linux-nat: Exploit /proc/<pid>/mem for writing
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "block.h"
51 #include "solib.h"
52 #include "solist.h"
53 #include "observer.h"
54 #include "memattr.h"
55 #include "ada-lang.h"
56 #include "top.h"
57 #include "valprint.h"
58 #include "jit.h"
59 #include "parser-defs.h"
60 #include "gdb_regex.h"
61 #include "probe.h"
62 #include "cli/cli-utils.h"
63 #include "continuations.h"
64 #include "stack.h"
65 #include "skip.h"
66 #include "ax-gdb.h"
67 #include "dummy-frame.h"
68 #include "interps.h"
69 #include "format.h"
70 #include "location.h"
71 #include "thread-fsm.h"
72 #include "tid-parse.h"
73
74 /* readline include files */
75 #include "readline/readline.h"
76 #include "readline/history.h"
77
78 /* readline defines this. */
79 #undef savestring
80
81 #include "mi/mi-common.h"
82 #include "extension.h"
83 #include <algorithm>
84
85 /* Enums for exception-handling support. */
86 enum exception_event_kind
87 {
88 EX_EVENT_THROW,
89 EX_EVENT_RETHROW,
90 EX_EVENT_CATCH
91 };
92
93 /* Prototypes for local functions. */
94
95 static void enable_delete_command (char *, int);
96
97 static void enable_once_command (char *, int);
98
99 static void enable_count_command (char *, int);
100
101 static void disable_command (char *, int);
102
103 static void enable_command (char *, int);
104
105 static void map_breakpoint_numbers (const char *,
106 void (*) (struct breakpoint *,
107 void *),
108 void *);
109
110 static void ignore_command (char *, int);
111
112 static int breakpoint_re_set_one (void *);
113
114 static void breakpoint_re_set_default (struct breakpoint *);
115
116 static void
117 create_sals_from_location_default (const struct event_location *location,
118 struct linespec_result *canonical,
119 enum bptype type_wanted);
120
121 static void create_breakpoints_sal_default (struct gdbarch *,
122 struct linespec_result *,
123 char *, char *, enum bptype,
124 enum bpdisp, int, int,
125 int,
126 const struct breakpoint_ops *,
127 int, int, int, unsigned);
128
129 static void decode_location_default (struct breakpoint *b,
130 const struct event_location *location,
131 struct program_space *search_pspace,
132 struct symtabs_and_lines *sals);
133
134 static void clear_command (char *, int);
135
136 static void catch_command (char *, int);
137
138 static int can_use_hardware_watchpoint (struct value *);
139
140 static void break_command_1 (char *, int, int);
141
142 static void mention (struct breakpoint *);
143
144 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
145 enum bptype,
146 const struct breakpoint_ops *);
147 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
148 const struct symtab_and_line *);
149
150 /* This function is used in gdbtk sources and thus can not be made
151 static. */
152 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
153 struct symtab_and_line,
154 enum bptype,
155 const struct breakpoint_ops *);
156
157 static struct breakpoint *
158 momentary_breakpoint_from_master (struct breakpoint *orig,
159 enum bptype type,
160 const struct breakpoint_ops *ops,
161 int loc_enabled);
162
163 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
164
165 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
166 CORE_ADDR bpaddr,
167 enum bptype bptype);
168
169 static void describe_other_breakpoints (struct gdbarch *,
170 struct program_space *, CORE_ADDR,
171 struct obj_section *, int);
172
173 static int watchpoint_locations_match (struct bp_location *loc1,
174 struct bp_location *loc2);
175
176 static int breakpoint_location_address_match (struct bp_location *bl,
177 struct address_space *aspace,
178 CORE_ADDR addr);
179
180 static int breakpoint_location_address_range_overlap (struct bp_location *,
181 struct address_space *,
182 CORE_ADDR, int);
183
184 static void breakpoints_info (char *, int);
185
186 static void watchpoints_info (char *, int);
187
188 static int breakpoint_1 (char *, int,
189 int (*) (const struct breakpoint *));
190
191 static int breakpoint_cond_eval (void *);
192
193 static void cleanup_executing_breakpoints (void *);
194
195 static void commands_command (char *, int);
196
197 static void condition_command (char *, int);
198
199 static int remove_breakpoint (struct bp_location *);
200 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
201
202 static enum print_stop_action print_bp_stop_message (bpstat bs);
203
204 static int watchpoint_check (void *);
205
206 static void maintenance_info_breakpoints (char *, int);
207
208 static int hw_breakpoint_used_count (void);
209
210 static int hw_watchpoint_use_count (struct breakpoint *);
211
212 static int hw_watchpoint_used_count_others (struct breakpoint *except,
213 enum bptype type,
214 int *other_type_used);
215
216 static void hbreak_command (char *, int);
217
218 static void thbreak_command (char *, int);
219
220 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
221 int count);
222
223 static void stop_command (char *arg, int from_tty);
224
225 static void stopin_command (char *arg, int from_tty);
226
227 static void stopat_command (char *arg, int from_tty);
228
229 static void tcatch_command (char *arg, int from_tty);
230
231 static void free_bp_location (struct bp_location *loc);
232 static void incref_bp_location (struct bp_location *loc);
233 static void decref_bp_location (struct bp_location **loc);
234
235 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
236
237 /* update_global_location_list's modes of operation wrt to whether to
238 insert locations now. */
239 enum ugll_insert_mode
240 {
241 /* Don't insert any breakpoint locations into the inferior, only
242 remove already-inserted locations that no longer should be
243 inserted. Functions that delete a breakpoint or breakpoints
244 should specify this mode, so that deleting a breakpoint doesn't
245 have the side effect of inserting the locations of other
246 breakpoints that are marked not-inserted, but should_be_inserted
247 returns true on them.
248
249 This behavior is useful is situations close to tear-down -- e.g.,
250 after an exec, while the target still has execution, but
251 breakpoint shadows of the previous executable image should *NOT*
252 be restored to the new image; or before detaching, where the
253 target still has execution and wants to delete breakpoints from
254 GDB's lists, and all breakpoints had already been removed from
255 the inferior. */
256 UGLL_DONT_INSERT,
257
258 /* May insert breakpoints iff breakpoints_should_be_inserted_now
259 claims breakpoints should be inserted now. */
260 UGLL_MAY_INSERT,
261
262 /* Insert locations now, irrespective of
263 breakpoints_should_be_inserted_now. E.g., say all threads are
264 stopped right now, and the user did "continue". We need to
265 insert breakpoints _before_ resuming the target, but
266 UGLL_MAY_INSERT wouldn't insert them, because
267 breakpoints_should_be_inserted_now returns false at that point,
268 as no thread is running yet. */
269 UGLL_INSERT
270 };
271
272 static void update_global_location_list (enum ugll_insert_mode);
273
274 static void update_global_location_list_nothrow (enum ugll_insert_mode);
275
276 static int is_hardware_watchpoint (const struct breakpoint *bpt);
277
278 static void insert_breakpoint_locations (void);
279
280 static void tracepoints_info (char *, int);
281
282 static void delete_trace_command (char *, int);
283
284 static void enable_trace_command (char *, int);
285
286 static void disable_trace_command (char *, int);
287
288 static void trace_pass_command (char *, int);
289
290 static void set_tracepoint_count (int num);
291
292 static int is_masked_watchpoint (const struct breakpoint *b);
293
294 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
295
296 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
297 otherwise. */
298
299 static int strace_marker_p (struct breakpoint *b);
300
301 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
302 that are implemented on top of software or hardware breakpoints
303 (user breakpoints, internal and momentary breakpoints, etc.). */
304 static struct breakpoint_ops bkpt_base_breakpoint_ops;
305
306 /* Internal breakpoints class type. */
307 static struct breakpoint_ops internal_breakpoint_ops;
308
309 /* Momentary breakpoints class type. */
310 static struct breakpoint_ops momentary_breakpoint_ops;
311
312 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
313 static struct breakpoint_ops longjmp_breakpoint_ops;
314
315 /* The breakpoint_ops structure to be used in regular user created
316 breakpoints. */
317 struct breakpoint_ops bkpt_breakpoint_ops;
318
319 /* Breakpoints set on probes. */
320 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
321
322 /* Dynamic printf class type. */
323 struct breakpoint_ops dprintf_breakpoint_ops;
324
325 /* The style in which to perform a dynamic printf. This is a user
326 option because different output options have different tradeoffs;
327 if GDB does the printing, there is better error handling if there
328 is a problem with any of the arguments, but using an inferior
329 function lets you have special-purpose printers and sending of
330 output to the same place as compiled-in print functions. */
331
332 static const char dprintf_style_gdb[] = "gdb";
333 static const char dprintf_style_call[] = "call";
334 static const char dprintf_style_agent[] = "agent";
335 static const char *const dprintf_style_enums[] = {
336 dprintf_style_gdb,
337 dprintf_style_call,
338 dprintf_style_agent,
339 NULL
340 };
341 static const char *dprintf_style = dprintf_style_gdb;
342
343 /* The function to use for dynamic printf if the preferred style is to
344 call into the inferior. The value is simply a string that is
345 copied into the command, so it can be anything that GDB can
346 evaluate to a callable address, not necessarily a function name. */
347
348 static char *dprintf_function = "";
349
350 /* The channel to use for dynamic printf if the preferred style is to
351 call into the inferior; if a nonempty string, it will be passed to
352 the call as the first argument, with the format string as the
353 second. As with the dprintf function, this can be anything that
354 GDB knows how to evaluate, so in addition to common choices like
355 "stderr", this could be an app-specific expression like
356 "mystreams[curlogger]". */
357
358 static char *dprintf_channel = "";
359
360 /* True if dprintf commands should continue to operate even if GDB
361 has disconnected. */
362 static int disconnected_dprintf = 1;
363
364 /* A reference-counted struct command_line. This lets multiple
365 breakpoints share a single command list. */
366 struct counted_command_line
367 {
368 /* The reference count. */
369 int refc;
370
371 /* The command list. */
372 struct command_line *commands;
373 };
374
375 struct command_line *
376 breakpoint_commands (struct breakpoint *b)
377 {
378 return b->commands ? b->commands->commands : NULL;
379 }
380
381 /* Flag indicating that a command has proceeded the inferior past the
382 current breakpoint. */
383
384 static int breakpoint_proceeded;
385
386 const char *
387 bpdisp_text (enum bpdisp disp)
388 {
389 /* NOTE: the following values are a part of MI protocol and
390 represent values of 'disp' field returned when inferior stops at
391 a breakpoint. */
392 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
393
394 return bpdisps[(int) disp];
395 }
396
397 /* Prototypes for exported functions. */
398 /* If FALSE, gdb will not use hardware support for watchpoints, even
399 if such is available. */
400 static int can_use_hw_watchpoints;
401
402 static void
403 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
404 struct cmd_list_element *c,
405 const char *value)
406 {
407 fprintf_filtered (file,
408 _("Debugger's willingness to use "
409 "watchpoint hardware is %s.\n"),
410 value);
411 }
412
413 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
414 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
415 for unrecognized breakpoint locations.
416 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
417 static enum auto_boolean pending_break_support;
418 static void
419 show_pending_break_support (struct ui_file *file, int from_tty,
420 struct cmd_list_element *c,
421 const char *value)
422 {
423 fprintf_filtered (file,
424 _("Debugger's behavior regarding "
425 "pending breakpoints is %s.\n"),
426 value);
427 }
428
429 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
430 set with "break" but falling in read-only memory.
431 If 0, gdb will warn about such breakpoints, but won't automatically
432 use hardware breakpoints. */
433 static int automatic_hardware_breakpoints;
434 static void
435 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
436 struct cmd_list_element *c,
437 const char *value)
438 {
439 fprintf_filtered (file,
440 _("Automatic usage of hardware breakpoints is %s.\n"),
441 value);
442 }
443
444 /* If on, GDB keeps breakpoints inserted even if the inferior is
445 stopped, and immediately inserts any new breakpoints as soon as
446 they're created. If off (default), GDB keeps breakpoints off of
447 the target as long as possible. That is, it delays inserting
448 breakpoints until the next resume, and removes them again when the
449 target fully stops. This is a bit safer in case GDB crashes while
450 processing user input. */
451 static int always_inserted_mode = 0;
452
453 static void
454 show_always_inserted_mode (struct ui_file *file, int from_tty,
455 struct cmd_list_element *c, const char *value)
456 {
457 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
458 value);
459 }
460
461 /* See breakpoint.h. */
462
463 int
464 breakpoints_should_be_inserted_now (void)
465 {
466 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
467 {
468 /* If breakpoints are global, they should be inserted even if no
469 thread under gdb's control is running, or even if there are
470 no threads under GDB's control yet. */
471 return 1;
472 }
473 else if (target_has_execution)
474 {
475 struct thread_info *tp;
476
477 if (always_inserted_mode)
478 {
479 /* The user wants breakpoints inserted even if all threads
480 are stopped. */
481 return 1;
482 }
483
484 if (threads_are_executing ())
485 return 1;
486
487 /* Don't remove breakpoints yet if, even though all threads are
488 stopped, we still have events to process. */
489 ALL_NON_EXITED_THREADS (tp)
490 if (tp->resumed
491 && tp->suspend.waitstatus_pending_p)
492 return 1;
493 }
494 return 0;
495 }
496
497 static const char condition_evaluation_both[] = "host or target";
498
499 /* Modes for breakpoint condition evaluation. */
500 static const char condition_evaluation_auto[] = "auto";
501 static const char condition_evaluation_host[] = "host";
502 static const char condition_evaluation_target[] = "target";
503 static const char *const condition_evaluation_enums[] = {
504 condition_evaluation_auto,
505 condition_evaluation_host,
506 condition_evaluation_target,
507 NULL
508 };
509
510 /* Global that holds the current mode for breakpoint condition evaluation. */
511 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
512
513 /* Global that we use to display information to the user (gets its value from
514 condition_evaluation_mode_1. */
515 static const char *condition_evaluation_mode = condition_evaluation_auto;
516
517 /* Translate a condition evaluation mode MODE into either "host"
518 or "target". This is used mostly to translate from "auto" to the
519 real setting that is being used. It returns the translated
520 evaluation mode. */
521
522 static const char *
523 translate_condition_evaluation_mode (const char *mode)
524 {
525 if (mode == condition_evaluation_auto)
526 {
527 if (target_supports_evaluation_of_breakpoint_conditions ())
528 return condition_evaluation_target;
529 else
530 return condition_evaluation_host;
531 }
532 else
533 return mode;
534 }
535
536 /* Discovers what condition_evaluation_auto translates to. */
537
538 static const char *
539 breakpoint_condition_evaluation_mode (void)
540 {
541 return translate_condition_evaluation_mode (condition_evaluation_mode);
542 }
543
544 /* Return true if GDB should evaluate breakpoint conditions or false
545 otherwise. */
546
547 static int
548 gdb_evaluates_breakpoint_condition_p (void)
549 {
550 const char *mode = breakpoint_condition_evaluation_mode ();
551
552 return (mode == condition_evaluation_host);
553 }
554
555 void _initialize_breakpoint (void);
556
557 /* Are we executing breakpoint commands? */
558 static int executing_breakpoint_commands;
559
560 /* Are overlay event breakpoints enabled? */
561 static int overlay_events_enabled;
562
563 /* See description in breakpoint.h. */
564 int target_exact_watchpoints = 0;
565
566 /* Walk the following statement or block through all breakpoints.
567 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
568 current breakpoint. */
569
570 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
571
572 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
573 for (B = breakpoint_chain; \
574 B ? (TMP=B->next, 1): 0; \
575 B = TMP)
576
577 /* Similar iterator for the low-level breakpoints. SAFE variant is
578 not provided so update_global_location_list must not be called
579 while executing the block of ALL_BP_LOCATIONS. */
580
581 #define ALL_BP_LOCATIONS(B,BP_TMP) \
582 for (BP_TMP = bp_location; \
583 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
584 BP_TMP++)
585
586 /* Iterates through locations with address ADDRESS for the currently selected
587 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
588 to where the loop should start from.
589 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
590 appropriate location to start with. */
591
592 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
593 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
594 BP_LOCP_TMP = BP_LOCP_START; \
595 BP_LOCP_START \
596 && (BP_LOCP_TMP < bp_location + bp_location_count \
597 && (*BP_LOCP_TMP)->address == ADDRESS); \
598 BP_LOCP_TMP++)
599
600 /* Iterator for tracepoints only. */
601
602 #define ALL_TRACEPOINTS(B) \
603 for (B = breakpoint_chain; B; B = B->next) \
604 if (is_tracepoint (B))
605
606 /* Chains of all breakpoints defined. */
607
608 struct breakpoint *breakpoint_chain;
609
610 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
611
612 static struct bp_location **bp_location;
613
614 /* Number of elements of BP_LOCATION. */
615
616 static unsigned bp_location_count;
617
618 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
619 ADDRESS for the current elements of BP_LOCATION which get a valid
620 result from bp_location_has_shadow. You can use it for roughly
621 limiting the subrange of BP_LOCATION to scan for shadow bytes for
622 an address you need to read. */
623
624 static CORE_ADDR bp_location_placed_address_before_address_max;
625
626 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
627 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
628 BP_LOCATION which get a valid result from bp_location_has_shadow.
629 You can use it for roughly limiting the subrange of BP_LOCATION to
630 scan for shadow bytes for an address you need to read. */
631
632 static CORE_ADDR bp_location_shadow_len_after_address_max;
633
634 /* The locations that no longer correspond to any breakpoint, unlinked
635 from bp_location array, but for which a hit may still be reported
636 by a target. */
637 VEC(bp_location_p) *moribund_locations = NULL;
638
639 /* Number of last breakpoint made. */
640
641 static int breakpoint_count;
642
643 /* The value of `breakpoint_count' before the last command that
644 created breakpoints. If the last (break-like) command created more
645 than one breakpoint, then the difference between BREAKPOINT_COUNT
646 and PREV_BREAKPOINT_COUNT is more than one. */
647 static int prev_breakpoint_count;
648
649 /* Number of last tracepoint made. */
650
651 static int tracepoint_count;
652
653 static struct cmd_list_element *breakpoint_set_cmdlist;
654 static struct cmd_list_element *breakpoint_show_cmdlist;
655 struct cmd_list_element *save_cmdlist;
656
657 /* See declaration at breakpoint.h. */
658
659 struct breakpoint *
660 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
661 void *user_data)
662 {
663 struct breakpoint *b = NULL;
664
665 ALL_BREAKPOINTS (b)
666 {
667 if (func (b, user_data) != 0)
668 break;
669 }
670
671 return b;
672 }
673
674 /* Return whether a breakpoint is an active enabled breakpoint. */
675 static int
676 breakpoint_enabled (struct breakpoint *b)
677 {
678 return (b->enable_state == bp_enabled);
679 }
680
681 /* Set breakpoint count to NUM. */
682
683 static void
684 set_breakpoint_count (int num)
685 {
686 prev_breakpoint_count = breakpoint_count;
687 breakpoint_count = num;
688 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
689 }
690
691 /* Used by `start_rbreak_breakpoints' below, to record the current
692 breakpoint count before "rbreak" creates any breakpoint. */
693 static int rbreak_start_breakpoint_count;
694
695 /* Called at the start an "rbreak" command to record the first
696 breakpoint made. */
697
698 void
699 start_rbreak_breakpoints (void)
700 {
701 rbreak_start_breakpoint_count = breakpoint_count;
702 }
703
704 /* Called at the end of an "rbreak" command to record the last
705 breakpoint made. */
706
707 void
708 end_rbreak_breakpoints (void)
709 {
710 prev_breakpoint_count = rbreak_start_breakpoint_count;
711 }
712
713 /* Used in run_command to zero the hit count when a new run starts. */
714
715 void
716 clear_breakpoint_hit_counts (void)
717 {
718 struct breakpoint *b;
719
720 ALL_BREAKPOINTS (b)
721 b->hit_count = 0;
722 }
723
724 /* Allocate a new counted_command_line with reference count of 1.
725 The new structure owns COMMANDS. */
726
727 static struct counted_command_line *
728 alloc_counted_command_line (struct command_line *commands)
729 {
730 struct counted_command_line *result = XNEW (struct counted_command_line);
731
732 result->refc = 1;
733 result->commands = commands;
734
735 return result;
736 }
737
738 /* Increment reference count. This does nothing if CMD is NULL. */
739
740 static void
741 incref_counted_command_line (struct counted_command_line *cmd)
742 {
743 if (cmd)
744 ++cmd->refc;
745 }
746
747 /* Decrement reference count. If the reference count reaches 0,
748 destroy the counted_command_line. Sets *CMDP to NULL. This does
749 nothing if *CMDP is NULL. */
750
751 static void
752 decref_counted_command_line (struct counted_command_line **cmdp)
753 {
754 if (*cmdp)
755 {
756 if (--(*cmdp)->refc == 0)
757 {
758 free_command_lines (&(*cmdp)->commands);
759 xfree (*cmdp);
760 }
761 *cmdp = NULL;
762 }
763 }
764
765 /* A cleanup function that calls decref_counted_command_line. */
766
767 static void
768 do_cleanup_counted_command_line (void *arg)
769 {
770 decref_counted_command_line ((struct counted_command_line **) arg);
771 }
772
773 /* Create a cleanup that calls decref_counted_command_line on the
774 argument. */
775
776 static struct cleanup *
777 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
778 {
779 return make_cleanup (do_cleanup_counted_command_line, cmdp);
780 }
781
782 \f
783 /* Return the breakpoint with the specified number, or NULL
784 if the number does not refer to an existing breakpoint. */
785
786 struct breakpoint *
787 get_breakpoint (int num)
788 {
789 struct breakpoint *b;
790
791 ALL_BREAKPOINTS (b)
792 if (b->number == num)
793 return b;
794
795 return NULL;
796 }
797
798 \f
799
800 /* Mark locations as "conditions have changed" in case the target supports
801 evaluating conditions on its side. */
802
803 static void
804 mark_breakpoint_modified (struct breakpoint *b)
805 {
806 struct bp_location *loc;
807
808 /* This is only meaningful if the target is
809 evaluating conditions and if the user has
810 opted for condition evaluation on the target's
811 side. */
812 if (gdb_evaluates_breakpoint_condition_p ()
813 || !target_supports_evaluation_of_breakpoint_conditions ())
814 return;
815
816 if (!is_breakpoint (b))
817 return;
818
819 for (loc = b->loc; loc; loc = loc->next)
820 loc->condition_changed = condition_modified;
821 }
822
823 /* Mark location as "conditions have changed" in case the target supports
824 evaluating conditions on its side. */
825
826 static void
827 mark_breakpoint_location_modified (struct bp_location *loc)
828 {
829 /* This is only meaningful if the target is
830 evaluating conditions and if the user has
831 opted for condition evaluation on the target's
832 side. */
833 if (gdb_evaluates_breakpoint_condition_p ()
834 || !target_supports_evaluation_of_breakpoint_conditions ())
835
836 return;
837
838 if (!is_breakpoint (loc->owner))
839 return;
840
841 loc->condition_changed = condition_modified;
842 }
843
844 /* Sets the condition-evaluation mode using the static global
845 condition_evaluation_mode. */
846
847 static void
848 set_condition_evaluation_mode (char *args, int from_tty,
849 struct cmd_list_element *c)
850 {
851 const char *old_mode, *new_mode;
852
853 if ((condition_evaluation_mode_1 == condition_evaluation_target)
854 && !target_supports_evaluation_of_breakpoint_conditions ())
855 {
856 condition_evaluation_mode_1 = condition_evaluation_mode;
857 warning (_("Target does not support breakpoint condition evaluation.\n"
858 "Using host evaluation mode instead."));
859 return;
860 }
861
862 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
863 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
864
865 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
866 settings was "auto". */
867 condition_evaluation_mode = condition_evaluation_mode_1;
868
869 /* Only update the mode if the user picked a different one. */
870 if (new_mode != old_mode)
871 {
872 struct bp_location *loc, **loc_tmp;
873 /* If the user switched to a different evaluation mode, we
874 need to synch the changes with the target as follows:
875
876 "host" -> "target": Send all (valid) conditions to the target.
877 "target" -> "host": Remove all the conditions from the target.
878 */
879
880 if (new_mode == condition_evaluation_target)
881 {
882 /* Mark everything modified and synch conditions with the
883 target. */
884 ALL_BP_LOCATIONS (loc, loc_tmp)
885 mark_breakpoint_location_modified (loc);
886 }
887 else
888 {
889 /* Manually mark non-duplicate locations to synch conditions
890 with the target. We do this to remove all the conditions the
891 target knows about. */
892 ALL_BP_LOCATIONS (loc, loc_tmp)
893 if (is_breakpoint (loc->owner) && loc->inserted)
894 loc->needs_update = 1;
895 }
896
897 /* Do the update. */
898 update_global_location_list (UGLL_MAY_INSERT);
899 }
900
901 return;
902 }
903
904 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
905 what "auto" is translating to. */
906
907 static void
908 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
909 struct cmd_list_element *c, const char *value)
910 {
911 if (condition_evaluation_mode == condition_evaluation_auto)
912 fprintf_filtered (file,
913 _("Breakpoint condition evaluation "
914 "mode is %s (currently %s).\n"),
915 value,
916 breakpoint_condition_evaluation_mode ());
917 else
918 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
919 value);
920 }
921
922 /* A comparison function for bp_location AP and BP that is used by
923 bsearch. This comparison function only cares about addresses, unlike
924 the more general bp_location_compare function. */
925
926 static int
927 bp_location_compare_addrs (const void *ap, const void *bp)
928 {
929 const struct bp_location *a = *(const struct bp_location **) ap;
930 const struct bp_location *b = *(const struct bp_location **) bp;
931
932 if (a->address == b->address)
933 return 0;
934 else
935 return ((a->address > b->address) - (a->address < b->address));
936 }
937
938 /* Helper function to skip all bp_locations with addresses
939 less than ADDRESS. It returns the first bp_location that
940 is greater than or equal to ADDRESS. If none is found, just
941 return NULL. */
942
943 static struct bp_location **
944 get_first_locp_gte_addr (CORE_ADDR address)
945 {
946 struct bp_location dummy_loc;
947 struct bp_location *dummy_locp = &dummy_loc;
948 struct bp_location **locp_found = NULL;
949
950 /* Initialize the dummy location's address field. */
951 memset (&dummy_loc, 0, sizeof (struct bp_location));
952 dummy_loc.address = address;
953
954 /* Find a close match to the first location at ADDRESS. */
955 locp_found = ((struct bp_location **)
956 bsearch (&dummy_locp, bp_location, bp_location_count,
957 sizeof (struct bp_location **),
958 bp_location_compare_addrs));
959
960 /* Nothing was found, nothing left to do. */
961 if (locp_found == NULL)
962 return NULL;
963
964 /* We may have found a location that is at ADDRESS but is not the first in the
965 location's list. Go backwards (if possible) and locate the first one. */
966 while ((locp_found - 1) >= bp_location
967 && (*(locp_found - 1))->address == address)
968 locp_found--;
969
970 return locp_found;
971 }
972
973 void
974 set_breakpoint_condition (struct breakpoint *b, const char *exp,
975 int from_tty)
976 {
977 xfree (b->cond_string);
978 b->cond_string = NULL;
979
980 if (is_watchpoint (b))
981 {
982 struct watchpoint *w = (struct watchpoint *) b;
983
984 w->cond_exp.reset ();
985 }
986 else
987 {
988 struct bp_location *loc;
989
990 for (loc = b->loc; loc; loc = loc->next)
991 {
992 loc->cond.reset ();
993
994 /* No need to free the condition agent expression
995 bytecode (if we have one). We will handle this
996 when we go through update_global_location_list. */
997 }
998 }
999
1000 if (*exp == 0)
1001 {
1002 if (from_tty)
1003 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
1004 }
1005 else
1006 {
1007 const char *arg = exp;
1008
1009 /* I don't know if it matters whether this is the string the user
1010 typed in or the decompiled expression. */
1011 b->cond_string = xstrdup (arg);
1012 b->condition_not_parsed = 0;
1013
1014 if (is_watchpoint (b))
1015 {
1016 struct watchpoint *w = (struct watchpoint *) b;
1017
1018 innermost_block = NULL;
1019 arg = exp;
1020 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
1021 if (*arg)
1022 error (_("Junk at end of expression"));
1023 w->cond_exp_valid_block = innermost_block;
1024 }
1025 else
1026 {
1027 struct bp_location *loc;
1028
1029 for (loc = b->loc; loc; loc = loc->next)
1030 {
1031 arg = exp;
1032 loc->cond =
1033 parse_exp_1 (&arg, loc->address,
1034 block_for_pc (loc->address), 0);
1035 if (*arg)
1036 error (_("Junk at end of expression"));
1037 }
1038 }
1039 }
1040 mark_breakpoint_modified (b);
1041
1042 observer_notify_breakpoint_modified (b);
1043 }
1044
1045 /* Completion for the "condition" command. */
1046
1047 static VEC (char_ptr) *
1048 condition_completer (struct cmd_list_element *cmd,
1049 const char *text, const char *word)
1050 {
1051 const char *space;
1052
1053 text = skip_spaces_const (text);
1054 space = skip_to_space_const (text);
1055 if (*space == '\0')
1056 {
1057 int len;
1058 struct breakpoint *b;
1059 VEC (char_ptr) *result = NULL;
1060
1061 if (text[0] == '$')
1062 {
1063 /* We don't support completion of history indices. */
1064 if (isdigit (text[1]))
1065 return NULL;
1066 return complete_internalvar (&text[1]);
1067 }
1068
1069 /* We're completing the breakpoint number. */
1070 len = strlen (text);
1071
1072 ALL_BREAKPOINTS (b)
1073 {
1074 char number[50];
1075
1076 xsnprintf (number, sizeof (number), "%d", b->number);
1077
1078 if (strncmp (number, text, len) == 0)
1079 VEC_safe_push (char_ptr, result, xstrdup (number));
1080 }
1081
1082 return result;
1083 }
1084
1085 /* We're completing the expression part. */
1086 text = skip_spaces_const (space);
1087 return expression_completer (cmd, text, word);
1088 }
1089
1090 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1091
1092 static void
1093 condition_command (char *arg, int from_tty)
1094 {
1095 struct breakpoint *b;
1096 char *p;
1097 int bnum;
1098
1099 if (arg == 0)
1100 error_no_arg (_("breakpoint number"));
1101
1102 p = arg;
1103 bnum = get_number (&p);
1104 if (bnum == 0)
1105 error (_("Bad breakpoint argument: '%s'"), arg);
1106
1107 ALL_BREAKPOINTS (b)
1108 if (b->number == bnum)
1109 {
1110 /* Check if this breakpoint has a "stop" method implemented in an
1111 extension language. This method and conditions entered into GDB
1112 from the CLI are mutually exclusive. */
1113 const struct extension_language_defn *extlang
1114 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1115
1116 if (extlang != NULL)
1117 {
1118 error (_("Only one stop condition allowed. There is currently"
1119 " a %s stop condition defined for this breakpoint."),
1120 ext_lang_capitalized_name (extlang));
1121 }
1122 set_breakpoint_condition (b, p, from_tty);
1123
1124 if (is_breakpoint (b))
1125 update_global_location_list (UGLL_MAY_INSERT);
1126
1127 return;
1128 }
1129
1130 error (_("No breakpoint number %d."), bnum);
1131 }
1132
1133 /* Check that COMMAND do not contain commands that are suitable
1134 only for tracepoints and not suitable for ordinary breakpoints.
1135 Throw if any such commands is found. */
1136
1137 static void
1138 check_no_tracepoint_commands (struct command_line *commands)
1139 {
1140 struct command_line *c;
1141
1142 for (c = commands; c; c = c->next)
1143 {
1144 int i;
1145
1146 if (c->control_type == while_stepping_control)
1147 error (_("The 'while-stepping' command can "
1148 "only be used for tracepoints"));
1149
1150 for (i = 0; i < c->body_count; ++i)
1151 check_no_tracepoint_commands ((c->body_list)[i]);
1152
1153 /* Not that command parsing removes leading whitespace and comment
1154 lines and also empty lines. So, we only need to check for
1155 command directly. */
1156 if (strstr (c->line, "collect ") == c->line)
1157 error (_("The 'collect' command can only be used for tracepoints"));
1158
1159 if (strstr (c->line, "teval ") == c->line)
1160 error (_("The 'teval' command can only be used for tracepoints"));
1161 }
1162 }
1163
1164 /* Encapsulate tests for different types of tracepoints. */
1165
1166 static int
1167 is_tracepoint_type (enum bptype type)
1168 {
1169 return (type == bp_tracepoint
1170 || type == bp_fast_tracepoint
1171 || type == bp_static_tracepoint);
1172 }
1173
1174 int
1175 is_tracepoint (const struct breakpoint *b)
1176 {
1177 return is_tracepoint_type (b->type);
1178 }
1179
1180 /* A helper function that validates that COMMANDS are valid for a
1181 breakpoint. This function will throw an exception if a problem is
1182 found. */
1183
1184 static void
1185 validate_commands_for_breakpoint (struct breakpoint *b,
1186 struct command_line *commands)
1187 {
1188 if (is_tracepoint (b))
1189 {
1190 struct tracepoint *t = (struct tracepoint *) b;
1191 struct command_line *c;
1192 struct command_line *while_stepping = 0;
1193
1194 /* Reset the while-stepping step count. The previous commands
1195 might have included a while-stepping action, while the new
1196 ones might not. */
1197 t->step_count = 0;
1198
1199 /* We need to verify that each top-level element of commands is
1200 valid for tracepoints, that there's at most one
1201 while-stepping element, and that the while-stepping's body
1202 has valid tracing commands excluding nested while-stepping.
1203 We also need to validate the tracepoint action line in the
1204 context of the tracepoint --- validate_actionline actually
1205 has side effects, like setting the tracepoint's
1206 while-stepping STEP_COUNT, in addition to checking if the
1207 collect/teval actions parse and make sense in the
1208 tracepoint's context. */
1209 for (c = commands; c; c = c->next)
1210 {
1211 if (c->control_type == while_stepping_control)
1212 {
1213 if (b->type == bp_fast_tracepoint)
1214 error (_("The 'while-stepping' command "
1215 "cannot be used for fast tracepoint"));
1216 else if (b->type == bp_static_tracepoint)
1217 error (_("The 'while-stepping' command "
1218 "cannot be used for static tracepoint"));
1219
1220 if (while_stepping)
1221 error (_("The 'while-stepping' command "
1222 "can be used only once"));
1223 else
1224 while_stepping = c;
1225 }
1226
1227 validate_actionline (c->line, b);
1228 }
1229 if (while_stepping)
1230 {
1231 struct command_line *c2;
1232
1233 gdb_assert (while_stepping->body_count == 1);
1234 c2 = while_stepping->body_list[0];
1235 for (; c2; c2 = c2->next)
1236 {
1237 if (c2->control_type == while_stepping_control)
1238 error (_("The 'while-stepping' command cannot be nested"));
1239 }
1240 }
1241 }
1242 else
1243 {
1244 check_no_tracepoint_commands (commands);
1245 }
1246 }
1247
1248 /* Return a vector of all the static tracepoints set at ADDR. The
1249 caller is responsible for releasing the vector. */
1250
1251 VEC(breakpoint_p) *
1252 static_tracepoints_here (CORE_ADDR addr)
1253 {
1254 struct breakpoint *b;
1255 VEC(breakpoint_p) *found = 0;
1256 struct bp_location *loc;
1257
1258 ALL_BREAKPOINTS (b)
1259 if (b->type == bp_static_tracepoint)
1260 {
1261 for (loc = b->loc; loc; loc = loc->next)
1262 if (loc->address == addr)
1263 VEC_safe_push(breakpoint_p, found, b);
1264 }
1265
1266 return found;
1267 }
1268
1269 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1270 validate that only allowed commands are included. */
1271
1272 void
1273 breakpoint_set_commands (struct breakpoint *b,
1274 struct command_line *commands)
1275 {
1276 validate_commands_for_breakpoint (b, commands);
1277
1278 decref_counted_command_line (&b->commands);
1279 b->commands = alloc_counted_command_line (commands);
1280 observer_notify_breakpoint_modified (b);
1281 }
1282
1283 /* Set the internal `silent' flag on the breakpoint. Note that this
1284 is not the same as the "silent" that may appear in the breakpoint's
1285 commands. */
1286
1287 void
1288 breakpoint_set_silent (struct breakpoint *b, int silent)
1289 {
1290 int old_silent = b->silent;
1291
1292 b->silent = silent;
1293 if (old_silent != silent)
1294 observer_notify_breakpoint_modified (b);
1295 }
1296
1297 /* Set the thread for this breakpoint. If THREAD is -1, make the
1298 breakpoint work for any thread. */
1299
1300 void
1301 breakpoint_set_thread (struct breakpoint *b, int thread)
1302 {
1303 int old_thread = b->thread;
1304
1305 b->thread = thread;
1306 if (old_thread != thread)
1307 observer_notify_breakpoint_modified (b);
1308 }
1309
1310 /* Set the task for this breakpoint. If TASK is 0, make the
1311 breakpoint work for any task. */
1312
1313 void
1314 breakpoint_set_task (struct breakpoint *b, int task)
1315 {
1316 int old_task = b->task;
1317
1318 b->task = task;
1319 if (old_task != task)
1320 observer_notify_breakpoint_modified (b);
1321 }
1322
1323 void
1324 check_tracepoint_command (char *line, void *closure)
1325 {
1326 struct breakpoint *b = (struct breakpoint *) closure;
1327
1328 validate_actionline (line, b);
1329 }
1330
1331 /* A structure used to pass information through
1332 map_breakpoint_numbers. */
1333
1334 struct commands_info
1335 {
1336 /* True if the command was typed at a tty. */
1337 int from_tty;
1338
1339 /* The breakpoint range spec. */
1340 const char *arg;
1341
1342 /* Non-NULL if the body of the commands are being read from this
1343 already-parsed command. */
1344 struct command_line *control;
1345
1346 /* The command lines read from the user, or NULL if they have not
1347 yet been read. */
1348 struct counted_command_line *cmd;
1349 };
1350
1351 /* A callback for map_breakpoint_numbers that sets the commands for
1352 commands_command. */
1353
1354 static void
1355 do_map_commands_command (struct breakpoint *b, void *data)
1356 {
1357 struct commands_info *info = (struct commands_info *) data;
1358
1359 if (info->cmd == NULL)
1360 {
1361 struct command_line *l;
1362
1363 if (info->control != NULL)
1364 l = copy_command_lines (info->control->body_list[0]);
1365 else
1366 {
1367 struct cleanup *old_chain;
1368 char *str;
1369
1370 str = xstrprintf (_("Type commands for breakpoint(s) "
1371 "%s, one per line."),
1372 info->arg);
1373
1374 old_chain = make_cleanup (xfree, str);
1375
1376 l = read_command_lines (str,
1377 info->from_tty, 1,
1378 (is_tracepoint (b)
1379 ? check_tracepoint_command : 0),
1380 b);
1381
1382 do_cleanups (old_chain);
1383 }
1384
1385 info->cmd = alloc_counted_command_line (l);
1386 }
1387
1388 /* If a breakpoint was on the list more than once, we don't need to
1389 do anything. */
1390 if (b->commands != info->cmd)
1391 {
1392 validate_commands_for_breakpoint (b, info->cmd->commands);
1393 incref_counted_command_line (info->cmd);
1394 decref_counted_command_line (&b->commands);
1395 b->commands = info->cmd;
1396 observer_notify_breakpoint_modified (b);
1397 }
1398 }
1399
1400 static void
1401 commands_command_1 (const char *arg, int from_tty,
1402 struct command_line *control)
1403 {
1404 struct cleanup *cleanups;
1405 struct commands_info info;
1406
1407 info.from_tty = from_tty;
1408 info.control = control;
1409 info.cmd = NULL;
1410 /* If we read command lines from the user, then `info' will hold an
1411 extra reference to the commands that we must clean up. */
1412 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1413
1414 std::string new_arg;
1415
1416 if (arg == NULL || !*arg)
1417 {
1418 if (breakpoint_count - prev_breakpoint_count > 1)
1419 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1420 breakpoint_count);
1421 else if (breakpoint_count > 0)
1422 new_arg = string_printf ("%d", breakpoint_count);
1423 }
1424 else
1425 new_arg = arg;
1426
1427 info.arg = new_arg.c_str ();
1428
1429 map_breakpoint_numbers (info.arg, do_map_commands_command, &info);
1430
1431 if (info.cmd == NULL)
1432 error (_("No breakpoints specified."));
1433
1434 do_cleanups (cleanups);
1435 }
1436
1437 static void
1438 commands_command (char *arg, int from_tty)
1439 {
1440 commands_command_1 (arg, from_tty, NULL);
1441 }
1442
1443 /* Like commands_command, but instead of reading the commands from
1444 input stream, takes them from an already parsed command structure.
1445
1446 This is used by cli-script.c to DTRT with breakpoint commands
1447 that are part of if and while bodies. */
1448 enum command_control_type
1449 commands_from_control_command (const char *arg, struct command_line *cmd)
1450 {
1451 commands_command_1 (arg, 0, cmd);
1452 return simple_control;
1453 }
1454
1455 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1456
1457 static int
1458 bp_location_has_shadow (struct bp_location *bl)
1459 {
1460 if (bl->loc_type != bp_loc_software_breakpoint)
1461 return 0;
1462 if (!bl->inserted)
1463 return 0;
1464 if (bl->target_info.shadow_len == 0)
1465 /* BL isn't valid, or doesn't shadow memory. */
1466 return 0;
1467 return 1;
1468 }
1469
1470 /* Update BUF, which is LEN bytes read from the target address
1471 MEMADDR, by replacing a memory breakpoint with its shadowed
1472 contents.
1473
1474 If READBUF is not NULL, this buffer must not overlap with the of
1475 the breakpoint location's shadow_contents buffer. Otherwise, a
1476 failed assertion internal error will be raised. */
1477
1478 static void
1479 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1480 const gdb_byte *writebuf_org,
1481 ULONGEST memaddr, LONGEST len,
1482 struct bp_target_info *target_info,
1483 struct gdbarch *gdbarch)
1484 {
1485 /* Now do full processing of the found relevant range of elements. */
1486 CORE_ADDR bp_addr = 0;
1487 int bp_size = 0;
1488 int bptoffset = 0;
1489
1490 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1491 current_program_space->aspace, 0))
1492 {
1493 /* The breakpoint is inserted in a different address space. */
1494 return;
1495 }
1496
1497 /* Addresses and length of the part of the breakpoint that
1498 we need to copy. */
1499 bp_addr = target_info->placed_address;
1500 bp_size = target_info->shadow_len;
1501
1502 if (bp_addr + bp_size <= memaddr)
1503 {
1504 /* The breakpoint is entirely before the chunk of memory we are
1505 reading. */
1506 return;
1507 }
1508
1509 if (bp_addr >= memaddr + len)
1510 {
1511 /* The breakpoint is entirely after the chunk of memory we are
1512 reading. */
1513 return;
1514 }
1515
1516 /* Offset within shadow_contents. */
1517 if (bp_addr < memaddr)
1518 {
1519 /* Only copy the second part of the breakpoint. */
1520 bp_size -= memaddr - bp_addr;
1521 bptoffset = memaddr - bp_addr;
1522 bp_addr = memaddr;
1523 }
1524
1525 if (bp_addr + bp_size > memaddr + len)
1526 {
1527 /* Only copy the first part of the breakpoint. */
1528 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1529 }
1530
1531 if (readbuf != NULL)
1532 {
1533 /* Verify that the readbuf buffer does not overlap with the
1534 shadow_contents buffer. */
1535 gdb_assert (target_info->shadow_contents >= readbuf + len
1536 || readbuf >= (target_info->shadow_contents
1537 + target_info->shadow_len));
1538
1539 /* Update the read buffer with this inserted breakpoint's
1540 shadow. */
1541 memcpy (readbuf + bp_addr - memaddr,
1542 target_info->shadow_contents + bptoffset, bp_size);
1543 }
1544 else
1545 {
1546 const unsigned char *bp;
1547 CORE_ADDR addr = target_info->reqstd_address;
1548 int placed_size;
1549
1550 /* Update the shadow with what we want to write to memory. */
1551 memcpy (target_info->shadow_contents + bptoffset,
1552 writebuf_org + bp_addr - memaddr, bp_size);
1553
1554 /* Determine appropriate breakpoint contents and size for this
1555 address. */
1556 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1557
1558 /* Update the final write buffer with this inserted
1559 breakpoint's INSN. */
1560 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1561 }
1562 }
1563
1564 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1565 by replacing any memory breakpoints with their shadowed contents.
1566
1567 If READBUF is not NULL, this buffer must not overlap with any of
1568 the breakpoint location's shadow_contents buffers. Otherwise,
1569 a failed assertion internal error will be raised.
1570
1571 The range of shadowed area by each bp_location is:
1572 bl->address - bp_location_placed_address_before_address_max
1573 up to bl->address + bp_location_shadow_len_after_address_max
1574 The range we were requested to resolve shadows for is:
1575 memaddr ... memaddr + len
1576 Thus the safe cutoff boundaries for performance optimization are
1577 memaddr + len <= (bl->address
1578 - bp_location_placed_address_before_address_max)
1579 and:
1580 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1581
1582 void
1583 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1584 const gdb_byte *writebuf_org,
1585 ULONGEST memaddr, LONGEST len)
1586 {
1587 /* Left boundary, right boundary and median element of our binary
1588 search. */
1589 unsigned bc_l, bc_r, bc;
1590
1591 /* Find BC_L which is a leftmost element which may affect BUF
1592 content. It is safe to report lower value but a failure to
1593 report higher one. */
1594
1595 bc_l = 0;
1596 bc_r = bp_location_count;
1597 while (bc_l + 1 < bc_r)
1598 {
1599 struct bp_location *bl;
1600
1601 bc = (bc_l + bc_r) / 2;
1602 bl = bp_location[bc];
1603
1604 /* Check first BL->ADDRESS will not overflow due to the added
1605 constant. Then advance the left boundary only if we are sure
1606 the BC element can in no way affect the BUF content (MEMADDR
1607 to MEMADDR + LEN range).
1608
1609 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1610 offset so that we cannot miss a breakpoint with its shadow
1611 range tail still reaching MEMADDR. */
1612
1613 if ((bl->address + bp_location_shadow_len_after_address_max
1614 >= bl->address)
1615 && (bl->address + bp_location_shadow_len_after_address_max
1616 <= memaddr))
1617 bc_l = bc;
1618 else
1619 bc_r = bc;
1620 }
1621
1622 /* Due to the binary search above, we need to make sure we pick the
1623 first location that's at BC_L's address. E.g., if there are
1624 multiple locations at the same address, BC_L may end up pointing
1625 at a duplicate location, and miss the "master"/"inserted"
1626 location. Say, given locations L1, L2 and L3 at addresses A and
1627 B:
1628
1629 L1@A, L2@A, L3@B, ...
1630
1631 BC_L could end up pointing at location L2, while the "master"
1632 location could be L1. Since the `loc->inserted' flag is only set
1633 on "master" locations, we'd forget to restore the shadow of L1
1634 and L2. */
1635 while (bc_l > 0
1636 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1637 bc_l--;
1638
1639 /* Now do full processing of the found relevant range of elements. */
1640
1641 for (bc = bc_l; bc < bp_location_count; bc++)
1642 {
1643 struct bp_location *bl = bp_location[bc];
1644
1645 /* bp_location array has BL->OWNER always non-NULL. */
1646 if (bl->owner->type == bp_none)
1647 warning (_("reading through apparently deleted breakpoint #%d?"),
1648 bl->owner->number);
1649
1650 /* Performance optimization: any further element can no longer affect BUF
1651 content. */
1652
1653 if (bl->address >= bp_location_placed_address_before_address_max
1654 && memaddr + len <= (bl->address
1655 - bp_location_placed_address_before_address_max))
1656 break;
1657
1658 if (!bp_location_has_shadow (bl))
1659 continue;
1660
1661 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1662 memaddr, len, &bl->target_info, bl->gdbarch);
1663 }
1664 }
1665
1666 \f
1667
1668 /* Return true if BPT is either a software breakpoint or a hardware
1669 breakpoint. */
1670
1671 int
1672 is_breakpoint (const struct breakpoint *bpt)
1673 {
1674 return (bpt->type == bp_breakpoint
1675 || bpt->type == bp_hardware_breakpoint
1676 || bpt->type == bp_dprintf);
1677 }
1678
1679 /* Return true if BPT is of any hardware watchpoint kind. */
1680
1681 static int
1682 is_hardware_watchpoint (const struct breakpoint *bpt)
1683 {
1684 return (bpt->type == bp_hardware_watchpoint
1685 || bpt->type == bp_read_watchpoint
1686 || bpt->type == bp_access_watchpoint);
1687 }
1688
1689 /* Return true if BPT is of any watchpoint kind, hardware or
1690 software. */
1691
1692 int
1693 is_watchpoint (const struct breakpoint *bpt)
1694 {
1695 return (is_hardware_watchpoint (bpt)
1696 || bpt->type == bp_watchpoint);
1697 }
1698
1699 /* Returns true if the current thread and its running state are safe
1700 to evaluate or update watchpoint B. Watchpoints on local
1701 expressions need to be evaluated in the context of the thread that
1702 was current when the watchpoint was created, and, that thread needs
1703 to be stopped to be able to select the correct frame context.
1704 Watchpoints on global expressions can be evaluated on any thread,
1705 and in any state. It is presently left to the target allowing
1706 memory accesses when threads are running. */
1707
1708 static int
1709 watchpoint_in_thread_scope (struct watchpoint *b)
1710 {
1711 return (b->base.pspace == current_program_space
1712 && (ptid_equal (b->watchpoint_thread, null_ptid)
1713 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1714 && !is_executing (inferior_ptid))));
1715 }
1716
1717 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1718 associated bp_watchpoint_scope breakpoint. */
1719
1720 static void
1721 watchpoint_del_at_next_stop (struct watchpoint *w)
1722 {
1723 struct breakpoint *b = &w->base;
1724
1725 if (b->related_breakpoint != b)
1726 {
1727 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1728 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1729 b->related_breakpoint->disposition = disp_del_at_next_stop;
1730 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1731 b->related_breakpoint = b;
1732 }
1733 b->disposition = disp_del_at_next_stop;
1734 }
1735
1736 /* Extract a bitfield value from value VAL using the bit parameters contained in
1737 watchpoint W. */
1738
1739 static struct value *
1740 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1741 {
1742 struct value *bit_val;
1743
1744 if (val == NULL)
1745 return NULL;
1746
1747 bit_val = allocate_value (value_type (val));
1748
1749 unpack_value_bitfield (bit_val,
1750 w->val_bitpos,
1751 w->val_bitsize,
1752 value_contents_for_printing (val),
1753 value_offset (val),
1754 val);
1755
1756 return bit_val;
1757 }
1758
1759 /* Allocate a dummy location and add it to B, which must be a software
1760 watchpoint. This is required because even if a software watchpoint
1761 is not watching any memory, bpstat_stop_status requires a location
1762 to be able to report stops. */
1763
1764 static void
1765 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1766 struct program_space *pspace)
1767 {
1768 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1769
1770 b->loc = allocate_bp_location (b);
1771 b->loc->pspace = pspace;
1772 b->loc->address = -1;
1773 b->loc->length = -1;
1774 }
1775
1776 /* Returns true if B is a software watchpoint that is not watching any
1777 memory (e.g., "watch $pc"). */
1778
1779 static int
1780 is_no_memory_software_watchpoint (struct breakpoint *b)
1781 {
1782 return (b->type == bp_watchpoint
1783 && b->loc != NULL
1784 && b->loc->next == NULL
1785 && b->loc->address == -1
1786 && b->loc->length == -1);
1787 }
1788
1789 /* Assuming that B is a watchpoint:
1790 - Reparse watchpoint expression, if REPARSE is non-zero
1791 - Evaluate expression and store the result in B->val
1792 - Evaluate the condition if there is one, and store the result
1793 in b->loc->cond.
1794 - Update the list of values that must be watched in B->loc.
1795
1796 If the watchpoint disposition is disp_del_at_next_stop, then do
1797 nothing. If this is local watchpoint that is out of scope, delete
1798 it.
1799
1800 Even with `set breakpoint always-inserted on' the watchpoints are
1801 removed + inserted on each stop here. Normal breakpoints must
1802 never be removed because they might be missed by a running thread
1803 when debugging in non-stop mode. On the other hand, hardware
1804 watchpoints (is_hardware_watchpoint; processed here) are specific
1805 to each LWP since they are stored in each LWP's hardware debug
1806 registers. Therefore, such LWP must be stopped first in order to
1807 be able to modify its hardware watchpoints.
1808
1809 Hardware watchpoints must be reset exactly once after being
1810 presented to the user. It cannot be done sooner, because it would
1811 reset the data used to present the watchpoint hit to the user. And
1812 it must not be done later because it could display the same single
1813 watchpoint hit during multiple GDB stops. Note that the latter is
1814 relevant only to the hardware watchpoint types bp_read_watchpoint
1815 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1816 not user-visible - its hit is suppressed if the memory content has
1817 not changed.
1818
1819 The following constraints influence the location where we can reset
1820 hardware watchpoints:
1821
1822 * target_stopped_by_watchpoint and target_stopped_data_address are
1823 called several times when GDB stops.
1824
1825 [linux]
1826 * Multiple hardware watchpoints can be hit at the same time,
1827 causing GDB to stop. GDB only presents one hardware watchpoint
1828 hit at a time as the reason for stopping, and all the other hits
1829 are presented later, one after the other, each time the user
1830 requests the execution to be resumed. Execution is not resumed
1831 for the threads still having pending hit event stored in
1832 LWP_INFO->STATUS. While the watchpoint is already removed from
1833 the inferior on the first stop the thread hit event is kept being
1834 reported from its cached value by linux_nat_stopped_data_address
1835 until the real thread resume happens after the watchpoint gets
1836 presented and thus its LWP_INFO->STATUS gets reset.
1837
1838 Therefore the hardware watchpoint hit can get safely reset on the
1839 watchpoint removal from inferior. */
1840
1841 static void
1842 update_watchpoint (struct watchpoint *b, int reparse)
1843 {
1844 int within_current_scope;
1845 struct frame_id saved_frame_id;
1846 int frame_saved;
1847
1848 /* If this is a local watchpoint, we only want to check if the
1849 watchpoint frame is in scope if the current thread is the thread
1850 that was used to create the watchpoint. */
1851 if (!watchpoint_in_thread_scope (b))
1852 return;
1853
1854 if (b->base.disposition == disp_del_at_next_stop)
1855 return;
1856
1857 frame_saved = 0;
1858
1859 /* Determine if the watchpoint is within scope. */
1860 if (b->exp_valid_block == NULL)
1861 within_current_scope = 1;
1862 else
1863 {
1864 struct frame_info *fi = get_current_frame ();
1865 struct gdbarch *frame_arch = get_frame_arch (fi);
1866 CORE_ADDR frame_pc = get_frame_pc (fi);
1867
1868 /* If we're at a point where the stack has been destroyed
1869 (e.g. in a function epilogue), unwinding may not work
1870 properly. Do not attempt to recreate locations at this
1871 point. See similar comments in watchpoint_check. */
1872 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1873 return;
1874
1875 /* Save the current frame's ID so we can restore it after
1876 evaluating the watchpoint expression on its own frame. */
1877 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1878 took a frame parameter, so that we didn't have to change the
1879 selected frame. */
1880 frame_saved = 1;
1881 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1882
1883 fi = frame_find_by_id (b->watchpoint_frame);
1884 within_current_scope = (fi != NULL);
1885 if (within_current_scope)
1886 select_frame (fi);
1887 }
1888
1889 /* We don't free locations. They are stored in the bp_location array
1890 and update_global_location_list will eventually delete them and
1891 remove breakpoints if needed. */
1892 b->base.loc = NULL;
1893
1894 if (within_current_scope && reparse)
1895 {
1896 const char *s;
1897
1898 b->exp.reset ();
1899 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1900 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1901 /* If the meaning of expression itself changed, the old value is
1902 no longer relevant. We don't want to report a watchpoint hit
1903 to the user when the old value and the new value may actually
1904 be completely different objects. */
1905 value_free (b->val);
1906 b->val = NULL;
1907 b->val_valid = 0;
1908
1909 /* Note that unlike with breakpoints, the watchpoint's condition
1910 expression is stored in the breakpoint object, not in the
1911 locations (re)created below. */
1912 if (b->base.cond_string != NULL)
1913 {
1914 b->cond_exp.reset ();
1915
1916 s = b->base.cond_string;
1917 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1918 }
1919 }
1920
1921 /* If we failed to parse the expression, for example because
1922 it refers to a global variable in a not-yet-loaded shared library,
1923 don't try to insert watchpoint. We don't automatically delete
1924 such watchpoint, though, since failure to parse expression
1925 is different from out-of-scope watchpoint. */
1926 if (!target_has_execution)
1927 {
1928 /* Without execution, memory can't change. No use to try and
1929 set watchpoint locations. The watchpoint will be reset when
1930 the target gains execution, through breakpoint_re_set. */
1931 if (!can_use_hw_watchpoints)
1932 {
1933 if (b->base.ops->works_in_software_mode (&b->base))
1934 b->base.type = bp_watchpoint;
1935 else
1936 error (_("Can't set read/access watchpoint when "
1937 "hardware watchpoints are disabled."));
1938 }
1939 }
1940 else if (within_current_scope && b->exp)
1941 {
1942 int pc = 0;
1943 struct value *val_chain, *v, *result, *next;
1944 struct program_space *frame_pspace;
1945
1946 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1947
1948 /* Avoid setting b->val if it's already set. The meaning of
1949 b->val is 'the last value' user saw, and we should update
1950 it only if we reported that last value to user. As it
1951 happens, the code that reports it updates b->val directly.
1952 We don't keep track of the memory value for masked
1953 watchpoints. */
1954 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1955 {
1956 if (b->val_bitsize != 0)
1957 {
1958 v = extract_bitfield_from_watchpoint_value (b, v);
1959 if (v != NULL)
1960 release_value (v);
1961 }
1962 b->val = v;
1963 b->val_valid = 1;
1964 }
1965
1966 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1967
1968 /* Look at each value on the value chain. */
1969 for (v = val_chain; v; v = value_next (v))
1970 {
1971 /* If it's a memory location, and GDB actually needed
1972 its contents to evaluate the expression, then we
1973 must watch it. If the first value returned is
1974 still lazy, that means an error occurred reading it;
1975 watch it anyway in case it becomes readable. */
1976 if (VALUE_LVAL (v) == lval_memory
1977 && (v == val_chain || ! value_lazy (v)))
1978 {
1979 struct type *vtype = check_typedef (value_type (v));
1980
1981 /* We only watch structs and arrays if user asked
1982 for it explicitly, never if they just happen to
1983 appear in the middle of some value chain. */
1984 if (v == result
1985 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1986 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1987 {
1988 CORE_ADDR addr;
1989 enum target_hw_bp_type type;
1990 struct bp_location *loc, **tmp;
1991 int bitpos = 0, bitsize = 0;
1992
1993 if (value_bitsize (v) != 0)
1994 {
1995 /* Extract the bit parameters out from the bitfield
1996 sub-expression. */
1997 bitpos = value_bitpos (v);
1998 bitsize = value_bitsize (v);
1999 }
2000 else if (v == result && b->val_bitsize != 0)
2001 {
2002 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
2003 lvalue whose bit parameters are saved in the fields
2004 VAL_BITPOS and VAL_BITSIZE. */
2005 bitpos = b->val_bitpos;
2006 bitsize = b->val_bitsize;
2007 }
2008
2009 addr = value_address (v);
2010 if (bitsize != 0)
2011 {
2012 /* Skip the bytes that don't contain the bitfield. */
2013 addr += bitpos / 8;
2014 }
2015
2016 type = hw_write;
2017 if (b->base.type == bp_read_watchpoint)
2018 type = hw_read;
2019 else if (b->base.type == bp_access_watchpoint)
2020 type = hw_access;
2021
2022 loc = allocate_bp_location (&b->base);
2023 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
2024 ;
2025 *tmp = loc;
2026 loc->gdbarch = get_type_arch (value_type (v));
2027
2028 loc->pspace = frame_pspace;
2029 loc->address = addr;
2030
2031 if (bitsize != 0)
2032 {
2033 /* Just cover the bytes that make up the bitfield. */
2034 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
2035 }
2036 else
2037 loc->length = TYPE_LENGTH (value_type (v));
2038
2039 loc->watchpoint_type = type;
2040 }
2041 }
2042 }
2043
2044 /* Change the type of breakpoint between hardware assisted or
2045 an ordinary watchpoint depending on the hardware support
2046 and free hardware slots. REPARSE is set when the inferior
2047 is started. */
2048 if (reparse)
2049 {
2050 int reg_cnt;
2051 enum bp_loc_type loc_type;
2052 struct bp_location *bl;
2053
2054 reg_cnt = can_use_hardware_watchpoint (val_chain);
2055
2056 if (reg_cnt)
2057 {
2058 int i, target_resources_ok, other_type_used;
2059 enum bptype type;
2060
2061 /* Use an exact watchpoint when there's only one memory region to be
2062 watched, and only one debug register is needed to watch it. */
2063 b->exact = target_exact_watchpoints && reg_cnt == 1;
2064
2065 /* We need to determine how many resources are already
2066 used for all other hardware watchpoints plus this one
2067 to see if we still have enough resources to also fit
2068 this watchpoint in as well. */
2069
2070 /* If this is a software watchpoint, we try to turn it
2071 to a hardware one -- count resources as if B was of
2072 hardware watchpoint type. */
2073 type = b->base.type;
2074 if (type == bp_watchpoint)
2075 type = bp_hardware_watchpoint;
2076
2077 /* This watchpoint may or may not have been placed on
2078 the list yet at this point (it won't be in the list
2079 if we're trying to create it for the first time,
2080 through watch_command), so always account for it
2081 manually. */
2082
2083 /* Count resources used by all watchpoints except B. */
2084 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
2085
2086 /* Add in the resources needed for B. */
2087 i += hw_watchpoint_use_count (&b->base);
2088
2089 target_resources_ok
2090 = target_can_use_hardware_watchpoint (type, i, other_type_used);
2091 if (target_resources_ok <= 0)
2092 {
2093 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
2094
2095 if (target_resources_ok == 0 && !sw_mode)
2096 error (_("Target does not support this type of "
2097 "hardware watchpoint."));
2098 else if (target_resources_ok < 0 && !sw_mode)
2099 error (_("There are not enough available hardware "
2100 "resources for this watchpoint."));
2101
2102 /* Downgrade to software watchpoint. */
2103 b->base.type = bp_watchpoint;
2104 }
2105 else
2106 {
2107 /* If this was a software watchpoint, we've just
2108 found we have enough resources to turn it to a
2109 hardware watchpoint. Otherwise, this is a
2110 nop. */
2111 b->base.type = type;
2112 }
2113 }
2114 else if (!b->base.ops->works_in_software_mode (&b->base))
2115 {
2116 if (!can_use_hw_watchpoints)
2117 error (_("Can't set read/access watchpoint when "
2118 "hardware watchpoints are disabled."));
2119 else
2120 error (_("Expression cannot be implemented with "
2121 "read/access watchpoint."));
2122 }
2123 else
2124 b->base.type = bp_watchpoint;
2125
2126 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
2127 : bp_loc_hardware_watchpoint);
2128 for (bl = b->base.loc; bl; bl = bl->next)
2129 bl->loc_type = loc_type;
2130 }
2131
2132 for (v = val_chain; v; v = next)
2133 {
2134 next = value_next (v);
2135 if (v != b->val)
2136 value_free (v);
2137 }
2138
2139 /* If a software watchpoint is not watching any memory, then the
2140 above left it without any location set up. But,
2141 bpstat_stop_status requires a location to be able to report
2142 stops, so make sure there's at least a dummy one. */
2143 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
2144 software_watchpoint_add_no_memory_location (&b->base, frame_pspace);
2145 }
2146 else if (!within_current_scope)
2147 {
2148 printf_filtered (_("\
2149 Watchpoint %d deleted because the program has left the block\n\
2150 in which its expression is valid.\n"),
2151 b->base.number);
2152 watchpoint_del_at_next_stop (b);
2153 }
2154
2155 /* Restore the selected frame. */
2156 if (frame_saved)
2157 select_frame (frame_find_by_id (saved_frame_id));
2158 }
2159
2160
2161 /* Returns 1 iff breakpoint location should be
2162 inserted in the inferior. We don't differentiate the type of BL's owner
2163 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2164 breakpoint_ops is not defined, because in insert_bp_location,
2165 tracepoint's insert_location will not be called. */
2166 static int
2167 should_be_inserted (struct bp_location *bl)
2168 {
2169 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2170 return 0;
2171
2172 if (bl->owner->disposition == disp_del_at_next_stop)
2173 return 0;
2174
2175 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2176 return 0;
2177
2178 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2179 return 0;
2180
2181 /* This is set for example, when we're attached to the parent of a
2182 vfork, and have detached from the child. The child is running
2183 free, and we expect it to do an exec or exit, at which point the
2184 OS makes the parent schedulable again (and the target reports
2185 that the vfork is done). Until the child is done with the shared
2186 memory region, do not insert breakpoints in the parent, otherwise
2187 the child could still trip on the parent's breakpoints. Since
2188 the parent is blocked anyway, it won't miss any breakpoint. */
2189 if (bl->pspace->breakpoints_not_allowed)
2190 return 0;
2191
2192 /* Don't insert a breakpoint if we're trying to step past its
2193 location, except if the breakpoint is a single-step breakpoint,
2194 and the breakpoint's thread is the thread which is stepping past
2195 a breakpoint. */
2196 if ((bl->loc_type == bp_loc_software_breakpoint
2197 || bl->loc_type == bp_loc_hardware_breakpoint)
2198 && stepping_past_instruction_at (bl->pspace->aspace,
2199 bl->address)
2200 /* The single-step breakpoint may be inserted at the location
2201 we're trying to step if the instruction branches to itself.
