c059861138220639e88013fc45cfce2f36fdc1a7
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "block.h"
51 #include "solib.h"
52 #include "solist.h"
53 #include "observer.h"
54 #include "memattr.h"
55 #include "ada-lang.h"
56 #include "top.h"
57 #include "valprint.h"
58 #include "jit.h"
59 #include "parser-defs.h"
60 #include "gdb_regex.h"
61 #include "probe.h"
62 #include "cli/cli-utils.h"
63 #include "continuations.h"
64 #include "stack.h"
65 #include "skip.h"
66 #include "ax-gdb.h"
67 #include "dummy-frame.h"
68 #include "interps.h"
69 #include "format.h"
70 #include "location.h"
71 #include "thread-fsm.h"
72 #include "tid-parse.h"
73
74 /* readline include files */
75 #include "readline/readline.h"
76 #include "readline/history.h"
77
78 /* readline defines this. */
79 #undef savestring
80
81 #include "mi/mi-common.h"
82 #include "extension.h"
83
84 /* Enums for exception-handling support. */
85 enum exception_event_kind
86 {
87 EX_EVENT_THROW,
88 EX_EVENT_RETHROW,
89 EX_EVENT_CATCH
90 };
91
92 /* Prototypes for local functions. */
93
94 static void enable_delete_command (char *, int);
95
96 static void enable_once_command (char *, int);
97
98 static void enable_count_command (char *, int);
99
100 static void disable_command (char *, int);
101
102 static void enable_command (char *, int);
103
104 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
105 void *),
106 void *);
107
108 static void ignore_command (char *, int);
109
110 static int breakpoint_re_set_one (void *);
111
112 static void breakpoint_re_set_default (struct breakpoint *);
113
114 static void
115 create_sals_from_location_default (const struct event_location *location,
116 struct linespec_result *canonical,
117 enum bptype type_wanted);
118
119 static void create_breakpoints_sal_default (struct gdbarch *,
120 struct linespec_result *,
121 char *, char *, enum bptype,
122 enum bpdisp, int, int,
123 int,
124 const struct breakpoint_ops *,
125 int, int, int, unsigned);
126
127 static void decode_location_default (struct breakpoint *b,
128 const struct event_location *location,
129 struct program_space *search_pspace,
130 struct symtabs_and_lines *sals);
131
132 static void clear_command (char *, int);
133
134 static void catch_command (char *, int);
135
136 static int can_use_hardware_watchpoint (struct value *);
137
138 static void break_command_1 (char *, int, int);
139
140 static void mention (struct breakpoint *);
141
142 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
143 enum bptype,
144 const struct breakpoint_ops *);
145 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
146 const struct symtab_and_line *);
147
148 /* This function is used in gdbtk sources and thus can not be made
149 static. */
150 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
151 struct symtab_and_line,
152 enum bptype,
153 const struct breakpoint_ops *);
154
155 static struct breakpoint *
156 momentary_breakpoint_from_master (struct breakpoint *orig,
157 enum bptype type,
158 const struct breakpoint_ops *ops,
159 int loc_enabled);
160
161 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
162
163 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
164 CORE_ADDR bpaddr,
165 enum bptype bptype);
166
167 static void describe_other_breakpoints (struct gdbarch *,
168 struct program_space *, CORE_ADDR,
169 struct obj_section *, int);
170
171 static int watchpoint_locations_match (struct bp_location *loc1,
172 struct bp_location *loc2);
173
174 static int breakpoint_location_address_match (struct bp_location *bl,
175 struct address_space *aspace,
176 CORE_ADDR addr);
177
178 static int breakpoint_location_address_range_overlap (struct bp_location *,
179 struct address_space *,
180 CORE_ADDR, int);
181
182 static void breakpoints_info (char *, int);
183
184 static void watchpoints_info (char *, int);
185
186 static int breakpoint_1 (char *, int,
187 int (*) (const struct breakpoint *));
188
189 static int breakpoint_cond_eval (void *);
190
191 static void cleanup_executing_breakpoints (void *);
192
193 static void commands_command (char *, int);
194
195 static void condition_command (char *, int);
196
197 typedef enum
198 {
199 mark_inserted,
200 mark_uninserted
201 }
202 insertion_state_t;
203
204 static int remove_breakpoint (struct bp_location *, insertion_state_t);
205 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
206
207 static enum print_stop_action print_bp_stop_message (bpstat bs);
208
209 static int watchpoint_check (void *);
210
211 static void maintenance_info_breakpoints (char *, int);
212
213 static int hw_breakpoint_used_count (void);
214
215 static int hw_watchpoint_use_count (struct breakpoint *);
216
217 static int hw_watchpoint_used_count_others (struct breakpoint *except,
218 enum bptype type,
219 int *other_type_used);
220
221 static void hbreak_command (char *, int);
222
223 static void thbreak_command (char *, int);
224
225 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
226 int count);
227
228 static void stop_command (char *arg, int from_tty);
229
230 static void stopin_command (char *arg, int from_tty);
231
232 static void stopat_command (char *arg, int from_tty);
233
234 static void tcatch_command (char *arg, int from_tty);
235
236 static void free_bp_location (struct bp_location *loc);
237 static void incref_bp_location (struct bp_location *loc);
238 static void decref_bp_location (struct bp_location **loc);
239
240 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
241
242 /* update_global_location_list's modes of operation wrt to whether to
243 insert locations now. */
244 enum ugll_insert_mode
245 {
246 /* Don't insert any breakpoint locations into the inferior, only
247 remove already-inserted locations that no longer should be
248 inserted. Functions that delete a breakpoint or breakpoints
249 should specify this mode, so that deleting a breakpoint doesn't
250 have the side effect of inserting the locations of other
251 breakpoints that are marked not-inserted, but should_be_inserted
252 returns true on them.
253
254 This behavior is useful is situations close to tear-down -- e.g.,
255 after an exec, while the target still has execution, but
256 breakpoint shadows of the previous executable image should *NOT*
257 be restored to the new image; or before detaching, where the
258 target still has execution and wants to delete breakpoints from
259 GDB's lists, and all breakpoints had already been removed from
260 the inferior. */
261 UGLL_DONT_INSERT,
262
263 /* May insert breakpoints iff breakpoints_should_be_inserted_now
264 claims breakpoints should be inserted now. */
265 UGLL_MAY_INSERT,
266
267 /* Insert locations now, irrespective of
268 breakpoints_should_be_inserted_now. E.g., say all threads are
269 stopped right now, and the user did "continue". We need to
270 insert breakpoints _before_ resuming the target, but
271 UGLL_MAY_INSERT wouldn't insert them, because
272 breakpoints_should_be_inserted_now returns false at that point,
273 as no thread is running yet. */
274 UGLL_INSERT
275 };
276
277 static void update_global_location_list (enum ugll_insert_mode);
278
279 static void update_global_location_list_nothrow (enum ugll_insert_mode);
280
281 static int is_hardware_watchpoint (const struct breakpoint *bpt);
282
283 static void insert_breakpoint_locations (void);
284
285 static void tracepoints_info (char *, int);
286
287 static void delete_trace_command (char *, int);
288
289 static void enable_trace_command (char *, int);
290
291 static void disable_trace_command (char *, int);
292
293 static void trace_pass_command (char *, int);
294
295 static void set_tracepoint_count (int num);
296
297 static int is_masked_watchpoint (const struct breakpoint *b);
298
299 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
300
301 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
302 otherwise. */
303
304 static int strace_marker_p (struct breakpoint *b);
305
306 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
307 that are implemented on top of software or hardware breakpoints
308 (user breakpoints, internal and momentary breakpoints, etc.). */
309 static struct breakpoint_ops bkpt_base_breakpoint_ops;
310
311 /* Internal breakpoints class type. */
312 static struct breakpoint_ops internal_breakpoint_ops;
313
314 /* Momentary breakpoints class type. */
315 static struct breakpoint_ops momentary_breakpoint_ops;
316
317 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
318 static struct breakpoint_ops longjmp_breakpoint_ops;
319
320 /* The breakpoint_ops structure to be used in regular user created
321 breakpoints. */
322 struct breakpoint_ops bkpt_breakpoint_ops;
323
324 /* Breakpoints set on probes. */
325 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
326
327 /* Dynamic printf class type. */
328 struct breakpoint_ops dprintf_breakpoint_ops;
329
330 /* The style in which to perform a dynamic printf. This is a user
331 option because different output options have different tradeoffs;
332 if GDB does the printing, there is better error handling if there
333 is a problem with any of the arguments, but using an inferior
334 function lets you have special-purpose printers and sending of
335 output to the same place as compiled-in print functions. */
336
337 static const char dprintf_style_gdb[] = "gdb";
338 static const char dprintf_style_call[] = "call";
339 static const char dprintf_style_agent[] = "agent";
340 static const char *const dprintf_style_enums[] = {
341 dprintf_style_gdb,
342 dprintf_style_call,
343 dprintf_style_agent,
344 NULL
345 };
346 static const char *dprintf_style = dprintf_style_gdb;
347
348 /* The function to use for dynamic printf if the preferred style is to
349 call into the inferior. The value is simply a string that is
350 copied into the command, so it can be anything that GDB can
351 evaluate to a callable address, not necessarily a function name. */
352
353 static char *dprintf_function = "";
354
355 /* The channel to use for dynamic printf if the preferred style is to
356 call into the inferior; if a nonempty string, it will be passed to
357 the call as the first argument, with the format string as the
358 second. As with the dprintf function, this can be anything that
359 GDB knows how to evaluate, so in addition to common choices like
360 "stderr", this could be an app-specific expression like
361 "mystreams[curlogger]". */
362
363 static char *dprintf_channel = "";
364
365 /* True if dprintf commands should continue to operate even if GDB
366 has disconnected. */
367 static int disconnected_dprintf = 1;
368
369 /* A reference-counted struct command_line. This lets multiple
370 breakpoints share a single command list. */
371 struct counted_command_line
372 {
373 /* The reference count. */
374 int refc;
375
376 /* The command list. */
377 struct command_line *commands;
378 };
379
380 struct command_line *
381 breakpoint_commands (struct breakpoint *b)
382 {
383 return b->commands ? b->commands->commands : NULL;
384 }
385
386 /* Flag indicating that a command has proceeded the inferior past the
387 current breakpoint. */
388
389 static int breakpoint_proceeded;
390
391 const char *
392 bpdisp_text (enum bpdisp disp)
393 {
394 /* NOTE: the following values are a part of MI protocol and
395 represent values of 'disp' field returned when inferior stops at
396 a breakpoint. */
397 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
398
399 return bpdisps[(int) disp];
400 }
401
402 /* Prototypes for exported functions. */
403 /* If FALSE, gdb will not use hardware support for watchpoints, even
404 if such is available. */
405 static int can_use_hw_watchpoints;
406
407 static void
408 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
409 struct cmd_list_element *c,
410 const char *value)
411 {
412 fprintf_filtered (file,
413 _("Debugger's willingness to use "
414 "watchpoint hardware is %s.\n"),
415 value);
416 }
417
418 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
419 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
420 for unrecognized breakpoint locations.
421 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
422 static enum auto_boolean pending_break_support;
423 static void
424 show_pending_break_support (struct ui_file *file, int from_tty,
425 struct cmd_list_element *c,
426 const char *value)
427 {
428 fprintf_filtered (file,
429 _("Debugger's behavior regarding "
430 "pending breakpoints is %s.\n"),
431 value);
432 }
433
434 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
435 set with "break" but falling in read-only memory.
436 If 0, gdb will warn about such breakpoints, but won't automatically
437 use hardware breakpoints. */
438 static int automatic_hardware_breakpoints;
439 static void
440 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
441 struct cmd_list_element *c,
442 const char *value)
443 {
444 fprintf_filtered (file,
445 _("Automatic usage of hardware breakpoints is %s.\n"),
446 value);
447 }
448
449 /* If on, GDB keeps breakpoints inserted even if the inferior is
450 stopped, and immediately inserts any new breakpoints as soon as
451 they're created. If off (default), GDB keeps breakpoints off of
452 the target as long as possible. That is, it delays inserting
453 breakpoints until the next resume, and removes them again when the
454 target fully stops. This is a bit safer in case GDB crashes while
455 processing user input. */
456 static int always_inserted_mode = 0;
457
458 static void
459 show_always_inserted_mode (struct ui_file *file, int from_tty,
460 struct cmd_list_element *c, const char *value)
461 {
462 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
463 value);
464 }
465
466 /* See breakpoint.h. */
467
468 int
469 breakpoints_should_be_inserted_now (void)
470 {
471 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
472 {
473 /* If breakpoints are global, they should be inserted even if no
474 thread under gdb's control is running, or even if there are
475 no threads under GDB's control yet. */
476 return 1;
477 }
478 else if (target_has_execution)
479 {
480 struct thread_info *tp;
481
482 if (always_inserted_mode)
483 {
484 /* The user wants breakpoints inserted even if all threads
485 are stopped. */
486 return 1;
487 }
488
489 if (threads_are_executing ())
490 return 1;
491
492 /* Don't remove breakpoints yet if, even though all threads are
493 stopped, we still have events to process. */
494 ALL_NON_EXITED_THREADS (tp)
495 if (tp->resumed
496 && tp->suspend.waitstatus_pending_p)
497 return 1;
498 }
499 return 0;
500 }
501
502 static const char condition_evaluation_both[] = "host or target";
503
504 /* Modes for breakpoint condition evaluation. */
505 static const char condition_evaluation_auto[] = "auto";
506 static const char condition_evaluation_host[] = "host";
507 static const char condition_evaluation_target[] = "target";
508 static const char *const condition_evaluation_enums[] = {
509 condition_evaluation_auto,
510 condition_evaluation_host,
511 condition_evaluation_target,
512 NULL
513 };
514
515 /* Global that holds the current mode for breakpoint condition evaluation. */
516 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
517
518 /* Global that we use to display information to the user (gets its value from
519 condition_evaluation_mode_1. */
520 static const char *condition_evaluation_mode = condition_evaluation_auto;
521
522 /* Translate a condition evaluation mode MODE into either "host"
523 or "target". This is used mostly to translate from "auto" to the
524 real setting that is being used. It returns the translated
525 evaluation mode. */
526
527 static const char *
528 translate_condition_evaluation_mode (const char *mode)
529 {
530 if (mode == condition_evaluation_auto)
531 {
532 if (target_supports_evaluation_of_breakpoint_conditions ())
533 return condition_evaluation_target;
534 else
535 return condition_evaluation_host;
536 }
537 else
538 return mode;
539 }
540
541 /* Discovers what condition_evaluation_auto translates to. */
542
543 static const char *
544 breakpoint_condition_evaluation_mode (void)
545 {
546 return translate_condition_evaluation_mode (condition_evaluation_mode);
547 }
548
549 /* Return true if GDB should evaluate breakpoint conditions or false
550 otherwise. */
551
552 static int
553 gdb_evaluates_breakpoint_condition_p (void)
554 {
555 const char *mode = breakpoint_condition_evaluation_mode ();
556
557 return (mode == condition_evaluation_host);
558 }
559
560 void _initialize_breakpoint (void);
561
562 /* Are we executing breakpoint commands? */
563 static int executing_breakpoint_commands;
564
565 /* Are overlay event breakpoints enabled? */
566 static int overlay_events_enabled;
567
568 /* See description in breakpoint.h. */
569 int target_exact_watchpoints = 0;
570
571 /* Walk the following statement or block through all breakpoints.
572 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
573 current breakpoint. */
574
575 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
576
577 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
578 for (B = breakpoint_chain; \
579 B ? (TMP=B->next, 1): 0; \
580 B = TMP)
581
582 /* Similar iterator for the low-level breakpoints. SAFE variant is
583 not provided so update_global_location_list must not be called
584 while executing the block of ALL_BP_LOCATIONS. */
585
586 #define ALL_BP_LOCATIONS(B,BP_TMP) \
587 for (BP_TMP = bp_location; \
588 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
589 BP_TMP++)
590
591 /* Iterates through locations with address ADDRESS for the currently selected
592 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
593 to where the loop should start from.
594 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
595 appropriate location to start with. */
596
597 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
598 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
599 BP_LOCP_TMP = BP_LOCP_START; \
600 BP_LOCP_START \
601 && (BP_LOCP_TMP < bp_location + bp_location_count \
602 && (*BP_LOCP_TMP)->address == ADDRESS); \
603 BP_LOCP_TMP++)
604
605 /* Iterator for tracepoints only. */
606
607 #define ALL_TRACEPOINTS(B) \
608 for (B = breakpoint_chain; B; B = B->next) \
609 if (is_tracepoint (B))
610
611 /* Chains of all breakpoints defined. */
612
613 struct breakpoint *breakpoint_chain;
614
615 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
616
617 static struct bp_location **bp_location;
618
619 /* Number of elements of BP_LOCATION. */
620
621 static unsigned bp_location_count;
622
623 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
624 ADDRESS for the current elements of BP_LOCATION which get a valid
625 result from bp_location_has_shadow. You can use it for roughly
626 limiting the subrange of BP_LOCATION to scan for shadow bytes for
627 an address you need to read. */
628
629 static CORE_ADDR bp_location_placed_address_before_address_max;
630
631 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
632 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
633 BP_LOCATION which get a valid result from bp_location_has_shadow.
634 You can use it for roughly limiting the subrange of BP_LOCATION to
635 scan for shadow bytes for an address you need to read. */
636
637 static CORE_ADDR bp_location_shadow_len_after_address_max;
638
639 /* The locations that no longer correspond to any breakpoint, unlinked
640 from bp_location array, but for which a hit may still be reported
641 by a target. */
642 VEC(bp_location_p) *moribund_locations = NULL;
643
644 /* Number of last breakpoint made. */
645
646 static int breakpoint_count;
647
648 /* The value of `breakpoint_count' before the last command that
649 created breakpoints. If the last (break-like) command created more
650 than one breakpoint, then the difference between BREAKPOINT_COUNT
651 and PREV_BREAKPOINT_COUNT is more than one. */
652 static int prev_breakpoint_count;
653
654 /* Number of last tracepoint made. */
655
656 static int tracepoint_count;
657
658 static struct cmd_list_element *breakpoint_set_cmdlist;
659 static struct cmd_list_element *breakpoint_show_cmdlist;
660 struct cmd_list_element *save_cmdlist;
661
662 /* See declaration at breakpoint.h. */
663
664 struct breakpoint *
665 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
666 void *user_data)
667 {
668 struct breakpoint *b = NULL;
669
670 ALL_BREAKPOINTS (b)
671 {
672 if (func (b, user_data) != 0)
673 break;
674 }
675
676 return b;
677 }
678
679 /* Return whether a breakpoint is an active enabled breakpoint. */
680 static int
681 breakpoint_enabled (struct breakpoint *b)
682 {
683 return (b->enable_state == bp_enabled);
684 }
685
686 /* Set breakpoint count to NUM. */
687
688 static void
689 set_breakpoint_count (int num)
690 {
691 prev_breakpoint_count = breakpoint_count;
692 breakpoint_count = num;
693 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
694 }
695
696 /* Used by `start_rbreak_breakpoints' below, to record the current
697 breakpoint count before "rbreak" creates any breakpoint. */
698 static int rbreak_start_breakpoint_count;
699
700 /* Called at the start an "rbreak" command to record the first
701 breakpoint made. */
702
703 void
704 start_rbreak_breakpoints (void)
705 {
706 rbreak_start_breakpoint_count = breakpoint_count;
707 }
708
709 /* Called at the end of an "rbreak" command to record the last
710 breakpoint made. */
711
712 void
713 end_rbreak_breakpoints (void)
714 {
715 prev_breakpoint_count = rbreak_start_breakpoint_count;
716 }
717
718 /* Used in run_command to zero the hit count when a new run starts. */
719
720 void
721 clear_breakpoint_hit_counts (void)
722 {
723 struct breakpoint *b;
724
725 ALL_BREAKPOINTS (b)
726 b->hit_count = 0;
727 }
728
729 /* Allocate a new counted_command_line with reference count of 1.
730 The new structure owns COMMANDS. */
731
732 static struct counted_command_line *
733 alloc_counted_command_line (struct command_line *commands)
734 {
735 struct counted_command_line *result = XNEW (struct counted_command_line);
736
737 result->refc = 1;
738 result->commands = commands;
739
740 return result;
741 }
742
743 /* Increment reference count. This does nothing if CMD is NULL. */
744
745 static void
746 incref_counted_command_line (struct counted_command_line *cmd)
747 {
748 if (cmd)
749 ++cmd->refc;
750 }
751
752 /* Decrement reference count. If the reference count reaches 0,
753 destroy the counted_command_line. Sets *CMDP to NULL. This does
754 nothing if *CMDP is NULL. */
755
756 static void
757 decref_counted_command_line (struct counted_command_line **cmdp)
758 {
759 if (*cmdp)
760 {
761 if (--(*cmdp)->refc == 0)
762 {
763 free_command_lines (&(*cmdp)->commands);
764 xfree (*cmdp);
765 }
766 *cmdp = NULL;
767 }
768 }
769
770 /* A cleanup function that calls decref_counted_command_line. */
771
772 static void
773 do_cleanup_counted_command_line (void *arg)
774 {
775 decref_counted_command_line ((struct counted_command_line **) arg);
776 }
777
778 /* Create a cleanup that calls decref_counted_command_line on the
779 argument. */
780
781 static struct cleanup *
782 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
783 {
784 return make_cleanup (do_cleanup_counted_command_line, cmdp);
785 }
786
787 \f
788 /* Return the breakpoint with the specified number, or NULL
789 if the number does not refer to an existing breakpoint. */
790
791 struct breakpoint *
792 get_breakpoint (int num)
793 {
794 struct breakpoint *b;
795
796 ALL_BREAKPOINTS (b)
797 if (b->number == num)
798 return b;
799
800 return NULL;
801 }
802
803 \f
804
805 /* Mark locations as "conditions have changed" in case the target supports
806 evaluating conditions on its side. */
807
808 static void
809 mark_breakpoint_modified (struct breakpoint *b)
810 {
811 struct bp_location *loc;
812
813 /* This is only meaningful if the target is
814 evaluating conditions and if the user has
815 opted for condition evaluation on the target's
816 side. */
817 if (gdb_evaluates_breakpoint_condition_p ()
818 || !target_supports_evaluation_of_breakpoint_conditions ())
819 return;
820
821 if (!is_breakpoint (b))
822 return;
823
824 for (loc = b->loc; loc; loc = loc->next)
825 loc->condition_changed = condition_modified;
826 }
827
828 /* Mark location as "conditions have changed" in case the target supports
829 evaluating conditions on its side. */
830
831 static void
832 mark_breakpoint_location_modified (struct bp_location *loc)
833 {
834 /* This is only meaningful if the target is
835 evaluating conditions and if the user has
836 opted for condition evaluation on the target's
837 side. */
838 if (gdb_evaluates_breakpoint_condition_p ()
839 || !target_supports_evaluation_of_breakpoint_conditions ())
840
841 return;
842
843 if (!is_breakpoint (loc->owner))
844 return;
845
846 loc->condition_changed = condition_modified;
847 }
848
849 /* Sets the condition-evaluation mode using the static global
850 condition_evaluation_mode. */
851
852 static void
853 set_condition_evaluation_mode (char *args, int from_tty,
854 struct cmd_list_element *c)
855 {
856 const char *old_mode, *new_mode;
857
858 if ((condition_evaluation_mode_1 == condition_evaluation_target)
859 && !target_supports_evaluation_of_breakpoint_conditions ())
860 {
861 condition_evaluation_mode_1 = condition_evaluation_mode;
862 warning (_("Target does not support breakpoint condition evaluation.\n"
863 "Using host evaluation mode instead."));
864 return;
865 }
866
867 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
868 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
869
870 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
871 settings was "auto". */
872 condition_evaluation_mode = condition_evaluation_mode_1;
873
874 /* Only update the mode if the user picked a different one. */
875 if (new_mode != old_mode)
876 {
877 struct bp_location *loc, **loc_tmp;
878 /* If the user switched to a different evaluation mode, we
879 need to synch the changes with the target as follows:
880
881 "host" -> "target": Send all (valid) conditions to the target.
882 "target" -> "host": Remove all the conditions from the target.
883 */
884
885 if (new_mode == condition_evaluation_target)
886 {
887 /* Mark everything modified and synch conditions with the
888 target. */
889 ALL_BP_LOCATIONS (loc, loc_tmp)
890 mark_breakpoint_location_modified (loc);
891 }
892 else
893 {
894 /* Manually mark non-duplicate locations to synch conditions
895 with the target. We do this to remove all the conditions the
896 target knows about. */
897 ALL_BP_LOCATIONS (loc, loc_tmp)
898 if (is_breakpoint (loc->owner) && loc->inserted)
899 loc->needs_update = 1;
900 }
901
902 /* Do the update. */
903 update_global_location_list (UGLL_MAY_INSERT);
904 }
905
906 return;
907 }
908
909 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
910 what "auto" is translating to. */
911
912 static void
913 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
914 struct cmd_list_element *c, const char *value)
915 {
916 if (condition_evaluation_mode == condition_evaluation_auto)
917 fprintf_filtered (file,
918 _("Breakpoint condition evaluation "
919 "mode is %s (currently %s).\n"),
920 value,
921 breakpoint_condition_evaluation_mode ());
922 else
923 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
924 value);
925 }
926
927 /* A comparison function for bp_location AP and BP that is used by
928 bsearch. This comparison function only cares about addresses, unlike
929 the more general bp_location_compare function. */
930
931 static int
932 bp_location_compare_addrs (const void *ap, const void *bp)
933 {
934 const struct bp_location *a = *(const struct bp_location **) ap;
935 const struct bp_location *b = *(const struct bp_location **) bp;
936
937 if (a->address == b->address)
938 return 0;
939 else
940 return ((a->address > b->address) - (a->address < b->address));
941 }
942
943 /* Helper function to skip all bp_locations with addresses
944 less than ADDRESS. It returns the first bp_location that
945 is greater than or equal to ADDRESS. If none is found, just
946 return NULL. */
947
948 static struct bp_location **
949 get_first_locp_gte_addr (CORE_ADDR address)
950 {
951 struct bp_location dummy_loc;
952 struct bp_location *dummy_locp = &dummy_loc;
953 struct bp_location **locp_found = NULL;
954
955 /* Initialize the dummy location's address field. */
956 memset (&dummy_loc, 0, sizeof (struct bp_location));
957 dummy_loc.address = address;
958
959 /* Find a close match to the first location at ADDRESS. */
960 locp_found = ((struct bp_location **)
961 bsearch (&dummy_locp, bp_location, bp_location_count,
962 sizeof (struct bp_location **),
963 bp_location_compare_addrs));
964
965 /* Nothing was found, nothing left to do. */
966 if (locp_found == NULL)
967 return NULL;
968
969 /* We may have found a location that is at ADDRESS but is not the first in the
970 location's list. Go backwards (if possible) and locate the first one. */
971 while ((locp_found - 1) >= bp_location
972 && (*(locp_found - 1))->address == address)
973 locp_found--;
974
975 return locp_found;
976 }
977
978 void
979 set_breakpoint_condition (struct breakpoint *b, const char *exp,
980 int from_tty)
981 {
982 xfree (b->cond_string);
983 b->cond_string = NULL;
984
985 if (is_watchpoint (b))
986 {
987 struct watchpoint *w = (struct watchpoint *) b;
988
989 xfree (w->cond_exp);
990 w->cond_exp = NULL;
991 }
992 else
993 {
994 struct bp_location *loc;
995
996 for (loc = b->loc; loc; loc = loc->next)
997 {
998 xfree (loc->cond);
999 loc->cond = NULL;
1000
1001 /* No need to free the condition agent expression
1002 bytecode (if we have one). We will handle this
1003 when we go through update_global_location_list. */
1004 }
1005 }
1006
1007 if (*exp == 0)
1008 {
1009 if (from_tty)
1010 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
1011 }
1012 else
1013 {
1014 const char *arg = exp;
1015
1016 /* I don't know if it matters whether this is the string the user
1017 typed in or the decompiled expression. */
1018 b->cond_string = xstrdup (arg);
1019 b->condition_not_parsed = 0;
1020
1021 if (is_watchpoint (b))
1022 {
1023 struct watchpoint *w = (struct watchpoint *) b;
1024
1025 innermost_block = NULL;
1026 arg = exp;
1027 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
1028 if (*arg)
1029 error (_("Junk at end of expression"));
1030 w->cond_exp_valid_block = innermost_block;
1031 }
1032 else
1033 {
1034 struct bp_location *loc;
1035
1036 for (loc = b->loc; loc; loc = loc->next)
1037 {
1038 arg = exp;
1039 loc->cond =
1040 parse_exp_1 (&arg, loc->address,
1041 block_for_pc (loc->address), 0);
1042 if (*arg)
1043 error (_("Junk at end of expression"));
1044 }
1045 }
1046 }
1047 mark_breakpoint_modified (b);
1048
1049 observer_notify_breakpoint_modified (b);
1050 }
1051
1052 /* Completion for the "condition" command. */
1053
1054 static VEC (char_ptr) *
1055 condition_completer (struct cmd_list_element *cmd,
1056 const char *text, const char *word)
1057 {
1058 const char *space;
1059
1060 text = skip_spaces_const (text);
1061 space = skip_to_space_const (text);
1062 if (*space == '\0')
1063 {
1064 int len;
1065 struct breakpoint *b;
1066 VEC (char_ptr) *result = NULL;
1067
1068 if (text[0] == '$')
1069 {
1070 /* We don't support completion of history indices. */
1071 if (isdigit (text[1]))
1072 return NULL;
1073 return complete_internalvar (&text[1]);
1074 }
1075
1076 /* We're completing the breakpoint number. */
1077 len = strlen (text);
1078
1079 ALL_BREAKPOINTS (b)
1080 {
1081 char number[50];
1082
1083 xsnprintf (number, sizeof (number), "%d", b->number);
1084
1085 if (strncmp (number, text, len) == 0)
1086 VEC_safe_push (char_ptr, result, xstrdup (number));
1087 }
1088
1089 return result;
1090 }
1091
1092 /* We're completing the expression part. */
1093 text = skip_spaces_const (space);
1094 return expression_completer (cmd, text, word);
1095 }
1096
1097 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1098
1099 static void
1100 condition_command (char *arg, int from_tty)
1101 {
1102 struct breakpoint *b;
1103 char *p;
1104 int bnum;
1105
1106 if (arg == 0)
1107 error_no_arg (_("breakpoint number"));
1108
1109 p = arg;
1110 bnum = get_number (&p);
1111 if (bnum == 0)
1112 error (_("Bad breakpoint argument: '%s'"), arg);
1113
1114 ALL_BREAKPOINTS (b)
1115 if (b->number == bnum)
1116 {
1117 /* Check if this breakpoint has a "stop" method implemented in an
1118 extension language. This method and conditions entered into GDB
1119 from the CLI are mutually exclusive. */
1120 const struct extension_language_defn *extlang
1121 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1122
1123 if (extlang != NULL)
1124 {
1125 error (_("Only one stop condition allowed. There is currently"
1126 " a %s stop condition defined for this breakpoint."),
1127 ext_lang_capitalized_name (extlang));
1128 }
1129 set_breakpoint_condition (b, p, from_tty);
1130
1131 if (is_breakpoint (b))
1132 update_global_location_list (UGLL_MAY_INSERT);
1133
1134 return;
1135 }
1136
1137 error (_("No breakpoint number %d."), bnum);
1138 }
1139
1140 /* Check that COMMAND do not contain commands that are suitable
1141 only for tracepoints and not suitable for ordinary breakpoints.
1142 Throw if any such commands is found. */
1143
1144 static void
1145 check_no_tracepoint_commands (struct command_line *commands)
1146 {
1147 struct command_line *c;
1148
1149 for (c = commands; c; c = c->next)
1150 {
1151 int i;
1152
1153 if (c->control_type == while_stepping_control)
1154 error (_("The 'while-stepping' command can "
1155 "only be used for tracepoints"));
1156
1157 for (i = 0; i < c->body_count; ++i)
1158 check_no_tracepoint_commands ((c->body_list)[i]);
1159
1160 /* Not that command parsing removes leading whitespace and comment
1161 lines and also empty lines. So, we only need to check for
1162 command directly. */
1163 if (strstr (c->line, "collect ") == c->line)
1164 error (_("The 'collect' command can only be used for tracepoints"));
1165
1166 if (strstr (c->line, "teval ") == c->line)
1167 error (_("The 'teval' command can only be used for tracepoints"));
1168 }
1169 }
1170
1171 /* Encapsulate tests for different types of tracepoints. */
1172
1173 static int
1174 is_tracepoint_type (enum bptype type)
1175 {
1176 return (type == bp_tracepoint
1177 || type == bp_fast_tracepoint
1178 || type == bp_static_tracepoint);
1179 }
1180
1181 int
1182 is_tracepoint (const struct breakpoint *b)
1183 {
1184 return is_tracepoint_type (b->type);
1185 }
1186
1187 /* A helper function that validates that COMMANDS are valid for a
1188 breakpoint. This function will throw an exception if a problem is
1189 found. */
1190
1191 static void
1192 validate_commands_for_breakpoint (struct breakpoint *b,
1193 struct command_line *commands)
1194 {
1195 if (is_tracepoint (b))
1196 {
1197 struct tracepoint *t = (struct tracepoint *) b;
1198 struct command_line *c;
1199 struct command_line *while_stepping = 0;
1200
1201 /* Reset the while-stepping step count. The previous commands
1202 might have included a while-stepping action, while the new
1203 ones might not. */
1204 t->step_count = 0;
1205
1206 /* We need to verify that each top-level element of commands is
1207 valid for tracepoints, that there's at most one
1208 while-stepping element, and that the while-stepping's body
1209 has valid tracing commands excluding nested while-stepping.
1210 We also need to validate the tracepoint action line in the
1211 context of the tracepoint --- validate_actionline actually
1212 has side effects, like setting the tracepoint's
1213 while-stepping STEP_COUNT, in addition to checking if the
1214 collect/teval actions parse and make sense in the
1215 tracepoint's context. */
1216 for (c = commands; c; c = c->next)
1217 {
1218 if (c->control_type == while_stepping_control)
1219 {
1220 if (b->type == bp_fast_tracepoint)
1221 error (_("The 'while-stepping' command "
1222 "cannot be used for fast tracepoint"));
1223 else if (b->type == bp_static_tracepoint)
1224 error (_("The 'while-stepping' command "
1225 "cannot be used for static tracepoint"));
1226
1227 if (while_stepping)
1228 error (_("The 'while-stepping' command "
1229 "can be used only once"));
1230 else
1231 while_stepping = c;
1232 }
1233
1234 validate_actionline (c->line, b);
1235 }
1236 if (while_stepping)
1237 {
1238 struct command_line *c2;
1239
1240 gdb_assert (while_stepping->body_count == 1);
1241 c2 = while_stepping->body_list[0];
1242 for (; c2; c2 = c2->next)
1243 {
1244 if (c2->control_type == while_stepping_control)
1245 error (_("The 'while-stepping' command cannot be nested"));
1246 }
1247 }
1248 }
1249 else
1250 {
1251 check_no_tracepoint_commands (commands);
1252 }
1253 }
1254
1255 /* Return a vector of all the static tracepoints set at ADDR. The
1256 caller is responsible for releasing the vector. */
1257
1258 VEC(breakpoint_p) *
1259 static_tracepoints_here (CORE_ADDR addr)
1260 {
1261 struct breakpoint *b;
1262 VEC(breakpoint_p) *found = 0;
1263 struct bp_location *loc;
1264
1265 ALL_BREAKPOINTS (b)
1266 if (b->type == bp_static_tracepoint)
1267 {
1268 for (loc = b->loc; loc; loc = loc->next)
1269 if (loc->address == addr)
1270 VEC_safe_push(breakpoint_p, found, b);
1271 }
1272
1273 return found;
1274 }
1275
1276 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1277 validate that only allowed commands are included. */
1278
1279 void
1280 breakpoint_set_commands (struct breakpoint *b,
1281 struct command_line *commands)
1282 {
1283 validate_commands_for_breakpoint (b, commands);
1284
1285 decref_counted_command_line (&b->commands);
1286 b->commands = alloc_counted_command_line (commands);
1287 observer_notify_breakpoint_modified (b);
1288 }
1289
1290 /* Set the internal `silent' flag on the breakpoint. Note that this
1291 is not the same as the "silent" that may appear in the breakpoint's
1292 commands. */
1293
1294 void
1295 breakpoint_set_silent (struct breakpoint *b, int silent)
1296 {
1297 int old_silent = b->silent;
1298
1299 b->silent = silent;
1300 if (old_silent != silent)
1301 observer_notify_breakpoint_modified (b);
1302 }
1303
1304 /* Set the thread for this breakpoint. If THREAD is -1, make the
1305 breakpoint work for any thread. */
1306
1307 void
1308 breakpoint_set_thread (struct breakpoint *b, int thread)
1309 {
1310 int old_thread = b->thread;
1311
1312 b->thread = thread;
1313 if (old_thread != thread)
1314 observer_notify_breakpoint_modified (b);
1315 }
1316
1317 /* Set the task for this breakpoint. If TASK is 0, make the
1318 breakpoint work for any task. */
1319
1320 void
1321 breakpoint_set_task (struct breakpoint *b, int task)
1322 {
1323 int old_task = b->task;
1324
1325 b->task = task;
1326 if (old_task != task)
1327 observer_notify_breakpoint_modified (b);
1328 }
1329
1330 void
1331 check_tracepoint_command (char *line, void *closure)
1332 {
1333 struct breakpoint *b = (struct breakpoint *) closure;
1334
1335 validate_actionline (line, b);
1336 }
1337
1338 /* A structure used to pass information through
1339 map_breakpoint_numbers. */
1340
1341 struct commands_info
1342 {
1343 /* True if the command was typed at a tty. */
1344 int from_tty;
1345
1346 /* The breakpoint range spec. */
1347 char *arg;
1348
1349 /* Non-NULL if the body of the commands are being read from this
1350 already-parsed command. */
1351 struct command_line *control;
1352
1353 /* The command lines read from the user, or NULL if they have not
1354 yet been read. */
1355 struct counted_command_line *cmd;
1356 };
1357
1358 /* A callback for map_breakpoint_numbers that sets the commands for
1359 commands_command. */
1360
1361 static void
1362 do_map_commands_command (struct breakpoint *b, void *data)
1363 {
1364 struct commands_info *info = (struct commands_info *) data;
1365
1366 if (info->cmd == NULL)
1367 {
1368 struct command_line *l;
1369
1370 if (info->control != NULL)
1371 l = copy_command_lines (info->control->body_list[0]);
1372 else
1373 {
1374 struct cleanup *old_chain;
1375 char *str;
1376
1377 str = xstrprintf (_("Type commands for breakpoint(s) "
1378 "%s, one per line."),
1379 info->arg);
1380
1381 old_chain = make_cleanup (xfree, str);
1382
1383 l = read_command_lines (str,
1384 info->from_tty, 1,
1385 (is_tracepoint (b)
1386 ? check_tracepoint_command : 0),
1387 b);
1388
1389 do_cleanups (old_chain);
1390 }
1391
1392 info->cmd = alloc_counted_command_line (l);
1393 }
1394
1395 /* If a breakpoint was on the list more than once, we don't need to
1396 do anything. */
1397 if (b->commands != info->cmd)
1398 {
1399 validate_commands_for_breakpoint (b, info->cmd->commands);
1400 incref_counted_command_line (info->cmd);
1401 decref_counted_command_line (&b->commands);
1402 b->commands = info->cmd;
1403 observer_notify_breakpoint_modified (b);
1404 }
1405 }
1406
1407 static void
1408 commands_command_1 (char *arg, int from_tty,
1409 struct command_line *control)
1410 {
1411 struct cleanup *cleanups;
1412 struct commands_info info;
1413
1414 info.from_tty = from_tty;
1415 info.control = control;
1416 info.cmd = NULL;
1417 /* If we read command lines from the user, then `info' will hold an
1418 extra reference to the commands that we must clean up. */
1419 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1420
1421 if (arg == NULL || !*arg)
1422 {
1423 if (breakpoint_count - prev_breakpoint_count > 1)
1424 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1425 breakpoint_count);
1426 else if (breakpoint_count > 0)
1427 arg = xstrprintf ("%d", breakpoint_count);
1428 else
1429 {
1430 /* So that we don't try to free the incoming non-NULL
1431 argument in the cleanup below. Mapping breakpoint
1432 numbers will fail in this case. */
1433 arg = NULL;
1434 }
1435 }
1436 else
1437 /* The command loop has some static state, so we need to preserve
1438 our argument. */
1439 arg = xstrdup (arg);
1440
1441 if (arg != NULL)
1442 make_cleanup (xfree, arg);
1443
1444 info.arg = arg;
1445
1446 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1447
1448 if (info.cmd == NULL)
1449 error (_("No breakpoints specified."));
1450
1451 do_cleanups (cleanups);
1452 }
1453
1454 static void
1455 commands_command (char *arg, int from_tty)
1456 {
1457 commands_command_1 (arg, from_tty, NULL);
1458 }
1459
1460 /* Like commands_command, but instead of reading the commands from
1461 input stream, takes them from an already parsed command structure.
1462
1463 This is used by cli-script.c to DTRT with breakpoint commands
1464 that are part of if and while bodies. */
1465 enum command_control_type
1466 commands_from_control_command (char *arg, struct command_line *cmd)
1467 {
1468 commands_command_1 (arg, 0, cmd);
1469 return simple_control;
1470 }
1471
1472 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1473
1474 static int
1475 bp_location_has_shadow (struct bp_location *bl)
1476 {
1477 if (bl->loc_type != bp_loc_software_breakpoint)
1478 return 0;
1479 if (!bl->inserted)
1480 return 0;
1481 if (bl->target_info.shadow_len == 0)
1482 /* BL isn't valid, or doesn't shadow memory. */
1483 return 0;
1484 return 1;
1485 }
1486
1487 /* Update BUF, which is LEN bytes read from the target address
1488 MEMADDR, by replacing a memory breakpoint with its shadowed
1489 contents.
1490
1491 If READBUF is not NULL, this buffer must not overlap with the of
1492 the breakpoint location's shadow_contents buffer. Otherwise, a
1493 failed assertion internal error will be raised. */
1494
1495 static void
1496 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1497 const gdb_byte *writebuf_org,
1498 ULONGEST memaddr, LONGEST len,
1499 struct bp_target_info *target_info,
1500 struct gdbarch *gdbarch)
1501 {
1502 /* Now do full processing of the found relevant range of elements. */
1503 CORE_ADDR bp_addr = 0;
1504 int bp_size = 0;
1505 int bptoffset = 0;
1506
1507 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1508 current_program_space->aspace, 0))
1509 {
1510 /* The breakpoint is inserted in a different address space. */
1511 return;
1512 }
1513
1514 /* Addresses and length of the part of the breakpoint that
1515 we need to copy. */
1516 bp_addr = target_info->placed_address;
1517 bp_size = target_info->shadow_len;
1518
1519 if (bp_addr + bp_size <= memaddr)
1520 {
1521 /* The breakpoint is entirely before the chunk of memory we are
1522 reading. */
1523 return;
1524 }
1525
1526 if (bp_addr >= memaddr + len)
1527 {
1528 /* The breakpoint is entirely after the chunk of memory we are
1529 reading. */
1530 return;
1531 }
1532
1533 /* Offset within shadow_contents. */
1534 if (bp_addr < memaddr)
1535 {
1536 /* Only copy the second part of the breakpoint. */
1537 bp_size -= memaddr - bp_addr;
1538 bptoffset = memaddr - bp_addr;
1539 bp_addr = memaddr;
1540 }
1541
1542 if (bp_addr + bp_size > memaddr + len)
1543 {
1544 /* Only copy the first part of the breakpoint. */
1545 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1546 }
1547
1548 if (readbuf != NULL)
1549 {
1550 /* Verify that the readbuf buffer does not overlap with the
1551 shadow_contents buffer. */
1552 gdb_assert (target_info->shadow_contents >= readbuf + len
1553 || readbuf >= (target_info->shadow_contents
1554 + target_info->shadow_len));
1555
1556 /* Update the read buffer with this inserted breakpoint's
1557 shadow. */
1558 memcpy (readbuf + bp_addr - memaddr,
1559 target_info->shadow_contents + bptoffset, bp_size);
1560 }
1561 else
1562 {
1563 const unsigned char *bp;
1564 CORE_ADDR addr = target_info->reqstd_address;
1565 int placed_size;
1566
1567 /* Update the shadow with what we want to write to memory. */
1568 memcpy (target_info->shadow_contents + bptoffset,
1569 writebuf_org + bp_addr - memaddr, bp_size);
1570
1571 /* Determine appropriate breakpoint contents and size for this
1572 address. */
1573 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1574
1575 /* Update the final write buffer with this inserted
1576 breakpoint's INSN. */
1577 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1578 }
1579 }
1580
1581 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1582 by replacing any memory breakpoints with their shadowed contents.
1583
1584 If READBUF is not NULL, this buffer must not overlap with any of
1585 the breakpoint location's shadow_contents buffers. Otherwise,
1586 a failed assertion internal error will be raised.
1587
1588 The range of shadowed area by each bp_location is:
1589 bl->address - bp_location_placed_address_before_address_max
1590 up to bl->address + bp_location_shadow_len_after_address_max
1591 The range we were requested to resolve shadows for is:
1592 memaddr ... memaddr + len
1593 Thus the safe cutoff boundaries for performance optimization are
1594 memaddr + len <= (bl->address
1595 - bp_location_placed_address_before_address_max)
1596 and:
1597 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1598
1599 void
1600 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1601 const gdb_byte *writebuf_org,
1602 ULONGEST memaddr, LONGEST len)
1603 {
1604 /* Left boundary, right boundary and median element of our binary
1605 search. */
1606 unsigned bc_l, bc_r, bc;
1607 size_t i;
1608
1609 /* Find BC_L which is a leftmost element which may affect BUF
1610 content. It is safe to report lower value but a failure to
1611 report higher one. */
1612
1613 bc_l = 0;
1614 bc_r = bp_location_count;
1615 while (bc_l + 1 < bc_r)
1616 {
1617 struct bp_location *bl;
1618
1619 bc = (bc_l + bc_r) / 2;
1620 bl = bp_location[bc];
1621
1622 /* Check first BL->ADDRESS will not overflow due to the added
1623 constant. Then advance the left boundary only if we are sure
1624 the BC element can in no way affect the BUF content (MEMADDR
1625 to MEMADDR + LEN range).
1626
1627 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1628 offset so that we cannot miss a breakpoint with its shadow
1629 range tail still reaching MEMADDR. */
1630
1631 if ((bl->address + bp_location_shadow_len_after_address_max
1632 >= bl->address)
1633 && (bl->address + bp_location_shadow_len_after_address_max
1634 <= memaddr))
1635 bc_l = bc;
1636 else
1637 bc_r = bc;
1638 }
1639
1640 /* Due to the binary search above, we need to make sure we pick the
1641 first location that's at BC_L's address. E.g., if there are
1642 multiple locations at the same address, BC_L may end up pointing
1643 at a duplicate location, and miss the "master"/"inserted"
1644 location. Say, given locations L1, L2 and L3 at addresses A and
1645 B:
1646
1647 L1@A, L2@A, L3@B, ...
1648
1649 BC_L could end up pointing at location L2, while the "master"
1650 location could be L1. Since the `loc->inserted' flag is only set
1651 on "master" locations, we'd forget to restore the shadow of L1
1652 and L2. */
1653 while (bc_l > 0
1654 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1655 bc_l--;
1656
1657 /* Now do full processing of the found relevant range of elements. */
1658
1659 for (bc = bc_l; bc < bp_location_count; bc++)
1660 {
1661 struct bp_location *bl = bp_location[bc];
1662 CORE_ADDR bp_addr = 0;
1663 int bp_size = 0;
1664 int bptoffset = 0;
1665
1666 /* bp_location array has BL->OWNER always non-NULL. */
1667 if (bl->owner->type == bp_none)
1668 warning (_("reading through apparently deleted breakpoint #%d?"),
1669 bl->owner->number);
1670
1671 /* Performance optimization: any further element can no longer affect BUF
1672 content. */
1673
1674 if (bl->address >= bp_location_placed_address_before_address_max
1675 && memaddr + len <= (bl->address
1676 - bp_location_placed_address_before_address_max))
1677 break;
1678
1679 if (!bp_location_has_shadow (bl))
1680 continue;
1681
1682 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1683 memaddr, len, &bl->target_info, bl->gdbarch);
1684 }
1685 }
1686
1687 \f
1688
1689 /* Return true if BPT is either a software breakpoint or a hardware
1690 breakpoint. */
1691
1692 int
1693 is_breakpoint (const struct breakpoint *bpt)
1694 {
1695 return (bpt->type == bp_breakpoint
1696 || bpt->type == bp_hardware_breakpoint
1697 || bpt->type == bp_dprintf);
1698 }
1699
1700 /* Return true if BPT is of any hardware watchpoint kind. */
1701
1702 static int
1703 is_hardware_watchpoint (const struct breakpoint *bpt)
1704 {
1705 return (bpt->type == bp_hardware_watchpoint
1706 || bpt->type == bp_read_watchpoint
1707 || bpt->type == bp_access_watchpoint);
1708 }
1709
1710 /* Return true if BPT is of any watchpoint kind, hardware or
1711 software. */
1712
1713 int
1714 is_watchpoint (const struct breakpoint *bpt)
1715 {
1716 return (is_hardware_watchpoint (bpt)
1717 || bpt->type == bp_watchpoint);
1718 }
1719
1720 /* Returns true if the current thread and its running state are safe
1721 to evaluate or update watchpoint B. Watchpoints on local
1722 expressions need to be evaluated in the context of the thread that
1723 was current when the watchpoint was created, and, that thread needs
1724 to be stopped to be able to select the correct frame context.
1725 Watchpoints on global expressions can be evaluated on any thread,
1726 and in any state. It is presently left to the target allowing
1727 memory accesses when threads are running. */
1728
1729 static int
1730 watchpoint_in_thread_scope (struct watchpoint *b)
1731 {
1732 return (b->base.pspace == current_program_space
1733 && (ptid_equal (b->watchpoint_thread, null_ptid)
1734 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1735 && !is_executing (inferior_ptid))));
1736 }
1737
1738 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1739 associated bp_watchpoint_scope breakpoint. */
1740
1741 static void
1742 watchpoint_del_at_next_stop (struct watchpoint *w)
1743 {
1744 struct breakpoint *b = &w->base;
1745
1746 if (b->related_breakpoint != b)
1747 {
1748 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1749 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1750 b->related_breakpoint->disposition = disp_del_at_next_stop;
1751 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1752 b->related_breakpoint = b;
1753 }
1754 b->disposition = disp_del_at_next_stop;
1755 }
1756
1757 /* Extract a bitfield value from value VAL using the bit parameters contained in
1758 watchpoint W. */
1759
1760 static struct value *
1761 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1762 {
1763 struct value *bit_val;
1764
1765 if (val == NULL)
1766 return NULL;
1767
1768 bit_val = allocate_value (value_type (val));
1769
1770 unpack_value_bitfield (bit_val,
1771 w->val_bitpos,
1772 w->val_bitsize,
1773 value_contents_for_printing (val),
1774 value_offset (val),
1775 val);
1776
1777 return bit_val;
1778 }
1779
1780 /* Allocate a dummy location and add it to B, which must be a software
1781 watchpoint. This is required because even if a software watchpoint
1782 is not watching any memory, bpstat_stop_status requires a location
1783 to be able to report stops. */
1784
1785 static void
1786 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1787 struct program_space *pspace)
1788 {
1789 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1790
1791 b->loc = allocate_bp_location (b);
1792 b->loc->pspace = pspace;
1793 b->loc->address = -1;
1794 b->loc->length = -1;
1795 }
1796
1797 /* Returns true if B is a software watchpoint that is not watching any
1798 memory (e.g., "watch $pc"). */
1799
1800 static int
1801 is_no_memory_software_watchpoint (struct breakpoint *b)
1802 {
1803 return (b->type == bp_watchpoint
1804 && b->loc != NULL
1805 && b->loc->next == NULL
1806 && b->loc->address == -1
1807 && b->loc->length == -1);
1808 }
1809
1810 /* Assuming that B is a watchpoint:
1811 - Reparse watchpoint expression, if REPARSE is non-zero
1812 - Evaluate expression and store the result in B->val
1813 - Evaluate the condition if there is one, and store the result
1814 in b->loc->cond.
1815 - Update the list of values that must be watched in B->loc.
1816
1817 If the watchpoint disposition is disp_del_at_next_stop, then do
1818 nothing. If this is local watchpoint that is out of scope, delete
1819 it.
1820
1821 Even with `set breakpoint always-inserted on' the watchpoints are
1822 removed + inserted on each stop here. Normal breakpoints must
1823 never be removed because they might be missed by a running thread
1824 when debugging in non-stop mode. On the other hand, hardware
1825 watchpoints (is_hardware_watchpoint; processed here) are specific
1826 to each LWP since they are stored in each LWP's hardware debug
1827 registers. Therefore, such LWP must be stopped first in order to
1828 be able to modify its hardware watchpoints.
1829
1830 Hardware watchpoints must be reset exactly once after being
1831 presented to the user. It cannot be done sooner, because it would
1832 reset the data used to present the watchpoint hit to the user. And
1833 it must not be done later because it could display the same single
1834 watchpoint hit during multiple GDB stops. Note that the latter is
1835 relevant only to the hardware watchpoint types bp_read_watchpoint
1836 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1837 not user-visible - its hit is suppressed if the memory content has
1838 not changed.
1839
1840 The following constraints influence the location where we can reset
1841 hardware watchpoints:
1842
1843 * target_stopped_by_watchpoint and target_stopped_data_address are
1844 called several times when GDB stops.
1845
1846 [linux]
1847 * Multiple hardware watchpoints can be hit at the same time,
1848 causing GDB to stop. GDB only presents one hardware watchpoint
1849 hit at a time as the reason for stopping, and all the other hits
1850 are presented later, one after the other, each time the user
1851 requests the execution to be resumed. Execution is not resumed
1852 for the threads still having pending hit event stored in
1853 LWP_INFO->STATUS. While the watchpoint is already removed from
1854 the inferior on the first stop the thread hit event is kept being
1855 reported from its cached value by linux_nat_stopped_data_address
1856 until the real thread resume happens after the watchpoint gets
1857 presented and thus its LWP_INFO->STATUS gets reset.
1858
1859 Therefore the hardware watchpoint hit can get safely reset on the
1860 watchpoint removal from inferior. */
1861
1862 static void
1863 update_watchpoint (struct watchpoint *b, int reparse)
1864 {
1865 int within_current_scope;
1866 struct frame_id saved_frame_id;
1867 int frame_saved;
1868
1869 /* If this is a local watchpoint, we only want to check if the
1870 watchpoint frame is in scope if the current thread is the thread
1871 that was used to create the watchpoint. */
1872 if (!watchpoint_in_thread_scope (b))
1873 return;
1874
1875 if (b->base.disposition == disp_del_at_next_stop)
1876 return;
1877
1878 frame_saved = 0;
1879
1880 /* Determine if the watchpoint is within scope. */
1881 if (b->exp_valid_block == NULL)
1882 within_current_scope = 1;
1883 else
1884 {
1885 struct frame_info *fi = get_current_frame ();
1886 struct gdbarch *frame_arch = get_frame_arch (fi);
1887 CORE_ADDR frame_pc = get_frame_pc (fi);
1888
1889 /* If we're at a point where the stack has been destroyed
1890 (e.g. in a function epilogue), unwinding may not work
1891 properly. Do not attempt to recreate locations at this
1892 point. See similar comments in watchpoint_check. */
1893 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1894 return;
1895
1896 /* Save the current frame's ID so we can restore it after
1897 evaluating the watchpoint expression on its own frame. */
1898 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1899 took a frame parameter, so that we didn't have to change the
1900 selected frame. */
1901 frame_saved = 1;
1902 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1903
1904 fi = frame_find_by_id (b->watchpoint_frame);
1905 within_current_scope = (fi != NULL);
1906 if (within_current_scope)
1907 select_frame (fi);
1908 }
1909
1910 /* We don't free locations. They are stored in the bp_location array
1911 and update_global_location_list will eventually delete them and
1912 remove breakpoints if needed. */
1913 b->base.loc = NULL;
1914
1915 if (within_current_scope && reparse)
1916 {
1917 const char *s;
1918
1919 if (b->exp)
1920 {
1921 xfree (b->exp);
1922 b->exp = NULL;
1923 }
1924 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1925 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1926 /* If the meaning of expression itself changed, the old value is
1927 no longer relevant. We don't want to report a watchpoint hit
1928 to the user when the old value and the new value may actually
1929 be completely different objects. */
1930 value_free (b->val);
1931 b->val = NULL;
1932 b->val_valid = 0;
1933
1934 /* Note that unlike with breakpoints, the watchpoint's condition
1935 expression is stored in the breakpoint object, not in the
1936 locations (re)created below. */
1937 if (b->base.cond_string != NULL)
1938 {
1939 if (b->cond_exp != NULL)
1940 {
1941 xfree (b->cond_exp);
1942 b->cond_exp = NULL;
1943 }
1944
1945 s = b->base.cond_string;
1946 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1947 }
1948 }
1949
1950 /* If we failed to parse the expression, for example because
1951 it refers to a global variable in a not-yet-loaded shared library,
1952 don't try to insert watchpoint. We don't automatically delete
1953 such watchpoint, though, since failure to parse expression
1954 is different from out-of-scope watchpoint. */
1955 if (!target_has_execution)
1956 {
1957 /* Without execution, memory can't change. No use to try and
1958 set watchpoint locations. The watchpoint will be reset when
1959 the target gains execution, through breakpoint_re_set. */
1960 if (!can_use_hw_watchpoints)
1961 {
1962 if (b->base.ops->works_in_software_mode (&b->base))
1963 b->base.type = bp_watchpoint;
1964 else
1965 error (_("Can't set read/access watchpoint when "
1966 "hardware watchpoints are disabled."));
1967 }
1968 }
1969 else if (within_current_scope && b->exp)
1970 {
1971 int pc = 0;
1972 struct value *val_chain, *v, *result, *next;
1973 struct program_space *frame_pspace;
1974
1975 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain, 0);
1976
1977 /* Avoid setting b->val if it's already set. The meaning of
1978 b->val is 'the last value' user saw, and we should update
1979 it only if we reported that last value to user. As it
1980 happens, the code that reports it updates b->val directly.
1981 We don't keep track of the memory value for masked
1982 watchpoints. */
1983 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1984 {
1985 if (b->val_bitsize != 0)
1986 {
1987 v = extract_bitfield_from_watchpoint_value (b, v);
1988 if (v != NULL)
1989 release_value (v);
1990 }
1991 b->val = v;
1992 b->val_valid = 1;
1993 }
1994
1995 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1996
1997 /* Look at each value on the value chain. */
1998 for (v = val_chain; v; v = value_next (v))
1999 {
2000 /* If it's a memory location, and GDB actually needed
2001 its contents to evaluate the expression, then we
2002 must watch it. If the first value returned is
2003 still lazy, that means an error occurred reading it;
2004 watch it anyway in case it becomes readable. */
2005 if (VALUE_LVAL (v) == lval_memory
2006 && (v == val_chain || ! value_lazy (v)))
2007 {
2008 struct type *vtype = check_typedef (value_type (v));
2009
2010 /* We only watch structs and arrays if user asked
2011 for it explicitly, never if they just happen to
2012 appear in the middle of some value chain. */
2013 if (v == result
2014 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
2015 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
2016 {
2017 CORE_ADDR addr;
2018 enum target_hw_bp_type type;
2019 struct bp_location *loc, **tmp;
2020 int bitpos = 0, bitsize = 0;
2021
2022 if (value_bitsize (v) != 0)
2023 {
2024 /* Extract the bit parameters out from the bitfield
2025 sub-expression. */
2026 bitpos = value_bitpos (v);
2027 bitsize = value_bitsize (v);
2028 }
2029 else if (v == result && b->val_bitsize != 0)
2030 {
2031 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
2032 lvalue whose bit parameters are saved in the fields
2033 VAL_BITPOS and VAL_BITSIZE. */
2034 bitpos = b->val_bitpos;
2035 bitsize = b->val_bitsize;
2036 }
2037
2038 addr = value_address (v);
2039 if (bitsize != 0)
2040 {
2041 /* Skip the bytes that don't contain the bitfield. */
2042 addr += bitpos / 8;
2043 }
2044
2045 type = hw_write;
2046 if (b->base.type == bp_read_watchpoint)
2047 type = hw_read;
2048 else if (b->base.type == bp_access_watchpoint)
2049 type = hw_access;
2050
2051 loc = allocate_bp_location (&b->base);
2052 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
2053 ;
2054 *tmp = loc;
2055 loc->gdbarch = get_type_arch (value_type (v));
2056
2057 loc->pspace = frame_pspace;
2058 loc->address = addr;
2059
2060 if (bitsize != 0)
2061 {
2062 /* Just cover the bytes that make up the bitfield. */
2063 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
2064 }
2065 else
2066 loc->length = TYPE_LENGTH (value_type (v));
2067
2068 loc->watchpoint_type = type;
2069 }
2070 }
2071 }
2072
2073 /* Change the type of breakpoint between hardware assisted or
2074 an ordinary watchpoint depending on the hardware support
2075 and free hardware slots. REPARSE is set when the inferior
2076 is started. */
2077 if (reparse)
2078 {
2079 int reg_cnt;
2080 enum bp_loc_type loc_type;
2081 struct bp_location *bl;
2082
2083 reg_cnt = can_use_hardware_watchpoint (val_chain);
2084
2085 if (reg_cnt)
2086 {
2087 int i, target_resources_ok, other_type_used;
2088 enum bptype type;
2089
2090 /* Use an exact watchpoint when there's only one memory region to be
2091 watched, and only one debug register is needed to watch it. */
2092 b->exact = target_exact_watchpoints && reg_cnt == 1;
2093
2094 /* We need to determine how many resources are already
2095 used for all other hardware watchpoints plus this one
2096 to see if we still have enough resources to also fit
2097 this watchpoint in as well. */
2098
2099 /* If this is a software watchpoint, we try to turn it
2100 to a hardware one -- count resources as if B was of
2101 hardware watchpoint type. */
2102 type = b->base.type;
2103 if (type == bp_watchpoint)
2104 type = bp_hardware_watchpoint;
2105
2106 /* This watchpoint may or may not have been placed on
2107 the list yet at this point (it won't be in the list
2108 if we're trying to create it for the first time,
2109 through watch_command), so always account for it
2110 manually. */
2111
2112 /* Count resources used by all watchpoints except B. */
2113 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
2114
2115 /* Add in the resources needed for B. */
2116 i += hw_watchpoint_use_count (&b->base);
2117
2118 target_resources_ok
2119 = target_can_use_hardware_watchpoint (type, i, other_type_used);
2120 if (target_resources_ok <= 0)
2121 {
2122 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
2123
2124 if (target_resources_ok == 0 && !sw_mode)
2125 error (_("Target does not support this type of "
2126 "hardware watchpoint."));
2127 else if (target_resources_ok < 0 && !sw_mode)
2128 error (_("There are not enough available hardware "
2129 "resources for this watchpoint."));
2130
2131 /* Downgrade to software watchpoint. */
2132 b->base.type = bp_watchpoint;
2133 }
2134 else
2135 {
2136 /* If this was a software watchpoint, we've just
2137 found we have enough resources to turn it to a
2138 hardware watchpoint. Otherwise, this is a
2139 nop. */
2140 b->base.type = type;
2141 }
2142 }
2143 else if (!b->base.ops->works_in_software_mode (&b->base))
2144 {
2145 if (!can_use_hw_watchpoints)
2146 error (_("Can't set read/access watchpoint when "
2147 "hardware watchpoints are disabled."));
2148 else
2149 error (_("Expression cannot be implemented with "
2150 "read/access watchpoint."));
2151 }
2152 else
2153 b->base.type = bp_watchpoint;
2154
2155 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
2156 : bp_loc_hardware_watchpoint);
2157 for (bl = b->base.loc; bl; bl = bl->next)
2158 bl->loc_type = loc_type;
2159 }
2160
2161 for (v = val_chain; v; v = next)
2162 {
2163 next = value_next (v);
2164 if (v != b->val)
2165 value_free (v);
2166 }
2167
2168 /* If a software watchpoint is not watching any memory, then the
2169 above left it without any location set up. But,
2170 bpstat_stop_status requires a location to be able to report
2171 stops, so make sure there's at least a dummy one. */
2172 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
2173 software_watchpoint_add_no_memory_location (&b->base, frame_pspace);
2174 }
2175 else if (!within_current_scope)
2176 {
2177 printf_filtered (_("\
2178 Watchpoint %d deleted because the program has left the block\n\
2179 in which its expression is valid.\n"),
2180 b->base.number);
2181 watchpoint_del_at_next_stop (b);
2182 }
2183
2184 /* Restore the selected frame. */
2185 if (frame_saved)
2186 select_frame (frame_find_by_id (saved_frame_id));
2187 }
2188
2189
2190 /* Returns 1 iff breakpoint location should be
2191 inserted in the inferior. We don't differentiate the type of BL's owner
2192 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2193 breakpoint_ops is not defined, because in insert_bp_location,
2194 tracepoint's insert_location will not be called. */
2195 static int
2196 should_be_inserted (struct bp_location *bl)
2197 {
2198 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2199 return 0;
2200
2201 if (bl->owner->disposition == disp_del_at_next_stop)
2202 return 0;
2203
2204 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2205 return 0;
2206
2207 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2208 return 0;
2209
2210 /* This is set for example, when we're attached to the parent of a
2211 vfork, and have detached from the child. The child is running
2212 free, and we expect it to do an exec or exit, at which point the
2213 OS makes the parent schedulable again (and the target reports
2214 that the vfork is done). Until the child is done with the shared
2215 memory region, do not insert breakpoints in the parent, otherwise
2216 the child could still trip on the parent's breakpoints. Since
2217 the parent is blocked anyway, it won't miss any breakpoint. */
2218 if (bl->pspace->breakpoints_not_allowed)
2219 return 0;
2220
2221 /* Don't insert a breakpoint if we're trying to step past its
2222 location. */
2223 if ((bl->loc_type == bp_loc_software_breakpoint
2224 || bl->loc_type == bp_loc_hardware_breakpoint)
2225 && stepping_past_instruction_at (bl->pspace->aspace,
2226 bl->address))
2227 {
2228 if (debug_infrun)
2229 {
2230 fprintf_unfiltered (gdb_stdlog,
2231 "infrun: skipping breakpoint: "
2232 "stepping past insn at: %s\n",
2233 paddress (bl->gdbarch, bl->address));
2234 }
2235 return 0;
2236 }
2237
2238 /* Don't insert watchpoints if we're trying to step past the
2239 instruction that triggered one. */
2240 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2241 && stepping_past_nonsteppable_watchpoint ())
2242 {
2243 if (debug_infrun)
2244 {
2245 fprintf_unfiltered (gdb_stdlog,
2246 "infrun: stepping past non-steppable watchpoint. "
2247 "skipping watchpoint at %s:%d\n",
2248 paddress (bl->gdbarch, bl->address),
2249 bl->length);
2250 }
2251 return 0;
2252 }
2253
2254 return 1;
2255 }
2256
2257 /* Same as should_be_inserted but does the check assuming
2258 that the location is not duplicated. */
2259
2260 static int
2261 unduplicated_should_be_inserted (struct bp_location *bl)
2262 {
2263 int result;
2264 const int save_duplicate = bl->duplicate;
2265
2266 bl->duplicate = 0;
2267 result = should_be_inserted (bl);
2268 bl->duplicate = save_duplicate;
2269 return result;
2270 }
2271
2272 /* Parses a conditional described by an expression COND into an
2273 agent expression bytecode suitable for evaluation
2274 by the bytecode interpreter. Return NULL if there was
2275 any error during parsing. */
2276
2277 static struct agent_expr *
2278 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2279 {
2280 struct agent_expr *aexpr = NULL;
2281
2282 if (!cond)
2283 return NULL;
2284
2285 /* We don't want to stop processing, so catch any errors
2286 that may show up. */
2287 TRY
2288 {
2289 aexpr = gen_eval_for_expr (scope, cond);
2290 }
2291
2292 CATCH (ex, RETURN_MASK_ERROR)
2293 {
2294 /* If we got here, it means the condition could not be parsed to a valid
2295 bytecode expression and thus can't be evaluated on the target's side.
