ef9c23c46422063534701a01b0de1cfe210f35bd
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "gdbthread.h"
36 #include "target.h"
37 #include "language.h"
38 #include "gdb_string.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "solib.h"
53 #include "solist.h"
54 #include "observer.h"
55 #include "exceptions.h"
56 #include "memattr.h"
57 #include "ada-lang.h"
58 #include "top.h"
59 #include "valprint.h"
60 #include "jit.h"
61 #include "xml-syscall.h"
62 #include "parser-defs.h"
63 #include "gdb_regex.h"
64 #include "probe.h"
65 #include "cli/cli-utils.h"
66 #include "continuations.h"
67 #include "stack.h"
68 #include "skip.h"
69 #include "gdb_regex.h"
70 #include "ax-gdb.h"
71 #include "dummy-frame.h"
72
73 #include "format.h"
74
75 /* readline include files */
76 #include "readline/readline.h"
77 #include "readline/history.h"
78
79 /* readline defines this. */
80 #undef savestring
81
82 #include "mi/mi-common.h"
83 #include "python/python.h"
84
85 /* Enums for exception-handling support. */
86 enum exception_event_kind
87 {
88 EX_EVENT_THROW,
89 EX_EVENT_RETHROW,
90 EX_EVENT_CATCH
91 };
92
93 /* Prototypes for local functions. */
94
95 static void enable_delete_command (char *, int);
96
97 static void enable_once_command (char *, int);
98
99 static void enable_count_command (char *, int);
100
101 static void disable_command (char *, int);
102
103 static void enable_command (char *, int);
104
105 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
106 void *),
107 void *);
108
109 static void ignore_command (char *, int);
110
111 static int breakpoint_re_set_one (void *);
112
113 static void breakpoint_re_set_default (struct breakpoint *);
114
115 static void create_sals_from_address_default (char **,
116 struct linespec_result *,
117 enum bptype, char *,
118 char **);
119
120 static void create_breakpoints_sal_default (struct gdbarch *,
121 struct linespec_result *,
122 struct linespec_sals *,
123 char *, char *, enum bptype,
124 enum bpdisp, int, int,
125 int,
126 const struct breakpoint_ops *,
127 int, int, int, unsigned);
128
129 static void decode_linespec_default (struct breakpoint *, char **,
130 struct symtabs_and_lines *);
131
132 static void clear_command (char *, int);
133
134 static void catch_command (char *, int);
135
136 static int can_use_hardware_watchpoint (struct value *);
137
138 static void break_command_1 (char *, int, int);
139
140 static void mention (struct breakpoint *);
141
142 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
143 enum bptype,
144 const struct breakpoint_ops *);
145 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
146 const struct symtab_and_line *);
147
148 /* This function is used in gdbtk sources and thus can not be made
149 static. */
150 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
151 struct symtab_and_line,
152 enum bptype,
153 const struct breakpoint_ops *);
154
155 static struct breakpoint *
156 momentary_breakpoint_from_master (struct breakpoint *orig,
157 enum bptype type,
158 const struct breakpoint_ops *ops);
159
160 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
161
162 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
163 CORE_ADDR bpaddr,
164 enum bptype bptype);
165
166 static void describe_other_breakpoints (struct gdbarch *,
167 struct program_space *, CORE_ADDR,
168 struct obj_section *, int);
169
170 static int breakpoint_address_match (struct address_space *aspace1,
171 CORE_ADDR addr1,
172 struct address_space *aspace2,
173 CORE_ADDR addr2);
174
175 static int watchpoint_locations_match (struct bp_location *loc1,
176 struct bp_location *loc2);
177
178 static int breakpoint_location_address_match (struct bp_location *bl,
179 struct address_space *aspace,
180 CORE_ADDR addr);
181
182 static void breakpoints_info (char *, int);
183
184 static void watchpoints_info (char *, int);
185
186 static int breakpoint_1 (char *, int,
187 int (*) (const struct breakpoint *));
188
189 static int breakpoint_cond_eval (void *);
190
191 static void cleanup_executing_breakpoints (void *);
192
193 static void commands_command (char *, int);
194
195 static void condition_command (char *, int);
196
197 typedef enum
198 {
199 mark_inserted,
200 mark_uninserted
201 }
202 insertion_state_t;
203
204 static int remove_breakpoint (struct bp_location *, insertion_state_t);
205 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
206
207 static enum print_stop_action print_bp_stop_message (bpstat bs);
208
209 static int watchpoint_check (void *);
210
211 static void maintenance_info_breakpoints (char *, int);
212
213 static int hw_breakpoint_used_count (void);
214
215 static int hw_watchpoint_use_count (struct breakpoint *);
216
217 static int hw_watchpoint_used_count_others (struct breakpoint *except,
218 enum bptype type,
219 int *other_type_used);
220
221 static void hbreak_command (char *, int);
222
223 static void thbreak_command (char *, int);
224
225 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
226 int count);
227
228 static void stop_command (char *arg, int from_tty);
229
230 static void stopin_command (char *arg, int from_tty);
231
232 static void stopat_command (char *arg, int from_tty);
233
234 static void tcatch_command (char *arg, int from_tty);
235
236 static void detach_single_step_breakpoints (void);
237
238 static int single_step_breakpoint_inserted_here_p (struct address_space *,
239 CORE_ADDR pc);
240
241 static void free_bp_location (struct bp_location *loc);
242 static void incref_bp_location (struct bp_location *loc);
243 static void decref_bp_location (struct bp_location **loc);
244
245 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
246
247 static void update_global_location_list (int);
248
249 static void update_global_location_list_nothrow (int);
250
251 static int is_hardware_watchpoint (const struct breakpoint *bpt);
252
253 static void insert_breakpoint_locations (void);
254
255 static int syscall_catchpoint_p (struct breakpoint *b);
256
257 static void tracepoints_info (char *, int);
258
259 static void delete_trace_command (char *, int);
260
261 static void enable_trace_command (char *, int);
262
263 static void disable_trace_command (char *, int);
264
265 static void trace_pass_command (char *, int);
266
267 static void set_tracepoint_count (int num);
268
269 static int is_masked_watchpoint (const struct breakpoint *b);
270
271 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
272
273 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
274 otherwise. */
275
276 static int strace_marker_p (struct breakpoint *b);
277
278 /* The abstract base class all breakpoint_ops structures inherit
279 from. */
280 struct breakpoint_ops base_breakpoint_ops;
281
282 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
283 that are implemented on top of software or hardware breakpoints
284 (user breakpoints, internal and momentary breakpoints, etc.). */
285 static struct breakpoint_ops bkpt_base_breakpoint_ops;
286
287 /* Internal breakpoints class type. */
288 static struct breakpoint_ops internal_breakpoint_ops;
289
290 /* Momentary breakpoints class type. */
291 static struct breakpoint_ops momentary_breakpoint_ops;
292
293 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
294 static struct breakpoint_ops longjmp_breakpoint_ops;
295
296 /* The breakpoint_ops structure to be used in regular user created
297 breakpoints. */
298 struct breakpoint_ops bkpt_breakpoint_ops;
299
300 /* Breakpoints set on probes. */
301 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
302
303 /* Dynamic printf class type. */
304 static struct breakpoint_ops dprintf_breakpoint_ops;
305
306 /* The style in which to perform a dynamic printf. This is a user
307 option because different output options have different tradeoffs;
308 if GDB does the printing, there is better error handling if there
309 is a problem with any of the arguments, but using an inferior
310 function lets you have special-purpose printers and sending of
311 output to the same place as compiled-in print functions. */
312
313 static const char dprintf_style_gdb[] = "gdb";
314 static const char dprintf_style_call[] = "call";
315 static const char dprintf_style_agent[] = "agent";
316 static const char *const dprintf_style_enums[] = {
317 dprintf_style_gdb,
318 dprintf_style_call,
319 dprintf_style_agent,
320 NULL
321 };
322 static const char *dprintf_style = dprintf_style_gdb;
323
324 /* The function to use for dynamic printf if the preferred style is to
325 call into the inferior. The value is simply a string that is
326 copied into the command, so it can be anything that GDB can
327 evaluate to a callable address, not necessarily a function name. */
328
329 static char *dprintf_function = "";
330
331 /* The channel to use for dynamic printf if the preferred style is to
332 call into the inferior; if a nonempty string, it will be passed to
333 the call as the first argument, with the format string as the
334 second. As with the dprintf function, this can be anything that
335 GDB knows how to evaluate, so in addition to common choices like
336 "stderr", this could be an app-specific expression like
337 "mystreams[curlogger]". */
338
339 static char *dprintf_channel = "";
340
341 /* True if dprintf commands should continue to operate even if GDB
342 has disconnected. */
343 static int disconnected_dprintf = 1;
344
345 /* A reference-counted struct command_line. This lets multiple
346 breakpoints share a single command list. */
347 struct counted_command_line
348 {
349 /* The reference count. */
350 int refc;
351
352 /* The command list. */
353 struct command_line *commands;
354 };
355
356 struct command_line *
357 breakpoint_commands (struct breakpoint *b)
358 {
359 return b->commands ? b->commands->commands : NULL;
360 }
361
362 /* Flag indicating that a command has proceeded the inferior past the
363 current breakpoint. */
364
365 static int breakpoint_proceeded;
366
367 const char *
368 bpdisp_text (enum bpdisp disp)
369 {
370 /* NOTE: the following values are a part of MI protocol and
371 represent values of 'disp' field returned when inferior stops at
372 a breakpoint. */
373 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
374
375 return bpdisps[(int) disp];
376 }
377
378 /* Prototypes for exported functions. */
379 /* If FALSE, gdb will not use hardware support for watchpoints, even
380 if such is available. */
381 static int can_use_hw_watchpoints;
382
383 static void
384 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
385 struct cmd_list_element *c,
386 const char *value)
387 {
388 fprintf_filtered (file,
389 _("Debugger's willingness to use "
390 "watchpoint hardware is %s.\n"),
391 value);
392 }
393
394 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
395 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
396 for unrecognized breakpoint locations.
397 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
398 static enum auto_boolean pending_break_support;
399 static void
400 show_pending_break_support (struct ui_file *file, int from_tty,
401 struct cmd_list_element *c,
402 const char *value)
403 {
404 fprintf_filtered (file,
405 _("Debugger's behavior regarding "
406 "pending breakpoints is %s.\n"),
407 value);
408 }
409
410 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
411 set with "break" but falling in read-only memory.
412 If 0, gdb will warn about such breakpoints, but won't automatically
413 use hardware breakpoints. */
414 static int automatic_hardware_breakpoints;
415 static void
416 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
417 struct cmd_list_element *c,
418 const char *value)
419 {
420 fprintf_filtered (file,
421 _("Automatic usage of hardware breakpoints is %s.\n"),
422 value);
423 }
424
425 /* If on, gdb will keep breakpoints inserted even as inferior is
426 stopped, and immediately insert any new breakpoints. If off, gdb
427 will insert breakpoints into inferior only when resuming it, and
428 will remove breakpoints upon stop. If auto, GDB will behave as ON
429 if in non-stop mode, and as OFF if all-stop mode.*/
430
431 static enum auto_boolean always_inserted_mode = AUTO_BOOLEAN_AUTO;
432
433 static void
434 show_always_inserted_mode (struct ui_file *file, int from_tty,
435 struct cmd_list_element *c, const char *value)
436 {
437 if (always_inserted_mode == AUTO_BOOLEAN_AUTO)
438 fprintf_filtered (file,
439 _("Always inserted breakpoint "
440 "mode is %s (currently %s).\n"),
441 value,
442 breakpoints_always_inserted_mode () ? "on" : "off");
443 else
444 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
445 value);
446 }
447
448 int
449 breakpoints_always_inserted_mode (void)
450 {
451 return (always_inserted_mode == AUTO_BOOLEAN_TRUE
452 || (always_inserted_mode == AUTO_BOOLEAN_AUTO && non_stop));
453 }
454
455 static const char condition_evaluation_both[] = "host or target";
456
457 /* Modes for breakpoint condition evaluation. */
458 static const char condition_evaluation_auto[] = "auto";
459 static const char condition_evaluation_host[] = "host";
460 static const char condition_evaluation_target[] = "target";
461 static const char *const condition_evaluation_enums[] = {
462 condition_evaluation_auto,
463 condition_evaluation_host,
464 condition_evaluation_target,
465 NULL
466 };
467
468 /* Global that holds the current mode for breakpoint condition evaluation. */
469 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
470
471 /* Global that we use to display information to the user (gets its value from
472 condition_evaluation_mode_1. */
473 static const char *condition_evaluation_mode = condition_evaluation_auto;
474
475 /* Translate a condition evaluation mode MODE into either "host"
476 or "target". This is used mostly to translate from "auto" to the
477 real setting that is being used. It returns the translated
478 evaluation mode. */
479
480 static const char *
481 translate_condition_evaluation_mode (const char *mode)
482 {
483 if (mode == condition_evaluation_auto)
484 {
485 if (target_supports_evaluation_of_breakpoint_conditions ())
486 return condition_evaluation_target;
487 else
488 return condition_evaluation_host;
489 }
490 else
491 return mode;
492 }
493
494 /* Discovers what condition_evaluation_auto translates to. */
495
496 static const char *
497 breakpoint_condition_evaluation_mode (void)
498 {
499 return translate_condition_evaluation_mode (condition_evaluation_mode);
500 }
501
502 /* Return true if GDB should evaluate breakpoint conditions or false
503 otherwise. */
504
505 static int
506 gdb_evaluates_breakpoint_condition_p (void)
507 {
508 const char *mode = breakpoint_condition_evaluation_mode ();
509
510 return (mode == condition_evaluation_host);
511 }
512
513 void _initialize_breakpoint (void);
514
515 /* Are we executing breakpoint commands? */
516 static int executing_breakpoint_commands;
517
518 /* Are overlay event breakpoints enabled? */
519 static int overlay_events_enabled;
520
521 /* See description in breakpoint.h. */
522 int target_exact_watchpoints = 0;
523
524 /* Walk the following statement or block through all breakpoints.
525 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
526 current breakpoint. */
527
528 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
529
530 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
531 for (B = breakpoint_chain; \
532 B ? (TMP=B->next, 1): 0; \
533 B = TMP)
534
535 /* Similar iterator for the low-level breakpoints. SAFE variant is
536 not provided so update_global_location_list must not be called
537 while executing the block of ALL_BP_LOCATIONS. */
538
539 #define ALL_BP_LOCATIONS(B,BP_TMP) \
540 for (BP_TMP = bp_location; \
541 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
542 BP_TMP++)
543
544 /* Iterates through locations with address ADDRESS for the currently selected
545 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
546 to where the loop should start from.
547 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
548 appropriate location to start with. */
549
550 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
551 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
552 BP_LOCP_TMP = BP_LOCP_START; \
553 BP_LOCP_START \
554 && (BP_LOCP_TMP < bp_location + bp_location_count \
555 && (*BP_LOCP_TMP)->address == ADDRESS); \
556 BP_LOCP_TMP++)
557
558 /* Iterator for tracepoints only. */
559
560 #define ALL_TRACEPOINTS(B) \
561 for (B = breakpoint_chain; B; B = B->next) \
562 if (is_tracepoint (B))
563
564 /* Chains of all breakpoints defined. */
565
566 struct breakpoint *breakpoint_chain;
567
568 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
569
570 static struct bp_location **bp_location;
571
572 /* Number of elements of BP_LOCATION. */
573
574 static unsigned bp_location_count;
575
576 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
577 ADDRESS for the current elements of BP_LOCATION which get a valid
578 result from bp_location_has_shadow. You can use it for roughly
579 limiting the subrange of BP_LOCATION to scan for shadow bytes for
580 an address you need to read. */
581
582 static CORE_ADDR bp_location_placed_address_before_address_max;
583
584 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
585 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
586 BP_LOCATION which get a valid result from bp_location_has_shadow.
587 You can use it for roughly limiting the subrange of BP_LOCATION to
588 scan for shadow bytes for an address you need to read. */
589
590 static CORE_ADDR bp_location_shadow_len_after_address_max;
591
592 /* The locations that no longer correspond to any breakpoint, unlinked
593 from bp_location array, but for which a hit may still be reported
594 by a target. */
595 VEC(bp_location_p) *moribund_locations = NULL;
596
597 /* Number of last breakpoint made. */
598
599 static int breakpoint_count;
600
601 /* The value of `breakpoint_count' before the last command that
602 created breakpoints. If the last (break-like) command created more
603 than one breakpoint, then the difference between BREAKPOINT_COUNT
604 and PREV_BREAKPOINT_COUNT is more than one. */
605 static int prev_breakpoint_count;
606
607 /* Number of last tracepoint made. */
608
609 static int tracepoint_count;
610
611 static struct cmd_list_element *breakpoint_set_cmdlist;
612 static struct cmd_list_element *breakpoint_show_cmdlist;
613 struct cmd_list_element *save_cmdlist;
614
615 /* Return whether a breakpoint is an active enabled breakpoint. */
616 static int
617 breakpoint_enabled (struct breakpoint *b)
618 {
619 return (b->enable_state == bp_enabled);
620 }
621
622 /* Set breakpoint count to NUM. */
623
624 static void
625 set_breakpoint_count (int num)
626 {
627 prev_breakpoint_count = breakpoint_count;
628 breakpoint_count = num;
629 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
630 }
631
632 /* Used by `start_rbreak_breakpoints' below, to record the current
633 breakpoint count before "rbreak" creates any breakpoint. */
634 static int rbreak_start_breakpoint_count;
635
636 /* Called at the start an "rbreak" command to record the first
637 breakpoint made. */
638
639 void
640 start_rbreak_breakpoints (void)
641 {
642 rbreak_start_breakpoint_count = breakpoint_count;
643 }
644
645 /* Called at the end of an "rbreak" command to record the last
646 breakpoint made. */
647
648 void
649 end_rbreak_breakpoints (void)
650 {
651 prev_breakpoint_count = rbreak_start_breakpoint_count;
652 }
653
654 /* Used in run_command to zero the hit count when a new run starts. */
655
656 void
657 clear_breakpoint_hit_counts (void)
658 {
659 struct breakpoint *b;
660
661 ALL_BREAKPOINTS (b)
662 b->hit_count = 0;
663 }
664
665 /* Allocate a new counted_command_line with reference count of 1.
666 The new structure owns COMMANDS. */
667
668 static struct counted_command_line *
669 alloc_counted_command_line (struct command_line *commands)
670 {
671 struct counted_command_line *result
672 = xmalloc (sizeof (struct counted_command_line));
673
674 result->refc = 1;
675 result->commands = commands;
676 return result;
677 }
678
679 /* Increment reference count. This does nothing if CMD is NULL. */
680
681 static void
682 incref_counted_command_line (struct counted_command_line *cmd)
683 {
684 if (cmd)
685 ++cmd->refc;
686 }
687
688 /* Decrement reference count. If the reference count reaches 0,
689 destroy the counted_command_line. Sets *CMDP to NULL. This does
690 nothing if *CMDP is NULL. */
691
692 static void
693 decref_counted_command_line (struct counted_command_line **cmdp)
694 {
695 if (*cmdp)
696 {
697 if (--(*cmdp)->refc == 0)
698 {
699 free_command_lines (&(*cmdp)->commands);
700 xfree (*cmdp);
701 }
702 *cmdp = NULL;
703 }
704 }
705
706 /* A cleanup function that calls decref_counted_command_line. */
707
708 static void
709 do_cleanup_counted_command_line (void *arg)
710 {
711 decref_counted_command_line (arg);
712 }
713
714 /* Create a cleanup that calls decref_counted_command_line on the
715 argument. */
716
717 static struct cleanup *
718 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
719 {
720 return make_cleanup (do_cleanup_counted_command_line, cmdp);
721 }
722
723 \f
724 /* Return the breakpoint with the specified number, or NULL
725 if the number does not refer to an existing breakpoint. */
726
727 struct breakpoint *
728 get_breakpoint (int num)
729 {
730 struct breakpoint *b;
731
732 ALL_BREAKPOINTS (b)
733 if (b->number == num)
734 return b;
735
736 return NULL;
737 }
738
739 \f
740
741 /* Mark locations as "conditions have changed" in case the target supports
742 evaluating conditions on its side. */
743
744 static void
745 mark_breakpoint_modified (struct breakpoint *b)
746 {
747 struct bp_location *loc;
748
749 /* This is only meaningful if the target is
750 evaluating conditions and if the user has
751 opted for condition evaluation on the target's
752 side. */
753 if (gdb_evaluates_breakpoint_condition_p ()
754 || !target_supports_evaluation_of_breakpoint_conditions ())
755 return;
756
757 if (!is_breakpoint (b))
758 return;
759
760 for (loc = b->loc; loc; loc = loc->next)
761 loc->condition_changed = condition_modified;
762 }
763
764 /* Mark location as "conditions have changed" in case the target supports
765 evaluating conditions on its side. */
766
767 static void
768 mark_breakpoint_location_modified (struct bp_location *loc)
769 {
770 /* This is only meaningful if the target is
771 evaluating conditions and if the user has
772 opted for condition evaluation on the target's
773 side. */
774 if (gdb_evaluates_breakpoint_condition_p ()
775 || !target_supports_evaluation_of_breakpoint_conditions ())
776
777 return;
778
779 if (!is_breakpoint (loc->owner))
780 return;
781
782 loc->condition_changed = condition_modified;
783 }
784
785 /* Sets the condition-evaluation mode using the static global
786 condition_evaluation_mode. */
787
788 static void
789 set_condition_evaluation_mode (char *args, int from_tty,
790 struct cmd_list_element *c)
791 {
792 const char *old_mode, *new_mode;
793
794 if ((condition_evaluation_mode_1 == condition_evaluation_target)
795 && !target_supports_evaluation_of_breakpoint_conditions ())
796 {
797 condition_evaluation_mode_1 = condition_evaluation_mode;
798 warning (_("Target does not support breakpoint condition evaluation.\n"
799 "Using host evaluation mode instead."));
800 return;
801 }
802
803 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
804 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
805
806 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
807 settings was "auto". */
808 condition_evaluation_mode = condition_evaluation_mode_1;
809
810 /* Only update the mode if the user picked a different one. */
811 if (new_mode != old_mode)
812 {
813 struct bp_location *loc, **loc_tmp;
814 /* If the user switched to a different evaluation mode, we
815 need to synch the changes with the target as follows:
816
817 "host" -> "target": Send all (valid) conditions to the target.
818 "target" -> "host": Remove all the conditions from the target.
819 */
820
821 if (new_mode == condition_evaluation_target)
822 {
823 /* Mark everything modified and synch conditions with the
824 target. */
825 ALL_BP_LOCATIONS (loc, loc_tmp)
826 mark_breakpoint_location_modified (loc);
827 }
828 else
829 {
830 /* Manually mark non-duplicate locations to synch conditions
831 with the target. We do this to remove all the conditions the
832 target knows about. */
833 ALL_BP_LOCATIONS (loc, loc_tmp)
834 if (is_breakpoint (loc->owner) && loc->inserted)
835 loc->needs_update = 1;
836 }
837
838 /* Do the update. */
839 update_global_location_list (1);
840 }
841
842 return;
843 }
844
845 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
846 what "auto" is translating to. */
847
848 static void
849 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
850 struct cmd_list_element *c, const char *value)
851 {
852 if (condition_evaluation_mode == condition_evaluation_auto)
853 fprintf_filtered (file,
854 _("Breakpoint condition evaluation "
855 "mode is %s (currently %s).\n"),
856 value,
857 breakpoint_condition_evaluation_mode ());
858 else
859 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
860 value);
861 }
862
863 /* A comparison function for bp_location AP and BP that is used by
864 bsearch. This comparison function only cares about addresses, unlike
865 the more general bp_location_compare function. */
866
867 static int
868 bp_location_compare_addrs (const void *ap, const void *bp)
869 {
870 struct bp_location *a = *(void **) ap;
871 struct bp_location *b = *(void **) bp;
872
873 if (a->address == b->address)
874 return 0;
875 else
876 return ((a->address > b->address) - (a->address < b->address));
877 }
878
879 /* Helper function to skip all bp_locations with addresses
880 less than ADDRESS. It returns the first bp_location that
881 is greater than or equal to ADDRESS. If none is found, just
882 return NULL. */
883
884 static struct bp_location **
885 get_first_locp_gte_addr (CORE_ADDR address)
886 {
887 struct bp_location dummy_loc;
888 struct bp_location *dummy_locp = &dummy_loc;
889 struct bp_location **locp_found = NULL;
890
891 /* Initialize the dummy location's address field. */
892 memset (&dummy_loc, 0, sizeof (struct bp_location));
893 dummy_loc.address = address;
894
895 /* Find a close match to the first location at ADDRESS. */
896 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
897 sizeof (struct bp_location **),
898 bp_location_compare_addrs);
899
900 /* Nothing was found, nothing left to do. */
901 if (locp_found == NULL)
902 return NULL;
903
904 /* We may have found a location that is at ADDRESS but is not the first in the
905 location's list. Go backwards (if possible) and locate the first one. */
906 while ((locp_found - 1) >= bp_location
907 && (*(locp_found - 1))->address == address)
908 locp_found--;
909
910 return locp_found;
911 }
912
913 void
914 set_breakpoint_condition (struct breakpoint *b, char *exp,
915 int from_tty)
916 {
917 xfree (b->cond_string);
918 b->cond_string = NULL;
919
920 if (is_watchpoint (b))
921 {
922 struct watchpoint *w = (struct watchpoint *) b;
923
924 xfree (w->cond_exp);
925 w->cond_exp = NULL;
926 }
927 else
928 {
929 struct bp_location *loc;
930
931 for (loc = b->loc; loc; loc = loc->next)
932 {
933 xfree (loc->cond);
934 loc->cond = NULL;
935
936 /* No need to free the condition agent expression
937 bytecode (if we have one). We will handle this
938 when we go through update_global_location_list. */
939 }
940 }
941
942 if (*exp == 0)
943 {
944 if (from_tty)
945 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
946 }
947 else
948 {
949 const char *arg = exp;
950
951 /* I don't know if it matters whether this is the string the user
952 typed in or the decompiled expression. */
953 b->cond_string = xstrdup (arg);
954 b->condition_not_parsed = 0;
955
956 if (is_watchpoint (b))
957 {
958 struct watchpoint *w = (struct watchpoint *) b;
959
960 innermost_block = NULL;
961 arg = exp;
962 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
963 if (*arg)
964 error (_("Junk at end of expression"));
965 w->cond_exp_valid_block = innermost_block;
966 }
967 else
968 {
969 struct bp_location *loc;
970
971 for (loc = b->loc; loc; loc = loc->next)
972 {
973 arg = exp;
974 loc->cond =
975 parse_exp_1 (&arg, loc->address,
976 block_for_pc (loc->address), 0);
977 if (*arg)
978 error (_("Junk at end of expression"));
979 }
980 }
981 }
982 mark_breakpoint_modified (b);
983
984 observer_notify_breakpoint_modified (b);
985 }
986
987 /* Completion for the "condition" command. */
988
989 static VEC (char_ptr) *
990 condition_completer (struct cmd_list_element *cmd,
991 const char *text, const char *word)
992 {
993 const char *space;
994
995 text = skip_spaces_const (text);
996 space = skip_to_space_const (text);
997 if (*space == '\0')
998 {
999 int len;
1000 struct breakpoint *b;
1001 VEC (char_ptr) *result = NULL;
1002
1003 if (text[0] == '$')
1004 {
1005 /* We don't support completion of history indices. */
1006 if (isdigit (text[1]))
1007 return NULL;
1008 return complete_internalvar (&text[1]);
1009 }
1010
1011 /* We're completing the breakpoint number. */
1012 len = strlen (text);
1013
1014 ALL_BREAKPOINTS (b)
1015 {
1016 int single = b->loc->next == NULL;
1017 struct bp_location *loc;
1018 int count = 1;
1019
1020 for (loc = b->loc; loc; loc = loc->next)
1021 {
1022 char location[50];
1023
1024 if (single)
1025 xsnprintf (location, sizeof (location), "%d", b->number);
1026 else
1027 xsnprintf (location, sizeof (location), "%d.%d", b->number,
1028 count);
1029
1030 if (strncmp (location, text, len) == 0)
1031 VEC_safe_push (char_ptr, result, xstrdup (location));
1032
1033 ++count;
1034 }
1035 }
1036
1037 return result;
1038 }
1039
1040 /* We're completing the expression part. */
1041 text = skip_spaces_const (space);
1042 return expression_completer (cmd, text, word);
1043 }
1044
1045 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1046
1047 static void
1048 condition_command (char *arg, int from_tty)
1049 {
1050 struct breakpoint *b;
1051 char *p;
1052 int bnum;
1053
1054 if (arg == 0)
1055 error_no_arg (_("breakpoint number"));
1056
1057 p = arg;
1058 bnum = get_number (&p);
1059 if (bnum == 0)
1060 error (_("Bad breakpoint argument: '%s'"), arg);
1061
1062 ALL_BREAKPOINTS (b)
1063 if (b->number == bnum)
1064 {
1065 /* Check if this breakpoint has a Python object assigned to
1066 it, and if it has a definition of the "stop"
1067 method. This method and conditions entered into GDB from
1068 the CLI are mutually exclusive. */
1069 if (b->py_bp_object
1070 && gdbpy_breakpoint_has_py_cond (b->py_bp_object))
1071 error (_("Cannot set a condition where a Python 'stop' "
1072 "method has been defined in the breakpoint."));
1073 set_breakpoint_condition (b, p, from_tty);
1074
1075 if (is_breakpoint (b))
1076 update_global_location_list (1);
1077
1078 return;
1079 }
1080
1081 error (_("No breakpoint number %d."), bnum);
1082 }
1083
1084 /* Check that COMMAND do not contain commands that are suitable
1085 only for tracepoints and not suitable for ordinary breakpoints.
1086 Throw if any such commands is found. */
1087
1088 static void
1089 check_no_tracepoint_commands (struct command_line *commands)
1090 {
1091 struct command_line *c;
1092
1093 for (c = commands; c; c = c->next)
1094 {
1095 int i;
1096
1097 if (c->control_type == while_stepping_control)
1098 error (_("The 'while-stepping' command can "
1099 "only be used for tracepoints"));
1100
1101 for (i = 0; i < c->body_count; ++i)
1102 check_no_tracepoint_commands ((c->body_list)[i]);
1103
1104 /* Not that command parsing removes leading whitespace and comment
1105 lines and also empty lines. So, we only need to check for
1106 command directly. */
1107 if (strstr (c->line, "collect ") == c->line)
1108 error (_("The 'collect' command can only be used for tracepoints"));
1109
1110 if (strstr (c->line, "teval ") == c->line)
1111 error (_("The 'teval' command can only be used for tracepoints"));
1112 }
1113 }
1114
1115 /* Encapsulate tests for different types of tracepoints. */
1116
1117 static int
1118 is_tracepoint_type (enum bptype type)
1119 {
1120 return (type == bp_tracepoint
1121 || type == bp_fast_tracepoint
1122 || type == bp_static_tracepoint);
1123 }
1124
1125 int
1126 is_tracepoint (const struct breakpoint *b)
1127 {
1128 return is_tracepoint_type (b->type);
1129 }
1130
1131 /* A helper function that validates that COMMANDS are valid for a
1132 breakpoint. This function will throw an exception if a problem is
1133 found. */
1134
1135 static void
1136 validate_commands_for_breakpoint (struct breakpoint *b,
1137 struct command_line *commands)
1138 {
1139 if (is_tracepoint (b))
1140 {
1141 struct tracepoint *t = (struct tracepoint *) b;
1142 struct command_line *c;
1143 struct command_line *while_stepping = 0;
1144
1145 /* Reset the while-stepping step count. The previous commands
1146 might have included a while-stepping action, while the new
1147 ones might not. */
1148 t->step_count = 0;
1149
1150 /* We need to verify that each top-level element of commands is
1151 valid for tracepoints, that there's at most one
1152 while-stepping element, and that the while-stepping's body
1153 has valid tracing commands excluding nested while-stepping.
1154 We also need to validate the tracepoint action line in the
1155 context of the tracepoint --- validate_actionline actually
1156 has side effects, like setting the tracepoint's
1157 while-stepping STEP_COUNT, in addition to checking if the
1158 collect/teval actions parse and make sense in the
1159 tracepoint's context. */
1160 for (c = commands; c; c = c->next)
1161 {
1162 if (c->control_type == while_stepping_control)
1163 {
1164 if (b->type == bp_fast_tracepoint)
1165 error (_("The 'while-stepping' command "
1166 "cannot be used for fast tracepoint"));
1167 else if (b->type == bp_static_tracepoint)
1168 error (_("The 'while-stepping' command "
1169 "cannot be used for static tracepoint"));
1170
1171 if (while_stepping)
1172 error (_("The 'while-stepping' command "
1173 "can be used only once"));
1174 else
1175 while_stepping = c;
1176 }
1177
1178 validate_actionline (c->line, b);
1179 }
1180 if (while_stepping)
1181 {
1182 struct command_line *c2;
1183
1184 gdb_assert (while_stepping->body_count == 1);
1185 c2 = while_stepping->body_list[0];
1186 for (; c2; c2 = c2->next)
1187 {
1188 if (c2->control_type == while_stepping_control)
1189 error (_("The 'while-stepping' command cannot be nested"));
1190 }
1191 }
1192 }
1193 else
1194 {
1195 check_no_tracepoint_commands (commands);
1196 }
1197 }
1198
1199 /* Return a vector of all the static tracepoints set at ADDR. The
1200 caller is responsible for releasing the vector. */
1201
1202 VEC(breakpoint_p) *
1203 static_tracepoints_here (CORE_ADDR addr)
1204 {
1205 struct breakpoint *b;
1206 VEC(breakpoint_p) *found = 0;
1207 struct bp_location *loc;
1208
1209 ALL_BREAKPOINTS (b)
1210 if (b->type == bp_static_tracepoint)
1211 {
1212 for (loc = b->loc; loc; loc = loc->next)
1213 if (loc->address == addr)
1214 VEC_safe_push(breakpoint_p, found, b);
1215 }
1216
1217 return found;
1218 }
1219
1220 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1221 validate that only allowed commands are included. */
1222
1223 void
1224 breakpoint_set_commands (struct breakpoint *b,
1225 struct command_line *commands)
1226 {
1227 validate_commands_for_breakpoint (b, commands);
1228
1229 decref_counted_command_line (&b->commands);
1230 b->commands = alloc_counted_command_line (commands);
1231 observer_notify_breakpoint_modified (b);
1232 }
1233
1234 /* Set the internal `silent' flag on the breakpoint. Note that this
1235 is not the same as the "silent" that may appear in the breakpoint's
1236 commands. */
1237
1238 void
1239 breakpoint_set_silent (struct breakpoint *b, int silent)
1240 {
1241 int old_silent = b->silent;
1242
1243 b->silent = silent;
1244 if (old_silent != silent)
1245 observer_notify_breakpoint_modified (b);
1246 }
1247
1248 /* Set the thread for this breakpoint. If THREAD is -1, make the
1249 breakpoint work for any thread. */
1250
1251 void
1252 breakpoint_set_thread (struct breakpoint *b, int thread)
1253 {
1254 int old_thread = b->thread;
1255
1256 b->thread = thread;
1257 if (old_thread != thread)
1258 observer_notify_breakpoint_modified (b);
1259 }
1260
1261 /* Set the task for this breakpoint. If TASK is 0, make the
1262 breakpoint work for any task. */
1263
1264 void
1265 breakpoint_set_task (struct breakpoint *b, int task)
1266 {
1267 int old_task = b->task;
1268
1269 b->task = task;
1270 if (old_task != task)
1271 observer_notify_breakpoint_modified (b);
1272 }
1273
1274 void
1275 check_tracepoint_command (char *line, void *closure)
1276 {
1277 struct breakpoint *b = closure;
1278
1279 validate_actionline (line, b);
1280 }
1281
1282 /* A structure used to pass information through
1283 map_breakpoint_numbers. */
1284
1285 struct commands_info
1286 {
1287 /* True if the command was typed at a tty. */
1288 int from_tty;
1289
1290 /* The breakpoint range spec. */
1291 char *arg;
1292
1293 /* Non-NULL if the body of the commands are being read from this
1294 already-parsed command. */
1295 struct command_line *control;
1296
1297 /* The command lines read from the user, or NULL if they have not
1298 yet been read. */
1299 struct counted_command_line *cmd;
1300 };
1301
1302 /* A callback for map_breakpoint_numbers that sets the commands for
1303 commands_command. */
1304
1305 static void
1306 do_map_commands_command (struct breakpoint *b, void *data)
1307 {
1308 struct commands_info *info = data;
1309
1310 if (info->cmd == NULL)
1311 {
1312 struct command_line *l;
1313
1314 if (info->control != NULL)
1315 l = copy_command_lines (info->control->body_list[0]);
1316 else
1317 {
1318 struct cleanup *old_chain;
1319 char *str;
1320
1321 str = xstrprintf (_("Type commands for breakpoint(s) "
1322 "%s, one per line."),
1323 info->arg);
1324
1325 old_chain = make_cleanup (xfree, str);
1326
1327 l = read_command_lines (str,
1328 info->from_tty, 1,
1329 (is_tracepoint (b)
1330 ? check_tracepoint_command : 0),
1331 b);
1332
1333 do_cleanups (old_chain);
1334 }
1335
1336 info->cmd = alloc_counted_command_line (l);
1337 }
1338
1339 /* If a breakpoint was on the list more than once, we don't need to
1340 do anything. */
1341 if (b->commands != info->cmd)
1342 {
1343 validate_commands_for_breakpoint (b, info->cmd->commands);
1344 incref_counted_command_line (info->cmd);
1345 decref_counted_command_line (&b->commands);
1346 b->commands = info->cmd;
1347 observer_notify_breakpoint_modified (b);
1348 }
1349 }
1350
1351 static void
1352 commands_command_1 (char *arg, int from_tty,
1353 struct command_line *control)
1354 {
1355 struct cleanup *cleanups;
1356 struct commands_info info;
1357
1358 info.from_tty = from_tty;
1359 info.control = control;
1360 info.cmd = NULL;
1361 /* If we read command lines from the user, then `info' will hold an
1362 extra reference to the commands that we must clean up. */
1363 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1364
1365 if (arg == NULL || !*arg)
1366 {
1367 if (breakpoint_count - prev_breakpoint_count > 1)
1368 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1369 breakpoint_count);
1370 else if (breakpoint_count > 0)
1371 arg = xstrprintf ("%d", breakpoint_count);
1372 else
1373 {
1374 /* So that we don't try to free the incoming non-NULL
1375 argument in the cleanup below. Mapping breakpoint
1376 numbers will fail in this case. */
1377 arg = NULL;
1378 }
1379 }
1380 else
1381 /* The command loop has some static state, so we need to preserve
1382 our argument. */
1383 arg = xstrdup (arg);
1384
1385 if (arg != NULL)
1386 make_cleanup (xfree, arg);
1387
1388 info.arg = arg;
1389
1390 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1391
1392 if (info.cmd == NULL)
1393 error (_("No breakpoints specified."));
1394
1395 do_cleanups (cleanups);
1396 }
1397
1398 static void
1399 commands_command (char *arg, int from_tty)
1400 {
1401 commands_command_1 (arg, from_tty, NULL);
1402 }
1403
1404 /* Like commands_command, but instead of reading the commands from
1405 input stream, takes them from an already parsed command structure.
1406
1407 This is used by cli-script.c to DTRT with breakpoint commands
1408 that are part of if and while bodies. */
1409 enum command_control_type
1410 commands_from_control_command (char *arg, struct command_line *cmd)
1411 {
1412 commands_command_1 (arg, 0, cmd);
1413 return simple_control;
1414 }
1415
1416 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1417
1418 static int
1419 bp_location_has_shadow (struct bp_location *bl)
1420 {
1421 if (bl->loc_type != bp_loc_software_breakpoint)
1422 return 0;
1423 if (!bl->inserted)
1424 return 0;
1425 if (bl->target_info.shadow_len == 0)
1426 /* BL isn't valid, or doesn't shadow memory. */
1427 return 0;
1428 return 1;
1429 }
1430
1431 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1432 by replacing any memory breakpoints with their shadowed contents.
1433
1434 If READBUF is not NULL, this buffer must not overlap with any of
1435 the breakpoint location's shadow_contents buffers. Otherwise,
1436 a failed assertion internal error will be raised.
1437
1438 The range of shadowed area by each bp_location is:
1439 bl->address - bp_location_placed_address_before_address_max
1440 up to bl->address + bp_location_shadow_len_after_address_max
1441 The range we were requested to resolve shadows for is:
1442 memaddr ... memaddr + len
1443 Thus the safe cutoff boundaries for performance optimization are
1444 memaddr + len <= (bl->address
1445 - bp_location_placed_address_before_address_max)
1446 and:
1447 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1448
1449 void
1450 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1451 const gdb_byte *writebuf_org,
1452 ULONGEST memaddr, LONGEST len)
1453 {
1454 /* Left boundary, right boundary and median element of our binary
1455 search. */
1456 unsigned bc_l, bc_r, bc;
1457
1458 /* Find BC_L which is a leftmost element which may affect BUF
1459 content. It is safe to report lower value but a failure to
1460 report higher one. */
1461
1462 bc_l = 0;
1463 bc_r = bp_location_count;
1464 while (bc_l + 1 < bc_r)
1465 {
1466 struct bp_location *bl;
1467
1468 bc = (bc_l + bc_r) / 2;
1469 bl = bp_location[bc];
1470
1471 /* Check first BL->ADDRESS will not overflow due to the added
1472 constant. Then advance the left boundary only if we are sure
1473 the BC element can in no way affect the BUF content (MEMADDR
1474 to MEMADDR + LEN range).
1475
1476 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1477 offset so that we cannot miss a breakpoint with its shadow
1478 range tail still reaching MEMADDR. */
1479
1480 if ((bl->address + bp_location_shadow_len_after_address_max
1481 >= bl->address)
1482 && (bl->address + bp_location_shadow_len_after_address_max
1483 <= memaddr))
1484 bc_l = bc;
1485 else
1486 bc_r = bc;
1487 }
1488
1489 /* Due to the binary search above, we need to make sure we pick the
1490 first location that's at BC_L's address. E.g., if there are
1491 multiple locations at the same address, BC_L may end up pointing
1492 at a duplicate location, and miss the "master"/"inserted"
1493 location. Say, given locations L1, L2 and L3 at addresses A and
1494 B:
1495
1496 L1@A, L2@A, L3@B, ...
1497
1498 BC_L could end up pointing at location L2, while the "master"
1499 location could be L1. Since the `loc->inserted' flag is only set
1500 on "master" locations, we'd forget to restore the shadow of L1
1501 and L2. */
1502 while (bc_l > 0
1503 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1504 bc_l--;
1505
1506 /* Now do full processing of the found relevant range of elements. */
1507
1508 for (bc = bc_l; bc < bp_location_count; bc++)
1509 {
1510 struct bp_location *bl = bp_location[bc];
1511 CORE_ADDR bp_addr = 0;
1512 int bp_size = 0;
1513 int bptoffset = 0;
1514
1515 /* bp_location array has BL->OWNER always non-NULL. */
1516 if (bl->owner->type == bp_none)
1517 warning (_("reading through apparently deleted breakpoint #%d?"),
1518 bl->owner->number);
1519
1520 /* Performance optimization: any further element can no longer affect BUF
1521 content. */
1522
1523 if (bl->address >= bp_location_placed_address_before_address_max
1524 && memaddr + len <= (bl->address
1525 - bp_location_placed_address_before_address_max))
1526 break;
1527
1528 if (!bp_location_has_shadow (bl))
1529 continue;
1530 if (!breakpoint_address_match (bl->target_info.placed_address_space, 0,
1531 current_program_space->aspace, 0))
1532 continue;
1533
1534 /* Addresses and length of the part of the breakpoint that
1535 we need to copy. */
1536 bp_addr = bl->target_info.placed_address;
1537 bp_size = bl->target_info.shadow_len;
1538
1539 if (bp_addr + bp_size <= memaddr)
1540 /* The breakpoint is entirely before the chunk of memory we
1541 are reading. */
1542 continue;
1543
1544 if (bp_addr >= memaddr + len)
1545 /* The breakpoint is entirely after the chunk of memory we are
1546 reading. */
1547 continue;
1548
1549 /* Offset within shadow_contents. */
1550 if (bp_addr < memaddr)
1551 {
1552 /* Only copy the second part of the breakpoint. */
1553 bp_size -= memaddr - bp_addr;
1554 bptoffset = memaddr - bp_addr;
1555 bp_addr = memaddr;
1556 }
1557
1558 if (bp_addr + bp_size > memaddr + len)
1559 {
1560 /* Only copy the first part of the breakpoint. */
1561 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1562 }
1563
1564 if (readbuf != NULL)
1565 {
1566 /* Verify that the readbuf buffer does not overlap with
1567 the shadow_contents buffer. */
1568 gdb_assert (bl->target_info.shadow_contents >= readbuf + len
1569 || readbuf >= (bl->target_info.shadow_contents
1570 + bl->target_info.shadow_len));
1571
1572 /* Update the read buffer with this inserted breakpoint's
1573 shadow. */
1574 memcpy (readbuf + bp_addr - memaddr,
1575 bl->target_info.shadow_contents + bptoffset, bp_size);
1576 }
1577 else
1578 {
1579 struct gdbarch *gdbarch = bl->gdbarch;
1580 const unsigned char *bp;
1581 CORE_ADDR placed_address = bl->target_info.placed_address;
1582 int placed_size = bl->target_info.placed_size;
1583
1584 /* Update the shadow with what we want to write to memory. */
1585 memcpy (bl->target_info.shadow_contents + bptoffset,
1586 writebuf_org + bp_addr - memaddr, bp_size);
1587
1588 /* Determine appropriate breakpoint contents and size for this
1589 address. */
1590 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1591
1592 /* Update the final write buffer with this inserted
1593 breakpoint's INSN. */
1594 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1595 }
1596 }
1597 }
1598 \f
1599
1600 /* Return true if BPT is either a software breakpoint or a hardware
1601 breakpoint. */
1602
1603 int
1604 is_breakpoint (const struct breakpoint *bpt)
1605 {
1606 return (bpt->type == bp_breakpoint
1607 || bpt->type == bp_hardware_breakpoint
1608 || bpt->type == bp_dprintf);
1609 }
1610
1611 /* Return true if BPT is of any hardware watchpoint kind. */
1612
1613 static int
1614 is_hardware_watchpoint (const struct breakpoint *bpt)
1615 {
1616 return (bpt->type == bp_hardware_watchpoint
1617 || bpt->type == bp_read_watchpoint
1618 || bpt->type == bp_access_watchpoint);
1619 }
1620
1621 /* Return true if BPT is of any watchpoint kind, hardware or
1622 software. */
1623
1624 int
1625 is_watchpoint (const struct breakpoint *bpt)
1626 {
1627 return (is_hardware_watchpoint (bpt)
1628 || bpt->type == bp_watchpoint);
1629 }
1630
1631 /* Returns true if the current thread and its running state are safe
1632 to evaluate or update watchpoint B. Watchpoints on local
1633 expressions need to be evaluated in the context of the thread that
1634 was current when the watchpoint was created, and, that thread needs
1635 to be stopped to be able to select the correct frame context.
1636 Watchpoints on global expressions can be evaluated on any thread,
1637 and in any state. It is presently left to the target allowing
1638 memory accesses when threads are running. */
1639
1640 static int
1641 watchpoint_in_thread_scope (struct watchpoint *b)
1642 {
1643 return (b->base.pspace == current_program_space
1644 && (ptid_equal (b->watchpoint_thread, null_ptid)
1645 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1646 && !is_executing (inferior_ptid))));
1647 }
1648
1649 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1650 associated bp_watchpoint_scope breakpoint. */
1651
1652 static void
1653 watchpoint_del_at_next_stop (struct watchpoint *w)
1654 {
1655 struct breakpoint *b = &w->base;
1656
1657 if (b->related_breakpoint != b)
1658 {
1659 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1660 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1661 b->related_breakpoint->disposition = disp_del_at_next_stop;
1662 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1663 b->related_breakpoint = b;
1664 }
1665 b->disposition = disp_del_at_next_stop;
1666 }
1667
1668 /* Assuming that B is a watchpoint:
1669 - Reparse watchpoint expression, if REPARSE is non-zero
1670 - Evaluate expression and store the result in B->val
1671 - Evaluate the condition if there is one, and store the result
1672 in b->loc->cond.
1673 - Update the list of values that must be watched in B->loc.
1674
1675 If the watchpoint disposition is disp_del_at_next_stop, then do
1676 nothing. If this is local watchpoint that is out of scope, delete
1677 it.
1678
1679 Even with `set breakpoint always-inserted on' the watchpoints are
1680 removed + inserted on each stop here. Normal breakpoints must
1681 never be removed because they might be missed by a running thread
1682 when debugging in non-stop mode. On the other hand, hardware
1683 watchpoints (is_hardware_watchpoint; processed here) are specific
1684 to each LWP since they are stored in each LWP's hardware debug
1685 registers. Therefore, such LWP must be stopped first in order to
1686 be able to modify its hardware watchpoints.
1687
1688 Hardware watchpoints must be reset exactly once after being
1689 presented to the user. It cannot be done sooner, because it would
1690 reset the data used to present the watchpoint hit to the user. And
1691 it must not be done later because it could display the same single
1692 watchpoint hit during multiple GDB stops. Note that the latter is
1693 relevant only to the hardware watchpoint types bp_read_watchpoint
1694 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1695 not user-visible - its hit is suppressed if the memory content has
1696 not changed.
1697
1698 The following constraints influence the location where we can reset
1699 hardware watchpoints:
1700
1701 * target_stopped_by_watchpoint and target_stopped_data_address are
1702 called several times when GDB stops.
1703
1704 [linux]
1705 * Multiple hardware watchpoints can be hit at the same time,
1706 causing GDB to stop. GDB only presents one hardware watchpoint
1707 hit at a time as the reason for stopping, and all the other hits
1708 are presented later, one after the other, each time the user
1709 requests the execution to be resumed. Execution is not resumed
1710 for the threads still having pending hit event stored in
1711 LWP_INFO->STATUS. While the watchpoint is already removed from
1712 the inferior on the first stop the thread hit event is kept being
1713 reported from its cached value by linux_nat_stopped_data_address
1714 until the real thread resume happens after the watchpoint gets
1715 presented and thus its LWP_INFO->STATUS gets reset.
1716
1717 Therefore the hardware watchpoint hit can get safely reset on the
1718 watchpoint removal from inferior. */
1719
1720 static void
1721 update_watchpoint (struct watchpoint *b, int reparse)
1722 {
1723 int within_current_scope;
1724 struct frame_id saved_frame_id;
1725 int frame_saved;
1726
1727 /* If this is a local watchpoint, we only want to check if the
1728 watchpoint frame is in scope if the current thread is the thread
1729 that was used to create the watchpoint. */
1730 if (!watchpoint_in_thread_scope (b))
1731 return;
1732
1733 if (b->base.disposition == disp_del_at_next_stop)
1734 return;
1735
1736 frame_saved = 0;
1737
1738 /* Determine if the watchpoint is within scope. */
1739 if (b->exp_valid_block == NULL)
1740 within_current_scope = 1;
1741 else
1742 {
1743 struct frame_info *fi = get_current_frame ();
1744 struct gdbarch *frame_arch = get_frame_arch (fi);
1745 CORE_ADDR frame_pc = get_frame_pc (fi);
1746
1747 /* If we're in a function epilogue, unwinding may not work
1748 properly, so do not attempt to recreate locations at this
1749 point. See similar comments in watchpoint_check. */
1750 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1751 return;
1752
1753 /* Save the current frame's ID so we can restore it after
1754 evaluating the watchpoint expression on its own frame. */
1755 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1756 took a frame parameter, so that we didn't have to change the
1757 selected frame. */
1758 frame_saved = 1;
1759 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1760
1761 fi = frame_find_by_id (b->watchpoint_frame);
1762 within_current_scope = (fi != NULL);
1763 if (within_current_scope)
1764 select_frame (fi);
1765 }
1766
1767 /* We don't free locations. They are stored in the bp_location array
1768 and update_global_location_list will eventually delete them and
1769 remove breakpoints if needed. */
1770 b->base.loc = NULL;
1771
1772 if (within_current_scope && reparse)
1773 {
1774 const char *s;
1775
1776 if (b->exp)
1777 {
1778 xfree (b->exp);
1779 b->exp = NULL;
1780 }
1781 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1782 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1783 /* If the meaning of expression itself changed, the old value is
1784 no longer relevant. We don't want to report a watchpoint hit
1785 to the user when the old value and the new value may actually
1786 be completely different objects. */
1787 value_free (b->val);
1788 b->val = NULL;
1789 b->val_valid = 0;
1790
1791 /* Note that unlike with breakpoints, the watchpoint's condition
1792 expression is stored in the breakpoint object, not in the
1793 locations (re)created below. */
1794 if (b->base.cond_string != NULL)
1795 {
1796 if (b->cond_exp != NULL)
1797 {
1798 xfree (b->cond_exp);
1799 b->cond_exp = NULL;
1800 }
1801
1802 s = b->base.cond_string;
1803 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1804 }
1805 }
1806
1807 /* If we failed to parse the expression, for example because
1808 it refers to a global variable in a not-yet-loaded shared library,
1809 don't try to insert watchpoint. We don't automatically delete
1810 such watchpoint, though, since failure to parse expression
1811 is different from out-of-scope watchpoint. */
1812 if ( !target_has_execution)
1813 {
1814 /* Without execution, memory can't change. No use to try and
1815 set watchpoint locations. The watchpoint will be reset when
1816 the target gains execution, through breakpoint_re_set. */
1817 }
1818 else if (within_current_scope && b->exp)
1819 {
1820 int pc = 0;
1821 struct value *val_chain, *v, *result, *next;
1822 struct program_space *frame_pspace;
1823
1824 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain);
1825
1826 /* Avoid setting b->val if it's already set. The meaning of
1827 b->val is 'the last value' user saw, and we should update
1828 it only if we reported that last value to user. As it
1829 happens, the code that reports it updates b->val directly.
1830 We don't keep track of the memory value for masked
1831 watchpoints. */
1832 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1833 {
1834 b->val = v;
1835 b->val_valid = 1;
1836 }
1837
1838 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1839
1840 /* Look at each value on the value chain. */
1841 for (v = val_chain; v; v = value_next (v))
1842 {
1843 /* If it's a memory location, and GDB actually needed
1844 its contents to evaluate the expression, then we
1845 must watch it. If the first value returned is
1846 still lazy, that means an error occurred reading it;
1847 watch it anyway in case it becomes readable. */
1848 if (VALUE_LVAL (v) == lval_memory
1849 && (v == val_chain || ! value_lazy (v)))
1850 {
1851 struct type *vtype = check_typedef (value_type (v));
1852
1853 /* We only watch structs and arrays if user asked
1854 for it explicitly, never if they just happen to
1855 appear in the middle of some value chain. */
1856 if (v == result
1857 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1858 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1859 {
1860 CORE_ADDR addr;
1861 int type;
1862 struct bp_location *loc, **tmp;
1863
1864 addr = value_address (v);
1865 type = hw_write;
1866 if (b->base.type == bp_read_watchpoint)
1867 type = hw_read;
1868 else if (b->base.type == bp_access_watchpoint)
1869 type = hw_access;
1870
1871 loc = allocate_bp_location (&b->base);
1872 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1873 ;
1874 *tmp = loc;
1875 loc->gdbarch = get_type_arch (value_type (v));
1876
1877 loc->pspace = frame_pspace;
1878 loc->address = addr;
1879 loc->length = TYPE_LENGTH (value_type (v));
1880 loc->watchpoint_type = type;
1881 }
1882 }
1883 }
1884
1885 /* Change the type of breakpoint between hardware assisted or
1886 an ordinary watchpoint depending on the hardware support
1887 and free hardware slots. REPARSE is set when the inferior
1888 is started. */
1889 if (reparse)
1890 {
1891 int reg_cnt;
1892 enum bp_loc_type loc_type;
1893 struct bp_location *bl;
1894
1895 reg_cnt = can_use_hardware_watchpoint (val_chain);
1896
1897 if (reg_cnt)
1898 {
1899 int i, target_resources_ok, other_type_used;
1900 enum bptype type;
1901
1902 /* Use an exact watchpoint when there's only one memory region to be
1903 watched, and only one debug register is needed to watch it. */
1904 b->exact = target_exact_watchpoints && reg_cnt == 1;
1905
1906 /* We need to determine how many resources are already
1907 used for all other hardware watchpoints plus this one
1908 to see if we still have enough resources to also fit
1909 this watchpoint in as well. */
1910
1911 /* If this is a software watchpoint, we try to turn it
1912 to a hardware one -- count resources as if B was of
1913 hardware watchpoint type. */
1914 type = b->base.type;
1915 if (type == bp_watchpoint)
1916 type = bp_hardware_watchpoint;
1917
1918 /* This watchpoint may or may not have been placed on
1919 the list yet at this point (it won't be in the list
1920 if we're trying to create it for the first time,
1921 through watch_command), so always account for it
1922 manually. */
1923
1924 /* Count resources used by all watchpoints except B. */
1925 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
1926
1927 /* Add in the resources needed for B. */
1928 i += hw_watchpoint_use_count (&b->base);
1929
1930 target_resources_ok
1931 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1932 if (target_resources_ok <= 0)
1933 {
1934 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
1935
1936 if (target_resources_ok == 0 && !sw_mode)
1937 error (_("Target does not support this type of "
1938 "hardware watchpoint."));
1939 else if (target_resources_ok < 0 && !sw_mode)
1940 error (_("There are not enough available hardware "
1941 "resources for this watchpoint."));
1942
1943 /* Downgrade to software watchpoint. */
1944 b->base.type = bp_watchpoint;
1945 }
1946 else
1947 {
1948 /* If this was a software watchpoint, we've just
1949 found we have enough resources to turn it to a
1950 hardware watchpoint. Otherwise, this is a
1951 nop. */
1952 b->base.type = type;
1953 }
1954 }
1955 else if (!b->base.ops->works_in_software_mode (&b->base))
1956 error (_("Expression cannot be implemented with "
1957 "read/access watchpoint."));
1958 else
1959 b->base.type = bp_watchpoint;
1960
1961 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
1962 : bp_loc_hardware_watchpoint);
1963 for (bl = b->base.loc; bl; bl = bl->next)
1964 bl->loc_type = loc_type;
1965 }
1966
1967 for (v = val_chain; v; v = next)
1968 {
1969 next = value_next (v);
1970 if (v != b->val)
1971 value_free (v);
1972 }
1973
1974 /* If a software watchpoint is not watching any memory, then the
1975 above left it without any location set up. But,
1976 bpstat_stop_status requires a location to be able to report
1977 stops, so make sure there's at least a dummy one. */
1978 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
1979 {
1980 struct breakpoint *base = &b->base;
1981 base->loc = allocate_bp_location (base);
1982 base->loc->pspace = frame_pspace;
1983 base->loc->address = -1;
1984 base->loc->length = -1;
1985 base->loc->watchpoint_type = -1;
1986 }
1987 }
1988 else if (!within_current_scope)
1989 {
1990 printf_filtered (_("\
1991 Watchpoint %d deleted because the program has left the block\n\
1992 in which its expression is valid.\n"),
1993 b->base.number);
1994 watchpoint_del_at_next_stop (b);
1995 }
1996
1997 /* Restore the selected frame. */
1998 if (frame_saved)
1999 select_frame (frame_find_by_id (saved_frame_id));
2000 }
2001
2002
2003 /* Returns 1 iff breakpoint location should be
2004 inserted in the inferior. We don't differentiate the type of BL's owner
2005 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2006 breakpoint_ops is not defined, because in insert_bp_location,
2007 tracepoint's insert_location will not be called. */
2008 static int
2009 should_be_inserted (struct bp_location *bl)
2010 {
2011 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2012 return 0;
2013
2014 if (bl->owner->disposition == disp_del_at_next_stop)
2015 return 0;
2016
2017 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2018 return 0;
2019
2020 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2021 return 0;
2022
2023 /* This is set for example, when we're attached to the parent of a
2024 vfork, and have detached from the child. The child is running
2025 free, and we expect it to do an exec or exit, at which point the
2026 OS makes the parent schedulable again (and the target reports
2027 that the vfork is done). Until the child is done with the shared
2028 memory region, do not insert breakpoints in the parent, otherwise
2029 the child could still trip on the parent's breakpoints. Since
2030 the parent is blocked anyway, it won't miss any breakpoint. */
2031 if (bl->pspace->breakpoints_not_allowed)
2032 return 0;
2033
2034 return 1;
2035 }
2036
2037 /* Same as should_be_inserted but does the check assuming
2038 that the location is not duplicated. */
2039
2040 static int
2041 unduplicated_should_be_inserted (struct bp_location *bl)
2042 {
2043 int result;
2044 const int save_duplicate = bl->duplicate;
2045
2046 bl->duplicate = 0;
2047 result = should_be_inserted (bl);
2048 bl->duplicate = save_duplicate;
2049 return result;
2050 }
2051
2052 /* Parses a conditional described by an expression COND into an
2053 agent expression bytecode suitable for evaluation
2054 by the bytecode interpreter. Return NULL if there was
2055 any error during parsing. */
2056
2057 static struct agent_expr *
2058 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2059 {
2060 struct agent_expr *aexpr = NULL;
2061 volatile struct gdb_exception ex;
2062
2063 if (!cond)
2064 return NULL;
2065
2066 /* We don't want to stop processing, so catch any errors
2067 that may show up. */
2068 TRY_CATCH (ex, RETURN_MASK_ERROR)
2069 {
2070 aexpr = gen_eval_for_expr (scope, cond);
2071 }
2072
2073 if (ex.reason < 0)
2074 {
2075 /* If we got here, it means the condition could not be parsed to a valid
2076 bytecode expression and thus can't be evaluated on the target's side.
2077 It's no use iterating through the conditions. */
2078 return NULL;
2079 }
2080
2081 /* We have a valid agent expression. */
2082 return aexpr;
2083 }
2084
2085 /* Based on location BL, create a list of breakpoint conditions to be
2086 passed on to the target. If we have duplicated locations with different
2087 conditions, we will add such conditions to the list. The idea is that the
2088 target will evaluate the list of conditions and will only notify GDB when
2089 one of them is true. */
2090
2091 static void
2092 build_target_condition_list (struct bp_location *bl)
2093 {
2094 struct bp_location **locp = NULL, **loc2p;
2095 int null_condition_or_parse_error = 0;
2096 int modified = bl->needs_update;
2097 struct bp_location *loc;
2098
2099 /* This is only meaningful if the target is
2100 evaluating conditions and if the user has
2101 opted for condition evaluation on the target's
2102 side. */
2103 if (gdb_evaluates_breakpoint_condition_p ()
2104 || !target_supports_evaluation_of_breakpoint_conditions ())
2105 return;
2106
2107 /* Do a first pass to check for locations with no assigned
2108 conditions or conditions that fail to parse to a valid agent expression
2109 bytecode. If any of these happen, then it's no use to send conditions
2110 to the target since this location will always trigger and generate a
2111 response back to GDB. */
2112 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2113 {
2114 loc = (*loc2p);
2115 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2116 {
2117 if (modified)
2118 {
2119 struct agent_expr *aexpr;
2120
2121 /* Re-parse the conditions since something changed. In that
2122 case we already freed the condition bytecodes (see
2123 force_breakpoint_reinsertion). We just
2124 need to parse the condition to bytecodes again. */
2125 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2126 loc->cond_bytecode = aexpr;
2127
2128 /* Check if we managed to parse the conditional expression
2129 correctly. If not, we will not send this condition
2130 to the target. */
2131 if (aexpr)
2132 continue;
2133 }
2134
2135 /* If we have a NULL bytecode expression, it means something
2136 went wrong or we have a null condition expression. */
2137 if (!loc->cond_bytecode)
2138 {
2139 null_condition_or_parse_error = 1;
2140 break;
2141 }
2142 }
2143 }
2144
2145 /* If any of these happened, it means we will have to evaluate the conditions
2146 for the location's address on gdb's side. It is no use keeping bytecodes
2147 for all the other duplicate locations, thus we free all of them here.
