoint, don't waste cpu
5149 evaluating the condition if this isn't the specified
5150 thread/task. */
5151 if ((b->thread != -1 && b->thread != thread->global_num)
5152 || (b->task != 0 && b->task != ada_get_task_number (thread)))
5153 {
5154 bs->stop = 0;
5155 return;
5156 }
5157
5158 /* Evaluate extension language breakpoints that have a "stop" method
5159 implemented. */
5160 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5161
5162 if (is_watchpoint (b))
5163 {
5164 struct watchpoint *w = (struct watchpoint *) b;
5165
5166 cond = w->cond_exp.get ();
5167 }
5168 else
5169 cond = bl->cond.get ();
5170
5171 if (cond && b->disposition != disp_del_at_next_stop)
5172 {
5173 int within_current_scope = 1;
5174 struct watchpoint * w;
5175
5176 /* We use value_mark and value_free_to_mark because it could
5177 be a long time before we return to the command level and
5178 call free_all_values. We can't call free_all_values
5179 because we might be in the middle of evaluating a
5180 function call. */
5181 struct value *mark = value_mark ();
5182
5183 if (is_watchpoint (b))
5184 w = (struct watchpoint *) b;
5185 else
5186 w = NULL;
5187
5188 /* Need to select the frame, with all that implies so that
5189 the conditions will have the right context. Because we
5190 use the frame, we will not see an inlined function's
5191 variables when we arrive at a breakpoint at the start
5192 of the inlined function; the current frame will be the
5193 call site. */
5194 if (w == NULL || w->cond_exp_valid_block == NULL)
5195 select_frame (get_current_frame ());
5196 else
5197 {
5198 struct frame_info *frame;
5199
5200 /* For local watchpoint expressions, which particular
5201 instance of a local is being watched matters, so we
5202 keep track of the frame to evaluate the expression
5203 in. To evaluate the condition however, it doesn't
5204 really matter which instantiation of the function
5205 where the condition makes sense triggers the
5206 watchpoint. This allows an expression like "watch
5207 global if q > 10" set in `func', catch writes to
5208 global on all threads that call `func', or catch
5209 writes on all recursive calls of `func' by a single
5210 thread. We simply always evaluate the condition in
5211 the innermost frame that's executing where it makes
5212 sense to evaluate the condition. It seems
5213 intuitive. */
5214 frame = block_innermost_frame (w->cond_exp_valid_block);
5215 if (frame != NULL)
5216 select_frame (frame);
5217 else
5218 within_current_scope = 0;
5219 }
5220 if (within_current_scope)
5221 {
5222 try
5223 {
5224 condition_result = breakpoint_cond_eval (cond);
5225 }
5226 catch (const gdb_exception &ex)
5227 {
5228 exception_fprintf (gdb_stderr, ex,
5229 "Error in testing breakpoint condition:\n");
5230 }
5231 }
5232 else
5233 {
5234 warning (_("Watchpoint condition cannot be tested "
5235 "in the current scope"));
5236 /* If we failed to set the right context for this
5237 watchpoint, unconditionally report it. */
5238 }
5239 /* FIXME-someday, should give breakpoint #. */
5240 value_free_to_mark (mark);
5241 }
5242
5243 if (cond && !condition_result)
5244 {
5245 bs->stop = 0;
5246 }
5247 else if (b->ignore_count > 0)
5248 {
5249 b->ignore_count--;
5250 bs->stop = 0;
5251 /* Increase the hit count even though we don't stop. */
5252 ++(b->hit_count);
5253 gdb::observers::breakpoint_modified.notify (b);
5254 }
5255 }
5256
5257 /* Returns true if we need to track moribund locations of LOC's type
5258 on the current target. */
5259
5260 static int
5261 need_moribund_for_location_type (struct bp_location *loc)
5262 {
5263 return ((loc->loc_type == bp_loc_software_breakpoint
5264 && !target_supports_stopped_by_sw_breakpoint ())
5265 || (loc->loc_type == bp_loc_hardware_breakpoint
5266 && !target_supports_stopped_by_hw_breakpoint ()));
5267 }
5268
5269 /* See breakpoint.h. */
5270
5271 bpstat
5272 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5273 const struct target_waitstatus *ws)
5274 {
5275 struct breakpoint *b;
5276 bpstat bs_head = NULL, *bs_link = &bs_head;
5277
5278 ALL_BREAKPOINTS (b)
5279 {
5280 if (!breakpoint_enabled (b))
5281 continue;
5282
5283 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next)
5284 {
5285 /* For hardware watchpoints, we look only at the first
5286 location. The watchpoint_check function will work on the
5287 entire expression, not the individual locations. For
5288 read watchpoints, the watchpoints_triggered function has
5289 checked all locations already. */
5290 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5291 break;
5292
5293 if (!bl->enabled || bl->shlib_disabled)
5294 continue;
5295
5296 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5297 continue;
5298
5299 /* Come here if it's a watchpoint, or if the break address
5300 matches. */
5301
5302 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5303 explain stop. */
5304
5305 /* Assume we stop. Should we find a watchpoint that is not
5306 actually triggered, or if the condition of the breakpoint
5307 evaluates as false, we'll reset 'stop' to 0. */
5308 bs->stop = 1;
5309 bs->print = 1;
5310
5311 /* If this is a scope breakpoint, mark the associated
5312 watchpoint as triggered so that we will handle the
5313 out-of-scope event. We'll get to the watchpoint next
5314 iteration. */
5315 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5316 {
5317 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5318
5319 w->watchpoint_triggered = watch_triggered_yes;
5320 }
5321 }
5322 }
5323
5324 /* Check if a moribund breakpoint explains the stop. */
5325 if (!target_supports_stopped_by_sw_breakpoint ()
5326 || !target_supports_stopped_by_hw_breakpoint ())
5327 {
5328 for (bp_location *loc : moribund_locations)
5329 {
5330 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5331 && need_moribund_for_location_type (loc))
5332 {
5333 bpstat bs = new bpstats (loc, &bs_link);
5334 /* For hits of moribund locations, we should just proceed. */
5335 bs->stop = 0;
5336 bs->print = 0;
5337 bs->print_it = print_it_noop;
5338 }
5339 }
5340 }
5341
5342 return bs_head;
5343 }
5344
5345 /* See breakpoint.h. */
5346
5347 bpstat
5348 bpstat_stop_status (const address_space *aspace,
5349 CORE_ADDR bp_addr, thread_info *thread,
5350 const struct target_waitstatus *ws,
5351 bpstat stop_chain)
5352 {
5353 struct breakpoint *b = NULL;
5354 /* First item of allocated bpstat's. */
5355 bpstat bs_head = stop_chain;
5356 bpstat bs;
5357 int need_remove_insert;
5358 int removed_any;
5359
5360 /* First, build the bpstat chain with locations that explain a
5361 target stop, while being careful to not set the target running,
5362 as that may invalidate locations (in particular watchpoint
5363 locations are recreated). Resuming will happen here with
5364 breakpoint conditions or watchpoint expressions that include
5365 inferior function calls. */
5366 if (bs_head == NULL)
5367 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5368
5369 /* A bit of special processing for shlib breakpoints. We need to
5370 process solib loading here, so that the lists of loaded and
5371 unloaded libraries are correct before we handle "catch load" and
5372 "catch unload". */
5373 for (bs = bs_head; bs != NULL; bs = bs->next)
5374 {
5375 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5376 {
5377 handle_solib_event ();
5378 break;
5379 }
5380 }
5381
5382 /* Now go through the locations that caused the target to stop, and
5383 check whether we're interested in reporting this stop to higher
5384 layers, or whether we should resume the target transparently. */
5385
5386 removed_any = 0;
5387
5388 for (bs = bs_head; bs != NULL; bs = bs->next)
5389 {
5390 if (!bs->stop)
5391 continue;
5392
5393 b = bs->breakpoint_at;
5394 b->ops->check_status (bs);
5395 if (bs->stop)
5396 {
5397 bpstat_check_breakpoint_conditions (bs, thread);
5398
5399 if (bs->stop)
5400 {
5401 ++(b->hit_count);
5402 gdb::observers::breakpoint_modified.notify (b);
5403
5404 /* We will stop here. */
5405 if (b->disposition == disp_disable)
5406 {
5407 --(b->enable_count);
5408 if (b->enable_count <= 0)
5409 b->enable_state = bp_disabled;
5410 removed_any = 1;
5411 }
5412 if (b->silent)
5413 bs->print = 0;
5414 bs->commands = b->commands;
5415 if (command_line_is_silent (bs->commands
5416 ? bs->commands.get () : NULL))
5417 bs->print = 0;
5418
5419 b->ops->after_condition_true (bs);
5420 }
5421
5422 }
5423
5424 /* Print nothing for this entry if we don't stop or don't
5425 print. */
5426 if (!bs->stop || !bs->print)
5427 bs->print_it = print_it_noop;
5428 }
5429
5430 /* If we aren't stopping, the value of some hardware watchpoint may
5431 not have changed, but the intermediate memory locations we are
5432 watching may have. Don't bother if we're stopping; this will get
5433 done later. */
5434 need_remove_insert = 0;
5435 if (! bpstat_causes_stop (bs_head))
5436 for (bs = bs_head; bs != NULL; bs = bs->next)
5437 if (!bs->stop
5438 && bs->breakpoint_at
5439 && is_hardware_watchpoint (bs->breakpoint_at))
5440 {
5441 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5442
5443 update_watchpoint (w, 0 /* don't reparse. */);
5444 need_remove_insert = 1;
5445 }
5446
5447 if (need_remove_insert)
5448 update_global_location_list (UGLL_MAY_INSERT);
5449 else if (removed_any)
5450 update_global_location_list (UGLL_DONT_INSERT);
5451
5452 return bs_head;
5453 }
5454
5455 static void
5456 handle_jit_event (void)
5457 {
5458 struct frame_info *frame;
5459 struct gdbarch *gdbarch;
5460
5461 if (debug_infrun)
5462 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5463
5464 /* Switch terminal for any messages produced by
5465 breakpoint_re_set. */
5466 target_terminal::ours_for_output ();
5467
5468 frame = get_current_frame ();
5469 gdbarch = get_frame_arch (frame);
5470
5471 jit_event_handler (gdbarch);
5472
5473 target_terminal::inferior ();
5474 }
5475
5476 /* Prepare WHAT final decision for infrun. */
5477
5478 /* Decide what infrun needs to do with this bpstat. */
5479
5480 struct bpstat_what
5481 bpstat_what (bpstat bs_head)
5482 {
5483 struct bpstat_what retval;
5484 bpstat bs;
5485
5486 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5487 retval.call_dummy = STOP_NONE;
5488 retval.is_longjmp = false;
5489
5490 for (bs = bs_head; bs != NULL; bs = bs->next)
5491 {
5492 /* Extract this BS's action. After processing each BS, we check
5493 if its action overrides all we've seem so far. */
5494 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5495 enum bptype bptype;
5496
5497 if (bs->breakpoint_at == NULL)
5498 {
5499 /* I suspect this can happen if it was a momentary
5500 breakpoint which has since been deleted. */
5501 bptype = bp_none;
5502 }
5503 else
5504 bptype = bs->breakpoint_at->type;
5505
5506 switch (bptype)
5507 {
5508 case bp_none:
5509 break;
5510 case bp_breakpoint:
5511 case bp_hardware_breakpoint:
5512 case bp_single_step:
5513 case bp_until:
5514 case bp_finish:
5515 case bp_shlib_event:
5516 if (bs->stop)
5517 {
5518 if (bs->print)
5519 this_action = BPSTAT_WHAT_STOP_NOISY;
5520 else
5521 this_action = BPSTAT_WHAT_STOP_SILENT;
5522 }
5523 else
5524 this_action = BPSTAT_WHAT_SINGLE;
5525 break;
5526 case bp_watchpoint:
5527 case bp_hardware_watchpoint:
5528 case bp_read_watchpoint:
5529 case bp_access_watchpoint:
5530 if (bs->stop)
5531 {
5532 if (bs->print)
5533 this_action = BPSTAT_WHAT_STOP_NOISY;
5534 else
5535 this_action = BPSTAT_WHAT_STOP_SILENT;
5536 }
5537 else
5538 {
5539 /* There was a watchpoint, but we're not stopping.
5540 This requires no further action. */
5541 }
5542 break;
5543 case bp_longjmp:
5544 case bp_longjmp_call_dummy:
5545 case bp_exception:
5546 if (bs->stop)
5547 {
5548 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5549 retval.is_longjmp = bptype != bp_exception;
5550 }
5551 else
5552 this_action = BPSTAT_WHAT_SINGLE;
5553 break;
5554 case bp_longjmp_resume:
5555 case bp_exception_resume:
5556 if (bs->stop)
5557 {
5558 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5559 retval.is_longjmp = bptype == bp_longjmp_resume;
5560 }
5561 else
5562 this_action = BPSTAT_WHAT_SINGLE;
5563 break;
5564 case bp_step_resume:
5565 if (bs->stop)
5566 this_action = BPSTAT_WHAT_STEP_RESUME;
5567 else
5568 {
5569 /* It is for the wrong frame. */
5570 this_action = BPSTAT_WHAT_SINGLE;
5571 }
5572 break;
5573 case bp_hp_step_resume:
5574 if (bs->stop)
5575 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5576 else
5577 {
5578 /* It is for the wrong frame. */
5579 this_action = BPSTAT_WHAT_SINGLE;
5580 }
5581 break;
5582 case bp_watchpoint_scope:
5583 case bp_thread_event:
5584 case bp_overlay_event:
5585 case bp_longjmp_master:
5586 case bp_std_terminate_master:
5587 case bp_exception_master:
5588 this_action = BPSTAT_WHAT_SINGLE;
5589 break;
5590 case bp_catchpoint:
5591 if (bs->stop)
5592 {
5593 if (bs->print)
5594 this_action = BPSTAT_WHAT_STOP_NOISY;
5595 else
5596 this_action = BPSTAT_WHAT_STOP_SILENT;
5597 }
5598 else
5599 {
5600 /* Some catchpoints are implemented with breakpoints.
5601 For those, we need to step over the breakpoint. */
5602 if (bs->bp_location_at->loc_type != bp_loc_other)
5603 this_action = BPSTAT_WHAT_SINGLE;
5604 }
5605 break;
5606 case bp_jit_event:
5607 this_action = BPSTAT_WHAT_SINGLE;
5608 break;
5609 case bp_call_dummy:
5610 /* Make sure the action is stop (silent or noisy),
5611 so infrun.c pops the dummy frame. */
5612 retval.call_dummy = STOP_STACK_DUMMY;
5613 this_action = BPSTAT_WHAT_STOP_SILENT;
5614 break;
5615 case bp_std_terminate:
5616 /* Make sure the action is stop (silent or noisy),
5617 so infrun.c pops the dummy frame. */
5618 retval.call_dummy = STOP_STD_TERMINATE;
5619 this_action = BPSTAT_WHAT_STOP_SILENT;
5620 break;
5621 case bp_tracepoint:
5622 case bp_fast_tracepoint:
5623 case bp_static_tracepoint:
5624 /* Tracepoint hits should not be reported back to GDB, and
5625 if one got through somehow, it should have been filtered
5626 out already. */
5627 internal_error (__FILE__, __LINE__,
5628 _("bpstat_what: tracepoint encountered"));
5629 break;
5630 case bp_gnu_ifunc_resolver:
5631 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5632 this_action = BPSTAT_WHAT_SINGLE;
5633 break;
5634 case bp_gnu_ifunc_resolver_return:
5635 /* The breakpoint will be removed, execution will restart from the
5636 PC of the former breakpoint. */
5637 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5638 break;
5639
5640 case bp_dprintf:
5641 if (bs->stop)
5642 this_action = BPSTAT_WHAT_STOP_SILENT;
5643 else
5644 this_action = BPSTAT_WHAT_SINGLE;
5645 break;
5646
5647 default:
5648 internal_error (__FILE__, __LINE__,
5649 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5650 }
5651
5652 retval.main_action = std::max (retval.main_action, this_action);
5653 }
5654
5655 return retval;
5656 }
5657
5658 void
5659 bpstat_run_callbacks (bpstat bs_head)
5660 {
5661 bpstat bs;
5662
5663 for (bs = bs_head; bs != NULL; bs = bs->next)
5664 {
5665 struct breakpoint *b = bs->breakpoint_at;
5666
5667 if (b == NULL)
5668 continue;
5669 switch (b->type)
5670 {
5671 case bp_jit_event:
5672 handle_jit_event ();
5673 break;
5674 case bp_gnu_ifunc_resolver:
5675 gnu_ifunc_resolver_stop (b);
5676 break;
5677 case bp_gnu_ifunc_resolver_return:
5678 gnu_ifunc_resolver_return_stop (b);
5679 break;
5680 }
5681 }
5682 }
5683
5684 /* See breakpoint.h. */
5685
5686 bool
5687 bpstat_should_step ()
5688 {
5689 struct breakpoint *b;
5690
5691 ALL_BREAKPOINTS (b)
5692 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5693 return true;
5694 return false;
5695 }
5696
5697 /* See breakpoint.h. */
5698
5699 bool
5700 bpstat_causes_stop (bpstat bs)
5701 {
5702 for (; bs != NULL; bs = bs->next)
5703 if (bs->stop)
5704 return true;
5705
5706 return false;
5707 }
5708
5709 \f
5710
5711 /* Compute a string of spaces suitable to indent the next line
5712 so it starts at the position corresponding to the table column
5713 named COL_NAME in the currently active table of UIOUT. */
5714
5715 static char *
5716 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5717 {
5718 static char wrap_indent[80];
5719 int i, total_width, width, align;
5720 const char *text;
5721
5722 total_width = 0;
5723 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5724 {
5725 if (strcmp (text, col_name) == 0)
5726 {
5727 gdb_assert (total_width < sizeof wrap_indent);
5728 memset (wrap_indent, ' ', total_width);
5729 wrap_indent[total_width] = 0;
5730
5731 return wrap_indent;
5732 }
5733
5734 total_width += width + 1;
5735 }
5736
5737 return NULL;
5738 }
5739
5740 /* Determine if the locations of this breakpoint will have their conditions
5741 evaluated by the target, host or a mix of both. Returns the following:
5742
5743 "host": Host evals condition.
5744 "host or target": Host or Target evals condition.
5745 "target": Target evals condition.
5746 */
5747
5748 static const char *
5749 bp_condition_evaluator (struct breakpoint *b)
5750 {
5751 struct bp_location *bl;
5752 char host_evals = 0;
5753 char target_evals = 0;
5754
5755 if (!b)
5756 return NULL;
5757
5758 if (!is_breakpoint (b))
5759 return NULL;
5760
5761 if (gdb_evaluates_breakpoint_condition_p ()
5762 || !target_supports_evaluation_of_breakpoint_conditions ())
5763 return condition_evaluation_host;
5764
5765 for (bl = b->loc; bl; bl = bl->next)
5766 {
5767 if (bl->cond_bytecode)
5768 target_evals++;
5769 else
5770 host_evals++;
5771 }
5772
5773 if (host_evals && target_evals)
5774 return condition_evaluation_both;
5775 else if (target_evals)
5776 return condition_evaluation_target;
5777 else
5778 return condition_evaluation_host;
5779 }
5780
5781 /* Determine the breakpoint location's condition evaluator. This is
5782 similar to bp_condition_evaluator, but for locations. */
5783
5784 static const char *
5785 bp_location_condition_evaluator (struct bp_location *bl)
5786 {
5787 if (bl && !is_breakpoint (bl->owner))
5788 return NULL;
5789
5790 if (gdb_evaluates_breakpoint_condition_p ()
5791 || !target_supports_evaluation_of_breakpoint_conditions ())
5792 return condition_evaluation_host;
5793
5794 if (bl && bl->cond_bytecode)
5795 return condition_evaluation_target;
5796 else
5797 return condition_evaluation_host;
5798 }
5799
5800 /* Print the LOC location out of the list of B->LOC locations. */
5801
5802 static void
5803 print_breakpoint_location (struct breakpoint *b,
5804 struct bp_location *loc)
5805 {
5806 struct ui_out *uiout = current_uiout;
5807
5808 scoped_restore_current_program_space restore_pspace;
5809
5810 if (loc != NULL && loc->shlib_disabled)
5811 loc = NULL;
5812
5813 if (loc != NULL)
5814 set_current_program_space (loc->pspace);
5815
5816 if (b->display_canonical)
5817 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5818 else if (loc && loc->symtab)
5819 {
5820 const struct symbol *sym = loc->symbol;
5821
5822 if (sym)
5823 {
5824 uiout->text ("in ");
5825 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym),
5826 ui_out_style_kind::FUNCTION);
5827 uiout->text (" ");
5828 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5829 uiout->text ("at ");
5830 }
5831 uiout->field_string ("file",
5832 symtab_to_filename_for_display (loc->symtab),
5833 ui_out_style_kind::FILE);
5834 uiout->text (":");
5835
5836 if (uiout->is_mi_like_p ())
5837 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5838
5839 uiout->field_signed ("line", loc->line_number);
5840 }
5841 else if (loc)
5842 {
5843 string_file stb;
5844
5845 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5846 demangle, "");
5847 uiout->field_stream ("at", stb);
5848 }
5849 else
5850 {
5851 uiout->field_string ("pending",
5852 event_location_to_string (b->location.get ()));
5853 /* If extra_string is available, it could be holding a condition
5854 or dprintf arguments. In either case, make sure it is printed,
5855 too, but only for non-MI streams. */
5856 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5857 {
5858 if (b->type == bp_dprintf)
5859 uiout->text (",");
5860 else
5861 uiout->text (" ");
5862 uiout->text (b->extra_string);
5863 }
5864 }
5865
5866 if (loc && is_breakpoint (b)
5867 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5868 && bp_condition_evaluator (b) == condition_evaluation_both)
5869 {
5870 uiout->text (" (");
5871 uiout->field_string ("evaluated-by",
5872 bp_location_condition_evaluator (loc));
5873 uiout->text (")");
5874 }
5875 }
5876
5877 static const char *
5878 bptype_string (enum bptype type)
5879 {
5880 struct ep_type_description
5881 {
5882 enum bptype type;
5883 const char *description;
5884 };
5885 static struct ep_type_description bptypes[] =
5886 {
5887 {bp_none, "?deleted?"},
5888 {bp_breakpoint, "breakpoint"},
5889 {bp_hardware_breakpoint, "hw breakpoint"},
5890 {bp_single_step, "sw single-step"},
5891 {bp_until, "until"},
5892 {bp_finish, "finish"},
5893 {bp_watchpoint, "watchpoint"},
5894 {bp_hardware_watchpoint, "hw watchpoint"},
5895 {bp_read_watchpoint, "read watchpoint"},
5896 {bp_access_watchpoint, "acc watchpoint"},
5897 {bp_longjmp, "longjmp"},
5898 {bp_longjmp_resume, "longjmp resume"},
5899 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5900 {bp_exception, "exception"},
5901 {bp_exception_resume, "exception resume"},
5902 {bp_step_resume, "step resume"},
5903 {bp_hp_step_resume, "high-priority step resume"},
5904 {bp_watchpoint_scope, "watchpoint scope"},
5905 {bp_call_dummy, "call dummy"},
5906 {bp_std_terminate, "std::terminate"},
5907 {bp_shlib_event, "shlib events"},
5908 {bp_thread_event, "thread events"},
5909 {bp_overlay_event, "overlay events"},
5910 {bp_longjmp_master, "longjmp master"},
5911 {bp_std_terminate_master, "std::terminate master"},
5912 {bp_exception_master, "exception master"},
5913 {bp_catchpoint, "catchpoint"},
5914 {bp_tracepoint, "tracepoint"},
5915 {bp_fast_tracepoint, "fast tracepoint"},
5916 {bp_static_tracepoint, "static tracepoint"},
5917 {bp_dprintf, "dprintf"},
5918 {bp_jit_event, "jit events"},
5919 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5920 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5921 };
5922
5923 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5924 || ((int) type != bptypes[(int) type].type))
5925 internal_error (__FILE__, __LINE__,
5926 _("bptypes table does not describe type #%d."),
5927 (int) type);
5928
5929 return bptypes[(int) type].description;
5930 }
5931
5932 /* For MI, output a field named 'thread-groups' with a list as the value.
5933 For CLI, prefix the list with the string 'inf'. */
5934
5935 static void
5936 output_thread_groups (struct ui_out *uiout,
5937 const char *field_name,
5938 const std::vector<int> &inf_nums,
5939 int mi_only)
5940 {
5941 int is_mi = uiout->is_mi_like_p ();
5942
5943 /* For backward compatibility, don't display inferiors in CLI unless
5944 there are several. Always display them for MI. */
5945 if (!is_mi && mi_only)
5946 return;
5947
5948 ui_out_emit_list list_emitter (uiout, field_name);
5949
5950 for (size_t i = 0; i < inf_nums.size (); i++)
5951 {
5952 if (is_mi)
5953 {
5954 char mi_group[10];
5955
5956 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
5957 uiout->field_string (NULL, mi_group);
5958 }
5959 else
5960 {
5961 if (i == 0)
5962 uiout->text (" inf ");
5963 else
5964 uiout->text (", ");
5965
5966 uiout->text (plongest (inf_nums[i]));
5967 }
5968 }
5969 }
5970
5971 /* Print B to gdb_stdout. If RAW_LOC, print raw breakpoint locations
5972 instead of going via breakpoint_ops::print_one. This makes "maint
5973 info breakpoints" show the software breakpoint locations of
5974 catchpoints, which are considered internal implementation
5975 detail. */
5976
5977 static void
5978 print_one_breakpoint_location (struct breakpoint *b,
5979 struct bp_location *loc,
5980 int loc_number,
5981 struct bp_location **last_loc,
5982 int allflag, bool raw_loc)
5983 {
5984 struct command_line *l;
5985 static char bpenables[] = "nynny";
5986
5987 struct ui_out *uiout = current_uiout;
5988 int header_of_multiple = 0;
5989 int part_of_multiple = (loc != NULL);
5990 struct value_print_options opts;
5991
5992 get_user_print_options (&opts);
5993
5994 gdb_assert (!loc || loc_number != 0);
5995 /* See comment in print_one_breakpoint concerning treatment of
5996 breakpoints with single disabled location. */
5997 if (loc == NULL
5998 && (b->loc != NULL
5999 && (b->loc->next != NULL || !b->loc->enabled)))
6000 header_of_multiple = 1;
6001 if (loc == NULL)
6002 loc = b->loc;
6003
6004 annotate_record ();
6005
6006 /* 1 */
6007 annotate_field (0);
6008 if (part_of_multiple)
6009 uiout->field_fmt ("number", "%d.%d", b->number, loc_number);
6010 else
6011 uiout->field_signed ("number", b->number);
6012
6013 /* 2 */
6014 annotate_field (1);
6015 if (part_of_multiple)
6016 uiout->field_skip ("type");
6017 else
6018 uiout->field_string ("type", bptype_string (b->type));
6019
6020 /* 3 */
6021 annotate_field (2);
6022 if (part_of_multiple)
6023 uiout->field_skip ("disp");
6024 else
6025 uiout->field_string ("disp", bpdisp_text (b->disposition));
6026
6027 /* 4 */
6028 annotate_field (3);
6029 if (part_of_multiple)
6030 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6031 else
6032 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6033
6034 /* 5 and 6 */
6035 if (!raw_loc && b->ops != NULL && b->ops->print_one != NULL)
6036 b->ops->print_one (b, last_loc);
6037 else
6038 {
6039 if (is_watchpoint (b))
6040 {
6041 struct watchpoint *w = (struct watchpoint *) b;
6042
6043 /* Field 4, the address, is omitted (which makes the columns
6044 not line up too nicely with the headers, but the effect
6045 is relatively readable). */
6046 if (opts.addressprint)
6047 uiout->field_skip ("addr");
6048 annotate_field (5);
6049 uiout->field_string ("what", w->exp_string);
6050 }
6051 else if (!is_catchpoint (b) || is_exception_catchpoint (b)
6052 || is_ada_exception_catchpoint (b))
6053 {
6054 if (opts.addressprint)
6055 {
6056 annotate_field (4);
6057 if (header_of_multiple)
6058 uiout->field_string ("addr", "<MULTIPLE>");
6059 else if (b->loc == NULL || loc->shlib_disabled)
6060 uiout->field_string ("addr", "<PENDING>");
6061 else
6062 uiout->field_core_addr ("addr",
6063 loc->gdbarch, loc->address);
6064 }
6065 annotate_field (5);
6066 if (!header_of_multiple)
6067 print_breakpoint_location (b, loc);
6068 if (b->loc)
6069 *last_loc = b->loc;
6070 }
6071 }
6072
6073 if (loc != NULL && !header_of_multiple)
6074 {
6075 std::vector<int> inf_nums;
6076 int mi_only = 1;
6077
6078 for (inferior *inf : all_inferiors ())
6079 {
6080 if (inf->pspace == loc->pspace)
6081 inf_nums.push_back (inf->num);
6082 }
6083
6084 /* For backward compatibility, don't display inferiors in CLI unless
6085 there are several. Always display for MI. */
6086 if (allflag
6087 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6088 && (number_of_program_spaces () > 1
6089 || number_of_inferiors () > 1)
6090 /* LOC is for existing B, it cannot be in
6091 moribund_locations and thus having NULL OWNER. */
6092 && loc->owner->type != bp_catchpoint))
6093 mi_only = 0;
6094 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6095 }
6096
6097 if (!part_of_multiple)
6098 {
6099 if (b->thread != -1)
6100 {
6101 /* FIXME: This seems to be redundant and lost here; see the
6102 "stop only in" line a little further down. */
6103 uiout->text (" thread ");
6104 uiout->field_signed ("thread", b->thread);
6105 }
6106 else if (b->task != 0)
6107 {
6108 uiout->text (" task ");
6109 uiout->field_signed ("task", b->task);
6110 }
6111 }
6112
6113 uiout->text ("\n");
6114
6115 if (!part_of_multiple)
6116 b->ops->print_one_detail (b, uiout);
6117
6118 if (part_of_multiple && frame_id_p (b->frame_id))
6119 {
6120 annotate_field (6);
6121 uiout->text ("\tstop only in stack frame at ");
6122 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6123 the frame ID. */
6124 uiout->field_core_addr ("frame",
6125 b->gdbarch, b->frame_id.stack_addr);
6126 uiout->text ("\n");
6127 }
6128
6129 if (!part_of_multiple && b->cond_string)
6130 {
6131 annotate_field (7);
6132 if (is_tracepoint (b))
6133 uiout->text ("\ttrace only if ");
6134 else
6135 uiout->text ("\tstop only if ");
6136 uiout->field_string ("cond", b->cond_string);
6137
6138 /* Print whether the target is doing the breakpoint's condition
6139 evaluation. If GDB is doing the evaluation, don't print anything. */
6140 if (is_breakpoint (b)
6141 && breakpoint_condition_evaluation_mode ()
6142 == condition_evaluation_target)
6143 {
6144 uiout->text (" (");
6145 uiout->field_string ("evaluated-by",
6146 bp_condition_evaluator (b));
6147 uiout->text (" evals)");
6148 }
6149 uiout->text ("\n");
6150 }
6151
6152 if (!part_of_multiple && b->thread != -1)
6153 {
6154 /* FIXME should make an annotation for this. */
6155 uiout->text ("\tstop only in thread ");
6156 if (uiout->is_mi_like_p ())
6157 uiout->field_signed ("thread", b->thread);
6158 else
6159 {
6160 struct thread_info *thr = find_thread_global_id (b->thread);
6161
6162 uiout->field_string ("thread", print_thread_id (thr));
6163 }
6164 uiout->text ("\n");
6165 }
6166
6167 if (!part_of_multiple)
6168 {
6169 if (b->hit_count)
6170 {
6171 /* FIXME should make an annotation for this. */
6172 if (is_catchpoint (b))
6173 uiout->text ("\tcatchpoint");
6174 else if (is_tracepoint (b))
6175 uiout->text ("\ttracepoint");
6176 else
6177 uiout->text ("\tbreakpoint");
6178 uiout->text (" already hit ");
6179 uiout->field_signed ("times", b->hit_count);
6180 if (b->hit_count == 1)
6181 uiout->text (" time\n");
6182 else
6183 uiout->text (" times\n");
6184 }
6185 else
6186 {
6187 /* Output the count also if it is zero, but only if this is mi. */
6188 if (uiout->is_mi_like_p ())
6189 uiout->field_signed ("times", b->hit_count);
6190 }
6191 }
6192
6193 if (!part_of_multiple && b->ignore_count)
6194 {
6195 annotate_field (8);
6196 uiout->text ("\tignore next ");
6197 uiout->field_signed ("ignore", b->ignore_count);
6198 uiout->text (" hits\n");
6199 }
6200
6201 /* Note that an enable count of 1 corresponds to "enable once"
6202 behavior, which is reported by the combination of enablement and
6203 disposition, so we don't need to mention it here. */
6204 if (!part_of_multiple && b->enable_count > 1)
6205 {
6206 annotate_field (8);
6207 uiout->text ("\tdisable after ");
6208 /* Tweak the wording to clarify that ignore and enable counts
6209 are distinct, and have additive effect. */
6210 if (b->ignore_count)
6211 uiout->text ("additional ");
6212 else
6213 uiout->text ("next ");
6214 uiout->field_signed ("enable", b->enable_count);
6215 uiout->text (" hits\n");
6216 }
6217
6218 if (!part_of_multiple && is_tracepoint (b))
6219 {
6220 struct tracepoint *tp = (struct tracepoint *) b;
6221
6222 if (tp->traceframe_usage)
6223 {
6224 uiout->text ("\ttrace buffer usage ");
6225 uiout->field_signed ("traceframe-usage", tp->traceframe_usage);
6226 uiout->text (" bytes\n");
6227 }
6228 }
6229
6230 l = b->commands ? b->commands.get () : NULL;
6231 if (!part_of_multiple && l)
6232 {
6233 annotate_field (9);
6234 ui_out_emit_tuple tuple_emitter (uiout, "script");
6235 print_command_lines (uiout, l, 4);
6236 }
6237
6238 if (is_tracepoint (b))
6239 {
6240 struct tracepoint *t = (struct tracepoint *) b;
6241
6242 if (!part_of_multiple && t->pass_count)
6243 {
6244 annotate_field (10);
6245 uiout->text ("\tpass count ");
6246 uiout->field_signed ("pass", t->pass_count);
6247 uiout->text (" \n");
6248 }
6249
6250 /* Don't display it when tracepoint or tracepoint location is
6251 pending. */
6252 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6253 {
6254 annotate_field (11);
6255
6256 if (uiout->is_mi_like_p ())
6257 uiout->field_string ("installed",
6258 loc->inserted ? "y" : "n");
6259 else
6260 {
6261 if (loc->inserted)
6262 uiout->text ("\t");
6263 else
6264 uiout->text ("\tnot ");
6265 uiout->text ("installed on target\n");
6266 }
6267 }
6268 }
6269
6270 if (uiout->is_mi_like_p () && !part_of_multiple)
6271 {
6272 if (is_watchpoint (b))
6273 {
6274 struct watchpoint *w = (struct watchpoint *) b;
6275
6276 uiout->field_string ("original-location", w->exp_string);
6277 }
6278 else if (b->location != NULL
6279 && event_location_to_string (b->location.get ()) != NULL)
6280 uiout->field_string ("original-location",
6281 event_location_to_string (b->location.get ()));
6282 }
6283 }
6284
6285 /* See breakpoint.h. */
6286
6287 bool fix_multi_location_breakpoint_output_globally = false;
6288
6289 static void
6290 print_one_breakpoint (struct breakpoint *b,
6291 struct bp_location **last_loc,
6292 int allflag)
6293 {
6294 struct ui_out *uiout = current_uiout;
6295 bool use_fixed_output
6296 = (uiout->test_flags (fix_multi_location_breakpoint_output)
6297 || fix_multi_location_breakpoint_output_globally);
6298
6299 gdb::optional<ui_out_emit_tuple> bkpt_tuple_emitter (gdb::in_place, uiout, "bkpt");
6300 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag, false);
6301
6302 /* The mi2 broken format: the main breakpoint tuple ends here, the locations
6303 are outside. */
6304 if (!use_fixed_output)
6305 bkpt_tuple_emitter.reset ();
6306
6307 /* If this breakpoint has custom print function,
6308 it's already printed. Otherwise, print individual
6309 locations, if any. */
6310 if (b->ops == NULL
6311 || b->ops->print_one == NULL
6312 || allflag)
6313 {
6314 /* If breakpoint has a single location that is disabled, we
6315 print it as if it had several locations, since otherwise it's
6316 hard to represent "breakpoint enabled, location disabled"
6317 situation.
6318
6319 Note that while hardware watchpoints have several locations
6320 internally, that's not a property exposed to users.
6321
6322 Likewise, while catchpoints may be implemented with
6323 breakpoints (e.g., catch throw), that's not a property
6324 exposed to users. We do however display the internal
6325 breakpoint locations with "maint info breakpoints". */
6326 if (!is_hardware_watchpoint (b)
6327 && (!is_catchpoint (b) || is_exception_catchpoint (b)
6328 || is_ada_exception_catchpoint (b))
6329 && (allflag
6330 || (b->loc && (b->loc->next || !b->loc->enabled))))
6331 {
6332 gdb::optional<ui_out_emit_list> locations_list;
6333
6334 /* For MI version <= 2, keep the behavior where GDB outputs an invalid
6335 MI record. For later versions, place breakpoint locations in a
6336 list. */
6337 if (uiout->is_mi_like_p () && use_fixed_output)
6338 locations_list.emplace (uiout, "locations");
6339
6340 int n = 1;
6341 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next, ++n)
6342 {
6343 ui_out_emit_tuple loc_tuple_emitter (uiout, NULL);
6344 print_one_breakpoint_location (b, loc, n, last_loc,
6345 allflag, allflag);
6346 }
6347 }
6348 }
6349 }
6350
6351 static int
6352 breakpoint_address_bits (struct breakpoint *b)
6353 {
6354 int print_address_bits = 0;
6355 struct bp_location *loc;
6356
6357 /* Software watchpoints that aren't watching memory don't have an
6358 address to print. */
6359 if (is_no_memory_software_watchpoint (b))
6360 return 0;
6361
6362 for (loc = b->loc; loc; loc = loc->next)
6363 {
6364 int addr_bit;
6365
6366 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6367 if (addr_bit > print_address_bits)
6368 print_address_bits = addr_bit;
6369 }
6370
6371 return print_address_bits;
6372 }
6373
6374 /* See breakpoint.h. */
6375
6376 void
6377 print_breakpoint (breakpoint *b)
6378 {
6379 struct bp_location *dummy_loc = NULL;
6380 print_one_breakpoint (b, &dummy_loc, 0);
6381 }
6382
6383 /* Return true if this breakpoint was set by the user, false if it is
6384 internal or momentary. */
6385
6386 int
6387 user_breakpoint_p (struct breakpoint *b)
6388 {
6389 return b->number > 0;
6390 }
6391
6392 /* See breakpoint.h. */
6393
6394 int
6395 pending_breakpoint_p (struct breakpoint *b)
6396 {
6397 return b->loc == NULL;
6398 }
6399
6400 /* Print information on breakpoints (including watchpoints and tracepoints).
6401
6402 If non-NULL, BP_NUM_LIST is a list of numbers and number ranges as
6403 understood by number_or_range_parser. Only breakpoints included in this
6404 list are then printed.
6405
6406 If SHOW_INTERNAL is true, print internal breakpoints.
6407
6408 If FILTER is non-NULL, call it on each breakpoint and only include the
6409 ones for which it returns true.