2296 It's no use iterating through the conditions. */
2297 return NULL;
2298 }
2299 END_CATCH
2300
2301 /* We have a valid agent expression. */
2302 return aexpr;
2303 }
2304
2305 /* Based on location BL, create a list of breakpoint conditions to be
2306 passed on to the target. If we have duplicated locations with different
2307 conditions, we will add such conditions to the list. The idea is that the
2308 target will evaluate the list of conditions and will only notify GDB when
2309 one of them is true. */
2310
2311 static void
2312 build_target_condition_list (struct bp_location *bl)
2313 {
2314 struct bp_location **locp = NULL, **loc2p;
2315 int null_condition_or_parse_error = 0;
2316 int modified = bl->needs_update;
2317 struct bp_location *loc;
2318
2319 /* Release conditions left over from a previous insert. */
2320 VEC_free (agent_expr_p, bl->target_info.conditions);
2321
2322 /* This is only meaningful if the target is
2323 evaluating conditions and if the user has
2324 opted for condition evaluation on the target's
2325 side. */
2326 if (gdb_evaluates_breakpoint_condition_p ()
2327 || !target_supports_evaluation_of_breakpoint_conditions ())
2328 return;
2329
2330 /* Do a first pass to check for locations with no assigned
2331 conditions or conditions that fail to parse to a valid agent expression
2332 bytecode. If any of these happen, then it's no use to send conditions
2333 to the target since this location will always trigger and generate a
2334 response back to GDB. */
2335 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2336 {
2337 loc = (*loc2p);
2338 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2339 {
2340 if (modified)
2341 {
2342 struct agent_expr *aexpr;
2343
2344 /* Re-parse the conditions since something changed. In that
2345 case we already freed the condition bytecodes (see
2346 force_breakpoint_reinsertion). We just
2347 need to parse the condition to bytecodes again. */
2348 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2349 loc->cond_bytecode = aexpr;
2350 }
2351
2352 /* If we have a NULL bytecode expression, it means something
2353 went wrong or we have a null condition expression. */
2354 if (!loc->cond_bytecode)
2355 {
2356 null_condition_or_parse_error = 1;
2357 break;
2358 }
2359 }
2360 }
2361
2362 /* If any of these happened, it means we will have to evaluate the conditions
2363 for the location's address on gdb's side. It is no use keeping bytecodes
2364 for all the other duplicate locations, thus we free all of them here.
2365
2366 This is so we have a finer control over which locations' conditions are
2367 being evaluated by GDB or the remote stub. */
2368 if (null_condition_or_parse_error)
2369 {
2370 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2371 {
2372 loc = (*loc2p);
2373 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2374 {
2375 /* Only go as far as the first NULL bytecode is
2376 located. */
2377 if (!loc->cond_bytecode)
2378 return;
2379
2380 free_agent_expr (loc->cond_bytecode);
2381 loc->cond_bytecode = NULL;
2382 }
2383 }
2384 }
2385
2386 /* No NULL conditions or failed bytecode generation. Build a condition list
2387 for this location's address. */
2388 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2389 {
2390 loc = (*loc2p);
2391 if (loc->cond
2392 && is_breakpoint (loc->owner)
2393 && loc->pspace->num == bl->pspace->num
2394 && loc->owner->enable_state == bp_enabled
2395 && loc->enabled)
2396 /* Add the condition to the vector. This will be used later to send the
2397 conditions to the target. */
2398 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2399 loc->cond_bytecode);
2400 }
2401
2402 return;
2403 }
2404
2405 /* Parses a command described by string CMD into an agent expression
2406 bytecode suitable for evaluation by the bytecode interpreter.
2407 Return NULL if there was any error during parsing. */
2408
2409 static struct agent_expr *
2410 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2411 {
2412 struct cleanup *old_cleanups = 0;
2413 struct expression *expr, **argvec;
2414 struct agent_expr *aexpr = NULL;
2415 const char *cmdrest;
2416 const char *format_start, *format_end;
2417 struct format_piece *fpieces;
2418 int nargs;
2419 struct gdbarch *gdbarch = get_current_arch ();
2420
2421 if (!cmd)
2422 return NULL;
2423
2424 cmdrest = cmd;
2425
2426 if (*cmdrest == ',')
2427 ++cmdrest;
2428 cmdrest = skip_spaces_const (cmdrest);
2429
2430 if (*cmdrest++ != '"')
2431 error (_("No format string following the location"));
2432
2433 format_start = cmdrest;
2434
2435 fpieces = parse_format_string (&cmdrest);
2436
2437 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2438
2439 format_end = cmdrest;
2440
2441 if (*cmdrest++ != '"')
2442 error (_("Bad format string, non-terminated '\"'."));
2443
2444 cmdrest = skip_spaces_const (cmdrest);
2445
2446 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2447 error (_("Invalid argument syntax"));
2448
2449 if (*cmdrest == ',')
2450 cmdrest++;
2451 cmdrest = skip_spaces_const (cmdrest);
2452
2453 /* For each argument, make an expression. */
2454
2455 argvec = (struct expression **) alloca (strlen (cmd)
2456 * sizeof (struct expression *));
2457
2458 nargs = 0;
2459 while (*cmdrest != '\0')
2460 {
2461 const char *cmd1;
2462
2463 cmd1 = cmdrest;
2464 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2465 argvec[nargs++] = expr;
2466 cmdrest = cmd1;
2467 if (*cmdrest == ',')
2468 ++cmdrest;
2469 }
2470
2471 /* We don't want to stop processing, so catch any errors
2472 that may show up. */
2473 TRY
2474 {
2475 aexpr = gen_printf (scope, gdbarch, 0, 0,
2476 format_start, format_end - format_start,
2477 fpieces, nargs, argvec);
2478 }
2479 CATCH (ex, RETURN_MASK_ERROR)
2480 {
2481 /* If we got here, it means the command could not be parsed to a valid
2482 bytecode expression and thus can't be evaluated on the target's side.
2483 It's no use iterating through the other commands. */
2484 aexpr = NULL;
2485 }
2486 END_CATCH
2487
2488 do_cleanups (old_cleanups);
2489
2490 /* We have a valid agent expression, return it. */
2491 return aexpr;
2492 }
2493
2494 /* Based on location BL, create a list of breakpoint commands to be
2495 passed on to the target. If we have duplicated locations with
2496 different commands, we will add any such to the list. */
2497
2498 static void
2499 build_target_command_list (struct bp_location *bl)
2500 {
2501 struct bp_location **locp = NULL, **loc2p;
2502 int null_command_or_parse_error = 0;
2503 int modified = bl->needs_update;
2504 struct bp_location *loc;
2505
2506 /* Release commands left over from a previous insert. */
2507 VEC_free (agent_expr_p, bl->target_info.tcommands);
2508
2509 if (!target_can_run_breakpoint_commands ())
2510 return;
2511
2512 /* For now, limit to agent-style dprintf breakpoints. */
2513 if (dprintf_style != dprintf_style_agent)
2514 return;
2515
2516 /* For now, if we have any duplicate location that isn't a dprintf,
2517 don't install the target-side commands, as that would make the
2518 breakpoint not be reported to the core, and we'd lose
2519 control. */
2520 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2521 {
2522 loc = (*loc2p);
2523 if (is_breakpoint (loc->owner)
2524 && loc->pspace->num == bl->pspace->num
2525 && loc->owner->type != bp_dprintf)
2526 return;
2527 }
2528
2529 /* Do a first pass to check for locations with no assigned
2530 conditions or conditions that fail to parse to a valid agent expression
2531 bytecode. If any of these happen, then it's no use to send conditions
2532 to the target since this location will always trigger and generate a
2533 response back to GDB. */
2534 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2535 {
2536 loc = (*loc2p);
2537 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2538 {
2539 if (modified)
2540 {
2541 struct agent_expr *aexpr;
2542
2543 /* Re-parse the commands since something changed. In that
2544 case we already freed the command bytecodes (see
2545 force_breakpoint_reinsertion). We just
2546 need to parse the command to bytecodes again. */
2547 aexpr = parse_cmd_to_aexpr (bl->address,
2548 loc->owner->extra_string);
2549 loc->cmd_bytecode = aexpr;
2550 }
2551
2552 /* If we have a NULL bytecode expression, it means something
2553 went wrong or we have a null command expression. */
2554 if (!loc->cmd_bytecode)
2555 {
2556 null_command_or_parse_error = 1;
2557 break;
2558 }
2559 }
2560 }
2561
2562 /* If anything failed, then we're not doing target-side commands,
2563 and so clean up. */
2564 if (null_command_or_parse_error)
2565 {
2566 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2567 {
2568 loc = (*loc2p);
2569 if (is_breakpoint (loc->owner)
2570 && loc->pspace->num == bl->pspace->num)
2571 {
2572 /* Only go as far as the first NULL bytecode is
2573 located. */
2574 if (loc->cmd_bytecode == NULL)
2575 return;
2576
2577 free_agent_expr (loc->cmd_bytecode);
2578 loc->cmd_bytecode = NULL;
2579 }
2580 }
2581 }
2582
2583 /* No NULL commands or failed bytecode generation. Build a command list
2584 for this location's address. */
2585 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2586 {
2587 loc = (*loc2p);
2588 if (loc->owner->extra_string
2589 && is_breakpoint (loc->owner)
2590 && loc->pspace->num == bl->pspace->num
2591 && loc->owner->enable_state == bp_enabled
2592 && loc->enabled)
2593 /* Add the command to the vector. This will be used later
2594 to send the commands to the target. */
2595 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2596 loc->cmd_bytecode);
2597 }
2598
2599 bl->target_info.persist = 0;
2600 /* Maybe flag this location as persistent. */
2601 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2602 bl->target_info.persist = 1;
2603 }
2604
2605 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2606 location. Any error messages are printed to TMP_ERROR_STREAM; and
2607 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2608 Returns 0 for success, 1 if the bp_location type is not supported or
2609 -1 for failure.
2610
2611 NOTE drow/2003-09-09: This routine could be broken down to an
2612 object-style method for each breakpoint or catchpoint type. */
2613 static int
2614 insert_bp_location (struct bp_location *bl,
2615 struct ui_file *tmp_error_stream,
2616 int *disabled_breaks,
2617 int *hw_breakpoint_error,
2618 int *hw_bp_error_explained_already)
2619 {
2620 enum errors bp_err = GDB_NO_ERROR;
2621 const char *bp_err_message = NULL;
2622
2623 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2624 return 0;
2625
2626 /* Note we don't initialize bl->target_info, as that wipes out
2627 the breakpoint location's shadow_contents if the breakpoint
2628 is still inserted at that location. This in turn breaks
2629 target_read_memory which depends on these buffers when
2630 a memory read is requested at the breakpoint location:
2631 Once the target_info has been wiped, we fail to see that
2632 we have a breakpoint inserted at that address and thus
2633 read the breakpoint instead of returning the data saved in
2634 the breakpoint location's shadow contents. */
2635 bl->target_info.reqstd_address = bl->address;
2636 bl->target_info.placed_address_space = bl->pspace->aspace;
2637 bl->target_info.length = bl->length;
2638
2639 /* When working with target-side conditions, we must pass all the conditions
2640 for the same breakpoint address down to the target since GDB will not
2641 insert those locations. With a list of breakpoint conditions, the target
2642 can decide when to stop and notify GDB. */
2643
2644 if (is_breakpoint (bl->owner))
2645 {
2646 build_target_condition_list (bl);
2647 build_target_command_list (bl);
2648 /* Reset the modification marker. */
2649 bl->needs_update = 0;
2650 }
2651
2652 if (bl->loc_type == bp_loc_software_breakpoint
2653 || bl->loc_type == bp_loc_hardware_breakpoint)
2654 {
2655 if (bl->owner->type != bp_hardware_breakpoint)
2656 {
2657 /* If the explicitly specified breakpoint type
2658 is not hardware breakpoint, check the memory map to see
2659 if the breakpoint address is in read only memory or not.
2660
2661 Two important cases are:
2662 - location type is not hardware breakpoint, memory
2663 is readonly. We change the type of the location to
2664 hardware breakpoint.
2665 - location type is hardware breakpoint, memory is
2666 read-write. This means we've previously made the
2667 location hardware one, but then the memory map changed,
2668 so we undo.
2669
2670 When breakpoints are removed, remove_breakpoints will use
2671 location types we've just set here, the only possible
2672 problem is that memory map has changed during running
2673 program, but it's not going to work anyway with current
2674 gdb. */
2675 struct mem_region *mr
2676 = lookup_mem_region (bl->target_info.reqstd_address);
2677
2678 if (mr)
2679 {
2680 if (automatic_hardware_breakpoints)
2681 {
2682 enum bp_loc_type new_type;
2683
2684 if (mr->attrib.mode != MEM_RW)
2685 new_type = bp_loc_hardware_breakpoint;
2686 else
2687 new_type = bp_loc_software_breakpoint;
2688
2689 if (new_type != bl->loc_type)
2690 {
2691 static int said = 0;
2692
2693 bl->loc_type = new_type;
2694 if (!said)
2695 {
2696 fprintf_filtered (gdb_stdout,
2697 _("Note: automatically using "
2698 "hardware breakpoints for "
2699 "read-only addresses.\n"));
2700 said = 1;
2701 }
2702 }
2703 }
2704 else if (bl->loc_type == bp_loc_software_breakpoint
2705 && mr->attrib.mode != MEM_RW)
2706 {
2707 fprintf_unfiltered (tmp_error_stream,
2708 _("Cannot insert breakpoint %d.\n"
2709 "Cannot set software breakpoint "
2710 "at read-only address %s\n"),
2711 bl->owner->number,
2712 paddress (bl->gdbarch, bl->address));
2713 return 1;
2714 }
2715 }
2716 }
2717
2718 /* First check to see if we have to handle an overlay. */
2719 if (overlay_debugging == ovly_off
2720 || bl->section == NULL
2721 || !(section_is_overlay (bl->section)))
2722 {
2723 /* No overlay handling: just set the breakpoint. */
2724 TRY
2725 {
2726 int val;
2727
2728 val = bl->owner->ops->insert_location (bl);
2729 if (val)
2730 bp_err = GENERIC_ERROR;
2731 }
2732 CATCH (e, RETURN_MASK_ALL)
2733 {
2734 bp_err = e.error;
2735 bp_err_message = e.message;
2736 }
2737 END_CATCH
2738 }
2739 else
2740 {
2741 /* This breakpoint is in an overlay section.
2742 Shall we set a breakpoint at the LMA? */
2743 if (!overlay_events_enabled)
2744 {
2745 /* Yes -- overlay event support is not active,
2746 so we must try to set a breakpoint at the LMA.
2747 This will not work for a hardware breakpoint. */
2748 if (bl->loc_type == bp_loc_hardware_breakpoint)
2749 warning (_("hardware breakpoint %d not supported in overlay!"),
2750 bl->owner->number);
2751 else
2752 {
2753 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2754 bl->section);
2755 /* Set a software (trap) breakpoint at the LMA. */
2756 bl->overlay_target_info = bl->target_info;
2757 bl->overlay_target_info.reqstd_address = addr;
2758
2759 /* No overlay handling: just set the breakpoint. */
2760 TRY
2761 {
2762 int val;
2763
2764 val = target_insert_breakpoint (bl->gdbarch,
2765 &bl->overlay_target_info);
2766 if (val)
2767 bp_err = GENERIC_ERROR;
2768 }
2769 CATCH (e, RETURN_MASK_ALL)
2770 {
2771 bp_err = e.error;
2772 bp_err_message = e.message;
2773 }
2774 END_CATCH
2775
2776 if (bp_err != GDB_NO_ERROR)
2777 fprintf_unfiltered (tmp_error_stream,
2778 "Overlay breakpoint %d "
2779 "failed: in ROM?\n",
2780 bl->owner->number);
2781 }
2782 }
2783 /* Shall we set a breakpoint at the VMA? */
2784 if (section_is_mapped (bl->section))
2785 {
2786 /* Yes. This overlay section is mapped into memory. */
2787 TRY
2788 {
2789 int val;
2790
2791 val = bl->owner->ops->insert_location (bl);
2792 if (val)
2793 bp_err = GENERIC_ERROR;
2794 }
2795 CATCH (e, RETURN_MASK_ALL)
2796 {
2797 bp_err = e.error;
2798 bp_err_message = e.message;
2799 }
2800 END_CATCH
2801 }
2802 else
2803 {
2804 /* No. This breakpoint will not be inserted.
2805 No error, but do not mark the bp as 'inserted'. */
2806 return 0;
2807 }
2808 }
2809
2810 if (bp_err != GDB_NO_ERROR)
2811 {
2812 /* Can't set the breakpoint. */
2813
2814 /* In some cases, we might not be able to insert a
2815 breakpoint in a shared library that has already been
2816 removed, but we have not yet processed the shlib unload
2817 event. Unfortunately, some targets that implement
2818 breakpoint insertion themselves can't tell why the
2819 breakpoint insertion failed (e.g., the remote target
2820 doesn't define error codes), so we must treat generic
2821 errors as memory errors. */
2822 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2823 && bl->loc_type == bp_loc_software_breakpoint
2824 && (solib_name_from_address (bl->pspace, bl->address)
2825 || shared_objfile_contains_address_p (bl->pspace,
2826 bl->address)))
2827 {
2828 /* See also: disable_breakpoints_in_shlibs. */
2829 bl->shlib_disabled = 1;
2830 observer_notify_breakpoint_modified (bl->owner);
2831 if (!*disabled_breaks)
2832 {
2833 fprintf_unfiltered (tmp_error_stream,
2834 "Cannot insert breakpoint %d.\n",
2835 bl->owner->number);
2836 fprintf_unfiltered (tmp_error_stream,
2837 "Temporarily disabling shared "
2838 "library breakpoints:\n");
2839 }
2840 *disabled_breaks = 1;
2841 fprintf_unfiltered (tmp_error_stream,
2842 "breakpoint #%d\n", bl->owner->number);
2843 return 0;
2844 }
2845 else
2846 {
2847 if (bl->loc_type == bp_loc_hardware_breakpoint)
2848 {
2849 *hw_breakpoint_error = 1;
2850 *hw_bp_error_explained_already = bp_err_message != NULL;
2851 fprintf_unfiltered (tmp_error_stream,
2852 "Cannot insert hardware breakpoint %d%s",
2853 bl->owner->number, bp_err_message ? ":" : ".\n");
2854 if (bp_err_message != NULL)
2855 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2856 }
2857 else
2858 {
2859 if (bp_err_message == NULL)
2860 {
2861 char *message
2862 = memory_error_message (TARGET_XFER_E_IO,
2863 bl->gdbarch, bl->address);
2864 struct cleanup *old_chain = make_cleanup (xfree, message);
2865
2866 fprintf_unfiltered (tmp_error_stream,
2867 "Cannot insert breakpoint %d.\n"
2868 "%s\n",
2869 bl->owner->number, message);
2870 do_cleanups (old_chain);
2871 }
2872 else
2873 {
2874 fprintf_unfiltered (tmp_error_stream,
2875 "Cannot insert breakpoint %d: %s\n",
2876 bl->owner->number,
2877 bp_err_message);
2878 }
2879 }
2880 return 1;
2881
2882 }
2883 }
2884 else
2885 bl->inserted = 1;
2886
2887 return 0;
2888 }
2889
2890 else if (bl->loc_type == bp_loc_hardware_watchpoint
2891 /* NOTE drow/2003-09-08: This state only exists for removing
2892 watchpoints. It's not clear that it's necessary... */
2893 && bl->owner->disposition != disp_del_at_next_stop)
2894 {
2895 int val;
2896
2897 gdb_assert (bl->owner->ops != NULL
2898 && bl->owner->ops->insert_location != NULL);
2899
2900 val = bl->owner->ops->insert_location (bl);
2901
2902 /* If trying to set a read-watchpoint, and it turns out it's not
2903 supported, try emulating one with an access watchpoint. */
2904 if (val == 1 && bl->watchpoint_type == hw_read)
2905 {
2906 struct bp_location *loc, **loc_temp;
2907
2908 /* But don't try to insert it, if there's already another
2909 hw_access location that would be considered a duplicate
2910 of this one. */
2911 ALL_BP_LOCATIONS (loc, loc_temp)
2912 if (loc != bl
2913 && loc->watchpoint_type == hw_access
2914 && watchpoint_locations_match (bl, loc))
2915 {
2916 bl->duplicate = 1;
2917 bl->inserted = 1;
2918 bl->target_info = loc->target_info;
2919 bl->watchpoint_type = hw_access;
2920 val = 0;
2921 break;
2922 }
2923
2924 if (val == 1)
2925 {
2926 bl->watchpoint_type = hw_access;
2927 val = bl->owner->ops->insert_location (bl);
2928
2929 if (val)
2930 /* Back to the original value. */
2931 bl->watchpoint_type = hw_read;
2932 }
2933 }
2934
2935 bl->inserted = (val == 0);
2936 }
2937
2938 else if (bl->owner->type == bp_catchpoint)
2939 {
2940 int val;
2941
2942 gdb_assert (bl->owner->ops != NULL
2943 && bl->owner->ops->insert_location != NULL);
2944
2945 val = bl->owner->ops->insert_location (bl);
2946 if (val)
2947 {
2948 bl->owner->enable_state = bp_disabled;
2949
2950 if (val == 1)
2951 warning (_("\
2952 Error inserting catchpoint %d: Your system does not support this type\n\
2953 of catchpoint."), bl->owner->number);
2954 else
2955 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2956 }
2957
2958 bl->inserted = (val == 0);
2959
2960 /* We've already printed an error message if there was a problem
2961 inserting this catchpoint, and we've disabled the catchpoint,
2962 so just return success. */
2963 return 0;
2964 }
2965
2966 return 0;
2967 }
2968
2969 /* This function is called when program space PSPACE is about to be
2970 deleted. It takes care of updating breakpoints to not reference
2971 PSPACE anymore. */
2972
2973 void
2974 breakpoint_program_space_exit (struct program_space *pspace)
2975 {
2976 struct breakpoint *b, *b_temp;
2977 struct bp_location *loc, **loc_temp;
2978
2979 /* Remove any breakpoint that was set through this program space. */
2980 ALL_BREAKPOINTS_SAFE (b, b_temp)
2981 {
2982 if (b->pspace == pspace)
2983 delete_breakpoint (b);
2984 }
2985
2986 /* Breakpoints set through other program spaces could have locations
2987 bound to PSPACE as well. Remove those. */
2988 ALL_BP_LOCATIONS (loc, loc_temp)
2989 {
2990 struct bp_location *tmp;
2991
2992 if (loc->pspace == pspace)
2993 {
2994 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2995 if (loc->owner->loc == loc)
2996 loc->owner->loc = loc->next;
2997 else
2998 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2999 if (tmp->next == loc)
3000 {
3001 tmp->next = loc->next;
3002 break;
3003 }
3004 }
3005 }
3006
3007 /* Now update the global location list to permanently delete the
3008 removed locations above. */
3009 update_global_location_list (UGLL_DONT_INSERT);
3010 }
3011
3012 /* Make sure all breakpoints are inserted in inferior.
3013 Throws exception on any error.
3014 A breakpoint that is already inserted won't be inserted
3015 again, so calling this function twice is safe. */
3016 void
3017 insert_breakpoints (void)
3018 {
3019 struct breakpoint *bpt;
3020
3021 ALL_BREAKPOINTS (bpt)
3022 if (is_hardware_watchpoint (bpt))
3023 {
3024 struct watchpoint *w = (struct watchpoint *) bpt;
3025
3026 update_watchpoint (w, 0 /* don't reparse. */);
3027 }
3028
3029 /* Updating watchpoints creates new locations, so update the global
3030 location list. Explicitly tell ugll to insert locations and
3031 ignore breakpoints_always_inserted_mode. */
3032 update_global_location_list (UGLL_INSERT);
3033 }
3034
3035 /* Invoke CALLBACK for each of bp_location. */
3036
3037 void
3038 iterate_over_bp_locations (walk_bp_location_callback callback)
3039 {
3040 struct bp_location *loc, **loc_tmp;
3041
3042 ALL_BP_LOCATIONS (loc, loc_tmp)
3043 {
3044 callback (loc, NULL);
3045 }
3046 }
3047
3048 /* This is used when we need to synch breakpoint conditions between GDB and the
3049 target. It is the case with deleting and disabling of breakpoints when using
3050 always-inserted mode. */
3051
3052 static void
3053 update_inserted_breakpoint_locations (void)
3054 {
3055 struct bp_location *bl, **blp_tmp;
3056 int error_flag = 0;
3057 int val = 0;
3058 int disabled_breaks = 0;
3059 int hw_breakpoint_error = 0;
3060 int hw_bp_details_reported = 0;
3061
3062 struct ui_file *tmp_error_stream = mem_fileopen ();
3063 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
3064
3065 /* Explicitly mark the warning -- this will only be printed if
3066 there was an error. */
3067 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
3068
3069 save_current_space_and_thread ();
3070
3071 ALL_BP_LOCATIONS (bl, blp_tmp)
3072 {
3073 /* We only want to update software breakpoints and hardware
3074 breakpoints. */
3075 if (!is_breakpoint (bl->owner))
3076 continue;
3077
3078 /* We only want to update locations that are already inserted
3079 and need updating. This is to avoid unwanted insertion during
3080 deletion of breakpoints. */
3081 if (!bl->inserted || (bl->inserted && !bl->needs_update))
3082 continue;
3083
3084 switch_to_program_space_and_thread (bl->pspace);
3085
3086 /* For targets that support global breakpoints, there's no need
3087 to select an inferior to insert breakpoint to. In fact, even
3088 if we aren't attached to any process yet, we should still
3089 insert breakpoints. */
3090 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3091 && ptid_equal (inferior_ptid, null_ptid))
3092 continue;
3093
3094 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
3095 &hw_breakpoint_error, &hw_bp_details_reported);
3096 if (val)
3097 error_flag = val;
3098 }
3099
3100 if (error_flag)
3101 {
3102 target_terminal_ours_for_output ();
3103 error_stream (tmp_error_stream);
3104 }
3105
3106 do_cleanups (cleanups);
3107 }
3108
3109 /* Used when starting or continuing the program. */
3110
3111 static void
3112 insert_breakpoint_locations (void)
3113 {
3114 struct breakpoint *bpt;
3115 struct bp_location *bl, **blp_tmp;
3116 int error_flag = 0;
3117 int val = 0;
3118 int disabled_breaks = 0;
3119 int hw_breakpoint_error = 0;
3120 int hw_bp_error_explained_already = 0;
3121
3122 struct ui_file *tmp_error_stream = mem_fileopen ();
3123 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
3124
3125 /* Explicitly mark the warning -- this will only be printed if
3126 there was an error. */
3127 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
3128
3129 save_current_space_and_thread ();
3130
3131 ALL_BP_LOCATIONS (bl, blp_tmp)
3132 {
3133 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
3134 continue;
3135
3136 /* There is no point inserting thread-specific breakpoints if
3137 the thread no longer exists. ALL_BP_LOCATIONS bp_location
3138 has BL->OWNER always non-NULL. */
3139 if (bl->owner->thread != -1
3140 && !valid_global_thread_id (bl->owner->thread))
3141 continue;
3142
3143 switch_to_program_space_and_thread (bl->pspace);
3144
3145 /* For targets that support global breakpoints, there's no need
3146 to select an inferior to insert breakpoint to. In fact, even
3147 if we aren't attached to any process yet, we should still
3148 insert breakpoints. */
3149 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3150 && ptid_equal (inferior_ptid, null_ptid))
3151 continue;
3152
3153 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
3154 &hw_breakpoint_error, &hw_bp_error_explained_already);
3155 if (val)
3156 error_flag = val;
3157 }
3158
3159 /* If we failed to insert all locations of a watchpoint, remove
3160 them, as half-inserted watchpoint is of limited use. */
3161 ALL_BREAKPOINTS (bpt)
3162 {
3163 int some_failed = 0;
3164 struct bp_location *loc;
3165
3166 if (!is_hardware_watchpoint (bpt))
3167 continue;
3168
3169 if (!breakpoint_enabled (bpt))
3170 continue;
3171
3172 if (bpt->disposition == disp_del_at_next_stop)
3173 continue;
3174
3175 for (loc = bpt->loc; loc; loc = loc->next)
3176 if (!loc->inserted && should_be_inserted (loc))
3177 {
3178 some_failed = 1;
3179 break;
3180 }
3181 if (some_failed)
3182 {
3183 for (loc = bpt->loc; loc; loc = loc->next)
3184 if (loc->inserted)
3185 remove_breakpoint (loc, mark_uninserted);
3186
3187 hw_breakpoint_error = 1;
3188 fprintf_unfiltered (tmp_error_stream,
3189 "Could not insert hardware watchpoint %d.\n",
3190 bpt->number);
3191 error_flag = -1;
3192 }
3193 }
3194
3195 if (error_flag)
3196 {
3197 /* If a hardware breakpoint or watchpoint was inserted, add a
3198 message about possibly exhausted resources. */
3199 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3200 {
3201 fprintf_unfiltered (tmp_error_stream,
3202 "Could not insert hardware breakpoints:\n\
3203 You may have requested too many hardware breakpoints/watchpoints.\n");
3204 }
3205 target_terminal_ours_for_output ();
3206 error_stream (tmp_error_stream);
3207 }
3208
3209 do_cleanups (cleanups);
3210 }
3211
3212 /* Used when the program stops.
3213 Returns zero if successful, or non-zero if there was a problem
3214 removing a breakpoint location. */
3215
3216 int
3217 remove_breakpoints (void)
3218 {
3219 struct bp_location *bl, **blp_tmp;
3220 int val = 0;
3221
3222 ALL_BP_LOCATIONS (bl, blp_tmp)
3223 {
3224 if (bl->inserted && !is_tracepoint (bl->owner))
3225 val |= remove_breakpoint (bl, mark_uninserted);
3226 }
3227 return val;
3228 }
3229
3230 /* When a thread exits, remove breakpoints that are related to
3231 that thread. */
3232
3233 static void
3234 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3235 {
3236 struct breakpoint *b, *b_tmp;
3237
3238 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3239 {
3240 if (b->thread == tp->global_num && user_breakpoint_p (b))
3241 {
3242 b->disposition = disp_del_at_next_stop;
3243
3244 printf_filtered (_("\
3245 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3246 b->number, print_thread_id (tp));
3247
3248 /* Hide it from the user. */
3249 b->number = 0;
3250 }
3251 }
3252 }
3253
3254 /* Remove breakpoints of process PID. */
3255
3256 int
3257 remove_breakpoints_pid (int pid)
3258 {
3259 struct bp_location *bl, **blp_tmp;
3260 int val;
3261 struct inferior *inf = find_inferior_pid (pid);
3262
3263 ALL_BP_LOCATIONS (bl, blp_tmp)
3264 {
3265 if (bl->pspace != inf->pspace)
3266 continue;
3267
3268 if (bl->inserted && !bl->target_info.persist)
3269 {
3270 val = remove_breakpoint (bl, mark_uninserted);
3271 if (val != 0)
3272 return val;
3273 }
3274 }
3275 return 0;
3276 }
3277
3278 int
3279 reattach_breakpoints (int pid)
3280 {
3281 struct cleanup *old_chain;
3282 struct bp_location *bl, **blp_tmp;
3283 int val;
3284 struct ui_file *tmp_error_stream;
3285 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3286 struct inferior *inf;
3287 struct thread_info *tp;
3288
3289 tp = any_live_thread_of_process (pid);
3290 if (tp == NULL)
3291 return 1;
3292
3293 inf = find_inferior_pid (pid);
3294 old_chain = save_inferior_ptid ();
3295
3296 inferior_ptid = tp->ptid;
3297
3298 tmp_error_stream = mem_fileopen ();
3299 make_cleanup_ui_file_delete (tmp_error_stream);
3300
3301 ALL_BP_LOCATIONS (bl, blp_tmp)
3302 {
3303 if (bl->pspace != inf->pspace)
3304 continue;
3305
3306 if (bl->inserted)
3307 {
3308 bl->inserted = 0;
3309 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3310 if (val != 0)
3311 {
3312 do_cleanups (old_chain);
3313 return val;
3314 }
3315 }
3316 }
3317 do_cleanups (old_chain);
3318 return 0;
3319 }
3320
3321 static int internal_breakpoint_number = -1;
3322
3323 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3324 If INTERNAL is non-zero, the breakpoint number will be populated
3325 from internal_breakpoint_number and that variable decremented.
3326 Otherwise the breakpoint number will be populated from
3327 breakpoint_count and that value incremented. Internal breakpoints
3328 do not set the internal var bpnum. */
3329 static void
3330 set_breakpoint_number (int internal, struct breakpoint *b)
3331 {
3332 if (internal)
3333 b->number = internal_breakpoint_number--;
3334 else
3335 {
3336 set_breakpoint_count (breakpoint_count + 1);
3337 b->number = breakpoint_count;
3338 }
3339 }
3340
3341 static struct breakpoint *
3342 create_internal_breakpoint (struct gdbarch *gdbarch,
3343 CORE_ADDR address, enum bptype type,
3344 const struct breakpoint_ops *ops)
3345 {
3346 struct symtab_and_line sal;
3347 struct breakpoint *b;
3348
3349 init_sal (&sal); /* Initialize to zeroes. */
3350
3351 sal.pc = address;
3352 sal.section = find_pc_overlay (sal.pc);
3353 sal.pspace = current_program_space;
3354
3355 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3356 b->number = internal_breakpoint_number--;
3357 b->disposition = disp_donttouch;
3358
3359 return b;
3360 }
3361
3362 static const char *const longjmp_names[] =
3363 {
3364 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3365 };
3366 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3367
3368 /* Per-objfile data private to breakpoint.c. */
3369 struct breakpoint_objfile_data
3370 {
3371 /* Minimal symbol for "_ovly_debug_event" (if any). */
3372 struct bound_minimal_symbol overlay_msym;
3373
3374 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3375 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3376
3377 /* True if we have looked for longjmp probes. */
3378 int longjmp_searched;
3379
3380 /* SystemTap probe points for longjmp (if any). */
3381 VEC (probe_p) *longjmp_probes;
3382
3383 /* Minimal symbol for "std::terminate()" (if any). */
3384 struct bound_minimal_symbol terminate_msym;
3385
3386 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3387 struct bound_minimal_symbol exception_msym;
3388
3389 /* True if we have looked for exception probes. */
3390 int exception_searched;
3391
3392 /* SystemTap probe points for unwinding (if any). */
3393 VEC (probe_p) *exception_probes;
3394 };
3395
3396 static const struct objfile_data *breakpoint_objfile_key;
3397
3398 /* Minimal symbol not found sentinel. */
3399 static struct minimal_symbol msym_not_found;
3400
3401 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3402
3403 static int
3404 msym_not_found_p (const struct minimal_symbol *msym)
3405 {
3406 return msym == &msym_not_found;
3407 }
3408
3409 /* Return per-objfile data needed by breakpoint.c.
3410 Allocate the data if necessary. */
3411
3412 static struct breakpoint_objfile_data *
3413 get_breakpoint_objfile_data (struct objfile *objfile)
3414 {
3415 struct breakpoint_objfile_data *bp_objfile_data;
3416
3417 bp_objfile_data = ((struct breakpoint_objfile_data *)
3418 objfile_data (objfile, breakpoint_objfile_key));
3419 if (bp_objfile_data == NULL)
3420 {
3421 bp_objfile_data =
3422 XOBNEW (&objfile->objfile_obstack, struct breakpoint_objfile_data);
3423
3424 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3425 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3426 }
3427 return bp_objfile_data;
3428 }
3429
3430 static void
3431 free_breakpoint_probes (struct objfile *obj, void *data)
3432 {
3433 struct breakpoint_objfile_data *bp_objfile_data
3434 = (struct breakpoint_objfile_data *) data;
3435
3436 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3437 VEC_free (probe_p, bp_objfile_data->exception_probes);
3438 }
3439
3440 static void
3441 create_overlay_event_breakpoint (void)
3442 {
3443 struct objfile *objfile;
3444 const char *const func_name = "_ovly_debug_event";
3445
3446 ALL_OBJFILES (objfile)
3447 {
3448 struct breakpoint *b;
3449 struct breakpoint_objfile_data *bp_objfile_data;
3450 CORE_ADDR addr;
3451 struct explicit_location explicit_loc;
3452
3453 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3454
3455 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3456 continue;
3457
3458 if (bp_objfile_data->overlay_msym.minsym == NULL)
3459 {
3460 struct bound_minimal_symbol m;
3461
3462 m = lookup_minimal_symbol_text (func_name, objfile);
3463 if (m.minsym == NULL)
3464 {
3465 /* Avoid future lookups in this objfile. */
3466 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3467 continue;
3468 }
3469 bp_objfile_data->overlay_msym = m;
3470 }
3471
3472 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3473 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3474 bp_overlay_event,
3475 &internal_breakpoint_ops);
3476 initialize_explicit_location (&explicit_loc);
3477 explicit_loc.function_name = ASTRDUP (func_name);
3478 b->location = new_explicit_location (&explicit_loc);
3479
3480 if (overlay_debugging == ovly_auto)
3481 {
3482 b->enable_state = bp_enabled;
3483 overlay_events_enabled = 1;
3484 }
3485 else
3486 {
3487 b->enable_state = bp_disabled;
3488 overlay_events_enabled = 0;
3489 }
3490 }
3491 }
3492
3493 static void
3494 create_longjmp_master_breakpoint (void)
3495 {
3496 struct program_space *pspace;
3497 struct cleanup *old_chain;
3498
3499 old_chain = save_current_program_space ();
3500
3501 ALL_PSPACES (pspace)
3502 {
3503 struct objfile *objfile;
3504
3505 set_current_program_space (pspace);
3506
3507 ALL_OBJFILES (objfile)
3508 {
3509 int i;
3510 struct gdbarch *gdbarch;
3511 struct breakpoint_objfile_data *bp_objfile_data;
3512
3513 gdbarch = get_objfile_arch (objfile);
3514
3515 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3516
3517 if (!bp_objfile_data->longjmp_searched)
3518 {
3519 VEC (probe_p) *ret;
3520
3521 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3522 if (ret != NULL)
3523 {
3524 /* We are only interested in checking one element. */
3525 struct probe *p = VEC_index (probe_p, ret, 0);
3526
3527 if (!can_evaluate_probe_arguments (p))
3528 {
3529 /* We cannot use the probe interface here, because it does
3530 not know how to evaluate arguments. */
3531 VEC_free (probe_p, ret);
3532 ret = NULL;
3533 }
3534 }
3535 bp_objfile_data->longjmp_probes = ret;
3536 bp_objfile_data->longjmp_searched = 1;
3537 }
3538
3539 if (bp_objfile_data->longjmp_probes != NULL)
3540 {
3541 int i;
3542 struct probe *probe;
3543 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3544
3545 for (i = 0;
3546 VEC_iterate (probe_p,
3547 bp_objfile_data->longjmp_probes,
3548 i, probe);
3549 ++i)
3550 {
3551 struct breakpoint *b;
3552
3553 b = create_internal_breakpoint (gdbarch,
3554 get_probe_address (probe,
3555 objfile),
3556 bp_longjmp_master,
3557 &internal_breakpoint_ops);
3558 b->location
3559 = new_probe_location ("-probe-stap libc:longjmp");
3560 b->enable_state = bp_disabled;
3561 }
3562
3563 continue;
3564 }
3565
3566 if (!gdbarch_get_longjmp_target_p (gdbarch))
3567 continue;
3568
3569 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3570 {
3571 struct breakpoint *b;
3572 const char *func_name;
3573 CORE_ADDR addr;
3574 struct explicit_location explicit_loc;
3575
3576 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3577 continue;
3578
3579 func_name = longjmp_names[i];
3580 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3581 {
3582 struct bound_minimal_symbol m;
3583
3584 m = lookup_minimal_symbol_text (func_name, objfile);
3585 if (m.minsym == NULL)
3586 {
3587 /* Prevent future lookups in this objfile. */
3588 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3589 continue;
3590 }
3591 bp_objfile_data->longjmp_msym[i] = m;
3592 }
3593
3594 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3595 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3596 &internal_breakpoint_ops);
3597 initialize_explicit_location (&explicit_loc);
3598 explicit_loc.function_name = ASTRDUP (func_name);
3599 b->location = new_explicit_location (&explicit_loc);
3600 b->enable_state = bp_disabled;
3601 }
3602 }
3603 }
3604
3605 do_cleanups (old_chain);
3606 }
3607
3608 /* Create a master std::terminate breakpoint. */
3609 static void
3610 create_std_terminate_master_breakpoint (void)
3611 {
3612 struct program_space *pspace;
3613 struct cleanup *old_chain;
3614 const char *const func_name = "std::terminate()";
3615
3616 old_chain = save_current_program_space ();
3617
3618 ALL_PSPACES (pspace)
3619 {
3620 struct objfile *objfile;
3621 CORE_ADDR addr;
3622
3623 set_current_program_space (pspace);
3624
3625 ALL_OBJFILES (objfile)
3626 {
3627 struct breakpoint *b;
3628 struct breakpoint_objfile_data *bp_objfile_data;
3629 struct explicit_location explicit_loc;
3630
3631 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3632
3633 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3634 continue;
3635
3636 if (bp_objfile_data->terminate_msym.minsym == NULL)
3637 {
3638 struct bound_minimal_symbol m;
3639
3640 m = lookup_minimal_symbol (func_name, NULL, objfile);
3641 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3642 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3643 {
3644 /* Prevent future lookups in this objfile. */
3645 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3646 continue;
3647 }
3648 bp_objfile_data->terminate_msym = m;
3649 }
3650
3651 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3652 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3653 bp_std_terminate_master,
3654 &internal_breakpoint_ops);
3655 initialize_explicit_location (&explicit_loc);
3656 explicit_loc.function_name = ASTRDUP (func_name);
3657 b->location = new_explicit_location (&explicit_loc);
3658 b->enable_state = bp_disabled;
3659 }
3660 }
3661
3662 do_cleanups (old_chain);
3663 }
3664
3665 /* Install a master breakpoint on the unwinder's debug hook. */
3666
3667 static void
3668 create_exception_master_breakpoint (void)
3669 {
3670 struct objfile *objfile;
3671 const char *const func_name = "_Unwind_DebugHook";
3672
3673 ALL_OBJFILES (objfile)
3674 {
3675 struct breakpoint *b;
3676 struct gdbarch *gdbarch;
3677 struct breakpoint_objfile_data *bp_objfile_data;
3678 CORE_ADDR addr;
3679 struct explicit_location explicit_loc;
3680
3681 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3682
3683 /* We prefer the SystemTap probe point if it exists. */
3684 if (!bp_objfile_data->exception_searched)
3685 {
3686 VEC (probe_p) *ret;
3687
3688 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3689
3690 if (ret != NULL)
3691 {
3692 /* We are only interested in checking one element. */
3693 struct probe *p = VEC_index (probe_p, ret, 0);
3694
3695 if (!can_evaluate_probe_arguments (p))
3696 {
3697 /* We cannot use the probe interface here, because it does
3698 not know how to evaluate arguments. */
3699 VEC_free (probe_p, ret);
3700 ret = NULL;
3701 }
3702 }
3703 bp_objfile_data->exception_probes = ret;
3704 bp_objfile_data->exception_searched = 1;
3705 }
3706
3707 if (bp_objfile_data->exception_probes != NULL)
3708 {
3709 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3710 int i;
3711 struct probe *probe;
3712
3713 for (i = 0;
3714 VEC_iterate (probe_p,
3715 bp_objfile_data->exception_probes,
3716 i, probe);
3717 ++i)
3718 {
3719 struct breakpoint *b;
3720
3721 b = create_internal_breakpoint (gdbarch,
3722 get_probe_address (probe,
3723 objfile),
3724 bp_exception_master,
3725 &internal_breakpoint_ops);
3726 b->location
3727 = new_probe_location ("-probe-stap libgcc:unwind");
3728 b->enable_state = bp_disabled;
3729 }
3730
3731 continue;
3732 }
3733
3734 /* Otherwise, try the hook function. */
3735
3736 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3737 continue;
3738
3739 gdbarch = get_objfile_arch (objfile);
3740
3741 if (bp_objfile_data->exception_msym.minsym == NULL)
3742 {
3743 struct bound_minimal_symbol debug_hook;
3744
3745 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3746 if (debug_hook.minsym == NULL)
3747 {
3748 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3749 continue;
3750 }
3751
3752 bp_objfile_data->exception_msym = debug_hook;
3753 }
3754
3755 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3756 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3757 &current_target);
3758 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3759 &internal_breakpoint_ops);
3760 initialize_explicit_location (&explicit_loc);
3761 explicit_loc.function_name = ASTRDUP (func_name);
3762 b->location = new_explicit_location (&explicit_loc);
3763 b->enable_state = bp_disabled;
3764 }
3765 }
3766
3767 void
3768 update_breakpoints_after_exec (void)
3769 {
3770 struct breakpoint *b, *b_tmp;
3771 struct bp_location *bploc, **bplocp_tmp;
3772
3773 /* We're about to delete breakpoints from GDB's lists. If the
3774 INSERTED flag is true, GDB will try to lift the breakpoints by
3775 writing the breakpoints' "shadow contents" back into memory. The
3776 "shadow contents" are NOT valid after an exec, so GDB should not
3777 do that. Instead, the target is responsible from marking
3778 breakpoints out as soon as it detects an exec. We don't do that
3779 here instead, because there may be other attempts to delete
3780 breakpoints after detecting an exec and before reaching here. */
3781 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3782 if (bploc->pspace == current_program_space)
3783 gdb_assert (!bploc->inserted);
3784
3785 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3786 {
3787 if (b->pspace != current_program_space)
3788 continue;
3789
3790 /* Solib breakpoints must be explicitly reset after an exec(). */
3791 if (b->type == bp_shlib_event)
3792 {
3793 delete_breakpoint (b);
3794 continue;
3795 }
3796
3797 /* JIT breakpoints must be explicitly reset after an exec(). */
3798 if (b->type == bp_jit_event)
3799 {
3800 delete_breakpoint (b);
3801 continue;
3802 }
3803
3804 /* Thread event breakpoints must be set anew after an exec(),
3805 as must overlay event and longjmp master breakpoints. */
3806 if (b->type == bp_thread_event || b->type == bp_overlay_event
3807 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3808 || b->type == bp_exception_master)
3809 {
3810 delete_breakpoint (b);
3811 continue;
3812 }
3813
3814 /* Step-resume breakpoints are meaningless after an exec(). */
3815 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3816 {
3817 delete_breakpoint (b);
3818 continue;
3819 }
3820
3821 /* Just like single-step breakpoints. */
3822 if (b->type == bp_single_step)
3823 {
3824 delete_breakpoint (b);
3825 continue;
3826 }
3827
3828 /* Longjmp and longjmp-resume breakpoints are also meaningless
3829 after an exec. */
3830 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3831 || b->type == bp_longjmp_call_dummy
3832 || b->type == bp_exception || b->type == bp_exception_resume)
3833 {
3834 delete_breakpoint (b);
3835 continue;
3836 }
3837
3838 if (b->type == bp_catchpoint)
3839 {
3840 /* For now, none of the bp_catchpoint breakpoints need to
3841 do anything at this point. In the future, if some of
3842 the catchpoints need to something, we will need to add
3843 a new method, and call this method from here. */
3844 continue;
3845 }
3846
3847 /* bp_finish is a special case. The only way we ought to be able
3848 to see one of these when an exec() has happened, is if the user
3849 caught a vfork, and then said "finish". Ordinarily a finish just
3850 carries them to the call-site of the current callee, by setting
3851 a temporary bp there and resuming. But in this case, the finish
3852 will carry them entirely through the vfork & exec.
3853
3854 We don't want to allow a bp_finish to remain inserted now. But
3855 we can't safely delete it, 'cause finish_command has a handle to
3856 the bp on a bpstat, and will later want to delete it. There's a
3857 chance (and I've seen it happen) that if we delete the bp_finish
3858 here, that its storage will get reused by the time finish_command
3859 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3860 We really must allow finish_command to delete a bp_finish.
3861
3862 In the absence of a general solution for the "how do we know
3863 it's safe to delete something others may have handles to?"
3864 problem, what we'll do here is just uninsert the bp_finish, and
3865 let finish_command delete it.
3866
3867 (We know the bp_finish is "doomed" in the sense that it's
3868 momentary, and will be deleted as soon as finish_command sees
3869 the inferior stopped. So it doesn't matter that the bp's
3870 address is probably bogus in the new a.out, unlike e.g., the
3871 solib breakpoints.) */
3872
3873 if (b->type == bp_finish)
3874 {
3875 continue;
3876 }
3877
3878 /* Without a symbolic address, we have little hope of the
3879 pre-exec() address meaning the same thing in the post-exec()
3880 a.out. */
3881 if (event_location_empty_p (b->location))
3882 {
3883 delete_breakpoint (b);
3884 continue;
3885 }
3886 }
3887 }
3888
3889 int
3890 detach_breakpoints (ptid_t ptid)
3891 {
3892 struct bp_location *bl, **blp_tmp;
3893 int val = 0;
3894 struct cleanup *old_chain = save_inferior_ptid ();
3895 struct inferior *inf = current_inferior ();
3896
3897 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3898 error (_("Cannot detach breakpoints of inferior_ptid"));
3899
3900 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3901 inferior_ptid = ptid;
3902 ALL_BP_LOCATIONS (bl, blp_tmp)
3903 {
3904 if (bl->pspace != inf->pspace)
3905 continue;
3906
3907 /* This function must physically remove breakpoints locations
3908 from the specified ptid, without modifying the breakpoint
3909 package's state. Locations of type bp_loc_other are only
3910 maintained at GDB side. So, there is no need to remove
3911 these bp_loc_other locations. Moreover, removing these
3912 would modify the breakpoint package's state. */
3913 if (bl->loc_type == bp_loc_other)
3914 continue;
3915
3916 if (bl->inserted)
3917 val |= remove_breakpoint_1 (bl, mark_inserted);
3918 }
3919
3920 do_cleanups (old_chain);
3921 return val;
3922 }
3923
3924 /* Remove the breakpoint location BL from the current address space.
3925 Note that this is used to detach breakpoints from a child fork.
3926 When we get here, the child isn't in the inferior list, and neither
3927 do we have objects to represent its address space --- we should
3928 *not* look at bl->pspace->aspace here. */
3929
3930 static int
3931 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3932 {
3933 int val;
3934
3935 /* BL is never in moribund_locations by our callers. */
3936 gdb_assert (bl->owner != NULL);
3937
3938 /* The type of none suggests that owner is actually deleted.
3939 This should not ever happen. */
3940 gdb_assert (bl->owner->type != bp_none);
3941
3942 if (bl->loc_type == bp_loc_software_breakpoint
3943 || bl->loc_type == bp_loc_hardware_breakpoint)
3944 {
3945 /* "Normal" instruction breakpoint: either the standard
3946 trap-instruction bp (bp_breakpoint), or a
3947 bp_hardware_breakpoint. */
3948
3949 /* First check to see if we have to handle an overlay. */
3950 if (overlay_debugging == ovly_off
3951 || bl->section == NULL
3952 || !(section_is_overlay (bl->section)))
3953 {
3954 /* No overlay handling: just remove the breakpoint. */
3955
3956 /* If we're trying to uninsert a memory breakpoint that we
3957 know is set in a dynamic object that is marked
3958 shlib_disabled, then either the dynamic object was
3959 removed with "remove-symbol-file" or with
3960 "nosharedlibrary". In the former case, we don't know
3961 whether another dynamic object might have loaded over the
3962 breakpoint's address -- the user might well let us know
3963 about it next with add-symbol-file (the whole point of
3964 add-symbol-file is letting the user manually maintain a
3965 list of dynamically loaded objects). If we have the
3966 breakpoint's shadow memory, that is, this is a software
3967 breakpoint managed by GDB, check whether the breakpoint
3968 is still inserted in memory, to avoid overwriting wrong
3969 code with stale saved shadow contents. Note that HW
3970 breakpoints don't have shadow memory, as they're
3971 implemented using a mechanism that is not dependent on
3972 being able to modify the target's memory, and as such
3973 they should always be removed. */
3974 if (bl->shlib_disabled
3975 && bl->target_info.shadow_len != 0
3976 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3977 val = 0;
3978 else
3979 val = bl->owner->ops->remove_location (bl);
3980 }
3981 else
3982 {
3983 /* This breakpoint is in an overlay section.
3984 Did we set a breakpoint at the LMA? */
3985 if (!overlay_events_enabled)
3986 {
3987 /* Yes -- overlay event support is not active, so we
3988 should have set a breakpoint at the LMA. Remove it.
3989 */
3990 /* Ignore any failures: if the LMA is in ROM, we will
3991 have already warned when we failed to insert it. */
3992 if (bl->loc_type == bp_loc_hardware_breakpoint)
3993 target_remove_hw_breakpoint (bl->gdbarch,
3994 &bl->overlay_target_info);
3995 else
3996 target_remove_breakpoint (bl->gdbarch,
3997 &bl->overlay_target_info);
3998 }
3999 /* Did we set a breakpoint at the VMA?
4000 If so, we will have marked the breakpoint 'inserted'. */
4001 if (bl->inserted)
4002 {
4003 /* Yes -- remove it. Previously we did not bother to
4004 remove the breakpoint if the section had been
4005 unmapped, but let's not rely on that being safe. We
4006 don't know what the overlay manager might do. */
4007
4008 /* However, we should remove *software* breakpoints only
4009 if the section is still mapped, or else we overwrite
4010 wrong code with the saved shadow contents. */
4011 if (bl->loc_type == bp_loc_hardware_breakpoint
4012 || section_is_mapped (bl->section))
4013 val = bl->owner->ops->remove_location (bl);
4014 else
4015 val = 0;
4016 }
4017 else
4018 {
4019 /* No -- not inserted, so no need to remove. No error. */
4020 val = 0;
4021 }
4022 }
4023
4024 /* In some cases, we might not be able to remove a breakpoint in
4025 a shared library that has already been removed, but we have
4026 not yet processed the shlib unload event. Similarly for an
4027 unloaded add-symbol-file object - the user might not yet have
4028 had the chance to remove-symbol-file it. shlib_disabled will
4029 be set if the library/object has already been removed, but
4030 the breakpoint hasn't been uninserted yet, e.g., after
4031 "nosharedlibrary" or "remove-symbol-file" with breakpoints
4032 always-inserted mode. */
4033 if (val
4034 && (bl->loc_type == bp_loc_software_breakpoint
4035 && (bl->shlib_disabled
4036 || solib_name_from_address (bl->pspace, bl->address)
4037 || shared_objfile_contains_address_p (bl->pspace,
4038 bl->address))))
4039 val = 0;
4040
4041 if (val)
4042 return val;
4043 bl->inserted = (is == mark_inserted);
4044 }
4045 else if (bl->loc_type == bp_loc_hardware_watchpoint)
4046 {
4047 gdb_assert (bl->owner->ops != NULL
4048 && bl->owner->ops->remove_location != NULL);
4049
4050 bl->inserted = (is == mark_inserted);
4051 bl->owner->ops->remove_location (bl);
4052
4053 /* Failure to remove any of the hardware watchpoints comes here. */
4054 if ((is == mark_uninserted) && (bl->inserted))
4055 warning (_("Could not remove hardware watchpoint %d."),
4056 bl->owner->number);
4057 }
4058 else if (bl->owner->type == bp_catchpoint
4059 && breakpoint_enabled (bl->owner)
4060 && !bl->duplicate)
4061 {
4062 gdb_assert (bl->owner->ops != NULL
4063 && bl->owner->ops->remove_location != NULL);
4064
4065 val = bl->owner->ops->remove_location (bl);
4066 if (val)
4067 return val;
4068
4069 bl->inserted = (is == mark_inserted);
4070 }
4071
4072 return 0;
4073 }
4074
4075 static int
4076 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
4077 {
4078 int ret;
4079 struct cleanup *old_chain;
4080
4081 /* BL is never in moribund_locations by our callers. */
4082 gdb_assert (bl->owner != NULL);
4083
4084 /* The type of none suggests that owner is actually deleted.
4085 This should not ever happen. */
4086 gdb_assert (bl->owner->type != bp_none);
4087
4088 old_chain = save_current_space_and_thread ();
4089
4090 switch_to_program_space_and_thread (bl->pspace);
4091
4092 ret = remove_breakpoint_1 (bl, is);
4093
4094 do_cleanups (old_chain);
4095 return ret;
4096 }
4097
4098 /* Clear the "inserted" flag in all breakpoints. */
4099
4100 void
4101 mark_breakpoints_out (void)
4102 {
4103 struct bp_location *bl, **blp_tmp;
4104
4105 ALL_BP_LOCATIONS (bl, blp_tmp)
4106 if (bl->pspace == current_program_space)
4107 bl->inserted = 0;
4108 }
4109
4110 /* Clear the "inserted" flag in all breakpoints and delete any
4111 breakpoints which should go away between runs of the program.
4112
4113 Plus other such housekeeping that has to be done for breakpoints
4114 between runs.
4115
4116 Note: this function gets called at the end of a run (by
4117 generic_mourn_inferior) and when a run begins (by
4118 init_wait_for_inferior). */
4119
4120
4121
4122 void
4123 breakpoint_init_inferior (enum inf_context context)
4124 {
4125 struct breakpoint *b, *b_tmp;
4126 struct bp_location *bl, **blp_tmp;
4127 int ix;
4128 struct program_space *pspace = current_program_space;
4129
4130 /* If breakpoint locations are shared across processes, then there's
4131 nothing to do. */
4132 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
4133 return;
4134
4135 mark_breakpoints_out ();
4136
4137 ALL_BREAKPOINTS_SAFE (b, b_tmp)
4138 {
4139 if (b->loc && b->loc->pspace != pspace)
4140 continue;
4141
4142 switch (b->type)
4143 {
4144 case bp_call_dummy:
4145 case bp_longjmp_call_dummy:
4146
4147 /* If the call dummy breakpoint is at the entry point it will
4148 cause problems when the inferior is rerun, so we better get
4149 rid of it. */
4150
4151 case bp_watchpoint_scope:
4152
4153 /* Also get rid of scope breakpoints. */
4154
4155 case bp_shlib_event:
4156
4157 /* Also remove solib event breakpoints. Their addresses may
4158 have changed since the last time we ran the program.
4159 Actually we may now be debugging against different target;
4160 and so the solib backend that installed this breakpoint may
4161 not be used in by the target. E.g.,
4162
4163 (gdb) file prog-linux
4164 (gdb) run # native linux target
4165 ...
4166 (gdb) kill
4167 (gdb) file prog-win.exe
4168 (gdb) tar rem :9999 # remote Windows gdbserver.
4169 */
4170
4171 case bp_step_resume:
4172
4173 /* Also remove step-resume breakpoints. */
4174
4175 case bp_single_step:
4176
4177 /* Also remove single-step breakpoints. */
4178
4179 delete_breakpoint (b);
4180 break;
4181
4182 case bp_watchpoint:
4183 case bp_hardware_watchpoint:
4184 case bp_read_watchpoint:
4185 case bp_access_watchpoint:
4186 {
4187 struct watchpoint *w = (struct watchpoint *) b;
4188
4189 /* Likewise for watchpoints on local expressions. */
4190 if (w->exp_valid_block != NULL)
4191 delete_breakpoint (b);
4192 else if (context == inf_starting)
4193 {
4194 /* Reset val field to force reread of starting value in
4195 insert_breakpoints. */
4196 if (w->val)
4197 value_free (w->val);
4198 w->val = NULL;
4199 w->val_valid = 0;
4200 }
4201 }
4202 break;
4203 default:
4204 break;
4205 }
4206 }
4207
4208 /* Get rid of the moribund locations. */
4209 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
4210 decref_bp_location (&bl);
4211 VEC_free (bp_location_p, moribund_locations);
4212 }
4213
4214 /* These functions concern about actual breakpoints inserted in the
4215 target --- to e.g. check if we need to do decr_pc adjustment or if
4216 we need to hop over the bkpt --- so we check for address space
4217 match, not program space. */
4218
4219 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4220 exists at PC. It returns ordinary_breakpoint_here if it's an
4221 ordinary breakpoint, or permanent_breakpoint_here if it's a
4222 permanent breakpoint.
4223 - When continuing from a location with an ordinary breakpoint, we
4224 actually single step once before calling insert_breakpoints.