2148
2149 This is so we have a finer control over which locations' conditions are
2150 being evaluated by GDB or the remote stub. */
2151 if (null_condition_or_parse_error)
2152 {
2153 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2154 {
2155 loc = (*loc2p);
2156 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2157 {
2158 /* Only go as far as the first NULL bytecode is
2159 located. */
2160 if (!loc->cond_bytecode)
2161 return;
2162
2163 free_agent_expr (loc->cond_bytecode);
2164 loc->cond_bytecode = NULL;
2165 }
2166 }
2167 }
2168
2169 /* No NULL conditions or failed bytecode generation. Build a condition list
2170 for this location's address. */
2171 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2172 {
2173 loc = (*loc2p);
2174 if (loc->cond
2175 && is_breakpoint (loc->owner)
2176 && loc->pspace->num == bl->pspace->num
2177 && loc->owner->enable_state == bp_enabled
2178 && loc->enabled)
2179 /* Add the condition to the vector. This will be used later to send the
2180 conditions to the target. */
2181 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2182 loc->cond_bytecode);
2183 }
2184
2185 return;
2186 }
2187
2188 /* Parses a command described by string CMD into an agent expression
2189 bytecode suitable for evaluation by the bytecode interpreter.
2190 Return NULL if there was any error during parsing. */
2191
2192 static struct agent_expr *
2193 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2194 {
2195 struct cleanup *old_cleanups = 0;
2196 struct expression *expr, **argvec;
2197 struct agent_expr *aexpr = NULL;
2198 volatile struct gdb_exception ex;
2199 const char *cmdrest;
2200 const char *format_start, *format_end;
2201 struct format_piece *fpieces;
2202 int nargs;
2203 struct gdbarch *gdbarch = get_current_arch ();
2204
2205 if (!cmd)
2206 return NULL;
2207
2208 cmdrest = cmd;
2209
2210 if (*cmdrest == ',')
2211 ++cmdrest;
2212 cmdrest = skip_spaces_const (cmdrest);
2213
2214 if (*cmdrest++ != '"')
2215 error (_("No format string following the location"));
2216
2217 format_start = cmdrest;
2218
2219 fpieces = parse_format_string (&cmdrest);
2220
2221 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2222
2223 format_end = cmdrest;
2224
2225 if (*cmdrest++ != '"')
2226 error (_("Bad format string, non-terminated '\"'."));
2227
2228 cmdrest = skip_spaces_const (cmdrest);
2229
2230 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2231 error (_("Invalid argument syntax"));
2232
2233 if (*cmdrest == ',')
2234 cmdrest++;
2235 cmdrest = skip_spaces_const (cmdrest);
2236
2237 /* For each argument, make an expression. */
2238
2239 argvec = (struct expression **) alloca (strlen (cmd)
2240 * sizeof (struct expression *));
2241
2242 nargs = 0;
2243 while (*cmdrest != '\0')
2244 {
2245 const char *cmd1;
2246
2247 cmd1 = cmdrest;
2248 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2249 argvec[nargs++] = expr;
2250 cmdrest = cmd1;
2251 if (*cmdrest == ',')
2252 ++cmdrest;
2253 }
2254
2255 /* We don't want to stop processing, so catch any errors
2256 that may show up. */
2257 TRY_CATCH (ex, RETURN_MASK_ERROR)
2258 {
2259 aexpr = gen_printf (scope, gdbarch, 0, 0,
2260 format_start, format_end - format_start,
2261 fpieces, nargs, argvec);
2262 }
2263
2264 if (ex.reason < 0)
2265 {
2266 /* If we got here, it means the command could not be parsed to a valid
2267 bytecode expression and thus can't be evaluated on the target's side.
2268 It's no use iterating through the other commands. */
2269 return NULL;
2270 }
2271
2272 do_cleanups (old_cleanups);
2273
2274 /* We have a valid agent expression, return it. */
2275 return aexpr;
2276 }
2277
2278 /* Based on location BL, create a list of breakpoint commands to be
2279 passed on to the target. If we have duplicated locations with
2280 different commands, we will add any such to the list. */
2281
2282 static void
2283 build_target_command_list (struct bp_location *bl)
2284 {
2285 struct bp_location **locp = NULL, **loc2p;
2286 int null_command_or_parse_error = 0;
2287 int modified = bl->needs_update;
2288 struct bp_location *loc;
2289
2290 /* For now, limit to agent-style dprintf breakpoints. */
2291 if (bl->owner->type != bp_dprintf
2292 || strcmp (dprintf_style, dprintf_style_agent) != 0)
2293 return;
2294
2295 if (!target_can_run_breakpoint_commands ())
2296 return;
2297
2298 /* Do a first pass to check for locations with no assigned
2299 conditions or conditions that fail to parse to a valid agent expression
2300 bytecode. If any of these happen, then it's no use to send conditions
2301 to the target since this location will always trigger and generate a
2302 response back to GDB. */
2303 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2304 {
2305 loc = (*loc2p);
2306 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2307 {
2308 if (modified)
2309 {
2310 struct agent_expr *aexpr;
2311
2312 /* Re-parse the commands since something changed. In that
2313 case we already freed the command bytecodes (see
2314 force_breakpoint_reinsertion). We just
2315 need to parse the command to bytecodes again. */
2316 aexpr = parse_cmd_to_aexpr (bl->address,
2317 loc->owner->extra_string);
2318 loc->cmd_bytecode = aexpr;
2319
2320 if (!aexpr)
2321 continue;
2322 }
2323
2324 /* If we have a NULL bytecode expression, it means something
2325 went wrong or we have a null command expression. */
2326 if (!loc->cmd_bytecode)
2327 {
2328 null_command_or_parse_error = 1;
2329 break;
2330 }
2331 }
2332 }
2333
2334 /* If anything failed, then we're not doing target-side commands,
2335 and so clean up. */
2336 if (null_command_or_parse_error)
2337 {
2338 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2339 {
2340 loc = (*loc2p);
2341 if (is_breakpoint (loc->owner)
2342 && loc->pspace->num == bl->pspace->num)
2343 {
2344 /* Only go as far as the first NULL bytecode is
2345 located. */
2346 if (loc->cmd_bytecode == NULL)
2347 return;
2348
2349 free_agent_expr (loc->cmd_bytecode);
2350 loc->cmd_bytecode = NULL;
2351 }
2352 }
2353 }
2354
2355 /* No NULL commands or failed bytecode generation. Build a command list
2356 for this location's address. */
2357 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2358 {
2359 loc = (*loc2p);
2360 if (loc->owner->extra_string
2361 && is_breakpoint (loc->owner)
2362 && loc->pspace->num == bl->pspace->num
2363 && loc->owner->enable_state == bp_enabled
2364 && loc->enabled)
2365 /* Add the command to the vector. This will be used later
2366 to send the commands to the target. */
2367 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2368 loc->cmd_bytecode);
2369 }
2370
2371 bl->target_info.persist = 0;
2372 /* Maybe flag this location as persistent. */
2373 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2374 bl->target_info.persist = 1;
2375 }
2376
2377 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2378 location. Any error messages are printed to TMP_ERROR_STREAM; and
2379 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2380 Returns 0 for success, 1 if the bp_location type is not supported or
2381 -1 for failure.
2382
2383 NOTE drow/2003-09-09: This routine could be broken down to an
2384 object-style method for each breakpoint or catchpoint type. */
2385 static int
2386 insert_bp_location (struct bp_location *bl,
2387 struct ui_file *tmp_error_stream,
2388 int *disabled_breaks,
2389 int *hw_breakpoint_error,
2390 int *hw_bp_error_explained_already)
2391 {
2392 int val = 0;
2393 char *hw_bp_err_string = NULL;
2394 struct gdb_exception e;
2395
2396 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2397 return 0;
2398
2399 /* Note we don't initialize bl->target_info, as that wipes out
2400 the breakpoint location's shadow_contents if the breakpoint
2401 is still inserted at that location. This in turn breaks
2402 target_read_memory which depends on these buffers when
2403 a memory read is requested at the breakpoint location:
2404 Once the target_info has been wiped, we fail to see that
2405 we have a breakpoint inserted at that address and thus
2406 read the breakpoint instead of returning the data saved in
2407 the breakpoint location's shadow contents. */
2408 bl->target_info.placed_address = bl->address;
2409 bl->target_info.placed_address_space = bl->pspace->aspace;
2410 bl->target_info.length = bl->length;
2411
2412 /* When working with target-side conditions, we must pass all the conditions
2413 for the same breakpoint address down to the target since GDB will not
2414 insert those locations. With a list of breakpoint conditions, the target
2415 can decide when to stop and notify GDB. */
2416
2417 if (is_breakpoint (bl->owner))
2418 {
2419 build_target_condition_list (bl);
2420 build_target_command_list (bl);
2421 /* Reset the modification marker. */
2422 bl->needs_update = 0;
2423 }
2424
2425 if (bl->loc_type == bp_loc_software_breakpoint
2426 || bl->loc_type == bp_loc_hardware_breakpoint)
2427 {
2428 if (bl->owner->type != bp_hardware_breakpoint)
2429 {
2430 /* If the explicitly specified breakpoint type
2431 is not hardware breakpoint, check the memory map to see
2432 if the breakpoint address is in read only memory or not.
2433
2434 Two important cases are:
2435 - location type is not hardware breakpoint, memory
2436 is readonly. We change the type of the location to
2437 hardware breakpoint.
2438 - location type is hardware breakpoint, memory is
2439 read-write. This means we've previously made the
2440 location hardware one, but then the memory map changed,
2441 so we undo.
2442
2443 When breakpoints are removed, remove_breakpoints will use
2444 location types we've just set here, the only possible
2445 problem is that memory map has changed during running
2446 program, but it's not going to work anyway with current
2447 gdb. */
2448 struct mem_region *mr
2449 = lookup_mem_region (bl->target_info.placed_address);
2450
2451 if (mr)
2452 {
2453 if (automatic_hardware_breakpoints)
2454 {
2455 enum bp_loc_type new_type;
2456
2457 if (mr->attrib.mode != MEM_RW)
2458 new_type = bp_loc_hardware_breakpoint;
2459 else
2460 new_type = bp_loc_software_breakpoint;
2461
2462 if (new_type != bl->loc_type)
2463 {
2464 static int said = 0;
2465
2466 bl->loc_type = new_type;
2467 if (!said)
2468 {
2469 fprintf_filtered (gdb_stdout,
2470 _("Note: automatically using "
2471 "hardware breakpoints for "
2472 "read-only addresses.\n"));
2473 said = 1;
2474 }
2475 }
2476 }
2477 else if (bl->loc_type == bp_loc_software_breakpoint
2478 && mr->attrib.mode != MEM_RW)
2479 warning (_("cannot set software breakpoint "
2480 "at readonly address %s"),
2481 paddress (bl->gdbarch, bl->address));
2482 }
2483 }
2484
2485 /* First check to see if we have to handle an overlay. */
2486 if (overlay_debugging == ovly_off
2487 || bl->section == NULL
2488 || !(section_is_overlay (bl->section)))
2489 {
2490 /* No overlay handling: just set the breakpoint. */
2491 TRY_CATCH (e, RETURN_MASK_ALL)
2492 {
2493 val = bl->owner->ops->insert_location (bl);
2494 }
2495 if (e.reason < 0)
2496 {
2497 val = 1;
2498 hw_bp_err_string = (char *) e.message;
2499 }
2500 }
2501 else
2502 {
2503 /* This breakpoint is in an overlay section.
2504 Shall we set a breakpoint at the LMA? */
2505 if (!overlay_events_enabled)
2506 {
2507 /* Yes -- overlay event support is not active,
2508 so we must try to set a breakpoint at the LMA.
2509 This will not work for a hardware breakpoint. */
2510 if (bl->loc_type == bp_loc_hardware_breakpoint)
2511 warning (_("hardware breakpoint %d not supported in overlay!"),
2512 bl->owner->number);
2513 else
2514 {
2515 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2516 bl->section);
2517 /* Set a software (trap) breakpoint at the LMA. */
2518 bl->overlay_target_info = bl->target_info;
2519 bl->overlay_target_info.placed_address = addr;
2520 val = target_insert_breakpoint (bl->gdbarch,
2521 &bl->overlay_target_info);
2522 if (val != 0)
2523 fprintf_unfiltered (tmp_error_stream,
2524 "Overlay breakpoint %d "
2525 "failed: in ROM?\n",
2526 bl->owner->number);
2527 }
2528 }
2529 /* Shall we set a breakpoint at the VMA? */
2530 if (section_is_mapped (bl->section))
2531 {
2532 /* Yes. This overlay section is mapped into memory. */
2533 TRY_CATCH (e, RETURN_MASK_ALL)
2534 {
2535 val = bl->owner->ops->insert_location (bl);
2536 }
2537 if (e.reason < 0)
2538 {
2539 val = 1;
2540 hw_bp_err_string = (char *) e.message;
2541 }
2542 }
2543 else
2544 {
2545 /* No. This breakpoint will not be inserted.
2546 No error, but do not mark the bp as 'inserted'. */
2547 return 0;
2548 }
2549 }
2550
2551 if (val)
2552 {
2553 /* Can't set the breakpoint. */
2554 if (solib_name_from_address (bl->pspace, bl->address))
2555 {
2556 /* See also: disable_breakpoints_in_shlibs. */
2557 val = 0;
2558 bl->shlib_disabled = 1;
2559 observer_notify_breakpoint_modified (bl->owner);
2560 if (!*disabled_breaks)
2561 {
2562 fprintf_unfiltered (tmp_error_stream,
2563 "Cannot insert breakpoint %d.\n",
2564 bl->owner->number);
2565 fprintf_unfiltered (tmp_error_stream,
2566 "Temporarily disabling shared "
2567 "library breakpoints:\n");
2568 }
2569 *disabled_breaks = 1;
2570 fprintf_unfiltered (tmp_error_stream,
2571 "breakpoint #%d\n", bl->owner->number);
2572 }
2573 else
2574 {
2575 if (bl->loc_type == bp_loc_hardware_breakpoint)
2576 {
2577 *hw_breakpoint_error = 1;
2578 *hw_bp_error_explained_already = hw_bp_err_string != NULL;
2579 fprintf_unfiltered (tmp_error_stream,
2580 "Cannot insert hardware breakpoint %d%s",
2581 bl->owner->number, hw_bp_err_string ? ":" : ".\n");
2582 if (hw_bp_err_string)
2583 fprintf_unfiltered (tmp_error_stream, "%s.\n", hw_bp_err_string);
2584 }
2585 else
2586 {
2587 fprintf_unfiltered (tmp_error_stream,
2588 "Cannot insert breakpoint %d.\n",
2589 bl->owner->number);
2590 fprintf_filtered (tmp_error_stream,
2591 "Error accessing memory address ");
2592 fputs_filtered (paddress (bl->gdbarch, bl->address),
2593 tmp_error_stream);
2594 fprintf_filtered (tmp_error_stream, ": %s.\n",
2595 safe_strerror (val));
2596 }
2597
2598 }
2599 }
2600 else
2601 bl->inserted = 1;
2602
2603 return val;
2604 }
2605
2606 else if (bl->loc_type == bp_loc_hardware_watchpoint
2607 /* NOTE drow/2003-09-08: This state only exists for removing
2608 watchpoints. It's not clear that it's necessary... */
2609 && bl->owner->disposition != disp_del_at_next_stop)
2610 {
2611 gdb_assert (bl->owner->ops != NULL
2612 && bl->owner->ops->insert_location != NULL);
2613
2614 val = bl->owner->ops->insert_location (bl);
2615
2616 /* If trying to set a read-watchpoint, and it turns out it's not
2617 supported, try emulating one with an access watchpoint. */
2618 if (val == 1 && bl->watchpoint_type == hw_read)
2619 {
2620 struct bp_location *loc, **loc_temp;
2621
2622 /* But don't try to insert it, if there's already another
2623 hw_access location that would be considered a duplicate
2624 of this one. */
2625 ALL_BP_LOCATIONS (loc, loc_temp)
2626 if (loc != bl
2627 && loc->watchpoint_type == hw_access
2628 && watchpoint_locations_match (bl, loc))
2629 {
2630 bl->duplicate = 1;
2631 bl->inserted = 1;
2632 bl->target_info = loc->target_info;
2633 bl->watchpoint_type = hw_access;
2634 val = 0;
2635 break;
2636 }
2637
2638 if (val == 1)
2639 {
2640 bl->watchpoint_type = hw_access;
2641 val = bl->owner->ops->insert_location (bl);
2642
2643 if (val)
2644 /* Back to the original value. */
2645 bl->watchpoint_type = hw_read;
2646 }
2647 }
2648
2649 bl->inserted = (val == 0);
2650 }
2651
2652 else if (bl->owner->type == bp_catchpoint)
2653 {
2654 gdb_assert (bl->owner->ops != NULL
2655 && bl->owner->ops->insert_location != NULL);
2656
2657 val = bl->owner->ops->insert_location (bl);
2658 if (val)
2659 {
2660 bl->owner->enable_state = bp_disabled;
2661
2662 if (val == 1)
2663 warning (_("\
2664 Error inserting catchpoint %d: Your system does not support this type\n\
2665 of catchpoint."), bl->owner->number);
2666 else
2667 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2668 }
2669
2670 bl->inserted = (val == 0);
2671
2672 /* We've already printed an error message if there was a problem
2673 inserting this catchpoint, and we've disabled the catchpoint,
2674 so just return success. */
2675 return 0;
2676 }
2677
2678 return 0;
2679 }
2680
2681 /* This function is called when program space PSPACE is about to be
2682 deleted. It takes care of updating breakpoints to not reference
2683 PSPACE anymore. */
2684
2685 void
2686 breakpoint_program_space_exit (struct program_space *pspace)
2687 {
2688 struct breakpoint *b, *b_temp;
2689 struct bp_location *loc, **loc_temp;
2690
2691 /* Remove any breakpoint that was set through this program space. */
2692 ALL_BREAKPOINTS_SAFE (b, b_temp)
2693 {
2694 if (b->pspace == pspace)
2695 delete_breakpoint (b);
2696 }
2697
2698 /* Breakpoints set through other program spaces could have locations
2699 bound to PSPACE as well. Remove those. */
2700 ALL_BP_LOCATIONS (loc, loc_temp)
2701 {
2702 struct bp_location *tmp;
2703
2704 if (loc->pspace == pspace)
2705 {
2706 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2707 if (loc->owner->loc == loc)
2708 loc->owner->loc = loc->next;
2709 else
2710 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2711 if (tmp->next == loc)
2712 {
2713 tmp->next = loc->next;
2714 break;
2715 }
2716 }
2717 }
2718
2719 /* Now update the global location list to permanently delete the
2720 removed locations above. */
2721 update_global_location_list (0);
2722 }
2723
2724 /* Make sure all breakpoints are inserted in inferior.
2725 Throws exception on any error.
2726 A breakpoint that is already inserted won't be inserted
2727 again, so calling this function twice is safe. */
2728 void
2729 insert_breakpoints (void)
2730 {
2731 struct breakpoint *bpt;
2732
2733 ALL_BREAKPOINTS (bpt)
2734 if (is_hardware_watchpoint (bpt))
2735 {
2736 struct watchpoint *w = (struct watchpoint *) bpt;
2737
2738 update_watchpoint (w, 0 /* don't reparse. */);
2739 }
2740
2741 update_global_location_list (1);
2742
2743 /* update_global_location_list does not insert breakpoints when
2744 always_inserted_mode is not enabled. Explicitly insert them
2745 now. */
2746 if (!breakpoints_always_inserted_mode ())
2747 insert_breakpoint_locations ();
2748 }
2749
2750 /* Invoke CALLBACK for each of bp_location. */
2751
2752 void
2753 iterate_over_bp_locations (walk_bp_location_callback callback)
2754 {
2755 struct bp_location *loc, **loc_tmp;
2756
2757 ALL_BP_LOCATIONS (loc, loc_tmp)
2758 {
2759 callback (loc, NULL);
2760 }
2761 }
2762
2763 /* This is used when we need to synch breakpoint conditions between GDB and the
2764 target. It is the case with deleting and disabling of breakpoints when using
2765 always-inserted mode. */
2766
2767 static void
2768 update_inserted_breakpoint_locations (void)
2769 {
2770 struct bp_location *bl, **blp_tmp;
2771 int error_flag = 0;
2772 int val = 0;
2773 int disabled_breaks = 0;
2774 int hw_breakpoint_error = 0;
2775 int hw_bp_details_reported = 0;
2776
2777 struct ui_file *tmp_error_stream = mem_fileopen ();
2778 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2779
2780 /* Explicitly mark the warning -- this will only be printed if
2781 there was an error. */
2782 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2783
2784 save_current_space_and_thread ();
2785
2786 ALL_BP_LOCATIONS (bl, blp_tmp)
2787 {
2788 /* We only want to update software breakpoints and hardware
2789 breakpoints. */
2790 if (!is_breakpoint (bl->owner))
2791 continue;
2792
2793 /* We only want to update locations that are already inserted
2794 and need updating. This is to avoid unwanted insertion during
2795 deletion of breakpoints. */
2796 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2797 continue;
2798
2799 switch_to_program_space_and_thread (bl->pspace);
2800
2801 /* For targets that support global breakpoints, there's no need
2802 to select an inferior to insert breakpoint to. In fact, even
2803 if we aren't attached to any process yet, we should still
2804 insert breakpoints. */
2805 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2806 && ptid_equal (inferior_ptid, null_ptid))
2807 continue;
2808
2809 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2810 &hw_breakpoint_error, &hw_bp_details_reported);
2811 if (val)
2812 error_flag = val;
2813 }
2814
2815 if (error_flag)
2816 {
2817 target_terminal_ours_for_output ();
2818 error_stream (tmp_error_stream);
2819 }
2820
2821 do_cleanups (cleanups);
2822 }
2823
2824 /* Used when starting or continuing the program. */
2825
2826 static void
2827 insert_breakpoint_locations (void)
2828 {
2829 struct breakpoint *bpt;
2830 struct bp_location *bl, **blp_tmp;
2831 int error_flag = 0;
2832 int val = 0;
2833 int disabled_breaks = 0;
2834 int hw_breakpoint_error = 0;
2835 int hw_bp_error_explained_already = 0;
2836
2837 struct ui_file *tmp_error_stream = mem_fileopen ();
2838 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2839
2840 /* Explicitly mark the warning -- this will only be printed if
2841 there was an error. */
2842 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2843
2844 save_current_space_and_thread ();
2845
2846 ALL_BP_LOCATIONS (bl, blp_tmp)
2847 {
2848 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2849 continue;
2850
2851 /* There is no point inserting thread-specific breakpoints if
2852 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2853 has BL->OWNER always non-NULL. */
2854 if (bl->owner->thread != -1
2855 && !valid_thread_id (bl->owner->thread))
2856 continue;
2857
2858 switch_to_program_space_and_thread (bl->pspace);
2859
2860 /* For targets that support global breakpoints, there's no need
2861 to select an inferior to insert breakpoint to. In fact, even
2862 if we aren't attached to any process yet, we should still
2863 insert breakpoints. */
2864 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2865 && ptid_equal (inferior_ptid, null_ptid))
2866 continue;
2867
2868 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2869 &hw_breakpoint_error, &hw_bp_error_explained_already);
2870 if (val)
2871 error_flag = val;
2872 }
2873
2874 /* If we failed to insert all locations of a watchpoint, remove
2875 them, as half-inserted watchpoint is of limited use. */
2876 ALL_BREAKPOINTS (bpt)
2877 {
2878 int some_failed = 0;
2879 struct bp_location *loc;
2880
2881 if (!is_hardware_watchpoint (bpt))
2882 continue;
2883
2884 if (!breakpoint_enabled (bpt))
2885 continue;
2886
2887 if (bpt->disposition == disp_del_at_next_stop)
2888 continue;
2889
2890 for (loc = bpt->loc; loc; loc = loc->next)
2891 if (!loc->inserted && should_be_inserted (loc))
2892 {
2893 some_failed = 1;
2894 break;
2895 }
2896 if (some_failed)
2897 {
2898 for (loc = bpt->loc; loc; loc = loc->next)
2899 if (loc->inserted)
2900 remove_breakpoint (loc, mark_uninserted);
2901
2902 hw_breakpoint_error = 1;
2903 fprintf_unfiltered (tmp_error_stream,
2904 "Could not insert hardware watchpoint %d.\n",
2905 bpt->number);
2906 error_flag = -1;
2907 }
2908 }
2909
2910 if (error_flag)
2911 {
2912 /* If a hardware breakpoint or watchpoint was inserted, add a
2913 message about possibly exhausted resources. */
2914 if (hw_breakpoint_error && !hw_bp_error_explained_already)
2915 {
2916 fprintf_unfiltered (tmp_error_stream,
2917 "Could not insert hardware breakpoints:\n\
2918 You may have requested too many hardware breakpoints/watchpoints.\n");
2919 }
2920 target_terminal_ours_for_output ();
2921 error_stream (tmp_error_stream);
2922 }
2923
2924 do_cleanups (cleanups);
2925 }
2926
2927 /* Used when the program stops.
2928 Returns zero if successful, or non-zero if there was a problem
2929 removing a breakpoint location. */
2930
2931 int
2932 remove_breakpoints (void)
2933 {
2934 struct bp_location *bl, **blp_tmp;
2935 int val = 0;
2936
2937 ALL_BP_LOCATIONS (bl, blp_tmp)
2938 {
2939 if (bl->inserted && !is_tracepoint (bl->owner))
2940 val |= remove_breakpoint (bl, mark_uninserted);
2941 }
2942 return val;
2943 }
2944
2945 /* Remove breakpoints of process PID. */
2946
2947 int
2948 remove_breakpoints_pid (int pid)
2949 {
2950 struct bp_location *bl, **blp_tmp;
2951 int val;
2952 struct inferior *inf = find_inferior_pid (pid);
2953
2954 ALL_BP_LOCATIONS (bl, blp_tmp)
2955 {
2956 if (bl->pspace != inf->pspace)
2957 continue;
2958
2959 if (bl->owner->type == bp_dprintf)
2960 continue;
2961
2962 if (bl->inserted)
2963 {
2964 val = remove_breakpoint (bl, mark_uninserted);
2965 if (val != 0)
2966 return val;
2967 }
2968 }
2969 return 0;
2970 }
2971
2972 int
2973 reattach_breakpoints (int pid)
2974 {
2975 struct cleanup *old_chain;
2976 struct bp_location *bl, **blp_tmp;
2977 int val;
2978 struct ui_file *tmp_error_stream;
2979 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
2980 struct inferior *inf;
2981 struct thread_info *tp;
2982
2983 tp = any_live_thread_of_process (pid);
2984 if (tp == NULL)
2985 return 1;
2986
2987 inf = find_inferior_pid (pid);
2988 old_chain = save_inferior_ptid ();
2989
2990 inferior_ptid = tp->ptid;
2991
2992 tmp_error_stream = mem_fileopen ();
2993 make_cleanup_ui_file_delete (tmp_error_stream);
2994
2995 ALL_BP_LOCATIONS (bl, blp_tmp)
2996 {
2997 if (bl->pspace != inf->pspace)
2998 continue;
2999
3000 if (bl->inserted)
3001 {
3002 bl->inserted = 0;
3003 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3004 if (val != 0)
3005 {
3006 do_cleanups (old_chain);
3007 return val;
3008 }
3009 }
3010 }
3011 do_cleanups (old_chain);
3012 return 0;
3013 }
3014
3015 static int internal_breakpoint_number = -1;
3016
3017 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3018 If INTERNAL is non-zero, the breakpoint number will be populated
3019 from internal_breakpoint_number and that variable decremented.
3020 Otherwise the breakpoint number will be populated from
3021 breakpoint_count and that value incremented. Internal breakpoints
3022 do not set the internal var bpnum. */
3023 static void
3024 set_breakpoint_number (int internal, struct breakpoint *b)
3025 {
3026 if (internal)
3027 b->number = internal_breakpoint_number--;
3028 else
3029 {
3030 set_breakpoint_count (breakpoint_count + 1);
3031 b->number = breakpoint_count;
3032 }
3033 }
3034
3035 static struct breakpoint *
3036 create_internal_breakpoint (struct gdbarch *gdbarch,
3037 CORE_ADDR address, enum bptype type,
3038 const struct breakpoint_ops *ops)
3039 {
3040 struct symtab_and_line sal;
3041 struct breakpoint *b;
3042
3043 init_sal (&sal); /* Initialize to zeroes. */
3044
3045 sal.pc = address;
3046 sal.section = find_pc_overlay (sal.pc);
3047 sal.pspace = current_program_space;
3048
3049 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3050 b->number = internal_breakpoint_number--;
3051 b->disposition = disp_donttouch;
3052
3053 return b;
3054 }
3055
3056 static const char *const longjmp_names[] =
3057 {
3058 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3059 };
3060 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3061
3062 /* Per-objfile data private to breakpoint.c. */
3063 struct breakpoint_objfile_data
3064 {
3065 /* Minimal symbol for "_ovly_debug_event" (if any). */
3066 struct minimal_symbol *overlay_msym;
3067
3068 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3069 struct minimal_symbol *longjmp_msym[NUM_LONGJMP_NAMES];
3070
3071 /* True if we have looked for longjmp probes. */
3072 int longjmp_searched;
3073
3074 /* SystemTap probe points for longjmp (if any). */
3075 VEC (probe_p) *longjmp_probes;
3076
3077 /* Minimal symbol for "std::terminate()" (if any). */
3078 struct minimal_symbol *terminate_msym;
3079
3080 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3081 struct minimal_symbol *exception_msym;
3082
3083 /* True if we have looked for exception probes. */
3084 int exception_searched;
3085
3086 /* SystemTap probe points for unwinding (if any). */
3087 VEC (probe_p) *exception_probes;
3088 };
3089
3090 static const struct objfile_data *breakpoint_objfile_key;
3091
3092 /* Minimal symbol not found sentinel. */
3093 static struct minimal_symbol msym_not_found;
3094
3095 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3096
3097 static int
3098 msym_not_found_p (const struct minimal_symbol *msym)
3099 {
3100 return msym == &msym_not_found;
3101 }
3102
3103 /* Return per-objfile data needed by breakpoint.c.
3104 Allocate the data if necessary. */
3105
3106 static struct breakpoint_objfile_data *
3107 get_breakpoint_objfile_data (struct objfile *objfile)
3108 {
3109 struct breakpoint_objfile_data *bp_objfile_data;
3110
3111 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3112 if (bp_objfile_data == NULL)
3113 {
3114 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3115 sizeof (*bp_objfile_data));
3116
3117 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3118 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3119 }
3120 return bp_objfile_data;
3121 }
3122
3123 static void
3124 free_breakpoint_probes (struct objfile *obj, void *data)
3125 {
3126 struct breakpoint_objfile_data *bp_objfile_data = data;
3127
3128 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3129 VEC_free (probe_p, bp_objfile_data->exception_probes);
3130 }
3131
3132 static void
3133 create_overlay_event_breakpoint (void)
3134 {
3135 struct objfile *objfile;
3136 const char *const func_name = "_ovly_debug_event";
3137
3138 ALL_OBJFILES (objfile)
3139 {
3140 struct breakpoint *b;
3141 struct breakpoint_objfile_data *bp_objfile_data;
3142 CORE_ADDR addr;
3143
3144 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3145
3146 if (msym_not_found_p (bp_objfile_data->overlay_msym))
3147 continue;
3148
3149 if (bp_objfile_data->overlay_msym == NULL)
3150 {
3151 struct minimal_symbol *m;
3152
3153 m = lookup_minimal_symbol_text (func_name, objfile);
3154 if (m == NULL)
3155 {
3156 /* Avoid future lookups in this objfile. */
3157 bp_objfile_data->overlay_msym = &msym_not_found;
3158 continue;
3159 }
3160 bp_objfile_data->overlay_msym = m;
3161 }
3162
3163 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3164 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3165 bp_overlay_event,
3166 &internal_breakpoint_ops);
3167 b->addr_string = xstrdup (func_name);
3168
3169 if (overlay_debugging == ovly_auto)
3170 {
3171 b->enable_state = bp_enabled;
3172 overlay_events_enabled = 1;
3173 }
3174 else
3175 {
3176 b->enable_state = bp_disabled;
3177 overlay_events_enabled = 0;
3178 }
3179 }
3180 update_global_location_list (1);
3181 }
3182
3183 static void
3184 create_longjmp_master_breakpoint (void)
3185 {
3186 struct program_space *pspace;
3187 struct cleanup *old_chain;
3188
3189 old_chain = save_current_program_space ();
3190
3191 ALL_PSPACES (pspace)
3192 {
3193 struct objfile *objfile;
3194
3195 set_current_program_space (pspace);
3196
3197 ALL_OBJFILES (objfile)
3198 {
3199 int i;
3200 struct gdbarch *gdbarch;
3201 struct breakpoint_objfile_data *bp_objfile_data;
3202
3203 gdbarch = get_objfile_arch (objfile);
3204 if (!gdbarch_get_longjmp_target_p (gdbarch))
3205 continue;
3206
3207 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3208
3209 if (!bp_objfile_data->longjmp_searched)
3210 {
3211 bp_objfile_data->longjmp_probes
3212 = find_probes_in_objfile (objfile, "libc", "longjmp");
3213 bp_objfile_data->longjmp_searched = 1;
3214 }
3215
3216 if (bp_objfile_data->longjmp_probes != NULL)
3217 {
3218 int i;
3219 struct probe *probe;
3220 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3221
3222 for (i = 0;
3223 VEC_iterate (probe_p,
3224 bp_objfile_data->longjmp_probes,
3225 i, probe);
3226 ++i)
3227 {
3228 struct breakpoint *b;
3229
3230 b = create_internal_breakpoint (gdbarch, probe->address,
3231 bp_longjmp_master,
3232 &internal_breakpoint_ops);
3233 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3234 b->enable_state = bp_disabled;
3235 }
3236
3237 continue;
3238 }
3239
3240 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3241 {
3242 struct breakpoint *b;
3243 const char *func_name;
3244 CORE_ADDR addr;
3245
3246 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i]))
3247 continue;
3248
3249 func_name = longjmp_names[i];
3250 if (bp_objfile_data->longjmp_msym[i] == NULL)
3251 {
3252 struct minimal_symbol *m;
3253
3254 m = lookup_minimal_symbol_text (func_name, objfile);
3255 if (m == NULL)
3256 {
3257 /* Prevent future lookups in this objfile. */
3258 bp_objfile_data->longjmp_msym[i] = &msym_not_found;
3259 continue;
3260 }
3261 bp_objfile_data->longjmp_msym[i] = m;
3262 }
3263
3264 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3265 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3266 &internal_breakpoint_ops);
3267 b->addr_string = xstrdup (func_name);
3268 b->enable_state = bp_disabled;
3269 }
3270 }
3271 }
3272 update_global_location_list (1);
3273
3274 do_cleanups (old_chain);
3275 }
3276
3277 /* Create a master std::terminate breakpoint. */
3278 static void
3279 create_std_terminate_master_breakpoint (void)
3280 {
3281 struct program_space *pspace;
3282 struct cleanup *old_chain;
3283 const char *const func_name = "std::terminate()";
3284
3285 old_chain = save_current_program_space ();
3286
3287 ALL_PSPACES (pspace)
3288 {
3289 struct objfile *objfile;
3290 CORE_ADDR addr;
3291
3292 set_current_program_space (pspace);
3293
3294 ALL_OBJFILES (objfile)
3295 {
3296 struct breakpoint *b;
3297 struct breakpoint_objfile_data *bp_objfile_data;
3298
3299 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3300
3301 if (msym_not_found_p (bp_objfile_data->terminate_msym))
3302 continue;
3303
3304 if (bp_objfile_data->terminate_msym == NULL)
3305 {
3306 struct minimal_symbol *m;
3307
3308 m = lookup_minimal_symbol (func_name, NULL, objfile);
3309 if (m == NULL || (MSYMBOL_TYPE (m) != mst_text
3310 && MSYMBOL_TYPE (m) != mst_file_text))
3311 {
3312 /* Prevent future lookups in this objfile. */
3313 bp_objfile_data->terminate_msym = &msym_not_found;
3314 continue;
3315 }
3316 bp_objfile_data->terminate_msym = m;
3317 }
3318
3319 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3320 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3321 bp_std_terminate_master,
3322 &internal_breakpoint_ops);
3323 b->addr_string = xstrdup (func_name);
3324 b->enable_state = bp_disabled;
3325 }
3326 }
3327
3328 update_global_location_list (1);
3329
3330 do_cleanups (old_chain);
3331 }
3332
3333 /* Install a master breakpoint on the unwinder's debug hook. */
3334
3335 static void
3336 create_exception_master_breakpoint (void)
3337 {
3338 struct objfile *objfile;
3339 const char *const func_name = "_Unwind_DebugHook";
3340
3341 ALL_OBJFILES (objfile)
3342 {
3343 struct breakpoint *b;
3344 struct gdbarch *gdbarch;
3345 struct breakpoint_objfile_data *bp_objfile_data;
3346 CORE_ADDR addr;
3347
3348 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3349
3350 /* We prefer the SystemTap probe point if it exists. */
3351 if (!bp_objfile_data->exception_searched)
3352 {
3353 bp_objfile_data->exception_probes
3354 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3355 bp_objfile_data->exception_searched = 1;
3356 }
3357
3358 if (bp_objfile_data->exception_probes != NULL)
3359 {
3360 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3361 int i;
3362 struct probe *probe;
3363
3364 for (i = 0;
3365 VEC_iterate (probe_p,
3366 bp_objfile_data->exception_probes,
3367 i, probe);
3368 ++i)
3369 {
3370 struct breakpoint *b;
3371
3372 b = create_internal_breakpoint (gdbarch, probe->address,
3373 bp_exception_master,
3374 &internal_breakpoint_ops);
3375 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3376 b->enable_state = bp_disabled;
3377 }
3378
3379 continue;
3380 }
3381
3382 /* Otherwise, try the hook function. */
3383
3384 if (msym_not_found_p (bp_objfile_data->exception_msym))
3385 continue;
3386
3387 gdbarch = get_objfile_arch (objfile);
3388
3389 if (bp_objfile_data->exception_msym == NULL)
3390 {
3391 struct minimal_symbol *debug_hook;
3392
3393 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3394 if (debug_hook == NULL)
3395 {
3396 bp_objfile_data->exception_msym = &msym_not_found;
3397 continue;
3398 }
3399
3400 bp_objfile_data->exception_msym = debug_hook;
3401 }
3402
3403 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3404 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3405 &current_target);
3406 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3407 &internal_breakpoint_ops);
3408 b->addr_string = xstrdup (func_name);
3409 b->enable_state = bp_disabled;
3410 }
3411
3412 update_global_location_list (1);
3413 }
3414
3415 void
3416 update_breakpoints_after_exec (void)
3417 {
3418 struct breakpoint *b, *b_tmp;
3419 struct bp_location *bploc, **bplocp_tmp;
3420
3421 /* We're about to delete breakpoints from GDB's lists. If the
3422 INSERTED flag is true, GDB will try to lift the breakpoints by
3423 writing the breakpoints' "shadow contents" back into memory. The
3424 "shadow contents" are NOT valid after an exec, so GDB should not
3425 do that. Instead, the target is responsible from marking
3426 breakpoints out as soon as it detects an exec. We don't do that
3427 here instead, because there may be other attempts to delete
3428 breakpoints after detecting an exec and before reaching here. */
3429 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3430 if (bploc->pspace == current_program_space)
3431 gdb_assert (!bploc->inserted);
3432
3433 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3434 {
3435 if (b->pspace != current_program_space)
3436 continue;
3437
3438 /* Solib breakpoints must be explicitly reset after an exec(). */
3439 if (b->type == bp_shlib_event)
3440 {
3441 delete_breakpoint (b);
3442 continue;
3443 }
3444
3445 /* JIT breakpoints must be explicitly reset after an exec(). */
3446 if (b->type == bp_jit_event)
3447 {
3448 delete_breakpoint (b);
3449 continue;
3450 }
3451
3452 /* Thread event breakpoints must be set anew after an exec(),
3453 as must overlay event and longjmp master breakpoints. */
3454 if (b->type == bp_thread_event || b->type == bp_overlay_event
3455 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3456 || b->type == bp_exception_master)
3457 {
3458 delete_breakpoint (b);
3459 continue;
3460 }
3461
3462 /* Step-resume breakpoints are meaningless after an exec(). */
3463 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3464 {
3465 delete_breakpoint (b);
3466 continue;
3467 }
3468
3469 /* Longjmp and longjmp-resume breakpoints are also meaningless
3470 after an exec. */
3471 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3472 || b->type == bp_longjmp_call_dummy
3473 || b->type == bp_exception || b->type == bp_exception_resume)
3474 {
3475 delete_breakpoint (b);
3476 continue;
3477 }
3478
3479 if (b->type == bp_catchpoint)
3480 {
3481 /* For now, none of the bp_catchpoint breakpoints need to
3482 do anything at this point. In the future, if some of
3483 the catchpoints need to something, we will need to add
3484 a new method, and call this method from here. */
3485 continue;
3486 }
3487
3488 /* bp_finish is a special case. The only way we ought to be able
3489 to see one of these when an exec() has happened, is if the user
3490 caught a vfork, and then said "finish". Ordinarily a finish just
3491 carries them to the call-site of the current callee, by setting
3492 a temporary bp there and resuming. But in this case, the finish
3493 will carry them entirely through the vfork & exec.
3494
3495 We don't want to allow a bp_finish to remain inserted now. But
3496 we can't safely delete it, 'cause finish_command has a handle to
3497 the bp on a bpstat, and will later want to delete it. There's a
3498 chance (and I've seen it happen) that if we delete the bp_finish
3499 here, that its storage will get reused by the time finish_command
3500 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3501 We really must allow finish_command to delete a bp_finish.
3502
3503 In the absence of a general solution for the "how do we know
3504 it's safe to delete something others may have handles to?"
3505 problem, what we'll do here is just uninsert the bp_finish, and
3506 let finish_command delete it.
3507
3508 (We know the bp_finish is "doomed" in the sense that it's
3509 momentary, and will be deleted as soon as finish_command sees
3510 the inferior stopped. So it doesn't matter that the bp's
3511 address is probably bogus in the new a.out, unlike e.g., the
3512 solib breakpoints.) */
3513
3514 if (b->type == bp_finish)
3515 {
3516 continue;
3517 }
3518
3519 /* Without a symbolic address, we have little hope of the
3520 pre-exec() address meaning the same thing in the post-exec()
3521 a.out. */
3522 if (b->addr_string == NULL)
3523 {
3524 delete_breakpoint (b);
3525 continue;
3526 }
3527 }
3528 /* FIXME what about longjmp breakpoints? Re-create them here? */
3529 create_overlay_event_breakpoint ();
3530 create_longjmp_master_breakpoint ();
3531 create_std_terminate_master_breakpoint ();
3532 create_exception_master_breakpoint ();
3533 }
3534
3535 int
3536 detach_breakpoints (ptid_t ptid)
3537 {
3538 struct bp_location *bl, **blp_tmp;
3539 int val = 0;
3540 struct cleanup *old_chain = save_inferior_ptid ();
3541 struct inferior *inf = current_inferior ();
3542
3543 if (PIDGET (ptid) == PIDGET (inferior_ptid))
3544 error (_("Cannot detach breakpoints of inferior_ptid"));
3545
3546 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3547 inferior_ptid = ptid;
3548 ALL_BP_LOCATIONS (bl, blp_tmp)
3549 {
3550 if (bl->pspace != inf->pspace)
3551 continue;
3552
3553 if (bl->inserted)
3554 val |= remove_breakpoint_1 (bl, mark_inserted);
3555 }
3556
3557 /* Detach single-step breakpoints as well. */
3558 detach_single_step_breakpoints ();
3559
3560 do_cleanups (old_chain);
3561 return val;
3562 }
3563
3564 /* Remove the breakpoint location BL from the current address space.
3565 Note that this is used to detach breakpoints from a child fork.
3566 When we get here, the child isn't in the inferior list, and neither
3567 do we have objects to represent its address space --- we should
3568 *not* look at bl->pspace->aspace here. */
3569
3570 static int
3571 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3572 {
3573 int val;
3574
3575 /* BL is never in moribund_locations by our callers. */
3576 gdb_assert (bl->owner != NULL);
3577
3578 if (bl->owner->enable_state == bp_permanent)
3579 /* Permanent breakpoints cannot be inserted or removed. */
3580 return 0;
3581
3582 /* The type of none suggests that owner is actually deleted.
3583 This should not ever happen. */
3584 gdb_assert (bl->owner->type != bp_none);
3585
3586 if (bl->loc_type == bp_loc_software_breakpoint
3587 || bl->loc_type == bp_loc_hardware_breakpoint)
3588 {
3589 /* "Normal" instruction breakpoint: either the standard
3590 trap-instruction bp (bp_breakpoint), or a
3591 bp_hardware_breakpoint. */
3592
3593 /* First check to see if we have to handle an overlay. */
3594 if (overlay_debugging == ovly_off
3595 || bl->section == NULL
3596 || !(section_is_overlay (bl->section)))
3597 {
3598 /* No overlay handling: just remove the breakpoint. */
3599 val = bl->owner->ops->remove_location (bl);
3600 }
3601 else
3602 {
3603 /* This breakpoint is in an overlay section.
3604 Did we set a breakpoint at the LMA? */
3605 if (!overlay_events_enabled)
3606 {
3607 /* Yes -- overlay event support is not active, so we
3608 should have set a breakpoint at the LMA. Remove it.
3609 */
3610 /* Ignore any failures: if the LMA is in ROM, we will
3611 have already warned when we failed to insert it. */
3612 if (bl->loc_type == bp_loc_hardware_breakpoint)
3613 target_remove_hw_breakpoint (bl->gdbarch,
3614 &bl->overlay_target_info);
3615 else
3616 target_remove_breakpoint (bl->gdbarch,
3617 &bl->overlay_target_info);
3618 }
3619 /* Did we set a breakpoint at the VMA?
3620 If so, we will have marked the breakpoint 'inserted'. */
3621 if (bl->inserted)
3622 {
3623 /* Yes -- remove it. Previously we did not bother to
3624 remove the breakpoint if the section had been
3625 unmapped, but let's not rely on that being safe. We
3626 don't know what the overlay manager might do. */
3627
3628 /* However, we should remove *software* breakpoints only
3629 if the section is still mapped, or else we overwrite
3630 wrong code with the saved shadow contents. */
3631 if (bl->loc_type == bp_loc_hardware_breakpoint
3632 || section_is_mapped (bl->section))
3633 val = bl->owner->ops->remove_location (bl);
3634 else
3635 val = 0;
3636 }
3637 else
3638 {
3639 /* No -- not inserted, so no need to remove. No error. */
3640 val = 0;
3641 }
3642 }
3643
3644 /* In some cases, we might not be able to remove a breakpoint
3645 in a shared library that has already been removed, but we
3646 have not yet processed the shlib unload event. */
3647 if (val && solib_name_from_address (bl->pspace, bl->address))
3648 val = 0;
3649
3650 if (val)
3651 return val;
3652 bl->inserted = (is == mark_inserted);
3653 }
3654 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3655 {
3656 gdb_assert (bl->owner->ops != NULL
3657 && bl->owner->ops->remove_location != NULL);
3658
3659 bl->inserted = (is == mark_inserted);
3660 bl->owner->ops->remove_location (bl);
3661
3662 /* Failure to remove any of the hardware watchpoints comes here. */
3663 if ((is == mark_uninserted) && (bl->inserted))
3664 warning (_("Could not remove hardware watchpoint %d."),
3665 bl->owner->number);
3666 }
3667 else if (bl->owner->type == bp_catchpoint
3668 && breakpoint_enabled (bl->owner)
3669 && !bl->duplicate)
3670 {
3671 gdb_assert (bl->owner->ops != NULL
3672 && bl->owner->ops->remove_location != NULL);
3673
3674 val = bl->owner->ops->remove_location (bl);
3675 if (val)
3676 return val;
3677
3678 bl->inserted = (is == mark_inserted);
3679 }
3680
3681 return 0;
3682 }
3683
3684 static int
3685 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
3686 {
3687 int ret;
3688 struct cleanup *old_chain;
3689
3690 /* BL is never in moribund_locations by our callers. */
3691 gdb_assert (bl->owner != NULL);
3692
3693 if (bl->owner->enable_state == bp_permanent)
3694 /* Permanent breakpoints cannot be inserted or removed. */
3695 return 0;
3696
3697 /* The type of none suggests that owner is actually deleted.
3698 This should not ever happen. */
3699 gdb_assert (bl->owner->type != bp_none);
3700
3701 old_chain = save_current_space_and_thread ();
3702
3703 switch_to_program_space_and_thread (bl->pspace);
3704
3705 ret = remove_breakpoint_1 (bl, is);
3706
3707 do_cleanups (old_chain);
3708 return ret;
3709 }
3710
3711 /* Clear the "inserted" flag in all breakpoints. */
3712
3713 void
3714 mark_breakpoints_out (void)
3715 {
3716 struct bp_location *bl, **blp_tmp;
3717
3718 ALL_BP_LOCATIONS (bl, blp_tmp)
3719 if (bl->pspace == current_program_space)
3720 bl->inserted = 0;
3721 }
3722
3723 /* Clear the "inserted" flag in all breakpoints and delete any
3724 breakpoints which should go away between runs of the program.
3725
3726 Plus other such housekeeping that has to be done for breakpoints
3727 between runs.
3728
3729 Note: this function gets called at the end of a run (by
3730 generic_mourn_inferior) and when a run begins (by
3731 init_wait_for_inferior). */
3732
3733
3734
3735 void
3736 breakpoint_init_inferior (enum inf_context context)
3737 {
3738 struct breakpoint *b, *b_tmp;
3739 struct bp_location *bl, **blp_tmp;
3740 int ix;
3741 struct program_space *pspace = current_program_space;
3742
3743 /* If breakpoint locations are shared across processes, then there's
3744 nothing to do. */
3745 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3746 return;
3747
3748 ALL_BP_LOCATIONS (bl, blp_tmp)
3749 {
3750 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3751 if (bl->pspace == pspace
3752 && bl->owner->enable_state != bp_permanent)
3753 bl->inserted = 0;
3754 }
3755
3756 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3757 {
3758 if (b->loc && b->loc->pspace != pspace)
3759 continue;
3760
3761 switch (b->type)
3762 {
3763 case bp_call_dummy:
3764 case bp_longjmp_call_dummy:
3765
3766 /* If the call dummy breakpoint is at the entry point it will
3767 cause problems when the inferior is rerun, so we better get
3768 rid of it. */
3769
3770 case bp_watchpoint_scope:
3771
3772 /* Also get rid of scope breakpoints. */
3773
3774 case bp_shlib_event:
3775
3776 /* Also remove solib event breakpoints. Their addresses may
3777 have changed since the last time we ran the program.
3778 Actually we may now be debugging against different target;
3779 and so the solib backend that installed this breakpoint may
3780 not be used in by the target. E.g.,
3781
3782 (gdb) file prog-linux
3783 (gdb) run # native linux target
3784 ...
3785 (gdb) kill
3786 (gdb) file prog-win.exe
3787 (gdb) tar rem :9999 # remote Windows gdbserver.
3788 */
3789
3790 case bp_step_resume:
3791
3792 /* Also remove step-resume breakpoints. */
3793
3794 delete_breakpoint (b);
3795 break;
3796
3797 case bp_watchpoint:
3798 case bp_hardware_watchpoint:
3799 case bp_read_watchpoint:
3800 case bp_access_watchpoint:
3801 {
3802 struct watchpoint *w = (struct watchpoint *) b;
3803
3804 /* Likewise for watchpoints on local expressions. */
3805 if (w->exp_valid_block != NULL)
3806 delete_breakpoint (b);
3807 else if (context == inf_starting)
3808 {
3809 /* Reset val field to force reread of starting value in
3810 insert_breakpoints. */
3811 if (w->val)
3812 value_free (w->val);
3813 w->val = NULL;
3814 w->val_valid = 0;
3815 }
3816 }
3817 break;
3818 default:
3819 break;
3820 }
3821 }
3822
3823 /* Get rid of the moribund locations. */
3824 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3825 decref_bp_location (&bl);
3826 VEC_free (bp_location_p, moribund_locations);
3827 }
3828
3829 /* These functions concern about actual breakpoints inserted in the
3830 target --- to e.g. check if we need to do decr_pc adjustment or if
3831 we need to hop over the bkpt --- so we check for address space
3832 match, not program space. */
3833
3834 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3835 exists at PC. It returns ordinary_breakpoint_here if it's an
3836 ordinary breakpoint, or permanent_breakpoint_here if it's a
3837 permanent breakpoint.
3838 - When continuing from a location with an ordinary breakpoint, we
3839 actually single step once before calling insert_breakpoints.
3840 - When continuing from a location with a permanent breakpoint, we
3841 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3842 the target, to advance the PC past the breakpoint. */
3843
3844 enum breakpoint_here
3845 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3846 {
3847 struct bp_location *bl, **blp_tmp;
3848 int any_breakpoint_here = 0;
3849
3850 ALL_BP_LOCATIONS (bl, blp_tmp)
3851 {
3852 if (bl->loc_type != bp_loc_software_breakpoint
3853 && bl->loc_type != bp_loc_hardware_breakpoint)
3854 continue;
3855
3856 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3857 if ((breakpoint_enabled (bl->owner)
3858 || bl->owner->enable_state == bp_permanent)
3859 && breakpoint_location_address_match (bl, aspace, pc))
3860 {
3861 if (overlay_debugging
3862 && section_is_overlay (bl->section)
3863 && !section_is_mapped (bl->section))
3864 continue; /* unmapped overlay -- can't be a match */
3865 else if (bl->owner->enable_state == bp_permanent)
3866 return permanent_breakpoint_here;
3867 else
3868 any_breakpoint_here = 1;
3869 }
3870 }
3871
3872 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
3873 }
3874
3875 /* Return true if there's a moribund breakpoint at PC. */
3876
3877 int
3878 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3879 {
3880 struct bp_location *loc;
3881 int ix;
3882
3883 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
3884 if (breakpoint_location_address_match (loc, aspace, pc))
3885 return 1;
3886
3887 return 0;
3888 }
3889
3890 /* Returns non-zero if there's a breakpoint inserted at PC, which is
3891 inserted using regular breakpoint_chain / bp_location array
3892 mechanism. This does not check for single-step breakpoints, which
3893 are inserted and removed using direct target manipulation. */
3894
3895 int
3896 regular_breakpoint_inserted_here_p (struct address_space *aspace,
3897 CORE_ADDR pc)
3898 {
3899 struct bp_location *bl, **blp_tmp;
3900
3901 ALL_BP_LOCATIONS (bl, blp_tmp)
3902 {
3903 if (bl->loc_type != bp_loc_software_breakpoint
3904 && bl->loc_type != bp_loc_hardware_breakpoint)
3905 continue;
3906
3907 if (bl->inserted
3908 && breakpoint_location_address_match (bl, aspace, pc))
3909 {
3910 if (overlay_debugging
3911 && section_is_overlay (bl->section)
3912 && !section_is_mapped (bl->section))
3913 continue; /* unmapped overlay -- can't be a match */
3914 else
3915 return 1;
3916 }
3917 }
3918 return 0;
3919 }
3920
3921 /* Returns non-zero iff there's either regular breakpoint
3922 or a single step breakpoint inserted at PC. */
3923
3924 int
3925 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
3926 {
3927 if (regular_breakpoint_inserted_here_p (aspace, pc))
3928 return 1;
3929
3930 if (single_step_breakpoint_inserted_here_p (aspace, pc))
3931 return 1;
3932
3933 return 0;
3934 }
3935
3936 /* This function returns non-zero iff there is a software breakpoint
3937 inserted at PC. */
3938
3939 int
3940 software_breakpoint_inserted_here_p (struct address_space *aspace,
3941 CORE_ADDR pc)
3942 {
3943 struct bp_location *bl, **blp_tmp;
3944
3945 ALL_BP_LOCATIONS (bl, blp_tmp)
3946 {
3947 if (bl->loc_type != bp_loc_software_breakpoint)
3948 continue;
3949
3950 if (bl->inserted
3951 && breakpoint_address_match (bl->pspace->aspace, bl->address,
3952 aspace, pc))
3953 {
3954 if (overlay_debugging
3955 && section_is_overlay (bl->section)
3956 && !section_is_mapped (bl->section))
3957 continue; /* unmapped overlay -- can't be a match */
3958 else
3959 return 1;
3960 }
3961 }
3962
3963 /* Also check for software single-step breakpoints. */
3964 if (single_step_breakpoint_inserted_here_p (aspace, pc))
3965 return 1;
3966
3967 return 0;
3968 }
3969
3970 int
3971 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
3972 CORE_ADDR addr, ULONGEST len)
3973 {
3974 struct breakpoint *bpt;
3975
3976 ALL_BREAKPOINTS (bpt)
3977 {
3978 struct bp_location *loc;
3979
3980 if (bpt->type != bp_hardware_watchpoint
3981 && bpt->type != bp_access_watchpoint)
3982 continue;
3983
3984 if (!breakpoint_enabled (bpt))
3985 continue;
3986
3987 for (loc = bpt->loc; loc; loc = loc->next)
3988 if (loc->pspace->aspace == aspace && loc->inserted)
3989 {
3990 CORE_ADDR l, h;
3991
3992 /* Check for intersection. */
3993 l = max (loc->address, addr);
3994 h = min (loc->address + loc->length, addr + len);
3995 if (l < h)
3996 return 1;
3997 }
3998 }
3999 return 0;
4000 }
4001
4002 /* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
4003 PC is valid for process/thread PTID. */
4004
4005 int
4006 breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
4007 ptid_t ptid)
4008 {
4009 struct bp_location *bl, **blp_tmp;
4010 /* The thread and task IDs associated to PTID, computed lazily. */
4011 int thread = -1;
4012 int task = 0;
4013
4014 ALL_BP_LOCATIONS (bl, blp_tmp)
4015 {
4016 if (bl->loc_type != bp_loc_software_breakpoint
4017 && bl->loc_type != bp_loc_hardware_breakpoint)
4018 continue;
4019
4020 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4021 if (!breakpoint_enabled (bl->owner)
4022 && bl->owner->enable_state != bp_permanent)
4023 continue;
4024
4025 if (!breakpoint_location_address_match (bl, aspace, pc))
4026 continue;
4027
4028 if (bl->owner->thread != -1)
4029 {
4030 /* This is a thread-specific breakpoint. Check that ptid
4031 matches that thread. If thread hasn't been computed yet,
4032 it is now time to do so. */
4033 if (thread == -1)
4034 thread = pid_to_thread_id (ptid);
4035 if (bl->owner->thread != thread)
4036 continue;
4037 }
4038
4039 if (bl->owner->task != 0)
4040 {
4041 /* This is a task-specific breakpoint. Check that ptid
4042 matches that task. If task hasn't been computed yet,
4043 it is now time to do so. */
4044 if (task == 0)
4045 task = ada_get_task_number (ptid);
4046 if (bl->owner->task != task)
4047 continue;
4048 }
4049
4050 if (overlay_debugging
4051 && section_is_overlay (bl->section)
4052 && !section_is_mapped (bl->section))
4053 continue; /* unmapped overlay -- can't be a match */
4054
4055 return 1;
4056 }
4057
4058 return 0;
4059 }
4060 \f
4061
4062 /* bpstat stuff. External routines' interfaces are documented
4063 in breakpoint.h. */
4064
4065 int
4066 is_catchpoint (struct breakpoint *ep)
4067 {
4068 return (ep->type == bp_catchpoint);
4069 }
4070
4071 /* Frees any storage that is part of a bpstat. Does not walk the
4072 'next' chain. */
4073
4074 static void
4075 bpstat_free (bpstat bs)
4076 {
4077 if (bs->old_val != NULL)
4078 value_free (bs->old_val);
4079 decref_counted_command_line (&bs->commands);
4080 decref_bp_location (&bs->bp_location_at);
4081 xfree (bs);
4082 }
4083
4084 /* Clear a bpstat so that it says we are not at any breakpoint.
4085 Also free any storage that is part of a bpstat. */
4086
4087 void
4088 bpstat_clear (bpstat *bsp)
4089 {
4090 bpstat p;
4091 bpstat q;
4092
4093 if (bsp == 0)
4094 return;
4095 p = *bsp;
4096 while (p != NULL)
4097 {
4098 q = p->next;
4099 bpstat_free (p);
4100 p = q;
4101 }
4102 *bsp = NULL;
4103 }
4104
4105 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4106 is part of the bpstat is copied as well. */
4107
4108 bpstat
4109 bpstat_copy (bpstat bs)
4110 {
4111 bpstat p = NULL;
4112 bpstat tmp;
4113 bpstat retval = NULL;
4114
4115 if (bs == NULL)
4116 return bs;
4117
4118 for (; bs != NULL; bs = bs->next)
4119 {
4120 tmp = (bpstat) xmalloc (sizeof (*tmp));
4121 memcpy (tmp, bs, sizeof (*tmp));
4122 incref_counted_command_line (tmp->commands);
4123 incref_bp_location (tmp->bp_location_at);
4124 if (bs->old_val != NULL)
4125 {
4126 tmp->old_val = value_copy (bs->old_val);
4127 release_value (tmp->old_val);
4128 }
4129
4130 if (p == NULL)
4131 /* This is the first thing in the chain. */
4132 retval = tmp;
4133 else
4134 p->next = tmp;
4135 p = tmp;
4136 }
4137 p->next = NULL;
4138 return retval;
4139 }
4140
4141 /* Find the bpstat associated with this breakpoint. */
4142
4143 bpstat
4144 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4145 {
4146 if (bsp == NULL)
4147 return NULL;
4148
4149 for (; bsp != NULL; bsp = bsp->next)
4150 {
4151 if (bsp->breakpoint_at == breakpoint)
4152 return bsp;
4153 }
4154 return NULL;
4155 }
4156
4157 /* See breakpoint.h. */
4158
4159 enum bpstat_signal_value
4160 bpstat_explains_signal (bpstat bsp)
4161 {
4162 enum bpstat_signal_value result = BPSTAT_SIGNAL_NO;
4163
4164 for (; bsp != NULL; bsp = bsp->next)
4165 {
4166 /* Ensure that, if we ever entered this loop, then we at least
4167 return BPSTAT_SIGNAL_HIDE. */
4168 enum bpstat_signal_value newval = BPSTAT_SIGNAL_HIDE;
4169
4170 if (bsp->breakpoint_at != NULL)
4171 newval = bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at);
4172
4173 if (newval > result)
4174 result = newval;
4175 }
4176
4177 return result;
4178 }
4179
4180 /* Put in *NUM the breakpoint number of the first breakpoint we are
4181 stopped at. *BSP upon return is a bpstat which points to the
4182 remaining breakpoints stopped at (but which is not guaranteed to be
4183 good for anything but further calls to bpstat_num).
4184
4185 Return 0 if passed a bpstat which does not indicate any breakpoints.
4186 Return -1 if stopped at a breakpoint that has been deleted since
4187 we set it.
