* dwarf2read.c: Whitespace fixes for DWP file format documentation,
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "gdbthread.h"
36 #include "target.h"
37 #include "language.h"
38 #include "gdb_string.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "solib.h"
53 #include "solist.h"
54 #include "observer.h"
55 #include "exceptions.h"
56 #include "memattr.h"
57 #include "ada-lang.h"
58 #include "top.h"
59 #include "valprint.h"
60 #include "jit.h"
61 #include "xml-syscall.h"
62 #include "parser-defs.h"
63 #include "gdb_regex.h"
64 #include "probe.h"
65 #include "cli/cli-utils.h"
66 #include "continuations.h"
67 #include "stack.h"
68 #include "skip.h"
69 #include "gdb_regex.h"
70 #include "ax-gdb.h"
71 #include "dummy-frame.h"
72
73 #include "format.h"
74
75 /* readline include files */
76 #include "readline/readline.h"
77 #include "readline/history.h"
78
79 /* readline defines this. */
80 #undef savestring
81
82 #include "mi/mi-common.h"
83 #include "python/python.h"
84
85 /* Enums for exception-handling support. */
86 enum exception_event_kind
87 {
88 EX_EVENT_THROW,
89 EX_EVENT_RETHROW,
90 EX_EVENT_CATCH
91 };
92
93 /* Prototypes for local functions. */
94
95 static void enable_delete_command (char *, int);
96
97 static void enable_once_command (char *, int);
98
99 static void enable_count_command (char *, int);
100
101 static void disable_command (char *, int);
102
103 static void enable_command (char *, int);
104
105 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
106 void *),
107 void *);
108
109 static void ignore_command (char *, int);
110
111 static int breakpoint_re_set_one (void *);
112
113 static void breakpoint_re_set_default (struct breakpoint *);
114
115 static void create_sals_from_address_default (char **,
116 struct linespec_result *,
117 enum bptype, char *,
118 char **);
119
120 static void create_breakpoints_sal_default (struct gdbarch *,
121 struct linespec_result *,
122 struct linespec_sals *,
123 char *, char *, enum bptype,
124 enum bpdisp, int, int,
125 int,
126 const struct breakpoint_ops *,
127 int, int, int, unsigned);
128
129 static void decode_linespec_default (struct breakpoint *, char **,
130 struct symtabs_and_lines *);
131
132 static void clear_command (char *, int);
133
134 static void catch_command (char *, int);
135
136 static int can_use_hardware_watchpoint (struct value *);
137
138 static void break_command_1 (char *, int, int);
139
140 static void mention (struct breakpoint *);
141
142 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
143 enum bptype,
144 const struct breakpoint_ops *);
145 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
146 const struct symtab_and_line *);
147
148 /* This function is used in gdbtk sources and thus can not be made
149 static. */
150 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
151 struct symtab_and_line,
152 enum bptype,
153 const struct breakpoint_ops *);
154
155 static struct breakpoint *
156 momentary_breakpoint_from_master (struct breakpoint *orig,
157 enum bptype type,
158 const struct breakpoint_ops *ops);
159
160 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
161
162 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
163 CORE_ADDR bpaddr,
164 enum bptype bptype);
165
166 static void describe_other_breakpoints (struct gdbarch *,
167 struct program_space *, CORE_ADDR,
168 struct obj_section *, int);
169
170 static int breakpoint_address_match (struct address_space *aspace1,
171 CORE_ADDR addr1,
172 struct address_space *aspace2,
173 CORE_ADDR addr2);
174
175 static int watchpoint_locations_match (struct bp_location *loc1,
176 struct bp_location *loc2);
177
178 static int breakpoint_location_address_match (struct bp_location *bl,
179 struct address_space *aspace,
180 CORE_ADDR addr);
181
182 static void breakpoints_info (char *, int);
183
184 static void watchpoints_info (char *, int);
185
186 static int breakpoint_1 (char *, int,
187 int (*) (const struct breakpoint *));
188
189 static int breakpoint_cond_eval (void *);
190
191 static void cleanup_executing_breakpoints (void *);
192
193 static void commands_command (char *, int);
194
195 static void condition_command (char *, int);
196
197 typedef enum
198 {
199 mark_inserted,
200 mark_uninserted
201 }
202 insertion_state_t;
203
204 static int remove_breakpoint (struct bp_location *, insertion_state_t);
205 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
206
207 static enum print_stop_action print_bp_stop_message (bpstat bs);
208
209 static int watchpoint_check (void *);
210
211 static void maintenance_info_breakpoints (char *, int);
212
213 static int hw_breakpoint_used_count (void);
214
215 static int hw_watchpoint_use_count (struct breakpoint *);
216
217 static int hw_watchpoint_used_count_others (struct breakpoint *except,
218 enum bptype type,
219 int *other_type_used);
220
221 static void hbreak_command (char *, int);
222
223 static void thbreak_command (char *, int);
224
225 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
226 int count);
227
228 static void stop_command (char *arg, int from_tty);
229
230 static void stopin_command (char *arg, int from_tty);
231
232 static void stopat_command (char *arg, int from_tty);
233
234 static void tcatch_command (char *arg, int from_tty);
235
236 static void detach_single_step_breakpoints (void);
237
238 static int single_step_breakpoint_inserted_here_p (struct address_space *,
239 CORE_ADDR pc);
240
241 static void free_bp_location (struct bp_location *loc);
242 static void incref_bp_location (struct bp_location *loc);
243 static void decref_bp_location (struct bp_location **loc);
244
245 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
246
247 static void update_global_location_list (int);
248
249 static void update_global_location_list_nothrow (int);
250
251 static int is_hardware_watchpoint (const struct breakpoint *bpt);
252
253 static void insert_breakpoint_locations (void);
254
255 static int syscall_catchpoint_p (struct breakpoint *b);
256
257 static void tracepoints_info (char *, int);
258
259 static void delete_trace_command (char *, int);
260
261 static void enable_trace_command (char *, int);
262
263 static void disable_trace_command (char *, int);
264
265 static void trace_pass_command (char *, int);
266
267 static void set_tracepoint_count (int num);
268
269 static int is_masked_watchpoint (const struct breakpoint *b);
270
271 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
272
273 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
274 otherwise. */
275
276 static int strace_marker_p (struct breakpoint *b);
277
278 /* The abstract base class all breakpoint_ops structures inherit
279 from. */
280 struct breakpoint_ops base_breakpoint_ops;
281
282 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
283 that are implemented on top of software or hardware breakpoints
284 (user breakpoints, internal and momentary breakpoints, etc.). */
285 static struct breakpoint_ops bkpt_base_breakpoint_ops;
286
287 /* Internal breakpoints class type. */
288 static struct breakpoint_ops internal_breakpoint_ops;
289
290 /* Momentary breakpoints class type. */
291 static struct breakpoint_ops momentary_breakpoint_ops;
292
293 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
294 static struct breakpoint_ops longjmp_breakpoint_ops;
295
296 /* The breakpoint_ops structure to be used in regular user created
297 breakpoints. */
298 struct breakpoint_ops bkpt_breakpoint_ops;
299
300 /* Breakpoints set on probes. */
301 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
302
303 /* Dynamic printf class type. */
304 struct breakpoint_ops dprintf_breakpoint_ops;
305
306 /* The style in which to perform a dynamic printf. This is a user
307 option because different output options have different tradeoffs;
308 if GDB does the printing, there is better error handling if there
309 is a problem with any of the arguments, but using an inferior
310 function lets you have special-purpose printers and sending of
311 output to the same place as compiled-in print functions. */
312
313 static const char dprintf_style_gdb[] = "gdb";
314 static const char dprintf_style_call[] = "call";
315 static const char dprintf_style_agent[] = "agent";
316 static const char *const dprintf_style_enums[] = {
317 dprintf_style_gdb,
318 dprintf_style_call,
319 dprintf_style_agent,
320 NULL
321 };
322 static const char *dprintf_style = dprintf_style_gdb;
323
324 /* The function to use for dynamic printf if the preferred style is to
325 call into the inferior. The value is simply a string that is
326 copied into the command, so it can be anything that GDB can
327 evaluate to a callable address, not necessarily a function name. */
328
329 static char *dprintf_function = "";
330
331 /* The channel to use for dynamic printf if the preferred style is to
332 call into the inferior; if a nonempty string, it will be passed to
333 the call as the first argument, with the format string as the
334 second. As with the dprintf function, this can be anything that
335 GDB knows how to evaluate, so in addition to common choices like
336 "stderr", this could be an app-specific expression like
337 "mystreams[curlogger]". */
338
339 static char *dprintf_channel = "";
340
341 /* True if dprintf commands should continue to operate even if GDB
342 has disconnected. */
343 static int disconnected_dprintf = 1;
344
345 /* A reference-counted struct command_line. This lets multiple
346 breakpoints share a single command list. */
347 struct counted_command_line
348 {
349 /* The reference count. */
350 int refc;
351
352 /* The command list. */
353 struct command_line *commands;
354 };
355
356 struct command_line *
357 breakpoint_commands (struct breakpoint *b)
358 {
359 return b->commands ? b->commands->commands : NULL;
360 }
361
362 /* Flag indicating that a command has proceeded the inferior past the
363 current breakpoint. */
364
365 static int breakpoint_proceeded;
366
367 const char *
368 bpdisp_text (enum bpdisp disp)
369 {
370 /* NOTE: the following values are a part of MI protocol and
371 represent values of 'disp' field returned when inferior stops at
372 a breakpoint. */
373 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
374
375 return bpdisps[(int) disp];
376 }
377
378 /* Prototypes for exported functions. */
379 /* If FALSE, gdb will not use hardware support for watchpoints, even
380 if such is available. */
381 static int can_use_hw_watchpoints;
382
383 static void
384 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
385 struct cmd_list_element *c,
386 const char *value)
387 {
388 fprintf_filtered (file,
389 _("Debugger's willingness to use "
390 "watchpoint hardware is %s.\n"),
391 value);
392 }
393
394 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
395 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
396 for unrecognized breakpoint locations.
397 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
398 static enum auto_boolean pending_break_support;
399 static void
400 show_pending_break_support (struct ui_file *file, int from_tty,
401 struct cmd_list_element *c,
402 const char *value)
403 {
404 fprintf_filtered (file,
405 _("Debugger's behavior regarding "
406 "pending breakpoints is %s.\n"),
407 value);
408 }
409
410 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
411 set with "break" but falling in read-only memory.
412 If 0, gdb will warn about such breakpoints, but won't automatically
413 use hardware breakpoints. */
414 static int automatic_hardware_breakpoints;
415 static void
416 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
417 struct cmd_list_element *c,
418 const char *value)
419 {
420 fprintf_filtered (file,
421 _("Automatic usage of hardware breakpoints is %s.\n"),
422 value);
423 }
424
425 /* If on, gdb will keep breakpoints inserted even as inferior is
426 stopped, and immediately insert any new breakpoints. If off, gdb
427 will insert breakpoints into inferior only when resuming it, and
428 will remove breakpoints upon stop. If auto, GDB will behave as ON
429 if in non-stop mode, and as OFF if all-stop mode.*/
430
431 static enum auto_boolean always_inserted_mode = AUTO_BOOLEAN_AUTO;
432
433 static void
434 show_always_inserted_mode (struct ui_file *file, int from_tty,
435 struct cmd_list_element *c, const char *value)
436 {
437 if (always_inserted_mode == AUTO_BOOLEAN_AUTO)
438 fprintf_filtered (file,
439 _("Always inserted breakpoint "
440 "mode is %s (currently %s).\n"),
441 value,
442 breakpoints_always_inserted_mode () ? "on" : "off");
443 else
444 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
445 value);
446 }
447
448 int
449 breakpoints_always_inserted_mode (void)
450 {
451 return (always_inserted_mode == AUTO_BOOLEAN_TRUE
452 || (always_inserted_mode == AUTO_BOOLEAN_AUTO && non_stop));
453 }
454
455 static const char condition_evaluation_both[] = "host or target";
456
457 /* Modes for breakpoint condition evaluation. */
458 static const char condition_evaluation_auto[] = "auto";
459 static const char condition_evaluation_host[] = "host";
460 static const char condition_evaluation_target[] = "target";
461 static const char *const condition_evaluation_enums[] = {
462 condition_evaluation_auto,
463 condition_evaluation_host,
464 condition_evaluation_target,
465 NULL
466 };
467
468 /* Global that holds the current mode for breakpoint condition evaluation. */
469 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
470
471 /* Global that we use to display information to the user (gets its value from
472 condition_evaluation_mode_1. */
473 static const char *condition_evaluation_mode = condition_evaluation_auto;
474
475 /* Translate a condition evaluation mode MODE into either "host"
476 or "target". This is used mostly to translate from "auto" to the
477 real setting that is being used. It returns the translated
478 evaluation mode. */
479
480 static const char *
481 translate_condition_evaluation_mode (const char *mode)
482 {
483 if (mode == condition_evaluation_auto)
484 {
485 if (target_supports_evaluation_of_breakpoint_conditions ())
486 return condition_evaluation_target;
487 else
488 return condition_evaluation_host;
489 }
490 else
491 return mode;
492 }
493
494 /* Discovers what condition_evaluation_auto translates to. */
495
496 static const char *
497 breakpoint_condition_evaluation_mode (void)
498 {
499 return translate_condition_evaluation_mode (condition_evaluation_mode);
500 }
501
502 /* Return true if GDB should evaluate breakpoint conditions or false
503 otherwise. */
504
505 static int
506 gdb_evaluates_breakpoint_condition_p (void)
507 {
508 const char *mode = breakpoint_condition_evaluation_mode ();
509
510 return (mode == condition_evaluation_host);
511 }
512
513 void _initialize_breakpoint (void);
514
515 /* Are we executing breakpoint commands? */
516 static int executing_breakpoint_commands;
517
518 /* Are overlay event breakpoints enabled? */
519 static int overlay_events_enabled;
520
521 /* See description in breakpoint.h. */
522 int target_exact_watchpoints = 0;
523
524 /* Walk the following statement or block through all breakpoints.
525 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
526 current breakpoint. */
527
528 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
529
530 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
531 for (B = breakpoint_chain; \
532 B ? (TMP=B->next, 1): 0; \
533 B = TMP)
534
535 /* Similar iterator for the low-level breakpoints. SAFE variant is
536 not provided so update_global_location_list must not be called
537 while executing the block of ALL_BP_LOCATIONS. */
538
539 #define ALL_BP_LOCATIONS(B,BP_TMP) \
540 for (BP_TMP = bp_location; \
541 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
542 BP_TMP++)
543
544 /* Iterates through locations with address ADDRESS for the currently selected
545 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
546 to where the loop should start from.
547 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
548 appropriate location to start with. */
549
550 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
551 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
552 BP_LOCP_TMP = BP_LOCP_START; \
553 BP_LOCP_START \
554 && (BP_LOCP_TMP < bp_location + bp_location_count \
555 && (*BP_LOCP_TMP)->address == ADDRESS); \
556 BP_LOCP_TMP++)
557
558 /* Iterator for tracepoints only. */
559
560 #define ALL_TRACEPOINTS(B) \
561 for (B = breakpoint_chain; B; B = B->next) \
562 if (is_tracepoint (B))
563
564 /* Chains of all breakpoints defined. */
565
566 struct breakpoint *breakpoint_chain;
567
568 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
569
570 static struct bp_location **bp_location;
571
572 /* Number of elements of BP_LOCATION. */
573
574 static unsigned bp_location_count;
575
576 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
577 ADDRESS for the current elements of BP_LOCATION which get a valid
578 result from bp_location_has_shadow. You can use it for roughly
579 limiting the subrange of BP_LOCATION to scan for shadow bytes for
580 an address you need to read. */
581
582 static CORE_ADDR bp_location_placed_address_before_address_max;
583
584 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
585 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
586 BP_LOCATION which get a valid result from bp_location_has_shadow.
587 You can use it for roughly limiting the subrange of BP_LOCATION to
588 scan for shadow bytes for an address you need to read. */
589
590 static CORE_ADDR bp_location_shadow_len_after_address_max;
591
592 /* The locations that no longer correspond to any breakpoint, unlinked
593 from bp_location array, but for which a hit may still be reported
594 by a target. */
595 VEC(bp_location_p) *moribund_locations = NULL;
596
597 /* Number of last breakpoint made. */
598
599 static int breakpoint_count;
600
601 /* The value of `breakpoint_count' before the last command that
602 created breakpoints. If the last (break-like) command created more
603 than one breakpoint, then the difference between BREAKPOINT_COUNT
604 and PREV_BREAKPOINT_COUNT is more than one. */
605 static int prev_breakpoint_count;
606
607 /* Number of last tracepoint made. */
608
609 static int tracepoint_count;
610
611 static struct cmd_list_element *breakpoint_set_cmdlist;
612 static struct cmd_list_element *breakpoint_show_cmdlist;
613 struct cmd_list_element *save_cmdlist;
614
615 /* Return whether a breakpoint is an active enabled breakpoint. */
616 static int
617 breakpoint_enabled (struct breakpoint *b)
618 {
619 return (b->enable_state == bp_enabled);
620 }
621
622 /* Set breakpoint count to NUM. */
623
624 static void
625 set_breakpoint_count (int num)
626 {
627 prev_breakpoint_count = breakpoint_count;
628 breakpoint_count = num;
629 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
630 }
631
632 /* Used by `start_rbreak_breakpoints' below, to record the current
633 breakpoint count before "rbreak" creates any breakpoint. */
634 static int rbreak_start_breakpoint_count;
635
636 /* Called at the start an "rbreak" command to record the first
637 breakpoint made. */
638
639 void
640 start_rbreak_breakpoints (void)
641 {
642 rbreak_start_breakpoint_count = breakpoint_count;
643 }
644
645 /* Called at the end of an "rbreak" command to record the last
646 breakpoint made. */
647
648 void
649 end_rbreak_breakpoints (void)
650 {
651 prev_breakpoint_count = rbreak_start_breakpoint_count;
652 }
653
654 /* Used in run_command to zero the hit count when a new run starts. */
655
656 void
657 clear_breakpoint_hit_counts (void)
658 {
659 struct breakpoint *b;
660
661 ALL_BREAKPOINTS (b)
662 b->hit_count = 0;
663 }
664
665 /* Allocate a new counted_command_line with reference count of 1.
666 The new structure owns COMMANDS. */
667
668 static struct counted_command_line *
669 alloc_counted_command_line (struct command_line *commands)
670 {
671 struct counted_command_line *result
672 = xmalloc (sizeof (struct counted_command_line));
673
674 result->refc = 1;
675 result->commands = commands;
676 return result;
677 }
678
679 /* Increment reference count. This does nothing if CMD is NULL. */
680
681 static void
682 incref_counted_command_line (struct counted_command_line *cmd)
683 {
684 if (cmd)
685 ++cmd->refc;
686 }
687
688 /* Decrement reference count. If the reference count reaches 0,
689 destroy the counted_command_line. Sets *CMDP to NULL. This does
690 nothing if *CMDP is NULL. */
691
692 static void
693 decref_counted_command_line (struct counted_command_line **cmdp)
694 {
695 if (*cmdp)
696 {
697 if (--(*cmdp)->refc == 0)
698 {
699 free_command_lines (&(*cmdp)->commands);
700 xfree (*cmdp);
701 }
702 *cmdp = NULL;
703 }
704 }
705
706 /* A cleanup function that calls decref_counted_command_line. */
707
708 static void
709 do_cleanup_counted_command_line (void *arg)
710 {
711 decref_counted_command_line (arg);
712 }
713
714 /* Create a cleanup that calls decref_counted_command_line on the
715 argument. */
716
717 static struct cleanup *
718 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
719 {
720 return make_cleanup (do_cleanup_counted_command_line, cmdp);
721 }
722
723 \f
724 /* Return the breakpoint with the specified number, or NULL
725 if the number does not refer to an existing breakpoint. */
726
727 struct breakpoint *
728 get_breakpoint (int num)
729 {
730 struct breakpoint *b;
731
732 ALL_BREAKPOINTS (b)
733 if (b->number == num)
734 return b;
735
736 return NULL;
737 }
738
739 \f
740
741 /* Mark locations as "conditions have changed" in case the target supports
742 evaluating conditions on its side. */
743
744 static void
745 mark_breakpoint_modified (struct breakpoint *b)
746 {
747 struct bp_location *loc;
748
749 /* This is only meaningful if the target is
750 evaluating conditions and if the user has
751 opted for condition evaluation on the target's
752 side. */
753 if (gdb_evaluates_breakpoint_condition_p ()
754 || !target_supports_evaluation_of_breakpoint_conditions ())
755 return;
756
757 if (!is_breakpoint (b))
758 return;
759
760 for (loc = b->loc; loc; loc = loc->next)
761 loc->condition_changed = condition_modified;
762 }
763
764 /* Mark location as "conditions have changed" in case the target supports
765 evaluating conditions on its side. */
766
767 static void
768 mark_breakpoint_location_modified (struct bp_location *loc)
769 {
770 /* This is only meaningful if the target is
771 evaluating conditions and if the user has
772 opted for condition evaluation on the target's
773 side. */
774 if (gdb_evaluates_breakpoint_condition_p ()
775 || !target_supports_evaluation_of_breakpoint_conditions ())
776
777 return;
778
779 if (!is_breakpoint (loc->owner))
780 return;
781
782 loc->condition_changed = condition_modified;
783 }
784
785 /* Sets the condition-evaluation mode using the static global
786 condition_evaluation_mode. */
787
788 static void
789 set_condition_evaluation_mode (char *args, int from_tty,
790 struct cmd_list_element *c)
791 {
792 const char *old_mode, *new_mode;
793
794 if ((condition_evaluation_mode_1 == condition_evaluation_target)
795 && !target_supports_evaluation_of_breakpoint_conditions ())
796 {
797 condition_evaluation_mode_1 = condition_evaluation_mode;
798 warning (_("Target does not support breakpoint condition evaluation.\n"
799 "Using host evaluation mode instead."));
800 return;
801 }
802
803 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
804 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
805
806 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
807 settings was "auto". */
808 condition_evaluation_mode = condition_evaluation_mode_1;
809
810 /* Only update the mode if the user picked a different one. */
811 if (new_mode != old_mode)
812 {
813 struct bp_location *loc, **loc_tmp;
814 /* If the user switched to a different evaluation mode, we
815 need to synch the changes with the target as follows:
816
817 "host" -> "target": Send all (valid) conditions to the target.
818 "target" -> "host": Remove all the conditions from the target.
819 */
820
821 if (new_mode == condition_evaluation_target)
822 {
823 /* Mark everything modified and synch conditions with the
824 target. */
825 ALL_BP_LOCATIONS (loc, loc_tmp)
826 mark_breakpoint_location_modified (loc);
827 }
828 else
829 {
830 /* Manually mark non-duplicate locations to synch conditions
831 with the target. We do this to remove all the conditions the
832 target knows about. */
833 ALL_BP_LOCATIONS (loc, loc_tmp)
834 if (is_breakpoint (loc->owner) && loc->inserted)
835 loc->needs_update = 1;
836 }
837
838 /* Do the update. */
839 update_global_location_list (1);
840 }
841
842 return;
843 }
844
845 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
846 what "auto" is translating to. */
847
848 static void
849 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
850 struct cmd_list_element *c, const char *value)
851 {
852 if (condition_evaluation_mode == condition_evaluation_auto)
853 fprintf_filtered (file,
854 _("Breakpoint condition evaluation "
855 "mode is %s (currently %s).\n"),
856 value,
857 breakpoint_condition_evaluation_mode ());
858 else
859 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
860 value);
861 }
862
863 /* A comparison function for bp_location AP and BP that is used by
864 bsearch. This comparison function only cares about addresses, unlike
865 the more general bp_location_compare function. */
866
867 static int
868 bp_location_compare_addrs (const void *ap, const void *bp)
869 {
870 struct bp_location *a = *(void **) ap;
871 struct bp_location *b = *(void **) bp;
872
873 if (a->address == b->address)
874 return 0;
875 else
876 return ((a->address > b->address) - (a->address < b->address));
877 }
878
879 /* Helper function to skip all bp_locations with addresses
880 less than ADDRESS. It returns the first bp_location that
881 is greater than or equal to ADDRESS. If none is found, just
882 return NULL. */
883
884 static struct bp_location **
885 get_first_locp_gte_addr (CORE_ADDR address)
886 {
887 struct bp_location dummy_loc;
888 struct bp_location *dummy_locp = &dummy_loc;
889 struct bp_location **locp_found = NULL;
890
891 /* Initialize the dummy location's address field. */
892 memset (&dummy_loc, 0, sizeof (struct bp_location));
893 dummy_loc.address = address;
894
895 /* Find a close match to the first location at ADDRESS. */
896 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
897 sizeof (struct bp_location **),
898 bp_location_compare_addrs);
899
900 /* Nothing was found, nothing left to do. */
901 if (locp_found == NULL)
902 return NULL;
903
904 /* We may have found a location that is at ADDRESS but is not the first in the
905 location's list. Go backwards (if possible) and locate the first one. */
906 while ((locp_found - 1) >= bp_location
907 && (*(locp_found - 1))->address == address)
908 locp_found--;
909
910 return locp_found;
911 }
912
913 void
914 set_breakpoint_condition (struct breakpoint *b, char *exp,
915 int from_tty)
916 {
917 xfree (b->cond_string);
918 b->cond_string = NULL;
919
920 if (is_watchpoint (b))
921 {
922 struct watchpoint *w = (struct watchpoint *) b;
923
924 xfree (w->cond_exp);
925 w->cond_exp = NULL;
926 }
927 else
928 {
929 struct bp_location *loc;
930
931 for (loc = b->loc; loc; loc = loc->next)
932 {
933 xfree (loc->cond);
934 loc->cond = NULL;
935
936 /* No need to free the condition agent expression
937 bytecode (if we have one). We will handle this
938 when we go through update_global_location_list. */
939 }
940 }
941
942 if (*exp == 0)
943 {
944 if (from_tty)
945 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
946 }
947 else
948 {
949 const char *arg = exp;
950
951 /* I don't know if it matters whether this is the string the user
952 typed in or the decompiled expression. */
953 b->cond_string = xstrdup (arg);
954 b->condition_not_parsed = 0;
955
956 if (is_watchpoint (b))
957 {
958 struct watchpoint *w = (struct watchpoint *) b;
959
960 innermost_block = NULL;
961 arg = exp;
962 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
963 if (*arg)
964 error (_("Junk at end of expression"));
965 w->cond_exp_valid_block = innermost_block;
966 }
967 else
968 {
969 struct bp_location *loc;
970
971 for (loc = b->loc; loc; loc = loc->next)
972 {
973 arg = exp;
974 loc->cond =
975 parse_exp_1 (&arg, loc->address,
976 block_for_pc (loc->address), 0);
977 if (*arg)
978 error (_("Junk at end of expression"));
979 }
980 }
981 }
982 mark_breakpoint_modified (b);
983
984 observer_notify_breakpoint_modified (b);
985 }
986
987 /* Completion for the "condition" command. */
988
989 static VEC (char_ptr) *
990 condition_completer (struct cmd_list_element *cmd,
991 const char *text, const char *word)
992 {
993 const char *space;
994
995 text = skip_spaces_const (text);
996 space = skip_to_space_const (text);
997 if (*space == '\0')
998 {
999 int len;
1000 struct breakpoint *b;
1001 VEC (char_ptr) *result = NULL;
1002
1003 if (text[0] == '$')
1004 {
1005 /* We don't support completion of history indices. */
1006 if (isdigit (text[1]))
1007 return NULL;
1008 return complete_internalvar (&text[1]);
1009 }
1010
1011 /* We're completing the breakpoint number. */
1012 len = strlen (text);
1013
1014 ALL_BREAKPOINTS (b)
1015 {
1016 char number[50];
1017
1018 xsnprintf (number, sizeof (number), "%d", b->number);
1019
1020 if (strncmp (number, text, len) == 0)
1021 VEC_safe_push (char_ptr, result, xstrdup (number));
1022 }
1023
1024 return result;
1025 }
1026
1027 /* We're completing the expression part. */
1028 text = skip_spaces_const (space);
1029 return expression_completer (cmd, text, word);
1030 }
1031
1032 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1033
1034 static void
1035 condition_command (char *arg, int from_tty)
1036 {
1037 struct breakpoint *b;
1038 char *p;
1039 int bnum;
1040
1041 if (arg == 0)
1042 error_no_arg (_("breakpoint number"));
1043
1044 p = arg;
1045 bnum = get_number (&p);
1046 if (bnum == 0)
1047 error (_("Bad breakpoint argument: '%s'"), arg);
1048
1049 ALL_BREAKPOINTS (b)
1050 if (b->number == bnum)
1051 {
1052 /* Check if this breakpoint has a Python object assigned to
1053 it, and if it has a definition of the "stop"
1054 method. This method and conditions entered into GDB from
1055 the CLI are mutually exclusive. */
1056 if (b->py_bp_object
1057 && gdbpy_breakpoint_has_py_cond (b->py_bp_object))
1058 error (_("Cannot set a condition where a Python 'stop' "
1059 "method has been defined in the breakpoint."));
1060 set_breakpoint_condition (b, p, from_tty);
1061
1062 if (is_breakpoint (b))
1063 update_global_location_list (1);
1064
1065 return;
1066 }
1067
1068 error (_("No breakpoint number %d."), bnum);
1069 }
1070
1071 /* Check that COMMAND do not contain commands that are suitable
1072 only for tracepoints and not suitable for ordinary breakpoints.
1073 Throw if any such commands is found. */
1074
1075 static void
1076 check_no_tracepoint_commands (struct command_line *commands)
1077 {
1078 struct command_line *c;
1079
1080 for (c = commands; c; c = c->next)
1081 {
1082 int i;
1083
1084 if (c->control_type == while_stepping_control)
1085 error (_("The 'while-stepping' command can "
1086 "only be used for tracepoints"));
1087
1088 for (i = 0; i < c->body_count; ++i)
1089 check_no_tracepoint_commands ((c->body_list)[i]);
1090
1091 /* Not that command parsing removes leading whitespace and comment
1092 lines and also empty lines. So, we only need to check for
1093 command directly. */
1094 if (strstr (c->line, "collect ") == c->line)
1095 error (_("The 'collect' command can only be used for tracepoints"));
1096
1097 if (strstr (c->line, "teval ") == c->line)
1098 error (_("The 'teval' command can only be used for tracepoints"));
1099 }
1100 }
1101
1102 /* Encapsulate tests for different types of tracepoints. */
1103
1104 static int
1105 is_tracepoint_type (enum bptype type)
1106 {
1107 return (type == bp_tracepoint
1108 || type == bp_fast_tracepoint
1109 || type == bp_static_tracepoint);
1110 }
1111
1112 int
1113 is_tracepoint (const struct breakpoint *b)
1114 {
1115 return is_tracepoint_type (b->type);
1116 }
1117
1118 /* A helper function that validates that COMMANDS are valid for a
1119 breakpoint. This function will throw an exception if a problem is
1120 found. */
1121
1122 static void
1123 validate_commands_for_breakpoint (struct breakpoint *b,
1124 struct command_line *commands)
1125 {
1126 if (is_tracepoint (b))
1127 {
1128 struct tracepoint *t = (struct tracepoint *) b;
1129 struct command_line *c;
1130 struct command_line *while_stepping = 0;
1131
1132 /* Reset the while-stepping step count. The previous commands
1133 might have included a while-stepping action, while the new
1134 ones might not. */
1135 t->step_count = 0;
1136
1137 /* We need to verify that each top-level element of commands is
1138 valid for tracepoints, that there's at most one
1139 while-stepping element, and that the while-stepping's body
1140 has valid tracing commands excluding nested while-stepping.
1141 We also need to validate the tracepoint action line in the
1142 context of the tracepoint --- validate_actionline actually
1143 has side effects, like setting the tracepoint's
1144 while-stepping STEP_COUNT, in addition to checking if the
1145 collect/teval actions parse and make sense in the
1146 tracepoint's context. */
1147 for (c = commands; c; c = c->next)
1148 {
1149 if (c->control_type == while_stepping_control)
1150 {
1151 if (b->type == bp_fast_tracepoint)
1152 error (_("The 'while-stepping' command "
1153 "cannot be used for fast tracepoint"));
1154 else if (b->type == bp_static_tracepoint)
1155 error (_("The 'while-stepping' command "
1156 "cannot be used for static tracepoint"));
1157
1158 if (while_stepping)
1159 error (_("The 'while-stepping' command "
1160 "can be used only once"));
1161 else
1162 while_stepping = c;
1163 }
1164
1165 validate_actionline (c->line, b);
1166 }
1167 if (while_stepping)
1168 {
1169 struct command_line *c2;
1170
1171 gdb_assert (while_stepping->body_count == 1);
1172 c2 = while_stepping->body_list[0];
1173 for (; c2; c2 = c2->next)
1174 {
1175 if (c2->control_type == while_stepping_control)
1176 error (_("The 'while-stepping' command cannot be nested"));
1177 }
1178 }
1179 }
1180 else
1181 {
1182 check_no_tracepoint_commands (commands);
1183 }
1184 }
1185
1186 /* Return a vector of all the static tracepoints set at ADDR. The
1187 caller is responsible for releasing the vector. */
1188
1189 VEC(breakpoint_p) *
1190 static_tracepoints_here (CORE_ADDR addr)
1191 {
1192 struct breakpoint *b;
1193 VEC(breakpoint_p) *found = 0;
1194 struct bp_location *loc;
1195
1196 ALL_BREAKPOINTS (b)
1197 if (b->type == bp_static_tracepoint)
1198 {
1199 for (loc = b->loc; loc; loc = loc->next)
1200 if (loc->address == addr)
1201 VEC_safe_push(breakpoint_p, found, b);
1202 }
1203
1204 return found;
1205 }
1206
1207 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1208 validate that only allowed commands are included. */
1209
1210 void
1211 breakpoint_set_commands (struct breakpoint *b,
1212 struct command_line *commands)
1213 {
1214 validate_commands_for_breakpoint (b, commands);
1215
1216 decref_counted_command_line (&b->commands);
1217 b->commands = alloc_counted_command_line (commands);
1218 observer_notify_breakpoint_modified (b);
1219 }
1220
1221 /* Set the internal `silent' flag on the breakpoint. Note that this
1222 is not the same as the "silent" that may appear in the breakpoint's
1223 commands. */
1224
1225 void
1226 breakpoint_set_silent (struct breakpoint *b, int silent)
1227 {
1228 int old_silent = b->silent;
1229
1230 b->silent = silent;
1231 if (old_silent != silent)
1232 observer_notify_breakpoint_modified (b);
1233 }
1234
1235 /* Set the thread for this breakpoint. If THREAD is -1, make the
1236 breakpoint work for any thread. */
1237
1238 void
1239 breakpoint_set_thread (struct breakpoint *b, int thread)
1240 {
1241 int old_thread = b->thread;
1242
1243 b->thread = thread;
1244 if (old_thread != thread)
1245 observer_notify_breakpoint_modified (b);
1246 }
1247
1248 /* Set the task for this breakpoint. If TASK is 0, make the
1249 breakpoint work for any task. */
1250
1251 void
1252 breakpoint_set_task (struct breakpoint *b, int task)
1253 {
1254 int old_task = b->task;
1255
1256 b->task = task;
1257 if (old_task != task)
1258 observer_notify_breakpoint_modified (b);
1259 }
1260
1261 void
1262 check_tracepoint_command (char *line, void *closure)
1263 {
1264 struct breakpoint *b = closure;
1265
1266 validate_actionline (line, b);
1267 }
1268
1269 /* A structure used to pass information through
1270 map_breakpoint_numbers. */
1271
1272 struct commands_info
1273 {
1274 /* True if the command was typed at a tty. */
1275 int from_tty;
1276
1277 /* The breakpoint range spec. */
1278 char *arg;
1279
1280 /* Non-NULL if the body of the commands are being read from this
1281 already-parsed command. */
1282 struct command_line *control;
1283
1284 /* The command lines read from the user, or NULL if they have not
1285 yet been read. */
1286 struct counted_command_line *cmd;
1287 };
1288
1289 /* A callback for map_breakpoint_numbers that sets the commands for
1290 commands_command. */
1291
1292 static void
1293 do_map_commands_command (struct breakpoint *b, void *data)
1294 {
1295 struct commands_info *info = data;
1296
1297 if (info->cmd == NULL)
1298 {
1299 struct command_line *l;
1300
1301 if (info->control != NULL)
1302 l = copy_command_lines (info->control->body_list[0]);
1303 else
1304 {
1305 struct cleanup *old_chain;
1306 char *str;
1307
1308 str = xstrprintf (_("Type commands for breakpoint(s) "
1309 "%s, one per line."),
1310 info->arg);
1311
1312 old_chain = make_cleanup (xfree, str);
1313
1314 l = read_command_lines (str,
1315 info->from_tty, 1,
1316 (is_tracepoint (b)
1317 ? check_tracepoint_command : 0),
1318 b);
1319
1320 do_cleanups (old_chain);
1321 }
1322
1323 info->cmd = alloc_counted_command_line (l);
1324 }
1325
1326 /* If a breakpoint was on the list more than once, we don't need to
1327 do anything. */
1328 if (b->commands != info->cmd)
1329 {
1330 validate_commands_for_breakpoint (b, info->cmd->commands);
1331 incref_counted_command_line (info->cmd);
1332 decref_counted_command_line (&b->commands);
1333 b->commands = info->cmd;
1334 observer_notify_breakpoint_modified (b);
1335 }
1336 }
1337
1338 static void
1339 commands_command_1 (char *arg, int from_tty,
1340 struct command_line *control)
1341 {
1342 struct cleanup *cleanups;
1343 struct commands_info info;
1344
1345 info.from_tty = from_tty;
1346 info.control = control;
1347 info.cmd = NULL;
1348 /* If we read command lines from the user, then `info' will hold an
1349 extra reference to the commands that we must clean up. */
1350 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1351
1352 if (arg == NULL || !*arg)
1353 {
1354 if (breakpoint_count - prev_breakpoint_count > 1)
1355 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1356 breakpoint_count);
1357 else if (breakpoint_count > 0)
1358 arg = xstrprintf ("%d", breakpoint_count);
1359 else
1360 {
1361 /* So that we don't try to free the incoming non-NULL
1362 argument in the cleanup below. Mapping breakpoint
1363 numbers will fail in this case. */
1364 arg = NULL;
1365 }
1366 }
1367 else
1368 /* The command loop has some static state, so we need to preserve
1369 our argument. */
1370 arg = xstrdup (arg);
1371
1372 if (arg != NULL)
1373 make_cleanup (xfree, arg);
1374
1375 info.arg = arg;
1376
1377 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1378
1379 if (info.cmd == NULL)
1380 error (_("No breakpoints specified."));
1381
1382 do_cleanups (cleanups);
1383 }
1384
1385 static void
1386 commands_command (char *arg, int from_tty)
1387 {
1388 commands_command_1 (arg, from_tty, NULL);
1389 }
1390
1391 /* Like commands_command, but instead of reading the commands from
1392 input stream, takes them from an already parsed command structure.
1393
1394 This is used by cli-script.c to DTRT with breakpoint commands
1395 that are part of if and while bodies. */
1396 enum command_control_type
1397 commands_from_control_command (char *arg, struct command_line *cmd)
1398 {
1399 commands_command_1 (arg, 0, cmd);
1400 return simple_control;
1401 }
1402
1403 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1404
1405 static int
1406 bp_location_has_shadow (struct bp_location *bl)
1407 {
1408 if (bl->loc_type != bp_loc_software_breakpoint)
1409 return 0;
1410 if (!bl->inserted)
1411 return 0;
1412 if (bl->target_info.shadow_len == 0)
1413 /* BL isn't valid, or doesn't shadow memory. */
1414 return 0;
1415 return 1;
1416 }
1417
1418 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1419 by replacing any memory breakpoints with their shadowed contents.
1420
1421 If READBUF is not NULL, this buffer must not overlap with any of
1422 the breakpoint location's shadow_contents buffers. Otherwise,
1423 a failed assertion internal error will be raised.
1424
1425 The range of shadowed area by each bp_location is:
1426 bl->address - bp_location_placed_address_before_address_max
1427 up to bl->address + bp_location_shadow_len_after_address_max
1428 The range we were requested to resolve shadows for is:
1429 memaddr ... memaddr + len
1430 Thus the safe cutoff boundaries for performance optimization are
1431 memaddr + len <= (bl->address
1432 - bp_location_placed_address_before_address_max)
1433 and:
1434 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1435
1436 void
1437 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1438 const gdb_byte *writebuf_org,
1439 ULONGEST memaddr, LONGEST len)
1440 {
1441 /* Left boundary, right boundary and median element of our binary
1442 search. */
1443 unsigned bc_l, bc_r, bc;
1444
1445 /* Find BC_L which is a leftmost element which may affect BUF
1446 content. It is safe to report lower value but a failure to
1447 report higher one. */
1448
1449 bc_l = 0;
1450 bc_r = bp_location_count;
1451 while (bc_l + 1 < bc_r)
1452 {
1453 struct bp_location *bl;
1454
1455 bc = (bc_l + bc_r) / 2;
1456 bl = bp_location[bc];
1457
1458 /* Check first BL->ADDRESS will not overflow due to the added
1459 constant. Then advance the left boundary only if we are sure
1460 the BC element can in no way affect the BUF content (MEMADDR
1461 to MEMADDR + LEN range).
1462
1463 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1464 offset so that we cannot miss a breakpoint with its shadow
1465 range tail still reaching MEMADDR. */
1466
1467 if ((bl->address + bp_location_shadow_len_after_address_max
1468 >= bl->address)
1469 && (bl->address + bp_location_shadow_len_after_address_max
1470 <= memaddr))
1471 bc_l = bc;
1472 else
1473 bc_r = bc;
1474 }
1475
1476 /* Due to the binary search above, we need to make sure we pick the
1477 first location that's at BC_L's address. E.g., if there are
1478 multiple locations at the same address, BC_L may end up pointing
1479 at a duplicate location, and miss the "master"/"inserted"
1480 location. Say, given locations L1, L2 and L3 at addresses A and
1481 B:
1482
1483 L1@A, L2@A, L3@B, ...
1484
1485 BC_L could end up pointing at location L2, while the "master"
1486 location could be L1. Since the `loc->inserted' flag is only set
1487 on "master" locations, we'd forget to restore the shadow of L1
1488 and L2. */
1489 while (bc_l > 0
1490 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1491 bc_l--;
1492
1493 /* Now do full processing of the found relevant range of elements. */
1494
1495 for (bc = bc_l; bc < bp_location_count; bc++)
1496 {
1497 struct bp_location *bl = bp_location[bc];
1498 CORE_ADDR bp_addr = 0;
1499 int bp_size = 0;
1500 int bptoffset = 0;
1501
1502 /* bp_location array has BL->OWNER always non-NULL. */
1503 if (bl->owner->type == bp_none)
1504 warning (_("reading through apparently deleted breakpoint #%d?"),
1505 bl->owner->number);
1506
1507 /* Performance optimization: any further element can no longer affect BUF
1508 content. */
1509
1510 if (bl->address >= bp_location_placed_address_before_address_max
1511 && memaddr + len <= (bl->address
1512 - bp_location_placed_address_before_address_max))
1513 break;
1514
1515 if (!bp_location_has_shadow (bl))
1516 continue;
1517 if (!breakpoint_address_match (bl->target_info.placed_address_space, 0,
1518 current_program_space->aspace, 0))
1519 continue;
1520
1521 /* Addresses and length of the part of the breakpoint that
1522 we need to copy. */
1523 bp_addr = bl->target_info.placed_address;
1524 bp_size = bl->target_info.shadow_len;
1525
1526 if (bp_addr + bp_size <= memaddr)
1527 /* The breakpoint is entirely before the chunk of memory we
1528 are reading. */
1529 continue;
1530
1531 if (bp_addr >= memaddr + len)
1532 /* The breakpoint is entirely after the chunk of memory we are
1533 reading. */
1534 continue;
1535
1536 /* Offset within shadow_contents. */
1537 if (bp_addr < memaddr)
1538 {
1539 /* Only copy the second part of the breakpoint. */
1540 bp_size -= memaddr - bp_addr;
1541 bptoffset = memaddr - bp_addr;
1542 bp_addr = memaddr;
1543 }
1544
1545 if (bp_addr + bp_size > memaddr + len)
1546 {
1547 /* Only copy the first part of the breakpoint. */
1548 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1549 }
1550
1551 if (readbuf != NULL)
1552 {
1553 /* Verify that the readbuf buffer does not overlap with
1554 the shadow_contents buffer. */
1555 gdb_assert (bl->target_info.shadow_contents >= readbuf + len
1556 || readbuf >= (bl->target_info.shadow_contents
1557 + bl->target_info.shadow_len));
1558
1559 /* Update the read buffer with this inserted breakpoint's
1560 shadow. */
1561 memcpy (readbuf + bp_addr - memaddr,
1562 bl->target_info.shadow_contents + bptoffset, bp_size);
1563 }
1564 else
1565 {
1566 struct gdbarch *gdbarch = bl->gdbarch;
1567 const unsigned char *bp;
1568 CORE_ADDR placed_address = bl->target_info.placed_address;
1569 int placed_size = bl->target_info.placed_size;
1570
1571 /* Update the shadow with what we want to write to memory. */
1572 memcpy (bl->target_info.shadow_contents + bptoffset,
1573 writebuf_org + bp_addr - memaddr, bp_size);
1574
1575 /* Determine appropriate breakpoint contents and size for this
1576 address. */
1577 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1578
1579 /* Update the final write buffer with this inserted
1580 breakpoint's INSN. */
1581 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1582 }
1583 }
1584 }
1585 \f
1586
1587 /* Return true if BPT is either a software breakpoint or a hardware
1588 breakpoint. */
1589
1590 int
1591 is_breakpoint (const struct breakpoint *bpt)
1592 {
1593 return (bpt->type == bp_breakpoint
1594 || bpt->type == bp_hardware_breakpoint
1595 || bpt->type == bp_dprintf);
1596 }
1597
1598 /* Return true if BPT is of any hardware watchpoint kind. */
1599
1600 static int
1601 is_hardware_watchpoint (const struct breakpoint *bpt)
1602 {
1603 return (bpt->type == bp_hardware_watchpoint
1604 || bpt->type == bp_read_watchpoint
1605 || bpt->type == bp_access_watchpoint);
1606 }
1607
1608 /* Return true if BPT is of any watchpoint kind, hardware or
1609 software. */
1610
1611 int
1612 is_watchpoint (const struct breakpoint *bpt)
1613 {
1614 return (is_hardware_watchpoint (bpt)
1615 || bpt->type == bp_watchpoint);
1616 }
1617
1618 /* Returns true if the current thread and its running state are safe
1619 to evaluate or update watchpoint B. Watchpoints on local
1620 expressions need to be evaluated in the context of the thread that
1621 was current when the watchpoint was created, and, that thread needs
1622 to be stopped to be able to select the correct frame context.
1623 Watchpoints on global expressions can be evaluated on any thread,
1624 and in any state. It is presently left to the target allowing
1625 memory accesses when threads are running. */
1626
1627 static int
1628 watchpoint_in_thread_scope (struct watchpoint *b)
1629 {
1630 return (b->base.pspace == current_program_space
1631 && (ptid_equal (b->watchpoint_thread, null_ptid)
1632 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1633 && !is_executing (inferior_ptid))));
1634 }
1635
1636 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1637 associated bp_watchpoint_scope breakpoint. */
1638
1639 static void
1640 watchpoint_del_at_next_stop (struct watchpoint *w)
1641 {
1642 struct breakpoint *b = &w->base;
1643
1644 if (b->related_breakpoint != b)
1645 {
1646 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1647 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1648 b->related_breakpoint->disposition = disp_del_at_next_stop;
1649 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1650 b->related_breakpoint = b;
1651 }
1652 b->disposition = disp_del_at_next_stop;
1653 }
1654
1655 /* Assuming that B is a watchpoint:
1656 - Reparse watchpoint expression, if REPARSE is non-zero
1657 - Evaluate expression and store the result in B->val
1658 - Evaluate the condition if there is one, and store the result
1659 in b->loc->cond.
1660 - Update the list of values that must be watched in B->loc.
1661
1662 If the watchpoint disposition is disp_del_at_next_stop, then do
1663 nothing. If this is local watchpoint that is out of scope, delete
1664 it.
1665
1666 Even with `set breakpoint always-inserted on' the watchpoints are
1667 removed + inserted on each stop here. Normal breakpoints must
1668 never be removed because they might be missed by a running thread
1669 when debugging in non-stop mode. On the other hand, hardware
1670 watchpoints (is_hardware_watchpoint; processed here) are specific
1671 to each LWP since they are stored in each LWP's hardware debug
1672 registers. Therefore, such LWP must be stopped first in order to
1673 be able to modify its hardware watchpoints.
1674
1675 Hardware watchpoints must be reset exactly once after being
1676 presented to the user. It cannot be done sooner, because it would
1677 reset the data used to present the watchpoint hit to the user. And
1678 it must not be done later because it could display the same single
1679 watchpoint hit during multiple GDB stops. Note that the latter is
1680 relevant only to the hardware watchpoint types bp_read_watchpoint
1681 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1682 not user-visible - its hit is suppressed if the memory content has
1683 not changed.
1684
1685 The following constraints influence the location where we can reset
1686 hardware watchpoints:
1687
1688 * target_stopped_by_watchpoint and target_stopped_data_address are
1689 called several times when GDB stops.
1690
1691 [linux]
1692 * Multiple hardware watchpoints can be hit at the same time,
1693 causing GDB to stop. GDB only presents one hardware watchpoint
1694 hit at a time as the reason for stopping, and all the other hits
1695 are presented later, one after the other, each time the user
1696 requests the execution to be resumed. Execution is not resumed
1697 for the threads still having pending hit event stored in
1698 LWP_INFO->STATUS. While the watchpoint is already removed from
1699 the inferior on the first stop the thread hit event is kept being
1700 reported from its cached value by linux_nat_stopped_data_address
1701 until the real thread resume happens after the watchpoint gets
1702 presented and thus its LWP_INFO->STATUS gets reset.
1703
1704 Therefore the hardware watchpoint hit can get safely reset on the
1705 watchpoint removal from inferior. */
1706
1707 static void
1708 update_watchpoint (struct watchpoint *b, int reparse)
1709 {
1710 int within_current_scope;
1711 struct frame_id saved_frame_id;
1712 int frame_saved;
1713
1714 /* If this is a local watchpoint, we only want to check if the
1715 watchpoint frame is in scope if the current thread is the thread
1716 that was used to create the watchpoint. */
1717 if (!watchpoint_in_thread_scope (b))
1718 return;
1719
1720 if (b->base.disposition == disp_del_at_next_stop)
1721 return;
1722
1723 frame_saved = 0;
1724
1725 /* Determine if the watchpoint is within scope. */
1726 if (b->exp_valid_block == NULL)
1727 within_current_scope = 1;
1728 else
1729 {
1730 struct frame_info *fi = get_current_frame ();
1731 struct gdbarch *frame_arch = get_frame_arch (fi);
1732 CORE_ADDR frame_pc = get_frame_pc (fi);
1733
1734 /* If we're in a function epilogue, unwinding may not work
1735 properly, so do not attempt to recreate locations at this
1736 point. See similar comments in watchpoint_check. */
1737 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1738 return;
1739
1740 /* Save the current frame's ID so we can restore it after
1741 evaluating the watchpoint expression on its own frame. */
1742 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1743 took a frame parameter, so that we didn't have to change the
1744 selected frame. */
1745 frame_saved = 1;
1746 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1747
1748 fi = frame_find_by_id (b->watchpoint_frame);
1749 within_current_scope = (fi != NULL);
1750 if (within_current_scope)
1751 select_frame (fi);
1752 }
1753
1754 /* We don't free locations. They are stored in the bp_location array
1755 and update_global_location_list will eventually delete them and
1756 remove breakpoints if needed. */
1757 b->base.loc = NULL;
1758
1759 if (within_current_scope && reparse)
1760 {
1761 const char *s;
1762
1763 if (b->exp)
1764 {
1765 xfree (b->exp);
1766 b->exp = NULL;
1767 }
1768 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1769 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1770 /* If the meaning of expression itself changed, the old value is
1771 no longer relevant. We don't want to report a watchpoint hit
1772 to the user when the old value and the new value may actually
1773 be completely different objects. */
1774 value_free (b->val);
1775 b->val = NULL;
1776 b->val_valid = 0;
1777
1778 /* Note that unlike with breakpoints, the watchpoint's condition
1779 expression is stored in the breakpoint object, not in the
1780 locations (re)created below. */
1781 if (b->base.cond_string != NULL)
1782 {
1783 if (b->cond_exp != NULL)
1784 {
1785 xfree (b->cond_exp);
1786 b->cond_exp = NULL;
1787 }
1788
1789 s = b->base.cond_string;
1790 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1791 }
1792 }
1793
1794 /* If we failed to parse the expression, for example because
1795 it refers to a global variable in a not-yet-loaded shared library,
1796 don't try to insert watchpoint. We don't automatically delete
1797 such watchpoint, though, since failure to parse expression
1798 is different from out-of-scope watchpoint. */
1799 if ( !target_has_execution)
1800 {
1801 /* Without execution, memory can't change. No use to try and
1802 set watchpoint locations. The watchpoint will be reset when
1803 the target gains execution, through breakpoint_re_set. */
1804 }
1805 else if (within_current_scope && b->exp)
1806 {
1807 int pc = 0;
1808 struct value *val_chain, *v, *result, *next;
1809 struct program_space *frame_pspace;
1810
1811 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain);
1812
1813 /* Avoid setting b->val if it's already set. The meaning of
1814 b->val is 'the last value' user saw, and we should update
1815 it only if we reported that last value to user. As it
1816 happens, the code that reports it updates b->val directly.
1817 We don't keep track of the memory value for masked
1818 watchpoints. */
1819 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1820 {
1821 b->val = v;
1822 b->val_valid = 1;
1823 }
1824
1825 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1826
1827 /* Look at each value on the value chain. */
1828 for (v = val_chain; v; v = value_next (v))
1829 {
1830 /* If it's a memory location, and GDB actually needed
1831 its contents to evaluate the expression, then we
1832 must watch it. If the first value returned is
1833 still lazy, that means an error occurred reading it;
1834 watch it anyway in case it becomes readable. */
1835 if (VALUE_LVAL (v) == lval_memory
1836 && (v == val_chain || ! value_lazy (v)))
1837 {
1838 struct type *vtype = check_typedef (value_type (v));
1839
1840 /* We only watch structs and arrays if user asked
1841 for it explicitly, never if they just happen to
1842 appear in the middle of some value chain. */
1843 if (v == result
1844 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1845 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1846 {
1847 CORE_ADDR addr;
1848 int type;
1849 struct bp_location *loc, **tmp;
1850
1851 addr = value_address (v);
1852 type = hw_write;
1853 if (b->base.type == bp_read_watchpoint)
1854 type = hw_read;
1855 else if (b->base.type == bp_access_watchpoint)
1856 type = hw_access;
1857
1858 loc = allocate_bp_location (&b->base);
1859 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1860 ;
1861 *tmp = loc;
1862 loc->gdbarch = get_type_arch (value_type (v));
1863
1864 loc->pspace = frame_pspace;
1865 loc->address = addr;
1866 loc->length = TYPE_LENGTH (value_type (v));
1867 loc->watchpoint_type = type;
1868 }
1869 }
1870 }
1871
1872 /* Change the type of breakpoint between hardware assisted or
1873 an ordinary watchpoint depending on the hardware support
1874 and free hardware slots. REPARSE is set when the inferior
1875 is started. */
1876 if (reparse)
1877 {
1878 int reg_cnt;
1879 enum bp_loc_type loc_type;
1880 struct bp_location *bl;
1881
1882 reg_cnt = can_use_hardware_watchpoint (val_chain);
1883
1884 if (reg_cnt)
1885 {
1886 int i, target_resources_ok, other_type_used;
1887 enum bptype type;
1888
1889 /* Use an exact watchpoint when there's only one memory region to be
1890 watched, and only one debug register is needed to watch it. */
1891 b->exact = target_exact_watchpoints && reg_cnt == 1;
1892
1893 /* We need to determine how many resources are already
1894 used for all other hardware watchpoints plus this one
1895 to see if we still have enough resources to also fit
1896 this watchpoint in as well. */
1897
1898 /* If this is a software watchpoint, we try to turn it
1899 to a hardware one -- count resources as if B was of
1900 hardware watchpoint type. */
1901 type = b->base.type;
1902 if (type == bp_watchpoint)
1903 type = bp_hardware_watchpoint;
1904
1905 /* This watchpoint may or may not have been placed on
1906 the list yet at this point (it won't be in the list
1907 if we're trying to create it for the first time,
1908 through watch_command), so always account for it
1909 manually. */
1910
1911 /* Count resources used by all watchpoints except B. */
1912 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
1913
1914 /* Add in the resources needed for B. */
1915 i += hw_watchpoint_use_count (&b->base);
1916
1917 target_resources_ok
1918 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1919 if (target_resources_ok <= 0)
1920 {
1921 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
1922
1923 if (target_resources_ok == 0 && !sw_mode)
1924 error (_("Target does not support this type of "
1925 "hardware watchpoint."));
1926 else if (target_resources_ok < 0 && !sw_mode)
1927 error (_("There are not enough available hardware "
1928 "resources for this watchpoint."));
1929
1930 /* Downgrade to software watchpoint. */
1931 b->base.type = bp_watchpoint;
1932 }
1933 else
1934 {
1935 /* If this was a software watchpoint, we've just
1936 found we have enough resources to turn it to a
1937 hardware watchpoint. Otherwise, this is a
1938 nop. */
1939 b->base.type = type;
1940 }
1941 }
1942 else if (!b->base.ops->works_in_software_mode (&b->base))
1943 error (_("Expression cannot be implemented with "
1944 "read/access watchpoint."));
1945 else
1946 b->base.type = bp_watchpoint;
1947
1948 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
1949 : bp_loc_hardware_watchpoint);
1950 for (bl = b->base.loc; bl; bl = bl->next)
1951 bl->loc_type = loc_type;
1952 }
1953
1954 for (v = val_chain; v; v = next)
1955 {
1956 next = value_next (v);
1957 if (v != b->val)
1958 value_free (v);
1959 }
1960
1961 /* If a software watchpoint is not watching any memory, then the
1962 above left it without any location set up. But,
1963 bpstat_stop_status requires a location to be able to report
1964 stops, so make sure there's at least a dummy one. */
1965 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
1966 {
1967 struct breakpoint *base = &b->base;
1968 base->loc = allocate_bp_location (base);
1969 base->loc->pspace = frame_pspace;
1970 base->loc->address = -1;
1971 base->loc->length = -1;
1972 base->loc->watchpoint_type = -1;
1973 }
1974 }
1975 else if (!within_current_scope)
1976 {
1977 printf_filtered (_("\
1978 Watchpoint %d deleted because the program has left the block\n\
1979 in which its expression is valid.\n"),
1980 b->base.number);
1981 watchpoint_del_at_next_stop (b);
1982 }
1983
1984 /* Restore the selected frame. */
1985 if (frame_saved)
1986 select_frame (frame_find_by_id (saved_frame_id));
1987 }
1988
1989
1990 /* Returns 1 iff breakpoint location should be
1991 inserted in the inferior. We don't differentiate the type of BL's owner
1992 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1993 breakpoint_ops is not defined, because in insert_bp_location,
1994 tracepoint's insert_location will not be called. */
1995 static int
1996 should_be_inserted (struct bp_location *bl)
1997 {
1998 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
1999 return 0;
2000
2001 if (bl->owner->disposition == disp_del_at_next_stop)
2002 return 0;
2003
2004 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2005 return 0;
2006
2007 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2008 return 0;
2009
2010 /* This is set for example, when we're attached to the parent of a
2011 vfork, and have detached from the child. The child is running
2012 free, and we expect it to do an exec or exit, at which point the
2013 OS makes the parent schedulable again (and the target reports
2014 that the vfork is done). Until the child is done with the shared
2015 memory region, do not insert breakpoints in the parent, otherwise
2016 the child could still trip on the parent's breakpoints. Since
2017 the parent is blocked anyway, it won't miss any breakpoint. */
2018 if (bl->pspace->breakpoints_not_allowed)
2019 return 0;
2020
2021 return 1;
2022 }
2023
2024 /* Same as should_be_inserted but does the check assuming
2025 that the location is not duplicated. */
2026
2027 static int
2028 unduplicated_should_be_inserted (struct bp_location *bl)
2029 {
2030 int result;
2031 const int save_duplicate = bl->duplicate;
2032
2033 bl->duplicate = 0;
2034 result = should_be_inserted (bl);
2035 bl->duplicate = save_duplicate;
2036 return result;
2037 }
2038
2039 /* Parses a conditional described by an expression COND into an
2040 agent expression bytecode suitable for evaluation
2041 by the bytecode interpreter. Return NULL if there was
2042 any error during parsing. */
2043
2044 static struct agent_expr *
2045 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2046 {
2047 struct agent_expr *aexpr = NULL;
2048 volatile struct gdb_exception ex;
2049
2050 if (!cond)
2051 return NULL;
2052
2053 /* We don't want to stop processing, so catch any errors
2054 that may show up. */
2055 TRY_CATCH (ex, RETURN_MASK_ERROR)
2056 {
2057 aexpr = gen_eval_for_expr (scope, cond);
2058 }
2059
2060 if (ex.reason < 0)
2061 {
2062 /* If we got here, it means the condition could not be parsed to a valid
2063 bytecode expression and thus can't be evaluated on the target's side.
2064 It's no use iterating through the conditions. */
2065 return NULL;
2066 }
2067
2068 /* We have a valid agent expression. */
2069 return aexpr;
2070 }
2071
2072 /* Based on location BL, create a list of breakpoint conditions to be
2073 passed on to the target. If we have duplicated locations with different
2074 conditions, we will add such conditions to the list. The idea is that the
2075 target will evaluate the list of conditions and will only notify GDB when
2076 one of them is true. */
2077
2078 static void
2079 build_target_condition_list (struct bp_location *bl)
2080 {
2081 struct bp_location **locp = NULL, **loc2p;
2082 int null_condition_or_parse_error = 0;
2083 int modified = bl->needs_update;
2084 struct bp_location *loc;
2085
2086 /* This is only meaningful if the target is
2087 evaluating conditions and if the user has
2088 opted for condition evaluation on the target's
2089 side. */
2090 if (gdb_evaluates_breakpoint_condition_p ()
2091 || !target_supports_evaluation_of_breakpoint_conditions ())
2092 return;
2093
2094 /* Do a first pass to check for locations with no assigned
2095 conditions or conditions that fail to parse to a valid agent expression
2096 bytecode. If any of these happen, then it's no use to send conditions
2097 to the target since this location will always trigger and generate a
2098 response back to GDB. */
2099 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2100 {
2101 loc = (*loc2p);
2102 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2103 {
2104 if (modified)
2105 {
2106 struct agent_expr *aexpr;
2107
2108 /* Re-parse the conditions since something changed. In that
2109 case we already freed the condition bytecodes (see
2110 force_breakpoint_reinsertion). We just
2111 need to parse the condition to bytecodes again. */
2112 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2113 loc->cond_bytecode = aexpr;
2114
2115 /* Check if we managed to parse the conditional expression
2116 correctly. If not, we will not send this condition
2117 to the target. */
2118 if (aexpr)
2119 continue;
2120 }
2121
2122 /* If we have a NULL bytecode expression, it means something
2123 went wrong or we have a null condition expression. */
2124 if (!loc->cond_bytecode)
2125 {
2126 null_condition_or_parse_error = 1;
2127 break;
2128 }
2129 }
2130 }
2131
2132 /* If any of these happened, it means we will have to evaluate the conditions
2133 for the location's address on gdb's side. It is no use keeping bytecodes
2134 for all the other duplicate locations, thus we free all of them here.
