Remove usage of find_inferior in linux_stabilize_threads
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observer.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71
72 /* readline include files */
73 #include "readline/readline.h"
74 #include "readline/history.h"
75
76 /* readline defines this. */
77 #undef savestring
78
79 #include "mi/mi-common.h"
80 #include "extension.h"
81 #include <algorithm>
82 #include "progspace-and-thread.h"
83 #include "common/array-view.h"
84 #include "common/gdb_optional.h"
85
86 /* Enums for exception-handling support. */
87 enum exception_event_kind
88 {
89 EX_EVENT_THROW,
90 EX_EVENT_RETHROW,
91 EX_EVENT_CATCH
92 };
93
94 /* Prototypes for local functions. */
95
96 static void map_breakpoint_numbers (const char *,
97 gdb::function_view<void (breakpoint *)>);
98
99 static void breakpoint_re_set_default (struct breakpoint *);
100
101 static void
102 create_sals_from_location_default (const struct event_location *location,
103 struct linespec_result *canonical,
104 enum bptype type_wanted);
105
106 static void create_breakpoints_sal_default (struct gdbarch *,
107 struct linespec_result *,
108 gdb::unique_xmalloc_ptr<char>,
109 gdb::unique_xmalloc_ptr<char>,
110 enum bptype,
111 enum bpdisp, int, int,
112 int,
113 const struct breakpoint_ops *,
114 int, int, int, unsigned);
115
116 static std::vector<symtab_and_line> decode_location_default
117 (struct breakpoint *b, const struct event_location *location,
118 struct program_space *search_pspace);
119
120 static int can_use_hardware_watchpoint (struct value *);
121
122 static void mention (struct breakpoint *);
123
124 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
125 enum bptype,
126 const struct breakpoint_ops *);
127 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
128 const struct symtab_and_line *);
129
130 /* This function is used in gdbtk sources and thus can not be made
131 static. */
132 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
133 struct symtab_and_line,
134 enum bptype,
135 const struct breakpoint_ops *);
136
137 static struct breakpoint *
138 momentary_breakpoint_from_master (struct breakpoint *orig,
139 enum bptype type,
140 const struct breakpoint_ops *ops,
141 int loc_enabled);
142
143 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
144
145 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
146 CORE_ADDR bpaddr,
147 enum bptype bptype);
148
149 static void describe_other_breakpoints (struct gdbarch *,
150 struct program_space *, CORE_ADDR,
151 struct obj_section *, int);
152
153 static int watchpoint_locations_match (struct bp_location *loc1,
154 struct bp_location *loc2);
155
156 static int breakpoint_location_address_match (struct bp_location *bl,
157 const struct address_space *aspace,
158 CORE_ADDR addr);
159
160 static int breakpoint_location_address_range_overlap (struct bp_location *,
161 const address_space *,
162 CORE_ADDR, int);
163
164 static int remove_breakpoint (struct bp_location *);
165 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
166
167 static enum print_stop_action print_bp_stop_message (bpstat bs);
168
169 static int hw_breakpoint_used_count (void);
170
171 static int hw_watchpoint_use_count (struct breakpoint *);
172
173 static int hw_watchpoint_used_count_others (struct breakpoint *except,
174 enum bptype type,
175 int *other_type_used);
176
177 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
178 int count);
179
180 static void free_bp_location (struct bp_location *loc);
181 static void incref_bp_location (struct bp_location *loc);
182 static void decref_bp_location (struct bp_location **loc);
183
184 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
185
186 /* update_global_location_list's modes of operation wrt to whether to
187 insert locations now. */
188 enum ugll_insert_mode
189 {
190 /* Don't insert any breakpoint locations into the inferior, only
191 remove already-inserted locations that no longer should be
192 inserted. Functions that delete a breakpoint or breakpoints
193 should specify this mode, so that deleting a breakpoint doesn't
194 have the side effect of inserting the locations of other
195 breakpoints that are marked not-inserted, but should_be_inserted
196 returns true on them.
197
198 This behavior is useful is situations close to tear-down -- e.g.,
199 after an exec, while the target still has execution, but
200 breakpoint shadows of the previous executable image should *NOT*
201 be restored to the new image; or before detaching, where the
202 target still has execution and wants to delete breakpoints from
203 GDB's lists, and all breakpoints had already been removed from
204 the inferior. */
205 UGLL_DONT_INSERT,
206
207 /* May insert breakpoints iff breakpoints_should_be_inserted_now
208 claims breakpoints should be inserted now. */
209 UGLL_MAY_INSERT,
210
211 /* Insert locations now, irrespective of
212 breakpoints_should_be_inserted_now. E.g., say all threads are
213 stopped right now, and the user did "continue". We need to
214 insert breakpoints _before_ resuming the target, but
215 UGLL_MAY_INSERT wouldn't insert them, because
216 breakpoints_should_be_inserted_now returns false at that point,
217 as no thread is running yet. */
218 UGLL_INSERT
219 };
220
221 static void update_global_location_list (enum ugll_insert_mode);
222
223 static void update_global_location_list_nothrow (enum ugll_insert_mode);
224
225 static int is_hardware_watchpoint (const struct breakpoint *bpt);
226
227 static void insert_breakpoint_locations (void);
228
229 static void trace_pass_command (const char *, int);
230
231 static void set_tracepoint_count (int num);
232
233 static int is_masked_watchpoint (const struct breakpoint *b);
234
235 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
236
237 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
238 otherwise. */
239
240 static int strace_marker_p (struct breakpoint *b);
241
242 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
243 that are implemented on top of software or hardware breakpoints
244 (user breakpoints, internal and momentary breakpoints, etc.). */
245 static struct breakpoint_ops bkpt_base_breakpoint_ops;
246
247 /* Internal breakpoints class type. */
248 static struct breakpoint_ops internal_breakpoint_ops;
249
250 /* Momentary breakpoints class type. */
251 static struct breakpoint_ops momentary_breakpoint_ops;
252
253 /* The breakpoint_ops structure to be used in regular user created
254 breakpoints. */
255 struct breakpoint_ops bkpt_breakpoint_ops;
256
257 /* Breakpoints set on probes. */
258 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
259
260 /* Dynamic printf class type. */
261 struct breakpoint_ops dprintf_breakpoint_ops;
262
263 /* The style in which to perform a dynamic printf. This is a user
264 option because different output options have different tradeoffs;
265 if GDB does the printing, there is better error handling if there
266 is a problem with any of the arguments, but using an inferior
267 function lets you have special-purpose printers and sending of
268 output to the same place as compiled-in print functions. */
269
270 static const char dprintf_style_gdb[] = "gdb";
271 static const char dprintf_style_call[] = "call";
272 static const char dprintf_style_agent[] = "agent";
273 static const char *const dprintf_style_enums[] = {
274 dprintf_style_gdb,
275 dprintf_style_call,
276 dprintf_style_agent,
277 NULL
278 };
279 static const char *dprintf_style = dprintf_style_gdb;
280
281 /* The function to use for dynamic printf if the preferred style is to
282 call into the inferior. The value is simply a string that is
283 copied into the command, so it can be anything that GDB can
284 evaluate to a callable address, not necessarily a function name. */
285
286 static char *dprintf_function;
287
288 /* The channel to use for dynamic printf if the preferred style is to
289 call into the inferior; if a nonempty string, it will be passed to
290 the call as the first argument, with the format string as the
291 second. As with the dprintf function, this can be anything that
292 GDB knows how to evaluate, so in addition to common choices like
293 "stderr", this could be an app-specific expression like
294 "mystreams[curlogger]". */
295
296 static char *dprintf_channel;
297
298 /* True if dprintf commands should continue to operate even if GDB
299 has disconnected. */
300 static int disconnected_dprintf = 1;
301
302 struct command_line *
303 breakpoint_commands (struct breakpoint *b)
304 {
305 return b->commands ? b->commands.get () : NULL;
306 }
307
308 /* Flag indicating that a command has proceeded the inferior past the
309 current breakpoint. */
310
311 static int breakpoint_proceeded;
312
313 const char *
314 bpdisp_text (enum bpdisp disp)
315 {
316 /* NOTE: the following values are a part of MI protocol and
317 represent values of 'disp' field returned when inferior stops at
318 a breakpoint. */
319 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
320
321 return bpdisps[(int) disp];
322 }
323
324 /* Prototypes for exported functions. */
325 /* If FALSE, gdb will not use hardware support for watchpoints, even
326 if such is available. */
327 static int can_use_hw_watchpoints;
328
329 static void
330 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
331 struct cmd_list_element *c,
332 const char *value)
333 {
334 fprintf_filtered (file,
335 _("Debugger's willingness to use "
336 "watchpoint hardware is %s.\n"),
337 value);
338 }
339
340 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
341 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
342 for unrecognized breakpoint locations.
343 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
344 static enum auto_boolean pending_break_support;
345 static void
346 show_pending_break_support (struct ui_file *file, int from_tty,
347 struct cmd_list_element *c,
348 const char *value)
349 {
350 fprintf_filtered (file,
351 _("Debugger's behavior regarding "
352 "pending breakpoints is %s.\n"),
353 value);
354 }
355
356 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
357 set with "break" but falling in read-only memory.
358 If 0, gdb will warn about such breakpoints, but won't automatically
359 use hardware breakpoints. */
360 static int automatic_hardware_breakpoints;
361 static void
362 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
363 struct cmd_list_element *c,
364 const char *value)
365 {
366 fprintf_filtered (file,
367 _("Automatic usage of hardware breakpoints is %s.\n"),
368 value);
369 }
370
371 /* If on, GDB keeps breakpoints inserted even if the inferior is
372 stopped, and immediately inserts any new breakpoints as soon as
373 they're created. If off (default), GDB keeps breakpoints off of
374 the target as long as possible. That is, it delays inserting
375 breakpoints until the next resume, and removes them again when the
376 target fully stops. This is a bit safer in case GDB crashes while
377 processing user input. */
378 static int always_inserted_mode = 0;
379
380 static void
381 show_always_inserted_mode (struct ui_file *file, int from_tty,
382 struct cmd_list_element *c, const char *value)
383 {
384 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
385 value);
386 }
387
388 /* See breakpoint.h. */
389
390 int
391 breakpoints_should_be_inserted_now (void)
392 {
393 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
394 {
395 /* If breakpoints are global, they should be inserted even if no
396 thread under gdb's control is running, or even if there are
397 no threads under GDB's control yet. */
398 return 1;
399 }
400 else if (target_has_execution)
401 {
402 struct thread_info *tp;
403
404 if (always_inserted_mode)
405 {
406 /* The user wants breakpoints inserted even if all threads
407 are stopped. */
408 return 1;
409 }
410
411 if (threads_are_executing ())
412 return 1;
413
414 /* Don't remove breakpoints yet if, even though all threads are
415 stopped, we still have events to process. */
416 ALL_NON_EXITED_THREADS (tp)
417 if (tp->resumed
418 && tp->suspend.waitstatus_pending_p)
419 return 1;
420 }
421 return 0;
422 }
423
424 static const char condition_evaluation_both[] = "host or target";
425
426 /* Modes for breakpoint condition evaluation. */
427 static const char condition_evaluation_auto[] = "auto";
428 static const char condition_evaluation_host[] = "host";
429 static const char condition_evaluation_target[] = "target";
430 static const char *const condition_evaluation_enums[] = {
431 condition_evaluation_auto,
432 condition_evaluation_host,
433 condition_evaluation_target,
434 NULL
435 };
436
437 /* Global that holds the current mode for breakpoint condition evaluation. */
438 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
439
440 /* Global that we use to display information to the user (gets its value from
441 condition_evaluation_mode_1. */
442 static const char *condition_evaluation_mode = condition_evaluation_auto;
443
444 /* Translate a condition evaluation mode MODE into either "host"
445 or "target". This is used mostly to translate from "auto" to the
446 real setting that is being used. It returns the translated
447 evaluation mode. */
448
449 static const char *
450 translate_condition_evaluation_mode (const char *mode)
451 {
452 if (mode == condition_evaluation_auto)
453 {
454 if (target_supports_evaluation_of_breakpoint_conditions ())
455 return condition_evaluation_target;
456 else
457 return condition_evaluation_host;
458 }
459 else
460 return mode;
461 }
462
463 /* Discovers what condition_evaluation_auto translates to. */
464
465 static const char *
466 breakpoint_condition_evaluation_mode (void)
467 {
468 return translate_condition_evaluation_mode (condition_evaluation_mode);
469 }
470
471 /* Return true if GDB should evaluate breakpoint conditions or false
472 otherwise. */
473
474 static int
475 gdb_evaluates_breakpoint_condition_p (void)
476 {
477 const char *mode = breakpoint_condition_evaluation_mode ();
478
479 return (mode == condition_evaluation_host);
480 }
481
482 /* Are we executing breakpoint commands? */
483 static int executing_breakpoint_commands;
484
485 /* Are overlay event breakpoints enabled? */
486 static int overlay_events_enabled;
487
488 /* See description in breakpoint.h. */
489 int target_exact_watchpoints = 0;
490
491 /* Walk the following statement or block through all breakpoints.
492 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
493 current breakpoint. */
494
495 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
496
497 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
498 for (B = breakpoint_chain; \
499 B ? (TMP=B->next, 1): 0; \
500 B = TMP)
501
502 /* Similar iterator for the low-level breakpoints. SAFE variant is
503 not provided so update_global_location_list must not be called
504 while executing the block of ALL_BP_LOCATIONS. */
505
506 #define ALL_BP_LOCATIONS(B,BP_TMP) \
507 for (BP_TMP = bp_locations; \
508 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
509 BP_TMP++)
510
511 /* Iterates through locations with address ADDRESS for the currently selected
512 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
513 to where the loop should start from.
514 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
515 appropriate location to start with. */
516
517 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
518 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
519 BP_LOCP_TMP = BP_LOCP_START; \
520 BP_LOCP_START \
521 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
522 && (*BP_LOCP_TMP)->address == ADDRESS); \
523 BP_LOCP_TMP++)
524
525 /* Iterator for tracepoints only. */
526
527 #define ALL_TRACEPOINTS(B) \
528 for (B = breakpoint_chain; B; B = B->next) \
529 if (is_tracepoint (B))
530
531 /* Chains of all breakpoints defined. */
532
533 struct breakpoint *breakpoint_chain;
534
535 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
536
537 static struct bp_location **bp_locations;
538
539 /* Number of elements of BP_LOCATIONS. */
540
541 static unsigned bp_locations_count;
542
543 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
544 ADDRESS for the current elements of BP_LOCATIONS which get a valid
545 result from bp_location_has_shadow. You can use it for roughly
546 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
547 an address you need to read. */
548
549 static CORE_ADDR bp_locations_placed_address_before_address_max;
550
551 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
552 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
553 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
554 You can use it for roughly limiting the subrange of BP_LOCATIONS to
555 scan for shadow bytes for an address you need to read. */
556
557 static CORE_ADDR bp_locations_shadow_len_after_address_max;
558
559 /* The locations that no longer correspond to any breakpoint, unlinked
560 from the bp_locations array, but for which a hit may still be
561 reported by a target. */
562 VEC(bp_location_p) *moribund_locations = NULL;
563
564 /* Number of last breakpoint made. */
565
566 static int breakpoint_count;
567
568 /* The value of `breakpoint_count' before the last command that
569 created breakpoints. If the last (break-like) command created more
570 than one breakpoint, then the difference between BREAKPOINT_COUNT
571 and PREV_BREAKPOINT_COUNT is more than one. */
572 static int prev_breakpoint_count;
573
574 /* Number of last tracepoint made. */
575
576 static int tracepoint_count;
577
578 static struct cmd_list_element *breakpoint_set_cmdlist;
579 static struct cmd_list_element *breakpoint_show_cmdlist;
580 struct cmd_list_element *save_cmdlist;
581
582 /* See declaration at breakpoint.h. */
583
584 struct breakpoint *
585 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
586 void *user_data)
587 {
588 struct breakpoint *b = NULL;
589
590 ALL_BREAKPOINTS (b)
591 {
592 if (func (b, user_data) != 0)
593 break;
594 }
595
596 return b;
597 }
598
599 /* Return whether a breakpoint is an active enabled breakpoint. */
600 static int
601 breakpoint_enabled (struct breakpoint *b)
602 {
603 return (b->enable_state == bp_enabled);
604 }
605
606 /* Set breakpoint count to NUM. */
607
608 static void
609 set_breakpoint_count (int num)
610 {
611 prev_breakpoint_count = breakpoint_count;
612 breakpoint_count = num;
613 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
614 }
615
616 /* Used by `start_rbreak_breakpoints' below, to record the current
617 breakpoint count before "rbreak" creates any breakpoint. */
618 static int rbreak_start_breakpoint_count;
619
620 /* Called at the start an "rbreak" command to record the first
621 breakpoint made. */
622
623 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
624 {
625 rbreak_start_breakpoint_count = breakpoint_count;
626 }
627
628 /* Called at the end of an "rbreak" command to record the last
629 breakpoint made. */
630
631 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
632 {
633 prev_breakpoint_count = rbreak_start_breakpoint_count;
634 }
635
636 /* Used in run_command to zero the hit count when a new run starts. */
637
638 void
639 clear_breakpoint_hit_counts (void)
640 {
641 struct breakpoint *b;
642
643 ALL_BREAKPOINTS (b)
644 b->hit_count = 0;
645 }
646
647 \f
648 /* Return the breakpoint with the specified number, or NULL
649 if the number does not refer to an existing breakpoint. */
650
651 struct breakpoint *
652 get_breakpoint (int num)
653 {
654 struct breakpoint *b;
655
656 ALL_BREAKPOINTS (b)
657 if (b->number == num)
658 return b;
659
660 return NULL;
661 }
662
663 \f
664
665 /* Mark locations as "conditions have changed" in case the target supports
666 evaluating conditions on its side. */
667
668 static void
669 mark_breakpoint_modified (struct breakpoint *b)
670 {
671 struct bp_location *loc;
672
673 /* This is only meaningful if the target is
674 evaluating conditions and if the user has
675 opted for condition evaluation on the target's
676 side. */
677 if (gdb_evaluates_breakpoint_condition_p ()
678 || !target_supports_evaluation_of_breakpoint_conditions ())
679 return;
680
681 if (!is_breakpoint (b))
682 return;
683
684 for (loc = b->loc; loc; loc = loc->next)
685 loc->condition_changed = condition_modified;
686 }
687
688 /* Mark location as "conditions have changed" in case the target supports
689 evaluating conditions on its side. */
690
691 static void
692 mark_breakpoint_location_modified (struct bp_location *loc)
693 {
694 /* This is only meaningful if the target is
695 evaluating conditions and if the user has
696 opted for condition evaluation on the target's
697 side. */
698 if (gdb_evaluates_breakpoint_condition_p ()
699 || !target_supports_evaluation_of_breakpoint_conditions ())
700
701 return;
702
703 if (!is_breakpoint (loc->owner))
704 return;
705
706 loc->condition_changed = condition_modified;
707 }
708
709 /* Sets the condition-evaluation mode using the static global
710 condition_evaluation_mode. */
711
712 static void
713 set_condition_evaluation_mode (const char *args, int from_tty,
714 struct cmd_list_element *c)
715 {
716 const char *old_mode, *new_mode;
717
718 if ((condition_evaluation_mode_1 == condition_evaluation_target)
719 && !target_supports_evaluation_of_breakpoint_conditions ())
720 {
721 condition_evaluation_mode_1 = condition_evaluation_mode;
722 warning (_("Target does not support breakpoint condition evaluation.\n"
723 "Using host evaluation mode instead."));
724 return;
725 }
726
727 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
728 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
729
730 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
731 settings was "auto". */
732 condition_evaluation_mode = condition_evaluation_mode_1;
733
734 /* Only update the mode if the user picked a different one. */
735 if (new_mode != old_mode)
736 {
737 struct bp_location *loc, **loc_tmp;
738 /* If the user switched to a different evaluation mode, we
739 need to synch the changes with the target as follows:
740
741 "host" -> "target": Send all (valid) conditions to the target.
742 "target" -> "host": Remove all the conditions from the target.
743 */
744
745 if (new_mode == condition_evaluation_target)
746 {
747 /* Mark everything modified and synch conditions with the
748 target. */
749 ALL_BP_LOCATIONS (loc, loc_tmp)
750 mark_breakpoint_location_modified (loc);
751 }
752 else
753 {
754 /* Manually mark non-duplicate locations to synch conditions
755 with the target. We do this to remove all the conditions the
756 target knows about. */
757 ALL_BP_LOCATIONS (loc, loc_tmp)
758 if (is_breakpoint (loc->owner) && loc->inserted)
759 loc->needs_update = 1;
760 }
761
762 /* Do the update. */
763 update_global_location_list (UGLL_MAY_INSERT);
764 }
765
766 return;
767 }
768
769 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
770 what "auto" is translating to. */
771
772 static void
773 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
774 struct cmd_list_element *c, const char *value)
775 {
776 if (condition_evaluation_mode == condition_evaluation_auto)
777 fprintf_filtered (file,
778 _("Breakpoint condition evaluation "
779 "mode is %s (currently %s).\n"),
780 value,
781 breakpoint_condition_evaluation_mode ());
782 else
783 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
784 value);
785 }
786
787 /* A comparison function for bp_location AP and BP that is used by
788 bsearch. This comparison function only cares about addresses, unlike
789 the more general bp_locations_compare function. */
790
791 static int
792 bp_locations_compare_addrs (const void *ap, const void *bp)
793 {
794 const struct bp_location *a = *(const struct bp_location **) ap;
795 const struct bp_location *b = *(const struct bp_location **) bp;
796
797 if (a->address == b->address)
798 return 0;
799 else
800 return ((a->address > b->address) - (a->address < b->address));
801 }
802
803 /* Helper function to skip all bp_locations with addresses
804 less than ADDRESS. It returns the first bp_location that
805 is greater than or equal to ADDRESS. If none is found, just
806 return NULL. */
807
808 static struct bp_location **
809 get_first_locp_gte_addr (CORE_ADDR address)
810 {
811 struct bp_location dummy_loc;
812 struct bp_location *dummy_locp = &dummy_loc;
813 struct bp_location **locp_found = NULL;
814
815 /* Initialize the dummy location's address field. */
816 dummy_loc.address = address;
817
818 /* Find a close match to the first location at ADDRESS. */
819 locp_found = ((struct bp_location **)
820 bsearch (&dummy_locp, bp_locations, bp_locations_count,
821 sizeof (struct bp_location **),
822 bp_locations_compare_addrs));
823
824 /* Nothing was found, nothing left to do. */
825 if (locp_found == NULL)
826 return NULL;
827
828 /* We may have found a location that is at ADDRESS but is not the first in the
829 location's list. Go backwards (if possible) and locate the first one. */
830 while ((locp_found - 1) >= bp_locations
831 && (*(locp_found - 1))->address == address)
832 locp_found--;
833
834 return locp_found;
835 }
836
837 void
838 set_breakpoint_condition (struct breakpoint *b, const char *exp,
839 int from_tty)
840 {
841 xfree (b->cond_string);
842 b->cond_string = NULL;
843
844 if (is_watchpoint (b))
845 {
846 struct watchpoint *w = (struct watchpoint *) b;
847
848 w->cond_exp.reset ();
849 }
850 else
851 {
852 struct bp_location *loc;
853
854 for (loc = b->loc; loc; loc = loc->next)
855 {
856 loc->cond.reset ();
857
858 /* No need to free the condition agent expression
859 bytecode (if we have one). We will handle this
860 when we go through update_global_location_list. */
861 }
862 }
863
864 if (*exp == 0)
865 {
866 if (from_tty)
867 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
868 }
869 else
870 {
871 const char *arg = exp;
872
873 /* I don't know if it matters whether this is the string the user
874 typed in or the decompiled expression. */
875 b->cond_string = xstrdup (arg);
876 b->condition_not_parsed = 0;
877
878 if (is_watchpoint (b))
879 {
880 struct watchpoint *w = (struct watchpoint *) b;
881
882 innermost_block = NULL;
883 arg = exp;
884 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
885 if (*arg)
886 error (_("Junk at end of expression"));
887 w->cond_exp_valid_block = innermost_block;
888 }
889 else
890 {
891 struct bp_location *loc;
892
893 for (loc = b->loc; loc; loc = loc->next)
894 {
895 arg = exp;
896 loc->cond =
897 parse_exp_1 (&arg, loc->address,
898 block_for_pc (loc->address), 0);
899 if (*arg)
900 error (_("Junk at end of expression"));
901 }
902 }
903 }
904 mark_breakpoint_modified (b);
905
906 observer_notify_breakpoint_modified (b);
907 }
908
909 /* Completion for the "condition" command. */
910
911 static void
912 condition_completer (struct cmd_list_element *cmd,
913 completion_tracker &tracker,
914 const char *text, const char *word)
915 {
916 const char *space;
917
918 text = skip_spaces (text);
919 space = skip_to_space (text);
920 if (*space == '\0')
921 {
922 int len;
923 struct breakpoint *b;
924 VEC (char_ptr) *result = NULL;
925
926 if (text[0] == '$')
927 {
928 /* We don't support completion of history indices. */
929 if (!isdigit (text[1]))
930 complete_internalvar (tracker, &text[1]);
931 return;
932 }
933
934 /* We're completing the breakpoint number. */
935 len = strlen (text);
936
937 ALL_BREAKPOINTS (b)
938 {
939 char number[50];
940
941 xsnprintf (number, sizeof (number), "%d", b->number);
942
943 if (strncmp (number, text, len) == 0)
944 {
945 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
946 tracker.add_completion (std::move (copy));
947 }
948 }
949
950 return;
951 }
952
953 /* We're completing the expression part. */
954 text = skip_spaces (space);
955 expression_completer (cmd, tracker, text, word);
956 }
957
958 /* condition N EXP -- set break condition of breakpoint N to EXP. */
959
960 static void
961 condition_command (const char *arg, int from_tty)
962 {
963 struct breakpoint *b;
964 const char *p;
965 int bnum;
966
967 if (arg == 0)
968 error_no_arg (_("breakpoint number"));
969
970 p = arg;
971 bnum = get_number (&p);
972 if (bnum == 0)
973 error (_("Bad breakpoint argument: '%s'"), arg);
974
975 ALL_BREAKPOINTS (b)
976 if (b->number == bnum)
977 {
978 /* Check if this breakpoint has a "stop" method implemented in an
979 extension language. This method and conditions entered into GDB
980 from the CLI are mutually exclusive. */
981 const struct extension_language_defn *extlang
982 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
983
984 if (extlang != NULL)
985 {
986 error (_("Only one stop condition allowed. There is currently"
987 " a %s stop condition defined for this breakpoint."),
988 ext_lang_capitalized_name (extlang));
989 }
990 set_breakpoint_condition (b, p, from_tty);
991
992 if (is_breakpoint (b))
993 update_global_location_list (UGLL_MAY_INSERT);
994
995 return;
996 }
997
998 error (_("No breakpoint number %d."), bnum);
999 }
1000
1001 /* Check that COMMAND do not contain commands that are suitable
1002 only for tracepoints and not suitable for ordinary breakpoints.
1003 Throw if any such commands is found. */
1004
1005 static void
1006 check_no_tracepoint_commands (struct command_line *commands)
1007 {
1008 struct command_line *c;
1009
1010 for (c = commands; c; c = c->next)
1011 {
1012 int i;
1013
1014 if (c->control_type == while_stepping_control)
1015 error (_("The 'while-stepping' command can "
1016 "only be used for tracepoints"));
1017
1018 for (i = 0; i < c->body_count; ++i)
1019 check_no_tracepoint_commands ((c->body_list)[i]);
1020
1021 /* Not that command parsing removes leading whitespace and comment
1022 lines and also empty lines. So, we only need to check for
1023 command directly. */
1024 if (strstr (c->line, "collect ") == c->line)
1025 error (_("The 'collect' command can only be used for tracepoints"));
1026
1027 if (strstr (c->line, "teval ") == c->line)
1028 error (_("The 'teval' command can only be used for tracepoints"));
1029 }
1030 }
1031
1032 struct longjmp_breakpoint : public breakpoint
1033 {
1034 ~longjmp_breakpoint () override;
1035 };
1036
1037 /* Encapsulate tests for different types of tracepoints. */
1038
1039 static bool
1040 is_tracepoint_type (bptype type)
1041 {
1042 return (type == bp_tracepoint
1043 || type == bp_fast_tracepoint
1044 || type == bp_static_tracepoint);
1045 }
1046
1047 static bool
1048 is_longjmp_type (bptype type)
1049 {
1050 return type == bp_longjmp || type == bp_exception;
1051 }
1052
1053 int
1054 is_tracepoint (const struct breakpoint *b)
1055 {
1056 return is_tracepoint_type (b->type);
1057 }
1058
1059 /* Factory function to create an appropriate instance of breakpoint given
1060 TYPE. */
1061
1062 static std::unique_ptr<breakpoint>
1063 new_breakpoint_from_type (bptype type)
1064 {
1065 breakpoint *b;
1066
1067 if (is_tracepoint_type (type))
1068 b = new tracepoint ();
1069 else if (is_longjmp_type (type))
1070 b = new longjmp_breakpoint ();
1071 else
1072 b = new breakpoint ();
1073
1074 return std::unique_ptr<breakpoint> (b);
1075 }
1076
1077 /* A helper function that validates that COMMANDS are valid for a
1078 breakpoint. This function will throw an exception if a problem is
1079 found. */
1080
1081 static void
1082 validate_commands_for_breakpoint (struct breakpoint *b,
1083 struct command_line *commands)
1084 {
1085 if (is_tracepoint (b))
1086 {
1087 struct tracepoint *t = (struct tracepoint *) b;
1088 struct command_line *c;
1089 struct command_line *while_stepping = 0;
1090
1091 /* Reset the while-stepping step count. The previous commands
1092 might have included a while-stepping action, while the new
1093 ones might not. */
1094 t->step_count = 0;
1095
1096 /* We need to verify that each top-level element of commands is
1097 valid for tracepoints, that there's at most one
1098 while-stepping element, and that the while-stepping's body
1099 has valid tracing commands excluding nested while-stepping.
1100 We also need to validate the tracepoint action line in the
1101 context of the tracepoint --- validate_actionline actually
1102 has side effects, like setting the tracepoint's
1103 while-stepping STEP_COUNT, in addition to checking if the
1104 collect/teval actions parse and make sense in the
1105 tracepoint's context. */
1106 for (c = commands; c; c = c->next)
1107 {
1108 if (c->control_type == while_stepping_control)
1109 {
1110 if (b->type == bp_fast_tracepoint)
1111 error (_("The 'while-stepping' command "
1112 "cannot be used for fast tracepoint"));
1113 else if (b->type == bp_static_tracepoint)
1114 error (_("The 'while-stepping' command "
1115 "cannot be used for static tracepoint"));
1116
1117 if (while_stepping)
1118 error (_("The 'while-stepping' command "
1119 "can be used only once"));
1120 else
1121 while_stepping = c;
1122 }
1123
1124 validate_actionline (c->line, b);
1125 }
1126 if (while_stepping)
1127 {
1128 struct command_line *c2;
1129
1130 gdb_assert (while_stepping->body_count == 1);
1131 c2 = while_stepping->body_list[0];
1132 for (; c2; c2 = c2->next)
1133 {
1134 if (c2->control_type == while_stepping_control)
1135 error (_("The 'while-stepping' command cannot be nested"));
1136 }
1137 }
1138 }
1139 else
1140 {
1141 check_no_tracepoint_commands (commands);
1142 }
1143 }
1144
1145 /* Return a vector of all the static tracepoints set at ADDR. The
1146 caller is responsible for releasing the vector. */
1147
1148 VEC(breakpoint_p) *
1149 static_tracepoints_here (CORE_ADDR addr)
1150 {
1151 struct breakpoint *b;
1152 VEC(breakpoint_p) *found = 0;
1153 struct bp_location *loc;
1154
1155 ALL_BREAKPOINTS (b)
1156 if (b->type == bp_static_tracepoint)
1157 {
1158 for (loc = b->loc; loc; loc = loc->next)
1159 if (loc->address == addr)
1160 VEC_safe_push(breakpoint_p, found, b);
1161 }
1162
1163 return found;
1164 }
1165
1166 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1167 validate that only allowed commands are included. */
1168
1169 void
1170 breakpoint_set_commands (struct breakpoint *b,
1171 command_line_up &&commands)
1172 {
1173 validate_commands_for_breakpoint (b, commands.get ());
1174
1175 b->commands = std::move (commands);
1176 observer_notify_breakpoint_modified (b);
1177 }
1178
1179 /* Set the internal `silent' flag on the breakpoint. Note that this
1180 is not the same as the "silent" that may appear in the breakpoint's
1181 commands. */
1182
1183 void
1184 breakpoint_set_silent (struct breakpoint *b, int silent)
1185 {
1186 int old_silent = b->silent;
1187
1188 b->silent = silent;
1189 if (old_silent != silent)
1190 observer_notify_breakpoint_modified (b);
1191 }
1192
1193 /* Set the thread for this breakpoint. If THREAD is -1, make the
1194 breakpoint work for any thread. */
1195
1196 void
1197 breakpoint_set_thread (struct breakpoint *b, int thread)
1198 {
1199 int old_thread = b->thread;
1200
1201 b->thread = thread;
1202 if (old_thread != thread)
1203 observer_notify_breakpoint_modified (b);
1204 }
1205
1206 /* Set the task for this breakpoint. If TASK is 0, make the
1207 breakpoint work for any task. */
1208
1209 void
1210 breakpoint_set_task (struct breakpoint *b, int task)
1211 {
1212 int old_task = b->task;
1213
1214 b->task = task;
1215 if (old_task != task)
1216 observer_notify_breakpoint_modified (b);
1217 }
1218
1219 void
1220 check_tracepoint_command (char *line, void *closure)
1221 {
1222 struct breakpoint *b = (struct breakpoint *) closure;
1223
1224 validate_actionline (line, b);
1225 }
1226
1227 static void
1228 commands_command_1 (const char *arg, int from_tty,
1229 struct command_line *control)
1230 {
1231 counted_command_line cmd;
1232
1233 std::string new_arg;
1234
1235 if (arg == NULL || !*arg)
1236 {
1237 if (breakpoint_count - prev_breakpoint_count > 1)
1238 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1239 breakpoint_count);
1240 else if (breakpoint_count > 0)
1241 new_arg = string_printf ("%d", breakpoint_count);
1242 arg = new_arg.c_str ();
1243 }
1244
1245 map_breakpoint_numbers
1246 (arg, [&] (breakpoint *b)
1247 {
1248 if (cmd == NULL)
1249 {
1250 if (control != NULL)
1251 cmd = copy_command_lines (control->body_list[0]);
1252 else
1253 {
1254 std::string str
1255 = string_printf (_("Type commands for breakpoint(s) "
1256 "%s, one per line."),
1257 arg);
1258
1259 cmd = read_command_lines (&str[0],
1260 from_tty, 1,
1261 (is_tracepoint (b)
1262 ? check_tracepoint_command : 0),
1263 b);
1264 }
1265 }
1266
1267 /* If a breakpoint was on the list more than once, we don't need to
1268 do anything. */
1269 if (b->commands != cmd)
1270 {
1271 validate_commands_for_breakpoint (b, cmd.get ());
1272 b->commands = cmd;
1273 observer_notify_breakpoint_modified (b);
1274 }
1275 });
1276
1277 if (cmd == NULL)
1278 error (_("No breakpoints specified."));
1279 }
1280
1281 static void
1282 commands_command (const char *arg, int from_tty)
1283 {
1284 commands_command_1 (arg, from_tty, NULL);
1285 }
1286
1287 /* Like commands_command, but instead of reading the commands from
1288 input stream, takes them from an already parsed command structure.
1289
1290 This is used by cli-script.c to DTRT with breakpoint commands
1291 that are part of if and while bodies. */
1292 enum command_control_type
1293 commands_from_control_command (const char *arg, struct command_line *cmd)
1294 {
1295 commands_command_1 (arg, 0, cmd);
1296 return simple_control;
1297 }
1298
1299 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1300
1301 static int
1302 bp_location_has_shadow (struct bp_location *bl)
1303 {
1304 if (bl->loc_type != bp_loc_software_breakpoint)
1305 return 0;
1306 if (!bl->inserted)
1307 return 0;
1308 if (bl->target_info.shadow_len == 0)
1309 /* BL isn't valid, or doesn't shadow memory. */
1310 return 0;
1311 return 1;
1312 }
1313
1314 /* Update BUF, which is LEN bytes read from the target address
1315 MEMADDR, by replacing a memory breakpoint with its shadowed
1316 contents.
1317
1318 If READBUF is not NULL, this buffer must not overlap with the of
1319 the breakpoint location's shadow_contents buffer. Otherwise, a
1320 failed assertion internal error will be raised. */
1321
1322 static void
1323 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1324 const gdb_byte *writebuf_org,
1325 ULONGEST memaddr, LONGEST len,
1326 struct bp_target_info *target_info,
1327 struct gdbarch *gdbarch)
1328 {
1329 /* Now do full processing of the found relevant range of elements. */
1330 CORE_ADDR bp_addr = 0;
1331 int bp_size = 0;
1332 int bptoffset = 0;
1333
1334 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1335 current_program_space->aspace, 0))
1336 {
1337 /* The breakpoint is inserted in a different address space. */
1338 return;
1339 }
1340
1341 /* Addresses and length of the part of the breakpoint that
1342 we need to copy. */
1343 bp_addr = target_info->placed_address;
1344 bp_size = target_info->shadow_len;
1345
1346 if (bp_addr + bp_size <= memaddr)
1347 {
1348 /* The breakpoint is entirely before the chunk of memory we are
1349 reading. */
1350 return;
1351 }
1352
1353 if (bp_addr >= memaddr + len)
1354 {
1355 /* The breakpoint is entirely after the chunk of memory we are
1356 reading. */
1357 return;
1358 }
1359
1360 /* Offset within shadow_contents. */
1361 if (bp_addr < memaddr)
1362 {
1363 /* Only copy the second part of the breakpoint. */
1364 bp_size -= memaddr - bp_addr;
1365 bptoffset = memaddr - bp_addr;
1366 bp_addr = memaddr;
1367 }
1368
1369 if (bp_addr + bp_size > memaddr + len)
1370 {
1371 /* Only copy the first part of the breakpoint. */
1372 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1373 }
1374
1375 if (readbuf != NULL)
1376 {
1377 /* Verify that the readbuf buffer does not overlap with the
1378 shadow_contents buffer. */
1379 gdb_assert (target_info->shadow_contents >= readbuf + len
1380 || readbuf >= (target_info->shadow_contents
1381 + target_info->shadow_len));
1382
1383 /* Update the read buffer with this inserted breakpoint's
1384 shadow. */
1385 memcpy (readbuf + bp_addr - memaddr,
1386 target_info->shadow_contents + bptoffset, bp_size);
1387 }
1388 else
1389 {
1390 const unsigned char *bp;
1391 CORE_ADDR addr = target_info->reqstd_address;
1392 int placed_size;
1393
1394 /* Update the shadow with what we want to write to memory. */
1395 memcpy (target_info->shadow_contents + bptoffset,
1396 writebuf_org + bp_addr - memaddr, bp_size);
1397
1398 /* Determine appropriate breakpoint contents and size for this
1399 address. */
1400 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1401
1402 /* Update the final write buffer with this inserted
1403 breakpoint's INSN. */
1404 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1405 }
1406 }
1407
1408 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1409 by replacing any memory breakpoints with their shadowed contents.
1410
1411 If READBUF is not NULL, this buffer must not overlap with any of
1412 the breakpoint location's shadow_contents buffers. Otherwise,
1413 a failed assertion internal error will be raised.
1414
1415 The range of shadowed area by each bp_location is:
1416 bl->address - bp_locations_placed_address_before_address_max
1417 up to bl->address + bp_locations_shadow_len_after_address_max
1418 The range we were requested to resolve shadows for is:
1419 memaddr ... memaddr + len
1420 Thus the safe cutoff boundaries for performance optimization are
1421 memaddr + len <= (bl->address
1422 - bp_locations_placed_address_before_address_max)
1423 and:
1424 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1425
1426 void
1427 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1428 const gdb_byte *writebuf_org,
1429 ULONGEST memaddr, LONGEST len)
1430 {
1431 /* Left boundary, right boundary and median element of our binary
1432 search. */
1433 unsigned bc_l, bc_r, bc;
1434
1435 /* Find BC_L which is a leftmost element which may affect BUF
1436 content. It is safe to report lower value but a failure to
1437 report higher one. */
1438
1439 bc_l = 0;
1440 bc_r = bp_locations_count;
1441 while (bc_l + 1 < bc_r)
1442 {
1443 struct bp_location *bl;
1444
1445 bc = (bc_l + bc_r) / 2;
1446 bl = bp_locations[bc];
1447
1448 /* Check first BL->ADDRESS will not overflow due to the added
1449 constant. Then advance the left boundary only if we are sure
1450 the BC element can in no way affect the BUF content (MEMADDR
1451 to MEMADDR + LEN range).
1452
1453 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1454 offset so that we cannot miss a breakpoint with its shadow
1455 range tail still reaching MEMADDR. */
1456
1457 if ((bl->address + bp_locations_shadow_len_after_address_max
1458 >= bl->address)
1459 && (bl->address + bp_locations_shadow_len_after_address_max
1460 <= memaddr))
1461 bc_l = bc;
1462 else
1463 bc_r = bc;
1464 }
1465
1466 /* Due to the binary search above, we need to make sure we pick the
1467 first location that's at BC_L's address. E.g., if there are
1468 multiple locations at the same address, BC_L may end up pointing
1469 at a duplicate location, and miss the "master"/"inserted"
1470 location. Say, given locations L1, L2 and L3 at addresses A and
1471 B:
1472
1473 L1@A, L2@A, L3@B, ...
1474
1475 BC_L could end up pointing at location L2, while the "master"
1476 location could be L1. Since the `loc->inserted' flag is only set
1477 on "master" locations, we'd forget to restore the shadow of L1
1478 and L2. */
1479 while (bc_l > 0
1480 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1481 bc_l--;
1482
1483 /* Now do full processing of the found relevant range of elements. */
1484
1485 for (bc = bc_l; bc < bp_locations_count; bc++)
1486 {
1487 struct bp_location *bl = bp_locations[bc];
1488
1489 /* bp_location array has BL->OWNER always non-NULL. */
1490 if (bl->owner->type == bp_none)
1491 warning (_("reading through apparently deleted breakpoint #%d?"),
1492 bl->owner->number);
1493
1494 /* Performance optimization: any further element can no longer affect BUF
1495 content. */
1496
1497 if (bl->address >= bp_locations_placed_address_before_address_max
1498 && memaddr + len <= (bl->address
1499 - bp_locations_placed_address_before_address_max))
1500 break;
1501
1502 if (!bp_location_has_shadow (bl))
1503 continue;
1504
1505 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1506 memaddr, len, &bl->target_info, bl->gdbarch);
1507 }
1508 }
1509
1510 \f
1511
1512 /* Return true if BPT is either a software breakpoint or a hardware
1513 breakpoint. */
1514
1515 int
1516 is_breakpoint (const struct breakpoint *bpt)
1517 {
1518 return (bpt->type == bp_breakpoint
1519 || bpt->type == bp_hardware_breakpoint
1520 || bpt->type == bp_dprintf);
1521 }
1522
1523 /* Return true if BPT is of any hardware watchpoint kind. */
1524
1525 static int
1526 is_hardware_watchpoint (const struct breakpoint *bpt)
1527 {
1528 return (bpt->type == bp_hardware_watchpoint
1529 || bpt->type == bp_read_watchpoint
1530 || bpt->type == bp_access_watchpoint);
1531 }
1532
1533 /* Return true if BPT is of any watchpoint kind, hardware or
1534 software. */
1535
1536 int
1537 is_watchpoint (const struct breakpoint *bpt)
1538 {
1539 return (is_hardware_watchpoint (bpt)
1540 || bpt->type == bp_watchpoint);
1541 }
1542
1543 /* Returns true if the current thread and its running state are safe
1544 to evaluate or update watchpoint B. Watchpoints on local
1545 expressions need to be evaluated in the context of the thread that
1546 was current when the watchpoint was created, and, that thread needs
1547 to be stopped to be able to select the correct frame context.
1548 Watchpoints on global expressions can be evaluated on any thread,
1549 and in any state. It is presently left to the target allowing
1550 memory accesses when threads are running. */
1551
1552 static int
1553 watchpoint_in_thread_scope (struct watchpoint *b)
1554 {
1555 return (b->pspace == current_program_space
1556 && (ptid_equal (b->watchpoint_thread, null_ptid)
1557 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1558 && !is_executing (inferior_ptid))));
1559 }
1560
1561 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1562 associated bp_watchpoint_scope breakpoint. */
1563
1564 static void
1565 watchpoint_del_at_next_stop (struct watchpoint *w)
1566 {
1567 if (w->related_breakpoint != w)
1568 {
1569 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1570 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1571 w->related_breakpoint->disposition = disp_del_at_next_stop;
1572 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1573 w->related_breakpoint = w;
1574 }
1575 w->disposition = disp_del_at_next_stop;
1576 }
1577
1578 /* Extract a bitfield value from value VAL using the bit parameters contained in
1579 watchpoint W. */
1580
1581 static struct value *
1582 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1583 {
1584 struct value *bit_val;
1585
1586 if (val == NULL)
1587 return NULL;
1588
1589 bit_val = allocate_value (value_type (val));
1590
1591 unpack_value_bitfield (bit_val,
1592 w->val_bitpos,
1593 w->val_bitsize,
1594 value_contents_for_printing (val),
1595 value_offset (val),
1596 val);
1597
1598 return bit_val;
1599 }
1600
1601 /* Allocate a dummy location and add it to B, which must be a software
1602 watchpoint. This is required because even if a software watchpoint
1603 is not watching any memory, bpstat_stop_status requires a location
1604 to be able to report stops. */
1605
1606 static void
1607 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1608 struct program_space *pspace)
1609 {
1610 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1611
1612 b->loc = allocate_bp_location (b);
1613 b->loc->pspace = pspace;
1614 b->loc->address = -1;
1615 b->loc->length = -1;
1616 }
1617
1618 /* Returns true if B is a software watchpoint that is not watching any
1619 memory (e.g., "watch $pc"). */
1620
1621 static int
1622 is_no_memory_software_watchpoint (struct breakpoint *b)
1623 {
1624 return (b->type == bp_watchpoint
1625 && b->loc != NULL
1626 && b->loc->next == NULL
1627 && b->loc->address == -1
1628 && b->loc->length == -1);
1629 }
1630
1631 /* Assuming that B is a watchpoint:
1632 - Reparse watchpoint expression, if REPARSE is non-zero
1633 - Evaluate expression and store the result in B->val
1634 - Evaluate the condition if there is one, and store the result
1635 in b->loc->cond.
1636 - Update the list of values that must be watched in B->loc.
1637
1638 If the watchpoint disposition is disp_del_at_next_stop, then do
1639 nothing. If this is local watchpoint that is out of scope, delete
1640 it.
1641
1642 Even with `set breakpoint always-inserted on' the watchpoints are
1643 removed + inserted on each stop here. Normal breakpoints must
1644 never be removed because they might be missed by a running thread
1645 when debugging in non-stop mode. On the other hand, hardware
1646 watchpoints (is_hardware_watchpoint; processed here) are specific
1647 to each LWP since they are stored in each LWP's hardware debug
1648 registers. Therefore, such LWP must be stopped first in order to
1649 be able to modify its hardware watchpoints.
1650
1651 Hardware watchpoints must be reset exactly once after being
1652 presented to the user. It cannot be done sooner, because it would
1653 reset the data used to present the watchpoint hit to the user. And
1654 it must not be done later because it could display the same single
1655 watchpoint hit during multiple GDB stops. Note that the latter is
1656 relevant only to the hardware watchpoint types bp_read_watchpoint
1657 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1658 not user-visible - its hit is suppressed if the memory content has
1659 not changed.
1660
1661 The following constraints influence the location where we can reset
1662 hardware watchpoints:
1663
1664 * target_stopped_by_watchpoint and target_stopped_data_address are
1665 called several times when GDB stops.
1666
1667 [linux]
1668 * Multiple hardware watchpoints can be hit at the same time,
1669 causing GDB to stop. GDB only presents one hardware watchpoint
1670 hit at a time as the reason for stopping, and all the other hits
1671 are presented later, one after the other, each time the user
1672 requests the execution to be resumed. Execution is not resumed
1673 for the threads still having pending hit event stored in
1674 LWP_INFO->STATUS. While the watchpoint is already removed from
1675 the inferior on the first stop the thread hit event is kept being
1676 reported from its cached value by linux_nat_stopped_data_address
1677 until the real thread resume happens after the watchpoint gets
1678 presented and thus its LWP_INFO->STATUS gets reset.
1679
1680 Therefore the hardware watchpoint hit can get safely reset on the
1681 watchpoint removal from inferior. */
1682
1683 static void
1684 update_watchpoint (struct watchpoint *b, int reparse)
1685 {
1686 int within_current_scope;
1687 struct frame_id saved_frame_id;
1688 int frame_saved;
1689
1690 /* If this is a local watchpoint, we only want to check if the
1691 watchpoint frame is in scope if the current thread is the thread
1692 that was used to create the watchpoint. */
1693 if (!watchpoint_in_thread_scope (b))
1694 return;
1695
1696 if (b->disposition == disp_del_at_next_stop)
1697 return;
1698
1699 frame_saved = 0;
1700
1701 /* Determine if the watchpoint is within scope. */
1702 if (b->exp_valid_block == NULL)
1703 within_current_scope = 1;
1704 else
1705 {
1706 struct frame_info *fi = get_current_frame ();
1707 struct gdbarch *frame_arch = get_frame_arch (fi);
1708 CORE_ADDR frame_pc = get_frame_pc (fi);
1709
1710 /* If we're at a point where the stack has been destroyed
1711 (e.g. in a function epilogue), unwinding may not work
1712 properly. Do not attempt to recreate locations at this
1713 point. See similar comments in watchpoint_check. */
1714 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1715 return;
1716
1717 /* Save the current frame's ID so we can restore it after
1718 evaluating the watchpoint expression on its own frame. */
1719 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1720 took a frame parameter, so that we didn't have to change the
1721 selected frame. */
1722 frame_saved = 1;
1723 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1724
1725 fi = frame_find_by_id (b->watchpoint_frame);
1726 within_current_scope = (fi != NULL);
1727 if (within_current_scope)
1728 select_frame (fi);
1729 }
1730
1731 /* We don't free locations. They are stored in the bp_location array
1732 and update_global_location_list will eventually delete them and
1733 remove breakpoints if needed. */
1734 b->loc = NULL;
1735
1736 if (within_current_scope && reparse)
1737 {
1738 const char *s;
1739
1740 b->exp.reset ();
1741 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1742 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1743 /* If the meaning of expression itself changed, the old value is
1744 no longer relevant. We don't want to report a watchpoint hit
1745 to the user when the old value and the new value may actually
1746 be completely different objects. */
1747 value_free (b->val);
1748 b->val = NULL;
1749 b->val_valid = 0;
1750
1751 /* Note that unlike with breakpoints, the watchpoint's condition
1752 expression is stored in the breakpoint object, not in the
1753 locations (re)created below. */
1754 if (b->cond_string != NULL)
1755 {
1756 b->cond_exp.reset ();
1757
1758 s = b->cond_string;
1759 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1760 }
1761 }
1762
1763 /* If we failed to parse the expression, for example because
1764 it refers to a global variable in a not-yet-loaded shared library,
1765 don't try to insert watchpoint. We don't automatically delete
1766 such watchpoint, though, since failure to parse expression
1767 is different from out-of-scope watchpoint. */
1768 if (!target_has_execution)
1769 {
1770 /* Without execution, memory can't change. No use to try and
1771 set watchpoint locations. The watchpoint will be reset when
1772 the target gains execution, through breakpoint_re_set. */
1773 if (!can_use_hw_watchpoints)
1774 {
1775 if (b->ops->works_in_software_mode (b))
1776 b->type = bp_watchpoint;
1777 else
1778 error (_("Can't set read/access watchpoint when "
1779 "hardware watchpoints are disabled."));
1780 }
1781 }
1782 else if (within_current_scope && b->exp)
1783 {
1784 int pc = 0;
1785 struct value *val_chain, *v, *result, *next;
1786 struct program_space *frame_pspace;
1787
1788 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1789
1790 /* Avoid setting b->val if it's already set. The meaning of
1791 b->val is 'the last value' user saw, and we should update
1792 it only if we reported that last value to user. As it
1793 happens, the code that reports it updates b->val directly.
1794 We don't keep track of the memory value for masked
1795 watchpoints. */
1796 if (!b->val_valid && !is_masked_watchpoint (b))
1797 {
1798 if (b->val_bitsize != 0)
1799 {
1800 v = extract_bitfield_from_watchpoint_value (b, v);
1801 if (v != NULL)
1802 release_value (v);
1803 }
1804 b->val = v;
1805 b->val_valid = 1;
1806 }
1807
1808 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1809
1810 /* Look at each value on the value chain. */
1811 for (v = val_chain; v; v = value_next (v))
1812 {
1813 /* If it's a memory location, and GDB actually needed
1814 its contents to evaluate the expression, then we
1815 must watch it. If the first value returned is
1816 still lazy, that means an error occurred reading it;
1817 watch it anyway in case it becomes readable. */
1818 if (VALUE_LVAL (v) == lval_memory
1819 && (v == val_chain || ! value_lazy (v)))
1820 {
1821 struct type *vtype = check_typedef (value_type (v));
1822
1823 /* We only watch structs and arrays if user asked
1824 for it explicitly, never if they just happen to
1825 appear in the middle of some value chain. */
1826 if (v == result
1827 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1828 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1829 {
1830 CORE_ADDR addr;
1831 enum target_hw_bp_type type;
1832 struct bp_location *loc, **tmp;
1833 int bitpos = 0, bitsize = 0;
1834
1835 if (value_bitsize (v) != 0)
1836 {
1837 /* Extract the bit parameters out from the bitfield
1838 sub-expression. */
1839 bitpos = value_bitpos (v);
1840 bitsize = value_bitsize (v);
1841 }
1842 else if (v == result && b->val_bitsize != 0)
1843 {
1844 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1845 lvalue whose bit parameters are saved in the fields
1846 VAL_BITPOS and VAL_BITSIZE. */
1847 bitpos = b->val_bitpos;
1848 bitsize = b->val_bitsize;
1849 }
1850
1851 addr = value_address (v);
1852 if (bitsize != 0)
1853 {
1854 /* Skip the bytes that don't contain the bitfield. */
1855 addr += bitpos / 8;
1856 }
1857
1858 type = hw_write;
1859 if (b->type == bp_read_watchpoint)
1860 type = hw_read;
1861 else if (b->type == bp_access_watchpoint)
1862 type = hw_access;
1863
1864 loc = allocate_bp_location (b);
1865 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1866 ;
1867 *tmp = loc;
1868 loc->gdbarch = get_type_arch (value_type (v));
1869
1870 loc->pspace = frame_pspace;
1871 loc->address = addr;
1872
1873 if (bitsize != 0)
1874 {
1875 /* Just cover the bytes that make up the bitfield. */
1876 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1877 }
1878 else
1879 loc->length = TYPE_LENGTH (value_type (v));
1880
1881 loc->watchpoint_type = type;
1882 }
1883 }
1884 }
1885
1886 /* Change the type of breakpoint between hardware assisted or
1887 an ordinary watchpoint depending on the hardware support
1888 and free hardware slots. REPARSE is set when the inferior
1889 is started. */
1890 if (reparse)
1891 {
1892 int reg_cnt;
1893 enum bp_loc_type loc_type;
1894 struct bp_location *bl;
1895
1896 reg_cnt = can_use_hardware_watchpoint (val_chain);
1897
1898 if (reg_cnt)
1899 {
1900 int i, target_resources_ok, other_type_used;
1901 enum bptype type;
1902
1903 /* Use an exact watchpoint when there's only one memory region to be
1904 watched, and only one debug register is needed to watch it. */
1905 b->exact = target_exact_watchpoints && reg_cnt == 1;
1906
1907 /* We need to determine how many resources are already
1908 used for all other hardware watchpoints plus this one
1909 to see if we still have enough resources to also fit
1910 this watchpoint in as well. */
1911
1912 /* If this is a software watchpoint, we try to turn it
1913 to a hardware one -- count resources as if B was of
1914 hardware watchpoint type. */
1915 type = b->type;
1916 if (type == bp_watchpoint)
1917 type = bp_hardware_watchpoint;
1918
1919 /* This watchpoint may or may not have been placed on
1920 the list yet at this point (it won't be in the list
1921 if we're trying to create it for the first time,
1922 through watch_command), so always account for it
1923 manually. */
1924
1925 /* Count resources used by all watchpoints except B. */
1926 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1927
1928 /* Add in the resources needed for B. */
1929 i += hw_watchpoint_use_count (b);
1930
1931 target_resources_ok
1932 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1933 if (target_resources_ok <= 0)
1934 {
1935 int sw_mode = b->ops->works_in_software_mode (b);
1936
1937 if (target_resources_ok == 0 && !sw_mode)
1938 error (_("Target does not support this type of "
1939 "hardware watchpoint."));
1940 else if (target_resources_ok < 0 && !sw_mode)
1941 error (_("There are not enough available hardware "
1942 "resources for this watchpoint."));
1943
1944 /* Downgrade to software watchpoint. */
1945 b->type = bp_watchpoint;
1946 }
1947 else
1948 {
1949 /* If this was a software watchpoint, we've just
1950 found we have enough resources to turn it to a
1951 hardware watchpoint. Otherwise, this is a
1952 nop. */
1953 b->type = type;
1954 }
1955 }
1956 else if (!b->ops->works_in_software_mode (b))
1957 {
1958 if (!can_use_hw_watchpoints)
1959 error (_("Can't set read/access watchpoint when "
1960 "hardware watchpoints are disabled."));
1961 else
1962 error (_("Expression cannot be implemented with "
1963 "read/access watchpoint."));
1964 }
1965 else
1966 b->type = bp_watchpoint;
1967
1968 loc_type = (b->type == bp_watchpoint? bp_loc_other
1969 : bp_loc_hardware_watchpoint);
1970 for (bl = b->loc; bl; bl = bl->next)
1971 bl->loc_type = loc_type;
1972 }
1973
1974 for (v = val_chain; v; v = next)
1975 {
1976 next = value_next (v);
1977 if (v != b->val)
1978 value_free (v);
1979 }
1980
1981 /* If a software watchpoint is not watching any memory, then the
1982 above left it without any location set up. But,
1983 bpstat_stop_status requires a location to be able to report
1984 stops, so make sure there's at least a dummy one. */
1985 if (b->type == bp_watchpoint && b->loc == NULL)
1986 software_watchpoint_add_no_memory_location (b, frame_pspace);
1987 }
1988 else if (!within_current_scope)
1989 {
1990 printf_filtered (_("\
1991 Watchpoint %d deleted because the program has left the block\n\
1992 in which its expression is valid.\n"),
1993 b->number);
1994 watchpoint_del_at_next_stop (b);
1995 }
1996
1997 /* Restore the selected frame. */
1998 if (frame_saved)
1999 select_frame (frame_find_by_id (saved_frame_id));
2000 }
2001
2002
2003 /* Returns 1 iff breakpoint location should be
2004 inserted in the inferior. We don't differentiate the type of BL's owner
2005 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2006 breakpoint_ops is not defined, because in insert_bp_location,
2007 tracepoint's insert_location will not be called. */
2008 static int
2009 should_be_inserted (struct bp_location *bl)
2010 {
2011 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2012 return 0;
2013
2014 if (bl->owner->disposition == disp_del_at_next_stop)
2015 return 0;
2016
2017 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2018 return 0;
2019
2020 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2021 return 0;
2022
2023 /* This is set for example, when we're attached to the parent of a
2024 vfork, and have detached from the child. The child is running
2025 free, and we expect it to do an exec or exit, at which point the
2026 OS makes the parent schedulable again (and the target reports
2027 that the vfork is done). Until the child is done with the shared
2028 memory region, do not insert breakpoints in the parent, otherwise
2029 the child could still trip on the parent's breakpoints. Since
2030 the parent is blocked anyway, it won't miss any breakpoint. */
2031 if (bl->pspace->breakpoints_not_allowed)
2032 return 0;
2033
2034 /* Don't insert a breakpoint if we're trying to step past its
2035 location, except if the breakpoint is a single-step breakpoint,
2036 and the breakpoint's thread is the thread which is stepping past
2037 a breakpoint. */
2038 if ((bl->loc_type == bp_loc_software_breakpoint
2039 || bl->loc_type == bp_loc_hardware_breakpoint)
2040 && stepping_past_instruction_at (bl->pspace->aspace,
2041 bl->address)
2042 /* The single-step breakpoint may be inserted at the location
2043 we're trying to step if the instruction branches to itself.
2044 However, the instruction won't be executed at all and it may
2045 break the semantics of the instruction, for example, the
2046 instruction is a conditional branch or updates some flags.
2047 We can't fix it unless GDB is able to emulate the instruction
2048 or switch to displaced stepping. */
2049 && !(bl->owner->type == bp_single_step
2050 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2051 {
2052 if (debug_infrun)
2053 {
2054 fprintf_unfiltered (gdb_stdlog,
2055 "infrun: skipping breakpoint: "
2056 "stepping past insn at: %s\n",
2057 paddress (bl->gdbarch, bl->address));
2058 }
2059 return 0;
2060 }
2061
2062 /* Don't insert watchpoints if we're trying to step past the
2063 instruction that triggered one. */
2064 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2065 && stepping_past_nonsteppable_watchpoint ())
2066 {
2067 if (debug_infrun)
2068 {
2069 fprintf_unfiltered (gdb_stdlog,
2070 "infrun: stepping past non-steppable watchpoint. "
2071 "skipping watchpoint at %s:%d\n",
2072 paddress (bl->gdbarch, bl->address),
2073 bl->length);
2074 }
2075 return 0;
2076 }
2077
2078 return 1;
2079 }
2080
2081 /* Same as should_be_inserted but does the check assuming
2082 that the location is not duplicated. */
2083
2084 static int
2085 unduplicated_should_be_inserted (struct bp_location *bl)
2086 {
2087 int result;
2088 const int save_duplicate = bl->duplicate;
2089
2090 bl->duplicate = 0;
2091 result = should_be_inserted (bl);
2092 bl->duplicate = save_duplicate;
2093 return result;
2094 }
2095
2096 /* Parses a conditional described by an expression COND into an
2097 agent expression bytecode suitable for evaluation
2098 by the bytecode interpreter. Return NULL if there was
2099 any error during parsing. */
2100
2101 static agent_expr_up
2102 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2103 {
2104 if (cond == NULL)
2105 return NULL;
2106
2107 agent_expr_up aexpr;
2108
2109 /* We don't want to stop processing, so catch any errors
2110 that may show up. */
2111 TRY
2112 {
2113 aexpr = gen_eval_for_expr (scope, cond);
2114 }
2115
2116 CATCH (ex, RETURN_MASK_ERROR)
2117 {
2118 /* If we got here, it means the condition could not be parsed to a valid
2119 bytecode expression and thus can't be evaluated on the target's side.