4225 - When continuing from a location with a permanent breakpoint, we
4226 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4227 the target, to advance the PC past the breakpoint. */
4228
4229 enum breakpoint_here
4230 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4231 {
4232 struct bp_location *bl, **blp_tmp;
4233 int any_breakpoint_here = 0;
4234
4235 ALL_BP_LOCATIONS (bl, blp_tmp)
4236 {
4237 if (bl->loc_type != bp_loc_software_breakpoint
4238 && bl->loc_type != bp_loc_hardware_breakpoint)
4239 continue;
4240
4241 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4242 if ((breakpoint_enabled (bl->owner)
4243 || bl->permanent)
4244 && breakpoint_location_address_match (bl, aspace, pc))
4245 {
4246 if (overlay_debugging
4247 && section_is_overlay (bl->section)
4248 && !section_is_mapped (bl->section))
4249 continue; /* unmapped overlay -- can't be a match */
4250 else if (bl->permanent)
4251 return permanent_breakpoint_here;
4252 else
4253 any_breakpoint_here = 1;
4254 }
4255 }
4256
4257 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4258 }
4259
4260 /* See breakpoint.h. */
4261
4262 int
4263 breakpoint_in_range_p (struct address_space *aspace,
4264 CORE_ADDR addr, ULONGEST len)
4265 {
4266 struct bp_location *bl, **blp_tmp;
4267
4268 ALL_BP_LOCATIONS (bl, blp_tmp)
4269 {
4270 if (bl->loc_type != bp_loc_software_breakpoint
4271 && bl->loc_type != bp_loc_hardware_breakpoint)
4272 continue;
4273
4274 if ((breakpoint_enabled (bl->owner)
4275 || bl->permanent)
4276 && breakpoint_location_address_range_overlap (bl, aspace,
4277 addr, len))
4278 {
4279 if (overlay_debugging
4280 && section_is_overlay (bl->section)
4281 && !section_is_mapped (bl->section))
4282 {
4283 /* Unmapped overlay -- can't be a match. */
4284 continue;
4285 }
4286
4287 return 1;
4288 }
4289 }
4290
4291 return 0;
4292 }
4293
4294 /* Return true if there's a moribund breakpoint at PC. */
4295
4296 int
4297 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4298 {
4299 struct bp_location *loc;
4300 int ix;
4301
4302 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4303 if (breakpoint_location_address_match (loc, aspace, pc))
4304 return 1;
4305
4306 return 0;
4307 }
4308
4309 /* Returns non-zero iff BL is inserted at PC, in address space
4310 ASPACE. */
4311
4312 static int
4313 bp_location_inserted_here_p (struct bp_location *bl,
4314 struct address_space *aspace, CORE_ADDR pc)
4315 {
4316 if (bl->inserted
4317 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4318 aspace, pc))
4319 {
4320 if (overlay_debugging
4321 && section_is_overlay (bl->section)
4322 && !section_is_mapped (bl->section))
4323 return 0; /* unmapped overlay -- can't be a match */
4324 else
4325 return 1;
4326 }
4327 return 0;
4328 }
4329
4330 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4331
4332 int
4333 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4334 {
4335 struct bp_location **blp, **blp_tmp = NULL;
4336 struct bp_location *bl;
4337
4338 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4339 {
4340 struct bp_location *bl = *blp;
4341
4342 if (bl->loc_type != bp_loc_software_breakpoint
4343 && bl->loc_type != bp_loc_hardware_breakpoint)
4344 continue;
4345
4346 if (bp_location_inserted_here_p (bl, aspace, pc))
4347 return 1;
4348 }
4349 return 0;
4350 }
4351
4352 /* This function returns non-zero iff there is a software breakpoint
4353 inserted at PC. */
4354
4355 int
4356 software_breakpoint_inserted_here_p (struct address_space *aspace,
4357 CORE_ADDR pc)
4358 {
4359 struct bp_location **blp, **blp_tmp = NULL;
4360 struct bp_location *bl;
4361
4362 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4363 {
4364 struct bp_location *bl = *blp;
4365
4366 if (bl->loc_type != bp_loc_software_breakpoint)
4367 continue;
4368
4369 if (bp_location_inserted_here_p (bl, aspace, pc))
4370 return 1;
4371 }
4372
4373 return 0;
4374 }
4375
4376 /* See breakpoint.h. */
4377
4378 int
4379 hardware_breakpoint_inserted_here_p (struct address_space *aspace,
4380 CORE_ADDR pc)
4381 {
4382 struct bp_location **blp, **blp_tmp = NULL;
4383 struct bp_location *bl;
4384
4385 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4386 {
4387 struct bp_location *bl = *blp;
4388
4389 if (bl->loc_type != bp_loc_hardware_breakpoint)
4390 continue;
4391
4392 if (bp_location_inserted_here_p (bl, aspace, pc))
4393 return 1;
4394 }
4395
4396 return 0;
4397 }
4398
4399 int
4400 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4401 CORE_ADDR addr, ULONGEST len)
4402 {
4403 struct breakpoint *bpt;
4404
4405 ALL_BREAKPOINTS (bpt)
4406 {
4407 struct bp_location *loc;
4408
4409 if (bpt->type != bp_hardware_watchpoint
4410 && bpt->type != bp_access_watchpoint)
4411 continue;
4412
4413 if (!breakpoint_enabled (bpt))
4414 continue;
4415
4416 for (loc = bpt->loc; loc; loc = loc->next)
4417 if (loc->pspace->aspace == aspace && loc->inserted)
4418 {
4419 CORE_ADDR l, h;
4420
4421 /* Check for intersection. */
4422 l = max (loc->address, addr);
4423 h = min (loc->address + loc->length, addr + len);
4424 if (l < h)
4425 return 1;
4426 }
4427 }
4428 return 0;
4429 }
4430 \f
4431
4432 /* bpstat stuff. External routines' interfaces are documented
4433 in breakpoint.h. */
4434
4435 int
4436 is_catchpoint (struct breakpoint *ep)
4437 {
4438 return (ep->type == bp_catchpoint);
4439 }
4440
4441 /* Frees any storage that is part of a bpstat. Does not walk the
4442 'next' chain. */
4443
4444 static void
4445 bpstat_free (bpstat bs)
4446 {
4447 if (bs->old_val != NULL)
4448 value_free (bs->old_val);
4449 decref_counted_command_line (&bs->commands);
4450 decref_bp_location (&bs->bp_location_at);
4451 xfree (bs);
4452 }
4453
4454 /* Clear a bpstat so that it says we are not at any breakpoint.
4455 Also free any storage that is part of a bpstat. */
4456
4457 void
4458 bpstat_clear (bpstat *bsp)
4459 {
4460 bpstat p;
4461 bpstat q;
4462
4463 if (bsp == 0)
4464 return;
4465 p = *bsp;
4466 while (p != NULL)
4467 {
4468 q = p->next;
4469 bpstat_free (p);
4470 p = q;
4471 }
4472 *bsp = NULL;
4473 }
4474
4475 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4476 is part of the bpstat is copied as well. */
4477
4478 bpstat
4479 bpstat_copy (bpstat bs)
4480 {
4481 bpstat p = NULL;
4482 bpstat tmp;
4483 bpstat retval = NULL;
4484
4485 if (bs == NULL)
4486 return bs;
4487
4488 for (; bs != NULL; bs = bs->next)
4489 {
4490 tmp = (bpstat) xmalloc (sizeof (*tmp));
4491 memcpy (tmp, bs, sizeof (*tmp));
4492 incref_counted_command_line (tmp->commands);
4493 incref_bp_location (tmp->bp_location_at);
4494 if (bs->old_val != NULL)
4495 {
4496 tmp->old_val = value_copy (bs->old_val);
4497 release_value (tmp->old_val);
4498 }
4499
4500 if (p == NULL)
4501 /* This is the first thing in the chain. */
4502 retval = tmp;
4503 else
4504 p->next = tmp;
4505 p = tmp;
4506 }
4507 p->next = NULL;
4508 return retval;
4509 }
4510
4511 /* Find the bpstat associated with this breakpoint. */
4512
4513 bpstat
4514 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4515 {
4516 if (bsp == NULL)
4517 return NULL;
4518
4519 for (; bsp != NULL; bsp = bsp->next)
4520 {
4521 if (bsp->breakpoint_at == breakpoint)
4522 return bsp;
4523 }
4524 return NULL;
4525 }
4526
4527 /* See breakpoint.h. */
4528
4529 int
4530 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4531 {
4532 for (; bsp != NULL; bsp = bsp->next)
4533 {
4534 if (bsp->breakpoint_at == NULL)
4535 {
4536 /* A moribund location can never explain a signal other than
4537 GDB_SIGNAL_TRAP. */
4538 if (sig == GDB_SIGNAL_TRAP)
4539 return 1;
4540 }
4541 else
4542 {
4543 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4544 sig))
4545 return 1;
4546 }
4547 }
4548
4549 return 0;
4550 }
4551
4552 /* Put in *NUM the breakpoint number of the first breakpoint we are
4553 stopped at. *BSP upon return is a bpstat which points to the
4554 remaining breakpoints stopped at (but which is not guaranteed to be
4555 good for anything but further calls to bpstat_num).
4556
4557 Return 0 if passed a bpstat which does not indicate any breakpoints.
4558 Return -1 if stopped at a breakpoint that has been deleted since
4559 we set it.
4560 Return 1 otherwise. */
4561
4562 int
4563 bpstat_num (bpstat *bsp, int *num)
4564 {
4565 struct breakpoint *b;
4566
4567 if ((*bsp) == NULL)
4568 return 0; /* No more breakpoint values */
4569
4570 /* We assume we'll never have several bpstats that correspond to a
4571 single breakpoint -- otherwise, this function might return the
4572 same number more than once and this will look ugly. */
4573 b = (*bsp)->breakpoint_at;
4574 *bsp = (*bsp)->next;
4575 if (b == NULL)
4576 return -1; /* breakpoint that's been deleted since */
4577
4578 *num = b->number; /* We have its number */
4579 return 1;
4580 }
4581
4582 /* See breakpoint.h. */
4583
4584 void
4585 bpstat_clear_actions (void)
4586 {
4587 struct thread_info *tp;
4588 bpstat bs;
4589
4590 if (ptid_equal (inferior_ptid, null_ptid))
4591 return;
4592
4593 tp = find_thread_ptid (inferior_ptid);
4594 if (tp == NULL)
4595 return;
4596
4597 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4598 {
4599 decref_counted_command_line (&bs->commands);
4600
4601 if (bs->old_val != NULL)
4602 {
4603 value_free (bs->old_val);
4604 bs->old_val = NULL;
4605 }
4606 }
4607 }
4608
4609 /* Called when a command is about to proceed the inferior. */
4610
4611 static void
4612 breakpoint_about_to_proceed (void)
4613 {
4614 if (!ptid_equal (inferior_ptid, null_ptid))
4615 {
4616 struct thread_info *tp = inferior_thread ();
4617
4618 /* Allow inferior function calls in breakpoint commands to not
4619 interrupt the command list. When the call finishes
4620 successfully, the inferior will be standing at the same
4621 breakpoint as if nothing happened. */
4622 if (tp->control.in_infcall)
4623 return;
4624 }
4625
4626 breakpoint_proceeded = 1;
4627 }
4628
4629 /* Stub for cleaning up our state if we error-out of a breakpoint
4630 command. */
4631 static void
4632 cleanup_executing_breakpoints (void *ignore)
4633 {
4634 executing_breakpoint_commands = 0;
4635 }
4636
4637 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4638 or its equivalent. */
4639
4640 static int
4641 command_line_is_silent (struct command_line *cmd)
4642 {
4643 return cmd && (strcmp ("silent", cmd->line) == 0);
4644 }
4645
4646 /* Execute all the commands associated with all the breakpoints at
4647 this location. Any of these commands could cause the process to
4648 proceed beyond this point, etc. We look out for such changes by
4649 checking the global "breakpoint_proceeded" after each command.
4650
4651 Returns true if a breakpoint command resumed the inferior. In that
4652 case, it is the caller's responsibility to recall it again with the
4653 bpstat of the current thread. */
4654
4655 static int
4656 bpstat_do_actions_1 (bpstat *bsp)
4657 {
4658 bpstat bs;
4659 struct cleanup *old_chain;
4660 int again = 0;
4661
4662 /* Avoid endless recursion if a `source' command is contained
4663 in bs->commands. */
4664 if (executing_breakpoint_commands)
4665 return 0;
4666
4667 executing_breakpoint_commands = 1;
4668 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4669
4670 prevent_dont_repeat ();
4671
4672 /* This pointer will iterate over the list of bpstat's. */
4673 bs = *bsp;
4674
4675 breakpoint_proceeded = 0;
4676 for (; bs != NULL; bs = bs->next)
4677 {
4678 struct counted_command_line *ccmd;
4679 struct command_line *cmd;
4680 struct cleanup *this_cmd_tree_chain;
4681
4682 /* Take ownership of the BSP's command tree, if it has one.
4683
4684 The command tree could legitimately contain commands like
4685 'step' and 'next', which call clear_proceed_status, which
4686 frees stop_bpstat's command tree. To make sure this doesn't
4687 free the tree we're executing out from under us, we need to
4688 take ownership of the tree ourselves. Since a given bpstat's
4689 commands are only executed once, we don't need to copy it; we
4690 can clear the pointer in the bpstat, and make sure we free
4691 the tree when we're done. */
4692 ccmd = bs->commands;
4693 bs->commands = NULL;
4694 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4695 cmd = ccmd ? ccmd->commands : NULL;
4696 if (command_line_is_silent (cmd))
4697 {
4698 /* The action has been already done by bpstat_stop_status. */
4699 cmd = cmd->next;
4700 }
4701
4702 while (cmd != NULL)
4703 {
4704 execute_control_command (cmd);
4705
4706 if (breakpoint_proceeded)
4707 break;
4708 else
4709 cmd = cmd->next;
4710 }
4711
4712 /* We can free this command tree now. */
4713 do_cleanups (this_cmd_tree_chain);
4714
4715 if (breakpoint_proceeded)
4716 {
4717 if (interpreter_async)
4718 /* If we are in async mode, then the target might be still
4719 running, not stopped at any breakpoint, so nothing for
4720 us to do here -- just return to the event loop. */
4721 ;
4722 else
4723 /* In sync mode, when execute_control_command returns
4724 we're already standing on the next breakpoint.
4725 Breakpoint commands for that stop were not run, since
4726 execute_command does not run breakpoint commands --
4727 only command_line_handler does, but that one is not
4728 involved in execution of breakpoint commands. So, we
4729 can now execute breakpoint commands. It should be
4730 noted that making execute_command do bpstat actions is
4731 not an option -- in this case we'll have recursive
4732 invocation of bpstat for each breakpoint with a
4733 command, and can easily blow up GDB stack. Instead, we
4734 return true, which will trigger the caller to recall us
4735 with the new stop_bpstat. */
4736 again = 1;
4737 break;
4738 }
4739 }
4740 do_cleanups (old_chain);
4741 return again;
4742 }
4743
4744 void
4745 bpstat_do_actions (void)
4746 {
4747 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4748
4749 /* Do any commands attached to breakpoint we are stopped at. */
4750 while (!ptid_equal (inferior_ptid, null_ptid)
4751 && target_has_execution
4752 && !is_exited (inferior_ptid)
4753 && !is_executing (inferior_ptid))
4754 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4755 and only return when it is stopped at the next breakpoint, we
4756 keep doing breakpoint actions until it returns false to
4757 indicate the inferior was not resumed. */
4758 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4759 break;
4760
4761 discard_cleanups (cleanup_if_error);
4762 }
4763
4764 /* Print out the (old or new) value associated with a watchpoint. */
4765
4766 static void
4767 watchpoint_value_print (struct value *val, struct ui_file *stream)
4768 {
4769 if (val == NULL)
4770 fprintf_unfiltered (stream, _("<unreadable>"));
4771 else
4772 {
4773 struct value_print_options opts;
4774 get_user_print_options (&opts);
4775 value_print (val, stream, &opts);
4776 }
4777 }
4778
4779 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4780 debugging multiple threads. */
4781
4782 void
4783 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4784 {
4785 if (ui_out_is_mi_like_p (uiout))
4786 return;
4787
4788 ui_out_text (uiout, "\n");
4789
4790 if (show_thread_that_caused_stop ())
4791 {
4792 const char *name;
4793 struct thread_info *thr = inferior_thread ();
4794
4795 ui_out_text (uiout, "Thread ");
4796 ui_out_field_fmt (uiout, "thread-id", "%s", print_thread_id (thr));
4797
4798 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4799 if (name != NULL)
4800 {
4801 ui_out_text (uiout, " \"");
4802 ui_out_field_fmt (uiout, "name", "%s", name);
4803 ui_out_text (uiout, "\"");
4804 }
4805
4806 ui_out_text (uiout, " hit ");
4807 }
4808 }
4809
4810 /* Generic routine for printing messages indicating why we
4811 stopped. The behavior of this function depends on the value
4812 'print_it' in the bpstat structure. Under some circumstances we
4813 may decide not to print anything here and delegate the task to
4814 normal_stop(). */
4815
4816 static enum print_stop_action
4817 print_bp_stop_message (bpstat bs)
4818 {
4819 switch (bs->print_it)
4820 {
4821 case print_it_noop:
4822 /* Nothing should be printed for this bpstat entry. */
4823 return PRINT_UNKNOWN;
4824 break;
4825
4826 case print_it_done:
4827 /* We still want to print the frame, but we already printed the
4828 relevant messages. */
4829 return PRINT_SRC_AND_LOC;
4830 break;
4831
4832 case print_it_normal:
4833 {
4834 struct breakpoint *b = bs->breakpoint_at;
4835
4836 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4837 which has since been deleted. */
4838 if (b == NULL)
4839 return PRINT_UNKNOWN;
4840
4841 /* Normal case. Call the breakpoint's print_it method. */
4842 return b->ops->print_it (bs);
4843 }
4844 break;
4845
4846 default:
4847 internal_error (__FILE__, __LINE__,
4848 _("print_bp_stop_message: unrecognized enum value"));
4849 break;
4850 }
4851 }
4852
4853 /* A helper function that prints a shared library stopped event. */
4854
4855 static void
4856 print_solib_event (int is_catchpoint)
4857 {
4858 int any_deleted
4859 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4860 int any_added
4861 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4862
4863 if (!is_catchpoint)
4864 {
4865 if (any_added || any_deleted)
4866 ui_out_text (current_uiout,
4867 _("Stopped due to shared library event:\n"));
4868 else
4869 ui_out_text (current_uiout,
4870 _("Stopped due to shared library event (no "
4871 "libraries added or removed)\n"));
4872 }
4873
4874 if (ui_out_is_mi_like_p (current_uiout))
4875 ui_out_field_string (current_uiout, "reason",
4876 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4877
4878 if (any_deleted)
4879 {
4880 struct cleanup *cleanup;
4881 char *name;
4882 int ix;
4883
4884 ui_out_text (current_uiout, _(" Inferior unloaded "));
4885 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4886 "removed");
4887 for (ix = 0;
4888 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4889 ix, name);
4890 ++ix)
4891 {
4892 if (ix > 0)
4893 ui_out_text (current_uiout, " ");
4894 ui_out_field_string (current_uiout, "library", name);
4895 ui_out_text (current_uiout, "\n");
4896 }
4897
4898 do_cleanups (cleanup);
4899 }
4900
4901 if (any_added)
4902 {
4903 struct so_list *iter;
4904 int ix;
4905 struct cleanup *cleanup;
4906
4907 ui_out_text (current_uiout, _(" Inferior loaded "));
4908 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4909 "added");
4910 for (ix = 0;
4911 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4912 ix, iter);
4913 ++ix)
4914 {
4915 if (ix > 0)
4916 ui_out_text (current_uiout, " ");
4917 ui_out_field_string (current_uiout, "library", iter->so_name);
4918 ui_out_text (current_uiout, "\n");
4919 }
4920
4921 do_cleanups (cleanup);
4922 }
4923 }
4924
4925 /* Print a message indicating what happened. This is called from
4926 normal_stop(). The input to this routine is the head of the bpstat
4927 list - a list of the eventpoints that caused this stop. KIND is
4928 the target_waitkind for the stopping event. This
4929 routine calls the generic print routine for printing a message
4930 about reasons for stopping. This will print (for example) the
4931 "Breakpoint n," part of the output. The return value of this
4932 routine is one of:
4933
4934 PRINT_UNKNOWN: Means we printed nothing.
4935 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4936 code to print the location. An example is
4937 "Breakpoint 1, " which should be followed by
4938 the location.
4939 PRINT_SRC_ONLY: Means we printed something, but there is no need
4940 to also print the location part of the message.
4941 An example is the catch/throw messages, which
4942 don't require a location appended to the end.
4943 PRINT_NOTHING: We have done some printing and we don't need any
4944 further info to be printed. */
4945
4946 enum print_stop_action
4947 bpstat_print (bpstat bs, int kind)
4948 {
4949 enum print_stop_action val;
4950
4951 /* Maybe another breakpoint in the chain caused us to stop.
4952 (Currently all watchpoints go on the bpstat whether hit or not.
4953 That probably could (should) be changed, provided care is taken
4954 with respect to bpstat_explains_signal). */
4955 for (; bs; bs = bs->next)
4956 {
4957 val = print_bp_stop_message (bs);
4958 if (val == PRINT_SRC_ONLY
4959 || val == PRINT_SRC_AND_LOC
4960 || val == PRINT_NOTHING)
4961 return val;
4962 }
4963
4964 /* If we had hit a shared library event breakpoint,
4965 print_bp_stop_message would print out this message. If we hit an
4966 OS-level shared library event, do the same thing. */
4967 if (kind == TARGET_WAITKIND_LOADED)
4968 {
4969 print_solib_event (0);
4970 return PRINT_NOTHING;
4971 }
4972
4973 /* We reached the end of the chain, or we got a null BS to start
4974 with and nothing was printed. */
4975 return PRINT_UNKNOWN;
4976 }
4977
4978 /* Evaluate the expression EXP and return 1 if value is zero.
4979 This returns the inverse of the condition because it is called
4980 from catch_errors which returns 0 if an exception happened, and if an
4981 exception happens we want execution to stop.
4982 The argument is a "struct expression *" that has been cast to a
4983 "void *" to make it pass through catch_errors. */
4984
4985 static int
4986 breakpoint_cond_eval (void *exp)
4987 {
4988 struct value *mark = value_mark ();
4989 int i = !value_true (evaluate_expression ((struct expression *) exp));
4990
4991 value_free_to_mark (mark);
4992 return i;
4993 }
4994
4995 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4996
4997 static bpstat
4998 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4999 {
5000 bpstat bs;
5001
5002 bs = (bpstat) xmalloc (sizeof (*bs));
5003 bs->next = NULL;
5004 **bs_link_pointer = bs;
5005 *bs_link_pointer = &bs->next;
5006 bs->breakpoint_at = bl->owner;
5007 bs->bp_location_at = bl;
5008 incref_bp_location (bl);
5009 /* If the condition is false, etc., don't do the commands. */
5010 bs->commands = NULL;
5011 bs->old_val = NULL;
5012 bs->print_it = print_it_normal;
5013 return bs;
5014 }
5015 \f
5016 /* The target has stopped with waitstatus WS. Check if any hardware
5017 watchpoints have triggered, according to the target. */
5018
5019 int
5020 watchpoints_triggered (struct target_waitstatus *ws)
5021 {
5022 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
5023 CORE_ADDR addr;
5024 struct breakpoint *b;
5025
5026 if (!stopped_by_watchpoint)
5027 {
5028 /* We were not stopped by a watchpoint. Mark all watchpoints
5029 as not triggered. */
5030 ALL_BREAKPOINTS (b)
5031 if (is_hardware_watchpoint (b))
5032 {
5033 struct watchpoint *w = (struct watchpoint *) b;
5034
5035 w->watchpoint_triggered = watch_triggered_no;
5036 }
5037
5038 return 0;
5039 }
5040
5041 if (!target_stopped_data_address (&current_target, &addr))
5042 {
5043 /* We were stopped by a watchpoint, but we don't know where.
5044 Mark all watchpoints as unknown. */
5045 ALL_BREAKPOINTS (b)
5046 if (is_hardware_watchpoint (b))
5047 {
5048 struct watchpoint *w = (struct watchpoint *) b;
5049
5050 w->watchpoint_triggered = watch_triggered_unknown;
5051 }
5052
5053 return 1;
5054 }
5055
5056 /* The target could report the data address. Mark watchpoints
5057 affected by this data address as triggered, and all others as not
5058 triggered. */
5059
5060 ALL_BREAKPOINTS (b)
5061 if (is_hardware_watchpoint (b))
5062 {
5063 struct watchpoint *w = (struct watchpoint *) b;
5064 struct bp_location *loc;
5065
5066 w->watchpoint_triggered = watch_triggered_no;
5067 for (loc = b->loc; loc; loc = loc->next)
5068 {
5069 if (is_masked_watchpoint (b))
5070 {
5071 CORE_ADDR newaddr = addr & w->hw_wp_mask;
5072 CORE_ADDR start = loc->address & w->hw_wp_mask;
5073
5074 if (newaddr == start)
5075 {
5076 w->watchpoint_triggered = watch_triggered_yes;
5077 break;
5078 }
5079 }
5080 /* Exact match not required. Within range is sufficient. */
5081 else if (target_watchpoint_addr_within_range (&current_target,
5082 addr, loc->address,
5083 loc->length))
5084 {
5085 w->watchpoint_triggered = watch_triggered_yes;
5086 break;
5087 }
5088 }
5089 }
5090
5091 return 1;
5092 }
5093
5094 /* Possible return values for watchpoint_check (this can't be an enum
5095 because of check_errors). */
5096 /* The watchpoint has been deleted. */
5097 #define WP_DELETED 1
5098 /* The value has changed. */
5099 #define WP_VALUE_CHANGED 2
5100 /* The value has not changed. */
5101 #define WP_VALUE_NOT_CHANGED 3
5102 /* Ignore this watchpoint, no matter if the value changed or not. */
5103 #define WP_IGNORE 4
5104
5105 #define BP_TEMPFLAG 1
5106 #define BP_HARDWAREFLAG 2
5107
5108 /* Evaluate watchpoint condition expression and check if its value
5109 changed.
5110
5111 P should be a pointer to struct bpstat, but is defined as a void *
5112 in order for this function to be usable with catch_errors. */
5113
5114 static int
5115 watchpoint_check (void *p)
5116 {
5117 bpstat bs = (bpstat) p;
5118 struct watchpoint *b;
5119 struct frame_info *fr;
5120 int within_current_scope;
5121
5122 /* BS is built from an existing struct breakpoint. */
5123 gdb_assert (bs->breakpoint_at != NULL);
5124 b = (struct watchpoint *) bs->breakpoint_at;
5125
5126 /* If this is a local watchpoint, we only want to check if the
5127 watchpoint frame is in scope if the current thread is the thread
5128 that was used to create the watchpoint. */
5129 if (!watchpoint_in_thread_scope (b))
5130 return WP_IGNORE;
5131
5132 if (b->exp_valid_block == NULL)
5133 within_current_scope = 1;
5134 else
5135 {
5136 struct frame_info *frame = get_current_frame ();
5137 struct gdbarch *frame_arch = get_frame_arch (frame);
5138 CORE_ADDR frame_pc = get_frame_pc (frame);
5139
5140 /* stack_frame_destroyed_p() returns a non-zero value if we're
5141 still in the function but the stack frame has already been
5142 invalidated. Since we can't rely on the values of local
5143 variables after the stack has been destroyed, we are treating
5144 the watchpoint in that state as `not changed' without further
5145 checking. Don't mark watchpoints as changed if the current
5146 frame is in an epilogue - even if they are in some other
5147 frame, our view of the stack is likely to be wrong and
5148 frame_find_by_id could error out. */
5149 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
5150 return WP_IGNORE;
5151
5152 fr = frame_find_by_id (b->watchpoint_frame);
5153 within_current_scope = (fr != NULL);
5154
5155 /* If we've gotten confused in the unwinder, we might have
5156 returned a frame that can't describe this variable. */
5157 if (within_current_scope)
5158 {
5159 struct symbol *function;
5160
5161 function = get_frame_function (fr);
5162 if (function == NULL
5163 || !contained_in (b->exp_valid_block,
5164 SYMBOL_BLOCK_VALUE (function)))
5165 within_current_scope = 0;
5166 }
5167
5168 if (within_current_scope)
5169 /* If we end up stopping, the current frame will get selected
5170 in normal_stop. So this call to select_frame won't affect
5171 the user. */
5172 select_frame (fr);
5173 }
5174
5175 if (within_current_scope)
5176 {
5177 /* We use value_{,free_to_}mark because it could be a *long*
5178 time before we return to the command level and call
5179 free_all_values. We can't call free_all_values because we
5180 might be in the middle of evaluating a function call. */
5181
5182 int pc = 0;
5183 struct value *mark;
5184 struct value *new_val;
5185
5186 if (is_masked_watchpoint (&b->base))
5187 /* Since we don't know the exact trigger address (from
5188 stopped_data_address), just tell the user we've triggered
5189 a mask watchpoint. */
5190 return WP_VALUE_CHANGED;
5191
5192 mark = value_mark ();
5193 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL, 0);
5194
5195 if (b->val_bitsize != 0)
5196 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
5197
5198 /* We use value_equal_contents instead of value_equal because
5199 the latter coerces an array to a pointer, thus comparing just
5200 the address of the array instead of its contents. This is
5201 not what we want. */
5202 if ((b->val != NULL) != (new_val != NULL)
5203 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
5204 {
5205 if (new_val != NULL)
5206 {
5207 release_value (new_val);
5208 value_free_to_mark (mark);
5209 }
5210 bs->old_val = b->val;
5211 b->val = new_val;
5212 b->val_valid = 1;
5213 return WP_VALUE_CHANGED;
5214 }
5215 else
5216 {
5217 /* Nothing changed. */
5218 value_free_to_mark (mark);
5219 return WP_VALUE_NOT_CHANGED;
5220 }
5221 }
5222 else
5223 {
5224 struct ui_out *uiout = current_uiout;
5225
5226 /* This seems like the only logical thing to do because
5227 if we temporarily ignored the watchpoint, then when
5228 we reenter the block in which it is valid it contains
5229 garbage (in the case of a function, it may have two
5230 garbage values, one before and one after the prologue).
5231 So we can't even detect the first assignment to it and
5232 watch after that (since the garbage may or may not equal
5233 the first value assigned). */
5234 /* We print all the stop information in
5235 breakpoint_ops->print_it, but in this case, by the time we
5236 call breakpoint_ops->print_it this bp will be deleted
5237 already. So we have no choice but print the information
5238 here. */
5239 if (ui_out_is_mi_like_p (uiout))
5240 ui_out_field_string
5241 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5242 ui_out_text (uiout, "\nWatchpoint ");
5243 ui_out_field_int (uiout, "wpnum", b->base.number);
5244 ui_out_text (uiout,
5245 " deleted because the program has left the block in\n\
5246 which its expression is valid.\n");
5247
5248 /* Make sure the watchpoint's commands aren't executed. */
5249 decref_counted_command_line (&b->base.commands);
5250 watchpoint_del_at_next_stop (b);
5251
5252 return WP_DELETED;
5253 }
5254 }
5255
5256 /* Return true if it looks like target has stopped due to hitting
5257 breakpoint location BL. This function does not check if we should
5258 stop, only if BL explains the stop. */
5259
5260 static int
5261 bpstat_check_location (const struct bp_location *bl,
5262 struct address_space *aspace, CORE_ADDR bp_addr,
5263 const struct target_waitstatus *ws)
5264 {
5265 struct breakpoint *b = bl->owner;
5266
5267 /* BL is from an existing breakpoint. */
5268 gdb_assert (b != NULL);
5269
5270 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5271 }
5272
5273 /* Determine if the watched values have actually changed, and we
5274 should stop. If not, set BS->stop to 0. */
5275
5276 static void
5277 bpstat_check_watchpoint (bpstat bs)
5278 {
5279 const struct bp_location *bl;
5280 struct watchpoint *b;
5281
5282 /* BS is built for existing struct breakpoint. */
5283 bl = bs->bp_location_at;
5284 gdb_assert (bl != NULL);
5285 b = (struct watchpoint *) bs->breakpoint_at;
5286 gdb_assert (b != NULL);
5287
5288 {
5289 int must_check_value = 0;
5290
5291 if (b->base.type == bp_watchpoint)
5292 /* For a software watchpoint, we must always check the
5293 watched value. */
5294 must_check_value = 1;
5295 else if (b->watchpoint_triggered == watch_triggered_yes)
5296 /* We have a hardware watchpoint (read, write, or access)
5297 and the target earlier reported an address watched by
5298 this watchpoint. */
5299 must_check_value = 1;
5300 else if (b->watchpoint_triggered == watch_triggered_unknown
5301 && b->base.type == bp_hardware_watchpoint)
5302 /* We were stopped by a hardware watchpoint, but the target could
5303 not report the data address. We must check the watchpoint's
5304 value. Access and read watchpoints are out of luck; without
5305 a data address, we can't figure it out. */
5306 must_check_value = 1;
5307
5308 if (must_check_value)
5309 {
5310 char *message
5311 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5312 b->base.number);
5313 struct cleanup *cleanups = make_cleanup (xfree, message);
5314 int e = catch_errors (watchpoint_check, bs, message,
5315 RETURN_MASK_ALL);
5316 do_cleanups (cleanups);
5317 switch (e)
5318 {
5319 case WP_DELETED:
5320 /* We've already printed what needs to be printed. */
5321 bs->print_it = print_it_done;
5322 /* Stop. */
5323 break;
5324 case WP_IGNORE:
5325 bs->print_it = print_it_noop;
5326 bs->stop = 0;
5327 break;
5328 case WP_VALUE_CHANGED:
5329 if (b->base.type == bp_read_watchpoint)
5330 {
5331 /* There are two cases to consider here:
5332
5333 1. We're watching the triggered memory for reads.
5334 In that case, trust the target, and always report
5335 the watchpoint hit to the user. Even though
5336 reads don't cause value changes, the value may
5337 have changed since the last time it was read, and
5338 since we're not trapping writes, we will not see
5339 those, and as such we should ignore our notion of
5340 old value.
5341
5342 2. We're watching the triggered memory for both
5343 reads and writes. There are two ways this may
5344 happen:
5345
5346 2.1. This is a target that can't break on data
5347 reads only, but can break on accesses (reads or
5348 writes), such as e.g., x86. We detect this case
5349 at the time we try to insert read watchpoints.
5350
5351 2.2. Otherwise, the target supports read
5352 watchpoints, but, the user set an access or write
5353 watchpoint watching the same memory as this read
5354 watchpoint.
5355
5356 If we're watching memory writes as well as reads,
5357 ignore watchpoint hits when we find that the
5358 value hasn't changed, as reads don't cause
5359 changes. This still gives false positives when
5360 the program writes the same value to memory as
5361 what there was already in memory (we will confuse
5362 it for a read), but it's much better than
5363 nothing. */
5364
5365 int other_write_watchpoint = 0;
5366
5367 if (bl->watchpoint_type == hw_read)
5368 {
5369 struct breakpoint *other_b;
5370
5371 ALL_BREAKPOINTS (other_b)
5372 if (other_b->type == bp_hardware_watchpoint
5373 || other_b->type == bp_access_watchpoint)
5374 {
5375 struct watchpoint *other_w =
5376 (struct watchpoint *) other_b;
5377
5378 if (other_w->watchpoint_triggered
5379 == watch_triggered_yes)
5380 {
5381 other_write_watchpoint = 1;
5382 break;
5383 }
5384 }
5385 }
5386
5387 if (other_write_watchpoint
5388 || bl->watchpoint_type == hw_access)
5389 {
5390 /* We're watching the same memory for writes,
5391 and the value changed since the last time we
5392 updated it, so this trap must be for a write.
5393 Ignore it. */
5394 bs->print_it = print_it_noop;
5395 bs->stop = 0;
5396 }
5397 }
5398 break;
5399 case WP_VALUE_NOT_CHANGED:
5400 if (b->base.type == bp_hardware_watchpoint
5401 || b->base.type == bp_watchpoint)
5402 {
5403 /* Don't stop: write watchpoints shouldn't fire if
5404 the value hasn't changed. */
5405 bs->print_it = print_it_noop;
5406 bs->stop = 0;
5407 }
5408 /* Stop. */
5409 break;
5410 default:
5411 /* Can't happen. */
5412 case 0:
5413 /* Error from catch_errors. */
5414 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5415 watchpoint_del_at_next_stop (b);
5416 /* We've already printed what needs to be printed. */
5417 bs->print_it = print_it_done;
5418 break;
5419 }
5420 }
5421 else /* must_check_value == 0 */
5422 {
5423 /* This is a case where some watchpoint(s) triggered, but
5424 not at the address of this watchpoint, or else no
5425 watchpoint triggered after all. So don't print
5426 anything for this watchpoint. */
5427 bs->print_it = print_it_noop;
5428 bs->stop = 0;
5429 }
5430 }
5431 }
5432
5433 /* For breakpoints that are currently marked as telling gdb to stop,
5434 check conditions (condition proper, frame, thread and ignore count)
5435 of breakpoint referred to by BS. If we should not stop for this
5436 breakpoint, set BS->stop to 0. */
5437
5438 static void
5439 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5440 {
5441 const struct bp_location *bl;
5442 struct breakpoint *b;
5443 int value_is_zero = 0;
5444 struct expression *cond;
5445
5446 gdb_assert (bs->stop);
5447
5448 /* BS is built for existing struct breakpoint. */
5449 bl = bs->bp_location_at;
5450 gdb_assert (bl != NULL);
5451 b = bs->breakpoint_at;
5452 gdb_assert (b != NULL);
5453
5454 /* Even if the target evaluated the condition on its end and notified GDB, we
5455 need to do so again since GDB does not know if we stopped due to a
5456 breakpoint or a single step breakpoint. */
5457
5458 if (frame_id_p (b->frame_id)
5459 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5460 {
5461 bs->stop = 0;
5462 return;
5463 }
5464
5465 /* If this is a thread/task-specific breakpoint, don't waste cpu
5466 evaluating the condition if this isn't the specified
5467 thread/task. */
5468 if ((b->thread != -1 && b->thread != ptid_to_global_thread_id (ptid))
5469 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5470
5471 {
5472 bs->stop = 0;
5473 return;
5474 }
5475
5476 /* Evaluate extension language breakpoints that have a "stop" method
5477 implemented. */
5478 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5479
5480 if (is_watchpoint (b))
5481 {
5482 struct watchpoint *w = (struct watchpoint *) b;
5483
5484 cond = w->cond_exp;
5485 }
5486 else
5487 cond = bl->cond;
5488
5489 if (cond && b->disposition != disp_del_at_next_stop)
5490 {
5491 int within_current_scope = 1;
5492 struct watchpoint * w;
5493
5494 /* We use value_mark and value_free_to_mark because it could
5495 be a long time before we return to the command level and
5496 call free_all_values. We can't call free_all_values
5497 because we might be in the middle of evaluating a
5498 function call. */
5499 struct value *mark = value_mark ();
5500
5501 if (is_watchpoint (b))
5502 w = (struct watchpoint *) b;
5503 else
5504 w = NULL;
5505
5506 /* Need to select the frame, with all that implies so that
5507 the conditions will have the right context. Because we
5508 use the frame, we will not see an inlined function's
5509 variables when we arrive at a breakpoint at the start
5510 of the inlined function; the current frame will be the
5511 call site. */
5512 if (w == NULL || w->cond_exp_valid_block == NULL)
5513 select_frame (get_current_frame ());
5514 else
5515 {
5516 struct frame_info *frame;
5517
5518 /* For local watchpoint expressions, which particular
5519 instance of a local is being watched matters, so we
5520 keep track of the frame to evaluate the expression
5521 in. To evaluate the condition however, it doesn't
5522 really matter which instantiation of the function
5523 where the condition makes sense triggers the
5524 watchpoint. This allows an expression like "watch
5525 global if q > 10" set in `func', catch writes to
5526 global on all threads that call `func', or catch
5527 writes on all recursive calls of `func' by a single
5528 thread. We simply always evaluate the condition in
5529 the innermost frame that's executing where it makes
5530 sense to evaluate the condition. It seems
5531 intuitive. */
5532 frame = block_innermost_frame (w->cond_exp_valid_block);
5533 if (frame != NULL)
5534 select_frame (frame);
5535 else
5536 within_current_scope = 0;
5537 }
5538 if (within_current_scope)
5539 value_is_zero
5540 = catch_errors (breakpoint_cond_eval, cond,
5541 "Error in testing breakpoint condition:\n",
5542 RETURN_MASK_ALL);
5543 else
5544 {
5545 warning (_("Watchpoint condition cannot be tested "
5546 "in the current scope"));
5547 /* If we failed to set the right context for this
5548 watchpoint, unconditionally report it. */
5549 value_is_zero = 0;
5550 }
5551 /* FIXME-someday, should give breakpoint #. */
5552 value_free_to_mark (mark);
5553 }
5554
5555 if (cond && value_is_zero)
5556 {
5557 bs->stop = 0;
5558 }
5559 else if (b->ignore_count > 0)
5560 {
5561 b->ignore_count--;
5562 bs->stop = 0;
5563 /* Increase the hit count even though we don't stop. */
5564 ++(b->hit_count);
5565 observer_notify_breakpoint_modified (b);
5566 }
5567 }
5568
5569 /* Returns true if we need to track moribund locations of LOC's type
5570 on the current target. */
5571
5572 static int
5573 need_moribund_for_location_type (struct bp_location *loc)
5574 {
5575 return ((loc->loc_type == bp_loc_software_breakpoint
5576 && !target_supports_stopped_by_sw_breakpoint ())
5577 || (loc->loc_type == bp_loc_hardware_breakpoint
5578 && !target_supports_stopped_by_hw_breakpoint ()));
5579 }
5580
5581
5582 /* Get a bpstat associated with having just stopped at address
5583 BP_ADDR in thread PTID.
5584
5585 Determine whether we stopped at a breakpoint, etc, or whether we
5586 don't understand this stop. Result is a chain of bpstat's such
5587 that:
5588
5589 if we don't understand the stop, the result is a null pointer.
5590
5591 if we understand why we stopped, the result is not null.
5592
5593 Each element of the chain refers to a particular breakpoint or
5594 watchpoint at which we have stopped. (We may have stopped for
5595 several reasons concurrently.)
5596
5597 Each element of the chain has valid next, breakpoint_at,
5598 commands, FIXME??? fields. */
5599
5600 bpstat
5601 bpstat_stop_status (struct address_space *aspace,
5602 CORE_ADDR bp_addr, ptid_t ptid,
5603 const struct target_waitstatus *ws)
5604 {
5605 struct breakpoint *b = NULL;
5606 struct bp_location *bl;
5607 struct bp_location *loc;
5608 /* First item of allocated bpstat's. */
5609 bpstat bs_head = NULL, *bs_link = &bs_head;
5610 /* Pointer to the last thing in the chain currently. */
5611 bpstat bs;
5612 int ix;
5613 int need_remove_insert;
5614 int removed_any;
5615
5616 /* First, build the bpstat chain with locations that explain a
5617 target stop, while being careful to not set the target running,
5618 as that may invalidate locations (in particular watchpoint
5619 locations are recreated). Resuming will happen here with
5620 breakpoint conditions or watchpoint expressions that include
5621 inferior function calls. */
5622
5623 ALL_BREAKPOINTS (b)
5624 {
5625 if (!breakpoint_enabled (b))
5626 continue;
5627
5628 for (bl = b->loc; bl != NULL; bl = bl->next)
5629 {
5630 /* For hardware watchpoints, we look only at the first
5631 location. The watchpoint_check function will work on the
5632 entire expression, not the individual locations. For
5633 read watchpoints, the watchpoints_triggered function has
5634 checked all locations already. */
5635 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5636 break;
5637
5638 if (!bl->enabled || bl->shlib_disabled)
5639 continue;
5640
5641 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5642 continue;
5643
5644 /* Come here if it's a watchpoint, or if the break address
5645 matches. */
5646
5647 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5648 explain stop. */
5649
5650 /* Assume we stop. Should we find a watchpoint that is not
5651 actually triggered, or if the condition of the breakpoint
5652 evaluates as false, we'll reset 'stop' to 0. */
5653 bs->stop = 1;
5654 bs->print = 1;
5655
5656 /* If this is a scope breakpoint, mark the associated
5657 watchpoint as triggered so that we will handle the
5658 out-of-scope event. We'll get to the watchpoint next
5659 iteration. */
5660 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5661 {
5662 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5663
5664 w->watchpoint_triggered = watch_triggered_yes;
5665 }
5666 }
5667 }
5668
5669 /* Check if a moribund breakpoint explains the stop. */
5670 if (!target_supports_stopped_by_sw_breakpoint ()
5671 || !target_supports_stopped_by_hw_breakpoint ())
5672 {
5673 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5674 {
5675 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5676 && need_moribund_for_location_type (loc))
5677 {
5678 bs = bpstat_alloc (loc, &bs_link);
5679 /* For hits of moribund locations, we should just proceed. */
5680 bs->stop = 0;
5681 bs->print = 0;
5682 bs->print_it = print_it_noop;
5683 }
5684 }
5685 }
5686
5687 /* A bit of special processing for shlib breakpoints. We need to
5688 process solib loading here, so that the lists of loaded and
5689 unloaded libraries are correct before we handle "catch load" and
5690 "catch unload". */
5691 for (bs = bs_head; bs != NULL; bs = bs->next)
5692 {
5693 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5694 {
5695 handle_solib_event ();
5696 break;
5697 }
5698 }
5699
5700 /* Now go through the locations that caused the target to stop, and
5701 check whether we're interested in reporting this stop to higher
5702 layers, or whether we should resume the target transparently. */
5703
5704 removed_any = 0;
5705
5706 for (bs = bs_head; bs != NULL; bs = bs->next)
5707 {
5708 if (!bs->stop)
5709 continue;
5710
5711 b = bs->breakpoint_at;
5712 b->ops->check_status (bs);
5713 if (bs->stop)
5714 {
5715 bpstat_check_breakpoint_conditions (bs, ptid);
5716
5717 if (bs->stop)
5718 {
5719 ++(b->hit_count);
5720 observer_notify_breakpoint_modified (b);
5721
5722 /* We will stop here. */
5723 if (b->disposition == disp_disable)
5724 {
5725 --(b->enable_count);
5726 if (b->enable_count <= 0)
5727 b->enable_state = bp_disabled;
5728 removed_any = 1;
5729 }
5730 if (b->silent)
5731 bs->print = 0;
5732 bs->commands = b->commands;
5733 incref_counted_command_line (bs->commands);
5734 if (command_line_is_silent (bs->commands
5735 ? bs->commands->commands : NULL))
5736 bs->print = 0;
5737
5738 b->ops->after_condition_true (bs);
5739 }
5740
5741 }
5742
5743 /* Print nothing for this entry if we don't stop or don't
5744 print. */
5745 if (!bs->stop || !bs->print)
5746 bs->print_it = print_it_noop;
5747 }
5748
5749 /* If we aren't stopping, the value of some hardware watchpoint may
5750 not have changed, but the intermediate memory locations we are
5751 watching may have. Don't bother if we're stopping; this will get
5752 done later. */
5753 need_remove_insert = 0;
5754 if (! bpstat_causes_stop (bs_head))
5755 for (bs = bs_head; bs != NULL; bs = bs->next)
5756 if (!bs->stop
5757 && bs->breakpoint_at
5758 && is_hardware_watchpoint (bs->breakpoint_at))
5759 {
5760 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5761
5762 update_watchpoint (w, 0 /* don't reparse. */);
5763 need_remove_insert = 1;
5764 }
5765
5766 if (need_remove_insert)
5767 update_global_location_list (UGLL_MAY_INSERT);
5768 else if (removed_any)
5769 update_global_location_list (UGLL_DONT_INSERT);
5770
5771 return bs_head;
5772 }
5773
5774 static void
5775 handle_jit_event (void)
5776 {
5777 struct frame_info *frame;
5778 struct gdbarch *gdbarch;
5779
5780 if (debug_infrun)
5781 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5782
5783 /* Switch terminal for any messages produced by
5784 breakpoint_re_set. */
5785 target_terminal_ours_for_output ();
5786
5787 frame = get_current_frame ();
5788 gdbarch = get_frame_arch (frame);
5789
5790 jit_event_handler (gdbarch);
5791
5792 target_terminal_inferior ();
5793 }
5794
5795 /* Prepare WHAT final decision for infrun. */
5796
5797 /* Decide what infrun needs to do with this bpstat. */
5798
5799 struct bpstat_what
5800 bpstat_what (bpstat bs_head)
5801 {
5802 struct bpstat_what retval;
5803 int jit_event = 0;
5804 bpstat bs;
5805
5806 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5807 retval.call_dummy = STOP_NONE;
5808 retval.is_longjmp = 0;
5809
5810 for (bs = bs_head; bs != NULL; bs = bs->next)
5811 {
5812 /* Extract this BS's action. After processing each BS, we check
5813 if its action overrides all we've seem so far. */
5814 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5815 enum bptype bptype;
5816
5817 if (bs->breakpoint_at == NULL)
5818 {
5819 /* I suspect this can happen if it was a momentary
5820 breakpoint which has since been deleted. */
5821 bptype = bp_none;
5822 }
5823 else
5824 bptype = bs->breakpoint_at->type;
5825
5826 switch (bptype)
5827 {
5828 case bp_none:
5829 break;
5830 case bp_breakpoint:
5831 case bp_hardware_breakpoint:
5832 case bp_single_step:
5833 case bp_until:
5834 case bp_finish:
5835 case bp_shlib_event:
5836 if (bs->stop)
5837 {
5838 if (bs->print)
5839 this_action = BPSTAT_WHAT_STOP_NOISY;
5840 else
5841 this_action = BPSTAT_WHAT_STOP_SILENT;
5842 }
5843 else
5844 this_action = BPSTAT_WHAT_SINGLE;
5845 break;
5846 case bp_watchpoint:
5847 case bp_hardware_watchpoint:
5848 case bp_read_watchpoint:
5849 case bp_access_watchpoint:
5850 if (bs->stop)
5851 {
5852 if (bs->print)
5853 this_action = BPSTAT_WHAT_STOP_NOISY;
5854 else
5855 this_action = BPSTAT_WHAT_STOP_SILENT;
5856 }
5857 else
5858 {
5859 /* There was a watchpoint, but we're not stopping.
5860 This requires no further action. */
5861 }
5862 break;
5863 case bp_longjmp:
5864 case bp_longjmp_call_dummy:
5865 case bp_exception:
5866 if (bs->stop)
5867 {
5868 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5869 retval.is_longjmp = bptype != bp_exception;
5870 }
5871 else
5872 this_action = BPSTAT_WHAT_SINGLE;
5873 break;
5874 case bp_longjmp_resume:
5875 case bp_exception_resume:
5876 if (bs->stop)
5877 {
5878 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5879 retval.is_longjmp = bptype == bp_longjmp_resume;
5880 }
5881 else
5882 this_action = BPSTAT_WHAT_SINGLE;
5883 break;
5884 case bp_step_resume:
5885 if (bs->stop)
5886 this_action = BPSTAT_WHAT_STEP_RESUME;
5887 else
5888 {
5889 /* It is for the wrong frame. */
5890 this_action = BPSTAT_WHAT_SINGLE;
5891 }
5892 break;
5893 case bp_hp_step_resume:
5894 if (bs->stop)
5895 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5896 else
5897 {
5898 /* It is for the wrong frame. */
5899 this_action = BPSTAT_WHAT_SINGLE;
5900 }
5901 break;
5902 case bp_watchpoint_scope:
5903 case bp_thread_event:
5904 case bp_overlay_event:
5905 case bp_longjmp_master:
5906 case bp_std_terminate_master:
5907 case bp_exception_master:
5908 this_action = BPSTAT_WHAT_SINGLE;
5909 break;
5910 case bp_catchpoint:
5911 if (bs->stop)
5912 {
5913 if (bs->print)
5914 this_action = BPSTAT_WHAT_STOP_NOISY;
5915 else
5916 this_action = BPSTAT_WHAT_STOP_SILENT;
5917 }
5918 else
5919 {
5920 /* There was a catchpoint, but we're not stopping.
5921 This requires no further action. */
5922 }
5923 break;
5924 case bp_jit_event:
5925 jit_event = 1;
5926 this_action = BPSTAT_WHAT_SINGLE;
5927 break;
5928 case bp_call_dummy:
5929 /* Make sure the action is stop (silent or noisy),
5930 so infrun.c pops the dummy frame. */
5931 retval.call_dummy = STOP_STACK_DUMMY;
5932 this_action = BPSTAT_WHAT_STOP_SILENT;
5933 break;
5934 case bp_std_terminate:
5935 /* Make sure the action is stop (silent or noisy),
5936 so infrun.c pops the dummy frame. */
5937 retval.call_dummy = STOP_STD_TERMINATE;
5938 this_action = BPSTAT_WHAT_STOP_SILENT;
5939 break;
5940 case bp_tracepoint:
5941 case bp_fast_tracepoint:
5942 case bp_static_tracepoint:
5943 /* Tracepoint hits should not be reported back to GDB, and
5944 if one got through somehow, it should have been filtered
5945 out already. */
5946 internal_error (__FILE__, __LINE__,
5947 _("bpstat_what: tracepoint encountered"));
5948 break;
5949 case bp_gnu_ifunc_resolver:
5950 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5951 this_action = BPSTAT_WHAT_SINGLE;
5952 break;
5953 case bp_gnu_ifunc_resolver_return:
5954 /* The breakpoint will be removed, execution will restart from the
5955 PC of the former breakpoint. */
5956 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5957 break;
5958
5959 case bp_dprintf:
5960 if (bs->stop)
5961 this_action = BPSTAT_WHAT_STOP_SILENT;
5962 else
5963 this_action = BPSTAT_WHAT_SINGLE;
5964 break;
5965
5966 default:
5967 internal_error (__FILE__, __LINE__,
5968 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5969 }
5970
5971 retval.main_action = max (retval.main_action, this_action);
5972 }
5973
5974 return retval;
5975 }
5976
5977 void
5978 bpstat_run_callbacks (bpstat bs_head)
5979 {
5980 bpstat bs;
5981
5982 for (bs = bs_head; bs != NULL; bs = bs->next)
5983 {
5984 struct breakpoint *b = bs->breakpoint_at;
5985
5986 if (b == NULL)
5987 continue;
5988 switch (b->type)
5989 {
5990 case bp_jit_event:
5991 handle_jit_event ();
5992 break;
5993 case bp_gnu_ifunc_resolver:
5994 gnu_ifunc_resolver_stop (b);
5995 break;
5996 case bp_gnu_ifunc_resolver_return:
5997 gnu_ifunc_resolver_return_stop (b);
5998 break;
5999 }
6000 }
6001 }
6002
6003 /* Nonzero if we should step constantly (e.g. watchpoints on machines
6004 without hardware support). This isn't related to a specific bpstat,
6005 just to things like whether watchpoints are set. */
6006
6007 int
6008 bpstat_should_step (void)
6009 {
6010 struct breakpoint *b;
6011
6012 ALL_BREAKPOINTS (b)
6013 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
6014 return 1;
6015 return 0;
6016 }
6017
6018 int
6019 bpstat_causes_stop (bpstat bs)
6020 {
6021 for (; bs != NULL; bs = bs->next)
6022 if (bs->stop)
6023 return 1;
6024
6025 return 0;
6026 }
6027
6028 \f
6029
6030 /* Compute a string of spaces suitable to indent the next line
6031 so it starts at the position corresponding to the table column
6032 named COL_NAME in the currently active table of UIOUT. */
6033
6034 static char *
6035 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
6036 {
6037 static char wrap_indent[80];
6038 int i, total_width, width, align;
6039 char *text;
6040
6041 total_width = 0;
6042 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
6043 {
6044 if (strcmp (text, col_name) == 0)
6045 {
6046 gdb_assert (total_width < sizeof wrap_indent);
6047 memset (wrap_indent, ' ', total_width);
6048 wrap_indent[total_width] = 0;
6049
6050 return wrap_indent;
6051 }
6052
6053 total_width += width + 1;
6054 }
6055
6056 return NULL;
6057 }
6058
6059 /* Determine if the locations of this breakpoint will have their conditions
6060 evaluated by the target, host or a mix of both. Returns the following:
6061
6062 "host": Host evals condition.
6063 "host or target": Host or Target evals condition.
6064 "target": Target evals condition.
6065 */
6066
6067 static const char *
6068 bp_condition_evaluator (struct breakpoint *b)
6069 {
6070 struct bp_location *bl;
6071 char host_evals = 0;
6072 char target_evals = 0;
6073
6074 if (!b)
6075 return NULL;
6076
6077 if (!is_breakpoint (b))
6078 return NULL;
6079
6080 if (gdb_evaluates_breakpoint_condition_p ()
6081 || !target_supports_evaluation_of_breakpoint_conditions ())
6082 return condition_evaluation_host;
6083
6084 for (bl = b->loc; bl; bl = bl->next)
6085 {
6086 if (bl->cond_bytecode)
6087 target_evals++;
6088 else
6089 host_evals++;
6090 }
6091
6092 if (host_evals && target_evals)
6093 return condition_evaluation_both;
6094 else if (target_evals)
6095 return condition_evaluation_target;
6096 else
6097 return condition_evaluation_host;
6098 }
6099
6100 /* Determine the breakpoint location's condition evaluator. This is
6101 similar to bp_condition_evaluator, but for locations. */
6102
6103 static const char *
6104 bp_location_condition_evaluator (struct bp_location *bl)
6105 {
6106 if (bl && !is_breakpoint (bl->owner))
6107 return NULL;
6108
6109 if (gdb_evaluates_breakpoint_condition_p ()
6110 || !target_supports_evaluation_of_breakpoint_conditions ())
6111 return condition_evaluation_host;
6112
6113 if (bl && bl->cond_bytecode)
6114 return condition_evaluation_target;
6115 else
6116 return condition_evaluation_host;
6117 }
6118
6119 /* Print the LOC location out of the list of B->LOC locations. */
6120
6121 static void
6122 print_breakpoint_location (struct breakpoint *b,
6123 struct bp_location *loc)
6124 {
6125 struct ui_out *uiout = current_uiout;
6126 struct cleanup *old_chain = save_current_program_space ();
6127
6128 if (loc != NULL && loc->shlib_disabled)
6129 loc = NULL;
6130
6131 if (loc != NULL)
6132 set_current_program_space (loc->pspace);
6133
6134 if (b->display_canonical)
6135 ui_out_field_string (uiout, "what",
6136 event_location_to_string (b->location));
6137 else if (loc && loc->symtab)
6138 {
6139 struct symbol *sym
6140 = find_pc_sect_function (loc->address, loc->section);
6141 if (sym)
6142 {
6143 ui_out_text (uiout, "in ");
6144 ui_out_field_string (uiout, "func",
6145 SYMBOL_PRINT_NAME (sym));
6146 ui_out_text (uiout, " ");
6147 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
6148 ui_out_text (uiout, "at ");
6149 }
6150 ui_out_field_string (uiout, "file",
6151 symtab_to_filename_for_display (loc->symtab));
6152 ui_out_text (uiout, ":");
6153
6154 if (ui_out_is_mi_like_p (uiout))
6155 ui_out_field_string (uiout, "fullname",
6156 symtab_to_fullname (loc->symtab));
6157
6158 ui_out_field_int (uiout, "line", loc->line_number);
6159 }
6160 else if (loc)
6161 {
6162 struct ui_file *stb = mem_fileopen ();
6163 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
6164
6165 print_address_symbolic (loc->gdbarch, loc->address, stb,
6166 demangle, "");
6167 ui_out_field_stream (uiout, "at", stb);
6168
6169 do_cleanups (stb_chain);
6170 }
6171 else
6172 {
6173 ui_out_field_string (uiout, "pending",
6174 event_location_to_string (b->location));
6175 /* If extra_string is available, it could be holding a condition
6176 or dprintf arguments. In either case, make sure it is printed,
6177 too, but only for non-MI streams. */
6178 if (!ui_out_is_mi_like_p (uiout) && b->extra_string != NULL)
6179 {
6180 if (b->type == bp_dprintf)
6181 ui_out_text (uiout, ",");
6182 else
6183 ui_out_text (uiout, " ");
6184 ui_out_text (uiout, b->extra_string);
6185 }
6186 }
6187
6188 if (loc && is_breakpoint (b)
6189 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
6190 && bp_condition_evaluator (b) == condition_evaluation_both)
6191 {
6192 ui_out_text (uiout, " (");
6193 ui_out_field_string (uiout, "evaluated-by",
6194 bp_location_condition_evaluator (loc));
6195 ui_out_text (uiout, ")");
6196 }
6197
6198 do_cleanups (old_chain);
6199 }
6200
6201 static const char *
6202 bptype_string (enum bptype type)
6203 {
6204 struct ep_type_description
6205 {
6206 enum bptype type;
6207 char *description;
6208 };
6209 static struct ep_type_description bptypes[] =
6210 {
6211 {bp_none, "?deleted?"},
6212 {bp_breakpoint, "breakpoint"},
6213 {bp_hardware_breakpoint, "hw breakpoint"},
6214 {bp_single_step, "sw single-step"},
6215 {bp_until, "until"},
6216 {bp_finish, "finish"},
6217 {bp_watchpoint, "watchpoint"},
6218 {bp_hardware_watchpoint, "hw watchpoint"},
6219 {bp_read_watchpoint, "read watchpoint"},
6220 {bp_access_watchpoint, "acc watchpoint"},
6221 {bp_longjmp, "longjmp"},
6222 {bp_longjmp_resume, "longjmp resume"},
6223 {bp_longjmp_call_dummy, "longjmp for call dummy"},
6224 {bp_exception, "exception"},
6225 {bp_exception_resume, "exception resume"},
6226 {bp_step_resume, "step resume"},
6227 {bp_hp_step_resume, "high-priority step resume"},
6228 {bp_watchpoint_scope, "watchpoint scope"},
6229 {bp_call_dummy, "call dummy"},
6230 {bp_std_terminate, "std::terminate"},
6231 {bp_shlib_event, "shlib events"},
6232 {bp_thread_event, "thread events"},
6233 {bp_overlay_event, "overlay events"},
6234 {bp_longjmp_master, "longjmp master"},
6235 {bp_std_terminate_master, "std::terminate master"},
6236 {bp_exception_master, "exception master"},
6237 {bp_catchpoint, "catchpoint"},
6238 {bp_tracepoint, "tracepoint"},
6239 {bp_fast_tracepoint, "fast tracepoint"},
6240 {bp_static_tracepoint, "static tracepoint"},
6241 {bp_dprintf, "dprintf"},
6242 {bp_jit_event, "jit events"},
6243 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6244 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6245 };
6246
6247 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6248 || ((int) type != bptypes[(int) type].type))
6249 internal_error (__FILE__, __LINE__,
6250 _("bptypes table does not describe type #%d."),
6251 (int) type);
6252
6253 return bptypes[(int) type].description;
6254 }
6255
6256 /* For MI, output a field named 'thread-groups' with a list as the value.