2135
2136 This is so we have a finer control over which locations' conditions are
2137 being evaluated by GDB or the remote stub. */
2138 if (null_condition_or_parse_error)
2139 {
2140 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2141 {
2142 loc = (*loc2p);
2143 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2144 {
2145 /* Only go as far as the first NULL bytecode is
2146 located. */
2147 if (!loc->cond_bytecode)
2148 return;
2149
2150 free_agent_expr (loc->cond_bytecode);
2151 loc->cond_bytecode = NULL;
2152 }
2153 }
2154 }
2155
2156 /* No NULL conditions or failed bytecode generation. Build a condition list
2157 for this location's address. */
2158 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2159 {
2160 loc = (*loc2p);
2161 if (loc->cond
2162 && is_breakpoint (loc->owner)
2163 && loc->pspace->num == bl->pspace->num
2164 && loc->owner->enable_state == bp_enabled
2165 && loc->enabled)
2166 /* Add the condition to the vector. This will be used later to send the
2167 conditions to the target. */
2168 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2169 loc->cond_bytecode);
2170 }
2171
2172 return;
2173 }
2174
2175 /* Parses a command described by string CMD into an agent expression
2176 bytecode suitable for evaluation by the bytecode interpreter.
2177 Return NULL if there was any error during parsing. */
2178
2179 static struct agent_expr *
2180 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2181 {
2182 struct cleanup *old_cleanups = 0;
2183 struct expression *expr, **argvec;
2184 struct agent_expr *aexpr = NULL;
2185 volatile struct gdb_exception ex;
2186 const char *cmdrest;
2187 const char *format_start, *format_end;
2188 struct format_piece *fpieces;
2189 int nargs;
2190 struct gdbarch *gdbarch = get_current_arch ();
2191
2192 if (!cmd)
2193 return NULL;
2194
2195 cmdrest = cmd;
2196
2197 if (*cmdrest == ',')
2198 ++cmdrest;
2199 cmdrest = skip_spaces_const (cmdrest);
2200
2201 if (*cmdrest++ != '"')
2202 error (_("No format string following the location"));
2203
2204 format_start = cmdrest;
2205
2206 fpieces = parse_format_string (&cmdrest);
2207
2208 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2209
2210 format_end = cmdrest;
2211
2212 if (*cmdrest++ != '"')
2213 error (_("Bad format string, non-terminated '\"'."));
2214
2215 cmdrest = skip_spaces_const (cmdrest);
2216
2217 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2218 error (_("Invalid argument syntax"));
2219
2220 if (*cmdrest == ',')
2221 cmdrest++;
2222 cmdrest = skip_spaces_const (cmdrest);
2223
2224 /* For each argument, make an expression. */
2225
2226 argvec = (struct expression **) alloca (strlen (cmd)
2227 * sizeof (struct expression *));
2228
2229 nargs = 0;
2230 while (*cmdrest != '\0')
2231 {
2232 const char *cmd1;
2233
2234 cmd1 = cmdrest;
2235 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2236 argvec[nargs++] = expr;
2237 cmdrest = cmd1;
2238 if (*cmdrest == ',')
2239 ++cmdrest;
2240 }
2241
2242 /* We don't want to stop processing, so catch any errors
2243 that may show up. */
2244 TRY_CATCH (ex, RETURN_MASK_ERROR)
2245 {
2246 aexpr = gen_printf (scope, gdbarch, 0, 0,
2247 format_start, format_end - format_start,
2248 fpieces, nargs, argvec);
2249 }
2250
2251 do_cleanups (old_cleanups);
2252
2253 if (ex.reason < 0)
2254 {
2255 /* If we got here, it means the command could not be parsed to a valid
2256 bytecode expression and thus can't be evaluated on the target's side.
2257 It's no use iterating through the other commands. */
2258 return NULL;
2259 }
2260
2261 /* We have a valid agent expression, return it. */
2262 return aexpr;
2263 }
2264
2265 /* Based on location BL, create a list of breakpoint commands to be
2266 passed on to the target. If we have duplicated locations with
2267 different commands, we will add any such to the list. */
2268
2269 static void
2270 build_target_command_list (struct bp_location *bl)
2271 {
2272 struct bp_location **locp = NULL, **loc2p;
2273 int null_command_or_parse_error = 0;
2274 int modified = bl->needs_update;
2275 struct bp_location *loc;
2276
2277 /* For now, limit to agent-style dprintf breakpoints. */
2278 if (bl->owner->type != bp_dprintf
2279 || strcmp (dprintf_style, dprintf_style_agent) != 0)
2280 return;
2281
2282 if (!target_can_run_breakpoint_commands ())
2283 return;
2284
2285 /* Do a first pass to check for locations with no assigned
2286 conditions or conditions that fail to parse to a valid agent expression
2287 bytecode. If any of these happen, then it's no use to send conditions
2288 to the target since this location will always trigger and generate a
2289 response back to GDB. */
2290 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2291 {
2292 loc = (*loc2p);
2293 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2294 {
2295 if (modified)
2296 {
2297 struct agent_expr *aexpr;
2298
2299 /* Re-parse the commands since something changed. In that
2300 case we already freed the command bytecodes (see
2301 force_breakpoint_reinsertion). We just
2302 need to parse the command to bytecodes again. */
2303 aexpr = parse_cmd_to_aexpr (bl->address,
2304 loc->owner->extra_string);
2305 loc->cmd_bytecode = aexpr;
2306
2307 if (!aexpr)
2308 continue;
2309 }
2310
2311 /* If we have a NULL bytecode expression, it means something
2312 went wrong or we have a null command expression. */
2313 if (!loc->cmd_bytecode)
2314 {
2315 null_command_or_parse_error = 1;
2316 break;
2317 }
2318 }
2319 }
2320
2321 /* If anything failed, then we're not doing target-side commands,
2322 and so clean up. */
2323 if (null_command_or_parse_error)
2324 {
2325 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2326 {
2327 loc = (*loc2p);
2328 if (is_breakpoint (loc->owner)
2329 && loc->pspace->num == bl->pspace->num)
2330 {
2331 /* Only go as far as the first NULL bytecode is
2332 located. */
2333 if (loc->cmd_bytecode == NULL)
2334 return;
2335
2336 free_agent_expr (loc->cmd_bytecode);
2337 loc->cmd_bytecode = NULL;
2338 }
2339 }
2340 }
2341
2342 /* No NULL commands or failed bytecode generation. Build a command list
2343 for this location's address. */
2344 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2345 {
2346 loc = (*loc2p);
2347 if (loc->owner->extra_string
2348 && is_breakpoint (loc->owner)
2349 && loc->pspace->num == bl->pspace->num
2350 && loc->owner->enable_state == bp_enabled
2351 && loc->enabled)
2352 /* Add the command to the vector. This will be used later
2353 to send the commands to the target. */
2354 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2355 loc->cmd_bytecode);
2356 }
2357
2358 bl->target_info.persist = 0;
2359 /* Maybe flag this location as persistent. */
2360 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2361 bl->target_info.persist = 1;
2362 }
2363
2364 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2365 location. Any error messages are printed to TMP_ERROR_STREAM; and
2366 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2367 Returns 0 for success, 1 if the bp_location type is not supported or
2368 -1 for failure.
2369
2370 NOTE drow/2003-09-09: This routine could be broken down to an
2371 object-style method for each breakpoint or catchpoint type. */
2372 static int
2373 insert_bp_location (struct bp_location *bl,
2374 struct ui_file *tmp_error_stream,
2375 int *disabled_breaks,
2376 int *hw_breakpoint_error,
2377 int *hw_bp_error_explained_already)
2378 {
2379 int val = 0;
2380 char *hw_bp_err_string = NULL;
2381 struct gdb_exception e;
2382
2383 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2384 return 0;
2385
2386 /* Note we don't initialize bl->target_info, as that wipes out
2387 the breakpoint location's shadow_contents if the breakpoint
2388 is still inserted at that location. This in turn breaks
2389 target_read_memory which depends on these buffers when
2390 a memory read is requested at the breakpoint location:
2391 Once the target_info has been wiped, we fail to see that
2392 we have a breakpoint inserted at that address and thus
2393 read the breakpoint instead of returning the data saved in
2394 the breakpoint location's shadow contents. */
2395 bl->target_info.placed_address = bl->address;
2396 bl->target_info.placed_address_space = bl->pspace->aspace;
2397 bl->target_info.length = bl->length;
2398
2399 /* When working with target-side conditions, we must pass all the conditions
2400 for the same breakpoint address down to the target since GDB will not
2401 insert those locations. With a list of breakpoint conditions, the target
2402 can decide when to stop and notify GDB. */
2403
2404 if (is_breakpoint (bl->owner))
2405 {
2406 build_target_condition_list (bl);
2407 build_target_command_list (bl);
2408 /* Reset the modification marker. */
2409 bl->needs_update = 0;
2410 }
2411
2412 if (bl->loc_type == bp_loc_software_breakpoint
2413 || bl->loc_type == bp_loc_hardware_breakpoint)
2414 {
2415 if (bl->owner->type != bp_hardware_breakpoint)
2416 {
2417 /* If the explicitly specified breakpoint type
2418 is not hardware breakpoint, check the memory map to see
2419 if the breakpoint address is in read only memory or not.
2420
2421 Two important cases are:
2422 - location type is not hardware breakpoint, memory
2423 is readonly. We change the type of the location to
2424 hardware breakpoint.
2425 - location type is hardware breakpoint, memory is
2426 read-write. This means we've previously made the
2427 location hardware one, but then the memory map changed,
2428 so we undo.
2429
2430 When breakpoints are removed, remove_breakpoints will use
2431 location types we've just set here, the only possible
2432 problem is that memory map has changed during running
2433 program, but it's not going to work anyway with current
2434 gdb. */
2435 struct mem_region *mr
2436 = lookup_mem_region (bl->target_info.placed_address);
2437
2438 if (mr)
2439 {
2440 if (automatic_hardware_breakpoints)
2441 {
2442 enum bp_loc_type new_type;
2443
2444 if (mr->attrib.mode != MEM_RW)
2445 new_type = bp_loc_hardware_breakpoint;
2446 else
2447 new_type = bp_loc_software_breakpoint;
2448
2449 if (new_type != bl->loc_type)
2450 {
2451 static int said = 0;
2452
2453 bl->loc_type = new_type;
2454 if (!said)
2455 {
2456 fprintf_filtered (gdb_stdout,
2457 _("Note: automatically using "
2458 "hardware breakpoints for "
2459 "read-only addresses.\n"));
2460 said = 1;
2461 }
2462 }
2463 }
2464 else if (bl->loc_type == bp_loc_software_breakpoint
2465 && mr->attrib.mode != MEM_RW)
2466 warning (_("cannot set software breakpoint "
2467 "at readonly address %s"),
2468 paddress (bl->gdbarch, bl->address));
2469 }
2470 }
2471
2472 /* First check to see if we have to handle an overlay. */
2473 if (overlay_debugging == ovly_off
2474 || bl->section == NULL
2475 || !(section_is_overlay (bl->section)))
2476 {
2477 /* No overlay handling: just set the breakpoint. */
2478 TRY_CATCH (e, RETURN_MASK_ALL)
2479 {
2480 val = bl->owner->ops->insert_location (bl);
2481 }
2482 if (e.reason < 0)
2483 {
2484 val = 1;
2485 hw_bp_err_string = (char *) e.message;
2486 }
2487 }
2488 else
2489 {
2490 /* This breakpoint is in an overlay section.
2491 Shall we set a breakpoint at the LMA? */
2492 if (!overlay_events_enabled)
2493 {
2494 /* Yes -- overlay event support is not active,
2495 so we must try to set a breakpoint at the LMA.
2496 This will not work for a hardware breakpoint. */
2497 if (bl->loc_type == bp_loc_hardware_breakpoint)
2498 warning (_("hardware breakpoint %d not supported in overlay!"),
2499 bl->owner->number);
2500 else
2501 {
2502 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2503 bl->section);
2504 /* Set a software (trap) breakpoint at the LMA. */
2505 bl->overlay_target_info = bl->target_info;
2506 bl->overlay_target_info.placed_address = addr;
2507 val = target_insert_breakpoint (bl->gdbarch,
2508 &bl->overlay_target_info);
2509 if (val != 0)
2510 fprintf_unfiltered (tmp_error_stream,
2511 "Overlay breakpoint %d "
2512 "failed: in ROM?\n",
2513 bl->owner->number);
2514 }
2515 }
2516 /* Shall we set a breakpoint at the VMA? */
2517 if (section_is_mapped (bl->section))
2518 {
2519 /* Yes. This overlay section is mapped into memory. */
2520 TRY_CATCH (e, RETURN_MASK_ALL)
2521 {
2522 val = bl->owner->ops->insert_location (bl);
2523 }
2524 if (e.reason < 0)
2525 {
2526 val = 1;
2527 hw_bp_err_string = (char *) e.message;
2528 }
2529 }
2530 else
2531 {
2532 /* No. This breakpoint will not be inserted.
2533 No error, but do not mark the bp as 'inserted'. */
2534 return 0;
2535 }
2536 }
2537
2538 if (val)
2539 {
2540 /* Can't set the breakpoint. */
2541 if (solib_name_from_address (bl->pspace, bl->address))
2542 {
2543 /* See also: disable_breakpoints_in_shlibs. */
2544 val = 0;
2545 bl->shlib_disabled = 1;
2546 observer_notify_breakpoint_modified (bl->owner);
2547 if (!*disabled_breaks)
2548 {
2549 fprintf_unfiltered (tmp_error_stream,
2550 "Cannot insert breakpoint %d.\n",
2551 bl->owner->number);
2552 fprintf_unfiltered (tmp_error_stream,
2553 "Temporarily disabling shared "
2554 "library breakpoints:\n");
2555 }
2556 *disabled_breaks = 1;
2557 fprintf_unfiltered (tmp_error_stream,
2558 "breakpoint #%d\n", bl->owner->number);
2559 }
2560 else
2561 {
2562 if (bl->loc_type == bp_loc_hardware_breakpoint)
2563 {
2564 *hw_breakpoint_error = 1;
2565 *hw_bp_error_explained_already = hw_bp_err_string != NULL;
2566 fprintf_unfiltered (tmp_error_stream,
2567 "Cannot insert hardware breakpoint %d%s",
2568 bl->owner->number, hw_bp_err_string ? ":" : ".\n");
2569 if (hw_bp_err_string)
2570 fprintf_unfiltered (tmp_error_stream, "%s.\n", hw_bp_err_string);
2571 }
2572 else
2573 {
2574 fprintf_unfiltered (tmp_error_stream,
2575 "Cannot insert breakpoint %d.\n",
2576 bl->owner->number);
2577 fprintf_filtered (tmp_error_stream,
2578 "Error accessing memory address ");
2579 fputs_filtered (paddress (bl->gdbarch, bl->address),
2580 tmp_error_stream);
2581 fprintf_filtered (tmp_error_stream, ": %s.\n",
2582 safe_strerror (val));
2583 }
2584
2585 }
2586 }
2587 else
2588 bl->inserted = 1;
2589
2590 return val;
2591 }
2592
2593 else if (bl->loc_type == bp_loc_hardware_watchpoint
2594 /* NOTE drow/2003-09-08: This state only exists for removing
2595 watchpoints. It's not clear that it's necessary... */
2596 && bl->owner->disposition != disp_del_at_next_stop)
2597 {
2598 gdb_assert (bl->owner->ops != NULL
2599 && bl->owner->ops->insert_location != NULL);
2600
2601 val = bl->owner->ops->insert_location (bl);
2602
2603 /* If trying to set a read-watchpoint, and it turns out it's not
2604 supported, try emulating one with an access watchpoint. */
2605 if (val == 1 && bl->watchpoint_type == hw_read)
2606 {
2607 struct bp_location *loc, **loc_temp;
2608
2609 /* But don't try to insert it, if there's already another
2610 hw_access location that would be considered a duplicate
2611 of this one. */
2612 ALL_BP_LOCATIONS (loc, loc_temp)
2613 if (loc != bl
2614 && loc->watchpoint_type == hw_access
2615 && watchpoint_locations_match (bl, loc))
2616 {
2617 bl->duplicate = 1;
2618 bl->inserted = 1;
2619 bl->target_info = loc->target_info;
2620 bl->watchpoint_type = hw_access;
2621 val = 0;
2622 break;
2623 }
2624
2625 if (val == 1)
2626 {
2627 bl->watchpoint_type = hw_access;
2628 val = bl->owner->ops->insert_location (bl);
2629
2630 if (val)
2631 /* Back to the original value. */
2632 bl->watchpoint_type = hw_read;
2633 }
2634 }
2635
2636 bl->inserted = (val == 0);
2637 }
2638
2639 else if (bl->owner->type == bp_catchpoint)
2640 {
2641 gdb_assert (bl->owner->ops != NULL
2642 && bl->owner->ops->insert_location != NULL);
2643
2644 val = bl->owner->ops->insert_location (bl);
2645 if (val)
2646 {
2647 bl->owner->enable_state = bp_disabled;
2648
2649 if (val == 1)
2650 warning (_("\
2651 Error inserting catchpoint %d: Your system does not support this type\n\
2652 of catchpoint."), bl->owner->number);
2653 else
2654 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2655 }
2656
2657 bl->inserted = (val == 0);
2658
2659 /* We've already printed an error message if there was a problem
2660 inserting this catchpoint, and we've disabled the catchpoint,
2661 so just return success. */
2662 return 0;
2663 }
2664
2665 return 0;
2666 }
2667
2668 /* This function is called when program space PSPACE is about to be
2669 deleted. It takes care of updating breakpoints to not reference
2670 PSPACE anymore. */
2671
2672 void
2673 breakpoint_program_space_exit (struct program_space *pspace)
2674 {
2675 struct breakpoint *b, *b_temp;
2676 struct bp_location *loc, **loc_temp;
2677
2678 /* Remove any breakpoint that was set through this program space. */
2679 ALL_BREAKPOINTS_SAFE (b, b_temp)
2680 {
2681 if (b->pspace == pspace)
2682 delete_breakpoint (b);
2683 }
2684
2685 /* Breakpoints set through other program spaces could have locations
2686 bound to PSPACE as well. Remove those. */
2687 ALL_BP_LOCATIONS (loc, loc_temp)
2688 {
2689 struct bp_location *tmp;
2690
2691 if (loc->pspace == pspace)
2692 {
2693 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2694 if (loc->owner->loc == loc)
2695 loc->owner->loc = loc->next;
2696 else
2697 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2698 if (tmp->next == loc)
2699 {
2700 tmp->next = loc->next;
2701 break;
2702 }
2703 }
2704 }
2705
2706 /* Now update the global location list to permanently delete the
2707 removed locations above. */
2708 update_global_location_list (0);
2709 }
2710
2711 /* Make sure all breakpoints are inserted in inferior.
2712 Throws exception on any error.
2713 A breakpoint that is already inserted won't be inserted
2714 again, so calling this function twice is safe. */
2715 void
2716 insert_breakpoints (void)
2717 {
2718 struct breakpoint *bpt;
2719
2720 ALL_BREAKPOINTS (bpt)
2721 if (is_hardware_watchpoint (bpt))
2722 {
2723 struct watchpoint *w = (struct watchpoint *) bpt;
2724
2725 update_watchpoint (w, 0 /* don't reparse. */);
2726 }
2727
2728 update_global_location_list (1);
2729
2730 /* update_global_location_list does not insert breakpoints when
2731 always_inserted_mode is not enabled. Explicitly insert them
2732 now. */
2733 if (!breakpoints_always_inserted_mode ())
2734 insert_breakpoint_locations ();
2735 }
2736
2737 /* Invoke CALLBACK for each of bp_location. */
2738
2739 void
2740 iterate_over_bp_locations (walk_bp_location_callback callback)
2741 {
2742 struct bp_location *loc, **loc_tmp;
2743
2744 ALL_BP_LOCATIONS (loc, loc_tmp)
2745 {
2746 callback (loc, NULL);
2747 }
2748 }
2749
2750 /* This is used when we need to synch breakpoint conditions between GDB and the
2751 target. It is the case with deleting and disabling of breakpoints when using
2752 always-inserted mode. */
2753
2754 static void
2755 update_inserted_breakpoint_locations (void)
2756 {
2757 struct bp_location *bl, **blp_tmp;
2758 int error_flag = 0;
2759 int val = 0;
2760 int disabled_breaks = 0;
2761 int hw_breakpoint_error = 0;
2762 int hw_bp_details_reported = 0;
2763
2764 struct ui_file *tmp_error_stream = mem_fileopen ();
2765 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2766
2767 /* Explicitly mark the warning -- this will only be printed if
2768 there was an error. */
2769 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2770
2771 save_current_space_and_thread ();
2772
2773 ALL_BP_LOCATIONS (bl, blp_tmp)
2774 {
2775 /* We only want to update software breakpoints and hardware
2776 breakpoints. */
2777 if (!is_breakpoint (bl->owner))
2778 continue;
2779
2780 /* We only want to update locations that are already inserted
2781 and need updating. This is to avoid unwanted insertion during
2782 deletion of breakpoints. */
2783 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2784 continue;
2785
2786 switch_to_program_space_and_thread (bl->pspace);
2787
2788 /* For targets that support global breakpoints, there's no need
2789 to select an inferior to insert breakpoint to. In fact, even
2790 if we aren't attached to any process yet, we should still
2791 insert breakpoints. */
2792 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2793 && ptid_equal (inferior_ptid, null_ptid))
2794 continue;
2795
2796 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2797 &hw_breakpoint_error, &hw_bp_details_reported);
2798 if (val)
2799 error_flag = val;
2800 }
2801
2802 if (error_flag)
2803 {
2804 target_terminal_ours_for_output ();
2805 error_stream (tmp_error_stream);
2806 }
2807
2808 do_cleanups (cleanups);
2809 }
2810
2811 /* Used when starting or continuing the program. */
2812
2813 static void
2814 insert_breakpoint_locations (void)
2815 {
2816 struct breakpoint *bpt;
2817 struct bp_location *bl, **blp_tmp;
2818 int error_flag = 0;
2819 int val = 0;
2820 int disabled_breaks = 0;
2821 int hw_breakpoint_error = 0;
2822 int hw_bp_error_explained_already = 0;
2823
2824 struct ui_file *tmp_error_stream = mem_fileopen ();
2825 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2826
2827 /* Explicitly mark the warning -- this will only be printed if
2828 there was an error. */
2829 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2830
2831 save_current_space_and_thread ();
2832
2833 ALL_BP_LOCATIONS (bl, blp_tmp)
2834 {
2835 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2836 continue;
2837
2838 /* There is no point inserting thread-specific breakpoints if
2839 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2840 has BL->OWNER always non-NULL. */
2841 if (bl->owner->thread != -1
2842 && !valid_thread_id (bl->owner->thread))
2843 continue;
2844
2845 switch_to_program_space_and_thread (bl->pspace);
2846
2847 /* For targets that support global breakpoints, there's no need
2848 to select an inferior to insert breakpoint to. In fact, even
2849 if we aren't attached to any process yet, we should still
2850 insert breakpoints. */
2851 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2852 && ptid_equal (inferior_ptid, null_ptid))
2853 continue;
2854
2855 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2856 &hw_breakpoint_error, &hw_bp_error_explained_already);
2857 if (val)
2858 error_flag = val;
2859 }
2860
2861 /* If we failed to insert all locations of a watchpoint, remove
2862 them, as half-inserted watchpoint is of limited use. */
2863 ALL_BREAKPOINTS (bpt)
2864 {
2865 int some_failed = 0;
2866 struct bp_location *loc;
2867
2868 if (!is_hardware_watchpoint (bpt))
2869 continue;
2870
2871 if (!breakpoint_enabled (bpt))
2872 continue;
2873
2874 if (bpt->disposition == disp_del_at_next_stop)
2875 continue;
2876
2877 for (loc = bpt->loc; loc; loc = loc->next)
2878 if (!loc->inserted && should_be_inserted (loc))
2879 {
2880 some_failed = 1;
2881 break;
2882 }
2883 if (some_failed)
2884 {
2885 for (loc = bpt->loc; loc; loc = loc->next)
2886 if (loc->inserted)
2887 remove_breakpoint (loc, mark_uninserted);
2888
2889 hw_breakpoint_error = 1;
2890 fprintf_unfiltered (tmp_error_stream,
2891 "Could not insert hardware watchpoint %d.\n",
2892 bpt->number);
2893 error_flag = -1;
2894 }
2895 }
2896
2897 if (error_flag)
2898 {
2899 /* If a hardware breakpoint or watchpoint was inserted, add a
2900 message about possibly exhausted resources. */
2901 if (hw_breakpoint_error && !hw_bp_error_explained_already)
2902 {
2903 fprintf_unfiltered (tmp_error_stream,
2904 "Could not insert hardware breakpoints:\n\
2905 You may have requested too many hardware breakpoints/watchpoints.\n");
2906 }
2907 target_terminal_ours_for_output ();
2908 error_stream (tmp_error_stream);
2909 }
2910
2911 do_cleanups (cleanups);
2912 }
2913
2914 /* Used when the program stops.
2915 Returns zero if successful, or non-zero if there was a problem
2916 removing a breakpoint location. */
2917
2918 int
2919 remove_breakpoints (void)
2920 {
2921 struct bp_location *bl, **blp_tmp;
2922 int val = 0;
2923
2924 ALL_BP_LOCATIONS (bl, blp_tmp)
2925 {
2926 if (bl->inserted && !is_tracepoint (bl->owner))
2927 val |= remove_breakpoint (bl, mark_uninserted);
2928 }
2929 return val;
2930 }
2931
2932 /* Remove breakpoints of process PID. */
2933
2934 int
2935 remove_breakpoints_pid (int pid)
2936 {
2937 struct bp_location *bl, **blp_tmp;
2938 int val;
2939 struct inferior *inf = find_inferior_pid (pid);
2940
2941 ALL_BP_LOCATIONS (bl, blp_tmp)
2942 {
2943 if (bl->pspace != inf->pspace)
2944 continue;
2945
2946 if (bl->owner->type == bp_dprintf)
2947 continue;
2948
2949 if (bl->inserted)
2950 {
2951 val = remove_breakpoint (bl, mark_uninserted);
2952 if (val != 0)
2953 return val;
2954 }
2955 }
2956 return 0;
2957 }
2958
2959 int
2960 reattach_breakpoints (int pid)
2961 {
2962 struct cleanup *old_chain;
2963 struct bp_location *bl, **blp_tmp;
2964 int val;
2965 struct ui_file *tmp_error_stream;
2966 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
2967 struct inferior *inf;
2968 struct thread_info *tp;
2969
2970 tp = any_live_thread_of_process (pid);
2971 if (tp == NULL)
2972 return 1;
2973
2974 inf = find_inferior_pid (pid);
2975 old_chain = save_inferior_ptid ();
2976
2977 inferior_ptid = tp->ptid;
2978
2979 tmp_error_stream = mem_fileopen ();
2980 make_cleanup_ui_file_delete (tmp_error_stream);
2981
2982 ALL_BP_LOCATIONS (bl, blp_tmp)
2983 {
2984 if (bl->pspace != inf->pspace)
2985 continue;
2986
2987 if (bl->inserted)
2988 {
2989 bl->inserted = 0;
2990 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
2991 if (val != 0)
2992 {
2993 do_cleanups (old_chain);
2994 return val;
2995 }
2996 }
2997 }
2998 do_cleanups (old_chain);
2999 return 0;
3000 }
3001
3002 static int internal_breakpoint_number = -1;
3003
3004 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3005 If INTERNAL is non-zero, the breakpoint number will be populated
3006 from internal_breakpoint_number and that variable decremented.
3007 Otherwise the breakpoint number will be populated from
3008 breakpoint_count and that value incremented. Internal breakpoints
3009 do not set the internal var bpnum. */
3010 static void
3011 set_breakpoint_number (int internal, struct breakpoint *b)
3012 {
3013 if (internal)
3014 b->number = internal_breakpoint_number--;
3015 else
3016 {
3017 set_breakpoint_count (breakpoint_count + 1);
3018 b->number = breakpoint_count;
3019 }
3020 }
3021
3022 static struct breakpoint *
3023 create_internal_breakpoint (struct gdbarch *gdbarch,
3024 CORE_ADDR address, enum bptype type,
3025 const struct breakpoint_ops *ops)
3026 {
3027 struct symtab_and_line sal;
3028 struct breakpoint *b;
3029
3030 init_sal (&sal); /* Initialize to zeroes. */
3031
3032 sal.pc = address;
3033 sal.section = find_pc_overlay (sal.pc);
3034 sal.pspace = current_program_space;
3035
3036 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3037 b->number = internal_breakpoint_number--;
3038 b->disposition = disp_donttouch;
3039
3040 return b;
3041 }
3042
3043 static const char *const longjmp_names[] =
3044 {
3045 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3046 };
3047 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3048
3049 /* Per-objfile data private to breakpoint.c. */
3050 struct breakpoint_objfile_data
3051 {
3052 /* Minimal symbol for "_ovly_debug_event" (if any). */
3053 struct minimal_symbol *overlay_msym;
3054
3055 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3056 struct minimal_symbol *longjmp_msym[NUM_LONGJMP_NAMES];
3057
3058 /* True if we have looked for longjmp probes. */
3059 int longjmp_searched;
3060
3061 /* SystemTap probe points for longjmp (if any). */
3062 VEC (probe_p) *longjmp_probes;
3063
3064 /* Minimal symbol for "std::terminate()" (if any). */
3065 struct minimal_symbol *terminate_msym;
3066
3067 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3068 struct minimal_symbol *exception_msym;
3069
3070 /* True if we have looked for exception probes. */
3071 int exception_searched;
3072
3073 /* SystemTap probe points for unwinding (if any). */
3074 VEC (probe_p) *exception_probes;
3075 };
3076
3077 static const struct objfile_data *breakpoint_objfile_key;
3078
3079 /* Minimal symbol not found sentinel. */
3080 static struct minimal_symbol msym_not_found;
3081
3082 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3083
3084 static int
3085 msym_not_found_p (const struct minimal_symbol *msym)
3086 {
3087 return msym == &msym_not_found;
3088 }
3089
3090 /* Return per-objfile data needed by breakpoint.c.
3091 Allocate the data if necessary. */
3092
3093 static struct breakpoint_objfile_data *
3094 get_breakpoint_objfile_data (struct objfile *objfile)
3095 {
3096 struct breakpoint_objfile_data *bp_objfile_data;
3097
3098 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3099 if (bp_objfile_data == NULL)
3100 {
3101 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3102 sizeof (*bp_objfile_data));
3103
3104 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3105 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3106 }
3107 return bp_objfile_data;
3108 }
3109
3110 static void
3111 free_breakpoint_probes (struct objfile *obj, void *data)
3112 {
3113 struct breakpoint_objfile_data *bp_objfile_data = data;
3114
3115 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3116 VEC_free (probe_p, bp_objfile_data->exception_probes);
3117 }
3118
3119 static void
3120 create_overlay_event_breakpoint (void)
3121 {
3122 struct objfile *objfile;
3123 const char *const func_name = "_ovly_debug_event";
3124
3125 ALL_OBJFILES (objfile)
3126 {
3127 struct breakpoint *b;
3128 struct breakpoint_objfile_data *bp_objfile_data;
3129 CORE_ADDR addr;
3130
3131 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3132
3133 if (msym_not_found_p (bp_objfile_data->overlay_msym))
3134 continue;
3135
3136 if (bp_objfile_data->overlay_msym == NULL)
3137 {
3138 struct minimal_symbol *m;
3139
3140 m = lookup_minimal_symbol_text (func_name, objfile);
3141 if (m == NULL)
3142 {
3143 /* Avoid future lookups in this objfile. */
3144 bp_objfile_data->overlay_msym = &msym_not_found;
3145 continue;
3146 }
3147 bp_objfile_data->overlay_msym = m;
3148 }
3149
3150 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3151 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3152 bp_overlay_event,
3153 &internal_breakpoint_ops);
3154 b->addr_string = xstrdup (func_name);
3155
3156 if (overlay_debugging == ovly_auto)
3157 {
3158 b->enable_state = bp_enabled;
3159 overlay_events_enabled = 1;
3160 }
3161 else
3162 {
3163 b->enable_state = bp_disabled;
3164 overlay_events_enabled = 0;
3165 }
3166 }
3167 update_global_location_list (1);
3168 }
3169
3170 static void
3171 create_longjmp_master_breakpoint (void)
3172 {
3173 struct program_space *pspace;
3174 struct cleanup *old_chain;
3175
3176 old_chain = save_current_program_space ();
3177
3178 ALL_PSPACES (pspace)
3179 {
3180 struct objfile *objfile;
3181
3182 set_current_program_space (pspace);
3183
3184 ALL_OBJFILES (objfile)
3185 {
3186 int i;
3187 struct gdbarch *gdbarch;
3188 struct breakpoint_objfile_data *bp_objfile_data;
3189
3190 gdbarch = get_objfile_arch (objfile);
3191 if (!gdbarch_get_longjmp_target_p (gdbarch))
3192 continue;
3193
3194 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3195
3196 if (!bp_objfile_data->longjmp_searched)
3197 {
3198 bp_objfile_data->longjmp_probes
3199 = find_probes_in_objfile (objfile, "libc", "longjmp");
3200 bp_objfile_data->longjmp_searched = 1;
3201 }
3202
3203 if (bp_objfile_data->longjmp_probes != NULL)
3204 {
3205 int i;
3206 struct probe *probe;
3207 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3208
3209 for (i = 0;
3210 VEC_iterate (probe_p,
3211 bp_objfile_data->longjmp_probes,
3212 i, probe);
3213 ++i)
3214 {
3215 struct breakpoint *b;
3216
3217 b = create_internal_breakpoint (gdbarch, probe->address,
3218 bp_longjmp_master,
3219 &internal_breakpoint_ops);
3220 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3221 b->enable_state = bp_disabled;
3222 }
3223
3224 continue;
3225 }
3226
3227 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3228 {
3229 struct breakpoint *b;
3230 const char *func_name;
3231 CORE_ADDR addr;
3232
3233 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i]))
3234 continue;
3235
3236 func_name = longjmp_names[i];
3237 if (bp_objfile_data->longjmp_msym[i] == NULL)
3238 {
3239 struct minimal_symbol *m;
3240
3241 m = lookup_minimal_symbol_text (func_name, objfile);
3242 if (m == NULL)
3243 {
3244 /* Prevent future lookups in this objfile. */
3245 bp_objfile_data->longjmp_msym[i] = &msym_not_found;
3246 continue;
3247 }
3248 bp_objfile_data->longjmp_msym[i] = m;
3249 }
3250
3251 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3252 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3253 &internal_breakpoint_ops);
3254 b->addr_string = xstrdup (func_name);
3255 b->enable_state = bp_disabled;
3256 }
3257 }
3258 }
3259 update_global_location_list (1);
3260
3261 do_cleanups (old_chain);
3262 }
3263
3264 /* Create a master std::terminate breakpoint. */
3265 static void
3266 create_std_terminate_master_breakpoint (void)
3267 {
3268 struct program_space *pspace;
3269 struct cleanup *old_chain;
3270 const char *const func_name = "std::terminate()";
3271
3272 old_chain = save_current_program_space ();
3273
3274 ALL_PSPACES (pspace)
3275 {
3276 struct objfile *objfile;
3277 CORE_ADDR addr;
3278
3279 set_current_program_space (pspace);
3280
3281 ALL_OBJFILES (objfile)
3282 {
3283 struct breakpoint *b;
3284 struct breakpoint_objfile_data *bp_objfile_data;
3285
3286 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3287
3288 if (msym_not_found_p (bp_objfile_data->terminate_msym))
3289 continue;
3290
3291 if (bp_objfile_data->terminate_msym == NULL)
3292 {
3293 struct minimal_symbol *m;
3294
3295 m = lookup_minimal_symbol (func_name, NULL, objfile);
3296 if (m == NULL || (MSYMBOL_TYPE (m) != mst_text
3297 && MSYMBOL_TYPE (m) != mst_file_text))
3298 {
3299 /* Prevent future lookups in this objfile. */
3300 bp_objfile_data->terminate_msym = &msym_not_found;
3301 continue;
3302 }
3303 bp_objfile_data->terminate_msym = m;
3304 }
3305
3306 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3307 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3308 bp_std_terminate_master,
3309 &internal_breakpoint_ops);
3310 b->addr_string = xstrdup (func_name);
3311 b->enable_state = bp_disabled;
3312 }
3313 }
3314
3315 update_global_location_list (1);
3316
3317 do_cleanups (old_chain);
3318 }
3319
3320 /* Install a master breakpoint on the unwinder's debug hook. */
3321
3322 static void
3323 create_exception_master_breakpoint (void)
3324 {
3325 struct objfile *objfile;
3326 const char *const func_name = "_Unwind_DebugHook";
3327
3328 ALL_OBJFILES (objfile)
3329 {
3330 struct breakpoint *b;
3331 struct gdbarch *gdbarch;
3332 struct breakpoint_objfile_data *bp_objfile_data;
3333 CORE_ADDR addr;
3334
3335 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3336
3337 /* We prefer the SystemTap probe point if it exists. */
3338 if (!bp_objfile_data->exception_searched)
3339 {
3340 bp_objfile_data->exception_probes
3341 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3342 bp_objfile_data->exception_searched = 1;
3343 }
3344
3345 if (bp_objfile_data->exception_probes != NULL)
3346 {
3347 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3348 int i;
3349 struct probe *probe;
3350
3351 for (i = 0;
3352 VEC_iterate (probe_p,
3353 bp_objfile_data->exception_probes,
3354 i, probe);
3355 ++i)
3356 {
3357 struct breakpoint *b;
3358
3359 b = create_internal_breakpoint (gdbarch, probe->address,
3360 bp_exception_master,
3361 &internal_breakpoint_ops);
3362 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3363 b->enable_state = bp_disabled;
3364 }
3365
3366 continue;
3367 }
3368
3369 /* Otherwise, try the hook function. */
3370
3371 if (msym_not_found_p (bp_objfile_data->exception_msym))
3372 continue;
3373
3374 gdbarch = get_objfile_arch (objfile);
3375
3376 if (bp_objfile_data->exception_msym == NULL)
3377 {
3378 struct minimal_symbol *debug_hook;
3379
3380 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3381 if (debug_hook == NULL)
3382 {
3383 bp_objfile_data->exception_msym = &msym_not_found;
3384 continue;
3385 }
3386
3387 bp_objfile_data->exception_msym = debug_hook;
3388 }
3389
3390 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3391 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3392 &current_target);
3393 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3394 &internal_breakpoint_ops);
3395 b->addr_string = xstrdup (func_name);
3396 b->enable_state = bp_disabled;
3397 }
3398
3399 update_global_location_list (1);
3400 }
3401
3402 void
3403 update_breakpoints_after_exec (void)
3404 {
3405 struct breakpoint *b, *b_tmp;
3406 struct bp_location *bploc, **bplocp_tmp;
3407
3408 /* We're about to delete breakpoints from GDB's lists. If the
3409 INSERTED flag is true, GDB will try to lift the breakpoints by
3410 writing the breakpoints' "shadow contents" back into memory. The
3411 "shadow contents" are NOT valid after an exec, so GDB should not
3412 do that. Instead, the target is responsible from marking
3413 breakpoints out as soon as it detects an exec. We don't do that
3414 here instead, because there may be other attempts to delete
3415 breakpoints after detecting an exec and before reaching here. */
3416 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3417 if (bploc->pspace == current_program_space)
3418 gdb_assert (!bploc->inserted);
3419
3420 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3421 {
3422 if (b->pspace != current_program_space)
3423 continue;
3424
3425 /* Solib breakpoints must be explicitly reset after an exec(). */
3426 if (b->type == bp_shlib_event)
3427 {
3428 delete_breakpoint (b);
3429 continue;
3430 }
3431
3432 /* JIT breakpoints must be explicitly reset after an exec(). */
3433 if (b->type == bp_jit_event)
3434 {
3435 delete_breakpoint (b);
3436 continue;
3437 }
3438
3439 /* Thread event breakpoints must be set anew after an exec(),
3440 as must overlay event and longjmp master breakpoints. */
3441 if (b->type == bp_thread_event || b->type == bp_overlay_event
3442 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3443 || b->type == bp_exception_master)
3444 {
3445 delete_breakpoint (b);
3446 continue;
3447 }
3448
3449 /* Step-resume breakpoints are meaningless after an exec(). */
3450 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3451 {
3452 delete_breakpoint (b);
3453 continue;
3454 }
3455
3456 /* Longjmp and longjmp-resume breakpoints are also meaningless
3457 after an exec. */
3458 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3459 || b->type == bp_longjmp_call_dummy
3460 || b->type == bp_exception || b->type == bp_exception_resume)
3461 {
3462 delete_breakpoint (b);
3463 continue;
3464 }
3465
3466 if (b->type == bp_catchpoint)
3467 {
3468 /* For now, none of the bp_catchpoint breakpoints need to
3469 do anything at this point. In the future, if some of
3470 the catchpoints need to something, we will need to add
3471 a new method, and call this method from here. */
3472 continue;
3473 }
3474
3475 /* bp_finish is a special case. The only way we ought to be able
3476 to see one of these when an exec() has happened, is if the user
3477 caught a vfork, and then said "finish". Ordinarily a finish just
3478 carries them to the call-site of the current callee, by setting
3479 a temporary bp there and resuming. But in this case, the finish
3480 will carry them entirely through the vfork & exec.
3481
3482 We don't want to allow a bp_finish to remain inserted now. But
3483 we can't safely delete it, 'cause finish_command has a handle to
3484 the bp on a bpstat, and will later want to delete it. There's a
3485 chance (and I've seen it happen) that if we delete the bp_finish
3486 here, that its storage will get reused by the time finish_command
3487 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3488 We really must allow finish_command to delete a bp_finish.
3489
3490 In the absence of a general solution for the "how do we know
3491 it's safe to delete something others may have handles to?"
3492 problem, what we'll do here is just uninsert the bp_finish, and
3493 let finish_command delete it.
3494
3495 (We know the bp_finish is "doomed" in the sense that it's
3496 momentary, and will be deleted as soon as finish_command sees
3497 the inferior stopped. So it doesn't matter that the bp's
3498 address is probably bogus in the new a.out, unlike e.g., the
3499 solib breakpoints.) */
3500
3501 if (b->type == bp_finish)
3502 {
3503 continue;
3504 }
3505
3506 /* Without a symbolic address, we have little hope of the
3507 pre-exec() address meaning the same thing in the post-exec()
3508 a.out. */
3509 if (b->addr_string == NULL)
3510 {
3511 delete_breakpoint (b);
3512 continue;
3513 }
3514 }
3515 /* FIXME what about longjmp breakpoints? Re-create them here? */
3516 create_overlay_event_breakpoint ();
3517 create_longjmp_master_breakpoint ();
3518 create_std_terminate_master_breakpoint ();
3519 create_exception_master_breakpoint ();
3520 }
3521
3522 int
3523 detach_breakpoints (ptid_t ptid)
3524 {
3525 struct bp_location *bl, **blp_tmp;
3526 int val = 0;
3527 struct cleanup *old_chain = save_inferior_ptid ();
3528 struct inferior *inf = current_inferior ();
3529
3530 if (PIDGET (ptid) == PIDGET (inferior_ptid))
3531 error (_("Cannot detach breakpoints of inferior_ptid"));
3532
3533 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3534 inferior_ptid = ptid;
3535 ALL_BP_LOCATIONS (bl, blp_tmp)
3536 {
3537 if (bl->pspace != inf->pspace)
3538 continue;
3539
3540 /* This function must physically remove breakpoints locations
3541 from the specified ptid, without modifying the breakpoint
3542 package's state. Locations of type bp_loc_other are only
3543 maintained at GDB side. So, there is no need to remove
3544 these bp_loc_other locations. Moreover, removing these
3545 would modify the breakpoint package's state. */
3546 if (bl->loc_type == bp_loc_other)
3547 continue;
3548
3549 if (bl->inserted)
3550 val |= remove_breakpoint_1 (bl, mark_inserted);
3551 }
3552
3553 /* Detach single-step breakpoints as well. */
3554 detach_single_step_breakpoints ();
3555
3556 do_cleanups (old_chain);
3557 return val;
3558 }
3559
3560 /* Remove the breakpoint location BL from the current address space.
3561 Note that this is used to detach breakpoints from a child fork.
3562 When we get here, the child isn't in the inferior list, and neither
3563 do we have objects to represent its address space --- we should
3564 *not* look at bl->pspace->aspace here. */
3565
3566 static int
3567 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3568 {
3569 int val;
3570
3571 /* BL is never in moribund_locations by our callers. */
3572 gdb_assert (bl->owner != NULL);
3573
3574 if (bl->owner->enable_state == bp_permanent)
3575 /* Permanent breakpoints cannot be inserted or removed. */
3576 return 0;
3577
3578 /* The type of none suggests that owner is actually deleted.
3579 This should not ever happen. */
3580 gdb_assert (bl->owner->type != bp_none);
3581
3582 if (bl->loc_type == bp_loc_software_breakpoint
3583 || bl->loc_type == bp_loc_hardware_breakpoint)
3584 {
3585 /* "Normal" instruction breakpoint: either the standard
3586 trap-instruction bp (bp_breakpoint), or a
3587 bp_hardware_breakpoint. */
3588
3589 /* First check to see if we have to handle an overlay. */
3590 if (overlay_debugging == ovly_off
3591 || bl->section == NULL
3592 || !(section_is_overlay (bl->section)))
3593 {
3594 /* No overlay handling: just remove the breakpoint. */
3595 val = bl->owner->ops->remove_location (bl);
3596 }
3597 else
3598 {
3599 /* This breakpoint is in an overlay section.
3600 Did we set a breakpoint at the LMA? */
3601 if (!overlay_events_enabled)
3602 {
3603 /* Yes -- overlay event support is not active, so we
3604 should have set a breakpoint at the LMA. Remove it.
3605 */
3606 /* Ignore any failures: if the LMA is in ROM, we will
3607 have already warned when we failed to insert it. */
3608 if (bl->loc_type == bp_loc_hardware_breakpoint)
3609 target_remove_hw_breakpoint (bl->gdbarch,
3610 &bl->overlay_target_info);
3611 else
3612 target_remove_breakpoint (bl->gdbarch,
3613 &bl->overlay_target_info);
3614 }
3615 /* Did we set a breakpoint at the VMA?
3616 If so, we will have marked the breakpoint 'inserted'. */
3617 if (bl->inserted)
3618 {
3619 /* Yes -- remove it. Previously we did not bother to
3620 remove the breakpoint if the section had been
3621 unmapped, but let's not rely on that being safe. We
3622 don't know what the overlay manager might do. */
3623
3624 /* However, we should remove *software* breakpoints only
3625 if the section is still mapped, or else we overwrite
3626 wrong code with the saved shadow contents. */
3627 if (bl->loc_type == bp_loc_hardware_breakpoint
3628 || section_is_mapped (bl->section))
3629 val = bl->owner->ops->remove_location (bl);
3630 else
3631 val = 0;
3632 }
3633 else
3634 {
3635 /* No -- not inserted, so no need to remove. No error. */
3636 val = 0;
3637 }
3638 }
3639
3640 /* In some cases, we might not be able to remove a breakpoint
3641 in a shared library that has already been removed, but we
3642 have not yet processed the shlib unload event. */
3643 if (val && solib_name_from_address (bl->pspace, bl->address))
3644 val = 0;
3645
3646 if (val)
3647 return val;
3648 bl->inserted = (is == mark_inserted);
3649 }
3650 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3651 {
3652 gdb_assert (bl->owner->ops != NULL
3653 && bl->owner->ops->remove_location != NULL);
3654
3655 bl->inserted = (is == mark_inserted);
3656 bl->owner->ops->remove_location (bl);
3657
3658 /* Failure to remove any of the hardware watchpoints comes here. */
3659 if ((is == mark_uninserted) && (bl->inserted))
3660 warning (_("Could not remove hardware watchpoint %d."),
3661 bl->owner->number);
3662 }
3663 else if (bl->owner->type == bp_catchpoint
3664 && breakpoint_enabled (bl->owner)
3665 && !bl->duplicate)
3666 {
3667 gdb_assert (bl->owner->ops != NULL
3668 && bl->owner->ops->remove_location != NULL);
3669
3670 val = bl->owner->ops->remove_location (bl);
3671 if (val)
3672 return val;
3673
3674 bl->inserted = (is == mark_inserted);
3675 }
3676
3677 return 0;
3678 }
3679
3680 static int
3681 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
3682 {
3683 int ret;
3684 struct cleanup *old_chain;
3685
3686 /* BL is never in moribund_locations by our callers. */
3687 gdb_assert (bl->owner != NULL);
3688
3689 if (bl->owner->enable_state == bp_permanent)
3690 /* Permanent breakpoints cannot be inserted or removed. */
3691 return 0;
3692
3693 /* The type of none suggests that owner is actually deleted.
3694 This should not ever happen. */
3695 gdb_assert (bl->owner->type != bp_none);
3696
3697 old_chain = save_current_space_and_thread ();
3698
3699 switch_to_program_space_and_thread (bl->pspace);
3700
3701 ret = remove_breakpoint_1 (bl, is);
3702
3703 do_cleanups (old_chain);
3704 return ret;
3705 }
3706
3707 /* Clear the "inserted" flag in all breakpoints. */
3708
3709 void
3710 mark_breakpoints_out (void)
3711 {
3712 struct bp_location *bl, **blp_tmp;
3713
3714 ALL_BP_LOCATIONS (bl, blp_tmp)
3715 if (bl->pspace == current_program_space)
3716 bl->inserted = 0;
3717 }
3718
3719 /* Clear the "inserted" flag in all breakpoints and delete any
3720 breakpoints which should go away between runs of the program.
3721
3722 Plus other such housekeeping that has to be done for breakpoints
3723 between runs.
3724
3725 Note: this function gets called at the end of a run (by
3726 generic_mourn_inferior) and when a run begins (by
3727 init_wait_for_inferior). */
3728
3729
3730
3731 void
3732 breakpoint_init_inferior (enum inf_context context)
3733 {
3734 struct breakpoint *b, *b_tmp;
3735 struct bp_location *bl, **blp_tmp;
3736 int ix;
3737 struct program_space *pspace = current_program_space;
3738
3739 /* If breakpoint locations are shared across processes, then there's
3740 nothing to do. */
3741 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3742 return;
3743
3744 ALL_BP_LOCATIONS (bl, blp_tmp)
3745 {
3746 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3747 if (bl->pspace == pspace
3748 && bl->owner->enable_state != bp_permanent)
3749 bl->inserted = 0;
3750 }
3751
3752 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3753 {
3754 if (b->loc && b->loc->pspace != pspace)
3755 continue;
3756
3757 switch (b->type)
3758 {
3759 case bp_call_dummy:
3760 case bp_longjmp_call_dummy:
3761
3762 /* If the call dummy breakpoint is at the entry point it will
3763 cause problems when the inferior is rerun, so we better get
3764 rid of it. */
3765
3766 case bp_watchpoint_scope:
3767
3768 /* Also get rid of scope breakpoints. */
3769
3770 case bp_shlib_event:
3771
3772 /* Also remove solib event breakpoints. Their addresses may
3773 have changed since the last time we ran the program.
3774 Actually we may now be debugging against different target;
3775 and so the solib backend that installed this breakpoint may
3776 not be used in by the target. E.g.,
3777
3778 (gdb) file prog-linux
3779 (gdb) run # native linux target
3780 ...
3781 (gdb) kill
3782 (gdb) file prog-win.exe
3783 (gdb) tar rem :9999 # remote Windows gdbserver.
3784 */
3785
3786 case bp_step_resume:
3787
3788 /* Also remove step-resume breakpoints. */
3789
3790 delete_breakpoint (b);
3791 break;
3792
3793 case bp_watchpoint:
3794 case bp_hardware_watchpoint:
3795 case bp_read_watchpoint:
3796 case bp_access_watchpoint:
3797 {
3798 struct watchpoint *w = (struct watchpoint *) b;
3799
3800 /* Likewise for watchpoints on local expressions. */
3801 if (w->exp_valid_block != NULL)
3802 delete_breakpoint (b);
3803 else if (context == inf_starting)
3804 {
3805 /* Reset val field to force reread of starting value in
3806 insert_breakpoints. */
3807 if (w->val)
3808 value_free (w->val);
3809 w->val = NULL;
3810 w->val_valid = 0;
3811 }
3812 }
3813 break;
3814 default:
3815 break;
3816 }
3817 }
3818
3819 /* Get rid of the moribund locations. */
3820 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3821 decref_bp_location (&bl);
3822 VEC_free (bp_location_p, moribund_locations);
3823 }
3824
3825 /* These functions concern about actual breakpoints inserted in the
3826 target --- to e.g. check if we need to do decr_pc adjustment or if
3827 we need to hop over the bkpt --- so we check for address space
3828 match, not program space. */
3829
3830 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3831 exists at PC. It returns ordinary_breakpoint_here if it's an
3832 ordinary breakpoint, or permanent_breakpoint_here if it's a
3833 permanent breakpoint.
3834 - When continuing from a location with an ordinary breakpoint, we
3835 actually single step once before calling insert_breakpoints.
3836 - When continuing from a location with a permanent breakpoint, we
3837 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3838 the target, to advance the PC past the breakpoint. */
3839
3840 enum breakpoint_here
3841 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3842 {
3843 struct bp_location *bl, **blp_tmp;
3844 int any_breakpoint_here = 0;
3845
3846 ALL_BP_LOCATIONS (bl, blp_tmp)
3847 {
3848 if (bl->loc_type != bp_loc_software_breakpoint
3849 && bl->loc_type != bp_loc_hardware_breakpoint)
3850 continue;
3851
3852 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3853 if ((breakpoint_enabled (bl->owner)
3854 || bl->owner->enable_state == bp_permanent)
3855 && breakpoint_location_address_match (bl, aspace, pc))
3856 {
3857 if (overlay_debugging
3858 && section_is_overlay (bl->section)
3859 && !section_is_mapped (bl->section))
3860 continue; /* unmapped overlay -- can't be a match */
3861 else if (bl->owner->enable_state == bp_permanent)
3862 return permanent_breakpoint_here;
3863 else
3864 any_breakpoint_here = 1;
3865 }
3866 }
3867
3868 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
3869 }
3870
3871 /* Return true if there's a moribund breakpoint at PC. */
3872
3873 int
3874 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3875 {
3876 struct bp_location *loc;
3877 int ix;
3878
3879 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
3880 if (breakpoint_location_address_match (loc, aspace, pc))
3881 return 1;
3882
3883 return 0;
3884 }
3885
3886 /* Returns non-zero if there's a breakpoint inserted at PC, which is
3887 inserted using regular breakpoint_chain / bp_location array
3888 mechanism. This does not check for single-step breakpoints, which
3889 are inserted and removed using direct target manipulation. */
3890
3891 int
3892 regular_breakpoint_inserted_here_p (struct address_space *aspace,
3893 CORE_ADDR pc)
3894 {
3895 struct bp_location *bl, **blp_tmp;
3896
3897 ALL_BP_LOCATIONS (bl, blp_tmp)
3898 {
3899 if (bl->loc_type != bp_loc_software_breakpoint
3900 && bl->loc_type != bp_loc_hardware_breakpoint)
3901 continue;
3902
3903 if (bl->inserted
3904 && breakpoint_location_address_match (bl, aspace, pc))
3905 {
3906 if (overlay_debugging
3907 && section_is_overlay (bl->section)
3908 && !section_is_mapped (bl->section))
3909 continue; /* unmapped overlay -- can't be a match */
3910 else
3911 return 1;
3912 }
3913 }
3914 return 0;
3915 }
3916
3917 /* Returns non-zero iff there's either regular breakpoint
3918 or a single step breakpoint inserted at PC. */
3919
3920 int
3921 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
3922 {
3923 if (regular_breakpoint_inserted_here_p (aspace, pc))
3924 return 1;
3925
3926 if (single_step_breakpoint_inserted_here_p (aspace, pc))
3927 return 1;
3928
3929 return 0;
3930 }
3931
3932 /* This function returns non-zero iff there is a software breakpoint
3933 inserted at PC. */
3934
3935 int
3936 software_breakpoint_inserted_here_p (struct address_space *aspace,
3937 CORE_ADDR pc)
3938 {
3939 struct bp_location *bl, **blp_tmp;
3940
3941 ALL_BP_LOCATIONS (bl, blp_tmp)
3942 {
3943 if (bl->loc_type != bp_loc_software_breakpoint)
3944 continue;
3945
3946 if (bl->inserted
3947 && breakpoint_address_match (bl->pspace->aspace, bl->address,
3948 aspace, pc))
3949 {
3950 if (overlay_debugging
3951 && section_is_overlay (bl->section)
3952 && !section_is_mapped (bl->section))
3953 continue; /* unmapped overlay -- can't be a match */
3954 else
3955 return 1;
3956 }
3957 }
3958
3959 /* Also check for software single-step breakpoints. */
3960 if (single_step_breakpoint_inserted_here_p (aspace, pc))
3961 return 1;
3962
3963 return 0;
3964 }
3965
3966 int
3967 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
3968 CORE_ADDR addr, ULONGEST len)
3969 {
3970 struct breakpoint *bpt;
3971
3972 ALL_BREAKPOINTS (bpt)
3973 {
3974 struct bp_location *loc;
3975
3976 if (bpt->type != bp_hardware_watchpoint
3977 && bpt->type != bp_access_watchpoint)
3978 continue;
3979
3980 if (!breakpoint_enabled (bpt))
3981 continue;
3982
3983 for (loc = bpt->loc; loc; loc = loc->next)
3984 if (loc->pspace->aspace == aspace && loc->inserted)
3985 {
3986 CORE_ADDR l, h;
3987
3988 /* Check for intersection. */
3989 l = max (loc->address, addr);
3990 h = min (loc->address + loc->length, addr + len);
3991 if (l < h)
3992 return 1;
3993 }
3994 }
3995 return 0;
3996 }
3997
3998 /* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
3999 PC is valid for process/thread PTID. */
4000
4001 int
4002 breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
4003 ptid_t ptid)
4004 {
4005 struct bp_location *bl, **blp_tmp;
4006 /* The thread and task IDs associated to PTID, computed lazily. */
4007 int thread = -1;
4008 int task = 0;
4009
4010 ALL_BP_LOCATIONS (bl, blp_tmp)
4011 {
4012 if (bl->loc_type != bp_loc_software_breakpoint
4013 && bl->loc_type != bp_loc_hardware_breakpoint)
4014 continue;
4015
4016 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4017 if (!breakpoint_enabled (bl->owner)
4018 && bl->owner->enable_state != bp_permanent)
4019 continue;
4020
4021 if (!breakpoint_location_address_match (bl, aspace, pc))
4022 continue;
4023
4024 if (bl->owner->thread != -1)
4025 {
4026 /* This is a thread-specific breakpoint. Check that ptid
4027 matches that thread. If thread hasn't been computed yet,
4028 it is now time to do so. */
4029 if (thread == -1)
4030 thread = pid_to_thread_id (ptid);
4031 if (bl->owner->thread != thread)
4032 continue;
4033 }
4034
4035 if (bl->owner->task != 0)
4036 {
4037 /* This is a task-specific breakpoint. Check that ptid
4038 matches that task. If task hasn't been computed yet,
4039 it is now time to do so. */
4040 if (task == 0)
4041 task = ada_get_task_number (ptid);
4042 if (bl->owner->task != task)
4043 continue;
4044 }
4045
4046 if (overlay_debugging
4047 && section_is_overlay (bl->section)
4048 && !section_is_mapped (bl->section))
4049 continue; /* unmapped overlay -- can't be a match */
4050
4051 return 1;
4052 }
4053
4054 return 0;
4055 }
4056 \f
4057
4058 /* bpstat stuff. External routines' interfaces are documented
4059 in breakpoint.h. */
4060
4061 int
4062 is_catchpoint (struct breakpoint *ep)
4063 {
4064 return (ep->type == bp_catchpoint);
4065 }
4066
4067 /* Frees any storage that is part of a bpstat. Does not walk the
4068 'next' chain. */
4069
4070 static void
4071 bpstat_free (bpstat bs)
4072 {
4073 if (bs->old_val != NULL)
4074 value_free (bs->old_val);
4075 decref_counted_command_line (&bs->commands);
4076 decref_bp_location (&bs->bp_location_at);
4077 xfree (bs);
4078 }
4079
4080 /* Clear a bpstat so that it says we are not at any breakpoint.
4081 Also free any storage that is part of a bpstat. */
4082
4083 void
4084 bpstat_clear (bpstat *bsp)
4085 {
4086 bpstat p;
4087 bpstat q;
4088
4089 if (bsp == 0)
4090 return;
4091 p = *bsp;
4092 while (p != NULL)
4093 {
4094 q = p->next;
4095 bpstat_free (p);
4096 p = q;
4097 }
4098 *bsp = NULL;
4099 }
4100
4101 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4102 is part of the bpstat is copied as well. */
4103
4104 bpstat
4105 bpstat_copy (bpstat bs)
4106 {
4107 bpstat p = NULL;
4108 bpstat tmp;
4109 bpstat retval = NULL;
4110
4111 if (bs == NULL)
4112 return bs;
4113
4114 for (; bs != NULL; bs = bs->next)
4115 {
4116 tmp = (bpstat) xmalloc (sizeof (*tmp));
4117 memcpy (tmp, bs, sizeof (*tmp));
4118 incref_counted_command_line (tmp->commands);
4119 incref_bp_location (tmp->bp_location_at);
4120 if (bs->old_val != NULL)
4121 {
4122 tmp->old_val = value_copy (bs->old_val);
4123 release_value (tmp->old_val);
4124 }
4125
4126 if (p == NULL)
4127 /* This is the first thing in the chain. */
4128 retval = tmp;
4129 else
4130 p->next = tmp;
4131 p = tmp;
4132 }
4133 p->next = NULL;
4134 return retval;
4135 }
4136
4137 /* Find the bpstat associated with this breakpoint. */
4138
4139 bpstat
4140 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4141 {
4142 if (bsp == NULL)
4143 return NULL;
4144
4145 for (; bsp != NULL; bsp = bsp->next)
4146 {
4147 if (bsp->breakpoint_at == breakpoint)
4148 return bsp;
4149 }
4150 return NULL;
4151 }
4152
4153 /* See breakpoint.h. */
4154
4155 enum bpstat_signal_value
4156 bpstat_explains_signal (bpstat bsp)
4157 {
4158 enum bpstat_signal_value result = BPSTAT_SIGNAL_NO;
4159
4160 for (; bsp != NULL; bsp = bsp->next)
4161 {
4162 /* Ensure that, if we ever entered this loop, then we at least
4163 return BPSTAT_SIGNAL_HIDE. */
4164 enum bpstat_signal_value newval = BPSTAT_SIGNAL_HIDE;
4165
4166 if (bsp->breakpoint_at != NULL)
4167 newval = bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at);
4168
4169 if (newval > result)
4170 result = newval;
4171 }
4172
4173 return result;
4174 }
4175
4176 /* Put in *NUM the breakpoint number of the first breakpoint we are
4177 stopped at. *BSP upon return is a bpstat which points to the
4178 remaining breakpoints stopped at (but which is not guaranteed to be
4179 good for anything but further calls to bpstat_num).
4180
4181 Return 0 if passed a bpstat which does not indicate any breakpoints.
4182 Return -1 if stopped at a breakpoint that has been deleted since
4183 we set it.