2202 However, the instruction won't be executed at all and it may
2203 break the semantics of the instruction, for example, the
2204 instruction is a conditional branch or updates some flags.
2205 We can't fix it unless GDB is able to emulate the instruction
2206 or switch to displaced stepping. */
2207 && !(bl->owner->type == bp_single_step
2208 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2209 {
2210 if (debug_infrun)
2211 {
2212 fprintf_unfiltered (gdb_stdlog,
2213 "infrun: skipping breakpoint: "
2214 "stepping past insn at: %s\n",
2215 paddress (bl->gdbarch, bl->address));
2216 }
2217 return 0;
2218 }
2219
2220 /* Don't insert watchpoints if we're trying to step past the
2221 instruction that triggered one. */
2222 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2223 && stepping_past_nonsteppable_watchpoint ())
2224 {
2225 if (debug_infrun)
2226 {
2227 fprintf_unfiltered (gdb_stdlog,
2228 "infrun: stepping past non-steppable watchpoint. "
2229 "skipping watchpoint at %s:%d\n",
2230 paddress (bl->gdbarch, bl->address),
2231 bl->length);
2232 }
2233 return 0;
2234 }
2235
2236 return 1;
2237 }
2238
2239 /* Same as should_be_inserted but does the check assuming
2240 that the location is not duplicated. */
2241
2242 static int
2243 unduplicated_should_be_inserted (struct bp_location *bl)
2244 {
2245 int result;
2246 const int save_duplicate = bl->duplicate;
2247
2248 bl->duplicate = 0;
2249 result = should_be_inserted (bl);
2250 bl->duplicate = save_duplicate;
2251 return result;
2252 }
2253
2254 /* Parses a conditional described by an expression COND into an
2255 agent expression bytecode suitable for evaluation
2256 by the bytecode interpreter. Return NULL if there was
2257 any error during parsing. */
2258
2259 static agent_expr_up
2260 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2261 {
2262 if (cond == NULL)
2263 return NULL;
2264
2265 agent_expr_up aexpr;
2266
2267 /* We don't want to stop processing, so catch any errors
2268 that may show up. */
2269 TRY
2270 {
2271 aexpr = gen_eval_for_expr (scope, cond);
2272 }
2273
2274 CATCH (ex, RETURN_MASK_ERROR)
2275 {
2276 /* If we got here, it means the condition could not be parsed to a valid
2277 bytecode expression and thus can't be evaluated on the target's side.
2278 It's no use iterating through the conditions. */
2279 }
2280 END_CATCH
2281
2282 /* We have a valid agent expression. */
2283 return aexpr;
2284 }
2285
2286 /* Based on location BL, create a list of breakpoint conditions to be
2287 passed on to the target. If we have duplicated locations with different
2288 conditions, we will add such conditions to the list. The idea is that the
2289 target will evaluate the list of conditions and will only notify GDB when
2290 one of them is true. */
2291
2292 static void
2293 build_target_condition_list (struct bp_location *bl)
2294 {
2295 struct bp_location **locp = NULL, **loc2p;
2296 int null_condition_or_parse_error = 0;
2297 int modified = bl->needs_update;
2298 struct bp_location *loc;
2299
2300 /* Release conditions left over from a previous insert. */
2301 bl->target_info.conditions.clear ();
2302
2303 /* This is only meaningful if the target is
2304 evaluating conditions and if the user has
2305 opted for condition evaluation on the target's
2306 side. */
2307 if (gdb_evaluates_breakpoint_condition_p ()
2308 || !target_supports_evaluation_of_breakpoint_conditions ())
2309 return;
2310
2311 /* Do a first pass to check for locations with no assigned
2312 conditions or conditions that fail to parse to a valid agent expression
2313 bytecode. If any of these happen, then it's no use to send conditions
2314 to the target since this location will always trigger and generate a
2315 response back to GDB. */
2316 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2317 {
2318 loc = (*loc2p);
2319 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2320 {
2321 if (modified)
2322 {
2323 /* Re-parse the conditions since something changed. In that
2324 case we already freed the condition bytecodes (see
2325 force_breakpoint_reinsertion). We just
2326 need to parse the condition to bytecodes again. */
2327 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2328 loc->cond.get ());
2329 }
2330
2331 /* If we have a NULL bytecode expression, it means something
2332 went wrong or we have a null condition expression. */
2333 if (!loc->cond_bytecode)
2334 {
2335 null_condition_or_parse_error = 1;
2336 break;
2337 }
2338 }
2339 }
2340
2341 /* If any of these happened, it means we will have to evaluate the conditions
2342 for the location's address on gdb's side. It is no use keeping bytecodes
2343 for all the other duplicate locations, thus we free all of them here.
2344
2345 This is so we have a finer control over which locations' conditions are
2346 being evaluated by GDB or the remote stub. */
2347 if (null_condition_or_parse_error)
2348 {
2349 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2350 {
2351 loc = (*loc2p);
2352 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2353 {
2354 /* Only go as far as the first NULL bytecode is
2355 located. */
2356 if (!loc->cond_bytecode)
2357 return;
2358
2359 loc->cond_bytecode.reset ();
2360 }
2361 }
2362 }
2363
2364 /* No NULL conditions or failed bytecode generation. Build a condition list
2365 for this location's address. */
2366 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2367 {
2368 loc = (*loc2p);
2369 if (loc->cond
2370 && is_breakpoint (loc->owner)
2371 && loc->pspace->num == bl->pspace->num
2372 && loc->owner->enable_state == bp_enabled
2373 && loc->enabled)
2374 {
2375 /* Add the condition to the vector. This will be used later
2376 to send the conditions to the target. */
2377 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2378 }
2379 }
2380
2381 return;
2382 }
2383
2384 /* Parses a command described by string CMD into an agent expression
2385 bytecode suitable for evaluation by the bytecode interpreter.
2386 Return NULL if there was any error during parsing. */
2387
2388 static agent_expr_up
2389 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2390 {
2391 struct cleanup *old_cleanups = 0;
2392 struct expression **argvec;
2393 const char *cmdrest;
2394 const char *format_start, *format_end;
2395 struct format_piece *fpieces;
2396 int nargs;
2397 struct gdbarch *gdbarch = get_current_arch ();
2398
2399 if (cmd == NULL)
2400 return NULL;
2401
2402 cmdrest = cmd;
2403
2404 if (*cmdrest == ',')
2405 ++cmdrest;
2406 cmdrest = skip_spaces_const (cmdrest);
2407
2408 if (*cmdrest++ != '"')
2409 error (_("No format string following the location"));
2410
2411 format_start = cmdrest;
2412
2413 fpieces = parse_format_string (&cmdrest);
2414
2415 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2416
2417 format_end = cmdrest;
2418
2419 if (*cmdrest++ != '"')
2420 error (_("Bad format string, non-terminated '\"'."));
2421
2422 cmdrest = skip_spaces_const (cmdrest);
2423
2424 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2425 error (_("Invalid argument syntax"));
2426
2427 if (*cmdrest == ',')
2428 cmdrest++;
2429 cmdrest = skip_spaces_const (cmdrest);
2430
2431 /* For each argument, make an expression. */
2432
2433 argvec = (struct expression **) alloca (strlen (cmd)
2434 * sizeof (struct expression *));
2435
2436 nargs = 0;
2437 while (*cmdrest != '\0')
2438 {
2439 const char *cmd1;
2440
2441 cmd1 = cmdrest;
2442 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2443 argvec[nargs++] = expr.release ();
2444 cmdrest = cmd1;
2445 if (*cmdrest == ',')
2446 ++cmdrest;
2447 }
2448
2449 agent_expr_up aexpr;
2450
2451 /* We don't want to stop processing, so catch any errors
2452 that may show up. */
2453 TRY
2454 {
2455 aexpr = gen_printf (scope, gdbarch, 0, 0,
2456 format_start, format_end - format_start,
2457 fpieces, nargs, argvec);
2458 }
2459 CATCH (ex, RETURN_MASK_ERROR)
2460 {
2461 /* If we got here, it means the command could not be parsed to a valid
2462 bytecode expression and thus can't be evaluated on the target's side.
2463 It's no use iterating through the other commands. */
2464 }
2465 END_CATCH
2466
2467 do_cleanups (old_cleanups);
2468
2469 /* We have a valid agent expression, return it. */
2470 return aexpr;
2471 }
2472
2473 /* Based on location BL, create a list of breakpoint commands to be
2474 passed on to the target. If we have duplicated locations with
2475 different commands, we will add any such to the list. */
2476
2477 static void
2478 build_target_command_list (struct bp_location *bl)
2479 {
2480 struct bp_location **locp = NULL, **loc2p;
2481 int null_command_or_parse_error = 0;
2482 int modified = bl->needs_update;
2483 struct bp_location *loc;
2484
2485 /* Clear commands left over from a previous insert. */
2486 bl->target_info.tcommands.clear ();
2487
2488 if (!target_can_run_breakpoint_commands ())
2489 return;
2490
2491 /* For now, limit to agent-style dprintf breakpoints. */
2492 if (dprintf_style != dprintf_style_agent)
2493 return;
2494
2495 /* For now, if we have any duplicate location that isn't a dprintf,
2496 don't install the target-side commands, as that would make the
2497 breakpoint not be reported to the core, and we'd lose
2498 control. */
2499 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2500 {
2501 loc = (*loc2p);
2502 if (is_breakpoint (loc->owner)
2503 && loc->pspace->num == bl->pspace->num
2504 && loc->owner->type != bp_dprintf)
2505 return;
2506 }
2507
2508 /* Do a first pass to check for locations with no assigned
2509 conditions or conditions that fail to parse to a valid agent expression
2510 bytecode. If any of these happen, then it's no use to send conditions
2511 to the target since this location will always trigger and generate a
2512 response back to GDB. */
2513 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2514 {
2515 loc = (*loc2p);
2516 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2517 {
2518 if (modified)
2519 {
2520 /* Re-parse the commands since something changed. In that
2521 case we already freed the command bytecodes (see
2522 force_breakpoint_reinsertion). We just
2523 need to parse the command to bytecodes again. */
2524 loc->cmd_bytecode
2525 = parse_cmd_to_aexpr (bl->address,
2526 loc->owner->extra_string);
2527 }
2528
2529 /* If we have a NULL bytecode expression, it means something
2530 went wrong or we have a null command expression. */
2531 if (!loc->cmd_bytecode)
2532 {
2533 null_command_or_parse_error = 1;
2534 break;
2535 }
2536 }
2537 }
2538
2539 /* If anything failed, then we're not doing target-side commands,
2540 and so clean up. */
2541 if (null_command_or_parse_error)
2542 {
2543 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2544 {
2545 loc = (*loc2p);
2546 if (is_breakpoint (loc->owner)
2547 && loc->pspace->num == bl->pspace->num)
2548 {
2549 /* Only go as far as the first NULL bytecode is
2550 located. */
2551 if (loc->cmd_bytecode == NULL)
2552 return;
2553
2554 loc->cmd_bytecode.reset ();
2555 }
2556 }
2557 }
2558
2559 /* No NULL commands or failed bytecode generation. Build a command list
2560 for this location's address. */
2561 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2562 {
2563 loc = (*loc2p);
2564 if (loc->owner->extra_string
2565 && is_breakpoint (loc->owner)
2566 && loc->pspace->num == bl->pspace->num
2567 && loc->owner->enable_state == bp_enabled
2568 && loc->enabled)
2569 {
2570 /* Add the command to the vector. This will be used later
2571 to send the commands to the target. */
2572 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2573 }
2574 }
2575
2576 bl->target_info.persist = 0;
2577 /* Maybe flag this location as persistent. */
2578 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2579 bl->target_info.persist = 1;
2580 }
2581
2582 /* Return the kind of breakpoint on address *ADDR. Get the kind
2583 of breakpoint according to ADDR except single-step breakpoint.
2584 Get the kind of single-step breakpoint according to the current
2585 registers state. */
2586
2587 static int
2588 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2589 {
2590 if (bl->owner->type == bp_single_step)
2591 {
2592 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2593 struct regcache *regcache;
2594
2595 regcache = get_thread_regcache (thr->ptid);
2596
2597 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2598 regcache, addr);
2599 }
2600 else
2601 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2602 }
2603
2604 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2605 location. Any error messages are printed to TMP_ERROR_STREAM; and
2606 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2607 Returns 0 for success, 1 if the bp_location type is not supported or
2608 -1 for failure.
2609
2610 NOTE drow/2003-09-09: This routine could be broken down to an
2611 object-style method for each breakpoint or catchpoint type. */
2612 static int
2613 insert_bp_location (struct bp_location *bl,
2614 struct ui_file *tmp_error_stream,
2615 int *disabled_breaks,
2616 int *hw_breakpoint_error,
2617 int *hw_bp_error_explained_already)
2618 {
2619 enum errors bp_err = GDB_NO_ERROR;
2620 const char *bp_err_message = NULL;
2621
2622 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2623 return 0;
2624
2625 /* Note we don't initialize bl->target_info, as that wipes out
2626 the breakpoint location's shadow_contents if the breakpoint
2627 is still inserted at that location. This in turn breaks
2628 target_read_memory which depends on these buffers when
2629 a memory read is requested at the breakpoint location:
2630 Once the target_info has been wiped, we fail to see that
2631 we have a breakpoint inserted at that address and thus
2632 read the breakpoint instead of returning the data saved in
2633 the breakpoint location's shadow contents. */
2634 bl->target_info.reqstd_address = bl->address;
2635 bl->target_info.placed_address_space = bl->pspace->aspace;
2636 bl->target_info.length = bl->length;
2637
2638 /* When working with target-side conditions, we must pass all the conditions
2639 for the same breakpoint address down to the target since GDB will not
2640 insert those locations. With a list of breakpoint conditions, the target
2641 can decide when to stop and notify GDB. */
2642
2643 if (is_breakpoint (bl->owner))
2644 {
2645 build_target_condition_list (bl);
2646 build_target_command_list (bl);
2647 /* Reset the modification marker. */
2648 bl->needs_update = 0;
2649 }
2650
2651 if (bl->loc_type == bp_loc_software_breakpoint
2652 || bl->loc_type == bp_loc_hardware_breakpoint)
2653 {
2654 if (bl->owner->type != bp_hardware_breakpoint)
2655 {
2656 /* If the explicitly specified breakpoint type
2657 is not hardware breakpoint, check the memory map to see
2658 if the breakpoint address is in read only memory or not.
2659
2660 Two important cases are:
2661 - location type is not hardware breakpoint, memory
2662 is readonly. We change the type of the location to
2663 hardware breakpoint.
2664 - location type is hardware breakpoint, memory is
2665 read-write. This means we've previously made the
2666 location hardware one, but then the memory map changed,
2667 so we undo.
2668
2669 When breakpoints are removed, remove_breakpoints will use
2670 location types we've just set here, the only possible
2671 problem is that memory map has changed during running
2672 program, but it's not going to work anyway with current
2673 gdb. */
2674 struct mem_region *mr
2675 = lookup_mem_region (bl->target_info.reqstd_address);
2676
2677 if (mr)
2678 {
2679 if (automatic_hardware_breakpoints)
2680 {
2681 enum bp_loc_type new_type;
2682
2683 if (mr->attrib.mode != MEM_RW)
2684 new_type = bp_loc_hardware_breakpoint;
2685 else
2686 new_type = bp_loc_software_breakpoint;
2687
2688 if (new_type != bl->loc_type)
2689 {
2690 static int said = 0;
2691
2692 bl->loc_type = new_type;
2693 if (!said)
2694 {
2695 fprintf_filtered (gdb_stdout,
2696 _("Note: automatically using "
2697 "hardware breakpoints for "
2698 "read-only addresses.\n"));
2699 said = 1;
2700 }
2701 }
2702 }
2703 else if (bl->loc_type == bp_loc_software_breakpoint
2704 && mr->attrib.mode != MEM_RW)
2705 {
2706 fprintf_unfiltered (tmp_error_stream,
2707 _("Cannot insert breakpoint %d.\n"
2708 "Cannot set software breakpoint "
2709 "at read-only address %s\n"),
2710 bl->owner->number,
2711 paddress (bl->gdbarch, bl->address));
2712 return 1;
2713 }
2714 }
2715 }
2716
2717 /* First check to see if we have to handle an overlay. */
2718 if (overlay_debugging == ovly_off
2719 || bl->section == NULL
2720 || !(section_is_overlay (bl->section)))
2721 {
2722 /* No overlay handling: just set the breakpoint. */
2723 TRY
2724 {
2725 int val;
2726
2727 val = bl->owner->ops->insert_location (bl);
2728 if (val)
2729 bp_err = GENERIC_ERROR;
2730 }
2731 CATCH (e, RETURN_MASK_ALL)
2732 {
2733 bp_err = e.error;
2734 bp_err_message = e.message;
2735 }
2736 END_CATCH
2737 }
2738 else
2739 {
2740 /* This breakpoint is in an overlay section.
2741 Shall we set a breakpoint at the LMA? */
2742 if (!overlay_events_enabled)
2743 {
2744 /* Yes -- overlay event support is not active,
2745 so we must try to set a breakpoint at the LMA.
2746 This will not work for a hardware breakpoint. */
2747 if (bl->loc_type == bp_loc_hardware_breakpoint)
2748 warning (_("hardware breakpoint %d not supported in overlay!"),
2749 bl->owner->number);
2750 else
2751 {
2752 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2753 bl->section);
2754 /* Set a software (trap) breakpoint at the LMA. */
2755 bl->overlay_target_info = bl->target_info;
2756 bl->overlay_target_info.reqstd_address = addr;
2757
2758 /* No overlay handling: just set the breakpoint. */
2759 TRY
2760 {
2761 int val;
2762
2763 bl->overlay_target_info.kind
2764 = breakpoint_kind (bl, &addr);
2765 bl->overlay_target_info.placed_address = addr;
2766 val = target_insert_breakpoint (bl->gdbarch,
2767 &bl->overlay_target_info);
2768 if (val)
2769 bp_err = GENERIC_ERROR;
2770 }
2771 CATCH (e, RETURN_MASK_ALL)
2772 {
2773 bp_err = e.error;
2774 bp_err_message = e.message;
2775 }
2776 END_CATCH
2777
2778 if (bp_err != GDB_NO_ERROR)
2779 fprintf_unfiltered (tmp_error_stream,
2780 "Overlay breakpoint %d "
2781 "failed: in ROM?\n",
2782 bl->owner->number);
2783 }
2784 }
2785 /* Shall we set a breakpoint at the VMA? */
2786 if (section_is_mapped (bl->section))
2787 {
2788 /* Yes. This overlay section is mapped into memory. */
2789 TRY
2790 {
2791 int val;
2792
2793 val = bl->owner->ops->insert_location (bl);
2794 if (val)
2795 bp_err = GENERIC_ERROR;
2796 }
2797 CATCH (e, RETURN_MASK_ALL)
2798 {
2799 bp_err = e.error;
2800 bp_err_message = e.message;
2801 }
2802 END_CATCH
2803 }
2804 else
2805 {
2806 /* No. This breakpoint will not be inserted.
2807 No error, but do not mark the bp as 'inserted'. */
2808 return 0;
2809 }
2810 }
2811
2812 if (bp_err != GDB_NO_ERROR)
2813 {
2814 /* Can't set the breakpoint. */
2815
2816 /* In some cases, we might not be able to insert a
2817 breakpoint in a shared library that has already been
2818 removed, but we have not yet processed the shlib unload
2819 event. Unfortunately, some targets that implement
2820 breakpoint insertion themselves can't tell why the
2821 breakpoint insertion failed (e.g., the remote target
2822 doesn't define error codes), so we must treat generic
2823 errors as memory errors. */
2824 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2825 && bl->loc_type == bp_loc_software_breakpoint
2826 && (solib_name_from_address (bl->pspace, bl->address)
2827 || shared_objfile_contains_address_p (bl->pspace,
2828 bl->address)))
2829 {
2830 /* See also: disable_breakpoints_in_shlibs. */
2831 bl->shlib_disabled = 1;
2832 observer_notify_breakpoint_modified (bl->owner);
2833 if (!*disabled_breaks)
2834 {
2835 fprintf_unfiltered (tmp_error_stream,
2836 "Cannot insert breakpoint %d.\n",
2837 bl->owner->number);
2838 fprintf_unfiltered (tmp_error_stream,
2839 "Temporarily disabling shared "
2840 "library breakpoints:\n");
2841 }
2842 *disabled_breaks = 1;
2843 fprintf_unfiltered (tmp_error_stream,
2844 "breakpoint #%d\n", bl->owner->number);
2845 return 0;
2846 }
2847 else
2848 {
2849 if (bl->loc_type == bp_loc_hardware_breakpoint)
2850 {
2851 *hw_breakpoint_error = 1;
2852 *hw_bp_error_explained_already = bp_err_message != NULL;
2853 fprintf_unfiltered (tmp_error_stream,
2854 "Cannot insert hardware breakpoint %d%s",
2855 bl->owner->number, bp_err_message ? ":" : ".\n");
2856 if (bp_err_message != NULL)
2857 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2858 }
2859 else
2860 {
2861 if (bp_err_message == NULL)
2862 {
2863 char *message
2864 = memory_error_message (TARGET_XFER_E_IO,
2865 bl->gdbarch, bl->address);
2866 struct cleanup *old_chain = make_cleanup (xfree, message);
2867
2868 fprintf_unfiltered (tmp_error_stream,
2869 "Cannot insert breakpoint %d.\n"
2870 "%s\n",
2871 bl->owner->number, message);
2872 do_cleanups (old_chain);
2873 }
2874 else
2875 {
2876 fprintf_unfiltered (tmp_error_stream,
2877 "Cannot insert breakpoint %d: %s\n",
2878 bl->owner->number,
2879 bp_err_message);
2880 }
2881 }
2882 return 1;
2883
2884 }
2885 }
2886 else
2887 bl->inserted = 1;
2888
2889 return 0;
2890 }
2891
2892 else if (bl->loc_type == bp_loc_hardware_watchpoint
2893 /* NOTE drow/2003-09-08: This state only exists for removing
2894 watchpoints. It's not clear that it's necessary... */
2895 && bl->owner->disposition != disp_del_at_next_stop)
2896 {
2897 int val;
2898
2899 gdb_assert (bl->owner->ops != NULL
2900 && bl->owner->ops->insert_location != NULL);
2901
2902 val = bl->owner->ops->insert_location (bl);
2903
2904 /* If trying to set a read-watchpoint, and it turns out it's not
2905 supported, try emulating one with an access watchpoint. */
2906 if (val == 1 && bl->watchpoint_type == hw_read)
2907 {
2908 struct bp_location *loc, **loc_temp;
2909
2910 /* But don't try to insert it, if there's already another
2911 hw_access location that would be considered a duplicate
2912 of this one. */
2913 ALL_BP_LOCATIONS (loc, loc_temp)
2914 if (loc != bl
2915 && loc->watchpoint_type == hw_access
2916 && watchpoint_locations_match (bl, loc))
2917 {
2918 bl->duplicate = 1;
2919 bl->inserted = 1;
2920 bl->target_info = loc->target_info;
2921 bl->watchpoint_type = hw_access;
2922 val = 0;
2923 break;
2924 }
2925
2926 if (val == 1)
2927 {
2928 bl->watchpoint_type = hw_access;
2929 val = bl->owner->ops->insert_location (bl);
2930
2931 if (val)
2932 /* Back to the original value. */
2933 bl->watchpoint_type = hw_read;
2934 }
2935 }
2936
2937 bl->inserted = (val == 0);
2938 }
2939
2940 else if (bl->owner->type == bp_catchpoint)
2941 {
2942 int val;
2943
2944 gdb_assert (bl->owner->ops != NULL
2945 && bl->owner->ops->insert_location != NULL);
2946
2947 val = bl->owner->ops->insert_location (bl);
2948 if (val)
2949 {
2950 bl->owner->enable_state = bp_disabled;
2951
2952 if (val == 1)
2953 warning (_("\
2954 Error inserting catchpoint %d: Your system does not support this type\n\
2955 of catchpoint."), bl->owner->number);
2956 else
2957 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2958 }
2959
2960 bl->inserted = (val == 0);
2961
2962 /* We've already printed an error message if there was a problem
2963 inserting this catchpoint, and we've disabled the catchpoint,
2964 so just return success. */
2965 return 0;
2966 }
2967
2968 return 0;
2969 }
2970
2971 /* This function is called when program space PSPACE is about to be
2972 deleted. It takes care of updating breakpoints to not reference
2973 PSPACE anymore. */
2974
2975 void
2976 breakpoint_program_space_exit (struct program_space *pspace)
2977 {
2978 struct breakpoint *b, *b_temp;
2979 struct bp_location *loc, **loc_temp;
2980
2981 /* Remove any breakpoint that was set through this program space. */
2982 ALL_BREAKPOINTS_SAFE (b, b_temp)
2983 {
2984 if (b->pspace == pspace)
2985 delete_breakpoint (b);
2986 }
2987
2988 /* Breakpoints set through other program spaces could have locations
2989 bound to PSPACE as well. Remove those. */
2990 ALL_BP_LOCATIONS (loc, loc_temp)
2991 {
2992 struct bp_location *tmp;
2993
2994 if (loc->pspace == pspace)
2995 {
2996 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2997 if (loc->owner->loc == loc)
2998 loc->owner->loc = loc->next;
2999 else
3000 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
3001 if (tmp->next == loc)
3002 {
3003 tmp->next = loc->next;
3004 break;
3005 }
3006 }
3007 }
3008
3009 /* Now update the global location list to permanently delete the
3010 removed locations above. */
3011 update_global_location_list (UGLL_DONT_INSERT);
3012 }
3013
3014 /* Make sure all breakpoints are inserted in inferior.
3015 Throws exception on any error.
3016 A breakpoint that is already inserted won't be inserted
3017 again, so calling this function twice is safe. */
3018 void
3019 insert_breakpoints (void)
3020 {
3021 struct breakpoint *bpt;
3022
3023 ALL_BREAKPOINTS (bpt)
3024 if (is_hardware_watchpoint (bpt))
3025 {
3026 struct watchpoint *w = (struct watchpoint *) bpt;
3027
3028 update_watchpoint (w, 0 /* don't reparse. */);
3029 }
3030
3031 /* Updating watchpoints creates new locations, so update the global
3032 location list. Explicitly tell ugll to insert locations and
3033 ignore breakpoints_always_inserted_mode. */
3034 update_global_location_list (UGLL_INSERT);
3035 }
3036
3037 /* Invoke CALLBACK for each of bp_location. */
3038
3039 void
3040 iterate_over_bp_locations (walk_bp_location_callback callback)
3041 {
3042 struct bp_location *loc, **loc_tmp;
3043
3044 ALL_BP_LOCATIONS (loc, loc_tmp)
3045 {
3046 callback (loc, NULL);
3047 }
3048 }
3049
3050 /* This is used when we need to synch breakpoint conditions between GDB and the
3051 target. It is the case with deleting and disabling of breakpoints when using
3052 always-inserted mode. */
3053
3054 static void
3055 update_inserted_breakpoint_locations (void)
3056 {
3057 struct bp_location *bl, **blp_tmp;
3058 int error_flag = 0;
3059 int val = 0;
3060 int disabled_breaks = 0;
3061 int hw_breakpoint_error = 0;
3062 int hw_bp_details_reported = 0;
3063
3064 string_file tmp_error_stream;
3065
3066 /* Explicitly mark the warning -- this will only be printed if
3067 there was an error. */
3068 tmp_error_stream.puts ("Warning:\n");
3069
3070 struct cleanup *cleanups = save_current_space_and_thread ();
3071
3072 ALL_BP_LOCATIONS (bl, blp_tmp)
3073 {
3074 /* We only want to update software breakpoints and hardware
3075 breakpoints. */
3076 if (!is_breakpoint (bl->owner))
3077 continue;
3078
3079 /* We only want to update locations that are already inserted
3080 and need updating. This is to avoid unwanted insertion during
3081 deletion of breakpoints. */
3082 if (!bl->inserted || (bl->inserted && !bl->needs_update))
3083 continue;
3084
3085 switch_to_program_space_and_thread (bl->pspace);
3086
3087 /* For targets that support global breakpoints, there's no need
3088 to select an inferior to insert breakpoint to. In fact, even
3089 if we aren't attached to any process yet, we should still
3090 insert breakpoints. */
3091 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3092 && ptid_equal (inferior_ptid, null_ptid))
3093 continue;
3094
3095 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
3096 &hw_breakpoint_error, &hw_bp_details_reported);
3097 if (val)
3098 error_flag = val;
3099 }
3100
3101 if (error_flag)
3102 {
3103 target_terminal_ours_for_output ();
3104 error_stream (tmp_error_stream);
3105 }
3106
3107 do_cleanups (cleanups);
3108 }
3109
3110 /* Used when starting or continuing the program. */
3111
3112 static void
3113 insert_breakpoint_locations (void)
3114 {
3115 struct breakpoint *bpt;
3116 struct bp_location *bl, **blp_tmp;
3117 int error_flag = 0;
3118 int val = 0;
3119 int disabled_breaks = 0;
3120 int hw_breakpoint_error = 0;
3121 int hw_bp_error_explained_already = 0;
3122
3123 string_file tmp_error_stream;
3124
3125 /* Explicitly mark the warning -- this will only be printed if
3126 there was an error. */
3127 tmp_error_stream.puts ("Warning:\n");
3128
3129 struct cleanup *cleanups = save_current_space_and_thread ();
3130
3131 ALL_BP_LOCATIONS (bl, blp_tmp)
3132 {
3133 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
3134 continue;
3135
3136 /* There is no point inserting thread-specific breakpoints if
3137 the thread no longer exists. ALL_BP_LOCATIONS bp_location
3138 has BL->OWNER always non-NULL. */
3139 if (bl->owner->thread != -1
3140 && !valid_global_thread_id (bl->owner->thread))
3141 continue;
3142
3143 switch_to_program_space_and_thread (bl->pspace);
3144
3145 /* For targets that support global breakpoints, there's no need
3146 to select an inferior to insert breakpoint to. In fact, even
3147 if we aren't attached to any process yet, we should still
3148 insert breakpoints. */
3149 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3150 && ptid_equal (inferior_ptid, null_ptid))
3151 continue;
3152
3153 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
3154 &hw_breakpoint_error, &hw_bp_error_explained_already);
3155 if (val)
3156 error_flag = val;
3157 }
3158
3159 /* If we failed to insert all locations of a watchpoint, remove
3160 them, as half-inserted watchpoint is of limited use. */
3161 ALL_BREAKPOINTS (bpt)
3162 {
3163 int some_failed = 0;
3164 struct bp_location *loc;
3165
3166 if (!is_hardware_watchpoint (bpt))
3167 continue;
3168
3169 if (!breakpoint_enabled (bpt))
3170 continue;
3171
3172 if (bpt->disposition == disp_del_at_next_stop)
3173 continue;
3174
3175 for (loc = bpt->loc; loc; loc = loc->next)
3176 if (!loc->inserted && should_be_inserted (loc))
3177 {
3178 some_failed = 1;
3179 break;
3180 }
3181 if (some_failed)
3182 {
3183 for (loc = bpt->loc; loc; loc = loc->next)
3184 if (loc->inserted)
3185 remove_breakpoint (loc);
3186
3187 hw_breakpoint_error = 1;
3188 tmp_error_stream.printf ("Could not insert "
3189 "hardware watchpoint %d.\n",
3190 bpt->number);
3191 error_flag = -1;
3192 }
3193 }
3194
3195 if (error_flag)
3196 {
3197 /* If a hardware breakpoint or watchpoint was inserted, add a
3198 message about possibly exhausted resources. */
3199 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3200 {
3201 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3202 You may have requested too many hardware breakpoints/watchpoints.\n");
3203 }
3204 target_terminal_ours_for_output ();
3205 error_stream (tmp_error_stream);
3206 }
3207
3208 do_cleanups (cleanups);
3209 }
3210
3211 /* Used when the program stops.
3212 Returns zero if successful, or non-zero if there was a problem
3213 removing a breakpoint location. */
3214
3215 int
3216 remove_breakpoints (void)
3217 {
3218 struct bp_location *bl, **blp_tmp;
3219 int val = 0;
3220
3221 ALL_BP_LOCATIONS (bl, blp_tmp)
3222 {
3223 if (bl->inserted && !is_tracepoint (bl->owner))
3224 val |= remove_breakpoint (bl);
3225 }
3226 return val;
3227 }
3228
3229 /* When a thread exits, remove breakpoints that are related to
3230 that thread. */
3231
3232 static void
3233 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3234 {
3235 struct breakpoint *b, *b_tmp;
3236
3237 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3238 {
3239 if (b->thread == tp->global_num && user_breakpoint_p (b))
3240 {
3241 b->disposition = disp_del_at_next_stop;
3242
3243 printf_filtered (_("\
3244 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3245 b->number, print_thread_id (tp));
3246
3247 /* Hide it from the user. */
3248 b->number = 0;
3249 }
3250 }
3251 }
3252
3253 /* Remove breakpoints of process PID. */
3254
3255 int
3256 remove_breakpoints_pid (int pid)
3257 {
3258 struct bp_location *bl, **blp_tmp;
3259 int val;
3260 struct inferior *inf = find_inferior_pid (pid);
3261
3262 ALL_BP_LOCATIONS (bl, blp_tmp)
3263 {
3264 if (bl->pspace != inf->pspace)
3265 continue;
3266
3267 if (bl->inserted && !bl->target_info.persist)
3268 {
3269 val = remove_breakpoint (bl);
3270 if (val != 0)
3271 return val;
3272 }
3273 }
3274 return 0;
3275 }
3276
3277 int
3278 reattach_breakpoints (int pid)
3279 {
3280 struct cleanup *old_chain;
3281 struct bp_location *bl, **blp_tmp;
3282 int val;
3283 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3284 struct inferior *inf;
3285 struct thread_info *tp;
3286
3287 tp = any_live_thread_of_process (pid);
3288 if (tp == NULL)
3289 return 1;
3290
3291 inf = find_inferior_pid (pid);
3292 old_chain = save_inferior_ptid ();
3293
3294 inferior_ptid = tp->ptid;
3295
3296 string_file tmp_error_stream;
3297
3298 ALL_BP_LOCATIONS (bl, blp_tmp)
3299 {
3300 if (bl->pspace != inf->pspace)
3301 continue;
3302
3303 if (bl->inserted)
3304 {
3305 bl->inserted = 0;
3306 val = insert_bp_location (bl, &tmp_error_stream, &dummy1, &dummy2, &dummy3);
3307 if (val != 0)
3308 {
3309 do_cleanups (old_chain);
3310 return val;
3311 }
3312 }
3313 }
3314 do_cleanups (old_chain);
3315 return 0;
3316 }
3317
3318 static int internal_breakpoint_number = -1;
3319
3320 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3321 If INTERNAL is non-zero, the breakpoint number will be populated
3322 from internal_breakpoint_number and that variable decremented.
3323 Otherwise the breakpoint number will be populated from
3324 breakpoint_count and that value incremented. Internal breakpoints
3325 do not set the internal var bpnum. */
3326 static void
3327 set_breakpoint_number (int internal, struct breakpoint *b)
3328 {
3329 if (internal)
3330 b->number = internal_breakpoint_number--;
3331 else
3332 {
3333 set_breakpoint_count (breakpoint_count + 1);
3334 b->number = breakpoint_count;
3335 }
3336 }
3337
3338 static struct breakpoint *
3339 create_internal_breakpoint (struct gdbarch *gdbarch,
3340 CORE_ADDR address, enum bptype type,
3341 const struct breakpoint_ops *ops)
3342 {
3343 struct symtab_and_line sal;
3344 struct breakpoint *b;
3345
3346 init_sal (&sal); /* Initialize to zeroes. */
3347
3348 sal.pc = address;
3349 sal.section = find_pc_overlay (sal.pc);
3350 sal.pspace = current_program_space;
3351
3352 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3353 b->number = internal_breakpoint_number--;
3354 b->disposition = disp_donttouch;
3355
3356 return b;
3357 }
3358
3359 static const char *const longjmp_names[] =
3360 {
3361 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3362 };
3363 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3364
3365 /* Per-objfile data private to breakpoint.c. */
3366 struct breakpoint_objfile_data
3367 {
3368 /* Minimal symbol for "_ovly_debug_event" (if any). */
3369 struct bound_minimal_symbol overlay_msym;
3370
3371 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3372 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3373
3374 /* True if we have looked for longjmp probes. */
3375 int longjmp_searched;
3376
3377 /* SystemTap probe points for longjmp (if any). */
3378 VEC (probe_p) *longjmp_probes;
3379
3380 /* Minimal symbol for "std::terminate()" (if any). */
3381 struct bound_minimal_symbol terminate_msym;
3382
3383 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3384 struct bound_minimal_symbol exception_msym;
3385
3386 /* True if we have looked for exception probes. */
3387 int exception_searched;
3388
3389 /* SystemTap probe points for unwinding (if any). */
3390 VEC (probe_p) *exception_probes;
3391 };
3392
3393 static const struct objfile_data *breakpoint_objfile_key;
3394
3395 /* Minimal symbol not found sentinel. */
3396 static struct minimal_symbol msym_not_found;
3397
3398 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3399
3400 static int
3401 msym_not_found_p (const struct minimal_symbol *msym)
3402 {
3403 return msym == &msym_not_found;
3404 }
3405
3406 /* Return per-objfile data needed by breakpoint.c.
3407 Allocate the data if necessary. */
3408
3409 static struct breakpoint_objfile_data *
3410 get_breakpoint_objfile_data (struct objfile *objfile)
3411 {
3412 struct breakpoint_objfile_data *bp_objfile_data;
3413
3414 bp_objfile_data = ((struct breakpoint_objfile_data *)
3415 objfile_data (objfile, breakpoint_objfile_key));
3416 if (bp_objfile_data == NULL)
3417 {
3418 bp_objfile_data =
3419 XOBNEW (&objfile->objfile_obstack, struct breakpoint_objfile_data);
3420
3421 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3422 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3423 }
3424 return bp_objfile_data;
3425 }
3426
3427 static void
3428 free_breakpoint_probes (struct objfile *obj, void *data)
3429 {
3430 struct breakpoint_objfile_data *bp_objfile_data
3431 = (struct breakpoint_objfile_data *) data;
3432
3433 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3434 VEC_free (probe_p, bp_objfile_data->exception_probes);
3435 }
3436
3437 static void
3438 create_overlay_event_breakpoint (void)
3439 {
3440 struct objfile *objfile;
3441 const char *const func_name = "_ovly_debug_event";
3442
3443 ALL_OBJFILES (objfile)
3444 {
3445 struct breakpoint *b;
3446 struct breakpoint_objfile_data *bp_objfile_data;
3447 CORE_ADDR addr;
3448 struct explicit_location explicit_loc;
3449
3450 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3451
3452 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3453 continue;
3454
3455 if (bp_objfile_data->overlay_msym.minsym == NULL)
3456 {
3457 struct bound_minimal_symbol m;
3458
3459 m = lookup_minimal_symbol_text (func_name, objfile);
3460 if (m.minsym == NULL)
3461 {
3462 /* Avoid future lookups in this objfile. */
3463 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3464 continue;
3465 }
3466 bp_objfile_data->overlay_msym = m;
3467 }
3468
3469 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3470 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3471 bp_overlay_event,
3472 &internal_breakpoint_ops);
3473 initialize_explicit_location (&explicit_loc);
3474 explicit_loc.function_name = ASTRDUP (func_name);
3475 b->location = new_explicit_location (&explicit_loc);
3476
3477 if (overlay_debugging == ovly_auto)
3478 {
3479 b->enable_state = bp_enabled;
3480 overlay_events_enabled = 1;
3481 }
3482 else
3483 {
3484 b->enable_state = bp_disabled;
3485 overlay_events_enabled = 0;
3486 }
3487 }
3488 }
3489
3490 static void
3491 create_longjmp_master_breakpoint (void)
3492 {
3493 struct program_space *pspace;
3494 struct cleanup *old_chain;
3495
3496 old_chain = save_current_program_space ();
3497
3498 ALL_PSPACES (pspace)
3499 {
3500 struct objfile *objfile;
3501
3502 set_current_program_space (pspace);
3503
3504 ALL_OBJFILES (objfile)
3505 {
3506 int i;
3507 struct gdbarch *gdbarch;
3508 struct breakpoint_objfile_data *bp_objfile_data;
3509
3510 gdbarch = get_objfile_arch (objfile);
3511
3512 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3513
3514 if (!bp_objfile_data->longjmp_searched)
3515 {
3516 VEC (probe_p) *ret;
3517
3518 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3519 if (ret != NULL)
3520 {
3521 /* We are only interested in checking one element. */
3522 struct probe *p = VEC_index (probe_p, ret, 0);
3523
3524 if (!can_evaluate_probe_arguments (p))
3525 {
3526 /* We cannot use the probe interface here, because it does
3527 not know how to evaluate arguments. */
3528 VEC_free (probe_p, ret);
3529 ret = NULL;
3530 }
3531 }
3532 bp_objfile_data->longjmp_probes = ret;
3533 bp_objfile_data->longjmp_searched = 1;
3534 }
3535
3536 if (bp_objfile_data->longjmp_probes != NULL)
3537 {
3538 int i;
3539 struct probe *probe;
3540 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3541
3542 for (i = 0;
3543 VEC_iterate (probe_p,
3544 bp_objfile_data->longjmp_probes,
3545 i, probe);
3546 ++i)
3547 {
3548 struct breakpoint *b;
3549
3550 b = create_internal_breakpoint (gdbarch,
3551 get_probe_address (probe,
3552 objfile),
3553 bp_longjmp_master,
3554 &internal_breakpoint_ops);
3555 b->location
3556 = new_probe_location ("-probe-stap libc:longjmp");
3557 b->enable_state = bp_disabled;
3558 }
3559
3560 continue;
3561 }
3562
3563 if (!gdbarch_get_longjmp_target_p (gdbarch))
3564 continue;
3565
3566 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3567 {
3568 struct breakpoint *b;
3569 const char *func_name;
3570 CORE_ADDR addr;
3571 struct explicit_location explicit_loc;
3572
3573 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3574 continue;
3575
3576 func_name = longjmp_names[i];
3577 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3578 {
3579 struct bound_minimal_symbol m;
3580
3581 m = lookup_minimal_symbol_text (func_name, objfile);
3582 if (m.minsym == NULL)
3583 {
3584 /* Prevent future lookups in this objfile. */
3585 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3586 continue;
3587 }
3588 bp_objfile_data->longjmp_msym[i] = m;
3589 }
3590
3591 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3592 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3593 &internal_breakpoint_ops);
3594 initialize_explicit_location (&explicit_loc);
3595 explicit_loc.function_name = ASTRDUP (func_name);
3596 b->location = new_explicit_location (&explicit_loc);
3597 b->enable_state = bp_disabled;
3598 }
3599 }
3600 }
3601
3602 do_cleanups (old_chain);
3603 }
3604
3605 /* Create a master std::terminate breakpoint. */
3606 static void
3607 create_std_terminate_master_breakpoint (void)
3608 {
3609 struct program_space *pspace;
3610 struct cleanup *old_chain;
3611 const char *const func_name = "std::terminate()";
3612
3613 old_chain = save_current_program_space ();
3614
3615 ALL_PSPACES (pspace)
3616 {
3617 struct objfile *objfile;
3618 CORE_ADDR addr;
3619
3620 set_current_program_space (pspace);
3621
3622 ALL_OBJFILES (objfile)
3623 {
3624 struct breakpoint *b;
3625 struct breakpoint_objfile_data *bp_objfile_data;
3626 struct explicit_location explicit_loc;
3627
3628 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3629
3630 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3631 continue;
3632
3633 if (bp_objfile_data->terminate_msym.minsym == NULL)
3634 {
3635 struct bound_minimal_symbol m;
3636
3637 m = lookup_minimal_symbol (func_name, NULL, objfile);
3638 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3639 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3640 {
3641 /* Prevent future lookups in this objfile. */
3642 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3643 continue;
3644 }
3645 bp_objfile_data->terminate_msym = m;
3646 }
3647
3648 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3649 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3650 bp_std_terminate_master,
3651 &internal_breakpoint_ops);
3652 initialize_explicit_location (&explicit_loc);
3653 explicit_loc.function_name = ASTRDUP (func_name);
3654 b->location = new_explicit_location (&explicit_loc);
3655 b->enable_state = bp_disabled;
3656 }
3657 }
3658
3659 do_cleanups (old_chain);
3660 }
3661
3662 /* Install a master breakpoint on the unwinder's debug hook. */
3663
3664 static void
3665 create_exception_master_breakpoint (void)
3666 {
3667 struct objfile *objfile;
3668 const char *const func_name = "_Unwind_DebugHook";
3669
3670 ALL_OBJFILES (objfile)
3671 {
3672 struct breakpoint *b;
3673 struct gdbarch *gdbarch;
3674 struct breakpoint_objfile_data *bp_objfile_data;
3675 CORE_ADDR addr;
3676 struct explicit_location explicit_loc;
3677
3678 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3679
3680 /* We prefer the SystemTap probe point if it exists. */
3681 if (!bp_objfile_data->exception_searched)
3682 {
3683 VEC (probe_p) *ret;
3684
3685 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3686
3687 if (ret != NULL)
3688 {
3689 /* We are only interested in checking one element. */
3690 struct probe *p = VEC_index (probe_p, ret, 0);
3691
3692 if (!can_evaluate_probe_arguments (p))
3693 {
3694 /* We cannot use the probe interface here, because it does
3695 not know how to evaluate arguments. */
3696 VEC_free (probe_p, ret);
3697 ret = NULL;
3698 }
3699 }
3700 bp_objfile_data->exception_probes = ret;
3701 bp_objfile_data->exception_searched = 1;
3702 }
3703
3704 if (bp_objfile_data->exception_probes != NULL)
3705 {
3706 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3707 int i;
3708 struct probe *probe;
3709
3710 for (i = 0;
3711 VEC_iterate (probe_p,
3712 bp_objfile_data->exception_probes,
3713 i, probe);
3714 ++i)
3715 {
3716 struct breakpoint *b;
3717
3718 b = create_internal_breakpoint (gdbarch,
3719 get_probe_address (probe,
3720 objfile),
3721 bp_exception_master,
3722 &internal_breakpoint_ops);
3723 b->location
3724 = new_probe_location ("-probe-stap libgcc:unwind");
3725 b->enable_state = bp_disabled;
3726 }
3727
3728 continue;
3729 }
3730
3731 /* Otherwise, try the hook function. */
3732
3733 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3734 continue;
3735
3736 gdbarch = get_objfile_arch (objfile);
3737
3738 if (bp_objfile_data->exception_msym.minsym == NULL)
3739 {
3740 struct bound_minimal_symbol debug_hook;
3741
3742 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3743 if (debug_hook.minsym == NULL)
3744 {
3745 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3746 continue;
3747 }
3748
3749 bp_objfile_data->exception_msym = debug_hook;
3750 }
3751
3752 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3753 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3754 &current_target);
3755 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3756 &internal_breakpoint_ops);
3757 initialize_explicit_location (&explicit_loc);
3758 explicit_loc.function_name = ASTRDUP (func_name);
3759 b->location = new_explicit_location (&explicit_loc);
3760 b->enable_state = bp_disabled;
3761 }
3762 }
3763
3764 /* Does B have a location spec? */
3765
3766 static int
3767 breakpoint_event_location_empty_p (const struct breakpoint *b)
3768 {
3769 return b->location != NULL && event_location_empty_p (b->location);
3770 }
3771
3772 void
3773 update_breakpoints_after_exec (void)
3774 {
3775 struct breakpoint *b, *b_tmp;
3776 struct bp_location *bploc, **bplocp_tmp;
3777
3778 /* We're about to delete breakpoints from GDB's lists. If the
3779 INSERTED flag is true, GDB will try to lift the breakpoints by
3780 writing the breakpoints' "shadow contents" back into memory. The
3781 "shadow contents" are NOT valid after an exec, so GDB should not
3782 do that. Instead, the target is responsible from marking
3783 breakpoints out as soon as it detects an exec. We don't do that
3784 here instead, because there may be other attempts to delete
3785 breakpoints after detecting an exec and before reaching here. */
3786 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3787 if (bploc->pspace == current_program_space)
3788 gdb_assert (!bploc->inserted);
3789
3790 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3791 {
3792 if (b->pspace != current_program_space)
3793 continue;
3794
3795 /* Solib breakpoints must be explicitly reset after an exec(). */
3796 if (b->type == bp_shlib_event)
3797 {
3798 delete_breakpoint (b);
3799 continue;
3800 }
3801
3802 /* JIT breakpoints must be explicitly reset after an exec(). */
3803 if (b->type == bp_jit_event)
3804 {
3805 delete_breakpoint (b);
3806 continue;
3807 }
3808
3809 /* Thread event breakpoints must be set anew after an exec(),
3810 as must overlay event and longjmp master breakpoints. */
3811 if (b->type == bp_thread_event || b->type == bp_overlay_event
3812 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3813 || b->type == bp_exception_master)
3814 {
3815 delete_breakpoint (b);
3816 continue;
3817 }
3818
3819 /* Step-resume breakpoints are meaningless after an exec(). */
3820 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3821 {
3822 delete_breakpoint (b);
3823 continue;
3824 }
3825
3826 /* Just like single-step breakpoints. */
3827 if (b->type == bp_single_step)
3828 {
3829 delete_breakpoint (b);
3830 continue;
3831 }
3832
3833 /* Longjmp and longjmp-resume breakpoints are also meaningless
3834 after an exec. */
3835 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3836 || b->type == bp_longjmp_call_dummy
3837 || b->type == bp_exception || b->type == bp_exception_resume)
3838 {
3839 delete_breakpoint (b);
3840 continue;
3841 }
3842
3843 if (b->type == bp_catchpoint)
3844 {
3845 /* For now, none of the bp_catchpoint breakpoints need to
3846 do anything at this point. In the future, if some of
3847 the catchpoints need to something, we will need to add
3848 a new method, and call this method from here. */
3849 continue;
3850 }
3851
3852 /* bp_finish is a special case. The only way we ought to be able
3853 to see one of these when an exec() has happened, is if the user
3854 caught a vfork, and then said "finish". Ordinarily a finish just
3855 carries them to the call-site of the current callee, by setting
3856 a temporary bp there and resuming. But in this case, the finish
3857 will carry them entirely through the vfork & exec.
3858
3859 We don't want to allow a bp_finish to remain inserted now. But
3860 we can't safely delete it, 'cause finish_command has a handle to
3861 the bp on a bpstat, and will later want to delete it. There's a
3862 chance (and I've seen it happen) that if we delete the bp_finish
3863 here, that its storage will get reused by the time finish_command
3864 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3865 We really must allow finish_command to delete a bp_finish.
3866
3867 In the absence of a general solution for the "how do we know
3868 it's safe to delete something others may have handles to?"
3869 problem, what we'll do here is just uninsert the bp_finish, and
3870 let finish_command delete it.
3871
3872 (We know the bp_finish is "doomed" in the sense that it's
3873 momentary, and will be deleted as soon as finish_command sees
3874 the inferior stopped. So it doesn't matter that the bp's
3875 address is probably bogus in the new a.out, unlike e.g., the
3876 solib breakpoints.) */
3877
3878 if (b->type == bp_finish)
3879 {
3880 continue;
3881 }
3882
3883 /* Without a symbolic address, we have little hope of the
3884 pre-exec() address meaning the same thing in the post-exec()
3885 a.out. */
3886 if (breakpoint_event_location_empty_p (b))
3887 {
3888 delete_breakpoint (b);
3889 continue;
3890 }
3891 }
3892 }
3893
3894 int
3895 detach_breakpoints (ptid_t ptid)
3896 {
3897 struct bp_location *bl, **blp_tmp;
3898 int val = 0;
3899 struct cleanup *old_chain = save_inferior_ptid ();
3900 struct inferior *inf = current_inferior ();
3901
3902 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3903 error (_("Cannot detach breakpoints of inferior_ptid"));
3904
3905 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3906 inferior_ptid = ptid;
3907 ALL_BP_LOCATIONS (bl, blp_tmp)
3908 {
3909 if (bl->pspace != inf->pspace)
3910 continue;
3911
3912 /* This function must physically remove breakpoints locations
3913 from the specified ptid, without modifying the breakpoint
3914 package's state. Locations of type bp_loc_other are only
3915 maintained at GDB side. So, there is no need to remove
3916 these bp_loc_other locations. Moreover, removing these
3917 would modify the breakpoint package's state. */
3918 if (bl->loc_type == bp_loc_other)
3919 continue;
3920
3921 if (bl->inserted)
3922 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3923 }
3924
3925 do_cleanups (old_chain);
3926 return val;
3927 }
3928
3929 /* Remove the breakpoint location BL from the current address space.
3930 Note that this is used to detach breakpoints from a child fork.
3931 When we get here, the child isn't in the inferior list, and neither
3932 do we have objects to represent its address space --- we should
3933 *not* look at bl->pspace->aspace here. */
3934
3935 static int
3936 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3937 {
3938 int val;
3939
3940 /* BL is never in moribund_locations by our callers. */
3941 gdb_assert (bl->owner != NULL);
3942
3943 /* The type of none suggests that owner is actually deleted.
3944 This should not ever happen. */
3945 gdb_assert (bl->owner->type != bp_none);
3946
3947 if (bl->loc_type == bp_loc_software_breakpoint
3948 || bl->loc_type == bp_loc_hardware_breakpoint)
3949 {
3950 /* "Normal" instruction breakpoint: either the standard
3951 trap-instruction bp (bp_breakpoint), or a
3952 bp_hardware_breakpoint. */
3953
3954 /* First check to see if we have to handle an overlay. */
3955 if (overlay_debugging == ovly_off
3956 || bl->section == NULL
3957 || !(section_is_overlay (bl->section)))
3958 {
3959 /* No overlay handling: just remove the breakpoint. */
3960
3961 /* If we're trying to uninsert a memory breakpoint that we
3962 know is set in a dynamic object that is marked
3963 shlib_disabled, then either the dynamic object was
3964 removed with "remove-symbol-file" or with
3965 "nosharedlibrary". In the former case, we don't know
3966 whether another dynamic object might have loaded over the
3967 breakpoint's address -- the user might well let us know
3968 about it next with add-symbol-file (the whole point of
3969 add-symbol-file is letting the user manually maintain a
3970 list of dynamically loaded objects). If we have the
3971 breakpoint's shadow memory, that is, this is a software
3972 breakpoint managed by GDB, check whether the breakpoint
3973 is still inserted in memory, to avoid overwriting wrong
3974 code with stale saved shadow contents. Note that HW
3975 breakpoints don't have shadow memory, as they're
3976 implemented using a mechanism that is not dependent on
3977 being able to modify the target's memory, and as such
3978 they should always be removed. */
3979 if (bl->shlib_disabled
3980 && bl->target_info.shadow_len != 0
3981 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3982 val = 0;
3983 else
3984 val = bl->owner->ops->remove_location (bl, reason);
3985 }
3986 else
3987 {
3988 /* This breakpoint is in an overlay section.
3989 Did we set a breakpoint at the LMA? */
3990 if (!overlay_events_enabled)
3991 {
3992 /* Yes -- overlay event support is not active, so we
3993 should have set a breakpoint at the LMA. Remove it.
3994 */
3995 /* Ignore any failures: if the LMA is in ROM, we will
3996 have already warned when we failed to insert it. */
3997 if (bl->loc_type == bp_loc_hardware_breakpoint)
3998 target_remove_hw_breakpoint (bl->gdbarch,
3999 &bl->overlay_target_info);
4000 else
4001 target_remove_breakpoint (bl->gdbarch,
4002 &bl->overlay_target_info,
4003 reason);
4004 }
4005 /* Did we set a breakpoint at the VMA?
4006 If so, we will have marked the breakpoint 'inserted'. */
4007 if (bl->inserted)
4008 {
4009 /* Yes -- remove it. Previously we did not bother to
4010 remove the breakpoint if the section had been
4011 unmapped, but let's not rely on that being safe. We
4012 don't know what the overlay manager might do. */
4013
4014 /* However, we should remove *software* breakpoints only
4015 if the section is still mapped, or else we overwrite
4016 wrong code with the saved shadow contents. */
4017 if (bl->loc_type == bp_loc_hardware_breakpoint
4018 || section_is_mapped (bl->section))
4019 val = bl->owner->ops->remove_location (bl, reason);
4020 else
4021 val = 0;
4022 }
4023 else
4024 {
4025 /* No -- not inserted, so no need to remove. No error. */
4026 val = 0;
4027 }
4028 }
4029
4030 /* In some cases, we might not be able to remove a breakpoint in
4031 a shared library that has already been removed, but we have
4032 not yet processed the shlib unload event. Similarly for an
4033 unloaded add-symbol-file object - the user might not yet have
4034 had the chance to remove-symbol-file it. shlib_disabled will
4035 be set if the library/object has already been removed, but
4036 the breakpoint hasn't been uninserted yet, e.g., after
4037 "nosharedlibrary" or "remove-symbol-file" with breakpoints
4038 always-inserted mode. */
4039 if (val
4040 && (bl->loc_type == bp_loc_software_breakpoint
4041 && (bl->shlib_disabled
4042 || solib_name_from_address (bl->pspace, bl->address)
4043 || shared_objfile_contains_address_p (bl->pspace,
4044 bl->address))))
4045 val = 0;
4046
4047 if (val)
4048 return val;
4049 bl->inserted = (reason == DETACH_BREAKPOINT);
4050 }
4051 else if (bl->loc_type == bp_loc_hardware_watchpoint)
4052 {
4053 gdb_assert (bl->owner->ops != NULL
4054 && bl->owner->ops->remove_location != NULL);
4055
4056 bl->inserted = (reason == DETACH_BREAKPOINT);
4057 bl->owner->ops->remove_location (bl, reason);
4058
4059 /* Failure to remove any of the hardware watchpoints comes here. */
4060 if (reason == REMOVE_BREAKPOINT && bl->inserted)
4061 warning (_("Could not remove hardware watchpoint %d."),
4062 bl->owner->number);
4063 }
4064 else if (bl->owner->type == bp_catchpoint
4065 && breakpoint_enabled (bl->owner)
4066 && !bl->duplicate)
4067 {
4068 gdb_assert (bl->owner->ops != NULL
4069 && bl->owner->ops->remove_location != NULL);
4070
4071 val = bl->owner->ops->remove_location (bl, reason);
4072 if (val)
4073 return val;
4074
4075 bl->inserted = (reason == DETACH_BREAKPOINT);
4076 }
4077
4078 return 0;
4079 }
4080
4081 static int
4082 remove_breakpoint (struct bp_location *bl)
4083 {
4084 int ret;
4085 struct cleanup *old_chain;
4086
4087 /* BL is never in moribund_locations by our callers. */
4088 gdb_assert (bl->owner != NULL);
4089
4090 /* The type of none suggests that owner is actually deleted.
4091 This should not ever happen. */
4092 gdb_assert (bl->owner->type != bp_none);
4093
4094 old_chain = save_current_space_and_thread ();
4095
4096 switch_to_program_space_and_thread (bl->pspace);
4097
4098 ret = remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
4099
4100 do_cleanups (old_chain);
4101 return ret;
4102 }
4103
4104 /* Clear the "inserted" flag in all breakpoints. */
4105
4106 void
4107 mark_breakpoints_out (void)
4108 {
4109 struct bp_location *bl, **blp_tmp;
4110
4111 ALL_BP_LOCATIONS (bl, blp_tmp)
4112 if (bl->pspace == current_program_space)
4113 bl->inserted = 0;
4114 }
4115
4116 /* Clear the "inserted" flag in all breakpoints and delete any
4117 breakpoints which should go away between runs of the program.
4118
4119 Plus other such housekeeping that has to be done for breakpoints
4120 between runs.
4121
4122 Note: this function gets called at the end of a run (by
4123 generic_mourn_inferior) and when a run begins (by
4124 init_wait_for_inferior). */
4125
4126
4127
4128 void
4129 breakpoint_init_inferior (enum inf_context context)
4130 {
4131 struct breakpoint *b, *b_tmp;
4132 struct bp_location *bl;
4133 int ix;
4134 struct program_space *pspace = current_program_space;
4135
4136 /* If breakpoint locations are shared across processes, then there's
4137 nothing to do. */
4138 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
4139 return;
4140
4141 mark_breakpoints_out ();
4142
4143 ALL_BREAKPOINTS_SAFE (b, b_tmp)
4144 {
4145 if (b->loc && b->loc->pspace != pspace)
4146 continue;
4147
4148 switch (b->type)
4149 {
4150 case bp_call_dummy:
4151 case bp_longjmp_call_dummy:
4152
4153 /* If the call dummy breakpoint is at the entry point it will
4154 cause problems when the inferior is rerun, so we better get
4155 rid of it. */
4156
4157 case bp_watchpoint_scope:
4158
4159 /* Also get rid of scope breakpoints. */
4160
4161 case bp_shlib_event:
4162
4163 /* Also remove solib event breakpoints. Their addresses may
4164 have changed since the last time we ran the program.
4165 Actually we may now be debugging against different target;
4166 and so the solib backend that installed this breakpoint may
4167 not be used in by the target. E.g.,
4168
4169 (gdb) file prog-linux
4170 (gdb) run # native linux target
4171 ...
4172 (gdb) kill
4173 (gdb) file prog-win.exe
4174 (gdb) tar rem :9999 # remote Windows gdbserver.
4175 */
4176
4177 case bp_step_resume:
4178
4179 /* Also remove step-resume breakpoints. */
4180
4181 case bp_single_step:
4182
4183 /* Also remove single-step breakpoints. */
4184
4185 delete_breakpoint (b);
4186 break;
4187
4188 case bp_watchpoint:
4189 case bp_hardware_watchpoint:
4190 case bp_read_watchpoint:
4191 case bp_access_watchpoint:
4192 {
4193 struct watchpoint *w = (struct watchpoint *) b;
4194
4195 /* Likewise for watchpoints on local expressions. */
4196 if (w->exp_valid_block != NULL)
4197 delete_breakpoint (b);
4198 else
4199 {
4200 /* Get rid of existing locations, which are no longer
4201 valid. New ones will be created in
4202 update_watchpoint, when the inferior is restarted.
4203 The next update_global_location_list call will
4204 garbage collect them. */
4205 b->loc = NULL;
4206
4207 if (context == inf_starting)
4208 {
4209 /* Reset val field to force reread of starting value in
4210 insert_breakpoints. */
4211 if (w->val)
4212 value_free (w->val);
4213 w->val = NULL;
4214 w->val_valid = 0;
4215 }
4216 }
4217 }
4218 break;
4219 default:
4220 break;
4221 }
4222 }
4223
4224 /* Get rid of the moribund locations. */
4225 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
4226 decref_bp_location (&bl);
4227 VEC_free (bp_location_p, moribund_locations);
4228 }
4229
4230 /* These functions concern about actual breakpoints inserted in the
4231 target --- to e.g. check if we need to do decr_pc adjustment or if
4232 we need to hop over the bkpt --- so we check for address space
4233 match, not program space. */
4234
4235 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4236 exists at PC. It returns ordinary_breakpoint_here if it's an
4237 ordinary breakpoint, or permanent_breakpoint_here if it's a
4238 permanent breakpoint.