6257 For CLI, prefix the list with the string 'inf'. */
6258
6259 static void
6260 output_thread_groups (struct ui_out *uiout,
6261 const char *field_name,
6262 VEC(int) *inf_num,
6263 int mi_only)
6264 {
6265 struct cleanup *back_to;
6266 int is_mi = ui_out_is_mi_like_p (uiout);
6267 int inf;
6268 int i;
6269
6270 /* For backward compatibility, don't display inferiors in CLI unless
6271 there are several. Always display them for MI. */
6272 if (!is_mi && mi_only)
6273 return;
6274
6275 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
6276
6277 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
6278 {
6279 if (is_mi)
6280 {
6281 char mi_group[10];
6282
6283 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
6284 ui_out_field_string (uiout, NULL, mi_group);
6285 }
6286 else
6287 {
6288 if (i == 0)
6289 ui_out_text (uiout, " inf ");
6290 else
6291 ui_out_text (uiout, ", ");
6292
6293 ui_out_text (uiout, plongest (inf));
6294 }
6295 }
6296
6297 do_cleanups (back_to);
6298 }
6299
6300 /* Print B to gdb_stdout. */
6301
6302 static void
6303 print_one_breakpoint_location (struct breakpoint *b,
6304 struct bp_location *loc,
6305 int loc_number,
6306 struct bp_location **last_loc,
6307 int allflag)
6308 {
6309 struct command_line *l;
6310 static char bpenables[] = "nynny";
6311
6312 struct ui_out *uiout = current_uiout;
6313 int header_of_multiple = 0;
6314 int part_of_multiple = (loc != NULL);
6315 struct value_print_options opts;
6316
6317 get_user_print_options (&opts);
6318
6319 gdb_assert (!loc || loc_number != 0);
6320 /* See comment in print_one_breakpoint concerning treatment of
6321 breakpoints with single disabled location. */
6322 if (loc == NULL
6323 && (b->loc != NULL
6324 && (b->loc->next != NULL || !b->loc->enabled)))
6325 header_of_multiple = 1;
6326 if (loc == NULL)
6327 loc = b->loc;
6328
6329 annotate_record ();
6330
6331 /* 1 */
6332 annotate_field (0);
6333 if (part_of_multiple)
6334 {
6335 char *formatted;
6336 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6337 ui_out_field_string (uiout, "number", formatted);
6338 xfree (formatted);
6339 }
6340 else
6341 {
6342 ui_out_field_int (uiout, "number", b->number);
6343 }
6344
6345 /* 2 */
6346 annotate_field (1);
6347 if (part_of_multiple)
6348 ui_out_field_skip (uiout, "type");
6349 else
6350 ui_out_field_string (uiout, "type", bptype_string (b->type));
6351
6352 /* 3 */
6353 annotate_field (2);
6354 if (part_of_multiple)
6355 ui_out_field_skip (uiout, "disp");
6356 else
6357 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
6358
6359
6360 /* 4 */
6361 annotate_field (3);
6362 if (part_of_multiple)
6363 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
6364 else
6365 ui_out_field_fmt (uiout, "enabled", "%c",
6366 bpenables[(int) b->enable_state]);
6367 ui_out_spaces (uiout, 2);
6368
6369
6370 /* 5 and 6 */
6371 if (b->ops != NULL && b->ops->print_one != NULL)
6372 {
6373 /* Although the print_one can possibly print all locations,
6374 calling it here is not likely to get any nice result. So,
6375 make sure there's just one location. */
6376 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6377 b->ops->print_one (b, last_loc);
6378 }
6379 else
6380 switch (b->type)
6381 {
6382 case bp_none:
6383 internal_error (__FILE__, __LINE__,
6384 _("print_one_breakpoint: bp_none encountered\n"));
6385 break;
6386
6387 case bp_watchpoint:
6388 case bp_hardware_watchpoint:
6389 case bp_read_watchpoint:
6390 case bp_access_watchpoint:
6391 {
6392 struct watchpoint *w = (struct watchpoint *) b;
6393
6394 /* Field 4, the address, is omitted (which makes the columns
6395 not line up too nicely with the headers, but the effect
6396 is relatively readable). */
6397 if (opts.addressprint)
6398 ui_out_field_skip (uiout, "addr");
6399 annotate_field (5);
6400 ui_out_field_string (uiout, "what", w->exp_string);
6401 }
6402 break;
6403
6404 case bp_breakpoint:
6405 case bp_hardware_breakpoint:
6406 case bp_single_step:
6407 case bp_until:
6408 case bp_finish:
6409 case bp_longjmp:
6410 case bp_longjmp_resume:
6411 case bp_longjmp_call_dummy:
6412 case bp_exception:
6413 case bp_exception_resume:
6414 case bp_step_resume:
6415 case bp_hp_step_resume:
6416 case bp_watchpoint_scope:
6417 case bp_call_dummy:
6418 case bp_std_terminate:
6419 case bp_shlib_event:
6420 case bp_thread_event:
6421 case bp_overlay_event:
6422 case bp_longjmp_master:
6423 case bp_std_terminate_master:
6424 case bp_exception_master:
6425 case bp_tracepoint:
6426 case bp_fast_tracepoint:
6427 case bp_static_tracepoint:
6428 case bp_dprintf:
6429 case bp_jit_event:
6430 case bp_gnu_ifunc_resolver:
6431 case bp_gnu_ifunc_resolver_return:
6432 if (opts.addressprint)
6433 {
6434 annotate_field (4);
6435 if (header_of_multiple)
6436 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
6437 else if (b->loc == NULL || loc->shlib_disabled)
6438 ui_out_field_string (uiout, "addr", "<PENDING>");
6439 else
6440 ui_out_field_core_addr (uiout, "addr",
6441 loc->gdbarch, loc->address);
6442 }
6443 annotate_field (5);
6444 if (!header_of_multiple)
6445 print_breakpoint_location (b, loc);
6446 if (b->loc)
6447 *last_loc = b->loc;
6448 break;
6449 }
6450
6451
6452 if (loc != NULL && !header_of_multiple)
6453 {
6454 struct inferior *inf;
6455 VEC(int) *inf_num = NULL;
6456 int mi_only = 1;
6457
6458 ALL_INFERIORS (inf)
6459 {
6460 if (inf->pspace == loc->pspace)
6461 VEC_safe_push (int, inf_num, inf->num);
6462 }
6463
6464 /* For backward compatibility, don't display inferiors in CLI unless
6465 there are several. Always display for MI. */
6466 if (allflag
6467 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6468 && (number_of_program_spaces () > 1
6469 || number_of_inferiors () > 1)
6470 /* LOC is for existing B, it cannot be in
6471 moribund_locations and thus having NULL OWNER. */
6472 && loc->owner->type != bp_catchpoint))
6473 mi_only = 0;
6474 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6475 VEC_free (int, inf_num);
6476 }
6477
6478 if (!part_of_multiple)
6479 {
6480 if (b->thread != -1)
6481 {
6482 /* FIXME: This seems to be redundant and lost here; see the
6483 "stop only in" line a little further down. */
6484 ui_out_text (uiout, " thread ");
6485 ui_out_field_int (uiout, "thread", b->thread);
6486 }
6487 else if (b->task != 0)
6488 {
6489 ui_out_text (uiout, " task ");
6490 ui_out_field_int (uiout, "task", b->task);
6491 }
6492 }
6493
6494 ui_out_text (uiout, "\n");
6495
6496 if (!part_of_multiple)
6497 b->ops->print_one_detail (b, uiout);
6498
6499 if (part_of_multiple && frame_id_p (b->frame_id))
6500 {
6501 annotate_field (6);
6502 ui_out_text (uiout, "\tstop only in stack frame at ");
6503 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6504 the frame ID. */
6505 ui_out_field_core_addr (uiout, "frame",
6506 b->gdbarch, b->frame_id.stack_addr);
6507 ui_out_text (uiout, "\n");
6508 }
6509
6510 if (!part_of_multiple && b->cond_string)
6511 {
6512 annotate_field (7);
6513 if (is_tracepoint (b))
6514 ui_out_text (uiout, "\ttrace only if ");
6515 else
6516 ui_out_text (uiout, "\tstop only if ");
6517 ui_out_field_string (uiout, "cond", b->cond_string);
6518
6519 /* Print whether the target is doing the breakpoint's condition
6520 evaluation. If GDB is doing the evaluation, don't print anything. */
6521 if (is_breakpoint (b)
6522 && breakpoint_condition_evaluation_mode ()
6523 == condition_evaluation_target)
6524 {
6525 ui_out_text (uiout, " (");
6526 ui_out_field_string (uiout, "evaluated-by",
6527 bp_condition_evaluator (b));
6528 ui_out_text (uiout, " evals)");
6529 }
6530 ui_out_text (uiout, "\n");
6531 }
6532
6533 if (!part_of_multiple && b->thread != -1)
6534 {
6535 /* FIXME should make an annotation for this. */
6536 ui_out_text (uiout, "\tstop only in thread ");
6537 if (ui_out_is_mi_like_p (uiout))
6538 ui_out_field_int (uiout, "thread", b->thread);
6539 else
6540 {
6541 struct thread_info *thr = find_thread_global_id (b->thread);
6542
6543 ui_out_field_string (uiout, "thread", print_thread_id (thr));
6544 }
6545 ui_out_text (uiout, "\n");
6546 }
6547
6548 if (!part_of_multiple)
6549 {
6550 if (b->hit_count)
6551 {
6552 /* FIXME should make an annotation for this. */
6553 if (is_catchpoint (b))
6554 ui_out_text (uiout, "\tcatchpoint");
6555 else if (is_tracepoint (b))
6556 ui_out_text (uiout, "\ttracepoint");
6557 else
6558 ui_out_text (uiout, "\tbreakpoint");
6559 ui_out_text (uiout, " already hit ");
6560 ui_out_field_int (uiout, "times", b->hit_count);
6561 if (b->hit_count == 1)
6562 ui_out_text (uiout, " time\n");
6563 else
6564 ui_out_text (uiout, " times\n");
6565 }
6566 else
6567 {
6568 /* Output the count also if it is zero, but only if this is mi. */
6569 if (ui_out_is_mi_like_p (uiout))
6570 ui_out_field_int (uiout, "times", b->hit_count);
6571 }
6572 }
6573
6574 if (!part_of_multiple && b->ignore_count)
6575 {
6576 annotate_field (8);
6577 ui_out_text (uiout, "\tignore next ");
6578 ui_out_field_int (uiout, "ignore", b->ignore_count);
6579 ui_out_text (uiout, " hits\n");
6580 }
6581
6582 /* Note that an enable count of 1 corresponds to "enable once"
6583 behavior, which is reported by the combination of enablement and
6584 disposition, so we don't need to mention it here. */
6585 if (!part_of_multiple && b->enable_count > 1)
6586 {
6587 annotate_field (8);
6588 ui_out_text (uiout, "\tdisable after ");
6589 /* Tweak the wording to clarify that ignore and enable counts
6590 are distinct, and have additive effect. */
6591 if (b->ignore_count)
6592 ui_out_text (uiout, "additional ");
6593 else
6594 ui_out_text (uiout, "next ");
6595 ui_out_field_int (uiout, "enable", b->enable_count);
6596 ui_out_text (uiout, " hits\n");
6597 }
6598
6599 if (!part_of_multiple && is_tracepoint (b))
6600 {
6601 struct tracepoint *tp = (struct tracepoint *) b;
6602
6603 if (tp->traceframe_usage)
6604 {
6605 ui_out_text (uiout, "\ttrace buffer usage ");
6606 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6607 ui_out_text (uiout, " bytes\n");
6608 }
6609 }
6610
6611 l = b->commands ? b->commands->commands : NULL;
6612 if (!part_of_multiple && l)
6613 {
6614 struct cleanup *script_chain;
6615
6616 annotate_field (9);
6617 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6618 print_command_lines (uiout, l, 4);
6619 do_cleanups (script_chain);
6620 }
6621
6622 if (is_tracepoint (b))
6623 {
6624 struct tracepoint *t = (struct tracepoint *) b;
6625
6626 if (!part_of_multiple && t->pass_count)
6627 {
6628 annotate_field (10);
6629 ui_out_text (uiout, "\tpass count ");
6630 ui_out_field_int (uiout, "pass", t->pass_count);
6631 ui_out_text (uiout, " \n");
6632 }
6633
6634 /* Don't display it when tracepoint or tracepoint location is
6635 pending. */
6636 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6637 {
6638 annotate_field (11);
6639
6640 if (ui_out_is_mi_like_p (uiout))
6641 ui_out_field_string (uiout, "installed",
6642 loc->inserted ? "y" : "n");
6643 else
6644 {
6645 if (loc->inserted)
6646 ui_out_text (uiout, "\t");
6647 else
6648 ui_out_text (uiout, "\tnot ");
6649 ui_out_text (uiout, "installed on target\n");
6650 }
6651 }
6652 }
6653
6654 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6655 {
6656 if (is_watchpoint (b))
6657 {
6658 struct watchpoint *w = (struct watchpoint *) b;
6659
6660 ui_out_field_string (uiout, "original-location", w->exp_string);
6661 }
6662 else if (b->location != NULL
6663 && event_location_to_string (b->location) != NULL)
6664 ui_out_field_string (uiout, "original-location",
6665 event_location_to_string (b->location));
6666 }
6667 }
6668
6669 static void
6670 print_one_breakpoint (struct breakpoint *b,
6671 struct bp_location **last_loc,
6672 int allflag)
6673 {
6674 struct cleanup *bkpt_chain;
6675 struct ui_out *uiout = current_uiout;
6676
6677 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6678
6679 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6680 do_cleanups (bkpt_chain);
6681
6682 /* If this breakpoint has custom print function,
6683 it's already printed. Otherwise, print individual
6684 locations, if any. */
6685 if (b->ops == NULL || b->ops->print_one == NULL)
6686 {
6687 /* If breakpoint has a single location that is disabled, we
6688 print it as if it had several locations, since otherwise it's
6689 hard to represent "breakpoint enabled, location disabled"
6690 situation.
6691
6692 Note that while hardware watchpoints have several locations
6693 internally, that's not a property exposed to user. */
6694 if (b->loc
6695 && !is_hardware_watchpoint (b)
6696 && (b->loc->next || !b->loc->enabled))
6697 {
6698 struct bp_location *loc;
6699 int n = 1;
6700
6701 for (loc = b->loc; loc; loc = loc->next, ++n)
6702 {
6703 struct cleanup *inner2 =
6704 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6705 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6706 do_cleanups (inner2);
6707 }
6708 }
6709 }
6710 }
6711
6712 static int
6713 breakpoint_address_bits (struct breakpoint *b)
6714 {
6715 int print_address_bits = 0;
6716 struct bp_location *loc;
6717
6718 /* Software watchpoints that aren't watching memory don't have an
6719 address to print. */
6720 if (is_no_memory_software_watchpoint (b))
6721 return 0;
6722
6723 for (loc = b->loc; loc; loc = loc->next)
6724 {
6725 int addr_bit;
6726
6727 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6728 if (addr_bit > print_address_bits)
6729 print_address_bits = addr_bit;
6730 }
6731
6732 return print_address_bits;
6733 }
6734
6735 struct captured_breakpoint_query_args
6736 {
6737 int bnum;
6738 };
6739
6740 static int
6741 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6742 {
6743 struct captured_breakpoint_query_args *args
6744 = (struct captured_breakpoint_query_args *) data;
6745 struct breakpoint *b;
6746 struct bp_location *dummy_loc = NULL;
6747
6748 ALL_BREAKPOINTS (b)
6749 {
6750 if (args->bnum == b->number)
6751 {
6752 print_one_breakpoint (b, &dummy_loc, 0);
6753 return GDB_RC_OK;
6754 }
6755 }
6756 return GDB_RC_NONE;
6757 }
6758
6759 enum gdb_rc
6760 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6761 char **error_message)
6762 {
6763 struct captured_breakpoint_query_args args;
6764
6765 args.bnum = bnum;
6766 /* For the moment we don't trust print_one_breakpoint() to not throw
6767 an error. */
6768 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6769 error_message, RETURN_MASK_ALL) < 0)
6770 return GDB_RC_FAIL;
6771 else
6772 return GDB_RC_OK;
6773 }
6774
6775 /* Return true if this breakpoint was set by the user, false if it is
6776 internal or momentary. */
6777
6778 int
6779 user_breakpoint_p (struct breakpoint *b)
6780 {
6781 return b->number > 0;
6782 }
6783
6784 /* Print information on user settable breakpoint (watchpoint, etc)
6785 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6786 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6787 FILTER is non-NULL, call it on each breakpoint and only include the
6788 ones for which it returns non-zero. Return the total number of
6789 breakpoints listed. */
6790
6791 static int
6792 breakpoint_1 (char *args, int allflag,
6793 int (*filter) (const struct breakpoint *))
6794 {
6795 struct breakpoint *b;
6796 struct bp_location *last_loc = NULL;
6797 int nr_printable_breakpoints;
6798 struct cleanup *bkpttbl_chain;
6799 struct value_print_options opts;
6800 int print_address_bits = 0;
6801 int print_type_col_width = 14;
6802 struct ui_out *uiout = current_uiout;
6803
6804 get_user_print_options (&opts);
6805
6806 /* Compute the number of rows in the table, as well as the size
6807 required for address fields. */
6808 nr_printable_breakpoints = 0;
6809 ALL_BREAKPOINTS (b)
6810 {
6811 /* If we have a filter, only list the breakpoints it accepts. */
6812 if (filter && !filter (b))
6813 continue;
6814
6815 /* If we have an "args" string, it is a list of breakpoints to
6816 accept. Skip the others. */
6817 if (args != NULL && *args != '\0')
6818 {
6819 if (allflag && parse_and_eval_long (args) != b->number)
6820 continue;
6821 if (!allflag && !number_is_in_list (args, b->number))
6822 continue;
6823 }
6824
6825 if (allflag || user_breakpoint_p (b))
6826 {
6827 int addr_bit, type_len;
6828
6829 addr_bit = breakpoint_address_bits (b);
6830 if (addr_bit > print_address_bits)
6831 print_address_bits = addr_bit;
6832
6833 type_len = strlen (bptype_string (b->type));
6834 if (type_len > print_type_col_width)
6835 print_type_col_width = type_len;
6836
6837 nr_printable_breakpoints++;
6838 }
6839 }
6840
6841 if (opts.addressprint)
6842 bkpttbl_chain
6843 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6844 nr_printable_breakpoints,
6845 "BreakpointTable");
6846 else
6847 bkpttbl_chain
6848 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6849 nr_printable_breakpoints,
6850 "BreakpointTable");
6851
6852 if (nr_printable_breakpoints > 0)
6853 annotate_breakpoints_headers ();
6854 if (nr_printable_breakpoints > 0)
6855 annotate_field (0);
6856 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6857 if (nr_printable_breakpoints > 0)
6858 annotate_field (1);
6859 ui_out_table_header (uiout, print_type_col_width, ui_left,
6860 "type", "Type"); /* 2 */
6861 if (nr_printable_breakpoints > 0)
6862 annotate_field (2);
6863 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6864 if (nr_printable_breakpoints > 0)
6865 annotate_field (3);
6866 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6867 if (opts.addressprint)
6868 {
6869 if (nr_printable_breakpoints > 0)
6870 annotate_field (4);
6871 if (print_address_bits <= 32)
6872 ui_out_table_header (uiout, 10, ui_left,
6873 "addr", "Address"); /* 5 */
6874 else
6875 ui_out_table_header (uiout, 18, ui_left,
6876 "addr", "Address"); /* 5 */
6877 }
6878 if (nr_printable_breakpoints > 0)
6879 annotate_field (5);
6880 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6881 ui_out_table_body (uiout);
6882 if (nr_printable_breakpoints > 0)
6883 annotate_breakpoints_table ();
6884
6885 ALL_BREAKPOINTS (b)
6886 {
6887 QUIT;
6888 /* If we have a filter, only list the breakpoints it accepts. */
6889 if (filter && !filter (b))
6890 continue;
6891
6892 /* If we have an "args" string, it is a list of breakpoints to
6893 accept. Skip the others. */
6894
6895 if (args != NULL && *args != '\0')
6896 {
6897 if (allflag) /* maintenance info breakpoint */
6898 {
6899 if (parse_and_eval_long (args) != b->number)
6900 continue;
6901 }
6902 else /* all others */
6903 {
6904 if (!number_is_in_list (args, b->number))
6905 continue;
6906 }
6907 }
6908 /* We only print out user settable breakpoints unless the
6909 allflag is set. */
6910 if (allflag || user_breakpoint_p (b))
6911 print_one_breakpoint (b, &last_loc, allflag);
6912 }
6913
6914 do_cleanups (bkpttbl_chain);
6915
6916 if (nr_printable_breakpoints == 0)
6917 {
6918 /* If there's a filter, let the caller decide how to report
6919 empty list. */
6920 if (!filter)
6921 {
6922 if (args == NULL || *args == '\0')
6923 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6924 else
6925 ui_out_message (uiout, 0,
6926 "No breakpoint or watchpoint matching '%s'.\n",
6927 args);
6928 }
6929 }
6930 else
6931 {
6932 if (last_loc && !server_command)
6933 set_next_address (last_loc->gdbarch, last_loc->address);
6934 }
6935
6936 /* FIXME? Should this be moved up so that it is only called when
6937 there have been breakpoints? */
6938 annotate_breakpoints_table_end ();
6939
6940 return nr_printable_breakpoints;
6941 }
6942
6943 /* Display the value of default-collect in a way that is generally
6944 compatible with the breakpoint list. */
6945
6946 static void
6947 default_collect_info (void)
6948 {
6949 struct ui_out *uiout = current_uiout;
6950
6951 /* If it has no value (which is frequently the case), say nothing; a
6952 message like "No default-collect." gets in user's face when it's
6953 not wanted. */
6954 if (!*default_collect)
6955 return;
6956
6957 /* The following phrase lines up nicely with per-tracepoint collect
6958 actions. */
6959 ui_out_text (uiout, "default collect ");
6960 ui_out_field_string (uiout, "default-collect", default_collect);
6961 ui_out_text (uiout, " \n");
6962 }
6963
6964 static void
6965 breakpoints_info (char *args, int from_tty)
6966 {
6967 breakpoint_1 (args, 0, NULL);
6968
6969 default_collect_info ();
6970 }
6971
6972 static void
6973 watchpoints_info (char *args, int from_tty)
6974 {
6975 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6976 struct ui_out *uiout = current_uiout;
6977
6978 if (num_printed == 0)
6979 {
6980 if (args == NULL || *args == '\0')
6981 ui_out_message (uiout, 0, "No watchpoints.\n");
6982 else
6983 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6984 }
6985 }
6986
6987 static void
6988 maintenance_info_breakpoints (char *args, int from_tty)
6989 {
6990 breakpoint_1 (args, 1, NULL);
6991
6992 default_collect_info ();
6993 }
6994
6995 static int
6996 breakpoint_has_pc (struct breakpoint *b,
6997 struct program_space *pspace,
6998 CORE_ADDR pc, struct obj_section *section)
6999 {
7000 struct bp_location *bl = b->loc;
7001
7002 for (; bl; bl = bl->next)
7003 {
7004 if (bl->pspace == pspace
7005 && bl->address == pc
7006 && (!overlay_debugging || bl->section == section))
7007 return 1;
7008 }
7009 return 0;
7010 }
7011
7012 /* Print a message describing any user-breakpoints set at PC. This
7013 concerns with logical breakpoints, so we match program spaces, not
7014 address spaces. */
7015
7016 static void
7017 describe_other_breakpoints (struct gdbarch *gdbarch,
7018 struct program_space *pspace, CORE_ADDR pc,
7019 struct obj_section *section, int thread)
7020 {
7021 int others = 0;
7022 struct breakpoint *b;
7023
7024 ALL_BREAKPOINTS (b)
7025 others += (user_breakpoint_p (b)
7026 && breakpoint_has_pc (b, pspace, pc, section));
7027 if (others > 0)
7028 {
7029 if (others == 1)
7030 printf_filtered (_("Note: breakpoint "));
7031 else /* if (others == ???) */
7032 printf_filtered (_("Note: breakpoints "));
7033 ALL_BREAKPOINTS (b)
7034 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
7035 {
7036 others--;
7037 printf_filtered ("%d", b->number);
7038 if (b->thread == -1 && thread != -1)
7039 printf_filtered (" (all threads)");
7040 else if (b->thread != -1)
7041 printf_filtered (" (thread %d)", b->thread);
7042 printf_filtered ("%s%s ",
7043 ((b->enable_state == bp_disabled
7044 || b->enable_state == bp_call_disabled)
7045 ? " (disabled)"
7046 : ""),
7047 (others > 1) ? ","
7048 : ((others == 1) ? " and" : ""));
7049 }
7050 printf_filtered (_("also set at pc "));
7051 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
7052 printf_filtered (".\n");
7053 }
7054 }
7055 \f
7056
7057 /* Return true iff it is meaningful to use the address member of
7058 BPT locations. For some breakpoint types, the locations' address members
7059 are irrelevant and it makes no sense to attempt to compare them to other
7060 addresses (or use them for any other purpose either).
7061
7062 More specifically, each of the following breakpoint types will
7063 always have a zero valued location address and we don't want to mark
7064 breakpoints of any of these types to be a duplicate of an actual
7065 breakpoint location at address zero:
7066
7067 bp_watchpoint
7068 bp_catchpoint
7069
7070 */
7071
7072 static int
7073 breakpoint_address_is_meaningful (struct breakpoint *bpt)
7074 {
7075 enum bptype type = bpt->type;
7076
7077 return (type != bp_watchpoint && type != bp_catchpoint);
7078 }
7079
7080 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
7081 true if LOC1 and LOC2 represent the same watchpoint location. */
7082
7083 static int
7084 watchpoint_locations_match (struct bp_location *loc1,
7085 struct bp_location *loc2)
7086 {
7087 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
7088 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
7089
7090 /* Both of them must exist. */
7091 gdb_assert (w1 != NULL);
7092 gdb_assert (w2 != NULL);
7093
7094 /* If the target can evaluate the condition expression in hardware,
7095 then we we need to insert both watchpoints even if they are at
7096 the same place. Otherwise the watchpoint will only trigger when
7097 the condition of whichever watchpoint was inserted evaluates to
7098 true, not giving a chance for GDB to check the condition of the
7099 other watchpoint. */
7100 if ((w1->cond_exp
7101 && target_can_accel_watchpoint_condition (loc1->address,
7102 loc1->length,
7103 loc1->watchpoint_type,
7104 w1->cond_exp))
7105 || (w2->cond_exp
7106 && target_can_accel_watchpoint_condition (loc2->address,
7107 loc2->length,
7108 loc2->watchpoint_type,
7109 w2->cond_exp)))
7110 return 0;
7111
7112 /* Note that this checks the owner's type, not the location's. In
7113 case the target does not support read watchpoints, but does
7114 support access watchpoints, we'll have bp_read_watchpoint
7115 watchpoints with hw_access locations. Those should be considered
7116 duplicates of hw_read locations. The hw_read locations will
7117 become hw_access locations later. */
7118 return (loc1->owner->type == loc2->owner->type
7119 && loc1->pspace->aspace == loc2->pspace->aspace
7120 && loc1->address == loc2->address
7121 && loc1->length == loc2->length);
7122 }
7123
7124 /* See breakpoint.h. */
7125
7126 int
7127 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
7128 struct address_space *aspace2, CORE_ADDR addr2)
7129 {
7130 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7131 || aspace1 == aspace2)
7132 && addr1 == addr2);
7133 }
7134
7135 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
7136 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
7137 matches ASPACE2. On targets that have global breakpoints, the address
7138 space doesn't really matter. */
7139
7140 static int
7141 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
7142 int len1, struct address_space *aspace2,
7143 CORE_ADDR addr2)
7144 {
7145 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7146 || aspace1 == aspace2)
7147 && addr2 >= addr1 && addr2 < addr1 + len1);
7148 }
7149
7150 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
7151 a ranged breakpoint. In most targets, a match happens only if ASPACE
7152 matches the breakpoint's address space. On targets that have global
7153 breakpoints, the address space doesn't really matter. */
7154
7155 static int
7156 breakpoint_location_address_match (struct bp_location *bl,
7157 struct address_space *aspace,
7158 CORE_ADDR addr)
7159 {
7160 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
7161 aspace, addr)
7162 || (bl->length
7163 && breakpoint_address_match_range (bl->pspace->aspace,
7164 bl->address, bl->length,
7165 aspace, addr)));
7166 }
7167
7168 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
7169 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
7170 match happens only if ASPACE matches the breakpoint's address
7171 space. On targets that have global breakpoints, the address space
7172 doesn't really matter. */
7173
7174 static int
7175 breakpoint_location_address_range_overlap (struct bp_location *bl,
7176 struct address_space *aspace,
7177 CORE_ADDR addr, int len)
7178 {
7179 if (gdbarch_has_global_breakpoints (target_gdbarch ())
7180 || bl->pspace->aspace == aspace)
7181 {
7182 int bl_len = bl->length != 0 ? bl->length : 1;
7183
7184 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
7185 return 1;
7186 }
7187 return 0;
7188 }
7189
7190 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
7191 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
7192 true, otherwise returns false. */
7193
7194 static int
7195 tracepoint_locations_match (struct bp_location *loc1,
7196 struct bp_location *loc2)
7197 {
7198 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
7199 /* Since tracepoint locations are never duplicated with others', tracepoint
7200 locations at the same address of different tracepoints are regarded as
7201 different locations. */
7202 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
7203 else
7204 return 0;
7205 }
7206
7207 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
7208 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
7209 represent the same location. */
7210
7211 static int
7212 breakpoint_locations_match (struct bp_location *loc1,
7213 struct bp_location *loc2)
7214 {
7215 int hw_point1, hw_point2;
7216
7217 /* Both of them must not be in moribund_locations. */
7218 gdb_assert (loc1->owner != NULL);
7219 gdb_assert (loc2->owner != NULL);
7220
7221 hw_point1 = is_hardware_watchpoint (loc1->owner);
7222 hw_point2 = is_hardware_watchpoint (loc2->owner);
7223
7224 if (hw_point1 != hw_point2)
7225 return 0;
7226 else if (hw_point1)
7227 return watchpoint_locations_match (loc1, loc2);
7228 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
7229 return tracepoint_locations_match (loc1, loc2);
7230 else
7231 /* We compare bp_location.length in order to cover ranged breakpoints. */
7232 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
7233 loc2->pspace->aspace, loc2->address)
7234 && loc1->length == loc2->length);
7235 }
7236
7237 static void
7238 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
7239 int bnum, int have_bnum)
7240 {
7241 /* The longest string possibly returned by hex_string_custom
7242 is 50 chars. These must be at least that big for safety. */
7243 char astr1[64];
7244 char astr2[64];
7245
7246 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
7247 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
7248 if (have_bnum)
7249 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
7250 bnum, astr1, astr2);
7251 else
7252 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
7253 }
7254
7255 /* Adjust a breakpoint's address to account for architectural
7256 constraints on breakpoint placement. Return the adjusted address.
7257 Note: Very few targets require this kind of adjustment. For most
7258 targets, this function is simply the identity function. */
7259
7260 static CORE_ADDR
7261 adjust_breakpoint_address (struct gdbarch *gdbarch,
7262 CORE_ADDR bpaddr, enum bptype bptype)
7263 {
7264 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
7265 {
7266 /* Very few targets need any kind of breakpoint adjustment. */
7267 return bpaddr;
7268 }
7269 else if (bptype == bp_watchpoint
7270 || bptype == bp_hardware_watchpoint
7271 || bptype == bp_read_watchpoint
7272 || bptype == bp_access_watchpoint
7273 || bptype == bp_catchpoint)
7274 {
7275 /* Watchpoints and the various bp_catch_* eventpoints should not
7276 have their addresses modified. */
7277 return bpaddr;
7278 }
7279 else if (bptype == bp_single_step)
7280 {
7281 /* Single-step breakpoints should not have their addresses
7282 modified. If there's any architectural constrain that
7283 applies to this address, then it should have already been
7284 taken into account when the breakpoint was created in the
7285 first place. If we didn't do this, stepping through e.g.,
7286 Thumb-2 IT blocks would break. */
7287 return bpaddr;
7288 }
7289 else
7290 {
7291 CORE_ADDR adjusted_bpaddr;
7292
7293 /* Some targets have architectural constraints on the placement
7294 of breakpoint instructions. Obtain the adjusted address. */
7295 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7296
7297 /* An adjusted breakpoint address can significantly alter
7298 a user's expectations. Print a warning if an adjustment
7299 is required. */
7300 if (adjusted_bpaddr != bpaddr)
7301 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7302
7303 return adjusted_bpaddr;
7304 }
7305 }
7306
7307 void
7308 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
7309 struct breakpoint *owner)
7310 {
7311 memset (loc, 0, sizeof (*loc));
7312
7313 gdb_assert (ops != NULL);
7314
7315 loc->ops = ops;
7316 loc->owner = owner;
7317 loc->cond = NULL;
7318 loc->cond_bytecode = NULL;
7319 loc->shlib_disabled = 0;
7320 loc->enabled = 1;
7321
7322 switch (owner->type)
7323 {
7324 case bp_breakpoint:
7325 case bp_single_step:
7326 case bp_until:
7327 case bp_finish:
7328 case bp_longjmp:
7329 case bp_longjmp_resume:
7330 case bp_longjmp_call_dummy:
7331 case bp_exception:
7332 case bp_exception_resume:
7333 case bp_step_resume:
7334 case bp_hp_step_resume:
7335 case bp_watchpoint_scope:
7336 case bp_call_dummy:
7337 case bp_std_terminate:
7338 case bp_shlib_event:
7339 case bp_thread_event:
7340 case bp_overlay_event:
7341 case bp_jit_event:
7342 case bp_longjmp_master:
7343 case bp_std_terminate_master:
7344 case bp_exception_master:
7345 case bp_gnu_ifunc_resolver:
7346 case bp_gnu_ifunc_resolver_return:
7347 case bp_dprintf:
7348 loc->loc_type = bp_loc_software_breakpoint;
7349 mark_breakpoint_location_modified (loc);
7350 break;
7351 case bp_hardware_breakpoint:
7352 loc->loc_type = bp_loc_hardware_breakpoint;
7353 mark_breakpoint_location_modified (loc);
7354 break;
7355 case bp_hardware_watchpoint:
7356 case bp_read_watchpoint:
7357 case bp_access_watchpoint:
7358 loc->loc_type = bp_loc_hardware_watchpoint;
7359 break;
7360 case bp_watchpoint:
7361 case bp_catchpoint:
7362 case bp_tracepoint:
7363 case bp_fast_tracepoint:
7364 case bp_static_tracepoint:
7365 loc->loc_type = bp_loc_other;
7366 break;
7367 default:
7368 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7369 }
7370
7371 loc->refc = 1;
7372 }
7373
7374 /* Allocate a struct bp_location. */
7375
7376 static struct bp_location *
7377 allocate_bp_location (struct breakpoint *bpt)
7378 {
7379 return bpt->ops->allocate_location (bpt);
7380 }
7381
7382 static void
7383 free_bp_location (struct bp_location *loc)
7384 {
7385 loc->ops->dtor (loc);
7386 xfree (loc);
7387 }
7388
7389 /* Increment reference count. */
7390
7391 static void
7392 incref_bp_location (struct bp_location *bl)
7393 {
7394 ++bl->refc;
7395 }
7396
7397 /* Decrement reference count. If the reference count reaches 0,
7398 destroy the bp_location. Sets *BLP to NULL. */
7399
7400 static void
7401 decref_bp_location (struct bp_location **blp)
7402 {
7403 gdb_assert ((*blp)->refc > 0);
7404
7405 if (--(*blp)->refc == 0)
7406 free_bp_location (*blp);
7407 *blp = NULL;
7408 }
7409
7410 /* Add breakpoint B at the end of the global breakpoint chain. */
7411
7412 static void
7413 add_to_breakpoint_chain (struct breakpoint *b)
7414 {
7415 struct breakpoint *b1;
7416
7417 /* Add this breakpoint to the end of the chain so that a list of
7418 breakpoints will come out in order of increasing numbers. */
7419
7420 b1 = breakpoint_chain;
7421 if (b1 == 0)
7422 breakpoint_chain = b;
7423 else
7424 {
7425 while (b1->next)
7426 b1 = b1->next;
7427 b1->next = b;
7428 }
7429 }
7430
7431 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7432
7433 static void
7434 init_raw_breakpoint_without_location (struct breakpoint *b,
7435 struct gdbarch *gdbarch,
7436 enum bptype bptype,
7437 const struct breakpoint_ops *ops)
7438 {
7439 memset (b, 0, sizeof (*b));
7440
7441 gdb_assert (ops != NULL);
7442
7443 b->ops = ops;
7444 b->type = bptype;
7445 b->gdbarch = gdbarch;
7446 b->language = current_language->la_language;
7447 b->input_radix = input_radix;
7448 b->thread = -1;
7449 b->enable_state = bp_enabled;
7450 b->next = 0;
7451 b->silent = 0;
7452 b->ignore_count = 0;
7453 b->commands = NULL;
7454 b->frame_id = null_frame_id;
7455 b->condition_not_parsed = 0;
7456 b->py_bp_object = NULL;
7457 b->related_breakpoint = b;
7458 b->location = NULL;
7459 }
7460
7461 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7462 that has type BPTYPE and has no locations as yet. */
7463
7464 static struct breakpoint *
7465 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7466 enum bptype bptype,
7467 const struct breakpoint_ops *ops)
7468 {
7469 struct breakpoint *b = XNEW (struct breakpoint);
7470
7471 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7472 add_to_breakpoint_chain (b);
7473 return b;
7474 }
7475
7476 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7477 resolutions should be made as the user specified the location explicitly
7478 enough. */
7479
7480 static void
7481 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7482 {
7483 gdb_assert (loc->owner != NULL);
7484
7485 if (loc->owner->type == bp_breakpoint
7486 || loc->owner->type == bp_hardware_breakpoint
7487 || is_tracepoint (loc->owner))
7488 {
7489 int is_gnu_ifunc;
7490 const char *function_name;
7491 CORE_ADDR func_addr;
7492
7493 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7494 &func_addr, NULL, &is_gnu_ifunc);
7495
7496 if (is_gnu_ifunc && !explicit_loc)
7497 {
7498 struct breakpoint *b = loc->owner;
7499
7500 gdb_assert (loc->pspace == current_program_space);
7501 if (gnu_ifunc_resolve_name (function_name,
7502 &loc->requested_address))
7503 {
7504 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7505 loc->address = adjust_breakpoint_address (loc->gdbarch,
7506 loc->requested_address,
7507 b->type);
7508 }
7509 else if (b->type == bp_breakpoint && b->loc == loc
7510 && loc->next == NULL && b->related_breakpoint == b)
7511 {
7512 /* Create only the whole new breakpoint of this type but do not
7513 mess more complicated breakpoints with multiple locations. */
7514 b->type = bp_gnu_ifunc_resolver;
7515 /* Remember the resolver's address for use by the return
7516 breakpoint. */
7517 loc->related_address = func_addr;
7518 }
7519 }
7520
7521 if (function_name)
7522 loc->function_name = xstrdup (function_name);
7523 }
7524 }
7525
7526 /* Attempt to determine architecture of location identified by SAL. */
7527 struct gdbarch *
7528 get_sal_arch (struct symtab_and_line sal)
7529 {
7530 if (sal.section)
7531 return get_objfile_arch (sal.section->objfile);
7532 if (sal.symtab)
7533 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7534
7535 return NULL;
7536 }
7537
7538 /* Low level routine for partially initializing a breakpoint of type
7539 BPTYPE. The newly created breakpoint's address, section, source
7540 file name, and line number are provided by SAL.
7541
7542 It is expected that the caller will complete the initialization of
7543 the newly created breakpoint struct as well as output any status
7544 information regarding the creation of a new breakpoint. */
7545
7546 static void
7547 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7548 struct symtab_and_line sal, enum bptype bptype,
7549 const struct breakpoint_ops *ops)
7550 {
7551 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7552
7553 add_location_to_breakpoint (b, &sal);
7554
7555 if (bptype != bp_catchpoint)
7556 gdb_assert (sal.pspace != NULL);
7557
7558 /* Store the program space that was used to set the breakpoint,
7559 except for ordinary breakpoints, which are independent of the
7560 program space. */
7561 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7562 b->pspace = sal.pspace;
7563 }
7564
7565 /* set_raw_breakpoint is a low level routine for allocating and
7566 partially initializing a breakpoint of type BPTYPE. The newly
7567 created breakpoint's address, section, source file name, and line
7568 number are provided by SAL. The newly created and partially
7569 initialized breakpoint is added to the breakpoint chain and
7570 is also returned as the value of this function.
7571
7572 It is expected that the caller will complete the initialization of
7573 the newly created breakpoint struct as well as output any status
7574 information regarding the creation of a new breakpoint. In
7575 particular, set_raw_breakpoint does NOT set the breakpoint
7576 number! Care should be taken to not allow an error to occur
7577 prior to completing the initialization of the breakpoint. If this
7578 should happen, a bogus breakpoint will be left on the chain. */
7579
7580 struct breakpoint *
7581 set_raw_breakpoint (struct gdbarch *gdbarch,
7582 struct symtab_and_line sal, enum bptype bptype,
7583 const struct breakpoint_ops *ops)
7584 {
7585 struct breakpoint *b = XNEW (struct breakpoint);
7586
7587 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7588 add_to_breakpoint_chain (b);
7589 return b;
7590 }
7591
7592 /* Call this routine when stepping and nexting to enable a breakpoint
7593 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7594 initiated the operation. */
7595
7596 void
7597 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7598 {
7599 struct breakpoint *b, *b_tmp;
7600 int thread = tp->global_num;
7601
7602 /* To avoid having to rescan all objfile symbols at every step,
7603 we maintain a list of continually-inserted but always disabled
7604 longjmp "master" breakpoints. Here, we simply create momentary
7605 clones of those and enable them for the requested thread. */
7606 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7607 if (b->pspace == current_program_space
7608 && (b->type == bp_longjmp_master
7609 || b->type == bp_exception_master))
7610 {
7611 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7612 struct breakpoint *clone;
7613
7614 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7615 after their removal. */
7616 clone = momentary_breakpoint_from_master (b, type,
7617 &longjmp_breakpoint_ops, 1);
7618 clone->thread = thread;
7619 }
7620
7621 tp->initiating_frame = frame;
7622 }
7623
7624 /* Delete all longjmp breakpoints from THREAD. */
7625 void
7626 delete_longjmp_breakpoint (int thread)
7627 {
7628 struct breakpoint *b, *b_tmp;
7629
7630 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7631 if (b->type == bp_longjmp || b->type == bp_exception)
7632 {
7633 if (b->thread == thread)
7634 delete_breakpoint (b);
7635 }
7636 }
7637
7638 void
7639 delete_longjmp_breakpoint_at_next_stop (int thread)
7640 {
7641 struct breakpoint *b, *b_tmp;
7642
7643 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7644 if (b->type == bp_longjmp || b->type == bp_exception)
7645 {
7646 if (b->thread == thread)
7647 b->disposition = disp_del_at_next_stop;
7648 }
7649 }
7650
7651 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7652 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7653 pointer to any of them. Return NULL if this system cannot place longjmp
7654 breakpoints. */
7655
7656 struct breakpoint *
7657 set_longjmp_breakpoint_for_call_dummy (void)
7658 {
7659 struct breakpoint *b, *retval = NULL;
7660
7661 ALL_BREAKPOINTS (b)
7662 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7663 {
7664 struct breakpoint *new_b;
7665
7666 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7667 &momentary_breakpoint_ops,
7668 1);
7669 new_b->thread = ptid_to_global_thread_id (inferior_ptid);
7670
7671 /* Link NEW_B into the chain of RETVAL breakpoints. */
7672
7673 gdb_assert (new_b->related_breakpoint == new_b);
7674 if (retval == NULL)
7675 retval = new_b;
7676 new_b->related_breakpoint = retval;
7677 while (retval->related_breakpoint != new_b->related_breakpoint)
7678 retval = retval->related_breakpoint;
7679 retval->related_breakpoint = new_b;
7680 }
7681
7682 return retval;
7683 }
7684
7685 /* Verify all existing dummy frames and their associated breakpoints for
7686 TP. Remove those which can no longer be found in the current frame
7687 stack.
7688
7689 You should call this function only at places where it is safe to currently
7690 unwind the whole stack. Failed stack unwind would discard live dummy
7691 frames. */
7692
7693 void
7694 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7695 {
7696 struct breakpoint *b, *b_tmp;
7697
7698 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7699 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7700 {
7701 struct breakpoint *dummy_b = b->related_breakpoint;
7702
7703 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7704 dummy_b = dummy_b->related_breakpoint;
7705 if (dummy_b->type != bp_call_dummy
7706 || frame_find_by_id (dummy_b->frame_id) != NULL)
7707 continue;
7708
7709 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7710
7711 while (b->related_breakpoint != b)
7712 {
7713 if (b_tmp == b->related_breakpoint)
7714 b_tmp = b->related_breakpoint->next;
7715 delete_breakpoint (b->related_breakpoint);
7716 }
7717 delete_breakpoint (b);
7718 }
7719 }
7720
7721 void
7722 enable_overlay_breakpoints (void)
7723 {
7724 struct breakpoint *b;
7725
7726 ALL_BREAKPOINTS (b)
7727 if (b->type == bp_overlay_event)
7728 {
7729 b->enable_state = bp_enabled;
7730 update_global_location_list (UGLL_MAY_INSERT);
7731 overlay_events_enabled = 1;
7732 }
7733 }
7734
7735 void
7736 disable_overlay_breakpoints (void)
7737 {
7738 struct breakpoint *b;
7739
7740 ALL_BREAKPOINTS (b)
7741 if (b->type == bp_overlay_event)
7742 {
7743 b->enable_state = bp_disabled;
7744 update_global_location_list (UGLL_DONT_INSERT);
7745 overlay_events_enabled = 0;
7746 }
7747 }
7748
7749 /* Set an active std::terminate breakpoint for each std::terminate
7750 master breakpoint. */
7751 void
7752 set_std_terminate_breakpoint (void)
7753 {
7754 struct breakpoint *b, *b_tmp;
7755
7756 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7757 if (b->pspace == current_program_space
7758 && b->type == bp_std_terminate_master)
7759 {
7760 momentary_breakpoint_from_master (b, bp_std_terminate,
7761 &momentary_breakpoint_ops, 1);
7762 }
7763 }
7764
7765 /* Delete all the std::terminate breakpoints. */
7766 void
7767 delete_std_terminate_breakpoint (void)
7768 {
7769 struct breakpoint *b, *b_tmp;
7770
7771 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7772 if (b->type == bp_std_terminate)
7773 delete_breakpoint (b);
7774 }
7775
7776 struct breakpoint *
7777 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7778 {
7779 struct breakpoint *b;
7780
7781 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7782 &internal_breakpoint_ops);
7783
7784 b->enable_state = bp_enabled;
7785 /* location has to be used or breakpoint_re_set will delete me. */
7786 b->location = new_address_location (b->loc->address, NULL, 0);
7787
7788 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7789
7790 return b;
7791 }
7792
7793 struct lang_and_radix
7794 {
7795 enum language lang;
7796 int radix;
7797 };
7798
7799 /* Create a breakpoint for JIT code registration and unregistration. */
7800
7801 struct breakpoint *
7802 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7803 {
7804 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7805 &internal_breakpoint_ops);
7806 }
7807
7808 /* Remove JIT code registration and unregistration breakpoint(s). */
7809
7810 void
7811 remove_jit_event_breakpoints (void)
7812 {
7813 struct breakpoint *b, *b_tmp;
7814
7815 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7816 if (b->type == bp_jit_event
7817 && b->loc->pspace == current_program_space)
7818 delete_breakpoint (b);
7819 }
7820
7821 void
7822 remove_solib_event_breakpoints (void)
7823 {
7824 struct breakpoint *b, *b_tmp;
7825
7826 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7827 if (b->type == bp_shlib_event
7828 && b->loc->pspace == current_program_space)
7829 delete_breakpoint (b);
7830 }
7831
7832 /* See breakpoint.h. */
7833
7834 void
7835 remove_solib_event_breakpoints_at_next_stop (void)
7836 {
7837 struct breakpoint *b, *b_tmp;
7838
7839 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7840 if (b->type == bp_shlib_event
7841 && b->loc->pspace == current_program_space)
7842 b->disposition = disp_del_at_next_stop;
7843 }
7844
7845 /* Helper for create_solib_event_breakpoint /
7846 create_and_insert_solib_event_breakpoint. Allows specifying which
7847 INSERT_MODE to pass through to update_global_location_list. */
7848
7849 static struct breakpoint *
7850 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7851 enum ugll_insert_mode insert_mode)
7852 {
7853 struct breakpoint *b;
7854
7855 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7856 &internal_breakpoint_ops);
7857 update_global_location_list_nothrow (insert_mode);
7858 return b;
7859 }
7860
7861 struct breakpoint *
7862 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7863 {
7864 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7865 }
7866
7867 /* See breakpoint.h. */
7868
7869 struct breakpoint *
7870 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7871 {
7872 struct breakpoint *b;
7873
7874 /* Explicitly tell update_global_location_list to insert
7875 locations. */
7876 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7877 if (!b->loc->inserted)
7878 {
7879 delete_breakpoint (b);
7880 return NULL;
7881 }
7882 return b;
7883 }
7884
7885 /* Disable any breakpoints that are on code in shared libraries. Only
7886 apply to enabled breakpoints, disabled ones can just stay disabled. */
7887
7888 void
7889 disable_breakpoints_in_shlibs (void)
7890 {
7891 struct bp_location *loc, **locp_tmp;
7892
7893 ALL_BP_LOCATIONS (loc, locp_tmp)
7894 {
7895 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7896 struct breakpoint *b = loc->owner;
7897
7898 /* We apply the check to all breakpoints, including disabled for
7899 those with loc->duplicate set. This is so that when breakpoint
7900 becomes enabled, or the duplicate is removed, gdb will try to
7901 insert all breakpoints. If we don't set shlib_disabled here,
7902 we'll try to insert those breakpoints and fail. */
7903 if (((b->type == bp_breakpoint)
7904 || (b->type == bp_jit_event)
7905 || (b->type == bp_hardware_breakpoint)
7906 || (is_tracepoint (b)))
7907 && loc->pspace == current_program_space
7908 && !loc->shlib_disabled
7909 && solib_name_from_address (loc->pspace, loc->address)
7910 )
7911 {
7912 loc->shlib_disabled = 1;
7913 }
7914 }
7915 }
7916
7917 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7918 notification of unloaded_shlib. Only apply to enabled breakpoints,
7919 disabled ones can just stay disabled. */
7920
7921 static void
7922 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7923 {
7924 struct bp_location *loc, **locp_tmp;
7925 int disabled_shlib_breaks = 0;
7926
7927 /* SunOS a.out shared libraries are always mapped, so do not
7928 disable breakpoints; they will only be reported as unloaded
7929 through clear_solib when GDB discards its shared library
7930 list. See clear_solib for more information. */
7931 if (exec_bfd != NULL
7932 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7933 return;
7934
7935 ALL_BP_LOCATIONS (loc, locp_tmp)
7936 {
7937 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7938 struct breakpoint *b = loc->owner;
7939
7940 if (solib->pspace == loc->pspace
7941 && !loc->shlib_disabled
7942 && (((b->type == bp_breakpoint
7943 || b->type == bp_jit_event
7944 || b->type == bp_hardware_breakpoint)
7945 && (loc->loc_type == bp_loc_hardware_breakpoint
7946 || loc->loc_type == bp_loc_software_breakpoint))
7947 || is_tracepoint (b))
7948 && solib_contains_address_p (solib, loc->address))
7949 {
7950 loc->shlib_disabled = 1;
7951 /* At this point, we cannot rely on remove_breakpoint
7952 succeeding so we must mark the breakpoint as not inserted
7953 to prevent future errors occurring in remove_breakpoints. */
7954 loc->inserted = 0;
7955
7956 /* This may cause duplicate notifications for the same breakpoint. */
7957 observer_notify_breakpoint_modified (b);
7958
7959 if (!disabled_shlib_breaks)
7960 {
7961 target_terminal_ours_for_output ();
7962 warning (_("Temporarily disabling breakpoints "
7963 "for unloaded shared library \"%s\""),
7964 solib->so_name);
7965 }
7966 disabled_shlib_breaks = 1;
7967 }
7968 }
7969 }
7970
7971 /* Disable any breakpoints and tracepoints in OBJFILE upon
7972 notification of free_objfile. Only apply to enabled breakpoints,
7973 disabled ones can just stay disabled. */
7974
7975 static void
7976 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7977 {
7978 struct breakpoint *b;
7979
7980 if (objfile == NULL)
7981 return;
7982
7983 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7984 managed by the user with add-symbol-file/remove-symbol-file.
7985 Similarly to how breakpoints in shared libraries are handled in
7986 response to "nosharedlibrary", mark breakpoints in such modules
7987 shlib_disabled so they end up uninserted on the next global
7988 location list update. Shared libraries not loaded by the user
7989 aren't handled here -- they're already handled in
7990 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7991 solib_unloaded observer. We skip objfiles that are not
7992 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7993 main objfile). */
7994 if ((objfile->flags & OBJF_SHARED) == 0
7995 || (objfile->flags & OBJF_USERLOADED) == 0)
7996 return;
7997
7998 ALL_BREAKPOINTS (b)
7999 {
8000 struct bp_location *loc;
8001 int bp_modified = 0;
8002
8003 if (!is_breakpoint (b) && !is_tracepoint (b))
8004 continue;
8005
8006 for (loc = b->loc; loc != NULL; loc = loc->next)
8007 {
8008 CORE_ADDR loc_addr = loc->address;
8009
8010 if (loc->loc_type != bp_loc_hardware_breakpoint
8011 && loc->loc_type != bp_loc_software_breakpoint)
8012 continue;
8013
8014 if (loc->shlib_disabled != 0)
8015 continue;
8016
8017 if (objfile->pspace != loc->pspace)
8018 continue;
8019
8020 if (loc->loc_type != bp_loc_hardware_breakpoint
8021 && loc->loc_type != bp_loc_software_breakpoint)
8022 continue;
8023
8024 if (is_addr_in_objfile (loc_addr, objfile))
8025 {
8026 loc->shlib_disabled = 1;
8027 /* At this point, we don't know whether the object was
8028 unmapped from the inferior or not, so leave the
8029 inserted flag alone. We'll handle failure to
8030 uninsert quietly, in case the object was indeed
8031 unmapped. */
8032
8033 mark_breakpoint_location_modified (loc);
8034
8035 bp_modified = 1;
8036 }
8037 }
8038
8039 if (bp_modified)
8040 observer_notify_breakpoint_modified (b);
8041 }
8042 }
8043
8044 /* FORK & VFORK catchpoints. */
8045
8046 /* An instance of this type is used to represent a fork or vfork
8047 catchpoint. It includes a "struct breakpoint" as a kind of base
8048 class; users downcast to "struct breakpoint *" when needed. A
8049 breakpoint is really of this type iff its ops pointer points to
8050 CATCH_FORK_BREAKPOINT_OPS. */
8051
8052 struct fork_catchpoint
8053 {
8054 /* The base class. */
8055 struct breakpoint base;
8056
8057 /* Process id of a child process whose forking triggered this
8058 catchpoint. This field is only valid immediately after this
8059 catchpoint has triggered. */
8060 ptid_t forked_inferior_pid;
8061 };
8062
8063 /* Implement the "insert" breakpoint_ops method for fork
8064 catchpoints. */
8065
8066 static int
8067 insert_catch_fork (struct bp_location *bl)
8068 {
8069 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
8070 }
8071
8072 /* Implement the "remove" breakpoint_ops method for fork
8073 catchpoints. */
8074
8075 static int
8076 remove_catch_fork (struct bp_location *bl)
8077 {
8078 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
8079 }
8080
8081 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
8082 catchpoints. */
8083
8084 static int
8085 breakpoint_hit_catch_fork (const struct bp_location *bl,
8086 struct address_space *aspace, CORE_ADDR bp_addr,
8087 const struct target_waitstatus *ws)
8088 {
8089 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8090
8091 if (ws->kind != TARGET_WAITKIND_FORKED)
8092 return 0;
8093
8094 c->forked_inferior_pid = ws->value.related_pid;
8095 return 1;
8096 }
8097
8098 /* Implement the "print_it" breakpoint_ops method for fork
8099 catchpoints. */
8100
8101 static enum print_stop_action
8102 print_it_catch_fork (bpstat bs)
8103 {
8104 struct ui_out *uiout = current_uiout;
8105 struct breakpoint *b = bs->breakpoint_at;
8106 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
8107
8108 annotate_catchpoint (b->number);
8109 maybe_print_thread_hit_breakpoint (uiout);
8110 if (b->disposition == disp_del)
8111 ui_out_text (uiout, "Temporary catchpoint ");
8112 else
8113 ui_out_text (uiout, "Catchpoint ");
8114 if (ui_out_is_mi_like_p (uiout))
8115 {
8116 ui_out_field_string (uiout, "reason",
8117 async_reason_lookup (EXEC_ASYNC_FORK));
8118 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8119 }
8120 ui_out_field_int (uiout, "bkptno", b->number);
8121 ui_out_text (uiout, " (forked process ");
8122 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
8123 ui_out_text (uiout, "), ");
8124 return PRINT_SRC_AND_LOC;
8125 }
8126
8127 /* Implement the "print_one" breakpoint_ops method for fork
8128 catchpoints. */
8129
8130 static void
8131 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
8132 {
8133 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8134 struct value_print_options opts;
8135 struct ui_out *uiout = current_uiout;
8136
8137 get_user_print_options (&opts);
8138
8139 /* Field 4, the address, is omitted (which makes the columns not
8140 line up too nicely with the headers, but the effect is relatively
8141 readable). */
8142 if (opts.addressprint)
8143 ui_out_field_skip (uiout, "addr");
8144 annotate_field (5);
8145 ui_out_text (uiout, "fork");
8146 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8147 {
8148 ui_out_text (uiout, ", process ");
8149 ui_out_field_int (uiout, "what",
8150 ptid_get_pid (c->forked_inferior_pid));
8151 ui_out_spaces (uiout, 1);
8152 }
8153
8154 if (ui_out_is_mi_like_p (uiout))
8155 ui_out_field_string (uiout, "catch-type", "fork");
8156 }
8157
8158 /* Implement the "print_mention" breakpoint_ops method for fork
8159 catchpoints. */
8160
8161 static void
8162 print_mention_catch_fork (struct breakpoint *b)
8163 {
8164 printf_filtered (_("Catchpoint %d (fork)"), b->number);
8165 }
8166
8167 /* Implement the "print_recreate" breakpoint_ops method for fork
8168 catchpoints. */
8169
8170 static void
8171 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
8172 {
8173 fprintf_unfiltered (fp, "catch fork");
8174 print_recreate_thread (b, fp);
8175 }
8176
8177 /* The breakpoint_ops structure to be used in fork catchpoints. */
8178
8179 static struct breakpoint_ops catch_fork_breakpoint_ops;
8180
8181 /* Implement the "insert" breakpoint_ops method for vfork
8182 catchpoints. */
8183
8184 static int
8185 insert_catch_vfork (struct bp_location *bl)
8186 {
8187 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8188 }
8189
8190 /* Implement the "remove" breakpoint_ops method for vfork
8191 catchpoints. */
8192
8193 static int
8194 remove_catch_vfork (struct bp_location *bl)
8195 {
8196 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8197 }
8198
8199 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
8200 catchpoints. */
8201
8202 static int
8203 breakpoint_hit_catch_vfork (const struct bp_location *bl,
8204 struct address_space *aspace, CORE_ADDR bp_addr,
8205 const struct target_waitstatus *ws)
8206 {
8207 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8208
8209 if (ws->kind != TARGET_WAITKIND_VFORKED)
8210 return 0;
8211
8212 c->forked_inferior_pid = ws->value.related_pid;
8213 return 1;
8214 }
8215
8216 /* Implement the "print_it" breakpoint_ops method for vfork
8217 catchpoints. */
8218
8219 static enum print_stop_action
8220 print_it_catch_vfork (bpstat bs)
8221 {
8222 struct ui_out *uiout = current_uiout;
8223 struct breakpoint *b = bs->breakpoint_at;
8224 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8225
8226 annotate_catchpoint (b->number);
8227 maybe_print_thread_hit_breakpoint (uiout);
8228 if (b->disposition == disp_del)
8229 ui_out_text (uiout, "Temporary catchpoint ");
8230 else
8231 ui_out_text (uiout, "Catchpoint ");
8232 if (ui_out_is_mi_like_p (uiout))
8233 {
8234 ui_out_field_string (uiout, "reason",
8235 async_reason_lookup (EXEC_ASYNC_VFORK));
8236 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8237 }
8238 ui_out_field_int (uiout, "bkptno", b->number);
8239 ui_out_text (uiout, " (vforked process ");
8240 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
8241 ui_out_text (uiout, "), ");
8242 return PRINT_SRC_AND_LOC;
8243 }
8244
8245 /* Implement the "print_one" breakpoint_ops method for vfork
8246 catchpoints. */
8247
8248 static void
8249 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
8250 {
8251 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8252 struct value_print_options opts;
8253 struct ui_out *uiout = current_uiout;
8254
8255 get_user_print_options (&opts);
8256 /* Field 4, the address, is omitted (which makes the columns not
8257 line up too nicely with the headers, but the effect is relatively
8258 readable). */
8259 if (opts.addressprint)
8260 ui_out_field_skip (uiout, "addr");
8261 annotate_field (5);
8262 ui_out_text (uiout, "vfork");
8263 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8264 {
8265 ui_out_text (uiout, ", process ");
8266 ui_out_field_int (uiout, "what",
8267 ptid_get_pid (c->forked_inferior_pid));
8268 ui_out_spaces (uiout, 1);
8269 }
8270
8271 if (ui_out_is_mi_like_p (uiout))
8272 ui_out_field_string (uiout, "catch-type", "vfork");
8273 }
8274
8275 /* Implement the "print_mention" breakpoint_ops method for vfork
8276 catchpoints. */
8277
8278 static void
8279 print_mention_catch_vfork (struct breakpoint *b)
8280 {
8281 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
8282 }
8283
8284 /* Implement the "print_recreate" breakpoint_ops method for vfork
8285 catchpoints. */
8286
8287 static void
8288 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
8289 {
8290 fprintf_unfiltered (fp, "catch vfork");
8291 print_recreate_thread (b, fp);
8292 }
8293
8294 /* The breakpoint_ops structure to be used in vfork catchpoints. */
8295
8296 static struct breakpoint_ops catch_vfork_breakpoint_ops;
8297
8298 /* An instance of this type is used to represent an solib catchpoint.
8299 It includes a "struct breakpoint" as a kind of base class; users
8300 downcast to "struct breakpoint *" when needed. A breakpoint is
8301 really of this type iff its ops pointer points to
8302 CATCH_SOLIB_BREAKPOINT_OPS. */
8303
8304 struct solib_catchpoint
8305 {
8306 /* The base class. */
8307 struct breakpoint base;
8308
8309 /* True for "catch load", false for "catch unload". */
8310 unsigned char is_load;
8311
8312 /* Regular expression to match, if any. COMPILED is only valid when
8313 REGEX is non-NULL. */
8314 char *regex;
8315 regex_t compiled;
8316 };
8317
8318 static void
8319 dtor_catch_solib (struct breakpoint *b)
8320 {
8321 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8322
8323 if (self->regex)
8324 regfree (&self->compiled);
8325 xfree (self->regex);
8326
8327 base_breakpoint_ops.dtor (b);
8328 }
8329
8330 static int
8331 insert_catch_solib (struct bp_location *ignore)
8332 {
8333 return 0;
8334 }
8335
8336 static int
8337 remove_catch_solib (struct bp_location *ignore)
8338 {
8339 return 0;
8340 }
8341
8342 static int
8343 breakpoint_hit_catch_solib (const struct bp_location *bl,
8344 struct address_space *aspace,
8345 CORE_ADDR bp_addr,
8346 const struct target_waitstatus *ws)
8347 {
8348 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8349 struct breakpoint *other;
8350
8351 if (ws->kind == TARGET_WAITKIND_LOADED)
8352 return 1;
8353
8354 ALL_BREAKPOINTS (other)
8355 {
8356 struct bp_location *other_bl;
8357
8358 if (other == bl->owner)
8359 continue;
8360
8361 if (other->type != bp_shlib_event)
8362 continue;
8363
8364 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
8365 continue;
8366
8367 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8368 {
8369 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8370 return 1;
8371 }
8372 }
8373
8374 return 0;
8375 }
8376
8377 static void
8378 check_status_catch_solib (struct bpstats *bs)
8379 {
8380 struct solib_catchpoint *self
8381 = (struct solib_catchpoint *) bs->breakpoint_at;
8382 int ix;
8383
8384 if (self->is_load)
8385 {
8386 struct so_list *iter;
8387
8388 for (ix = 0;
8389 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8390 ix, iter);
8391 ++ix)
8392 {
8393 if (!self->regex
8394 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
8395 return;
8396 }
8397 }
8398 else
8399 {
8400 char *iter;
8401
8402 for (ix = 0;
8403 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8404 ix, iter);
8405 ++ix)
8406 {
8407 if (!self->regex
8408 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
8409 return;
8410 }
8411 }
8412
8413 bs->stop = 0;
8414 bs->print_it = print_it_noop;
8415 }
8416
8417 static enum print_stop_action
8418 print_it_catch_solib (bpstat bs)
8419 {
8420 struct breakpoint *b = bs->breakpoint_at;
8421 struct ui_out *uiout = current_uiout;
8422
8423 annotate_catchpoint (b->number);
8424 maybe_print_thread_hit_breakpoint (uiout);
8425 if (b->disposition == disp_del)
8426 ui_out_text (uiout, "Temporary catchpoint ");
8427 else
8428 ui_out_text (uiout, "Catchpoint ");
8429 ui_out_field_int (uiout, "bkptno", b->number);
8430 ui_out_text (uiout, "\n");
8431 if (ui_out_is_mi_like_p (uiout))
8432 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8433 print_solib_event (1);
8434 return PRINT_SRC_AND_LOC;
8435 }
8436
8437 static void
8438 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8439 {
8440 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8441 struct value_print_options opts;
8442 struct ui_out *uiout = current_uiout;
8443 char *msg;
8444
8445 get_user_print_options (&opts);
8446 /* Field 4, the address, is omitted (which makes the columns not
8447 line up too nicely with the headers, but the effect is relatively
8448 readable). */
8449 if (opts.addressprint)
8450 {
8451 annotate_field (4);
8452 ui_out_field_skip (uiout, "addr");
8453 }
8454
8455 annotate_field (5);
8456 if (self->is_load)
8457 {
8458 if (self->regex)
8459 msg = xstrprintf (_("load of library matching %s"), self->regex);
8460 else
8461 msg = xstrdup (_("load of library"));
8462 }
8463 else
8464 {
8465 if (self->regex)
8466 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8467 else
8468 msg = xstrdup (_("unload of library"));
8469 }
8470 ui_out_field_string (uiout, "what", msg);
8471 xfree (msg);
8472
8473 if (ui_out_is_mi_like_p (uiout))
8474 ui_out_field_string (uiout, "catch-type",
8475 self->is_load ? "load" : "unload");
8476 }
8477
8478 static void
8479 print_mention_catch_solib (struct breakpoint *b)
8480 {
8481 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8482
8483 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8484 self->is_load ? "load" : "unload");
8485 }
8486
8487 static void
8488 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8489 {
8490 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8491
8492 fprintf_unfiltered (fp, "%s %s",
8493 b->disposition == disp_del ? "tcatch" : "catch",
8494 self->is_load ? "load" : "unload");
8495 if (self->regex)
8496 fprintf_unfiltered (fp, " %s", self->regex);
8497 fprintf_unfiltered (fp, "\n");
8498 }
8499
8500 static struct breakpoint_ops catch_solib_breakpoint_ops;
8501
8502 /* Shared helper function (MI and CLI) for creating and installing
8503 a shared object event catchpoint. If IS_LOAD is non-zero then
8504 the events to be caught are load events, otherwise they are
8505 unload events. If IS_TEMP is non-zero the catchpoint is a
8506 temporary one. If ENABLED is non-zero the catchpoint is
8507 created in an enabled state. */
8508
8509 void
8510 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
8511 {
8512 struct solib_catchpoint *c;
8513 struct gdbarch *gdbarch = get_current_arch ();
8514 struct cleanup *cleanup;
8515
8516 if (!arg)
8517 arg = "";
8518 arg = skip_spaces (arg);
8519
8520 c = XCNEW (struct solib_catchpoint);
8521 cleanup = make_cleanup (xfree, c);
8522
8523 if (*arg != '\0')
8524 {
8525 int errcode;
8526
8527 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8528 if (errcode != 0)
8529 {
8530 char *err = get_regcomp_error (errcode, &c->compiled);
8531
8532 make_cleanup (xfree, err);
8533 error (_("Invalid regexp (%s): %s"), err, arg);
8534 }
8535 c->regex = xstrdup (arg);
8536 }
8537
8538 c->is_load = is_load;
8539 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8540 &catch_solib_breakpoint_ops);
8541
8542 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8543
8544 discard_cleanups (cleanup);
8545 install_breakpoint (0, &c->base, 1);
8546 }
8547
8548 /* A helper function that does all the work for "catch load" and
8549 "catch unload". */
8550
8551 static void
8552 catch_load_or_unload (char *arg, int from_tty, int is_load,
8553 struct cmd_list_element *command)
8554 {
8555 int tempflag;
8556 const int enabled = 1;
8557
8558 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8559
8560 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8561 }
8562
8563 static void
8564 catch_load_command_1 (char *arg, int from_tty,
8565 struct cmd_list_element *command)
8566 {
8567 catch_load_or_unload (arg, from_tty, 1, command);
8568 }
8569
8570 static void
8571 catch_unload_command_1 (char *arg, int from_tty,
8572 struct cmd_list_element *command)
8573 {
8574 catch_load_or_unload (arg, from_tty, 0, command);
8575 }
8576
8577 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8578 is non-zero, then make the breakpoint temporary. If COND_STRING is
8579 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8580 the breakpoint_ops structure associated to the catchpoint. */
8581
8582 void
8583 init_catchpoint (struct breakpoint *b,
8584 struct gdbarch *gdbarch, int tempflag,
8585 char *cond_string,
8586 const struct breakpoint_ops *ops)
8587 {
8588 struct symtab_and_line sal;
8589
8590 init_sal (&sal);
8591 sal.pspace = current_program_space;
8592
8593 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8594
8595 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8596 b->disposition = tempflag ? disp_del : disp_donttouch;
8597 }
8598
8599 void
8600 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8601 {
8602 add_to_breakpoint_chain (b);
8603 set_breakpoint_number (internal, b);
8604 if (is_tracepoint (b))
8605 set_tracepoint_count (breakpoint_count);
8606 if (!internal)
8607 mention (b);
8608 observer_notify_breakpoint_created (b);
8609
8610 if (update_gll)
8611 update_global_location_list (UGLL_MAY_INSERT);
8612 }
8613
8614 static void
8615 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8616 int tempflag, char *cond_string,
8617 const struct breakpoint_ops *ops)
8618 {
8619 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8620
8621 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8622
8623 c->forked_inferior_pid = null_ptid;
8624
8625 install_breakpoint (0, &c->base, 1);
8626 }
8627
8628 /* Exec catchpoints. */
8629
8630 /* An instance of this type is used to represent an exec catchpoint.