4184 Return 1 otherwise. */
4185
4186 int
4187 bpstat_num (bpstat *bsp, int *num)
4188 {
4189 struct breakpoint *b;
4190
4191 if ((*bsp) == NULL)
4192 return 0; /* No more breakpoint values */
4193
4194 /* We assume we'll never have several bpstats that correspond to a
4195 single breakpoint -- otherwise, this function might return the
4196 same number more than once and this will look ugly. */
4197 b = (*bsp)->breakpoint_at;
4198 *bsp = (*bsp)->next;
4199 if (b == NULL)
4200 return -1; /* breakpoint that's been deleted since */
4201
4202 *num = b->number; /* We have its number */
4203 return 1;
4204 }
4205
4206 /* See breakpoint.h. */
4207
4208 void
4209 bpstat_clear_actions (void)
4210 {
4211 struct thread_info *tp;
4212 bpstat bs;
4213
4214 if (ptid_equal (inferior_ptid, null_ptid))
4215 return;
4216
4217 tp = find_thread_ptid (inferior_ptid);
4218 if (tp == NULL)
4219 return;
4220
4221 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4222 {
4223 decref_counted_command_line (&bs->commands);
4224
4225 if (bs->old_val != NULL)
4226 {
4227 value_free (bs->old_val);
4228 bs->old_val = NULL;
4229 }
4230 }
4231 }
4232
4233 /* Called when a command is about to proceed the inferior. */
4234
4235 static void
4236 breakpoint_about_to_proceed (void)
4237 {
4238 if (!ptid_equal (inferior_ptid, null_ptid))
4239 {
4240 struct thread_info *tp = inferior_thread ();
4241
4242 /* Allow inferior function calls in breakpoint commands to not
4243 interrupt the command list. When the call finishes
4244 successfully, the inferior will be standing at the same
4245 breakpoint as if nothing happened. */
4246 if (tp->control.in_infcall)
4247 return;
4248 }
4249
4250 breakpoint_proceeded = 1;
4251 }
4252
4253 /* Stub for cleaning up our state if we error-out of a breakpoint
4254 command. */
4255 static void
4256 cleanup_executing_breakpoints (void *ignore)
4257 {
4258 executing_breakpoint_commands = 0;
4259 }
4260
4261 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4262 or its equivalent. */
4263
4264 static int
4265 command_line_is_silent (struct command_line *cmd)
4266 {
4267 return cmd && (strcmp ("silent", cmd->line) == 0
4268 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4269 }
4270
4271 /* Execute all the commands associated with all the breakpoints at
4272 this location. Any of these commands could cause the process to
4273 proceed beyond this point, etc. We look out for such changes by
4274 checking the global "breakpoint_proceeded" after each command.
4275
4276 Returns true if a breakpoint command resumed the inferior. In that
4277 case, it is the caller's responsibility to recall it again with the
4278 bpstat of the current thread. */
4279
4280 static int
4281 bpstat_do_actions_1 (bpstat *bsp)
4282 {
4283 bpstat bs;
4284 struct cleanup *old_chain;
4285 int again = 0;
4286
4287 /* Avoid endless recursion if a `source' command is contained
4288 in bs->commands. */
4289 if (executing_breakpoint_commands)
4290 return 0;
4291
4292 executing_breakpoint_commands = 1;
4293 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4294
4295 prevent_dont_repeat ();
4296
4297 /* This pointer will iterate over the list of bpstat's. */
4298 bs = *bsp;
4299
4300 breakpoint_proceeded = 0;
4301 for (; bs != NULL; bs = bs->next)
4302 {
4303 struct counted_command_line *ccmd;
4304 struct command_line *cmd;
4305 struct cleanup *this_cmd_tree_chain;
4306
4307 /* Take ownership of the BSP's command tree, if it has one.
4308
4309 The command tree could legitimately contain commands like
4310 'step' and 'next', which call clear_proceed_status, which
4311 frees stop_bpstat's command tree. To make sure this doesn't
4312 free the tree we're executing out from under us, we need to
4313 take ownership of the tree ourselves. Since a given bpstat's
4314 commands are only executed once, we don't need to copy it; we
4315 can clear the pointer in the bpstat, and make sure we free
4316 the tree when we're done. */
4317 ccmd = bs->commands;
4318 bs->commands = NULL;
4319 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4320 cmd = ccmd ? ccmd->commands : NULL;
4321 if (command_line_is_silent (cmd))
4322 {
4323 /* The action has been already done by bpstat_stop_status. */
4324 cmd = cmd->next;
4325 }
4326
4327 while (cmd != NULL)
4328 {
4329 execute_control_command (cmd);
4330
4331 if (breakpoint_proceeded)
4332 break;
4333 else
4334 cmd = cmd->next;
4335 }
4336
4337 /* We can free this command tree now. */
4338 do_cleanups (this_cmd_tree_chain);
4339
4340 if (breakpoint_proceeded)
4341 {
4342 if (target_can_async_p ())
4343 /* If we are in async mode, then the target might be still
4344 running, not stopped at any breakpoint, so nothing for
4345 us to do here -- just return to the event loop. */
4346 ;
4347 else
4348 /* In sync mode, when execute_control_command returns
4349 we're already standing on the next breakpoint.
4350 Breakpoint commands for that stop were not run, since
4351 execute_command does not run breakpoint commands --
4352 only command_line_handler does, but that one is not
4353 involved in execution of breakpoint commands. So, we
4354 can now execute breakpoint commands. It should be
4355 noted that making execute_command do bpstat actions is
4356 not an option -- in this case we'll have recursive
4357 invocation of bpstat for each breakpoint with a
4358 command, and can easily blow up GDB stack. Instead, we
4359 return true, which will trigger the caller to recall us
4360 with the new stop_bpstat. */
4361 again = 1;
4362 break;
4363 }
4364 }
4365 do_cleanups (old_chain);
4366 return again;
4367 }
4368
4369 void
4370 bpstat_do_actions (void)
4371 {
4372 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4373
4374 /* Do any commands attached to breakpoint we are stopped at. */
4375 while (!ptid_equal (inferior_ptid, null_ptid)
4376 && target_has_execution
4377 && !is_exited (inferior_ptid)
4378 && !is_executing (inferior_ptid))
4379 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4380 and only return when it is stopped at the next breakpoint, we
4381 keep doing breakpoint actions until it returns false to
4382 indicate the inferior was not resumed. */
4383 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4384 break;
4385
4386 discard_cleanups (cleanup_if_error);
4387 }
4388
4389 /* Print out the (old or new) value associated with a watchpoint. */
4390
4391 static void
4392 watchpoint_value_print (struct value *val, struct ui_file *stream)
4393 {
4394 if (val == NULL)
4395 fprintf_unfiltered (stream, _("<unreadable>"));
4396 else
4397 {
4398 struct value_print_options opts;
4399 get_user_print_options (&opts);
4400 value_print (val, stream, &opts);
4401 }
4402 }
4403
4404 /* Generic routine for printing messages indicating why we
4405 stopped. The behavior of this function depends on the value
4406 'print_it' in the bpstat structure. Under some circumstances we
4407 may decide not to print anything here and delegate the task to
4408 normal_stop(). */
4409
4410 static enum print_stop_action
4411 print_bp_stop_message (bpstat bs)
4412 {
4413 switch (bs->print_it)
4414 {
4415 case print_it_noop:
4416 /* Nothing should be printed for this bpstat entry. */
4417 return PRINT_UNKNOWN;
4418 break;
4419
4420 case print_it_done:
4421 /* We still want to print the frame, but we already printed the
4422 relevant messages. */
4423 return PRINT_SRC_AND_LOC;
4424 break;
4425
4426 case print_it_normal:
4427 {
4428 struct breakpoint *b = bs->breakpoint_at;
4429
4430 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4431 which has since been deleted. */
4432 if (b == NULL)
4433 return PRINT_UNKNOWN;
4434
4435 /* Normal case. Call the breakpoint's print_it method. */
4436 return b->ops->print_it (bs);
4437 }
4438 break;
4439
4440 default:
4441 internal_error (__FILE__, __LINE__,
4442 _("print_bp_stop_message: unrecognized enum value"));
4443 break;
4444 }
4445 }
4446
4447 /* A helper function that prints a shared library stopped event. */
4448
4449 static void
4450 print_solib_event (int is_catchpoint)
4451 {
4452 int any_deleted
4453 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4454 int any_added
4455 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4456
4457 if (!is_catchpoint)
4458 {
4459 if (any_added || any_deleted)
4460 ui_out_text (current_uiout,
4461 _("Stopped due to shared library event:\n"));
4462 else
4463 ui_out_text (current_uiout,
4464 _("Stopped due to shared library event (no "
4465 "libraries added or removed)\n"));
4466 }
4467
4468 if (ui_out_is_mi_like_p (current_uiout))
4469 ui_out_field_string (current_uiout, "reason",
4470 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4471
4472 if (any_deleted)
4473 {
4474 struct cleanup *cleanup;
4475 char *name;
4476 int ix;
4477
4478 ui_out_text (current_uiout, _(" Inferior unloaded "));
4479 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4480 "removed");
4481 for (ix = 0;
4482 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4483 ix, name);
4484 ++ix)
4485 {
4486 if (ix > 0)
4487 ui_out_text (current_uiout, " ");
4488 ui_out_field_string (current_uiout, "library", name);
4489 ui_out_text (current_uiout, "\n");
4490 }
4491
4492 do_cleanups (cleanup);
4493 }
4494
4495 if (any_added)
4496 {
4497 struct so_list *iter;
4498 int ix;
4499 struct cleanup *cleanup;
4500
4501 ui_out_text (current_uiout, _(" Inferior loaded "));
4502 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4503 "added");
4504 for (ix = 0;
4505 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4506 ix, iter);
4507 ++ix)
4508 {
4509 if (ix > 0)
4510 ui_out_text (current_uiout, " ");
4511 ui_out_field_string (current_uiout, "library", iter->so_name);
4512 ui_out_text (current_uiout, "\n");
4513 }
4514
4515 do_cleanups (cleanup);
4516 }
4517 }
4518
4519 /* Print a message indicating what happened. This is called from
4520 normal_stop(). The input to this routine is the head of the bpstat
4521 list - a list of the eventpoints that caused this stop. KIND is
4522 the target_waitkind for the stopping event. This
4523 routine calls the generic print routine for printing a message
4524 about reasons for stopping. This will print (for example) the
4525 "Breakpoint n," part of the output. The return value of this
4526 routine is one of:
4527
4528 PRINT_UNKNOWN: Means we printed nothing.
4529 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4530 code to print the location. An example is
4531 "Breakpoint 1, " which should be followed by
4532 the location.
4533 PRINT_SRC_ONLY: Means we printed something, but there is no need
4534 to also print the location part of the message.
4535 An example is the catch/throw messages, which
4536 don't require a location appended to the end.
4537 PRINT_NOTHING: We have done some printing and we don't need any
4538 further info to be printed. */
4539
4540 enum print_stop_action
4541 bpstat_print (bpstat bs, int kind)
4542 {
4543 int val;
4544
4545 /* Maybe another breakpoint in the chain caused us to stop.
4546 (Currently all watchpoints go on the bpstat whether hit or not.
4547 That probably could (should) be changed, provided care is taken
4548 with respect to bpstat_explains_signal). */
4549 for (; bs; bs = bs->next)
4550 {
4551 val = print_bp_stop_message (bs);
4552 if (val == PRINT_SRC_ONLY
4553 || val == PRINT_SRC_AND_LOC
4554 || val == PRINT_NOTHING)
4555 return val;
4556 }
4557
4558 /* If we had hit a shared library event breakpoint,
4559 print_bp_stop_message would print out this message. If we hit an
4560 OS-level shared library event, do the same thing. */
4561 if (kind == TARGET_WAITKIND_LOADED)
4562 {
4563 print_solib_event (0);
4564 return PRINT_NOTHING;
4565 }
4566
4567 /* We reached the end of the chain, or we got a null BS to start
4568 with and nothing was printed. */
4569 return PRINT_UNKNOWN;
4570 }
4571
4572 /* Evaluate the expression EXP and return 1 if value is zero. This is
4573 used inside a catch_errors to evaluate the breakpoint condition.
4574 The argument is a "struct expression *" that has been cast to a
4575 "char *" to make it pass through catch_errors. */
4576
4577 static int
4578 breakpoint_cond_eval (void *exp)
4579 {
4580 struct value *mark = value_mark ();
4581 int i = !value_true (evaluate_expression ((struct expression *) exp));
4582
4583 value_free_to_mark (mark);
4584 return i;
4585 }
4586
4587 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4588
4589 static bpstat
4590 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4591 {
4592 bpstat bs;
4593
4594 bs = (bpstat) xmalloc (sizeof (*bs));
4595 bs->next = NULL;
4596 **bs_link_pointer = bs;
4597 *bs_link_pointer = &bs->next;
4598 bs->breakpoint_at = bl->owner;
4599 bs->bp_location_at = bl;
4600 incref_bp_location (bl);
4601 /* If the condition is false, etc., don't do the commands. */
4602 bs->commands = NULL;
4603 bs->old_val = NULL;
4604 bs->print_it = print_it_normal;
4605 return bs;
4606 }
4607 \f
4608 /* The target has stopped with waitstatus WS. Check if any hardware
4609 watchpoints have triggered, according to the target. */
4610
4611 int
4612 watchpoints_triggered (struct target_waitstatus *ws)
4613 {
4614 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4615 CORE_ADDR addr;
4616 struct breakpoint *b;
4617
4618 if (!stopped_by_watchpoint)
4619 {
4620 /* We were not stopped by a watchpoint. Mark all watchpoints
4621 as not triggered. */
4622 ALL_BREAKPOINTS (b)
4623 if (is_hardware_watchpoint (b))
4624 {
4625 struct watchpoint *w = (struct watchpoint *) b;
4626
4627 w->watchpoint_triggered = watch_triggered_no;
4628 }
4629
4630 return 0;
4631 }
4632
4633 if (!target_stopped_data_address (&current_target, &addr))
4634 {
4635 /* We were stopped by a watchpoint, but we don't know where.
4636 Mark all watchpoints as unknown. */
4637 ALL_BREAKPOINTS (b)
4638 if (is_hardware_watchpoint (b))
4639 {
4640 struct watchpoint *w = (struct watchpoint *) b;
4641
4642 w->watchpoint_triggered = watch_triggered_unknown;
4643 }
4644
4645 return stopped_by_watchpoint;
4646 }
4647
4648 /* The target could report the data address. Mark watchpoints
4649 affected by this data address as triggered, and all others as not
4650 triggered. */
4651
4652 ALL_BREAKPOINTS (b)
4653 if (is_hardware_watchpoint (b))
4654 {
4655 struct watchpoint *w = (struct watchpoint *) b;
4656 struct bp_location *loc;
4657
4658 w->watchpoint_triggered = watch_triggered_no;
4659 for (loc = b->loc; loc; loc = loc->next)
4660 {
4661 if (is_masked_watchpoint (b))
4662 {
4663 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4664 CORE_ADDR start = loc->address & w->hw_wp_mask;
4665
4666 if (newaddr == start)
4667 {
4668 w->watchpoint_triggered = watch_triggered_yes;
4669 break;
4670 }
4671 }
4672 /* Exact match not required. Within range is sufficient. */
4673 else if (target_watchpoint_addr_within_range (&current_target,
4674 addr, loc->address,
4675 loc->length))
4676 {
4677 w->watchpoint_triggered = watch_triggered_yes;
4678 break;
4679 }
4680 }
4681 }
4682
4683 return 1;
4684 }
4685
4686 /* Possible return values for watchpoint_check (this can't be an enum
4687 because of check_errors). */
4688 /* The watchpoint has been deleted. */
4689 #define WP_DELETED 1
4690 /* The value has changed. */
4691 #define WP_VALUE_CHANGED 2
4692 /* The value has not changed. */
4693 #define WP_VALUE_NOT_CHANGED 3
4694 /* Ignore this watchpoint, no matter if the value changed or not. */
4695 #define WP_IGNORE 4
4696
4697 #define BP_TEMPFLAG 1
4698 #define BP_HARDWAREFLAG 2
4699
4700 /* Evaluate watchpoint condition expression and check if its value
4701 changed.
4702
4703 P should be a pointer to struct bpstat, but is defined as a void *
4704 in order for this function to be usable with catch_errors. */
4705
4706 static int
4707 watchpoint_check (void *p)
4708 {
4709 bpstat bs = (bpstat) p;
4710 struct watchpoint *b;
4711 struct frame_info *fr;
4712 int within_current_scope;
4713
4714 /* BS is built from an existing struct breakpoint. */
4715 gdb_assert (bs->breakpoint_at != NULL);
4716 b = (struct watchpoint *) bs->breakpoint_at;
4717
4718 /* If this is a local watchpoint, we only want to check if the
4719 watchpoint frame is in scope if the current thread is the thread
4720 that was used to create the watchpoint. */
4721 if (!watchpoint_in_thread_scope (b))
4722 return WP_IGNORE;
4723
4724 if (b->exp_valid_block == NULL)
4725 within_current_scope = 1;
4726 else
4727 {
4728 struct frame_info *frame = get_current_frame ();
4729 struct gdbarch *frame_arch = get_frame_arch (frame);
4730 CORE_ADDR frame_pc = get_frame_pc (frame);
4731
4732 /* in_function_epilogue_p() returns a non-zero value if we're
4733 still in the function but the stack frame has already been
4734 invalidated. Since we can't rely on the values of local
4735 variables after the stack has been destroyed, we are treating
4736 the watchpoint in that state as `not changed' without further
4737 checking. Don't mark watchpoints as changed if the current
4738 frame is in an epilogue - even if they are in some other
4739 frame, our view of the stack is likely to be wrong and
4740 frame_find_by_id could error out. */
4741 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
4742 return WP_IGNORE;
4743
4744 fr = frame_find_by_id (b->watchpoint_frame);
4745 within_current_scope = (fr != NULL);
4746
4747 /* If we've gotten confused in the unwinder, we might have
4748 returned a frame that can't describe this variable. */
4749 if (within_current_scope)
4750 {
4751 struct symbol *function;
4752
4753 function = get_frame_function (fr);
4754 if (function == NULL
4755 || !contained_in (b->exp_valid_block,
4756 SYMBOL_BLOCK_VALUE (function)))
4757 within_current_scope = 0;
4758 }
4759
4760 if (within_current_scope)
4761 /* If we end up stopping, the current frame will get selected
4762 in normal_stop. So this call to select_frame won't affect
4763 the user. */
4764 select_frame (fr);
4765 }
4766
4767 if (within_current_scope)
4768 {
4769 /* We use value_{,free_to_}mark because it could be a *long*
4770 time before we return to the command level and call
4771 free_all_values. We can't call free_all_values because we
4772 might be in the middle of evaluating a function call. */
4773
4774 int pc = 0;
4775 struct value *mark;
4776 struct value *new_val;
4777
4778 if (is_masked_watchpoint (&b->base))
4779 /* Since we don't know the exact trigger address (from
4780 stopped_data_address), just tell the user we've triggered
4781 a mask watchpoint. */
4782 return WP_VALUE_CHANGED;
4783
4784 mark = value_mark ();
4785 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL);
4786
4787 /* We use value_equal_contents instead of value_equal because
4788 the latter coerces an array to a pointer, thus comparing just
4789 the address of the array instead of its contents. This is
4790 not what we want. */
4791 if ((b->val != NULL) != (new_val != NULL)
4792 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4793 {
4794 if (new_val != NULL)
4795 {
4796 release_value (new_val);
4797 value_free_to_mark (mark);
4798 }
4799 bs->old_val = b->val;
4800 b->val = new_val;
4801 b->val_valid = 1;
4802 return WP_VALUE_CHANGED;
4803 }
4804 else
4805 {
4806 /* Nothing changed. */
4807 value_free_to_mark (mark);
4808 return WP_VALUE_NOT_CHANGED;
4809 }
4810 }
4811 else
4812 {
4813 struct ui_out *uiout = current_uiout;
4814
4815 /* This seems like the only logical thing to do because
4816 if we temporarily ignored the watchpoint, then when
4817 we reenter the block in which it is valid it contains
4818 garbage (in the case of a function, it may have two
4819 garbage values, one before and one after the prologue).
4820 So we can't even detect the first assignment to it and
4821 watch after that (since the garbage may or may not equal
4822 the first value assigned). */
4823 /* We print all the stop information in
4824 breakpoint_ops->print_it, but in this case, by the time we
4825 call breakpoint_ops->print_it this bp will be deleted
4826 already. So we have no choice but print the information
4827 here. */
4828 if (ui_out_is_mi_like_p (uiout))
4829 ui_out_field_string
4830 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4831 ui_out_text (uiout, "\nWatchpoint ");
4832 ui_out_field_int (uiout, "wpnum", b->base.number);
4833 ui_out_text (uiout,
4834 " deleted because the program has left the block in\n\
4835 which its expression is valid.\n");
4836
4837 /* Make sure the watchpoint's commands aren't executed. */
4838 decref_counted_command_line (&b->base.commands);
4839 watchpoint_del_at_next_stop (b);
4840
4841 return WP_DELETED;
4842 }
4843 }
4844
4845 /* Return true if it looks like target has stopped due to hitting
4846 breakpoint location BL. This function does not check if we should
4847 stop, only if BL explains the stop. */
4848
4849 static int
4850 bpstat_check_location (const struct bp_location *bl,
4851 struct address_space *aspace, CORE_ADDR bp_addr,
4852 const struct target_waitstatus *ws)
4853 {
4854 struct breakpoint *b = bl->owner;
4855
4856 /* BL is from an existing breakpoint. */
4857 gdb_assert (b != NULL);
4858
4859 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4860 }
4861
4862 /* Determine if the watched values have actually changed, and we
4863 should stop. If not, set BS->stop to 0. */
4864
4865 static void
4866 bpstat_check_watchpoint (bpstat bs)
4867 {
4868 const struct bp_location *bl;
4869 struct watchpoint *b;
4870
4871 /* BS is built for existing struct breakpoint. */
4872 bl = bs->bp_location_at;
4873 gdb_assert (bl != NULL);
4874 b = (struct watchpoint *) bs->breakpoint_at;
4875 gdb_assert (b != NULL);
4876
4877 {
4878 int must_check_value = 0;
4879
4880 if (b->base.type == bp_watchpoint)
4881 /* For a software watchpoint, we must always check the
4882 watched value. */
4883 must_check_value = 1;
4884 else if (b->watchpoint_triggered == watch_triggered_yes)
4885 /* We have a hardware watchpoint (read, write, or access)
4886 and the target earlier reported an address watched by
4887 this watchpoint. */
4888 must_check_value = 1;
4889 else if (b->watchpoint_triggered == watch_triggered_unknown
4890 && b->base.type == bp_hardware_watchpoint)
4891 /* We were stopped by a hardware watchpoint, but the target could
4892 not report the data address. We must check the watchpoint's
4893 value. Access and read watchpoints are out of luck; without
4894 a data address, we can't figure it out. */
4895 must_check_value = 1;
4896
4897 if (must_check_value)
4898 {
4899 char *message
4900 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
4901 b->base.number);
4902 struct cleanup *cleanups = make_cleanup (xfree, message);
4903 int e = catch_errors (watchpoint_check, bs, message,
4904 RETURN_MASK_ALL);
4905 do_cleanups (cleanups);
4906 switch (e)
4907 {
4908 case WP_DELETED:
4909 /* We've already printed what needs to be printed. */
4910 bs->print_it = print_it_done;
4911 /* Stop. */
4912 break;
4913 case WP_IGNORE:
4914 bs->print_it = print_it_noop;
4915 bs->stop = 0;
4916 break;
4917 case WP_VALUE_CHANGED:
4918 if (b->base.type == bp_read_watchpoint)
4919 {
4920 /* There are two cases to consider here:
4921
4922 1. We're watching the triggered memory for reads.
4923 In that case, trust the target, and always report
4924 the watchpoint hit to the user. Even though
4925 reads don't cause value changes, the value may
4926 have changed since the last time it was read, and
4927 since we're not trapping writes, we will not see
4928 those, and as such we should ignore our notion of
4929 old value.
4930
4931 2. We're watching the triggered memory for both
4932 reads and writes. There are two ways this may
4933 happen:
4934
4935 2.1. This is a target that can't break on data
4936 reads only, but can break on accesses (reads or
4937 writes), such as e.g., x86. We detect this case
4938 at the time we try to insert read watchpoints.
4939
4940 2.2. Otherwise, the target supports read
4941 watchpoints, but, the user set an access or write
4942 watchpoint watching the same memory as this read
4943 watchpoint.
4944
4945 If we're watching memory writes as well as reads,
4946 ignore watchpoint hits when we find that the
4947 value hasn't changed, as reads don't cause
4948 changes. This still gives false positives when
4949 the program writes the same value to memory as
4950 what there was already in memory (we will confuse
4951 it for a read), but it's much better than
4952 nothing. */
4953
4954 int other_write_watchpoint = 0;
4955
4956 if (bl->watchpoint_type == hw_read)
4957 {
4958 struct breakpoint *other_b;
4959
4960 ALL_BREAKPOINTS (other_b)
4961 if (other_b->type == bp_hardware_watchpoint
4962 || other_b->type == bp_access_watchpoint)
4963 {
4964 struct watchpoint *other_w =
4965 (struct watchpoint *) other_b;
4966
4967 if (other_w->watchpoint_triggered
4968 == watch_triggered_yes)
4969 {
4970 other_write_watchpoint = 1;
4971 break;
4972 }
4973 }
4974 }
4975
4976 if (other_write_watchpoint
4977 || bl->watchpoint_type == hw_access)
4978 {
4979 /* We're watching the same memory for writes,
4980 and the value changed since the last time we
4981 updated it, so this trap must be for a write.
4982 Ignore it. */
4983 bs->print_it = print_it_noop;
4984 bs->stop = 0;
4985 }
4986 }
4987 break;
4988 case WP_VALUE_NOT_CHANGED:
4989 if (b->base.type == bp_hardware_watchpoint
4990 || b->base.type == bp_watchpoint)
4991 {
4992 /* Don't stop: write watchpoints shouldn't fire if
4993 the value hasn't changed. */
4994 bs->print_it = print_it_noop;
4995 bs->stop = 0;
4996 }
4997 /* Stop. */
4998 break;
4999 default:
5000 /* Can't happen. */
5001 case 0:
5002 /* Error from catch_errors. */
5003 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5004 watchpoint_del_at_next_stop (b);
5005 /* We've already printed what needs to be printed. */
5006 bs->print_it = print_it_done;
5007 break;
5008 }
5009 }
5010 else /* must_check_value == 0 */
5011 {
5012 /* This is a case where some watchpoint(s) triggered, but
5013 not at the address of this watchpoint, or else no
5014 watchpoint triggered after all. So don't print
5015 anything for this watchpoint. */
5016 bs->print_it = print_it_noop;
5017 bs->stop = 0;
5018 }
5019 }
5020 }
5021
5022
5023 /* Check conditions (condition proper, frame, thread and ignore count)
5024 of breakpoint referred to by BS. If we should not stop for this
5025 breakpoint, set BS->stop to 0. */
5026
5027 static void
5028 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5029 {
5030 int thread_id = pid_to_thread_id (ptid);
5031 const struct bp_location *bl;
5032 struct breakpoint *b;
5033
5034 /* BS is built for existing struct breakpoint. */
5035 bl = bs->bp_location_at;
5036 gdb_assert (bl != NULL);
5037 b = bs->breakpoint_at;
5038 gdb_assert (b != NULL);
5039
5040 /* Even if the target evaluated the condition on its end and notified GDB, we
5041 need to do so again since GDB does not know if we stopped due to a
5042 breakpoint or a single step breakpoint. */
5043
5044 if (frame_id_p (b->frame_id)
5045 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5046 bs->stop = 0;
5047 else if (bs->stop)
5048 {
5049 int value_is_zero = 0;
5050 struct expression *cond;
5051
5052 /* Evaluate Python breakpoints that have a "stop"
5053 method implemented. */
5054 if (b->py_bp_object)
5055 bs->stop = gdbpy_should_stop (b->py_bp_object);
5056
5057 if (is_watchpoint (b))
5058 {
5059 struct watchpoint *w = (struct watchpoint *) b;
5060
5061 cond = w->cond_exp;
5062 }
5063 else
5064 cond = bl->cond;
5065
5066 if (cond && b->disposition != disp_del_at_next_stop)
5067 {
5068 int within_current_scope = 1;
5069 struct watchpoint * w;
5070
5071 /* We use value_mark and value_free_to_mark because it could
5072 be a long time before we return to the command level and
5073 call free_all_values. We can't call free_all_values
5074 because we might be in the middle of evaluating a
5075 function call. */
5076 struct value *mark = value_mark ();
5077
5078 if (is_watchpoint (b))
5079 w = (struct watchpoint *) b;
5080 else
5081 w = NULL;
5082
5083 /* Need to select the frame, with all that implies so that
5084 the conditions will have the right context. Because we
5085 use the frame, we will not see an inlined function's
5086 variables when we arrive at a breakpoint at the start
5087 of the inlined function; the current frame will be the
5088 call site. */
5089 if (w == NULL || w->cond_exp_valid_block == NULL)
5090 select_frame (get_current_frame ());
5091 else
5092 {
5093 struct frame_info *frame;
5094
5095 /* For local watchpoint expressions, which particular
5096 instance of a local is being watched matters, so we
5097 keep track of the frame to evaluate the expression
5098 in. To evaluate the condition however, it doesn't
5099 really matter which instantiation of the function
5100 where the condition makes sense triggers the
5101 watchpoint. This allows an expression like "watch
5102 global if q > 10" set in `func', catch writes to
5103 global on all threads that call `func', or catch
5104 writes on all recursive calls of `func' by a single
5105 thread. We simply always evaluate the condition in
5106 the innermost frame that's executing where it makes
5107 sense to evaluate the condition. It seems
5108 intuitive. */
5109 frame = block_innermost_frame (w->cond_exp_valid_block);
5110 if (frame != NULL)
5111 select_frame (frame);
5112 else
5113 within_current_scope = 0;
5114 }
5115 if (within_current_scope)
5116 value_is_zero
5117 = catch_errors (breakpoint_cond_eval, cond,
5118 "Error in testing breakpoint condition:\n",
5119 RETURN_MASK_ALL);
5120 else
5121 {
5122 warning (_("Watchpoint condition cannot be tested "
5123 "in the current scope"));
5124 /* If we failed to set the right context for this
5125 watchpoint, unconditionally report it. */
5126 value_is_zero = 0;
5127 }
5128 /* FIXME-someday, should give breakpoint #. */
5129 value_free_to_mark (mark);
5130 }
5131
5132 if (cond && value_is_zero)
5133 {
5134 bs->stop = 0;
5135 }
5136 else if (b->thread != -1 && b->thread != thread_id)
5137 {
5138 bs->stop = 0;
5139 }
5140 else if (b->ignore_count > 0)
5141 {
5142 b->ignore_count--;
5143 bs->stop = 0;
5144 /* Increase the hit count even though we don't stop. */
5145 ++(b->hit_count);
5146 observer_notify_breakpoint_modified (b);
5147 }
5148 }
5149 }
5150
5151
5152 /* Get a bpstat associated with having just stopped at address
5153 BP_ADDR in thread PTID.
5154
5155 Determine whether we stopped at a breakpoint, etc, or whether we
5156 don't understand this stop. Result is a chain of bpstat's such
5157 that:
5158
5159 if we don't understand the stop, the result is a null pointer.
5160
5161 if we understand why we stopped, the result is not null.
5162
5163 Each element of the chain refers to a particular breakpoint or
5164 watchpoint at which we have stopped. (We may have stopped for
5165 several reasons concurrently.)
5166
5167 Each element of the chain has valid next, breakpoint_at,
5168 commands, FIXME??? fields. */
5169
5170 bpstat
5171 bpstat_stop_status (struct address_space *aspace,
5172 CORE_ADDR bp_addr, ptid_t ptid,
5173 const struct target_waitstatus *ws)
5174 {
5175 struct breakpoint *b = NULL;
5176 struct bp_location *bl;
5177 struct bp_location *loc;
5178 /* First item of allocated bpstat's. */
5179 bpstat bs_head = NULL, *bs_link = &bs_head;
5180 /* Pointer to the last thing in the chain currently. */
5181 bpstat bs;
5182 int ix;
5183 int need_remove_insert;
5184 int removed_any;
5185
5186 /* First, build the bpstat chain with locations that explain a
5187 target stop, while being careful to not set the target running,
5188 as that may invalidate locations (in particular watchpoint
5189 locations are recreated). Resuming will happen here with
5190 breakpoint conditions or watchpoint expressions that include
5191 inferior function calls. */
5192
5193 ALL_BREAKPOINTS (b)
5194 {
5195 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5196 continue;
5197
5198 for (bl = b->loc; bl != NULL; bl = bl->next)
5199 {
5200 /* For hardware watchpoints, we look only at the first
5201 location. The watchpoint_check function will work on the
5202 entire expression, not the individual locations. For
5203 read watchpoints, the watchpoints_triggered function has
5204 checked all locations already. */
5205 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5206 break;
5207
5208 if (!bl->enabled || bl->shlib_disabled)
5209 continue;
5210
5211 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5212 continue;
5213
5214 /* Come here if it's a watchpoint, or if the break address
5215 matches. */
5216
5217 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5218 explain stop. */
5219
5220 /* Assume we stop. Should we find a watchpoint that is not
5221 actually triggered, or if the condition of the breakpoint
5222 evaluates as false, we'll reset 'stop' to 0. */
5223 bs->stop = 1;
5224 bs->print = 1;
5225
5226 /* If this is a scope breakpoint, mark the associated
5227 watchpoint as triggered so that we will handle the
5228 out-of-scope event. We'll get to the watchpoint next
5229 iteration. */
5230 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5231 {
5232 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5233
5234 w->watchpoint_triggered = watch_triggered_yes;
5235 }
5236 }
5237 }
5238
5239 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5240 {
5241 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5242 {
5243 bs = bpstat_alloc (loc, &bs_link);
5244 /* For hits of moribund locations, we should just proceed. */
5245 bs->stop = 0;
5246 bs->print = 0;
5247 bs->print_it = print_it_noop;
5248 }
5249 }
5250
5251 /* A bit of special processing for shlib breakpoints. We need to
5252 process solib loading here, so that the lists of loaded and
5253 unloaded libraries are correct before we handle "catch load" and
5254 "catch unload". */
5255 for (bs = bs_head; bs != NULL; bs = bs->next)
5256 {
5257 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5258 {
5259 handle_solib_event ();
5260 break;
5261 }
5262 }
5263
5264 /* Now go through the locations that caused the target to stop, and
5265 check whether we're interested in reporting this stop to higher
5266 layers, or whether we should resume the target transparently. */
5267
5268 removed_any = 0;
5269
5270 for (bs = bs_head; bs != NULL; bs = bs->next)
5271 {
5272 if (!bs->stop)
5273 continue;
5274
5275 b = bs->breakpoint_at;
5276 b->ops->check_status (bs);
5277 if (bs->stop)
5278 {
5279 bpstat_check_breakpoint_conditions (bs, ptid);
5280
5281 if (bs->stop)
5282 {
5283 ++(b->hit_count);
5284 observer_notify_breakpoint_modified (b);
5285
5286 /* We will stop here. */
5287 if (b->disposition == disp_disable)
5288 {
5289 --(b->enable_count);
5290 if (b->enable_count <= 0
5291 && b->enable_state != bp_permanent)
5292 b->enable_state = bp_disabled;
5293 removed_any = 1;
5294 }
5295 if (b->silent)
5296 bs->print = 0;
5297 bs->commands = b->commands;
5298 incref_counted_command_line (bs->commands);
5299 if (command_line_is_silent (bs->commands
5300 ? bs->commands->commands : NULL))
5301 bs->print = 0;
5302 }
5303
5304 }
5305
5306 /* Print nothing for this entry if we don't stop or don't
5307 print. */
5308 if (!bs->stop || !bs->print)
5309 bs->print_it = print_it_noop;
5310 }
5311
5312 /* If we aren't stopping, the value of some hardware watchpoint may
5313 not have changed, but the intermediate memory locations we are
5314 watching may have. Don't bother if we're stopping; this will get
5315 done later. */
5316 need_remove_insert = 0;
5317 if (! bpstat_causes_stop (bs_head))
5318 for (bs = bs_head; bs != NULL; bs = bs->next)
5319 if (!bs->stop
5320 && bs->breakpoint_at
5321 && is_hardware_watchpoint (bs->breakpoint_at))
5322 {
5323 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5324
5325 update_watchpoint (w, 0 /* don't reparse. */);
5326 need_remove_insert = 1;
5327 }
5328
5329 if (need_remove_insert)
5330 update_global_location_list (1);
5331 else if (removed_any)
5332 update_global_location_list (0);
5333
5334 return bs_head;
5335 }
5336
5337 static void
5338 handle_jit_event (void)
5339 {
5340 struct frame_info *frame;
5341 struct gdbarch *gdbarch;
5342
5343 /* Switch terminal for any messages produced by
5344 breakpoint_re_set. */
5345 target_terminal_ours_for_output ();
5346
5347 frame = get_current_frame ();
5348 gdbarch = get_frame_arch (frame);
5349
5350 jit_event_handler (gdbarch);
5351
5352 target_terminal_inferior ();
5353 }
5354
5355 /* Prepare WHAT final decision for infrun. */
5356
5357 /* Decide what infrun needs to do with this bpstat. */
5358
5359 struct bpstat_what
5360 bpstat_what (bpstat bs_head)
5361 {
5362 struct bpstat_what retval;
5363 int jit_event = 0;
5364 bpstat bs;
5365
5366 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5367 retval.call_dummy = STOP_NONE;
5368 retval.is_longjmp = 0;
5369
5370 for (bs = bs_head; bs != NULL; bs = bs->next)
5371 {
5372 /* Extract this BS's action. After processing each BS, we check
5373 if its action overrides all we've seem so far. */
5374 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5375 enum bptype bptype;
5376
5377 if (bs->breakpoint_at == NULL)
5378 {
5379 /* I suspect this can happen if it was a momentary
5380 breakpoint which has since been deleted. */
5381 bptype = bp_none;
5382 }
5383 else
5384 bptype = bs->breakpoint_at->type;
5385
5386 switch (bptype)
5387 {
5388 case bp_none:
5389 break;
5390 case bp_breakpoint:
5391 case bp_hardware_breakpoint:
5392 case bp_until:
5393 case bp_finish:
5394 case bp_shlib_event:
5395 if (bs->stop)
5396 {
5397 if (bs->print)
5398 this_action = BPSTAT_WHAT_STOP_NOISY;
5399 else
5400 this_action = BPSTAT_WHAT_STOP_SILENT;
5401 }
5402 else
5403 this_action = BPSTAT_WHAT_SINGLE;
5404 break;
5405 case bp_watchpoint:
5406 case bp_hardware_watchpoint:
5407 case bp_read_watchpoint:
5408 case bp_access_watchpoint:
5409 if (bs->stop)
5410 {
5411 if (bs->print)
5412 this_action = BPSTAT_WHAT_STOP_NOISY;
5413 else
5414 this_action = BPSTAT_WHAT_STOP_SILENT;
5415 }
5416 else
5417 {
5418 /* There was a watchpoint, but we're not stopping.
5419 This requires no further action. */
5420 }
5421 break;
5422 case bp_longjmp:
5423 case bp_longjmp_call_dummy:
5424 case bp_exception:
5425 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5426 retval.is_longjmp = bptype != bp_exception;
5427 break;
5428 case bp_longjmp_resume:
5429 case bp_exception_resume:
5430 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5431 retval.is_longjmp = bptype == bp_longjmp_resume;
5432 break;
5433 case bp_step_resume:
5434 if (bs->stop)
5435 this_action = BPSTAT_WHAT_STEP_RESUME;
5436 else
5437 {
5438 /* It is for the wrong frame. */
5439 this_action = BPSTAT_WHAT_SINGLE;
5440 }
5441 break;
5442 case bp_hp_step_resume:
5443 if (bs->stop)
5444 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5445 else
5446 {
5447 /* It is for the wrong frame. */
5448 this_action = BPSTAT_WHAT_SINGLE;
5449 }
5450 break;
5451 case bp_watchpoint_scope:
5452 case bp_thread_event:
5453 case bp_overlay_event:
5454 case bp_longjmp_master:
5455 case bp_std_terminate_master:
5456 case bp_exception_master:
5457 this_action = BPSTAT_WHAT_SINGLE;
5458 break;
5459 case bp_catchpoint:
5460 if (bs->stop)
5461 {
5462 if (bs->print)
5463 this_action = BPSTAT_WHAT_STOP_NOISY;
5464 else
5465 this_action = BPSTAT_WHAT_STOP_SILENT;
5466 }
5467 else
5468 {
5469 /* There was a catchpoint, but we're not stopping.
5470 This requires no further action. */
5471 }
5472 break;
5473 case bp_jit_event:
5474 jit_event = 1;
5475 this_action = BPSTAT_WHAT_SINGLE;
5476 break;
5477 case bp_call_dummy:
5478 /* Make sure the action is stop (silent or noisy),
5479 so infrun.c pops the dummy frame. */
5480 retval.call_dummy = STOP_STACK_DUMMY;
5481 this_action = BPSTAT_WHAT_STOP_SILENT;
5482 break;
5483 case bp_std_terminate:
5484 /* Make sure the action is stop (silent or noisy),
5485 so infrun.c pops the dummy frame. */
5486 retval.call_dummy = STOP_STD_TERMINATE;
5487 this_action = BPSTAT_WHAT_STOP_SILENT;
5488 break;
5489 case bp_tracepoint:
5490 case bp_fast_tracepoint:
5491 case bp_static_tracepoint:
5492 /* Tracepoint hits should not be reported back to GDB, and
5493 if one got through somehow, it should have been filtered
5494 out already. */
5495 internal_error (__FILE__, __LINE__,
5496 _("bpstat_what: tracepoint encountered"));
5497 break;
5498 case bp_gnu_ifunc_resolver:
5499 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5500 this_action = BPSTAT_WHAT_SINGLE;
5501 break;
5502 case bp_gnu_ifunc_resolver_return:
5503 /* The breakpoint will be removed, execution will restart from the
5504 PC of the former breakpoint. */
5505 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5506 break;
5507
5508 case bp_dprintf:
5509 if (bs->stop)
5510 this_action = BPSTAT_WHAT_STOP_SILENT;
5511 else
5512 this_action = BPSTAT_WHAT_SINGLE;
5513 break;
5514
5515 default:
5516 internal_error (__FILE__, __LINE__,
5517 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5518 }
5519
5520 retval.main_action = max (retval.main_action, this_action);
5521 }
5522
5523 /* These operations may affect the bs->breakpoint_at state so they are
5524 delayed after MAIN_ACTION is decided above. */
5525
5526 if (jit_event)
5527 {
5528 if (debug_infrun)
5529 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5530
5531 handle_jit_event ();
5532 }
5533
5534 for (bs = bs_head; bs != NULL; bs = bs->next)
5535 {
5536 struct breakpoint *b = bs->breakpoint_at;
5537
5538 if (b == NULL)
5539 continue;
5540 switch (b->type)
5541 {
5542 case bp_gnu_ifunc_resolver:
5543 gnu_ifunc_resolver_stop (b);
5544 break;
5545 case bp_gnu_ifunc_resolver_return:
5546 gnu_ifunc_resolver_return_stop (b);
5547 break;
5548 }
5549 }
5550
5551 return retval;
5552 }
5553
5554 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5555 without hardware support). This isn't related to a specific bpstat,
5556 just to things like whether watchpoints are set. */
5557
5558 int
5559 bpstat_should_step (void)
5560 {
5561 struct breakpoint *b;
5562
5563 ALL_BREAKPOINTS (b)
5564 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5565 return 1;
5566 return 0;
5567 }
5568
5569 int
5570 bpstat_causes_stop (bpstat bs)
5571 {
5572 for (; bs != NULL; bs = bs->next)
5573 if (bs->stop)
5574 return 1;
5575
5576 return 0;
5577 }
5578
5579 \f
5580
5581 /* Compute a string of spaces suitable to indent the next line
5582 so it starts at the position corresponding to the table column
5583 named COL_NAME in the currently active table of UIOUT. */
5584
5585 static char *
5586 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5587 {
5588 static char wrap_indent[80];
5589 int i, total_width, width, align;
5590 char *text;
5591
5592 total_width = 0;
5593 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5594 {
5595 if (strcmp (text, col_name) == 0)
5596 {
5597 gdb_assert (total_width < sizeof wrap_indent);
5598 memset (wrap_indent, ' ', total_width);
5599 wrap_indent[total_width] = 0;
5600
5601 return wrap_indent;
5602 }
5603
5604 total_width += width + 1;
5605 }
5606
5607 return NULL;
5608 }
5609
5610 /* Determine if the locations of this breakpoint will have their conditions
5611 evaluated by the target, host or a mix of both. Returns the following:
5612
5613 "host": Host evals condition.
5614 "host or target": Host or Target evals condition.
5615 "target": Target evals condition.
5616 */
5617
5618 static const char *
5619 bp_condition_evaluator (struct breakpoint *b)
5620 {
5621 struct bp_location *bl;
5622 char host_evals = 0;
5623 char target_evals = 0;
5624
5625 if (!b)
5626 return NULL;
5627
5628 if (!is_breakpoint (b))
5629 return NULL;
5630
5631 if (gdb_evaluates_breakpoint_condition_p ()
5632 || !target_supports_evaluation_of_breakpoint_conditions ())
5633 return condition_evaluation_host;
5634
5635 for (bl = b->loc; bl; bl = bl->next)
5636 {
5637 if (bl->cond_bytecode)
5638 target_evals++;
5639 else
5640 host_evals++;
5641 }
5642
5643 if (host_evals && target_evals)
5644 return condition_evaluation_both;
5645 else if (target_evals)
5646 return condition_evaluation_target;
5647 else
5648 return condition_evaluation_host;
5649 }
5650
5651 /* Determine the breakpoint location's condition evaluator. This is
5652 similar to bp_condition_evaluator, but for locations. */
5653
5654 static const char *
5655 bp_location_condition_evaluator (struct bp_location *bl)
5656 {
5657 if (bl && !is_breakpoint (bl->owner))
5658 return NULL;
5659
5660 if (gdb_evaluates_breakpoint_condition_p ()
5661 || !target_supports_evaluation_of_breakpoint_conditions ())
5662 return condition_evaluation_host;
5663
5664 if (bl && bl->cond_bytecode)
5665 return condition_evaluation_target;
5666 else
5667 return condition_evaluation_host;
5668 }
5669
5670 /* Print the LOC location out of the list of B->LOC locations. */
5671
5672 static void
5673 print_breakpoint_location (struct breakpoint *b,
5674 struct bp_location *loc)
5675 {
5676 struct ui_out *uiout = current_uiout;
5677 struct cleanup *old_chain = save_current_program_space ();
5678
5679 if (loc != NULL && loc->shlib_disabled)
5680 loc = NULL;
5681
5682 if (loc != NULL)
5683 set_current_program_space (loc->pspace);
5684
5685 if (b->display_canonical)
5686 ui_out_field_string (uiout, "what", b->addr_string);
5687 else if (loc && loc->symtab)
5688 {
5689 struct symbol *sym
5690 = find_pc_sect_function (loc->address, loc->section);
5691 if (sym)
5692 {
5693 ui_out_text (uiout, "in ");
5694 ui_out_field_string (uiout, "func",
5695 SYMBOL_PRINT_NAME (sym));
5696 ui_out_text (uiout, " ");
5697 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
5698 ui_out_text (uiout, "at ");
5699 }
5700 ui_out_field_string (uiout, "file",
5701 symtab_to_filename_for_display (loc->symtab));
5702 ui_out_text (uiout, ":");
5703
5704 if (ui_out_is_mi_like_p (uiout))
5705 ui_out_field_string (uiout, "fullname",
5706 symtab_to_fullname (loc->symtab));
5707
5708 ui_out_field_int (uiout, "line", loc->line_number);
5709 }
5710 else if (loc)
5711 {
5712 struct ui_file *stb = mem_fileopen ();
5713 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
5714
5715 print_address_symbolic (loc->gdbarch, loc->address, stb,
5716 demangle, "");
5717 ui_out_field_stream (uiout, "at", stb);
5718
5719 do_cleanups (stb_chain);
5720 }
5721 else
5722 ui_out_field_string (uiout, "pending", b->addr_string);
5723
5724 if (loc && is_breakpoint (b)
5725 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5726 && bp_condition_evaluator (b) == condition_evaluation_both)
5727 {
5728 ui_out_text (uiout, " (");
5729 ui_out_field_string (uiout, "evaluated-by",
5730 bp_location_condition_evaluator (loc));
5731 ui_out_text (uiout, ")");
5732 }
5733
5734 do_cleanups (old_chain);
5735 }
5736
5737 static const char *
5738 bptype_string (enum bptype type)
5739 {
5740 struct ep_type_description
5741 {
5742 enum bptype type;
5743 char *description;
5744 };
5745 static struct ep_type_description bptypes[] =
5746 {
5747 {bp_none, "?deleted?"},
5748 {bp_breakpoint, "breakpoint"},
5749 {bp_hardware_breakpoint, "hw breakpoint"},
5750 {bp_until, "until"},
5751 {bp_finish, "finish"},
5752 {bp_watchpoint, "watchpoint"},
5753 {bp_hardware_watchpoint, "hw watchpoint"},
5754 {bp_read_watchpoint, "read watchpoint"},
5755 {bp_access_watchpoint, "acc watchpoint"},
5756 {bp_longjmp, "longjmp"},
5757 {bp_longjmp_resume, "longjmp resume"},
5758 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5759 {bp_exception, "exception"},
5760 {bp_exception_resume, "exception resume"},
5761 {bp_step_resume, "step resume"},
5762 {bp_hp_step_resume, "high-priority step resume"},
5763 {bp_watchpoint_scope, "watchpoint scope"},
5764 {bp_call_dummy, "call dummy"},
5765 {bp_std_terminate, "std::terminate"},
5766 {bp_shlib_event, "shlib events"},
5767 {bp_thread_event, "thread events"},
5768 {bp_overlay_event, "overlay events"},
5769 {bp_longjmp_master, "longjmp master"},
5770 {bp_std_terminate_master, "std::terminate master"},
5771 {bp_exception_master, "exception master"},
5772 {bp_catchpoint, "catchpoint"},
5773 {bp_tracepoint, "tracepoint"},
5774 {bp_fast_tracepoint, "fast tracepoint"},
5775 {bp_static_tracepoint, "static tracepoint"},
5776 {bp_dprintf, "dprintf"},
5777 {bp_jit_event, "jit events"},
5778 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5779 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5780 };
5781
5782 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5783 || ((int) type != bptypes[(int) type].type))
5784 internal_error (__FILE__, __LINE__,
5785 _("bptypes table does not describe type #%d."),
5786 (int) type);
5787
5788 return bptypes[(int) type].description;
5789 }
5790
5791 DEF_VEC_I(int);
5792
5793 /* For MI, output a field named 'thread-groups' with a list as the value.
5794 For CLI, prefix the list with the string 'inf'. */
5795
5796 static void
5797 output_thread_groups (struct ui_out *uiout,
5798 const char *field_name,
5799 VEC(int) *inf_num,
5800 int mi_only)
5801 {
5802 struct cleanup *back_to;
5803 int is_mi = ui_out_is_mi_like_p (uiout);
5804 int inf;
5805 int i;
5806
5807 /* For backward compatibility, don't display inferiors in CLI unless
5808 there are several. Always display them for MI. */
5809 if (!is_mi && mi_only)
5810 return;
5811
5812 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
5813
5814 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
5815 {
5816 if (is_mi)
5817 {
5818 char mi_group[10];
5819
5820 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
5821 ui_out_field_string (uiout, NULL, mi_group);
5822 }
5823 else
5824 {
5825 if (i == 0)
5826 ui_out_text (uiout, " inf ");
5827 else
5828 ui_out_text (uiout, ", ");
5829
5830 ui_out_text (uiout, plongest (inf));
5831 }
5832 }
5833
5834 do_cleanups (back_to);
5835 }
5836
5837 /* Print B to gdb_stdout. */
5838
5839 static void
5840 print_one_breakpoint_location (struct breakpoint *b,
5841 struct bp_location *loc,
5842 int loc_number,
5843 struct bp_location **last_loc,
5844 int allflag)
5845 {
5846 struct command_line *l;
5847 static char bpenables[] = "nynny";
5848
5849 struct ui_out *uiout = current_uiout;
5850 int header_of_multiple = 0;
5851 int part_of_multiple = (loc != NULL);
5852 struct value_print_options opts;
5853
5854 get_user_print_options (&opts);
5855
5856 gdb_assert (!loc || loc_number != 0);
5857 /* See comment in print_one_breakpoint concerning treatment of
5858 breakpoints with single disabled location. */
5859 if (loc == NULL
5860 && (b->loc != NULL
5861 && (b->loc->next != NULL || !b->loc->enabled)))
5862 header_of_multiple = 1;
5863 if (loc == NULL)
5864 loc = b->loc;
5865
5866 annotate_record ();
5867
5868 /* 1 */
5869 annotate_field (0);
5870 if (part_of_multiple)
5871 {
5872 char *formatted;
5873 formatted = xstrprintf ("%d.%d", b->number, loc_number);
5874 ui_out_field_string (uiout, "number", formatted);
5875 xfree (formatted);
5876 }
5877 else
5878 {
5879 ui_out_field_int (uiout, "number", b->number);
5880 }
5881
5882 /* 2 */
5883 annotate_field (1);
5884 if (part_of_multiple)
5885 ui_out_field_skip (uiout, "type");
5886 else
5887 ui_out_field_string (uiout, "type", bptype_string (b->type));
5888
5889 /* 3 */
5890 annotate_field (2);
5891 if (part_of_multiple)
5892 ui_out_field_skip (uiout, "disp");
5893 else
5894 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
5895
5896
5897 /* 4 */
5898 annotate_field (3);
5899 if (part_of_multiple)
5900 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
5901 else
5902 ui_out_field_fmt (uiout, "enabled", "%c",
5903 bpenables[(int) b->enable_state]);
5904 ui_out_spaces (uiout, 2);
5905
5906
5907 /* 5 and 6 */
5908 if (b->ops != NULL && b->ops->print_one != NULL)
5909 {
5910 /* Although the print_one can possibly print all locations,
5911 calling it here is not likely to get any nice result. So,
5912 make sure there's just one location. */
5913 gdb_assert (b->loc == NULL || b->loc->next == NULL);
5914 b->ops->print_one (b, last_loc);
5915 }
5916 else
5917 switch (b->type)
5918 {
5919 case bp_none:
5920 internal_error (__FILE__, __LINE__,
5921 _("print_one_breakpoint: bp_none encountered\n"));
5922 break;
5923
5924 case bp_watchpoint:
5925 case bp_hardware_watchpoint:
5926 case bp_read_watchpoint:
5927 case bp_access_watchpoint:
5928 {
5929 struct watchpoint *w = (struct watchpoint *) b;
5930
5931 /* Field 4, the address, is omitted (which makes the columns
5932 not line up too nicely with the headers, but the effect
5933 is relatively readable). */
5934 if (opts.addressprint)
5935 ui_out_field_skip (uiout, "addr");
5936 annotate_field (5);
5937 ui_out_field_string (uiout, "what", w->exp_string);
5938 }
5939 break;
5940
5941 case bp_breakpoint:
5942 case bp_hardware_breakpoint:
5943 case bp_until:
5944 case bp_finish:
5945 case bp_longjmp:
5946 case bp_longjmp_resume:
5947 case bp_longjmp_call_dummy:
5948 case bp_exception:
5949 case bp_exception_resume:
5950 case bp_step_resume:
5951 case bp_hp_step_resume:
5952 case bp_watchpoint_scope:
5953 case bp_call_dummy:
5954 case bp_std_terminate:
5955 case bp_shlib_event:
5956 case bp_thread_event:
5957 case bp_overlay_event:
5958 case bp_longjmp_master:
5959 case bp_std_terminate_master:
5960 case bp_exception_master:
5961 case bp_tracepoint:
5962 case bp_fast_tracepoint:
5963 case bp_static_tracepoint:
5964 case bp_dprintf:
5965 case bp_jit_event:
5966 case bp_gnu_ifunc_resolver:
5967 case bp_gnu_ifunc_resolver_return:
5968 if (opts.addressprint)
5969 {
5970 annotate_field (4);
5971 if (header_of_multiple)
5972 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
5973 else if (b->loc == NULL || loc->shlib_disabled)
5974 ui_out_field_string (uiout, "addr", "<PENDING>");
5975 else
5976 ui_out_field_core_addr (uiout, "addr",
5977 loc->gdbarch, loc->address);
5978 }
5979 annotate_field (5);
5980 if (!header_of_multiple)
5981 print_breakpoint_location (b, loc);
5982 if (b->loc)
5983 *last_loc = b->loc;
5984 break;
5985 }
5986
5987
5988 if (loc != NULL && !header_of_multiple)
5989 {
5990 struct inferior *inf;
5991 VEC(int) *inf_num = NULL;
5992 int mi_only = 1;
5993
5994 ALL_INFERIORS (inf)
5995 {
5996 if (inf->pspace == loc->pspace)
5997 VEC_safe_push (int, inf_num, inf->num);
5998 }
5999
6000 /* For backward compatibility, don't display inferiors in CLI unless
6001 there are several. Always display for MI. */
6002 if (allflag
6003 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6004 && (number_of_program_spaces () > 1
6005 || number_of_inferiors () > 1)
6006 /* LOC is for existing B, it cannot be in
6007 moribund_locations and thus having NULL OWNER. */
6008 && loc->owner->type != bp_catchpoint))
6009 mi_only = 0;
6010 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6011 VEC_free (int, inf_num);
6012 }
6013
6014 if (!part_of_multiple)
6015 {
6016 if (b->thread != -1)
6017 {
6018 /* FIXME: This seems to be redundant and lost here; see the
6019 "stop only in" line a little further down. */
6020 ui_out_text (uiout, " thread ");
6021 ui_out_field_int (uiout, "thread", b->thread);
6022 }
6023 else if (b->task != 0)
6024 {
6025 ui_out_text (uiout, " task ");
6026 ui_out_field_int (uiout, "task", b->task);
6027 }
6028 }
6029
6030 ui_out_text (uiout, "\n");
6031
6032 if (!part_of_multiple)
6033 b->ops->print_one_detail (b, uiout);
6034
6035 if (part_of_multiple && frame_id_p (b->frame_id))
6036 {
6037 annotate_field (6);
6038 ui_out_text (uiout, "\tstop only in stack frame at ");
6039 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6040 the frame ID. */
6041 ui_out_field_core_addr (uiout, "frame",
6042 b->gdbarch, b->frame_id.stack_addr);
6043 ui_out_text (uiout, "\n");
6044 }
6045
6046 if (!part_of_multiple && b->cond_string)
6047 {
6048 annotate_field (7);
6049 if (is_tracepoint (b))
6050 ui_out_text (uiout, "\ttrace only if ");
6051 else
6052 ui_out_text (uiout, "\tstop only if ");
6053 ui_out_field_string (uiout, "cond", b->cond_string);
6054
6055 /* Print whether the target is doing the breakpoint's condition
6056 evaluation. If GDB is doing the evaluation, don't print anything. */
6057 if (is_breakpoint (b)
6058 && breakpoint_condition_evaluation_mode ()
6059 == condition_evaluation_target)
6060 {
6061 ui_out_text (uiout, " (");
6062 ui_out_field_string (uiout, "evaluated-by",
6063 bp_condition_evaluator (b));
6064 ui_out_text (uiout, " evals)");
6065 }
6066 ui_out_text (uiout, "\n");
6067 }
6068
6069 if (!part_of_multiple && b->thread != -1)
6070 {
6071 /* FIXME should make an annotation for this. */
6072 ui_out_text (uiout, "\tstop only in thread ");
6073 ui_out_field_int (uiout, "thread", b->thread);
6074 ui_out_text (uiout, "\n");
6075 }
6076
6077 if (!part_of_multiple)
6078 {
6079 if (b->hit_count)
6080 {
6081 /* FIXME should make an annotation for this. */
6082 if (is_catchpoint (b))
6083 ui_out_text (uiout, "\tcatchpoint");
6084 else if (is_tracepoint (b))
6085 ui_out_text (uiout, "\ttracepoint");
6086 else
6087 ui_out_text (uiout, "\tbreakpoint");
6088 ui_out_text (uiout, " already hit ");
6089 ui_out_field_int (uiout, "times", b->hit_count);
6090 if (b->hit_count == 1)
6091 ui_out_text (uiout, " time\n");
6092 else
6093 ui_out_text (uiout, " times\n");
6094 }
6095 else
6096 {
6097 /* Output the count also if it is zero, but only if this is mi. */
6098 if (ui_out_is_mi_like_p (uiout))
6099 ui_out_field_int (uiout, "times", b->hit_count);
6100 }
6101 }
6102
6103 if (!part_of_multiple && b->ignore_count)
6104 {
6105 annotate_field (8);
6106 ui_out_text (uiout, "\tignore next ");
6107 ui_out_field_int (uiout, "ignore", b->ignore_count);
6108 ui_out_text (uiout, " hits\n");
6109 }
6110
6111 /* Note that an enable count of 1 corresponds to "enable once"
6112 behavior, which is reported by the combination of enablement and
6113 disposition, so we don't need to mention it here. */
6114 if (!part_of_multiple && b->enable_count > 1)
6115 {
6116 annotate_field (8);
6117 ui_out_text (uiout, "\tdisable after ");
6118 /* Tweak the wording to clarify that ignore and enable counts
6119 are distinct, and have additive effect. */
6120 if (b->ignore_count)
6121 ui_out_text (uiout, "additional ");
6122 else
6123 ui_out_text (uiout, "next ");
6124 ui_out_field_int (uiout, "enable", b->enable_count);
6125 ui_out_text (uiout, " hits\n");
6126 }
6127
6128 if (!part_of_multiple && is_tracepoint (b))
6129 {
6130 struct tracepoint *tp = (struct tracepoint *) b;
6131
6132 if (tp->traceframe_usage)
6133 {
6134 ui_out_text (uiout, "\ttrace buffer usage ");
6135 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6136 ui_out_text (uiout, " bytes\n");
6137 }
6138 }
6139
6140 l = b->commands ? b->commands->commands : NULL;
6141 if (!part_of_multiple && l)
6142 {
6143 struct cleanup *script_chain;
6144
6145 annotate_field (9);
6146 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6147 print_command_lines (uiout, l, 4);
6148 do_cleanups (script_chain);
6149 }
6150
6151 if (is_tracepoint (b))
6152 {
6153 struct tracepoint *t = (struct tracepoint *) b;
6154
6155 if (!part_of_multiple && t->pass_count)
6156 {
6157 annotate_field (10);
6158 ui_out_text (uiout, "\tpass count ");
6159 ui_out_field_int (uiout, "pass", t->pass_count);
6160 ui_out_text (uiout, " \n");
6161 }
6162
6163 /* Don't display it when tracepoint or tracepoint location is
6164 pending. */
6165 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6166 {
6167 annotate_field (11);
6168
6169 if (ui_out_is_mi_like_p (uiout))
6170 ui_out_field_string (uiout, "installed",
6171 loc->inserted ? "y" : "n");
6172 else
6173 {
6174 if (loc->inserted)
6175 ui_out_text (uiout, "\t");
6176 else
6177 ui_out_text (uiout, "\tnot ");
6178 ui_out_text (uiout, "installed on target\n");
6179 }
6180 }
6181 }
6182
6183 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6184 {
6185 if (is_watchpoint (b))
6186 {
6187 struct watchpoint *w = (struct watchpoint *) b;
6188
6189 ui_out_field_string (uiout, "original-location", w->exp_string);
6190 }
6191 else if (b->addr_string)
6192 ui_out_field_string (uiout, "original-location", b->addr_string);
6193 }
6194 }
6195
6196 static void
6197 print_one_breakpoint (struct breakpoint *b,
6198 struct bp_location **last_loc,
6199 int allflag)
6200 {
6201 struct cleanup *bkpt_chain;
6202 struct ui_out *uiout = current_uiout;
6203
6204 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6205
6206 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6207 do_cleanups (bkpt_chain);
6208
6209 /* If this breakpoint has custom print function,
6210 it's already printed. Otherwise, print individual
6211 locations, if any. */
6212 if (b->ops == NULL || b->ops->print_one == NULL)
6213 {
6214 /* If breakpoint has a single location that is disabled, we
6215 print it as if it had several locations, since otherwise it's
6216 hard to represent "breakpoint enabled, location disabled"
6217 situation.