6410
6411 Return the total number of breakpoints listed. */
6412
6413 static int
6414 breakpoint_1 (const char *bp_num_list, bool show_internal,
6415 bool (*filter) (const struct breakpoint *))
6416 {
6417 struct breakpoint *b;
6418 struct bp_location *last_loc = NULL;
6419 int nr_printable_breakpoints;
6420 struct value_print_options opts;
6421 int print_address_bits = 0;
6422 int print_type_col_width = 14;
6423 struct ui_out *uiout = current_uiout;
6424
6425 get_user_print_options (&opts);
6426
6427 /* Compute the number of rows in the table, as well as the size
6428 required for address fields. */
6429 nr_printable_breakpoints = 0;
6430 ALL_BREAKPOINTS (b)
6431 {
6432 /* If we have a filter, only list the breakpoints it accepts. */
6433 if (filter && !filter (b))
6434 continue;
6435
6436 /* If we have a BP_NUM_LIST string, it is a list of breakpoints to
6437 accept. Skip the others. */
6438 if (bp_num_list != NULL && *bp_num_list != '\0')
6439 {
6440 if (show_internal && parse_and_eval_long (bp_num_list) != b->number)
6441 continue;
6442 if (!show_internal && !number_is_in_list (bp_num_list, b->number))
6443 continue;
6444 }
6445
6446 if (show_internal || user_breakpoint_p (b))
6447 {
6448 int addr_bit, type_len;
6449
6450 addr_bit = breakpoint_address_bits (b);
6451 if (addr_bit > print_address_bits)
6452 print_address_bits = addr_bit;
6453
6454 type_len = strlen (bptype_string (b->type));
6455 if (type_len > print_type_col_width)
6456 print_type_col_width = type_len;
6457
6458 nr_printable_breakpoints++;
6459 }
6460 }
6461
6462 {
6463 ui_out_emit_table table_emitter (uiout,
6464 opts.addressprint ? 6 : 5,
6465 nr_printable_breakpoints,
6466 "BreakpointTable");
6467
6468 if (nr_printable_breakpoints > 0)
6469 annotate_breakpoints_headers ();
6470 if (nr_printable_breakpoints > 0)
6471 annotate_field (0);
6472 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6473 if (nr_printable_breakpoints > 0)
6474 annotate_field (1);
6475 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6476 if (nr_printable_breakpoints > 0)
6477 annotate_field (2);
6478 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6479 if (nr_printable_breakpoints > 0)
6480 annotate_field (3);
6481 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6482 if (opts.addressprint)
6483 {
6484 if (nr_printable_breakpoints > 0)
6485 annotate_field (4);
6486 if (print_address_bits <= 32)
6487 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6488 else
6489 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6490 }
6491 if (nr_printable_breakpoints > 0)
6492 annotate_field (5);
6493 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6494 uiout->table_body ();
6495 if (nr_printable_breakpoints > 0)
6496 annotate_breakpoints_table ();
6497
6498 ALL_BREAKPOINTS (b)
6499 {
6500 QUIT;
6501 /* If we have a filter, only list the breakpoints it accepts. */
6502 if (filter && !filter (b))
6503 continue;
6504
6505 /* If we have a BP_NUM_LIST string, it is a list of breakpoints to
6506 accept. Skip the others. */
6507
6508 if (bp_num_list != NULL && *bp_num_list != '\0')
6509 {
6510 if (show_internal) /* maintenance info breakpoint */
6511 {
6512 if (parse_and_eval_long (bp_num_list) != b->number)
6513 continue;
6514 }
6515 else /* all others */
6516 {
6517 if (!number_is_in_list (bp_num_list, b->number))
6518 continue;
6519 }
6520 }
6521 /* We only print out user settable breakpoints unless the
6522 show_internal is set. */
6523 if (show_internal || user_breakpoint_p (b))
6524 print_one_breakpoint (b, &last_loc, show_internal);
6525 }
6526 }
6527
6528 if (nr_printable_breakpoints == 0)
6529 {
6530 /* If there's a filter, let the caller decide how to report
6531 empty list. */
6532 if (!filter)
6533 {
6534 if (bp_num_list == NULL || *bp_num_list == '\0')
6535 uiout->message ("No breakpoints or watchpoints.\n");
6536 else
6537 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6538 bp_num_list);
6539 }
6540 }
6541 else
6542 {
6543 if (last_loc && !server_command)
6544 set_next_address (last_loc->gdbarch, last_loc->address);
6545 }
6546
6547 /* FIXME? Should this be moved up so that it is only called when
6548 there have been breakpoints? */
6549 annotate_breakpoints_table_end ();
6550
6551 return nr_printable_breakpoints;
6552 }
6553
6554 /* Display the value of default-collect in a way that is generally
6555 compatible with the breakpoint list. */
6556
6557 static void
6558 default_collect_info (void)
6559 {
6560 struct ui_out *uiout = current_uiout;
6561
6562 /* If it has no value (which is frequently the case), say nothing; a
6563 message like "No default-collect." gets in user's face when it's
6564 not wanted. */
6565 if (!*default_collect)
6566 return;
6567
6568 /* The following phrase lines up nicely with per-tracepoint collect
6569 actions. */
6570 uiout->text ("default collect ");
6571 uiout->field_string ("default-collect", default_collect);
6572 uiout->text (" \n");
6573 }
6574
6575 static void
6576 info_breakpoints_command (const char *args, int from_tty)
6577 {
6578 breakpoint_1 (args, false, NULL);
6579
6580 default_collect_info ();
6581 }
6582
6583 static void
6584 info_watchpoints_command (const char *args, int from_tty)
6585 {
6586 int num_printed = breakpoint_1 (args, false, is_watchpoint);
6587 struct ui_out *uiout = current_uiout;
6588
6589 if (num_printed == 0)
6590 {
6591 if (args == NULL || *args == '\0')
6592 uiout->message ("No watchpoints.\n");
6593 else
6594 uiout->message ("No watchpoint matching '%s'.\n", args);
6595 }
6596 }
6597
6598 static void
6599 maintenance_info_breakpoints (const char *args, int from_tty)
6600 {
6601 breakpoint_1 (args, true, NULL);
6602
6603 default_collect_info ();
6604 }
6605
6606 static int
6607 breakpoint_has_pc (struct breakpoint *b,
6608 struct program_space *pspace,
6609 CORE_ADDR pc, struct obj_section *section)
6610 {
6611 struct bp_location *bl = b->loc;
6612
6613 for (; bl; bl = bl->next)
6614 {
6615 if (bl->pspace == pspace
6616 && bl->address == pc
6617 && (!overlay_debugging || bl->section == section))
6618 return 1;
6619 }
6620 return 0;
6621 }
6622
6623 /* Print a message describing any user-breakpoints set at PC. This
6624 concerns with logical breakpoints, so we match program spaces, not
6625 address spaces. */
6626
6627 static void
6628 describe_other_breakpoints (struct gdbarch *gdbarch,
6629 struct program_space *pspace, CORE_ADDR pc,
6630 struct obj_section *section, int thread)
6631 {
6632 int others = 0;
6633 struct breakpoint *b;
6634
6635 ALL_BREAKPOINTS (b)
6636 others += (user_breakpoint_p (b)
6637 && breakpoint_has_pc (b, pspace, pc, section));
6638 if (others > 0)
6639 {
6640 if (others == 1)
6641 printf_filtered (_("Note: breakpoint "));
6642 else /* if (others == ???) */
6643 printf_filtered (_("Note: breakpoints "));
6644 ALL_BREAKPOINTS (b)
6645 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6646 {
6647 others--;
6648 printf_filtered ("%d", b->number);
6649 if (b->thread == -1 && thread != -1)
6650 printf_filtered (" (all threads)");
6651 else if (b->thread != -1)
6652 printf_filtered (" (thread %d)", b->thread);
6653 printf_filtered ("%s%s ",
6654 ((b->enable_state == bp_disabled
6655 || b->enable_state == bp_call_disabled)
6656 ? " (disabled)"
6657 : ""),
6658 (others > 1) ? ","
6659 : ((others == 1) ? " and" : ""));
6660 }
6661 printf_filtered (_("also set at pc "));
6662 fputs_styled (paddress (gdbarch, pc), address_style.style (), gdb_stdout);
6663 printf_filtered (".\n");
6664 }
6665 }
6666 \f
6667
6668 /* Return true iff it is meaningful to use the address member of LOC.
6669 For some breakpoint types, the locations' address members are
6670 irrelevant and it makes no sense to attempt to compare them to
6671 other addresses (or use them for any other purpose either).
6672
6673 More specifically, software watchpoints and catchpoints that are
6674 not backed by breakpoints always have a zero valued location
6675 address and we don't want to mark breakpoints of any of these types
6676 to be a duplicate of an actual breakpoint location at address
6677 zero. */
6678
6679 static bool
6680 bl_address_is_meaningful (bp_location *loc)
6681 {
6682 return loc->loc_type != bp_loc_other;
6683 }
6684
6685 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6686 true if LOC1 and LOC2 represent the same watchpoint location. */
6687
6688 static int
6689 watchpoint_locations_match (struct bp_location *loc1,
6690 struct bp_location *loc2)
6691 {
6692 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6693 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6694
6695 /* Both of them must exist. */
6696 gdb_assert (w1 != NULL);
6697 gdb_assert (w2 != NULL);
6698
6699 /* If the target can evaluate the condition expression in hardware,
6700 then we we need to insert both watchpoints even if they are at
6701 the same place. Otherwise the watchpoint will only trigger when
6702 the condition of whichever watchpoint was inserted evaluates to
6703 true, not giving a chance for GDB to check the condition of the
6704 other watchpoint. */
6705 if ((w1->cond_exp
6706 && target_can_accel_watchpoint_condition (loc1->address,
6707 loc1->length,
6708 loc1->watchpoint_type,
6709 w1->cond_exp.get ()))
6710 || (w2->cond_exp
6711 && target_can_accel_watchpoint_condition (loc2->address,
6712 loc2->length,
6713 loc2->watchpoint_type,
6714 w2->cond_exp.get ())))
6715 return 0;
6716
6717 /* Note that this checks the owner's type, not the location's. In
6718 case the target does not support read watchpoints, but does
6719 support access watchpoints, we'll have bp_read_watchpoint
6720 watchpoints with hw_access locations. Those should be considered
6721 duplicates of hw_read locations. The hw_read locations will
6722 become hw_access locations later. */
6723 return (loc1->owner->type == loc2->owner->type
6724 && loc1->pspace->aspace == loc2->pspace->aspace
6725 && loc1->address == loc2->address
6726 && loc1->length == loc2->length);
6727 }
6728
6729 /* See breakpoint.h. */
6730
6731 int
6732 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6733 const address_space *aspace2, CORE_ADDR addr2)
6734 {
6735 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6736 || aspace1 == aspace2)
6737 && addr1 == addr2);
6738 }
6739
6740 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6741 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6742 matches ASPACE2. On targets that have global breakpoints, the address
6743 space doesn't really matter. */
6744
6745 static int
6746 breakpoint_address_match_range (const address_space *aspace1,
6747 CORE_ADDR addr1,
6748 int len1, const address_space *aspace2,
6749 CORE_ADDR addr2)
6750 {
6751 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6752 || aspace1 == aspace2)
6753 && addr2 >= addr1 && addr2 < addr1 + len1);
6754 }
6755
6756 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6757 a ranged breakpoint. In most targets, a match happens only if ASPACE
6758 matches the breakpoint's address space. On targets that have global
6759 breakpoints, the address space doesn't really matter. */
6760
6761 static int
6762 breakpoint_location_address_match (struct bp_location *bl,
6763 const address_space *aspace,
6764 CORE_ADDR addr)
6765 {
6766 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6767 aspace, addr)
6768 || (bl->length
6769 && breakpoint_address_match_range (bl->pspace->aspace,
6770 bl->address, bl->length,
6771 aspace, addr)));
6772 }
6773
6774 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6775 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6776 match happens only if ASPACE matches the breakpoint's address
6777 space. On targets that have global breakpoints, the address space
6778 doesn't really matter. */
6779
6780 static int
6781 breakpoint_location_address_range_overlap (struct bp_location *bl,
6782 const address_space *aspace,
6783 CORE_ADDR addr, int len)
6784 {
6785 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6786 || bl->pspace->aspace == aspace)
6787 {
6788 int bl_len = bl->length != 0 ? bl->length : 1;
6789
6790 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6791 return 1;
6792 }
6793 return 0;
6794 }
6795
6796 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6797 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6798 true, otherwise returns false. */
6799
6800 static int
6801 tracepoint_locations_match (struct bp_location *loc1,
6802 struct bp_location *loc2)
6803 {
6804 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6805 /* Since tracepoint locations are never duplicated with others', tracepoint
6806 locations at the same address of different tracepoints are regarded as
6807 different locations. */
6808 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6809 else
6810 return 0;
6811 }
6812
6813 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6814 (bl_address_is_meaningful), returns true if LOC1 and LOC2 represent
6815 the same location. */
6816
6817 static int
6818 breakpoint_locations_match (struct bp_location *loc1,
6819 struct bp_location *loc2)
6820 {
6821 int hw_point1, hw_point2;
6822
6823 /* Both of them must not be in moribund_locations. */
6824 gdb_assert (loc1->owner != NULL);
6825 gdb_assert (loc2->owner != NULL);
6826
6827 hw_point1 = is_hardware_watchpoint (loc1->owner);
6828 hw_point2 = is_hardware_watchpoint (loc2->owner);
6829
6830 if (hw_point1 != hw_point2)
6831 return 0;
6832 else if (hw_point1)
6833 return watchpoint_locations_match (loc1, loc2);
6834 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6835 return tracepoint_locations_match (loc1, loc2);
6836 else
6837 /* We compare bp_location.length in order to cover ranged breakpoints. */
6838 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6839 loc2->pspace->aspace, loc2->address)
6840 && loc1->length == loc2->length);
6841 }
6842
6843 static void
6844 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6845 int bnum, int have_bnum)
6846 {
6847 /* The longest string possibly returned by hex_string_custom
6848 is 50 chars. These must be at least that big for safety. */
6849 char astr1[64];
6850 char astr2[64];
6851
6852 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6853 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6854 if (have_bnum)
6855 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6856 bnum, astr1, astr2);
6857 else
6858 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6859 }
6860
6861 /* Adjust a breakpoint's address to account for architectural
6862 constraints on breakpoint placement. Return the adjusted address.
6863 Note: Very few targets require this kind of adjustment. For most
6864 targets, this function is simply the identity function. */
6865
6866 static CORE_ADDR
6867 adjust_breakpoint_address (struct gdbarch *gdbarch,
6868 CORE_ADDR bpaddr, enum bptype bptype)
6869 {
6870 if (bptype == bp_watchpoint
6871 || bptype == bp_hardware_watchpoint
6872 || bptype == bp_read_watchpoint
6873 || bptype == bp_access_watchpoint
6874 || bptype == bp_catchpoint)
6875 {
6876 /* Watchpoints and the various bp_catch_* eventpoints should not
6877 have their addresses modified. */
6878 return bpaddr;
6879 }
6880 else if (bptype == bp_single_step)
6881 {
6882 /* Single-step breakpoints should not have their addresses
6883 modified. If there's any architectural constrain that
6884 applies to this address, then it should have already been
6885 taken into account when the breakpoint was created in the
6886 first place. If we didn't do this, stepping through e.g.,
6887 Thumb-2 IT blocks would break. */
6888 return bpaddr;
6889 }
6890 else
6891 {
6892 CORE_ADDR adjusted_bpaddr = bpaddr;
6893
6894 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6895 {
6896 /* Some targets have architectural constraints on the placement
6897 of breakpoint instructions. Obtain the adjusted address. */
6898 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6899 }
6900
6901 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6902
6903 /* An adjusted breakpoint address can significantly alter
6904 a user's expectations. Print a warning if an adjustment
6905 is required. */
6906 if (adjusted_bpaddr != bpaddr)
6907 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6908
6909 return adjusted_bpaddr;
6910 }
6911 }
6912
6913 static bp_loc_type
6914 bp_location_from_bp_type (bptype type)
6915 {
6916 switch (type)
6917 {
6918 case bp_breakpoint:
6919 case bp_single_step:
6920 case bp_until:
6921 case bp_finish:
6922 case bp_longjmp:
6923 case bp_longjmp_resume:
6924 case bp_longjmp_call_dummy:
6925 case bp_exception:
6926 case bp_exception_resume:
6927 case bp_step_resume:
6928 case bp_hp_step_resume:
6929 case bp_watchpoint_scope:
6930 case bp_call_dummy:
6931 case bp_std_terminate:
6932 case bp_shlib_event:
6933 case bp_thread_event:
6934 case bp_overlay_event:
6935 case bp_jit_event:
6936 case bp_longjmp_master:
6937 case bp_std_terminate_master:
6938 case bp_exception_master:
6939 case bp_gnu_ifunc_resolver:
6940 case bp_gnu_ifunc_resolver_return:
6941 case bp_dprintf:
6942 return bp_loc_software_breakpoint;
6943 case bp_hardware_breakpoint:
6944 return bp_loc_hardware_breakpoint;
6945 case bp_hardware_watchpoint:
6946 case bp_read_watchpoint:
6947 case bp_access_watchpoint:
6948 return bp_loc_hardware_watchpoint;
6949 case bp_watchpoint:
6950 case bp_catchpoint:
6951 case bp_tracepoint:
6952 case bp_fast_tracepoint:
6953 case bp_static_tracepoint:
6954 return bp_loc_other;
6955 default:
6956 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
6957 }
6958 }
6959
6960 bp_location::bp_location (breakpoint *owner, bp_loc_type type)
6961 {
6962 this->owner = owner;
6963 this->cond_bytecode = NULL;
6964 this->shlib_disabled = 0;
6965 this->enabled = 1;
6966
6967 this->loc_type = type;
6968
6969 if (this->loc_type == bp_loc_software_breakpoint
6970 || this->loc_type == bp_loc_hardware_breakpoint)
6971 mark_breakpoint_location_modified (this);
6972
6973 this->refc = 1;
6974 }
6975
6976 bp_location::bp_location (breakpoint *owner)
6977 : bp_location::bp_location (owner,
6978 bp_location_from_bp_type (owner->type))
6979 {
6980 }
6981
6982 /* Allocate a struct bp_location. */
6983
6984 static struct bp_location *
6985 allocate_bp_location (struct breakpoint *bpt)
6986 {
6987 return bpt->ops->allocate_location (bpt);
6988 }
6989
6990 static void
6991 free_bp_location (struct bp_location *loc)
6992 {
6993 delete loc;
6994 }
6995
6996 /* Increment reference count. */
6997
6998 static void
6999 incref_bp_location (struct bp_location *bl)
7000 {
7001 ++bl->refc;
7002 }
7003
7004 /* Decrement reference count. If the reference count reaches 0,
7005 destroy the bp_location. Sets *BLP to NULL. */
7006
7007 static void
7008 decref_bp_location (struct bp_location **blp)
7009 {
7010 gdb_assert ((*blp)->refc > 0);
7011
7012 if (--(*blp)->refc == 0)
7013 free_bp_location (*blp);
7014 *blp = NULL;
7015 }
7016
7017 /* Add breakpoint B at the end of the global breakpoint chain. */
7018
7019 static breakpoint *
7020 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7021 {
7022 struct breakpoint *b1;
7023 struct breakpoint *result = b.get ();
7024
7025 /* Add this breakpoint to the end of the chain so that a list of
7026 breakpoints will come out in order of increasing numbers. */
7027
7028 b1 = breakpoint_chain;
7029 if (b1 == 0)
7030 breakpoint_chain = b.release ();
7031 else
7032 {
7033 while (b1->next)
7034 b1 = b1->next;
7035 b1->next = b.release ();
7036 }
7037
7038 return result;
7039 }
7040
7041 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7042
7043 static void
7044 init_raw_breakpoint_without_location (struct breakpoint *b,
7045 struct gdbarch *gdbarch,
7046 enum bptype bptype,
7047 const struct breakpoint_ops *ops)
7048 {
7049 gdb_assert (ops != NULL);
7050
7051 b->ops = ops;
7052 b->type = bptype;
7053 b->gdbarch = gdbarch;
7054 b->language = current_language->la_language;
7055 b->input_radix = input_radix;
7056 b->related_breakpoint = b;
7057 }
7058
7059 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7060 that has type BPTYPE and has no locations as yet. */
7061
7062 static struct breakpoint *
7063 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7064 enum bptype bptype,
7065 const struct breakpoint_ops *ops)
7066 {
7067 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7068
7069 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7070 return add_to_breakpoint_chain (std::move (b));
7071 }
7072
7073 /* Initialize loc->function_name. */
7074
7075 static void
7076 set_breakpoint_location_function (struct bp_location *loc)
7077 {
7078 gdb_assert (loc->owner != NULL);
7079
7080 if (loc->owner->type == bp_breakpoint
7081 || loc->owner->type == bp_hardware_breakpoint
7082 || is_tracepoint (loc->owner))
7083 {
7084 const char *function_name;
7085
7086 if (loc->msymbol != NULL
7087 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7088 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc))
7089 {
7090 struct breakpoint *b = loc->owner;
7091
7092 function_name = MSYMBOL_LINKAGE_NAME (loc->msymbol);
7093
7094 if (b->type == bp_breakpoint && b->loc == loc
7095 && loc->next == NULL && b->related_breakpoint == b)
7096 {
7097 /* Create only the whole new breakpoint of this type but do not
7098 mess more complicated breakpoints with multiple locations. */
7099 b->type = bp_gnu_ifunc_resolver;
7100 /* Remember the resolver's address for use by the return
7101 breakpoint. */
7102 loc->related_address = loc->address;
7103 }
7104 }
7105 else
7106 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7107
7108 if (function_name)
7109 loc->function_name = xstrdup (function_name);
7110 }
7111 }
7112
7113 /* Attempt to determine architecture of location identified by SAL. */
7114 struct gdbarch *
7115 get_sal_arch (struct symtab_and_line sal)
7116 {
7117 if (sal.section)
7118 return get_objfile_arch (sal.section->objfile);
7119 if (sal.symtab)
7120 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7121
7122 return NULL;
7123 }
7124
7125 /* Low level routine for partially initializing a breakpoint of type
7126 BPTYPE. The newly created breakpoint's address, section, source
7127 file name, and line number are provided by SAL.
7128
7129 It is expected that the caller will complete the initialization of
7130 the newly created breakpoint struct as well as output any status
7131 information regarding the creation of a new breakpoint. */
7132
7133 static void
7134 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7135 struct symtab_and_line sal, enum bptype bptype,
7136 const struct breakpoint_ops *ops)
7137 {
7138 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7139
7140 add_location_to_breakpoint (b, &sal);
7141
7142 if (bptype != bp_catchpoint)
7143 gdb_assert (sal.pspace != NULL);
7144
7145 /* Store the program space that was used to set the breakpoint,
7146 except for ordinary breakpoints, which are independent of the
7147 program space. */
7148 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7149 b->pspace = sal.pspace;
7150 }
7151
7152 /* set_raw_breakpoint is a low level routine for allocating and
7153 partially initializing a breakpoint of type BPTYPE. The newly
7154 created breakpoint's address, section, source file name, and line
7155 number are provided by SAL. The newly created and partially
7156 initialized breakpoint is added to the breakpoint chain and
7157 is also returned as the value of this function.
7158
7159 It is expected that the caller will complete the initialization of
7160 the newly created breakpoint struct as well as output any status
7161 information regarding the creation of a new breakpoint. In
7162 particular, set_raw_breakpoint does NOT set the breakpoint
7163 number! Care should be taken to not allow an error to occur
7164 prior to completing the initialization of the breakpoint. If this
7165 should happen, a bogus breakpoint will be left on the chain. */
7166
7167 struct breakpoint *
7168 set_raw_breakpoint (struct gdbarch *gdbarch,
7169 struct symtab_and_line sal, enum bptype bptype,
7170 const struct breakpoint_ops *ops)
7171 {
7172 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7173
7174 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7175 return add_to_breakpoint_chain (std::move (b));
7176 }
7177
7178 /* Call this routine when stepping and nexting to enable a breakpoint
7179 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7180 initiated the operation. */
7181
7182 void
7183 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7184 {
7185 struct breakpoint *b, *b_tmp;
7186 int thread = tp->global_num;
7187
7188 /* To avoid having to rescan all objfile symbols at every step,
7189 we maintain a list of continually-inserted but always disabled
7190 longjmp "master" breakpoints. Here, we simply create momentary
7191 clones of those and enable them for the requested thread. */
7192 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7193 if (b->pspace == current_program_space
7194 && (b->type == bp_longjmp_master
7195 || b->type == bp_exception_master))
7196 {
7197 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7198 struct breakpoint *clone;
7199
7200 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7201 after their removal. */
7202 clone = momentary_breakpoint_from_master (b, type,
7203 &momentary_breakpoint_ops, 1);
7204 clone->thread = thread;
7205 }
7206
7207 tp->initiating_frame = frame;
7208 }
7209
7210 /* Delete all longjmp breakpoints from THREAD. */
7211 void
7212 delete_longjmp_breakpoint (int thread)
7213 {
7214 struct breakpoint *b, *b_tmp;
7215
7216 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7217 if (b->type == bp_longjmp || b->type == bp_exception)
7218 {
7219 if (b->thread == thread)
7220 delete_breakpoint (b);
7221 }
7222 }
7223
7224 void
7225 delete_longjmp_breakpoint_at_next_stop (int thread)
7226 {
7227 struct breakpoint *b, *b_tmp;
7228
7229 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7230 if (b->type == bp_longjmp || b->type == bp_exception)
7231 {
7232 if (b->thread == thread)
7233 b->disposition = disp_del_at_next_stop;
7234 }
7235 }
7236
7237 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7238 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7239 pointer to any of them. Return NULL if this system cannot place longjmp
7240 breakpoints. */
7241
7242 struct breakpoint *
7243 set_longjmp_breakpoint_for_call_dummy (void)
7244 {
7245 struct breakpoint *b, *retval = NULL;
7246
7247 ALL_BREAKPOINTS (b)
7248 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7249 {
7250 struct breakpoint *new_b;
7251
7252 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7253 &momentary_breakpoint_ops,
7254 1);
7255 new_b->thread = inferior_thread ()->global_num;
7256
7257 /* Link NEW_B into the chain of RETVAL breakpoints. */
7258
7259 gdb_assert (new_b->related_breakpoint == new_b);
7260 if (retval == NULL)
7261 retval = new_b;
7262 new_b->related_breakpoint = retval;
7263 while (retval->related_breakpoint != new_b->related_breakpoint)
7264 retval = retval->related_breakpoint;
7265 retval->related_breakpoint = new_b;
7266 }
7267
7268 return retval;
7269 }
7270
7271 /* Verify all existing dummy frames and their associated breakpoints for
7272 TP. Remove those which can no longer be found in the current frame
7273 stack.
7274
7275 You should call this function only at places where it is safe to currently
7276 unwind the whole stack. Failed stack unwind would discard live dummy
7277 frames. */
7278
7279 void
7280 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7281 {
7282 struct breakpoint *b, *b_tmp;
7283
7284 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7285 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7286 {
7287 struct breakpoint *dummy_b = b->related_breakpoint;
7288
7289 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7290 dummy_b = dummy_b->related_breakpoint;
7291 if (dummy_b->type != bp_call_dummy
7292 || frame_find_by_id (dummy_b->frame_id) != NULL)
7293 continue;
7294
7295 dummy_frame_discard (dummy_b->frame_id, tp);
7296
7297 while (b->related_breakpoint != b)
7298 {
7299 if (b_tmp == b->related_breakpoint)
7300 b_tmp = b->related_breakpoint->next;
7301 delete_breakpoint (b->related_breakpoint);
7302 }
7303 delete_breakpoint (b);
7304 }
7305 }
7306
7307 void
7308 enable_overlay_breakpoints (void)
7309 {
7310 struct breakpoint *b;
7311
7312 ALL_BREAKPOINTS (b)
7313 if (b->type == bp_overlay_event)
7314 {
7315 b->enable_state = bp_enabled;
7316 update_global_location_list (UGLL_MAY_INSERT);
7317 overlay_events_enabled = 1;
7318 }
7319 }
7320
7321 void
7322 disable_overlay_breakpoints (void)
7323 {
7324 struct breakpoint *b;
7325
7326 ALL_BREAKPOINTS (b)
7327 if (b->type == bp_overlay_event)
7328 {
7329 b->enable_state = bp_disabled;
7330 update_global_location_list (UGLL_DONT_INSERT);
7331 overlay_events_enabled = 0;
7332 }
7333 }
7334
7335 /* Set an active std::terminate breakpoint for each std::terminate
7336 master breakpoint. */
7337 void
7338 set_std_terminate_breakpoint (void)
7339 {
7340 struct breakpoint *b, *b_tmp;
7341
7342 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7343 if (b->pspace == current_program_space
7344 && b->type == bp_std_terminate_master)
7345 {
7346 momentary_breakpoint_from_master (b, bp_std_terminate,
7347 &momentary_breakpoint_ops, 1);
7348 }
7349 }
7350
7351 /* Delete all the std::terminate breakpoints. */
7352 void
7353 delete_std_terminate_breakpoint (void)
7354 {
7355 struct breakpoint *b, *b_tmp;
7356
7357 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7358 if (b->type == bp_std_terminate)
7359 delete_breakpoint (b);
7360 }
7361
7362 struct breakpoint *
7363 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7364 {
7365 struct breakpoint *b;
7366
7367 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7368 &internal_breakpoint_ops);
7369
7370 b->enable_state = bp_enabled;
7371 /* location has to be used or breakpoint_re_set will delete me. */
7372 b->location = new_address_location (b->loc->address, NULL, 0);
7373
7374 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7375
7376 return b;
7377 }
7378
7379 struct lang_and_radix
7380 {
7381 enum language lang;
7382 int radix;
7383 };
7384
7385 /* Create a breakpoint for JIT code registration and unregistration. */
7386
7387 struct breakpoint *
7388 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7389 {
7390 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7391 &internal_breakpoint_ops);
7392 }
7393
7394 /* Remove JIT code registration and unregistration breakpoint(s). */
7395
7396 void
7397 remove_jit_event_breakpoints (void)
7398 {
7399 struct breakpoint *b, *b_tmp;
7400
7401 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7402 if (b->type == bp_jit_event
7403 && b->loc->pspace == current_program_space)
7404 delete_breakpoint (b);
7405 }
7406
7407 void
7408 remove_solib_event_breakpoints (void)
7409 {
7410 struct breakpoint *b, *b_tmp;
7411
7412 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7413 if (b->type == bp_shlib_event
7414 && b->loc->pspace == current_program_space)
7415 delete_breakpoint (b);
7416 }
7417
7418 /* See breakpoint.h. */
7419
7420 void
7421 remove_solib_event_breakpoints_at_next_stop (void)
7422 {
7423 struct breakpoint *b, *b_tmp;
7424
7425 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7426 if (b->type == bp_shlib_event
7427 && b->loc->pspace == current_program_space)
7428 b->disposition = disp_del_at_next_stop;
7429 }
7430
7431 /* Helper for create_solib_event_breakpoint /
7432 create_and_insert_solib_event_breakpoint. Allows specifying which
7433 INSERT_MODE to pass through to update_global_location_list. */
7434
7435 static struct breakpoint *
7436 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7437 enum ugll_insert_mode insert_mode)
7438 {
7439 struct breakpoint *b;
7440
7441 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7442 &internal_breakpoint_ops);
7443 update_global_location_list_nothrow (insert_mode);
7444 return b;
7445 }
7446
7447 struct breakpoint *
7448 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7449 {
7450 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7451 }
7452
7453 /* See breakpoint.h. */
7454
7455 struct breakpoint *
7456 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7457 {
7458 struct breakpoint *b;
7459
7460 /* Explicitly tell update_global_location_list to insert
7461 locations. */
7462 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7463 if (!b->loc->inserted)
7464 {
7465 delete_breakpoint (b);
7466 return NULL;
7467 }
7468 return b;
7469 }
7470
7471 /* Disable any breakpoints that are on code in shared libraries. Only
7472 apply to enabled breakpoints, disabled ones can just stay disabled. */
7473
7474 void
7475 disable_breakpoints_in_shlibs (void)
7476 {
7477 struct bp_location *loc, **locp_tmp;
7478
7479 ALL_BP_LOCATIONS (loc, locp_tmp)
7480 {
7481 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7482 struct breakpoint *b = loc->owner;
7483
7484 /* We apply the check to all breakpoints, including disabled for
7485 those with loc->duplicate set. This is so that when breakpoint
7486 becomes enabled, or the duplicate is removed, gdb will try to
7487 insert all breakpoints. If we don't set shlib_disabled here,
7488 we'll try to insert those breakpoints and fail. */
7489 if (((b->type == bp_breakpoint)
7490 || (b->type == bp_jit_event)
7491 || (b->type == bp_hardware_breakpoint)
7492 || (is_tracepoint (b)))
7493 && loc->pspace == current_program_space
7494 && !loc->shlib_disabled
7495 && solib_name_from_address (loc->pspace, loc->address)
7496 )
7497 {
7498 loc->shlib_disabled = 1;
7499 }
7500 }
7501 }
7502
7503 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7504 notification of unloaded_shlib. Only apply to enabled breakpoints,
7505 disabled ones can just stay disabled. */
7506
7507 static void
7508 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7509 {
7510 struct bp_location *loc, **locp_tmp;
7511 int disabled_shlib_breaks = 0;
7512
7513 ALL_BP_LOCATIONS (loc, locp_tmp)
7514 {
7515 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7516 struct breakpoint *b = loc->owner;
7517
7518 if (solib->pspace == loc->pspace
7519 && !loc->shlib_disabled
7520 && (((b->type == bp_breakpoint
7521 || b->type == bp_jit_event
7522 || b->type == bp_hardware_breakpoint)
7523 && (loc->loc_type == bp_loc_hardware_breakpoint
7524 || loc->loc_type == bp_loc_software_breakpoint))
7525 || is_tracepoint (b))
7526 && solib_contains_address_p (solib, loc->address))
7527 {
7528 loc->shlib_disabled = 1;
7529 /* At this point, we cannot rely on remove_breakpoint
7530 succeeding so we must mark the breakpoint as not inserted
7531 to prevent future errors occurring in remove_breakpoints. */
7532 loc->inserted = 0;
7533
7534 /* This may cause duplicate notifications for the same breakpoint. */
7535 gdb::observers::breakpoint_modified.notify (b);
7536
7537 if (!disabled_shlib_breaks)
7538 {
7539 target_terminal::ours_for_output ();
7540 warning (_("Temporarily disabling breakpoints "
7541 "for unloaded shared library \"%s\""),
7542 solib->so_name);
7543 }
7544 disabled_shlib_breaks = 1;
7545 }
7546 }
7547 }
7548
7549 /* Disable any breakpoints and tracepoints in OBJFILE upon
7550 notification of free_objfile. Only apply to enabled breakpoints,
7551 disabled ones can just stay disabled. */
7552
7553 static void
7554 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7555 {
7556 struct breakpoint *b;
7557
7558 if (objfile == NULL)
7559 return;
7560
7561 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7562 managed by the user with add-symbol-file/remove-symbol-file.
7563 Similarly to how breakpoints in shared libraries are handled in
7564 response to "nosharedlibrary", mark breakpoints in such modules
7565 shlib_disabled so they end up uninserted on the next global
7566 location list update. Shared libraries not loaded by the user
7567 aren't handled here -- they're already handled in
7568 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7569 solib_unloaded observer. We skip objfiles that are not
7570 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7571 main objfile). */
7572 if ((objfile->flags & OBJF_SHARED) == 0
7573 || (objfile->flags & OBJF_USERLOADED) == 0)
7574 return;
7575
7576 ALL_BREAKPOINTS (b)
7577 {
7578 struct bp_location *loc;
7579 int bp_modified = 0;
7580
7581 if (!is_breakpoint (b) && !is_tracepoint (b))
7582 continue;
7583
7584 for (loc = b->loc; loc != NULL; loc = loc->next)
7585 {
7586 CORE_ADDR loc_addr = loc->address;
7587
7588 if (loc->loc_type != bp_loc_hardware_breakpoint
7589 && loc->loc_type != bp_loc_software_breakpoint)
7590 continue;
7591
7592 if (loc->shlib_disabled != 0)
7593 continue;
7594
7595 if (objfile->pspace != loc->pspace)
7596 continue;
7597
7598 if (loc->loc_type != bp_loc_hardware_breakpoint
7599 && loc->loc_type != bp_loc_software_breakpoint)
7600 continue;
7601
7602 if (is_addr_in_objfile (loc_addr, objfile))
7603 {
7604 loc->shlib_disabled = 1;
7605 /* At this point, we don't know whether the object was
7606 unmapped from the inferior or not, so leave the
7607 inserted flag alone. We'll handle failure to
7608 uninsert quietly, in case the object was indeed
7609 unmapped. */
7610
7611 mark_breakpoint_location_modified (loc);
7612
7613 bp_modified = 1;
7614 }
7615 }
7616
7617 if (bp_modified)
7618 gdb::observers::breakpoint_modified.notify (b);
7619 }
7620 }
7621
7622 /* FORK & VFORK catchpoints. */
7623
7624 /* An instance of this type is used to represent a fork or vfork
7625 catchpoint. A breakpoint is really of this type iff its ops pointer points
7626 to CATCH_FORK_BREAKPOINT_OPS. */
7627
7628 struct fork_catchpoint : public breakpoint
7629 {
7630 /* Process id of a child process whose forking triggered this
7631 catchpoint. This field is only valid immediately after this
7632 catchpoint has triggered. */
7633 ptid_t forked_inferior_pid;
7634 };
7635
7636 /* Implement the "insert" breakpoint_ops method for fork
7637 catchpoints. */
7638
7639 static int
7640 insert_catch_fork (struct bp_location *bl)
7641 {
7642 return target_insert_fork_catchpoint (inferior_ptid.pid ());
7643 }
7644
7645 /* Implement the "remove" breakpoint_ops method for fork
7646 catchpoints. */
7647
7648 static int
7649 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7650 {
7651 return target_remove_fork_catchpoint (inferior_ptid.pid ());
7652 }
7653
7654 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7655 catchpoints. */
7656
7657 static int
7658 breakpoint_hit_catch_fork (const struct bp_location *bl,
7659 const address_space *aspace, CORE_ADDR bp_addr,
7660 const struct target_waitstatus *ws)
7661 {
7662 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7663
7664 if (ws->kind != TARGET_WAITKIND_FORKED)
7665 return 0;
7666
7667 c->forked_inferior_pid = ws->value.related_pid;
7668 return 1;
7669 }
7670
7671 /* Implement the "print_it" breakpoint_ops method for fork
7672 catchpoints. */
7673
7674 static enum print_stop_action
7675 print_it_catch_fork (bpstat bs)
7676 {
7677 struct ui_out *uiout = current_uiout;
7678 struct breakpoint *b = bs->breakpoint_at;
7679 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7680
7681 annotate_catchpoint (b->number);
7682 maybe_print_thread_hit_breakpoint (uiout);
7683 if (b->disposition == disp_del)
7684 uiout->text ("Temporary catchpoint ");
7685 else
7686 uiout->text ("Catchpoint ");
7687 if (uiout->is_mi_like_p ())
7688 {
7689 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7690 uiout->field_string ("disp", bpdisp_text (b->disposition));
7691 }
7692 uiout->field_signed ("bkptno", b->number);
7693 uiout->text (" (forked process ");
7694 uiout->field_signed ("newpid", c->forked_inferior_pid.pid ());
7695 uiout->text ("), ");
7696 return PRINT_SRC_AND_LOC;
7697 }
7698
7699 /* Implement the "print_one" breakpoint_ops method for fork
7700 catchpoints. */
7701
7702 static void
7703 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7704 {
7705 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7706 struct value_print_options opts;
7707 struct ui_out *uiout = current_uiout;
7708
7709 get_user_print_options (&opts);
7710
7711 /* Field 4, the address, is omitted (which makes the columns not
7712 line up too nicely with the headers, but the effect is relatively
7713 readable). */
7714 if (opts.addressprint)
7715 uiout->field_skip ("addr");
7716 annotate_field (5);
7717 uiout->text ("fork");
7718 if (c->forked_inferior_pid != null_ptid)
7719 {
7720 uiout->text (", process ");
7721 uiout->field_signed ("what", c->forked_inferior_pid.pid ());
7722 uiout->spaces (1);
7723 }
7724
7725 if (uiout->is_mi_like_p ())
7726 uiout->field_string ("catch-type", "fork");
7727 }
7728
7729 /* Implement the "print_mention" breakpoint_ops method for fork
7730 catchpoints. */
7731
7732 static void
7733 print_mention_catch_fork (struct breakpoint *b)
7734 {
7735 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7736 }
7737
7738 /* Implement the "print_recreate" breakpoint_ops method for fork
7739 catchpoints. */
7740
7741 static void
7742 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7743 {
7744 fprintf_unfiltered (fp, "catch fork");
7745 print_recreate_thread (b, fp);
7746 }
7747
7748 /* The breakpoint_ops structure to be used in fork catchpoints. */
7749
7750 static struct breakpoint_ops catch_fork_breakpoint_ops;
7751
7752 /* Implement the "insert" breakpoint_ops method for vfork
7753 catchpoints. */
7754
7755 static int
7756 insert_catch_vfork (struct bp_location *bl)
7757 {
7758 return target_insert_vfork_catchpoint (inferior_ptid.pid ());
7759 }
7760
7761 /* Implement the "remove" breakpoint_ops method for vfork
7762 catchpoints. */
7763
7764 static int
7765 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7766 {
7767 return target_remove_vfork_catchpoint (inferior_ptid.pid ());
7768 }
7769
7770 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7771 catchpoints. */
7772
7773 static int
7774 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7775 const address_space *aspace, CORE_ADDR bp_addr,
7776 const struct target_waitstatus *ws)
7777 {
7778 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7779
7780 if (ws->kind != TARGET_WAITKIND_VFORKED)
7781 return 0;
7782
7783 c->forked_inferior_pid = ws->value.related_pid;
7784 return 1;
7785 }
7786
7787 /* Implement the "print_it" breakpoint_ops method for vfork
7788 catchpoints. */
7789
7790 static enum print_stop_action
7791 print_it_catch_vfork (bpstat bs)
7792 {
7793 struct ui_out *uiout = current_uiout;
7794 struct breakpoint *b = bs->breakpoint_at;
7795 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7796
7797 annotate_catchpoint (b->number);
7798 maybe_print_thread_hit_breakpoint (uiout);
7799 if (b->disposition == disp_del)
7800 uiout->text ("Temporary catchpoint ");
7801 else
7802 uiout->text ("Catchpoint ");
7803 if (uiout->is_mi_like_p ())
7804 {
7805 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7806 uiout->field_string ("disp", bpdisp_text (b->disposition));
7807 }
7808 uiout->field_signed ("bkptno", b->number);
7809 uiout->text (" (vforked process ");
7810 uiout->field_signed ("newpid", c->forked_inferior_pid.pid ());
7811 uiout->text ("), ");
7812 return PRINT_SRC_AND_LOC;
7813 }
7814
7815 /* Implement the "print_one" breakpoint_ops method for vfork
7816 catchpoints. */
7817
7818 static void
7819 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7820 {
7821 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7822 struct value_print_options opts;
7823 struct ui_out *uiout = current_uiout;
7824
7825 get_user_print_options (&opts);
7826 /* Field 4, the address, is omitted (which makes the columns not
7827 line up too nicely with the headers, but the effect is relatively
7828 readable). */
7829 if (opts.addressprint)
7830 uiout->field_skip ("addr");
7831 annotate_field (5);
7832 uiout->text ("vfork");
7833 if (c->forked_inferior_pid != null_ptid)
7834 {
7835 uiout->text (", process ");
7836 uiout->field_signed ("what", c->forked_inferior_pid.pid ());
7837 uiout->spaces (1);
7838 }
7839
7840 if (uiout->is_mi_like_p ())
7841 uiout->field_string ("catch-type", "vfork");
7842 }
7843
7844 /* Implement the "print_mention" breakpoint_ops method for vfork
7845 catchpoints. */
7846
7847 static void
7848 print_mention_catch_vfork (struct breakpoint *b)
7849 {
7850 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7851 }
7852
7853 /* Implement the "print_recreate" breakpoint_ops method for vfork
7854 catchpoints. */
7855
7856 static void
7857 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7858 {
7859 fprintf_unfiltered (fp, "catch vfork");
7860 print_recreate_thread (b, fp);
7861 }
7862
7863 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7864
7865 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7866
7867 /* An instance of this type is used to represent an solib catchpoint.