4188 Return 1 otherwise. */
4189
4190 int
4191 bpstat_num (bpstat *bsp, int *num)
4192 {
4193 struct breakpoint *b;
4194
4195 if ((*bsp) == NULL)
4196 return 0; /* No more breakpoint values */
4197
4198 /* We assume we'll never have several bpstats that correspond to a
4199 single breakpoint -- otherwise, this function might return the
4200 same number more than once and this will look ugly. */
4201 b = (*bsp)->breakpoint_at;
4202 *bsp = (*bsp)->next;
4203 if (b == NULL)
4204 return -1; /* breakpoint that's been deleted since */
4205
4206 *num = b->number; /* We have its number */
4207 return 1;
4208 }
4209
4210 /* See breakpoint.h. */
4211
4212 void
4213 bpstat_clear_actions (void)
4214 {
4215 struct thread_info *tp;
4216 bpstat bs;
4217
4218 if (ptid_equal (inferior_ptid, null_ptid))
4219 return;
4220
4221 tp = find_thread_ptid (inferior_ptid);
4222 if (tp == NULL)
4223 return;
4224
4225 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4226 {
4227 decref_counted_command_line (&bs->commands);
4228
4229 if (bs->old_val != NULL)
4230 {
4231 value_free (bs->old_val);
4232 bs->old_val = NULL;
4233 }
4234 }
4235 }
4236
4237 /* Called when a command is about to proceed the inferior. */
4238
4239 static void
4240 breakpoint_about_to_proceed (void)
4241 {
4242 if (!ptid_equal (inferior_ptid, null_ptid))
4243 {
4244 struct thread_info *tp = inferior_thread ();
4245
4246 /* Allow inferior function calls in breakpoint commands to not
4247 interrupt the command list. When the call finishes
4248 successfully, the inferior will be standing at the same
4249 breakpoint as if nothing happened. */
4250 if (tp->control.in_infcall)
4251 return;
4252 }
4253
4254 breakpoint_proceeded = 1;
4255 }
4256
4257 /* Stub for cleaning up our state if we error-out of a breakpoint
4258 command. */
4259 static void
4260 cleanup_executing_breakpoints (void *ignore)
4261 {
4262 executing_breakpoint_commands = 0;
4263 }
4264
4265 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4266 or its equivalent. */
4267
4268 static int
4269 command_line_is_silent (struct command_line *cmd)
4270 {
4271 return cmd && (strcmp ("silent", cmd->line) == 0
4272 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4273 }
4274
4275 /* Execute all the commands associated with all the breakpoints at
4276 this location. Any of these commands could cause the process to
4277 proceed beyond this point, etc. We look out for such changes by
4278 checking the global "breakpoint_proceeded" after each command.
4279
4280 Returns true if a breakpoint command resumed the inferior. In that
4281 case, it is the caller's responsibility to recall it again with the
4282 bpstat of the current thread. */
4283
4284 static int
4285 bpstat_do_actions_1 (bpstat *bsp)
4286 {
4287 bpstat bs;
4288 struct cleanup *old_chain;
4289 int again = 0;
4290
4291 /* Avoid endless recursion if a `source' command is contained
4292 in bs->commands. */
4293 if (executing_breakpoint_commands)
4294 return 0;
4295
4296 executing_breakpoint_commands = 1;
4297 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4298
4299 prevent_dont_repeat ();
4300
4301 /* This pointer will iterate over the list of bpstat's. */
4302 bs = *bsp;
4303
4304 breakpoint_proceeded = 0;
4305 for (; bs != NULL; bs = bs->next)
4306 {
4307 struct counted_command_line *ccmd;
4308 struct command_line *cmd;
4309 struct cleanup *this_cmd_tree_chain;
4310
4311 /* Take ownership of the BSP's command tree, if it has one.
4312
4313 The command tree could legitimately contain commands like
4314 'step' and 'next', which call clear_proceed_status, which
4315 frees stop_bpstat's command tree. To make sure this doesn't
4316 free the tree we're executing out from under us, we need to
4317 take ownership of the tree ourselves. Since a given bpstat's
4318 commands are only executed once, we don't need to copy it; we
4319 can clear the pointer in the bpstat, and make sure we free
4320 the tree when we're done. */
4321 ccmd = bs->commands;
4322 bs->commands = NULL;
4323 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4324 cmd = ccmd ? ccmd->commands : NULL;
4325 if (command_line_is_silent (cmd))
4326 {
4327 /* The action has been already done by bpstat_stop_status. */
4328 cmd = cmd->next;
4329 }
4330
4331 while (cmd != NULL)
4332 {
4333 execute_control_command (cmd);
4334
4335 if (breakpoint_proceeded)
4336 break;
4337 else
4338 cmd = cmd->next;
4339 }
4340
4341 /* We can free this command tree now. */
4342 do_cleanups (this_cmd_tree_chain);
4343
4344 if (breakpoint_proceeded)
4345 {
4346 if (target_can_async_p ())
4347 /* If we are in async mode, then the target might be still
4348 running, not stopped at any breakpoint, so nothing for
4349 us to do here -- just return to the event loop. */
4350 ;
4351 else
4352 /* In sync mode, when execute_control_command returns
4353 we're already standing on the next breakpoint.
4354 Breakpoint commands for that stop were not run, since
4355 execute_command does not run breakpoint commands --
4356 only command_line_handler does, but that one is not
4357 involved in execution of breakpoint commands. So, we
4358 can now execute breakpoint commands. It should be
4359 noted that making execute_command do bpstat actions is
4360 not an option -- in this case we'll have recursive
4361 invocation of bpstat for each breakpoint with a
4362 command, and can easily blow up GDB stack. Instead, we
4363 return true, which will trigger the caller to recall us
4364 with the new stop_bpstat. */
4365 again = 1;
4366 break;
4367 }
4368 }
4369 do_cleanups (old_chain);
4370 return again;
4371 }
4372
4373 void
4374 bpstat_do_actions (void)
4375 {
4376 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4377
4378 /* Do any commands attached to breakpoint we are stopped at. */
4379 while (!ptid_equal (inferior_ptid, null_ptid)
4380 && target_has_execution
4381 && !is_exited (inferior_ptid)
4382 && !is_executing (inferior_ptid))
4383 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4384 and only return when it is stopped at the next breakpoint, we
4385 keep doing breakpoint actions until it returns false to
4386 indicate the inferior was not resumed. */
4387 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4388 break;
4389
4390 discard_cleanups (cleanup_if_error);
4391 }
4392
4393 /* Print out the (old or new) value associated with a watchpoint. */
4394
4395 static void
4396 watchpoint_value_print (struct value *val, struct ui_file *stream)
4397 {
4398 if (val == NULL)
4399 fprintf_unfiltered (stream, _("<unreadable>"));
4400 else
4401 {
4402 struct value_print_options opts;
4403 get_user_print_options (&opts);
4404 value_print (val, stream, &opts);
4405 }
4406 }
4407
4408 /* Generic routine for printing messages indicating why we
4409 stopped. The behavior of this function depends on the value
4410 'print_it' in the bpstat structure. Under some circumstances we
4411 may decide not to print anything here and delegate the task to
4412 normal_stop(). */
4413
4414 static enum print_stop_action
4415 print_bp_stop_message (bpstat bs)
4416 {
4417 switch (bs->print_it)
4418 {
4419 case print_it_noop:
4420 /* Nothing should be printed for this bpstat entry. */
4421 return PRINT_UNKNOWN;
4422 break;
4423
4424 case print_it_done:
4425 /* We still want to print the frame, but we already printed the
4426 relevant messages. */
4427 return PRINT_SRC_AND_LOC;
4428 break;
4429
4430 case print_it_normal:
4431 {
4432 struct breakpoint *b = bs->breakpoint_at;
4433
4434 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4435 which has since been deleted. */
4436 if (b == NULL)
4437 return PRINT_UNKNOWN;
4438
4439 /* Normal case. Call the breakpoint's print_it method. */
4440 return b->ops->print_it (bs);
4441 }
4442 break;
4443
4444 default:
4445 internal_error (__FILE__, __LINE__,
4446 _("print_bp_stop_message: unrecognized enum value"));
4447 break;
4448 }
4449 }
4450
4451 /* A helper function that prints a shared library stopped event. */
4452
4453 static void
4454 print_solib_event (int is_catchpoint)
4455 {
4456 int any_deleted
4457 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4458 int any_added
4459 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4460
4461 if (!is_catchpoint)
4462 {
4463 if (any_added || any_deleted)
4464 ui_out_text (current_uiout,
4465 _("Stopped due to shared library event:\n"));
4466 else
4467 ui_out_text (current_uiout,
4468 _("Stopped due to shared library event (no "
4469 "libraries added or removed)\n"));
4470 }
4471
4472 if (ui_out_is_mi_like_p (current_uiout))
4473 ui_out_field_string (current_uiout, "reason",
4474 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4475
4476 if (any_deleted)
4477 {
4478 struct cleanup *cleanup;
4479 char *name;
4480 int ix;
4481
4482 ui_out_text (current_uiout, _(" Inferior unloaded "));
4483 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4484 "removed");
4485 for (ix = 0;
4486 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4487 ix, name);
4488 ++ix)
4489 {
4490 if (ix > 0)
4491 ui_out_text (current_uiout, " ");
4492 ui_out_field_string (current_uiout, "library", name);
4493 ui_out_text (current_uiout, "\n");
4494 }
4495
4496 do_cleanups (cleanup);
4497 }
4498
4499 if (any_added)
4500 {
4501 struct so_list *iter;
4502 int ix;
4503 struct cleanup *cleanup;
4504
4505 ui_out_text (current_uiout, _(" Inferior loaded "));
4506 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4507 "added");
4508 for (ix = 0;
4509 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4510 ix, iter);
4511 ++ix)
4512 {
4513 if (ix > 0)
4514 ui_out_text (current_uiout, " ");
4515 ui_out_field_string (current_uiout, "library", iter->so_name);
4516 ui_out_text (current_uiout, "\n");
4517 }
4518
4519 do_cleanups (cleanup);
4520 }
4521 }
4522
4523 /* Print a message indicating what happened. This is called from
4524 normal_stop(). The input to this routine is the head of the bpstat
4525 list - a list of the eventpoints that caused this stop. KIND is
4526 the target_waitkind for the stopping event. This
4527 routine calls the generic print routine for printing a message
4528 about reasons for stopping. This will print (for example) the
4529 "Breakpoint n," part of the output. The return value of this
4530 routine is one of:
4531
4532 PRINT_UNKNOWN: Means we printed nothing.
4533 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4534 code to print the location. An example is
4535 "Breakpoint 1, " which should be followed by
4536 the location.
4537 PRINT_SRC_ONLY: Means we printed something, but there is no need
4538 to also print the location part of the message.
4539 An example is the catch/throw messages, which
4540 don't require a location appended to the end.
4541 PRINT_NOTHING: We have done some printing and we don't need any
4542 further info to be printed. */
4543
4544 enum print_stop_action
4545 bpstat_print (bpstat bs, int kind)
4546 {
4547 int val;
4548
4549 /* Maybe another breakpoint in the chain caused us to stop.
4550 (Currently all watchpoints go on the bpstat whether hit or not.
4551 That probably could (should) be changed, provided care is taken
4552 with respect to bpstat_explains_signal). */
4553 for (; bs; bs = bs->next)
4554 {
4555 val = print_bp_stop_message (bs);
4556 if (val == PRINT_SRC_ONLY
4557 || val == PRINT_SRC_AND_LOC
4558 || val == PRINT_NOTHING)
4559 return val;
4560 }
4561
4562 /* If we had hit a shared library event breakpoint,
4563 print_bp_stop_message would print out this message. If we hit an
4564 OS-level shared library event, do the same thing. */
4565 if (kind == TARGET_WAITKIND_LOADED)
4566 {
4567 print_solib_event (0);
4568 return PRINT_NOTHING;
4569 }
4570
4571 /* We reached the end of the chain, or we got a null BS to start
4572 with and nothing was printed. */
4573 return PRINT_UNKNOWN;
4574 }
4575
4576 /* Evaluate the expression EXP and return 1 if value is zero. This is
4577 used inside a catch_errors to evaluate the breakpoint condition.
4578 The argument is a "struct expression *" that has been cast to a
4579 "char *" to make it pass through catch_errors. */
4580
4581 static int
4582 breakpoint_cond_eval (void *exp)
4583 {
4584 struct value *mark = value_mark ();
4585 int i = !value_true (evaluate_expression ((struct expression *) exp));
4586
4587 value_free_to_mark (mark);
4588 return i;
4589 }
4590
4591 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4592
4593 static bpstat
4594 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4595 {
4596 bpstat bs;
4597
4598 bs = (bpstat) xmalloc (sizeof (*bs));
4599 bs->next = NULL;
4600 **bs_link_pointer = bs;
4601 *bs_link_pointer = &bs->next;
4602 bs->breakpoint_at = bl->owner;
4603 bs->bp_location_at = bl;
4604 incref_bp_location (bl);
4605 /* If the condition is false, etc., don't do the commands. */
4606 bs->commands = NULL;
4607 bs->old_val = NULL;
4608 bs->print_it = print_it_normal;
4609 return bs;
4610 }
4611 \f
4612 /* The target has stopped with waitstatus WS. Check if any hardware
4613 watchpoints have triggered, according to the target. */
4614
4615 int
4616 watchpoints_triggered (struct target_waitstatus *ws)
4617 {
4618 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4619 CORE_ADDR addr;
4620 struct breakpoint *b;
4621
4622 if (!stopped_by_watchpoint)
4623 {
4624 /* We were not stopped by a watchpoint. Mark all watchpoints
4625 as not triggered. */
4626 ALL_BREAKPOINTS (b)
4627 if (is_hardware_watchpoint (b))
4628 {
4629 struct watchpoint *w = (struct watchpoint *) b;
4630
4631 w->watchpoint_triggered = watch_triggered_no;
4632 }
4633
4634 return 0;
4635 }
4636
4637 if (!target_stopped_data_address (&current_target, &addr))
4638 {
4639 /* We were stopped by a watchpoint, but we don't know where.
4640 Mark all watchpoints as unknown. */
4641 ALL_BREAKPOINTS (b)
4642 if (is_hardware_watchpoint (b))
4643 {
4644 struct watchpoint *w = (struct watchpoint *) b;
4645
4646 w->watchpoint_triggered = watch_triggered_unknown;
4647 }
4648
4649 return stopped_by_watchpoint;
4650 }
4651
4652 /* The target could report the data address. Mark watchpoints
4653 affected by this data address as triggered, and all others as not
4654 triggered. */
4655
4656 ALL_BREAKPOINTS (b)
4657 if (is_hardware_watchpoint (b))
4658 {
4659 struct watchpoint *w = (struct watchpoint *) b;
4660 struct bp_location *loc;
4661
4662 w->watchpoint_triggered = watch_triggered_no;
4663 for (loc = b->loc; loc; loc = loc->next)
4664 {
4665 if (is_masked_watchpoint (b))
4666 {
4667 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4668 CORE_ADDR start = loc->address & w->hw_wp_mask;
4669
4670 if (newaddr == start)
4671 {
4672 w->watchpoint_triggered = watch_triggered_yes;
4673 break;
4674 }
4675 }
4676 /* Exact match not required. Within range is sufficient. */
4677 else if (target_watchpoint_addr_within_range (&current_target,
4678 addr, loc->address,
4679 loc->length))
4680 {
4681 w->watchpoint_triggered = watch_triggered_yes;
4682 break;
4683 }
4684 }
4685 }
4686
4687 return 1;
4688 }
4689
4690 /* Possible return values for watchpoint_check (this can't be an enum
4691 because of check_errors). */
4692 /* The watchpoint has been deleted. */
4693 #define WP_DELETED 1
4694 /* The value has changed. */
4695 #define WP_VALUE_CHANGED 2
4696 /* The value has not changed. */
4697 #define WP_VALUE_NOT_CHANGED 3
4698 /* Ignore this watchpoint, no matter if the value changed or not. */
4699 #define WP_IGNORE 4
4700
4701 #define BP_TEMPFLAG 1
4702 #define BP_HARDWAREFLAG 2
4703
4704 /* Evaluate watchpoint condition expression and check if its value
4705 changed.
4706
4707 P should be a pointer to struct bpstat, but is defined as a void *
4708 in order for this function to be usable with catch_errors. */
4709
4710 static int
4711 watchpoint_check (void *p)
4712 {
4713 bpstat bs = (bpstat) p;
4714 struct watchpoint *b;
4715 struct frame_info *fr;
4716 int within_current_scope;
4717
4718 /* BS is built from an existing struct breakpoint. */
4719 gdb_assert (bs->breakpoint_at != NULL);
4720 b = (struct watchpoint *) bs->breakpoint_at;
4721
4722 /* If this is a local watchpoint, we only want to check if the
4723 watchpoint frame is in scope if the current thread is the thread
4724 that was used to create the watchpoint. */
4725 if (!watchpoint_in_thread_scope (b))
4726 return WP_IGNORE;
4727
4728 if (b->exp_valid_block == NULL)
4729 within_current_scope = 1;
4730 else
4731 {
4732 struct frame_info *frame = get_current_frame ();
4733 struct gdbarch *frame_arch = get_frame_arch (frame);
4734 CORE_ADDR frame_pc = get_frame_pc (frame);
4735
4736 /* in_function_epilogue_p() returns a non-zero value if we're
4737 still in the function but the stack frame has already been
4738 invalidated. Since we can't rely on the values of local
4739 variables after the stack has been destroyed, we are treating
4740 the watchpoint in that state as `not changed' without further
4741 checking. Don't mark watchpoints as changed if the current
4742 frame is in an epilogue - even if they are in some other
4743 frame, our view of the stack is likely to be wrong and
4744 frame_find_by_id could error out. */
4745 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
4746 return WP_IGNORE;
4747
4748 fr = frame_find_by_id (b->watchpoint_frame);
4749 within_current_scope = (fr != NULL);
4750
4751 /* If we've gotten confused in the unwinder, we might have
4752 returned a frame that can't describe this variable. */
4753 if (within_current_scope)
4754 {
4755 struct symbol *function;
4756
4757 function = get_frame_function (fr);
4758 if (function == NULL
4759 || !contained_in (b->exp_valid_block,
4760 SYMBOL_BLOCK_VALUE (function)))
4761 within_current_scope = 0;
4762 }
4763
4764 if (within_current_scope)
4765 /* If we end up stopping, the current frame will get selected
4766 in normal_stop. So this call to select_frame won't affect
4767 the user. */
4768 select_frame (fr);
4769 }
4770
4771 if (within_current_scope)
4772 {
4773 /* We use value_{,free_to_}mark because it could be a *long*
4774 time before we return to the command level and call
4775 free_all_values. We can't call free_all_values because we
4776 might be in the middle of evaluating a function call. */
4777
4778 int pc = 0;
4779 struct value *mark;
4780 struct value *new_val;
4781
4782 if (is_masked_watchpoint (&b->base))
4783 /* Since we don't know the exact trigger address (from
4784 stopped_data_address), just tell the user we've triggered
4785 a mask watchpoint. */
4786 return WP_VALUE_CHANGED;
4787
4788 mark = value_mark ();
4789 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL);
4790
4791 /* We use value_equal_contents instead of value_equal because
4792 the latter coerces an array to a pointer, thus comparing just
4793 the address of the array instead of its contents. This is
4794 not what we want. */
4795 if ((b->val != NULL) != (new_val != NULL)
4796 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4797 {
4798 if (new_val != NULL)
4799 {
4800 release_value (new_val);
4801 value_free_to_mark (mark);
4802 }
4803 bs->old_val = b->val;
4804 b->val = new_val;
4805 b->val_valid = 1;
4806 return WP_VALUE_CHANGED;
4807 }
4808 else
4809 {
4810 /* Nothing changed. */
4811 value_free_to_mark (mark);
4812 return WP_VALUE_NOT_CHANGED;
4813 }
4814 }
4815 else
4816 {
4817 struct ui_out *uiout = current_uiout;
4818
4819 /* This seems like the only logical thing to do because
4820 if we temporarily ignored the watchpoint, then when
4821 we reenter the block in which it is valid it contains
4822 garbage (in the case of a function, it may have two
4823 garbage values, one before and one after the prologue).
4824 So we can't even detect the first assignment to it and
4825 watch after that (since the garbage may or may not equal
4826 the first value assigned). */
4827 /* We print all the stop information in
4828 breakpoint_ops->print_it, but in this case, by the time we
4829 call breakpoint_ops->print_it this bp will be deleted
4830 already. So we have no choice but print the information
4831 here. */
4832 if (ui_out_is_mi_like_p (uiout))
4833 ui_out_field_string
4834 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4835 ui_out_text (uiout, "\nWatchpoint ");
4836 ui_out_field_int (uiout, "wpnum", b->base.number);
4837 ui_out_text (uiout,
4838 " deleted because the program has left the block in\n\
4839 which its expression is valid.\n");
4840
4841 /* Make sure the watchpoint's commands aren't executed. */
4842 decref_counted_command_line (&b->base.commands);
4843 watchpoint_del_at_next_stop (b);
4844
4845 return WP_DELETED;
4846 }
4847 }
4848
4849 /* Return true if it looks like target has stopped due to hitting
4850 breakpoint location BL. This function does not check if we should
4851 stop, only if BL explains the stop. */
4852
4853 static int
4854 bpstat_check_location (const struct bp_location *bl,
4855 struct address_space *aspace, CORE_ADDR bp_addr,
4856 const struct target_waitstatus *ws)
4857 {
4858 struct breakpoint *b = bl->owner;
4859
4860 /* BL is from an existing breakpoint. */
4861 gdb_assert (b != NULL);
4862
4863 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4864 }
4865
4866 /* Determine if the watched values have actually changed, and we
4867 should stop. If not, set BS->stop to 0. */
4868
4869 static void
4870 bpstat_check_watchpoint (bpstat bs)
4871 {
4872 const struct bp_location *bl;
4873 struct watchpoint *b;
4874
4875 /* BS is built for existing struct breakpoint. */
4876 bl = bs->bp_location_at;
4877 gdb_assert (bl != NULL);
4878 b = (struct watchpoint *) bs->breakpoint_at;
4879 gdb_assert (b != NULL);
4880
4881 {
4882 int must_check_value = 0;
4883
4884 if (b->base.type == bp_watchpoint)
4885 /* For a software watchpoint, we must always check the
4886 watched value. */
4887 must_check_value = 1;
4888 else if (b->watchpoint_triggered == watch_triggered_yes)
4889 /* We have a hardware watchpoint (read, write, or access)
4890 and the target earlier reported an address watched by
4891 this watchpoint. */
4892 must_check_value = 1;
4893 else if (b->watchpoint_triggered == watch_triggered_unknown
4894 && b->base.type == bp_hardware_watchpoint)
4895 /* We were stopped by a hardware watchpoint, but the target could
4896 not report the data address. We must check the watchpoint's
4897 value. Access and read watchpoints are out of luck; without
4898 a data address, we can't figure it out. */
4899 must_check_value = 1;
4900
4901 if (must_check_value)
4902 {
4903 char *message
4904 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
4905 b->base.number);
4906 struct cleanup *cleanups = make_cleanup (xfree, message);
4907 int e = catch_errors (watchpoint_check, bs, message,
4908 RETURN_MASK_ALL);
4909 do_cleanups (cleanups);
4910 switch (e)
4911 {
4912 case WP_DELETED:
4913 /* We've already printed what needs to be printed. */
4914 bs->print_it = print_it_done;
4915 /* Stop. */
4916 break;
4917 case WP_IGNORE:
4918 bs->print_it = print_it_noop;
4919 bs->stop = 0;
4920 break;
4921 case WP_VALUE_CHANGED:
4922 if (b->base.type == bp_read_watchpoint)
4923 {
4924 /* There are two cases to consider here:
4925
4926 1. We're watching the triggered memory for reads.
4927 In that case, trust the target, and always report
4928 the watchpoint hit to the user. Even though
4929 reads don't cause value changes, the value may
4930 have changed since the last time it was read, and
4931 since we're not trapping writes, we will not see
4932 those, and as such we should ignore our notion of
4933 old value.
4934
4935 2. We're watching the triggered memory for both
4936 reads and writes. There are two ways this may
4937 happen:
4938
4939 2.1. This is a target that can't break on data
4940 reads only, but can break on accesses (reads or
4941 writes), such as e.g., x86. We detect this case
4942 at the time we try to insert read watchpoints.
4943
4944 2.2. Otherwise, the target supports read
4945 watchpoints, but, the user set an access or write
4946 watchpoint watching the same memory as this read
4947 watchpoint.
4948
4949 If we're watching memory writes as well as reads,
4950 ignore watchpoint hits when we find that the
4951 value hasn't changed, as reads don't cause
4952 changes. This still gives false positives when
4953 the program writes the same value to memory as
4954 what there was already in memory (we will confuse
4955 it for a read), but it's much better than
4956 nothing. */
4957
4958 int other_write_watchpoint = 0;
4959
4960 if (bl->watchpoint_type == hw_read)
4961 {
4962 struct breakpoint *other_b;
4963
4964 ALL_BREAKPOINTS (other_b)
4965 if (other_b->type == bp_hardware_watchpoint
4966 || other_b->type == bp_access_watchpoint)
4967 {
4968 struct watchpoint *other_w =
4969 (struct watchpoint *) other_b;
4970
4971 if (other_w->watchpoint_triggered
4972 == watch_triggered_yes)
4973 {
4974 other_write_watchpoint = 1;
4975 break;
4976 }
4977 }
4978 }
4979
4980 if (other_write_watchpoint
4981 || bl->watchpoint_type == hw_access)
4982 {
4983 /* We're watching the same memory for writes,
4984 and the value changed since the last time we
4985 updated it, so this trap must be for a write.
4986 Ignore it. */
4987 bs->print_it = print_it_noop;
4988 bs->stop = 0;
4989 }
4990 }
4991 break;
4992 case WP_VALUE_NOT_CHANGED:
4993 if (b->base.type == bp_hardware_watchpoint
4994 || b->base.type == bp_watchpoint)
4995 {
4996 /* Don't stop: write watchpoints shouldn't fire if
4997 the value hasn't changed. */
4998 bs->print_it = print_it_noop;
4999 bs->stop = 0;
5000 }
5001 /* Stop. */
5002 break;
5003 default:
5004 /* Can't happen. */
5005 case 0:
5006 /* Error from catch_errors. */
5007 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5008 watchpoint_del_at_next_stop (b);
5009 /* We've already printed what needs to be printed. */
5010 bs->print_it = print_it_done;
5011 break;
5012 }
5013 }
5014 else /* must_check_value == 0 */
5015 {
5016 /* This is a case where some watchpoint(s) triggered, but
5017 not at the address of this watchpoint, or else no
5018 watchpoint triggered after all. So don't print
5019 anything for this watchpoint. */
5020 bs->print_it = print_it_noop;
5021 bs->stop = 0;
5022 }
5023 }
5024 }
5025
5026
5027 /* Check conditions (condition proper, frame, thread and ignore count)
5028 of breakpoint referred to by BS. If we should not stop for this
5029 breakpoint, set BS->stop to 0. */
5030
5031 static void
5032 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5033 {
5034 int thread_id = pid_to_thread_id (ptid);
5035 const struct bp_location *bl;
5036 struct breakpoint *b;
5037
5038 /* BS is built for existing struct breakpoint. */
5039 bl = bs->bp_location_at;
5040 gdb_assert (bl != NULL);
5041 b = bs->breakpoint_at;
5042 gdb_assert (b != NULL);
5043
5044 /* Even if the target evaluated the condition on its end and notified GDB, we
5045 need to do so again since GDB does not know if we stopped due to a
5046 breakpoint or a single step breakpoint. */
5047
5048 if (frame_id_p (b->frame_id)
5049 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5050 bs->stop = 0;
5051 else if (bs->stop)
5052 {
5053 int value_is_zero = 0;
5054 struct expression *cond;
5055
5056 /* Evaluate Python breakpoints that have a "stop"
5057 method implemented. */
5058 if (b->py_bp_object)
5059 bs->stop = gdbpy_should_stop (b->py_bp_object);
5060
5061 if (is_watchpoint (b))
5062 {
5063 struct watchpoint *w = (struct watchpoint *) b;
5064
5065 cond = w->cond_exp;
5066 }
5067 else
5068 cond = bl->cond;
5069
5070 if (cond && b->disposition != disp_del_at_next_stop)
5071 {
5072 int within_current_scope = 1;
5073 struct watchpoint * w;
5074
5075 /* We use value_mark and value_free_to_mark because it could
5076 be a long time before we return to the command level and
5077 call free_all_values. We can't call free_all_values
5078 because we might be in the middle of evaluating a
5079 function call. */
5080 struct value *mark = value_mark ();
5081
5082 if (is_watchpoint (b))
5083 w = (struct watchpoint *) b;
5084 else
5085 w = NULL;
5086
5087 /* Need to select the frame, with all that implies so that
5088 the conditions will have the right context. Because we
5089 use the frame, we will not see an inlined function's
5090 variables when we arrive at a breakpoint at the start
5091 of the inlined function; the current frame will be the
5092 call site. */
5093 if (w == NULL || w->cond_exp_valid_block == NULL)
5094 select_frame (get_current_frame ());
5095 else
5096 {
5097 struct frame_info *frame;
5098
5099 /* For local watchpoint expressions, which particular
5100 instance of a local is being watched matters, so we
5101 keep track of the frame to evaluate the expression
5102 in. To evaluate the condition however, it doesn't
5103 really matter which instantiation of the function
5104 where the condition makes sense triggers the
5105 watchpoint. This allows an expression like "watch
5106 global if q > 10" set in `func', catch writes to
5107 global on all threads that call `func', or catch
5108 writes on all recursive calls of `func' by a single
5109 thread. We simply always evaluate the condition in
5110 the innermost frame that's executing where it makes
5111 sense to evaluate the condition. It seems
5112 intuitive. */
5113 frame = block_innermost_frame (w->cond_exp_valid_block);
5114 if (frame != NULL)
5115 select_frame (frame);
5116 else
5117 within_current_scope = 0;
5118 }
5119 if (within_current_scope)
5120 value_is_zero
5121 = catch_errors (breakpoint_cond_eval, cond,
5122 "Error in testing breakpoint condition:\n",
5123 RETURN_MASK_ALL);
5124 else
5125 {
5126 warning (_("Watchpoint condition cannot be tested "
5127 "in the current scope"));
5128 /* If we failed to set the right context for this
5129 watchpoint, unconditionally report it. */
5130 value_is_zero = 0;
5131 }
5132 /* FIXME-someday, should give breakpoint #. */
5133 value_free_to_mark (mark);
5134 }
5135
5136 if (cond && value_is_zero)
5137 {
5138 bs->stop = 0;
5139 }
5140 else if (b->thread != -1 && b->thread != thread_id)
5141 {
5142 bs->stop = 0;
5143 }
5144 else if (b->ignore_count > 0)
5145 {
5146 b->ignore_count--;
5147 bs->stop = 0;
5148 /* Increase the hit count even though we don't stop. */
5149 ++(b->hit_count);
5150 observer_notify_breakpoint_modified (b);
5151 }
5152 }
5153 }
5154
5155
5156 /* Get a bpstat associated with having just stopped at address
5157 BP_ADDR in thread PTID.
5158
5159 Determine whether we stopped at a breakpoint, etc, or whether we
5160 don't understand this stop. Result is a chain of bpstat's such
5161 that:
5162
5163 if we don't understand the stop, the result is a null pointer.
5164
5165 if we understand why we stopped, the result is not null.
5166
5167 Each element of the chain refers to a particular breakpoint or
5168 watchpoint at which we have stopped. (We may have stopped for
5169 several reasons concurrently.)
5170
5171 Each element of the chain has valid next, breakpoint_at,
5172 commands, FIXME??? fields. */
5173
5174 bpstat
5175 bpstat_stop_status (struct address_space *aspace,
5176 CORE_ADDR bp_addr, ptid_t ptid,
5177 const struct target_waitstatus *ws)
5178 {
5179 struct breakpoint *b = NULL;
5180 struct bp_location *bl;
5181 struct bp_location *loc;
5182 /* First item of allocated bpstat's. */
5183 bpstat bs_head = NULL, *bs_link = &bs_head;
5184 /* Pointer to the last thing in the chain currently. */
5185 bpstat bs;
5186 int ix;
5187 int need_remove_insert;
5188 int removed_any;
5189
5190 /* First, build the bpstat chain with locations that explain a
5191 target stop, while being careful to not set the target running,
5192 as that may invalidate locations (in particular watchpoint
5193 locations are recreated). Resuming will happen here with
5194 breakpoint conditions or watchpoint expressions that include
5195 inferior function calls. */
5196
5197 ALL_BREAKPOINTS (b)
5198 {
5199 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5200 continue;
5201
5202 for (bl = b->loc; bl != NULL; bl = bl->next)
5203 {
5204 /* For hardware watchpoints, we look only at the first
5205 location. The watchpoint_check function will work on the
5206 entire expression, not the individual locations. For
5207 read watchpoints, the watchpoints_triggered function has
5208 checked all locations already. */
5209 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5210 break;
5211
5212 if (!bl->enabled || bl->shlib_disabled)
5213 continue;
5214
5215 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5216 continue;
5217
5218 /* Come here if it's a watchpoint, or if the break address
5219 matches. */
5220
5221 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5222 explain stop. */
5223
5224 /* Assume we stop. Should we find a watchpoint that is not
5225 actually triggered, or if the condition of the breakpoint
5226 evaluates as false, we'll reset 'stop' to 0. */
5227 bs->stop = 1;
5228 bs->print = 1;
5229
5230 /* If this is a scope breakpoint, mark the associated
5231 watchpoint as triggered so that we will handle the
5232 out-of-scope event. We'll get to the watchpoint next
5233 iteration. */
5234 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5235 {
5236 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5237
5238 w->watchpoint_triggered = watch_triggered_yes;
5239 }
5240 }
5241 }
5242
5243 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5244 {
5245 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5246 {
5247 bs = bpstat_alloc (loc, &bs_link);
5248 /* For hits of moribund locations, we should just proceed. */
5249 bs->stop = 0;
5250 bs->print = 0;
5251 bs->print_it = print_it_noop;
5252 }
5253 }
5254
5255 /* A bit of special processing for shlib breakpoints. We need to
5256 process solib loading here, so that the lists of loaded and
5257 unloaded libraries are correct before we handle "catch load" and
5258 "catch unload". */
5259 for (bs = bs_head; bs != NULL; bs = bs->next)
5260 {
5261 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5262 {
5263 handle_solib_event ();
5264 break;
5265 }
5266 }
5267
5268 /* Now go through the locations that caused the target to stop, and
5269 check whether we're interested in reporting this stop to higher
5270 layers, or whether we should resume the target transparently. */
5271
5272 removed_any = 0;
5273
5274 for (bs = bs_head; bs != NULL; bs = bs->next)
5275 {
5276 if (!bs->stop)
5277 continue;
5278
5279 b = bs->breakpoint_at;
5280 b->ops->check_status (bs);
5281 if (bs->stop)
5282 {
5283 bpstat_check_breakpoint_conditions (bs, ptid);
5284
5285 if (bs->stop)
5286 {
5287 ++(b->hit_count);
5288 observer_notify_breakpoint_modified (b);
5289
5290 /* We will stop here. */
5291 if (b->disposition == disp_disable)
5292 {
5293 --(b->enable_count);
5294 if (b->enable_count <= 0
5295 && b->enable_state != bp_permanent)
5296 b->enable_state = bp_disabled;
5297 removed_any = 1;
5298 }
5299 if (b->silent)
5300 bs->print = 0;
5301 bs->commands = b->commands;
5302 incref_counted_command_line (bs->commands);
5303 if (command_line_is_silent (bs->commands
5304 ? bs->commands->commands : NULL))
5305 bs->print = 0;
5306 }
5307
5308 }
5309
5310 /* Print nothing for this entry if we don't stop or don't
5311 print. */
5312 if (!bs->stop || !bs->print)
5313 bs->print_it = print_it_noop;
5314 }
5315
5316 /* If we aren't stopping, the value of some hardware watchpoint may
5317 not have changed, but the intermediate memory locations we are
5318 watching may have. Don't bother if we're stopping; this will get
5319 done later. */
5320 need_remove_insert = 0;
5321 if (! bpstat_causes_stop (bs_head))
5322 for (bs = bs_head; bs != NULL; bs = bs->next)
5323 if (!bs->stop
5324 && bs->breakpoint_at
5325 && is_hardware_watchpoint (bs->breakpoint_at))
5326 {
5327 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5328
5329 update_watchpoint (w, 0 /* don't reparse. */);
5330 need_remove_insert = 1;
5331 }
5332
5333 if (need_remove_insert)
5334 update_global_location_list (1);
5335 else if (removed_any)
5336 update_global_location_list (0);
5337
5338 return bs_head;
5339 }
5340
5341 static void
5342 handle_jit_event (void)
5343 {
5344 struct frame_info *frame;
5345 struct gdbarch *gdbarch;
5346
5347 /* Switch terminal for any messages produced by
5348 breakpoint_re_set. */
5349 target_terminal_ours_for_output ();
5350
5351 frame = get_current_frame ();
5352 gdbarch = get_frame_arch (frame);
5353
5354 jit_event_handler (gdbarch);
5355
5356 target_terminal_inferior ();
5357 }
5358
5359 /* Handle an solib event by calling solib_add. */
5360
5361 void
5362 handle_solib_event (void)
5363 {
5364 clear_program_space_solib_cache (current_inferior ()->pspace);
5365
5366 /* Check for any newly added shared libraries if we're supposed to
5367 be adding them automatically. Switch terminal for any messages
5368 produced by breakpoint_re_set. */
5369 target_terminal_ours_for_output ();
5370 solib_add (NULL, 0, &current_target, auto_solib_add);
5371 target_terminal_inferior ();
5372 }
5373
5374 /* Prepare WHAT final decision for infrun. */
5375
5376 /* Decide what infrun needs to do with this bpstat. */
5377
5378 struct bpstat_what
5379 bpstat_what (bpstat bs_head)
5380 {
5381 struct bpstat_what retval;
5382 int jit_event = 0;
5383 bpstat bs;
5384
5385 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5386 retval.call_dummy = STOP_NONE;
5387 retval.is_longjmp = 0;
5388
5389 for (bs = bs_head; bs != NULL; bs = bs->next)
5390 {
5391 /* Extract this BS's action. After processing each BS, we check
5392 if its action overrides all we've seem so far. */
5393 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5394 enum bptype bptype;
5395
5396 if (bs->breakpoint_at == NULL)
5397 {
5398 /* I suspect this can happen if it was a momentary
5399 breakpoint which has since been deleted. */
5400 bptype = bp_none;
5401 }
5402 else
5403 bptype = bs->breakpoint_at->type;
5404
5405 switch (bptype)
5406 {
5407 case bp_none:
5408 break;
5409 case bp_breakpoint:
5410 case bp_hardware_breakpoint:
5411 case bp_until:
5412 case bp_finish:
5413 case bp_shlib_event:
5414 if (bs->stop)
5415 {
5416 if (bs->print)
5417 this_action = BPSTAT_WHAT_STOP_NOISY;
5418 else
5419 this_action = BPSTAT_WHAT_STOP_SILENT;
5420 }
5421 else
5422 this_action = BPSTAT_WHAT_SINGLE;
5423 break;
5424 case bp_watchpoint:
5425 case bp_hardware_watchpoint:
5426 case bp_read_watchpoint:
5427 case bp_access_watchpoint:
5428 if (bs->stop)
5429 {
5430 if (bs->print)
5431 this_action = BPSTAT_WHAT_STOP_NOISY;
5432 else
5433 this_action = BPSTAT_WHAT_STOP_SILENT;
5434 }
5435 else
5436 {
5437 /* There was a watchpoint, but we're not stopping.
5438 This requires no further action. */
5439 }
5440 break;
5441 case bp_longjmp:
5442 case bp_longjmp_call_dummy:
5443 case bp_exception:
5444 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5445 retval.is_longjmp = bptype != bp_exception;
5446 break;
5447 case bp_longjmp_resume:
5448 case bp_exception_resume:
5449 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5450 retval.is_longjmp = bptype == bp_longjmp_resume;
5451 break;
5452 case bp_step_resume:
5453 if (bs->stop)
5454 this_action = BPSTAT_WHAT_STEP_RESUME;
5455 else
5456 {
5457 /* It is for the wrong frame. */
5458 this_action = BPSTAT_WHAT_SINGLE;
5459 }
5460 break;
5461 case bp_hp_step_resume:
5462 if (bs->stop)
5463 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5464 else
5465 {
5466 /* It is for the wrong frame. */
5467 this_action = BPSTAT_WHAT_SINGLE;
5468 }
5469 break;
5470 case bp_watchpoint_scope:
5471 case bp_thread_event:
5472 case bp_overlay_event:
5473 case bp_longjmp_master:
5474 case bp_std_terminate_master:
5475 case bp_exception_master:
5476 this_action = BPSTAT_WHAT_SINGLE;
5477 break;
5478 case bp_catchpoint:
5479 if (bs->stop)
5480 {
5481 if (bs->print)
5482 this_action = BPSTAT_WHAT_STOP_NOISY;
5483 else
5484 this_action = BPSTAT_WHAT_STOP_SILENT;
5485 }
5486 else
5487 {
5488 /* There was a catchpoint, but we're not stopping.
5489 This requires no further action. */
5490 }
5491 break;
5492 case bp_jit_event:
5493 jit_event = 1;
5494 this_action = BPSTAT_WHAT_SINGLE;
5495 break;
5496 case bp_call_dummy:
5497 /* Make sure the action is stop (silent or noisy),
5498 so infrun.c pops the dummy frame. */
5499 retval.call_dummy = STOP_STACK_DUMMY;
5500 this_action = BPSTAT_WHAT_STOP_SILENT;
5501 break;
5502 case bp_std_terminate:
5503 /* Make sure the action is stop (silent or noisy),
5504 so infrun.c pops the dummy frame. */
5505 retval.call_dummy = STOP_STD_TERMINATE;
5506 this_action = BPSTAT_WHAT_STOP_SILENT;
5507 break;
5508 case bp_tracepoint:
5509 case bp_fast_tracepoint:
5510 case bp_static_tracepoint:
5511 /* Tracepoint hits should not be reported back to GDB, and
5512 if one got through somehow, it should have been filtered
5513 out already. */
5514 internal_error (__FILE__, __LINE__,
5515 _("bpstat_what: tracepoint encountered"));
5516 break;
5517 case bp_gnu_ifunc_resolver:
5518 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5519 this_action = BPSTAT_WHAT_SINGLE;
5520 break;
5521 case bp_gnu_ifunc_resolver_return:
5522 /* The breakpoint will be removed, execution will restart from the
5523 PC of the former breakpoint. */
5524 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5525 break;
5526
5527 case bp_dprintf:
5528 if (bs->stop)
5529 this_action = BPSTAT_WHAT_STOP_SILENT;
5530 else
5531 this_action = BPSTAT_WHAT_SINGLE;
5532 break;
5533
5534 default:
5535 internal_error (__FILE__, __LINE__,
5536 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5537 }
5538
5539 retval.main_action = max (retval.main_action, this_action);
5540 }
5541
5542 /* These operations may affect the bs->breakpoint_at state so they are
5543 delayed after MAIN_ACTION is decided above. */
5544
5545 if (jit_event)
5546 {
5547 if (debug_infrun)
5548 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5549
5550 handle_jit_event ();
5551 }
5552
5553 for (bs = bs_head; bs != NULL; bs = bs->next)
5554 {
5555 struct breakpoint *b = bs->breakpoint_at;
5556
5557 if (b == NULL)
5558 continue;
5559 switch (b->type)
5560 {
5561 case bp_gnu_ifunc_resolver:
5562 gnu_ifunc_resolver_stop (b);
5563 break;
5564 case bp_gnu_ifunc_resolver_return:
5565 gnu_ifunc_resolver_return_stop (b);
5566 break;
5567 }
5568 }
5569
5570 return retval;
5571 }
5572
5573 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5574 without hardware support). This isn't related to a specific bpstat,
5575 just to things like whether watchpoints are set. */
5576
5577 int
5578 bpstat_should_step (void)
5579 {
5580 struct breakpoint *b;
5581
5582 ALL_BREAKPOINTS (b)
5583 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5584 return 1;
5585 return 0;
5586 }
5587
5588 int
5589 bpstat_causes_stop (bpstat bs)
5590 {
5591 for (; bs != NULL; bs = bs->next)
5592 if (bs->stop)
5593 return 1;
5594
5595 return 0;
5596 }
5597
5598 \f
5599
5600 /* Compute a string of spaces suitable to indent the next line
5601 so it starts at the position corresponding to the table column
5602 named COL_NAME in the currently active table of UIOUT. */
5603
5604 static char *
5605 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5606 {
5607 static char wrap_indent[80];
5608 int i, total_width, width, align;
5609 char *text;
5610
5611 total_width = 0;
5612 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5613 {
5614 if (strcmp (text, col_name) == 0)
5615 {
5616 gdb_assert (total_width < sizeof wrap_indent);
5617 memset (wrap_indent, ' ', total_width);
5618 wrap_indent[total_width] = 0;
5619
5620 return wrap_indent;
5621 }
5622
5623 total_width += width + 1;
5624 }
5625
5626 return NULL;
5627 }
5628
5629 /* Determine if the locations of this breakpoint will have their conditions
5630 evaluated by the target, host or a mix of both. Returns the following:
5631
5632 "host": Host evals condition.
5633 "host or target": Host or Target evals condition.
5634 "target": Target evals condition.
5635 */
5636
5637 static const char *
5638 bp_condition_evaluator (struct breakpoint *b)
5639 {
5640 struct bp_location *bl;
5641 char host_evals = 0;
5642 char target_evals = 0;
5643
5644 if (!b)
5645 return NULL;
5646
5647 if (!is_breakpoint (b))
5648 return NULL;
5649
5650 if (gdb_evaluates_breakpoint_condition_p ()
5651 || !target_supports_evaluation_of_breakpoint_conditions ())
5652 return condition_evaluation_host;
5653
5654 for (bl = b->loc; bl; bl = bl->next)
5655 {
5656 if (bl->cond_bytecode)
5657 target_evals++;
5658 else
5659 host_evals++;
5660 }
5661
5662 if (host_evals && target_evals)
5663 return condition_evaluation_both;
5664 else if (target_evals)
5665 return condition_evaluation_target;
5666 else
5667 return condition_evaluation_host;
5668 }
5669
5670 /* Determine the breakpoint location's condition evaluator. This is
5671 similar to bp_condition_evaluator, but for locations. */
5672
5673 static const char *
5674 bp_location_condition_evaluator (struct bp_location *bl)
5675 {
5676 if (bl && !is_breakpoint (bl->owner))
5677 return NULL;
5678
5679 if (gdb_evaluates_breakpoint_condition_p ()
5680 || !target_supports_evaluation_of_breakpoint_conditions ())
5681 return condition_evaluation_host;
5682
5683 if (bl && bl->cond_bytecode)
5684 return condition_evaluation_target;
5685 else
5686 return condition_evaluation_host;
5687 }
5688
5689 /* Print the LOC location out of the list of B->LOC locations. */
5690
5691 static void
5692 print_breakpoint_location (struct breakpoint *b,
5693 struct bp_location *loc)
5694 {
5695 struct ui_out *uiout = current_uiout;
5696 struct cleanup *old_chain = save_current_program_space ();
5697
5698 if (loc != NULL && loc->shlib_disabled)
5699 loc = NULL;
5700
5701 if (loc != NULL)
5702 set_current_program_space (loc->pspace);
5703
5704 if (b->display_canonical)
5705 ui_out_field_string (uiout, "what", b->addr_string);
5706 else if (loc && loc->symtab)
5707 {
5708 struct symbol *sym
5709 = find_pc_sect_function (loc->address, loc->section);
5710 if (sym)
5711 {
5712 ui_out_text (uiout, "in ");
5713 ui_out_field_string (uiout, "func",
5714 SYMBOL_PRINT_NAME (sym));
5715 ui_out_text (uiout, " ");
5716 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
5717 ui_out_text (uiout, "at ");
5718 }
5719 ui_out_field_string (uiout, "file",
5720 symtab_to_filename_for_display (loc->symtab));
5721 ui_out_text (uiout, ":");
5722
5723 if (ui_out_is_mi_like_p (uiout))
5724 ui_out_field_string (uiout, "fullname",
5725 symtab_to_fullname (loc->symtab));
5726
5727 ui_out_field_int (uiout, "line", loc->line_number);
5728 }
5729 else if (loc)
5730 {
5731 struct ui_file *stb = mem_fileopen ();
5732 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
5733
5734 print_address_symbolic (loc->gdbarch, loc->address, stb,
5735 demangle, "");
5736 ui_out_field_stream (uiout, "at", stb);
5737
5738 do_cleanups (stb_chain);
5739 }
5740 else
5741 ui_out_field_string (uiout, "pending", b->addr_string);
5742
5743 if (loc && is_breakpoint (b)
5744 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5745 && bp_condition_evaluator (b) == condition_evaluation_both)
5746 {
5747 ui_out_text (uiout, " (");
5748 ui_out_field_string (uiout, "evaluated-by",
5749 bp_location_condition_evaluator (loc));
5750 ui_out_text (uiout, ")");
5751 }
5752
5753 do_cleanups (old_chain);
5754 }
5755
5756 static const char *
5757 bptype_string (enum bptype type)
5758 {
5759 struct ep_type_description
5760 {
5761 enum bptype type;
5762 char *description;
5763 };
5764 static struct ep_type_description bptypes[] =
5765 {
5766 {bp_none, "?deleted?"},
5767 {bp_breakpoint, "breakpoint"},
5768 {bp_hardware_breakpoint, "hw breakpoint"},
5769 {bp_until, "until"},
5770 {bp_finish, "finish"},
5771 {bp_watchpoint, "watchpoint"},
5772 {bp_hardware_watchpoint, "hw watchpoint"},
5773 {bp_read_watchpoint, "read watchpoint"},
5774 {bp_access_watchpoint, "acc watchpoint"},
5775 {bp_longjmp, "longjmp"},
5776 {bp_longjmp_resume, "longjmp resume"},
5777 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5778 {bp_exception, "exception"},
5779 {bp_exception_resume, "exception resume"},
5780 {bp_step_resume, "step resume"},
5781 {bp_hp_step_resume, "high-priority step resume"},
5782 {bp_watchpoint_scope, "watchpoint scope"},
5783 {bp_call_dummy, "call dummy"},
5784 {bp_std_terminate, "std::terminate"},
5785 {bp_shlib_event, "shlib events"},
5786 {bp_thread_event, "thread events"},
5787 {bp_overlay_event, "overlay events"},
5788 {bp_longjmp_master, "longjmp master"},
5789 {bp_std_terminate_master, "std::terminate master"},
5790 {bp_exception_master, "exception master"},
5791 {bp_catchpoint, "catchpoint"},
5792 {bp_tracepoint, "tracepoint"},
5793 {bp_fast_tracepoint, "fast tracepoint"},
5794 {bp_static_tracepoint, "static tracepoint"},
5795 {bp_dprintf, "dprintf"},
5796 {bp_jit_event, "jit events"},
5797 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5798 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5799 };
5800
5801 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5802 || ((int) type != bptypes[(int) type].type))
5803 internal_error (__FILE__, __LINE__,
5804 _("bptypes table does not describe type #%d."),
5805 (int) type);
5806
5807 return bptypes[(int) type].description;
5808 }
5809
5810 DEF_VEC_I(int);
5811
5812 /* For MI, output a field named 'thread-groups' with a list as the value.
5813 For CLI, prefix the list with the string 'inf'. */
5814
5815 static void
5816 output_thread_groups (struct ui_out *uiout,
5817 const char *field_name,
5818 VEC(int) *inf_num,
5819 int mi_only)
5820 {
5821 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end (uiout,
5822 field_name);
5823 int is_mi = ui_out_is_mi_like_p (uiout);
5824 int inf;
5825 int i;
5826
5827 /* For backward compatibility, don't display inferiors in CLI unless
5828 there are several. Always display them for MI. */
5829 if (!is_mi && mi_only)
5830 return;
5831
5832 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
5833 {
5834 if (is_mi)
5835 {
5836 char mi_group[10];
5837
5838 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
5839 ui_out_field_string (uiout, NULL, mi_group);
5840 }
5841 else
5842 {
5843 if (i == 0)
5844 ui_out_text (uiout, " inf ");
5845 else
5846 ui_out_text (uiout, ", ");
5847
5848 ui_out_text (uiout, plongest (inf));
5849 }
5850 }
5851
5852 do_cleanups (back_to);
5853 }
5854
5855 /* Print B to gdb_stdout. */
5856
5857 static void
5858 print_one_breakpoint_location (struct breakpoint *b,
5859 struct bp_location *loc,
5860 int loc_number,
5861 struct bp_location **last_loc,
5862 int allflag)
5863 {
5864 struct command_line *l;
5865 static char bpenables[] = "nynny";
5866
5867 struct ui_out *uiout = current_uiout;
5868 int header_of_multiple = 0;
5869 int part_of_multiple = (loc != NULL);
5870 struct value_print_options opts;
5871
5872 get_user_print_options (&opts);
5873
5874 gdb_assert (!loc || loc_number != 0);
5875 /* See comment in print_one_breakpoint concerning treatment of
5876 breakpoints with single disabled location. */
5877 if (loc == NULL
5878 && (b->loc != NULL
5879 && (b->loc->next != NULL || !b->loc->enabled)))
5880 header_of_multiple = 1;
5881 if (loc == NULL)
5882 loc = b->loc;
5883
5884 annotate_record ();
5885
5886 /* 1 */
5887 annotate_field (0);
5888 if (part_of_multiple)
5889 {
5890 char *formatted;
5891 formatted = xstrprintf ("%d.%d", b->number, loc_number);
5892 ui_out_field_string (uiout, "number", formatted);
5893 xfree (formatted);
5894 }
5895 else
5896 {
5897 ui_out_field_int (uiout, "number", b->number);
5898 }
5899
5900 /* 2 */
5901 annotate_field (1);
5902 if (part_of_multiple)
5903 ui_out_field_skip (uiout, "type");
5904 else
5905 ui_out_field_string (uiout, "type", bptype_string (b->type));
5906
5907 /* 3 */
5908 annotate_field (2);
5909 if (part_of_multiple)
5910 ui_out_field_skip (uiout, "disp");
5911 else
5912 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
5913
5914
5915 /* 4 */
5916 annotate_field (3);
5917 if (part_of_multiple)
5918 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
5919 else
5920 ui_out_field_fmt (uiout, "enabled", "%c",
5921 bpenables[(int) b->enable_state]);
5922 ui_out_spaces (uiout, 2);
5923
5924
5925 /* 5 and 6 */
5926 if (b->ops != NULL && b->ops->print_one != NULL)
5927 {
5928 /* Although the print_one can possibly print all locations,
5929 calling it here is not likely to get any nice result. So,
5930 make sure there's just one location. */
5931 gdb_assert (b->loc == NULL || b->loc->next == NULL);
5932 b->ops->print_one (b, last_loc);
5933 }
5934 else
5935 switch (b->type)
5936 {
5937 case bp_none:
5938 internal_error (__FILE__, __LINE__,
5939 _("print_one_breakpoint: bp_none encountered\n"));
5940 break;
5941
5942 case bp_watchpoint:
5943 case bp_hardware_watchpoint:
5944 case bp_read_watchpoint:
5945 case bp_access_watchpoint:
5946 {
5947 struct watchpoint *w = (struct watchpoint *) b;
5948
5949 /* Field 4, the address, is omitted (which makes the columns
5950 not line up too nicely with the headers, but the effect
5951 is relatively readable). */
5952 if (opts.addressprint)
5953 ui_out_field_skip (uiout, "addr");
5954 annotate_field (5);
5955 ui_out_field_string (uiout, "what", w->exp_string);
5956 }
5957 break;
5958
5959 case bp_breakpoint:
5960 case bp_hardware_breakpoint:
5961 case bp_until:
5962 case bp_finish:
5963 case bp_longjmp:
5964 case bp_longjmp_resume:
5965 case bp_longjmp_call_dummy:
5966 case bp_exception:
5967 case bp_exception_resume:
5968 case bp_step_resume:
5969 case bp_hp_step_resume:
5970 case bp_watchpoint_scope:
5971 case bp_call_dummy:
5972 case bp_std_terminate:
5973 case bp_shlib_event:
5974 case bp_thread_event:
5975 case bp_overlay_event:
5976 case bp_longjmp_master:
5977 case bp_std_terminate_master:
5978 case bp_exception_master:
5979 case bp_tracepoint:
5980 case bp_fast_tracepoint:
5981 case bp_static_tracepoint:
5982 case bp_dprintf:
5983 case bp_jit_event:
5984 case bp_gnu_ifunc_resolver:
5985 case bp_gnu_ifunc_resolver_return:
5986 if (opts.addressprint)
5987 {
5988 annotate_field (4);
5989 if (header_of_multiple)
5990 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
5991 else if (b->loc == NULL || loc->shlib_disabled)
5992 ui_out_field_string (uiout, "addr", "<PENDING>");
5993 else
5994 ui_out_field_core_addr (uiout, "addr",
5995 loc->gdbarch, loc->address);
5996 }
5997 annotate_field (5);
5998 if (!header_of_multiple)
5999 print_breakpoint_location (b, loc);
6000 if (b->loc)
6001 *last_loc = b->loc;
6002 break;
6003 }
6004
6005
6006 if (loc != NULL && !header_of_multiple)
6007 {
6008 struct inferior *inf;
6009 VEC(int) *inf_num = NULL;
6010 int mi_only = 1;
6011
6012 ALL_INFERIORS (inf)
6013 {
6014 if (inf->pspace == loc->pspace)
6015 VEC_safe_push (int, inf_num, inf->num);
6016 }
6017
6018 /* For backward compatibility, don't display inferiors in CLI unless
6019 there are several. Always display for MI. */
6020 if (allflag
6021 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6022 && (number_of_program_spaces () > 1
6023 || number_of_inferiors () > 1)
6024 /* LOC is for existing B, it cannot be in
6025 moribund_locations and thus having NULL OWNER. */
6026 && loc->owner->type != bp_catchpoint))
6027 mi_only = 0;
6028 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6029 VEC_free (int, inf_num);
6030 }
6031
6032 if (!part_of_multiple)
6033 {
6034 if (b->thread != -1)
6035 {
6036 /* FIXME: This seems to be redundant and lost here; see the
6037 "stop only in" line a little further down. */
6038 ui_out_text (uiout, " thread ");
6039 ui_out_field_int (uiout, "thread", b->thread);
6040 }
6041 else if (b->task != 0)
6042 {
6043 ui_out_text (uiout, " task ");
6044 ui_out_field_int (uiout, "task", b->task);
6045 }
6046 }
6047
6048 ui_out_text (uiout, "\n");
6049
6050 if (!part_of_multiple)
6051 b->ops->print_one_detail (b, uiout);
6052
6053 if (part_of_multiple && frame_id_p (b->frame_id))
6054 {
6055 annotate_field (6);
6056 ui_out_text (uiout, "\tstop only in stack frame at ");
6057 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6058 the frame ID. */
6059 ui_out_field_core_addr (uiout, "frame",
6060 b->gdbarch, b->frame_id.stack_addr);
6061 ui_out_text (uiout, "\n");
6062 }
6063
6064 if (!part_of_multiple && b->cond_string)
6065 {
6066 annotate_field (7);
6067 if (is_tracepoint (b))
6068 ui_out_text (uiout, "\ttrace only if ");
6069 else
6070 ui_out_text (uiout, "\tstop only if ");
6071 ui_out_field_string (uiout, "cond", b->cond_string);
6072
6073 /* Print whether the target is doing the breakpoint's condition
6074 evaluation. If GDB is doing the evaluation, don't print anything. */
6075 if (is_breakpoint (b)
6076 && breakpoint_condition_evaluation_mode ()
6077 == condition_evaluation_target)
6078 {
6079 ui_out_text (uiout, " (");
6080 ui_out_field_string (uiout, "evaluated-by",
6081 bp_condition_evaluator (b));
6082 ui_out_text (uiout, " evals)");
6083 }
6084 ui_out_text (uiout, "\n");
6085 }
6086
6087 if (!part_of_multiple && b->thread != -1)
6088 {
6089 /* FIXME should make an annotation for this. */
6090 ui_out_text (uiout, "\tstop only in thread ");
6091 ui_out_field_int (uiout, "thread", b->thread);
6092 ui_out_text (uiout, "\n");
6093 }
6094
6095 if (!part_of_multiple)
6096 {
6097 if (b->hit_count)
6098 {
6099 /* FIXME should make an annotation for this. */
6100 if (is_catchpoint (b))
6101 ui_out_text (uiout, "\tcatchpoint");
6102 else if (is_tracepoint (b))
6103 ui_out_text (uiout, "\ttracepoint");
6104 else
6105 ui_out_text (uiout, "\tbreakpoint");
6106 ui_out_text (uiout, " already hit ");
6107 ui_out_field_int (uiout, "times", b->hit_count);
6108 if (b->hit_count == 1)
6109 ui_out_text (uiout, " time\n");
6110 else
6111 ui_out_text (uiout, " times\n");
6112 }
6113 else
6114 {
6115 /* Output the count also if it is zero, but only if this is mi. */
6116 if (ui_out_is_mi_like_p (uiout))
6117 ui_out_field_int (uiout, "times", b->hit_count);
6118 }
6119 }
6120
6121 if (!part_of_multiple && b->ignore_count)
6122 {
6123 annotate_field (8);
6124 ui_out_text (uiout, "\tignore next ");
6125 ui_out_field_int (uiout, "ignore", b->ignore_count);
6126 ui_out_text (uiout, " hits\n");
6127 }
6128
6129 /* Note that an enable count of 1 corresponds to "enable once"
6130 behavior, which is reported by the combination of enablement and
6131 disposition, so we don't need to mention it here. */
6132 if (!part_of_multiple && b->enable_count > 1)
6133 {
6134 annotate_field (8);
6135 ui_out_text (uiout, "\tdisable after ");
6136 /* Tweak the wording to clarify that ignore and enable counts
6137 are distinct, and have additive effect. */
6138 if (b->ignore_count)
6139 ui_out_text (uiout, "additional ");
6140 else
6141 ui_out_text (uiout, "next ");
6142 ui_out_field_int (uiout, "enable", b->enable_count);
6143 ui_out_text (uiout, " hits\n");
6144 }
6145
6146 if (!part_of_multiple && is_tracepoint (b))
6147 {
6148 struct tracepoint *tp = (struct tracepoint *) b;
6149
6150 if (tp->traceframe_usage)
6151 {
6152 ui_out_text (uiout, "\ttrace buffer usage ");
6153 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6154 ui_out_text (uiout, " bytes\n");
6155 }
6156 }
6157
6158 l = b->commands ? b->commands->commands : NULL;
6159 if (!part_of_multiple && l)
6160 {
6161 struct cleanup *script_chain;
6162
6163 annotate_field (9);
6164 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6165 print_command_lines (uiout, l, 4);
6166 do_cleanups (script_chain);
6167 }
6168
6169 if (is_tracepoint (b))
6170 {
6171 struct tracepoint *t = (struct tracepoint *) b;
6172
6173 if (!part_of_multiple && t->pass_count)
6174 {
6175 annotate_field (10);
6176 ui_out_text (uiout, "\tpass count ");
6177 ui_out_field_int (uiout, "pass", t->pass_count);
6178 ui_out_text (uiout, " \n");
6179 }
6180
6181 /* Don't display it when tracepoint or tracepoint location is
6182 pending. */
6183 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6184 {
6185 annotate_field (11);
6186
6187 if (ui_out_is_mi_like_p (uiout))
6188 ui_out_field_string (uiout, "installed",
6189 loc->inserted ? "y" : "n");
6190 else
6191 {
6192 if (loc->inserted)
6193 ui_out_text (uiout, "\t");
6194 else
6195 ui_out_text (uiout, "\tnot ");
6196 ui_out_text (uiout, "installed on target\n");
6197 }
6198 }
6199 }
6200
6201 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6202 {
6203 if (is_watchpoint (b))
6204 {
6205 struct watchpoint *w = (struct watchpoint *) b;
6206
6207 ui_out_field_string (uiout, "original-location", w->exp_string);
6208 }
6209 else if (b->addr_string)
6210 ui_out_field_string (uiout, "original-location", b->addr_string);
6211 }
6212 }
6213
6214 static void
6215 print_one_breakpoint (struct breakpoint *b,
6216 struct bp_location **last_loc,
6217 int allflag)
6218 {
6219 struct cleanup *bkpt_chain;
6220 struct ui_out *uiout = current_uiout;
6221
6222 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6223
6224 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6225 do_cleanups (bkpt_chain);
6226
6227 /* If this breakpoint has custom print function,
6228 it's already printed. Otherwise, print individual
6229 locations, if any. */
6230 if (b->ops == NULL || b->ops->print_one == NULL)
6231 {
6232 /* If breakpoint has a single location that is disabled, we
6233 print it as if it had several locations, since otherwise it's
6234 hard to represent "breakpoint enabled, location disabled"
6235 situation.