6218
6219 Note that while hardware watchpoints have several locations
6220 internally, that's not a property exposed to user. */
6221 if (b->loc
6222 && !is_hardware_watchpoint (b)
6223 && (b->loc->next || !b->loc->enabled))
6224 {
6225 struct bp_location *loc;
6226 int n = 1;
6227
6228 for (loc = b->loc; loc; loc = loc->next, ++n)
6229 {
6230 struct cleanup *inner2 =
6231 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6232 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6233 do_cleanups (inner2);
6234 }
6235 }
6236 }
6237 }
6238
6239 static int
6240 breakpoint_address_bits (struct breakpoint *b)
6241 {
6242 int print_address_bits = 0;
6243 struct bp_location *loc;
6244
6245 for (loc = b->loc; loc; loc = loc->next)
6246 {
6247 int addr_bit;
6248
6249 /* Software watchpoints that aren't watching memory don't have
6250 an address to print. */
6251 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6252 continue;
6253
6254 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6255 if (addr_bit > print_address_bits)
6256 print_address_bits = addr_bit;
6257 }
6258
6259 return print_address_bits;
6260 }
6261
6262 struct captured_breakpoint_query_args
6263 {
6264 int bnum;
6265 };
6266
6267 static int
6268 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6269 {
6270 struct captured_breakpoint_query_args *args = data;
6271 struct breakpoint *b;
6272 struct bp_location *dummy_loc = NULL;
6273
6274 ALL_BREAKPOINTS (b)
6275 {
6276 if (args->bnum == b->number)
6277 {
6278 print_one_breakpoint (b, &dummy_loc, 0);
6279 return GDB_RC_OK;
6280 }
6281 }
6282 return GDB_RC_NONE;
6283 }
6284
6285 enum gdb_rc
6286 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6287 char **error_message)
6288 {
6289 struct captured_breakpoint_query_args args;
6290
6291 args.bnum = bnum;
6292 /* For the moment we don't trust print_one_breakpoint() to not throw
6293 an error. */
6294 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6295 error_message, RETURN_MASK_ALL) < 0)
6296 return GDB_RC_FAIL;
6297 else
6298 return GDB_RC_OK;
6299 }
6300
6301 /* Return true if this breakpoint was set by the user, false if it is
6302 internal or momentary. */
6303
6304 int
6305 user_breakpoint_p (struct breakpoint *b)
6306 {
6307 return b->number > 0;
6308 }
6309
6310 /* Print information on user settable breakpoint (watchpoint, etc)
6311 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6312 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6313 FILTER is non-NULL, call it on each breakpoint and only include the
6314 ones for which it returns non-zero. Return the total number of
6315 breakpoints listed. */
6316
6317 static int
6318 breakpoint_1 (char *args, int allflag,
6319 int (*filter) (const struct breakpoint *))
6320 {
6321 struct breakpoint *b;
6322 struct bp_location *last_loc = NULL;
6323 int nr_printable_breakpoints;
6324 struct cleanup *bkpttbl_chain;
6325 struct value_print_options opts;
6326 int print_address_bits = 0;
6327 int print_type_col_width = 14;
6328 struct ui_out *uiout = current_uiout;
6329
6330 get_user_print_options (&opts);
6331
6332 /* Compute the number of rows in the table, as well as the size
6333 required for address fields. */
6334 nr_printable_breakpoints = 0;
6335 ALL_BREAKPOINTS (b)
6336 {
6337 /* If we have a filter, only list the breakpoints it accepts. */
6338 if (filter && !filter (b))
6339 continue;
6340
6341 /* If we have an "args" string, it is a list of breakpoints to
6342 accept. Skip the others. */
6343 if (args != NULL && *args != '\0')
6344 {
6345 if (allflag && parse_and_eval_long (args) != b->number)
6346 continue;
6347 if (!allflag && !number_is_in_list (args, b->number))
6348 continue;
6349 }
6350
6351 if (allflag || user_breakpoint_p (b))
6352 {
6353 int addr_bit, type_len;
6354
6355 addr_bit = breakpoint_address_bits (b);
6356 if (addr_bit > print_address_bits)
6357 print_address_bits = addr_bit;
6358
6359 type_len = strlen (bptype_string (b->type));
6360 if (type_len > print_type_col_width)
6361 print_type_col_width = type_len;
6362
6363 nr_printable_breakpoints++;
6364 }
6365 }
6366
6367 if (opts.addressprint)
6368 bkpttbl_chain
6369 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6370 nr_printable_breakpoints,
6371 "BreakpointTable");
6372 else
6373 bkpttbl_chain
6374 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6375 nr_printable_breakpoints,
6376 "BreakpointTable");
6377
6378 if (nr_printable_breakpoints > 0)
6379 annotate_breakpoints_headers ();
6380 if (nr_printable_breakpoints > 0)
6381 annotate_field (0);
6382 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6383 if (nr_printable_breakpoints > 0)
6384 annotate_field (1);
6385 ui_out_table_header (uiout, print_type_col_width, ui_left,
6386 "type", "Type"); /* 2 */
6387 if (nr_printable_breakpoints > 0)
6388 annotate_field (2);
6389 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6390 if (nr_printable_breakpoints > 0)
6391 annotate_field (3);
6392 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6393 if (opts.addressprint)
6394 {
6395 if (nr_printable_breakpoints > 0)
6396 annotate_field (4);
6397 if (print_address_bits <= 32)
6398 ui_out_table_header (uiout, 10, ui_left,
6399 "addr", "Address"); /* 5 */
6400 else
6401 ui_out_table_header (uiout, 18, ui_left,
6402 "addr", "Address"); /* 5 */
6403 }
6404 if (nr_printable_breakpoints > 0)
6405 annotate_field (5);
6406 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6407 ui_out_table_body (uiout);
6408 if (nr_printable_breakpoints > 0)
6409 annotate_breakpoints_table ();
6410
6411 ALL_BREAKPOINTS (b)
6412 {
6413 QUIT;
6414 /* If we have a filter, only list the breakpoints it accepts. */
6415 if (filter && !filter (b))
6416 continue;
6417
6418 /* If we have an "args" string, it is a list of breakpoints to
6419 accept. Skip the others. */
6420
6421 if (args != NULL && *args != '\0')
6422 {
6423 if (allflag) /* maintenance info breakpoint */
6424 {
6425 if (parse_and_eval_long (args) != b->number)
6426 continue;
6427 }
6428 else /* all others */
6429 {
6430 if (!number_is_in_list (args, b->number))
6431 continue;
6432 }
6433 }
6434 /* We only print out user settable breakpoints unless the
6435 allflag is set. */
6436 if (allflag || user_breakpoint_p (b))
6437 print_one_breakpoint (b, &last_loc, allflag);
6438 }
6439
6440 do_cleanups (bkpttbl_chain);
6441
6442 if (nr_printable_breakpoints == 0)
6443 {
6444 /* If there's a filter, let the caller decide how to report
6445 empty list. */
6446 if (!filter)
6447 {
6448 if (args == NULL || *args == '\0')
6449 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6450 else
6451 ui_out_message (uiout, 0,
6452 "No breakpoint or watchpoint matching '%s'.\n",
6453 args);
6454 }
6455 }
6456 else
6457 {
6458 if (last_loc && !server_command)
6459 set_next_address (last_loc->gdbarch, last_loc->address);
6460 }
6461
6462 /* FIXME? Should this be moved up so that it is only called when
6463 there have been breakpoints? */
6464 annotate_breakpoints_table_end ();
6465
6466 return nr_printable_breakpoints;
6467 }
6468
6469 /* Display the value of default-collect in a way that is generally
6470 compatible with the breakpoint list. */
6471
6472 static void
6473 default_collect_info (void)
6474 {
6475 struct ui_out *uiout = current_uiout;
6476
6477 /* If it has no value (which is frequently the case), say nothing; a
6478 message like "No default-collect." gets in user's face when it's
6479 not wanted. */
6480 if (!*default_collect)
6481 return;
6482
6483 /* The following phrase lines up nicely with per-tracepoint collect
6484 actions. */
6485 ui_out_text (uiout, "default collect ");
6486 ui_out_field_string (uiout, "default-collect", default_collect);
6487 ui_out_text (uiout, " \n");
6488 }
6489
6490 static void
6491 breakpoints_info (char *args, int from_tty)
6492 {
6493 breakpoint_1 (args, 0, NULL);
6494
6495 default_collect_info ();
6496 }
6497
6498 static void
6499 watchpoints_info (char *args, int from_tty)
6500 {
6501 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6502 struct ui_out *uiout = current_uiout;
6503
6504 if (num_printed == 0)
6505 {
6506 if (args == NULL || *args == '\0')
6507 ui_out_message (uiout, 0, "No watchpoints.\n");
6508 else
6509 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6510 }
6511 }
6512
6513 static void
6514 maintenance_info_breakpoints (char *args, int from_tty)
6515 {
6516 breakpoint_1 (args, 1, NULL);
6517
6518 default_collect_info ();
6519 }
6520
6521 static int
6522 breakpoint_has_pc (struct breakpoint *b,
6523 struct program_space *pspace,
6524 CORE_ADDR pc, struct obj_section *section)
6525 {
6526 struct bp_location *bl = b->loc;
6527
6528 for (; bl; bl = bl->next)
6529 {
6530 if (bl->pspace == pspace
6531 && bl->address == pc
6532 && (!overlay_debugging || bl->section == section))
6533 return 1;
6534 }
6535 return 0;
6536 }
6537
6538 /* Print a message describing any user-breakpoints set at PC. This
6539 concerns with logical breakpoints, so we match program spaces, not
6540 address spaces. */
6541
6542 static void
6543 describe_other_breakpoints (struct gdbarch *gdbarch,
6544 struct program_space *pspace, CORE_ADDR pc,
6545 struct obj_section *section, int thread)
6546 {
6547 int others = 0;
6548 struct breakpoint *b;
6549
6550 ALL_BREAKPOINTS (b)
6551 others += (user_breakpoint_p (b)
6552 && breakpoint_has_pc (b, pspace, pc, section));
6553 if (others > 0)
6554 {
6555 if (others == 1)
6556 printf_filtered (_("Note: breakpoint "));
6557 else /* if (others == ???) */
6558 printf_filtered (_("Note: breakpoints "));
6559 ALL_BREAKPOINTS (b)
6560 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6561 {
6562 others--;
6563 printf_filtered ("%d", b->number);
6564 if (b->thread == -1 && thread != -1)
6565 printf_filtered (" (all threads)");
6566 else if (b->thread != -1)
6567 printf_filtered (" (thread %d)", b->thread);
6568 printf_filtered ("%s%s ",
6569 ((b->enable_state == bp_disabled
6570 || b->enable_state == bp_call_disabled)
6571 ? " (disabled)"
6572 : b->enable_state == bp_permanent
6573 ? " (permanent)"
6574 : ""),
6575 (others > 1) ? ","
6576 : ((others == 1) ? " and" : ""));
6577 }
6578 printf_filtered (_("also set at pc "));
6579 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6580 printf_filtered (".\n");
6581 }
6582 }
6583 \f
6584
6585 /* Return true iff it is meaningful to use the address member of
6586 BPT. For some breakpoint types, the address member is irrelevant
6587 and it makes no sense to attempt to compare it to other addresses
6588 (or use it for any other purpose either).
6589
6590 More specifically, each of the following breakpoint types will
6591 always have a zero valued address and we don't want to mark
6592 breakpoints of any of these types to be a duplicate of an actual
6593 breakpoint at address zero:
6594
6595 bp_watchpoint
6596 bp_catchpoint
6597
6598 */
6599
6600 static int
6601 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6602 {
6603 enum bptype type = bpt->type;
6604
6605 return (type != bp_watchpoint && type != bp_catchpoint);
6606 }
6607
6608 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6609 true if LOC1 and LOC2 represent the same watchpoint location. */
6610
6611 static int
6612 watchpoint_locations_match (struct bp_location *loc1,
6613 struct bp_location *loc2)
6614 {
6615 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6616 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6617
6618 /* Both of them must exist. */
6619 gdb_assert (w1 != NULL);
6620 gdb_assert (w2 != NULL);
6621
6622 /* If the target can evaluate the condition expression in hardware,
6623 then we we need to insert both watchpoints even if they are at
6624 the same place. Otherwise the watchpoint will only trigger when
6625 the condition of whichever watchpoint was inserted evaluates to
6626 true, not giving a chance for GDB to check the condition of the
6627 other watchpoint. */
6628 if ((w1->cond_exp
6629 && target_can_accel_watchpoint_condition (loc1->address,
6630 loc1->length,
6631 loc1->watchpoint_type,
6632 w1->cond_exp))
6633 || (w2->cond_exp
6634 && target_can_accel_watchpoint_condition (loc2->address,
6635 loc2->length,
6636 loc2->watchpoint_type,
6637 w2->cond_exp)))
6638 return 0;
6639
6640 /* Note that this checks the owner's type, not the location's. In
6641 case the target does not support read watchpoints, but does
6642 support access watchpoints, we'll have bp_read_watchpoint
6643 watchpoints with hw_access locations. Those should be considered
6644 duplicates of hw_read locations. The hw_read locations will
6645 become hw_access locations later. */
6646 return (loc1->owner->type == loc2->owner->type
6647 && loc1->pspace->aspace == loc2->pspace->aspace
6648 && loc1->address == loc2->address
6649 && loc1->length == loc2->length);
6650 }
6651
6652 /* Returns true if {ASPACE1,ADDR1} and {ASPACE2,ADDR2} represent the
6653 same breakpoint location. In most targets, this can only be true
6654 if ASPACE1 matches ASPACE2. On targets that have global
6655 breakpoints, the address space doesn't really matter. */
6656
6657 static int
6658 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6659 struct address_space *aspace2, CORE_ADDR addr2)
6660 {
6661 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6662 || aspace1 == aspace2)
6663 && addr1 == addr2);
6664 }
6665
6666 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6667 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6668 matches ASPACE2. On targets that have global breakpoints, the address
6669 space doesn't really matter. */
6670
6671 static int
6672 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6673 int len1, struct address_space *aspace2,
6674 CORE_ADDR addr2)
6675 {
6676 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6677 || aspace1 == aspace2)
6678 && addr2 >= addr1 && addr2 < addr1 + len1);
6679 }
6680
6681 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6682 a ranged breakpoint. In most targets, a match happens only if ASPACE
6683 matches the breakpoint's address space. On targets that have global
6684 breakpoints, the address space doesn't really matter. */
6685
6686 static int
6687 breakpoint_location_address_match (struct bp_location *bl,
6688 struct address_space *aspace,
6689 CORE_ADDR addr)
6690 {
6691 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6692 aspace, addr)
6693 || (bl->length
6694 && breakpoint_address_match_range (bl->pspace->aspace,
6695 bl->address, bl->length,
6696 aspace, addr)));
6697 }
6698
6699 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6700 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6701 true, otherwise returns false. */
6702
6703 static int
6704 tracepoint_locations_match (struct bp_location *loc1,
6705 struct bp_location *loc2)
6706 {
6707 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6708 /* Since tracepoint locations are never duplicated with others', tracepoint
6709 locations at the same address of different tracepoints are regarded as
6710 different locations. */
6711 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6712 else
6713 return 0;
6714 }
6715
6716 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6717 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6718 represent the same location. */
6719
6720 static int
6721 breakpoint_locations_match (struct bp_location *loc1,
6722 struct bp_location *loc2)
6723 {
6724 int hw_point1, hw_point2;
6725
6726 /* Both of them must not be in moribund_locations. */
6727 gdb_assert (loc1->owner != NULL);
6728 gdb_assert (loc2->owner != NULL);
6729
6730 hw_point1 = is_hardware_watchpoint (loc1->owner);
6731 hw_point2 = is_hardware_watchpoint (loc2->owner);
6732
6733 if (hw_point1 != hw_point2)
6734 return 0;
6735 else if (hw_point1)
6736 return watchpoint_locations_match (loc1, loc2);
6737 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6738 return tracepoint_locations_match (loc1, loc2);
6739 else
6740 /* We compare bp_location.length in order to cover ranged breakpoints. */
6741 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6742 loc2->pspace->aspace, loc2->address)
6743 && loc1->length == loc2->length);
6744 }
6745
6746 static void
6747 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6748 int bnum, int have_bnum)
6749 {
6750 /* The longest string possibly returned by hex_string_custom
6751 is 50 chars. These must be at least that big for safety. */
6752 char astr1[64];
6753 char astr2[64];
6754
6755 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6756 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6757 if (have_bnum)
6758 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6759 bnum, astr1, astr2);
6760 else
6761 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6762 }
6763
6764 /* Adjust a breakpoint's address to account for architectural
6765 constraints on breakpoint placement. Return the adjusted address.
6766 Note: Very few targets require this kind of adjustment. For most
6767 targets, this function is simply the identity function. */
6768
6769 static CORE_ADDR
6770 adjust_breakpoint_address (struct gdbarch *gdbarch,
6771 CORE_ADDR bpaddr, enum bptype bptype)
6772 {
6773 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
6774 {
6775 /* Very few targets need any kind of breakpoint adjustment. */
6776 return bpaddr;
6777 }
6778 else if (bptype == bp_watchpoint
6779 || bptype == bp_hardware_watchpoint
6780 || bptype == bp_read_watchpoint
6781 || bptype == bp_access_watchpoint
6782 || bptype == bp_catchpoint)
6783 {
6784 /* Watchpoints and the various bp_catch_* eventpoints should not
6785 have their addresses modified. */
6786 return bpaddr;
6787 }
6788 else
6789 {
6790 CORE_ADDR adjusted_bpaddr;
6791
6792 /* Some targets have architectural constraints on the placement
6793 of breakpoint instructions. Obtain the adjusted address. */
6794 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6795
6796 /* An adjusted breakpoint address can significantly alter
6797 a user's expectations. Print a warning if an adjustment
6798 is required. */
6799 if (adjusted_bpaddr != bpaddr)
6800 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6801
6802 return adjusted_bpaddr;
6803 }
6804 }
6805
6806 void
6807 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
6808 struct breakpoint *owner)
6809 {
6810 memset (loc, 0, sizeof (*loc));
6811
6812 gdb_assert (ops != NULL);
6813
6814 loc->ops = ops;
6815 loc->owner = owner;
6816 loc->cond = NULL;
6817 loc->cond_bytecode = NULL;
6818 loc->shlib_disabled = 0;
6819 loc->enabled = 1;
6820
6821 switch (owner->type)
6822 {
6823 case bp_breakpoint:
6824 case bp_until:
6825 case bp_finish:
6826 case bp_longjmp:
6827 case bp_longjmp_resume:
6828 case bp_longjmp_call_dummy:
6829 case bp_exception:
6830 case bp_exception_resume:
6831 case bp_step_resume:
6832 case bp_hp_step_resume:
6833 case bp_watchpoint_scope:
6834 case bp_call_dummy:
6835 case bp_std_terminate:
6836 case bp_shlib_event:
6837 case bp_thread_event:
6838 case bp_overlay_event:
6839 case bp_jit_event:
6840 case bp_longjmp_master:
6841 case bp_std_terminate_master:
6842 case bp_exception_master:
6843 case bp_gnu_ifunc_resolver:
6844 case bp_gnu_ifunc_resolver_return:
6845 case bp_dprintf:
6846 loc->loc_type = bp_loc_software_breakpoint;
6847 mark_breakpoint_location_modified (loc);
6848 break;
6849 case bp_hardware_breakpoint:
6850 loc->loc_type = bp_loc_hardware_breakpoint;
6851 mark_breakpoint_location_modified (loc);
6852 break;
6853 case bp_hardware_watchpoint:
6854 case bp_read_watchpoint:
6855 case bp_access_watchpoint:
6856 loc->loc_type = bp_loc_hardware_watchpoint;
6857 break;
6858 case bp_watchpoint:
6859 case bp_catchpoint:
6860 case bp_tracepoint:
6861 case bp_fast_tracepoint:
6862 case bp_static_tracepoint:
6863 loc->loc_type = bp_loc_other;
6864 break;
6865 default:
6866 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
6867 }
6868
6869 loc->refc = 1;
6870 }
6871
6872 /* Allocate a struct bp_location. */
6873
6874 static struct bp_location *
6875 allocate_bp_location (struct breakpoint *bpt)
6876 {
6877 return bpt->ops->allocate_location (bpt);
6878 }
6879
6880 static void
6881 free_bp_location (struct bp_location *loc)
6882 {
6883 loc->ops->dtor (loc);
6884 xfree (loc);
6885 }
6886
6887 /* Increment reference count. */
6888
6889 static void
6890 incref_bp_location (struct bp_location *bl)
6891 {
6892 ++bl->refc;
6893 }
6894
6895 /* Decrement reference count. If the reference count reaches 0,
6896 destroy the bp_location. Sets *BLP to NULL. */
6897
6898 static void
6899 decref_bp_location (struct bp_location **blp)
6900 {
6901 gdb_assert ((*blp)->refc > 0);
6902
6903 if (--(*blp)->refc == 0)
6904 free_bp_location (*blp);
6905 *blp = NULL;
6906 }
6907
6908 /* Add breakpoint B at the end of the global breakpoint chain. */
6909
6910 static void
6911 add_to_breakpoint_chain (struct breakpoint *b)
6912 {
6913 struct breakpoint *b1;
6914
6915 /* Add this breakpoint to the end of the chain so that a list of
6916 breakpoints will come out in order of increasing numbers. */
6917
6918 b1 = breakpoint_chain;
6919 if (b1 == 0)
6920 breakpoint_chain = b;
6921 else
6922 {
6923 while (b1->next)
6924 b1 = b1->next;
6925 b1->next = b;
6926 }
6927 }
6928
6929 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
6930
6931 static void
6932 init_raw_breakpoint_without_location (struct breakpoint *b,
6933 struct gdbarch *gdbarch,
6934 enum bptype bptype,
6935 const struct breakpoint_ops *ops)
6936 {
6937 memset (b, 0, sizeof (*b));
6938
6939 gdb_assert (ops != NULL);
6940
6941 b->ops = ops;
6942 b->type = bptype;
6943 b->gdbarch = gdbarch;
6944 b->language = current_language->la_language;
6945 b->input_radix = input_radix;
6946 b->thread = -1;
6947 b->enable_state = bp_enabled;
6948 b->next = 0;
6949 b->silent = 0;
6950 b->ignore_count = 0;
6951 b->commands = NULL;
6952 b->frame_id = null_frame_id;
6953 b->condition_not_parsed = 0;
6954 b->py_bp_object = NULL;
6955 b->related_breakpoint = b;
6956 }
6957
6958 /* Helper to set_raw_breakpoint below. Creates a breakpoint
6959 that has type BPTYPE and has no locations as yet. */
6960
6961 static struct breakpoint *
6962 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
6963 enum bptype bptype,
6964 const struct breakpoint_ops *ops)
6965 {
6966 struct breakpoint *b = XNEW (struct breakpoint);
6967
6968 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
6969 add_to_breakpoint_chain (b);
6970 return b;
6971 }
6972
6973 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
6974 resolutions should be made as the user specified the location explicitly
6975 enough. */
6976
6977 static void
6978 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
6979 {
6980 gdb_assert (loc->owner != NULL);
6981
6982 if (loc->owner->type == bp_breakpoint
6983 || loc->owner->type == bp_hardware_breakpoint
6984 || is_tracepoint (loc->owner))
6985 {
6986 int is_gnu_ifunc;
6987 const char *function_name;
6988 CORE_ADDR func_addr;
6989
6990 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
6991 &func_addr, NULL, &is_gnu_ifunc);
6992
6993 if (is_gnu_ifunc && !explicit_loc)
6994 {
6995 struct breakpoint *b = loc->owner;
6996
6997 gdb_assert (loc->pspace == current_program_space);
6998 if (gnu_ifunc_resolve_name (function_name,
6999 &loc->requested_address))
7000 {
7001 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7002 loc->address = adjust_breakpoint_address (loc->gdbarch,
7003 loc->requested_address,
7004 b->type);
7005 }
7006 else if (b->type == bp_breakpoint && b->loc == loc
7007 && loc->next == NULL && b->related_breakpoint == b)
7008 {
7009 /* Create only the whole new breakpoint of this type but do not
7010 mess more complicated breakpoints with multiple locations. */
7011 b->type = bp_gnu_ifunc_resolver;
7012 /* Remember the resolver's address for use by the return
7013 breakpoint. */
7014 loc->related_address = func_addr;
7015 }
7016 }
7017
7018 if (function_name)
7019 loc->function_name = xstrdup (function_name);
7020 }
7021 }
7022
7023 /* Attempt to determine architecture of location identified by SAL. */
7024 struct gdbarch *
7025 get_sal_arch (struct symtab_and_line sal)
7026 {
7027 if (sal.section)
7028 return get_objfile_arch (sal.section->objfile);
7029 if (sal.symtab)
7030 return get_objfile_arch (sal.symtab->objfile);
7031
7032 return NULL;
7033 }
7034
7035 /* Low level routine for partially initializing a breakpoint of type
7036 BPTYPE. The newly created breakpoint's address, section, source
7037 file name, and line number are provided by SAL.
7038
7039 It is expected that the caller will complete the initialization of
7040 the newly created breakpoint struct as well as output any status
7041 information regarding the creation of a new breakpoint. */
7042
7043 static void
7044 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7045 struct symtab_and_line sal, enum bptype bptype,
7046 const struct breakpoint_ops *ops)
7047 {
7048 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7049
7050 add_location_to_breakpoint (b, &sal);
7051
7052 if (bptype != bp_catchpoint)
7053 gdb_assert (sal.pspace != NULL);
7054
7055 /* Store the program space that was used to set the breakpoint,
7056 except for ordinary breakpoints, which are independent of the
7057 program space. */
7058 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7059 b->pspace = sal.pspace;
7060 }
7061
7062 /* set_raw_breakpoint is a low level routine for allocating and
7063 partially initializing a breakpoint of type BPTYPE. The newly
7064 created breakpoint's address, section, source file name, and line
7065 number are provided by SAL. The newly created and partially
7066 initialized breakpoint is added to the breakpoint chain and
7067 is also returned as the value of this function.
7068
7069 It is expected that the caller will complete the initialization of
7070 the newly created breakpoint struct as well as output any status
7071 information regarding the creation of a new breakpoint. In
7072 particular, set_raw_breakpoint does NOT set the breakpoint
7073 number! Care should be taken to not allow an error to occur
7074 prior to completing the initialization of the breakpoint. If this
7075 should happen, a bogus breakpoint will be left on the chain. */
7076
7077 struct breakpoint *
7078 set_raw_breakpoint (struct gdbarch *gdbarch,
7079 struct symtab_and_line sal, enum bptype bptype,
7080 const struct breakpoint_ops *ops)
7081 {
7082 struct breakpoint *b = XNEW (struct breakpoint);
7083
7084 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7085 add_to_breakpoint_chain (b);
7086 return b;
7087 }
7088
7089
7090 /* Note that the breakpoint object B describes a permanent breakpoint
7091 instruction, hard-wired into the inferior's code. */
7092 void
7093 make_breakpoint_permanent (struct breakpoint *b)
7094 {
7095 struct bp_location *bl;
7096
7097 b->enable_state = bp_permanent;
7098
7099 /* By definition, permanent breakpoints are already present in the
7100 code. Mark all locations as inserted. For now,
7101 make_breakpoint_permanent is called in just one place, so it's
7102 hard to say if it's reasonable to have permanent breakpoint with
7103 multiple locations or not, but it's easy to implement. */
7104 for (bl = b->loc; bl; bl = bl->next)
7105 bl->inserted = 1;
7106 }
7107
7108 /* Call this routine when stepping and nexting to enable a breakpoint
7109 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7110 initiated the operation. */
7111
7112 void
7113 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7114 {
7115 struct breakpoint *b, *b_tmp;
7116 int thread = tp->num;
7117
7118 /* To avoid having to rescan all objfile symbols at every step,
7119 we maintain a list of continually-inserted but always disabled
7120 longjmp "master" breakpoints. Here, we simply create momentary
7121 clones of those and enable them for the requested thread. */
7122 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7123 if (b->pspace == current_program_space
7124 && (b->type == bp_longjmp_master
7125 || b->type == bp_exception_master))
7126 {
7127 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7128 struct breakpoint *clone;
7129
7130 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7131 after their removal. */
7132 clone = momentary_breakpoint_from_master (b, type,
7133 &longjmp_breakpoint_ops);
7134 clone->thread = thread;
7135 }
7136
7137 tp->initiating_frame = frame;
7138 }
7139
7140 /* Delete all longjmp breakpoints from THREAD. */
7141 void
7142 delete_longjmp_breakpoint (int thread)
7143 {
7144 struct breakpoint *b, *b_tmp;
7145
7146 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7147 if (b->type == bp_longjmp || b->type == bp_exception)
7148 {
7149 if (b->thread == thread)
7150 delete_breakpoint (b);
7151 }
7152 }
7153
7154 void
7155 delete_longjmp_breakpoint_at_next_stop (int thread)
7156 {
7157 struct breakpoint *b, *b_tmp;
7158
7159 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7160 if (b->type == bp_longjmp || b->type == bp_exception)
7161 {
7162 if (b->thread == thread)
7163 b->disposition = disp_del_at_next_stop;
7164 }
7165 }
7166
7167 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7168 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7169 pointer to any of them. Return NULL if this system cannot place longjmp
7170 breakpoints. */
7171
7172 struct breakpoint *
7173 set_longjmp_breakpoint_for_call_dummy (void)
7174 {
7175 struct breakpoint *b, *retval = NULL;
7176
7177 ALL_BREAKPOINTS (b)
7178 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7179 {
7180 struct breakpoint *new_b;
7181
7182 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7183 &momentary_breakpoint_ops);
7184 new_b->thread = pid_to_thread_id (inferior_ptid);
7185
7186 /* Link NEW_B into the chain of RETVAL breakpoints. */
7187
7188 gdb_assert (new_b->related_breakpoint == new_b);
7189 if (retval == NULL)
7190 retval = new_b;
7191 new_b->related_breakpoint = retval;
7192 while (retval->related_breakpoint != new_b->related_breakpoint)
7193 retval = retval->related_breakpoint;
7194 retval->related_breakpoint = new_b;
7195 }
7196
7197 return retval;
7198 }
7199
7200 /* Verify all existing dummy frames and their associated breakpoints for
7201 THREAD. Remove those which can no longer be found in the current frame
7202 stack.
7203
7204 You should call this function only at places where it is safe to currently
7205 unwind the whole stack. Failed stack unwind would discard live dummy
7206 frames. */
7207
7208 void
7209 check_longjmp_breakpoint_for_call_dummy (int thread)
7210 {
7211 struct breakpoint *b, *b_tmp;
7212
7213 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7214 if (b->type == bp_longjmp_call_dummy && b->thread == thread)
7215 {
7216 struct breakpoint *dummy_b = b->related_breakpoint;
7217
7218 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7219 dummy_b = dummy_b->related_breakpoint;
7220 if (dummy_b->type != bp_call_dummy
7221 || frame_find_by_id (dummy_b->frame_id) != NULL)
7222 continue;
7223
7224 dummy_frame_discard (dummy_b->frame_id);
7225
7226 while (b->related_breakpoint != b)
7227 {
7228 if (b_tmp == b->related_breakpoint)
7229 b_tmp = b->related_breakpoint->next;
7230 delete_breakpoint (b->related_breakpoint);
7231 }
7232 delete_breakpoint (b);
7233 }
7234 }
7235
7236 void
7237 enable_overlay_breakpoints (void)
7238 {
7239 struct breakpoint *b;
7240
7241 ALL_BREAKPOINTS (b)
7242 if (b->type == bp_overlay_event)
7243 {
7244 b->enable_state = bp_enabled;
7245 update_global_location_list (1);
7246 overlay_events_enabled = 1;
7247 }
7248 }
7249
7250 void
7251 disable_overlay_breakpoints (void)
7252 {
7253 struct breakpoint *b;
7254
7255 ALL_BREAKPOINTS (b)
7256 if (b->type == bp_overlay_event)
7257 {
7258 b->enable_state = bp_disabled;
7259 update_global_location_list (0);
7260 overlay_events_enabled = 0;
7261 }
7262 }
7263
7264 /* Set an active std::terminate breakpoint for each std::terminate
7265 master breakpoint. */
7266 void
7267 set_std_terminate_breakpoint (void)
7268 {
7269 struct breakpoint *b, *b_tmp;
7270
7271 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7272 if (b->pspace == current_program_space
7273 && b->type == bp_std_terminate_master)
7274 {
7275 momentary_breakpoint_from_master (b, bp_std_terminate,
7276 &momentary_breakpoint_ops);
7277 }
7278 }
7279
7280 /* Delete all the std::terminate breakpoints. */
7281 void
7282 delete_std_terminate_breakpoint (void)
7283 {
7284 struct breakpoint *b, *b_tmp;
7285
7286 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7287 if (b->type == bp_std_terminate)
7288 delete_breakpoint (b);
7289 }
7290
7291 struct breakpoint *
7292 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7293 {
7294 struct breakpoint *b;
7295
7296 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7297 &internal_breakpoint_ops);
7298
7299 b->enable_state = bp_enabled;
7300 /* addr_string has to be used or breakpoint_re_set will delete me. */
7301 b->addr_string
7302 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7303
7304 update_global_location_list_nothrow (1);
7305
7306 return b;
7307 }
7308
7309 void
7310 remove_thread_event_breakpoints (void)
7311 {
7312 struct breakpoint *b, *b_tmp;
7313
7314 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7315 if (b->type == bp_thread_event
7316 && b->loc->pspace == current_program_space)
7317 delete_breakpoint (b);
7318 }
7319
7320 struct lang_and_radix
7321 {
7322 enum language lang;
7323 int radix;
7324 };
7325
7326 /* Create a breakpoint for JIT code registration and unregistration. */
7327
7328 struct breakpoint *
7329 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7330 {
7331 struct breakpoint *b;
7332
7333 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7334 &internal_breakpoint_ops);
7335 update_global_location_list_nothrow (1);
7336 return b;
7337 }
7338
7339 /* Remove JIT code registration and unregistration breakpoint(s). */
7340
7341 void
7342 remove_jit_event_breakpoints (void)
7343 {
7344 struct breakpoint *b, *b_tmp;
7345
7346 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7347 if (b->type == bp_jit_event
7348 && b->loc->pspace == current_program_space)
7349 delete_breakpoint (b);
7350 }
7351
7352 void
7353 remove_solib_event_breakpoints (void)
7354 {
7355 struct breakpoint *b, *b_tmp;
7356
7357 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7358 if (b->type == bp_shlib_event
7359 && b->loc->pspace == current_program_space)
7360 delete_breakpoint (b);
7361 }
7362
7363 struct breakpoint *
7364 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7365 {
7366 struct breakpoint *b;
7367
7368 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7369 &internal_breakpoint_ops);
7370 update_global_location_list_nothrow (1);
7371 return b;
7372 }
7373
7374 /* Disable any breakpoints that are on code in shared libraries. Only
7375 apply to enabled breakpoints, disabled ones can just stay disabled. */
7376
7377 void
7378 disable_breakpoints_in_shlibs (void)
7379 {
7380 struct bp_location *loc, **locp_tmp;
7381
7382 ALL_BP_LOCATIONS (loc, locp_tmp)
7383 {
7384 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7385 struct breakpoint *b = loc->owner;
7386
7387 /* We apply the check to all breakpoints, including disabled for
7388 those with loc->duplicate set. This is so that when breakpoint
7389 becomes enabled, or the duplicate is removed, gdb will try to
7390 insert all breakpoints. If we don't set shlib_disabled here,
7391 we'll try to insert those breakpoints and fail. */
7392 if (((b->type == bp_breakpoint)
7393 || (b->type == bp_jit_event)
7394 || (b->type == bp_hardware_breakpoint)
7395 || (is_tracepoint (b)))
7396 && loc->pspace == current_program_space
7397 && !loc->shlib_disabled
7398 && solib_name_from_address (loc->pspace, loc->address)
7399 )
7400 {
7401 loc->shlib_disabled = 1;
7402 }
7403 }
7404 }
7405
7406 /* Disable any breakpoints and tracepoints that are in an unloaded shared
7407 library. Only apply to enabled breakpoints, disabled ones can just stay
7408 disabled. */
7409
7410 static void
7411 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7412 {
7413 struct bp_location *loc, **locp_tmp;
7414 int disabled_shlib_breaks = 0;
7415
7416 /* SunOS a.out shared libraries are always mapped, so do not
7417 disable breakpoints; they will only be reported as unloaded
7418 through clear_solib when GDB discards its shared library
7419 list. See clear_solib for more information. */
7420 if (exec_bfd != NULL
7421 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7422 return;
7423
7424 ALL_BP_LOCATIONS (loc, locp_tmp)
7425 {
7426 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7427 struct breakpoint *b = loc->owner;
7428
7429 if (solib->pspace == loc->pspace
7430 && !loc->shlib_disabled
7431 && (((b->type == bp_breakpoint
7432 || b->type == bp_jit_event
7433 || b->type == bp_hardware_breakpoint)
7434 && (loc->loc_type == bp_loc_hardware_breakpoint
7435 || loc->loc_type == bp_loc_software_breakpoint))
7436 || is_tracepoint (b))
7437 && solib_contains_address_p (solib, loc->address))
7438 {
7439 loc->shlib_disabled = 1;
7440 /* At this point, we cannot rely on remove_breakpoint
7441 succeeding so we must mark the breakpoint as not inserted
7442 to prevent future errors occurring in remove_breakpoints. */
7443 loc->inserted = 0;
7444
7445 /* This may cause duplicate notifications for the same breakpoint. */
7446 observer_notify_breakpoint_modified (b);
7447
7448 if (!disabled_shlib_breaks)
7449 {
7450 target_terminal_ours_for_output ();
7451 warning (_("Temporarily disabling breakpoints "
7452 "for unloaded shared library \"%s\""),
7453 solib->so_name);
7454 }
7455 disabled_shlib_breaks = 1;
7456 }
7457 }
7458 }
7459
7460 /* FORK & VFORK catchpoints. */
7461
7462 /* An instance of this type is used to represent a fork or vfork
7463 catchpoint. It includes a "struct breakpoint" as a kind of base
7464 class; users downcast to "struct breakpoint *" when needed. A
7465 breakpoint is really of this type iff its ops pointer points to
7466 CATCH_FORK_BREAKPOINT_OPS. */
7467
7468 struct fork_catchpoint
7469 {
7470 /* The base class. */
7471 struct breakpoint base;
7472
7473 /* Process id of a child process whose forking triggered this
7474 catchpoint. This field is only valid immediately after this
7475 catchpoint has triggered. */
7476 ptid_t forked_inferior_pid;
7477 };
7478
7479 /* Implement the "insert" breakpoint_ops method for fork
7480 catchpoints. */
7481
7482 static int
7483 insert_catch_fork (struct bp_location *bl)
7484 {
7485 return target_insert_fork_catchpoint (PIDGET (inferior_ptid));
7486 }
7487
7488 /* Implement the "remove" breakpoint_ops method for fork
7489 catchpoints. */
7490
7491 static int
7492 remove_catch_fork (struct bp_location *bl)
7493 {
7494 return target_remove_fork_catchpoint (PIDGET (inferior_ptid));
7495 }
7496
7497 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7498 catchpoints. */
7499
7500 static int
7501 breakpoint_hit_catch_fork (const struct bp_location *bl,
7502 struct address_space *aspace, CORE_ADDR bp_addr,
7503 const struct target_waitstatus *ws)
7504 {
7505 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7506
7507 if (ws->kind != TARGET_WAITKIND_FORKED)
7508 return 0;
7509
7510 c->forked_inferior_pid = ws->value.related_pid;
7511 return 1;
7512 }
7513
7514 /* Implement the "print_it" breakpoint_ops method for fork
7515 catchpoints. */
7516
7517 static enum print_stop_action
7518 print_it_catch_fork (bpstat bs)
7519 {
7520 struct ui_out *uiout = current_uiout;
7521 struct breakpoint *b = bs->breakpoint_at;
7522 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7523
7524 annotate_catchpoint (b->number);
7525 if (b->disposition == disp_del)
7526 ui_out_text (uiout, "\nTemporary catchpoint ");
7527 else
7528 ui_out_text (uiout, "\nCatchpoint ");
7529 if (ui_out_is_mi_like_p (uiout))
7530 {
7531 ui_out_field_string (uiout, "reason",
7532 async_reason_lookup (EXEC_ASYNC_FORK));
7533 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7534 }
7535 ui_out_field_int (uiout, "bkptno", b->number);
7536 ui_out_text (uiout, " (forked process ");
7537 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7538 ui_out_text (uiout, "), ");
7539 return PRINT_SRC_AND_LOC;
7540 }
7541
7542 /* Implement the "print_one" breakpoint_ops method for fork
7543 catchpoints. */
7544
7545 static void
7546 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7547 {
7548 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7549 struct value_print_options opts;
7550 struct ui_out *uiout = current_uiout;
7551
7552 get_user_print_options (&opts);
7553
7554 /* Field 4, the address, is omitted (which makes the columns not
7555 line up too nicely with the headers, but the effect is relatively
7556 readable). */
7557 if (opts.addressprint)
7558 ui_out_field_skip (uiout, "addr");
7559 annotate_field (5);
7560 ui_out_text (uiout, "fork");
7561 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7562 {
7563 ui_out_text (uiout, ", process ");
7564 ui_out_field_int (uiout, "what",
7565 ptid_get_pid (c->forked_inferior_pid));
7566 ui_out_spaces (uiout, 1);
7567 }
7568
7569 if (ui_out_is_mi_like_p (uiout))
7570 ui_out_field_string (uiout, "catch-type", "fork");
7571 }
7572
7573 /* Implement the "print_mention" breakpoint_ops method for fork
7574 catchpoints. */
7575
7576 static void
7577 print_mention_catch_fork (struct breakpoint *b)
7578 {
7579 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7580 }
7581
7582 /* Implement the "print_recreate" breakpoint_ops method for fork
7583 catchpoints. */
7584
7585 static void
7586 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7587 {
7588 fprintf_unfiltered (fp, "catch fork");
7589 print_recreate_thread (b, fp);
7590 }
7591
7592 /* The breakpoint_ops structure to be used in fork catchpoints. */
7593
7594 static struct breakpoint_ops catch_fork_breakpoint_ops;
7595
7596 /* Implement the "insert" breakpoint_ops method for vfork
7597 catchpoints. */
7598
7599 static int
7600 insert_catch_vfork (struct bp_location *bl)
7601 {
7602 return target_insert_vfork_catchpoint (PIDGET (inferior_ptid));
7603 }
7604
7605 /* Implement the "remove" breakpoint_ops method for vfork
7606 catchpoints. */
7607
7608 static int
7609 remove_catch_vfork (struct bp_location *bl)
7610 {
7611 return target_remove_vfork_catchpoint (PIDGET (inferior_ptid));
7612 }
7613
7614 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7615 catchpoints. */
7616
7617 static int
7618 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7619 struct address_space *aspace, CORE_ADDR bp_addr,
7620 const struct target_waitstatus *ws)
7621 {
7622 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7623
7624 if (ws->kind != TARGET_WAITKIND_VFORKED)
7625 return 0;
7626
7627 c->forked_inferior_pid = ws->value.related_pid;
7628 return 1;
7629 }
7630
7631 /* Implement the "print_it" breakpoint_ops method for vfork
7632 catchpoints. */
7633
7634 static enum print_stop_action
7635 print_it_catch_vfork (bpstat bs)
7636 {
7637 struct ui_out *uiout = current_uiout;
7638 struct breakpoint *b = bs->breakpoint_at;
7639 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7640
7641 annotate_catchpoint (b->number);
7642 if (b->disposition == disp_del)
7643 ui_out_text (uiout, "\nTemporary catchpoint ");
7644 else
7645 ui_out_text (uiout, "\nCatchpoint ");
7646 if (ui_out_is_mi_like_p (uiout))
7647 {
7648 ui_out_field_string (uiout, "reason",
7649 async_reason_lookup (EXEC_ASYNC_VFORK));
7650 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7651 }
7652 ui_out_field_int (uiout, "bkptno", b->number);
7653 ui_out_text (uiout, " (vforked process ");
7654 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7655 ui_out_text (uiout, "), ");
7656 return PRINT_SRC_AND_LOC;
7657 }
7658
7659 /* Implement the "print_one" breakpoint_ops method for vfork
7660 catchpoints. */
7661
7662 static void
7663 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7664 {
7665 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7666 struct value_print_options opts;
7667 struct ui_out *uiout = current_uiout;
7668
7669 get_user_print_options (&opts);
7670 /* Field 4, the address, is omitted (which makes the columns not
7671 line up too nicely with the headers, but the effect is relatively
7672 readable). */
7673 if (opts.addressprint)
7674 ui_out_field_skip (uiout, "addr");
7675 annotate_field (5);
7676 ui_out_text (uiout, "vfork");
7677 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7678 {
7679 ui_out_text (uiout, ", process ");
7680 ui_out_field_int (uiout, "what",
7681 ptid_get_pid (c->forked_inferior_pid));
7682 ui_out_spaces (uiout, 1);
7683 }
7684
7685 if (ui_out_is_mi_like_p (uiout))
7686 ui_out_field_string (uiout, "catch-type", "vfork");
7687 }
7688
7689 /* Implement the "print_mention" breakpoint_ops method for vfork
7690 catchpoints. */
7691
7692 static void
7693 print_mention_catch_vfork (struct breakpoint *b)
7694 {
7695 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7696 }
7697
7698 /* Implement the "print_recreate" breakpoint_ops method for vfork
7699 catchpoints. */
7700
7701 static void
7702 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7703 {
7704 fprintf_unfiltered (fp, "catch vfork");
7705 print_recreate_thread (b, fp);
7706 }
7707
7708 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7709
7710 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7711
7712 /* An instance of this type is used to represent an solib catchpoint.
7713 It includes a "struct breakpoint" as a kind of base class; users
7714 downcast to "struct breakpoint *" when needed. A breakpoint is
7715 really of this type iff its ops pointer points to
7716 CATCH_SOLIB_BREAKPOINT_OPS. */
7717
7718 struct solib_catchpoint
7719 {
7720 /* The base class. */
7721 struct breakpoint base;
7722
7723 /* True for "catch load", false for "catch unload". */
7724 unsigned char is_load;
7725
7726 /* Regular expression to match, if any. COMPILED is only valid when
7727 REGEX is non-NULL. */
7728 char *regex;
7729 regex_t compiled;
7730 };
7731
7732 static void
7733 dtor_catch_solib (struct breakpoint *b)
7734 {
7735 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7736
7737 if (self->regex)
7738 regfree (&self->compiled);
7739 xfree (self->regex);
7740
7741 base_breakpoint_ops.dtor (b);
7742 }
7743
7744 static int
7745 insert_catch_solib (struct bp_location *ignore)
7746 {
7747 return 0;
7748 }
7749
7750 static int
7751 remove_catch_solib (struct bp_location *ignore)
7752 {
7753 return 0;
7754 }
7755
7756 static int
7757 breakpoint_hit_catch_solib (const struct bp_location *bl,
7758 struct address_space *aspace,
7759 CORE_ADDR bp_addr,
7760 const struct target_waitstatus *ws)
7761 {
7762 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7763 struct breakpoint *other;
7764
7765 if (ws->kind == TARGET_WAITKIND_LOADED)
7766 return 1;
7767
7768 ALL_BREAKPOINTS (other)
7769 {
7770 struct bp_location *other_bl;
7771
7772 if (other == bl->owner)
7773 continue;
7774
7775 if (other->type != bp_shlib_event)
7776 continue;
7777
7778 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
7779 continue;
7780
7781 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7782 {
7783 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7784 return 1;
7785 }
7786 }
7787
7788 return 0;
7789 }
7790
7791 static void
7792 check_status_catch_solib (struct bpstats *bs)
7793 {
7794 struct solib_catchpoint *self
7795 = (struct solib_catchpoint *) bs->breakpoint_at;
7796 int ix;
7797
7798 if (self->is_load)
7799 {
7800 struct so_list *iter;
7801
7802 for (ix = 0;
7803 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
7804 ix, iter);
7805 ++ix)
7806 {
7807 if (!self->regex
7808 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
7809 return;
7810 }
7811 }
7812 else
7813 {
7814 char *iter;
7815
7816 for (ix = 0;
7817 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
7818 ix, iter);
7819 ++ix)
7820 {
7821 if (!self->regex
7822 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
7823 return;
7824 }
7825 }
7826
7827 bs->stop = 0;
7828 bs->print_it = print_it_noop;
7829 }
7830
7831 static enum print_stop_action
7832 print_it_catch_solib (bpstat bs)
7833 {
7834 struct breakpoint *b = bs->breakpoint_at;
7835 struct ui_out *uiout = current_uiout;
7836
7837 annotate_catchpoint (b->number);
7838 if (b->disposition == disp_del)
7839 ui_out_text (uiout, "\nTemporary catchpoint ");
7840 else
7841 ui_out_text (uiout, "\nCatchpoint ");
7842 ui_out_field_int (uiout, "bkptno", b->number);
7843 ui_out_text (uiout, "\n");
7844 if (ui_out_is_mi_like_p (uiout))
7845 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7846 print_solib_event (1);
7847 return PRINT_SRC_AND_LOC;
7848 }
7849
7850 static void
7851 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
7852 {
7853 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7854 struct value_print_options opts;
7855 struct ui_out *uiout = current_uiout;
7856 char *msg;
7857
7858 get_user_print_options (&opts);
7859 /* Field 4, the address, is omitted (which makes the columns not
7860 line up too nicely with the headers, but the effect is relatively
7861 readable). */
7862 if (opts.addressprint)
7863 {
7864 annotate_field (4);
7865 ui_out_field_skip (uiout, "addr");
7866 }
7867
7868 annotate_field (5);
7869 if (self->is_load)
7870 {
7871 if (self->regex)
7872 msg = xstrprintf (_("load of library matching %s"), self->regex);
7873 else
7874 msg = xstrdup (_("load of library"));
7875 }
7876 else
7877 {
7878 if (self->regex)
7879 msg = xstrprintf (_("unload of library matching %s"), self->regex);
7880 else
7881 msg = xstrdup (_("unload of library"));
7882 }
7883 ui_out_field_string (uiout, "what", msg);
7884 xfree (msg);
7885
7886 if (ui_out_is_mi_like_p (uiout))
7887 ui_out_field_string (uiout, "catch-type",
7888 self->is_load ? "load" : "unload");
7889 }
7890
7891 static void
7892 print_mention_catch_solib (struct breakpoint *b)
7893 {
7894 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7895
7896 printf_filtered (_("Catchpoint %d (%s)"), b->number,
7897 self->is_load ? "load" : "unload");
7898 }
7899
7900 static void
7901 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
7902 {
7903 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7904
7905 fprintf_unfiltered (fp, "%s %s",
7906 b->disposition == disp_del ? "tcatch" : "catch",
7907 self->is_load ? "load" : "unload");
7908 if (self->regex)
7909 fprintf_unfiltered (fp, " %s", self->regex);
7910 fprintf_unfiltered (fp, "\n");
7911 }
7912
7913 static struct breakpoint_ops catch_solib_breakpoint_ops;
7914
7915 /* Shared helper function (MI and CLI) for creating and installing
7916 a shared object event catchpoint. If IS_LOAD is non-zero then
7917 the events to be caught are load events, otherwise they are
7918 unload events. If IS_TEMP is non-zero the catchpoint is a
7919 temporary one. If ENABLED is non-zero the catchpoint is
7920 created in an enabled state. */
7921
7922 void
7923 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
7924 {
7925 struct solib_catchpoint *c;
7926 struct gdbarch *gdbarch = get_current_arch ();
7927 struct cleanup *cleanup;
7928
7929 if (!arg)
7930 arg = "";
7931 arg = skip_spaces (arg);
7932
7933 c = XCNEW (struct solib_catchpoint);
7934 cleanup = make_cleanup (xfree, c);
7935
7936 if (*arg != '\0')
7937 {
7938 int errcode;
7939
7940 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
7941 if (errcode != 0)
7942 {
7943 char *err = get_regcomp_error (errcode, &c->compiled);
7944
7945 make_cleanup (xfree, err);
7946 error (_("Invalid regexp (%s): %s"), err, arg);
7947 }
7948 c->regex = xstrdup (arg);
7949 }
7950
7951 c->is_load = is_load;
7952 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
7953 &catch_solib_breakpoint_ops);
7954
7955 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
7956
7957 discard_cleanups (cleanup);
7958 install_breakpoint (0, &c->base, 1);
7959 }
7960
7961 /* A helper function that does all the work for "catch load" and
7962 "catch unload". */
7963
7964 static void
7965 catch_load_or_unload (char *arg, int from_tty, int is_load,
7966 struct cmd_list_element *command)
7967 {
7968 int tempflag;
7969 const int enabled = 1;
7970
7971 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
7972
7973 add_solib_catchpoint (arg, is_load, tempflag, enabled);
7974 }
7975
7976 static void
7977 catch_load_command_1 (char *arg, int from_tty,
7978 struct cmd_list_element *command)
7979 {
7980 catch_load_or_unload (arg, from_tty, 1, command);
7981 }
7982
7983 static void
7984 catch_unload_command_1 (char *arg, int from_tty,
7985 struct cmd_list_element *command)
7986 {
7987 catch_load_or_unload (arg, from_tty, 0, command);
7988 }
7989
7990 /* An instance of this type is used to represent a syscall catchpoint.
7991 It includes a "struct breakpoint" as a kind of base class; users
7992 downcast to "struct breakpoint *" when needed. A breakpoint is
7993 really of this type iff its ops pointer points to
7994 CATCH_SYSCALL_BREAKPOINT_OPS. */
7995
7996 struct syscall_catchpoint
7997 {
7998 /* The base class. */
7999 struct breakpoint base;
8000
8001 /* Syscall numbers used for the 'catch syscall' feature. If no
8002 syscall has been specified for filtering, its value is NULL.
8003 Otherwise, it holds a list of all syscalls to be caught. The
8004 list elements are allocated with xmalloc. */
8005 VEC(int) *syscalls_to_be_caught;
8006 };
8007
8008 /* Implement the "dtor" breakpoint_ops method for syscall
8009 catchpoints. */
8010
8011 static void
8012 dtor_catch_syscall (struct breakpoint *b)
8013 {
8014 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8015
8016 VEC_free (int, c->syscalls_to_be_caught);
8017
8018 base_breakpoint_ops.dtor (b);
8019 }
8020
8021 static const struct inferior_data *catch_syscall_inferior_data = NULL;
8022
8023 struct catch_syscall_inferior_data
8024 {
8025 /* We keep a count of the number of times the user has requested a
8026 particular syscall to be tracked, and pass this information to the
8027 target. This lets capable targets implement filtering directly. */
8028
8029 /* Number of times that "any" syscall is requested. */
8030 int any_syscall_count;
8031
8032 /* Count of each system call. */
8033 VEC(int) *syscalls_counts;
8034
8035 /* This counts all syscall catch requests, so we can readily determine
8036 if any catching is necessary. */
8037 int total_syscalls_count;
8038 };
8039
8040 static struct catch_syscall_inferior_data*
8041 get_catch_syscall_inferior_data (struct inferior *inf)
8042 {
8043 struct catch_syscall_inferior_data *inf_data;
8044
8045 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8046 if (inf_data == NULL)
8047 {
8048 inf_data = XZALLOC (struct catch_syscall_inferior_data);
8049 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8050 }
8051
8052 return inf_data;
8053 }
8054
8055 static void
8056 catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8057 {
8058 xfree (arg);
8059 }
8060
8061
8062 /* Implement the "insert" breakpoint_ops method for syscall
8063 catchpoints. */
8064
8065 static int
8066 insert_catch_syscall (struct bp_location *bl)
8067 {
8068 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8069 struct inferior *inf = current_inferior ();
8070 struct catch_syscall_inferior_data *inf_data
8071 = get_catch_syscall_inferior_data (inf);
8072
8073 ++inf_data->total_syscalls_count;
8074 if (!c->syscalls_to_be_caught)
8075 ++inf_data->any_syscall_count;
8076 else
8077 {
8078 int i, iter;
8079
8080 for (i = 0;
8081 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8082 i++)
8083 {
8084 int elem;
8085
8086 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8087 {
8088 int old_size = VEC_length (int, inf_data->syscalls_counts);
8089 uintptr_t vec_addr_offset
8090 = old_size * ((uintptr_t) sizeof (int));
8091 uintptr_t vec_addr;
8092 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8093 vec_addr = ((uintptr_t) VEC_address (int,
8094 inf_data->syscalls_counts)
8095 + vec_addr_offset);
8096 memset ((void *) vec_addr, 0,
8097 (iter + 1 - old_size) * sizeof (int));
8098 }
8099 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8100 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8101 }
8102 }
8103
8104 return target_set_syscall_catchpoint (PIDGET (inferior_ptid),
8105 inf_data->total_syscalls_count != 0,
8106 inf_data->any_syscall_count,
8107 VEC_length (int,
8108 inf_data->syscalls_counts),
8109 VEC_address (int,
8110 inf_data->syscalls_counts));
8111 }
8112
8113 /* Implement the "remove" breakpoint_ops method for syscall
8114 catchpoints. */
8115
8116 static int
8117 remove_catch_syscall (struct bp_location *bl)
8118 {
8119 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8120 struct inferior *inf = current_inferior ();
8121 struct catch_syscall_inferior_data *inf_data
8122 = get_catch_syscall_inferior_data (inf);
8123
8124 --inf_data->total_syscalls_count;
8125 if (!c->syscalls_to_be_caught)
8126 --inf_data->any_syscall_count;
8127 else
8128 {
8129 int i, iter;
8130
8131 for (i = 0;
8132 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8133 i++)
8134 {
8135 int elem;
8136 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8137 /* Shouldn't happen. */
8138 continue;
8139 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8140 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8141 }
8142 }
8143
8144 return target_set_syscall_catchpoint (PIDGET (inferior_ptid),
8145 inf_data->total_syscalls_count != 0,
8146 inf_data->any_syscall_count,
8147 VEC_length (int,
8148 inf_data->syscalls_counts),
8149 VEC_address (int,
8150 inf_data->syscalls_counts));
8151 }
8152
8153 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8154 catchpoints. */
8155
8156 static int
8157 breakpoint_hit_catch_syscall (const struct bp_location *bl,
8158 struct address_space *aspace, CORE_ADDR bp_addr,
8159 const struct target_waitstatus *ws)
8160 {
8161 /* We must check if we are catching specific syscalls in this
8162 breakpoint. If we are, then we must guarantee that the called
8163 syscall is the same syscall we are catching. */
8164 int syscall_number = 0;
8165 const struct syscall_catchpoint *c
8166 = (const struct syscall_catchpoint *) bl->owner;
8167
8168 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8169 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8170 return 0;
8171
8172 syscall_number = ws->value.syscall_number;
8173
8174 /* Now, checking if the syscall is the same. */
8175 if (c->syscalls_to_be_caught)
8176 {
8177 int i, iter;
8178
8179 for (i = 0;
8180 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8181 i++)
8182 if (syscall_number == iter)
8183 break;
8184 /* Not the same. */
8185 if (!iter)
8186 return 0;
8187 }
8188
8189 return 1;
8190 }
8191
8192 /* Implement the "print_it" breakpoint_ops method for syscall
8193 catchpoints. */
8194
8195 static enum print_stop_action
8196 print_it_catch_syscall (bpstat bs)
8197 {
8198 struct ui_out *uiout = current_uiout;
8199 struct breakpoint *b = bs->breakpoint_at;
8200 /* These are needed because we want to know in which state a
8201 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8202 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8203 must print "called syscall" or "returned from syscall". */
8204 ptid_t ptid;
8205 struct target_waitstatus last;
8206 struct syscall s;
8207
8208 get_last_target_status (&ptid, &last);
8209
8210 get_syscall_by_number (last.value.syscall_number, &s);
8211
8212 annotate_catchpoint (b->number);
8213
8214 if (b->disposition == disp_del)
8215 ui_out_text (uiout, "\nTemporary catchpoint ");
8216 else
8217 ui_out_text (uiout, "\nCatchpoint ");
8218 if (ui_out_is_mi_like_p (uiout))
8219 {
8220 ui_out_field_string (uiout, "reason",
8221 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8222 ? EXEC_ASYNC_SYSCALL_ENTRY
8223 : EXEC_ASYNC_SYSCALL_RETURN));
8224 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8225 }
8226 ui_out_field_int (uiout, "bkptno", b->number);
8227
8228 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8229 ui_out_text (uiout, " (call to syscall ");
8230 else
8231 ui_out_text (uiout, " (returned from syscall ");
8232
8233 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8234 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8235 if (s.name != NULL)
8236 ui_out_field_string (uiout, "syscall-name", s.name);
8237
8238 ui_out_text (uiout, "), ");
8239
8240 return PRINT_SRC_AND_LOC;
8241 }
8242
8243 /* Implement the "print_one" breakpoint_ops method for syscall
8244 catchpoints. */
8245
8246 static void
8247 print_one_catch_syscall (struct breakpoint *b,
8248 struct bp_location **last_loc)
8249 {
8250 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8251 struct value_print_options opts;
8252 struct ui_out *uiout = current_uiout;
8253
8254 get_user_print_options (&opts);
8255 /* Field 4, the address, is omitted (which makes the columns not
8256 line up too nicely with the headers, but the effect is relatively
8257 readable). */
8258 if (opts.addressprint)
8259 ui_out_field_skip (uiout, "addr");
8260 annotate_field (5);
8261
8262 if (c->syscalls_to_be_caught
8263 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8264 ui_out_text (uiout, "syscalls \"");
8265 else
8266 ui_out_text (uiout, "syscall \"");
8267
8268 if (c->syscalls_to_be_caught)
8269 {
8270 int i, iter;
8271 char *text = xstrprintf ("%s", "");
8272
8273 for (i = 0;
8274 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8275 i++)
8276 {
8277 char *x = text;
8278 struct syscall s;
8279 get_syscall_by_number (iter, &s);
8280
8281 if (s.name != NULL)
8282 text = xstrprintf ("%s%s, ", text, s.name);
8283 else
8284 text = xstrprintf ("%s%d, ", text, iter);
8285
8286 /* We have to xfree the last 'text' (now stored at 'x')
8287 because xstrprintf dynamically allocates new space for it
8288 on every call. */
8289 xfree (x);
8290 }
8291 /* Remove the last comma. */
8292 text[strlen (text) - 2] = '\0';
8293 ui_out_field_string (uiout, "what", text);
8294 }
8295 else
8296 ui_out_field_string (uiout, "what", "<any syscall>");
8297 ui_out_text (uiout, "\" ");
8298
8299 if (ui_out_is_mi_like_p (uiout))
8300 ui_out_field_string (uiout, "catch-type", "syscall");
8301 }
8302
8303 /* Implement the "print_mention" breakpoint_ops method for syscall
8304 catchpoints. */
8305
8306 static void
8307 print_mention_catch_syscall (struct breakpoint *b)
8308 {
8309 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8310
8311 if (c->syscalls_to_be_caught)
8312 {
8313 int i, iter;
8314
8315 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8316 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8317 else
8318 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8319
8320 for (i = 0;
8321 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8322 i++)
8323 {
8324 struct syscall s;
8325 get_syscall_by_number (iter, &s);
8326
8327 if (s.name)
8328 printf_filtered (" '%s' [%d]", s.name, s.number);
8329 else
8330 printf_filtered (" %d", s.number);
8331 }
8332 printf_filtered (")");
8333 }
8334 else
8335 printf_filtered (_("Catchpoint %d (any syscall)"),
8336 b->number);
8337 }
8338
8339 /* Implement the "print_recreate" breakpoint_ops method for syscall
8340 catchpoints. */
8341
8342 static void
8343 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8344 {
8345 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8346
8347 fprintf_unfiltered (fp, "catch syscall");
8348
8349 if (c->syscalls_to_be_caught)
8350 {
8351 int i, iter;
8352
8353 for (i = 0;
8354 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8355 i++)
8356 {
8357 struct syscall s;
8358
8359 get_syscall_by_number (iter, &s);
8360 if (s.name)
8361 fprintf_unfiltered (fp, " %s", s.name);
8362 else
8363 fprintf_unfiltered (fp, " %d", s.number);
8364 }
8365 }
8366 print_recreate_thread (b, fp);
8367 }
8368
8369 /* The breakpoint_ops structure to be used in syscall catchpoints. */
8370
8371 static struct breakpoint_ops catch_syscall_breakpoint_ops;
8372
8373 /* Returns non-zero if 'b' is a syscall catchpoint. */
8374
8375 static int
8376 syscall_catchpoint_p (struct breakpoint *b)
8377 {
8378 return (b->ops == &catch_syscall_breakpoint_ops);
8379 }
8380
8381 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8382 is non-zero, then make the breakpoint temporary. If COND_STRING is
8383 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8384 the breakpoint_ops structure associated to the catchpoint. */
8385
8386 void
8387 init_catchpoint (struct breakpoint *b,
8388 struct gdbarch *gdbarch, int tempflag,
8389 char *cond_string,
8390 const struct breakpoint_ops *ops)
8391 {
8392 struct symtab_and_line sal;
8393
8394 init_sal (&sal);
8395 sal.pspace = current_program_space;
8396
8397 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8398
8399 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8400 b->disposition = tempflag ? disp_del : disp_donttouch;
8401 }
8402
8403 void
8404 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8405 {
8406 add_to_breakpoint_chain (b);
8407 set_breakpoint_number (internal, b);
8408 if (is_tracepoint (b))
8409 set_tracepoint_count (breakpoint_count);
8410 if (!internal)
8411 mention (b);
8412 observer_notify_breakpoint_created (b);
8413
8414 if (update_gll)
8415 update_global_location_list (1);
8416 }
8417
8418 static void
8419 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8420 int tempflag, char *cond_string,
8421 const struct breakpoint_ops *ops)
8422 {
8423 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8424
8425 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8426
8427 c->forked_inferior_pid = null_ptid;
8428
8429 install_breakpoint (0, &c->base, 1);
8430 }
8431
8432 /* Exec catchpoints. */
8433
8434 /* An instance of this type is used to represent an exec catchpoint.