7868 A breakpoint is really of this type iff its ops pointer points to
7869 CATCH_SOLIB_BREAKPOINT_OPS. */
7870
7871 struct solib_catchpoint : public breakpoint
7872 {
7873 ~solib_catchpoint () override;
7874
7875 /* True for "catch load", false for "catch unload". */
7876 unsigned char is_load;
7877
7878 /* Regular expression to match, if any. COMPILED is only valid when
7879 REGEX is non-NULL. */
7880 char *regex;
7881 std::unique_ptr<compiled_regex> compiled;
7882 };
7883
7884 solib_catchpoint::~solib_catchpoint ()
7885 {
7886 xfree (this->regex);
7887 }
7888
7889 static int
7890 insert_catch_solib (struct bp_location *ignore)
7891 {
7892 return 0;
7893 }
7894
7895 static int
7896 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7897 {
7898 return 0;
7899 }
7900
7901 static int
7902 breakpoint_hit_catch_solib (const struct bp_location *bl,
7903 const address_space *aspace,
7904 CORE_ADDR bp_addr,
7905 const struct target_waitstatus *ws)
7906 {
7907 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7908 struct breakpoint *other;
7909
7910 if (ws->kind == TARGET_WAITKIND_LOADED)
7911 return 1;
7912
7913 ALL_BREAKPOINTS (other)
7914 {
7915 struct bp_location *other_bl;
7916
7917 if (other == bl->owner)
7918 continue;
7919
7920 if (other->type != bp_shlib_event)
7921 continue;
7922
7923 if (self->pspace != NULL && other->pspace != self->pspace)
7924 continue;
7925
7926 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7927 {
7928 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7929 return 1;
7930 }
7931 }
7932
7933 return 0;
7934 }
7935
7936 static void
7937 check_status_catch_solib (struct bpstats *bs)
7938 {
7939 struct solib_catchpoint *self
7940 = (struct solib_catchpoint *) bs->breakpoint_at;
7941
7942 if (self->is_load)
7943 {
7944 for (so_list *iter : current_program_space->added_solibs)
7945 {
7946 if (!self->regex
7947 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
7948 return;
7949 }
7950 }
7951 else
7952 {
7953 for (const std::string &iter : current_program_space->deleted_solibs)
7954 {
7955 if (!self->regex
7956 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
7957 return;
7958 }
7959 }
7960
7961 bs->stop = 0;
7962 bs->print_it = print_it_noop;
7963 }
7964
7965 static enum print_stop_action
7966 print_it_catch_solib (bpstat bs)
7967 {
7968 struct breakpoint *b = bs->breakpoint_at;
7969 struct ui_out *uiout = current_uiout;
7970
7971 annotate_catchpoint (b->number);
7972 maybe_print_thread_hit_breakpoint (uiout);
7973 if (b->disposition == disp_del)
7974 uiout->text ("Temporary catchpoint ");
7975 else
7976 uiout->text ("Catchpoint ");
7977 uiout->field_signed ("bkptno", b->number);
7978 uiout->text ("\n");
7979 if (uiout->is_mi_like_p ())
7980 uiout->field_string ("disp", bpdisp_text (b->disposition));
7981 print_solib_event (1);
7982 return PRINT_SRC_AND_LOC;
7983 }
7984
7985 static void
7986 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
7987 {
7988 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7989 struct value_print_options opts;
7990 struct ui_out *uiout = current_uiout;
7991
7992 get_user_print_options (&opts);
7993 /* Field 4, the address, is omitted (which makes the columns not
7994 line up too nicely with the headers, but the effect is relatively
7995 readable). */
7996 if (opts.addressprint)
7997 {
7998 annotate_field (4);
7999 uiout->field_skip ("addr");
8000 }
8001
8002 std::string msg;
8003 annotate_field (5);
8004 if (self->is_load)
8005 {
8006 if (self->regex)
8007 msg = string_printf (_("load of library matching %s"), self->regex);
8008 else
8009 msg = _("load of library");
8010 }
8011 else
8012 {
8013 if (self->regex)
8014 msg = string_printf (_("unload of library matching %s"), self->regex);
8015 else
8016 msg = _("unload of library");
8017 }
8018 uiout->field_string ("what", msg);
8019
8020 if (uiout->is_mi_like_p ())
8021 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8022 }
8023
8024 static void
8025 print_mention_catch_solib (struct breakpoint *b)
8026 {
8027 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8028
8029 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8030 self->is_load ? "load" : "unload");
8031 }
8032
8033 static void
8034 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8035 {
8036 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8037
8038 fprintf_unfiltered (fp, "%s %s",
8039 b->disposition == disp_del ? "tcatch" : "catch",
8040 self->is_load ? "load" : "unload");
8041 if (self->regex)
8042 fprintf_unfiltered (fp, " %s", self->regex);
8043 fprintf_unfiltered (fp, "\n");
8044 }
8045
8046 static struct breakpoint_ops catch_solib_breakpoint_ops;
8047
8048 /* Shared helper function (MI and CLI) for creating and installing
8049 a shared object event catchpoint. If IS_LOAD is non-zero then
8050 the events to be caught are load events, otherwise they are
8051 unload events. If IS_TEMP is non-zero the catchpoint is a
8052 temporary one. If ENABLED is non-zero the catchpoint is
8053 created in an enabled state. */
8054
8055 void
8056 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8057 {
8058 struct gdbarch *gdbarch = get_current_arch ();
8059
8060 if (!arg)
8061 arg = "";
8062 arg = skip_spaces (arg);
8063
8064 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8065
8066 if (*arg != '\0')
8067 {
8068 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8069 _("Invalid regexp")));
8070 c->regex = xstrdup (arg);
8071 }
8072
8073 c->is_load = is_load;
8074 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8075 &catch_solib_breakpoint_ops);
8076
8077 c->enable_state = enabled ? bp_enabled : bp_disabled;
8078
8079 install_breakpoint (0, std::move (c), 1);
8080 }
8081
8082 /* A helper function that does all the work for "catch load" and
8083 "catch unload". */
8084
8085 static void
8086 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8087 struct cmd_list_element *command)
8088 {
8089 int tempflag;
8090 const int enabled = 1;
8091
8092 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8093
8094 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8095 }
8096
8097 static void
8098 catch_load_command_1 (const char *arg, int from_tty,
8099 struct cmd_list_element *command)
8100 {
8101 catch_load_or_unload (arg, from_tty, 1, command);
8102 }
8103
8104 static void
8105 catch_unload_command_1 (const char *arg, int from_tty,
8106 struct cmd_list_element *command)
8107 {
8108 catch_load_or_unload (arg, from_tty, 0, command);
8109 }
8110
8111 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8112 is non-zero, then make the breakpoint temporary. If COND_STRING is
8113 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8114 the breakpoint_ops structure associated to the catchpoint. */
8115
8116 void
8117 init_catchpoint (struct breakpoint *b,
8118 struct gdbarch *gdbarch, int tempflag,
8119 const char *cond_string,
8120 const struct breakpoint_ops *ops)
8121 {
8122 symtab_and_line sal;
8123 sal.pspace = current_program_space;
8124
8125 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8126
8127 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8128 b->disposition = tempflag ? disp_del : disp_donttouch;
8129 }
8130
8131 void
8132 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8133 {
8134 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8135 set_breakpoint_number (internal, b);
8136 if (is_tracepoint (b))
8137 set_tracepoint_count (breakpoint_count);
8138 if (!internal)
8139 mention (b);
8140 gdb::observers::breakpoint_created.notify (b);
8141
8142 if (update_gll)
8143 update_global_location_list (UGLL_MAY_INSERT);
8144 }
8145
8146 static void
8147 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8148 int tempflag, const char *cond_string,
8149 const struct breakpoint_ops *ops)
8150 {
8151 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8152
8153 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8154
8155 c->forked_inferior_pid = null_ptid;
8156
8157 install_breakpoint (0, std::move (c), 1);
8158 }
8159
8160 /* Exec catchpoints. */
8161
8162 /* An instance of this type is used to represent an exec catchpoint.
8163 A breakpoint is really of this type iff its ops pointer points to
8164 CATCH_EXEC_BREAKPOINT_OPS. */
8165
8166 struct exec_catchpoint : public breakpoint
8167 {
8168 ~exec_catchpoint () override;
8169
8170 /* Filename of a program whose exec triggered this catchpoint.
8171 This field is only valid immediately after this catchpoint has
8172 triggered. */
8173 char *exec_pathname;
8174 };
8175
8176 /* Exec catchpoint destructor. */
8177
8178 exec_catchpoint::~exec_catchpoint ()
8179 {
8180 xfree (this->exec_pathname);
8181 }
8182
8183 static int
8184 insert_catch_exec (struct bp_location *bl)
8185 {
8186 return target_insert_exec_catchpoint (inferior_ptid.pid ());
8187 }
8188
8189 static int
8190 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8191 {
8192 return target_remove_exec_catchpoint (inferior_ptid.pid ());
8193 }
8194
8195 static int
8196 breakpoint_hit_catch_exec (const struct bp_location *bl,
8197 const address_space *aspace, CORE_ADDR bp_addr,
8198 const struct target_waitstatus *ws)
8199 {
8200 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8201
8202 if (ws->kind != TARGET_WAITKIND_EXECD)
8203 return 0;
8204
8205 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8206 return 1;
8207 }
8208
8209 static enum print_stop_action
8210 print_it_catch_exec (bpstat bs)
8211 {
8212 struct ui_out *uiout = current_uiout;
8213 struct breakpoint *b = bs->breakpoint_at;
8214 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8215
8216 annotate_catchpoint (b->number);
8217 maybe_print_thread_hit_breakpoint (uiout);
8218 if (b->disposition == disp_del)
8219 uiout->text ("Temporary catchpoint ");
8220 else
8221 uiout->text ("Catchpoint ");
8222 if (uiout->is_mi_like_p ())
8223 {
8224 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8225 uiout->field_string ("disp", bpdisp_text (b->disposition));
8226 }
8227 uiout->field_signed ("bkptno", b->number);
8228 uiout->text (" (exec'd ");
8229 uiout->field_string ("new-exec", c->exec_pathname);
8230 uiout->text ("), ");
8231
8232 return PRINT_SRC_AND_LOC;
8233 }
8234
8235 static void
8236 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8237 {
8238 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8239 struct value_print_options opts;
8240 struct ui_out *uiout = current_uiout;
8241
8242 get_user_print_options (&opts);
8243
8244 /* Field 4, the address, is omitted (which makes the columns
8245 not line up too nicely with the headers, but the effect
8246 is relatively readable). */
8247 if (opts.addressprint)
8248 uiout->field_skip ("addr");
8249 annotate_field (5);
8250 uiout->text ("exec");
8251 if (c->exec_pathname != NULL)
8252 {
8253 uiout->text (", program \"");
8254 uiout->field_string ("what", c->exec_pathname);
8255 uiout->text ("\" ");
8256 }
8257
8258 if (uiout->is_mi_like_p ())
8259 uiout->field_string ("catch-type", "exec");
8260 }
8261
8262 static void
8263 print_mention_catch_exec (struct breakpoint *b)
8264 {
8265 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8266 }
8267
8268 /* Implement the "print_recreate" breakpoint_ops method for exec
8269 catchpoints. */
8270
8271 static void
8272 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8273 {
8274 fprintf_unfiltered (fp, "catch exec");
8275 print_recreate_thread (b, fp);
8276 }
8277
8278 static struct breakpoint_ops catch_exec_breakpoint_ops;
8279
8280 static int
8281 hw_breakpoint_used_count (void)
8282 {
8283 int i = 0;
8284 struct breakpoint *b;
8285 struct bp_location *bl;
8286
8287 ALL_BREAKPOINTS (b)
8288 {
8289 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8290 for (bl = b->loc; bl; bl = bl->next)
8291 {
8292 /* Special types of hardware breakpoints may use more than
8293 one register. */
8294 i += b->ops->resources_needed (bl);
8295 }
8296 }
8297
8298 return i;
8299 }
8300
8301 /* Returns the resources B would use if it were a hardware
8302 watchpoint. */
8303
8304 static int
8305 hw_watchpoint_use_count (struct breakpoint *b)
8306 {
8307 int i = 0;
8308 struct bp_location *bl;
8309
8310 if (!breakpoint_enabled (b))
8311 return 0;
8312
8313 for (bl = b->loc; bl; bl = bl->next)
8314 {
8315 /* Special types of hardware watchpoints may use more than
8316 one register. */
8317 i += b->ops->resources_needed (bl);
8318 }
8319
8320 return i;
8321 }
8322
8323 /* Returns the sum the used resources of all hardware watchpoints of
8324 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8325 the sum of the used resources of all hardware watchpoints of other
8326 types _not_ TYPE. */
8327
8328 static int
8329 hw_watchpoint_used_count_others (struct breakpoint *except,
8330 enum bptype type, int *other_type_used)
8331 {
8332 int i = 0;
8333 struct breakpoint *b;
8334
8335 *other_type_used = 0;
8336 ALL_BREAKPOINTS (b)
8337 {
8338 if (b == except)
8339 continue;
8340 if (!breakpoint_enabled (b))
8341 continue;
8342
8343 if (b->type == type)
8344 i += hw_watchpoint_use_count (b);
8345 else if (is_hardware_watchpoint (b))
8346 *other_type_used = 1;
8347 }
8348
8349 return i;
8350 }
8351
8352 void
8353 disable_watchpoints_before_interactive_call_start (void)
8354 {
8355 struct breakpoint *b;
8356
8357 ALL_BREAKPOINTS (b)
8358 {
8359 if (is_watchpoint (b) && breakpoint_enabled (b))
8360 {
8361 b->enable_state = bp_call_disabled;
8362 update_global_location_list (UGLL_DONT_INSERT);
8363 }
8364 }
8365 }
8366
8367 void
8368 enable_watchpoints_after_interactive_call_stop (void)
8369 {
8370 struct breakpoint *b;
8371
8372 ALL_BREAKPOINTS (b)
8373 {
8374 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8375 {
8376 b->enable_state = bp_enabled;
8377 update_global_location_list (UGLL_MAY_INSERT);
8378 }
8379 }
8380 }
8381
8382 void
8383 disable_breakpoints_before_startup (void)
8384 {
8385 current_program_space->executing_startup = 1;
8386 update_global_location_list (UGLL_DONT_INSERT);
8387 }
8388
8389 void
8390 enable_breakpoints_after_startup (void)
8391 {
8392 current_program_space->executing_startup = 0;
8393 breakpoint_re_set ();
8394 }
8395
8396 /* Create a new single-step breakpoint for thread THREAD, with no
8397 locations. */
8398
8399 static struct breakpoint *
8400 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8401 {
8402 std::unique_ptr<breakpoint> b (new breakpoint ());
8403
8404 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8405 &momentary_breakpoint_ops);
8406
8407 b->disposition = disp_donttouch;
8408 b->frame_id = null_frame_id;
8409
8410 b->thread = thread;
8411 gdb_assert (b->thread != 0);
8412
8413 return add_to_breakpoint_chain (std::move (b));
8414 }
8415
8416 /* Set a momentary breakpoint of type TYPE at address specified by
8417 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8418 frame. */
8419
8420 breakpoint_up
8421 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8422 struct frame_id frame_id, enum bptype type)
8423 {
8424 struct breakpoint *b;
8425
8426 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8427 tail-called one. */
8428 gdb_assert (!frame_id_artificial_p (frame_id));
8429
8430 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8431 b->enable_state = bp_enabled;
8432 b->disposition = disp_donttouch;
8433 b->frame_id = frame_id;
8434
8435 b->thread = inferior_thread ()->global_num;
8436
8437 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8438
8439 return breakpoint_up (b);
8440 }
8441
8442 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8443 The new breakpoint will have type TYPE, use OPS as its
8444 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8445
8446 static struct breakpoint *
8447 momentary_breakpoint_from_master (struct breakpoint *orig,
8448 enum bptype type,
8449 const struct breakpoint_ops *ops,
8450 int loc_enabled)
8451 {
8452 struct breakpoint *copy;
8453
8454 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8455 copy->loc = allocate_bp_location (copy);
8456 set_breakpoint_location_function (copy->loc);
8457
8458 copy->loc->gdbarch = orig->loc->gdbarch;
8459 copy->loc->requested_address = orig->loc->requested_address;
8460 copy->loc->address = orig->loc->address;
8461 copy->loc->section = orig->loc->section;
8462 copy->loc->pspace = orig->loc->pspace;
8463 copy->loc->probe = orig->loc->probe;
8464 copy->loc->line_number = orig->loc->line_number;
8465 copy->loc->symtab = orig->loc->symtab;
8466 copy->loc->enabled = loc_enabled;
8467 copy->frame_id = orig->frame_id;
8468 copy->thread = orig->thread;
8469 copy->pspace = orig->pspace;
8470
8471 copy->enable_state = bp_enabled;
8472 copy->disposition = disp_donttouch;
8473 copy->number = internal_breakpoint_number--;
8474
8475 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8476 return copy;
8477 }
8478
8479 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8480 ORIG is NULL. */
8481
8482 struct breakpoint *
8483 clone_momentary_breakpoint (struct breakpoint *orig)
8484 {
8485 /* If there's nothing to clone, then return nothing. */
8486 if (orig == NULL)
8487 return NULL;
8488
8489 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8490 }
8491
8492 breakpoint_up
8493 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8494 enum bptype type)
8495 {
8496 struct symtab_and_line sal;
8497
8498 sal = find_pc_line (pc, 0);
8499 sal.pc = pc;
8500 sal.section = find_pc_overlay (pc);
8501 sal.explicit_pc = 1;
8502
8503 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8504 }
8505 \f
8506
8507 /* Tell the user we have just set a breakpoint B. */
8508
8509 static void
8510 mention (struct breakpoint *b)
8511 {
8512 b->ops->print_mention (b);
8513 current_uiout->text ("\n");
8514 }
8515 \f
8516
8517 static int bp_loc_is_permanent (struct bp_location *loc);
8518
8519 static struct bp_location *
8520 add_location_to_breakpoint (struct breakpoint *b,
8521 const struct symtab_and_line *sal)
8522 {
8523 struct bp_location *loc, **tmp;
8524 CORE_ADDR adjusted_address;
8525 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8526
8527 if (loc_gdbarch == NULL)
8528 loc_gdbarch = b->gdbarch;
8529
8530 /* Adjust the breakpoint's address prior to allocating a location.
8531 Once we call allocate_bp_location(), that mostly uninitialized
8532 location will be placed on the location chain. Adjustment of the
8533 breakpoint may cause target_read_memory() to be called and we do
8534 not want its scan of the location chain to find a breakpoint and
8535 location that's only been partially initialized. */
8536 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8537 sal->pc, b->type);
8538
8539 /* Sort the locations by their ADDRESS. */
8540 loc = allocate_bp_location (b);
8541 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8542 tmp = &((*tmp)->next))
8543 ;
8544 loc->next = *tmp;
8545 *tmp = loc;
8546
8547 loc->requested_address = sal->pc;
8548 loc->address = adjusted_address;
8549 loc->pspace = sal->pspace;
8550 loc->probe.prob = sal->prob;
8551 loc->probe.objfile = sal->objfile;
8552 gdb_assert (loc->pspace != NULL);
8553 loc->section = sal->section;
8554 loc->gdbarch = loc_gdbarch;
8555 loc->line_number = sal->line;
8556 loc->symtab = sal->symtab;
8557 loc->symbol = sal->symbol;
8558 loc->msymbol = sal->msymbol;
8559 loc->objfile = sal->objfile;
8560
8561 set_breakpoint_location_function (loc);
8562
8563 /* While by definition, permanent breakpoints are already present in the
8564 code, we don't mark the location as inserted. Normally one would expect
8565 that GDB could rely on that breakpoint instruction to stop the program,
8566 thus removing the need to insert its own breakpoint, except that executing
8567 the breakpoint instruction can kill the target instead of reporting a
8568 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8569 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8570 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8571 breakpoint be inserted normally results in QEMU knowing about the GDB
8572 breakpoint, and thus trap before the breakpoint instruction is executed.
8573 (If GDB later needs to continue execution past the permanent breakpoint,
8574 it manually increments the PC, thus avoiding executing the breakpoint
8575 instruction.) */
8576 if (bp_loc_is_permanent (loc))
8577 loc->permanent = 1;
8578
8579 return loc;
8580 }
8581 \f
8582
8583 /* See breakpoint.h. */
8584
8585 int
8586 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8587 {
8588 int len;
8589 CORE_ADDR addr;
8590 const gdb_byte *bpoint;
8591 gdb_byte *target_mem;
8592
8593 addr = address;
8594 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8595
8596 /* Software breakpoints unsupported? */
8597 if (bpoint == NULL)
8598 return 0;
8599
8600 target_mem = (gdb_byte *) alloca (len);
8601
8602 /* Enable the automatic memory restoration from breakpoints while
8603 we read the memory. Otherwise we could say about our temporary
8604 breakpoints they are permanent. */
8605 scoped_restore restore_memory
8606 = make_scoped_restore_show_memory_breakpoints (0);
8607
8608 if (target_read_memory (address, target_mem, len) == 0
8609 && memcmp (target_mem, bpoint, len) == 0)
8610 return 1;
8611
8612 return 0;
8613 }
8614
8615 /* Return 1 if LOC is pointing to a permanent breakpoint,
8616 return 0 otherwise. */
8617
8618 static int
8619 bp_loc_is_permanent (struct bp_location *loc)
8620 {
8621 gdb_assert (loc != NULL);
8622
8623 /* If we have a non-breakpoint-backed catchpoint or a software
8624 watchpoint, just return 0. We should not attempt to read from
8625 the addresses the locations of these breakpoint types point to.
8626 program_breakpoint_here_p, below, will attempt to read
8627 memory. */
8628 if (!bl_address_is_meaningful (loc))
8629 return 0;
8630
8631 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8632 switch_to_program_space_and_thread (loc->pspace);
8633 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8634 }
8635
8636 /* Build a command list for the dprintf corresponding to the current
8637 settings of the dprintf style options. */
8638
8639 static void
8640 update_dprintf_command_list (struct breakpoint *b)
8641 {
8642 char *dprintf_args = b->extra_string;
8643 char *printf_line = NULL;
8644
8645 if (!dprintf_args)
8646 return;
8647
8648 dprintf_args = skip_spaces (dprintf_args);
8649
8650 /* Allow a comma, as it may have terminated a location, but don't
8651 insist on it. */
8652 if (*dprintf_args == ',')
8653 ++dprintf_args;
8654 dprintf_args = skip_spaces (dprintf_args);
8655
8656 if (*dprintf_args != '"')
8657 error (_("Bad format string, missing '\"'."));
8658
8659 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8660 printf_line = xstrprintf ("printf %s", dprintf_args);
8661 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8662 {
8663 if (!dprintf_function)
8664 error (_("No function supplied for dprintf call"));
8665
8666 if (dprintf_channel && strlen (dprintf_channel) > 0)
8667 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8668 dprintf_function,
8669 dprintf_channel,
8670 dprintf_args);
8671 else
8672 printf_line = xstrprintf ("call (void) %s (%s)",
8673 dprintf_function,
8674 dprintf_args);
8675 }
8676 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8677 {
8678 if (target_can_run_breakpoint_commands ())
8679 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8680 else
8681 {
8682 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8683 printf_line = xstrprintf ("printf %s", dprintf_args);
8684 }
8685 }
8686 else
8687 internal_error (__FILE__, __LINE__,
8688 _("Invalid dprintf style."));
8689
8690 gdb_assert (printf_line != NULL);
8691
8692 /* Manufacture a printf sequence. */
8693 struct command_line *printf_cmd_line
8694 = new struct command_line (simple_control, printf_line);
8695 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8696 command_lines_deleter ()));
8697 }
8698
8699 /* Update all dprintf commands, making their command lists reflect
8700 current style settings. */
8701
8702 static void
8703 update_dprintf_commands (const char *args, int from_tty,
8704 struct cmd_list_element *c)
8705 {
8706 struct breakpoint *b;
8707
8708 ALL_BREAKPOINTS (b)
8709 {
8710 if (b->type == bp_dprintf)
8711 update_dprintf_command_list (b);
8712 }
8713 }
8714
8715 /* Create a breakpoint with SAL as location. Use LOCATION
8716 as a description of the location, and COND_STRING
8717 as condition expression. If LOCATION is NULL then create an
8718 "address location" from the address in the SAL. */
8719
8720 static void
8721 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8722 gdb::array_view<const symtab_and_line> sals,
8723 event_location_up &&location,
8724 gdb::unique_xmalloc_ptr<char> filter,
8725 gdb::unique_xmalloc_ptr<char> cond_string,
8726 gdb::unique_xmalloc_ptr<char> extra_string,
8727 enum bptype type, enum bpdisp disposition,
8728 int thread, int task, int ignore_count,
8729 const struct breakpoint_ops *ops, int from_tty,
8730 int enabled, int internal, unsigned flags,
8731 int display_canonical)
8732 {
8733 int i;
8734
8735 if (type == bp_hardware_breakpoint)
8736 {
8737 int target_resources_ok;
8738
8739 i = hw_breakpoint_used_count ();
8740 target_resources_ok =
8741 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8742 i + 1, 0);
8743 if (target_resources_ok == 0)
8744 error (_("No hardware breakpoint support in the target."));
8745 else if (target_resources_ok < 0)
8746 error (_("Hardware breakpoints used exceeds limit."));
8747 }
8748
8749 gdb_assert (!sals.empty ());
8750
8751 for (const auto &sal : sals)
8752 {
8753 struct bp_location *loc;
8754
8755 if (from_tty)
8756 {
8757 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8758 if (!loc_gdbarch)
8759 loc_gdbarch = gdbarch;
8760
8761 describe_other_breakpoints (loc_gdbarch,
8762 sal.pspace, sal.pc, sal.section, thread);
8763 }
8764
8765 if (&sal == &sals[0])
8766 {
8767 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8768 b->thread = thread;
8769 b->task = task;
8770
8771 b->cond_string = cond_string.release ();
8772 b->extra_string = extra_string.release ();
8773 b->ignore_count = ignore_count;
8774 b->enable_state = enabled ? bp_enabled : bp_disabled;
8775 b->disposition = disposition;
8776
8777 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8778 b->loc->inserted = 1;
8779
8780 if (type == bp_static_tracepoint)
8781 {
8782 struct tracepoint *t = (struct tracepoint *) b;
8783 struct static_tracepoint_marker marker;
8784
8785 if (strace_marker_p (b))
8786 {
8787 /* We already know the marker exists, otherwise, we
8788 wouldn't see a sal for it. */
8789 const char *p
8790 = &event_location_to_string (b->location.get ())[3];
8791 const char *endp;
8792
8793 p = skip_spaces (p);
8794
8795 endp = skip_to_space (p);
8796
8797 t->static_trace_marker_id.assign (p, endp - p);
8798
8799 printf_filtered (_("Probed static tracepoint "
8800 "marker \"%s\"\n"),
8801 t->static_trace_marker_id.c_str ());
8802 }
8803 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8804 {
8805 t->static_trace_marker_id = std::move (marker.str_id);
8806
8807 printf_filtered (_("Probed static tracepoint "
8808 "marker \"%s\"\n"),
8809 t->static_trace_marker_id.c_str ());
8810 }
8811 else
8812 warning (_("Couldn't determine the static "
8813 "tracepoint marker to probe"));
8814 }
8815
8816 loc = b->loc;
8817 }
8818 else
8819 {
8820 loc = add_location_to_breakpoint (b, &sal);
8821 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8822 loc->inserted = 1;
8823 }
8824
8825 if (b->cond_string)
8826 {
8827 const char *arg = b->cond_string;
8828
8829 loc->cond = parse_exp_1 (&arg, loc->address,
8830 block_for_pc (loc->address), 0);
8831 if (*arg)
8832 error (_("Garbage '%s' follows condition"), arg);
8833 }
8834
8835 /* Dynamic printf requires and uses additional arguments on the
8836 command line, otherwise it's an error. */
8837 if (type == bp_dprintf)
8838 {
8839 if (b->extra_string)
8840 update_dprintf_command_list (b);
8841 else
8842 error (_("Format string required"));
8843 }
8844 else if (b->extra_string)
8845 error (_("Garbage '%s' at end of command"), b->extra_string);
8846 }
8847
8848 b->display_canonical = display_canonical;
8849 if (location != NULL)
8850 b->location = std::move (location);
8851 else
8852 b->location = new_address_location (b->loc->address, NULL, 0);
8853 b->filter = std::move (filter);
8854 }
8855
8856 static void
8857 create_breakpoint_sal (struct gdbarch *gdbarch,
8858 gdb::array_view<const symtab_and_line> sals,
8859 event_location_up &&location,
8860 gdb::unique_xmalloc_ptr<char> filter,
8861 gdb::unique_xmalloc_ptr<char> cond_string,
8862 gdb::unique_xmalloc_ptr<char> extra_string,
8863 enum bptype type, enum bpdisp disposition,
8864 int thread, int task, int ignore_count,
8865 const struct breakpoint_ops *ops, int from_tty,
8866 int enabled, int internal, unsigned flags,
8867 int display_canonical)
8868 {
8869 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8870
8871 init_breakpoint_sal (b.get (), gdbarch,
8872 sals, std::move (location),
8873 std::move (filter),
8874 std::move (cond_string),
8875 std::move (extra_string),
8876 type, disposition,
8877 thread, task, ignore_count,
8878 ops, from_tty,
8879 enabled, internal, flags,
8880 display_canonical);
8881
8882 install_breakpoint (internal, std::move (b), 0);
8883 }
8884
8885 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8886 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8887 value. COND_STRING, if not NULL, specified the condition to be
8888 used for all breakpoints. Essentially the only case where
8889 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8890 function. In that case, it's still not possible to specify
8891 separate conditions for different overloaded functions, so
8892 we take just a single condition string.
8893
8894 NOTE: If the function succeeds, the caller is expected to cleanup
8895 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8896 array contents). If the function fails (error() is called), the
8897 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8898 COND and SALS arrays and each of those arrays contents. */
8899
8900 static void
8901 create_breakpoints_sal (struct gdbarch *gdbarch,
8902 struct linespec_result *canonical,
8903 gdb::unique_xmalloc_ptr<char> cond_string,
8904 gdb::unique_xmalloc_ptr<char> extra_string,
8905 enum bptype type, enum bpdisp disposition,
8906 int thread, int task, int ignore_count,
8907 const struct breakpoint_ops *ops, int from_tty,
8908 int enabled, int internal, unsigned flags)
8909 {
8910 if (canonical->pre_expanded)
8911 gdb_assert (canonical->lsals.size () == 1);
8912
8913 for (const auto &lsal : canonical->lsals)
8914 {
8915 /* Note that 'location' can be NULL in the case of a plain
8916 'break', without arguments. */
8917 event_location_up location
8918 = (canonical->location != NULL
8919 ? copy_event_location (canonical->location.get ()) : NULL);
8920 gdb::unique_xmalloc_ptr<char> filter_string
8921 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
8922
8923 create_breakpoint_sal (gdbarch, lsal.sals,
8924 std::move (location),
8925 std::move (filter_string),
8926 std::move (cond_string),
8927 std::move (extra_string),
8928 type, disposition,
8929 thread, task, ignore_count, ops,
8930 from_tty, enabled, internal, flags,
8931 canonical->special_display);
8932 }
8933 }
8934
8935 /* Parse LOCATION which is assumed to be a SAL specification possibly
8936 followed by conditionals. On return, SALS contains an array of SAL
8937 addresses found. LOCATION points to the end of the SAL (for
8938 linespec locations).
8939
8940 The array and the line spec strings are allocated on the heap, it is
8941 the caller's responsibility to free them. */
8942
8943 static void
8944 parse_breakpoint_sals (const struct event_location *location,
8945 struct linespec_result *canonical)
8946 {
8947 struct symtab_and_line cursal;
8948
8949 if (event_location_type (location) == LINESPEC_LOCATION)
8950 {
8951 const char *spec = get_linespec_location (location)->spec_string;
8952
8953 if (spec == NULL)
8954 {
8955 /* The last displayed codepoint, if it's valid, is our default
8956 breakpoint address. */
8957 if (last_displayed_sal_is_valid ())
8958 {
8959 /* Set sal's pspace, pc, symtab, and line to the values
8960 corresponding to the last call to print_frame_info.
8961 Be sure to reinitialize LINE with NOTCURRENT == 0
8962 as the breakpoint line number is inappropriate otherwise.
8963 find_pc_line would adjust PC, re-set it back. */
8964 symtab_and_line sal = get_last_displayed_sal ();
8965 CORE_ADDR pc = sal.pc;
8966
8967 sal = find_pc_line (pc, 0);
8968
8969 /* "break" without arguments is equivalent to "break *PC"
8970 where PC is the last displayed codepoint's address. So
8971 make sure to set sal.explicit_pc to prevent GDB from
8972 trying to expand the list of sals to include all other
8973 instances with the same symtab and line. */
8974 sal.pc = pc;
8975 sal.explicit_pc = 1;
8976
8977 struct linespec_sals lsal;
8978 lsal.sals = {sal};
8979 lsal.canonical = NULL;
8980
8981 canonical->lsals.push_back (std::move (lsal));
8982 return;
8983 }
8984 else
8985 error (_("No default breakpoint address now."));
8986 }
8987 }
8988
8989 /* Force almost all breakpoints to be in terms of the
8990 current_source_symtab (which is decode_line_1's default).
8991 This should produce the results we want almost all of the
8992 time while leaving default_breakpoint_* alone.
8993
8994 ObjC: However, don't match an Objective-C method name which
8995 may have a '+' or '-' succeeded by a '['. */
8996 cursal = get_current_source_symtab_and_line ();
8997 if (last_displayed_sal_is_valid ())
8998 {
8999 const char *spec = NULL;
9000
9001 if (event_location_type (location) == LINESPEC_LOCATION)
9002 spec = get_linespec_location (location)->spec_string;
9003
9004 if (!cursal.symtab
9005 || (spec != NULL
9006 && strchr ("+-", spec[0]) != NULL
9007 && spec[1] != '['))
9008 {
9009 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9010 get_last_displayed_symtab (),
9011 get_last_displayed_line (),
9012 canonical, NULL, NULL);
9013 return;
9014 }
9015 }
9016
9017 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9018 cursal.symtab, cursal.line, canonical, NULL, NULL);
9019 }
9020
9021
9022 /* Convert each SAL into a real PC. Verify that the PC can be
9023 inserted as a breakpoint. If it can't throw an error. */
9024
9025 static void
9026 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9027 {
9028 for (auto &sal : sals)
9029 resolve_sal_pc (&sal);
9030 }
9031
9032 /* Fast tracepoints may have restrictions on valid locations. For
9033 instance, a fast tracepoint using a jump instead of a trap will
9034 likely have to overwrite more bytes than a trap would, and so can
9035 only be placed where the instruction is longer than the jump, or a
9036 multi-instruction sequence does not have a jump into the middle of
9037 it, etc. */
9038
9039 static void
9040 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9041 gdb::array_view<const symtab_and_line> sals)
9042 {
9043 for (const auto &sal : sals)
9044 {
9045 struct gdbarch *sarch;
9046
9047 sarch = get_sal_arch (sal);
9048 /* We fall back to GDBARCH if there is no architecture
9049 associated with SAL. */
9050 if (sarch == NULL)
9051 sarch = gdbarch;
9052 std::string msg;
9053 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9054 error (_("May not have a fast tracepoint at %s%s"),
9055 paddress (sarch, sal.pc), msg.c_str ());
9056 }
9057 }
9058
9059 /* Given TOK, a string specification of condition and thread, as
9060 accepted by the 'break' command, extract the condition
9061 string and thread number and set *COND_STRING and *THREAD.
9062 PC identifies the context at which the condition should be parsed.
9063 If no condition is found, *COND_STRING is set to NULL.
9064 If no thread is found, *THREAD is set to -1. */
9065
9066 static void
9067 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9068 char **cond_string, int *thread, int *task,
9069 char **rest)
9070 {
9071 *cond_string = NULL;
9072 *thread = -1;
9073 *task = 0;
9074 *rest = NULL;
9075
9076 while (tok && *tok)
9077 {
9078 const char *end_tok;
9079 int toklen;
9080 const char *cond_start = NULL;
9081 const char *cond_end = NULL;
9082
9083 tok = skip_spaces (tok);
9084
9085 if ((*tok == '"' || *tok == ',') && rest)
9086 {
9087 *rest = savestring (tok, strlen (tok));
9088 return;
9089 }
9090
9091 end_tok = skip_to_space (tok);
9092
9093 toklen = end_tok - tok;
9094
9095 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9096 {
9097 tok = cond_start = end_tok + 1;
9098 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9099 cond_end = tok;
9100 *cond_string = savestring (cond_start, cond_end - cond_start);
9101 }
9102 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9103 {
9104 const char *tmptok;
9105 struct thread_info *thr;
9106
9107 tok = end_tok + 1;
9108 thr = parse_thread_id (tok, &tmptok);
9109 if (tok == tmptok)
9110 error (_("Junk after thread keyword."));
9111 *thread = thr->global_num;
9112 tok = tmptok;
9113 }
9114 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9115 {
9116 char *tmptok;
9117
9118 tok = end_tok + 1;
9119 *task = strtol (tok, &tmptok, 0);
9120 if (tok == tmptok)
9121 error (_("Junk after task keyword."));
9122 if (!valid_task_id (*task))
9123 error (_("Unknown task %d."), *task);
9124 tok = tmptok;
9125 }
9126 else if (rest)
9127 {
9128 *rest = savestring (tok, strlen (tok));
9129 return;
9130 }
9131 else
9132 error (_("Junk at end of arguments."));
9133 }
9134 }
9135
9136 /* Decode a static tracepoint marker spec. */
9137
9138 static std::vector<symtab_and_line>
9139 decode_static_tracepoint_spec (const char **arg_p)
9140 {
9141 const char *p = &(*arg_p)[3];
9142 const char *endp;
9143
9144 p = skip_spaces (p);
9145
9146 endp = skip_to_space (p);
9147
9148 std::string marker_str (p, endp - p);
9149
9150 std::vector<static_tracepoint_marker> markers
9151 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9152 if (markers.empty ())
9153 error (_("No known static tracepoint marker named %s"),
9154 marker_str.c_str ());
9155
9156 std::vector<symtab_and_line> sals;
9157 sals.reserve (markers.size ());
9158
9159 for (const static_tracepoint_marker &marker : markers)
9160 {
9161 symtab_and_line sal = find_pc_line (marker.address, 0);
9162 sal.pc = marker.address;
9163 sals.push_back (sal);
9164 }
9165
9166 *arg_p = endp;
9167 return sals;
9168 }
9169
9170 /* See breakpoint.h. */
9171
9172 int
9173 create_breakpoint (struct gdbarch *gdbarch,
9174 const struct event_location *location,
9175 const char *cond_string,
9176 int thread, const char *extra_string,
9177 int parse_extra,
9178 int tempflag, enum bptype type_wanted,
9179 int ignore_count,
9180 enum auto_boolean pending_break_support,
9181 const struct breakpoint_ops *ops,
9182 int from_tty, int enabled, int internal,
9183 unsigned flags)
9184 {
9185 struct linespec_result canonical;
9186 int pending = 0;
9187 int task = 0;
9188 int prev_bkpt_count = breakpoint_count;
9189
9190 gdb_assert (ops != NULL);
9191
9192 /* If extra_string isn't useful, set it to NULL. */
9193 if (extra_string != NULL && *extra_string == '\0')
9194 extra_string = NULL;
9195
9196 try
9197 {
9198 ops->create_sals_from_location (location, &canonical, type_wanted);
9199 }
9200 catch (const gdb_exception_error &e)
9201 {
9202 /* If caller is interested in rc value from parse, set
9203 value. */
9204 if (e.error == NOT_FOUND_ERROR)
9205 {
9206 /* If pending breakpoint support is turned off, throw
9207 error. */
9208
9209 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9210 throw;
9211
9212 exception_print (gdb_stderr, e);
9213
9214 /* If pending breakpoint support is auto query and the user
9215 selects no, then simply return the error code. */
9216 if (pending_break_support == AUTO_BOOLEAN_AUTO
9217 && !nquery (_("Make %s pending on future shared library load? "),
9218 bptype_string (type_wanted)))
9219 return 0;
9220
9221 /* At this point, either the user was queried about setting
9222 a pending breakpoint and selected yes, or pending
9223 breakpoint behavior is on and thus a pending breakpoint
9224 is defaulted on behalf of the user. */
9225 pending = 1;
9226 }
9227 else
9228 throw;
9229 }
9230
9231 if (!pending && canonical.lsals.empty ())
9232 return 0;
9233
9234 /* Resolve all line numbers to PC's and verify that the addresses
9235 are ok for the target. */
9236 if (!pending)
9237 {
9238 for (auto &lsal : canonical.lsals)
9239 breakpoint_sals_to_pc (lsal.sals);
9240 }
9241
9242 /* Fast tracepoints may have additional restrictions on location. */
9243 if (!pending && type_wanted == bp_fast_tracepoint)
9244 {
9245 for (const auto &lsal : canonical.lsals)
9246 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9247 }
9248
9249 /* Verify that condition can be parsed, before setting any
9250 breakpoints. Allocate a separate condition expression for each
9251 breakpoint. */
9252 if (!pending)
9253 {
9254 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9255 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9256
9257 if (parse_extra)
9258 {
9259 char *rest;
9260 char *cond;
9261
9262 const linespec_sals &lsal = canonical.lsals[0];
9263
9264 /* Here we only parse 'arg' to separate condition
9265 from thread number, so parsing in context of first
9266 sal is OK. When setting the breakpoint we'll
9267 re-parse it in context of each sal. */
9268
9269 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9270 &cond, &thread, &task, &rest);
9271 cond_string_copy.reset (cond);
9272 extra_string_copy.reset (rest);
9273 }
9274 else
9275 {
9276 if (type_wanted != bp_dprintf
9277 && extra_string != NULL && *extra_string != '\0')
9278 error (_("Garbage '%s' at end of location"), extra_string);
9279
9280 /* Create a private copy of condition string. */
9281 if (cond_string)
9282 cond_string_copy.reset (xstrdup (cond_string));
9283 /* Create a private copy of any extra string. */
9284 if (extra_string)
9285 extra_string_copy.reset (xstrdup (extra_string));
9286 }
9287
9288 ops->create_breakpoints_sal (gdbarch, &canonical,
9289 std::move (cond_string_copy),
9290 std::move (extra_string_copy),
9291 type_wanted,
9292 tempflag ? disp_del : disp_donttouch,
9293 thread, task, ignore_count, ops,
9294 from_tty, enabled, internal, flags);
9295 }
9296 else
9297 {
9298 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9299
9300 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9301 b->location = copy_event_location (location);
9302
9303 if (parse_extra)
9304 b->cond_string = NULL;
9305 else
9306 {
9307 /* Create a private copy of condition string. */
9308 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9309 b->thread = thread;
9310 }
9311
9312 /* Create a private copy of any extra string. */
9313 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9314 b->ignore_count = ignore_count;
9315 b->disposition = tempflag ? disp_del : disp_donttouch;
9316 b->condition_not_parsed = 1;
9317 b->enable_state = enabled ? bp_enabled : bp_disabled;
9318 if ((type_wanted != bp_breakpoint
9319 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9320 b->pspace = current_program_space;
9321
9322 install_breakpoint (internal, std::move (b), 0);
9323 }
9324
9325 if (canonical.lsals.size () > 1)
9326 {
9327 warning (_("Multiple breakpoints were set.\nUse the "
9328 "\"delete\" command to delete unwanted breakpoints."));
9329 prev_breakpoint_count = prev_bkpt_count;
9330 }
9331
9332 update_global_location_list (UGLL_MAY_INSERT);
9333
9334 return 1;
9335 }
9336
9337 /* Set a breakpoint.
9338 ARG is a string describing breakpoint address,
9339 condition, and thread.