4239 - When continuing from a location with an ordinary breakpoint, we
4240 actually single step once before calling insert_breakpoints.
4241 - When continuing from a location with a permanent breakpoint, we
4242 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4243 the target, to advance the PC past the breakpoint. */
4244
4245 enum breakpoint_here
4246 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4247 {
4248 struct bp_location *bl, **blp_tmp;
4249 int any_breakpoint_here = 0;
4250
4251 ALL_BP_LOCATIONS (bl, blp_tmp)
4252 {
4253 if (bl->loc_type != bp_loc_software_breakpoint
4254 && bl->loc_type != bp_loc_hardware_breakpoint)
4255 continue;
4256
4257 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4258 if ((breakpoint_enabled (bl->owner)
4259 || bl->permanent)
4260 && breakpoint_location_address_match (bl, aspace, pc))
4261 {
4262 if (overlay_debugging
4263 && section_is_overlay (bl->section)
4264 && !section_is_mapped (bl->section))
4265 continue; /* unmapped overlay -- can't be a match */
4266 else if (bl->permanent)
4267 return permanent_breakpoint_here;
4268 else
4269 any_breakpoint_here = 1;
4270 }
4271 }
4272
4273 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4274 }
4275
4276 /* See breakpoint.h. */
4277
4278 int
4279 breakpoint_in_range_p (struct address_space *aspace,
4280 CORE_ADDR addr, ULONGEST len)
4281 {
4282 struct bp_location *bl, **blp_tmp;
4283
4284 ALL_BP_LOCATIONS (bl, blp_tmp)
4285 {
4286 if (bl->loc_type != bp_loc_software_breakpoint
4287 && bl->loc_type != bp_loc_hardware_breakpoint)
4288 continue;
4289
4290 if ((breakpoint_enabled (bl->owner)
4291 || bl->permanent)
4292 && breakpoint_location_address_range_overlap (bl, aspace,
4293 addr, len))
4294 {
4295 if (overlay_debugging
4296 && section_is_overlay (bl->section)
4297 && !section_is_mapped (bl->section))
4298 {
4299 /* Unmapped overlay -- can't be a match. */
4300 continue;
4301 }
4302
4303 return 1;
4304 }
4305 }
4306
4307 return 0;
4308 }
4309
4310 /* Return true if there's a moribund breakpoint at PC. */
4311
4312 int
4313 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4314 {
4315 struct bp_location *loc;
4316 int ix;
4317
4318 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4319 if (breakpoint_location_address_match (loc, aspace, pc))
4320 return 1;
4321
4322 return 0;
4323 }
4324
4325 /* Returns non-zero iff BL is inserted at PC, in address space
4326 ASPACE. */
4327
4328 static int
4329 bp_location_inserted_here_p (struct bp_location *bl,
4330 struct address_space *aspace, CORE_ADDR pc)
4331 {
4332 if (bl->inserted
4333 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4334 aspace, pc))
4335 {
4336 if (overlay_debugging
4337 && section_is_overlay (bl->section)
4338 && !section_is_mapped (bl->section))
4339 return 0; /* unmapped overlay -- can't be a match */
4340 else
4341 return 1;
4342 }
4343 return 0;
4344 }
4345
4346 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4347
4348 int
4349 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4350 {
4351 struct bp_location **blp, **blp_tmp = NULL;
4352
4353 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4354 {
4355 struct bp_location *bl = *blp;
4356
4357 if (bl->loc_type != bp_loc_software_breakpoint
4358 && bl->loc_type != bp_loc_hardware_breakpoint)
4359 continue;
4360
4361 if (bp_location_inserted_here_p (bl, aspace, pc))
4362 return 1;
4363 }
4364 return 0;
4365 }
4366
4367 /* This function returns non-zero iff there is a software breakpoint
4368 inserted at PC. */
4369
4370 int
4371 software_breakpoint_inserted_here_p (struct address_space *aspace,
4372 CORE_ADDR pc)
4373 {
4374 struct bp_location **blp, **blp_tmp = NULL;
4375
4376 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4377 {
4378 struct bp_location *bl = *blp;
4379
4380 if (bl->loc_type != bp_loc_software_breakpoint)
4381 continue;
4382
4383 if (bp_location_inserted_here_p (bl, aspace, pc))
4384 return 1;
4385 }
4386
4387 return 0;
4388 }
4389
4390 /* See breakpoint.h. */
4391
4392 int
4393 hardware_breakpoint_inserted_here_p (struct address_space *aspace,
4394 CORE_ADDR pc)
4395 {
4396 struct bp_location **blp, **blp_tmp = NULL;
4397
4398 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4399 {
4400 struct bp_location *bl = *blp;
4401
4402 if (bl->loc_type != bp_loc_hardware_breakpoint)
4403 continue;
4404
4405 if (bp_location_inserted_here_p (bl, aspace, pc))
4406 return 1;
4407 }
4408
4409 return 0;
4410 }
4411
4412 int
4413 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4414 CORE_ADDR addr, ULONGEST len)
4415 {
4416 struct breakpoint *bpt;
4417
4418 ALL_BREAKPOINTS (bpt)
4419 {
4420 struct bp_location *loc;
4421
4422 if (bpt->type != bp_hardware_watchpoint
4423 && bpt->type != bp_access_watchpoint)
4424 continue;
4425
4426 if (!breakpoint_enabled (bpt))
4427 continue;
4428
4429 for (loc = bpt->loc; loc; loc = loc->next)
4430 if (loc->pspace->aspace == aspace && loc->inserted)
4431 {
4432 CORE_ADDR l, h;
4433
4434 /* Check for intersection. */
4435 l = std::max<CORE_ADDR> (loc->address, addr);
4436 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4437 if (l < h)
4438 return 1;
4439 }
4440 }
4441 return 0;
4442 }
4443 \f
4444
4445 /* bpstat stuff. External routines' interfaces are documented
4446 in breakpoint.h. */
4447
4448 int
4449 is_catchpoint (struct breakpoint *ep)
4450 {
4451 return (ep->type == bp_catchpoint);
4452 }
4453
4454 /* Frees any storage that is part of a bpstat. Does not walk the
4455 'next' chain. */
4456
4457 static void
4458 bpstat_free (bpstat bs)
4459 {
4460 if (bs->old_val != NULL)
4461 value_free (bs->old_val);
4462 decref_counted_command_line (&bs->commands);
4463 decref_bp_location (&bs->bp_location_at);
4464 xfree (bs);
4465 }
4466
4467 /* Clear a bpstat so that it says we are not at any breakpoint.
4468 Also free any storage that is part of a bpstat. */
4469
4470 void
4471 bpstat_clear (bpstat *bsp)
4472 {
4473 bpstat p;
4474 bpstat q;
4475
4476 if (bsp == 0)
4477 return;
4478 p = *bsp;
4479 while (p != NULL)
4480 {
4481 q = p->next;
4482 bpstat_free (p);
4483 p = q;
4484 }
4485 *bsp = NULL;
4486 }
4487
4488 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4489 is part of the bpstat is copied as well. */
4490
4491 bpstat
4492 bpstat_copy (bpstat bs)
4493 {
4494 bpstat p = NULL;
4495 bpstat tmp;
4496 bpstat retval = NULL;
4497
4498 if (bs == NULL)
4499 return bs;
4500
4501 for (; bs != NULL; bs = bs->next)
4502 {
4503 tmp = (bpstat) xmalloc (sizeof (*tmp));
4504 memcpy (tmp, bs, sizeof (*tmp));
4505 incref_counted_command_line (tmp->commands);
4506 incref_bp_location (tmp->bp_location_at);
4507 if (bs->old_val != NULL)
4508 {
4509 tmp->old_val = value_copy (bs->old_val);
4510 release_value (tmp->old_val);
4511 }
4512
4513 if (p == NULL)
4514 /* This is the first thing in the chain. */
4515 retval = tmp;
4516 else
4517 p->next = tmp;
4518 p = tmp;
4519 }
4520 p->next = NULL;
4521 return retval;
4522 }
4523
4524 /* Find the bpstat associated with this breakpoint. */
4525
4526 bpstat
4527 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4528 {
4529 if (bsp == NULL)
4530 return NULL;
4531
4532 for (; bsp != NULL; bsp = bsp->next)
4533 {
4534 if (bsp->breakpoint_at == breakpoint)
4535 return bsp;
4536 }
4537 return NULL;
4538 }
4539
4540 /* See breakpoint.h. */
4541
4542 int
4543 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4544 {
4545 for (; bsp != NULL; bsp = bsp->next)
4546 {
4547 if (bsp->breakpoint_at == NULL)
4548 {
4549 /* A moribund location can never explain a signal other than
4550 GDB_SIGNAL_TRAP. */
4551 if (sig == GDB_SIGNAL_TRAP)
4552 return 1;
4553 }
4554 else
4555 {
4556 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4557 sig))
4558 return 1;
4559 }
4560 }
4561
4562 return 0;
4563 }
4564
4565 /* Put in *NUM the breakpoint number of the first breakpoint we are
4566 stopped at. *BSP upon return is a bpstat which points to the
4567 remaining breakpoints stopped at (but which is not guaranteed to be
4568 good for anything but further calls to bpstat_num).
4569
4570 Return 0 if passed a bpstat which does not indicate any breakpoints.
4571 Return -1 if stopped at a breakpoint that has been deleted since
4572 we set it.
4573 Return 1 otherwise. */
4574
4575 int
4576 bpstat_num (bpstat *bsp, int *num)
4577 {
4578 struct breakpoint *b;
4579
4580 if ((*bsp) == NULL)
4581 return 0; /* No more breakpoint values */
4582
4583 /* We assume we'll never have several bpstats that correspond to a
4584 single breakpoint -- otherwise, this function might return the
4585 same number more than once and this will look ugly. */
4586 b = (*bsp)->breakpoint_at;
4587 *bsp = (*bsp)->next;
4588 if (b == NULL)
4589 return -1; /* breakpoint that's been deleted since */
4590
4591 *num = b->number; /* We have its number */
4592 return 1;
4593 }
4594
4595 /* See breakpoint.h. */
4596
4597 void
4598 bpstat_clear_actions (void)
4599 {
4600 struct thread_info *tp;
4601 bpstat bs;
4602
4603 if (ptid_equal (inferior_ptid, null_ptid))
4604 return;
4605
4606 tp = find_thread_ptid (inferior_ptid);
4607 if (tp == NULL)
4608 return;
4609
4610 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4611 {
4612 decref_counted_command_line (&bs->commands);
4613
4614 if (bs->old_val != NULL)
4615 {
4616 value_free (bs->old_val);
4617 bs->old_val = NULL;
4618 }
4619 }
4620 }
4621
4622 /* Called when a command is about to proceed the inferior. */
4623
4624 static void
4625 breakpoint_about_to_proceed (void)
4626 {
4627 if (!ptid_equal (inferior_ptid, null_ptid))
4628 {
4629 struct thread_info *tp = inferior_thread ();
4630
4631 /* Allow inferior function calls in breakpoint commands to not
4632 interrupt the command list. When the call finishes
4633 successfully, the inferior will be standing at the same
4634 breakpoint as if nothing happened. */
4635 if (tp->control.in_infcall)
4636 return;
4637 }
4638
4639 breakpoint_proceeded = 1;
4640 }
4641
4642 /* Stub for cleaning up our state if we error-out of a breakpoint
4643 command. */
4644 static void
4645 cleanup_executing_breakpoints (void *ignore)
4646 {
4647 executing_breakpoint_commands = 0;
4648 }
4649
4650 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4651 or its equivalent. */
4652
4653 static int
4654 command_line_is_silent (struct command_line *cmd)
4655 {
4656 return cmd && (strcmp ("silent", cmd->line) == 0);
4657 }
4658
4659 /* Execute all the commands associated with all the breakpoints at
4660 this location. Any of these commands could cause the process to
4661 proceed beyond this point, etc. We look out for such changes by
4662 checking the global "breakpoint_proceeded" after each command.
4663
4664 Returns true if a breakpoint command resumed the inferior. In that
4665 case, it is the caller's responsibility to recall it again with the
4666 bpstat of the current thread. */
4667
4668 static int
4669 bpstat_do_actions_1 (bpstat *bsp)
4670 {
4671 bpstat bs;
4672 struct cleanup *old_chain;
4673 int again = 0;
4674
4675 /* Avoid endless recursion if a `source' command is contained
4676 in bs->commands. */
4677 if (executing_breakpoint_commands)
4678 return 0;
4679
4680 executing_breakpoint_commands = 1;
4681 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4682
4683 scoped_restore preventer = prevent_dont_repeat ();
4684
4685 /* This pointer will iterate over the list of bpstat's. */
4686 bs = *bsp;
4687
4688 breakpoint_proceeded = 0;
4689 for (; bs != NULL; bs = bs->next)
4690 {
4691 struct counted_command_line *ccmd;
4692 struct command_line *cmd;
4693 struct cleanup *this_cmd_tree_chain;
4694
4695 /* Take ownership of the BSP's command tree, if it has one.
4696
4697 The command tree could legitimately contain commands like
4698 'step' and 'next', which call clear_proceed_status, which
4699 frees stop_bpstat's command tree. To make sure this doesn't
4700 free the tree we're executing out from under us, we need to
4701 take ownership of the tree ourselves. Since a given bpstat's
4702 commands are only executed once, we don't need to copy it; we
4703 can clear the pointer in the bpstat, and make sure we free
4704 the tree when we're done. */
4705 ccmd = bs->commands;
4706 bs->commands = NULL;
4707 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4708 cmd = ccmd ? ccmd->commands : NULL;
4709 if (command_line_is_silent (cmd))
4710 {
4711 /* The action has been already done by bpstat_stop_status. */
4712 cmd = cmd->next;
4713 }
4714
4715 while (cmd != NULL)
4716 {
4717 execute_control_command (cmd);
4718
4719 if (breakpoint_proceeded)
4720 break;
4721 else
4722 cmd = cmd->next;
4723 }
4724
4725 /* We can free this command tree now. */
4726 do_cleanups (this_cmd_tree_chain);
4727
4728 if (breakpoint_proceeded)
4729 {
4730 if (current_ui->async)
4731 /* If we are in async mode, then the target might be still
4732 running, not stopped at any breakpoint, so nothing for
4733 us to do here -- just return to the event loop. */
4734 ;
4735 else
4736 /* In sync mode, when execute_control_command returns
4737 we're already standing on the next breakpoint.
4738 Breakpoint commands for that stop were not run, since
4739 execute_command does not run breakpoint commands --
4740 only command_line_handler does, but that one is not
4741 involved in execution of breakpoint commands. So, we
4742 can now execute breakpoint commands. It should be
4743 noted that making execute_command do bpstat actions is
4744 not an option -- in this case we'll have recursive
4745 invocation of bpstat for each breakpoint with a
4746 command, and can easily blow up GDB stack. Instead, we
4747 return true, which will trigger the caller to recall us
4748 with the new stop_bpstat. */
4749 again = 1;
4750 break;
4751 }
4752 }
4753 do_cleanups (old_chain);
4754 return again;
4755 }
4756
4757 void
4758 bpstat_do_actions (void)
4759 {
4760 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4761
4762 /* Do any commands attached to breakpoint we are stopped at. */
4763 while (!ptid_equal (inferior_ptid, null_ptid)
4764 && target_has_execution
4765 && !is_exited (inferior_ptid)
4766 && !is_executing (inferior_ptid))
4767 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4768 and only return when it is stopped at the next breakpoint, we
4769 keep doing breakpoint actions until it returns false to
4770 indicate the inferior was not resumed. */
4771 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4772 break;
4773
4774 discard_cleanups (cleanup_if_error);
4775 }
4776
4777 /* Print out the (old or new) value associated with a watchpoint. */
4778
4779 static void
4780 watchpoint_value_print (struct value *val, struct ui_file *stream)
4781 {
4782 if (val == NULL)
4783 fprintf_unfiltered (stream, _("<unreadable>"));
4784 else
4785 {
4786 struct value_print_options opts;
4787 get_user_print_options (&opts);
4788 value_print (val, stream, &opts);
4789 }
4790 }
4791
4792 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4793 debugging multiple threads. */
4794
4795 void
4796 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4797 {
4798 if (uiout->is_mi_like_p ())
4799 return;
4800
4801 uiout->text ("\n");
4802
4803 if (show_thread_that_caused_stop ())
4804 {
4805 const char *name;
4806 struct thread_info *thr = inferior_thread ();
4807
4808 uiout->text ("Thread ");
4809 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4810
4811 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4812 if (name != NULL)
4813 {
4814 uiout->text (" \"");
4815 uiout->field_fmt ("name", "%s", name);
4816 uiout->text ("\"");
4817 }
4818
4819 uiout->text (" hit ");
4820 }
4821 }
4822
4823 /* Generic routine for printing messages indicating why we
4824 stopped. The behavior of this function depends on the value
4825 'print_it' in the bpstat structure. Under some circumstances we
4826 may decide not to print anything here and delegate the task to
4827 normal_stop(). */
4828
4829 static enum print_stop_action
4830 print_bp_stop_message (bpstat bs)
4831 {
4832 switch (bs->print_it)
4833 {
4834 case print_it_noop:
4835 /* Nothing should be printed for this bpstat entry. */
4836 return PRINT_UNKNOWN;
4837 break;
4838
4839 case print_it_done:
4840 /* We still want to print the frame, but we already printed the
4841 relevant messages. */
4842 return PRINT_SRC_AND_LOC;
4843 break;
4844
4845 case print_it_normal:
4846 {
4847 struct breakpoint *b = bs->breakpoint_at;
4848
4849 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4850 which has since been deleted. */
4851 if (b == NULL)
4852 return PRINT_UNKNOWN;
4853
4854 /* Normal case. Call the breakpoint's print_it method. */
4855 return b->ops->print_it (bs);
4856 }
4857 break;
4858
4859 default:
4860 internal_error (__FILE__, __LINE__,
4861 _("print_bp_stop_message: unrecognized enum value"));
4862 break;
4863 }
4864 }
4865
4866 /* A helper function that prints a shared library stopped event. */
4867
4868 static void
4869 print_solib_event (int is_catchpoint)
4870 {
4871 int any_deleted
4872 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4873 int any_added
4874 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4875
4876 if (!is_catchpoint)
4877 {
4878 if (any_added || any_deleted)
4879 current_uiout->text (_("Stopped due to shared library event:\n"));
4880 else
4881 current_uiout->text (_("Stopped due to shared library event (no "
4882 "libraries added or removed)\n"));
4883 }
4884
4885 if (current_uiout->is_mi_like_p ())
4886 current_uiout->field_string ("reason",
4887 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4888
4889 if (any_deleted)
4890 {
4891 struct cleanup *cleanup;
4892 char *name;
4893 int ix;
4894
4895 current_uiout->text (_(" Inferior unloaded "));
4896 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4897 "removed");
4898 for (ix = 0;
4899 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4900 ix, name);
4901 ++ix)
4902 {
4903 if (ix > 0)
4904 current_uiout->text (" ");
4905 current_uiout->field_string ("library", name);
4906 current_uiout->text ("\n");
4907 }
4908
4909 do_cleanups (cleanup);
4910 }
4911
4912 if (any_added)
4913 {
4914 struct so_list *iter;
4915 int ix;
4916 struct cleanup *cleanup;
4917
4918 current_uiout->text (_(" Inferior loaded "));
4919 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4920 "added");
4921 for (ix = 0;
4922 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4923 ix, iter);
4924 ++ix)
4925 {
4926 if (ix > 0)
4927 current_uiout->text (" ");
4928 current_uiout->field_string ("library", iter->so_name);
4929 current_uiout->text ("\n");
4930 }
4931
4932 do_cleanups (cleanup);
4933 }
4934 }
4935
4936 /* Print a message indicating what happened. This is called from
4937 normal_stop(). The input to this routine is the head of the bpstat
4938 list - a list of the eventpoints that caused this stop. KIND is
4939 the target_waitkind for the stopping event. This
4940 routine calls the generic print routine for printing a message
4941 about reasons for stopping. This will print (for example) the
4942 "Breakpoint n," part of the output. The return value of this
4943 routine is one of:
4944
4945 PRINT_UNKNOWN: Means we printed nothing.
4946 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4947 code to print the location. An example is
4948 "Breakpoint 1, " which should be followed by
4949 the location.
4950 PRINT_SRC_ONLY: Means we printed something, but there is no need
4951 to also print the location part of the message.
4952 An example is the catch/throw messages, which
4953 don't require a location appended to the end.
4954 PRINT_NOTHING: We have done some printing and we don't need any
4955 further info to be printed. */
4956
4957 enum print_stop_action
4958 bpstat_print (bpstat bs, int kind)
4959 {
4960 enum print_stop_action val;
4961
4962 /* Maybe another breakpoint in the chain caused us to stop.
4963 (Currently all watchpoints go on the bpstat whether hit or not.
4964 That probably could (should) be changed, provided care is taken
4965 with respect to bpstat_explains_signal). */
4966 for (; bs; bs = bs->next)
4967 {
4968 val = print_bp_stop_message (bs);
4969 if (val == PRINT_SRC_ONLY
4970 || val == PRINT_SRC_AND_LOC
4971 || val == PRINT_NOTHING)
4972 return val;
4973 }
4974
4975 /* If we had hit a shared library event breakpoint,
4976 print_bp_stop_message would print out this message. If we hit an
4977 OS-level shared library event, do the same thing. */
4978 if (kind == TARGET_WAITKIND_LOADED)
4979 {
4980 print_solib_event (0);
4981 return PRINT_NOTHING;
4982 }
4983
4984 /* We reached the end of the chain, or we got a null BS to start
4985 with and nothing was printed. */
4986 return PRINT_UNKNOWN;
4987 }
4988
4989 /* Evaluate the expression EXP and return 1 if value is zero.
4990 This returns the inverse of the condition because it is called
4991 from catch_errors which returns 0 if an exception happened, and if an
4992 exception happens we want execution to stop.
4993 The argument is a "struct expression *" that has been cast to a
4994 "void *" to make it pass through catch_errors. */
4995
4996 static int
4997 breakpoint_cond_eval (void *exp)
4998 {
4999 struct value *mark = value_mark ();
5000 int i = !value_true (evaluate_expression ((struct expression *) exp));
5001
5002 value_free_to_mark (mark);
5003 return i;
5004 }
5005
5006 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
5007
5008 static bpstat
5009 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
5010 {
5011 bpstat bs;
5012
5013 bs = (bpstat) xmalloc (sizeof (*bs));
5014 bs->next = NULL;
5015 **bs_link_pointer = bs;
5016 *bs_link_pointer = &bs->next;
5017 bs->breakpoint_at = bl->owner;
5018 bs->bp_location_at = bl;
5019 incref_bp_location (bl);
5020 /* If the condition is false, etc., don't do the commands. */
5021 bs->commands = NULL;
5022 bs->old_val = NULL;
5023 bs->print_it = print_it_normal;
5024 return bs;
5025 }
5026 \f
5027 /* The target has stopped with waitstatus WS. Check if any hardware
5028 watchpoints have triggered, according to the target. */
5029
5030 int
5031 watchpoints_triggered (struct target_waitstatus *ws)
5032 {
5033 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
5034 CORE_ADDR addr;
5035 struct breakpoint *b;
5036
5037 if (!stopped_by_watchpoint)
5038 {
5039 /* We were not stopped by a watchpoint. Mark all watchpoints
5040 as not triggered. */
5041 ALL_BREAKPOINTS (b)
5042 if (is_hardware_watchpoint (b))
5043 {
5044 struct watchpoint *w = (struct watchpoint *) b;
5045
5046 w->watchpoint_triggered = watch_triggered_no;
5047 }
5048
5049 return 0;
5050 }
5051
5052 if (!target_stopped_data_address (&current_target, &addr))
5053 {
5054 /* We were stopped by a watchpoint, but we don't know where.
5055 Mark all watchpoints as unknown. */
5056 ALL_BREAKPOINTS (b)
5057 if (is_hardware_watchpoint (b))
5058 {
5059 struct watchpoint *w = (struct watchpoint *) b;
5060
5061 w->watchpoint_triggered = watch_triggered_unknown;
5062 }
5063
5064 return 1;
5065 }
5066
5067 /* The target could report the data address. Mark watchpoints
5068 affected by this data address as triggered, and all others as not
5069 triggered. */
5070
5071 ALL_BREAKPOINTS (b)
5072 if (is_hardware_watchpoint (b))
5073 {
5074 struct watchpoint *w = (struct watchpoint *) b;
5075 struct bp_location *loc;
5076
5077 w->watchpoint_triggered = watch_triggered_no;
5078 for (loc = b->loc; loc; loc = loc->next)
5079 {
5080 if (is_masked_watchpoint (b))
5081 {
5082 CORE_ADDR newaddr = addr & w->hw_wp_mask;
5083 CORE_ADDR start = loc->address & w->hw_wp_mask;
5084
5085 if (newaddr == start)
5086 {
5087 w->watchpoint_triggered = watch_triggered_yes;
5088 break;
5089 }
5090 }
5091 /* Exact match not required. Within range is sufficient. */
5092 else if (target_watchpoint_addr_within_range (&current_target,
5093 addr, loc->address,
5094 loc->length))
5095 {
5096 w->watchpoint_triggered = watch_triggered_yes;
5097 break;
5098 }
5099 }
5100 }
5101
5102 return 1;
5103 }
5104
5105 /* Possible return values for watchpoint_check (this can't be an enum
5106 because of check_errors). */
5107 /* The watchpoint has been deleted. */
5108 #define WP_DELETED 1
5109 /* The value has changed. */
5110 #define WP_VALUE_CHANGED 2
5111 /* The value has not changed. */
5112 #define WP_VALUE_NOT_CHANGED 3
5113 /* Ignore this watchpoint, no matter if the value changed or not. */
5114 #define WP_IGNORE 4
5115
5116 #define BP_TEMPFLAG 1
5117 #define BP_HARDWAREFLAG 2
5118
5119 /* Evaluate watchpoint condition expression and check if its value
5120 changed.
5121
5122 P should be a pointer to struct bpstat, but is defined as a void *
5123 in order for this function to be usable with catch_errors. */
5124
5125 static int
5126 watchpoint_check (void *p)
5127 {
5128 bpstat bs = (bpstat) p;
5129 struct watchpoint *b;
5130 struct frame_info *fr;
5131 int within_current_scope;
5132
5133 /* BS is built from an existing struct breakpoint. */
5134 gdb_assert (bs->breakpoint_at != NULL);
5135 b = (struct watchpoint *) bs->breakpoint_at;
5136
5137 /* If this is a local watchpoint, we only want to check if the
5138 watchpoint frame is in scope if the current thread is the thread
5139 that was used to create the watchpoint. */
5140 if (!watchpoint_in_thread_scope (b))
5141 return WP_IGNORE;
5142
5143 if (b->exp_valid_block == NULL)
5144 within_current_scope = 1;
5145 else
5146 {
5147 struct frame_info *frame = get_current_frame ();
5148 struct gdbarch *frame_arch = get_frame_arch (frame);
5149 CORE_ADDR frame_pc = get_frame_pc (frame);
5150
5151 /* stack_frame_destroyed_p() returns a non-zero value if we're
5152 still in the function but the stack frame has already been
5153 invalidated. Since we can't rely on the values of local
5154 variables after the stack has been destroyed, we are treating
5155 the watchpoint in that state as `not changed' without further
5156 checking. Don't mark watchpoints as changed if the current
5157 frame is in an epilogue - even if they are in some other
5158 frame, our view of the stack is likely to be wrong and
5159 frame_find_by_id could error out. */
5160 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
5161 return WP_IGNORE;
5162
5163 fr = frame_find_by_id (b->watchpoint_frame);
5164 within_current_scope = (fr != NULL);
5165
5166 /* If we've gotten confused in the unwinder, we might have
5167 returned a frame that can't describe this variable. */
5168 if (within_current_scope)
5169 {
5170 struct symbol *function;
5171
5172 function = get_frame_function (fr);
5173 if (function == NULL
5174 || !contained_in (b->exp_valid_block,
5175 SYMBOL_BLOCK_VALUE (function)))
5176 within_current_scope = 0;
5177 }
5178
5179 if (within_current_scope)
5180 /* If we end up stopping, the current frame will get selected
5181 in normal_stop. So this call to select_frame won't affect
5182 the user. */
5183 select_frame (fr);
5184 }
5185
5186 if (within_current_scope)
5187 {
5188 /* We use value_{,free_to_}mark because it could be a *long*
5189 time before we return to the command level and call
5190 free_all_values. We can't call free_all_values because we
5191 might be in the middle of evaluating a function call. */
5192
5193 int pc = 0;
5194 struct value *mark;
5195 struct value *new_val;
5196
5197 if (is_masked_watchpoint (&b->base))
5198 /* Since we don't know the exact trigger address (from
5199 stopped_data_address), just tell the user we've triggered
5200 a mask watchpoint. */
5201 return WP_VALUE_CHANGED;
5202
5203 mark = value_mark ();
5204 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
5205
5206 if (b->val_bitsize != 0)
5207 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
5208
5209 /* We use value_equal_contents instead of value_equal because
5210 the latter coerces an array to a pointer, thus comparing just
5211 the address of the array instead of its contents. This is
5212 not what we want. */
5213 if ((b->val != NULL) != (new_val != NULL)
5214 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
5215 {
5216 if (new_val != NULL)
5217 {
5218 release_value (new_val);
5219 value_free_to_mark (mark);
5220 }
5221 bs->old_val = b->val;
5222 b->val = new_val;
5223 b->val_valid = 1;
5224 return WP_VALUE_CHANGED;
5225 }
5226 else
5227 {
5228 /* Nothing changed. */
5229 value_free_to_mark (mark);
5230 return WP_VALUE_NOT_CHANGED;
5231 }
5232 }
5233 else
5234 {
5235 /* This seems like the only logical thing to do because
5236 if we temporarily ignored the watchpoint, then when
5237 we reenter the block in which it is valid it contains
5238 garbage (in the case of a function, it may have two
5239 garbage values, one before and one after the prologue).
5240 So we can't even detect the first assignment to it and
5241 watch after that (since the garbage may or may not equal
5242 the first value assigned). */
5243 /* We print all the stop information in
5244 breakpoint_ops->print_it, but in this case, by the time we
5245 call breakpoint_ops->print_it this bp will be deleted
5246 already. So we have no choice but print the information
5247 here. */
5248
5249 SWITCH_THRU_ALL_UIS ()
5250 {
5251 struct ui_out *uiout = current_uiout;
5252
5253 if (uiout->is_mi_like_p ())
5254 uiout->field_string
5255 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5256 uiout->text ("\nWatchpoint ");
5257 uiout->field_int ("wpnum", b->base.number);
5258 uiout->text (" deleted because the program has left the block in\n"
5259 "which its expression is valid.\n");
5260 }
5261
5262 /* Make sure the watchpoint's commands aren't executed. */
5263 decref_counted_command_line (&b->base.commands);
5264 watchpoint_del_at_next_stop (b);
5265
5266 return WP_DELETED;
5267 }
5268 }
5269
5270 /* Return true if it looks like target has stopped due to hitting
5271 breakpoint location BL. This function does not check if we should
5272 stop, only if BL explains the stop. */
5273
5274 static int
5275 bpstat_check_location (const struct bp_location *bl,
5276 struct address_space *aspace, CORE_ADDR bp_addr,
5277 const struct target_waitstatus *ws)
5278 {
5279 struct breakpoint *b = bl->owner;
5280
5281 /* BL is from an existing breakpoint. */
5282 gdb_assert (b != NULL);
5283
5284 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5285 }
5286
5287 /* Determine if the watched values have actually changed, and we
5288 should stop. If not, set BS->stop to 0. */
5289
5290 static void
5291 bpstat_check_watchpoint (bpstat bs)
5292 {
5293 const struct bp_location *bl;
5294 struct watchpoint *b;
5295
5296 /* BS is built for existing struct breakpoint. */
5297 bl = bs->bp_location_at;
5298 gdb_assert (bl != NULL);
5299 b = (struct watchpoint *) bs->breakpoint_at;
5300 gdb_assert (b != NULL);
5301
5302 {
5303 int must_check_value = 0;
5304
5305 if (b->base.type == bp_watchpoint)
5306 /* For a software watchpoint, we must always check the
5307 watched value. */
5308 must_check_value = 1;
5309 else if (b->watchpoint_triggered == watch_triggered_yes)
5310 /* We have a hardware watchpoint (read, write, or access)
5311 and the target earlier reported an address watched by
5312 this watchpoint. */
5313 must_check_value = 1;
5314 else if (b->watchpoint_triggered == watch_triggered_unknown
5315 && b->base.type == bp_hardware_watchpoint)
5316 /* We were stopped by a hardware watchpoint, but the target could
5317 not report the data address. We must check the watchpoint's
5318 value. Access and read watchpoints are out of luck; without
5319 a data address, we can't figure it out. */
5320 must_check_value = 1;
5321
5322 if (must_check_value)
5323 {
5324 char *message
5325 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5326 b->base.number);
5327 struct cleanup *cleanups = make_cleanup (xfree, message);
5328 int e = catch_errors (watchpoint_check, bs, message,
5329 RETURN_MASK_ALL);
5330 do_cleanups (cleanups);
5331 switch (e)
5332 {
5333 case WP_DELETED:
5334 /* We've already printed what needs to be printed. */
5335 bs->print_it = print_it_done;
5336 /* Stop. */
5337 break;
5338 case WP_IGNORE:
5339 bs->print_it = print_it_noop;
5340 bs->stop = 0;
5341 break;
5342 case WP_VALUE_CHANGED:
5343 if (b->base.type == bp_read_watchpoint)
5344 {
5345 /* There are two cases to consider here:
5346
5347 1. We're watching the triggered memory for reads.
5348 In that case, trust the target, and always report
5349 the watchpoint hit to the user. Even though
5350 reads don't cause value changes, the value may
5351 have changed since the last time it was read, and
5352 since we're not trapping writes, we will not see
5353 those, and as such we should ignore our notion of
5354 old value.
5355
5356 2. We're watching the triggered memory for both
5357 reads and writes. There are two ways this may
5358 happen:
5359
5360 2.1. This is a target that can't break on data
5361 reads only, but can break on accesses (reads or
5362 writes), such as e.g., x86. We detect this case
5363 at the time we try to insert read watchpoints.
5364
5365 2.2. Otherwise, the target supports read
5366 watchpoints, but, the user set an access or write
5367 watchpoint watching the same memory as this read
5368 watchpoint.
5369
5370 If we're watching memory writes as well as reads,
5371 ignore watchpoint hits when we find that the
5372 value hasn't changed, as reads don't cause
5373 changes. This still gives false positives when
5374 the program writes the same value to memory as
5375 what there was already in memory (we will confuse
5376 it for a read), but it's much better than
5377 nothing. */
5378
5379 int other_write_watchpoint = 0;
5380
5381 if (bl->watchpoint_type == hw_read)
5382 {
5383 struct breakpoint *other_b;
5384
5385 ALL_BREAKPOINTS (other_b)
5386 if (other_b->type == bp_hardware_watchpoint
5387 || other_b->type == bp_access_watchpoint)
5388 {
5389 struct watchpoint *other_w =
5390 (struct watchpoint *) other_b;
5391
5392 if (other_w->watchpoint_triggered
5393 == watch_triggered_yes)
5394 {
5395 other_write_watchpoint = 1;
5396 break;
5397 }
5398 }
5399 }
5400
5401 if (other_write_watchpoint
5402 || bl->watchpoint_type == hw_access)
5403 {
5404 /* We're watching the same memory for writes,
5405 and the value changed since the last time we
5406 updated it, so this trap must be for a write.
5407 Ignore it. */
5408 bs->print_it = print_it_noop;
5409 bs->stop = 0;
5410 }
5411 }
5412 break;
5413 case WP_VALUE_NOT_CHANGED:
5414 if (b->base.type == bp_hardware_watchpoint
5415 || b->base.type == bp_watchpoint)
5416 {
5417 /* Don't stop: write watchpoints shouldn't fire if
5418 the value hasn't changed. */
5419 bs->print_it = print_it_noop;
5420 bs->stop = 0;
5421 }
5422 /* Stop. */
5423 break;
5424 default:
5425 /* Can't happen. */
5426 case 0:
5427 /* Error from catch_errors. */
5428 {
5429 SWITCH_THRU_ALL_UIS ()
5430 {
5431 printf_filtered (_("Watchpoint %d deleted.\n"),
5432 b->base.number);
5433 }
5434 watchpoint_del_at_next_stop (b);
5435 /* We've already printed what needs to be printed. */
5436 bs->print_it = print_it_done;
5437 }
5438 break;
5439 }
5440 }
5441 else /* must_check_value == 0 */
5442 {
5443 /* This is a case where some watchpoint(s) triggered, but
5444 not at the address of this watchpoint, or else no
5445 watchpoint triggered after all. So don't print
5446 anything for this watchpoint. */
5447 bs->print_it = print_it_noop;
5448 bs->stop = 0;
5449 }
5450 }
5451 }
5452
5453 /* For breakpoints that are currently marked as telling gdb to stop,
5454 check conditions (condition proper, frame, thread and ignore count)
5455 of breakpoint referred to by BS. If we should not stop for this
5456 breakpoint, set BS->stop to 0. */
5457
5458 static void
5459 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5460 {
5461 const struct bp_location *bl;
5462 struct breakpoint *b;
5463 int value_is_zero = 0;
5464 struct expression *cond;
5465
5466 gdb_assert (bs->stop);
5467
5468 /* BS is built for existing struct breakpoint. */
5469 bl = bs->bp_location_at;
5470 gdb_assert (bl != NULL);
5471 b = bs->breakpoint_at;
5472 gdb_assert (b != NULL);
5473
5474 /* Even if the target evaluated the condition on its end and notified GDB, we
5475 need to do so again since GDB does not know if we stopped due to a
5476 breakpoint or a single step breakpoint. */
5477
5478 if (frame_id_p (b->frame_id)
5479 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5480 {
5481 bs->stop = 0;
5482 return;
5483 }
5484
5485 /* If this is a thread/task-specific breakpoint, don't waste cpu
5486 evaluating the condition if this isn't the specified
5487 thread/task. */
5488 if ((b->thread != -1 && b->thread != ptid_to_global_thread_id (ptid))
5489 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5490
5491 {
5492 bs->stop = 0;
5493 return;
5494 }
5495
5496 /* Evaluate extension language breakpoints that have a "stop" method
5497 implemented. */
5498 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5499
5500 if (is_watchpoint (b))
5501 {
5502 struct watchpoint *w = (struct watchpoint *) b;
5503
5504 cond = w->cond_exp.get ();
5505 }
5506 else
5507 cond = bl->cond.get ();
5508
5509 if (cond && b->disposition != disp_del_at_next_stop)
5510 {
5511 int within_current_scope = 1;
5512 struct watchpoint * w;
5513
5514 /* We use value_mark and value_free_to_mark because it could
5515 be a long time before we return to the command level and
5516 call free_all_values. We can't call free_all_values
5517 because we might be in the middle of evaluating a
5518 function call. */
5519 struct value *mark = value_mark ();
5520
5521 if (is_watchpoint (b))
5522 w = (struct watchpoint *) b;
5523 else
5524 w = NULL;
5525
5526 /* Need to select the frame, with all that implies so that
5527 the conditions will have the right context. Because we
5528 use the frame, we will not see an inlined function's
5529 variables when we arrive at a breakpoint at the start
5530 of the inlined function; the current frame will be the
5531 call site. */
5532 if (w == NULL || w->cond_exp_valid_block == NULL)
5533 select_frame (get_current_frame ());
5534 else
5535 {
5536 struct frame_info *frame;
5537
5538 /* For local watchpoint expressions, which particular
5539 instance of a local is being watched matters, so we
5540 keep track of the frame to evaluate the expression
5541 in. To evaluate the condition however, it doesn't
5542 really matter which instantiation of the function
5543 where the condition makes sense triggers the
5544 watchpoint. This allows an expression like "watch
5545 global if q > 10" set in `func', catch writes to
5546 global on all threads that call `func', or catch
5547 writes on all recursive calls of `func' by a single
5548 thread. We simply always evaluate the condition in
5549 the innermost frame that's executing where it makes
5550 sense to evaluate the condition. It seems
5551 intuitive. */
5552 frame = block_innermost_frame (w->cond_exp_valid_block);
5553 if (frame != NULL)
5554 select_frame (frame);
5555 else
5556 within_current_scope = 0;
5557 }
5558 if (within_current_scope)
5559 value_is_zero
5560 = catch_errors (breakpoint_cond_eval, cond,
5561 "Error in testing breakpoint condition:\n",
5562 RETURN_MASK_ALL);
5563 else
5564 {
5565 warning (_("Watchpoint condition cannot be tested "
5566 "in the current scope"));
5567 /* If we failed to set the right context for this
5568 watchpoint, unconditionally report it. */
5569 value_is_zero = 0;
5570 }
5571 /* FIXME-someday, should give breakpoint #. */
5572 value_free_to_mark (mark);
5573 }
5574
5575 if (cond && value_is_zero)
5576 {
5577 bs->stop = 0;
5578 }
5579 else if (b->ignore_count > 0)
5580 {
5581 b->ignore_count--;
5582 bs->stop = 0;
5583 /* Increase the hit count even though we don't stop. */
5584 ++(b->hit_count);
5585 observer_notify_breakpoint_modified (b);
5586 }
5587 }
5588
5589 /* Returns true if we need to track moribund locations of LOC's type
5590 on the current target. */
5591
5592 static int
5593 need_moribund_for_location_type (struct bp_location *loc)
5594 {
5595 return ((loc->loc_type == bp_loc_software_breakpoint
5596 && !target_supports_stopped_by_sw_breakpoint ())
5597 || (loc->loc_type == bp_loc_hardware_breakpoint
5598 && !target_supports_stopped_by_hw_breakpoint ()));
5599 }
5600
5601
5602 /* Get a bpstat associated with having just stopped at address
5603 BP_ADDR in thread PTID.
5604
5605 Determine whether we stopped at a breakpoint, etc, or whether we
5606 don't understand this stop. Result is a chain of bpstat's such
5607 that:
5608
5609 if we don't understand the stop, the result is a null pointer.
5610
5611 if we understand why we stopped, the result is not null.
5612
5613 Each element of the chain refers to a particular breakpoint or
5614 watchpoint at which we have stopped. (We may have stopped for
5615 several reasons concurrently.)
5616
5617 Each element of the chain has valid next, breakpoint_at,
5618 commands, FIXME??? fields. */
5619
5620 bpstat
5621 bpstat_stop_status (struct address_space *aspace,
5622 CORE_ADDR bp_addr, ptid_t ptid,
5623 const struct target_waitstatus *ws)
5624 {
5625 struct breakpoint *b = NULL;
5626 struct bp_location *bl;
5627 struct bp_location *loc;
5628 /* First item of allocated bpstat's. */
5629 bpstat bs_head = NULL, *bs_link = &bs_head;
5630 /* Pointer to the last thing in the chain currently. */
5631 bpstat bs;
5632 int ix;
5633 int need_remove_insert;
5634 int removed_any;
5635
5636 /* First, build the bpstat chain with locations that explain a
5637 target stop, while being careful to not set the target running,
5638 as that may invalidate locations (in particular watchpoint
5639 locations are recreated). Resuming will happen here with
5640 breakpoint conditions or watchpoint expressions that include
5641 inferior function calls. */
5642
5643 ALL_BREAKPOINTS (b)
5644 {
5645 if (!breakpoint_enabled (b))
5646 continue;
5647
5648 for (bl = b->loc; bl != NULL; bl = bl->next)
5649 {
5650 /* For hardware watchpoints, we look only at the first
5651 location. The watchpoint_check function will work on the
5652 entire expression, not the individual locations. For
5653 read watchpoints, the watchpoints_triggered function has
5654 checked all locations already. */
5655 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5656 break;
5657
5658 if (!bl->enabled || bl->shlib_disabled)
5659 continue;
5660
5661 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5662 continue;
5663
5664 /* Come here if it's a watchpoint, or if the break address
5665 matches. */
5666
5667 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5668 explain stop. */
5669
5670 /* Assume we stop. Should we find a watchpoint that is not
5671 actually triggered, or if the condition of the breakpoint
5672 evaluates as false, we'll reset 'stop' to 0. */
5673 bs->stop = 1;
5674 bs->print = 1;
5675
5676 /* If this is a scope breakpoint, mark the associated
5677 watchpoint as triggered so that we will handle the
5678 out-of-scope event. We'll get to the watchpoint next
5679 iteration. */
5680 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5681 {
5682 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5683
5684 w->watchpoint_triggered = watch_triggered_yes;
5685 }
5686 }
5687 }
5688
5689 /* Check if a moribund breakpoint explains the stop. */
5690 if (!target_supports_stopped_by_sw_breakpoint ()
5691 || !target_supports_stopped_by_hw_breakpoint ())
5692 {
5693 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5694 {
5695 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5696 && need_moribund_for_location_type (loc))
5697 {
5698 bs = bpstat_alloc (loc, &bs_link);
5699 /* For hits of moribund locations, we should just proceed. */
5700 bs->stop = 0;
5701 bs->print = 0;
5702 bs->print_it = print_it_noop;
5703 }
5704 }
5705 }
5706
5707 /* A bit of special processing for shlib breakpoints. We need to
5708 process solib loading here, so that the lists of loaded and
5709 unloaded libraries are correct before we handle "catch load" and
5710 "catch unload". */
5711 for (bs = bs_head; bs != NULL; bs = bs->next)
5712 {
5713 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5714 {
5715 handle_solib_event ();
5716 break;
5717 }
5718 }
5719
5720 /* Now go through the locations that caused the target to stop, and
5721 check whether we're interested in reporting this stop to higher
5722 layers, or whether we should resume the target transparently. */
5723
5724 removed_any = 0;
5725
5726 for (bs = bs_head; bs != NULL; bs = bs->next)
5727 {
5728 if (!bs->stop)
5729 continue;
5730
5731 b = bs->breakpoint_at;
5732 b->ops->check_status (bs);
5733 if (bs->stop)
5734 {
5735 bpstat_check_breakpoint_conditions (bs, ptid);
5736
5737 if (bs->stop)
5738 {
5739 ++(b->hit_count);
5740 observer_notify_breakpoint_modified (b);
5741
5742 /* We will stop here. */
5743 if (b->disposition == disp_disable)
5744 {
5745 --(b->enable_count);
5746 if (b->enable_count <= 0)
5747 b->enable_state = bp_disabled;
5748 removed_any = 1;
5749 }
5750 if (b->silent)
5751 bs->print = 0;
5752 bs->commands = b->commands;
5753 incref_counted_command_line (bs->commands);
5754 if (command_line_is_silent (bs->commands
5755 ? bs->commands->commands : NULL))
5756 bs->print = 0;
5757
5758 b->ops->after_condition_true (bs);
5759 }
5760
5761 }
5762
5763 /* Print nothing for this entry if we don't stop or don't
5764 print. */
5765 if (!bs->stop || !bs->print)
5766 bs->print_it = print_it_noop;
5767 }
5768
5769 /* If we aren't stopping, the value of some hardware watchpoint may
5770 not have changed, but the intermediate memory locations we are
5771 watching may have. Don't bother if we're stopping; this will get
5772 done later. */
5773 need_remove_insert = 0;
5774 if (! bpstat_causes_stop (bs_head))
5775 for (bs = bs_head; bs != NULL; bs = bs->next)
5776 if (!bs->stop
5777 && bs->breakpoint_at
5778 && is_hardware_watchpoint (bs->breakpoint_at))
5779 {
5780 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5781
5782 update_watchpoint (w, 0 /* don't reparse. */);
5783 need_remove_insert = 1;
5784 }
5785
5786 if (need_remove_insert)
5787 update_global_location_list (UGLL_MAY_INSERT);
5788 else if (removed_any)
5789 update_global_location_list (UGLL_DONT_INSERT);
5790
5791 return bs_head;
5792 }
5793
5794 static void
5795 handle_jit_event (void)
5796 {
5797 struct frame_info *frame;
5798 struct gdbarch *gdbarch;
5799
5800 if (debug_infrun)
5801 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5802
5803 /* Switch terminal for any messages produced by
5804 breakpoint_re_set. */
5805 target_terminal_ours_for_output ();
5806
5807 frame = get_current_frame ();
5808 gdbarch = get_frame_arch (frame);
5809
5810 jit_event_handler (gdbarch);
5811
5812 target_terminal_inferior ();
5813 }
5814
5815 /* Prepare WHAT final decision for infrun. */
5816
5817 /* Decide what infrun needs to do with this bpstat. */
5818
5819 struct bpstat_what
5820 bpstat_what (bpstat bs_head)
5821 {
5822 struct bpstat_what retval;
5823 bpstat bs;
5824
5825 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5826 retval.call_dummy = STOP_NONE;
5827 retval.is_longjmp = 0;
5828
5829 for (bs = bs_head; bs != NULL; bs = bs->next)
5830 {
5831 /* Extract this BS's action. After processing each BS, we check
5832 if its action overrides all we've seem so far. */
5833 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5834 enum bptype bptype;
5835
5836 if (bs->breakpoint_at == NULL)
5837 {
5838 /* I suspect this can happen if it was a momentary
5839 breakpoint which has since been deleted. */
5840 bptype = bp_none;
5841 }
5842 else
5843 bptype = bs->breakpoint_at->type;
5844
5845 switch (bptype)
5846 {
5847 case bp_none:
5848 break;
5849 case bp_breakpoint:
5850 case bp_hardware_breakpoint:
5851 case bp_single_step:
5852 case bp_until:
5853 case bp_finish:
5854 case bp_shlib_event:
5855 if (bs->stop)
5856 {
5857 if (bs->print)
5858 this_action = BPSTAT_WHAT_STOP_NOISY;
5859 else
5860 this_action = BPSTAT_WHAT_STOP_SILENT;
5861 }
5862 else
5863 this_action = BPSTAT_WHAT_SINGLE;
5864 break;
5865 case bp_watchpoint:
5866 case bp_hardware_watchpoint:
5867 case bp_read_watchpoint:
5868 case bp_access_watchpoint:
5869 if (bs->stop)
5870 {
5871 if (bs->print)
5872 this_action = BPSTAT_WHAT_STOP_NOISY;
5873 else
5874 this_action = BPSTAT_WHAT_STOP_SILENT;
5875 }
5876 else
5877 {
5878 /* There was a watchpoint, but we're not stopping.
5879 This requires no further action. */
5880 }
5881 break;
5882 case bp_longjmp:
5883 case bp_longjmp_call_dummy:
5884 case bp_exception:
5885 if (bs->stop)
5886 {
5887 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5888 retval.is_longjmp = bptype != bp_exception;
5889 }
5890 else
5891 this_action = BPSTAT_WHAT_SINGLE;
5892 break;
5893 case bp_longjmp_resume:
5894 case bp_exception_resume:
5895 if (bs->stop)
5896 {
5897 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5898 retval.is_longjmp = bptype == bp_longjmp_resume;
5899 }
5900 else
5901 this_action = BPSTAT_WHAT_SINGLE;
5902 break;
5903 case bp_step_resume:
5904 if (bs->stop)
5905 this_action = BPSTAT_WHAT_STEP_RESUME;
5906 else
5907 {
5908 /* It is for the wrong frame. */
5909 this_action = BPSTAT_WHAT_SINGLE;
5910 }
5911 break;
5912 case bp_hp_step_resume:
5913 if (bs->stop)
5914 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5915 else
5916 {
5917 /* It is for the wrong frame. */
5918 this_action = BPSTAT_WHAT_SINGLE;
5919 }
5920 break;
5921 case bp_watchpoint_scope:
5922 case bp_thread_event:
5923 case bp_overlay_event:
5924 case bp_longjmp_master:
5925 case bp_std_terminate_master:
5926 case bp_exception_master:
5927 this_action = BPSTAT_WHAT_SINGLE;
5928 break;
5929 case bp_catchpoint:
5930 if (bs->stop)
5931 {
5932 if (bs->print)
5933 this_action = BPSTAT_WHAT_STOP_NOISY;
5934 else
5935 this_action = BPSTAT_WHAT_STOP_SILENT;
5936 }
5937 else
5938 {
5939 /* There was a catchpoint, but we're not stopping.
5940 This requires no further action. */
5941 }
5942 break;
5943 case bp_jit_event:
5944 this_action = BPSTAT_WHAT_SINGLE;
5945 break;
5946 case bp_call_dummy:
5947 /* Make sure the action is stop (silent or noisy),
5948 so infrun.c pops the dummy frame. */
5949 retval.call_dummy = STOP_STACK_DUMMY;
5950 this_action = BPSTAT_WHAT_STOP_SILENT;
5951 break;
5952 case bp_std_terminate:
5953 /* Make sure the action is stop (silent or noisy),
5954 so infrun.c pops the dummy frame. */
5955 retval.call_dummy = STOP_STD_TERMINATE;
5956 this_action = BPSTAT_WHAT_STOP_SILENT;
5957 break;
5958 case bp_tracepoint:
5959 case bp_fast_tracepoint:
5960 case bp_static_tracepoint:
5961 /* Tracepoint hits should not be reported back to GDB, and
5962 if one got through somehow, it should have been filtered
5963 out already. */
5964 internal_error (__FILE__, __LINE__,
5965 _("bpstat_what: tracepoint encountered"));
5966 break;
5967 case bp_gnu_ifunc_resolver:
5968 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5969 this_action = BPSTAT_WHAT_SINGLE;
5970 break;
5971 case bp_gnu_ifunc_resolver_return:
5972 /* The breakpoint will be removed, execution will restart from the
5973 PC of the former breakpoint. */
5974 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5975 break;
5976
5977 case bp_dprintf:
5978 if (bs->stop)
5979 this_action = BPSTAT_WHAT_STOP_SILENT;
5980 else
5981 this_action = BPSTAT_WHAT_SINGLE;
5982 break;
5983
5984 default:
5985 internal_error (__FILE__, __LINE__,
5986 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5987 }
5988
5989 retval.main_action = std::max (retval.main_action, this_action);
5990 }
5991
5992 return retval;
5993 }
5994
5995 void
5996 bpstat_run_callbacks (bpstat bs_head)
5997 {
5998 bpstat bs;
5999
6000 for (bs = bs_head; bs != NULL; bs = bs->next)
6001 {
6002 struct breakpoint *b = bs->breakpoint_at;
6003
6004 if (b == NULL)
6005 continue;
6006 switch (b->type)
6007 {
6008 case bp_jit_event:
6009 handle_jit_event ();
6010 break;
6011 case bp_gnu_ifunc_resolver:
6012 gnu_ifunc_resolver_stop (b);
6013 break;
6014 case bp_gnu_ifunc_resolver_return:
6015 gnu_ifunc_resolver_return_stop (b);
6016 break;
6017 }
6018 }
6019 }
6020
6021 /* Nonzero if we should step constantly (e.g. watchpoints on machines
6022 without hardware support). This isn't related to a specific bpstat,
6023 just to things like whether watchpoints are set. */
6024
6025 int
6026 bpstat_should_step (void)
6027 {
6028 struct breakpoint *b;
6029
6030 ALL_BREAKPOINTS (b)
6031 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
6032 return 1;
6033 return 0;
6034 }
6035
6036 int
6037 bpstat_causes_stop (bpstat bs)
6038 {
6039 for (; bs != NULL; bs = bs->next)
6040 if (bs->stop)
6041 return 1;
6042
6043 return 0;
6044 }
6045
6046 \f
6047
6048 /* Compute a string of spaces suitable to indent the next line
6049 so it starts at the position corresponding to the table column
6050 named COL_NAME in the currently active table of UIOUT. */
6051
6052 static char *
6053 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
6054 {
6055 static char wrap_indent[80];
6056 int i, total_width, width, align;
6057 const char *text;
6058
6059 total_width = 0;
6060 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
6061 {
6062 if (strcmp (text, col_name) == 0)
6063 {
6064 gdb_assert (total_width < sizeof wrap_indent);
6065 memset (wrap_indent, ' ', total_width);
6066 wrap_indent[total_width] = 0;
6067
6068 return wrap_indent;
6069 }
6070
6071 total_width += width + 1;
6072 }
6073
6074 return NULL;
6075 }
6076
6077 /* Determine if the locations of this breakpoint will have their conditions
6078 evaluated by the target, host or a mix of both. Returns the following:
6079
6080 "host": Host evals condition.
6081 "host or target": Host or Target evals condition.
6082 "target": Target evals condition.
6083 */
6084
6085 static const char *
6086 bp_condition_evaluator (struct breakpoint *b)
6087 {
6088 struct bp_location *bl;
6089 char host_evals = 0;
6090 char target_evals = 0;
6091
6092 if (!b)
6093 return NULL;
6094
6095 if (!is_breakpoint (b))
6096 return NULL;
6097
6098 if (gdb_evaluates_breakpoint_condition_p ()
6099 || !target_supports_evaluation_of_breakpoint_conditions ())
6100 return condition_evaluation_host;
6101
6102 for (bl = b->loc; bl; bl = bl->next)
6103 {
6104 if (bl->cond_bytecode)
6105 target_evals++;
6106 else
6107 host_evals++;
6108 }
6109
6110 if (host_evals && target_evals)
6111 return condition_evaluation_both;
6112 else if (target_evals)
6113 return condition_evaluation_target;
6114 else
6115 return condition_evaluation_host;
6116 }
6117
6118 /* Determine the breakpoint location's condition evaluator. This is
6119 similar to bp_condition_evaluator, but for locations. */
6120
6121 static const char *
6122 bp_location_condition_evaluator (struct bp_location *bl)
6123 {
6124 if (bl && !is_breakpoint (bl->owner))
6125 return NULL;
6126
6127 if (gdb_evaluates_breakpoint_condition_p ()
6128 || !target_supports_evaluation_of_breakpoint_conditions ())
6129 return condition_evaluation_host;
6130
6131 if (bl && bl->cond_bytecode)
6132 return condition_evaluation_target;
6133 else
6134 return condition_evaluation_host;
6135 }
6136
6137 /* Print the LOC location out of the list of B->LOC locations. */
6138
6139 static void
6140 print_breakpoint_location (struct breakpoint *b,
6141 struct bp_location *loc)
6142 {
6143 struct ui_out *uiout = current_uiout;
6144 struct cleanup *old_chain = save_current_program_space ();
6145
6146 if (loc != NULL && loc->shlib_disabled)
6147 loc = NULL;
6148
6149 if (loc != NULL)
6150 set_current_program_space (loc->pspace);
6151
6152 if (b->display_canonical)
6153 uiout->field_string ("what", event_location_to_string (b->location));
6154 else if (loc && loc->symtab)
6155 {
6156 struct symbol *sym
6157 = find_pc_sect_function (loc->address, loc->section);
6158 if (sym)
6159 {
6160 uiout->text ("in ");
6161 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
6162 uiout->text (" ");
6163 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
6164 uiout->text ("at ");
6165 }
6166 uiout->field_string ("file",
6167 symtab_to_filename_for_display (loc->symtab));
6168 uiout->text (":");
6169
6170 if (uiout->is_mi_like_p ())
6171 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
6172
6173 uiout->field_int ("line", loc->line_number);
6174 }
6175 else if (loc)
6176 {
6177 string_file stb;
6178
6179 print_address_symbolic (loc->gdbarch, loc->address, &stb,
6180 demangle, "");
6181 uiout->field_stream ("at", stb);
6182 }
6183 else
6184 {
6185 uiout->field_string ("pending", event_location_to_string (b->location));
6186 /* If extra_string is available, it could be holding a condition
6187 or dprintf arguments. In either case, make sure it is printed,
6188 too, but only for non-MI streams. */
6189 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
6190 {
6191 if (b->type == bp_dprintf)
6192 uiout->text (",");
6193 else
6194 uiout->text (" ");
6195 uiout->text (b->extra_string);
6196 }
6197 }
6198
6199 if (loc && is_breakpoint (b)
6200 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
6201 && bp_condition_evaluator (b) == condition_evaluation_both)
6202 {
6203 uiout->text (" (");
6204 uiout->field_string ("evaluated-by",
6205 bp_location_condition_evaluator (loc));
6206 uiout->text (")");
6207 }
6208
6209 do_cleanups (old_chain);
6210 }
6211
6212 static const char *
6213 bptype_string (enum bptype type)
6214 {
6215 struct ep_type_description
6216 {
6217 enum bptype type;
6218 char *description;
6219 };
6220 static struct ep_type_description bptypes[] =
6221 {
6222 {bp_none, "?deleted?"},
6223 {bp_breakpoint, "breakpoint"},
6224 {bp_hardware_breakpoint, "hw breakpoint"},
6225 {bp_single_step, "sw single-step"},
6226 {bp_until, "until"},
6227 {bp_finish, "finish"},
6228 {bp_watchpoint, "watchpoint"},
6229 {bp_hardware_watchpoint, "hw watchpoint"},
6230 {bp_read_watchpoint, "read watchpoint"},
6231 {bp_access_watchpoint, "acc watchpoint"},
6232 {bp_longjmp, "longjmp"},
6233 {bp_longjmp_resume, "longjmp resume"},
6234 {bp_longjmp_call_dummy, "longjmp for call dummy"},
6235 {bp_exception, "exception"},
6236 {bp_exception_resume, "exception resume"},
6237 {bp_step_resume, "step resume"},
6238 {bp_hp_step_resume, "high-priority step resume"},
6239 {bp_watchpoint_scope, "watchpoint scope"},
6240 {bp_call_dummy, "call dummy"},
6241 {bp_std_terminate, "std::terminate"},
6242 {bp_shlib_event, "shlib events"},
6243 {bp_thread_event, "thread events"},
6244 {bp_overlay_event, "overlay events"},
6245 {bp_longjmp_master, "longjmp master"},
6246 {bp_std_terminate_master, "std::terminate master"},
6247 {bp_exception_master, "exception master"},
6248 {bp_catchpoint, "catchpoint"},
6249 {bp_tracepoint, "tracepoint"},
6250 {bp_fast_tracepoint, "fast tracepoint"},
6251 {bp_static_tracepoint, "static tracepoint"},
6252 {bp_dprintf, "dprintf"},
6253 {bp_jit_event, "jit events"},
6254 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6255 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6256 };
6257
6258 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6259 || ((int) type != bptypes[(int) type].type))
6260 internal_error (__FILE__, __LINE__,
6261 _("bptypes table does not describe type #%d."),
6262 (int) type);
6263
6264 return bptypes[(int) type].description;
6265 }
6266
6267 /* For MI, output a field named 'thread-groups' with a list as the value.