8435 It includes a "struct breakpoint" as a kind of base class; users
8436 downcast to "struct breakpoint *" when needed. A breakpoint is
8437 really of this type iff its ops pointer points to
8438 CATCH_EXEC_BREAKPOINT_OPS. */
8439
8440 struct exec_catchpoint
8441 {
8442 /* The base class. */
8443 struct breakpoint base;
8444
8445 /* Filename of a program whose exec triggered this catchpoint.
8446 This field is only valid immediately after this catchpoint has
8447 triggered. */
8448 char *exec_pathname;
8449 };
8450
8451 /* Implement the "dtor" breakpoint_ops method for exec
8452 catchpoints. */
8453
8454 static void
8455 dtor_catch_exec (struct breakpoint *b)
8456 {
8457 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8458
8459 xfree (c->exec_pathname);
8460
8461 base_breakpoint_ops.dtor (b);
8462 }
8463
8464 static int
8465 insert_catch_exec (struct bp_location *bl)
8466 {
8467 return target_insert_exec_catchpoint (PIDGET (inferior_ptid));
8468 }
8469
8470 static int
8471 remove_catch_exec (struct bp_location *bl)
8472 {
8473 return target_remove_exec_catchpoint (PIDGET (inferior_ptid));
8474 }
8475
8476 static int
8477 breakpoint_hit_catch_exec (const struct bp_location *bl,
8478 struct address_space *aspace, CORE_ADDR bp_addr,
8479 const struct target_waitstatus *ws)
8480 {
8481 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8482
8483 if (ws->kind != TARGET_WAITKIND_EXECD)
8484 return 0;
8485
8486 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8487 return 1;
8488 }
8489
8490 static enum print_stop_action
8491 print_it_catch_exec (bpstat bs)
8492 {
8493 struct ui_out *uiout = current_uiout;
8494 struct breakpoint *b = bs->breakpoint_at;
8495 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8496
8497 annotate_catchpoint (b->number);
8498 if (b->disposition == disp_del)
8499 ui_out_text (uiout, "\nTemporary catchpoint ");
8500 else
8501 ui_out_text (uiout, "\nCatchpoint ");
8502 if (ui_out_is_mi_like_p (uiout))
8503 {
8504 ui_out_field_string (uiout, "reason",
8505 async_reason_lookup (EXEC_ASYNC_EXEC));
8506 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8507 }
8508 ui_out_field_int (uiout, "bkptno", b->number);
8509 ui_out_text (uiout, " (exec'd ");
8510 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8511 ui_out_text (uiout, "), ");
8512
8513 return PRINT_SRC_AND_LOC;
8514 }
8515
8516 static void
8517 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8518 {
8519 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8520 struct value_print_options opts;
8521 struct ui_out *uiout = current_uiout;
8522
8523 get_user_print_options (&opts);
8524
8525 /* Field 4, the address, is omitted (which makes the columns
8526 not line up too nicely with the headers, but the effect
8527 is relatively readable). */
8528 if (opts.addressprint)
8529 ui_out_field_skip (uiout, "addr");
8530 annotate_field (5);
8531 ui_out_text (uiout, "exec");
8532 if (c->exec_pathname != NULL)
8533 {
8534 ui_out_text (uiout, ", program \"");
8535 ui_out_field_string (uiout, "what", c->exec_pathname);
8536 ui_out_text (uiout, "\" ");
8537 }
8538
8539 if (ui_out_is_mi_like_p (uiout))
8540 ui_out_field_string (uiout, "catch-type", "exec");
8541 }
8542
8543 static void
8544 print_mention_catch_exec (struct breakpoint *b)
8545 {
8546 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8547 }
8548
8549 /* Implement the "print_recreate" breakpoint_ops method for exec
8550 catchpoints. */
8551
8552 static void
8553 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8554 {
8555 fprintf_unfiltered (fp, "catch exec");
8556 print_recreate_thread (b, fp);
8557 }
8558
8559 static struct breakpoint_ops catch_exec_breakpoint_ops;
8560
8561 static void
8562 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
8563 const struct breakpoint_ops *ops)
8564 {
8565 struct syscall_catchpoint *c;
8566 struct gdbarch *gdbarch = get_current_arch ();
8567
8568 c = XNEW (struct syscall_catchpoint);
8569 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
8570 c->syscalls_to_be_caught = filter;
8571
8572 install_breakpoint (0, &c->base, 1);
8573 }
8574
8575 static int
8576 hw_breakpoint_used_count (void)
8577 {
8578 int i = 0;
8579 struct breakpoint *b;
8580 struct bp_location *bl;
8581
8582 ALL_BREAKPOINTS (b)
8583 {
8584 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8585 for (bl = b->loc; bl; bl = bl->next)
8586 {
8587 /* Special types of hardware breakpoints may use more than
8588 one register. */
8589 i += b->ops->resources_needed (bl);
8590 }
8591 }
8592
8593 return i;
8594 }
8595
8596 /* Returns the resources B would use if it were a hardware
8597 watchpoint. */
8598
8599 static int
8600 hw_watchpoint_use_count (struct breakpoint *b)
8601 {
8602 int i = 0;
8603 struct bp_location *bl;
8604
8605 if (!breakpoint_enabled (b))
8606 return 0;
8607
8608 for (bl = b->loc; bl; bl = bl->next)
8609 {
8610 /* Special types of hardware watchpoints may use more than
8611 one register. */
8612 i += b->ops->resources_needed (bl);
8613 }
8614
8615 return i;
8616 }
8617
8618 /* Returns the sum the used resources of all hardware watchpoints of
8619 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8620 the sum of the used resources of all hardware watchpoints of other
8621 types _not_ TYPE. */
8622
8623 static int
8624 hw_watchpoint_used_count_others (struct breakpoint *except,
8625 enum bptype type, int *other_type_used)
8626 {
8627 int i = 0;
8628 struct breakpoint *b;
8629
8630 *other_type_used = 0;
8631 ALL_BREAKPOINTS (b)
8632 {
8633 if (b == except)
8634 continue;
8635 if (!breakpoint_enabled (b))
8636 continue;
8637
8638 if (b->type == type)
8639 i += hw_watchpoint_use_count (b);
8640 else if (is_hardware_watchpoint (b))
8641 *other_type_used = 1;
8642 }
8643
8644 return i;
8645 }
8646
8647 void
8648 disable_watchpoints_before_interactive_call_start (void)
8649 {
8650 struct breakpoint *b;
8651
8652 ALL_BREAKPOINTS (b)
8653 {
8654 if (is_watchpoint (b) && breakpoint_enabled (b))
8655 {
8656 b->enable_state = bp_call_disabled;
8657 update_global_location_list (0);
8658 }
8659 }
8660 }
8661
8662 void
8663 enable_watchpoints_after_interactive_call_stop (void)
8664 {
8665 struct breakpoint *b;
8666
8667 ALL_BREAKPOINTS (b)
8668 {
8669 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8670 {
8671 b->enable_state = bp_enabled;
8672 update_global_location_list (1);
8673 }
8674 }
8675 }
8676
8677 void
8678 disable_breakpoints_before_startup (void)
8679 {
8680 current_program_space->executing_startup = 1;
8681 update_global_location_list (0);
8682 }
8683
8684 void
8685 enable_breakpoints_after_startup (void)
8686 {
8687 current_program_space->executing_startup = 0;
8688 breakpoint_re_set ();
8689 }
8690
8691
8692 /* Set a breakpoint that will evaporate an end of command
8693 at address specified by SAL.
8694 Restrict it to frame FRAME if FRAME is nonzero. */
8695
8696 struct breakpoint *
8697 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8698 struct frame_id frame_id, enum bptype type)
8699 {
8700 struct breakpoint *b;
8701
8702 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8703 tail-called one. */
8704 gdb_assert (!frame_id_artificial_p (frame_id));
8705
8706 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8707 b->enable_state = bp_enabled;
8708 b->disposition = disp_donttouch;
8709 b->frame_id = frame_id;
8710
8711 /* If we're debugging a multi-threaded program, then we want
8712 momentary breakpoints to be active in only a single thread of
8713 control. */
8714 if (in_thread_list (inferior_ptid))
8715 b->thread = pid_to_thread_id (inferior_ptid);
8716
8717 update_global_location_list_nothrow (1);
8718
8719 return b;
8720 }
8721
8722 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8723 The new breakpoint will have type TYPE, and use OPS as it
8724 breakpoint_ops. */
8725
8726 static struct breakpoint *
8727 momentary_breakpoint_from_master (struct breakpoint *orig,
8728 enum bptype type,
8729 const struct breakpoint_ops *ops)
8730 {
8731 struct breakpoint *copy;
8732
8733 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8734 copy->loc = allocate_bp_location (copy);
8735 set_breakpoint_location_function (copy->loc, 1);
8736
8737 copy->loc->gdbarch = orig->loc->gdbarch;
8738 copy->loc->requested_address = orig->loc->requested_address;
8739 copy->loc->address = orig->loc->address;
8740 copy->loc->section = orig->loc->section;
8741 copy->loc->pspace = orig->loc->pspace;
8742 copy->loc->probe = orig->loc->probe;
8743 copy->loc->line_number = orig->loc->line_number;
8744 copy->loc->symtab = orig->loc->symtab;
8745 copy->frame_id = orig->frame_id;
8746 copy->thread = orig->thread;
8747 copy->pspace = orig->pspace;
8748
8749 copy->enable_state = bp_enabled;
8750 copy->disposition = disp_donttouch;
8751 copy->number = internal_breakpoint_number--;
8752
8753 update_global_location_list_nothrow (0);
8754 return copy;
8755 }
8756
8757 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8758 ORIG is NULL. */
8759
8760 struct breakpoint *
8761 clone_momentary_breakpoint (struct breakpoint *orig)
8762 {
8763 /* If there's nothing to clone, then return nothing. */
8764 if (orig == NULL)
8765 return NULL;
8766
8767 return momentary_breakpoint_from_master (orig, orig->type, orig->ops);
8768 }
8769
8770 struct breakpoint *
8771 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8772 enum bptype type)
8773 {
8774 struct symtab_and_line sal;
8775
8776 sal = find_pc_line (pc, 0);
8777 sal.pc = pc;
8778 sal.section = find_pc_overlay (pc);
8779 sal.explicit_pc = 1;
8780
8781 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8782 }
8783 \f
8784
8785 /* Tell the user we have just set a breakpoint B. */
8786
8787 static void
8788 mention (struct breakpoint *b)
8789 {
8790 b->ops->print_mention (b);
8791 if (ui_out_is_mi_like_p (current_uiout))
8792 return;
8793 printf_filtered ("\n");
8794 }
8795 \f
8796
8797 static struct bp_location *
8798 add_location_to_breakpoint (struct breakpoint *b,
8799 const struct symtab_and_line *sal)
8800 {
8801 struct bp_location *loc, **tmp;
8802 CORE_ADDR adjusted_address;
8803 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8804
8805 if (loc_gdbarch == NULL)
8806 loc_gdbarch = b->gdbarch;
8807
8808 /* Adjust the breakpoint's address prior to allocating a location.
8809 Once we call allocate_bp_location(), that mostly uninitialized
8810 location will be placed on the location chain. Adjustment of the
8811 breakpoint may cause target_read_memory() to be called and we do
8812 not want its scan of the location chain to find a breakpoint and
8813 location that's only been partially initialized. */
8814 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8815 sal->pc, b->type);
8816
8817 /* Sort the locations by their ADDRESS. */
8818 loc = allocate_bp_location (b);
8819 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8820 tmp = &((*tmp)->next))
8821 ;
8822 loc->next = *tmp;
8823 *tmp = loc;
8824
8825 loc->requested_address = sal->pc;
8826 loc->address = adjusted_address;
8827 loc->pspace = sal->pspace;
8828 loc->probe = sal->probe;
8829 gdb_assert (loc->pspace != NULL);
8830 loc->section = sal->section;
8831 loc->gdbarch = loc_gdbarch;
8832 loc->line_number = sal->line;
8833 loc->symtab = sal->symtab;
8834
8835 set_breakpoint_location_function (loc,
8836 sal->explicit_pc || sal->explicit_line);
8837 return loc;
8838 }
8839 \f
8840
8841 /* Return 1 if LOC is pointing to a permanent breakpoint,
8842 return 0 otherwise. */
8843
8844 static int
8845 bp_loc_is_permanent (struct bp_location *loc)
8846 {
8847 int len;
8848 CORE_ADDR addr;
8849 const gdb_byte *bpoint;
8850 gdb_byte *target_mem;
8851 struct cleanup *cleanup;
8852 int retval = 0;
8853
8854 gdb_assert (loc != NULL);
8855
8856 addr = loc->address;
8857 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
8858
8859 /* Software breakpoints unsupported? */
8860 if (bpoint == NULL)
8861 return 0;
8862
8863 target_mem = alloca (len);
8864
8865 /* Enable the automatic memory restoration from breakpoints while
8866 we read the memory. Otherwise we could say about our temporary
8867 breakpoints they are permanent. */
8868 cleanup = save_current_space_and_thread ();
8869
8870 switch_to_program_space_and_thread (loc->pspace);
8871 make_show_memory_breakpoints_cleanup (0);
8872
8873 if (target_read_memory (loc->address, target_mem, len) == 0
8874 && memcmp (target_mem, bpoint, len) == 0)
8875 retval = 1;
8876
8877 do_cleanups (cleanup);
8878
8879 return retval;
8880 }
8881
8882 /* Build a command list for the dprintf corresponding to the current
8883 settings of the dprintf style options. */
8884
8885 static void
8886 update_dprintf_command_list (struct breakpoint *b)
8887 {
8888 char *dprintf_args = b->extra_string;
8889 char *printf_line = NULL;
8890
8891 if (!dprintf_args)
8892 return;
8893
8894 dprintf_args = skip_spaces (dprintf_args);
8895
8896 /* Allow a comma, as it may have terminated a location, but don't
8897 insist on it. */
8898 if (*dprintf_args == ',')
8899 ++dprintf_args;
8900 dprintf_args = skip_spaces (dprintf_args);
8901
8902 if (*dprintf_args != '"')
8903 error (_("Bad format string, missing '\"'."));
8904
8905 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8906 printf_line = xstrprintf ("printf %s", dprintf_args);
8907 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8908 {
8909 if (!dprintf_function)
8910 error (_("No function supplied for dprintf call"));
8911
8912 if (dprintf_channel && strlen (dprintf_channel) > 0)
8913 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8914 dprintf_function,
8915 dprintf_channel,
8916 dprintf_args);
8917 else
8918 printf_line = xstrprintf ("call (void) %s (%s)",
8919 dprintf_function,
8920 dprintf_args);
8921 }
8922 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8923 {
8924 if (target_can_run_breakpoint_commands ())
8925 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8926 else
8927 {
8928 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8929 printf_line = xstrprintf ("printf %s", dprintf_args);
8930 }
8931 }
8932 else
8933 internal_error (__FILE__, __LINE__,
8934 _("Invalid dprintf style."));
8935
8936 gdb_assert (printf_line != NULL);
8937 /* Manufacture a printf/continue sequence. */
8938 {
8939 struct command_line *printf_cmd_line, *cont_cmd_line = NULL;
8940
8941 if (strcmp (dprintf_style, dprintf_style_agent) != 0)
8942 {
8943 cont_cmd_line = xmalloc (sizeof (struct command_line));
8944 cont_cmd_line->control_type = simple_control;
8945 cont_cmd_line->body_count = 0;
8946 cont_cmd_line->body_list = NULL;
8947 cont_cmd_line->next = NULL;
8948 cont_cmd_line->line = xstrdup ("continue");
8949 }
8950
8951 printf_cmd_line = xmalloc (sizeof (struct command_line));
8952 printf_cmd_line->control_type = simple_control;
8953 printf_cmd_line->body_count = 0;
8954 printf_cmd_line->body_list = NULL;
8955 printf_cmd_line->next = cont_cmd_line;
8956 printf_cmd_line->line = printf_line;
8957
8958 breakpoint_set_commands (b, printf_cmd_line);
8959 }
8960 }
8961
8962 /* Update all dprintf commands, making their command lists reflect
8963 current style settings. */
8964
8965 static void
8966 update_dprintf_commands (char *args, int from_tty,
8967 struct cmd_list_element *c)
8968 {
8969 struct breakpoint *b;
8970
8971 ALL_BREAKPOINTS (b)
8972 {
8973 if (b->type == bp_dprintf)
8974 update_dprintf_command_list (b);
8975 }
8976 }
8977
8978 /* Create a breakpoint with SAL as location. Use ADDR_STRING
8979 as textual description of the location, and COND_STRING
8980 as condition expression. */
8981
8982 static void
8983 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8984 struct symtabs_and_lines sals, char *addr_string,
8985 char *filter, char *cond_string,
8986 char *extra_string,
8987 enum bptype type, enum bpdisp disposition,
8988 int thread, int task, int ignore_count,
8989 const struct breakpoint_ops *ops, int from_tty,
8990 int enabled, int internal, unsigned flags,
8991 int display_canonical)
8992 {
8993 int i;
8994
8995 if (type == bp_hardware_breakpoint)
8996 {
8997 int target_resources_ok;
8998
8999 i = hw_breakpoint_used_count ();
9000 target_resources_ok =
9001 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9002 i + 1, 0);
9003 if (target_resources_ok == 0)
9004 error (_("No hardware breakpoint support in the target."));
9005 else if (target_resources_ok < 0)
9006 error (_("Hardware breakpoints used exceeds limit."));
9007 }
9008
9009 gdb_assert (sals.nelts > 0);
9010
9011 for (i = 0; i < sals.nelts; ++i)
9012 {
9013 struct symtab_and_line sal = sals.sals[i];
9014 struct bp_location *loc;
9015
9016 if (from_tty)
9017 {
9018 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9019 if (!loc_gdbarch)
9020 loc_gdbarch = gdbarch;
9021
9022 describe_other_breakpoints (loc_gdbarch,
9023 sal.pspace, sal.pc, sal.section, thread);
9024 }
9025
9026 if (i == 0)
9027 {
9028 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9029 b->thread = thread;
9030 b->task = task;
9031
9032 b->cond_string = cond_string;
9033 b->extra_string = extra_string;
9034 b->ignore_count = ignore_count;
9035 b->enable_state = enabled ? bp_enabled : bp_disabled;
9036 b->disposition = disposition;
9037
9038 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9039 b->loc->inserted = 1;
9040
9041 if (type == bp_static_tracepoint)
9042 {
9043 struct tracepoint *t = (struct tracepoint *) b;
9044 struct static_tracepoint_marker marker;
9045
9046 if (strace_marker_p (b))
9047 {
9048 /* We already know the marker exists, otherwise, we
9049 wouldn't see a sal for it. */
9050 char *p = &addr_string[3];
9051 char *endp;
9052 char *marker_str;
9053
9054 p = skip_spaces (p);
9055
9056 endp = skip_to_space (p);
9057
9058 marker_str = savestring (p, endp - p);
9059 t->static_trace_marker_id = marker_str;
9060
9061 printf_filtered (_("Probed static tracepoint "
9062 "marker \"%s\"\n"),
9063 t->static_trace_marker_id);
9064 }
9065 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9066 {
9067 t->static_trace_marker_id = xstrdup (marker.str_id);
9068 release_static_tracepoint_marker (&marker);
9069
9070 printf_filtered (_("Probed static tracepoint "
9071 "marker \"%s\"\n"),
9072 t->static_trace_marker_id);
9073 }
9074 else
9075 warning (_("Couldn't determine the static "
9076 "tracepoint marker to probe"));
9077 }
9078
9079 loc = b->loc;
9080 }
9081 else
9082 {
9083 loc = add_location_to_breakpoint (b, &sal);
9084 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9085 loc->inserted = 1;
9086 }
9087
9088 if (bp_loc_is_permanent (loc))
9089 make_breakpoint_permanent (b);
9090
9091 if (b->cond_string)
9092 {
9093 const char *arg = b->cond_string;
9094
9095 loc->cond = parse_exp_1 (&arg, loc->address,
9096 block_for_pc (loc->address), 0);
9097 if (*arg)
9098 error (_("Garbage '%s' follows condition"), arg);
9099 }
9100
9101 /* Dynamic printf requires and uses additional arguments on the
9102 command line, otherwise it's an error. */
9103 if (type == bp_dprintf)
9104 {
9105 if (b->extra_string)
9106 update_dprintf_command_list (b);
9107 else
9108 error (_("Format string required"));
9109 }
9110 else if (b->extra_string)
9111 error (_("Garbage '%s' at end of command"), b->extra_string);
9112 }
9113
9114 b->display_canonical = display_canonical;
9115 if (addr_string)
9116 b->addr_string = addr_string;
9117 else
9118 /* addr_string has to be used or breakpoint_re_set will delete
9119 me. */
9120 b->addr_string
9121 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9122 b->filter = filter;
9123 }
9124
9125 static void
9126 create_breakpoint_sal (struct gdbarch *gdbarch,
9127 struct symtabs_and_lines sals, char *addr_string,
9128 char *filter, char *cond_string,
9129 char *extra_string,
9130 enum bptype type, enum bpdisp disposition,
9131 int thread, int task, int ignore_count,
9132 const struct breakpoint_ops *ops, int from_tty,
9133 int enabled, int internal, unsigned flags,
9134 int display_canonical)
9135 {
9136 struct breakpoint *b;
9137 struct cleanup *old_chain;
9138
9139 if (is_tracepoint_type (type))
9140 {
9141 struct tracepoint *t;
9142
9143 t = XCNEW (struct tracepoint);
9144 b = &t->base;
9145 }
9146 else
9147 b = XNEW (struct breakpoint);
9148
9149 old_chain = make_cleanup (xfree, b);
9150
9151 init_breakpoint_sal (b, gdbarch,
9152 sals, addr_string,
9153 filter, cond_string, extra_string,
9154 type, disposition,
9155 thread, task, ignore_count,
9156 ops, from_tty,
9157 enabled, internal, flags,
9158 display_canonical);
9159 discard_cleanups (old_chain);
9160
9161 install_breakpoint (internal, b, 0);
9162 }
9163
9164 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9165 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9166 value. COND_STRING, if not NULL, specified the condition to be
9167 used for all breakpoints. Essentially the only case where
9168 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9169 function. In that case, it's still not possible to specify
9170 separate conditions for different overloaded functions, so
9171 we take just a single condition string.
9172
9173 NOTE: If the function succeeds, the caller is expected to cleanup
9174 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9175 array contents). If the function fails (error() is called), the
9176 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9177 COND and SALS arrays and each of those arrays contents. */
9178
9179 static void
9180 create_breakpoints_sal (struct gdbarch *gdbarch,
9181 struct linespec_result *canonical,
9182 char *cond_string, char *extra_string,
9183 enum bptype type, enum bpdisp disposition,
9184 int thread, int task, int ignore_count,
9185 const struct breakpoint_ops *ops, int from_tty,
9186 int enabled, int internal, unsigned flags)
9187 {
9188 int i;
9189 struct linespec_sals *lsal;
9190
9191 if (canonical->pre_expanded)
9192 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9193
9194 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9195 {
9196 /* Note that 'addr_string' can be NULL in the case of a plain
9197 'break', without arguments. */
9198 char *addr_string = (canonical->addr_string
9199 ? xstrdup (canonical->addr_string)
9200 : NULL);
9201 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9202 struct cleanup *inner = make_cleanup (xfree, addr_string);
9203
9204 make_cleanup (xfree, filter_string);
9205 create_breakpoint_sal (gdbarch, lsal->sals,
9206 addr_string,
9207 filter_string,
9208 cond_string, extra_string,
9209 type, disposition,
9210 thread, task, ignore_count, ops,
9211 from_tty, enabled, internal, flags,
9212 canonical->special_display);
9213 discard_cleanups (inner);
9214 }
9215 }
9216
9217 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9218 followed by conditionals. On return, SALS contains an array of SAL
9219 addresses found. ADDR_STRING contains a vector of (canonical)
9220 address strings. ADDRESS points to the end of the SAL.
9221
9222 The array and the line spec strings are allocated on the heap, it is
9223 the caller's responsibility to free them. */
9224
9225 static void
9226 parse_breakpoint_sals (char **address,
9227 struct linespec_result *canonical)
9228 {
9229 /* If no arg given, or if first arg is 'if ', use the default
9230 breakpoint. */
9231 if ((*address) == NULL
9232 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9233 {
9234 /* The last displayed codepoint, if it's valid, is our default breakpoint
9235 address. */
9236 if (last_displayed_sal_is_valid ())
9237 {
9238 struct linespec_sals lsal;
9239 struct symtab_and_line sal;
9240 CORE_ADDR pc;
9241
9242 init_sal (&sal); /* Initialize to zeroes. */
9243 lsal.sals.sals = (struct symtab_and_line *)
9244 xmalloc (sizeof (struct symtab_and_line));
9245
9246 /* Set sal's pspace, pc, symtab, and line to the values
9247 corresponding to the last call to print_frame_info.
9248 Be sure to reinitialize LINE with NOTCURRENT == 0
9249 as the breakpoint line number is inappropriate otherwise.
9250 find_pc_line would adjust PC, re-set it back. */
9251 get_last_displayed_sal (&sal);
9252 pc = sal.pc;
9253 sal = find_pc_line (pc, 0);
9254
9255 /* "break" without arguments is equivalent to "break *PC"
9256 where PC is the last displayed codepoint's address. So
9257 make sure to set sal.explicit_pc to prevent GDB from
9258 trying to expand the list of sals to include all other
9259 instances with the same symtab and line. */
9260 sal.pc = pc;
9261 sal.explicit_pc = 1;
9262
9263 lsal.sals.sals[0] = sal;
9264 lsal.sals.nelts = 1;
9265 lsal.canonical = NULL;
9266
9267 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9268 }
9269 else
9270 error (_("No default breakpoint address now."));
9271 }
9272 else
9273 {
9274 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9275
9276 /* Force almost all breakpoints to be in terms of the
9277 current_source_symtab (which is decode_line_1's default).
9278 This should produce the results we want almost all of the
9279 time while leaving default_breakpoint_* alone.
9280
9281 ObjC: However, don't match an Objective-C method name which
9282 may have a '+' or '-' succeeded by a '['. */
9283 if (last_displayed_sal_is_valid ()
9284 && (!cursal.symtab
9285 || ((strchr ("+-", (*address)[0]) != NULL)
9286 && ((*address)[1] != '['))))
9287 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9288 get_last_displayed_symtab (),
9289 get_last_displayed_line (),
9290 canonical, NULL, NULL);
9291 else
9292 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9293 cursal.symtab, cursal.line, canonical, NULL, NULL);
9294 }
9295 }
9296
9297
9298 /* Convert each SAL into a real PC. Verify that the PC can be
9299 inserted as a breakpoint. If it can't throw an error. */
9300
9301 static void
9302 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9303 {
9304 int i;
9305
9306 for (i = 0; i < sals->nelts; i++)
9307 resolve_sal_pc (&sals->sals[i]);
9308 }
9309
9310 /* Fast tracepoints may have restrictions on valid locations. For
9311 instance, a fast tracepoint using a jump instead of a trap will
9312 likely have to overwrite more bytes than a trap would, and so can
9313 only be placed where the instruction is longer than the jump, or a
9314 multi-instruction sequence does not have a jump into the middle of
9315 it, etc. */
9316
9317 static void
9318 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9319 struct symtabs_and_lines *sals)
9320 {
9321 int i, rslt;
9322 struct symtab_and_line *sal;
9323 char *msg;
9324 struct cleanup *old_chain;
9325
9326 for (i = 0; i < sals->nelts; i++)
9327 {
9328 struct gdbarch *sarch;
9329
9330 sal = &sals->sals[i];
9331
9332 sarch = get_sal_arch (*sal);
9333 /* We fall back to GDBARCH if there is no architecture
9334 associated with SAL. */
9335 if (sarch == NULL)
9336 sarch = gdbarch;
9337 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9338 NULL, &msg);
9339 old_chain = make_cleanup (xfree, msg);
9340
9341 if (!rslt)
9342 error (_("May not have a fast tracepoint at 0x%s%s"),
9343 paddress (sarch, sal->pc), (msg ? msg : ""));
9344
9345 do_cleanups (old_chain);
9346 }
9347 }
9348
9349 /* Issue an invalid thread ID error. */
9350
9351 static void ATTRIBUTE_NORETURN
9352 invalid_thread_id_error (int id)
9353 {
9354 error (_("Unknown thread %d."), id);
9355 }
9356
9357 /* Given TOK, a string specification of condition and thread, as
9358 accepted by the 'break' command, extract the condition
9359 string and thread number and set *COND_STRING and *THREAD.
9360 PC identifies the context at which the condition should be parsed.
9361 If no condition is found, *COND_STRING is set to NULL.
9362 If no thread is found, *THREAD is set to -1. */
9363
9364 static void
9365 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9366 char **cond_string, int *thread, int *task,
9367 char **rest)
9368 {
9369 *cond_string = NULL;
9370 *thread = -1;
9371 *task = 0;
9372 *rest = NULL;
9373
9374 while (tok && *tok)
9375 {
9376 const char *end_tok;
9377 int toklen;
9378 const char *cond_start = NULL;
9379 const char *cond_end = NULL;
9380
9381 tok = skip_spaces_const (tok);
9382
9383 if ((*tok == '"' || *tok == ',') && rest)
9384 {
9385 *rest = savestring (tok, strlen (tok));
9386 return;
9387 }
9388
9389 end_tok = skip_to_space_const (tok);
9390
9391 toklen = end_tok - tok;
9392
9393 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9394 {
9395 struct expression *expr;
9396
9397 tok = cond_start = end_tok + 1;
9398 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9399 xfree (expr);
9400 cond_end = tok;
9401 *cond_string = savestring (cond_start, cond_end - cond_start);
9402 }
9403 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9404 {
9405 char *tmptok;
9406
9407 tok = end_tok + 1;
9408 *thread = strtol (tok, &tmptok, 0);
9409 if (tok == tmptok)
9410 error (_("Junk after thread keyword."));
9411 if (!valid_thread_id (*thread))
9412 invalid_thread_id_error (*thread);
9413 tok = tmptok;
9414 }
9415 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9416 {
9417 char *tmptok;
9418
9419 tok = end_tok + 1;
9420 *task = strtol (tok, &tmptok, 0);
9421 if (tok == tmptok)
9422 error (_("Junk after task keyword."));
9423 if (!valid_task_id (*task))
9424 error (_("Unknown task %d."), *task);
9425 tok = tmptok;
9426 }
9427 else if (rest)
9428 {
9429 *rest = savestring (tok, strlen (tok));
9430 return;
9431 }
9432 else
9433 error (_("Junk at end of arguments."));
9434 }
9435 }
9436
9437 /* Decode a static tracepoint marker spec. */
9438
9439 static struct symtabs_and_lines
9440 decode_static_tracepoint_spec (char **arg_p)
9441 {
9442 VEC(static_tracepoint_marker_p) *markers = NULL;
9443 struct symtabs_and_lines sals;
9444 struct cleanup *old_chain;
9445 char *p = &(*arg_p)[3];
9446 char *endp;
9447 char *marker_str;
9448 int i;
9449
9450 p = skip_spaces (p);
9451
9452 endp = skip_to_space (p);
9453
9454 marker_str = savestring (p, endp - p);
9455 old_chain = make_cleanup (xfree, marker_str);
9456
9457 markers = target_static_tracepoint_markers_by_strid (marker_str);
9458 if (VEC_empty(static_tracepoint_marker_p, markers))
9459 error (_("No known static tracepoint marker named %s"), marker_str);
9460
9461 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9462 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9463
9464 for (i = 0; i < sals.nelts; i++)
9465 {
9466 struct static_tracepoint_marker *marker;
9467
9468 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9469
9470 init_sal (&sals.sals[i]);
9471
9472 sals.sals[i] = find_pc_line (marker->address, 0);
9473 sals.sals[i].pc = marker->address;
9474
9475 release_static_tracepoint_marker (marker);
9476 }
9477
9478 do_cleanups (old_chain);
9479
9480 *arg_p = endp;
9481 return sals;
9482 }
9483
9484 /* Set a breakpoint. This function is shared between CLI and MI
9485 functions for setting a breakpoint. This function has two major
9486 modes of operations, selected by the PARSE_ARG parameter. If
9487 non-zero, the function will parse ARG, extracting location,
9488 condition, thread and extra string. Otherwise, ARG is just the
9489 breakpoint's location, with condition, thread, and extra string
9490 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9491 If INTERNAL is non-zero, the breakpoint number will be allocated
9492 from the internal breakpoint count. Returns true if any breakpoint
9493 was created; false otherwise. */
9494
9495 int
9496 create_breakpoint (struct gdbarch *gdbarch,
9497 char *arg, char *cond_string,
9498 int thread, char *extra_string,
9499 int parse_arg,
9500 int tempflag, enum bptype type_wanted,
9501 int ignore_count,
9502 enum auto_boolean pending_break_support,
9503 const struct breakpoint_ops *ops,
9504 int from_tty, int enabled, int internal,
9505 unsigned flags)
9506 {
9507 volatile struct gdb_exception e;
9508 char *copy_arg = NULL;
9509 char *addr_start = arg;
9510 struct linespec_result canonical;
9511 struct cleanup *old_chain;
9512 struct cleanup *bkpt_chain = NULL;
9513 int pending = 0;
9514 int task = 0;
9515 int prev_bkpt_count = breakpoint_count;
9516
9517 gdb_assert (ops != NULL);
9518
9519 init_linespec_result (&canonical);
9520
9521 TRY_CATCH (e, RETURN_MASK_ALL)
9522 {
9523 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9524 addr_start, &copy_arg);
9525 }
9526
9527 /* If caller is interested in rc value from parse, set value. */
9528 switch (e.reason)
9529 {
9530 case GDB_NO_ERROR:
9531 if (VEC_empty (linespec_sals, canonical.sals))
9532 return 0;
9533 break;
9534 case RETURN_ERROR:
9535 switch (e.error)
9536 {
9537 case NOT_FOUND_ERROR:
9538
9539 /* If pending breakpoint support is turned off, throw
9540 error. */
9541
9542 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9543 throw_exception (e);
9544
9545 exception_print (gdb_stderr, e);
9546
9547 /* If pending breakpoint support is auto query and the user
9548 selects no, then simply return the error code. */
9549 if (pending_break_support == AUTO_BOOLEAN_AUTO
9550 && !nquery (_("Make %s pending on future shared library load? "),
9551 bptype_string (type_wanted)))
9552 return 0;
9553
9554 /* At this point, either the user was queried about setting
9555 a pending breakpoint and selected yes, or pending
9556 breakpoint behavior is on and thus a pending breakpoint
9557 is defaulted on behalf of the user. */
9558 {
9559 struct linespec_sals lsal;
9560
9561 copy_arg = xstrdup (addr_start);
9562 lsal.canonical = xstrdup (copy_arg);
9563 lsal.sals.nelts = 1;
9564 lsal.sals.sals = XNEW (struct symtab_and_line);
9565 init_sal (&lsal.sals.sals[0]);
9566 pending = 1;
9567 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9568 }
9569 break;
9570 default:
9571 throw_exception (e);
9572 }
9573 break;
9574 default:
9575 throw_exception (e);
9576 }
9577
9578 /* Create a chain of things that always need to be cleaned up. */
9579 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9580
9581 /* ----------------------------- SNIP -----------------------------
9582 Anything added to the cleanup chain beyond this point is assumed
9583 to be part of a breakpoint. If the breakpoint create succeeds
9584 then the memory is not reclaimed. */
9585 bkpt_chain = make_cleanup (null_cleanup, 0);
9586
9587 /* Resolve all line numbers to PC's and verify that the addresses
9588 are ok for the target. */
9589 if (!pending)
9590 {
9591 int ix;
9592 struct linespec_sals *iter;
9593
9594 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9595 breakpoint_sals_to_pc (&iter->sals);
9596 }
9597
9598 /* Fast tracepoints may have additional restrictions on location. */
9599 if (!pending && type_wanted == bp_fast_tracepoint)
9600 {
9601 int ix;
9602 struct linespec_sals *iter;
9603
9604 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9605 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9606 }
9607
9608 /* Verify that condition can be parsed, before setting any
9609 breakpoints. Allocate a separate condition expression for each
9610 breakpoint. */
9611 if (!pending)
9612 {
9613 struct linespec_sals *lsal;
9614
9615 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9616
9617 if (parse_arg)
9618 {
9619 char *rest;
9620 /* Here we only parse 'arg' to separate condition
9621 from thread number, so parsing in context of first
9622 sal is OK. When setting the breakpoint we'll
9623 re-parse it in context of each sal. */
9624
9625 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9626 &thread, &task, &rest);
9627 if (cond_string)
9628 make_cleanup (xfree, cond_string);
9629 if (rest)
9630 make_cleanup (xfree, rest);
9631 if (rest)
9632 extra_string = rest;
9633 }
9634 else
9635 {
9636 if (*arg != '\0')
9637 error (_("Garbage '%s' at end of location"), arg);
9638
9639 /* Create a private copy of condition string. */
9640 if (cond_string)
9641 {
9642 cond_string = xstrdup (cond_string);
9643 make_cleanup (xfree, cond_string);
9644 }
9645 /* Create a private copy of any extra string. */
9646 if (extra_string)
9647 {
9648 extra_string = xstrdup (extra_string);
9649 make_cleanup (xfree, extra_string);
9650 }
9651 }
9652
9653 ops->create_breakpoints_sal (gdbarch, &canonical, lsal,
9654 cond_string, extra_string, type_wanted,
9655 tempflag ? disp_del : disp_donttouch,
9656 thread, task, ignore_count, ops,
9657 from_tty, enabled, internal, flags);
9658 }
9659 else
9660 {
9661 struct breakpoint *b;
9662
9663 make_cleanup (xfree, copy_arg);
9664
9665 if (is_tracepoint_type (type_wanted))
9666 {
9667 struct tracepoint *t;
9668
9669 t = XCNEW (struct tracepoint);
9670 b = &t->base;
9671 }
9672 else
9673 b = XNEW (struct breakpoint);
9674
9675 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9676
9677 b->addr_string = copy_arg;
9678 if (parse_arg)
9679 b->cond_string = NULL;
9680 else
9681 {
9682 /* Create a private copy of condition string. */
9683 if (cond_string)
9684 {
9685 cond_string = xstrdup (cond_string);
9686 make_cleanup (xfree, cond_string);
9687 }
9688 b->cond_string = cond_string;
9689 }
9690 b->extra_string = NULL;
9691 b->ignore_count = ignore_count;
9692 b->disposition = tempflag ? disp_del : disp_donttouch;
9693 b->condition_not_parsed = 1;
9694 b->enable_state = enabled ? bp_enabled : bp_disabled;
9695 if ((type_wanted != bp_breakpoint
9696 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9697 b->pspace = current_program_space;
9698
9699 install_breakpoint (internal, b, 0);
9700 }
9701
9702 if (VEC_length (linespec_sals, canonical.sals) > 1)
9703 {
9704 warning (_("Multiple breakpoints were set.\nUse the "
9705 "\"delete\" command to delete unwanted breakpoints."));
9706 prev_breakpoint_count = prev_bkpt_count;
9707 }
9708
9709 /* That's it. Discard the cleanups for data inserted into the
9710 breakpoint. */
9711 discard_cleanups (bkpt_chain);
9712 /* But cleanup everything else. */
9713 do_cleanups (old_chain);
9714
9715 /* error call may happen here - have BKPT_CHAIN already discarded. */
9716 update_global_location_list (1);
9717
9718 return 1;
9719 }
9720
9721 /* Set a breakpoint.
9722 ARG is a string describing breakpoint address,
9723 condition, and thread.
9724 FLAG specifies if a breakpoint is hardware on,
9725 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9726 and BP_TEMPFLAG. */
9727
9728 static void
9729 break_command_1 (char *arg, int flag, int from_tty)
9730 {
9731 int tempflag = flag & BP_TEMPFLAG;
9732 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9733 ? bp_hardware_breakpoint
9734 : bp_breakpoint);
9735 struct breakpoint_ops *ops;
9736 const char *arg_cp = arg;
9737
9738 /* Matching breakpoints on probes. */
9739 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
9740 ops = &bkpt_probe_breakpoint_ops;
9741 else
9742 ops = &bkpt_breakpoint_ops;
9743
9744 create_breakpoint (get_current_arch (),
9745 arg,
9746 NULL, 0, NULL, 1 /* parse arg */,
9747 tempflag, type_wanted,
9748 0 /* Ignore count */,
9749 pending_break_support,
9750 ops,
9751 from_tty,
9752 1 /* enabled */,
9753 0 /* internal */,
9754 0);
9755 }
9756
9757 /* Helper function for break_command_1 and disassemble_command. */
9758
9759 void
9760 resolve_sal_pc (struct symtab_and_line *sal)
9761 {
9762 CORE_ADDR pc;
9763
9764 if (sal->pc == 0 && sal->symtab != NULL)
9765 {
9766 if (!find_line_pc (sal->symtab, sal->line, &pc))
9767 error (_("No line %d in file \"%s\"."),
9768 sal->line, symtab_to_filename_for_display (sal->symtab));
9769 sal->pc = pc;
9770
9771 /* If this SAL corresponds to a breakpoint inserted using a line
9772 number, then skip the function prologue if necessary. */
9773 if (sal->explicit_line)
9774 skip_prologue_sal (sal);
9775 }
9776
9777 if (sal->section == 0 && sal->symtab != NULL)
9778 {
9779 struct blockvector *bv;
9780 struct block *b;
9781 struct symbol *sym;
9782
9783 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
9784 if (bv != NULL)
9785 {
9786 sym = block_linkage_function (b);
9787 if (sym != NULL)
9788 {
9789 fixup_symbol_section (sym, sal->symtab->objfile);
9790 sal->section = SYMBOL_OBJ_SECTION (sal->symtab->objfile, sym);
9791 }
9792 else
9793 {
9794 /* It really is worthwhile to have the section, so we'll
9795 just have to look harder. This case can be executed
9796 if we have line numbers but no functions (as can
9797 happen in assembly source). */
9798
9799 struct bound_minimal_symbol msym;
9800 struct cleanup *old_chain = save_current_space_and_thread ();
9801
9802 switch_to_program_space_and_thread (sal->pspace);
9803
9804 msym = lookup_minimal_symbol_by_pc (sal->pc);
9805 if (msym.minsym)
9806 sal->section = SYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9807
9808 do_cleanups (old_chain);
9809 }
9810 }
9811 }
9812 }
9813
9814 void
9815 break_command (char *arg, int from_tty)
9816 {
9817 break_command_1 (arg, 0, from_tty);
9818 }
9819
9820 void
9821 tbreak_command (char *arg, int from_tty)
9822 {
9823 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9824 }
9825
9826 static void
9827 hbreak_command (char *arg, int from_tty)
9828 {
9829 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9830 }
9831
9832 static void
9833 thbreak_command (char *arg, int from_tty)
9834 {
9835 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9836 }
9837
9838 static void
9839 stop_command (char *arg, int from_tty)
9840 {
9841 printf_filtered (_("Specify the type of breakpoint to set.\n\
9842 Usage: stop in <function | address>\n\
9843 stop at <line>\n"));
9844 }
9845
9846 static void
9847 stopin_command (char *arg, int from_tty)
9848 {
9849 int badInput = 0;
9850
9851 if (arg == (char *) NULL)
9852 badInput = 1;
9853 else if (*arg != '*')
9854 {
9855 char *argptr = arg;
9856 int hasColon = 0;
9857
9858 /* Look for a ':'. If this is a line number specification, then
9859 say it is bad, otherwise, it should be an address or
9860 function/method name. */
9861 while (*argptr && !hasColon)
9862 {
9863 hasColon = (*argptr == ':');
9864 argptr++;
9865 }
9866
9867 if (hasColon)
9868 badInput = (*argptr != ':'); /* Not a class::method */
9869 else
9870 badInput = isdigit (*arg); /* a simple line number */
9871 }
9872
9873 if (badInput)
9874 printf_filtered (_("Usage: stop in <function | address>\n"));
9875 else
9876 break_command_1 (arg, 0, from_tty);
9877 }
9878
9879 static void
9880 stopat_command (char *arg, int from_tty)
9881 {
9882 int badInput = 0;
9883
9884 if (arg == (char *) NULL || *arg == '*') /* no line number */
9885 badInput = 1;
9886 else
9887 {
9888 char *argptr = arg;
9889 int hasColon = 0;
9890
9891 /* Look for a ':'. If there is a '::' then get out, otherwise
9892 it is probably a line number. */
9893 while (*argptr && !hasColon)
9894 {
9895 hasColon = (*argptr == ':');
9896 argptr++;
9897 }
9898
9899 if (hasColon)
9900 badInput = (*argptr == ':'); /* we have class::method */
9901 else
9902 badInput = !isdigit (*arg); /* not a line number */
9903 }
9904
9905 if (badInput)
9906 printf_filtered (_("Usage: stop at <line>\n"));
9907 else
9908 break_command_1 (arg, 0, from_tty);
9909 }
9910
9911 /* The dynamic printf command is mostly like a regular breakpoint, but
9912 with a prewired command list consisting of a single output command,
9913 built from extra arguments supplied on the dprintf command
9914 line. */
9915
9916 static void
9917 dprintf_command (char *arg, int from_tty)
9918 {
9919 create_breakpoint (get_current_arch (),
9920 arg,
9921 NULL, 0, NULL, 1 /* parse arg */,
9922 0, bp_dprintf,
9923 0 /* Ignore count */,
9924 pending_break_support,
9925 &dprintf_breakpoint_ops,
9926 from_tty,
9927 1 /* enabled */,
9928 0 /* internal */,
9929 0);
9930 }
9931
9932 static void
9933 agent_printf_command (char *arg, int from_tty)
9934 {
9935 error (_("May only run agent-printf on the target"));
9936 }
9937
9938 /* Implement the "breakpoint_hit" breakpoint_ops method for
9939 ranged breakpoints. */
9940
9941 static int
9942 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9943 struct address_space *aspace,
9944 CORE_ADDR bp_addr,
9945 const struct target_waitstatus *ws)
9946 {
9947 if (ws->kind != TARGET_WAITKIND_STOPPED
9948 || ws->value.sig != GDB_SIGNAL_TRAP)
9949 return 0;
9950
9951 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9952 bl->length, aspace, bp_addr);
9953 }
9954
9955 /* Implement the "resources_needed" breakpoint_ops method for
9956 ranged breakpoints. */
9957
9958 static int
9959 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9960 {
9961 return target_ranged_break_num_registers ();
9962 }
9963
9964 /* Implement the "print_it" breakpoint_ops method for
9965 ranged breakpoints. */
9966
9967 static enum print_stop_action
9968 print_it_ranged_breakpoint (bpstat bs)
9969 {
9970 struct breakpoint *b = bs->breakpoint_at;
9971 struct bp_location *bl = b->loc;
9972 struct ui_out *uiout = current_uiout;
9973
9974 gdb_assert (b->type == bp_hardware_breakpoint);
9975
9976 /* Ranged breakpoints have only one location. */
9977 gdb_assert (bl && bl->next == NULL);
9978
9979 annotate_breakpoint (b->number);
9980 if (b->disposition == disp_del)
9981 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
9982 else
9983 ui_out_text (uiout, "\nRanged breakpoint ");
9984 if (ui_out_is_mi_like_p (uiout))
9985 {
9986 ui_out_field_string (uiout, "reason",
9987 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9988 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
9989 }
9990 ui_out_field_int (uiout, "bkptno", b->number);
9991 ui_out_text (uiout, ", ");
9992
9993 return PRINT_SRC_AND_LOC;
9994 }
9995
9996 /* Implement the "print_one" breakpoint_ops method for
9997 ranged breakpoints. */
9998
9999 static void
10000 print_one_ranged_breakpoint (struct breakpoint *b,
10001 struct bp_location **last_loc)
10002 {
10003 struct bp_location *bl = b->loc;
10004 struct value_print_options opts;
10005 struct ui_out *uiout = current_uiout;
10006
10007 /* Ranged breakpoints have only one location. */
10008 gdb_assert (bl && bl->next == NULL);
10009
10010 get_user_print_options (&opts);
10011
10012 if (opts.addressprint)
10013 /* We don't print the address range here, it will be printed later
10014 by print_one_detail_ranged_breakpoint. */
10015 ui_out_field_skip (uiout, "addr");
10016 annotate_field (5);
10017 print_breakpoint_location (b, bl);
10018 *last_loc = bl;
10019 }
10020
10021 /* Implement the "print_one_detail" breakpoint_ops method for
10022 ranged breakpoints. */
10023
10024 static void
10025 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10026 struct ui_out *uiout)
10027 {
10028 CORE_ADDR address_start, address_end;
10029 struct bp_location *bl = b->loc;
10030 struct ui_file *stb = mem_fileopen ();
10031 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10032
10033 gdb_assert (bl);
10034
10035 address_start = bl->address;
10036 address_end = address_start + bl->length - 1;
10037
10038 ui_out_text (uiout, "\taddress range: ");
10039 fprintf_unfiltered (stb, "[%s, %s]",
10040 print_core_address (bl->gdbarch, address_start),
10041 print_core_address (bl->gdbarch, address_end));
10042 ui_out_field_stream (uiout, "addr", stb);
10043 ui_out_text (uiout, "\n");
10044
10045 do_cleanups (cleanup);
10046 }
10047
10048 /* Implement the "print_mention" breakpoint_ops method for
10049 ranged breakpoints. */
10050
10051 static void
10052 print_mention_ranged_breakpoint (struct breakpoint *b)
10053 {
10054 struct bp_location *bl = b->loc;
10055 struct ui_out *uiout = current_uiout;
10056
10057 gdb_assert (bl);
10058 gdb_assert (b->type == bp_hardware_breakpoint);
10059
10060 if (ui_out_is_mi_like_p (uiout))
10061 return;
10062
10063 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10064 b->number, paddress (bl->gdbarch, bl->address),
10065 paddress (bl->gdbarch, bl->address + bl->length - 1));
10066 }
10067
10068 /* Implement the "print_recreate" breakpoint_ops method for
10069 ranged breakpoints. */
10070
10071 static void
10072 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10073 {
10074 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10075 b->addr_string_range_end);
10076 print_recreate_thread (b, fp);
10077 }
10078
10079 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10080
10081 static struct breakpoint_ops ranged_breakpoint_ops;
10082
10083 /* Find the address where the end of the breakpoint range should be
10084 placed, given the SAL of the end of the range. This is so that if
10085 the user provides a line number, the end of the range is set to the
10086 last instruction of the given line. */
10087
10088 static CORE_ADDR
10089 find_breakpoint_range_end (struct symtab_and_line sal)
10090 {
10091 CORE_ADDR end;
10092
10093 /* If the user provided a PC value, use it. Otherwise,
10094 find the address of the end of the given location. */
10095 if (sal.explicit_pc)
10096 end = sal.pc;
10097 else
10098 {
10099 int ret;
10100 CORE_ADDR start;
10101
10102 ret = find_line_pc_range (sal, &start, &end);
10103 if (!ret)
10104 error (_("Could not find location of the end of the range."));
10105
10106 /* find_line_pc_range returns the start of the next line. */
10107 end--;
10108 }
10109
10110 return end;
10111 }
10112
10113 /* Implement the "break-range" CLI command. */
10114
10115 static void
10116 break_range_command (char *arg, int from_tty)
10117 {
10118 char *arg_start, *addr_string_start, *addr_string_end;
10119 struct linespec_result canonical_start, canonical_end;
10120 int bp_count, can_use_bp, length;
10121 CORE_ADDR end;
10122 struct breakpoint *b;
10123 struct symtab_and_line sal_start, sal_end;
10124 struct cleanup *cleanup_bkpt;
10125 struct linespec_sals *lsal_start, *lsal_end;
10126
10127 /* We don't support software ranged breakpoints. */
10128 if (target_ranged_break_num_registers () < 0)
10129 error (_("This target does not support hardware ranged breakpoints."));
10130
10131 bp_count = hw_breakpoint_used_count ();
10132 bp_count += target_ranged_break_num_registers ();
10133 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10134 bp_count, 0);
10135 if (can_use_bp < 0)
10136 error (_("Hardware breakpoints used exceeds limit."));
10137
10138 arg = skip_spaces (arg);
10139 if (arg == NULL || arg[0] == '\0')
10140 error(_("No address range specified."));
10141
10142 init_linespec_result (&canonical_start);
10143
10144 arg_start = arg;
10145 parse_breakpoint_sals (&arg, &canonical_start);
10146
10147 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10148
10149 if (arg[0] != ',')
10150 error (_("Too few arguments."));
10151 else if (VEC_empty (linespec_sals, canonical_start.sals))
10152 error (_("Could not find location of the beginning of the range."));
10153
10154 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10155
10156 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10157 || lsal_start->sals.nelts != 1)
10158 error (_("Cannot create a ranged breakpoint with multiple locations."));
10159
10160 sal_start = lsal_start->sals.sals[0];
10161 addr_string_start = savestring (arg_start, arg - arg_start);
10162 make_cleanup (xfree, addr_string_start);
10163
10164 arg++; /* Skip the comma. */
10165 arg = skip_spaces (arg);
10166
10167 /* Parse the end location. */
10168
10169 init_linespec_result (&canonical_end);
10170 arg_start = arg;
10171
10172 /* We call decode_line_full directly here instead of using
10173 parse_breakpoint_sals because we need to specify the start location's
10174 symtab and line as the default symtab and line for the end of the
10175 range. This makes it possible to have ranges like "foo.c:27, +14",
10176 where +14 means 14 lines from the start location. */
10177 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10178 sal_start.symtab, sal_start.line,
10179 &canonical_end, NULL, NULL);
10180
10181 make_cleanup_destroy_linespec_result (&canonical_end);
10182
10183 if (VEC_empty (linespec_sals, canonical_end.sals))
10184 error (_("Could not find location of the end of the range."));
10185
10186 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10187 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10188 || lsal_end->sals.nelts != 1)
10189 error (_("Cannot create a ranged breakpoint with multiple locations."));
10190
10191 sal_end = lsal_end->sals.sals[0];
10192 addr_string_end = savestring (arg_start, arg - arg_start);
10193 make_cleanup (xfree, addr_string_end);
10194
10195 end = find_breakpoint_range_end (sal_end);
10196 if (sal_start.pc > end)
10197 error (_("Invalid address range, end precedes start."));
10198
10199 length = end - sal_start.pc + 1;
10200 if (length < 0)
10201 /* Length overflowed. */
10202 error (_("Address range too large."));
10203 else if (length == 1)
10204 {
10205 /* This range is simple enough to be handled by
10206 the `hbreak' command. */
10207 hbreak_command (addr_string_start, 1);
10208
10209 do_cleanups (cleanup_bkpt);
10210
10211 return;
10212 }
10213
10214 /* Now set up the breakpoint. */
10215 b = set_raw_breakpoint (get_current_arch (), sal_start,
10216 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10217 set_breakpoint_count (breakpoint_count + 1);
10218 b->number = breakpoint_count;
10219 b->disposition = disp_donttouch;
10220 b->addr_string = xstrdup (addr_string_start);
10221 b->addr_string_range_end = xstrdup (addr_string_end);
10222 b->loc->length = length;
10223
10224 do_cleanups (cleanup_bkpt);
10225
10226 mention (b);
10227 observer_notify_breakpoint_created (b);
10228 update_global_location_list (1);
10229 }
10230
10231 /* Return non-zero if EXP is verified as constant. Returned zero
10232 means EXP is variable. Also the constant detection may fail for
10233 some constant expressions and in such case still falsely return
10234 zero. */
10235
10236 static int
10237 watchpoint_exp_is_const (const struct expression *exp)
10238 {
10239 int i = exp->nelts;
10240
10241 while (i > 0)
10242 {
10243 int oplenp, argsp;
10244
10245 /* We are only interested in the descriptor of each element. */
10246 operator_length (exp, i, &oplenp, &argsp);
10247 i -= oplenp;
10248
10249 switch (exp->elts[i].opcode)
10250 {
10251 case BINOP_ADD:
10252 case BINOP_SUB:
10253 case BINOP_MUL:
10254 case BINOP_DIV:
10255 case BINOP_REM:
10256 case BINOP_MOD:
10257 case BINOP_LSH:
10258 case BINOP_RSH:
10259 case BINOP_LOGICAL_AND:
10260 case BINOP_LOGICAL_OR:
10261 case BINOP_BITWISE_AND:
10262 case BINOP_BITWISE_IOR:
10263 case BINOP_BITWISE_XOR:
10264 case BINOP_EQUAL:
10265 case BINOP_NOTEQUAL:
10266 case BINOP_LESS:
10267 case BINOP_GTR:
10268 case BINOP_LEQ:
10269 case BINOP_GEQ:
10270 case BINOP_REPEAT:
10271 case BINOP_COMMA:
10272 case BINOP_EXP:
10273 case BINOP_MIN:
10274 case BINOP_MAX:
10275 case BINOP_INTDIV:
10276 case BINOP_CONCAT:
10277 case BINOP_IN:
10278 case BINOP_RANGE:
10279 case TERNOP_COND:
10280 case TERNOP_SLICE:
10281
10282 case OP_LONG:
10283 case OP_DOUBLE:
10284 case OP_DECFLOAT:
10285 case OP_LAST:
10286 case OP_COMPLEX:
10287 case OP_STRING:
10288 case OP_ARRAY:
10289 case OP_TYPE:
10290 case OP_TYPEOF:
10291 case OP_DECLTYPE:
10292 case OP_TYPEID:
10293 case OP_NAME:
10294 case OP_OBJC_NSSTRING:
10295
10296 case UNOP_NEG:
10297 case UNOP_LOGICAL_NOT:
10298 case UNOP_COMPLEMENT:
10299 case UNOP_ADDR:
10300 case UNOP_HIGH:
10301 case UNOP_CAST:
10302
10303 case UNOP_CAST_TYPE:
10304 case UNOP_REINTERPRET_CAST:
10305 case UNOP_DYNAMIC_CAST:
10306 /* Unary, binary and ternary operators: We have to check
10307 their operands. If they are constant, then so is the
10308 result of that operation. For instance, if A and B are
10309 determined to be constants, then so is "A + B".
10310
10311 UNOP_IND is one exception to the rule above, because the
10312 value of *ADDR is not necessarily a constant, even when
10313 ADDR is. */
10314 break;
10315
10316 case OP_VAR_VALUE:
10317 /* Check whether the associated symbol is a constant.
10318
10319 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10320 possible that a buggy compiler could mark a variable as
10321 constant even when it is not, and TYPE_CONST would return
10322 true in this case, while SYMBOL_CLASS wouldn't.
10323
10324 We also have to check for function symbols because they
10325 are always constant. */
10326 {
10327 struct symbol *s = exp->elts[i + 2].symbol;
10328
10329 if (SYMBOL_CLASS (s) != LOC_BLOCK
10330 && SYMBOL_CLASS (s) != LOC_CONST
10331 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10332 return 0;
10333 break;
10334 }
10335
10336 /* The default action is to return 0 because we are using
10337 the optimistic approach here: If we don't know something,
10338 then it is not a constant. */
10339 default:
10340 return 0;
10341 }
10342 }
10343
10344 return 1;
10345 }
10346
10347 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10348
10349 static void
10350 dtor_watchpoint (struct breakpoint *self)
10351 {
10352 struct watchpoint *w = (struct watchpoint *) self;
10353
10354 xfree (w->cond_exp);
10355 xfree (w->exp);
10356 xfree (w->exp_string);
10357 xfree (w->exp_string_reparse);
10358 value_free (w->val);
10359
10360 base_breakpoint_ops.dtor (self);
10361 }
10362
10363 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10364
10365 static void
10366 re_set_watchpoint (struct breakpoint *b)
10367 {
10368 struct watchpoint *w = (struct watchpoint *) b;
10369
10370 /* Watchpoint can be either on expression using entirely global
10371 variables, or it can be on local variables.
10372
10373 Watchpoints of the first kind are never auto-deleted, and even
10374 persist across program restarts. Since they can use variables
10375 from shared libraries, we need to reparse expression as libraries
10376 are loaded and unloaded.
10377
10378 Watchpoints on local variables can also change meaning as result
10379 of solib event. For example, if a watchpoint uses both a local
10380 and a global variables in expression, it's a local watchpoint,
10381 but unloading of a shared library will make the expression
10382 invalid. This is not a very common use case, but we still
10383 re-evaluate expression, to avoid surprises to the user.
10384
10385 Note that for local watchpoints, we re-evaluate it only if
10386 watchpoints frame id is still valid. If it's not, it means the
10387 watchpoint is out of scope and will be deleted soon. In fact,
10388 I'm not sure we'll ever be called in this case.
10389
10390 If a local watchpoint's frame id is still valid, then
10391 w->exp_valid_block is likewise valid, and we can safely use it.