2120 It's no use iterating through the conditions. */
2121 }
2122 END_CATCH
2123
2124 /* We have a valid agent expression. */
2125 return aexpr;
2126 }
2127
2128 /* Based on location BL, create a list of breakpoint conditions to be
2129 passed on to the target. If we have duplicated locations with different
2130 conditions, we will add such conditions to the list. The idea is that the
2131 target will evaluate the list of conditions and will only notify GDB when
2132 one of them is true. */
2133
2134 static void
2135 build_target_condition_list (struct bp_location *bl)
2136 {
2137 struct bp_location **locp = NULL, **loc2p;
2138 int null_condition_or_parse_error = 0;
2139 int modified = bl->needs_update;
2140 struct bp_location *loc;
2141
2142 /* Release conditions left over from a previous insert. */
2143 bl->target_info.conditions.clear ();
2144
2145 /* This is only meaningful if the target is
2146 evaluating conditions and if the user has
2147 opted for condition evaluation on the target's
2148 side. */
2149 if (gdb_evaluates_breakpoint_condition_p ()
2150 || !target_supports_evaluation_of_breakpoint_conditions ())
2151 return;
2152
2153 /* Do a first pass to check for locations with no assigned
2154 conditions or conditions that fail to parse to a valid agent expression
2155 bytecode. If any of these happen, then it's no use to send conditions
2156 to the target since this location will always trigger and generate a
2157 response back to GDB. */
2158 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2159 {
2160 loc = (*loc2p);
2161 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2162 {
2163 if (modified)
2164 {
2165 /* Re-parse the conditions since something changed. In that
2166 case we already freed the condition bytecodes (see
2167 force_breakpoint_reinsertion). We just
2168 need to parse the condition to bytecodes again. */
2169 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2170 loc->cond.get ());
2171 }
2172
2173 /* If we have a NULL bytecode expression, it means something
2174 went wrong or we have a null condition expression. */
2175 if (!loc->cond_bytecode)
2176 {
2177 null_condition_or_parse_error = 1;
2178 break;
2179 }
2180 }
2181 }
2182
2183 /* If any of these happened, it means we will have to evaluate the conditions
2184 for the location's address on gdb's side. It is no use keeping bytecodes
2185 for all the other duplicate locations, thus we free all of them here.
2186
2187 This is so we have a finer control over which locations' conditions are
2188 being evaluated by GDB or the remote stub. */
2189 if (null_condition_or_parse_error)
2190 {
2191 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2192 {
2193 loc = (*loc2p);
2194 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2195 {
2196 /* Only go as far as the first NULL bytecode is
2197 located. */
2198 if (!loc->cond_bytecode)
2199 return;
2200
2201 loc->cond_bytecode.reset ();
2202 }
2203 }
2204 }
2205
2206 /* No NULL conditions or failed bytecode generation. Build a condition list
2207 for this location's address. */
2208 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2209 {
2210 loc = (*loc2p);
2211 if (loc->cond
2212 && is_breakpoint (loc->owner)
2213 && loc->pspace->num == bl->pspace->num
2214 && loc->owner->enable_state == bp_enabled
2215 && loc->enabled)
2216 {
2217 /* Add the condition to the vector. This will be used later
2218 to send the conditions to the target. */
2219 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2220 }
2221 }
2222
2223 return;
2224 }
2225
2226 /* Parses a command described by string CMD into an agent expression
2227 bytecode suitable for evaluation by the bytecode interpreter.
2228 Return NULL if there was any error during parsing. */
2229
2230 static agent_expr_up
2231 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2232 {
2233 struct cleanup *old_cleanups = 0;
2234 struct expression **argvec;
2235 const char *cmdrest;
2236 const char *format_start, *format_end;
2237 struct format_piece *fpieces;
2238 int nargs;
2239 struct gdbarch *gdbarch = get_current_arch ();
2240
2241 if (cmd == NULL)
2242 return NULL;
2243
2244 cmdrest = cmd;
2245
2246 if (*cmdrest == ',')
2247 ++cmdrest;
2248 cmdrest = skip_spaces (cmdrest);
2249
2250 if (*cmdrest++ != '"')
2251 error (_("No format string following the location"));
2252
2253 format_start = cmdrest;
2254
2255 fpieces = parse_format_string (&cmdrest);
2256
2257 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2258
2259 format_end = cmdrest;
2260
2261 if (*cmdrest++ != '"')
2262 error (_("Bad format string, non-terminated '\"'."));
2263
2264 cmdrest = skip_spaces (cmdrest);
2265
2266 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2267 error (_("Invalid argument syntax"));
2268
2269 if (*cmdrest == ',')
2270 cmdrest++;
2271 cmdrest = skip_spaces (cmdrest);
2272
2273 /* For each argument, make an expression. */
2274
2275 argvec = (struct expression **) alloca (strlen (cmd)
2276 * sizeof (struct expression *));
2277
2278 nargs = 0;
2279 while (*cmdrest != '\0')
2280 {
2281 const char *cmd1;
2282
2283 cmd1 = cmdrest;
2284 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2285 argvec[nargs++] = expr.release ();
2286 cmdrest = cmd1;
2287 if (*cmdrest == ',')
2288 ++cmdrest;
2289 }
2290
2291 agent_expr_up aexpr;
2292
2293 /* We don't want to stop processing, so catch any errors
2294 that may show up. */
2295 TRY
2296 {
2297 aexpr = gen_printf (scope, gdbarch, 0, 0,
2298 format_start, format_end - format_start,
2299 fpieces, nargs, argvec);
2300 }
2301 CATCH (ex, RETURN_MASK_ERROR)
2302 {
2303 /* If we got here, it means the command could not be parsed to a valid
2304 bytecode expression and thus can't be evaluated on the target's side.
2305 It's no use iterating through the other commands. */
2306 }
2307 END_CATCH
2308
2309 do_cleanups (old_cleanups);
2310
2311 /* We have a valid agent expression, return it. */
2312 return aexpr;
2313 }
2314
2315 /* Based on location BL, create a list of breakpoint commands to be
2316 passed on to the target. If we have duplicated locations with
2317 different commands, we will add any such to the list. */
2318
2319 static void
2320 build_target_command_list (struct bp_location *bl)
2321 {
2322 struct bp_location **locp = NULL, **loc2p;
2323 int null_command_or_parse_error = 0;
2324 int modified = bl->needs_update;
2325 struct bp_location *loc;
2326
2327 /* Clear commands left over from a previous insert. */
2328 bl->target_info.tcommands.clear ();
2329
2330 if (!target_can_run_breakpoint_commands ())
2331 return;
2332
2333 /* For now, limit to agent-style dprintf breakpoints. */
2334 if (dprintf_style != dprintf_style_agent)
2335 return;
2336
2337 /* For now, if we have any duplicate location that isn't a dprintf,
2338 don't install the target-side commands, as that would make the
2339 breakpoint not be reported to the core, and we'd lose
2340 control. */
2341 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2342 {
2343 loc = (*loc2p);
2344 if (is_breakpoint (loc->owner)
2345 && loc->pspace->num == bl->pspace->num
2346 && loc->owner->type != bp_dprintf)
2347 return;
2348 }
2349
2350 /* Do a first pass to check for locations with no assigned
2351 conditions or conditions that fail to parse to a valid agent expression
2352 bytecode. If any of these happen, then it's no use to send conditions
2353 to the target since this location will always trigger and generate a
2354 response back to GDB. */
2355 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2356 {
2357 loc = (*loc2p);
2358 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2359 {
2360 if (modified)
2361 {
2362 /* Re-parse the commands since something changed. In that
2363 case we already freed the command bytecodes (see
2364 force_breakpoint_reinsertion). We just
2365 need to parse the command to bytecodes again. */
2366 loc->cmd_bytecode
2367 = parse_cmd_to_aexpr (bl->address,
2368 loc->owner->extra_string);
2369 }
2370
2371 /* If we have a NULL bytecode expression, it means something
2372 went wrong or we have a null command expression. */
2373 if (!loc->cmd_bytecode)
2374 {
2375 null_command_or_parse_error = 1;
2376 break;
2377 }
2378 }
2379 }
2380
2381 /* If anything failed, then we're not doing target-side commands,
2382 and so clean up. */
2383 if (null_command_or_parse_error)
2384 {
2385 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2386 {
2387 loc = (*loc2p);
2388 if (is_breakpoint (loc->owner)
2389 && loc->pspace->num == bl->pspace->num)
2390 {
2391 /* Only go as far as the first NULL bytecode is
2392 located. */
2393 if (loc->cmd_bytecode == NULL)
2394 return;
2395
2396 loc->cmd_bytecode.reset ();
2397 }
2398 }
2399 }
2400
2401 /* No NULL commands or failed bytecode generation. Build a command list
2402 for this location's address. */
2403 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2404 {
2405 loc = (*loc2p);
2406 if (loc->owner->extra_string
2407 && is_breakpoint (loc->owner)
2408 && loc->pspace->num == bl->pspace->num
2409 && loc->owner->enable_state == bp_enabled
2410 && loc->enabled)
2411 {
2412 /* Add the command to the vector. This will be used later
2413 to send the commands to the target. */
2414 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2415 }
2416 }
2417
2418 bl->target_info.persist = 0;
2419 /* Maybe flag this location as persistent. */
2420 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2421 bl->target_info.persist = 1;
2422 }
2423
2424 /* Return the kind of breakpoint on address *ADDR. Get the kind
2425 of breakpoint according to ADDR except single-step breakpoint.
2426 Get the kind of single-step breakpoint according to the current
2427 registers state. */
2428
2429 static int
2430 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2431 {
2432 if (bl->owner->type == bp_single_step)
2433 {
2434 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2435 struct regcache *regcache;
2436
2437 regcache = get_thread_regcache (thr->ptid);
2438
2439 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2440 regcache, addr);
2441 }
2442 else
2443 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2444 }
2445
2446 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2447 location. Any error messages are printed to TMP_ERROR_STREAM; and
2448 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2449 Returns 0 for success, 1 if the bp_location type is not supported or
2450 -1 for failure.
2451
2452 NOTE drow/2003-09-09: This routine could be broken down to an
2453 object-style method for each breakpoint or catchpoint type. */
2454 static int
2455 insert_bp_location (struct bp_location *bl,
2456 struct ui_file *tmp_error_stream,
2457 int *disabled_breaks,
2458 int *hw_breakpoint_error,
2459 int *hw_bp_error_explained_already)
2460 {
2461 gdb_exception bp_excpt = exception_none;
2462
2463 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2464 return 0;
2465
2466 /* Note we don't initialize bl->target_info, as that wipes out
2467 the breakpoint location's shadow_contents if the breakpoint
2468 is still inserted at that location. This in turn breaks
2469 target_read_memory which depends on these buffers when
2470 a memory read is requested at the breakpoint location:
2471 Once the target_info has been wiped, we fail to see that
2472 we have a breakpoint inserted at that address and thus
2473 read the breakpoint instead of returning the data saved in
2474 the breakpoint location's shadow contents. */
2475 bl->target_info.reqstd_address = bl->address;
2476 bl->target_info.placed_address_space = bl->pspace->aspace;
2477 bl->target_info.length = bl->length;
2478
2479 /* When working with target-side conditions, we must pass all the conditions
2480 for the same breakpoint address down to the target since GDB will not
2481 insert those locations. With a list of breakpoint conditions, the target
2482 can decide when to stop and notify GDB. */
2483
2484 if (is_breakpoint (bl->owner))
2485 {
2486 build_target_condition_list (bl);
2487 build_target_command_list (bl);
2488 /* Reset the modification marker. */
2489 bl->needs_update = 0;
2490 }
2491
2492 if (bl->loc_type == bp_loc_software_breakpoint
2493 || bl->loc_type == bp_loc_hardware_breakpoint)
2494 {
2495 if (bl->owner->type != bp_hardware_breakpoint)
2496 {
2497 /* If the explicitly specified breakpoint type
2498 is not hardware breakpoint, check the memory map to see
2499 if the breakpoint address is in read only memory or not.
2500
2501 Two important cases are:
2502 - location type is not hardware breakpoint, memory
2503 is readonly. We change the type of the location to
2504 hardware breakpoint.
2505 - location type is hardware breakpoint, memory is
2506 read-write. This means we've previously made the
2507 location hardware one, but then the memory map changed,
2508 so we undo.
2509
2510 When breakpoints are removed, remove_breakpoints will use
2511 location types we've just set here, the only possible
2512 problem is that memory map has changed during running
2513 program, but it's not going to work anyway with current
2514 gdb. */
2515 struct mem_region *mr
2516 = lookup_mem_region (bl->target_info.reqstd_address);
2517
2518 if (mr)
2519 {
2520 if (automatic_hardware_breakpoints)
2521 {
2522 enum bp_loc_type new_type;
2523
2524 if (mr->attrib.mode != MEM_RW)
2525 new_type = bp_loc_hardware_breakpoint;
2526 else
2527 new_type = bp_loc_software_breakpoint;
2528
2529 if (new_type != bl->loc_type)
2530 {
2531 static int said = 0;
2532
2533 bl->loc_type = new_type;
2534 if (!said)
2535 {
2536 fprintf_filtered (gdb_stdout,
2537 _("Note: automatically using "
2538 "hardware breakpoints for "
2539 "read-only addresses.\n"));
2540 said = 1;
2541 }
2542 }
2543 }
2544 else if (bl->loc_type == bp_loc_software_breakpoint
2545 && mr->attrib.mode != MEM_RW)
2546 {
2547 fprintf_unfiltered (tmp_error_stream,
2548 _("Cannot insert breakpoint %d.\n"
2549 "Cannot set software breakpoint "
2550 "at read-only address %s\n"),
2551 bl->owner->number,
2552 paddress (bl->gdbarch, bl->address));
2553 return 1;
2554 }
2555 }
2556 }
2557
2558 /* First check to see if we have to handle an overlay. */
2559 if (overlay_debugging == ovly_off
2560 || bl->section == NULL
2561 || !(section_is_overlay (bl->section)))
2562 {
2563 /* No overlay handling: just set the breakpoint. */
2564 TRY
2565 {
2566 int val;
2567
2568 val = bl->owner->ops->insert_location (bl);
2569 if (val)
2570 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2571 }
2572 CATCH (e, RETURN_MASK_ALL)
2573 {
2574 bp_excpt = e;
2575 }
2576 END_CATCH
2577 }
2578 else
2579 {
2580 /* This breakpoint is in an overlay section.
2581 Shall we set a breakpoint at the LMA? */
2582 if (!overlay_events_enabled)
2583 {
2584 /* Yes -- overlay event support is not active,
2585 so we must try to set a breakpoint at the LMA.
2586 This will not work for a hardware breakpoint. */
2587 if (bl->loc_type == bp_loc_hardware_breakpoint)
2588 warning (_("hardware breakpoint %d not supported in overlay!"),
2589 bl->owner->number);
2590 else
2591 {
2592 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2593 bl->section);
2594 /* Set a software (trap) breakpoint at the LMA. */
2595 bl->overlay_target_info = bl->target_info;
2596 bl->overlay_target_info.reqstd_address = addr;
2597
2598 /* No overlay handling: just set the breakpoint. */
2599 TRY
2600 {
2601 int val;
2602
2603 bl->overlay_target_info.kind
2604 = breakpoint_kind (bl, &addr);
2605 bl->overlay_target_info.placed_address = addr;
2606 val = target_insert_breakpoint (bl->gdbarch,
2607 &bl->overlay_target_info);
2608 if (val)
2609 bp_excpt
2610 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2611 }
2612 CATCH (e, RETURN_MASK_ALL)
2613 {
2614 bp_excpt = e;
2615 }
2616 END_CATCH
2617
2618 if (bp_excpt.reason != 0)
2619 fprintf_unfiltered (tmp_error_stream,
2620 "Overlay breakpoint %d "
2621 "failed: in ROM?\n",
2622 bl->owner->number);
2623 }
2624 }
2625 /* Shall we set a breakpoint at the VMA? */
2626 if (section_is_mapped (bl->section))
2627 {
2628 /* Yes. This overlay section is mapped into memory. */
2629 TRY
2630 {
2631 int val;
2632
2633 val = bl->owner->ops->insert_location (bl);
2634 if (val)
2635 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2636 }
2637 CATCH (e, RETURN_MASK_ALL)
2638 {
2639 bp_excpt = e;
2640 }
2641 END_CATCH
2642 }
2643 else
2644 {
2645 /* No. This breakpoint will not be inserted.
2646 No error, but do not mark the bp as 'inserted'. */
2647 return 0;
2648 }
2649 }
2650
2651 if (bp_excpt.reason != 0)
2652 {
2653 /* Can't set the breakpoint. */
2654
2655 /* In some cases, we might not be able to insert a
2656 breakpoint in a shared library that has already been
2657 removed, but we have not yet processed the shlib unload
2658 event. Unfortunately, some targets that implement
2659 breakpoint insertion themselves can't tell why the
2660 breakpoint insertion failed (e.g., the remote target
2661 doesn't define error codes), so we must treat generic
2662 errors as memory errors. */
2663 if (bp_excpt.reason == RETURN_ERROR
2664 && (bp_excpt.error == GENERIC_ERROR
2665 || bp_excpt.error == MEMORY_ERROR)
2666 && bl->loc_type == bp_loc_software_breakpoint
2667 && (solib_name_from_address (bl->pspace, bl->address)
2668 || shared_objfile_contains_address_p (bl->pspace,
2669 bl->address)))
2670 {
2671 /* See also: disable_breakpoints_in_shlibs. */
2672 bl->shlib_disabled = 1;
2673 observer_notify_breakpoint_modified (bl->owner);
2674 if (!*disabled_breaks)
2675 {
2676 fprintf_unfiltered (tmp_error_stream,
2677 "Cannot insert breakpoint %d.\n",
2678 bl->owner->number);
2679 fprintf_unfiltered (tmp_error_stream,
2680 "Temporarily disabling shared "
2681 "library breakpoints:\n");
2682 }
2683 *disabled_breaks = 1;
2684 fprintf_unfiltered (tmp_error_stream,
2685 "breakpoint #%d\n", bl->owner->number);
2686 return 0;
2687 }
2688 else
2689 {
2690 if (bl->loc_type == bp_loc_hardware_breakpoint)
2691 {
2692 *hw_breakpoint_error = 1;
2693 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2694 fprintf_unfiltered (tmp_error_stream,
2695 "Cannot insert hardware breakpoint %d%s",
2696 bl->owner->number,
2697 bp_excpt.message ? ":" : ".\n");
2698 if (bp_excpt.message != NULL)
2699 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2700 bp_excpt.message);
2701 }
2702 else
2703 {
2704 if (bp_excpt.message == NULL)
2705 {
2706 std::string message
2707 = memory_error_message (TARGET_XFER_E_IO,
2708 bl->gdbarch, bl->address);
2709
2710 fprintf_unfiltered (tmp_error_stream,
2711 "Cannot insert breakpoint %d.\n"
2712 "%s\n",
2713 bl->owner->number, message.c_str ());
2714 }
2715 else
2716 {
2717 fprintf_unfiltered (tmp_error_stream,
2718 "Cannot insert breakpoint %d: %s\n",
2719 bl->owner->number,
2720 bp_excpt.message);
2721 }
2722 }
2723 return 1;
2724
2725 }
2726 }
2727 else
2728 bl->inserted = 1;
2729
2730 return 0;
2731 }
2732
2733 else if (bl->loc_type == bp_loc_hardware_watchpoint
2734 /* NOTE drow/2003-09-08: This state only exists for removing
2735 watchpoints. It's not clear that it's necessary... */
2736 && bl->owner->disposition != disp_del_at_next_stop)
2737 {
2738 int val;
2739
2740 gdb_assert (bl->owner->ops != NULL
2741 && bl->owner->ops->insert_location != NULL);
2742
2743 val = bl->owner->ops->insert_location (bl);
2744
2745 /* If trying to set a read-watchpoint, and it turns out it's not
2746 supported, try emulating one with an access watchpoint. */
2747 if (val == 1 && bl->watchpoint_type == hw_read)
2748 {
2749 struct bp_location *loc, **loc_temp;
2750
2751 /* But don't try to insert it, if there's already another
2752 hw_access location that would be considered a duplicate
2753 of this one. */
2754 ALL_BP_LOCATIONS (loc, loc_temp)
2755 if (loc != bl
2756 && loc->watchpoint_type == hw_access
2757 && watchpoint_locations_match (bl, loc))
2758 {
2759 bl->duplicate = 1;
2760 bl->inserted = 1;
2761 bl->target_info = loc->target_info;
2762 bl->watchpoint_type = hw_access;
2763 val = 0;
2764 break;
2765 }
2766
2767 if (val == 1)
2768 {
2769 bl->watchpoint_type = hw_access;
2770 val = bl->owner->ops->insert_location (bl);
2771
2772 if (val)
2773 /* Back to the original value. */
2774 bl->watchpoint_type = hw_read;
2775 }
2776 }
2777
2778 bl->inserted = (val == 0);
2779 }
2780
2781 else if (bl->owner->type == bp_catchpoint)
2782 {
2783 int val;
2784
2785 gdb_assert (bl->owner->ops != NULL
2786 && bl->owner->ops->insert_location != NULL);
2787
2788 val = bl->owner->ops->insert_location (bl);
2789 if (val)
2790 {
2791 bl->owner->enable_state = bp_disabled;
2792
2793 if (val == 1)
2794 warning (_("\
2795 Error inserting catchpoint %d: Your system does not support this type\n\
2796 of catchpoint."), bl->owner->number);
2797 else
2798 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2799 }
2800
2801 bl->inserted = (val == 0);
2802
2803 /* We've already printed an error message if there was a problem
2804 inserting this catchpoint, and we've disabled the catchpoint,
2805 so just return success. */
2806 return 0;
2807 }
2808
2809 return 0;
2810 }
2811
2812 /* This function is called when program space PSPACE is about to be
2813 deleted. It takes care of updating breakpoints to not reference
2814 PSPACE anymore. */
2815
2816 void
2817 breakpoint_program_space_exit (struct program_space *pspace)
2818 {
2819 struct breakpoint *b, *b_temp;
2820 struct bp_location *loc, **loc_temp;
2821
2822 /* Remove any breakpoint that was set through this program space. */
2823 ALL_BREAKPOINTS_SAFE (b, b_temp)
2824 {
2825 if (b->pspace == pspace)
2826 delete_breakpoint (b);
2827 }
2828
2829 /* Breakpoints set through other program spaces could have locations
2830 bound to PSPACE as well. Remove those. */
2831 ALL_BP_LOCATIONS (loc, loc_temp)
2832 {
2833 struct bp_location *tmp;
2834
2835 if (loc->pspace == pspace)
2836 {
2837 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2838 if (loc->owner->loc == loc)
2839 loc->owner->loc = loc->next;
2840 else
2841 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2842 if (tmp->next == loc)
2843 {
2844 tmp->next = loc->next;
2845 break;
2846 }
2847 }
2848 }
2849
2850 /* Now update the global location list to permanently delete the
2851 removed locations above. */
2852 update_global_location_list (UGLL_DONT_INSERT);
2853 }
2854
2855 /* Make sure all breakpoints are inserted in inferior.
2856 Throws exception on any error.
2857 A breakpoint that is already inserted won't be inserted
2858 again, so calling this function twice is safe. */
2859 void
2860 insert_breakpoints (void)
2861 {
2862 struct breakpoint *bpt;
2863
2864 ALL_BREAKPOINTS (bpt)
2865 if (is_hardware_watchpoint (bpt))
2866 {
2867 struct watchpoint *w = (struct watchpoint *) bpt;
2868
2869 update_watchpoint (w, 0 /* don't reparse. */);
2870 }
2871
2872 /* Updating watchpoints creates new locations, so update the global
2873 location list. Explicitly tell ugll to insert locations and
2874 ignore breakpoints_always_inserted_mode. */
2875 update_global_location_list (UGLL_INSERT);
2876 }
2877
2878 /* Invoke CALLBACK for each of bp_location. */
2879
2880 void
2881 iterate_over_bp_locations (walk_bp_location_callback callback)
2882 {
2883 struct bp_location *loc, **loc_tmp;
2884
2885 ALL_BP_LOCATIONS (loc, loc_tmp)
2886 {
2887 callback (loc, NULL);
2888 }
2889 }
2890
2891 /* This is used when we need to synch breakpoint conditions between GDB and the
2892 target. It is the case with deleting and disabling of breakpoints when using
2893 always-inserted mode. */
2894
2895 static void
2896 update_inserted_breakpoint_locations (void)
2897 {
2898 struct bp_location *bl, **blp_tmp;
2899 int error_flag = 0;
2900 int val = 0;
2901 int disabled_breaks = 0;
2902 int hw_breakpoint_error = 0;
2903 int hw_bp_details_reported = 0;
2904
2905 string_file tmp_error_stream;
2906
2907 /* Explicitly mark the warning -- this will only be printed if
2908 there was an error. */
2909 tmp_error_stream.puts ("Warning:\n");
2910
2911 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2912
2913 ALL_BP_LOCATIONS (bl, blp_tmp)
2914 {
2915 /* We only want to update software breakpoints and hardware
2916 breakpoints. */
2917 if (!is_breakpoint (bl->owner))
2918 continue;
2919
2920 /* We only want to update locations that are already inserted
2921 and need updating. This is to avoid unwanted insertion during
2922 deletion of breakpoints. */
2923 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2924 continue;
2925
2926 switch_to_program_space_and_thread (bl->pspace);
2927
2928 /* For targets that support global breakpoints, there's no need
2929 to select an inferior to insert breakpoint to. In fact, even
2930 if we aren't attached to any process yet, we should still
2931 insert breakpoints. */
2932 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2933 && ptid_equal (inferior_ptid, null_ptid))
2934 continue;
2935
2936 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2937 &hw_breakpoint_error, &hw_bp_details_reported);
2938 if (val)
2939 error_flag = val;
2940 }
2941
2942 if (error_flag)
2943 {
2944 target_terminal::ours_for_output ();
2945 error_stream (tmp_error_stream);
2946 }
2947 }
2948
2949 /* Used when starting or continuing the program. */
2950
2951 static void
2952 insert_breakpoint_locations (void)
2953 {
2954 struct breakpoint *bpt;
2955 struct bp_location *bl, **blp_tmp;
2956 int error_flag = 0;
2957 int val = 0;
2958 int disabled_breaks = 0;
2959 int hw_breakpoint_error = 0;
2960 int hw_bp_error_explained_already = 0;
2961
2962 string_file tmp_error_stream;
2963
2964 /* Explicitly mark the warning -- this will only be printed if
2965 there was an error. */
2966 tmp_error_stream.puts ("Warning:\n");
2967
2968 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2969
2970 ALL_BP_LOCATIONS (bl, blp_tmp)
2971 {
2972 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2973 continue;
2974
2975 /* There is no point inserting thread-specific breakpoints if
2976 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2977 has BL->OWNER always non-NULL. */
2978 if (bl->owner->thread != -1
2979 && !valid_global_thread_id (bl->owner->thread))
2980 continue;
2981
2982 switch_to_program_space_and_thread (bl->pspace);
2983
2984 /* For targets that support global breakpoints, there's no need
2985 to select an inferior to insert breakpoint to. In fact, even
2986 if we aren't attached to any process yet, we should still
2987 insert breakpoints. */
2988 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2989 && ptid_equal (inferior_ptid, null_ptid))
2990 continue;
2991
2992 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2993 &hw_breakpoint_error, &hw_bp_error_explained_already);
2994 if (val)
2995 error_flag = val;
2996 }
2997
2998 /* If we failed to insert all locations of a watchpoint, remove
2999 them, as half-inserted watchpoint is of limited use. */
3000 ALL_BREAKPOINTS (bpt)
3001 {
3002 int some_failed = 0;
3003 struct bp_location *loc;
3004
3005 if (!is_hardware_watchpoint (bpt))
3006 continue;
3007
3008 if (!breakpoint_enabled (bpt))
3009 continue;
3010
3011 if (bpt->disposition == disp_del_at_next_stop)
3012 continue;
3013
3014 for (loc = bpt->loc; loc; loc = loc->next)
3015 if (!loc->inserted && should_be_inserted (loc))
3016 {
3017 some_failed = 1;
3018 break;
3019 }
3020 if (some_failed)
3021 {
3022 for (loc = bpt->loc; loc; loc = loc->next)
3023 if (loc->inserted)
3024 remove_breakpoint (loc);
3025
3026 hw_breakpoint_error = 1;
3027 tmp_error_stream.printf ("Could not insert "
3028 "hardware watchpoint %d.\n",
3029 bpt->number);
3030 error_flag = -1;
3031 }
3032 }
3033
3034 if (error_flag)
3035 {
3036 /* If a hardware breakpoint or watchpoint was inserted, add a
3037 message about possibly exhausted resources. */
3038 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3039 {
3040 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3041 You may have requested too many hardware breakpoints/watchpoints.\n");
3042 }
3043 target_terminal::ours_for_output ();
3044 error_stream (tmp_error_stream);
3045 }
3046 }
3047
3048 /* Used when the program stops.
3049 Returns zero if successful, or non-zero if there was a problem
3050 removing a breakpoint location. */
3051
3052 int
3053 remove_breakpoints (void)
3054 {
3055 struct bp_location *bl, **blp_tmp;
3056 int val = 0;
3057
3058 ALL_BP_LOCATIONS (bl, blp_tmp)
3059 {
3060 if (bl->inserted && !is_tracepoint (bl->owner))
3061 val |= remove_breakpoint (bl);
3062 }
3063 return val;
3064 }
3065
3066 /* When a thread exits, remove breakpoints that are related to
3067 that thread. */
3068
3069 static void
3070 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3071 {
3072 struct breakpoint *b, *b_tmp;
3073
3074 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3075 {
3076 if (b->thread == tp->global_num && user_breakpoint_p (b))
3077 {
3078 b->disposition = disp_del_at_next_stop;
3079
3080 printf_filtered (_("\
3081 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3082 b->number, print_thread_id (tp));
3083
3084 /* Hide it from the user. */
3085 b->number = 0;
3086 }
3087 }
3088 }
3089
3090 /* Remove breakpoints of process PID. */
3091
3092 int
3093 remove_breakpoints_pid (int pid)
3094 {
3095 struct bp_location *bl, **blp_tmp;
3096 int val;
3097 struct inferior *inf = find_inferior_pid (pid);
3098
3099 ALL_BP_LOCATIONS (bl, blp_tmp)
3100 {
3101 if (bl->pspace != inf->pspace)
3102 continue;
3103
3104 if (bl->inserted && !bl->target_info.persist)
3105 {
3106 val = remove_breakpoint (bl);
3107 if (val != 0)
3108 return val;
3109 }
3110 }
3111 return 0;
3112 }
3113
3114 static int internal_breakpoint_number = -1;
3115
3116 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3117 If INTERNAL is non-zero, the breakpoint number will be populated
3118 from internal_breakpoint_number and that variable decremented.
3119 Otherwise the breakpoint number will be populated from
3120 breakpoint_count and that value incremented. Internal breakpoints
3121 do not set the internal var bpnum. */
3122 static void
3123 set_breakpoint_number (int internal, struct breakpoint *b)
3124 {
3125 if (internal)
3126 b->number = internal_breakpoint_number--;
3127 else
3128 {
3129 set_breakpoint_count (breakpoint_count + 1);
3130 b->number = breakpoint_count;
3131 }
3132 }
3133
3134 static struct breakpoint *
3135 create_internal_breakpoint (struct gdbarch *gdbarch,
3136 CORE_ADDR address, enum bptype type,
3137 const struct breakpoint_ops *ops)
3138 {
3139 symtab_and_line sal;
3140 sal.pc = address;
3141 sal.section = find_pc_overlay (sal.pc);
3142 sal.pspace = current_program_space;
3143
3144 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3145 b->number = internal_breakpoint_number--;
3146 b->disposition = disp_donttouch;
3147
3148 return b;
3149 }
3150
3151 static const char *const longjmp_names[] =
3152 {
3153 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3154 };
3155 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3156
3157 /* Per-objfile data private to breakpoint.c. */
3158 struct breakpoint_objfile_data
3159 {
3160 /* Minimal symbol for "_ovly_debug_event" (if any). */
3161 struct bound_minimal_symbol overlay_msym {};
3162
3163 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3164 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3165
3166 /* True if we have looked for longjmp probes. */
3167 int longjmp_searched = 0;
3168
3169 /* SystemTap probe points for longjmp (if any). These are non-owning
3170 references. */
3171 std::vector<probe *> longjmp_probes;
3172
3173 /* Minimal symbol for "std::terminate()" (if any). */
3174 struct bound_minimal_symbol terminate_msym {};
3175
3176 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3177 struct bound_minimal_symbol exception_msym {};
3178
3179 /* True if we have looked for exception probes. */
3180 int exception_searched = 0;
3181
3182 /* SystemTap probe points for unwinding (if any). These are non-owning
3183 references. */
3184 std::vector<probe *> exception_probes;
3185 };
3186
3187 static const struct objfile_data *breakpoint_objfile_key;
3188
3189 /* Minimal symbol not found sentinel. */
3190 static struct minimal_symbol msym_not_found;
3191
3192 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3193
3194 static int
3195 msym_not_found_p (const struct minimal_symbol *msym)
3196 {
3197 return msym == &msym_not_found;
3198 }
3199
3200 /* Return per-objfile data needed by breakpoint.c.
3201 Allocate the data if necessary. */
3202
3203 static struct breakpoint_objfile_data *
3204 get_breakpoint_objfile_data (struct objfile *objfile)
3205 {
3206 struct breakpoint_objfile_data *bp_objfile_data;
3207
3208 bp_objfile_data = ((struct breakpoint_objfile_data *)
3209 objfile_data (objfile, breakpoint_objfile_key));
3210 if (bp_objfile_data == NULL)
3211 {
3212 bp_objfile_data = new breakpoint_objfile_data ();
3213 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3214 }
3215 return bp_objfile_data;
3216 }
3217
3218 static void
3219 free_breakpoint_objfile_data (struct objfile *obj, void *data)
3220 {
3221 struct breakpoint_objfile_data *bp_objfile_data
3222 = (struct breakpoint_objfile_data *) data;
3223
3224 delete bp_objfile_data;
3225 }
3226
3227 static void
3228 create_overlay_event_breakpoint (void)
3229 {
3230 struct objfile *objfile;
3231 const char *const func_name = "_ovly_debug_event";
3232
3233 ALL_OBJFILES (objfile)
3234 {
3235 struct breakpoint *b;
3236 struct breakpoint_objfile_data *bp_objfile_data;
3237 CORE_ADDR addr;
3238 struct explicit_location explicit_loc;
3239
3240 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3241
3242 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3243 continue;
3244
3245 if (bp_objfile_data->overlay_msym.minsym == NULL)
3246 {
3247 struct bound_minimal_symbol m;
3248
3249 m = lookup_minimal_symbol_text (func_name, objfile);
3250 if (m.minsym == NULL)
3251 {
3252 /* Avoid future lookups in this objfile. */
3253 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3254 continue;
3255 }
3256 bp_objfile_data->overlay_msym = m;
3257 }
3258
3259 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3260 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3261 bp_overlay_event,
3262 &internal_breakpoint_ops);
3263 initialize_explicit_location (&explicit_loc);
3264 explicit_loc.function_name = ASTRDUP (func_name);
3265 b->location = new_explicit_location (&explicit_loc);
3266
3267 if (overlay_debugging == ovly_auto)
3268 {
3269 b->enable_state = bp_enabled;
3270 overlay_events_enabled = 1;
3271 }
3272 else
3273 {
3274 b->enable_state = bp_disabled;
3275 overlay_events_enabled = 0;
3276 }
3277 }
3278 }
3279
3280 static void
3281 create_longjmp_master_breakpoint (void)
3282 {
3283 struct program_space *pspace;
3284
3285 scoped_restore_current_program_space restore_pspace;
3286
3287 ALL_PSPACES (pspace)
3288 {
3289 struct objfile *objfile;
3290
3291 set_current_program_space (pspace);
3292
3293 ALL_OBJFILES (objfile)
3294 {
3295 int i;
3296 struct gdbarch *gdbarch;
3297 struct breakpoint_objfile_data *bp_objfile_data;
3298
3299 gdbarch = get_objfile_arch (objfile);
3300
3301 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3302
3303 if (!bp_objfile_data->longjmp_searched)
3304 {
3305 std::vector<probe *> ret
3306 = find_probes_in_objfile (objfile, "libc", "longjmp");
3307
3308 if (!ret.empty ())
3309 {
3310 /* We are only interested in checking one element. */
3311 probe *p = ret[0];
3312
3313 if (!can_evaluate_probe_arguments (p))
3314 {
3315 /* We cannot use the probe interface here, because it does
3316 not know how to evaluate arguments. */
3317 ret.clear ();
3318 }
3319 }
3320 bp_objfile_data->longjmp_probes = ret;
3321 bp_objfile_data->longjmp_searched = 1;
3322 }
3323
3324 if (!bp_objfile_data->longjmp_probes.empty ())
3325 {
3326 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3327
3328 for (probe *p : bp_objfile_data->longjmp_probes)
3329 {
3330 struct breakpoint *b;
3331
3332 b = create_internal_breakpoint (gdbarch,
3333 get_probe_address (p, objfile),
3334 bp_longjmp_master,
3335 &internal_breakpoint_ops);
3336 b->location = new_probe_location ("-probe-stap libc:longjmp");
3337 b->enable_state = bp_disabled;
3338 }
3339
3340 continue;
3341 }
3342
3343 if (!gdbarch_get_longjmp_target_p (gdbarch))
3344 continue;
3345
3346 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3347 {
3348 struct breakpoint *b;
3349 const char *func_name;
3350 CORE_ADDR addr;
3351 struct explicit_location explicit_loc;
3352
3353 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3354 continue;
3355
3356 func_name = longjmp_names[i];
3357 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3358 {
3359 struct bound_minimal_symbol m;
3360
3361 m = lookup_minimal_symbol_text (func_name, objfile);
3362 if (m.minsym == NULL)
3363 {
3364 /* Prevent future lookups in this objfile. */
3365 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3366 continue;
3367 }
3368 bp_objfile_data->longjmp_msym[i] = m;
3369 }
3370
3371 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3372 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3373 &internal_breakpoint_ops);
3374 initialize_explicit_location (&explicit_loc);
3375 explicit_loc.function_name = ASTRDUP (func_name);
3376 b->location = new_explicit_location (&explicit_loc);
3377 b->enable_state = bp_disabled;
3378 }
3379 }
3380 }
3381 }
3382
3383 /* Create a master std::terminate breakpoint. */
3384 static void
3385 create_std_terminate_master_breakpoint (void)
3386 {
3387 struct program_space *pspace;
3388 const char *const func_name = "std::terminate()";
3389
3390 scoped_restore_current_program_space restore_pspace;
3391
3392 ALL_PSPACES (pspace)
3393 {
3394 struct objfile *objfile;
3395 CORE_ADDR addr;
3396
3397 set_current_program_space (pspace);
3398
3399 ALL_OBJFILES (objfile)
3400 {
3401 struct breakpoint *b;
3402 struct breakpoint_objfile_data *bp_objfile_data;
3403 struct explicit_location explicit_loc;
3404
3405 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3406
3407 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3408 continue;
3409
3410 if (bp_objfile_data->terminate_msym.minsym == NULL)
3411 {
3412 struct bound_minimal_symbol m;
3413
3414 m = lookup_minimal_symbol (func_name, NULL, objfile);
3415 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3416 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3417 {
3418 /* Prevent future lookups in this objfile. */
3419 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3420 continue;
3421 }
3422 bp_objfile_data->terminate_msym = m;
3423 }
3424
3425 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3426 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3427 bp_std_terminate_master,
3428 &internal_breakpoint_ops);
3429 initialize_explicit_location (&explicit_loc);
3430 explicit_loc.function_name = ASTRDUP (func_name);
3431 b->location = new_explicit_location (&explicit_loc);
3432 b->enable_state = bp_disabled;
3433 }
3434 }
3435 }
3436
3437 /* Install a master breakpoint on the unwinder's debug hook. */
3438
3439 static void
3440 create_exception_master_breakpoint (void)
3441 {
3442 struct objfile *objfile;
3443 const char *const func_name = "_Unwind_DebugHook";
3444
3445 ALL_OBJFILES (objfile)
3446 {
3447 struct breakpoint *b;
3448 struct gdbarch *gdbarch;
3449 struct breakpoint_objfile_data *bp_objfile_data;
3450 CORE_ADDR addr;
3451 struct explicit_location explicit_loc;
3452
3453 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3454
3455 /* We prefer the SystemTap probe point if it exists. */
3456 if (!bp_objfile_data->exception_searched)
3457 {
3458 std::vector<probe *> ret
3459 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3460
3461 if (!ret.empty ())
3462 {
3463 /* We are only interested in checking one element. */
3464 probe *p = ret[0];
3465
3466 if (!can_evaluate_probe_arguments (p))
3467 {
3468 /* We cannot use the probe interface here, because it does
3469 not know how to evaluate arguments. */
3470 ret.clear ();
3471 }
3472 }
3473 bp_objfile_data->exception_probes = ret;
3474 bp_objfile_data->exception_searched = 1;
3475 }
3476
3477 if (!bp_objfile_data->exception_probes.empty ())
3478 {
3479 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3480
3481 for (probe *p : bp_objfile_data->exception_probes)
3482 {
3483 struct breakpoint *b;
3484
3485 b = create_internal_breakpoint (gdbarch,
3486 get_probe_address (p, objfile),
3487 bp_exception_master,
3488 &internal_breakpoint_ops);
3489 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3490 b->enable_state = bp_disabled;
3491 }
3492
3493 continue;
3494 }
3495
3496 /* Otherwise, try the hook function. */
3497
3498 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3499 continue;
3500
3501 gdbarch = get_objfile_arch (objfile);
3502
3503 if (bp_objfile_data->exception_msym.minsym == NULL)
3504 {
3505 struct bound_minimal_symbol debug_hook;
3506
3507 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3508 if (debug_hook.minsym == NULL)
3509 {
3510 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3511 continue;
3512 }
3513
3514 bp_objfile_data->exception_msym = debug_hook;
3515 }
3516
3517 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3518 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3519 &current_target);
3520 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3521 &internal_breakpoint_ops);
3522 initialize_explicit_location (&explicit_loc);
3523 explicit_loc.function_name = ASTRDUP (func_name);
3524 b->location = new_explicit_location (&explicit_loc);
3525 b->enable_state = bp_disabled;
3526 }
3527 }
3528
3529 /* Does B have a location spec? */
3530
3531 static int
3532 breakpoint_event_location_empty_p (const struct breakpoint *b)
3533 {
3534 return b->location != NULL && event_location_empty_p (b->location.get ());
3535 }
3536
3537 void
3538 update_breakpoints_after_exec (void)
3539 {
3540 struct breakpoint *b, *b_tmp;
3541 struct bp_location *bploc, **bplocp_tmp;
3542
3543 /* We're about to delete breakpoints from GDB's lists. If the
3544 INSERTED flag is true, GDB will try to lift the breakpoints by
3545 writing the breakpoints' "shadow contents" back into memory. The
3546 "shadow contents" are NOT valid after an exec, so GDB should not
3547 do that. Instead, the target is responsible from marking
3548 breakpoints out as soon as it detects an exec. We don't do that
3549 here instead, because there may be other attempts to delete
3550 breakpoints after detecting an exec and before reaching here. */
3551 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3552 if (bploc->pspace == current_program_space)
3553 gdb_assert (!bploc->inserted);
3554
3555 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3556 {
3557 if (b->pspace != current_program_space)
3558 continue;
3559
3560 /* Solib breakpoints must be explicitly reset after an exec(). */
3561 if (b->type == bp_shlib_event)
3562 {
3563 delete_breakpoint (b);
3564 continue;
3565 }
3566
3567 /* JIT breakpoints must be explicitly reset after an exec(). */
3568 if (b->type == bp_jit_event)
3569 {
3570 delete_breakpoint (b);
3571 continue;
3572 }
3573
3574 /* Thread event breakpoints must be set anew after an exec(),
3575 as must overlay event and longjmp master breakpoints. */
3576 if (b->type == bp_thread_event || b->type == bp_overlay_event
3577 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3578 || b->type == bp_exception_master)
3579 {
3580 delete_breakpoint (b);
3581 continue;
3582 }
3583
3584 /* Step-resume breakpoints are meaningless after an exec(). */
3585 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3586 {
3587 delete_breakpoint (b);
3588 continue;
3589 }
3590
3591 /* Just like single-step breakpoints. */
3592 if (b->type == bp_single_step)
3593 {
3594 delete_breakpoint (b);
3595 continue;
3596 }
3597
3598 /* Longjmp and longjmp-resume breakpoints are also meaningless
3599 after an exec. */
3600 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3601 || b->type == bp_longjmp_call_dummy
3602 || b->type == bp_exception || b->type == bp_exception_resume)
3603 {
3604 delete_breakpoint (b);
3605 continue;
3606 }
3607
3608 if (b->type == bp_catchpoint)
3609 {
3610 /* For now, none of the bp_catchpoint breakpoints need to
3611 do anything at this point. In the future, if some of
3612 the catchpoints need to something, we will need to add
3613 a new method, and call this method from here. */
3614 continue;
3615 }
3616
3617 /* bp_finish is a special case. The only way we ought to be able
3618 to see one of these when an exec() has happened, is if the user
3619 caught a vfork, and then said "finish". Ordinarily a finish just
3620 carries them to the call-site of the current callee, by setting
3621 a temporary bp there and resuming. But in this case, the finish
3622 will carry them entirely through the vfork & exec.
3623
3624 We don't want to allow a bp_finish to remain inserted now. But
3625 we can't safely delete it, 'cause finish_command has a handle to
3626 the bp on a bpstat, and will later want to delete it. There's a
3627 chance (and I've seen it happen) that if we delete the bp_finish
3628 here, that its storage will get reused by the time finish_command
3629 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3630 We really must allow finish_command to delete a bp_finish.
3631
3632 In the absence of a general solution for the "how do we know
3633 it's safe to delete something others may have handles to?"
3634 problem, what we'll do here is just uninsert the bp_finish, and
3635 let finish_command delete it.
3636
3637 (We know the bp_finish is "doomed" in the sense that it's
3638 momentary, and will be deleted as soon as finish_command sees
3639 the inferior stopped. So it doesn't matter that the bp's
3640 address is probably bogus in the new a.out, unlike e.g., the
3641 solib breakpoints.) */
3642
3643 if (b->type == bp_finish)
3644 {
3645 continue;
3646 }
3647
3648 /* Without a symbolic address, we have little hope of the
3649 pre-exec() address meaning the same thing in the post-exec()
3650 a.out. */
3651 if (breakpoint_event_location_empty_p (b))
3652 {
3653 delete_breakpoint (b);
3654 continue;
3655 }
3656 }
3657 }
3658
3659 int
3660 detach_breakpoints (ptid_t ptid)
3661 {
3662 struct bp_location *bl, **blp_tmp;
3663 int val = 0;
3664 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3665 struct inferior *inf = current_inferior ();
3666
3667 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3668 error (_("Cannot detach breakpoints of inferior_ptid"));
3669
3670 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3671 inferior_ptid = ptid;
3672 ALL_BP_LOCATIONS (bl, blp_tmp)
3673 {
3674 if (bl->pspace != inf->pspace)
3675 continue;
3676
3677 /* This function must physically remove breakpoints locations
3678 from the specified ptid, without modifying the breakpoint
3679 package's state. Locations of type bp_loc_other are only
3680 maintained at GDB side. So, there is no need to remove
3681 these bp_loc_other locations. Moreover, removing these
3682 would modify the breakpoint package's state. */
3683 if (bl->loc_type == bp_loc_other)
3684 continue;
3685
3686 if (bl->inserted)
3687 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3688 }
3689
3690 return val;
3691 }
3692
3693 /* Remove the breakpoint location BL from the current address space.
3694 Note that this is used to detach breakpoints from a child fork.
3695 When we get here, the child isn't in the inferior list, and neither
3696 do we have objects to represent its address space --- we should
3697 *not* look at bl->pspace->aspace here. */
3698
3699 static int
3700 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3701 {
3702 int val;
3703
3704 /* BL is never in moribund_locations by our callers. */
3705 gdb_assert (bl->owner != NULL);
3706
3707 /* The type of none suggests that owner is actually deleted.
3708 This should not ever happen. */
3709 gdb_assert (bl->owner->type != bp_none);
3710
3711 if (bl->loc_type == bp_loc_software_breakpoint
3712 || bl->loc_type == bp_loc_hardware_breakpoint)
3713 {
3714 /* "Normal" instruction breakpoint: either the standard
3715 trap-instruction bp (bp_breakpoint), or a
3716 bp_hardware_breakpoint. */
3717
3718 /* First check to see if we have to handle an overlay. */
3719 if (overlay_debugging == ovly_off
3720 || bl->section == NULL
3721 || !(section_is_overlay (bl->section)))
3722 {
3723 /* No overlay handling: just remove the breakpoint. */
3724
3725 /* If we're trying to uninsert a memory breakpoint that we
3726 know is set in a dynamic object that is marked
3727 shlib_disabled, then either the dynamic object was
3728 removed with "remove-symbol-file" or with
3729 "nosharedlibrary". In the former case, we don't know
3730 whether another dynamic object might have loaded over the
3731 breakpoint's address -- the user might well let us know
3732 about it next with add-symbol-file (the whole point of
3733 add-symbol-file is letting the user manually maintain a
3734 list of dynamically loaded objects). If we have the
3735 breakpoint's shadow memory, that is, this is a software
3736 breakpoint managed by GDB, check whether the breakpoint
3737 is still inserted in memory, to avoid overwriting wrong
3738 code with stale saved shadow contents. Note that HW
3739 breakpoints don't have shadow memory, as they're
3740 implemented using a mechanism that is not dependent on
3741 being able to modify the target's memory, and as such
3742 they should always be removed. */
3743 if (bl->shlib_disabled
3744 && bl->target_info.shadow_len != 0
3745 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3746 val = 0;
3747 else
3748 val = bl->owner->ops->remove_location (bl, reason);
3749 }
3750 else
3751 {
3752 /* This breakpoint is in an overlay section.
3753 Did we set a breakpoint at the LMA? */
3754 if (!overlay_events_enabled)
3755 {
3756 /* Yes -- overlay event support is not active, so we
3757 should have set a breakpoint at the LMA. Remove it.
3758 */
3759 /* Ignore any failures: if the LMA is in ROM, we will
3760 have already warned when we failed to insert it. */
3761 if (bl->loc_type == bp_loc_hardware_breakpoint)
3762 target_remove_hw_breakpoint (bl->gdbarch,
3763 &bl->overlay_target_info);
3764 else
3765 target_remove_breakpoint (bl->gdbarch,
3766 &bl->overlay_target_info,
3767 reason);
3768 }
3769 /* Did we set a breakpoint at the VMA?
3770 If so, we will have marked the breakpoint 'inserted'. */
3771 if (bl->inserted)
3772 {
3773 /* Yes -- remove it. Previously we did not bother to
3774 remove the breakpoint if the section had been
3775 unmapped, but let's not rely on that being safe. We
3776 don't know what the overlay manager might do. */
3777
3778 /* However, we should remove *software* breakpoints only
3779 if the section is still mapped, or else we overwrite
3780 wrong code with the saved shadow contents. */
3781 if (bl->loc_type == bp_loc_hardware_breakpoint
3782 || section_is_mapped (bl->section))
3783 val = bl->owner->ops->remove_location (bl, reason);
3784 else
3785 val = 0;
3786 }
3787 else
3788 {
3789 /* No -- not inserted, so no need to remove. No error. */
3790 val = 0;
3791 }
3792 }
3793
3794 /* In some cases, we might not be able to remove a breakpoint in
3795 a shared library that has already been removed, but we have
3796 not yet processed the shlib unload event. Similarly for an
3797 unloaded add-symbol-file object - the user might not yet have
3798 had the chance to remove-symbol-file it. shlib_disabled will
3799 be set if the library/object has already been removed, but
3800 the breakpoint hasn't been uninserted yet, e.g., after
3801 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3802 always-inserted mode. */
3803 if (val
3804 && (bl->loc_type == bp_loc_software_breakpoint
3805 && (bl->shlib_disabled
3806 || solib_name_from_address (bl->pspace, bl->address)
3807 || shared_objfile_contains_address_p (bl->pspace,
3808 bl->address))))
3809 val = 0;
3810
3811 if (val)
3812 return val;
3813 bl->inserted = (reason == DETACH_BREAKPOINT);
3814 }
3815 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3816 {
3817 gdb_assert (bl->owner->ops != NULL
3818 && bl->owner->ops->remove_location != NULL);
3819
3820 bl->inserted = (reason == DETACH_BREAKPOINT);
3821 bl->owner->ops->remove_location (bl, reason);
3822
3823 /* Failure to remove any of the hardware watchpoints comes here. */
3824 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3825 warning (_("Could not remove hardware watchpoint %d."),
3826 bl->owner->number);
3827 }
3828 else if (bl->owner->type == bp_catchpoint
3829 && breakpoint_enabled (bl->owner)
3830 && !bl->duplicate)
3831 {
3832 gdb_assert (bl->owner->ops != NULL
3833 && bl->owner->ops->remove_location != NULL);
3834
3835 val = bl->owner->ops->remove_location (bl, reason);
3836 if (val)
3837 return val;
3838
3839 bl->inserted = (reason == DETACH_BREAKPOINT);
3840 }
3841
3842 return 0;
3843 }
3844
3845 static int
3846 remove_breakpoint (struct bp_location *bl)
3847 {
3848 /* BL is never in moribund_locations by our callers. */
3849 gdb_assert (bl->owner != NULL);
3850
3851 /* The type of none suggests that owner is actually deleted.
3852 This should not ever happen. */
3853 gdb_assert (bl->owner->type != bp_none);
3854
3855 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3856
3857 switch_to_program_space_and_thread (bl->pspace);
3858
3859 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3860 }
3861
3862 /* Clear the "inserted" flag in all breakpoints. */
3863
3864 void
3865 mark_breakpoints_out (void)
3866 {
3867 struct bp_location *bl, **blp_tmp;
3868
3869 ALL_BP_LOCATIONS (bl, blp_tmp)
3870 if (bl->pspace == current_program_space)
3871 bl->inserted = 0;
3872 }
3873
3874 /* Clear the "inserted" flag in all breakpoints and delete any
3875 breakpoints which should go away between runs of the program.
3876
3877 Plus other such housekeeping that has to be done for breakpoints
3878 between runs.
3879
3880 Note: this function gets called at the end of a run (by
3881 generic_mourn_inferior) and when a run begins (by
3882 init_wait_for_inferior). */
3883
3884
3885
3886 void
3887 breakpoint_init_inferior (enum inf_context context)
3888 {
3889 struct breakpoint *b, *b_tmp;
3890 struct bp_location *bl;
3891 int ix;
3892 struct program_space *pspace = current_program_space;
3893
3894 /* If breakpoint locations are shared across processes, then there's
3895 nothing to do. */
3896 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3897 return;
3898
3899 mark_breakpoints_out ();
3900
3901 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3902 {
3903 if (b->loc && b->loc->pspace != pspace)
3904 continue;
3905
3906 switch (b->type)
3907 {
3908 case bp_call_dummy:
3909 case bp_longjmp_call_dummy:
3910
3911 /* If the call dummy breakpoint is at the entry point it will
3912 cause problems when the inferior is rerun, so we better get
3913 rid of it. */
3914
3915 case bp_watchpoint_scope:
3916
3917 /* Also get rid of scope breakpoints. */
3918
3919 case bp_shlib_event:
3920
3921 /* Also remove solib event breakpoints. Their addresses may
3922 have changed since the last time we ran the program.
3923 Actually we may now be debugging against different target;
3924 and so the solib backend that installed this breakpoint may
3925 not be used in by the target. E.g.,
3926
3927 (gdb) file prog-linux
3928 (gdb) run # native linux target
3929 ...
3930 (gdb) kill
3931 (gdb) file prog-win.exe
3932 (gdb) tar rem :9999 # remote Windows gdbserver.
3933 */
3934
3935 case bp_step_resume:
3936
3937 /* Also remove step-resume breakpoints. */
3938
3939 case bp_single_step:
3940
3941 /* Also remove single-step breakpoints. */
3942
3943 delete_breakpoint (b);
3944 break;
3945
3946 case bp_watchpoint:
3947 case bp_hardware_watchpoint:
3948 case bp_read_watchpoint:
3949 case bp_access_watchpoint:
3950 {
3951 struct watchpoint *w = (struct watchpoint *) b;
3952
3953 /* Likewise for watchpoints on local expressions. */
3954 if (w->exp_valid_block != NULL)
3955 delete_breakpoint (b);
3956 else
3957 {
3958 /* Get rid of existing locations, which are no longer
3959 valid. New ones will be created in
3960 update_watchpoint, when the inferior is restarted.
3961 The next update_global_location_list call will
3962 garbage collect them. */
3963 b->loc = NULL;
3964
3965 if (context == inf_starting)
3966 {
3967 /* Reset val field to force reread of starting value in
3968 insert_breakpoints. */
3969 if (w->val)
3970 value_free (w->val);
3971 w->val = NULL;
3972 w->val_valid = 0;
3973 }
3974 }
3975 }
3976 break;
3977 default:
3978 break;
3979 }
3980 }
3981
3982 /* Get rid of the moribund locations. */
3983 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3984 decref_bp_location (&bl);
3985 VEC_free (bp_location_p, moribund_locations);
3986 }
3987
3988 /* These functions concern about actual breakpoints inserted in the
3989 target --- to e.g. check if we need to do decr_pc adjustment or if
3990 we need to hop over the bkpt --- so we check for address space
3991 match, not program space. */
3992
3993 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3994 exists at PC. It returns ordinary_breakpoint_here if it's an
3995 ordinary breakpoint, or permanent_breakpoint_here if it's a
3996 permanent breakpoint.
3997 - When continuing from a location with an ordinary breakpoint, we
3998 actually single step once before calling insert_breakpoints.
3999 - When continuing from a location with a permanent breakpoint, we
4000 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4001 the target, to advance the PC past the breakpoint. */
4002
4003 enum breakpoint_here
4004 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4005 {
4006 struct bp_location *bl, **blp_tmp;
4007 int any_breakpoint_here = 0;
4008
4009 ALL_BP_LOCATIONS (bl, blp_tmp)
4010 {
4011 if (bl->loc_type != bp_loc_software_breakpoint
4012 && bl->loc_type != bp_loc_hardware_breakpoint)
4013 continue;
4014
4015 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4016 if ((breakpoint_enabled (bl->owner)
4017 || bl->permanent)
4018 && breakpoint_location_address_match (bl, aspace, pc))
4019 {
4020 if (overlay_debugging
4021 && section_is_overlay (bl->section)
4022 && !section_is_mapped (bl->section))
4023 continue; /* unmapped overlay -- can't be a match */
4024 else if (bl->permanent)
4025 return permanent_breakpoint_here;
4026 else
4027 any_breakpoint_here = 1;
4028 }
4029 }
4030
4031 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4032 }
4033
4034 /* See breakpoint.h. */
4035
4036 int
4037 breakpoint_in_range_p (const address_space *aspace,
4038 CORE_ADDR addr, ULONGEST len)
4039 {
4040 struct bp_location *bl, **blp_tmp;
4041
4042 ALL_BP_LOCATIONS (bl, blp_tmp)
4043 {
4044 if (bl->loc_type != bp_loc_software_breakpoint
4045 && bl->loc_type != bp_loc_hardware_breakpoint)
4046 continue;
4047
4048 if ((breakpoint_enabled (bl->owner)
4049 || bl->permanent)
4050 && breakpoint_location_address_range_overlap (bl, aspace,
4051 addr, len))
4052 {
4053 if (overlay_debugging
4054 && section_is_overlay (bl->section)
4055 && !section_is_mapped (bl->section))
4056 {
4057 /* Unmapped overlay -- can't be a match. */
4058 continue;
4059 }
4060
4061 return 1;
4062 }
4063 }
4064
4065 return 0;
4066 }
4067
4068 /* Return true if there's a moribund breakpoint at PC. */
4069
4070 int
4071 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4072 {
4073 struct bp_location *loc;
4074 int ix;
4075
4076 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4077 if (breakpoint_location_address_match (loc, aspace, pc))
4078 return 1;
4079
4080 return 0;
4081 }
4082
4083 /* Returns non-zero iff BL is inserted at PC, in address space
4084 ASPACE. */
4085
4086 static int
4087 bp_location_inserted_here_p (struct bp_location *bl,
4088 const address_space *aspace, CORE_ADDR pc)
4089 {
4090 if (bl->inserted
4091 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4092 aspace, pc))
4093 {
4094 if (overlay_debugging
4095 && section_is_overlay (bl->section)
4096 && !section_is_mapped (bl->section))
4097 return 0; /* unmapped overlay -- can't be a match */
4098 else
4099 return 1;
4100 }
4101 return 0;
4102 }
4103
4104 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4105
4106 int
4107 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4108 {
4109 struct bp_location **blp, **blp_tmp = NULL;
4110
4111 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4112 {
4113 struct bp_location *bl = *blp;
4114
4115 if (bl->loc_type != bp_loc_software_breakpoint
4116 && bl->loc_type != bp_loc_hardware_breakpoint)
4117 continue;
4118
4119 if (bp_location_inserted_here_p (bl, aspace, pc))
4120 return 1;
4121 }
4122 return 0;
4123 }
4124
4125 /* This function returns non-zero iff there is a software breakpoint
4126 inserted at PC. */
4127
4128 int
4129 software_breakpoint_inserted_here_p (const address_space *aspace,
4130 CORE_ADDR pc)
4131 {
4132 struct bp_location **blp, **blp_tmp = NULL;
4133
4134 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4135 {
4136 struct bp_location *bl = *blp;
4137
4138 if (bl->loc_type != bp_loc_software_breakpoint)
4139 continue;
4140
4141 if (bp_location_inserted_here_p (bl, aspace, pc))
4142 return 1;
4143 }
4144
4145 return 0;
4146 }
4147
4148 /* See breakpoint.h. */
4149
4150 int
4151 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4152 CORE_ADDR pc)
4153 {
4154 struct bp_location **blp, **blp_tmp = NULL;
4155
4156 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4157 {
4158 struct bp_location *bl = *blp;
4159
4160 if (bl->loc_type != bp_loc_hardware_breakpoint)
4161 continue;
4162
4163 if (bp_location_inserted_here_p (bl, aspace, pc))
4164 return 1;
4165 }
4166
4167 return 0;
4168 }
4169
4170 int
4171 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4172 CORE_ADDR addr, ULONGEST len)
4173 {
4174 struct breakpoint *bpt;
4175
4176 ALL_BREAKPOINTS (bpt)
4177 {
4178 struct bp_location *loc;
4179
4180 if (bpt->type != bp_hardware_watchpoint
4181 && bpt->type != bp_access_watchpoint)
4182 continue;
4183
4184 if (!breakpoint_enabled (bpt))
4185 continue;
4186
4187 for (loc = bpt->loc; loc; loc = loc->next)
4188 if (loc->pspace->aspace == aspace && loc->inserted)
4189 {
4190 CORE_ADDR l, h;
4191
4192 /* Check for intersection. */
4193 l = std::max<CORE_ADDR> (loc->address, addr);
4194 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4195 if (l < h)
4196 return 1;
4197 }
4198 }
4199 return 0;
4200 }
4201 \f
4202
4203 /* bpstat stuff. External routines' interfaces are documented
4204 in breakpoint.h. */
4205
4206 int
4207 is_catchpoint (struct breakpoint *ep)
4208 {
4209 return (ep->type == bp_catchpoint);
4210 }
4211
4212 /* Frees any storage that is part of a bpstat. Does not walk the
4213 'next' chain. */
4214
4215 bpstats::~bpstats ()
4216 {
4217 if (old_val != NULL)
4218 value_free (old_val);
4219 if (bp_location_at != NULL)
4220 decref_bp_location (&bp_location_at);
4221 }
4222
4223 /* Clear a bpstat so that it says we are not at any breakpoint.