6236
6237 Note that while hardware watchpoints have several locations
6238 internally, that's not a property exposed to user. */
6239 if (b->loc
6240 && !is_hardware_watchpoint (b)
6241 && (b->loc->next || !b->loc->enabled))
6242 {
6243 struct bp_location *loc;
6244 int n = 1;
6245
6246 for (loc = b->loc; loc; loc = loc->next, ++n)
6247 {
6248 struct cleanup *inner2 =
6249 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6250 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6251 do_cleanups (inner2);
6252 }
6253 }
6254 }
6255 }
6256
6257 static int
6258 breakpoint_address_bits (struct breakpoint *b)
6259 {
6260 int print_address_bits = 0;
6261 struct bp_location *loc;
6262
6263 for (loc = b->loc; loc; loc = loc->next)
6264 {
6265 int addr_bit;
6266
6267 /* Software watchpoints that aren't watching memory don't have
6268 an address to print. */
6269 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6270 continue;
6271
6272 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6273 if (addr_bit > print_address_bits)
6274 print_address_bits = addr_bit;
6275 }
6276
6277 return print_address_bits;
6278 }
6279
6280 struct captured_breakpoint_query_args
6281 {
6282 int bnum;
6283 };
6284
6285 static int
6286 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6287 {
6288 struct captured_breakpoint_query_args *args = data;
6289 struct breakpoint *b;
6290 struct bp_location *dummy_loc = NULL;
6291
6292 ALL_BREAKPOINTS (b)
6293 {
6294 if (args->bnum == b->number)
6295 {
6296 print_one_breakpoint (b, &dummy_loc, 0);
6297 return GDB_RC_OK;
6298 }
6299 }
6300 return GDB_RC_NONE;
6301 }
6302
6303 enum gdb_rc
6304 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6305 char **error_message)
6306 {
6307 struct captured_breakpoint_query_args args;
6308
6309 args.bnum = bnum;
6310 /* For the moment we don't trust print_one_breakpoint() to not throw
6311 an error. */
6312 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6313 error_message, RETURN_MASK_ALL) < 0)
6314 return GDB_RC_FAIL;
6315 else
6316 return GDB_RC_OK;
6317 }
6318
6319 /* Return true if this breakpoint was set by the user, false if it is
6320 internal or momentary. */
6321
6322 int
6323 user_breakpoint_p (struct breakpoint *b)
6324 {
6325 return b->number > 0;
6326 }
6327
6328 /* Print information on user settable breakpoint (watchpoint, etc)
6329 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6330 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6331 FILTER is non-NULL, call it on each breakpoint and only include the
6332 ones for which it returns non-zero. Return the total number of
6333 breakpoints listed. */
6334
6335 static int
6336 breakpoint_1 (char *args, int allflag,
6337 int (*filter) (const struct breakpoint *))
6338 {
6339 struct breakpoint *b;
6340 struct bp_location *last_loc = NULL;
6341 int nr_printable_breakpoints;
6342 struct cleanup *bkpttbl_chain;
6343 struct value_print_options opts;
6344 int print_address_bits = 0;
6345 int print_type_col_width = 14;
6346 struct ui_out *uiout = current_uiout;
6347
6348 get_user_print_options (&opts);
6349
6350 /* Compute the number of rows in the table, as well as the size
6351 required for address fields. */
6352 nr_printable_breakpoints = 0;
6353 ALL_BREAKPOINTS (b)
6354 {
6355 /* If we have a filter, only list the breakpoints it accepts. */
6356 if (filter && !filter (b))
6357 continue;
6358
6359 /* If we have an "args" string, it is a list of breakpoints to
6360 accept. Skip the others. */
6361 if (args != NULL && *args != '\0')
6362 {
6363 if (allflag && parse_and_eval_long (args) != b->number)
6364 continue;
6365 if (!allflag && !number_is_in_list (args, b->number))
6366 continue;
6367 }
6368
6369 if (allflag || user_breakpoint_p (b))
6370 {
6371 int addr_bit, type_len;
6372
6373 addr_bit = breakpoint_address_bits (b);
6374 if (addr_bit > print_address_bits)
6375 print_address_bits = addr_bit;
6376
6377 type_len = strlen (bptype_string (b->type));
6378 if (type_len > print_type_col_width)
6379 print_type_col_width = type_len;
6380
6381 nr_printable_breakpoints++;
6382 }
6383 }
6384
6385 if (opts.addressprint)
6386 bkpttbl_chain
6387 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6388 nr_printable_breakpoints,
6389 "BreakpointTable");
6390 else
6391 bkpttbl_chain
6392 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6393 nr_printable_breakpoints,
6394 "BreakpointTable");
6395
6396 if (nr_printable_breakpoints > 0)
6397 annotate_breakpoints_headers ();
6398 if (nr_printable_breakpoints > 0)
6399 annotate_field (0);
6400 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6401 if (nr_printable_breakpoints > 0)
6402 annotate_field (1);
6403 ui_out_table_header (uiout, print_type_col_width, ui_left,
6404 "type", "Type"); /* 2 */
6405 if (nr_printable_breakpoints > 0)
6406 annotate_field (2);
6407 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6408 if (nr_printable_breakpoints > 0)
6409 annotate_field (3);
6410 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6411 if (opts.addressprint)
6412 {
6413 if (nr_printable_breakpoints > 0)
6414 annotate_field (4);
6415 if (print_address_bits <= 32)
6416 ui_out_table_header (uiout, 10, ui_left,
6417 "addr", "Address"); /* 5 */
6418 else
6419 ui_out_table_header (uiout, 18, ui_left,
6420 "addr", "Address"); /* 5 */
6421 }
6422 if (nr_printable_breakpoints > 0)
6423 annotate_field (5);
6424 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6425 ui_out_table_body (uiout);
6426 if (nr_printable_breakpoints > 0)
6427 annotate_breakpoints_table ();
6428
6429 ALL_BREAKPOINTS (b)
6430 {
6431 QUIT;
6432 /* If we have a filter, only list the breakpoints it accepts. */
6433 if (filter && !filter (b))
6434 continue;
6435
6436 /* If we have an "args" string, it is a list of breakpoints to
6437 accept. Skip the others. */
6438
6439 if (args != NULL && *args != '\0')
6440 {
6441 if (allflag) /* maintenance info breakpoint */
6442 {
6443 if (parse_and_eval_long (args) != b->number)
6444 continue;
6445 }
6446 else /* all others */
6447 {
6448 if (!number_is_in_list (args, b->number))
6449 continue;
6450 }
6451 }
6452 /* We only print out user settable breakpoints unless the
6453 allflag is set. */
6454 if (allflag || user_breakpoint_p (b))
6455 print_one_breakpoint (b, &last_loc, allflag);
6456 }
6457
6458 do_cleanups (bkpttbl_chain);
6459
6460 if (nr_printable_breakpoints == 0)
6461 {
6462 /* If there's a filter, let the caller decide how to report
6463 empty list. */
6464 if (!filter)
6465 {
6466 if (args == NULL || *args == '\0')
6467 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6468 else
6469 ui_out_message (uiout, 0,
6470 "No breakpoint or watchpoint matching '%s'.\n",
6471 args);
6472 }
6473 }
6474 else
6475 {
6476 if (last_loc && !server_command)
6477 set_next_address (last_loc->gdbarch, last_loc->address);
6478 }
6479
6480 /* FIXME? Should this be moved up so that it is only called when
6481 there have been breakpoints? */
6482 annotate_breakpoints_table_end ();
6483
6484 return nr_printable_breakpoints;
6485 }
6486
6487 /* Display the value of default-collect in a way that is generally
6488 compatible with the breakpoint list. */
6489
6490 static void
6491 default_collect_info (void)
6492 {
6493 struct ui_out *uiout = current_uiout;
6494
6495 /* If it has no value (which is frequently the case), say nothing; a
6496 message like "No default-collect." gets in user's face when it's
6497 not wanted. */
6498 if (!*default_collect)
6499 return;
6500
6501 /* The following phrase lines up nicely with per-tracepoint collect
6502 actions. */
6503 ui_out_text (uiout, "default collect ");
6504 ui_out_field_string (uiout, "default-collect", default_collect);
6505 ui_out_text (uiout, " \n");
6506 }
6507
6508 static void
6509 breakpoints_info (char *args, int from_tty)
6510 {
6511 breakpoint_1 (args, 0, NULL);
6512
6513 default_collect_info ();
6514 }
6515
6516 static void
6517 watchpoints_info (char *args, int from_tty)
6518 {
6519 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6520 struct ui_out *uiout = current_uiout;
6521
6522 if (num_printed == 0)
6523 {
6524 if (args == NULL || *args == '\0')
6525 ui_out_message (uiout, 0, "No watchpoints.\n");
6526 else
6527 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6528 }
6529 }
6530
6531 static void
6532 maintenance_info_breakpoints (char *args, int from_tty)
6533 {
6534 breakpoint_1 (args, 1, NULL);
6535
6536 default_collect_info ();
6537 }
6538
6539 static int
6540 breakpoint_has_pc (struct breakpoint *b,
6541 struct program_space *pspace,
6542 CORE_ADDR pc, struct obj_section *section)
6543 {
6544 struct bp_location *bl = b->loc;
6545
6546 for (; bl; bl = bl->next)
6547 {
6548 if (bl->pspace == pspace
6549 && bl->address == pc
6550 && (!overlay_debugging || bl->section == section))
6551 return 1;
6552 }
6553 return 0;
6554 }
6555
6556 /* Print a message describing any user-breakpoints set at PC. This
6557 concerns with logical breakpoints, so we match program spaces, not
6558 address spaces. */
6559
6560 static void
6561 describe_other_breakpoints (struct gdbarch *gdbarch,
6562 struct program_space *pspace, CORE_ADDR pc,
6563 struct obj_section *section, int thread)
6564 {
6565 int others = 0;
6566 struct breakpoint *b;
6567
6568 ALL_BREAKPOINTS (b)
6569 others += (user_breakpoint_p (b)
6570 && breakpoint_has_pc (b, pspace, pc, section));
6571 if (others > 0)
6572 {
6573 if (others == 1)
6574 printf_filtered (_("Note: breakpoint "));
6575 else /* if (others == ???) */
6576 printf_filtered (_("Note: breakpoints "));
6577 ALL_BREAKPOINTS (b)
6578 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6579 {
6580 others--;
6581 printf_filtered ("%d", b->number);
6582 if (b->thread == -1 && thread != -1)
6583 printf_filtered (" (all threads)");
6584 else if (b->thread != -1)
6585 printf_filtered (" (thread %d)", b->thread);
6586 printf_filtered ("%s%s ",
6587 ((b->enable_state == bp_disabled
6588 || b->enable_state == bp_call_disabled)
6589 ? " (disabled)"
6590 : b->enable_state == bp_permanent
6591 ? " (permanent)"
6592 : ""),
6593 (others > 1) ? ","
6594 : ((others == 1) ? " and" : ""));
6595 }
6596 printf_filtered (_("also set at pc "));
6597 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6598 printf_filtered (".\n");
6599 }
6600 }
6601 \f
6602
6603 /* Return true iff it is meaningful to use the address member of
6604 BPT. For some breakpoint types, the address member is irrelevant
6605 and it makes no sense to attempt to compare it to other addresses
6606 (or use it for any other purpose either).
6607
6608 More specifically, each of the following breakpoint types will
6609 always have a zero valued address and we don't want to mark
6610 breakpoints of any of these types to be a duplicate of an actual
6611 breakpoint at address zero:
6612
6613 bp_watchpoint
6614 bp_catchpoint
6615
6616 */
6617
6618 static int
6619 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6620 {
6621 enum bptype type = bpt->type;
6622
6623 return (type != bp_watchpoint && type != bp_catchpoint);
6624 }
6625
6626 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6627 true if LOC1 and LOC2 represent the same watchpoint location. */
6628
6629 static int
6630 watchpoint_locations_match (struct bp_location *loc1,
6631 struct bp_location *loc2)
6632 {
6633 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6634 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6635
6636 /* Both of them must exist. */
6637 gdb_assert (w1 != NULL);
6638 gdb_assert (w2 != NULL);
6639
6640 /* If the target can evaluate the condition expression in hardware,
6641 then we we need to insert both watchpoints even if they are at
6642 the same place. Otherwise the watchpoint will only trigger when
6643 the condition of whichever watchpoint was inserted evaluates to
6644 true, not giving a chance for GDB to check the condition of the
6645 other watchpoint. */
6646 if ((w1->cond_exp
6647 && target_can_accel_watchpoint_condition (loc1->address,
6648 loc1->length,
6649 loc1->watchpoint_type,
6650 w1->cond_exp))
6651 || (w2->cond_exp
6652 && target_can_accel_watchpoint_condition (loc2->address,
6653 loc2->length,
6654 loc2->watchpoint_type,
6655 w2->cond_exp)))
6656 return 0;
6657
6658 /* Note that this checks the owner's type, not the location's. In
6659 case the target does not support read watchpoints, but does
6660 support access watchpoints, we'll have bp_read_watchpoint
6661 watchpoints with hw_access locations. Those should be considered
6662 duplicates of hw_read locations. The hw_read locations will
6663 become hw_access locations later. */
6664 return (loc1->owner->type == loc2->owner->type
6665 && loc1->pspace->aspace == loc2->pspace->aspace
6666 && loc1->address == loc2->address
6667 && loc1->length == loc2->length);
6668 }
6669
6670 /* Returns true if {ASPACE1,ADDR1} and {ASPACE2,ADDR2} represent the
6671 same breakpoint location. In most targets, this can only be true
6672 if ASPACE1 matches ASPACE2. On targets that have global
6673 breakpoints, the address space doesn't really matter. */
6674
6675 static int
6676 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6677 struct address_space *aspace2, CORE_ADDR addr2)
6678 {
6679 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6680 || aspace1 == aspace2)
6681 && addr1 == addr2);
6682 }
6683
6684 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6685 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6686 matches ASPACE2. On targets that have global breakpoints, the address
6687 space doesn't really matter. */
6688
6689 static int
6690 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6691 int len1, struct address_space *aspace2,
6692 CORE_ADDR addr2)
6693 {
6694 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6695 || aspace1 == aspace2)
6696 && addr2 >= addr1 && addr2 < addr1 + len1);
6697 }
6698
6699 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6700 a ranged breakpoint. In most targets, a match happens only if ASPACE
6701 matches the breakpoint's address space. On targets that have global
6702 breakpoints, the address space doesn't really matter. */
6703
6704 static int
6705 breakpoint_location_address_match (struct bp_location *bl,
6706 struct address_space *aspace,
6707 CORE_ADDR addr)
6708 {
6709 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6710 aspace, addr)
6711 || (bl->length
6712 && breakpoint_address_match_range (bl->pspace->aspace,
6713 bl->address, bl->length,
6714 aspace, addr)));
6715 }
6716
6717 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6718 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6719 true, otherwise returns false. */
6720
6721 static int
6722 tracepoint_locations_match (struct bp_location *loc1,
6723 struct bp_location *loc2)
6724 {
6725 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6726 /* Since tracepoint locations are never duplicated with others', tracepoint
6727 locations at the same address of different tracepoints are regarded as
6728 different locations. */
6729 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6730 else
6731 return 0;
6732 }
6733
6734 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6735 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6736 represent the same location. */
6737
6738 static int
6739 breakpoint_locations_match (struct bp_location *loc1,
6740 struct bp_location *loc2)
6741 {
6742 int hw_point1, hw_point2;
6743
6744 /* Both of them must not be in moribund_locations. */
6745 gdb_assert (loc1->owner != NULL);
6746 gdb_assert (loc2->owner != NULL);
6747
6748 hw_point1 = is_hardware_watchpoint (loc1->owner);
6749 hw_point2 = is_hardware_watchpoint (loc2->owner);
6750
6751 if (hw_point1 != hw_point2)
6752 return 0;
6753 else if (hw_point1)
6754 return watchpoint_locations_match (loc1, loc2);
6755 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6756 return tracepoint_locations_match (loc1, loc2);
6757 else
6758 /* We compare bp_location.length in order to cover ranged breakpoints. */
6759 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6760 loc2->pspace->aspace, loc2->address)
6761 && loc1->length == loc2->length);
6762 }
6763
6764 static void
6765 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6766 int bnum, int have_bnum)
6767 {
6768 /* The longest string possibly returned by hex_string_custom
6769 is 50 chars. These must be at least that big for safety. */
6770 char astr1[64];
6771 char astr2[64];
6772
6773 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6774 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6775 if (have_bnum)
6776 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6777 bnum, astr1, astr2);
6778 else
6779 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6780 }
6781
6782 /* Adjust a breakpoint's address to account for architectural
6783 constraints on breakpoint placement. Return the adjusted address.
6784 Note: Very few targets require this kind of adjustment. For most
6785 targets, this function is simply the identity function. */
6786
6787 static CORE_ADDR
6788 adjust_breakpoint_address (struct gdbarch *gdbarch,
6789 CORE_ADDR bpaddr, enum bptype bptype)
6790 {
6791 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
6792 {
6793 /* Very few targets need any kind of breakpoint adjustment. */
6794 return bpaddr;
6795 }
6796 else if (bptype == bp_watchpoint
6797 || bptype == bp_hardware_watchpoint
6798 || bptype == bp_read_watchpoint
6799 || bptype == bp_access_watchpoint
6800 || bptype == bp_catchpoint)
6801 {
6802 /* Watchpoints and the various bp_catch_* eventpoints should not
6803 have their addresses modified. */
6804 return bpaddr;
6805 }
6806 else
6807 {
6808 CORE_ADDR adjusted_bpaddr;
6809
6810 /* Some targets have architectural constraints on the placement
6811 of breakpoint instructions. Obtain the adjusted address. */
6812 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6813
6814 /* An adjusted breakpoint address can significantly alter
6815 a user's expectations. Print a warning if an adjustment
6816 is required. */
6817 if (adjusted_bpaddr != bpaddr)
6818 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6819
6820 return adjusted_bpaddr;
6821 }
6822 }
6823
6824 void
6825 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
6826 struct breakpoint *owner)
6827 {
6828 memset (loc, 0, sizeof (*loc));
6829
6830 gdb_assert (ops != NULL);
6831
6832 loc->ops = ops;
6833 loc->owner = owner;
6834 loc->cond = NULL;
6835 loc->cond_bytecode = NULL;
6836 loc->shlib_disabled = 0;
6837 loc->enabled = 1;
6838
6839 switch (owner->type)
6840 {
6841 case bp_breakpoint:
6842 case bp_until:
6843 case bp_finish:
6844 case bp_longjmp:
6845 case bp_longjmp_resume:
6846 case bp_longjmp_call_dummy:
6847 case bp_exception:
6848 case bp_exception_resume:
6849 case bp_step_resume:
6850 case bp_hp_step_resume:
6851 case bp_watchpoint_scope:
6852 case bp_call_dummy:
6853 case bp_std_terminate:
6854 case bp_shlib_event:
6855 case bp_thread_event:
6856 case bp_overlay_event:
6857 case bp_jit_event:
6858 case bp_longjmp_master:
6859 case bp_std_terminate_master:
6860 case bp_exception_master:
6861 case bp_gnu_ifunc_resolver:
6862 case bp_gnu_ifunc_resolver_return:
6863 case bp_dprintf:
6864 loc->loc_type = bp_loc_software_breakpoint;
6865 mark_breakpoint_location_modified (loc);
6866 break;
6867 case bp_hardware_breakpoint:
6868 loc->loc_type = bp_loc_hardware_breakpoint;
6869 mark_breakpoint_location_modified (loc);
6870 break;
6871 case bp_hardware_watchpoint:
6872 case bp_read_watchpoint:
6873 case bp_access_watchpoint:
6874 loc->loc_type = bp_loc_hardware_watchpoint;
6875 break;
6876 case bp_watchpoint:
6877 case bp_catchpoint:
6878 case bp_tracepoint:
6879 case bp_fast_tracepoint:
6880 case bp_static_tracepoint:
6881 loc->loc_type = bp_loc_other;
6882 break;
6883 default:
6884 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
6885 }
6886
6887 loc->refc = 1;
6888 }
6889
6890 /* Allocate a struct bp_location. */
6891
6892 static struct bp_location *
6893 allocate_bp_location (struct breakpoint *bpt)
6894 {
6895 return bpt->ops->allocate_location (bpt);
6896 }
6897
6898 static void
6899 free_bp_location (struct bp_location *loc)
6900 {
6901 loc->ops->dtor (loc);
6902 xfree (loc);
6903 }
6904
6905 /* Increment reference count. */
6906
6907 static void
6908 incref_bp_location (struct bp_location *bl)
6909 {
6910 ++bl->refc;
6911 }
6912
6913 /* Decrement reference count. If the reference count reaches 0,
6914 destroy the bp_location. Sets *BLP to NULL. */
6915
6916 static void
6917 decref_bp_location (struct bp_location **blp)
6918 {
6919 gdb_assert ((*blp)->refc > 0);
6920
6921 if (--(*blp)->refc == 0)
6922 free_bp_location (*blp);
6923 *blp = NULL;
6924 }
6925
6926 /* Add breakpoint B at the end of the global breakpoint chain. */
6927
6928 static void
6929 add_to_breakpoint_chain (struct breakpoint *b)
6930 {
6931 struct breakpoint *b1;
6932
6933 /* Add this breakpoint to the end of the chain so that a list of
6934 breakpoints will come out in order of increasing numbers. */
6935
6936 b1 = breakpoint_chain;
6937 if (b1 == 0)
6938 breakpoint_chain = b;
6939 else
6940 {
6941 while (b1->next)
6942 b1 = b1->next;
6943 b1->next = b;
6944 }
6945 }
6946
6947 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
6948
6949 static void
6950 init_raw_breakpoint_without_location (struct breakpoint *b,
6951 struct gdbarch *gdbarch,
6952 enum bptype bptype,
6953 const struct breakpoint_ops *ops)
6954 {
6955 memset (b, 0, sizeof (*b));
6956
6957 gdb_assert (ops != NULL);
6958
6959 b->ops = ops;
6960 b->type = bptype;
6961 b->gdbarch = gdbarch;
6962 b->language = current_language->la_language;
6963 b->input_radix = input_radix;
6964 b->thread = -1;
6965 b->enable_state = bp_enabled;
6966 b->next = 0;
6967 b->silent = 0;
6968 b->ignore_count = 0;
6969 b->commands = NULL;
6970 b->frame_id = null_frame_id;
6971 b->condition_not_parsed = 0;
6972 b->py_bp_object = NULL;
6973 b->related_breakpoint = b;
6974 }
6975
6976 /* Helper to set_raw_breakpoint below. Creates a breakpoint
6977 that has type BPTYPE and has no locations as yet. */
6978
6979 static struct breakpoint *
6980 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
6981 enum bptype bptype,
6982 const struct breakpoint_ops *ops)
6983 {
6984 struct breakpoint *b = XNEW (struct breakpoint);
6985
6986 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
6987 add_to_breakpoint_chain (b);
6988 return b;
6989 }
6990
6991 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
6992 resolutions should be made as the user specified the location explicitly
6993 enough. */
6994
6995 static void
6996 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
6997 {
6998 gdb_assert (loc->owner != NULL);
6999
7000 if (loc->owner->type == bp_breakpoint
7001 || loc->owner->type == bp_hardware_breakpoint
7002 || is_tracepoint (loc->owner))
7003 {
7004 int is_gnu_ifunc;
7005 const char *function_name;
7006 CORE_ADDR func_addr;
7007
7008 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7009 &func_addr, NULL, &is_gnu_ifunc);
7010
7011 if (is_gnu_ifunc && !explicit_loc)
7012 {
7013 struct breakpoint *b = loc->owner;
7014
7015 gdb_assert (loc->pspace == current_program_space);
7016 if (gnu_ifunc_resolve_name (function_name,
7017 &loc->requested_address))
7018 {
7019 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7020 loc->address = adjust_breakpoint_address (loc->gdbarch,
7021 loc->requested_address,
7022 b->type);
7023 }
7024 else if (b->type == bp_breakpoint && b->loc == loc
7025 && loc->next == NULL && b->related_breakpoint == b)
7026 {
7027 /* Create only the whole new breakpoint of this type but do not
7028 mess more complicated breakpoints with multiple locations. */
7029 b->type = bp_gnu_ifunc_resolver;
7030 /* Remember the resolver's address for use by the return
7031 breakpoint. */
7032 loc->related_address = func_addr;
7033 }
7034 }
7035
7036 if (function_name)
7037 loc->function_name = xstrdup (function_name);
7038 }
7039 }
7040
7041 /* Attempt to determine architecture of location identified by SAL. */
7042 struct gdbarch *
7043 get_sal_arch (struct symtab_and_line sal)
7044 {
7045 if (sal.section)
7046 return get_objfile_arch (sal.section->objfile);
7047 if (sal.symtab)
7048 return get_objfile_arch (sal.symtab->objfile);
7049
7050 return NULL;
7051 }
7052
7053 /* Low level routine for partially initializing a breakpoint of type
7054 BPTYPE. The newly created breakpoint's address, section, source
7055 file name, and line number are provided by SAL.
7056
7057 It is expected that the caller will complete the initialization of
7058 the newly created breakpoint struct as well as output any status
7059 information regarding the creation of a new breakpoint. */
7060
7061 static void
7062 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7063 struct symtab_and_line sal, enum bptype bptype,
7064 const struct breakpoint_ops *ops)
7065 {
7066 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7067
7068 add_location_to_breakpoint (b, &sal);
7069
7070 if (bptype != bp_catchpoint)
7071 gdb_assert (sal.pspace != NULL);
7072
7073 /* Store the program space that was used to set the breakpoint,
7074 except for ordinary breakpoints, which are independent of the
7075 program space. */
7076 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7077 b->pspace = sal.pspace;
7078 }
7079
7080 /* set_raw_breakpoint is a low level routine for allocating and
7081 partially initializing a breakpoint of type BPTYPE. The newly
7082 created breakpoint's address, section, source file name, and line
7083 number are provided by SAL. The newly created and partially
7084 initialized breakpoint is added to the breakpoint chain and
7085 is also returned as the value of this function.
7086
7087 It is expected that the caller will complete the initialization of
7088 the newly created breakpoint struct as well as output any status
7089 information regarding the creation of a new breakpoint. In
7090 particular, set_raw_breakpoint does NOT set the breakpoint
7091 number! Care should be taken to not allow an error to occur
7092 prior to completing the initialization of the breakpoint. If this
7093 should happen, a bogus breakpoint will be left on the chain. */
7094
7095 struct breakpoint *
7096 set_raw_breakpoint (struct gdbarch *gdbarch,
7097 struct symtab_and_line sal, enum bptype bptype,
7098 const struct breakpoint_ops *ops)
7099 {
7100 struct breakpoint *b = XNEW (struct breakpoint);
7101
7102 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7103 add_to_breakpoint_chain (b);
7104 return b;
7105 }
7106
7107
7108 /* Note that the breakpoint object B describes a permanent breakpoint
7109 instruction, hard-wired into the inferior's code. */
7110 void
7111 make_breakpoint_permanent (struct breakpoint *b)
7112 {
7113 struct bp_location *bl;
7114
7115 b->enable_state = bp_permanent;
7116
7117 /* By definition, permanent breakpoints are already present in the
7118 code. Mark all locations as inserted. For now,
7119 make_breakpoint_permanent is called in just one place, so it's
7120 hard to say if it's reasonable to have permanent breakpoint with
7121 multiple locations or not, but it's easy to implement. */
7122 for (bl = b->loc; bl; bl = bl->next)
7123 bl->inserted = 1;
7124 }
7125
7126 /* Call this routine when stepping and nexting to enable a breakpoint
7127 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7128 initiated the operation. */
7129
7130 void
7131 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7132 {
7133 struct breakpoint *b, *b_tmp;
7134 int thread = tp->num;
7135
7136 /* To avoid having to rescan all objfile symbols at every step,
7137 we maintain a list of continually-inserted but always disabled
7138 longjmp "master" breakpoints. Here, we simply create momentary
7139 clones of those and enable them for the requested thread. */
7140 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7141 if (b->pspace == current_program_space
7142 && (b->type == bp_longjmp_master
7143 || b->type == bp_exception_master))
7144 {
7145 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7146 struct breakpoint *clone;
7147
7148 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7149 after their removal. */
7150 clone = momentary_breakpoint_from_master (b, type,
7151 &longjmp_breakpoint_ops);
7152 clone->thread = thread;
7153 }
7154
7155 tp->initiating_frame = frame;
7156 }
7157
7158 /* Delete all longjmp breakpoints from THREAD. */
7159 void
7160 delete_longjmp_breakpoint (int thread)
7161 {
7162 struct breakpoint *b, *b_tmp;
7163
7164 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7165 if (b->type == bp_longjmp || b->type == bp_exception)
7166 {
7167 if (b->thread == thread)
7168 delete_breakpoint (b);
7169 }
7170 }
7171
7172 void
7173 delete_longjmp_breakpoint_at_next_stop (int thread)
7174 {
7175 struct breakpoint *b, *b_tmp;
7176
7177 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7178 if (b->type == bp_longjmp || b->type == bp_exception)
7179 {
7180 if (b->thread == thread)
7181 b->disposition = disp_del_at_next_stop;
7182 }
7183 }
7184
7185 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7186 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7187 pointer to any of them. Return NULL if this system cannot place longjmp
7188 breakpoints. */
7189
7190 struct breakpoint *
7191 set_longjmp_breakpoint_for_call_dummy (void)
7192 {
7193 struct breakpoint *b, *retval = NULL;
7194
7195 ALL_BREAKPOINTS (b)
7196 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7197 {
7198 struct breakpoint *new_b;
7199
7200 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7201 &momentary_breakpoint_ops);
7202 new_b->thread = pid_to_thread_id (inferior_ptid);
7203
7204 /* Link NEW_B into the chain of RETVAL breakpoints. */
7205
7206 gdb_assert (new_b->related_breakpoint == new_b);
7207 if (retval == NULL)
7208 retval = new_b;
7209 new_b->related_breakpoint = retval;
7210 while (retval->related_breakpoint != new_b->related_breakpoint)
7211 retval = retval->related_breakpoint;
7212 retval->related_breakpoint = new_b;
7213 }
7214
7215 return retval;
7216 }
7217
7218 /* Verify all existing dummy frames and their associated breakpoints for
7219 THREAD. Remove those which can no longer be found in the current frame
7220 stack.
7221
7222 You should call this function only at places where it is safe to currently
7223 unwind the whole stack. Failed stack unwind would discard live dummy
7224 frames. */
7225
7226 void
7227 check_longjmp_breakpoint_for_call_dummy (int thread)
7228 {
7229 struct breakpoint *b, *b_tmp;
7230
7231 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7232 if (b->type == bp_longjmp_call_dummy && b->thread == thread)
7233 {
7234 struct breakpoint *dummy_b = b->related_breakpoint;
7235
7236 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7237 dummy_b = dummy_b->related_breakpoint;
7238 if (dummy_b->type != bp_call_dummy
7239 || frame_find_by_id (dummy_b->frame_id) != NULL)
7240 continue;
7241
7242 dummy_frame_discard (dummy_b->frame_id);
7243
7244 while (b->related_breakpoint != b)
7245 {
7246 if (b_tmp == b->related_breakpoint)
7247 b_tmp = b->related_breakpoint->next;
7248 delete_breakpoint (b->related_breakpoint);
7249 }
7250 delete_breakpoint (b);
7251 }
7252 }
7253
7254 void
7255 enable_overlay_breakpoints (void)
7256 {
7257 struct breakpoint *b;
7258
7259 ALL_BREAKPOINTS (b)
7260 if (b->type == bp_overlay_event)
7261 {
7262 b->enable_state = bp_enabled;
7263 update_global_location_list (1);
7264 overlay_events_enabled = 1;
7265 }
7266 }
7267
7268 void
7269 disable_overlay_breakpoints (void)
7270 {
7271 struct breakpoint *b;
7272
7273 ALL_BREAKPOINTS (b)
7274 if (b->type == bp_overlay_event)
7275 {
7276 b->enable_state = bp_disabled;
7277 update_global_location_list (0);
7278 overlay_events_enabled = 0;
7279 }
7280 }
7281
7282 /* Set an active std::terminate breakpoint for each std::terminate
7283 master breakpoint. */
7284 void
7285 set_std_terminate_breakpoint (void)
7286 {
7287 struct breakpoint *b, *b_tmp;
7288
7289 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7290 if (b->pspace == current_program_space
7291 && b->type == bp_std_terminate_master)
7292 {
7293 momentary_breakpoint_from_master (b, bp_std_terminate,
7294 &momentary_breakpoint_ops);
7295 }
7296 }
7297
7298 /* Delete all the std::terminate breakpoints. */
7299 void
7300 delete_std_terminate_breakpoint (void)
7301 {
7302 struct breakpoint *b, *b_tmp;
7303
7304 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7305 if (b->type == bp_std_terminate)
7306 delete_breakpoint (b);
7307 }
7308
7309 struct breakpoint *
7310 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7311 {
7312 struct breakpoint *b;
7313
7314 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7315 &internal_breakpoint_ops);
7316
7317 b->enable_state = bp_enabled;
7318 /* addr_string has to be used or breakpoint_re_set will delete me. */
7319 b->addr_string
7320 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7321
7322 update_global_location_list_nothrow (1);
7323
7324 return b;
7325 }
7326
7327 void
7328 remove_thread_event_breakpoints (void)
7329 {
7330 struct breakpoint *b, *b_tmp;
7331
7332 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7333 if (b->type == bp_thread_event
7334 && b->loc->pspace == current_program_space)
7335 delete_breakpoint (b);
7336 }
7337
7338 struct lang_and_radix
7339 {
7340 enum language lang;
7341 int radix;
7342 };
7343
7344 /* Create a breakpoint for JIT code registration and unregistration. */
7345
7346 struct breakpoint *
7347 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7348 {
7349 struct breakpoint *b;
7350
7351 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7352 &internal_breakpoint_ops);
7353 update_global_location_list_nothrow (1);
7354 return b;
7355 }
7356
7357 /* Remove JIT code registration and unregistration breakpoint(s). */
7358
7359 void
7360 remove_jit_event_breakpoints (void)
7361 {
7362 struct breakpoint *b, *b_tmp;
7363
7364 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7365 if (b->type == bp_jit_event
7366 && b->loc->pspace == current_program_space)
7367 delete_breakpoint (b);
7368 }
7369
7370 void
7371 remove_solib_event_breakpoints (void)
7372 {
7373 struct breakpoint *b, *b_tmp;
7374
7375 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7376 if (b->type == bp_shlib_event
7377 && b->loc->pspace == current_program_space)
7378 delete_breakpoint (b);
7379 }
7380
7381 struct breakpoint *
7382 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7383 {
7384 struct breakpoint *b;
7385
7386 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7387 &internal_breakpoint_ops);
7388 update_global_location_list_nothrow (1);
7389 return b;
7390 }
7391
7392 /* Disable any breakpoints that are on code in shared libraries. Only
7393 apply to enabled breakpoints, disabled ones can just stay disabled. */
7394
7395 void
7396 disable_breakpoints_in_shlibs (void)
7397 {
7398 struct bp_location *loc, **locp_tmp;
7399
7400 ALL_BP_LOCATIONS (loc, locp_tmp)
7401 {
7402 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7403 struct breakpoint *b = loc->owner;
7404
7405 /* We apply the check to all breakpoints, including disabled for
7406 those with loc->duplicate set. This is so that when breakpoint
7407 becomes enabled, or the duplicate is removed, gdb will try to
7408 insert all breakpoints. If we don't set shlib_disabled here,
7409 we'll try to insert those breakpoints and fail. */
7410 if (((b->type == bp_breakpoint)
7411 || (b->type == bp_jit_event)
7412 || (b->type == bp_hardware_breakpoint)
7413 || (is_tracepoint (b)))
7414 && loc->pspace == current_program_space
7415 && !loc->shlib_disabled
7416 && solib_name_from_address (loc->pspace, loc->address)
7417 )
7418 {
7419 loc->shlib_disabled = 1;
7420 }
7421 }
7422 }
7423
7424 /* Disable any breakpoints and tracepoints that are in an unloaded shared
7425 library. Only apply to enabled breakpoints, disabled ones can just stay
7426 disabled. */
7427
7428 static void
7429 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7430 {
7431 struct bp_location *loc, **locp_tmp;
7432 int disabled_shlib_breaks = 0;
7433
7434 /* SunOS a.out shared libraries are always mapped, so do not
7435 disable breakpoints; they will only be reported as unloaded
7436 through clear_solib when GDB discards its shared library
7437 list. See clear_solib for more information. */
7438 if (exec_bfd != NULL
7439 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7440 return;
7441
7442 ALL_BP_LOCATIONS (loc, locp_tmp)
7443 {
7444 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7445 struct breakpoint *b = loc->owner;
7446
7447 if (solib->pspace == loc->pspace
7448 && !loc->shlib_disabled
7449 && (((b->type == bp_breakpoint
7450 || b->type == bp_jit_event
7451 || b->type == bp_hardware_breakpoint)
7452 && (loc->loc_type == bp_loc_hardware_breakpoint
7453 || loc->loc_type == bp_loc_software_breakpoint))
7454 || is_tracepoint (b))
7455 && solib_contains_address_p (solib, loc->address))
7456 {
7457 loc->shlib_disabled = 1;
7458 /* At this point, we cannot rely on remove_breakpoint
7459 succeeding so we must mark the breakpoint as not inserted
7460 to prevent future errors occurring in remove_breakpoints. */
7461 loc->inserted = 0;
7462
7463 /* This may cause duplicate notifications for the same breakpoint. */
7464 observer_notify_breakpoint_modified (b);
7465
7466 if (!disabled_shlib_breaks)
7467 {
7468 target_terminal_ours_for_output ();
7469 warning (_("Temporarily disabling breakpoints "
7470 "for unloaded shared library \"%s\""),
7471 solib->so_name);
7472 }
7473 disabled_shlib_breaks = 1;
7474 }
7475 }
7476 }
7477
7478 /* FORK & VFORK catchpoints. */
7479
7480 /* An instance of this type is used to represent a fork or vfork
7481 catchpoint. It includes a "struct breakpoint" as a kind of base
7482 class; users downcast to "struct breakpoint *" when needed. A
7483 breakpoint is really of this type iff its ops pointer points to
7484 CATCH_FORK_BREAKPOINT_OPS. */
7485
7486 struct fork_catchpoint
7487 {
7488 /* The base class. */
7489 struct breakpoint base;
7490
7491 /* Process id of a child process whose forking triggered this
7492 catchpoint. This field is only valid immediately after this
7493 catchpoint has triggered. */
7494 ptid_t forked_inferior_pid;
7495 };
7496
7497 /* Implement the "insert" breakpoint_ops method for fork
7498 catchpoints. */
7499
7500 static int
7501 insert_catch_fork (struct bp_location *bl)
7502 {
7503 return target_insert_fork_catchpoint (PIDGET (inferior_ptid));
7504 }
7505
7506 /* Implement the "remove" breakpoint_ops method for fork
7507 catchpoints. */
7508
7509 static int
7510 remove_catch_fork (struct bp_location *bl)
7511 {
7512 return target_remove_fork_catchpoint (PIDGET (inferior_ptid));
7513 }
7514
7515 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7516 catchpoints. */
7517
7518 static int
7519 breakpoint_hit_catch_fork (const struct bp_location *bl,
7520 struct address_space *aspace, CORE_ADDR bp_addr,
7521 const struct target_waitstatus *ws)
7522 {
7523 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7524
7525 if (ws->kind != TARGET_WAITKIND_FORKED)
7526 return 0;
7527
7528 c->forked_inferior_pid = ws->value.related_pid;
7529 return 1;
7530 }
7531
7532 /* Implement the "print_it" breakpoint_ops method for fork
7533 catchpoints. */
7534
7535 static enum print_stop_action
7536 print_it_catch_fork (bpstat bs)
7537 {
7538 struct ui_out *uiout = current_uiout;
7539 struct breakpoint *b = bs->breakpoint_at;
7540 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7541
7542 annotate_catchpoint (b->number);
7543 if (b->disposition == disp_del)
7544 ui_out_text (uiout, "\nTemporary catchpoint ");
7545 else
7546 ui_out_text (uiout, "\nCatchpoint ");
7547 if (ui_out_is_mi_like_p (uiout))
7548 {
7549 ui_out_field_string (uiout, "reason",
7550 async_reason_lookup (EXEC_ASYNC_FORK));
7551 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7552 }
7553 ui_out_field_int (uiout, "bkptno", b->number);
7554 ui_out_text (uiout, " (forked process ");
7555 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7556 ui_out_text (uiout, "), ");
7557 return PRINT_SRC_AND_LOC;
7558 }
7559
7560 /* Implement the "print_one" breakpoint_ops method for fork
7561 catchpoints. */
7562
7563 static void
7564 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7565 {
7566 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7567 struct value_print_options opts;
7568 struct ui_out *uiout = current_uiout;
7569
7570 get_user_print_options (&opts);
7571
7572 /* Field 4, the address, is omitted (which makes the columns not
7573 line up too nicely with the headers, but the effect is relatively
7574 readable). */
7575 if (opts.addressprint)
7576 ui_out_field_skip (uiout, "addr");
7577 annotate_field (5);
7578 ui_out_text (uiout, "fork");
7579 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7580 {
7581 ui_out_text (uiout, ", process ");
7582 ui_out_field_int (uiout, "what",
7583 ptid_get_pid (c->forked_inferior_pid));
7584 ui_out_spaces (uiout, 1);
7585 }
7586
7587 if (ui_out_is_mi_like_p (uiout))
7588 ui_out_field_string (uiout, "catch-type", "fork");
7589 }
7590
7591 /* Implement the "print_mention" breakpoint_ops method for fork
7592 catchpoints. */
7593
7594 static void
7595 print_mention_catch_fork (struct breakpoint *b)
7596 {
7597 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7598 }
7599
7600 /* Implement the "print_recreate" breakpoint_ops method for fork
7601 catchpoints. */
7602
7603 static void
7604 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7605 {
7606 fprintf_unfiltered (fp, "catch fork");
7607 print_recreate_thread (b, fp);
7608 }
7609
7610 /* The breakpoint_ops structure to be used in fork catchpoints. */
7611
7612 static struct breakpoint_ops catch_fork_breakpoint_ops;
7613
7614 /* Implement the "insert" breakpoint_ops method for vfork
7615 catchpoints. */
7616
7617 static int
7618 insert_catch_vfork (struct bp_location *bl)
7619 {
7620 return target_insert_vfork_catchpoint (PIDGET (inferior_ptid));
7621 }
7622
7623 /* Implement the "remove" breakpoint_ops method for vfork
7624 catchpoints. */
7625
7626 static int
7627 remove_catch_vfork (struct bp_location *bl)
7628 {
7629 return target_remove_vfork_catchpoint (PIDGET (inferior_ptid));
7630 }
7631
7632 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7633 catchpoints. */
7634
7635 static int
7636 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7637 struct address_space *aspace, CORE_ADDR bp_addr,
7638 const struct target_waitstatus *ws)
7639 {
7640 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7641
7642 if (ws->kind != TARGET_WAITKIND_VFORKED)
7643 return 0;
7644
7645 c->forked_inferior_pid = ws->value.related_pid;
7646 return 1;
7647 }
7648
7649 /* Implement the "print_it" breakpoint_ops method for vfork
7650 catchpoints. */
7651
7652 static enum print_stop_action
7653 print_it_catch_vfork (bpstat bs)
7654 {
7655 struct ui_out *uiout = current_uiout;
7656 struct breakpoint *b = bs->breakpoint_at;
7657 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7658
7659 annotate_catchpoint (b->number);
7660 if (b->disposition == disp_del)
7661 ui_out_text (uiout, "\nTemporary catchpoint ");
7662 else
7663 ui_out_text (uiout, "\nCatchpoint ");
7664 if (ui_out_is_mi_like_p (uiout))
7665 {
7666 ui_out_field_string (uiout, "reason",
7667 async_reason_lookup (EXEC_ASYNC_VFORK));
7668 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7669 }
7670 ui_out_field_int (uiout, "bkptno", b->number);
7671 ui_out_text (uiout, " (vforked process ");
7672 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7673 ui_out_text (uiout, "), ");
7674 return PRINT_SRC_AND_LOC;
7675 }
7676
7677 /* Implement the "print_one" breakpoint_ops method for vfork
7678 catchpoints. */
7679
7680 static void
7681 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7682 {
7683 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7684 struct value_print_options opts;
7685 struct ui_out *uiout = current_uiout;
7686
7687 get_user_print_options (&opts);
7688 /* Field 4, the address, is omitted (which makes the columns not
7689 line up too nicely with the headers, but the effect is relatively
7690 readable). */
7691 if (opts.addressprint)
7692 ui_out_field_skip (uiout, "addr");
7693 annotate_field (5);
7694 ui_out_text (uiout, "vfork");
7695 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7696 {
7697 ui_out_text (uiout, ", process ");
7698 ui_out_field_int (uiout, "what",
7699 ptid_get_pid (c->forked_inferior_pid));
7700 ui_out_spaces (uiout, 1);
7701 }
7702
7703 if (ui_out_is_mi_like_p (uiout))
7704 ui_out_field_string (uiout, "catch-type", "vfork");
7705 }
7706
7707 /* Implement the "print_mention" breakpoint_ops method for vfork
7708 catchpoints. */
7709
7710 static void
7711 print_mention_catch_vfork (struct breakpoint *b)
7712 {
7713 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7714 }
7715
7716 /* Implement the "print_recreate" breakpoint_ops method for vfork
7717 catchpoints. */
7718
7719 static void
7720 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7721 {
7722 fprintf_unfiltered (fp, "catch vfork");
7723 print_recreate_thread (b, fp);
7724 }
7725
7726 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7727
7728 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7729
7730 /* An instance of this type is used to represent an solib catchpoint.
7731 It includes a "struct breakpoint" as a kind of base class; users
7732 downcast to "struct breakpoint *" when needed. A breakpoint is
7733 really of this type iff its ops pointer points to
7734 CATCH_SOLIB_BREAKPOINT_OPS. */
7735
7736 struct solib_catchpoint
7737 {
7738 /* The base class. */
7739 struct breakpoint base;
7740
7741 /* True for "catch load", false for "catch unload". */
7742 unsigned char is_load;
7743
7744 /* Regular expression to match, if any. COMPILED is only valid when
7745 REGEX is non-NULL. */
7746 char *regex;
7747 regex_t compiled;
7748 };
7749
7750 static void
7751 dtor_catch_solib (struct breakpoint *b)
7752 {
7753 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7754
7755 if (self->regex)
7756 regfree (&self->compiled);
7757 xfree (self->regex);
7758
7759 base_breakpoint_ops.dtor (b);
7760 }
7761
7762 static int
7763 insert_catch_solib (struct bp_location *ignore)
7764 {
7765 return 0;
7766 }
7767
7768 static int
7769 remove_catch_solib (struct bp_location *ignore)
7770 {
7771 return 0;
7772 }
7773
7774 static int
7775 breakpoint_hit_catch_solib (const struct bp_location *bl,
7776 struct address_space *aspace,
7777 CORE_ADDR bp_addr,
7778 const struct target_waitstatus *ws)
7779 {
7780 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7781 struct breakpoint *other;
7782
7783 if (ws->kind == TARGET_WAITKIND_LOADED)
7784 return 1;
7785
7786 ALL_BREAKPOINTS (other)
7787 {
7788 struct bp_location *other_bl;
7789
7790 if (other == bl->owner)
7791 continue;
7792
7793 if (other->type != bp_shlib_event)
7794 continue;
7795
7796 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
7797 continue;
7798
7799 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7800 {
7801 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7802 return 1;
7803 }
7804 }
7805
7806 return 0;
7807 }
7808
7809 static void
7810 check_status_catch_solib (struct bpstats *bs)
7811 {
7812 struct solib_catchpoint *self
7813 = (struct solib_catchpoint *) bs->breakpoint_at;
7814 int ix;
7815
7816 if (self->is_load)
7817 {
7818 struct so_list *iter;
7819
7820 for (ix = 0;
7821 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
7822 ix, iter);
7823 ++ix)
7824 {
7825 if (!self->regex
7826 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
7827 return;
7828 }
7829 }
7830 else
7831 {
7832 char *iter;
7833
7834 for (ix = 0;
7835 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
7836 ix, iter);
7837 ++ix)
7838 {
7839 if (!self->regex
7840 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
7841 return;
7842 }
7843 }
7844
7845 bs->stop = 0;
7846 bs->print_it = print_it_noop;
7847 }
7848
7849 static enum print_stop_action
7850 print_it_catch_solib (bpstat bs)
7851 {
7852 struct breakpoint *b = bs->breakpoint_at;
7853 struct ui_out *uiout = current_uiout;
7854
7855 annotate_catchpoint (b->number);
7856 if (b->disposition == disp_del)
7857 ui_out_text (uiout, "\nTemporary catchpoint ");
7858 else
7859 ui_out_text (uiout, "\nCatchpoint ");
7860 ui_out_field_int (uiout, "bkptno", b->number);
7861 ui_out_text (uiout, "\n");
7862 if (ui_out_is_mi_like_p (uiout))
7863 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7864 print_solib_event (1);
7865 return PRINT_SRC_AND_LOC;
7866 }
7867
7868 static void
7869 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
7870 {
7871 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7872 struct value_print_options opts;
7873 struct ui_out *uiout = current_uiout;
7874 char *msg;
7875
7876 get_user_print_options (&opts);
7877 /* Field 4, the address, is omitted (which makes the columns not
7878 line up too nicely with the headers, but the effect is relatively
7879 readable). */
7880 if (opts.addressprint)
7881 {
7882 annotate_field (4);
7883 ui_out_field_skip (uiout, "addr");
7884 }
7885
7886 annotate_field (5);
7887 if (self->is_load)
7888 {
7889 if (self->regex)
7890 msg = xstrprintf (_("load of library matching %s"), self->regex);
7891 else
7892 msg = xstrdup (_("load of library"));
7893 }
7894 else
7895 {
7896 if (self->regex)
7897 msg = xstrprintf (_("unload of library matching %s"), self->regex);
7898 else
7899 msg = xstrdup (_("unload of library"));
7900 }
7901 ui_out_field_string (uiout, "what", msg);
7902 xfree (msg);
7903
7904 if (ui_out_is_mi_like_p (uiout))
7905 ui_out_field_string (uiout, "catch-type",
7906 self->is_load ? "load" : "unload");
7907 }
7908
7909 static void
7910 print_mention_catch_solib (struct breakpoint *b)
7911 {
7912 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7913
7914 printf_filtered (_("Catchpoint %d (%s)"), b->number,
7915 self->is_load ? "load" : "unload");
7916 }
7917
7918 static void
7919 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
7920 {
7921 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7922
7923 fprintf_unfiltered (fp, "%s %s",
7924 b->disposition == disp_del ? "tcatch" : "catch",
7925 self->is_load ? "load" : "unload");
7926 if (self->regex)
7927 fprintf_unfiltered (fp, " %s", self->regex);
7928 fprintf_unfiltered (fp, "\n");
7929 }
7930
7931 static struct breakpoint_ops catch_solib_breakpoint_ops;
7932
7933 /* Shared helper function (MI and CLI) for creating and installing
7934 a shared object event catchpoint. If IS_LOAD is non-zero then
7935 the events to be caught are load events, otherwise they are
7936 unload events. If IS_TEMP is non-zero the catchpoint is a
7937 temporary one. If ENABLED is non-zero the catchpoint is
7938 created in an enabled state. */
7939
7940 void
7941 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
7942 {
7943 struct solib_catchpoint *c;
7944 struct gdbarch *gdbarch = get_current_arch ();
7945 struct cleanup *cleanup;
7946
7947 if (!arg)
7948 arg = "";
7949 arg = skip_spaces (arg);
7950
7951 c = XCNEW (struct solib_catchpoint);
7952 cleanup = make_cleanup (xfree, c);
7953
7954 if (*arg != '\0')
7955 {
7956 int errcode;
7957
7958 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
7959 if (errcode != 0)
7960 {
7961 char *err = get_regcomp_error (errcode, &c->compiled);
7962
7963 make_cleanup (xfree, err);
7964 error (_("Invalid regexp (%s): %s"), err, arg);
7965 }
7966 c->regex = xstrdup (arg);
7967 }
7968
7969 c->is_load = is_load;
7970 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
7971 &catch_solib_breakpoint_ops);
7972
7973 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
7974
7975 discard_cleanups (cleanup);
7976 install_breakpoint (0, &c->base, 1);
7977 }
7978
7979 /* A helper function that does all the work for "catch load" and
7980 "catch unload". */
7981
7982 static void
7983 catch_load_or_unload (char *arg, int from_tty, int is_load,
7984 struct cmd_list_element *command)
7985 {
7986 int tempflag;
7987 const int enabled = 1;
7988
7989 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
7990
7991 add_solib_catchpoint (arg, is_load, tempflag, enabled);
7992 }
7993
7994 static void
7995 catch_load_command_1 (char *arg, int from_tty,
7996 struct cmd_list_element *command)
7997 {
7998 catch_load_or_unload (arg, from_tty, 1, command);
7999 }
8000
8001 static void
8002 catch_unload_command_1 (char *arg, int from_tty,
8003 struct cmd_list_element *command)
8004 {
8005 catch_load_or_unload (arg, from_tty, 0, command);
8006 }
8007
8008 /* An instance of this type is used to represent a syscall catchpoint.
8009 It includes a "struct breakpoint" as a kind of base class; users
8010 downcast to "struct breakpoint *" when needed. A breakpoint is
8011 really of this type iff its ops pointer points to
8012 CATCH_SYSCALL_BREAKPOINT_OPS. */
8013
8014 struct syscall_catchpoint
8015 {
8016 /* The base class. */
8017 struct breakpoint base;
8018
8019 /* Syscall numbers used for the 'catch syscall' feature. If no
8020 syscall has been specified for filtering, its value is NULL.
8021 Otherwise, it holds a list of all syscalls to be caught. The
8022 list elements are allocated with xmalloc. */
8023 VEC(int) *syscalls_to_be_caught;
8024 };
8025
8026 /* Implement the "dtor" breakpoint_ops method for syscall
8027 catchpoints. */
8028
8029 static void
8030 dtor_catch_syscall (struct breakpoint *b)
8031 {
8032 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8033
8034 VEC_free (int, c->syscalls_to_be_caught);
8035
8036 base_breakpoint_ops.dtor (b);
8037 }
8038
8039 static const struct inferior_data *catch_syscall_inferior_data = NULL;
8040
8041 struct catch_syscall_inferior_data
8042 {
8043 /* We keep a count of the number of times the user has requested a
8044 particular syscall to be tracked, and pass this information to the
8045 target. This lets capable targets implement filtering directly. */
8046
8047 /* Number of times that "any" syscall is requested. */
8048 int any_syscall_count;
8049
8050 /* Count of each system call. */
8051 VEC(int) *syscalls_counts;
8052
8053 /* This counts all syscall catch requests, so we can readily determine
8054 if any catching is necessary. */
8055 int total_syscalls_count;
8056 };
8057
8058 static struct catch_syscall_inferior_data*
8059 get_catch_syscall_inferior_data (struct inferior *inf)
8060 {
8061 struct catch_syscall_inferior_data *inf_data;
8062
8063 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8064 if (inf_data == NULL)
8065 {
8066 inf_data = XZALLOC (struct catch_syscall_inferior_data);
8067 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8068 }
8069
8070 return inf_data;
8071 }
8072
8073 static void
8074 catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8075 {
8076 xfree (arg);
8077 }
8078
8079
8080 /* Implement the "insert" breakpoint_ops method for syscall
8081 catchpoints. */
8082
8083 static int
8084 insert_catch_syscall (struct bp_location *bl)
8085 {
8086 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8087 struct inferior *inf = current_inferior ();
8088 struct catch_syscall_inferior_data *inf_data
8089 = get_catch_syscall_inferior_data (inf);
8090
8091 ++inf_data->total_syscalls_count;
8092 if (!c->syscalls_to_be_caught)
8093 ++inf_data->any_syscall_count;
8094 else
8095 {
8096 int i, iter;
8097
8098 for (i = 0;
8099 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8100 i++)
8101 {
8102 int elem;
8103
8104 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8105 {
8106 int old_size = VEC_length (int, inf_data->syscalls_counts);
8107 uintptr_t vec_addr_offset
8108 = old_size * ((uintptr_t) sizeof (int));
8109 uintptr_t vec_addr;
8110 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8111 vec_addr = ((uintptr_t) VEC_address (int,
8112 inf_data->syscalls_counts)
8113 + vec_addr_offset);
8114 memset ((void *) vec_addr, 0,
8115 (iter + 1 - old_size) * sizeof (int));
8116 }
8117 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8118 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8119 }
8120 }
8121
8122 return target_set_syscall_catchpoint (PIDGET (inferior_ptid),
8123 inf_data->total_syscalls_count != 0,
8124 inf_data->any_syscall_count,
8125 VEC_length (int,
8126 inf_data->syscalls_counts),
8127 VEC_address (int,
8128 inf_data->syscalls_counts));
8129 }
8130
8131 /* Implement the "remove" breakpoint_ops method for syscall
8132 catchpoints. */
8133
8134 static int
8135 remove_catch_syscall (struct bp_location *bl)
8136 {
8137 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8138 struct inferior *inf = current_inferior ();
8139 struct catch_syscall_inferior_data *inf_data
8140 = get_catch_syscall_inferior_data (inf);
8141
8142 --inf_data->total_syscalls_count;
8143 if (!c->syscalls_to_be_caught)
8144 --inf_data->any_syscall_count;
8145 else
8146 {
8147 int i, iter;
8148
8149 for (i = 0;
8150 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8151 i++)
8152 {
8153 int elem;
8154 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8155 /* Shouldn't happen. */
8156 continue;
8157 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8158 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8159 }
8160 }
8161
8162 return target_set_syscall_catchpoint (PIDGET (inferior_ptid),
8163 inf_data->total_syscalls_count != 0,
8164 inf_data->any_syscall_count,
8165 VEC_length (int,
8166 inf_data->syscalls_counts),
8167 VEC_address (int,
8168 inf_data->syscalls_counts));
8169 }
8170
8171 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8172 catchpoints. */
8173
8174 static int
8175 breakpoint_hit_catch_syscall (const struct bp_location *bl,
8176 struct address_space *aspace, CORE_ADDR bp_addr,
8177 const struct target_waitstatus *ws)
8178 {
8179 /* We must check if we are catching specific syscalls in this
8180 breakpoint. If we are, then we must guarantee that the called
8181 syscall is the same syscall we are catching. */
8182 int syscall_number = 0;
8183 const struct syscall_catchpoint *c
8184 = (const struct syscall_catchpoint *) bl->owner;
8185
8186 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8187 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8188 return 0;
8189
8190 syscall_number = ws->value.syscall_number;
8191
8192 /* Now, checking if the syscall is the same. */
8193 if (c->syscalls_to_be_caught)
8194 {
8195 int i, iter;
8196
8197 for (i = 0;
8198 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8199 i++)
8200 if (syscall_number == iter)
8201 break;
8202 /* Not the same. */
8203 if (!iter)
8204 return 0;
8205 }
8206
8207 return 1;
8208 }
8209
8210 /* Implement the "print_it" breakpoint_ops method for syscall
8211 catchpoints. */
8212
8213 static enum print_stop_action
8214 print_it_catch_syscall (bpstat bs)
8215 {
8216 struct ui_out *uiout = current_uiout;
8217 struct breakpoint *b = bs->breakpoint_at;
8218 /* These are needed because we want to know in which state a
8219 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8220 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8221 must print "called syscall" or "returned from syscall". */
8222 ptid_t ptid;
8223 struct target_waitstatus last;
8224 struct syscall s;
8225
8226 get_last_target_status (&ptid, &last);
8227
8228 get_syscall_by_number (last.value.syscall_number, &s);
8229
8230 annotate_catchpoint (b->number);
8231
8232 if (b->disposition == disp_del)
8233 ui_out_text (uiout, "\nTemporary catchpoint ");
8234 else
8235 ui_out_text (uiout, "\nCatchpoint ");
8236 if (ui_out_is_mi_like_p (uiout))
8237 {
8238 ui_out_field_string (uiout, "reason",
8239 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8240 ? EXEC_ASYNC_SYSCALL_ENTRY
8241 : EXEC_ASYNC_SYSCALL_RETURN));
8242 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8243 }
8244 ui_out_field_int (uiout, "bkptno", b->number);
8245
8246 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8247 ui_out_text (uiout, " (call to syscall ");
8248 else
8249 ui_out_text (uiout, " (returned from syscall ");
8250
8251 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8252 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8253 if (s.name != NULL)
8254 ui_out_field_string (uiout, "syscall-name", s.name);
8255
8256 ui_out_text (uiout, "), ");
8257
8258 return PRINT_SRC_AND_LOC;
8259 }
8260
8261 /* Implement the "print_one" breakpoint_ops method for syscall
8262 catchpoints. */
8263
8264 static void
8265 print_one_catch_syscall (struct breakpoint *b,
8266 struct bp_location **last_loc)
8267 {
8268 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8269 struct value_print_options opts;
8270 struct ui_out *uiout = current_uiout;
8271
8272 get_user_print_options (&opts);
8273 /* Field 4, the address, is omitted (which makes the columns not
8274 line up too nicely with the headers, but the effect is relatively
8275 readable). */
8276 if (opts.addressprint)
8277 ui_out_field_skip (uiout, "addr");
8278 annotate_field (5);
8279
8280 if (c->syscalls_to_be_caught
8281 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8282 ui_out_text (uiout, "syscalls \"");
8283 else
8284 ui_out_text (uiout, "syscall \"");
8285
8286 if (c->syscalls_to_be_caught)
8287 {
8288 int i, iter;
8289 char *text = xstrprintf ("%s", "");
8290
8291 for (i = 0;
8292 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8293 i++)
8294 {
8295 char *x = text;
8296 struct syscall s;
8297 get_syscall_by_number (iter, &s);
8298
8299 if (s.name != NULL)
8300 text = xstrprintf ("%s%s, ", text, s.name);
8301 else
8302 text = xstrprintf ("%s%d, ", text, iter);
8303
8304 /* We have to xfree the last 'text' (now stored at 'x')
8305 because xstrprintf dynamically allocates new space for it
8306 on every call. */
8307 xfree (x);
8308 }
8309 /* Remove the last comma. */
8310 text[strlen (text) - 2] = '\0';
8311 ui_out_field_string (uiout, "what", text);
8312 }
8313 else
8314 ui_out_field_string (uiout, "what", "<any syscall>");
8315 ui_out_text (uiout, "\" ");
8316
8317 if (ui_out_is_mi_like_p (uiout))
8318 ui_out_field_string (uiout, "catch-type", "syscall");
8319 }
8320
8321 /* Implement the "print_mention" breakpoint_ops method for syscall
8322 catchpoints. */
8323
8324 static void
8325 print_mention_catch_syscall (struct breakpoint *b)
8326 {
8327 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8328
8329 if (c->syscalls_to_be_caught)
8330 {
8331 int i, iter;
8332
8333 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8334 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8335 else
8336 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8337
8338 for (i = 0;
8339 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8340 i++)
8341 {
8342 struct syscall s;
8343 get_syscall_by_number (iter, &s);
8344
8345 if (s.name)
8346 printf_filtered (" '%s' [%d]", s.name, s.number);
8347 else
8348 printf_filtered (" %d", s.number);
8349 }
8350 printf_filtered (")");
8351 }
8352 else
8353 printf_filtered (_("Catchpoint %d (any syscall)"),
8354 b->number);
8355 }
8356
8357 /* Implement the "print_recreate" breakpoint_ops method for syscall
8358 catchpoints. */
8359
8360 static void
8361 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8362 {
8363 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8364
8365 fprintf_unfiltered (fp, "catch syscall");
8366
8367 if (c->syscalls_to_be_caught)
8368 {
8369 int i, iter;
8370
8371 for (i = 0;
8372 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8373 i++)
8374 {
8375 struct syscall s;
8376
8377 get_syscall_by_number (iter, &s);
8378 if (s.name)
8379 fprintf_unfiltered (fp, " %s", s.name);
8380 else
8381 fprintf_unfiltered (fp, " %d", s.number);
8382 }
8383 }
8384 print_recreate_thread (b, fp);
8385 }
8386
8387 /* The breakpoint_ops structure to be used in syscall catchpoints. */
8388
8389 static struct breakpoint_ops catch_syscall_breakpoint_ops;
8390
8391 /* Returns non-zero if 'b' is a syscall catchpoint. */
8392
8393 static int
8394 syscall_catchpoint_p (struct breakpoint *b)
8395 {
8396 return (b->ops == &catch_syscall_breakpoint_ops);
8397 }
8398
8399 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8400 is non-zero, then make the breakpoint temporary. If COND_STRING is
8401 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8402 the breakpoint_ops structure associated to the catchpoint. */
8403
8404 void
8405 init_catchpoint (struct breakpoint *b,
8406 struct gdbarch *gdbarch, int tempflag,
8407 char *cond_string,
8408 const struct breakpoint_ops *ops)
8409 {
8410 struct symtab_and_line sal;
8411
8412 init_sal (&sal);
8413 sal.pspace = current_program_space;
8414
8415 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8416
8417 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8418 b->disposition = tempflag ? disp_del : disp_donttouch;
8419 }
8420
8421 void
8422 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8423 {
8424 add_to_breakpoint_chain (b);
8425 set_breakpoint_number (internal, b);
8426 if (is_tracepoint (b))
8427 set_tracepoint_count (breakpoint_count);
8428 if (!internal)
8429 mention (b);
8430 observer_notify_breakpoint_created (b);
8431
8432 if (update_gll)
8433 update_global_location_list (1);
8434 }
8435
8436 static void
8437 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8438 int tempflag, char *cond_string,
8439 const struct breakpoint_ops *ops)
8440 {
8441 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8442
8443 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8444
8445 c->forked_inferior_pid = null_ptid;
8446
8447 install_breakpoint (0, &c->base, 1);
8448 }
8449
8450 /* Exec catchpoints. */
8451
8452 /* An instance of this type is used to represent an exec catchpoint.