6268 For CLI, prefix the list with the string 'inf'. */
6269
6270 static void
6271 output_thread_groups (struct ui_out *uiout,
6272 const char *field_name,
6273 VEC(int) *inf_num,
6274 int mi_only)
6275 {
6276 struct cleanup *back_to;
6277 int is_mi = uiout->is_mi_like_p ();
6278 int inf;
6279 int i;
6280
6281 /* For backward compatibility, don't display inferiors in CLI unless
6282 there are several. Always display them for MI. */
6283 if (!is_mi && mi_only)
6284 return;
6285
6286 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
6287
6288 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
6289 {
6290 if (is_mi)
6291 {
6292 char mi_group[10];
6293
6294 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
6295 uiout->field_string (NULL, mi_group);
6296 }
6297 else
6298 {
6299 if (i == 0)
6300 uiout->text (" inf ");
6301 else
6302 uiout->text (", ");
6303
6304 uiout->text (plongest (inf));
6305 }
6306 }
6307
6308 do_cleanups (back_to);
6309 }
6310
6311 /* Print B to gdb_stdout. */
6312
6313 static void
6314 print_one_breakpoint_location (struct breakpoint *b,
6315 struct bp_location *loc,
6316 int loc_number,
6317 struct bp_location **last_loc,
6318 int allflag)
6319 {
6320 struct command_line *l;
6321 static char bpenables[] = "nynny";
6322
6323 struct ui_out *uiout = current_uiout;
6324 int header_of_multiple = 0;
6325 int part_of_multiple = (loc != NULL);
6326 struct value_print_options opts;
6327
6328 get_user_print_options (&opts);
6329
6330 gdb_assert (!loc || loc_number != 0);
6331 /* See comment in print_one_breakpoint concerning treatment of
6332 breakpoints with single disabled location. */
6333 if (loc == NULL
6334 && (b->loc != NULL
6335 && (b->loc->next != NULL || !b->loc->enabled)))
6336 header_of_multiple = 1;
6337 if (loc == NULL)
6338 loc = b->loc;
6339
6340 annotate_record ();
6341
6342 /* 1 */
6343 annotate_field (0);
6344 if (part_of_multiple)
6345 {
6346 char *formatted;
6347 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6348 uiout->field_string ("number", formatted);
6349 xfree (formatted);
6350 }
6351 else
6352 {
6353 uiout->field_int ("number", b->number);
6354 }
6355
6356 /* 2 */
6357 annotate_field (1);
6358 if (part_of_multiple)
6359 uiout->field_skip ("type");
6360 else
6361 uiout->field_string ("type", bptype_string (b->type));
6362
6363 /* 3 */
6364 annotate_field (2);
6365 if (part_of_multiple)
6366 uiout->field_skip ("disp");
6367 else
6368 uiout->field_string ("disp", bpdisp_text (b->disposition));
6369
6370
6371 /* 4 */
6372 annotate_field (3);
6373 if (part_of_multiple)
6374 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6375 else
6376 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6377 uiout->spaces (2);
6378
6379
6380 /* 5 and 6 */
6381 if (b->ops != NULL && b->ops->print_one != NULL)
6382 {
6383 /* Although the print_one can possibly print all locations,
6384 calling it here is not likely to get any nice result. So,
6385 make sure there's just one location. */
6386 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6387 b->ops->print_one (b, last_loc);
6388 }
6389 else
6390 switch (b->type)
6391 {
6392 case bp_none:
6393 internal_error (__FILE__, __LINE__,
6394 _("print_one_breakpoint: bp_none encountered\n"));
6395 break;
6396
6397 case bp_watchpoint:
6398 case bp_hardware_watchpoint:
6399 case bp_read_watchpoint:
6400 case bp_access_watchpoint:
6401 {
6402 struct watchpoint *w = (struct watchpoint *) b;
6403
6404 /* Field 4, the address, is omitted (which makes the columns
6405 not line up too nicely with the headers, but the effect
6406 is relatively readable). */
6407 if (opts.addressprint)
6408 uiout->field_skip ("addr");
6409 annotate_field (5);
6410 uiout->field_string ("what", w->exp_string);
6411 }
6412 break;
6413
6414 case bp_breakpoint:
6415 case bp_hardware_breakpoint:
6416 case bp_single_step:
6417 case bp_until:
6418 case bp_finish:
6419 case bp_longjmp:
6420 case bp_longjmp_resume:
6421 case bp_longjmp_call_dummy:
6422 case bp_exception:
6423 case bp_exception_resume:
6424 case bp_step_resume:
6425 case bp_hp_step_resume:
6426 case bp_watchpoint_scope:
6427 case bp_call_dummy:
6428 case bp_std_terminate:
6429 case bp_shlib_event:
6430 case bp_thread_event:
6431 case bp_overlay_event:
6432 case bp_longjmp_master:
6433 case bp_std_terminate_master:
6434 case bp_exception_master:
6435 case bp_tracepoint:
6436 case bp_fast_tracepoint:
6437 case bp_static_tracepoint:
6438 case bp_dprintf:
6439 case bp_jit_event:
6440 case bp_gnu_ifunc_resolver:
6441 case bp_gnu_ifunc_resolver_return:
6442 if (opts.addressprint)
6443 {
6444 annotate_field (4);
6445 if (header_of_multiple)
6446 uiout->field_string ("addr", "<MULTIPLE>");
6447 else if (b->loc == NULL || loc->shlib_disabled)
6448 uiout->field_string ("addr", "<PENDING>");
6449 else
6450 uiout->field_core_addr ("addr",
6451 loc->gdbarch, loc->address);
6452 }
6453 annotate_field (5);
6454 if (!header_of_multiple)
6455 print_breakpoint_location (b, loc);
6456 if (b->loc)
6457 *last_loc = b->loc;
6458 break;
6459 }
6460
6461
6462 if (loc != NULL && !header_of_multiple)
6463 {
6464 struct inferior *inf;
6465 VEC(int) *inf_num = NULL;
6466 int mi_only = 1;
6467
6468 ALL_INFERIORS (inf)
6469 {
6470 if (inf->pspace == loc->pspace)
6471 VEC_safe_push (int, inf_num, inf->num);
6472 }
6473
6474 /* For backward compatibility, don't display inferiors in CLI unless
6475 there are several. Always display for MI. */
6476 if (allflag
6477 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6478 && (number_of_program_spaces () > 1
6479 || number_of_inferiors () > 1)
6480 /* LOC is for existing B, it cannot be in
6481 moribund_locations and thus having NULL OWNER. */
6482 && loc->owner->type != bp_catchpoint))
6483 mi_only = 0;
6484 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6485 VEC_free (int, inf_num);
6486 }
6487
6488 if (!part_of_multiple)
6489 {
6490 if (b->thread != -1)
6491 {
6492 /* FIXME: This seems to be redundant and lost here; see the
6493 "stop only in" line a little further down. */
6494 uiout->text (" thread ");
6495 uiout->field_int ("thread", b->thread);
6496 }
6497 else if (b->task != 0)
6498 {
6499 uiout->text (" task ");
6500 uiout->field_int ("task", b->task);
6501 }
6502 }
6503
6504 uiout->text ("\n");
6505
6506 if (!part_of_multiple)
6507 b->ops->print_one_detail (b, uiout);
6508
6509 if (part_of_multiple && frame_id_p (b->frame_id))
6510 {
6511 annotate_field (6);
6512 uiout->text ("\tstop only in stack frame at ");
6513 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6514 the frame ID. */
6515 uiout->field_core_addr ("frame",
6516 b->gdbarch, b->frame_id.stack_addr);
6517 uiout->text ("\n");
6518 }
6519
6520 if (!part_of_multiple && b->cond_string)
6521 {
6522 annotate_field (7);
6523 if (is_tracepoint (b))
6524 uiout->text ("\ttrace only if ");
6525 else
6526 uiout->text ("\tstop only if ");
6527 uiout->field_string ("cond", b->cond_string);
6528
6529 /* Print whether the target is doing the breakpoint's condition
6530 evaluation. If GDB is doing the evaluation, don't print anything. */
6531 if (is_breakpoint (b)
6532 && breakpoint_condition_evaluation_mode ()
6533 == condition_evaluation_target)
6534 {
6535 uiout->text (" (");
6536 uiout->field_string ("evaluated-by",
6537 bp_condition_evaluator (b));
6538 uiout->text (" evals)");
6539 }
6540 uiout->text ("\n");
6541 }
6542
6543 if (!part_of_multiple && b->thread != -1)
6544 {
6545 /* FIXME should make an annotation for this. */
6546 uiout->text ("\tstop only in thread ");
6547 if (uiout->is_mi_like_p ())
6548 uiout->field_int ("thread", b->thread);
6549 else
6550 {
6551 struct thread_info *thr = find_thread_global_id (b->thread);
6552
6553 uiout->field_string ("thread", print_thread_id (thr));
6554 }
6555 uiout->text ("\n");
6556 }
6557
6558 if (!part_of_multiple)
6559 {
6560 if (b->hit_count)
6561 {
6562 /* FIXME should make an annotation for this. */
6563 if (is_catchpoint (b))
6564 uiout->text ("\tcatchpoint");
6565 else if (is_tracepoint (b))
6566 uiout->text ("\ttracepoint");
6567 else
6568 uiout->text ("\tbreakpoint");
6569 uiout->text (" already hit ");
6570 uiout->field_int ("times", b->hit_count);
6571 if (b->hit_count == 1)
6572 uiout->text (" time\n");
6573 else
6574 uiout->text (" times\n");
6575 }
6576 else
6577 {
6578 /* Output the count also if it is zero, but only if this is mi. */
6579 if (uiout->is_mi_like_p ())
6580 uiout->field_int ("times", b->hit_count);
6581 }
6582 }
6583
6584 if (!part_of_multiple && b->ignore_count)
6585 {
6586 annotate_field (8);
6587 uiout->text ("\tignore next ");
6588 uiout->field_int ("ignore", b->ignore_count);
6589 uiout->text (" hits\n");
6590 }
6591
6592 /* Note that an enable count of 1 corresponds to "enable once"
6593 behavior, which is reported by the combination of enablement and
6594 disposition, so we don't need to mention it here. */
6595 if (!part_of_multiple && b->enable_count > 1)
6596 {
6597 annotate_field (8);
6598 uiout->text ("\tdisable after ");
6599 /* Tweak the wording to clarify that ignore and enable counts
6600 are distinct, and have additive effect. */
6601 if (b->ignore_count)
6602 uiout->text ("additional ");
6603 else
6604 uiout->text ("next ");
6605 uiout->field_int ("enable", b->enable_count);
6606 uiout->text (" hits\n");
6607 }
6608
6609 if (!part_of_multiple && is_tracepoint (b))
6610 {
6611 struct tracepoint *tp = (struct tracepoint *) b;
6612
6613 if (tp->traceframe_usage)
6614 {
6615 uiout->text ("\ttrace buffer usage ");
6616 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6617 uiout->text (" bytes\n");
6618 }
6619 }
6620
6621 l = b->commands ? b->commands->commands : NULL;
6622 if (!part_of_multiple && l)
6623 {
6624 struct cleanup *script_chain;
6625
6626 annotate_field (9);
6627 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6628 print_command_lines (uiout, l, 4);
6629 do_cleanups (script_chain);
6630 }
6631
6632 if (is_tracepoint (b))
6633 {
6634 struct tracepoint *t = (struct tracepoint *) b;
6635
6636 if (!part_of_multiple && t->pass_count)
6637 {
6638 annotate_field (10);
6639 uiout->text ("\tpass count ");
6640 uiout->field_int ("pass", t->pass_count);
6641 uiout->text (" \n");
6642 }
6643
6644 /* Don't display it when tracepoint or tracepoint location is
6645 pending. */
6646 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6647 {
6648 annotate_field (11);
6649
6650 if (uiout->is_mi_like_p ())
6651 uiout->field_string ("installed",
6652 loc->inserted ? "y" : "n");
6653 else
6654 {
6655 if (loc->inserted)
6656 uiout->text ("\t");
6657 else
6658 uiout->text ("\tnot ");
6659 uiout->text ("installed on target\n");
6660 }
6661 }
6662 }
6663
6664 if (uiout->is_mi_like_p () && !part_of_multiple)
6665 {
6666 if (is_watchpoint (b))
6667 {
6668 struct watchpoint *w = (struct watchpoint *) b;
6669
6670 uiout->field_string ("original-location", w->exp_string);
6671 }
6672 else if (b->location != NULL
6673 && event_location_to_string (b->location) != NULL)
6674 uiout->field_string ("original-location",
6675 event_location_to_string (b->location));
6676 }
6677 }
6678
6679 static void
6680 print_one_breakpoint (struct breakpoint *b,
6681 struct bp_location **last_loc,
6682 int allflag)
6683 {
6684 struct cleanup *bkpt_chain;
6685 struct ui_out *uiout = current_uiout;
6686
6687 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6688
6689 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6690 do_cleanups (bkpt_chain);
6691
6692 /* If this breakpoint has custom print function,
6693 it's already printed. Otherwise, print individual
6694 locations, if any. */
6695 if (b->ops == NULL || b->ops->print_one == NULL)
6696 {
6697 /* If breakpoint has a single location that is disabled, we
6698 print it as if it had several locations, since otherwise it's
6699 hard to represent "breakpoint enabled, location disabled"
6700 situation.
6701
6702 Note that while hardware watchpoints have several locations
6703 internally, that's not a property exposed to user. */
6704 if (b->loc
6705 && !is_hardware_watchpoint (b)
6706 && (b->loc->next || !b->loc->enabled))
6707 {
6708 struct bp_location *loc;
6709 int n = 1;
6710
6711 for (loc = b->loc; loc; loc = loc->next, ++n)
6712 {
6713 struct cleanup *inner2 =
6714 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6715 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6716 do_cleanups (inner2);
6717 }
6718 }
6719 }
6720 }
6721
6722 static int
6723 breakpoint_address_bits (struct breakpoint *b)
6724 {
6725 int print_address_bits = 0;
6726 struct bp_location *loc;
6727
6728 /* Software watchpoints that aren't watching memory don't have an
6729 address to print. */
6730 if (is_no_memory_software_watchpoint (b))
6731 return 0;
6732
6733 for (loc = b->loc; loc; loc = loc->next)
6734 {
6735 int addr_bit;
6736
6737 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6738 if (addr_bit > print_address_bits)
6739 print_address_bits = addr_bit;
6740 }
6741
6742 return print_address_bits;
6743 }
6744
6745 struct captured_breakpoint_query_args
6746 {
6747 int bnum;
6748 };
6749
6750 static int
6751 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6752 {
6753 struct captured_breakpoint_query_args *args
6754 = (struct captured_breakpoint_query_args *) data;
6755 struct breakpoint *b;
6756 struct bp_location *dummy_loc = NULL;
6757
6758 ALL_BREAKPOINTS (b)
6759 {
6760 if (args->bnum == b->number)
6761 {
6762 print_one_breakpoint (b, &dummy_loc, 0);
6763 return GDB_RC_OK;
6764 }
6765 }
6766 return GDB_RC_NONE;
6767 }
6768
6769 enum gdb_rc
6770 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6771 char **error_message)
6772 {
6773 struct captured_breakpoint_query_args args;
6774
6775 args.bnum = bnum;
6776 /* For the moment we don't trust print_one_breakpoint() to not throw
6777 an error. */
6778 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6779 error_message, RETURN_MASK_ALL) < 0)
6780 return GDB_RC_FAIL;
6781 else
6782 return GDB_RC_OK;
6783 }
6784
6785 /* Return true if this breakpoint was set by the user, false if it is
6786 internal or momentary. */
6787
6788 int
6789 user_breakpoint_p (struct breakpoint *b)
6790 {
6791 return b->number > 0;
6792 }
6793
6794 /* See breakpoint.h. */
6795
6796 int
6797 pending_breakpoint_p (struct breakpoint *b)
6798 {
6799 return b->loc == NULL;
6800 }
6801
6802 /* Print information on user settable breakpoint (watchpoint, etc)
6803 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6804 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6805 FILTER is non-NULL, call it on each breakpoint and only include the
6806 ones for which it returns non-zero. Return the total number of
6807 breakpoints listed. */
6808
6809 static int
6810 breakpoint_1 (char *args, int allflag,
6811 int (*filter) (const struct breakpoint *))
6812 {
6813 struct breakpoint *b;
6814 struct bp_location *last_loc = NULL;
6815 int nr_printable_breakpoints;
6816 struct cleanup *bkpttbl_chain;
6817 struct value_print_options opts;
6818 int print_address_bits = 0;
6819 int print_type_col_width = 14;
6820 struct ui_out *uiout = current_uiout;
6821
6822 get_user_print_options (&opts);
6823
6824 /* Compute the number of rows in the table, as well as the size
6825 required for address fields. */
6826 nr_printable_breakpoints = 0;
6827 ALL_BREAKPOINTS (b)
6828 {
6829 /* If we have a filter, only list the breakpoints it accepts. */
6830 if (filter && !filter (b))
6831 continue;
6832
6833 /* If we have an "args" string, it is a list of breakpoints to
6834 accept. Skip the others. */
6835 if (args != NULL && *args != '\0')
6836 {
6837 if (allflag && parse_and_eval_long (args) != b->number)
6838 continue;
6839 if (!allflag && !number_is_in_list (args, b->number))
6840 continue;
6841 }
6842
6843 if (allflag || user_breakpoint_p (b))
6844 {
6845 int addr_bit, type_len;
6846
6847 addr_bit = breakpoint_address_bits (b);
6848 if (addr_bit > print_address_bits)
6849 print_address_bits = addr_bit;
6850
6851 type_len = strlen (bptype_string (b->type));
6852 if (type_len > print_type_col_width)
6853 print_type_col_width = type_len;
6854
6855 nr_printable_breakpoints++;
6856 }
6857 }
6858
6859 if (opts.addressprint)
6860 bkpttbl_chain
6861 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6862 nr_printable_breakpoints,
6863 "BreakpointTable");
6864 else
6865 bkpttbl_chain
6866 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6867 nr_printable_breakpoints,
6868 "BreakpointTable");
6869
6870 if (nr_printable_breakpoints > 0)
6871 annotate_breakpoints_headers ();
6872 if (nr_printable_breakpoints > 0)
6873 annotate_field (0);
6874 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6875 if (nr_printable_breakpoints > 0)
6876 annotate_field (1);
6877 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6878 if (nr_printable_breakpoints > 0)
6879 annotate_field (2);
6880 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6881 if (nr_printable_breakpoints > 0)
6882 annotate_field (3);
6883 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6884 if (opts.addressprint)
6885 {
6886 if (nr_printable_breakpoints > 0)
6887 annotate_field (4);
6888 if (print_address_bits <= 32)
6889 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6890 else
6891 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6892 }
6893 if (nr_printable_breakpoints > 0)
6894 annotate_field (5);
6895 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6896 uiout->table_body ();
6897 if (nr_printable_breakpoints > 0)
6898 annotate_breakpoints_table ();
6899
6900 ALL_BREAKPOINTS (b)
6901 {
6902 QUIT;
6903 /* If we have a filter, only list the breakpoints it accepts. */
6904 if (filter && !filter (b))
6905 continue;
6906
6907 /* If we have an "args" string, it is a list of breakpoints to
6908 accept. Skip the others. */
6909
6910 if (args != NULL && *args != '\0')
6911 {
6912 if (allflag) /* maintenance info breakpoint */
6913 {
6914 if (parse_and_eval_long (args) != b->number)
6915 continue;
6916 }
6917 else /* all others */
6918 {
6919 if (!number_is_in_list (args, b->number))
6920 continue;
6921 }
6922 }
6923 /* We only print out user settable breakpoints unless the
6924 allflag is set. */
6925 if (allflag || user_breakpoint_p (b))
6926 print_one_breakpoint (b, &last_loc, allflag);
6927 }
6928
6929 do_cleanups (bkpttbl_chain);
6930
6931 if (nr_printable_breakpoints == 0)
6932 {
6933 /* If there's a filter, let the caller decide how to report
6934 empty list. */
6935 if (!filter)
6936 {
6937 if (args == NULL || *args == '\0')
6938 uiout->message ("No breakpoints or watchpoints.\n");
6939 else
6940 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6941 args);
6942 }
6943 }
6944 else
6945 {
6946 if (last_loc && !server_command)
6947 set_next_address (last_loc->gdbarch, last_loc->address);
6948 }
6949
6950 /* FIXME? Should this be moved up so that it is only called when
6951 there have been breakpoints? */
6952 annotate_breakpoints_table_end ();
6953
6954 return nr_printable_breakpoints;
6955 }
6956
6957 /* Display the value of default-collect in a way that is generally
6958 compatible with the breakpoint list. */
6959
6960 static void
6961 default_collect_info (void)
6962 {
6963 struct ui_out *uiout = current_uiout;
6964
6965 /* If it has no value (which is frequently the case), say nothing; a
6966 message like "No default-collect." gets in user's face when it's
6967 not wanted. */
6968 if (!*default_collect)
6969 return;
6970
6971 /* The following phrase lines up nicely with per-tracepoint collect
6972 actions. */
6973 uiout->text ("default collect ");
6974 uiout->field_string ("default-collect", default_collect);
6975 uiout->text (" \n");
6976 }
6977
6978 static void
6979 breakpoints_info (char *args, int from_tty)
6980 {
6981 breakpoint_1 (args, 0, NULL);
6982
6983 default_collect_info ();
6984 }
6985
6986 static void
6987 watchpoints_info (char *args, int from_tty)
6988 {
6989 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6990 struct ui_out *uiout = current_uiout;
6991
6992 if (num_printed == 0)
6993 {
6994 if (args == NULL || *args == '\0')
6995 uiout->message ("No watchpoints.\n");
6996 else
6997 uiout->message ("No watchpoint matching '%s'.\n", args);
6998 }
6999 }
7000
7001 static void
7002 maintenance_info_breakpoints (char *args, int from_tty)
7003 {
7004 breakpoint_1 (args, 1, NULL);
7005
7006 default_collect_info ();
7007 }
7008
7009 static int
7010 breakpoint_has_pc (struct breakpoint *b,
7011 struct program_space *pspace,
7012 CORE_ADDR pc, struct obj_section *section)
7013 {
7014 struct bp_location *bl = b->loc;
7015
7016 for (; bl; bl = bl->next)
7017 {
7018 if (bl->pspace == pspace
7019 && bl->address == pc
7020 && (!overlay_debugging || bl->section == section))
7021 return 1;
7022 }
7023 return 0;
7024 }
7025
7026 /* Print a message describing any user-breakpoints set at PC. This
7027 concerns with logical breakpoints, so we match program spaces, not
7028 address spaces. */
7029
7030 static void
7031 describe_other_breakpoints (struct gdbarch *gdbarch,
7032 struct program_space *pspace, CORE_ADDR pc,
7033 struct obj_section *section, int thread)
7034 {
7035 int others = 0;
7036 struct breakpoint *b;
7037
7038 ALL_BREAKPOINTS (b)
7039 others += (user_breakpoint_p (b)
7040 && breakpoint_has_pc (b, pspace, pc, section));
7041 if (others > 0)
7042 {
7043 if (others == 1)
7044 printf_filtered (_("Note: breakpoint "));
7045 else /* if (others == ???) */
7046 printf_filtered (_("Note: breakpoints "));
7047 ALL_BREAKPOINTS (b)
7048 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
7049 {
7050 others--;
7051 printf_filtered ("%d", b->number);
7052 if (b->thread == -1 && thread != -1)
7053 printf_filtered (" (all threads)");
7054 else if (b->thread != -1)
7055 printf_filtered (" (thread %d)", b->thread);
7056 printf_filtered ("%s%s ",
7057 ((b->enable_state == bp_disabled
7058 || b->enable_state == bp_call_disabled)
7059 ? " (disabled)"
7060 : ""),
7061 (others > 1) ? ","
7062 : ((others == 1) ? " and" : ""));
7063 }
7064 printf_filtered (_("also set at pc "));
7065 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
7066 printf_filtered (".\n");
7067 }
7068 }
7069 \f
7070
7071 /* Return true iff it is meaningful to use the address member of
7072 BPT locations. For some breakpoint types, the locations' address members
7073 are irrelevant and it makes no sense to attempt to compare them to other
7074 addresses (or use them for any other purpose either).
7075
7076 More specifically, each of the following breakpoint types will
7077 always have a zero valued location address and we don't want to mark
7078 breakpoints of any of these types to be a duplicate of an actual
7079 breakpoint location at address zero:
7080
7081 bp_watchpoint
7082 bp_catchpoint
7083
7084 */
7085
7086 static int
7087 breakpoint_address_is_meaningful (struct breakpoint *bpt)
7088 {
7089 enum bptype type = bpt->type;
7090
7091 return (type != bp_watchpoint && type != bp_catchpoint);
7092 }
7093
7094 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
7095 true if LOC1 and LOC2 represent the same watchpoint location. */
7096
7097 static int
7098 watchpoint_locations_match (struct bp_location *loc1,
7099 struct bp_location *loc2)
7100 {
7101 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
7102 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
7103
7104 /* Both of them must exist. */
7105 gdb_assert (w1 != NULL);
7106 gdb_assert (w2 != NULL);
7107
7108 /* If the target can evaluate the condition expression in hardware,
7109 then we we need to insert both watchpoints even if they are at
7110 the same place. Otherwise the watchpoint will only trigger when
7111 the condition of whichever watchpoint was inserted evaluates to
7112 true, not giving a chance for GDB to check the condition of the
7113 other watchpoint. */
7114 if ((w1->cond_exp
7115 && target_can_accel_watchpoint_condition (loc1->address,
7116 loc1->length,
7117 loc1->watchpoint_type,
7118 w1->cond_exp.get ()))
7119 || (w2->cond_exp
7120 && target_can_accel_watchpoint_condition (loc2->address,
7121 loc2->length,
7122 loc2->watchpoint_type,
7123 w2->cond_exp.get ())))
7124 return 0;
7125
7126 /* Note that this checks the owner's type, not the location's. In
7127 case the target does not support read watchpoints, but does
7128 support access watchpoints, we'll have bp_read_watchpoint
7129 watchpoints with hw_access locations. Those should be considered
7130 duplicates of hw_read locations. The hw_read locations will
7131 become hw_access locations later. */
7132 return (loc1->owner->type == loc2->owner->type
7133 && loc1->pspace->aspace == loc2->pspace->aspace
7134 && loc1->address == loc2->address
7135 && loc1->length == loc2->length);
7136 }
7137
7138 /* See breakpoint.h. */
7139
7140 int
7141 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
7142 struct address_space *aspace2, CORE_ADDR addr2)
7143 {
7144 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7145 || aspace1 == aspace2)
7146 && addr1 == addr2);
7147 }
7148
7149 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
7150 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
7151 matches ASPACE2. On targets that have global breakpoints, the address
7152 space doesn't really matter. */
7153
7154 static int
7155 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
7156 int len1, struct address_space *aspace2,
7157 CORE_ADDR addr2)
7158 {
7159 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7160 || aspace1 == aspace2)
7161 && addr2 >= addr1 && addr2 < addr1 + len1);
7162 }
7163
7164 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
7165 a ranged breakpoint. In most targets, a match happens only if ASPACE
7166 matches the breakpoint's address space. On targets that have global
7167 breakpoints, the address space doesn't really matter. */
7168
7169 static int
7170 breakpoint_location_address_match (struct bp_location *bl,
7171 struct address_space *aspace,
7172 CORE_ADDR addr)
7173 {
7174 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
7175 aspace, addr)
7176 || (bl->length
7177 && breakpoint_address_match_range (bl->pspace->aspace,
7178 bl->address, bl->length,
7179 aspace, addr)));
7180 }
7181
7182 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
7183 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
7184 match happens only if ASPACE matches the breakpoint's address
7185 space. On targets that have global breakpoints, the address space
7186 doesn't really matter. */
7187
7188 static int
7189 breakpoint_location_address_range_overlap (struct bp_location *bl,
7190 struct address_space *aspace,
7191 CORE_ADDR addr, int len)
7192 {
7193 if (gdbarch_has_global_breakpoints (target_gdbarch ())
7194 || bl->pspace->aspace == aspace)
7195 {
7196 int bl_len = bl->length != 0 ? bl->length : 1;
7197
7198 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
7199 return 1;
7200 }
7201 return 0;
7202 }
7203
7204 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
7205 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
7206 true, otherwise returns false. */
7207
7208 static int
7209 tracepoint_locations_match (struct bp_location *loc1,
7210 struct bp_location *loc2)
7211 {
7212 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
7213 /* Since tracepoint locations are never duplicated with others', tracepoint
7214 locations at the same address of different tracepoints are regarded as
7215 different locations. */
7216 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
7217 else
7218 return 0;
7219 }
7220
7221 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
7222 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
7223 represent the same location. */
7224
7225 static int
7226 breakpoint_locations_match (struct bp_location *loc1,
7227 struct bp_location *loc2)
7228 {
7229 int hw_point1, hw_point2;
7230
7231 /* Both of them must not be in moribund_locations. */
7232 gdb_assert (loc1->owner != NULL);
7233 gdb_assert (loc2->owner != NULL);
7234
7235 hw_point1 = is_hardware_watchpoint (loc1->owner);
7236 hw_point2 = is_hardware_watchpoint (loc2->owner);
7237
7238 if (hw_point1 != hw_point2)
7239 return 0;
7240 else if (hw_point1)
7241 return watchpoint_locations_match (loc1, loc2);
7242 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
7243 return tracepoint_locations_match (loc1, loc2);
7244 else
7245 /* We compare bp_location.length in order to cover ranged breakpoints. */
7246 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
7247 loc2->pspace->aspace, loc2->address)
7248 && loc1->length == loc2->length);
7249 }
7250
7251 static void
7252 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
7253 int bnum, int have_bnum)
7254 {
7255 /* The longest string possibly returned by hex_string_custom
7256 is 50 chars. These must be at least that big for safety. */
7257 char astr1[64];
7258 char astr2[64];
7259
7260 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
7261 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
7262 if (have_bnum)
7263 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
7264 bnum, astr1, astr2);
7265 else
7266 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
7267 }
7268
7269 /* Adjust a breakpoint's address to account for architectural
7270 constraints on breakpoint placement. Return the adjusted address.
7271 Note: Very few targets require this kind of adjustment. For most
7272 targets, this function is simply the identity function. */
7273
7274 static CORE_ADDR
7275 adjust_breakpoint_address (struct gdbarch *gdbarch,
7276 CORE_ADDR bpaddr, enum bptype bptype)
7277 {
7278 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
7279 {
7280 /* Very few targets need any kind of breakpoint adjustment. */
7281 return bpaddr;
7282 }
7283 else if (bptype == bp_watchpoint
7284 || bptype == bp_hardware_watchpoint
7285 || bptype == bp_read_watchpoint
7286 || bptype == bp_access_watchpoint
7287 || bptype == bp_catchpoint)
7288 {
7289 /* Watchpoints and the various bp_catch_* eventpoints should not
7290 have their addresses modified. */
7291 return bpaddr;
7292 }
7293 else if (bptype == bp_single_step)
7294 {
7295 /* Single-step breakpoints should not have their addresses
7296 modified. If there's any architectural constrain that
7297 applies to this address, then it should have already been
7298 taken into account when the breakpoint was created in the
7299 first place. If we didn't do this, stepping through e.g.,
7300 Thumb-2 IT blocks would break. */
7301 return bpaddr;
7302 }
7303 else
7304 {
7305 CORE_ADDR adjusted_bpaddr;
7306
7307 /* Some targets have architectural constraints on the placement
7308 of breakpoint instructions. Obtain the adjusted address. */
7309 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7310
7311 /* An adjusted breakpoint address can significantly alter
7312 a user's expectations. Print a warning if an adjustment
7313 is required. */
7314 if (adjusted_bpaddr != bpaddr)
7315 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7316
7317 return adjusted_bpaddr;
7318 }
7319 }
7320
7321 void
7322 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
7323 struct breakpoint *owner)
7324 {
7325 memset (loc, 0, sizeof (*loc));
7326
7327 gdb_assert (ops != NULL);
7328
7329 loc->ops = ops;
7330 loc->owner = owner;
7331 loc->cond_bytecode = NULL;
7332 loc->shlib_disabled = 0;
7333 loc->enabled = 1;
7334
7335 switch (owner->type)
7336 {
7337 case bp_breakpoint:
7338 case bp_single_step:
7339 case bp_until:
7340 case bp_finish:
7341 case bp_longjmp:
7342 case bp_longjmp_resume:
7343 case bp_longjmp_call_dummy:
7344 case bp_exception:
7345 case bp_exception_resume:
7346 case bp_step_resume:
7347 case bp_hp_step_resume:
7348 case bp_watchpoint_scope:
7349 case bp_call_dummy:
7350 case bp_std_terminate:
7351 case bp_shlib_event:
7352 case bp_thread_event:
7353 case bp_overlay_event:
7354 case bp_jit_event:
7355 case bp_longjmp_master:
7356 case bp_std_terminate_master:
7357 case bp_exception_master:
7358 case bp_gnu_ifunc_resolver:
7359 case bp_gnu_ifunc_resolver_return:
7360 case bp_dprintf:
7361 loc->loc_type = bp_loc_software_breakpoint;
7362 mark_breakpoint_location_modified (loc);
7363 break;
7364 case bp_hardware_breakpoint:
7365 loc->loc_type = bp_loc_hardware_breakpoint;
7366 mark_breakpoint_location_modified (loc);
7367 break;
7368 case bp_hardware_watchpoint:
7369 case bp_read_watchpoint:
7370 case bp_access_watchpoint:
7371 loc->loc_type = bp_loc_hardware_watchpoint;
7372 break;
7373 case bp_watchpoint:
7374 case bp_catchpoint:
7375 case bp_tracepoint:
7376 case bp_fast_tracepoint:
7377 case bp_static_tracepoint:
7378 loc->loc_type = bp_loc_other;
7379 break;
7380 default:
7381 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7382 }
7383
7384 loc->refc = 1;
7385 }
7386
7387 /* Allocate a struct bp_location. */
7388
7389 static struct bp_location *
7390 allocate_bp_location (struct breakpoint *bpt)
7391 {
7392 return bpt->ops->allocate_location (bpt);
7393 }
7394
7395 static void
7396 free_bp_location (struct bp_location *loc)
7397 {
7398 loc->ops->dtor (loc);
7399 delete loc;
7400 }
7401
7402 /* Increment reference count. */
7403
7404 static void
7405 incref_bp_location (struct bp_location *bl)
7406 {
7407 ++bl->refc;
7408 }
7409
7410 /* Decrement reference count. If the reference count reaches 0,
7411 destroy the bp_location. Sets *BLP to NULL. */
7412
7413 static void
7414 decref_bp_location (struct bp_location **blp)
7415 {
7416 gdb_assert ((*blp)->refc > 0);
7417
7418 if (--(*blp)->refc == 0)
7419 free_bp_location (*blp);
7420 *blp = NULL;
7421 }
7422
7423 /* Add breakpoint B at the end of the global breakpoint chain. */
7424
7425 static void
7426 add_to_breakpoint_chain (struct breakpoint *b)
7427 {
7428 struct breakpoint *b1;
7429
7430 /* Add this breakpoint to the end of the chain so that a list of
7431 breakpoints will come out in order of increasing numbers. */
7432
7433 b1 = breakpoint_chain;
7434 if (b1 == 0)
7435 breakpoint_chain = b;
7436 else
7437 {
7438 while (b1->next)
7439 b1 = b1->next;
7440 b1->next = b;
7441 }
7442 }
7443
7444 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7445
7446 static void
7447 init_raw_breakpoint_without_location (struct breakpoint *b,
7448 struct gdbarch *gdbarch,
7449 enum bptype bptype,
7450 const struct breakpoint_ops *ops)
7451 {
7452 memset (b, 0, sizeof (*b));
7453
7454 gdb_assert (ops != NULL);
7455
7456 b->ops = ops;
7457 b->type = bptype;
7458 b->gdbarch = gdbarch;
7459 b->language = current_language->la_language;
7460 b->input_radix = input_radix;
7461 b->thread = -1;
7462 b->enable_state = bp_enabled;
7463 b->next = 0;
7464 b->silent = 0;
7465 b->ignore_count = 0;
7466 b->commands = NULL;
7467 b->frame_id = null_frame_id;
7468 b->condition_not_parsed = 0;
7469 b->py_bp_object = NULL;
7470 b->related_breakpoint = b;
7471 b->location = NULL;
7472 }
7473
7474 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7475 that has type BPTYPE and has no locations as yet. */
7476
7477 static struct breakpoint *
7478 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7479 enum bptype bptype,
7480 const struct breakpoint_ops *ops)
7481 {
7482 struct breakpoint *b = new breakpoint ();
7483
7484 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7485 add_to_breakpoint_chain (b);
7486 return b;
7487 }
7488
7489 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7490 resolutions should be made as the user specified the location explicitly
7491 enough. */
7492
7493 static void
7494 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7495 {
7496 gdb_assert (loc->owner != NULL);
7497
7498 if (loc->owner->type == bp_breakpoint
7499 || loc->owner->type == bp_hardware_breakpoint
7500 || is_tracepoint (loc->owner))
7501 {
7502 int is_gnu_ifunc;
7503 const char *function_name;
7504 CORE_ADDR func_addr;
7505
7506 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7507 &func_addr, NULL, &is_gnu_ifunc);
7508
7509 if (is_gnu_ifunc && !explicit_loc)
7510 {
7511 struct breakpoint *b = loc->owner;
7512
7513 gdb_assert (loc->pspace == current_program_space);
7514 if (gnu_ifunc_resolve_name (function_name,
7515 &loc->requested_address))
7516 {
7517 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7518 loc->address = adjust_breakpoint_address (loc->gdbarch,
7519 loc->requested_address,
7520 b->type);
7521 }
7522 else if (b->type == bp_breakpoint && b->loc == loc
7523 && loc->next == NULL && b->related_breakpoint == b)
7524 {
7525 /* Create only the whole new breakpoint of this type but do not
7526 mess more complicated breakpoints with multiple locations. */
7527 b->type = bp_gnu_ifunc_resolver;
7528 /* Remember the resolver's address for use by the return
7529 breakpoint. */
7530 loc->related_address = func_addr;
7531 }
7532 }
7533
7534 if (function_name)
7535 loc->function_name = xstrdup (function_name);
7536 }
7537 }
7538
7539 /* Attempt to determine architecture of location identified by SAL. */
7540 struct gdbarch *
7541 get_sal_arch (struct symtab_and_line sal)
7542 {
7543 if (sal.section)
7544 return get_objfile_arch (sal.section->objfile);
7545 if (sal.symtab)
7546 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7547
7548 return NULL;
7549 }
7550
7551 /* Low level routine for partially initializing a breakpoint of type
7552 BPTYPE. The newly created breakpoint's address, section, source
7553 file name, and line number are provided by SAL.
7554
7555 It is expected that the caller will complete the initialization of
7556 the newly created breakpoint struct as well as output any status
7557 information regarding the creation of a new breakpoint. */
7558
7559 static void
7560 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7561 struct symtab_and_line sal, enum bptype bptype,
7562 const struct breakpoint_ops *ops)
7563 {
7564 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7565
7566 add_location_to_breakpoint (b, &sal);
7567
7568 if (bptype != bp_catchpoint)
7569 gdb_assert (sal.pspace != NULL);
7570
7571 /* Store the program space that was used to set the breakpoint,
7572 except for ordinary breakpoints, which are independent of the
7573 program space. */
7574 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7575 b->pspace = sal.pspace;
7576 }
7577
7578 /* set_raw_breakpoint is a low level routine for allocating and
7579 partially initializing a breakpoint of type BPTYPE. The newly
7580 created breakpoint's address, section, source file name, and line
7581 number are provided by SAL. The newly created and partially
7582 initialized breakpoint is added to the breakpoint chain and
7583 is also returned as the value of this function.
7584
7585 It is expected that the caller will complete the initialization of
7586 the newly created breakpoint struct as well as output any status
7587 information regarding the creation of a new breakpoint. In
7588 particular, set_raw_breakpoint does NOT set the breakpoint
7589 number! Care should be taken to not allow an error to occur
7590 prior to completing the initialization of the breakpoint. If this
7591 should happen, a bogus breakpoint will be left on the chain. */
7592
7593 struct breakpoint *
7594 set_raw_breakpoint (struct gdbarch *gdbarch,
7595 struct symtab_and_line sal, enum bptype bptype,
7596 const struct breakpoint_ops *ops)
7597 {
7598 struct breakpoint *b = new breakpoint ();
7599
7600 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7601 add_to_breakpoint_chain (b);
7602 return b;
7603 }
7604
7605 /* Call this routine when stepping and nexting to enable a breakpoint
7606 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7607 initiated the operation. */
7608
7609 void
7610 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7611 {
7612 struct breakpoint *b, *b_tmp;
7613 int thread = tp->global_num;
7614
7615 /* To avoid having to rescan all objfile symbols at every step,
7616 we maintain a list of continually-inserted but always disabled
7617 longjmp "master" breakpoints. Here, we simply create momentary
7618 clones of those and enable them for the requested thread. */
7619 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7620 if (b->pspace == current_program_space
7621 && (b->type == bp_longjmp_master
7622 || b->type == bp_exception_master))
7623 {
7624 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7625 struct breakpoint *clone;
7626
7627 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7628 after their removal. */
7629 clone = momentary_breakpoint_from_master (b, type,
7630 &longjmp_breakpoint_ops, 1);
7631 clone->thread = thread;
7632 }
7633
7634 tp->initiating_frame = frame;
7635 }
7636
7637 /* Delete all longjmp breakpoints from THREAD. */
7638 void
7639 delete_longjmp_breakpoint (int thread)
7640 {
7641 struct breakpoint *b, *b_tmp;
7642
7643 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7644 if (b->type == bp_longjmp || b->type == bp_exception)
7645 {
7646 if (b->thread == thread)
7647 delete_breakpoint (b);
7648 }
7649 }
7650
7651 void
7652 delete_longjmp_breakpoint_at_next_stop (int thread)
7653 {
7654 struct breakpoint *b, *b_tmp;
7655
7656 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7657 if (b->type == bp_longjmp || b->type == bp_exception)
7658 {
7659 if (b->thread == thread)
7660 b->disposition = disp_del_at_next_stop;
7661 }
7662 }
7663
7664 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7665 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7666 pointer to any of them. Return NULL if this system cannot place longjmp
7667 breakpoints. */
7668
7669 struct breakpoint *
7670 set_longjmp_breakpoint_for_call_dummy (void)
7671 {
7672 struct breakpoint *b, *retval = NULL;
7673
7674 ALL_BREAKPOINTS (b)
7675 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7676 {
7677 struct breakpoint *new_b;
7678
7679 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7680 &momentary_breakpoint_ops,
7681 1);
7682 new_b->thread = ptid_to_global_thread_id (inferior_ptid);
7683
7684 /* Link NEW_B into the chain of RETVAL breakpoints. */
7685
7686 gdb_assert (new_b->related_breakpoint == new_b);
7687 if (retval == NULL)
7688 retval = new_b;
7689 new_b->related_breakpoint = retval;
7690 while (retval->related_breakpoint != new_b->related_breakpoint)
7691 retval = retval->related_breakpoint;
7692 retval->related_breakpoint = new_b;
7693 }
7694
7695 return retval;
7696 }
7697
7698 /* Verify all existing dummy frames and their associated breakpoints for
7699 TP. Remove those which can no longer be found in the current frame
7700 stack.
7701
7702 You should call this function only at places where it is safe to currently
7703 unwind the whole stack. Failed stack unwind would discard live dummy
7704 frames. */
7705
7706 void
7707 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7708 {
7709 struct breakpoint *b, *b_tmp;
7710
7711 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7712 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7713 {
7714 struct breakpoint *dummy_b = b->related_breakpoint;
7715
7716 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7717 dummy_b = dummy_b->related_breakpoint;
7718 if (dummy_b->type != bp_call_dummy
7719 || frame_find_by_id (dummy_b->frame_id) != NULL)
7720 continue;
7721
7722 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7723
7724 while (b->related_breakpoint != b)
7725 {
7726 if (b_tmp == b->related_breakpoint)
7727 b_tmp = b->related_breakpoint->next;
7728 delete_breakpoint (b->related_breakpoint);
7729 }
7730 delete_breakpoint (b);
7731 }
7732 }
7733
7734 void
7735 enable_overlay_breakpoints (void)
7736 {
7737 struct breakpoint *b;
7738
7739 ALL_BREAKPOINTS (b)
7740 if (b->type == bp_overlay_event)
7741 {
7742 b->enable_state = bp_enabled;
7743 update_global_location_list (UGLL_MAY_INSERT);
7744 overlay_events_enabled = 1;
7745 }
7746 }
7747
7748 void
7749 disable_overlay_breakpoints (void)
7750 {
7751 struct breakpoint *b;
7752
7753 ALL_BREAKPOINTS (b)
7754 if (b->type == bp_overlay_event)
7755 {
7756 b->enable_state = bp_disabled;
7757 update_global_location_list (UGLL_DONT_INSERT);
7758 overlay_events_enabled = 0;
7759 }
7760 }
7761
7762 /* Set an active std::terminate breakpoint for each std::terminate
7763 master breakpoint. */
7764 void
7765 set_std_terminate_breakpoint (void)
7766 {
7767 struct breakpoint *b, *b_tmp;
7768
7769 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7770 if (b->pspace == current_program_space
7771 && b->type == bp_std_terminate_master)
7772 {
7773 momentary_breakpoint_from_master (b, bp_std_terminate,
7774 &momentary_breakpoint_ops, 1);
7775 }
7776 }
7777
7778 /* Delete all the std::terminate breakpoints. */
7779 void
7780 delete_std_terminate_breakpoint (void)
7781 {
7782 struct breakpoint *b, *b_tmp;
7783
7784 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7785 if (b->type == bp_std_terminate)
7786 delete_breakpoint (b);
7787 }
7788
7789 struct breakpoint *
7790 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7791 {
7792 struct breakpoint *b;
7793
7794 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7795 &internal_breakpoint_ops);
7796
7797 b->enable_state = bp_enabled;
7798 /* location has to be used or breakpoint_re_set will delete me. */
7799 b->location = new_address_location (b->loc->address, NULL, 0);
7800
7801 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7802
7803 return b;
7804 }
7805
7806 struct lang_and_radix
7807 {
7808 enum language lang;
7809 int radix;
7810 };
7811
7812 /* Create a breakpoint for JIT code registration and unregistration. */
7813
7814 struct breakpoint *
7815 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7816 {
7817 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7818 &internal_breakpoint_ops);
7819 }
7820
7821 /* Remove JIT code registration and unregistration breakpoint(s). */
7822
7823 void
7824 remove_jit_event_breakpoints (void)
7825 {
7826 struct breakpoint *b, *b_tmp;
7827
7828 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7829 if (b->type == bp_jit_event
7830 && b->loc->pspace == current_program_space)
7831 delete_breakpoint (b);
7832 }
7833
7834 void
7835 remove_solib_event_breakpoints (void)
7836 {
7837 struct breakpoint *b, *b_tmp;
7838
7839 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7840 if (b->type == bp_shlib_event
7841 && b->loc->pspace == current_program_space)
7842 delete_breakpoint (b);
7843 }
7844
7845 /* See breakpoint.h. */
7846
7847 void
7848 remove_solib_event_breakpoints_at_next_stop (void)
7849 {
7850 struct breakpoint *b, *b_tmp;
7851
7852 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7853 if (b->type == bp_shlib_event
7854 && b->loc->pspace == current_program_space)
7855 b->disposition = disp_del_at_next_stop;
7856 }
7857
7858 /* Helper for create_solib_event_breakpoint /
7859 create_and_insert_solib_event_breakpoint. Allows specifying which
7860 INSERT_MODE to pass through to update_global_location_list. */
7861
7862 static struct breakpoint *
7863 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7864 enum ugll_insert_mode insert_mode)
7865 {
7866 struct breakpoint *b;
7867
7868 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7869 &internal_breakpoint_ops);
7870 update_global_location_list_nothrow (insert_mode);
7871 return b;
7872 }
7873
7874 struct breakpoint *
7875 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7876 {
7877 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7878 }
7879
7880 /* See breakpoint.h. */
7881
7882 struct breakpoint *
7883 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7884 {
7885 struct breakpoint *b;
7886
7887 /* Explicitly tell update_global_location_list to insert
7888 locations. */
7889 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7890 if (!b->loc->inserted)
7891 {
7892 delete_breakpoint (b);
7893 return NULL;
7894 }
7895 return b;
7896 }
7897
7898 /* Disable any breakpoints that are on code in shared libraries. Only
7899 apply to enabled breakpoints, disabled ones can just stay disabled. */
7900
7901 void
7902 disable_breakpoints_in_shlibs (void)
7903 {
7904 struct bp_location *loc, **locp_tmp;
7905
7906 ALL_BP_LOCATIONS (loc, locp_tmp)
7907 {
7908 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7909 struct breakpoint *b = loc->owner;
7910
7911 /* We apply the check to all breakpoints, including disabled for
7912 those with loc->duplicate set. This is so that when breakpoint
7913 becomes enabled, or the duplicate is removed, gdb will try to
7914 insert all breakpoints. If we don't set shlib_disabled here,
7915 we'll try to insert those breakpoints and fail. */
7916 if (((b->type == bp_breakpoint)
7917 || (b->type == bp_jit_event)
7918 || (b->type == bp_hardware_breakpoint)
7919 || (is_tracepoint (b)))
7920 && loc->pspace == current_program_space
7921 && !loc->shlib_disabled
7922 && solib_name_from_address (loc->pspace, loc->address)
7923 )
7924 {
7925 loc->shlib_disabled = 1;
7926 }
7927 }
7928 }
7929
7930 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7931 notification of unloaded_shlib. Only apply to enabled breakpoints,
7932 disabled ones can just stay disabled. */
7933
7934 static void
7935 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7936 {
7937 struct bp_location *loc, **locp_tmp;
7938 int disabled_shlib_breaks = 0;
7939
7940 ALL_BP_LOCATIONS (loc, locp_tmp)
7941 {
7942 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7943 struct breakpoint *b = loc->owner;
7944
7945 if (solib->pspace == loc->pspace
7946 && !loc->shlib_disabled
7947 && (((b->type == bp_breakpoint
7948 || b->type == bp_jit_event
7949 || b->type == bp_hardware_breakpoint)
7950 && (loc->loc_type == bp_loc_hardware_breakpoint
7951 || loc->loc_type == bp_loc_software_breakpoint))
7952 || is_tracepoint (b))
7953 && solib_contains_address_p (solib, loc->address))
7954 {
7955 loc->shlib_disabled = 1;
7956 /* At this point, we cannot rely on remove_breakpoint
7957 succeeding so we must mark the breakpoint as not inserted
7958 to prevent future errors occurring in remove_breakpoints. */
7959 loc->inserted = 0;
7960
7961 /* This may cause duplicate notifications for the same breakpoint. */
7962 observer_notify_breakpoint_modified (b);
7963
7964 if (!disabled_shlib_breaks)
7965 {
7966 target_terminal_ours_for_output ();
7967 warning (_("Temporarily disabling breakpoints "
7968 "for unloaded shared library \"%s\""),
7969 solib->so_name);
7970 }
7971 disabled_shlib_breaks = 1;
7972 }
7973 }
7974 }
7975
7976 /* Disable any breakpoints and tracepoints in OBJFILE upon
7977 notification of free_objfile. Only apply to enabled breakpoints,
7978 disabled ones can just stay disabled. */
7979
7980 static void
7981 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7982 {
7983 struct breakpoint *b;
7984
7985 if (objfile == NULL)
7986 return;
7987
7988 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7989 managed by the user with add-symbol-file/remove-symbol-file.
7990 Similarly to how breakpoints in shared libraries are handled in
7991 response to "nosharedlibrary", mark breakpoints in such modules
7992 shlib_disabled so they end up uninserted on the next global
7993 location list update. Shared libraries not loaded by the user
7994 aren't handled here -- they're already handled in
7995 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7996 solib_unloaded observer. We skip objfiles that are not
7997 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7998 main objfile). */
7999 if ((objfile->flags & OBJF_SHARED) == 0
8000 || (objfile->flags & OBJF_USERLOADED) == 0)
8001 return;
8002
8003 ALL_BREAKPOINTS (b)
8004 {
8005 struct bp_location *loc;
8006 int bp_modified = 0;
8007
8008 if (!is_breakpoint (b) && !is_tracepoint (b))
8009 continue;
8010
8011 for (loc = b->loc; loc != NULL; loc = loc->next)
8012 {
8013 CORE_ADDR loc_addr = loc->address;
8014
8015 if (loc->loc_type != bp_loc_hardware_breakpoint
8016 && loc->loc_type != bp_loc_software_breakpoint)
8017 continue;
8018
8019 if (loc->shlib_disabled != 0)
8020 continue;
8021
8022 if (objfile->pspace != loc->pspace)
8023 continue;
8024
8025 if (loc->loc_type != bp_loc_hardware_breakpoint
8026 && loc->loc_type != bp_loc_software_breakpoint)
8027 continue;
8028
8029 if (is_addr_in_objfile (loc_addr, objfile))
8030 {
8031 loc->shlib_disabled = 1;
8032 /* At this point, we don't know whether the object was
8033 unmapped from the inferior or not, so leave the
8034 inserted flag alone. We'll handle failure to
8035 uninsert quietly, in case the object was indeed
8036 unmapped. */
8037
8038 mark_breakpoint_location_modified (loc);
8039
8040 bp_modified = 1;
8041 }
8042 }
8043
8044 if (bp_modified)
8045 observer_notify_breakpoint_modified (b);
8046 }
8047 }
8048
8049 /* FORK & VFORK catchpoints. */
8050
8051 /* An instance of this type is used to represent a fork or vfork
8052 catchpoint. It includes a "struct breakpoint" as a kind of base
8053 class; users downcast to "struct breakpoint *" when needed. A
8054 breakpoint is really of this type iff its ops pointer points to
8055 CATCH_FORK_BREAKPOINT_OPS. */
8056
8057 struct fork_catchpoint
8058 {
8059 /* The base class. */
8060 struct breakpoint base;
8061
8062 /* Process id of a child process whose forking triggered this
8063 catchpoint. This field is only valid immediately after this
8064 catchpoint has triggered. */
8065 ptid_t forked_inferior_pid;
8066 };
8067
8068 /* Implement the "insert" breakpoint_ops method for fork
8069 catchpoints. */
8070
8071 static int
8072 insert_catch_fork (struct bp_location *bl)
8073 {
8074 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
8075 }
8076
8077 /* Implement the "remove" breakpoint_ops method for fork
8078 catchpoints. */
8079
8080 static int
8081 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
8082 {
8083 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
8084 }
8085
8086 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
8087 catchpoints. */
8088
8089 static int
8090 breakpoint_hit_catch_fork (const struct bp_location *bl,
8091 struct address_space *aspace, CORE_ADDR bp_addr,
8092 const struct target_waitstatus *ws)
8093 {
8094 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8095
8096 if (ws->kind != TARGET_WAITKIND_FORKED)
8097 return 0;
8098
8099 c->forked_inferior_pid = ws->value.related_pid;
8100 return 1;
8101 }
8102
8103 /* Implement the "print_it" breakpoint_ops method for fork
8104 catchpoints. */
8105
8106 static enum print_stop_action
8107 print_it_catch_fork (bpstat bs)
8108 {
8109 struct ui_out *uiout = current_uiout;
8110 struct breakpoint *b = bs->breakpoint_at;
8111 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
8112
8113 annotate_catchpoint (b->number);
8114 maybe_print_thread_hit_breakpoint (uiout);
8115 if (b->disposition == disp_del)
8116 uiout->text ("Temporary catchpoint ");
8117 else
8118 uiout->text ("Catchpoint ");
8119 if (uiout->is_mi_like_p ())
8120 {
8121 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
8122 uiout->field_string ("disp", bpdisp_text (b->disposition));
8123 }
8124 uiout->field_int ("bkptno", b->number);
8125 uiout->text (" (forked process ");
8126 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
8127 uiout->text ("), ");
8128 return PRINT_SRC_AND_LOC;
8129 }
8130
8131 /* Implement the "print_one" breakpoint_ops method for fork
8132 catchpoints. */
8133
8134 static void
8135 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
8136 {
8137 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8138 struct value_print_options opts;
8139 struct ui_out *uiout = current_uiout;
8140
8141 get_user_print_options (&opts);
8142
8143 /* Field 4, the address, is omitted (which makes the columns not
8144 line up too nicely with the headers, but the effect is relatively
8145 readable). */
8146 if (opts.addressprint)
8147 uiout->field_skip ("addr");
8148 annotate_field (5);
8149 uiout->text ("fork");
8150 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8151 {
8152 uiout->text (", process ");
8153 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
8154 uiout->spaces (1);
8155 }
8156
8157 if (uiout->is_mi_like_p ())
8158 uiout->field_string ("catch-type", "fork");
8159 }
8160
8161 /* Implement the "print_mention" breakpoint_ops method for fork
8162 catchpoints. */
8163
8164 static void
8165 print_mention_catch_fork (struct breakpoint *b)
8166 {
8167 printf_filtered (_("Catchpoint %d (fork)"), b->number);
8168 }
8169
8170 /* Implement the "print_recreate" breakpoint_ops method for fork
8171 catchpoints. */
8172
8173 static void
8174 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
8175 {
8176 fprintf_unfiltered (fp, "catch fork");
8177 print_recreate_thread (b, fp);
8178 }
8179
8180 /* The breakpoint_ops structure to be used in fork catchpoints. */
8181
8182 static struct breakpoint_ops catch_fork_breakpoint_ops;
8183
8184 /* Implement the "insert" breakpoint_ops method for vfork
8185 catchpoints. */
8186
8187 static int
8188 insert_catch_vfork (struct bp_location *bl)
8189 {
8190 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8191 }
8192
8193 /* Implement the "remove" breakpoint_ops method for vfork
8194 catchpoints. */
8195
8196 static int
8197 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
8198 {
8199 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8200 }
8201
8202 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
8203 catchpoints. */
8204
8205 static int
8206 breakpoint_hit_catch_vfork (const struct bp_location *bl,
8207 struct address_space *aspace, CORE_ADDR bp_addr,
8208 const struct target_waitstatus *ws)
8209 {
8210 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8211
8212 if (ws->kind != TARGET_WAITKIND_VFORKED)
8213 return 0;
8214
8215 c->forked_inferior_pid = ws->value.related_pid;
8216 return 1;
8217 }
8218
8219 /* Implement the "print_it" breakpoint_ops method for vfork
8220 catchpoints. */
8221
8222 static enum print_stop_action
8223 print_it_catch_vfork (bpstat bs)
8224 {
8225 struct ui_out *uiout = current_uiout;
8226 struct breakpoint *b = bs->breakpoint_at;
8227 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8228
8229 annotate_catchpoint (b->number);
8230 maybe_print_thread_hit_breakpoint (uiout);
8231 if (b->disposition == disp_del)
8232 uiout->text ("Temporary catchpoint ");
8233 else
8234 uiout->text ("Catchpoint ");
8235 if (uiout->is_mi_like_p ())
8236 {
8237 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
8238 uiout->field_string ("disp", bpdisp_text (b->disposition));
8239 }
8240 uiout->field_int ("bkptno", b->number);
8241 uiout->text (" (vforked process ");
8242 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
8243 uiout->text ("), ");
8244 return PRINT_SRC_AND_LOC;
8245 }
8246
8247 /* Implement the "print_one" breakpoint_ops method for vfork
8248 catchpoints. */
8249
8250 static void
8251 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
8252 {
8253 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8254 struct value_print_options opts;
8255 struct ui_out *uiout = current_uiout;
8256
8257 get_user_print_options (&opts);
8258 /* Field 4, the address, is omitted (which makes the columns not
8259 line up too nicely with the headers, but the effect is relatively
8260 readable). */
8261 if (opts.addressprint)
8262 uiout->field_skip ("addr");
8263 annotate_field (5);
8264 uiout->text ("vfork");
8265 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8266 {
8267 uiout->text (", process ");
8268 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
8269 uiout->spaces (1);
8270 }
8271
8272 if (uiout->is_mi_like_p ())
8273 uiout->field_string ("catch-type", "vfork");
8274 }
8275
8276 /* Implement the "print_mention" breakpoint_ops method for vfork
8277 catchpoints. */
8278
8279 static void
8280 print_mention_catch_vfork (struct breakpoint *b)
8281 {
8282 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
8283 }
8284
8285 /* Implement the "print_recreate" breakpoint_ops method for vfork
8286 catchpoints. */
8287
8288 static void
8289 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
8290 {
8291 fprintf_unfiltered (fp, "catch vfork");
8292 print_recreate_thread (b, fp);
8293 }
8294
8295 /* The breakpoint_ops structure to be used in vfork catchpoints. */
8296
8297 static struct breakpoint_ops catch_vfork_breakpoint_ops;
8298
8299 /* An instance of this type is used to represent an solib catchpoint.
8300 It includes a "struct breakpoint" as a kind of base class; users
8301 downcast to "struct breakpoint *" when needed. A breakpoint is
8302 really of this type iff its ops pointer points to
8303 CATCH_SOLIB_BREAKPOINT_OPS. */
8304
8305 struct solib_catchpoint
8306 {
8307 /* The base class. */
8308 struct breakpoint base;
8309
8310 /* True for "catch load", false for "catch unload". */
8311 unsigned char is_load;
8312
8313 /* Regular expression to match, if any. COMPILED is only valid when
8314 REGEX is non-NULL. */
8315 char *regex;
8316 regex_t compiled;
8317 };
8318
8319 static void
8320 dtor_catch_solib (struct breakpoint *b)
8321 {
8322 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8323
8324 if (self->regex)
8325 regfree (&self->compiled);
8326 xfree (self->regex);
8327
8328 base_breakpoint_ops.dtor (b);
8329 }
8330
8331 static int
8332 insert_catch_solib (struct bp_location *ignore)
8333 {
8334 return 0;
8335 }
8336
8337 static int
8338 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
8339 {
8340 return 0;
8341 }
8342
8343 static int
8344 breakpoint_hit_catch_solib (const struct bp_location *bl,
8345 struct address_space *aspace,
8346 CORE_ADDR bp_addr,
8347 const struct target_waitstatus *ws)
8348 {
8349 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8350 struct breakpoint *other;
8351
8352 if (ws->kind == TARGET_WAITKIND_LOADED)
8353 return 1;
8354
8355 ALL_BREAKPOINTS (other)
8356 {
8357 struct bp_location *other_bl;
8358
8359 if (other == bl->owner)
8360 continue;
8361
8362 if (other->type != bp_shlib_event)
8363 continue;
8364
8365 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
8366 continue;
8367
8368 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8369 {
8370 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8371 return 1;
8372 }
8373 }
8374
8375 return 0;
8376 }
8377
8378 static void
8379 check_status_catch_solib (struct bpstats *bs)
8380 {
8381 struct solib_catchpoint *self
8382 = (struct solib_catchpoint *) bs->breakpoint_at;
8383 int ix;
8384
8385 if (self->is_load)
8386 {
8387 struct so_list *iter;
8388
8389 for (ix = 0;
8390 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8391 ix, iter);
8392 ++ix)
8393 {
8394 if (!self->regex
8395 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
8396 return;
8397 }
8398 }
8399 else
8400 {
8401 char *iter;
8402
8403 for (ix = 0;
8404 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8405 ix, iter);
8406 ++ix)
8407 {
8408 if (!self->regex
8409 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
8410 return;
8411 }
8412 }
8413
8414 bs->stop = 0;
8415 bs->print_it = print_it_noop;
8416 }
8417
8418 static enum print_stop_action
8419 print_it_catch_solib (bpstat bs)
8420 {
8421 struct breakpoint *b = bs->breakpoint_at;
8422 struct ui_out *uiout = current_uiout;
8423
8424 annotate_catchpoint (b->number);
8425 maybe_print_thread_hit_breakpoint (uiout);
8426 if (b->disposition == disp_del)
8427 uiout->text ("Temporary catchpoint ");
8428 else
8429 uiout->text ("Catchpoint ");
8430 uiout->field_int ("bkptno", b->number);
8431 uiout->text ("\n");
8432 if (uiout->is_mi_like_p ())
8433 uiout->field_string ("disp", bpdisp_text (b->disposition));
8434 print_solib_event (1);
8435 return PRINT_SRC_AND_LOC;
8436 }
8437
8438 static void
8439 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8440 {
8441 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8442 struct value_print_options opts;
8443 struct ui_out *uiout = current_uiout;
8444 char *msg;
8445
8446 get_user_print_options (&opts);
8447 /* Field 4, the address, is omitted (which makes the columns not
8448 line up too nicely with the headers, but the effect is relatively
8449 readable). */
8450 if (opts.addressprint)
8451 {
8452 annotate_field (4);
8453 uiout->field_skip ("addr");
8454 }
8455
8456 annotate_field (5);
8457 if (self->is_load)
8458 {
8459 if (self->regex)
8460 msg = xstrprintf (_("load of library matching %s"), self->regex);
8461 else
8462 msg = xstrdup (_("load of library"));
8463 }
8464 else
8465 {
8466 if (self->regex)
8467 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8468 else
8469 msg = xstrdup (_("unload of library"));
8470 }
8471 uiout->field_string ("what", msg);
8472 xfree (msg);
8473
8474 if (uiout->is_mi_like_p ())
8475 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8476 }
8477
8478 static void
8479 print_mention_catch_solib (struct breakpoint *b)
8480 {
8481 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8482
8483 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8484 self->is_load ? "load" : "unload");
8485 }
8486
8487 static void
8488 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8489 {
8490 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8491
8492 fprintf_unfiltered (fp, "%s %s",
8493 b->disposition == disp_del ? "tcatch" : "catch",
8494 self->is_load ? "load" : "unload");
8495 if (self->regex)
8496 fprintf_unfiltered (fp, " %s", self->regex);
8497 fprintf_unfiltered (fp, "\n");
8498 }
8499
8500 static struct breakpoint_ops catch_solib_breakpoint_ops;
8501
8502 /* Shared helper function (MI and CLI) for creating and installing
8503 a shared object event catchpoint. If IS_LOAD is non-zero then
8504 the events to be caught are load events, otherwise they are
8505 unload events. If IS_TEMP is non-zero the catchpoint is a
8506 temporary one. If ENABLED is non-zero the catchpoint is
8507 created in an enabled state. */
8508
8509 void
8510 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
8511 {
8512 struct solib_catchpoint *c;
8513 struct gdbarch *gdbarch = get_current_arch ();
8514 struct cleanup *cleanup;
8515
8516 if (!arg)
8517 arg = "";
8518 arg = skip_spaces (arg);
8519
8520 c = new solib_catchpoint ();
8521 cleanup = make_cleanup (xfree, c);
8522
8523 if (*arg != '\0')
8524 {
8525 int errcode;
8526
8527 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8528 if (errcode != 0)
8529 {
8530 char *err = get_regcomp_error (errcode, &c->compiled);
8531
8532 make_cleanup (xfree, err);
8533 error (_("Invalid regexp (%s): %s"), err, arg);
8534 }
8535 c->regex = xstrdup (arg);
8536 }
8537
8538 c->is_load = is_load;
8539 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8540 &catch_solib_breakpoint_ops);
8541
8542 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8543
8544 discard_cleanups (cleanup);
8545 install_breakpoint (0, &c->base, 1);
8546 }
8547
8548 /* A helper function that does all the work for "catch load" and
8549 "catch unload". */
8550
8551 static void
8552 catch_load_or_unload (char *arg, int from_tty, int is_load,
8553 struct cmd_list_element *command)
8554 {
8555 int tempflag;
8556 const int enabled = 1;
8557
8558 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8559
8560 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8561 }
8562
8563 static void
8564 catch_load_command_1 (char *arg, int from_tty,
8565 struct cmd_list_element *command)
8566 {
8567 catch_load_or_unload (arg, from_tty, 1, command);
8568 }
8569
8570 static void
8571 catch_unload_command_1 (char *arg, int from_tty,
8572 struct cmd_list_element *command)
8573 {
8574 catch_load_or_unload (arg, from_tty, 0, command);
8575 }
8576
8577 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8578 is non-zero, then make the breakpoint temporary. If COND_STRING is
8579 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8580 the breakpoint_ops structure associated to the catchpoint. */
8581
8582 void
8583 init_catchpoint (struct breakpoint *b,
8584 struct gdbarch *gdbarch, int tempflag,
8585 char *cond_string,
8586 const struct breakpoint_ops *ops)
8587 {
8588 struct symtab_and_line sal;
8589
8590 init_sal (&sal);
8591 sal.pspace = current_program_space;
8592
8593 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8594
8595 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8596 b->disposition = tempflag ? disp_del : disp_donttouch;
8597 }
8598
8599 void
8600 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8601 {
8602 add_to_breakpoint_chain (b);
8603 set_breakpoint_number (internal, b);
8604 if (is_tracepoint (b))
8605 set_tracepoint_count (breakpoint_count);
8606 if (!internal)
8607 mention (b);
8608 observer_notify_breakpoint_created (b);
8609
8610 if (update_gll)
8611 update_global_location_list (UGLL_MAY_INSERT);
8612 }
8613
8614 static void
8615 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8616 int tempflag, char *cond_string,
8617 const struct breakpoint_ops *ops)
8618 {
8619 struct fork_catchpoint *c = new fork_catchpoint ();
8620
8621 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8622
8623 c->forked_inferior_pid = null_ptid;
8624
8625 install_breakpoint (0, &c->base, 1);
8626 }
8627
8628 /* Exec catchpoints. */
8629
8630 /* An instance of this type is used to represent an exec catchpoint.