4224 Also free any storage that is part of a bpstat. */
4225
4226 void
4227 bpstat_clear (bpstat *bsp)
4228 {
4229 bpstat p;
4230 bpstat q;
4231
4232 if (bsp == 0)
4233 return;
4234 p = *bsp;
4235 while (p != NULL)
4236 {
4237 q = p->next;
4238 delete p;
4239 p = q;
4240 }
4241 *bsp = NULL;
4242 }
4243
4244 bpstats::bpstats (const bpstats &other)
4245 : next (NULL),
4246 bp_location_at (other.bp_location_at),
4247 breakpoint_at (other.breakpoint_at),
4248 commands (other.commands),
4249 old_val (other.old_val),
4250 print (other.print),
4251 stop (other.stop),
4252 print_it (other.print_it)
4253 {
4254 if (old_val != NULL)
4255 {
4256 old_val = value_copy (old_val);
4257 release_value (old_val);
4258 }
4259 incref_bp_location (bp_location_at);
4260 }
4261
4262 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4263 is part of the bpstat is copied as well. */
4264
4265 bpstat
4266 bpstat_copy (bpstat bs)
4267 {
4268 bpstat p = NULL;
4269 bpstat tmp;
4270 bpstat retval = NULL;
4271
4272 if (bs == NULL)
4273 return bs;
4274
4275 for (; bs != NULL; bs = bs->next)
4276 {
4277 tmp = new bpstats (*bs);
4278
4279 if (p == NULL)
4280 /* This is the first thing in the chain. */
4281 retval = tmp;
4282 else
4283 p->next = tmp;
4284 p = tmp;
4285 }
4286 p->next = NULL;
4287 return retval;
4288 }
4289
4290 /* Find the bpstat associated with this breakpoint. */
4291
4292 bpstat
4293 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4294 {
4295 if (bsp == NULL)
4296 return NULL;
4297
4298 for (; bsp != NULL; bsp = bsp->next)
4299 {
4300 if (bsp->breakpoint_at == breakpoint)
4301 return bsp;
4302 }
4303 return NULL;
4304 }
4305
4306 /* See breakpoint.h. */
4307
4308 int
4309 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4310 {
4311 for (; bsp != NULL; bsp = bsp->next)
4312 {
4313 if (bsp->breakpoint_at == NULL)
4314 {
4315 /* A moribund location can never explain a signal other than
4316 GDB_SIGNAL_TRAP. */
4317 if (sig == GDB_SIGNAL_TRAP)
4318 return 1;
4319 }
4320 else
4321 {
4322 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4323 sig))
4324 return 1;
4325 }
4326 }
4327
4328 return 0;
4329 }
4330
4331 /* Put in *NUM the breakpoint number of the first breakpoint we are
4332 stopped at. *BSP upon return is a bpstat which points to the
4333 remaining breakpoints stopped at (but which is not guaranteed to be
4334 good for anything but further calls to bpstat_num).
4335
4336 Return 0 if passed a bpstat which does not indicate any breakpoints.
4337 Return -1 if stopped at a breakpoint that has been deleted since
4338 we set it.
4339 Return 1 otherwise. */
4340
4341 int
4342 bpstat_num (bpstat *bsp, int *num)
4343 {
4344 struct breakpoint *b;
4345
4346 if ((*bsp) == NULL)
4347 return 0; /* No more breakpoint values */
4348
4349 /* We assume we'll never have several bpstats that correspond to a
4350 single breakpoint -- otherwise, this function might return the
4351 same number more than once and this will look ugly. */
4352 b = (*bsp)->breakpoint_at;
4353 *bsp = (*bsp)->next;
4354 if (b == NULL)
4355 return -1; /* breakpoint that's been deleted since */
4356
4357 *num = b->number; /* We have its number */
4358 return 1;
4359 }
4360
4361 /* See breakpoint.h. */
4362
4363 void
4364 bpstat_clear_actions (void)
4365 {
4366 struct thread_info *tp;
4367 bpstat bs;
4368
4369 if (ptid_equal (inferior_ptid, null_ptid))
4370 return;
4371
4372 tp = find_thread_ptid (inferior_ptid);
4373 if (tp == NULL)
4374 return;
4375
4376 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4377 {
4378 bs->commands = NULL;
4379
4380 if (bs->old_val != NULL)
4381 {
4382 value_free (bs->old_val);
4383 bs->old_val = NULL;
4384 }
4385 }
4386 }
4387
4388 /* Called when a command is about to proceed the inferior. */
4389
4390 static void
4391 breakpoint_about_to_proceed (void)
4392 {
4393 if (!ptid_equal (inferior_ptid, null_ptid))
4394 {
4395 struct thread_info *tp = inferior_thread ();
4396
4397 /* Allow inferior function calls in breakpoint commands to not
4398 interrupt the command list. When the call finishes
4399 successfully, the inferior will be standing at the same
4400 breakpoint as if nothing happened. */
4401 if (tp->control.in_infcall)
4402 return;
4403 }
4404
4405 breakpoint_proceeded = 1;
4406 }
4407
4408 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4409 or its equivalent. */
4410
4411 static int
4412 command_line_is_silent (struct command_line *cmd)
4413 {
4414 return cmd && (strcmp ("silent", cmd->line) == 0);
4415 }
4416
4417 /* Execute all the commands associated with all the breakpoints at
4418 this location. Any of these commands could cause the process to
4419 proceed beyond this point, etc. We look out for such changes by
4420 checking the global "breakpoint_proceeded" after each command.
4421
4422 Returns true if a breakpoint command resumed the inferior. In that
4423 case, it is the caller's responsibility to recall it again with the
4424 bpstat of the current thread. */
4425
4426 static int
4427 bpstat_do_actions_1 (bpstat *bsp)
4428 {
4429 bpstat bs;
4430 int again = 0;
4431
4432 /* Avoid endless recursion if a `source' command is contained
4433 in bs->commands. */
4434 if (executing_breakpoint_commands)
4435 return 0;
4436
4437 scoped_restore save_executing
4438 = make_scoped_restore (&executing_breakpoint_commands, 1);
4439
4440 scoped_restore preventer = prevent_dont_repeat ();
4441
4442 /* This pointer will iterate over the list of bpstat's. */
4443 bs = *bsp;
4444
4445 breakpoint_proceeded = 0;
4446 for (; bs != NULL; bs = bs->next)
4447 {
4448 struct command_line *cmd = NULL;
4449
4450 /* Take ownership of the BSP's command tree, if it has one.
4451
4452 The command tree could legitimately contain commands like
4453 'step' and 'next', which call clear_proceed_status, which
4454 frees stop_bpstat's command tree. To make sure this doesn't
4455 free the tree we're executing out from under us, we need to
4456 take ownership of the tree ourselves. Since a given bpstat's
4457 commands are only executed once, we don't need to copy it; we
4458 can clear the pointer in the bpstat, and make sure we free
4459 the tree when we're done. */
4460 counted_command_line ccmd = bs->commands;
4461 bs->commands = NULL;
4462 if (ccmd != NULL)
4463 cmd = ccmd.get ();
4464 if (command_line_is_silent (cmd))
4465 {
4466 /* The action has been already done by bpstat_stop_status. */
4467 cmd = cmd->next;
4468 }
4469
4470 while (cmd != NULL)
4471 {
4472 execute_control_command (cmd);
4473
4474 if (breakpoint_proceeded)
4475 break;
4476 else
4477 cmd = cmd->next;
4478 }
4479
4480 if (breakpoint_proceeded)
4481 {
4482 if (current_ui->async)
4483 /* If we are in async mode, then the target might be still
4484 running, not stopped at any breakpoint, so nothing for
4485 us to do here -- just return to the event loop. */
4486 ;
4487 else
4488 /* In sync mode, when execute_control_command returns
4489 we're already standing on the next breakpoint.
4490 Breakpoint commands for that stop were not run, since
4491 execute_command does not run breakpoint commands --
4492 only command_line_handler does, but that one is not
4493 involved in execution of breakpoint commands. So, we
4494 can now execute breakpoint commands. It should be
4495 noted that making execute_command do bpstat actions is
4496 not an option -- in this case we'll have recursive
4497 invocation of bpstat for each breakpoint with a
4498 command, and can easily blow up GDB stack. Instead, we
4499 return true, which will trigger the caller to recall us
4500 with the new stop_bpstat. */
4501 again = 1;
4502 break;
4503 }
4504 }
4505 return again;
4506 }
4507
4508 void
4509 bpstat_do_actions (void)
4510 {
4511 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4512
4513 /* Do any commands attached to breakpoint we are stopped at. */
4514 while (!ptid_equal (inferior_ptid, null_ptid)
4515 && target_has_execution
4516 && !is_exited (inferior_ptid)
4517 && !is_executing (inferior_ptid))
4518 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4519 and only return when it is stopped at the next breakpoint, we
4520 keep doing breakpoint actions until it returns false to
4521 indicate the inferior was not resumed. */
4522 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4523 break;
4524
4525 discard_cleanups (cleanup_if_error);
4526 }
4527
4528 /* Print out the (old or new) value associated with a watchpoint. */
4529
4530 static void
4531 watchpoint_value_print (struct value *val, struct ui_file *stream)
4532 {
4533 if (val == NULL)
4534 fprintf_unfiltered (stream, _("<unreadable>"));
4535 else
4536 {
4537 struct value_print_options opts;
4538 get_user_print_options (&opts);
4539 value_print (val, stream, &opts);
4540 }
4541 }
4542
4543 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4544 debugging multiple threads. */
4545
4546 void
4547 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4548 {
4549 if (uiout->is_mi_like_p ())
4550 return;
4551
4552 uiout->text ("\n");
4553
4554 if (show_thread_that_caused_stop ())
4555 {
4556 const char *name;
4557 struct thread_info *thr = inferior_thread ();
4558
4559 uiout->text ("Thread ");
4560 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4561
4562 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4563 if (name != NULL)
4564 {
4565 uiout->text (" \"");
4566 uiout->field_fmt ("name", "%s", name);
4567 uiout->text ("\"");
4568 }
4569
4570 uiout->text (" hit ");
4571 }
4572 }
4573
4574 /* Generic routine for printing messages indicating why we
4575 stopped. The behavior of this function depends on the value
4576 'print_it' in the bpstat structure. Under some circumstances we
4577 may decide not to print anything here and delegate the task to
4578 normal_stop(). */
4579
4580 static enum print_stop_action
4581 print_bp_stop_message (bpstat bs)
4582 {
4583 switch (bs->print_it)
4584 {
4585 case print_it_noop:
4586 /* Nothing should be printed for this bpstat entry. */
4587 return PRINT_UNKNOWN;
4588 break;
4589
4590 case print_it_done:
4591 /* We still want to print the frame, but we already printed the
4592 relevant messages. */
4593 return PRINT_SRC_AND_LOC;
4594 break;
4595
4596 case print_it_normal:
4597 {
4598 struct breakpoint *b = bs->breakpoint_at;
4599
4600 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4601 which has since been deleted. */
4602 if (b == NULL)
4603 return PRINT_UNKNOWN;
4604
4605 /* Normal case. Call the breakpoint's print_it method. */
4606 return b->ops->print_it (bs);
4607 }
4608 break;
4609
4610 default:
4611 internal_error (__FILE__, __LINE__,
4612 _("print_bp_stop_message: unrecognized enum value"));
4613 break;
4614 }
4615 }
4616
4617 /* A helper function that prints a shared library stopped event. */
4618
4619 static void
4620 print_solib_event (int is_catchpoint)
4621 {
4622 int any_deleted
4623 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4624 int any_added
4625 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4626
4627 if (!is_catchpoint)
4628 {
4629 if (any_added || any_deleted)
4630 current_uiout->text (_("Stopped due to shared library event:\n"));
4631 else
4632 current_uiout->text (_("Stopped due to shared library event (no "
4633 "libraries added or removed)\n"));
4634 }
4635
4636 if (current_uiout->is_mi_like_p ())
4637 current_uiout->field_string ("reason",
4638 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4639
4640 if (any_deleted)
4641 {
4642 char *name;
4643 int ix;
4644
4645 current_uiout->text (_(" Inferior unloaded "));
4646 ui_out_emit_list list_emitter (current_uiout, "removed");
4647 for (ix = 0;
4648 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4649 ix, name);
4650 ++ix)
4651 {
4652 if (ix > 0)
4653 current_uiout->text (" ");
4654 current_uiout->field_string ("library", name);
4655 current_uiout->text ("\n");
4656 }
4657 }
4658
4659 if (any_added)
4660 {
4661 struct so_list *iter;
4662 int ix;
4663
4664 current_uiout->text (_(" Inferior loaded "));
4665 ui_out_emit_list list_emitter (current_uiout, "added");
4666 for (ix = 0;
4667 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4668 ix, iter);
4669 ++ix)
4670 {
4671 if (ix > 0)
4672 current_uiout->text (" ");
4673 current_uiout->field_string ("library", iter->so_name);
4674 current_uiout->text ("\n");
4675 }
4676 }
4677 }
4678
4679 /* Print a message indicating what happened. This is called from
4680 normal_stop(). The input to this routine is the head of the bpstat
4681 list - a list of the eventpoints that caused this stop. KIND is
4682 the target_waitkind for the stopping event. This
4683 routine calls the generic print routine for printing a message
4684 about reasons for stopping. This will print (for example) the
4685 "Breakpoint n," part of the output. The return value of this
4686 routine is one of:
4687
4688 PRINT_UNKNOWN: Means we printed nothing.
4689 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4690 code to print the location. An example is
4691 "Breakpoint 1, " which should be followed by
4692 the location.
4693 PRINT_SRC_ONLY: Means we printed something, but there is no need
4694 to also print the location part of the message.
4695 An example is the catch/throw messages, which
4696 don't require a location appended to the end.
4697 PRINT_NOTHING: We have done some printing and we don't need any
4698 further info to be printed. */
4699
4700 enum print_stop_action
4701 bpstat_print (bpstat bs, int kind)
4702 {
4703 enum print_stop_action val;
4704
4705 /* Maybe another breakpoint in the chain caused us to stop.
4706 (Currently all watchpoints go on the bpstat whether hit or not.
4707 That probably could (should) be changed, provided care is taken
4708 with respect to bpstat_explains_signal). */
4709 for (; bs; bs = bs->next)
4710 {
4711 val = print_bp_stop_message (bs);
4712 if (val == PRINT_SRC_ONLY
4713 || val == PRINT_SRC_AND_LOC
4714 || val == PRINT_NOTHING)
4715 return val;
4716 }
4717
4718 /* If we had hit a shared library event breakpoint,
4719 print_bp_stop_message would print out this message. If we hit an
4720 OS-level shared library event, do the same thing. */
4721 if (kind == TARGET_WAITKIND_LOADED)
4722 {
4723 print_solib_event (0);
4724 return PRINT_NOTHING;
4725 }
4726
4727 /* We reached the end of the chain, or we got a null BS to start
4728 with and nothing was printed. */
4729 return PRINT_UNKNOWN;
4730 }
4731
4732 /* Evaluate the boolean expression EXP and return the result. */
4733
4734 static bool
4735 breakpoint_cond_eval (expression *exp)
4736 {
4737 struct value *mark = value_mark ();
4738 bool res = value_true (evaluate_expression (exp));
4739
4740 value_free_to_mark (mark);
4741 return res;
4742 }
4743
4744 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4745
4746 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4747 : next (NULL),
4748 bp_location_at (bl),
4749 breakpoint_at (bl->owner),
4750 commands (NULL),
4751 old_val (NULL),
4752 print (0),
4753 stop (0),
4754 print_it (print_it_normal)
4755 {
4756 incref_bp_location (bl);
4757 **bs_link_pointer = this;
4758 *bs_link_pointer = &next;
4759 }
4760
4761 bpstats::bpstats ()
4762 : next (NULL),
4763 bp_location_at (NULL),
4764 breakpoint_at (NULL),
4765 commands (NULL),
4766 old_val (NULL),
4767 print (0),
4768 stop (0),
4769 print_it (print_it_normal)
4770 {
4771 }
4772 \f
4773 /* The target has stopped with waitstatus WS. Check if any hardware
4774 watchpoints have triggered, according to the target. */
4775
4776 int
4777 watchpoints_triggered (struct target_waitstatus *ws)
4778 {
4779 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4780 CORE_ADDR addr;
4781 struct breakpoint *b;
4782
4783 if (!stopped_by_watchpoint)
4784 {
4785 /* We were not stopped by a watchpoint. Mark all watchpoints
4786 as not triggered. */
4787 ALL_BREAKPOINTS (b)
4788 if (is_hardware_watchpoint (b))
4789 {
4790 struct watchpoint *w = (struct watchpoint *) b;
4791
4792 w->watchpoint_triggered = watch_triggered_no;
4793 }
4794
4795 return 0;
4796 }
4797
4798 if (!target_stopped_data_address (&current_target, &addr))
4799 {
4800 /* We were stopped by a watchpoint, but we don't know where.
4801 Mark all watchpoints as unknown. */
4802 ALL_BREAKPOINTS (b)
4803 if (is_hardware_watchpoint (b))
4804 {
4805 struct watchpoint *w = (struct watchpoint *) b;
4806
4807 w->watchpoint_triggered = watch_triggered_unknown;
4808 }
4809
4810 return 1;
4811 }
4812
4813 /* The target could report the data address. Mark watchpoints
4814 affected by this data address as triggered, and all others as not
4815 triggered. */
4816
4817 ALL_BREAKPOINTS (b)
4818 if (is_hardware_watchpoint (b))
4819 {
4820 struct watchpoint *w = (struct watchpoint *) b;
4821 struct bp_location *loc;
4822
4823 w->watchpoint_triggered = watch_triggered_no;
4824 for (loc = b->loc; loc; loc = loc->next)
4825 {
4826 if (is_masked_watchpoint (b))
4827 {
4828 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4829 CORE_ADDR start = loc->address & w->hw_wp_mask;
4830
4831 if (newaddr == start)
4832 {
4833 w->watchpoint_triggered = watch_triggered_yes;
4834 break;
4835 }
4836 }
4837 /* Exact match not required. Within range is sufficient. */
4838 else if (target_watchpoint_addr_within_range (&current_target,
4839 addr, loc->address,
4840 loc->length))
4841 {
4842 w->watchpoint_triggered = watch_triggered_yes;
4843 break;
4844 }
4845 }
4846 }
4847
4848 return 1;
4849 }
4850
4851 /* Possible return values for watchpoint_check. */
4852 enum wp_check_result
4853 {
4854 /* The watchpoint has been deleted. */
4855 WP_DELETED = 1,
4856
4857 /* The value has changed. */
4858 WP_VALUE_CHANGED = 2,
4859
4860 /* The value has not changed. */
4861 WP_VALUE_NOT_CHANGED = 3,
4862
4863 /* Ignore this watchpoint, no matter if the value changed or not. */
4864 WP_IGNORE = 4,
4865 };
4866
4867 #define BP_TEMPFLAG 1
4868 #define BP_HARDWAREFLAG 2
4869
4870 /* Evaluate watchpoint condition expression and check if its value
4871 changed. */
4872
4873 static wp_check_result
4874 watchpoint_check (bpstat bs)
4875 {
4876 struct watchpoint *b;
4877 struct frame_info *fr;
4878 int within_current_scope;
4879
4880 /* BS is built from an existing struct breakpoint. */
4881 gdb_assert (bs->breakpoint_at != NULL);
4882 b = (struct watchpoint *) bs->breakpoint_at;
4883
4884 /* If this is a local watchpoint, we only want to check if the
4885 watchpoint frame is in scope if the current thread is the thread
4886 that was used to create the watchpoint. */
4887 if (!watchpoint_in_thread_scope (b))
4888 return WP_IGNORE;
4889
4890 if (b->exp_valid_block == NULL)
4891 within_current_scope = 1;
4892 else
4893 {
4894 struct frame_info *frame = get_current_frame ();
4895 struct gdbarch *frame_arch = get_frame_arch (frame);
4896 CORE_ADDR frame_pc = get_frame_pc (frame);
4897
4898 /* stack_frame_destroyed_p() returns a non-zero value if we're
4899 still in the function but the stack frame has already been
4900 invalidated. Since we can't rely on the values of local
4901 variables after the stack has been destroyed, we are treating
4902 the watchpoint in that state as `not changed' without further
4903 checking. Don't mark watchpoints as changed if the current
4904 frame is in an epilogue - even if they are in some other
4905 frame, our view of the stack is likely to be wrong and
4906 frame_find_by_id could error out. */
4907 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4908 return WP_IGNORE;
4909
4910 fr = frame_find_by_id (b->watchpoint_frame);
4911 within_current_scope = (fr != NULL);
4912
4913 /* If we've gotten confused in the unwinder, we might have
4914 returned a frame that can't describe this variable. */
4915 if (within_current_scope)
4916 {
4917 struct symbol *function;
4918
4919 function = get_frame_function (fr);
4920 if (function == NULL
4921 || !contained_in (b->exp_valid_block,
4922 SYMBOL_BLOCK_VALUE (function)))
4923 within_current_scope = 0;
4924 }
4925
4926 if (within_current_scope)
4927 /* If we end up stopping, the current frame will get selected
4928 in normal_stop. So this call to select_frame won't affect
4929 the user. */
4930 select_frame (fr);
4931 }
4932
4933 if (within_current_scope)
4934 {
4935 /* We use value_{,free_to_}mark because it could be a *long*
4936 time before we return to the command level and call
4937 free_all_values. We can't call free_all_values because we
4938 might be in the middle of evaluating a function call. */
4939
4940 int pc = 0;
4941 struct value *mark;
4942 struct value *new_val;
4943
4944 if (is_masked_watchpoint (b))
4945 /* Since we don't know the exact trigger address (from
4946 stopped_data_address), just tell the user we've triggered
4947 a mask watchpoint. */
4948 return WP_VALUE_CHANGED;
4949
4950 mark = value_mark ();
4951 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4952
4953 if (b->val_bitsize != 0)
4954 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4955
4956 /* We use value_equal_contents instead of value_equal because
4957 the latter coerces an array to a pointer, thus comparing just
4958 the address of the array instead of its contents. This is
4959 not what we want. */
4960 if ((b->val != NULL) != (new_val != NULL)
4961 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4962 {
4963 if (new_val != NULL)
4964 {
4965 release_value (new_val);
4966 value_free_to_mark (mark);
4967 }
4968 bs->old_val = b->val;
4969 b->val = new_val;
4970 b->val_valid = 1;
4971 return WP_VALUE_CHANGED;
4972 }
4973 else
4974 {
4975 /* Nothing changed. */
4976 value_free_to_mark (mark);
4977 return WP_VALUE_NOT_CHANGED;
4978 }
4979 }
4980 else
4981 {
4982 /* This seems like the only logical thing to do because
4983 if we temporarily ignored the watchpoint, then when
4984 we reenter the block in which it is valid it contains
4985 garbage (in the case of a function, it may have two
4986 garbage values, one before and one after the prologue).
4987 So we can't even detect the first assignment to it and
4988 watch after that (since the garbage may or may not equal
4989 the first value assigned). */
4990 /* We print all the stop information in
4991 breakpoint_ops->print_it, but in this case, by the time we
4992 call breakpoint_ops->print_it this bp will be deleted
4993 already. So we have no choice but print the information
4994 here. */
4995
4996 SWITCH_THRU_ALL_UIS ()
4997 {
4998 struct ui_out *uiout = current_uiout;
4999
5000 if (uiout->is_mi_like_p ())
5001 uiout->field_string
5002 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5003 uiout->text ("\nWatchpoint ");
5004 uiout->field_int ("wpnum", b->number);
5005 uiout->text (" deleted because the program has left the block in\n"
5006 "which its expression is valid.\n");
5007 }
5008
5009 /* Make sure the watchpoint's commands aren't executed. */
5010 b->commands = NULL;
5011 watchpoint_del_at_next_stop (b);
5012
5013 return WP_DELETED;
5014 }
5015 }
5016
5017 /* Return true if it looks like target has stopped due to hitting
5018 breakpoint location BL. This function does not check if we should
5019 stop, only if BL explains the stop. */
5020
5021 static int
5022 bpstat_check_location (const struct bp_location *bl,
5023 const address_space *aspace, CORE_ADDR bp_addr,
5024 const struct target_waitstatus *ws)
5025 {
5026 struct breakpoint *b = bl->owner;
5027
5028 /* BL is from an existing breakpoint. */
5029 gdb_assert (b != NULL);
5030
5031 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5032 }
5033
5034 /* Determine if the watched values have actually changed, and we
5035 should stop. If not, set BS->stop to 0. */
5036
5037 static void
5038 bpstat_check_watchpoint (bpstat bs)
5039 {
5040 const struct bp_location *bl;
5041 struct watchpoint *b;
5042
5043 /* BS is built for existing struct breakpoint. */
5044 bl = bs->bp_location_at;
5045 gdb_assert (bl != NULL);
5046 b = (struct watchpoint *) bs->breakpoint_at;
5047 gdb_assert (b != NULL);
5048
5049 {
5050 int must_check_value = 0;
5051
5052 if (b->type == bp_watchpoint)
5053 /* For a software watchpoint, we must always check the
5054 watched value. */
5055 must_check_value = 1;
5056 else if (b->watchpoint_triggered == watch_triggered_yes)
5057 /* We have a hardware watchpoint (read, write, or access)
5058 and the target earlier reported an address watched by
5059 this watchpoint. */
5060 must_check_value = 1;
5061 else if (b->watchpoint_triggered == watch_triggered_unknown
5062 && b->type == bp_hardware_watchpoint)
5063 /* We were stopped by a hardware watchpoint, but the target could
5064 not report the data address. We must check the watchpoint's
5065 value. Access and read watchpoints are out of luck; without
5066 a data address, we can't figure it out. */
5067 must_check_value = 1;
5068
5069 if (must_check_value)
5070 {
5071 wp_check_result e;
5072
5073 TRY
5074 {
5075 e = watchpoint_check (bs);
5076 }
5077 CATCH (ex, RETURN_MASK_ALL)
5078 {
5079 exception_fprintf (gdb_stderr, ex,
5080 "Error evaluating expression "
5081 "for watchpoint %d\n",
5082 b->number);
5083
5084 SWITCH_THRU_ALL_UIS ()
5085 {
5086 printf_filtered (_("Watchpoint %d deleted.\n"),
5087 b->number);
5088 }
5089 watchpoint_del_at_next_stop (b);
5090 e = WP_DELETED;
5091 }
5092 END_CATCH
5093
5094 switch (e)
5095 {
5096 case WP_DELETED:
5097 /* We've already printed what needs to be printed. */
5098 bs->print_it = print_it_done;
5099 /* Stop. */
5100 break;
5101 case WP_IGNORE:
5102 bs->print_it = print_it_noop;
5103 bs->stop = 0;
5104 break;
5105 case WP_VALUE_CHANGED:
5106 if (b->type == bp_read_watchpoint)
5107 {
5108 /* There are two cases to consider here:
5109
5110 1. We're watching the triggered memory for reads.
5111 In that case, trust the target, and always report
5112 the watchpoint hit to the user. Even though
5113 reads don't cause value changes, the value may
5114 have changed since the last time it was read, and
5115 since we're not trapping writes, we will not see
5116 those, and as such we should ignore our notion of
5117 old value.
5118
5119 2. We're watching the triggered memory for both
5120 reads and writes. There are two ways this may
5121 happen:
5122
5123 2.1. This is a target that can't break on data
5124 reads only, but can break on accesses (reads or
5125 writes), such as e.g., x86. We detect this case
5126 at the time we try to insert read watchpoints.
5127
5128 2.2. Otherwise, the target supports read
5129 watchpoints, but, the user set an access or write
5130 watchpoint watching the same memory as this read
5131 watchpoint.
5132
5133 If we're watching memory writes as well as reads,
5134 ignore watchpoint hits when we find that the
5135 value hasn't changed, as reads don't cause
5136 changes. This still gives false positives when
5137 the program writes the same value to memory as
5138 what there was already in memory (we will confuse
5139 it for a read), but it's much better than
5140 nothing. */
5141
5142 int other_write_watchpoint = 0;
5143
5144 if (bl->watchpoint_type == hw_read)
5145 {
5146 struct breakpoint *other_b;
5147
5148 ALL_BREAKPOINTS (other_b)
5149 if (other_b->type == bp_hardware_watchpoint
5150 || other_b->type == bp_access_watchpoint)
5151 {
5152 struct watchpoint *other_w =
5153 (struct watchpoint *) other_b;
5154
5155 if (other_w->watchpoint_triggered
5156 == watch_triggered_yes)
5157 {
5158 other_write_watchpoint = 1;
5159 break;
5160 }
5161 }
5162 }
5163
5164 if (other_write_watchpoint
5165 || bl->watchpoint_type == hw_access)
5166 {
5167 /* We're watching the same memory for writes,
5168 and the value changed since the last time we
5169 updated it, so this trap must be for a write.
5170 Ignore it. */
5171 bs->print_it = print_it_noop;
5172 bs->stop = 0;
5173 }
5174 }
5175 break;
5176 case WP_VALUE_NOT_CHANGED:
5177 if (b->type == bp_hardware_watchpoint
5178 || b->type == bp_watchpoint)
5179 {
5180 /* Don't stop: write watchpoints shouldn't fire if
5181 the value hasn't changed. */
5182 bs->print_it = print_it_noop;
5183 bs->stop = 0;
5184 }
5185 /* Stop. */
5186 break;
5187 default:
5188 /* Can't happen. */
5189 break;
5190 }
5191 }
5192 else /* must_check_value == 0 */
5193 {
5194 /* This is a case where some watchpoint(s) triggered, but
5195 not at the address of this watchpoint, or else no
5196 watchpoint triggered after all. So don't print
5197 anything for this watchpoint. */
5198 bs->print_it = print_it_noop;
5199 bs->stop = 0;
5200 }
5201 }
5202 }
5203
5204 /* For breakpoints that are currently marked as telling gdb to stop,
5205 check conditions (condition proper, frame, thread and ignore count)
5206 of breakpoint referred to by BS. If we should not stop for this
5207 breakpoint, set BS->stop to 0. */
5208
5209 static void
5210 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5211 {
5212 const struct bp_location *bl;
5213 struct breakpoint *b;
5214 /* Assume stop. */
5215 bool condition_result = true;
5216 struct expression *cond;
5217
5218 gdb_assert (bs->stop);
5219
5220 /* BS is built for existing struct breakpoint. */
5221 bl = bs->bp_location_at;
5222 gdb_assert (bl != NULL);
5223 b = bs->breakpoint_at;
5224 gdb_assert (b != NULL);
5225
5226 /* Even if the target evaluated the condition on its end and notified GDB, we
5227 need to do so again since GDB does not know if we stopped due to a
5228 breakpoint or a single step breakpoint. */
5229
5230 if (frame_id_p (b->frame_id)
5231 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5232 {
5233 bs->stop = 0;
5234 return;
5235 }
5236
5237 /* If this is a thread/task-specific breakpoint, don't waste cpu
5238 evaluating the condition if this isn't the specified
5239 thread/task. */
5240 if ((b->thread != -1 && b->thread != ptid_to_global_thread_id (ptid))
5241 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5242
5243 {
5244 bs->stop = 0;
5245 return;
5246 }
5247
5248 /* Evaluate extension language breakpoints that have a "stop" method
5249 implemented. */
5250 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5251
5252 if (is_watchpoint (b))
5253 {
5254 struct watchpoint *w = (struct watchpoint *) b;
5255
5256 cond = w->cond_exp.get ();
5257 }
5258 else
5259 cond = bl->cond.get ();
5260
5261 if (cond && b->disposition != disp_del_at_next_stop)
5262 {
5263 int within_current_scope = 1;
5264 struct watchpoint * w;
5265
5266 /* We use value_mark and value_free_to_mark because it could
5267 be a long time before we return to the command level and
5268 call free_all_values. We can't call free_all_values
5269 because we might be in the middle of evaluating a
5270 function call. */
5271 struct value *mark = value_mark ();
5272
5273 if (is_watchpoint (b))
5274 w = (struct watchpoint *) b;
5275 else
5276 w = NULL;
5277
5278 /* Need to select the frame, with all that implies so that
5279 the conditions will have the right context. Because we
5280 use the frame, we will not see an inlined function's
5281 variables when we arrive at a breakpoint at the start
5282 of the inlined function; the current frame will be the
5283 call site. */
5284 if (w == NULL || w->cond_exp_valid_block == NULL)
5285 select_frame (get_current_frame ());
5286 else
5287 {
5288 struct frame_info *frame;
5289
5290 /* For local watchpoint expressions, which particular
5291 instance of a local is being watched matters, so we
5292 keep track of the frame to evaluate the expression
5293 in. To evaluate the condition however, it doesn't
5294 really matter which instantiation of the function
5295 where the condition makes sense triggers the
5296 watchpoint. This allows an expression like "watch
5297 global if q > 10" set in `func', catch writes to
5298 global on all threads that call `func', or catch
5299 writes on all recursive calls of `func' by a single
5300 thread. We simply always evaluate the condition in
5301 the innermost frame that's executing where it makes
5302 sense to evaluate the condition. It seems
5303 intuitive. */
5304 frame = block_innermost_frame (w->cond_exp_valid_block);
5305 if (frame != NULL)
5306 select_frame (frame);
5307 else
5308 within_current_scope = 0;
5309 }
5310 if (within_current_scope)
5311 {
5312 TRY
5313 {
5314 condition_result = breakpoint_cond_eval (cond);
5315 }
5316 CATCH (ex, RETURN_MASK_ALL)
5317 {
5318 exception_fprintf (gdb_stderr, ex,
5319 "Error in testing breakpoint condition:\n");
5320 }
5321 END_CATCH
5322 }
5323 else
5324 {
5325 warning (_("Watchpoint condition cannot be tested "
5326 "in the current scope"));
5327 /* If we failed to set the right context for this
5328 watchpoint, unconditionally report it. */
5329 }
5330 /* FIXME-someday, should give breakpoint #. */
5331 value_free_to_mark (mark);
5332 }
5333
5334 if (cond && !condition_result)
5335 {
5336 bs->stop = 0;
5337 }
5338 else if (b->ignore_count > 0)
5339 {
5340 b->ignore_count--;
5341 bs->stop = 0;
5342 /* Increase the hit count even though we don't stop. */
5343 ++(b->hit_count);
5344 observer_notify_breakpoint_modified (b);
5345 }
5346 }
5347
5348 /* Returns true if we need to track moribund locations of LOC's type
5349 on the current target. */
5350
5351 static int
5352 need_moribund_for_location_type (struct bp_location *loc)
5353 {
5354 return ((loc->loc_type == bp_loc_software_breakpoint
5355 && !target_supports_stopped_by_sw_breakpoint ())
5356 || (loc->loc_type == bp_loc_hardware_breakpoint
5357 && !target_supports_stopped_by_hw_breakpoint ()));
5358 }
5359
5360
5361 /* Get a bpstat associated with having just stopped at address
5362 BP_ADDR in thread PTID.
5363
5364 Determine whether we stopped at a breakpoint, etc, or whether we
5365 don't understand this stop. Result is a chain of bpstat's such
5366 that:
5367
5368 if we don't understand the stop, the result is a null pointer.
5369
5370 if we understand why we stopped, the result is not null.
5371
5372 Each element of the chain refers to a particular breakpoint or
5373 watchpoint at which we have stopped. (We may have stopped for
5374 several reasons concurrently.)
5375
5376 Each element of the chain has valid next, breakpoint_at,
5377 commands, FIXME??? fields. */
5378
5379 bpstat
5380 bpstat_stop_status (const address_space *aspace,
5381 CORE_ADDR bp_addr, ptid_t ptid,
5382 const struct target_waitstatus *ws)
5383 {
5384 struct breakpoint *b = NULL;
5385 struct bp_location *bl;
5386 struct bp_location *loc;
5387 /* First item of allocated bpstat's. */
5388 bpstat bs_head = NULL, *bs_link = &bs_head;
5389 /* Pointer to the last thing in the chain currently. */
5390 bpstat bs;
5391 int ix;
5392 int need_remove_insert;
5393 int removed_any;
5394
5395 /* First, build the bpstat chain with locations that explain a
5396 target stop, while being careful to not set the target running,
5397 as that may invalidate locations (in particular watchpoint
5398 locations are recreated). Resuming will happen here with
5399 breakpoint conditions or watchpoint expressions that include
5400 inferior function calls. */
5401
5402 ALL_BREAKPOINTS (b)
5403 {
5404 if (!breakpoint_enabled (b))
5405 continue;
5406
5407 for (bl = b->loc; bl != NULL; bl = bl->next)
5408 {
5409 /* For hardware watchpoints, we look only at the first
5410 location. The watchpoint_check function will work on the
5411 entire expression, not the individual locations. For
5412 read watchpoints, the watchpoints_triggered function has
5413 checked all locations already. */
5414 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5415 break;
5416
5417 if (!bl->enabled || bl->shlib_disabled)
5418 continue;
5419
5420 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5421 continue;
5422
5423 /* Come here if it's a watchpoint, or if the break address
5424 matches. */
5425
5426 bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5427 explain stop. */
5428
5429 /* Assume we stop. Should we find a watchpoint that is not
5430 actually triggered, or if the condition of the breakpoint
5431 evaluates as false, we'll reset 'stop' to 0. */
5432 bs->stop = 1;
5433 bs->print = 1;
5434
5435 /* If this is a scope breakpoint, mark the associated
5436 watchpoint as triggered so that we will handle the
5437 out-of-scope event. We'll get to the watchpoint next
5438 iteration. */
5439 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5440 {
5441 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5442
5443 w->watchpoint_triggered = watch_triggered_yes;
5444 }
5445 }
5446 }
5447
5448 /* Check if a moribund breakpoint explains the stop. */
5449 if (!target_supports_stopped_by_sw_breakpoint ()
5450 || !target_supports_stopped_by_hw_breakpoint ())
5451 {
5452 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5453 {
5454 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5455 && need_moribund_for_location_type (loc))
5456 {
5457 bs = new bpstats (loc, &bs_link);
5458 /* For hits of moribund locations, we should just proceed. */
5459 bs->stop = 0;
5460 bs->print = 0;
5461 bs->print_it = print_it_noop;
5462 }
5463 }
5464 }
5465
5466 /* A bit of special processing for shlib breakpoints. We need to
5467 process solib loading here, so that the lists of loaded and
5468 unloaded libraries are correct before we handle "catch load" and
5469 "catch unload". */
5470 for (bs = bs_head; bs != NULL; bs = bs->next)
5471 {
5472 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5473 {
5474 handle_solib_event ();
5475 break;
5476 }
5477 }
5478
5479 /* Now go through the locations that caused the target to stop, and
5480 check whether we're interested in reporting this stop to higher
5481 layers, or whether we should resume the target transparently. */
5482
5483 removed_any = 0;
5484
5485 for (bs = bs_head; bs != NULL; bs = bs->next)
5486 {
5487 if (!bs->stop)
5488 continue;
5489
5490 b = bs->breakpoint_at;
5491 b->ops->check_status (bs);
5492 if (bs->stop)
5493 {
5494 bpstat_check_breakpoint_conditions (bs, ptid);
5495
5496 if (bs->stop)
5497 {
5498 ++(b->hit_count);
5499 observer_notify_breakpoint_modified (b);
5500
5501 /* We will stop here. */
5502 if (b->disposition == disp_disable)
5503 {
5504 --(b->enable_count);
5505 if (b->enable_count <= 0)
5506 b->enable_state = bp_disabled;
5507 removed_any = 1;
5508 }
5509 if (b->silent)
5510 bs->print = 0;
5511 bs->commands = b->commands;
5512 if (command_line_is_silent (bs->commands
5513 ? bs->commands.get () : NULL))
5514 bs->print = 0;
5515
5516 b->ops->after_condition_true (bs);
5517 }
5518
5519 }
5520
5521 /* Print nothing for this entry if we don't stop or don't
5522 print. */
5523 if (!bs->stop || !bs->print)
5524 bs->print_it = print_it_noop;
5525 }
5526
5527 /* If we aren't stopping, the value of some hardware watchpoint may
5528 not have changed, but the intermediate memory locations we are
5529 watching may have. Don't bother if we're stopping; this will get
5530 done later. */
5531 need_remove_insert = 0;
5532 if (! bpstat_causes_stop (bs_head))
5533 for (bs = bs_head; bs != NULL; bs = bs->next)
5534 if (!bs->stop
5535 && bs->breakpoint_at
5536 && is_hardware_watchpoint (bs->breakpoint_at))
5537 {
5538 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5539
5540 update_watchpoint (w, 0 /* don't reparse. */);
5541 need_remove_insert = 1;
5542 }
5543
5544 if (need_remove_insert)
5545 update_global_location_list (UGLL_MAY_INSERT);
5546 else if (removed_any)
5547 update_global_location_list (UGLL_DONT_INSERT);
5548
5549 return bs_head;
5550 }
5551
5552 static void
5553 handle_jit_event (void)
5554 {
5555 struct frame_info *frame;
5556 struct gdbarch *gdbarch;
5557
5558 if (debug_infrun)
5559 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5560
5561 /* Switch terminal for any messages produced by
5562 breakpoint_re_set. */
5563 target_terminal::ours_for_output ();
5564
5565 frame = get_current_frame ();
5566 gdbarch = get_frame_arch (frame);
5567
5568 jit_event_handler (gdbarch);
5569
5570 target_terminal::inferior ();
5571 }
5572
5573 /* Prepare WHAT final decision for infrun. */
5574
5575 /* Decide what infrun needs to do with this bpstat. */
5576
5577 struct bpstat_what
5578 bpstat_what (bpstat bs_head)
5579 {
5580 struct bpstat_what retval;
5581 bpstat bs;
5582
5583 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5584 retval.call_dummy = STOP_NONE;
5585 retval.is_longjmp = 0;
5586
5587 for (bs = bs_head; bs != NULL; bs = bs->next)
5588 {
5589 /* Extract this BS's action. After processing each BS, we check
5590 if its action overrides all we've seem so far. */
5591 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5592 enum bptype bptype;
5593
5594 if (bs->breakpoint_at == NULL)
5595 {
5596 /* I suspect this can happen if it was a momentary
5597 breakpoint which has since been deleted. */
5598 bptype = bp_none;
5599 }
5600 else
5601 bptype = bs->breakpoint_at->type;
5602
5603 switch (bptype)
5604 {
5605 case bp_none:
5606 break;
5607 case bp_breakpoint:
5608 case bp_hardware_breakpoint:
5609 case bp_single_step:
5610 case bp_until:
5611 case bp_finish:
5612 case bp_shlib_event:
5613 if (bs->stop)
5614 {
5615 if (bs->print)
5616 this_action = BPSTAT_WHAT_STOP_NOISY;
5617 else
5618 this_action = BPSTAT_WHAT_STOP_SILENT;
5619 }
5620 else
5621 this_action = BPSTAT_WHAT_SINGLE;
5622 break;
5623 case bp_watchpoint:
5624 case bp_hardware_watchpoint:
5625 case bp_read_watchpoint:
5626 case bp_access_watchpoint:
5627 if (bs->stop)
5628 {
5629 if (bs->print)
5630 this_action = BPSTAT_WHAT_STOP_NOISY;
5631 else
5632 this_action = BPSTAT_WHAT_STOP_SILENT;
5633 }
5634 else
5635 {
5636 /* There was a watchpoint, but we're not stopping.
5637 This requires no further action. */
5638 }
5639 break;
5640 case bp_longjmp:
5641 case bp_longjmp_call_dummy:
5642 case bp_exception:
5643 if (bs->stop)
5644 {
5645 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5646 retval.is_longjmp = bptype != bp_exception;
5647 }
5648 else
5649 this_action = BPSTAT_WHAT_SINGLE;
5650 break;
5651 case bp_longjmp_resume:
5652 case bp_exception_resume:
5653 if (bs->stop)
5654 {
5655 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5656 retval.is_longjmp = bptype == bp_longjmp_resume;
5657 }
5658 else
5659 this_action = BPSTAT_WHAT_SINGLE;
5660 break;
5661 case bp_step_resume:
5662 if (bs->stop)
5663 this_action = BPSTAT_WHAT_STEP_RESUME;
5664 else
5665 {
5666 /* It is for the wrong frame. */
5667 this_action = BPSTAT_WHAT_SINGLE;
5668 }
5669 break;
5670 case bp_hp_step_resume:
5671 if (bs->stop)
5672 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5673 else
5674 {
5675 /* It is for the wrong frame. */
5676 this_action = BPSTAT_WHAT_SINGLE;
5677 }
5678 break;
5679 case bp_watchpoint_scope:
5680 case bp_thread_event:
5681 case bp_overlay_event:
5682 case bp_longjmp_master:
5683 case bp_std_terminate_master:
5684 case bp_exception_master:
5685 this_action = BPSTAT_WHAT_SINGLE;
5686 break;
5687 case bp_catchpoint:
5688 if (bs->stop)
5689 {
5690 if (bs->print)
5691 this_action = BPSTAT_WHAT_STOP_NOISY;
5692 else
5693 this_action = BPSTAT_WHAT_STOP_SILENT;
5694 }
5695 else
5696 {
5697 /* There was a catchpoint, but we're not stopping.
5698 This requires no further action. */
5699 }
5700 break;
5701 case bp_jit_event:
5702 this_action = BPSTAT_WHAT_SINGLE;
5703 break;
5704 case bp_call_dummy:
5705 /* Make sure the action is stop (silent or noisy),
5706 so infrun.c pops the dummy frame. */
5707 retval.call_dummy = STOP_STACK_DUMMY;
5708 this_action = BPSTAT_WHAT_STOP_SILENT;
5709 break;
5710 case bp_std_terminate:
5711 /* Make sure the action is stop (silent or noisy),
5712 so infrun.c pops the dummy frame. */
5713 retval.call_dummy = STOP_STD_TERMINATE;
5714 this_action = BPSTAT_WHAT_STOP_SILENT;
5715 break;
5716 case bp_tracepoint:
5717 case bp_fast_tracepoint:
5718 case bp_static_tracepoint:
5719 /* Tracepoint hits should not be reported back to GDB, and
5720 if one got through somehow, it should have been filtered
5721 out already. */
5722 internal_error (__FILE__, __LINE__,
5723 _("bpstat_what: tracepoint encountered"));
5724 break;
5725 case bp_gnu_ifunc_resolver:
5726 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5727 this_action = BPSTAT_WHAT_SINGLE;
5728 break;
5729 case bp_gnu_ifunc_resolver_return:
5730 /* The breakpoint will be removed, execution will restart from the
5731 PC of the former breakpoint. */
5732 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5733 break;
5734
5735 case bp_dprintf:
5736 if (bs->stop)
5737 this_action = BPSTAT_WHAT_STOP_SILENT;
5738 else
5739 this_action = BPSTAT_WHAT_SINGLE;
5740 break;
5741
5742 default:
5743 internal_error (__FILE__, __LINE__,
5744 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5745 }
5746
5747 retval.main_action = std::max (retval.main_action, this_action);
5748 }
5749
5750 return retval;
5751 }
5752
5753 void
5754 bpstat_run_callbacks (bpstat bs_head)
5755 {
5756 bpstat bs;
5757
5758 for (bs = bs_head; bs != NULL; bs = bs->next)
5759 {
5760 struct breakpoint *b = bs->breakpoint_at;
5761
5762 if (b == NULL)
5763 continue;
5764 switch (b->type)
5765 {
5766 case bp_jit_event:
5767 handle_jit_event ();
5768 break;
5769 case bp_gnu_ifunc_resolver:
5770 gnu_ifunc_resolver_stop (b);
5771 break;
5772 case bp_gnu_ifunc_resolver_return:
5773 gnu_ifunc_resolver_return_stop (b);
5774 break;
5775 }
5776 }
5777 }
5778
5779 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5780 without hardware support). This isn't related to a specific bpstat,
5781 just to things like whether watchpoints are set. */
5782
5783 int
5784 bpstat_should_step (void)
5785 {
5786 struct breakpoint *b;
5787
5788 ALL_BREAKPOINTS (b)
5789 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5790 return 1;
5791 return 0;
5792 }
5793
5794 int
5795 bpstat_causes_stop (bpstat bs)
5796 {
5797 for (; bs != NULL; bs = bs->next)
5798 if (bs->stop)
5799 return 1;
5800
5801 return 0;
5802 }
5803
5804 \f
5805
5806 /* Compute a string of spaces suitable to indent the next line
5807 so it starts at the position corresponding to the table column
5808 named COL_NAME in the currently active table of UIOUT. */
5809
5810 static char *
5811 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5812 {
5813 static char wrap_indent[80];
5814 int i, total_width, width, align;
5815 const char *text;
5816
5817 total_width = 0;
5818 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5819 {
5820 if (strcmp (text, col_name) == 0)
5821 {
5822 gdb_assert (total_width < sizeof wrap_indent);
5823 memset (wrap_indent, ' ', total_width);
5824 wrap_indent[total_width] = 0;
5825
5826 return wrap_indent;
5827 }
5828
5829 total_width += width + 1;
5830 }
5831
5832 return NULL;
5833 }
5834
5835 /* Determine if the locations of this breakpoint will have their conditions
5836 evaluated by the target, host or a mix of both. Returns the following:
5837
5838 "host": Host evals condition.
5839 "host or target": Host or Target evals condition.
5840 "target": Target evals condition.
5841 */
5842
5843 static const char *
5844 bp_condition_evaluator (struct breakpoint *b)
5845 {
5846 struct bp_location *bl;
5847 char host_evals = 0;
5848 char target_evals = 0;
5849
5850 if (!b)
5851 return NULL;
5852
5853 if (!is_breakpoint (b))
5854 return NULL;
5855
5856 if (gdb_evaluates_breakpoint_condition_p ()
5857 || !target_supports_evaluation_of_breakpoint_conditions ())
5858 return condition_evaluation_host;
5859
5860 for (bl = b->loc; bl; bl = bl->next)
5861 {
5862 if (bl->cond_bytecode)
5863 target_evals++;
5864 else
5865 host_evals++;
5866 }
5867
5868 if (host_evals && target_evals)
5869 return condition_evaluation_both;
5870 else if (target_evals)
5871 return condition_evaluation_target;
5872 else
5873 return condition_evaluation_host;
5874 }
5875
5876 /* Determine the breakpoint location's condition evaluator. This is
5877 similar to bp_condition_evaluator, but for locations. */
5878
5879 static const char *
5880 bp_location_condition_evaluator (struct bp_location *bl)
5881 {
5882 if (bl && !is_breakpoint (bl->owner))
5883 return NULL;
5884
5885 if (gdb_evaluates_breakpoint_condition_p ()
5886 || !target_supports_evaluation_of_breakpoint_conditions ())
5887 return condition_evaluation_host;
5888
5889 if (bl && bl->cond_bytecode)
5890 return condition_evaluation_target;
5891 else
5892 return condition_evaluation_host;
5893 }
5894
5895 /* Print the LOC location out of the list of B->LOC locations. */
5896
5897 static void
5898 print_breakpoint_location (struct breakpoint *b,
5899 struct bp_location *loc)
5900 {
5901 struct ui_out *uiout = current_uiout;
5902
5903 scoped_restore_current_program_space restore_pspace;
5904
5905 if (loc != NULL && loc->shlib_disabled)
5906 loc = NULL;
5907
5908 if (loc != NULL)
5909 set_current_program_space (loc->pspace);
5910
5911 if (b->display_canonical)
5912 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5913 else if (loc && loc->symtab)
5914 {
5915 const struct symbol *sym = loc->symbol;
5916
5917 if (sym == NULL)
5918 sym = find_pc_sect_function (loc->address, loc->section);
5919
5920 if (sym)
5921 {
5922 uiout->text ("in ");
5923 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
5924 uiout->text (" ");
5925 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5926 uiout->text ("at ");
5927 }
5928 uiout->field_string ("file",
5929 symtab_to_filename_for_display (loc->symtab));
5930 uiout->text (":");
5931
5932 if (uiout->is_mi_like_p ())
5933 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5934
5935 uiout->field_int ("line", loc->line_number);
5936 }
5937 else if (loc)
5938 {
5939 string_file stb;
5940
5941 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5942 demangle, "");
5943 uiout->field_stream ("at", stb);
5944 }
5945 else
5946 {
5947 uiout->field_string ("pending",
5948 event_location_to_string (b->location.get ()));
5949 /* If extra_string is available, it could be holding a condition
5950 or dprintf arguments. In either case, make sure it is printed,
5951 too, but only for non-MI streams. */
5952 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5953 {
5954 if (b->type == bp_dprintf)
5955 uiout->text (",");
5956 else
5957 uiout->text (" ");
5958 uiout->text (b->extra_string);
5959 }
5960 }
5961
5962 if (loc && is_breakpoint (b)
5963 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5964 && bp_condition_evaluator (b) == condition_evaluation_both)
5965 {
5966 uiout->text (" (");
5967 uiout->field_string ("evaluated-by",
5968 bp_location_condition_evaluator (loc));
5969 uiout->text (")");
5970 }
5971 }
5972
5973 static const char *
5974 bptype_string (enum bptype type)
5975 {
5976 struct ep_type_description
5977 {
5978 enum bptype type;
5979 const char *description;
5980 };
5981 static struct ep_type_description bptypes[] =
5982 {
5983 {bp_none, "?deleted?"},
5984 {bp_breakpoint, "breakpoint"},
5985 {bp_hardware_breakpoint, "hw breakpoint"},
5986 {bp_single_step, "sw single-step"},
5987 {bp_until, "until"},
5988 {bp_finish, "finish"},
5989 {bp_watchpoint, "watchpoint"},
5990 {bp_hardware_watchpoint, "hw watchpoint"},
5991 {bp_read_watchpoint, "read watchpoint"},
5992 {bp_access_watchpoint, "acc watchpoint"},
5993 {bp_longjmp, "longjmp"},
5994 {bp_longjmp_resume, "longjmp resume"},
5995 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5996 {bp_exception, "exception"},
5997 {bp_exception_resume, "exception resume"},
5998 {bp_step_resume, "step resume"},
5999 {bp_hp_step_resume, "high-priority step resume"},
6000 {bp_watchpoint_scope, "watchpoint scope"},
6001 {bp_call_dummy, "call dummy"},
6002 {bp_std_terminate, "std::terminate"},
6003 {bp_shlib_event, "shlib events"},
6004 {bp_thread_event, "thread events"},
6005 {bp_overlay_event, "overlay events"},
6006 {bp_longjmp_master, "longjmp master"},
6007 {bp_std_terminate_master, "std::terminate master"},
6008 {bp_exception_master, "exception master"},
6009 {bp_catchpoint, "catchpoint"},
6010 {bp_tracepoint, "tracepoint"},
6011 {bp_fast_tracepoint, "fast tracepoint"},
6012 {bp_static_tracepoint, "static tracepoint"},
6013 {bp_dprintf, "dprintf"},
6014 {bp_jit_event, "jit events"},
6015 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6016 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6017 };
6018
6019 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6020 || ((int) type != bptypes[(int) type].type))
6021 internal_error (__FILE__, __LINE__,
6022 _("bptypes table does not describe type #%d."),
6023 (int) type);
6024
6025 return bptypes[(int) type].description;
6026 }
6027
6028 /* For MI, output a field named 'thread-groups' with a list as the value.