9340 FLAG specifies if a breakpoint is hardware on,
9341 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9342 and BP_TEMPFLAG. */
9343
9344 static void
9345 break_command_1 (const char *arg, int flag, int from_tty)
9346 {
9347 int tempflag = flag & BP_TEMPFLAG;
9348 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9349 ? bp_hardware_breakpoint
9350 : bp_breakpoint);
9351 struct breakpoint_ops *ops;
9352
9353 event_location_up location = string_to_event_location (&arg, current_language);
9354
9355 /* Matching breakpoints on probes. */
9356 if (location != NULL
9357 && event_location_type (location.get ()) == PROBE_LOCATION)
9358 ops = &bkpt_probe_breakpoint_ops;
9359 else
9360 ops = &bkpt_breakpoint_ops;
9361
9362 create_breakpoint (get_current_arch (),
9363 location.get (),
9364 NULL, 0, arg, 1 /* parse arg */,
9365 tempflag, type_wanted,
9366 0 /* Ignore count */,
9367 pending_break_support,
9368 ops,
9369 from_tty,
9370 1 /* enabled */,
9371 0 /* internal */,
9372 0);
9373 }
9374
9375 /* Helper function for break_command_1 and disassemble_command. */
9376
9377 void
9378 resolve_sal_pc (struct symtab_and_line *sal)
9379 {
9380 CORE_ADDR pc;
9381
9382 if (sal->pc == 0 && sal->symtab != NULL)
9383 {
9384 if (!find_line_pc (sal->symtab, sal->line, &pc))
9385 error (_("No line %d in file \"%s\"."),
9386 sal->line, symtab_to_filename_for_display (sal->symtab));
9387 sal->pc = pc;
9388
9389 /* If this SAL corresponds to a breakpoint inserted using a line
9390 number, then skip the function prologue if necessary. */
9391 if (sal->explicit_line)
9392 skip_prologue_sal (sal);
9393 }
9394
9395 if (sal->section == 0 && sal->symtab != NULL)
9396 {
9397 const struct blockvector *bv;
9398 const struct block *b;
9399 struct symbol *sym;
9400
9401 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9402 SYMTAB_COMPUNIT (sal->symtab));
9403 if (bv != NULL)
9404 {
9405 sym = block_linkage_function (b);
9406 if (sym != NULL)
9407 {
9408 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9409 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9410 sym);
9411 }
9412 else
9413 {
9414 /* It really is worthwhile to have the section, so we'll
9415 just have to look harder. This case can be executed
9416 if we have line numbers but no functions (as can
9417 happen in assembly source). */
9418
9419 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9420 switch_to_program_space_and_thread (sal->pspace);
9421
9422 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9423 if (msym.minsym)
9424 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9425 }
9426 }
9427 }
9428 }
9429
9430 void
9431 break_command (const char *arg, int from_tty)
9432 {
9433 break_command_1 (arg, 0, from_tty);
9434 }
9435
9436 void
9437 tbreak_command (const char *arg, int from_tty)
9438 {
9439 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9440 }
9441
9442 static void
9443 hbreak_command (const char *arg, int from_tty)
9444 {
9445 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9446 }
9447
9448 static void
9449 thbreak_command (const char *arg, int from_tty)
9450 {
9451 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9452 }
9453
9454 static void
9455 stop_command (const char *arg, int from_tty)
9456 {
9457 printf_filtered (_("Specify the type of breakpoint to set.\n\
9458 Usage: stop in <function | address>\n\
9459 stop at <line>\n"));
9460 }
9461
9462 static void
9463 stopin_command (const char *arg, int from_tty)
9464 {
9465 int badInput = 0;
9466
9467 if (arg == NULL)
9468 badInput = 1;
9469 else if (*arg != '*')
9470 {
9471 const char *argptr = arg;
9472 int hasColon = 0;
9473
9474 /* Look for a ':'. If this is a line number specification, then
9475 say it is bad, otherwise, it should be an address or
9476 function/method name. */
9477 while (*argptr && !hasColon)
9478 {
9479 hasColon = (*argptr == ':');
9480 argptr++;
9481 }
9482
9483 if (hasColon)
9484 badInput = (*argptr != ':'); /* Not a class::method */
9485 else
9486 badInput = isdigit (*arg); /* a simple line number */
9487 }
9488
9489 if (badInput)
9490 printf_filtered (_("Usage: stop in <function | address>\n"));
9491 else
9492 break_command_1 (arg, 0, from_tty);
9493 }
9494
9495 static void
9496 stopat_command (const char *arg, int from_tty)
9497 {
9498 int badInput = 0;
9499
9500 if (arg == NULL || *arg == '*') /* no line number */
9501 badInput = 1;
9502 else
9503 {
9504 const char *argptr = arg;
9505 int hasColon = 0;
9506
9507 /* Look for a ':'. If there is a '::' then get out, otherwise
9508 it is probably a line number. */
9509 while (*argptr && !hasColon)
9510 {
9511 hasColon = (*argptr == ':');
9512 argptr++;
9513 }
9514
9515 if (hasColon)
9516 badInput = (*argptr == ':'); /* we have class::method */
9517 else
9518 badInput = !isdigit (*arg); /* not a line number */
9519 }
9520
9521 if (badInput)
9522 printf_filtered (_("Usage: stop at LINE\n"));
9523 else
9524 break_command_1 (arg, 0, from_tty);
9525 }
9526
9527 /* The dynamic printf command is mostly like a regular breakpoint, but
9528 with a prewired command list consisting of a single output command,
9529 built from extra arguments supplied on the dprintf command
9530 line. */
9531
9532 static void
9533 dprintf_command (const char *arg, int from_tty)
9534 {
9535 event_location_up location = string_to_event_location (&arg, current_language);
9536
9537 /* If non-NULL, ARG should have been advanced past the location;
9538 the next character must be ','. */
9539 if (arg != NULL)
9540 {
9541 if (arg[0] != ',' || arg[1] == '\0')
9542 error (_("Format string required"));
9543 else
9544 {
9545 /* Skip the comma. */
9546 ++arg;
9547 }
9548 }
9549
9550 create_breakpoint (get_current_arch (),
9551 location.get (),
9552 NULL, 0, arg, 1 /* parse arg */,
9553 0, bp_dprintf,
9554 0 /* Ignore count */,
9555 pending_break_support,
9556 &dprintf_breakpoint_ops,
9557 from_tty,
9558 1 /* enabled */,
9559 0 /* internal */,
9560 0);
9561 }
9562
9563 static void
9564 agent_printf_command (const char *arg, int from_tty)
9565 {
9566 error (_("May only run agent-printf on the target"));
9567 }
9568
9569 /* Implement the "breakpoint_hit" breakpoint_ops method for
9570 ranged breakpoints. */
9571
9572 static int
9573 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9574 const address_space *aspace,
9575 CORE_ADDR bp_addr,
9576 const struct target_waitstatus *ws)
9577 {
9578 if (ws->kind != TARGET_WAITKIND_STOPPED
9579 || ws->value.sig != GDB_SIGNAL_TRAP)
9580 return 0;
9581
9582 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9583 bl->length, aspace, bp_addr);
9584 }
9585
9586 /* Implement the "resources_needed" breakpoint_ops method for
9587 ranged breakpoints. */
9588
9589 static int
9590 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9591 {
9592 return target_ranged_break_num_registers ();
9593 }
9594
9595 /* Implement the "print_it" breakpoint_ops method for
9596 ranged breakpoints. */
9597
9598 static enum print_stop_action
9599 print_it_ranged_breakpoint (bpstat bs)
9600 {
9601 struct breakpoint *b = bs->breakpoint_at;
9602 struct bp_location *bl = b->loc;
9603 struct ui_out *uiout = current_uiout;
9604
9605 gdb_assert (b->type == bp_hardware_breakpoint);
9606
9607 /* Ranged breakpoints have only one location. */
9608 gdb_assert (bl && bl->next == NULL);
9609
9610 annotate_breakpoint (b->number);
9611
9612 maybe_print_thread_hit_breakpoint (uiout);
9613
9614 if (b->disposition == disp_del)
9615 uiout->text ("Temporary ranged breakpoint ");
9616 else
9617 uiout->text ("Ranged breakpoint ");
9618 if (uiout->is_mi_like_p ())
9619 {
9620 uiout->field_string ("reason",
9621 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9622 uiout->field_string ("disp", bpdisp_text (b->disposition));
9623 }
9624 uiout->field_signed ("bkptno", b->number);
9625 uiout->text (", ");
9626
9627 return PRINT_SRC_AND_LOC;
9628 }
9629
9630 /* Implement the "print_one" breakpoint_ops method for
9631 ranged breakpoints. */
9632
9633 static void
9634 print_one_ranged_breakpoint (struct breakpoint *b,
9635 struct bp_location **last_loc)
9636 {
9637 struct bp_location *bl = b->loc;
9638 struct value_print_options opts;
9639 struct ui_out *uiout = current_uiout;
9640
9641 /* Ranged breakpoints have only one location. */
9642 gdb_assert (bl && bl->next == NULL);
9643
9644 get_user_print_options (&opts);
9645
9646 if (opts.addressprint)
9647 /* We don't print the address range here, it will be printed later
9648 by print_one_detail_ranged_breakpoint. */
9649 uiout->field_skip ("addr");
9650 annotate_field (5);
9651 print_breakpoint_location (b, bl);
9652 *last_loc = bl;
9653 }
9654
9655 /* Implement the "print_one_detail" breakpoint_ops method for
9656 ranged breakpoints. */
9657
9658 static void
9659 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9660 struct ui_out *uiout)
9661 {
9662 CORE_ADDR address_start, address_end;
9663 struct bp_location *bl = b->loc;
9664 string_file stb;
9665
9666 gdb_assert (bl);
9667
9668 address_start = bl->address;
9669 address_end = address_start + bl->length - 1;
9670
9671 uiout->text ("\taddress range: ");
9672 stb.printf ("[%s, %s]",
9673 print_core_address (bl->gdbarch, address_start),
9674 print_core_address (bl->gdbarch, address_end));
9675 uiout->field_stream ("addr", stb);
9676 uiout->text ("\n");
9677 }
9678
9679 /* Implement the "print_mention" breakpoint_ops method for
9680 ranged breakpoints. */
9681
9682 static void
9683 print_mention_ranged_breakpoint (struct breakpoint *b)
9684 {
9685 struct bp_location *bl = b->loc;
9686 struct ui_out *uiout = current_uiout;
9687
9688 gdb_assert (bl);
9689 gdb_assert (b->type == bp_hardware_breakpoint);
9690
9691 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9692 b->number, paddress (bl->gdbarch, bl->address),
9693 paddress (bl->gdbarch, bl->address + bl->length - 1));
9694 }
9695
9696 /* Implement the "print_recreate" breakpoint_ops method for
9697 ranged breakpoints. */
9698
9699 static void
9700 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9701 {
9702 fprintf_unfiltered (fp, "break-range %s, %s",
9703 event_location_to_string (b->location.get ()),
9704 event_location_to_string (b->location_range_end.get ()));
9705 print_recreate_thread (b, fp);
9706 }
9707
9708 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9709
9710 static struct breakpoint_ops ranged_breakpoint_ops;
9711
9712 /* Find the address where the end of the breakpoint range should be
9713 placed, given the SAL of the end of the range. This is so that if
9714 the user provides a line number, the end of the range is set to the
9715 last instruction of the given line. */
9716
9717 static CORE_ADDR
9718 find_breakpoint_range_end (struct symtab_and_line sal)
9719 {
9720 CORE_ADDR end;
9721
9722 /* If the user provided a PC value, use it. Otherwise,
9723 find the address of the end of the given location. */
9724 if (sal.explicit_pc)
9725 end = sal.pc;
9726 else
9727 {
9728 int ret;
9729 CORE_ADDR start;
9730
9731 ret = find_line_pc_range (sal, &start, &end);
9732 if (!ret)
9733 error (_("Could not find location of the end of the range."));
9734
9735 /* find_line_pc_range returns the start of the next line. */
9736 end--;
9737 }
9738
9739 return end;
9740 }
9741
9742 /* Implement the "break-range" CLI command. */
9743
9744 static void
9745 break_range_command (const char *arg, int from_tty)
9746 {
9747 const char *arg_start;
9748 struct linespec_result canonical_start, canonical_end;
9749 int bp_count, can_use_bp, length;
9750 CORE_ADDR end;
9751 struct breakpoint *b;
9752
9753 /* We don't support software ranged breakpoints. */
9754 if (target_ranged_break_num_registers () < 0)
9755 error (_("This target does not support hardware ranged breakpoints."));
9756
9757 bp_count = hw_breakpoint_used_count ();
9758 bp_count += target_ranged_break_num_registers ();
9759 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9760 bp_count, 0);
9761 if (can_use_bp < 0)
9762 error (_("Hardware breakpoints used exceeds limit."));
9763
9764 arg = skip_spaces (arg);
9765 if (arg == NULL || arg[0] == '\0')
9766 error(_("No address range specified."));
9767
9768 arg_start = arg;
9769 event_location_up start_location = string_to_event_location (&arg,
9770 current_language);
9771 parse_breakpoint_sals (start_location.get (), &canonical_start);
9772
9773 if (arg[0] != ',')
9774 error (_("Too few arguments."));
9775 else if (canonical_start.lsals.empty ())
9776 error (_("Could not find location of the beginning of the range."));
9777
9778 const linespec_sals &lsal_start = canonical_start.lsals[0];
9779
9780 if (canonical_start.lsals.size () > 1
9781 || lsal_start.sals.size () != 1)
9782 error (_("Cannot create a ranged breakpoint with multiple locations."));
9783
9784 const symtab_and_line &sal_start = lsal_start.sals[0];
9785 std::string addr_string_start (arg_start, arg - arg_start);
9786
9787 arg++; /* Skip the comma. */
9788 arg = skip_spaces (arg);
9789
9790 /* Parse the end location. */
9791
9792 arg_start = arg;
9793
9794 /* We call decode_line_full directly here instead of using
9795 parse_breakpoint_sals because we need to specify the start location's
9796 symtab and line as the default symtab and line for the end of the
9797 range. This makes it possible to have ranges like "foo.c:27, +14",
9798 where +14 means 14 lines from the start location. */
9799 event_location_up end_location = string_to_event_location (&arg,
9800 current_language);
9801 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9802 sal_start.symtab, sal_start.line,
9803 &canonical_end, NULL, NULL);
9804
9805 if (canonical_end.lsals.empty ())
9806 error (_("Could not find location of the end of the range."));
9807
9808 const linespec_sals &lsal_end = canonical_end.lsals[0];
9809 if (canonical_end.lsals.size () > 1
9810 || lsal_end.sals.size () != 1)
9811 error (_("Cannot create a ranged breakpoint with multiple locations."));
9812
9813 const symtab_and_line &sal_end = lsal_end.sals[0];
9814
9815 end = find_breakpoint_range_end (sal_end);
9816 if (sal_start.pc > end)
9817 error (_("Invalid address range, end precedes start."));
9818
9819 length = end - sal_start.pc + 1;
9820 if (length < 0)
9821 /* Length overflowed. */
9822 error (_("Address range too large."));
9823 else if (length == 1)
9824 {
9825 /* This range is simple enough to be handled by
9826 the `hbreak' command. */
9827 hbreak_command (&addr_string_start[0], 1);
9828
9829 return;
9830 }
9831
9832 /* Now set up the breakpoint. */
9833 b = set_raw_breakpoint (get_current_arch (), sal_start,
9834 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9835 set_breakpoint_count (breakpoint_count + 1);
9836 b->number = breakpoint_count;
9837 b->disposition = disp_donttouch;
9838 b->location = std::move (start_location);
9839 b->location_range_end = std::move (end_location);
9840 b->loc->length = length;
9841
9842 mention (b);
9843 gdb::observers::breakpoint_created.notify (b);
9844 update_global_location_list (UGLL_MAY_INSERT);
9845 }
9846
9847 /* Return non-zero if EXP is verified as constant. Returned zero
9848 means EXP is variable. Also the constant detection may fail for
9849 some constant expressions and in such case still falsely return
9850 zero. */
9851
9852 static int
9853 watchpoint_exp_is_const (const struct expression *exp)
9854 {
9855 int i = exp->nelts;
9856
9857 while (i > 0)
9858 {
9859 int oplenp, argsp;
9860
9861 /* We are only interested in the descriptor of each element. */
9862 operator_length (exp, i, &oplenp, &argsp);
9863 i -= oplenp;
9864
9865 switch (exp->elts[i].opcode)
9866 {
9867 case BINOP_ADD:
9868 case BINOP_SUB:
9869 case BINOP_MUL:
9870 case BINOP_DIV:
9871 case BINOP_REM:
9872 case BINOP_MOD:
9873 case BINOP_LSH:
9874 case BINOP_RSH:
9875 case BINOP_LOGICAL_AND:
9876 case BINOP_LOGICAL_OR:
9877 case BINOP_BITWISE_AND:
9878 case BINOP_BITWISE_IOR:
9879 case BINOP_BITWISE_XOR:
9880 case BINOP_EQUAL:
9881 case BINOP_NOTEQUAL:
9882 case BINOP_LESS:
9883 case BINOP_GTR:
9884 case BINOP_LEQ:
9885 case BINOP_GEQ:
9886 case BINOP_REPEAT:
9887 case BINOP_COMMA:
9888 case BINOP_EXP:
9889 case BINOP_MIN:
9890 case BINOP_MAX:
9891 case BINOP_INTDIV:
9892 case BINOP_CONCAT:
9893 case TERNOP_COND:
9894 case TERNOP_SLICE:
9895
9896 case OP_LONG:
9897 case OP_FLOAT:
9898 case OP_LAST:
9899 case OP_COMPLEX:
9900 case OP_STRING:
9901 case OP_ARRAY:
9902 case OP_TYPE:
9903 case OP_TYPEOF:
9904 case OP_DECLTYPE:
9905 case OP_TYPEID:
9906 case OP_NAME:
9907 case OP_OBJC_NSSTRING:
9908
9909 case UNOP_NEG:
9910 case UNOP_LOGICAL_NOT:
9911 case UNOP_COMPLEMENT:
9912 case UNOP_ADDR:
9913 case UNOP_HIGH:
9914 case UNOP_CAST:
9915
9916 case UNOP_CAST_TYPE:
9917 case UNOP_REINTERPRET_CAST:
9918 case UNOP_DYNAMIC_CAST:
9919 /* Unary, binary and ternary operators: We have to check
9920 their operands. If they are constant, then so is the
9921 result of that operation. For instance, if A and B are
9922 determined to be constants, then so is "A + B".
9923
9924 UNOP_IND is one exception to the rule above, because the
9925 value of *ADDR is not necessarily a constant, even when
9926 ADDR is. */
9927 break;
9928
9929 case OP_VAR_VALUE:
9930 /* Check whether the associated symbol is a constant.
9931
9932 We use SYMBOL_CLASS rather than TYPE_CONST because it's
9933 possible that a buggy compiler could mark a variable as
9934 constant even when it is not, and TYPE_CONST would return
9935 true in this case, while SYMBOL_CLASS wouldn't.
9936
9937 We also have to check for function symbols because they
9938 are always constant. */
9939 {
9940 struct symbol *s = exp->elts[i + 2].symbol;
9941
9942 if (SYMBOL_CLASS (s) != LOC_BLOCK
9943 && SYMBOL_CLASS (s) != LOC_CONST
9944 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
9945 return 0;
9946 break;
9947 }
9948
9949 /* The default action is to return 0 because we are using
9950 the optimistic approach here: If we don't know something,
9951 then it is not a constant. */
9952 default:
9953 return 0;
9954 }
9955 }
9956
9957 return 1;
9958 }
9959
9960 /* Watchpoint destructor. */
9961
9962 watchpoint::~watchpoint ()
9963 {
9964 xfree (this->exp_string);
9965 xfree (this->exp_string_reparse);
9966 }
9967
9968 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
9969
9970 static void
9971 re_set_watchpoint (struct breakpoint *b)
9972 {
9973 struct watchpoint *w = (struct watchpoint *) b;
9974
9975 /* Watchpoint can be either on expression using entirely global
9976 variables, or it can be on local variables.
9977
9978 Watchpoints of the first kind are never auto-deleted, and even
9979 persist across program restarts. Since they can use variables
9980 from shared libraries, we need to reparse expression as libraries
9981 are loaded and unloaded.
9982
9983 Watchpoints on local variables can also change meaning as result
9984 of solib event. For example, if a watchpoint uses both a local
9985 and a global variables in expression, it's a local watchpoint,
9986 but unloading of a shared library will make the expression
9987 invalid. This is not a very common use case, but we still
9988 re-evaluate expression, to avoid surprises to the user.
9989
9990 Note that for local watchpoints, we re-evaluate it only if
9991 watchpoints frame id is still valid. If it's not, it means the
9992 watchpoint is out of scope and will be deleted soon. In fact,
9993 I'm not sure we'll ever be called in this case.
9994
9995 If a local watchpoint's frame id is still valid, then
9996 w->exp_valid_block is likewise valid, and we can safely use it.
9997
9998 Don't do anything about disabled watchpoints, since they will be
9999 reevaluated again when enabled. */
10000 update_watchpoint (w, 1 /* reparse */);
10001 }
10002
10003 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10004
10005 static int
10006 insert_watchpoint (struct bp_location *bl)
10007 {
10008 struct watchpoint *w = (struct watchpoint *) bl->owner;
10009 int length = w->exact ? 1 : bl->length;
10010
10011 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10012 w->cond_exp.get ());
10013 }
10014
10015 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10016
10017 static int
10018 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10019 {
10020 struct watchpoint *w = (struct watchpoint *) bl->owner;
10021 int length = w->exact ? 1 : bl->length;
10022
10023 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10024 w->cond_exp.get ());
10025 }
10026
10027 static int
10028 breakpoint_hit_watchpoint (const struct bp_location *bl,
10029 const address_space *aspace, CORE_ADDR bp_addr,
10030 const struct target_waitstatus *ws)
10031 {
10032 struct breakpoint *b = bl->owner;
10033 struct watchpoint *w = (struct watchpoint *) b;
10034
10035 /* Continuable hardware watchpoints are treated as non-existent if the
10036 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10037 some data address). Otherwise gdb won't stop on a break instruction
10038 in the code (not from a breakpoint) when a hardware watchpoint has
10039 been defined. Also skip watchpoints which we know did not trigger
10040 (did not match the data address). */
10041 if (is_hardware_watchpoint (b)
10042 && w->watchpoint_triggered == watch_triggered_no)
10043 return 0;
10044
10045 return 1;
10046 }
10047
10048 static void
10049 check_status_watchpoint (bpstat bs)
10050 {
10051 gdb_assert (is_watchpoint (bs->breakpoint_at));
10052
10053 bpstat_check_watchpoint (bs);
10054 }
10055
10056 /* Implement the "resources_needed" breakpoint_ops method for
10057 hardware watchpoints. */
10058
10059 static int
10060 resources_needed_watchpoint (const struct bp_location *bl)
10061 {
10062 struct watchpoint *w = (struct watchpoint *) bl->owner;
10063 int length = w->exact? 1 : bl->length;
10064
10065 return target_region_ok_for_hw_watchpoint (bl->address, length);
10066 }
10067
10068 /* Implement the "works_in_software_mode" breakpoint_ops method for
10069 hardware watchpoints. */
10070
10071 static int
10072 works_in_software_mode_watchpoint (const struct breakpoint *b)
10073 {
10074 /* Read and access watchpoints only work with hardware support. */
10075 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10076 }
10077
10078 static enum print_stop_action
10079 print_it_watchpoint (bpstat bs)
10080 {
10081 struct breakpoint *b;
10082 enum print_stop_action result;
10083 struct watchpoint *w;
10084 struct ui_out *uiout = current_uiout;
10085
10086 gdb_assert (bs->bp_location_at != NULL);
10087
10088 b = bs->breakpoint_at;
10089 w = (struct watchpoint *) b;
10090
10091 annotate_watchpoint (b->number);
10092 maybe_print_thread_hit_breakpoint (uiout);
10093
10094 string_file stb;
10095
10096 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10097 switch (b->type)
10098 {
10099 case bp_watchpoint:
10100 case bp_hardware_watchpoint:
10101 if (uiout->is_mi_like_p ())
10102 uiout->field_string
10103 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10104 mention (b);
10105 tuple_emitter.emplace (uiout, "value");
10106 uiout->text ("\nOld value = ");
10107 watchpoint_value_print (bs->old_val.get (), &stb);
10108 uiout->field_stream ("old", stb);
10109 uiout->text ("\nNew value = ");
10110 watchpoint_value_print (w->val.get (), &stb);
10111 uiout->field_stream ("new", stb);
10112 uiout->text ("\n");
10113 /* More than one watchpoint may have been triggered. */
10114 result = PRINT_UNKNOWN;
10115 break;
10116
10117 case bp_read_watchpoint:
10118 if (uiout->is_mi_like_p ())
10119 uiout->field_string
10120 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10121 mention (b);
10122 tuple_emitter.emplace (uiout, "value");
10123 uiout->text ("\nValue = ");
10124 watchpoint_value_print (w->val.get (), &stb);
10125 uiout->field_stream ("value", stb);
10126 uiout->text ("\n");
10127 result = PRINT_UNKNOWN;
10128 break;
10129
10130 case bp_access_watchpoint:
10131 if (bs->old_val != NULL)
10132 {
10133 if (uiout->is_mi_like_p ())
10134 uiout->field_string
10135 ("reason",
10136 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10137 mention (b);
10138 tuple_emitter.emplace (uiout, "value");
10139 uiout->text ("\nOld value = ");
10140 watchpoint_value_print (bs->old_val.get (), &stb);
10141 uiout->field_stream ("old", stb);
10142 uiout->text ("\nNew value = ");
10143 }
10144 else
10145 {
10146 mention (b);
10147 if (uiout->is_mi_like_p ())
10148 uiout->field_string
10149 ("reason",
10150 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10151 tuple_emitter.emplace (uiout, "value");
10152 uiout->text ("\nValue = ");
10153 }
10154 watchpoint_value_print (w->val.get (), &stb);
10155 uiout->field_stream ("new", stb);
10156 uiout->text ("\n");
10157 result = PRINT_UNKNOWN;
10158 break;
10159 default:
10160 result = PRINT_UNKNOWN;
10161 }
10162
10163 return result;
10164 }
10165
10166 /* Implement the "print_mention" breakpoint_ops method for hardware
10167 watchpoints. */
10168
10169 static void
10170 print_mention_watchpoint (struct breakpoint *b)
10171 {
10172 struct watchpoint *w = (struct watchpoint *) b;
10173 struct ui_out *uiout = current_uiout;
10174 const char *tuple_name;
10175
10176 switch (b->type)
10177 {
10178 case bp_watchpoint:
10179 uiout->text ("Watchpoint ");
10180 tuple_name = "wpt";
10181 break;
10182 case bp_hardware_watchpoint:
10183 uiout->text ("Hardware watchpoint ");
10184 tuple_name = "wpt";
10185 break;
10186 case bp_read_watchpoint:
10187 uiout->text ("Hardware read watchpoint ");
10188 tuple_name = "hw-rwpt";
10189 break;
10190 case bp_access_watchpoint:
10191 uiout->text ("Hardware access (read/write) watchpoint ");
10192 tuple_name = "hw-awpt";
10193 break;
10194 default:
10195 internal_error (__FILE__, __LINE__,
10196 _("Invalid hardware watchpoint type."));
10197 }
10198
10199 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10200 uiout->field_signed ("number", b->number);
10201 uiout->text (": ");
10202 uiout->field_string ("exp", w->exp_string);
10203 }
10204
10205 /* Implement the "print_recreate" breakpoint_ops method for
10206 watchpoints. */
10207
10208 static void
10209 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10210 {
10211 struct watchpoint *w = (struct watchpoint *) b;
10212
10213 switch (b->type)
10214 {
10215 case bp_watchpoint:
10216 case bp_hardware_watchpoint:
10217 fprintf_unfiltered (fp, "watch");
10218 break;
10219 case bp_read_watchpoint:
10220 fprintf_unfiltered (fp, "rwatch");
10221 break;
10222 case bp_access_watchpoint:
10223 fprintf_unfiltered (fp, "awatch");
10224 break;
10225 default:
10226 internal_error (__FILE__, __LINE__,
10227 _("Invalid watchpoint type."));
10228 }
10229
10230 fprintf_unfiltered (fp, " %s", w->exp_string);
10231 print_recreate_thread (b, fp);
10232 }
10233
10234 /* Implement the "explains_signal" breakpoint_ops method for
10235 watchpoints. */
10236
10237 static int
10238 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10239 {
10240 /* A software watchpoint cannot cause a signal other than
10241 GDB_SIGNAL_TRAP. */
10242 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10243 return 0;
10244
10245 return 1;
10246 }
10247
10248 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10249
10250 static struct breakpoint_ops watchpoint_breakpoint_ops;
10251
10252 /* Implement the "insert" breakpoint_ops method for
10253 masked hardware watchpoints. */
10254
10255 static int
10256 insert_masked_watchpoint (struct bp_location *bl)
10257 {
10258 struct watchpoint *w = (struct watchpoint *) bl->owner;
10259
10260 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10261 bl->watchpoint_type);
10262 }
10263
10264 /* Implement the "remove" breakpoint_ops method for
10265 masked hardware watchpoints. */
10266
10267 static int
10268 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10269 {
10270 struct watchpoint *w = (struct watchpoint *) bl->owner;
10271
10272 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10273 bl->watchpoint_type);
10274 }
10275
10276 /* Implement the "resources_needed" breakpoint_ops method for
10277 masked hardware watchpoints. */
10278
10279 static int
10280 resources_needed_masked_watchpoint (const struct bp_location *bl)
10281 {
10282 struct watchpoint *w = (struct watchpoint *) bl->owner;
10283
10284 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10285 }
10286
10287 /* Implement the "works_in_software_mode" breakpoint_ops method for
10288 masked hardware watchpoints. */
10289
10290 static int
10291 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10292 {
10293 return 0;
10294 }
10295
10296 /* Implement the "print_it" breakpoint_ops method for
10297 masked hardware watchpoints. */
10298
10299 static enum print_stop_action
10300 print_it_masked_watchpoint (bpstat bs)
10301 {
10302 struct breakpoint *b = bs->breakpoint_at;
10303 struct ui_out *uiout = current_uiout;
10304
10305 /* Masked watchpoints have only one location. */
10306 gdb_assert (b->loc && b->loc->next == NULL);
10307
10308 annotate_watchpoint (b->number);
10309 maybe_print_thread_hit_breakpoint (uiout);
10310
10311 switch (b->type)
10312 {
10313 case bp_hardware_watchpoint:
10314 if (uiout->is_mi_like_p ())
10315 uiout->field_string
10316 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10317 break;
10318
10319 case bp_read_watchpoint:
10320 if (uiout->is_mi_like_p ())
10321 uiout->field_string
10322 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10323 break;
10324
10325 case bp_access_watchpoint:
10326 if (uiout->is_mi_like_p ())
10327 uiout->field_string
10328 ("reason",
10329 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10330 break;
10331 default:
10332 internal_error (__FILE__, __LINE__,
10333 _("Invalid hardware watchpoint type."));
10334 }
10335
10336 mention (b);
10337 uiout->text (_("\n\
10338 Check the underlying instruction at PC for the memory\n\
10339 address and value which triggered this watchpoint.\n"));
10340 uiout->text ("\n");
10341
10342 /* More than one watchpoint may have been triggered. */
10343 return PRINT_UNKNOWN;
10344 }
10345
10346 /* Implement the "print_one_detail" breakpoint_ops method for
10347 masked hardware watchpoints. */
10348
10349 static void
10350 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10351 struct ui_out *uiout)
10352 {
10353 struct watchpoint *w = (struct watchpoint *) b;
10354
10355 /* Masked watchpoints have only one location. */
10356 gdb_assert (b->loc && b->loc->next == NULL);
10357
10358 uiout->text ("\tmask ");
10359 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10360 uiout->text ("\n");
10361 }
10362
10363 /* Implement the "print_mention" breakpoint_ops method for
10364 masked hardware watchpoints. */
10365
10366 static void
10367 print_mention_masked_watchpoint (struct breakpoint *b)
10368 {
10369 struct watchpoint *w = (struct watchpoint *) b;
10370 struct ui_out *uiout = current_uiout;
10371 const char *tuple_name;
10372
10373 switch (b->type)
10374 {
10375 case bp_hardware_watchpoint:
10376 uiout->text ("Masked hardware watchpoint ");
10377 tuple_name = "wpt";
10378 break;
10379 case bp_read_watchpoint:
10380 uiout->text ("Masked hardware read watchpoint ");
10381 tuple_name = "hw-rwpt";
10382 break;
10383 case bp_access_watchpoint:
10384 uiout->text ("Masked hardware access (read/write) watchpoint ");
10385 tuple_name = "hw-awpt";
10386 break;
10387 default:
10388 internal_error (__FILE__, __LINE__,
10389 _("Invalid hardware watchpoint type."));
10390 }
10391
10392 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10393 uiout->field_signed ("number", b->number);
10394 uiout->text (": ");
10395 uiout->field_string ("exp", w->exp_string);
10396 }
10397
10398 /* Implement the "print_recreate" breakpoint_ops method for
10399 masked hardware watchpoints. */
10400
10401 static void
10402 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10403 {
10404 struct watchpoint *w = (struct watchpoint *) b;
10405 char tmp[40];
10406
10407 switch (b->type)
10408 {
10409 case bp_hardware_watchpoint:
10410 fprintf_unfiltered (fp, "watch");
10411 break;
10412 case bp_read_watchpoint:
10413 fprintf_unfiltered (fp, "rwatch");
10414 break;
10415 case bp_access_watchpoint:
10416 fprintf_unfiltered (fp, "awatch");
10417 break;
10418 default:
10419 internal_error (__FILE__, __LINE__,
10420 _("Invalid hardware watchpoint type."));
10421 }
10422
10423 sprintf_vma (tmp, w->hw_wp_mask);
10424 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10425 print_recreate_thread (b, fp);
10426 }
10427
10428 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10429
10430 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10431
10432 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10433
10434 static bool
10435 is_masked_watchpoint (const struct breakpoint *b)
10436 {
10437 return b->ops == &masked_watchpoint_breakpoint_ops;
10438 }
10439
10440 /* accessflag: hw_write: watch write,
10441 hw_read: watch read,
10442 hw_access: watch access (read or write) */
10443 static void
10444 watch_command_1 (const char *arg, int accessflag, int from_tty,
10445 int just_location, int internal)
10446 {
10447 struct breakpoint *scope_breakpoint = NULL;
10448 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10449 struct value *result;
10450 int saved_bitpos = 0, saved_bitsize = 0;
10451 const char *exp_start = NULL;
10452 const char *exp_end = NULL;
10453 const char *tok, *end_tok;
10454 int toklen = -1;
10455 const char *cond_start = NULL;
10456 const char *cond_end = NULL;
10457 enum bptype bp_type;
10458 int thread = -1;
10459 int pc = 0;
10460 /* Flag to indicate whether we are going to use masks for
10461 the hardware watchpoint. */
10462 int use_mask = 0;
10463 CORE_ADDR mask = 0;
10464
10465 /* Make sure that we actually have parameters to parse. */
10466 if (arg != NULL && arg[0] != '\0')
10467 {
10468 const char *value_start;
10469
10470 exp_end = arg + strlen (arg);
10471
10472 /* Look for "parameter value" pairs at the end
10473 of the arguments string. */
10474 for (tok = exp_end - 1; tok > arg; tok--)
10475 {
10476 /* Skip whitespace at the end of the argument list. */
10477 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10478 tok--;
10479
10480 /* Find the beginning of the last token.
10481 This is the value of the parameter. */
10482 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10483 tok--;
10484 value_start = tok + 1;
10485
10486 /* Skip whitespace. */
10487 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10488 tok--;
10489
10490 end_tok = tok;
10491
10492 /* Find the beginning of the second to last token.
10493 This is the parameter itself. */
10494 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10495 tok--;
10496 tok++;
10497 toklen = end_tok - tok + 1;
10498
10499 if (toklen == 6 && startswith (tok, "thread"))
10500 {
10501 struct thread_info *thr;
10502 /* At this point we've found a "thread" token, which means
10503 the user is trying to set a watchpoint that triggers
10504 only in a specific thread. */
10505 const char *endp;
10506
10507 if (thread != -1)
10508 error(_("You can specify only one thread."));
10509
10510 /* Extract the thread ID from the next token. */
10511 thr = parse_thread_id (value_start, &endp);
10512
10513 /* Check if the user provided a valid thread ID. */
10514 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10515 invalid_thread_id_error (value_start);
10516
10517 thread = thr->global_num;
10518 }
10519 else if (toklen == 4 && startswith (tok, "mask"))
10520 {
10521 /* We've found a "mask" token, which means the user wants to
10522 create a hardware watchpoint that is going to have the mask
10523 facility. */
10524 struct value *mask_value, *mark;
10525
10526 if (use_mask)
10527 error(_("You can specify only one mask."));
10528
10529 use_mask = just_location = 1;
10530
10531 mark = value_mark ();
10532 mask_value = parse_to_comma_and_eval (&value_start);
10533 mask = value_as_address (mask_value);
10534 value_free_to_mark (mark);
10535 }
10536 else
10537 /* We didn't recognize what we found. We should stop here. */
10538 break;
10539
10540 /* Truncate the string and get rid of the "parameter value" pair before
10541 the arguments string is parsed by the parse_exp_1 function. */
10542 exp_end = tok;
10543 }
10544 }
10545 else
10546 exp_end = arg;
10547
10548 /* Parse the rest of the arguments. From here on out, everything
10549 is in terms of a newly allocated string instead of the original
10550 ARG. */
10551 std::string expression (arg, exp_end - arg);
10552 exp_start = arg = expression.c_str ();
10553 innermost_block_tracker tracker;
10554 expression_up exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
10555 exp_end = arg;
10556 /* Remove trailing whitespace from the expression before saving it.
10557 This makes the eventual display of the expression string a bit
10558 prettier. */
10559 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10560 --exp_end;
10561
10562 /* Checking if the expression is not constant. */
10563 if (watchpoint_exp_is_const (exp.get ()))
10564 {
10565 int len;
10566
10567 len = exp_end - exp_start;
10568 while (len > 0 && isspace (exp_start[len - 1]))
10569 len--;
10570 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10571 }
10572
10573 exp_valid_block = tracker.block ();
10574 struct value *mark = value_mark ();
10575 struct value *val_as_value = nullptr;
10576 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10577 just_location);
10578
10579 if (val_as_value != NULL && just_location)
10580 {
10581 saved_bitpos = value_bitpos (val_as_value);
10582 saved_bitsize = value_bitsize (val_as_value);
10583 }
10584
10585 value_ref_ptr val;
10586 if (just_location)
10587 {
10588 int ret;
10589
10590 exp_valid_block = NULL;
10591 val = release_value (value_addr (result));
10592 value_free_to_mark (mark);
10593
10594 if (use_mask)
10595 {
10596 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10597 mask);
10598 if (ret == -1)
10599 error (_("This target does not support masked watchpoints."));
10600 else if (ret == -2)
10601 error (_("Invalid mask or memory region."));
10602 }
10603 }
10604 else if (val_as_value != NULL)
10605 val = release_value (val_as_value);
10606
10607 tok = skip_spaces (arg);
10608 end_tok = skip_to_space (tok);
10609
10610 toklen = end_tok - tok;
10611 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10612 {
10613 tok = cond_start = end_tok + 1;
10614 innermost_block_tracker if_tracker;
10615 parse_exp_1 (&tok, 0, 0, 0, &if_tracker);
10616
10617 /* The watchpoint expression may not be local, but the condition
10618 may still be. E.g.: `watch global if local > 0'. */
10619 cond_exp_valid_block = if_tracker.block ();
10620
10621 cond_end = tok;
10622 }
10623 if (*tok)
10624 error (_("Junk at end of command."));
10625
10626 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10627
10628 /* Save this because create_internal_breakpoint below invalidates
10629 'wp_frame'. */
10630 frame_id watchpoint_frame = get_frame_id (wp_frame);
10631
10632 /* If the expression is "local", then set up a "watchpoint scope"
10633 breakpoint at the point where we've left the scope of the watchpoint
10634 expression. Create the scope breakpoint before the watchpoint, so
10635 that we will encounter it first in bpstat_stop_status. */
10636 if (exp_valid_block != NULL && wp_frame != NULL)
10637 {
10638 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10639
10640 if (frame_id_p (caller_frame_id))
10641 {
10642 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10643 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10644
10645 scope_breakpoint
10646 = create_internal_breakpoint (caller_arch, caller_pc,
10647 bp_watchpoint_scope,
10648 &momentary_breakpoint_ops);
10649
10650 /* create_internal_breakpoint could invalidate WP_FRAME. */
10651 wp_frame = NULL;
10652
10653 scope_breakpoint->enable_state = bp_enabled;
10654
10655 /* Automatically delete the breakpoint when it hits. */
10656 scope_breakpoint->disposition = disp_del;
10657
10658 /* Only break in the proper frame (help with recursion). */
10659 scope_breakpoint->frame_id = caller_frame_id;
10660
10661 /* Set the address at which we will stop. */
10662 scope_breakpoint->loc->gdbarch = caller_arch;
10663 scope_breakpoint->loc->requested_address = caller_pc;
10664 scope_breakpoint->loc->address
10665 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10666 scope_breakpoint->loc->requested_address,
10667 scope_breakpoint->type);
10668 }
10669 }
10670
10671 /* Now set up the breakpoint. We create all watchpoints as hardware
10672 watchpoints here even if hardware watchpoints are turned off, a call
10673 to update_watchpoint later in this function will cause the type to
10674 drop back to bp_watchpoint (software watchpoint) if required. */
10675
10676 if (accessflag == hw_read)
10677 bp_type = bp_read_watchpoint;
10678 else if (accessflag == hw_access)
10679 bp_type = bp_access_watchpoint;
10680 else
10681 bp_type = bp_hardware_watchpoint;
10682
10683 std::unique_ptr<watchpoint> w (new watchpoint ());
10684
10685 if (use_mask)
10686 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10687 &masked_watchpoint_breakpoint_ops);
10688 else
10689 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10690 &watchpoint_breakpoint_ops);
10691 w->thread = thread;
10692 w->disposition = disp_donttouch;
10693 w->pspace = current_program_space;
10694 w->exp = std::move (exp);
10695 w->exp_valid_block = exp_valid_block;
10696 w->cond_exp_valid_block = cond_exp_valid_block;
10697 if (just_location)
10698 {
10699 struct type *t = value_type (val.get ());
10700 CORE_ADDR addr = value_as_address (val.get ());
10701
10702 w->exp_string_reparse
10703 = current_language->la_watch_location_expression (t, addr).release ();
10704
10705 w->exp_string = xstrprintf ("-location %.*s",
10706 (int) (exp_end - exp_start), exp_start);
10707 }
10708 else
10709 w->exp_string = savestring (exp_start, exp_end - exp_start);
10710
10711 if (use_mask)
10712 {
10713 w->hw_wp_mask = mask;
10714 }
10715 else
10716 {
10717 w->val = val;
10718 w->val_bitpos = saved_bitpos;
10719 w->val_bitsize = saved_bitsize;
10720 w->val_valid = 1;
10721 }
10722
10723 if (cond_start)
10724 w->cond_string = savestring (cond_start, cond_end - cond_start);
10725 else
10726 w->cond_string = 0;
10727
10728 if (frame_id_p (watchpoint_frame))
10729 {
10730 w->watchpoint_frame = watchpoint_frame;
10731 w->watchpoint_thread = inferior_ptid;
10732 }
10733 else
10734 {
10735 w->watchpoint_frame = null_frame_id;
10736 w->watchpoint_thread = null_ptid;
10737 }
10738
10739 if (scope_breakpoint != NULL)
10740 {
10741 /* The scope breakpoint is related to the watchpoint. We will
10742 need to act on them together. */
10743 w->related_breakpoint = scope_breakpoint;
10744 scope_breakpoint->related_breakpoint = w.get ();
10745 }
10746
10747 if (!just_location)
10748 value_free_to_mark (mark);
10749
10750 /* Finally update the new watchpoint. This creates the locations
10751 that should be inserted. */
10752 update_watchpoint (w.get (), 1);
10753
10754 install_breakpoint (internal, std::move (w), 1);
10755 }
10756
10757 /* Return count of debug registers needed to watch the given expression.