8631 It includes a "struct breakpoint" as a kind of base class; users
8632 downcast to "struct breakpoint *" when needed. A breakpoint is
8633 really of this type iff its ops pointer points to
8634 CATCH_EXEC_BREAKPOINT_OPS. */
8635
8636 struct exec_catchpoint
8637 {
8638 /* The base class. */
8639 struct breakpoint base;
8640
8641 /* Filename of a program whose exec triggered this catchpoint.
8642 This field is only valid immediately after this catchpoint has
8643 triggered. */
8644 char *exec_pathname;
8645 };
8646
8647 /* Implement the "dtor" breakpoint_ops method for exec
8648 catchpoints. */
8649
8650 static void
8651 dtor_catch_exec (struct breakpoint *b)
8652 {
8653 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8654
8655 xfree (c->exec_pathname);
8656
8657 base_breakpoint_ops.dtor (b);
8658 }
8659
8660 static int
8661 insert_catch_exec (struct bp_location *bl)
8662 {
8663 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8664 }
8665
8666 static int
8667 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8668 {
8669 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8670 }
8671
8672 static int
8673 breakpoint_hit_catch_exec (const struct bp_location *bl,
8674 struct address_space *aspace, CORE_ADDR bp_addr,
8675 const struct target_waitstatus *ws)
8676 {
8677 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8678
8679 if (ws->kind != TARGET_WAITKIND_EXECD)
8680 return 0;
8681
8682 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8683 return 1;
8684 }
8685
8686 static enum print_stop_action
8687 print_it_catch_exec (bpstat bs)
8688 {
8689 struct ui_out *uiout = current_uiout;
8690 struct breakpoint *b = bs->breakpoint_at;
8691 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8692
8693 annotate_catchpoint (b->number);
8694 maybe_print_thread_hit_breakpoint (uiout);
8695 if (b->disposition == disp_del)
8696 uiout->text ("Temporary catchpoint ");
8697 else
8698 uiout->text ("Catchpoint ");
8699 if (uiout->is_mi_like_p ())
8700 {
8701 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8702 uiout->field_string ("disp", bpdisp_text (b->disposition));
8703 }
8704 uiout->field_int ("bkptno", b->number);
8705 uiout->text (" (exec'd ");
8706 uiout->field_string ("new-exec", c->exec_pathname);
8707 uiout->text ("), ");
8708
8709 return PRINT_SRC_AND_LOC;
8710 }
8711
8712 static void
8713 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8714 {
8715 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8716 struct value_print_options opts;
8717 struct ui_out *uiout = current_uiout;
8718
8719 get_user_print_options (&opts);
8720
8721 /* Field 4, the address, is omitted (which makes the columns
8722 not line up too nicely with the headers, but the effect
8723 is relatively readable). */
8724 if (opts.addressprint)
8725 uiout->field_skip ("addr");
8726 annotate_field (5);
8727 uiout->text ("exec");
8728 if (c->exec_pathname != NULL)
8729 {
8730 uiout->text (", program \"");
8731 uiout->field_string ("what", c->exec_pathname);
8732 uiout->text ("\" ");
8733 }
8734
8735 if (uiout->is_mi_like_p ())
8736 uiout->field_string ("catch-type", "exec");
8737 }
8738
8739 static void
8740 print_mention_catch_exec (struct breakpoint *b)
8741 {
8742 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8743 }
8744
8745 /* Implement the "print_recreate" breakpoint_ops method for exec
8746 catchpoints. */
8747
8748 static void
8749 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8750 {
8751 fprintf_unfiltered (fp, "catch exec");
8752 print_recreate_thread (b, fp);
8753 }
8754
8755 static struct breakpoint_ops catch_exec_breakpoint_ops;
8756
8757 static int
8758 hw_breakpoint_used_count (void)
8759 {
8760 int i = 0;
8761 struct breakpoint *b;
8762 struct bp_location *bl;
8763
8764 ALL_BREAKPOINTS (b)
8765 {
8766 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8767 for (bl = b->loc; bl; bl = bl->next)
8768 {
8769 /* Special types of hardware breakpoints may use more than
8770 one register. */
8771 i += b->ops->resources_needed (bl);
8772 }
8773 }
8774
8775 return i;
8776 }
8777
8778 /* Returns the resources B would use if it were a hardware
8779 watchpoint. */
8780
8781 static int
8782 hw_watchpoint_use_count (struct breakpoint *b)
8783 {
8784 int i = 0;
8785 struct bp_location *bl;
8786
8787 if (!breakpoint_enabled (b))
8788 return 0;
8789
8790 for (bl = b->loc; bl; bl = bl->next)
8791 {
8792 /* Special types of hardware watchpoints may use more than
8793 one register. */
8794 i += b->ops->resources_needed (bl);
8795 }
8796
8797 return i;
8798 }
8799
8800 /* Returns the sum the used resources of all hardware watchpoints of
8801 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8802 the sum of the used resources of all hardware watchpoints of other
8803 types _not_ TYPE. */
8804
8805 static int
8806 hw_watchpoint_used_count_others (struct breakpoint *except,
8807 enum bptype type, int *other_type_used)
8808 {
8809 int i = 0;
8810 struct breakpoint *b;
8811
8812 *other_type_used = 0;
8813 ALL_BREAKPOINTS (b)
8814 {
8815 if (b == except)
8816 continue;
8817 if (!breakpoint_enabled (b))
8818 continue;
8819
8820 if (b->type == type)
8821 i += hw_watchpoint_use_count (b);
8822 else if (is_hardware_watchpoint (b))
8823 *other_type_used = 1;
8824 }
8825
8826 return i;
8827 }
8828
8829 void
8830 disable_watchpoints_before_interactive_call_start (void)
8831 {
8832 struct breakpoint *b;
8833
8834 ALL_BREAKPOINTS (b)
8835 {
8836 if (is_watchpoint (b) && breakpoint_enabled (b))
8837 {
8838 b->enable_state = bp_call_disabled;
8839 update_global_location_list (UGLL_DONT_INSERT);
8840 }
8841 }
8842 }
8843
8844 void
8845 enable_watchpoints_after_interactive_call_stop (void)
8846 {
8847 struct breakpoint *b;
8848
8849 ALL_BREAKPOINTS (b)
8850 {
8851 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8852 {
8853 b->enable_state = bp_enabled;
8854 update_global_location_list (UGLL_MAY_INSERT);
8855 }
8856 }
8857 }
8858
8859 void
8860 disable_breakpoints_before_startup (void)
8861 {
8862 current_program_space->executing_startup = 1;
8863 update_global_location_list (UGLL_DONT_INSERT);
8864 }
8865
8866 void
8867 enable_breakpoints_after_startup (void)
8868 {
8869 current_program_space->executing_startup = 0;
8870 breakpoint_re_set ();
8871 }
8872
8873 /* Create a new single-step breakpoint for thread THREAD, with no
8874 locations. */
8875
8876 static struct breakpoint *
8877 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8878 {
8879 struct breakpoint *b = new breakpoint ();
8880
8881 init_raw_breakpoint_without_location (b, gdbarch, bp_single_step,
8882 &momentary_breakpoint_ops);
8883
8884 b->disposition = disp_donttouch;
8885 b->frame_id = null_frame_id;
8886
8887 b->thread = thread;
8888 gdb_assert (b->thread != 0);
8889
8890 add_to_breakpoint_chain (b);
8891
8892 return b;
8893 }
8894
8895 /* Set a momentary breakpoint of type TYPE at address specified by
8896 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8897 frame. */
8898
8899 struct breakpoint *
8900 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8901 struct frame_id frame_id, enum bptype type)
8902 {
8903 struct breakpoint *b;
8904
8905 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8906 tail-called one. */
8907 gdb_assert (!frame_id_artificial_p (frame_id));
8908
8909 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8910 b->enable_state = bp_enabled;
8911 b->disposition = disp_donttouch;
8912 b->frame_id = frame_id;
8913
8914 /* If we're debugging a multi-threaded program, then we want
8915 momentary breakpoints to be active in only a single thread of
8916 control. */
8917 if (in_thread_list (inferior_ptid))
8918 b->thread = ptid_to_global_thread_id (inferior_ptid);
8919
8920 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8921
8922 return b;
8923 }
8924
8925 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8926 The new breakpoint will have type TYPE, use OPS as its
8927 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8928
8929 static struct breakpoint *
8930 momentary_breakpoint_from_master (struct breakpoint *orig,
8931 enum bptype type,
8932 const struct breakpoint_ops *ops,
8933 int loc_enabled)
8934 {
8935 struct breakpoint *copy;
8936
8937 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8938 copy->loc = allocate_bp_location (copy);
8939 set_breakpoint_location_function (copy->loc, 1);
8940
8941 copy->loc->gdbarch = orig->loc->gdbarch;
8942 copy->loc->requested_address = orig->loc->requested_address;
8943 copy->loc->address = orig->loc->address;
8944 copy->loc->section = orig->loc->section;
8945 copy->loc->pspace = orig->loc->pspace;
8946 copy->loc->probe = orig->loc->probe;
8947 copy->loc->line_number = orig->loc->line_number;
8948 copy->loc->symtab = orig->loc->symtab;
8949 copy->loc->enabled = loc_enabled;
8950 copy->frame_id = orig->frame_id;
8951 copy->thread = orig->thread;
8952 copy->pspace = orig->pspace;
8953
8954 copy->enable_state = bp_enabled;
8955 copy->disposition = disp_donttouch;
8956 copy->number = internal_breakpoint_number--;
8957
8958 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8959 return copy;
8960 }
8961
8962 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8963 ORIG is NULL. */
8964
8965 struct breakpoint *
8966 clone_momentary_breakpoint (struct breakpoint *orig)
8967 {
8968 /* If there's nothing to clone, then return nothing. */
8969 if (orig == NULL)
8970 return NULL;
8971
8972 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8973 }
8974
8975 struct breakpoint *
8976 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8977 enum bptype type)
8978 {
8979 struct symtab_and_line sal;
8980
8981 sal = find_pc_line (pc, 0);
8982 sal.pc = pc;
8983 sal.section = find_pc_overlay (pc);
8984 sal.explicit_pc = 1;
8985
8986 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8987 }
8988 \f
8989
8990 /* Tell the user we have just set a breakpoint B. */
8991
8992 static void
8993 mention (struct breakpoint *b)
8994 {
8995 b->ops->print_mention (b);
8996 if (current_uiout->is_mi_like_p ())
8997 return;
8998 printf_filtered ("\n");
8999 }
9000 \f
9001
9002 static int bp_loc_is_permanent (struct bp_location *loc);
9003
9004 static struct bp_location *
9005 add_location_to_breakpoint (struct breakpoint *b,
9006 const struct symtab_and_line *sal)
9007 {
9008 struct bp_location *loc, **tmp;
9009 CORE_ADDR adjusted_address;
9010 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
9011
9012 if (loc_gdbarch == NULL)
9013 loc_gdbarch = b->gdbarch;
9014
9015 /* Adjust the breakpoint's address prior to allocating a location.
9016 Once we call allocate_bp_location(), that mostly uninitialized
9017 location will be placed on the location chain. Adjustment of the
9018 breakpoint may cause target_read_memory() to be called and we do
9019 not want its scan of the location chain to find a breakpoint and
9020 location that's only been partially initialized. */
9021 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
9022 sal->pc, b->type);
9023
9024 /* Sort the locations by their ADDRESS. */
9025 loc = allocate_bp_location (b);
9026 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
9027 tmp = &((*tmp)->next))
9028 ;
9029 loc->next = *tmp;
9030 *tmp = loc;
9031
9032 loc->requested_address = sal->pc;
9033 loc->address = adjusted_address;
9034 loc->pspace = sal->pspace;
9035 loc->probe.probe = sal->probe;
9036 loc->probe.objfile = sal->objfile;
9037 gdb_assert (loc->pspace != NULL);
9038 loc->section = sal->section;
9039 loc->gdbarch = loc_gdbarch;
9040 loc->line_number = sal->line;
9041 loc->symtab = sal->symtab;
9042
9043 set_breakpoint_location_function (loc,
9044 sal->explicit_pc || sal->explicit_line);
9045
9046 /* While by definition, permanent breakpoints are already present in the
9047 code, we don't mark the location as inserted. Normally one would expect
9048 that GDB could rely on that breakpoint instruction to stop the program,
9049 thus removing the need to insert its own breakpoint, except that executing
9050 the breakpoint instruction can kill the target instead of reporting a
9051 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
9052 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
9053 with "Trap 0x02 while interrupts disabled, Error state". Letting the
9054 breakpoint be inserted normally results in QEMU knowing about the GDB
9055 breakpoint, and thus trap before the breakpoint instruction is executed.
9056 (If GDB later needs to continue execution past the permanent breakpoint,
9057 it manually increments the PC, thus avoiding executing the breakpoint
9058 instruction.) */
9059 if (bp_loc_is_permanent (loc))
9060 loc->permanent = 1;
9061
9062 return loc;
9063 }
9064 \f
9065
9066 /* See breakpoint.h. */
9067
9068 int
9069 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
9070 {
9071 int len;
9072 CORE_ADDR addr;
9073 const gdb_byte *bpoint;
9074 gdb_byte *target_mem;
9075 struct cleanup *cleanup;
9076 int retval = 0;
9077
9078 addr = address;
9079 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
9080
9081 /* Software breakpoints unsupported? */
9082 if (bpoint == NULL)
9083 return 0;
9084
9085 target_mem = (gdb_byte *) alloca (len);
9086
9087 /* Enable the automatic memory restoration from breakpoints while
9088 we read the memory. Otherwise we could say about our temporary
9089 breakpoints they are permanent. */
9090 cleanup = make_show_memory_breakpoints_cleanup (0);
9091
9092 if (target_read_memory (address, target_mem, len) == 0
9093 && memcmp (target_mem, bpoint, len) == 0)
9094 retval = 1;
9095
9096 do_cleanups (cleanup);
9097
9098 return retval;
9099 }
9100
9101 /* Return 1 if LOC is pointing to a permanent breakpoint,
9102 return 0 otherwise. */
9103
9104 static int
9105 bp_loc_is_permanent (struct bp_location *loc)
9106 {
9107 struct cleanup *cleanup;
9108 int retval;
9109
9110 gdb_assert (loc != NULL);
9111
9112 /* If we have a catchpoint or a watchpoint, just return 0. We should not
9113 attempt to read from the addresses the locations of these breakpoint types
9114 point to. program_breakpoint_here_p, below, will attempt to read
9115 memory. */
9116 if (!breakpoint_address_is_meaningful (loc->owner))
9117 return 0;
9118
9119 cleanup = save_current_space_and_thread ();
9120 switch_to_program_space_and_thread (loc->pspace);
9121
9122 retval = program_breakpoint_here_p (loc->gdbarch, loc->address);
9123
9124 do_cleanups (cleanup);
9125
9126 return retval;
9127 }
9128
9129 /* Build a command list for the dprintf corresponding to the current
9130 settings of the dprintf style options. */
9131
9132 static void
9133 update_dprintf_command_list (struct breakpoint *b)
9134 {
9135 char *dprintf_args = b->extra_string;
9136 char *printf_line = NULL;
9137
9138 if (!dprintf_args)
9139 return;
9140
9141 dprintf_args = skip_spaces (dprintf_args);
9142
9143 /* Allow a comma, as it may have terminated a location, but don't
9144 insist on it. */
9145 if (*dprintf_args == ',')
9146 ++dprintf_args;
9147 dprintf_args = skip_spaces (dprintf_args);
9148
9149 if (*dprintf_args != '"')
9150 error (_("Bad format string, missing '\"'."));
9151
9152 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9153 printf_line = xstrprintf ("printf %s", dprintf_args);
9154 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9155 {
9156 if (!dprintf_function)
9157 error (_("No function supplied for dprintf call"));
9158
9159 if (dprintf_channel && strlen (dprintf_channel) > 0)
9160 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9161 dprintf_function,
9162 dprintf_channel,
9163 dprintf_args);
9164 else
9165 printf_line = xstrprintf ("call (void) %s (%s)",
9166 dprintf_function,
9167 dprintf_args);
9168 }
9169 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9170 {
9171 if (target_can_run_breakpoint_commands ())
9172 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9173 else
9174 {
9175 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9176 printf_line = xstrprintf ("printf %s", dprintf_args);
9177 }
9178 }
9179 else
9180 internal_error (__FILE__, __LINE__,
9181 _("Invalid dprintf style."));
9182
9183 gdb_assert (printf_line != NULL);
9184 /* Manufacture a printf sequence. */
9185 {
9186 struct command_line *printf_cmd_line = XNEW (struct command_line);
9187
9188 printf_cmd_line->control_type = simple_control;
9189 printf_cmd_line->body_count = 0;
9190 printf_cmd_line->body_list = NULL;
9191 printf_cmd_line->next = NULL;
9192 printf_cmd_line->line = printf_line;
9193
9194 breakpoint_set_commands (b, printf_cmd_line);
9195 }
9196 }
9197
9198 /* Update all dprintf commands, making their command lists reflect
9199 current style settings. */
9200
9201 static void
9202 update_dprintf_commands (char *args, int from_tty,
9203 struct cmd_list_element *c)
9204 {
9205 struct breakpoint *b;
9206
9207 ALL_BREAKPOINTS (b)
9208 {
9209 if (b->type == bp_dprintf)
9210 update_dprintf_command_list (b);
9211 }
9212 }
9213
9214 /* Create a breakpoint with SAL as location. Use LOCATION
9215 as a description of the location, and COND_STRING
9216 as condition expression. If LOCATION is NULL then create an
9217 "address location" from the address in the SAL. */
9218
9219 static void
9220 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9221 struct symtabs_and_lines sals,
9222 struct event_location *location,
9223 char *filter, char *cond_string,
9224 char *extra_string,
9225 enum bptype type, enum bpdisp disposition,
9226 int thread, int task, int ignore_count,
9227 const struct breakpoint_ops *ops, int from_tty,
9228 int enabled, int internal, unsigned flags,
9229 int display_canonical)
9230 {
9231 int i;
9232
9233 if (type == bp_hardware_breakpoint)
9234 {
9235 int target_resources_ok;
9236
9237 i = hw_breakpoint_used_count ();
9238 target_resources_ok =
9239 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9240 i + 1, 0);
9241 if (target_resources_ok == 0)
9242 error (_("No hardware breakpoint support in the target."));
9243 else if (target_resources_ok < 0)
9244 error (_("Hardware breakpoints used exceeds limit."));
9245 }
9246
9247 gdb_assert (sals.nelts > 0);
9248
9249 for (i = 0; i < sals.nelts; ++i)
9250 {
9251 struct symtab_and_line sal = sals.sals[i];
9252 struct bp_location *loc;
9253
9254 if (from_tty)
9255 {
9256 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9257 if (!loc_gdbarch)
9258 loc_gdbarch = gdbarch;
9259
9260 describe_other_breakpoints (loc_gdbarch,
9261 sal.pspace, sal.pc, sal.section, thread);
9262 }
9263
9264 if (i == 0)
9265 {
9266 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9267 b->thread = thread;
9268 b->task = task;
9269
9270 b->cond_string = cond_string;
9271 b->extra_string = extra_string;
9272 b->ignore_count = ignore_count;
9273 b->enable_state = enabled ? bp_enabled : bp_disabled;
9274 b->disposition = disposition;
9275
9276 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9277 b->loc->inserted = 1;
9278
9279 if (type == bp_static_tracepoint)
9280 {
9281 struct tracepoint *t = (struct tracepoint *) b;
9282 struct static_tracepoint_marker marker;
9283
9284 if (strace_marker_p (b))
9285 {
9286 /* We already know the marker exists, otherwise, we
9287 wouldn't see a sal for it. */
9288 const char *p = &event_location_to_string (b->location)[3];
9289 const char *endp;
9290 char *marker_str;
9291
9292 p = skip_spaces_const (p);
9293
9294 endp = skip_to_space_const (p);
9295
9296 marker_str = savestring (p, endp - p);
9297 t->static_trace_marker_id = marker_str;
9298
9299 printf_filtered (_("Probed static tracepoint "
9300 "marker \"%s\"\n"),
9301 t->static_trace_marker_id);
9302 }
9303 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9304 {
9305 t->static_trace_marker_id = xstrdup (marker.str_id);
9306 release_static_tracepoint_marker (&marker);
9307
9308 printf_filtered (_("Probed static tracepoint "
9309 "marker \"%s\"\n"),
9310 t->static_trace_marker_id);
9311 }
9312 else
9313 warning (_("Couldn't determine the static "
9314 "tracepoint marker to probe"));
9315 }
9316
9317 loc = b->loc;
9318 }
9319 else
9320 {
9321 loc = add_location_to_breakpoint (b, &sal);
9322 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9323 loc->inserted = 1;
9324 }
9325
9326 if (b->cond_string)
9327 {
9328 const char *arg = b->cond_string;
9329
9330 loc->cond = parse_exp_1 (&arg, loc->address,
9331 block_for_pc (loc->address), 0);
9332 if (*arg)
9333 error (_("Garbage '%s' follows condition"), arg);
9334 }
9335
9336 /* Dynamic printf requires and uses additional arguments on the
9337 command line, otherwise it's an error. */
9338 if (type == bp_dprintf)
9339 {
9340 if (b->extra_string)
9341 update_dprintf_command_list (b);
9342 else
9343 error (_("Format string required"));
9344 }
9345 else if (b->extra_string)
9346 error (_("Garbage '%s' at end of command"), b->extra_string);
9347 }
9348
9349 b->display_canonical = display_canonical;
9350 if (location != NULL)
9351 b->location = location;
9352 else
9353 {
9354 const char *addr_string = NULL;
9355 int addr_string_len = 0;
9356
9357 if (location != NULL)
9358 addr_string = event_location_to_string (location);
9359 if (addr_string != NULL)
9360 addr_string_len = strlen (addr_string);
9361
9362 b->location = new_address_location (b->loc->address,
9363 addr_string, addr_string_len);
9364 }
9365 b->filter = filter;
9366 }
9367
9368 static void
9369 create_breakpoint_sal (struct gdbarch *gdbarch,
9370 struct symtabs_and_lines sals,
9371 struct event_location *location,
9372 char *filter, char *cond_string,
9373 char *extra_string,
9374 enum bptype type, enum bpdisp disposition,
9375 int thread, int task, int ignore_count,
9376 const struct breakpoint_ops *ops, int from_tty,
9377 int enabled, int internal, unsigned flags,
9378 int display_canonical)
9379 {
9380 struct breakpoint *b;
9381 struct cleanup *old_chain;
9382
9383 if (is_tracepoint_type (type))
9384 {
9385 struct tracepoint *t;
9386
9387 t = new tracepoint ();
9388 b = &t->base;
9389 }
9390 else
9391 b = new breakpoint ();
9392
9393 old_chain = make_cleanup (xfree, b);
9394
9395 init_breakpoint_sal (b, gdbarch,
9396 sals, location,
9397 filter, cond_string, extra_string,
9398 type, disposition,
9399 thread, task, ignore_count,
9400 ops, from_tty,
9401 enabled, internal, flags,
9402 display_canonical);
9403 discard_cleanups (old_chain);
9404
9405 install_breakpoint (internal, b, 0);
9406 }
9407
9408 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9409 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9410 value. COND_STRING, if not NULL, specified the condition to be
9411 used for all breakpoints. Essentially the only case where
9412 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9413 function. In that case, it's still not possible to specify
9414 separate conditions for different overloaded functions, so
9415 we take just a single condition string.
9416
9417 NOTE: If the function succeeds, the caller is expected to cleanup
9418 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9419 array contents). If the function fails (error() is called), the
9420 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9421 COND and SALS arrays and each of those arrays contents. */
9422
9423 static void
9424 create_breakpoints_sal (struct gdbarch *gdbarch,
9425 struct linespec_result *canonical,
9426 char *cond_string, char *extra_string,
9427 enum bptype type, enum bpdisp disposition,
9428 int thread, int task, int ignore_count,
9429 const struct breakpoint_ops *ops, int from_tty,
9430 int enabled, int internal, unsigned flags)
9431 {
9432 int i;
9433 struct linespec_sals *lsal;
9434
9435 if (canonical->pre_expanded)
9436 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9437
9438 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9439 {
9440 /* Note that 'location' can be NULL in the case of a plain
9441 'break', without arguments. */
9442 struct event_location *location
9443 = (canonical->location != NULL
9444 ? copy_event_location (canonical->location) : NULL);
9445 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9446 struct cleanup *inner = make_cleanup_delete_event_location (location);
9447
9448 make_cleanup (xfree, filter_string);
9449 create_breakpoint_sal (gdbarch, lsal->sals,
9450 location,
9451 filter_string,
9452 cond_string, extra_string,
9453 type, disposition,
9454 thread, task, ignore_count, ops,
9455 from_tty, enabled, internal, flags,
9456 canonical->special_display);
9457 discard_cleanups (inner);
9458 }
9459 }
9460
9461 /* Parse LOCATION which is assumed to be a SAL specification possibly
9462 followed by conditionals. On return, SALS contains an array of SAL
9463 addresses found. LOCATION points to the end of the SAL (for
9464 linespec locations).
9465
9466 The array and the line spec strings are allocated on the heap, it is
9467 the caller's responsibility to free them. */
9468
9469 static void
9470 parse_breakpoint_sals (const struct event_location *location,
9471 struct linespec_result *canonical)
9472 {
9473 struct symtab_and_line cursal;
9474
9475 if (event_location_type (location) == LINESPEC_LOCATION)
9476 {
9477 const char *address = get_linespec_location (location);
9478
9479 if (address == NULL)
9480 {
9481 /* The last displayed codepoint, if it's valid, is our default
9482 breakpoint address. */
9483 if (last_displayed_sal_is_valid ())
9484 {
9485 struct linespec_sals lsal;
9486 struct symtab_and_line sal;
9487 CORE_ADDR pc;
9488
9489 init_sal (&sal); /* Initialize to zeroes. */
9490 lsal.sals.sals = XNEW (struct symtab_and_line);
9491
9492 /* Set sal's pspace, pc, symtab, and line to the values
9493 corresponding to the last call to print_frame_info.
9494 Be sure to reinitialize LINE with NOTCURRENT == 0
9495 as the breakpoint line number is inappropriate otherwise.
9496 find_pc_line would adjust PC, re-set it back. */
9497 get_last_displayed_sal (&sal);
9498 pc = sal.pc;
9499 sal = find_pc_line (pc, 0);
9500
9501 /* "break" without arguments is equivalent to "break *PC"
9502 where PC is the last displayed codepoint's address. So
9503 make sure to set sal.explicit_pc to prevent GDB from
9504 trying to expand the list of sals to include all other
9505 instances with the same symtab and line. */
9506 sal.pc = pc;
9507 sal.explicit_pc = 1;
9508
9509 lsal.sals.sals[0] = sal;
9510 lsal.sals.nelts = 1;
9511 lsal.canonical = NULL;
9512
9513 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9514 return;
9515 }
9516 else
9517 error (_("No default breakpoint address now."));
9518 }
9519 }
9520
9521 /* Force almost all breakpoints to be in terms of the
9522 current_source_symtab (which is decode_line_1's default).
9523 This should produce the results we want almost all of the
9524 time while leaving default_breakpoint_* alone.
9525
9526 ObjC: However, don't match an Objective-C method name which
9527 may have a '+' or '-' succeeded by a '['. */
9528 cursal = get_current_source_symtab_and_line ();
9529 if (last_displayed_sal_is_valid ())
9530 {
9531 const char *address = NULL;
9532
9533 if (event_location_type (location) == LINESPEC_LOCATION)
9534 address = get_linespec_location (location);
9535
9536 if (!cursal.symtab
9537 || (address != NULL
9538 && strchr ("+-", address[0]) != NULL
9539 && address[1] != '['))
9540 {
9541 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9542 get_last_displayed_symtab (),
9543 get_last_displayed_line (),
9544 canonical, NULL, NULL);
9545 return;
9546 }
9547 }
9548
9549 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9550 cursal.symtab, cursal.line, canonical, NULL, NULL);
9551 }
9552
9553
9554 /* Convert each SAL into a real PC. Verify that the PC can be
9555 inserted as a breakpoint. If it can't throw an error. */
9556
9557 static void
9558 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9559 {
9560 int i;
9561
9562 for (i = 0; i < sals->nelts; i++)
9563 resolve_sal_pc (&sals->sals[i]);
9564 }
9565
9566 /* Fast tracepoints may have restrictions on valid locations. For
9567 instance, a fast tracepoint using a jump instead of a trap will
9568 likely have to overwrite more bytes than a trap would, and so can
9569 only be placed where the instruction is longer than the jump, or a
9570 multi-instruction sequence does not have a jump into the middle of
9571 it, etc. */
9572
9573 static void
9574 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9575 struct symtabs_and_lines *sals)
9576 {
9577 int i, rslt;
9578 struct symtab_and_line *sal;
9579 char *msg;
9580 struct cleanup *old_chain;
9581
9582 for (i = 0; i < sals->nelts; i++)
9583 {
9584 struct gdbarch *sarch;
9585
9586 sal = &sals->sals[i];
9587
9588 sarch = get_sal_arch (*sal);
9589 /* We fall back to GDBARCH if there is no architecture
9590 associated with SAL. */
9591 if (sarch == NULL)
9592 sarch = gdbarch;
9593 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc, &msg);
9594 old_chain = make_cleanup (xfree, msg);
9595
9596 if (!rslt)
9597 error (_("May not have a fast tracepoint at %s%s"),
9598 paddress (sarch, sal->pc), (msg ? msg : ""));
9599
9600 do_cleanups (old_chain);
9601 }
9602 }
9603
9604 /* Given TOK, a string specification of condition and thread, as
9605 accepted by the 'break' command, extract the condition
9606 string and thread number and set *COND_STRING and *THREAD.
9607 PC identifies the context at which the condition should be parsed.
9608 If no condition is found, *COND_STRING is set to NULL.
9609 If no thread is found, *THREAD is set to -1. */
9610
9611 static void
9612 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9613 char **cond_string, int *thread, int *task,
9614 char **rest)
9615 {
9616 *cond_string = NULL;
9617 *thread = -1;
9618 *task = 0;
9619 *rest = NULL;
9620
9621 while (tok && *tok)
9622 {
9623 const char *end_tok;
9624 int toklen;
9625 const char *cond_start = NULL;
9626 const char *cond_end = NULL;
9627
9628 tok = skip_spaces_const (tok);
9629
9630 if ((*tok == '"' || *tok == ',') && rest)
9631 {
9632 *rest = savestring (tok, strlen (tok));
9633 return;
9634 }
9635
9636 end_tok = skip_to_space_const (tok);
9637
9638 toklen = end_tok - tok;
9639
9640 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9641 {
9642 tok = cond_start = end_tok + 1;
9643 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9644 cond_end = tok;
9645 *cond_string = savestring (cond_start, cond_end - cond_start);
9646 }
9647 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9648 {
9649 const char *tmptok;
9650 struct thread_info *thr;
9651
9652 tok = end_tok + 1;
9653 thr = parse_thread_id (tok, &tmptok);
9654 if (tok == tmptok)
9655 error (_("Junk after thread keyword."));
9656 *thread = thr->global_num;
9657 tok = tmptok;
9658 }
9659 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9660 {
9661 char *tmptok;
9662
9663 tok = end_tok + 1;
9664 *task = strtol (tok, &tmptok, 0);
9665 if (tok == tmptok)
9666 error (_("Junk after task keyword."));
9667 if (!valid_task_id (*task))
9668 error (_("Unknown task %d."), *task);
9669 tok = tmptok;
9670 }
9671 else if (rest)
9672 {
9673 *rest = savestring (tok, strlen (tok));
9674 return;
9675 }
9676 else
9677 error (_("Junk at end of arguments."));
9678 }
9679 }
9680
9681 /* Decode a static tracepoint marker spec. */
9682
9683 static struct symtabs_and_lines
9684 decode_static_tracepoint_spec (const char **arg_p)
9685 {
9686 VEC(static_tracepoint_marker_p) *markers = NULL;
9687 struct symtabs_and_lines sals;
9688 struct cleanup *old_chain;
9689 const char *p = &(*arg_p)[3];
9690 const char *endp;
9691 char *marker_str;
9692 int i;
9693
9694 p = skip_spaces_const (p);
9695
9696 endp = skip_to_space_const (p);
9697
9698 marker_str = savestring (p, endp - p);
9699 old_chain = make_cleanup (xfree, marker_str);
9700
9701 markers = target_static_tracepoint_markers_by_strid (marker_str);
9702 if (VEC_empty(static_tracepoint_marker_p, markers))
9703 error (_("No known static tracepoint marker named %s"), marker_str);
9704
9705 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9706 sals.sals = XNEWVEC (struct symtab_and_line, sals.nelts);
9707
9708 for (i = 0; i < sals.nelts; i++)
9709 {
9710 struct static_tracepoint_marker *marker;
9711
9712 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9713
9714 init_sal (&sals.sals[i]);
9715
9716 sals.sals[i] = find_pc_line (marker->address, 0);
9717 sals.sals[i].pc = marker->address;
9718
9719 release_static_tracepoint_marker (marker);
9720 }
9721
9722 do_cleanups (old_chain);
9723
9724 *arg_p = endp;
9725 return sals;
9726 }
9727
9728 /* See breakpoint.h. */
9729
9730 int
9731 create_breakpoint (struct gdbarch *gdbarch,
9732 const struct event_location *location, char *cond_string,
9733 int thread, char *extra_string,
9734 int parse_extra,
9735 int tempflag, enum bptype type_wanted,
9736 int ignore_count,
9737 enum auto_boolean pending_break_support,
9738 const struct breakpoint_ops *ops,
9739 int from_tty, int enabled, int internal,
9740 unsigned flags)
9741 {
9742 struct linespec_result canonical;
9743 struct cleanup *old_chain;
9744 struct cleanup *bkpt_chain = NULL;
9745 int pending = 0;
9746 int task = 0;
9747 int prev_bkpt_count = breakpoint_count;
9748
9749 gdb_assert (ops != NULL);
9750
9751 /* If extra_string isn't useful, set it to NULL. */
9752 if (extra_string != NULL && *extra_string == '\0')
9753 extra_string = NULL;
9754
9755 init_linespec_result (&canonical);
9756
9757 TRY
9758 {
9759 ops->create_sals_from_location (location, &canonical, type_wanted);
9760 }
9761 CATCH (e, RETURN_MASK_ERROR)
9762 {
9763 /* If caller is interested in rc value from parse, set
9764 value. */
9765 if (e.error == NOT_FOUND_ERROR)
9766 {
9767 /* If pending breakpoint support is turned off, throw
9768 error. */
9769
9770 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9771 throw_exception (e);
9772
9773 exception_print (gdb_stderr, e);
9774
9775 /* If pending breakpoint support is auto query and the user
9776 selects no, then simply return the error code. */
9777 if (pending_break_support == AUTO_BOOLEAN_AUTO
9778 && !nquery (_("Make %s pending on future shared library load? "),
9779 bptype_string (type_wanted)))
9780 return 0;
9781
9782 /* At this point, either the user was queried about setting
9783 a pending breakpoint and selected yes, or pending
9784 breakpoint behavior is on and thus a pending breakpoint
9785 is defaulted on behalf of the user. */
9786 pending = 1;
9787 }
9788 else
9789 throw_exception (e);
9790 }
9791 END_CATCH
9792
9793 if (!pending && VEC_empty (linespec_sals, canonical.sals))
9794 return 0;
9795
9796 /* Create a chain of things that always need to be cleaned up. */
9797 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9798
9799 /* ----------------------------- SNIP -----------------------------
9800 Anything added to the cleanup chain beyond this point is assumed
9801 to be part of a breakpoint. If the breakpoint create succeeds
9802 then the memory is not reclaimed. */
9803 bkpt_chain = make_cleanup (null_cleanup, 0);
9804
9805 /* Resolve all line numbers to PC's and verify that the addresses
9806 are ok for the target. */
9807 if (!pending)
9808 {
9809 int ix;
9810 struct linespec_sals *iter;
9811
9812 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9813 breakpoint_sals_to_pc (&iter->sals);
9814 }
9815
9816 /* Fast tracepoints may have additional restrictions on location. */
9817 if (!pending && type_wanted == bp_fast_tracepoint)
9818 {
9819 int ix;
9820 struct linespec_sals *iter;
9821
9822 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9823 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9824 }
9825
9826 /* Verify that condition can be parsed, before setting any
9827 breakpoints. Allocate a separate condition expression for each
9828 breakpoint. */
9829 if (!pending)
9830 {
9831 if (parse_extra)
9832 {
9833 char *rest;
9834 struct linespec_sals *lsal;
9835
9836 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9837
9838 /* Here we only parse 'arg' to separate condition
9839 from thread number, so parsing in context of first
9840 sal is OK. When setting the breakpoint we'll
9841 re-parse it in context of each sal. */
9842
9843 find_condition_and_thread (extra_string, lsal->sals.sals[0].pc,
9844 &cond_string, &thread, &task, &rest);
9845 if (cond_string)
9846 make_cleanup (xfree, cond_string);
9847 if (rest)
9848 make_cleanup (xfree, rest);
9849 if (rest)
9850 extra_string = rest;
9851 else
9852 extra_string = NULL;
9853 }
9854 else
9855 {
9856 if (type_wanted != bp_dprintf
9857 && extra_string != NULL && *extra_string != '\0')
9858 error (_("Garbage '%s' at end of location"), extra_string);
9859
9860 /* Create a private copy of condition string. */
9861 if (cond_string)
9862 {
9863 cond_string = xstrdup (cond_string);
9864 make_cleanup (xfree, cond_string);
9865 }
9866 /* Create a private copy of any extra string. */
9867 if (extra_string)
9868 {
9869 extra_string = xstrdup (extra_string);
9870 make_cleanup (xfree, extra_string);
9871 }
9872 }
9873
9874 ops->create_breakpoints_sal (gdbarch, &canonical,
9875 cond_string, extra_string, type_wanted,
9876 tempflag ? disp_del : disp_donttouch,
9877 thread, task, ignore_count, ops,
9878 from_tty, enabled, internal, flags);
9879 }
9880 else
9881 {
9882 struct breakpoint *b;
9883
9884 if (is_tracepoint_type (type_wanted))
9885 {
9886 struct tracepoint *t;
9887
9888 t = new tracepoint ();
9889 b = &t->base;
9890 }
9891 else
9892 b = new breakpoint ();
9893
9894 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9895 b->location = copy_event_location (location);
9896
9897 if (parse_extra)
9898 b->cond_string = NULL;
9899 else
9900 {
9901 /* Create a private copy of condition string. */
9902 if (cond_string)
9903 {
9904 cond_string = xstrdup (cond_string);
9905 make_cleanup (xfree, cond_string);
9906 }
9907 b->cond_string = cond_string;
9908 b->thread = thread;
9909 }
9910
9911 /* Create a private copy of any extra string. */
9912 if (extra_string != NULL)
9913 {
9914 extra_string = xstrdup (extra_string);
9915 make_cleanup (xfree, extra_string);
9916 }
9917 b->extra_string = extra_string;
9918 b->ignore_count = ignore_count;
9919 b->disposition = tempflag ? disp_del : disp_donttouch;
9920 b->condition_not_parsed = 1;
9921 b->enable_state = enabled ? bp_enabled : bp_disabled;
9922 if ((type_wanted != bp_breakpoint
9923 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9924 b->pspace = current_program_space;
9925
9926 install_breakpoint (internal, b, 0);
9927 }
9928
9929 if (VEC_length (linespec_sals, canonical.sals) > 1)
9930 {
9931 warning (_("Multiple breakpoints were set.\nUse the "
9932 "\"delete\" command to delete unwanted breakpoints."));
9933 prev_breakpoint_count = prev_bkpt_count;
9934 }
9935
9936 /* That's it. Discard the cleanups for data inserted into the
9937 breakpoint. */
9938 discard_cleanups (bkpt_chain);
9939 /* But cleanup everything else. */
9940 do_cleanups (old_chain);
9941
9942 /* error call may happen here - have BKPT_CHAIN already discarded. */
9943 update_global_location_list (UGLL_MAY_INSERT);
9944
9945 return 1;
9946 }
9947
9948 /* Set a breakpoint.
9949 ARG is a string describing breakpoint address,
9950 condition, and thread.
9951 FLAG specifies if a breakpoint is hardware on,
9952 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9953 and BP_TEMPFLAG. */
9954
9955 static void
9956 break_command_1 (char *arg, int flag, int from_tty)
9957 {
9958 int tempflag = flag & BP_TEMPFLAG;
9959 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9960 ? bp_hardware_breakpoint
9961 : bp_breakpoint);
9962 struct breakpoint_ops *ops;
9963 struct event_location *location;
9964 struct cleanup *cleanup;
9965
9966 location = string_to_event_location (&arg, current_language);
9967 cleanup = make_cleanup_delete_event_location (location);
9968
9969 /* Matching breakpoints on probes. */
9970 if (location != NULL
9971 && event_location_type (location) == PROBE_LOCATION)
9972 ops = &bkpt_probe_breakpoint_ops;
9973 else
9974 ops = &bkpt_breakpoint_ops;
9975
9976 create_breakpoint (get_current_arch (),
9977 location,
9978 NULL, 0, arg, 1 /* parse arg */,
9979 tempflag, type_wanted,
9980 0 /* Ignore count */,
9981 pending_break_support,
9982 ops,
9983 from_tty,
9984 1 /* enabled */,
9985 0 /* internal */,
9986 0);
9987 do_cleanups (cleanup);
9988 }
9989
9990 /* Helper function for break_command_1 and disassemble_command. */
9991
9992 void
9993 resolve_sal_pc (struct symtab_and_line *sal)
9994 {
9995 CORE_ADDR pc;
9996
9997 if (sal->pc == 0 && sal->symtab != NULL)
9998 {
9999 if (!find_line_pc (sal->symtab, sal->line, &pc))
10000 error (_("No line %d in file \"%s\"."),
10001 sal->line, symtab_to_filename_for_display (sal->symtab));
10002 sal->pc = pc;
10003
10004 /* If this SAL corresponds to a breakpoint inserted using a line
10005 number, then skip the function prologue if necessary. */
10006 if (sal->explicit_line)
10007 skip_prologue_sal (sal);
10008 }
10009
10010 if (sal->section == 0 && sal->symtab != NULL)
10011 {
10012 const struct blockvector *bv;
10013 const struct block *b;
10014 struct symbol *sym;
10015
10016 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
10017 SYMTAB_COMPUNIT (sal->symtab));
10018 if (bv != NULL)
10019 {
10020 sym = block_linkage_function (b);
10021 if (sym != NULL)
10022 {
10023 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
10024 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
10025 sym);
10026 }
10027 else
10028 {
10029 /* It really is worthwhile to have the section, so we'll
10030 just have to look harder. This case can be executed
10031 if we have line numbers but no functions (as can
10032 happen in assembly source). */
10033
10034 struct bound_minimal_symbol msym;
10035 struct cleanup *old_chain = save_current_space_and_thread ();
10036
10037 switch_to_program_space_and_thread (sal->pspace);
10038
10039 msym = lookup_minimal_symbol_by_pc (sal->pc);
10040 if (msym.minsym)
10041 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
10042
10043 do_cleanups (old_chain);
10044 }
10045 }
10046 }
10047 }
10048
10049 void
10050 break_command (char *arg, int from_tty)
10051 {
10052 break_command_1 (arg, 0, from_tty);
10053 }
10054
10055 void
10056 tbreak_command (char *arg, int from_tty)
10057 {
10058 break_command_1 (arg, BP_TEMPFLAG, from_tty);
10059 }
10060
10061 static void
10062 hbreak_command (char *arg, int from_tty)
10063 {
10064 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
10065 }
10066
10067 static void
10068 thbreak_command (char *arg, int from_tty)
10069 {
10070 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
10071 }
10072
10073 static void
10074 stop_command (char *arg, int from_tty)
10075 {
10076 printf_filtered (_("Specify the type of breakpoint to set.\n\
10077 Usage: stop in <function | address>\n\
10078 stop at <line>\n"));
10079 }
10080
10081 static void
10082 stopin_command (char *arg, int from_tty)
10083 {
10084 int badInput = 0;
10085
10086 if (arg == (char *) NULL)
10087 badInput = 1;
10088 else if (*arg != '*')
10089 {
10090 char *argptr = arg;
10091 int hasColon = 0;
10092
10093 /* Look for a ':'. If this is a line number specification, then
10094 say it is bad, otherwise, it should be an address or
10095 function/method name. */
10096 while (*argptr && !hasColon)
10097 {
10098 hasColon = (*argptr == ':');
10099 argptr++;
10100 }
10101
10102 if (hasColon)
10103 badInput = (*argptr != ':'); /* Not a class::method */
10104 else
10105 badInput = isdigit (*arg); /* a simple line number */
10106 }
10107
10108 if (badInput)
10109 printf_filtered (_("Usage: stop in <function | address>\n"));
10110 else
10111 break_command_1 (arg, 0, from_tty);
10112 }
10113
10114 static void
10115 stopat_command (char *arg, int from_tty)
10116 {
10117 int badInput = 0;
10118
10119 if (arg == (char *) NULL || *arg == '*') /* no line number */
10120 badInput = 1;
10121 else
10122 {
10123 char *argptr = arg;
10124 int hasColon = 0;
10125
10126 /* Look for a ':'. If there is a '::' then get out, otherwise
10127 it is probably a line number. */
10128 while (*argptr && !hasColon)
10129 {
10130 hasColon = (*argptr == ':');
10131 argptr++;
10132 }
10133
10134 if (hasColon)
10135 badInput = (*argptr == ':'); /* we have class::method */
10136 else
10137 badInput = !isdigit (*arg); /* not a line number */
10138 }
10139
10140 if (badInput)
10141 printf_filtered (_("Usage: stop at <line>\n"));
10142 else
10143 break_command_1 (arg, 0, from_tty);
10144 }
10145
10146 /* The dynamic printf command is mostly like a regular breakpoint, but
10147 with a prewired command list consisting of a single output command,
10148 built from extra arguments supplied on the dprintf command
10149 line. */
10150
10151 static void
10152 dprintf_command (char *arg, int from_tty)
10153 {
10154 struct event_location *location;
10155 struct cleanup *cleanup;
10156
10157 location = string_to_event_location (&arg, current_language);
10158 cleanup = make_cleanup_delete_event_location (location);
10159
10160 /* If non-NULL, ARG should have been advanced past the location;
10161 the next character must be ','. */
10162 if (arg != NULL)
10163 {
10164 if (arg[0] != ',' || arg[1] == '\0')
10165 error (_("Format string required"));
10166 else
10167 {
10168 /* Skip the comma. */
10169 ++arg;
10170 }
10171 }
10172
10173 create_breakpoint (get_current_arch (),
10174 location,
10175 NULL, 0, arg, 1 /* parse arg */,
10176 0, bp_dprintf,
10177 0 /* Ignore count */,
10178 pending_break_support,
10179 &dprintf_breakpoint_ops,
10180 from_tty,
10181 1 /* enabled */,
10182 0 /* internal */,
10183 0);
10184 do_cleanups (cleanup);
10185 }
10186
10187 static void
10188 agent_printf_command (char *arg, int from_tty)
10189 {
10190 error (_("May only run agent-printf on the target"));
10191 }
10192
10193 /* Implement the "breakpoint_hit" breakpoint_ops method for
10194 ranged breakpoints. */
10195
10196 static int
10197 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10198 struct address_space *aspace,
10199 CORE_ADDR bp_addr,
10200 const struct target_waitstatus *ws)
10201 {
10202 if (ws->kind != TARGET_WAITKIND_STOPPED
10203 || ws->value.sig != GDB_SIGNAL_TRAP)
10204 return 0;
10205
10206 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10207 bl->length, aspace, bp_addr);
10208 }
10209
10210 /* Implement the "resources_needed" breakpoint_ops method for
10211 ranged breakpoints. */
10212
10213 static int
10214 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10215 {
10216 return target_ranged_break_num_registers ();
10217 }
10218
10219 /* Implement the "print_it" breakpoint_ops method for
10220 ranged breakpoints. */
10221
10222 static enum print_stop_action
10223 print_it_ranged_breakpoint (bpstat bs)
10224 {
10225 struct breakpoint *b = bs->breakpoint_at;
10226 struct bp_location *bl = b->loc;
10227 struct ui_out *uiout = current_uiout;
10228
10229 gdb_assert (b->type == bp_hardware_breakpoint);
10230
10231 /* Ranged breakpoints have only one location. */
10232 gdb_assert (bl && bl->next == NULL);
10233
10234 annotate_breakpoint (b->number);
10235
10236 maybe_print_thread_hit_breakpoint (uiout);
10237
10238 if (b->disposition == disp_del)
10239 uiout->text ("Temporary ranged breakpoint ");
10240 else
10241 uiout->text ("Ranged breakpoint ");
10242 if (uiout->is_mi_like_p ())
10243 {
10244 uiout->field_string ("reason",
10245 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10246 uiout->field_string ("disp", bpdisp_text (b->disposition));
10247 }
10248 uiout->field_int ("bkptno", b->number);
10249 uiout->text (", ");
10250
10251 return PRINT_SRC_AND_LOC;
10252 }
10253
10254 /* Implement the "print_one" breakpoint_ops method for
10255 ranged breakpoints. */
10256
10257 static void
10258 print_one_ranged_breakpoint (struct breakpoint *b,
10259 struct bp_location **last_loc)
10260 {
10261 struct bp_location *bl = b->loc;
10262 struct value_print_options opts;
10263 struct ui_out *uiout = current_uiout;
10264
10265 /* Ranged breakpoints have only one location. */
10266 gdb_assert (bl && bl->next == NULL);
10267
10268 get_user_print_options (&opts);
10269
10270 if (opts.addressprint)
10271 /* We don't print the address range here, it will be printed later
10272 by print_one_detail_ranged_breakpoint. */
10273 uiout->field_skip ("addr");
10274 annotate_field (5);
10275 print_breakpoint_location (b, bl);
10276 *last_loc = bl;
10277 }
10278
10279 /* Implement the "print_one_detail" breakpoint_ops method for
10280 ranged breakpoints. */
10281
10282 static void
10283 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10284 struct ui_out *uiout)
10285 {
10286 CORE_ADDR address_start, address_end;
10287 struct bp_location *bl = b->loc;
10288 string_file stb;
10289
10290 gdb_assert (bl);
10291
10292 address_start = bl->address;
10293 address_end = address_start + bl->length - 1;
10294
10295 uiout->text ("\taddress range: ");
10296 stb.printf ("[%s, %s]",
10297 print_core_address (bl->gdbarch, address_start),
10298 print_core_address (bl->gdbarch, address_end));
10299 uiout->field_stream ("addr", stb);
10300 uiout->text ("\n");
10301 }
10302
10303 /* Implement the "print_mention" breakpoint_ops method for
10304 ranged breakpoints. */
10305
10306 static void
10307 print_mention_ranged_breakpoint (struct breakpoint *b)
10308 {
10309 struct bp_location *bl = b->loc;
10310 struct ui_out *uiout = current_uiout;
10311
10312 gdb_assert (bl);
10313 gdb_assert (b->type == bp_hardware_breakpoint);
10314
10315 if (uiout->is_mi_like_p ())
10316 return;
10317
10318 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10319 b->number, paddress (bl->gdbarch, bl->address),
10320 paddress (bl->gdbarch, bl->address + bl->length - 1));
10321 }
10322
10323 /* Implement the "print_recreate" breakpoint_ops method for
10324 ranged breakpoints. */
10325
10326 static void
10327 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10328 {
10329 fprintf_unfiltered (fp, "break-range %s, %s",
10330 event_location_to_string (b->location),
10331 event_location_to_string (b->location_range_end));
10332 print_recreate_thread (b, fp);
10333 }
10334
10335 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10336
10337 static struct breakpoint_ops ranged_breakpoint_ops;
10338
10339 /* Find the address where the end of the breakpoint range should be
10340 placed, given the SAL of the end of the range. This is so that if
10341 the user provides a line number, the end of the range is set to the
10342 last instruction of the given line. */
10343
10344 static CORE_ADDR
10345 find_breakpoint_range_end (struct symtab_and_line sal)
10346 {
10347 CORE_ADDR end;
10348
10349 /* If the user provided a PC value, use it. Otherwise,
10350 find the address of the end of the given location. */
10351 if (sal.explicit_pc)
10352 end = sal.pc;
10353 else
10354 {
10355 int ret;
10356 CORE_ADDR start;
10357
10358 ret = find_line_pc_range (sal, &start, &end);
10359 if (!ret)
10360 error (_("Could not find location of the end of the range."));
10361
10362 /* find_line_pc_range returns the start of the next line. */
10363 end--;
10364 }
10365
10366 return end;
10367 }
10368
10369 /* Implement the "break-range" CLI command. */
10370
10371 static void
10372 break_range_command (char *arg, int from_tty)
10373 {
10374 char *arg_start, *addr_string_start;
10375 struct linespec_result canonical_start, canonical_end;
10376 int bp_count, can_use_bp, length;
10377 CORE_ADDR end;
10378 struct breakpoint *b;
10379 struct symtab_and_line sal_start, sal_end;
10380 struct cleanup *cleanup_bkpt;
10381 struct linespec_sals *lsal_start, *lsal_end;
10382 struct event_location *start_location, *end_location;
10383
10384 /* We don't support software ranged breakpoints. */
10385 if (target_ranged_break_num_registers () < 0)
10386 error (_("This target does not support hardware ranged breakpoints."));
10387
10388 bp_count = hw_breakpoint_used_count ();
10389 bp_count += target_ranged_break_num_registers ();
10390 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10391 bp_count, 0);
10392 if (can_use_bp < 0)
10393 error (_("Hardware breakpoints used exceeds limit."));
10394
10395 arg = skip_spaces (arg);
10396 if (arg == NULL || arg[0] == '\0')
10397 error(_("No address range specified."));
10398
10399 init_linespec_result (&canonical_start);
10400
10401 arg_start = arg;
10402 start_location = string_to_event_location (&arg, current_language);
10403 cleanup_bkpt = make_cleanup_delete_event_location (start_location);
10404 parse_breakpoint_sals (start_location, &canonical_start);
10405 make_cleanup_destroy_linespec_result (&canonical_start);
10406
10407 if (arg[0] != ',')
10408 error (_("Too few arguments."));
10409 else if (VEC_empty (linespec_sals, canonical_start.sals))
10410 error (_("Could not find location of the beginning of the range."));
10411
10412 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10413
10414 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10415 || lsal_start->sals.nelts != 1)
10416 error (_("Cannot create a ranged breakpoint with multiple locations."));
10417
10418 sal_start = lsal_start->sals.sals[0];
10419 addr_string_start = savestring (arg_start, arg - arg_start);
10420 make_cleanup (xfree, addr_string_start);
10421
10422 arg++; /* Skip the comma. */
10423 arg = skip_spaces (arg);
10424
10425 /* Parse the end location. */
10426
10427 init_linespec_result (&canonical_end);
10428 arg_start = arg;
10429
10430 /* We call decode_line_full directly here instead of using
10431 parse_breakpoint_sals because we need to specify the start location's
10432 symtab and line as the default symtab and line for the end of the
10433 range. This makes it possible to have ranges like "foo.c:27, +14",
10434 where +14 means 14 lines from the start location. */
10435 end_location = string_to_event_location (&arg, current_language);
10436 make_cleanup_delete_event_location (end_location);
10437 decode_line_full (end_location, DECODE_LINE_FUNFIRSTLINE, NULL,
10438 sal_start.symtab, sal_start.line,
10439 &canonical_end, NULL, NULL);
10440
10441 make_cleanup_destroy_linespec_result (&canonical_end);
10442
10443 if (VEC_empty (linespec_sals, canonical_end.sals))
10444 error (_("Could not find location of the end of the range."));
10445
10446 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10447 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10448 || lsal_end->sals.nelts != 1)
10449 error (_("Cannot create a ranged breakpoint with multiple locations."));
10450
10451 sal_end = lsal_end->sals.sals[0];
10452
10453 end = find_breakpoint_range_end (sal_end);
10454 if (sal_start.pc > end)
10455 error (_("Invalid address range, end precedes start."));
10456
10457 length = end - sal_start.pc + 1;
10458 if (length < 0)
10459 /* Length overflowed. */
10460 error (_("Address range too large."));
10461 else if (length == 1)
10462 {
10463 /* This range is simple enough to be handled by
10464 the `hbreak' command. */
10465 hbreak_command (addr_string_start, 1);
10466
10467 do_cleanups (cleanup_bkpt);
10468
10469 return;
10470 }
10471
10472 /* Now set up the breakpoint. */
10473 b = set_raw_breakpoint (get_current_arch (), sal_start,
10474 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10475 set_breakpoint_count (breakpoint_count + 1);
10476 b->number = breakpoint_count;
10477 b->disposition = disp_donttouch;
10478 b->location = copy_event_location (start_location);
10479 b->location_range_end = copy_event_location (end_location);
10480 b->loc->length = length;
10481
10482 do_cleanups (cleanup_bkpt);
10483
10484 mention (b);
10485 observer_notify_breakpoint_created (b);
10486 update_global_location_list (UGLL_MAY_INSERT);
10487 }
10488
10489 /* Return non-zero if EXP is verified as constant. Returned zero
10490 means EXP is variable. Also the constant detection may fail for
10491 some constant expressions and in such case still falsely return
10492 zero. */
10493
10494 static int
10495 watchpoint_exp_is_const (const struct expression *exp)
10496 {
10497 int i = exp->nelts;
10498
10499 while (i > 0)
10500 {
10501 int oplenp, argsp;
10502
10503 /* We are only interested in the descriptor of each element. */
10504 operator_length (exp, i, &oplenp, &argsp);
10505 i -= oplenp;
10506
10507 switch (exp->elts[i].opcode)
10508 {
10509 case BINOP_ADD:
10510 case BINOP_SUB:
10511 case BINOP_MUL:
10512 case BINOP_DIV:
10513 case BINOP_REM:
10514 case BINOP_MOD:
10515 case BINOP_LSH:
10516 case BINOP_RSH:
10517 case BINOP_LOGICAL_AND:
10518 case BINOP_LOGICAL_OR:
10519 case BINOP_BITWISE_AND:
10520 case BINOP_BITWISE_IOR:
10521 case BINOP_BITWISE_XOR:
10522 case BINOP_EQUAL:
10523 case BINOP_NOTEQUAL:
10524 case BINOP_LESS:
10525 case BINOP_GTR:
10526 case BINOP_LEQ:
10527 case BINOP_GEQ:
10528 case BINOP_REPEAT:
10529 case BINOP_COMMA:
10530 case BINOP_EXP:
10531 case BINOP_MIN:
10532 case BINOP_MAX:
10533 case BINOP_INTDIV:
10534 case BINOP_CONCAT:
10535 case TERNOP_COND:
10536 case TERNOP_SLICE:
10537
10538 case OP_LONG:
10539 case OP_DOUBLE:
10540 case OP_DECFLOAT:
10541 case OP_LAST:
10542 case OP_COMPLEX:
10543 case OP_STRING:
10544 case OP_ARRAY:
10545 case OP_TYPE:
10546 case OP_TYPEOF:
10547 case OP_DECLTYPE:
10548 case OP_TYPEID:
10549 case OP_NAME:
10550 case OP_OBJC_NSSTRING:
10551
10552 case UNOP_NEG:
10553 case UNOP_LOGICAL_NOT:
10554 case UNOP_COMPLEMENT:
10555 case UNOP_ADDR:
10556 case UNOP_HIGH:
10557 case UNOP_CAST:
10558
10559 case UNOP_CAST_TYPE:
10560 case UNOP_REINTERPRET_CAST:
10561 case UNOP_DYNAMIC_CAST:
10562 /* Unary, binary and ternary operators: We have to check
10563 their operands. If they are constant, then so is the
10564 result of that operation. For instance, if A and B are
10565 determined to be constants, then so is "A + B".
10566
10567 UNOP_IND is one exception to the rule above, because the
10568 value of *ADDR is not necessarily a constant, even when
10569 ADDR is. */
10570 break;
10571
10572 case OP_VAR_VALUE:
10573 /* Check whether the associated symbol is a constant.
10574
10575 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10576 possible that a buggy compiler could mark a variable as
10577 constant even when it is not, and TYPE_CONST would return
10578 true in this case, while SYMBOL_CLASS wouldn't.
10579
10580 We also have to check for function symbols because they
10581 are always constant. */
10582 {
10583 struct symbol *s = exp->elts[i + 2].symbol;
10584
10585 if (SYMBOL_CLASS (s) != LOC_BLOCK
10586 && SYMBOL_CLASS (s) != LOC_CONST
10587 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10588 return 0;
10589 break;
10590 }
10591
10592 /* The default action is to return 0 because we are using
10593 the optimistic approach here: If we don't know something,
10594 then it is not a constant. */
10595 default:
10596 return 0;
10597 }
10598 }
10599
10600 return 1;
10601 }
10602
10603 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10604
10605 static void
10606 dtor_watchpoint (struct breakpoint *self)
10607 {
10608 struct watchpoint *w = (struct watchpoint *) self;
10609
10610 xfree (w->exp_string);
10611 xfree (w->exp_string_reparse);
10612 value_free (w->val);
10613
10614 base_breakpoint_ops.dtor (self);
10615 }
10616
10617 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10618
10619 static void
10620 re_set_watchpoint (struct breakpoint *b)
10621 {
10622 struct watchpoint *w = (struct watchpoint *) b;
10623
10624 /* Watchpoint can be either on expression using entirely global
10625 variables, or it can be on local variables.
10626
10627 Watchpoints of the first kind are never auto-deleted, and even
10628 persist across program restarts. Since they can use variables
10629 from shared libraries, we need to reparse expression as libraries
10630 are loaded and unloaded.