6029 For CLI, prefix the list with the string 'inf'. */
6030
6031 static void
6032 output_thread_groups (struct ui_out *uiout,
6033 const char *field_name,
6034 const std::vector<int> &inf_nums,
6035 int mi_only)
6036 {
6037 int is_mi = uiout->is_mi_like_p ();
6038
6039 /* For backward compatibility, don't display inferiors in CLI unless
6040 there are several. Always display them for MI. */
6041 if (!is_mi && mi_only)
6042 return;
6043
6044 ui_out_emit_list list_emitter (uiout, field_name);
6045
6046 for (size_t i = 0; i < inf_nums.size (); i++)
6047 {
6048 if (is_mi)
6049 {
6050 char mi_group[10];
6051
6052 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
6053 uiout->field_string (NULL, mi_group);
6054 }
6055 else
6056 {
6057 if (i == 0)
6058 uiout->text (" inf ");
6059 else
6060 uiout->text (", ");
6061
6062 uiout->text (plongest (inf_nums[i]));
6063 }
6064 }
6065 }
6066
6067 /* Print B to gdb_stdout. */
6068
6069 static void
6070 print_one_breakpoint_location (struct breakpoint *b,
6071 struct bp_location *loc,
6072 int loc_number,
6073 struct bp_location **last_loc,
6074 int allflag)
6075 {
6076 struct command_line *l;
6077 static char bpenables[] = "nynny";
6078
6079 struct ui_out *uiout = current_uiout;
6080 int header_of_multiple = 0;
6081 int part_of_multiple = (loc != NULL);
6082 struct value_print_options opts;
6083
6084 get_user_print_options (&opts);
6085
6086 gdb_assert (!loc || loc_number != 0);
6087 /* See comment in print_one_breakpoint concerning treatment of
6088 breakpoints with single disabled location. */
6089 if (loc == NULL
6090 && (b->loc != NULL
6091 && (b->loc->next != NULL || !b->loc->enabled)))
6092 header_of_multiple = 1;
6093 if (loc == NULL)
6094 loc = b->loc;
6095
6096 annotate_record ();
6097
6098 /* 1 */
6099 annotate_field (0);
6100 if (part_of_multiple)
6101 {
6102 char *formatted;
6103 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6104 uiout->field_string ("number", formatted);
6105 xfree (formatted);
6106 }
6107 else
6108 {
6109 uiout->field_int ("number", b->number);
6110 }
6111
6112 /* 2 */
6113 annotate_field (1);
6114 if (part_of_multiple)
6115 uiout->field_skip ("type");
6116 else
6117 uiout->field_string ("type", bptype_string (b->type));
6118
6119 /* 3 */
6120 annotate_field (2);
6121 if (part_of_multiple)
6122 uiout->field_skip ("disp");
6123 else
6124 uiout->field_string ("disp", bpdisp_text (b->disposition));
6125
6126
6127 /* 4 */
6128 annotate_field (3);
6129 if (part_of_multiple)
6130 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6131 else
6132 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6133 uiout->spaces (2);
6134
6135
6136 /* 5 and 6 */
6137 if (b->ops != NULL && b->ops->print_one != NULL)
6138 {
6139 /* Although the print_one can possibly print all locations,
6140 calling it here is not likely to get any nice result. So,
6141 make sure there's just one location. */
6142 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6143 b->ops->print_one (b, last_loc);
6144 }
6145 else
6146 switch (b->type)
6147 {
6148 case bp_none:
6149 internal_error (__FILE__, __LINE__,
6150 _("print_one_breakpoint: bp_none encountered\n"));
6151 break;
6152
6153 case bp_watchpoint:
6154 case bp_hardware_watchpoint:
6155 case bp_read_watchpoint:
6156 case bp_access_watchpoint:
6157 {
6158 struct watchpoint *w = (struct watchpoint *) b;
6159
6160 /* Field 4, the address, is omitted (which makes the columns
6161 not line up too nicely with the headers, but the effect
6162 is relatively readable). */
6163 if (opts.addressprint)
6164 uiout->field_skip ("addr");
6165 annotate_field (5);
6166 uiout->field_string ("what", w->exp_string);
6167 }
6168 break;
6169
6170 case bp_breakpoint:
6171 case bp_hardware_breakpoint:
6172 case bp_single_step:
6173 case bp_until:
6174 case bp_finish:
6175 case bp_longjmp:
6176 case bp_longjmp_resume:
6177 case bp_longjmp_call_dummy:
6178 case bp_exception:
6179 case bp_exception_resume:
6180 case bp_step_resume:
6181 case bp_hp_step_resume:
6182 case bp_watchpoint_scope:
6183 case bp_call_dummy:
6184 case bp_std_terminate:
6185 case bp_shlib_event:
6186 case bp_thread_event:
6187 case bp_overlay_event:
6188 case bp_longjmp_master:
6189 case bp_std_terminate_master:
6190 case bp_exception_master:
6191 case bp_tracepoint:
6192 case bp_fast_tracepoint:
6193 case bp_static_tracepoint:
6194 case bp_dprintf:
6195 case bp_jit_event:
6196 case bp_gnu_ifunc_resolver:
6197 case bp_gnu_ifunc_resolver_return:
6198 if (opts.addressprint)
6199 {
6200 annotate_field (4);
6201 if (header_of_multiple)
6202 uiout->field_string ("addr", "<MULTIPLE>");
6203 else if (b->loc == NULL || loc->shlib_disabled)
6204 uiout->field_string ("addr", "<PENDING>");
6205 else
6206 uiout->field_core_addr ("addr",
6207 loc->gdbarch, loc->address);
6208 }
6209 annotate_field (5);
6210 if (!header_of_multiple)
6211 print_breakpoint_location (b, loc);
6212 if (b->loc)
6213 *last_loc = b->loc;
6214 break;
6215 }
6216
6217
6218 if (loc != NULL && !header_of_multiple)
6219 {
6220 struct inferior *inf;
6221 std::vector<int> inf_nums;
6222 int mi_only = 1;
6223
6224 ALL_INFERIORS (inf)
6225 {
6226 if (inf->pspace == loc->pspace)
6227 inf_nums.push_back (inf->num);
6228 }
6229
6230 /* For backward compatibility, don't display inferiors in CLI unless
6231 there are several. Always display for MI. */
6232 if (allflag
6233 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6234 && (number_of_program_spaces () > 1
6235 || number_of_inferiors () > 1)
6236 /* LOC is for existing B, it cannot be in
6237 moribund_locations and thus having NULL OWNER. */
6238 && loc->owner->type != bp_catchpoint))
6239 mi_only = 0;
6240 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6241 }
6242
6243 if (!part_of_multiple)
6244 {
6245 if (b->thread != -1)
6246 {
6247 /* FIXME: This seems to be redundant and lost here; see the
6248 "stop only in" line a little further down. */
6249 uiout->text (" thread ");
6250 uiout->field_int ("thread", b->thread);
6251 }
6252 else if (b->task != 0)
6253 {
6254 uiout->text (" task ");
6255 uiout->field_int ("task", b->task);
6256 }
6257 }
6258
6259 uiout->text ("\n");
6260
6261 if (!part_of_multiple)
6262 b->ops->print_one_detail (b, uiout);
6263
6264 if (part_of_multiple && frame_id_p (b->frame_id))
6265 {
6266 annotate_field (6);
6267 uiout->text ("\tstop only in stack frame at ");
6268 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6269 the frame ID. */
6270 uiout->field_core_addr ("frame",
6271 b->gdbarch, b->frame_id.stack_addr);
6272 uiout->text ("\n");
6273 }
6274
6275 if (!part_of_multiple && b->cond_string)
6276 {
6277 annotate_field (7);
6278 if (is_tracepoint (b))
6279 uiout->text ("\ttrace only if ");
6280 else
6281 uiout->text ("\tstop only if ");
6282 uiout->field_string ("cond", b->cond_string);
6283
6284 /* Print whether the target is doing the breakpoint's condition
6285 evaluation. If GDB is doing the evaluation, don't print anything. */
6286 if (is_breakpoint (b)
6287 && breakpoint_condition_evaluation_mode ()
6288 == condition_evaluation_target)
6289 {
6290 uiout->text (" (");
6291 uiout->field_string ("evaluated-by",
6292 bp_condition_evaluator (b));
6293 uiout->text (" evals)");
6294 }
6295 uiout->text ("\n");
6296 }
6297
6298 if (!part_of_multiple && b->thread != -1)
6299 {
6300 /* FIXME should make an annotation for this. */
6301 uiout->text ("\tstop only in thread ");
6302 if (uiout->is_mi_like_p ())
6303 uiout->field_int ("thread", b->thread);
6304 else
6305 {
6306 struct thread_info *thr = find_thread_global_id (b->thread);
6307
6308 uiout->field_string ("thread", print_thread_id (thr));
6309 }
6310 uiout->text ("\n");
6311 }
6312
6313 if (!part_of_multiple)
6314 {
6315 if (b->hit_count)
6316 {
6317 /* FIXME should make an annotation for this. */
6318 if (is_catchpoint (b))
6319 uiout->text ("\tcatchpoint");
6320 else if (is_tracepoint (b))
6321 uiout->text ("\ttracepoint");
6322 else
6323 uiout->text ("\tbreakpoint");
6324 uiout->text (" already hit ");
6325 uiout->field_int ("times", b->hit_count);
6326 if (b->hit_count == 1)
6327 uiout->text (" time\n");
6328 else
6329 uiout->text (" times\n");
6330 }
6331 else
6332 {
6333 /* Output the count also if it is zero, but only if this is mi. */
6334 if (uiout->is_mi_like_p ())
6335 uiout->field_int ("times", b->hit_count);
6336 }
6337 }
6338
6339 if (!part_of_multiple && b->ignore_count)
6340 {
6341 annotate_field (8);
6342 uiout->text ("\tignore next ");
6343 uiout->field_int ("ignore", b->ignore_count);
6344 uiout->text (" hits\n");
6345 }
6346
6347 /* Note that an enable count of 1 corresponds to "enable once"
6348 behavior, which is reported by the combination of enablement and
6349 disposition, so we don't need to mention it here. */
6350 if (!part_of_multiple && b->enable_count > 1)
6351 {
6352 annotate_field (8);
6353 uiout->text ("\tdisable after ");
6354 /* Tweak the wording to clarify that ignore and enable counts
6355 are distinct, and have additive effect. */
6356 if (b->ignore_count)
6357 uiout->text ("additional ");
6358 else
6359 uiout->text ("next ");
6360 uiout->field_int ("enable", b->enable_count);
6361 uiout->text (" hits\n");
6362 }
6363
6364 if (!part_of_multiple && is_tracepoint (b))
6365 {
6366 struct tracepoint *tp = (struct tracepoint *) b;
6367
6368 if (tp->traceframe_usage)
6369 {
6370 uiout->text ("\ttrace buffer usage ");
6371 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6372 uiout->text (" bytes\n");
6373 }
6374 }
6375
6376 l = b->commands ? b->commands.get () : NULL;
6377 if (!part_of_multiple && l)
6378 {
6379 annotate_field (9);
6380 ui_out_emit_tuple tuple_emitter (uiout, "script");
6381 print_command_lines (uiout, l, 4);
6382 }
6383
6384 if (is_tracepoint (b))
6385 {
6386 struct tracepoint *t = (struct tracepoint *) b;
6387
6388 if (!part_of_multiple && t->pass_count)
6389 {
6390 annotate_field (10);
6391 uiout->text ("\tpass count ");
6392 uiout->field_int ("pass", t->pass_count);
6393 uiout->text (" \n");
6394 }
6395
6396 /* Don't display it when tracepoint or tracepoint location is
6397 pending. */
6398 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6399 {
6400 annotate_field (11);
6401
6402 if (uiout->is_mi_like_p ())
6403 uiout->field_string ("installed",
6404 loc->inserted ? "y" : "n");
6405 else
6406 {
6407 if (loc->inserted)
6408 uiout->text ("\t");
6409 else
6410 uiout->text ("\tnot ");
6411 uiout->text ("installed on target\n");
6412 }
6413 }
6414 }
6415
6416 if (uiout->is_mi_like_p () && !part_of_multiple)
6417 {
6418 if (is_watchpoint (b))
6419 {
6420 struct watchpoint *w = (struct watchpoint *) b;
6421
6422 uiout->field_string ("original-location", w->exp_string);
6423 }
6424 else if (b->location != NULL
6425 && event_location_to_string (b->location.get ()) != NULL)
6426 uiout->field_string ("original-location",
6427 event_location_to_string (b->location.get ()));
6428 }
6429 }
6430
6431 static void
6432 print_one_breakpoint (struct breakpoint *b,
6433 struct bp_location **last_loc,
6434 int allflag)
6435 {
6436 struct ui_out *uiout = current_uiout;
6437
6438 {
6439 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6440
6441 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6442 }
6443
6444 /* If this breakpoint has custom print function,
6445 it's already printed. Otherwise, print individual
6446 locations, if any. */
6447 if (b->ops == NULL || b->ops->print_one == NULL)
6448 {
6449 /* If breakpoint has a single location that is disabled, we
6450 print it as if it had several locations, since otherwise it's
6451 hard to represent "breakpoint enabled, location disabled"
6452 situation.
6453
6454 Note that while hardware watchpoints have several locations
6455 internally, that's not a property exposed to user. */
6456 if (b->loc
6457 && !is_hardware_watchpoint (b)
6458 && (b->loc->next || !b->loc->enabled))
6459 {
6460 struct bp_location *loc;
6461 int n = 1;
6462
6463 for (loc = b->loc; loc; loc = loc->next, ++n)
6464 {
6465 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6466 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6467 }
6468 }
6469 }
6470 }
6471
6472 static int
6473 breakpoint_address_bits (struct breakpoint *b)
6474 {
6475 int print_address_bits = 0;
6476 struct bp_location *loc;
6477
6478 /* Software watchpoints that aren't watching memory don't have an
6479 address to print. */
6480 if (is_no_memory_software_watchpoint (b))
6481 return 0;
6482
6483 for (loc = b->loc; loc; loc = loc->next)
6484 {
6485 int addr_bit;
6486
6487 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6488 if (addr_bit > print_address_bits)
6489 print_address_bits = addr_bit;
6490 }
6491
6492 return print_address_bits;
6493 }
6494
6495 /* See breakpoint.h. */
6496
6497 void
6498 print_breakpoint (breakpoint *b)
6499 {
6500 struct bp_location *dummy_loc = NULL;
6501 print_one_breakpoint (b, &dummy_loc, 0);
6502 }
6503
6504 /* Return true if this breakpoint was set by the user, false if it is
6505 internal or momentary. */
6506
6507 int
6508 user_breakpoint_p (struct breakpoint *b)
6509 {
6510 return b->number > 0;
6511 }
6512
6513 /* See breakpoint.h. */
6514
6515 int
6516 pending_breakpoint_p (struct breakpoint *b)
6517 {
6518 return b->loc == NULL;
6519 }
6520
6521 /* Print information on user settable breakpoint (watchpoint, etc)
6522 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6523 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6524 FILTER is non-NULL, call it on each breakpoint and only include the
6525 ones for which it returns non-zero. Return the total number of
6526 breakpoints listed. */
6527
6528 static int
6529 breakpoint_1 (const char *args, int allflag,
6530 int (*filter) (const struct breakpoint *))
6531 {
6532 struct breakpoint *b;
6533 struct bp_location *last_loc = NULL;
6534 int nr_printable_breakpoints;
6535 struct value_print_options opts;
6536 int print_address_bits = 0;
6537 int print_type_col_width = 14;
6538 struct ui_out *uiout = current_uiout;
6539
6540 get_user_print_options (&opts);
6541
6542 /* Compute the number of rows in the table, as well as the size
6543 required for address fields. */
6544 nr_printable_breakpoints = 0;
6545 ALL_BREAKPOINTS (b)
6546 {
6547 /* If we have a filter, only list the breakpoints it accepts. */
6548 if (filter && !filter (b))
6549 continue;
6550
6551 /* If we have an "args" string, it is a list of breakpoints to
6552 accept. Skip the others. */
6553 if (args != NULL && *args != '\0')
6554 {
6555 if (allflag && parse_and_eval_long (args) != b->number)
6556 continue;
6557 if (!allflag && !number_is_in_list (args, b->number))
6558 continue;
6559 }
6560
6561 if (allflag || user_breakpoint_p (b))
6562 {
6563 int addr_bit, type_len;
6564
6565 addr_bit = breakpoint_address_bits (b);
6566 if (addr_bit > print_address_bits)
6567 print_address_bits = addr_bit;
6568
6569 type_len = strlen (bptype_string (b->type));
6570 if (type_len > print_type_col_width)
6571 print_type_col_width = type_len;
6572
6573 nr_printable_breakpoints++;
6574 }
6575 }
6576
6577 {
6578 ui_out_emit_table table_emitter (uiout,
6579 opts.addressprint ? 6 : 5,
6580 nr_printable_breakpoints,
6581 "BreakpointTable");
6582
6583 if (nr_printable_breakpoints > 0)
6584 annotate_breakpoints_headers ();
6585 if (nr_printable_breakpoints > 0)
6586 annotate_field (0);
6587 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6588 if (nr_printable_breakpoints > 0)
6589 annotate_field (1);
6590 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6591 if (nr_printable_breakpoints > 0)
6592 annotate_field (2);
6593 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6594 if (nr_printable_breakpoints > 0)
6595 annotate_field (3);
6596 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6597 if (opts.addressprint)
6598 {
6599 if (nr_printable_breakpoints > 0)
6600 annotate_field (4);
6601 if (print_address_bits <= 32)
6602 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6603 else
6604 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6605 }
6606 if (nr_printable_breakpoints > 0)
6607 annotate_field (5);
6608 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6609 uiout->table_body ();
6610 if (nr_printable_breakpoints > 0)
6611 annotate_breakpoints_table ();
6612
6613 ALL_BREAKPOINTS (b)
6614 {
6615 QUIT;
6616 /* If we have a filter, only list the breakpoints it accepts. */
6617 if (filter && !filter (b))
6618 continue;
6619
6620 /* If we have an "args" string, it is a list of breakpoints to
6621 accept. Skip the others. */
6622
6623 if (args != NULL && *args != '\0')
6624 {
6625 if (allflag) /* maintenance info breakpoint */
6626 {
6627 if (parse_and_eval_long (args) != b->number)
6628 continue;
6629 }
6630 else /* all others */
6631 {
6632 if (!number_is_in_list (args, b->number))
6633 continue;
6634 }
6635 }
6636 /* We only print out user settable breakpoints unless the
6637 allflag is set. */
6638 if (allflag || user_breakpoint_p (b))
6639 print_one_breakpoint (b, &last_loc, allflag);
6640 }
6641 }
6642
6643 if (nr_printable_breakpoints == 0)
6644 {
6645 /* If there's a filter, let the caller decide how to report
6646 empty list. */
6647 if (!filter)
6648 {
6649 if (args == NULL || *args == '\0')
6650 uiout->message ("No breakpoints or watchpoints.\n");
6651 else
6652 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6653 args);
6654 }
6655 }
6656 else
6657 {
6658 if (last_loc && !server_command)
6659 set_next_address (last_loc->gdbarch, last_loc->address);
6660 }
6661
6662 /* FIXME? Should this be moved up so that it is only called when
6663 there have been breakpoints? */
6664 annotate_breakpoints_table_end ();
6665
6666 return nr_printable_breakpoints;
6667 }
6668
6669 /* Display the value of default-collect in a way that is generally
6670 compatible with the breakpoint list. */
6671
6672 static void
6673 default_collect_info (void)
6674 {
6675 struct ui_out *uiout = current_uiout;
6676
6677 /* If it has no value (which is frequently the case), say nothing; a
6678 message like "No default-collect." gets in user's face when it's
6679 not wanted. */
6680 if (!*default_collect)
6681 return;
6682
6683 /* The following phrase lines up nicely with per-tracepoint collect
6684 actions. */
6685 uiout->text ("default collect ");
6686 uiout->field_string ("default-collect", default_collect);
6687 uiout->text (" \n");
6688 }
6689
6690 static void
6691 info_breakpoints_command (const char *args, int from_tty)
6692 {
6693 breakpoint_1 (args, 0, NULL);
6694
6695 default_collect_info ();
6696 }
6697
6698 static void
6699 info_watchpoints_command (const char *args, int from_tty)
6700 {
6701 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6702 struct ui_out *uiout = current_uiout;
6703
6704 if (num_printed == 0)
6705 {
6706 if (args == NULL || *args == '\0')
6707 uiout->message ("No watchpoints.\n");
6708 else
6709 uiout->message ("No watchpoint matching '%s'.\n", args);
6710 }
6711 }
6712
6713 static void
6714 maintenance_info_breakpoints (const char *args, int from_tty)
6715 {
6716 breakpoint_1 (args, 1, NULL);
6717
6718 default_collect_info ();
6719 }
6720
6721 static int
6722 breakpoint_has_pc (struct breakpoint *b,
6723 struct program_space *pspace,
6724 CORE_ADDR pc, struct obj_section *section)
6725 {
6726 struct bp_location *bl = b->loc;
6727
6728 for (; bl; bl = bl->next)
6729 {
6730 if (bl->pspace == pspace
6731 && bl->address == pc
6732 && (!overlay_debugging || bl->section == section))
6733 return 1;
6734 }
6735 return 0;
6736 }
6737
6738 /* Print a message describing any user-breakpoints set at PC. This
6739 concerns with logical breakpoints, so we match program spaces, not
6740 address spaces. */
6741
6742 static void
6743 describe_other_breakpoints (struct gdbarch *gdbarch,
6744 struct program_space *pspace, CORE_ADDR pc,
6745 struct obj_section *section, int thread)
6746 {
6747 int others = 0;
6748 struct breakpoint *b;
6749
6750 ALL_BREAKPOINTS (b)
6751 others += (user_breakpoint_p (b)
6752 && breakpoint_has_pc (b, pspace, pc, section));
6753 if (others > 0)
6754 {
6755 if (others == 1)
6756 printf_filtered (_("Note: breakpoint "));
6757 else /* if (others == ???) */
6758 printf_filtered (_("Note: breakpoints "));
6759 ALL_BREAKPOINTS (b)
6760 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6761 {
6762 others--;
6763 printf_filtered ("%d", b->number);
6764 if (b->thread == -1 && thread != -1)
6765 printf_filtered (" (all threads)");
6766 else if (b->thread != -1)
6767 printf_filtered (" (thread %d)", b->thread);
6768 printf_filtered ("%s%s ",
6769 ((b->enable_state == bp_disabled
6770 || b->enable_state == bp_call_disabled)
6771 ? " (disabled)"
6772 : ""),
6773 (others > 1) ? ","
6774 : ((others == 1) ? " and" : ""));
6775 }
6776 printf_filtered (_("also set at pc "));
6777 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6778 printf_filtered (".\n");
6779 }
6780 }
6781 \f
6782
6783 /* Return true iff it is meaningful to use the address member of
6784 BPT locations. For some breakpoint types, the locations' address members
6785 are irrelevant and it makes no sense to attempt to compare them to other
6786 addresses (or use them for any other purpose either).
6787
6788 More specifically, each of the following breakpoint types will
6789 always have a zero valued location address and we don't want to mark
6790 breakpoints of any of these types to be a duplicate of an actual
6791 breakpoint location at address zero:
6792
6793 bp_watchpoint
6794 bp_catchpoint
6795
6796 */
6797
6798 static int
6799 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6800 {
6801 enum bptype type = bpt->type;
6802
6803 return (type != bp_watchpoint && type != bp_catchpoint);
6804 }
6805
6806 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6807 true if LOC1 and LOC2 represent the same watchpoint location. */
6808
6809 static int
6810 watchpoint_locations_match (struct bp_location *loc1,
6811 struct bp_location *loc2)
6812 {
6813 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6814 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6815
6816 /* Both of them must exist. */
6817 gdb_assert (w1 != NULL);
6818 gdb_assert (w2 != NULL);
6819
6820 /* If the target can evaluate the condition expression in hardware,
6821 then we we need to insert both watchpoints even if they are at
6822 the same place. Otherwise the watchpoint will only trigger when
6823 the condition of whichever watchpoint was inserted evaluates to
6824 true, not giving a chance for GDB to check the condition of the
6825 other watchpoint. */
6826 if ((w1->cond_exp
6827 && target_can_accel_watchpoint_condition (loc1->address,
6828 loc1->length,
6829 loc1->watchpoint_type,
6830 w1->cond_exp.get ()))
6831 || (w2->cond_exp
6832 && target_can_accel_watchpoint_condition (loc2->address,
6833 loc2->length,
6834 loc2->watchpoint_type,
6835 w2->cond_exp.get ())))
6836 return 0;
6837
6838 /* Note that this checks the owner's type, not the location's. In
6839 case the target does not support read watchpoints, but does
6840 support access watchpoints, we'll have bp_read_watchpoint
6841 watchpoints with hw_access locations. Those should be considered
6842 duplicates of hw_read locations. The hw_read locations will
6843 become hw_access locations later. */
6844 return (loc1->owner->type == loc2->owner->type
6845 && loc1->pspace->aspace == loc2->pspace->aspace
6846 && loc1->address == loc2->address
6847 && loc1->length == loc2->length);
6848 }
6849
6850 /* See breakpoint.h. */
6851
6852 int
6853 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6854 const address_space *aspace2, CORE_ADDR addr2)
6855 {
6856 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6857 || aspace1 == aspace2)
6858 && addr1 == addr2);
6859 }
6860
6861 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6862 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6863 matches ASPACE2. On targets that have global breakpoints, the address
6864 space doesn't really matter. */
6865
6866 static int
6867 breakpoint_address_match_range (const address_space *aspace1,
6868 CORE_ADDR addr1,
6869 int len1, const address_space *aspace2,
6870 CORE_ADDR addr2)
6871 {
6872 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6873 || aspace1 == aspace2)
6874 && addr2 >= addr1 && addr2 < addr1 + len1);
6875 }
6876
6877 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6878 a ranged breakpoint. In most targets, a match happens only if ASPACE
6879 matches the breakpoint's address space. On targets that have global
6880 breakpoints, the address space doesn't really matter. */
6881
6882 static int
6883 breakpoint_location_address_match (struct bp_location *bl,
6884 const address_space *aspace,
6885 CORE_ADDR addr)
6886 {
6887 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6888 aspace, addr)
6889 || (bl->length
6890 && breakpoint_address_match_range (bl->pspace->aspace,
6891 bl->address, bl->length,
6892 aspace, addr)));
6893 }
6894
6895 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6896 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6897 match happens only if ASPACE matches the breakpoint's address
6898 space. On targets that have global breakpoints, the address space
6899 doesn't really matter. */
6900
6901 static int
6902 breakpoint_location_address_range_overlap (struct bp_location *bl,
6903 const address_space *aspace,
6904 CORE_ADDR addr, int len)
6905 {
6906 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6907 || bl->pspace->aspace == aspace)
6908 {
6909 int bl_len = bl->length != 0 ? bl->length : 1;
6910
6911 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6912 return 1;
6913 }
6914 return 0;
6915 }
6916
6917 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6918 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6919 true, otherwise returns false. */
6920
6921 static int
6922 tracepoint_locations_match (struct bp_location *loc1,
6923 struct bp_location *loc2)
6924 {
6925 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6926 /* Since tracepoint locations are never duplicated with others', tracepoint
6927 locations at the same address of different tracepoints are regarded as
6928 different locations. */
6929 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6930 else
6931 return 0;
6932 }
6933
6934 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6935 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6936 represent the same location. */
6937
6938 static int
6939 breakpoint_locations_match (struct bp_location *loc1,
6940 struct bp_location *loc2)
6941 {
6942 int hw_point1, hw_point2;
6943
6944 /* Both of them must not be in moribund_locations. */
6945 gdb_assert (loc1->owner != NULL);
6946 gdb_assert (loc2->owner != NULL);
6947
6948 hw_point1 = is_hardware_watchpoint (loc1->owner);
6949 hw_point2 = is_hardware_watchpoint (loc2->owner);
6950
6951 if (hw_point1 != hw_point2)
6952 return 0;
6953 else if (hw_point1)
6954 return watchpoint_locations_match (loc1, loc2);
6955 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6956 return tracepoint_locations_match (loc1, loc2);
6957 else
6958 /* We compare bp_location.length in order to cover ranged breakpoints. */
6959 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6960 loc2->pspace->aspace, loc2->address)
6961 && loc1->length == loc2->length);
6962 }
6963
6964 static void
6965 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6966 int bnum, int have_bnum)
6967 {
6968 /* The longest string possibly returned by hex_string_custom
6969 is 50 chars. These must be at least that big for safety. */
6970 char astr1[64];
6971 char astr2[64];
6972
6973 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6974 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6975 if (have_bnum)
6976 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6977 bnum, astr1, astr2);
6978 else
6979 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6980 }
6981
6982 /* Adjust a breakpoint's address to account for architectural
6983 constraints on breakpoint placement. Return the adjusted address.
6984 Note: Very few targets require this kind of adjustment. For most
6985 targets, this function is simply the identity function. */
6986
6987 static CORE_ADDR
6988 adjust_breakpoint_address (struct gdbarch *gdbarch,
6989 CORE_ADDR bpaddr, enum bptype bptype)
6990 {
6991 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
6992 {
6993 /* Very few targets need any kind of breakpoint adjustment. */
6994 return bpaddr;
6995 }
6996 else if (bptype == bp_watchpoint
6997 || bptype == bp_hardware_watchpoint
6998 || bptype == bp_read_watchpoint
6999 || bptype == bp_access_watchpoint
7000 || bptype == bp_catchpoint)
7001 {
7002 /* Watchpoints and the various bp_catch_* eventpoints should not
7003 have their addresses modified. */
7004 return bpaddr;
7005 }
7006 else if (bptype == bp_single_step)
7007 {
7008 /* Single-step breakpoints should not have their addresses
7009 modified. If there's any architectural constrain that
7010 applies to this address, then it should have already been
7011 taken into account when the breakpoint was created in the
7012 first place. If we didn't do this, stepping through e.g.,
7013 Thumb-2 IT blocks would break. */
7014 return bpaddr;
7015 }
7016 else
7017 {
7018 CORE_ADDR adjusted_bpaddr;
7019
7020 /* Some targets have architectural constraints on the placement
7021 of breakpoint instructions. Obtain the adjusted address. */
7022 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7023
7024 /* An adjusted breakpoint address can significantly alter
7025 a user's expectations. Print a warning if an adjustment
7026 is required. */
7027 if (adjusted_bpaddr != bpaddr)
7028 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7029
7030 return adjusted_bpaddr;
7031 }
7032 }
7033
7034 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
7035 {
7036 bp_location *loc = this;
7037
7038 gdb_assert (ops != NULL);
7039
7040 loc->ops = ops;
7041 loc->owner = owner;
7042 loc->cond_bytecode = NULL;
7043 loc->shlib_disabled = 0;
7044 loc->enabled = 1;
7045
7046 switch (owner->type)
7047 {
7048 case bp_breakpoint:
7049 case bp_single_step:
7050 case bp_until:
7051 case bp_finish:
7052 case bp_longjmp:
7053 case bp_longjmp_resume:
7054 case bp_longjmp_call_dummy:
7055 case bp_exception:
7056 case bp_exception_resume:
7057 case bp_step_resume:
7058 case bp_hp_step_resume:
7059 case bp_watchpoint_scope:
7060 case bp_call_dummy:
7061 case bp_std_terminate:
7062 case bp_shlib_event:
7063 case bp_thread_event:
7064 case bp_overlay_event:
7065 case bp_jit_event:
7066 case bp_longjmp_master:
7067 case bp_std_terminate_master:
7068 case bp_exception_master:
7069 case bp_gnu_ifunc_resolver:
7070 case bp_gnu_ifunc_resolver_return:
7071 case bp_dprintf:
7072 loc->loc_type = bp_loc_software_breakpoint;
7073 mark_breakpoint_location_modified (loc);
7074 break;
7075 case bp_hardware_breakpoint:
7076 loc->loc_type = bp_loc_hardware_breakpoint;
7077 mark_breakpoint_location_modified (loc);
7078 break;
7079 case bp_hardware_watchpoint:
7080 case bp_read_watchpoint:
7081 case bp_access_watchpoint:
7082 loc->loc_type = bp_loc_hardware_watchpoint;
7083 break;
7084 case bp_watchpoint:
7085 case bp_catchpoint:
7086 case bp_tracepoint:
7087 case bp_fast_tracepoint:
7088 case bp_static_tracepoint:
7089 loc->loc_type = bp_loc_other;
7090 break;
7091 default:
7092 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7093 }
7094
7095 loc->refc = 1;
7096 }
7097
7098 /* Allocate a struct bp_location. */
7099
7100 static struct bp_location *
7101 allocate_bp_location (struct breakpoint *bpt)
7102 {
7103 return bpt->ops->allocate_location (bpt);
7104 }
7105
7106 static void
7107 free_bp_location (struct bp_location *loc)
7108 {
7109 loc->ops->dtor (loc);
7110 delete loc;
7111 }
7112
7113 /* Increment reference count. */
7114
7115 static void
7116 incref_bp_location (struct bp_location *bl)
7117 {
7118 ++bl->refc;
7119 }
7120
7121 /* Decrement reference count. If the reference count reaches 0,
7122 destroy the bp_location. Sets *BLP to NULL. */
7123
7124 static void
7125 decref_bp_location (struct bp_location **blp)
7126 {
7127 gdb_assert ((*blp)->refc > 0);
7128
7129 if (--(*blp)->refc == 0)
7130 free_bp_location (*blp);
7131 *blp = NULL;
7132 }
7133
7134 /* Add breakpoint B at the end of the global breakpoint chain. */
7135
7136 static breakpoint *
7137 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7138 {
7139 struct breakpoint *b1;
7140 struct breakpoint *result = b.get ();
7141
7142 /* Add this breakpoint to the end of the chain so that a list of
7143 breakpoints will come out in order of increasing numbers. */
7144
7145 b1 = breakpoint_chain;
7146 if (b1 == 0)
7147 breakpoint_chain = b.release ();
7148 else
7149 {
7150 while (b1->next)
7151 b1 = b1->next;
7152 b1->next = b.release ();
7153 }
7154
7155 return result;
7156 }
7157
7158 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7159
7160 static void
7161 init_raw_breakpoint_without_location (struct breakpoint *b,
7162 struct gdbarch *gdbarch,
7163 enum bptype bptype,
7164 const struct breakpoint_ops *ops)
7165 {
7166 gdb_assert (ops != NULL);
7167
7168 b->ops = ops;
7169 b->type = bptype;
7170 b->gdbarch = gdbarch;
7171 b->language = current_language->la_language;
7172 b->input_radix = input_radix;
7173 b->related_breakpoint = b;
7174 }
7175
7176 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7177 that has type BPTYPE and has no locations as yet. */
7178
7179 static struct breakpoint *
7180 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7181 enum bptype bptype,
7182 const struct breakpoint_ops *ops)
7183 {
7184 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7185
7186 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7187 return add_to_breakpoint_chain (std::move (b));
7188 }
7189
7190 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7191 resolutions should be made as the user specified the location explicitly
7192 enough. */
7193
7194 static void
7195 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7196 {
7197 gdb_assert (loc->owner != NULL);
7198
7199 if (loc->owner->type == bp_breakpoint
7200 || loc->owner->type == bp_hardware_breakpoint
7201 || is_tracepoint (loc->owner))
7202 {
7203 int is_gnu_ifunc;
7204 const char *function_name;
7205 CORE_ADDR func_addr;
7206
7207 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7208 &func_addr, NULL, &is_gnu_ifunc);
7209
7210 if (is_gnu_ifunc && !explicit_loc)
7211 {
7212 struct breakpoint *b = loc->owner;
7213
7214 gdb_assert (loc->pspace == current_program_space);
7215 if (gnu_ifunc_resolve_name (function_name,
7216 &loc->requested_address))
7217 {
7218 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7219 loc->address = adjust_breakpoint_address (loc->gdbarch,
7220 loc->requested_address,
7221 b->type);
7222 }
7223 else if (b->type == bp_breakpoint && b->loc == loc
7224 && loc->next == NULL && b->related_breakpoint == b)
7225 {
7226 /* Create only the whole new breakpoint of this type but do not
7227 mess more complicated breakpoints with multiple locations. */
7228 b->type = bp_gnu_ifunc_resolver;
7229 /* Remember the resolver's address for use by the return
7230 breakpoint. */
7231 loc->related_address = func_addr;
7232 }
7233 }
7234
7235 if (function_name)
7236 loc->function_name = xstrdup (function_name);
7237 }
7238 }
7239
7240 /* Attempt to determine architecture of location identified by SAL. */
7241 struct gdbarch *
7242 get_sal_arch (struct symtab_and_line sal)
7243 {
7244 if (sal.section)
7245 return get_objfile_arch (sal.section->objfile);
7246 if (sal.symtab)
7247 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7248
7249 return NULL;
7250 }
7251
7252 /* Low level routine for partially initializing a breakpoint of type
7253 BPTYPE. The newly created breakpoint's address, section, source
7254 file name, and line number are provided by SAL.
7255
7256 It is expected that the caller will complete the initialization of
7257 the newly created breakpoint struct as well as output any status
7258 information regarding the creation of a new breakpoint. */
7259
7260 static void
7261 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7262 struct symtab_and_line sal, enum bptype bptype,
7263 const struct breakpoint_ops *ops)
7264 {
7265 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7266
7267 add_location_to_breakpoint (b, &sal);
7268
7269 if (bptype != bp_catchpoint)
7270 gdb_assert (sal.pspace != NULL);
7271
7272 /* Store the program space that was used to set the breakpoint,
7273 except for ordinary breakpoints, which are independent of the
7274 program space. */
7275 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7276 b->pspace = sal.pspace;
7277 }
7278
7279 /* set_raw_breakpoint is a low level routine for allocating and
7280 partially initializing a breakpoint of type BPTYPE. The newly
7281 created breakpoint's address, section, source file name, and line
7282 number are provided by SAL. The newly created and partially
7283 initialized breakpoint is added to the breakpoint chain and
7284 is also returned as the value of this function.
7285
7286 It is expected that the caller will complete the initialization of
7287 the newly created breakpoint struct as well as output any status
7288 information regarding the creation of a new breakpoint. In
7289 particular, set_raw_breakpoint does NOT set the breakpoint
7290 number! Care should be taken to not allow an error to occur
7291 prior to completing the initialization of the breakpoint. If this
7292 should happen, a bogus breakpoint will be left on the chain. */
7293
7294 struct breakpoint *
7295 set_raw_breakpoint (struct gdbarch *gdbarch,
7296 struct symtab_and_line sal, enum bptype bptype,
7297 const struct breakpoint_ops *ops)
7298 {
7299 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7300
7301 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7302 return add_to_breakpoint_chain (std::move (b));
7303 }
7304
7305 /* Call this routine when stepping and nexting to enable a breakpoint
7306 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7307 initiated the operation. */
7308
7309 void
7310 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7311 {
7312 struct breakpoint *b, *b_tmp;
7313 int thread = tp->global_num;
7314
7315 /* To avoid having to rescan all objfile symbols at every step,
7316 we maintain a list of continually-inserted but always disabled
7317 longjmp "master" breakpoints. Here, we simply create momentary
7318 clones of those and enable them for the requested thread. */
7319 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7320 if (b->pspace == current_program_space
7321 && (b->type == bp_longjmp_master
7322 || b->type == bp_exception_master))
7323 {
7324 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7325 struct breakpoint *clone;
7326
7327 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7328 after their removal. */
7329 clone = momentary_breakpoint_from_master (b, type,
7330 &momentary_breakpoint_ops, 1);
7331 clone->thread = thread;
7332 }
7333
7334 tp->initiating_frame = frame;
7335 }
7336
7337 /* Delete all longjmp breakpoints from THREAD. */
7338 void
7339 delete_longjmp_breakpoint (int thread)
7340 {
7341 struct breakpoint *b, *b_tmp;
7342
7343 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7344 if (b->type == bp_longjmp || b->type == bp_exception)
7345 {
7346 if (b->thread == thread)
7347 delete_breakpoint (b);
7348 }
7349 }
7350
7351 void
7352 delete_longjmp_breakpoint_at_next_stop (int thread)
7353 {
7354 struct breakpoint *b, *b_tmp;
7355
7356 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7357 if (b->type == bp_longjmp || b->type == bp_exception)
7358 {
7359 if (b->thread == thread)
7360 b->disposition = disp_del_at_next_stop;
7361 }
7362 }
7363
7364 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7365 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7366 pointer to any of them. Return NULL if this system cannot place longjmp
7367 breakpoints. */
7368
7369 struct breakpoint *
7370 set_longjmp_breakpoint_for_call_dummy (void)
7371 {
7372 struct breakpoint *b, *retval = NULL;
7373
7374 ALL_BREAKPOINTS (b)
7375 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7376 {
7377 struct breakpoint *new_b;
7378
7379 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7380 &momentary_breakpoint_ops,
7381 1);
7382 new_b->thread = ptid_to_global_thread_id (inferior_ptid);
7383
7384 /* Link NEW_B into the chain of RETVAL breakpoints. */
7385
7386 gdb_assert (new_b->related_breakpoint == new_b);
7387 if (retval == NULL)
7388 retval = new_b;
7389 new_b->related_breakpoint = retval;
7390 while (retval->related_breakpoint != new_b->related_breakpoint)
7391 retval = retval->related_breakpoint;
7392 retval->related_breakpoint = new_b;
7393 }
7394
7395 return retval;
7396 }
7397
7398 /* Verify all existing dummy frames and their associated breakpoints for
7399 TP. Remove those which can no longer be found in the current frame
7400 stack.
7401
7402 You should call this function only at places where it is safe to currently
7403 unwind the whole stack. Failed stack unwind would discard live dummy
7404 frames. */
7405
7406 void
7407 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7408 {
7409 struct breakpoint *b, *b_tmp;
7410
7411 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7412 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7413 {
7414 struct breakpoint *dummy_b = b->related_breakpoint;
7415
7416 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7417 dummy_b = dummy_b->related_breakpoint;
7418 if (dummy_b->type != bp_call_dummy
7419 || frame_find_by_id (dummy_b->frame_id) != NULL)
7420 continue;
7421
7422 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7423
7424 while (b->related_breakpoint != b)
7425 {
7426 if (b_tmp == b->related_breakpoint)
7427 b_tmp = b->related_breakpoint->next;
7428 delete_breakpoint (b->related_breakpoint);
7429 }
7430 delete_breakpoint (b);
7431 }
7432 }
7433
7434 void
7435 enable_overlay_breakpoints (void)
7436 {
7437 struct breakpoint *b;
7438
7439 ALL_BREAKPOINTS (b)
7440 if (b->type == bp_overlay_event)
7441 {
7442 b->enable_state = bp_enabled;
7443 update_global_location_list (UGLL_MAY_INSERT);
7444 overlay_events_enabled = 1;
7445 }
7446 }
7447
7448 void
7449 disable_overlay_breakpoints (void)
7450 {
7451 struct breakpoint *b;
7452
7453 ALL_BREAKPOINTS (b)
7454 if (b->type == bp_overlay_event)
7455 {
7456 b->enable_state = bp_disabled;
7457 update_global_location_list (UGLL_DONT_INSERT);
7458 overlay_events_enabled = 0;
7459 }
7460 }
7461
7462 /* Set an active std::terminate breakpoint for each std::terminate
7463 master breakpoint. */
7464 void
7465 set_std_terminate_breakpoint (void)
7466 {
7467 struct breakpoint *b, *b_tmp;
7468
7469 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7470 if (b->pspace == current_program_space
7471 && b->type == bp_std_terminate_master)
7472 {
7473 momentary_breakpoint_from_master (b, bp_std_terminate,
7474 &momentary_breakpoint_ops, 1);
7475 }
7476 }
7477
7478 /* Delete all the std::terminate breakpoints. */
7479 void
7480 delete_std_terminate_breakpoint (void)
7481 {
7482 struct breakpoint *b, *b_tmp;
7483
7484 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7485 if (b->type == bp_std_terminate)
7486 delete_breakpoint (b);
7487 }
7488
7489 struct breakpoint *
7490 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7491 {
7492 struct breakpoint *b;
7493
7494 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7495 &internal_breakpoint_ops);
7496
7497 b->enable_state = bp_enabled;
7498 /* location has to be used or breakpoint_re_set will delete me. */
7499 b->location = new_address_location (b->loc->address, NULL, 0);
7500
7501 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7502
7503 return b;
7504 }
7505
7506 struct lang_and_radix
7507 {
7508 enum language lang;
7509 int radix;
7510 };
7511
7512 /* Create a breakpoint for JIT code registration and unregistration. */
7513
7514 struct breakpoint *
7515 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7516 {
7517 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7518 &internal_breakpoint_ops);
7519 }
7520
7521 /* Remove JIT code registration and unregistration breakpoint(s). */
7522
7523 void
7524 remove_jit_event_breakpoints (void)
7525 {
7526 struct breakpoint *b, *b_tmp;
7527
7528 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7529 if (b->type == bp_jit_event
7530 && b->loc->pspace == current_program_space)
7531 delete_breakpoint (b);
7532 }
7533
7534 void
7535 remove_solib_event_breakpoints (void)
7536 {
7537 struct breakpoint *b, *b_tmp;
7538
7539 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7540 if (b->type == bp_shlib_event
7541 && b->loc->pspace == current_program_space)
7542 delete_breakpoint (b);
7543 }
7544
7545 /* See breakpoint.h. */
7546
7547 void
7548 remove_solib_event_breakpoints_at_next_stop (void)
7549 {
7550 struct breakpoint *b, *b_tmp;
7551
7552 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7553 if (b->type == bp_shlib_event
7554 && b->loc->pspace == current_program_space)
7555 b->disposition = disp_del_at_next_stop;
7556 }
7557
7558 /* Helper for create_solib_event_breakpoint /
7559 create_and_insert_solib_event_breakpoint. Allows specifying which
7560 INSERT_MODE to pass through to update_global_location_list. */
7561
7562 static struct breakpoint *
7563 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7564 enum ugll_insert_mode insert_mode)
7565 {
7566 struct breakpoint *b;
7567
7568 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7569 &internal_breakpoint_ops);
7570 update_global_location_list_nothrow (insert_mode);
7571 return b;
7572 }
7573
7574 struct breakpoint *
7575 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7576 {
7577 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7578 }
7579
7580 /* See breakpoint.h. */
7581
7582 struct breakpoint *
7583 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7584 {
7585 struct breakpoint *b;
7586
7587 /* Explicitly tell update_global_location_list to insert
7588 locations. */
7589 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7590 if (!b->loc->inserted)
7591 {
7592 delete_breakpoint (b);
7593 return NULL;
7594 }
7595 return b;
7596 }
7597
7598 /* Disable any breakpoints that are on code in shared libraries. Only
7599 apply to enabled breakpoints, disabled ones can just stay disabled. */
7600
7601 void
7602 disable_breakpoints_in_shlibs (void)
7603 {
7604 struct bp_location *loc, **locp_tmp;
7605
7606 ALL_BP_LOCATIONS (loc, locp_tmp)
7607 {
7608 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7609 struct breakpoint *b = loc->owner;
7610
7611 /* We apply the check to all breakpoints, including disabled for
7612 those with loc->duplicate set. This is so that when breakpoint
7613 becomes enabled, or the duplicate is removed, gdb will try to
7614 insert all breakpoints. If we don't set shlib_disabled here,
7615 we'll try to insert those breakpoints and fail. */
7616 if (((b->type == bp_breakpoint)
7617 || (b->type == bp_jit_event)
7618 || (b->type == bp_hardware_breakpoint)
7619 || (is_tracepoint (b)))
7620 && loc->pspace == current_program_space
7621 && !loc->shlib_disabled
7622 && solib_name_from_address (loc->pspace, loc->address)
7623 )
7624 {
7625 loc->shlib_disabled = 1;
7626 }
7627 }
7628 }
7629
7630 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7631 notification of unloaded_shlib. Only apply to enabled breakpoints,
7632 disabled ones can just stay disabled. */
7633
7634 static void
7635 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7636 {
7637 struct bp_location *loc, **locp_tmp;
7638 int disabled_shlib_breaks = 0;
7639
7640 ALL_BP_LOCATIONS (loc, locp_tmp)
7641 {
7642 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7643 struct breakpoint *b = loc->owner;
7644
7645 if (solib->pspace == loc->pspace
7646 && !loc->shlib_disabled
7647 && (((b->type == bp_breakpoint
7648 || b->type == bp_jit_event
7649 || b->type == bp_hardware_breakpoint)
7650 && (loc->loc_type == bp_loc_hardware_breakpoint
7651 || loc->loc_type == bp_loc_software_breakpoint))
7652 || is_tracepoint (b))
7653 && solib_contains_address_p (solib, loc->address))
7654 {
7655 loc->shlib_disabled = 1;
7656 /* At this point, we cannot rely on remove_breakpoint
7657 succeeding so we must mark the breakpoint as not inserted
7658 to prevent future errors occurring in remove_breakpoints. */
7659 loc->inserted = 0;
7660
7661 /* This may cause duplicate notifications for the same breakpoint. */
7662 observer_notify_breakpoint_modified (b);
7663
7664 if (!disabled_shlib_breaks)
7665 {
7666 target_terminal::ours_for_output ();
7667 warning (_("Temporarily disabling breakpoints "
7668 "for unloaded shared library \"%s\""),
7669 solib->so_name);
7670 }
7671 disabled_shlib_breaks = 1;
7672 }
7673 }
7674 }
7675
7676 /* Disable any breakpoints and tracepoints in OBJFILE upon
7677 notification of free_objfile. Only apply to enabled breakpoints,
7678 disabled ones can just stay disabled. */
7679
7680 static void
7681 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7682 {
7683 struct breakpoint *b;
7684
7685 if (objfile == NULL)
7686 return;
7687
7688 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7689 managed by the user with add-symbol-file/remove-symbol-file.
7690 Similarly to how breakpoints in shared libraries are handled in
7691 response to "nosharedlibrary", mark breakpoints in such modules
7692 shlib_disabled so they end up uninserted on the next global
7693 location list update. Shared libraries not loaded by the user
7694 aren't handled here -- they're already handled in
7695 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7696 solib_unloaded observer. We skip objfiles that are not
7697 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7698 main objfile). */
7699 if ((objfile->flags & OBJF_SHARED) == 0
7700 || (objfile->flags & OBJF_USERLOADED) == 0)
7701 return;
7702
7703 ALL_BREAKPOINTS (b)
7704 {
7705 struct bp_location *loc;
7706 int bp_modified = 0;
7707
7708 if (!is_breakpoint (b) && !is_tracepoint (b))
7709 continue;
7710
7711 for (loc = b->loc; loc != NULL; loc = loc->next)
7712 {
7713 CORE_ADDR loc_addr = loc->address;
7714
7715 if (loc->loc_type != bp_loc_hardware_breakpoint
7716 && loc->loc_type != bp_loc_software_breakpoint)
7717 continue;
7718
7719 if (loc->shlib_disabled != 0)
7720 continue;
7721
7722 if (objfile->pspace != loc->pspace)
7723 continue;
7724
7725 if (loc->loc_type != bp_loc_hardware_breakpoint
7726 && loc->loc_type != bp_loc_software_breakpoint)
7727 continue;
7728
7729 if (is_addr_in_objfile (loc_addr, objfile))
7730 {
7731 loc->shlib_disabled = 1;
7732 /* At this point, we don't know whether the object was
7733 unmapped from the inferior or not, so leave the
7734 inserted flag alone. We'll handle failure to
7735 uninsert quietly, in case the object was indeed
7736 unmapped. */
7737
7738 mark_breakpoint_location_modified (loc);
7739
7740 bp_modified = 1;
7741 }
7742 }
7743
7744 if (bp_modified)
7745 observer_notify_breakpoint_modified (b);
7746 }
7747 }
7748
7749 /* FORK & VFORK catchpoints. */
7750
7751 /* An instance of this type is used to represent a fork or vfork
7752 catchpoint. A breakpoint is really of this type iff its ops pointer points
7753 to CATCH_FORK_BREAKPOINT_OPS. */
7754
7755 struct fork_catchpoint : public breakpoint
7756 {
7757 /* Process id of a child process whose forking triggered this
7758 catchpoint. This field is only valid immediately after this
7759 catchpoint has triggered. */
7760 ptid_t forked_inferior_pid;
7761 };
7762
7763 /* Implement the "insert" breakpoint_ops method for fork
7764 catchpoints. */
7765
7766 static int
7767 insert_catch_fork (struct bp_location *bl)
7768 {
7769 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7770 }
7771
7772 /* Implement the "remove" breakpoint_ops method for fork
7773 catchpoints. */
7774
7775 static int
7776 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7777 {
7778 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7779 }
7780
7781 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7782 catchpoints. */
7783
7784 static int
7785 breakpoint_hit_catch_fork (const struct bp_location *bl,
7786 const address_space *aspace, CORE_ADDR bp_addr,
7787 const struct target_waitstatus *ws)
7788 {
7789 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7790
7791 if (ws->kind != TARGET_WAITKIND_FORKED)
7792 return 0;
7793
7794 c->forked_inferior_pid = ws->value.related_pid;
7795 return 1;
7796 }
7797
7798 /* Implement the "print_it" breakpoint_ops method for fork
7799 catchpoints. */
7800
7801 static enum print_stop_action
7802 print_it_catch_fork (bpstat bs)
7803 {
7804 struct ui_out *uiout = current_uiout;
7805 struct breakpoint *b = bs->breakpoint_at;
7806 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7807
7808 annotate_catchpoint (b->number);
7809 maybe_print_thread_hit_breakpoint (uiout);
7810 if (b->disposition == disp_del)
7811 uiout->text ("Temporary catchpoint ");
7812 else
7813 uiout->text ("Catchpoint ");
7814 if (uiout->is_mi_like_p ())
7815 {
7816 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7817 uiout->field_string ("disp", bpdisp_text (b->disposition));
7818 }
7819 uiout->field_int ("bkptno", b->number);
7820 uiout->text (" (forked process ");
7821 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7822 uiout->text ("), ");
7823 return PRINT_SRC_AND_LOC;
7824 }
7825
7826 /* Implement the "print_one" breakpoint_ops method for fork
7827 catchpoints. */
7828
7829 static void
7830 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7831 {
7832 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7833 struct value_print_options opts;
7834 struct ui_out *uiout = current_uiout;
7835
7836 get_user_print_options (&opts);
7837
7838 /* Field 4, the address, is omitted (which makes the columns not
7839 line up too nicely with the headers, but the effect is relatively
7840 readable). */
7841 if (opts.addressprint)
7842 uiout->field_skip ("addr");
7843 annotate_field (5);
7844 uiout->text ("fork");
7845 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7846 {
7847 uiout->text (", process ");
7848 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7849 uiout->spaces (1);
7850 }
7851
7852 if (uiout->is_mi_like_p ())
7853 uiout->field_string ("catch-type", "fork");
7854 }
7855
7856 /* Implement the "print_mention" breakpoint_ops method for fork
7857 catchpoints. */
7858
7859 static void
7860 print_mention_catch_fork (struct breakpoint *b)
7861 {
7862 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7863 }
7864
7865 /* Implement the "print_recreate" breakpoint_ops method for fork
7866 catchpoints. */
7867
7868 static void
7869 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7870 {
7871 fprintf_unfiltered (fp, "catch fork");
7872 print_recreate_thread (b, fp);
7873 }
7874
7875 /* The breakpoint_ops structure to be used in fork catchpoints. */
7876
7877 static struct breakpoint_ops catch_fork_breakpoint_ops;
7878
7879 /* Implement the "insert" breakpoint_ops method for vfork
7880 catchpoints. */
7881
7882 static int
7883 insert_catch_vfork (struct bp_location *bl)
7884 {
7885 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7886 }
7887
7888 /* Implement the "remove" breakpoint_ops method for vfork
7889 catchpoints. */
7890
7891 static int
7892 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7893 {
7894 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7895 }
7896
7897 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7898 catchpoints. */
7899
7900 static int
7901 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7902 const address_space *aspace, CORE_ADDR bp_addr,
7903 const struct target_waitstatus *ws)
7904 {
7905 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7906
7907 if (ws->kind != TARGET_WAITKIND_VFORKED)
7908 return 0;
7909
7910 c->forked_inferior_pid = ws->value.related_pid;
7911 return 1;
7912 }
7913
7914 /* Implement the "print_it" breakpoint_ops method for vfork
7915 catchpoints. */
7916
7917 static enum print_stop_action
7918 print_it_catch_vfork (bpstat bs)
7919 {
7920 struct ui_out *uiout = current_uiout;
7921 struct breakpoint *b = bs->breakpoint_at;
7922 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7923
7924 annotate_catchpoint (b->number);
7925 maybe_print_thread_hit_breakpoint (uiout);
7926 if (b->disposition == disp_del)
7927 uiout->text ("Temporary catchpoint ");
7928 else
7929 uiout->text ("Catchpoint ");
7930 if (uiout->is_mi_like_p ())
7931 {
7932 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7933 uiout->field_string ("disp", bpdisp_text (b->disposition));
7934 }
7935 uiout->field_int ("bkptno", b->number);
7936 uiout->text (" (vforked process ");
7937 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7938 uiout->text ("), ");
7939 return PRINT_SRC_AND_LOC;
7940 }
7941
7942 /* Implement the "print_one" breakpoint_ops method for vfork
7943 catchpoints. */
7944
7945 static void
7946 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7947 {
7948 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7949 struct value_print_options opts;
7950 struct ui_out *uiout = current_uiout;
7951
7952 get_user_print_options (&opts);
7953 /* Field 4, the address, is omitted (which makes the columns not
7954 line up too nicely with the headers, but the effect is relatively
7955 readable). */
7956 if (opts.addressprint)
7957 uiout->field_skip ("addr");
7958 annotate_field (5);
7959 uiout->text ("vfork");
7960 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7961 {
7962 uiout->text (", process ");
7963 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7964 uiout->spaces (1);
7965 }
7966
7967 if (uiout->is_mi_like_p ())
7968 uiout->field_string ("catch-type", "vfork");
7969 }
7970
7971 /* Implement the "print_mention" breakpoint_ops method for vfork
7972 catchpoints. */
7973
7974 static void
7975 print_mention_catch_vfork (struct breakpoint *b)
7976 {
7977 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7978 }
7979
7980 /* Implement the "print_recreate" breakpoint_ops method for vfork
7981 catchpoints. */
7982
7983 static void
7984 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7985 {
7986 fprintf_unfiltered (fp, "catch vfork");
7987 print_recreate_thread (b, fp);
7988 }
7989
7990 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7991
7992 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7993
7994 /* An instance of this type is used to represent an solib catchpoint.
7995 A breakpoint is really of this type iff its ops pointer points to
7996 CATCH_SOLIB_BREAKPOINT_OPS. */
7997
7998 struct solib_catchpoint : public breakpoint
7999 {
8000 ~solib_catchpoint () override;
8001
8002 /* True for "catch load", false for "catch unload". */
8003 unsigned char is_load;
8004
8005 /* Regular expression to match, if any. COMPILED is only valid when
8006 REGEX is non-NULL. */
8007 char *regex;
8008 std::unique_ptr<compiled_regex> compiled;
8009 };
8010
8011 solib_catchpoint::~solib_catchpoint ()
8012 {
8013 xfree (this->regex);
8014 }
8015
8016 static int
8017 insert_catch_solib (struct bp_location *ignore)
8018 {
8019 return 0;
8020 }
8021
8022 static int
8023 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
8024 {
8025 return 0;
8026 }
8027
8028 static int
8029 breakpoint_hit_catch_solib (const struct bp_location *bl,
8030 const address_space *aspace,
8031 CORE_ADDR bp_addr,
8032 const struct target_waitstatus *ws)
8033 {
8034 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8035 struct breakpoint *other;
8036
8037 if (ws->kind == TARGET_WAITKIND_LOADED)
8038 return 1;
8039
8040 ALL_BREAKPOINTS (other)
8041 {
8042 struct bp_location *other_bl;
8043
8044 if (other == bl->owner)
8045 continue;
8046
8047 if (other->type != bp_shlib_event)
8048 continue;
8049
8050 if (self->pspace != NULL && other->pspace != self->pspace)
8051 continue;
8052
8053 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8054 {
8055 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8056 return 1;
8057 }
8058 }
8059
8060 return 0;
8061 }
8062
8063 static void
8064 check_status_catch_solib (struct bpstats *bs)
8065 {
8066 struct solib_catchpoint *self
8067 = (struct solib_catchpoint *) bs->breakpoint_at;
8068 int ix;
8069
8070 if (self->is_load)
8071 {
8072 struct so_list *iter;
8073
8074 for (ix = 0;
8075 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8076 ix, iter);
8077 ++ix)
8078 {
8079 if (!self->regex
8080 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8081 return;
8082 }
8083 }
8084 else
8085 {
8086 char *iter;
8087
8088 for (ix = 0;
8089 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8090 ix, iter);
8091 ++ix)
8092 {
8093 if (!self->regex
8094 || self->compiled->exec (iter, 0, NULL, 0) == 0)
8095 return;
8096 }
8097 }
8098
8099 bs->stop = 0;
8100 bs->print_it = print_it_noop;
8101 }
8102
8103 static enum print_stop_action
8104 print_it_catch_solib (bpstat bs)
8105 {
8106 struct breakpoint *b = bs->breakpoint_at;
8107 struct ui_out *uiout = current_uiout;
8108
8109 annotate_catchpoint (b->number);
8110 maybe_print_thread_hit_breakpoint (uiout);
8111 if (b->disposition == disp_del)
8112 uiout->text ("Temporary catchpoint ");
8113 else
8114 uiout->text ("Catchpoint ");
8115 uiout->field_int ("bkptno", b->number);
8116 uiout->text ("\n");
8117 if (uiout->is_mi_like_p ())
8118 uiout->field_string ("disp", bpdisp_text (b->disposition));
8119 print_solib_event (1);
8120 return PRINT_SRC_AND_LOC;
8121 }
8122
8123 static void
8124 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8125 {
8126 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8127 struct value_print_options opts;
8128 struct ui_out *uiout = current_uiout;
8129 char *msg;
8130
8131 get_user_print_options (&opts);
8132 /* Field 4, the address, is omitted (which makes the columns not
8133 line up too nicely with the headers, but the effect is relatively
8134 readable). */
8135 if (opts.addressprint)
8136 {
8137 annotate_field (4);
8138 uiout->field_skip ("addr");
8139 }
8140
8141 annotate_field (5);
8142 if (self->is_load)
8143 {
8144 if (self->regex)
8145 msg = xstrprintf (_("load of library matching %s"), self->regex);
8146 else
8147 msg = xstrdup (_("load of library"));
8148 }
8149 else
8150 {
8151 if (self->regex)
8152 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8153 else
8154 msg = xstrdup (_("unload of library"));
8155 }
8156 uiout->field_string ("what", msg);
8157 xfree (msg);
8158
8159 if (uiout->is_mi_like_p ())
8160 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8161 }
8162
8163 static void
8164 print_mention_catch_solib (struct breakpoint *b)
8165 {
8166 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8167
8168 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8169 self->is_load ? "load" : "unload");
8170 }
8171
8172 static void
8173 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8174 {
8175 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8176
8177 fprintf_unfiltered (fp, "%s %s",
8178 b->disposition == disp_del ? "tcatch" : "catch",
8179 self->is_load ? "load" : "unload");
8180 if (self->regex)
8181 fprintf_unfiltered (fp, " %s", self->regex);
8182 fprintf_unfiltered (fp, "\n");
8183 }
8184
8185 static struct breakpoint_ops catch_solib_breakpoint_ops;
8186
8187 /* Shared helper function (MI and CLI) for creating and installing
8188 a shared object event catchpoint. If IS_LOAD is non-zero then
8189 the events to be caught are load events, otherwise they are
8190 unload events. If IS_TEMP is non-zero the catchpoint is a
8191 temporary one. If ENABLED is non-zero the catchpoint is
8192 created in an enabled state. */
8193
8194 void
8195 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8196 {
8197 struct gdbarch *gdbarch = get_current_arch ();
8198
8199 if (!arg)
8200 arg = "";
8201 arg = skip_spaces (arg);
8202
8203 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8204
8205 if (*arg != '\0')
8206 {
8207 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8208 _("Invalid regexp")));
8209 c->regex = xstrdup (arg);
8210 }
8211
8212 c->is_load = is_load;
8213 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8214 &catch_solib_breakpoint_ops);
8215
8216 c->enable_state = enabled ? bp_enabled : bp_disabled;
8217
8218 install_breakpoint (0, std::move (c), 1);
8219 }
8220
8221 /* A helper function that does all the work for "catch load" and
8222 "catch unload". */
8223
8224 static void
8225 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8226 struct cmd_list_element *command)
8227 {
8228 int tempflag;
8229 const int enabled = 1;
8230
8231 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8232
8233 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8234 }
8235
8236 static void
8237 catch_load_command_1 (const char *arg, int from_tty,
8238 struct cmd_list_element *command)
8239 {
8240 catch_load_or_unload (arg, from_tty, 1, command);
8241 }
8242
8243 static void
8244 catch_unload_command_1 (const char *arg, int from_tty,
8245 struct cmd_list_element *command)
8246 {
8247 catch_load_or_unload (arg, from_tty, 0, command);
8248 }
8249
8250 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8251 is non-zero, then make the breakpoint temporary. If COND_STRING is
8252 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8253 the breakpoint_ops structure associated to the catchpoint. */
8254
8255 void
8256 init_catchpoint (struct breakpoint *b,
8257 struct gdbarch *gdbarch, int tempflag,
8258 const char *cond_string,
8259 const struct breakpoint_ops *ops)
8260 {
8261 symtab_and_line sal;
8262 sal.pspace = current_program_space;
8263
8264 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8265
8266 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8267 b->disposition = tempflag ? disp_del : disp_donttouch;
8268 }
8269
8270 void
8271 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8272 {
8273 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8274 set_breakpoint_number (internal, b);
8275 if (is_tracepoint (b))
8276 set_tracepoint_count (breakpoint_count);
8277 if (!internal)
8278 mention (b);
8279 observer_notify_breakpoint_created (b);
8280
8281 if (update_gll)
8282 update_global_location_list (UGLL_MAY_INSERT);
8283 }
8284
8285 static void
8286 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8287 int tempflag, const char *cond_string,
8288 const struct breakpoint_ops *ops)
8289 {
8290 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8291
8292 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8293
8294 c->forked_inferior_pid = null_ptid;
8295
8296 install_breakpoint (0, std::move (c), 1);
8297 }
8298
8299 /* Exec catchpoints. */
8300
8301 /* An instance of this type is used to represent an exec catchpoint.
8302 A breakpoint is really of this type iff its ops pointer points to
8303 CATCH_EXEC_BREAKPOINT_OPS. */
8304
8305 struct exec_catchpoint : public breakpoint
8306 {
8307 ~exec_catchpoint () override;
8308
8309 /* Filename of a program whose exec triggered this catchpoint.