10392
10393 Don't do anything about disabled watchpoints, since they will be
10394 reevaluated again when enabled. */
10395 update_watchpoint (w, 1 /* reparse */);
10396 }
10397
10398 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10399
10400 static int
10401 insert_watchpoint (struct bp_location *bl)
10402 {
10403 struct watchpoint *w = (struct watchpoint *) bl->owner;
10404 int length = w->exact ? 1 : bl->length;
10405
10406 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10407 w->cond_exp);
10408 }
10409
10410 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10411
10412 static int
10413 remove_watchpoint (struct bp_location *bl)
10414 {
10415 struct watchpoint *w = (struct watchpoint *) bl->owner;
10416 int length = w->exact ? 1 : bl->length;
10417
10418 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10419 w->cond_exp);
10420 }
10421
10422 static int
10423 breakpoint_hit_watchpoint (const struct bp_location *bl,
10424 struct address_space *aspace, CORE_ADDR bp_addr,
10425 const struct target_waitstatus *ws)
10426 {
10427 struct breakpoint *b = bl->owner;
10428 struct watchpoint *w = (struct watchpoint *) b;
10429
10430 /* Continuable hardware watchpoints are treated as non-existent if the
10431 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10432 some data address). Otherwise gdb won't stop on a break instruction
10433 in the code (not from a breakpoint) when a hardware watchpoint has
10434 been defined. Also skip watchpoints which we know did not trigger
10435 (did not match the data address). */
10436 if (is_hardware_watchpoint (b)
10437 && w->watchpoint_triggered == watch_triggered_no)
10438 return 0;
10439
10440 return 1;
10441 }
10442
10443 static void
10444 check_status_watchpoint (bpstat bs)
10445 {
10446 gdb_assert (is_watchpoint (bs->breakpoint_at));
10447
10448 bpstat_check_watchpoint (bs);
10449 }
10450
10451 /* Implement the "resources_needed" breakpoint_ops method for
10452 hardware watchpoints. */
10453
10454 static int
10455 resources_needed_watchpoint (const struct bp_location *bl)
10456 {
10457 struct watchpoint *w = (struct watchpoint *) bl->owner;
10458 int length = w->exact? 1 : bl->length;
10459
10460 return target_region_ok_for_hw_watchpoint (bl->address, length);
10461 }
10462
10463 /* Implement the "works_in_software_mode" breakpoint_ops method for
10464 hardware watchpoints. */
10465
10466 static int
10467 works_in_software_mode_watchpoint (const struct breakpoint *b)
10468 {
10469 /* Read and access watchpoints only work with hardware support. */
10470 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10471 }
10472
10473 static enum print_stop_action
10474 print_it_watchpoint (bpstat bs)
10475 {
10476 struct cleanup *old_chain;
10477 struct breakpoint *b;
10478 struct ui_file *stb;
10479 enum print_stop_action result;
10480 struct watchpoint *w;
10481 struct ui_out *uiout = current_uiout;
10482
10483 gdb_assert (bs->bp_location_at != NULL);
10484
10485 b = bs->breakpoint_at;
10486 w = (struct watchpoint *) b;
10487
10488 stb = mem_fileopen ();
10489 old_chain = make_cleanup_ui_file_delete (stb);
10490
10491 switch (b->type)
10492 {
10493 case bp_watchpoint:
10494 case bp_hardware_watchpoint:
10495 annotate_watchpoint (b->number);
10496 if (ui_out_is_mi_like_p (uiout))
10497 ui_out_field_string
10498 (uiout, "reason",
10499 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10500 mention (b);
10501 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10502 ui_out_text (uiout, "\nOld value = ");
10503 watchpoint_value_print (bs->old_val, stb);
10504 ui_out_field_stream (uiout, "old", stb);
10505 ui_out_text (uiout, "\nNew value = ");
10506 watchpoint_value_print (w->val, stb);
10507 ui_out_field_stream (uiout, "new", stb);
10508 ui_out_text (uiout, "\n");
10509 /* More than one watchpoint may have been triggered. */
10510 result = PRINT_UNKNOWN;
10511 break;
10512
10513 case bp_read_watchpoint:
10514 if (ui_out_is_mi_like_p (uiout))
10515 ui_out_field_string
10516 (uiout, "reason",
10517 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10518 mention (b);
10519 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10520 ui_out_text (uiout, "\nValue = ");
10521 watchpoint_value_print (w->val, stb);
10522 ui_out_field_stream (uiout, "value", stb);
10523 ui_out_text (uiout, "\n");
10524 result = PRINT_UNKNOWN;
10525 break;
10526
10527 case bp_access_watchpoint:
10528 if (bs->old_val != NULL)
10529 {
10530 annotate_watchpoint (b->number);
10531 if (ui_out_is_mi_like_p (uiout))
10532 ui_out_field_string
10533 (uiout, "reason",
10534 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10535 mention (b);
10536 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10537 ui_out_text (uiout, "\nOld value = ");
10538 watchpoint_value_print (bs->old_val, stb);
10539 ui_out_field_stream (uiout, "old", stb);
10540 ui_out_text (uiout, "\nNew value = ");
10541 }
10542 else
10543 {
10544 mention (b);
10545 if (ui_out_is_mi_like_p (uiout))
10546 ui_out_field_string
10547 (uiout, "reason",
10548 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10549 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10550 ui_out_text (uiout, "\nValue = ");
10551 }
10552 watchpoint_value_print (w->val, stb);
10553 ui_out_field_stream (uiout, "new", stb);
10554 ui_out_text (uiout, "\n");
10555 result = PRINT_UNKNOWN;
10556 break;
10557 default:
10558 result = PRINT_UNKNOWN;
10559 }
10560
10561 do_cleanups (old_chain);
10562 return result;
10563 }
10564
10565 /* Implement the "print_mention" breakpoint_ops method for hardware
10566 watchpoints. */
10567
10568 static void
10569 print_mention_watchpoint (struct breakpoint *b)
10570 {
10571 struct cleanup *ui_out_chain;
10572 struct watchpoint *w = (struct watchpoint *) b;
10573 struct ui_out *uiout = current_uiout;
10574
10575 switch (b->type)
10576 {
10577 case bp_watchpoint:
10578 ui_out_text (uiout, "Watchpoint ");
10579 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10580 break;
10581 case bp_hardware_watchpoint:
10582 ui_out_text (uiout, "Hardware watchpoint ");
10583 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10584 break;
10585 case bp_read_watchpoint:
10586 ui_out_text (uiout, "Hardware read watchpoint ");
10587 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10588 break;
10589 case bp_access_watchpoint:
10590 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10591 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10592 break;
10593 default:
10594 internal_error (__FILE__, __LINE__,
10595 _("Invalid hardware watchpoint type."));
10596 }
10597
10598 ui_out_field_int (uiout, "number", b->number);
10599 ui_out_text (uiout, ": ");
10600 ui_out_field_string (uiout, "exp", w->exp_string);
10601 do_cleanups (ui_out_chain);
10602 }
10603
10604 /* Implement the "print_recreate" breakpoint_ops method for
10605 watchpoints. */
10606
10607 static void
10608 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10609 {
10610 struct watchpoint *w = (struct watchpoint *) b;
10611
10612 switch (b->type)
10613 {
10614 case bp_watchpoint:
10615 case bp_hardware_watchpoint:
10616 fprintf_unfiltered (fp, "watch");
10617 break;
10618 case bp_read_watchpoint:
10619 fprintf_unfiltered (fp, "rwatch");
10620 break;
10621 case bp_access_watchpoint:
10622 fprintf_unfiltered (fp, "awatch");
10623 break;
10624 default:
10625 internal_error (__FILE__, __LINE__,
10626 _("Invalid watchpoint type."));
10627 }
10628
10629 fprintf_unfiltered (fp, " %s", w->exp_string);
10630 print_recreate_thread (b, fp);
10631 }
10632
10633 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10634
10635 static struct breakpoint_ops watchpoint_breakpoint_ops;
10636
10637 /* Implement the "insert" breakpoint_ops method for
10638 masked hardware watchpoints. */
10639
10640 static int
10641 insert_masked_watchpoint (struct bp_location *bl)
10642 {
10643 struct watchpoint *w = (struct watchpoint *) bl->owner;
10644
10645 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10646 bl->watchpoint_type);
10647 }
10648
10649 /* Implement the "remove" breakpoint_ops method for
10650 masked hardware watchpoints. */
10651
10652 static int
10653 remove_masked_watchpoint (struct bp_location *bl)
10654 {
10655 struct watchpoint *w = (struct watchpoint *) bl->owner;
10656
10657 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10658 bl->watchpoint_type);
10659 }
10660
10661 /* Implement the "resources_needed" breakpoint_ops method for
10662 masked hardware watchpoints. */
10663
10664 static int
10665 resources_needed_masked_watchpoint (const struct bp_location *bl)
10666 {
10667 struct watchpoint *w = (struct watchpoint *) bl->owner;
10668
10669 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10670 }
10671
10672 /* Implement the "works_in_software_mode" breakpoint_ops method for
10673 masked hardware watchpoints. */
10674
10675 static int
10676 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10677 {
10678 return 0;
10679 }
10680
10681 /* Implement the "print_it" breakpoint_ops method for
10682 masked hardware watchpoints. */
10683
10684 static enum print_stop_action
10685 print_it_masked_watchpoint (bpstat bs)
10686 {
10687 struct breakpoint *b = bs->breakpoint_at;
10688 struct ui_out *uiout = current_uiout;
10689
10690 /* Masked watchpoints have only one location. */
10691 gdb_assert (b->loc && b->loc->next == NULL);
10692
10693 switch (b->type)
10694 {
10695 case bp_hardware_watchpoint:
10696 annotate_watchpoint (b->number);
10697 if (ui_out_is_mi_like_p (uiout))
10698 ui_out_field_string
10699 (uiout, "reason",
10700 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10701 break;
10702
10703 case bp_read_watchpoint:
10704 if (ui_out_is_mi_like_p (uiout))
10705 ui_out_field_string
10706 (uiout, "reason",
10707 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10708 break;
10709
10710 case bp_access_watchpoint:
10711 if (ui_out_is_mi_like_p (uiout))
10712 ui_out_field_string
10713 (uiout, "reason",
10714 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10715 break;
10716 default:
10717 internal_error (__FILE__, __LINE__,
10718 _("Invalid hardware watchpoint type."));
10719 }
10720
10721 mention (b);
10722 ui_out_text (uiout, _("\n\
10723 Check the underlying instruction at PC for the memory\n\
10724 address and value which triggered this watchpoint.\n"));
10725 ui_out_text (uiout, "\n");
10726
10727 /* More than one watchpoint may have been triggered. */
10728 return PRINT_UNKNOWN;
10729 }
10730
10731 /* Implement the "print_one_detail" breakpoint_ops method for
10732 masked hardware watchpoints. */
10733
10734 static void
10735 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10736 struct ui_out *uiout)
10737 {
10738 struct watchpoint *w = (struct watchpoint *) b;
10739
10740 /* Masked watchpoints have only one location. */
10741 gdb_assert (b->loc && b->loc->next == NULL);
10742
10743 ui_out_text (uiout, "\tmask ");
10744 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
10745 ui_out_text (uiout, "\n");
10746 }
10747
10748 /* Implement the "print_mention" breakpoint_ops method for
10749 masked hardware watchpoints. */
10750
10751 static void
10752 print_mention_masked_watchpoint (struct breakpoint *b)
10753 {
10754 struct watchpoint *w = (struct watchpoint *) b;
10755 struct ui_out *uiout = current_uiout;
10756 struct cleanup *ui_out_chain;
10757
10758 switch (b->type)
10759 {
10760 case bp_hardware_watchpoint:
10761 ui_out_text (uiout, "Masked hardware watchpoint ");
10762 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10763 break;
10764 case bp_read_watchpoint:
10765 ui_out_text (uiout, "Masked hardware read watchpoint ");
10766 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10767 break;
10768 case bp_access_watchpoint:
10769 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
10770 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10771 break;
10772 default:
10773 internal_error (__FILE__, __LINE__,
10774 _("Invalid hardware watchpoint type."));
10775 }
10776
10777 ui_out_field_int (uiout, "number", b->number);
10778 ui_out_text (uiout, ": ");
10779 ui_out_field_string (uiout, "exp", w->exp_string);
10780 do_cleanups (ui_out_chain);
10781 }
10782
10783 /* Implement the "print_recreate" breakpoint_ops method for
10784 masked hardware watchpoints. */
10785
10786 static void
10787 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10788 {
10789 struct watchpoint *w = (struct watchpoint *) b;
10790 char tmp[40];
10791
10792 switch (b->type)
10793 {
10794 case bp_hardware_watchpoint:
10795 fprintf_unfiltered (fp, "watch");
10796 break;
10797 case bp_read_watchpoint:
10798 fprintf_unfiltered (fp, "rwatch");
10799 break;
10800 case bp_access_watchpoint:
10801 fprintf_unfiltered (fp, "awatch");
10802 break;
10803 default:
10804 internal_error (__FILE__, __LINE__,
10805 _("Invalid hardware watchpoint type."));
10806 }
10807
10808 sprintf_vma (tmp, w->hw_wp_mask);
10809 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10810 print_recreate_thread (b, fp);
10811 }
10812
10813 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10814
10815 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10816
10817 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10818
10819 static int
10820 is_masked_watchpoint (const struct breakpoint *b)
10821 {
10822 return b->ops == &masked_watchpoint_breakpoint_ops;
10823 }
10824
10825 /* accessflag: hw_write: watch write,
10826 hw_read: watch read,
10827 hw_access: watch access (read or write) */
10828 static void
10829 watch_command_1 (const char *arg, int accessflag, int from_tty,
10830 int just_location, int internal)
10831 {
10832 volatile struct gdb_exception e;
10833 struct breakpoint *b, *scope_breakpoint = NULL;
10834 struct expression *exp;
10835 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10836 struct value *val, *mark, *result;
10837 struct frame_info *frame;
10838 const char *exp_start = NULL;
10839 const char *exp_end = NULL;
10840 const char *tok, *end_tok;
10841 int toklen = -1;
10842 const char *cond_start = NULL;
10843 const char *cond_end = NULL;
10844 enum bptype bp_type;
10845 int thread = -1;
10846 int pc = 0;
10847 /* Flag to indicate whether we are going to use masks for
10848 the hardware watchpoint. */
10849 int use_mask = 0;
10850 CORE_ADDR mask = 0;
10851 struct watchpoint *w;
10852 char *expression;
10853 struct cleanup *back_to;
10854
10855 /* Make sure that we actually have parameters to parse. */
10856 if (arg != NULL && arg[0] != '\0')
10857 {
10858 const char *value_start;
10859
10860 exp_end = arg + strlen (arg);
10861
10862 /* Look for "parameter value" pairs at the end
10863 of the arguments string. */
10864 for (tok = exp_end - 1; tok > arg; tok--)
10865 {
10866 /* Skip whitespace at the end of the argument list. */
10867 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10868 tok--;
10869
10870 /* Find the beginning of the last token.
10871 This is the value of the parameter. */
10872 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10873 tok--;
10874 value_start = tok + 1;
10875
10876 /* Skip whitespace. */
10877 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10878 tok--;
10879
10880 end_tok = tok;
10881
10882 /* Find the beginning of the second to last token.
10883 This is the parameter itself. */
10884 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10885 tok--;
10886 tok++;
10887 toklen = end_tok - tok + 1;
10888
10889 if (toklen == 6 && !strncmp (tok, "thread", 6))
10890 {
10891 /* At this point we've found a "thread" token, which means
10892 the user is trying to set a watchpoint that triggers
10893 only in a specific thread. */
10894 char *endp;
10895
10896 if (thread != -1)
10897 error(_("You can specify only one thread."));
10898
10899 /* Extract the thread ID from the next token. */
10900 thread = strtol (value_start, &endp, 0);
10901
10902 /* Check if the user provided a valid numeric value for the
10903 thread ID. */
10904 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10905 error (_("Invalid thread ID specification %s."), value_start);
10906
10907 /* Check if the thread actually exists. */
10908 if (!valid_thread_id (thread))
10909 invalid_thread_id_error (thread);
10910 }
10911 else if (toklen == 4 && !strncmp (tok, "mask", 4))
10912 {
10913 /* We've found a "mask" token, which means the user wants to
10914 create a hardware watchpoint that is going to have the mask
10915 facility. */
10916 struct value *mask_value, *mark;
10917
10918 if (use_mask)
10919 error(_("You can specify only one mask."));
10920
10921 use_mask = just_location = 1;
10922
10923 mark = value_mark ();
10924 mask_value = parse_to_comma_and_eval (&value_start);
10925 mask = value_as_address (mask_value);
10926 value_free_to_mark (mark);
10927 }
10928 else
10929 /* We didn't recognize what we found. We should stop here. */
10930 break;
10931
10932 /* Truncate the string and get rid of the "parameter value" pair before
10933 the arguments string is parsed by the parse_exp_1 function. */
10934 exp_end = tok;
10935 }
10936 }
10937 else
10938 exp_end = arg;
10939
10940 /* Parse the rest of the arguments. From here on out, everything
10941 is in terms of a newly allocated string instead of the original
10942 ARG. */
10943 innermost_block = NULL;
10944 expression = savestring (arg, exp_end - arg);
10945 back_to = make_cleanup (xfree, expression);
10946 exp_start = arg = expression;
10947 exp = parse_exp_1 (&arg, 0, 0, 0);
10948 exp_end = arg;
10949 /* Remove trailing whitespace from the expression before saving it.
10950 This makes the eventual display of the expression string a bit
10951 prettier. */
10952 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10953 --exp_end;
10954
10955 /* Checking if the expression is not constant. */
10956 if (watchpoint_exp_is_const (exp))
10957 {
10958 int len;
10959
10960 len = exp_end - exp_start;
10961 while (len > 0 && isspace (exp_start[len - 1]))
10962 len--;
10963 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10964 }
10965
10966 exp_valid_block = innermost_block;
10967 mark = value_mark ();
10968 fetch_subexp_value (exp, &pc, &val, &result, NULL);
10969
10970 if (just_location)
10971 {
10972 int ret;
10973
10974 exp_valid_block = NULL;
10975 val = value_addr (result);
10976 release_value (val);
10977 value_free_to_mark (mark);
10978
10979 if (use_mask)
10980 {
10981 ret = target_masked_watch_num_registers (value_as_address (val),
10982 mask);
10983 if (ret == -1)
10984 error (_("This target does not support masked watchpoints."));
10985 else if (ret == -2)
10986 error (_("Invalid mask or memory region."));
10987 }
10988 }
10989 else if (val != NULL)
10990 release_value (val);
10991
10992 tok = skip_spaces_const (arg);
10993 end_tok = skip_to_space_const (tok);
10994
10995 toklen = end_tok - tok;
10996 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10997 {
10998 struct expression *cond;
10999
11000 innermost_block = NULL;
11001 tok = cond_start = end_tok + 1;
11002 cond = parse_exp_1 (&tok, 0, 0, 0);
11003
11004 /* The watchpoint expression may not be local, but the condition
11005 may still be. E.g.: `watch global if local > 0'. */
11006 cond_exp_valid_block = innermost_block;
11007
11008 xfree (cond);
11009 cond_end = tok;
11010 }
11011 if (*tok)
11012 error (_("Junk at end of command."));
11013
11014 if (accessflag == hw_read)
11015 bp_type = bp_read_watchpoint;
11016 else if (accessflag == hw_access)
11017 bp_type = bp_access_watchpoint;
11018 else
11019 bp_type = bp_hardware_watchpoint;
11020
11021 frame = block_innermost_frame (exp_valid_block);
11022
11023 /* If the expression is "local", then set up a "watchpoint scope"
11024 breakpoint at the point where we've left the scope of the watchpoint
11025 expression. Create the scope breakpoint before the watchpoint, so
11026 that we will encounter it first in bpstat_stop_status. */
11027 if (exp_valid_block && frame)
11028 {
11029 if (frame_id_p (frame_unwind_caller_id (frame)))
11030 {
11031 scope_breakpoint
11032 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11033 frame_unwind_caller_pc (frame),
11034 bp_watchpoint_scope,
11035 &momentary_breakpoint_ops);
11036
11037 scope_breakpoint->enable_state = bp_enabled;
11038
11039 /* Automatically delete the breakpoint when it hits. */
11040 scope_breakpoint->disposition = disp_del;
11041
11042 /* Only break in the proper frame (help with recursion). */
11043 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11044
11045 /* Set the address at which we will stop. */
11046 scope_breakpoint->loc->gdbarch
11047 = frame_unwind_caller_arch (frame);
11048 scope_breakpoint->loc->requested_address
11049 = frame_unwind_caller_pc (frame);
11050 scope_breakpoint->loc->address
11051 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11052 scope_breakpoint->loc->requested_address,
11053 scope_breakpoint->type);
11054 }
11055 }
11056
11057 /* Now set up the breakpoint. */
11058
11059 w = XCNEW (struct watchpoint);
11060 b = &w->base;
11061 if (use_mask)
11062 init_raw_breakpoint_without_location (b, NULL, bp_type,
11063 &masked_watchpoint_breakpoint_ops);
11064 else
11065 init_raw_breakpoint_without_location (b, NULL, bp_type,
11066 &watchpoint_breakpoint_ops);
11067 b->thread = thread;
11068 b->disposition = disp_donttouch;
11069 b->pspace = current_program_space;
11070 w->exp = exp;
11071 w->exp_valid_block = exp_valid_block;
11072 w->cond_exp_valid_block = cond_exp_valid_block;
11073 if (just_location)
11074 {
11075 struct type *t = value_type (val);
11076 CORE_ADDR addr = value_as_address (val);
11077 char *name;
11078
11079 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11080 name = type_to_string (t);
11081
11082 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11083 core_addr_to_string (addr));
11084 xfree (name);
11085
11086 w->exp_string = xstrprintf ("-location %.*s",
11087 (int) (exp_end - exp_start), exp_start);
11088
11089 /* The above expression is in C. */
11090 b->language = language_c;
11091 }
11092 else
11093 w->exp_string = savestring (exp_start, exp_end - exp_start);
11094
11095 if (use_mask)
11096 {
11097 w->hw_wp_mask = mask;
11098 }
11099 else
11100 {
11101 w->val = val;
11102 w->val_valid = 1;
11103 }
11104
11105 if (cond_start)
11106 b->cond_string = savestring (cond_start, cond_end - cond_start);
11107 else
11108 b->cond_string = 0;
11109
11110 if (frame)
11111 {
11112 w->watchpoint_frame = get_frame_id (frame);
11113 w->watchpoint_thread = inferior_ptid;
11114 }
11115 else
11116 {
11117 w->watchpoint_frame = null_frame_id;
11118 w->watchpoint_thread = null_ptid;
11119 }
11120
11121 if (scope_breakpoint != NULL)
11122 {
11123 /* The scope breakpoint is related to the watchpoint. We will
11124 need to act on them together. */
11125 b->related_breakpoint = scope_breakpoint;
11126 scope_breakpoint->related_breakpoint = b;
11127 }
11128
11129 if (!just_location)
11130 value_free_to_mark (mark);
11131
11132 TRY_CATCH (e, RETURN_MASK_ALL)
11133 {
11134 /* Finally update the new watchpoint. This creates the locations
11135 that should be inserted. */
11136 update_watchpoint (w, 1);
11137 }
11138 if (e.reason < 0)
11139 {
11140 delete_breakpoint (b);
11141 throw_exception (e);
11142 }
11143
11144 install_breakpoint (internal, b, 1);
11145 do_cleanups (back_to);
11146 }
11147
11148 /* Return count of debug registers needed to watch the given expression.
11149 If the watchpoint cannot be handled in hardware return zero. */
11150
11151 static int
11152 can_use_hardware_watchpoint (struct value *v)
11153 {
11154 int found_memory_cnt = 0;
11155 struct value *head = v;
11156
11157 /* Did the user specifically forbid us to use hardware watchpoints? */
11158 if (!can_use_hw_watchpoints)
11159 return 0;
11160
11161 /* Make sure that the value of the expression depends only upon
11162 memory contents, and values computed from them within GDB. If we
11163 find any register references or function calls, we can't use a
11164 hardware watchpoint.
11165
11166 The idea here is that evaluating an expression generates a series
11167 of values, one holding the value of every subexpression. (The
11168 expression a*b+c has five subexpressions: a, b, a*b, c, and
11169 a*b+c.) GDB's values hold almost enough information to establish
11170 the criteria given above --- they identify memory lvalues,
11171 register lvalues, computed values, etcetera. So we can evaluate
11172 the expression, and then scan the chain of values that leaves
11173 behind to decide whether we can detect any possible change to the
11174 expression's final value using only hardware watchpoints.
11175
11176 However, I don't think that the values returned by inferior
11177 function calls are special in any way. So this function may not
11178 notice that an expression involving an inferior function call
11179 can't be watched with hardware watchpoints. FIXME. */
11180 for (; v; v = value_next (v))
11181 {
11182 if (VALUE_LVAL (v) == lval_memory)
11183 {
11184 if (v != head && value_lazy (v))
11185 /* A lazy memory lvalue in the chain is one that GDB never
11186 needed to fetch; we either just used its address (e.g.,
11187 `a' in `a.b') or we never needed it at all (e.g., `a'
11188 in `a,b'). This doesn't apply to HEAD; if that is
11189 lazy then it was not readable, but watch it anyway. */
11190 ;
11191 else
11192 {
11193 /* Ahh, memory we actually used! Check if we can cover
11194 it with hardware watchpoints. */
11195 struct type *vtype = check_typedef (value_type (v));
11196
11197 /* We only watch structs and arrays if user asked for it
11198 explicitly, never if they just happen to appear in a
11199 middle of some value chain. */
11200 if (v == head
11201 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11202 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11203 {
11204 CORE_ADDR vaddr = value_address (v);
11205 int len;
11206 int num_regs;
11207
11208 len = (target_exact_watchpoints
11209 && is_scalar_type_recursive (vtype))?
11210 1 : TYPE_LENGTH (value_type (v));
11211
11212 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11213 if (!num_regs)
11214 return 0;
11215 else
11216 found_memory_cnt += num_regs;
11217 }
11218 }
11219 }
11220 else if (VALUE_LVAL (v) != not_lval
11221 && deprecated_value_modifiable (v) == 0)
11222 return 0; /* These are values from the history (e.g., $1). */
11223 else if (VALUE_LVAL (v) == lval_register)
11224 return 0; /* Cannot watch a register with a HW watchpoint. */
11225 }
11226
11227 /* The expression itself looks suitable for using a hardware
11228 watchpoint, but give the target machine a chance to reject it. */
11229 return found_memory_cnt;
11230 }
11231
11232 void
11233 watch_command_wrapper (char *arg, int from_tty, int internal)
11234 {
11235 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11236 }
11237
11238 /* A helper function that looks for the "-location" argument and then
11239 calls watch_command_1. */
11240
11241 static void
11242 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11243 {
11244 int just_location = 0;
11245
11246 if (arg
11247 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11248 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11249 {
11250 arg = skip_spaces (arg);
11251 just_location = 1;
11252 }
11253
11254 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11255 }
11256
11257 static void
11258 watch_command (char *arg, int from_tty)
11259 {
11260 watch_maybe_just_location (arg, hw_write, from_tty);
11261 }
11262
11263 void
11264 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11265 {
11266 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11267 }
11268
11269 static void
11270 rwatch_command (char *arg, int from_tty)
11271 {
11272 watch_maybe_just_location (arg, hw_read, from_tty);
11273 }
11274
11275 void
11276 awatch_command_wrapper (char *arg, int from_tty, int internal)
11277 {
11278 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11279 }
11280
11281 static void
11282 awatch_command (char *arg, int from_tty)
11283 {
11284 watch_maybe_just_location (arg, hw_access, from_tty);
11285 }
11286 \f
11287
11288 /* Helper routines for the until_command routine in infcmd.c. Here
11289 because it uses the mechanisms of breakpoints. */
11290
11291 struct until_break_command_continuation_args
11292 {
11293 struct breakpoint *breakpoint;
11294 struct breakpoint *breakpoint2;
11295 int thread_num;
11296 };
11297
11298 /* This function is called by fetch_inferior_event via the
11299 cmd_continuation pointer, to complete the until command. It takes
11300 care of cleaning up the temporary breakpoints set up by the until
11301 command. */
11302 static void
11303 until_break_command_continuation (void *arg, int err)
11304 {
11305 struct until_break_command_continuation_args *a = arg;
11306
11307 delete_breakpoint (a->breakpoint);
11308 if (a->breakpoint2)
11309 delete_breakpoint (a->breakpoint2);
11310 delete_longjmp_breakpoint (a->thread_num);
11311 }
11312
11313 void
11314 until_break_command (char *arg, int from_tty, int anywhere)
11315 {
11316 struct symtabs_and_lines sals;
11317 struct symtab_and_line sal;
11318 struct frame_info *frame;
11319 struct gdbarch *frame_gdbarch;
11320 struct frame_id stack_frame_id;
11321 struct frame_id caller_frame_id;
11322 struct breakpoint *breakpoint;
11323 struct breakpoint *breakpoint2 = NULL;
11324 struct cleanup *old_chain;
11325 int thread;
11326 struct thread_info *tp;
11327
11328 clear_proceed_status ();
11329
11330 /* Set a breakpoint where the user wants it and at return from
11331 this function. */
11332
11333 if (last_displayed_sal_is_valid ())
11334 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11335 get_last_displayed_symtab (),
11336 get_last_displayed_line ());
11337 else
11338 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11339 (struct symtab *) NULL, 0);
11340
11341 if (sals.nelts != 1)
11342 error (_("Couldn't get information on specified line."));
11343
11344 sal = sals.sals[0];
11345 xfree (sals.sals); /* malloc'd, so freed. */
11346
11347 if (*arg)
11348 error (_("Junk at end of arguments."));
11349
11350 resolve_sal_pc (&sal);
11351
11352 tp = inferior_thread ();
11353 thread = tp->num;
11354
11355 old_chain = make_cleanup (null_cleanup, NULL);
11356
11357 /* Note linespec handling above invalidates the frame chain.
11358 Installing a breakpoint also invalidates the frame chain (as it
11359 may need to switch threads), so do any frame handling before
11360 that. */
11361
11362 frame = get_selected_frame (NULL);
11363 frame_gdbarch = get_frame_arch (frame);
11364 stack_frame_id = get_stack_frame_id (frame);
11365 caller_frame_id = frame_unwind_caller_id (frame);
11366
11367 /* Keep within the current frame, or in frames called by the current
11368 one. */
11369
11370 if (frame_id_p (caller_frame_id))
11371 {
11372 struct symtab_and_line sal2;
11373
11374 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11375 sal2.pc = frame_unwind_caller_pc (frame);
11376 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11377 sal2,
11378 caller_frame_id,
11379 bp_until);
11380 make_cleanup_delete_breakpoint (breakpoint2);
11381
11382 set_longjmp_breakpoint (tp, caller_frame_id);
11383 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11384 }
11385
11386 /* set_momentary_breakpoint could invalidate FRAME. */
11387 frame = NULL;
11388
11389 if (anywhere)
11390 /* If the user told us to continue until a specified location,
11391 we don't specify a frame at which we need to stop. */
11392 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11393 null_frame_id, bp_until);
11394 else
11395 /* Otherwise, specify the selected frame, because we want to stop
11396 only at the very same frame. */
11397 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11398 stack_frame_id, bp_until);
11399 make_cleanup_delete_breakpoint (breakpoint);
11400
11401 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11402
11403 /* If we are running asynchronously, and proceed call above has
11404 actually managed to start the target, arrange for breakpoints to
11405 be deleted when the target stops. Otherwise, we're already
11406 stopped and delete breakpoints via cleanup chain. */
11407
11408 if (target_can_async_p () && is_running (inferior_ptid))
11409 {
11410 struct until_break_command_continuation_args *args;
11411 args = xmalloc (sizeof (*args));
11412
11413 args->breakpoint = breakpoint;
11414 args->breakpoint2 = breakpoint2;
11415 args->thread_num = thread;
11416
11417 discard_cleanups (old_chain);
11418 add_continuation (inferior_thread (),
11419 until_break_command_continuation, args,
11420 xfree);
11421 }
11422 else
11423 do_cleanups (old_chain);
11424 }
11425
11426 /* This function attempts to parse an optional "if <cond>" clause
11427 from the arg string. If one is not found, it returns NULL.
11428
11429 Else, it returns a pointer to the condition string. (It does not
11430 attempt to evaluate the string against a particular block.) And,
11431 it updates arg to point to the first character following the parsed
11432 if clause in the arg string. */
11433
11434 char *
11435 ep_parse_optional_if_clause (char **arg)
11436 {
11437 char *cond_string;
11438
11439 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11440 return NULL;
11441
11442 /* Skip the "if" keyword. */
11443 (*arg) += 2;
11444
11445 /* Skip any extra leading whitespace, and record the start of the
11446 condition string. */
11447 *arg = skip_spaces (*arg);
11448 cond_string = *arg;
11449
11450 /* Assume that the condition occupies the remainder of the arg
11451 string. */
11452 (*arg) += strlen (cond_string);
11453
11454 return cond_string;
11455 }
11456
11457 /* Commands to deal with catching events, such as signals, exceptions,
11458 process start/exit, etc. */
11459
11460 typedef enum
11461 {
11462 catch_fork_temporary, catch_vfork_temporary,
11463 catch_fork_permanent, catch_vfork_permanent
11464 }
11465 catch_fork_kind;
11466
11467 static void
11468 catch_fork_command_1 (char *arg, int from_tty,
11469 struct cmd_list_element *command)
11470 {
11471 struct gdbarch *gdbarch = get_current_arch ();
11472 char *cond_string = NULL;
11473 catch_fork_kind fork_kind;
11474 int tempflag;
11475
11476 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11477 tempflag = (fork_kind == catch_fork_temporary
11478 || fork_kind == catch_vfork_temporary);
11479
11480 if (!arg)
11481 arg = "";
11482 arg = skip_spaces (arg);
11483
11484 /* The allowed syntax is:
11485 catch [v]fork
11486 catch [v]fork if <cond>
11487
11488 First, check if there's an if clause. */
11489 cond_string = ep_parse_optional_if_clause (&arg);
11490
11491 if ((*arg != '\0') && !isspace (*arg))
11492 error (_("Junk at end of arguments."));
11493
11494 /* If this target supports it, create a fork or vfork catchpoint
11495 and enable reporting of such events. */
11496 switch (fork_kind)
11497 {
11498 case catch_fork_temporary:
11499 case catch_fork_permanent:
11500 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11501 &catch_fork_breakpoint_ops);
11502 break;
11503 case catch_vfork_temporary:
11504 case catch_vfork_permanent:
11505 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11506 &catch_vfork_breakpoint_ops);
11507 break;
11508 default:
11509 error (_("unsupported or unknown fork kind; cannot catch it"));
11510 break;
11511 }
11512 }
11513
11514 static void
11515 catch_exec_command_1 (char *arg, int from_tty,
11516 struct cmd_list_element *command)
11517 {
11518 struct exec_catchpoint *c;
11519 struct gdbarch *gdbarch = get_current_arch ();
11520 int tempflag;
11521 char *cond_string = NULL;
11522
11523 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11524
11525 if (!arg)
11526 arg = "";
11527 arg = skip_spaces (arg);
11528
11529 /* The allowed syntax is:
11530 catch exec
11531 catch exec if <cond>
11532
11533 First, check if there's an if clause. */
11534 cond_string = ep_parse_optional_if_clause (&arg);
11535
11536 if ((*arg != '\0') && !isspace (*arg))
11537 error (_("Junk at end of arguments."));
11538
11539 c = XNEW (struct exec_catchpoint);
11540 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11541 &catch_exec_breakpoint_ops);
11542 c->exec_pathname = NULL;
11543
11544 install_breakpoint (0, &c->base, 1);
11545 }
11546
11547 void
11548 init_ada_exception_breakpoint (struct breakpoint *b,
11549 struct gdbarch *gdbarch,
11550 struct symtab_and_line sal,
11551 char *addr_string,
11552 const struct breakpoint_ops *ops,
11553 int tempflag,
11554 int from_tty)
11555 {
11556 if (from_tty)
11557 {
11558 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11559 if (!loc_gdbarch)
11560 loc_gdbarch = gdbarch;
11561
11562 describe_other_breakpoints (loc_gdbarch,
11563 sal.pspace, sal.pc, sal.section, -1);
11564 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11565 version for exception catchpoints, because two catchpoints
11566 used for different exception names will use the same address.
11567 In this case, a "breakpoint ... also set at..." warning is
11568 unproductive. Besides, the warning phrasing is also a bit
11569 inappropriate, we should use the word catchpoint, and tell
11570 the user what type of catchpoint it is. The above is good
11571 enough for now, though. */
11572 }
11573
11574 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11575
11576 b->enable_state = bp_enabled;
11577 b->disposition = tempflag ? disp_del : disp_donttouch;
11578 b->addr_string = addr_string;
11579 b->language = language_ada;
11580 }
11581
11582 /* Splits the argument using space as delimiter. Returns an xmalloc'd
11583 filter list, or NULL if no filtering is required. */
11584 static VEC(int) *
11585 catch_syscall_split_args (char *arg)
11586 {
11587 VEC(int) *result = NULL;
11588 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
11589
11590 while (*arg != '\0')
11591 {
11592 int i, syscall_number;
11593 char *endptr;
11594 char cur_name[128];
11595 struct syscall s;
11596
11597 /* Skip whitespace. */
11598 arg = skip_spaces (arg);
11599
11600 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
11601 cur_name[i] = arg[i];
11602 cur_name[i] = '\0';
11603 arg += i;
11604
11605 /* Check if the user provided a syscall name or a number. */
11606 syscall_number = (int) strtol (cur_name, &endptr, 0);
11607 if (*endptr == '\0')
11608 get_syscall_by_number (syscall_number, &s);
11609 else
11610 {
11611 /* We have a name. Let's check if it's valid and convert it
11612 to a number. */
11613 get_syscall_by_name (cur_name, &s);
11614
11615 if (s.number == UNKNOWN_SYSCALL)
11616 /* Here we have to issue an error instead of a warning,
11617 because GDB cannot do anything useful if there's no
11618 syscall number to be caught. */
11619 error (_("Unknown syscall name '%s'."), cur_name);
11620 }
11621
11622 /* Ok, it's valid. */
11623 VEC_safe_push (int, result, s.number);
11624 }
11625
11626 discard_cleanups (cleanup);
11627 return result;
11628 }
11629
11630 /* Implement the "catch syscall" command. */
11631
11632 static void
11633 catch_syscall_command_1 (char *arg, int from_tty,
11634 struct cmd_list_element *command)
11635 {
11636 int tempflag;
11637 VEC(int) *filter;
11638 struct syscall s;
11639 struct gdbarch *gdbarch = get_current_arch ();
11640
11641 /* Checking if the feature if supported. */
11642 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
11643 error (_("The feature 'catch syscall' is not supported on \
11644 this architecture yet."));
11645
11646 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11647
11648 arg = skip_spaces (arg);
11649
11650 /* We need to do this first "dummy" translation in order
11651 to get the syscall XML file loaded or, most important,
11652 to display a warning to the user if there's no XML file
11653 for his/her architecture. */
11654 get_syscall_by_number (0, &s);
11655
11656 /* The allowed syntax is:
11657 catch syscall
11658 catch syscall <name | number> [<name | number> ... <name | number>]
11659
11660 Let's check if there's a syscall name. */
11661
11662 if (arg != NULL)
11663 filter = catch_syscall_split_args (arg);
11664 else
11665 filter = NULL;
11666
11667 create_syscall_event_catchpoint (tempflag, filter,
11668 &catch_syscall_breakpoint_ops);
11669 }
11670
11671 static void
11672 catch_command (char *arg, int from_tty)
11673 {
11674 error (_("Catch requires an event name."));
11675 }
11676 \f
11677
11678 static void
11679 tcatch_command (char *arg, int from_tty)
11680 {
11681 error (_("Catch requires an event name."));
11682 }
11683
11684 /* A qsort comparison function that sorts breakpoints in order. */
11685
11686 static int
11687 compare_breakpoints (const void *a, const void *b)
11688 {
11689 const breakpoint_p *ba = a;
11690 uintptr_t ua = (uintptr_t) *ba;
11691 const breakpoint_p *bb = b;
11692 uintptr_t ub = (uintptr_t) *bb;
11693
11694 if ((*ba)->number < (*bb)->number)
11695 return -1;
11696 else if ((*ba)->number > (*bb)->number)
11697 return 1;
11698
11699 /* Now sort by address, in case we see, e..g, two breakpoints with
11700 the number 0. */
11701 if (ua < ub)
11702 return -1;
11703 return ua > ub ? 1 : 0;
11704 }
11705
11706 /* Delete breakpoints by address or line. */
11707
11708 static void
11709 clear_command (char *arg, int from_tty)
11710 {
11711 struct breakpoint *b, *prev;
11712 VEC(breakpoint_p) *found = 0;
11713 int ix;
11714 int default_match;
11715 struct symtabs_and_lines sals;
11716 struct symtab_and_line sal;
11717 int i;
11718 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11719
11720 if (arg)
11721 {
11722 sals = decode_line_with_current_source (arg,
11723 (DECODE_LINE_FUNFIRSTLINE
11724 | DECODE_LINE_LIST_MODE));
11725 make_cleanup (xfree, sals.sals);
11726 default_match = 0;
11727 }
11728 else
11729 {
11730 sals.sals = (struct symtab_and_line *)
11731 xmalloc (sizeof (struct symtab_and_line));
11732 make_cleanup (xfree, sals.sals);
11733 init_sal (&sal); /* Initialize to zeroes. */
11734
11735 /* Set sal's line, symtab, pc, and pspace to the values
11736 corresponding to the last call to print_frame_info. If the
11737 codepoint is not valid, this will set all the fields to 0. */
11738 get_last_displayed_sal (&sal);
11739 if (sal.symtab == 0)
11740 error (_("No source file specified."));
11741
11742 sals.sals[0] = sal;
11743 sals.nelts = 1;
11744
11745 default_match = 1;
11746 }
11747
11748 /* We don't call resolve_sal_pc here. That's not as bad as it
11749 seems, because all existing breakpoints typically have both
11750 file/line and pc set. So, if clear is given file/line, we can
11751 match this to existing breakpoint without obtaining pc at all.
11752
11753 We only support clearing given the address explicitly
11754 present in breakpoint table. Say, we've set breakpoint
11755 at file:line. There were several PC values for that file:line,
11756 due to optimization, all in one block.
11757
11758 We've picked one PC value. If "clear" is issued with another
11759 PC corresponding to the same file:line, the breakpoint won't
11760 be cleared. We probably can still clear the breakpoint, but
11761 since the other PC value is never presented to user, user
11762 can only find it by guessing, and it does not seem important
11763 to support that. */
11764
11765 /* For each line spec given, delete bps which correspond to it. Do
11766 it in two passes, solely to preserve the current behavior that
11767 from_tty is forced true if we delete more than one
11768 breakpoint. */
11769
11770 found = NULL;
11771 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11772 for (i = 0; i < sals.nelts; i++)
11773 {
11774 const char *sal_fullname;
11775
11776 /* If exact pc given, clear bpts at that pc.
11777 If line given (pc == 0), clear all bpts on specified line.
11778 If defaulting, clear all bpts on default line
11779 or at default pc.
11780
11781 defaulting sal.pc != 0 tests to do
11782
11783 0 1 pc
11784 1 1 pc _and_ line
11785 0 0 line
11786 1 0 <can't happen> */
11787
11788 sal = sals.sals[i];
11789 sal_fullname = (sal.symtab == NULL
11790 ? NULL : symtab_to_fullname (sal.symtab));
11791
11792 /* Find all matching breakpoints and add them to 'found'. */
11793 ALL_BREAKPOINTS (b)
11794 {
11795 int match = 0;
11796 /* Are we going to delete b? */
11797 if (b->type != bp_none && !is_watchpoint (b))
11798 {
11799 struct bp_location *loc = b->loc;
11800 for (; loc; loc = loc->next)
11801 {
11802 /* If the user specified file:line, don't allow a PC
11803 match. This matches historical gdb behavior. */
11804 int pc_match = (!sal.explicit_line
11805 && sal.pc
11806 && (loc->pspace == sal.pspace)
11807 && (loc->address == sal.pc)
11808 && (!section_is_overlay (loc->section)
11809 || loc->section == sal.section));
11810 int line_match = 0;
11811
11812 if ((default_match || sal.explicit_line)
11813 && loc->symtab != NULL
11814 && sal_fullname != NULL
11815 && sal.pspace == loc->pspace
11816 && loc->line_number == sal.line
11817 && filename_cmp (symtab_to_fullname (loc->symtab),
11818 sal_fullname) == 0)
11819 line_match = 1;
11820
11821 if (pc_match || line_match)
11822 {
11823 match = 1;
11824 break;
11825 }
11826 }
11827 }
11828
11829 if (match)
11830 VEC_safe_push(breakpoint_p, found, b);
11831 }
11832 }
11833
11834 /* Now go thru the 'found' chain and delete them. */
11835 if (VEC_empty(breakpoint_p, found))
11836 {
11837 if (arg)
11838 error (_("No breakpoint at %s."), arg);
11839 else
11840 error (_("No breakpoint at this line."));
11841 }
11842
11843 /* Remove duplicates from the vec. */
11844 qsort (VEC_address (breakpoint_p, found),
11845 VEC_length (breakpoint_p, found),
11846 sizeof (breakpoint_p),
11847 compare_breakpoints);
11848 prev = VEC_index (breakpoint_p, found, 0);
11849 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
11850 {
11851 if (b == prev)
11852 {
11853 VEC_ordered_remove (breakpoint_p, found, ix);
11854 --ix;
11855 }
11856 }
11857
11858 if (VEC_length(breakpoint_p, found) > 1)
11859 from_tty = 1; /* Always report if deleted more than one. */
11860 if (from_tty)
11861 {
11862 if (VEC_length(breakpoint_p, found) == 1)
11863 printf_unfiltered (_("Deleted breakpoint "));
11864 else
11865 printf_unfiltered (_("Deleted breakpoints "));
11866 }
11867
11868 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
11869 {
11870 if (from_tty)
11871 printf_unfiltered ("%d ", b->number);
11872 delete_breakpoint (b);
11873 }
11874 if (from_tty)
11875 putchar_unfiltered ('\n');
11876
11877 do_cleanups (cleanups);
11878 }
11879 \f
11880 /* Delete breakpoint in BS if they are `delete' breakpoints and
11881 all breakpoints that are marked for deletion, whether hit or not.
11882 This is called after any breakpoint is hit, or after errors. */
11883
11884 void
11885 breakpoint_auto_delete (bpstat bs)
11886 {
11887 struct breakpoint *b, *b_tmp;
11888
11889 for (; bs; bs = bs->next)
11890 if (bs->breakpoint_at
11891 && bs->breakpoint_at->disposition == disp_del
11892 && bs->stop)
11893 delete_breakpoint (bs->breakpoint_at);
11894
11895 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11896 {
11897 if (b->disposition == disp_del_at_next_stop)
11898 delete_breakpoint (b);
11899 }
11900 }
11901
11902 /* A comparison function for bp_location AP and BP being interfaced to
11903 qsort. Sort elements primarily by their ADDRESS (no matter what
11904 does breakpoint_address_is_meaningful say for its OWNER),
11905 secondarily by ordering first bp_permanent OWNERed elements and
11906 terciarily just ensuring the array is sorted stable way despite
11907 qsort being an unstable algorithm. */
11908
11909 static int
11910 bp_location_compare (const void *ap, const void *bp)
11911 {
11912 struct bp_location *a = *(void **) ap;
11913 struct bp_location *b = *(void **) bp;
11914 /* A and B come from existing breakpoints having non-NULL OWNER. */
11915 int a_perm = a->owner->enable_state == bp_permanent;
11916 int b_perm = b->owner->enable_state == bp_permanent;
11917
11918 if (a->address != b->address)
11919 return (a->address > b->address) - (a->address < b->address);
11920
11921 /* Sort locations at the same address by their pspace number, keeping
11922 locations of the same inferior (in a multi-inferior environment)
11923 grouped. */
11924
11925 if (a->pspace->num != b->pspace->num)
11926 return ((a->pspace->num > b->pspace->num)
11927 - (a->pspace->num < b->pspace->num));
11928
11929 /* Sort permanent breakpoints first. */
11930 if (a_perm != b_perm)
11931 return (a_perm < b_perm) - (a_perm > b_perm);
11932
11933 /* Make the internal GDB representation stable across GDB runs
11934 where A and B memory inside GDB can differ. Breakpoint locations of
11935 the same type at the same address can be sorted in arbitrary order. */
11936
11937 if (a->owner->number != b->owner->number)
11938 return ((a->owner->number > b->owner->number)
11939 - (a->owner->number < b->owner->number));
11940
11941 return (a > b) - (a < b);
11942 }
11943
11944 /* Set bp_location_placed_address_before_address_max and
11945 bp_location_shadow_len_after_address_max according to the current
11946 content of the bp_location array. */
11947
11948 static void
11949 bp_location_target_extensions_update (void)
11950 {
11951 struct bp_location *bl, **blp_tmp;
11952
11953 bp_location_placed_address_before_address_max = 0;
11954 bp_location_shadow_len_after_address_max = 0;
11955
11956 ALL_BP_LOCATIONS (bl, blp_tmp)
11957 {
11958 CORE_ADDR start, end, addr;
11959
11960 if (!bp_location_has_shadow (bl))
11961 continue;
11962
11963 start = bl->target_info.placed_address;
11964 end = start + bl->target_info.shadow_len;
11965
11966 gdb_assert (bl->address >= start);
11967 addr = bl->address - start;
11968 if (addr > bp_location_placed_address_before_address_max)
11969 bp_location_placed_address_before_address_max = addr;
11970
11971 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11972
11973 gdb_assert (bl->address < end);
11974 addr = end - bl->address;
11975 if (addr > bp_location_shadow_len_after_address_max)
11976 bp_location_shadow_len_after_address_max = addr;
11977 }
11978 }
11979
11980 /* Download tracepoint locations if they haven't been. */
11981
11982 static void
11983 download_tracepoint_locations (void)
11984 {
11985 struct breakpoint *b;
11986 struct cleanup *old_chain;
11987
11988 if (!target_can_download_tracepoint ())
11989 return;
11990
11991 old_chain = save_current_space_and_thread ();
11992
11993 ALL_TRACEPOINTS (b)
11994 {
11995 struct bp_location *bl;
11996 struct tracepoint *t;
11997 int bp_location_downloaded = 0;
11998
11999 if ((b->type == bp_fast_tracepoint
12000 ? !may_insert_fast_tracepoints
12001 : !may_insert_tracepoints))
12002 continue;
12003
12004 for (bl = b->loc; bl; bl = bl->next)
12005 {
12006 /* In tracepoint, locations are _never_ duplicated, so
12007 should_be_inserted is equivalent to
12008 unduplicated_should_be_inserted. */
12009 if (!should_be_inserted (bl) || bl->inserted)
12010 continue;
12011
12012 switch_to_program_space_and_thread (bl->pspace);
12013
12014 target_download_tracepoint (bl);
12015
12016 bl->inserted = 1;
12017 bp_location_downloaded = 1;
12018 }
12019 t = (struct tracepoint *) b;
12020 t->number_on_target = b->number;
12021 if (bp_location_downloaded)
12022 observer_notify_breakpoint_modified (b);
12023 }
12024
12025 do_cleanups (old_chain);
12026 }
12027
12028 /* Swap the insertion/duplication state between two locations. */
12029
12030 static void
12031 swap_insertion (struct bp_location *left, struct bp_location *right)
12032 {
12033 const int left_inserted = left->inserted;
12034 const int left_duplicate = left->duplicate;
12035 const int left_needs_update = left->needs_update;
12036 const struct bp_target_info left_target_info = left->target_info;
12037
12038 /* Locations of tracepoints can never be duplicated. */
12039 if (is_tracepoint (left->owner))
12040 gdb_assert (!left->duplicate);
12041 if (is_tracepoint (right->owner))
12042 gdb_assert (!right->duplicate);
12043
12044 left->inserted = right->inserted;
12045 left->duplicate = right->duplicate;
12046 left->needs_update = right->needs_update;
12047 left->target_info = right->target_info;
12048 right->inserted = left_inserted;
12049 right->duplicate = left_duplicate;
12050 right->needs_update = left_needs_update;
12051 right->target_info = left_target_info;
12052 }
12053
12054 /* Force the re-insertion of the locations at ADDRESS. This is called
12055 once a new/deleted/modified duplicate location is found and we are evaluating
12056 conditions on the target's side. Such conditions need to be updated on
12057 the target. */
12058
12059 static void
12060 force_breakpoint_reinsertion (struct bp_location *bl)
12061 {
12062 struct bp_location **locp = NULL, **loc2p;
12063 struct bp_location *loc;
12064 CORE_ADDR address = 0;
12065 int pspace_num;
12066
12067 address = bl->address;
12068 pspace_num = bl->pspace->num;
12069
12070 /* This is only meaningful if the target is
12071 evaluating conditions and if the user has
12072 opted for condition evaluation on the target's
12073 side. */
12074 if (gdb_evaluates_breakpoint_condition_p ()
12075 || !target_supports_evaluation_of_breakpoint_conditions ())
12076 return;
12077
12078 /* Flag all breakpoint locations with this address and
12079 the same program space as the location
12080 as "its condition has changed". We need to
12081 update the conditions on the target's side. */
12082 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12083 {
12084 loc = *loc2p;
12085
12086 if (!is_breakpoint (loc->owner)
12087 || pspace_num != loc->pspace->num)
12088 continue;
12089
12090 /* Flag the location appropriately. We use a different state to
12091 let everyone know that we already updated the set of locations
12092 with addr bl->address and program space bl->pspace. This is so
12093 we don't have to keep calling these functions just to mark locations
12094 that have already been marked. */
12095 loc->condition_changed = condition_updated;
12096
12097 /* Free the agent expression bytecode as well. We will compute
12098 it later on. */
12099 if (loc->cond_bytecode)
12100 {
12101 free_agent_expr (loc->cond_bytecode);
12102 loc->cond_bytecode = NULL;
12103 }
12104 }
12105 }
12106
12107 /* If SHOULD_INSERT is false, do not insert any breakpoint locations
12108 into the inferior, only remove already-inserted locations that no
12109 longer should be inserted. Functions that delete a breakpoint or
12110 breakpoints should pass false, so that deleting a breakpoint
12111 doesn't have the side effect of inserting the locations of other
12112 breakpoints that are marked not-inserted, but should_be_inserted
12113 returns true on them.
12114
12115 This behaviour is useful is situations close to tear-down -- e.g.,
12116 after an exec, while the target still has execution, but breakpoint
12117 shadows of the previous executable image should *NOT* be restored
12118 to the new image; or before detaching, where the target still has
12119 execution and wants to delete breakpoints from GDB's lists, and all
12120 breakpoints had already been removed from the inferior. */
12121
12122 static void
12123 update_global_location_list (int should_insert)
12124 {
12125 struct breakpoint *b;
12126 struct bp_location **locp, *loc;
12127 struct cleanup *cleanups;
12128 /* Last breakpoint location address that was marked for update. */
12129 CORE_ADDR last_addr = 0;
12130 /* Last breakpoint location program space that was marked for update. */
12131 int last_pspace_num = -1;
12132
12133 /* Used in the duplicates detection below. When iterating over all
12134 bp_locations, points to the first bp_location of a given address.
12135 Breakpoints and watchpoints of different types are never
12136 duplicates of each other. Keep one pointer for each type of
12137 breakpoint/watchpoint, so we only need to loop over all locations
12138 once. */
12139 struct bp_location *bp_loc_first; /* breakpoint */
12140 struct bp_location *wp_loc_first; /* hardware watchpoint */
12141 struct bp_location *awp_loc_first; /* access watchpoint */
12142 struct bp_location *rwp_loc_first; /* read watchpoint */
12143
12144 /* Saved former bp_location array which we compare against the newly
12145 built bp_location from the current state of ALL_BREAKPOINTS. */
12146 struct bp_location **old_location, **old_locp;
12147 unsigned old_location_count;
12148
12149 old_location = bp_location;
12150 old_location_count = bp_location_count;
12151 bp_location = NULL;
12152 bp_location_count = 0;
12153 cleanups = make_cleanup (xfree, old_location);
12154
12155 ALL_BREAKPOINTS (b)
12156 for (loc = b->loc; loc; loc = loc->next)
12157 bp_location_count++;
12158
12159 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12160 locp = bp_location;
12161 ALL_BREAKPOINTS (b)
12162 for (loc = b->loc; loc; loc = loc->next)
12163 *locp++ = loc;
12164 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12165 bp_location_compare);
12166
12167 bp_location_target_extensions_update ();
12168
12169 /* Identify bp_location instances that are no longer present in the
12170 new list, and therefore should be freed. Note that it's not
12171 necessary that those locations should be removed from inferior --
12172 if there's another location at the same address (previously
12173 marked as duplicate), we don't need to remove/insert the
12174 location.
12175
12176 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12177 and former bp_location array state respectively. */
12178
12179 locp = bp_location;
12180 for (old_locp = old_location; old_locp < old_location + old_location_count;
12181 old_locp++)
12182 {
12183 struct bp_location *old_loc = *old_locp;
12184 struct bp_location **loc2p;
12185
12186 /* Tells if 'old_loc' is found among the new locations. If
12187 not, we have to free it. */
12188 int found_object = 0;
12189 /* Tells if the location should remain inserted in the target. */
12190 int keep_in_target = 0;
12191 int removed = 0;
12192
12193 /* Skip LOCP entries which will definitely never be needed.
12194 Stop either at or being the one matching OLD_LOC. */
12195 while (locp < bp_location + bp_location_count
12196 && (*locp)->address < old_loc->address)
12197 locp++;
12198
12199 for (loc2p = locp;
12200 (loc2p < bp_location + bp_location_count
12201 && (*loc2p)->address == old_loc->address);
12202 loc2p++)
12203 {
12204 /* Check if this is a new/duplicated location or a duplicated
12205 location that had its condition modified. If so, we want to send
12206 its condition to the target if evaluation of conditions is taking
12207 place there. */
12208 if ((*loc2p)->condition_changed == condition_modified
12209 && (last_addr != old_loc->address
12210 || last_pspace_num != old_loc->pspace->num))
12211 {
12212 force_breakpoint_reinsertion (*loc2p);
12213 last_pspace_num = old_loc->pspace->num;
12214 }
12215
12216 if (*loc2p == old_loc)
12217 found_object = 1;
12218 }
12219
12220 /* We have already handled this address, update it so that we don't
12221 have to go through updates again. */
12222 last_addr = old_loc->address;
12223
12224 /* Target-side condition evaluation: Handle deleted locations. */
12225 if (!found_object)
12226 force_breakpoint_reinsertion (old_loc);
12227
12228 /* If this location is no longer present, and inserted, look if
12229 there's maybe a new location at the same address. If so,
12230 mark that one inserted, and don't remove this one. This is
12231 needed so that we don't have a time window where a breakpoint
12232 at certain location is not inserted. */
12233
12234 if (old_loc->inserted)
12235 {
12236 /* If the location is inserted now, we might have to remove
12237 it. */
12238
12239 if (found_object && should_be_inserted (old_loc))
12240 {
12241 /* The location is still present in the location list,
12242 and still should be inserted. Don't do anything. */
12243 keep_in_target = 1;
12244 }
12245 else
12246 {
12247 /* This location still exists, but it won't be kept in the
12248 target since it may have been disabled. We proceed to
12249 remove its target-side condition. */
12250
12251 /* The location is either no longer present, or got
12252 disabled. See if there's another location at the
12253 same address, in which case we don't need to remove
12254 this one from the target. */
12255
12256 /* OLD_LOC comes from existing struct breakpoint. */
12257 if (breakpoint_address_is_meaningful (old_loc->owner))
12258 {
12259 for (loc2p = locp;
12260 (loc2p < bp_location + bp_location_count
12261 && (*loc2p)->address == old_loc->address);
12262 loc2p++)
12263 {
12264 struct bp_location *loc2 = *loc2p;
12265
12266 if (breakpoint_locations_match (loc2, old_loc))
12267 {
12268 /* Read watchpoint locations are switched to
12269 access watchpoints, if the former are not
12270 supported, but the latter are. */
12271 if (is_hardware_watchpoint (old_loc->owner))
12272 {
12273 gdb_assert (is_hardware_watchpoint (loc2->owner));
12274 loc2->watchpoint_type = old_loc->watchpoint_type;
12275 }
12276
12277 /* loc2 is a duplicated location. We need to check
12278 if it should be inserted in case it will be
12279 unduplicated. */
12280 if (loc2 != old_loc
12281 && unduplicated_should_be_inserted (loc2))
12282 {
12283 swap_insertion (old_loc, loc2);
12284 keep_in_target = 1;
12285 break;
12286 }
12287 }
12288 }
12289 }
12290 }
12291
12292 if (!keep_in_target)
12293 {
12294 if (remove_breakpoint (old_loc, mark_uninserted))
12295 {
12296 /* This is just about all we can do. We could keep
12297 this location on the global list, and try to
12298 remove it next time, but there's no particular
12299 reason why we will succeed next time.
12300
12301 Note that at this point, old_loc->owner is still
12302 valid, as delete_breakpoint frees the breakpoint
12303 only after calling us. */
12304 printf_filtered (_("warning: Error removing "
12305 "breakpoint %d\n"),
12306 old_loc->owner->number);
12307 }
12308 removed = 1;
12309 }
12310 }
12311
12312 if (!found_object)
12313 {
12314 if (removed && non_stop
12315 && breakpoint_address_is_meaningful (old_loc->owner)
12316 && !is_hardware_watchpoint (old_loc->owner))
12317 {
12318 /* This location was removed from the target. In
12319 non-stop mode, a race condition is possible where
12320 we've removed a breakpoint, but stop events for that
12321 breakpoint are already queued and will arrive later.
12322 We apply an heuristic to be able to distinguish such
12323 SIGTRAPs from other random SIGTRAPs: we keep this
12324 breakpoint location for a bit, and will retire it
12325 after we see some number of events. The theory here
12326 is that reporting of events should, "on the average",
12327 be fair, so after a while we'll see events from all
12328 threads that have anything of interest, and no longer
12329 need to keep this breakpoint location around. We
12330 don't hold locations forever so to reduce chances of
12331 mistaking a non-breakpoint SIGTRAP for a breakpoint
12332 SIGTRAP.
12333
12334 The heuristic failing can be disastrous on
12335 decr_pc_after_break targets.
12336
12337 On decr_pc_after_break targets, like e.g., x86-linux,
12338 if we fail to recognize a late breakpoint SIGTRAP,
12339 because events_till_retirement has reached 0 too
12340 soon, we'll fail to do the PC adjustment, and report
12341 a random SIGTRAP to the user. When the user resumes
12342 the inferior, it will most likely immediately crash
12343 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12344 corrupted, because of being resumed e.g., in the
12345 middle of a multi-byte instruction, or skipped a
12346 one-byte instruction. This was actually seen happen
12347 on native x86-linux, and should be less rare on
12348 targets that do not support new thread events, like
12349 remote, due to the heuristic depending on
12350 thread_count.
12351
12352 Mistaking a random SIGTRAP for a breakpoint trap
12353 causes similar symptoms (PC adjustment applied when
12354 it shouldn't), but then again, playing with SIGTRAPs
12355 behind the debugger's back is asking for trouble.
12356
12357 Since hardware watchpoint traps are always
12358 distinguishable from other traps, so we don't need to
12359 apply keep hardware watchpoint moribund locations
12360 around. We simply always ignore hardware watchpoint
12361 traps we can no longer explain. */
12362
12363 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12364 old_loc->owner = NULL;
12365
12366 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12367 }
12368 else
12369 {
12370 old_loc->owner = NULL;
12371 decref_bp_location (&old_loc);
12372 }
12373 }
12374 }
12375
12376 /* Rescan breakpoints at the same address and section, marking the
12377 first one as "first" and any others as "duplicates". This is so
12378 that the bpt instruction is only inserted once. If we have a
12379 permanent breakpoint at the same place as BPT, make that one the
12380 official one, and the rest as duplicates. Permanent breakpoints
12381 are sorted first for the same address.
12382
12383 Do the same for hardware watchpoints, but also considering the
12384 watchpoint's type (regular/access/read) and length. */
12385
12386 bp_loc_first = NULL;
12387 wp_loc_first = NULL;
12388 awp_loc_first = NULL;
12389 rwp_loc_first = NULL;
12390 ALL_BP_LOCATIONS (loc, locp)
12391 {
12392 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12393 non-NULL. */
12394 struct bp_location **loc_first_p;
12395 b = loc->owner;
12396
12397 if (!unduplicated_should_be_inserted (loc)
12398 || !breakpoint_address_is_meaningful (b)
12399 /* Don't detect duplicate for tracepoint locations because they are
12400 never duplicated. See the comments in field `duplicate' of
12401 `struct bp_location'. */
12402 || is_tracepoint (b))
12403 {
12404 /* Clear the condition modification flag. */
12405 loc->condition_changed = condition_unchanged;
12406 continue;
12407 }
12408
12409 /* Permanent breakpoint should always be inserted. */
12410 if (b->enable_state == bp_permanent && ! loc->inserted)
12411 internal_error (__FILE__, __LINE__,
12412 _("allegedly permanent breakpoint is not "
12413 "actually inserted"));
12414
12415 if (b->type == bp_hardware_watchpoint)
12416 loc_first_p = &wp_loc_first;
12417 else if (b->type == bp_read_watchpoint)
12418 loc_first_p = &rwp_loc_first;
12419 else if (b->type == bp_access_watchpoint)
12420 loc_first_p = &awp_loc_first;
12421 else
12422 loc_first_p = &bp_loc_first;
12423
12424 if (*loc_first_p == NULL
12425 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12426 || !breakpoint_locations_match (loc, *loc_first_p))
12427 {
12428 *loc_first_p = loc;
12429 loc->duplicate = 0;
12430
12431 if (is_breakpoint (loc->owner) && loc->condition_changed)
12432 {
12433 loc->needs_update = 1;
12434 /* Clear the condition modification flag. */
12435 loc->condition_changed = condition_unchanged;
12436 }
12437 continue;
12438 }
12439
12440
12441 /* This and the above ensure the invariant that the first location
12442 is not duplicated, and is the inserted one.