8631 It includes a "struct breakpoint" as a kind of base class; users
8632 downcast to "struct breakpoint *" when needed. A breakpoint is
8633 really of this type iff its ops pointer points to
8634 CATCH_EXEC_BREAKPOINT_OPS. */
8635
8636 struct exec_catchpoint
8637 {
8638 /* The base class. */
8639 struct breakpoint base;
8640
8641 /* Filename of a program whose exec triggered this catchpoint.
8642 This field is only valid immediately after this catchpoint has
8643 triggered. */
8644 char *exec_pathname;
8645 };
8646
8647 /* Implement the "dtor" breakpoint_ops method for exec
8648 catchpoints. */
8649
8650 static void
8651 dtor_catch_exec (struct breakpoint *b)
8652 {
8653 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8654
8655 xfree (c->exec_pathname);
8656
8657 base_breakpoint_ops.dtor (b);
8658 }
8659
8660 static int
8661 insert_catch_exec (struct bp_location *bl)
8662 {
8663 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8664 }
8665
8666 static int
8667 remove_catch_exec (struct bp_location *bl)
8668 {
8669 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8670 }
8671
8672 static int
8673 breakpoint_hit_catch_exec (const struct bp_location *bl,
8674 struct address_space *aspace, CORE_ADDR bp_addr,
8675 const struct target_waitstatus *ws)
8676 {
8677 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8678
8679 if (ws->kind != TARGET_WAITKIND_EXECD)
8680 return 0;
8681
8682 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8683 return 1;
8684 }
8685
8686 static enum print_stop_action
8687 print_it_catch_exec (bpstat bs)
8688 {
8689 struct ui_out *uiout = current_uiout;
8690 struct breakpoint *b = bs->breakpoint_at;
8691 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8692
8693 annotate_catchpoint (b->number);
8694 maybe_print_thread_hit_breakpoint (uiout);
8695 if (b->disposition == disp_del)
8696 ui_out_text (uiout, "Temporary catchpoint ");
8697 else
8698 ui_out_text (uiout, "Catchpoint ");
8699 if (ui_out_is_mi_like_p (uiout))
8700 {
8701 ui_out_field_string (uiout, "reason",
8702 async_reason_lookup (EXEC_ASYNC_EXEC));
8703 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8704 }
8705 ui_out_field_int (uiout, "bkptno", b->number);
8706 ui_out_text (uiout, " (exec'd ");
8707 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8708 ui_out_text (uiout, "), ");
8709
8710 return PRINT_SRC_AND_LOC;
8711 }
8712
8713 static void
8714 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8715 {
8716 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8717 struct value_print_options opts;
8718 struct ui_out *uiout = current_uiout;
8719
8720 get_user_print_options (&opts);
8721
8722 /* Field 4, the address, is omitted (which makes the columns
8723 not line up too nicely with the headers, but the effect
8724 is relatively readable). */
8725 if (opts.addressprint)
8726 ui_out_field_skip (uiout, "addr");
8727 annotate_field (5);
8728 ui_out_text (uiout, "exec");
8729 if (c->exec_pathname != NULL)
8730 {
8731 ui_out_text (uiout, ", program \"");
8732 ui_out_field_string (uiout, "what", c->exec_pathname);
8733 ui_out_text (uiout, "\" ");
8734 }
8735
8736 if (ui_out_is_mi_like_p (uiout))
8737 ui_out_field_string (uiout, "catch-type", "exec");
8738 }
8739
8740 static void
8741 print_mention_catch_exec (struct breakpoint *b)
8742 {
8743 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8744 }
8745
8746 /* Implement the "print_recreate" breakpoint_ops method for exec
8747 catchpoints. */
8748
8749 static void
8750 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8751 {
8752 fprintf_unfiltered (fp, "catch exec");
8753 print_recreate_thread (b, fp);
8754 }
8755
8756 static struct breakpoint_ops catch_exec_breakpoint_ops;
8757
8758 static int
8759 hw_breakpoint_used_count (void)
8760 {
8761 int i = 0;
8762 struct breakpoint *b;
8763 struct bp_location *bl;
8764
8765 ALL_BREAKPOINTS (b)
8766 {
8767 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8768 for (bl = b->loc; bl; bl = bl->next)
8769 {
8770 /* Special types of hardware breakpoints may use more than
8771 one register. */
8772 i += b->ops->resources_needed (bl);
8773 }
8774 }
8775
8776 return i;
8777 }
8778
8779 /* Returns the resources B would use if it were a hardware
8780 watchpoint. */
8781
8782 static int
8783 hw_watchpoint_use_count (struct breakpoint *b)
8784 {
8785 int i = 0;
8786 struct bp_location *bl;
8787
8788 if (!breakpoint_enabled (b))
8789 return 0;
8790
8791 for (bl = b->loc; bl; bl = bl->next)
8792 {
8793 /* Special types of hardware watchpoints may use more than
8794 one register. */
8795 i += b->ops->resources_needed (bl);
8796 }
8797
8798 return i;
8799 }
8800
8801 /* Returns the sum the used resources of all hardware watchpoints of
8802 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8803 the sum of the used resources of all hardware watchpoints of other
8804 types _not_ TYPE. */
8805
8806 static int
8807 hw_watchpoint_used_count_others (struct breakpoint *except,
8808 enum bptype type, int *other_type_used)
8809 {
8810 int i = 0;
8811 struct breakpoint *b;
8812
8813 *other_type_used = 0;
8814 ALL_BREAKPOINTS (b)
8815 {
8816 if (b == except)
8817 continue;
8818 if (!breakpoint_enabled (b))
8819 continue;
8820
8821 if (b->type == type)
8822 i += hw_watchpoint_use_count (b);
8823 else if (is_hardware_watchpoint (b))
8824 *other_type_used = 1;
8825 }
8826
8827 return i;
8828 }
8829
8830 void
8831 disable_watchpoints_before_interactive_call_start (void)
8832 {
8833 struct breakpoint *b;
8834
8835 ALL_BREAKPOINTS (b)
8836 {
8837 if (is_watchpoint (b) && breakpoint_enabled (b))
8838 {
8839 b->enable_state = bp_call_disabled;
8840 update_global_location_list (UGLL_DONT_INSERT);
8841 }
8842 }
8843 }
8844
8845 void
8846 enable_watchpoints_after_interactive_call_stop (void)
8847 {
8848 struct breakpoint *b;
8849
8850 ALL_BREAKPOINTS (b)
8851 {
8852 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8853 {
8854 b->enable_state = bp_enabled;
8855 update_global_location_list (UGLL_MAY_INSERT);
8856 }
8857 }
8858 }
8859
8860 void
8861 disable_breakpoints_before_startup (void)
8862 {
8863 current_program_space->executing_startup = 1;
8864 update_global_location_list (UGLL_DONT_INSERT);
8865 }
8866
8867 void
8868 enable_breakpoints_after_startup (void)
8869 {
8870 current_program_space->executing_startup = 0;
8871 breakpoint_re_set ();
8872 }
8873
8874 /* Create a new single-step breakpoint for thread THREAD, with no
8875 locations. */
8876
8877 static struct breakpoint *
8878 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8879 {
8880 struct breakpoint *b = XNEW (struct breakpoint);
8881
8882 init_raw_breakpoint_without_location (b, gdbarch, bp_single_step,
8883 &momentary_breakpoint_ops);
8884
8885 b->disposition = disp_donttouch;
8886 b->frame_id = null_frame_id;
8887
8888 b->thread = thread;
8889 gdb_assert (b->thread != 0);
8890
8891 add_to_breakpoint_chain (b);
8892
8893 return b;
8894 }
8895
8896 /* Set a momentary breakpoint of type TYPE at address specified by
8897 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8898 frame. */
8899
8900 struct breakpoint *
8901 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8902 struct frame_id frame_id, enum bptype type)
8903 {
8904 struct breakpoint *b;
8905
8906 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8907 tail-called one. */
8908 gdb_assert (!frame_id_artificial_p (frame_id));
8909
8910 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8911 b->enable_state = bp_enabled;
8912 b->disposition = disp_donttouch;
8913 b->frame_id = frame_id;
8914
8915 /* If we're debugging a multi-threaded program, then we want
8916 momentary breakpoints to be active in only a single thread of
8917 control. */
8918 if (in_thread_list (inferior_ptid))
8919 b->thread = ptid_to_global_thread_id (inferior_ptid);
8920
8921 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8922
8923 return b;
8924 }
8925
8926 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8927 The new breakpoint will have type TYPE, use OPS as its
8928 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8929
8930 static struct breakpoint *
8931 momentary_breakpoint_from_master (struct breakpoint *orig,
8932 enum bptype type,
8933 const struct breakpoint_ops *ops,
8934 int loc_enabled)
8935 {
8936 struct breakpoint *copy;
8937
8938 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8939 copy->loc = allocate_bp_location (copy);
8940 set_breakpoint_location_function (copy->loc, 1);
8941
8942 copy->loc->gdbarch = orig->loc->gdbarch;
8943 copy->loc->requested_address = orig->loc->requested_address;
8944 copy->loc->address = orig->loc->address;
8945 copy->loc->section = orig->loc->section;
8946 copy->loc->pspace = orig->loc->pspace;
8947 copy->loc->probe = orig->loc->probe;
8948 copy->loc->line_number = orig->loc->line_number;
8949 copy->loc->symtab = orig->loc->symtab;
8950 copy->loc->enabled = loc_enabled;
8951 copy->frame_id = orig->frame_id;
8952 copy->thread = orig->thread;
8953 copy->pspace = orig->pspace;
8954
8955 copy->enable_state = bp_enabled;
8956 copy->disposition = disp_donttouch;
8957 copy->number = internal_breakpoint_number--;
8958
8959 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8960 return copy;
8961 }
8962
8963 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8964 ORIG is NULL. */
8965
8966 struct breakpoint *
8967 clone_momentary_breakpoint (struct breakpoint *orig)
8968 {
8969 /* If there's nothing to clone, then return nothing. */
8970 if (orig == NULL)
8971 return NULL;
8972
8973 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8974 }
8975
8976 struct breakpoint *
8977 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8978 enum bptype type)
8979 {
8980 struct symtab_and_line sal;
8981
8982 sal = find_pc_line (pc, 0);
8983 sal.pc = pc;
8984 sal.section = find_pc_overlay (pc);
8985 sal.explicit_pc = 1;
8986
8987 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8988 }
8989 \f
8990
8991 /* Tell the user we have just set a breakpoint B. */
8992
8993 static void
8994 mention (struct breakpoint *b)
8995 {
8996 b->ops->print_mention (b);
8997 if (ui_out_is_mi_like_p (current_uiout))
8998 return;
8999 printf_filtered ("\n");
9000 }
9001 \f
9002
9003 static int bp_loc_is_permanent (struct bp_location *loc);
9004
9005 static struct bp_location *
9006 add_location_to_breakpoint (struct breakpoint *b,
9007 const struct symtab_and_line *sal)
9008 {
9009 struct bp_location *loc, **tmp;
9010 CORE_ADDR adjusted_address;
9011 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
9012
9013 if (loc_gdbarch == NULL)
9014 loc_gdbarch = b->gdbarch;
9015
9016 /* Adjust the breakpoint's address prior to allocating a location.
9017 Once we call allocate_bp_location(), that mostly uninitialized
9018 location will be placed on the location chain. Adjustment of the
9019 breakpoint may cause target_read_memory() to be called and we do
9020 not want its scan of the location chain to find a breakpoint and
9021 location that's only been partially initialized. */
9022 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
9023 sal->pc, b->type);
9024
9025 /* Sort the locations by their ADDRESS. */
9026 loc = allocate_bp_location (b);
9027 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
9028 tmp = &((*tmp)->next))
9029 ;
9030 loc->next = *tmp;
9031 *tmp = loc;
9032
9033 loc->requested_address = sal->pc;
9034 loc->address = adjusted_address;
9035 loc->pspace = sal->pspace;
9036 loc->probe.probe = sal->probe;
9037 loc->probe.objfile = sal->objfile;
9038 gdb_assert (loc->pspace != NULL);
9039 loc->section = sal->section;
9040 loc->gdbarch = loc_gdbarch;
9041 loc->line_number = sal->line;
9042 loc->symtab = sal->symtab;
9043
9044 set_breakpoint_location_function (loc,
9045 sal->explicit_pc || sal->explicit_line);
9046
9047 /* While by definition, permanent breakpoints are already present in the
9048 code, we don't mark the location as inserted. Normally one would expect
9049 that GDB could rely on that breakpoint instruction to stop the program,
9050 thus removing the need to insert its own breakpoint, except that executing
9051 the breakpoint instruction can kill the target instead of reporting a
9052 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
9053 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
9054 with "Trap 0x02 while interrupts disabled, Error state". Letting the
9055 breakpoint be inserted normally results in QEMU knowing about the GDB
9056 breakpoint, and thus trap before the breakpoint instruction is executed.
9057 (If GDB later needs to continue execution past the permanent breakpoint,
9058 it manually increments the PC, thus avoiding executing the breakpoint
9059 instruction.) */
9060 if (bp_loc_is_permanent (loc))
9061 loc->permanent = 1;
9062
9063 return loc;
9064 }
9065 \f
9066
9067 /* See breakpoint.h. */
9068
9069 int
9070 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
9071 {
9072 int len;
9073 CORE_ADDR addr;
9074 const gdb_byte *bpoint;
9075 gdb_byte *target_mem;
9076 struct cleanup *cleanup;
9077 int retval = 0;
9078
9079 addr = address;
9080 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
9081
9082 /* Software breakpoints unsupported? */
9083 if (bpoint == NULL)
9084 return 0;
9085
9086 target_mem = (gdb_byte *) alloca (len);
9087
9088 /* Enable the automatic memory restoration from breakpoints while
9089 we read the memory. Otherwise we could say about our temporary
9090 breakpoints they are permanent. */
9091 cleanup = make_show_memory_breakpoints_cleanup (0);
9092
9093 if (target_read_memory (address, target_mem, len) == 0
9094 && memcmp (target_mem, bpoint, len) == 0)
9095 retval = 1;
9096
9097 do_cleanups (cleanup);
9098
9099 return retval;
9100 }
9101
9102 /* Return 1 if LOC is pointing to a permanent breakpoint,
9103 return 0 otherwise. */
9104
9105 static int
9106 bp_loc_is_permanent (struct bp_location *loc)
9107 {
9108 struct cleanup *cleanup;
9109 int retval;
9110
9111 gdb_assert (loc != NULL);
9112
9113 /* If we have a catchpoint or a watchpoint, just return 0. We should not
9114 attempt to read from the addresses the locations of these breakpoint types
9115 point to. program_breakpoint_here_p, below, will attempt to read
9116 memory. */
9117 if (!breakpoint_address_is_meaningful (loc->owner))
9118 return 0;
9119
9120 cleanup = save_current_space_and_thread ();
9121 switch_to_program_space_and_thread (loc->pspace);
9122
9123 retval = program_breakpoint_here_p (loc->gdbarch, loc->address);
9124
9125 do_cleanups (cleanup);
9126
9127 return retval;
9128 }
9129
9130 /* Build a command list for the dprintf corresponding to the current
9131 settings of the dprintf style options. */
9132
9133 static void
9134 update_dprintf_command_list (struct breakpoint *b)
9135 {
9136 char *dprintf_args = b->extra_string;
9137 char *printf_line = NULL;
9138
9139 if (!dprintf_args)
9140 return;
9141
9142 dprintf_args = skip_spaces (dprintf_args);
9143
9144 /* Allow a comma, as it may have terminated a location, but don't
9145 insist on it. */
9146 if (*dprintf_args == ',')
9147 ++dprintf_args;
9148 dprintf_args = skip_spaces (dprintf_args);
9149
9150 if (*dprintf_args != '"')
9151 error (_("Bad format string, missing '\"'."));
9152
9153 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9154 printf_line = xstrprintf ("printf %s", dprintf_args);
9155 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9156 {
9157 if (!dprintf_function)
9158 error (_("No function supplied for dprintf call"));
9159
9160 if (dprintf_channel && strlen (dprintf_channel) > 0)
9161 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9162 dprintf_function,
9163 dprintf_channel,
9164 dprintf_args);
9165 else
9166 printf_line = xstrprintf ("call (void) %s (%s)",
9167 dprintf_function,
9168 dprintf_args);
9169 }
9170 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9171 {
9172 if (target_can_run_breakpoint_commands ())
9173 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9174 else
9175 {
9176 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9177 printf_line = xstrprintf ("printf %s", dprintf_args);
9178 }
9179 }
9180 else
9181 internal_error (__FILE__, __LINE__,
9182 _("Invalid dprintf style."));
9183
9184 gdb_assert (printf_line != NULL);
9185 /* Manufacture a printf sequence. */
9186 {
9187 struct command_line *printf_cmd_line = XNEW (struct command_line);
9188
9189 printf_cmd_line->control_type = simple_control;
9190 printf_cmd_line->body_count = 0;
9191 printf_cmd_line->body_list = NULL;
9192 printf_cmd_line->next = NULL;
9193 printf_cmd_line->line = printf_line;
9194
9195 breakpoint_set_commands (b, printf_cmd_line);
9196 }
9197 }
9198
9199 /* Update all dprintf commands, making their command lists reflect
9200 current style settings. */
9201
9202 static void
9203 update_dprintf_commands (char *args, int from_tty,
9204 struct cmd_list_element *c)
9205 {
9206 struct breakpoint *b;
9207
9208 ALL_BREAKPOINTS (b)
9209 {
9210 if (b->type == bp_dprintf)
9211 update_dprintf_command_list (b);
9212 }
9213 }
9214
9215 /* Create a breakpoint with SAL as location. Use LOCATION
9216 as a description of the location, and COND_STRING
9217 as condition expression. If LOCATION is NULL then create an
9218 "address location" from the address in the SAL. */
9219
9220 static void
9221 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9222 struct symtabs_and_lines sals,
9223 struct event_location *location,
9224 char *filter, char *cond_string,
9225 char *extra_string,
9226 enum bptype type, enum bpdisp disposition,
9227 int thread, int task, int ignore_count,
9228 const struct breakpoint_ops *ops, int from_tty,
9229 int enabled, int internal, unsigned flags,
9230 int display_canonical)
9231 {
9232 int i;
9233
9234 if (type == bp_hardware_breakpoint)
9235 {
9236 int target_resources_ok;
9237
9238 i = hw_breakpoint_used_count ();
9239 target_resources_ok =
9240 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9241 i + 1, 0);
9242 if (target_resources_ok == 0)
9243 error (_("No hardware breakpoint support in the target."));
9244 else if (target_resources_ok < 0)
9245 error (_("Hardware breakpoints used exceeds limit."));
9246 }
9247
9248 gdb_assert (sals.nelts > 0);
9249
9250 for (i = 0; i < sals.nelts; ++i)
9251 {
9252 struct symtab_and_line sal = sals.sals[i];
9253 struct bp_location *loc;
9254
9255 if (from_tty)
9256 {
9257 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9258 if (!loc_gdbarch)
9259 loc_gdbarch = gdbarch;
9260
9261 describe_other_breakpoints (loc_gdbarch,
9262 sal.pspace, sal.pc, sal.section, thread);
9263 }
9264
9265 if (i == 0)
9266 {
9267 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9268 b->thread = thread;
9269 b->task = task;
9270
9271 b->cond_string = cond_string;
9272 b->extra_string = extra_string;
9273 b->ignore_count = ignore_count;
9274 b->enable_state = enabled ? bp_enabled : bp_disabled;
9275 b->disposition = disposition;
9276
9277 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9278 b->loc->inserted = 1;
9279
9280 if (type == bp_static_tracepoint)
9281 {
9282 struct tracepoint *t = (struct tracepoint *) b;
9283 struct static_tracepoint_marker marker;
9284
9285 if (strace_marker_p (b))
9286 {
9287 /* We already know the marker exists, otherwise, we
9288 wouldn't see a sal for it. */
9289 const char *p = &event_location_to_string (b->location)[3];
9290 const char *endp;
9291 char *marker_str;
9292
9293 p = skip_spaces_const (p);
9294
9295 endp = skip_to_space_const (p);
9296
9297 marker_str = savestring (p, endp - p);
9298 t->static_trace_marker_id = marker_str;
9299
9300 printf_filtered (_("Probed static tracepoint "
9301 "marker \"%s\"\n"),
9302 t->static_trace_marker_id);
9303 }
9304 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9305 {
9306 t->static_trace_marker_id = xstrdup (marker.str_id);
9307 release_static_tracepoint_marker (&marker);
9308
9309 printf_filtered (_("Probed static tracepoint "
9310 "marker \"%s\"\n"),
9311 t->static_trace_marker_id);
9312 }
9313 else
9314 warning (_("Couldn't determine the static "
9315 "tracepoint marker to probe"));
9316 }
9317
9318 loc = b->loc;
9319 }
9320 else
9321 {
9322 loc = add_location_to_breakpoint (b, &sal);
9323 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9324 loc->inserted = 1;
9325 }
9326
9327 if (b->cond_string)
9328 {
9329 const char *arg = b->cond_string;
9330
9331 loc->cond = parse_exp_1 (&arg, loc->address,
9332 block_for_pc (loc->address), 0);
9333 if (*arg)
9334 error (_("Garbage '%s' follows condition"), arg);
9335 }
9336
9337 /* Dynamic printf requires and uses additional arguments on the
9338 command line, otherwise it's an error. */
9339 if (type == bp_dprintf)
9340 {
9341 if (b->extra_string)
9342 update_dprintf_command_list (b);
9343 else
9344 error (_("Format string required"));
9345 }
9346 else if (b->extra_string)
9347 error (_("Garbage '%s' at end of command"), b->extra_string);
9348 }
9349
9350 b->display_canonical = display_canonical;
9351 if (location != NULL)
9352 b->location = location;
9353 else
9354 {
9355 const char *addr_string = NULL;
9356 int addr_string_len = 0;
9357
9358 if (location != NULL)
9359 addr_string = event_location_to_string (location);
9360 if (addr_string != NULL)
9361 addr_string_len = strlen (addr_string);
9362
9363 b->location = new_address_location (b->loc->address,
9364 addr_string, addr_string_len);
9365 }
9366 b->filter = filter;
9367 }
9368
9369 static void
9370 create_breakpoint_sal (struct gdbarch *gdbarch,
9371 struct symtabs_and_lines sals,
9372 struct event_location *location,
9373 char *filter, char *cond_string,
9374 char *extra_string,
9375 enum bptype type, enum bpdisp disposition,
9376 int thread, int task, int ignore_count,
9377 const struct breakpoint_ops *ops, int from_tty,
9378 int enabled, int internal, unsigned flags,
9379 int display_canonical)
9380 {
9381 struct breakpoint *b;
9382 struct cleanup *old_chain;
9383
9384 if (is_tracepoint_type (type))
9385 {
9386 struct tracepoint *t;
9387
9388 t = XCNEW (struct tracepoint);
9389 b = &t->base;
9390 }
9391 else
9392 b = XNEW (struct breakpoint);
9393
9394 old_chain = make_cleanup (xfree, b);
9395
9396 init_breakpoint_sal (b, gdbarch,
9397 sals, location,
9398 filter, cond_string, extra_string,
9399 type, disposition,
9400 thread, task, ignore_count,
9401 ops, from_tty,
9402 enabled, internal, flags,
9403 display_canonical);
9404 discard_cleanups (old_chain);
9405
9406 install_breakpoint (internal, b, 0);
9407 }
9408
9409 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9410 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9411 value. COND_STRING, if not NULL, specified the condition to be
9412 used for all breakpoints. Essentially the only case where
9413 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9414 function. In that case, it's still not possible to specify
9415 separate conditions for different overloaded functions, so
9416 we take just a single condition string.
9417
9418 NOTE: If the function succeeds, the caller is expected to cleanup
9419 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9420 array contents). If the function fails (error() is called), the
9421 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9422 COND and SALS arrays and each of those arrays contents. */
9423
9424 static void
9425 create_breakpoints_sal (struct gdbarch *gdbarch,
9426 struct linespec_result *canonical,
9427 char *cond_string, char *extra_string,
9428 enum bptype type, enum bpdisp disposition,
9429 int thread, int task, int ignore_count,
9430 const struct breakpoint_ops *ops, int from_tty,
9431 int enabled, int internal, unsigned flags)
9432 {
9433 int i;
9434 struct linespec_sals *lsal;
9435
9436 if (canonical->pre_expanded)
9437 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9438
9439 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9440 {
9441 /* Note that 'location' can be NULL in the case of a plain
9442 'break', without arguments. */
9443 struct event_location *location
9444 = (canonical->location != NULL
9445 ? copy_event_location (canonical->location) : NULL);
9446 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9447 struct cleanup *inner = make_cleanup_delete_event_location (location);
9448
9449 make_cleanup (xfree, filter_string);
9450 create_breakpoint_sal (gdbarch, lsal->sals,
9451 location,
9452 filter_string,
9453 cond_string, extra_string,
9454 type, disposition,
9455 thread, task, ignore_count, ops,
9456 from_tty, enabled, internal, flags,
9457 canonical->special_display);
9458 discard_cleanups (inner);
9459 }
9460 }
9461
9462 /* Parse LOCATION which is assumed to be a SAL specification possibly
9463 followed by conditionals. On return, SALS contains an array of SAL
9464 addresses found. LOCATION points to the end of the SAL (for
9465 linespec locations).
9466
9467 The array and the line spec strings are allocated on the heap, it is
9468 the caller's responsibility to free them. */
9469
9470 static void
9471 parse_breakpoint_sals (const struct event_location *location,
9472 struct linespec_result *canonical)
9473 {
9474 struct symtab_and_line cursal;
9475
9476 if (event_location_type (location) == LINESPEC_LOCATION)
9477 {
9478 const char *address = get_linespec_location (location);
9479
9480 if (address == NULL)
9481 {
9482 /* The last displayed codepoint, if it's valid, is our default
9483 breakpoint address. */
9484 if (last_displayed_sal_is_valid ())
9485 {
9486 struct linespec_sals lsal;
9487 struct symtab_and_line sal;
9488 CORE_ADDR pc;
9489
9490 init_sal (&sal); /* Initialize to zeroes. */
9491 lsal.sals.sals = XNEW (struct symtab_and_line);
9492
9493 /* Set sal's pspace, pc, symtab, and line to the values
9494 corresponding to the last call to print_frame_info.
9495 Be sure to reinitialize LINE with NOTCURRENT == 0
9496 as the breakpoint line number is inappropriate otherwise.
9497 find_pc_line would adjust PC, re-set it back. */
9498 get_last_displayed_sal (&sal);
9499 pc = sal.pc;
9500 sal = find_pc_line (pc, 0);
9501
9502 /* "break" without arguments is equivalent to "break *PC"
9503 where PC is the last displayed codepoint's address. So
9504 make sure to set sal.explicit_pc to prevent GDB from
9505 trying to expand the list of sals to include all other
9506 instances with the same symtab and line. */
9507 sal.pc = pc;
9508 sal.explicit_pc = 1;
9509
9510 lsal.sals.sals[0] = sal;
9511 lsal.sals.nelts = 1;
9512 lsal.canonical = NULL;
9513
9514 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9515 return;
9516 }
9517 else
9518 error (_("No default breakpoint address now."));
9519 }
9520 }
9521
9522 /* Force almost all breakpoints to be in terms of the
9523 current_source_symtab (which is decode_line_1's default).
9524 This should produce the results we want almost all of the
9525 time while leaving default_breakpoint_* alone.
9526
9527 ObjC: However, don't match an Objective-C method name which
9528 may have a '+' or '-' succeeded by a '['. */
9529 cursal = get_current_source_symtab_and_line ();
9530 if (last_displayed_sal_is_valid ())
9531 {
9532 const char *address = NULL;
9533
9534 if (event_location_type (location) == LINESPEC_LOCATION)
9535 address = get_linespec_location (location);
9536
9537 if (!cursal.symtab
9538 || (address != NULL
9539 && strchr ("+-", address[0]) != NULL
9540 && address[1] != '['))
9541 {
9542 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9543 get_last_displayed_symtab (),
9544 get_last_displayed_line (),
9545 canonical, NULL, NULL);
9546 return;
9547 }
9548 }
9549
9550 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9551 cursal.symtab, cursal.line, canonical, NULL, NULL);
9552 }
9553
9554
9555 /* Convert each SAL into a real PC. Verify that the PC can be
9556 inserted as a breakpoint. If it can't throw an error. */
9557
9558 static void
9559 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9560 {
9561 int i;
9562
9563 for (i = 0; i < sals->nelts; i++)
9564 resolve_sal_pc (&sals->sals[i]);
9565 }
9566
9567 /* Fast tracepoints may have restrictions on valid locations. For
9568 instance, a fast tracepoint using a jump instead of a trap will
9569 likely have to overwrite more bytes than a trap would, and so can
9570 only be placed where the instruction is longer than the jump, or a
9571 multi-instruction sequence does not have a jump into the middle of
9572 it, etc. */
9573
9574 static void
9575 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9576 struct symtabs_and_lines *sals)
9577 {
9578 int i, rslt;
9579 struct symtab_and_line *sal;
9580 char *msg;
9581 struct cleanup *old_chain;
9582
9583 for (i = 0; i < sals->nelts; i++)
9584 {
9585 struct gdbarch *sarch;
9586
9587 sal = &sals->sals[i];
9588
9589 sarch = get_sal_arch (*sal);
9590 /* We fall back to GDBARCH if there is no architecture
9591 associated with SAL. */
9592 if (sarch == NULL)
9593 sarch = gdbarch;
9594 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc, &msg);
9595 old_chain = make_cleanup (xfree, msg);
9596
9597 if (!rslt)
9598 error (_("May not have a fast tracepoint at 0x%s%s"),
9599 paddress (sarch, sal->pc), (msg ? msg : ""));
9600
9601 do_cleanups (old_chain);
9602 }
9603 }
9604
9605 /* Given TOK, a string specification of condition and thread, as
9606 accepted by the 'break' command, extract the condition
9607 string and thread number and set *COND_STRING and *THREAD.
9608 PC identifies the context at which the condition should be parsed.
9609 If no condition is found, *COND_STRING is set to NULL.
9610 If no thread is found, *THREAD is set to -1. */
9611
9612 static void
9613 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9614 char **cond_string, int *thread, int *task,
9615 char **rest)
9616 {
9617 *cond_string = NULL;
9618 *thread = -1;
9619 *task = 0;
9620 *rest = NULL;
9621
9622 while (tok && *tok)
9623 {
9624 const char *end_tok;
9625 int toklen;
9626 const char *cond_start = NULL;
9627 const char *cond_end = NULL;
9628
9629 tok = skip_spaces_const (tok);
9630
9631 if ((*tok == '"' || *tok == ',') && rest)
9632 {
9633 *rest = savestring (tok, strlen (tok));
9634 return;
9635 }
9636
9637 end_tok = skip_to_space_const (tok);
9638
9639 toklen = end_tok - tok;
9640
9641 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9642 {
9643 struct expression *expr;
9644
9645 tok = cond_start = end_tok + 1;
9646 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9647 xfree (expr);
9648 cond_end = tok;
9649 *cond_string = savestring (cond_start, cond_end - cond_start);
9650 }
9651 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9652 {
9653 const char *tmptok;
9654 struct thread_info *thr;
9655
9656 tok = end_tok + 1;
9657 thr = parse_thread_id (tok, &tmptok);
9658 if (tok == tmptok)
9659 error (_("Junk after thread keyword."));
9660 *thread = thr->global_num;
9661 tok = tmptok;
9662 }
9663 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9664 {
9665 char *tmptok;
9666
9667 tok = end_tok + 1;
9668 *task = strtol (tok, &tmptok, 0);
9669 if (tok == tmptok)
9670 error (_("Junk after task keyword."));
9671 if (!valid_task_id (*task))
9672 error (_("Unknown task %d."), *task);
9673 tok = tmptok;
9674 }
9675 else if (rest)
9676 {
9677 *rest = savestring (tok, strlen (tok));
9678 return;
9679 }
9680 else
9681 error (_("Junk at end of arguments."));
9682 }
9683 }
9684
9685 /* Decode a static tracepoint marker spec. */
9686
9687 static struct symtabs_and_lines
9688 decode_static_tracepoint_spec (const char **arg_p)
9689 {
9690 VEC(static_tracepoint_marker_p) *markers = NULL;
9691 struct symtabs_and_lines sals;
9692 struct cleanup *old_chain;
9693 const char *p = &(*arg_p)[3];
9694 const char *endp;
9695 char *marker_str;
9696 int i;
9697
9698 p = skip_spaces_const (p);
9699
9700 endp = skip_to_space_const (p);
9701
9702 marker_str = savestring (p, endp - p);
9703 old_chain = make_cleanup (xfree, marker_str);
9704
9705 markers = target_static_tracepoint_markers_by_strid (marker_str);
9706 if (VEC_empty(static_tracepoint_marker_p, markers))
9707 error (_("No known static tracepoint marker named %s"), marker_str);
9708
9709 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9710 sals.sals = XNEWVEC (struct symtab_and_line, sals.nelts);
9711
9712 for (i = 0; i < sals.nelts; i++)
9713 {
9714 struct static_tracepoint_marker *marker;
9715
9716 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9717
9718 init_sal (&sals.sals[i]);
9719
9720 sals.sals[i] = find_pc_line (marker->address, 0);
9721 sals.sals[i].pc = marker->address;
9722
9723 release_static_tracepoint_marker (marker);
9724 }
9725
9726 do_cleanups (old_chain);
9727
9728 *arg_p = endp;
9729 return sals;
9730 }
9731
9732 /* See breakpoint.h. */
9733
9734 int
9735 create_breakpoint (struct gdbarch *gdbarch,
9736 const struct event_location *location, char *cond_string,
9737 int thread, char *extra_string,
9738 int parse_extra,
9739 int tempflag, enum bptype type_wanted,
9740 int ignore_count,
9741 enum auto_boolean pending_break_support,
9742 const struct breakpoint_ops *ops,
9743 int from_tty, int enabled, int internal,
9744 unsigned flags)
9745 {
9746 struct linespec_result canonical;
9747 struct cleanup *old_chain;
9748 struct cleanup *bkpt_chain = NULL;
9749 int pending = 0;
9750 int task = 0;
9751 int prev_bkpt_count = breakpoint_count;
9752
9753 gdb_assert (ops != NULL);
9754
9755 /* If extra_string isn't useful, set it to NULL. */
9756 if (extra_string != NULL && *extra_string == '\0')
9757 extra_string = NULL;
9758
9759 init_linespec_result (&canonical);
9760
9761 TRY
9762 {
9763 ops->create_sals_from_location (location, &canonical, type_wanted);
9764 }
9765 CATCH (e, RETURN_MASK_ERROR)
9766 {
9767 /* If caller is interested in rc value from parse, set
9768 value. */
9769 if (e.error == NOT_FOUND_ERROR)
9770 {
9771 /* If pending breakpoint support is turned off, throw
9772 error. */
9773
9774 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9775 throw_exception (e);
9776
9777 exception_print (gdb_stderr, e);
9778
9779 /* If pending breakpoint support is auto query and the user
9780 selects no, then simply return the error code. */
9781 if (pending_break_support == AUTO_BOOLEAN_AUTO
9782 && !nquery (_("Make %s pending on future shared library load? "),
9783 bptype_string (type_wanted)))
9784 return 0;
9785
9786 /* At this point, either the user was queried about setting
9787 a pending breakpoint and selected yes, or pending
9788 breakpoint behavior is on and thus a pending breakpoint
9789 is defaulted on behalf of the user. */
9790 pending = 1;
9791 }
9792 else
9793 throw_exception (e);
9794 }
9795 END_CATCH
9796
9797 if (!pending && VEC_empty (linespec_sals, canonical.sals))
9798 return 0;
9799
9800 /* Create a chain of things that always need to be cleaned up. */
9801 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9802
9803 /* ----------------------------- SNIP -----------------------------
9804 Anything added to the cleanup chain beyond this point is assumed
9805 to be part of a breakpoint. If the breakpoint create succeeds
9806 then the memory is not reclaimed. */
9807 bkpt_chain = make_cleanup (null_cleanup, 0);
9808
9809 /* Resolve all line numbers to PC's and verify that the addresses
9810 are ok for the target. */
9811 if (!pending)
9812 {
9813 int ix;
9814 struct linespec_sals *iter;
9815
9816 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9817 breakpoint_sals_to_pc (&iter->sals);
9818 }
9819
9820 /* Fast tracepoints may have additional restrictions on location. */
9821 if (!pending && type_wanted == bp_fast_tracepoint)
9822 {
9823 int ix;
9824 struct linespec_sals *iter;
9825
9826 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9827 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9828 }
9829
9830 /* Verify that condition can be parsed, before setting any
9831 breakpoints. Allocate a separate condition expression for each
9832 breakpoint. */
9833 if (!pending)
9834 {
9835 if (parse_extra)
9836 {
9837 char *rest;
9838 struct linespec_sals *lsal;
9839
9840 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9841
9842 /* Here we only parse 'arg' to separate condition
9843 from thread number, so parsing in context of first
9844 sal is OK. When setting the breakpoint we'll
9845 re-parse it in context of each sal. */
9846
9847 find_condition_and_thread (extra_string, lsal->sals.sals[0].pc,
9848 &cond_string, &thread, &task, &rest);
9849 if (cond_string)
9850 make_cleanup (xfree, cond_string);
9851 if (rest)
9852 make_cleanup (xfree, rest);
9853 if (rest)
9854 extra_string = rest;
9855 else
9856 extra_string = NULL;
9857 }
9858 else
9859 {
9860 if (type_wanted != bp_dprintf
9861 && extra_string != NULL && *extra_string != '\0')
9862 error (_("Garbage '%s' at end of location"), extra_string);
9863
9864 /* Create a private copy of condition string. */
9865 if (cond_string)
9866 {
9867 cond_string = xstrdup (cond_string);
9868 make_cleanup (xfree, cond_string);
9869 }
9870 /* Create a private copy of any extra string. */
9871 if (extra_string)
9872 {
9873 extra_string = xstrdup (extra_string);
9874 make_cleanup (xfree, extra_string);
9875 }
9876 }
9877
9878 ops->create_breakpoints_sal (gdbarch, &canonical,
9879 cond_string, extra_string, type_wanted,
9880 tempflag ? disp_del : disp_donttouch,
9881 thread, task, ignore_count, ops,
9882 from_tty, enabled, internal, flags);
9883 }
9884 else
9885 {
9886 struct breakpoint *b;
9887
9888 if (is_tracepoint_type (type_wanted))
9889 {
9890 struct tracepoint *t;
9891
9892 t = XCNEW (struct tracepoint);
9893 b = &t->base;
9894 }
9895 else
9896 b = XNEW (struct breakpoint);
9897
9898 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9899 b->location = copy_event_location (location);
9900
9901 if (parse_extra)
9902 b->cond_string = NULL;
9903 else
9904 {
9905 /* Create a private copy of condition string. */
9906 if (cond_string)
9907 {
9908 cond_string = xstrdup (cond_string);
9909 make_cleanup (xfree, cond_string);
9910 }
9911 b->cond_string = cond_string;
9912 b->thread = thread;
9913 }
9914
9915 /* Create a private copy of any extra string. */
9916 if (extra_string != NULL)
9917 {
9918 extra_string = xstrdup (extra_string);
9919 make_cleanup (xfree, extra_string);
9920 }
9921 b->extra_string = extra_string;
9922 b->ignore_count = ignore_count;
9923 b->disposition = tempflag ? disp_del : disp_donttouch;
9924 b->condition_not_parsed = 1;
9925 b->enable_state = enabled ? bp_enabled : bp_disabled;
9926 if ((type_wanted != bp_breakpoint
9927 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9928 b->pspace = current_program_space;
9929
9930 install_breakpoint (internal, b, 0);
9931 }
9932
9933 if (VEC_length (linespec_sals, canonical.sals) > 1)
9934 {
9935 warning (_("Multiple breakpoints were set.\nUse the "
9936 "\"delete\" command to delete unwanted breakpoints."));
9937 prev_breakpoint_count = prev_bkpt_count;
9938 }
9939
9940 /* That's it. Discard the cleanups for data inserted into the
9941 breakpoint. */
9942 discard_cleanups (bkpt_chain);
9943 /* But cleanup everything else. */
9944 do_cleanups (old_chain);
9945
9946 /* error call may happen here - have BKPT_CHAIN already discarded. */
9947 update_global_location_list (UGLL_MAY_INSERT);
9948
9949 return 1;
9950 }
9951
9952 /* Set a breakpoint.
9953 ARG is a string describing breakpoint address,
9954 condition, and thread.
9955 FLAG specifies if a breakpoint is hardware on,
9956 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9957 and BP_TEMPFLAG. */
9958
9959 static void
9960 break_command_1 (char *arg, int flag, int from_tty)
9961 {
9962 int tempflag = flag & BP_TEMPFLAG;
9963 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9964 ? bp_hardware_breakpoint
9965 : bp_breakpoint);
9966 struct breakpoint_ops *ops;
9967 struct event_location *location;
9968 struct cleanup *cleanup;
9969
9970 location = string_to_event_location (&arg, current_language);
9971 cleanup = make_cleanup_delete_event_location (location);
9972
9973 /* Matching breakpoints on probes. */
9974 if (location != NULL
9975 && event_location_type (location) == PROBE_LOCATION)
9976 ops = &bkpt_probe_breakpoint_ops;
9977 else
9978 ops = &bkpt_breakpoint_ops;
9979
9980 create_breakpoint (get_current_arch (),
9981 location,
9982 NULL, 0, arg, 1 /* parse arg */,
9983 tempflag, type_wanted,
9984 0 /* Ignore count */,
9985 pending_break_support,
9986 ops,
9987 from_tty,
9988 1 /* enabled */,
9989 0 /* internal */,
9990 0);
9991 do_cleanups (cleanup);
9992 }
9993
9994 /* Helper function for break_command_1 and disassemble_command. */
9995
9996 void
9997 resolve_sal_pc (struct symtab_and_line *sal)
9998 {
9999 CORE_ADDR pc;
10000
10001 if (sal->pc == 0 && sal->symtab != NULL)
10002 {
10003 if (!find_line_pc (sal->symtab, sal->line, &pc))
10004 error (_("No line %d in file \"%s\"."),
10005 sal->line, symtab_to_filename_for_display (sal->symtab));
10006 sal->pc = pc;
10007
10008 /* If this SAL corresponds to a breakpoint inserted using a line
10009 number, then skip the function prologue if necessary. */
10010 if (sal->explicit_line)
10011 skip_prologue_sal (sal);
10012 }
10013
10014 if (sal->section == 0 && sal->symtab != NULL)
10015 {
10016 const struct blockvector *bv;
10017 const struct block *b;
10018 struct symbol *sym;
10019
10020 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
10021 SYMTAB_COMPUNIT (sal->symtab));
10022 if (bv != NULL)
10023 {
10024 sym = block_linkage_function (b);
10025 if (sym != NULL)
10026 {
10027 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
10028 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
10029 sym);
10030 }
10031 else
10032 {
10033 /* It really is worthwhile to have the section, so we'll
10034 just have to look harder. This case can be executed
10035 if we have line numbers but no functions (as can
10036 happen in assembly source). */
10037
10038 struct bound_minimal_symbol msym;
10039 struct cleanup *old_chain = save_current_space_and_thread ();
10040
10041 switch_to_program_space_and_thread (sal->pspace);
10042
10043 msym = lookup_minimal_symbol_by_pc (sal->pc);
10044 if (msym.minsym)
10045 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
10046
10047 do_cleanups (old_chain);
10048 }
10049 }
10050 }
10051 }
10052
10053 void
10054 break_command (char *arg, int from_tty)
10055 {
10056 break_command_1 (arg, 0, from_tty);
10057 }
10058
10059 void
10060 tbreak_command (char *arg, int from_tty)
10061 {
10062 break_command_1 (arg, BP_TEMPFLAG, from_tty);
10063 }
10064
10065 static void
10066 hbreak_command (char *arg, int from_tty)
10067 {
10068 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
10069 }
10070
10071 static void
10072 thbreak_command (char *arg, int from_tty)
10073 {
10074 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
10075 }
10076
10077 static void
10078 stop_command (char *arg, int from_tty)
10079 {
10080 printf_filtered (_("Specify the type of breakpoint to set.\n\
10081 Usage: stop in <function | address>\n\
10082 stop at <line>\n"));
10083 }
10084
10085 static void
10086 stopin_command (char *arg, int from_tty)
10087 {
10088 int badInput = 0;
10089
10090 if (arg == (char *) NULL)
10091 badInput = 1;
10092 else if (*arg != '*')
10093 {
10094 char *argptr = arg;
10095 int hasColon = 0;
10096
10097 /* Look for a ':'. If this is a line number specification, then
10098 say it is bad, otherwise, it should be an address or
10099 function/method name. */
10100 while (*argptr && !hasColon)
10101 {
10102 hasColon = (*argptr == ':');
10103 argptr++;
10104 }
10105
10106 if (hasColon)
10107 badInput = (*argptr != ':'); /* Not a class::method */
10108 else
10109 badInput = isdigit (*arg); /* a simple line number */
10110 }
10111
10112 if (badInput)
10113 printf_filtered (_("Usage: stop in <function | address>\n"));
10114 else
10115 break_command_1 (arg, 0, from_tty);
10116 }
10117
10118 static void
10119 stopat_command (char *arg, int from_tty)
10120 {
10121 int badInput = 0;
10122
10123 if (arg == (char *) NULL || *arg == '*') /* no line number */
10124 badInput = 1;
10125 else
10126 {
10127 char *argptr = arg;
10128 int hasColon = 0;
10129
10130 /* Look for a ':'. If there is a '::' then get out, otherwise
10131 it is probably a line number. */
10132 while (*argptr && !hasColon)
10133 {
10134 hasColon = (*argptr == ':');
10135 argptr++;
10136 }
10137
10138 if (hasColon)
10139 badInput = (*argptr == ':'); /* we have class::method */
10140 else
10141 badInput = !isdigit (*arg); /* not a line number */
10142 }
10143
10144 if (badInput)
10145 printf_filtered (_("Usage: stop at <line>\n"));
10146 else
10147 break_command_1 (arg, 0, from_tty);
10148 }
10149
10150 /* The dynamic printf command is mostly like a regular breakpoint, but
10151 with a prewired command list consisting of a single output command,
10152 built from extra arguments supplied on the dprintf command
10153 line. */
10154
10155 static void
10156 dprintf_command (char *arg, int from_tty)
10157 {
10158 struct event_location *location;
10159 struct cleanup *cleanup;
10160
10161 location = string_to_event_location (&arg, current_language);
10162 cleanup = make_cleanup_delete_event_location (location);
10163
10164 /* If non-NULL, ARG should have been advanced past the location;
10165 the next character must be ','. */
10166 if (arg != NULL)
10167 {
10168 if (arg[0] != ',' || arg[1] == '\0')
10169 error (_("Format string required"));
10170 else
10171 {
10172 /* Skip the comma. */
10173 ++arg;
10174 }
10175 }
10176
10177 create_breakpoint (get_current_arch (),
10178 location,
10179 NULL, 0, arg, 1 /* parse arg */,
10180 0, bp_dprintf,
10181 0 /* Ignore count */,
10182 pending_break_support,
10183 &dprintf_breakpoint_ops,
10184 from_tty,
10185 1 /* enabled */,
10186 0 /* internal */,
10187 0);
10188 do_cleanups (cleanup);
10189 }
10190
10191 static void
10192 agent_printf_command (char *arg, int from_tty)
10193 {
10194 error (_("May only run agent-printf on the target"));
10195 }
10196
10197 /* Implement the "breakpoint_hit" breakpoint_ops method for
10198 ranged breakpoints. */
10199
10200 static int
10201 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10202 struct address_space *aspace,
10203 CORE_ADDR bp_addr,
10204 const struct target_waitstatus *ws)
10205 {
10206 if (ws->kind != TARGET_WAITKIND_STOPPED
10207 || ws->value.sig != GDB_SIGNAL_TRAP)
10208 return 0;
10209
10210 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10211 bl->length, aspace, bp_addr);
10212 }
10213
10214 /* Implement the "resources_needed" breakpoint_ops method for
10215 ranged breakpoints. */
10216
10217 static int
10218 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10219 {
10220 return target_ranged_break_num_registers ();
10221 }
10222
10223 /* Implement the "print_it" breakpoint_ops method for
10224 ranged breakpoints. */
10225
10226 static enum print_stop_action
10227 print_it_ranged_breakpoint (bpstat bs)
10228 {
10229 struct breakpoint *b = bs->breakpoint_at;
10230 struct bp_location *bl = b->loc;
10231 struct ui_out *uiout = current_uiout;
10232
10233 gdb_assert (b->type == bp_hardware_breakpoint);
10234
10235 /* Ranged breakpoints have only one location. */
10236 gdb_assert (bl && bl->next == NULL);
10237
10238 annotate_breakpoint (b->number);
10239
10240 maybe_print_thread_hit_breakpoint (uiout);
10241
10242 if (b->disposition == disp_del)
10243 ui_out_text (uiout, "Temporary ranged breakpoint ");
10244 else
10245 ui_out_text (uiout, "Ranged breakpoint ");
10246 if (ui_out_is_mi_like_p (uiout))
10247 {
10248 ui_out_field_string (uiout, "reason",
10249 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10250 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10251 }
10252 ui_out_field_int (uiout, "bkptno", b->number);
10253 ui_out_text (uiout, ", ");
10254
10255 return PRINT_SRC_AND_LOC;
10256 }
10257
10258 /* Implement the "print_one" breakpoint_ops method for
10259 ranged breakpoints. */
10260
10261 static void
10262 print_one_ranged_breakpoint (struct breakpoint *b,
10263 struct bp_location **last_loc)
10264 {
10265 struct bp_location *bl = b->loc;
10266 struct value_print_options opts;
10267 struct ui_out *uiout = current_uiout;
10268
10269 /* Ranged breakpoints have only one location. */
10270 gdb_assert (bl && bl->next == NULL);
10271
10272 get_user_print_options (&opts);
10273
10274 if (opts.addressprint)
10275 /* We don't print the address range here, it will be printed later
10276 by print_one_detail_ranged_breakpoint. */
10277 ui_out_field_skip (uiout, "addr");
10278 annotate_field (5);
10279 print_breakpoint_location (b, bl);
10280 *last_loc = bl;
10281 }
10282
10283 /* Implement the "print_one_detail" breakpoint_ops method for
10284 ranged breakpoints. */
10285
10286 static void
10287 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10288 struct ui_out *uiout)
10289 {
10290 CORE_ADDR address_start, address_end;
10291 struct bp_location *bl = b->loc;
10292 struct ui_file *stb = mem_fileopen ();
10293 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10294
10295 gdb_assert (bl);
10296
10297 address_start = bl->address;
10298 address_end = address_start + bl->length - 1;
10299
10300 ui_out_text (uiout, "\taddress range: ");
10301 fprintf_unfiltered (stb, "[%s, %s]",
10302 print_core_address (bl->gdbarch, address_start),
10303 print_core_address (bl->gdbarch, address_end));
10304 ui_out_field_stream (uiout, "addr", stb);
10305 ui_out_text (uiout, "\n");
10306
10307 do_cleanups (cleanup);
10308 }
10309
10310 /* Implement the "print_mention" breakpoint_ops method for
10311 ranged breakpoints. */
10312
10313 static void
10314 print_mention_ranged_breakpoint (struct breakpoint *b)
10315 {
10316 struct bp_location *bl = b->loc;
10317 struct ui_out *uiout = current_uiout;
10318
10319 gdb_assert (bl);
10320 gdb_assert (b->type == bp_hardware_breakpoint);
10321
10322 if (ui_out_is_mi_like_p (uiout))
10323 return;
10324
10325 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10326 b->number, paddress (bl->gdbarch, bl->address),
10327 paddress (bl->gdbarch, bl->address + bl->length - 1));
10328 }
10329
10330 /* Implement the "print_recreate" breakpoint_ops method for
10331 ranged breakpoints. */
10332
10333 static void
10334 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10335 {
10336 fprintf_unfiltered (fp, "break-range %s, %s",
10337 event_location_to_string (b->location),
10338 event_location_to_string (b->location_range_end));
10339 print_recreate_thread (b, fp);
10340 }
10341
10342 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10343
10344 static struct breakpoint_ops ranged_breakpoint_ops;
10345
10346 /* Find the address where the end of the breakpoint range should be
10347 placed, given the SAL of the end of the range. This is so that if
10348 the user provides a line number, the end of the range is set to the
10349 last instruction of the given line. */
10350
10351 static CORE_ADDR
10352 find_breakpoint_range_end (struct symtab_and_line sal)
10353 {
10354 CORE_ADDR end;
10355
10356 /* If the user provided a PC value, use it. Otherwise,
10357 find the address of the end of the given location. */
10358 if (sal.explicit_pc)
10359 end = sal.pc;
10360 else
10361 {
10362 int ret;
10363 CORE_ADDR start;
10364
10365 ret = find_line_pc_range (sal, &start, &end);
10366 if (!ret)
10367 error (_("Could not find location of the end of the range."));
10368
10369 /* find_line_pc_range returns the start of the next line. */
10370 end--;
10371 }
10372
10373 return end;
10374 }
10375
10376 /* Implement the "break-range" CLI command. */
10377
10378 static void
10379 break_range_command (char *arg, int from_tty)
10380 {
10381 char *arg_start, *addr_string_start, *addr_string_end;
10382 struct linespec_result canonical_start, canonical_end;
10383 int bp_count, can_use_bp, length;
10384 CORE_ADDR end;
10385 struct breakpoint *b;
10386 struct symtab_and_line sal_start, sal_end;
10387 struct cleanup *cleanup_bkpt;
10388 struct linespec_sals *lsal_start, *lsal_end;
10389 struct event_location *start_location, *end_location;
10390
10391 /* We don't support software ranged breakpoints. */
10392 if (target_ranged_break_num_registers () < 0)
10393 error (_("This target does not support hardware ranged breakpoints."));
10394
10395 bp_count = hw_breakpoint_used_count ();
10396 bp_count += target_ranged_break_num_registers ();
10397 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10398 bp_count, 0);
10399 if (can_use_bp < 0)
10400 error (_("Hardware breakpoints used exceeds limit."));
10401
10402 arg = skip_spaces (arg);
10403 if (arg == NULL || arg[0] == '\0')
10404 error(_("No address range specified."));
10405
10406 init_linespec_result (&canonical_start);
10407
10408 arg_start = arg;
10409 start_location = string_to_event_location (&arg, current_language);
10410 cleanup_bkpt = make_cleanup_delete_event_location (start_location);
10411 parse_breakpoint_sals (start_location, &canonical_start);
10412 make_cleanup_destroy_linespec_result (&canonical_start);
10413
10414 if (arg[0] != ',')
10415 error (_("Too few arguments."));
10416 else if (VEC_empty (linespec_sals, canonical_start.sals))
10417 error (_("Could not find location of the beginning of the range."));
10418
10419 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10420
10421 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10422 || lsal_start->sals.nelts != 1)
10423 error (_("Cannot create a ranged breakpoint with multiple locations."));
10424
10425 sal_start = lsal_start->sals.sals[0];
10426 addr_string_start = savestring (arg_start, arg - arg_start);
10427 make_cleanup (xfree, addr_string_start);
10428
10429 arg++; /* Skip the comma. */
10430 arg = skip_spaces (arg);
10431
10432 /* Parse the end location. */
10433
10434 init_linespec_result (&canonical_end);
10435 arg_start = arg;
10436
10437 /* We call decode_line_full directly here instead of using
10438 parse_breakpoint_sals because we need to specify the start location's
10439 symtab and line as the default symtab and line for the end of the
10440 range. This makes it possible to have ranges like "foo.c:27, +14",
10441 where +14 means 14 lines from the start location. */
10442 end_location = string_to_event_location (&arg, current_language);
10443 make_cleanup_delete_event_location (end_location);
10444 decode_line_full (end_location, DECODE_LINE_FUNFIRSTLINE, NULL,
10445 sal_start.symtab, sal_start.line,
10446 &canonical_end, NULL, NULL);
10447
10448 make_cleanup_destroy_linespec_result (&canonical_end);
10449
10450 if (VEC_empty (linespec_sals, canonical_end.sals))
10451 error (_("Could not find location of the end of the range."));
10452
10453 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10454 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10455 || lsal_end->sals.nelts != 1)
10456 error (_("Cannot create a ranged breakpoint with multiple locations."));
10457
10458 sal_end = lsal_end->sals.sals[0];
10459
10460 end = find_breakpoint_range_end (sal_end);
10461 if (sal_start.pc > end)
10462 error (_("Invalid address range, end precedes start."));
10463
10464 length = end - sal_start.pc + 1;
10465 if (length < 0)
10466 /* Length overflowed. */
10467 error (_("Address range too large."));
10468 else if (length == 1)
10469 {
10470 /* This range is simple enough to be handled by
10471 the `hbreak' command. */
10472 hbreak_command (addr_string_start, 1);
10473
10474 do_cleanups (cleanup_bkpt);
10475
10476 return;
10477 }
10478
10479 /* Now set up the breakpoint. */
10480 b = set_raw_breakpoint (get_current_arch (), sal_start,
10481 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10482 set_breakpoint_count (breakpoint_count + 1);
10483 b->number = breakpoint_count;
10484 b->disposition = disp_donttouch;
10485 b->location = copy_event_location (start_location);
10486 b->location_range_end = copy_event_location (end_location);
10487 b->loc->length = length;
10488
10489 do_cleanups (cleanup_bkpt);
10490
10491 mention (b);
10492 observer_notify_breakpoint_created (b);
10493 update_global_location_list (UGLL_MAY_INSERT);
10494 }
10495
10496 /* Return non-zero if EXP is verified as constant. Returned zero
10497 means EXP is variable. Also the constant detection may fail for
10498 some constant expressions and in such case still falsely return
10499 zero. */
10500
10501 static int
10502 watchpoint_exp_is_const (const struct expression *exp)
10503 {
10504 int i = exp->nelts;
10505
10506 while (i > 0)
10507 {
10508 int oplenp, argsp;
10509
10510 /* We are only interested in the descriptor of each element. */
10511 operator_length (exp, i, &oplenp, &argsp);
10512 i -= oplenp;
10513
10514 switch (exp->elts[i].opcode)
10515 {
10516 case BINOP_ADD:
10517 case BINOP_SUB:
10518 case BINOP_MUL:
10519 case BINOP_DIV:
10520 case BINOP_REM:
10521 case BINOP_MOD:
10522 case BINOP_LSH:
10523 case BINOP_RSH:
10524 case BINOP_LOGICAL_AND:
10525 case BINOP_LOGICAL_OR:
10526 case BINOP_BITWISE_AND:
10527 case BINOP_BITWISE_IOR:
10528 case BINOP_BITWISE_XOR:
10529 case BINOP_EQUAL:
10530 case BINOP_NOTEQUAL:
10531 case BINOP_LESS:
10532 case BINOP_GTR:
10533 case BINOP_LEQ:
10534 case BINOP_GEQ:
10535 case BINOP_REPEAT:
10536 case BINOP_COMMA:
10537 case BINOP_EXP:
10538 case BINOP_MIN:
10539 case BINOP_MAX:
10540 case BINOP_INTDIV:
10541 case BINOP_CONCAT:
10542 case TERNOP_COND:
10543 case TERNOP_SLICE:
10544
10545 case OP_LONG:
10546 case OP_DOUBLE:
10547 case OP_DECFLOAT:
10548 case OP_LAST:
10549 case OP_COMPLEX:
10550 case OP_STRING:
10551 case OP_ARRAY:
10552 case OP_TYPE:
10553 case OP_TYPEOF:
10554 case OP_DECLTYPE:
10555 case OP_TYPEID:
10556 case OP_NAME:
10557 case OP_OBJC_NSSTRING:
10558
10559 case UNOP_NEG:
10560 case UNOP_LOGICAL_NOT:
10561 case UNOP_COMPLEMENT:
10562 case UNOP_ADDR:
10563 case UNOP_HIGH:
10564 case UNOP_CAST:
10565
10566 case UNOP_CAST_TYPE:
10567 case UNOP_REINTERPRET_CAST:
10568 case UNOP_DYNAMIC_CAST:
10569 /* Unary, binary and ternary operators: We have to check
10570 their operands. If they are constant, then so is the
10571 result of that operation. For instance, if A and B are
10572 determined to be constants, then so is "A + B".
10573
10574 UNOP_IND is one exception to the rule above, because the
10575 value of *ADDR is not necessarily a constant, even when
10576 ADDR is. */
10577 break;
10578
10579 case OP_VAR_VALUE:
10580 /* Check whether the associated symbol is a constant.
10581
10582 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10583 possible that a buggy compiler could mark a variable as
10584 constant even when it is not, and TYPE_CONST would return
10585 true in this case, while SYMBOL_CLASS wouldn't.