8310 This field is only valid immediately after this catchpoint has
8311 triggered. */
8312 char *exec_pathname;
8313 };
8314
8315 /* Exec catchpoint destructor. */
8316
8317 exec_catchpoint::~exec_catchpoint ()
8318 {
8319 xfree (this->exec_pathname);
8320 }
8321
8322 static int
8323 insert_catch_exec (struct bp_location *bl)
8324 {
8325 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8326 }
8327
8328 static int
8329 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8330 {
8331 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8332 }
8333
8334 static int
8335 breakpoint_hit_catch_exec (const struct bp_location *bl,
8336 const address_space *aspace, CORE_ADDR bp_addr,
8337 const struct target_waitstatus *ws)
8338 {
8339 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8340
8341 if (ws->kind != TARGET_WAITKIND_EXECD)
8342 return 0;
8343
8344 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8345 return 1;
8346 }
8347
8348 static enum print_stop_action
8349 print_it_catch_exec (bpstat bs)
8350 {
8351 struct ui_out *uiout = current_uiout;
8352 struct breakpoint *b = bs->breakpoint_at;
8353 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8354
8355 annotate_catchpoint (b->number);
8356 maybe_print_thread_hit_breakpoint (uiout);
8357 if (b->disposition == disp_del)
8358 uiout->text ("Temporary catchpoint ");
8359 else
8360 uiout->text ("Catchpoint ");
8361 if (uiout->is_mi_like_p ())
8362 {
8363 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8364 uiout->field_string ("disp", bpdisp_text (b->disposition));
8365 }
8366 uiout->field_int ("bkptno", b->number);
8367 uiout->text (" (exec'd ");
8368 uiout->field_string ("new-exec", c->exec_pathname);
8369 uiout->text ("), ");
8370
8371 return PRINT_SRC_AND_LOC;
8372 }
8373
8374 static void
8375 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8376 {
8377 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8378 struct value_print_options opts;
8379 struct ui_out *uiout = current_uiout;
8380
8381 get_user_print_options (&opts);
8382
8383 /* Field 4, the address, is omitted (which makes the columns
8384 not line up too nicely with the headers, but the effect
8385 is relatively readable). */
8386 if (opts.addressprint)
8387 uiout->field_skip ("addr");
8388 annotate_field (5);
8389 uiout->text ("exec");
8390 if (c->exec_pathname != NULL)
8391 {
8392 uiout->text (", program \"");
8393 uiout->field_string ("what", c->exec_pathname);
8394 uiout->text ("\" ");
8395 }
8396
8397 if (uiout->is_mi_like_p ())
8398 uiout->field_string ("catch-type", "exec");
8399 }
8400
8401 static void
8402 print_mention_catch_exec (struct breakpoint *b)
8403 {
8404 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8405 }
8406
8407 /* Implement the "print_recreate" breakpoint_ops method for exec
8408 catchpoints. */
8409
8410 static void
8411 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8412 {
8413 fprintf_unfiltered (fp, "catch exec");
8414 print_recreate_thread (b, fp);
8415 }
8416
8417 static struct breakpoint_ops catch_exec_breakpoint_ops;
8418
8419 static int
8420 hw_breakpoint_used_count (void)
8421 {
8422 int i = 0;
8423 struct breakpoint *b;
8424 struct bp_location *bl;
8425
8426 ALL_BREAKPOINTS (b)
8427 {
8428 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8429 for (bl = b->loc; bl; bl = bl->next)
8430 {
8431 /* Special types of hardware breakpoints may use more than
8432 one register. */
8433 i += b->ops->resources_needed (bl);
8434 }
8435 }
8436
8437 return i;
8438 }
8439
8440 /* Returns the resources B would use if it were a hardware
8441 watchpoint. */
8442
8443 static int
8444 hw_watchpoint_use_count (struct breakpoint *b)
8445 {
8446 int i = 0;
8447 struct bp_location *bl;
8448
8449 if (!breakpoint_enabled (b))
8450 return 0;
8451
8452 for (bl = b->loc; bl; bl = bl->next)
8453 {
8454 /* Special types of hardware watchpoints may use more than
8455 one register. */
8456 i += b->ops->resources_needed (bl);
8457 }
8458
8459 return i;
8460 }
8461
8462 /* Returns the sum the used resources of all hardware watchpoints of
8463 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8464 the sum of the used resources of all hardware watchpoints of other
8465 types _not_ TYPE. */
8466
8467 static int
8468 hw_watchpoint_used_count_others (struct breakpoint *except,
8469 enum bptype type, int *other_type_used)
8470 {
8471 int i = 0;
8472 struct breakpoint *b;
8473
8474 *other_type_used = 0;
8475 ALL_BREAKPOINTS (b)
8476 {
8477 if (b == except)
8478 continue;
8479 if (!breakpoint_enabled (b))
8480 continue;
8481
8482 if (b->type == type)
8483 i += hw_watchpoint_use_count (b);
8484 else if (is_hardware_watchpoint (b))
8485 *other_type_used = 1;
8486 }
8487
8488 return i;
8489 }
8490
8491 void
8492 disable_watchpoints_before_interactive_call_start (void)
8493 {
8494 struct breakpoint *b;
8495
8496 ALL_BREAKPOINTS (b)
8497 {
8498 if (is_watchpoint (b) && breakpoint_enabled (b))
8499 {
8500 b->enable_state = bp_call_disabled;
8501 update_global_location_list (UGLL_DONT_INSERT);
8502 }
8503 }
8504 }
8505
8506 void
8507 enable_watchpoints_after_interactive_call_stop (void)
8508 {
8509 struct breakpoint *b;
8510
8511 ALL_BREAKPOINTS (b)
8512 {
8513 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8514 {
8515 b->enable_state = bp_enabled;
8516 update_global_location_list (UGLL_MAY_INSERT);
8517 }
8518 }
8519 }
8520
8521 void
8522 disable_breakpoints_before_startup (void)
8523 {
8524 current_program_space->executing_startup = 1;
8525 update_global_location_list (UGLL_DONT_INSERT);
8526 }
8527
8528 void
8529 enable_breakpoints_after_startup (void)
8530 {
8531 current_program_space->executing_startup = 0;
8532 breakpoint_re_set ();
8533 }
8534
8535 /* Create a new single-step breakpoint for thread THREAD, with no
8536 locations. */
8537
8538 static struct breakpoint *
8539 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8540 {
8541 std::unique_ptr<breakpoint> b (new breakpoint ());
8542
8543 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8544 &momentary_breakpoint_ops);
8545
8546 b->disposition = disp_donttouch;
8547 b->frame_id = null_frame_id;
8548
8549 b->thread = thread;
8550 gdb_assert (b->thread != 0);
8551
8552 return add_to_breakpoint_chain (std::move (b));
8553 }
8554
8555 /* Set a momentary breakpoint of type TYPE at address specified by
8556 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8557 frame. */
8558
8559 breakpoint_up
8560 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8561 struct frame_id frame_id, enum bptype type)
8562 {
8563 struct breakpoint *b;
8564
8565 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8566 tail-called one. */
8567 gdb_assert (!frame_id_artificial_p (frame_id));
8568
8569 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8570 b->enable_state = bp_enabled;
8571 b->disposition = disp_donttouch;
8572 b->frame_id = frame_id;
8573
8574 /* If we're debugging a multi-threaded program, then we want
8575 momentary breakpoints to be active in only a single thread of
8576 control. */
8577 if (in_thread_list (inferior_ptid))
8578 b->thread = ptid_to_global_thread_id (inferior_ptid);
8579
8580 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8581
8582 return breakpoint_up (b);
8583 }
8584
8585 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8586 The new breakpoint will have type TYPE, use OPS as its
8587 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8588
8589 static struct breakpoint *
8590 momentary_breakpoint_from_master (struct breakpoint *orig,
8591 enum bptype type,
8592 const struct breakpoint_ops *ops,
8593 int loc_enabled)
8594 {
8595 struct breakpoint *copy;
8596
8597 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8598 copy->loc = allocate_bp_location (copy);
8599 set_breakpoint_location_function (copy->loc, 1);
8600
8601 copy->loc->gdbarch = orig->loc->gdbarch;
8602 copy->loc->requested_address = orig->loc->requested_address;
8603 copy->loc->address = orig->loc->address;
8604 copy->loc->section = orig->loc->section;
8605 copy->loc->pspace = orig->loc->pspace;
8606 copy->loc->probe = orig->loc->probe;
8607 copy->loc->line_number = orig->loc->line_number;
8608 copy->loc->symtab = orig->loc->symtab;
8609 copy->loc->enabled = loc_enabled;
8610 copy->frame_id = orig->frame_id;
8611 copy->thread = orig->thread;
8612 copy->pspace = orig->pspace;
8613
8614 copy->enable_state = bp_enabled;
8615 copy->disposition = disp_donttouch;
8616 copy->number = internal_breakpoint_number--;
8617
8618 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8619 return copy;
8620 }
8621
8622 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8623 ORIG is NULL. */
8624
8625 struct breakpoint *
8626 clone_momentary_breakpoint (struct breakpoint *orig)
8627 {
8628 /* If there's nothing to clone, then return nothing. */
8629 if (orig == NULL)
8630 return NULL;
8631
8632 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8633 }
8634
8635 breakpoint_up
8636 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8637 enum bptype type)
8638 {
8639 struct symtab_and_line sal;
8640
8641 sal = find_pc_line (pc, 0);
8642 sal.pc = pc;
8643 sal.section = find_pc_overlay (pc);
8644 sal.explicit_pc = 1;
8645
8646 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8647 }
8648 \f
8649
8650 /* Tell the user we have just set a breakpoint B. */
8651
8652 static void
8653 mention (struct breakpoint *b)
8654 {
8655 b->ops->print_mention (b);
8656 if (current_uiout->is_mi_like_p ())
8657 return;
8658 printf_filtered ("\n");
8659 }
8660 \f
8661
8662 static int bp_loc_is_permanent (struct bp_location *loc);
8663
8664 static struct bp_location *
8665 add_location_to_breakpoint (struct breakpoint *b,
8666 const struct symtab_and_line *sal)
8667 {
8668 struct bp_location *loc, **tmp;
8669 CORE_ADDR adjusted_address;
8670 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8671
8672 if (loc_gdbarch == NULL)
8673 loc_gdbarch = b->gdbarch;
8674
8675 /* Adjust the breakpoint's address prior to allocating a location.
8676 Once we call allocate_bp_location(), that mostly uninitialized
8677 location will be placed on the location chain. Adjustment of the
8678 breakpoint may cause target_read_memory() to be called and we do
8679 not want its scan of the location chain to find a breakpoint and
8680 location that's only been partially initialized. */
8681 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8682 sal->pc, b->type);
8683
8684 /* Sort the locations by their ADDRESS. */
8685 loc = allocate_bp_location (b);
8686 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8687 tmp = &((*tmp)->next))
8688 ;
8689 loc->next = *tmp;
8690 *tmp = loc;
8691
8692 loc->requested_address = sal->pc;
8693 loc->address = adjusted_address;
8694 loc->pspace = sal->pspace;
8695 loc->probe.probe = sal->probe;
8696 loc->probe.objfile = sal->objfile;
8697 gdb_assert (loc->pspace != NULL);
8698 loc->section = sal->section;
8699 loc->gdbarch = loc_gdbarch;
8700 loc->line_number = sal->line;
8701 loc->symtab = sal->symtab;
8702 loc->symbol = sal->symbol;
8703
8704 set_breakpoint_location_function (loc,
8705 sal->explicit_pc || sal->explicit_line);
8706
8707 /* While by definition, permanent breakpoints are already present in the
8708 code, we don't mark the location as inserted. Normally one would expect
8709 that GDB could rely on that breakpoint instruction to stop the program,
8710 thus removing the need to insert its own breakpoint, except that executing
8711 the breakpoint instruction can kill the target instead of reporting a
8712 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8713 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8714 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8715 breakpoint be inserted normally results in QEMU knowing about the GDB
8716 breakpoint, and thus trap before the breakpoint instruction is executed.
8717 (If GDB later needs to continue execution past the permanent breakpoint,
8718 it manually increments the PC, thus avoiding executing the breakpoint
8719 instruction.) */
8720 if (bp_loc_is_permanent (loc))
8721 loc->permanent = 1;
8722
8723 return loc;
8724 }
8725 \f
8726
8727 /* See breakpoint.h. */
8728
8729 int
8730 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8731 {
8732 int len;
8733 CORE_ADDR addr;
8734 const gdb_byte *bpoint;
8735 gdb_byte *target_mem;
8736
8737 addr = address;
8738 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8739
8740 /* Software breakpoints unsupported? */
8741 if (bpoint == NULL)
8742 return 0;
8743
8744 target_mem = (gdb_byte *) alloca (len);
8745
8746 /* Enable the automatic memory restoration from breakpoints while
8747 we read the memory. Otherwise we could say about our temporary
8748 breakpoints they are permanent. */
8749 scoped_restore restore_memory
8750 = make_scoped_restore_show_memory_breakpoints (0);
8751
8752 if (target_read_memory (address, target_mem, len) == 0
8753 && memcmp (target_mem, bpoint, len) == 0)
8754 return 1;
8755
8756 return 0;
8757 }
8758
8759 /* Return 1 if LOC is pointing to a permanent breakpoint,
8760 return 0 otherwise. */
8761
8762 static int
8763 bp_loc_is_permanent (struct bp_location *loc)
8764 {
8765 gdb_assert (loc != NULL);
8766
8767 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8768 attempt to read from the addresses the locations of these breakpoint types
8769 point to. program_breakpoint_here_p, below, will attempt to read
8770 memory. */
8771 if (!breakpoint_address_is_meaningful (loc->owner))
8772 return 0;
8773
8774 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8775 switch_to_program_space_and_thread (loc->pspace);
8776 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8777 }
8778
8779 /* Build a command list for the dprintf corresponding to the current
8780 settings of the dprintf style options. */
8781
8782 static void
8783 update_dprintf_command_list (struct breakpoint *b)
8784 {
8785 char *dprintf_args = b->extra_string;
8786 char *printf_line = NULL;
8787
8788 if (!dprintf_args)
8789 return;
8790
8791 dprintf_args = skip_spaces (dprintf_args);
8792
8793 /* Allow a comma, as it may have terminated a location, but don't
8794 insist on it. */
8795 if (*dprintf_args == ',')
8796 ++dprintf_args;
8797 dprintf_args = skip_spaces (dprintf_args);
8798
8799 if (*dprintf_args != '"')
8800 error (_("Bad format string, missing '\"'."));
8801
8802 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8803 printf_line = xstrprintf ("printf %s", dprintf_args);
8804 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8805 {
8806 if (!dprintf_function)
8807 error (_("No function supplied for dprintf call"));
8808
8809 if (dprintf_channel && strlen (dprintf_channel) > 0)
8810 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8811 dprintf_function,
8812 dprintf_channel,
8813 dprintf_args);
8814 else
8815 printf_line = xstrprintf ("call (void) %s (%s)",
8816 dprintf_function,
8817 dprintf_args);
8818 }
8819 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8820 {
8821 if (target_can_run_breakpoint_commands ())
8822 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8823 else
8824 {
8825 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8826 printf_line = xstrprintf ("printf %s", dprintf_args);
8827 }
8828 }
8829 else
8830 internal_error (__FILE__, __LINE__,
8831 _("Invalid dprintf style."));
8832
8833 gdb_assert (printf_line != NULL);
8834 /* Manufacture a printf sequence. */
8835 {
8836 struct command_line *printf_cmd_line = XNEW (struct command_line);
8837
8838 printf_cmd_line->control_type = simple_control;
8839 printf_cmd_line->body_count = 0;
8840 printf_cmd_line->body_list = NULL;
8841 printf_cmd_line->next = NULL;
8842 printf_cmd_line->line = printf_line;
8843
8844 breakpoint_set_commands (b, command_line_up (printf_cmd_line));
8845 }
8846 }
8847
8848 /* Update all dprintf commands, making their command lists reflect
8849 current style settings. */
8850
8851 static void
8852 update_dprintf_commands (const char *args, int from_tty,
8853 struct cmd_list_element *c)
8854 {
8855 struct breakpoint *b;
8856
8857 ALL_BREAKPOINTS (b)
8858 {
8859 if (b->type == bp_dprintf)
8860 update_dprintf_command_list (b);
8861 }
8862 }
8863
8864 /* Create a breakpoint with SAL as location. Use LOCATION
8865 as a description of the location, and COND_STRING
8866 as condition expression. If LOCATION is NULL then create an
8867 "address location" from the address in the SAL. */
8868
8869 static void
8870 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8871 gdb::array_view<const symtab_and_line> sals,
8872 event_location_up &&location,
8873 gdb::unique_xmalloc_ptr<char> filter,
8874 gdb::unique_xmalloc_ptr<char> cond_string,
8875 gdb::unique_xmalloc_ptr<char> extra_string,
8876 enum bptype type, enum bpdisp disposition,
8877 int thread, int task, int ignore_count,
8878 const struct breakpoint_ops *ops, int from_tty,
8879 int enabled, int internal, unsigned flags,
8880 int display_canonical)
8881 {
8882 int i;
8883
8884 if (type == bp_hardware_breakpoint)
8885 {
8886 int target_resources_ok;
8887
8888 i = hw_breakpoint_used_count ();
8889 target_resources_ok =
8890 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8891 i + 1, 0);
8892 if (target_resources_ok == 0)
8893 error (_("No hardware breakpoint support in the target."));
8894 else if (target_resources_ok < 0)
8895 error (_("Hardware breakpoints used exceeds limit."));
8896 }
8897
8898 gdb_assert (!sals.empty ());
8899
8900 for (const auto &sal : sals)
8901 {
8902 struct bp_location *loc;
8903
8904 if (from_tty)
8905 {
8906 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8907 if (!loc_gdbarch)
8908 loc_gdbarch = gdbarch;
8909
8910 describe_other_breakpoints (loc_gdbarch,
8911 sal.pspace, sal.pc, sal.section, thread);
8912 }
8913
8914 if (&sal == &sals[0])
8915 {
8916 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8917 b->thread = thread;
8918 b->task = task;
8919
8920 b->cond_string = cond_string.release ();
8921 b->extra_string = extra_string.release ();
8922 b->ignore_count = ignore_count;
8923 b->enable_state = enabled ? bp_enabled : bp_disabled;
8924 b->disposition = disposition;
8925
8926 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8927 b->loc->inserted = 1;
8928
8929 if (type == bp_static_tracepoint)
8930 {
8931 struct tracepoint *t = (struct tracepoint *) b;
8932 struct static_tracepoint_marker marker;
8933
8934 if (strace_marker_p (b))
8935 {
8936 /* We already know the marker exists, otherwise, we
8937 wouldn't see a sal for it. */
8938 const char *p
8939 = &event_location_to_string (b->location.get ())[3];
8940 const char *endp;
8941 char *marker_str;
8942
8943 p = skip_spaces (p);
8944
8945 endp = skip_to_space (p);
8946
8947 marker_str = savestring (p, endp - p);
8948 t->static_trace_marker_id = marker_str;
8949
8950 printf_filtered (_("Probed static tracepoint "
8951 "marker \"%s\"\n"),
8952 t->static_trace_marker_id);
8953 }
8954 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8955 {
8956 t->static_trace_marker_id = xstrdup (marker.str_id);
8957 release_static_tracepoint_marker (&marker);
8958
8959 printf_filtered (_("Probed static tracepoint "
8960 "marker \"%s\"\n"),
8961 t->static_trace_marker_id);
8962 }
8963 else
8964 warning (_("Couldn't determine the static "
8965 "tracepoint marker to probe"));
8966 }
8967
8968 loc = b->loc;
8969 }
8970 else
8971 {
8972 loc = add_location_to_breakpoint (b, &sal);
8973 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8974 loc->inserted = 1;
8975 }
8976
8977 if (b->cond_string)
8978 {
8979 const char *arg = b->cond_string;
8980
8981 loc->cond = parse_exp_1 (&arg, loc->address,
8982 block_for_pc (loc->address), 0);
8983 if (*arg)
8984 error (_("Garbage '%s' follows condition"), arg);
8985 }
8986
8987 /* Dynamic printf requires and uses additional arguments on the
8988 command line, otherwise it's an error. */
8989 if (type == bp_dprintf)
8990 {
8991 if (b->extra_string)
8992 update_dprintf_command_list (b);
8993 else
8994 error (_("Format string required"));
8995 }
8996 else if (b->extra_string)
8997 error (_("Garbage '%s' at end of command"), b->extra_string);
8998 }
8999
9000 b->display_canonical = display_canonical;
9001 if (location != NULL)
9002 b->location = std::move (location);
9003 else
9004 b->location = new_address_location (b->loc->address, NULL, 0);
9005 b->filter = filter.release ();
9006 }
9007
9008 static void
9009 create_breakpoint_sal (struct gdbarch *gdbarch,
9010 gdb::array_view<const symtab_and_line> sals,
9011 event_location_up &&location,
9012 gdb::unique_xmalloc_ptr<char> filter,
9013 gdb::unique_xmalloc_ptr<char> cond_string,
9014 gdb::unique_xmalloc_ptr<char> extra_string,
9015 enum bptype type, enum bpdisp disposition,
9016 int thread, int task, int ignore_count,
9017 const struct breakpoint_ops *ops, int from_tty,
9018 int enabled, int internal, unsigned flags,
9019 int display_canonical)
9020 {
9021 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
9022
9023 init_breakpoint_sal (b.get (), gdbarch,
9024 sals, std::move (location),
9025 std::move (filter),
9026 std::move (cond_string),
9027 std::move (extra_string),
9028 type, disposition,
9029 thread, task, ignore_count,
9030 ops, from_tty,
9031 enabled, internal, flags,
9032 display_canonical);
9033
9034 install_breakpoint (internal, std::move (b), 0);
9035 }
9036
9037 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9038 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9039 value. COND_STRING, if not NULL, specified the condition to be
9040 used for all breakpoints. Essentially the only case where
9041 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9042 function. In that case, it's still not possible to specify
9043 separate conditions for different overloaded functions, so
9044 we take just a single condition string.
9045
9046 NOTE: If the function succeeds, the caller is expected to cleanup
9047 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9048 array contents). If the function fails (error() is called), the
9049 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9050 COND and SALS arrays and each of those arrays contents. */
9051
9052 static void
9053 create_breakpoints_sal (struct gdbarch *gdbarch,
9054 struct linespec_result *canonical,
9055 gdb::unique_xmalloc_ptr<char> cond_string,
9056 gdb::unique_xmalloc_ptr<char> extra_string,
9057 enum bptype type, enum bpdisp disposition,
9058 int thread, int task, int ignore_count,
9059 const struct breakpoint_ops *ops, int from_tty,
9060 int enabled, int internal, unsigned flags)
9061 {
9062 if (canonical->pre_expanded)
9063 gdb_assert (canonical->lsals.size () == 1);
9064
9065 for (const auto &lsal : canonical->lsals)
9066 {
9067 /* Note that 'location' can be NULL in the case of a plain
9068 'break', without arguments. */
9069 event_location_up location
9070 = (canonical->location != NULL
9071 ? copy_event_location (canonical->location.get ()) : NULL);
9072 gdb::unique_xmalloc_ptr<char> filter_string
9073 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
9074
9075 create_breakpoint_sal (gdbarch, lsal.sals,
9076 std::move (location),
9077 std::move (filter_string),
9078 std::move (cond_string),
9079 std::move (extra_string),
9080 type, disposition,
9081 thread, task, ignore_count, ops,
9082 from_tty, enabled, internal, flags,
9083 canonical->special_display);
9084 }
9085 }
9086
9087 /* Parse LOCATION which is assumed to be a SAL specification possibly
9088 followed by conditionals. On return, SALS contains an array of SAL
9089 addresses found. LOCATION points to the end of the SAL (for
9090 linespec locations).
9091
9092 The array and the line spec strings are allocated on the heap, it is
9093 the caller's responsibility to free them. */
9094
9095 static void
9096 parse_breakpoint_sals (const struct event_location *location,
9097 struct linespec_result *canonical)
9098 {
9099 struct symtab_and_line cursal;
9100
9101 if (event_location_type (location) == LINESPEC_LOCATION)
9102 {
9103 const char *address = get_linespec_location (location);
9104
9105 if (address == NULL)
9106 {
9107 /* The last displayed codepoint, if it's valid, is our default
9108 breakpoint address. */
9109 if (last_displayed_sal_is_valid ())
9110 {
9111 /* Set sal's pspace, pc, symtab, and line to the values
9112 corresponding to the last call to print_frame_info.
9113 Be sure to reinitialize LINE with NOTCURRENT == 0
9114 as the breakpoint line number is inappropriate otherwise.
9115 find_pc_line would adjust PC, re-set it back. */
9116 symtab_and_line sal = get_last_displayed_sal ();
9117 CORE_ADDR pc = sal.pc;
9118
9119 sal = find_pc_line (pc, 0);
9120
9121 /* "break" without arguments is equivalent to "break *PC"
9122 where PC is the last displayed codepoint's address. So
9123 make sure to set sal.explicit_pc to prevent GDB from
9124 trying to expand the list of sals to include all other
9125 instances with the same symtab and line. */
9126 sal.pc = pc;
9127 sal.explicit_pc = 1;
9128
9129 struct linespec_sals lsal;
9130 lsal.sals = {sal};
9131 lsal.canonical = NULL;
9132
9133 canonical->lsals.push_back (std::move (lsal));
9134 return;
9135 }
9136 else
9137 error (_("No default breakpoint address now."));
9138 }
9139 }
9140
9141 /* Force almost all breakpoints to be in terms of the
9142 current_source_symtab (which is decode_line_1's default).
9143 This should produce the results we want almost all of the
9144 time while leaving default_breakpoint_* alone.
9145
9146 ObjC: However, don't match an Objective-C method name which
9147 may have a '+' or '-' succeeded by a '['. */
9148 cursal = get_current_source_symtab_and_line ();
9149 if (last_displayed_sal_is_valid ())
9150 {
9151 const char *address = NULL;
9152
9153 if (event_location_type (location) == LINESPEC_LOCATION)
9154 address = get_linespec_location (location);
9155
9156 if (!cursal.symtab
9157 || (address != NULL
9158 && strchr ("+-", address[0]) != NULL
9159 && address[1] != '['))
9160 {
9161 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9162 get_last_displayed_symtab (),
9163 get_last_displayed_line (),
9164 canonical, NULL, NULL);
9165 return;
9166 }
9167 }
9168
9169 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9170 cursal.symtab, cursal.line, canonical, NULL, NULL);
9171 }
9172
9173
9174 /* Convert each SAL into a real PC. Verify that the PC can be
9175 inserted as a breakpoint. If it can't throw an error. */
9176
9177 static void
9178 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9179 {
9180 for (auto &sal : sals)
9181 resolve_sal_pc (&sal);
9182 }
9183
9184 /* Fast tracepoints may have restrictions on valid locations. For
9185 instance, a fast tracepoint using a jump instead of a trap will
9186 likely have to overwrite more bytes than a trap would, and so can
9187 only be placed where the instruction is longer than the jump, or a
9188 multi-instruction sequence does not have a jump into the middle of
9189 it, etc. */
9190
9191 static void
9192 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9193 gdb::array_view<const symtab_and_line> sals)
9194 {
9195 int rslt;
9196 char *msg;
9197 struct cleanup *old_chain;
9198
9199 for (const auto &sal : sals)
9200 {
9201 struct gdbarch *sarch;
9202
9203 sarch = get_sal_arch (sal);
9204 /* We fall back to GDBARCH if there is no architecture
9205 associated with SAL. */
9206 if (sarch == NULL)
9207 sarch = gdbarch;
9208 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg);
9209 old_chain = make_cleanup (xfree, msg);
9210
9211 if (!rslt)
9212 error (_("May not have a fast tracepoint at %s%s"),
9213 paddress (sarch, sal.pc), (msg ? msg : ""));
9214
9215 do_cleanups (old_chain);
9216 }
9217 }
9218
9219 /* Given TOK, a string specification of condition and thread, as
9220 accepted by the 'break' command, extract the condition
9221 string and thread number and set *COND_STRING and *THREAD.
9222 PC identifies the context at which the condition should be parsed.
9223 If no condition is found, *COND_STRING is set to NULL.
9224 If no thread is found, *THREAD is set to -1. */
9225
9226 static void
9227 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9228 char **cond_string, int *thread, int *task,
9229 char **rest)
9230 {
9231 *cond_string = NULL;
9232 *thread = -1;
9233 *task = 0;
9234 *rest = NULL;
9235
9236 while (tok && *tok)
9237 {
9238 const char *end_tok;
9239 int toklen;
9240 const char *cond_start = NULL;
9241 const char *cond_end = NULL;
9242
9243 tok = skip_spaces (tok);
9244
9245 if ((*tok == '"' || *tok == ',') && rest)
9246 {
9247 *rest = savestring (tok, strlen (tok));
9248 return;
9249 }
9250
9251 end_tok = skip_to_space (tok);
9252
9253 toklen = end_tok - tok;
9254
9255 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9256 {
9257 tok = cond_start = end_tok + 1;
9258 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9259 cond_end = tok;
9260 *cond_string = savestring (cond_start, cond_end - cond_start);
9261 }
9262 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9263 {
9264 const char *tmptok;
9265 struct thread_info *thr;
9266
9267 tok = end_tok + 1;
9268 thr = parse_thread_id (tok, &tmptok);
9269 if (tok == tmptok)
9270 error (_("Junk after thread keyword."));
9271 *thread = thr->global_num;
9272 tok = tmptok;
9273 }
9274 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9275 {
9276 char *tmptok;
9277
9278 tok = end_tok + 1;
9279 *task = strtol (tok, &tmptok, 0);
9280 if (tok == tmptok)
9281 error (_("Junk after task keyword."));
9282 if (!valid_task_id (*task))
9283 error (_("Unknown task %d."), *task);
9284 tok = tmptok;
9285 }
9286 else if (rest)
9287 {
9288 *rest = savestring (tok, strlen (tok));
9289 return;
9290 }
9291 else
9292 error (_("Junk at end of arguments."));
9293 }
9294 }
9295
9296 /* Decode a static tracepoint marker spec. */
9297
9298 static std::vector<symtab_and_line>
9299 decode_static_tracepoint_spec (const char **arg_p)
9300 {
9301 VEC(static_tracepoint_marker_p) *markers = NULL;
9302 const char *p = &(*arg_p)[3];
9303 const char *endp;
9304 int i;
9305
9306 p = skip_spaces (p);
9307
9308 endp = skip_to_space (p);
9309
9310 std::string marker_str (p, endp - p);
9311
9312 markers = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9313 if (VEC_empty(static_tracepoint_marker_p, markers))
9314 error (_("No known static tracepoint marker named %s"),
9315 marker_str.c_str ());
9316
9317 std::vector<symtab_and_line> sals;
9318 sals.reserve (VEC_length(static_tracepoint_marker_p, markers));
9319
9320 for (i = 0; i < VEC_length(static_tracepoint_marker_p, markers); i++)
9321 {
9322 struct static_tracepoint_marker *marker;
9323
9324 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9325
9326 symtab_and_line sal = find_pc_line (marker->address, 0);
9327 sal.pc = marker->address;
9328 sals.push_back (sal);
9329
9330 release_static_tracepoint_marker (marker);
9331 }
9332
9333 *arg_p = endp;
9334 return sals;
9335 }
9336
9337 /* See breakpoint.h. */
9338
9339 int
9340 create_breakpoint (struct gdbarch *gdbarch,
9341 const struct event_location *location,
9342 const char *cond_string,
9343 int thread, const char *extra_string,
9344 int parse_extra,
9345 int tempflag, enum bptype type_wanted,
9346 int ignore_count,
9347 enum auto_boolean pending_break_support,
9348 const struct breakpoint_ops *ops,
9349 int from_tty, int enabled, int internal,
9350 unsigned flags)
9351 {
9352 struct linespec_result canonical;
9353 struct cleanup *bkpt_chain = NULL;
9354 int pending = 0;
9355 int task = 0;
9356 int prev_bkpt_count = breakpoint_count;
9357
9358 gdb_assert (ops != NULL);
9359
9360 /* If extra_string isn't useful, set it to NULL. */
9361 if (extra_string != NULL && *extra_string == '\0')
9362 extra_string = NULL;
9363
9364 TRY
9365 {
9366 ops->create_sals_from_location (location, &canonical, type_wanted);
9367 }
9368 CATCH (e, RETURN_MASK_ERROR)
9369 {
9370 /* If caller is interested in rc value from parse, set
9371 value. */
9372 if (e.error == NOT_FOUND_ERROR)
9373 {
9374 /* If pending breakpoint support is turned off, throw
9375 error. */
9376
9377 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9378 throw_exception (e);
9379
9380 exception_print (gdb_stderr, e);
9381
9382 /* If pending breakpoint support is auto query and the user
9383 selects no, then simply return the error code. */
9384 if (pending_break_support == AUTO_BOOLEAN_AUTO
9385 && !nquery (_("Make %s pending on future shared library load? "),
9386 bptype_string (type_wanted)))
9387 return 0;
9388
9389 /* At this point, either the user was queried about setting
9390 a pending breakpoint and selected yes, or pending
9391 breakpoint behavior is on and thus a pending breakpoint
9392 is defaulted on behalf of the user. */
9393 pending = 1;
9394 }
9395 else
9396 throw_exception (e);
9397 }
9398 END_CATCH
9399
9400 if (!pending && canonical.lsals.empty ())
9401 return 0;
9402
9403 /* ----------------------------- SNIP -----------------------------
9404 Anything added to the cleanup chain beyond this point is assumed
9405 to be part of a breakpoint. If the breakpoint create succeeds
9406 then the memory is not reclaimed. */
9407 bkpt_chain = make_cleanup (null_cleanup, 0);
9408
9409 /* Resolve all line numbers to PC's and verify that the addresses
9410 are ok for the target. */
9411 if (!pending)
9412 {
9413 for (auto &lsal : canonical.lsals)
9414 breakpoint_sals_to_pc (lsal.sals);
9415 }
9416
9417 /* Fast tracepoints may have additional restrictions on location. */
9418 if (!pending && type_wanted == bp_fast_tracepoint)
9419 {
9420 for (const auto &lsal : canonical.lsals)
9421 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9422 }
9423
9424 /* Verify that condition can be parsed, before setting any
9425 breakpoints. Allocate a separate condition expression for each
9426 breakpoint. */
9427 if (!pending)
9428 {
9429 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9430 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9431
9432 if (parse_extra)
9433 {
9434 char *rest;
9435 char *cond;
9436
9437 const linespec_sals &lsal = canonical.lsals[0];
9438
9439 /* Here we only parse 'arg' to separate condition
9440 from thread number, so parsing in context of first
9441 sal is OK. When setting the breakpoint we'll
9442 re-parse it in context of each sal. */
9443
9444 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9445 &cond, &thread, &task, &rest);
9446 cond_string_copy.reset (cond);
9447 extra_string_copy.reset (rest);
9448 }
9449 else
9450 {
9451 if (type_wanted != bp_dprintf
9452 && extra_string != NULL && *extra_string != '\0')
9453 error (_("Garbage '%s' at end of location"), extra_string);
9454
9455 /* Create a private copy of condition string. */
9456 if (cond_string)
9457 cond_string_copy.reset (xstrdup (cond_string));
9458 /* Create a private copy of any extra string. */
9459 if (extra_string)
9460 extra_string_copy.reset (xstrdup (extra_string));
9461 }
9462
9463 ops->create_breakpoints_sal (gdbarch, &canonical,
9464 std::move (cond_string_copy),
9465 std::move (extra_string_copy),
9466 type_wanted,
9467 tempflag ? disp_del : disp_donttouch,
9468 thread, task, ignore_count, ops,
9469 from_tty, enabled, internal, flags);
9470 }
9471 else
9472 {
9473 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9474
9475 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9476 b->location = copy_event_location (location);
9477
9478 if (parse_extra)
9479 b->cond_string = NULL;
9480 else
9481 {
9482 /* Create a private copy of condition string. */
9483 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9484 b->thread = thread;
9485 }
9486
9487 /* Create a private copy of any extra string. */
9488 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9489 b->ignore_count = ignore_count;
9490 b->disposition = tempflag ? disp_del : disp_donttouch;
9491 b->condition_not_parsed = 1;
9492 b->enable_state = enabled ? bp_enabled : bp_disabled;
9493 if ((type_wanted != bp_breakpoint
9494 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9495 b->pspace = current_program_space;
9496
9497 install_breakpoint (internal, std::move (b), 0);
9498 }
9499
9500 if (canonical.lsals.size () > 1)
9501 {
9502 warning (_("Multiple breakpoints were set.\nUse the "
9503 "\"delete\" command to delete unwanted breakpoints."));
9504 prev_breakpoint_count = prev_bkpt_count;
9505 }
9506
9507 /* That's it. Discard the cleanups for data inserted into the
9508 breakpoint. */
9509 discard_cleanups (bkpt_chain);
9510
9511 /* error call may happen here - have BKPT_CHAIN already discarded. */
9512 update_global_location_list (UGLL_MAY_INSERT);
9513
9514 return 1;
9515 }
9516
9517 /* Set a breakpoint.
9518 ARG is a string describing breakpoint address,
9519 condition, and thread.
9520 FLAG specifies if a breakpoint is hardware on,
9521 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9522 and BP_TEMPFLAG. */
9523
9524 static void
9525 break_command_1 (const char *arg, int flag, int from_tty)
9526 {
9527 int tempflag = flag & BP_TEMPFLAG;
9528 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9529 ? bp_hardware_breakpoint
9530 : bp_breakpoint);
9531 struct breakpoint_ops *ops;
9532
9533 event_location_up location = string_to_event_location (&arg, current_language);
9534
9535 /* Matching breakpoints on probes. */
9536 if (location != NULL
9537 && event_location_type (location.get ()) == PROBE_LOCATION)
9538 ops = &bkpt_probe_breakpoint_ops;
9539 else
9540 ops = &bkpt_breakpoint_ops;
9541
9542 create_breakpoint (get_current_arch (),
9543 location.get (),
9544 NULL, 0, arg, 1 /* parse arg */,
9545 tempflag, type_wanted,
9546 0 /* Ignore count */,
9547 pending_break_support,
9548 ops,
9549 from_tty,
9550 1 /* enabled */,
9551 0 /* internal */,
9552 0);
9553 }
9554
9555 /* Helper function for break_command_1 and disassemble_command. */
9556
9557 void
9558 resolve_sal_pc (struct symtab_and_line *sal)
9559 {
9560 CORE_ADDR pc;
9561
9562 if (sal->pc == 0 && sal->symtab != NULL)
9563 {
9564 if (!find_line_pc (sal->symtab, sal->line, &pc))
9565 error (_("No line %d in file \"%s\"."),
9566 sal->line, symtab_to_filename_for_display (sal->symtab));
9567 sal->pc = pc;
9568
9569 /* If this SAL corresponds to a breakpoint inserted using a line
9570 number, then skip the function prologue if necessary. */
9571 if (sal->explicit_line)
9572 skip_prologue_sal (sal);
9573 }
9574
9575 if (sal->section == 0 && sal->symtab != NULL)
9576 {
9577 const struct blockvector *bv;
9578 const struct block *b;
9579 struct symbol *sym;
9580
9581 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9582 SYMTAB_COMPUNIT (sal->symtab));
9583 if (bv != NULL)
9584 {
9585 sym = block_linkage_function (b);
9586 if (sym != NULL)
9587 {
9588 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9589 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9590 sym);
9591 }
9592 else
9593 {
9594 /* It really is worthwhile to have the section, so we'll
9595 just have to look harder. This case can be executed
9596 if we have line numbers but no functions (as can
9597 happen in assembly source). */
9598
9599 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9600 switch_to_program_space_and_thread (sal->pspace);
9601
9602 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9603 if (msym.minsym)
9604 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9605 }
9606 }
9607 }
9608 }
9609
9610 void
9611 break_command (const char *arg, int from_tty)
9612 {
9613 break_command_1 (arg, 0, from_tty);
9614 }
9615
9616 void
9617 tbreak_command (const char *arg, int from_tty)
9618 {
9619 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9620 }
9621
9622 static void
9623 hbreak_command (const char *arg, int from_tty)
9624 {
9625 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9626 }
9627
9628 static void
9629 thbreak_command (const char *arg, int from_tty)
9630 {
9631 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9632 }
9633
9634 static void
9635 stop_command (const char *arg, int from_tty)
9636 {
9637 printf_filtered (_("Specify the type of breakpoint to set.\n\
9638 Usage: stop in <function | address>\n\
9639 stop at <line>\n"));
9640 }
9641
9642 static void
9643 stopin_command (const char *arg, int from_tty)
9644 {
9645 int badInput = 0;
9646
9647 if (arg == (char *) NULL)
9648 badInput = 1;
9649 else if (*arg != '*')
9650 {
9651 const char *argptr = arg;
9652 int hasColon = 0;
9653
9654 /* Look for a ':'. If this is a line number specification, then
9655 say it is bad, otherwise, it should be an address or
9656 function/method name. */
9657 while (*argptr && !hasColon)
9658 {
9659 hasColon = (*argptr == ':');
9660 argptr++;
9661 }
9662
9663 if (hasColon)
9664 badInput = (*argptr != ':'); /* Not a class::method */
9665 else
9666 badInput = isdigit (*arg); /* a simple line number */
9667 }
9668
9669 if (badInput)
9670 printf_filtered (_("Usage: stop in <function | address>\n"));
9671 else
9672 break_command_1 (arg, 0, from_tty);
9673 }
9674
9675 static void
9676 stopat_command (const char *arg, int from_tty)
9677 {
9678 int badInput = 0;
9679
9680 if (arg == (char *) NULL || *arg == '*') /* no line number */
9681 badInput = 1;
9682 else
9683 {
9684 const char *argptr = arg;
9685 int hasColon = 0;
9686
9687 /* Look for a ':'. If there is a '::' then get out, otherwise
9688 it is probably a line number. */
9689 while (*argptr && !hasColon)
9690 {
9691 hasColon = (*argptr == ':');
9692 argptr++;
9693 }
9694
9695 if (hasColon)
9696 badInput = (*argptr == ':'); /* we have class::method */
9697 else
9698 badInput = !isdigit (*arg); /* not a line number */
9699 }
9700
9701 if (badInput)
9702 printf_filtered (_("Usage: stop at <line>\n"));
9703 else
9704 break_command_1 (arg, 0, from_tty);
9705 }
9706
9707 /* The dynamic printf command is mostly like a regular breakpoint, but
9708 with a prewired command list consisting of a single output command,
9709 built from extra arguments supplied on the dprintf command
9710 line. */
9711
9712 static void
9713 dprintf_command (const char *arg, int from_tty)
9714 {
9715 event_location_up location = string_to_event_location (&arg, current_language);
9716
9717 /* If non-NULL, ARG should have been advanced past the location;
9718 the next character must be ','. */
9719 if (arg != NULL)
9720 {
9721 if (arg[0] != ',' || arg[1] == '\0')
9722 error (_("Format string required"));
9723 else
9724 {
9725 /* Skip the comma. */
9726 ++arg;
9727 }
9728 }
9729
9730 create_breakpoint (get_current_arch (),
9731 location.get (),
9732 NULL, 0, arg, 1 /* parse arg */,
9733 0, bp_dprintf,
9734 0 /* Ignore count */,
9735 pending_break_support,
9736 &dprintf_breakpoint_ops,
9737 from_tty,
9738 1 /* enabled */,
9739 0 /* internal */,
9740 0);
9741 }
9742
9743 static void
9744 agent_printf_command (const char *arg, int from_tty)
9745 {
9746 error (_("May only run agent-printf on the target"));
9747 }
9748
9749 /* Implement the "breakpoint_hit" breakpoint_ops method for
9750 ranged breakpoints. */
9751
9752 static int
9753 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9754 const address_space *aspace,
9755 CORE_ADDR bp_addr,
9756 const struct target_waitstatus *ws)
9757 {
9758 if (ws->kind != TARGET_WAITKIND_STOPPED
9759 || ws->value.sig != GDB_SIGNAL_TRAP)
9760 return 0;
9761
9762 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9763 bl->length, aspace, bp_addr);
9764 }
9765
9766 /* Implement the "resources_needed" breakpoint_ops method for
9767 ranged breakpoints. */
9768
9769 static int
9770 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9771 {
9772 return target_ranged_break_num_registers ();
9773 }
9774
9775 /* Implement the "print_it" breakpoint_ops method for
9776 ranged breakpoints. */
9777
9778 static enum print_stop_action
9779 print_it_ranged_breakpoint (bpstat bs)
9780 {
9781 struct breakpoint *b = bs->breakpoint_at;
9782 struct bp_location *bl = b->loc;
9783 struct ui_out *uiout = current_uiout;
9784
9785 gdb_assert (b->type == bp_hardware_breakpoint);
9786
9787 /* Ranged breakpoints have only one location. */
9788 gdb_assert (bl && bl->next == NULL);
9789
9790 annotate_breakpoint (b->number);
9791
9792 maybe_print_thread_hit_breakpoint (uiout);
9793
9794 if (b->disposition == disp_del)
9795 uiout->text ("Temporary ranged breakpoint ");
9796 else
9797 uiout->text ("Ranged breakpoint ");
9798 if (uiout->is_mi_like_p ())
9799 {
9800 uiout->field_string ("reason",
9801 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9802 uiout->field_string ("disp", bpdisp_text (b->disposition));
9803 }
9804 uiout->field_int ("bkptno", b->number);
9805 uiout->text (", ");
9806
9807 return PRINT_SRC_AND_LOC;
9808 }
9809
9810 /* Implement the "print_one" breakpoint_ops method for
9811 ranged breakpoints. */
9812
9813 static void
9814 print_one_ranged_breakpoint (struct breakpoint *b,
9815 struct bp_location **last_loc)
9816 {
9817 struct bp_location *bl = b->loc;
9818 struct value_print_options opts;
9819 struct ui_out *uiout = current_uiout;
9820
9821 /* Ranged breakpoints have only one location. */
9822 gdb_assert (bl && bl->next == NULL);
9823
9824 get_user_print_options (&opts);
9825
9826 if (opts.addressprint)
9827 /* We don't print the address range here, it will be printed later
9828 by print_one_detail_ranged_breakpoint. */
9829 uiout->field_skip ("addr");
9830 annotate_field (5);
9831 print_breakpoint_location (b, bl);
9832 *last_loc = bl;
9833 }
9834
9835 /* Implement the "print_one_detail" breakpoint_ops method for
9836 ranged breakpoints. */
9837
9838 static void
9839 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9840 struct ui_out *uiout)
9841 {
9842 CORE_ADDR address_start, address_end;
9843 struct bp_location *bl = b->loc;
9844 string_file stb;
9845
9846 gdb_assert (bl);
9847
9848 address_start = bl->address;
9849 address_end = address_start + bl->length - 1;
9850
9851 uiout->text ("\taddress range: ");
9852 stb.printf ("[%s, %s]",
9853 print_core_address (bl->gdbarch, address_start),
9854 print_core_address (bl->gdbarch, address_end));
9855 uiout->field_stream ("addr", stb);
9856 uiout->text ("\n");
9857 }
9858
9859 /* Implement the "print_mention" breakpoint_ops method for
9860 ranged breakpoints. */
9861
9862 static void
9863 print_mention_ranged_breakpoint (struct breakpoint *b)
9864 {
9865 struct bp_location *bl = b->loc;
9866 struct ui_out *uiout = current_uiout;
9867
9868 gdb_assert (bl);
9869 gdb_assert (b->type == bp_hardware_breakpoint);
9870
9871 if (uiout->is_mi_like_p ())
9872 return;
9873
9874 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9875 b->number, paddress (bl->gdbarch, bl->address),
9876 paddress (bl->gdbarch, bl->address + bl->length - 1));
9877 }
9878
9879 /* Implement the "print_recreate" breakpoint_ops method for
9880 ranged breakpoints. */
9881
9882 static void
9883 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9884 {
9885 fprintf_unfiltered (fp, "break-range %s, %s",
9886 event_location_to_string (b->location.get ()),
9887 event_location_to_string (b->location_range_end.get ()));
9888 print_recreate_thread (b, fp);
9889 }
9890
9891 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9892
9893 static struct breakpoint_ops ranged_breakpoint_ops;
9894
9895 /* Find the address where the end of the breakpoint range should be
9896 placed, given the SAL of the end of the range. This is so that if
9897 the user provides a line number, the end of the range is set to the
9898 last instruction of the given line. */
9899
9900 static CORE_ADDR
9901 find_breakpoint_range_end (struct symtab_and_line sal)
9902 {
9903 CORE_ADDR end;
9904
9905 /* If the user provided a PC value, use it. Otherwise,
9906 find the address of the end of the given location. */
9907 if (sal.explicit_pc)
9908 end = sal.pc;
9909 else
9910 {
9911 int ret;
9912 CORE_ADDR start;
9913
9914 ret = find_line_pc_range (sal, &start, &end);
9915 if (!ret)
9916 error (_("Could not find location of the end of the range."));
9917
9918 /* find_line_pc_range returns the start of the next line. */
9919 end--;
9920 }
9921
9922 return end;
9923 }
9924
9925 /* Implement the "break-range" CLI command. */
9926
9927 static void
9928 break_range_command (const char *arg, int from_tty)
9929 {
9930 const char *arg_start;
9931 struct linespec_result canonical_start, canonical_end;
9932 int bp_count, can_use_bp, length;
9933 CORE_ADDR end;
9934 struct breakpoint *b;
9935
9936 /* We don't support software ranged breakpoints. */
9937 if (target_ranged_break_num_registers () < 0)
9938 error (_("This target does not support hardware ranged breakpoints."));
9939
9940 bp_count = hw_breakpoint_used_count ();
9941 bp_count += target_ranged_break_num_registers ();
9942 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9943 bp_count, 0);
9944 if (can_use_bp < 0)
9945 error (_("Hardware breakpoints used exceeds limit."));
9946
9947 arg = skip_spaces (arg);
9948 if (arg == NULL || arg[0] == '\0')
9949 error(_("No address range specified."));
9950
9951 arg_start = arg;
9952 event_location_up start_location = string_to_event_location (&arg,
9953 current_language);
9954 parse_breakpoint_sals (start_location.get (), &canonical_start);
9955
9956 if (arg[0] != ',')
9957 error (_("Too few arguments."));
9958 else if (canonical_start.lsals.empty ())
9959 error (_("Could not find location of the beginning of the range."));
9960
9961 const linespec_sals &lsal_start = canonical_start.lsals[0];
9962
9963 if (canonical_start.lsals.size () > 1
9964 || lsal_start.sals.size () != 1)
9965 error (_("Cannot create a ranged breakpoint with multiple locations."));
9966
9967 const symtab_and_line &sal_start = lsal_start.sals[0];
9968 std::string addr_string_start (arg_start, arg - arg_start);
9969
9970 arg++; /* Skip the comma. */
9971 arg = skip_spaces (arg);
9972
9973 /* Parse the end location. */
9974
9975 arg_start = arg;
9976
9977 /* We call decode_line_full directly here instead of using
9978 parse_breakpoint_sals because we need to specify the start location's
9979 symtab and line as the default symtab and line for the end of the
9980 range. This makes it possible to have ranges like "foo.c:27, +14",
9981 where +14 means 14 lines from the start location. */
9982 event_location_up end_location = string_to_event_location (&arg,
9983 current_language);
9984 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9985 sal_start.symtab, sal_start.line,
9986 &canonical_end, NULL, NULL);
9987
9988 if (canonical_end.lsals.empty ())
9989 error (_("Could not find location of the end of the range."));
9990
9991 const linespec_sals &lsal_end = canonical_end.lsals[0];
9992 if (canonical_end.lsals.size () > 1
9993 || lsal_end.sals.size () != 1)
9994 error (_("Cannot create a ranged breakpoint with multiple locations."));
9995
9996 const symtab_and_line &sal_end = lsal_end.sals[0];
9997
9998 end = find_breakpoint_range_end (sal_end);
9999 if (sal_start.pc > end)
10000 error (_("Invalid address range, end precedes start."));
10001
10002 length = end - sal_start.pc + 1;
10003 if (length < 0)
10004 /* Length overflowed. */
10005 error (_("Address range too large."));
10006 else if (length == 1)
10007 {
10008 /* This range is simple enough to be handled by
10009 the `hbreak' command. */
10010 hbreak_command (&addr_string_start[0], 1);
10011
10012 return;
10013 }
10014
10015 /* Now set up the breakpoint. */
10016 b = set_raw_breakpoint (get_current_arch (), sal_start,
10017 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10018 set_breakpoint_count (breakpoint_count + 1);
10019 b->number = breakpoint_count;
10020 b->disposition = disp_donttouch;
10021 b->location = std::move (start_location);
10022 b->location_range_end = std::move (end_location);
10023 b->loc->length = length;
10024
10025 mention (b);
10026 observer_notify_breakpoint_created (b);
10027 update_global_location_list (UGLL_MAY_INSERT);
10028 }
10029
10030 /* Return non-zero if EXP is verified as constant. Returned zero
10031 means EXP is variable. Also the constant detection may fail for
10032 some constant expressions and in such case still falsely return
10033 zero. */
10034
10035 static int
10036 watchpoint_exp_is_const (const struct expression *exp)
10037 {
10038 int i = exp->nelts;
10039
10040 while (i > 0)
10041 {
10042 int oplenp, argsp;
10043
10044 /* We are only interested in the descriptor of each element. */
10045 operator_length (exp, i, &oplenp, &argsp);
10046 i -= oplenp;
10047
10048 switch (exp->elts[i].opcode)
10049 {
10050 case BINOP_ADD:
10051 case BINOP_SUB:
10052 case BINOP_MUL:
10053 case BINOP_DIV:
10054 case BINOP_REM:
10055 case BINOP_MOD:
10056 case BINOP_LSH:
10057 case BINOP_RSH:
10058 case BINOP_LOGICAL_AND:
10059 case BINOP_LOGICAL_OR:
10060 case BINOP_BITWISE_AND:
10061 case BINOP_BITWISE_IOR:
10062 case BINOP_BITWISE_XOR:
10063 case BINOP_EQUAL:
10064 case BINOP_NOTEQUAL:
10065 case BINOP_LESS:
10066 case BINOP_GTR:
10067 case BINOP_LEQ:
10068 case BINOP_GEQ:
10069 case BINOP_REPEAT:
10070 case BINOP_COMMA:
10071 case BINOP_EXP:
10072 case BINOP_MIN:
10073 case BINOP_MAX:
10074 case BINOP_INTDIV:
10075 case BINOP_CONCAT:
10076 case TERNOP_COND:
10077 case TERNOP_SLICE:
10078
10079 case OP_LONG:
10080 case OP_FLOAT:
10081 case OP_LAST:
10082 case OP_COMPLEX:
10083 case OP_STRING:
10084 case OP_ARRAY:
10085 case OP_TYPE:
10086 case OP_TYPEOF:
10087 case OP_DECLTYPE:
10088 case OP_TYPEID:
10089 case OP_NAME:
10090 case OP_OBJC_NSSTRING:
10091
10092 case UNOP_NEG:
10093 case UNOP_LOGICAL_NOT:
10094 case UNOP_COMPLEMENT:
10095 case UNOP_ADDR:
10096 case UNOP_HIGH:
10097 case UNOP_CAST:
10098
10099 case UNOP_CAST_TYPE:
10100 case UNOP_REINTERPRET_CAST:
10101 case UNOP_DYNAMIC_CAST:
10102 /* Unary, binary and ternary operators: We have to check
10103 their operands. If they are constant, then so is the
10104 result of that operation. For instance, if A and B are
10105 determined to be constants, then so is "A + B".
10106
10107 UNOP_IND is one exception to the rule above, because the
10108 value of *ADDR is not necessarily a constant, even when
10109 ADDR is. */
10110 break;
10111
10112 case OP_VAR_VALUE:
10113 /* Check whether the associated symbol is a constant.
10114
10115 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10116 possible that a buggy compiler could mark a variable as
10117 constant even when it is not, and TYPE_CONST would return
10118 true in this case, while SYMBOL_CLASS wouldn't.
10119
10120 We also have to check for function symbols because they
10121 are always constant. */
10122 {
10123 struct symbol *s = exp->elts[i + 2].symbol;
10124
10125 if (SYMBOL_CLASS (s) != LOC_BLOCK
10126 && SYMBOL_CLASS (s) != LOC_CONST
10127 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10128 return 0;
10129 break;
10130 }
10131
10132 /* The default action is to return 0 because we are using
10133 the optimistic approach here: If we don't know something,
10134 then it is not a constant. */
10135 default:
10136 return 0;
10137 }
10138 }
10139
10140 return 1;
10141 }
10142
10143 /* Watchpoint destructor. */
10144
10145 watchpoint::~watchpoint ()
10146 {
10147 xfree (this->exp_string);
10148 xfree (this->exp_string_reparse);
10149 value_free (this->val);
10150 }
10151
10152 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10153
10154 static void
10155 re_set_watchpoint (struct breakpoint *b)
10156 {
10157 struct watchpoint *w = (struct watchpoint *) b;
10158
10159 /* Watchpoint can be either on expression using entirely global
10160 variables, or it can be on local variables.
10161
10162 Watchpoints of the first kind are never auto-deleted, and even
10163 persist across program restarts. Since they can use variables
10164 from shared libraries, we need to reparse expression as libraries
10165 are loaded and unloaded.
10166
10167 Watchpoints on local variables can also change meaning as result
10168 of solib event. For example, if a watchpoint uses both a local
10169 and a global variables in expression, it's a local watchpoint,
10170 but unloading of a shared library will make the expression
10171 invalid. This is not a very common use case, but we still
10172 re-evaluate expression, to avoid surprises to the user.
10173
10174 Note that for local watchpoints, we re-evaluate it only if
10175 watchpoints frame id is still valid. If it's not, it means the
10176 watchpoint is out of scope and will be deleted soon. In fact,
10177 I'm not sure we'll ever be called in this case.
10178
10179 If a local watchpoint's frame id is still valid, then
10180 w->exp_valid_block is likewise valid, and we can safely use it.