8453 It includes a "struct breakpoint" as a kind of base class; users
8454 downcast to "struct breakpoint *" when needed. A breakpoint is
8455 really of this type iff its ops pointer points to
8456 CATCH_EXEC_BREAKPOINT_OPS. */
8457
8458 struct exec_catchpoint
8459 {
8460 /* The base class. */
8461 struct breakpoint base;
8462
8463 /* Filename of a program whose exec triggered this catchpoint.
8464 This field is only valid immediately after this catchpoint has
8465 triggered. */
8466 char *exec_pathname;
8467 };
8468
8469 /* Implement the "dtor" breakpoint_ops method for exec
8470 catchpoints. */
8471
8472 static void
8473 dtor_catch_exec (struct breakpoint *b)
8474 {
8475 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8476
8477 xfree (c->exec_pathname);
8478
8479 base_breakpoint_ops.dtor (b);
8480 }
8481
8482 static int
8483 insert_catch_exec (struct bp_location *bl)
8484 {
8485 return target_insert_exec_catchpoint (PIDGET (inferior_ptid));
8486 }
8487
8488 static int
8489 remove_catch_exec (struct bp_location *bl)
8490 {
8491 return target_remove_exec_catchpoint (PIDGET (inferior_ptid));
8492 }
8493
8494 static int
8495 breakpoint_hit_catch_exec (const struct bp_location *bl,
8496 struct address_space *aspace, CORE_ADDR bp_addr,
8497 const struct target_waitstatus *ws)
8498 {
8499 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8500
8501 if (ws->kind != TARGET_WAITKIND_EXECD)
8502 return 0;
8503
8504 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8505 return 1;
8506 }
8507
8508 static enum print_stop_action
8509 print_it_catch_exec (bpstat bs)
8510 {
8511 struct ui_out *uiout = current_uiout;
8512 struct breakpoint *b = bs->breakpoint_at;
8513 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8514
8515 annotate_catchpoint (b->number);
8516 if (b->disposition == disp_del)
8517 ui_out_text (uiout, "\nTemporary catchpoint ");
8518 else
8519 ui_out_text (uiout, "\nCatchpoint ");
8520 if (ui_out_is_mi_like_p (uiout))
8521 {
8522 ui_out_field_string (uiout, "reason",
8523 async_reason_lookup (EXEC_ASYNC_EXEC));
8524 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8525 }
8526 ui_out_field_int (uiout, "bkptno", b->number);
8527 ui_out_text (uiout, " (exec'd ");
8528 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8529 ui_out_text (uiout, "), ");
8530
8531 return PRINT_SRC_AND_LOC;
8532 }
8533
8534 static void
8535 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8536 {
8537 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8538 struct value_print_options opts;
8539 struct ui_out *uiout = current_uiout;
8540
8541 get_user_print_options (&opts);
8542
8543 /* Field 4, the address, is omitted (which makes the columns
8544 not line up too nicely with the headers, but the effect
8545 is relatively readable). */
8546 if (opts.addressprint)
8547 ui_out_field_skip (uiout, "addr");
8548 annotate_field (5);
8549 ui_out_text (uiout, "exec");
8550 if (c->exec_pathname != NULL)
8551 {
8552 ui_out_text (uiout, ", program \"");
8553 ui_out_field_string (uiout, "what", c->exec_pathname);
8554 ui_out_text (uiout, "\" ");
8555 }
8556
8557 if (ui_out_is_mi_like_p (uiout))
8558 ui_out_field_string (uiout, "catch-type", "exec");
8559 }
8560
8561 static void
8562 print_mention_catch_exec (struct breakpoint *b)
8563 {
8564 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8565 }
8566
8567 /* Implement the "print_recreate" breakpoint_ops method for exec
8568 catchpoints. */
8569
8570 static void
8571 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8572 {
8573 fprintf_unfiltered (fp, "catch exec");
8574 print_recreate_thread (b, fp);
8575 }
8576
8577 static struct breakpoint_ops catch_exec_breakpoint_ops;
8578
8579 static void
8580 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
8581 const struct breakpoint_ops *ops)
8582 {
8583 struct syscall_catchpoint *c;
8584 struct gdbarch *gdbarch = get_current_arch ();
8585
8586 c = XNEW (struct syscall_catchpoint);
8587 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
8588 c->syscalls_to_be_caught = filter;
8589
8590 install_breakpoint (0, &c->base, 1);
8591 }
8592
8593 static int
8594 hw_breakpoint_used_count (void)
8595 {
8596 int i = 0;
8597 struct breakpoint *b;
8598 struct bp_location *bl;
8599
8600 ALL_BREAKPOINTS (b)
8601 {
8602 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8603 for (bl = b->loc; bl; bl = bl->next)
8604 {
8605 /* Special types of hardware breakpoints may use more than
8606 one register. */
8607 i += b->ops->resources_needed (bl);
8608 }
8609 }
8610
8611 return i;
8612 }
8613
8614 /* Returns the resources B would use if it were a hardware
8615 watchpoint. */
8616
8617 static int
8618 hw_watchpoint_use_count (struct breakpoint *b)
8619 {
8620 int i = 0;
8621 struct bp_location *bl;
8622
8623 if (!breakpoint_enabled (b))
8624 return 0;
8625
8626 for (bl = b->loc; bl; bl = bl->next)
8627 {
8628 /* Special types of hardware watchpoints may use more than
8629 one register. */
8630 i += b->ops->resources_needed (bl);
8631 }
8632
8633 return i;
8634 }
8635
8636 /* Returns the sum the used resources of all hardware watchpoints of
8637 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8638 the sum of the used resources of all hardware watchpoints of other
8639 types _not_ TYPE. */
8640
8641 static int
8642 hw_watchpoint_used_count_others (struct breakpoint *except,
8643 enum bptype type, int *other_type_used)
8644 {
8645 int i = 0;
8646 struct breakpoint *b;
8647
8648 *other_type_used = 0;
8649 ALL_BREAKPOINTS (b)
8650 {
8651 if (b == except)
8652 continue;
8653 if (!breakpoint_enabled (b))
8654 continue;
8655
8656 if (b->type == type)
8657 i += hw_watchpoint_use_count (b);
8658 else if (is_hardware_watchpoint (b))
8659 *other_type_used = 1;
8660 }
8661
8662 return i;
8663 }
8664
8665 void
8666 disable_watchpoints_before_interactive_call_start (void)
8667 {
8668 struct breakpoint *b;
8669
8670 ALL_BREAKPOINTS (b)
8671 {
8672 if (is_watchpoint (b) && breakpoint_enabled (b))
8673 {
8674 b->enable_state = bp_call_disabled;
8675 update_global_location_list (0);
8676 }
8677 }
8678 }
8679
8680 void
8681 enable_watchpoints_after_interactive_call_stop (void)
8682 {
8683 struct breakpoint *b;
8684
8685 ALL_BREAKPOINTS (b)
8686 {
8687 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8688 {
8689 b->enable_state = bp_enabled;
8690 update_global_location_list (1);
8691 }
8692 }
8693 }
8694
8695 void
8696 disable_breakpoints_before_startup (void)
8697 {
8698 current_program_space->executing_startup = 1;
8699 update_global_location_list (0);
8700 }
8701
8702 void
8703 enable_breakpoints_after_startup (void)
8704 {
8705 current_program_space->executing_startup = 0;
8706 breakpoint_re_set ();
8707 }
8708
8709
8710 /* Set a breakpoint that will evaporate an end of command
8711 at address specified by SAL.
8712 Restrict it to frame FRAME if FRAME is nonzero. */
8713
8714 struct breakpoint *
8715 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8716 struct frame_id frame_id, enum bptype type)
8717 {
8718 struct breakpoint *b;
8719
8720 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8721 tail-called one. */
8722 gdb_assert (!frame_id_artificial_p (frame_id));
8723
8724 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8725 b->enable_state = bp_enabled;
8726 b->disposition = disp_donttouch;
8727 b->frame_id = frame_id;
8728
8729 /* If we're debugging a multi-threaded program, then we want
8730 momentary breakpoints to be active in only a single thread of
8731 control. */
8732 if (in_thread_list (inferior_ptid))
8733 b->thread = pid_to_thread_id (inferior_ptid);
8734
8735 update_global_location_list_nothrow (1);
8736
8737 return b;
8738 }
8739
8740 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8741 The new breakpoint will have type TYPE, and use OPS as it
8742 breakpoint_ops. */
8743
8744 static struct breakpoint *
8745 momentary_breakpoint_from_master (struct breakpoint *orig,
8746 enum bptype type,
8747 const struct breakpoint_ops *ops)
8748 {
8749 struct breakpoint *copy;
8750
8751 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8752 copy->loc = allocate_bp_location (copy);
8753 set_breakpoint_location_function (copy->loc, 1);
8754
8755 copy->loc->gdbarch = orig->loc->gdbarch;
8756 copy->loc->requested_address = orig->loc->requested_address;
8757 copy->loc->address = orig->loc->address;
8758 copy->loc->section = orig->loc->section;
8759 copy->loc->pspace = orig->loc->pspace;
8760 copy->loc->probe = orig->loc->probe;
8761 copy->loc->line_number = orig->loc->line_number;
8762 copy->loc->symtab = orig->loc->symtab;
8763 copy->frame_id = orig->frame_id;
8764 copy->thread = orig->thread;
8765 copy->pspace = orig->pspace;
8766
8767 copy->enable_state = bp_enabled;
8768 copy->disposition = disp_donttouch;
8769 copy->number = internal_breakpoint_number--;
8770
8771 update_global_location_list_nothrow (0);
8772 return copy;
8773 }
8774
8775 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8776 ORIG is NULL. */
8777
8778 struct breakpoint *
8779 clone_momentary_breakpoint (struct breakpoint *orig)
8780 {
8781 /* If there's nothing to clone, then return nothing. */
8782 if (orig == NULL)
8783 return NULL;
8784
8785 return momentary_breakpoint_from_master (orig, orig->type, orig->ops);
8786 }
8787
8788 struct breakpoint *
8789 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8790 enum bptype type)
8791 {
8792 struct symtab_and_line sal;
8793
8794 sal = find_pc_line (pc, 0);
8795 sal.pc = pc;
8796 sal.section = find_pc_overlay (pc);
8797 sal.explicit_pc = 1;
8798
8799 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8800 }
8801 \f
8802
8803 /* Tell the user we have just set a breakpoint B. */
8804
8805 static void
8806 mention (struct breakpoint *b)
8807 {
8808 b->ops->print_mention (b);
8809 if (ui_out_is_mi_like_p (current_uiout))
8810 return;
8811 printf_filtered ("\n");
8812 }
8813 \f
8814
8815 static struct bp_location *
8816 add_location_to_breakpoint (struct breakpoint *b,
8817 const struct symtab_and_line *sal)
8818 {
8819 struct bp_location *loc, **tmp;
8820 CORE_ADDR adjusted_address;
8821 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8822
8823 if (loc_gdbarch == NULL)
8824 loc_gdbarch = b->gdbarch;
8825
8826 /* Adjust the breakpoint's address prior to allocating a location.
8827 Once we call allocate_bp_location(), that mostly uninitialized
8828 location will be placed on the location chain. Adjustment of the
8829 breakpoint may cause target_read_memory() to be called and we do
8830 not want its scan of the location chain to find a breakpoint and
8831 location that's only been partially initialized. */
8832 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8833 sal->pc, b->type);
8834
8835 /* Sort the locations by their ADDRESS. */
8836 loc = allocate_bp_location (b);
8837 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8838 tmp = &((*tmp)->next))
8839 ;
8840 loc->next = *tmp;
8841 *tmp = loc;
8842
8843 loc->requested_address = sal->pc;
8844 loc->address = adjusted_address;
8845 loc->pspace = sal->pspace;
8846 loc->probe = sal->probe;
8847 gdb_assert (loc->pspace != NULL);
8848 loc->section = sal->section;
8849 loc->gdbarch = loc_gdbarch;
8850 loc->line_number = sal->line;
8851 loc->symtab = sal->symtab;
8852
8853 set_breakpoint_location_function (loc,
8854 sal->explicit_pc || sal->explicit_line);
8855 return loc;
8856 }
8857 \f
8858
8859 /* Return 1 if LOC is pointing to a permanent breakpoint,
8860 return 0 otherwise. */
8861
8862 static int
8863 bp_loc_is_permanent (struct bp_location *loc)
8864 {
8865 int len;
8866 CORE_ADDR addr;
8867 const gdb_byte *bpoint;
8868 gdb_byte *target_mem;
8869 struct cleanup *cleanup;
8870 int retval = 0;
8871
8872 gdb_assert (loc != NULL);
8873
8874 addr = loc->address;
8875 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
8876
8877 /* Software breakpoints unsupported? */
8878 if (bpoint == NULL)
8879 return 0;
8880
8881 target_mem = alloca (len);
8882
8883 /* Enable the automatic memory restoration from breakpoints while
8884 we read the memory. Otherwise we could say about our temporary
8885 breakpoints they are permanent. */
8886 cleanup = save_current_space_and_thread ();
8887
8888 switch_to_program_space_and_thread (loc->pspace);
8889 make_show_memory_breakpoints_cleanup (0);
8890
8891 if (target_read_memory (loc->address, target_mem, len) == 0
8892 && memcmp (target_mem, bpoint, len) == 0)
8893 retval = 1;
8894
8895 do_cleanups (cleanup);
8896
8897 return retval;
8898 }
8899
8900 /* Build a command list for the dprintf corresponding to the current
8901 settings of the dprintf style options. */
8902
8903 static void
8904 update_dprintf_command_list (struct breakpoint *b)
8905 {
8906 char *dprintf_args = b->extra_string;
8907 char *printf_line = NULL;
8908
8909 if (!dprintf_args)
8910 return;
8911
8912 dprintf_args = skip_spaces (dprintf_args);
8913
8914 /* Allow a comma, as it may have terminated a location, but don't
8915 insist on it. */
8916 if (*dprintf_args == ',')
8917 ++dprintf_args;
8918 dprintf_args = skip_spaces (dprintf_args);
8919
8920 if (*dprintf_args != '"')
8921 error (_("Bad format string, missing '\"'."));
8922
8923 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8924 printf_line = xstrprintf ("printf %s", dprintf_args);
8925 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8926 {
8927 if (!dprintf_function)
8928 error (_("No function supplied for dprintf call"));
8929
8930 if (dprintf_channel && strlen (dprintf_channel) > 0)
8931 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8932 dprintf_function,
8933 dprintf_channel,
8934 dprintf_args);
8935 else
8936 printf_line = xstrprintf ("call (void) %s (%s)",
8937 dprintf_function,
8938 dprintf_args);
8939 }
8940 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8941 {
8942 if (target_can_run_breakpoint_commands ())
8943 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8944 else
8945 {
8946 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8947 printf_line = xstrprintf ("printf %s", dprintf_args);
8948 }
8949 }
8950 else
8951 internal_error (__FILE__, __LINE__,
8952 _("Invalid dprintf style."));
8953
8954 gdb_assert (printf_line != NULL);
8955 /* Manufacture a printf/continue sequence. */
8956 {
8957 struct command_line *printf_cmd_line, *cont_cmd_line = NULL;
8958
8959 if (strcmp (dprintf_style, dprintf_style_agent) != 0)
8960 {
8961 cont_cmd_line = xmalloc (sizeof (struct command_line));
8962 cont_cmd_line->control_type = simple_control;
8963 cont_cmd_line->body_count = 0;
8964 cont_cmd_line->body_list = NULL;
8965 cont_cmd_line->next = NULL;
8966 cont_cmd_line->line = xstrdup ("continue");
8967 }
8968
8969 printf_cmd_line = xmalloc (sizeof (struct command_line));
8970 printf_cmd_line->control_type = simple_control;
8971 printf_cmd_line->body_count = 0;
8972 printf_cmd_line->body_list = NULL;
8973 printf_cmd_line->next = cont_cmd_line;
8974 printf_cmd_line->line = printf_line;
8975
8976 breakpoint_set_commands (b, printf_cmd_line);
8977 }
8978 }
8979
8980 /* Update all dprintf commands, making their command lists reflect
8981 current style settings. */
8982
8983 static void
8984 update_dprintf_commands (char *args, int from_tty,
8985 struct cmd_list_element *c)
8986 {
8987 struct breakpoint *b;
8988
8989 ALL_BREAKPOINTS (b)
8990 {
8991 if (b->type == bp_dprintf)
8992 update_dprintf_command_list (b);
8993 }
8994 }
8995
8996 /* Create a breakpoint with SAL as location. Use ADDR_STRING
8997 as textual description of the location, and COND_STRING
8998 as condition expression. */
8999
9000 static void
9001 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9002 struct symtabs_and_lines sals, char *addr_string,
9003 char *filter, char *cond_string,
9004 char *extra_string,
9005 enum bptype type, enum bpdisp disposition,
9006 int thread, int task, int ignore_count,
9007 const struct breakpoint_ops *ops, int from_tty,
9008 int enabled, int internal, unsigned flags,
9009 int display_canonical)
9010 {
9011 int i;
9012
9013 if (type == bp_hardware_breakpoint)
9014 {
9015 int target_resources_ok;
9016
9017 i = hw_breakpoint_used_count ();
9018 target_resources_ok =
9019 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9020 i + 1, 0);
9021 if (target_resources_ok == 0)
9022 error (_("No hardware breakpoint support in the target."));
9023 else if (target_resources_ok < 0)
9024 error (_("Hardware breakpoints used exceeds limit."));
9025 }
9026
9027 gdb_assert (sals.nelts > 0);
9028
9029 for (i = 0; i < sals.nelts; ++i)
9030 {
9031 struct symtab_and_line sal = sals.sals[i];
9032 struct bp_location *loc;
9033
9034 if (from_tty)
9035 {
9036 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9037 if (!loc_gdbarch)
9038 loc_gdbarch = gdbarch;
9039
9040 describe_other_breakpoints (loc_gdbarch,
9041 sal.pspace, sal.pc, sal.section, thread);
9042 }
9043
9044 if (i == 0)
9045 {
9046 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9047 b->thread = thread;
9048 b->task = task;
9049
9050 b->cond_string = cond_string;
9051 b->extra_string = extra_string;
9052 b->ignore_count = ignore_count;
9053 b->enable_state = enabled ? bp_enabled : bp_disabled;
9054 b->disposition = disposition;
9055
9056 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9057 b->loc->inserted = 1;
9058
9059 if (type == bp_static_tracepoint)
9060 {
9061 struct tracepoint *t = (struct tracepoint *) b;
9062 struct static_tracepoint_marker marker;
9063
9064 if (strace_marker_p (b))
9065 {
9066 /* We already know the marker exists, otherwise, we
9067 wouldn't see a sal for it. */
9068 char *p = &addr_string[3];
9069 char *endp;
9070 char *marker_str;
9071
9072 p = skip_spaces (p);
9073
9074 endp = skip_to_space (p);
9075
9076 marker_str = savestring (p, endp - p);
9077 t->static_trace_marker_id = marker_str;
9078
9079 printf_filtered (_("Probed static tracepoint "
9080 "marker \"%s\"\n"),
9081 t->static_trace_marker_id);
9082 }
9083 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9084 {
9085 t->static_trace_marker_id = xstrdup (marker.str_id);
9086 release_static_tracepoint_marker (&marker);
9087
9088 printf_filtered (_("Probed static tracepoint "
9089 "marker \"%s\"\n"),
9090 t->static_trace_marker_id);
9091 }
9092 else
9093 warning (_("Couldn't determine the static "
9094 "tracepoint marker to probe"));
9095 }
9096
9097 loc = b->loc;
9098 }
9099 else
9100 {
9101 loc = add_location_to_breakpoint (b, &sal);
9102 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9103 loc->inserted = 1;
9104 }
9105
9106 if (bp_loc_is_permanent (loc))
9107 make_breakpoint_permanent (b);
9108
9109 if (b->cond_string)
9110 {
9111 const char *arg = b->cond_string;
9112
9113 loc->cond = parse_exp_1 (&arg, loc->address,
9114 block_for_pc (loc->address), 0);
9115 if (*arg)
9116 error (_("Garbage '%s' follows condition"), arg);
9117 }
9118
9119 /* Dynamic printf requires and uses additional arguments on the
9120 command line, otherwise it's an error. */
9121 if (type == bp_dprintf)
9122 {
9123 if (b->extra_string)
9124 update_dprintf_command_list (b);
9125 else
9126 error (_("Format string required"));
9127 }
9128 else if (b->extra_string)
9129 error (_("Garbage '%s' at end of command"), b->extra_string);
9130 }
9131
9132 b->display_canonical = display_canonical;
9133 if (addr_string)
9134 b->addr_string = addr_string;
9135 else
9136 /* addr_string has to be used or breakpoint_re_set will delete
9137 me. */
9138 b->addr_string
9139 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9140 b->filter = filter;
9141 }
9142
9143 static void
9144 create_breakpoint_sal (struct gdbarch *gdbarch,
9145 struct symtabs_and_lines sals, char *addr_string,
9146 char *filter, char *cond_string,
9147 char *extra_string,
9148 enum bptype type, enum bpdisp disposition,
9149 int thread, int task, int ignore_count,
9150 const struct breakpoint_ops *ops, int from_tty,
9151 int enabled, int internal, unsigned flags,
9152 int display_canonical)
9153 {
9154 struct breakpoint *b;
9155 struct cleanup *old_chain;
9156
9157 if (is_tracepoint_type (type))
9158 {
9159 struct tracepoint *t;
9160
9161 t = XCNEW (struct tracepoint);
9162 b = &t->base;
9163 }
9164 else
9165 b = XNEW (struct breakpoint);
9166
9167 old_chain = make_cleanup (xfree, b);
9168
9169 init_breakpoint_sal (b, gdbarch,
9170 sals, addr_string,
9171 filter, cond_string, extra_string,
9172 type, disposition,
9173 thread, task, ignore_count,
9174 ops, from_tty,
9175 enabled, internal, flags,
9176 display_canonical);
9177 discard_cleanups (old_chain);
9178
9179 install_breakpoint (internal, b, 0);
9180 }
9181
9182 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9183 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9184 value. COND_STRING, if not NULL, specified the condition to be
9185 used for all breakpoints. Essentially the only case where
9186 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9187 function. In that case, it's still not possible to specify
9188 separate conditions for different overloaded functions, so
9189 we take just a single condition string.
9190
9191 NOTE: If the function succeeds, the caller is expected to cleanup
9192 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9193 array contents). If the function fails (error() is called), the
9194 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9195 COND and SALS arrays and each of those arrays contents. */
9196
9197 static void
9198 create_breakpoints_sal (struct gdbarch *gdbarch,
9199 struct linespec_result *canonical,
9200 char *cond_string, char *extra_string,
9201 enum bptype type, enum bpdisp disposition,
9202 int thread, int task, int ignore_count,
9203 const struct breakpoint_ops *ops, int from_tty,
9204 int enabled, int internal, unsigned flags)
9205 {
9206 int i;
9207 struct linespec_sals *lsal;
9208
9209 if (canonical->pre_expanded)
9210 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9211
9212 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9213 {
9214 /* Note that 'addr_string' can be NULL in the case of a plain
9215 'break', without arguments. */
9216 char *addr_string = (canonical->addr_string
9217 ? xstrdup (canonical->addr_string)
9218 : NULL);
9219 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9220 struct cleanup *inner = make_cleanup (xfree, addr_string);
9221
9222 make_cleanup (xfree, filter_string);
9223 create_breakpoint_sal (gdbarch, lsal->sals,
9224 addr_string,
9225 filter_string,
9226 cond_string, extra_string,
9227 type, disposition,
9228 thread, task, ignore_count, ops,
9229 from_tty, enabled, internal, flags,
9230 canonical->special_display);
9231 discard_cleanups (inner);
9232 }
9233 }
9234
9235 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9236 followed by conditionals. On return, SALS contains an array of SAL
9237 addresses found. ADDR_STRING contains a vector of (canonical)
9238 address strings. ADDRESS points to the end of the SAL.
9239
9240 The array and the line spec strings are allocated on the heap, it is
9241 the caller's responsibility to free them. */
9242
9243 static void
9244 parse_breakpoint_sals (char **address,
9245 struct linespec_result *canonical)
9246 {
9247 /* If no arg given, or if first arg is 'if ', use the default
9248 breakpoint. */
9249 if ((*address) == NULL
9250 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9251 {
9252 /* The last displayed codepoint, if it's valid, is our default breakpoint
9253 address. */
9254 if (last_displayed_sal_is_valid ())
9255 {
9256 struct linespec_sals lsal;
9257 struct symtab_and_line sal;
9258 CORE_ADDR pc;
9259
9260 init_sal (&sal); /* Initialize to zeroes. */
9261 lsal.sals.sals = (struct symtab_and_line *)
9262 xmalloc (sizeof (struct symtab_and_line));
9263
9264 /* Set sal's pspace, pc, symtab, and line to the values
9265 corresponding to the last call to print_frame_info.
9266 Be sure to reinitialize LINE with NOTCURRENT == 0
9267 as the breakpoint line number is inappropriate otherwise.
9268 find_pc_line would adjust PC, re-set it back. */
9269 get_last_displayed_sal (&sal);
9270 pc = sal.pc;
9271 sal = find_pc_line (pc, 0);
9272
9273 /* "break" without arguments is equivalent to "break *PC"
9274 where PC is the last displayed codepoint's address. So
9275 make sure to set sal.explicit_pc to prevent GDB from
9276 trying to expand the list of sals to include all other
9277 instances with the same symtab and line. */
9278 sal.pc = pc;
9279 sal.explicit_pc = 1;
9280
9281 lsal.sals.sals[0] = sal;
9282 lsal.sals.nelts = 1;
9283 lsal.canonical = NULL;
9284
9285 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9286 }
9287 else
9288 error (_("No default breakpoint address now."));
9289 }
9290 else
9291 {
9292 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9293
9294 /* Force almost all breakpoints to be in terms of the
9295 current_source_symtab (which is decode_line_1's default).
9296 This should produce the results we want almost all of the
9297 time while leaving default_breakpoint_* alone.
9298
9299 ObjC: However, don't match an Objective-C method name which
9300 may have a '+' or '-' succeeded by a '['. */
9301 if (last_displayed_sal_is_valid ()
9302 && (!cursal.symtab
9303 || ((strchr ("+-", (*address)[0]) != NULL)
9304 && ((*address)[1] != '['))))
9305 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9306 get_last_displayed_symtab (),
9307 get_last_displayed_line (),
9308 canonical, NULL, NULL);
9309 else
9310 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9311 cursal.symtab, cursal.line, canonical, NULL, NULL);
9312 }
9313 }
9314
9315
9316 /* Convert each SAL into a real PC. Verify that the PC can be
9317 inserted as a breakpoint. If it can't throw an error. */
9318
9319 static void
9320 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9321 {
9322 int i;
9323
9324 for (i = 0; i < sals->nelts; i++)
9325 resolve_sal_pc (&sals->sals[i]);
9326 }
9327
9328 /* Fast tracepoints may have restrictions on valid locations. For
9329 instance, a fast tracepoint using a jump instead of a trap will
9330 likely have to overwrite more bytes than a trap would, and so can
9331 only be placed where the instruction is longer than the jump, or a
9332 multi-instruction sequence does not have a jump into the middle of
9333 it, etc. */
9334
9335 static void
9336 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9337 struct symtabs_and_lines *sals)
9338 {
9339 int i, rslt;
9340 struct symtab_and_line *sal;
9341 char *msg;
9342 struct cleanup *old_chain;
9343
9344 for (i = 0; i < sals->nelts; i++)
9345 {
9346 struct gdbarch *sarch;
9347
9348 sal = &sals->sals[i];
9349
9350 sarch = get_sal_arch (*sal);
9351 /* We fall back to GDBARCH if there is no architecture
9352 associated with SAL. */
9353 if (sarch == NULL)
9354 sarch = gdbarch;
9355 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9356 NULL, &msg);
9357 old_chain = make_cleanup (xfree, msg);
9358
9359 if (!rslt)
9360 error (_("May not have a fast tracepoint at 0x%s%s"),
9361 paddress (sarch, sal->pc), (msg ? msg : ""));
9362
9363 do_cleanups (old_chain);
9364 }
9365 }
9366
9367 /* Issue an invalid thread ID error. */
9368
9369 static void ATTRIBUTE_NORETURN
9370 invalid_thread_id_error (int id)
9371 {
9372 error (_("Unknown thread %d."), id);
9373 }
9374
9375 /* Given TOK, a string specification of condition and thread, as
9376 accepted by the 'break' command, extract the condition
9377 string and thread number and set *COND_STRING and *THREAD.
9378 PC identifies the context at which the condition should be parsed.
9379 If no condition is found, *COND_STRING is set to NULL.
9380 If no thread is found, *THREAD is set to -1. */
9381
9382 static void
9383 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9384 char **cond_string, int *thread, int *task,
9385 char **rest)
9386 {
9387 *cond_string = NULL;
9388 *thread = -1;
9389 *task = 0;
9390 *rest = NULL;
9391
9392 while (tok && *tok)
9393 {
9394 const char *end_tok;
9395 int toklen;
9396 const char *cond_start = NULL;
9397 const char *cond_end = NULL;
9398
9399 tok = skip_spaces_const (tok);
9400
9401 if ((*tok == '"' || *tok == ',') && rest)
9402 {
9403 *rest = savestring (tok, strlen (tok));
9404 return;
9405 }
9406
9407 end_tok = skip_to_space_const (tok);
9408
9409 toklen = end_tok - tok;
9410
9411 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9412 {
9413 struct expression *expr;
9414
9415 tok = cond_start = end_tok + 1;
9416 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9417 xfree (expr);
9418 cond_end = tok;
9419 *cond_string = savestring (cond_start, cond_end - cond_start);
9420 }
9421 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9422 {
9423 char *tmptok;
9424
9425 tok = end_tok + 1;
9426 *thread = strtol (tok, &tmptok, 0);
9427 if (tok == tmptok)
9428 error (_("Junk after thread keyword."));
9429 if (!valid_thread_id (*thread))
9430 invalid_thread_id_error (*thread);
9431 tok = tmptok;
9432 }
9433 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9434 {
9435 char *tmptok;
9436
9437 tok = end_tok + 1;
9438 *task = strtol (tok, &tmptok, 0);
9439 if (tok == tmptok)
9440 error (_("Junk after task keyword."));
9441 if (!valid_task_id (*task))
9442 error (_("Unknown task %d."), *task);
9443 tok = tmptok;
9444 }
9445 else if (rest)
9446 {
9447 *rest = savestring (tok, strlen (tok));
9448 return;
9449 }
9450 else
9451 error (_("Junk at end of arguments."));
9452 }
9453 }
9454
9455 /* Decode a static tracepoint marker spec. */
9456
9457 static struct symtabs_and_lines
9458 decode_static_tracepoint_spec (char **arg_p)
9459 {
9460 VEC(static_tracepoint_marker_p) *markers = NULL;
9461 struct symtabs_and_lines sals;
9462 struct cleanup *old_chain;
9463 char *p = &(*arg_p)[3];
9464 char *endp;
9465 char *marker_str;
9466 int i;
9467
9468 p = skip_spaces (p);
9469
9470 endp = skip_to_space (p);
9471
9472 marker_str = savestring (p, endp - p);
9473 old_chain = make_cleanup (xfree, marker_str);
9474
9475 markers = target_static_tracepoint_markers_by_strid (marker_str);
9476 if (VEC_empty(static_tracepoint_marker_p, markers))
9477 error (_("No known static tracepoint marker named %s"), marker_str);
9478
9479 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9480 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9481
9482 for (i = 0; i < sals.nelts; i++)
9483 {
9484 struct static_tracepoint_marker *marker;
9485
9486 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9487
9488 init_sal (&sals.sals[i]);
9489
9490 sals.sals[i] = find_pc_line (marker->address, 0);
9491 sals.sals[i].pc = marker->address;
9492
9493 release_static_tracepoint_marker (marker);
9494 }
9495
9496 do_cleanups (old_chain);
9497
9498 *arg_p = endp;
9499 return sals;
9500 }
9501
9502 /* Set a breakpoint. This function is shared between CLI and MI
9503 functions for setting a breakpoint. This function has two major
9504 modes of operations, selected by the PARSE_ARG parameter. If
9505 non-zero, the function will parse ARG, extracting location,
9506 condition, thread and extra string. Otherwise, ARG is just the
9507 breakpoint's location, with condition, thread, and extra string
9508 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9509 If INTERNAL is non-zero, the breakpoint number will be allocated
9510 from the internal breakpoint count. Returns true if any breakpoint
9511 was created; false otherwise. */
9512
9513 int
9514 create_breakpoint (struct gdbarch *gdbarch,
9515 char *arg, char *cond_string,
9516 int thread, char *extra_string,
9517 int parse_arg,
9518 int tempflag, enum bptype type_wanted,
9519 int ignore_count,
9520 enum auto_boolean pending_break_support,
9521 const struct breakpoint_ops *ops,
9522 int from_tty, int enabled, int internal,
9523 unsigned flags)
9524 {
9525 volatile struct gdb_exception e;
9526 char *copy_arg = NULL;
9527 char *addr_start = arg;
9528 struct linespec_result canonical;
9529 struct cleanup *old_chain;
9530 struct cleanup *bkpt_chain = NULL;
9531 int pending = 0;
9532 int task = 0;
9533 int prev_bkpt_count = breakpoint_count;
9534
9535 gdb_assert (ops != NULL);
9536
9537 init_linespec_result (&canonical);
9538
9539 TRY_CATCH (e, RETURN_MASK_ALL)
9540 {
9541 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9542 addr_start, &copy_arg);
9543 }
9544
9545 /* If caller is interested in rc value from parse, set value. */
9546 switch (e.reason)
9547 {
9548 case GDB_NO_ERROR:
9549 if (VEC_empty (linespec_sals, canonical.sals))
9550 return 0;
9551 break;
9552 case RETURN_ERROR:
9553 switch (e.error)
9554 {
9555 case NOT_FOUND_ERROR:
9556
9557 /* If pending breakpoint support is turned off, throw
9558 error. */
9559
9560 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9561 throw_exception (e);
9562
9563 exception_print (gdb_stderr, e);
9564
9565 /* If pending breakpoint support is auto query and the user
9566 selects no, then simply return the error code. */
9567 if (pending_break_support == AUTO_BOOLEAN_AUTO
9568 && !nquery (_("Make %s pending on future shared library load? "),
9569 bptype_string (type_wanted)))
9570 return 0;
9571
9572 /* At this point, either the user was queried about setting
9573 a pending breakpoint and selected yes, or pending
9574 breakpoint behavior is on and thus a pending breakpoint
9575 is defaulted on behalf of the user. */
9576 {
9577 struct linespec_sals lsal;
9578
9579 copy_arg = xstrdup (addr_start);
9580 lsal.canonical = xstrdup (copy_arg);
9581 lsal.sals.nelts = 1;
9582 lsal.sals.sals = XNEW (struct symtab_and_line);
9583 init_sal (&lsal.sals.sals[0]);
9584 pending = 1;
9585 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9586 }
9587 break;
9588 default:
9589 throw_exception (e);
9590 }
9591 break;
9592 default:
9593 throw_exception (e);
9594 }
9595
9596 /* Create a chain of things that always need to be cleaned up. */
9597 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9598
9599 /* ----------------------------- SNIP -----------------------------
9600 Anything added to the cleanup chain beyond this point is assumed
9601 to be part of a breakpoint. If the breakpoint create succeeds
9602 then the memory is not reclaimed. */
9603 bkpt_chain = make_cleanup (null_cleanup, 0);
9604
9605 /* Resolve all line numbers to PC's and verify that the addresses
9606 are ok for the target. */
9607 if (!pending)
9608 {
9609 int ix;
9610 struct linespec_sals *iter;
9611
9612 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9613 breakpoint_sals_to_pc (&iter->sals);
9614 }
9615
9616 /* Fast tracepoints may have additional restrictions on location. */
9617 if (!pending && type_wanted == bp_fast_tracepoint)
9618 {
9619 int ix;
9620 struct linespec_sals *iter;
9621
9622 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9623 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9624 }
9625
9626 /* Verify that condition can be parsed, before setting any
9627 breakpoints. Allocate a separate condition expression for each
9628 breakpoint. */
9629 if (!pending)
9630 {
9631 struct linespec_sals *lsal;
9632
9633 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9634
9635 if (parse_arg)
9636 {
9637 char *rest;
9638 /* Here we only parse 'arg' to separate condition
9639 from thread number, so parsing in context of first
9640 sal is OK. When setting the breakpoint we'll
9641 re-parse it in context of each sal. */
9642
9643 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9644 &thread, &task, &rest);
9645 if (cond_string)
9646 make_cleanup (xfree, cond_string);
9647 if (rest)
9648 make_cleanup (xfree, rest);
9649 if (rest)
9650 extra_string = rest;
9651 }
9652 else
9653 {
9654 if (*arg != '\0')
9655 error (_("Garbage '%s' at end of location"), arg);
9656
9657 /* Create a private copy of condition string. */
9658 if (cond_string)
9659 {
9660 cond_string = xstrdup (cond_string);
9661 make_cleanup (xfree, cond_string);
9662 }
9663 /* Create a private copy of any extra string. */
9664 if (extra_string)
9665 {
9666 extra_string = xstrdup (extra_string);
9667 make_cleanup (xfree, extra_string);
9668 }
9669 }
9670
9671 ops->create_breakpoints_sal (gdbarch, &canonical, lsal,
9672 cond_string, extra_string, type_wanted,
9673 tempflag ? disp_del : disp_donttouch,
9674 thread, task, ignore_count, ops,
9675 from_tty, enabled, internal, flags);
9676 }
9677 else
9678 {
9679 struct breakpoint *b;
9680
9681 make_cleanup (xfree, copy_arg);
9682
9683 if (is_tracepoint_type (type_wanted))
9684 {
9685 struct tracepoint *t;
9686
9687 t = XCNEW (struct tracepoint);
9688 b = &t->base;
9689 }
9690 else
9691 b = XNEW (struct breakpoint);
9692
9693 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9694
9695 b->addr_string = copy_arg;
9696 if (parse_arg)
9697 b->cond_string = NULL;
9698 else
9699 {
9700 /* Create a private copy of condition string. */
9701 if (cond_string)
9702 {
9703 cond_string = xstrdup (cond_string);
9704 make_cleanup (xfree, cond_string);
9705 }
9706 b->cond_string = cond_string;
9707 }
9708 b->extra_string = NULL;
9709 b->ignore_count = ignore_count;
9710 b->disposition = tempflag ? disp_del : disp_donttouch;
9711 b->condition_not_parsed = 1;
9712 b->enable_state = enabled ? bp_enabled : bp_disabled;
9713 if ((type_wanted != bp_breakpoint
9714 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9715 b->pspace = current_program_space;
9716
9717 install_breakpoint (internal, b, 0);
9718 }
9719
9720 if (VEC_length (linespec_sals, canonical.sals) > 1)
9721 {
9722 warning (_("Multiple breakpoints were set.\nUse the "
9723 "\"delete\" command to delete unwanted breakpoints."));
9724 prev_breakpoint_count = prev_bkpt_count;
9725 }
9726
9727 /* That's it. Discard the cleanups for data inserted into the
9728 breakpoint. */
9729 discard_cleanups (bkpt_chain);
9730 /* But cleanup everything else. */
9731 do_cleanups (old_chain);
9732
9733 /* error call may happen here - have BKPT_CHAIN already discarded. */
9734 update_global_location_list (1);
9735
9736 return 1;
9737 }
9738
9739 /* Set a breakpoint.
9740 ARG is a string describing breakpoint address,
9741 condition, and thread.
9742 FLAG specifies if a breakpoint is hardware on,
9743 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9744 and BP_TEMPFLAG. */
9745
9746 static void
9747 break_command_1 (char *arg, int flag, int from_tty)
9748 {
9749 int tempflag = flag & BP_TEMPFLAG;
9750 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9751 ? bp_hardware_breakpoint
9752 : bp_breakpoint);
9753 struct breakpoint_ops *ops;
9754 const char *arg_cp = arg;
9755
9756 /* Matching breakpoints on probes. */
9757 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
9758 ops = &bkpt_probe_breakpoint_ops;
9759 else
9760 ops = &bkpt_breakpoint_ops;
9761
9762 create_breakpoint (get_current_arch (),
9763 arg,
9764 NULL, 0, NULL, 1 /* parse arg */,
9765 tempflag, type_wanted,
9766 0 /* Ignore count */,
9767 pending_break_support,
9768 ops,
9769 from_tty,
9770 1 /* enabled */,
9771 0 /* internal */,
9772 0);
9773 }
9774
9775 /* Helper function for break_command_1 and disassemble_command. */
9776
9777 void
9778 resolve_sal_pc (struct symtab_and_line *sal)
9779 {
9780 CORE_ADDR pc;
9781
9782 if (sal->pc == 0 && sal->symtab != NULL)
9783 {
9784 if (!find_line_pc (sal->symtab, sal->line, &pc))
9785 error (_("No line %d in file \"%s\"."),
9786 sal->line, symtab_to_filename_for_display (sal->symtab));
9787 sal->pc = pc;
9788
9789 /* If this SAL corresponds to a breakpoint inserted using a line
9790 number, then skip the function prologue if necessary. */
9791 if (sal->explicit_line)
9792 skip_prologue_sal (sal);
9793 }
9794
9795 if (sal->section == 0 && sal->symtab != NULL)
9796 {
9797 struct blockvector *bv;
9798 struct block *b;
9799 struct symbol *sym;
9800
9801 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
9802 if (bv != NULL)
9803 {
9804 sym = block_linkage_function (b);
9805 if (sym != NULL)
9806 {
9807 fixup_symbol_section (sym, sal->symtab->objfile);
9808 sal->section = SYMBOL_OBJ_SECTION (sal->symtab->objfile, sym);
9809 }
9810 else
9811 {
9812 /* It really is worthwhile to have the section, so we'll
9813 just have to look harder. This case can be executed
9814 if we have line numbers but no functions (as can
9815 happen in assembly source). */
9816
9817 struct bound_minimal_symbol msym;
9818 struct cleanup *old_chain = save_current_space_and_thread ();
9819
9820 switch_to_program_space_and_thread (sal->pspace);
9821
9822 msym = lookup_minimal_symbol_by_pc (sal->pc);
9823 if (msym.minsym)
9824 sal->section = SYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9825
9826 do_cleanups (old_chain);
9827 }
9828 }
9829 }
9830 }
9831
9832 void
9833 break_command (char *arg, int from_tty)
9834 {
9835 break_command_1 (arg, 0, from_tty);
9836 }
9837
9838 void
9839 tbreak_command (char *arg, int from_tty)
9840 {
9841 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9842 }
9843
9844 static void
9845 hbreak_command (char *arg, int from_tty)
9846 {
9847 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9848 }
9849
9850 static void
9851 thbreak_command (char *arg, int from_tty)
9852 {
9853 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9854 }
9855
9856 static void
9857 stop_command (char *arg, int from_tty)
9858 {
9859 printf_filtered (_("Specify the type of breakpoint to set.\n\
9860 Usage: stop in <function | address>\n\
9861 stop at <line>\n"));
9862 }
9863
9864 static void
9865 stopin_command (char *arg, int from_tty)
9866 {
9867 int badInput = 0;
9868
9869 if (arg == (char *) NULL)
9870 badInput = 1;
9871 else if (*arg != '*')
9872 {
9873 char *argptr = arg;
9874 int hasColon = 0;
9875
9876 /* Look for a ':'. If this is a line number specification, then
9877 say it is bad, otherwise, it should be an address or
9878 function/method name. */
9879 while (*argptr && !hasColon)
9880 {
9881 hasColon = (*argptr == ':');
9882 argptr++;
9883 }
9884
9885 if (hasColon)
9886 badInput = (*argptr != ':'); /* Not a class::method */
9887 else
9888 badInput = isdigit (*arg); /* a simple line number */
9889 }
9890
9891 if (badInput)
9892 printf_filtered (_("Usage: stop in <function | address>\n"));
9893 else
9894 break_command_1 (arg, 0, from_tty);
9895 }
9896
9897 static void
9898 stopat_command (char *arg, int from_tty)
9899 {
9900 int badInput = 0;
9901
9902 if (arg == (char *) NULL || *arg == '*') /* no line number */
9903 badInput = 1;
9904 else
9905 {
9906 char *argptr = arg;
9907 int hasColon = 0;
9908
9909 /* Look for a ':'. If there is a '::' then get out, otherwise
9910 it is probably a line number. */
9911 while (*argptr && !hasColon)
9912 {
9913 hasColon = (*argptr == ':');
9914 argptr++;
9915 }
9916
9917 if (hasColon)
9918 badInput = (*argptr == ':'); /* we have class::method */
9919 else
9920 badInput = !isdigit (*arg); /* not a line number */
9921 }
9922
9923 if (badInput)
9924 printf_filtered (_("Usage: stop at <line>\n"));
9925 else
9926 break_command_1 (arg, 0, from_tty);
9927 }
9928
9929 /* The dynamic printf command is mostly like a regular breakpoint, but
9930 with a prewired command list consisting of a single output command,
9931 built from extra arguments supplied on the dprintf command
9932 line. */
9933
9934 static void
9935 dprintf_command (char *arg, int from_tty)
9936 {
9937 create_breakpoint (get_current_arch (),
9938 arg,
9939 NULL, 0, NULL, 1 /* parse arg */,
9940 0, bp_dprintf,
9941 0 /* Ignore count */,
9942 pending_break_support,
9943 &dprintf_breakpoint_ops,
9944 from_tty,
9945 1 /* enabled */,
9946 0 /* internal */,
9947 0);
9948 }
9949
9950 static void
9951 agent_printf_command (char *arg, int from_tty)
9952 {
9953 error (_("May only run agent-printf on the target"));
9954 }
9955
9956 /* Implement the "breakpoint_hit" breakpoint_ops method for
9957 ranged breakpoints. */
9958
9959 static int
9960 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9961 struct address_space *aspace,
9962 CORE_ADDR bp_addr,
9963 const struct target_waitstatus *ws)
9964 {
9965 if (ws->kind != TARGET_WAITKIND_STOPPED
9966 || ws->value.sig != GDB_SIGNAL_TRAP)
9967 return 0;
9968
9969 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9970 bl->length, aspace, bp_addr);
9971 }
9972
9973 /* Implement the "resources_needed" breakpoint_ops method for
9974 ranged breakpoints. */
9975
9976 static int
9977 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9978 {
9979 return target_ranged_break_num_registers ();
9980 }
9981
9982 /* Implement the "print_it" breakpoint_ops method for
9983 ranged breakpoints. */
9984
9985 static enum print_stop_action
9986 print_it_ranged_breakpoint (bpstat bs)
9987 {
9988 struct breakpoint *b = bs->breakpoint_at;
9989 struct bp_location *bl = b->loc;
9990 struct ui_out *uiout = current_uiout;
9991
9992 gdb_assert (b->type == bp_hardware_breakpoint);
9993
9994 /* Ranged breakpoints have only one location. */
9995 gdb_assert (bl && bl->next == NULL);
9996
9997 annotate_breakpoint (b->number);
9998 if (b->disposition == disp_del)
9999 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
10000 else
10001 ui_out_text (uiout, "\nRanged breakpoint ");
10002 if (ui_out_is_mi_like_p (uiout))
10003 {
10004 ui_out_field_string (uiout, "reason",
10005 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10006 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10007 }
10008 ui_out_field_int (uiout, "bkptno", b->number);
10009 ui_out_text (uiout, ", ");
10010
10011 return PRINT_SRC_AND_LOC;
10012 }
10013
10014 /* Implement the "print_one" breakpoint_ops method for
10015 ranged breakpoints. */
10016
10017 static void
10018 print_one_ranged_breakpoint (struct breakpoint *b,
10019 struct bp_location **last_loc)
10020 {
10021 struct bp_location *bl = b->loc;
10022 struct value_print_options opts;
10023 struct ui_out *uiout = current_uiout;
10024
10025 /* Ranged breakpoints have only one location. */
10026 gdb_assert (bl && bl->next == NULL);
10027
10028 get_user_print_options (&opts);
10029
10030 if (opts.addressprint)
10031 /* We don't print the address range here, it will be printed later
10032 by print_one_detail_ranged_breakpoint. */
10033 ui_out_field_skip (uiout, "addr");
10034 annotate_field (5);
10035 print_breakpoint_location (b, bl);
10036 *last_loc = bl;
10037 }
10038
10039 /* Implement the "print_one_detail" breakpoint_ops method for
10040 ranged breakpoints. */
10041
10042 static void
10043 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10044 struct ui_out *uiout)
10045 {
10046 CORE_ADDR address_start, address_end;
10047 struct bp_location *bl = b->loc;
10048 struct ui_file *stb = mem_fileopen ();
10049 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10050
10051 gdb_assert (bl);
10052
10053 address_start = bl->address;
10054 address_end = address_start + bl->length - 1;
10055
10056 ui_out_text (uiout, "\taddress range: ");
10057 fprintf_unfiltered (stb, "[%s, %s]",
10058 print_core_address (bl->gdbarch, address_start),
10059 print_core_address (bl->gdbarch, address_end));
10060 ui_out_field_stream (uiout, "addr", stb);
10061 ui_out_text (uiout, "\n");
10062
10063 do_cleanups (cleanup);
10064 }
10065
10066 /* Implement the "print_mention" breakpoint_ops method for
10067 ranged breakpoints. */
10068
10069 static void
10070 print_mention_ranged_breakpoint (struct breakpoint *b)
10071 {
10072 struct bp_location *bl = b->loc;
10073 struct ui_out *uiout = current_uiout;
10074
10075 gdb_assert (bl);
10076 gdb_assert (b->type == bp_hardware_breakpoint);
10077
10078 if (ui_out_is_mi_like_p (uiout))
10079 return;
10080
10081 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10082 b->number, paddress (bl->gdbarch, bl->address),
10083 paddress (bl->gdbarch, bl->address + bl->length - 1));
10084 }
10085
10086 /* Implement the "print_recreate" breakpoint_ops method for
10087 ranged breakpoints. */
10088
10089 static void
10090 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10091 {
10092 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10093 b->addr_string_range_end);
10094 print_recreate_thread (b, fp);
10095 }
10096
10097 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10098
10099 static struct breakpoint_ops ranged_breakpoint_ops;
10100
10101 /* Find the address where the end of the breakpoint range should be
10102 placed, given the SAL of the end of the range. This is so that if
10103 the user provides a line number, the end of the range is set to the
10104 last instruction of the given line. */
10105
10106 static CORE_ADDR
10107 find_breakpoint_range_end (struct symtab_and_line sal)
10108 {
10109 CORE_ADDR end;
10110
10111 /* If the user provided a PC value, use it. Otherwise,
10112 find the address of the end of the given location. */
10113 if (sal.explicit_pc)
10114 end = sal.pc;
10115 else
10116 {
10117 int ret;
10118 CORE_ADDR start;
10119
10120 ret = find_line_pc_range (sal, &start, &end);
10121 if (!ret)
10122 error (_("Could not find location of the end of the range."));
10123
10124 /* find_line_pc_range returns the start of the next line. */
10125 end--;
10126 }
10127
10128 return end;
10129 }
10130
10131 /* Implement the "break-range" CLI command. */
10132
10133 static void
10134 break_range_command (char *arg, int from_tty)
10135 {
10136 char *arg_start, *addr_string_start, *addr_string_end;
10137 struct linespec_result canonical_start, canonical_end;
10138 int bp_count, can_use_bp, length;
10139 CORE_ADDR end;
10140 struct breakpoint *b;
10141 struct symtab_and_line sal_start, sal_end;
10142 struct cleanup *cleanup_bkpt;
10143 struct linespec_sals *lsal_start, *lsal_end;
10144
10145 /* We don't support software ranged breakpoints. */
10146 if (target_ranged_break_num_registers () < 0)
10147 error (_("This target does not support hardware ranged breakpoints."));
10148
10149 bp_count = hw_breakpoint_used_count ();
10150 bp_count += target_ranged_break_num_registers ();
10151 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10152 bp_count, 0);
10153 if (can_use_bp < 0)
10154 error (_("Hardware breakpoints used exceeds limit."));
10155
10156 arg = skip_spaces (arg);
10157 if (arg == NULL || arg[0] == '\0')
10158 error(_("No address range specified."));
10159
10160 init_linespec_result (&canonical_start);
10161
10162 arg_start = arg;
10163 parse_breakpoint_sals (&arg, &canonical_start);
10164
10165 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10166
10167 if (arg[0] != ',')
10168 error (_("Too few arguments."));
10169 else if (VEC_empty (linespec_sals, canonical_start.sals))
10170 error (_("Could not find location of the beginning of the range."));
10171
10172 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10173
10174 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10175 || lsal_start->sals.nelts != 1)
10176 error (_("Cannot create a ranged breakpoint with multiple locations."));
10177
10178 sal_start = lsal_start->sals.sals[0];
10179 addr_string_start = savestring (arg_start, arg - arg_start);
10180 make_cleanup (xfree, addr_string_start);
10181
10182 arg++; /* Skip the comma. */
10183 arg = skip_spaces (arg);
10184
10185 /* Parse the end location. */
10186
10187 init_linespec_result (&canonical_end);
10188 arg_start = arg;
10189
10190 /* We call decode_line_full directly here instead of using
10191 parse_breakpoint_sals because we need to specify the start location's
10192 symtab and line as the default symtab and line for the end of the
10193 range. This makes it possible to have ranges like "foo.c:27, +14",
10194 where +14 means 14 lines from the start location. */
10195 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10196 sal_start.symtab, sal_start.line,
10197 &canonical_end, NULL, NULL);
10198
10199 make_cleanup_destroy_linespec_result (&canonical_end);
10200
10201 if (VEC_empty (linespec_sals, canonical_end.sals))
10202 error (_("Could not find location of the end of the range."));
10203
10204 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10205 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10206 || lsal_end->sals.nelts != 1)
10207 error (_("Cannot create a ranged breakpoint with multiple locations."));
10208
10209 sal_end = lsal_end->sals.sals[0];
10210 addr_string_end = savestring (arg_start, arg - arg_start);
10211 make_cleanup (xfree, addr_string_end);
10212
10213 end = find_breakpoint_range_end (sal_end);
10214 if (sal_start.pc > end)
10215 error (_("Invalid address range, end precedes start."));
10216
10217 length = end - sal_start.pc + 1;
10218 if (length < 0)
10219 /* Length overflowed. */
10220 error (_("Address range too large."));
10221 else if (length == 1)
10222 {
10223 /* This range is simple enough to be handled by
10224 the `hbreak' command. */
10225 hbreak_command (addr_string_start, 1);
10226
10227 do_cleanups (cleanup_bkpt);
10228
10229 return;
10230 }
10231
10232 /* Now set up the breakpoint. */
10233 b = set_raw_breakpoint (get_current_arch (), sal_start,
10234 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10235 set_breakpoint_count (breakpoint_count + 1);
10236 b->number = breakpoint_count;
10237 b->disposition = disp_donttouch;
10238 b->addr_string = xstrdup (addr_string_start);
10239 b->addr_string_range_end = xstrdup (addr_string_end);
10240 b->loc->length = length;
10241
10242 do_cleanups (cleanup_bkpt);
10243
10244 mention (b);
10245 observer_notify_breakpoint_created (b);
10246 update_global_location_list (1);
10247 }
10248
10249 /* Return non-zero if EXP is verified as constant. Returned zero
10250 means EXP is variable. Also the constant detection may fail for
10251 some constant expressions and in such case still falsely return
10252 zero. */
10253
10254 static int
10255 watchpoint_exp_is_const (const struct expression *exp)
10256 {
10257 int i = exp->nelts;
10258
10259 while (i > 0)
10260 {
10261 int oplenp, argsp;
10262
10263 /* We are only interested in the descriptor of each element. */
10264 operator_length (exp, i, &oplenp, &argsp);
10265 i -= oplenp;
10266
10267 switch (exp->elts[i].opcode)
10268 {
10269 case BINOP_ADD:
10270 case BINOP_SUB:
10271 case BINOP_MUL:
10272 case BINOP_DIV:
10273 case BINOP_REM:
10274 case BINOP_MOD:
10275 case BINOP_LSH:
10276 case BINOP_RSH:
10277 case BINOP_LOGICAL_AND:
10278 case BINOP_LOGICAL_OR:
10279 case BINOP_BITWISE_AND:
10280 case BINOP_BITWISE_IOR:
10281 case BINOP_BITWISE_XOR:
10282 case BINOP_EQUAL:
10283 case BINOP_NOTEQUAL:
10284 case BINOP_LESS:
10285 case BINOP_GTR:
10286 case BINOP_LEQ:
10287 case BINOP_GEQ:
10288 case BINOP_REPEAT:
10289 case BINOP_COMMA:
10290 case BINOP_EXP:
10291 case BINOP_MIN:
10292 case BINOP_MAX:
10293 case BINOP_INTDIV:
10294 case BINOP_CONCAT:
10295 case BINOP_IN:
10296 case BINOP_RANGE:
10297 case TERNOP_COND:
10298 case TERNOP_SLICE:
10299
10300 case OP_LONG:
10301 case OP_DOUBLE:
10302 case OP_DECFLOAT:
10303 case OP_LAST:
10304 case OP_COMPLEX:
10305 case OP_STRING:
10306 case OP_ARRAY:
10307 case OP_TYPE:
10308 case OP_TYPEOF:
10309 case OP_DECLTYPE:
10310 case OP_TYPEID:
10311 case OP_NAME:
10312 case OP_OBJC_NSSTRING:
10313
10314 case UNOP_NEG:
10315 case UNOP_LOGICAL_NOT:
10316 case UNOP_COMPLEMENT:
10317 case UNOP_ADDR:
10318 case UNOP_HIGH:
10319 case UNOP_CAST:
10320
10321 case UNOP_CAST_TYPE:
10322 case UNOP_REINTERPRET_CAST:
10323 case UNOP_DYNAMIC_CAST:
10324 /* Unary, binary and ternary operators: We have to check
10325 their operands. If they are constant, then so is the
10326 result of that operation. For instance, if A and B are
10327 determined to be constants, then so is "A + B".
10328
10329 UNOP_IND is one exception to the rule above, because the
10330 value of *ADDR is not necessarily a constant, even when
10331 ADDR is. */
10332 break;
10333
10334 case OP_VAR_VALUE:
10335 /* Check whether the associated symbol is a constant.
10336
10337 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10338 possible that a buggy compiler could mark a variable as
10339 constant even when it is not, and TYPE_CONST would return
10340 true in this case, while SYMBOL_CLASS wouldn't.
10341
10342 We also have to check for function symbols because they
10343 are always constant. */
10344 {
10345 struct symbol *s = exp->elts[i + 2].symbol;
10346
10347 if (SYMBOL_CLASS (s) != LOC_BLOCK
10348 && SYMBOL_CLASS (s) != LOC_CONST
10349 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10350 return 0;
10351 break;
10352 }
10353
10354 /* The default action is to return 0 because we are using
10355 the optimistic approach here: If we don't know something,
10356 then it is not a constant. */
10357 default:
10358 return 0;
10359 }
10360 }
10361
10362 return 1;
10363 }
10364
10365 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10366
10367 static void
10368 dtor_watchpoint (struct breakpoint *self)
10369 {
10370 struct watchpoint *w = (struct watchpoint *) self;
10371
10372 xfree (w->cond_exp);
10373 xfree (w->exp);
10374 xfree (w->exp_string);
10375 xfree (w->exp_string_reparse);
10376 value_free (w->val);
10377
10378 base_breakpoint_ops.dtor (self);
10379 }
10380
10381 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10382
10383 static void
10384 re_set_watchpoint (struct breakpoint *b)
10385 {
10386 struct watchpoint *w = (struct watchpoint *) b;
10387
10388 /* Watchpoint can be either on expression using entirely global
10389 variables, or it can be on local variables.
10390
10391 Watchpoints of the first kind are never auto-deleted, and even
10392 persist across program restarts. Since they can use variables
10393 from shared libraries, we need to reparse expression as libraries
10394 are loaded and unloaded.
10395
10396 Watchpoints on local variables can also change meaning as result
10397 of solib event. For example, if a watchpoint uses both a local
10398 and a global variables in expression, it's a local watchpoint,
10399 but unloading of a shared library will make the expression
10400 invalid. This is not a very common use case, but we still
10401 re-evaluate expression, to avoid surprises to the user.
10402
10403 Note that for local watchpoints, we re-evaluate it only if
10404 watchpoints frame id is still valid. If it's not, it means the
10405 watchpoint is out of scope and will be deleted soon. In fact,
10406 I'm not sure we'll ever be called in this case.
10407
10408 If a local watchpoint's frame id is still valid, then
10409 w->exp_valid_block is likewise valid, and we can safely use it.