10586
10587 We also have to check for function symbols because they
10588 are always constant. */
10589 {
10590 struct symbol *s = exp->elts[i + 2].symbol;
10591
10592 if (SYMBOL_CLASS (s) != LOC_BLOCK
10593 && SYMBOL_CLASS (s) != LOC_CONST
10594 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10595 return 0;
10596 break;
10597 }
10598
10599 /* The default action is to return 0 because we are using
10600 the optimistic approach here: If we don't know something,
10601 then it is not a constant. */
10602 default:
10603 return 0;
10604 }
10605 }
10606
10607 return 1;
10608 }
10609
10610 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10611
10612 static void
10613 dtor_watchpoint (struct breakpoint *self)
10614 {
10615 struct watchpoint *w = (struct watchpoint *) self;
10616
10617 xfree (w->cond_exp);
10618 xfree (w->exp);
10619 xfree (w->exp_string);
10620 xfree (w->exp_string_reparse);
10621 value_free (w->val);
10622
10623 base_breakpoint_ops.dtor (self);
10624 }
10625
10626 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10627
10628 static void
10629 re_set_watchpoint (struct breakpoint *b)
10630 {
10631 struct watchpoint *w = (struct watchpoint *) b;
10632
10633 /* Watchpoint can be either on expression using entirely global
10634 variables, or it can be on local variables.
10635
10636 Watchpoints of the first kind are never auto-deleted, and even
10637 persist across program restarts. Since they can use variables
10638 from shared libraries, we need to reparse expression as libraries
10639 are loaded and unloaded.
10640
10641 Watchpoints on local variables can also change meaning as result
10642 of solib event. For example, if a watchpoint uses both a local
10643 and a global variables in expression, it's a local watchpoint,
10644 but unloading of a shared library will make the expression
10645 invalid. This is not a very common use case, but we still
10646 re-evaluate expression, to avoid surprises to the user.
10647
10648 Note that for local watchpoints, we re-evaluate it only if
10649 watchpoints frame id is still valid. If it's not, it means the
10650 watchpoint is out of scope and will be deleted soon. In fact,
10651 I'm not sure we'll ever be called in this case.
10652
10653 If a local watchpoint's frame id is still valid, then
10654 w->exp_valid_block is likewise valid, and we can safely use it.
10655
10656 Don't do anything about disabled watchpoints, since they will be
10657 reevaluated again when enabled. */
10658 update_watchpoint (w, 1 /* reparse */);
10659 }
10660
10661 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10662
10663 static int
10664 insert_watchpoint (struct bp_location *bl)
10665 {
10666 struct watchpoint *w = (struct watchpoint *) bl->owner;
10667 int length = w->exact ? 1 : bl->length;
10668
10669 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10670 w->cond_exp);
10671 }
10672
10673 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10674
10675 static int
10676 remove_watchpoint (struct bp_location *bl)
10677 {
10678 struct watchpoint *w = (struct watchpoint *) bl->owner;
10679 int length = w->exact ? 1 : bl->length;
10680
10681 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10682 w->cond_exp);
10683 }
10684
10685 static int
10686 breakpoint_hit_watchpoint (const struct bp_location *bl,
10687 struct address_space *aspace, CORE_ADDR bp_addr,
10688 const struct target_waitstatus *ws)
10689 {
10690 struct breakpoint *b = bl->owner;
10691 struct watchpoint *w = (struct watchpoint *) b;
10692
10693 /* Continuable hardware watchpoints are treated as non-existent if the
10694 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10695 some data address). Otherwise gdb won't stop on a break instruction
10696 in the code (not from a breakpoint) when a hardware watchpoint has
10697 been defined. Also skip watchpoints which we know did not trigger
10698 (did not match the data address). */
10699 if (is_hardware_watchpoint (b)
10700 && w->watchpoint_triggered == watch_triggered_no)
10701 return 0;
10702
10703 return 1;
10704 }
10705
10706 static void
10707 check_status_watchpoint (bpstat bs)
10708 {
10709 gdb_assert (is_watchpoint (bs->breakpoint_at));
10710
10711 bpstat_check_watchpoint (bs);
10712 }
10713
10714 /* Implement the "resources_needed" breakpoint_ops method for
10715 hardware watchpoints. */
10716
10717 static int
10718 resources_needed_watchpoint (const struct bp_location *bl)
10719 {
10720 struct watchpoint *w = (struct watchpoint *) bl->owner;
10721 int length = w->exact? 1 : bl->length;
10722
10723 return target_region_ok_for_hw_watchpoint (bl->address, length);
10724 }
10725
10726 /* Implement the "works_in_software_mode" breakpoint_ops method for
10727 hardware watchpoints. */
10728
10729 static int
10730 works_in_software_mode_watchpoint (const struct breakpoint *b)
10731 {
10732 /* Read and access watchpoints only work with hardware support. */
10733 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10734 }
10735
10736 static enum print_stop_action
10737 print_it_watchpoint (bpstat bs)
10738 {
10739 struct cleanup *old_chain;
10740 struct breakpoint *b;
10741 struct ui_file *stb;
10742 enum print_stop_action result;
10743 struct watchpoint *w;
10744 struct ui_out *uiout = current_uiout;
10745
10746 gdb_assert (bs->bp_location_at != NULL);
10747
10748 b = bs->breakpoint_at;
10749 w = (struct watchpoint *) b;
10750
10751 stb = mem_fileopen ();
10752 old_chain = make_cleanup_ui_file_delete (stb);
10753
10754 annotate_watchpoint (b->number);
10755 maybe_print_thread_hit_breakpoint (uiout);
10756
10757 switch (b->type)
10758 {
10759 case bp_watchpoint:
10760 case bp_hardware_watchpoint:
10761 if (ui_out_is_mi_like_p (uiout))
10762 ui_out_field_string
10763 (uiout, "reason",
10764 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10765 mention (b);
10766 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10767 ui_out_text (uiout, "\nOld value = ");
10768 watchpoint_value_print (bs->old_val, stb);
10769 ui_out_field_stream (uiout, "old", stb);
10770 ui_out_text (uiout, "\nNew value = ");
10771 watchpoint_value_print (w->val, stb);
10772 ui_out_field_stream (uiout, "new", stb);
10773 ui_out_text (uiout, "\n");
10774 /* More than one watchpoint may have been triggered. */
10775 result = PRINT_UNKNOWN;
10776 break;
10777
10778 case bp_read_watchpoint:
10779 if (ui_out_is_mi_like_p (uiout))
10780 ui_out_field_string
10781 (uiout, "reason",
10782 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10783 mention (b);
10784 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10785 ui_out_text (uiout, "\nValue = ");
10786 watchpoint_value_print (w->val, stb);
10787 ui_out_field_stream (uiout, "value", stb);
10788 ui_out_text (uiout, "\n");
10789 result = PRINT_UNKNOWN;
10790 break;
10791
10792 case bp_access_watchpoint:
10793 if (bs->old_val != NULL)
10794 {
10795 if (ui_out_is_mi_like_p (uiout))
10796 ui_out_field_string
10797 (uiout, "reason",
10798 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10799 mention (b);
10800 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10801 ui_out_text (uiout, "\nOld value = ");
10802 watchpoint_value_print (bs->old_val, stb);
10803 ui_out_field_stream (uiout, "old", stb);
10804 ui_out_text (uiout, "\nNew value = ");
10805 }
10806 else
10807 {
10808 mention (b);
10809 if (ui_out_is_mi_like_p (uiout))
10810 ui_out_field_string
10811 (uiout, "reason",
10812 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10813 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10814 ui_out_text (uiout, "\nValue = ");
10815 }
10816 watchpoint_value_print (w->val, stb);
10817 ui_out_field_stream (uiout, "new", stb);
10818 ui_out_text (uiout, "\n");
10819 result = PRINT_UNKNOWN;
10820 break;
10821 default:
10822 result = PRINT_UNKNOWN;
10823 }
10824
10825 do_cleanups (old_chain);
10826 return result;
10827 }
10828
10829 /* Implement the "print_mention" breakpoint_ops method for hardware
10830 watchpoints. */
10831
10832 static void
10833 print_mention_watchpoint (struct breakpoint *b)
10834 {
10835 struct cleanup *ui_out_chain;
10836 struct watchpoint *w = (struct watchpoint *) b;
10837 struct ui_out *uiout = current_uiout;
10838
10839 switch (b->type)
10840 {
10841 case bp_watchpoint:
10842 ui_out_text (uiout, "Watchpoint ");
10843 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10844 break;
10845 case bp_hardware_watchpoint:
10846 ui_out_text (uiout, "Hardware watchpoint ");
10847 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10848 break;
10849 case bp_read_watchpoint:
10850 ui_out_text (uiout, "Hardware read watchpoint ");
10851 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10852 break;
10853 case bp_access_watchpoint:
10854 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10855 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10856 break;
10857 default:
10858 internal_error (__FILE__, __LINE__,
10859 _("Invalid hardware watchpoint type."));
10860 }
10861
10862 ui_out_field_int (uiout, "number", b->number);
10863 ui_out_text (uiout, ": ");
10864 ui_out_field_string (uiout, "exp", w->exp_string);
10865 do_cleanups (ui_out_chain);
10866 }
10867
10868 /* Implement the "print_recreate" breakpoint_ops method for
10869 watchpoints. */
10870
10871 static void
10872 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10873 {
10874 struct watchpoint *w = (struct watchpoint *) b;
10875
10876 switch (b->type)
10877 {
10878 case bp_watchpoint:
10879 case bp_hardware_watchpoint:
10880 fprintf_unfiltered (fp, "watch");
10881 break;
10882 case bp_read_watchpoint:
10883 fprintf_unfiltered (fp, "rwatch");
10884 break;
10885 case bp_access_watchpoint:
10886 fprintf_unfiltered (fp, "awatch");
10887 break;
10888 default:
10889 internal_error (__FILE__, __LINE__,
10890 _("Invalid watchpoint type."));
10891 }
10892
10893 fprintf_unfiltered (fp, " %s", w->exp_string);
10894 print_recreate_thread (b, fp);
10895 }
10896
10897 /* Implement the "explains_signal" breakpoint_ops method for
10898 watchpoints. */
10899
10900 static int
10901 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10902 {
10903 /* A software watchpoint cannot cause a signal other than
10904 GDB_SIGNAL_TRAP. */
10905 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10906 return 0;
10907
10908 return 1;
10909 }
10910
10911 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10912
10913 static struct breakpoint_ops watchpoint_breakpoint_ops;
10914
10915 /* Implement the "insert" breakpoint_ops method for
10916 masked hardware watchpoints. */
10917
10918 static int
10919 insert_masked_watchpoint (struct bp_location *bl)
10920 {
10921 struct watchpoint *w = (struct watchpoint *) bl->owner;
10922
10923 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10924 bl->watchpoint_type);
10925 }
10926
10927 /* Implement the "remove" breakpoint_ops method for
10928 masked hardware watchpoints. */
10929
10930 static int
10931 remove_masked_watchpoint (struct bp_location *bl)
10932 {
10933 struct watchpoint *w = (struct watchpoint *) bl->owner;
10934
10935 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10936 bl->watchpoint_type);
10937 }
10938
10939 /* Implement the "resources_needed" breakpoint_ops method for
10940 masked hardware watchpoints. */
10941
10942 static int
10943 resources_needed_masked_watchpoint (const struct bp_location *bl)
10944 {
10945 struct watchpoint *w = (struct watchpoint *) bl->owner;
10946
10947 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10948 }
10949
10950 /* Implement the "works_in_software_mode" breakpoint_ops method for
10951 masked hardware watchpoints. */
10952
10953 static int
10954 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10955 {
10956 return 0;
10957 }
10958
10959 /* Implement the "print_it" breakpoint_ops method for
10960 masked hardware watchpoints. */
10961
10962 static enum print_stop_action
10963 print_it_masked_watchpoint (bpstat bs)
10964 {
10965 struct breakpoint *b = bs->breakpoint_at;
10966 struct ui_out *uiout = current_uiout;
10967
10968 /* Masked watchpoints have only one location. */
10969 gdb_assert (b->loc && b->loc->next == NULL);
10970
10971 annotate_watchpoint (b->number);
10972 maybe_print_thread_hit_breakpoint (uiout);
10973
10974 switch (b->type)
10975 {
10976 case bp_hardware_watchpoint:
10977 if (ui_out_is_mi_like_p (uiout))
10978 ui_out_field_string
10979 (uiout, "reason",
10980 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10981 break;
10982
10983 case bp_read_watchpoint:
10984 if (ui_out_is_mi_like_p (uiout))
10985 ui_out_field_string
10986 (uiout, "reason",
10987 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10988 break;
10989
10990 case bp_access_watchpoint:
10991 if (ui_out_is_mi_like_p (uiout))
10992 ui_out_field_string
10993 (uiout, "reason",
10994 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10995 break;
10996 default:
10997 internal_error (__FILE__, __LINE__,
10998 _("Invalid hardware watchpoint type."));
10999 }
11000
11001 mention (b);
11002 ui_out_text (uiout, _("\n\
11003 Check the underlying instruction at PC for the memory\n\
11004 address and value which triggered this watchpoint.\n"));
11005 ui_out_text (uiout, "\n");
11006
11007 /* More than one watchpoint may have been triggered. */
11008 return PRINT_UNKNOWN;
11009 }
11010
11011 /* Implement the "print_one_detail" breakpoint_ops method for
11012 masked hardware watchpoints. */
11013
11014 static void
11015 print_one_detail_masked_watchpoint (const struct breakpoint *b,
11016 struct ui_out *uiout)
11017 {
11018 struct watchpoint *w = (struct watchpoint *) b;
11019
11020 /* Masked watchpoints have only one location. */
11021 gdb_assert (b->loc && b->loc->next == NULL);
11022
11023 ui_out_text (uiout, "\tmask ");
11024 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
11025 ui_out_text (uiout, "\n");
11026 }
11027
11028 /* Implement the "print_mention" breakpoint_ops method for
11029 masked hardware watchpoints. */
11030
11031 static void
11032 print_mention_masked_watchpoint (struct breakpoint *b)
11033 {
11034 struct watchpoint *w = (struct watchpoint *) b;
11035 struct ui_out *uiout = current_uiout;
11036 struct cleanup *ui_out_chain;
11037
11038 switch (b->type)
11039 {
11040 case bp_hardware_watchpoint:
11041 ui_out_text (uiout, "Masked hardware watchpoint ");
11042 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
11043 break;
11044 case bp_read_watchpoint:
11045 ui_out_text (uiout, "Masked hardware read watchpoint ");
11046 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
11047 break;
11048 case bp_access_watchpoint:
11049 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
11050 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
11051 break;
11052 default:
11053 internal_error (__FILE__, __LINE__,
11054 _("Invalid hardware watchpoint type."));
11055 }
11056
11057 ui_out_field_int (uiout, "number", b->number);
11058 ui_out_text (uiout, ": ");
11059 ui_out_field_string (uiout, "exp", w->exp_string);
11060 do_cleanups (ui_out_chain);
11061 }
11062
11063 /* Implement the "print_recreate" breakpoint_ops method for
11064 masked hardware watchpoints. */
11065
11066 static void
11067 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
11068 {
11069 struct watchpoint *w = (struct watchpoint *) b;
11070 char tmp[40];
11071
11072 switch (b->type)
11073 {
11074 case bp_hardware_watchpoint:
11075 fprintf_unfiltered (fp, "watch");
11076 break;
11077 case bp_read_watchpoint:
11078 fprintf_unfiltered (fp, "rwatch");
11079 break;
11080 case bp_access_watchpoint:
11081 fprintf_unfiltered (fp, "awatch");
11082 break;
11083 default:
11084 internal_error (__FILE__, __LINE__,
11085 _("Invalid hardware watchpoint type."));
11086 }
11087
11088 sprintf_vma (tmp, w->hw_wp_mask);
11089 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
11090 print_recreate_thread (b, fp);
11091 }
11092
11093 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
11094
11095 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
11096
11097 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
11098
11099 static int
11100 is_masked_watchpoint (const struct breakpoint *b)
11101 {
11102 return b->ops == &masked_watchpoint_breakpoint_ops;
11103 }
11104
11105 /* accessflag: hw_write: watch write,
11106 hw_read: watch read,
11107 hw_access: watch access (read or write) */
11108 static void
11109 watch_command_1 (const char *arg, int accessflag, int from_tty,
11110 int just_location, int internal)
11111 {
11112 struct breakpoint *b, *scope_breakpoint = NULL;
11113 struct expression *exp;
11114 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
11115 struct value *val, *mark, *result;
11116 int saved_bitpos = 0, saved_bitsize = 0;
11117 struct frame_info *frame;
11118 const char *exp_start = NULL;
11119 const char *exp_end = NULL;
11120 const char *tok, *end_tok;
11121 int toklen = -1;
11122 const char *cond_start = NULL;
11123 const char *cond_end = NULL;
11124 enum bptype bp_type;
11125 int thread = -1;
11126 int pc = 0;
11127 /* Flag to indicate whether we are going to use masks for
11128 the hardware watchpoint. */
11129 int use_mask = 0;
11130 CORE_ADDR mask = 0;
11131 struct watchpoint *w;
11132 char *expression;
11133 struct cleanup *back_to;
11134
11135 /* Make sure that we actually have parameters to parse. */
11136 if (arg != NULL && arg[0] != '\0')
11137 {
11138 const char *value_start;
11139
11140 exp_end = arg + strlen (arg);
11141
11142 /* Look for "parameter value" pairs at the end
11143 of the arguments string. */
11144 for (tok = exp_end - 1; tok > arg; tok--)
11145 {
11146 /* Skip whitespace at the end of the argument list. */
11147 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11148 tok--;
11149
11150 /* Find the beginning of the last token.
11151 This is the value of the parameter. */
11152 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11153 tok--;
11154 value_start = tok + 1;
11155
11156 /* Skip whitespace. */
11157 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11158 tok--;
11159
11160 end_tok = tok;
11161
11162 /* Find the beginning of the second to last token.
11163 This is the parameter itself. */
11164 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11165 tok--;
11166 tok++;
11167 toklen = end_tok - tok + 1;
11168
11169 if (toklen == 6 && startswith (tok, "thread"))
11170 {
11171 struct thread_info *thr;
11172 /* At this point we've found a "thread" token, which means
11173 the user is trying to set a watchpoint that triggers
11174 only in a specific thread. */
11175 const char *endp;
11176
11177 if (thread != -1)
11178 error(_("You can specify only one thread."));
11179
11180 /* Extract the thread ID from the next token. */
11181 thr = parse_thread_id (value_start, &endp);
11182
11183 /* Check if the user provided a valid thread ID. */
11184 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11185 invalid_thread_id_error (value_start);
11186
11187 thread = thr->global_num;
11188 }
11189 else if (toklen == 4 && startswith (tok, "mask"))
11190 {
11191 /* We've found a "mask" token, which means the user wants to
11192 create a hardware watchpoint that is going to have the mask
11193 facility. */
11194 struct value *mask_value, *mark;
11195
11196 if (use_mask)
11197 error(_("You can specify only one mask."));
11198
11199 use_mask = just_location = 1;
11200
11201 mark = value_mark ();
11202 mask_value = parse_to_comma_and_eval (&value_start);
11203 mask = value_as_address (mask_value);
11204 value_free_to_mark (mark);
11205 }
11206 else
11207 /* We didn't recognize what we found. We should stop here. */
11208 break;
11209
11210 /* Truncate the string and get rid of the "parameter value" pair before
11211 the arguments string is parsed by the parse_exp_1 function. */
11212 exp_end = tok;
11213 }
11214 }
11215 else
11216 exp_end = arg;
11217
11218 /* Parse the rest of the arguments. From here on out, everything
11219 is in terms of a newly allocated string instead of the original
11220 ARG. */
11221 innermost_block = NULL;
11222 expression = savestring (arg, exp_end - arg);
11223 back_to = make_cleanup (xfree, expression);
11224 exp_start = arg = expression;
11225 exp = parse_exp_1 (&arg, 0, 0, 0);
11226 exp_end = arg;
11227 /* Remove trailing whitespace from the expression before saving it.
11228 This makes the eventual display of the expression string a bit
11229 prettier. */
11230 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11231 --exp_end;
11232
11233 /* Checking if the expression is not constant. */
11234 if (watchpoint_exp_is_const (exp))
11235 {
11236 int len;
11237
11238 len = exp_end - exp_start;
11239 while (len > 0 && isspace (exp_start[len - 1]))
11240 len--;
11241 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11242 }
11243
11244 exp_valid_block = innermost_block;
11245 mark = value_mark ();
11246 fetch_subexp_value (exp, &pc, &val, &result, NULL, just_location);
11247
11248 if (val != NULL && just_location)
11249 {
11250 saved_bitpos = value_bitpos (val);
11251 saved_bitsize = value_bitsize (val);
11252 }
11253
11254 if (just_location)
11255 {
11256 int ret;
11257
11258 exp_valid_block = NULL;
11259 val = value_addr (result);
11260 release_value (val);
11261 value_free_to_mark (mark);
11262
11263 if (use_mask)
11264 {
11265 ret = target_masked_watch_num_registers (value_as_address (val),
11266 mask);
11267 if (ret == -1)
11268 error (_("This target does not support masked watchpoints."));
11269 else if (ret == -2)
11270 error (_("Invalid mask or memory region."));
11271 }
11272 }
11273 else if (val != NULL)
11274 release_value (val);
11275
11276 tok = skip_spaces_const (arg);
11277 end_tok = skip_to_space_const (tok);
11278
11279 toklen = end_tok - tok;
11280 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11281 {
11282 struct expression *cond;
11283
11284 innermost_block = NULL;
11285 tok = cond_start = end_tok + 1;
11286 cond = parse_exp_1 (&tok, 0, 0, 0);
11287
11288 /* The watchpoint expression may not be local, but the condition
11289 may still be. E.g.: `watch global if local > 0'. */
11290 cond_exp_valid_block = innermost_block;
11291
11292 xfree (cond);
11293 cond_end = tok;
11294 }
11295 if (*tok)
11296 error (_("Junk at end of command."));
11297
11298 frame = block_innermost_frame (exp_valid_block);
11299
11300 /* If the expression is "local", then set up a "watchpoint scope"
11301 breakpoint at the point where we've left the scope of the watchpoint
11302 expression. Create the scope breakpoint before the watchpoint, so
11303 that we will encounter it first in bpstat_stop_status. */
11304 if (exp_valid_block && frame)
11305 {
11306 if (frame_id_p (frame_unwind_caller_id (frame)))
11307 {
11308 scope_breakpoint
11309 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11310 frame_unwind_caller_pc (frame),
11311 bp_watchpoint_scope,
11312 &momentary_breakpoint_ops);
11313
11314 scope_breakpoint->enable_state = bp_enabled;
11315
11316 /* Automatically delete the breakpoint when it hits. */
11317 scope_breakpoint->disposition = disp_del;
11318
11319 /* Only break in the proper frame (help with recursion). */
11320 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11321
11322 /* Set the address at which we will stop. */
11323 scope_breakpoint->loc->gdbarch
11324 = frame_unwind_caller_arch (frame);
11325 scope_breakpoint->loc->requested_address
11326 = frame_unwind_caller_pc (frame);
11327 scope_breakpoint->loc->address
11328 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11329 scope_breakpoint->loc->requested_address,
11330 scope_breakpoint->type);
11331 }
11332 }
11333
11334 /* Now set up the breakpoint. We create all watchpoints as hardware
11335 watchpoints here even if hardware watchpoints are turned off, a call
11336 to update_watchpoint later in this function will cause the type to
11337 drop back to bp_watchpoint (software watchpoint) if required. */
11338
11339 if (accessflag == hw_read)
11340 bp_type = bp_read_watchpoint;
11341 else if (accessflag == hw_access)
11342 bp_type = bp_access_watchpoint;
11343 else
11344 bp_type = bp_hardware_watchpoint;
11345
11346 w = XCNEW (struct watchpoint);
11347 b = &w->base;
11348 if (use_mask)
11349 init_raw_breakpoint_without_location (b, NULL, bp_type,
11350 &masked_watchpoint_breakpoint_ops);
11351 else
11352 init_raw_breakpoint_without_location (b, NULL, bp_type,
11353 &watchpoint_breakpoint_ops);
11354 b->thread = thread;
11355 b->disposition = disp_donttouch;
11356 b->pspace = current_program_space;
11357 w->exp = exp;
11358 w->exp_valid_block = exp_valid_block;
11359 w->cond_exp_valid_block = cond_exp_valid_block;
11360 if (just_location)
11361 {
11362 struct type *t = value_type (val);
11363 CORE_ADDR addr = value_as_address (val);
11364 char *name;
11365
11366 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11367 name = type_to_string (t);
11368
11369 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11370 core_addr_to_string (addr));
11371 xfree (name);
11372
11373 w->exp_string = xstrprintf ("-location %.*s",
11374 (int) (exp_end - exp_start), exp_start);
11375
11376 /* The above expression is in C. */
11377 b->language = language_c;
11378 }
11379 else
11380 w->exp_string = savestring (exp_start, exp_end - exp_start);
11381
11382 if (use_mask)
11383 {
11384 w->hw_wp_mask = mask;
11385 }
11386 else
11387 {
11388 w->val = val;
11389 w->val_bitpos = saved_bitpos;
11390 w->val_bitsize = saved_bitsize;
11391 w->val_valid = 1;
11392 }
11393
11394 if (cond_start)
11395 b->cond_string = savestring (cond_start, cond_end - cond_start);
11396 else
11397 b->cond_string = 0;
11398
11399 if (frame)
11400 {
11401 w->watchpoint_frame = get_frame_id (frame);
11402 w->watchpoint_thread = inferior_ptid;
11403 }
11404 else
11405 {
11406 w->watchpoint_frame = null_frame_id;
11407 w->watchpoint_thread = null_ptid;
11408 }
11409
11410 if (scope_breakpoint != NULL)
11411 {
11412 /* The scope breakpoint is related to the watchpoint. We will
11413 need to act on them together. */
11414 b->related_breakpoint = scope_breakpoint;
11415 scope_breakpoint->related_breakpoint = b;
11416 }
11417
11418 if (!just_location)
11419 value_free_to_mark (mark);
11420
11421 TRY
11422 {
11423 /* Finally update the new watchpoint. This creates the locations
11424 that should be inserted. */
11425 update_watchpoint (w, 1);
11426 }
11427 CATCH (e, RETURN_MASK_ALL)
11428 {
11429 delete_breakpoint (b);
11430 throw_exception (e);
11431 }
11432 END_CATCH
11433
11434 install_breakpoint (internal, b, 1);
11435 do_cleanups (back_to);
11436 }
11437
11438 /* Return count of debug registers needed to watch the given expression.
11439 If the watchpoint cannot be handled in hardware return zero. */
11440
11441 static int
11442 can_use_hardware_watchpoint (struct value *v)
11443 {
11444 int found_memory_cnt = 0;
11445 struct value *head = v;
11446
11447 /* Did the user specifically forbid us to use hardware watchpoints? */
11448 if (!can_use_hw_watchpoints)
11449 return 0;
11450
11451 /* Make sure that the value of the expression depends only upon
11452 memory contents, and values computed from them within GDB. If we
11453 find any register references or function calls, we can't use a
11454 hardware watchpoint.
11455
11456 The idea here is that evaluating an expression generates a series
11457 of values, one holding the value of every subexpression. (The
11458 expression a*b+c has five subexpressions: a, b, a*b, c, and
11459 a*b+c.) GDB's values hold almost enough information to establish
11460 the criteria given above --- they identify memory lvalues,
11461 register lvalues, computed values, etcetera. So we can evaluate
11462 the expression, and then scan the chain of values that leaves
11463 behind to decide whether we can detect any possible change to the
11464 expression's final value using only hardware watchpoints.
11465
11466 However, I don't think that the values returned by inferior
11467 function calls are special in any way. So this function may not
11468 notice that an expression involving an inferior function call
11469 can't be watched with hardware watchpoints. FIXME. */
11470 for (; v; v = value_next (v))
11471 {
11472 if (VALUE_LVAL (v) == lval_memory)
11473 {
11474 if (v != head && value_lazy (v))
11475 /* A lazy memory lvalue in the chain is one that GDB never
11476 needed to fetch; we either just used its address (e.g.,
11477 `a' in `a.b') or we never needed it at all (e.g., `a'
11478 in `a,b'). This doesn't apply to HEAD; if that is
11479 lazy then it was not readable, but watch it anyway. */
11480 ;
11481 else
11482 {
11483 /* Ahh, memory we actually used! Check if we can cover
11484 it with hardware watchpoints. */
11485 struct type *vtype = check_typedef (value_type (v));
11486
11487 /* We only watch structs and arrays if user asked for it
11488 explicitly, never if they just happen to appear in a
11489 middle of some value chain. */
11490 if (v == head
11491 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11492 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11493 {
11494 CORE_ADDR vaddr = value_address (v);
11495 int len;
11496 int num_regs;
11497
11498 len = (target_exact_watchpoints
11499 && is_scalar_type_recursive (vtype))?
11500 1 : TYPE_LENGTH (value_type (v));
11501
11502 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11503 if (!num_regs)
11504 return 0;
11505 else
11506 found_memory_cnt += num_regs;
11507 }
11508 }
11509 }
11510 else if (VALUE_LVAL (v) != not_lval
11511 && deprecated_value_modifiable (v) == 0)
11512 return 0; /* These are values from the history (e.g., $1). */
11513 else if (VALUE_LVAL (v) == lval_register)
11514 return 0; /* Cannot watch a register with a HW watchpoint. */
11515 }
11516
11517 /* The expression itself looks suitable for using a hardware
11518 watchpoint, but give the target machine a chance to reject it. */
11519 return found_memory_cnt;
11520 }
11521
11522 void
11523 watch_command_wrapper (char *arg, int from_tty, int internal)
11524 {
11525 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11526 }
11527
11528 /* A helper function that looks for the "-location" argument and then
11529 calls watch_command_1. */
11530
11531 static void
11532 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11533 {
11534 int just_location = 0;
11535
11536 if (arg
11537 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11538 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11539 {
11540 arg = skip_spaces (arg);
11541 just_location = 1;
11542 }
11543
11544 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11545 }
11546
11547 static void
11548 watch_command (char *arg, int from_tty)
11549 {
11550 watch_maybe_just_location (arg, hw_write, from_tty);
11551 }
11552
11553 void
11554 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11555 {
11556 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11557 }
11558
11559 static void
11560 rwatch_command (char *arg, int from_tty)
11561 {
11562 watch_maybe_just_location (arg, hw_read, from_tty);
11563 }
11564
11565 void
11566 awatch_command_wrapper (char *arg, int from_tty, int internal)
11567 {
11568 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11569 }
11570
11571 static void
11572 awatch_command (char *arg, int from_tty)
11573 {
11574 watch_maybe_just_location (arg, hw_access, from_tty);
11575 }
11576 \f
11577
11578 /* Data for the FSM that manages the until(location)/advance commands
11579 in infcmd.c. Here because it uses the mechanisms of
11580 breakpoints. */
11581
11582 struct until_break_fsm
11583 {
11584 /* The base class. */
11585 struct thread_fsm thread_fsm;
11586
11587 /* The thread that as current when the command was executed. */
11588 int thread;
11589
11590 /* The breakpoint set at the destination location. */
11591 struct breakpoint *location_breakpoint;
11592
11593 /* Breakpoint set at the return address in the caller frame. May be
11594 NULL. */
11595 struct breakpoint *caller_breakpoint;
11596 };
11597
11598 static void until_break_fsm_clean_up (struct thread_fsm *self);
11599 static int until_break_fsm_should_stop (struct thread_fsm *self);
11600 static enum async_reply_reason
11601 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11602
11603 /* until_break_fsm's vtable. */
11604
11605 static struct thread_fsm_ops until_break_fsm_ops =
11606 {
11607 NULL, /* dtor */
11608 until_break_fsm_clean_up,
11609 until_break_fsm_should_stop,
11610 NULL, /* return_value */
11611 until_break_fsm_async_reply_reason,
11612 };
11613
11614 /* Allocate a new until_break_command_fsm. */
11615
11616 static struct until_break_fsm *
11617 new_until_break_fsm (int thread,
11618 struct breakpoint *location_breakpoint,
11619 struct breakpoint *caller_breakpoint)
11620 {
11621 struct until_break_fsm *sm;
11622
11623 sm = XCNEW (struct until_break_fsm);
11624 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops);
11625
11626 sm->thread = thread;
11627 sm->location_breakpoint = location_breakpoint;
11628 sm->caller_breakpoint = caller_breakpoint;
11629
11630 return sm;
11631 }
11632
11633 /* Implementation of the 'should_stop' FSM method for the
11634 until(location)/advance commands. */
11635
11636 static int
11637 until_break_fsm_should_stop (struct thread_fsm *self)
11638 {
11639 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11640 struct thread_info *tp = inferior_thread ();
11641
11642 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11643 sm->location_breakpoint) != NULL
11644 || (sm->caller_breakpoint != NULL
11645 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11646 sm->caller_breakpoint) != NULL))
11647 thread_fsm_set_finished (self);
11648
11649 return 1;
11650 }
11651
11652 /* Implementation of the 'clean_up' FSM method for the
11653 until(location)/advance commands. */
11654
11655 static void
11656 until_break_fsm_clean_up (struct thread_fsm *self)
11657 {
11658 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11659
11660 /* Clean up our temporary breakpoints. */
11661 if (sm->location_breakpoint != NULL)
11662 {
11663 delete_breakpoint (sm->location_breakpoint);
11664 sm->location_breakpoint = NULL;
11665 }
11666 if (sm->caller_breakpoint != NULL)
11667 {
11668 delete_breakpoint (sm->caller_breakpoint);
11669 sm->caller_breakpoint = NULL;
11670 }
11671 delete_longjmp_breakpoint (sm->thread);
11672 }
11673
11674 /* Implementation of the 'async_reply_reason' FSM method for the
11675 until(location)/advance commands. */
11676
11677 static enum async_reply_reason
11678 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11679 {
11680 return EXEC_ASYNC_LOCATION_REACHED;
11681 }
11682
11683 void
11684 until_break_command (char *arg, int from_tty, int anywhere)
11685 {
11686 struct symtabs_and_lines sals;
11687 struct symtab_and_line sal;
11688 struct frame_info *frame;
11689 struct gdbarch *frame_gdbarch;
11690 struct frame_id stack_frame_id;
11691 struct frame_id caller_frame_id;
11692 struct breakpoint *location_breakpoint;
11693 struct breakpoint *caller_breakpoint = NULL;
11694 struct cleanup *old_chain, *cleanup;
11695 int thread;
11696 struct thread_info *tp;
11697 struct event_location *location;
11698 struct until_break_fsm *sm;
11699
11700 clear_proceed_status (0);
11701
11702 /* Set a breakpoint where the user wants it and at return from
11703 this function. */
11704
11705 location = string_to_event_location (&arg, current_language);
11706 cleanup = make_cleanup_delete_event_location (location);
11707
11708 if (last_displayed_sal_is_valid ())
11709 sals = decode_line_1 (location, DECODE_LINE_FUNFIRSTLINE, NULL,
11710 get_last_displayed_symtab (),
11711 get_last_displayed_line ());
11712 else
11713 sals = decode_line_1 (location, DECODE_LINE_FUNFIRSTLINE,
11714 NULL, (struct symtab *) NULL, 0);
11715
11716 if (sals.nelts != 1)
11717 error (_("Couldn't get information on specified line."));
11718
11719 sal = sals.sals[0];
11720 xfree (sals.sals); /* malloc'd, so freed. */
11721
11722 if (*arg)
11723 error (_("Junk at end of arguments."));
11724
11725 resolve_sal_pc (&sal);
11726
11727 tp = inferior_thread ();
11728 thread = tp->global_num;
11729
11730 old_chain = make_cleanup (null_cleanup, NULL);
11731
11732 /* Note linespec handling above invalidates the frame chain.
11733 Installing a breakpoint also invalidates the frame chain (as it
11734 may need to switch threads), so do any frame handling before
11735 that. */
11736
11737 frame = get_selected_frame (NULL);
11738 frame_gdbarch = get_frame_arch (frame);
11739 stack_frame_id = get_stack_frame_id (frame);
11740 caller_frame_id = frame_unwind_caller_id (frame);
11741
11742 /* Keep within the current frame, or in frames called by the current
11743 one. */
11744
11745 if (frame_id_p (caller_frame_id))
11746 {
11747 struct symtab_and_line sal2;
11748 struct gdbarch *caller_gdbarch;
11749
11750 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11751 sal2.pc = frame_unwind_caller_pc (frame);
11752 caller_gdbarch = frame_unwind_caller_arch (frame);
11753 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11754 sal2,
11755 caller_frame_id,
11756 bp_until);
11757 make_cleanup_delete_breakpoint (caller_breakpoint);
11758
11759 set_longjmp_breakpoint (tp, caller_frame_id);
11760 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11761 }
11762
11763 /* set_momentary_breakpoint could invalidate FRAME. */
11764 frame = NULL;
11765
11766 if (anywhere)
11767 /* If the user told us to continue until a specified location,
11768 we don't specify a frame at which we need to stop. */
11769 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11770 null_frame_id, bp_until);
11771 else
11772 /* Otherwise, specify the selected frame, because we want to stop
11773 only at the very same frame. */
11774 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11775 stack_frame_id, bp_until);
11776 make_cleanup_delete_breakpoint (location_breakpoint);
11777
11778 sm = new_until_break_fsm (tp->global_num,
11779 location_breakpoint, caller_breakpoint);
11780 tp->thread_fsm = &sm->thread_fsm;
11781
11782 discard_cleanups (old_chain);
11783
11784 proceed (-1, GDB_SIGNAL_DEFAULT);
11785
11786 do_cleanups (cleanup);
11787 }
11788
11789 /* This function attempts to parse an optional "if <cond>" clause
11790 from the arg string. If one is not found, it returns NULL.
11791
11792 Else, it returns a pointer to the condition string. (It does not
11793 attempt to evaluate the string against a particular block.) And,
11794 it updates arg to point to the first character following the parsed
11795 if clause in the arg string. */
11796
11797 char *
11798 ep_parse_optional_if_clause (char **arg)
11799 {
11800 char *cond_string;
11801
11802 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11803 return NULL;
11804
11805 /* Skip the "if" keyword. */
11806 (*arg) += 2;
11807
11808 /* Skip any extra leading whitespace, and record the start of the
11809 condition string. */
11810 *arg = skip_spaces (*arg);
11811 cond_string = *arg;
11812
11813 /* Assume that the condition occupies the remainder of the arg
11814 string. */
11815 (*arg) += strlen (cond_string);
11816
11817 return cond_string;
11818 }
11819
11820 /* Commands to deal with catching events, such as signals, exceptions,
11821 process start/exit, etc. */
11822
11823 typedef enum
11824 {
11825 catch_fork_temporary, catch_vfork_temporary,
11826 catch_fork_permanent, catch_vfork_permanent
11827 }
11828 catch_fork_kind;
11829
11830 static void
11831 catch_fork_command_1 (char *arg, int from_tty,
11832 struct cmd_list_element *command)
11833 {
11834 struct gdbarch *gdbarch = get_current_arch ();
11835 char *cond_string = NULL;
11836 catch_fork_kind fork_kind;
11837 int tempflag;
11838
11839 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11840 tempflag = (fork_kind == catch_fork_temporary
11841 || fork_kind == catch_vfork_temporary);
11842
11843 if (!arg)
11844 arg = "";
11845 arg = skip_spaces (arg);
11846
11847 /* The allowed syntax is:
11848 catch [v]fork
11849 catch [v]fork if <cond>
11850
11851 First, check if there's an if clause. */
11852 cond_string = ep_parse_optional_if_clause (&arg);
11853
11854 if ((*arg != '\0') && !isspace (*arg))
11855 error (_("Junk at end of arguments."));
11856
11857 /* If this target supports it, create a fork or vfork catchpoint
11858 and enable reporting of such events. */
11859 switch (fork_kind)
11860 {
11861 case catch_fork_temporary:
11862 case catch_fork_permanent:
11863 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11864 &catch_fork_breakpoint_ops);
11865 break;
11866 case catch_vfork_temporary:
11867 case catch_vfork_permanent:
11868 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11869 &catch_vfork_breakpoint_ops);
11870 break;
11871 default:
11872 error (_("unsupported or unknown fork kind; cannot catch it"));
11873 break;
11874 }
11875 }
11876
11877 static void
11878 catch_exec_command_1 (char *arg, int from_tty,
11879 struct cmd_list_element *command)
11880 {
11881 struct exec_catchpoint *c;
11882 struct gdbarch *gdbarch = get_current_arch ();
11883 int tempflag;
11884 char *cond_string = NULL;
11885
11886 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11887
11888 if (!arg)
11889 arg = "";
11890 arg = skip_spaces (arg);
11891
11892 /* The allowed syntax is:
11893 catch exec
11894 catch exec if <cond>
11895
11896 First, check if there's an if clause. */
11897 cond_string = ep_parse_optional_if_clause (&arg);
11898
11899 if ((*arg != '\0') && !isspace (*arg))
11900 error (_("Junk at end of arguments."));
11901
11902 c = XNEW (struct exec_catchpoint);
11903 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11904 &catch_exec_breakpoint_ops);
11905 c->exec_pathname = NULL;
11906
11907 install_breakpoint (0, &c->base, 1);
11908 }
11909
11910 void
11911 init_ada_exception_breakpoint (struct breakpoint *b,
11912 struct gdbarch *gdbarch,
11913 struct symtab_and_line sal,
11914 char *addr_string,
11915 const struct breakpoint_ops *ops,
11916 int tempflag,
11917 int enabled,
11918 int from_tty)
11919 {
11920 if (from_tty)
11921 {
11922 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11923 if (!loc_gdbarch)
11924 loc_gdbarch = gdbarch;
11925
11926 describe_other_breakpoints (loc_gdbarch,
11927 sal.pspace, sal.pc, sal.section, -1);
11928 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11929 version for exception catchpoints, because two catchpoints
11930 used for different exception names will use the same address.
11931 In this case, a "breakpoint ... also set at..." warning is
11932 unproductive. Besides, the warning phrasing is also a bit
11933 inappropriate, we should use the word catchpoint, and tell
11934 the user what type of catchpoint it is. The above is good
11935 enough for now, though. */
11936 }
11937
11938 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11939
11940 b->enable_state = enabled ? bp_enabled : bp_disabled;
11941 b->disposition = tempflag ? disp_del : disp_donttouch;
11942 b->location = string_to_event_location (&addr_string,
11943 language_def (language_ada));
11944 b->language = language_ada;
11945 }
11946
11947 static void
11948 catch_command (char *arg, int from_tty)
11949 {
11950 error (_("Catch requires an event name."));
11951 }
11952 \f
11953
11954 static void
11955 tcatch_command (char *arg, int from_tty)
11956 {
11957 error (_("Catch requires an event name."));
11958 }
11959
11960 /* A qsort comparison function that sorts breakpoints in order. */
11961
11962 static int
11963 compare_breakpoints (const void *a, const void *b)
11964 {
11965 const breakpoint_p *ba = (const breakpoint_p *) a;
11966 uintptr_t ua = (uintptr_t) *ba;
11967 const breakpoint_p *bb = (const breakpoint_p *) b;
11968 uintptr_t ub = (uintptr_t) *bb;
11969
11970 if ((*ba)->number < (*bb)->number)
11971 return -1;
11972 else if ((*ba)->number > (*bb)->number)
11973 return 1;
11974
11975 /* Now sort by address, in case we see, e..g, two breakpoints with
11976 the number 0. */
11977 if (ua < ub)
11978 return -1;
11979 return ua > ub ? 1 : 0;
11980 }
11981
11982 /* Delete breakpoints by address or line. */
11983
11984 static void
11985 clear_command (char *arg, int from_tty)
11986 {
11987 struct breakpoint *b, *prev;
11988 VEC(breakpoint_p) *found = 0;
11989 int ix;
11990 int default_match;
11991 struct symtabs_and_lines sals;
11992 struct symtab_and_line sal;
11993 int i;
11994 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11995
11996 if (arg)
11997 {
11998 sals = decode_line_with_current_source (arg,
11999 (DECODE_LINE_FUNFIRSTLINE
12000 | DECODE_LINE_LIST_MODE));
12001 make_cleanup (xfree, sals.sals);
12002 default_match = 0;
12003 }
12004 else
12005 {
12006 sals.sals = XNEW (struct symtab_and_line);
12007 make_cleanup (xfree, sals.sals);
12008 init_sal (&sal); /* Initialize to zeroes. */
12009
12010 /* Set sal's line, symtab, pc, and pspace to the values
12011 corresponding to the last call to print_frame_info. If the
12012 codepoint is not valid, this will set all the fields to 0. */
12013 get_last_displayed_sal (&sal);
12014 if (sal.symtab == 0)
12015 error (_("No source file specified."));
12016
12017 sals.sals[0] = sal;
12018 sals.nelts = 1;
12019
12020 default_match = 1;
12021 }
12022
12023 /* We don't call resolve_sal_pc here. That's not as bad as it
12024 seems, because all existing breakpoints typically have both
12025 file/line and pc set. So, if clear is given file/line, we can
12026 match this to existing breakpoint without obtaining pc at all.
12027
12028 We only support clearing given the address explicitly
12029 present in breakpoint table. Say, we've set breakpoint
12030 at file:line. There were several PC values for that file:line,
12031 due to optimization, all in one block.
12032
12033 We've picked one PC value. If "clear" is issued with another
12034 PC corresponding to the same file:line, the breakpoint won't
12035 be cleared. We probably can still clear the breakpoint, but
12036 since the other PC value is never presented to user, user
12037 can only find it by guessing, and it does not seem important
12038 to support that. */
12039
12040 /* For each line spec given, delete bps which correspond to it. Do
12041 it in two passes, solely to preserve the current behavior that
12042 from_tty is forced true if we delete more than one
12043 breakpoint. */
12044
12045 found = NULL;
12046 make_cleanup (VEC_cleanup (breakpoint_p), &found);
12047 for (i = 0; i < sals.nelts; i++)
12048 {
12049 const char *sal_fullname;
12050
12051 /* If exact pc given, clear bpts at that pc.
12052 If line given (pc == 0), clear all bpts on specified line.
12053 If defaulting, clear all bpts on default line
12054 or at default pc.
12055
12056 defaulting sal.pc != 0 tests to do
12057
12058 0 1 pc
12059 1 1 pc _and_ line
12060 0 0 line
12061 1 0 <can't happen> */
12062
12063 sal = sals.sals[i];
12064 sal_fullname = (sal.symtab == NULL
12065 ? NULL : symtab_to_fullname (sal.symtab));
12066
12067 /* Find all matching breakpoints and add them to 'found'. */
12068 ALL_BREAKPOINTS (b)
12069 {
12070 int match = 0;
12071 /* Are we going to delete b? */
12072 if (b->type != bp_none && !is_watchpoint (b))
12073 {
12074 struct bp_location *loc = b->loc;
12075 for (; loc; loc = loc->next)
12076 {
12077 /* If the user specified file:line, don't allow a PC
12078 match. This matches historical gdb behavior. */
12079 int pc_match = (!sal.explicit_line
12080 && sal.pc
12081 && (loc->pspace == sal.pspace)
12082 && (loc->address == sal.pc)
12083 && (!section_is_overlay (loc->section)
12084 || loc->section == sal.section));
12085 int line_match = 0;
12086
12087 if ((default_match || sal.explicit_line)
12088 && loc->symtab != NULL
12089 && sal_fullname != NULL
12090 && sal.pspace == loc->pspace
12091 && loc->line_number == sal.line
12092 && filename_cmp (symtab_to_fullname (loc->symtab),
12093 sal_fullname) == 0)
12094 line_match = 1;
12095
12096 if (pc_match || line_match)
12097 {
12098 match = 1;
12099 break;
12100 }
12101 }
12102 }
12103
12104 if (match)
12105 VEC_safe_push(breakpoint_p, found, b);
12106 }
12107 }
12108
12109 /* Now go thru the 'found' chain and delete them. */
12110 if (VEC_empty(breakpoint_p, found))
12111 {
12112 if (arg)
12113 error (_("No breakpoint at %s."), arg);
12114 else
12115 error (_("No breakpoint at this line."));
12116 }
12117
12118 /* Remove duplicates from the vec. */
12119 qsort (VEC_address (breakpoint_p, found),
12120 VEC_length (breakpoint_p, found),
12121 sizeof (breakpoint_p),
12122 compare_breakpoints);
12123 prev = VEC_index (breakpoint_p, found, 0);
12124 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
12125 {
12126 if (b == prev)
12127 {
12128 VEC_ordered_remove (breakpoint_p, found, ix);
12129 --ix;
12130 }
12131 }
12132
12133 if (VEC_length(breakpoint_p, found) > 1)
12134 from_tty = 1; /* Always report if deleted more than one. */
12135 if (from_tty)
12136 {
12137 if (VEC_length(breakpoint_p, found) == 1)
12138 printf_unfiltered (_("Deleted breakpoint "));
12139 else
12140 printf_unfiltered (_("Deleted breakpoints "));
12141 }
12142
12143 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
12144 {
12145 if (from_tty)
12146 printf_unfiltered ("%d ", b->number);
12147 delete_breakpoint (b);
12148 }
12149 if (from_tty)
12150 putchar_unfiltered ('\n');
12151
12152 do_cleanups (cleanups);
12153 }
12154 \f
12155 /* Delete breakpoint in BS if they are `delete' breakpoints and
12156 all breakpoints that are marked for deletion, whether hit or not.
12157 This is called after any breakpoint is hit, or after errors. */
12158
12159 void
12160 breakpoint_auto_delete (bpstat bs)
12161 {
12162 struct breakpoint *b, *b_tmp;
12163
12164 for (; bs; bs = bs->next)
12165 if (bs->breakpoint_at
12166 && bs->breakpoint_at->disposition == disp_del
12167 && bs->stop)
12168 delete_breakpoint (bs->breakpoint_at);
12169
12170 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12171 {
12172 if (b->disposition == disp_del_at_next_stop)
12173 delete_breakpoint (b);
12174 }
12175 }
12176
12177 /* A comparison function for bp_location AP and BP being interfaced to
12178 qsort. Sort elements primarily by their ADDRESS (no matter what
12179 does breakpoint_address_is_meaningful say for its OWNER),
12180 secondarily by ordering first permanent elements and
12181 terciarily just ensuring the array is sorted stable way despite
12182 qsort being an unstable algorithm. */
12183
12184 static int
12185 bp_location_compare (const void *ap, const void *bp)
12186 {
12187 const struct bp_location *a = *(const struct bp_location **) ap;
12188 const struct bp_location *b = *(const struct bp_location **) bp;
12189
12190 if (a->address != b->address)
12191 return (a->address > b->address) - (a->address < b->address);
12192
12193 /* Sort locations at the same address by their pspace number, keeping
12194 locations of the same inferior (in a multi-inferior environment)
12195 grouped. */
12196
12197 if (a->pspace->num != b->pspace->num)
12198 return ((a->pspace->num > b->pspace->num)
12199 - (a->pspace->num < b->pspace->num));
12200
12201 /* Sort permanent breakpoints first. */
12202 if (a->permanent != b->permanent)
12203 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
12204
12205 /* Make the internal GDB representation stable across GDB runs
12206 where A and B memory inside GDB can differ. Breakpoint locations of
12207 the same type at the same address can be sorted in arbitrary order. */
12208
12209 if (a->owner->number != b->owner->number)
12210 return ((a->owner->number > b->owner->number)
12211 - (a->owner->number < b->owner->number));
12212
12213 return (a > b) - (a < b);
12214 }
12215
12216 /* Set bp_location_placed_address_before_address_max and
12217 bp_location_shadow_len_after_address_max according to the current
12218 content of the bp_location array. */
12219
12220 static void
12221 bp_location_target_extensions_update (void)
12222 {
12223 struct bp_location *bl, **blp_tmp;
12224
12225 bp_location_placed_address_before_address_max = 0;
12226 bp_location_shadow_len_after_address_max = 0;
12227
12228 ALL_BP_LOCATIONS (bl, blp_tmp)
12229 {
12230 CORE_ADDR start, end, addr;
12231
12232 if (!bp_location_has_shadow (bl))
12233 continue;
12234
12235 start = bl->target_info.placed_address;
12236 end = start + bl->target_info.shadow_len;
12237
12238 gdb_assert (bl->address >= start);
12239 addr = bl->address - start;
12240 if (addr > bp_location_placed_address_before_address_max)
12241 bp_location_placed_address_before_address_max = addr;
12242
12243 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12244
12245 gdb_assert (bl->address < end);
12246 addr = end - bl->address;
12247 if (addr > bp_location_shadow_len_after_address_max)
12248 bp_location_shadow_len_after_address_max = addr;
12249 }
12250 }
12251
12252 /* Download tracepoint locations if they haven't been. */
12253
12254 static void
12255 download_tracepoint_locations (void)
12256 {
12257 struct breakpoint *b;
12258 struct cleanup *old_chain;
12259 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
12260
12261 old_chain = save_current_space_and_thread ();
12262
12263 ALL_TRACEPOINTS (b)
12264 {
12265 struct bp_location *bl;
12266 struct tracepoint *t;
12267 int bp_location_downloaded = 0;
12268
12269 if ((b->type == bp_fast_tracepoint
12270 ? !may_insert_fast_tracepoints
12271 : !may_insert_tracepoints))
12272 continue;
12273
12274 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
12275 {
12276 if (target_can_download_tracepoint ())
12277 can_download_tracepoint = TRIBOOL_TRUE;
12278 else
12279 can_download_tracepoint = TRIBOOL_FALSE;
12280 }
12281
12282 if (can_download_tracepoint == TRIBOOL_FALSE)
12283 break;
12284
12285 for (bl = b->loc; bl; bl = bl->next)
12286 {
12287 /* In tracepoint, locations are _never_ duplicated, so
12288 should_be_inserted is equivalent to
12289 unduplicated_should_be_inserted. */
12290 if (!should_be_inserted (bl) || bl->inserted)
12291 continue;
12292
12293 switch_to_program_space_and_thread (bl->pspace);
12294
12295 target_download_tracepoint (bl);
12296
12297 bl->inserted = 1;
12298 bp_location_downloaded = 1;
12299 }
12300 t = (struct tracepoint *) b;
12301 t->number_on_target = b->number;
12302 if (bp_location_downloaded)
12303 observer_notify_breakpoint_modified (b);
12304 }
12305
12306 do_cleanups (old_chain);
12307 }
12308
12309 /* Swap the insertion/duplication state between two locations. */
12310
12311 static void
12312 swap_insertion (struct bp_location *left, struct bp_location *right)
12313 {
12314 const int left_inserted = left->inserted;
12315 const int left_duplicate = left->duplicate;
12316 const int left_needs_update = left->needs_update;
12317 const struct bp_target_info left_target_info = left->target_info;
12318
12319 /* Locations of tracepoints can never be duplicated. */
12320 if (is_tracepoint (left->owner))
12321 gdb_assert (!left->duplicate);
12322 if (is_tracepoint (right->owner))
12323 gdb_assert (!right->duplicate);
12324
12325 left->inserted = right->inserted;
12326 left->duplicate = right->duplicate;
12327 left->needs_update = right->needs_update;
12328 left->target_info = right->target_info;
12329 right->inserted = left_inserted;
12330 right->duplicate = left_duplicate;
12331 right->needs_update = left_needs_update;
12332 right->target_info = left_target_info;
12333 }
12334
12335 /* Force the re-insertion of the locations at ADDRESS. This is called
12336 once a new/deleted/modified duplicate location is found and we are evaluating
12337 conditions on the target's side. Such conditions need to be updated on
12338 the target. */
12339
12340 static void
12341 force_breakpoint_reinsertion (struct bp_location *bl)
12342 {
12343 struct bp_location **locp = NULL, **loc2p;
12344 struct bp_location *loc;
12345 CORE_ADDR address = 0;
12346 int pspace_num;
12347
12348 address = bl->address;
12349 pspace_num = bl->pspace->num;
12350
12351 /* This is only meaningful if the target is
12352 evaluating conditions and if the user has
12353 opted for condition evaluation on the target's
12354 side. */
12355 if (gdb_evaluates_breakpoint_condition_p ()
12356 || !target_supports_evaluation_of_breakpoint_conditions ())
12357 return;
12358
12359 /* Flag all breakpoint locations with this address and
12360 the same program space as the location
12361 as "its condition has changed". We need to
12362 update the conditions on the target's side. */
12363 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12364 {
12365 loc = *loc2p;
12366
12367 if (!is_breakpoint (loc->owner)
12368 || pspace_num != loc->pspace->num)
12369 continue;
12370
12371 /* Flag the location appropriately. We use a different state to
12372 let everyone know that we already updated the set of locations
12373 with addr bl->address and program space bl->pspace. This is so
12374 we don't have to keep calling these functions just to mark locations
12375 that have already been marked. */
12376 loc->condition_changed = condition_updated;
12377
12378 /* Free the agent expression bytecode as well. We will compute
12379 it later on. */
12380 if (loc->cond_bytecode)
12381 {
12382 free_agent_expr (loc->cond_bytecode);
12383 loc->cond_bytecode = NULL;
12384 }
12385 }
12386 }
12387 /* Called whether new breakpoints are created, or existing breakpoints
12388 deleted, to update the global location list and recompute which
12389 locations are duplicate of which.
12390
12391 The INSERT_MODE flag determines whether locations may not, may, or
12392 shall be inserted now. See 'enum ugll_insert_mode' for more
12393 info. */
12394
12395 static void
12396 update_global_location_list (enum ugll_insert_mode insert_mode)
12397 {
12398 struct breakpoint *b;
12399 struct bp_location **locp, *loc;
12400 struct cleanup *cleanups;
12401 /* Last breakpoint location address that was marked for update. */
12402 CORE_ADDR last_addr = 0;
12403 /* Last breakpoint location program space that was marked for update. */
12404 int last_pspace_num = -1;
12405
12406 /* Used in the duplicates detection below. When iterating over all
12407 bp_locations, points to the first bp_location of a given address.
12408 Breakpoints and watchpoints of different types are never
12409 duplicates of each other. Keep one pointer for each type of
12410 breakpoint/watchpoint, so we only need to loop over all locations
12411 once. */
12412 struct bp_location *bp_loc_first; /* breakpoint */
12413 struct bp_location *wp_loc_first; /* hardware watchpoint */
12414 struct bp_location *awp_loc_first; /* access watchpoint */
12415 struct bp_location *rwp_loc_first; /* read watchpoint */
12416
12417 /* Saved former bp_location array which we compare against the newly
12418 built bp_location from the current state of ALL_BREAKPOINTS. */
12419 struct bp_location **old_location, **old_locp;
12420 unsigned old_location_count;
12421
12422 old_location = bp_location;
12423 old_location_count = bp_location_count;
12424 bp_location = NULL;
12425 bp_location_count = 0;
12426 cleanups = make_cleanup (xfree, old_location);
12427
12428 ALL_BREAKPOINTS (b)
12429 for (loc = b->loc; loc; loc = loc->next)
12430 bp_location_count++;
12431
12432 bp_location = XNEWVEC (struct bp_location *, bp_location_count);
12433 locp = bp_location;
12434 ALL_BREAKPOINTS (b)
12435 for (loc = b->loc; loc; loc = loc->next)
12436 *locp++ = loc;
12437 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12438 bp_location_compare);
12439
12440 bp_location_target_extensions_update ();
12441
12442 /* Identify bp_location instances that are no longer present in the
12443 new list, and therefore should be freed. Note that it's not
12444 necessary that those locations should be removed from inferior --
12445 if there's another location at the same address (previously
12446 marked as duplicate), we don't need to remove/insert the
12447 location.
12448
12449 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12450 and former bp_location array state respectively. */
12451
12452 locp = bp_location;
12453 for (old_locp = old_location; old_locp < old_location + old_location_count;
12454 old_locp++)
12455 {
12456 struct bp_location *old_loc = *old_locp;
12457 struct bp_location **loc2p;
12458
12459 /* Tells if 'old_loc' is found among the new locations. If
12460 not, we have to free it. */
12461 int found_object = 0;
12462 /* Tells if the location should remain inserted in the target. */
12463 int keep_in_target = 0;
12464 int removed = 0;
12465
12466 /* Skip LOCP entries which will definitely never be needed.
12467 Stop either at or being the one matching OLD_LOC. */
12468 while (locp < bp_location + bp_location_count
12469 && (*locp)->address < old_loc->address)
12470 locp++;
12471
12472 for (loc2p = locp;
12473 (loc2p < bp_location + bp_location_count
12474 && (*loc2p)->address == old_loc->address);
12475 loc2p++)
12476 {
12477 /* Check if this is a new/duplicated location or a duplicated
12478 location that had its condition modified. If so, we want to send
12479 its condition to the target if evaluation of conditions is taking
12480 place there. */
12481 if ((*loc2p)->condition_changed == condition_modified
12482 && (last_addr != old_loc->address
12483 || last_pspace_num != old_loc->pspace->num))
12484 {
12485 force_breakpoint_reinsertion (*loc2p);
12486 last_pspace_num = old_loc->pspace->num;
12487 }
12488
12489 if (*loc2p == old_loc)
12490 found_object = 1;
12491 }
12492
12493 /* We have already handled this address, update it so that we don't
12494 have to go through updates again. */
12495 last_addr = old_loc->address;
12496
12497 /* Target-side condition evaluation: Handle deleted locations. */
12498 if (!found_object)
12499 force_breakpoint_reinsertion (old_loc);
12500
12501 /* If this location is no longer present, and inserted, look if
12502 there's maybe a new location at the same address. If so,
12503 mark that one inserted, and don't remove this one. This is
12504 needed so that we don't have a time window where a breakpoint
12505 at certain location is not inserted. */
12506
12507 if (old_loc->inserted)
12508 {
12509 /* If the location is inserted now, we might have to remove
12510 it. */
12511
12512 if (found_object && should_be_inserted (old_loc))
12513 {
12514 /* The location is still present in the location list,
12515 and still should be inserted. Don't do anything. */
12516 keep_in_target = 1;
12517 }
12518 else
12519 {
12520 /* This location still exists, but it won't be kept in the
12521 target since it may have been disabled. We proceed to
12522 remove its target-side condition. */
12523
12524 /* The location is either no longer present, or got
12525 disabled. See if there's another location at the
12526 same address, in which case we don't need to remove
12527 this one from the target. */
12528
12529 /* OLD_LOC comes from existing struct breakpoint. */
12530 if (breakpoint_address_is_meaningful (old_loc->owner))
12531 {
12532 for (loc2p = locp;
12533 (loc2p < bp_location + bp_location_count
12534 && (*loc2p)->address == old_loc->address);
12535 loc2p++)
12536 {
12537 struct bp_location *loc2 = *loc2p;
12538
12539 if (breakpoint_locations_match (loc2, old_loc))
12540 {
12541 /* Read watchpoint locations are switched to
12542 access watchpoints, if the former are not
12543 supported, but the latter are. */
12544 if (is_hardware_watchpoint (old_loc->owner))
12545 {
12546 gdb_assert (is_hardware_watchpoint (loc2->owner));
12547 loc2->watchpoint_type = old_loc->watchpoint_type;
12548 }
12549
12550 /* loc2 is a duplicated location. We need to check
12551 if it should be inserted in case it will be
12552 unduplicated. */
12553 if (loc2 != old_loc
12554 && unduplicated_should_be_inserted (loc2))
12555 {
12556 swap_insertion (old_loc, loc2);
12557 keep_in_target = 1;
12558 break;
12559 }
12560 }
12561 }
12562 }
12563 }
12564
12565 if (!keep_in_target)
12566 {
12567 if (remove_breakpoint (old_loc, mark_uninserted))
12568 {
12569 /* This is just about all we can do. We could keep
12570 this location on the global list, and try to
12571 remove it next time, but there's no particular
12572 reason why we will succeed next time.
12573
12574 Note that at this point, old_loc->owner is still
12575 valid, as delete_breakpoint frees the breakpoint
12576 only after calling us. */
12577 printf_filtered (_("warning: Error removing "
12578 "breakpoint %d\n"),
12579 old_loc->owner->number);
12580 }
12581 removed = 1;
12582 }
12583 }
12584
12585 if (!found_object)
12586 {
12587 if (removed && target_is_non_stop_p ()
12588 && need_moribund_for_location_type (old_loc))
12589 {
12590 /* This location was removed from the target. In
12591 non-stop mode, a race condition is possible where
12592 we've removed a breakpoint, but stop events for that
12593 breakpoint are already queued and will arrive later.
12594 We apply an heuristic to be able to distinguish such
12595 SIGTRAPs from other random SIGTRAPs: we keep this
12596 breakpoint location for a bit, and will retire it
12597 after we see some number of events. The theory here
12598 is that reporting of events should, "on the average",
12599 be fair, so after a while we'll see events from all
12600 threads that have anything of interest, and no longer
12601 need to keep this breakpoint location around. We
12602 don't hold locations forever so to reduce chances of
12603 mistaking a non-breakpoint SIGTRAP for a breakpoint
12604 SIGTRAP.
12605
12606 The heuristic failing can be disastrous on
12607 decr_pc_after_break targets.
12608
12609 On decr_pc_after_break targets, like e.g., x86-linux,
12610 if we fail to recognize a late breakpoint SIGTRAP,
12611 because events_till_retirement has reached 0 too
12612 soon, we'll fail to do the PC adjustment, and report
12613 a random SIGTRAP to the user. When the user resumes
12614 the inferior, it will most likely immediately crash
12615 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12616 corrupted, because of being resumed e.g., in the
12617 middle of a multi-byte instruction, or skipped a
12618 one-byte instruction. This was actually seen happen
12619 on native x86-linux, and should be less rare on
12620 targets that do not support new thread events, like
12621 remote, due to the heuristic depending on
12622 thread_count.