10631
10632 Watchpoints on local variables can also change meaning as result
10633 of solib event. For example, if a watchpoint uses both a local
10634 and a global variables in expression, it's a local watchpoint,
10635 but unloading of a shared library will make the expression
10636 invalid. This is not a very common use case, but we still
10637 re-evaluate expression, to avoid surprises to the user.
10638
10639 Note that for local watchpoints, we re-evaluate it only if
10640 watchpoints frame id is still valid. If it's not, it means the
10641 watchpoint is out of scope and will be deleted soon. In fact,
10642 I'm not sure we'll ever be called in this case.
10643
10644 If a local watchpoint's frame id is still valid, then
10645 w->exp_valid_block is likewise valid, and we can safely use it.
10646
10647 Don't do anything about disabled watchpoints, since they will be
10648 reevaluated again when enabled. */
10649 update_watchpoint (w, 1 /* reparse */);
10650 }
10651
10652 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10653
10654 static int
10655 insert_watchpoint (struct bp_location *bl)
10656 {
10657 struct watchpoint *w = (struct watchpoint *) bl->owner;
10658 int length = w->exact ? 1 : bl->length;
10659
10660 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10661 w->cond_exp.get ());
10662 }
10663
10664 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10665
10666 static int
10667 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10668 {
10669 struct watchpoint *w = (struct watchpoint *) bl->owner;
10670 int length = w->exact ? 1 : bl->length;
10671
10672 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10673 w->cond_exp.get ());
10674 }
10675
10676 static int
10677 breakpoint_hit_watchpoint (const struct bp_location *bl,
10678 struct address_space *aspace, CORE_ADDR bp_addr,
10679 const struct target_waitstatus *ws)
10680 {
10681 struct breakpoint *b = bl->owner;
10682 struct watchpoint *w = (struct watchpoint *) b;
10683
10684 /* Continuable hardware watchpoints are treated as non-existent if the
10685 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10686 some data address). Otherwise gdb won't stop on a break instruction
10687 in the code (not from a breakpoint) when a hardware watchpoint has
10688 been defined. Also skip watchpoints which we know did not trigger
10689 (did not match the data address). */
10690 if (is_hardware_watchpoint (b)
10691 && w->watchpoint_triggered == watch_triggered_no)
10692 return 0;
10693
10694 return 1;
10695 }
10696
10697 static void
10698 check_status_watchpoint (bpstat bs)
10699 {
10700 gdb_assert (is_watchpoint (bs->breakpoint_at));
10701
10702 bpstat_check_watchpoint (bs);
10703 }
10704
10705 /* Implement the "resources_needed" breakpoint_ops method for
10706 hardware watchpoints. */
10707
10708 static int
10709 resources_needed_watchpoint (const struct bp_location *bl)
10710 {
10711 struct watchpoint *w = (struct watchpoint *) bl->owner;
10712 int length = w->exact? 1 : bl->length;
10713
10714 return target_region_ok_for_hw_watchpoint (bl->address, length);
10715 }
10716
10717 /* Implement the "works_in_software_mode" breakpoint_ops method for
10718 hardware watchpoints. */
10719
10720 static int
10721 works_in_software_mode_watchpoint (const struct breakpoint *b)
10722 {
10723 /* Read and access watchpoints only work with hardware support. */
10724 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10725 }
10726
10727 static enum print_stop_action
10728 print_it_watchpoint (bpstat bs)
10729 {
10730 struct cleanup *old_chain;
10731 struct breakpoint *b;
10732 enum print_stop_action result;
10733 struct watchpoint *w;
10734 struct ui_out *uiout = current_uiout;
10735
10736 gdb_assert (bs->bp_location_at != NULL);
10737
10738 b = bs->breakpoint_at;
10739 w = (struct watchpoint *) b;
10740
10741 old_chain = make_cleanup (null_cleanup, NULL);
10742
10743 annotate_watchpoint (b->number);
10744 maybe_print_thread_hit_breakpoint (uiout);
10745
10746 string_file stb;
10747
10748 switch (b->type)
10749 {
10750 case bp_watchpoint:
10751 case bp_hardware_watchpoint:
10752 if (uiout->is_mi_like_p ())
10753 uiout->field_string
10754 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10755 mention (b);
10756 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10757 uiout->text ("\nOld value = ");
10758 watchpoint_value_print (bs->old_val, &stb);
10759 uiout->field_stream ("old", stb);
10760 uiout->text ("\nNew value = ");
10761 watchpoint_value_print (w->val, &stb);
10762 uiout->field_stream ("new", stb);
10763 uiout->text ("\n");
10764 /* More than one watchpoint may have been triggered. */
10765 result = PRINT_UNKNOWN;
10766 break;
10767
10768 case bp_read_watchpoint:
10769 if (uiout->is_mi_like_p ())
10770 uiout->field_string
10771 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10772 mention (b);
10773 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10774 uiout->text ("\nValue = ");
10775 watchpoint_value_print (w->val, &stb);
10776 uiout->field_stream ("value", stb);
10777 uiout->text ("\n");
10778 result = PRINT_UNKNOWN;
10779 break;
10780
10781 case bp_access_watchpoint:
10782 if (bs->old_val != NULL)
10783 {
10784 if (uiout->is_mi_like_p ())
10785 uiout->field_string
10786 ("reason",
10787 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10788 mention (b);
10789 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10790 uiout->text ("\nOld value = ");
10791 watchpoint_value_print (bs->old_val, &stb);
10792 uiout->field_stream ("old", stb);
10793 uiout->text ("\nNew value = ");
10794 }
10795 else
10796 {
10797 mention (b);
10798 if (uiout->is_mi_like_p ())
10799 uiout->field_string
10800 ("reason",
10801 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10802 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10803 uiout->text ("\nValue = ");
10804 }
10805 watchpoint_value_print (w->val, &stb);
10806 uiout->field_stream ("new", stb);
10807 uiout->text ("\n");
10808 result = PRINT_UNKNOWN;
10809 break;
10810 default:
10811 result = PRINT_UNKNOWN;
10812 }
10813
10814 do_cleanups (old_chain);
10815 return result;
10816 }
10817
10818 /* Implement the "print_mention" breakpoint_ops method for hardware
10819 watchpoints. */
10820
10821 static void
10822 print_mention_watchpoint (struct breakpoint *b)
10823 {
10824 struct cleanup *ui_out_chain;
10825 struct watchpoint *w = (struct watchpoint *) b;
10826 struct ui_out *uiout = current_uiout;
10827
10828 switch (b->type)
10829 {
10830 case bp_watchpoint:
10831 uiout->text ("Watchpoint ");
10832 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10833 break;
10834 case bp_hardware_watchpoint:
10835 uiout->text ("Hardware watchpoint ");
10836 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10837 break;
10838 case bp_read_watchpoint:
10839 uiout->text ("Hardware read watchpoint ");
10840 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10841 break;
10842 case bp_access_watchpoint:
10843 uiout->text ("Hardware access (read/write) watchpoint ");
10844 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10845 break;
10846 default:
10847 internal_error (__FILE__, __LINE__,
10848 _("Invalid hardware watchpoint type."));
10849 }
10850
10851 uiout->field_int ("number", b->number);
10852 uiout->text (": ");
10853 uiout->field_string ("exp", w->exp_string);
10854 do_cleanups (ui_out_chain);
10855 }
10856
10857 /* Implement the "print_recreate" breakpoint_ops method for
10858 watchpoints. */
10859
10860 static void
10861 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10862 {
10863 struct watchpoint *w = (struct watchpoint *) b;
10864
10865 switch (b->type)
10866 {
10867 case bp_watchpoint:
10868 case bp_hardware_watchpoint:
10869 fprintf_unfiltered (fp, "watch");
10870 break;
10871 case bp_read_watchpoint:
10872 fprintf_unfiltered (fp, "rwatch");
10873 break;
10874 case bp_access_watchpoint:
10875 fprintf_unfiltered (fp, "awatch");
10876 break;
10877 default:
10878 internal_error (__FILE__, __LINE__,
10879 _("Invalid watchpoint type."));
10880 }
10881
10882 fprintf_unfiltered (fp, " %s", w->exp_string);
10883 print_recreate_thread (b, fp);
10884 }
10885
10886 /* Implement the "explains_signal" breakpoint_ops method for
10887 watchpoints. */
10888
10889 static int
10890 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10891 {
10892 /* A software watchpoint cannot cause a signal other than
10893 GDB_SIGNAL_TRAP. */
10894 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10895 return 0;
10896
10897 return 1;
10898 }
10899
10900 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10901
10902 static struct breakpoint_ops watchpoint_breakpoint_ops;
10903
10904 /* Implement the "insert" breakpoint_ops method for
10905 masked hardware watchpoints. */
10906
10907 static int
10908 insert_masked_watchpoint (struct bp_location *bl)
10909 {
10910 struct watchpoint *w = (struct watchpoint *) bl->owner;
10911
10912 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10913 bl->watchpoint_type);
10914 }
10915
10916 /* Implement the "remove" breakpoint_ops method for
10917 masked hardware watchpoints. */
10918
10919 static int
10920 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10921 {
10922 struct watchpoint *w = (struct watchpoint *) bl->owner;
10923
10924 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10925 bl->watchpoint_type);
10926 }
10927
10928 /* Implement the "resources_needed" breakpoint_ops method for
10929 masked hardware watchpoints. */
10930
10931 static int
10932 resources_needed_masked_watchpoint (const struct bp_location *bl)
10933 {
10934 struct watchpoint *w = (struct watchpoint *) bl->owner;
10935
10936 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10937 }
10938
10939 /* Implement the "works_in_software_mode" breakpoint_ops method for
10940 masked hardware watchpoints. */
10941
10942 static int
10943 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10944 {
10945 return 0;
10946 }
10947
10948 /* Implement the "print_it" breakpoint_ops method for
10949 masked hardware watchpoints. */
10950
10951 static enum print_stop_action
10952 print_it_masked_watchpoint (bpstat bs)
10953 {
10954 struct breakpoint *b = bs->breakpoint_at;
10955 struct ui_out *uiout = current_uiout;
10956
10957 /* Masked watchpoints have only one location. */
10958 gdb_assert (b->loc && b->loc->next == NULL);
10959
10960 annotate_watchpoint (b->number);
10961 maybe_print_thread_hit_breakpoint (uiout);
10962
10963 switch (b->type)
10964 {
10965 case bp_hardware_watchpoint:
10966 if (uiout->is_mi_like_p ())
10967 uiout->field_string
10968 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10969 break;
10970
10971 case bp_read_watchpoint:
10972 if (uiout->is_mi_like_p ())
10973 uiout->field_string
10974 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10975 break;
10976
10977 case bp_access_watchpoint:
10978 if (uiout->is_mi_like_p ())
10979 uiout->field_string
10980 ("reason",
10981 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10982 break;
10983 default:
10984 internal_error (__FILE__, __LINE__,
10985 _("Invalid hardware watchpoint type."));
10986 }
10987
10988 mention (b);
10989 uiout->text (_("\n\
10990 Check the underlying instruction at PC for the memory\n\
10991 address and value which triggered this watchpoint.\n"));
10992 uiout->text ("\n");
10993
10994 /* More than one watchpoint may have been triggered. */
10995 return PRINT_UNKNOWN;
10996 }
10997
10998 /* Implement the "print_one_detail" breakpoint_ops method for
10999 masked hardware watchpoints. */
11000
11001 static void
11002 print_one_detail_masked_watchpoint (const struct breakpoint *b,
11003 struct ui_out *uiout)
11004 {
11005 struct watchpoint *w = (struct watchpoint *) b;
11006
11007 /* Masked watchpoints have only one location. */
11008 gdb_assert (b->loc && b->loc->next == NULL);
11009
11010 uiout->text ("\tmask ");
11011 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
11012 uiout->text ("\n");
11013 }
11014
11015 /* Implement the "print_mention" breakpoint_ops method for
11016 masked hardware watchpoints. */
11017
11018 static void
11019 print_mention_masked_watchpoint (struct breakpoint *b)
11020 {
11021 struct watchpoint *w = (struct watchpoint *) b;
11022 struct ui_out *uiout = current_uiout;
11023 struct cleanup *ui_out_chain;
11024
11025 switch (b->type)
11026 {
11027 case bp_hardware_watchpoint:
11028 uiout->text ("Masked hardware watchpoint ");
11029 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
11030 break;
11031 case bp_read_watchpoint:
11032 uiout->text ("Masked hardware read watchpoint ");
11033 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
11034 break;
11035 case bp_access_watchpoint:
11036 uiout->text ("Masked hardware access (read/write) watchpoint ");
11037 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
11038 break;
11039 default:
11040 internal_error (__FILE__, __LINE__,
11041 _("Invalid hardware watchpoint type."));
11042 }
11043
11044 uiout->field_int ("number", b->number);
11045 uiout->text (": ");
11046 uiout->field_string ("exp", w->exp_string);
11047 do_cleanups (ui_out_chain);
11048 }
11049
11050 /* Implement the "print_recreate" breakpoint_ops method for
11051 masked hardware watchpoints. */
11052
11053 static void
11054 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
11055 {
11056 struct watchpoint *w = (struct watchpoint *) b;
11057 char tmp[40];
11058
11059 switch (b->type)
11060 {
11061 case bp_hardware_watchpoint:
11062 fprintf_unfiltered (fp, "watch");
11063 break;
11064 case bp_read_watchpoint:
11065 fprintf_unfiltered (fp, "rwatch");
11066 break;
11067 case bp_access_watchpoint:
11068 fprintf_unfiltered (fp, "awatch");
11069 break;
11070 default:
11071 internal_error (__FILE__, __LINE__,
11072 _("Invalid hardware watchpoint type."));
11073 }
11074
11075 sprintf_vma (tmp, w->hw_wp_mask);
11076 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
11077 print_recreate_thread (b, fp);
11078 }
11079
11080 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
11081
11082 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
11083
11084 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
11085
11086 static int
11087 is_masked_watchpoint (const struct breakpoint *b)
11088 {
11089 return b->ops == &masked_watchpoint_breakpoint_ops;
11090 }
11091
11092 /* accessflag: hw_write: watch write,
11093 hw_read: watch read,
11094 hw_access: watch access (read or write) */
11095 static void
11096 watch_command_1 (const char *arg, int accessflag, int from_tty,
11097 int just_location, int internal)
11098 {
11099 struct breakpoint *b, *scope_breakpoint = NULL;
11100 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
11101 struct value *val, *mark, *result;
11102 int saved_bitpos = 0, saved_bitsize = 0;
11103 struct frame_info *frame;
11104 const char *exp_start = NULL;
11105 const char *exp_end = NULL;
11106 const char *tok, *end_tok;
11107 int toklen = -1;
11108 const char *cond_start = NULL;
11109 const char *cond_end = NULL;
11110 enum bptype bp_type;
11111 int thread = -1;
11112 int pc = 0;
11113 /* Flag to indicate whether we are going to use masks for
11114 the hardware watchpoint. */
11115 int use_mask = 0;
11116 CORE_ADDR mask = 0;
11117 struct watchpoint *w;
11118 char *expression;
11119 struct cleanup *back_to;
11120
11121 /* Make sure that we actually have parameters to parse. */
11122 if (arg != NULL && arg[0] != '\0')
11123 {
11124 const char *value_start;
11125
11126 exp_end = arg + strlen (arg);
11127
11128 /* Look for "parameter value" pairs at the end
11129 of the arguments string. */
11130 for (tok = exp_end - 1; tok > arg; tok--)
11131 {
11132 /* Skip whitespace at the end of the argument list. */
11133 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11134 tok--;
11135
11136 /* Find the beginning of the last token.
11137 This is the value of the parameter. */
11138 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11139 tok--;
11140 value_start = tok + 1;
11141
11142 /* Skip whitespace. */
11143 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11144 tok--;
11145
11146 end_tok = tok;
11147
11148 /* Find the beginning of the second to last token.
11149 This is the parameter itself. */
11150 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11151 tok--;
11152 tok++;
11153 toklen = end_tok - tok + 1;
11154
11155 if (toklen == 6 && startswith (tok, "thread"))
11156 {
11157 struct thread_info *thr;
11158 /* At this point we've found a "thread" token, which means
11159 the user is trying to set a watchpoint that triggers
11160 only in a specific thread. */
11161 const char *endp;
11162
11163 if (thread != -1)
11164 error(_("You can specify only one thread."));
11165
11166 /* Extract the thread ID from the next token. */
11167 thr = parse_thread_id (value_start, &endp);
11168
11169 /* Check if the user provided a valid thread ID. */
11170 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11171 invalid_thread_id_error (value_start);
11172
11173 thread = thr->global_num;
11174 }
11175 else if (toklen == 4 && startswith (tok, "mask"))
11176 {
11177 /* We've found a "mask" token, which means the user wants to
11178 create a hardware watchpoint that is going to have the mask
11179 facility. */
11180 struct value *mask_value, *mark;
11181
11182 if (use_mask)
11183 error(_("You can specify only one mask."));
11184
11185 use_mask = just_location = 1;
11186
11187 mark = value_mark ();
11188 mask_value = parse_to_comma_and_eval (&value_start);
11189 mask = value_as_address (mask_value);
11190 value_free_to_mark (mark);
11191 }
11192 else
11193 /* We didn't recognize what we found. We should stop here. */
11194 break;
11195
11196 /* Truncate the string and get rid of the "parameter value" pair before
11197 the arguments string is parsed by the parse_exp_1 function. */
11198 exp_end = tok;
11199 }
11200 }
11201 else
11202 exp_end = arg;
11203
11204 /* Parse the rest of the arguments. From here on out, everything
11205 is in terms of a newly allocated string instead of the original
11206 ARG. */
11207 innermost_block = NULL;
11208 expression = savestring (arg, exp_end - arg);
11209 back_to = make_cleanup (xfree, expression);
11210 exp_start = arg = expression;
11211 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
11212 exp_end = arg;
11213 /* Remove trailing whitespace from the expression before saving it.
11214 This makes the eventual display of the expression string a bit
11215 prettier. */
11216 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11217 --exp_end;
11218
11219 /* Checking if the expression is not constant. */
11220 if (watchpoint_exp_is_const (exp.get ()))
11221 {
11222 int len;
11223
11224 len = exp_end - exp_start;
11225 while (len > 0 && isspace (exp_start[len - 1]))
11226 len--;
11227 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11228 }
11229
11230 exp_valid_block = innermost_block;
11231 mark = value_mark ();
11232 fetch_subexp_value (exp.get (), &pc, &val, &result, NULL, just_location);
11233
11234 if (val != NULL && just_location)
11235 {
11236 saved_bitpos = value_bitpos (val);
11237 saved_bitsize = value_bitsize (val);
11238 }
11239
11240 if (just_location)
11241 {
11242 int ret;
11243
11244 exp_valid_block = NULL;
11245 val = value_addr (result);
11246 release_value (val);
11247 value_free_to_mark (mark);
11248
11249 if (use_mask)
11250 {
11251 ret = target_masked_watch_num_registers (value_as_address (val),
11252 mask);
11253 if (ret == -1)
11254 error (_("This target does not support masked watchpoints."));
11255 else if (ret == -2)
11256 error (_("Invalid mask or memory region."));
11257 }
11258 }
11259 else if (val != NULL)
11260 release_value (val);
11261
11262 tok = skip_spaces_const (arg);
11263 end_tok = skip_to_space_const (tok);
11264
11265 toklen = end_tok - tok;
11266 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11267 {
11268 innermost_block = NULL;
11269 tok = cond_start = end_tok + 1;
11270 parse_exp_1 (&tok, 0, 0, 0);
11271
11272 /* The watchpoint expression may not be local, but the condition
11273 may still be. E.g.: `watch global if local > 0'. */
11274 cond_exp_valid_block = innermost_block;
11275
11276 cond_end = tok;
11277 }
11278 if (*tok)
11279 error (_("Junk at end of command."));
11280
11281 frame = block_innermost_frame (exp_valid_block);
11282
11283 /* If the expression is "local", then set up a "watchpoint scope"
11284 breakpoint at the point where we've left the scope of the watchpoint
11285 expression. Create the scope breakpoint before the watchpoint, so
11286 that we will encounter it first in bpstat_stop_status. */
11287 if (exp_valid_block && frame)
11288 {
11289 if (frame_id_p (frame_unwind_caller_id (frame)))
11290 {
11291 scope_breakpoint
11292 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11293 frame_unwind_caller_pc (frame),
11294 bp_watchpoint_scope,
11295 &momentary_breakpoint_ops);
11296
11297 scope_breakpoint->enable_state = bp_enabled;
11298
11299 /* Automatically delete the breakpoint when it hits. */
11300 scope_breakpoint->disposition = disp_del;
11301
11302 /* Only break in the proper frame (help with recursion). */
11303 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11304
11305 /* Set the address at which we will stop. */
11306 scope_breakpoint->loc->gdbarch
11307 = frame_unwind_caller_arch (frame);
11308 scope_breakpoint->loc->requested_address
11309 = frame_unwind_caller_pc (frame);
11310 scope_breakpoint->loc->address
11311 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11312 scope_breakpoint->loc->requested_address,
11313 scope_breakpoint->type);
11314 }
11315 }
11316
11317 /* Now set up the breakpoint. We create all watchpoints as hardware
11318 watchpoints here even if hardware watchpoints are turned off, a call
11319 to update_watchpoint later in this function will cause the type to
11320 drop back to bp_watchpoint (software watchpoint) if required. */
11321
11322 if (accessflag == hw_read)
11323 bp_type = bp_read_watchpoint;
11324 else if (accessflag == hw_access)
11325 bp_type = bp_access_watchpoint;
11326 else
11327 bp_type = bp_hardware_watchpoint;
11328
11329 w = new watchpoint ();
11330 b = &w->base;
11331 if (use_mask)
11332 init_raw_breakpoint_without_location (b, NULL, bp_type,
11333 &masked_watchpoint_breakpoint_ops);
11334 else
11335 init_raw_breakpoint_without_location (b, NULL, bp_type,
11336 &watchpoint_breakpoint_ops);
11337 b->thread = thread;
11338 b->disposition = disp_donttouch;
11339 b->pspace = current_program_space;
11340 w->exp = std::move (exp);
11341 w->exp_valid_block = exp_valid_block;
11342 w->cond_exp_valid_block = cond_exp_valid_block;
11343 if (just_location)
11344 {
11345 struct type *t = value_type (val);
11346 CORE_ADDR addr = value_as_address (val);
11347
11348 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11349
11350 std::string name = type_to_string (t);
11351
11352 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name.c_str (),
11353 core_addr_to_string (addr));
11354
11355 w->exp_string = xstrprintf ("-location %.*s",
11356 (int) (exp_end - exp_start), exp_start);
11357
11358 /* The above expression is in C. */
11359 b->language = language_c;
11360 }
11361 else
11362 w->exp_string = savestring (exp_start, exp_end - exp_start);
11363
11364 if (use_mask)
11365 {
11366 w->hw_wp_mask = mask;
11367 }
11368 else
11369 {
11370 w->val = val;
11371 w->val_bitpos = saved_bitpos;
11372 w->val_bitsize = saved_bitsize;
11373 w->val_valid = 1;
11374 }
11375
11376 if (cond_start)
11377 b->cond_string = savestring (cond_start, cond_end - cond_start);
11378 else
11379 b->cond_string = 0;
11380
11381 if (frame)
11382 {
11383 w->watchpoint_frame = get_frame_id (frame);
11384 w->watchpoint_thread = inferior_ptid;
11385 }
11386 else
11387 {
11388 w->watchpoint_frame = null_frame_id;
11389 w->watchpoint_thread = null_ptid;
11390 }
11391
11392 if (scope_breakpoint != NULL)
11393 {
11394 /* The scope breakpoint is related to the watchpoint. We will
11395 need to act on them together. */
11396 b->related_breakpoint = scope_breakpoint;
11397 scope_breakpoint->related_breakpoint = b;
11398 }
11399
11400 if (!just_location)
11401 value_free_to_mark (mark);
11402
11403 TRY
11404 {
11405 /* Finally update the new watchpoint. This creates the locations
11406 that should be inserted. */
11407 update_watchpoint (w, 1);
11408 }
11409 CATCH (e, RETURN_MASK_ALL)
11410 {
11411 delete_breakpoint (b);
11412 throw_exception (e);
11413 }
11414 END_CATCH
11415
11416 install_breakpoint (internal, b, 1);
11417 do_cleanups (back_to);
11418 }
11419
11420 /* Return count of debug registers needed to watch the given expression.
11421 If the watchpoint cannot be handled in hardware return zero. */
11422
11423 static int
11424 can_use_hardware_watchpoint (struct value *v)
11425 {
11426 int found_memory_cnt = 0;
11427 struct value *head = v;
11428
11429 /* Did the user specifically forbid us to use hardware watchpoints? */
11430 if (!can_use_hw_watchpoints)
11431 return 0;
11432
11433 /* Make sure that the value of the expression depends only upon
11434 memory contents, and values computed from them within GDB. If we
11435 find any register references or function calls, we can't use a
11436 hardware watchpoint.
11437
11438 The idea here is that evaluating an expression generates a series
11439 of values, one holding the value of every subexpression. (The
11440 expression a*b+c has five subexpressions: a, b, a*b, c, and
11441 a*b+c.) GDB's values hold almost enough information to establish
11442 the criteria given above --- they identify memory lvalues,
11443 register lvalues, computed values, etcetera. So we can evaluate
11444 the expression, and then scan the chain of values that leaves
11445 behind to decide whether we can detect any possible change to the
11446 expression's final value using only hardware watchpoints.
11447
11448 However, I don't think that the values returned by inferior
11449 function calls are special in any way. So this function may not
11450 notice that an expression involving an inferior function call
11451 can't be watched with hardware watchpoints. FIXME. */
11452 for (; v; v = value_next (v))
11453 {
11454 if (VALUE_LVAL (v) == lval_memory)
11455 {
11456 if (v != head && value_lazy (v))
11457 /* A lazy memory lvalue in the chain is one that GDB never
11458 needed to fetch; we either just used its address (e.g.,
11459 `a' in `a.b') or we never needed it at all (e.g., `a'
11460 in `a,b'). This doesn't apply to HEAD; if that is
11461 lazy then it was not readable, but watch it anyway. */
11462 ;
11463 else
11464 {
11465 /* Ahh, memory we actually used! Check if we can cover
11466 it with hardware watchpoints. */
11467 struct type *vtype = check_typedef (value_type (v));
11468
11469 /* We only watch structs and arrays if user asked for it
11470 explicitly, never if they just happen to appear in a
11471 middle of some value chain. */
11472 if (v == head
11473 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11474 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11475 {
11476 CORE_ADDR vaddr = value_address (v);
11477 int len;
11478 int num_regs;
11479
11480 len = (target_exact_watchpoints
11481 && is_scalar_type_recursive (vtype))?
11482 1 : TYPE_LENGTH (value_type (v));
11483
11484 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11485 if (!num_regs)
11486 return 0;
11487 else
11488 found_memory_cnt += num_regs;
11489 }
11490 }
11491 }
11492 else if (VALUE_LVAL (v) != not_lval
11493 && deprecated_value_modifiable (v) == 0)
11494 return 0; /* These are values from the history (e.g., $1). */
11495 else if (VALUE_LVAL (v) == lval_register)
11496 return 0; /* Cannot watch a register with a HW watchpoint. */
11497 }
11498
11499 /* The expression itself looks suitable for using a hardware
11500 watchpoint, but give the target machine a chance to reject it. */
11501 return found_memory_cnt;
11502 }
11503
11504 void
11505 watch_command_wrapper (char *arg, int from_tty, int internal)
11506 {
11507 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11508 }
11509
11510 /* A helper function that looks for the "-location" argument and then
11511 calls watch_command_1. */
11512
11513 static void
11514 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11515 {
11516 int just_location = 0;
11517
11518 if (arg
11519 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11520 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11521 {
11522 arg = skip_spaces (arg);
11523 just_location = 1;
11524 }
11525
11526 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11527 }
11528
11529 static void
11530 watch_command (char *arg, int from_tty)
11531 {
11532 watch_maybe_just_location (arg, hw_write, from_tty);
11533 }
11534
11535 void
11536 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11537 {
11538 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11539 }
11540
11541 static void
11542 rwatch_command (char *arg, int from_tty)
11543 {
11544 watch_maybe_just_location (arg, hw_read, from_tty);
11545 }
11546
11547 void
11548 awatch_command_wrapper (char *arg, int from_tty, int internal)
11549 {
11550 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11551 }
11552
11553 static void
11554 awatch_command (char *arg, int from_tty)
11555 {
11556 watch_maybe_just_location (arg, hw_access, from_tty);
11557 }
11558 \f
11559
11560 /* Data for the FSM that manages the until(location)/advance commands
11561 in infcmd.c. Here because it uses the mechanisms of
11562 breakpoints. */
11563
11564 struct until_break_fsm
11565 {
11566 /* The base class. */
11567 struct thread_fsm thread_fsm;
11568
11569 /* The thread that as current when the command was executed. */
11570 int thread;
11571
11572 /* The breakpoint set at the destination location. */
11573 struct breakpoint *location_breakpoint;
11574
11575 /* Breakpoint set at the return address in the caller frame. May be
11576 NULL. */
11577 struct breakpoint *caller_breakpoint;
11578 };
11579
11580 static void until_break_fsm_clean_up (struct thread_fsm *self,
11581 struct thread_info *thread);
11582 static int until_break_fsm_should_stop (struct thread_fsm *self,
11583 struct thread_info *thread);
11584 static enum async_reply_reason
11585 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11586
11587 /* until_break_fsm's vtable. */
11588
11589 static struct thread_fsm_ops until_break_fsm_ops =
11590 {
11591 NULL, /* dtor */
11592 until_break_fsm_clean_up,
11593 until_break_fsm_should_stop,
11594 NULL, /* return_value */
11595 until_break_fsm_async_reply_reason,
11596 };
11597
11598 /* Allocate a new until_break_command_fsm. */
11599
11600 static struct until_break_fsm *
11601 new_until_break_fsm (struct interp *cmd_interp, int thread,
11602 struct breakpoint *location_breakpoint,
11603 struct breakpoint *caller_breakpoint)
11604 {
11605 struct until_break_fsm *sm;
11606
11607 sm = XCNEW (struct until_break_fsm);
11608 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11609
11610 sm->thread = thread;
11611 sm->location_breakpoint = location_breakpoint;
11612 sm->caller_breakpoint = caller_breakpoint;
11613
11614 return sm;
11615 }
11616
11617 /* Implementation of the 'should_stop' FSM method for the
11618 until(location)/advance commands. */
11619
11620 static int
11621 until_break_fsm_should_stop (struct thread_fsm *self,
11622 struct thread_info *tp)
11623 {
11624 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11625
11626 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11627 sm->location_breakpoint) != NULL
11628 || (sm->caller_breakpoint != NULL
11629 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11630 sm->caller_breakpoint) != NULL))
11631 thread_fsm_set_finished (self);
11632
11633 return 1;
11634 }
11635
11636 /* Implementation of the 'clean_up' FSM method for the
11637 until(location)/advance commands. */
11638
11639 static void
11640 until_break_fsm_clean_up (struct thread_fsm *self,
11641 struct thread_info *thread)
11642 {
11643 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11644
11645 /* Clean up our temporary breakpoints. */
11646 if (sm->location_breakpoint != NULL)
11647 {
11648 delete_breakpoint (sm->location_breakpoint);
11649 sm->location_breakpoint = NULL;
11650 }
11651 if (sm->caller_breakpoint != NULL)
11652 {
11653 delete_breakpoint (sm->caller_breakpoint);
11654 sm->caller_breakpoint = NULL;
11655 }
11656 delete_longjmp_breakpoint (sm->thread);
11657 }
11658
11659 /* Implementation of the 'async_reply_reason' FSM method for the
11660 until(location)/advance commands. */
11661
11662 static enum async_reply_reason
11663 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11664 {
11665 return EXEC_ASYNC_LOCATION_REACHED;
11666 }
11667
11668 void
11669 until_break_command (char *arg, int from_tty, int anywhere)
11670 {
11671 struct symtabs_and_lines sals;
11672 struct symtab_and_line sal;
11673 struct frame_info *frame;
11674 struct gdbarch *frame_gdbarch;
11675 struct frame_id stack_frame_id;
11676 struct frame_id caller_frame_id;
11677 struct breakpoint *location_breakpoint;
11678 struct breakpoint *caller_breakpoint = NULL;
11679 struct cleanup *old_chain, *cleanup;
11680 int thread;
11681 struct thread_info *tp;
11682 struct event_location *location;
11683 struct until_break_fsm *sm;
11684
11685 clear_proceed_status (0);
11686
11687 /* Set a breakpoint where the user wants it and at return from
11688 this function. */
11689
11690 location = string_to_event_location (&arg, current_language);
11691 cleanup = make_cleanup_delete_event_location (location);
11692
11693 if (last_displayed_sal_is_valid ())
11694 sals = decode_line_1 (location, DECODE_LINE_FUNFIRSTLINE, NULL,
11695 get_last_displayed_symtab (),
11696 get_last_displayed_line ());
11697 else
11698 sals = decode_line_1 (location, DECODE_LINE_FUNFIRSTLINE,
11699 NULL, (struct symtab *) NULL, 0);
11700
11701 if (sals.nelts != 1)
11702 error (_("Couldn't get information on specified line."));
11703
11704 sal = sals.sals[0];
11705 xfree (sals.sals); /* malloc'd, so freed. */
11706
11707 if (*arg)
11708 error (_("Junk at end of arguments."));
11709
11710 resolve_sal_pc (&sal);
11711
11712 tp = inferior_thread ();
11713 thread = tp->global_num;
11714
11715 old_chain = make_cleanup (null_cleanup, NULL);
11716
11717 /* Note linespec handling above invalidates the frame chain.
11718 Installing a breakpoint also invalidates the frame chain (as it
11719 may need to switch threads), so do any frame handling before
11720 that. */
11721
11722 frame = get_selected_frame (NULL);
11723 frame_gdbarch = get_frame_arch (frame);
11724 stack_frame_id = get_stack_frame_id (frame);
11725 caller_frame_id = frame_unwind_caller_id (frame);
11726
11727 /* Keep within the current frame, or in frames called by the current
11728 one. */
11729
11730 if (frame_id_p (caller_frame_id))
11731 {
11732 struct symtab_and_line sal2;
11733 struct gdbarch *caller_gdbarch;
11734
11735 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11736 sal2.pc = frame_unwind_caller_pc (frame);
11737 caller_gdbarch = frame_unwind_caller_arch (frame);
11738 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11739 sal2,
11740 caller_frame_id,
11741 bp_until);
11742 make_cleanup_delete_breakpoint (caller_breakpoint);
11743
11744 set_longjmp_breakpoint (tp, caller_frame_id);
11745 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11746 }
11747
11748 /* set_momentary_breakpoint could invalidate FRAME. */
11749 frame = NULL;
11750
11751 if (anywhere)
11752 /* If the user told us to continue until a specified location,
11753 we don't specify a frame at which we need to stop. */
11754 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11755 null_frame_id, bp_until);
11756 else
11757 /* Otherwise, specify the selected frame, because we want to stop
11758 only at the very same frame. */
11759 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11760 stack_frame_id, bp_until);
11761 make_cleanup_delete_breakpoint (location_breakpoint);
11762
11763 sm = new_until_break_fsm (command_interp (), tp->global_num,
11764 location_breakpoint, caller_breakpoint);
11765 tp->thread_fsm = &sm->thread_fsm;
11766
11767 discard_cleanups (old_chain);
11768
11769 proceed (-1, GDB_SIGNAL_DEFAULT);
11770
11771 do_cleanups (cleanup);
11772 }
11773
11774 /* This function attempts to parse an optional "if <cond>" clause
11775 from the arg string. If one is not found, it returns NULL.
11776
11777 Else, it returns a pointer to the condition string. (It does not
11778 attempt to evaluate the string against a particular block.) And,
11779 it updates arg to point to the first character following the parsed
11780 if clause in the arg string. */
11781
11782 char *
11783 ep_parse_optional_if_clause (char **arg)
11784 {
11785 char *cond_string;
11786
11787 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11788 return NULL;
11789
11790 /* Skip the "if" keyword. */
11791 (*arg) += 2;
11792
11793 /* Skip any extra leading whitespace, and record the start of the
11794 condition string. */
11795 *arg = skip_spaces (*arg);
11796 cond_string = *arg;
11797
11798 /* Assume that the condition occupies the remainder of the arg
11799 string. */
11800 (*arg) += strlen (cond_string);
11801
11802 return cond_string;
11803 }
11804
11805 /* Commands to deal with catching events, such as signals, exceptions,
11806 process start/exit, etc. */
11807
11808 typedef enum
11809 {
11810 catch_fork_temporary, catch_vfork_temporary,
11811 catch_fork_permanent, catch_vfork_permanent
11812 }
11813 catch_fork_kind;
11814
11815 static void
11816 catch_fork_command_1 (char *arg, int from_tty,
11817 struct cmd_list_element *command)
11818 {
11819 struct gdbarch *gdbarch = get_current_arch ();
11820 char *cond_string = NULL;
11821 catch_fork_kind fork_kind;
11822 int tempflag;
11823
11824 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11825 tempflag = (fork_kind == catch_fork_temporary
11826 || fork_kind == catch_vfork_temporary);
11827
11828 if (!arg)
11829 arg = "";
11830 arg = skip_spaces (arg);
11831
11832 /* The allowed syntax is:
11833 catch [v]fork
11834 catch [v]fork if <cond>
11835
11836 First, check if there's an if clause. */
11837 cond_string = ep_parse_optional_if_clause (&arg);
11838
11839 if ((*arg != '\0') && !isspace (*arg))
11840 error (_("Junk at end of arguments."));
11841
11842 /* If this target supports it, create a fork or vfork catchpoint
11843 and enable reporting of such events. */
11844 switch (fork_kind)
11845 {
11846 case catch_fork_temporary:
11847 case catch_fork_permanent:
11848 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11849 &catch_fork_breakpoint_ops);
11850 break;
11851 case catch_vfork_temporary:
11852 case catch_vfork_permanent:
11853 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11854 &catch_vfork_breakpoint_ops);
11855 break;
11856 default:
11857 error (_("unsupported or unknown fork kind; cannot catch it"));
11858 break;
11859 }
11860 }
11861
11862 static void
11863 catch_exec_command_1 (char *arg, int from_tty,
11864 struct cmd_list_element *command)
11865 {
11866 struct exec_catchpoint *c;
11867 struct gdbarch *gdbarch = get_current_arch ();
11868 int tempflag;
11869 char *cond_string = NULL;
11870
11871 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11872
11873 if (!arg)
11874 arg = "";
11875 arg = skip_spaces (arg);
11876
11877 /* The allowed syntax is:
11878 catch exec
11879 catch exec if <cond>
11880
11881 First, check if there's an if clause. */
11882 cond_string = ep_parse_optional_if_clause (&arg);
11883
11884 if ((*arg != '\0') && !isspace (*arg))
11885 error (_("Junk at end of arguments."));
11886
11887 c = new exec_catchpoint ();
11888 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11889 &catch_exec_breakpoint_ops);
11890 c->exec_pathname = NULL;
11891
11892 install_breakpoint (0, &c->base, 1);
11893 }
11894
11895 void
11896 init_ada_exception_breakpoint (struct breakpoint *b,
11897 struct gdbarch *gdbarch,
11898 struct symtab_and_line sal,
11899 char *addr_string,
11900 const struct breakpoint_ops *ops,
11901 int tempflag,
11902 int enabled,
11903 int from_tty)
11904 {
11905 if (from_tty)
11906 {
11907 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11908 if (!loc_gdbarch)
11909 loc_gdbarch = gdbarch;
11910
11911 describe_other_breakpoints (loc_gdbarch,
11912 sal.pspace, sal.pc, sal.section, -1);
11913 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11914 version for exception catchpoints, because two catchpoints
11915 used for different exception names will use the same address.
11916 In this case, a "breakpoint ... also set at..." warning is
11917 unproductive. Besides, the warning phrasing is also a bit
11918 inappropriate, we should use the word catchpoint, and tell
11919 the user what type of catchpoint it is. The above is good
11920 enough for now, though. */
11921 }
11922
11923 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11924
11925 b->enable_state = enabled ? bp_enabled : bp_disabled;
11926 b->disposition = tempflag ? disp_del : disp_donttouch;
11927 b->location = string_to_event_location (&addr_string,
11928 language_def (language_ada));
11929 b->language = language_ada;
11930 }
11931
11932 static void
11933 catch_command (char *arg, int from_tty)
11934 {
11935 error (_("Catch requires an event name."));
11936 }
11937 \f
11938
11939 static void
11940 tcatch_command (char *arg, int from_tty)
11941 {
11942 error (_("Catch requires an event name."));
11943 }
11944
11945 /* A qsort comparison function that sorts breakpoints in order. */
11946
11947 static int
11948 compare_breakpoints (const void *a, const void *b)
11949 {
11950 const breakpoint_p *ba = (const breakpoint_p *) a;
11951 uintptr_t ua = (uintptr_t) *ba;
11952 const breakpoint_p *bb = (const breakpoint_p *) b;
11953 uintptr_t ub = (uintptr_t) *bb;
11954
11955 if ((*ba)->number < (*bb)->number)
11956 return -1;
11957 else if ((*ba)->number > (*bb)->number)
11958 return 1;
11959
11960 /* Now sort by address, in case we see, e..g, two breakpoints with
11961 the number 0. */
11962 if (ua < ub)
11963 return -1;
11964 return ua > ub ? 1 : 0;
11965 }
11966
11967 /* Delete breakpoints by address or line. */
11968
11969 static void
11970 clear_command (char *arg, int from_tty)
11971 {
11972 struct breakpoint *b, *prev;
11973 VEC(breakpoint_p) *found = 0;
11974 int ix;
11975 int default_match;
11976 struct symtabs_and_lines sals;
11977 struct symtab_and_line sal;
11978 int i;
11979 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11980
11981 if (arg)
11982 {
11983 sals = decode_line_with_current_source (arg,
11984 (DECODE_LINE_FUNFIRSTLINE
11985 | DECODE_LINE_LIST_MODE));
11986 make_cleanup (xfree, sals.sals);
11987 default_match = 0;
11988 }
11989 else
11990 {
11991 sals.sals = XNEW (struct symtab_and_line);
11992 make_cleanup (xfree, sals.sals);
11993 init_sal (&sal); /* Initialize to zeroes. */
11994
11995 /* Set sal's line, symtab, pc, and pspace to the values
11996 corresponding to the last call to print_frame_info. If the
11997 codepoint is not valid, this will set all the fields to 0. */
11998 get_last_displayed_sal (&sal);
11999 if (sal.symtab == 0)
12000 error (_("No source file specified."));
12001
12002 sals.sals[0] = sal;
12003 sals.nelts = 1;
12004
12005 default_match = 1;
12006 }
12007
12008 /* We don't call resolve_sal_pc here. That's not as bad as it
12009 seems, because all existing breakpoints typically have both
12010 file/line and pc set. So, if clear is given file/line, we can
12011 match this to existing breakpoint without obtaining pc at all.
12012
12013 We only support clearing given the address explicitly
12014 present in breakpoint table. Say, we've set breakpoint
12015 at file:line. There were several PC values for that file:line,
12016 due to optimization, all in one block.
12017
12018 We've picked one PC value. If "clear" is issued with another
12019 PC corresponding to the same file:line, the breakpoint won't
12020 be cleared. We probably can still clear the breakpoint, but
12021 since the other PC value is never presented to user, user
12022 can only find it by guessing, and it does not seem important
12023 to support that. */
12024
12025 /* For each line spec given, delete bps which correspond to it. Do
12026 it in two passes, solely to preserve the current behavior that
12027 from_tty is forced true if we delete more than one
12028 breakpoint. */
12029
12030 found = NULL;
12031 make_cleanup (VEC_cleanup (breakpoint_p), &found);
12032 for (i = 0; i < sals.nelts; i++)
12033 {
12034 const char *sal_fullname;
12035
12036 /* If exact pc given, clear bpts at that pc.
12037 If line given (pc == 0), clear all bpts on specified line.
12038 If defaulting, clear all bpts on default line
12039 or at default pc.
12040
12041 defaulting sal.pc != 0 tests to do
12042
12043 0 1 pc
12044 1 1 pc _and_ line
12045 0 0 line
12046 1 0 <can't happen> */
12047
12048 sal = sals.sals[i];
12049 sal_fullname = (sal.symtab == NULL
12050 ? NULL : symtab_to_fullname (sal.symtab));
12051
12052 /* Find all matching breakpoints and add them to 'found'. */
12053 ALL_BREAKPOINTS (b)
12054 {
12055 int match = 0;
12056 /* Are we going to delete b? */
12057 if (b->type != bp_none && !is_watchpoint (b))
12058 {
12059 struct bp_location *loc = b->loc;
12060 for (; loc; loc = loc->next)
12061 {
12062 /* If the user specified file:line, don't allow a PC
12063 match. This matches historical gdb behavior. */
12064 int pc_match = (!sal.explicit_line
12065 && sal.pc
12066 && (loc->pspace == sal.pspace)
12067 && (loc->address == sal.pc)
12068 && (!section_is_overlay (loc->section)
12069 || loc->section == sal.section));
12070 int line_match = 0;
12071
12072 if ((default_match || sal.explicit_line)
12073 && loc->symtab != NULL
12074 && sal_fullname != NULL
12075 && sal.pspace == loc->pspace
12076 && loc->line_number == sal.line
12077 && filename_cmp (symtab_to_fullname (loc->symtab),
12078 sal_fullname) == 0)
12079 line_match = 1;
12080
12081 if (pc_match || line_match)
12082 {
12083 match = 1;
12084 break;
12085 }
12086 }
12087 }
12088
12089 if (match)
12090 VEC_safe_push(breakpoint_p, found, b);
12091 }
12092 }
12093
12094 /* Now go thru the 'found' chain and delete them. */
12095 if (VEC_empty(breakpoint_p, found))
12096 {
12097 if (arg)
12098 error (_("No breakpoint at %s."), arg);
12099 else
12100 error (_("No breakpoint at this line."));
12101 }
12102
12103 /* Remove duplicates from the vec. */
12104 qsort (VEC_address (breakpoint_p, found),
12105 VEC_length (breakpoint_p, found),
12106 sizeof (breakpoint_p),
12107 compare_breakpoints);
12108 prev = VEC_index (breakpoint_p, found, 0);
12109 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
12110 {
12111 if (b == prev)
12112 {
12113 VEC_ordered_remove (breakpoint_p, found, ix);
12114 --ix;
12115 }
12116 }
12117
12118 if (VEC_length(breakpoint_p, found) > 1)
12119 from_tty = 1; /* Always report if deleted more than one. */
12120 if (from_tty)
12121 {
12122 if (VEC_length(breakpoint_p, found) == 1)
12123 printf_unfiltered (_("Deleted breakpoint "));
12124 else
12125 printf_unfiltered (_("Deleted breakpoints "));
12126 }
12127
12128 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
12129 {
12130 if (from_tty)
12131 printf_unfiltered ("%d ", b->number);
12132 delete_breakpoint (b);
12133 }
12134 if (from_tty)
12135 putchar_unfiltered ('\n');
12136
12137 do_cleanups (cleanups);
12138 }
12139 \f
12140 /* Delete breakpoint in BS if they are `delete' breakpoints and
12141 all breakpoints that are marked for deletion, whether hit or not.
12142 This is called after any breakpoint is hit, or after errors. */
12143
12144 void
12145 breakpoint_auto_delete (bpstat bs)
12146 {
12147 struct breakpoint *b, *b_tmp;
12148
12149 for (; bs; bs = bs->next)
12150 if (bs->breakpoint_at
12151 && bs->breakpoint_at->disposition == disp_del
12152 && bs->stop)
12153 delete_breakpoint (bs->breakpoint_at);
12154
12155 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12156 {
12157 if (b->disposition == disp_del_at_next_stop)
12158 delete_breakpoint (b);
12159 }
12160 }
12161
12162 /* A comparison function for bp_location AP and BP being interfaced to
12163 qsort. Sort elements primarily by their ADDRESS (no matter what
12164 does breakpoint_address_is_meaningful say for its OWNER),
12165 secondarily by ordering first permanent elements and
12166 terciarily just ensuring the array is sorted stable way despite
12167 qsort being an unstable algorithm. */
12168
12169 static int
12170 bp_location_compare (const void *ap, const void *bp)
12171 {
12172 const struct bp_location *a = *(const struct bp_location **) ap;
12173 const struct bp_location *b = *(const struct bp_location **) bp;
12174
12175 if (a->address != b->address)
12176 return (a->address > b->address) - (a->address < b->address);
12177
12178 /* Sort locations at the same address by their pspace number, keeping
12179 locations of the same inferior (in a multi-inferior environment)
12180 grouped. */
12181
12182 if (a->pspace->num != b->pspace->num)
12183 return ((a->pspace->num > b->pspace->num)
12184 - (a->pspace->num < b->pspace->num));
12185
12186 /* Sort permanent breakpoints first. */
12187 if (a->permanent != b->permanent)
12188 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
12189
12190 /* Make the internal GDB representation stable across GDB runs
12191 where A and B memory inside GDB can differ. Breakpoint locations of
12192 the same type at the same address can be sorted in arbitrary order. */
12193
12194 if (a->owner->number != b->owner->number)
12195 return ((a->owner->number > b->owner->number)
12196 - (a->owner->number < b->owner->number));
12197
12198 return (a > b) - (a < b);
12199 }
12200
12201 /* Set bp_location_placed_address_before_address_max and
12202 bp_location_shadow_len_after_address_max according to the current
12203 content of the bp_location array. */
12204
12205 static void
12206 bp_location_target_extensions_update (void)
12207 {
12208 struct bp_location *bl, **blp_tmp;
12209
12210 bp_location_placed_address_before_address_max = 0;
12211 bp_location_shadow_len_after_address_max = 0;
12212
12213 ALL_BP_LOCATIONS (bl, blp_tmp)
12214 {
12215 CORE_ADDR start, end, addr;
12216
12217 if (!bp_location_has_shadow (bl))
12218 continue;
12219
12220 start = bl->target_info.placed_address;
12221 end = start + bl->target_info.shadow_len;
12222
12223 gdb_assert (bl->address >= start);
12224 addr = bl->address - start;
12225 if (addr > bp_location_placed_address_before_address_max)
12226 bp_location_placed_address_before_address_max = addr;
12227
12228 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12229
12230 gdb_assert (bl->address < end);
12231 addr = end - bl->address;
12232 if (addr > bp_location_shadow_len_after_address_max)
12233 bp_location_shadow_len_after_address_max = addr;
12234 }
12235 }
12236
12237 /* Download tracepoint locations if they haven't been. */
12238
12239 static void
12240 download_tracepoint_locations (void)
12241 {
12242 struct breakpoint *b;
12243 struct cleanup *old_chain;
12244 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
12245
12246 old_chain = save_current_space_and_thread ();
12247
12248 ALL_TRACEPOINTS (b)
12249 {
12250 struct bp_location *bl;
12251 struct tracepoint *t;
12252 int bp_location_downloaded = 0;
12253
12254 if ((b->type == bp_fast_tracepoint
12255 ? !may_insert_fast_tracepoints
12256 : !may_insert_tracepoints))
12257 continue;
12258
12259 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
12260 {
12261 if (target_can_download_tracepoint ())
12262 can_download_tracepoint = TRIBOOL_TRUE;
12263 else
12264 can_download_tracepoint = TRIBOOL_FALSE;
12265 }
12266
12267 if (can_download_tracepoint == TRIBOOL_FALSE)
12268 break;
12269
12270 for (bl = b->loc; bl; bl = bl->next)
12271 {
12272 /* In tracepoint, locations are _never_ duplicated, so
12273 should_be_inserted is equivalent to
12274 unduplicated_should_be_inserted. */
12275 if (!should_be_inserted (bl) || bl->inserted)
12276 continue;
12277
12278 switch_to_program_space_and_thread (bl->pspace);
12279
12280 target_download_tracepoint (bl);
12281
12282 bl->inserted = 1;
12283 bp_location_downloaded = 1;
12284 }
12285 t = (struct tracepoint *) b;
12286 t->number_on_target = b->number;
12287 if (bp_location_downloaded)
12288 observer_notify_breakpoint_modified (b);
12289 }
12290
12291 do_cleanups (old_chain);
12292 }
12293
12294 /* Swap the insertion/duplication state between two locations. */
12295
12296 static void
12297 swap_insertion (struct bp_location *left, struct bp_location *right)
12298 {
12299 const int left_inserted = left->inserted;
12300 const int left_duplicate = left->duplicate;
12301 const int left_needs_update = left->needs_update;
12302 const struct bp_target_info left_target_info = left->target_info;
12303
12304 /* Locations of tracepoints can never be duplicated. */
12305 if (is_tracepoint (left->owner))
12306 gdb_assert (!left->duplicate);
12307 if (is_tracepoint (right->owner))
12308 gdb_assert (!right->duplicate);
12309
12310 left->inserted = right->inserted;
12311 left->duplicate = right->duplicate;
12312 left->needs_update = right->needs_update;
12313 left->target_info = right->target_info;
12314 right->inserted = left_inserted;
12315 right->duplicate = left_duplicate;
12316 right->needs_update = left_needs_update;
12317 right->target_info = left_target_info;
12318 }
12319
12320 /* Force the re-insertion of the locations at ADDRESS. This is called
12321 once a new/deleted/modified duplicate location is found and we are evaluating
12322 conditions on the target's side. Such conditions need to be updated on
12323 the target. */
12324
12325 static void
12326 force_breakpoint_reinsertion (struct bp_location *bl)
12327 {
12328 struct bp_location **locp = NULL, **loc2p;
12329 struct bp_location *loc;
12330 CORE_ADDR address = 0;
12331 int pspace_num;
12332
12333 address = bl->address;
12334 pspace_num = bl->pspace->num;
12335
12336 /* This is only meaningful if the target is
12337 evaluating conditions and if the user has
12338 opted for condition evaluation on the target's
12339 side. */
12340 if (gdb_evaluates_breakpoint_condition_p ()
12341 || !target_supports_evaluation_of_breakpoint_conditions ())
12342 return;
12343
12344 /* Flag all breakpoint locations with this address and
12345 the same program space as the location
12346 as "its condition has changed". We need to
12347 update the conditions on the target's side. */
12348 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12349 {
12350 loc = *loc2p;
12351
12352 if (!is_breakpoint (loc->owner)
12353 || pspace_num != loc->pspace->num)
12354 continue;
12355
12356 /* Flag the location appropriately. We use a different state to
12357 let everyone know that we already updated the set of locations
12358 with addr bl->address and program space bl->pspace. This is so
12359 we don't have to keep calling these functions just to mark locations
12360 that have already been marked. */
12361 loc->condition_changed = condition_updated;
12362
12363 /* Free the agent expression bytecode as well. We will compute
12364 it later on. */
12365 loc->cond_bytecode.reset ();
12366 }
12367 }
12368 /* Called whether new breakpoints are created, or existing breakpoints
12369 deleted, to update the global location list and recompute which
12370 locations are duplicate of which.
12371
12372 The INSERT_MODE flag determines whether locations may not, may, or
12373 shall be inserted now. See 'enum ugll_insert_mode' for more
12374 info. */
12375
12376 static void
12377 update_global_location_list (enum ugll_insert_mode insert_mode)
12378 {
12379 struct breakpoint *b;
12380 struct bp_location **locp, *loc;
12381 struct cleanup *cleanups;
12382 /* Last breakpoint location address that was marked for update. */
12383 CORE_ADDR last_addr = 0;
12384 /* Last breakpoint location program space that was marked for update. */
12385 int last_pspace_num = -1;
12386
12387 /* Used in the duplicates detection below. When iterating over all
12388 bp_locations, points to the first bp_location of a given address.
12389 Breakpoints and watchpoints of different types are never
12390 duplicates of each other. Keep one pointer for each type of
12391 breakpoint/watchpoint, so we only need to loop over all locations
12392 once. */
12393 struct bp_location *bp_loc_first; /* breakpoint */
12394 struct bp_location *wp_loc_first; /* hardware watchpoint */
12395 struct bp_location *awp_loc_first; /* access watchpoint */
12396 struct bp_location *rwp_loc_first; /* read watchpoint */
12397
12398 /* Saved former bp_location array which we compare against the newly
12399 built bp_location from the current state of ALL_BREAKPOINTS. */
12400 struct bp_location **old_location, **old_locp;
12401 unsigned old_location_count;
12402
12403 old_location = bp_location;
12404 old_location_count = bp_location_count;
12405 bp_location = NULL;
12406 bp_location_count = 0;
12407 cleanups = make_cleanup (xfree, old_location);
12408
12409 ALL_BREAKPOINTS (b)
12410 for (loc = b->loc; loc; loc = loc->next)
12411 bp_location_count++;
12412
12413 bp_location = XNEWVEC (struct bp_location *, bp_location_count);
12414 locp = bp_location;
12415 ALL_BREAKPOINTS (b)
12416 for (loc = b->loc; loc; loc = loc->next)
12417 *locp++ = loc;
12418 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12419 bp_location_compare);
12420
12421 bp_location_target_extensions_update ();
12422
12423 /* Identify bp_location instances that are no longer present in the
12424 new list, and therefore should be freed. Note that it's not
12425 necessary that those locations should be removed from inferior --
12426 if there's another location at the same address (previously
12427 marked as duplicate), we don't need to remove/insert the
12428 location.
12429
12430 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12431 and former bp_location array state respectively. */
12432
12433 locp = bp_location;
12434 for (old_locp = old_location; old_locp < old_location + old_location_count;
12435 old_locp++)
12436 {
12437 struct bp_location *old_loc = *old_locp;
12438 struct bp_location **loc2p;
12439
12440 /* Tells if 'old_loc' is found among the new locations. If
12441 not, we have to free it. */
12442 int found_object = 0;
12443 /* Tells if the location should remain inserted in the target. */
12444 int keep_in_target = 0;
12445 int removed = 0;
12446
12447 /* Skip LOCP entries which will definitely never be needed.
12448 Stop either at or being the one matching OLD_LOC. */
12449 while (locp < bp_location + bp_location_count
12450 && (*locp)->address < old_loc->address)
12451 locp++;
12452
12453 for (loc2p = locp;
12454 (loc2p < bp_location + bp_location_count
12455 && (*loc2p)->address == old_loc->address);
12456 loc2p++)
12457 {
12458 /* Check if this is a new/duplicated location or a duplicated
12459 location that had its condition modified. If so, we want to send
12460 its condition to the target if evaluation of conditions is taking
12461 place there. */
12462 if ((*loc2p)->condition_changed == condition_modified
12463 && (last_addr != old_loc->address
12464 || last_pspace_num != old_loc->pspace->num))
12465 {
12466 force_breakpoint_reinsertion (*loc2p);
12467 last_pspace_num = old_loc->pspace->num;
12468 }
12469
12470 if (*loc2p == old_loc)
12471 found_object = 1;
12472 }
12473
12474 /* We have already handled this address, update it so that we don't
12475 have to go through updates again. */
12476 last_addr = old_loc->address;
12477
12478 /* Target-side condition evaluation: Handle deleted locations. */
12479 if (!found_object)
12480 force_breakpoint_reinsertion (old_loc);
12481
12482 /* If this location is no longer present, and inserted, look if
12483 there's maybe a new location at the same address. If so,
12484 mark that one inserted, and don't remove this one. This is
12485 needed so that we don't have a time window where a breakpoint
12486 at certain location is not inserted. */
12487
12488 if (old_loc->inserted)
12489 {
12490 /* If the location is inserted now, we might have to remove
12491 it. */
12492
12493 if (found_object && should_be_inserted (old_loc))
12494 {
12495 /* The location is still present in the location list,
12496 and still should be inserted. Don't do anything. */
12497 keep_in_target = 1;
12498 }
12499 else
12500 {
12501 /* This location still exists, but it won't be kept in the
12502 target since it may have been disabled. We proceed to
12503 remove its target-side condition. */
12504
12505 /* The location is either no longer present, or got
12506 disabled. See if there's another location at the
12507 same address, in which case we don't need to remove
12508 this one from the target. */
12509
12510 /* OLD_LOC comes from existing struct breakpoint. */
12511 if (breakpoint_address_is_meaningful (old_loc->owner))
12512 {
12513 for (loc2p = locp;
12514 (loc2p < bp_location + bp_location_count
12515 && (*loc2p)->address == old_loc->address);
12516 loc2p++)
12517 {
12518 struct bp_location *loc2 = *loc2p;
12519
12520 if (breakpoint_locations_match (loc2, old_loc))
12521 {
12522 /* Read watchpoint locations are switched to
12523 access watchpoints, if the former are not
12524 supported, but the latter are. */
12525 if (is_hardware_watchpoint (old_loc->owner))
12526 {
12527 gdb_assert (is_hardware_watchpoint (loc2->owner));
12528 loc2->watchpoint_type = old_loc->watchpoint_type;
12529 }
12530
12531 /* loc2 is a duplicated location. We need to check
12532 if it should be inserted in case it will be
12533 unduplicated. */
12534 if (loc2 != old_loc
12535 && unduplicated_should_be_inserted (loc2))
12536 {
12537 swap_insertion (old_loc, loc2);
12538 keep_in_target = 1;
12539 break;
12540 }
12541 }
12542 }
12543 }
12544 }
12545
12546 if (!keep_in_target)
12547 {
12548 if (remove_breakpoint (old_loc))
12549 {
12550 /* This is just about all we can do. We could keep
12551 this location on the global list, and try to
12552 remove it next time, but there's no particular
12553 reason why we will succeed next time.
12554
12555 Note that at this point, old_loc->owner is still
12556 valid, as delete_breakpoint frees the breakpoint
12557 only after calling us. */
12558 printf_filtered (_("warning: Error removing "
12559 "breakpoint %d\n"),
12560 old_loc->owner->number);
12561 }
12562 removed = 1;
12563 }
12564 }
12565
12566 if (!found_object)
12567 {
12568 if (removed && target_is_non_stop_p ()
12569 && need_moribund_for_location_type (old_loc))
12570 {
12571 /* This location was removed from the target. In
12572 non-stop mode, a race condition is possible where
12573 we've removed a breakpoint, but stop events for that
12574 breakpoint are already queued and will arrive later.
12575 We apply an heuristic to be able to distinguish such
12576 SIGTRAPs from other random SIGTRAPs: we keep this
12577 breakpoint location for a bit, and will retire it
12578 after we see some number of events. The theory here
12579 is that reporting of events should, "on the average",
12580 be fair, so after a while we'll see events from all
12581 threads that have anything of interest, and no longer
12582 need to keep this breakpoint location around. We
12583 don't hold locations forever so to reduce chances of
12584 mistaking a non-breakpoint SIGTRAP for a breakpoint
12585 SIGTRAP.
12586
12587 The heuristic failing can be disastrous on
12588 decr_pc_after_break targets.
12589
12590 On decr_pc_after_break targets, like e.g., x86-linux,
12591 if we fail to recognize a late breakpoint SIGTRAP,
12592 because events_till_retirement has reached 0 too
12593 soon, we'll fail to do the PC adjustment, and report
12594 a random SIGTRAP to the user. When the user resumes
12595 the inferior, it will most likely immediately crash
12596 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12597 corrupted, because of being resumed e.g., in the
12598 middle of a multi-byte instruction, or skipped a
12599 one-byte instruction. This was actually seen happen
12600 on native x86-linux, and should be less rare on
12601 targets that do not support new thread events, like
12602 remote, due to the heuristic depending on
12603 thread_count.
12604
12605 Mistaking a random SIGTRAP for a breakpoint trap
12606 causes similar symptoms (PC adjustment applied when
12607 it shouldn't), but then again, playing with SIGTRAPs
12608 behind the debugger's back is asking for trouble.
12609
12610 Since hardware watchpoint traps are always
12611 distinguishable from other traps, so we don't need to
12612 apply keep hardware watchpoint moribund locations
12613 around. We simply always ignore hardware watchpoint
12614 traps we can no longer explain. */
12615
12616 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12617 old_loc->owner = NULL;
12618
12619 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12620 }
12621 else
12622 {
12623 old_loc->owner = NULL;
12624 decref_bp_location (&old_loc);
12625 }
12626 }
12627 }
12628
12629 /* Rescan breakpoints at the same address and section, marking the
12630 first one as "first" and any others as "duplicates". This is so
12631 that the bpt instruction is only inserted once. If we have a
12632 permanent breakpoint at the same place as BPT, make that one the
12633 official one, and the rest as duplicates. Permanent breakpoints
12634 are sorted first for the same address.