10758 If the watchpoint cannot be handled in hardware return zero. */
10759
10760 static int
10761 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10762 {
10763 int found_memory_cnt = 0;
10764
10765 /* Did the user specifically forbid us to use hardware watchpoints? */
10766 if (!can_use_hw_watchpoints)
10767 return 0;
10768
10769 gdb_assert (!vals.empty ());
10770 struct value *head = vals[0].get ();
10771
10772 /* Make sure that the value of the expression depends only upon
10773 memory contents, and values computed from them within GDB. If we
10774 find any register references or function calls, we can't use a
10775 hardware watchpoint.
10776
10777 The idea here is that evaluating an expression generates a series
10778 of values, one holding the value of every subexpression. (The
10779 expression a*b+c has five subexpressions: a, b, a*b, c, and
10780 a*b+c.) GDB's values hold almost enough information to establish
10781 the criteria given above --- they identify memory lvalues,
10782 register lvalues, computed values, etcetera. So we can evaluate
10783 the expression, and then scan the chain of values that leaves
10784 behind to decide whether we can detect any possible change to the
10785 expression's final value using only hardware watchpoints.
10786
10787 However, I don't think that the values returned by inferior
10788 function calls are special in any way. So this function may not
10789 notice that an expression involving an inferior function call
10790 can't be watched with hardware watchpoints. FIXME. */
10791 for (const value_ref_ptr &iter : vals)
10792 {
10793 struct value *v = iter.get ();
10794
10795 if (VALUE_LVAL (v) == lval_memory)
10796 {
10797 if (v != head && value_lazy (v))
10798 /* A lazy memory lvalue in the chain is one that GDB never
10799 needed to fetch; we either just used its address (e.g.,
10800 `a' in `a.b') or we never needed it at all (e.g., `a'
10801 in `a,b'). This doesn't apply to HEAD; if that is
10802 lazy then it was not readable, but watch it anyway. */
10803 ;
10804 else
10805 {
10806 /* Ahh, memory we actually used! Check if we can cover
10807 it with hardware watchpoints. */
10808 struct type *vtype = check_typedef (value_type (v));
10809
10810 /* We only watch structs and arrays if user asked for it
10811 explicitly, never if they just happen to appear in a
10812 middle of some value chain. */
10813 if (v == head
10814 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10815 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10816 {
10817 CORE_ADDR vaddr = value_address (v);
10818 int len;
10819 int num_regs;
10820
10821 len = (target_exact_watchpoints
10822 && is_scalar_type_recursive (vtype))?
10823 1 : TYPE_LENGTH (value_type (v));
10824
10825 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10826 if (!num_regs)
10827 return 0;
10828 else
10829 found_memory_cnt += num_regs;
10830 }
10831 }
10832 }
10833 else if (VALUE_LVAL (v) != not_lval
10834 && deprecated_value_modifiable (v) == 0)
10835 return 0; /* These are values from the history (e.g., $1). */
10836 else if (VALUE_LVAL (v) == lval_register)
10837 return 0; /* Cannot watch a register with a HW watchpoint. */
10838 }
10839
10840 /* The expression itself looks suitable for using a hardware
10841 watchpoint, but give the target machine a chance to reject it. */
10842 return found_memory_cnt;
10843 }
10844
10845 void
10846 watch_command_wrapper (const char *arg, int from_tty, int internal)
10847 {
10848 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10849 }
10850
10851 /* A helper function that looks for the "-location" argument and then
10852 calls watch_command_1. */
10853
10854 static void
10855 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10856 {
10857 int just_location = 0;
10858
10859 if (arg
10860 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10861 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10862 just_location = 1;
10863
10864 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10865 }
10866
10867 static void
10868 watch_command (const char *arg, int from_tty)
10869 {
10870 watch_maybe_just_location (arg, hw_write, from_tty);
10871 }
10872
10873 void
10874 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10875 {
10876 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10877 }
10878
10879 static void
10880 rwatch_command (const char *arg, int from_tty)
10881 {
10882 watch_maybe_just_location (arg, hw_read, from_tty);
10883 }
10884
10885 void
10886 awatch_command_wrapper (const char *arg, int from_tty, int internal)
10887 {
10888 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10889 }
10890
10891 static void
10892 awatch_command (const char *arg, int from_tty)
10893 {
10894 watch_maybe_just_location (arg, hw_access, from_tty);
10895 }
10896 \f
10897
10898 /* Data for the FSM that manages the until(location)/advance commands
10899 in infcmd.c. Here because it uses the mechanisms of
10900 breakpoints. */
10901
10902 struct until_break_fsm : public thread_fsm
10903 {
10904 /* The thread that was current when the command was executed. */
10905 int thread;
10906
10907 /* The breakpoint set at the destination location. */
10908 breakpoint_up location_breakpoint;
10909
10910 /* Breakpoint set at the return address in the caller frame. May be
10911 NULL. */
10912 breakpoint_up caller_breakpoint;
10913
10914 until_break_fsm (struct interp *cmd_interp, int thread,
10915 breakpoint_up &&location_breakpoint,
10916 breakpoint_up &&caller_breakpoint)
10917 : thread_fsm (cmd_interp),
10918 thread (thread),
10919 location_breakpoint (std::move (location_breakpoint)),
10920 caller_breakpoint (std::move (caller_breakpoint))
10921 {
10922 }
10923
10924 void clean_up (struct thread_info *thread) override;
10925 bool should_stop (struct thread_info *thread) override;
10926 enum async_reply_reason do_async_reply_reason () override;
10927 };
10928
10929 /* Implementation of the 'should_stop' FSM method for the
10930 until(location)/advance commands. */
10931
10932 bool
10933 until_break_fsm::should_stop (struct thread_info *tp)
10934 {
10935 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
10936 location_breakpoint.get ()) != NULL
10937 || (caller_breakpoint != NULL
10938 && bpstat_find_breakpoint (tp->control.stop_bpstat,
10939 caller_breakpoint.get ()) != NULL))
10940 set_finished ();
10941
10942 return true;
10943 }
10944
10945 /* Implementation of the 'clean_up' FSM method for the
10946 until(location)/advance commands. */
10947
10948 void
10949 until_break_fsm::clean_up (struct thread_info *)
10950 {
10951 /* Clean up our temporary breakpoints. */
10952 location_breakpoint.reset ();
10953 caller_breakpoint.reset ();
10954 delete_longjmp_breakpoint (thread);
10955 }
10956
10957 /* Implementation of the 'async_reply_reason' FSM method for the
10958 until(location)/advance commands. */
10959
10960 enum async_reply_reason
10961 until_break_fsm::do_async_reply_reason ()
10962 {
10963 return EXEC_ASYNC_LOCATION_REACHED;
10964 }
10965
10966 void
10967 until_break_command (const char *arg, int from_tty, int anywhere)
10968 {
10969 struct frame_info *frame;
10970 struct gdbarch *frame_gdbarch;
10971 struct frame_id stack_frame_id;
10972 struct frame_id caller_frame_id;
10973 int thread;
10974 struct thread_info *tp;
10975
10976 clear_proceed_status (0);
10977
10978 /* Set a breakpoint where the user wants it and at return from
10979 this function. */
10980
10981 event_location_up location = string_to_event_location (&arg, current_language);
10982
10983 std::vector<symtab_and_line> sals
10984 = (last_displayed_sal_is_valid ()
10985 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
10986 get_last_displayed_symtab (),
10987 get_last_displayed_line ())
10988 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
10989 NULL, NULL, 0));
10990
10991 if (sals.size () != 1)
10992 error (_("Couldn't get information on specified line."));
10993
10994 symtab_and_line &sal = sals[0];
10995
10996 if (*arg)
10997 error (_("Junk at end of arguments."));
10998
10999 resolve_sal_pc (&sal);
11000
11001 tp = inferior_thread ();
11002 thread = tp->global_num;
11003
11004 /* Note linespec handling above invalidates the frame chain.
11005 Installing a breakpoint also invalidates the frame chain (as it
11006 may need to switch threads), so do any frame handling before
11007 that. */
11008
11009 frame = get_selected_frame (NULL);
11010 frame_gdbarch = get_frame_arch (frame);
11011 stack_frame_id = get_stack_frame_id (frame);
11012 caller_frame_id = frame_unwind_caller_id (frame);
11013
11014 /* Keep within the current frame, or in frames called by the current
11015 one. */
11016
11017 breakpoint_up caller_breakpoint;
11018
11019 gdb::optional<delete_longjmp_breakpoint_cleanup> lj_deleter;
11020
11021 if (frame_id_p (caller_frame_id))
11022 {
11023 struct symtab_and_line sal2;
11024 struct gdbarch *caller_gdbarch;
11025
11026 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11027 sal2.pc = frame_unwind_caller_pc (frame);
11028 caller_gdbarch = frame_unwind_caller_arch (frame);
11029 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11030 sal2,
11031 caller_frame_id,
11032 bp_until);
11033
11034 set_longjmp_breakpoint (tp, caller_frame_id);
11035 lj_deleter.emplace (thread);
11036 }
11037
11038 /* set_momentary_breakpoint could invalidate FRAME. */
11039 frame = NULL;
11040
11041 breakpoint_up location_breakpoint;
11042 if (anywhere)
11043 /* If the user told us to continue until a specified location,
11044 we don't specify a frame at which we need to stop. */
11045 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11046 null_frame_id, bp_until);
11047 else
11048 /* Otherwise, specify the selected frame, because we want to stop
11049 only at the very same frame. */
11050 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11051 stack_frame_id, bp_until);
11052
11053 tp->thread_fsm = new until_break_fsm (command_interp (), tp->global_num,
11054 std::move (location_breakpoint),
11055 std::move (caller_breakpoint));
11056
11057 if (lj_deleter)
11058 lj_deleter->release ();
11059
11060 proceed (-1, GDB_SIGNAL_DEFAULT);
11061 }
11062
11063 /* This function attempts to parse an optional "if <cond>" clause
11064 from the arg string. If one is not found, it returns NULL.
11065
11066 Else, it returns a pointer to the condition string. (It does not
11067 attempt to evaluate the string against a particular block.) And,
11068 it updates arg to point to the first character following the parsed
11069 if clause in the arg string. */
11070
11071 const char *
11072 ep_parse_optional_if_clause (const char **arg)
11073 {
11074 const char *cond_string;
11075
11076 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11077 return NULL;
11078
11079 /* Skip the "if" keyword. */
11080 (*arg) += 2;
11081
11082 /* Skip any extra leading whitespace, and record the start of the
11083 condition string. */
11084 *arg = skip_spaces (*arg);
11085 cond_string = *arg;
11086
11087 /* Assume that the condition occupies the remainder of the arg
11088 string. */
11089 (*arg) += strlen (cond_string);
11090
11091 return cond_string;
11092 }
11093
11094 /* Commands to deal with catching events, such as signals, exceptions,
11095 process start/exit, etc. */
11096
11097 typedef enum
11098 {
11099 catch_fork_temporary, catch_vfork_temporary,
11100 catch_fork_permanent, catch_vfork_permanent
11101 }
11102 catch_fork_kind;
11103
11104 static void
11105 catch_fork_command_1 (const char *arg, int from_tty,
11106 struct cmd_list_element *command)
11107 {
11108 struct gdbarch *gdbarch = get_current_arch ();
11109 const char *cond_string = NULL;
11110 catch_fork_kind fork_kind;
11111 int tempflag;
11112
11113 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11114 tempflag = (fork_kind == catch_fork_temporary
11115 || fork_kind == catch_vfork_temporary);
11116
11117 if (!arg)
11118 arg = "";
11119 arg = skip_spaces (arg);
11120
11121 /* The allowed syntax is:
11122 catch [v]fork
11123 catch [v]fork if <cond>
11124
11125 First, check if there's an if clause. */
11126 cond_string = ep_parse_optional_if_clause (&arg);
11127
11128 if ((*arg != '\0') && !isspace (*arg))
11129 error (_("Junk at end of arguments."));
11130
11131 /* If this target supports it, create a fork or vfork catchpoint
11132 and enable reporting of such events. */
11133 switch (fork_kind)
11134 {
11135 case catch_fork_temporary:
11136 case catch_fork_permanent:
11137 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11138 &catch_fork_breakpoint_ops);
11139 break;
11140 case catch_vfork_temporary:
11141 case catch_vfork_permanent:
11142 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11143 &catch_vfork_breakpoint_ops);
11144 break;
11145 default:
11146 error (_("unsupported or unknown fork kind; cannot catch it"));
11147 break;
11148 }
11149 }
11150
11151 static void
11152 catch_exec_command_1 (const char *arg, int from_tty,
11153 struct cmd_list_element *command)
11154 {
11155 struct gdbarch *gdbarch = get_current_arch ();
11156 int tempflag;
11157 const char *cond_string = NULL;
11158
11159 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11160
11161 if (!arg)
11162 arg = "";
11163 arg = skip_spaces (arg);
11164
11165 /* The allowed syntax is:
11166 catch exec
11167 catch exec if <cond>
11168
11169 First, check if there's an if clause. */
11170 cond_string = ep_parse_optional_if_clause (&arg);
11171
11172 if ((*arg != '\0') && !isspace (*arg))
11173 error (_("Junk at end of arguments."));
11174
11175 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11176 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11177 &catch_exec_breakpoint_ops);
11178 c->exec_pathname = NULL;
11179
11180 install_breakpoint (0, std::move (c), 1);
11181 }
11182
11183 void
11184 init_ada_exception_breakpoint (struct breakpoint *b,
11185 struct gdbarch *gdbarch,
11186 struct symtab_and_line sal,
11187 const char *addr_string,
11188 const struct breakpoint_ops *ops,
11189 int tempflag,
11190 int enabled,
11191 int from_tty)
11192 {
11193 if (from_tty)
11194 {
11195 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11196 if (!loc_gdbarch)
11197 loc_gdbarch = gdbarch;
11198
11199 describe_other_breakpoints (loc_gdbarch,
11200 sal.pspace, sal.pc, sal.section, -1);
11201 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11202 version for exception catchpoints, because two catchpoints
11203 used for different exception names will use the same address.
11204 In this case, a "breakpoint ... also set at..." warning is
11205 unproductive. Besides, the warning phrasing is also a bit
11206 inappropriate, we should use the word catchpoint, and tell
11207 the user what type of catchpoint it is. The above is good
11208 enough for now, though. */
11209 }
11210
11211 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
11212
11213 b->enable_state = enabled ? bp_enabled : bp_disabled;
11214 b->disposition = tempflag ? disp_del : disp_donttouch;
11215 b->location = string_to_event_location (&addr_string,
11216 language_def (language_ada));
11217 b->language = language_ada;
11218 }
11219
11220 static void
11221 catch_command (const char *arg, int from_tty)
11222 {
11223 error (_("Catch requires an event name."));
11224 }
11225 \f
11226
11227 static void
11228 tcatch_command (const char *arg, int from_tty)
11229 {
11230 error (_("Catch requires an event name."));
11231 }
11232
11233 /* Compare two breakpoints and return a strcmp-like result. */
11234
11235 static int
11236 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11237 {
11238 uintptr_t ua = (uintptr_t) a;
11239 uintptr_t ub = (uintptr_t) b;
11240
11241 if (a->number < b->number)
11242 return -1;
11243 else if (a->number > b->number)
11244 return 1;
11245
11246 /* Now sort by address, in case we see, e..g, two breakpoints with
11247 the number 0. */
11248 if (ua < ub)
11249 return -1;
11250 return ua > ub ? 1 : 0;
11251 }
11252
11253 /* Delete breakpoints by address or line. */
11254
11255 static void
11256 clear_command (const char *arg, int from_tty)
11257 {
11258 struct breakpoint *b;
11259 int default_match;
11260
11261 std::vector<symtab_and_line> decoded_sals;
11262 symtab_and_line last_sal;
11263 gdb::array_view<symtab_and_line> sals;
11264 if (arg)
11265 {
11266 decoded_sals
11267 = decode_line_with_current_source (arg,
11268 (DECODE_LINE_FUNFIRSTLINE
11269 | DECODE_LINE_LIST_MODE));
11270 default_match = 0;
11271 sals = decoded_sals;
11272 }
11273 else
11274 {
11275 /* Set sal's line, symtab, pc, and pspace to the values
11276 corresponding to the last call to print_frame_info. If the
11277 codepoint is not valid, this will set all the fields to 0. */
11278 last_sal = get_last_displayed_sal ();
11279 if (last_sal.symtab == 0)
11280 error (_("No source file specified."));
11281
11282 default_match = 1;
11283 sals = last_sal;
11284 }
11285
11286 /* We don't call resolve_sal_pc here. That's not as bad as it
11287 seems, because all existing breakpoints typically have both
11288 file/line and pc set. So, if clear is given file/line, we can
11289 match this to existing breakpoint without obtaining pc at all.
11290
11291 We only support clearing given the address explicitly
11292 present in breakpoint table. Say, we've set breakpoint
11293 at file:line. There were several PC values for that file:line,
11294 due to optimization, all in one block.
11295
11296 We've picked one PC value. If "clear" is issued with another
11297 PC corresponding to the same file:line, the breakpoint won't
11298 be cleared. We probably can still clear the breakpoint, but
11299 since the other PC value is never presented to user, user
11300 can only find it by guessing, and it does not seem important
11301 to support that. */
11302
11303 /* For each line spec given, delete bps which correspond to it. Do
11304 it in two passes, solely to preserve the current behavior that
11305 from_tty is forced true if we delete more than one
11306 breakpoint. */
11307
11308 std::vector<struct breakpoint *> found;
11309 for (const auto &sal : sals)
11310 {
11311 const char *sal_fullname;
11312
11313 /* If exact pc given, clear bpts at that pc.
11314 If line given (pc == 0), clear all bpts on specified line.
11315 If defaulting, clear all bpts on default line
11316 or at default pc.
11317
11318 defaulting sal.pc != 0 tests to do
11319
11320 0 1 pc
11321 1 1 pc _and_ line
11322 0 0 line
11323 1 0 <can't happen> */
11324
11325 sal_fullname = (sal.symtab == NULL
11326 ? NULL : symtab_to_fullname (sal.symtab));
11327
11328 /* Find all matching breakpoints and add them to 'found'. */
11329 ALL_BREAKPOINTS (b)
11330 {
11331 int match = 0;
11332 /* Are we going to delete b? */
11333 if (b->type != bp_none && !is_watchpoint (b))
11334 {
11335 struct bp_location *loc = b->loc;
11336 for (; loc; loc = loc->next)
11337 {
11338 /* If the user specified file:line, don't allow a PC
11339 match. This matches historical gdb behavior. */
11340 int pc_match = (!sal.explicit_line
11341 && sal.pc
11342 && (loc->pspace == sal.pspace)
11343 && (loc->address == sal.pc)
11344 && (!section_is_overlay (loc->section)
11345 || loc->section == sal.section));
11346 int line_match = 0;
11347
11348 if ((default_match || sal.explicit_line)
11349 && loc->symtab != NULL
11350 && sal_fullname != NULL
11351 && sal.pspace == loc->pspace
11352 && loc->line_number == sal.line
11353 && filename_cmp (symtab_to_fullname (loc->symtab),
11354 sal_fullname) == 0)
11355 line_match = 1;
11356
11357 if (pc_match || line_match)
11358 {
11359 match = 1;
11360 break;
11361 }
11362 }
11363 }
11364
11365 if (match)
11366 found.push_back (b);
11367 }
11368 }
11369
11370 /* Now go thru the 'found' chain and delete them. */
11371 if (found.empty ())
11372 {
11373 if (arg)
11374 error (_("No breakpoint at %s."), arg);
11375 else
11376 error (_("No breakpoint at this line."));
11377 }
11378
11379 /* Remove duplicates from the vec. */
11380 std::sort (found.begin (), found.end (),
11381 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11382 {
11383 return compare_breakpoints (bp_a, bp_b) < 0;
11384 });
11385 found.erase (std::unique (found.begin (), found.end (),
11386 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11387 {
11388 return compare_breakpoints (bp_a, bp_b) == 0;
11389 }),
11390 found.end ());
11391
11392 if (found.size () > 1)
11393 from_tty = 1; /* Always report if deleted more than one. */
11394 if (from_tty)
11395 {
11396 if (found.size () == 1)
11397 printf_unfiltered (_("Deleted breakpoint "));
11398 else
11399 printf_unfiltered (_("Deleted breakpoints "));
11400 }
11401
11402 for (breakpoint *iter : found)
11403 {
11404 if (from_tty)
11405 printf_unfiltered ("%d ", iter->number);
11406 delete_breakpoint (iter);
11407 }
11408 if (from_tty)
11409 putchar_unfiltered ('\n');
11410 }
11411 \f
11412 /* Delete breakpoint in BS if they are `delete' breakpoints and
11413 all breakpoints that are marked for deletion, whether hit or not.
11414 This is called after any breakpoint is hit, or after errors. */
11415
11416 void
11417 breakpoint_auto_delete (bpstat bs)
11418 {
11419 struct breakpoint *b, *b_tmp;
11420
11421 for (; bs; bs = bs->next)
11422 if (bs->breakpoint_at
11423 && bs->breakpoint_at->disposition == disp_del
11424 && bs->stop)
11425 delete_breakpoint (bs->breakpoint_at);
11426
11427 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11428 {
11429 if (b->disposition == disp_del_at_next_stop)
11430 delete_breakpoint (b);
11431 }
11432 }
11433
11434 /* A comparison function for bp_location AP and BP being interfaced to
11435 qsort. Sort elements primarily by their ADDRESS (no matter what
11436 bl_address_is_meaningful says), secondarily by ordering first
11437 permanent elements and terciarily just ensuring the array is sorted
11438 stable way despite qsort being an unstable algorithm. */
11439
11440 static int
11441 bp_locations_compare (const void *ap, const void *bp)
11442 {
11443 const struct bp_location *a = *(const struct bp_location **) ap;
11444 const struct bp_location *b = *(const struct bp_location **) bp;
11445
11446 if (a->address != b->address)
11447 return (a->address > b->address) - (a->address < b->address);
11448
11449 /* Sort locations at the same address by their pspace number, keeping
11450 locations of the same inferior (in a multi-inferior environment)
11451 grouped. */
11452
11453 if (a->pspace->num != b->pspace->num)
11454 return ((a->pspace->num > b->pspace->num)
11455 - (a->pspace->num < b->pspace->num));
11456
11457 /* Sort permanent breakpoints first. */
11458 if (a->permanent != b->permanent)
11459 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11460
11461 /* Make the internal GDB representation stable across GDB runs
11462 where A and B memory inside GDB can differ. Breakpoint locations of
11463 the same type at the same address can be sorted in arbitrary order. */
11464
11465 if (a->owner->number != b->owner->number)
11466 return ((a->owner->number > b->owner->number)
11467 - (a->owner->number < b->owner->number));
11468
11469 return (a > b) - (a < b);
11470 }
11471
11472 /* Set bp_locations_placed_address_before_address_max and
11473 bp_locations_shadow_len_after_address_max according to the current
11474 content of the bp_locations array. */
11475
11476 static void
11477 bp_locations_target_extensions_update (void)
11478 {
11479 struct bp_location *bl, **blp_tmp;
11480
11481 bp_locations_placed_address_before_address_max = 0;
11482 bp_locations_shadow_len_after_address_max = 0;
11483
11484 ALL_BP_LOCATIONS (bl, blp_tmp)
11485 {
11486 CORE_ADDR start, end, addr;
11487
11488 if (!bp_location_has_shadow (bl))
11489 continue;
11490
11491 start = bl->target_info.placed_address;
11492 end = start + bl->target_info.shadow_len;
11493
11494 gdb_assert (bl->address >= start);
11495 addr = bl->address - start;
11496 if (addr > bp_locations_placed_address_before_address_max)
11497 bp_locations_placed_address_before_address_max = addr;
11498
11499 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11500
11501 gdb_assert (bl->address < end);
11502 addr = end - bl->address;
11503 if (addr > bp_locations_shadow_len_after_address_max)
11504 bp_locations_shadow_len_after_address_max = addr;
11505 }
11506 }
11507
11508 /* Download tracepoint locations if they haven't been. */
11509
11510 static void
11511 download_tracepoint_locations (void)
11512 {
11513 struct breakpoint *b;
11514 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11515
11516 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11517
11518 ALL_TRACEPOINTS (b)
11519 {
11520 struct bp_location *bl;
11521 struct tracepoint *t;
11522 int bp_location_downloaded = 0;
11523
11524 if ((b->type == bp_fast_tracepoint
11525 ? !may_insert_fast_tracepoints
11526 : !may_insert_tracepoints))
11527 continue;
11528
11529 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11530 {
11531 if (target_can_download_tracepoint ())
11532 can_download_tracepoint = TRIBOOL_TRUE;
11533 else
11534 can_download_tracepoint = TRIBOOL_FALSE;
11535 }
11536
11537 if (can_download_tracepoint == TRIBOOL_FALSE)
11538 break;
11539
11540 for (bl = b->loc; bl; bl = bl->next)
11541 {
11542 /* In tracepoint, locations are _never_ duplicated, so
11543 should_be_inserted is equivalent to
11544 unduplicated_should_be_inserted. */
11545 if (!should_be_inserted (bl) || bl->inserted)
11546 continue;
11547
11548 switch_to_program_space_and_thread (bl->pspace);
11549
11550 target_download_tracepoint (bl);
11551
11552 bl->inserted = 1;
11553 bp_location_downloaded = 1;
11554 }
11555 t = (struct tracepoint *) b;
11556 t->number_on_target = b->number;
11557 if (bp_location_downloaded)
11558 gdb::observers::breakpoint_modified.notify (b);
11559 }
11560 }
11561
11562 /* Swap the insertion/duplication state between two locations. */
11563
11564 static void
11565 swap_insertion (struct bp_location *left, struct bp_location *right)
11566 {
11567 const int left_inserted = left->inserted;
11568 const int left_duplicate = left->duplicate;
11569 const int left_needs_update = left->needs_update;
11570 const struct bp_target_info left_target_info = left->target_info;
11571
11572 /* Locations of tracepoints can never be duplicated. */
11573 if (is_tracepoint (left->owner))
11574 gdb_assert (!left->duplicate);
11575 if (is_tracepoint (right->owner))
11576 gdb_assert (!right->duplicate);
11577
11578 left->inserted = right->inserted;
11579 left->duplicate = right->duplicate;
11580 left->needs_update = right->needs_update;
11581 left->target_info = right->target_info;
11582 right->inserted = left_inserted;
11583 right->duplicate = left_duplicate;
11584 right->needs_update = left_needs_update;
11585 right->target_info = left_target_info;
11586 }
11587
11588 /* Force the re-insertion of the locations at ADDRESS. This is called
11589 once a new/deleted/modified duplicate location is found and we are evaluating
11590 conditions on the target's side. Such conditions need to be updated on
11591 the target. */
11592
11593 static void
11594 force_breakpoint_reinsertion (struct bp_location *bl)
11595 {
11596 struct bp_location **locp = NULL, **loc2p;
11597 struct bp_location *loc;
11598 CORE_ADDR address = 0;
11599 int pspace_num;
11600
11601 address = bl->address;
11602 pspace_num = bl->pspace->num;
11603
11604 /* This is only meaningful if the target is
11605 evaluating conditions and if the user has
11606 opted for condition evaluation on the target's
11607 side. */
11608 if (gdb_evaluates_breakpoint_condition_p ()
11609 || !target_supports_evaluation_of_breakpoint_conditions ())
11610 return;
11611
11612 /* Flag all breakpoint locations with this address and
11613 the same program space as the location
11614 as "its condition has changed". We need to
11615 update the conditions on the target's side. */
11616 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11617 {
11618 loc = *loc2p;
11619
11620 if (!is_breakpoint (loc->owner)
11621 || pspace_num != loc->pspace->num)
11622 continue;
11623
11624 /* Flag the location appropriately. We use a different state to
11625 let everyone know that we already updated the set of locations
11626 with addr bl->address and program space bl->pspace. This is so
11627 we don't have to keep calling these functions just to mark locations
11628 that have already been marked. */
11629 loc->condition_changed = condition_updated;
11630
11631 /* Free the agent expression bytecode as well. We will compute
11632 it later on. */
11633 loc->cond_bytecode.reset ();
11634 }
11635 }
11636 /* Called whether new breakpoints are created, or existing breakpoints
11637 deleted, to update the global location list and recompute which
11638 locations are duplicate of which.
11639
11640 The INSERT_MODE flag determines whether locations may not, may, or
11641 shall be inserted now. See 'enum ugll_insert_mode' for more
11642 info. */
11643
11644 static void
11645 update_global_location_list (enum ugll_insert_mode insert_mode)
11646 {
11647 struct breakpoint *b;
11648 struct bp_location **locp, *loc;
11649 /* Last breakpoint location address that was marked for update. */
11650 CORE_ADDR last_addr = 0;
11651 /* Last breakpoint location program space that was marked for update. */
11652 int last_pspace_num = -1;
11653
11654 /* Used in the duplicates detection below. When iterating over all
11655 bp_locations, points to the first bp_location of a given address.
11656 Breakpoints and watchpoints of different types are never
11657 duplicates of each other. Keep one pointer for each type of
11658 breakpoint/watchpoint, so we only need to loop over all locations
11659 once. */
11660 struct bp_location *bp_loc_first; /* breakpoint */
11661 struct bp_location *wp_loc_first; /* hardware watchpoint */
11662 struct bp_location *awp_loc_first; /* access watchpoint */
11663 struct bp_location *rwp_loc_first; /* read watchpoint */
11664
11665 /* Saved former bp_locations array which we compare against the newly
11666 built bp_locations from the current state of ALL_BREAKPOINTS. */
11667 struct bp_location **old_locp;
11668 unsigned old_locations_count;
11669 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11670
11671 old_locations_count = bp_locations_count;
11672 bp_locations = NULL;
11673 bp_locations_count = 0;
11674
11675 ALL_BREAKPOINTS (b)
11676 for (loc = b->loc; loc; loc = loc->next)
11677 bp_locations_count++;
11678
11679 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11680 locp = bp_locations;
11681 ALL_BREAKPOINTS (b)
11682 for (loc = b->loc; loc; loc = loc->next)
11683 *locp++ = loc;
11684 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11685 bp_locations_compare);
11686
11687 bp_locations_target_extensions_update ();
11688
11689 /* Identify bp_location instances that are no longer present in the
11690 new list, and therefore should be freed. Note that it's not
11691 necessary that those locations should be removed from inferior --
11692 if there's another location at the same address (previously
11693 marked as duplicate), we don't need to remove/insert the
11694 location.
11695
11696 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11697 and former bp_location array state respectively. */
11698
11699 locp = bp_locations;
11700 for (old_locp = old_locations.get ();
11701 old_locp < old_locations.get () + old_locations_count;
11702 old_locp++)
11703 {
11704 struct bp_location *old_loc = *old_locp;
11705 struct bp_location **loc2p;
11706
11707 /* Tells if 'old_loc' is found among the new locations. If
11708 not, we have to free it. */
11709 int found_object = 0;
11710 /* Tells if the location should remain inserted in the target. */
11711 int keep_in_target = 0;
11712 int removed = 0;
11713
11714 /* Skip LOCP entries which will definitely never be needed.
11715 Stop either at or being the one matching OLD_LOC. */
11716 while (locp < bp_locations + bp_locations_count
11717 && (*locp)->address < old_loc->address)
11718 locp++;
11719
11720 for (loc2p = locp;
11721 (loc2p < bp_locations + bp_locations_count
11722 && (*loc2p)->address == old_loc->address);
11723 loc2p++)
11724 {
11725 /* Check if this is a new/duplicated location or a duplicated
11726 location that had its condition modified. If so, we want to send
11727 its condition to the target if evaluation of conditions is taking
11728 place there. */
11729 if ((*loc2p)->condition_changed == condition_modified
11730 && (last_addr != old_loc->address
11731 || last_pspace_num != old_loc->pspace->num))
11732 {
11733 force_breakpoint_reinsertion (*loc2p);
11734 last_pspace_num = old_loc->pspace->num;
11735 }
11736
11737 if (*loc2p == old_loc)
11738 found_object = 1;
11739 }
11740
11741 /* We have already handled this address, update it so that we don't
11742 have to go through updates again. */
11743 last_addr = old_loc->address;
11744
11745 /* Target-side condition evaluation: Handle deleted locations. */
11746 if (!found_object)
11747 force_breakpoint_reinsertion (old_loc);
11748
11749 /* If this location is no longer present, and inserted, look if
11750 there's maybe a new location at the same address. If so,
11751 mark that one inserted, and don't remove this one. This is
11752 needed so that we don't have a time window where a breakpoint
11753 at certain location is not inserted. */
11754
11755 if (old_loc->inserted)
11756 {
11757 /* If the location is inserted now, we might have to remove
11758 it. */
11759
11760 if (found_object && should_be_inserted (old_loc))
11761 {
11762 /* The location is still present in the location list,
11763 and still should be inserted. Don't do anything. */
11764 keep_in_target = 1;
11765 }
11766 else
11767 {
11768 /* This location still exists, but it won't be kept in the
11769 target since it may have been disabled. We proceed to
11770 remove its target-side condition. */
11771
11772 /* The location is either no longer present, or got
11773 disabled. See if there's another location at the
11774 same address, in which case we don't need to remove
11775 this one from the target. */
11776
11777 /* OLD_LOC comes from existing struct breakpoint. */
11778 if (bl_address_is_meaningful (old_loc))
11779 {
11780 for (loc2p = locp;
11781 (loc2p < bp_locations + bp_locations_count
11782 && (*loc2p)->address == old_loc->address);
11783 loc2p++)
11784 {
11785 struct bp_location *loc2 = *loc2p;
11786
11787 if (breakpoint_locations_match (loc2, old_loc))
11788 {
11789 /* Read watchpoint locations are switched to
11790 access watchpoints, if the former are not
11791 supported, but the latter are. */
11792 if (is_hardware_watchpoint (old_loc->owner))
11793 {
11794 gdb_assert (is_hardware_watchpoint (loc2->owner));
11795 loc2->watchpoint_type = old_loc->watchpoint_type;
11796 }
11797
11798 /* loc2 is a duplicated location. We need to check
11799 if it should be inserted in case it will be
11800 unduplicated. */
11801 if (loc2 != old_loc
11802 && unduplicated_should_be_inserted (loc2))
11803 {
11804 swap_insertion (old_loc, loc2);
11805 keep_in_target = 1;
11806 break;
11807 }
11808 }
11809 }
11810 }
11811 }
11812
11813 if (!keep_in_target)
11814 {
11815 if (remove_breakpoint (old_loc))
11816 {
11817 /* This is just about all we can do. We could keep
11818 this location on the global list, and try to
11819 remove it next time, but there's no particular
11820 reason why we will succeed next time.
11821
11822 Note that at this point, old_loc->owner is still
11823 valid, as delete_breakpoint frees the breakpoint
11824 only after calling us. */
11825 printf_filtered (_("warning: Error removing "
11826 "breakpoint %d\n"),
11827 old_loc->owner->number);
11828 }
11829 removed = 1;
11830 }
11831 }
11832
11833 if (!found_object)
11834 {
11835 if (removed && target_is_non_stop_p ()
11836 && need_moribund_for_location_type (old_loc))
11837 {
11838 /* This location was removed from the target. In
11839 non-stop mode, a race condition is possible where
11840 we've removed a breakpoint, but stop events for that
11841 breakpoint are already queued and will arrive later.
11842 We apply an heuristic to be able to distinguish such
11843 SIGTRAPs from other random SIGTRAPs: we keep this
11844 breakpoint location for a bit, and will retire it
11845 after we see some number of events. The theory here
11846 is that reporting of events should, "on the average",
11847 be fair, so after a while we'll see events from all
11848 threads that have anything of interest, and no longer
11849 need to keep this breakpoint location around. We
11850 don't hold locations forever so to reduce chances of
11851 mistaking a non-breakpoint SIGTRAP for a breakpoint
11852 SIGTRAP.
11853
11854 The heuristic failing can be disastrous on
11855 decr_pc_after_break targets.
11856
11857 On decr_pc_after_break targets, like e.g., x86-linux,
11858 if we fail to recognize a late breakpoint SIGTRAP,
11859 because events_till_retirement has reached 0 too
11860 soon, we'll fail to do the PC adjustment, and report
11861 a random SIGTRAP to the user. When the user resumes
11862 the inferior, it will most likely immediately crash
11863 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
11864 corrupted, because of being resumed e.g., in the
11865 middle of a multi-byte instruction, or skipped a
11866 one-byte instruction. This was actually seen happen
11867 on native x86-linux, and should be less rare on
11868 targets that do not support new thread events, like
11869 remote, due to the heuristic depending on
11870 thread_count.
11871
11872 Mistaking a random SIGTRAP for a breakpoint trap
11873 causes similar symptoms (PC adjustment applied when
11874 it shouldn't), but then again, playing with SIGTRAPs
11875 behind the debugger's back is asking for trouble.
11876
11877 Since hardware watchpoint traps are always
11878 distinguishable from other traps, so we don't need to
11879 apply keep hardware watchpoint moribund locations
11880 around. We simply always ignore hardware watchpoint
11881 traps we can no longer explain. */
11882
11883 old_loc->events_till_retirement = 3 * (thread_count () + 1);
11884 old_loc->owner = NULL;
11885
11886 moribund_locations.push_back (old_loc);
11887 }
11888 else
11889 {
11890 old_loc->owner = NULL;
11891 decref_bp_location (&old_loc);
11892 }
11893 }
11894 }
11895
11896 /* Rescan breakpoints at the same address and section, marking the
11897 first one as "first" and any others as "duplicates". This is so
11898 that the bpt instruction is only inserted once. If we have a
11899 permanent breakpoint at the same place as BPT, make that one the
11900 official one, and the rest as duplicates. Permanent breakpoints
11901 are sorted first for the same address.
11902
11903 Do the same for hardware watchpoints, but also considering the
11904 watchpoint's type (regular/access/read) and length. */
11905
11906 bp_loc_first = NULL;
11907 wp_loc_first = NULL;
11908 awp_loc_first = NULL;
11909 rwp_loc_first = NULL;
11910 ALL_BP_LOCATIONS (loc, locp)
11911 {
11912 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
11913 non-NULL. */
11914 struct bp_location **loc_first_p;
11915 b = loc->owner;
11916
11917 if (!unduplicated_should_be_inserted (loc)
11918 || !bl_address_is_meaningful (loc)
11919 /* Don't detect duplicate for tracepoint locations because they are
11920 never duplicated. See the comments in field `duplicate' of
11921 `struct bp_location'. */
11922 || is_tracepoint (b))
11923 {
11924 /* Clear the condition modification flag. */
11925 loc->condition_changed = condition_unchanged;
11926 continue;
11927 }
11928
11929 if (b->type == bp_hardware_watchpoint)
11930 loc_first_p = &wp_loc_first;
11931 else if (b->type == bp_read_watchpoint)
11932 loc_first_p = &rwp_loc_first;
11933 else if (b->type == bp_access_watchpoint)
11934 loc_first_p = &awp_loc_first;
11935 else
11936 loc_first_p = &bp_loc_first;
11937
11938 if (*loc_first_p == NULL
11939 || (overlay_debugging && loc->section != (*loc_first_p)->section)
11940 || !breakpoint_locations_match (loc, *loc_first_p))
11941 {
11942 *loc_first_p = loc;
11943 loc->duplicate = 0;
11944
11945 if (is_breakpoint (loc->owner) && loc->condition_changed)
11946 {
11947 loc->needs_update = 1;
11948 /* Clear the condition modification flag. */
11949 loc->condition_changed = condition_unchanged;
11950 }
11951 continue;
11952 }
11953
11954
11955 /* This and the above ensure the invariant that the first location
11956 is not duplicated, and is the inserted one.