12623
12624 Mistaking a random SIGTRAP for a breakpoint trap
12625 causes similar symptoms (PC adjustment applied when
12626 it shouldn't), but then again, playing with SIGTRAPs
12627 behind the debugger's back is asking for trouble.
12628
12629 Since hardware watchpoint traps are always
12630 distinguishable from other traps, so we don't need to
12631 apply keep hardware watchpoint moribund locations
12632 around. We simply always ignore hardware watchpoint
12633 traps we can no longer explain. */
12634
12635 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12636 old_loc->owner = NULL;
12637
12638 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12639 }
12640 else
12641 {
12642 old_loc->owner = NULL;
12643 decref_bp_location (&old_loc);
12644 }
12645 }
12646 }
12647
12648 /* Rescan breakpoints at the same address and section, marking the
12649 first one as "first" and any others as "duplicates". This is so
12650 that the bpt instruction is only inserted once. If we have a
12651 permanent breakpoint at the same place as BPT, make that one the
12652 official one, and the rest as duplicates. Permanent breakpoints
12653 are sorted first for the same address.
12654
12655 Do the same for hardware watchpoints, but also considering the
12656 watchpoint's type (regular/access/read) and length. */
12657
12658 bp_loc_first = NULL;
12659 wp_loc_first = NULL;
12660 awp_loc_first = NULL;
12661 rwp_loc_first = NULL;
12662 ALL_BP_LOCATIONS (loc, locp)
12663 {
12664 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12665 non-NULL. */
12666 struct bp_location **loc_first_p;
12667 b = loc->owner;
12668
12669 if (!unduplicated_should_be_inserted (loc)
12670 || !breakpoint_address_is_meaningful (b)
12671 /* Don't detect duplicate for tracepoint locations because they are
12672 never duplicated. See the comments in field `duplicate' of
12673 `struct bp_location'. */
12674 || is_tracepoint (b))
12675 {
12676 /* Clear the condition modification flag. */
12677 loc->condition_changed = condition_unchanged;
12678 continue;
12679 }
12680
12681 if (b->type == bp_hardware_watchpoint)
12682 loc_first_p = &wp_loc_first;
12683 else if (b->type == bp_read_watchpoint)
12684 loc_first_p = &rwp_loc_first;
12685 else if (b->type == bp_access_watchpoint)
12686 loc_first_p = &awp_loc_first;
12687 else
12688 loc_first_p = &bp_loc_first;
12689
12690 if (*loc_first_p == NULL
12691 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12692 || !breakpoint_locations_match (loc, *loc_first_p))
12693 {
12694 *loc_first_p = loc;
12695 loc->duplicate = 0;
12696
12697 if (is_breakpoint (loc->owner) && loc->condition_changed)
12698 {
12699 loc->needs_update = 1;
12700 /* Clear the condition modification flag. */
12701 loc->condition_changed = condition_unchanged;
12702 }
12703 continue;
12704 }
12705
12706
12707 /* This and the above ensure the invariant that the first location
12708 is not duplicated, and is the inserted one.
12709 All following are marked as duplicated, and are not inserted. */
12710 if (loc->inserted)
12711 swap_insertion (loc, *loc_first_p);
12712 loc->duplicate = 1;
12713
12714 /* Clear the condition modification flag. */
12715 loc->condition_changed = condition_unchanged;
12716 }
12717
12718 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12719 {
12720 if (insert_mode != UGLL_DONT_INSERT)
12721 insert_breakpoint_locations ();
12722 else
12723 {
12724 /* Even though the caller told us to not insert new
12725 locations, we may still need to update conditions on the
12726 target's side of breakpoints that were already inserted
12727 if the target is evaluating breakpoint conditions. We
12728 only update conditions for locations that are marked
12729 "needs_update". */
12730 update_inserted_breakpoint_locations ();
12731 }
12732 }
12733
12734 if (insert_mode != UGLL_DONT_INSERT)
12735 download_tracepoint_locations ();
12736
12737 do_cleanups (cleanups);
12738 }
12739
12740 void
12741 breakpoint_retire_moribund (void)
12742 {
12743 struct bp_location *loc;
12744 int ix;
12745
12746 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12747 if (--(loc->events_till_retirement) == 0)
12748 {
12749 decref_bp_location (&loc);
12750 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12751 --ix;
12752 }
12753 }
12754
12755 static void
12756 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12757 {
12758
12759 TRY
12760 {
12761 update_global_location_list (insert_mode);
12762 }
12763 CATCH (e, RETURN_MASK_ERROR)
12764 {
12765 }
12766 END_CATCH
12767 }
12768
12769 /* Clear BKP from a BPS. */
12770
12771 static void
12772 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12773 {
12774 bpstat bs;
12775
12776 for (bs = bps; bs; bs = bs->next)
12777 if (bs->breakpoint_at == bpt)
12778 {
12779 bs->breakpoint_at = NULL;
12780 bs->old_val = NULL;
12781 /* bs->commands will be freed later. */
12782 }
12783 }
12784
12785 /* Callback for iterate_over_threads. */
12786 static int
12787 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12788 {
12789 struct breakpoint *bpt = (struct breakpoint *) data;
12790
12791 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12792 return 0;
12793 }
12794
12795 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12796 callbacks. */
12797
12798 static void
12799 say_where (struct breakpoint *b)
12800 {
12801 struct value_print_options opts;
12802
12803 get_user_print_options (&opts);
12804
12805 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12806 single string. */
12807 if (b->loc == NULL)
12808 {
12809 /* For pending locations, the output differs slightly based
12810 on b->extra_string. If this is non-NULL, it contains either
12811 a condition or dprintf arguments. */
12812 if (b->extra_string == NULL)
12813 {
12814 printf_filtered (_(" (%s) pending."),
12815 event_location_to_string (b->location));
12816 }
12817 else if (b->type == bp_dprintf)
12818 {
12819 printf_filtered (_(" (%s,%s) pending."),
12820 event_location_to_string (b->location),
12821 b->extra_string);
12822 }
12823 else
12824 {
12825 printf_filtered (_(" (%s %s) pending."),
12826 event_location_to_string (b->location),
12827 b->extra_string);
12828 }
12829 }
12830 else
12831 {
12832 if (opts.addressprint || b->loc->symtab == NULL)
12833 {
12834 printf_filtered (" at ");
12835 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12836 gdb_stdout);
12837 }
12838 if (b->loc->symtab != NULL)
12839 {
12840 /* If there is a single location, we can print the location
12841 more nicely. */
12842 if (b->loc->next == NULL)
12843 printf_filtered (": file %s, line %d.",
12844 symtab_to_filename_for_display (b->loc->symtab),
12845 b->loc->line_number);
12846 else
12847 /* This is not ideal, but each location may have a
12848 different file name, and this at least reflects the
12849 real situation somewhat. */
12850 printf_filtered (": %s.",
12851 event_location_to_string (b->location));
12852 }
12853
12854 if (b->loc->next)
12855 {
12856 struct bp_location *loc = b->loc;
12857 int n = 0;
12858 for (; loc; loc = loc->next)
12859 ++n;
12860 printf_filtered (" (%d locations)", n);
12861 }
12862 }
12863 }
12864
12865 /* Default bp_location_ops methods. */
12866
12867 static void
12868 bp_location_dtor (struct bp_location *self)
12869 {
12870 xfree (self->cond);
12871 if (self->cond_bytecode)
12872 free_agent_expr (self->cond_bytecode);
12873 xfree (self->function_name);
12874
12875 VEC_free (agent_expr_p, self->target_info.conditions);
12876 VEC_free (agent_expr_p, self->target_info.tcommands);
12877 }
12878
12879 static const struct bp_location_ops bp_location_ops =
12880 {
12881 bp_location_dtor
12882 };
12883
12884 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12885 inherit from. */
12886
12887 static void
12888 base_breakpoint_dtor (struct breakpoint *self)
12889 {
12890 decref_counted_command_line (&self->commands);
12891 xfree (self->cond_string);
12892 xfree (self->extra_string);
12893 xfree (self->filter);
12894 delete_event_location (self->location);
12895 delete_event_location (self->location_range_end);
12896 }
12897
12898 static struct bp_location *
12899 base_breakpoint_allocate_location (struct breakpoint *self)
12900 {
12901 struct bp_location *loc;
12902
12903 loc = XNEW (struct bp_location);
12904 init_bp_location (loc, &bp_location_ops, self);
12905 return loc;
12906 }
12907
12908 static void
12909 base_breakpoint_re_set (struct breakpoint *b)
12910 {
12911 /* Nothing to re-set. */
12912 }
12913
12914 #define internal_error_pure_virtual_called() \
12915 gdb_assert_not_reached ("pure virtual function called")
12916
12917 static int
12918 base_breakpoint_insert_location (struct bp_location *bl)
12919 {
12920 internal_error_pure_virtual_called ();
12921 }
12922
12923 static int
12924 base_breakpoint_remove_location (struct bp_location *bl)
12925 {
12926 internal_error_pure_virtual_called ();
12927 }
12928
12929 static int
12930 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12931 struct address_space *aspace,
12932 CORE_ADDR bp_addr,
12933 const struct target_waitstatus *ws)
12934 {
12935 internal_error_pure_virtual_called ();
12936 }
12937
12938 static void
12939 base_breakpoint_check_status (bpstat bs)
12940 {
12941 /* Always stop. */
12942 }
12943
12944 /* A "works_in_software_mode" breakpoint_ops method that just internal
12945 errors. */
12946
12947 static int
12948 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12949 {
12950 internal_error_pure_virtual_called ();
12951 }
12952
12953 /* A "resources_needed" breakpoint_ops method that just internal
12954 errors. */
12955
12956 static int
12957 base_breakpoint_resources_needed (const struct bp_location *bl)
12958 {
12959 internal_error_pure_virtual_called ();
12960 }
12961
12962 static enum print_stop_action
12963 base_breakpoint_print_it (bpstat bs)
12964 {
12965 internal_error_pure_virtual_called ();
12966 }
12967
12968 static void
12969 base_breakpoint_print_one_detail (const struct breakpoint *self,
12970 struct ui_out *uiout)
12971 {
12972 /* nothing */
12973 }
12974
12975 static void
12976 base_breakpoint_print_mention (struct breakpoint *b)
12977 {
12978 internal_error_pure_virtual_called ();
12979 }
12980
12981 static void
12982 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12983 {
12984 internal_error_pure_virtual_called ();
12985 }
12986
12987 static void
12988 base_breakpoint_create_sals_from_location
12989 (const struct event_location *location,
12990 struct linespec_result *canonical,
12991 enum bptype type_wanted)
12992 {
12993 internal_error_pure_virtual_called ();
12994 }
12995
12996 static void
12997 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12998 struct linespec_result *c,
12999 char *cond_string,
13000 char *extra_string,
13001 enum bptype type_wanted,
13002 enum bpdisp disposition,
13003 int thread,
13004 int task, int ignore_count,
13005 const struct breakpoint_ops *o,
13006 int from_tty, int enabled,
13007 int internal, unsigned flags)
13008 {
13009 internal_error_pure_virtual_called ();
13010 }
13011
13012 static void
13013 base_breakpoint_decode_location (struct breakpoint *b,
13014 const struct event_location *location,
13015 struct program_space *search_pspace,
13016 struct symtabs_and_lines *sals)
13017 {
13018 internal_error_pure_virtual_called ();
13019 }
13020
13021 /* The default 'explains_signal' method. */
13022
13023 static int
13024 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
13025 {
13026 return 1;
13027 }
13028
13029 /* The default "after_condition_true" method. */
13030
13031 static void
13032 base_breakpoint_after_condition_true (struct bpstats *bs)
13033 {
13034 /* Nothing to do. */
13035 }
13036
13037 struct breakpoint_ops base_breakpoint_ops =
13038 {
13039 base_breakpoint_dtor,
13040 base_breakpoint_allocate_location,
13041 base_breakpoint_re_set,
13042 base_breakpoint_insert_location,
13043 base_breakpoint_remove_location,
13044 base_breakpoint_breakpoint_hit,
13045 base_breakpoint_check_status,
13046 base_breakpoint_resources_needed,
13047 base_breakpoint_works_in_software_mode,
13048 base_breakpoint_print_it,
13049 NULL,
13050 base_breakpoint_print_one_detail,
13051 base_breakpoint_print_mention,
13052 base_breakpoint_print_recreate,
13053 base_breakpoint_create_sals_from_location,
13054 base_breakpoint_create_breakpoints_sal,
13055 base_breakpoint_decode_location,
13056 base_breakpoint_explains_signal,
13057 base_breakpoint_after_condition_true,
13058 };
13059
13060 /* Default breakpoint_ops methods. */
13061
13062 static void
13063 bkpt_re_set (struct breakpoint *b)
13064 {
13065 /* FIXME: is this still reachable? */
13066 if (event_location_empty_p (b->location))
13067 {
13068 /* Anything without a location can't be re-set. */
13069 delete_breakpoint (b);
13070 return;
13071 }
13072
13073 breakpoint_re_set_default (b);
13074 }
13075
13076 static int
13077 bkpt_insert_location (struct bp_location *bl)
13078 {
13079 if (bl->loc_type == bp_loc_hardware_breakpoint)
13080 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
13081 else
13082 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
13083 }
13084
13085 static int
13086 bkpt_remove_location (struct bp_location *bl)
13087 {
13088 if (bl->loc_type == bp_loc_hardware_breakpoint)
13089 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
13090 else
13091 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
13092 }
13093
13094 static int
13095 bkpt_breakpoint_hit (const struct bp_location *bl,
13096 struct address_space *aspace, CORE_ADDR bp_addr,
13097 const struct target_waitstatus *ws)
13098 {
13099 if (ws->kind != TARGET_WAITKIND_STOPPED
13100 || ws->value.sig != GDB_SIGNAL_TRAP)
13101 return 0;
13102
13103 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
13104 aspace, bp_addr))
13105 return 0;
13106
13107 if (overlay_debugging /* unmapped overlay section */
13108 && section_is_overlay (bl->section)
13109 && !section_is_mapped (bl->section))
13110 return 0;
13111
13112 return 1;
13113 }
13114
13115 static int
13116 dprintf_breakpoint_hit (const struct bp_location *bl,
13117 struct address_space *aspace, CORE_ADDR bp_addr,
13118 const struct target_waitstatus *ws)
13119 {
13120 if (dprintf_style == dprintf_style_agent
13121 && target_can_run_breakpoint_commands ())
13122 {
13123 /* An agent-style dprintf never causes a stop. If we see a trap
13124 for this address it must be for a breakpoint that happens to
13125 be set at the same address. */
13126 return 0;
13127 }
13128
13129 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
13130 }
13131
13132 static int
13133 bkpt_resources_needed (const struct bp_location *bl)
13134 {
13135 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
13136
13137 return 1;
13138 }
13139
13140 static enum print_stop_action
13141 bkpt_print_it (bpstat bs)
13142 {
13143 struct breakpoint *b;
13144 const struct bp_location *bl;
13145 int bp_temp;
13146 struct ui_out *uiout = current_uiout;
13147
13148 gdb_assert (bs->bp_location_at != NULL);
13149
13150 bl = bs->bp_location_at;
13151 b = bs->breakpoint_at;
13152
13153 bp_temp = b->disposition == disp_del;
13154 if (bl->address != bl->requested_address)
13155 breakpoint_adjustment_warning (bl->requested_address,
13156 bl->address,
13157 b->number, 1);
13158 annotate_breakpoint (b->number);
13159 maybe_print_thread_hit_breakpoint (uiout);
13160
13161 if (bp_temp)
13162 ui_out_text (uiout, "Temporary breakpoint ");
13163 else
13164 ui_out_text (uiout, "Breakpoint ");
13165 if (ui_out_is_mi_like_p (uiout))
13166 {
13167 ui_out_field_string (uiout, "reason",
13168 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
13169 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
13170 }
13171 ui_out_field_int (uiout, "bkptno", b->number);
13172 ui_out_text (uiout, ", ");
13173
13174 return PRINT_SRC_AND_LOC;
13175 }
13176
13177 static void
13178 bkpt_print_mention (struct breakpoint *b)
13179 {
13180 if (ui_out_is_mi_like_p (current_uiout))
13181 return;
13182
13183 switch (b->type)
13184 {
13185 case bp_breakpoint:
13186 case bp_gnu_ifunc_resolver:
13187 if (b->disposition == disp_del)
13188 printf_filtered (_("Temporary breakpoint"));
13189 else
13190 printf_filtered (_("Breakpoint"));
13191 printf_filtered (_(" %d"), b->number);
13192 if (b->type == bp_gnu_ifunc_resolver)
13193 printf_filtered (_(" at gnu-indirect-function resolver"));
13194 break;
13195 case bp_hardware_breakpoint:
13196 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13197 break;
13198 case bp_dprintf:
13199 printf_filtered (_("Dprintf %d"), b->number);
13200 break;
13201 }
13202
13203 say_where (b);
13204 }
13205
13206 static void
13207 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13208 {
13209 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13210 fprintf_unfiltered (fp, "tbreak");
13211 else if (tp->type == bp_breakpoint)
13212 fprintf_unfiltered (fp, "break");
13213 else if (tp->type == bp_hardware_breakpoint
13214 && tp->disposition == disp_del)
13215 fprintf_unfiltered (fp, "thbreak");
13216 else if (tp->type == bp_hardware_breakpoint)
13217 fprintf_unfiltered (fp, "hbreak");
13218 else
13219 internal_error (__FILE__, __LINE__,
13220 _("unhandled breakpoint type %d"), (int) tp->type);
13221
13222 fprintf_unfiltered (fp, " %s",
13223 event_location_to_string (tp->location));
13224
13225 /* Print out extra_string if this breakpoint is pending. It might
13226 contain, for example, conditions that were set by the user. */
13227 if (tp->loc == NULL && tp->extra_string != NULL)
13228 fprintf_unfiltered (fp, " %s", tp->extra_string);
13229
13230 print_recreate_thread (tp, fp);
13231 }
13232
13233 static void
13234 bkpt_create_sals_from_location (const struct event_location *location,
13235 struct linespec_result *canonical,
13236 enum bptype type_wanted)
13237 {
13238 create_sals_from_location_default (location, canonical, type_wanted);
13239 }
13240
13241 static void
13242 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13243 struct linespec_result *canonical,
13244 char *cond_string,
13245 char *extra_string,
13246 enum bptype type_wanted,
13247 enum bpdisp disposition,
13248 int thread,
13249 int task, int ignore_count,
13250 const struct breakpoint_ops *ops,
13251 int from_tty, int enabled,
13252 int internal, unsigned flags)
13253 {
13254 create_breakpoints_sal_default (gdbarch, canonical,
13255 cond_string, extra_string,
13256 type_wanted,
13257 disposition, thread, task,
13258 ignore_count, ops, from_tty,
13259 enabled, internal, flags);
13260 }
13261
13262 static void
13263 bkpt_decode_location (struct breakpoint *b,
13264 const struct event_location *location,
13265 struct program_space *search_pspace,
13266 struct symtabs_and_lines *sals)
13267 {
13268 decode_location_default (b, location, search_pspace, sals);
13269 }
13270
13271 /* Virtual table for internal breakpoints. */
13272
13273 static void
13274 internal_bkpt_re_set (struct breakpoint *b)
13275 {
13276 switch (b->type)
13277 {
13278 /* Delete overlay event and longjmp master breakpoints; they
13279 will be reset later by breakpoint_re_set. */
13280 case bp_overlay_event:
13281 case bp_longjmp_master:
13282 case bp_std_terminate_master:
13283 case bp_exception_master:
13284 delete_breakpoint (b);
13285 break;
13286
13287 /* This breakpoint is special, it's set up when the inferior
13288 starts and we really don't want to touch it. */
13289 case bp_shlib_event:
13290
13291 /* Like bp_shlib_event, this breakpoint type is special. Once
13292 it is set up, we do not want to touch it. */
13293 case bp_thread_event:
13294 break;
13295 }
13296 }
13297
13298 static void
13299 internal_bkpt_check_status (bpstat bs)
13300 {
13301 if (bs->breakpoint_at->type == bp_shlib_event)
13302 {
13303 /* If requested, stop when the dynamic linker notifies GDB of
13304 events. This allows the user to get control and place
13305 breakpoints in initializer routines for dynamically loaded
13306 objects (among other things). */
13307 bs->stop = stop_on_solib_events;
13308 bs->print = stop_on_solib_events;
13309 }
13310 else
13311 bs->stop = 0;
13312 }
13313
13314 static enum print_stop_action
13315 internal_bkpt_print_it (bpstat bs)
13316 {
13317 struct breakpoint *b;
13318
13319 b = bs->breakpoint_at;
13320
13321 switch (b->type)
13322 {
13323 case bp_shlib_event:
13324 /* Did we stop because the user set the stop_on_solib_events
13325 variable? (If so, we report this as a generic, "Stopped due
13326 to shlib event" message.) */
13327 print_solib_event (0);
13328 break;
13329
13330 case bp_thread_event:
13331 /* Not sure how we will get here.
13332 GDB should not stop for these breakpoints. */
13333 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13334 break;
13335
13336 case bp_overlay_event:
13337 /* By analogy with the thread event, GDB should not stop for these. */
13338 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13339 break;
13340
13341 case bp_longjmp_master:
13342 /* These should never be enabled. */
13343 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13344 break;
13345
13346 case bp_std_terminate_master:
13347 /* These should never be enabled. */
13348 printf_filtered (_("std::terminate Master Breakpoint: "
13349 "gdb should not stop!\n"));
13350 break;
13351
13352 case bp_exception_master:
13353 /* These should never be enabled. */
13354 printf_filtered (_("Exception Master Breakpoint: "
13355 "gdb should not stop!\n"));
13356 break;
13357 }
13358
13359 return PRINT_NOTHING;
13360 }
13361
13362 static void
13363 internal_bkpt_print_mention (struct breakpoint *b)
13364 {
13365 /* Nothing to mention. These breakpoints are internal. */
13366 }
13367
13368 /* Virtual table for momentary breakpoints */
13369
13370 static void
13371 momentary_bkpt_re_set (struct breakpoint *b)
13372 {
13373 /* Keep temporary breakpoints, which can be encountered when we step
13374 over a dlopen call and solib_add is resetting the breakpoints.
13375 Otherwise these should have been blown away via the cleanup chain
13376 or by breakpoint_init_inferior when we rerun the executable. */
13377 }
13378
13379 static void
13380 momentary_bkpt_check_status (bpstat bs)
13381 {
13382 /* Nothing. The point of these breakpoints is causing a stop. */
13383 }
13384
13385 static enum print_stop_action
13386 momentary_bkpt_print_it (bpstat bs)
13387 {
13388 return PRINT_UNKNOWN;
13389 }
13390
13391 static void
13392 momentary_bkpt_print_mention (struct breakpoint *b)
13393 {
13394 /* Nothing to mention. These breakpoints are internal. */
13395 }
13396
13397 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13398
13399 It gets cleared already on the removal of the first one of such placed
13400 breakpoints. This is OK as they get all removed altogether. */
13401
13402 static void
13403 longjmp_bkpt_dtor (struct breakpoint *self)
13404 {
13405 struct thread_info *tp = find_thread_global_id (self->thread);
13406
13407 if (tp)
13408 tp->initiating_frame = null_frame_id;
13409
13410 momentary_breakpoint_ops.dtor (self);
13411 }
13412
13413 /* Specific methods for probe breakpoints. */
13414
13415 static int
13416 bkpt_probe_insert_location (struct bp_location *bl)
13417 {
13418 int v = bkpt_insert_location (bl);
13419
13420 if (v == 0)
13421 {
13422 /* The insertion was successful, now let's set the probe's semaphore
13423 if needed. */
13424 if (bl->probe.probe->pops->set_semaphore != NULL)
13425 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
13426 bl->probe.objfile,
13427 bl->gdbarch);
13428 }
13429
13430 return v;
13431 }
13432
13433 static int
13434 bkpt_probe_remove_location (struct bp_location *bl)
13435 {
13436 /* Let's clear the semaphore before removing the location. */
13437 if (bl->probe.probe->pops->clear_semaphore != NULL)
13438 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
13439 bl->probe.objfile,
13440 bl->gdbarch);
13441
13442 return bkpt_remove_location (bl);
13443 }
13444
13445 static void
13446 bkpt_probe_create_sals_from_location (const struct event_location *location,
13447 struct linespec_result *canonical,
13448 enum bptype type_wanted)
13449 {
13450 struct linespec_sals lsal;
13451
13452 lsal.sals = parse_probes (location, NULL, canonical);
13453 lsal.canonical = xstrdup (event_location_to_string (canonical->location));
13454 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13455 }
13456
13457 static void
13458 bkpt_probe_decode_location (struct breakpoint *b,
13459 const struct event_location *location,
13460 struct program_space *search_pspace,
13461 struct symtabs_and_lines *sals)
13462 {
13463 *sals = parse_probes (location, search_pspace, NULL);
13464 if (!sals->sals)
13465 error (_("probe not found"));
13466 }
13467
13468 /* The breakpoint_ops structure to be used in tracepoints. */
13469
13470 static void
13471 tracepoint_re_set (struct breakpoint *b)
13472 {
13473 breakpoint_re_set_default (b);
13474 }
13475
13476 static int
13477 tracepoint_breakpoint_hit (const struct bp_location *bl,
13478 struct address_space *aspace, CORE_ADDR bp_addr,
13479 const struct target_waitstatus *ws)
13480 {
13481 /* By definition, the inferior does not report stops at
13482 tracepoints. */
13483 return 0;
13484 }
13485
13486 static void
13487 tracepoint_print_one_detail (const struct breakpoint *self,
13488 struct ui_out *uiout)
13489 {
13490 struct tracepoint *tp = (struct tracepoint *) self;
13491 if (tp->static_trace_marker_id)
13492 {
13493 gdb_assert (self->type == bp_static_tracepoint);
13494
13495 ui_out_text (uiout, "\tmarker id is ");
13496 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13497 tp->static_trace_marker_id);
13498 ui_out_text (uiout, "\n");
13499 }
13500 }
13501
13502 static void
13503 tracepoint_print_mention (struct breakpoint *b)
13504 {
13505 if (ui_out_is_mi_like_p (current_uiout))
13506 return;
13507
13508 switch (b->type)
13509 {
13510 case bp_tracepoint:
13511 printf_filtered (_("Tracepoint"));
13512 printf_filtered (_(" %d"), b->number);
13513 break;
13514 case bp_fast_tracepoint:
13515 printf_filtered (_("Fast tracepoint"));
13516 printf_filtered (_(" %d"), b->number);
13517 break;
13518 case bp_static_tracepoint:
13519 printf_filtered (_("Static tracepoint"));
13520 printf_filtered (_(" %d"), b->number);
13521 break;
13522 default:
13523 internal_error (__FILE__, __LINE__,
13524 _("unhandled tracepoint type %d"), (int) b->type);
13525 }
13526
13527 say_where (b);
13528 }
13529
13530 static void
13531 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13532 {
13533 struct tracepoint *tp = (struct tracepoint *) self;
13534
13535 if (self->type == bp_fast_tracepoint)
13536 fprintf_unfiltered (fp, "ftrace");
13537 else if (self->type == bp_static_tracepoint)
13538 fprintf_unfiltered (fp, "strace");
13539 else if (self->type == bp_tracepoint)
13540 fprintf_unfiltered (fp, "trace");
13541 else
13542 internal_error (__FILE__, __LINE__,
13543 _("unhandled tracepoint type %d"), (int) self->type);
13544
13545 fprintf_unfiltered (fp, " %s",
13546 event_location_to_string (self->location));
13547 print_recreate_thread (self, fp);
13548
13549 if (tp->pass_count)
13550 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13551 }
13552
13553 static void
13554 tracepoint_create_sals_from_location (const struct event_location *location,
13555 struct linespec_result *canonical,
13556 enum bptype type_wanted)
13557 {
13558 create_sals_from_location_default (location, canonical, type_wanted);
13559 }
13560
13561 static void
13562 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13563 struct linespec_result *canonical,
13564 char *cond_string,
13565 char *extra_string,
13566 enum bptype type_wanted,
13567 enum bpdisp disposition,
13568 int thread,
13569 int task, int ignore_count,
13570 const struct breakpoint_ops *ops,
13571 int from_tty, int enabled,
13572 int internal, unsigned flags)
13573 {
13574 create_breakpoints_sal_default (gdbarch, canonical,
13575 cond_string, extra_string,
13576 type_wanted,
13577 disposition, thread, task,
13578 ignore_count, ops, from_tty,
13579 enabled, internal, flags);
13580 }
13581
13582 static void
13583 tracepoint_decode_location (struct breakpoint *b,
13584 const struct event_location *location,
13585 struct program_space *search_pspace,
13586 struct symtabs_and_lines *sals)
13587 {
13588 decode_location_default (b, location, search_pspace, sals);
13589 }
13590
13591 struct breakpoint_ops tracepoint_breakpoint_ops;
13592
13593 /* The breakpoint_ops structure to be use on tracepoints placed in a
13594 static probe. */
13595
13596 static void
13597 tracepoint_probe_create_sals_from_location
13598 (const struct event_location *location,
13599 struct linespec_result *canonical,
13600 enum bptype type_wanted)
13601 {
13602 /* We use the same method for breakpoint on probes. */
13603 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
13604 }
13605
13606 static void
13607 tracepoint_probe_decode_location (struct breakpoint *b,
13608 const struct event_location *location,
13609 struct program_space *search_pspace,
13610 struct symtabs_and_lines *sals)
13611 {
13612 /* We use the same method for breakpoint on probes. */
13613 bkpt_probe_decode_location (b, location, search_pspace, sals);
13614 }
13615
13616 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13617
13618 /* Dprintf breakpoint_ops methods. */
13619
13620 static void
13621 dprintf_re_set (struct breakpoint *b)
13622 {
13623 breakpoint_re_set_default (b);
13624
13625 /* extra_string should never be non-NULL for dprintf. */
13626 gdb_assert (b->extra_string != NULL);
13627
13628 /* 1 - connect to target 1, that can run breakpoint commands.
13629 2 - create a dprintf, which resolves fine.
13630 3 - disconnect from target 1
13631 4 - connect to target 2, that can NOT run breakpoint commands.
13632
13633 After steps #3/#4, you'll want the dprintf command list to
13634 be updated, because target 1 and 2 may well return different
13635 answers for target_can_run_breakpoint_commands().
13636 Given absence of finer grained resetting, we get to do
13637 it all the time. */
13638 if (b->extra_string != NULL)
13639 update_dprintf_command_list (b);
13640 }
13641
13642 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13643
13644 static void
13645 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13646 {
13647 fprintf_unfiltered (fp, "dprintf %s,%s",
13648 event_location_to_string (tp->location),
13649 tp->extra_string);
13650 print_recreate_thread (tp, fp);
13651 }
13652
13653 /* Implement the "after_condition_true" breakpoint_ops method for
13654 dprintf.
13655
13656 dprintf's are implemented with regular commands in their command
13657 list, but we run the commands here instead of before presenting the
13658 stop to the user, as dprintf's don't actually cause a stop. This
13659 also makes it so that the commands of multiple dprintfs at the same
13660 address are all handled. */
13661
13662 static void
13663 dprintf_after_condition_true (struct bpstats *bs)
13664 {
13665 struct cleanup *old_chain;
13666 struct bpstats tmp_bs = { NULL };
13667 struct bpstats *tmp_bs_p = &tmp_bs;
13668
13669 /* dprintf's never cause a stop. This wasn't set in the
13670 check_status hook instead because that would make the dprintf's
13671 condition not be evaluated. */
13672 bs->stop = 0;
13673
13674 /* Run the command list here. Take ownership of it instead of
13675 copying. We never want these commands to run later in
13676 bpstat_do_actions, if a breakpoint that causes a stop happens to
13677 be set at same address as this dprintf, or even if running the
13678 commands here throws. */
13679 tmp_bs.commands = bs->commands;
13680 bs->commands = NULL;
13681 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13682
13683 bpstat_do_actions_1 (&tmp_bs_p);
13684
13685 /* 'tmp_bs.commands' will usually be NULL by now, but
13686 bpstat_do_actions_1 may return early without processing the whole
13687 list. */
13688 do_cleanups (old_chain);
13689 }
13690
13691 /* The breakpoint_ops structure to be used on static tracepoints with
13692 markers (`-m'). */
13693
13694 static void
13695 strace_marker_create_sals_from_location (const struct event_location *location,
13696 struct linespec_result *canonical,
13697 enum bptype type_wanted)
13698 {
13699 struct linespec_sals lsal;
13700 const char *arg_start, *arg;
13701 char *str;
13702 struct cleanup *cleanup;
13703
13704 arg = arg_start = get_linespec_location (location);
13705 lsal.sals = decode_static_tracepoint_spec (&arg);
13706
13707 str = savestring (arg_start, arg - arg_start);
13708 cleanup = make_cleanup (xfree, str);
13709 canonical->location = new_linespec_location (&str);
13710 do_cleanups (cleanup);
13711
13712 lsal.canonical = xstrdup (event_location_to_string (canonical->location));
13713 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13714 }
13715
13716 static void
13717 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13718 struct linespec_result *canonical,
13719 char *cond_string,
13720 char *extra_string,
13721 enum bptype type_wanted,
13722 enum bpdisp disposition,
13723 int thread,
13724 int task, int ignore_count,
13725 const struct breakpoint_ops *ops,
13726 int from_tty, int enabled,
13727 int internal, unsigned flags)
13728 {
13729 int i;
13730 struct linespec_sals *lsal = VEC_index (linespec_sals,
13731 canonical->sals, 0);
13732
13733 /* If the user is creating a static tracepoint by marker id
13734 (strace -m MARKER_ID), then store the sals index, so that
13735 breakpoint_re_set can try to match up which of the newly
13736 found markers corresponds to this one, and, don't try to
13737 expand multiple locations for each sal, given than SALS
13738 already should contain all sals for MARKER_ID. */
13739
13740 for (i = 0; i < lsal->sals.nelts; ++i)
13741 {
13742 struct symtabs_and_lines expanded;
13743 struct tracepoint *tp;
13744 struct cleanup *old_chain;
13745 struct event_location *location;
13746
13747 expanded.nelts = 1;
13748 expanded.sals = &lsal->sals.sals[i];
13749
13750 location = copy_event_location (canonical->location);
13751 old_chain = make_cleanup_delete_event_location (location);
13752
13753 tp = XCNEW (struct tracepoint);
13754 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13755 location, NULL,
13756 cond_string, extra_string,
13757 type_wanted, disposition,
13758 thread, task, ignore_count, ops,
13759 from_tty, enabled, internal, flags,
13760 canonical->special_display);
13761 /* Given that its possible to have multiple markers with
13762 the same string id, if the user is creating a static
13763 tracepoint by marker id ("strace -m MARKER_ID"), then
13764 store the sals index, so that breakpoint_re_set can
13765 try to match up which of the newly found markers
13766 corresponds to this one */
13767 tp->static_trace_marker_id_idx = i;
13768
13769 install_breakpoint (internal, &tp->base, 0);
13770
13771 discard_cleanups (old_chain);
13772 }
13773 }
13774
13775 static void
13776 strace_marker_decode_location (struct breakpoint *b,
13777 const struct event_location *location,
13778 struct program_space *search_pspace,
13779 struct symtabs_and_lines *sals)
13780 {
13781 struct tracepoint *tp = (struct tracepoint *) b;
13782 const char *s = get_linespec_location (location);
13783
13784 *sals = decode_static_tracepoint_spec (&s);
13785 if (sals->nelts > tp->static_trace_marker_id_idx)
13786 {
13787 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13788 sals->nelts = 1;
13789 }
13790 else
13791 error (_("marker %s not found"), tp->static_trace_marker_id);
13792 }
13793
13794 static struct breakpoint_ops strace_marker_breakpoint_ops;
13795
13796 static int
13797 strace_marker_p (struct breakpoint *b)
13798 {
13799 return b->ops == &strace_marker_breakpoint_ops;
13800 }
13801
13802 /* Delete a breakpoint and clean up all traces of it in the data
13803 structures. */
13804
13805 void
13806 delete_breakpoint (struct breakpoint *bpt)
13807 {
13808 struct breakpoint *b;
13809
13810 gdb_assert (bpt != NULL);
13811
13812 /* Has this bp already been deleted? This can happen because
13813 multiple lists can hold pointers to bp's. bpstat lists are
13814 especial culprits.
13815
13816 One example of this happening is a watchpoint's scope bp. When
13817 the scope bp triggers, we notice that the watchpoint is out of
13818 scope, and delete it. We also delete its scope bp. But the
13819 scope bp is marked "auto-deleting", and is already on a bpstat.
13820 That bpstat is then checked for auto-deleting bp's, which are
13821 deleted.
13822
13823 A real solution to this problem might involve reference counts in
13824 bp's, and/or giving them pointers back to their referencing
13825 bpstat's, and teaching delete_breakpoint to only free a bp's
13826 storage when no more references were extent. A cheaper bandaid
13827 was chosen. */
13828 if (bpt->type == bp_none)
13829 return;
13830
13831 /* At least avoid this stale reference until the reference counting
13832 of breakpoints gets resolved. */
13833 if (bpt->related_breakpoint != bpt)
13834 {
13835 struct breakpoint *related;
13836 struct watchpoint *w;
13837
13838 if (bpt->type == bp_watchpoint_scope)
13839 w = (struct watchpoint *) bpt->related_breakpoint;
13840 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13841 w = (struct watchpoint *) bpt;
13842 else
13843 w = NULL;
13844 if (w != NULL)
13845 watchpoint_del_at_next_stop (w);
13846
13847 /* Unlink bpt from the bpt->related_breakpoint ring. */
13848 for (related = bpt; related->related_breakpoint != bpt;
13849 related = related->related_breakpoint);
13850 related->related_breakpoint = bpt->related_breakpoint;
13851 bpt->related_breakpoint = bpt;
13852 }
13853
13854 /* watch_command_1 creates a watchpoint but only sets its number if
13855 update_watchpoint succeeds in creating its bp_locations. If there's
13856 a problem in that process, we'll be asked to delete the half-created
13857 watchpoint. In that case, don't announce the deletion. */
13858 if (bpt->number)
13859 observer_notify_breakpoint_deleted (bpt);
13860
13861 if (breakpoint_chain == bpt)
13862 breakpoint_chain = bpt->next;
13863
13864 ALL_BREAKPOINTS (b)
13865 if (b->next == bpt)
13866 {
13867 b->next = bpt->next;
13868 break;
13869 }
13870
13871 /* Be sure no bpstat's are pointing at the breakpoint after it's
13872 been freed. */
13873 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13874 in all threads for now. Note that we cannot just remove bpstats
13875 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13876 commands are associated with the bpstat; if we remove it here,
13877 then the later call to bpstat_do_actions (&stop_bpstat); in
13878 event-top.c won't do anything, and temporary breakpoints with
13879 commands won't work. */
13880
13881 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13882
13883 /* Now that breakpoint is removed from breakpoint list, update the
13884 global location list. This will remove locations that used to
13885 belong to this breakpoint. Do this before freeing the breakpoint
13886 itself, since remove_breakpoint looks at location's owner. It
13887 might be better design to have location completely
13888 self-contained, but it's not the case now. */
13889 update_global_location_list (UGLL_DONT_INSERT);
13890
13891 bpt->ops->dtor (bpt);
13892 /* On the chance that someone will soon try again to delete this
13893 same bp, we mark it as deleted before freeing its storage. */
13894 bpt->type = bp_none;
13895 xfree (bpt);
13896 }
13897
13898 static void
13899 do_delete_breakpoint_cleanup (void *b)
13900 {
13901 delete_breakpoint ((struct breakpoint *) b);
13902 }
13903
13904 struct cleanup *
13905 make_cleanup_delete_breakpoint (struct breakpoint *b)
13906 {
13907 return make_cleanup (do_delete_breakpoint_cleanup, b);
13908 }
13909
13910 /* Iterator function to call a user-provided callback function once
13911 for each of B and its related breakpoints. */
13912
13913 static void
13914 iterate_over_related_breakpoints (struct breakpoint *b,
13915 void (*function) (struct breakpoint *,
13916 void *),
13917 void *data)
13918 {
13919 struct breakpoint *related;
13920
13921 related = b;
13922 do
13923 {
13924 struct breakpoint *next;
13925
13926 /* FUNCTION may delete RELATED. */
13927 next = related->related_breakpoint;
13928
13929 if (next == related)
13930 {
13931 /* RELATED is the last ring entry. */
13932 function (related, data);
13933
13934 /* FUNCTION may have deleted it, so we'd never reach back to
13935 B. There's nothing left to do anyway, so just break
13936 out. */
13937 break;
13938 }
13939 else
13940 function (related, data);
13941
13942 related = next;
13943 }
13944 while (related != b);
13945 }
13946
13947 static void
13948 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13949 {
13950 delete_breakpoint (b);
13951 }
13952
13953 /* A callback for map_breakpoint_numbers that calls
13954 delete_breakpoint. */
13955
13956 static void
13957 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13958 {
13959 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13960 }
13961
13962 void
13963 delete_command (char *arg, int from_tty)
13964 {
13965 struct breakpoint *b, *b_tmp;
13966
13967 dont_repeat ();
13968
13969 if (arg == 0)
13970 {
13971 int breaks_to_delete = 0;
13972
13973 /* Delete all breakpoints if no argument. Do not delete
13974 internal breakpoints, these have to be deleted with an
13975 explicit breakpoint number argument. */
13976 ALL_BREAKPOINTS (b)
13977 if (user_breakpoint_p (b))
13978 {
13979 breaks_to_delete = 1;
13980 break;
13981 }
13982
13983 /* Ask user only if there are some breakpoints to delete. */
13984 if (!from_tty
13985 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13986 {
13987 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13988 if (user_breakpoint_p (b))
13989 delete_breakpoint (b);
13990 }
13991 }
13992 else
13993 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13994 }
13995
13996 /* Return true if all locations of B bound to PSPACE are pending. If
13997 PSPACE is NULL, all locations of all program spaces are
13998 considered. */
13999
14000 static int
14001 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
14002 {
14003 struct bp_location *loc;
14004
14005 for (loc = b->loc; loc != NULL; loc = loc->next)
14006 if ((pspace == NULL
14007 || loc->pspace == pspace)
14008 && !loc->shlib_disabled
14009 && !loc->pspace->executing_startup)
14010 return 0;
14011 return 1;
14012 }
14013
14014 /* Subroutine of update_breakpoint_locations to simplify it.
14015 Return non-zero if multiple fns in list LOC have the same name.
14016 Null names are ignored. */
14017
14018 static int
14019 ambiguous_names_p (struct bp_location *loc)
14020 {
14021 struct bp_location *l;
14022 htab_t htab = htab_create_alloc (13, htab_hash_string,
14023 (int (*) (const void *,
14024 const void *)) streq,
14025 NULL, xcalloc, xfree);
14026
14027 for (l = loc; l != NULL; l = l->next)
14028 {
14029 const char **slot;
14030 const char *name = l->function_name;
14031
14032 /* Allow for some names to be NULL, ignore them. */
14033 if (name == NULL)
14034 continue;
14035
14036 slot = (const char **) htab_find_slot (htab, (const void *) name,
14037 INSERT);
14038 /* NOTE: We can assume slot != NULL here because xcalloc never
14039 returns NULL. */
14040 if (*slot != NULL)
14041 {
14042 htab_delete (htab);
14043 return 1;
14044 }
14045 *slot = name;
14046 }
14047
14048 htab_delete (htab);
14049 return 0;
14050 }
14051
14052 /* When symbols change, it probably means the sources changed as well,
14053 and it might mean the static tracepoint markers are no longer at
14054 the same address or line numbers they used to be at last we
14055 checked. Losing your static tracepoints whenever you rebuild is
14056 undesirable. This function tries to resync/rematch gdb static
14057 tracepoints with the markers on the target, for static tracepoints
14058 that have not been set by marker id. Static tracepoint that have
14059 been set by marker id are reset by marker id in breakpoint_re_set.
14060 The heuristic is:
14061
14062 1) For a tracepoint set at a specific address, look for a marker at
14063 the old PC. If one is found there, assume to be the same marker.
14064 If the name / string id of the marker found is different from the
14065 previous known name, assume that means the user renamed the marker
14066 in the sources, and output a warning.
14067
14068 2) For a tracepoint set at a given line number, look for a marker
14069 at the new address of the old line number. If one is found there,
14070 assume to be the same marker. If the name / string id of the
14071 marker found is different from the previous known name, assume that
14072 means the user renamed the marker in the sources, and output a
14073 warning.
14074
14075 3) If a marker is no longer found at the same address or line, it
14076 may mean the marker no longer exists. But it may also just mean
14077 the code changed a bit. Maybe the user added a few lines of code
14078 that made the marker move up or down (in line number terms). Ask
14079 the target for info about the marker with the string id as we knew
14080 it. If found, update line number and address in the matching
14081 static tracepoint. This will get confused if there's more than one
14082 marker with the same ID (possible in UST, although unadvised
14083 precisely because it confuses tools). */
14084
14085 static struct symtab_and_line
14086 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
14087 {
14088 struct tracepoint *tp = (struct tracepoint *) b;
14089 struct static_tracepoint_marker marker;
14090 CORE_ADDR pc;
14091
14092 pc = sal.pc;
14093 if (sal.line)
14094 find_line_pc (sal.symtab, sal.line, &pc);
14095
14096 if (target_static_tracepoint_marker_at (pc, &marker))
14097 {
14098 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
14099 warning (_("static tracepoint %d changed probed marker from %s to %s"),
14100 b->number,
14101 tp->static_trace_marker_id, marker.str_id);
14102
14103 xfree (tp->static_trace_marker_id);
14104 tp->static_trace_marker_id = xstrdup (marker.str_id);
14105 release_static_tracepoint_marker (&marker);
14106
14107 return sal;
14108 }
14109
14110 /* Old marker wasn't found on target at lineno. Try looking it up
14111 by string ID. */
14112 if (!sal.explicit_pc
14113 && sal.line != 0
14114 && sal.symtab != NULL
14115 && tp->static_trace_marker_id != NULL)
14116 {
14117 VEC(static_tracepoint_marker_p) *markers;
14118
14119 markers
14120 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
14121
14122 if (!VEC_empty(static_tracepoint_marker_p, markers))
14123 {
14124 struct symtab_and_line sal2;
14125 struct symbol *sym;
14126 struct static_tracepoint_marker *tpmarker;
14127 struct ui_out *uiout = current_uiout;
14128 struct explicit_location explicit_loc;
14129
14130 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
14131
14132 xfree (tp->static_trace_marker_id);
14133 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
14134
14135 warning (_("marker for static tracepoint %d (%s) not "
14136 "found at previous line number"),
14137 b->number, tp->static_trace_marker_id);
14138
14139 init_sal (&sal2);
14140
14141 sal2.pc = tpmarker->address;
14142
14143 sal2 = find_pc_line (tpmarker->address, 0);
14144 sym = find_pc_sect_function (tpmarker->address, NULL);
14145 ui_out_text (uiout, "Now in ");
14146 if (sym)
14147 {
14148 ui_out_field_string (uiout, "func",
14149 SYMBOL_PRINT_NAME (sym));
14150 ui_out_text (uiout, " at ");
14151 }
14152 ui_out_field_string (uiout, "file",
14153 symtab_to_filename_for_display (sal2.symtab));
14154 ui_out_text (uiout, ":");
14155
14156 if (ui_out_is_mi_like_p (uiout))
14157 {
14158 const char *fullname = symtab_to_fullname (sal2.symtab);
14159
14160 ui_out_field_string (uiout, "fullname", fullname);
14161 }
14162
14163 ui_out_field_int (uiout, "line", sal2.line);
14164 ui_out_text (uiout, "\n");
14165
14166 b->loc->line_number = sal2.line;
14167 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
14168
14169 delete_event_location (b->location);
14170 initialize_explicit_location (&explicit_loc);
14171 explicit_loc.source_filename
14172 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
14173 explicit_loc.line_offset.offset = b->loc->line_number;
14174 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
14175 b->location = new_explicit_location (&explicit_loc);
14176
14177 /* Might be nice to check if function changed, and warn if
14178 so. */
14179
14180 release_static_tracepoint_marker (tpmarker);
14181 }
14182 }
14183 return sal;
14184 }
14185
14186 /* Returns 1 iff locations A and B are sufficiently same that
14187 we don't need to report breakpoint as changed. */
14188
14189 static int
14190 locations_are_equal (struct bp_location *a, struct bp_location *b)
14191 {
14192 while (a && b)
14193 {
14194 if (a->address != b->address)
14195 return 0;
14196
14197 if (a->shlib_disabled != b->shlib_disabled)
14198 return 0;
14199
14200 if (a->enabled != b->enabled)
14201 return 0;
14202
14203 a = a->next;
14204 b = b->next;
14205 }
14206
14207 if ((a == NULL) != (b == NULL))
14208 return 0;
14209
14210 return 1;
14211 }
14212
14213 /* Split all locations of B that are bound to PSPACE out of B's
14214 location list to a separate list and return that list's head. If
14215 PSPACE is NULL, hoist out all locations of B. */
14216
14217 static struct bp_location *
14218 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
14219 {
14220 struct bp_location head;
14221 struct bp_location *i = b->loc;
14222 struct bp_location **i_link = &b->loc;
14223 struct bp_location *hoisted = &head;
14224
14225 if (pspace == NULL)
14226 {
14227 i = b->loc;
14228 b->loc = NULL;
14229 return i;
14230 }
14231
14232 head.next = NULL;
14233
14234 while (i != NULL)
14235 {
14236 if (i->pspace == pspace)
14237 {
14238 *i_link = i->next;
14239 i->next = NULL;
14240 hoisted->next = i;
14241 hoisted = i;
14242 }
14243 else
14244 i_link = &i->next;
14245 i = *i_link;
14246 }
14247
14248 return head.next;
14249 }
14250
14251 /* Create new breakpoint locations for B (a hardware or software
14252 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
14253 zero, then B is a ranged breakpoint. Only recreates locations for
14254 FILTER_PSPACE. Locations of other program spaces are left
14255 untouched. */
14256
14257 void
14258 update_breakpoint_locations (struct breakpoint *b,
14259 struct program_space *filter_pspace,
14260 struct symtabs_and_lines sals,
14261 struct symtabs_and_lines sals_end)
14262 {
14263 int i;
14264 struct bp_location *existing_locations;
14265
14266 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14267 {
14268 /* Ranged breakpoints have only one start location and one end
14269 location. */
14270 b->enable_state = bp_disabled;
14271 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14272 "multiple locations found\n"),
14273 b->number);
14274 return;
14275 }
14276
14277 /* If there's no new locations, and all existing locations are
14278 pending, don't do anything. This optimizes the common case where
14279 all locations are in the same shared library, that was unloaded.
14280 We'd like to retain the location, so that when the library is
14281 loaded again, we don't loose the enabled/disabled status of the
14282 individual locations. */
14283 if (all_locations_are_pending (b, filter_pspace) && sals.nelts == 0)
14284 return;
14285
14286 existing_locations = hoist_existing_locations (b, filter_pspace);
14287
14288 for (i = 0; i < sals.nelts; ++i)
14289 {
14290 struct bp_location *new_loc;
14291
14292 switch_to_program_space_and_thread (sals.sals[i].pspace);
14293
14294 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14295
14296 /* Reparse conditions, they might contain references to the
14297 old symtab. */
14298 if (b->cond_string != NULL)
14299 {
14300 const char *s;
14301
14302 s = b->cond_string;
14303 TRY
14304 {
14305 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14306 block_for_pc (sals.sals[i].pc),
14307 0);
14308 }
14309 CATCH (e, RETURN_MASK_ERROR)
14310 {
14311 warning (_("failed to reevaluate condition "
14312 "for breakpoint %d: %s"),
14313 b->number, e.message);
14314 new_loc->enabled = 0;
14315 }
14316 END_CATCH
14317 }
14318
14319 if (sals_end.nelts)
14320 {
14321 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14322
14323 new_loc->length = end - sals.sals[0].pc + 1;
14324 }
14325 }
14326
14327 /* If possible, carry over 'disable' status from existing
14328 breakpoints. */
14329 {
14330 struct bp_location *e = existing_locations;
14331 /* If there are multiple breakpoints with the same function name,
14332 e.g. for inline functions, comparing function names won't work.
14333 Instead compare pc addresses; this is just a heuristic as things
14334 may have moved, but in practice it gives the correct answer
14335 often enough until a better solution is found. */
14336 int have_ambiguous_names = ambiguous_names_p (b->loc);
14337
14338 for (; e; e = e->next)
14339 {
14340 if (!e->enabled && e->function_name)
14341 {
14342 struct bp_location *l = b->loc;
14343 if (have_ambiguous_names)
14344 {
14345 for (; l; l = l->next)
14346 if (breakpoint_locations_match (e, l))
14347 {
14348 l->enabled = 0;
14349 break;
14350 }
14351 }
14352 else
14353 {
14354 for (; l; l = l->next)
14355 if (l->function_name
14356 && strcmp (e->function_name, l->function_name) == 0)
14357 {
14358 l->enabled = 0;
14359 break;
14360 }
14361 }
14362 }
14363 }
14364 }
14365
14366 if (!locations_are_equal (existing_locations, b->loc))
14367 observer_notify_breakpoint_modified (b);
14368 }
14369
14370 /* Find the SaL locations corresponding to the given LOCATION.
14371 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14372
14373 static struct symtabs_and_lines
14374 location_to_sals (struct breakpoint *b, struct event_location *location,
14375 struct program_space *search_pspace, int *found)
14376 {
14377 struct symtabs_and_lines sals = {0};
14378 struct gdb_exception exception = exception_none;
14379
14380 gdb_assert (b->ops != NULL);
14381
14382 TRY
14383 {
14384 b->ops->decode_location (b, location, search_pspace, &sals);
14385 }
14386 CATCH (e, RETURN_MASK_ERROR)
14387 {
14388 int not_found_and_ok = 0;
14389
14390 exception = e;
14391
14392 /* For pending breakpoints, it's expected that parsing will
14393 fail until the right shared library is loaded. User has
14394 already told to create pending breakpoints and don't need
14395 extra messages. If breakpoint is in bp_shlib_disabled
14396 state, then user already saw the message about that
14397 breakpoint being disabled, and don't want to see more
14398 errors. */
14399 if (e.error == NOT_FOUND_ERROR
14400 && (b->condition_not_parsed
14401 || (b->loc != NULL
14402 && search_pspace != NULL
14403 && b->loc->pspace != search_pspace)
14404 || (b->loc && b->loc->shlib_disabled)
14405 || (b->loc && b->loc->pspace->executing_startup)
14406 || b->enable_state == bp_disabled))
14407 not_found_and_ok = 1;
14408
14409 if (!not_found_and_ok)
14410 {
14411 /* We surely don't want to warn about the same breakpoint
14412 10 times. One solution, implemented here, is disable
14413 the breakpoint on error. Another solution would be to
14414 have separate 'warning emitted' flag. Since this
14415 happens only when a binary has changed, I don't know
14416 which approach is better. */
14417 b->enable_state = bp_disabled;
14418 throw_exception (e);
14419 }
14420 }
14421 END_CATCH
14422
14423 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
14424 {
14425 int i;
14426
14427 for (i = 0; i < sals.nelts; ++i)
14428 resolve_sal_pc (&sals.sals[i]);
14429 if (b->condition_not_parsed && b->extra_string != NULL)
14430 {
14431 char *cond_string, *extra_string;
14432 int thread, task;
14433
14434 find_condition_and_thread (b->extra_string, sals.sals[0].pc,
14435 &cond_string, &thread, &task,
14436 &extra_string);
14437 gdb_assert (b->cond_string == NULL);
14438 if (cond_string)
14439 b->cond_string = cond_string;
14440 b->thread = thread;
14441 b->task = task;
14442 if (extra_string)
14443 {
14444 xfree (b->extra_string);
14445 b->extra_string = extra_string;
14446 }
14447 b->condition_not_parsed = 0;
14448 }
14449
14450 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14451 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14452
14453 *found = 1;
14454 }
14455 else
14456 *found = 0;
14457
14458 return sals;
14459 }
14460
14461 /* The default re_set method, for typical hardware or software
14462 breakpoints. Reevaluate the breakpoint and recreate its
14463 locations. */
14464
14465 static void
14466 breakpoint_re_set_default (struct breakpoint *b)
14467 {
14468 int found;
14469 struct symtabs_and_lines sals, sals_end;
14470 struct symtabs_and_lines expanded = {0};
14471 struct symtabs_and_lines expanded_end = {0};
14472 struct program_space *filter_pspace = current_program_space;
14473
14474 sals = location_to_sals (b, b->location, filter_pspace, &found);
14475 if (found)
14476 {
14477 make_cleanup (xfree, sals.sals);
14478 expanded = sals;
14479 }
14480
14481 if (b->location_range_end != NULL)
14482 {
14483 sals_end = location_to_sals (b, b->location_range_end,
14484 filter_pspace, &found);
14485 if (found)
14486 {
14487 make_cleanup (xfree, sals_end.sals);
14488 expanded_end = sals_end;
14489 }
14490 }
14491
14492 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
14493 }
14494
14495 /* Default method for creating SALs from an address string. It basically
14496 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14497
14498 static void
14499 create_sals_from_location_default (const struct event_location *location,
14500 struct linespec_result *canonical,
14501 enum bptype type_wanted)
14502 {
14503 parse_breakpoint_sals (location, canonical);
14504 }
14505
14506 /* Call create_breakpoints_sal for the given arguments. This is the default
14507 function for the `create_breakpoints_sal' method of
14508 breakpoint_ops. */
14509
14510 static void
14511 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14512 struct linespec_result *canonical,
14513 char *cond_string,
14514 char *extra_string,
14515 enum bptype type_wanted,
14516 enum bpdisp disposition,
14517 int thread,
14518 int task, int ignore_count,
14519 const struct breakpoint_ops *ops,
14520 int from_tty, int enabled,
14521 int internal, unsigned flags)
14522 {
14523 create_breakpoints_sal (gdbarch, canonical, cond_string,
14524 extra_string,
14525 type_wanted, disposition,
14526 thread, task, ignore_count, ops, from_tty,
14527 enabled, internal, flags);
14528 }
14529
14530 /* Decode the line represented by S by calling decode_line_full. This is the
14531 default function for the `decode_location' method of breakpoint_ops. */
14532
14533 static void
14534 decode_location_default (struct breakpoint *b,
14535 const struct event_location *location,
14536 struct program_space *search_pspace,
14537 struct symtabs_and_lines *sals)
14538 {
14539 struct linespec_result canonical;
14540
14541 init_linespec_result (&canonical);
14542 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
14543 (struct symtab *) NULL, 0,
14544 &canonical, multiple_symbols_all,
14545 b->filter);
14546
14547 /* We should get 0 or 1 resulting SALs. */
14548 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14549
14550 if (VEC_length (linespec_sals, canonical.sals) > 0)
14551 {
14552 struct linespec_sals *lsal;
14553
14554 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14555 *sals = lsal->sals;
14556 /* Arrange it so the destructor does not free the
14557 contents. */
14558 lsal->sals.sals = NULL;
14559 }
14560
14561 destroy_linespec_result (&canonical);
14562 }
14563
14564 /* Prepare the global context for a re-set of breakpoint B. */
14565
14566 static struct cleanup *
14567 prepare_re_set_context (struct breakpoint *b)
14568 {
14569 input_radix = b->input_radix;
14570 set_language (b->language);
14571
14572 return make_cleanup (null_cleanup, NULL);
14573 }
14574
14575 /* Reset a breakpoint given it's struct breakpoint * BINT.
14576 The value we return ends up being the return value from catch_errors.
14577 Unused in this case. */
14578
14579 static int
14580 breakpoint_re_set_one (void *bint)
14581 {
14582 /* Get past catch_errs. */
14583 struct breakpoint *b = (struct breakpoint *) bint;
14584 struct cleanup *cleanups;
14585
14586 cleanups = prepare_re_set_context (b);
14587 b->ops->re_set (b);
14588 do_cleanups (cleanups);
14589 return 0;
14590 }
14591
14592 /* Re-set breakpoint locations for the current program space.
14593 Locations bound to other program spaces are left untouched. */
14594
14595 void
14596 breakpoint_re_set (void)
14597 {
14598 struct breakpoint *b, *b_tmp;
14599 enum language save_language;
14600 int save_input_radix;
14601 struct cleanup *old_chain;
14602
14603 save_language = current_language->la_language;
14604 save_input_radix = input_radix;
14605 old_chain = save_current_space_and_thread ();
14606
14607 /* Note: we must not try to insert locations until after all
14608 breakpoints have been re-set. Otherwise, e.g., when re-setting
14609 breakpoint 1, we'd insert the locations of breakpoint 2, which
14610 hadn't been re-set yet, and thus may have stale locations. */
14611
14612 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14613 {
14614 /* Format possible error msg. */
14615 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14616 b->number);
14617 struct cleanup *cleanups = make_cleanup (xfree, message);
14618 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14619 do_cleanups (cleanups);
14620 }
14621 set_language (save_language);
14622 input_radix = save_input_radix;
14623
14624 jit_breakpoint_re_set ();
14625
14626 do_cleanups (old_chain);
14627
14628 create_overlay_event_breakpoint ();
14629 create_longjmp_master_breakpoint ();
14630 create_std_terminate_master_breakpoint ();
14631 create_exception_master_breakpoint ();
14632
14633 /* Now we can insert. */
14634 update_global_location_list (UGLL_MAY_INSERT);
14635 }
14636 \f
14637 /* Reset the thread number of this breakpoint:
14638
14639 - If the breakpoint is for all threads, leave it as-is.
14640 - Else, reset it to the current thread for inferior_ptid. */
14641 void
14642 breakpoint_re_set_thread (struct breakpoint *b)
14643 {
14644 if (b->thread != -1)
14645 {
14646 if (in_thread_list (inferior_ptid))
14647 b->thread = ptid_to_global_thread_id (inferior_ptid);
14648
14649 /* We're being called after following a fork. The new fork is
14650 selected as current, and unless this was a vfork will have a
14651 different program space from the original thread. Reset that
14652 as well. */
14653 b->loc->pspace = current_program_space;
14654 }
14655 }
14656
14657 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14658 If from_tty is nonzero, it prints a message to that effect,
14659 which ends with a period (no newline). */
14660
14661 void
14662 set_ignore_count (int bptnum, int count, int from_tty)
14663 {
14664 struct breakpoint *b;
14665
14666 if (count < 0)
14667 count = 0;
14668
14669 ALL_BREAKPOINTS (b)
14670 if (b->number == bptnum)
14671 {
14672 if (is_tracepoint (b))
14673 {
14674 if (from_tty && count != 0)
14675 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14676 bptnum);
14677 return;
14678 }
14679
14680 b->ignore_count = count;
14681 if (from_tty)
14682 {
14683 if (count == 0)
14684 printf_filtered (_("Will stop next time "
14685 "breakpoint %d is reached."),
14686 bptnum);
14687 else if (count == 1)
14688 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14689 bptnum);
14690 else
14691 printf_filtered (_("Will ignore next %d "
14692 "crossings of breakpoint %d."),
14693 count, bptnum);
14694 }
14695 observer_notify_breakpoint_modified (b);
14696 return;
14697 }
14698
14699 error (_("No breakpoint number %d."), bptnum);
14700 }
14701
14702 /* Command to set ignore-count of breakpoint N to COUNT. */
14703
14704 static void
14705 ignore_command (char *args, int from_tty)
14706 {
14707 char *p = args;
14708 int num;
14709
14710 if (p == 0)
14711 error_no_arg (_("a breakpoint number"));
14712
14713 num = get_number (&p);
14714 if (num == 0)
14715 error (_("bad breakpoint number: '%s'"), args);
14716 if (*p == 0)
14717 error (_("Second argument (specified ignore-count) is missing."));
14718
14719 set_ignore_count (num,
14720 longest_to_int (value_as_long (parse_and_eval (p))),
14721 from_tty);
14722 if (from_tty)
14723 printf_filtered ("\n");
14724 }
14725 \f
14726 /* Call FUNCTION on each of the breakpoints
14727 whose numbers are given in ARGS. */
14728
14729 static void
14730 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14731 void *),
14732 void *data)
14733 {
14734 int num;
14735 struct breakpoint *b, *tmp;
14736 int match;
14737 struct get_number_or_range_state state;
14738
14739 if (args == 0 || *args == '\0')
14740 error_no_arg (_("one or more breakpoint numbers"));
14741
14742 init_number_or_range (&state, args);
14743
14744 while (!state.finished)
14745 {
14746 const char *p = state.string;
14747
14748 match = 0;
14749
14750 num = get_number_or_range (&state);
14751 if (num == 0)
14752 {
14753 warning (_("bad breakpoint number at or near '%s'"), p);
14754 }
14755 else
14756 {
14757 ALL_BREAKPOINTS_SAFE (b, tmp)
14758 if (b->number == num)
14759 {
14760 match = 1;
14761 function (b, data);
14762 break;
14763 }
14764 if (match == 0)
14765 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14766 }
14767 }
14768 }
14769
14770 static struct bp_location *
14771 find_location_by_number (char *number)
14772 {
14773 char *dot = strchr (number, '.');
14774 char *p1;
14775 int bp_num;
14776 int loc_num;
14777 struct breakpoint *b;
14778 struct bp_location *loc;
14779
14780 *dot = '\0';
14781
14782 p1 = number;
14783 bp_num = get_number (&p1);
14784 if (bp_num == 0)
14785 error (_("Bad breakpoint number '%s'"), number);
14786
14787 ALL_BREAKPOINTS (b)
14788 if (b->number == bp_num)
14789 {
14790 break;
14791 }
14792
14793 if (!b || b->number != bp_num)
14794 error (_("Bad breakpoint number '%s'"), number);
14795
14796 p1 = dot+1;
14797 loc_num = get_number (&p1);
14798 if (loc_num == 0)
14799 error (_("Bad breakpoint location number '%s'"), number);
14800
14801 --loc_num;
14802 loc = b->loc;
14803 for (;loc_num && loc; --loc_num, loc = loc->next)
14804 ;
14805 if (!loc)
14806 error (_("Bad breakpoint location number '%s'"), dot+1);
14807
14808 return loc;
14809 }
14810
14811
14812 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14813 If from_tty is nonzero, it prints a message to that effect,
14814 which ends with a period (no newline). */
14815
14816 void
14817 disable_breakpoint (struct breakpoint *bpt)
14818 {
14819 /* Never disable a watchpoint scope breakpoint; we want to
14820 hit them when we leave scope so we can delete both the
14821 watchpoint and its scope breakpoint at that time. */
14822 if (bpt->type == bp_watchpoint_scope)
14823 return;
14824
14825 bpt->enable_state = bp_disabled;
14826
14827 /* Mark breakpoint locations modified. */
14828 mark_breakpoint_modified (bpt);
14829
14830 if (target_supports_enable_disable_tracepoint ()
14831 && current_trace_status ()->running && is_tracepoint (bpt))
14832 {
14833 struct bp_location *location;
14834
14835 for (location = bpt->loc; location; location = location->next)
14836 target_disable_tracepoint (location);
14837 }
14838
14839 update_global_location_list (UGLL_DONT_INSERT);
14840
14841 observer_notify_breakpoint_modified (bpt);
14842 }
14843
14844 /* A callback for iterate_over_related_breakpoints. */
14845
14846 static void
14847 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14848 {
14849 disable_breakpoint (b);
14850 }
14851
14852 /* A callback for map_breakpoint_numbers that calls
14853 disable_breakpoint. */
14854
14855 static void
14856 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14857 {
14858 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14859 }
14860
14861 static void
14862 disable_command (char *args, int from_tty)
14863 {
14864 if (args == 0)
14865 {
14866 struct breakpoint *bpt;
14867
14868 ALL_BREAKPOINTS (bpt)
14869 if (user_breakpoint_p (bpt))
14870 disable_breakpoint (bpt);
14871 }
14872 else
14873 {
14874 char *num = extract_arg (&args);
14875
14876 while (num)
14877 {
14878 if (strchr (num, '.'))