12443 All following are marked as duplicated, and are not inserted. */
12444 if (loc->inserted)
12445 swap_insertion (loc, *loc_first_p);
12446 loc->duplicate = 1;
12447
12448 /* Clear the condition modification flag. */
12449 loc->condition_changed = condition_unchanged;
12450
12451 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12452 && b->enable_state != bp_permanent)
12453 internal_error (__FILE__, __LINE__,
12454 _("another breakpoint was inserted on top of "
12455 "a permanent breakpoint"));
12456 }
12457
12458 if (breakpoints_always_inserted_mode ()
12459 && (have_live_inferiors ()
12460 || (gdbarch_has_global_breakpoints (target_gdbarch ()))))
12461 {
12462 if (should_insert)
12463 insert_breakpoint_locations ();
12464 else
12465 {
12466 /* Though should_insert is false, we may need to update conditions
12467 on the target's side if it is evaluating such conditions. We
12468 only update conditions for locations that are marked
12469 "needs_update". */
12470 update_inserted_breakpoint_locations ();
12471 }
12472 }
12473
12474 if (should_insert)
12475 download_tracepoint_locations ();
12476
12477 do_cleanups (cleanups);
12478 }
12479
12480 void
12481 breakpoint_retire_moribund (void)
12482 {
12483 struct bp_location *loc;
12484 int ix;
12485
12486 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12487 if (--(loc->events_till_retirement) == 0)
12488 {
12489 decref_bp_location (&loc);
12490 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12491 --ix;
12492 }
12493 }
12494
12495 static void
12496 update_global_location_list_nothrow (int inserting)
12497 {
12498 volatile struct gdb_exception e;
12499
12500 TRY_CATCH (e, RETURN_MASK_ERROR)
12501 update_global_location_list (inserting);
12502 }
12503
12504 /* Clear BKP from a BPS. */
12505
12506 static void
12507 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12508 {
12509 bpstat bs;
12510
12511 for (bs = bps; bs; bs = bs->next)
12512 if (bs->breakpoint_at == bpt)
12513 {
12514 bs->breakpoint_at = NULL;
12515 bs->old_val = NULL;
12516 /* bs->commands will be freed later. */
12517 }
12518 }
12519
12520 /* Callback for iterate_over_threads. */
12521 static int
12522 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12523 {
12524 struct breakpoint *bpt = data;
12525
12526 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12527 return 0;
12528 }
12529
12530 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12531 callbacks. */
12532
12533 static void
12534 say_where (struct breakpoint *b)
12535 {
12536 struct value_print_options opts;
12537
12538 get_user_print_options (&opts);
12539
12540 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12541 single string. */
12542 if (b->loc == NULL)
12543 {
12544 printf_filtered (_(" (%s) pending."), b->addr_string);
12545 }
12546 else
12547 {
12548 if (opts.addressprint || b->loc->symtab == NULL)
12549 {
12550 printf_filtered (" at ");
12551 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12552 gdb_stdout);
12553 }
12554 if (b->loc->symtab != NULL)
12555 {
12556 /* If there is a single location, we can print the location
12557 more nicely. */
12558 if (b->loc->next == NULL)
12559 printf_filtered (": file %s, line %d.",
12560 symtab_to_filename_for_display (b->loc->symtab),
12561 b->loc->line_number);
12562 else
12563 /* This is not ideal, but each location may have a
12564 different file name, and this at least reflects the
12565 real situation somewhat. */
12566 printf_filtered (": %s.", b->addr_string);
12567 }
12568
12569 if (b->loc->next)
12570 {
12571 struct bp_location *loc = b->loc;
12572 int n = 0;
12573 for (; loc; loc = loc->next)
12574 ++n;
12575 printf_filtered (" (%d locations)", n);
12576 }
12577 }
12578 }
12579
12580 /* Default bp_location_ops methods. */
12581
12582 static void
12583 bp_location_dtor (struct bp_location *self)
12584 {
12585 xfree (self->cond);
12586 if (self->cond_bytecode)
12587 free_agent_expr (self->cond_bytecode);
12588 xfree (self->function_name);
12589 }
12590
12591 static const struct bp_location_ops bp_location_ops =
12592 {
12593 bp_location_dtor
12594 };
12595
12596 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12597 inherit from. */
12598
12599 static void
12600 base_breakpoint_dtor (struct breakpoint *self)
12601 {
12602 decref_counted_command_line (&self->commands);
12603 xfree (self->cond_string);
12604 xfree (self->extra_string);
12605 xfree (self->addr_string);
12606 xfree (self->filter);
12607 xfree (self->addr_string_range_end);
12608 }
12609
12610 static struct bp_location *
12611 base_breakpoint_allocate_location (struct breakpoint *self)
12612 {
12613 struct bp_location *loc;
12614
12615 loc = XNEW (struct bp_location);
12616 init_bp_location (loc, &bp_location_ops, self);
12617 return loc;
12618 }
12619
12620 static void
12621 base_breakpoint_re_set (struct breakpoint *b)
12622 {
12623 /* Nothing to re-set. */
12624 }
12625
12626 #define internal_error_pure_virtual_called() \
12627 gdb_assert_not_reached ("pure virtual function called")
12628
12629 static int
12630 base_breakpoint_insert_location (struct bp_location *bl)
12631 {
12632 internal_error_pure_virtual_called ();
12633 }
12634
12635 static int
12636 base_breakpoint_remove_location (struct bp_location *bl)
12637 {
12638 internal_error_pure_virtual_called ();
12639 }
12640
12641 static int
12642 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12643 struct address_space *aspace,
12644 CORE_ADDR bp_addr,
12645 const struct target_waitstatus *ws)
12646 {
12647 internal_error_pure_virtual_called ();
12648 }
12649
12650 static void
12651 base_breakpoint_check_status (bpstat bs)
12652 {
12653 /* Always stop. */
12654 }
12655
12656 /* A "works_in_software_mode" breakpoint_ops method that just internal
12657 errors. */
12658
12659 static int
12660 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12661 {
12662 internal_error_pure_virtual_called ();
12663 }
12664
12665 /* A "resources_needed" breakpoint_ops method that just internal
12666 errors. */
12667
12668 static int
12669 base_breakpoint_resources_needed (const struct bp_location *bl)
12670 {
12671 internal_error_pure_virtual_called ();
12672 }
12673
12674 static enum print_stop_action
12675 base_breakpoint_print_it (bpstat bs)
12676 {
12677 internal_error_pure_virtual_called ();
12678 }
12679
12680 static void
12681 base_breakpoint_print_one_detail (const struct breakpoint *self,
12682 struct ui_out *uiout)
12683 {
12684 /* nothing */
12685 }
12686
12687 static void
12688 base_breakpoint_print_mention (struct breakpoint *b)
12689 {
12690 internal_error_pure_virtual_called ();
12691 }
12692
12693 static void
12694 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12695 {
12696 internal_error_pure_virtual_called ();
12697 }
12698
12699 static void
12700 base_breakpoint_create_sals_from_address (char **arg,
12701 struct linespec_result *canonical,
12702 enum bptype type_wanted,
12703 char *addr_start,
12704 char **copy_arg)
12705 {
12706 internal_error_pure_virtual_called ();
12707 }
12708
12709 static void
12710 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12711 struct linespec_result *c,
12712 struct linespec_sals *lsal,
12713 char *cond_string,
12714 char *extra_string,
12715 enum bptype type_wanted,
12716 enum bpdisp disposition,
12717 int thread,
12718 int task, int ignore_count,
12719 const struct breakpoint_ops *o,
12720 int from_tty, int enabled,
12721 int internal, unsigned flags)
12722 {
12723 internal_error_pure_virtual_called ();
12724 }
12725
12726 static void
12727 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
12728 struct symtabs_and_lines *sals)
12729 {
12730 internal_error_pure_virtual_called ();
12731 }
12732
12733 /* The default 'explains_signal' method. */
12734
12735 static enum bpstat_signal_value
12736 base_breakpoint_explains_signal (struct breakpoint *b)
12737 {
12738 return BPSTAT_SIGNAL_HIDE;
12739 }
12740
12741 struct breakpoint_ops base_breakpoint_ops =
12742 {
12743 base_breakpoint_dtor,
12744 base_breakpoint_allocate_location,
12745 base_breakpoint_re_set,
12746 base_breakpoint_insert_location,
12747 base_breakpoint_remove_location,
12748 base_breakpoint_breakpoint_hit,
12749 base_breakpoint_check_status,
12750 base_breakpoint_resources_needed,
12751 base_breakpoint_works_in_software_mode,
12752 base_breakpoint_print_it,
12753 NULL,
12754 base_breakpoint_print_one_detail,
12755 base_breakpoint_print_mention,
12756 base_breakpoint_print_recreate,
12757 base_breakpoint_create_sals_from_address,
12758 base_breakpoint_create_breakpoints_sal,
12759 base_breakpoint_decode_linespec,
12760 base_breakpoint_explains_signal
12761 };
12762
12763 /* Default breakpoint_ops methods. */
12764
12765 static void
12766 bkpt_re_set (struct breakpoint *b)
12767 {
12768 /* FIXME: is this still reachable? */
12769 if (b->addr_string == NULL)
12770 {
12771 /* Anything without a string can't be re-set. */
12772 delete_breakpoint (b);
12773 return;
12774 }
12775
12776 breakpoint_re_set_default (b);
12777 }
12778
12779 static int
12780 bkpt_insert_location (struct bp_location *bl)
12781 {
12782 if (bl->loc_type == bp_loc_hardware_breakpoint)
12783 return target_insert_hw_breakpoint (bl->gdbarch,
12784 &bl->target_info);
12785 else
12786 return target_insert_breakpoint (bl->gdbarch,
12787 &bl->target_info);
12788 }
12789
12790 static int
12791 bkpt_remove_location (struct bp_location *bl)
12792 {
12793 if (bl->loc_type == bp_loc_hardware_breakpoint)
12794 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12795 else
12796 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
12797 }
12798
12799 static int
12800 bkpt_breakpoint_hit (const struct bp_location *bl,
12801 struct address_space *aspace, CORE_ADDR bp_addr,
12802 const struct target_waitstatus *ws)
12803 {
12804 if (ws->kind != TARGET_WAITKIND_STOPPED
12805 || ws->value.sig != GDB_SIGNAL_TRAP)
12806 return 0;
12807
12808 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12809 aspace, bp_addr))
12810 return 0;
12811
12812 if (overlay_debugging /* unmapped overlay section */
12813 && section_is_overlay (bl->section)
12814 && !section_is_mapped (bl->section))
12815 return 0;
12816
12817 return 1;
12818 }
12819
12820 static int
12821 bkpt_resources_needed (const struct bp_location *bl)
12822 {
12823 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12824
12825 return 1;
12826 }
12827
12828 static enum print_stop_action
12829 bkpt_print_it (bpstat bs)
12830 {
12831 struct breakpoint *b;
12832 const struct bp_location *bl;
12833 int bp_temp;
12834 struct ui_out *uiout = current_uiout;
12835
12836 gdb_assert (bs->bp_location_at != NULL);
12837
12838 bl = bs->bp_location_at;
12839 b = bs->breakpoint_at;
12840
12841 bp_temp = b->disposition == disp_del;
12842 if (bl->address != bl->requested_address)
12843 breakpoint_adjustment_warning (bl->requested_address,
12844 bl->address,
12845 b->number, 1);
12846 annotate_breakpoint (b->number);
12847 if (bp_temp)
12848 ui_out_text (uiout, "\nTemporary breakpoint ");
12849 else
12850 ui_out_text (uiout, "\nBreakpoint ");
12851 if (ui_out_is_mi_like_p (uiout))
12852 {
12853 ui_out_field_string (uiout, "reason",
12854 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12855 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12856 }
12857 ui_out_field_int (uiout, "bkptno", b->number);
12858 ui_out_text (uiout, ", ");
12859
12860 return PRINT_SRC_AND_LOC;
12861 }
12862
12863 static void
12864 bkpt_print_mention (struct breakpoint *b)
12865 {
12866 if (ui_out_is_mi_like_p (current_uiout))
12867 return;
12868
12869 switch (b->type)
12870 {
12871 case bp_breakpoint:
12872 case bp_gnu_ifunc_resolver:
12873 if (b->disposition == disp_del)
12874 printf_filtered (_("Temporary breakpoint"));
12875 else
12876 printf_filtered (_("Breakpoint"));
12877 printf_filtered (_(" %d"), b->number);
12878 if (b->type == bp_gnu_ifunc_resolver)
12879 printf_filtered (_(" at gnu-indirect-function resolver"));
12880 break;
12881 case bp_hardware_breakpoint:
12882 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12883 break;
12884 case bp_dprintf:
12885 printf_filtered (_("Dprintf %d"), b->number);
12886 break;
12887 }
12888
12889 say_where (b);
12890 }
12891
12892 static void
12893 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12894 {
12895 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12896 fprintf_unfiltered (fp, "tbreak");
12897 else if (tp->type == bp_breakpoint)
12898 fprintf_unfiltered (fp, "break");
12899 else if (tp->type == bp_hardware_breakpoint
12900 && tp->disposition == disp_del)
12901 fprintf_unfiltered (fp, "thbreak");
12902 else if (tp->type == bp_hardware_breakpoint)
12903 fprintf_unfiltered (fp, "hbreak");
12904 else
12905 internal_error (__FILE__, __LINE__,
12906 _("unhandled breakpoint type %d"), (int) tp->type);
12907
12908 fprintf_unfiltered (fp, " %s", tp->addr_string);
12909 print_recreate_thread (tp, fp);
12910 }
12911
12912 static void
12913 bkpt_create_sals_from_address (char **arg,
12914 struct linespec_result *canonical,
12915 enum bptype type_wanted,
12916 char *addr_start, char **copy_arg)
12917 {
12918 create_sals_from_address_default (arg, canonical, type_wanted,
12919 addr_start, copy_arg);
12920 }
12921
12922 static void
12923 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12924 struct linespec_result *canonical,
12925 struct linespec_sals *lsal,
12926 char *cond_string,
12927 char *extra_string,
12928 enum bptype type_wanted,
12929 enum bpdisp disposition,
12930 int thread,
12931 int task, int ignore_count,
12932 const struct breakpoint_ops *ops,
12933 int from_tty, int enabled,
12934 int internal, unsigned flags)
12935 {
12936 create_breakpoints_sal_default (gdbarch, canonical, lsal,
12937 cond_string, extra_string,
12938 type_wanted,
12939 disposition, thread, task,
12940 ignore_count, ops, from_tty,
12941 enabled, internal, flags);
12942 }
12943
12944 static void
12945 bkpt_decode_linespec (struct breakpoint *b, char **s,
12946 struct symtabs_and_lines *sals)
12947 {
12948 decode_linespec_default (b, s, sals);
12949 }
12950
12951 /* Virtual table for internal breakpoints. */
12952
12953 static void
12954 internal_bkpt_re_set (struct breakpoint *b)
12955 {
12956 switch (b->type)
12957 {
12958 /* Delete overlay event and longjmp master breakpoints; they
12959 will be reset later by breakpoint_re_set. */
12960 case bp_overlay_event:
12961 case bp_longjmp_master:
12962 case bp_std_terminate_master:
12963 case bp_exception_master:
12964 delete_breakpoint (b);
12965 break;
12966
12967 /* This breakpoint is special, it's set up when the inferior
12968 starts and we really don't want to touch it. */
12969 case bp_shlib_event:
12970
12971 /* Like bp_shlib_event, this breakpoint type is special. Once
12972 it is set up, we do not want to touch it. */
12973 case bp_thread_event:
12974 break;
12975 }
12976 }
12977
12978 static void
12979 internal_bkpt_check_status (bpstat bs)
12980 {
12981 if (bs->breakpoint_at->type == bp_shlib_event)
12982 {
12983 /* If requested, stop when the dynamic linker notifies GDB of
12984 events. This allows the user to get control and place
12985 breakpoints in initializer routines for dynamically loaded
12986 objects (among other things). */
12987 bs->stop = stop_on_solib_events;
12988 bs->print = stop_on_solib_events;
12989 }
12990 else
12991 bs->stop = 0;
12992 }
12993
12994 static enum print_stop_action
12995 internal_bkpt_print_it (bpstat bs)
12996 {
12997 struct breakpoint *b;
12998
12999 b = bs->breakpoint_at;
13000
13001 switch (b->type)
13002 {
13003 case bp_shlib_event:
13004 /* Did we stop because the user set the stop_on_solib_events
13005 variable? (If so, we report this as a generic, "Stopped due
13006 to shlib event" message.) */
13007 print_solib_event (0);
13008 break;
13009
13010 case bp_thread_event:
13011 /* Not sure how we will get here.
13012 GDB should not stop for these breakpoints. */
13013 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13014 break;
13015
13016 case bp_overlay_event:
13017 /* By analogy with the thread event, GDB should not stop for these. */
13018 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13019 break;
13020
13021 case bp_longjmp_master:
13022 /* These should never be enabled. */
13023 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13024 break;
13025
13026 case bp_std_terminate_master:
13027 /* These should never be enabled. */
13028 printf_filtered (_("std::terminate Master Breakpoint: "
13029 "gdb should not stop!\n"));
13030 break;
13031
13032 case bp_exception_master:
13033 /* These should never be enabled. */
13034 printf_filtered (_("Exception Master Breakpoint: "
13035 "gdb should not stop!\n"));
13036 break;
13037 }
13038
13039 return PRINT_NOTHING;
13040 }
13041
13042 static void
13043 internal_bkpt_print_mention (struct breakpoint *b)
13044 {
13045 /* Nothing to mention. These breakpoints are internal. */
13046 }
13047
13048 /* Virtual table for momentary breakpoints */
13049
13050 static void
13051 momentary_bkpt_re_set (struct breakpoint *b)
13052 {
13053 /* Keep temporary breakpoints, which can be encountered when we step
13054 over a dlopen call and solib_add is resetting the breakpoints.
13055 Otherwise these should have been blown away via the cleanup chain
13056 or by breakpoint_init_inferior when we rerun the executable. */
13057 }
13058
13059 static void
13060 momentary_bkpt_check_status (bpstat bs)
13061 {
13062 /* Nothing. The point of these breakpoints is causing a stop. */
13063 }
13064
13065 static enum print_stop_action
13066 momentary_bkpt_print_it (bpstat bs)
13067 {
13068 struct ui_out *uiout = current_uiout;
13069
13070 if (ui_out_is_mi_like_p (uiout))
13071 {
13072 struct breakpoint *b = bs->breakpoint_at;
13073
13074 switch (b->type)
13075 {
13076 case bp_finish:
13077 ui_out_field_string
13078 (uiout, "reason",
13079 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13080 break;
13081
13082 case bp_until:
13083 ui_out_field_string
13084 (uiout, "reason",
13085 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13086 break;
13087 }
13088 }
13089
13090 return PRINT_UNKNOWN;
13091 }
13092
13093 static void
13094 momentary_bkpt_print_mention (struct breakpoint *b)
13095 {
13096 /* Nothing to mention. These breakpoints are internal. */
13097 }
13098
13099 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13100
13101 It gets cleared already on the removal of the first one of such placed
13102 breakpoints. This is OK as they get all removed altogether. */
13103
13104 static void
13105 longjmp_bkpt_dtor (struct breakpoint *self)
13106 {
13107 struct thread_info *tp = find_thread_id (self->thread);
13108
13109 if (tp)
13110 tp->initiating_frame = null_frame_id;
13111
13112 momentary_breakpoint_ops.dtor (self);
13113 }
13114
13115 /* Specific methods for probe breakpoints. */
13116
13117 static int
13118 bkpt_probe_insert_location (struct bp_location *bl)
13119 {
13120 int v = bkpt_insert_location (bl);
13121
13122 if (v == 0)
13123 {
13124 /* The insertion was successful, now let's set the probe's semaphore
13125 if needed. */
13126 bl->probe->pops->set_semaphore (bl->probe, bl->gdbarch);
13127 }
13128
13129 return v;
13130 }
13131
13132 static int
13133 bkpt_probe_remove_location (struct bp_location *bl)
13134 {
13135 /* Let's clear the semaphore before removing the location. */
13136 bl->probe->pops->clear_semaphore (bl->probe, bl->gdbarch);
13137
13138 return bkpt_remove_location (bl);
13139 }
13140
13141 static void
13142 bkpt_probe_create_sals_from_address (char **arg,
13143 struct linespec_result *canonical,
13144 enum bptype type_wanted,
13145 char *addr_start, char **copy_arg)
13146 {
13147 struct linespec_sals lsal;
13148
13149 lsal.sals = parse_probes (arg, canonical);
13150
13151 *copy_arg = xstrdup (canonical->addr_string);
13152 lsal.canonical = xstrdup (*copy_arg);
13153
13154 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13155 }
13156
13157 static void
13158 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13159 struct symtabs_and_lines *sals)
13160 {
13161 *sals = parse_probes (s, NULL);
13162 if (!sals->sals)
13163 error (_("probe not found"));
13164 }
13165
13166 /* The breakpoint_ops structure to be used in tracepoints. */
13167
13168 static void
13169 tracepoint_re_set (struct breakpoint *b)
13170 {
13171 breakpoint_re_set_default (b);
13172 }
13173
13174 static int
13175 tracepoint_breakpoint_hit (const struct bp_location *bl,
13176 struct address_space *aspace, CORE_ADDR bp_addr,
13177 const struct target_waitstatus *ws)
13178 {
13179 /* By definition, the inferior does not report stops at
13180 tracepoints. */
13181 return 0;
13182 }
13183
13184 static void
13185 tracepoint_print_one_detail (const struct breakpoint *self,
13186 struct ui_out *uiout)
13187 {
13188 struct tracepoint *tp = (struct tracepoint *) self;
13189 if (tp->static_trace_marker_id)
13190 {
13191 gdb_assert (self->type == bp_static_tracepoint);
13192
13193 ui_out_text (uiout, "\tmarker id is ");
13194 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13195 tp->static_trace_marker_id);
13196 ui_out_text (uiout, "\n");
13197 }
13198 }
13199
13200 static void
13201 tracepoint_print_mention (struct breakpoint *b)
13202 {
13203 if (ui_out_is_mi_like_p (current_uiout))
13204 return;
13205
13206 switch (b->type)
13207 {
13208 case bp_tracepoint:
13209 printf_filtered (_("Tracepoint"));
13210 printf_filtered (_(" %d"), b->number);
13211 break;
13212 case bp_fast_tracepoint:
13213 printf_filtered (_("Fast tracepoint"));
13214 printf_filtered (_(" %d"), b->number);
13215 break;
13216 case bp_static_tracepoint:
13217 printf_filtered (_("Static tracepoint"));
13218 printf_filtered (_(" %d"), b->number);
13219 break;
13220 default:
13221 internal_error (__FILE__, __LINE__,
13222 _("unhandled tracepoint type %d"), (int) b->type);
13223 }
13224
13225 say_where (b);
13226 }
13227
13228 static void
13229 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13230 {
13231 struct tracepoint *tp = (struct tracepoint *) self;
13232
13233 if (self->type == bp_fast_tracepoint)
13234 fprintf_unfiltered (fp, "ftrace");
13235 if (self->type == bp_static_tracepoint)
13236 fprintf_unfiltered (fp, "strace");
13237 else if (self->type == bp_tracepoint)
13238 fprintf_unfiltered (fp, "trace");
13239 else
13240 internal_error (__FILE__, __LINE__,
13241 _("unhandled tracepoint type %d"), (int) self->type);
13242
13243 fprintf_unfiltered (fp, " %s", self->addr_string);
13244 print_recreate_thread (self, fp);
13245
13246 if (tp->pass_count)
13247 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13248 }
13249
13250 static void
13251 tracepoint_create_sals_from_address (char **arg,
13252 struct linespec_result *canonical,
13253 enum bptype type_wanted,
13254 char *addr_start, char **copy_arg)
13255 {
13256 create_sals_from_address_default (arg, canonical, type_wanted,
13257 addr_start, copy_arg);
13258 }
13259
13260 static void
13261 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13262 struct linespec_result *canonical,
13263 struct linespec_sals *lsal,
13264 char *cond_string,
13265 char *extra_string,
13266 enum bptype type_wanted,
13267 enum bpdisp disposition,
13268 int thread,
13269 int task, int ignore_count,
13270 const struct breakpoint_ops *ops,
13271 int from_tty, int enabled,
13272 int internal, unsigned flags)
13273 {
13274 create_breakpoints_sal_default (gdbarch, canonical, lsal,
13275 cond_string, extra_string,
13276 type_wanted,
13277 disposition, thread, task,
13278 ignore_count, ops, from_tty,
13279 enabled, internal, flags);
13280 }
13281
13282 static void
13283 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13284 struct symtabs_and_lines *sals)
13285 {
13286 decode_linespec_default (b, s, sals);
13287 }
13288
13289 struct breakpoint_ops tracepoint_breakpoint_ops;
13290
13291 /* The breakpoint_ops structure to be use on tracepoints placed in a
13292 static probe. */
13293
13294 static void
13295 tracepoint_probe_create_sals_from_address (char **arg,
13296 struct linespec_result *canonical,
13297 enum bptype type_wanted,
13298 char *addr_start, char **copy_arg)
13299 {
13300 /* We use the same method for breakpoint on probes. */
13301 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13302 addr_start, copy_arg);
13303 }
13304
13305 static void
13306 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13307 struct symtabs_and_lines *sals)
13308 {
13309 /* We use the same method for breakpoint on probes. */
13310 bkpt_probe_decode_linespec (b, s, sals);
13311 }
13312
13313 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13314
13315 /* Dprintf breakpoint_ops methods. */
13316
13317 static void
13318 dprintf_re_set (struct breakpoint *b)
13319 {
13320 breakpoint_re_set_default (b);
13321
13322 /* This breakpoint could have been pending, and be resolved now, and
13323 if so, we should now have the extra string. If we don't, the
13324 dprintf was malformed when created, but we couldn't tell because
13325 we can't extract the extra string until the location is
13326 resolved. */
13327 if (b->loc != NULL && b->extra_string == NULL)
13328 error (_("Format string required"));
13329
13330 /* 1 - connect to target 1, that can run breakpoint commands.
13331 2 - create a dprintf, which resolves fine.
13332 3 - disconnect from target 1
13333 4 - connect to target 2, that can NOT run breakpoint commands.
13334
13335 After steps #3/#4, you'll want the dprintf command list to
13336 be updated, because target 1 and 2 may well return different
13337 answers for target_can_run_breakpoint_commands().
13338 Given absence of finer grained resetting, we get to do
13339 it all the time. */
13340 if (b->extra_string != NULL)
13341 update_dprintf_command_list (b);
13342 }
13343
13344 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13345
13346 static void
13347 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13348 {
13349 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13350 tp->extra_string);
13351 print_recreate_thread (tp, fp);
13352 }
13353
13354 /* The breakpoint_ops structure to be used on static tracepoints with
13355 markers (`-m'). */
13356
13357 static void
13358 strace_marker_create_sals_from_address (char **arg,
13359 struct linespec_result *canonical,
13360 enum bptype type_wanted,
13361 char *addr_start, char **copy_arg)
13362 {
13363 struct linespec_sals lsal;
13364
13365 lsal.sals = decode_static_tracepoint_spec (arg);
13366
13367 *copy_arg = savestring (addr_start, *arg - addr_start);
13368
13369 canonical->addr_string = xstrdup (*copy_arg);
13370 lsal.canonical = xstrdup (*copy_arg);
13371 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13372 }
13373
13374 static void
13375 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13376 struct linespec_result *canonical,
13377 struct linespec_sals *lsal,
13378 char *cond_string,
13379 char *extra_string,
13380 enum bptype type_wanted,
13381 enum bpdisp disposition,
13382 int thread,
13383 int task, int ignore_count,
13384 const struct breakpoint_ops *ops,
13385 int from_tty, int enabled,
13386 int internal, unsigned flags)
13387 {
13388 int i;
13389
13390 /* If the user is creating a static tracepoint by marker id
13391 (strace -m MARKER_ID), then store the sals index, so that
13392 breakpoint_re_set can try to match up which of the newly
13393 found markers corresponds to this one, and, don't try to
13394 expand multiple locations for each sal, given than SALS
13395 already should contain all sals for MARKER_ID. */
13396
13397 for (i = 0; i < lsal->sals.nelts; ++i)
13398 {
13399 struct symtabs_and_lines expanded;
13400 struct tracepoint *tp;
13401 struct cleanup *old_chain;
13402 char *addr_string;
13403
13404 expanded.nelts = 1;
13405 expanded.sals = &lsal->sals.sals[i];
13406
13407 addr_string = xstrdup (canonical->addr_string);
13408 old_chain = make_cleanup (xfree, addr_string);
13409
13410 tp = XCNEW (struct tracepoint);
13411 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13412 addr_string, NULL,
13413 cond_string, extra_string,
13414 type_wanted, disposition,
13415 thread, task, ignore_count, ops,
13416 from_tty, enabled, internal, flags,
13417 canonical->special_display);
13418 /* Given that its possible to have multiple markers with
13419 the same string id, if the user is creating a static
13420 tracepoint by marker id ("strace -m MARKER_ID"), then
13421 store the sals index, so that breakpoint_re_set can
13422 try to match up which of the newly found markers
13423 corresponds to this one */
13424 tp->static_trace_marker_id_idx = i;
13425
13426 install_breakpoint (internal, &tp->base, 0);
13427
13428 discard_cleanups (old_chain);
13429 }
13430 }
13431
13432 static void
13433 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13434 struct symtabs_and_lines *sals)
13435 {
13436 struct tracepoint *tp = (struct tracepoint *) b;
13437
13438 *sals = decode_static_tracepoint_spec (s);
13439 if (sals->nelts > tp->static_trace_marker_id_idx)
13440 {
13441 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13442 sals->nelts = 1;
13443 }
13444 else
13445 error (_("marker %s not found"), tp->static_trace_marker_id);
13446 }
13447
13448 static struct breakpoint_ops strace_marker_breakpoint_ops;
13449
13450 static int
13451 strace_marker_p (struct breakpoint *b)
13452 {
13453 return b->ops == &strace_marker_breakpoint_ops;
13454 }
13455
13456 /* Delete a breakpoint and clean up all traces of it in the data
13457 structures. */
13458
13459 void
13460 delete_breakpoint (struct breakpoint *bpt)
13461 {
13462 struct breakpoint *b;
13463
13464 gdb_assert (bpt != NULL);
13465
13466 /* Has this bp already been deleted? This can happen because
13467 multiple lists can hold pointers to bp's. bpstat lists are
13468 especial culprits.
13469
13470 One example of this happening is a watchpoint's scope bp. When
13471 the scope bp triggers, we notice that the watchpoint is out of
13472 scope, and delete it. We also delete its scope bp. But the
13473 scope bp is marked "auto-deleting", and is already on a bpstat.
13474 That bpstat is then checked for auto-deleting bp's, which are
13475 deleted.
13476
13477 A real solution to this problem might involve reference counts in
13478 bp's, and/or giving them pointers back to their referencing
13479 bpstat's, and teaching delete_breakpoint to only free a bp's
13480 storage when no more references were extent. A cheaper bandaid
13481 was chosen. */
13482 if (bpt->type == bp_none)
13483 return;
13484
13485 /* At least avoid this stale reference until the reference counting
13486 of breakpoints gets resolved. */
13487 if (bpt->related_breakpoint != bpt)
13488 {
13489 struct breakpoint *related;
13490 struct watchpoint *w;
13491
13492 if (bpt->type == bp_watchpoint_scope)
13493 w = (struct watchpoint *) bpt->related_breakpoint;
13494 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13495 w = (struct watchpoint *) bpt;
13496 else
13497 w = NULL;
13498 if (w != NULL)
13499 watchpoint_del_at_next_stop (w);
13500
13501 /* Unlink bpt from the bpt->related_breakpoint ring. */
13502 for (related = bpt; related->related_breakpoint != bpt;
13503 related = related->related_breakpoint);
13504 related->related_breakpoint = bpt->related_breakpoint;
13505 bpt->related_breakpoint = bpt;
13506 }
13507
13508 /* watch_command_1 creates a watchpoint but only sets its number if
13509 update_watchpoint succeeds in creating its bp_locations. If there's
13510 a problem in that process, we'll be asked to delete the half-created
13511 watchpoint. In that case, don't announce the deletion. */
13512 if (bpt->number)
13513 observer_notify_breakpoint_deleted (bpt);
13514
13515 if (breakpoint_chain == bpt)
13516 breakpoint_chain = bpt->next;
13517
13518 ALL_BREAKPOINTS (b)
13519 if (b->next == bpt)
13520 {
13521 b->next = bpt->next;
13522 break;
13523 }
13524
13525 /* Be sure no bpstat's are pointing at the breakpoint after it's
13526 been freed. */
13527 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13528 in all threads for now. Note that we cannot just remove bpstats
13529 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13530 commands are associated with the bpstat; if we remove it here,
13531 then the later call to bpstat_do_actions (&stop_bpstat); in
13532 event-top.c won't do anything, and temporary breakpoints with
13533 commands won't work. */
13534
13535 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13536
13537 /* Now that breakpoint is removed from breakpoint list, update the
13538 global location list. This will remove locations that used to
13539 belong to this breakpoint. Do this before freeing the breakpoint
13540 itself, since remove_breakpoint looks at location's owner. It
13541 might be better design to have location completely
13542 self-contained, but it's not the case now. */
13543 update_global_location_list (0);
13544
13545 bpt->ops->dtor (bpt);
13546 /* On the chance that someone will soon try again to delete this
13547 same bp, we mark it as deleted before freeing its storage. */
13548 bpt->type = bp_none;
13549 xfree (bpt);
13550 }
13551
13552 static void
13553 do_delete_breakpoint_cleanup (void *b)
13554 {
13555 delete_breakpoint (b);
13556 }
13557
13558 struct cleanup *
13559 make_cleanup_delete_breakpoint (struct breakpoint *b)
13560 {
13561 return make_cleanup (do_delete_breakpoint_cleanup, b);
13562 }
13563
13564 /* Iterator function to call a user-provided callback function once
13565 for each of B and its related breakpoints. */
13566
13567 static void
13568 iterate_over_related_breakpoints (struct breakpoint *b,
13569 void (*function) (struct breakpoint *,
13570 void *),
13571 void *data)
13572 {
13573 struct breakpoint *related;
13574
13575 related = b;
13576 do
13577 {
13578 struct breakpoint *next;
13579
13580 /* FUNCTION may delete RELATED. */
13581 next = related->related_breakpoint;
13582
13583 if (next == related)
13584 {
13585 /* RELATED is the last ring entry. */
13586 function (related, data);
13587
13588 /* FUNCTION may have deleted it, so we'd never reach back to
13589 B. There's nothing left to do anyway, so just break
13590 out. */
13591 break;
13592 }
13593 else
13594 function (related, data);
13595
13596 related = next;
13597 }
13598 while (related != b);
13599 }
13600
13601 static void
13602 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13603 {
13604 delete_breakpoint (b);
13605 }
13606
13607 /* A callback for map_breakpoint_numbers that calls
13608 delete_breakpoint. */
13609
13610 static void
13611 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13612 {
13613 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13614 }
13615
13616 void
13617 delete_command (char *arg, int from_tty)
13618 {
13619 struct breakpoint *b, *b_tmp;
13620
13621 dont_repeat ();
13622
13623 if (arg == 0)
13624 {
13625 int breaks_to_delete = 0;
13626
13627 /* Delete all breakpoints if no argument. Do not delete
13628 internal breakpoints, these have to be deleted with an
13629 explicit breakpoint number argument. */
13630 ALL_BREAKPOINTS (b)
13631 if (user_breakpoint_p (b))
13632 {
13633 breaks_to_delete = 1;
13634 break;
13635 }
13636
13637 /* Ask user only if there are some breakpoints to delete. */
13638 if (!from_tty
13639 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13640 {
13641 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13642 if (user_breakpoint_p (b))
13643 delete_breakpoint (b);
13644 }
13645 }
13646 else
13647 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13648 }
13649
13650 static int
13651 all_locations_are_pending (struct bp_location *loc)
13652 {
13653 for (; loc; loc = loc->next)
13654 if (!loc->shlib_disabled
13655 && !loc->pspace->executing_startup)
13656 return 0;
13657 return 1;
13658 }
13659
13660 /* Subroutine of update_breakpoint_locations to simplify it.
13661 Return non-zero if multiple fns in list LOC have the same name.
13662 Null names are ignored. */
13663
13664 static int
13665 ambiguous_names_p (struct bp_location *loc)
13666 {
13667 struct bp_location *l;
13668 htab_t htab = htab_create_alloc (13, htab_hash_string,
13669 (int (*) (const void *,
13670 const void *)) streq,
13671 NULL, xcalloc, xfree);
13672
13673 for (l = loc; l != NULL; l = l->next)
13674 {
13675 const char **slot;
13676 const char *name = l->function_name;
13677
13678 /* Allow for some names to be NULL, ignore them. */
13679 if (name == NULL)
13680 continue;
13681
13682 slot = (const char **) htab_find_slot (htab, (const void *) name,
13683 INSERT);
13684 /* NOTE: We can assume slot != NULL here because xcalloc never
13685 returns NULL. */
13686 if (*slot != NULL)
13687 {
13688 htab_delete (htab);
13689 return 1;
13690 }
13691 *slot = name;
13692 }
13693
13694 htab_delete (htab);
13695 return 0;
13696 }
13697
13698 /* When symbols change, it probably means the sources changed as well,
13699 and it might mean the static tracepoint markers are no longer at
13700 the same address or line numbers they used to be at last we
13701 checked. Losing your static tracepoints whenever you rebuild is
13702 undesirable. This function tries to resync/rematch gdb static
13703 tracepoints with the markers on the target, for static tracepoints
13704 that have not been set by marker id. Static tracepoint that have
13705 been set by marker id are reset by marker id in breakpoint_re_set.
13706 The heuristic is:
13707
13708 1) For a tracepoint set at a specific address, look for a marker at
13709 the old PC. If one is found there, assume to be the same marker.
13710 If the name / string id of the marker found is different from the
13711 previous known name, assume that means the user renamed the marker
13712 in the sources, and output a warning.
13713
13714 2) For a tracepoint set at a given line number, look for a marker
13715 at the new address of the old line number. If one is found there,
13716 assume to be the same marker. If the name / string id of the
13717 marker found is different from the previous known name, assume that
13718 means the user renamed the marker in the sources, and output a
13719 warning.
13720
13721 3) If a marker is no longer found at the same address or line, it
13722 may mean the marker no longer exists. But it may also just mean
13723 the code changed a bit. Maybe the user added a few lines of code
13724 that made the marker move up or down (in line number terms). Ask
13725 the target for info about the marker with the string id as we knew
13726 it. If found, update line number and address in the matching
13727 static tracepoint. This will get confused if there's more than one
13728 marker with the same ID (possible in UST, although unadvised
13729 precisely because it confuses tools). */
13730
13731 static struct symtab_and_line
13732 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13733 {
13734 struct tracepoint *tp = (struct tracepoint *) b;
13735 struct static_tracepoint_marker marker;
13736 CORE_ADDR pc;
13737
13738 pc = sal.pc;
13739 if (sal.line)
13740 find_line_pc (sal.symtab, sal.line, &pc);
13741
13742 if (target_static_tracepoint_marker_at (pc, &marker))
13743 {
13744 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13745 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13746 b->number,
13747 tp->static_trace_marker_id, marker.str_id);
13748
13749 xfree (tp->static_trace_marker_id);
13750 tp->static_trace_marker_id = xstrdup (marker.str_id);
13751 release_static_tracepoint_marker (&marker);
13752
13753 return sal;
13754 }
13755
13756 /* Old marker wasn't found on target at lineno. Try looking it up
13757 by string ID. */
13758 if (!sal.explicit_pc
13759 && sal.line != 0
13760 && sal.symtab != NULL
13761 && tp->static_trace_marker_id != NULL)
13762 {
13763 VEC(static_tracepoint_marker_p) *markers;
13764
13765 markers
13766 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13767
13768 if (!VEC_empty(static_tracepoint_marker_p, markers))
13769 {
13770 struct symtab_and_line sal2;
13771 struct symbol *sym;
13772 struct static_tracepoint_marker *tpmarker;
13773 struct ui_out *uiout = current_uiout;
13774
13775 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13776
13777 xfree (tp->static_trace_marker_id);
13778 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13779
13780 warning (_("marker for static tracepoint %d (%s) not "
13781 "found at previous line number"),
13782 b->number, tp->static_trace_marker_id);
13783
13784 init_sal (&sal2);
13785
13786 sal2.pc = tpmarker->address;
13787
13788 sal2 = find_pc_line (tpmarker->address, 0);
13789 sym = find_pc_sect_function (tpmarker->address, NULL);
13790 ui_out_text (uiout, "Now in ");
13791 if (sym)
13792 {
13793 ui_out_field_string (uiout, "func",
13794 SYMBOL_PRINT_NAME (sym));
13795 ui_out_text (uiout, " at ");
13796 }
13797 ui_out_field_string (uiout, "file",
13798 symtab_to_filename_for_display (sal2.symtab));
13799 ui_out_text (uiout, ":");
13800
13801 if (ui_out_is_mi_like_p (uiout))
13802 {
13803 const char *fullname = symtab_to_fullname (sal2.symtab);
13804
13805 ui_out_field_string (uiout, "fullname", fullname);
13806 }
13807
13808 ui_out_field_int (uiout, "line", sal2.line);
13809 ui_out_text (uiout, "\n");
13810
13811 b->loc->line_number = sal2.line;
13812 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13813
13814 xfree (b->addr_string);
13815 b->addr_string = xstrprintf ("%s:%d",
13816 symtab_to_filename_for_display (sal2.symtab),
13817 b->loc->line_number);
13818
13819 /* Might be nice to check if function changed, and warn if
13820 so. */
13821
13822 release_static_tracepoint_marker (tpmarker);
13823 }
13824 }
13825 return sal;
13826 }
13827
13828 /* Returns 1 iff locations A and B are sufficiently same that
13829 we don't need to report breakpoint as changed. */
13830
13831 static int
13832 locations_are_equal (struct bp_location *a, struct bp_location *b)
13833 {
13834 while (a && b)
13835 {
13836 if (a->address != b->address)
13837 return 0;
13838
13839 if (a->shlib_disabled != b->shlib_disabled)
13840 return 0;
13841
13842 if (a->enabled != b->enabled)
13843 return 0;
13844
13845 a = a->next;
13846 b = b->next;
13847 }
13848
13849 if ((a == NULL) != (b == NULL))
13850 return 0;
13851
13852 return 1;
13853 }
13854
13855 /* Create new breakpoint locations for B (a hardware or software breakpoint)
13856 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
13857 a ranged breakpoint. */
13858
13859 void
13860 update_breakpoint_locations (struct breakpoint *b,
13861 struct symtabs_and_lines sals,
13862 struct symtabs_and_lines sals_end)
13863 {
13864 int i;
13865 struct bp_location *existing_locations = b->loc;
13866
13867 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
13868 {
13869 /* Ranged breakpoints have only one start location and one end
13870 location. */
13871 b->enable_state = bp_disabled;
13872 update_global_location_list (1);
13873 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13874 "multiple locations found\n"),
13875 b->number);
13876 return;
13877 }
13878
13879 /* If there's no new locations, and all existing locations are
13880 pending, don't do anything. This optimizes the common case where
13881 all locations are in the same shared library, that was unloaded.
13882 We'd like to retain the location, so that when the library is
13883 loaded again, we don't loose the enabled/disabled status of the
13884 individual locations. */
13885 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
13886 return;
13887
13888 b->loc = NULL;
13889
13890 for (i = 0; i < sals.nelts; ++i)
13891 {
13892 struct bp_location *new_loc;
13893
13894 switch_to_program_space_and_thread (sals.sals[i].pspace);
13895
13896 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
13897
13898 /* Reparse conditions, they might contain references to the
13899 old symtab. */
13900 if (b->cond_string != NULL)
13901 {
13902 const char *s;
13903 volatile struct gdb_exception e;
13904
13905 s = b->cond_string;
13906 TRY_CATCH (e, RETURN_MASK_ERROR)
13907 {
13908 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
13909 block_for_pc (sals.sals[i].pc),
13910 0);
13911 }
13912 if (e.reason < 0)
13913 {
13914 warning (_("failed to reevaluate condition "
13915 "for breakpoint %d: %s"),
13916 b->number, e.message);
13917 new_loc->enabled = 0;
13918 }
13919 }
13920
13921 if (sals_end.nelts)
13922 {
13923 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
13924
13925 new_loc->length = end - sals.sals[0].pc + 1;
13926 }
13927 }
13928
13929 /* Update locations of permanent breakpoints. */
13930 if (b->enable_state == bp_permanent)
13931 make_breakpoint_permanent (b);
13932
13933 /* If possible, carry over 'disable' status from existing
13934 breakpoints. */
13935 {
13936 struct bp_location *e = existing_locations;
13937 /* If there are multiple breakpoints with the same function name,
13938 e.g. for inline functions, comparing function names won't work.
13939 Instead compare pc addresses; this is just a heuristic as things
13940 may have moved, but in practice it gives the correct answer
13941 often enough until a better solution is found. */
13942 int have_ambiguous_names = ambiguous_names_p (b->loc);
13943
13944 for (; e; e = e->next)
13945 {
13946 if (!e->enabled && e->function_name)
13947 {
13948 struct bp_location *l = b->loc;
13949 if (have_ambiguous_names)
13950 {
13951 for (; l; l = l->next)
13952 if (breakpoint_locations_match (e, l))
13953 {
13954 l->enabled = 0;
13955 break;
13956 }
13957 }
13958 else
13959 {
13960 for (; l; l = l->next)
13961 if (l->function_name
13962 && strcmp (e->function_name, l->function_name) == 0)
13963 {
13964 l->enabled = 0;
13965 break;
13966 }
13967 }
13968 }
13969 }
13970 }
13971
13972 if (!locations_are_equal (existing_locations, b->loc))
13973 observer_notify_breakpoint_modified (b);
13974
13975 update_global_location_list (1);
13976 }
13977
13978 /* Find the SaL locations corresponding to the given ADDR_STRING.
13979 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13980
13981 static struct symtabs_and_lines
13982 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
13983 {
13984 char *s;
13985 struct symtabs_and_lines sals = {0};
13986 volatile struct gdb_exception e;
13987
13988 gdb_assert (b->ops != NULL);
13989 s = addr_string;
13990
13991 TRY_CATCH (e, RETURN_MASK_ERROR)
13992 {
13993 b->ops->decode_linespec (b, &s, &sals);
13994 }
13995 if (e.reason < 0)
13996 {
13997 int not_found_and_ok = 0;
13998 /* For pending breakpoints, it's expected that parsing will
13999 fail until the right shared library is loaded. User has
14000 already told to create pending breakpoints and don't need
14001 extra messages. If breakpoint is in bp_shlib_disabled
14002 state, then user already saw the message about that
14003 breakpoint being disabled, and don't want to see more
14004 errors. */
14005 if (e.error == NOT_FOUND_ERROR
14006 && (b->condition_not_parsed
14007 || (b->loc && b->loc->shlib_disabled)
14008 || (b->loc && b->loc->pspace->executing_startup)
14009 || b->enable_state == bp_disabled))
14010 not_found_and_ok = 1;
14011
14012 if (!not_found_and_ok)
14013 {
14014 /* We surely don't want to warn about the same breakpoint
14015 10 times. One solution, implemented here, is disable
14016 the breakpoint on error. Another solution would be to
14017 have separate 'warning emitted' flag. Since this
14018 happens only when a binary has changed, I don't know
14019 which approach is better. */
14020 b->enable_state = bp_disabled;
14021 throw_exception (e);
14022 }
14023 }
14024
14025 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14026 {
14027 int i;
14028
14029 for (i = 0; i < sals.nelts; ++i)
14030 resolve_sal_pc (&sals.sals[i]);
14031 if (b->condition_not_parsed && s && s[0])
14032 {
14033 char *cond_string, *extra_string;
14034 int thread, task;
14035
14036 find_condition_and_thread (s, sals.sals[0].pc,
14037 &cond_string, &thread, &task,
14038 &extra_string);
14039 if (cond_string)
14040 b->cond_string = cond_string;
14041 b->thread = thread;
14042 b->task = task;
14043 if (extra_string)
14044 b->extra_string = extra_string;
14045 b->condition_not_parsed = 0;
14046 }
14047
14048 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14049 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14050
14051 *found = 1;
14052 }
14053 else
14054 *found = 0;
14055
14056 return sals;
14057 }
14058
14059 /* The default re_set method, for typical hardware or software
14060 breakpoints. Reevaluate the breakpoint and recreate its
14061 locations. */
14062
14063 static void
14064 breakpoint_re_set_default (struct breakpoint *b)
14065 {
14066 int found;
14067 struct symtabs_and_lines sals, sals_end;
14068 struct symtabs_and_lines expanded = {0};
14069 struct symtabs_and_lines expanded_end = {0};
14070
14071 sals = addr_string_to_sals (b, b->addr_string, &found);
14072 if (found)
14073 {
14074 make_cleanup (xfree, sals.sals);
14075 expanded = sals;
14076 }
14077
14078 if (b->addr_string_range_end)
14079 {
14080 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14081 if (found)
14082 {
14083 make_cleanup (xfree, sals_end.sals);
14084 expanded_end = sals_end;
14085 }
14086 }
14087
14088 update_breakpoint_locations (b, expanded, expanded_end);
14089 }
14090
14091 /* Default method for creating SALs from an address string. It basically
14092 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14093
14094 static void
14095 create_sals_from_address_default (char **arg,
14096 struct linespec_result *canonical,
14097 enum bptype type_wanted,
14098 char *addr_start, char **copy_arg)
14099 {
14100 parse_breakpoint_sals (arg, canonical);
14101 }
14102
14103 /* Call create_breakpoints_sal for the given arguments. This is the default
14104 function for the `create_breakpoints_sal' method of
14105 breakpoint_ops. */
14106
14107 static void
14108 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14109 struct linespec_result *canonical,
14110 struct linespec_sals *lsal,
14111 char *cond_string,
14112 char *extra_string,
14113 enum bptype type_wanted,
14114 enum bpdisp disposition,
14115 int thread,
14116 int task, int ignore_count,
14117 const struct breakpoint_ops *ops,
14118 int from_tty, int enabled,
14119 int internal, unsigned flags)
14120 {
14121 create_breakpoints_sal (gdbarch, canonical, cond_string,
14122 extra_string,
14123 type_wanted, disposition,
14124 thread, task, ignore_count, ops, from_tty,
14125 enabled, internal, flags);
14126 }
14127
14128 /* Decode the line represented by S by calling decode_line_full. This is the
14129 default function for the `decode_linespec' method of breakpoint_ops. */
14130
14131 static void
14132 decode_linespec_default (struct breakpoint *b, char **s,
14133 struct symtabs_and_lines *sals)
14134 {
14135 struct linespec_result canonical;
14136
14137 init_linespec_result (&canonical);
14138 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14139 (struct symtab *) NULL, 0,
14140 &canonical, multiple_symbols_all,
14141 b->filter);
14142
14143 /* We should get 0 or 1 resulting SALs. */
14144 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14145
14146 if (VEC_length (linespec_sals, canonical.sals) > 0)
14147 {
14148 struct linespec_sals *lsal;
14149
14150 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14151 *sals = lsal->sals;
14152 /* Arrange it so the destructor does not free the
14153 contents. */
14154 lsal->sals.sals = NULL;
14155 }
14156
14157 destroy_linespec_result (&canonical);
14158 }
14159
14160 /* Prepare the global context for a re-set of breakpoint B. */
14161
14162 static struct cleanup *
14163 prepare_re_set_context (struct breakpoint *b)
14164 {
14165 struct cleanup *cleanups;
14166
14167 input_radix = b->input_radix;
14168 cleanups = save_current_space_and_thread ();
14169 if (b->pspace != NULL)
14170 switch_to_program_space_and_thread (b->pspace);
14171 set_language (b->language);
14172
14173 return cleanups;
14174 }
14175
14176 /* Reset a breakpoint given it's struct breakpoint * BINT.
14177 The value we return ends up being the return value from catch_errors.
14178 Unused in this case. */
14179
14180 static int
14181 breakpoint_re_set_one (void *bint)
14182 {
14183 /* Get past catch_errs. */
14184 struct breakpoint *b = (struct breakpoint *) bint;
14185 struct cleanup *cleanups;
14186
14187 cleanups = prepare_re_set_context (b);
14188 b->ops->re_set (b);
14189 do_cleanups (cleanups);
14190 return 0;
14191 }
14192
14193 /* Re-set all breakpoints after symbols have been re-loaded. */
14194 void
14195 breakpoint_re_set (void)
14196 {
14197 struct breakpoint *b, *b_tmp;
14198 enum language save_language;
14199 int save_input_radix;
14200 struct cleanup *old_chain;
14201
14202 save_language = current_language->la_language;
14203 save_input_radix = input_radix;
14204 old_chain = save_current_program_space ();
14205
14206 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14207 {
14208 /* Format possible error msg. */
14209 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14210 b->number);
14211 struct cleanup *cleanups = make_cleanup (xfree, message);
14212 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14213 do_cleanups (cleanups);
14214 }
14215 set_language (save_language);
14216 input_radix = save_input_radix;
14217
14218 jit_breakpoint_re_set ();
14219
14220 do_cleanups (old_chain);
14221
14222 create_overlay_event_breakpoint ();
14223 create_longjmp_master_breakpoint ();
14224 create_std_terminate_master_breakpoint ();
14225 create_exception_master_breakpoint ();
14226 }
14227 \f
14228 /* Reset the thread number of this breakpoint:
14229
14230 - If the breakpoint is for all threads, leave it as-is.
14231 - Else, reset it to the current thread for inferior_ptid. */
14232 void
14233 breakpoint_re_set_thread (struct breakpoint *b)
14234 {
14235 if (b->thread != -1)
14236 {
14237 if (in_thread_list (inferior_ptid))
14238 b->thread = pid_to_thread_id (inferior_ptid);
14239
14240 /* We're being called after following a fork. The new fork is
14241 selected as current, and unless this was a vfork will have a
14242 different program space from the original thread. Reset that
14243 as well. */
14244 b->loc->pspace = current_program_space;
14245 }
14246 }
14247
14248 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14249 If from_tty is nonzero, it prints a message to that effect,
14250 which ends with a period (no newline). */
14251
14252 void
14253 set_ignore_count (int bptnum, int count, int from_tty)
14254 {
14255 struct breakpoint *b;
14256
14257 if (count < 0)
14258 count = 0;
14259
14260 ALL_BREAKPOINTS (b)
14261 if (b->number == bptnum)
14262 {
14263 if (is_tracepoint (b))
14264 {
14265 if (from_tty && count != 0)
14266 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14267 bptnum);
14268 return;
14269 }
14270
14271 b->ignore_count = count;
14272 if (from_tty)
14273 {
14274 if (count == 0)
14275 printf_filtered (_("Will stop next time "
14276 "breakpoint %d is reached."),
14277 bptnum);
14278 else if (count == 1)
14279 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14280 bptnum);
14281 else
14282 printf_filtered (_("Will ignore next %d "
14283 "crossings of breakpoint %d."),
14284 count, bptnum);
14285 }
14286 observer_notify_breakpoint_modified (b);
14287 return;
14288 }
14289
14290 error (_("No breakpoint number %d."), bptnum);
14291 }
14292
14293 /* Command to set ignore-count of breakpoint N to COUNT. */
14294
14295 static void
14296 ignore_command (char *args, int from_tty)
14297 {
14298 char *p = args;
14299 int num;
14300
14301 if (p == 0)
14302 error_no_arg (_("a breakpoint number"));
14303
14304 num = get_number (&p);
14305 if (num == 0)
14306 error (_("bad breakpoint number: '%s'"), args);
14307 if (*p == 0)
14308 error (_("Second argument (specified ignore-count) is missing."));
14309
14310 set_ignore_count (num,
14311 longest_to_int (value_as_long (parse_and_eval (p))),
14312 from_tty);
14313 if (from_tty)
14314 printf_filtered ("\n");
14315 }
14316 \f
14317 /* Call FUNCTION on each of the breakpoints
14318 whose numbers are given in ARGS. */
14319
14320 static void
14321 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14322 void *),
14323 void *data)
14324 {
14325 int num;
14326 struct breakpoint *b, *tmp;
14327 int match;
14328 struct get_number_or_range_state state;
14329
14330 if (args == 0)
14331 error_no_arg (_("one or more breakpoint numbers"));
14332
14333 init_number_or_range (&state, args);
14334
14335 while (!state.finished)
14336 {
14337 char *p = state.string;
14338
14339 match = 0;
14340
14341 num = get_number_or_range (&state);
14342 if (num == 0)
14343 {
14344 warning (_("bad breakpoint number at or near '%s'"), p);
14345 }
14346 else
14347 {
14348 ALL_BREAKPOINTS_SAFE (b, tmp)
14349 if (b->number == num)
14350 {
14351 match = 1;
14352 function (b, data);
14353 break;
14354 }
14355 if (match == 0)
14356 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14357 }
14358 }
14359 }
14360
14361 static struct bp_location *
14362 find_location_by_number (char *number)
14363 {
14364 char *dot = strchr (number, '.');
14365 char *p1;
14366 int bp_num;
14367 int loc_num;
14368 struct breakpoint *b;
14369 struct bp_location *loc;
14370
14371 *dot = '\0';
14372
14373 p1 = number;
14374 bp_num = get_number (&p1);
14375 if (bp_num == 0)
14376 error (_("Bad breakpoint number '%s'"), number);
14377
14378 ALL_BREAKPOINTS (b)
14379 if (b->number == bp_num)
14380 {
14381 break;
14382 }
14383
14384 if (!b || b->number != bp_num)
14385 error (_("Bad breakpoint number '%s'"), number);
14386
14387 p1 = dot+1;
14388 loc_num = get_number (&p1);
14389 if (loc_num == 0)
14390 error (_("Bad breakpoint location number '%s'"), number);
14391
14392 --loc_num;
14393 loc = b->loc;
14394 for (;loc_num && loc; --loc_num, loc = loc->next)
14395 ;
14396 if (!loc)
14397 error (_("Bad breakpoint location number '%s'"), dot+1);
14398
14399 return loc;
14400 }
14401
14402
14403 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14404 If from_tty is nonzero, it prints a message to that effect,
14405 which ends with a period (no newline). */
14406
14407 void
14408 disable_breakpoint (struct breakpoint *bpt)
14409 {
14410 /* Never disable a watchpoint scope breakpoint; we want to
14411 hit them when we leave scope so we can delete both the
14412 watchpoint and its scope breakpoint at that time. */
14413 if (bpt->type == bp_watchpoint_scope)
14414 return;
14415
14416 /* You can't disable permanent breakpoints. */
14417 if (bpt->enable_state == bp_permanent)
14418 return;
14419
14420 bpt->enable_state = bp_disabled;
14421
14422 /* Mark breakpoint locations modified. */
14423 mark_breakpoint_modified (bpt);
14424
14425 if (target_supports_enable_disable_tracepoint ()
14426 && current_trace_status ()->running && is_tracepoint (bpt))
14427 {
14428 struct bp_location *location;
14429
14430 for (location = bpt->loc; location; location = location->next)
14431 target_disable_tracepoint (location);
14432 }
14433
14434 update_global_location_list (0);
14435
14436 observer_notify_breakpoint_modified (bpt);
14437 }
14438
14439 /* A callback for iterate_over_related_breakpoints. */
14440
14441 static void
14442 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14443 {
14444 disable_breakpoint (b);
14445 }
14446
14447 /* A callback for map_breakpoint_numbers that calls
14448 disable_breakpoint. */
14449
14450 static void
14451 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14452 {
14453 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14454 }
14455
14456 static void
14457 disable_command (char *args, int from_tty)
14458 {
14459 if (args == 0)
14460 {
14461 struct breakpoint *bpt;
14462
14463 ALL_BREAKPOINTS (bpt)
14464 if (user_breakpoint_p (bpt))
14465 disable_breakpoint (bpt);
14466 }
14467 else if (strchr (args, '.'))
14468 {
14469 struct bp_location *loc = find_location_by_number (args);
14470 if (loc)
14471 {
14472 if (loc->enabled)
14473 {
14474 loc->enabled = 0;
14475 mark_breakpoint_location_modified (loc);
14476 }
14477 if (target_supports_enable_disable_tracepoint ()
14478 && current_trace_status ()->running && loc->owner
14479 && is_tracepoint (loc->owner))
14480 target_disable_tracepoint (loc);
14481 }
14482 update_global_location_list (0);
14483 }
14484 else
14485 map_breakpoint_numbers (args, do_map_disable_breakpoint, NULL);
14486 }
14487
14488 static void
14489 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14490 int count)
14491 {
14492 int target_resources_ok;
14493
14494 if (bpt->type == bp_hardware_breakpoint)
14495 {
14496 int i;
14497 i = hw_breakpoint_used_count ();
14498 target_resources_ok =
14499 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14500 i + 1, 0);
14501 if (target_resources_ok == 0)
14502 error (_("No hardware breakpoint support in the target."));
14503 else if (target_resources_ok < 0)
14504 error (_("Hardware breakpoints used exceeds limit."));
14505 }
14506
14507 if (is_watchpoint (bpt))
14508 {
14509 /* Initialize it just to avoid a GCC false warning. */
14510 enum enable_state orig_enable_state = 0;
14511 volatile struct gdb_exception e;
14512
14513 TRY_CATCH (e, RETURN_MASK_ALL)
14514 {
14515 struct watchpoint *w = (struct watchpoint *) bpt;
14516
14517 orig_enable_state = bpt->enable_state;
14518 bpt->enable_state = bp_enabled;
14519 update_watchpoint (w, 1 /* reparse */);
14520 }
14521 if (e.reason < 0)
14522 {
14523 bpt->enable_state = orig_enable_state;
14524 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14525 bpt->number);
14526 return;
14527 }
14528 }
14529
14530 if (bpt->enable_state != bp_permanent)
14531 bpt->enable_state = bp_enabled;
14532
14533 bpt->enable_state = bp_enabled;
14534
14535 /* Mark breakpoint locations modified. */
14536 mark_breakpoint_modified (bpt);
14537
14538 if (target_supports_enable_disable_tracepoint ()
14539 && current_trace_status ()->running && is_tracepoint (bpt))
14540 {
14541 struct bp_location *location;
14542
14543 for (location = bpt->loc; location; location = location->next)
14544 target_enable_tracepoint (location);
14545 }
14546
14547 bpt->disposition = disposition;
14548 bpt->enable_count = count;
14549 update_global_location_list (1);
14550
14551 observer_notify_breakpoint_modified (bpt);
14552 }
14553
14554
14555 void
14556 enable_breakpoint (struct breakpoint *bpt)
14557 {
14558 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14559 }
14560
14561 static void
14562 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14563 {
14564 enable_breakpoint (bpt);
14565 }
14566
14567 /* A callback for map_breakpoint_numbers that calls
14568 enable_breakpoint. */
14569
14570 static void
14571 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14572 {
14573 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14574 }
14575
14576 /* The enable command enables the specified breakpoints (or all defined
14577 breakpoints) so they once again become (or continue to be) effective
14578 in stopping the inferior. */
14579
14580 static void
14581 enable_command (char *args, int from_tty)
14582 {
14583 if (args == 0)
14584 {
14585 struct breakpoint *bpt;
14586
14587 ALL_BREAKPOINTS (bpt)
14588 if (user_breakpoint_p (bpt))
14589 enable_breakpoint (bpt);
14590 }
14591 else if (strchr (args, '.'))