11957 All following are marked as duplicated, and are not inserted. */
11958 if (loc->inserted)
11959 swap_insertion (loc, *loc_first_p);
11960 loc->duplicate = 1;
11961
11962 /* Clear the condition modification flag. */
11963 loc->condition_changed = condition_unchanged;
11964 }
11965
11966 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
11967 {
11968 if (insert_mode != UGLL_DONT_INSERT)
11969 insert_breakpoint_locations ();
11970 else
11971 {
11972 /* Even though the caller told us to not insert new
11973 locations, we may still need to update conditions on the
11974 target's side of breakpoints that were already inserted
11975 if the target is evaluating breakpoint conditions. We
11976 only update conditions for locations that are marked
11977 "needs_update". */
11978 update_inserted_breakpoint_locations ();
11979 }
11980 }
11981
11982 if (insert_mode != UGLL_DONT_INSERT)
11983 download_tracepoint_locations ();
11984 }
11985
11986 void
11987 breakpoint_retire_moribund (void)
11988 {
11989 for (int ix = 0; ix < moribund_locations.size (); ++ix)
11990 {
11991 struct bp_location *loc = moribund_locations[ix];
11992 if (--(loc->events_till_retirement) == 0)
11993 {
11994 decref_bp_location (&loc);
11995 unordered_remove (moribund_locations, ix);
11996 --ix;
11997 }
11998 }
11999 }
12000
12001 static void
12002 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12003 {
12004
12005 try
12006 {
12007 update_global_location_list (insert_mode);
12008 }
12009 catch (const gdb_exception_error &e)
12010 {
12011 }
12012 }
12013
12014 /* Clear BKP from a BPS. */
12015
12016 static void
12017 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12018 {
12019 bpstat bs;
12020
12021 for (bs = bps; bs; bs = bs->next)
12022 if (bs->breakpoint_at == bpt)
12023 {
12024 bs->breakpoint_at = NULL;
12025 bs->old_val = NULL;
12026 /* bs->commands will be freed later. */
12027 }
12028 }
12029
12030 /* Callback for iterate_over_threads. */
12031 static int
12032 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12033 {
12034 struct breakpoint *bpt = (struct breakpoint *) data;
12035
12036 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12037 return 0;
12038 }
12039
12040 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12041 callbacks. */
12042
12043 static void
12044 say_where (struct breakpoint *b)
12045 {
12046 struct value_print_options opts;
12047
12048 get_user_print_options (&opts);
12049
12050 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12051 single string. */
12052 if (b->loc == NULL)
12053 {
12054 /* For pending locations, the output differs slightly based
12055 on b->extra_string. If this is non-NULL, it contains either
12056 a condition or dprintf arguments. */
12057 if (b->extra_string == NULL)
12058 {
12059 printf_filtered (_(" (%s) pending."),
12060 event_location_to_string (b->location.get ()));
12061 }
12062 else if (b->type == bp_dprintf)
12063 {
12064 printf_filtered (_(" (%s,%s) pending."),
12065 event_location_to_string (b->location.get ()),
12066 b->extra_string);
12067 }
12068 else
12069 {
12070 printf_filtered (_(" (%s %s) pending."),
12071 event_location_to_string (b->location.get ()),
12072 b->extra_string);
12073 }
12074 }
12075 else
12076 {
12077 if (opts.addressprint || b->loc->symtab == NULL)
12078 {
12079 printf_filtered (" at ");
12080 fputs_styled (paddress (b->loc->gdbarch, b->loc->address),
12081 address_style.style (),
12082 gdb_stdout);
12083 }
12084 if (b->loc->symtab != NULL)
12085 {
12086 /* If there is a single location, we can print the location
12087 more nicely. */
12088 if (b->loc->next == NULL)
12089 {
12090 puts_filtered (": file ");
12091 fputs_styled (symtab_to_filename_for_display (b->loc->symtab),
12092 file_name_style.style (),
12093 gdb_stdout);
12094 printf_filtered (", line %d.",
12095 b->loc->line_number);
12096 }
12097 else
12098 /* This is not ideal, but each location may have a
12099 different file name, and this at least reflects the
12100 real situation somewhat. */
12101 printf_filtered (": %s.",
12102 event_location_to_string (b->location.get ()));
12103 }
12104
12105 if (b->loc->next)
12106 {
12107 struct bp_location *loc = b->loc;
12108 int n = 0;
12109 for (; loc; loc = loc->next)
12110 ++n;
12111 printf_filtered (" (%d locations)", n);
12112 }
12113 }
12114 }
12115
12116 bp_location::~bp_location ()
12117 {
12118 xfree (function_name);
12119 }
12120
12121 /* Destructor for the breakpoint base class. */
12122
12123 breakpoint::~breakpoint ()
12124 {
12125 xfree (this->cond_string);
12126 xfree (this->extra_string);
12127 }
12128
12129 static struct bp_location *
12130 base_breakpoint_allocate_location (struct breakpoint *self)
12131 {
12132 return new bp_location (self);
12133 }
12134
12135 static void
12136 base_breakpoint_re_set (struct breakpoint *b)
12137 {
12138 /* Nothing to re-set. */
12139 }
12140
12141 #define internal_error_pure_virtual_called() \
12142 gdb_assert_not_reached ("pure virtual function called")
12143
12144 static int
12145 base_breakpoint_insert_location (struct bp_location *bl)
12146 {
12147 internal_error_pure_virtual_called ();
12148 }
12149
12150 static int
12151 base_breakpoint_remove_location (struct bp_location *bl,
12152 enum remove_bp_reason reason)
12153 {
12154 internal_error_pure_virtual_called ();
12155 }
12156
12157 static int
12158 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12159 const address_space *aspace,
12160 CORE_ADDR bp_addr,
12161 const struct target_waitstatus *ws)
12162 {
12163 internal_error_pure_virtual_called ();
12164 }
12165
12166 static void
12167 base_breakpoint_check_status (bpstat bs)
12168 {
12169 /* Always stop. */
12170 }
12171
12172 /* A "works_in_software_mode" breakpoint_ops method that just internal
12173 errors. */
12174
12175 static int
12176 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12177 {
12178 internal_error_pure_virtual_called ();
12179 }
12180
12181 /* A "resources_needed" breakpoint_ops method that just internal
12182 errors. */
12183
12184 static int
12185 base_breakpoint_resources_needed (const struct bp_location *bl)
12186 {
12187 internal_error_pure_virtual_called ();
12188 }
12189
12190 static enum print_stop_action
12191 base_breakpoint_print_it (bpstat bs)
12192 {
12193 internal_error_pure_virtual_called ();
12194 }
12195
12196 static void
12197 base_breakpoint_print_one_detail (const struct breakpoint *self,
12198 struct ui_out *uiout)
12199 {
12200 /* nothing */
12201 }
12202
12203 static void
12204 base_breakpoint_print_mention (struct breakpoint *b)
12205 {
12206 internal_error_pure_virtual_called ();
12207 }
12208
12209 static void
12210 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12211 {
12212 internal_error_pure_virtual_called ();
12213 }
12214
12215 static void
12216 base_breakpoint_create_sals_from_location
12217 (const struct event_location *location,
12218 struct linespec_result *canonical,
12219 enum bptype type_wanted)
12220 {
12221 internal_error_pure_virtual_called ();
12222 }
12223
12224 static void
12225 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12226 struct linespec_result *c,
12227 gdb::unique_xmalloc_ptr<char> cond_string,
12228 gdb::unique_xmalloc_ptr<char> extra_string,
12229 enum bptype type_wanted,
12230 enum bpdisp disposition,
12231 int thread,
12232 int task, int ignore_count,
12233 const struct breakpoint_ops *o,
12234 int from_tty, int enabled,
12235 int internal, unsigned flags)
12236 {
12237 internal_error_pure_virtual_called ();
12238 }
12239
12240 static std::vector<symtab_and_line>
12241 base_breakpoint_decode_location (struct breakpoint *b,
12242 const struct event_location *location,
12243 struct program_space *search_pspace)
12244 {
12245 internal_error_pure_virtual_called ();
12246 }
12247
12248 /* The default 'explains_signal' method. */
12249
12250 static int
12251 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12252 {
12253 return 1;
12254 }
12255
12256 /* The default "after_condition_true" method. */
12257
12258 static void
12259 base_breakpoint_after_condition_true (struct bpstats *bs)
12260 {
12261 /* Nothing to do. */
12262 }
12263
12264 struct breakpoint_ops base_breakpoint_ops =
12265 {
12266 base_breakpoint_allocate_location,
12267 base_breakpoint_re_set,
12268 base_breakpoint_insert_location,
12269 base_breakpoint_remove_location,
12270 base_breakpoint_breakpoint_hit,
12271 base_breakpoint_check_status,
12272 base_breakpoint_resources_needed,
12273 base_breakpoint_works_in_software_mode,
12274 base_breakpoint_print_it,
12275 NULL,
12276 base_breakpoint_print_one_detail,
12277 base_breakpoint_print_mention,
12278 base_breakpoint_print_recreate,
12279 base_breakpoint_create_sals_from_location,
12280 base_breakpoint_create_breakpoints_sal,
12281 base_breakpoint_decode_location,
12282 base_breakpoint_explains_signal,
12283 base_breakpoint_after_condition_true,
12284 };
12285
12286 /* Default breakpoint_ops methods. */
12287
12288 static void
12289 bkpt_re_set (struct breakpoint *b)
12290 {
12291 /* FIXME: is this still reachable? */
12292 if (breakpoint_event_location_empty_p (b))
12293 {
12294 /* Anything without a location can't be re-set. */
12295 delete_breakpoint (b);
12296 return;
12297 }
12298
12299 breakpoint_re_set_default (b);
12300 }
12301
12302 static int
12303 bkpt_insert_location (struct bp_location *bl)
12304 {
12305 CORE_ADDR addr = bl->target_info.reqstd_address;
12306
12307 bl->target_info.kind = breakpoint_kind (bl, &addr);
12308 bl->target_info.placed_address = addr;
12309
12310 if (bl->loc_type == bp_loc_hardware_breakpoint)
12311 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12312 else
12313 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12314 }
12315
12316 static int
12317 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12318 {
12319 if (bl->loc_type == bp_loc_hardware_breakpoint)
12320 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12321 else
12322 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12323 }
12324
12325 static int
12326 bkpt_breakpoint_hit (const struct bp_location *bl,
12327 const address_space *aspace, CORE_ADDR bp_addr,
12328 const struct target_waitstatus *ws)
12329 {
12330 if (ws->kind != TARGET_WAITKIND_STOPPED
12331 || ws->value.sig != GDB_SIGNAL_TRAP)
12332 return 0;
12333
12334 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12335 aspace, bp_addr))
12336 return 0;
12337
12338 if (overlay_debugging /* unmapped overlay section */
12339 && section_is_overlay (bl->section)
12340 && !section_is_mapped (bl->section))
12341 return 0;
12342
12343 return 1;
12344 }
12345
12346 static int
12347 dprintf_breakpoint_hit (const struct bp_location *bl,
12348 const address_space *aspace, CORE_ADDR bp_addr,
12349 const struct target_waitstatus *ws)
12350 {
12351 if (dprintf_style == dprintf_style_agent
12352 && target_can_run_breakpoint_commands ())
12353 {
12354 /* An agent-style dprintf never causes a stop. If we see a trap
12355 for this address it must be for a breakpoint that happens to
12356 be set at the same address. */
12357 return 0;
12358 }
12359
12360 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12361 }
12362
12363 static int
12364 bkpt_resources_needed (const struct bp_location *bl)
12365 {
12366 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12367
12368 return 1;
12369 }
12370
12371 static enum print_stop_action
12372 bkpt_print_it (bpstat bs)
12373 {
12374 struct breakpoint *b;
12375 const struct bp_location *bl;
12376 int bp_temp;
12377 struct ui_out *uiout = current_uiout;
12378
12379 gdb_assert (bs->bp_location_at != NULL);
12380
12381 bl = bs->bp_location_at;
12382 b = bs->breakpoint_at;
12383
12384 bp_temp = b->disposition == disp_del;
12385 if (bl->address != bl->requested_address)
12386 breakpoint_adjustment_warning (bl->requested_address,
12387 bl->address,
12388 b->number, 1);
12389 annotate_breakpoint (b->number);
12390 maybe_print_thread_hit_breakpoint (uiout);
12391
12392 if (bp_temp)
12393 uiout->text ("Temporary breakpoint ");
12394 else
12395 uiout->text ("Breakpoint ");
12396 if (uiout->is_mi_like_p ())
12397 {
12398 uiout->field_string ("reason",
12399 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12400 uiout->field_string ("disp", bpdisp_text (b->disposition));
12401 }
12402 uiout->field_signed ("bkptno", b->number);
12403 uiout->text (", ");
12404
12405 return PRINT_SRC_AND_LOC;
12406 }
12407
12408 static void
12409 bkpt_print_mention (struct breakpoint *b)
12410 {
12411 if (current_uiout->is_mi_like_p ())
12412 return;
12413
12414 switch (b->type)
12415 {
12416 case bp_breakpoint:
12417 case bp_gnu_ifunc_resolver:
12418 if (b->disposition == disp_del)
12419 printf_filtered (_("Temporary breakpoint"));
12420 else
12421 printf_filtered (_("Breakpoint"));
12422 printf_filtered (_(" %d"), b->number);
12423 if (b->type == bp_gnu_ifunc_resolver)
12424 printf_filtered (_(" at gnu-indirect-function resolver"));
12425 break;
12426 case bp_hardware_breakpoint:
12427 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12428 break;
12429 case bp_dprintf:
12430 printf_filtered (_("Dprintf %d"), b->number);
12431 break;
12432 }
12433
12434 say_where (b);
12435 }
12436
12437 static void
12438 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12439 {
12440 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12441 fprintf_unfiltered (fp, "tbreak");
12442 else if (tp->type == bp_breakpoint)
12443 fprintf_unfiltered (fp, "break");
12444 else if (tp->type == bp_hardware_breakpoint
12445 && tp->disposition == disp_del)
12446 fprintf_unfiltered (fp, "thbreak");
12447 else if (tp->type == bp_hardware_breakpoint)
12448 fprintf_unfiltered (fp, "hbreak");
12449 else
12450 internal_error (__FILE__, __LINE__,
12451 _("unhandled breakpoint type %d"), (int) tp->type);
12452
12453 fprintf_unfiltered (fp, " %s",
12454 event_location_to_string (tp->location.get ()));
12455
12456 /* Print out extra_string if this breakpoint is pending. It might
12457 contain, for example, conditions that were set by the user. */
12458 if (tp->loc == NULL && tp->extra_string != NULL)
12459 fprintf_unfiltered (fp, " %s", tp->extra_string);
12460
12461 print_recreate_thread (tp, fp);
12462 }
12463
12464 static void
12465 bkpt_create_sals_from_location (const struct event_location *location,
12466 struct linespec_result *canonical,
12467 enum bptype type_wanted)
12468 {
12469 create_sals_from_location_default (location, canonical, type_wanted);
12470 }
12471
12472 static void
12473 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12474 struct linespec_result *canonical,
12475 gdb::unique_xmalloc_ptr<char> cond_string,
12476 gdb::unique_xmalloc_ptr<char> extra_string,
12477 enum bptype type_wanted,
12478 enum bpdisp disposition,
12479 int thread,
12480 int task, int ignore_count,
12481 const struct breakpoint_ops *ops,
12482 int from_tty, int enabled,
12483 int internal, unsigned flags)
12484 {
12485 create_breakpoints_sal_default (gdbarch, canonical,
12486 std::move (cond_string),
12487 std::move (extra_string),
12488 type_wanted,
12489 disposition, thread, task,
12490 ignore_count, ops, from_tty,
12491 enabled, internal, flags);
12492 }
12493
12494 static std::vector<symtab_and_line>
12495 bkpt_decode_location (struct breakpoint *b,
12496 const struct event_location *location,
12497 struct program_space *search_pspace)
12498 {
12499 return decode_location_default (b, location, search_pspace);
12500 }
12501
12502 /* Virtual table for internal breakpoints. */
12503
12504 static void
12505 internal_bkpt_re_set (struct breakpoint *b)
12506 {
12507 switch (b->type)
12508 {
12509 /* Delete overlay event and longjmp master breakpoints; they
12510 will be reset later by breakpoint_re_set. */
12511 case bp_overlay_event:
12512 case bp_longjmp_master:
12513 case bp_std_terminate_master:
12514 case bp_exception_master:
12515 delete_breakpoint (b);
12516 break;
12517
12518 /* This breakpoint is special, it's set up when the inferior
12519 starts and we really don't want to touch it. */
12520 case bp_shlib_event:
12521
12522 /* Like bp_shlib_event, this breakpoint type is special. Once
12523 it is set up, we do not want to touch it. */
12524 case bp_thread_event:
12525 break;
12526 }
12527 }
12528
12529 static void
12530 internal_bkpt_check_status (bpstat bs)
12531 {
12532 if (bs->breakpoint_at->type == bp_shlib_event)
12533 {
12534 /* If requested, stop when the dynamic linker notifies GDB of
12535 events. This allows the user to get control and place
12536 breakpoints in initializer routines for dynamically loaded
12537 objects (among other things). */
12538 bs->stop = stop_on_solib_events;
12539 bs->print = stop_on_solib_events;
12540 }
12541 else
12542 bs->stop = 0;
12543 }
12544
12545 static enum print_stop_action
12546 internal_bkpt_print_it (bpstat bs)
12547 {
12548 struct breakpoint *b;
12549
12550 b = bs->breakpoint_at;
12551
12552 switch (b->type)
12553 {
12554 case bp_shlib_event:
12555 /* Did we stop because the user set the stop_on_solib_events
12556 variable? (If so, we report this as a generic, "Stopped due
12557 to shlib event" message.) */
12558 print_solib_event (0);
12559 break;
12560
12561 case bp_thread_event:
12562 /* Not sure how we will get here.
12563 GDB should not stop for these breakpoints. */
12564 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12565 break;
12566
12567 case bp_overlay_event:
12568 /* By analogy with the thread event, GDB should not stop for these. */
12569 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12570 break;
12571
12572 case bp_longjmp_master:
12573 /* These should never be enabled. */
12574 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12575 break;
12576
12577 case bp_std_terminate_master:
12578 /* These should never be enabled. */
12579 printf_filtered (_("std::terminate Master Breakpoint: "
12580 "gdb should not stop!\n"));
12581 break;
12582
12583 case bp_exception_master:
12584 /* These should never be enabled. */
12585 printf_filtered (_("Exception Master Breakpoint: "
12586 "gdb should not stop!\n"));
12587 break;
12588 }
12589
12590 return PRINT_NOTHING;
12591 }
12592
12593 static void
12594 internal_bkpt_print_mention (struct breakpoint *b)
12595 {
12596 /* Nothing to mention. These breakpoints are internal. */
12597 }
12598
12599 /* Virtual table for momentary breakpoints */
12600
12601 static void
12602 momentary_bkpt_re_set (struct breakpoint *b)
12603 {
12604 /* Keep temporary breakpoints, which can be encountered when we step
12605 over a dlopen call and solib_add is resetting the breakpoints.
12606 Otherwise these should have been blown away via the cleanup chain
12607 or by breakpoint_init_inferior when we rerun the executable. */
12608 }
12609
12610 static void
12611 momentary_bkpt_check_status (bpstat bs)
12612 {
12613 /* Nothing. The point of these breakpoints is causing a stop. */
12614 }
12615
12616 static enum print_stop_action
12617 momentary_bkpt_print_it (bpstat bs)
12618 {
12619 return PRINT_UNKNOWN;
12620 }
12621
12622 static void
12623 momentary_bkpt_print_mention (struct breakpoint *b)
12624 {
12625 /* Nothing to mention. These breakpoints are internal. */
12626 }
12627
12628 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12629
12630 It gets cleared already on the removal of the first one of such placed
12631 breakpoints. This is OK as they get all removed altogether. */
12632
12633 longjmp_breakpoint::~longjmp_breakpoint ()
12634 {
12635 thread_info *tp = find_thread_global_id (this->thread);
12636
12637 if (tp != NULL)
12638 tp->initiating_frame = null_frame_id;
12639 }
12640
12641 /* Specific methods for probe breakpoints. */
12642
12643 static int
12644 bkpt_probe_insert_location (struct bp_location *bl)
12645 {
12646 int v = bkpt_insert_location (bl);
12647
12648 if (v == 0)
12649 {
12650 /* The insertion was successful, now let's set the probe's semaphore
12651 if needed. */
12652 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12653 }
12654
12655 return v;
12656 }
12657
12658 static int
12659 bkpt_probe_remove_location (struct bp_location *bl,
12660 enum remove_bp_reason reason)
12661 {
12662 /* Let's clear the semaphore before removing the location. */
12663 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12664
12665 return bkpt_remove_location (bl, reason);
12666 }
12667
12668 static void
12669 bkpt_probe_create_sals_from_location (const struct event_location *location,
12670 struct linespec_result *canonical,
12671 enum bptype type_wanted)
12672 {
12673 struct linespec_sals lsal;
12674
12675 lsal.sals = parse_probes (location, NULL, canonical);
12676 lsal.canonical
12677 = xstrdup (event_location_to_string (canonical->location.get ()));
12678 canonical->lsals.push_back (std::move (lsal));
12679 }
12680
12681 static std::vector<symtab_and_line>
12682 bkpt_probe_decode_location (struct breakpoint *b,
12683 const struct event_location *location,
12684 struct program_space *search_pspace)
12685 {
12686 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12687 if (sals.empty ())
12688 error (_("probe not found"));
12689 return sals;
12690 }
12691
12692 /* The breakpoint_ops structure to be used in tracepoints. */
12693
12694 static void
12695 tracepoint_re_set (struct breakpoint *b)
12696 {
12697 breakpoint_re_set_default (b);
12698 }
12699
12700 static int
12701 tracepoint_breakpoint_hit (const struct bp_location *bl,
12702 const address_space *aspace, CORE_ADDR bp_addr,
12703 const struct target_waitstatus *ws)
12704 {
12705 /* By definition, the inferior does not report stops at
12706 tracepoints. */
12707 return 0;
12708 }
12709
12710 static void
12711 tracepoint_print_one_detail (const struct breakpoint *self,
12712 struct ui_out *uiout)
12713 {
12714 struct tracepoint *tp = (struct tracepoint *) self;
12715 if (!tp->static_trace_marker_id.empty ())
12716 {
12717 gdb_assert (self->type == bp_static_tracepoint);
12718
12719 uiout->text ("\tmarker id is ");
12720 uiout->field_string ("static-tracepoint-marker-string-id",
12721 tp->static_trace_marker_id);
12722 uiout->text ("\n");
12723 }
12724 }
12725
12726 static void
12727 tracepoint_print_mention (struct breakpoint *b)
12728 {
12729 if (current_uiout->is_mi_like_p ())
12730 return;
12731
12732 switch (b->type)
12733 {
12734 case bp_tracepoint:
12735 printf_filtered (_("Tracepoint"));
12736 printf_filtered (_(" %d"), b->number);
12737 break;
12738 case bp_fast_tracepoint:
12739 printf_filtered (_("Fast tracepoint"));
12740 printf_filtered (_(" %d"), b->number);
12741 break;
12742 case bp_static_tracepoint:
12743 printf_filtered (_("Static tracepoint"));
12744 printf_filtered (_(" %d"), b->number);
12745 break;
12746 default:
12747 internal_error (__FILE__, __LINE__,
12748 _("unhandled tracepoint type %d"), (int) b->type);
12749 }
12750
12751 say_where (b);
12752 }
12753
12754 static void
12755 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12756 {
12757 struct tracepoint *tp = (struct tracepoint *) self;
12758
12759 if (self->type == bp_fast_tracepoint)
12760 fprintf_unfiltered (fp, "ftrace");
12761 else if (self->type == bp_static_tracepoint)
12762 fprintf_unfiltered (fp, "strace");
12763 else if (self->type == bp_tracepoint)
12764 fprintf_unfiltered (fp, "trace");
12765 else
12766 internal_error (__FILE__, __LINE__,
12767 _("unhandled tracepoint type %d"), (int) self->type);
12768
12769 fprintf_unfiltered (fp, " %s",
12770 event_location_to_string (self->location.get ()));
12771 print_recreate_thread (self, fp);
12772
12773 if (tp->pass_count)
12774 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12775 }
12776
12777 static void
12778 tracepoint_create_sals_from_location (const struct event_location *location,
12779 struct linespec_result *canonical,
12780 enum bptype type_wanted)
12781 {
12782 create_sals_from_location_default (location, canonical, type_wanted);
12783 }
12784
12785 static void
12786 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12787 struct linespec_result *canonical,
12788 gdb::unique_xmalloc_ptr<char> cond_string,
12789 gdb::unique_xmalloc_ptr<char> extra_string,
12790 enum bptype type_wanted,
12791 enum bpdisp disposition,
12792 int thread,
12793 int task, int ignore_count,
12794 const struct breakpoint_ops *ops,
12795 int from_tty, int enabled,
12796 int internal, unsigned flags)
12797 {
12798 create_breakpoints_sal_default (gdbarch, canonical,
12799 std::move (cond_string),
12800 std::move (extra_string),
12801 type_wanted,
12802 disposition, thread, task,
12803 ignore_count, ops, from_tty,
12804 enabled, internal, flags);
12805 }
12806
12807 static std::vector<symtab_and_line>
12808 tracepoint_decode_location (struct breakpoint *b,
12809 const struct event_location *location,
12810 struct program_space *search_pspace)
12811 {
12812 return decode_location_default (b, location, search_pspace);
12813 }
12814
12815 struct breakpoint_ops tracepoint_breakpoint_ops;
12816
12817 /* The breakpoint_ops structure to be use on tracepoints placed in a
12818 static probe. */
12819
12820 static void
12821 tracepoint_probe_create_sals_from_location
12822 (const struct event_location *location,
12823 struct linespec_result *canonical,
12824 enum bptype type_wanted)
12825 {
12826 /* We use the same method for breakpoint on probes. */
12827 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12828 }
12829
12830 static std::vector<symtab_and_line>
12831 tracepoint_probe_decode_location (struct breakpoint *b,
12832 const struct event_location *location,
12833 struct program_space *search_pspace)
12834 {
12835 /* We use the same method for breakpoint on probes. */
12836 return bkpt_probe_decode_location (b, location, search_pspace);
12837 }
12838
12839 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
12840
12841 /* Dprintf breakpoint_ops methods. */
12842
12843 static void
12844 dprintf_re_set (struct breakpoint *b)
12845 {
12846 breakpoint_re_set_default (b);
12847
12848 /* extra_string should never be non-NULL for dprintf. */
12849 gdb_assert (b->extra_string != NULL);
12850
12851 /* 1 - connect to target 1, that can run breakpoint commands.
12852 2 - create a dprintf, which resolves fine.
12853 3 - disconnect from target 1
12854 4 - connect to target 2, that can NOT run breakpoint commands.
12855
12856 After steps #3/#4, you'll want the dprintf command list to
12857 be updated, because target 1 and 2 may well return different
12858 answers for target_can_run_breakpoint_commands().
12859 Given absence of finer grained resetting, we get to do
12860 it all the time. */
12861 if (b->extra_string != NULL)
12862 update_dprintf_command_list (b);
12863 }
12864
12865 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
12866
12867 static void
12868 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12869 {
12870 fprintf_unfiltered (fp, "dprintf %s,%s",
12871 event_location_to_string (tp->location.get ()),
12872 tp->extra_string);
12873 print_recreate_thread (tp, fp);
12874 }
12875
12876 /* Implement the "after_condition_true" breakpoint_ops method for
12877 dprintf.
12878
12879 dprintf's are implemented with regular commands in their command
12880 list, but we run the commands here instead of before presenting the
12881 stop to the user, as dprintf's don't actually cause a stop. This
12882 also makes it so that the commands of multiple dprintfs at the same
12883 address are all handled. */
12884
12885 static void
12886 dprintf_after_condition_true (struct bpstats *bs)
12887 {
12888 struct bpstats tmp_bs;
12889 struct bpstats *tmp_bs_p = &tmp_bs;
12890
12891 /* dprintf's never cause a stop. This wasn't set in the
12892 check_status hook instead because that would make the dprintf's
12893 condition not be evaluated. */
12894 bs->stop = 0;
12895
12896 /* Run the command list here. Take ownership of it instead of
12897 copying. We never want these commands to run later in
12898 bpstat_do_actions, if a breakpoint that causes a stop happens to
12899 be set at same address as this dprintf, or even if running the
12900 commands here throws. */
12901 tmp_bs.commands = bs->commands;
12902 bs->commands = NULL;
12903
12904 bpstat_do_actions_1 (&tmp_bs_p);
12905
12906 /* 'tmp_bs.commands' will usually be NULL by now, but
12907 bpstat_do_actions_1 may return early without processing the whole
12908 list. */
12909 }
12910
12911 /* The breakpoint_ops structure to be used on static tracepoints with
12912 markers (`-m'). */
12913
12914 static void
12915 strace_marker_create_sals_from_location (const struct event_location *location,
12916 struct linespec_result *canonical,
12917 enum bptype type_wanted)
12918 {
12919 struct linespec_sals lsal;
12920 const char *arg_start, *arg;
12921
12922 arg = arg_start = get_linespec_location (location)->spec_string;
12923 lsal.sals = decode_static_tracepoint_spec (&arg);
12924
12925 std::string str (arg_start, arg - arg_start);
12926 const char *ptr = str.c_str ();
12927 canonical->location
12928 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
12929
12930 lsal.canonical
12931 = xstrdup (event_location_to_string (canonical->location.get ()));
12932 canonical->lsals.push_back (std::move (lsal));
12933 }
12934
12935 static void
12936 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
12937 struct linespec_result *canonical,
12938 gdb::unique_xmalloc_ptr<char> cond_string,
12939 gdb::unique_xmalloc_ptr<char> extra_string,
12940 enum bptype type_wanted,
12941 enum bpdisp disposition,
12942 int thread,
12943 int task, int ignore_count,
12944 const struct breakpoint_ops *ops,
12945 int from_tty, int enabled,
12946 int internal, unsigned flags)
12947 {
12948 const linespec_sals &lsal = canonical->lsals[0];
12949
12950 /* If the user is creating a static tracepoint by marker id
12951 (strace -m MARKER_ID), then store the sals index, so that
12952 breakpoint_re_set can try to match up which of the newly
12953 found markers corresponds to this one, and, don't try to
12954 expand multiple locations for each sal, given than SALS
12955 already should contain all sals for MARKER_ID. */
12956
12957 for (size_t i = 0; i < lsal.sals.size (); i++)
12958 {
12959 event_location_up location
12960 = copy_event_location (canonical->location.get ());
12961
12962 std::unique_ptr<tracepoint> tp (new tracepoint ());
12963 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
12964 std::move (location), NULL,
12965 std::move (cond_string),
12966 std::move (extra_string),
12967 type_wanted, disposition,
12968 thread, task, ignore_count, ops,
12969 from_tty, enabled, internal, flags,
12970 canonical->special_display);
12971 /* Given that its possible to have multiple markers with
12972 the same string id, if the user is creating a static
12973 tracepoint by marker id ("strace -m MARKER_ID"), then
12974 store the sals index, so that breakpoint_re_set can
12975 try to match up which of the newly found markers
12976 corresponds to this one */
12977 tp->static_trace_marker_id_idx = i;
12978
12979 install_breakpoint (internal, std::move (tp), 0);
12980 }
12981 }
12982
12983 static std::vector<symtab_and_line>
12984 strace_marker_decode_location (struct breakpoint *b,
12985 const struct event_location *location,
12986 struct program_space *search_pspace)
12987 {
12988 struct tracepoint *tp = (struct tracepoint *) b;
12989 const char *s = get_linespec_location (location)->spec_string;
12990
12991 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
12992 if (sals.size () > tp->static_trace_marker_id_idx)
12993 {
12994 sals[0] = sals[tp->static_trace_marker_id_idx];
12995 sals.resize (1);
12996 return sals;
12997 }
12998 else
12999 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13000 }
13001
13002 static struct breakpoint_ops strace_marker_breakpoint_ops;
13003
13004 static int
13005 strace_marker_p (struct breakpoint *b)
13006 {
13007 return b->ops == &strace_marker_breakpoint_ops;
13008 }
13009
13010 /* Delete a breakpoint and clean up all traces of it in the data
13011 structures. */
13012
13013 void
13014 delete_breakpoint (struct breakpoint *bpt)
13015 {
13016 struct breakpoint *b;
13017
13018 gdb_assert (bpt != NULL);
13019
13020 /* Has this bp already been deleted? This can happen because
13021 multiple lists can hold pointers to bp's. bpstat lists are
13022 especial culprits.
13023
13024 One example of this happening is a watchpoint's scope bp. When
13025 the scope bp triggers, we notice that the watchpoint is out of
13026 scope, and delete it. We also delete its scope bp. But the
13027 scope bp is marked "auto-deleting", and is already on a bpstat.
13028 That bpstat is then checked for auto-deleting bp's, which are
13029 deleted.
13030
13031 A real solution to this problem might involve reference counts in
13032 bp's, and/or giving them pointers back to their referencing
13033 bpstat's, and teaching delete_breakpoint to only free a bp's
13034 storage when no more references were extent. A cheaper bandaid
13035 was chosen. */
13036 if (bpt->type == bp_none)
13037 return;
13038
13039 /* At least avoid this stale reference until the reference counting
13040 of breakpoints gets resolved. */
13041 if (bpt->related_breakpoint != bpt)
13042 {
13043 struct breakpoint *related;
13044 struct watchpoint *w;
13045
13046 if (bpt->type == bp_watchpoint_scope)
13047 w = (struct watchpoint *) bpt->related_breakpoint;
13048 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13049 w = (struct watchpoint *) bpt;
13050 else
13051 w = NULL;
13052 if (w != NULL)
13053 watchpoint_del_at_next_stop (w);
13054
13055 /* Unlink bpt from the bpt->related_breakpoint ring. */
13056 for (related = bpt; related->related_breakpoint != bpt;
13057 related = related->related_breakpoint);
13058 related->related_breakpoint = bpt->related_breakpoint;
13059 bpt->related_breakpoint = bpt;
13060 }
13061
13062 /* watch_command_1 creates a watchpoint but only sets its number if
13063 update_watchpoint succeeds in creating its bp_locations. If there's
13064 a problem in that process, we'll be asked to delete the half-created
13065 watchpoint. In that case, don't announce the deletion. */
13066 if (bpt->number)
13067 gdb::observers::breakpoint_deleted.notify (bpt);
13068
13069 if (breakpoint_chain == bpt)
13070 breakpoint_chain = bpt->next;
13071
13072 ALL_BREAKPOINTS (b)
13073 if (b->next == bpt)
13074 {
13075 b->next = bpt->next;
13076 break;
13077 }
13078
13079 /* Be sure no bpstat's are pointing at the breakpoint after it's
13080 been freed. */
13081 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13082 in all threads for now. Note that we cannot just remove bpstats
13083 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13084 commands are associated with the bpstat; if we remove it here,
13085 then the later call to bpstat_do_actions (&stop_bpstat); in
13086 event-top.c won't do anything, and temporary breakpoints with
13087 commands won't work. */
13088
13089 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13090
13091 /* Now that breakpoint is removed from breakpoint list, update the
13092 global location list. This will remove locations that used to
13093 belong to this breakpoint. Do this before freeing the breakpoint
13094 itself, since remove_breakpoint looks at location's owner. It
13095 might be better design to have location completely
13096 self-contained, but it's not the case now. */
13097 update_global_location_list (UGLL_DONT_INSERT);
13098
13099 /* On the chance that someone will soon try again to delete this
13100 same bp, we mark it as deleted before freeing its storage. */
13101 bpt->type = bp_none;
13102 delete bpt;
13103 }
13104
13105 /* Iterator function to call a user-provided callback function once
13106 for each of B and its related breakpoints. */
13107
13108 static void
13109 iterate_over_related_breakpoints (struct breakpoint *b,
13110 gdb::function_view<void (breakpoint *)> function)
13111 {
13112 struct breakpoint *related;
13113
13114 related = b;
13115 do
13116 {
13117 struct breakpoint *next;
13118
13119 /* FUNCTION may delete RELATED. */
13120 next = related->related_breakpoint;
13121
13122 if (next == related)
13123 {
13124 /* RELATED is the last ring entry. */
13125 function (related);
13126
13127 /* FUNCTION may have deleted it, so we'd never reach back to
13128 B. There's nothing left to do anyway, so just break
13129 out. */
13130 break;
13131 }
13132 else
13133 function (related);
13134
13135 related = next;
13136 }
13137 while (related != b);
13138 }
13139
13140 static void
13141 delete_command (const char *arg, int from_tty)
13142 {
13143 struct breakpoint *b, *b_tmp;
13144
13145 dont_repeat ();
13146
13147 if (arg == 0)
13148 {
13149 int breaks_to_delete = 0;
13150
13151 /* Delete all breakpoints if no argument. Do not delete
13152 internal breakpoints, these have to be deleted with an
13153 explicit breakpoint number argument. */
13154 ALL_BREAKPOINTS (b)
13155 if (user_breakpoint_p (b))
13156 {
13157 breaks_to_delete = 1;
13158 break;
13159 }
13160
13161 /* Ask user only if there are some breakpoints to delete. */
13162 if (!from_tty
13163 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13164 {
13165 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13166 if (user_breakpoint_p (b))
13167 delete_breakpoint (b);
13168 }
13169 }
13170 else
13171 map_breakpoint_numbers
13172 (arg, [&] (breakpoint *br)
13173 {
13174 iterate_over_related_breakpoints (br, delete_breakpoint);
13175 });
13176 }
13177
13178 /* Return true if all locations of B bound to PSPACE are pending. If
13179 PSPACE is NULL, all locations of all program spaces are
13180 considered. */
13181
13182 static int
13183 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13184 {
13185 struct bp_location *loc;
13186
13187 for (loc = b->loc; loc != NULL; loc = loc->next)
13188 if ((pspace == NULL
13189 || loc->pspace == pspace)
13190 && !loc->shlib_disabled
13191 && !loc->pspace->executing_startup)
13192 return 0;
13193 return 1;
13194 }
13195
13196 /* Subroutine of update_breakpoint_locations to simplify it.
13197 Return non-zero if multiple fns in list LOC have the same name.
13198 Null names are ignored. */
13199
13200 static int
13201 ambiguous_names_p (struct bp_location *loc)
13202 {
13203 struct bp_location *l;
13204 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13205 xcalloc, xfree);
13206
13207 for (l = loc; l != NULL; l = l->next)
13208 {
13209 const char **slot;
13210 const char *name = l->function_name;
13211
13212 /* Allow for some names to be NULL, ignore them. */
13213 if (name == NULL)
13214 continue;
13215
13216 slot = (const char **) htab_find_slot (htab, (const void *) name,
13217 INSERT);
13218 /* NOTE: We can assume slot != NULL here because xcalloc never
13219 returns NULL. */
13220 if (*slot != NULL)
13221 {
13222 htab_delete (htab);
13223 return 1;
13224 }
13225 *slot = name;
13226 }
13227
13228 htab_delete (htab);
13229 return 0;
13230 }
13231
13232 /* When symbols change, it probably means the sources changed as well,
13233 and it might mean the static tracepoint markers are no longer at
13234 the same address or line numbers they used to be at last we
13235 checked. Losing your static tracepoints whenever you rebuild is
13236 undesirable. This function tries to resync/rematch gdb static
13237 tracepoints with the markers on the target, for static tracepoints
13238 that have not been set by marker id. Static tracepoint that have
13239 been set by marker id are reset by marker id in breakpoint_re_set.
13240 The heuristic is:
13241
13242 1) For a tracepoint set at a specific address, look for a marker at
13243 the old PC. If one is found there, assume to be the same marker.
13244 If the name / string id of the marker found is different from the
13245 previous known name, assume that means the user renamed the marker
13246 in the sources, and output a warning.
13247
13248 2) For a tracepoint set at a given line number, look for a marker
13249 at the new address of the old line number. If one is found there,
13250 assume to be the same marker. If the name / string id of the
13251 marker found is different from the previous known name, assume that
13252 means the user renamed the marker in the sources, and output a
13253 warning.
13254
13255 3) If a marker is no longer found at the same address or line, it
13256 may mean the marker no longer exists. But it may also just mean
13257 the code changed a bit. Maybe the user added a few lines of code
13258 that made the marker move up or down (in line number terms). Ask
13259 the target for info about the marker with the string id as we knew
13260 it. If found, update line number and address in the matching
13261 static tracepoint. This will get confused if there's more than one
13262 marker with the same ID (possible in UST, although unadvised
13263 precisely because it confuses tools). */
13264
13265 static struct symtab_and_line
13266 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13267 {
13268 struct tracepoint *tp = (struct tracepoint *) b;
13269 struct static_tracepoint_marker marker;
13270 CORE_ADDR pc;
13271
13272 pc = sal.pc;
13273 if (sal.line)
13274 find_line_pc (sal.symtab, sal.line, &pc);
13275
13276 if (target_static_tracepoint_marker_at (pc, &marker))
13277 {
13278 if (tp->static_trace_marker_id != marker.str_id)
13279 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13280 b->number, tp->static_trace_marker_id.c_str (),
13281 marker.str_id.c_str ());
13282
13283 tp->static_trace_marker_id = std::move (marker.str_id);
13284
13285 return sal;
13286 }
13287
13288 /* Old marker wasn't found on target at lineno. Try looking it up
13289 by string ID. */
13290 if (!sal.explicit_pc
13291 && sal.line != 0
13292 && sal.symtab != NULL
13293 && !tp->static_trace_marker_id.empty ())
13294 {
13295 std::vector<static_tracepoint_marker> markers
13296 = target_static_tracepoint_markers_by_strid
13297 (tp->static_trace_marker_id.c_str ());
13298
13299 if (!markers.empty ())
13300 {
13301 struct symbol *sym;
13302 struct static_tracepoint_marker *tpmarker;
13303 struct ui_out *uiout = current_uiout;
13304 struct explicit_location explicit_loc;
13305
13306 tpmarker = &markers[0];
13307
13308 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13309
13310 warning (_("marker for static tracepoint %d (%s) not "
13311 "found at previous line number"),
13312 b->number, tp->static_trace_marker_id.c_str ());
13313
13314 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13315 sym = find_pc_sect_function (tpmarker->address, NULL);
13316 uiout->text ("Now in ");
13317 if (sym)
13318 {
13319 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym),
13320 ui_out_style_kind::FUNCTION);
13321 uiout->text (" at ");
13322 }
13323 uiout->field_string ("file",
13324 symtab_to_filename_for_display (sal2.symtab),
13325 ui_out_style_kind::FILE);
13326 uiout->text (":");
13327
13328 if (uiout->is_mi_like_p ())
13329 {
13330 const char *fullname = symtab_to_fullname (sal2.symtab);
13331
13332 uiout->field_string ("fullname", fullname);
13333 }
13334
13335 uiout->field_signed ("line", sal2.line);
13336 uiout->text ("\n");
13337
13338 b->loc->line_number = sal2.line;
13339 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13340
13341 b->location.reset (NULL);
13342 initialize_explicit_location (&explicit_loc);
13343 explicit_loc.source_filename
13344 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13345 explicit_loc.line_offset.offset = b->loc->line_number;
13346 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13347 b->location = new_explicit_location (&explicit_loc);
13348
13349 /* Might be nice to check if function changed, and warn if
13350 so. */
13351 }
13352 }
13353 return sal;
13354 }
13355
13356 /* Returns 1 iff locations A and B are sufficiently same that
13357 we don't need to report breakpoint as changed. */
13358
13359 static int
13360 locations_are_equal (struct bp_location *a, struct bp_location *b)
13361 {
13362 while (a && b)
13363 {
13364 if (a->address != b->address)
13365 return 0;
13366
13367 if (a->shlib_disabled != b->shlib_disabled)
13368 return 0;
13369
13370 if (a->enabled != b->enabled)
13371 return 0;
13372
13373 a = a->next;
13374 b = b->next;
13375 }
13376
13377 if ((a == NULL) != (b == NULL))
13378 return 0;
13379
13380 return 1;
13381 }
13382
13383 /* Split all locations of B that are bound to PSPACE out of B's
13384 location list to a separate list and return that list's head. If
13385 PSPACE is NULL, hoist out all locations of B. */
13386
13387 static struct bp_location *
13388 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13389 {
13390 struct bp_location head;
13391 struct bp_location *i = b->loc;
13392 struct bp_location **i_link = &b->loc;
13393 struct bp_location *hoisted = &head;
13394
13395 if (pspace == NULL)
13396 {
13397 i = b->loc;
13398 b->loc = NULL;
13399 return i;
13400 }
13401
13402 head.next = NULL;
13403
13404 while (i != NULL)
13405 {
13406 if (i->pspace == pspace)
13407 {
13408 *i_link = i->next;
13409 i->next = NULL;
13410 hoisted->next = i;
13411 hoisted = i;
13412 }
13413 else
13414 i_link = &i->next;
13415 i = *i_link;
13416 }
13417
13418 return head.next;
13419 }
13420
13421 /* Create new breakpoint locations for B (a hardware or software
13422 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13423 zero, then B is a ranged breakpoint. Only recreates locations for
13424 FILTER_PSPACE. Locations of other program spaces are left
13425 untouched. */
13426
13427 void
13428 update_breakpoint_locations (struct breakpoint *b,
13429 struct program_space *filter_pspace,
13430 gdb::array_view<const symtab_and_line> sals,
13431 gdb::array_view<const symtab_and_line> sals_end)
13432 {
13433 struct bp_location *existing_locations;
13434
13435 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13436 {
13437 /* Ranged breakpoints have only one start location and one end
13438 location. */
13439 b->enable_state = bp_disabled;
13440 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13441 "multiple locations found\n"),
13442 b->number);
13443 return;
13444 }
13445
13446 /* If there's no new locations, and all existing locations are
13447 pending, don't do anything. This optimizes the common case where
13448 all locations are in the same shared library, that was unloaded.