10410
10411 Don't do anything about disabled watchpoints, since they will be
10412 reevaluated again when enabled. */
10413 update_watchpoint (w, 1 /* reparse */);
10414 }
10415
10416 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10417
10418 static int
10419 insert_watchpoint (struct bp_location *bl)
10420 {
10421 struct watchpoint *w = (struct watchpoint *) bl->owner;
10422 int length = w->exact ? 1 : bl->length;
10423
10424 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10425 w->cond_exp);
10426 }
10427
10428 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10429
10430 static int
10431 remove_watchpoint (struct bp_location *bl)
10432 {
10433 struct watchpoint *w = (struct watchpoint *) bl->owner;
10434 int length = w->exact ? 1 : bl->length;
10435
10436 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10437 w->cond_exp);
10438 }
10439
10440 static int
10441 breakpoint_hit_watchpoint (const struct bp_location *bl,
10442 struct address_space *aspace, CORE_ADDR bp_addr,
10443 const struct target_waitstatus *ws)
10444 {
10445 struct breakpoint *b = bl->owner;
10446 struct watchpoint *w = (struct watchpoint *) b;
10447
10448 /* Continuable hardware watchpoints are treated as non-existent if the
10449 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10450 some data address). Otherwise gdb won't stop on a break instruction
10451 in the code (not from a breakpoint) when a hardware watchpoint has
10452 been defined. Also skip watchpoints which we know did not trigger
10453 (did not match the data address). */
10454 if (is_hardware_watchpoint (b)
10455 && w->watchpoint_triggered == watch_triggered_no)
10456 return 0;
10457
10458 return 1;
10459 }
10460
10461 static void
10462 check_status_watchpoint (bpstat bs)
10463 {
10464 gdb_assert (is_watchpoint (bs->breakpoint_at));
10465
10466 bpstat_check_watchpoint (bs);
10467 }
10468
10469 /* Implement the "resources_needed" breakpoint_ops method for
10470 hardware watchpoints. */
10471
10472 static int
10473 resources_needed_watchpoint (const struct bp_location *bl)
10474 {
10475 struct watchpoint *w = (struct watchpoint *) bl->owner;
10476 int length = w->exact? 1 : bl->length;
10477
10478 return target_region_ok_for_hw_watchpoint (bl->address, length);
10479 }
10480
10481 /* Implement the "works_in_software_mode" breakpoint_ops method for
10482 hardware watchpoints. */
10483
10484 static int
10485 works_in_software_mode_watchpoint (const struct breakpoint *b)
10486 {
10487 /* Read and access watchpoints only work with hardware support. */
10488 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10489 }
10490
10491 static enum print_stop_action
10492 print_it_watchpoint (bpstat bs)
10493 {
10494 struct cleanup *old_chain;
10495 struct breakpoint *b;
10496 struct ui_file *stb;
10497 enum print_stop_action result;
10498 struct watchpoint *w;
10499 struct ui_out *uiout = current_uiout;
10500
10501 gdb_assert (bs->bp_location_at != NULL);
10502
10503 b = bs->breakpoint_at;
10504 w = (struct watchpoint *) b;
10505
10506 stb = mem_fileopen ();
10507 old_chain = make_cleanup_ui_file_delete (stb);
10508
10509 switch (b->type)
10510 {
10511 case bp_watchpoint:
10512 case bp_hardware_watchpoint:
10513 annotate_watchpoint (b->number);
10514 if (ui_out_is_mi_like_p (uiout))
10515 ui_out_field_string
10516 (uiout, "reason",
10517 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10518 mention (b);
10519 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10520 ui_out_text (uiout, "\nOld value = ");
10521 watchpoint_value_print (bs->old_val, stb);
10522 ui_out_field_stream (uiout, "old", stb);
10523 ui_out_text (uiout, "\nNew value = ");
10524 watchpoint_value_print (w->val, stb);
10525 ui_out_field_stream (uiout, "new", stb);
10526 ui_out_text (uiout, "\n");
10527 /* More than one watchpoint may have been triggered. */
10528 result = PRINT_UNKNOWN;
10529 break;
10530
10531 case bp_read_watchpoint:
10532 if (ui_out_is_mi_like_p (uiout))
10533 ui_out_field_string
10534 (uiout, "reason",
10535 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10536 mention (b);
10537 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10538 ui_out_text (uiout, "\nValue = ");
10539 watchpoint_value_print (w->val, stb);
10540 ui_out_field_stream (uiout, "value", stb);
10541 ui_out_text (uiout, "\n");
10542 result = PRINT_UNKNOWN;
10543 break;
10544
10545 case bp_access_watchpoint:
10546 if (bs->old_val != NULL)
10547 {
10548 annotate_watchpoint (b->number);
10549 if (ui_out_is_mi_like_p (uiout))
10550 ui_out_field_string
10551 (uiout, "reason",
10552 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10553 mention (b);
10554 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10555 ui_out_text (uiout, "\nOld value = ");
10556 watchpoint_value_print (bs->old_val, stb);
10557 ui_out_field_stream (uiout, "old", stb);
10558 ui_out_text (uiout, "\nNew value = ");
10559 }
10560 else
10561 {
10562 mention (b);
10563 if (ui_out_is_mi_like_p (uiout))
10564 ui_out_field_string
10565 (uiout, "reason",
10566 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10567 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10568 ui_out_text (uiout, "\nValue = ");
10569 }
10570 watchpoint_value_print (w->val, stb);
10571 ui_out_field_stream (uiout, "new", stb);
10572 ui_out_text (uiout, "\n");
10573 result = PRINT_UNKNOWN;
10574 break;
10575 default:
10576 result = PRINT_UNKNOWN;
10577 }
10578
10579 do_cleanups (old_chain);
10580 return result;
10581 }
10582
10583 /* Implement the "print_mention" breakpoint_ops method for hardware
10584 watchpoints. */
10585
10586 static void
10587 print_mention_watchpoint (struct breakpoint *b)
10588 {
10589 struct cleanup *ui_out_chain;
10590 struct watchpoint *w = (struct watchpoint *) b;
10591 struct ui_out *uiout = current_uiout;
10592
10593 switch (b->type)
10594 {
10595 case bp_watchpoint:
10596 ui_out_text (uiout, "Watchpoint ");
10597 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10598 break;
10599 case bp_hardware_watchpoint:
10600 ui_out_text (uiout, "Hardware watchpoint ");
10601 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10602 break;
10603 case bp_read_watchpoint:
10604 ui_out_text (uiout, "Hardware read watchpoint ");
10605 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10606 break;
10607 case bp_access_watchpoint:
10608 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10609 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10610 break;
10611 default:
10612 internal_error (__FILE__, __LINE__,
10613 _("Invalid hardware watchpoint type."));
10614 }
10615
10616 ui_out_field_int (uiout, "number", b->number);
10617 ui_out_text (uiout, ": ");
10618 ui_out_field_string (uiout, "exp", w->exp_string);
10619 do_cleanups (ui_out_chain);
10620 }
10621
10622 /* Implement the "print_recreate" breakpoint_ops method for
10623 watchpoints. */
10624
10625 static void
10626 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10627 {
10628 struct watchpoint *w = (struct watchpoint *) b;
10629
10630 switch (b->type)
10631 {
10632 case bp_watchpoint:
10633 case bp_hardware_watchpoint:
10634 fprintf_unfiltered (fp, "watch");
10635 break;
10636 case bp_read_watchpoint:
10637 fprintf_unfiltered (fp, "rwatch");
10638 break;
10639 case bp_access_watchpoint:
10640 fprintf_unfiltered (fp, "awatch");
10641 break;
10642 default:
10643 internal_error (__FILE__, __LINE__,
10644 _("Invalid watchpoint type."));
10645 }
10646
10647 fprintf_unfiltered (fp, " %s", w->exp_string);
10648 print_recreate_thread (b, fp);
10649 }
10650
10651 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10652
10653 static struct breakpoint_ops watchpoint_breakpoint_ops;
10654
10655 /* Implement the "insert" breakpoint_ops method for
10656 masked hardware watchpoints. */
10657
10658 static int
10659 insert_masked_watchpoint (struct bp_location *bl)
10660 {
10661 struct watchpoint *w = (struct watchpoint *) bl->owner;
10662
10663 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10664 bl->watchpoint_type);
10665 }
10666
10667 /* Implement the "remove" breakpoint_ops method for
10668 masked hardware watchpoints. */
10669
10670 static int
10671 remove_masked_watchpoint (struct bp_location *bl)
10672 {
10673 struct watchpoint *w = (struct watchpoint *) bl->owner;
10674
10675 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10676 bl->watchpoint_type);
10677 }
10678
10679 /* Implement the "resources_needed" breakpoint_ops method for
10680 masked hardware watchpoints. */
10681
10682 static int
10683 resources_needed_masked_watchpoint (const struct bp_location *bl)
10684 {
10685 struct watchpoint *w = (struct watchpoint *) bl->owner;
10686
10687 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10688 }
10689
10690 /* Implement the "works_in_software_mode" breakpoint_ops method for
10691 masked hardware watchpoints. */
10692
10693 static int
10694 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10695 {
10696 return 0;
10697 }
10698
10699 /* Implement the "print_it" breakpoint_ops method for
10700 masked hardware watchpoints. */
10701
10702 static enum print_stop_action
10703 print_it_masked_watchpoint (bpstat bs)
10704 {
10705 struct breakpoint *b = bs->breakpoint_at;
10706 struct ui_out *uiout = current_uiout;
10707
10708 /* Masked watchpoints have only one location. */
10709 gdb_assert (b->loc && b->loc->next == NULL);
10710
10711 switch (b->type)
10712 {
10713 case bp_hardware_watchpoint:
10714 annotate_watchpoint (b->number);
10715 if (ui_out_is_mi_like_p (uiout))
10716 ui_out_field_string
10717 (uiout, "reason",
10718 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10719 break;
10720
10721 case bp_read_watchpoint:
10722 if (ui_out_is_mi_like_p (uiout))
10723 ui_out_field_string
10724 (uiout, "reason",
10725 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10726 break;
10727
10728 case bp_access_watchpoint:
10729 if (ui_out_is_mi_like_p (uiout))
10730 ui_out_field_string
10731 (uiout, "reason",
10732 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10733 break;
10734 default:
10735 internal_error (__FILE__, __LINE__,
10736 _("Invalid hardware watchpoint type."));
10737 }
10738
10739 mention (b);
10740 ui_out_text (uiout, _("\n\
10741 Check the underlying instruction at PC for the memory\n\
10742 address and value which triggered this watchpoint.\n"));
10743 ui_out_text (uiout, "\n");
10744
10745 /* More than one watchpoint may have been triggered. */
10746 return PRINT_UNKNOWN;
10747 }
10748
10749 /* Implement the "print_one_detail" breakpoint_ops method for
10750 masked hardware watchpoints. */
10751
10752 static void
10753 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10754 struct ui_out *uiout)
10755 {
10756 struct watchpoint *w = (struct watchpoint *) b;
10757
10758 /* Masked watchpoints have only one location. */
10759 gdb_assert (b->loc && b->loc->next == NULL);
10760
10761 ui_out_text (uiout, "\tmask ");
10762 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
10763 ui_out_text (uiout, "\n");
10764 }
10765
10766 /* Implement the "print_mention" breakpoint_ops method for
10767 masked hardware watchpoints. */
10768
10769 static void
10770 print_mention_masked_watchpoint (struct breakpoint *b)
10771 {
10772 struct watchpoint *w = (struct watchpoint *) b;
10773 struct ui_out *uiout = current_uiout;
10774 struct cleanup *ui_out_chain;
10775
10776 switch (b->type)
10777 {
10778 case bp_hardware_watchpoint:
10779 ui_out_text (uiout, "Masked hardware watchpoint ");
10780 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10781 break;
10782 case bp_read_watchpoint:
10783 ui_out_text (uiout, "Masked hardware read watchpoint ");
10784 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10785 break;
10786 case bp_access_watchpoint:
10787 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
10788 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10789 break;
10790 default:
10791 internal_error (__FILE__, __LINE__,
10792 _("Invalid hardware watchpoint type."));
10793 }
10794
10795 ui_out_field_int (uiout, "number", b->number);
10796 ui_out_text (uiout, ": ");
10797 ui_out_field_string (uiout, "exp", w->exp_string);
10798 do_cleanups (ui_out_chain);
10799 }
10800
10801 /* Implement the "print_recreate" breakpoint_ops method for
10802 masked hardware watchpoints. */
10803
10804 static void
10805 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10806 {
10807 struct watchpoint *w = (struct watchpoint *) b;
10808 char tmp[40];
10809
10810 switch (b->type)
10811 {
10812 case bp_hardware_watchpoint:
10813 fprintf_unfiltered (fp, "watch");
10814 break;
10815 case bp_read_watchpoint:
10816 fprintf_unfiltered (fp, "rwatch");
10817 break;
10818 case bp_access_watchpoint:
10819 fprintf_unfiltered (fp, "awatch");
10820 break;
10821 default:
10822 internal_error (__FILE__, __LINE__,
10823 _("Invalid hardware watchpoint type."));
10824 }
10825
10826 sprintf_vma (tmp, w->hw_wp_mask);
10827 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10828 print_recreate_thread (b, fp);
10829 }
10830
10831 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10832
10833 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10834
10835 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10836
10837 static int
10838 is_masked_watchpoint (const struct breakpoint *b)
10839 {
10840 return b->ops == &masked_watchpoint_breakpoint_ops;
10841 }
10842
10843 /* accessflag: hw_write: watch write,
10844 hw_read: watch read,
10845 hw_access: watch access (read or write) */
10846 static void
10847 watch_command_1 (const char *arg, int accessflag, int from_tty,
10848 int just_location, int internal)
10849 {
10850 volatile struct gdb_exception e;
10851 struct breakpoint *b, *scope_breakpoint = NULL;
10852 struct expression *exp;
10853 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10854 struct value *val, *mark, *result;
10855 struct frame_info *frame;
10856 const char *exp_start = NULL;
10857 const char *exp_end = NULL;
10858 const char *tok, *end_tok;
10859 int toklen = -1;
10860 const char *cond_start = NULL;
10861 const char *cond_end = NULL;
10862 enum bptype bp_type;
10863 int thread = -1;
10864 int pc = 0;
10865 /* Flag to indicate whether we are going to use masks for
10866 the hardware watchpoint. */
10867 int use_mask = 0;
10868 CORE_ADDR mask = 0;
10869 struct watchpoint *w;
10870 char *expression;
10871 struct cleanup *back_to;
10872
10873 /* Make sure that we actually have parameters to parse. */
10874 if (arg != NULL && arg[0] != '\0')
10875 {
10876 const char *value_start;
10877
10878 exp_end = arg + strlen (arg);
10879
10880 /* Look for "parameter value" pairs at the end
10881 of the arguments string. */
10882 for (tok = exp_end - 1; tok > arg; tok--)
10883 {
10884 /* Skip whitespace at the end of the argument list. */
10885 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10886 tok--;
10887
10888 /* Find the beginning of the last token.
10889 This is the value of the parameter. */
10890 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10891 tok--;
10892 value_start = tok + 1;
10893
10894 /* Skip whitespace. */
10895 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10896 tok--;
10897
10898 end_tok = tok;
10899
10900 /* Find the beginning of the second to last token.
10901 This is the parameter itself. */
10902 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10903 tok--;
10904 tok++;
10905 toklen = end_tok - tok + 1;
10906
10907 if (toklen == 6 && !strncmp (tok, "thread", 6))
10908 {
10909 /* At this point we've found a "thread" token, which means
10910 the user is trying to set a watchpoint that triggers
10911 only in a specific thread. */
10912 char *endp;
10913
10914 if (thread != -1)
10915 error(_("You can specify only one thread."));
10916
10917 /* Extract the thread ID from the next token. */
10918 thread = strtol (value_start, &endp, 0);
10919
10920 /* Check if the user provided a valid numeric value for the
10921 thread ID. */
10922 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10923 error (_("Invalid thread ID specification %s."), value_start);
10924
10925 /* Check if the thread actually exists. */
10926 if (!valid_thread_id (thread))
10927 invalid_thread_id_error (thread);
10928 }
10929 else if (toklen == 4 && !strncmp (tok, "mask", 4))
10930 {
10931 /* We've found a "mask" token, which means the user wants to
10932 create a hardware watchpoint that is going to have the mask
10933 facility. */
10934 struct value *mask_value, *mark;
10935
10936 if (use_mask)
10937 error(_("You can specify only one mask."));
10938
10939 use_mask = just_location = 1;
10940
10941 mark = value_mark ();
10942 mask_value = parse_to_comma_and_eval (&value_start);
10943 mask = value_as_address (mask_value);
10944 value_free_to_mark (mark);
10945 }
10946 else
10947 /* We didn't recognize what we found. We should stop here. */
10948 break;
10949
10950 /* Truncate the string and get rid of the "parameter value" pair before
10951 the arguments string is parsed by the parse_exp_1 function. */
10952 exp_end = tok;
10953 }
10954 }
10955 else
10956 exp_end = arg;
10957
10958 /* Parse the rest of the arguments. From here on out, everything
10959 is in terms of a newly allocated string instead of the original
10960 ARG. */
10961 innermost_block = NULL;
10962 expression = savestring (arg, exp_end - arg);
10963 back_to = make_cleanup (xfree, expression);
10964 exp_start = arg = expression;
10965 exp = parse_exp_1 (&arg, 0, 0, 0);
10966 exp_end = arg;
10967 /* Remove trailing whitespace from the expression before saving it.
10968 This makes the eventual display of the expression string a bit
10969 prettier. */
10970 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10971 --exp_end;
10972
10973 /* Checking if the expression is not constant. */
10974 if (watchpoint_exp_is_const (exp))
10975 {
10976 int len;
10977
10978 len = exp_end - exp_start;
10979 while (len > 0 && isspace (exp_start[len - 1]))
10980 len--;
10981 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10982 }
10983
10984 exp_valid_block = innermost_block;
10985 mark = value_mark ();
10986 fetch_subexp_value (exp, &pc, &val, &result, NULL);
10987
10988 if (just_location)
10989 {
10990 int ret;
10991
10992 exp_valid_block = NULL;
10993 val = value_addr (result);
10994 release_value (val);
10995 value_free_to_mark (mark);
10996
10997 if (use_mask)
10998 {
10999 ret = target_masked_watch_num_registers (value_as_address (val),
11000 mask);
11001 if (ret == -1)
11002 error (_("This target does not support masked watchpoints."));
11003 else if (ret == -2)
11004 error (_("Invalid mask or memory region."));
11005 }
11006 }
11007 else if (val != NULL)
11008 release_value (val);
11009
11010 tok = skip_spaces_const (arg);
11011 end_tok = skip_to_space_const (tok);
11012
11013 toklen = end_tok - tok;
11014 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11015 {
11016 struct expression *cond;
11017
11018 innermost_block = NULL;
11019 tok = cond_start = end_tok + 1;
11020 cond = parse_exp_1 (&tok, 0, 0, 0);
11021
11022 /* The watchpoint expression may not be local, but the condition
11023 may still be. E.g.: `watch global if local > 0'. */
11024 cond_exp_valid_block = innermost_block;
11025
11026 xfree (cond);
11027 cond_end = tok;
11028 }
11029 if (*tok)
11030 error (_("Junk at end of command."));
11031
11032 if (accessflag == hw_read)
11033 bp_type = bp_read_watchpoint;
11034 else if (accessflag == hw_access)
11035 bp_type = bp_access_watchpoint;
11036 else
11037 bp_type = bp_hardware_watchpoint;
11038
11039 frame = block_innermost_frame (exp_valid_block);
11040
11041 /* If the expression is "local", then set up a "watchpoint scope"
11042 breakpoint at the point where we've left the scope of the watchpoint
11043 expression. Create the scope breakpoint before the watchpoint, so
11044 that we will encounter it first in bpstat_stop_status. */
11045 if (exp_valid_block && frame)
11046 {
11047 if (frame_id_p (frame_unwind_caller_id (frame)))
11048 {
11049 scope_breakpoint
11050 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11051 frame_unwind_caller_pc (frame),
11052 bp_watchpoint_scope,
11053 &momentary_breakpoint_ops);
11054
11055 scope_breakpoint->enable_state = bp_enabled;
11056
11057 /* Automatically delete the breakpoint when it hits. */
11058 scope_breakpoint->disposition = disp_del;
11059
11060 /* Only break in the proper frame (help with recursion). */
11061 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11062
11063 /* Set the address at which we will stop. */
11064 scope_breakpoint->loc->gdbarch
11065 = frame_unwind_caller_arch (frame);
11066 scope_breakpoint->loc->requested_address
11067 = frame_unwind_caller_pc (frame);
11068 scope_breakpoint->loc->address
11069 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11070 scope_breakpoint->loc->requested_address,
11071 scope_breakpoint->type);
11072 }
11073 }
11074
11075 /* Now set up the breakpoint. */
11076
11077 w = XCNEW (struct watchpoint);
11078 b = &w->base;
11079 if (use_mask)
11080 init_raw_breakpoint_without_location (b, NULL, bp_type,
11081 &masked_watchpoint_breakpoint_ops);
11082 else
11083 init_raw_breakpoint_without_location (b, NULL, bp_type,
11084 &watchpoint_breakpoint_ops);
11085 b->thread = thread;
11086 b->disposition = disp_donttouch;
11087 b->pspace = current_program_space;
11088 w->exp = exp;
11089 w->exp_valid_block = exp_valid_block;
11090 w->cond_exp_valid_block = cond_exp_valid_block;
11091 if (just_location)
11092 {
11093 struct type *t = value_type (val);
11094 CORE_ADDR addr = value_as_address (val);
11095 char *name;
11096
11097 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11098 name = type_to_string (t);
11099
11100 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11101 core_addr_to_string (addr));
11102 xfree (name);
11103
11104 w->exp_string = xstrprintf ("-location %.*s",
11105 (int) (exp_end - exp_start), exp_start);
11106
11107 /* The above expression is in C. */
11108 b->language = language_c;
11109 }
11110 else
11111 w->exp_string = savestring (exp_start, exp_end - exp_start);
11112
11113 if (use_mask)
11114 {
11115 w->hw_wp_mask = mask;
11116 }
11117 else
11118 {
11119 w->val = val;
11120 w->val_valid = 1;
11121 }
11122
11123 if (cond_start)
11124 b->cond_string = savestring (cond_start, cond_end - cond_start);
11125 else
11126 b->cond_string = 0;
11127
11128 if (frame)
11129 {
11130 w->watchpoint_frame = get_frame_id (frame);
11131 w->watchpoint_thread = inferior_ptid;
11132 }
11133 else
11134 {
11135 w->watchpoint_frame = null_frame_id;
11136 w->watchpoint_thread = null_ptid;
11137 }
11138
11139 if (scope_breakpoint != NULL)
11140 {
11141 /* The scope breakpoint is related to the watchpoint. We will
11142 need to act on them together. */
11143 b->related_breakpoint = scope_breakpoint;
11144 scope_breakpoint->related_breakpoint = b;
11145 }
11146
11147 if (!just_location)
11148 value_free_to_mark (mark);
11149
11150 TRY_CATCH (e, RETURN_MASK_ALL)
11151 {
11152 /* Finally update the new watchpoint. This creates the locations
11153 that should be inserted. */
11154 update_watchpoint (w, 1);
11155 }
11156 if (e.reason < 0)
11157 {
11158 delete_breakpoint (b);
11159 throw_exception (e);
11160 }
11161
11162 install_breakpoint (internal, b, 1);
11163 do_cleanups (back_to);
11164 }
11165
11166 /* Return count of debug registers needed to watch the given expression.
11167 If the watchpoint cannot be handled in hardware return zero. */
11168
11169 static int
11170 can_use_hardware_watchpoint (struct value *v)
11171 {
11172 int found_memory_cnt = 0;
11173 struct value *head = v;
11174
11175 /* Did the user specifically forbid us to use hardware watchpoints? */
11176 if (!can_use_hw_watchpoints)
11177 return 0;
11178
11179 /* Make sure that the value of the expression depends only upon
11180 memory contents, and values computed from them within GDB. If we
11181 find any register references or function calls, we can't use a
11182 hardware watchpoint.
11183
11184 The idea here is that evaluating an expression generates a series
11185 of values, one holding the value of every subexpression. (The
11186 expression a*b+c has five subexpressions: a, b, a*b, c, and
11187 a*b+c.) GDB's values hold almost enough information to establish
11188 the criteria given above --- they identify memory lvalues,
11189 register lvalues, computed values, etcetera. So we can evaluate
11190 the expression, and then scan the chain of values that leaves
11191 behind to decide whether we can detect any possible change to the
11192 expression's final value using only hardware watchpoints.
11193
11194 However, I don't think that the values returned by inferior
11195 function calls are special in any way. So this function may not
11196 notice that an expression involving an inferior function call
11197 can't be watched with hardware watchpoints. FIXME. */
11198 for (; v; v = value_next (v))
11199 {
11200 if (VALUE_LVAL (v) == lval_memory)
11201 {
11202 if (v != head && value_lazy (v))
11203 /* A lazy memory lvalue in the chain is one that GDB never
11204 needed to fetch; we either just used its address (e.g.,
11205 `a' in `a.b') or we never needed it at all (e.g., `a'
11206 in `a,b'). This doesn't apply to HEAD; if that is
11207 lazy then it was not readable, but watch it anyway. */
11208 ;
11209 else
11210 {
11211 /* Ahh, memory we actually used! Check if we can cover
11212 it with hardware watchpoints. */
11213 struct type *vtype = check_typedef (value_type (v));
11214
11215 /* We only watch structs and arrays if user asked for it
11216 explicitly, never if they just happen to appear in a
11217 middle of some value chain. */
11218 if (v == head
11219 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11220 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11221 {
11222 CORE_ADDR vaddr = value_address (v);
11223 int len;
11224 int num_regs;
11225
11226 len = (target_exact_watchpoints
11227 && is_scalar_type_recursive (vtype))?
11228 1 : TYPE_LENGTH (value_type (v));
11229
11230 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11231 if (!num_regs)
11232 return 0;
11233 else
11234 found_memory_cnt += num_regs;
11235 }
11236 }
11237 }
11238 else if (VALUE_LVAL (v) != not_lval
11239 && deprecated_value_modifiable (v) == 0)
11240 return 0; /* These are values from the history (e.g., $1). */
11241 else if (VALUE_LVAL (v) == lval_register)
11242 return 0; /* Cannot watch a register with a HW watchpoint. */
11243 }
11244
11245 /* The expression itself looks suitable for using a hardware
11246 watchpoint, but give the target machine a chance to reject it. */
11247 return found_memory_cnt;
11248 }
11249
11250 void
11251 watch_command_wrapper (char *arg, int from_tty, int internal)
11252 {
11253 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11254 }
11255
11256 /* A helper function that looks for the "-location" argument and then
11257 calls watch_command_1. */
11258
11259 static void
11260 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11261 {
11262 int just_location = 0;
11263
11264 if (arg
11265 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11266 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11267 {
11268 arg = skip_spaces (arg);
11269 just_location = 1;
11270 }
11271
11272 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11273 }
11274
11275 static void
11276 watch_command (char *arg, int from_tty)
11277 {
11278 watch_maybe_just_location (arg, hw_write, from_tty);
11279 }
11280
11281 void
11282 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11283 {
11284 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11285 }
11286
11287 static void
11288 rwatch_command (char *arg, int from_tty)
11289 {
11290 watch_maybe_just_location (arg, hw_read, from_tty);
11291 }
11292
11293 void
11294 awatch_command_wrapper (char *arg, int from_tty, int internal)
11295 {
11296 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11297 }
11298
11299 static void
11300 awatch_command (char *arg, int from_tty)
11301 {
11302 watch_maybe_just_location (arg, hw_access, from_tty);
11303 }
11304 \f
11305
11306 /* Helper routines for the until_command routine in infcmd.c. Here
11307 because it uses the mechanisms of breakpoints. */
11308
11309 struct until_break_command_continuation_args
11310 {
11311 struct breakpoint *breakpoint;
11312 struct breakpoint *breakpoint2;
11313 int thread_num;
11314 };
11315
11316 /* This function is called by fetch_inferior_event via the
11317 cmd_continuation pointer, to complete the until command. It takes
11318 care of cleaning up the temporary breakpoints set up by the until
11319 command. */
11320 static void
11321 until_break_command_continuation (void *arg, int err)
11322 {
11323 struct until_break_command_continuation_args *a = arg;
11324
11325 delete_breakpoint (a->breakpoint);
11326 if (a->breakpoint2)
11327 delete_breakpoint (a->breakpoint2);
11328 delete_longjmp_breakpoint (a->thread_num);
11329 }
11330
11331 void
11332 until_break_command (char *arg, int from_tty, int anywhere)
11333 {
11334 struct symtabs_and_lines sals;
11335 struct symtab_and_line sal;
11336 struct frame_info *frame;
11337 struct gdbarch *frame_gdbarch;
11338 struct frame_id stack_frame_id;
11339 struct frame_id caller_frame_id;
11340 struct breakpoint *breakpoint;
11341 struct breakpoint *breakpoint2 = NULL;
11342 struct cleanup *old_chain;
11343 int thread;
11344 struct thread_info *tp;
11345
11346 clear_proceed_status ();
11347
11348 /* Set a breakpoint where the user wants it and at return from
11349 this function. */
11350
11351 if (last_displayed_sal_is_valid ())
11352 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11353 get_last_displayed_symtab (),
11354 get_last_displayed_line ());
11355 else
11356 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11357 (struct symtab *) NULL, 0);
11358
11359 if (sals.nelts != 1)
11360 error (_("Couldn't get information on specified line."));
11361
11362 sal = sals.sals[0];
11363 xfree (sals.sals); /* malloc'd, so freed. */
11364
11365 if (*arg)
11366 error (_("Junk at end of arguments."));
11367
11368 resolve_sal_pc (&sal);
11369
11370 tp = inferior_thread ();
11371 thread = tp->num;
11372
11373 old_chain = make_cleanup (null_cleanup, NULL);
11374
11375 /* Note linespec handling above invalidates the frame chain.
11376 Installing a breakpoint also invalidates the frame chain (as it
11377 may need to switch threads), so do any frame handling before
11378 that. */
11379
11380 frame = get_selected_frame (NULL);
11381 frame_gdbarch = get_frame_arch (frame);
11382 stack_frame_id = get_stack_frame_id (frame);
11383 caller_frame_id = frame_unwind_caller_id (frame);
11384
11385 /* Keep within the current frame, or in frames called by the current
11386 one. */
11387
11388 if (frame_id_p (caller_frame_id))
11389 {
11390 struct symtab_and_line sal2;
11391
11392 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11393 sal2.pc = frame_unwind_caller_pc (frame);
11394 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11395 sal2,
11396 caller_frame_id,
11397 bp_until);
11398 make_cleanup_delete_breakpoint (breakpoint2);
11399
11400 set_longjmp_breakpoint (tp, caller_frame_id);
11401 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11402 }
11403
11404 /* set_momentary_breakpoint could invalidate FRAME. */
11405 frame = NULL;
11406
11407 if (anywhere)
11408 /* If the user told us to continue until a specified location,
11409 we don't specify a frame at which we need to stop. */
11410 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11411 null_frame_id, bp_until);
11412 else
11413 /* Otherwise, specify the selected frame, because we want to stop
11414 only at the very same frame. */
11415 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11416 stack_frame_id, bp_until);
11417 make_cleanup_delete_breakpoint (breakpoint);
11418
11419 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11420
11421 /* If we are running asynchronously, and proceed call above has
11422 actually managed to start the target, arrange for breakpoints to
11423 be deleted when the target stops. Otherwise, we're already
11424 stopped and delete breakpoints via cleanup chain. */
11425
11426 if (target_can_async_p () && is_running (inferior_ptid))
11427 {
11428 struct until_break_command_continuation_args *args;
11429 args = xmalloc (sizeof (*args));
11430
11431 args->breakpoint = breakpoint;
11432 args->breakpoint2 = breakpoint2;
11433 args->thread_num = thread;
11434
11435 discard_cleanups (old_chain);
11436 add_continuation (inferior_thread (),
11437 until_break_command_continuation, args,
11438 xfree);
11439 }
11440 else
11441 do_cleanups (old_chain);
11442 }
11443
11444 /* This function attempts to parse an optional "if <cond>" clause
11445 from the arg string. If one is not found, it returns NULL.
11446
11447 Else, it returns a pointer to the condition string. (It does not
11448 attempt to evaluate the string against a particular block.) And,
11449 it updates arg to point to the first character following the parsed
11450 if clause in the arg string. */
11451
11452 char *
11453 ep_parse_optional_if_clause (char **arg)
11454 {
11455 char *cond_string;
11456
11457 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11458 return NULL;
11459
11460 /* Skip the "if" keyword. */
11461 (*arg) += 2;
11462
11463 /* Skip any extra leading whitespace, and record the start of the
11464 condition string. */
11465 *arg = skip_spaces (*arg);
11466 cond_string = *arg;
11467
11468 /* Assume that the condition occupies the remainder of the arg
11469 string. */
11470 (*arg) += strlen (cond_string);
11471
11472 return cond_string;
11473 }
11474
11475 /* Commands to deal with catching events, such as signals, exceptions,
11476 process start/exit, etc. */
11477
11478 typedef enum
11479 {
11480 catch_fork_temporary, catch_vfork_temporary,
11481 catch_fork_permanent, catch_vfork_permanent
11482 }
11483 catch_fork_kind;
11484
11485 static void
11486 catch_fork_command_1 (char *arg, int from_tty,
11487 struct cmd_list_element *command)
11488 {
11489 struct gdbarch *gdbarch = get_current_arch ();
11490 char *cond_string = NULL;
11491 catch_fork_kind fork_kind;
11492 int tempflag;
11493
11494 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11495 tempflag = (fork_kind == catch_fork_temporary
11496 || fork_kind == catch_vfork_temporary);
11497
11498 if (!arg)
11499 arg = "";
11500 arg = skip_spaces (arg);
11501
11502 /* The allowed syntax is:
11503 catch [v]fork
11504 catch [v]fork if <cond>
11505
11506 First, check if there's an if clause. */
11507 cond_string = ep_parse_optional_if_clause (&arg);
11508
11509 if ((*arg != '\0') && !isspace (*arg))
11510 error (_("Junk at end of arguments."));
11511
11512 /* If this target supports it, create a fork or vfork catchpoint
11513 and enable reporting of such events. */
11514 switch (fork_kind)
11515 {
11516 case catch_fork_temporary:
11517 case catch_fork_permanent:
11518 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11519 &catch_fork_breakpoint_ops);
11520 break;
11521 case catch_vfork_temporary:
11522 case catch_vfork_permanent:
11523 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11524 &catch_vfork_breakpoint_ops);
11525 break;
11526 default:
11527 error (_("unsupported or unknown fork kind; cannot catch it"));
11528 break;
11529 }
11530 }
11531
11532 static void
11533 catch_exec_command_1 (char *arg, int from_tty,
11534 struct cmd_list_element *command)
11535 {
11536 struct exec_catchpoint *c;
11537 struct gdbarch *gdbarch = get_current_arch ();
11538 int tempflag;
11539 char *cond_string = NULL;
11540
11541 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11542
11543 if (!arg)
11544 arg = "";
11545 arg = skip_spaces (arg);
11546
11547 /* The allowed syntax is:
11548 catch exec
11549 catch exec if <cond>
11550
11551 First, check if there's an if clause. */
11552 cond_string = ep_parse_optional_if_clause (&arg);
11553
11554 if ((*arg != '\0') && !isspace (*arg))
11555 error (_("Junk at end of arguments."));
11556
11557 c = XNEW (struct exec_catchpoint);
11558 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11559 &catch_exec_breakpoint_ops);
11560 c->exec_pathname = NULL;
11561
11562 install_breakpoint (0, &c->base, 1);
11563 }
11564
11565 void
11566 init_ada_exception_breakpoint (struct breakpoint *b,
11567 struct gdbarch *gdbarch,
11568 struct symtab_and_line sal,
11569 char *addr_string,
11570 const struct breakpoint_ops *ops,
11571 int tempflag,
11572 int from_tty)
11573 {
11574 if (from_tty)
11575 {
11576 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11577 if (!loc_gdbarch)
11578 loc_gdbarch = gdbarch;
11579
11580 describe_other_breakpoints (loc_gdbarch,
11581 sal.pspace, sal.pc, sal.section, -1);
11582 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11583 version for exception catchpoints, because two catchpoints
11584 used for different exception names will use the same address.
11585 In this case, a "breakpoint ... also set at..." warning is
11586 unproductive. Besides, the warning phrasing is also a bit
11587 inappropriate, we should use the word catchpoint, and tell
11588 the user what type of catchpoint it is. The above is good
11589 enough for now, though. */
11590 }
11591
11592 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11593
11594 b->enable_state = bp_enabled;
11595 b->disposition = tempflag ? disp_del : disp_donttouch;
11596 b->addr_string = addr_string;
11597 b->language = language_ada;
11598 }
11599
11600 /* Splits the argument using space as delimiter. Returns an xmalloc'd
11601 filter list, or NULL if no filtering is required. */
11602 static VEC(int) *
11603 catch_syscall_split_args (char *arg)
11604 {
11605 VEC(int) *result = NULL;
11606 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
11607
11608 while (*arg != '\0')
11609 {
11610 int i, syscall_number;
11611 char *endptr;
11612 char cur_name[128];
11613 struct syscall s;
11614
11615 /* Skip whitespace. */
11616 arg = skip_spaces (arg);
11617
11618 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
11619 cur_name[i] = arg[i];
11620 cur_name[i] = '\0';
11621 arg += i;
11622
11623 /* Check if the user provided a syscall name or a number. */
11624 syscall_number = (int) strtol (cur_name, &endptr, 0);
11625 if (*endptr == '\0')
11626 get_syscall_by_number (syscall_number, &s);
11627 else
11628 {
11629 /* We have a name. Let's check if it's valid and convert it
11630 to a number. */
11631 get_syscall_by_name (cur_name, &s);
11632
11633 if (s.number == UNKNOWN_SYSCALL)
11634 /* Here we have to issue an error instead of a warning,
11635 because GDB cannot do anything useful if there's no
11636 syscall number to be caught. */
11637 error (_("Unknown syscall name '%s'."), cur_name);
11638 }
11639
11640 /* Ok, it's valid. */
11641 VEC_safe_push (int, result, s.number);
11642 }
11643
11644 discard_cleanups (cleanup);
11645 return result;
11646 }
11647
11648 /* Implement the "catch syscall" command. */
11649
11650 static void
11651 catch_syscall_command_1 (char *arg, int from_tty,
11652 struct cmd_list_element *command)
11653 {
11654 int tempflag;
11655 VEC(int) *filter;
11656 struct syscall s;
11657 struct gdbarch *gdbarch = get_current_arch ();
11658
11659 /* Checking if the feature if supported. */
11660 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
11661 error (_("The feature 'catch syscall' is not supported on \
11662 this architecture yet."));
11663
11664 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11665
11666 arg = skip_spaces (arg);
11667
11668 /* We need to do this first "dummy" translation in order
11669 to get the syscall XML file loaded or, most important,
11670 to display a warning to the user if there's no XML file
11671 for his/her architecture. */
11672 get_syscall_by_number (0, &s);
11673
11674 /* The allowed syntax is:
11675 catch syscall
11676 catch syscall <name | number> [<name | number> ... <name | number>]
11677
11678 Let's check if there's a syscall name. */
11679
11680 if (arg != NULL)
11681 filter = catch_syscall_split_args (arg);
11682 else
11683 filter = NULL;
11684
11685 create_syscall_event_catchpoint (tempflag, filter,
11686 &catch_syscall_breakpoint_ops);
11687 }
11688
11689 static void
11690 catch_command (char *arg, int from_tty)
11691 {
11692 error (_("Catch requires an event name."));
11693 }
11694 \f
11695
11696 static void
11697 tcatch_command (char *arg, int from_tty)
11698 {
11699 error (_("Catch requires an event name."));
11700 }
11701
11702 /* A qsort comparison function that sorts breakpoints in order. */
11703
11704 static int
11705 compare_breakpoints (const void *a, const void *b)
11706 {
11707 const breakpoint_p *ba = a;
11708 uintptr_t ua = (uintptr_t) *ba;
11709 const breakpoint_p *bb = b;
11710 uintptr_t ub = (uintptr_t) *bb;
11711
11712 if ((*ba)->number < (*bb)->number)
11713 return -1;
11714 else if ((*ba)->number > (*bb)->number)
11715 return 1;
11716
11717 /* Now sort by address, in case we see, e..g, two breakpoints with
11718 the number 0. */
11719 if (ua < ub)
11720 return -1;
11721 return ua > ub ? 1 : 0;
11722 }
11723
11724 /* Delete breakpoints by address or line. */
11725
11726 static void
11727 clear_command (char *arg, int from_tty)
11728 {
11729 struct breakpoint *b, *prev;
11730 VEC(breakpoint_p) *found = 0;
11731 int ix;
11732 int default_match;
11733 struct symtabs_and_lines sals;
11734 struct symtab_and_line sal;
11735 int i;
11736 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11737
11738 if (arg)
11739 {
11740 sals = decode_line_with_current_source (arg,
11741 (DECODE_LINE_FUNFIRSTLINE
11742 | DECODE_LINE_LIST_MODE));
11743 make_cleanup (xfree, sals.sals);
11744 default_match = 0;
11745 }
11746 else
11747 {
11748 sals.sals = (struct symtab_and_line *)
11749 xmalloc (sizeof (struct symtab_and_line));
11750 make_cleanup (xfree, sals.sals);
11751 init_sal (&sal); /* Initialize to zeroes. */
11752
11753 /* Set sal's line, symtab, pc, and pspace to the values
11754 corresponding to the last call to print_frame_info. If the
11755 codepoint is not valid, this will set all the fields to 0. */
11756 get_last_displayed_sal (&sal);
11757 if (sal.symtab == 0)
11758 error (_("No source file specified."));
11759
11760 sals.sals[0] = sal;
11761 sals.nelts = 1;
11762
11763 default_match = 1;
11764 }
11765
11766 /* We don't call resolve_sal_pc here. That's not as bad as it
11767 seems, because all existing breakpoints typically have both
11768 file/line and pc set. So, if clear is given file/line, we can
11769 match this to existing breakpoint without obtaining pc at all.
11770
11771 We only support clearing given the address explicitly
11772 present in breakpoint table. Say, we've set breakpoint
11773 at file:line. There were several PC values for that file:line,
11774 due to optimization, all in one block.
11775
11776 We've picked one PC value. If "clear" is issued with another
11777 PC corresponding to the same file:line, the breakpoint won't
11778 be cleared. We probably can still clear the breakpoint, but
11779 since the other PC value is never presented to user, user
11780 can only find it by guessing, and it does not seem important
11781 to support that. */
11782
11783 /* For each line spec given, delete bps which correspond to it. Do
11784 it in two passes, solely to preserve the current behavior that
11785 from_tty is forced true if we delete more than one
11786 breakpoint. */
11787
11788 found = NULL;
11789 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11790 for (i = 0; i < sals.nelts; i++)
11791 {
11792 const char *sal_fullname;
11793
11794 /* If exact pc given, clear bpts at that pc.
11795 If line given (pc == 0), clear all bpts on specified line.
11796 If defaulting, clear all bpts on default line
11797 or at default pc.
11798
11799 defaulting sal.pc != 0 tests to do
11800
11801 0 1 pc
11802 1 1 pc _and_ line
11803 0 0 line
11804 1 0 <can't happen> */
11805
11806 sal = sals.sals[i];
11807 sal_fullname = (sal.symtab == NULL
11808 ? NULL : symtab_to_fullname (sal.symtab));
11809
11810 /* Find all matching breakpoints and add them to 'found'. */
11811 ALL_BREAKPOINTS (b)
11812 {
11813 int match = 0;
11814 /* Are we going to delete b? */
11815 if (b->type != bp_none && !is_watchpoint (b))
11816 {
11817 struct bp_location *loc = b->loc;
11818 for (; loc; loc = loc->next)
11819 {
11820 /* If the user specified file:line, don't allow a PC
11821 match. This matches historical gdb behavior. */
11822 int pc_match = (!sal.explicit_line
11823 && sal.pc
11824 && (loc->pspace == sal.pspace)
11825 && (loc->address == sal.pc)
11826 && (!section_is_overlay (loc->section)
11827 || loc->section == sal.section));
11828 int line_match = 0;
11829
11830 if ((default_match || sal.explicit_line)
11831 && loc->symtab != NULL
11832 && sal_fullname != NULL
11833 && sal.pspace == loc->pspace
11834 && loc->line_number == sal.line
11835 && filename_cmp (symtab_to_fullname (loc->symtab),
11836 sal_fullname) == 0)
11837 line_match = 1;
11838
11839 if (pc_match || line_match)
11840 {
11841 match = 1;
11842 break;
11843 }
11844 }
11845 }
11846
11847 if (match)
11848 VEC_safe_push(breakpoint_p, found, b);
11849 }
11850 }
11851
11852 /* Now go thru the 'found' chain and delete them. */
11853 if (VEC_empty(breakpoint_p, found))
11854 {
11855 if (arg)
11856 error (_("No breakpoint at %s."), arg);
11857 else
11858 error (_("No breakpoint at this line."));
11859 }
11860
11861 /* Remove duplicates from the vec. */
11862 qsort (VEC_address (breakpoint_p, found),
11863 VEC_length (breakpoint_p, found),
11864 sizeof (breakpoint_p),
11865 compare_breakpoints);
11866 prev = VEC_index (breakpoint_p, found, 0);
11867 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
11868 {
11869 if (b == prev)
11870 {
11871 VEC_ordered_remove (breakpoint_p, found, ix);
11872 --ix;
11873 }
11874 }
11875
11876 if (VEC_length(breakpoint_p, found) > 1)
11877 from_tty = 1; /* Always report if deleted more than one. */
11878 if (from_tty)
11879 {
11880 if (VEC_length(breakpoint_p, found) == 1)
11881 printf_unfiltered (_("Deleted breakpoint "));
11882 else
11883 printf_unfiltered (_("Deleted breakpoints "));
11884 }
11885
11886 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
11887 {
11888 if (from_tty)
11889 printf_unfiltered ("%d ", b->number);
11890 delete_breakpoint (b);
11891 }
11892 if (from_tty)
11893 putchar_unfiltered ('\n');
11894
11895 do_cleanups (cleanups);
11896 }
11897 \f
11898 /* Delete breakpoint in BS if they are `delete' breakpoints and
11899 all breakpoints that are marked for deletion, whether hit or not.
11900 This is called after any breakpoint is hit, or after errors. */
11901
11902 void
11903 breakpoint_auto_delete (bpstat bs)
11904 {
11905 struct breakpoint *b, *b_tmp;
11906
11907 for (; bs; bs = bs->next)
11908 if (bs->breakpoint_at
11909 && bs->breakpoint_at->disposition == disp_del
11910 && bs->stop)
11911 delete_breakpoint (bs->breakpoint_at);
11912
11913 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11914 {
11915 if (b->disposition == disp_del_at_next_stop)
11916 delete_breakpoint (b);
11917 }
11918 }
11919
11920 /* A comparison function for bp_location AP and BP being interfaced to
11921 qsort. Sort elements primarily by their ADDRESS (no matter what
11922 does breakpoint_address_is_meaningful say for its OWNER),
11923 secondarily by ordering first bp_permanent OWNERed elements and
11924 terciarily just ensuring the array is sorted stable way despite
11925 qsort being an unstable algorithm. */
11926
11927 static int
11928 bp_location_compare (const void *ap, const void *bp)
11929 {
11930 struct bp_location *a = *(void **) ap;
11931 struct bp_location *b = *(void **) bp;
11932 /* A and B come from existing breakpoints having non-NULL OWNER. */
11933 int a_perm = a->owner->enable_state == bp_permanent;
11934 int b_perm = b->owner->enable_state == bp_permanent;
11935
11936 if (a->address != b->address)
11937 return (a->address > b->address) - (a->address < b->address);
11938
11939 /* Sort locations at the same address by their pspace number, keeping
11940 locations of the same inferior (in a multi-inferior environment)
11941 grouped. */
11942
11943 if (a->pspace->num != b->pspace->num)
11944 return ((a->pspace->num > b->pspace->num)
11945 - (a->pspace->num < b->pspace->num));
11946
11947 /* Sort permanent breakpoints first. */
11948 if (a_perm != b_perm)
11949 return (a_perm < b_perm) - (a_perm > b_perm);
11950
11951 /* Make the internal GDB representation stable across GDB runs
11952 where A and B memory inside GDB can differ. Breakpoint locations of
11953 the same type at the same address can be sorted in arbitrary order. */
11954
11955 if (a->owner->number != b->owner->number)
11956 return ((a->owner->number > b->owner->number)
11957 - (a->owner->number < b->owner->number));
11958
11959 return (a > b) - (a < b);
11960 }
11961
11962 /* Set bp_location_placed_address_before_address_max and
11963 bp_location_shadow_len_after_address_max according to the current
11964 content of the bp_location array. */
11965
11966 static void
11967 bp_location_target_extensions_update (void)
11968 {
11969 struct bp_location *bl, **blp_tmp;
11970
11971 bp_location_placed_address_before_address_max = 0;
11972 bp_location_shadow_len_after_address_max = 0;
11973
11974 ALL_BP_LOCATIONS (bl, blp_tmp)
11975 {
11976 CORE_ADDR start, end, addr;
11977
11978 if (!bp_location_has_shadow (bl))
11979 continue;
11980
11981 start = bl->target_info.placed_address;
11982 end = start + bl->target_info.shadow_len;
11983
11984 gdb_assert (bl->address >= start);
11985 addr = bl->address - start;
11986 if (addr > bp_location_placed_address_before_address_max)
11987 bp_location_placed_address_before_address_max = addr;
11988
11989 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11990
11991 gdb_assert (bl->address < end);
11992 addr = end - bl->address;
11993 if (addr > bp_location_shadow_len_after_address_max)
11994 bp_location_shadow_len_after_address_max = addr;
11995 }
11996 }
11997
11998 /* Download tracepoint locations if they haven't been. */
11999
12000 static void
12001 download_tracepoint_locations (void)
12002 {
12003 struct breakpoint *b;
12004 struct cleanup *old_chain;
12005
12006 if (!target_can_download_tracepoint ())
12007 return;
12008
12009 old_chain = save_current_space_and_thread ();
12010
12011 ALL_TRACEPOINTS (b)
12012 {
12013 struct bp_location *bl;
12014 struct tracepoint *t;
12015 int bp_location_downloaded = 0;
12016
12017 if ((b->type == bp_fast_tracepoint
12018 ? !may_insert_fast_tracepoints
12019 : !may_insert_tracepoints))
12020 continue;
12021
12022 for (bl = b->loc; bl; bl = bl->next)
12023 {
12024 /* In tracepoint, locations are _never_ duplicated, so
12025 should_be_inserted is equivalent to
12026 unduplicated_should_be_inserted. */
12027 if (!should_be_inserted (bl) || bl->inserted)
12028 continue;
12029
12030 switch_to_program_space_and_thread (bl->pspace);
12031
12032 target_download_tracepoint (bl);
12033
12034 bl->inserted = 1;
12035 bp_location_downloaded = 1;
12036 }
12037 t = (struct tracepoint *) b;
12038 t->number_on_target = b->number;
12039 if (bp_location_downloaded)
12040 observer_notify_breakpoint_modified (b);
12041 }
12042
12043 do_cleanups (old_chain);
12044 }
12045
12046 /* Swap the insertion/duplication state between two locations. */
12047
12048 static void
12049 swap_insertion (struct bp_location *left, struct bp_location *right)
12050 {
12051 const int left_inserted = left->inserted;
12052 const int left_duplicate = left->duplicate;
12053 const int left_needs_update = left->needs_update;
12054 const struct bp_target_info left_target_info = left->target_info;
12055
12056 /* Locations of tracepoints can never be duplicated. */
12057 if (is_tracepoint (left->owner))
12058 gdb_assert (!left->duplicate);
12059 if (is_tracepoint (right->owner))
12060 gdb_assert (!right->duplicate);
12061
12062 left->inserted = right->inserted;
12063 left->duplicate = right->duplicate;
12064 left->needs_update = right->needs_update;
12065 left->target_info = right->target_info;
12066 right->inserted = left_inserted;
12067 right->duplicate = left_duplicate;
12068 right->needs_update = left_needs_update;
12069 right->target_info = left_target_info;
12070 }
12071
12072 /* Force the re-insertion of the locations at ADDRESS. This is called
12073 once a new/deleted/modified duplicate location is found and we are evaluating
12074 conditions on the target's side. Such conditions need to be updated on
12075 the target. */
12076
12077 static void
12078 force_breakpoint_reinsertion (struct bp_location *bl)
12079 {
12080 struct bp_location **locp = NULL, **loc2p;
12081 struct bp_location *loc;
12082 CORE_ADDR address = 0;
12083 int pspace_num;
12084
12085 address = bl->address;
12086 pspace_num = bl->pspace->num;
12087
12088 /* This is only meaningful if the target is
12089 evaluating conditions and if the user has
12090 opted for condition evaluation on the target's
12091 side. */
12092 if (gdb_evaluates_breakpoint_condition_p ()
12093 || !target_supports_evaluation_of_breakpoint_conditions ())
12094 return;
12095
12096 /* Flag all breakpoint locations with this address and
12097 the same program space as the location
12098 as "its condition has changed". We need to
12099 update the conditions on the target's side. */
12100 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12101 {
12102 loc = *loc2p;
12103
12104 if (!is_breakpoint (loc->owner)
12105 || pspace_num != loc->pspace->num)
12106 continue;
12107
12108 /* Flag the location appropriately. We use a different state to
12109 let everyone know that we already updated the set of locations
12110 with addr bl->address and program space bl->pspace. This is so
12111 we don't have to keep calling these functions just to mark locations
12112 that have already been marked. */
12113 loc->condition_changed = condition_updated;
12114
12115 /* Free the agent expression bytecode as well. We will compute
12116 it later on. */
12117 if (loc->cond_bytecode)
12118 {
12119 free_agent_expr (loc->cond_bytecode);
12120 loc->cond_bytecode = NULL;
12121 }
12122 }
12123 }
12124
12125 /* If SHOULD_INSERT is false, do not insert any breakpoint locations
12126 into the inferior, only remove already-inserted locations that no
12127 longer should be inserted. Functions that delete a breakpoint or
12128 breakpoints should pass false, so that deleting a breakpoint
12129 doesn't have the side effect of inserting the locations of other
12130 breakpoints that are marked not-inserted, but should_be_inserted
12131 returns true on them.
12132
12133 This behaviour is useful is situations close to tear-down -- e.g.,
12134 after an exec, while the target still has execution, but breakpoint
12135 shadows of the previous executable image should *NOT* be restored
12136 to the new image; or before detaching, where the target still has
12137 execution and wants to delete breakpoints from GDB's lists, and all
12138 breakpoints had already been removed from the inferior. */
12139
12140 static void
12141 update_global_location_list (int should_insert)
12142 {
12143 struct breakpoint *b;
12144 struct bp_location **locp, *loc;
12145 struct cleanup *cleanups;
12146 /* Last breakpoint location address that was marked for update. */
12147 CORE_ADDR last_addr = 0;
12148 /* Last breakpoint location program space that was marked for update. */
12149 int last_pspace_num = -1;
12150
12151 /* Used in the duplicates detection below. When iterating over all
12152 bp_locations, points to the first bp_location of a given address.
12153 Breakpoints and watchpoints of different types are never
12154 duplicates of each other. Keep one pointer for each type of
12155 breakpoint/watchpoint, so we only need to loop over all locations
12156 once. */
12157 struct bp_location *bp_loc_first; /* breakpoint */
12158 struct bp_location *wp_loc_first; /* hardware watchpoint */
12159 struct bp_location *awp_loc_first; /* access watchpoint */
12160 struct bp_location *rwp_loc_first; /* read watchpoint */
12161
12162 /* Saved former bp_location array which we compare against the newly
12163 built bp_location from the current state of ALL_BREAKPOINTS. */
12164 struct bp_location **old_location, **old_locp;
12165 unsigned old_location_count;
12166
12167 old_location = bp_location;
12168 old_location_count = bp_location_count;
12169 bp_location = NULL;
12170 bp_location_count = 0;
12171 cleanups = make_cleanup (xfree, old_location);
12172
12173 ALL_BREAKPOINTS (b)
12174 for (loc = b->loc; loc; loc = loc->next)
12175 bp_location_count++;
12176
12177 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12178 locp = bp_location;
12179 ALL_BREAKPOINTS (b)
12180 for (loc = b->loc; loc; loc = loc->next)
12181 *locp++ = loc;
12182 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12183 bp_location_compare);
12184
12185 bp_location_target_extensions_update ();
12186
12187 /* Identify bp_location instances that are no longer present in the
12188 new list, and therefore should be freed. Note that it's not
12189 necessary that those locations should be removed from inferior --
12190 if there's another location at the same address (previously
12191 marked as duplicate), we don't need to remove/insert the
12192 location.
12193
12194 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12195 and former bp_location array state respectively. */
12196
12197 locp = bp_location;
12198 for (old_locp = old_location; old_locp < old_location + old_location_count;
12199 old_locp++)
12200 {
12201 struct bp_location *old_loc = *old_locp;
12202 struct bp_location **loc2p;
12203
12204 /* Tells if 'old_loc' is found among the new locations. If
12205 not, we have to free it. */
12206 int found_object = 0;
12207 /* Tells if the location should remain inserted in the target. */
12208 int keep_in_target = 0;
12209 int removed = 0;
12210
12211 /* Skip LOCP entries which will definitely never be needed.
12212 Stop either at or being the one matching OLD_LOC. */
12213 while (locp < bp_location + bp_location_count
12214 && (*locp)->address < old_loc->address)
12215 locp++;
12216
12217 for (loc2p = locp;
12218 (loc2p < bp_location + bp_location_count
12219 && (*loc2p)->address == old_loc->address);
12220 loc2p++)
12221 {
12222 /* Check if this is a new/duplicated location or a duplicated
12223 location that had its condition modified. If so, we want to send
12224 its condition to the target if evaluation of conditions is taking
12225 place there. */
12226 if ((*loc2p)->condition_changed == condition_modified
12227 && (last_addr != old_loc->address
12228 || last_pspace_num != old_loc->pspace->num))
12229 {
12230 force_breakpoint_reinsertion (*loc2p);
12231 last_pspace_num = old_loc->pspace->num;
12232 }
12233
12234 if (*loc2p == old_loc)
12235 found_object = 1;
12236 }
12237
12238 /* We have already handled this address, update it so that we don't
12239 have to go through updates again. */
12240 last_addr = old_loc->address;
12241
12242 /* Target-side condition evaluation: Handle deleted locations. */
12243 if (!found_object)
12244 force_breakpoint_reinsertion (old_loc);
12245
12246 /* If this location is no longer present, and inserted, look if
12247 there's maybe a new location at the same address. If so,
12248 mark that one inserted, and don't remove this one. This is
12249 needed so that we don't have a time window where a breakpoint
12250 at certain location is not inserted. */
12251
12252 if (old_loc->inserted)
12253 {
12254 /* If the location is inserted now, we might have to remove
12255 it. */
12256
12257 if (found_object && should_be_inserted (old_loc))
12258 {
12259 /* The location is still present in the location list,
12260 and still should be inserted. Don't do anything. */
12261 keep_in_target = 1;
12262 }
12263 else
12264 {
12265 /* This location still exists, but it won't be kept in the
12266 target since it may have been disabled. We proceed to
12267 remove its target-side condition. */
12268
12269 /* The location is either no longer present, or got
12270 disabled. See if there's another location at the
12271 same address, in which case we don't need to remove
12272 this one from the target. */
12273
12274 /* OLD_LOC comes from existing struct breakpoint. */
12275 if (breakpoint_address_is_meaningful (old_loc->owner))
12276 {
12277 for (loc2p = locp;
12278 (loc2p < bp_location + bp_location_count
12279 && (*loc2p)->address == old_loc->address);
12280 loc2p++)
12281 {
12282 struct bp_location *loc2 = *loc2p;
12283
12284 if (breakpoint_locations_match (loc2, old_loc))
12285 {
12286 /* Read watchpoint locations are switched to
12287 access watchpoints, if the former are not
12288 supported, but the latter are. */
12289 if (is_hardware_watchpoint (old_loc->owner))
12290 {
12291 gdb_assert (is_hardware_watchpoint (loc2->owner));
12292 loc2->watchpoint_type = old_loc->watchpoint_type;
12293 }
12294
12295 /* loc2 is a duplicated location. We need to check
12296 if it should be inserted in case it will be
12297 unduplicated. */
12298 if (loc2 != old_loc
12299 && unduplicated_should_be_inserted (loc2))
12300 {
12301 swap_insertion (old_loc, loc2);
12302 keep_in_target = 1;
12303 break;
12304 }
12305 }
12306 }
12307 }
12308 }
12309
12310 if (!keep_in_target)
12311 {
12312 if (remove_breakpoint (old_loc, mark_uninserted))
12313 {
12314 /* This is just about all we can do. We could keep
12315 this location on the global list, and try to
12316 remove it next time, but there's no particular
12317 reason why we will succeed next time.
12318
12319 Note that at this point, old_loc->owner is still
12320 valid, as delete_breakpoint frees the breakpoint
12321 only after calling us. */
12322 printf_filtered (_("warning: Error removing "
12323 "breakpoint %d\n"),
12324 old_loc->owner->number);
12325 }
12326 removed = 1;
12327 }
12328 }
12329
12330 if (!found_object)
12331 {
12332 if (removed && non_stop
12333 && breakpoint_address_is_meaningful (old_loc->owner)
12334 && !is_hardware_watchpoint (old_loc->owner))
12335 {
12336 /* This location was removed from the target. In
12337 non-stop mode, a race condition is possible where
12338 we've removed a breakpoint, but stop events for that
12339 breakpoint are already queued and will arrive later.
12340 We apply an heuristic to be able to distinguish such
12341 SIGTRAPs from other random SIGTRAPs: we keep this
12342 breakpoint location for a bit, and will retire it
12343 after we see some number of events. The theory here
12344 is that reporting of events should, "on the average",
12345 be fair, so after a while we'll see events from all
12346 threads that have anything of interest, and no longer
12347 need to keep this breakpoint location around. We
12348 don't hold locations forever so to reduce chances of
12349 mistaking a non-breakpoint SIGTRAP for a breakpoint
12350 SIGTRAP.
12351
12352 The heuristic failing can be disastrous on
12353 decr_pc_after_break targets.
12354
12355 On decr_pc_after_break targets, like e.g., x86-linux,
12356 if we fail to recognize a late breakpoint SIGTRAP,
12357 because events_till_retirement has reached 0 too
12358 soon, we'll fail to do the PC adjustment, and report
12359 a random SIGTRAP to the user. When the user resumes
12360 the inferior, it will most likely immediately crash
12361 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12362 corrupted, because of being resumed e.g., in the
12363 middle of a multi-byte instruction, or skipped a
12364 one-byte instruction. This was actually seen happen
12365 on native x86-linux, and should be less rare on
12366 targets that do not support new thread events, like
12367 remote, due to the heuristic depending on
12368 thread_count.
12369
12370 Mistaking a random SIGTRAP for a breakpoint trap
12371 causes similar symptoms (PC adjustment applied when
12372 it shouldn't), but then again, playing with SIGTRAPs
12373 behind the debugger's back is asking for trouble.
12374
12375 Since hardware watchpoint traps are always
12376 distinguishable from other traps, so we don't need to
12377 apply keep hardware watchpoint moribund locations
12378 around. We simply always ignore hardware watchpoint
12379 traps we can no longer explain. */
12380
12381 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12382 old_loc->owner = NULL;
12383
12384 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12385 }
12386 else
12387 {
12388 old_loc->owner = NULL;
12389 decref_bp_location (&old_loc);
12390 }
12391 }
12392 }
12393
12394 /* Rescan breakpoints at the same address and section, marking the
12395 first one as "first" and any others as "duplicates". This is so
12396 that the bpt instruction is only inserted once. If we have a
12397 permanent breakpoint at the same place as BPT, make that one the
12398 official one, and the rest as duplicates. Permanent breakpoints
12399 are sorted first for the same address.
12400
12401 Do the same for hardware watchpoints, but also considering the
12402 watchpoint's type (regular/access/read) and length. */
12403
12404 bp_loc_first = NULL;
12405 wp_loc_first = NULL;
12406 awp_loc_first = NULL;
12407 rwp_loc_first = NULL;
12408 ALL_BP_LOCATIONS (loc, locp)
12409 {
12410 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12411 non-NULL. */
12412 struct bp_location **loc_first_p;
12413 b = loc->owner;
12414
12415 if (!unduplicated_should_be_inserted (loc)
12416 || !breakpoint_address_is_meaningful (b)
12417 /* Don't detect duplicate for tracepoint locations because they are
12418 never duplicated. See the comments in field `duplicate' of
12419 `struct bp_location'. */
12420 || is_tracepoint (b))
12421 {
12422 /* Clear the condition modification flag. */
12423 loc->condition_changed = condition_unchanged;
12424 continue;
12425 }
12426
12427 /* Permanent breakpoint should always be inserted. */
12428 if (b->enable_state == bp_permanent && ! loc->inserted)
12429 internal_error (__FILE__, __LINE__,
12430 _("allegedly permanent breakpoint is not "
12431 "actually inserted"));
12432
12433 if (b->type == bp_hardware_watchpoint)
12434 loc_first_p = &wp_loc_first;
12435 else if (b->type == bp_read_watchpoint)
12436 loc_first_p = &rwp_loc_first;
12437 else if (b->type == bp_access_watchpoint)
12438 loc_first_p = &awp_loc_first;
12439 else
12440 loc_first_p = &bp_loc_first;
12441
12442 if (*loc_first_p == NULL
12443 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12444 || !breakpoint_locations_match (loc, *loc_first_p))
12445 {
12446 *loc_first_p = loc;
12447 loc->duplicate = 0;
12448
12449 if (is_breakpoint (loc->owner) && loc->condition_changed)
12450 {
12451 loc->needs_update = 1;
12452 /* Clear the condition modification flag. */
12453 loc->condition_changed = condition_unchanged;
12454 }
12455 continue;
12456 }
12457
12458
12459 /* This and the above ensure the invariant that the first location
12460 is not duplicated, and is the inserted one.