10181
10182 Don't do anything about disabled watchpoints, since they will be
10183 reevaluated again when enabled. */
10184 update_watchpoint (w, 1 /* reparse */);
10185 }
10186
10187 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10188
10189 static int
10190 insert_watchpoint (struct bp_location *bl)
10191 {
10192 struct watchpoint *w = (struct watchpoint *) bl->owner;
10193 int length = w->exact ? 1 : bl->length;
10194
10195 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10196 w->cond_exp.get ());
10197 }
10198
10199 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10200
10201 static int
10202 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10203 {
10204 struct watchpoint *w = (struct watchpoint *) bl->owner;
10205 int length = w->exact ? 1 : bl->length;
10206
10207 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10208 w->cond_exp.get ());
10209 }
10210
10211 static int
10212 breakpoint_hit_watchpoint (const struct bp_location *bl,
10213 const address_space *aspace, CORE_ADDR bp_addr,
10214 const struct target_waitstatus *ws)
10215 {
10216 struct breakpoint *b = bl->owner;
10217 struct watchpoint *w = (struct watchpoint *) b;
10218
10219 /* Continuable hardware watchpoints are treated as non-existent if the
10220 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10221 some data address). Otherwise gdb won't stop on a break instruction
10222 in the code (not from a breakpoint) when a hardware watchpoint has
10223 been defined. Also skip watchpoints which we know did not trigger
10224 (did not match the data address). */
10225 if (is_hardware_watchpoint (b)
10226 && w->watchpoint_triggered == watch_triggered_no)
10227 return 0;
10228
10229 return 1;
10230 }
10231
10232 static void
10233 check_status_watchpoint (bpstat bs)
10234 {
10235 gdb_assert (is_watchpoint (bs->breakpoint_at));
10236
10237 bpstat_check_watchpoint (bs);
10238 }
10239
10240 /* Implement the "resources_needed" breakpoint_ops method for
10241 hardware watchpoints. */
10242
10243 static int
10244 resources_needed_watchpoint (const struct bp_location *bl)
10245 {
10246 struct watchpoint *w = (struct watchpoint *) bl->owner;
10247 int length = w->exact? 1 : bl->length;
10248
10249 return target_region_ok_for_hw_watchpoint (bl->address, length);
10250 }
10251
10252 /* Implement the "works_in_software_mode" breakpoint_ops method for
10253 hardware watchpoints. */
10254
10255 static int
10256 works_in_software_mode_watchpoint (const struct breakpoint *b)
10257 {
10258 /* Read and access watchpoints only work with hardware support. */
10259 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10260 }
10261
10262 static enum print_stop_action
10263 print_it_watchpoint (bpstat bs)
10264 {
10265 struct breakpoint *b;
10266 enum print_stop_action result;
10267 struct watchpoint *w;
10268 struct ui_out *uiout = current_uiout;
10269
10270 gdb_assert (bs->bp_location_at != NULL);
10271
10272 b = bs->breakpoint_at;
10273 w = (struct watchpoint *) b;
10274
10275 annotate_watchpoint (b->number);
10276 maybe_print_thread_hit_breakpoint (uiout);
10277
10278 string_file stb;
10279
10280 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10281 switch (b->type)
10282 {
10283 case bp_watchpoint:
10284 case bp_hardware_watchpoint:
10285 if (uiout->is_mi_like_p ())
10286 uiout->field_string
10287 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10288 mention (b);
10289 tuple_emitter.emplace (uiout, "value");
10290 uiout->text ("\nOld value = ");
10291 watchpoint_value_print (bs->old_val, &stb);
10292 uiout->field_stream ("old", stb);
10293 uiout->text ("\nNew value = ");
10294 watchpoint_value_print (w->val, &stb);
10295 uiout->field_stream ("new", stb);
10296 uiout->text ("\n");
10297 /* More than one watchpoint may have been triggered. */
10298 result = PRINT_UNKNOWN;
10299 break;
10300
10301 case bp_read_watchpoint:
10302 if (uiout->is_mi_like_p ())
10303 uiout->field_string
10304 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10305 mention (b);
10306 tuple_emitter.emplace (uiout, "value");
10307 uiout->text ("\nValue = ");
10308 watchpoint_value_print (w->val, &stb);
10309 uiout->field_stream ("value", stb);
10310 uiout->text ("\n");
10311 result = PRINT_UNKNOWN;
10312 break;
10313
10314 case bp_access_watchpoint:
10315 if (bs->old_val != NULL)
10316 {
10317 if (uiout->is_mi_like_p ())
10318 uiout->field_string
10319 ("reason",
10320 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10321 mention (b);
10322 tuple_emitter.emplace (uiout, "value");
10323 uiout->text ("\nOld value = ");
10324 watchpoint_value_print (bs->old_val, &stb);
10325 uiout->field_stream ("old", stb);
10326 uiout->text ("\nNew value = ");
10327 }
10328 else
10329 {
10330 mention (b);
10331 if (uiout->is_mi_like_p ())
10332 uiout->field_string
10333 ("reason",
10334 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10335 tuple_emitter.emplace (uiout, "value");
10336 uiout->text ("\nValue = ");
10337 }
10338 watchpoint_value_print (w->val, &stb);
10339 uiout->field_stream ("new", stb);
10340 uiout->text ("\n");
10341 result = PRINT_UNKNOWN;
10342 break;
10343 default:
10344 result = PRINT_UNKNOWN;
10345 }
10346
10347 return result;
10348 }
10349
10350 /* Implement the "print_mention" breakpoint_ops method for hardware
10351 watchpoints. */
10352
10353 static void
10354 print_mention_watchpoint (struct breakpoint *b)
10355 {
10356 struct watchpoint *w = (struct watchpoint *) b;
10357 struct ui_out *uiout = current_uiout;
10358 const char *tuple_name;
10359
10360 switch (b->type)
10361 {
10362 case bp_watchpoint:
10363 uiout->text ("Watchpoint ");
10364 tuple_name = "wpt";
10365 break;
10366 case bp_hardware_watchpoint:
10367 uiout->text ("Hardware watchpoint ");
10368 tuple_name = "wpt";
10369 break;
10370 case bp_read_watchpoint:
10371 uiout->text ("Hardware read watchpoint ");
10372 tuple_name = "hw-rwpt";
10373 break;
10374 case bp_access_watchpoint:
10375 uiout->text ("Hardware access (read/write) watchpoint ");
10376 tuple_name = "hw-awpt";
10377 break;
10378 default:
10379 internal_error (__FILE__, __LINE__,
10380 _("Invalid hardware watchpoint type."));
10381 }
10382
10383 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10384 uiout->field_int ("number", b->number);
10385 uiout->text (": ");
10386 uiout->field_string ("exp", w->exp_string);
10387 }
10388
10389 /* Implement the "print_recreate" breakpoint_ops method for
10390 watchpoints. */
10391
10392 static void
10393 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10394 {
10395 struct watchpoint *w = (struct watchpoint *) b;
10396
10397 switch (b->type)
10398 {
10399 case bp_watchpoint:
10400 case bp_hardware_watchpoint:
10401 fprintf_unfiltered (fp, "watch");
10402 break;
10403 case bp_read_watchpoint:
10404 fprintf_unfiltered (fp, "rwatch");
10405 break;
10406 case bp_access_watchpoint:
10407 fprintf_unfiltered (fp, "awatch");
10408 break;
10409 default:
10410 internal_error (__FILE__, __LINE__,
10411 _("Invalid watchpoint type."));
10412 }
10413
10414 fprintf_unfiltered (fp, " %s", w->exp_string);
10415 print_recreate_thread (b, fp);
10416 }
10417
10418 /* Implement the "explains_signal" breakpoint_ops method for
10419 watchpoints. */
10420
10421 static int
10422 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10423 {
10424 /* A software watchpoint cannot cause a signal other than
10425 GDB_SIGNAL_TRAP. */
10426 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10427 return 0;
10428
10429 return 1;
10430 }
10431
10432 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10433
10434 static struct breakpoint_ops watchpoint_breakpoint_ops;
10435
10436 /* Implement the "insert" breakpoint_ops method for
10437 masked hardware watchpoints. */
10438
10439 static int
10440 insert_masked_watchpoint (struct bp_location *bl)
10441 {
10442 struct watchpoint *w = (struct watchpoint *) bl->owner;
10443
10444 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10445 bl->watchpoint_type);
10446 }
10447
10448 /* Implement the "remove" breakpoint_ops method for
10449 masked hardware watchpoints. */
10450
10451 static int
10452 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10453 {
10454 struct watchpoint *w = (struct watchpoint *) bl->owner;
10455
10456 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10457 bl->watchpoint_type);
10458 }
10459
10460 /* Implement the "resources_needed" breakpoint_ops method for
10461 masked hardware watchpoints. */
10462
10463 static int
10464 resources_needed_masked_watchpoint (const struct bp_location *bl)
10465 {
10466 struct watchpoint *w = (struct watchpoint *) bl->owner;
10467
10468 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10469 }
10470
10471 /* Implement the "works_in_software_mode" breakpoint_ops method for
10472 masked hardware watchpoints. */
10473
10474 static int
10475 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10476 {
10477 return 0;
10478 }
10479
10480 /* Implement the "print_it" breakpoint_ops method for
10481 masked hardware watchpoints. */
10482
10483 static enum print_stop_action
10484 print_it_masked_watchpoint (bpstat bs)
10485 {
10486 struct breakpoint *b = bs->breakpoint_at;
10487 struct ui_out *uiout = current_uiout;
10488
10489 /* Masked watchpoints have only one location. */
10490 gdb_assert (b->loc && b->loc->next == NULL);
10491
10492 annotate_watchpoint (b->number);
10493 maybe_print_thread_hit_breakpoint (uiout);
10494
10495 switch (b->type)
10496 {
10497 case bp_hardware_watchpoint:
10498 if (uiout->is_mi_like_p ())
10499 uiout->field_string
10500 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10501 break;
10502
10503 case bp_read_watchpoint:
10504 if (uiout->is_mi_like_p ())
10505 uiout->field_string
10506 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10507 break;
10508
10509 case bp_access_watchpoint:
10510 if (uiout->is_mi_like_p ())
10511 uiout->field_string
10512 ("reason",
10513 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10514 break;
10515 default:
10516 internal_error (__FILE__, __LINE__,
10517 _("Invalid hardware watchpoint type."));
10518 }
10519
10520 mention (b);
10521 uiout->text (_("\n\
10522 Check the underlying instruction at PC for the memory\n\
10523 address and value which triggered this watchpoint.\n"));
10524 uiout->text ("\n");
10525
10526 /* More than one watchpoint may have been triggered. */
10527 return PRINT_UNKNOWN;
10528 }
10529
10530 /* Implement the "print_one_detail" breakpoint_ops method for
10531 masked hardware watchpoints. */
10532
10533 static void
10534 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10535 struct ui_out *uiout)
10536 {
10537 struct watchpoint *w = (struct watchpoint *) b;
10538
10539 /* Masked watchpoints have only one location. */
10540 gdb_assert (b->loc && b->loc->next == NULL);
10541
10542 uiout->text ("\tmask ");
10543 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10544 uiout->text ("\n");
10545 }
10546
10547 /* Implement the "print_mention" breakpoint_ops method for
10548 masked hardware watchpoints. */
10549
10550 static void
10551 print_mention_masked_watchpoint (struct breakpoint *b)
10552 {
10553 struct watchpoint *w = (struct watchpoint *) b;
10554 struct ui_out *uiout = current_uiout;
10555 const char *tuple_name;
10556
10557 switch (b->type)
10558 {
10559 case bp_hardware_watchpoint:
10560 uiout->text ("Masked hardware watchpoint ");
10561 tuple_name = "wpt";
10562 break;
10563 case bp_read_watchpoint:
10564 uiout->text ("Masked hardware read watchpoint ");
10565 tuple_name = "hw-rwpt";
10566 break;
10567 case bp_access_watchpoint:
10568 uiout->text ("Masked hardware access (read/write) watchpoint ");
10569 tuple_name = "hw-awpt";
10570 break;
10571 default:
10572 internal_error (__FILE__, __LINE__,
10573 _("Invalid hardware watchpoint type."));
10574 }
10575
10576 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10577 uiout->field_int ("number", b->number);
10578 uiout->text (": ");
10579 uiout->field_string ("exp", w->exp_string);
10580 }
10581
10582 /* Implement the "print_recreate" breakpoint_ops method for
10583 masked hardware watchpoints. */
10584
10585 static void
10586 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10587 {
10588 struct watchpoint *w = (struct watchpoint *) b;
10589 char tmp[40];
10590
10591 switch (b->type)
10592 {
10593 case bp_hardware_watchpoint:
10594 fprintf_unfiltered (fp, "watch");
10595 break;
10596 case bp_read_watchpoint:
10597 fprintf_unfiltered (fp, "rwatch");
10598 break;
10599 case bp_access_watchpoint:
10600 fprintf_unfiltered (fp, "awatch");
10601 break;
10602 default:
10603 internal_error (__FILE__, __LINE__,
10604 _("Invalid hardware watchpoint type."));
10605 }
10606
10607 sprintf_vma (tmp, w->hw_wp_mask);
10608 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10609 print_recreate_thread (b, fp);
10610 }
10611
10612 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10613
10614 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10615
10616 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10617
10618 static int
10619 is_masked_watchpoint (const struct breakpoint *b)
10620 {
10621 return b->ops == &masked_watchpoint_breakpoint_ops;
10622 }
10623
10624 /* accessflag: hw_write: watch write,
10625 hw_read: watch read,
10626 hw_access: watch access (read or write) */
10627 static void
10628 watch_command_1 (const char *arg, int accessflag, int from_tty,
10629 int just_location, int internal)
10630 {
10631 struct breakpoint *scope_breakpoint = NULL;
10632 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10633 struct value *val, *mark, *result;
10634 int saved_bitpos = 0, saved_bitsize = 0;
10635 const char *exp_start = NULL;
10636 const char *exp_end = NULL;
10637 const char *tok, *end_tok;
10638 int toklen = -1;
10639 const char *cond_start = NULL;
10640 const char *cond_end = NULL;
10641 enum bptype bp_type;
10642 int thread = -1;
10643 int pc = 0;
10644 /* Flag to indicate whether we are going to use masks for
10645 the hardware watchpoint. */
10646 int use_mask = 0;
10647 CORE_ADDR mask = 0;
10648
10649 /* Make sure that we actually have parameters to parse. */
10650 if (arg != NULL && arg[0] != '\0')
10651 {
10652 const char *value_start;
10653
10654 exp_end = arg + strlen (arg);
10655
10656 /* Look for "parameter value" pairs at the end
10657 of the arguments string. */
10658 for (tok = exp_end - 1; tok > arg; tok--)
10659 {
10660 /* Skip whitespace at the end of the argument list. */
10661 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10662 tok--;
10663
10664 /* Find the beginning of the last token.
10665 This is the value of the parameter. */
10666 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10667 tok--;
10668 value_start = tok + 1;
10669
10670 /* Skip whitespace. */
10671 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10672 tok--;
10673
10674 end_tok = tok;
10675
10676 /* Find the beginning of the second to last token.
10677 This is the parameter itself. */
10678 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10679 tok--;
10680 tok++;
10681 toklen = end_tok - tok + 1;
10682
10683 if (toklen == 6 && startswith (tok, "thread"))
10684 {
10685 struct thread_info *thr;
10686 /* At this point we've found a "thread" token, which means
10687 the user is trying to set a watchpoint that triggers
10688 only in a specific thread. */
10689 const char *endp;
10690
10691 if (thread != -1)
10692 error(_("You can specify only one thread."));
10693
10694 /* Extract the thread ID from the next token. */
10695 thr = parse_thread_id (value_start, &endp);
10696
10697 /* Check if the user provided a valid thread ID. */
10698 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10699 invalid_thread_id_error (value_start);
10700
10701 thread = thr->global_num;
10702 }
10703 else if (toklen == 4 && startswith (tok, "mask"))
10704 {
10705 /* We've found a "mask" token, which means the user wants to
10706 create a hardware watchpoint that is going to have the mask
10707 facility. */
10708 struct value *mask_value, *mark;
10709
10710 if (use_mask)
10711 error(_("You can specify only one mask."));
10712
10713 use_mask = just_location = 1;
10714
10715 mark = value_mark ();
10716 mask_value = parse_to_comma_and_eval (&value_start);
10717 mask = value_as_address (mask_value);
10718 value_free_to_mark (mark);
10719 }
10720 else
10721 /* We didn't recognize what we found. We should stop here. */
10722 break;
10723
10724 /* Truncate the string and get rid of the "parameter value" pair before
10725 the arguments string is parsed by the parse_exp_1 function. */
10726 exp_end = tok;
10727 }
10728 }
10729 else
10730 exp_end = arg;
10731
10732 /* Parse the rest of the arguments. From here on out, everything
10733 is in terms of a newly allocated string instead of the original
10734 ARG. */
10735 innermost_block = NULL;
10736 std::string expression (arg, exp_end - arg);
10737 exp_start = arg = expression.c_str ();
10738 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
10739 exp_end = arg;
10740 /* Remove trailing whitespace from the expression before saving it.
10741 This makes the eventual display of the expression string a bit
10742 prettier. */
10743 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10744 --exp_end;
10745
10746 /* Checking if the expression is not constant. */
10747 if (watchpoint_exp_is_const (exp.get ()))
10748 {
10749 int len;
10750
10751 len = exp_end - exp_start;
10752 while (len > 0 && isspace (exp_start[len - 1]))
10753 len--;
10754 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10755 }
10756
10757 exp_valid_block = innermost_block;
10758 mark = value_mark ();
10759 fetch_subexp_value (exp.get (), &pc, &val, &result, NULL, just_location);
10760
10761 if (val != NULL && just_location)
10762 {
10763 saved_bitpos = value_bitpos (val);
10764 saved_bitsize = value_bitsize (val);
10765 }
10766
10767 if (just_location)
10768 {
10769 int ret;
10770
10771 exp_valid_block = NULL;
10772 val = value_addr (result);
10773 release_value (val);
10774 value_free_to_mark (mark);
10775
10776 if (use_mask)
10777 {
10778 ret = target_masked_watch_num_registers (value_as_address (val),
10779 mask);
10780 if (ret == -1)
10781 error (_("This target does not support masked watchpoints."));
10782 else if (ret == -2)
10783 error (_("Invalid mask or memory region."));
10784 }
10785 }
10786 else if (val != NULL)
10787 release_value (val);
10788
10789 tok = skip_spaces (arg);
10790 end_tok = skip_to_space (tok);
10791
10792 toklen = end_tok - tok;
10793 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10794 {
10795 innermost_block = NULL;
10796 tok = cond_start = end_tok + 1;
10797 parse_exp_1 (&tok, 0, 0, 0);
10798
10799 /* The watchpoint expression may not be local, but the condition
10800 may still be. E.g.: `watch global if local > 0'. */
10801 cond_exp_valid_block = innermost_block;
10802
10803 cond_end = tok;
10804 }
10805 if (*tok)
10806 error (_("Junk at end of command."));
10807
10808 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10809
10810 /* Save this because create_internal_breakpoint below invalidates
10811 'wp_frame'. */
10812 frame_id watchpoint_frame = get_frame_id (wp_frame);
10813
10814 /* If the expression is "local", then set up a "watchpoint scope"
10815 breakpoint at the point where we've left the scope of the watchpoint
10816 expression. Create the scope breakpoint before the watchpoint, so
10817 that we will encounter it first in bpstat_stop_status. */
10818 if (exp_valid_block != NULL && wp_frame != NULL)
10819 {
10820 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10821
10822 if (frame_id_p (caller_frame_id))
10823 {
10824 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10825 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10826
10827 scope_breakpoint
10828 = create_internal_breakpoint (caller_arch, caller_pc,
10829 bp_watchpoint_scope,
10830 &momentary_breakpoint_ops);
10831
10832 /* create_internal_breakpoint could invalidate WP_FRAME. */
10833 wp_frame = NULL;
10834
10835 scope_breakpoint->enable_state = bp_enabled;
10836
10837 /* Automatically delete the breakpoint when it hits. */
10838 scope_breakpoint->disposition = disp_del;
10839
10840 /* Only break in the proper frame (help with recursion). */
10841 scope_breakpoint->frame_id = caller_frame_id;
10842
10843 /* Set the address at which we will stop. */
10844 scope_breakpoint->loc->gdbarch = caller_arch;
10845 scope_breakpoint->loc->requested_address = caller_pc;
10846 scope_breakpoint->loc->address
10847 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10848 scope_breakpoint->loc->requested_address,
10849 scope_breakpoint->type);
10850 }
10851 }
10852
10853 /* Now set up the breakpoint. We create all watchpoints as hardware
10854 watchpoints here even if hardware watchpoints are turned off, a call
10855 to update_watchpoint later in this function will cause the type to
10856 drop back to bp_watchpoint (software watchpoint) if required. */
10857
10858 if (accessflag == hw_read)
10859 bp_type = bp_read_watchpoint;
10860 else if (accessflag == hw_access)
10861 bp_type = bp_access_watchpoint;
10862 else
10863 bp_type = bp_hardware_watchpoint;
10864
10865 std::unique_ptr<watchpoint> w (new watchpoint ());
10866
10867 if (use_mask)
10868 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10869 &masked_watchpoint_breakpoint_ops);
10870 else
10871 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10872 &watchpoint_breakpoint_ops);
10873 w->thread = thread;
10874 w->disposition = disp_donttouch;
10875 w->pspace = current_program_space;
10876 w->exp = std::move (exp);
10877 w->exp_valid_block = exp_valid_block;
10878 w->cond_exp_valid_block = cond_exp_valid_block;
10879 if (just_location)
10880 {
10881 struct type *t = value_type (val);
10882 CORE_ADDR addr = value_as_address (val);
10883
10884 w->exp_string_reparse
10885 = current_language->la_watch_location_expression (t, addr).release ();
10886
10887 w->exp_string = xstrprintf ("-location %.*s",
10888 (int) (exp_end - exp_start), exp_start);
10889 }
10890 else
10891 w->exp_string = savestring (exp_start, exp_end - exp_start);
10892
10893 if (use_mask)
10894 {
10895 w->hw_wp_mask = mask;
10896 }
10897 else
10898 {
10899 w->val = val;
10900 w->val_bitpos = saved_bitpos;
10901 w->val_bitsize = saved_bitsize;
10902 w->val_valid = 1;
10903 }
10904
10905 if (cond_start)
10906 w->cond_string = savestring (cond_start, cond_end - cond_start);
10907 else
10908 w->cond_string = 0;
10909
10910 if (frame_id_p (watchpoint_frame))
10911 {
10912 w->watchpoint_frame = watchpoint_frame;
10913 w->watchpoint_thread = inferior_ptid;
10914 }
10915 else
10916 {
10917 w->watchpoint_frame = null_frame_id;
10918 w->watchpoint_thread = null_ptid;
10919 }
10920
10921 if (scope_breakpoint != NULL)
10922 {
10923 /* The scope breakpoint is related to the watchpoint. We will
10924 need to act on them together. */
10925 w->related_breakpoint = scope_breakpoint;
10926 scope_breakpoint->related_breakpoint = w.get ();
10927 }
10928
10929 if (!just_location)
10930 value_free_to_mark (mark);
10931
10932 /* Finally update the new watchpoint. This creates the locations
10933 that should be inserted. */
10934 update_watchpoint (w.get (), 1);
10935
10936 install_breakpoint (internal, std::move (w), 1);
10937 }
10938
10939 /* Return count of debug registers needed to watch the given expression.
10940 If the watchpoint cannot be handled in hardware return zero. */
10941
10942 static int
10943 can_use_hardware_watchpoint (struct value *v)
10944 {
10945 int found_memory_cnt = 0;
10946 struct value *head = v;
10947
10948 /* Did the user specifically forbid us to use hardware watchpoints? */
10949 if (!can_use_hw_watchpoints)
10950 return 0;
10951
10952 /* Make sure that the value of the expression depends only upon
10953 memory contents, and values computed from them within GDB. If we
10954 find any register references or function calls, we can't use a
10955 hardware watchpoint.
10956
10957 The idea here is that evaluating an expression generates a series
10958 of values, one holding the value of every subexpression. (The
10959 expression a*b+c has five subexpressions: a, b, a*b, c, and
10960 a*b+c.) GDB's values hold almost enough information to establish
10961 the criteria given above --- they identify memory lvalues,
10962 register lvalues, computed values, etcetera. So we can evaluate
10963 the expression, and then scan the chain of values that leaves
10964 behind to decide whether we can detect any possible change to the
10965 expression's final value using only hardware watchpoints.
10966
10967 However, I don't think that the values returned by inferior
10968 function calls are special in any way. So this function may not
10969 notice that an expression involving an inferior function call
10970 can't be watched with hardware watchpoints. FIXME. */
10971 for (; v; v = value_next (v))
10972 {
10973 if (VALUE_LVAL (v) == lval_memory)
10974 {
10975 if (v != head && value_lazy (v))
10976 /* A lazy memory lvalue in the chain is one that GDB never
10977 needed to fetch; we either just used its address (e.g.,
10978 `a' in `a.b') or we never needed it at all (e.g., `a'
10979 in `a,b'). This doesn't apply to HEAD; if that is
10980 lazy then it was not readable, but watch it anyway. */
10981 ;
10982 else
10983 {
10984 /* Ahh, memory we actually used! Check if we can cover
10985 it with hardware watchpoints. */
10986 struct type *vtype = check_typedef (value_type (v));
10987
10988 /* We only watch structs and arrays if user asked for it
10989 explicitly, never if they just happen to appear in a
10990 middle of some value chain. */
10991 if (v == head
10992 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10993 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10994 {
10995 CORE_ADDR vaddr = value_address (v);
10996 int len;
10997 int num_regs;
10998
10999 len = (target_exact_watchpoints
11000 && is_scalar_type_recursive (vtype))?
11001 1 : TYPE_LENGTH (value_type (v));
11002
11003 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11004 if (!num_regs)
11005 return 0;
11006 else
11007 found_memory_cnt += num_regs;
11008 }
11009 }
11010 }
11011 else if (VALUE_LVAL (v) != not_lval
11012 && deprecated_value_modifiable (v) == 0)
11013 return 0; /* These are values from the history (e.g., $1). */
11014 else if (VALUE_LVAL (v) == lval_register)
11015 return 0; /* Cannot watch a register with a HW watchpoint. */
11016 }
11017
11018 /* The expression itself looks suitable for using a hardware
11019 watchpoint, but give the target machine a chance to reject it. */
11020 return found_memory_cnt;
11021 }
11022
11023 void
11024 watch_command_wrapper (const char *arg, int from_tty, int internal)
11025 {
11026 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11027 }
11028
11029 /* A helper function that looks for the "-location" argument and then
11030 calls watch_command_1. */
11031
11032 static void
11033 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
11034 {
11035 int just_location = 0;
11036
11037 if (arg
11038 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11039 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11040 {
11041 arg = skip_spaces (arg);
11042 just_location = 1;
11043 }
11044
11045 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11046 }
11047
11048 static void
11049 watch_command (const char *arg, int from_tty)
11050 {
11051 watch_maybe_just_location (arg, hw_write, from_tty);
11052 }
11053
11054 void
11055 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
11056 {
11057 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11058 }
11059
11060 static void
11061 rwatch_command (const char *arg, int from_tty)
11062 {
11063 watch_maybe_just_location (arg, hw_read, from_tty);
11064 }
11065
11066 void
11067 awatch_command_wrapper (const char *arg, int from_tty, int internal)
11068 {
11069 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11070 }
11071
11072 static void
11073 awatch_command (const char *arg, int from_tty)
11074 {
11075 watch_maybe_just_location (arg, hw_access, from_tty);
11076 }
11077 \f
11078
11079 /* Data for the FSM that manages the until(location)/advance commands
11080 in infcmd.c. Here because it uses the mechanisms of
11081 breakpoints. */
11082
11083 struct until_break_fsm
11084 {
11085 /* The base class. */
11086 struct thread_fsm thread_fsm;
11087
11088 /* The thread that as current when the command was executed. */
11089 int thread;
11090
11091 /* The breakpoint set at the destination location. */
11092 struct breakpoint *location_breakpoint;
11093
11094 /* Breakpoint set at the return address in the caller frame. May be
11095 NULL. */
11096 struct breakpoint *caller_breakpoint;
11097 };
11098
11099 static void until_break_fsm_clean_up (struct thread_fsm *self,
11100 struct thread_info *thread);
11101 static int until_break_fsm_should_stop (struct thread_fsm *self,
11102 struct thread_info *thread);
11103 static enum async_reply_reason
11104 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11105
11106 /* until_break_fsm's vtable. */
11107
11108 static struct thread_fsm_ops until_break_fsm_ops =
11109 {
11110 NULL, /* dtor */
11111 until_break_fsm_clean_up,
11112 until_break_fsm_should_stop,
11113 NULL, /* return_value */
11114 until_break_fsm_async_reply_reason,
11115 };
11116
11117 /* Allocate a new until_break_command_fsm. */
11118
11119 static struct until_break_fsm *
11120 new_until_break_fsm (struct interp *cmd_interp, int thread,
11121 breakpoint_up &&location_breakpoint,
11122 breakpoint_up &&caller_breakpoint)
11123 {
11124 struct until_break_fsm *sm;
11125
11126 sm = XCNEW (struct until_break_fsm);
11127 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11128
11129 sm->thread = thread;
11130 sm->location_breakpoint = location_breakpoint.release ();
11131 sm->caller_breakpoint = caller_breakpoint.release ();
11132
11133 return sm;
11134 }
11135
11136 /* Implementation of the 'should_stop' FSM method for the
11137 until(location)/advance commands. */
11138
11139 static int
11140 until_break_fsm_should_stop (struct thread_fsm *self,
11141 struct thread_info *tp)
11142 {
11143 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11144
11145 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11146 sm->location_breakpoint) != NULL
11147 || (sm->caller_breakpoint != NULL
11148 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11149 sm->caller_breakpoint) != NULL))
11150 thread_fsm_set_finished (self);
11151
11152 return 1;
11153 }
11154
11155 /* Implementation of the 'clean_up' FSM method for the
11156 until(location)/advance commands. */
11157
11158 static void
11159 until_break_fsm_clean_up (struct thread_fsm *self,
11160 struct thread_info *thread)
11161 {
11162 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11163
11164 /* Clean up our temporary breakpoints. */
11165 if (sm->location_breakpoint != NULL)
11166 {
11167 delete_breakpoint (sm->location_breakpoint);
11168 sm->location_breakpoint = NULL;
11169 }
11170 if (sm->caller_breakpoint != NULL)
11171 {
11172 delete_breakpoint (sm->caller_breakpoint);
11173 sm->caller_breakpoint = NULL;
11174 }
11175 delete_longjmp_breakpoint (sm->thread);
11176 }
11177
11178 /* Implementation of the 'async_reply_reason' FSM method for the
11179 until(location)/advance commands. */
11180
11181 static enum async_reply_reason
11182 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11183 {
11184 return EXEC_ASYNC_LOCATION_REACHED;
11185 }
11186
11187 void
11188 until_break_command (const char *arg, int from_tty, int anywhere)
11189 {
11190 struct frame_info *frame;
11191 struct gdbarch *frame_gdbarch;
11192 struct frame_id stack_frame_id;
11193 struct frame_id caller_frame_id;
11194 struct cleanup *old_chain;
11195 int thread;
11196 struct thread_info *tp;
11197 struct until_break_fsm *sm;
11198
11199 clear_proceed_status (0);
11200
11201 /* Set a breakpoint where the user wants it and at return from
11202 this function. */
11203
11204 event_location_up location = string_to_event_location (&arg, current_language);
11205
11206 std::vector<symtab_and_line> sals
11207 = (last_displayed_sal_is_valid ()
11208 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11209 get_last_displayed_symtab (),
11210 get_last_displayed_line ())
11211 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11212 NULL, (struct symtab *) NULL, 0));
11213
11214 if (sals.size () != 1)
11215 error (_("Couldn't get information on specified line."));
11216
11217 symtab_and_line &sal = sals[0];
11218
11219 if (*arg)
11220 error (_("Junk at end of arguments."));
11221
11222 resolve_sal_pc (&sal);
11223
11224 tp = inferior_thread ();
11225 thread = tp->global_num;
11226
11227 old_chain = make_cleanup (null_cleanup, NULL);
11228
11229 /* Note linespec handling above invalidates the frame chain.
11230 Installing a breakpoint also invalidates the frame chain (as it
11231 may need to switch threads), so do any frame handling before
11232 that. */
11233
11234 frame = get_selected_frame (NULL);
11235 frame_gdbarch = get_frame_arch (frame);
11236 stack_frame_id = get_stack_frame_id (frame);
11237 caller_frame_id = frame_unwind_caller_id (frame);
11238
11239 /* Keep within the current frame, or in frames called by the current
11240 one. */
11241
11242 breakpoint_up caller_breakpoint;
11243 if (frame_id_p (caller_frame_id))
11244 {
11245 struct symtab_and_line sal2;
11246 struct gdbarch *caller_gdbarch;
11247
11248 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11249 sal2.pc = frame_unwind_caller_pc (frame);
11250 caller_gdbarch = frame_unwind_caller_arch (frame);
11251 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11252 sal2,
11253 caller_frame_id,
11254 bp_until);
11255
11256 set_longjmp_breakpoint (tp, caller_frame_id);
11257 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11258 }
11259
11260 /* set_momentary_breakpoint could invalidate FRAME. */
11261 frame = NULL;
11262
11263 breakpoint_up location_breakpoint;
11264 if (anywhere)
11265 /* If the user told us to continue until a specified location,
11266 we don't specify a frame at which we need to stop. */
11267 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11268 null_frame_id, bp_until);
11269 else
11270 /* Otherwise, specify the selected frame, because we want to stop
11271 only at the very same frame. */
11272 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11273 stack_frame_id, bp_until);
11274
11275 sm = new_until_break_fsm (command_interp (), tp->global_num,
11276 std::move (location_breakpoint),
11277 std::move (caller_breakpoint));
11278 tp->thread_fsm = &sm->thread_fsm;
11279
11280 discard_cleanups (old_chain);
11281
11282 proceed (-1, GDB_SIGNAL_DEFAULT);
11283 }
11284
11285 /* This function attempts to parse an optional "if <cond>" clause
11286 from the arg string. If one is not found, it returns NULL.
11287
11288 Else, it returns a pointer to the condition string. (It does not
11289 attempt to evaluate the string against a particular block.) And,
11290 it updates arg to point to the first character following the parsed
11291 if clause in the arg string. */
11292
11293 const char *
11294 ep_parse_optional_if_clause (const char **arg)
11295 {
11296 const char *cond_string;
11297
11298 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11299 return NULL;
11300
11301 /* Skip the "if" keyword. */
11302 (*arg) += 2;
11303
11304 /* Skip any extra leading whitespace, and record the start of the
11305 condition string. */
11306 *arg = skip_spaces (*arg);
11307 cond_string = *arg;
11308
11309 /* Assume that the condition occupies the remainder of the arg
11310 string. */
11311 (*arg) += strlen (cond_string);
11312
11313 return cond_string;
11314 }
11315
11316 /* Commands to deal with catching events, such as signals, exceptions,
11317 process start/exit, etc. */
11318
11319 typedef enum
11320 {
11321 catch_fork_temporary, catch_vfork_temporary,
11322 catch_fork_permanent, catch_vfork_permanent
11323 }
11324 catch_fork_kind;
11325
11326 static void
11327 catch_fork_command_1 (const char *arg, int from_tty,
11328 struct cmd_list_element *command)
11329 {
11330 struct gdbarch *gdbarch = get_current_arch ();
11331 const char *cond_string = NULL;
11332 catch_fork_kind fork_kind;
11333 int tempflag;
11334
11335 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11336 tempflag = (fork_kind == catch_fork_temporary
11337 || fork_kind == catch_vfork_temporary);
11338
11339 if (!arg)
11340 arg = "";
11341 arg = skip_spaces (arg);
11342
11343 /* The allowed syntax is:
11344 catch [v]fork
11345 catch [v]fork if <cond>
11346
11347 First, check if there's an if clause. */
11348 cond_string = ep_parse_optional_if_clause (&arg);
11349
11350 if ((*arg != '\0') && !isspace (*arg))
11351 error (_("Junk at end of arguments."));
11352
11353 /* If this target supports it, create a fork or vfork catchpoint
11354 and enable reporting of such events. */
11355 switch (fork_kind)
11356 {
11357 case catch_fork_temporary:
11358 case catch_fork_permanent:
11359 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11360 &catch_fork_breakpoint_ops);
11361 break;
11362 case catch_vfork_temporary:
11363 case catch_vfork_permanent:
11364 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11365 &catch_vfork_breakpoint_ops);
11366 break;
11367 default:
11368 error (_("unsupported or unknown fork kind; cannot catch it"));
11369 break;
11370 }
11371 }
11372
11373 static void
11374 catch_exec_command_1 (const char *arg, int from_tty,
11375 struct cmd_list_element *command)
11376 {
11377 struct gdbarch *gdbarch = get_current_arch ();
11378 int tempflag;
11379 const char *cond_string = NULL;
11380
11381 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11382
11383 if (!arg)
11384 arg = "";
11385 arg = skip_spaces (arg);
11386
11387 /* The allowed syntax is:
11388 catch exec
11389 catch exec if <cond>
11390
11391 First, check if there's an if clause. */
11392 cond_string = ep_parse_optional_if_clause (&arg);
11393
11394 if ((*arg != '\0') && !isspace (*arg))
11395 error (_("Junk at end of arguments."));
11396
11397 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11398 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11399 &catch_exec_breakpoint_ops);
11400 c->exec_pathname = NULL;
11401
11402 install_breakpoint (0, std::move (c), 1);
11403 }
11404
11405 void
11406 init_ada_exception_breakpoint (struct breakpoint *b,
11407 struct gdbarch *gdbarch,
11408 struct symtab_and_line sal,
11409 const char *addr_string,
11410 const struct breakpoint_ops *ops,
11411 int tempflag,
11412 int enabled,
11413 int from_tty)
11414 {
11415 if (from_tty)
11416 {
11417 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11418 if (!loc_gdbarch)
11419 loc_gdbarch = gdbarch;
11420
11421 describe_other_breakpoints (loc_gdbarch,
11422 sal.pspace, sal.pc, sal.section, -1);
11423 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11424 version for exception catchpoints, because two catchpoints
11425 used for different exception names will use the same address.
11426 In this case, a "breakpoint ... also set at..." warning is
11427 unproductive. Besides, the warning phrasing is also a bit
11428 inappropriate, we should use the word catchpoint, and tell
11429 the user what type of catchpoint it is. The above is good
11430 enough for now, though. */
11431 }
11432
11433 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11434
11435 b->enable_state = enabled ? bp_enabled : bp_disabled;
11436 b->disposition = tempflag ? disp_del : disp_donttouch;
11437 b->location = string_to_event_location (&addr_string,
11438 language_def (language_ada));
11439 b->language = language_ada;
11440 }
11441
11442 static void
11443 catch_command (const char *arg, int from_tty)
11444 {
11445 error (_("Catch requires an event name."));
11446 }
11447 \f
11448
11449 static void
11450 tcatch_command (const char *arg, int from_tty)
11451 {
11452 error (_("Catch requires an event name."));
11453 }
11454
11455 /* Compare two breakpoints and return a strcmp-like result. */
11456
11457 static int
11458 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11459 {
11460 uintptr_t ua = (uintptr_t) a;
11461 uintptr_t ub = (uintptr_t) b;
11462
11463 if (a->number < b->number)
11464 return -1;
11465 else if (a->number > b->number)
11466 return 1;
11467
11468 /* Now sort by address, in case we see, e..g, two breakpoints with
11469 the number 0. */
11470 if (ua < ub)
11471 return -1;
11472 return ua > ub ? 1 : 0;
11473 }
11474
11475 /* Delete breakpoints by address or line. */
11476
11477 static void
11478 clear_command (const char *arg, int from_tty)
11479 {
11480 struct breakpoint *b;
11481 int default_match;
11482 int i;
11483
11484 std::vector<symtab_and_line> decoded_sals;
11485 symtab_and_line last_sal;
11486 gdb::array_view<symtab_and_line> sals;
11487 if (arg)
11488 {
11489 decoded_sals
11490 = decode_line_with_current_source (arg,
11491 (DECODE_LINE_FUNFIRSTLINE
11492 | DECODE_LINE_LIST_MODE));
11493 default_match = 0;
11494 sals = decoded_sals;
11495 }
11496 else
11497 {
11498 /* Set sal's line, symtab, pc, and pspace to the values
11499 corresponding to the last call to print_frame_info. If the
11500 codepoint is not valid, this will set all the fields to 0. */
11501 last_sal = get_last_displayed_sal ();
11502 if (last_sal.symtab == 0)
11503 error (_("No source file specified."));
11504
11505 default_match = 1;
11506 sals = last_sal;
11507 }
11508
11509 /* We don't call resolve_sal_pc here. That's not as bad as it
11510 seems, because all existing breakpoints typically have both
11511 file/line and pc set. So, if clear is given file/line, we can
11512 match this to existing breakpoint without obtaining pc at all.
11513
11514 We only support clearing given the address explicitly
11515 present in breakpoint table. Say, we've set breakpoint
11516 at file:line. There were several PC values for that file:line,
11517 due to optimization, all in one block.
11518
11519 We've picked one PC value. If "clear" is issued with another
11520 PC corresponding to the same file:line, the breakpoint won't
11521 be cleared. We probably can still clear the breakpoint, but
11522 since the other PC value is never presented to user, user
11523 can only find it by guessing, and it does not seem important
11524 to support that. */
11525
11526 /* For each line spec given, delete bps which correspond to it. Do
11527 it in two passes, solely to preserve the current behavior that
11528 from_tty is forced true if we delete more than one
11529 breakpoint. */
11530
11531 std::vector<struct breakpoint *> found;
11532 for (const auto &sal : sals)
11533 {
11534 const char *sal_fullname;
11535
11536 /* If exact pc given, clear bpts at that pc.
11537 If line given (pc == 0), clear all bpts on specified line.
11538 If defaulting, clear all bpts on default line
11539 or at default pc.
11540
11541 defaulting sal.pc != 0 tests to do
11542
11543 0 1 pc
11544 1 1 pc _and_ line
11545 0 0 line
11546 1 0 <can't happen> */
11547
11548 sal_fullname = (sal.symtab == NULL
11549 ? NULL : symtab_to_fullname (sal.symtab));
11550
11551 /* Find all matching breakpoints and add them to 'found'. */
11552 ALL_BREAKPOINTS (b)
11553 {
11554 int match = 0;
11555 /* Are we going to delete b? */
11556 if (b->type != bp_none && !is_watchpoint (b))
11557 {
11558 struct bp_location *loc = b->loc;
11559 for (; loc; loc = loc->next)
11560 {
11561 /* If the user specified file:line, don't allow a PC
11562 match. This matches historical gdb behavior. */
11563 int pc_match = (!sal.explicit_line
11564 && sal.pc
11565 && (loc->pspace == sal.pspace)
11566 && (loc->address == sal.pc)
11567 && (!section_is_overlay (loc->section)
11568 || loc->section == sal.section));
11569 int line_match = 0;
11570
11571 if ((default_match || sal.explicit_line)
11572 && loc->symtab != NULL
11573 && sal_fullname != NULL
11574 && sal.pspace == loc->pspace
11575 && loc->line_number == sal.line
11576 && filename_cmp (symtab_to_fullname (loc->symtab),
11577 sal_fullname) == 0)
11578 line_match = 1;
11579
11580 if (pc_match || line_match)
11581 {
11582 match = 1;
11583 break;
11584 }
11585 }
11586 }
11587
11588 if (match)
11589 found.push_back (b);
11590 }
11591 }
11592
11593 /* Now go thru the 'found' chain and delete them. */
11594 if (found.empty ())
11595 {
11596 if (arg)
11597 error (_("No breakpoint at %s."), arg);
11598 else
11599 error (_("No breakpoint at this line."));
11600 }
11601
11602 /* Remove duplicates from the vec. */
11603 std::sort (found.begin (), found.end (),
11604 [] (const breakpoint *a, const breakpoint *b)
11605 {
11606 return compare_breakpoints (a, b) < 0;
11607 });
11608 found.erase (std::unique (found.begin (), found.end (),
11609 [] (const breakpoint *a, const breakpoint *b)
11610 {
11611 return compare_breakpoints (a, b) == 0;
11612 }),
11613 found.end ());
11614
11615 if (found.size () > 1)
11616 from_tty = 1; /* Always report if deleted more than one. */
11617 if (from_tty)
11618 {
11619 if (found.size () == 1)
11620 printf_unfiltered (_("Deleted breakpoint "));
11621 else
11622 printf_unfiltered (_("Deleted breakpoints "));
11623 }
11624
11625 for (breakpoint *iter : found)
11626 {
11627 if (from_tty)
11628 printf_unfiltered ("%d ", iter->number);
11629 delete_breakpoint (iter);
11630 }
11631 if (from_tty)
11632 putchar_unfiltered ('\n');
11633 }
11634 \f
11635 /* Delete breakpoint in BS if they are `delete' breakpoints and
11636 all breakpoints that are marked for deletion, whether hit or not.
11637 This is called after any breakpoint is hit, or after errors. */
11638
11639 void
11640 breakpoint_auto_delete (bpstat bs)
11641 {
11642 struct breakpoint *b, *b_tmp;
11643
11644 for (; bs; bs = bs->next)
11645 if (bs->breakpoint_at
11646 && bs->breakpoint_at->disposition == disp_del
11647 && bs->stop)
11648 delete_breakpoint (bs->breakpoint_at);
11649
11650 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11651 {
11652 if (b->disposition == disp_del_at_next_stop)
11653 delete_breakpoint (b);
11654 }
11655 }
11656
11657 /* A comparison function for bp_location AP and BP being interfaced to
11658 qsort. Sort elements primarily by their ADDRESS (no matter what
11659 does breakpoint_address_is_meaningful say for its OWNER),
11660 secondarily by ordering first permanent elements and
11661 terciarily just ensuring the array is sorted stable way despite
11662 qsort being an unstable algorithm. */
11663
11664 static int
11665 bp_locations_compare (const void *ap, const void *bp)
11666 {
11667 const struct bp_location *a = *(const struct bp_location **) ap;
11668 const struct bp_location *b = *(const struct bp_location **) bp;
11669
11670 if (a->address != b->address)
11671 return (a->address > b->address) - (a->address < b->address);
11672
11673 /* Sort locations at the same address by their pspace number, keeping
11674 locations of the same inferior (in a multi-inferior environment)
11675 grouped. */
11676
11677 if (a->pspace->num != b->pspace->num)
11678 return ((a->pspace->num > b->pspace->num)
11679 - (a->pspace->num < b->pspace->num));
11680
11681 /* Sort permanent breakpoints first. */
11682 if (a->permanent != b->permanent)
11683 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11684
11685 /* Make the internal GDB representation stable across GDB runs
11686 where A and B memory inside GDB can differ. Breakpoint locations of
11687 the same type at the same address can be sorted in arbitrary order. */
11688
11689 if (a->owner->number != b->owner->number)
11690 return ((a->owner->number > b->owner->number)
11691 - (a->owner->number < b->owner->number));
11692
11693 return (a > b) - (a < b);
11694 }
11695
11696 /* Set bp_locations_placed_address_before_address_max and
11697 bp_locations_shadow_len_after_address_max according to the current
11698 content of the bp_locations array. */
11699
11700 static void
11701 bp_locations_target_extensions_update (void)
11702 {
11703 struct bp_location *bl, **blp_tmp;
11704
11705 bp_locations_placed_address_before_address_max = 0;
11706 bp_locations_shadow_len_after_address_max = 0;
11707
11708 ALL_BP_LOCATIONS (bl, blp_tmp)
11709 {
11710 CORE_ADDR start, end, addr;
11711
11712 if (!bp_location_has_shadow (bl))
11713 continue;
11714
11715 start = bl->target_info.placed_address;
11716 end = start + bl->target_info.shadow_len;
11717
11718 gdb_assert (bl->address >= start);
11719 addr = bl->address - start;
11720 if (addr > bp_locations_placed_address_before_address_max)
11721 bp_locations_placed_address_before_address_max = addr;
11722
11723 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11724
11725 gdb_assert (bl->address < end);
11726 addr = end - bl->address;
11727 if (addr > bp_locations_shadow_len_after_address_max)
11728 bp_locations_shadow_len_after_address_max = addr;
11729 }
11730 }
11731
11732 /* Download tracepoint locations if they haven't been. */
11733
11734 static void
11735 download_tracepoint_locations (void)
11736 {
11737 struct breakpoint *b;
11738 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11739
11740 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11741
11742 ALL_TRACEPOINTS (b)
11743 {
11744 struct bp_location *bl;
11745 struct tracepoint *t;
11746 int bp_location_downloaded = 0;
11747
11748 if ((b->type == bp_fast_tracepoint
11749 ? !may_insert_fast_tracepoints
11750 : !may_insert_tracepoints))
11751 continue;
11752
11753 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11754 {
11755 if (target_can_download_tracepoint ())
11756 can_download_tracepoint = TRIBOOL_TRUE;
11757 else
11758 can_download_tracepoint = TRIBOOL_FALSE;
11759 }
11760
11761 if (can_download_tracepoint == TRIBOOL_FALSE)
11762 break;
11763
11764 for (bl = b->loc; bl; bl = bl->next)
11765 {
11766 /* In tracepoint, locations are _never_ duplicated, so
11767 should_be_inserted is equivalent to
11768 unduplicated_should_be_inserted. */
11769 if (!should_be_inserted (bl) || bl->inserted)
11770 continue;
11771
11772 switch_to_program_space_and_thread (bl->pspace);
11773
11774 target_download_tracepoint (bl);
11775
11776 bl->inserted = 1;
11777 bp_location_downloaded = 1;
11778 }
11779 t = (struct tracepoint *) b;
11780 t->number_on_target = b->number;
11781 if (bp_location_downloaded)
11782 observer_notify_breakpoint_modified (b);
11783 }
11784 }
11785
11786 /* Swap the insertion/duplication state between two locations. */
11787
11788 static void
11789 swap_insertion (struct bp_location *left, struct bp_location *right)
11790 {
11791 const int left_inserted = left->inserted;
11792 const int left_duplicate = left->duplicate;
11793 const int left_needs_update = left->needs_update;
11794 const struct bp_target_info left_target_info = left->target_info;
11795
11796 /* Locations of tracepoints can never be duplicated. */
11797 if (is_tracepoint (left->owner))
11798 gdb_assert (!left->duplicate);
11799 if (is_tracepoint (right->owner))
11800 gdb_assert (!right->duplicate);
11801
11802 left->inserted = right->inserted;
11803 left->duplicate = right->duplicate;
11804 left->needs_update = right->needs_update;
11805 left->target_info = right->target_info;
11806 right->inserted = left_inserted;
11807 right->duplicate = left_duplicate;
11808 right->needs_update = left_needs_update;
11809 right->target_info = left_target_info;
11810 }
11811
11812 /* Force the re-insertion of the locations at ADDRESS. This is called
11813 once a new/deleted/modified duplicate location is found and we are evaluating
11814 conditions on the target's side. Such conditions need to be updated on
11815 the target. */
11816
11817 static void
11818 force_breakpoint_reinsertion (struct bp_location *bl)
11819 {
11820 struct bp_location **locp = NULL, **loc2p;
11821 struct bp_location *loc;
11822 CORE_ADDR address = 0;
11823 int pspace_num;
11824
11825 address = bl->address;
11826 pspace_num = bl->pspace->num;
11827
11828 /* This is only meaningful if the target is
11829 evaluating conditions and if the user has
11830 opted for condition evaluation on the target's
11831 side. */
11832 if (gdb_evaluates_breakpoint_condition_p ()
11833 || !target_supports_evaluation_of_breakpoint_conditions ())
11834 return;
11835
11836 /* Flag all breakpoint locations with this address and
11837 the same program space as the location
11838 as "its condition has changed". We need to
11839 update the conditions on the target's side. */
11840 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11841 {
11842 loc = *loc2p;
11843
11844 if (!is_breakpoint (loc->owner)
11845 || pspace_num != loc->pspace->num)
11846 continue;
11847
11848 /* Flag the location appropriately. We use a different state to
11849 let everyone know that we already updated the set of locations
11850 with addr bl->address and program space bl->pspace. This is so
11851 we don't have to keep calling these functions just to mark locations
11852 that have already been marked. */
11853 loc->condition_changed = condition_updated;
11854
11855 /* Free the agent expression bytecode as well. We will compute
11856 it later on. */
11857 loc->cond_bytecode.reset ();
11858 }
11859 }
11860 /* Called whether new breakpoints are created, or existing breakpoints
11861 deleted, to update the global location list and recompute which
11862 locations are duplicate of which.
11863
11864 The INSERT_MODE flag determines whether locations may not, may, or
11865 shall be inserted now. See 'enum ugll_insert_mode' for more
11866 info. */
11867
11868 static void
11869 update_global_location_list (enum ugll_insert_mode insert_mode)
11870 {
11871 struct breakpoint *b;
11872 struct bp_location **locp, *loc;
11873 /* Last breakpoint location address that was marked for update. */
11874 CORE_ADDR last_addr = 0;
11875 /* Last breakpoint location program space that was marked for update. */
11876 int last_pspace_num = -1;
11877
11878 /* Used in the duplicates detection below. When iterating over all
11879 bp_locations, points to the first bp_location of a given address.
11880 Breakpoints and watchpoints of different types are never
11881 duplicates of each other. Keep one pointer for each type of
11882 breakpoint/watchpoint, so we only need to loop over all locations
11883 once. */
11884 struct bp_location *bp_loc_first; /* breakpoint */
11885 struct bp_location *wp_loc_first; /* hardware watchpoint */
11886 struct bp_location *awp_loc_first; /* access watchpoint */
11887 struct bp_location *rwp_loc_first; /* read watchpoint */
11888
11889 /* Saved former bp_locations array which we compare against the newly
11890 built bp_locations from the current state of ALL_BREAKPOINTS. */
11891 struct bp_location **old_locp;
11892 unsigned old_locations_count;
11893 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11894
11895 old_locations_count = bp_locations_count;
11896 bp_locations = NULL;
11897 bp_locations_count = 0;
11898
11899 ALL_BREAKPOINTS (b)
11900 for (loc = b->loc; loc; loc = loc->next)
11901 bp_locations_count++;
11902
11903 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11904 locp = bp_locations;
11905 ALL_BREAKPOINTS (b)
11906 for (loc = b->loc; loc; loc = loc->next)
11907 *locp++ = loc;
11908 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11909 bp_locations_compare);
11910
11911 bp_locations_target_extensions_update ();
11912
11913 /* Identify bp_location instances that are no longer present in the
11914 new list, and therefore should be freed. Note that it's not
11915 necessary that those locations should be removed from inferior --
11916 if there's another location at the same address (previously
11917 marked as duplicate), we don't need to remove/insert the
11918 location.
11919
11920 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11921 and former bp_location array state respectively. */
11922
11923 locp = bp_locations;
11924 for (old_locp = old_locations.get ();
11925 old_locp < old_locations.get () + old_locations_count;
11926 old_locp++)
11927 {
11928 struct bp_location *old_loc = *old_locp;
11929 struct bp_location **loc2p;
11930
11931 /* Tells if 'old_loc' is found among the new locations. If
11932 not, we have to free it. */
11933 int found_object = 0;
11934 /* Tells if the location should remain inserted in the target. */
11935 int keep_in_target = 0;
11936 int removed = 0;
11937
11938 /* Skip LOCP entries which will definitely never be needed.
11939 Stop either at or being the one matching OLD_LOC. */
11940 while (locp < bp_locations + bp_locations_count
11941 && (*locp)->address < old_loc->address)
11942 locp++;
11943
11944 for (loc2p = locp;
11945 (loc2p < bp_locations + bp_locations_count
11946 && (*loc2p)->address == old_loc->address);
11947 loc2p++)
11948 {
11949 /* Check if this is a new/duplicated location or a duplicated
11950 location that had its condition modified. If so, we want to send
11951 its condition to the target if evaluation of conditions is taking
11952 place there. */
11953 if ((*loc2p)->condition_changed == condition_modified
11954 && (last_addr != old_loc->address
11955 || last_pspace_num != old_loc->pspace->num))
11956 {
11957 force_breakpoint_reinsertion (*loc2p);
11958 last_pspace_num = old_loc->pspace->num;
11959 }
11960
11961 if (*loc2p == old_loc)
11962 found_object = 1;
11963 }
11964
11965 /* We have already handled this address, update it so that we don't
11966 have to go through updates again. */
11967 last_addr = old_loc->address;
11968
11969 /* Target-side condition evaluation: Handle deleted locations. */
11970 if (!found_object)
11971 force_breakpoint_reinsertion (old_loc);
11972
11973 /* If this location is no longer present, and inserted, look if
11974 there's maybe a new location at the same address. If so,
11975 mark that one inserted, and don't remove this one. This is
11976 needed so that we don't have a time window where a breakpoint
11977 at certain location is not inserted. */
11978
11979 if (old_loc->inserted)
11980 {
11981 /* If the location is inserted now, we might have to remove
11982 it. */
11983
11984 if (found_object && should_be_inserted (old_loc))
11985 {
11986 /* The location is still present in the location list,
11987 and still should be inserted. Don't do anything. */
11988 keep_in_target = 1;
11989 }
11990 else
11991 {
11992 /* This location still exists, but it won't be kept in the
11993 target since it may have been disabled. We proceed to
11994 remove its target-side condition. */
11995
11996 /* The location is either no longer present, or got
11997 disabled. See if there's another location at the
11998 same address, in which case we don't need to remove
11999 this one from the target. */
12000
12001 /* OLD_LOC comes from existing struct breakpoint. */
12002 if (breakpoint_address_is_meaningful (old_loc->owner))
12003 {
12004 for (loc2p = locp;
12005 (loc2p < bp_locations + bp_locations_count
12006 && (*loc2p)->address == old_loc->address);
12007 loc2p++)
12008 {
12009 struct bp_location *loc2 = *loc2p;
12010
12011 if (breakpoint_locations_match (loc2, old_loc))
12012 {
12013 /* Read watchpoint locations are switched to
12014 access watchpoints, if the former are not
12015 supported, but the latter are. */
12016 if (is_hardware_watchpoint (old_loc->owner))
12017 {
12018 gdb_assert (is_hardware_watchpoint (loc2->owner));
12019 loc2->watchpoint_type = old_loc->watchpoint_type;
12020 }
12021
12022 /* loc2 is a duplicated location. We need to check
12023 if it should be inserted in case it will be
12024 unduplicated. */
12025 if (loc2 != old_loc
12026 && unduplicated_should_be_inserted (loc2))
12027 {
12028 swap_insertion (old_loc, loc2);
12029 keep_in_target = 1;
12030 break;
12031 }
12032 }
12033 }
12034 }
12035 }
12036
12037 if (!keep_in_target)
12038 {
12039 if (remove_breakpoint (old_loc))
12040 {
12041 /* This is just about all we can do. We could keep
12042 this location on the global list, and try to
12043 remove it next time, but there's no particular
12044 reason why we will succeed next time.
12045
12046 Note that at this point, old_loc->owner is still
12047 valid, as delete_breakpoint frees the breakpoint
12048 only after calling us. */
12049 printf_filtered (_("warning: Error removing "
12050 "breakpoint %d\n"),
12051 old_loc->owner->number);
12052 }
12053 removed = 1;
12054 }
12055 }
12056
12057 if (!found_object)
12058 {
12059 if (removed && target_is_non_stop_p ()
12060 && need_moribund_for_location_type (old_loc))
12061 {
12062 /* This location was removed from the target. In
12063 non-stop mode, a race condition is possible where
12064 we've removed a breakpoint, but stop events for that
12065 breakpoint are already queued and will arrive later.
12066 We apply an heuristic to be able to distinguish such
12067 SIGTRAPs from other random SIGTRAPs: we keep this
12068 breakpoint location for a bit, and will retire it
12069 after we see some number of events. The theory here
12070 is that reporting of events should, "on the average",
12071 be fair, so after a while we'll see events from all
12072 threads that have anything of interest, and no longer
12073 need to keep this breakpoint location around. We
12074 don't hold locations forever so to reduce chances of
12075 mistaking a non-breakpoint SIGTRAP for a breakpoint
12076 SIGTRAP.
12077
12078 The heuristic failing can be disastrous on
12079 decr_pc_after_break targets.
12080
12081 On decr_pc_after_break targets, like e.g., x86-linux,
12082 if we fail to recognize a late breakpoint SIGTRAP,
12083 because events_till_retirement has reached 0 too
12084 soon, we'll fail to do the PC adjustment, and report
12085 a random SIGTRAP to the user. When the user resumes
12086 the inferior, it will most likely immediately crash
12087 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12088 corrupted, because of being resumed e.g., in the
12089 middle of a multi-byte instruction, or skipped a
12090 one-byte instruction. This was actually seen happen
12091 on native x86-linux, and should be less rare on
12092 targets that do not support new thread events, like
12093 remote, due to the heuristic depending on
12094 thread_count.
12095
12096 Mistaking a random SIGTRAP for a breakpoint trap
12097 causes similar symptoms (PC adjustment applied when
12098 it shouldn't), but then again, playing with SIGTRAPs
12099 behind the debugger's back is asking for trouble.
12100
12101 Since hardware watchpoint traps are always
12102 distinguishable from other traps, so we don't need to
12103 apply keep hardware watchpoint moribund locations
12104 around. We simply always ignore hardware watchpoint
12105 traps we can no longer explain. */
12106
12107 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12108 old_loc->owner = NULL;
12109
12110 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12111 }
12112 else
12113 {
12114 old_loc->owner = NULL;
12115 decref_bp_location (&old_loc);
12116 }
12117 }
12118 }
12119
12120 /* Rescan breakpoints at the same address and section, marking the
12121 first one as "first" and any others as "duplicates". This is so
12122 that the bpt instruction is only inserted once. If we have a
12123 permanent breakpoint at the same place as BPT, make that one the
12124 official one, and the rest as duplicates. Permanent breakpoints
12125 are sorted first for the same address.
12126
12127 Do the same for hardware watchpoints, but also considering the
12128 watchpoint's type (regular/access/read) and length. */
12129
12130 bp_loc_first = NULL;
12131 wp_loc_first = NULL;
12132 awp_loc_first = NULL;
12133 rwp_loc_first = NULL;
12134 ALL_BP_LOCATIONS (loc, locp)
12135 {
12136 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12137 non-NULL. */
12138 struct bp_location **loc_first_p;
12139 b = loc->owner;
12140
12141 if (!unduplicated_should_be_inserted (loc)
12142 || !breakpoint_address_is_meaningful (b)
12143 /* Don't detect duplicate for tracepoint locations because they are
12144 never duplicated. See the comments in field `duplicate' of
12145 `struct bp_location'. */
12146 || is_tracepoint (b))
12147 {
12148 /* Clear the condition modification flag. */
12149 loc->condition_changed = condition_unchanged;
12150 continue;
12151 }
12152
12153 if (b->type == bp_hardware_watchpoint)
12154 loc_first_p = &wp_loc_first;
12155 else if (b->type == bp_read_watchpoint)
12156 loc_first_p = &rwp_loc_first;
12157 else if (b->type == bp_access_watchpoint)
12158 loc_first_p = &awp_loc_first;
12159 else
12160 loc_first_p = &bp_loc_first;
12161
12162 if (*loc_first_p == NULL
12163 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12164 || !breakpoint_locations_match (loc, *loc_first_p))
12165 {
12166 *loc_first_p = loc;
12167 loc->duplicate = 0;
12168
12169 if (is_breakpoint (loc->owner) && loc->condition_changed)
12170 {
12171 loc->needs_update = 1;
12172 /* Clear the condition modification flag. */
12173 loc->condition_changed = condition_unchanged;
12174 }
12175 continue;
12176 }
12177
12178
12179 /* This and the above ensure the invariant that the first location
12180 is not duplicated, and is the inserted one.