13449 We'd like to retain the location, so that when the library is
13450 loaded again, we don't loose the enabled/disabled status of the
13451 individual locations. */
13452 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13453 return;
13454
13455 existing_locations = hoist_existing_locations (b, filter_pspace);
13456
13457 for (const auto &sal : sals)
13458 {
13459 struct bp_location *new_loc;
13460
13461 switch_to_program_space_and_thread (sal.pspace);
13462
13463 new_loc = add_location_to_breakpoint (b, &sal);
13464
13465 /* Reparse conditions, they might contain references to the
13466 old symtab. */
13467 if (b->cond_string != NULL)
13468 {
13469 const char *s;
13470
13471 s = b->cond_string;
13472 try
13473 {
13474 new_loc->cond = parse_exp_1 (&s, sal.pc,
13475 block_for_pc (sal.pc),
13476 0);
13477 }
13478 catch (const gdb_exception_error &e)
13479 {
13480 warning (_("failed to reevaluate condition "
13481 "for breakpoint %d: %s"),
13482 b->number, e.what ());
13483 new_loc->enabled = 0;
13484 }
13485 }
13486
13487 if (!sals_end.empty ())
13488 {
13489 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13490
13491 new_loc->length = end - sals[0].pc + 1;
13492 }
13493 }
13494
13495 /* If possible, carry over 'disable' status from existing
13496 breakpoints. */
13497 {
13498 struct bp_location *e = existing_locations;
13499 /* If there are multiple breakpoints with the same function name,
13500 e.g. for inline functions, comparing function names won't work.
13501 Instead compare pc addresses; this is just a heuristic as things
13502 may have moved, but in practice it gives the correct answer
13503 often enough until a better solution is found. */
13504 int have_ambiguous_names = ambiguous_names_p (b->loc);
13505
13506 for (; e; e = e->next)
13507 {
13508 if (!e->enabled && e->function_name)
13509 {
13510 struct bp_location *l = b->loc;
13511 if (have_ambiguous_names)
13512 {
13513 for (; l; l = l->next)
13514 if (breakpoint_locations_match (e, l))
13515 {
13516 l->enabled = 0;
13517 break;
13518 }
13519 }
13520 else
13521 {
13522 for (; l; l = l->next)
13523 if (l->function_name
13524 && strcmp (e->function_name, l->function_name) == 0)
13525 {
13526 l->enabled = 0;
13527 break;
13528 }
13529 }
13530 }
13531 }
13532 }
13533
13534 if (!locations_are_equal (existing_locations, b->loc))
13535 gdb::observers::breakpoint_modified.notify (b);
13536 }
13537
13538 /* Find the SaL locations corresponding to the given LOCATION.
13539 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13540
13541 static std::vector<symtab_and_line>
13542 location_to_sals (struct breakpoint *b, struct event_location *location,
13543 struct program_space *search_pspace, int *found)
13544 {
13545 struct gdb_exception exception;
13546
13547 gdb_assert (b->ops != NULL);
13548
13549 std::vector<symtab_and_line> sals;
13550
13551 try
13552 {
13553 sals = b->ops->decode_location (b, location, search_pspace);
13554 }
13555 catch (gdb_exception_error &e)
13556 {
13557 int not_found_and_ok = 0;
13558
13559 /* For pending breakpoints, it's expected that parsing will
13560 fail until the right shared library is loaded. User has
13561 already told to create pending breakpoints and don't need
13562 extra messages. If breakpoint is in bp_shlib_disabled
13563 state, then user already saw the message about that
13564 breakpoint being disabled, and don't want to see more
13565 errors. */
13566 if (e.error == NOT_FOUND_ERROR
13567 && (b->condition_not_parsed
13568 || (b->loc != NULL
13569 && search_pspace != NULL
13570 && b->loc->pspace != search_pspace)
13571 || (b->loc && b->loc->shlib_disabled)
13572 || (b->loc && b->loc->pspace->executing_startup)
13573 || b->enable_state == bp_disabled))
13574 not_found_and_ok = 1;
13575
13576 if (!not_found_and_ok)
13577 {
13578 /* We surely don't want to warn about the same breakpoint
13579 10 times. One solution, implemented here, is disable
13580 the breakpoint on error. Another solution would be to
13581 have separate 'warning emitted' flag. Since this
13582 happens only when a binary has changed, I don't know
13583 which approach is better. */
13584 b->enable_state = bp_disabled;
13585 throw;
13586 }
13587
13588 exception = std::move (e);
13589 }
13590
13591 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13592 {
13593 for (auto &sal : sals)
13594 resolve_sal_pc (&sal);
13595 if (b->condition_not_parsed && b->extra_string != NULL)
13596 {
13597 char *cond_string, *extra_string;
13598 int thread, task;
13599
13600 find_condition_and_thread (b->extra_string, sals[0].pc,
13601 &cond_string, &thread, &task,
13602 &extra_string);
13603 gdb_assert (b->cond_string == NULL);
13604 if (cond_string)
13605 b->cond_string = cond_string;
13606 b->thread = thread;
13607 b->task = task;
13608 if (extra_string)
13609 {
13610 xfree (b->extra_string);
13611 b->extra_string = extra_string;
13612 }
13613 b->condition_not_parsed = 0;
13614 }
13615
13616 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13617 sals[0] = update_static_tracepoint (b, sals[0]);
13618
13619 *found = 1;
13620 }
13621 else
13622 *found = 0;
13623
13624 return sals;
13625 }
13626
13627 /* The default re_set method, for typical hardware or software
13628 breakpoints. Reevaluate the breakpoint and recreate its
13629 locations. */
13630
13631 static void
13632 breakpoint_re_set_default (struct breakpoint *b)
13633 {
13634 struct program_space *filter_pspace = current_program_space;
13635 std::vector<symtab_and_line> expanded, expanded_end;
13636
13637 int found;
13638 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13639 filter_pspace, &found);
13640 if (found)
13641 expanded = std::move (sals);
13642
13643 if (b->location_range_end != NULL)
13644 {
13645 std::vector<symtab_and_line> sals_end
13646 = location_to_sals (b, b->location_range_end.get (),
13647 filter_pspace, &found);
13648 if (found)
13649 expanded_end = std::move (sals_end);
13650 }
13651
13652 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13653 }
13654
13655 /* Default method for creating SALs from an address string. It basically
13656 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13657
13658 static void
13659 create_sals_from_location_default (const struct event_location *location,
13660 struct linespec_result *canonical,
13661 enum bptype type_wanted)
13662 {
13663 parse_breakpoint_sals (location, canonical);
13664 }
13665
13666 /* Call create_breakpoints_sal for the given arguments. This is the default
13667 function for the `create_breakpoints_sal' method of
13668 breakpoint_ops. */
13669
13670 static void
13671 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13672 struct linespec_result *canonical,
13673 gdb::unique_xmalloc_ptr<char> cond_string,
13674 gdb::unique_xmalloc_ptr<char> extra_string,
13675 enum bptype type_wanted,
13676 enum bpdisp disposition,
13677 int thread,
13678 int task, int ignore_count,
13679 const struct breakpoint_ops *ops,
13680 int from_tty, int enabled,
13681 int internal, unsigned flags)
13682 {
13683 create_breakpoints_sal (gdbarch, canonical,
13684 std::move (cond_string),
13685 std::move (extra_string),
13686 type_wanted, disposition,
13687 thread, task, ignore_count, ops, from_tty,
13688 enabled, internal, flags);
13689 }
13690
13691 /* Decode the line represented by S by calling decode_line_full. This is the
13692 default function for the `decode_location' method of breakpoint_ops. */
13693
13694 static std::vector<symtab_and_line>
13695 decode_location_default (struct breakpoint *b,
13696 const struct event_location *location,
13697 struct program_space *search_pspace)
13698 {
13699 struct linespec_result canonical;
13700
13701 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13702 NULL, 0, &canonical, multiple_symbols_all,
13703 b->filter.get ());
13704
13705 /* We should get 0 or 1 resulting SALs. */
13706 gdb_assert (canonical.lsals.size () < 2);
13707
13708 if (!canonical.lsals.empty ())
13709 {
13710 const linespec_sals &lsal = canonical.lsals[0];
13711 return std::move (lsal.sals);
13712 }
13713 return {};
13714 }
13715
13716 /* Reset a breakpoint. */
13717
13718 static void
13719 breakpoint_re_set_one (breakpoint *b)
13720 {
13721 input_radix = b->input_radix;
13722 set_language (b->language);
13723
13724 b->ops->re_set (b);
13725 }
13726
13727 /* Re-set breakpoint locations for the current program space.
13728 Locations bound to other program spaces are left untouched. */
13729
13730 void
13731 breakpoint_re_set (void)
13732 {
13733 struct breakpoint *b, *b_tmp;
13734
13735 {
13736 scoped_restore_current_language save_language;
13737 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13738 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13739
13740 /* breakpoint_re_set_one sets the current_language to the language
13741 of the breakpoint it is resetting (see prepare_re_set_context)
13742 before re-evaluating the breakpoint's location. This change can
13743 unfortunately get undone by accident if the language_mode is set
13744 to auto, and we either switch frames, or more likely in this context,
13745 we select the current frame.
13746
13747 We prevent this by temporarily turning the language_mode to
13748 language_mode_manual. We restore it once all breakpoints
13749 have been reset. */
13750 scoped_restore save_language_mode = make_scoped_restore (&language_mode);
13751 language_mode = language_mode_manual;
13752
13753 /* Note: we must not try to insert locations until after all
13754 breakpoints have been re-set. Otherwise, e.g., when re-setting
13755 breakpoint 1, we'd insert the locations of breakpoint 2, which
13756 hadn't been re-set yet, and thus may have stale locations. */
13757
13758 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13759 {
13760 try
13761 {
13762 breakpoint_re_set_one (b);
13763 }
13764 catch (const gdb_exception &ex)
13765 {
13766 exception_fprintf (gdb_stderr, ex,
13767 "Error in re-setting breakpoint %d: ",
13768 b->number);
13769 }
13770 }
13771
13772 jit_breakpoint_re_set ();
13773 }
13774
13775 create_overlay_event_breakpoint ();
13776 create_longjmp_master_breakpoint ();
13777 create_std_terminate_master_breakpoint ();
13778 create_exception_master_breakpoint ();
13779
13780 /* Now we can insert. */
13781 update_global_location_list (UGLL_MAY_INSERT);
13782 }
13783 \f
13784 /* Reset the thread number of this breakpoint:
13785
13786 - If the breakpoint is for all threads, leave it as-is.
13787 - Else, reset it to the current thread for inferior_ptid. */
13788 void
13789 breakpoint_re_set_thread (struct breakpoint *b)
13790 {
13791 if (b->thread != -1)
13792 {
13793 b->thread = inferior_thread ()->global_num;
13794
13795 /* We're being called after following a fork. The new fork is
13796 selected as current, and unless this was a vfork will have a
13797 different program space from the original thread. Reset that
13798 as well. */
13799 b->loc->pspace = current_program_space;
13800 }
13801 }
13802
13803 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13804 If from_tty is nonzero, it prints a message to that effect,
13805 which ends with a period (no newline). */
13806
13807 void
13808 set_ignore_count (int bptnum, int count, int from_tty)
13809 {
13810 struct breakpoint *b;
13811
13812 if (count < 0)
13813 count = 0;
13814
13815 ALL_BREAKPOINTS (b)
13816 if (b->number == bptnum)
13817 {
13818 if (is_tracepoint (b))
13819 {
13820 if (from_tty && count != 0)
13821 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13822 bptnum);
13823 return;
13824 }
13825
13826 b->ignore_count = count;
13827 if (from_tty)
13828 {
13829 if (count == 0)
13830 printf_filtered (_("Will stop next time "
13831 "breakpoint %d is reached."),
13832 bptnum);
13833 else if (count == 1)
13834 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13835 bptnum);
13836 else
13837 printf_filtered (_("Will ignore next %d "
13838 "crossings of breakpoint %d."),
13839 count, bptnum);
13840 }
13841 gdb::observers::breakpoint_modified.notify (b);
13842 return;
13843 }
13844
13845 error (_("No breakpoint number %d."), bptnum);
13846 }
13847
13848 /* Command to set ignore-count of breakpoint N to COUNT. */
13849
13850 static void
13851 ignore_command (const char *args, int from_tty)
13852 {
13853 const char *p = args;
13854 int num;
13855
13856 if (p == 0)
13857 error_no_arg (_("a breakpoint number"));
13858
13859 num = get_number (&p);
13860 if (num == 0)
13861 error (_("bad breakpoint number: '%s'"), args);
13862 if (*p == 0)
13863 error (_("Second argument (specified ignore-count) is missing."));
13864
13865 set_ignore_count (num,
13866 longest_to_int (value_as_long (parse_and_eval (p))),
13867 from_tty);
13868 if (from_tty)
13869 printf_filtered ("\n");
13870 }
13871 \f
13872
13873 /* Call FUNCTION on each of the breakpoints with numbers in the range
13874 defined by BP_NUM_RANGE (an inclusive range). */
13875
13876 static void
13877 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
13878 gdb::function_view<void (breakpoint *)> function)
13879 {
13880 if (bp_num_range.first == 0)
13881 {
13882 warning (_("bad breakpoint number at or near '%d'"),
13883 bp_num_range.first);
13884 }
13885 else
13886 {
13887 struct breakpoint *b, *tmp;
13888
13889 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
13890 {
13891 bool match = false;
13892
13893 ALL_BREAKPOINTS_SAFE (b, tmp)
13894 if (b->number == i)
13895 {
13896 match = true;
13897 function (b);
13898 break;
13899 }
13900 if (!match)
13901 printf_unfiltered (_("No breakpoint number %d.\n"), i);
13902 }
13903 }
13904 }
13905
13906 /* Call FUNCTION on each of the breakpoints whose numbers are given in
13907 ARGS. */
13908
13909 static void
13910 map_breakpoint_numbers (const char *args,
13911 gdb::function_view<void (breakpoint *)> function)
13912 {
13913 if (args == NULL || *args == '\0')
13914 error_no_arg (_("one or more breakpoint numbers"));
13915
13916 number_or_range_parser parser (args);
13917
13918 while (!parser.finished ())
13919 {
13920 int num = parser.get_number ();
13921 map_breakpoint_number_range (std::make_pair (num, num), function);
13922 }
13923 }
13924
13925 /* Return the breakpoint location structure corresponding to the
13926 BP_NUM and LOC_NUM values. */
13927
13928 static struct bp_location *
13929 find_location_by_number (int bp_num, int loc_num)
13930 {
13931 struct breakpoint *b;
13932
13933 ALL_BREAKPOINTS (b)
13934 if (b->number == bp_num)
13935 {
13936 break;
13937 }
13938
13939 if (!b || b->number != bp_num)
13940 error (_("Bad breakpoint number '%d'"), bp_num);
13941
13942 if (loc_num == 0)
13943 error (_("Bad breakpoint location number '%d'"), loc_num);
13944
13945 int n = 0;
13946 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
13947 if (++n == loc_num)
13948 return loc;
13949
13950 error (_("Bad breakpoint location number '%d'"), loc_num);
13951 }
13952
13953 /* Modes of operation for extract_bp_num. */
13954 enum class extract_bp_kind
13955 {
13956 /* Extracting a breakpoint number. */
13957 bp,
13958
13959 /* Extracting a location number. */
13960 loc,
13961 };
13962
13963 /* Extract a breakpoint or location number (as determined by KIND)
13964 from the string starting at START. TRAILER is a character which
13965 can be found after the number. If you don't want a trailer, use
13966 '\0'. If END_OUT is not NULL, it is set to point after the parsed
13967 string. This always returns a positive integer. */
13968
13969 static int
13970 extract_bp_num (extract_bp_kind kind, const char *start,
13971 int trailer, const char **end_out = NULL)
13972 {
13973 const char *end = start;
13974 int num = get_number_trailer (&end, trailer);
13975 if (num < 0)
13976 error (kind == extract_bp_kind::bp
13977 ? _("Negative breakpoint number '%.*s'")
13978 : _("Negative breakpoint location number '%.*s'"),
13979 int (end - start), start);
13980 if (num == 0)
13981 error (kind == extract_bp_kind::bp
13982 ? _("Bad breakpoint number '%.*s'")
13983 : _("Bad breakpoint location number '%.*s'"),
13984 int (end - start), start);
13985
13986 if (end_out != NULL)
13987 *end_out = end;
13988 return num;
13989 }
13990
13991 /* Extract a breakpoint or location range (as determined by KIND) in
13992 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
13993 representing the (inclusive) range. The returned pair's elements
13994 are always positive integers. */
13995
13996 static std::pair<int, int>
13997 extract_bp_or_bp_range (extract_bp_kind kind,
13998 const std::string &arg,
13999 std::string::size_type arg_offset)
14000 {
14001 std::pair<int, int> range;
14002 const char *bp_loc = &arg[arg_offset];
14003 std::string::size_type dash = arg.find ('-', arg_offset);
14004 if (dash != std::string::npos)
14005 {
14006 /* bp_loc is a range (x-z). */
14007 if (arg.length () == dash + 1)
14008 error (kind == extract_bp_kind::bp
14009 ? _("Bad breakpoint number at or near: '%s'")
14010 : _("Bad breakpoint location number at or near: '%s'"),
14011 bp_loc);
14012
14013 const char *end;
14014 const char *start_first = bp_loc;
14015 const char *start_second = &arg[dash + 1];
14016 range.first = extract_bp_num (kind, start_first, '-');
14017 range.second = extract_bp_num (kind, start_second, '\0', &end);
14018
14019 if (range.first > range.second)
14020 error (kind == extract_bp_kind::bp
14021 ? _("Inverted breakpoint range at '%.*s'")
14022 : _("Inverted breakpoint location range at '%.*s'"),
14023 int (end - start_first), start_first);
14024 }
14025 else
14026 {
14027 /* bp_loc is a single value. */
14028 range.first = extract_bp_num (kind, bp_loc, '\0');
14029 range.second = range.first;
14030 }
14031 return range;
14032 }
14033
14034 /* Extract the breakpoint/location range specified by ARG. Returns
14035 the breakpoint range in BP_NUM_RANGE, and the location range in
14036 BP_LOC_RANGE.
14037
14038 ARG may be in any of the following forms:
14039
14040 x where 'x' is a breakpoint number.
14041 x-y where 'x' and 'y' specify a breakpoint numbers range.
14042 x.y where 'x' is a breakpoint number and 'y' a location number.
14043 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14044 location number range.
14045 */
14046
14047 static void
14048 extract_bp_number_and_location (const std::string &arg,
14049 std::pair<int, int> &bp_num_range,
14050 std::pair<int, int> &bp_loc_range)
14051 {
14052 std::string::size_type dot = arg.find ('.');
14053
14054 if (dot != std::string::npos)
14055 {
14056 /* Handle 'x.y' and 'x.y-z' cases. */
14057
14058 if (arg.length () == dot + 1 || dot == 0)
14059 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14060
14061 bp_num_range.first
14062 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14063 bp_num_range.second = bp_num_range.first;
14064
14065 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14066 arg, dot + 1);
14067 }
14068 else
14069 {
14070 /* Handle x and x-y cases. */
14071
14072 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14073 bp_loc_range.first = 0;
14074 bp_loc_range.second = 0;
14075 }
14076 }
14077
14078 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14079 specifies whether to enable or disable. */
14080
14081 static void
14082 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14083 {
14084 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14085 if (loc != NULL)
14086 {
14087 if (loc->enabled != enable)
14088 {
14089 loc->enabled = enable;
14090 mark_breakpoint_location_modified (loc);
14091 }
14092 if (target_supports_enable_disable_tracepoint ()
14093 && current_trace_status ()->running && loc->owner
14094 && is_tracepoint (loc->owner))
14095 target_disable_tracepoint (loc);
14096 }
14097 update_global_location_list (UGLL_DONT_INSERT);
14098
14099 gdb::observers::breakpoint_modified.notify (loc->owner);
14100 }
14101
14102 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14103 number of the breakpoint, and BP_LOC_RANGE specifies the
14104 (inclusive) range of location numbers of that breakpoint to
14105 enable/disable. ENABLE specifies whether to enable or disable the
14106 location. */
14107
14108 static void
14109 enable_disable_breakpoint_location_range (int bp_num,
14110 std::pair<int, int> &bp_loc_range,
14111 bool enable)
14112 {
14113 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14114 enable_disable_bp_num_loc (bp_num, i, enable);
14115 }
14116
14117 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14118 If from_tty is nonzero, it prints a message to that effect,
14119 which ends with a period (no newline). */
14120
14121 void
14122 disable_breakpoint (struct breakpoint *bpt)
14123 {
14124 /* Never disable a watchpoint scope breakpoint; we want to
14125 hit them when we leave scope so we can delete both the
14126 watchpoint and its scope breakpoint at that time. */
14127 if (bpt->type == bp_watchpoint_scope)
14128 return;
14129
14130 bpt->enable_state = bp_disabled;
14131
14132 /* Mark breakpoint locations modified. */
14133 mark_breakpoint_modified (bpt);
14134
14135 if (target_supports_enable_disable_tracepoint ()
14136 && current_trace_status ()->running && is_tracepoint (bpt))
14137 {
14138 struct bp_location *location;
14139
14140 for (location = bpt->loc; location; location = location->next)
14141 target_disable_tracepoint (location);
14142 }
14143
14144 update_global_location_list (UGLL_DONT_INSERT);
14145
14146 gdb::observers::breakpoint_modified.notify (bpt);
14147 }
14148
14149 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14150 specified in ARGS. ARGS may be in any of the formats handled by
14151 extract_bp_number_and_location. ENABLE specifies whether to enable
14152 or disable the breakpoints/locations. */
14153
14154 static void
14155 enable_disable_command (const char *args, int from_tty, bool enable)
14156 {
14157 if (args == 0)
14158 {
14159 struct breakpoint *bpt;
14160
14161 ALL_BREAKPOINTS (bpt)
14162 if (user_breakpoint_p (bpt))
14163 {
14164 if (enable)
14165 enable_breakpoint (bpt);
14166 else
14167 disable_breakpoint (bpt);
14168 }
14169 }
14170 else
14171 {
14172 std::string num = extract_arg (&args);
14173
14174 while (!num.empty ())
14175 {
14176 std::pair<int, int> bp_num_range, bp_loc_range;
14177
14178 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14179
14180 if (bp_loc_range.first == bp_loc_range.second
14181 && bp_loc_range.first == 0)
14182 {
14183 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14184 map_breakpoint_number_range (bp_num_range,
14185 enable
14186 ? enable_breakpoint
14187 : disable_breakpoint);
14188 }
14189 else
14190 {
14191 /* Handle breakpoint ids with formats 'x.y' or
14192 'x.y-z'. */
14193 enable_disable_breakpoint_location_range
14194 (bp_num_range.first, bp_loc_range, enable);
14195 }
14196 num = extract_arg (&args);
14197 }
14198 }
14199 }
14200
14201 /* The disable command disables the specified breakpoints/locations
14202 (or all defined breakpoints) so they're no longer effective in
14203 stopping the inferior. ARGS may be in any of the forms defined in
14204 extract_bp_number_and_location. */
14205
14206 static void
14207 disable_command (const char *args, int from_tty)
14208 {
14209 enable_disable_command (args, from_tty, false);
14210 }
14211
14212 static void
14213 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14214 int count)
14215 {
14216 int target_resources_ok;
14217
14218 if (bpt->type == bp_hardware_breakpoint)
14219 {
14220 int i;
14221 i = hw_breakpoint_used_count ();
14222 target_resources_ok =
14223 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14224 i + 1, 0);
14225 if (target_resources_ok == 0)
14226 error (_("No hardware breakpoint support in the target."));
14227 else if (target_resources_ok < 0)
14228 error (_("Hardware breakpoints used exceeds limit."));
14229 }
14230
14231 if (is_watchpoint (bpt))
14232 {
14233 /* Initialize it just to avoid a GCC false warning. */
14234 enum enable_state orig_enable_state = bp_disabled;
14235
14236 try
14237 {
14238 struct watchpoint *w = (struct watchpoint *) bpt;
14239
14240 orig_enable_state = bpt->enable_state;
14241 bpt->enable_state = bp_enabled;
14242 update_watchpoint (w, 1 /* reparse */);
14243 }
14244 catch (const gdb_exception &e)
14245 {
14246 bpt->enable_state = orig_enable_state;
14247 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14248 bpt->number);
14249 return;
14250 }
14251 }
14252
14253 bpt->enable_state = bp_enabled;
14254
14255 /* Mark breakpoint locations modified. */
14256 mark_breakpoint_modified (bpt);
14257
14258 if (target_supports_enable_disable_tracepoint ()
14259 && current_trace_status ()->running && is_tracepoint (bpt))
14260 {
14261 struct bp_location *location;
14262
14263 for (location = bpt->loc; location; location = location->next)
14264 target_enable_tracepoint (location);
14265 }
14266
14267 bpt->disposition = disposition;
14268 bpt->enable_count = count;
14269 update_global_location_list (UGLL_MAY_INSERT);
14270
14271 gdb::observers::breakpoint_modified.notify (bpt);
14272 }
14273
14274
14275 void
14276 enable_breakpoint (struct breakpoint *bpt)
14277 {
14278 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14279 }
14280
14281 /* The enable command enables the specified breakpoints/locations (or
14282 all defined breakpoints) so they once again become (or continue to
14283 be) effective in stopping the inferior. ARGS may be in any of the
14284 forms defined in extract_bp_number_and_location. */
14285
14286 static void
14287 enable_command (const char *args, int from_tty)
14288 {
14289 enable_disable_command (args, from_tty, true);
14290 }
14291
14292 static void
14293 enable_once_command (const char *args, int from_tty)
14294 {
14295 map_breakpoint_numbers
14296 (args, [&] (breakpoint *b)
14297 {
14298 iterate_over_related_breakpoints
14299 (b, [&] (breakpoint *bpt)
14300 {
14301 enable_breakpoint_disp (bpt, disp_disable, 1);
14302 });
14303 });
14304 }
14305
14306 static void
14307 enable_count_command (const char *args, int from_tty)
14308 {
14309 int count;
14310
14311 if (args == NULL)
14312 error_no_arg (_("hit count"));
14313
14314 count = get_number (&args);
14315
14316 map_breakpoint_numbers
14317 (args, [&] (breakpoint *b)
14318 {
14319 iterate_over_related_breakpoints
14320 (b, [&] (breakpoint *bpt)
14321 {
14322 enable_breakpoint_disp (bpt, disp_disable, count);
14323 });
14324 });
14325 }
14326
14327 static void
14328 enable_delete_command (const char *args, int from_tty)
14329 {
14330 map_breakpoint_numbers
14331 (args, [&] (breakpoint *b)
14332 {
14333 iterate_over_related_breakpoints
14334 (b, [&] (breakpoint *bpt)
14335 {
14336 enable_breakpoint_disp (bpt, disp_del, 1);
14337 });
14338 });
14339 }
14340 \f
14341 static void
14342 set_breakpoint_cmd (const char *args, int from_tty)
14343 {
14344 }
14345
14346 static void
14347 show_breakpoint_cmd (const char *args, int from_tty)
14348 {
14349 }
14350
14351 /* Invalidate last known value of any hardware watchpoint if
14352 the memory which that value represents has been written to by
14353 GDB itself. */
14354
14355 static void
14356 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14357 CORE_ADDR addr, ssize_t len,
14358 const bfd_byte *data)
14359 {
14360 struct breakpoint *bp;
14361
14362 ALL_BREAKPOINTS (bp)
14363 if (bp->enable_state == bp_enabled
14364 && bp->type == bp_hardware_watchpoint)
14365 {
14366 struct watchpoint *wp = (struct watchpoint *) bp;
14367
14368 if (wp->val_valid && wp->val != nullptr)
14369 {
14370 struct bp_location *loc;
14371
14372 for (loc = bp->loc; loc != NULL; loc = loc->next)
14373 if (loc->loc_type == bp_loc_hardware_watchpoint
14374 && loc->address + loc->length > addr
14375 && addr + len > loc->address)
14376 {
14377 wp->val = NULL;
14378 wp->val_valid = 0;
14379 }
14380 }
14381 }
14382 }
14383
14384 /* Create and insert a breakpoint for software single step. */
14385
14386 void
14387 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14388 const address_space *aspace,
14389 CORE_ADDR next_pc)
14390 {
14391 struct thread_info *tp = inferior_thread ();
14392 struct symtab_and_line sal;
14393 CORE_ADDR pc = next_pc;
14394
14395 if (tp->control.single_step_breakpoints == NULL)
14396 {
14397 tp->control.single_step_breakpoints
14398 = new_single_step_breakpoint (tp->global_num, gdbarch);
14399 }
14400
14401 sal = find_pc_line (pc, 0);
14402 sal.pc = pc;
14403 sal.section = find_pc_overlay (pc);
14404 sal.explicit_pc = 1;
14405 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14406
14407 update_global_location_list (UGLL_INSERT);
14408 }
14409
14410 /* Insert single step breakpoints according to the current state. */
14411
14412 int
14413 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14414 {
14415 struct regcache *regcache = get_current_regcache ();
14416 std::vector<CORE_ADDR> next_pcs;
14417
14418 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14419
14420 if (!next_pcs.empty ())
14421 {
14422 struct frame_info *frame = get_current_frame ();
14423 const address_space *aspace = get_frame_address_space (frame);
14424
14425 for (CORE_ADDR pc : next_pcs)
14426 insert_single_step_breakpoint (gdbarch, aspace, pc);
14427
14428 return 1;
14429 }
14430 else
14431 return 0;
14432 }
14433
14434 /* See breakpoint.h. */
14435
14436 int
14437 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14438 const address_space *aspace,
14439 CORE_ADDR pc)
14440 {
14441 struct bp_location *loc;
14442
14443 for (loc = bp->loc; loc != NULL; loc = loc->next)
14444 if (loc->inserted
14445 && breakpoint_location_address_match (loc, aspace, pc))
14446 return 1;
14447
14448 return 0;
14449 }
14450
14451 /* Check whether a software single-step breakpoint is inserted at
14452 PC. */
14453
14454 int
14455 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14456 CORE_ADDR pc)
14457 {
14458 struct breakpoint *bpt;
14459
14460 ALL_BREAKPOINTS (bpt)
14461 {
14462 if (bpt->type == bp_single_step
14463 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14464 return 1;
14465 }
14466 return 0;
14467 }
14468
14469 /* Tracepoint-specific operations. */
14470
14471 /* Set tracepoint count to NUM. */
14472 static void
14473 set_tracepoint_count (int num)
14474 {
14475 tracepoint_count = num;
14476 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14477 }
14478
14479 static void
14480 trace_command (const char *arg, int from_tty)
14481 {
14482 struct breakpoint_ops *ops;
14483
14484 event_location_up location = string_to_event_location (&arg,
14485 current_language);
14486 if (location != NULL
14487 && event_location_type (location.get ()) == PROBE_LOCATION)
14488 ops = &tracepoint_probe_breakpoint_ops;
14489 else
14490 ops = &tracepoint_breakpoint_ops;
14491
14492 create_breakpoint (get_current_arch (),
14493 location.get (),
14494 NULL, 0, arg, 1 /* parse arg */,
14495 0 /* tempflag */,
14496 bp_tracepoint /* type_wanted */,
14497 0 /* Ignore count */,
14498 pending_break_support,
14499 ops,
14500 from_tty,
14501 1 /* enabled */,
14502 0 /* internal */, 0);
14503 }
14504
14505 static void
14506 ftrace_command (const char *arg, int from_tty)
14507 {
14508 event_location_up location = string_to_event_location (&arg,
14509 current_language);
14510 create_breakpoint (get_current_arch (),
14511 location.get (),
14512 NULL, 0, arg, 1 /* parse arg */,
14513 0 /* tempflag */,
14514 bp_fast_tracepoint /* type_wanted */,
14515 0 /* Ignore count */,
14516 pending_break_support,
14517 &tracepoint_breakpoint_ops,
14518 from_tty,
14519 1 /* enabled */,
14520 0 /* internal */, 0);
14521 }
14522
14523 /* strace command implementation. Creates a static tracepoint. */
14524
14525 static void
14526 strace_command (const char *arg, int from_tty)
14527 {
14528 struct breakpoint_ops *ops;
14529 event_location_up location;
14530
14531 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14532 or with a normal static tracepoint. */
14533 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14534 {
14535 ops = &strace_marker_breakpoint_ops;
14536 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14537 }
14538 else
14539 {
14540 ops = &tracepoint_breakpoint_ops;
14541 location = string_to_event_location (&arg, current_language);
14542 }
14543
14544 create_breakpoint (get_current_arch (),
14545 location.get (),
14546 NULL, 0, arg, 1 /* parse arg */,
14547 0 /* tempflag */,
14548 bp_static_tracepoint /* type_wanted */,
14549 0 /* Ignore count */,
14550 pending_break_support,
14551 ops,
14552 from_tty,
14553 1 /* enabled */,
14554 0 /* internal */, 0);
14555 }
14556
14557 /* Set up a fake reader function that gets command lines from a linked
14558 list that was acquired during tracepoint uploading. */
14559
14560 static struct uploaded_tp *this_utp;
14561 static int next_cmd;
14562
14563 static char *
14564 read_uploaded_action (void)
14565 {
14566 char *rslt = nullptr;
14567
14568 if (next_cmd < this_utp->cmd_strings.size ())
14569 {
14570 rslt = this_utp->cmd_strings[next_cmd].get ();
14571 next_cmd++;
14572 }
14573
14574 return rslt;
14575 }
14576
14577 /* Given information about a tracepoint as recorded on a target (which
14578 can be either a live system or a trace file), attempt to create an
14579 equivalent GDB tracepoint. This is not a reliable process, since
14580 the target does not necessarily have all the information used when
14581 the tracepoint was originally defined. */
14582
14583 struct tracepoint *
14584 create_tracepoint_from_upload (struct uploaded_tp *utp)
14585 {
14586 const char *addr_str;
14587 char small_buf[100];
14588 struct tracepoint *tp;
14589
14590 if (utp->at_string)
14591 addr_str = utp->at_string.get ();
14592 else
14593 {
14594 /* In the absence of a source location, fall back to raw
14595 address. Since there is no way to confirm that the address
14596 means the same thing as when the trace was started, warn the
14597 user. */
14598 warning (_("Uploaded tracepoint %d has no "
14599 "source location, using raw address"),
14600 utp->number);
14601 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14602 addr_str = small_buf;
14603 }
14604
14605 /* There's not much we can do with a sequence of bytecodes. */
14606 if (utp->cond && !utp->cond_string)
14607 warning (_("Uploaded tracepoint %d condition "
14608 "has no source form, ignoring it"),
14609 utp->number);
14610
14611 event_location_up location = string_to_event_location (&addr_str,
14612 current_language);
14613 if (!create_breakpoint (get_current_arch (),
14614 location.get (),
14615 utp->cond_string.get (), -1, addr_str,
14616 0 /* parse cond/thread */,
14617 0 /* tempflag */,
14618 utp->type /* type_wanted */,
14619 0 /* Ignore count */,
14620 pending_break_support,
14621 &tracepoint_breakpoint_ops,
14622 0 /* from_tty */,
14623 utp->enabled /* enabled */,
14624 0 /* internal */,
14625 CREATE_BREAKPOINT_FLAGS_INSERTED))
14626 return NULL;
14627
14628 /* Get the tracepoint we just created. */
14629 tp = get_tracepoint (tracepoint_count);
14630 gdb_assert (tp != NULL);
14631
14632 if (utp->pass > 0)
14633 {
14634 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14635 tp->number);
14636
14637 trace_pass_command (small_buf, 0);
14638 }
14639
14640 /* If we have uploaded versions of the original commands, set up a
14641 special-purpose "reader" function and call the usual command line
14642 reader, then pass the result to the breakpoint command-setting
14643 function. */
14644 if (!utp->cmd_strings.empty ())
14645 {
14646 counted_command_line cmd_list;
14647
14648 this_utp = utp;
14649 next_cmd = 0;
14650
14651 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
14652
14653 breakpoint_set_commands (tp, std::move (cmd_list));
14654 }
14655 else if (!utp->actions.empty ()
14656 || !utp->step_actions.empty ())
14657 warning (_("Uploaded tracepoint %d actions "
14658 "have no source form, ignoring them"),
14659 utp->number);
14660
14661 /* Copy any status information that might be available. */
14662 tp->hit_count = utp->hit_count;
14663 tp->traceframe_usage = utp->traceframe_usage;
14664
14665 return tp;
14666 }
14667
14668 /* Print information on tracepoint number TPNUM_EXP, or all if
14669 omitted. */
14670
14671 static void
14672 info_tracepoints_command (const char *args, int from_tty)
14673 {
14674 struct ui_out *uiout = current_uiout;
14675 int num_printed;
14676
14677 num_printed = breakpoint_1 (args, false, is_tracepoint);
14678
14679 if (num_printed == 0)
14680 {
14681 if (args == NULL || *args == '\0')
14682 uiout->message ("No tracepoints.\n");
14683 else
14684 uiout->message ("No tracepoint matching '%s'.\n", args);
14685 }
14686
14687 default_collect_info ();
14688 }
14689
14690 /* The 'enable trace' command enables tracepoints.
14691 Not supported by all targets. */
14692 static void
14693 enable_trace_command (const char *args, int from_tty)
14694 {
14695 enable_command (args, from_tty);
14696 }
14697
14698 /* The 'disable trace' command disables tracepoints.
14699 Not supported by all targets. */
14700 static void
14701 disable_trace_command (const char *args, int from_tty)
14702 {
14703 disable_command (args, from_tty);
14704 }
14705
14706 /* Remove a tracepoint (or all if no argument). */
14707 static void
14708 delete_trace_command (const char *arg, int from_tty)
14709 {
14710 struct breakpoint *b, *b_tmp;
14711
14712 dont_repeat ();
14713
14714 if (arg == 0)
14715 {
14716 int breaks_to_delete = 0;
14717
14718 /* Delete all breakpoints if no argument.
14719 Do not delete internal or call-dummy breakpoints, these
14720 have to be deleted with an explicit breakpoint number
14721 argument. */
14722 ALL_TRACEPOINTS (b)
14723 if (is_tracepoint (b) && user_breakpoint_p (b))
14724 {
14725 breaks_to_delete = 1;
14726 break;
14727 }
14728
14729 /* Ask user only if there are some breakpoints to delete. */
14730 if (!from_tty
14731 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14732 {
14733 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14734 if (is_tracepoint (b) && user_breakpoint_p (b))
14735 delete_breakpoint (b);
14736 }
14737 }
14738 else
14739 map_breakpoint_numbers
14740 (arg, [&] (breakpoint *br)
14741 {
14742 iterate_over_related_breakpoints (br, delete_breakpoint);
14743 });
14744 }
14745
14746 /* Helper function for trace_pass_command. */
14747
14748 static void
14749 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14750 {
14751 tp->pass_count = count;
14752 gdb::observers::breakpoint_modified.notify (tp);
14753 if (from_tty)
14754 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14755 tp->number, count);
14756 }
14757
14758 /* Set passcount for tracepoint.
14759
14760 First command argument is passcount, second is tracepoint number.
14761 If tracepoint number omitted, apply to most recently defined.
14762 Also accepts special argument "all". */
14763
14764 static void
14765 trace_pass_command (const char *args, int from_tty)
14766 {
14767 struct tracepoint *t1;
14768 ULONGEST count;
14769
14770 if (args == 0 || *args == 0)
14771 error (_("passcount command requires an "
14772 "argument (count + optional TP num)"));
14773
14774 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14775
14776 args = skip_spaces (args);
14777 if (*args && strncasecmp (args, "all", 3) == 0)
14778 {
14779 struct breakpoint *b;
14780
14781 args += 3; /* Skip special argument "all". */
14782 if (*args)
14783 error (_("Junk at end of arguments."));
14784
14785 ALL_TRACEPOINTS (b)
14786 {
14787 t1 = (struct tracepoint *) b;
14788 trace_pass_set_count (t1, count, from_tty);
14789 }
14790 }
14791 else if (*args == '\0')
14792 {
14793 t1 = get_tracepoint_by_number (&args, NULL);
14794 if (t1)
14795 trace_pass_set_count (t1, count, from_tty);
14796 }
14797 else
14798 {
14799 number_or_range_parser parser (args);
14800 while (!parser.finished ())
14801 {
14802 t1 = get_tracepoint_by_number (&args, &parser);
14803 if (t1)
14804 trace_pass_set_count (t1, count, from_tty);
14805 }
14806 }
14807 }
14808
14809 struct tracepoint *
14810 get_tracepoint (int num)
14811 {
14812 struct breakpoint *t;
14813
14814 ALL_TRACEPOINTS (t)
14815 if (t->number == num)
14816 return (struct tracepoint *) t;
14817
14818 return NULL;
14819 }
14820
14821 /* Find the tracepoint with the given target-side number (which may be
14822 different from the tracepoint number after disconnecting and
14823 reconnecting). */
14824
14825 struct tracepoint *
14826 get_tracepoint_by_number_on_target (int num)
14827 {
14828 struct breakpoint *b;
14829
14830 ALL_TRACEPOINTS (b)
14831 {
14832 struct tracepoint *t = (struct tracepoint *) b;
14833
14834 if (t->number_on_target == num)
14835 return t;
14836 }
14837
14838 return NULL;
14839 }
14840
14841 /* Utility: parse a tracepoint number and look it up in the list.