14592 {
14593 struct bp_location *loc = find_location_by_number (args);
14594 if (loc)
14595 {
14596 if (!loc->enabled)
14597 {
14598 loc->enabled = 1;
14599 mark_breakpoint_location_modified (loc);
14600 }
14601 if (target_supports_enable_disable_tracepoint ()
14602 && current_trace_status ()->running && loc->owner
14603 && is_tracepoint (loc->owner))
14604 target_enable_tracepoint (loc);
14605 }
14606 update_global_location_list (1);
14607 }
14608 else
14609 map_breakpoint_numbers (args, do_map_enable_breakpoint, NULL);
14610 }
14611
14612 /* This struct packages up disposition data for application to multiple
14613 breakpoints. */
14614
14615 struct disp_data
14616 {
14617 enum bpdisp disp;
14618 int count;
14619 };
14620
14621 static void
14622 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14623 {
14624 struct disp_data disp_data = *(struct disp_data *) arg;
14625
14626 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14627 }
14628
14629 static void
14630 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14631 {
14632 struct disp_data disp = { disp_disable, 1 };
14633
14634 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14635 }
14636
14637 static void
14638 enable_once_command (char *args, int from_tty)
14639 {
14640 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14641 }
14642
14643 static void
14644 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14645 {
14646 struct disp_data disp = { disp_disable, *(int *) countptr };
14647
14648 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14649 }
14650
14651 static void
14652 enable_count_command (char *args, int from_tty)
14653 {
14654 int count = get_number (&args);
14655
14656 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14657 }
14658
14659 static void
14660 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14661 {
14662 struct disp_data disp = { disp_del, 1 };
14663
14664 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14665 }
14666
14667 static void
14668 enable_delete_command (char *args, int from_tty)
14669 {
14670 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14671 }
14672 \f
14673 static void
14674 set_breakpoint_cmd (char *args, int from_tty)
14675 {
14676 }
14677
14678 static void
14679 show_breakpoint_cmd (char *args, int from_tty)
14680 {
14681 }
14682
14683 /* Invalidate last known value of any hardware watchpoint if
14684 the memory which that value represents has been written to by
14685 GDB itself. */
14686
14687 static void
14688 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14689 CORE_ADDR addr, ssize_t len,
14690 const bfd_byte *data)
14691 {
14692 struct breakpoint *bp;
14693
14694 ALL_BREAKPOINTS (bp)
14695 if (bp->enable_state == bp_enabled
14696 && bp->type == bp_hardware_watchpoint)
14697 {
14698 struct watchpoint *wp = (struct watchpoint *) bp;
14699
14700 if (wp->val_valid && wp->val)
14701 {
14702 struct bp_location *loc;
14703
14704 for (loc = bp->loc; loc != NULL; loc = loc->next)
14705 if (loc->loc_type == bp_loc_hardware_watchpoint
14706 && loc->address + loc->length > addr
14707 && addr + len > loc->address)
14708 {
14709 value_free (wp->val);
14710 wp->val = NULL;
14711 wp->val_valid = 0;
14712 }
14713 }
14714 }
14715 }
14716
14717 /* Create and insert a raw software breakpoint at PC. Return an
14718 identifier, which should be used to remove the breakpoint later.
14719 In general, places which call this should be using something on the
14720 breakpoint chain instead; this function should be eliminated
14721 someday. */
14722
14723 void *
14724 deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
14725 struct address_space *aspace, CORE_ADDR pc)
14726 {
14727 struct bp_target_info *bp_tgt;
14728
14729 bp_tgt = XZALLOC (struct bp_target_info);
14730
14731 bp_tgt->placed_address_space = aspace;
14732 bp_tgt->placed_address = pc;
14733
14734 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
14735 {
14736 /* Could not insert the breakpoint. */
14737 xfree (bp_tgt);
14738 return NULL;
14739 }
14740
14741 return bp_tgt;
14742 }
14743
14744 /* Remove a breakpoint BP inserted by
14745 deprecated_insert_raw_breakpoint. */
14746
14747 int
14748 deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
14749 {
14750 struct bp_target_info *bp_tgt = bp;
14751 int ret;
14752
14753 ret = target_remove_breakpoint (gdbarch, bp_tgt);
14754 xfree (bp_tgt);
14755
14756 return ret;
14757 }
14758
14759 /* One (or perhaps two) breakpoints used for software single
14760 stepping. */
14761
14762 static void *single_step_breakpoints[2];
14763 static struct gdbarch *single_step_gdbarch[2];
14764
14765 /* Create and insert a breakpoint for software single step. */
14766
14767 void
14768 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14769 struct address_space *aspace,
14770 CORE_ADDR next_pc)
14771 {
14772 void **bpt_p;
14773
14774 if (single_step_breakpoints[0] == NULL)
14775 {
14776 bpt_p = &single_step_breakpoints[0];
14777 single_step_gdbarch[0] = gdbarch;
14778 }
14779 else
14780 {
14781 gdb_assert (single_step_breakpoints[1] == NULL);
14782 bpt_p = &single_step_breakpoints[1];
14783 single_step_gdbarch[1] = gdbarch;
14784 }
14785
14786 /* NOTE drow/2006-04-11: A future improvement to this function would
14787 be to only create the breakpoints once, and actually put them on
14788 the breakpoint chain. That would let us use set_raw_breakpoint.
14789 We could adjust the addresses each time they were needed. Doing
14790 this requires corresponding changes elsewhere where single step
14791 breakpoints are handled, however. So, for now, we use this. */
14792
14793 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
14794 if (*bpt_p == NULL)
14795 error (_("Could not insert single-step breakpoint at %s"),
14796 paddress (gdbarch, next_pc));
14797 }
14798
14799 /* Check if the breakpoints used for software single stepping
14800 were inserted or not. */
14801
14802 int
14803 single_step_breakpoints_inserted (void)
14804 {
14805 return (single_step_breakpoints[0] != NULL
14806 || single_step_breakpoints[1] != NULL);
14807 }
14808
14809 /* Remove and delete any breakpoints used for software single step. */
14810
14811 void
14812 remove_single_step_breakpoints (void)
14813 {
14814 gdb_assert (single_step_breakpoints[0] != NULL);
14815
14816 /* See insert_single_step_breakpoint for more about this deprecated
14817 call. */
14818 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
14819 single_step_breakpoints[0]);
14820 single_step_gdbarch[0] = NULL;
14821 single_step_breakpoints[0] = NULL;
14822
14823 if (single_step_breakpoints[1] != NULL)
14824 {
14825 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
14826 single_step_breakpoints[1]);
14827 single_step_gdbarch[1] = NULL;
14828 single_step_breakpoints[1] = NULL;
14829 }
14830 }
14831
14832 /* Delete software single step breakpoints without removing them from
14833 the inferior. This is intended to be used if the inferior's address
14834 space where they were inserted is already gone, e.g. after exit or
14835 exec. */
14836
14837 void
14838 cancel_single_step_breakpoints (void)
14839 {
14840 int i;
14841
14842 for (i = 0; i < 2; i++)
14843 if (single_step_breakpoints[i])
14844 {
14845 xfree (single_step_breakpoints[i]);
14846 single_step_breakpoints[i] = NULL;
14847 single_step_gdbarch[i] = NULL;
14848 }
14849 }
14850
14851 /* Detach software single-step breakpoints from INFERIOR_PTID without
14852 removing them. */
14853
14854 static void
14855 detach_single_step_breakpoints (void)
14856 {
14857 int i;
14858
14859 for (i = 0; i < 2; i++)
14860 if (single_step_breakpoints[i])
14861 target_remove_breakpoint (single_step_gdbarch[i],
14862 single_step_breakpoints[i]);
14863 }
14864
14865 /* Check whether a software single-step breakpoint is inserted at
14866 PC. */
14867
14868 static int
14869 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
14870 CORE_ADDR pc)
14871 {
14872 int i;
14873
14874 for (i = 0; i < 2; i++)
14875 {
14876 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
14877 if (bp_tgt
14878 && breakpoint_address_match (bp_tgt->placed_address_space,
14879 bp_tgt->placed_address,
14880 aspace, pc))
14881 return 1;
14882 }
14883
14884 return 0;
14885 }
14886
14887 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
14888 non-zero otherwise. */
14889 static int
14890 is_syscall_catchpoint_enabled (struct breakpoint *bp)
14891 {
14892 if (syscall_catchpoint_p (bp)
14893 && bp->enable_state != bp_disabled
14894 && bp->enable_state != bp_call_disabled)
14895 return 1;
14896 else
14897 return 0;
14898 }
14899
14900 int
14901 catch_syscall_enabled (void)
14902 {
14903 struct catch_syscall_inferior_data *inf_data
14904 = get_catch_syscall_inferior_data (current_inferior ());
14905
14906 return inf_data->total_syscalls_count != 0;
14907 }
14908
14909 int
14910 catching_syscall_number (int syscall_number)
14911 {
14912 struct breakpoint *bp;
14913
14914 ALL_BREAKPOINTS (bp)
14915 if (is_syscall_catchpoint_enabled (bp))
14916 {
14917 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
14918
14919 if (c->syscalls_to_be_caught)
14920 {
14921 int i, iter;
14922 for (i = 0;
14923 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
14924 i++)
14925 if (syscall_number == iter)
14926 return 1;
14927 }
14928 else
14929 return 1;
14930 }
14931
14932 return 0;
14933 }
14934
14935 /* Complete syscall names. Used by "catch syscall". */
14936 static VEC (char_ptr) *
14937 catch_syscall_completer (struct cmd_list_element *cmd,
14938 const char *text, const char *word)
14939 {
14940 const char **list = get_syscall_names ();
14941 VEC (char_ptr) *retlist
14942 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
14943
14944 xfree (list);
14945 return retlist;
14946 }
14947
14948 /* Tracepoint-specific operations. */
14949
14950 /* Set tracepoint count to NUM. */
14951 static void
14952 set_tracepoint_count (int num)
14953 {
14954 tracepoint_count = num;
14955 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14956 }
14957
14958 static void
14959 trace_command (char *arg, int from_tty)
14960 {
14961 struct breakpoint_ops *ops;
14962 const char *arg_cp = arg;
14963
14964 if (arg && probe_linespec_to_ops (&arg_cp))
14965 ops = &tracepoint_probe_breakpoint_ops;
14966 else
14967 ops = &tracepoint_breakpoint_ops;
14968
14969 create_breakpoint (get_current_arch (),
14970 arg,
14971 NULL, 0, NULL, 1 /* parse arg */,
14972 0 /* tempflag */,
14973 bp_tracepoint /* type_wanted */,
14974 0 /* Ignore count */,
14975 pending_break_support,
14976 ops,
14977 from_tty,
14978 1 /* enabled */,
14979 0 /* internal */, 0);
14980 }
14981
14982 static void
14983 ftrace_command (char *arg, int from_tty)
14984 {
14985 create_breakpoint (get_current_arch (),
14986 arg,
14987 NULL, 0, NULL, 1 /* parse arg */,
14988 0 /* tempflag */,
14989 bp_fast_tracepoint /* type_wanted */,
14990 0 /* Ignore count */,
14991 pending_break_support,
14992 &tracepoint_breakpoint_ops,
14993 from_tty,
14994 1 /* enabled */,
14995 0 /* internal */, 0);
14996 }
14997
14998 /* strace command implementation. Creates a static tracepoint. */
14999
15000 static void
15001 strace_command (char *arg, int from_tty)
15002 {
15003 struct breakpoint_ops *ops;
15004
15005 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15006 or with a normal static tracepoint. */
15007 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15008 ops = &strace_marker_breakpoint_ops;
15009 else
15010 ops = &tracepoint_breakpoint_ops;
15011
15012 create_breakpoint (get_current_arch (),
15013 arg,
15014 NULL, 0, NULL, 1 /* parse arg */,
15015 0 /* tempflag */,
15016 bp_static_tracepoint /* type_wanted */,
15017 0 /* Ignore count */,
15018 pending_break_support,
15019 ops,
15020 from_tty,
15021 1 /* enabled */,
15022 0 /* internal */, 0);
15023 }
15024
15025 /* Set up a fake reader function that gets command lines from a linked
15026 list that was acquired during tracepoint uploading. */
15027
15028 static struct uploaded_tp *this_utp;
15029 static int next_cmd;
15030
15031 static char *
15032 read_uploaded_action (void)
15033 {
15034 char *rslt;
15035
15036 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15037
15038 next_cmd++;
15039
15040 return rslt;
15041 }
15042
15043 /* Given information about a tracepoint as recorded on a target (which
15044 can be either a live system or a trace file), attempt to create an
15045 equivalent GDB tracepoint. This is not a reliable process, since
15046 the target does not necessarily have all the information used when
15047 the tracepoint was originally defined. */
15048
15049 struct tracepoint *
15050 create_tracepoint_from_upload (struct uploaded_tp *utp)
15051 {
15052 char *addr_str, small_buf[100];
15053 struct tracepoint *tp;
15054
15055 if (utp->at_string)
15056 addr_str = utp->at_string;
15057 else
15058 {
15059 /* In the absence of a source location, fall back to raw
15060 address. Since there is no way to confirm that the address
15061 means the same thing as when the trace was started, warn the
15062 user. */
15063 warning (_("Uploaded tracepoint %d has no "
15064 "source location, using raw address"),
15065 utp->number);
15066 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15067 addr_str = small_buf;
15068 }
15069
15070 /* There's not much we can do with a sequence of bytecodes. */
15071 if (utp->cond && !utp->cond_string)
15072 warning (_("Uploaded tracepoint %d condition "
15073 "has no source form, ignoring it"),
15074 utp->number);
15075
15076 if (!create_breakpoint (get_current_arch (),
15077 addr_str,
15078 utp->cond_string, -1, NULL,
15079 0 /* parse cond/thread */,
15080 0 /* tempflag */,
15081 utp->type /* type_wanted */,
15082 0 /* Ignore count */,
15083 pending_break_support,
15084 &tracepoint_breakpoint_ops,
15085 0 /* from_tty */,
15086 utp->enabled /* enabled */,
15087 0 /* internal */,
15088 CREATE_BREAKPOINT_FLAGS_INSERTED))
15089 return NULL;
15090
15091 /* Get the tracepoint we just created. */
15092 tp = get_tracepoint (tracepoint_count);
15093 gdb_assert (tp != NULL);
15094
15095 if (utp->pass > 0)
15096 {
15097 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15098 tp->base.number);
15099
15100 trace_pass_command (small_buf, 0);
15101 }
15102
15103 /* If we have uploaded versions of the original commands, set up a
15104 special-purpose "reader" function and call the usual command line
15105 reader, then pass the result to the breakpoint command-setting
15106 function. */
15107 if (!VEC_empty (char_ptr, utp->cmd_strings))
15108 {
15109 struct command_line *cmd_list;
15110
15111 this_utp = utp;
15112 next_cmd = 0;
15113
15114 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15115
15116 breakpoint_set_commands (&tp->base, cmd_list);
15117 }
15118 else if (!VEC_empty (char_ptr, utp->actions)
15119 || !VEC_empty (char_ptr, utp->step_actions))
15120 warning (_("Uploaded tracepoint %d actions "
15121 "have no source form, ignoring them"),
15122 utp->number);
15123
15124 /* Copy any status information that might be available. */
15125 tp->base.hit_count = utp->hit_count;
15126 tp->traceframe_usage = utp->traceframe_usage;
15127
15128 return tp;
15129 }
15130
15131 /* Print information on tracepoint number TPNUM_EXP, or all if
15132 omitted. */
15133
15134 static void
15135 tracepoints_info (char *args, int from_tty)
15136 {
15137 struct ui_out *uiout = current_uiout;
15138 int num_printed;
15139
15140 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15141
15142 if (num_printed == 0)
15143 {
15144 if (args == NULL || *args == '\0')
15145 ui_out_message (uiout, 0, "No tracepoints.\n");
15146 else
15147 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15148 }
15149
15150 default_collect_info ();
15151 }
15152
15153 /* The 'enable trace' command enables tracepoints.
15154 Not supported by all targets. */
15155 static void
15156 enable_trace_command (char *args, int from_tty)
15157 {
15158 enable_command (args, from_tty);
15159 }
15160
15161 /* The 'disable trace' command disables tracepoints.
15162 Not supported by all targets. */
15163 static void
15164 disable_trace_command (char *args, int from_tty)
15165 {
15166 disable_command (args, from_tty);
15167 }
15168
15169 /* Remove a tracepoint (or all if no argument). */
15170 static void
15171 delete_trace_command (char *arg, int from_tty)
15172 {
15173 struct breakpoint *b, *b_tmp;
15174
15175 dont_repeat ();
15176
15177 if (arg == 0)
15178 {
15179 int breaks_to_delete = 0;
15180
15181 /* Delete all breakpoints if no argument.
15182 Do not delete internal or call-dummy breakpoints, these
15183 have to be deleted with an explicit breakpoint number
15184 argument. */
15185 ALL_TRACEPOINTS (b)
15186 if (is_tracepoint (b) && user_breakpoint_p (b))
15187 {
15188 breaks_to_delete = 1;
15189 break;
15190 }
15191
15192 /* Ask user only if there are some breakpoints to delete. */
15193 if (!from_tty
15194 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15195 {
15196 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15197 if (is_tracepoint (b) && user_breakpoint_p (b))
15198 delete_breakpoint (b);
15199 }
15200 }
15201 else
15202 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15203 }
15204
15205 /* Helper function for trace_pass_command. */
15206
15207 static void
15208 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15209 {
15210 tp->pass_count = count;
15211 observer_notify_breakpoint_modified (&tp->base);
15212 if (from_tty)
15213 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15214 tp->base.number, count);
15215 }
15216
15217 /* Set passcount for tracepoint.
15218
15219 First command argument is passcount, second is tracepoint number.
15220 If tracepoint number omitted, apply to most recently defined.
15221 Also accepts special argument "all". */
15222
15223 static void
15224 trace_pass_command (char *args, int from_tty)
15225 {
15226 struct tracepoint *t1;
15227 unsigned int count;
15228
15229 if (args == 0 || *args == 0)
15230 error (_("passcount command requires an "
15231 "argument (count + optional TP num)"));
15232
15233 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15234
15235 args = skip_spaces (args);
15236 if (*args && strncasecmp (args, "all", 3) == 0)
15237 {
15238 struct breakpoint *b;
15239
15240 args += 3; /* Skip special argument "all". */
15241 if (*args)
15242 error (_("Junk at end of arguments."));
15243
15244 ALL_TRACEPOINTS (b)
15245 {
15246 t1 = (struct tracepoint *) b;
15247 trace_pass_set_count (t1, count, from_tty);
15248 }
15249 }
15250 else if (*args == '\0')
15251 {
15252 t1 = get_tracepoint_by_number (&args, NULL, 1);
15253 if (t1)
15254 trace_pass_set_count (t1, count, from_tty);
15255 }
15256 else
15257 {
15258 struct get_number_or_range_state state;
15259
15260 init_number_or_range (&state, args);
15261 while (!state.finished)
15262 {
15263 t1 = get_tracepoint_by_number (&args, &state, 1);
15264 if (t1)
15265 trace_pass_set_count (t1, count, from_tty);
15266 }
15267 }
15268 }
15269
15270 struct tracepoint *
15271 get_tracepoint (int num)
15272 {
15273 struct breakpoint *t;
15274
15275 ALL_TRACEPOINTS (t)
15276 if (t->number == num)
15277 return (struct tracepoint *) t;
15278
15279 return NULL;
15280 }
15281
15282 /* Find the tracepoint with the given target-side number (which may be
15283 different from the tracepoint number after disconnecting and
15284 reconnecting). */
15285
15286 struct tracepoint *
15287 get_tracepoint_by_number_on_target (int num)
15288 {
15289 struct breakpoint *b;
15290
15291 ALL_TRACEPOINTS (b)
15292 {
15293 struct tracepoint *t = (struct tracepoint *) b;
15294
15295 if (t->number_on_target == num)
15296 return t;
15297 }
15298
15299 return NULL;
15300 }
15301
15302 /* Utility: parse a tracepoint number and look it up in the list.
15303 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15304 If OPTIONAL_P is true, then if the argument is missing, the most
15305 recent tracepoint (tracepoint_count) is returned. */
15306 struct tracepoint *
15307 get_tracepoint_by_number (char **arg,
15308 struct get_number_or_range_state *state,
15309 int optional_p)
15310 {
15311 struct breakpoint *t;
15312 int tpnum;
15313 char *instring = arg == NULL ? NULL : *arg;
15314
15315 if (state)
15316 {
15317 gdb_assert (!state->finished);
15318 tpnum = get_number_or_range (state);
15319 }
15320 else if (arg == NULL || *arg == NULL || ! **arg)
15321 {
15322 if (optional_p)
15323 tpnum = tracepoint_count;
15324 else
15325 error_no_arg (_("tracepoint number"));
15326 }
15327 else
15328 tpnum = get_number (arg);
15329
15330 if (tpnum <= 0)
15331 {
15332 if (instring && *instring)
15333 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15334 instring);
15335 else
15336 printf_filtered (_("Tracepoint argument missing "
15337 "and no previous tracepoint\n"));
15338 return NULL;
15339 }
15340
15341 ALL_TRACEPOINTS (t)
15342 if (t->number == tpnum)
15343 {
15344 return (struct tracepoint *) t;
15345 }
15346
15347 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15348 return NULL;
15349 }
15350
15351 void
15352 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15353 {
15354 if (b->thread != -1)
15355 fprintf_unfiltered (fp, " thread %d", b->thread);
15356
15357 if (b->task != 0)
15358 fprintf_unfiltered (fp, " task %d", b->task);
15359
15360 fprintf_unfiltered (fp, "\n");
15361 }
15362
15363 /* Save information on user settable breakpoints (watchpoints, etc) to
15364 a new script file named FILENAME. If FILTER is non-NULL, call it
15365 on each breakpoint and only include the ones for which it returns
15366 non-zero. */
15367
15368 static void
15369 save_breakpoints (char *filename, int from_tty,
15370 int (*filter) (const struct breakpoint *))
15371 {
15372 struct breakpoint *tp;
15373 int any = 0;
15374 char *pathname;
15375 struct cleanup *cleanup;
15376 struct ui_file *fp;
15377 int extra_trace_bits = 0;
15378
15379 if (filename == 0 || *filename == 0)
15380 error (_("Argument required (file name in which to save)"));
15381
15382 /* See if we have anything to save. */
15383 ALL_BREAKPOINTS (tp)
15384 {
15385 /* Skip internal and momentary breakpoints. */
15386 if (!user_breakpoint_p (tp))
15387 continue;
15388
15389 /* If we have a filter, only save the breakpoints it accepts. */
15390 if (filter && !filter (tp))
15391 continue;
15392
15393 any = 1;
15394
15395 if (is_tracepoint (tp))
15396 {
15397 extra_trace_bits = 1;
15398
15399 /* We can stop searching. */
15400 break;
15401 }
15402 }
15403
15404 if (!any)
15405 {
15406 warning (_("Nothing to save."));
15407 return;
15408 }
15409
15410 pathname = tilde_expand (filename);
15411 cleanup = make_cleanup (xfree, pathname);
15412 fp = gdb_fopen (pathname, "w");
15413 if (!fp)
15414 error (_("Unable to open file '%s' for saving (%s)"),
15415 filename, safe_strerror (errno));
15416 make_cleanup_ui_file_delete (fp);
15417
15418 if (extra_trace_bits)
15419 save_trace_state_variables (fp);
15420
15421 ALL_BREAKPOINTS (tp)
15422 {
15423 /* Skip internal and momentary breakpoints. */
15424 if (!user_breakpoint_p (tp))
15425 continue;
15426
15427 /* If we have a filter, only save the breakpoints it accepts. */
15428 if (filter && !filter (tp))
15429 continue;
15430
15431 tp->ops->print_recreate (tp, fp);
15432
15433 /* Note, we can't rely on tp->number for anything, as we can't
15434 assume the recreated breakpoint numbers will match. Use $bpnum
15435 instead. */
15436
15437 if (tp->cond_string)
15438 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15439
15440 if (tp->ignore_count)
15441 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15442
15443 if (tp->type != bp_dprintf && tp->commands)
15444 {
15445 volatile struct gdb_exception ex;
15446
15447 fprintf_unfiltered (fp, " commands\n");
15448
15449 ui_out_redirect (current_uiout, fp);
15450 TRY_CATCH (ex, RETURN_MASK_ALL)
15451 {
15452 print_command_lines (current_uiout, tp->commands->commands, 2);
15453 }
15454 ui_out_redirect (current_uiout, NULL);
15455
15456 if (ex.reason < 0)
15457 throw_exception (ex);
15458
15459 fprintf_unfiltered (fp, " end\n");
15460 }
15461
15462 if (tp->enable_state == bp_disabled)
15463 fprintf_unfiltered (fp, "disable\n");
15464
15465 /* If this is a multi-location breakpoint, check if the locations
15466 should be individually disabled. Watchpoint locations are
15467 special, and not user visible. */
15468 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15469 {
15470 struct bp_location *loc;
15471 int n = 1;
15472
15473 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15474 if (!loc->enabled)
15475 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15476 }
15477 }
15478
15479 if (extra_trace_bits && *default_collect)
15480 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15481
15482 do_cleanups (cleanup);
15483 if (from_tty)
15484 printf_filtered (_("Saved to file '%s'.\n"), filename);
15485 }
15486
15487 /* The `save breakpoints' command. */
15488
15489 static void
15490 save_breakpoints_command (char *args, int from_tty)
15491 {
15492 save_breakpoints (args, from_tty, NULL);
15493 }
15494
15495 /* The `save tracepoints' command. */
15496
15497 static void
15498 save_tracepoints_command (char *args, int from_tty)
15499 {
15500 save_breakpoints (args, from_tty, is_tracepoint);
15501 }
15502
15503 /* Create a vector of all tracepoints. */
15504
15505 VEC(breakpoint_p) *
15506 all_tracepoints (void)
15507 {
15508 VEC(breakpoint_p) *tp_vec = 0;
15509 struct breakpoint *tp;
15510
15511 ALL_TRACEPOINTS (tp)
15512 {
15513 VEC_safe_push (breakpoint_p, tp_vec, tp);
15514 }
15515
15516 return tp_vec;
15517 }
15518
15519 \f
15520 /* This help string is used for the break, hbreak, tbreak and thbreak
15521 commands. It is defined as a macro to prevent duplication.
15522 COMMAND should be a string constant containing the name of the
15523 command. */
15524 #define BREAK_ARGS_HELP(command) \
15525 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15526 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15527 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15528 guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
15529 LOCATION may be a line number, function name, or \"*\" and an address.\n\
15530 If a line number is specified, break at start of code for that line.\n\
15531 If a function is specified, break at start of code for that function.\n\
15532 If an address is specified, break at that exact address.\n\
15533 With no LOCATION, uses current execution address of the selected\n\
15534 stack frame. This is useful for breaking on return to a stack frame.\n\
15535 \n\
15536 THREADNUM is the number from \"info threads\".\n\
15537 CONDITION is a boolean expression.\n\
15538 \n\
15539 Multiple breakpoints at one place are permitted, and useful if their\n\
15540 conditions are different.\n\
15541 \n\
15542 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15543
15544 /* List of subcommands for "catch". */
15545 static struct cmd_list_element *catch_cmdlist;
15546
15547 /* List of subcommands for "tcatch". */
15548 static struct cmd_list_element *tcatch_cmdlist;
15549
15550 void
15551 add_catch_command (char *name, char *docstring,
15552 void (*sfunc) (char *args, int from_tty,
15553 struct cmd_list_element *command),
15554 completer_ftype *completer,
15555 void *user_data_catch,
15556 void *user_data_tcatch)
15557 {
15558 struct cmd_list_element *command;
15559
15560 command = add_cmd (name, class_breakpoint, NULL, docstring,
15561 &catch_cmdlist);
15562 set_cmd_sfunc (command, sfunc);
15563 set_cmd_context (command, user_data_catch);
15564 set_cmd_completer (command, completer);
15565
15566 command = add_cmd (name, class_breakpoint, NULL, docstring,
15567 &tcatch_cmdlist);
15568 set_cmd_sfunc (command, sfunc);
15569 set_cmd_context (command, user_data_tcatch);
15570 set_cmd_completer (command, completer);
15571 }
15572
15573 static void
15574 clear_syscall_counts (struct inferior *inf)
15575 {
15576 struct catch_syscall_inferior_data *inf_data
15577 = get_catch_syscall_inferior_data (inf);
15578
15579 inf_data->total_syscalls_count = 0;
15580 inf_data->any_syscall_count = 0;
15581 VEC_free (int, inf_data->syscalls_counts);
15582 }
15583
15584 static void
15585 save_command (char *arg, int from_tty)
15586 {
15587 printf_unfiltered (_("\"save\" must be followed by "
15588 "the name of a save subcommand.\n"));
15589 help_list (save_cmdlist, "save ", -1, gdb_stdout);
15590 }
15591
15592 struct breakpoint *
15593 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15594 void *data)
15595 {
15596 struct breakpoint *b, *b_tmp;
15597
15598 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15599 {
15600 if ((*callback) (b, data))
15601 return b;
15602 }
15603
15604 return NULL;
15605 }
15606
15607 /* Zero if any of the breakpoint's locations could be a location where
15608 functions have been inlined, nonzero otherwise. */
15609
15610 static int
15611 is_non_inline_function (struct breakpoint *b)
15612 {
15613 /* The shared library event breakpoint is set on the address of a
15614 non-inline function. */
15615 if (b->type == bp_shlib_event)
15616 return 1;
15617
15618 return 0;
15619 }
15620
15621 /* Nonzero if the specified PC cannot be a location where functions
15622 have been inlined. */
15623
15624 int
15625 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15626 const struct target_waitstatus *ws)
15627 {
15628 struct breakpoint *b;
15629 struct bp_location *bl;
15630
15631 ALL_BREAKPOINTS (b)
15632 {
15633 if (!is_non_inline_function (b))
15634 continue;
15635
15636 for (bl = b->loc; bl != NULL; bl = bl->next)
15637 {
15638 if (!bl->shlib_disabled
15639 && bpstat_check_location (bl, aspace, pc, ws))
15640 return 1;
15641 }
15642 }
15643
15644 return 0;
15645 }
15646
15647 /* Remove any references to OBJFILE which is going to be freed. */
15648
15649 void
15650 breakpoint_free_objfile (struct objfile *objfile)
15651 {
15652 struct bp_location **locp, *loc;
15653
15654 ALL_BP_LOCATIONS (loc, locp)
15655 if (loc->symtab != NULL && loc->symtab->objfile == objfile)
15656 loc->symtab = NULL;
15657 }
15658
15659 void
15660 initialize_breakpoint_ops (void)
15661 {
15662 static int initialized = 0;
15663
15664 struct breakpoint_ops *ops;
15665
15666 if (initialized)
15667 return;
15668 initialized = 1;
15669
15670 /* The breakpoint_ops structure to be inherit by all kinds of
15671 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15672 internal and momentary breakpoints, etc.). */
15673 ops = &bkpt_base_breakpoint_ops;
15674 *ops = base_breakpoint_ops;
15675 ops->re_set = bkpt_re_set;
15676 ops->insert_location = bkpt_insert_location;
15677 ops->remove_location = bkpt_remove_location;
15678 ops->breakpoint_hit = bkpt_breakpoint_hit;
15679 ops->create_sals_from_address = bkpt_create_sals_from_address;
15680 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15681 ops->decode_linespec = bkpt_decode_linespec;
15682
15683 /* The breakpoint_ops structure to be used in regular breakpoints. */
15684 ops = &bkpt_breakpoint_ops;
15685 *ops = bkpt_base_breakpoint_ops;
15686 ops->re_set = bkpt_re_set;
15687 ops->resources_needed = bkpt_resources_needed;
15688 ops->print_it = bkpt_print_it;
15689 ops->print_mention = bkpt_print_mention;
15690 ops->print_recreate = bkpt_print_recreate;
15691
15692 /* Ranged breakpoints. */
15693 ops = &ranged_breakpoint_ops;
15694 *ops = bkpt_breakpoint_ops;
15695 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15696 ops->resources_needed = resources_needed_ranged_breakpoint;
15697 ops->print_it = print_it_ranged_breakpoint;
15698 ops->print_one = print_one_ranged_breakpoint;
15699 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15700 ops->print_mention = print_mention_ranged_breakpoint;
15701 ops->print_recreate = print_recreate_ranged_breakpoint;
15702
15703 /* Internal breakpoints. */
15704 ops = &internal_breakpoint_ops;
15705 *ops = bkpt_base_breakpoint_ops;
15706 ops->re_set = internal_bkpt_re_set;
15707 ops->check_status = internal_bkpt_check_status;
15708 ops->print_it = internal_bkpt_print_it;
15709 ops->print_mention = internal_bkpt_print_mention;
15710
15711 /* Momentary breakpoints. */
15712 ops = &momentary_breakpoint_ops;
15713 *ops = bkpt_base_breakpoint_ops;
15714 ops->re_set = momentary_bkpt_re_set;
15715 ops->check_status = momentary_bkpt_check_status;
15716 ops->print_it = momentary_bkpt_print_it;
15717 ops->print_mention = momentary_bkpt_print_mention;
15718
15719 /* Momentary breakpoints for bp_longjmp and bp_exception. */
15720 ops = &longjmp_breakpoint_ops;
15721 *ops = momentary_breakpoint_ops;
15722 ops->dtor = longjmp_bkpt_dtor;
15723
15724 /* Probe breakpoints. */
15725 ops = &bkpt_probe_breakpoint_ops;
15726 *ops = bkpt_breakpoint_ops;
15727 ops->insert_location = bkpt_probe_insert_location;
15728 ops->remove_location = bkpt_probe_remove_location;
15729 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
15730 ops->decode_linespec = bkpt_probe_decode_linespec;
15731
15732 /* Watchpoints. */
15733 ops = &watchpoint_breakpoint_ops;
15734 *ops = base_breakpoint_ops;
15735 ops->dtor = dtor_watchpoint;
15736 ops->re_set = re_set_watchpoint;
15737 ops->insert_location = insert_watchpoint;
15738 ops->remove_location = remove_watchpoint;
15739 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15740 ops->check_status = check_status_watchpoint;
15741 ops->resources_needed = resources_needed_watchpoint;
15742 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15743 ops->print_it = print_it_watchpoint;
15744 ops->print_mention = print_mention_watchpoint;
15745 ops->print_recreate = print_recreate_watchpoint;
15746
15747 /* Masked watchpoints. */
15748 ops = &masked_watchpoint_breakpoint_ops;
15749 *ops = watchpoint_breakpoint_ops;
15750 ops->insert_location = insert_masked_watchpoint;
15751 ops->remove_location = remove_masked_watchpoint;
15752 ops->resources_needed = resources_needed_masked_watchpoint;
15753 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15754 ops->print_it = print_it_masked_watchpoint;
15755 ops->print_one_detail = print_one_detail_masked_watchpoint;
15756 ops->print_mention = print_mention_masked_watchpoint;
15757 ops->print_recreate = print_recreate_masked_watchpoint;
15758
15759 /* Tracepoints. */
15760 ops = &tracepoint_breakpoint_ops;
15761 *ops = base_breakpoint_ops;
15762 ops->re_set = tracepoint_re_set;
15763 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15764 ops->print_one_detail = tracepoint_print_one_detail;
15765 ops->print_mention = tracepoint_print_mention;
15766 ops->print_recreate = tracepoint_print_recreate;
15767 ops->create_sals_from_address = tracepoint_create_sals_from_address;
15768 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15769 ops->decode_linespec = tracepoint_decode_linespec;
15770
15771 /* Probe tracepoints. */
15772 ops = &tracepoint_probe_breakpoint_ops;
15773 *ops = tracepoint_breakpoint_ops;
15774 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
15775 ops->decode_linespec = tracepoint_probe_decode_linespec;
15776
15777 /* Static tracepoints with marker (`-m'). */
15778 ops = &strace_marker_breakpoint_ops;
15779 *ops = tracepoint_breakpoint_ops;
15780 ops->create_sals_from_address = strace_marker_create_sals_from_address;
15781 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15782 ops->decode_linespec = strace_marker_decode_linespec;
15783
15784 /* Fork catchpoints. */
15785 ops = &catch_fork_breakpoint_ops;
15786 *ops = base_breakpoint_ops;
15787 ops->insert_location = insert_catch_fork;
15788 ops->remove_location = remove_catch_fork;
15789 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15790 ops->print_it = print_it_catch_fork;
15791 ops->print_one = print_one_catch_fork;
15792 ops->print_mention = print_mention_catch_fork;
15793 ops->print_recreate = print_recreate_catch_fork;
15794
15795 /* Vfork catchpoints. */
15796 ops = &catch_vfork_breakpoint_ops;
15797 *ops = base_breakpoint_ops;
15798 ops->insert_location = insert_catch_vfork;
15799 ops->remove_location = remove_catch_vfork;
15800 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15801 ops->print_it = print_it_catch_vfork;
15802 ops->print_one = print_one_catch_vfork;
15803 ops->print_mention = print_mention_catch_vfork;
15804 ops->print_recreate = print_recreate_catch_vfork;
15805
15806 /* Exec catchpoints. */
15807 ops = &catch_exec_breakpoint_ops;
15808 *ops = base_breakpoint_ops;
15809 ops->dtor = dtor_catch_exec;
15810 ops->insert_location = insert_catch_exec;
15811 ops->remove_location = remove_catch_exec;
15812 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15813 ops->print_it = print_it_catch_exec;
15814 ops->print_one = print_one_catch_exec;
15815 ops->print_mention = print_mention_catch_exec;
15816 ops->print_recreate = print_recreate_catch_exec;
15817
15818 /* Syscall catchpoints. */
15819 ops = &catch_syscall_breakpoint_ops;
15820 *ops = base_breakpoint_ops;
15821 ops->dtor = dtor_catch_syscall;
15822 ops->insert_location = insert_catch_syscall;
15823 ops->remove_location = remove_catch_syscall;
15824 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
15825 ops->print_it = print_it_catch_syscall;
15826 ops->print_one = print_one_catch_syscall;
15827 ops->print_mention = print_mention_catch_syscall;
15828 ops->print_recreate = print_recreate_catch_syscall;
15829
15830 /* Solib-related catchpoints. */
15831 ops = &catch_solib_breakpoint_ops;
15832 *ops = base_breakpoint_ops;
15833 ops->dtor = dtor_catch_solib;
15834 ops->insert_location = insert_catch_solib;
15835 ops->remove_location = remove_catch_solib;
15836 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15837 ops->check_status = check_status_catch_solib;
15838 ops->print_it = print_it_catch_solib;
15839 ops->print_one = print_one_catch_solib;
15840 ops->print_mention = print_mention_catch_solib;
15841 ops->print_recreate = print_recreate_catch_solib;
15842
15843 ops = &dprintf_breakpoint_ops;
15844 *ops = bkpt_base_breakpoint_ops;
15845 ops->re_set = dprintf_re_set;
15846 ops->resources_needed = bkpt_resources_needed;
15847 ops->print_it = bkpt_print_it;
15848 ops->print_mention = bkpt_print_mention;
15849 ops->print_recreate = dprintf_print_recreate;
15850 }
15851
15852 /* Chain containing all defined "enable breakpoint" subcommands. */
15853
15854 static struct cmd_list_element *enablebreaklist = NULL;
15855
15856 void
15857 _initialize_breakpoint (void)
15858 {
15859 struct cmd_list_element *c;
15860
15861 initialize_breakpoint_ops ();
15862
15863 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
15864 observer_attach_inferior_exit (clear_syscall_counts);
15865 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
15866
15867 breakpoint_objfile_key
15868 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
15869
15870 catch_syscall_inferior_data
15871 = register_inferior_data_with_cleanup (NULL,
15872 catch_syscall_inferior_data_cleanup);
15873
15874 breakpoint_chain = 0;
15875 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15876 before a breakpoint is set. */
15877 breakpoint_count = 0;
15878
15879 tracepoint_count = 0;
15880
15881 add_com ("ignore", class_breakpoint, ignore_command, _("\
15882 Set ignore-count of breakpoint number N to COUNT.\n\
15883 Usage is `ignore N COUNT'."));
15884 if (xdb_commands)
15885 add_com_alias ("bc", "ignore", class_breakpoint, 1);
15886
15887 add_com ("commands", class_breakpoint, commands_command, _("\
15888 Set commands to be executed when a breakpoint is hit.\n\
15889 Give breakpoint number as argument after \"commands\".\n\
15890 With no argument, the targeted breakpoint is the last one set.\n\
15891 The commands themselves follow starting on the next line.\n\
15892 Type a line containing \"end\" to indicate the end of them.\n\
15893 Give \"silent\" as the first line to make the breakpoint silent;\n\
15894 then no output is printed when it is hit, except what the commands print."));
15895
15896 c = add_com ("condition", class_breakpoint, condition_command, _("\
15897 Specify breakpoint number N to break only if COND is true.\n\
15898 Usage is `condition N COND', where N is an integer and COND is an\n\
15899 expression to be evaluated whenever breakpoint N is reached."));
15900 set_cmd_completer (c, condition_completer);
15901
15902 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15903 Set a temporary breakpoint.\n\
15904 Like \"break\" except the breakpoint is only temporary,\n\
15905 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15906 by using \"enable delete\" on the breakpoint number.\n\
15907 \n"
15908 BREAK_ARGS_HELP ("tbreak")));
15909 set_cmd_completer (c, location_completer);
15910
15911 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15912 Set a hardware assisted breakpoint.\n\
15913 Like \"break\" except the breakpoint requires hardware support,\n\
15914 some target hardware may not have this support.\n\
15915 \n"
15916 BREAK_ARGS_HELP ("hbreak")));
15917 set_cmd_completer (c, location_completer);
15918
15919 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15920 Set a temporary hardware assisted breakpoint.\n\
15921 Like \"hbreak\" except the breakpoint is only temporary,\n\
15922 so it will be deleted when hit.\n\
15923 \n"
15924 BREAK_ARGS_HELP ("thbreak")));
15925 set_cmd_completer (c, location_completer);
15926
15927 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15928 Enable some breakpoints.\n\
15929 Give breakpoint numbers (separated by spaces) as arguments.\n\
15930 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15931 This is used to cancel the effect of the \"disable\" command.\n\
15932 With a subcommand you can enable temporarily."),
15933 &enablelist, "enable ", 1, &cmdlist);
15934 if (xdb_commands)
15935 add_com ("ab", class_breakpoint, enable_command, _("\
15936 Enable some breakpoints.\n\
15937 Give breakpoint numbers (separated by spaces) as arguments.\n\
15938 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15939 This is used to cancel the effect of the \"disable\" command.\n\
15940 With a subcommand you can enable temporarily."));
15941
15942 add_com_alias ("en", "enable", class_breakpoint, 1);
15943
15944 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15945 Enable some breakpoints.\n\
15946 Give breakpoint numbers (separated by spaces) as arguments.\n\
15947 This is used to cancel the effect of the \"disable\" command.\n\
15948 May be abbreviated to simply \"enable\".\n"),
15949 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15950
15951 add_cmd ("once", no_class, enable_once_command, _("\
15952 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15953 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15954 &enablebreaklist);
15955
15956 add_cmd ("delete", no_class, enable_delete_command, _("\
15957 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15958 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15959 &enablebreaklist);
15960
15961 add_cmd ("count", no_class, enable_count_command, _("\
15962 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15963 If a breakpoint is hit while enabled in this fashion,\n\
15964 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15965 &enablebreaklist);
15966
15967 add_cmd ("delete", no_class, enable_delete_command, _("\
15968 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15969 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15970 &enablelist);
15971
15972 add_cmd ("once", no_class, enable_once_command, _("\
15973 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15974 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15975 &enablelist);
15976
15977 add_cmd ("count", no_class, enable_count_command, _("\
15978 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15979 If a breakpoint is hit while enabled in this fashion,\n\
15980 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15981 &enablelist);
15982
15983 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15984 Disable some breakpoints.\n\
15985 Arguments are breakpoint numbers with spaces in between.\n\
15986 To disable all breakpoints, give no argument.\n\
15987 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15988 &disablelist, "disable ", 1, &cmdlist);
15989 add_com_alias ("dis", "disable", class_breakpoint, 1);
15990 add_com_alias ("disa", "disable", class_breakpoint, 1);
15991 if (xdb_commands)
15992 add_com ("sb", class_breakpoint, disable_command, _("\
15993 Disable some breakpoints.\n\
15994 Arguments are breakpoint numbers with spaces in between.\n\
15995 To disable all breakpoints, give no argument.\n\
15996 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
15997
15998 add_cmd ("breakpoints", class_alias, disable_command, _("\
15999 Disable some breakpoints.\n\
16000 Arguments are breakpoint numbers with spaces in between.\n\
16001 To disable all breakpoints, give no argument.\n\
16002 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16003 This command may be abbreviated \"disable\"."),
16004 &disablelist);
16005
16006 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16007 Delete some breakpoints or auto-display expressions.\n\
16008 Arguments are breakpoint numbers with spaces in between.\n\
16009 To delete all breakpoints, give no argument.\n\
16010 \n\
16011 Also a prefix command for deletion of other GDB objects.\n\
16012 The \"unset\" command is also an alias for \"delete\"."),
16013 &deletelist, "delete ", 1, &cmdlist);
16014 add_com_alias ("d", "delete", class_breakpoint, 1);
16015 add_com_alias ("del", "delete", class_breakpoint, 1);
16016 if (xdb_commands)
16017 add_com ("db", class_breakpoint, delete_command, _("\
16018 Delete some breakpoints.\n\
16019 Arguments are breakpoint numbers with spaces in between.\n\
16020 To delete all breakpoints, give no argument.\n"));
16021
16022 add_cmd ("breakpoints", class_alias, delete_command, _("\
16023 Delete some breakpoints or auto-display expressions.\n\
16024 Arguments are breakpoint numbers with spaces in between.\n\
16025 To delete all breakpoints, give no argument.\n\
16026 This command may be abbreviated \"delete\"."),
16027 &deletelist);
16028
16029 add_com ("clear", class_breakpoint, clear_command, _("\
16030 Clear breakpoint at specified line or function.\n\
16031 Argument may be line number, function name, or \"*\" and an address.\n\
16032 If line number is specified, all breakpoints in that line are cleared.\n\
16033 If function is specified, breakpoints at beginning of function are cleared.\n\
16034 If an address is specified, breakpoints at that address are cleared.\n\
16035 \n\
16036 With no argument, clears all breakpoints in the line that the selected frame\n\
16037 is executing in.\n\
16038 \n\
16039 See also the \"delete\" command which clears breakpoints by number."));
16040 add_com_alias ("cl", "clear", class_breakpoint, 1);
16041
16042 c = add_com ("break", class_breakpoint, break_command, _("\
16043 Set breakpoint at specified line or function.\n"
16044 BREAK_ARGS_HELP ("break")));
16045 set_cmd_completer (c, location_completer);
16046
16047 add_com_alias ("b", "break", class_run, 1);
16048 add_com_alias ("br", "break", class_run, 1);
16049 add_com_alias ("bre", "break", class_run, 1);
16050 add_com_alias ("brea", "break", class_run, 1);
16051
16052 if (xdb_commands)
16053 add_com_alias ("ba", "break", class_breakpoint, 1);
16054
16055 if (dbx_commands)
16056 {
16057 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16058 Break in function/address or break at a line in the current file."),
16059 &stoplist, "stop ", 1, &cmdlist);
16060 add_cmd ("in", class_breakpoint, stopin_command,
16061 _("Break in function or address."), &stoplist);
16062 add_cmd ("at", class_breakpoint, stopat_command,
16063 _("Break at a line in the current file."), &stoplist);
16064 add_com ("status", class_info, breakpoints_info, _("\
16065 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16066 The \"Type\" column indicates one of:\n\
16067 \tbreakpoint - normal breakpoint\n\
16068 \twatchpoint - watchpoint\n\
16069 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16070 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16071 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16072 address and file/line number respectively.\n\
16073 \n\
16074 Convenience variable \"$_\" and default examine address for \"x\"\n\
16075 are set to the address of the last breakpoint listed unless the command\n\
16076 is prefixed with \"server \".\n\n\
16077 Convenience variable \"$bpnum\" contains the number of the last\n\
16078 breakpoint set."));
16079 }
16080
16081 add_info ("breakpoints", breakpoints_info, _("\
16082 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16083 The \"Type\" column indicates one of:\n\
16084 \tbreakpoint - normal breakpoint\n\
16085 \twatchpoint - watchpoint\n\
16086 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16087 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16088 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16089 address and file/line number respectively.\n\
16090 \n\
16091 Convenience variable \"$_\" and default examine address for \"x\"\n\
16092 are set to the address of the last breakpoint listed unless the command\n\
16093 is prefixed with \"server \".\n\n\
16094 Convenience variable \"$bpnum\" contains the number of the last\n\
16095 breakpoint set."));
16096
16097 add_info_alias ("b", "breakpoints", 1);
16098
16099 if (xdb_commands)
16100 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16101 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16102 The \"Type\" column indicates one of:\n\
16103 \tbreakpoint - normal breakpoint\n\
16104 \twatchpoint - watchpoint\n\
16105 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16106 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16107 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16108 address and file/line number respectively.\n\
16109 \n\
16110 Convenience variable \"$_\" and default examine address for \"x\"\n\
16111 are set to the address of the last breakpoint listed unless the command\n\
16112 is prefixed with \"server \".\n\n\
16113 Convenience variable \"$bpnum\" contains the number of the last\n\
16114 breakpoint set."));
16115
16116 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16117 Status of all breakpoints, or breakpoint number NUMBER.\n\
16118 The \"Type\" column indicates one of:\n\
16119 \tbreakpoint - normal breakpoint\n\
16120 \twatchpoint - watchpoint\n\
16121 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16122 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16123 \tuntil - internal breakpoint used by the \"until\" command\n\
16124 \tfinish - internal breakpoint used by the \"finish\" command\n\
16125 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16126 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16127 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16128 address and file/line number respectively.\n\
16129 \n\
16130 Convenience variable \"$_\" and default examine address for \"x\"\n\
16131 are set to the address of the last breakpoint listed unless the command\n\
16132 is prefixed with \"server \".\n\n\
16133 Convenience variable \"$bpnum\" contains the number of the last\n\
16134 breakpoint set."),
16135 &maintenanceinfolist);
16136
16137 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16138 Set catchpoints to catch events."),
16139 &catch_cmdlist, "catch ",
16140 0/*allow-unknown*/, &cmdlist);
16141
16142 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16143 Set temporary catchpoints to catch events."),
16144 &tcatch_cmdlist, "tcatch ",
16145 0/*allow-unknown*/, &cmdlist);
16146
16147 add_catch_command ("fork", _("Catch calls to fork."),
16148 catch_fork_command_1,
16149 NULL,
16150 (void *) (uintptr_t) catch_fork_permanent,
16151 (void *) (uintptr_t) catch_fork_temporary);
16152 add_catch_command ("vfork", _("Catch calls to vfork."),
16153 catch_fork_command_1,
16154 NULL,
16155 (void *) (uintptr_t) catch_vfork_permanent,
16156 (void *) (uintptr_t) catch_vfork_temporary);
16157 add_catch_command ("exec", _("Catch calls to exec."),
16158 catch_exec_command_1,
16159 NULL,
16160 CATCH_PERMANENT,
16161 CATCH_TEMPORARY);
16162 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16163 Usage: catch load [REGEX]\n\
16164 If REGEX is given, only stop for libraries matching the regular expression."),
16165 catch_load_command_1,
16166 NULL,
16167 CATCH_PERMANENT,
16168 CATCH_TEMPORARY);
16169 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16170 Usage: catch unload [REGEX]\n\
16171 If REGEX is given, only stop for libraries matching the regular expression."),
16172 catch_unload_command_1,
16173 NULL,
16174 CATCH_PERMANENT,
16175 CATCH_TEMPORARY);
16176 add_catch_command ("syscall", _("\
16177 Catch system calls by their names and/or numbers.\n\
16178 Arguments say which system calls to catch. If no arguments\n\
16179 are given, every system call will be caught.\n\
16180 Arguments, if given, should be one or more system call names\n\
16181 (if your system supports that), or system call numbers."),
16182 catch_syscall_command_1,
16183 catch_syscall_completer,
16184 CATCH_PERMANENT,
16185 CATCH_TEMPORARY);
16186
16187 c = add_com ("watch", class_breakpoint, watch_command, _("\
16188 Set a watchpoint for an expression.\n\
16189 Usage: watch [-l|-location] EXPRESSION\n\
16190 A watchpoint stops execution of your program whenever the value of\n\
16191 an expression changes.\n\
16192 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16193 the memory to which it refers."));
16194 set_cmd_completer (c, expression_completer);
16195
16196 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16197 Set a read watchpoint for an expression.\n\
16198 Usage: rwatch [-l|-location] EXPRESSION\n\
16199 A watchpoint stops execution of your program whenever the value of\n\
16200 an expression is read.\n\
16201 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16202 the memory to which it refers."));
16203 set_cmd_completer (c, expression_completer);
16204
16205 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16206 Set a watchpoint for an expression.\n\
16207 Usage: awatch [-l|-location] EXPRESSION\n\
16208 A watchpoint stops execution of your program whenever the value of\n\
16209 an expression is either read or written.\n\
16210 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16211 the memory to which it refers."));
16212 set_cmd_completer (c, expression_completer);
16213
16214 add_info ("watchpoints", watchpoints_info, _("\
16215 Status of specified watchpoints (all watchpoints if no argument)."));
16216
16217 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16218 respond to changes - contrary to the description. */
16219 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16220 &can_use_hw_watchpoints, _("\
16221 Set debugger's willingness to use watchpoint hardware."), _("\
16222 Show debugger's willingness to use watchpoint hardware."), _("\
16223 If zero, gdb will not use hardware for new watchpoints, even if\n\
16224 such is available. (However, any hardware watchpoints that were\n\
16225 created before setting this to nonzero, will continue to use watchpoint\n\
16226 hardware.)"),
16227 NULL,
16228 show_can_use_hw_watchpoints,
16229 &setlist, &showlist);
16230
16231 can_use_hw_watchpoints = 1;
16232
16233 /* Tracepoint manipulation commands. */
16234
16235 c = add_com ("trace", class_breakpoint, trace_command, _("\
16236 Set a tracepoint at specified line or function.\n\
16237 \n"
16238 BREAK_ARGS_HELP ("trace") "\n\
16239 Do \"help tracepoints\" for info on other tracepoint commands."));
16240 set_cmd_completer (c, location_completer);
16241
16242 add_com_alias ("tp", "trace", class_alias, 0);
16243 add_com_alias ("tr", "trace", class_alias, 1);
16244 add_com_alias ("tra", "trace", class_alias, 1);
16245 add_com_alias ("trac", "trace", class_alias, 1);
16246
16247 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16248 Set a fast tracepoint at specified line or function.\n\
16249 \n"
16250 BREAK_ARGS_HELP ("ftrace") "\n\
16251 Do \"help tracepoints\" for info on other tracepoint commands."));
16252 set_cmd_completer (c, location_completer);
16253
16254 c = add_com ("strace", class_breakpoint, strace_command, _("\
16255 Set a static tracepoint at specified line, function or marker.\n\
16256 \n\
16257 strace [LOCATION] [if CONDITION]\n\
16258 LOCATION may be a line number, function name, \"*\" and an address,\n\
16259 or -m MARKER_ID.\n\
16260 If a line number is specified, probe the marker at start of code\n\
16261 for that line. If a function is specified, probe the marker at start\n\
16262 of code for that function. If an address is specified, probe the marker\n\
16263 at that exact address. If a marker id is specified, probe the marker\n\
16264 with that name. With no LOCATION, uses current execution address of\n\
16265 the selected stack frame.\n\
16266 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16267 This collects arbitrary user data passed in the probe point call to the\n\
16268 tracing library. You can inspect it when analyzing the trace buffer,\n\
16269 by printing the $_sdata variable like any other convenience variable.\n\
16270 \n\
16271 CONDITION is a boolean expression.\n\
16272 \n\
16273 Multiple tracepoints at one place are permitted, and useful if their\n\
16274 conditions are different.\n\
16275 \n\
16276 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16277 Do \"help tracepoints\" for info on other tracepoint commands."));
16278 set_cmd_completer (c, location_completer);
16279
16280 add_info ("tracepoints", tracepoints_info, _("\
16281 Status of specified tracepoints (all tracepoints if no argument).\n\
16282 Convenience variable \"$tpnum\" contains the number of the\n\
16283 last tracepoint set."));
16284
16285 add_info_alias ("tp", "tracepoints", 1);
16286
16287 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16288 Delete specified tracepoints.\n\
16289 Arguments are tracepoint numbers, separated by spaces.\n\
16290 No argument means delete all tracepoints."),
16291 &deletelist);
16292 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16293
16294 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16295 Disable specified tracepoints.\n\
16296 Arguments are tracepoint numbers, separated by spaces.\n\
16297 No argument means disable all tracepoints."),
16298 &disablelist);
16299 deprecate_cmd (c, "disable");
16300
16301 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16302 Enable specified tracepoints.\n\
16303 Arguments are tracepoint numbers, separated by spaces.\n\
16304 No argument means enable all tracepoints."),
16305 &enablelist);
16306 deprecate_cmd (c, "enable");
16307
16308 add_com ("passcount", class_trace, trace_pass_command, _("\
16309 Set the passcount for a tracepoint.\n\
16310 The trace will end when the tracepoint has been passed 'count' times.\n\
16311 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16312 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16313
16314 add_prefix_cmd ("save", class_breakpoint, save_command,
16315 _("Save breakpoint definitions as a script."),
16316 &save_cmdlist, "save ",
16317 0/*allow-unknown*/, &cmdlist);
16318
16319 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16320 Save current breakpoint definitions as a script.\n\
16321 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16322 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16323 session to restore them."),
16324 &save_cmdlist);
16325 set_cmd_completer (c, filename_completer);
16326
16327 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16328 Save current tracepoint definitions as a script.\n\
16329 Use the 'source' command in another debug session to restore them."),
16330 &save_cmdlist);
16331 set_cmd_completer (c, filename_completer);
16332
16333 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16334 deprecate_cmd (c, "save tracepoints");
16335
16336 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16337 Breakpoint specific settings\n\
16338 Configure various breakpoint-specific variables such as\n\
16339 pending breakpoint behavior"),
16340 &breakpoint_set_cmdlist, "set breakpoint ",
16341 0/*allow-unknown*/, &setlist);
16342 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16343 Breakpoint specific settings\n\
16344 Configure various breakpoint-specific variables such as\n\
16345 pending breakpoint behavior"),
16346 &breakpoint_show_cmdlist, "show breakpoint ",
16347 0/*allow-unknown*/, &showlist);
16348
16349 add_setshow_auto_boolean_cmd ("pending", no_class,
16350 &pending_break_support, _("\
16351 Set debugger's behavior regarding pending breakpoints."), _("\
16352 Show debugger's behavior regarding pending breakpoints."), _("\
16353 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16354 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16355 an error. If auto, an unrecognized breakpoint location results in a\n\
16356 user-query to see if a pending breakpoint should be created."),
16357 NULL,
16358 show_pending_break_support,
16359 &breakpoint_set_cmdlist,
16360 &breakpoint_show_cmdlist);
16361
16362 pending_break_support = AUTO_BOOLEAN_AUTO;
16363
16364 add_setshow_boolean_cmd ("auto-hw", no_class,
16365 &automatic_hardware_breakpoints, _("\
16366 Set automatic usage of hardware breakpoints."), _("\
16367 Show automatic usage of hardware breakpoints."), _("\
16368 If set, the debugger will automatically use hardware breakpoints for\n\
16369 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16370 a warning will be emitted for such breakpoints."),
16371 NULL,
16372 show_automatic_hardware_breakpoints,
16373 &breakpoint_set_cmdlist,
16374 &breakpoint_show_cmdlist);
16375
16376 add_setshow_auto_boolean_cmd ("always-inserted", class_support,
16377 &always_inserted_mode, _("\
16378 Set mode for inserting breakpoints."), _("\
16379 Show mode for inserting breakpoints."), _("\
16380 When this mode is off, breakpoints are inserted in inferior when it is\n\
16381 resumed, and removed when execution stops. When this mode is on,\n\
16382 breakpoints are inserted immediately and removed only when the user\n\
16383 deletes the breakpoint. When this mode is auto (which is the default),\n\
16384 the behaviour depends on the non-stop setting (see help set non-stop).\n\
16385 In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
16386 behaves as if always-inserted mode is on; if gdb is controlling the\n\
16387 inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
16388 NULL,
16389 &show_always_inserted_mode,
16390 &breakpoint_set_cmdlist,
16391 &breakpoint_show_cmdlist);
16392
16393 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16394 condition_evaluation_enums,
16395 &condition_evaluation_mode_1, _("\
16396 Set mode of breakpoint condition evaluation."), _("\
16397 Show mode of breakpoint condition evaluation."), _("\
16398 When this is set to \"host\", breakpoint conditions will be\n\
16399 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16400 breakpoint conditions will be downloaded to the target (if the target\n\
16401 supports such feature) and conditions will be evaluated on the target's side.\n\
16402 If this is set to \"auto\" (default), this will be automatically set to\n\
16403 \"target\" if it supports condition evaluation, otherwise it will\n\
16404 be set to \"gdb\""),
16405 &set_condition_evaluation_mode,
16406 &show_condition_evaluation_mode,
16407 &breakpoint_set_cmdlist,
16408 &breakpoint_show_cmdlist);
16409
16410 add_com ("break-range", class_breakpoint, break_range_command, _("\
16411 Set a breakpoint for an address range.\n\
16412 break-range START-LOCATION, END-LOCATION\n\
16413 where START-LOCATION and END-LOCATION can be one of the following:\n\
16414 LINENUM, for that line in the current file,\n\
16415 FILE:LINENUM, for that line in that file,\n\
16416 +OFFSET, for that number of lines after the current line\n\
16417 or the start of the range\n\
16418 FUNCTION, for the first line in that function,\n\
16419 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16420 *ADDRESS, for the instruction at that address.\n\
16421 \n\
16422 The breakpoint will stop execution of the inferior whenever it executes\n\
16423 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16424 range (including START-LOCATION and END-LOCATION)."));
16425
16426 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16427 Set a dynamic printf at specified line or function.\n\
16428 dprintf location,format string,arg1,arg2,...\n\
16429 location may be a line number, function name, or \"*\" and an address.\n\
16430 If a line number is specified, break at start of code for that line.\n\
16431 If a function is specified, break at start of code for that function.\n\
16432 "));
16433 set_cmd_completer (c, location_completer);
16434
16435 add_setshow_enum_cmd ("dprintf-style", class_support,
16436 dprintf_style_enums, &dprintf_style, _("\
16437 Set the style of usage for dynamic printf."), _("\
16438 Show the style of usage for dynamic printf."), _("\
16439 This setting chooses how GDB will do a dynamic printf.\n\
16440 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16441 console, as with the \"printf\" command.\n\
16442 If the value is \"call\", the print is done by calling a function in your\n\
16443 program; by default printf(), but you can choose a different function or\n\
16444 output stream by setting dprintf-function and dprintf-channel."),
16445 update_dprintf_commands, NULL,
16446 &setlist, &showlist);
16447
16448 dprintf_function = xstrdup ("printf");
16449 add_setshow_string_cmd ("dprintf-function", class_support,
16450 &dprintf_function, _("\
16451 Set the function to use for dynamic printf"), _("\
16452 Show the function to use for dynamic printf"), NULL,
16453 update_dprintf_commands, NULL,
16454 &setlist, &showlist);
16455
16456 dprintf_channel = xstrdup ("");
16457 add_setshow_string_cmd ("dprintf-channel", class_support,
16458 &dprintf_channel, _("\
16459 Set the channel to use for dynamic printf"), _("\
16460 Show the channel to use for dynamic printf"), NULL,
16461 update_dprintf_commands, NULL,
16462 &setlist, &showlist);
16463
16464 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16465 &disconnected_dprintf, _("\
16466 Set whether dprintf continues after GDB disconnects."), _("\
16467 Show whether dprintf continues after GDB disconnects."), _("\
16468 Use this to let dprintf commands continue to hit and produce output\n\
16469 even if GDB disconnects or detaches from the target."),
16470 NULL,
16471 NULL,
16472 &setlist, &showlist);
16473
16474 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16475 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16476 (target agent only) This is useful for formatted output in user-defined commands."));
16477
16478 automatic_hardware_breakpoints = 1;
16479
16480 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16481 }
This page took 0.438489 seconds and 4 git commands to generate.