12635
12636 Do the same for hardware watchpoints, but also considering the
12637 watchpoint's type (regular/access/read) and length. */
12638
12639 bp_loc_first = NULL;
12640 wp_loc_first = NULL;
12641 awp_loc_first = NULL;
12642 rwp_loc_first = NULL;
12643 ALL_BP_LOCATIONS (loc, locp)
12644 {
12645 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12646 non-NULL. */
12647 struct bp_location **loc_first_p;
12648 b = loc->owner;
12649
12650 if (!unduplicated_should_be_inserted (loc)
12651 || !breakpoint_address_is_meaningful (b)
12652 /* Don't detect duplicate for tracepoint locations because they are
12653 never duplicated. See the comments in field `duplicate' of
12654 `struct bp_location'. */
12655 || is_tracepoint (b))
12656 {
12657 /* Clear the condition modification flag. */
12658 loc->condition_changed = condition_unchanged;
12659 continue;
12660 }
12661
12662 if (b->type == bp_hardware_watchpoint)
12663 loc_first_p = &wp_loc_first;
12664 else if (b->type == bp_read_watchpoint)
12665 loc_first_p = &rwp_loc_first;
12666 else if (b->type == bp_access_watchpoint)
12667 loc_first_p = &awp_loc_first;
12668 else
12669 loc_first_p = &bp_loc_first;
12670
12671 if (*loc_first_p == NULL
12672 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12673 || !breakpoint_locations_match (loc, *loc_first_p))
12674 {
12675 *loc_first_p = loc;
12676 loc->duplicate = 0;
12677
12678 if (is_breakpoint (loc->owner) && loc->condition_changed)
12679 {
12680 loc->needs_update = 1;
12681 /* Clear the condition modification flag. */
12682 loc->condition_changed = condition_unchanged;
12683 }
12684 continue;
12685 }
12686
12687
12688 /* This and the above ensure the invariant that the first location
12689 is not duplicated, and is the inserted one.
12690 All following are marked as duplicated, and are not inserted. */
12691 if (loc->inserted)
12692 swap_insertion (loc, *loc_first_p);
12693 loc->duplicate = 1;
12694
12695 /* Clear the condition modification flag. */
12696 loc->condition_changed = condition_unchanged;
12697 }
12698
12699 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12700 {
12701 if (insert_mode != UGLL_DONT_INSERT)
12702 insert_breakpoint_locations ();
12703 else
12704 {
12705 /* Even though the caller told us to not insert new
12706 locations, we may still need to update conditions on the
12707 target's side of breakpoints that were already inserted
12708 if the target is evaluating breakpoint conditions. We
12709 only update conditions for locations that are marked
12710 "needs_update". */
12711 update_inserted_breakpoint_locations ();
12712 }
12713 }
12714
12715 if (insert_mode != UGLL_DONT_INSERT)
12716 download_tracepoint_locations ();
12717
12718 do_cleanups (cleanups);
12719 }
12720
12721 void
12722 breakpoint_retire_moribund (void)
12723 {
12724 struct bp_location *loc;
12725 int ix;
12726
12727 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12728 if (--(loc->events_till_retirement) == 0)
12729 {
12730 decref_bp_location (&loc);
12731 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12732 --ix;
12733 }
12734 }
12735
12736 static void
12737 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12738 {
12739
12740 TRY
12741 {
12742 update_global_location_list (insert_mode);
12743 }
12744 CATCH (e, RETURN_MASK_ERROR)
12745 {
12746 }
12747 END_CATCH
12748 }
12749
12750 /* Clear BKP from a BPS. */
12751
12752 static void
12753 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12754 {
12755 bpstat bs;
12756
12757 for (bs = bps; bs; bs = bs->next)
12758 if (bs->breakpoint_at == bpt)
12759 {
12760 bs->breakpoint_at = NULL;
12761 bs->old_val = NULL;
12762 /* bs->commands will be freed later. */
12763 }
12764 }
12765
12766 /* Callback for iterate_over_threads. */
12767 static int
12768 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12769 {
12770 struct breakpoint *bpt = (struct breakpoint *) data;
12771
12772 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12773 return 0;
12774 }
12775
12776 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12777 callbacks. */
12778
12779 static void
12780 say_where (struct breakpoint *b)
12781 {
12782 struct value_print_options opts;
12783
12784 get_user_print_options (&opts);
12785
12786 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12787 single string. */
12788 if (b->loc == NULL)
12789 {
12790 /* For pending locations, the output differs slightly based
12791 on b->extra_string. If this is non-NULL, it contains either
12792 a condition or dprintf arguments. */
12793 if (b->extra_string == NULL)
12794 {
12795 printf_filtered (_(" (%s) pending."),
12796 event_location_to_string (b->location));
12797 }
12798 else if (b->type == bp_dprintf)
12799 {
12800 printf_filtered (_(" (%s,%s) pending."),
12801 event_location_to_string (b->location),
12802 b->extra_string);
12803 }
12804 else
12805 {
12806 printf_filtered (_(" (%s %s) pending."),
12807 event_location_to_string (b->location),
12808 b->extra_string);
12809 }
12810 }
12811 else
12812 {
12813 if (opts.addressprint || b->loc->symtab == NULL)
12814 {
12815 printf_filtered (" at ");
12816 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12817 gdb_stdout);
12818 }
12819 if (b->loc->symtab != NULL)
12820 {
12821 /* If there is a single location, we can print the location
12822 more nicely. */
12823 if (b->loc->next == NULL)
12824 printf_filtered (": file %s, line %d.",
12825 symtab_to_filename_for_display (b->loc->symtab),
12826 b->loc->line_number);
12827 else
12828 /* This is not ideal, but each location may have a
12829 different file name, and this at least reflects the
12830 real situation somewhat. */
12831 printf_filtered (": %s.",
12832 event_location_to_string (b->location));
12833 }
12834
12835 if (b->loc->next)
12836 {
12837 struct bp_location *loc = b->loc;
12838 int n = 0;
12839 for (; loc; loc = loc->next)
12840 ++n;
12841 printf_filtered (" (%d locations)", n);
12842 }
12843 }
12844 }
12845
12846 /* Default bp_location_ops methods. */
12847
12848 static void
12849 bp_location_dtor (struct bp_location *self)
12850 {
12851 xfree (self->function_name);
12852 }
12853
12854 static const struct bp_location_ops bp_location_ops =
12855 {
12856 bp_location_dtor
12857 };
12858
12859 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12860 inherit from. */
12861
12862 static void
12863 base_breakpoint_dtor (struct breakpoint *self)
12864 {
12865 decref_counted_command_line (&self->commands);
12866 xfree (self->cond_string);
12867 xfree (self->extra_string);
12868 xfree (self->filter);
12869 delete_event_location (self->location);
12870 delete_event_location (self->location_range_end);
12871 }
12872
12873 static struct bp_location *
12874 base_breakpoint_allocate_location (struct breakpoint *self)
12875 {
12876 struct bp_location *loc;
12877
12878 loc = new struct bp_location ();
12879 init_bp_location (loc, &bp_location_ops, self);
12880 return loc;
12881 }
12882
12883 static void
12884 base_breakpoint_re_set (struct breakpoint *b)
12885 {
12886 /* Nothing to re-set. */
12887 }
12888
12889 #define internal_error_pure_virtual_called() \
12890 gdb_assert_not_reached ("pure virtual function called")
12891
12892 static int
12893 base_breakpoint_insert_location (struct bp_location *bl)
12894 {
12895 internal_error_pure_virtual_called ();
12896 }
12897
12898 static int
12899 base_breakpoint_remove_location (struct bp_location *bl,
12900 enum remove_bp_reason reason)
12901 {
12902 internal_error_pure_virtual_called ();
12903 }
12904
12905 static int
12906 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12907 struct address_space *aspace,
12908 CORE_ADDR bp_addr,
12909 const struct target_waitstatus *ws)
12910 {
12911 internal_error_pure_virtual_called ();
12912 }
12913
12914 static void
12915 base_breakpoint_check_status (bpstat bs)
12916 {
12917 /* Always stop. */
12918 }
12919
12920 /* A "works_in_software_mode" breakpoint_ops method that just internal
12921 errors. */
12922
12923 static int
12924 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12925 {
12926 internal_error_pure_virtual_called ();
12927 }
12928
12929 /* A "resources_needed" breakpoint_ops method that just internal
12930 errors. */
12931
12932 static int
12933 base_breakpoint_resources_needed (const struct bp_location *bl)
12934 {
12935 internal_error_pure_virtual_called ();
12936 }
12937
12938 static enum print_stop_action
12939 base_breakpoint_print_it (bpstat bs)
12940 {
12941 internal_error_pure_virtual_called ();
12942 }
12943
12944 static void
12945 base_breakpoint_print_one_detail (const struct breakpoint *self,
12946 struct ui_out *uiout)
12947 {
12948 /* nothing */
12949 }
12950
12951 static void
12952 base_breakpoint_print_mention (struct breakpoint *b)
12953 {
12954 internal_error_pure_virtual_called ();
12955 }
12956
12957 static void
12958 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12959 {
12960 internal_error_pure_virtual_called ();
12961 }
12962
12963 static void
12964 base_breakpoint_create_sals_from_location
12965 (const struct event_location *location,
12966 struct linespec_result *canonical,
12967 enum bptype type_wanted)
12968 {
12969 internal_error_pure_virtual_called ();
12970 }
12971
12972 static void
12973 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12974 struct linespec_result *c,
12975 char *cond_string,
12976 char *extra_string,
12977 enum bptype type_wanted,
12978 enum bpdisp disposition,
12979 int thread,
12980 int task, int ignore_count,
12981 const struct breakpoint_ops *o,
12982 int from_tty, int enabled,
12983 int internal, unsigned flags)
12984 {
12985 internal_error_pure_virtual_called ();
12986 }
12987
12988 static void
12989 base_breakpoint_decode_location (struct breakpoint *b,
12990 const struct event_location *location,
12991 struct program_space *search_pspace,
12992 struct symtabs_and_lines *sals)
12993 {
12994 internal_error_pure_virtual_called ();
12995 }
12996
12997 /* The default 'explains_signal' method. */
12998
12999 static int
13000 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
13001 {
13002 return 1;
13003 }
13004
13005 /* The default "after_condition_true" method. */
13006
13007 static void
13008 base_breakpoint_after_condition_true (struct bpstats *bs)
13009 {
13010 /* Nothing to do. */
13011 }
13012
13013 struct breakpoint_ops base_breakpoint_ops =
13014 {
13015 base_breakpoint_dtor,
13016 base_breakpoint_allocate_location,
13017 base_breakpoint_re_set,
13018 base_breakpoint_insert_location,
13019 base_breakpoint_remove_location,
13020 base_breakpoint_breakpoint_hit,
13021 base_breakpoint_check_status,
13022 base_breakpoint_resources_needed,
13023 base_breakpoint_works_in_software_mode,
13024 base_breakpoint_print_it,
13025 NULL,
13026 base_breakpoint_print_one_detail,
13027 base_breakpoint_print_mention,
13028 base_breakpoint_print_recreate,
13029 base_breakpoint_create_sals_from_location,
13030 base_breakpoint_create_breakpoints_sal,
13031 base_breakpoint_decode_location,
13032 base_breakpoint_explains_signal,
13033 base_breakpoint_after_condition_true,
13034 };
13035
13036 /* Default breakpoint_ops methods. */
13037
13038 static void
13039 bkpt_re_set (struct breakpoint *b)
13040 {
13041 /* FIXME: is this still reachable? */
13042 if (breakpoint_event_location_empty_p (b))
13043 {
13044 /* Anything without a location can't be re-set. */
13045 delete_breakpoint (b);
13046 return;
13047 }
13048
13049 breakpoint_re_set_default (b);
13050 }
13051
13052 static int
13053 bkpt_insert_location (struct bp_location *bl)
13054 {
13055 CORE_ADDR addr = bl->target_info.reqstd_address;
13056
13057 bl->target_info.kind = breakpoint_kind (bl, &addr);
13058 bl->target_info.placed_address = addr;
13059
13060 if (bl->loc_type == bp_loc_hardware_breakpoint)
13061 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
13062 else
13063 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
13064 }
13065
13066 static int
13067 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
13068 {
13069 if (bl->loc_type == bp_loc_hardware_breakpoint)
13070 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
13071 else
13072 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
13073 }
13074
13075 static int
13076 bkpt_breakpoint_hit (const struct bp_location *bl,
13077 struct address_space *aspace, CORE_ADDR bp_addr,
13078 const struct target_waitstatus *ws)
13079 {
13080 if (ws->kind != TARGET_WAITKIND_STOPPED
13081 || ws->value.sig != GDB_SIGNAL_TRAP)
13082 return 0;
13083
13084 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
13085 aspace, bp_addr))
13086 return 0;
13087
13088 if (overlay_debugging /* unmapped overlay section */
13089 && section_is_overlay (bl->section)
13090 && !section_is_mapped (bl->section))
13091 return 0;
13092
13093 return 1;
13094 }
13095
13096 static int
13097 dprintf_breakpoint_hit (const struct bp_location *bl,
13098 struct address_space *aspace, CORE_ADDR bp_addr,
13099 const struct target_waitstatus *ws)
13100 {
13101 if (dprintf_style == dprintf_style_agent
13102 && target_can_run_breakpoint_commands ())
13103 {
13104 /* An agent-style dprintf never causes a stop. If we see a trap
13105 for this address it must be for a breakpoint that happens to
13106 be set at the same address. */
13107 return 0;
13108 }
13109
13110 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
13111 }
13112
13113 static int
13114 bkpt_resources_needed (const struct bp_location *bl)
13115 {
13116 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
13117
13118 return 1;
13119 }
13120
13121 static enum print_stop_action
13122 bkpt_print_it (bpstat bs)
13123 {
13124 struct breakpoint *b;
13125 const struct bp_location *bl;
13126 int bp_temp;
13127 struct ui_out *uiout = current_uiout;
13128
13129 gdb_assert (bs->bp_location_at != NULL);
13130
13131 bl = bs->bp_location_at;
13132 b = bs->breakpoint_at;
13133
13134 bp_temp = b->disposition == disp_del;
13135 if (bl->address != bl->requested_address)
13136 breakpoint_adjustment_warning (bl->requested_address,
13137 bl->address,
13138 b->number, 1);
13139 annotate_breakpoint (b->number);
13140 maybe_print_thread_hit_breakpoint (uiout);
13141
13142 if (bp_temp)
13143 uiout->text ("Temporary breakpoint ");
13144 else
13145 uiout->text ("Breakpoint ");
13146 if (uiout->is_mi_like_p ())
13147 {
13148 uiout->field_string ("reason",
13149 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
13150 uiout->field_string ("disp", bpdisp_text (b->disposition));
13151 }
13152 uiout->field_int ("bkptno", b->number);
13153 uiout->text (", ");
13154
13155 return PRINT_SRC_AND_LOC;
13156 }
13157
13158 static void
13159 bkpt_print_mention (struct breakpoint *b)
13160 {
13161 if (current_uiout->is_mi_like_p ())
13162 return;
13163
13164 switch (b->type)
13165 {
13166 case bp_breakpoint:
13167 case bp_gnu_ifunc_resolver:
13168 if (b->disposition == disp_del)
13169 printf_filtered (_("Temporary breakpoint"));
13170 else
13171 printf_filtered (_("Breakpoint"));
13172 printf_filtered (_(" %d"), b->number);
13173 if (b->type == bp_gnu_ifunc_resolver)
13174 printf_filtered (_(" at gnu-indirect-function resolver"));
13175 break;
13176 case bp_hardware_breakpoint:
13177 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13178 break;
13179 case bp_dprintf:
13180 printf_filtered (_("Dprintf %d"), b->number);
13181 break;
13182 }
13183
13184 say_where (b);
13185 }
13186
13187 static void
13188 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13189 {
13190 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13191 fprintf_unfiltered (fp, "tbreak");
13192 else if (tp->type == bp_breakpoint)
13193 fprintf_unfiltered (fp, "break");
13194 else if (tp->type == bp_hardware_breakpoint
13195 && tp->disposition == disp_del)
13196 fprintf_unfiltered (fp, "thbreak");
13197 else if (tp->type == bp_hardware_breakpoint)
13198 fprintf_unfiltered (fp, "hbreak");
13199 else
13200 internal_error (__FILE__, __LINE__,
13201 _("unhandled breakpoint type %d"), (int) tp->type);
13202
13203 fprintf_unfiltered (fp, " %s",
13204 event_location_to_string (tp->location));
13205
13206 /* Print out extra_string if this breakpoint is pending. It might
13207 contain, for example, conditions that were set by the user. */
13208 if (tp->loc == NULL && tp->extra_string != NULL)
13209 fprintf_unfiltered (fp, " %s", tp->extra_string);
13210
13211 print_recreate_thread (tp, fp);
13212 }
13213
13214 static void
13215 bkpt_create_sals_from_location (const struct event_location *location,
13216 struct linespec_result *canonical,
13217 enum bptype type_wanted)
13218 {
13219 create_sals_from_location_default (location, canonical, type_wanted);
13220 }
13221
13222 static void
13223 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13224 struct linespec_result *canonical,
13225 char *cond_string,
13226 char *extra_string,
13227 enum bptype type_wanted,
13228 enum bpdisp disposition,
13229 int thread,
13230 int task, int ignore_count,
13231 const struct breakpoint_ops *ops,
13232 int from_tty, int enabled,
13233 int internal, unsigned flags)
13234 {
13235 create_breakpoints_sal_default (gdbarch, canonical,
13236 cond_string, extra_string,
13237 type_wanted,
13238 disposition, thread, task,
13239 ignore_count, ops, from_tty,
13240 enabled, internal, flags);
13241 }
13242
13243 static void
13244 bkpt_decode_location (struct breakpoint *b,
13245 const struct event_location *location,
13246 struct program_space *search_pspace,
13247 struct symtabs_and_lines *sals)
13248 {
13249 decode_location_default (b, location, search_pspace, sals);
13250 }
13251
13252 /* Virtual table for internal breakpoints. */
13253
13254 static void
13255 internal_bkpt_re_set (struct breakpoint *b)
13256 {
13257 switch (b->type)
13258 {
13259 /* Delete overlay event and longjmp master breakpoints; they
13260 will be reset later by breakpoint_re_set. */
13261 case bp_overlay_event:
13262 case bp_longjmp_master:
13263 case bp_std_terminate_master:
13264 case bp_exception_master:
13265 delete_breakpoint (b);
13266 break;
13267
13268 /* This breakpoint is special, it's set up when the inferior
13269 starts and we really don't want to touch it. */
13270 case bp_shlib_event:
13271
13272 /* Like bp_shlib_event, this breakpoint type is special. Once
13273 it is set up, we do not want to touch it. */
13274 case bp_thread_event:
13275 break;
13276 }
13277 }
13278
13279 static void
13280 internal_bkpt_check_status (bpstat bs)
13281 {
13282 if (bs->breakpoint_at->type == bp_shlib_event)
13283 {
13284 /* If requested, stop when the dynamic linker notifies GDB of
13285 events. This allows the user to get control and place
13286 breakpoints in initializer routines for dynamically loaded
13287 objects (among other things). */
13288 bs->stop = stop_on_solib_events;
13289 bs->print = stop_on_solib_events;
13290 }
13291 else
13292 bs->stop = 0;
13293 }
13294
13295 static enum print_stop_action
13296 internal_bkpt_print_it (bpstat bs)
13297 {
13298 struct breakpoint *b;
13299
13300 b = bs->breakpoint_at;
13301
13302 switch (b->type)
13303 {
13304 case bp_shlib_event:
13305 /* Did we stop because the user set the stop_on_solib_events
13306 variable? (If so, we report this as a generic, "Stopped due
13307 to shlib event" message.) */
13308 print_solib_event (0);
13309 break;
13310
13311 case bp_thread_event:
13312 /* Not sure how we will get here.
13313 GDB should not stop for these breakpoints. */
13314 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13315 break;
13316
13317 case bp_overlay_event:
13318 /* By analogy with the thread event, GDB should not stop for these. */
13319 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13320 break;
13321
13322 case bp_longjmp_master:
13323 /* These should never be enabled. */
13324 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13325 break;
13326
13327 case bp_std_terminate_master:
13328 /* These should never be enabled. */
13329 printf_filtered (_("std::terminate Master Breakpoint: "
13330 "gdb should not stop!\n"));
13331 break;
13332
13333 case bp_exception_master:
13334 /* These should never be enabled. */
13335 printf_filtered (_("Exception Master Breakpoint: "
13336 "gdb should not stop!\n"));
13337 break;
13338 }
13339
13340 return PRINT_NOTHING;
13341 }
13342
13343 static void
13344 internal_bkpt_print_mention (struct breakpoint *b)
13345 {
13346 /* Nothing to mention. These breakpoints are internal. */
13347 }
13348
13349 /* Virtual table for momentary breakpoints */
13350
13351 static void
13352 momentary_bkpt_re_set (struct breakpoint *b)
13353 {
13354 /* Keep temporary breakpoints, which can be encountered when we step
13355 over a dlopen call and solib_add is resetting the breakpoints.
13356 Otherwise these should have been blown away via the cleanup chain
13357 or by breakpoint_init_inferior when we rerun the executable. */
13358 }
13359
13360 static void
13361 momentary_bkpt_check_status (bpstat bs)
13362 {
13363 /* Nothing. The point of these breakpoints is causing a stop. */
13364 }
13365
13366 static enum print_stop_action
13367 momentary_bkpt_print_it (bpstat bs)
13368 {
13369 return PRINT_UNKNOWN;
13370 }
13371
13372 static void
13373 momentary_bkpt_print_mention (struct breakpoint *b)
13374 {
13375 /* Nothing to mention. These breakpoints are internal. */
13376 }
13377
13378 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13379
13380 It gets cleared already on the removal of the first one of such placed
13381 breakpoints. This is OK as they get all removed altogether. */
13382
13383 static void
13384 longjmp_bkpt_dtor (struct breakpoint *self)
13385 {
13386 struct thread_info *tp = find_thread_global_id (self->thread);
13387
13388 if (tp)
13389 tp->initiating_frame = null_frame_id;
13390
13391 momentary_breakpoint_ops.dtor (self);
13392 }
13393
13394 /* Specific methods for probe breakpoints. */
13395
13396 static int
13397 bkpt_probe_insert_location (struct bp_location *bl)
13398 {
13399 int v = bkpt_insert_location (bl);
13400
13401 if (v == 0)
13402 {
13403 /* The insertion was successful, now let's set the probe's semaphore
13404 if needed. */
13405 if (bl->probe.probe->pops->set_semaphore != NULL)
13406 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
13407 bl->probe.objfile,
13408 bl->gdbarch);
13409 }
13410
13411 return v;
13412 }
13413
13414 static int
13415 bkpt_probe_remove_location (struct bp_location *bl,
13416 enum remove_bp_reason reason)
13417 {
13418 /* Let's clear the semaphore before removing the location. */
13419 if (bl->probe.probe->pops->clear_semaphore != NULL)
13420 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
13421 bl->probe.objfile,
13422 bl->gdbarch);
13423
13424 return bkpt_remove_location (bl, reason);
13425 }
13426
13427 static void
13428 bkpt_probe_create_sals_from_location (const struct event_location *location,
13429 struct linespec_result *canonical,
13430 enum bptype type_wanted)
13431 {
13432 struct linespec_sals lsal;
13433
13434 lsal.sals = parse_probes (location, NULL, canonical);
13435 lsal.canonical = xstrdup (event_location_to_string (canonical->location));
13436 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13437 }
13438
13439 static void
13440 bkpt_probe_decode_location (struct breakpoint *b,
13441 const struct event_location *location,
13442 struct program_space *search_pspace,
13443 struct symtabs_and_lines *sals)
13444 {
13445 *sals = parse_probes (location, search_pspace, NULL);
13446 if (!sals->sals)
13447 error (_("probe not found"));
13448 }
13449
13450 /* The breakpoint_ops structure to be used in tracepoints. */
13451
13452 static void
13453 tracepoint_re_set (struct breakpoint *b)
13454 {
13455 breakpoint_re_set_default (b);
13456 }
13457
13458 static int
13459 tracepoint_breakpoint_hit (const struct bp_location *bl,
13460 struct address_space *aspace, CORE_ADDR bp_addr,
13461 const struct target_waitstatus *ws)
13462 {
13463 /* By definition, the inferior does not report stops at
13464 tracepoints. */
13465 return 0;
13466 }
13467
13468 static void
13469 tracepoint_print_one_detail (const struct breakpoint *self,
13470 struct ui_out *uiout)
13471 {
13472 struct tracepoint *tp = (struct tracepoint *) self;
13473 if (tp->static_trace_marker_id)
13474 {
13475 gdb_assert (self->type == bp_static_tracepoint);
13476
13477 uiout->text ("\tmarker id is ");
13478 uiout->field_string ("static-tracepoint-marker-string-id",
13479 tp->static_trace_marker_id);
13480 uiout->text ("\n");
13481 }
13482 }
13483
13484 static void
13485 tracepoint_print_mention (struct breakpoint *b)
13486 {
13487 if (current_uiout->is_mi_like_p ())
13488 return;
13489
13490 switch (b->type)
13491 {
13492 case bp_tracepoint:
13493 printf_filtered (_("Tracepoint"));
13494 printf_filtered (_(" %d"), b->number);
13495 break;
13496 case bp_fast_tracepoint:
13497 printf_filtered (_("Fast tracepoint"));
13498 printf_filtered (_(" %d"), b->number);
13499 break;
13500 case bp_static_tracepoint:
13501 printf_filtered (_("Static tracepoint"));
13502 printf_filtered (_(" %d"), b->number);
13503 break;
13504 default:
13505 internal_error (__FILE__, __LINE__,
13506 _("unhandled tracepoint type %d"), (int) b->type);
13507 }
13508
13509 say_where (b);
13510 }
13511
13512 static void
13513 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13514 {
13515 struct tracepoint *tp = (struct tracepoint *) self;
13516
13517 if (self->type == bp_fast_tracepoint)
13518 fprintf_unfiltered (fp, "ftrace");
13519 else if (self->type == bp_static_tracepoint)
13520 fprintf_unfiltered (fp, "strace");
13521 else if (self->type == bp_tracepoint)
13522 fprintf_unfiltered (fp, "trace");
13523 else
13524 internal_error (__FILE__, __LINE__,
13525 _("unhandled tracepoint type %d"), (int) self->type);
13526
13527 fprintf_unfiltered (fp, " %s",
13528 event_location_to_string (self->location));
13529 print_recreate_thread (self, fp);
13530
13531 if (tp->pass_count)
13532 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13533 }
13534
13535 static void
13536 tracepoint_create_sals_from_location (const struct event_location *location,
13537 struct linespec_result *canonical,
13538 enum bptype type_wanted)
13539 {
13540 create_sals_from_location_default (location, canonical, type_wanted);
13541 }
13542
13543 static void
13544 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13545 struct linespec_result *canonical,
13546 char *cond_string,
13547 char *extra_string,
13548 enum bptype type_wanted,
13549 enum bpdisp disposition,
13550 int thread,
13551 int task, int ignore_count,
13552 const struct breakpoint_ops *ops,
13553 int from_tty, int enabled,
13554 int internal, unsigned flags)
13555 {
13556 create_breakpoints_sal_default (gdbarch, canonical,
13557 cond_string, extra_string,
13558 type_wanted,
13559 disposition, thread, task,
13560 ignore_count, ops, from_tty,
13561 enabled, internal, flags);
13562 }
13563
13564 static void
13565 tracepoint_decode_location (struct breakpoint *b,
13566 const struct event_location *location,
13567 struct program_space *search_pspace,
13568 struct symtabs_and_lines *sals)
13569 {
13570 decode_location_default (b, location, search_pspace, sals);
13571 }
13572
13573 struct breakpoint_ops tracepoint_breakpoint_ops;
13574
13575 /* The breakpoint_ops structure to be use on tracepoints placed in a
13576 static probe. */
13577
13578 static void
13579 tracepoint_probe_create_sals_from_location
13580 (const struct event_location *location,
13581 struct linespec_result *canonical,
13582 enum bptype type_wanted)
13583 {
13584 /* We use the same method for breakpoint on probes. */
13585 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
13586 }
13587
13588 static void
13589 tracepoint_probe_decode_location (struct breakpoint *b,
13590 const struct event_location *location,
13591 struct program_space *search_pspace,
13592 struct symtabs_and_lines *sals)
13593 {
13594 /* We use the same method for breakpoint on probes. */
13595 bkpt_probe_decode_location (b, location, search_pspace, sals);
13596 }
13597
13598 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13599
13600 /* Dprintf breakpoint_ops methods. */
13601
13602 static void
13603 dprintf_re_set (struct breakpoint *b)
13604 {
13605 breakpoint_re_set_default (b);
13606
13607 /* extra_string should never be non-NULL for dprintf. */
13608 gdb_assert (b->extra_string != NULL);
13609
13610 /* 1 - connect to target 1, that can run breakpoint commands.
13611 2 - create a dprintf, which resolves fine.
13612 3 - disconnect from target 1
13613 4 - connect to target 2, that can NOT run breakpoint commands.
13614
13615 After steps #3/#4, you'll want the dprintf command list to
13616 be updated, because target 1 and 2 may well return different
13617 answers for target_can_run_breakpoint_commands().
13618 Given absence of finer grained resetting, we get to do
13619 it all the time. */
13620 if (b->extra_string != NULL)
13621 update_dprintf_command_list (b);
13622 }
13623
13624 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13625
13626 static void
13627 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13628 {
13629 fprintf_unfiltered (fp, "dprintf %s,%s",
13630 event_location_to_string (tp->location),
13631 tp->extra_string);
13632 print_recreate_thread (tp, fp);
13633 }
13634
13635 /* Implement the "after_condition_true" breakpoint_ops method for
13636 dprintf.
13637
13638 dprintf's are implemented with regular commands in their command
13639 list, but we run the commands here instead of before presenting the
13640 stop to the user, as dprintf's don't actually cause a stop. This
13641 also makes it so that the commands of multiple dprintfs at the same
13642 address are all handled. */
13643
13644 static void
13645 dprintf_after_condition_true (struct bpstats *bs)
13646 {
13647 struct cleanup *old_chain;
13648 struct bpstats tmp_bs = { NULL };
13649 struct bpstats *tmp_bs_p = &tmp_bs;
13650
13651 /* dprintf's never cause a stop. This wasn't set in the
13652 check_status hook instead because that would make the dprintf's
13653 condition not be evaluated. */
13654 bs->stop = 0;
13655
13656 /* Run the command list here. Take ownership of it instead of
13657 copying. We never want these commands to run later in
13658 bpstat_do_actions, if a breakpoint that causes a stop happens to
13659 be set at same address as this dprintf, or even if running the
13660 commands here throws. */
13661 tmp_bs.commands = bs->commands;
13662 bs->commands = NULL;
13663 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13664
13665 bpstat_do_actions_1 (&tmp_bs_p);
13666
13667 /* 'tmp_bs.commands' will usually be NULL by now, but
13668 bpstat_do_actions_1 may return early without processing the whole
13669 list. */
13670 do_cleanups (old_chain);
13671 }
13672
13673 /* The breakpoint_ops structure to be used on static tracepoints with
13674 markers (`-m'). */
13675
13676 static void
13677 strace_marker_create_sals_from_location (const struct event_location *location,
13678 struct linespec_result *canonical,
13679 enum bptype type_wanted)
13680 {
13681 struct linespec_sals lsal;
13682 const char *arg_start, *arg;
13683 char *str;
13684 struct cleanup *cleanup;
13685
13686 arg = arg_start = get_linespec_location (location);
13687 lsal.sals = decode_static_tracepoint_spec (&arg);
13688
13689 str = savestring (arg_start, arg - arg_start);
13690 cleanup = make_cleanup (xfree, str);
13691 canonical->location = new_linespec_location (&str);
13692 do_cleanups (cleanup);
13693
13694 lsal.canonical = xstrdup (event_location_to_string (canonical->location));
13695 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13696 }
13697
13698 static void
13699 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13700 struct linespec_result *canonical,
13701 char *cond_string,
13702 char *extra_string,
13703 enum bptype type_wanted,
13704 enum bpdisp disposition,
13705 int thread,
13706 int task, int ignore_count,
13707 const struct breakpoint_ops *ops,
13708 int from_tty, int enabled,
13709 int internal, unsigned flags)
13710 {
13711 int i;
13712 struct linespec_sals *lsal = VEC_index (linespec_sals,
13713 canonical->sals, 0);
13714
13715 /* If the user is creating a static tracepoint by marker id
13716 (strace -m MARKER_ID), then store the sals index, so that
13717 breakpoint_re_set can try to match up which of the newly
13718 found markers corresponds to this one, and, don't try to
13719 expand multiple locations for each sal, given than SALS
13720 already should contain all sals for MARKER_ID. */
13721
13722 for (i = 0; i < lsal->sals.nelts; ++i)
13723 {
13724 struct symtabs_and_lines expanded;
13725 struct tracepoint *tp;
13726 struct cleanup *old_chain;
13727 struct event_location *location;
13728
13729 expanded.nelts = 1;
13730 expanded.sals = &lsal->sals.sals[i];
13731
13732 location = copy_event_location (canonical->location);
13733 old_chain = make_cleanup_delete_event_location (location);
13734
13735 tp = new tracepoint ();
13736 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13737 location, NULL,
13738 cond_string, extra_string,
13739 type_wanted, disposition,
13740 thread, task, ignore_count, ops,
13741 from_tty, enabled, internal, flags,
13742 canonical->special_display);
13743 /* Given that its possible to have multiple markers with
13744 the same string id, if the user is creating a static
13745 tracepoint by marker id ("strace -m MARKER_ID"), then
13746 store the sals index, so that breakpoint_re_set can
13747 try to match up which of the newly found markers
13748 corresponds to this one */
13749 tp->static_trace_marker_id_idx = i;
13750
13751 install_breakpoint (internal, &tp->base, 0);
13752
13753 discard_cleanups (old_chain);
13754 }
13755 }
13756
13757 static void
13758 strace_marker_decode_location (struct breakpoint *b,
13759 const struct event_location *location,
13760 struct program_space *search_pspace,
13761 struct symtabs_and_lines *sals)
13762 {
13763 struct tracepoint *tp = (struct tracepoint *) b;
13764 const char *s = get_linespec_location (location);
13765
13766 *sals = decode_static_tracepoint_spec (&s);
13767 if (sals->nelts > tp->static_trace_marker_id_idx)
13768 {
13769 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13770 sals->nelts = 1;
13771 }
13772 else
13773 error (_("marker %s not found"), tp->static_trace_marker_id);
13774 }
13775
13776 static struct breakpoint_ops strace_marker_breakpoint_ops;
13777
13778 static int
13779 strace_marker_p (struct breakpoint *b)
13780 {
13781 return b->ops == &strace_marker_breakpoint_ops;
13782 }
13783
13784 /* Delete a breakpoint and clean up all traces of it in the data
13785 structures. */
13786
13787 void
13788 delete_breakpoint (struct breakpoint *bpt)
13789 {
13790 struct breakpoint *b;
13791
13792 gdb_assert (bpt != NULL);
13793
13794 /* Has this bp already been deleted? This can happen because
13795 multiple lists can hold pointers to bp's. bpstat lists are
13796 especial culprits.
13797
13798 One example of this happening is a watchpoint's scope bp. When
13799 the scope bp triggers, we notice that the watchpoint is out of
13800 scope, and delete it. We also delete its scope bp. But the
13801 scope bp is marked "auto-deleting", and is already on a bpstat.
13802 That bpstat is then checked for auto-deleting bp's, which are
13803 deleted.
13804
13805 A real solution to this problem might involve reference counts in
13806 bp's, and/or giving them pointers back to their referencing
13807 bpstat's, and teaching delete_breakpoint to only free a bp's
13808 storage when no more references were extent. A cheaper bandaid
13809 was chosen. */
13810 if (bpt->type == bp_none)
13811 return;
13812
13813 /* At least avoid this stale reference until the reference counting
13814 of breakpoints gets resolved. */
13815 if (bpt->related_breakpoint != bpt)
13816 {
13817 struct breakpoint *related;
13818 struct watchpoint *w;
13819
13820 if (bpt->type == bp_watchpoint_scope)
13821 w = (struct watchpoint *) bpt->related_breakpoint;
13822 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13823 w = (struct watchpoint *) bpt;
13824 else
13825 w = NULL;
13826 if (w != NULL)
13827 watchpoint_del_at_next_stop (w);
13828
13829 /* Unlink bpt from the bpt->related_breakpoint ring. */
13830 for (related = bpt; related->related_breakpoint != bpt;
13831 related = related->related_breakpoint);
13832 related->related_breakpoint = bpt->related_breakpoint;
13833 bpt->related_breakpoint = bpt;
13834 }
13835
13836 /* watch_command_1 creates a watchpoint but only sets its number if
13837 update_watchpoint succeeds in creating its bp_locations. If there's
13838 a problem in that process, we'll be asked to delete the half-created
13839 watchpoint. In that case, don't announce the deletion. */
13840 if (bpt->number)
13841 observer_notify_breakpoint_deleted (bpt);
13842
13843 if (breakpoint_chain == bpt)
13844 breakpoint_chain = bpt->next;
13845
13846 ALL_BREAKPOINTS (b)
13847 if (b->next == bpt)
13848 {
13849 b->next = bpt->next;
13850 break;
13851 }
13852
13853 /* Be sure no bpstat's are pointing at the breakpoint after it's
13854 been freed. */
13855 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13856 in all threads for now. Note that we cannot just remove bpstats
13857 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13858 commands are associated with the bpstat; if we remove it here,
13859 then the later call to bpstat_do_actions (&stop_bpstat); in
13860 event-top.c won't do anything, and temporary breakpoints with
13861 commands won't work. */
13862
13863 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13864
13865 /* Now that breakpoint is removed from breakpoint list, update the
13866 global location list. This will remove locations that used to
13867 belong to this breakpoint. Do this before freeing the breakpoint
13868 itself, since remove_breakpoint looks at location's owner. It
13869 might be better design to have location completely
13870 self-contained, but it's not the case now. */
13871 update_global_location_list (UGLL_DONT_INSERT);
13872
13873 bpt->ops->dtor (bpt);
13874 /* On the chance that someone will soon try again to delete this
13875 same bp, we mark it as deleted before freeing its storage. */
13876 bpt->type = bp_none;
13877 delete bpt;
13878 }
13879
13880 static void
13881 do_delete_breakpoint_cleanup (void *b)
13882 {
13883 delete_breakpoint ((struct breakpoint *) b);
13884 }
13885
13886 struct cleanup *
13887 make_cleanup_delete_breakpoint (struct breakpoint *b)
13888 {
13889 return make_cleanup (do_delete_breakpoint_cleanup, b);
13890 }
13891
13892 /* Iterator function to call a user-provided callback function once
13893 for each of B and its related breakpoints. */
13894
13895 static void
13896 iterate_over_related_breakpoints (struct breakpoint *b,
13897 void (*function) (struct breakpoint *,
13898 void *),
13899 void *data)
13900 {
13901 struct breakpoint *related;
13902
13903 related = b;
13904 do
13905 {
13906 struct breakpoint *next;
13907
13908 /* FUNCTION may delete RELATED. */
13909 next = related->related_breakpoint;
13910
13911 if (next == related)
13912 {
13913 /* RELATED is the last ring entry. */
13914 function (related, data);
13915
13916 /* FUNCTION may have deleted it, so we'd never reach back to
13917 B. There's nothing left to do anyway, so just break
13918 out. */
13919 break;
13920 }
13921 else
13922 function (related, data);
13923
13924 related = next;
13925 }
13926 while (related != b);
13927 }
13928
13929 static void
13930 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13931 {
13932 delete_breakpoint (b);
13933 }
13934
13935 /* A callback for map_breakpoint_numbers that calls
13936 delete_breakpoint. */
13937
13938 static void
13939 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13940 {
13941 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13942 }
13943
13944 void
13945 delete_command (char *arg, int from_tty)
13946 {
13947 struct breakpoint *b, *b_tmp;
13948
13949 dont_repeat ();
13950
13951 if (arg == 0)
13952 {
13953 int breaks_to_delete = 0;
13954
13955 /* Delete all breakpoints if no argument. Do not delete
13956 internal breakpoints, these have to be deleted with an
13957 explicit breakpoint number argument. */
13958 ALL_BREAKPOINTS (b)
13959 if (user_breakpoint_p (b))
13960 {
13961 breaks_to_delete = 1;
13962 break;
13963 }
13964
13965 /* Ask user only if there are some breakpoints to delete. */
13966 if (!from_tty
13967 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13968 {
13969 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13970 if (user_breakpoint_p (b))
13971 delete_breakpoint (b);
13972 }
13973 }
13974 else
13975 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13976 }
13977
13978 /* Return true if all locations of B bound to PSPACE are pending. If
13979 PSPACE is NULL, all locations of all program spaces are
13980 considered. */
13981
13982 static int
13983 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13984 {
13985 struct bp_location *loc;
13986
13987 for (loc = b->loc; loc != NULL; loc = loc->next)
13988 if ((pspace == NULL
13989 || loc->pspace == pspace)
13990 && !loc->shlib_disabled
13991 && !loc->pspace->executing_startup)
13992 return 0;
13993 return 1;
13994 }
13995
13996 /* Subroutine of update_breakpoint_locations to simplify it.
13997 Return non-zero if multiple fns in list LOC have the same name.
13998 Null names are ignored. */
13999
14000 static int
14001 ambiguous_names_p (struct bp_location *loc)
14002 {
14003 struct bp_location *l;
14004 htab_t htab = htab_create_alloc (13, htab_hash_string,
14005 (int (*) (const void *,
14006 const void *)) streq,
14007 NULL, xcalloc, xfree);
14008
14009 for (l = loc; l != NULL; l = l->next)
14010 {
14011 const char **slot;
14012 const char *name = l->function_name;
14013
14014 /* Allow for some names to be NULL, ignore them. */
14015 if (name == NULL)
14016 continue;
14017
14018 slot = (const char **) htab_find_slot (htab, (const void *) name,
14019 INSERT);
14020 /* NOTE: We can assume slot != NULL here because xcalloc never
14021 returns NULL. */
14022 if (*slot != NULL)
14023 {
14024 htab_delete (htab);
14025 return 1;
14026 }
14027 *slot = name;
14028 }
14029
14030 htab_delete (htab);
14031 return 0;
14032 }
14033
14034 /* When symbols change, it probably means the sources changed as well,
14035 and it might mean the static tracepoint markers are no longer at
14036 the same address or line numbers they used to be at last we
14037 checked. Losing your static tracepoints whenever you rebuild is
14038 undesirable. This function tries to resync/rematch gdb static
14039 tracepoints with the markers on the target, for static tracepoints
14040 that have not been set by marker id. Static tracepoint that have
14041 been set by marker id are reset by marker id in breakpoint_re_set.
14042 The heuristic is:
14043
14044 1) For a tracepoint set at a specific address, look for a marker at
14045 the old PC. If one is found there, assume to be the same marker.
14046 If the name / string id of the marker found is different from the
14047 previous known name, assume that means the user renamed the marker
14048 in the sources, and output a warning.
14049
14050 2) For a tracepoint set at a given line number, look for a marker
14051 at the new address of the old line number. If one is found there,
14052 assume to be the same marker. If the name / string id of the
14053 marker found is different from the previous known name, assume that
14054 means the user renamed the marker in the sources, and output a
14055 warning.
14056
14057 3) If a marker is no longer found at the same address or line, it
14058 may mean the marker no longer exists. But it may also just mean
14059 the code changed a bit. Maybe the user added a few lines of code
14060 that made the marker move up or down (in line number terms). Ask
14061 the target for info about the marker with the string id as we knew
14062 it. If found, update line number and address in the matching
14063 static tracepoint. This will get confused if there's more than one
14064 marker with the same ID (possible in UST, although unadvised
14065 precisely because it confuses tools). */
14066
14067 static struct symtab_and_line
14068 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
14069 {
14070 struct tracepoint *tp = (struct tracepoint *) b;
14071 struct static_tracepoint_marker marker;
14072 CORE_ADDR pc;
14073
14074 pc = sal.pc;
14075 if (sal.line)
14076 find_line_pc (sal.symtab, sal.line, &pc);
14077
14078 if (target_static_tracepoint_marker_at (pc, &marker))
14079 {
14080 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
14081 warning (_("static tracepoint %d changed probed marker from %s to %s"),
14082 b->number,
14083 tp->static_trace_marker_id, marker.str_id);
14084
14085 xfree (tp->static_trace_marker_id);
14086 tp->static_trace_marker_id = xstrdup (marker.str_id);
14087 release_static_tracepoint_marker (&marker);
14088
14089 return sal;
14090 }
14091
14092 /* Old marker wasn't found on target at lineno. Try looking it up
14093 by string ID. */
14094 if (!sal.explicit_pc
14095 && sal.line != 0
14096 && sal.symtab != NULL
14097 && tp->static_trace_marker_id != NULL)
14098 {
14099 VEC(static_tracepoint_marker_p) *markers;
14100
14101 markers
14102 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
14103
14104 if (!VEC_empty(static_tracepoint_marker_p, markers))
14105 {
14106 struct symtab_and_line sal2;
14107 struct symbol *sym;
14108 struct static_tracepoint_marker *tpmarker;
14109 struct ui_out *uiout = current_uiout;
14110 struct explicit_location explicit_loc;
14111
14112 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
14113
14114 xfree (tp->static_trace_marker_id);
14115 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
14116
14117 warning (_("marker for static tracepoint %d (%s) not "
14118 "found at previous line number"),
14119 b->number, tp->static_trace_marker_id);
14120
14121 init_sal (&sal2);
14122
14123 sal2.pc = tpmarker->address;
14124
14125 sal2 = find_pc_line (tpmarker->address, 0);
14126 sym = find_pc_sect_function (tpmarker->address, NULL);
14127 uiout->text ("Now in ");
14128 if (sym)
14129 {
14130 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
14131 uiout->text (" at ");
14132 }
14133 uiout->field_string ("file",
14134 symtab_to_filename_for_display (sal2.symtab));
14135 uiout->text (":");
14136
14137 if (uiout->is_mi_like_p ())
14138 {
14139 const char *fullname = symtab_to_fullname (sal2.symtab);
14140
14141 uiout->field_string ("fullname", fullname);
14142 }
14143
14144 uiout->field_int ("line", sal2.line);
14145 uiout->text ("\n");
14146
14147 b->loc->line_number = sal2.line;
14148 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
14149
14150 delete_event_location (b->location);
14151 initialize_explicit_location (&explicit_loc);
14152 explicit_loc.source_filename
14153 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
14154 explicit_loc.line_offset.offset = b->loc->line_number;
14155 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
14156 b->location = new_explicit_location (&explicit_loc);
14157
14158 /* Might be nice to check if function changed, and warn if
14159 so. */
14160
14161 release_static_tracepoint_marker (tpmarker);
14162 }
14163 }
14164 return sal;
14165 }
14166
14167 /* Returns 1 iff locations A and B are sufficiently same that
14168 we don't need to report breakpoint as changed. */
14169
14170 static int
14171 locations_are_equal (struct bp_location *a, struct bp_location *b)
14172 {
14173 while (a && b)
14174 {
14175 if (a->address != b->address)
14176 return 0;
14177
14178 if (a->shlib_disabled != b->shlib_disabled)
14179 return 0;
14180
14181 if (a->enabled != b->enabled)
14182 return 0;
14183
14184 a = a->next;
14185 b = b->next;
14186 }
14187
14188 if ((a == NULL) != (b == NULL))
14189 return 0;
14190
14191 return 1;
14192 }
14193
14194 /* Split all locations of B that are bound to PSPACE out of B's
14195 location list to a separate list and return that list's head. If
14196 PSPACE is NULL, hoist out all locations of B. */
14197
14198 static struct bp_location *
14199 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
14200 {
14201 struct bp_location head;
14202 struct bp_location *i = b->loc;
14203 struct bp_location **i_link = &b->loc;
14204 struct bp_location *hoisted = &head;
14205
14206 if (pspace == NULL)
14207 {
14208 i = b->loc;
14209 b->loc = NULL;
14210 return i;
14211 }
14212
14213 head.next = NULL;
14214
14215 while (i != NULL)
14216 {
14217 if (i->pspace == pspace)
14218 {
14219 *i_link = i->next;
14220 i->next = NULL;
14221 hoisted->next = i;
14222 hoisted = i;
14223 }
14224 else
14225 i_link = &i->next;
14226 i = *i_link;
14227 }
14228
14229 return head.next;
14230 }
14231
14232 /* Create new breakpoint locations for B (a hardware or software
14233 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
14234 zero, then B is a ranged breakpoint. Only recreates locations for
14235 FILTER_PSPACE. Locations of other program spaces are left
14236 untouched. */
14237
14238 void
14239 update_breakpoint_locations (struct breakpoint *b,
14240 struct program_space *filter_pspace,
14241 struct symtabs_and_lines sals,
14242 struct symtabs_and_lines sals_end)
14243 {
14244 int i;
14245 struct bp_location *existing_locations;
14246
14247 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14248 {
14249 /* Ranged breakpoints have only one start location and one end
14250 location. */
14251 b->enable_state = bp_disabled;
14252 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14253 "multiple locations found\n"),
14254 b->number);
14255 return;
14256 }
14257
14258 /* If there's no new locations, and all existing locations are
14259 pending, don't do anything. This optimizes the common case where
14260 all locations are in the same shared library, that was unloaded.
14261 We'd like to retain the location, so that when the library is
14262 loaded again, we don't loose the enabled/disabled status of the
14263 individual locations. */
14264 if (all_locations_are_pending (b, filter_pspace) && sals.nelts == 0)
14265 return;
14266
14267 existing_locations = hoist_existing_locations (b, filter_pspace);
14268
14269 for (i = 0; i < sals.nelts; ++i)
14270 {
14271 struct bp_location *new_loc;
14272
14273 switch_to_program_space_and_thread (sals.sals[i].pspace);
14274
14275 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14276
14277 /* Reparse conditions, they might contain references to the
14278 old symtab. */
14279 if (b->cond_string != NULL)
14280 {
14281 const char *s;
14282
14283 s = b->cond_string;
14284 TRY
14285 {
14286 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14287 block_for_pc (sals.sals[i].pc),
14288 0);
14289 }
14290 CATCH (e, RETURN_MASK_ERROR)
14291 {
14292 warning (_("failed to reevaluate condition "
14293 "for breakpoint %d: %s"),
14294 b->number, e.message);
14295 new_loc->enabled = 0;
14296 }
14297 END_CATCH
14298 }
14299
14300 if (sals_end.nelts)
14301 {
14302 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14303
14304 new_loc->length = end - sals.sals[0].pc + 1;
14305 }
14306 }
14307
14308 /* If possible, carry over 'disable' status from existing
14309 breakpoints. */
14310 {
14311 struct bp_location *e = existing_locations;
14312 /* If there are multiple breakpoints with the same function name,
14313 e.g. for inline functions, comparing function names won't work.
14314 Instead compare pc addresses; this is just a heuristic as things
14315 may have moved, but in practice it gives the correct answer
14316 often enough until a better solution is found. */
14317 int have_ambiguous_names = ambiguous_names_p (b->loc);
14318
14319 for (; e; e = e->next)
14320 {
14321 if (!e->enabled && e->function_name)
14322 {
14323 struct bp_location *l = b->loc;
14324 if (have_ambiguous_names)
14325 {
14326 for (; l; l = l->next)
14327 if (breakpoint_locations_match (e, l))
14328 {
14329 l->enabled = 0;
14330 break;
14331 }
14332 }
14333 else
14334 {
14335 for (; l; l = l->next)
14336 if (l->function_name
14337 && strcmp (e->function_name, l->function_name) == 0)
14338 {
14339 l->enabled = 0;
14340 break;
14341 }
14342 }
14343 }
14344 }
14345 }
14346
14347 if (!locations_are_equal (existing_locations, b->loc))
14348 observer_notify_breakpoint_modified (b);
14349 }
14350
14351 /* Find the SaL locations corresponding to the given LOCATION.
14352 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14353
14354 static struct symtabs_and_lines
14355 location_to_sals (struct breakpoint *b, struct event_location *location,
14356 struct program_space *search_pspace, int *found)
14357 {
14358 struct symtabs_and_lines sals = {0};
14359 struct gdb_exception exception = exception_none;
14360
14361 gdb_assert (b->ops != NULL);
14362
14363 TRY
14364 {
14365 b->ops->decode_location (b, location, search_pspace, &sals);
14366 }
14367 CATCH (e, RETURN_MASK_ERROR)
14368 {
14369 int not_found_and_ok = 0;
14370
14371 exception = e;
14372
14373 /* For pending breakpoints, it's expected that parsing will
14374 fail until the right shared library is loaded. User has
14375 already told to create pending breakpoints and don't need
14376 extra messages. If breakpoint is in bp_shlib_disabled
14377 state, then user already saw the message about that
14378 breakpoint being disabled, and don't want to see more
14379 errors. */
14380 if (e.error == NOT_FOUND_ERROR
14381 && (b->condition_not_parsed
14382 || (b->loc != NULL
14383 && search_pspace != NULL
14384 && b->loc->pspace != search_pspace)
14385 || (b->loc && b->loc->shlib_disabled)
14386 || (b->loc && b->loc->pspace->executing_startup)
14387 || b->enable_state == bp_disabled))
14388 not_found_and_ok = 1;
14389
14390 if (!not_found_and_ok)
14391 {
14392 /* We surely don't want to warn about the same breakpoint
14393 10 times. One solution, implemented here, is disable
14394 the breakpoint on error. Another solution would be to
14395 have separate 'warning emitted' flag. Since this
14396 happens only when a binary has changed, I don't know
14397 which approach is better. */
14398 b->enable_state = bp_disabled;
14399 throw_exception (e);
14400 }
14401 }
14402 END_CATCH
14403
14404 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
14405 {
14406 int i;
14407
14408 for (i = 0; i < sals.nelts; ++i)
14409 resolve_sal_pc (&sals.sals[i]);
14410 if (b->condition_not_parsed && b->extra_string != NULL)
14411 {
14412 char *cond_string, *extra_string;
14413 int thread, task;
14414
14415 find_condition_and_thread (b->extra_string, sals.sals[0].pc,
14416 &cond_string, &thread, &task,
14417 &extra_string);
14418 gdb_assert (b->cond_string == NULL);
14419 if (cond_string)
14420 b->cond_string = cond_string;
14421 b->thread = thread;
14422 b->task = task;
14423 if (extra_string)
14424 {
14425 xfree (b->extra_string);
14426 b->extra_string = extra_string;
14427 }
14428 b->condition_not_parsed = 0;
14429 }
14430
14431 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14432 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14433
14434 *found = 1;
14435 }
14436 else
14437 *found = 0;
14438
14439 return sals;
14440 }
14441
14442 /* The default re_set method, for typical hardware or software
14443 breakpoints. Reevaluate the breakpoint and recreate its
14444 locations. */
14445
14446 static void
14447 breakpoint_re_set_default (struct breakpoint *b)
14448 {
14449 int found;
14450 struct symtabs_and_lines sals, sals_end;
14451 struct symtabs_and_lines expanded = {0};
14452 struct symtabs_and_lines expanded_end = {0};
14453 struct program_space *filter_pspace = current_program_space;
14454
14455 sals = location_to_sals (b, b->location, filter_pspace, &found);
14456 if (found)
14457 {
14458 make_cleanup (xfree, sals.sals);
14459 expanded = sals;
14460 }
14461
14462 if (b->location_range_end != NULL)
14463 {
14464 sals_end = location_to_sals (b, b->location_range_end,
14465 filter_pspace, &found);
14466 if (found)
14467 {
14468 make_cleanup (xfree, sals_end.sals);
14469 expanded_end = sals_end;
14470 }
14471 }
14472
14473 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
14474 }
14475
14476 /* Default method for creating SALs from an address string. It basically
14477 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14478
14479 static void
14480 create_sals_from_location_default (const struct event_location *location,
14481 struct linespec_result *canonical,
14482 enum bptype type_wanted)
14483 {
14484 parse_breakpoint_sals (location, canonical);
14485 }
14486
14487 /* Call create_breakpoints_sal for the given arguments. This is the default
14488 function for the `create_breakpoints_sal' method of
14489 breakpoint_ops. */
14490
14491 static void
14492 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14493 struct linespec_result *canonical,
14494 char *cond_string,
14495 char *extra_string,
14496 enum bptype type_wanted,
14497 enum bpdisp disposition,
14498 int thread,
14499 int task, int ignore_count,
14500 const struct breakpoint_ops *ops,
14501 int from_tty, int enabled,
14502 int internal, unsigned flags)
14503 {
14504 create_breakpoints_sal (gdbarch, canonical, cond_string,
14505 extra_string,
14506 type_wanted, disposition,
14507 thread, task, ignore_count, ops, from_tty,
14508 enabled, internal, flags);
14509 }
14510
14511 /* Decode the line represented by S by calling decode_line_full. This is the
14512 default function for the `decode_location' method of breakpoint_ops. */
14513
14514 static void
14515 decode_location_default (struct breakpoint *b,
14516 const struct event_location *location,
14517 struct program_space *search_pspace,
14518 struct symtabs_and_lines *sals)
14519 {
14520 struct linespec_result canonical;
14521
14522 init_linespec_result (&canonical);
14523 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
14524 (struct symtab *) NULL, 0,
14525 &canonical, multiple_symbols_all,
14526 b->filter);
14527
14528 /* We should get 0 or 1 resulting SALs. */
14529 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14530
14531 if (VEC_length (linespec_sals, canonical.sals) > 0)
14532 {
14533 struct linespec_sals *lsal;
14534
14535 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14536 *sals = lsal->sals;
14537 /* Arrange it so the destructor does not free the
14538 contents. */
14539 lsal->sals.sals = NULL;
14540 }
14541
14542 destroy_linespec_result (&canonical);
14543 }
14544
14545 /* Prepare the global context for a re-set of breakpoint B. */
14546
14547 static struct cleanup *
14548 prepare_re_set_context (struct breakpoint *b)
14549 {
14550 input_radix = b->input_radix;
14551 set_language (b->language);
14552
14553 return make_cleanup (null_cleanup, NULL);
14554 }
14555
14556 /* Reset a breakpoint given it's struct breakpoint * BINT.
14557 The value we return ends up being the return value from catch_errors.
14558 Unused in this case. */
14559
14560 static int
14561 breakpoint_re_set_one (void *bint)
14562 {
14563 /* Get past catch_errs. */
14564 struct breakpoint *b = (struct breakpoint *) bint;
14565 struct cleanup *cleanups;
14566
14567 cleanups = prepare_re_set_context (b);
14568 b->ops->re_set (b);
14569 do_cleanups (cleanups);
14570 return 0;
14571 }
14572
14573 /* Re-set breakpoint locations for the current program space.
14574 Locations bound to other program spaces are left untouched. */
14575
14576 void
14577 breakpoint_re_set (void)
14578 {
14579 struct breakpoint *b, *b_tmp;
14580 enum language save_language;
14581 int save_input_radix;
14582 struct cleanup *old_chain;
14583
14584 save_language = current_language->la_language;
14585 save_input_radix = input_radix;
14586 old_chain = save_current_space_and_thread ();
14587
14588 /* Note: we must not try to insert locations until after all
14589 breakpoints have been re-set. Otherwise, e.g., when re-setting
14590 breakpoint 1, we'd insert the locations of breakpoint 2, which
14591 hadn't been re-set yet, and thus may have stale locations. */
14592
14593 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14594 {
14595 /* Format possible error msg. */
14596 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14597 b->number);
14598 struct cleanup *cleanups = make_cleanup (xfree, message);
14599 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14600 do_cleanups (cleanups);
14601 }
14602 set_language (save_language);
14603 input_radix = save_input_radix;
14604
14605 jit_breakpoint_re_set ();
14606
14607 do_cleanups (old_chain);
14608
14609 create_overlay_event_breakpoint ();
14610 create_longjmp_master_breakpoint ();
14611 create_std_terminate_master_breakpoint ();
14612 create_exception_master_breakpoint ();
14613
14614 /* Now we can insert. */
14615 update_global_location_list (UGLL_MAY_INSERT);
14616 }
14617 \f
14618 /* Reset the thread number of this breakpoint:
14619
14620 - If the breakpoint is for all threads, leave it as-is.
14621 - Else, reset it to the current thread for inferior_ptid. */
14622 void
14623 breakpoint_re_set_thread (struct breakpoint *b)
14624 {
14625 if (b->thread != -1)
14626 {
14627 if (in_thread_list (inferior_ptid))
14628 b->thread = ptid_to_global_thread_id (inferior_ptid);
14629
14630 /* We're being called after following a fork. The new fork is
14631 selected as current, and unless this was a vfork will have a
14632 different program space from the original thread. Reset that
14633 as well. */
14634 b->loc->pspace = current_program_space;
14635 }
14636 }
14637
14638 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14639 If from_tty is nonzero, it prints a message to that effect,
14640 which ends with a period (no newline). */
14641
14642 void
14643 set_ignore_count (int bptnum, int count, int from_tty)
14644 {
14645 struct breakpoint *b;
14646
14647 if (count < 0)
14648 count = 0;
14649
14650 ALL_BREAKPOINTS (b)
14651 if (b->number == bptnum)
14652 {
14653 if (is_tracepoint (b))
14654 {
14655 if (from_tty && count != 0)
14656 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14657 bptnum);
14658 return;
14659 }
14660
14661 b->ignore_count = count;
14662 if (from_tty)
14663 {
14664 if (count == 0)
14665 printf_filtered (_("Will stop next time "
14666 "breakpoint %d is reached."),
14667 bptnum);
14668 else if (count == 1)
14669 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14670 bptnum);
14671 else
14672 printf_filtered (_("Will ignore next %d "
14673 "crossings of breakpoint %d."),
14674 count, bptnum);
14675 }
14676 observer_notify_breakpoint_modified (b);
14677 return;
14678 }
14679
14680 error (_("No breakpoint number %d."), bptnum);
14681 }
14682
14683 /* Command to set ignore-count of breakpoint N to COUNT. */
14684
14685 static void
14686 ignore_command (char *args, int from_tty)
14687 {
14688 char *p = args;
14689 int num;
14690
14691 if (p == 0)
14692 error_no_arg (_("a breakpoint number"));
14693
14694 num = get_number (&p);
14695 if (num == 0)
14696 error (_("bad breakpoint number: '%s'"), args);
14697 if (*p == 0)
14698 error (_("Second argument (specified ignore-count) is missing."));
14699
14700 set_ignore_count (num,
14701 longest_to_int (value_as_long (parse_and_eval (p))),
14702 from_tty);
14703 if (from_tty)
14704 printf_filtered ("\n");
14705 }
14706 \f
14707 /* Call FUNCTION on each of the breakpoints
14708 whose numbers are given in ARGS. */
14709
14710 static void
14711 map_breakpoint_numbers (const char *args,
14712 void (*function) (struct breakpoint *,
14713 void *),
14714 void *data)
14715 {
14716 int num;
14717 struct breakpoint *b, *tmp;
14718
14719 if (args == 0 || *args == '\0')
14720 error_no_arg (_("one or more breakpoint numbers"));
14721
14722 number_or_range_parser parser (args);
14723
14724 while (!parser.finished ())
14725 {
14726 const char *p = parser.cur_tok ();
14727 bool match = false;
14728
14729 num = parser.get_number ();
14730 if (num == 0)
14731 {
14732 warning (_("bad breakpoint number at or near '%s'"), p);
14733 }
14734 else
14735 {
14736 ALL_BREAKPOINTS_SAFE (b, tmp)
14737 if (b->number == num)
14738 {
14739 match = true;
14740 function (b, data);
14741 break;
14742 }
14743 if (!match)
14744 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14745 }
14746 }
14747 }
14748
14749 static struct bp_location *
14750 find_location_by_number (char *number)
14751 {
14752 char *dot = strchr (number, '.');
14753 char *p1;
14754 int bp_num;
14755 int loc_num;
14756 struct breakpoint *b;
14757 struct bp_location *loc;
14758
14759 *dot = '\0';
14760
14761 p1 = number;
14762 bp_num = get_number (&p1);
14763 if (bp_num == 0)
14764 error (_("Bad breakpoint number '%s'"), number);
14765
14766 ALL_BREAKPOINTS (b)
14767 if (b->number == bp_num)
14768 {
14769 break;
14770 }
14771
14772 if (!b || b->number != bp_num)
14773 error (_("Bad breakpoint number '%s'"), number);
14774
14775 p1 = dot+1;
14776 loc_num = get_number (&p1);
14777 if (loc_num == 0)
14778 error (_("Bad breakpoint location number '%s'"), number);
14779
14780 --loc_num;
14781 loc = b->loc;
14782 for (;loc_num && loc; --loc_num, loc = loc->next)
14783 ;
14784 if (!loc)
14785 error (_("Bad breakpoint location number '%s'"), dot+1);
14786
14787 return loc;
14788 }
14789
14790
14791 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14792 If from_tty is nonzero, it prints a message to that effect,
14793 which ends with a period (no newline). */
14794
14795 void
14796 disable_breakpoint (struct breakpoint *bpt)
14797 {
14798 /* Never disable a watchpoint scope breakpoint; we want to
14799 hit them when we leave scope so we can delete both the
14800 watchpoint and its scope breakpoint at that time. */
14801 if (bpt->type == bp_watchpoint_scope)
14802 return;
14803
14804 bpt->enable_state = bp_disabled;
14805
14806 /* Mark breakpoint locations modified. */
14807 mark_breakpoint_modified (bpt);
14808
14809 if (target_supports_enable_disable_tracepoint ()
14810 && current_trace_status ()->running && is_tracepoint (bpt))
14811 {
14812 struct bp_location *location;
14813
14814 for (location = bpt->loc; location; location = location->next)
14815 target_disable_tracepoint (location);
14816 }
14817
14818 update_global_location_list (UGLL_DONT_INSERT);
14819
14820 observer_notify_breakpoint_modified (bpt);
14821 }
14822
14823 /* A callback for iterate_over_related_breakpoints. */
14824
14825 static void
14826 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14827 {
14828 disable_breakpoint (b);
14829 }
14830
14831 /* A callback for map_breakpoint_numbers that calls
14832 disable_breakpoint. */
14833
14834 static void
14835 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14836 {
14837 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14838 }
14839
14840 static void
14841 disable_command (char *args, int from_tty)
14842 {
14843 if (args == 0)
14844 {
14845 struct breakpoint *bpt;
14846
14847 ALL_BREAKPOINTS (bpt)
14848 if (user_breakpoint_p (bpt))
14849 disable_breakpoint (bpt);
14850 }
14851 else
14852 {
14853 char *num = extract_arg (&args);
14854
14855 while (num)
14856 {
14857 if (strchr (num, '.'))