12181 All following are marked as duplicated, and are not inserted. */
12182 if (loc->inserted)
12183 swap_insertion (loc, *loc_first_p);
12184 loc->duplicate = 1;
12185
12186 /* Clear the condition modification flag. */
12187 loc->condition_changed = condition_unchanged;
12188 }
12189
12190 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12191 {
12192 if (insert_mode != UGLL_DONT_INSERT)
12193 insert_breakpoint_locations ();
12194 else
12195 {
12196 /* Even though the caller told us to not insert new
12197 locations, we may still need to update conditions on the
12198 target's side of breakpoints that were already inserted
12199 if the target is evaluating breakpoint conditions. We
12200 only update conditions for locations that are marked
12201 "needs_update". */
12202 update_inserted_breakpoint_locations ();
12203 }
12204 }
12205
12206 if (insert_mode != UGLL_DONT_INSERT)
12207 download_tracepoint_locations ();
12208 }
12209
12210 void
12211 breakpoint_retire_moribund (void)
12212 {
12213 struct bp_location *loc;
12214 int ix;
12215
12216 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12217 if (--(loc->events_till_retirement) == 0)
12218 {
12219 decref_bp_location (&loc);
12220 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12221 --ix;
12222 }
12223 }
12224
12225 static void
12226 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12227 {
12228
12229 TRY
12230 {
12231 update_global_location_list (insert_mode);
12232 }
12233 CATCH (e, RETURN_MASK_ERROR)
12234 {
12235 }
12236 END_CATCH
12237 }
12238
12239 /* Clear BKP from a BPS. */
12240
12241 static void
12242 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12243 {
12244 bpstat bs;
12245
12246 for (bs = bps; bs; bs = bs->next)
12247 if (bs->breakpoint_at == bpt)
12248 {
12249 bs->breakpoint_at = NULL;
12250 bs->old_val = NULL;
12251 /* bs->commands will be freed later. */
12252 }
12253 }
12254
12255 /* Callback for iterate_over_threads. */
12256 static int
12257 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12258 {
12259 struct breakpoint *bpt = (struct breakpoint *) data;
12260
12261 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12262 return 0;
12263 }
12264
12265 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12266 callbacks. */
12267
12268 static void
12269 say_where (struct breakpoint *b)
12270 {
12271 struct value_print_options opts;
12272
12273 get_user_print_options (&opts);
12274
12275 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12276 single string. */
12277 if (b->loc == NULL)
12278 {
12279 /* For pending locations, the output differs slightly based
12280 on b->extra_string. If this is non-NULL, it contains either
12281 a condition or dprintf arguments. */
12282 if (b->extra_string == NULL)
12283 {
12284 printf_filtered (_(" (%s) pending."),
12285 event_location_to_string (b->location.get ()));
12286 }
12287 else if (b->type == bp_dprintf)
12288 {
12289 printf_filtered (_(" (%s,%s) pending."),
12290 event_location_to_string (b->location.get ()),
12291 b->extra_string);
12292 }
12293 else
12294 {
12295 printf_filtered (_(" (%s %s) pending."),
12296 event_location_to_string (b->location.get ()),
12297 b->extra_string);
12298 }
12299 }
12300 else
12301 {
12302 if (opts.addressprint || b->loc->symtab == NULL)
12303 {
12304 printf_filtered (" at ");
12305 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12306 gdb_stdout);
12307 }
12308 if (b->loc->symtab != NULL)
12309 {
12310 /* If there is a single location, we can print the location
12311 more nicely. */
12312 if (b->loc->next == NULL)
12313 printf_filtered (": file %s, line %d.",
12314 symtab_to_filename_for_display (b->loc->symtab),
12315 b->loc->line_number);
12316 else
12317 /* This is not ideal, but each location may have a
12318 different file name, and this at least reflects the
12319 real situation somewhat. */
12320 printf_filtered (": %s.",
12321 event_location_to_string (b->location.get ()));
12322 }
12323
12324 if (b->loc->next)
12325 {
12326 struct bp_location *loc = b->loc;
12327 int n = 0;
12328 for (; loc; loc = loc->next)
12329 ++n;
12330 printf_filtered (" (%d locations)", n);
12331 }
12332 }
12333 }
12334
12335 /* Default bp_location_ops methods. */
12336
12337 static void
12338 bp_location_dtor (struct bp_location *self)
12339 {
12340 xfree (self->function_name);
12341 }
12342
12343 static const struct bp_location_ops bp_location_ops =
12344 {
12345 bp_location_dtor
12346 };
12347
12348 /* Destructor for the breakpoint base class. */
12349
12350 breakpoint::~breakpoint ()
12351 {
12352 xfree (this->cond_string);
12353 xfree (this->extra_string);
12354 xfree (this->filter);
12355 }
12356
12357 static struct bp_location *
12358 base_breakpoint_allocate_location (struct breakpoint *self)
12359 {
12360 return new bp_location (&bp_location_ops, self);
12361 }
12362
12363 static void
12364 base_breakpoint_re_set (struct breakpoint *b)
12365 {
12366 /* Nothing to re-set. */
12367 }
12368
12369 #define internal_error_pure_virtual_called() \
12370 gdb_assert_not_reached ("pure virtual function called")
12371
12372 static int
12373 base_breakpoint_insert_location (struct bp_location *bl)
12374 {
12375 internal_error_pure_virtual_called ();
12376 }
12377
12378 static int
12379 base_breakpoint_remove_location (struct bp_location *bl,
12380 enum remove_bp_reason reason)
12381 {
12382 internal_error_pure_virtual_called ();
12383 }
12384
12385 static int
12386 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12387 const address_space *aspace,
12388 CORE_ADDR bp_addr,
12389 const struct target_waitstatus *ws)
12390 {
12391 internal_error_pure_virtual_called ();
12392 }
12393
12394 static void
12395 base_breakpoint_check_status (bpstat bs)
12396 {
12397 /* Always stop. */
12398 }
12399
12400 /* A "works_in_software_mode" breakpoint_ops method that just internal
12401 errors. */
12402
12403 static int
12404 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12405 {
12406 internal_error_pure_virtual_called ();
12407 }
12408
12409 /* A "resources_needed" breakpoint_ops method that just internal
12410 errors. */
12411
12412 static int
12413 base_breakpoint_resources_needed (const struct bp_location *bl)
12414 {
12415 internal_error_pure_virtual_called ();
12416 }
12417
12418 static enum print_stop_action
12419 base_breakpoint_print_it (bpstat bs)
12420 {
12421 internal_error_pure_virtual_called ();
12422 }
12423
12424 static void
12425 base_breakpoint_print_one_detail (const struct breakpoint *self,
12426 struct ui_out *uiout)
12427 {
12428 /* nothing */
12429 }
12430
12431 static void
12432 base_breakpoint_print_mention (struct breakpoint *b)
12433 {
12434 internal_error_pure_virtual_called ();
12435 }
12436
12437 static void
12438 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12439 {
12440 internal_error_pure_virtual_called ();
12441 }
12442
12443 static void
12444 base_breakpoint_create_sals_from_location
12445 (const struct event_location *location,
12446 struct linespec_result *canonical,
12447 enum bptype type_wanted)
12448 {
12449 internal_error_pure_virtual_called ();
12450 }
12451
12452 static void
12453 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12454 struct linespec_result *c,
12455 gdb::unique_xmalloc_ptr<char> cond_string,
12456 gdb::unique_xmalloc_ptr<char> extra_string,
12457 enum bptype type_wanted,
12458 enum bpdisp disposition,
12459 int thread,
12460 int task, int ignore_count,
12461 const struct breakpoint_ops *o,
12462 int from_tty, int enabled,
12463 int internal, unsigned flags)
12464 {
12465 internal_error_pure_virtual_called ();
12466 }
12467
12468 static std::vector<symtab_and_line>
12469 base_breakpoint_decode_location (struct breakpoint *b,
12470 const struct event_location *location,
12471 struct program_space *search_pspace)
12472 {
12473 internal_error_pure_virtual_called ();
12474 }
12475
12476 /* The default 'explains_signal' method. */
12477
12478 static int
12479 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12480 {
12481 return 1;
12482 }
12483
12484 /* The default "after_condition_true" method. */
12485
12486 static void
12487 base_breakpoint_after_condition_true (struct bpstats *bs)
12488 {
12489 /* Nothing to do. */
12490 }
12491
12492 struct breakpoint_ops base_breakpoint_ops =
12493 {
12494 base_breakpoint_allocate_location,
12495 base_breakpoint_re_set,
12496 base_breakpoint_insert_location,
12497 base_breakpoint_remove_location,
12498 base_breakpoint_breakpoint_hit,
12499 base_breakpoint_check_status,
12500 base_breakpoint_resources_needed,
12501 base_breakpoint_works_in_software_mode,
12502 base_breakpoint_print_it,
12503 NULL,
12504 base_breakpoint_print_one_detail,
12505 base_breakpoint_print_mention,
12506 base_breakpoint_print_recreate,
12507 base_breakpoint_create_sals_from_location,
12508 base_breakpoint_create_breakpoints_sal,
12509 base_breakpoint_decode_location,
12510 base_breakpoint_explains_signal,
12511 base_breakpoint_after_condition_true,
12512 };
12513
12514 /* Default breakpoint_ops methods. */
12515
12516 static void
12517 bkpt_re_set (struct breakpoint *b)
12518 {
12519 /* FIXME: is this still reachable? */
12520 if (breakpoint_event_location_empty_p (b))
12521 {
12522 /* Anything without a location can't be re-set. */
12523 delete_breakpoint (b);
12524 return;
12525 }
12526
12527 breakpoint_re_set_default (b);
12528 }
12529
12530 static int
12531 bkpt_insert_location (struct bp_location *bl)
12532 {
12533 CORE_ADDR addr = bl->target_info.reqstd_address;
12534
12535 bl->target_info.kind = breakpoint_kind (bl, &addr);
12536 bl->target_info.placed_address = addr;
12537
12538 if (bl->loc_type == bp_loc_hardware_breakpoint)
12539 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12540 else
12541 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12542 }
12543
12544 static int
12545 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12546 {
12547 if (bl->loc_type == bp_loc_hardware_breakpoint)
12548 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12549 else
12550 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12551 }
12552
12553 static int
12554 bkpt_breakpoint_hit (const struct bp_location *bl,
12555 const address_space *aspace, CORE_ADDR bp_addr,
12556 const struct target_waitstatus *ws)
12557 {
12558 if (ws->kind != TARGET_WAITKIND_STOPPED
12559 || ws->value.sig != GDB_SIGNAL_TRAP)
12560 return 0;
12561
12562 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12563 aspace, bp_addr))
12564 return 0;
12565
12566 if (overlay_debugging /* unmapped overlay section */
12567 && section_is_overlay (bl->section)
12568 && !section_is_mapped (bl->section))
12569 return 0;
12570
12571 return 1;
12572 }
12573
12574 static int
12575 dprintf_breakpoint_hit (const struct bp_location *bl,
12576 const address_space *aspace, CORE_ADDR bp_addr,
12577 const struct target_waitstatus *ws)
12578 {
12579 if (dprintf_style == dprintf_style_agent
12580 && target_can_run_breakpoint_commands ())
12581 {
12582 /* An agent-style dprintf never causes a stop. If we see a trap
12583 for this address it must be for a breakpoint that happens to
12584 be set at the same address. */
12585 return 0;
12586 }
12587
12588 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12589 }
12590
12591 static int
12592 bkpt_resources_needed (const struct bp_location *bl)
12593 {
12594 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12595
12596 return 1;
12597 }
12598
12599 static enum print_stop_action
12600 bkpt_print_it (bpstat bs)
12601 {
12602 struct breakpoint *b;
12603 const struct bp_location *bl;
12604 int bp_temp;
12605 struct ui_out *uiout = current_uiout;
12606
12607 gdb_assert (bs->bp_location_at != NULL);
12608
12609 bl = bs->bp_location_at;
12610 b = bs->breakpoint_at;
12611
12612 bp_temp = b->disposition == disp_del;
12613 if (bl->address != bl->requested_address)
12614 breakpoint_adjustment_warning (bl->requested_address,
12615 bl->address,
12616 b->number, 1);
12617 annotate_breakpoint (b->number);
12618 maybe_print_thread_hit_breakpoint (uiout);
12619
12620 if (bp_temp)
12621 uiout->text ("Temporary breakpoint ");
12622 else
12623 uiout->text ("Breakpoint ");
12624 if (uiout->is_mi_like_p ())
12625 {
12626 uiout->field_string ("reason",
12627 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12628 uiout->field_string ("disp", bpdisp_text (b->disposition));
12629 }
12630 uiout->field_int ("bkptno", b->number);
12631 uiout->text (", ");
12632
12633 return PRINT_SRC_AND_LOC;
12634 }
12635
12636 static void
12637 bkpt_print_mention (struct breakpoint *b)
12638 {
12639 if (current_uiout->is_mi_like_p ())
12640 return;
12641
12642 switch (b->type)
12643 {
12644 case bp_breakpoint:
12645 case bp_gnu_ifunc_resolver:
12646 if (b->disposition == disp_del)
12647 printf_filtered (_("Temporary breakpoint"));
12648 else
12649 printf_filtered (_("Breakpoint"));
12650 printf_filtered (_(" %d"), b->number);
12651 if (b->type == bp_gnu_ifunc_resolver)
12652 printf_filtered (_(" at gnu-indirect-function resolver"));
12653 break;
12654 case bp_hardware_breakpoint:
12655 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12656 break;
12657 case bp_dprintf:
12658 printf_filtered (_("Dprintf %d"), b->number);
12659 break;
12660 }
12661
12662 say_where (b);
12663 }
12664
12665 static void
12666 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12667 {
12668 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12669 fprintf_unfiltered (fp, "tbreak");
12670 else if (tp->type == bp_breakpoint)
12671 fprintf_unfiltered (fp, "break");
12672 else if (tp->type == bp_hardware_breakpoint
12673 && tp->disposition == disp_del)
12674 fprintf_unfiltered (fp, "thbreak");
12675 else if (tp->type == bp_hardware_breakpoint)
12676 fprintf_unfiltered (fp, "hbreak");
12677 else
12678 internal_error (__FILE__, __LINE__,
12679 _("unhandled breakpoint type %d"), (int) tp->type);
12680
12681 fprintf_unfiltered (fp, " %s",
12682 event_location_to_string (tp->location.get ()));
12683
12684 /* Print out extra_string if this breakpoint is pending. It might
12685 contain, for example, conditions that were set by the user. */
12686 if (tp->loc == NULL && tp->extra_string != NULL)
12687 fprintf_unfiltered (fp, " %s", tp->extra_string);
12688
12689 print_recreate_thread (tp, fp);
12690 }
12691
12692 static void
12693 bkpt_create_sals_from_location (const struct event_location *location,
12694 struct linespec_result *canonical,
12695 enum bptype type_wanted)
12696 {
12697 create_sals_from_location_default (location, canonical, type_wanted);
12698 }
12699
12700 static void
12701 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12702 struct linespec_result *canonical,
12703 gdb::unique_xmalloc_ptr<char> cond_string,
12704 gdb::unique_xmalloc_ptr<char> extra_string,
12705 enum bptype type_wanted,
12706 enum bpdisp disposition,
12707 int thread,
12708 int task, int ignore_count,
12709 const struct breakpoint_ops *ops,
12710 int from_tty, int enabled,
12711 int internal, unsigned flags)
12712 {
12713 create_breakpoints_sal_default (gdbarch, canonical,
12714 std::move (cond_string),
12715 std::move (extra_string),
12716 type_wanted,
12717 disposition, thread, task,
12718 ignore_count, ops, from_tty,
12719 enabled, internal, flags);
12720 }
12721
12722 static std::vector<symtab_and_line>
12723 bkpt_decode_location (struct breakpoint *b,
12724 const struct event_location *location,
12725 struct program_space *search_pspace)
12726 {
12727 return decode_location_default (b, location, search_pspace);
12728 }
12729
12730 /* Virtual table for internal breakpoints. */
12731
12732 static void
12733 internal_bkpt_re_set (struct breakpoint *b)
12734 {
12735 switch (b->type)
12736 {
12737 /* Delete overlay event and longjmp master breakpoints; they
12738 will be reset later by breakpoint_re_set. */
12739 case bp_overlay_event:
12740 case bp_longjmp_master:
12741 case bp_std_terminate_master:
12742 case bp_exception_master:
12743 delete_breakpoint (b);
12744 break;
12745
12746 /* This breakpoint is special, it's set up when the inferior
12747 starts and we really don't want to touch it. */
12748 case bp_shlib_event:
12749
12750 /* Like bp_shlib_event, this breakpoint type is special. Once
12751 it is set up, we do not want to touch it. */
12752 case bp_thread_event:
12753 break;
12754 }
12755 }
12756
12757 static void
12758 internal_bkpt_check_status (bpstat bs)
12759 {
12760 if (bs->breakpoint_at->type == bp_shlib_event)
12761 {
12762 /* If requested, stop when the dynamic linker notifies GDB of
12763 events. This allows the user to get control and place
12764 breakpoints in initializer routines for dynamically loaded
12765 objects (among other things). */
12766 bs->stop = stop_on_solib_events;
12767 bs->print = stop_on_solib_events;
12768 }
12769 else
12770 bs->stop = 0;
12771 }
12772
12773 static enum print_stop_action
12774 internal_bkpt_print_it (bpstat bs)
12775 {
12776 struct breakpoint *b;
12777
12778 b = bs->breakpoint_at;
12779
12780 switch (b->type)
12781 {
12782 case bp_shlib_event:
12783 /* Did we stop because the user set the stop_on_solib_events
12784 variable? (If so, we report this as a generic, "Stopped due
12785 to shlib event" message.) */
12786 print_solib_event (0);
12787 break;
12788
12789 case bp_thread_event:
12790 /* Not sure how we will get here.
12791 GDB should not stop for these breakpoints. */
12792 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12793 break;
12794
12795 case bp_overlay_event:
12796 /* By analogy with the thread event, GDB should not stop for these. */
12797 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12798 break;
12799
12800 case bp_longjmp_master:
12801 /* These should never be enabled. */
12802 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12803 break;
12804
12805 case bp_std_terminate_master:
12806 /* These should never be enabled. */
12807 printf_filtered (_("std::terminate Master Breakpoint: "
12808 "gdb should not stop!\n"));
12809 break;
12810
12811 case bp_exception_master:
12812 /* These should never be enabled. */
12813 printf_filtered (_("Exception Master Breakpoint: "
12814 "gdb should not stop!\n"));
12815 break;
12816 }
12817
12818 return PRINT_NOTHING;
12819 }
12820
12821 static void
12822 internal_bkpt_print_mention (struct breakpoint *b)
12823 {
12824 /* Nothing to mention. These breakpoints are internal. */
12825 }
12826
12827 /* Virtual table for momentary breakpoints */
12828
12829 static void
12830 momentary_bkpt_re_set (struct breakpoint *b)
12831 {
12832 /* Keep temporary breakpoints, which can be encountered when we step
12833 over a dlopen call and solib_add is resetting the breakpoints.
12834 Otherwise these should have been blown away via the cleanup chain
12835 or by breakpoint_init_inferior when we rerun the executable. */
12836 }
12837
12838 static void
12839 momentary_bkpt_check_status (bpstat bs)
12840 {
12841 /* Nothing. The point of these breakpoints is causing a stop. */
12842 }
12843
12844 static enum print_stop_action
12845 momentary_bkpt_print_it (bpstat bs)
12846 {
12847 return PRINT_UNKNOWN;
12848 }
12849
12850 static void
12851 momentary_bkpt_print_mention (struct breakpoint *b)
12852 {
12853 /* Nothing to mention. These breakpoints are internal. */
12854 }
12855
12856 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12857
12858 It gets cleared already on the removal of the first one of such placed
12859 breakpoints. This is OK as they get all removed altogether. */
12860
12861 longjmp_breakpoint::~longjmp_breakpoint ()
12862 {
12863 thread_info *tp = find_thread_global_id (this->thread);
12864
12865 if (tp != NULL)
12866 tp->initiating_frame = null_frame_id;
12867 }
12868
12869 /* Specific methods for probe breakpoints. */
12870
12871 static int
12872 bkpt_probe_insert_location (struct bp_location *bl)
12873 {
12874 int v = bkpt_insert_location (bl);
12875
12876 if (v == 0)
12877 {
12878 /* The insertion was successful, now let's set the probe's semaphore
12879 if needed. */
12880 if (bl->probe.probe->pops->set_semaphore != NULL)
12881 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
12882 bl->probe.objfile,
12883 bl->gdbarch);
12884 }
12885
12886 return v;
12887 }
12888
12889 static int
12890 bkpt_probe_remove_location (struct bp_location *bl,
12891 enum remove_bp_reason reason)
12892 {
12893 /* Let's clear the semaphore before removing the location. */
12894 if (bl->probe.probe->pops->clear_semaphore != NULL)
12895 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
12896 bl->probe.objfile,
12897 bl->gdbarch);
12898
12899 return bkpt_remove_location (bl, reason);
12900 }
12901
12902 static void
12903 bkpt_probe_create_sals_from_location (const struct event_location *location,
12904 struct linespec_result *canonical,
12905 enum bptype type_wanted)
12906 {
12907 struct linespec_sals lsal;
12908
12909 lsal.sals = parse_probes (location, NULL, canonical);
12910 lsal.canonical
12911 = xstrdup (event_location_to_string (canonical->location.get ()));
12912 canonical->lsals.push_back (std::move (lsal));
12913 }
12914
12915 static std::vector<symtab_and_line>
12916 bkpt_probe_decode_location (struct breakpoint *b,
12917 const struct event_location *location,
12918 struct program_space *search_pspace)
12919 {
12920 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12921 if (sals.empty ())
12922 error (_("probe not found"));
12923 return sals;
12924 }
12925
12926 /* The breakpoint_ops structure to be used in tracepoints. */
12927
12928 static void
12929 tracepoint_re_set (struct breakpoint *b)
12930 {
12931 breakpoint_re_set_default (b);
12932 }
12933
12934 static int
12935 tracepoint_breakpoint_hit (const struct bp_location *bl,
12936 const address_space *aspace, CORE_ADDR bp_addr,
12937 const struct target_waitstatus *ws)
12938 {
12939 /* By definition, the inferior does not report stops at
12940 tracepoints. */
12941 return 0;
12942 }
12943
12944 static void
12945 tracepoint_print_one_detail (const struct breakpoint *self,
12946 struct ui_out *uiout)
12947 {
12948 struct tracepoint *tp = (struct tracepoint *) self;
12949 if (tp->static_trace_marker_id)
12950 {
12951 gdb_assert (self->type == bp_static_tracepoint);
12952
12953 uiout->text ("\tmarker id is ");
12954 uiout->field_string ("static-tracepoint-marker-string-id",
12955 tp->static_trace_marker_id);
12956 uiout->text ("\n");
12957 }
12958 }
12959
12960 static void
12961 tracepoint_print_mention (struct breakpoint *b)
12962 {
12963 if (current_uiout->is_mi_like_p ())
12964 return;
12965
12966 switch (b->type)
12967 {
12968 case bp_tracepoint:
12969 printf_filtered (_("Tracepoint"));
12970 printf_filtered (_(" %d"), b->number);
12971 break;
12972 case bp_fast_tracepoint:
12973 printf_filtered (_("Fast tracepoint"));
12974 printf_filtered (_(" %d"), b->number);
12975 break;
12976 case bp_static_tracepoint:
12977 printf_filtered (_("Static tracepoint"));
12978 printf_filtered (_(" %d"), b->number);
12979 break;
12980 default:
12981 internal_error (__FILE__, __LINE__,
12982 _("unhandled tracepoint type %d"), (int) b->type);
12983 }
12984
12985 say_where (b);
12986 }
12987
12988 static void
12989 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12990 {
12991 struct tracepoint *tp = (struct tracepoint *) self;
12992
12993 if (self->type == bp_fast_tracepoint)
12994 fprintf_unfiltered (fp, "ftrace");
12995 else if (self->type == bp_static_tracepoint)
12996 fprintf_unfiltered (fp, "strace");
12997 else if (self->type == bp_tracepoint)
12998 fprintf_unfiltered (fp, "trace");
12999 else
13000 internal_error (__FILE__, __LINE__,
13001 _("unhandled tracepoint type %d"), (int) self->type);
13002
13003 fprintf_unfiltered (fp, " %s",
13004 event_location_to_string (self->location.get ()));
13005 print_recreate_thread (self, fp);
13006
13007 if (tp->pass_count)
13008 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13009 }
13010
13011 static void
13012 tracepoint_create_sals_from_location (const struct event_location *location,
13013 struct linespec_result *canonical,
13014 enum bptype type_wanted)
13015 {
13016 create_sals_from_location_default (location, canonical, type_wanted);
13017 }
13018
13019 static void
13020 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13021 struct linespec_result *canonical,
13022 gdb::unique_xmalloc_ptr<char> cond_string,
13023 gdb::unique_xmalloc_ptr<char> extra_string,
13024 enum bptype type_wanted,
13025 enum bpdisp disposition,
13026 int thread,
13027 int task, int ignore_count,
13028 const struct breakpoint_ops *ops,
13029 int from_tty, int enabled,
13030 int internal, unsigned flags)
13031 {
13032 create_breakpoints_sal_default (gdbarch, canonical,
13033 std::move (cond_string),
13034 std::move (extra_string),
13035 type_wanted,
13036 disposition, thread, task,
13037 ignore_count, ops, from_tty,
13038 enabled, internal, flags);
13039 }
13040
13041 static std::vector<symtab_and_line>
13042 tracepoint_decode_location (struct breakpoint *b,
13043 const struct event_location *location,
13044 struct program_space *search_pspace)
13045 {
13046 return decode_location_default (b, location, search_pspace);
13047 }
13048
13049 struct breakpoint_ops tracepoint_breakpoint_ops;
13050
13051 /* The breakpoint_ops structure to be use on tracepoints placed in a
13052 static probe. */
13053
13054 static void
13055 tracepoint_probe_create_sals_from_location
13056 (const struct event_location *location,
13057 struct linespec_result *canonical,
13058 enum bptype type_wanted)
13059 {
13060 /* We use the same method for breakpoint on probes. */
13061 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
13062 }
13063
13064 static std::vector<symtab_and_line>
13065 tracepoint_probe_decode_location (struct breakpoint *b,
13066 const struct event_location *location,
13067 struct program_space *search_pspace)
13068 {
13069 /* We use the same method for breakpoint on probes. */
13070 return bkpt_probe_decode_location (b, location, search_pspace);
13071 }
13072
13073 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13074
13075 /* Dprintf breakpoint_ops methods. */
13076
13077 static void
13078 dprintf_re_set (struct breakpoint *b)
13079 {
13080 breakpoint_re_set_default (b);
13081
13082 /* extra_string should never be non-NULL for dprintf. */
13083 gdb_assert (b->extra_string != NULL);
13084
13085 /* 1 - connect to target 1, that can run breakpoint commands.
13086 2 - create a dprintf, which resolves fine.
13087 3 - disconnect from target 1
13088 4 - connect to target 2, that can NOT run breakpoint commands.
13089
13090 After steps #3/#4, you'll want the dprintf command list to
13091 be updated, because target 1 and 2 may well return different
13092 answers for target_can_run_breakpoint_commands().
13093 Given absence of finer grained resetting, we get to do
13094 it all the time. */
13095 if (b->extra_string != NULL)
13096 update_dprintf_command_list (b);
13097 }
13098
13099 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13100
13101 static void
13102 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13103 {
13104 fprintf_unfiltered (fp, "dprintf %s,%s",
13105 event_location_to_string (tp->location.get ()),
13106 tp->extra_string);
13107 print_recreate_thread (tp, fp);
13108 }
13109
13110 /* Implement the "after_condition_true" breakpoint_ops method for
13111 dprintf.
13112
13113 dprintf's are implemented with regular commands in their command
13114 list, but we run the commands here instead of before presenting the
13115 stop to the user, as dprintf's don't actually cause a stop. This
13116 also makes it so that the commands of multiple dprintfs at the same
13117 address are all handled. */
13118
13119 static void
13120 dprintf_after_condition_true (struct bpstats *bs)
13121 {
13122 struct bpstats tmp_bs;
13123 struct bpstats *tmp_bs_p = &tmp_bs;
13124
13125 /* dprintf's never cause a stop. This wasn't set in the
13126 check_status hook instead because that would make the dprintf's
13127 condition not be evaluated. */
13128 bs->stop = 0;
13129
13130 /* Run the command list here. Take ownership of it instead of
13131 copying. We never want these commands to run later in
13132 bpstat_do_actions, if a breakpoint that causes a stop happens to
13133 be set at same address as this dprintf, or even if running the
13134 commands here throws. */
13135 tmp_bs.commands = bs->commands;
13136 bs->commands = NULL;
13137
13138 bpstat_do_actions_1 (&tmp_bs_p);
13139
13140 /* 'tmp_bs.commands' will usually be NULL by now, but
13141 bpstat_do_actions_1 may return early without processing the whole
13142 list. */
13143 }
13144
13145 /* The breakpoint_ops structure to be used on static tracepoints with
13146 markers (`-m'). */
13147
13148 static void
13149 strace_marker_create_sals_from_location (const struct event_location *location,
13150 struct linespec_result *canonical,
13151 enum bptype type_wanted)
13152 {
13153 struct linespec_sals lsal;
13154 const char *arg_start, *arg;
13155
13156 arg = arg_start = get_linespec_location (location);
13157 lsal.sals = decode_static_tracepoint_spec (&arg);
13158
13159 std::string str (arg_start, arg - arg_start);
13160 const char *ptr = str.c_str ();
13161 canonical->location = new_linespec_location (&ptr);
13162
13163 lsal.canonical
13164 = xstrdup (event_location_to_string (canonical->location.get ()));
13165 canonical->lsals.push_back (std::move (lsal));
13166 }
13167
13168 static void
13169 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13170 struct linespec_result *canonical,
13171 gdb::unique_xmalloc_ptr<char> cond_string,
13172 gdb::unique_xmalloc_ptr<char> extra_string,
13173 enum bptype type_wanted,
13174 enum bpdisp disposition,
13175 int thread,
13176 int task, int ignore_count,
13177 const struct breakpoint_ops *ops,
13178 int from_tty, int enabled,
13179 int internal, unsigned flags)
13180 {
13181 const linespec_sals &lsal = canonical->lsals[0];
13182
13183 /* If the user is creating a static tracepoint by marker id
13184 (strace -m MARKER_ID), then store the sals index, so that
13185 breakpoint_re_set can try to match up which of the newly
13186 found markers corresponds to this one, and, don't try to
13187 expand multiple locations for each sal, given than SALS
13188 already should contain all sals for MARKER_ID. */
13189
13190 for (size_t i = 0; i < lsal.sals.size (); i++)
13191 {
13192 event_location_up location
13193 = copy_event_location (canonical->location.get ());
13194
13195 std::unique_ptr<tracepoint> tp (new tracepoint ());
13196 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13197 std::move (location), NULL,
13198 std::move (cond_string),
13199 std::move (extra_string),
13200 type_wanted, disposition,
13201 thread, task, ignore_count, ops,
13202 from_tty, enabled, internal, flags,
13203 canonical->special_display);
13204 /* Given that its possible to have multiple markers with
13205 the same string id, if the user is creating a static
13206 tracepoint by marker id ("strace -m MARKER_ID"), then
13207 store the sals index, so that breakpoint_re_set can
13208 try to match up which of the newly found markers
13209 corresponds to this one */
13210 tp->static_trace_marker_id_idx = i;
13211
13212 install_breakpoint (internal, std::move (tp), 0);
13213 }
13214 }
13215
13216 static std::vector<symtab_and_line>
13217 strace_marker_decode_location (struct breakpoint *b,
13218 const struct event_location *location,
13219 struct program_space *search_pspace)
13220 {
13221 struct tracepoint *tp = (struct tracepoint *) b;
13222 const char *s = get_linespec_location (location);
13223
13224 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13225 if (sals.size () > tp->static_trace_marker_id_idx)
13226 {
13227 sals[0] = sals[tp->static_trace_marker_id_idx];
13228 sals.resize (1);
13229 return sals;
13230 }
13231 else
13232 error (_("marker %s not found"), tp->static_trace_marker_id);
13233 }
13234
13235 static struct breakpoint_ops strace_marker_breakpoint_ops;
13236
13237 static int
13238 strace_marker_p (struct breakpoint *b)
13239 {
13240 return b->ops == &strace_marker_breakpoint_ops;
13241 }
13242
13243 /* Delete a breakpoint and clean up all traces of it in the data
13244 structures. */
13245
13246 void
13247 delete_breakpoint (struct breakpoint *bpt)
13248 {
13249 struct breakpoint *b;
13250
13251 gdb_assert (bpt != NULL);
13252
13253 /* Has this bp already been deleted? This can happen because
13254 multiple lists can hold pointers to bp's. bpstat lists are
13255 especial culprits.
13256
13257 One example of this happening is a watchpoint's scope bp. When
13258 the scope bp triggers, we notice that the watchpoint is out of
13259 scope, and delete it. We also delete its scope bp. But the
13260 scope bp is marked "auto-deleting", and is already on a bpstat.
13261 That bpstat is then checked for auto-deleting bp's, which are
13262 deleted.
13263
13264 A real solution to this problem might involve reference counts in
13265 bp's, and/or giving them pointers back to their referencing
13266 bpstat's, and teaching delete_breakpoint to only free a bp's
13267 storage when no more references were extent. A cheaper bandaid
13268 was chosen. */
13269 if (bpt->type == bp_none)
13270 return;
13271
13272 /* At least avoid this stale reference until the reference counting
13273 of breakpoints gets resolved. */
13274 if (bpt->related_breakpoint != bpt)
13275 {
13276 struct breakpoint *related;
13277 struct watchpoint *w;
13278
13279 if (bpt->type == bp_watchpoint_scope)
13280 w = (struct watchpoint *) bpt->related_breakpoint;
13281 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13282 w = (struct watchpoint *) bpt;
13283 else
13284 w = NULL;
13285 if (w != NULL)
13286 watchpoint_del_at_next_stop (w);
13287
13288 /* Unlink bpt from the bpt->related_breakpoint ring. */
13289 for (related = bpt; related->related_breakpoint != bpt;
13290 related = related->related_breakpoint);
13291 related->related_breakpoint = bpt->related_breakpoint;
13292 bpt->related_breakpoint = bpt;
13293 }
13294
13295 /* watch_command_1 creates a watchpoint but only sets its number if
13296 update_watchpoint succeeds in creating its bp_locations. If there's
13297 a problem in that process, we'll be asked to delete the half-created
13298 watchpoint. In that case, don't announce the deletion. */
13299 if (bpt->number)
13300 observer_notify_breakpoint_deleted (bpt);
13301
13302 if (breakpoint_chain == bpt)
13303 breakpoint_chain = bpt->next;
13304
13305 ALL_BREAKPOINTS (b)
13306 if (b->next == bpt)
13307 {
13308 b->next = bpt->next;
13309 break;
13310 }
13311
13312 /* Be sure no bpstat's are pointing at the breakpoint after it's
13313 been freed. */
13314 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13315 in all threads for now. Note that we cannot just remove bpstats
13316 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13317 commands are associated with the bpstat; if we remove it here,
13318 then the later call to bpstat_do_actions (&stop_bpstat); in
13319 event-top.c won't do anything, and temporary breakpoints with
13320 commands won't work. */
13321
13322 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13323
13324 /* Now that breakpoint is removed from breakpoint list, update the
13325 global location list. This will remove locations that used to
13326 belong to this breakpoint. Do this before freeing the breakpoint
13327 itself, since remove_breakpoint looks at location's owner. It
13328 might be better design to have location completely
13329 self-contained, but it's not the case now. */
13330 update_global_location_list (UGLL_DONT_INSERT);
13331
13332 /* On the chance that someone will soon try again to delete this
13333 same bp, we mark it as deleted before freeing its storage. */
13334 bpt->type = bp_none;
13335 delete bpt;
13336 }
13337
13338 /* Iterator function to call a user-provided callback function once
13339 for each of B and its related breakpoints. */
13340
13341 static void
13342 iterate_over_related_breakpoints (struct breakpoint *b,
13343 gdb::function_view<void (breakpoint *)> function)
13344 {
13345 struct breakpoint *related;
13346
13347 related = b;
13348 do
13349 {
13350 struct breakpoint *next;
13351
13352 /* FUNCTION may delete RELATED. */
13353 next = related->related_breakpoint;
13354
13355 if (next == related)
13356 {
13357 /* RELATED is the last ring entry. */
13358 function (related);
13359
13360 /* FUNCTION may have deleted it, so we'd never reach back to
13361 B. There's nothing left to do anyway, so just break
13362 out. */
13363 break;
13364 }
13365 else
13366 function (related);
13367
13368 related = next;
13369 }
13370 while (related != b);
13371 }
13372
13373 static void
13374 delete_command (const char *arg, int from_tty)
13375 {
13376 struct breakpoint *b, *b_tmp;
13377
13378 dont_repeat ();
13379
13380 if (arg == 0)
13381 {
13382 int breaks_to_delete = 0;
13383
13384 /* Delete all breakpoints if no argument. Do not delete
13385 internal breakpoints, these have to be deleted with an
13386 explicit breakpoint number argument. */
13387 ALL_BREAKPOINTS (b)
13388 if (user_breakpoint_p (b))
13389 {
13390 breaks_to_delete = 1;
13391 break;
13392 }
13393
13394 /* Ask user only if there are some breakpoints to delete. */
13395 if (!from_tty
13396 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13397 {
13398 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13399 if (user_breakpoint_p (b))
13400 delete_breakpoint (b);
13401 }
13402 }
13403 else
13404 map_breakpoint_numbers
13405 (arg, [&] (breakpoint *b)
13406 {
13407 iterate_over_related_breakpoints (b, delete_breakpoint);
13408 });
13409 }
13410
13411 /* Return true if all locations of B bound to PSPACE are pending. If
13412 PSPACE is NULL, all locations of all program spaces are
13413 considered. */
13414
13415 static int
13416 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13417 {
13418 struct bp_location *loc;
13419
13420 for (loc = b->loc; loc != NULL; loc = loc->next)
13421 if ((pspace == NULL
13422 || loc->pspace == pspace)
13423 && !loc->shlib_disabled
13424 && !loc->pspace->executing_startup)
13425 return 0;
13426 return 1;
13427 }
13428
13429 /* Subroutine of update_breakpoint_locations to simplify it.
13430 Return non-zero if multiple fns in list LOC have the same name.
13431 Null names are ignored. */
13432
13433 static int
13434 ambiguous_names_p (struct bp_location *loc)
13435 {
13436 struct bp_location *l;
13437 htab_t htab = htab_create_alloc (13, htab_hash_string,
13438 (int (*) (const void *,
13439 const void *)) streq,
13440 NULL, xcalloc, xfree);
13441
13442 for (l = loc; l != NULL; l = l->next)
13443 {
13444 const char **slot;
13445 const char *name = l->function_name;
13446
13447 /* Allow for some names to be NULL, ignore them. */
13448 if (name == NULL)
13449 continue;
13450
13451 slot = (const char **) htab_find_slot (htab, (const void *) name,
13452 INSERT);
13453 /* NOTE: We can assume slot != NULL here because xcalloc never
13454 returns NULL. */
13455 if (*slot != NULL)
13456 {
13457 htab_delete (htab);
13458 return 1;
13459 }
13460 *slot = name;
13461 }
13462
13463 htab_delete (htab);
13464 return 0;
13465 }
13466
13467 /* When symbols change, it probably means the sources changed as well,
13468 and it might mean the static tracepoint markers are no longer at
13469 the same address or line numbers they used to be at last we
13470 checked. Losing your static tracepoints whenever you rebuild is
13471 undesirable. This function tries to resync/rematch gdb static
13472 tracepoints with the markers on the target, for static tracepoints
13473 that have not been set by marker id. Static tracepoint that have
13474 been set by marker id are reset by marker id in breakpoint_re_set.
13475 The heuristic is:
13476
13477 1) For a tracepoint set at a specific address, look for a marker at
13478 the old PC. If one is found there, assume to be the same marker.
13479 If the name / string id of the marker found is different from the
13480 previous known name, assume that means the user renamed the marker
13481 in the sources, and output a warning.
13482
13483 2) For a tracepoint set at a given line number, look for a marker
13484 at the new address of the old line number. If one is found there,
13485 assume to be the same marker. If the name / string id of the
13486 marker found is different from the previous known name, assume that
13487 means the user renamed the marker in the sources, and output a
13488 warning.
13489
13490 3) If a marker is no longer found at the same address or line, it
13491 may mean the marker no longer exists. But it may also just mean
13492 the code changed a bit. Maybe the user added a few lines of code
13493 that made the marker move up or down (in line number terms). Ask
13494 the target for info about the marker with the string id as we knew
13495 it. If found, update line number and address in the matching
13496 static tracepoint. This will get confused if there's more than one
13497 marker with the same ID (possible in UST, although unadvised
13498 precisely because it confuses tools). */
13499
13500 static struct symtab_and_line
13501 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13502 {
13503 struct tracepoint *tp = (struct tracepoint *) b;
13504 struct static_tracepoint_marker marker;
13505 CORE_ADDR pc;
13506
13507 pc = sal.pc;
13508 if (sal.line)
13509 find_line_pc (sal.symtab, sal.line, &pc);
13510
13511 if (target_static_tracepoint_marker_at (pc, &marker))
13512 {
13513 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13514 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13515 b->number,
13516 tp->static_trace_marker_id, marker.str_id);
13517
13518 xfree (tp->static_trace_marker_id);
13519 tp->static_trace_marker_id = xstrdup (marker.str_id);
13520 release_static_tracepoint_marker (&marker);
13521
13522 return sal;
13523 }
13524
13525 /* Old marker wasn't found on target at lineno. Try looking it up
13526 by string ID. */
13527 if (!sal.explicit_pc
13528 && sal.line != 0
13529 && sal.symtab != NULL
13530 && tp->static_trace_marker_id != NULL)
13531 {
13532 VEC(static_tracepoint_marker_p) *markers;
13533
13534 markers
13535 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13536
13537 if (!VEC_empty(static_tracepoint_marker_p, markers))
13538 {
13539 struct symbol *sym;
13540 struct static_tracepoint_marker *tpmarker;
13541 struct ui_out *uiout = current_uiout;
13542 struct explicit_location explicit_loc;
13543
13544 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13545
13546 xfree (tp->static_trace_marker_id);
13547 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13548
13549 warning (_("marker for static tracepoint %d (%s) not "
13550 "found at previous line number"),
13551 b->number, tp->static_trace_marker_id);
13552
13553 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13554 sym = find_pc_sect_function (tpmarker->address, NULL);
13555 uiout->text ("Now in ");
13556 if (sym)
13557 {
13558 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
13559 uiout->text (" at ");
13560 }
13561 uiout->field_string ("file",
13562 symtab_to_filename_for_display (sal2.symtab));
13563 uiout->text (":");
13564
13565 if (uiout->is_mi_like_p ())
13566 {
13567 const char *fullname = symtab_to_fullname (sal2.symtab);
13568
13569 uiout->field_string ("fullname", fullname);
13570 }
13571
13572 uiout->field_int ("line", sal2.line);
13573 uiout->text ("\n");
13574
13575 b->loc->line_number = sal2.line;
13576 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13577
13578 b->location.reset (NULL);
13579 initialize_explicit_location (&explicit_loc);
13580 explicit_loc.source_filename
13581 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13582 explicit_loc.line_offset.offset = b->loc->line_number;
13583 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13584 b->location = new_explicit_location (&explicit_loc);
13585
13586 /* Might be nice to check if function changed, and warn if
13587 so. */
13588
13589 release_static_tracepoint_marker (tpmarker);
13590 }
13591 }
13592 return sal;
13593 }
13594
13595 /* Returns 1 iff locations A and B are sufficiently same that
13596 we don't need to report breakpoint as changed. */
13597
13598 static int
13599 locations_are_equal (struct bp_location *a, struct bp_location *b)
13600 {
13601 while (a && b)
13602 {
13603 if (a->address != b->address)
13604 return 0;
13605
13606 if (a->shlib_disabled != b->shlib_disabled)
13607 return 0;
13608
13609 if (a->enabled != b->enabled)
13610 return 0;
13611
13612 a = a->next;
13613 b = b->next;
13614 }
13615
13616 if ((a == NULL) != (b == NULL))
13617 return 0;
13618
13619 return 1;
13620 }
13621
13622 /* Split all locations of B that are bound to PSPACE out of B's
13623 location list to a separate list and return that list's head. If
13624 PSPACE is NULL, hoist out all locations of B. */
13625
13626 static struct bp_location *
13627 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13628 {
13629 struct bp_location head;
13630 struct bp_location *i = b->loc;
13631 struct bp_location **i_link = &b->loc;
13632 struct bp_location *hoisted = &head;
13633
13634 if (pspace == NULL)
13635 {
13636 i = b->loc;
13637 b->loc = NULL;
13638 return i;
13639 }
13640
13641 head.next = NULL;
13642
13643 while (i != NULL)
13644 {
13645 if (i->pspace == pspace)
13646 {
13647 *i_link = i->next;
13648 i->next = NULL;
13649 hoisted->next = i;
13650 hoisted = i;
13651 }
13652 else
13653 i_link = &i->next;
13654 i = *i_link;
13655 }
13656
13657 return head.next;
13658 }
13659
13660 /* Create new breakpoint locations for B (a hardware or software
13661 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13662 zero, then B is a ranged breakpoint. Only recreates locations for
13663 FILTER_PSPACE. Locations of other program spaces are left
13664 untouched. */
13665
13666 void
13667 update_breakpoint_locations (struct breakpoint *b,
13668 struct program_space *filter_pspace,
13669 gdb::array_view<const symtab_and_line> sals,
13670 gdb::array_view<const symtab_and_line> sals_end)
13671 {
13672 int i;
13673 struct bp_location *existing_locations;
13674
13675 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13676 {
13677 /* Ranged breakpoints have only one start location and one end
13678 location. */
13679 b->enable_state = bp_disabled;
13680 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13681 "multiple locations found\n"),
13682 b->number);
13683 return;
13684 }
13685
13686 /* If there's no new locations, and all existing locations are
13687 pending, don't do anything. This optimizes the common case where
13688 all locations are in the same shared library, that was unloaded.
13689 We'd like to retain the location, so that when the library is
13690 loaded again, we don't loose the enabled/disabled status of the
13691 individual locations. */
13692 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13693 return;
13694
13695 existing_locations = hoist_existing_locations (b, filter_pspace);
13696
13697 for (const auto &sal : sals)
13698 {
13699 struct bp_location *new_loc;
13700
13701 switch_to_program_space_and_thread (sal.pspace);
13702
13703 new_loc = add_location_to_breakpoint (b, &sal);
13704
13705 /* Reparse conditions, they might contain references to the
13706 old symtab. */
13707 if (b->cond_string != NULL)
13708 {
13709 const char *s;
13710
13711 s = b->cond_string;
13712 TRY
13713 {
13714 new_loc->cond = parse_exp_1 (&s, sal.pc,
13715 block_for_pc (sal.pc),
13716 0);
13717 }
13718 CATCH (e, RETURN_MASK_ERROR)
13719 {
13720 warning (_("failed to reevaluate condition "
13721 "for breakpoint %d: %s"),
13722 b->number, e.message);
13723 new_loc->enabled = 0;
13724 }
13725 END_CATCH
13726 }
13727
13728 if (!sals_end.empty ())
13729 {
13730 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13731
13732 new_loc->length = end - sals[0].pc + 1;
13733 }
13734 }
13735
13736 /* If possible, carry over 'disable' status from existing
13737 breakpoints. */
13738 {
13739 struct bp_location *e = existing_locations;
13740 /* If there are multiple breakpoints with the same function name,
13741 e.g. for inline functions, comparing function names won't work.
13742 Instead compare pc addresses; this is just a heuristic as things
13743 may have moved, but in practice it gives the correct answer
13744 often enough until a better solution is found. */
13745 int have_ambiguous_names = ambiguous_names_p (b->loc);
13746
13747 for (; e; e = e->next)
13748 {
13749 if (!e->enabled && e->function_name)
13750 {
13751 struct bp_location *l = b->loc;
13752 if (have_ambiguous_names)
13753 {
13754 for (; l; l = l->next)
13755 if (breakpoint_locations_match (e, l))
13756 {
13757 l->enabled = 0;
13758 break;
13759 }
13760 }
13761 else
13762 {
13763 for (; l; l = l->next)
13764 if (l->function_name
13765 && strcmp (e->function_name, l->function_name) == 0)
13766 {
13767 l->enabled = 0;
13768 break;
13769 }
13770 }
13771 }
13772 }
13773 }
13774
13775 if (!locations_are_equal (existing_locations, b->loc))
13776 observer_notify_breakpoint_modified (b);
13777 }
13778
13779 /* Find the SaL locations corresponding to the given LOCATION.
13780 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13781
13782 static std::vector<symtab_and_line>
13783 location_to_sals (struct breakpoint *b, struct event_location *location,
13784 struct program_space *search_pspace, int *found)
13785 {
13786 struct gdb_exception exception = exception_none;
13787
13788 gdb_assert (b->ops != NULL);
13789
13790 std::vector<symtab_and_line> sals;
13791
13792 TRY
13793 {
13794 sals = b->ops->decode_location (b, location, search_pspace);
13795 }
13796 CATCH (e, RETURN_MASK_ERROR)
13797 {
13798 int not_found_and_ok = 0;
13799
13800 exception = e;
13801
13802 /* For pending breakpoints, it's expected that parsing will
13803 fail until the right shared library is loaded. User has
13804 already told to create pending breakpoints and don't need
13805 extra messages. If breakpoint is in bp_shlib_disabled
13806 state, then user already saw the message about that
13807 breakpoint being disabled, and don't want to see more
13808 errors. */
13809 if (e.error == NOT_FOUND_ERROR
13810 && (b->condition_not_parsed
13811 || (b->loc != NULL
13812 && search_pspace != NULL
13813 && b->loc->pspace != search_pspace)
13814 || (b->loc && b->loc->shlib_disabled)
13815 || (b->loc && b->loc->pspace->executing_startup)
13816 || b->enable_state == bp_disabled))
13817 not_found_and_ok = 1;
13818
13819 if (!not_found_and_ok)
13820 {
13821 /* We surely don't want to warn about the same breakpoint
13822 10 times. One solution, implemented here, is disable
13823 the breakpoint on error. Another solution would be to
13824 have separate 'warning emitted' flag. Since this
13825 happens only when a binary has changed, I don't know
13826 which approach is better. */
13827 b->enable_state = bp_disabled;
13828 throw_exception (e);
13829 }
13830 }
13831 END_CATCH
13832
13833 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13834 {
13835 for (auto &sal : sals)
13836 resolve_sal_pc (&sal);
13837 if (b->condition_not_parsed && b->extra_string != NULL)
13838 {
13839 char *cond_string, *extra_string;
13840 int thread, task;
13841
13842 find_condition_and_thread (b->extra_string, sals[0].pc,
13843 &cond_string, &thread, &task,
13844 &extra_string);
13845 gdb_assert (b->cond_string == NULL);
13846 if (cond_string)
13847 b->cond_string = cond_string;
13848 b->thread = thread;
13849 b->task = task;
13850 if (extra_string)
13851 {
13852 xfree (b->extra_string);
13853 b->extra_string = extra_string;
13854 }
13855 b->condition_not_parsed = 0;
13856 }
13857
13858 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13859 sals[0] = update_static_tracepoint (b, sals[0]);
13860
13861 *found = 1;
13862 }
13863 else
13864 *found = 0;
13865
13866 return sals;
13867 }
13868
13869 /* The default re_set method, for typical hardware or software
13870 breakpoints. Reevaluate the breakpoint and recreate its
13871 locations. */
13872
13873 static void
13874 breakpoint_re_set_default (struct breakpoint *b)
13875 {
13876 struct program_space *filter_pspace = current_program_space;
13877 std::vector<symtab_and_line> expanded, expanded_end;
13878
13879 int found;
13880 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13881 filter_pspace, &found);
13882 if (found)
13883 expanded = std::move (sals);
13884
13885 if (b->location_range_end != NULL)
13886 {
13887 std::vector<symtab_and_line> sals_end
13888 = location_to_sals (b, b->location_range_end.get (),
13889 filter_pspace, &found);
13890 if (found)
13891 expanded_end = std::move (sals_end);
13892 }
13893
13894 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13895 }
13896
13897 /* Default method for creating SALs from an address string. It basically
13898 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13899
13900 static void
13901 create_sals_from_location_default (const struct event_location *location,
13902 struct linespec_result *canonical,
13903 enum bptype type_wanted)
13904 {
13905 parse_breakpoint_sals (location, canonical);
13906 }
13907
13908 /* Call create_breakpoints_sal for the given arguments. This is the default
13909 function for the `create_breakpoints_sal' method of
13910 breakpoint_ops. */
13911
13912 static void
13913 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13914 struct linespec_result *canonical,
13915 gdb::unique_xmalloc_ptr<char> cond_string,
13916 gdb::unique_xmalloc_ptr<char> extra_string,
13917 enum bptype type_wanted,
13918 enum bpdisp disposition,
13919 int thread,
13920 int task, int ignore_count,
13921 const struct breakpoint_ops *ops,
13922 int from_tty, int enabled,
13923 int internal, unsigned flags)
13924 {
13925 create_breakpoints_sal (gdbarch, canonical,
13926 std::move (cond_string),
13927 std::move (extra_string),
13928 type_wanted, disposition,
13929 thread, task, ignore_count, ops, from_tty,
13930 enabled, internal, flags);
13931 }
13932
13933 /* Decode the line represented by S by calling decode_line_full. This is the
13934 default function for the `decode_location' method of breakpoint_ops. */
13935
13936 static std::vector<symtab_and_line>
13937 decode_location_default (struct breakpoint *b,
13938 const struct event_location *location,
13939 struct program_space *search_pspace)
13940 {
13941 struct linespec_result canonical;
13942
13943 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13944 (struct symtab *) NULL, 0,
13945 &canonical, multiple_symbols_all,
13946 b->filter);
13947
13948 /* We should get 0 or 1 resulting SALs. */
13949 gdb_assert (canonical.lsals.size () < 2);
13950
13951 if (!canonical.lsals.empty ())
13952 {
13953 const linespec_sals &lsal = canonical.lsals[0];
13954 return std::move (lsal.sals);
13955 }
13956 return {};
13957 }
13958
13959 /* Reset a breakpoint. */
13960
13961 static void
13962 breakpoint_re_set_one (breakpoint *b)
13963 {
13964 input_radix = b->input_radix;
13965 set_language (b->language);
13966
13967 b->ops->re_set (b);
13968 }
13969
13970 /* Re-set breakpoint locations for the current program space.
13971 Locations bound to other program spaces are left untouched. */
13972
13973 void
13974 breakpoint_re_set (void)
13975 {
13976 struct breakpoint *b, *b_tmp;
13977
13978 {
13979 scoped_restore_current_language save_language;
13980 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13981 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13982
13983 /* Note: we must not try to insert locations until after all
13984 breakpoints have been re-set. Otherwise, e.g., when re-setting
13985 breakpoint 1, we'd insert the locations of breakpoint 2, which
13986 hadn't been re-set yet, and thus may have stale locations. */
13987
13988 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13989 {
13990 TRY
13991 {
13992 breakpoint_re_set_one (b);
13993 }
13994 CATCH (ex, RETURN_MASK_ALL)
13995 {
13996 exception_fprintf (gdb_stderr, ex,
13997 "Error in re-setting breakpoint %d: ",
13998 b->number);
13999 }
14000 END_CATCH
14001 }
14002
14003 jit_breakpoint_re_set ();
14004 }
14005
14006 create_overlay_event_breakpoint ();
14007 create_longjmp_master_breakpoint ();
14008 create_std_terminate_master_breakpoint ();
14009 create_exception_master_breakpoint ();
14010
14011 /* Now we can insert. */
14012 update_global_location_list (UGLL_MAY_INSERT);
14013 }
14014 \f
14015 /* Reset the thread number of this breakpoint:
14016
14017 - If the breakpoint is for all threads, leave it as-is.
14018 - Else, reset it to the current thread for inferior_ptid. */
14019 void
14020 breakpoint_re_set_thread (struct breakpoint *b)
14021 {
14022 if (b->thread != -1)
14023 {
14024 if (in_thread_list (inferior_ptid))
14025 b->thread = ptid_to_global_thread_id (inferior_ptid);
14026
14027 /* We're being called after following a fork. The new fork is
14028 selected as current, and unless this was a vfork will have a
14029 different program space from the original thread. Reset that
14030 as well. */
14031 b->loc->pspace = current_program_space;
14032 }
14033 }
14034
14035 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14036 If from_tty is nonzero, it prints a message to that effect,
14037 which ends with a period (no newline). */
14038
14039 void
14040 set_ignore_count (int bptnum, int count, int from_tty)
14041 {
14042 struct breakpoint *b;
14043
14044 if (count < 0)
14045 count = 0;
14046
14047 ALL_BREAKPOINTS (b)
14048 if (b->number == bptnum)
14049 {
14050 if (is_tracepoint (b))
14051 {
14052 if (from_tty && count != 0)
14053 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14054 bptnum);
14055 return;
14056 }
14057
14058 b->ignore_count = count;
14059 if (from_tty)
14060 {
14061 if (count == 0)
14062 printf_filtered (_("Will stop next time "
14063 "breakpoint %d is reached."),
14064 bptnum);
14065 else if (count == 1)
14066 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14067 bptnum);
14068 else
14069 printf_filtered (_("Will ignore next %d "
14070 "crossings of breakpoint %d."),
14071 count, bptnum);
14072 }
14073 observer_notify_breakpoint_modified (b);
14074 return;
14075 }
14076
14077 error (_("No breakpoint number %d."), bptnum);
14078 }
14079
14080 /* Command to set ignore-count of breakpoint N to COUNT. */
14081
14082 static void
14083 ignore_command (const char *args, int from_tty)
14084 {
14085 const char *p = args;
14086 int num;
14087
14088 if (p == 0)
14089 error_no_arg (_("a breakpoint number"));
14090
14091 num = get_number (&p);
14092 if (num == 0)
14093 error (_("bad breakpoint number: '%s'"), args);
14094 if (*p == 0)
14095 error (_("Second argument (specified ignore-count) is missing."));
14096
14097 set_ignore_count (num,
14098 longest_to_int (value_as_long (parse_and_eval (p))),
14099 from_tty);
14100 if (from_tty)
14101 printf_filtered ("\n");
14102 }
14103 \f
14104
14105 /* Call FUNCTION on each of the breakpoints with numbers in the range
14106 defined by BP_NUM_RANGE (an inclusive range). */
14107
14108 static void
14109 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
14110 gdb::function_view<void (breakpoint *)> function)
14111 {
14112 if (bp_num_range.first == 0)
14113 {
14114 warning (_("bad breakpoint number at or near '%d'"),
14115 bp_num_range.first);
14116 }
14117 else
14118 {
14119 struct breakpoint *b, *tmp;
14120
14121 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
14122 {
14123 bool match = false;
14124
14125 ALL_BREAKPOINTS_SAFE (b, tmp)
14126 if (b->number == i)
14127 {
14128 match = true;
14129 function (b);
14130 break;
14131 }
14132 if (!match)
14133 printf_unfiltered (_("No breakpoint number %d.\n"), i);
14134 }
14135 }
14136 }
14137
14138 /* Call FUNCTION on each of the breakpoints whose numbers are given in
14139 ARGS. */
14140
14141 static void
14142 map_breakpoint_numbers (const char *args,
14143 gdb::function_view<void (breakpoint *)> function)
14144 {
14145 if (args == NULL || *args == '\0')
14146 error_no_arg (_("one or more breakpoint numbers"));
14147
14148 number_or_range_parser parser (args);
14149
14150 while (!parser.finished ())
14151 {
14152 int num = parser.get_number ();
14153 map_breakpoint_number_range (std::make_pair (num, num), function);
14154 }
14155 }
14156
14157 /* Return the breakpoint location structure corresponding to the
14158 BP_NUM and LOC_NUM values. */
14159
14160 static struct bp_location *
14161 find_location_by_number (int bp_num, int loc_num)
14162 {
14163 struct breakpoint *b;
14164
14165 ALL_BREAKPOINTS (b)
14166 if (b->number == bp_num)
14167 {
14168 break;
14169 }
14170
14171 if (!b || b->number != bp_num)
14172 error (_("Bad breakpoint number '%d'"), bp_num);
14173
14174 if (loc_num == 0)
14175 error (_("Bad breakpoint location number '%d'"), loc_num);
14176
14177 int n = 0;
14178 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14179 if (++n == loc_num)
14180 return loc;
14181
14182 error (_("Bad breakpoint location number '%d'"), loc_num);
14183 }
14184
14185 /* Modes of operation for extract_bp_num. */
14186 enum class extract_bp_kind
14187 {
14188 /* Extracting a breakpoint number. */
14189 bp,
14190
14191 /* Extracting a location number. */
14192 loc,
14193 };
14194
14195 /* Extract a breakpoint or location number (as determined by KIND)
14196 from the string starting at START. TRAILER is a character which
14197 can be found after the number. If you don't want a trailer, use
14198 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14199 string. This always returns a positive integer. */
14200
14201 static int
14202 extract_bp_num (extract_bp_kind kind, const char *start,
14203 int trailer, const char **end_out = NULL)
14204 {
14205 const char *end = start;
14206 int num = get_number_trailer (&end, trailer);
14207 if (num < 0)
14208 error (kind == extract_bp_kind::bp
14209 ? _("Negative breakpoint number '%.*s'")
14210 : _("Negative breakpoint location number '%.*s'"),
14211 int (end - start), start);
14212 if (num == 0)
14213 error (kind == extract_bp_kind::bp
14214 ? _("Bad breakpoint number '%.*s'")
14215 : _("Bad breakpoint location number '%.*s'"),
14216 int (end - start), start);
14217
14218 if (end_out != NULL)
14219 *end_out = end;
14220 return num;
14221 }
14222
14223 /* Extract a breakpoint or location range (as determined by KIND) in
14224 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14225 representing the (inclusive) range. The returned pair's elements
14226 are always positive integers. */
14227
14228 static std::pair<int, int>
14229 extract_bp_or_bp_range (extract_bp_kind kind,
14230 const std::string &arg,
14231 std::string::size_type arg_offset)
14232 {
14233 std::pair<int, int> range;
14234 const char *bp_loc = &arg[arg_offset];
14235 std::string::size_type dash = arg.find ('-', arg_offset);
14236 if (dash != std::string::npos)
14237 {
14238 /* bp_loc is a range (x-z). */
14239 if (arg.length () == dash + 1)
14240 error (kind == extract_bp_kind::bp
14241 ? _("Bad breakpoint number at or near: '%s'")
14242 : _("Bad breakpoint location number at or near: '%s'"),
14243 bp_loc);
14244
14245 const char *end;
14246 const char *start_first = bp_loc;
14247 const char *start_second = &arg[dash + 1];
14248 range.first = extract_bp_num (kind, start_first, '-');
14249 range.second = extract_bp_num (kind, start_second, '\0', &end);
14250
14251 if (range.first > range.second)
14252 error (kind == extract_bp_kind::bp
14253 ? _("Inverted breakpoint range at '%.*s'")
14254 : _("Inverted breakpoint location range at '%.*s'"),
14255 int (end - start_first), start_first);
14256 }
14257 else
14258 {
14259 /* bp_loc is a single value. */
14260 range.first = extract_bp_num (kind, bp_loc, '\0');
14261 range.second = range.first;
14262 }
14263 return range;
14264 }
14265
14266 /* Extract the breakpoint/location range specified by ARG. Returns
14267 the breakpoint range in BP_NUM_RANGE, and the location range in
14268 BP_LOC_RANGE.
14269
14270 ARG may be in any of the following forms:
14271
14272 x where 'x' is a breakpoint number.
14273 x-y where 'x' and 'y' specify a breakpoint numbers range.
14274 x.y where 'x' is a breakpoint number and 'y' a location number.
14275 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14276 location number range.