12461 All following are marked as duplicated, and are not inserted. */
12462 if (loc->inserted)
12463 swap_insertion (loc, *loc_first_p);
12464 loc->duplicate = 1;
12465
12466 /* Clear the condition modification flag. */
12467 loc->condition_changed = condition_unchanged;
12468
12469 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12470 && b->enable_state != bp_permanent)
12471 internal_error (__FILE__, __LINE__,
12472 _("another breakpoint was inserted on top of "
12473 "a permanent breakpoint"));
12474 }
12475
12476 if (breakpoints_always_inserted_mode ()
12477 && (have_live_inferiors ()
12478 || (gdbarch_has_global_breakpoints (target_gdbarch ()))))
12479 {
12480 if (should_insert)
12481 insert_breakpoint_locations ();
12482 else
12483 {
12484 /* Though should_insert is false, we may need to update conditions
12485 on the target's side if it is evaluating such conditions. We
12486 only update conditions for locations that are marked
12487 "needs_update". */
12488 update_inserted_breakpoint_locations ();
12489 }
12490 }
12491
12492 if (should_insert)
12493 download_tracepoint_locations ();
12494
12495 do_cleanups (cleanups);
12496 }
12497
12498 void
12499 breakpoint_retire_moribund (void)
12500 {
12501 struct bp_location *loc;
12502 int ix;
12503
12504 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12505 if (--(loc->events_till_retirement) == 0)
12506 {
12507 decref_bp_location (&loc);
12508 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12509 --ix;
12510 }
12511 }
12512
12513 static void
12514 update_global_location_list_nothrow (int inserting)
12515 {
12516 volatile struct gdb_exception e;
12517
12518 TRY_CATCH (e, RETURN_MASK_ERROR)
12519 update_global_location_list (inserting);
12520 }
12521
12522 /* Clear BKP from a BPS. */
12523
12524 static void
12525 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12526 {
12527 bpstat bs;
12528
12529 for (bs = bps; bs; bs = bs->next)
12530 if (bs->breakpoint_at == bpt)
12531 {
12532 bs->breakpoint_at = NULL;
12533 bs->old_val = NULL;
12534 /* bs->commands will be freed later. */
12535 }
12536 }
12537
12538 /* Callback for iterate_over_threads. */
12539 static int
12540 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12541 {
12542 struct breakpoint *bpt = data;
12543
12544 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12545 return 0;
12546 }
12547
12548 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12549 callbacks. */
12550
12551 static void
12552 say_where (struct breakpoint *b)
12553 {
12554 struct value_print_options opts;
12555
12556 get_user_print_options (&opts);
12557
12558 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12559 single string. */
12560 if (b->loc == NULL)
12561 {
12562 printf_filtered (_(" (%s) pending."), b->addr_string);
12563 }
12564 else
12565 {
12566 if (opts.addressprint || b->loc->symtab == NULL)
12567 {
12568 printf_filtered (" at ");
12569 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12570 gdb_stdout);
12571 }
12572 if (b->loc->symtab != NULL)
12573 {
12574 /* If there is a single location, we can print the location
12575 more nicely. */
12576 if (b->loc->next == NULL)
12577 printf_filtered (": file %s, line %d.",
12578 symtab_to_filename_for_display (b->loc->symtab),
12579 b->loc->line_number);
12580 else
12581 /* This is not ideal, but each location may have a
12582 different file name, and this at least reflects the
12583 real situation somewhat. */
12584 printf_filtered (": %s.", b->addr_string);
12585 }
12586
12587 if (b->loc->next)
12588 {
12589 struct bp_location *loc = b->loc;
12590 int n = 0;
12591 for (; loc; loc = loc->next)
12592 ++n;
12593 printf_filtered (" (%d locations)", n);
12594 }
12595 }
12596 }
12597
12598 /* Default bp_location_ops methods. */
12599
12600 static void
12601 bp_location_dtor (struct bp_location *self)
12602 {
12603 xfree (self->cond);
12604 if (self->cond_bytecode)
12605 free_agent_expr (self->cond_bytecode);
12606 xfree (self->function_name);
12607 }
12608
12609 static const struct bp_location_ops bp_location_ops =
12610 {
12611 bp_location_dtor
12612 };
12613
12614 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12615 inherit from. */
12616
12617 static void
12618 base_breakpoint_dtor (struct breakpoint *self)
12619 {
12620 decref_counted_command_line (&self->commands);
12621 xfree (self->cond_string);
12622 xfree (self->extra_string);
12623 xfree (self->addr_string);
12624 xfree (self->filter);
12625 xfree (self->addr_string_range_end);
12626 }
12627
12628 static struct bp_location *
12629 base_breakpoint_allocate_location (struct breakpoint *self)
12630 {
12631 struct bp_location *loc;
12632
12633 loc = XNEW (struct bp_location);
12634 init_bp_location (loc, &bp_location_ops, self);
12635 return loc;
12636 }
12637
12638 static void
12639 base_breakpoint_re_set (struct breakpoint *b)
12640 {
12641 /* Nothing to re-set. */
12642 }
12643
12644 #define internal_error_pure_virtual_called() \
12645 gdb_assert_not_reached ("pure virtual function called")
12646
12647 static int
12648 base_breakpoint_insert_location (struct bp_location *bl)
12649 {
12650 internal_error_pure_virtual_called ();
12651 }
12652
12653 static int
12654 base_breakpoint_remove_location (struct bp_location *bl)
12655 {
12656 internal_error_pure_virtual_called ();
12657 }
12658
12659 static int
12660 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12661 struct address_space *aspace,
12662 CORE_ADDR bp_addr,
12663 const struct target_waitstatus *ws)
12664 {
12665 internal_error_pure_virtual_called ();
12666 }
12667
12668 static void
12669 base_breakpoint_check_status (bpstat bs)
12670 {
12671 /* Always stop. */
12672 }
12673
12674 /* A "works_in_software_mode" breakpoint_ops method that just internal
12675 errors. */
12676
12677 static int
12678 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12679 {
12680 internal_error_pure_virtual_called ();
12681 }
12682
12683 /* A "resources_needed" breakpoint_ops method that just internal
12684 errors. */
12685
12686 static int
12687 base_breakpoint_resources_needed (const struct bp_location *bl)
12688 {
12689 internal_error_pure_virtual_called ();
12690 }
12691
12692 static enum print_stop_action
12693 base_breakpoint_print_it (bpstat bs)
12694 {
12695 internal_error_pure_virtual_called ();
12696 }
12697
12698 static void
12699 base_breakpoint_print_one_detail (const struct breakpoint *self,
12700 struct ui_out *uiout)
12701 {
12702 /* nothing */
12703 }
12704
12705 static void
12706 base_breakpoint_print_mention (struct breakpoint *b)
12707 {
12708 internal_error_pure_virtual_called ();
12709 }
12710
12711 static void
12712 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12713 {
12714 internal_error_pure_virtual_called ();
12715 }
12716
12717 static void
12718 base_breakpoint_create_sals_from_address (char **arg,
12719 struct linespec_result *canonical,
12720 enum bptype type_wanted,
12721 char *addr_start,
12722 char **copy_arg)
12723 {
12724 internal_error_pure_virtual_called ();
12725 }
12726
12727 static void
12728 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12729 struct linespec_result *c,
12730 struct linespec_sals *lsal,
12731 char *cond_string,
12732 char *extra_string,
12733 enum bptype type_wanted,
12734 enum bpdisp disposition,
12735 int thread,
12736 int task, int ignore_count,
12737 const struct breakpoint_ops *o,
12738 int from_tty, int enabled,
12739 int internal, unsigned flags)
12740 {
12741 internal_error_pure_virtual_called ();
12742 }
12743
12744 static void
12745 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
12746 struct symtabs_and_lines *sals)
12747 {
12748 internal_error_pure_virtual_called ();
12749 }
12750
12751 /* The default 'explains_signal' method. */
12752
12753 static enum bpstat_signal_value
12754 base_breakpoint_explains_signal (struct breakpoint *b)
12755 {
12756 return BPSTAT_SIGNAL_HIDE;
12757 }
12758
12759 struct breakpoint_ops base_breakpoint_ops =
12760 {
12761 base_breakpoint_dtor,
12762 base_breakpoint_allocate_location,
12763 base_breakpoint_re_set,
12764 base_breakpoint_insert_location,
12765 base_breakpoint_remove_location,
12766 base_breakpoint_breakpoint_hit,
12767 base_breakpoint_check_status,
12768 base_breakpoint_resources_needed,
12769 base_breakpoint_works_in_software_mode,
12770 base_breakpoint_print_it,
12771 NULL,
12772 base_breakpoint_print_one_detail,
12773 base_breakpoint_print_mention,
12774 base_breakpoint_print_recreate,
12775 base_breakpoint_create_sals_from_address,
12776 base_breakpoint_create_breakpoints_sal,
12777 base_breakpoint_decode_linespec,
12778 base_breakpoint_explains_signal
12779 };
12780
12781 /* Default breakpoint_ops methods. */
12782
12783 static void
12784 bkpt_re_set (struct breakpoint *b)
12785 {
12786 /* FIXME: is this still reachable? */
12787 if (b->addr_string == NULL)
12788 {
12789 /* Anything without a string can't be re-set. */
12790 delete_breakpoint (b);
12791 return;
12792 }
12793
12794 breakpoint_re_set_default (b);
12795 }
12796
12797 static int
12798 bkpt_insert_location (struct bp_location *bl)
12799 {
12800 if (bl->loc_type == bp_loc_hardware_breakpoint)
12801 return target_insert_hw_breakpoint (bl->gdbarch,
12802 &bl->target_info);
12803 else
12804 return target_insert_breakpoint (bl->gdbarch,
12805 &bl->target_info);
12806 }
12807
12808 static int
12809 bkpt_remove_location (struct bp_location *bl)
12810 {
12811 if (bl->loc_type == bp_loc_hardware_breakpoint)
12812 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12813 else
12814 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
12815 }
12816
12817 static int
12818 bkpt_breakpoint_hit (const struct bp_location *bl,
12819 struct address_space *aspace, CORE_ADDR bp_addr,
12820 const struct target_waitstatus *ws)
12821 {
12822 if (ws->kind != TARGET_WAITKIND_STOPPED
12823 || ws->value.sig != GDB_SIGNAL_TRAP)
12824 return 0;
12825
12826 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12827 aspace, bp_addr))
12828 return 0;
12829
12830 if (overlay_debugging /* unmapped overlay section */
12831 && section_is_overlay (bl->section)
12832 && !section_is_mapped (bl->section))
12833 return 0;
12834
12835 return 1;
12836 }
12837
12838 static int
12839 bkpt_resources_needed (const struct bp_location *bl)
12840 {
12841 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12842
12843 return 1;
12844 }
12845
12846 static enum print_stop_action
12847 bkpt_print_it (bpstat bs)
12848 {
12849 struct breakpoint *b;
12850 const struct bp_location *bl;
12851 int bp_temp;
12852 struct ui_out *uiout = current_uiout;
12853
12854 gdb_assert (bs->bp_location_at != NULL);
12855
12856 bl = bs->bp_location_at;
12857 b = bs->breakpoint_at;
12858
12859 bp_temp = b->disposition == disp_del;
12860 if (bl->address != bl->requested_address)
12861 breakpoint_adjustment_warning (bl->requested_address,
12862 bl->address,
12863 b->number, 1);
12864 annotate_breakpoint (b->number);
12865 if (bp_temp)
12866 ui_out_text (uiout, "\nTemporary breakpoint ");
12867 else
12868 ui_out_text (uiout, "\nBreakpoint ");
12869 if (ui_out_is_mi_like_p (uiout))
12870 {
12871 ui_out_field_string (uiout, "reason",
12872 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12873 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12874 }
12875 ui_out_field_int (uiout, "bkptno", b->number);
12876 ui_out_text (uiout, ", ");
12877
12878 return PRINT_SRC_AND_LOC;
12879 }
12880
12881 static void
12882 bkpt_print_mention (struct breakpoint *b)
12883 {
12884 if (ui_out_is_mi_like_p (current_uiout))
12885 return;
12886
12887 switch (b->type)
12888 {
12889 case bp_breakpoint:
12890 case bp_gnu_ifunc_resolver:
12891 if (b->disposition == disp_del)
12892 printf_filtered (_("Temporary breakpoint"));
12893 else
12894 printf_filtered (_("Breakpoint"));
12895 printf_filtered (_(" %d"), b->number);
12896 if (b->type == bp_gnu_ifunc_resolver)
12897 printf_filtered (_(" at gnu-indirect-function resolver"));
12898 break;
12899 case bp_hardware_breakpoint:
12900 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12901 break;
12902 case bp_dprintf:
12903 printf_filtered (_("Dprintf %d"), b->number);
12904 break;
12905 }
12906
12907 say_where (b);
12908 }
12909
12910 static void
12911 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12912 {
12913 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12914 fprintf_unfiltered (fp, "tbreak");
12915 else if (tp->type == bp_breakpoint)
12916 fprintf_unfiltered (fp, "break");
12917 else if (tp->type == bp_hardware_breakpoint
12918 && tp->disposition == disp_del)
12919 fprintf_unfiltered (fp, "thbreak");
12920 else if (tp->type == bp_hardware_breakpoint)
12921 fprintf_unfiltered (fp, "hbreak");
12922 else
12923 internal_error (__FILE__, __LINE__,
12924 _("unhandled breakpoint type %d"), (int) tp->type);
12925
12926 fprintf_unfiltered (fp, " %s", tp->addr_string);
12927 print_recreate_thread (tp, fp);
12928 }
12929
12930 static void
12931 bkpt_create_sals_from_address (char **arg,
12932 struct linespec_result *canonical,
12933 enum bptype type_wanted,
12934 char *addr_start, char **copy_arg)
12935 {
12936 create_sals_from_address_default (arg, canonical, type_wanted,
12937 addr_start, copy_arg);
12938 }
12939
12940 static void
12941 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12942 struct linespec_result *canonical,
12943 struct linespec_sals *lsal,
12944 char *cond_string,
12945 char *extra_string,
12946 enum bptype type_wanted,
12947 enum bpdisp disposition,
12948 int thread,
12949 int task, int ignore_count,
12950 const struct breakpoint_ops *ops,
12951 int from_tty, int enabled,
12952 int internal, unsigned flags)
12953 {
12954 create_breakpoints_sal_default (gdbarch, canonical, lsal,
12955 cond_string, extra_string,
12956 type_wanted,
12957 disposition, thread, task,
12958 ignore_count, ops, from_tty,
12959 enabled, internal, flags);
12960 }
12961
12962 static void
12963 bkpt_decode_linespec (struct breakpoint *b, char **s,
12964 struct symtabs_and_lines *sals)
12965 {
12966 decode_linespec_default (b, s, sals);
12967 }
12968
12969 /* Virtual table for internal breakpoints. */
12970
12971 static void
12972 internal_bkpt_re_set (struct breakpoint *b)
12973 {
12974 switch (b->type)
12975 {
12976 /* Delete overlay event and longjmp master breakpoints; they
12977 will be reset later by breakpoint_re_set. */
12978 case bp_overlay_event:
12979 case bp_longjmp_master:
12980 case bp_std_terminate_master:
12981 case bp_exception_master:
12982 delete_breakpoint (b);
12983 break;
12984
12985 /* This breakpoint is special, it's set up when the inferior
12986 starts and we really don't want to touch it. */
12987 case bp_shlib_event:
12988
12989 /* Like bp_shlib_event, this breakpoint type is special. Once
12990 it is set up, we do not want to touch it. */
12991 case bp_thread_event:
12992 break;
12993 }
12994 }
12995
12996 static void
12997 internal_bkpt_check_status (bpstat bs)
12998 {
12999 if (bs->breakpoint_at->type == bp_shlib_event)
13000 {
13001 /* If requested, stop when the dynamic linker notifies GDB of
13002 events. This allows the user to get control and place
13003 breakpoints in initializer routines for dynamically loaded
13004 objects (among other things). */
13005 bs->stop = stop_on_solib_events;
13006 bs->print = stop_on_solib_events;
13007 }
13008 else
13009 bs->stop = 0;
13010 }
13011
13012 static enum print_stop_action
13013 internal_bkpt_print_it (bpstat bs)
13014 {
13015 struct breakpoint *b;
13016
13017 b = bs->breakpoint_at;
13018
13019 switch (b->type)
13020 {
13021 case bp_shlib_event:
13022 /* Did we stop because the user set the stop_on_solib_events
13023 variable? (If so, we report this as a generic, "Stopped due
13024 to shlib event" message.) */
13025 print_solib_event (0);
13026 break;
13027
13028 case bp_thread_event:
13029 /* Not sure how we will get here.
13030 GDB should not stop for these breakpoints. */
13031 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13032 break;
13033
13034 case bp_overlay_event:
13035 /* By analogy with the thread event, GDB should not stop for these. */
13036 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13037 break;
13038
13039 case bp_longjmp_master:
13040 /* These should never be enabled. */
13041 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13042 break;
13043
13044 case bp_std_terminate_master:
13045 /* These should never be enabled. */
13046 printf_filtered (_("std::terminate Master Breakpoint: "
13047 "gdb should not stop!\n"));
13048 break;
13049
13050 case bp_exception_master:
13051 /* These should never be enabled. */
13052 printf_filtered (_("Exception Master Breakpoint: "
13053 "gdb should not stop!\n"));
13054 break;
13055 }
13056
13057 return PRINT_NOTHING;
13058 }
13059
13060 static void
13061 internal_bkpt_print_mention (struct breakpoint *b)
13062 {
13063 /* Nothing to mention. These breakpoints are internal. */
13064 }
13065
13066 /* Virtual table for momentary breakpoints */
13067
13068 static void
13069 momentary_bkpt_re_set (struct breakpoint *b)
13070 {
13071 /* Keep temporary breakpoints, which can be encountered when we step
13072 over a dlopen call and solib_add is resetting the breakpoints.
13073 Otherwise these should have been blown away via the cleanup chain
13074 or by breakpoint_init_inferior when we rerun the executable. */
13075 }
13076
13077 static void
13078 momentary_bkpt_check_status (bpstat bs)
13079 {
13080 /* Nothing. The point of these breakpoints is causing a stop. */
13081 }
13082
13083 static enum print_stop_action
13084 momentary_bkpt_print_it (bpstat bs)
13085 {
13086 struct ui_out *uiout = current_uiout;
13087
13088 if (ui_out_is_mi_like_p (uiout))
13089 {
13090 struct breakpoint *b = bs->breakpoint_at;
13091
13092 switch (b->type)
13093 {
13094 case bp_finish:
13095 ui_out_field_string
13096 (uiout, "reason",
13097 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13098 break;
13099
13100 case bp_until:
13101 ui_out_field_string
13102 (uiout, "reason",
13103 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13104 break;
13105 }
13106 }
13107
13108 return PRINT_UNKNOWN;
13109 }
13110
13111 static void
13112 momentary_bkpt_print_mention (struct breakpoint *b)
13113 {
13114 /* Nothing to mention. These breakpoints are internal. */
13115 }
13116
13117 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13118
13119 It gets cleared already on the removal of the first one of such placed
13120 breakpoints. This is OK as they get all removed altogether. */
13121
13122 static void
13123 longjmp_bkpt_dtor (struct breakpoint *self)
13124 {
13125 struct thread_info *tp = find_thread_id (self->thread);
13126
13127 if (tp)
13128 tp->initiating_frame = null_frame_id;
13129
13130 momentary_breakpoint_ops.dtor (self);
13131 }
13132
13133 /* Specific methods for probe breakpoints. */
13134
13135 static int
13136 bkpt_probe_insert_location (struct bp_location *bl)
13137 {
13138 int v = bkpt_insert_location (bl);
13139
13140 if (v == 0)
13141 {
13142 /* The insertion was successful, now let's set the probe's semaphore
13143 if needed. */
13144 bl->probe->pops->set_semaphore (bl->probe, bl->gdbarch);
13145 }
13146
13147 return v;
13148 }
13149
13150 static int
13151 bkpt_probe_remove_location (struct bp_location *bl)
13152 {
13153 /* Let's clear the semaphore before removing the location. */
13154 bl->probe->pops->clear_semaphore (bl->probe, bl->gdbarch);
13155
13156 return bkpt_remove_location (bl);
13157 }
13158
13159 static void
13160 bkpt_probe_create_sals_from_address (char **arg,
13161 struct linespec_result *canonical,
13162 enum bptype type_wanted,
13163 char *addr_start, char **copy_arg)
13164 {
13165 struct linespec_sals lsal;
13166
13167 lsal.sals = parse_probes (arg, canonical);
13168
13169 *copy_arg = xstrdup (canonical->addr_string);
13170 lsal.canonical = xstrdup (*copy_arg);
13171
13172 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13173 }
13174
13175 static void
13176 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13177 struct symtabs_and_lines *sals)
13178 {
13179 *sals = parse_probes (s, NULL);
13180 if (!sals->sals)
13181 error (_("probe not found"));
13182 }
13183
13184 /* The breakpoint_ops structure to be used in tracepoints. */
13185
13186 static void
13187 tracepoint_re_set (struct breakpoint *b)
13188 {
13189 breakpoint_re_set_default (b);
13190 }
13191
13192 static int
13193 tracepoint_breakpoint_hit (const struct bp_location *bl,
13194 struct address_space *aspace, CORE_ADDR bp_addr,
13195 const struct target_waitstatus *ws)
13196 {
13197 /* By definition, the inferior does not report stops at
13198 tracepoints. */
13199 return 0;
13200 }
13201
13202 static void
13203 tracepoint_print_one_detail (const struct breakpoint *self,
13204 struct ui_out *uiout)
13205 {
13206 struct tracepoint *tp = (struct tracepoint *) self;
13207 if (tp->static_trace_marker_id)
13208 {
13209 gdb_assert (self->type == bp_static_tracepoint);
13210
13211 ui_out_text (uiout, "\tmarker id is ");
13212 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13213 tp->static_trace_marker_id);
13214 ui_out_text (uiout, "\n");
13215 }
13216 }
13217
13218 static void
13219 tracepoint_print_mention (struct breakpoint *b)
13220 {
13221 if (ui_out_is_mi_like_p (current_uiout))
13222 return;
13223
13224 switch (b->type)
13225 {
13226 case bp_tracepoint:
13227 printf_filtered (_("Tracepoint"));
13228 printf_filtered (_(" %d"), b->number);
13229 break;
13230 case bp_fast_tracepoint:
13231 printf_filtered (_("Fast tracepoint"));
13232 printf_filtered (_(" %d"), b->number);
13233 break;
13234 case bp_static_tracepoint:
13235 printf_filtered (_("Static tracepoint"));
13236 printf_filtered (_(" %d"), b->number);
13237 break;
13238 default:
13239 internal_error (__FILE__, __LINE__,
13240 _("unhandled tracepoint type %d"), (int) b->type);
13241 }
13242
13243 say_where (b);
13244 }
13245
13246 static void
13247 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13248 {
13249 struct tracepoint *tp = (struct tracepoint *) self;
13250
13251 if (self->type == bp_fast_tracepoint)
13252 fprintf_unfiltered (fp, "ftrace");
13253 if (self->type == bp_static_tracepoint)
13254 fprintf_unfiltered (fp, "strace");
13255 else if (self->type == bp_tracepoint)
13256 fprintf_unfiltered (fp, "trace");
13257 else
13258 internal_error (__FILE__, __LINE__,
13259 _("unhandled tracepoint type %d"), (int) self->type);
13260
13261 fprintf_unfiltered (fp, " %s", self->addr_string);
13262 print_recreate_thread (self, fp);
13263
13264 if (tp->pass_count)
13265 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13266 }
13267
13268 static void
13269 tracepoint_create_sals_from_address (char **arg,
13270 struct linespec_result *canonical,
13271 enum bptype type_wanted,
13272 char *addr_start, char **copy_arg)
13273 {
13274 create_sals_from_address_default (arg, canonical, type_wanted,
13275 addr_start, copy_arg);
13276 }
13277
13278 static void
13279 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13280 struct linespec_result *canonical,
13281 struct linespec_sals *lsal,
13282 char *cond_string,
13283 char *extra_string,
13284 enum bptype type_wanted,
13285 enum bpdisp disposition,
13286 int thread,
13287 int task, int ignore_count,
13288 const struct breakpoint_ops *ops,
13289 int from_tty, int enabled,
13290 int internal, unsigned flags)
13291 {
13292 create_breakpoints_sal_default (gdbarch, canonical, lsal,
13293 cond_string, extra_string,
13294 type_wanted,
13295 disposition, thread, task,
13296 ignore_count, ops, from_tty,
13297 enabled, internal, flags);
13298 }
13299
13300 static void
13301 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13302 struct symtabs_and_lines *sals)
13303 {
13304 decode_linespec_default (b, s, sals);
13305 }
13306
13307 struct breakpoint_ops tracepoint_breakpoint_ops;
13308
13309 /* The breakpoint_ops structure to be use on tracepoints placed in a
13310 static probe. */
13311
13312 static void
13313 tracepoint_probe_create_sals_from_address (char **arg,
13314 struct linespec_result *canonical,
13315 enum bptype type_wanted,
13316 char *addr_start, char **copy_arg)
13317 {
13318 /* We use the same method for breakpoint on probes. */
13319 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13320 addr_start, copy_arg);
13321 }
13322
13323 static void
13324 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13325 struct symtabs_and_lines *sals)
13326 {
13327 /* We use the same method for breakpoint on probes. */
13328 bkpt_probe_decode_linespec (b, s, sals);
13329 }
13330
13331 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13332
13333 /* Dprintf breakpoint_ops methods. */
13334
13335 static void
13336 dprintf_re_set (struct breakpoint *b)
13337 {
13338 breakpoint_re_set_default (b);
13339
13340 /* This breakpoint could have been pending, and be resolved now, and
13341 if so, we should now have the extra string. If we don't, the
13342 dprintf was malformed when created, but we couldn't tell because
13343 we can't extract the extra string until the location is
13344 resolved. */
13345 if (b->loc != NULL && b->extra_string == NULL)
13346 error (_("Format string required"));
13347
13348 /* 1 - connect to target 1, that can run breakpoint commands.
13349 2 - create a dprintf, which resolves fine.
13350 3 - disconnect from target 1
13351 4 - connect to target 2, that can NOT run breakpoint commands.
13352
13353 After steps #3/#4, you'll want the dprintf command list to
13354 be updated, because target 1 and 2 may well return different
13355 answers for target_can_run_breakpoint_commands().
13356 Given absence of finer grained resetting, we get to do
13357 it all the time. */
13358 if (b->extra_string != NULL)
13359 update_dprintf_command_list (b);
13360 }
13361
13362 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13363
13364 static void
13365 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13366 {
13367 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13368 tp->extra_string);
13369 print_recreate_thread (tp, fp);
13370 }
13371
13372 /* The breakpoint_ops structure to be used on static tracepoints with
13373 markers (`-m'). */
13374
13375 static void
13376 strace_marker_create_sals_from_address (char **arg,
13377 struct linespec_result *canonical,
13378 enum bptype type_wanted,
13379 char *addr_start, char **copy_arg)
13380 {
13381 struct linespec_sals lsal;
13382
13383 lsal.sals = decode_static_tracepoint_spec (arg);
13384
13385 *copy_arg = savestring (addr_start, *arg - addr_start);
13386
13387 canonical->addr_string = xstrdup (*copy_arg);
13388 lsal.canonical = xstrdup (*copy_arg);
13389 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13390 }
13391
13392 static void
13393 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13394 struct linespec_result *canonical,
13395 struct linespec_sals *lsal,
13396 char *cond_string,
13397 char *extra_string,
13398 enum bptype type_wanted,
13399 enum bpdisp disposition,
13400 int thread,
13401 int task, int ignore_count,
13402 const struct breakpoint_ops *ops,
13403 int from_tty, int enabled,
13404 int internal, unsigned flags)
13405 {
13406 int i;
13407
13408 /* If the user is creating a static tracepoint by marker id
13409 (strace -m MARKER_ID), then store the sals index, so that
13410 breakpoint_re_set can try to match up which of the newly
13411 found markers corresponds to this one, and, don't try to
13412 expand multiple locations for each sal, given than SALS
13413 already should contain all sals for MARKER_ID. */
13414
13415 for (i = 0; i < lsal->sals.nelts; ++i)
13416 {
13417 struct symtabs_and_lines expanded;
13418 struct tracepoint *tp;
13419 struct cleanup *old_chain;
13420 char *addr_string;
13421
13422 expanded.nelts = 1;
13423 expanded.sals = &lsal->sals.sals[i];
13424
13425 addr_string = xstrdup (canonical->addr_string);
13426 old_chain = make_cleanup (xfree, addr_string);
13427
13428 tp = XCNEW (struct tracepoint);
13429 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13430 addr_string, NULL,
13431 cond_string, extra_string,
13432 type_wanted, disposition,
13433 thread, task, ignore_count, ops,
13434 from_tty, enabled, internal, flags,
13435 canonical->special_display);
13436 /* Given that its possible to have multiple markers with
13437 the same string id, if the user is creating a static
13438 tracepoint by marker id ("strace -m MARKER_ID"), then
13439 store the sals index, so that breakpoint_re_set can
13440 try to match up which of the newly found markers
13441 corresponds to this one */
13442 tp->static_trace_marker_id_idx = i;
13443
13444 install_breakpoint (internal, &tp->base, 0);
13445
13446 discard_cleanups (old_chain);
13447 }
13448 }
13449
13450 static void
13451 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13452 struct symtabs_and_lines *sals)
13453 {
13454 struct tracepoint *tp = (struct tracepoint *) b;
13455
13456 *sals = decode_static_tracepoint_spec (s);
13457 if (sals->nelts > tp->static_trace_marker_id_idx)
13458 {
13459 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13460 sals->nelts = 1;
13461 }
13462 else
13463 error (_("marker %s not found"), tp->static_trace_marker_id);
13464 }
13465
13466 static struct breakpoint_ops strace_marker_breakpoint_ops;
13467
13468 static int
13469 strace_marker_p (struct breakpoint *b)
13470 {
13471 return b->ops == &strace_marker_breakpoint_ops;
13472 }
13473
13474 /* Delete a breakpoint and clean up all traces of it in the data
13475 structures. */
13476
13477 void
13478 delete_breakpoint (struct breakpoint *bpt)
13479 {
13480 struct breakpoint *b;
13481
13482 gdb_assert (bpt != NULL);
13483
13484 /* Has this bp already been deleted? This can happen because
13485 multiple lists can hold pointers to bp's. bpstat lists are
13486 especial culprits.
13487
13488 One example of this happening is a watchpoint's scope bp. When
13489 the scope bp triggers, we notice that the watchpoint is out of
13490 scope, and delete it. We also delete its scope bp. But the
13491 scope bp is marked "auto-deleting", and is already on a bpstat.
13492 That bpstat is then checked for auto-deleting bp's, which are
13493 deleted.
13494
13495 A real solution to this problem might involve reference counts in
13496 bp's, and/or giving them pointers back to their referencing
13497 bpstat's, and teaching delete_breakpoint to only free a bp's
13498 storage when no more references were extent. A cheaper bandaid
13499 was chosen. */
13500 if (bpt->type == bp_none)
13501 return;
13502
13503 /* At least avoid this stale reference until the reference counting
13504 of breakpoints gets resolved. */
13505 if (bpt->related_breakpoint != bpt)
13506 {
13507 struct breakpoint *related;
13508 struct watchpoint *w;
13509
13510 if (bpt->type == bp_watchpoint_scope)
13511 w = (struct watchpoint *) bpt->related_breakpoint;
13512 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13513 w = (struct watchpoint *) bpt;
13514 else
13515 w = NULL;
13516 if (w != NULL)
13517 watchpoint_del_at_next_stop (w);
13518
13519 /* Unlink bpt from the bpt->related_breakpoint ring. */
13520 for (related = bpt; related->related_breakpoint != bpt;
13521 related = related->related_breakpoint);
13522 related->related_breakpoint = bpt->related_breakpoint;
13523 bpt->related_breakpoint = bpt;
13524 }
13525
13526 /* watch_command_1 creates a watchpoint but only sets its number if
13527 update_watchpoint succeeds in creating its bp_locations. If there's
13528 a problem in that process, we'll be asked to delete the half-created
13529 watchpoint. In that case, don't announce the deletion. */
13530 if (bpt->number)
13531 observer_notify_breakpoint_deleted (bpt);
13532
13533 if (breakpoint_chain == bpt)
13534 breakpoint_chain = bpt->next;
13535
13536 ALL_BREAKPOINTS (b)
13537 if (b->next == bpt)
13538 {
13539 b->next = bpt->next;
13540 break;
13541 }
13542
13543 /* Be sure no bpstat's are pointing at the breakpoint after it's
13544 been freed. */
13545 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13546 in all threads for now. Note that we cannot just remove bpstats
13547 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13548 commands are associated with the bpstat; if we remove it here,
13549 then the later call to bpstat_do_actions (&stop_bpstat); in
13550 event-top.c won't do anything, and temporary breakpoints with
13551 commands won't work. */
13552
13553 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13554
13555 /* Now that breakpoint is removed from breakpoint list, update the
13556 global location list. This will remove locations that used to
13557 belong to this breakpoint. Do this before freeing the breakpoint
13558 itself, since remove_breakpoint looks at location's owner. It
13559 might be better design to have location completely
13560 self-contained, but it's not the case now. */
13561 update_global_location_list (0);
13562
13563 bpt->ops->dtor (bpt);
13564 /* On the chance that someone will soon try again to delete this
13565 same bp, we mark it as deleted before freeing its storage. */
13566 bpt->type = bp_none;
13567 xfree (bpt);
13568 }
13569
13570 static void
13571 do_delete_breakpoint_cleanup (void *b)
13572 {
13573 delete_breakpoint (b);
13574 }
13575
13576 struct cleanup *
13577 make_cleanup_delete_breakpoint (struct breakpoint *b)
13578 {
13579 return make_cleanup (do_delete_breakpoint_cleanup, b);
13580 }
13581
13582 /* Iterator function to call a user-provided callback function once
13583 for each of B and its related breakpoints. */
13584
13585 static void
13586 iterate_over_related_breakpoints (struct breakpoint *b,
13587 void (*function) (struct breakpoint *,
13588 void *),
13589 void *data)
13590 {
13591 struct breakpoint *related;
13592
13593 related = b;
13594 do
13595 {
13596 struct breakpoint *next;
13597
13598 /* FUNCTION may delete RELATED. */
13599 next = related->related_breakpoint;
13600
13601 if (next == related)
13602 {
13603 /* RELATED is the last ring entry. */
13604 function (related, data);
13605
13606 /* FUNCTION may have deleted it, so we'd never reach back to
13607 B. There's nothing left to do anyway, so just break
13608 out. */
13609 break;
13610 }
13611 else
13612 function (related, data);
13613
13614 related = next;
13615 }
13616 while (related != b);
13617 }
13618
13619 static void
13620 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13621 {
13622 delete_breakpoint (b);
13623 }
13624
13625 /* A callback for map_breakpoint_numbers that calls
13626 delete_breakpoint. */
13627
13628 static void
13629 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13630 {
13631 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13632 }
13633
13634 void
13635 delete_command (char *arg, int from_tty)
13636 {
13637 struct breakpoint *b, *b_tmp;
13638
13639 dont_repeat ();
13640
13641 if (arg == 0)
13642 {
13643 int breaks_to_delete = 0;
13644
13645 /* Delete all breakpoints if no argument. Do not delete
13646 internal breakpoints, these have to be deleted with an
13647 explicit breakpoint number argument. */
13648 ALL_BREAKPOINTS (b)
13649 if (user_breakpoint_p (b))
13650 {
13651 breaks_to_delete = 1;
13652 break;
13653 }
13654
13655 /* Ask user only if there are some breakpoints to delete. */
13656 if (!from_tty
13657 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13658 {
13659 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13660 if (user_breakpoint_p (b))
13661 delete_breakpoint (b);
13662 }
13663 }
13664 else
13665 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13666 }
13667
13668 static int
13669 all_locations_are_pending (struct bp_location *loc)
13670 {
13671 for (; loc; loc = loc->next)
13672 if (!loc->shlib_disabled
13673 && !loc->pspace->executing_startup)
13674 return 0;
13675 return 1;
13676 }
13677
13678 /* Subroutine of update_breakpoint_locations to simplify it.
13679 Return non-zero if multiple fns in list LOC have the same name.
13680 Null names are ignored. */
13681
13682 static int
13683 ambiguous_names_p (struct bp_location *loc)
13684 {
13685 struct bp_location *l;
13686 htab_t htab = htab_create_alloc (13, htab_hash_string,
13687 (int (*) (const void *,
13688 const void *)) streq,
13689 NULL, xcalloc, xfree);
13690
13691 for (l = loc; l != NULL; l = l->next)
13692 {
13693 const char **slot;
13694 const char *name = l->function_name;
13695
13696 /* Allow for some names to be NULL, ignore them. */
13697 if (name == NULL)
13698 continue;
13699
13700 slot = (const char **) htab_find_slot (htab, (const void *) name,
13701 INSERT);
13702 /* NOTE: We can assume slot != NULL here because xcalloc never
13703 returns NULL. */
13704 if (*slot != NULL)
13705 {
13706 htab_delete (htab);
13707 return 1;
13708 }
13709 *slot = name;
13710 }
13711
13712 htab_delete (htab);
13713 return 0;
13714 }
13715
13716 /* When symbols change, it probably means the sources changed as well,
13717 and it might mean the static tracepoint markers are no longer at
13718 the same address or line numbers they used to be at last we
13719 checked. Losing your static tracepoints whenever you rebuild is
13720 undesirable. This function tries to resync/rematch gdb static
13721 tracepoints with the markers on the target, for static tracepoints
13722 that have not been set by marker id. Static tracepoint that have
13723 been set by marker id are reset by marker id in breakpoint_re_set.
13724 The heuristic is:
13725
13726 1) For a tracepoint set at a specific address, look for a marker at
13727 the old PC. If one is found there, assume to be the same marker.
13728 If the name / string id of the marker found is different from the
13729 previous known name, assume that means the user renamed the marker
13730 in the sources, and output a warning.
13731
13732 2) For a tracepoint set at a given line number, look for a marker
13733 at the new address of the old line number. If one is found there,
13734 assume to be the same marker. If the name / string id of the
13735 marker found is different from the previous known name, assume that
13736 means the user renamed the marker in the sources, and output a
13737 warning.
13738
13739 3) If a marker is no longer found at the same address or line, it
13740 may mean the marker no longer exists. But it may also just mean
13741 the code changed a bit. Maybe the user added a few lines of code
13742 that made the marker move up or down (in line number terms). Ask
13743 the target for info about the marker with the string id as we knew
13744 it. If found, update line number and address in the matching
13745 static tracepoint. This will get confused if there's more than one
13746 marker with the same ID (possible in UST, although unadvised
13747 precisely because it confuses tools). */
13748
13749 static struct symtab_and_line
13750 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13751 {
13752 struct tracepoint *tp = (struct tracepoint *) b;
13753 struct static_tracepoint_marker marker;
13754 CORE_ADDR pc;
13755
13756 pc = sal.pc;
13757 if (sal.line)
13758 find_line_pc (sal.symtab, sal.line, &pc);
13759
13760 if (target_static_tracepoint_marker_at (pc, &marker))
13761 {
13762 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13763 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13764 b->number,
13765 tp->static_trace_marker_id, marker.str_id);
13766
13767 xfree (tp->static_trace_marker_id);
13768 tp->static_trace_marker_id = xstrdup (marker.str_id);
13769 release_static_tracepoint_marker (&marker);
13770
13771 return sal;
13772 }
13773
13774 /* Old marker wasn't found on target at lineno. Try looking it up
13775 by string ID. */
13776 if (!sal.explicit_pc
13777 && sal.line != 0
13778 && sal.symtab != NULL
13779 && tp->static_trace_marker_id != NULL)
13780 {
13781 VEC(static_tracepoint_marker_p) *markers;
13782
13783 markers
13784 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13785
13786 if (!VEC_empty(static_tracepoint_marker_p, markers))
13787 {
13788 struct symtab_and_line sal2;
13789 struct symbol *sym;
13790 struct static_tracepoint_marker *tpmarker;
13791 struct ui_out *uiout = current_uiout;
13792
13793 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13794
13795 xfree (tp->static_trace_marker_id);
13796 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13797
13798 warning (_("marker for static tracepoint %d (%s) not "
13799 "found at previous line number"),
13800 b->number, tp->static_trace_marker_id);
13801
13802 init_sal (&sal2);
13803
13804 sal2.pc = tpmarker->address;
13805
13806 sal2 = find_pc_line (tpmarker->address, 0);
13807 sym = find_pc_sect_function (tpmarker->address, NULL);
13808 ui_out_text (uiout, "Now in ");
13809 if (sym)
13810 {
13811 ui_out_field_string (uiout, "func",
13812 SYMBOL_PRINT_NAME (sym));
13813 ui_out_text (uiout, " at ");
13814 }
13815 ui_out_field_string (uiout, "file",
13816 symtab_to_filename_for_display (sal2.symtab));
13817 ui_out_text (uiout, ":");
13818
13819 if (ui_out_is_mi_like_p (uiout))
13820 {
13821 const char *fullname = symtab_to_fullname (sal2.symtab);
13822
13823 ui_out_field_string (uiout, "fullname", fullname);
13824 }
13825
13826 ui_out_field_int (uiout, "line", sal2.line);
13827 ui_out_text (uiout, "\n");
13828
13829 b->loc->line_number = sal2.line;
13830 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13831
13832 xfree (b->addr_string);
13833 b->addr_string = xstrprintf ("%s:%d",
13834 symtab_to_filename_for_display (sal2.symtab),
13835 b->loc->line_number);
13836
13837 /* Might be nice to check if function changed, and warn if
13838 so. */
13839
13840 release_static_tracepoint_marker (tpmarker);
13841 }
13842 }
13843 return sal;
13844 }
13845
13846 /* Returns 1 iff locations A and B are sufficiently same that
13847 we don't need to report breakpoint as changed. */
13848
13849 static int
13850 locations_are_equal (struct bp_location *a, struct bp_location *b)
13851 {
13852 while (a && b)
13853 {
13854 if (a->address != b->address)
13855 return 0;
13856
13857 if (a->shlib_disabled != b->shlib_disabled)
13858 return 0;
13859
13860 if (a->enabled != b->enabled)
13861 return 0;
13862
13863 a = a->next;
13864 b = b->next;
13865 }
13866
13867 if ((a == NULL) != (b == NULL))
13868 return 0;
13869
13870 return 1;
13871 }
13872
13873 /* Create new breakpoint locations for B (a hardware or software breakpoint)
13874 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
13875 a ranged breakpoint. */
13876
13877 void
13878 update_breakpoint_locations (struct breakpoint *b,
13879 struct symtabs_and_lines sals,
13880 struct symtabs_and_lines sals_end)
13881 {
13882 int i;
13883 struct bp_location *existing_locations = b->loc;
13884
13885 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
13886 {
13887 /* Ranged breakpoints have only one start location and one end
13888 location. */
13889 b->enable_state = bp_disabled;
13890 update_global_location_list (1);
13891 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13892 "multiple locations found\n"),
13893 b->number);
13894 return;
13895 }
13896
13897 /* If there's no new locations, and all existing locations are
13898 pending, don't do anything. This optimizes the common case where
13899 all locations are in the same shared library, that was unloaded.
13900 We'd like to retain the location, so that when the library is
13901 loaded again, we don't loose the enabled/disabled status of the
13902 individual locations. */
13903 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
13904 return;
13905
13906 b->loc = NULL;
13907
13908 for (i = 0; i < sals.nelts; ++i)
13909 {
13910 struct bp_location *new_loc;
13911
13912 switch_to_program_space_and_thread (sals.sals[i].pspace);
13913
13914 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
13915
13916 /* Reparse conditions, they might contain references to the
13917 old symtab. */
13918 if (b->cond_string != NULL)
13919 {
13920 const char *s;
13921 volatile struct gdb_exception e;
13922
13923 s = b->cond_string;
13924 TRY_CATCH (e, RETURN_MASK_ERROR)
13925 {
13926 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
13927 block_for_pc (sals.sals[i].pc),
13928 0);
13929 }
13930 if (e.reason < 0)
13931 {
13932 warning (_("failed to reevaluate condition "
13933 "for breakpoint %d: %s"),
13934 b->number, e.message);
13935 new_loc->enabled = 0;
13936 }
13937 }
13938
13939 if (sals_end.nelts)
13940 {
13941 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
13942
13943 new_loc->length = end - sals.sals[0].pc + 1;
13944 }
13945 }
13946
13947 /* Update locations of permanent breakpoints. */
13948 if (b->enable_state == bp_permanent)
13949 make_breakpoint_permanent (b);
13950
13951 /* If possible, carry over 'disable' status from existing
13952 breakpoints. */
13953 {
13954 struct bp_location *e = existing_locations;
13955 /* If there are multiple breakpoints with the same function name,
13956 e.g. for inline functions, comparing function names won't work.
13957 Instead compare pc addresses; this is just a heuristic as things
13958 may have moved, but in practice it gives the correct answer
13959 often enough until a better solution is found. */
13960 int have_ambiguous_names = ambiguous_names_p (b->loc);
13961
13962 for (; e; e = e->next)
13963 {
13964 if (!e->enabled && e->function_name)
13965 {
13966 struct bp_location *l = b->loc;
13967 if (have_ambiguous_names)
13968 {
13969 for (; l; l = l->next)
13970 if (breakpoint_locations_match (e, l))
13971 {
13972 l->enabled = 0;
13973 break;
13974 }
13975 }
13976 else
13977 {
13978 for (; l; l = l->next)
13979 if (l->function_name
13980 && strcmp (e->function_name, l->function_name) == 0)
13981 {
13982 l->enabled = 0;
13983 break;
13984 }
13985 }
13986 }
13987 }
13988 }
13989
13990 if (!locations_are_equal (existing_locations, b->loc))
13991 observer_notify_breakpoint_modified (b);
13992
13993 update_global_location_list (1);
13994 }
13995
13996 /* Find the SaL locations corresponding to the given ADDR_STRING.
13997 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13998
13999 static struct symtabs_and_lines
14000 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14001 {
14002 char *s;
14003 struct symtabs_and_lines sals = {0};
14004 volatile struct gdb_exception e;
14005
14006 gdb_assert (b->ops != NULL);
14007 s = addr_string;
14008
14009 TRY_CATCH (e, RETURN_MASK_ERROR)
14010 {
14011 b->ops->decode_linespec (b, &s, &sals);
14012 }
14013 if (e.reason < 0)
14014 {
14015 int not_found_and_ok = 0;
14016 /* For pending breakpoints, it's expected that parsing will
14017 fail until the right shared library is loaded. User has
14018 already told to create pending breakpoints and don't need
14019 extra messages. If breakpoint is in bp_shlib_disabled
14020 state, then user already saw the message about that
14021 breakpoint being disabled, and don't want to see more
14022 errors. */
14023 if (e.error == NOT_FOUND_ERROR
14024 && (b->condition_not_parsed
14025 || (b->loc && b->loc->shlib_disabled)
14026 || (b->loc && b->loc->pspace->executing_startup)
14027 || b->enable_state == bp_disabled))
14028 not_found_and_ok = 1;
14029
14030 if (!not_found_and_ok)
14031 {
14032 /* We surely don't want to warn about the same breakpoint
14033 10 times. One solution, implemented here, is disable
14034 the breakpoint on error. Another solution would be to
14035 have separate 'warning emitted' flag. Since this
14036 happens only when a binary has changed, I don't know
14037 which approach is better. */
14038 b->enable_state = bp_disabled;
14039 throw_exception (e);
14040 }
14041 }
14042
14043 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14044 {
14045 int i;
14046
14047 for (i = 0; i < sals.nelts; ++i)
14048 resolve_sal_pc (&sals.sals[i]);
14049 if (b->condition_not_parsed && s && s[0])
14050 {
14051 char *cond_string, *extra_string;
14052 int thread, task;
14053
14054 find_condition_and_thread (s, sals.sals[0].pc,
14055 &cond_string, &thread, &task,
14056 &extra_string);
14057 if (cond_string)
14058 b->cond_string = cond_string;
14059 b->thread = thread;
14060 b->task = task;
14061 if (extra_string)
14062 b->extra_string = extra_string;
14063 b->condition_not_parsed = 0;
14064 }
14065
14066 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14067 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14068
14069 *found = 1;
14070 }
14071 else
14072 *found = 0;
14073
14074 return sals;
14075 }
14076
14077 /* The default re_set method, for typical hardware or software
14078 breakpoints. Reevaluate the breakpoint and recreate its
14079 locations. */
14080
14081 static void
14082 breakpoint_re_set_default (struct breakpoint *b)
14083 {
14084 int found;
14085 struct symtabs_and_lines sals, sals_end;
14086 struct symtabs_and_lines expanded = {0};
14087 struct symtabs_and_lines expanded_end = {0};
14088
14089 sals = addr_string_to_sals (b, b->addr_string, &found);
14090 if (found)
14091 {
14092 make_cleanup (xfree, sals.sals);
14093 expanded = sals;
14094 }
14095
14096 if (b->addr_string_range_end)
14097 {
14098 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14099 if (found)
14100 {
14101 make_cleanup (xfree, sals_end.sals);
14102 expanded_end = sals_end;
14103 }
14104 }
14105
14106 update_breakpoint_locations (b, expanded, expanded_end);
14107 }
14108
14109 /* Default method for creating SALs from an address string. It basically
14110 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14111
14112 static void
14113 create_sals_from_address_default (char **arg,
14114 struct linespec_result *canonical,
14115 enum bptype type_wanted,
14116 char *addr_start, char **copy_arg)
14117 {
14118 parse_breakpoint_sals (arg, canonical);
14119 }
14120
14121 /* Call create_breakpoints_sal for the given arguments. This is the default
14122 function for the `create_breakpoints_sal' method of
14123 breakpoint_ops. */
14124
14125 static void
14126 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14127 struct linespec_result *canonical,
14128 struct linespec_sals *lsal,
14129 char *cond_string,
14130 char *extra_string,
14131 enum bptype type_wanted,
14132 enum bpdisp disposition,
14133 int thread,
14134 int task, int ignore_count,
14135 const struct breakpoint_ops *ops,
14136 int from_tty, int enabled,
14137 int internal, unsigned flags)
14138 {
14139 create_breakpoints_sal (gdbarch, canonical, cond_string,
14140 extra_string,
14141 type_wanted, disposition,
14142 thread, task, ignore_count, ops, from_tty,
14143 enabled, internal, flags);
14144 }
14145
14146 /* Decode the line represented by S by calling decode_line_full. This is the
14147 default function for the `decode_linespec' method of breakpoint_ops. */
14148
14149 static void
14150 decode_linespec_default (struct breakpoint *b, char **s,
14151 struct symtabs_and_lines *sals)
14152 {
14153 struct linespec_result canonical;
14154
14155 init_linespec_result (&canonical);
14156 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14157 (struct symtab *) NULL, 0,
14158 &canonical, multiple_symbols_all,
14159 b->filter);
14160
14161 /* We should get 0 or 1 resulting SALs. */
14162 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14163
14164 if (VEC_length (linespec_sals, canonical.sals) > 0)
14165 {
14166 struct linespec_sals *lsal;
14167
14168 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14169 *sals = lsal->sals;
14170 /* Arrange it so the destructor does not free the
14171 contents. */
14172 lsal->sals.sals = NULL;
14173 }
14174
14175 destroy_linespec_result (&canonical);
14176 }
14177
14178 /* Prepare the global context for a re-set of breakpoint B. */
14179
14180 static struct cleanup *
14181 prepare_re_set_context (struct breakpoint *b)
14182 {
14183 struct cleanup *cleanups;
14184
14185 input_radix = b->input_radix;
14186 cleanups = save_current_space_and_thread ();
14187 if (b->pspace != NULL)
14188 switch_to_program_space_and_thread (b->pspace);
14189 set_language (b->language);
14190
14191 return cleanups;
14192 }
14193
14194 /* Reset a breakpoint given it's struct breakpoint * BINT.
14195 The value we return ends up being the return value from catch_errors.
14196 Unused in this case. */
14197
14198 static int
14199 breakpoint_re_set_one (void *bint)
14200 {
14201 /* Get past catch_errs. */
14202 struct breakpoint *b = (struct breakpoint *) bint;
14203 struct cleanup *cleanups;
14204
14205 cleanups = prepare_re_set_context (b);
14206 b->ops->re_set (b);
14207 do_cleanups (cleanups);
14208 return 0;
14209 }
14210
14211 /* Re-set all breakpoints after symbols have been re-loaded. */
14212 void
14213 breakpoint_re_set (void)
14214 {
14215 struct breakpoint *b, *b_tmp;
14216 enum language save_language;
14217 int save_input_radix;
14218 struct cleanup *old_chain;
14219
14220 save_language = current_language->la_language;
14221 save_input_radix = input_radix;
14222 old_chain = save_current_program_space ();
14223
14224 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14225 {
14226 /* Format possible error msg. */
14227 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14228 b->number);
14229 struct cleanup *cleanups = make_cleanup (xfree, message);
14230 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14231 do_cleanups (cleanups);
14232 }
14233 set_language (save_language);
14234 input_radix = save_input_radix;
14235
14236 jit_breakpoint_re_set ();
14237
14238 do_cleanups (old_chain);
14239
14240 create_overlay_event_breakpoint ();
14241 create_longjmp_master_breakpoint ();
14242 create_std_terminate_master_breakpoint ();
14243 create_exception_master_breakpoint ();
14244 }
14245 \f
14246 /* Reset the thread number of this breakpoint:
14247
14248 - If the breakpoint is for all threads, leave it as-is.
14249 - Else, reset it to the current thread for inferior_ptid. */
14250 void
14251 breakpoint_re_set_thread (struct breakpoint *b)
14252 {
14253 if (b->thread != -1)
14254 {
14255 if (in_thread_list (inferior_ptid))
14256 b->thread = pid_to_thread_id (inferior_ptid);
14257
14258 /* We're being called after following a fork. The new fork is
14259 selected as current, and unless this was a vfork will have a
14260 different program space from the original thread. Reset that
14261 as well. */
14262 b->loc->pspace = current_program_space;
14263 }
14264 }
14265
14266 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14267 If from_tty is nonzero, it prints a message to that effect,
14268 which ends with a period (no newline). */
14269
14270 void
14271 set_ignore_count (int bptnum, int count, int from_tty)
14272 {
14273 struct breakpoint *b;
14274
14275 if (count < 0)
14276 count = 0;
14277
14278 ALL_BREAKPOINTS (b)
14279 if (b->number == bptnum)
14280 {
14281 if (is_tracepoint (b))
14282 {
14283 if (from_tty && count != 0)
14284 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14285 bptnum);
14286 return;
14287 }
14288
14289 b->ignore_count = count;
14290 if (from_tty)
14291 {
14292 if (count == 0)
14293 printf_filtered (_("Will stop next time "
14294 "breakpoint %d is reached."),
14295 bptnum);
14296 else if (count == 1)
14297 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14298 bptnum);
14299 else
14300 printf_filtered (_("Will ignore next %d "
14301 "crossings of breakpoint %d."),
14302 count, bptnum);
14303 }
14304 observer_notify_breakpoint_modified (b);
14305 return;
14306 }
14307
14308 error (_("No breakpoint number %d."), bptnum);
14309 }
14310
14311 /* Command to set ignore-count of breakpoint N to COUNT. */
14312
14313 static void
14314 ignore_command (char *args, int from_tty)
14315 {
14316 char *p = args;
14317 int num;
14318
14319 if (p == 0)
14320 error_no_arg (_("a breakpoint number"));
14321
14322 num = get_number (&p);
14323 if (num == 0)
14324 error (_("bad breakpoint number: '%s'"), args);
14325 if (*p == 0)
14326 error (_("Second argument (specified ignore-count) is missing."));
14327
14328 set_ignore_count (num,
14329 longest_to_int (value_as_long (parse_and_eval (p))),
14330 from_tty);
14331 if (from_tty)
14332 printf_filtered ("\n");
14333 }
14334 \f
14335 /* Call FUNCTION on each of the breakpoints
14336 whose numbers are given in ARGS. */
14337
14338 static void
14339 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14340 void *),
14341 void *data)
14342 {
14343 int num;
14344 struct breakpoint *b, *tmp;
14345 int match;
14346 struct get_number_or_range_state state;
14347
14348 if (args == 0)
14349 error_no_arg (_("one or more breakpoint numbers"));
14350
14351 init_number_or_range (&state, args);
14352
14353 while (!state.finished)
14354 {
14355 char *p = state.string;
14356
14357 match = 0;
14358
14359 num = get_number_or_range (&state);
14360 if (num == 0)
14361 {
14362 warning (_("bad breakpoint number at or near '%s'"), p);
14363 }
14364 else
14365 {
14366 ALL_BREAKPOINTS_SAFE (b, tmp)
14367 if (b->number == num)
14368 {
14369 match = 1;
14370 function (b, data);
14371 break;
14372 }
14373 if (match == 0)
14374 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14375 }
14376 }
14377 }
14378
14379 static struct bp_location *
14380 find_location_by_number (char *number)
14381 {
14382 char *dot = strchr (number, '.');
14383 char *p1;
14384 int bp_num;
14385 int loc_num;
14386 struct breakpoint *b;
14387 struct bp_location *loc;
14388
14389 *dot = '\0';
14390
14391 p1 = number;
14392 bp_num = get_number (&p1);
14393 if (bp_num == 0)
14394 error (_("Bad breakpoint number '%s'"), number);
14395
14396 ALL_BREAKPOINTS (b)
14397 if (b->number == bp_num)
14398 {
14399 break;
14400 }
14401
14402 if (!b || b->number != bp_num)
14403 error (_("Bad breakpoint number '%s'"), number);
14404
14405 p1 = dot+1;
14406 loc_num = get_number (&p1);
14407 if (loc_num == 0)
14408 error (_("Bad breakpoint location number '%s'"), number);
14409
14410 --loc_num;
14411 loc = b->loc;
14412 for (;loc_num && loc; --loc_num, loc = loc->next)
14413 ;
14414 if (!loc)
14415 error (_("Bad breakpoint location number '%s'"), dot+1);
14416
14417 return loc;
14418 }
14419
14420
14421 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14422 If from_tty is nonzero, it prints a message to that effect,
14423 which ends with a period (no newline). */
14424
14425 void
14426 disable_breakpoint (struct breakpoint *bpt)
14427 {
14428 /* Never disable a watchpoint scope breakpoint; we want to
14429 hit them when we leave scope so we can delete both the
14430 watchpoint and its scope breakpoint at that time. */
14431 if (bpt->type == bp_watchpoint_scope)
14432 return;
14433
14434 /* You can't disable permanent breakpoints. */
14435 if (bpt->enable_state == bp_permanent)
14436 return;
14437
14438 bpt->enable_state = bp_disabled;
14439
14440 /* Mark breakpoint locations modified. */
14441 mark_breakpoint_modified (bpt);
14442
14443 if (target_supports_enable_disable_tracepoint ()
14444 && current_trace_status ()->running && is_tracepoint (bpt))
14445 {
14446 struct bp_location *location;
14447
14448 for (location = bpt->loc; location; location = location->next)
14449 target_disable_tracepoint (location);
14450 }
14451
14452 update_global_location_list (0);
14453
14454 observer_notify_breakpoint_modified (bpt);
14455 }
14456
14457 /* A callback for iterate_over_related_breakpoints. */
14458
14459 static void
14460 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14461 {
14462 disable_breakpoint (b);
14463 }
14464
14465 /* A callback for map_breakpoint_numbers that calls
14466 disable_breakpoint. */
14467
14468 static void
14469 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14470 {
14471 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14472 }
14473
14474 static void
14475 disable_command (char *args, int from_tty)
14476 {
14477 if (args == 0)
14478 {
14479 struct breakpoint *bpt;
14480
14481 ALL_BREAKPOINTS (bpt)
14482 if (user_breakpoint_p (bpt))
14483 disable_breakpoint (bpt);
14484 }
14485 else if (strchr (args, '.'))
14486 {
14487 struct bp_location *loc = find_location_by_number (args);
14488 if (loc)
14489 {
14490 if (loc->enabled)
14491 {
14492 loc->enabled = 0;
14493 mark_breakpoint_location_modified (loc);
14494 }
14495 if (target_supports_enable_disable_tracepoint ()
14496 && current_trace_status ()->running && loc->owner
14497 && is_tracepoint (loc->owner))
14498 target_disable_tracepoint (loc);
14499 }
14500 update_global_location_list (0);
14501 }
14502 else
14503 map_breakpoint_numbers (args, do_map_disable_breakpoint, NULL);
14504 }
14505
14506 static void
14507 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14508 int count)
14509 {
14510 int target_resources_ok;
14511
14512 if (bpt->type == bp_hardware_breakpoint)
14513 {
14514 int i;
14515 i = hw_breakpoint_used_count ();
14516 target_resources_ok =
14517 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14518 i + 1, 0);
14519 if (target_resources_ok == 0)
14520 error (_("No hardware breakpoint support in the target."));
14521 else if (target_resources_ok < 0)
14522 error (_("Hardware breakpoints used exceeds limit."));
14523 }
14524
14525 if (is_watchpoint (bpt))
14526 {
14527 /* Initialize it just to avoid a GCC false warning. */
14528 enum enable_state orig_enable_state = 0;
14529 volatile struct gdb_exception e;
14530
14531 TRY_CATCH (e, RETURN_MASK_ALL)
14532 {
14533 struct watchpoint *w = (struct watchpoint *) bpt;
14534
14535 orig_enable_state = bpt->enable_state;
14536 bpt->enable_state = bp_enabled;
14537 update_watchpoint (w, 1 /* reparse */);
14538 }
14539 if (e.reason < 0)
14540 {
14541 bpt->enable_state = orig_enable_state;
14542 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14543 bpt->number);
14544 return;
14545 }
14546 }
14547
14548 if (bpt->enable_state != bp_permanent)
14549 bpt->enable_state = bp_enabled;
14550
14551 bpt->enable_state = bp_enabled;
14552
14553 /* Mark breakpoint locations modified. */
14554 mark_breakpoint_modified (bpt);
14555
14556 if (target_supports_enable_disable_tracepoint ()
14557 && current_trace_status ()->running && is_tracepoint (bpt))
14558 {
14559 struct bp_location *location;
14560
14561 for (location = bpt->loc; location; location = location->next)
14562 target_enable_tracepoint (location);
14563 }
14564
14565 bpt->disposition = disposition;
14566 bpt->enable_count = count;
14567 update_global_location_list (1);
14568
14569 observer_notify_breakpoint_modified (bpt);
14570 }
14571
14572
14573 void
14574 enable_breakpoint (struct breakpoint *bpt)
14575 {
14576 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14577 }
14578
14579 static void
14580 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14581 {
14582 enable_breakpoint (bpt);
14583 }
14584
14585 /* A callback for map_breakpoint_numbers that calls
14586 enable_breakpoint. */
14587
14588 static void
14589 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14590 {
14591 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14592 }
14593
14594 /* The enable command enables the specified breakpoints (or all defined
14595 breakpoints) so they once again become (or continue to be) effective
14596 in stopping the inferior. */
14597
14598 static void
14599 enable_command (char *args, int from_tty)
14600 {
14601 if (args == 0)
14602 {
14603 struct breakpoint *bpt;
14604
14605 ALL_BREAKPOINTS (bpt)
14606 if (user_breakpoint_p (bpt))
14607 enable_breakpoint (bpt);
14608 }
14609 else if (strchr (args, '.'))