14879 {
14880 struct bp_location *loc = find_location_by_number (num);
14881
14882 if (loc)
14883 {
14884 if (loc->enabled)
14885 {
14886 loc->enabled = 0;
14887 mark_breakpoint_location_modified (loc);
14888 }
14889 if (target_supports_enable_disable_tracepoint ()
14890 && current_trace_status ()->running && loc->owner
14891 && is_tracepoint (loc->owner))
14892 target_disable_tracepoint (loc);
14893 }
14894 update_global_location_list (UGLL_DONT_INSERT);
14895 }
14896 else
14897 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14898 num = extract_arg (&args);
14899 }
14900 }
14901 }
14902
14903 static void
14904 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14905 int count)
14906 {
14907 int target_resources_ok;
14908
14909 if (bpt->type == bp_hardware_breakpoint)
14910 {
14911 int i;
14912 i = hw_breakpoint_used_count ();
14913 target_resources_ok =
14914 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14915 i + 1, 0);
14916 if (target_resources_ok == 0)
14917 error (_("No hardware breakpoint support in the target."));
14918 else if (target_resources_ok < 0)
14919 error (_("Hardware breakpoints used exceeds limit."));
14920 }
14921
14922 if (is_watchpoint (bpt))
14923 {
14924 /* Initialize it just to avoid a GCC false warning. */
14925 enum enable_state orig_enable_state = bp_disabled;
14926
14927 TRY
14928 {
14929 struct watchpoint *w = (struct watchpoint *) bpt;
14930
14931 orig_enable_state = bpt->enable_state;
14932 bpt->enable_state = bp_enabled;
14933 update_watchpoint (w, 1 /* reparse */);
14934 }
14935 CATCH (e, RETURN_MASK_ALL)
14936 {
14937 bpt->enable_state = orig_enable_state;
14938 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14939 bpt->number);
14940 return;
14941 }
14942 END_CATCH
14943 }
14944
14945 bpt->enable_state = bp_enabled;
14946
14947 /* Mark breakpoint locations modified. */
14948 mark_breakpoint_modified (bpt);
14949
14950 if (target_supports_enable_disable_tracepoint ()
14951 && current_trace_status ()->running && is_tracepoint (bpt))
14952 {
14953 struct bp_location *location;
14954
14955 for (location = bpt->loc; location; location = location->next)
14956 target_enable_tracepoint (location);
14957 }
14958
14959 bpt->disposition = disposition;
14960 bpt->enable_count = count;
14961 update_global_location_list (UGLL_MAY_INSERT);
14962
14963 observer_notify_breakpoint_modified (bpt);
14964 }
14965
14966
14967 void
14968 enable_breakpoint (struct breakpoint *bpt)
14969 {
14970 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14971 }
14972
14973 static void
14974 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14975 {
14976 enable_breakpoint (bpt);
14977 }
14978
14979 /* A callback for map_breakpoint_numbers that calls
14980 enable_breakpoint. */
14981
14982 static void
14983 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14984 {
14985 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14986 }
14987
14988 /* The enable command enables the specified breakpoints (or all defined
14989 breakpoints) so they once again become (or continue to be) effective
14990 in stopping the inferior. */
14991
14992 static void
14993 enable_command (char *args, int from_tty)
14994 {
14995 if (args == 0)
14996 {
14997 struct breakpoint *bpt;
14998
14999 ALL_BREAKPOINTS (bpt)
15000 if (user_breakpoint_p (bpt))
15001 enable_breakpoint (bpt);
15002 }
15003 else
15004 {
15005 char *num = extract_arg (&args);
15006
15007 while (num)
15008 {
15009 if (strchr (num, '.'))
15010 {
15011 struct bp_location *loc = find_location_by_number (num);
15012
15013 if (loc)
15014 {
15015 if (!loc->enabled)
15016 {
15017 loc->enabled = 1;
15018 mark_breakpoint_location_modified (loc);
15019 }
15020 if (target_supports_enable_disable_tracepoint ()
15021 && current_trace_status ()->running && loc->owner
15022 && is_tracepoint (loc->owner))
15023 target_enable_tracepoint (loc);
15024 }
15025 update_global_location_list (UGLL_MAY_INSERT);
15026 }
15027 else
15028 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
15029 num = extract_arg (&args);
15030 }
15031 }
15032 }
15033
15034 /* This struct packages up disposition data for application to multiple
15035 breakpoints. */
15036
15037 struct disp_data
15038 {
15039 enum bpdisp disp;
15040 int count;
15041 };
15042
15043 static void
15044 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
15045 {
15046 struct disp_data disp_data = *(struct disp_data *) arg;
15047
15048 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
15049 }
15050
15051 static void
15052 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
15053 {
15054 struct disp_data disp = { disp_disable, 1 };
15055
15056 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15057 }
15058
15059 static void
15060 enable_once_command (char *args, int from_tty)
15061 {
15062 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
15063 }
15064
15065 static void
15066 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
15067 {
15068 struct disp_data disp = { disp_disable, *(int *) countptr };
15069
15070 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15071 }
15072
15073 static void
15074 enable_count_command (char *args, int from_tty)
15075 {
15076 int count;
15077
15078 if (args == NULL)
15079 error_no_arg (_("hit count"));
15080
15081 count = get_number (&args);
15082
15083 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
15084 }
15085
15086 static void
15087 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
15088 {
15089 struct disp_data disp = { disp_del, 1 };
15090
15091 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15092 }
15093
15094 static void
15095 enable_delete_command (char *args, int from_tty)
15096 {
15097 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
15098 }
15099 \f
15100 static void
15101 set_breakpoint_cmd (char *args, int from_tty)
15102 {
15103 }
15104
15105 static void
15106 show_breakpoint_cmd (char *args, int from_tty)
15107 {
15108 }
15109
15110 /* Invalidate last known value of any hardware watchpoint if
15111 the memory which that value represents has been written to by
15112 GDB itself. */
15113
15114 static void
15115 invalidate_bp_value_on_memory_change (struct inferior *inferior,
15116 CORE_ADDR addr, ssize_t len,
15117 const bfd_byte *data)
15118 {
15119 struct breakpoint *bp;
15120
15121 ALL_BREAKPOINTS (bp)
15122 if (bp->enable_state == bp_enabled
15123 && bp->type == bp_hardware_watchpoint)
15124 {
15125 struct watchpoint *wp = (struct watchpoint *) bp;
15126
15127 if (wp->val_valid && wp->val)
15128 {
15129 struct bp_location *loc;
15130
15131 for (loc = bp->loc; loc != NULL; loc = loc->next)
15132 if (loc->loc_type == bp_loc_hardware_watchpoint
15133 && loc->address + loc->length > addr
15134 && addr + len > loc->address)
15135 {
15136 value_free (wp->val);
15137 wp->val = NULL;
15138 wp->val_valid = 0;
15139 }
15140 }
15141 }
15142 }
15143
15144 /* Create and insert a breakpoint for software single step. */
15145
15146 void
15147 insert_single_step_breakpoint (struct gdbarch *gdbarch,
15148 struct address_space *aspace,
15149 CORE_ADDR next_pc)
15150 {
15151 struct thread_info *tp = inferior_thread ();
15152 struct symtab_and_line sal;
15153 CORE_ADDR pc = next_pc;
15154
15155 if (tp->control.single_step_breakpoints == NULL)
15156 {
15157 tp->control.single_step_breakpoints
15158 = new_single_step_breakpoint (tp->global_num, gdbarch);
15159 }
15160
15161 sal = find_pc_line (pc, 0);
15162 sal.pc = pc;
15163 sal.section = find_pc_overlay (pc);
15164 sal.explicit_pc = 1;
15165 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
15166
15167 update_global_location_list (UGLL_INSERT);
15168 }
15169
15170 /* See breakpoint.h. */
15171
15172 int
15173 breakpoint_has_location_inserted_here (struct breakpoint *bp,
15174 struct address_space *aspace,
15175 CORE_ADDR pc)
15176 {
15177 struct bp_location *loc;
15178
15179 for (loc = bp->loc; loc != NULL; loc = loc->next)
15180 if (loc->inserted
15181 && breakpoint_location_address_match (loc, aspace, pc))
15182 return 1;
15183
15184 return 0;
15185 }
15186
15187 /* Check whether a software single-step breakpoint is inserted at
15188 PC. */
15189
15190 int
15191 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15192 CORE_ADDR pc)
15193 {
15194 struct breakpoint *bpt;
15195
15196 ALL_BREAKPOINTS (bpt)
15197 {
15198 if (bpt->type == bp_single_step
15199 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
15200 return 1;
15201 }
15202 return 0;
15203 }
15204
15205 /* Tracepoint-specific operations. */
15206
15207 /* Set tracepoint count to NUM. */
15208 static void
15209 set_tracepoint_count (int num)
15210 {
15211 tracepoint_count = num;
15212 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15213 }
15214
15215 static void
15216 trace_command (char *arg, int from_tty)
15217 {
15218 struct breakpoint_ops *ops;
15219 struct event_location *location;
15220 struct cleanup *back_to;
15221
15222 location = string_to_event_location (&arg, current_language);
15223 back_to = make_cleanup_delete_event_location (location);
15224 if (location != NULL
15225 && event_location_type (location) == PROBE_LOCATION)
15226 ops = &tracepoint_probe_breakpoint_ops;
15227 else
15228 ops = &tracepoint_breakpoint_ops;
15229
15230 create_breakpoint (get_current_arch (),
15231 location,
15232 NULL, 0, arg, 1 /* parse arg */,
15233 0 /* tempflag */,
15234 bp_tracepoint /* type_wanted */,
15235 0 /* Ignore count */,
15236 pending_break_support,
15237 ops,
15238 from_tty,
15239 1 /* enabled */,
15240 0 /* internal */, 0);
15241 do_cleanups (back_to);
15242 }
15243
15244 static void
15245 ftrace_command (char *arg, int from_tty)
15246 {
15247 struct event_location *location;
15248 struct cleanup *back_to;
15249
15250 location = string_to_event_location (&arg, current_language);
15251 back_to = make_cleanup_delete_event_location (location);
15252 create_breakpoint (get_current_arch (),
15253 location,
15254 NULL, 0, arg, 1 /* parse arg */,
15255 0 /* tempflag */,
15256 bp_fast_tracepoint /* type_wanted */,
15257 0 /* Ignore count */,
15258 pending_break_support,
15259 &tracepoint_breakpoint_ops,
15260 from_tty,
15261 1 /* enabled */,
15262 0 /* internal */, 0);
15263 do_cleanups (back_to);
15264 }
15265
15266 /* strace command implementation. Creates a static tracepoint. */
15267
15268 static void
15269 strace_command (char *arg, int from_tty)
15270 {
15271 struct breakpoint_ops *ops;
15272 struct event_location *location;
15273 struct cleanup *back_to;
15274
15275 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15276 or with a normal static tracepoint. */
15277 if (arg && startswith (arg, "-m") && isspace (arg[2]))
15278 {
15279 ops = &strace_marker_breakpoint_ops;
15280 location = new_linespec_location (&arg);
15281 }
15282 else
15283 {
15284 ops = &tracepoint_breakpoint_ops;
15285 location = string_to_event_location (&arg, current_language);
15286 }
15287
15288 back_to = make_cleanup_delete_event_location (location);
15289 create_breakpoint (get_current_arch (),
15290 location,
15291 NULL, 0, arg, 1 /* parse arg */,
15292 0 /* tempflag */,
15293 bp_static_tracepoint /* type_wanted */,
15294 0 /* Ignore count */,
15295 pending_break_support,
15296 ops,
15297 from_tty,
15298 1 /* enabled */,
15299 0 /* internal */, 0);
15300 do_cleanups (back_to);
15301 }
15302
15303 /* Set up a fake reader function that gets command lines from a linked
15304 list that was acquired during tracepoint uploading. */
15305
15306 static struct uploaded_tp *this_utp;
15307 static int next_cmd;
15308
15309 static char *
15310 read_uploaded_action (void)
15311 {
15312 char *rslt;
15313
15314 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15315
15316 next_cmd++;
15317
15318 return rslt;
15319 }
15320
15321 /* Given information about a tracepoint as recorded on a target (which
15322 can be either a live system or a trace file), attempt to create an
15323 equivalent GDB tracepoint. This is not a reliable process, since
15324 the target does not necessarily have all the information used when
15325 the tracepoint was originally defined. */
15326
15327 struct tracepoint *
15328 create_tracepoint_from_upload (struct uploaded_tp *utp)
15329 {
15330 char *addr_str, small_buf[100];
15331 struct tracepoint *tp;
15332 struct event_location *location;
15333 struct cleanup *cleanup;
15334
15335 if (utp->at_string)
15336 addr_str = utp->at_string;
15337 else
15338 {
15339 /* In the absence of a source location, fall back to raw
15340 address. Since there is no way to confirm that the address
15341 means the same thing as when the trace was started, warn the
15342 user. */
15343 warning (_("Uploaded tracepoint %d has no "
15344 "source location, using raw address"),
15345 utp->number);
15346 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15347 addr_str = small_buf;
15348 }
15349
15350 /* There's not much we can do with a sequence of bytecodes. */
15351 if (utp->cond && !utp->cond_string)
15352 warning (_("Uploaded tracepoint %d condition "
15353 "has no source form, ignoring it"),
15354 utp->number);
15355
15356 location = string_to_event_location (&addr_str, current_language);
15357 cleanup = make_cleanup_delete_event_location (location);
15358 if (!create_breakpoint (get_current_arch (),
15359 location,
15360 utp->cond_string, -1, addr_str,
15361 0 /* parse cond/thread */,
15362 0 /* tempflag */,
15363 utp->type /* type_wanted */,
15364 0 /* Ignore count */,
15365 pending_break_support,
15366 &tracepoint_breakpoint_ops,
15367 0 /* from_tty */,
15368 utp->enabled /* enabled */,
15369 0 /* internal */,
15370 CREATE_BREAKPOINT_FLAGS_INSERTED))
15371 {
15372 do_cleanups (cleanup);
15373 return NULL;
15374 }
15375
15376 do_cleanups (cleanup);
15377
15378 /* Get the tracepoint we just created. */
15379 tp = get_tracepoint (tracepoint_count);
15380 gdb_assert (tp != NULL);
15381
15382 if (utp->pass > 0)
15383 {
15384 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15385 tp->base.number);
15386
15387 trace_pass_command (small_buf, 0);
15388 }
15389
15390 /* If we have uploaded versions of the original commands, set up a
15391 special-purpose "reader" function and call the usual command line
15392 reader, then pass the result to the breakpoint command-setting
15393 function. */
15394 if (!VEC_empty (char_ptr, utp->cmd_strings))
15395 {
15396 struct command_line *cmd_list;
15397
15398 this_utp = utp;
15399 next_cmd = 0;
15400
15401 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15402
15403 breakpoint_set_commands (&tp->base, cmd_list);
15404 }
15405 else if (!VEC_empty (char_ptr, utp->actions)
15406 || !VEC_empty (char_ptr, utp->step_actions))
15407 warning (_("Uploaded tracepoint %d actions "
15408 "have no source form, ignoring them"),
15409 utp->number);
15410
15411 /* Copy any status information that might be available. */
15412 tp->base.hit_count = utp->hit_count;
15413 tp->traceframe_usage = utp->traceframe_usage;
15414
15415 return tp;
15416 }
15417
15418 /* Print information on tracepoint number TPNUM_EXP, or all if
15419 omitted. */
15420
15421 static void
15422 tracepoints_info (char *args, int from_tty)
15423 {
15424 struct ui_out *uiout = current_uiout;
15425 int num_printed;
15426
15427 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15428
15429 if (num_printed == 0)
15430 {
15431 if (args == NULL || *args == '\0')
15432 ui_out_message (uiout, 0, "No tracepoints.\n");
15433 else
15434 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15435 }
15436
15437 default_collect_info ();
15438 }
15439
15440 /* The 'enable trace' command enables tracepoints.
15441 Not supported by all targets. */
15442 static void
15443 enable_trace_command (char *args, int from_tty)
15444 {
15445 enable_command (args, from_tty);
15446 }
15447
15448 /* The 'disable trace' command disables tracepoints.
15449 Not supported by all targets. */
15450 static void
15451 disable_trace_command (char *args, int from_tty)
15452 {
15453 disable_command (args, from_tty);
15454 }
15455
15456 /* Remove a tracepoint (or all if no argument). */
15457 static void
15458 delete_trace_command (char *arg, int from_tty)
15459 {
15460 struct breakpoint *b, *b_tmp;
15461
15462 dont_repeat ();
15463
15464 if (arg == 0)
15465 {
15466 int breaks_to_delete = 0;
15467
15468 /* Delete all breakpoints if no argument.
15469 Do not delete internal or call-dummy breakpoints, these
15470 have to be deleted with an explicit breakpoint number
15471 argument. */
15472 ALL_TRACEPOINTS (b)
15473 if (is_tracepoint (b) && user_breakpoint_p (b))
15474 {
15475 breaks_to_delete = 1;
15476 break;
15477 }
15478
15479 /* Ask user only if there are some breakpoints to delete. */
15480 if (!from_tty
15481 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15482 {
15483 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15484 if (is_tracepoint (b) && user_breakpoint_p (b))
15485 delete_breakpoint (b);
15486 }
15487 }
15488 else
15489 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15490 }
15491
15492 /* Helper function for trace_pass_command. */
15493
15494 static void
15495 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15496 {
15497 tp->pass_count = count;
15498 observer_notify_breakpoint_modified (&tp->base);
15499 if (from_tty)
15500 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15501 tp->base.number, count);
15502 }
15503
15504 /* Set passcount for tracepoint.
15505
15506 First command argument is passcount, second is tracepoint number.
15507 If tracepoint number omitted, apply to most recently defined.
15508 Also accepts special argument "all". */
15509
15510 static void
15511 trace_pass_command (char *args, int from_tty)
15512 {
15513 struct tracepoint *t1;
15514 unsigned int count;
15515
15516 if (args == 0 || *args == 0)
15517 error (_("passcount command requires an "
15518 "argument (count + optional TP num)"));
15519
15520 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15521
15522 args = skip_spaces (args);
15523 if (*args && strncasecmp (args, "all", 3) == 0)
15524 {
15525 struct breakpoint *b;
15526
15527 args += 3; /* Skip special argument "all". */
15528 if (*args)
15529 error (_("Junk at end of arguments."));
15530
15531 ALL_TRACEPOINTS (b)
15532 {
15533 t1 = (struct tracepoint *) b;
15534 trace_pass_set_count (t1, count, from_tty);
15535 }
15536 }
15537 else if (*args == '\0')
15538 {
15539 t1 = get_tracepoint_by_number (&args, NULL);
15540 if (t1)
15541 trace_pass_set_count (t1, count, from_tty);
15542 }
15543 else
15544 {
15545 struct get_number_or_range_state state;
15546
15547 init_number_or_range (&state, args);
15548 while (!state.finished)
15549 {
15550 t1 = get_tracepoint_by_number (&args, &state);
15551 if (t1)
15552 trace_pass_set_count (t1, count, from_tty);
15553 }
15554 }
15555 }
15556
15557 struct tracepoint *
15558 get_tracepoint (int num)
15559 {
15560 struct breakpoint *t;
15561
15562 ALL_TRACEPOINTS (t)
15563 if (t->number == num)
15564 return (struct tracepoint *) t;
15565
15566 return NULL;
15567 }
15568
15569 /* Find the tracepoint with the given target-side number (which may be
15570 different from the tracepoint number after disconnecting and
15571 reconnecting). */
15572
15573 struct tracepoint *
15574 get_tracepoint_by_number_on_target (int num)
15575 {
15576 struct breakpoint *b;
15577
15578 ALL_TRACEPOINTS (b)
15579 {
15580 struct tracepoint *t = (struct tracepoint *) b;
15581
15582 if (t->number_on_target == num)
15583 return t;
15584 }
15585
15586 return NULL;
15587 }
15588
15589 /* Utility: parse a tracepoint number and look it up in the list.
15590 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15591 If the argument is missing, the most recent tracepoint
15592 (tracepoint_count) is returned. */
15593
15594 struct tracepoint *
15595 get_tracepoint_by_number (char **arg,
15596 struct get_number_or_range_state *state)
15597 {
15598 struct breakpoint *t;
15599 int tpnum;
15600 char *instring = arg == NULL ? NULL : *arg;
15601
15602 if (state)
15603 {
15604 gdb_assert (!state->finished);
15605 tpnum = get_number_or_range (state);
15606 }
15607 else if (arg == NULL || *arg == NULL || ! **arg)
15608 tpnum = tracepoint_count;
15609 else
15610 tpnum = get_number (arg);
15611
15612 if (tpnum <= 0)
15613 {
15614 if (instring && *instring)
15615 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15616 instring);
15617 else
15618 printf_filtered (_("No previous tracepoint\n"));
15619 return NULL;
15620 }
15621
15622 ALL_TRACEPOINTS (t)
15623 if (t->number == tpnum)
15624 {
15625 return (struct tracepoint *) t;
15626 }
15627
15628 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15629 return NULL;
15630 }
15631
15632 void
15633 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15634 {
15635 if (b->thread != -1)
15636 fprintf_unfiltered (fp, " thread %d", b->thread);
15637
15638 if (b->task != 0)
15639 fprintf_unfiltered (fp, " task %d", b->task);
15640
15641 fprintf_unfiltered (fp, "\n");
15642 }
15643
15644 /* Save information on user settable breakpoints (watchpoints, etc) to
15645 a new script file named FILENAME. If FILTER is non-NULL, call it
15646 on each breakpoint and only include the ones for which it returns
15647 non-zero. */
15648
15649 static void
15650 save_breakpoints (char *filename, int from_tty,
15651 int (*filter) (const struct breakpoint *))
15652 {
15653 struct breakpoint *tp;
15654 int any = 0;
15655 struct cleanup *cleanup;
15656 struct ui_file *fp;
15657 int extra_trace_bits = 0;
15658
15659 if (filename == 0 || *filename == 0)
15660 error (_("Argument required (file name in which to save)"));
15661
15662 /* See if we have anything to save. */
15663 ALL_BREAKPOINTS (tp)
15664 {
15665 /* Skip internal and momentary breakpoints. */
15666 if (!user_breakpoint_p (tp))
15667 continue;
15668
15669 /* If we have a filter, only save the breakpoints it accepts. */
15670 if (filter && !filter (tp))
15671 continue;
15672
15673 any = 1;
15674
15675 if (is_tracepoint (tp))
15676 {
15677 extra_trace_bits = 1;
15678
15679 /* We can stop searching. */
15680 break;
15681 }
15682 }
15683
15684 if (!any)
15685 {
15686 warning (_("Nothing to save."));
15687 return;
15688 }
15689
15690 filename = tilde_expand (filename);
15691 cleanup = make_cleanup (xfree, filename);
15692 fp = gdb_fopen (filename, "w");
15693 if (!fp)
15694 error (_("Unable to open file '%s' for saving (%s)"),
15695 filename, safe_strerror (errno));
15696 make_cleanup_ui_file_delete (fp);
15697
15698 if (extra_trace_bits)
15699 save_trace_state_variables (fp);
15700
15701 ALL_BREAKPOINTS (tp)
15702 {
15703 /* Skip internal and momentary breakpoints. */
15704 if (!user_breakpoint_p (tp))
15705 continue;
15706
15707 /* If we have a filter, only save the breakpoints it accepts. */
15708 if (filter && !filter (tp))
15709 continue;
15710
15711 tp->ops->print_recreate (tp, fp);
15712
15713 /* Note, we can't rely on tp->number for anything, as we can't
15714 assume the recreated breakpoint numbers will match. Use $bpnum
15715 instead. */
15716
15717 if (tp->cond_string)
15718 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15719
15720 if (tp->ignore_count)
15721 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15722
15723 if (tp->type != bp_dprintf && tp->commands)
15724 {
15725 struct gdb_exception exception;
15726
15727 fprintf_unfiltered (fp, " commands\n");
15728
15729 ui_out_redirect (current_uiout, fp);
15730 TRY
15731 {
15732 print_command_lines (current_uiout, tp->commands->commands, 2);
15733 }
15734 CATCH (ex, RETURN_MASK_ALL)
15735 {
15736 ui_out_redirect (current_uiout, NULL);
15737 throw_exception (ex);
15738 }
15739 END_CATCH
15740
15741 ui_out_redirect (current_uiout, NULL);
15742 fprintf_unfiltered (fp, " end\n");
15743 }
15744
15745 if (tp->enable_state == bp_disabled)
15746 fprintf_unfiltered (fp, "disable $bpnum\n");
15747
15748 /* If this is a multi-location breakpoint, check if the locations
15749 should be individually disabled. Watchpoint locations are
15750 special, and not user visible. */
15751 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15752 {
15753 struct bp_location *loc;
15754 int n = 1;
15755
15756 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15757 if (!loc->enabled)
15758 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15759 }
15760 }
15761
15762 if (extra_trace_bits && *default_collect)
15763 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15764
15765 if (from_tty)
15766 printf_filtered (_("Saved to file '%s'.\n"), filename);
15767 do_cleanups (cleanup);
15768 }
15769
15770 /* The `save breakpoints' command. */
15771
15772 static void
15773 save_breakpoints_command (char *args, int from_tty)
15774 {
15775 save_breakpoints (args, from_tty, NULL);
15776 }
15777
15778 /* The `save tracepoints' command. */
15779
15780 static void
15781 save_tracepoints_command (char *args, int from_tty)
15782 {
15783 save_breakpoints (args, from_tty, is_tracepoint);
15784 }
15785
15786 /* Create a vector of all tracepoints. */
15787
15788 VEC(breakpoint_p) *
15789 all_tracepoints (void)
15790 {
15791 VEC(breakpoint_p) *tp_vec = 0;
15792 struct breakpoint *tp;
15793
15794 ALL_TRACEPOINTS (tp)
15795 {
15796 VEC_safe_push (breakpoint_p, tp_vec, tp);
15797 }
15798
15799 return tp_vec;
15800 }
15801
15802 \f
15803 /* This help string is used to consolidate all the help string for specifying
15804 locations used by several commands. */
15805
15806 #define LOCATION_HELP_STRING \
15807 "Linespecs are colon-separated lists of location parameters, such as\n\
15808 source filename, function name, label name, and line number.\n\
15809 Example: To specify the start of a label named \"the_top\" in the\n\
15810 function \"fact\" in the file \"factorial.c\", use\n\
15811 \"factorial.c:fact:the_top\".\n\
15812 \n\
15813 Address locations begin with \"*\" and specify an exact address in the\n\
15814 program. Example: To specify the fourth byte past the start function\n\
15815 \"main\", use \"*main + 4\".\n\
15816 \n\
15817 Explicit locations are similar to linespecs but use an option/argument\n\
15818 syntax to specify location parameters.\n\
15819 Example: To specify the start of the label named \"the_top\" in the\n\
15820 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15821 -function fact -label the_top\".\n"
15822
15823 /* This help string is used for the break, hbreak, tbreak and thbreak
15824 commands. It is defined as a macro to prevent duplication.
15825 COMMAND should be a string constant containing the name of the
15826 command. */
15827
15828 #define BREAK_ARGS_HELP(command) \
15829 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15830 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15831 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15832 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15833 `-probe-dtrace' (for a DTrace probe).\n\
15834 LOCATION may be a linespec, address, or explicit location as described\n\
15835 below.\n\
15836 \n\
15837 With no LOCATION, uses current execution address of the selected\n\
15838 stack frame. This is useful for breaking on return to a stack frame.\n\
15839 \n\
15840 THREADNUM is the number from \"info threads\".\n\
15841 CONDITION is a boolean expression.\n\
15842 \n" LOCATION_HELP_STRING "\n\
15843 Multiple breakpoints at one place are permitted, and useful if their\n\
15844 conditions are different.\n\
15845 \n\
15846 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15847
15848 /* List of subcommands for "catch". */
15849 static struct cmd_list_element *catch_cmdlist;
15850
15851 /* List of subcommands for "tcatch". */
15852 static struct cmd_list_element *tcatch_cmdlist;
15853
15854 void
15855 add_catch_command (char *name, char *docstring,
15856 cmd_sfunc_ftype *sfunc,
15857 completer_ftype *completer,
15858 void *user_data_catch,
15859 void *user_data_tcatch)
15860 {
15861 struct cmd_list_element *command;
15862
15863 command = add_cmd (name, class_breakpoint, NULL, docstring,
15864 &catch_cmdlist);
15865 set_cmd_sfunc (command, sfunc);
15866 set_cmd_context (command, user_data_catch);
15867 set_cmd_completer (command, completer);
15868
15869 command = add_cmd (name, class_breakpoint, NULL, docstring,
15870 &tcatch_cmdlist);
15871 set_cmd_sfunc (command, sfunc);
15872 set_cmd_context (command, user_data_tcatch);
15873 set_cmd_completer (command, completer);
15874 }
15875
15876 static void
15877 save_command (char *arg, int from_tty)
15878 {
15879 printf_unfiltered (_("\"save\" must be followed by "
15880 "the name of a save subcommand.\n"));
15881 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15882 }
15883
15884 struct breakpoint *
15885 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15886 void *data)
15887 {
15888 struct breakpoint *b, *b_tmp;
15889
15890 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15891 {
15892 if ((*callback) (b, data))
15893 return b;
15894 }
15895
15896 return NULL;
15897 }
15898
15899 /* Zero if any of the breakpoint's locations could be a location where
15900 functions have been inlined, nonzero otherwise. */
15901
15902 static int
15903 is_non_inline_function (struct breakpoint *b)
15904 {
15905 /* The shared library event breakpoint is set on the address of a
15906 non-inline function. */
15907 if (b->type == bp_shlib_event)
15908 return 1;
15909
15910 return 0;
15911 }
15912
15913 /* Nonzero if the specified PC cannot be a location where functions
15914 have been inlined. */
15915
15916 int
15917 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15918 const struct target_waitstatus *ws)
15919 {
15920 struct breakpoint *b;
15921 struct bp_location *bl;
15922
15923 ALL_BREAKPOINTS (b)
15924 {
15925 if (!is_non_inline_function (b))
15926 continue;
15927
15928 for (bl = b->loc; bl != NULL; bl = bl->next)
15929 {
15930 if (!bl->shlib_disabled
15931 && bpstat_check_location (bl, aspace, pc, ws))
15932 return 1;
15933 }
15934 }
15935
15936 return 0;
15937 }
15938
15939 /* Remove any references to OBJFILE which is going to be freed. */
15940
15941 void
15942 breakpoint_free_objfile (struct objfile *objfile)
15943 {
15944 struct bp_location **locp, *loc;
15945
15946 ALL_BP_LOCATIONS (loc, locp)
15947 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15948 loc->symtab = NULL;
15949 }
15950
15951 void
15952 initialize_breakpoint_ops (void)
15953 {
15954 static int initialized = 0;
15955
15956 struct breakpoint_ops *ops;
15957
15958 if (initialized)
15959 return;
15960 initialized = 1;
15961
15962 /* The breakpoint_ops structure to be inherit by all kinds of
15963 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15964 internal and momentary breakpoints, etc.). */
15965 ops = &bkpt_base_breakpoint_ops;
15966 *ops = base_breakpoint_ops;
15967 ops->re_set = bkpt_re_set;
15968 ops->insert_location = bkpt_insert_location;
15969 ops->remove_location = bkpt_remove_location;
15970 ops->breakpoint_hit = bkpt_breakpoint_hit;
15971 ops->create_sals_from_location = bkpt_create_sals_from_location;
15972 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15973 ops->decode_location = bkpt_decode_location;
15974
15975 /* The breakpoint_ops structure to be used in regular breakpoints. */
15976 ops = &bkpt_breakpoint_ops;
15977 *ops = bkpt_base_breakpoint_ops;
15978 ops->re_set = bkpt_re_set;
15979 ops->resources_needed = bkpt_resources_needed;
15980 ops->print_it = bkpt_print_it;
15981 ops->print_mention = bkpt_print_mention;
15982 ops->print_recreate = bkpt_print_recreate;
15983
15984 /* Ranged breakpoints. */
15985 ops = &ranged_breakpoint_ops;
15986 *ops = bkpt_breakpoint_ops;
15987 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15988 ops->resources_needed = resources_needed_ranged_breakpoint;
15989 ops->print_it = print_it_ranged_breakpoint;
15990 ops->print_one = print_one_ranged_breakpoint;
15991 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15992 ops->print_mention = print_mention_ranged_breakpoint;
15993 ops->print_recreate = print_recreate_ranged_breakpoint;
15994
15995 /* Internal breakpoints. */
15996 ops = &internal_breakpoint_ops;
15997 *ops = bkpt_base_breakpoint_ops;
15998 ops->re_set = internal_bkpt_re_set;
15999 ops->check_status = internal_bkpt_check_status;
16000 ops->print_it = internal_bkpt_print_it;
16001 ops->print_mention = internal_bkpt_print_mention;
16002
16003 /* Momentary breakpoints. */
16004 ops = &momentary_breakpoint_ops;
16005 *ops = bkpt_base_breakpoint_ops;
16006 ops->re_set = momentary_bkpt_re_set;
16007 ops->check_status = momentary_bkpt_check_status;
16008 ops->print_it = momentary_bkpt_print_it;
16009 ops->print_mention = momentary_bkpt_print_mention;
16010
16011 /* Momentary breakpoints for bp_longjmp and bp_exception. */
16012 ops = &longjmp_breakpoint_ops;
16013 *ops = momentary_breakpoint_ops;
16014 ops->dtor = longjmp_bkpt_dtor;
16015
16016 /* Probe breakpoints. */
16017 ops = &bkpt_probe_breakpoint_ops;
16018 *ops = bkpt_breakpoint_ops;
16019 ops->insert_location = bkpt_probe_insert_location;
16020 ops->remove_location = bkpt_probe_remove_location;
16021 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
16022 ops->decode_location = bkpt_probe_decode_location;
16023
16024 /* Watchpoints. */
16025 ops = &watchpoint_breakpoint_ops;
16026 *ops = base_breakpoint_ops;
16027 ops->dtor = dtor_watchpoint;
16028 ops->re_set = re_set_watchpoint;
16029 ops->insert_location = insert_watchpoint;
16030 ops->remove_location = remove_watchpoint;
16031 ops->breakpoint_hit = breakpoint_hit_watchpoint;
16032 ops->check_status = check_status_watchpoint;
16033 ops->resources_needed = resources_needed_watchpoint;
16034 ops->works_in_software_mode = works_in_software_mode_watchpoint;
16035 ops->print_it = print_it_watchpoint;
16036 ops->print_mention = print_mention_watchpoint;
16037 ops->print_recreate = print_recreate_watchpoint;
16038 ops->explains_signal = explains_signal_watchpoint;
16039
16040 /* Masked watchpoints. */
16041 ops = &masked_watchpoint_breakpoint_ops;
16042 *ops = watchpoint_breakpoint_ops;
16043 ops->insert_location = insert_masked_watchpoint;
16044 ops->remove_location = remove_masked_watchpoint;
16045 ops->resources_needed = resources_needed_masked_watchpoint;
16046 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
16047 ops->print_it = print_it_masked_watchpoint;
16048 ops->print_one_detail = print_one_detail_masked_watchpoint;
16049 ops->print_mention = print_mention_masked_watchpoint;
16050 ops->print_recreate = print_recreate_masked_watchpoint;
16051
16052 /* Tracepoints. */
16053 ops = &tracepoint_breakpoint_ops;
16054 *ops = base_breakpoint_ops;
16055 ops->re_set = tracepoint_re_set;
16056 ops->breakpoint_hit = tracepoint_breakpoint_hit;
16057 ops->print_one_detail = tracepoint_print_one_detail;
16058 ops->print_mention = tracepoint_print_mention;
16059 ops->print_recreate = tracepoint_print_recreate;
16060 ops->create_sals_from_location = tracepoint_create_sals_from_location;
16061 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
16062 ops->decode_location = tracepoint_decode_location;
16063
16064 /* Probe tracepoints. */
16065 ops = &tracepoint_probe_breakpoint_ops;
16066 *ops = tracepoint_breakpoint_ops;
16067 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
16068 ops->decode_location = tracepoint_probe_decode_location;
16069
16070 /* Static tracepoints with marker (`-m'). */
16071 ops = &strace_marker_breakpoint_ops;
16072 *ops = tracepoint_breakpoint_ops;
16073 ops->create_sals_from_location = strace_marker_create_sals_from_location;
16074 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
16075 ops->decode_location = strace_marker_decode_location;
16076
16077 /* Fork catchpoints. */
16078 ops = &catch_fork_breakpoint_ops;
16079 *ops = base_breakpoint_ops;
16080 ops->insert_location = insert_catch_fork;
16081 ops->remove_location = remove_catch_fork;
16082 ops->breakpoint_hit = breakpoint_hit_catch_fork;
16083 ops->print_it = print_it_catch_fork;
16084 ops->print_one = print_one_catch_fork;
16085 ops->print_mention = print_mention_catch_fork;
16086 ops->print_recreate = print_recreate_catch_fork;
16087
16088 /* Vfork catchpoints. */
16089 ops = &catch_vfork_breakpoint_ops;
16090 *ops = base_breakpoint_ops;
16091 ops->insert_location = insert_catch_vfork;
16092 ops->remove_location = remove_catch_vfork;
16093 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
16094 ops->print_it = print_it_catch_vfork;
16095 ops->print_one = print_one_catch_vfork;
16096 ops->print_mention = print_mention_catch_vfork;
16097 ops->print_recreate = print_recreate_catch_vfork;
16098
16099 /* Exec catchpoints. */
16100 ops = &catch_exec_breakpoint_ops;
16101 *ops = base_breakpoint_ops;
16102 ops->dtor = dtor_catch_exec;
16103 ops->insert_location = insert_catch_exec;
16104 ops->remove_location = remove_catch_exec;
16105 ops->breakpoint_hit = breakpoint_hit_catch_exec;
16106 ops->print_it = print_it_catch_exec;
16107 ops->print_one = print_one_catch_exec;
16108 ops->print_mention = print_mention_catch_exec;
16109 ops->print_recreate = print_recreate_catch_exec;
16110
16111 /* Solib-related catchpoints. */
16112 ops = &catch_solib_breakpoint_ops;
16113 *ops = base_breakpoint_ops;
16114 ops->dtor = dtor_catch_solib;
16115 ops->insert_location = insert_catch_solib;
16116 ops->remove_location = remove_catch_solib;
16117 ops->breakpoint_hit = breakpoint_hit_catch_solib;
16118 ops->check_status = check_status_catch_solib;
16119 ops->print_it = print_it_catch_solib;
16120 ops->print_one = print_one_catch_solib;
16121 ops->print_mention = print_mention_catch_solib;
16122 ops->print_recreate = print_recreate_catch_solib;
16123
16124 ops = &dprintf_breakpoint_ops;
16125 *ops = bkpt_base_breakpoint_ops;
16126 ops->re_set = dprintf_re_set;
16127 ops->resources_needed = bkpt_resources_needed;
16128 ops->print_it = bkpt_print_it;
16129 ops->print_mention = bkpt_print_mention;
16130 ops->print_recreate = dprintf_print_recreate;
16131 ops->after_condition_true = dprintf_after_condition_true;
16132 ops->breakpoint_hit = dprintf_breakpoint_hit;
16133 }
16134
16135 /* Chain containing all defined "enable breakpoint" subcommands. */
16136
16137 static struct cmd_list_element *enablebreaklist = NULL;
16138
16139 void
16140 _initialize_breakpoint (void)
16141 {
16142 struct cmd_list_element *c;
16143
16144 initialize_breakpoint_ops ();
16145
16146 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
16147 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
16148 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
16149
16150 breakpoint_objfile_key
16151 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
16152
16153 breakpoint_chain = 0;
16154 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
16155 before a breakpoint is set. */
16156 breakpoint_count = 0;
16157
16158 tracepoint_count = 0;
16159
16160 add_com ("ignore", class_breakpoint, ignore_command, _("\
16161 Set ignore-count of breakpoint number N to COUNT.\n\
16162 Usage is `ignore N COUNT'."));
16163
16164 add_com ("commands", class_breakpoint, commands_command, _("\
16165 Set commands to be executed when a breakpoint is hit.\n\
16166 Give breakpoint number as argument after \"commands\".\n\
16167 With no argument, the targeted breakpoint is the last one set.\n\
16168 The commands themselves follow starting on the next line.\n\
16169 Type a line containing \"end\" to indicate the end of them.\n\
16170 Give \"silent\" as the first line to make the breakpoint silent;\n\
16171 then no output is printed when it is hit, except what the commands print."));
16172
16173 c = add_com ("condition", class_breakpoint, condition_command, _("\
16174 Specify breakpoint number N to break only if COND is true.\n\
16175 Usage is `condition N COND', where N is an integer and COND is an\n\
16176 expression to be evaluated whenever breakpoint N is reached."));
16177 set_cmd_completer (c, condition_completer);
16178
16179 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16180 Set a temporary breakpoint.\n\
16181 Like \"break\" except the breakpoint is only temporary,\n\
16182 so it will be deleted when hit. Equivalent to \"break\" followed\n\
16183 by using \"enable delete\" on the breakpoint number.\n\
16184 \n"
16185 BREAK_ARGS_HELP ("tbreak")));
16186 set_cmd_completer (c, location_completer);
16187
16188 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16189 Set a hardware assisted breakpoint.\n\
16190 Like \"break\" except the breakpoint requires hardware support,\n\
16191 some target hardware may not have this support.\n\
16192 \n"
16193 BREAK_ARGS_HELP ("hbreak")));
16194 set_cmd_completer (c, location_completer);
16195
16196 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16197 Set a temporary hardware assisted breakpoint.\n\
16198 Like \"hbreak\" except the breakpoint is only temporary,\n\
16199 so it will be deleted when hit.\n\
16200 \n"
16201 BREAK_ARGS_HELP ("thbreak")));
16202 set_cmd_completer (c, location_completer);
16203
16204 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16205 Enable some breakpoints.\n\
16206 Give breakpoint numbers (separated by spaces) as arguments.\n\
16207 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16208 This is used to cancel the effect of the \"disable\" command.\n\
16209 With a subcommand you can enable temporarily."),
16210 &enablelist, "enable ", 1, &cmdlist);
16211
16212 add_com_alias ("en", "enable", class_breakpoint, 1);
16213
16214 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16215 Enable some breakpoints.\n\
16216 Give breakpoint numbers (separated by spaces) as arguments.\n\
16217 This is used to cancel the effect of the \"disable\" command.\n\
16218 May be abbreviated to simply \"enable\".\n"),
16219 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16220
16221 add_cmd ("once", no_class, enable_once_command, _("\
16222 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16223 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16224 &enablebreaklist);
16225
16226 add_cmd ("delete", no_class, enable_delete_command, _("\
16227 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16228 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16229 &enablebreaklist);
16230
16231 add_cmd ("count", no_class, enable_count_command, _("\
16232 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16233 If a breakpoint is hit while enabled in this fashion,\n\
16234 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16235 &enablebreaklist);
16236
16237 add_cmd ("delete", no_class, enable_delete_command, _("\
16238 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16239 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16240 &enablelist);
16241
16242 add_cmd ("once", no_class, enable_once_command, _("\
16243 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16244 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16245 &enablelist);
16246
16247 add_cmd ("count", no_class, enable_count_command, _("\
16248 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16249 If a breakpoint is hit while enabled in this fashion,\n\
16250 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16251 &enablelist);
16252
16253 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16254 Disable some breakpoints.\n\
16255 Arguments are breakpoint numbers with spaces in between.\n\
16256 To disable all breakpoints, give no argument.\n\
16257 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16258 &disablelist, "disable ", 1, &cmdlist);
16259 add_com_alias ("dis", "disable", class_breakpoint, 1);
16260 add_com_alias ("disa", "disable", class_breakpoint, 1);
16261
16262 add_cmd ("breakpoints", class_alias, disable_command, _("\
16263 Disable some breakpoints.\n\
16264 Arguments are breakpoint numbers with spaces in between.\n\
16265 To disable all breakpoints, give no argument.\n\
16266 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16267 This command may be abbreviated \"disable\"."),
16268 &disablelist);
16269
16270 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16271 Delete some breakpoints or auto-display expressions.\n\
16272 Arguments are breakpoint numbers with spaces in between.\n\
16273 To delete all breakpoints, give no argument.\n\
16274 \n\
16275 Also a prefix command for deletion of other GDB objects.\n\
16276 The \"unset\" command is also an alias for \"delete\"."),
16277 &deletelist, "delete ", 1, &cmdlist);
16278 add_com_alias ("d", "delete", class_breakpoint, 1);
16279 add_com_alias ("del", "delete", class_breakpoint, 1);
16280
16281 add_cmd ("breakpoints", class_alias, delete_command, _("\
16282 Delete some breakpoints or auto-display expressions.\n\
16283 Arguments are breakpoint numbers with spaces in between.\n\
16284 To delete all breakpoints, give no argument.\n\
16285 This command may be abbreviated \"delete\"."),
16286 &deletelist);
16287
16288 add_com ("clear", class_breakpoint, clear_command, _("\
16289 Clear breakpoint at specified location.\n\
16290 Argument may be a linespec, explicit, or address location as described below.\n\
16291 \n\
16292 With no argument, clears all breakpoints in the line that the selected frame\n\
16293 is executing in.\n"
16294 "\n" LOCATION_HELP_STRING "\n\
16295 See also the \"delete\" command which clears breakpoints by number."));
16296 add_com_alias ("cl", "clear", class_breakpoint, 1);
16297
16298 c = add_com ("break", class_breakpoint, break_command, _("\
16299 Set breakpoint at specified location.\n"
16300 BREAK_ARGS_HELP ("break")));
16301 set_cmd_completer (c, location_completer);
16302
16303 add_com_alias ("b", "break", class_run, 1);
16304 add_com_alias ("br", "break", class_run, 1);
16305 add_com_alias ("bre", "break", class_run, 1);
16306 add_com_alias ("brea", "break", class_run, 1);
16307
16308 if (dbx_commands)
16309 {
16310 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16311 Break in function/address or break at a line in the current file."),
16312 &stoplist, "stop ", 1, &cmdlist);
16313 add_cmd ("in", class_breakpoint, stopin_command,
16314 _("Break in function or address."), &stoplist);
16315 add_cmd ("at", class_breakpoint, stopat_command,
16316 _("Break at a line in the current file."), &stoplist);
16317 add_com ("status", class_info, breakpoints_info, _("\
16318 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16319 The \"Type\" column indicates one of:\n\
16320 \tbreakpoint - normal breakpoint\n\
16321 \twatchpoint - watchpoint\n\
16322 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16323 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16324 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16325 address and file/line number respectively.\n\
16326 \n\
16327 Convenience variable \"$_\" and default examine address for \"x\"\n\
16328 are set to the address of the last breakpoint listed unless the command\n\
16329 is prefixed with \"server \".\n\n\
16330 Convenience variable \"$bpnum\" contains the number of the last\n\
16331 breakpoint set."));
16332 }
16333
16334 add_info ("breakpoints", breakpoints_info, _("\
16335 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16336 The \"Type\" column indicates one of:\n\
16337 \tbreakpoint - normal breakpoint\n\
16338 \twatchpoint - watchpoint\n\
16339 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16340 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16341 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16342 address and file/line number respectively.\n\
16343 \n\
16344 Convenience variable \"$_\" and default examine address for \"x\"\n\
16345 are set to the address of the last breakpoint listed unless the command\n\
16346 is prefixed with \"server \".\n\n\
16347 Convenience variable \"$bpnum\" contains the number of the last\n\
16348 breakpoint set."));
16349
16350 add_info_alias ("b", "breakpoints", 1);
16351
16352 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16353 Status of all breakpoints, or breakpoint number NUMBER.\n\
16354 The \"Type\" column indicates one of:\n\
16355 \tbreakpoint - normal breakpoint\n\
16356 \twatchpoint - watchpoint\n\
16357 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16358 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16359 \tuntil - internal breakpoint used by the \"until\" command\n\
16360 \tfinish - internal breakpoint used by the \"finish\" command\n\
16361 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16362 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16363 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16364 address and file/line number respectively.\n\
16365 \n\
16366 Convenience variable \"$_\" and default examine address for \"x\"\n\
16367 are set to the address of the last breakpoint listed unless the command\n\
16368 is prefixed with \"server \".\n\n\
16369 Convenience variable \"$bpnum\" contains the number of the last\n\
16370 breakpoint set."),
16371 &maintenanceinfolist);
16372
16373 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16374 Set catchpoints to catch events."),
16375 &catch_cmdlist, "catch ",
16376 0/*allow-unknown*/, &cmdlist);
16377
16378 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16379 Set temporary catchpoints to catch events."),
16380 &tcatch_cmdlist, "tcatch ",
16381 0/*allow-unknown*/, &cmdlist);
16382
16383 add_catch_command ("fork", _("Catch calls to fork."),
16384 catch_fork_command_1,
16385 NULL,
16386 (void *) (uintptr_t) catch_fork_permanent,
16387 (void *) (uintptr_t) catch_fork_temporary);
16388 add_catch_command ("vfork", _("Catch calls to vfork."),
16389 catch_fork_command_1,
16390 NULL,
16391 (void *) (uintptr_t) catch_vfork_permanent,
16392 (void *) (uintptr_t) catch_vfork_temporary);
16393 add_catch_command ("exec", _("Catch calls to exec."),
16394 catch_exec_command_1,
16395 NULL,
16396 CATCH_PERMANENT,
16397 CATCH_TEMPORARY);
16398 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16399 Usage: catch load [REGEX]\n\
16400 If REGEX is given, only stop for libraries matching the regular expression."),
16401 catch_load_command_1,
16402 NULL,
16403 CATCH_PERMANENT,
16404 CATCH_TEMPORARY);
16405 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16406 Usage: catch unload [REGEX]\n\
16407 If REGEX is given, only stop for libraries matching the regular expression."),
16408 catch_unload_command_1,
16409 NULL,
16410 CATCH_PERMANENT,
16411 CATCH_TEMPORARY);
16412
16413 c = add_com ("watch", class_breakpoint, watch_command, _("\
16414 Set a watchpoint for an expression.\n\
16415 Usage: watch [-l|-location] EXPRESSION\n\
16416 A watchpoint stops execution of your program whenever the value of\n\
16417 an expression changes.\n\
16418 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16419 the memory to which it refers."));
16420 set_cmd_completer (c, expression_completer);
16421
16422 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16423 Set a read watchpoint for an expression.\n\
16424 Usage: rwatch [-l|-location] EXPRESSION\n\
16425 A watchpoint stops execution of your program whenever the value of\n\
16426 an expression is read.\n\
16427 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16428 the memory to which it refers."));
16429 set_cmd_completer (c, expression_completer);
16430
16431 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16432 Set a watchpoint for an expression.\n\
16433 Usage: awatch [-l|-location] EXPRESSION\n\
16434 A watchpoint stops execution of your program whenever the value of\n\
16435 an expression is either read or written.\n\
16436 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16437 the memory to which it refers."));
16438 set_cmd_completer (c, expression_completer);
16439
16440 add_info ("watchpoints", watchpoints_info, _("\
16441 Status of specified watchpoints (all watchpoints if no argument)."));
16442
16443 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16444 respond to changes - contrary to the description. */
16445 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16446 &can_use_hw_watchpoints, _("\
16447 Set debugger's willingness to use watchpoint hardware."), _("\
16448 Show debugger's willingness to use watchpoint hardware."), _("\
16449 If zero, gdb will not use hardware for new watchpoints, even if\n\
16450 such is available. (However, any hardware watchpoints that were\n\
16451 created before setting this to nonzero, will continue to use watchpoint\n\
16452 hardware.)"),
16453 NULL,
16454 show_can_use_hw_watchpoints,
16455 &setlist, &showlist);
16456
16457 can_use_hw_watchpoints = 1;
16458
16459 /* Tracepoint manipulation commands. */
16460
16461 c = add_com ("trace", class_breakpoint, trace_command, _("\
16462 Set a tracepoint at specified location.\n\
16463 \n"
16464 BREAK_ARGS_HELP ("trace") "\n\
16465 Do \"help tracepoints\" for info on other tracepoint commands."));
16466 set_cmd_completer (c, location_completer);
16467
16468 add_com_alias ("tp", "trace", class_alias, 0);
16469 add_com_alias ("tr", "trace", class_alias, 1);
16470 add_com_alias ("tra", "trace", class_alias, 1);
16471 add_com_alias ("trac", "trace", class_alias, 1);
16472
16473 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16474 Set a fast tracepoint at specified location.\n\
16475 \n"
16476 BREAK_ARGS_HELP ("ftrace") "\n\
16477 Do \"help tracepoints\" for info on other tracepoint commands."));
16478 set_cmd_completer (c, location_completer);
16479
16480 c = add_com ("strace", class_breakpoint, strace_command, _("\
16481 Set a static tracepoint at location or marker.\n\
16482 \n\
16483 strace [LOCATION] [if CONDITION]\n\
16484 LOCATION may be a linespec, explicit, or address location (described below) \n\
16485 or -m MARKER_ID.\n\n\
16486 If a marker id is specified, probe the marker with that name. With\n\
16487 no LOCATION, uses current execution address of the selected stack frame.\n\
16488 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16489 This collects arbitrary user data passed in the probe point call to the\n\
16490 tracing library. You can inspect it when analyzing the trace buffer,\n\
16491 by printing the $_sdata variable like any other convenience variable.\n\
16492 \n\
16493 CONDITION is a boolean expression.\n\
16494 \n" LOCATION_HELP_STRING "\n\
16495 Multiple tracepoints at one place are permitted, and useful if their\n\
16496 conditions are different.\n\
16497 \n\
16498 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16499 Do \"help tracepoints\" for info on other tracepoint commands."));
16500 set_cmd_completer (c, location_completer);
16501
16502 add_info ("tracepoints", tracepoints_info, _("\
16503 Status of specified tracepoints (all tracepoints if no argument).\n\
16504 Convenience variable \"$tpnum\" contains the number of the\n\
16505 last tracepoint set."));
16506
16507 add_info_alias ("tp", "tracepoints", 1);
16508
16509 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16510 Delete specified tracepoints.\n\
16511 Arguments are tracepoint numbers, separated by spaces.\n\
16512 No argument means delete all tracepoints."),
16513 &deletelist);
16514 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16515
16516 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16517 Disable specified tracepoints.\n\
16518 Arguments are tracepoint numbers, separated by spaces.\n\
16519 No argument means disable all tracepoints."),
16520 &disablelist);
16521 deprecate_cmd (c, "disable");
16522
16523 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16524 Enable specified tracepoints.\n\
16525 Arguments are tracepoint numbers, separated by spaces.\n\
16526 No argument means enable all tracepoints."),
16527 &enablelist);
16528 deprecate_cmd (c, "enable");
16529
16530 add_com ("passcount", class_trace, trace_pass_command, _("\
16531 Set the passcount for a tracepoint.\n\
16532 The trace will end when the tracepoint has been passed 'count' times.\n\
16533 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16534 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16535
16536 add_prefix_cmd ("save", class_breakpoint, save_command,
16537 _("Save breakpoint definitions as a script."),
16538 &save_cmdlist, "save ",
16539 0/*allow-unknown*/, &cmdlist);
16540
16541 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16542 Save current breakpoint definitions as a script.\n\
16543 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16544 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16545 session to restore them."),
16546 &save_cmdlist);
16547 set_cmd_completer (c, filename_completer);
16548
16549 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16550 Save current tracepoint definitions as a script.\n\
16551 Use the 'source' command in another debug session to restore them."),
16552 &save_cmdlist);
16553 set_cmd_completer (c, filename_completer);
16554
16555 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16556 deprecate_cmd (c, "save tracepoints");
16557
16558 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16559 Breakpoint specific settings\n\
16560 Configure various breakpoint-specific variables such as\n\
16561 pending breakpoint behavior"),
16562 &breakpoint_set_cmdlist, "set breakpoint ",
16563 0/*allow-unknown*/, &setlist);
16564 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16565 Breakpoint specific settings\n\
16566 Configure various breakpoint-specific variables such as\n\
16567 pending breakpoint behavior"),
16568 &breakpoint_show_cmdlist, "show breakpoint ",
16569 0/*allow-unknown*/, &showlist);
16570
16571 add_setshow_auto_boolean_cmd ("pending", no_class,
16572 &pending_break_support, _("\
16573 Set debugger's behavior regarding pending breakpoints."), _("\
16574 Show debugger's behavior regarding pending breakpoints."), _("\
16575 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16576 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16577 an error. If auto, an unrecognized breakpoint location results in a\n\
16578 user-query to see if a pending breakpoint should be created."),
16579 NULL,
16580 show_pending_break_support,
16581 &breakpoint_set_cmdlist,
16582 &breakpoint_show_cmdlist);
16583
16584 pending_break_support = AUTO_BOOLEAN_AUTO;
16585
16586 add_setshow_boolean_cmd ("auto-hw", no_class,
16587 &automatic_hardware_breakpoints, _("\
16588 Set automatic usage of hardware breakpoints."), _("\
16589 Show automatic usage of hardware breakpoints."), _("\
16590 If set, the debugger will automatically use hardware breakpoints for\n\
16591 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16592 a warning will be emitted for such breakpoints."),
16593 NULL,
16594 show_automatic_hardware_breakpoints,
16595 &breakpoint_set_cmdlist,
16596 &breakpoint_show_cmdlist);
16597
16598 add_setshow_boolean_cmd ("always-inserted", class_support,
16599 &always_inserted_mode, _("\
16600 Set mode for inserting breakpoints."), _("\
16601 Show mode for inserting breakpoints."), _("\
16602 When this mode is on, breakpoints are inserted immediately as soon as\n\
16603 they're created, kept inserted even when execution stops, and removed\n\
16604 only when the user deletes them. When this mode is off (the default),\n\
16605 breakpoints are inserted only when execution continues, and removed\n\
16606 when execution stops."),
16607 NULL,
16608 &show_always_inserted_mode,
16609 &breakpoint_set_cmdlist,
16610 &breakpoint_show_cmdlist);
16611
16612 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16613 condition_evaluation_enums,
16614 &condition_evaluation_mode_1, _("\
16615 Set mode of breakpoint condition evaluation."), _("\
16616 Show mode of breakpoint condition evaluation."), _("\
16617 When this is set to \"host\", breakpoint conditions will be\n\
16618 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16619 breakpoint conditions will be downloaded to the target (if the target\n\
16620 supports such feature) and conditions will be evaluated on the target's side.\n\
16621 If this is set to \"auto\" (default), this will be automatically set to\n\
16622 \"target\" if it supports condition evaluation, otherwise it will\n\
16623 be set to \"gdb\""),
16624 &set_condition_evaluation_mode,
16625 &show_condition_evaluation_mode,
16626 &breakpoint_set_cmdlist,
16627 &breakpoint_show_cmdlist);
16628
16629 add_com ("break-range", class_breakpoint, break_range_command, _("\
16630 Set a breakpoint for an address range.\n\
16631 break-range START-LOCATION, END-LOCATION\n\
16632 where START-LOCATION and END-LOCATION can be one of the following:\n\
16633 LINENUM, for that line in the current file,\n\
16634 FILE:LINENUM, for that line in that file,\n\
16635 +OFFSET, for that number of lines after the current line\n\
16636 or the start of the range\n\
16637 FUNCTION, for the first line in that function,\n\
16638 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16639 *ADDRESS, for the instruction at that address.\n\
16640 \n\
16641 The breakpoint will stop execution of the inferior whenever it executes\n\
16642 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16643 range (including START-LOCATION and END-LOCATION)."));
16644
16645 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16646 Set a dynamic printf at specified location.\n\
16647 dprintf location,format string,arg1,arg2,...\n\
16648 location may be a linespec, explicit, or address location.\n"
16649 "\n" LOCATION_HELP_STRING));
16650 set_cmd_completer (c, location_completer);
16651
16652 add_setshow_enum_cmd ("dprintf-style", class_support,
16653 dprintf_style_enums, &dprintf_style, _("\
16654 Set the style of usage for dynamic printf."), _("\
16655 Show the style of usage for dynamic printf."), _("\
16656 This setting chooses how GDB will do a dynamic printf.\n\
16657 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16658 console, as with the \"printf\" command.\n\
16659 If the value is \"call\", the print is done by calling a function in your\n\
16660 program; by default printf(), but you can choose a different function or\n\
16661 output stream by setting dprintf-function and dprintf-channel."),
16662 update_dprintf_commands, NULL,
16663 &setlist, &showlist);
16664
16665 dprintf_function = xstrdup ("printf");
16666 add_setshow_string_cmd ("dprintf-function", class_support,
16667 &dprintf_function, _("\
16668 Set the function to use for dynamic printf"), _("\
16669 Show the function to use for dynamic printf"), NULL,
16670 update_dprintf_commands, NULL,
16671 &setlist, &showlist);
16672
16673 dprintf_channel = xstrdup ("");
16674 add_setshow_string_cmd ("dprintf-channel", class_support,
16675 &dprintf_channel, _("\
16676 Set the channel to use for dynamic printf"), _("\
16677 Show the channel to use for dynamic printf"), NULL,
16678 update_dprintf_commands, NULL,
16679 &setlist, &showlist);
16680
16681 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16682 &disconnected_dprintf, _("\
16683 Set whether dprintf continues after GDB disconnects."), _("\
16684 Show whether dprintf continues after GDB disconnects."), _("\
16685 Use this to let dprintf commands continue to hit and produce output\n\
16686 even if GDB disconnects or detaches from the target."),
16687 NULL,
16688 NULL,
16689 &setlist, &showlist);
16690
16691 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16692 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16693 (target agent only) This is useful for formatted output in user-defined commands."));
16694
16695 automatic_hardware_breakpoints = 1;
16696
16697 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16698 observer_attach_thread_exit (remove_threaded_breakpoints);
16699 }
This page took 0.397407 seconds and 4 git commands to generate.