14277 */
14278
14279 static void
14280 extract_bp_number_and_location (const std::string &arg,
14281 std::pair<int, int> &bp_num_range,
14282 std::pair<int, int> &bp_loc_range)
14283 {
14284 std::string::size_type dot = arg.find ('.');
14285
14286 if (dot != std::string::npos)
14287 {
14288 /* Handle 'x.y' and 'x.y-z' cases. */
14289
14290 if (arg.length () == dot + 1 || dot == 0)
14291 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14292
14293 bp_num_range.first
14294 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14295 bp_num_range.second = bp_num_range.first;
14296
14297 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14298 arg, dot + 1);
14299 }
14300 else
14301 {
14302 /* Handle x and x-y cases. */
14303
14304 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14305 bp_loc_range.first = 0;
14306 bp_loc_range.second = 0;
14307 }
14308 }
14309
14310 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14311 specifies whether to enable or disable. */
14312
14313 static void
14314 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14315 {
14316 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14317 if (loc != NULL)
14318 {
14319 if (loc->enabled != enable)
14320 {
14321 loc->enabled = enable;
14322 mark_breakpoint_location_modified (loc);
14323 }
14324 if (target_supports_enable_disable_tracepoint ()
14325 && current_trace_status ()->running && loc->owner
14326 && is_tracepoint (loc->owner))
14327 target_disable_tracepoint (loc);
14328 }
14329 update_global_location_list (UGLL_DONT_INSERT);
14330 }
14331
14332 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14333 number of the breakpoint, and BP_LOC_RANGE specifies the
14334 (inclusive) range of location numbers of that breakpoint to
14335 enable/disable. ENABLE specifies whether to enable or disable the
14336 location. */
14337
14338 static void
14339 enable_disable_breakpoint_location_range (int bp_num,
14340 std::pair<int, int> &bp_loc_range,
14341 bool enable)
14342 {
14343 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14344 enable_disable_bp_num_loc (bp_num, i, enable);
14345 }
14346
14347 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14348 If from_tty is nonzero, it prints a message to that effect,
14349 which ends with a period (no newline). */
14350
14351 void
14352 disable_breakpoint (struct breakpoint *bpt)
14353 {
14354 /* Never disable a watchpoint scope breakpoint; we want to
14355 hit them when we leave scope so we can delete both the
14356 watchpoint and its scope breakpoint at that time. */
14357 if (bpt->type == bp_watchpoint_scope)
14358 return;
14359
14360 bpt->enable_state = bp_disabled;
14361
14362 /* Mark breakpoint locations modified. */
14363 mark_breakpoint_modified (bpt);
14364
14365 if (target_supports_enable_disable_tracepoint ()
14366 && current_trace_status ()->running && is_tracepoint (bpt))
14367 {
14368 struct bp_location *location;
14369
14370 for (location = bpt->loc; location; location = location->next)
14371 target_disable_tracepoint (location);
14372 }
14373
14374 update_global_location_list (UGLL_DONT_INSERT);
14375
14376 observer_notify_breakpoint_modified (bpt);
14377 }
14378
14379 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14380 specified in ARGS. ARGS may be in any of the formats handled by
14381 extract_bp_number_and_location. ENABLE specifies whether to enable
14382 or disable the breakpoints/locations. */
14383
14384 static void
14385 enable_disable_command (const char *args, int from_tty, bool enable)
14386 {
14387 if (args == 0)
14388 {
14389 struct breakpoint *bpt;
14390
14391 ALL_BREAKPOINTS (bpt)
14392 if (user_breakpoint_p (bpt))
14393 {
14394 if (enable)
14395 enable_breakpoint (bpt);
14396 else
14397 disable_breakpoint (bpt);
14398 }
14399 }
14400 else
14401 {
14402 std::string num = extract_arg (&args);
14403
14404 while (!num.empty ())
14405 {
14406 std::pair<int, int> bp_num_range, bp_loc_range;
14407
14408 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14409
14410 if (bp_loc_range.first == bp_loc_range.second
14411 && bp_loc_range.first == 0)
14412 {
14413 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14414 map_breakpoint_number_range (bp_num_range,
14415 enable
14416 ? enable_breakpoint
14417 : disable_breakpoint);
14418 }
14419 else
14420 {
14421 /* Handle breakpoint ids with formats 'x.y' or
14422 'x.y-z'. */
14423 enable_disable_breakpoint_location_range
14424 (bp_num_range.first, bp_loc_range, enable);
14425 }
14426 num = extract_arg (&args);
14427 }
14428 }
14429 }
14430
14431 /* The disable command disables the specified breakpoints/locations
14432 (or all defined breakpoints) so they're no longer effective in
14433 stopping the inferior. ARGS may be in any of the forms defined in
14434 extract_bp_number_and_location. */
14435
14436 static void
14437 disable_command (const char *args, int from_tty)
14438 {
14439 enable_disable_command (args, from_tty, false);
14440 }
14441
14442 static void
14443 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14444 int count)
14445 {
14446 int target_resources_ok;
14447
14448 if (bpt->type == bp_hardware_breakpoint)
14449 {
14450 int i;
14451 i = hw_breakpoint_used_count ();
14452 target_resources_ok =
14453 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14454 i + 1, 0);
14455 if (target_resources_ok == 0)
14456 error (_("No hardware breakpoint support in the target."));
14457 else if (target_resources_ok < 0)
14458 error (_("Hardware breakpoints used exceeds limit."));
14459 }
14460
14461 if (is_watchpoint (bpt))
14462 {
14463 /* Initialize it just to avoid a GCC false warning. */
14464 enum enable_state orig_enable_state = bp_disabled;
14465
14466 TRY
14467 {
14468 struct watchpoint *w = (struct watchpoint *) bpt;
14469
14470 orig_enable_state = bpt->enable_state;
14471 bpt->enable_state = bp_enabled;
14472 update_watchpoint (w, 1 /* reparse */);
14473 }
14474 CATCH (e, RETURN_MASK_ALL)
14475 {
14476 bpt->enable_state = orig_enable_state;
14477 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14478 bpt->number);
14479 return;
14480 }
14481 END_CATCH
14482 }
14483
14484 bpt->enable_state = bp_enabled;
14485
14486 /* Mark breakpoint locations modified. */
14487 mark_breakpoint_modified (bpt);
14488
14489 if (target_supports_enable_disable_tracepoint ()
14490 && current_trace_status ()->running && is_tracepoint (bpt))
14491 {
14492 struct bp_location *location;
14493
14494 for (location = bpt->loc; location; location = location->next)
14495 target_enable_tracepoint (location);
14496 }
14497
14498 bpt->disposition = disposition;
14499 bpt->enable_count = count;
14500 update_global_location_list (UGLL_MAY_INSERT);
14501
14502 observer_notify_breakpoint_modified (bpt);
14503 }
14504
14505
14506 void
14507 enable_breakpoint (struct breakpoint *bpt)
14508 {
14509 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14510 }
14511
14512 /* The enable command enables the specified breakpoints/locations (or
14513 all defined breakpoints) so they once again become (or continue to
14514 be) effective in stopping the inferior. ARGS may be in any of the
14515 forms defined in extract_bp_number_and_location. */
14516
14517 static void
14518 enable_command (const char *args, int from_tty)
14519 {
14520 enable_disable_command (args, from_tty, true);
14521 }
14522
14523 static void
14524 enable_once_command (const char *args, int from_tty)
14525 {
14526 map_breakpoint_numbers
14527 (args, [&] (breakpoint *b)
14528 {
14529 iterate_over_related_breakpoints
14530 (b, [&] (breakpoint *bpt)
14531 {
14532 enable_breakpoint_disp (bpt, disp_disable, 1);
14533 });
14534 });
14535 }
14536
14537 static void
14538 enable_count_command (const char *args, int from_tty)
14539 {
14540 int count;
14541
14542 if (args == NULL)
14543 error_no_arg (_("hit count"));
14544
14545 count = get_number (&args);
14546
14547 map_breakpoint_numbers
14548 (args, [&] (breakpoint *b)
14549 {
14550 iterate_over_related_breakpoints
14551 (b, [&] (breakpoint *bpt)
14552 {
14553 enable_breakpoint_disp (bpt, disp_disable, count);
14554 });
14555 });
14556 }
14557
14558 static void
14559 enable_delete_command (const char *args, int from_tty)
14560 {
14561 map_breakpoint_numbers
14562 (args, [&] (breakpoint *b)
14563 {
14564 iterate_over_related_breakpoints
14565 (b, [&] (breakpoint *bpt)
14566 {
14567 enable_breakpoint_disp (bpt, disp_del, 1);
14568 });
14569 });
14570 }
14571 \f
14572 static void
14573 set_breakpoint_cmd (const char *args, int from_tty)
14574 {
14575 }
14576
14577 static void
14578 show_breakpoint_cmd (const char *args, int from_tty)
14579 {
14580 }
14581
14582 /* Invalidate last known value of any hardware watchpoint if
14583 the memory which that value represents has been written to by
14584 GDB itself. */
14585
14586 static void
14587 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14588 CORE_ADDR addr, ssize_t len,
14589 const bfd_byte *data)
14590 {
14591 struct breakpoint *bp;
14592
14593 ALL_BREAKPOINTS (bp)
14594 if (bp->enable_state == bp_enabled
14595 && bp->type == bp_hardware_watchpoint)
14596 {
14597 struct watchpoint *wp = (struct watchpoint *) bp;
14598
14599 if (wp->val_valid && wp->val)
14600 {
14601 struct bp_location *loc;
14602
14603 for (loc = bp->loc; loc != NULL; loc = loc->next)
14604 if (loc->loc_type == bp_loc_hardware_watchpoint
14605 && loc->address + loc->length > addr
14606 && addr + len > loc->address)
14607 {
14608 value_free (wp->val);
14609 wp->val = NULL;
14610 wp->val_valid = 0;
14611 }
14612 }
14613 }
14614 }
14615
14616 /* Create and insert a breakpoint for software single step. */
14617
14618 void
14619 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14620 const address_space *aspace,
14621 CORE_ADDR next_pc)
14622 {
14623 struct thread_info *tp = inferior_thread ();
14624 struct symtab_and_line sal;
14625 CORE_ADDR pc = next_pc;
14626
14627 if (tp->control.single_step_breakpoints == NULL)
14628 {
14629 tp->control.single_step_breakpoints
14630 = new_single_step_breakpoint (tp->global_num, gdbarch);
14631 }
14632
14633 sal = find_pc_line (pc, 0);
14634 sal.pc = pc;
14635 sal.section = find_pc_overlay (pc);
14636 sal.explicit_pc = 1;
14637 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14638
14639 update_global_location_list (UGLL_INSERT);
14640 }
14641
14642 /* Insert single step breakpoints according to the current state. */
14643
14644 int
14645 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14646 {
14647 struct regcache *regcache = get_current_regcache ();
14648 std::vector<CORE_ADDR> next_pcs;
14649
14650 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14651
14652 if (!next_pcs.empty ())
14653 {
14654 struct frame_info *frame = get_current_frame ();
14655 const address_space *aspace = get_frame_address_space (frame);
14656
14657 for (CORE_ADDR pc : next_pcs)
14658 insert_single_step_breakpoint (gdbarch, aspace, pc);
14659
14660 return 1;
14661 }
14662 else
14663 return 0;
14664 }
14665
14666 /* See breakpoint.h. */
14667
14668 int
14669 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14670 const address_space *aspace,
14671 CORE_ADDR pc)
14672 {
14673 struct bp_location *loc;
14674
14675 for (loc = bp->loc; loc != NULL; loc = loc->next)
14676 if (loc->inserted
14677 && breakpoint_location_address_match (loc, aspace, pc))
14678 return 1;
14679
14680 return 0;
14681 }
14682
14683 /* Check whether a software single-step breakpoint is inserted at
14684 PC. */
14685
14686 int
14687 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14688 CORE_ADDR pc)
14689 {
14690 struct breakpoint *bpt;
14691
14692 ALL_BREAKPOINTS (bpt)
14693 {
14694 if (bpt->type == bp_single_step
14695 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14696 return 1;
14697 }
14698 return 0;
14699 }
14700
14701 /* Tracepoint-specific operations. */
14702
14703 /* Set tracepoint count to NUM. */
14704 static void
14705 set_tracepoint_count (int num)
14706 {
14707 tracepoint_count = num;
14708 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14709 }
14710
14711 static void
14712 trace_command (const char *arg, int from_tty)
14713 {
14714 struct breakpoint_ops *ops;
14715
14716 event_location_up location = string_to_event_location (&arg,
14717 current_language);
14718 if (location != NULL
14719 && event_location_type (location.get ()) == PROBE_LOCATION)
14720 ops = &tracepoint_probe_breakpoint_ops;
14721 else
14722 ops = &tracepoint_breakpoint_ops;
14723
14724 create_breakpoint (get_current_arch (),
14725 location.get (),
14726 NULL, 0, arg, 1 /* parse arg */,
14727 0 /* tempflag */,
14728 bp_tracepoint /* type_wanted */,
14729 0 /* Ignore count */,
14730 pending_break_support,
14731 ops,
14732 from_tty,
14733 1 /* enabled */,
14734 0 /* internal */, 0);
14735 }
14736
14737 static void
14738 ftrace_command (const char *arg, int from_tty)
14739 {
14740 event_location_up location = string_to_event_location (&arg,
14741 current_language);
14742 create_breakpoint (get_current_arch (),
14743 location.get (),
14744 NULL, 0, arg, 1 /* parse arg */,
14745 0 /* tempflag */,
14746 bp_fast_tracepoint /* type_wanted */,
14747 0 /* Ignore count */,
14748 pending_break_support,
14749 &tracepoint_breakpoint_ops,
14750 from_tty,
14751 1 /* enabled */,
14752 0 /* internal */, 0);
14753 }
14754
14755 /* strace command implementation. Creates a static tracepoint. */
14756
14757 static void
14758 strace_command (const char *arg, int from_tty)
14759 {
14760 struct breakpoint_ops *ops;
14761 event_location_up location;
14762
14763 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14764 or with a normal static tracepoint. */
14765 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14766 {
14767 ops = &strace_marker_breakpoint_ops;
14768 location = new_linespec_location (&arg);
14769 }
14770 else
14771 {
14772 ops = &tracepoint_breakpoint_ops;
14773 location = string_to_event_location (&arg, current_language);
14774 }
14775
14776 create_breakpoint (get_current_arch (),
14777 location.get (),
14778 NULL, 0, arg, 1 /* parse arg */,
14779 0 /* tempflag */,
14780 bp_static_tracepoint /* type_wanted */,
14781 0 /* Ignore count */,
14782 pending_break_support,
14783 ops,
14784 from_tty,
14785 1 /* enabled */,
14786 0 /* internal */, 0);
14787 }
14788
14789 /* Set up a fake reader function that gets command lines from a linked
14790 list that was acquired during tracepoint uploading. */
14791
14792 static struct uploaded_tp *this_utp;
14793 static int next_cmd;
14794
14795 static char *
14796 read_uploaded_action (void)
14797 {
14798 char *rslt;
14799
14800 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
14801
14802 next_cmd++;
14803
14804 return rslt;
14805 }
14806
14807 /* Given information about a tracepoint as recorded on a target (which
14808 can be either a live system or a trace file), attempt to create an
14809 equivalent GDB tracepoint. This is not a reliable process, since
14810 the target does not necessarily have all the information used when
14811 the tracepoint was originally defined. */
14812
14813 struct tracepoint *
14814 create_tracepoint_from_upload (struct uploaded_tp *utp)
14815 {
14816 const char *addr_str;
14817 char small_buf[100];
14818 struct tracepoint *tp;
14819
14820 if (utp->at_string)
14821 addr_str = utp->at_string;
14822 else
14823 {
14824 /* In the absence of a source location, fall back to raw
14825 address. Since there is no way to confirm that the address
14826 means the same thing as when the trace was started, warn the
14827 user. */
14828 warning (_("Uploaded tracepoint %d has no "
14829 "source location, using raw address"),
14830 utp->number);
14831 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14832 addr_str = small_buf;
14833 }
14834
14835 /* There's not much we can do with a sequence of bytecodes. */
14836 if (utp->cond && !utp->cond_string)
14837 warning (_("Uploaded tracepoint %d condition "
14838 "has no source form, ignoring it"),
14839 utp->number);
14840
14841 event_location_up location = string_to_event_location (&addr_str,
14842 current_language);
14843 if (!create_breakpoint (get_current_arch (),
14844 location.get (),
14845 utp->cond_string, -1, addr_str,
14846 0 /* parse cond/thread */,
14847 0 /* tempflag */,
14848 utp->type /* type_wanted */,
14849 0 /* Ignore count */,
14850 pending_break_support,
14851 &tracepoint_breakpoint_ops,
14852 0 /* from_tty */,
14853 utp->enabled /* enabled */,
14854 0 /* internal */,
14855 CREATE_BREAKPOINT_FLAGS_INSERTED))
14856 return NULL;
14857
14858 /* Get the tracepoint we just created. */
14859 tp = get_tracepoint (tracepoint_count);
14860 gdb_assert (tp != NULL);
14861
14862 if (utp->pass > 0)
14863 {
14864 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14865 tp->number);
14866
14867 trace_pass_command (small_buf, 0);
14868 }
14869
14870 /* If we have uploaded versions of the original commands, set up a
14871 special-purpose "reader" function and call the usual command line
14872 reader, then pass the result to the breakpoint command-setting
14873 function. */
14874 if (!VEC_empty (char_ptr, utp->cmd_strings))
14875 {
14876 command_line_up cmd_list;
14877
14878 this_utp = utp;
14879 next_cmd = 0;
14880
14881 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
14882
14883 breakpoint_set_commands (tp, std::move (cmd_list));
14884 }
14885 else if (!VEC_empty (char_ptr, utp->actions)
14886 || !VEC_empty (char_ptr, utp->step_actions))
14887 warning (_("Uploaded tracepoint %d actions "
14888 "have no source form, ignoring them"),
14889 utp->number);
14890
14891 /* Copy any status information that might be available. */
14892 tp->hit_count = utp->hit_count;
14893 tp->traceframe_usage = utp->traceframe_usage;
14894
14895 return tp;
14896 }
14897
14898 /* Print information on tracepoint number TPNUM_EXP, or all if
14899 omitted. */
14900
14901 static void
14902 info_tracepoints_command (const char *args, int from_tty)
14903 {
14904 struct ui_out *uiout = current_uiout;
14905 int num_printed;
14906
14907 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14908
14909 if (num_printed == 0)
14910 {
14911 if (args == NULL || *args == '\0')
14912 uiout->message ("No tracepoints.\n");
14913 else
14914 uiout->message ("No tracepoint matching '%s'.\n", args);
14915 }
14916
14917 default_collect_info ();
14918 }
14919
14920 /* The 'enable trace' command enables tracepoints.
14921 Not supported by all targets. */
14922 static void
14923 enable_trace_command (const char *args, int from_tty)
14924 {
14925 enable_command (args, from_tty);
14926 }
14927
14928 /* The 'disable trace' command disables tracepoints.
14929 Not supported by all targets. */
14930 static void
14931 disable_trace_command (const char *args, int from_tty)
14932 {
14933 disable_command (args, from_tty);
14934 }
14935
14936 /* Remove a tracepoint (or all if no argument). */
14937 static void
14938 delete_trace_command (const char *arg, int from_tty)
14939 {
14940 struct breakpoint *b, *b_tmp;
14941
14942 dont_repeat ();
14943
14944 if (arg == 0)
14945 {
14946 int breaks_to_delete = 0;
14947
14948 /* Delete all breakpoints if no argument.
14949 Do not delete internal or call-dummy breakpoints, these
14950 have to be deleted with an explicit breakpoint number
14951 argument. */
14952 ALL_TRACEPOINTS (b)
14953 if (is_tracepoint (b) && user_breakpoint_p (b))
14954 {
14955 breaks_to_delete = 1;
14956 break;
14957 }
14958
14959 /* Ask user only if there are some breakpoints to delete. */
14960 if (!from_tty
14961 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14962 {
14963 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14964 if (is_tracepoint (b) && user_breakpoint_p (b))
14965 delete_breakpoint (b);
14966 }
14967 }
14968 else
14969 map_breakpoint_numbers
14970 (arg, [&] (breakpoint *b)
14971 {
14972 iterate_over_related_breakpoints (b, delete_breakpoint);
14973 });
14974 }
14975
14976 /* Helper function for trace_pass_command. */
14977
14978 static void
14979 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14980 {
14981 tp->pass_count = count;
14982 observer_notify_breakpoint_modified (tp);
14983 if (from_tty)
14984 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14985 tp->number, count);
14986 }
14987
14988 /* Set passcount for tracepoint.
14989
14990 First command argument is passcount, second is tracepoint number.
14991 If tracepoint number omitted, apply to most recently defined.
14992 Also accepts special argument "all". */
14993
14994 static void
14995 trace_pass_command (const char *args, int from_tty)
14996 {
14997 struct tracepoint *t1;
14998 ULONGEST count;
14999
15000 if (args == 0 || *args == 0)
15001 error (_("passcount command requires an "
15002 "argument (count + optional TP num)"));
15003
15004 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
15005
15006 args = skip_spaces (args);
15007 if (*args && strncasecmp (args, "all", 3) == 0)
15008 {
15009 struct breakpoint *b;
15010
15011 args += 3; /* Skip special argument "all". */
15012 if (*args)
15013 error (_("Junk at end of arguments."));
15014
15015 ALL_TRACEPOINTS (b)
15016 {
15017 t1 = (struct tracepoint *) b;
15018 trace_pass_set_count (t1, count, from_tty);
15019 }
15020 }
15021 else if (*args == '\0')
15022 {
15023 t1 = get_tracepoint_by_number (&args, NULL);
15024 if (t1)
15025 trace_pass_set_count (t1, count, from_tty);
15026 }
15027 else
15028 {
15029 number_or_range_parser parser (args);
15030 while (!parser.finished ())
15031 {
15032 t1 = get_tracepoint_by_number (&args, &parser);
15033 if (t1)
15034 trace_pass_set_count (t1, count, from_tty);
15035 }
15036 }
15037 }
15038
15039 struct tracepoint *
15040 get_tracepoint (int num)
15041 {
15042 struct breakpoint *t;
15043
15044 ALL_TRACEPOINTS (t)
15045 if (t->number == num)
15046 return (struct tracepoint *) t;
15047
15048 return NULL;
15049 }
15050
15051 /* Find the tracepoint with the given target-side number (which may be
15052 different from the tracepoint number after disconnecting and
15053 reconnecting). */
15054
15055 struct tracepoint *
15056 get_tracepoint_by_number_on_target (int num)
15057 {
15058 struct breakpoint *b;
15059
15060 ALL_TRACEPOINTS (b)
15061 {
15062 struct tracepoint *t = (struct tracepoint *) b;
15063
15064 if (t->number_on_target == num)
15065 return t;
15066 }
15067
15068 return NULL;
15069 }
15070
15071 /* Utility: parse a tracepoint number and look it up in the list.
15072 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15073 If the argument is missing, the most recent tracepoint
15074 (tracepoint_count) is returned. */
15075
15076 struct tracepoint *
15077 get_tracepoint_by_number (const char **arg,
15078 number_or_range_parser *parser)
15079 {
15080 struct breakpoint *t;
15081 int tpnum;
15082 const char *instring = arg == NULL ? NULL : *arg;
15083
15084 if (parser != NULL)
15085 {
15086 gdb_assert (!parser->finished ());
15087 tpnum = parser->get_number ();
15088 }
15089 else if (arg == NULL || *arg == NULL || ! **arg)
15090 tpnum = tracepoint_count;
15091 else
15092 tpnum = get_number (arg);
15093
15094 if (tpnum <= 0)
15095 {
15096 if (instring && *instring)
15097 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15098 instring);
15099 else
15100 printf_filtered (_("No previous tracepoint\n"));
15101 return NULL;
15102 }
15103
15104 ALL_TRACEPOINTS (t)
15105 if (t->number == tpnum)
15106 {
15107 return (struct tracepoint *) t;
15108 }
15109
15110 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15111 return NULL;
15112 }
15113
15114 void
15115 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15116 {
15117 if (b->thread != -1)
15118 fprintf_unfiltered (fp, " thread %d", b->thread);
15119
15120 if (b->task != 0)
15121 fprintf_unfiltered (fp, " task %d", b->task);
15122
15123 fprintf_unfiltered (fp, "\n");
15124 }
15125
15126 /* Save information on user settable breakpoints (watchpoints, etc) to
15127 a new script file named FILENAME. If FILTER is non-NULL, call it
15128 on each breakpoint and only include the ones for which it returns
15129 non-zero. */
15130
15131 static void
15132 save_breakpoints (const char *filename, int from_tty,
15133 int (*filter) (const struct breakpoint *))
15134 {
15135 struct breakpoint *tp;
15136 int any = 0;
15137 int extra_trace_bits = 0;
15138
15139 if (filename == 0 || *filename == 0)
15140 error (_("Argument required (file name in which to save)"));
15141
15142 /* See if we have anything to save. */
15143 ALL_BREAKPOINTS (tp)
15144 {
15145 /* Skip internal and momentary breakpoints. */
15146 if (!user_breakpoint_p (tp))
15147 continue;
15148
15149 /* If we have a filter, only save the breakpoints it accepts. */
15150 if (filter && !filter (tp))
15151 continue;
15152
15153 any = 1;
15154
15155 if (is_tracepoint (tp))
15156 {
15157 extra_trace_bits = 1;
15158
15159 /* We can stop searching. */
15160 break;
15161 }
15162 }
15163
15164 if (!any)
15165 {
15166 warning (_("Nothing to save."));
15167 return;
15168 }
15169
15170 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15171
15172 stdio_file fp;
15173
15174 if (!fp.open (expanded_filename.get (), "w"))
15175 error (_("Unable to open file '%s' for saving (%s)"),
15176 expanded_filename.get (), safe_strerror (errno));
15177
15178 if (extra_trace_bits)
15179 save_trace_state_variables (&fp);
15180
15181 ALL_BREAKPOINTS (tp)
15182 {
15183 /* Skip internal and momentary breakpoints. */
15184 if (!user_breakpoint_p (tp))
15185 continue;
15186
15187 /* If we have a filter, only save the breakpoints it accepts. */
15188 if (filter && !filter (tp))
15189 continue;
15190
15191 tp->ops->print_recreate (tp, &fp);
15192
15193 /* Note, we can't rely on tp->number for anything, as we can't
15194 assume the recreated breakpoint numbers will match. Use $bpnum
15195 instead. */
15196
15197 if (tp->cond_string)
15198 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15199
15200 if (tp->ignore_count)
15201 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15202
15203 if (tp->type != bp_dprintf && tp->commands)
15204 {
15205 fp.puts (" commands\n");
15206
15207 current_uiout->redirect (&fp);
15208 TRY
15209 {
15210 print_command_lines (current_uiout, tp->commands.get (), 2);
15211 }
15212 CATCH (ex, RETURN_MASK_ALL)
15213 {
15214 current_uiout->redirect (NULL);
15215 throw_exception (ex);
15216 }
15217 END_CATCH
15218
15219 current_uiout->redirect (NULL);
15220 fp.puts (" end\n");
15221 }
15222
15223 if (tp->enable_state == bp_disabled)
15224 fp.puts ("disable $bpnum\n");
15225
15226 /* If this is a multi-location breakpoint, check if the locations
15227 should be individually disabled. Watchpoint locations are
15228 special, and not user visible. */
15229 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15230 {
15231 struct bp_location *loc;
15232 int n = 1;
15233
15234 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15235 if (!loc->enabled)
15236 fp.printf ("disable $bpnum.%d\n", n);
15237 }
15238 }
15239
15240 if (extra_trace_bits && *default_collect)
15241 fp.printf ("set default-collect %s\n", default_collect);
15242
15243 if (from_tty)
15244 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15245 }
15246
15247 /* The `save breakpoints' command. */
15248
15249 static void
15250 save_breakpoints_command (const char *args, int from_tty)
15251 {
15252 save_breakpoints (args, from_tty, NULL);
15253 }
15254
15255 /* The `save tracepoints' command. */
15256
15257 static void
15258 save_tracepoints_command (const char *args, int from_tty)
15259 {
15260 save_breakpoints (args, from_tty, is_tracepoint);
15261 }
15262
15263 /* Create a vector of all tracepoints. */
15264
15265 VEC(breakpoint_p) *
15266 all_tracepoints (void)
15267 {
15268 VEC(breakpoint_p) *tp_vec = 0;
15269 struct breakpoint *tp;
15270
15271 ALL_TRACEPOINTS (tp)
15272 {
15273 VEC_safe_push (breakpoint_p, tp_vec, tp);
15274 }
15275
15276 return tp_vec;
15277 }
15278
15279 \f
15280 /* This help string is used to consolidate all the help string for specifying
15281 locations used by several commands. */
15282
15283 #define LOCATION_HELP_STRING \
15284 "Linespecs are colon-separated lists of location parameters, such as\n\
15285 source filename, function name, label name, and line number.\n\
15286 Example: To specify the start of a label named \"the_top\" in the\n\
15287 function \"fact\" in the file \"factorial.c\", use\n\
15288 \"factorial.c:fact:the_top\".\n\
15289 \n\
15290 Address locations begin with \"*\" and specify an exact address in the\n\
15291 program. Example: To specify the fourth byte past the start function\n\
15292 \"main\", use \"*main + 4\".\n\
15293 \n\
15294 Explicit locations are similar to linespecs but use an option/argument\n\
15295 syntax to specify location parameters.\n\
15296 Example: To specify the start of the label named \"the_top\" in the\n\
15297 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15298 -function fact -label the_top\".\n"
15299
15300 /* This help string is used for the break, hbreak, tbreak and thbreak
15301 commands. It is defined as a macro to prevent duplication.
15302 COMMAND should be a string constant containing the name of the
15303 command. */
15304
15305 #define BREAK_ARGS_HELP(command) \
15306 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15307 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15308 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15309 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15310 `-probe-dtrace' (for a DTrace probe).\n\
15311 LOCATION may be a linespec, address, or explicit location as described\n\
15312 below.\n\
15313 \n\
15314 With no LOCATION, uses current execution address of the selected\n\
15315 stack frame. This is useful for breaking on return to a stack frame.\n\
15316 \n\
15317 THREADNUM is the number from \"info threads\".\n\
15318 CONDITION is a boolean expression.\n\
15319 \n" LOCATION_HELP_STRING "\n\
15320 Multiple breakpoints at one place are permitted, and useful if their\n\
15321 conditions are different.\n\
15322 \n\
15323 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15324
15325 /* List of subcommands for "catch". */
15326 static struct cmd_list_element *catch_cmdlist;
15327
15328 /* List of subcommands for "tcatch". */
15329 static struct cmd_list_element *tcatch_cmdlist;
15330
15331 void
15332 add_catch_command (const char *name, const char *docstring,
15333 cmd_const_sfunc_ftype *sfunc,
15334 completer_ftype *completer,
15335 void *user_data_catch,
15336 void *user_data_tcatch)
15337 {
15338 struct cmd_list_element *command;
15339
15340 command = add_cmd (name, class_breakpoint, docstring,
15341 &catch_cmdlist);
15342 set_cmd_sfunc (command, sfunc);
15343 set_cmd_context (command, user_data_catch);
15344 set_cmd_completer (command, completer);
15345
15346 command = add_cmd (name, class_breakpoint, docstring,
15347 &tcatch_cmdlist);
15348 set_cmd_sfunc (command, sfunc);
15349 set_cmd_context (command, user_data_tcatch);
15350 set_cmd_completer (command, completer);
15351 }
15352
15353 static void
15354 save_command (const char *arg, int from_tty)
15355 {
15356 printf_unfiltered (_("\"save\" must be followed by "
15357 "the name of a save subcommand.\n"));
15358 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15359 }
15360
15361 struct breakpoint *
15362 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15363 void *data)
15364 {
15365 struct breakpoint *b, *b_tmp;
15366
15367 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15368 {
15369 if ((*callback) (b, data))
15370 return b;
15371 }
15372
15373 return NULL;
15374 }
15375
15376 /* Zero if any of the breakpoint's locations could be a location where
15377 functions have been inlined, nonzero otherwise. */
15378
15379 static int
15380 is_non_inline_function (struct breakpoint *b)
15381 {
15382 /* The shared library event breakpoint is set on the address of a
15383 non-inline function. */
15384 if (b->type == bp_shlib_event)
15385 return 1;
15386
15387 return 0;
15388 }
15389
15390 /* Nonzero if the specified PC cannot be a location where functions
15391 have been inlined. */
15392
15393 int
15394 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15395 const struct target_waitstatus *ws)
15396 {
15397 struct breakpoint *b;
15398 struct bp_location *bl;
15399
15400 ALL_BREAKPOINTS (b)
15401 {
15402 if (!is_non_inline_function (b))
15403 continue;
15404
15405 for (bl = b->loc; bl != NULL; bl = bl->next)
15406 {
15407 if (!bl->shlib_disabled
15408 && bpstat_check_location (bl, aspace, pc, ws))
15409 return 1;
15410 }
15411 }
15412
15413 return 0;
15414 }
15415
15416 /* Remove any references to OBJFILE which is going to be freed. */
15417
15418 void
15419 breakpoint_free_objfile (struct objfile *objfile)
15420 {
15421 struct bp_location **locp, *loc;
15422
15423 ALL_BP_LOCATIONS (loc, locp)
15424 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15425 loc->symtab = NULL;
15426 }
15427
15428 void
15429 initialize_breakpoint_ops (void)
15430 {
15431 static int initialized = 0;
15432
15433 struct breakpoint_ops *ops;
15434
15435 if (initialized)
15436 return;
15437 initialized = 1;
15438
15439 /* The breakpoint_ops structure to be inherit by all kinds of
15440 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15441 internal and momentary breakpoints, etc.). */
15442 ops = &bkpt_base_breakpoint_ops;
15443 *ops = base_breakpoint_ops;
15444 ops->re_set = bkpt_re_set;
15445 ops->insert_location = bkpt_insert_location;
15446 ops->remove_location = bkpt_remove_location;
15447 ops->breakpoint_hit = bkpt_breakpoint_hit;
15448 ops->create_sals_from_location = bkpt_create_sals_from_location;
15449 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15450 ops->decode_location = bkpt_decode_location;
15451
15452 /* The breakpoint_ops structure to be used in regular breakpoints. */
15453 ops = &bkpt_breakpoint_ops;
15454 *ops = bkpt_base_breakpoint_ops;
15455 ops->re_set = bkpt_re_set;
15456 ops->resources_needed = bkpt_resources_needed;
15457 ops->print_it = bkpt_print_it;
15458 ops->print_mention = bkpt_print_mention;
15459 ops->print_recreate = bkpt_print_recreate;
15460
15461 /* Ranged breakpoints. */
15462 ops = &ranged_breakpoint_ops;
15463 *ops = bkpt_breakpoint_ops;
15464 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15465 ops->resources_needed = resources_needed_ranged_breakpoint;
15466 ops->print_it = print_it_ranged_breakpoint;
15467 ops->print_one = print_one_ranged_breakpoint;
15468 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15469 ops->print_mention = print_mention_ranged_breakpoint;
15470 ops->print_recreate = print_recreate_ranged_breakpoint;
15471
15472 /* Internal breakpoints. */
15473 ops = &internal_breakpoint_ops;
15474 *ops = bkpt_base_breakpoint_ops;
15475 ops->re_set = internal_bkpt_re_set;
15476 ops->check_status = internal_bkpt_check_status;
15477 ops->print_it = internal_bkpt_print_it;
15478 ops->print_mention = internal_bkpt_print_mention;
15479
15480 /* Momentary breakpoints. */
15481 ops = &momentary_breakpoint_ops;
15482 *ops = bkpt_base_breakpoint_ops;
15483 ops->re_set = momentary_bkpt_re_set;
15484 ops->check_status = momentary_bkpt_check_status;
15485 ops->print_it = momentary_bkpt_print_it;
15486 ops->print_mention = momentary_bkpt_print_mention;
15487
15488 /* Probe breakpoints. */
15489 ops = &bkpt_probe_breakpoint_ops;
15490 *ops = bkpt_breakpoint_ops;
15491 ops->insert_location = bkpt_probe_insert_location;
15492 ops->remove_location = bkpt_probe_remove_location;
15493 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15494 ops->decode_location = bkpt_probe_decode_location;
15495
15496 /* Watchpoints. */
15497 ops = &watchpoint_breakpoint_ops;
15498 *ops = base_breakpoint_ops;
15499 ops->re_set = re_set_watchpoint;
15500 ops->insert_location = insert_watchpoint;
15501 ops->remove_location = remove_watchpoint;
15502 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15503 ops->check_status = check_status_watchpoint;
15504 ops->resources_needed = resources_needed_watchpoint;
15505 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15506 ops->print_it = print_it_watchpoint;
15507 ops->print_mention = print_mention_watchpoint;
15508 ops->print_recreate = print_recreate_watchpoint;
15509 ops->explains_signal = explains_signal_watchpoint;
15510
15511 /* Masked watchpoints. */
15512 ops = &masked_watchpoint_breakpoint_ops;
15513 *ops = watchpoint_breakpoint_ops;
15514 ops->insert_location = insert_masked_watchpoint;
15515 ops->remove_location = remove_masked_watchpoint;
15516 ops->resources_needed = resources_needed_masked_watchpoint;
15517 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15518 ops->print_it = print_it_masked_watchpoint;
15519 ops->print_one_detail = print_one_detail_masked_watchpoint;
15520 ops->print_mention = print_mention_masked_watchpoint;
15521 ops->print_recreate = print_recreate_masked_watchpoint;
15522
15523 /* Tracepoints. */
15524 ops = &tracepoint_breakpoint_ops;
15525 *ops = base_breakpoint_ops;
15526 ops->re_set = tracepoint_re_set;
15527 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15528 ops->print_one_detail = tracepoint_print_one_detail;
15529 ops->print_mention = tracepoint_print_mention;
15530 ops->print_recreate = tracepoint_print_recreate;
15531 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15532 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15533 ops->decode_location = tracepoint_decode_location;
15534
15535 /* Probe tracepoints. */
15536 ops = &tracepoint_probe_breakpoint_ops;
15537 *ops = tracepoint_breakpoint_ops;
15538 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15539 ops->decode_location = tracepoint_probe_decode_location;
15540
15541 /* Static tracepoints with marker (`-m'). */
15542 ops = &strace_marker_breakpoint_ops;
15543 *ops = tracepoint_breakpoint_ops;
15544 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15545 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15546 ops->decode_location = strace_marker_decode_location;
15547
15548 /* Fork catchpoints. */
15549 ops = &catch_fork_breakpoint_ops;
15550 *ops = base_breakpoint_ops;
15551 ops->insert_location = insert_catch_fork;
15552 ops->remove_location = remove_catch_fork;
15553 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15554 ops->print_it = print_it_catch_fork;
15555 ops->print_one = print_one_catch_fork;
15556 ops->print_mention = print_mention_catch_fork;
15557 ops->print_recreate = print_recreate_catch_fork;
15558
15559 /* Vfork catchpoints. */
15560 ops = &catch_vfork_breakpoint_ops;
15561 *ops = base_breakpoint_ops;
15562 ops->insert_location = insert_catch_vfork;
15563 ops->remove_location = remove_catch_vfork;
15564 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15565 ops->print_it = print_it_catch_vfork;
15566 ops->print_one = print_one_catch_vfork;
15567 ops->print_mention = print_mention_catch_vfork;
15568 ops->print_recreate = print_recreate_catch_vfork;
15569
15570 /* Exec catchpoints. */
15571 ops = &catch_exec_breakpoint_ops;
15572 *ops = base_breakpoint_ops;
15573 ops->insert_location = insert_catch_exec;
15574 ops->remove_location = remove_catch_exec;
15575 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15576 ops->print_it = print_it_catch_exec;
15577 ops->print_one = print_one_catch_exec;
15578 ops->print_mention = print_mention_catch_exec;
15579 ops->print_recreate = print_recreate_catch_exec;
15580
15581 /* Solib-related catchpoints. */
15582 ops = &catch_solib_breakpoint_ops;
15583 *ops = base_breakpoint_ops;
15584 ops->insert_location = insert_catch_solib;
15585 ops->remove_location = remove_catch_solib;
15586 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15587 ops->check_status = check_status_catch_solib;
15588 ops->print_it = print_it_catch_solib;
15589 ops->print_one = print_one_catch_solib;
15590 ops->print_mention = print_mention_catch_solib;
15591 ops->print_recreate = print_recreate_catch_solib;
15592
15593 ops = &dprintf_breakpoint_ops;
15594 *ops = bkpt_base_breakpoint_ops;
15595 ops->re_set = dprintf_re_set;
15596 ops->resources_needed = bkpt_resources_needed;
15597 ops->print_it = bkpt_print_it;
15598 ops->print_mention = bkpt_print_mention;
15599 ops->print_recreate = dprintf_print_recreate;
15600 ops->after_condition_true = dprintf_after_condition_true;
15601 ops->breakpoint_hit = dprintf_breakpoint_hit;
15602 }
15603
15604 /* Chain containing all defined "enable breakpoint" subcommands. */
15605
15606 static struct cmd_list_element *enablebreaklist = NULL;
15607
15608 void
15609 _initialize_breakpoint (void)
15610 {
15611 struct cmd_list_element *c;
15612
15613 initialize_breakpoint_ops ();
15614
15615 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
15616 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
15617 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
15618
15619 breakpoint_objfile_key
15620 = register_objfile_data_with_cleanup (NULL, free_breakpoint_objfile_data);
15621
15622 breakpoint_chain = 0;
15623 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15624 before a breakpoint is set. */
15625 breakpoint_count = 0;
15626
15627 tracepoint_count = 0;
15628
15629 add_com ("ignore", class_breakpoint, ignore_command, _("\
15630 Set ignore-count of breakpoint number N to COUNT.\n\
15631 Usage is `ignore N COUNT'."));
15632
15633 add_com ("commands", class_breakpoint, commands_command, _("\
15634 Set commands to be executed when the given breakpoints are hit.\n\
15635 Give a space-separated breakpoint list as argument after \"commands\".\n\
15636 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15637 (e.g. `5-7').\n\
15638 With no argument, the targeted breakpoint is the last one set.\n\
15639 The commands themselves follow starting on the next line.\n\
15640 Type a line containing \"end\" to indicate the end of them.\n\
15641 Give \"silent\" as the first line to make the breakpoint silent;\n\
15642 then no output is printed when it is hit, except what the commands print."));
15643
15644 c = add_com ("condition", class_breakpoint, condition_command, _("\
15645 Specify breakpoint number N to break only if COND is true.\n\
15646 Usage is `condition N COND', where N is an integer and COND is an\n\
15647 expression to be evaluated whenever breakpoint N is reached."));
15648 set_cmd_completer (c, condition_completer);
15649
15650 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15651 Set a temporary breakpoint.\n\
15652 Like \"break\" except the breakpoint is only temporary,\n\
15653 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15654 by using \"enable delete\" on the breakpoint number.\n\
15655 \n"
15656 BREAK_ARGS_HELP ("tbreak")));
15657 set_cmd_completer (c, location_completer);
15658
15659 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15660 Set a hardware assisted breakpoint.\n\
15661 Like \"break\" except the breakpoint requires hardware support,\n\
15662 some target hardware may not have this support.\n\
15663 \n"
15664 BREAK_ARGS_HELP ("hbreak")));
15665 set_cmd_completer (c, location_completer);
15666
15667 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15668 Set a temporary hardware assisted breakpoint.\n\
15669 Like \"hbreak\" except the breakpoint is only temporary,\n\
15670 so it will be deleted when hit.\n\
15671 \n"
15672 BREAK_ARGS_HELP ("thbreak")));
15673 set_cmd_completer (c, location_completer);
15674
15675 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15676 Enable some breakpoints.\n\
15677 Give breakpoint numbers (separated by spaces) as arguments.\n\
15678 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15679 This is used to cancel the effect of the \"disable\" command.\n\
15680 With a subcommand you can enable temporarily."),
15681 &enablelist, "enable ", 1, &cmdlist);
15682
15683 add_com_alias ("en", "enable", class_breakpoint, 1);
15684
15685 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15686 Enable some breakpoints.\n\
15687 Give breakpoint numbers (separated by spaces) as arguments.\n\
15688 This is used to cancel the effect of the \"disable\" command.\n\
15689 May be abbreviated to simply \"enable\".\n"),
15690 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15691
15692 add_cmd ("once", no_class, enable_once_command, _("\
15693 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15694 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15695 &enablebreaklist);
15696
15697 add_cmd ("delete", no_class, enable_delete_command, _("\
15698 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15699 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15700 &enablebreaklist);
15701
15702 add_cmd ("count", no_class, enable_count_command, _("\
15703 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15704 If a breakpoint is hit while enabled in this fashion,\n\
15705 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15706 &enablebreaklist);
15707
15708 add_cmd ("delete", no_class, enable_delete_command, _("\
15709 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15710 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15711 &enablelist);
15712
15713 add_cmd ("once", no_class, enable_once_command, _("\
15714 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15715 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15716 &enablelist);
15717
15718 add_cmd ("count", no_class, enable_count_command, _("\
15719 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15720 If a breakpoint is hit while enabled in this fashion,\n\
15721 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15722 &enablelist);
15723
15724 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15725 Disable some breakpoints.\n\
15726 Arguments are breakpoint numbers with spaces in between.\n\
15727 To disable all breakpoints, give no argument.\n\
15728 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15729 &disablelist, "disable ", 1, &cmdlist);
15730 add_com_alias ("dis", "disable", class_breakpoint, 1);
15731 add_com_alias ("disa", "disable", class_breakpoint, 1);
15732
15733 add_cmd ("breakpoints", class_alias, disable_command, _("\
15734 Disable some breakpoints.\n\
15735 Arguments are breakpoint numbers with spaces in between.\n\
15736 To disable all breakpoints, give no argument.\n\
15737 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15738 This command may be abbreviated \"disable\"."),
15739 &disablelist);
15740
15741 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15742 Delete some breakpoints or auto-display expressions.\n\
15743 Arguments are breakpoint numbers with spaces in between.\n\
15744 To delete all breakpoints, give no argument.\n\
15745 \n\
15746 Also a prefix command for deletion of other GDB objects.\n\
15747 The \"unset\" command is also an alias for \"delete\"."),
15748 &deletelist, "delete ", 1, &cmdlist);
15749 add_com_alias ("d", "delete", class_breakpoint, 1);
15750 add_com_alias ("del", "delete", class_breakpoint, 1);
15751
15752 add_cmd ("breakpoints", class_alias, delete_command, _("\
15753 Delete some breakpoints or auto-display expressions.\n\
15754 Arguments are breakpoint numbers with spaces in between.\n\
15755 To delete all breakpoints, give no argument.\n\
15756 This command may be abbreviated \"delete\"."),
15757 &deletelist);
15758
15759 add_com ("clear", class_breakpoint, clear_command, _("\
15760 Clear breakpoint at specified location.\n\
15761 Argument may be a linespec, explicit, or address location as described below.\n\
15762 \n\
15763 With no argument, clears all breakpoints in the line that the selected frame\n\
15764 is executing in.\n"
15765 "\n" LOCATION_HELP_STRING "\n\
15766 See also the \"delete\" command which clears breakpoints by number."));
15767 add_com_alias ("cl", "clear", class_breakpoint, 1);
15768
15769 c = add_com ("break", class_breakpoint, break_command, _("\
15770 Set breakpoint at specified location.\n"
15771 BREAK_ARGS_HELP ("break")));
15772 set_cmd_completer (c, location_completer);
15773
15774 add_com_alias ("b", "break", class_run, 1);
15775 add_com_alias ("br", "break", class_run, 1);
15776 add_com_alias ("bre", "break", class_run, 1);
15777 add_com_alias ("brea", "break", class_run, 1);
15778
15779 if (dbx_commands)
15780 {
15781 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15782 Break in function/address or break at a line in the current file."),
15783 &stoplist, "stop ", 1, &cmdlist);
15784 add_cmd ("in", class_breakpoint, stopin_command,
15785 _("Break in function or address."), &stoplist);
15786 add_cmd ("at", class_breakpoint, stopat_command,
15787 _("Break at a line in the current file."), &stoplist);
15788 add_com ("status", class_info, info_breakpoints_command, _("\
15789 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15790 The \"Type\" column indicates one of:\n\
15791 \tbreakpoint - normal breakpoint\n\
15792 \twatchpoint - watchpoint\n\
15793 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15794 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15795 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15796 address and file/line number respectively.\n\
15797 \n\
15798 Convenience variable \"$_\" and default examine address for \"x\"\n\
15799 are set to the address of the last breakpoint listed unless the command\n\
15800 is prefixed with \"server \".\n\n\
15801 Convenience variable \"$bpnum\" contains the number of the last\n\
15802 breakpoint set."));
15803 }
15804
15805 add_info ("breakpoints", info_breakpoints_command, _("\
15806 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15807 The \"Type\" column indicates one of:\n\
15808 \tbreakpoint - normal breakpoint\n\
15809 \twatchpoint - watchpoint\n\
15810 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15811 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15812 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15813 address and file/line number respectively.\n\
15814 \n\
15815 Convenience variable \"$_\" and default examine address for \"x\"\n\
15816 are set to the address of the last breakpoint listed unless the command\n\
15817 is prefixed with \"server \".\n\n\
15818 Convenience variable \"$bpnum\" contains the number of the last\n\
15819 breakpoint set."));
15820
15821 add_info_alias ("b", "breakpoints", 1);
15822
15823 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15824 Status of all breakpoints, or breakpoint number NUMBER.\n\
15825 The \"Type\" column indicates one of:\n\
15826 \tbreakpoint - normal breakpoint\n\
15827 \twatchpoint - watchpoint\n\
15828 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15829 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15830 \tuntil - internal breakpoint used by the \"until\" command\n\
15831 \tfinish - internal breakpoint used by the \"finish\" command\n\
15832 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15833 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15834 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15835 address and file/line number respectively.\n\
15836 \n\
15837 Convenience variable \"$_\" and default examine address for \"x\"\n\
15838 are set to the address of the last breakpoint listed unless the command\n\
15839 is prefixed with \"server \".\n\n\
15840 Convenience variable \"$bpnum\" contains the number of the last\n\
15841 breakpoint set."),
15842 &maintenanceinfolist);
15843
15844 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15845 Set catchpoints to catch events."),
15846 &catch_cmdlist, "catch ",
15847 0/*allow-unknown*/, &cmdlist);
15848
15849 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15850 Set temporary catchpoints to catch events."),
15851 &tcatch_cmdlist, "tcatch ",
15852 0/*allow-unknown*/, &cmdlist);
15853
15854 add_catch_command ("fork", _("Catch calls to fork."),
15855 catch_fork_command_1,
15856 NULL,
15857 (void *) (uintptr_t) catch_fork_permanent,
15858 (void *) (uintptr_t) catch_fork_temporary);
15859 add_catch_command ("vfork", _("Catch calls to vfork."),
15860 catch_fork_command_1,
15861 NULL,
15862 (void *) (uintptr_t) catch_vfork_permanent,
15863 (void *) (uintptr_t) catch_vfork_temporary);
15864 add_catch_command ("exec", _("Catch calls to exec."),
15865 catch_exec_command_1,
15866 NULL,
15867 CATCH_PERMANENT,
15868 CATCH_TEMPORARY);
15869 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15870 Usage: catch load [REGEX]\n\
15871 If REGEX is given, only stop for libraries matching the regular expression."),
15872 catch_load_command_1,
15873 NULL,
15874 CATCH_PERMANENT,
15875 CATCH_TEMPORARY);
15876 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15877 Usage: catch unload [REGEX]\n\
15878 If REGEX is given, only stop for libraries matching the regular expression."),
15879 catch_unload_command_1,
15880 NULL,
15881 CATCH_PERMANENT,
15882 CATCH_TEMPORARY);
15883
15884 c = add_com ("watch", class_breakpoint, watch_command, _("\
15885 Set a watchpoint for an expression.\n\
15886 Usage: watch [-l|-location] EXPRESSION\n\
15887 A watchpoint stops execution of your program whenever the value of\n\
15888 an expression changes.\n\
15889 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15890 the memory to which it refers."));
15891 set_cmd_completer (c, expression_completer);
15892
15893 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15894 Set a read watchpoint for an expression.\n\
15895 Usage: rwatch [-l|-location] EXPRESSION\n\
15896 A watchpoint stops execution of your program whenever the value of\n\
15897 an expression is read.\n\
15898 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15899 the memory to which it refers."));
15900 set_cmd_completer (c, expression_completer);
15901
15902 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15903 Set a watchpoint for an expression.\n\
15904 Usage: awatch [-l|-location] EXPRESSION\n\
15905 A watchpoint stops execution of your program whenever the value of\n\
15906 an expression is either read or written.\n\
15907 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15908 the memory to which it refers."));
15909 set_cmd_completer (c, expression_completer);
15910
15911 add_info ("watchpoints", info_watchpoints_command, _("\
15912 Status of specified watchpoints (all watchpoints if no argument)."));
15913
15914 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15915 respond to changes - contrary to the description. */
15916 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15917 &can_use_hw_watchpoints, _("\
15918 Set debugger's willingness to use watchpoint hardware."), _("\
15919 Show debugger's willingness to use watchpoint hardware."), _("\
15920 If zero, gdb will not use hardware for new watchpoints, even if\n\
15921 such is available. (However, any hardware watchpoints that were\n\
15922 created before setting this to nonzero, will continue to use watchpoint\n\
15923 hardware.)"),
15924 NULL,
15925 show_can_use_hw_watchpoints,
15926 &setlist, &showlist);
15927
15928 can_use_hw_watchpoints = 1;
15929
15930 /* Tracepoint manipulation commands. */
15931
15932 c = add_com ("trace", class_breakpoint, trace_command, _("\
15933 Set a tracepoint at specified location.\n\
15934 \n"
15935 BREAK_ARGS_HELP ("trace") "\n\
15936 Do \"help tracepoints\" for info on other tracepoint commands."));
15937 set_cmd_completer (c, location_completer);
15938
15939 add_com_alias ("tp", "trace", class_alias, 0);
15940 add_com_alias ("tr", "trace", class_alias, 1);
15941 add_com_alias ("tra", "trace", class_alias, 1);
15942 add_com_alias ("trac", "trace", class_alias, 1);
15943
15944 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15945 Set a fast tracepoint at specified location.\n\
15946 \n"
15947 BREAK_ARGS_HELP ("ftrace") "\n\
15948 Do \"help tracepoints\" for info on other tracepoint commands."));
15949 set_cmd_completer (c, location_completer);
15950
15951 c = add_com ("strace", class_breakpoint, strace_command, _("\
15952 Set a static tracepoint at location or marker.\n\
15953 \n\
15954 strace [LOCATION] [if CONDITION]\n\
15955 LOCATION may be a linespec, explicit, or address location (described below) \n\
15956 or -m MARKER_ID.\n\n\
15957 If a marker id is specified, probe the marker with that name. With\n\
15958 no LOCATION, uses current execution address of the selected stack frame.\n\
15959 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15960 This collects arbitrary user data passed in the probe point call to the\n\
15961 tracing library. You can inspect it when analyzing the trace buffer,\n\
15962 by printing the $_sdata variable like any other convenience variable.\n\
15963 \n\
15964 CONDITION is a boolean expression.\n\
15965 \n" LOCATION_HELP_STRING "\n\
15966 Multiple tracepoints at one place are permitted, and useful if their\n\
15967 conditions are different.\n\
15968 \n\
15969 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15970 Do \"help tracepoints\" for info on other tracepoint commands."));
15971 set_cmd_completer (c, location_completer);
15972
15973 add_info ("tracepoints", info_tracepoints_command, _("\
15974 Status of specified tracepoints (all tracepoints if no argument).\n\
15975 Convenience variable \"$tpnum\" contains the number of the\n\
15976 last tracepoint set."));
15977
15978 add_info_alias ("tp", "tracepoints", 1);
15979
15980 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15981 Delete specified tracepoints.\n\
15982 Arguments are tracepoint numbers, separated by spaces.\n\
15983 No argument means delete all tracepoints."),
15984 &deletelist);
15985 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15986
15987 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15988 Disable specified tracepoints.\n\
15989 Arguments are tracepoint numbers, separated by spaces.\n\
15990 No argument means disable all tracepoints."),
15991 &disablelist);
15992 deprecate_cmd (c, "disable");
15993
15994 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15995 Enable specified tracepoints.\n\
15996 Arguments are tracepoint numbers, separated by spaces.\n\
15997 No argument means enable all tracepoints."),
15998 &enablelist);
15999 deprecate_cmd (c, "enable");
16000
16001 add_com ("passcount", class_trace, trace_pass_command, _("\
16002 Set the passcount for a tracepoint.\n\
16003 The trace will end when the tracepoint has been passed 'count' times.\n\
16004 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16005 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16006
16007 add_prefix_cmd ("save", class_breakpoint, save_command,
16008 _("Save breakpoint definitions as a script."),
16009 &save_cmdlist, "save ",
16010 0/*allow-unknown*/, &cmdlist);
16011
16012 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16013 Save current breakpoint definitions as a script.\n\
16014 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16015 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16016 session to restore them."),
16017 &save_cmdlist);
16018 set_cmd_completer (c, filename_completer);
16019
16020 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16021 Save current tracepoint definitions as a script.\n\
16022 Use the 'source' command in another debug session to restore them."),
16023 &save_cmdlist);
16024 set_cmd_completer (c, filename_completer);
16025
16026 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16027 deprecate_cmd (c, "save tracepoints");
16028
16029 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16030 Breakpoint specific settings\n\
16031 Configure various breakpoint-specific variables such as\n\
16032 pending breakpoint behavior"),
16033 &breakpoint_set_cmdlist, "set breakpoint ",
16034 0/*allow-unknown*/, &setlist);
16035 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16036 Breakpoint specific settings\n\
16037 Configure various breakpoint-specific variables such as\n\
16038 pending breakpoint behavior"),
16039 &breakpoint_show_cmdlist, "show breakpoint ",
16040 0/*allow-unknown*/, &showlist);
16041
16042 add_setshow_auto_boolean_cmd ("pending", no_class,
16043 &pending_break_support, _("\
16044 Set debugger's behavior regarding pending breakpoints."), _("\
16045 Show debugger's behavior regarding pending breakpoints."), _("\
16046 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16047 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16048 an error. If auto, an unrecognized breakpoint location results in a\n\
16049 user-query to see if a pending breakpoint should be created."),
16050 NULL,
16051 show_pending_break_support,
16052 &breakpoint_set_cmdlist,
16053 &breakpoint_show_cmdlist);
16054
16055 pending_break_support = AUTO_BOOLEAN_AUTO;
16056
16057 add_setshow_boolean_cmd ("auto-hw", no_class,
16058 &automatic_hardware_breakpoints, _("\
16059 Set automatic usage of hardware breakpoints."), _("\
16060 Show automatic usage of hardware breakpoints."), _("\
16061 If set, the debugger will automatically use hardware breakpoints for\n\
16062 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16063 a warning will be emitted for such breakpoints."),
16064 NULL,
16065 show_automatic_hardware_breakpoints,
16066 &breakpoint_set_cmdlist,
16067 &breakpoint_show_cmdlist);
16068
16069 add_setshow_boolean_cmd ("always-inserted", class_support,
16070 &always_inserted_mode, _("\
16071 Set mode for inserting breakpoints."), _("\
16072 Show mode for inserting breakpoints."), _("\
16073 When this mode is on, breakpoints are inserted immediately as soon as\n\
16074 they're created, kept inserted even when execution stops, and removed\n\
16075 only when the user deletes them. When this mode is off (the default),\n\
16076 breakpoints are inserted only when execution continues, and removed\n\
16077 when execution stops."),
16078 NULL,
16079 &show_always_inserted_mode,
16080 &breakpoint_set_cmdlist,
16081 &breakpoint_show_cmdlist);
16082
16083 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16084 condition_evaluation_enums,
16085 &condition_evaluation_mode_1, _("\
16086 Set mode of breakpoint condition evaluation."), _("\
16087 Show mode of breakpoint condition evaluation."), _("\
16088 When this is set to \"host\", breakpoint conditions will be\n\
16089 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16090 breakpoint conditions will be downloaded to the target (if the target\n\
16091 supports such feature) and conditions will be evaluated on the target's side.\n\
16092 If this is set to \"auto\" (default), this will be automatically set to\n\
16093 \"target\" if it supports condition evaluation, otherwise it will\n\
16094 be set to \"gdb\""),
16095 &set_condition_evaluation_mode,
16096 &show_condition_evaluation_mode,
16097 &breakpoint_set_cmdlist,
16098 &breakpoint_show_cmdlist);
16099
16100 add_com ("break-range", class_breakpoint, break_range_command, _("\
16101 Set a breakpoint for an address range.\n\
16102 break-range START-LOCATION, END-LOCATION\n\
16103 where START-LOCATION and END-LOCATION can be one of the following:\n\
16104 LINENUM, for that line in the current file,\n\
16105 FILE:LINENUM, for that line in that file,\n\
16106 +OFFSET, for that number of lines after the current line\n\
16107 or the start of the range\n\
16108 FUNCTION, for the first line in that function,\n\
16109 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16110 *ADDRESS, for the instruction at that address.\n\
16111 \n\
16112 The breakpoint will stop execution of the inferior whenever it executes\n\
16113 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16114 range (including START-LOCATION and END-LOCATION)."));
16115
16116 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16117 Set a dynamic printf at specified location.\n\
16118 dprintf location,format string,arg1,arg2,...\n\
16119 location may be a linespec, explicit, or address location.\n"
16120 "\n" LOCATION_HELP_STRING));
16121 set_cmd_completer (c, location_completer);
16122
16123 add_setshow_enum_cmd ("dprintf-style", class_support,
16124 dprintf_style_enums, &dprintf_style, _("\
16125 Set the style of usage for dynamic printf."), _("\
16126 Show the style of usage for dynamic printf."), _("\
16127 This setting chooses how GDB will do a dynamic printf.\n\
16128 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16129 console, as with the \"printf\" command.\n\
16130 If the value is \"call\", the print is done by calling a function in your\n\
16131 program; by default printf(), but you can choose a different function or\n\
16132 output stream by setting dprintf-function and dprintf-channel."),
16133 update_dprintf_commands, NULL,
16134 &setlist, &showlist);
16135
16136 dprintf_function = xstrdup ("printf");
16137 add_setshow_string_cmd ("dprintf-function", class_support,
16138 &dprintf_function, _("\
16139 Set the function to use for dynamic printf"), _("\
16140 Show the function to use for dynamic printf"), NULL,
16141 update_dprintf_commands, NULL,
16142 &setlist, &showlist);
16143
16144 dprintf_channel = xstrdup ("");
16145 add_setshow_string_cmd ("dprintf-channel", class_support,
16146 &dprintf_channel, _("\
16147 Set the channel to use for dynamic printf"), _("\
16148 Show the channel to use for dynamic printf"), NULL,
16149 update_dprintf_commands, NULL,
16150 &setlist, &showlist);
16151
16152 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16153 &disconnected_dprintf, _("\
16154 Set whether dprintf continues after GDB disconnects."), _("\
16155 Show whether dprintf continues after GDB disconnects."), _("\
16156 Use this to let dprintf commands continue to hit and produce output\n\
16157 even if GDB disconnects or detaches from the target."),
16158 NULL,
16159 NULL,
16160 &setlist, &showlist);
16161
16162 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16163 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16164 (target agent only) This is useful for formatted output in user-defined commands."));
16165
16166 automatic_hardware_breakpoints = 1;
16167
16168 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16169 observer_attach_thread_exit (remove_threaded_breakpoints);
16170 }
This page took 0.387693 seconds and 4 git commands to generate.