14610 {
14611 struct bp_location *loc = find_location_by_number (args);
14612 if (loc)
14613 {
14614 if (!loc->enabled)
14615 {
14616 loc->enabled = 1;
14617 mark_breakpoint_location_modified (loc);
14618 }
14619 if (target_supports_enable_disable_tracepoint ()
14620 && current_trace_status ()->running && loc->owner
14621 && is_tracepoint (loc->owner))
14622 target_enable_tracepoint (loc);
14623 }
14624 update_global_location_list (1);
14625 }
14626 else
14627 map_breakpoint_numbers (args, do_map_enable_breakpoint, NULL);
14628 }
14629
14630 /* This struct packages up disposition data for application to multiple
14631 breakpoints. */
14632
14633 struct disp_data
14634 {
14635 enum bpdisp disp;
14636 int count;
14637 };
14638
14639 static void
14640 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14641 {
14642 struct disp_data disp_data = *(struct disp_data *) arg;
14643
14644 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14645 }
14646
14647 static void
14648 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14649 {
14650 struct disp_data disp = { disp_disable, 1 };
14651
14652 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14653 }
14654
14655 static void
14656 enable_once_command (char *args, int from_tty)
14657 {
14658 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14659 }
14660
14661 static void
14662 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14663 {
14664 struct disp_data disp = { disp_disable, *(int *) countptr };
14665
14666 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14667 }
14668
14669 static void
14670 enable_count_command (char *args, int from_tty)
14671 {
14672 int count = get_number (&args);
14673
14674 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14675 }
14676
14677 static void
14678 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14679 {
14680 struct disp_data disp = { disp_del, 1 };
14681
14682 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14683 }
14684
14685 static void
14686 enable_delete_command (char *args, int from_tty)
14687 {
14688 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14689 }
14690 \f
14691 static void
14692 set_breakpoint_cmd (char *args, int from_tty)
14693 {
14694 }
14695
14696 static void
14697 show_breakpoint_cmd (char *args, int from_tty)
14698 {
14699 }
14700
14701 /* Invalidate last known value of any hardware watchpoint if
14702 the memory which that value represents has been written to by
14703 GDB itself. */
14704
14705 static void
14706 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14707 CORE_ADDR addr, ssize_t len,
14708 const bfd_byte *data)
14709 {
14710 struct breakpoint *bp;
14711
14712 ALL_BREAKPOINTS (bp)
14713 if (bp->enable_state == bp_enabled
14714 && bp->type == bp_hardware_watchpoint)
14715 {
14716 struct watchpoint *wp = (struct watchpoint *) bp;
14717
14718 if (wp->val_valid && wp->val)
14719 {
14720 struct bp_location *loc;
14721
14722 for (loc = bp->loc; loc != NULL; loc = loc->next)
14723 if (loc->loc_type == bp_loc_hardware_watchpoint
14724 && loc->address + loc->length > addr
14725 && addr + len > loc->address)
14726 {
14727 value_free (wp->val);
14728 wp->val = NULL;
14729 wp->val_valid = 0;
14730 }
14731 }
14732 }
14733 }
14734
14735 /* Create and insert a raw software breakpoint at PC. Return an
14736 identifier, which should be used to remove the breakpoint later.
14737 In general, places which call this should be using something on the
14738 breakpoint chain instead; this function should be eliminated
14739 someday. */
14740
14741 void *
14742 deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
14743 struct address_space *aspace, CORE_ADDR pc)
14744 {
14745 struct bp_target_info *bp_tgt;
14746
14747 bp_tgt = XZALLOC (struct bp_target_info);
14748
14749 bp_tgt->placed_address_space = aspace;
14750 bp_tgt->placed_address = pc;
14751
14752 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
14753 {
14754 /* Could not insert the breakpoint. */
14755 xfree (bp_tgt);
14756 return NULL;
14757 }
14758
14759 return bp_tgt;
14760 }
14761
14762 /* Remove a breakpoint BP inserted by
14763 deprecated_insert_raw_breakpoint. */
14764
14765 int
14766 deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
14767 {
14768 struct bp_target_info *bp_tgt = bp;
14769 int ret;
14770
14771 ret = target_remove_breakpoint (gdbarch, bp_tgt);
14772 xfree (bp_tgt);
14773
14774 return ret;
14775 }
14776
14777 /* One (or perhaps two) breakpoints used for software single
14778 stepping. */
14779
14780 static void *single_step_breakpoints[2];
14781 static struct gdbarch *single_step_gdbarch[2];
14782
14783 /* Create and insert a breakpoint for software single step. */
14784
14785 void
14786 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14787 struct address_space *aspace,
14788 CORE_ADDR next_pc)
14789 {
14790 void **bpt_p;
14791
14792 if (single_step_breakpoints[0] == NULL)
14793 {
14794 bpt_p = &single_step_breakpoints[0];
14795 single_step_gdbarch[0] = gdbarch;
14796 }
14797 else
14798 {
14799 gdb_assert (single_step_breakpoints[1] == NULL);
14800 bpt_p = &single_step_breakpoints[1];
14801 single_step_gdbarch[1] = gdbarch;
14802 }
14803
14804 /* NOTE drow/2006-04-11: A future improvement to this function would
14805 be to only create the breakpoints once, and actually put them on
14806 the breakpoint chain. That would let us use set_raw_breakpoint.
14807 We could adjust the addresses each time they were needed. Doing
14808 this requires corresponding changes elsewhere where single step
14809 breakpoints are handled, however. So, for now, we use this. */
14810
14811 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
14812 if (*bpt_p == NULL)
14813 error (_("Could not insert single-step breakpoint at %s"),
14814 paddress (gdbarch, next_pc));
14815 }
14816
14817 /* Check if the breakpoints used for software single stepping
14818 were inserted or not. */
14819
14820 int
14821 single_step_breakpoints_inserted (void)
14822 {
14823 return (single_step_breakpoints[0] != NULL
14824 || single_step_breakpoints[1] != NULL);
14825 }
14826
14827 /* Remove and delete any breakpoints used for software single step. */
14828
14829 void
14830 remove_single_step_breakpoints (void)
14831 {
14832 gdb_assert (single_step_breakpoints[0] != NULL);
14833
14834 /* See insert_single_step_breakpoint for more about this deprecated
14835 call. */
14836 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
14837 single_step_breakpoints[0]);
14838 single_step_gdbarch[0] = NULL;
14839 single_step_breakpoints[0] = NULL;
14840
14841 if (single_step_breakpoints[1] != NULL)
14842 {
14843 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
14844 single_step_breakpoints[1]);
14845 single_step_gdbarch[1] = NULL;
14846 single_step_breakpoints[1] = NULL;
14847 }
14848 }
14849
14850 /* Delete software single step breakpoints without removing them from
14851 the inferior. This is intended to be used if the inferior's address
14852 space where they were inserted is already gone, e.g. after exit or
14853 exec. */
14854
14855 void
14856 cancel_single_step_breakpoints (void)
14857 {
14858 int i;
14859
14860 for (i = 0; i < 2; i++)
14861 if (single_step_breakpoints[i])
14862 {
14863 xfree (single_step_breakpoints[i]);
14864 single_step_breakpoints[i] = NULL;
14865 single_step_gdbarch[i] = NULL;
14866 }
14867 }
14868
14869 /* Detach software single-step breakpoints from INFERIOR_PTID without
14870 removing them. */
14871
14872 static void
14873 detach_single_step_breakpoints (void)
14874 {
14875 int i;
14876
14877 for (i = 0; i < 2; i++)
14878 if (single_step_breakpoints[i])
14879 target_remove_breakpoint (single_step_gdbarch[i],
14880 single_step_breakpoints[i]);
14881 }
14882
14883 /* Check whether a software single-step breakpoint is inserted at
14884 PC. */
14885
14886 static int
14887 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
14888 CORE_ADDR pc)
14889 {
14890 int i;
14891
14892 for (i = 0; i < 2; i++)
14893 {
14894 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
14895 if (bp_tgt
14896 && breakpoint_address_match (bp_tgt->placed_address_space,
14897 bp_tgt->placed_address,
14898 aspace, pc))
14899 return 1;
14900 }
14901
14902 return 0;
14903 }
14904
14905 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
14906 non-zero otherwise. */
14907 static int
14908 is_syscall_catchpoint_enabled (struct breakpoint *bp)
14909 {
14910 if (syscall_catchpoint_p (bp)
14911 && bp->enable_state != bp_disabled
14912 && bp->enable_state != bp_call_disabled)
14913 return 1;
14914 else
14915 return 0;
14916 }
14917
14918 int
14919 catch_syscall_enabled (void)
14920 {
14921 struct catch_syscall_inferior_data *inf_data
14922 = get_catch_syscall_inferior_data (current_inferior ());
14923
14924 return inf_data->total_syscalls_count != 0;
14925 }
14926
14927 int
14928 catching_syscall_number (int syscall_number)
14929 {
14930 struct breakpoint *bp;
14931
14932 ALL_BREAKPOINTS (bp)
14933 if (is_syscall_catchpoint_enabled (bp))
14934 {
14935 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
14936
14937 if (c->syscalls_to_be_caught)
14938 {
14939 int i, iter;
14940 for (i = 0;
14941 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
14942 i++)
14943 if (syscall_number == iter)
14944 return 1;
14945 }
14946 else
14947 return 1;
14948 }
14949
14950 return 0;
14951 }
14952
14953 /* Complete syscall names. Used by "catch syscall". */
14954 static VEC (char_ptr) *
14955 catch_syscall_completer (struct cmd_list_element *cmd,
14956 const char *text, const char *word)
14957 {
14958 const char **list = get_syscall_names ();
14959 VEC (char_ptr) *retlist
14960 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
14961
14962 xfree (list);
14963 return retlist;
14964 }
14965
14966 /* Tracepoint-specific operations. */
14967
14968 /* Set tracepoint count to NUM. */
14969 static void
14970 set_tracepoint_count (int num)
14971 {
14972 tracepoint_count = num;
14973 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14974 }
14975
14976 static void
14977 trace_command (char *arg, int from_tty)
14978 {
14979 struct breakpoint_ops *ops;
14980 const char *arg_cp = arg;
14981
14982 if (arg && probe_linespec_to_ops (&arg_cp))
14983 ops = &tracepoint_probe_breakpoint_ops;
14984 else
14985 ops = &tracepoint_breakpoint_ops;
14986
14987 create_breakpoint (get_current_arch (),
14988 arg,
14989 NULL, 0, NULL, 1 /* parse arg */,
14990 0 /* tempflag */,
14991 bp_tracepoint /* type_wanted */,
14992 0 /* Ignore count */,
14993 pending_break_support,
14994 ops,
14995 from_tty,
14996 1 /* enabled */,
14997 0 /* internal */, 0);
14998 }
14999
15000 static void
15001 ftrace_command (char *arg, int from_tty)
15002 {
15003 create_breakpoint (get_current_arch (),
15004 arg,
15005 NULL, 0, NULL, 1 /* parse arg */,
15006 0 /* tempflag */,
15007 bp_fast_tracepoint /* type_wanted */,
15008 0 /* Ignore count */,
15009 pending_break_support,
15010 &tracepoint_breakpoint_ops,
15011 from_tty,
15012 1 /* enabled */,
15013 0 /* internal */, 0);
15014 }
15015
15016 /* strace command implementation. Creates a static tracepoint. */
15017
15018 static void
15019 strace_command (char *arg, int from_tty)
15020 {
15021 struct breakpoint_ops *ops;
15022
15023 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15024 or with a normal static tracepoint. */
15025 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15026 ops = &strace_marker_breakpoint_ops;
15027 else
15028 ops = &tracepoint_breakpoint_ops;
15029
15030 create_breakpoint (get_current_arch (),
15031 arg,
15032 NULL, 0, NULL, 1 /* parse arg */,
15033 0 /* tempflag */,
15034 bp_static_tracepoint /* type_wanted */,
15035 0 /* Ignore count */,
15036 pending_break_support,
15037 ops,
15038 from_tty,
15039 1 /* enabled */,
15040 0 /* internal */, 0);
15041 }
15042
15043 /* Set up a fake reader function that gets command lines from a linked
15044 list that was acquired during tracepoint uploading. */
15045
15046 static struct uploaded_tp *this_utp;
15047 static int next_cmd;
15048
15049 static char *
15050 read_uploaded_action (void)
15051 {
15052 char *rslt;
15053
15054 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15055
15056 next_cmd++;
15057
15058 return rslt;
15059 }
15060
15061 /* Given information about a tracepoint as recorded on a target (which
15062 can be either a live system or a trace file), attempt to create an
15063 equivalent GDB tracepoint. This is not a reliable process, since
15064 the target does not necessarily have all the information used when
15065 the tracepoint was originally defined. */
15066
15067 struct tracepoint *
15068 create_tracepoint_from_upload (struct uploaded_tp *utp)
15069 {
15070 char *addr_str, small_buf[100];
15071 struct tracepoint *tp;
15072
15073 if (utp->at_string)
15074 addr_str = utp->at_string;
15075 else
15076 {
15077 /* In the absence of a source location, fall back to raw
15078 address. Since there is no way to confirm that the address
15079 means the same thing as when the trace was started, warn the
15080 user. */
15081 warning (_("Uploaded tracepoint %d has no "
15082 "source location, using raw address"),
15083 utp->number);
15084 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15085 addr_str = small_buf;
15086 }
15087
15088 /* There's not much we can do with a sequence of bytecodes. */
15089 if (utp->cond && !utp->cond_string)
15090 warning (_("Uploaded tracepoint %d condition "
15091 "has no source form, ignoring it"),
15092 utp->number);
15093
15094 if (!create_breakpoint (get_current_arch (),
15095 addr_str,
15096 utp->cond_string, -1, NULL,
15097 0 /* parse cond/thread */,
15098 0 /* tempflag */,
15099 utp->type /* type_wanted */,
15100 0 /* Ignore count */,
15101 pending_break_support,
15102 &tracepoint_breakpoint_ops,
15103 0 /* from_tty */,
15104 utp->enabled /* enabled */,
15105 0 /* internal */,
15106 CREATE_BREAKPOINT_FLAGS_INSERTED))
15107 return NULL;
15108
15109 /* Get the tracepoint we just created. */
15110 tp = get_tracepoint (tracepoint_count);
15111 gdb_assert (tp != NULL);
15112
15113 if (utp->pass > 0)
15114 {
15115 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15116 tp->base.number);
15117
15118 trace_pass_command (small_buf, 0);
15119 }
15120
15121 /* If we have uploaded versions of the original commands, set up a
15122 special-purpose "reader" function and call the usual command line
15123 reader, then pass the result to the breakpoint command-setting
15124 function. */
15125 if (!VEC_empty (char_ptr, utp->cmd_strings))
15126 {
15127 struct command_line *cmd_list;
15128
15129 this_utp = utp;
15130 next_cmd = 0;
15131
15132 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15133
15134 breakpoint_set_commands (&tp->base, cmd_list);
15135 }
15136 else if (!VEC_empty (char_ptr, utp->actions)
15137 || !VEC_empty (char_ptr, utp->step_actions))
15138 warning (_("Uploaded tracepoint %d actions "
15139 "have no source form, ignoring them"),
15140 utp->number);
15141
15142 /* Copy any status information that might be available. */
15143 tp->base.hit_count = utp->hit_count;
15144 tp->traceframe_usage = utp->traceframe_usage;
15145
15146 return tp;
15147 }
15148
15149 /* Print information on tracepoint number TPNUM_EXP, or all if
15150 omitted. */
15151
15152 static void
15153 tracepoints_info (char *args, int from_tty)
15154 {
15155 struct ui_out *uiout = current_uiout;
15156 int num_printed;
15157
15158 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15159
15160 if (num_printed == 0)
15161 {
15162 if (args == NULL || *args == '\0')
15163 ui_out_message (uiout, 0, "No tracepoints.\n");
15164 else
15165 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15166 }
15167
15168 default_collect_info ();
15169 }
15170
15171 /* The 'enable trace' command enables tracepoints.
15172 Not supported by all targets. */
15173 static void
15174 enable_trace_command (char *args, int from_tty)
15175 {
15176 enable_command (args, from_tty);
15177 }
15178
15179 /* The 'disable trace' command disables tracepoints.
15180 Not supported by all targets. */
15181 static void
15182 disable_trace_command (char *args, int from_tty)
15183 {
15184 disable_command (args, from_tty);
15185 }
15186
15187 /* Remove a tracepoint (or all if no argument). */
15188 static void
15189 delete_trace_command (char *arg, int from_tty)
15190 {
15191 struct breakpoint *b, *b_tmp;
15192
15193 dont_repeat ();
15194
15195 if (arg == 0)
15196 {
15197 int breaks_to_delete = 0;
15198
15199 /* Delete all breakpoints if no argument.
15200 Do not delete internal or call-dummy breakpoints, these
15201 have to be deleted with an explicit breakpoint number
15202 argument. */
15203 ALL_TRACEPOINTS (b)
15204 if (is_tracepoint (b) && user_breakpoint_p (b))
15205 {
15206 breaks_to_delete = 1;
15207 break;
15208 }
15209
15210 /* Ask user only if there are some breakpoints to delete. */
15211 if (!from_tty
15212 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15213 {
15214 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15215 if (is_tracepoint (b) && user_breakpoint_p (b))
15216 delete_breakpoint (b);
15217 }
15218 }
15219 else
15220 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15221 }
15222
15223 /* Helper function for trace_pass_command. */
15224
15225 static void
15226 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15227 {
15228 tp->pass_count = count;
15229 observer_notify_breakpoint_modified (&tp->base);
15230 if (from_tty)
15231 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15232 tp->base.number, count);
15233 }
15234
15235 /* Set passcount for tracepoint.
15236
15237 First command argument is passcount, second is tracepoint number.
15238 If tracepoint number omitted, apply to most recently defined.
15239 Also accepts special argument "all". */
15240
15241 static void
15242 trace_pass_command (char *args, int from_tty)
15243 {
15244 struct tracepoint *t1;
15245 unsigned int count;
15246
15247 if (args == 0 || *args == 0)
15248 error (_("passcount command requires an "
15249 "argument (count + optional TP num)"));
15250
15251 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15252
15253 args = skip_spaces (args);
15254 if (*args && strncasecmp (args, "all", 3) == 0)
15255 {
15256 struct breakpoint *b;
15257
15258 args += 3; /* Skip special argument "all". */
15259 if (*args)
15260 error (_("Junk at end of arguments."));
15261
15262 ALL_TRACEPOINTS (b)
15263 {
15264 t1 = (struct tracepoint *) b;
15265 trace_pass_set_count (t1, count, from_tty);
15266 }
15267 }
15268 else if (*args == '\0')
15269 {
15270 t1 = get_tracepoint_by_number (&args, NULL, 1);
15271 if (t1)
15272 trace_pass_set_count (t1, count, from_tty);
15273 }
15274 else
15275 {
15276 struct get_number_or_range_state state;
15277
15278 init_number_or_range (&state, args);
15279 while (!state.finished)
15280 {
15281 t1 = get_tracepoint_by_number (&args, &state, 1);
15282 if (t1)
15283 trace_pass_set_count (t1, count, from_tty);
15284 }
15285 }
15286 }
15287
15288 struct tracepoint *
15289 get_tracepoint (int num)
15290 {
15291 struct breakpoint *t;
15292
15293 ALL_TRACEPOINTS (t)
15294 if (t->number == num)
15295 return (struct tracepoint *) t;
15296
15297 return NULL;
15298 }
15299
15300 /* Find the tracepoint with the given target-side number (which may be
15301 different from the tracepoint number after disconnecting and
15302 reconnecting). */
15303
15304 struct tracepoint *
15305 get_tracepoint_by_number_on_target (int num)
15306 {
15307 struct breakpoint *b;
15308
15309 ALL_TRACEPOINTS (b)
15310 {
15311 struct tracepoint *t = (struct tracepoint *) b;
15312
15313 if (t->number_on_target == num)
15314 return t;
15315 }
15316
15317 return NULL;
15318 }
15319
15320 /* Utility: parse a tracepoint number and look it up in the list.
15321 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15322 If OPTIONAL_P is true, then if the argument is missing, the most
15323 recent tracepoint (tracepoint_count) is returned. */
15324 struct tracepoint *
15325 get_tracepoint_by_number (char **arg,
15326 struct get_number_or_range_state *state,
15327 int optional_p)
15328 {
15329 struct breakpoint *t;
15330 int tpnum;
15331 char *instring = arg == NULL ? NULL : *arg;
15332
15333 if (state)
15334 {
15335 gdb_assert (!state->finished);
15336 tpnum = get_number_or_range (state);
15337 }
15338 else if (arg == NULL || *arg == NULL || ! **arg)
15339 {
15340 if (optional_p)
15341 tpnum = tracepoint_count;
15342 else
15343 error_no_arg (_("tracepoint number"));
15344 }
15345 else
15346 tpnum = get_number (arg);
15347
15348 if (tpnum <= 0)
15349 {
15350 if (instring && *instring)
15351 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15352 instring);
15353 else
15354 printf_filtered (_("Tracepoint argument missing "
15355 "and no previous tracepoint\n"));
15356 return NULL;
15357 }
15358
15359 ALL_TRACEPOINTS (t)
15360 if (t->number == tpnum)
15361 {
15362 return (struct tracepoint *) t;
15363 }
15364
15365 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15366 return NULL;
15367 }
15368
15369 void
15370 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15371 {
15372 if (b->thread != -1)
15373 fprintf_unfiltered (fp, " thread %d", b->thread);
15374
15375 if (b->task != 0)
15376 fprintf_unfiltered (fp, " task %d", b->task);
15377
15378 fprintf_unfiltered (fp, "\n");
15379 }
15380
15381 /* Save information on user settable breakpoints (watchpoints, etc) to
15382 a new script file named FILENAME. If FILTER is non-NULL, call it
15383 on each breakpoint and only include the ones for which it returns
15384 non-zero. */
15385
15386 static void
15387 save_breakpoints (char *filename, int from_tty,
15388 int (*filter) (const struct breakpoint *))
15389 {
15390 struct breakpoint *tp;
15391 int any = 0;
15392 char *pathname;
15393 struct cleanup *cleanup;
15394 struct ui_file *fp;
15395 int extra_trace_bits = 0;
15396
15397 if (filename == 0 || *filename == 0)
15398 error (_("Argument required (file name in which to save)"));
15399
15400 /* See if we have anything to save. */
15401 ALL_BREAKPOINTS (tp)
15402 {
15403 /* Skip internal and momentary breakpoints. */
15404 if (!user_breakpoint_p (tp))
15405 continue;
15406
15407 /* If we have a filter, only save the breakpoints it accepts. */
15408 if (filter && !filter (tp))
15409 continue;
15410
15411 any = 1;
15412
15413 if (is_tracepoint (tp))
15414 {
15415 extra_trace_bits = 1;
15416
15417 /* We can stop searching. */
15418 break;
15419 }
15420 }
15421
15422 if (!any)
15423 {
15424 warning (_("Nothing to save."));
15425 return;
15426 }
15427
15428 pathname = tilde_expand (filename);
15429 cleanup = make_cleanup (xfree, pathname);
15430 fp = gdb_fopen (pathname, "w");
15431 if (!fp)
15432 error (_("Unable to open file '%s' for saving (%s)"),
15433 filename, safe_strerror (errno));
15434 make_cleanup_ui_file_delete (fp);
15435
15436 if (extra_trace_bits)
15437 save_trace_state_variables (fp);
15438
15439 ALL_BREAKPOINTS (tp)
15440 {
15441 /* Skip internal and momentary breakpoints. */
15442 if (!user_breakpoint_p (tp))
15443 continue;
15444
15445 /* If we have a filter, only save the breakpoints it accepts. */
15446 if (filter && !filter (tp))
15447 continue;
15448
15449 tp->ops->print_recreate (tp, fp);
15450
15451 /* Note, we can't rely on tp->number for anything, as we can't
15452 assume the recreated breakpoint numbers will match. Use $bpnum
15453 instead. */
15454
15455 if (tp->cond_string)
15456 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15457
15458 if (tp->ignore_count)
15459 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15460
15461 if (tp->type != bp_dprintf && tp->commands)
15462 {
15463 volatile struct gdb_exception ex;
15464
15465 fprintf_unfiltered (fp, " commands\n");
15466
15467 ui_out_redirect (current_uiout, fp);
15468 TRY_CATCH (ex, RETURN_MASK_ALL)
15469 {
15470 print_command_lines (current_uiout, tp->commands->commands, 2);
15471 }
15472 ui_out_redirect (current_uiout, NULL);
15473
15474 if (ex.reason < 0)
15475 throw_exception (ex);
15476
15477 fprintf_unfiltered (fp, " end\n");
15478 }
15479
15480 if (tp->enable_state == bp_disabled)
15481 fprintf_unfiltered (fp, "disable\n");
15482
15483 /* If this is a multi-location breakpoint, check if the locations
15484 should be individually disabled. Watchpoint locations are
15485 special, and not user visible. */
15486 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15487 {
15488 struct bp_location *loc;
15489 int n = 1;
15490
15491 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15492 if (!loc->enabled)
15493 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15494 }
15495 }
15496
15497 if (extra_trace_bits && *default_collect)
15498 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15499
15500 do_cleanups (cleanup);
15501 if (from_tty)
15502 printf_filtered (_("Saved to file '%s'.\n"), filename);
15503 }
15504
15505 /* The `save breakpoints' command. */
15506
15507 static void
15508 save_breakpoints_command (char *args, int from_tty)
15509 {
15510 save_breakpoints (args, from_tty, NULL);
15511 }
15512
15513 /* The `save tracepoints' command. */
15514
15515 static void
15516 save_tracepoints_command (char *args, int from_tty)
15517 {
15518 save_breakpoints (args, from_tty, is_tracepoint);
15519 }
15520
15521 /* Create a vector of all tracepoints. */
15522
15523 VEC(breakpoint_p) *
15524 all_tracepoints (void)
15525 {
15526 VEC(breakpoint_p) *tp_vec = 0;
15527 struct breakpoint *tp;
15528
15529 ALL_TRACEPOINTS (tp)
15530 {
15531 VEC_safe_push (breakpoint_p, tp_vec, tp);
15532 }
15533
15534 return tp_vec;
15535 }
15536
15537 \f
15538 /* This help string is used for the break, hbreak, tbreak and thbreak
15539 commands. It is defined as a macro to prevent duplication.
15540 COMMAND should be a string constant containing the name of the
15541 command. */
15542 #define BREAK_ARGS_HELP(command) \
15543 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15544 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15545 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15546 guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
15547 LOCATION may be a line number, function name, or \"*\" and an address.\n\
15548 If a line number is specified, break at start of code for that line.\n\
15549 If a function is specified, break at start of code for that function.\n\
15550 If an address is specified, break at that exact address.\n\
15551 With no LOCATION, uses current execution address of the selected\n\
15552 stack frame. This is useful for breaking on return to a stack frame.\n\
15553 \n\
15554 THREADNUM is the number from \"info threads\".\n\
15555 CONDITION is a boolean expression.\n\
15556 \n\
15557 Multiple breakpoints at one place are permitted, and useful if their\n\
15558 conditions are different.\n\
15559 \n\
15560 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15561
15562 /* List of subcommands for "catch". */
15563 static struct cmd_list_element *catch_cmdlist;
15564
15565 /* List of subcommands for "tcatch". */
15566 static struct cmd_list_element *tcatch_cmdlist;
15567
15568 void
15569 add_catch_command (char *name, char *docstring,
15570 void (*sfunc) (char *args, int from_tty,
15571 struct cmd_list_element *command),
15572 completer_ftype *completer,
15573 void *user_data_catch,
15574 void *user_data_tcatch)
15575 {
15576 struct cmd_list_element *command;
15577
15578 command = add_cmd (name, class_breakpoint, NULL, docstring,
15579 &catch_cmdlist);
15580 set_cmd_sfunc (command, sfunc);
15581 set_cmd_context (command, user_data_catch);
15582 set_cmd_completer (command, completer);
15583
15584 command = add_cmd (name, class_breakpoint, NULL, docstring,
15585 &tcatch_cmdlist);
15586 set_cmd_sfunc (command, sfunc);
15587 set_cmd_context (command, user_data_tcatch);
15588 set_cmd_completer (command, completer);
15589 }
15590
15591 static void
15592 clear_syscall_counts (struct inferior *inf)
15593 {
15594 struct catch_syscall_inferior_data *inf_data
15595 = get_catch_syscall_inferior_data (inf);
15596
15597 inf_data->total_syscalls_count = 0;
15598 inf_data->any_syscall_count = 0;
15599 VEC_free (int, inf_data->syscalls_counts);
15600 }
15601
15602 static void
15603 save_command (char *arg, int from_tty)
15604 {
15605 printf_unfiltered (_("\"save\" must be followed by "
15606 "the name of a save subcommand.\n"));
15607 help_list (save_cmdlist, "save ", -1, gdb_stdout);
15608 }
15609
15610 struct breakpoint *
15611 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15612 void *data)
15613 {
15614 struct breakpoint *b, *b_tmp;
15615
15616 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15617 {
15618 if ((*callback) (b, data))
15619 return b;
15620 }
15621
15622 return NULL;
15623 }
15624
15625 /* Zero if any of the breakpoint's locations could be a location where
15626 functions have been inlined, nonzero otherwise. */
15627
15628 static int
15629 is_non_inline_function (struct breakpoint *b)
15630 {
15631 /* The shared library event breakpoint is set on the address of a
15632 non-inline function. */
15633 if (b->type == bp_shlib_event)
15634 return 1;
15635
15636 return 0;
15637 }
15638
15639 /* Nonzero if the specified PC cannot be a location where functions
15640 have been inlined. */
15641
15642 int
15643 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15644 const struct target_waitstatus *ws)
15645 {
15646 struct breakpoint *b;
15647 struct bp_location *bl;
15648
15649 ALL_BREAKPOINTS (b)
15650 {
15651 if (!is_non_inline_function (b))
15652 continue;
15653
15654 for (bl = b->loc; bl != NULL; bl = bl->next)
15655 {
15656 if (!bl->shlib_disabled
15657 && bpstat_check_location (bl, aspace, pc, ws))
15658 return 1;
15659 }
15660 }
15661
15662 return 0;
15663 }
15664
15665 /* Remove any references to OBJFILE which is going to be freed. */
15666
15667 void
15668 breakpoint_free_objfile (struct objfile *objfile)
15669 {
15670 struct bp_location **locp, *loc;
15671
15672 ALL_BP_LOCATIONS (loc, locp)
15673 if (loc->symtab != NULL && loc->symtab->objfile == objfile)
15674 loc->symtab = NULL;
15675 }
15676
15677 void
15678 initialize_breakpoint_ops (void)
15679 {
15680 static int initialized = 0;
15681
15682 struct breakpoint_ops *ops;
15683
15684 if (initialized)
15685 return;
15686 initialized = 1;
15687
15688 /* The breakpoint_ops structure to be inherit by all kinds of
15689 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15690 internal and momentary breakpoints, etc.). */
15691 ops = &bkpt_base_breakpoint_ops;
15692 *ops = base_breakpoint_ops;
15693 ops->re_set = bkpt_re_set;
15694 ops->insert_location = bkpt_insert_location;
15695 ops->remove_location = bkpt_remove_location;
15696 ops->breakpoint_hit = bkpt_breakpoint_hit;
15697 ops->create_sals_from_address = bkpt_create_sals_from_address;
15698 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15699 ops->decode_linespec = bkpt_decode_linespec;
15700
15701 /* The breakpoint_ops structure to be used in regular breakpoints. */
15702 ops = &bkpt_breakpoint_ops;
15703 *ops = bkpt_base_breakpoint_ops;
15704 ops->re_set = bkpt_re_set;
15705 ops->resources_needed = bkpt_resources_needed;
15706 ops->print_it = bkpt_print_it;
15707 ops->print_mention = bkpt_print_mention;
15708 ops->print_recreate = bkpt_print_recreate;
15709
15710 /* Ranged breakpoints. */
15711 ops = &ranged_breakpoint_ops;
15712 *ops = bkpt_breakpoint_ops;
15713 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15714 ops->resources_needed = resources_needed_ranged_breakpoint;
15715 ops->print_it = print_it_ranged_breakpoint;
15716 ops->print_one = print_one_ranged_breakpoint;
15717 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15718 ops->print_mention = print_mention_ranged_breakpoint;
15719 ops->print_recreate = print_recreate_ranged_breakpoint;
15720
15721 /* Internal breakpoints. */
15722 ops = &internal_breakpoint_ops;
15723 *ops = bkpt_base_breakpoint_ops;
15724 ops->re_set = internal_bkpt_re_set;
15725 ops->check_status = internal_bkpt_check_status;
15726 ops->print_it = internal_bkpt_print_it;
15727 ops->print_mention = internal_bkpt_print_mention;
15728
15729 /* Momentary breakpoints. */
15730 ops = &momentary_breakpoint_ops;
15731 *ops = bkpt_base_breakpoint_ops;
15732 ops->re_set = momentary_bkpt_re_set;
15733 ops->check_status = momentary_bkpt_check_status;
15734 ops->print_it = momentary_bkpt_print_it;
15735 ops->print_mention = momentary_bkpt_print_mention;
15736
15737 /* Momentary breakpoints for bp_longjmp and bp_exception. */
15738 ops = &longjmp_breakpoint_ops;
15739 *ops = momentary_breakpoint_ops;
15740 ops->dtor = longjmp_bkpt_dtor;
15741
15742 /* Probe breakpoints. */
15743 ops = &bkpt_probe_breakpoint_ops;
15744 *ops = bkpt_breakpoint_ops;
15745 ops->insert_location = bkpt_probe_insert_location;
15746 ops->remove_location = bkpt_probe_remove_location;
15747 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
15748 ops->decode_linespec = bkpt_probe_decode_linespec;
15749
15750 /* Watchpoints. */
15751 ops = &watchpoint_breakpoint_ops;
15752 *ops = base_breakpoint_ops;
15753 ops->dtor = dtor_watchpoint;
15754 ops->re_set = re_set_watchpoint;
15755 ops->insert_location = insert_watchpoint;
15756 ops->remove_location = remove_watchpoint;
15757 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15758 ops->check_status = check_status_watchpoint;
15759 ops->resources_needed = resources_needed_watchpoint;
15760 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15761 ops->print_it = print_it_watchpoint;
15762 ops->print_mention = print_mention_watchpoint;
15763 ops->print_recreate = print_recreate_watchpoint;
15764
15765 /* Masked watchpoints. */
15766 ops = &masked_watchpoint_breakpoint_ops;
15767 *ops = watchpoint_breakpoint_ops;
15768 ops->insert_location = insert_masked_watchpoint;
15769 ops->remove_location = remove_masked_watchpoint;
15770 ops->resources_needed = resources_needed_masked_watchpoint;
15771 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15772 ops->print_it = print_it_masked_watchpoint;
15773 ops->print_one_detail = print_one_detail_masked_watchpoint;
15774 ops->print_mention = print_mention_masked_watchpoint;
15775 ops->print_recreate = print_recreate_masked_watchpoint;
15776
15777 /* Tracepoints. */
15778 ops = &tracepoint_breakpoint_ops;
15779 *ops = base_breakpoint_ops;
15780 ops->re_set = tracepoint_re_set;
15781 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15782 ops->print_one_detail = tracepoint_print_one_detail;
15783 ops->print_mention = tracepoint_print_mention;
15784 ops->print_recreate = tracepoint_print_recreate;
15785 ops->create_sals_from_address = tracepoint_create_sals_from_address;
15786 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15787 ops->decode_linespec = tracepoint_decode_linespec;
15788
15789 /* Probe tracepoints. */
15790 ops = &tracepoint_probe_breakpoint_ops;
15791 *ops = tracepoint_breakpoint_ops;
15792 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
15793 ops->decode_linespec = tracepoint_probe_decode_linespec;
15794
15795 /* Static tracepoints with marker (`-m'). */
15796 ops = &strace_marker_breakpoint_ops;
15797 *ops = tracepoint_breakpoint_ops;
15798 ops->create_sals_from_address = strace_marker_create_sals_from_address;
15799 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15800 ops->decode_linespec = strace_marker_decode_linespec;
15801
15802 /* Fork catchpoints. */
15803 ops = &catch_fork_breakpoint_ops;
15804 *ops = base_breakpoint_ops;
15805 ops->insert_location = insert_catch_fork;
15806 ops->remove_location = remove_catch_fork;
15807 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15808 ops->print_it = print_it_catch_fork;
15809 ops->print_one = print_one_catch_fork;
15810 ops->print_mention = print_mention_catch_fork;
15811 ops->print_recreate = print_recreate_catch_fork;
15812
15813 /* Vfork catchpoints. */
15814 ops = &catch_vfork_breakpoint_ops;
15815 *ops = base_breakpoint_ops;
15816 ops->insert_location = insert_catch_vfork;
15817 ops->remove_location = remove_catch_vfork;
15818 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15819 ops->print_it = print_it_catch_vfork;
15820 ops->print_one = print_one_catch_vfork;
15821 ops->print_mention = print_mention_catch_vfork;
15822 ops->print_recreate = print_recreate_catch_vfork;
15823
15824 /* Exec catchpoints. */
15825 ops = &catch_exec_breakpoint_ops;
15826 *ops = base_breakpoint_ops;
15827 ops->dtor = dtor_catch_exec;
15828 ops->insert_location = insert_catch_exec;
15829 ops->remove_location = remove_catch_exec;
15830 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15831 ops->print_it = print_it_catch_exec;
15832 ops->print_one = print_one_catch_exec;
15833 ops->print_mention = print_mention_catch_exec;
15834 ops->print_recreate = print_recreate_catch_exec;
15835
15836 /* Syscall catchpoints. */
15837 ops = &catch_syscall_breakpoint_ops;
15838 *ops = base_breakpoint_ops;
15839 ops->dtor = dtor_catch_syscall;
15840 ops->insert_location = insert_catch_syscall;
15841 ops->remove_location = remove_catch_syscall;
15842 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
15843 ops->print_it = print_it_catch_syscall;
15844 ops->print_one = print_one_catch_syscall;
15845 ops->print_mention = print_mention_catch_syscall;
15846 ops->print_recreate = print_recreate_catch_syscall;
15847
15848 /* Solib-related catchpoints. */
15849 ops = &catch_solib_breakpoint_ops;
15850 *ops = base_breakpoint_ops;
15851 ops->dtor = dtor_catch_solib;
15852 ops->insert_location = insert_catch_solib;
15853 ops->remove_location = remove_catch_solib;
15854 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15855 ops->check_status = check_status_catch_solib;
15856 ops->print_it = print_it_catch_solib;
15857 ops->print_one = print_one_catch_solib;
15858 ops->print_mention = print_mention_catch_solib;
15859 ops->print_recreate = print_recreate_catch_solib;
15860
15861 ops = &dprintf_breakpoint_ops;
15862 *ops = bkpt_base_breakpoint_ops;
15863 ops->re_set = dprintf_re_set;
15864 ops->resources_needed = bkpt_resources_needed;
15865 ops->print_it = bkpt_print_it;
15866 ops->print_mention = bkpt_print_mention;
15867 ops->print_recreate = dprintf_print_recreate;
15868 }
15869
15870 /* Chain containing all defined "enable breakpoint" subcommands. */
15871
15872 static struct cmd_list_element *enablebreaklist = NULL;
15873
15874 void
15875 _initialize_breakpoint (void)
15876 {
15877 struct cmd_list_element *c;
15878
15879 initialize_breakpoint_ops ();
15880
15881 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
15882 observer_attach_inferior_exit (clear_syscall_counts);
15883 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
15884
15885 breakpoint_objfile_key
15886 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
15887
15888 catch_syscall_inferior_data
15889 = register_inferior_data_with_cleanup (NULL,
15890 catch_syscall_inferior_data_cleanup);
15891
15892 breakpoint_chain = 0;
15893 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15894 before a breakpoint is set. */
15895 breakpoint_count = 0;
15896
15897 tracepoint_count = 0;
15898
15899 add_com ("ignore", class_breakpoint, ignore_command, _("\
15900 Set ignore-count of breakpoint number N to COUNT.\n\
15901 Usage is `ignore N COUNT'."));
15902 if (xdb_commands)
15903 add_com_alias ("bc", "ignore", class_breakpoint, 1);
15904
15905 add_com ("commands", class_breakpoint, commands_command, _("\
15906 Set commands to be executed when a breakpoint is hit.\n\
15907 Give breakpoint number as argument after \"commands\".\n\
15908 With no argument, the targeted breakpoint is the last one set.\n\
15909 The commands themselves follow starting on the next line.\n\
15910 Type a line containing \"end\" to indicate the end of them.\n\
15911 Give \"silent\" as the first line to make the breakpoint silent;\n\
15912 then no output is printed when it is hit, except what the commands print."));
15913
15914 c = add_com ("condition", class_breakpoint, condition_command, _("\
15915 Specify breakpoint number N to break only if COND is true.\n\
15916 Usage is `condition N COND', where N is an integer and COND is an\n\
15917 expression to be evaluated whenever breakpoint N is reached."));
15918 set_cmd_completer (c, condition_completer);
15919
15920 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15921 Set a temporary breakpoint.\n\
15922 Like \"break\" except the breakpoint is only temporary,\n\
15923 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15924 by using \"enable delete\" on the breakpoint number.\n\
15925 \n"
15926 BREAK_ARGS_HELP ("tbreak")));
15927 set_cmd_completer (c, location_completer);
15928
15929 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15930 Set a hardware assisted breakpoint.\n\
15931 Like \"break\" except the breakpoint requires hardware support,\n\
15932 some target hardware may not have this support.\n\
15933 \n"
15934 BREAK_ARGS_HELP ("hbreak")));
15935 set_cmd_completer (c, location_completer);
15936
15937 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15938 Set a temporary hardware assisted breakpoint.\n\
15939 Like \"hbreak\" except the breakpoint is only temporary,\n\
15940 so it will be deleted when hit.\n\
15941 \n"
15942 BREAK_ARGS_HELP ("thbreak")));
15943 set_cmd_completer (c, location_completer);
15944
15945 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15946 Enable some breakpoints.\n\
15947 Give breakpoint numbers (separated by spaces) as arguments.\n\
15948 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15949 This is used to cancel the effect of the \"disable\" command.\n\
15950 With a subcommand you can enable temporarily."),
15951 &enablelist, "enable ", 1, &cmdlist);
15952 if (xdb_commands)
15953 add_com ("ab", class_breakpoint, enable_command, _("\
15954 Enable some breakpoints.\n\
15955 Give breakpoint numbers (separated by spaces) as arguments.\n\
15956 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15957 This is used to cancel the effect of the \"disable\" command.\n\
15958 With a subcommand you can enable temporarily."));
15959
15960 add_com_alias ("en", "enable", class_breakpoint, 1);
15961
15962 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15963 Enable some breakpoints.\n\
15964 Give breakpoint numbers (separated by spaces) as arguments.\n\
15965 This is used to cancel the effect of the \"disable\" command.\n\
15966 May be abbreviated to simply \"enable\".\n"),
15967 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15968
15969 add_cmd ("once", no_class, enable_once_command, _("\
15970 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15971 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15972 &enablebreaklist);
15973
15974 add_cmd ("delete", no_class, enable_delete_command, _("\
15975 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15976 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15977 &enablebreaklist);
15978
15979 add_cmd ("count", no_class, enable_count_command, _("\
15980 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15981 If a breakpoint is hit while enabled in this fashion,\n\
15982 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15983 &enablebreaklist);
15984
15985 add_cmd ("delete", no_class, enable_delete_command, _("\
15986 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15987 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15988 &enablelist);
15989
15990 add_cmd ("once", no_class, enable_once_command, _("\
15991 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15992 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15993 &enablelist);
15994
15995 add_cmd ("count", no_class, enable_count_command, _("\
15996 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15997 If a breakpoint is hit while enabled in this fashion,\n\
15998 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15999 &enablelist);
16000
16001 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16002 Disable some breakpoints.\n\
16003 Arguments are breakpoint numbers with spaces in between.\n\
16004 To disable all breakpoints, give no argument.\n\
16005 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16006 &disablelist, "disable ", 1, &cmdlist);
16007 add_com_alias ("dis", "disable", class_breakpoint, 1);
16008 add_com_alias ("disa", "disable", class_breakpoint, 1);
16009 if (xdb_commands)
16010 add_com ("sb", class_breakpoint, disable_command, _("\
16011 Disable some breakpoints.\n\
16012 Arguments are breakpoint numbers with spaces in between.\n\
16013 To disable all breakpoints, give no argument.\n\
16014 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16015
16016 add_cmd ("breakpoints", class_alias, disable_command, _("\
16017 Disable some breakpoints.\n\
16018 Arguments are breakpoint numbers with spaces in between.\n\
16019 To disable all breakpoints, give no argument.\n\
16020 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16021 This command may be abbreviated \"disable\"."),
16022 &disablelist);
16023
16024 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16025 Delete some breakpoints or auto-display expressions.\n\
16026 Arguments are breakpoint numbers with spaces in between.\n\
16027 To delete all breakpoints, give no argument.\n\
16028 \n\
16029 Also a prefix command for deletion of other GDB objects.\n\
16030 The \"unset\" command is also an alias for \"delete\"."),
16031 &deletelist, "delete ", 1, &cmdlist);
16032 add_com_alias ("d", "delete", class_breakpoint, 1);
16033 add_com_alias ("del", "delete", class_breakpoint, 1);
16034 if (xdb_commands)
16035 add_com ("db", class_breakpoint, delete_command, _("\
16036 Delete some breakpoints.\n\
16037 Arguments are breakpoint numbers with spaces in between.\n\
16038 To delete all breakpoints, give no argument.\n"));
16039
16040 add_cmd ("breakpoints", class_alias, delete_command, _("\
16041 Delete some breakpoints or auto-display expressions.\n\
16042 Arguments are breakpoint numbers with spaces in between.\n\
16043 To delete all breakpoints, give no argument.\n\
16044 This command may be abbreviated \"delete\"."),
16045 &deletelist);
16046
16047 add_com ("clear", class_breakpoint, clear_command, _("\
16048 Clear breakpoint at specified line or function.\n\
16049 Argument may be line number, function name, or \"*\" and an address.\n\
16050 If line number is specified, all breakpoints in that line are cleared.\n\
16051 If function is specified, breakpoints at beginning of function are cleared.\n\
16052 If an address is specified, breakpoints at that address are cleared.\n\
16053 \n\
16054 With no argument, clears all breakpoints in the line that the selected frame\n\
16055 is executing in.\n\
16056 \n\
16057 See also the \"delete\" command which clears breakpoints by number."));
16058 add_com_alias ("cl", "clear", class_breakpoint, 1);
16059
16060 c = add_com ("break", class_breakpoint, break_command, _("\
16061 Set breakpoint at specified line or function.\n"
16062 BREAK_ARGS_HELP ("break")));
16063 set_cmd_completer (c, location_completer);
16064
16065 add_com_alias ("b", "break", class_run, 1);
16066 add_com_alias ("br", "break", class_run, 1);
16067 add_com_alias ("bre", "break", class_run, 1);
16068 add_com_alias ("brea", "break", class_run, 1);
16069
16070 if (xdb_commands)
16071 add_com_alias ("ba", "break", class_breakpoint, 1);
16072
16073 if (dbx_commands)
16074 {
16075 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16076 Break in function/address or break at a line in the current file."),
16077 &stoplist, "stop ", 1, &cmdlist);
16078 add_cmd ("in", class_breakpoint, stopin_command,
16079 _("Break in function or address."), &stoplist);
16080 add_cmd ("at", class_breakpoint, stopat_command,
16081 _("Break at a line in the current file."), &stoplist);
16082 add_com ("status", class_info, breakpoints_info, _("\
16083 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16084 The \"Type\" column indicates one of:\n\
16085 \tbreakpoint - normal breakpoint\n\
16086 \twatchpoint - watchpoint\n\
16087 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16088 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16089 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16090 address and file/line number respectively.\n\
16091 \n\
16092 Convenience variable \"$_\" and default examine address for \"x\"\n\
16093 are set to the address of the last breakpoint listed unless the command\n\
16094 is prefixed with \"server \".\n\n\
16095 Convenience variable \"$bpnum\" contains the number of the last\n\
16096 breakpoint set."));
16097 }
16098
16099 add_info ("breakpoints", breakpoints_info, _("\
16100 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16101 The \"Type\" column indicates one of:\n\
16102 \tbreakpoint - normal breakpoint\n\
16103 \twatchpoint - watchpoint\n\
16104 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16105 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16106 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16107 address and file/line number respectively.\n\
16108 \n\
16109 Convenience variable \"$_\" and default examine address for \"x\"\n\
16110 are set to the address of the last breakpoint listed unless the command\n\
16111 is prefixed with \"server \".\n\n\
16112 Convenience variable \"$bpnum\" contains the number of the last\n\
16113 breakpoint set."));
16114
16115 add_info_alias ("b", "breakpoints", 1);
16116
16117 if (xdb_commands)
16118 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16119 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16120 The \"Type\" column indicates one of:\n\
16121 \tbreakpoint - normal breakpoint\n\
16122 \twatchpoint - watchpoint\n\
16123 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16124 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16125 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16126 address and file/line number respectively.\n\
16127 \n\
16128 Convenience variable \"$_\" and default examine address for \"x\"\n\
16129 are set to the address of the last breakpoint listed unless the command\n\
16130 is prefixed with \"server \".\n\n\
16131 Convenience variable \"$bpnum\" contains the number of the last\n\
16132 breakpoint set."));
16133
16134 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16135 Status of all breakpoints, or breakpoint number NUMBER.\n\
16136 The \"Type\" column indicates one of:\n\
16137 \tbreakpoint - normal breakpoint\n\
16138 \twatchpoint - watchpoint\n\
16139 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16140 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16141 \tuntil - internal breakpoint used by the \"until\" command\n\
16142 \tfinish - internal breakpoint used by the \"finish\" command\n\
16143 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16144 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16145 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16146 address and file/line number respectively.\n\
16147 \n\
16148 Convenience variable \"$_\" and default examine address for \"x\"\n\
16149 are set to the address of the last breakpoint listed unless the command\n\
16150 is prefixed with \"server \".\n\n\
16151 Convenience variable \"$bpnum\" contains the number of the last\n\
16152 breakpoint set."),
16153 &maintenanceinfolist);
16154
16155 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16156 Set catchpoints to catch events."),
16157 &catch_cmdlist, "catch ",
16158 0/*allow-unknown*/, &cmdlist);
16159
16160 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16161 Set temporary catchpoints to catch events."),
16162 &tcatch_cmdlist, "tcatch ",
16163 0/*allow-unknown*/, &cmdlist);
16164
16165 add_catch_command ("fork", _("Catch calls to fork."),
16166 catch_fork_command_1,
16167 NULL,
16168 (void *) (uintptr_t) catch_fork_permanent,
16169 (void *) (uintptr_t) catch_fork_temporary);
16170 add_catch_command ("vfork", _("Catch calls to vfork."),
16171 catch_fork_command_1,
16172 NULL,
16173 (void *) (uintptr_t) catch_vfork_permanent,
16174 (void *) (uintptr_t) catch_vfork_temporary);
16175 add_catch_command ("exec", _("Catch calls to exec."),
16176 catch_exec_command_1,
16177 NULL,
16178 CATCH_PERMANENT,
16179 CATCH_TEMPORARY);
16180 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16181 Usage: catch load [REGEX]\n\
16182 If REGEX is given, only stop for libraries matching the regular expression."),
16183 catch_load_command_1,
16184 NULL,
16185 CATCH_PERMANENT,
16186 CATCH_TEMPORARY);
16187 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16188 Usage: catch unload [REGEX]\n\
16189 If REGEX is given, only stop for libraries matching the regular expression."),
16190 catch_unload_command_1,
16191 NULL,
16192 CATCH_PERMANENT,
16193 CATCH_TEMPORARY);
16194 add_catch_command ("syscall", _("\
16195 Catch system calls by their names and/or numbers.\n\
16196 Arguments say which system calls to catch. If no arguments\n\
16197 are given, every system call will be caught.\n\
16198 Arguments, if given, should be one or more system call names\n\
16199 (if your system supports that), or system call numbers."),
16200 catch_syscall_command_1,
16201 catch_syscall_completer,
16202 CATCH_PERMANENT,
16203 CATCH_TEMPORARY);
16204
16205 c = add_com ("watch", class_breakpoint, watch_command, _("\
16206 Set a watchpoint for an expression.\n\
16207 Usage: watch [-l|-location] EXPRESSION\n\
16208 A watchpoint stops execution of your program whenever the value of\n\
16209 an expression changes.\n\
16210 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16211 the memory to which it refers."));
16212 set_cmd_completer (c, expression_completer);
16213
16214 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16215 Set a read watchpoint for an expression.\n\
16216 Usage: rwatch [-l|-location] EXPRESSION\n\
16217 A watchpoint stops execution of your program whenever the value of\n\
16218 an expression is read.\n\
16219 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16220 the memory to which it refers."));
16221 set_cmd_completer (c, expression_completer);
16222
16223 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16224 Set a watchpoint for an expression.\n\
16225 Usage: awatch [-l|-location] EXPRESSION\n\
16226 A watchpoint stops execution of your program whenever the value of\n\
16227 an expression is either read or written.\n\
16228 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16229 the memory to which it refers."));
16230 set_cmd_completer (c, expression_completer);
16231
16232 add_info ("watchpoints", watchpoints_info, _("\
16233 Status of specified watchpoints (all watchpoints if no argument)."));
16234
16235 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16236 respond to changes - contrary to the description. */
16237 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16238 &can_use_hw_watchpoints, _("\
16239 Set debugger's willingness to use watchpoint hardware."), _("\
16240 Show debugger's willingness to use watchpoint hardware."), _("\
16241 If zero, gdb will not use hardware for new watchpoints, even if\n\
16242 such is available. (However, any hardware watchpoints that were\n\
16243 created before setting this to nonzero, will continue to use watchpoint\n\
16244 hardware.)"),
16245 NULL,
16246 show_can_use_hw_watchpoints,
16247 &setlist, &showlist);
16248
16249 can_use_hw_watchpoints = 1;
16250
16251 /* Tracepoint manipulation commands. */
16252
16253 c = add_com ("trace", class_breakpoint, trace_command, _("\
16254 Set a tracepoint at specified line or function.\n\
16255 \n"
16256 BREAK_ARGS_HELP ("trace") "\n\
16257 Do \"help tracepoints\" for info on other tracepoint commands."));
16258 set_cmd_completer (c, location_completer);
16259
16260 add_com_alias ("tp", "trace", class_alias, 0);
16261 add_com_alias ("tr", "trace", class_alias, 1);
16262 add_com_alias ("tra", "trace", class_alias, 1);
16263 add_com_alias ("trac", "trace", class_alias, 1);
16264
16265 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16266 Set a fast tracepoint at specified line or function.\n\
16267 \n"
16268 BREAK_ARGS_HELP ("ftrace") "\n\
16269 Do \"help tracepoints\" for info on other tracepoint commands."));
16270 set_cmd_completer (c, location_completer);
16271
16272 c = add_com ("strace", class_breakpoint, strace_command, _("\
16273 Set a static tracepoint at specified line, function or marker.\n\
16274 \n\
16275 strace [LOCATION] [if CONDITION]\n\
16276 LOCATION may be a line number, function name, \"*\" and an address,\n\
16277 or -m MARKER_ID.\n\
16278 If a line number is specified, probe the marker at start of code\n\
16279 for that line. If a function is specified, probe the marker at start\n\
16280 of code for that function. If an address is specified, probe the marker\n\
16281 at that exact address. If a marker id is specified, probe the marker\n\
16282 with that name. With no LOCATION, uses current execution address of\n\
16283 the selected stack frame.\n\
16284 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16285 This collects arbitrary user data passed in the probe point call to the\n\
16286 tracing library. You can inspect it when analyzing the trace buffer,\n\
16287 by printing the $_sdata variable like any other convenience variable.\n\
16288 \n\
16289 CONDITION is a boolean expression.\n\
16290 \n\
16291 Multiple tracepoints at one place are permitted, and useful if their\n\
16292 conditions are different.\n\
16293 \n\
16294 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16295 Do \"help tracepoints\" for info on other tracepoint commands."));
16296 set_cmd_completer (c, location_completer);
16297
16298 add_info ("tracepoints", tracepoints_info, _("\
16299 Status of specified tracepoints (all tracepoints if no argument).\n\
16300 Convenience variable \"$tpnum\" contains the number of the\n\
16301 last tracepoint set."));
16302
16303 add_info_alias ("tp", "tracepoints", 1);
16304
16305 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16306 Delete specified tracepoints.\n\
16307 Arguments are tracepoint numbers, separated by spaces.\n\
16308 No argument means delete all tracepoints."),
16309 &deletelist);
16310 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16311
16312 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16313 Disable specified tracepoints.\n\
16314 Arguments are tracepoint numbers, separated by spaces.\n\
16315 No argument means disable all tracepoints."),
16316 &disablelist);
16317 deprecate_cmd (c, "disable");
16318
16319 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16320 Enable specified tracepoints.\n\
16321 Arguments are tracepoint numbers, separated by spaces.\n\
16322 No argument means enable all tracepoints."),
16323 &enablelist);
16324 deprecate_cmd (c, "enable");
16325
16326 add_com ("passcount", class_trace, trace_pass_command, _("\
16327 Set the passcount for a tracepoint.\n\
16328 The trace will end when the tracepoint has been passed 'count' times.\n\
16329 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16330 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16331
16332 add_prefix_cmd ("save", class_breakpoint, save_command,
16333 _("Save breakpoint definitions as a script."),
16334 &save_cmdlist, "save ",
16335 0/*allow-unknown*/, &cmdlist);
16336
16337 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16338 Save current breakpoint definitions as a script.\n\
16339 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16340 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16341 session to restore them."),
16342 &save_cmdlist);
16343 set_cmd_completer (c, filename_completer);
16344
16345 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16346 Save current tracepoint definitions as a script.\n\
16347 Use the 'source' command in another debug session to restore them."),
16348 &save_cmdlist);
16349 set_cmd_completer (c, filename_completer);
16350
16351 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16352 deprecate_cmd (c, "save tracepoints");
16353
16354 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16355 Breakpoint specific settings\n\
16356 Configure various breakpoint-specific variables such as\n\
16357 pending breakpoint behavior"),
16358 &breakpoint_set_cmdlist, "set breakpoint ",
16359 0/*allow-unknown*/, &setlist);
16360 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16361 Breakpoint specific settings\n\
16362 Configure various breakpoint-specific variables such as\n\
16363 pending breakpoint behavior"),
16364 &breakpoint_show_cmdlist, "show breakpoint ",
16365 0/*allow-unknown*/, &showlist);
16366
16367 add_setshow_auto_boolean_cmd ("pending", no_class,
16368 &pending_break_support, _("\
16369 Set debugger's behavior regarding pending breakpoints."), _("\
16370 Show debugger's behavior regarding pending breakpoints."), _("\
16371 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16372 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16373 an error. If auto, an unrecognized breakpoint location results in a\n\
16374 user-query to see if a pending breakpoint should be created."),
16375 NULL,
16376 show_pending_break_support,
16377 &breakpoint_set_cmdlist,
16378 &breakpoint_show_cmdlist);
16379
16380 pending_break_support = AUTO_BOOLEAN_AUTO;
16381
16382 add_setshow_boolean_cmd ("auto-hw", no_class,
16383 &automatic_hardware_breakpoints, _("\
16384 Set automatic usage of hardware breakpoints."), _("\
16385 Show automatic usage of hardware breakpoints."), _("\
16386 If set, the debugger will automatically use hardware breakpoints for\n\
16387 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16388 a warning will be emitted for such breakpoints."),
16389 NULL,
16390 show_automatic_hardware_breakpoints,
16391 &breakpoint_set_cmdlist,
16392 &breakpoint_show_cmdlist);
16393
16394 add_setshow_auto_boolean_cmd ("always-inserted", class_support,
16395 &always_inserted_mode, _("\
16396 Set mode for inserting breakpoints."), _("\
16397 Show mode for inserting breakpoints."), _("\
16398 When this mode is off, breakpoints are inserted in inferior when it is\n\
16399 resumed, and removed when execution stops. When this mode is on,\n\
16400 breakpoints are inserted immediately and removed only when the user\n\
16401 deletes the breakpoint. When this mode is auto (which is the default),\n\
16402 the behaviour depends on the non-stop setting (see help set non-stop).\n\
16403 In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
16404 behaves as if always-inserted mode is on; if gdb is controlling the\n\
16405 inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
16406 NULL,
16407 &show_always_inserted_mode,
16408 &breakpoint_set_cmdlist,
16409 &breakpoint_show_cmdlist);
16410
16411 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16412 condition_evaluation_enums,
16413 &condition_evaluation_mode_1, _("\
16414 Set mode of breakpoint condition evaluation."), _("\
16415 Show mode of breakpoint condition evaluation."), _("\
16416 When this is set to \"host\", breakpoint conditions will be\n\
16417 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16418 breakpoint conditions will be downloaded to the target (if the target\n\
16419 supports such feature) and conditions will be evaluated on the target's side.\n\
16420 If this is set to \"auto\" (default), this will be automatically set to\n\
16421 \"target\" if it supports condition evaluation, otherwise it will\n\
16422 be set to \"gdb\""),
16423 &set_condition_evaluation_mode,
16424 &show_condition_evaluation_mode,
16425 &breakpoint_set_cmdlist,
16426 &breakpoint_show_cmdlist);
16427
16428 add_com ("break-range", class_breakpoint, break_range_command, _("\
16429 Set a breakpoint for an address range.\n\
16430 break-range START-LOCATION, END-LOCATION\n\
16431 where START-LOCATION and END-LOCATION can be one of the following:\n\
16432 LINENUM, for that line in the current file,\n\
16433 FILE:LINENUM, for that line in that file,\n\
16434 +OFFSET, for that number of lines after the current line\n\
16435 or the start of the range\n\
16436 FUNCTION, for the first line in that function,\n\
16437 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16438 *ADDRESS, for the instruction at that address.\n\
16439 \n\
16440 The breakpoint will stop execution of the inferior whenever it executes\n\
16441 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16442 range (including START-LOCATION and END-LOCATION)."));
16443
16444 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16445 Set a dynamic printf at specified line or function.\n\
16446 dprintf location,format string,arg1,arg2,...\n\
16447 location may be a line number, function name, or \"*\" and an address.\n\
16448 If a line number is specified, break at start of code for that line.\n\
16449 If a function is specified, break at start of code for that function.\n\
16450 "));
16451 set_cmd_completer (c, location_completer);
16452
16453 add_setshow_enum_cmd ("dprintf-style", class_support,
16454 dprintf_style_enums, &dprintf_style, _("\
16455 Set the style of usage for dynamic printf."), _("\
16456 Show the style of usage for dynamic printf."), _("\
16457 This setting chooses how GDB will do a dynamic printf.\n\
16458 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16459 console, as with the \"printf\" command.\n\
16460 If the value is \"call\", the print is done by calling a function in your\n\
16461 program; by default printf(), but you can choose a different function or\n\
16462 output stream by setting dprintf-function and dprintf-channel."),
16463 update_dprintf_commands, NULL,
16464 &setlist, &showlist);
16465
16466 dprintf_function = xstrdup ("printf");
16467 add_setshow_string_cmd ("dprintf-function", class_support,
16468 &dprintf_function, _("\
16469 Set the function to use for dynamic printf"), _("\
16470 Show the function to use for dynamic printf"), NULL,
16471 update_dprintf_commands, NULL,
16472 &setlist, &showlist);
16473
16474 dprintf_channel = xstrdup ("");
16475 add_setshow_string_cmd ("dprintf-channel", class_support,
16476 &dprintf_channel, _("\
16477 Set the channel to use for dynamic printf"), _("\
16478 Show the channel to use for dynamic printf"), NULL,
16479 update_dprintf_commands, NULL,
16480 &setlist, &showlist);
16481
16482 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16483 &disconnected_dprintf, _("\
16484 Set whether dprintf continues after GDB disconnects."), _("\
16485 Show whether dprintf continues after GDB disconnects."), _("\
16486 Use this to let dprintf commands continue to hit and produce output\n\
16487 even if GDB disconnects or detaches from the target."),
16488 NULL,
16489 NULL,
16490 &setlist, &showlist);
16491
16492 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16493 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16494 (target agent only) This is useful for formatted output in user-defined commands."));
16495
16496 automatic_hardware_breakpoints = 1;
16497
16498 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16499 }
This page took 0.411637 seconds and 4 git commands to generate.