14858 {
14859 struct bp_location *loc = find_location_by_number (num);
14860
14861 if (loc)
14862 {
14863 if (loc->enabled)
14864 {
14865 loc->enabled = 0;
14866 mark_breakpoint_location_modified (loc);
14867 }
14868 if (target_supports_enable_disable_tracepoint ()
14869 && current_trace_status ()->running && loc->owner
14870 && is_tracepoint (loc->owner))
14871 target_disable_tracepoint (loc);
14872 }
14873 update_global_location_list (UGLL_DONT_INSERT);
14874 }
14875 else
14876 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14877 num = extract_arg (&args);
14878 }
14879 }
14880 }
14881
14882 static void
14883 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14884 int count)
14885 {
14886 int target_resources_ok;
14887
14888 if (bpt->type == bp_hardware_breakpoint)
14889 {
14890 int i;
14891 i = hw_breakpoint_used_count ();
14892 target_resources_ok =
14893 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14894 i + 1, 0);
14895 if (target_resources_ok == 0)
14896 error (_("No hardware breakpoint support in the target."));
14897 else if (target_resources_ok < 0)
14898 error (_("Hardware breakpoints used exceeds limit."));
14899 }
14900
14901 if (is_watchpoint (bpt))
14902 {
14903 /* Initialize it just to avoid a GCC false warning. */
14904 enum enable_state orig_enable_state = bp_disabled;
14905
14906 TRY
14907 {
14908 struct watchpoint *w = (struct watchpoint *) bpt;
14909
14910 orig_enable_state = bpt->enable_state;
14911 bpt->enable_state = bp_enabled;
14912 update_watchpoint (w, 1 /* reparse */);
14913 }
14914 CATCH (e, RETURN_MASK_ALL)
14915 {
14916 bpt->enable_state = orig_enable_state;
14917 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14918 bpt->number);
14919 return;
14920 }
14921 END_CATCH
14922 }
14923
14924 bpt->enable_state = bp_enabled;
14925
14926 /* Mark breakpoint locations modified. */
14927 mark_breakpoint_modified (bpt);
14928
14929 if (target_supports_enable_disable_tracepoint ()
14930 && current_trace_status ()->running && is_tracepoint (bpt))
14931 {
14932 struct bp_location *location;
14933
14934 for (location = bpt->loc; location; location = location->next)
14935 target_enable_tracepoint (location);
14936 }
14937
14938 bpt->disposition = disposition;
14939 bpt->enable_count = count;
14940 update_global_location_list (UGLL_MAY_INSERT);
14941
14942 observer_notify_breakpoint_modified (bpt);
14943 }
14944
14945
14946 void
14947 enable_breakpoint (struct breakpoint *bpt)
14948 {
14949 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14950 }
14951
14952 static void
14953 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14954 {
14955 enable_breakpoint (bpt);
14956 }
14957
14958 /* A callback for map_breakpoint_numbers that calls
14959 enable_breakpoint. */
14960
14961 static void
14962 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14963 {
14964 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14965 }
14966
14967 /* The enable command enables the specified breakpoints (or all defined
14968 breakpoints) so they once again become (or continue to be) effective
14969 in stopping the inferior. */
14970
14971 static void
14972 enable_command (char *args, int from_tty)
14973 {
14974 if (args == 0)
14975 {
14976 struct breakpoint *bpt;
14977
14978 ALL_BREAKPOINTS (bpt)
14979 if (user_breakpoint_p (bpt))
14980 enable_breakpoint (bpt);
14981 }
14982 else
14983 {
14984 char *num = extract_arg (&args);
14985
14986 while (num)
14987 {
14988 if (strchr (num, '.'))
14989 {
14990 struct bp_location *loc = find_location_by_number (num);
14991
14992 if (loc)
14993 {
14994 if (!loc->enabled)
14995 {
14996 loc->enabled = 1;
14997 mark_breakpoint_location_modified (loc);
14998 }
14999 if (target_supports_enable_disable_tracepoint ()
15000 && current_trace_status ()->running && loc->owner
15001 && is_tracepoint (loc->owner))
15002 target_enable_tracepoint (loc);
15003 }
15004 update_global_location_list (UGLL_MAY_INSERT);
15005 }
15006 else
15007 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
15008 num = extract_arg (&args);
15009 }
15010 }
15011 }
15012
15013 /* This struct packages up disposition data for application to multiple
15014 breakpoints. */
15015
15016 struct disp_data
15017 {
15018 enum bpdisp disp;
15019 int count;
15020 };
15021
15022 static void
15023 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
15024 {
15025 struct disp_data disp_data = *(struct disp_data *) arg;
15026
15027 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
15028 }
15029
15030 static void
15031 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
15032 {
15033 struct disp_data disp = { disp_disable, 1 };
15034
15035 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15036 }
15037
15038 static void
15039 enable_once_command (char *args, int from_tty)
15040 {
15041 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
15042 }
15043
15044 static void
15045 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
15046 {
15047 struct disp_data disp = { disp_disable, *(int *) countptr };
15048
15049 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15050 }
15051
15052 static void
15053 enable_count_command (char *args, int from_tty)
15054 {
15055 int count;
15056
15057 if (args == NULL)
15058 error_no_arg (_("hit count"));
15059
15060 count = get_number (&args);
15061
15062 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
15063 }
15064
15065 static void
15066 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
15067 {
15068 struct disp_data disp = { disp_del, 1 };
15069
15070 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15071 }
15072
15073 static void
15074 enable_delete_command (char *args, int from_tty)
15075 {
15076 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
15077 }
15078 \f
15079 static void
15080 set_breakpoint_cmd (char *args, int from_tty)
15081 {
15082 }
15083
15084 static void
15085 show_breakpoint_cmd (char *args, int from_tty)
15086 {
15087 }
15088
15089 /* Invalidate last known value of any hardware watchpoint if
15090 the memory which that value represents has been written to by
15091 GDB itself. */
15092
15093 static void
15094 invalidate_bp_value_on_memory_change (struct inferior *inferior,
15095 CORE_ADDR addr, ssize_t len,
15096 const bfd_byte *data)
15097 {
15098 struct breakpoint *bp;
15099
15100 ALL_BREAKPOINTS (bp)
15101 if (bp->enable_state == bp_enabled
15102 && bp->type == bp_hardware_watchpoint)
15103 {
15104 struct watchpoint *wp = (struct watchpoint *) bp;
15105
15106 if (wp->val_valid && wp->val)
15107 {
15108 struct bp_location *loc;
15109
15110 for (loc = bp->loc; loc != NULL; loc = loc->next)
15111 if (loc->loc_type == bp_loc_hardware_watchpoint
15112 && loc->address + loc->length > addr
15113 && addr + len > loc->address)
15114 {
15115 value_free (wp->val);
15116 wp->val = NULL;
15117 wp->val_valid = 0;
15118 }
15119 }
15120 }
15121 }
15122
15123 /* Create and insert a breakpoint for software single step. */
15124
15125 void
15126 insert_single_step_breakpoint (struct gdbarch *gdbarch,
15127 struct address_space *aspace,
15128 CORE_ADDR next_pc)
15129 {
15130 struct thread_info *tp = inferior_thread ();
15131 struct symtab_and_line sal;
15132 CORE_ADDR pc = next_pc;
15133
15134 if (tp->control.single_step_breakpoints == NULL)
15135 {
15136 tp->control.single_step_breakpoints
15137 = new_single_step_breakpoint (tp->global_num, gdbarch);
15138 }
15139
15140 sal = find_pc_line (pc, 0);
15141 sal.pc = pc;
15142 sal.section = find_pc_overlay (pc);
15143 sal.explicit_pc = 1;
15144 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
15145
15146 update_global_location_list (UGLL_INSERT);
15147 }
15148
15149 /* Insert single step breakpoints according to the current state. */
15150
15151 int
15152 insert_single_step_breakpoints (struct gdbarch *gdbarch)
15153 {
15154 struct regcache *regcache = get_current_regcache ();
15155 VEC (CORE_ADDR) * next_pcs;
15156
15157 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
15158
15159 if (next_pcs != NULL)
15160 {
15161 int i;
15162 CORE_ADDR pc;
15163 struct frame_info *frame = get_current_frame ();
15164 struct address_space *aspace = get_frame_address_space (frame);
15165
15166 for (i = 0; VEC_iterate (CORE_ADDR, next_pcs, i, pc); i++)
15167 insert_single_step_breakpoint (gdbarch, aspace, pc);
15168
15169 VEC_free (CORE_ADDR, next_pcs);
15170
15171 return 1;
15172 }
15173 else
15174 return 0;
15175 }
15176
15177 /* See breakpoint.h. */
15178
15179 int
15180 breakpoint_has_location_inserted_here (struct breakpoint *bp,
15181 struct address_space *aspace,
15182 CORE_ADDR pc)
15183 {
15184 struct bp_location *loc;
15185
15186 for (loc = bp->loc; loc != NULL; loc = loc->next)
15187 if (loc->inserted
15188 && breakpoint_location_address_match (loc, aspace, pc))
15189 return 1;
15190
15191 return 0;
15192 }
15193
15194 /* Check whether a software single-step breakpoint is inserted at
15195 PC. */
15196
15197 int
15198 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15199 CORE_ADDR pc)
15200 {
15201 struct breakpoint *bpt;
15202
15203 ALL_BREAKPOINTS (bpt)
15204 {
15205 if (bpt->type == bp_single_step
15206 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
15207 return 1;
15208 }
15209 return 0;
15210 }
15211
15212 /* Tracepoint-specific operations. */
15213
15214 /* Set tracepoint count to NUM. */
15215 static void
15216 set_tracepoint_count (int num)
15217 {
15218 tracepoint_count = num;
15219 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15220 }
15221
15222 static void
15223 trace_command (char *arg, int from_tty)
15224 {
15225 struct breakpoint_ops *ops;
15226 struct event_location *location;
15227 struct cleanup *back_to;
15228
15229 location = string_to_event_location (&arg, current_language);
15230 back_to = make_cleanup_delete_event_location (location);
15231 if (location != NULL
15232 && event_location_type (location) == PROBE_LOCATION)
15233 ops = &tracepoint_probe_breakpoint_ops;
15234 else
15235 ops = &tracepoint_breakpoint_ops;
15236
15237 create_breakpoint (get_current_arch (),
15238 location,
15239 NULL, 0, arg, 1 /* parse arg */,
15240 0 /* tempflag */,
15241 bp_tracepoint /* type_wanted */,
15242 0 /* Ignore count */,
15243 pending_break_support,
15244 ops,
15245 from_tty,
15246 1 /* enabled */,
15247 0 /* internal */, 0);
15248 do_cleanups (back_to);
15249 }
15250
15251 static void
15252 ftrace_command (char *arg, int from_tty)
15253 {
15254 struct event_location *location;
15255 struct cleanup *back_to;
15256
15257 location = string_to_event_location (&arg, current_language);
15258 back_to = make_cleanup_delete_event_location (location);
15259 create_breakpoint (get_current_arch (),
15260 location,
15261 NULL, 0, arg, 1 /* parse arg */,
15262 0 /* tempflag */,
15263 bp_fast_tracepoint /* type_wanted */,
15264 0 /* Ignore count */,
15265 pending_break_support,
15266 &tracepoint_breakpoint_ops,
15267 from_tty,
15268 1 /* enabled */,
15269 0 /* internal */, 0);
15270 do_cleanups (back_to);
15271 }
15272
15273 /* strace command implementation. Creates a static tracepoint. */
15274
15275 static void
15276 strace_command (char *arg, int from_tty)
15277 {
15278 struct breakpoint_ops *ops;
15279 struct event_location *location;
15280 struct cleanup *back_to;
15281
15282 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15283 or with a normal static tracepoint. */
15284 if (arg && startswith (arg, "-m") && isspace (arg[2]))
15285 {
15286 ops = &strace_marker_breakpoint_ops;
15287 location = new_linespec_location (&arg);
15288 }
15289 else
15290 {
15291 ops = &tracepoint_breakpoint_ops;
15292 location = string_to_event_location (&arg, current_language);
15293 }
15294
15295 back_to = make_cleanup_delete_event_location (location);
15296 create_breakpoint (get_current_arch (),
15297 location,
15298 NULL, 0, arg, 1 /* parse arg */,
15299 0 /* tempflag */,
15300 bp_static_tracepoint /* type_wanted */,
15301 0 /* Ignore count */,
15302 pending_break_support,
15303 ops,
15304 from_tty,
15305 1 /* enabled */,
15306 0 /* internal */, 0);
15307 do_cleanups (back_to);
15308 }
15309
15310 /* Set up a fake reader function that gets command lines from a linked
15311 list that was acquired during tracepoint uploading. */
15312
15313 static struct uploaded_tp *this_utp;
15314 static int next_cmd;
15315
15316 static char *
15317 read_uploaded_action (void)
15318 {
15319 char *rslt;
15320
15321 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15322
15323 next_cmd++;
15324
15325 return rslt;
15326 }
15327
15328 /* Given information about a tracepoint as recorded on a target (which
15329 can be either a live system or a trace file), attempt to create an
15330 equivalent GDB tracepoint. This is not a reliable process, since
15331 the target does not necessarily have all the information used when
15332 the tracepoint was originally defined. */
15333
15334 struct tracepoint *
15335 create_tracepoint_from_upload (struct uploaded_tp *utp)
15336 {
15337 char *addr_str, small_buf[100];
15338 struct tracepoint *tp;
15339 struct event_location *location;
15340 struct cleanup *cleanup;
15341
15342 if (utp->at_string)
15343 addr_str = utp->at_string;
15344 else
15345 {
15346 /* In the absence of a source location, fall back to raw
15347 address. Since there is no way to confirm that the address
15348 means the same thing as when the trace was started, warn the
15349 user. */
15350 warning (_("Uploaded tracepoint %d has no "
15351 "source location, using raw address"),
15352 utp->number);
15353 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15354 addr_str = small_buf;
15355 }
15356
15357 /* There's not much we can do with a sequence of bytecodes. */
15358 if (utp->cond && !utp->cond_string)
15359 warning (_("Uploaded tracepoint %d condition "
15360 "has no source form, ignoring it"),
15361 utp->number);
15362
15363 location = string_to_event_location (&addr_str, current_language);
15364 cleanup = make_cleanup_delete_event_location (location);
15365 if (!create_breakpoint (get_current_arch (),
15366 location,
15367 utp->cond_string, -1, addr_str,
15368 0 /* parse cond/thread */,
15369 0 /* tempflag */,
15370 utp->type /* type_wanted */,
15371 0 /* Ignore count */,
15372 pending_break_support,
15373 &tracepoint_breakpoint_ops,
15374 0 /* from_tty */,
15375 utp->enabled /* enabled */,
15376 0 /* internal */,
15377 CREATE_BREAKPOINT_FLAGS_INSERTED))
15378 {
15379 do_cleanups (cleanup);
15380 return NULL;
15381 }
15382
15383 do_cleanups (cleanup);
15384
15385 /* Get the tracepoint we just created. */
15386 tp = get_tracepoint (tracepoint_count);
15387 gdb_assert (tp != NULL);
15388
15389 if (utp->pass > 0)
15390 {
15391 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15392 tp->base.number);
15393
15394 trace_pass_command (small_buf, 0);
15395 }
15396
15397 /* If we have uploaded versions of the original commands, set up a
15398 special-purpose "reader" function and call the usual command line
15399 reader, then pass the result to the breakpoint command-setting
15400 function. */
15401 if (!VEC_empty (char_ptr, utp->cmd_strings))
15402 {
15403 struct command_line *cmd_list;
15404
15405 this_utp = utp;
15406 next_cmd = 0;
15407
15408 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15409
15410 breakpoint_set_commands (&tp->base, cmd_list);
15411 }
15412 else if (!VEC_empty (char_ptr, utp->actions)
15413 || !VEC_empty (char_ptr, utp->step_actions))
15414 warning (_("Uploaded tracepoint %d actions "
15415 "have no source form, ignoring them"),
15416 utp->number);
15417
15418 /* Copy any status information that might be available. */
15419 tp->base.hit_count = utp->hit_count;
15420 tp->traceframe_usage = utp->traceframe_usage;
15421
15422 return tp;
15423 }
15424
15425 /* Print information on tracepoint number TPNUM_EXP, or all if
15426 omitted. */
15427
15428 static void
15429 tracepoints_info (char *args, int from_tty)
15430 {
15431 struct ui_out *uiout = current_uiout;
15432 int num_printed;
15433
15434 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15435
15436 if (num_printed == 0)
15437 {
15438 if (args == NULL || *args == '\0')
15439 uiout->message ("No tracepoints.\n");
15440 else
15441 uiout->message ("No tracepoint matching '%s'.\n", args);
15442 }
15443
15444 default_collect_info ();
15445 }
15446
15447 /* The 'enable trace' command enables tracepoints.
15448 Not supported by all targets. */
15449 static void
15450 enable_trace_command (char *args, int from_tty)
15451 {
15452 enable_command (args, from_tty);
15453 }
15454
15455 /* The 'disable trace' command disables tracepoints.
15456 Not supported by all targets. */
15457 static void
15458 disable_trace_command (char *args, int from_tty)
15459 {
15460 disable_command (args, from_tty);
15461 }
15462
15463 /* Remove a tracepoint (or all if no argument). */
15464 static void
15465 delete_trace_command (char *arg, int from_tty)
15466 {
15467 struct breakpoint *b, *b_tmp;
15468
15469 dont_repeat ();
15470
15471 if (arg == 0)
15472 {
15473 int breaks_to_delete = 0;
15474
15475 /* Delete all breakpoints if no argument.
15476 Do not delete internal or call-dummy breakpoints, these
15477 have to be deleted with an explicit breakpoint number
15478 argument. */
15479 ALL_TRACEPOINTS (b)
15480 if (is_tracepoint (b) && user_breakpoint_p (b))
15481 {
15482 breaks_to_delete = 1;
15483 break;
15484 }
15485
15486 /* Ask user only if there are some breakpoints to delete. */
15487 if (!from_tty
15488 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15489 {
15490 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15491 if (is_tracepoint (b) && user_breakpoint_p (b))
15492 delete_breakpoint (b);
15493 }
15494 }
15495 else
15496 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15497 }
15498
15499 /* Helper function for trace_pass_command. */
15500
15501 static void
15502 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15503 {
15504 tp->pass_count = count;
15505 observer_notify_breakpoint_modified (&tp->base);
15506 if (from_tty)
15507 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15508 tp->base.number, count);
15509 }
15510
15511 /* Set passcount for tracepoint.
15512
15513 First command argument is passcount, second is tracepoint number.
15514 If tracepoint number omitted, apply to most recently defined.
15515 Also accepts special argument "all". */
15516
15517 static void
15518 trace_pass_command (char *args, int from_tty)
15519 {
15520 struct tracepoint *t1;
15521 unsigned int count;
15522
15523 if (args == 0 || *args == 0)
15524 error (_("passcount command requires an "
15525 "argument (count + optional TP num)"));
15526
15527 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15528
15529 args = skip_spaces (args);
15530 if (*args && strncasecmp (args, "all", 3) == 0)
15531 {
15532 struct breakpoint *b;
15533
15534 args += 3; /* Skip special argument "all". */
15535 if (*args)
15536 error (_("Junk at end of arguments."));
15537
15538 ALL_TRACEPOINTS (b)
15539 {
15540 t1 = (struct tracepoint *) b;
15541 trace_pass_set_count (t1, count, from_tty);
15542 }
15543 }
15544 else if (*args == '\0')
15545 {
15546 t1 = get_tracepoint_by_number (&args, NULL);
15547 if (t1)
15548 trace_pass_set_count (t1, count, from_tty);
15549 }
15550 else
15551 {
15552 number_or_range_parser parser (args);
15553 while (!parser.finished ())
15554 {
15555 t1 = get_tracepoint_by_number (&args, &parser);
15556 if (t1)
15557 trace_pass_set_count (t1, count, from_tty);
15558 }
15559 }
15560 }
15561
15562 struct tracepoint *
15563 get_tracepoint (int num)
15564 {
15565 struct breakpoint *t;
15566
15567 ALL_TRACEPOINTS (t)
15568 if (t->number == num)
15569 return (struct tracepoint *) t;
15570
15571 return NULL;
15572 }
15573
15574 /* Find the tracepoint with the given target-side number (which may be
15575 different from the tracepoint number after disconnecting and
15576 reconnecting). */
15577
15578 struct tracepoint *
15579 get_tracepoint_by_number_on_target (int num)
15580 {
15581 struct breakpoint *b;
15582
15583 ALL_TRACEPOINTS (b)
15584 {
15585 struct tracepoint *t = (struct tracepoint *) b;
15586
15587 if (t->number_on_target == num)
15588 return t;
15589 }
15590
15591 return NULL;
15592 }
15593
15594 /* Utility: parse a tracepoint number and look it up in the list.
15595 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15596 If the argument is missing, the most recent tracepoint
15597 (tracepoint_count) is returned. */
15598
15599 struct tracepoint *
15600 get_tracepoint_by_number (char **arg,
15601 number_or_range_parser *parser)
15602 {
15603 struct breakpoint *t;
15604 int tpnum;
15605 char *instring = arg == NULL ? NULL : *arg;
15606
15607 if (parser != NULL)
15608 {
15609 gdb_assert (!parser->finished ());
15610 tpnum = parser->get_number ();
15611 }
15612 else if (arg == NULL || *arg == NULL || ! **arg)
15613 tpnum = tracepoint_count;
15614 else
15615 tpnum = get_number (arg);
15616
15617 if (tpnum <= 0)
15618 {
15619 if (instring && *instring)
15620 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15621 instring);
15622 else
15623 printf_filtered (_("No previous tracepoint\n"));
15624 return NULL;
15625 }
15626
15627 ALL_TRACEPOINTS (t)
15628 if (t->number == tpnum)
15629 {
15630 return (struct tracepoint *) t;
15631 }
15632
15633 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15634 return NULL;
15635 }
15636
15637 void
15638 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15639 {
15640 if (b->thread != -1)
15641 fprintf_unfiltered (fp, " thread %d", b->thread);
15642
15643 if (b->task != 0)
15644 fprintf_unfiltered (fp, " task %d", b->task);
15645
15646 fprintf_unfiltered (fp, "\n");
15647 }
15648
15649 /* Save information on user settable breakpoints (watchpoints, etc) to
15650 a new script file named FILENAME. If FILTER is non-NULL, call it
15651 on each breakpoint and only include the ones for which it returns
15652 non-zero. */
15653
15654 static void
15655 save_breakpoints (char *filename, int from_tty,
15656 int (*filter) (const struct breakpoint *))
15657 {
15658 struct breakpoint *tp;
15659 int any = 0;
15660 struct cleanup *cleanup;
15661 int extra_trace_bits = 0;
15662
15663 if (filename == 0 || *filename == 0)
15664 error (_("Argument required (file name in which to save)"));
15665
15666 /* See if we have anything to save. */
15667 ALL_BREAKPOINTS (tp)
15668 {
15669 /* Skip internal and momentary breakpoints. */
15670 if (!user_breakpoint_p (tp))
15671 continue;
15672
15673 /* If we have a filter, only save the breakpoints it accepts. */
15674 if (filter && !filter (tp))
15675 continue;
15676
15677 any = 1;
15678
15679 if (is_tracepoint (tp))
15680 {
15681 extra_trace_bits = 1;
15682
15683 /* We can stop searching. */
15684 break;
15685 }
15686 }
15687
15688 if (!any)
15689 {
15690 warning (_("Nothing to save."));
15691 return;
15692 }
15693
15694 filename = tilde_expand (filename);
15695 cleanup = make_cleanup (xfree, filename);
15696
15697 stdio_file fp;
15698
15699 if (!fp.open (filename, "w"))
15700 error (_("Unable to open file '%s' for saving (%s)"),
15701 filename, safe_strerror (errno));
15702
15703 if (extra_trace_bits)
15704 save_trace_state_variables (&fp);
15705
15706 ALL_BREAKPOINTS (tp)
15707 {
15708 /* Skip internal and momentary breakpoints. */
15709 if (!user_breakpoint_p (tp))
15710 continue;
15711
15712 /* If we have a filter, only save the breakpoints it accepts. */
15713 if (filter && !filter (tp))
15714 continue;
15715
15716 tp->ops->print_recreate (tp, &fp);
15717
15718 /* Note, we can't rely on tp->number for anything, as we can't
15719 assume the recreated breakpoint numbers will match. Use $bpnum
15720 instead. */
15721
15722 if (tp->cond_string)
15723 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15724
15725 if (tp->ignore_count)
15726 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15727
15728 if (tp->type != bp_dprintf && tp->commands)
15729 {
15730 fp.puts (" commands\n");
15731
15732 current_uiout->redirect (&fp);
15733 TRY
15734 {
15735 print_command_lines (current_uiout, tp->commands->commands, 2);
15736 }
15737 CATCH (ex, RETURN_MASK_ALL)
15738 {
15739 current_uiout->redirect (NULL);
15740 throw_exception (ex);
15741 }
15742 END_CATCH
15743
15744 current_uiout->redirect (NULL);
15745 fp.puts (" end\n");
15746 }
15747
15748 if (tp->enable_state == bp_disabled)
15749 fp.puts ("disable $bpnum\n");
15750
15751 /* If this is a multi-location breakpoint, check if the locations
15752 should be individually disabled. Watchpoint locations are
15753 special, and not user visible. */
15754 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15755 {
15756 struct bp_location *loc;
15757 int n = 1;
15758
15759 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15760 if (!loc->enabled)
15761 fp.printf ("disable $bpnum.%d\n", n);
15762 }
15763 }
15764
15765 if (extra_trace_bits && *default_collect)
15766 fp.printf ("set default-collect %s\n", default_collect);
15767
15768 if (from_tty)
15769 printf_filtered (_("Saved to file '%s'.\n"), filename);
15770 do_cleanups (cleanup);
15771 }
15772
15773 /* The `save breakpoints' command. */
15774
15775 static void
15776 save_breakpoints_command (char *args, int from_tty)
15777 {
15778 save_breakpoints (args, from_tty, NULL);
15779 }
15780
15781 /* The `save tracepoints' command. */
15782
15783 static void
15784 save_tracepoints_command (char *args, int from_tty)
15785 {
15786 save_breakpoints (args, from_tty, is_tracepoint);
15787 }
15788
15789 /* Create a vector of all tracepoints. */
15790
15791 VEC(breakpoint_p) *
15792 all_tracepoints (void)
15793 {
15794 VEC(breakpoint_p) *tp_vec = 0;
15795 struct breakpoint *tp;
15796
15797 ALL_TRACEPOINTS (tp)
15798 {
15799 VEC_safe_push (breakpoint_p, tp_vec, tp);
15800 }
15801
15802 return tp_vec;
15803 }
15804
15805 \f
15806 /* This help string is used to consolidate all the help string for specifying
15807 locations used by several commands. */
15808
15809 #define LOCATION_HELP_STRING \
15810 "Linespecs are colon-separated lists of location parameters, such as\n\
15811 source filename, function name, label name, and line number.\n\
15812 Example: To specify the start of a label named \"the_top\" in the\n\
15813 function \"fact\" in the file \"factorial.c\", use\n\
15814 \"factorial.c:fact:the_top\".\n\
15815 \n\
15816 Address locations begin with \"*\" and specify an exact address in the\n\
15817 program. Example: To specify the fourth byte past the start function\n\
15818 \"main\", use \"*main + 4\".\n\
15819 \n\
15820 Explicit locations are similar to linespecs but use an option/argument\n\
15821 syntax to specify location parameters.\n\
15822 Example: To specify the start of the label named \"the_top\" in the\n\
15823 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15824 -function fact -label the_top\".\n"
15825
15826 /* This help string is used for the break, hbreak, tbreak and thbreak
15827 commands. It is defined as a macro to prevent duplication.
15828 COMMAND should be a string constant containing the name of the
15829 command. */
15830
15831 #define BREAK_ARGS_HELP(command) \
15832 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15833 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15834 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15835 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15836 `-probe-dtrace' (for a DTrace probe).\n\
15837 LOCATION may be a linespec, address, or explicit location as described\n\
15838 below.\n\
15839 \n\
15840 With no LOCATION, uses current execution address of the selected\n\
15841 stack frame. This is useful for breaking on return to a stack frame.\n\
15842 \n\
15843 THREADNUM is the number from \"info threads\".\n\
15844 CONDITION is a boolean expression.\n\
15845 \n" LOCATION_HELP_STRING "\n\
15846 Multiple breakpoints at one place are permitted, and useful if their\n\
15847 conditions are different.\n\
15848 \n\
15849 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15850
15851 /* List of subcommands for "catch". */
15852 static struct cmd_list_element *catch_cmdlist;
15853
15854 /* List of subcommands for "tcatch". */
15855 static struct cmd_list_element *tcatch_cmdlist;
15856
15857 void
15858 add_catch_command (char *name, char *docstring,
15859 cmd_sfunc_ftype *sfunc,
15860 completer_ftype *completer,
15861 void *user_data_catch,
15862 void *user_data_tcatch)
15863 {
15864 struct cmd_list_element *command;
15865
15866 command = add_cmd (name, class_breakpoint, NULL, docstring,
15867 &catch_cmdlist);
15868 set_cmd_sfunc (command, sfunc);
15869 set_cmd_context (command, user_data_catch);
15870 set_cmd_completer (command, completer);
15871
15872 command = add_cmd (name, class_breakpoint, NULL, docstring,
15873 &tcatch_cmdlist);
15874 set_cmd_sfunc (command, sfunc);
15875 set_cmd_context (command, user_data_tcatch);
15876 set_cmd_completer (command, completer);
15877 }
15878
15879 static void
15880 save_command (char *arg, int from_tty)
15881 {
15882 printf_unfiltered (_("\"save\" must be followed by "
15883 "the name of a save subcommand.\n"));
15884 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15885 }
15886
15887 struct breakpoint *
15888 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15889 void *data)
15890 {
15891 struct breakpoint *b, *b_tmp;
15892
15893 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15894 {
15895 if ((*callback) (b, data))
15896 return b;
15897 }
15898
15899 return NULL;
15900 }
15901
15902 /* Zero if any of the breakpoint's locations could be a location where
15903 functions have been inlined, nonzero otherwise. */
15904
15905 static int
15906 is_non_inline_function (struct breakpoint *b)
15907 {
15908 /* The shared library event breakpoint is set on the address of a
15909 non-inline function. */
15910 if (b->type == bp_shlib_event)
15911 return 1;
15912
15913 return 0;
15914 }
15915
15916 /* Nonzero if the specified PC cannot be a location where functions
15917 have been inlined. */
15918
15919 int
15920 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15921 const struct target_waitstatus *ws)
15922 {
15923 struct breakpoint *b;
15924 struct bp_location *bl;
15925
15926 ALL_BREAKPOINTS (b)
15927 {
15928 if (!is_non_inline_function (b))
15929 continue;
15930
15931 for (bl = b->loc; bl != NULL; bl = bl->next)
15932 {
15933 if (!bl->shlib_disabled
15934 && bpstat_check_location (bl, aspace, pc, ws))
15935 return 1;
15936 }
15937 }
15938
15939 return 0;
15940 }
15941
15942 /* Remove any references to OBJFILE which is going to be freed. */
15943
15944 void
15945 breakpoint_free_objfile (struct objfile *objfile)
15946 {
15947 struct bp_location **locp, *loc;
15948
15949 ALL_BP_LOCATIONS (loc, locp)
15950 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15951 loc->symtab = NULL;
15952 }
15953
15954 void
15955 initialize_breakpoint_ops (void)
15956 {
15957 static int initialized = 0;
15958
15959 struct breakpoint_ops *ops;
15960
15961 if (initialized)
15962 return;
15963 initialized = 1;
15964
15965 /* The breakpoint_ops structure to be inherit by all kinds of
15966 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15967 internal and momentary breakpoints, etc.). */
15968 ops = &bkpt_base_breakpoint_ops;
15969 *ops = base_breakpoint_ops;
15970 ops->re_set = bkpt_re_set;
15971 ops->insert_location = bkpt_insert_location;
15972 ops->remove_location = bkpt_remove_location;
15973 ops->breakpoint_hit = bkpt_breakpoint_hit;
15974 ops->create_sals_from_location = bkpt_create_sals_from_location;
15975 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15976 ops->decode_location = bkpt_decode_location;
15977
15978 /* The breakpoint_ops structure to be used in regular breakpoints. */
15979 ops = &bkpt_breakpoint_ops;
15980 *ops = bkpt_base_breakpoint_ops;
15981 ops->re_set = bkpt_re_set;
15982 ops->resources_needed = bkpt_resources_needed;
15983 ops->print_it = bkpt_print_it;
15984 ops->print_mention = bkpt_print_mention;
15985 ops->print_recreate = bkpt_print_recreate;
15986
15987 /* Ranged breakpoints. */
15988 ops = &ranged_breakpoint_ops;
15989 *ops = bkpt_breakpoint_ops;
15990 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15991 ops->resources_needed = resources_needed_ranged_breakpoint;
15992 ops->print_it = print_it_ranged_breakpoint;
15993 ops->print_one = print_one_ranged_breakpoint;
15994 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15995 ops->print_mention = print_mention_ranged_breakpoint;
15996 ops->print_recreate = print_recreate_ranged_breakpoint;
15997
15998 /* Internal breakpoints. */
15999 ops = &internal_breakpoint_ops;
16000 *ops = bkpt_base_breakpoint_ops;
16001 ops->re_set = internal_bkpt_re_set;
16002 ops->check_status = internal_bkpt_check_status;
16003 ops->print_it = internal_bkpt_print_it;
16004 ops->print_mention = internal_bkpt_print_mention;
16005
16006 /* Momentary breakpoints. */
16007 ops = &momentary_breakpoint_ops;
16008 *ops = bkpt_base_breakpoint_ops;
16009 ops->re_set = momentary_bkpt_re_set;
16010 ops->check_status = momentary_bkpt_check_status;
16011 ops->print_it = momentary_bkpt_print_it;
16012 ops->print_mention = momentary_bkpt_print_mention;
16013
16014 /* Momentary breakpoints for bp_longjmp and bp_exception. */
16015 ops = &longjmp_breakpoint_ops;
16016 *ops = momentary_breakpoint_ops;
16017 ops->dtor = longjmp_bkpt_dtor;
16018
16019 /* Probe breakpoints. */
16020 ops = &bkpt_probe_breakpoint_ops;
16021 *ops = bkpt_breakpoint_ops;
16022 ops->insert_location = bkpt_probe_insert_location;
16023 ops->remove_location = bkpt_probe_remove_location;
16024 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
16025 ops->decode_location = bkpt_probe_decode_location;
16026
16027 /* Watchpoints. */
16028 ops = &watchpoint_breakpoint_ops;
16029 *ops = base_breakpoint_ops;
16030 ops->dtor = dtor_watchpoint;
16031 ops->re_set = re_set_watchpoint;
16032 ops->insert_location = insert_watchpoint;
16033 ops->remove_location = remove_watchpoint;
16034 ops->breakpoint_hit = breakpoint_hit_watchpoint;
16035 ops->check_status = check_status_watchpoint;
16036 ops->resources_needed = resources_needed_watchpoint;
16037 ops->works_in_software_mode = works_in_software_mode_watchpoint;
16038 ops->print_it = print_it_watchpoint;
16039 ops->print_mention = print_mention_watchpoint;
16040 ops->print_recreate = print_recreate_watchpoint;
16041 ops->explains_signal = explains_signal_watchpoint;
16042
16043 /* Masked watchpoints. */
16044 ops = &masked_watchpoint_breakpoint_ops;
16045 *ops = watchpoint_breakpoint_ops;
16046 ops->insert_location = insert_masked_watchpoint;
16047 ops->remove_location = remove_masked_watchpoint;
16048 ops->resources_needed = resources_needed_masked_watchpoint;
16049 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
16050 ops->print_it = print_it_masked_watchpoint;
16051 ops->print_one_detail = print_one_detail_masked_watchpoint;
16052 ops->print_mention = print_mention_masked_watchpoint;
16053 ops->print_recreate = print_recreate_masked_watchpoint;
16054
16055 /* Tracepoints. */
16056 ops = &tracepoint_breakpoint_ops;
16057 *ops = base_breakpoint_ops;
16058 ops->re_set = tracepoint_re_set;
16059 ops->breakpoint_hit = tracepoint_breakpoint_hit;
16060 ops->print_one_detail = tracepoint_print_one_detail;
16061 ops->print_mention = tracepoint_print_mention;
16062 ops->print_recreate = tracepoint_print_recreate;
16063 ops->create_sals_from_location = tracepoint_create_sals_from_location;
16064 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
16065 ops->decode_location = tracepoint_decode_location;
16066
16067 /* Probe tracepoints. */
16068 ops = &tracepoint_probe_breakpoint_ops;
16069 *ops = tracepoint_breakpoint_ops;
16070 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
16071 ops->decode_location = tracepoint_probe_decode_location;
16072
16073 /* Static tracepoints with marker (`-m'). */
16074 ops = &strace_marker_breakpoint_ops;
16075 *ops = tracepoint_breakpoint_ops;
16076 ops->create_sals_from_location = strace_marker_create_sals_from_location;
16077 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
16078 ops->decode_location = strace_marker_decode_location;
16079
16080 /* Fork catchpoints. */
16081 ops = &catch_fork_breakpoint_ops;
16082 *ops = base_breakpoint_ops;
16083 ops->insert_location = insert_catch_fork;
16084 ops->remove_location = remove_catch_fork;
16085 ops->breakpoint_hit = breakpoint_hit_catch_fork;
16086 ops->print_it = print_it_catch_fork;
16087 ops->print_one = print_one_catch_fork;
16088 ops->print_mention = print_mention_catch_fork;
16089 ops->print_recreate = print_recreate_catch_fork;
16090
16091 /* Vfork catchpoints. */
16092 ops = &catch_vfork_breakpoint_ops;
16093 *ops = base_breakpoint_ops;
16094 ops->insert_location = insert_catch_vfork;
16095 ops->remove_location = remove_catch_vfork;
16096 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
16097 ops->print_it = print_it_catch_vfork;
16098 ops->print_one = print_one_catch_vfork;
16099 ops->print_mention = print_mention_catch_vfork;
16100 ops->print_recreate = print_recreate_catch_vfork;
16101
16102 /* Exec catchpoints. */
16103 ops = &catch_exec_breakpoint_ops;
16104 *ops = base_breakpoint_ops;
16105 ops->dtor = dtor_catch_exec;
16106 ops->insert_location = insert_catch_exec;
16107 ops->remove_location = remove_catch_exec;
16108 ops->breakpoint_hit = breakpoint_hit_catch_exec;
16109 ops->print_it = print_it_catch_exec;
16110 ops->print_one = print_one_catch_exec;
16111 ops->print_mention = print_mention_catch_exec;
16112 ops->print_recreate = print_recreate_catch_exec;
16113
16114 /* Solib-related catchpoints. */
16115 ops = &catch_solib_breakpoint_ops;
16116 *ops = base_breakpoint_ops;
16117 ops->dtor = dtor_catch_solib;
16118 ops->insert_location = insert_catch_solib;
16119 ops->remove_location = remove_catch_solib;
16120 ops->breakpoint_hit = breakpoint_hit_catch_solib;
16121 ops->check_status = check_status_catch_solib;
16122 ops->print_it = print_it_catch_solib;
16123 ops->print_one = print_one_catch_solib;
16124 ops->print_mention = print_mention_catch_solib;
16125 ops->print_recreate = print_recreate_catch_solib;
16126
16127 ops = &dprintf_breakpoint_ops;
16128 *ops = bkpt_base_breakpoint_ops;
16129 ops->re_set = dprintf_re_set;
16130 ops->resources_needed = bkpt_resources_needed;
16131 ops->print_it = bkpt_print_it;
16132 ops->print_mention = bkpt_print_mention;
16133 ops->print_recreate = dprintf_print_recreate;
16134 ops->after_condition_true = dprintf_after_condition_true;
16135 ops->breakpoint_hit = dprintf_breakpoint_hit;
16136 }
16137
16138 /* Chain containing all defined "enable breakpoint" subcommands. */
16139
16140 static struct cmd_list_element *enablebreaklist = NULL;
16141
16142 void
16143 _initialize_breakpoint (void)
16144 {
16145 struct cmd_list_element *c;
16146
16147 initialize_breakpoint_ops ();
16148
16149 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
16150 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
16151 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
16152
16153 breakpoint_objfile_key
16154 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
16155
16156 breakpoint_chain = 0;
16157 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
16158 before a breakpoint is set. */
16159 breakpoint_count = 0;
16160
16161 tracepoint_count = 0;
16162
16163 add_com ("ignore", class_breakpoint, ignore_command, _("\
16164 Set ignore-count of breakpoint number N to COUNT.\n\
16165 Usage is `ignore N COUNT'."));
16166
16167 add_com ("commands", class_breakpoint, commands_command, _("\
16168 Set commands to be executed when the given breakpoints are hit.\n\
16169 Give a space-separated breakpoint list as argument after \"commands\".\n\
16170 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
16171 (e.g. `5-7').\n\
16172 With no argument, the targeted breakpoint is the last one set.\n\
16173 The commands themselves follow starting on the next line.\n\
16174 Type a line containing \"end\" to indicate the end of them.\n\
16175 Give \"silent\" as the first line to make the breakpoint silent;\n\
16176 then no output is printed when it is hit, except what the commands print."));
16177
16178 c = add_com ("condition", class_breakpoint, condition_command, _("\
16179 Specify breakpoint number N to break only if COND is true.\n\
16180 Usage is `condition N COND', where N is an integer and COND is an\n\
16181 expression to be evaluated whenever breakpoint N is reached."));
16182 set_cmd_completer (c, condition_completer);
16183
16184 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16185 Set a temporary breakpoint.\n\
16186 Like \"break\" except the breakpoint is only temporary,\n\
16187 so it will be deleted when hit. Equivalent to \"break\" followed\n\
16188 by using \"enable delete\" on the breakpoint number.\n\
16189 \n"
16190 BREAK_ARGS_HELP ("tbreak")));
16191 set_cmd_completer (c, location_completer);
16192
16193 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16194 Set a hardware assisted breakpoint.\n\
16195 Like \"break\" except the breakpoint requires hardware support,\n\
16196 some target hardware may not have this support.\n\
16197 \n"
16198 BREAK_ARGS_HELP ("hbreak")));
16199 set_cmd_completer (c, location_completer);
16200
16201 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16202 Set a temporary hardware assisted breakpoint.\n\
16203 Like \"hbreak\" except the breakpoint is only temporary,\n\
16204 so it will be deleted when hit.\n\
16205 \n"
16206 BREAK_ARGS_HELP ("thbreak")));
16207 set_cmd_completer (c, location_completer);
16208
16209 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16210 Enable some breakpoints.\n\
16211 Give breakpoint numbers (separated by spaces) as arguments.\n\
16212 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16213 This is used to cancel the effect of the \"disable\" command.\n\
16214 With a subcommand you can enable temporarily."),
16215 &enablelist, "enable ", 1, &cmdlist);
16216
16217 add_com_alias ("en", "enable", class_breakpoint, 1);
16218
16219 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16220 Enable some breakpoints.\n\
16221 Give breakpoint numbers (separated by spaces) as arguments.\n\
16222 This is used to cancel the effect of the \"disable\" command.\n\
16223 May be abbreviated to simply \"enable\".\n"),
16224 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16225
16226 add_cmd ("once", no_class, enable_once_command, _("\
16227 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16228 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16229 &enablebreaklist);
16230
16231 add_cmd ("delete", no_class, enable_delete_command, _("\
16232 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16233 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16234 &enablebreaklist);
16235
16236 add_cmd ("count", no_class, enable_count_command, _("\
16237 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16238 If a breakpoint is hit while enabled in this fashion,\n\
16239 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16240 &enablebreaklist);
16241
16242 add_cmd ("delete", no_class, enable_delete_command, _("\
16243 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16244 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16245 &enablelist);
16246
16247 add_cmd ("once", no_class, enable_once_command, _("\
16248 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16249 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16250 &enablelist);
16251
16252 add_cmd ("count", no_class, enable_count_command, _("\
16253 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16254 If a breakpoint is hit while enabled in this fashion,\n\
16255 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16256 &enablelist);
16257
16258 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16259 Disable some breakpoints.\n\
16260 Arguments are breakpoint numbers with spaces in between.\n\
16261 To disable all breakpoints, give no argument.\n\
16262 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16263 &disablelist, "disable ", 1, &cmdlist);
16264 add_com_alias ("dis", "disable", class_breakpoint, 1);
16265 add_com_alias ("disa", "disable", class_breakpoint, 1);
16266
16267 add_cmd ("breakpoints", class_alias, disable_command, _("\
16268 Disable some breakpoints.\n\
16269 Arguments are breakpoint numbers with spaces in between.\n\
16270 To disable all breakpoints, give no argument.\n\
16271 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16272 This command may be abbreviated \"disable\"."),
16273 &disablelist);
16274
16275 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16276 Delete some breakpoints or auto-display expressions.\n\
16277 Arguments are breakpoint numbers with spaces in between.\n\
16278 To delete all breakpoints, give no argument.\n\
16279 \n\
16280 Also a prefix command for deletion of other GDB objects.\n\
16281 The \"unset\" command is also an alias for \"delete\"."),
16282 &deletelist, "delete ", 1, &cmdlist);
16283 add_com_alias ("d", "delete", class_breakpoint, 1);
16284 add_com_alias ("del", "delete", class_breakpoint, 1);
16285
16286 add_cmd ("breakpoints", class_alias, delete_command, _("\
16287 Delete some breakpoints or auto-display expressions.\n\
16288 Arguments are breakpoint numbers with spaces in between.\n\
16289 To delete all breakpoints, give no argument.\n\
16290 This command may be abbreviated \"delete\"."),
16291 &deletelist);
16292
16293 add_com ("clear", class_breakpoint, clear_command, _("\
16294 Clear breakpoint at specified location.\n\
16295 Argument may be a linespec, explicit, or address location as described below.\n\
16296 \n\
16297 With no argument, clears all breakpoints in the line that the selected frame\n\
16298 is executing in.\n"
16299 "\n" LOCATION_HELP_STRING "\n\
16300 See also the \"delete\" command which clears breakpoints by number."));
16301 add_com_alias ("cl", "clear", class_breakpoint, 1);
16302
16303 c = add_com ("break", class_breakpoint, break_command, _("\
16304 Set breakpoint at specified location.\n"
16305 BREAK_ARGS_HELP ("break")));
16306 set_cmd_completer (c, location_completer);
16307
16308 add_com_alias ("b", "break", class_run, 1);
16309 add_com_alias ("br", "break", class_run, 1);
16310 add_com_alias ("bre", "break", class_run, 1);
16311 add_com_alias ("brea", "break", class_run, 1);
16312
16313 if (dbx_commands)
16314 {
16315 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16316 Break in function/address or break at a line in the current file."),
16317 &stoplist, "stop ", 1, &cmdlist);
16318 add_cmd ("in", class_breakpoint, stopin_command,
16319 _("Break in function or address."), &stoplist);
16320 add_cmd ("at", class_breakpoint, stopat_command,
16321 _("Break at a line in the current file."), &stoplist);
16322 add_com ("status", class_info, breakpoints_info, _("\
16323 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16324 The \"Type\" column indicates one of:\n\
16325 \tbreakpoint - normal breakpoint\n\
16326 \twatchpoint - watchpoint\n\
16327 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16328 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16329 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16330 address and file/line number respectively.\n\
16331 \n\
16332 Convenience variable \"$_\" and default examine address for \"x\"\n\
16333 are set to the address of the last breakpoint listed unless the command\n\
16334 is prefixed with \"server \".\n\n\
16335 Convenience variable \"$bpnum\" contains the number of the last\n\
16336 breakpoint set."));
16337 }
16338
16339 add_info ("breakpoints", breakpoints_info, _("\
16340 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16341 The \"Type\" column indicates one of:\n\
16342 \tbreakpoint - normal breakpoint\n\
16343 \twatchpoint - watchpoint\n\
16344 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16345 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16346 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16347 address and file/line number respectively.\n\
16348 \n\
16349 Convenience variable \"$_\" and default examine address for \"x\"\n\
16350 are set to the address of the last breakpoint listed unless the command\n\
16351 is prefixed with \"server \".\n\n\
16352 Convenience variable \"$bpnum\" contains the number of the last\n\
16353 breakpoint set."));
16354
16355 add_info_alias ("b", "breakpoints", 1);
16356
16357 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16358 Status of all breakpoints, or breakpoint number NUMBER.\n\
16359 The \"Type\" column indicates one of:\n\
16360 \tbreakpoint - normal breakpoint\n\
16361 \twatchpoint - watchpoint\n\
16362 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16363 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16364 \tuntil - internal breakpoint used by the \"until\" command\n\
16365 \tfinish - internal breakpoint used by the \"finish\" command\n\
16366 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16367 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16368 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16369 address and file/line number respectively.\n\
16370 \n\
16371 Convenience variable \"$_\" and default examine address for \"x\"\n\
16372 are set to the address of the last breakpoint listed unless the command\n\
16373 is prefixed with \"server \".\n\n\
16374 Convenience variable \"$bpnum\" contains the number of the last\n\
16375 breakpoint set."),
16376 &maintenanceinfolist);
16377
16378 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16379 Set catchpoints to catch events."),
16380 &catch_cmdlist, "catch ",
16381 0/*allow-unknown*/, &cmdlist);
16382
16383 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16384 Set temporary catchpoints to catch events."),
16385 &tcatch_cmdlist, "tcatch ",
16386 0/*allow-unknown*/, &cmdlist);
16387
16388 add_catch_command ("fork", _("Catch calls to fork."),
16389 catch_fork_command_1,
16390 NULL,
16391 (void *) (uintptr_t) catch_fork_permanent,
16392 (void *) (uintptr_t) catch_fork_temporary);
16393 add_catch_command ("vfork", _("Catch calls to vfork."),
16394 catch_fork_command_1,
16395 NULL,
16396 (void *) (uintptr_t) catch_vfork_permanent,
16397 (void *) (uintptr_t) catch_vfork_temporary);
16398 add_catch_command ("exec", _("Catch calls to exec."),
16399 catch_exec_command_1,
16400 NULL,
16401 CATCH_PERMANENT,
16402 CATCH_TEMPORARY);
16403 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16404 Usage: catch load [REGEX]\n\
16405 If REGEX is given, only stop for libraries matching the regular expression."),
16406 catch_load_command_1,
16407 NULL,
16408 CATCH_PERMANENT,
16409 CATCH_TEMPORARY);
16410 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16411 Usage: catch unload [REGEX]\n\
16412 If REGEX is given, only stop for libraries matching the regular expression."),
16413 catch_unload_command_1,
16414 NULL,
16415 CATCH_PERMANENT,
16416 CATCH_TEMPORARY);
16417
16418 c = add_com ("watch", class_breakpoint, watch_command, _("\
16419 Set a watchpoint for an expression.\n\
16420 Usage: watch [-l|-location] EXPRESSION\n\
16421 A watchpoint stops execution of your program whenever the value of\n\
16422 an expression changes.\n\
16423 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16424 the memory to which it refers."));
16425 set_cmd_completer (c, expression_completer);
16426
16427 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16428 Set a read watchpoint for an expression.\n\
16429 Usage: rwatch [-l|-location] EXPRESSION\n\
16430 A watchpoint stops execution of your program whenever the value of\n\
16431 an expression is read.\n\
16432 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16433 the memory to which it refers."));
16434 set_cmd_completer (c, expression_completer);
16435
16436 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16437 Set a watchpoint for an expression.\n\
16438 Usage: awatch [-l|-location] EXPRESSION\n\
16439 A watchpoint stops execution of your program whenever the value of\n\
16440 an expression is either read or written.\n\
16441 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16442 the memory to which it refers."));
16443 set_cmd_completer (c, expression_completer);
16444
16445 add_info ("watchpoints", watchpoints_info, _("\
16446 Status of specified watchpoints (all watchpoints if no argument)."));
16447
16448 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16449 respond to changes - contrary to the description. */
16450 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16451 &can_use_hw_watchpoints, _("\
16452 Set debugger's willingness to use watchpoint hardware."), _("\
16453 Show debugger's willingness to use watchpoint hardware."), _("\
16454 If zero, gdb will not use hardware for new watchpoints, even if\n\
16455 such is available. (However, any hardware watchpoints that were\n\
16456 created before setting this to nonzero, will continue to use watchpoint\n\
16457 hardware.)"),
16458 NULL,
16459 show_can_use_hw_watchpoints,
16460 &setlist, &showlist);
16461
16462 can_use_hw_watchpoints = 1;
16463
16464 /* Tracepoint manipulation commands. */
16465
16466 c = add_com ("trace", class_breakpoint, trace_command, _("\
16467 Set a tracepoint at specified location.\n\
16468 \n"
16469 BREAK_ARGS_HELP ("trace") "\n\
16470 Do \"help tracepoints\" for info on other tracepoint commands."));
16471 set_cmd_completer (c, location_completer);
16472
16473 add_com_alias ("tp", "trace", class_alias, 0);
16474 add_com_alias ("tr", "trace", class_alias, 1);
16475 add_com_alias ("tra", "trace", class_alias, 1);
16476 add_com_alias ("trac", "trace", class_alias, 1);
16477
16478 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16479 Set a fast tracepoint at specified location.\n\
16480 \n"
16481 BREAK_ARGS_HELP ("ftrace") "\n\
16482 Do \"help tracepoints\" for info on other tracepoint commands."));
16483 set_cmd_completer (c, location_completer);
16484
16485 c = add_com ("strace", class_breakpoint, strace_command, _("\
16486 Set a static tracepoint at location or marker.\n\
16487 \n\
16488 strace [LOCATION] [if CONDITION]\n\
16489 LOCATION may be a linespec, explicit, or address location (described below) \n\
16490 or -m MARKER_ID.\n\n\
16491 If a marker id is specified, probe the marker with that name. With\n\
16492 no LOCATION, uses current execution address of the selected stack frame.\n\
16493 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16494 This collects arbitrary user data passed in the probe point call to the\n\
16495 tracing library. You can inspect it when analyzing the trace buffer,\n\
16496 by printing the $_sdata variable like any other convenience variable.\n\
16497 \n\
16498 CONDITION is a boolean expression.\n\
16499 \n" LOCATION_HELP_STRING "\n\
16500 Multiple tracepoints at one place are permitted, and useful if their\n\
16501 conditions are different.\n\
16502 \n\
16503 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16504 Do \"help tracepoints\" for info on other tracepoint commands."));
16505 set_cmd_completer (c, location_completer);
16506
16507 add_info ("tracepoints", tracepoints_info, _("\
16508 Status of specified tracepoints (all tracepoints if no argument).\n\
16509 Convenience variable \"$tpnum\" contains the number of the\n\
16510 last tracepoint set."));
16511
16512 add_info_alias ("tp", "tracepoints", 1);
16513
16514 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16515 Delete specified tracepoints.\n\
16516 Arguments are tracepoint numbers, separated by spaces.\n\
16517 No argument means delete all tracepoints."),
16518 &deletelist);
16519 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16520
16521 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16522 Disable specified tracepoints.\n\
16523 Arguments are tracepoint numbers, separated by spaces.\n\
16524 No argument means disable all tracepoints."),
16525 &disablelist);
16526 deprecate_cmd (c, "disable");
16527
16528 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16529 Enable specified tracepoints.\n\
16530 Arguments are tracepoint numbers, separated by spaces.\n\
16531 No argument means enable all tracepoints."),
16532 &enablelist);
16533 deprecate_cmd (c, "enable");
16534
16535 add_com ("passcount", class_trace, trace_pass_command, _("\
16536 Set the passcount for a tracepoint.\n\
16537 The trace will end when the tracepoint has been passed 'count' times.\n\
16538 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16539 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16540
16541 add_prefix_cmd ("save", class_breakpoint, save_command,
16542 _("Save breakpoint definitions as a script."),
16543 &save_cmdlist, "save ",
16544 0/*allow-unknown*/, &cmdlist);
16545
16546 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16547 Save current breakpoint definitions as a script.\n\
16548 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16549 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16550 session to restore them."),
16551 &save_cmdlist);
16552 set_cmd_completer (c, filename_completer);
16553
16554 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16555 Save current tracepoint definitions as a script.\n\
16556 Use the 'source' command in another debug session to restore them."),
16557 &save_cmdlist);
16558 set_cmd_completer (c, filename_completer);
16559
16560 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16561 deprecate_cmd (c, "save tracepoints");
16562
16563 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16564 Breakpoint specific settings\n\
16565 Configure various breakpoint-specific variables such as\n\
16566 pending breakpoint behavior"),
16567 &breakpoint_set_cmdlist, "set breakpoint ",
16568 0/*allow-unknown*/, &setlist);
16569 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16570 Breakpoint specific settings\n\
16571 Configure various breakpoint-specific variables such as\n\
16572 pending breakpoint behavior"),
16573 &breakpoint_show_cmdlist, "show breakpoint ",
16574 0/*allow-unknown*/, &showlist);
16575
16576 add_setshow_auto_boolean_cmd ("pending", no_class,
16577 &pending_break_support, _("\
16578 Set debugger's behavior regarding pending breakpoints."), _("\
16579 Show debugger's behavior regarding pending breakpoints."), _("\
16580 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16581 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16582 an error. If auto, an unrecognized breakpoint location results in a\n\
16583 user-query to see if a pending breakpoint should be created."),
16584 NULL,
16585 show_pending_break_support,
16586 &breakpoint_set_cmdlist,
16587 &breakpoint_show_cmdlist);
16588
16589 pending_break_support = AUTO_BOOLEAN_AUTO;
16590
16591 add_setshow_boolean_cmd ("auto-hw", no_class,
16592 &automatic_hardware_breakpoints, _("\
16593 Set automatic usage of hardware breakpoints."), _("\
16594 Show automatic usage of hardware breakpoints."), _("\
16595 If set, the debugger will automatically use hardware breakpoints for\n\
16596 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16597 a warning will be emitted for such breakpoints."),
16598 NULL,
16599 show_automatic_hardware_breakpoints,
16600 &breakpoint_set_cmdlist,
16601 &breakpoint_show_cmdlist);
16602
16603 add_setshow_boolean_cmd ("always-inserted", class_support,
16604 &always_inserted_mode, _("\
16605 Set mode for inserting breakpoints."), _("\
16606 Show mode for inserting breakpoints."), _("\
16607 When this mode is on, breakpoints are inserted immediately as soon as\n\
16608 they're created, kept inserted even when execution stops, and removed\n\
16609 only when the user deletes them. When this mode is off (the default),\n\
16610 breakpoints are inserted only when execution continues, and removed\n\
16611 when execution stops."),
16612 NULL,
16613 &show_always_inserted_mode,
16614 &breakpoint_set_cmdlist,
16615 &breakpoint_show_cmdlist);
16616
16617 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16618 condition_evaluation_enums,
16619 &condition_evaluation_mode_1, _("\
16620 Set mode of breakpoint condition evaluation."), _("\
16621 Show mode of breakpoint condition evaluation."), _("\
16622 When this is set to \"host\", breakpoint conditions will be\n\
16623 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16624 breakpoint conditions will be downloaded to the target (if the target\n\
16625 supports such feature) and conditions will be evaluated on the target's side.\n\
16626 If this is set to \"auto\" (default), this will be automatically set to\n\
16627 \"target\" if it supports condition evaluation, otherwise it will\n\
16628 be set to \"gdb\""),
16629 &set_condition_evaluation_mode,
16630 &show_condition_evaluation_mode,
16631 &breakpoint_set_cmdlist,
16632 &breakpoint_show_cmdlist);
16633
16634 add_com ("break-range", class_breakpoint, break_range_command, _("\
16635 Set a breakpoint for an address range.\n\
16636 break-range START-LOCATION, END-LOCATION\n\
16637 where START-LOCATION and END-LOCATION can be one of the following:\n\
16638 LINENUM, for that line in the current file,\n\
16639 FILE:LINENUM, for that line in that file,\n\
16640 +OFFSET, for that number of lines after the current line\n\
16641 or the start of the range\n\
16642 FUNCTION, for the first line in that function,\n\
16643 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16644 *ADDRESS, for the instruction at that address.\n\
16645 \n\
16646 The breakpoint will stop execution of the inferior whenever it executes\n\
16647 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16648 range (including START-LOCATION and END-LOCATION)."));
16649
16650 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16651 Set a dynamic printf at specified location.\n\
16652 dprintf location,format string,arg1,arg2,...\n\
16653 location may be a linespec, explicit, or address location.\n"
16654 "\n" LOCATION_HELP_STRING));
16655 set_cmd_completer (c, location_completer);
16656
16657 add_setshow_enum_cmd ("dprintf-style", class_support,
16658 dprintf_style_enums, &dprintf_style, _("\
16659 Set the style of usage for dynamic printf."), _("\
16660 Show the style of usage for dynamic printf."), _("\
16661 This setting chooses how GDB will do a dynamic printf.\n\
16662 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16663 console, as with the \"printf\" command.\n\
16664 If the value is \"call\", the print is done by calling a function in your\n\
16665 program; by default printf(), but you can choose a different function or\n\
16666 output stream by setting dprintf-function and dprintf-channel."),
16667 update_dprintf_commands, NULL,
16668 &setlist, &showlist);
16669
16670 dprintf_function = xstrdup ("printf");
16671 add_setshow_string_cmd ("dprintf-function", class_support,
16672 &dprintf_function, _("\
16673 Set the function to use for dynamic printf"), _("\
16674 Show the function to use for dynamic printf"), NULL,
16675 update_dprintf_commands, NULL,
16676 &setlist, &showlist);
16677
16678 dprintf_channel = xstrdup ("");
16679 add_setshow_string_cmd ("dprintf-channel", class_support,
16680 &dprintf_channel, _("\
16681 Set the channel to use for dynamic printf"), _("\
16682 Show the channel to use for dynamic printf"), NULL,
16683 update_dprintf_commands, NULL,
16684 &setlist, &showlist);
16685
16686 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16687 &disconnected_dprintf, _("\
16688 Set whether dprintf continues after GDB disconnects."), _("\
16689 Show whether dprintf continues after GDB disconnects."), _("\
16690 Use this to let dprintf commands continue to hit and produce output\n\
16691 even if GDB disconnects or detaches from the target."),
16692 NULL,
16693 NULL,
16694 &setlist, &showlist);
16695
16696 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16697 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16698 (target agent only) This is useful for formatted output in user-defined commands."));
16699
16700 automatic_hardware_breakpoints = 1;
16701
16702 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16703 observer_attach_thread_exit (remove_threaded_breakpoints);
16704 }
This page took 0.69226 seconds and 4 git commands to generate.