14842 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14843 If the argument is missing, the most recent tracepoint
14844 (tracepoint_count) is returned. */
14845
14846 struct tracepoint *
14847 get_tracepoint_by_number (const char **arg,
14848 number_or_range_parser *parser)
14849 {
14850 struct breakpoint *t;
14851 int tpnum;
14852 const char *instring = arg == NULL ? NULL : *arg;
14853
14854 if (parser != NULL)
14855 {
14856 gdb_assert (!parser->finished ());
14857 tpnum = parser->get_number ();
14858 }
14859 else if (arg == NULL || *arg == NULL || ! **arg)
14860 tpnum = tracepoint_count;
14861 else
14862 tpnum = get_number (arg);
14863
14864 if (tpnum <= 0)
14865 {
14866 if (instring && *instring)
14867 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
14868 instring);
14869 else
14870 printf_filtered (_("No previous tracepoint\n"));
14871 return NULL;
14872 }
14873
14874 ALL_TRACEPOINTS (t)
14875 if (t->number == tpnum)
14876 {
14877 return (struct tracepoint *) t;
14878 }
14879
14880 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
14881 return NULL;
14882 }
14883
14884 void
14885 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
14886 {
14887 if (b->thread != -1)
14888 fprintf_unfiltered (fp, " thread %d", b->thread);
14889
14890 if (b->task != 0)
14891 fprintf_unfiltered (fp, " task %d", b->task);
14892
14893 fprintf_unfiltered (fp, "\n");
14894 }
14895
14896 /* Save information on user settable breakpoints (watchpoints, etc) to
14897 a new script file named FILENAME. If FILTER is non-NULL, call it
14898 on each breakpoint and only include the ones for which it returns
14899 true. */
14900
14901 static void
14902 save_breakpoints (const char *filename, int from_tty,
14903 bool (*filter) (const struct breakpoint *))
14904 {
14905 struct breakpoint *tp;
14906 int any = 0;
14907 int extra_trace_bits = 0;
14908
14909 if (filename == 0 || *filename == 0)
14910 error (_("Argument required (file name in which to save)"));
14911
14912 /* See if we have anything to save. */
14913 ALL_BREAKPOINTS (tp)
14914 {
14915 /* Skip internal and momentary breakpoints. */
14916 if (!user_breakpoint_p (tp))
14917 continue;
14918
14919 /* If we have a filter, only save the breakpoints it accepts. */
14920 if (filter && !filter (tp))
14921 continue;
14922
14923 any = 1;
14924
14925 if (is_tracepoint (tp))
14926 {
14927 extra_trace_bits = 1;
14928
14929 /* We can stop searching. */
14930 break;
14931 }
14932 }
14933
14934 if (!any)
14935 {
14936 warning (_("Nothing to save."));
14937 return;
14938 }
14939
14940 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
14941
14942 stdio_file fp;
14943
14944 if (!fp.open (expanded_filename.get (), "w"))
14945 error (_("Unable to open file '%s' for saving (%s)"),
14946 expanded_filename.get (), safe_strerror (errno));
14947
14948 if (extra_trace_bits)
14949 save_trace_state_variables (&fp);
14950
14951 ALL_BREAKPOINTS (tp)
14952 {
14953 /* Skip internal and momentary breakpoints. */
14954 if (!user_breakpoint_p (tp))
14955 continue;
14956
14957 /* If we have a filter, only save the breakpoints it accepts. */
14958 if (filter && !filter (tp))
14959 continue;
14960
14961 tp->ops->print_recreate (tp, &fp);
14962
14963 /* Note, we can't rely on tp->number for anything, as we can't
14964 assume the recreated breakpoint numbers will match. Use $bpnum
14965 instead. */
14966
14967 if (tp->cond_string)
14968 fp.printf (" condition $bpnum %s\n", tp->cond_string);
14969
14970 if (tp->ignore_count)
14971 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
14972
14973 if (tp->type != bp_dprintf && tp->commands)
14974 {
14975 fp.puts (" commands\n");
14976
14977 current_uiout->redirect (&fp);
14978 try
14979 {
14980 print_command_lines (current_uiout, tp->commands.get (), 2);
14981 }
14982 catch (const gdb_exception &ex)
14983 {
14984 current_uiout->redirect (NULL);
14985 throw;
14986 }
14987
14988 current_uiout->redirect (NULL);
14989 fp.puts (" end\n");
14990 }
14991
14992 if (tp->enable_state == bp_disabled)
14993 fp.puts ("disable $bpnum\n");
14994
14995 /* If this is a multi-location breakpoint, check if the locations
14996 should be individually disabled. Watchpoint locations are
14997 special, and not user visible. */
14998 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
14999 {
15000 struct bp_location *loc;
15001 int n = 1;
15002
15003 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15004 if (!loc->enabled)
15005 fp.printf ("disable $bpnum.%d\n", n);
15006 }
15007 }
15008
15009 if (extra_trace_bits && *default_collect)
15010 fp.printf ("set default-collect %s\n", default_collect);
15011
15012 if (from_tty)
15013 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15014 }
15015
15016 /* The `save breakpoints' command. */
15017
15018 static void
15019 save_breakpoints_command (const char *args, int from_tty)
15020 {
15021 save_breakpoints (args, from_tty, NULL);
15022 }
15023
15024 /* The `save tracepoints' command. */
15025
15026 static void
15027 save_tracepoints_command (const char *args, int from_tty)
15028 {
15029 save_breakpoints (args, from_tty, is_tracepoint);
15030 }
15031
15032 /* Create a vector of all tracepoints. */
15033
15034 std::vector<breakpoint *>
15035 all_tracepoints (void)
15036 {
15037 std::vector<breakpoint *> tp_vec;
15038 struct breakpoint *tp;
15039
15040 ALL_TRACEPOINTS (tp)
15041 {
15042 tp_vec.push_back (tp);
15043 }
15044
15045 return tp_vec;
15046 }
15047
15048 \f
15049 /* This help string is used to consolidate all the help string for specifying
15050 locations used by several commands. */
15051
15052 #define LOCATION_HELP_STRING \
15053 "Linespecs are colon-separated lists of location parameters, such as\n\
15054 source filename, function name, label name, and line number.\n\
15055 Example: To specify the start of a label named \"the_top\" in the\n\
15056 function \"fact\" in the file \"factorial.c\", use\n\
15057 \"factorial.c:fact:the_top\".\n\
15058 \n\
15059 Address locations begin with \"*\" and specify an exact address in the\n\
15060 program. Example: To specify the fourth byte past the start function\n\
15061 \"main\", use \"*main + 4\".\n\
15062 \n\
15063 Explicit locations are similar to linespecs but use an option/argument\n\
15064 syntax to specify location parameters.\n\
15065 Example: To specify the start of the label named \"the_top\" in the\n\
15066 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15067 -function fact -label the_top\".\n\
15068 \n\
15069 By default, a specified function is matched against the program's\n\
15070 functions in all scopes. For C++, this means in all namespaces and\n\
15071 classes. For Ada, this means in all packages. E.g., in C++,\n\
15072 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15073 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15074 specified name as a complete fully-qualified name instead."
15075
15076 /* This help string is used for the break, hbreak, tbreak and thbreak
15077 commands. It is defined as a macro to prevent duplication.
15078 COMMAND should be a string constant containing the name of the
15079 command. */
15080
15081 #define BREAK_ARGS_HELP(command) \
15082 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15083 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15084 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15085 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15086 `-probe-dtrace' (for a DTrace probe).\n\
15087 LOCATION may be a linespec, address, or explicit location as described\n\
15088 below.\n\
15089 \n\
15090 With no LOCATION, uses current execution address of the selected\n\
15091 stack frame. This is useful for breaking on return to a stack frame.\n\
15092 \n\
15093 THREADNUM is the number from \"info threads\".\n\
15094 CONDITION is a boolean expression.\n\
15095 \n" LOCATION_HELP_STRING "\n\n\
15096 Multiple breakpoints at one place are permitted, and useful if their\n\
15097 conditions are different.\n\
15098 \n\
15099 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15100
15101 /* List of subcommands for "catch". */
15102 static struct cmd_list_element *catch_cmdlist;
15103
15104 /* List of subcommands for "tcatch". */
15105 static struct cmd_list_element *tcatch_cmdlist;
15106
15107 void
15108 add_catch_command (const char *name, const char *docstring,
15109 cmd_const_sfunc_ftype *sfunc,
15110 completer_ftype *completer,
15111 void *user_data_catch,
15112 void *user_data_tcatch)
15113 {
15114 struct cmd_list_element *command;
15115
15116 command = add_cmd (name, class_breakpoint, docstring,
15117 &catch_cmdlist);
15118 set_cmd_sfunc (command, sfunc);
15119 set_cmd_context (command, user_data_catch);
15120 set_cmd_completer (command, completer);
15121
15122 command = add_cmd (name, class_breakpoint, docstring,
15123 &tcatch_cmdlist);
15124 set_cmd_sfunc (command, sfunc);
15125 set_cmd_context (command, user_data_tcatch);
15126 set_cmd_completer (command, completer);
15127 }
15128
15129 static void
15130 save_command (const char *arg, int from_tty)
15131 {
15132 printf_unfiltered (_("\"save\" must be followed by "
15133 "the name of a save subcommand.\n"));
15134 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15135 }
15136
15137 struct breakpoint *
15138 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15139 void *data)
15140 {
15141 struct breakpoint *b, *b_tmp;
15142
15143 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15144 {
15145 if ((*callback) (b, data))
15146 return b;
15147 }
15148
15149 return NULL;
15150 }
15151
15152 /* Zero if any of the breakpoint's locations could be a location where
15153 functions have been inlined, nonzero otherwise. */
15154
15155 static int
15156 is_non_inline_function (struct breakpoint *b)
15157 {
15158 /* The shared library event breakpoint is set on the address of a
15159 non-inline function. */
15160 if (b->type == bp_shlib_event)
15161 return 1;
15162
15163 return 0;
15164 }
15165
15166 /* Nonzero if the specified PC cannot be a location where functions
15167 have been inlined. */
15168
15169 int
15170 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15171 const struct target_waitstatus *ws)
15172 {
15173 struct breakpoint *b;
15174 struct bp_location *bl;
15175
15176 ALL_BREAKPOINTS (b)
15177 {
15178 if (!is_non_inline_function (b))
15179 continue;
15180
15181 for (bl = b->loc; bl != NULL; bl = bl->next)
15182 {
15183 if (!bl->shlib_disabled
15184 && bpstat_check_location (bl, aspace, pc, ws))
15185 return 1;
15186 }
15187 }
15188
15189 return 0;
15190 }
15191
15192 /* Remove any references to OBJFILE which is going to be freed. */
15193
15194 void
15195 breakpoint_free_objfile (struct objfile *objfile)
15196 {
15197 struct bp_location **locp, *loc;
15198
15199 ALL_BP_LOCATIONS (loc, locp)
15200 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15201 loc->symtab = NULL;
15202 }
15203
15204 void
15205 initialize_breakpoint_ops (void)
15206 {
15207 static int initialized = 0;
15208
15209 struct breakpoint_ops *ops;
15210
15211 if (initialized)
15212 return;
15213 initialized = 1;
15214
15215 /* The breakpoint_ops structure to be inherit by all kinds of
15216 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15217 internal and momentary breakpoints, etc.). */
15218 ops = &bkpt_base_breakpoint_ops;
15219 *ops = base_breakpoint_ops;
15220 ops->re_set = bkpt_re_set;
15221 ops->insert_location = bkpt_insert_location;
15222 ops->remove_location = bkpt_remove_location;
15223 ops->breakpoint_hit = bkpt_breakpoint_hit;
15224 ops->create_sals_from_location = bkpt_create_sals_from_location;
15225 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15226 ops->decode_location = bkpt_decode_location;
15227
15228 /* The breakpoint_ops structure to be used in regular breakpoints. */
15229 ops = &bkpt_breakpoint_ops;
15230 *ops = bkpt_base_breakpoint_ops;
15231 ops->re_set = bkpt_re_set;
15232 ops->resources_needed = bkpt_resources_needed;
15233 ops->print_it = bkpt_print_it;
15234 ops->print_mention = bkpt_print_mention;
15235 ops->print_recreate = bkpt_print_recreate;
15236
15237 /* Ranged breakpoints. */
15238 ops = &ranged_breakpoint_ops;
15239 *ops = bkpt_breakpoint_ops;
15240 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15241 ops->resources_needed = resources_needed_ranged_breakpoint;
15242 ops->print_it = print_it_ranged_breakpoint;
15243 ops->print_one = print_one_ranged_breakpoint;
15244 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15245 ops->print_mention = print_mention_ranged_breakpoint;
15246 ops->print_recreate = print_recreate_ranged_breakpoint;
15247
15248 /* Internal breakpoints. */
15249 ops = &internal_breakpoint_ops;
15250 *ops = bkpt_base_breakpoint_ops;
15251 ops->re_set = internal_bkpt_re_set;
15252 ops->check_status = internal_bkpt_check_status;
15253 ops->print_it = internal_bkpt_print_it;
15254 ops->print_mention = internal_bkpt_print_mention;
15255
15256 /* Momentary breakpoints. */
15257 ops = &momentary_breakpoint_ops;
15258 *ops = bkpt_base_breakpoint_ops;
15259 ops->re_set = momentary_bkpt_re_set;
15260 ops->check_status = momentary_bkpt_check_status;
15261 ops->print_it = momentary_bkpt_print_it;
15262 ops->print_mention = momentary_bkpt_print_mention;
15263
15264 /* Probe breakpoints. */
15265 ops = &bkpt_probe_breakpoint_ops;
15266 *ops = bkpt_breakpoint_ops;
15267 ops->insert_location = bkpt_probe_insert_location;
15268 ops->remove_location = bkpt_probe_remove_location;
15269 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15270 ops->decode_location = bkpt_probe_decode_location;
15271
15272 /* Watchpoints. */
15273 ops = &watchpoint_breakpoint_ops;
15274 *ops = base_breakpoint_ops;
15275 ops->re_set = re_set_watchpoint;
15276 ops->insert_location = insert_watchpoint;
15277 ops->remove_location = remove_watchpoint;
15278 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15279 ops->check_status = check_status_watchpoint;
15280 ops->resources_needed = resources_needed_watchpoint;
15281 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15282 ops->print_it = print_it_watchpoint;
15283 ops->print_mention = print_mention_watchpoint;
15284 ops->print_recreate = print_recreate_watchpoint;
15285 ops->explains_signal = explains_signal_watchpoint;
15286
15287 /* Masked watchpoints. */
15288 ops = &masked_watchpoint_breakpoint_ops;
15289 *ops = watchpoint_breakpoint_ops;
15290 ops->insert_location = insert_masked_watchpoint;
15291 ops->remove_location = remove_masked_watchpoint;
15292 ops->resources_needed = resources_needed_masked_watchpoint;
15293 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15294 ops->print_it = print_it_masked_watchpoint;
15295 ops->print_one_detail = print_one_detail_masked_watchpoint;
15296 ops->print_mention = print_mention_masked_watchpoint;
15297 ops->print_recreate = print_recreate_masked_watchpoint;
15298
15299 /* Tracepoints. */
15300 ops = &tracepoint_breakpoint_ops;
15301 *ops = base_breakpoint_ops;
15302 ops->re_set = tracepoint_re_set;
15303 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15304 ops->print_one_detail = tracepoint_print_one_detail;
15305 ops->print_mention = tracepoint_print_mention;
15306 ops->print_recreate = tracepoint_print_recreate;
15307 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15308 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15309 ops->decode_location = tracepoint_decode_location;
15310
15311 /* Probe tracepoints. */
15312 ops = &tracepoint_probe_breakpoint_ops;
15313 *ops = tracepoint_breakpoint_ops;
15314 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15315 ops->decode_location = tracepoint_probe_decode_location;
15316
15317 /* Static tracepoints with marker (`-m'). */
15318 ops = &strace_marker_breakpoint_ops;
15319 *ops = tracepoint_breakpoint_ops;
15320 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15321 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15322 ops->decode_location = strace_marker_decode_location;
15323
15324 /* Fork catchpoints. */
15325 ops = &catch_fork_breakpoint_ops;
15326 *ops = base_breakpoint_ops;
15327 ops->insert_location = insert_catch_fork;
15328 ops->remove_location = remove_catch_fork;
15329 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15330 ops->print_it = print_it_catch_fork;
15331 ops->print_one = print_one_catch_fork;
15332 ops->print_mention = print_mention_catch_fork;
15333 ops->print_recreate = print_recreate_catch_fork;
15334
15335 /* Vfork catchpoints. */
15336 ops = &catch_vfork_breakpoint_ops;
15337 *ops = base_breakpoint_ops;
15338 ops->insert_location = insert_catch_vfork;
15339 ops->remove_location = remove_catch_vfork;
15340 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15341 ops->print_it = print_it_catch_vfork;
15342 ops->print_one = print_one_catch_vfork;
15343 ops->print_mention = print_mention_catch_vfork;
15344 ops->print_recreate = print_recreate_catch_vfork;
15345
15346 /* Exec catchpoints. */
15347 ops = &catch_exec_breakpoint_ops;
15348 *ops = base_breakpoint_ops;
15349 ops->insert_location = insert_catch_exec;
15350 ops->remove_location = remove_catch_exec;
15351 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15352 ops->print_it = print_it_catch_exec;
15353 ops->print_one = print_one_catch_exec;
15354 ops->print_mention = print_mention_catch_exec;
15355 ops->print_recreate = print_recreate_catch_exec;
15356
15357 /* Solib-related catchpoints. */
15358 ops = &catch_solib_breakpoint_ops;
15359 *ops = base_breakpoint_ops;
15360 ops->insert_location = insert_catch_solib;
15361 ops->remove_location = remove_catch_solib;
15362 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15363 ops->check_status = check_status_catch_solib;
15364 ops->print_it = print_it_catch_solib;
15365 ops->print_one = print_one_catch_solib;
15366 ops->print_mention = print_mention_catch_solib;
15367 ops->print_recreate = print_recreate_catch_solib;
15368
15369 ops = &dprintf_breakpoint_ops;
15370 *ops = bkpt_base_breakpoint_ops;
15371 ops->re_set = dprintf_re_set;
15372 ops->resources_needed = bkpt_resources_needed;
15373 ops->print_it = bkpt_print_it;
15374 ops->print_mention = bkpt_print_mention;
15375 ops->print_recreate = dprintf_print_recreate;
15376 ops->after_condition_true = dprintf_after_condition_true;
15377 ops->breakpoint_hit = dprintf_breakpoint_hit;
15378 }
15379
15380 /* Chain containing all defined "enable breakpoint" subcommands. */
15381
15382 static struct cmd_list_element *enablebreaklist = NULL;
15383
15384 /* See breakpoint.h. */
15385
15386 cmd_list_element *commands_cmd_element = nullptr;
15387
15388 void
15389 _initialize_breakpoint (void)
15390 {
15391 struct cmd_list_element *c;
15392
15393 initialize_breakpoint_ops ();
15394
15395 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15396 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15397 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15398
15399 breakpoint_chain = 0;
15400 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15401 before a breakpoint is set. */
15402 breakpoint_count = 0;
15403
15404 tracepoint_count = 0;
15405
15406 add_com ("ignore", class_breakpoint, ignore_command, _("\
15407 Set ignore-count of breakpoint number N to COUNT.\n\
15408 Usage is `ignore N COUNT'."));
15409
15410 commands_cmd_element = add_com ("commands", class_breakpoint,
15411 commands_command, _("\
15412 Set commands to be executed when the given breakpoints are hit.\n\
15413 Give a space-separated breakpoint list as argument after \"commands\".\n\
15414 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15415 (e.g. `5-7').\n\
15416 With no argument, the targeted breakpoint is the last one set.\n\
15417 The commands themselves follow starting on the next line.\n\
15418 Type a line containing \"end\" to indicate the end of them.\n\
15419 Give \"silent\" as the first line to make the breakpoint silent;\n\
15420 then no output is printed when it is hit, except what the commands print."));
15421
15422 c = add_com ("condition", class_breakpoint, condition_command, _("\
15423 Specify breakpoint number N to break only if COND is true.\n\
15424 Usage is `condition N COND', where N is an integer and COND is an\n\
15425 expression to be evaluated whenever breakpoint N is reached."));
15426 set_cmd_completer (c, condition_completer);
15427
15428 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15429 Set a temporary breakpoint.\n\
15430 Like \"break\" except the breakpoint is only temporary,\n\
15431 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15432 by using \"enable delete\" on the breakpoint number.\n\
15433 \n"
15434 BREAK_ARGS_HELP ("tbreak")));
15435 set_cmd_completer (c, location_completer);
15436
15437 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15438 Set a hardware assisted breakpoint.\n\
15439 Like \"break\" except the breakpoint requires hardware support,\n\
15440 some target hardware may not have this support.\n\
15441 \n"
15442 BREAK_ARGS_HELP ("hbreak")));
15443 set_cmd_completer (c, location_completer);
15444
15445 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15446 Set a temporary hardware assisted breakpoint.\n\
15447 Like \"hbreak\" except the breakpoint is only temporary,\n\
15448 so it will be deleted when hit.\n\
15449 \n"
15450 BREAK_ARGS_HELP ("thbreak")));
15451 set_cmd_completer (c, location_completer);
15452
15453 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15454 Enable all or some breakpoints.\n\
15455 Usage: enable [BREAKPOINTNUM]...\n\
15456 Give breakpoint numbers (separated by spaces) as arguments.\n\
15457 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15458 This is used to cancel the effect of the \"disable\" command.\n\
15459 With a subcommand you can enable temporarily."),
15460 &enablelist, "enable ", 1, &cmdlist);
15461
15462 add_com_alias ("en", "enable", class_breakpoint, 1);
15463
15464 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15465 Enable all or some breakpoints.\n\
15466 Usage: enable breakpoints [BREAKPOINTNUM]...\n\
15467 Give breakpoint numbers (separated by spaces) as arguments.\n\
15468 This is used to cancel the effect of the \"disable\" command.\n\
15469 May be abbreviated to simply \"enable\"."),
15470 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15471
15472 add_cmd ("once", no_class, enable_once_command, _("\
15473 Enable some breakpoints for one hit.\n\
15474 Usage: enable breakpoints once BREAKPOINTNUM...\n\
15475 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15476 &enablebreaklist);
15477
15478 add_cmd ("delete", no_class, enable_delete_command, _("\
15479 Enable some breakpoints and delete when hit.\n\
15480 Usage: enable breakpoints delete BREAKPOINTNUM...\n\
15481 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15482 &enablebreaklist);
15483
15484 add_cmd ("count", no_class, enable_count_command, _("\
15485 Enable some breakpoints for COUNT hits.\n\
15486 Usage: enable breakpoints count COUNT BREAKPOINTNUM...\n\
15487 If a breakpoint is hit while enabled in this fashion,\n\
15488 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15489 &enablebreaklist);
15490
15491 add_cmd ("delete", no_class, enable_delete_command, _("\
15492 Enable some breakpoints and delete when hit.\n\
15493 Usage: enable delete BREAKPOINTNUM...\n\
15494 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15495 &enablelist);
15496
15497 add_cmd ("once", no_class, enable_once_command, _("\
15498 Enable some breakpoints for one hit.\n\
15499 Usage: enable once BREAKPOINTNUM...\n\
15500 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15501 &enablelist);
15502
15503 add_cmd ("count", no_class, enable_count_command, _("\
15504 Enable some breakpoints for COUNT hits.\n\
15505 Usage: enable count COUNT BREAKPOINTNUM...\n\
15506 If a breakpoint is hit while enabled in this fashion,\n\
15507 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15508 &enablelist);
15509
15510 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15511 Disable all or some breakpoints.\n\
15512 Usage: disable [BREAKPOINTNUM]...\n\
15513 Arguments are breakpoint numbers with spaces in between.\n\
15514 To disable all breakpoints, give no argument.\n\
15515 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15516 &disablelist, "disable ", 1, &cmdlist);
15517 add_com_alias ("dis", "disable", class_breakpoint, 1);
15518 add_com_alias ("disa", "disable", class_breakpoint, 1);
15519
15520 add_cmd ("breakpoints", class_alias, disable_command, _("\
15521 Disable all or some breakpoints.\n\
15522 Usage: disable breakpoints [BREAKPOINTNUM]...\n\
15523 Arguments are breakpoint numbers with spaces in between.\n\
15524 To disable all breakpoints, give no argument.\n\
15525 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15526 This command may be abbreviated \"disable\"."),
15527 &disablelist);
15528
15529 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15530 Delete all or some breakpoints.\n\
15531 Usage: delete [BREAKPOINTNUM]...\n\
15532 Arguments are breakpoint numbers with spaces in between.\n\
15533 To delete all breakpoints, give no argument.\n\
15534 \n\
15535 Also a prefix command for deletion of other GDB objects."),
15536 &deletelist, "delete ", 1, &cmdlist);
15537 add_com_alias ("d", "delete", class_breakpoint, 1);
15538 add_com_alias ("del", "delete", class_breakpoint, 1);
15539
15540 add_cmd ("breakpoints", class_alias, delete_command, _("\
15541 Delete all or some breakpoints or auto-display expressions.\n\
15542 Usage: delete breakpoints [BREAKPOINTNUM]...\n\
15543 Arguments are breakpoint numbers with spaces in between.\n\
15544 To delete all breakpoints, give no argument.\n\
15545 This command may be abbreviated \"delete\"."),
15546 &deletelist);
15547
15548 add_com ("clear", class_breakpoint, clear_command, _("\
15549 Clear breakpoint at specified location.\n\
15550 Argument may be a linespec, explicit, or address location as described below.\n\
15551 \n\
15552 With no argument, clears all breakpoints in the line that the selected frame\n\
15553 is executing in.\n"
15554 "\n" LOCATION_HELP_STRING "\n\n\
15555 See also the \"delete\" command which clears breakpoints by number."));
15556 add_com_alias ("cl", "clear", class_breakpoint, 1);
15557
15558 c = add_com ("break", class_breakpoint, break_command, _("\
15559 Set breakpoint at specified location.\n"
15560 BREAK_ARGS_HELP ("break")));
15561 set_cmd_completer (c, location_completer);
15562
15563 add_com_alias ("b", "break", class_run, 1);
15564 add_com_alias ("br", "break", class_run, 1);
15565 add_com_alias ("bre", "break", class_run, 1);
15566 add_com_alias ("brea", "break", class_run, 1);
15567
15568 if (dbx_commands)
15569 {
15570 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15571 Break in function/address or break at a line in the current file."),
15572 &stoplist, "stop ", 1, &cmdlist);
15573 add_cmd ("in", class_breakpoint, stopin_command,
15574 _("Break in function or address."), &stoplist);
15575 add_cmd ("at", class_breakpoint, stopat_command,
15576 _("Break at a line in the current file."), &stoplist);
15577 add_com ("status", class_info, info_breakpoints_command, _("\
15578 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15579 The \"Type\" column indicates one of:\n\
15580 \tbreakpoint - normal breakpoint\n\
15581 \twatchpoint - watchpoint\n\
15582 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15583 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15584 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15585 address and file/line number respectively.\n\
15586 \n\
15587 Convenience variable \"$_\" and default examine address for \"x\"\n\
15588 are set to the address of the last breakpoint listed unless the command\n\
15589 is prefixed with \"server \".\n\n\
15590 Convenience variable \"$bpnum\" contains the number of the last\n\
15591 breakpoint set."));
15592 }
15593
15594 add_info ("breakpoints", info_breakpoints_command, _("\
15595 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15596 The \"Type\" column indicates one of:\n\
15597 \tbreakpoint - normal breakpoint\n\
15598 \twatchpoint - watchpoint\n\
15599 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15600 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15601 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15602 address and file/line number respectively.\n\
15603 \n\
15604 Convenience variable \"$_\" and default examine address for \"x\"\n\
15605 are set to the address of the last breakpoint listed unless the command\n\
15606 is prefixed with \"server \".\n\n\
15607 Convenience variable \"$bpnum\" contains the number of the last\n\
15608 breakpoint set."));
15609
15610 add_info_alias ("b", "breakpoints", 1);
15611
15612 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15613 Status of all breakpoints, or breakpoint number NUMBER.\n\
15614 The \"Type\" column indicates one of:\n\
15615 \tbreakpoint - normal breakpoint\n\
15616 \twatchpoint - watchpoint\n\
15617 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15618 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15619 \tuntil - internal breakpoint used by the \"until\" command\n\
15620 \tfinish - internal breakpoint used by the \"finish\" command\n\
15621 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15622 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15623 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15624 address and file/line number respectively.\n\
15625 \n\
15626 Convenience variable \"$_\" and default examine address for \"x\"\n\
15627 are set to the address of the last breakpoint listed unless the command\n\
15628 is prefixed with \"server \".\n\n\
15629 Convenience variable \"$bpnum\" contains the number of the last\n\
15630 breakpoint set."),
15631 &maintenanceinfolist);
15632
15633 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15634 Set catchpoints to catch events."),
15635 &catch_cmdlist, "catch ",
15636 0/*allow-unknown*/, &cmdlist);
15637
15638 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15639 Set temporary catchpoints to catch events."),
15640 &tcatch_cmdlist, "tcatch ",
15641 0/*allow-unknown*/, &cmdlist);
15642
15643 add_catch_command ("fork", _("Catch calls to fork."),
15644 catch_fork_command_1,
15645 NULL,
15646 (void *) (uintptr_t) catch_fork_permanent,
15647 (void *) (uintptr_t) catch_fork_temporary);
15648 add_catch_command ("vfork", _("Catch calls to vfork."),
15649 catch_fork_command_1,
15650 NULL,
15651 (void *) (uintptr_t) catch_vfork_permanent,
15652 (void *) (uintptr_t) catch_vfork_temporary);
15653 add_catch_command ("exec", _("Catch calls to exec."),
15654 catch_exec_command_1,
15655 NULL,
15656 CATCH_PERMANENT,
15657 CATCH_TEMPORARY);
15658 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15659 Usage: catch load [REGEX]\n\
15660 If REGEX is given, only stop for libraries matching the regular expression."),
15661 catch_load_command_1,
15662 NULL,
15663 CATCH_PERMANENT,
15664 CATCH_TEMPORARY);
15665 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15666 Usage: catch unload [REGEX]\n\
15667 If REGEX is given, only stop for libraries matching the regular expression."),
15668 catch_unload_command_1,
15669 NULL,
15670 CATCH_PERMANENT,
15671 CATCH_TEMPORARY);
15672
15673 c = add_com ("watch", class_breakpoint, watch_command, _("\
15674 Set a watchpoint for an expression.\n\
15675 Usage: watch [-l|-location] EXPRESSION\n\
15676 A watchpoint stops execution of your program whenever the value of\n\
15677 an expression changes.\n\
15678 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15679 the memory to which it refers."));
15680 set_cmd_completer (c, expression_completer);
15681
15682 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15683 Set a read watchpoint for an expression.\n\
15684 Usage: rwatch [-l|-location] EXPRESSION\n\
15685 A watchpoint stops execution of your program whenever the value of\n\
15686 an expression is read.\n\
15687 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15688 the memory to which it refers."));
15689 set_cmd_completer (c, expression_completer);
15690
15691 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15692 Set a watchpoint for an expression.\n\
15693 Usage: awatch [-l|-location] EXPRESSION\n\
15694 A watchpoint stops execution of your program whenever the value of\n\
15695 an expression is either read or written.\n\
15696 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15697 the memory to which it refers."));
15698 set_cmd_completer (c, expression_completer);
15699
15700 add_info ("watchpoints", info_watchpoints_command, _("\
15701 Status of specified watchpoints (all watchpoints if no argument)."));
15702
15703 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15704 respond to changes - contrary to the description. */
15705 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15706 &can_use_hw_watchpoints, _("\
15707 Set debugger's willingness to use watchpoint hardware."), _("\
15708 Show debugger's willingness to use watchpoint hardware."), _("\
15709 If zero, gdb will not use hardware for new watchpoints, even if\n\
15710 such is available. (However, any hardware watchpoints that were\n\
15711 created before setting this to nonzero, will continue to use watchpoint\n\
15712 hardware.)"),
15713 NULL,
15714 show_can_use_hw_watchpoints,
15715 &setlist, &showlist);
15716
15717 can_use_hw_watchpoints = 1;
15718
15719 /* Tracepoint manipulation commands. */
15720
15721 c = add_com ("trace", class_breakpoint, trace_command, _("\
15722 Set a tracepoint at specified location.\n\
15723 \n"
15724 BREAK_ARGS_HELP ("trace") "\n\
15725 Do \"help tracepoints\" for info on other tracepoint commands."));
15726 set_cmd_completer (c, location_completer);
15727
15728 add_com_alias ("tp", "trace", class_alias, 0);
15729 add_com_alias ("tr", "trace", class_alias, 1);
15730 add_com_alias ("tra", "trace", class_alias, 1);
15731 add_com_alias ("trac", "trace", class_alias, 1);
15732
15733 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15734 Set a fast tracepoint at specified location.\n\
15735 \n"
15736 BREAK_ARGS_HELP ("ftrace") "\n\
15737 Do \"help tracepoints\" for info on other tracepoint commands."));
15738 set_cmd_completer (c, location_completer);
15739
15740 c = add_com ("strace", class_breakpoint, strace_command, _("\
15741 Set a static tracepoint at location or marker.\n\
15742 \n\
15743 strace [LOCATION] [if CONDITION]\n\
15744 LOCATION may be a linespec, explicit, or address location (described below) \n\
15745 or -m MARKER_ID.\n\n\
15746 If a marker id is specified, probe the marker with that name. With\n\
15747 no LOCATION, uses current execution address of the selected stack frame.\n\
15748 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15749 This collects arbitrary user data passed in the probe point call to the\n\
15750 tracing library. You can inspect it when analyzing the trace buffer,\n\
15751 by printing the $_sdata variable like any other convenience variable.\n\
15752 \n\
15753 CONDITION is a boolean expression.\n\
15754 \n" LOCATION_HELP_STRING "\n\n\
15755 Multiple tracepoints at one place are permitted, and useful if their\n\
15756 conditions are different.\n\
15757 \n\
15758 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15759 Do \"help tracepoints\" for info on other tracepoint commands."));
15760 set_cmd_completer (c, location_completer);
15761
15762 add_info ("tracepoints", info_tracepoints_command, _("\
15763 Status of specified tracepoints (all tracepoints if no argument).\n\
15764 Convenience variable \"$tpnum\" contains the number of the\n\
15765 last tracepoint set."));
15766
15767 add_info_alias ("tp", "tracepoints", 1);
15768
15769 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15770 Delete specified tracepoints.\n\
15771 Arguments are tracepoint numbers, separated by spaces.\n\
15772 No argument means delete all tracepoints."),
15773 &deletelist);
15774 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15775
15776 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15777 Disable specified tracepoints.\n\
15778 Arguments are tracepoint numbers, separated by spaces.\n\
15779 No argument means disable all tracepoints."),
15780 &disablelist);
15781 deprecate_cmd (c, "disable");
15782
15783 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15784 Enable specified tracepoints.\n\
15785 Arguments are tracepoint numbers, separated by spaces.\n\
15786 No argument means enable all tracepoints."),
15787 &enablelist);
15788 deprecate_cmd (c, "enable");
15789
15790 add_com ("passcount", class_trace, trace_pass_command, _("\
15791 Set the passcount for a tracepoint.\n\
15792 The trace will end when the tracepoint has been passed 'count' times.\n\
15793 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15794 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15795
15796 add_prefix_cmd ("save", class_breakpoint, save_command,
15797 _("Save breakpoint definitions as a script."),
15798 &save_cmdlist, "save ",
15799 0/*allow-unknown*/, &cmdlist);
15800
15801 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15802 Save current breakpoint definitions as a script.\n\
15803 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15804 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15805 session to restore them."),
15806 &save_cmdlist);
15807 set_cmd_completer (c, filename_completer);
15808
15809 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15810 Save current tracepoint definitions as a script.\n\
15811 Use the 'source' command in another debug session to restore them."),
15812 &save_cmdlist);
15813 set_cmd_completer (c, filename_completer);
15814
15815 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15816 deprecate_cmd (c, "save tracepoints");
15817
15818 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15819 Breakpoint specific settings.\n\
15820 Configure various breakpoint-specific variables such as\n\
15821 pending breakpoint behavior."),
15822 &breakpoint_set_cmdlist, "set breakpoint ",
15823 0/*allow-unknown*/, &setlist);
15824 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15825 Breakpoint specific settings.\n\
15826 Configure various breakpoint-specific variables such as\n\
15827 pending breakpoint behavior."),
15828 &breakpoint_show_cmdlist, "show breakpoint ",
15829 0/*allow-unknown*/, &showlist);
15830
15831 add_setshow_auto_boolean_cmd ("pending", no_class,
15832 &pending_break_support, _("\
15833 Set debugger's behavior regarding pending breakpoints."), _("\
15834 Show debugger's behavior regarding pending breakpoints."), _("\
15835 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15836 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15837 an error. If auto, an unrecognized breakpoint location results in a\n\
15838 user-query to see if a pending breakpoint should be created."),
15839 NULL,
15840 show_pending_break_support,
15841 &breakpoint_set_cmdlist,
15842 &breakpoint_show_cmdlist);
15843
15844 pending_break_support = AUTO_BOOLEAN_AUTO;
15845
15846 add_setshow_boolean_cmd ("auto-hw", no_class,
15847 &automatic_hardware_breakpoints, _("\
15848 Set automatic usage of hardware breakpoints."), _("\
15849 Show automatic usage of hardware breakpoints."), _("\
15850 If set, the debugger will automatically use hardware breakpoints for\n\
15851 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15852 a warning will be emitted for such breakpoints."),
15853 NULL,
15854 show_automatic_hardware_breakpoints,
15855 &breakpoint_set_cmdlist,
15856 &breakpoint_show_cmdlist);
15857
15858 add_setshow_boolean_cmd ("always-inserted", class_support,
15859 &always_inserted_mode, _("\
15860 Set mode for inserting breakpoints."), _("\
15861 Show mode for inserting breakpoints."), _("\
15862 When this mode is on, breakpoints are inserted immediately as soon as\n\
15863 they're created, kept inserted even when execution stops, and removed\n\
15864 only when the user deletes them. When this mode is off (the default),\n\
15865 breakpoints are inserted only when execution continues, and removed\n\
15866 when execution stops."),
15867 NULL,
15868 &show_always_inserted_mode,
15869 &breakpoint_set_cmdlist,
15870 &breakpoint_show_cmdlist);
15871
15872 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
15873 condition_evaluation_enums,
15874 &condition_evaluation_mode_1, _("\
15875 Set mode of breakpoint condition evaluation."), _("\
15876 Show mode of breakpoint condition evaluation."), _("\
15877 When this is set to \"host\", breakpoint conditions will be\n\
15878 evaluated on the host's side by GDB. When it is set to \"target\",\n\
15879 breakpoint conditions will be downloaded to the target (if the target\n\
15880 supports such feature) and conditions will be evaluated on the target's side.\n\
15881 If this is set to \"auto\" (default), this will be automatically set to\n\
15882 \"target\" if it supports condition evaluation, otherwise it will\n\
15883 be set to \"gdb\""),
15884 &set_condition_evaluation_mode,
15885 &show_condition_evaluation_mode,
15886 &breakpoint_set_cmdlist,
15887 &breakpoint_show_cmdlist);
15888
15889 add_com ("break-range", class_breakpoint, break_range_command, _("\
15890 Set a breakpoint for an address range.\n\
15891 break-range START-LOCATION, END-LOCATION\n\
15892 where START-LOCATION and END-LOCATION can be one of the following:\n\
15893 LINENUM, for that line in the current file,\n\
15894 FILE:LINENUM, for that line in that file,\n\
15895 +OFFSET, for that number of lines after the current line\n\
15896 or the start of the range\n\
15897 FUNCTION, for the first line in that function,\n\
15898 FILE:FUNCTION, to distinguish among like-named static functions.\n\
15899 *ADDRESS, for the instruction at that address.\n\
15900 \n\
15901 The breakpoint will stop execution of the inferior whenever it executes\n\
15902 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
15903 range (including START-LOCATION and END-LOCATION)."));
15904
15905 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
15906 Set a dynamic printf at specified location.\n\
15907 dprintf location,format string,arg1,arg2,...\n\
15908 location may be a linespec, explicit, or address location.\n"
15909 "\n" LOCATION_HELP_STRING));
15910 set_cmd_completer (c, location_completer);
15911
15912 add_setshow_enum_cmd ("dprintf-style", class_support,
15913 dprintf_style_enums, &dprintf_style, _("\
15914 Set the style of usage for dynamic printf."), _("\
15915 Show the style of usage for dynamic printf."), _("\
15916 This setting chooses how GDB will do a dynamic printf.\n\
15917 If the value is \"gdb\", then the printing is done by GDB to its own\n\
15918 console, as with the \"printf\" command.\n\
15919 If the value is \"call\", the print is done by calling a function in your\n\
15920 program; by default printf(), but you can choose a different function or\n\
15921 output stream by setting dprintf-function and dprintf-channel."),
15922 update_dprintf_commands, NULL,
15923 &setlist, &showlist);
15924
15925 dprintf_function = xstrdup ("printf");
15926 add_setshow_string_cmd ("dprintf-function", class_support,
15927 &dprintf_function, _("\
15928 Set the function to use for dynamic printf."), _("\
15929 Show the function to use for dynamic printf."), NULL,
15930 update_dprintf_commands, NULL,
15931 &setlist, &showlist);
15932
15933 dprintf_channel = xstrdup ("");
15934 add_setshow_string_cmd ("dprintf-channel", class_support,
15935 &dprintf_channel, _("\
15936 Set the channel to use for dynamic printf."), _("\
15937 Show the channel to use for dynamic printf."), NULL,
15938 update_dprintf_commands, NULL,
15939 &setlist, &showlist);
15940
15941 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
15942 &disconnected_dprintf, _("\
15943 Set whether dprintf continues after GDB disconnects."), _("\
15944 Show whether dprintf continues after GDB disconnects."), _("\
15945 Use this to let dprintf commands continue to hit and produce output\n\
15946 even if GDB disconnects or detaches from the target."),
15947 NULL,
15948 NULL,
15949 &setlist, &showlist);
15950
15951 add_com ("agent-printf", class_vars, agent_printf_command, _("\
15952 Target agent only formatted printing, like the C \"printf\" function.\n\
15953 Usage: agent-printf \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
15954 This supports most C printf format specifications, like %s, %d, etc.\n\
15955 This is useful for formatted output in user-defined commands."));
15956
15957 automatic_hardware_breakpoints = 1;
15958
15959 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
15960 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
15961 }
This page took 0.550206 seconds and 4 git commands to generate.